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Functional Identification of Genes Involved in Heme Uptake

and Utilization in B. henselae

Abstract

Bartonellae are hemotropic bacteria, agents responsible for emerging zoonoses. These
Alphaproteobacteria are heme auxotroph which must import heme for supporting
their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a
complete heme uptake system allowing the transportation of this compound in the
cytoplasm. Heme has also been shown to be used as an iron source for Bartonella.
Similarly to other bacteria which use heme as an iron source, Bartonellae must
degrade it to allow the release of iron from the tetrapyrrole ring in the cytoplasm. For
Bartonella, the genes cluster devoted to the complete heme uptake system contains a
gene encoding for a polypeptide that shares homologies with heme trafficking or
degrading enzymes. Using complementation of an E. coli mutant strain impaired in
heme degradation, we demonstrated that HemS from Bartonella henselae expressed in
E. coli allows the release of iron from heme. Recombinant HemS of B. henselae binds
heme and can degrade it in the presence of a suitable electron donor. Knocking down
the expression of HemS in B. henselae reduces B. henselae ability to face H,O,
exposure. Except classical heme uptake system, these bacteria encode for four or five
outer membrane heme binding proteins (Hbps). The structural genes of these highly
homologous proteins are expressed differently according to oxygen, temperature, and
heme concentration. These proteins were hypothesized to be involved in various
cellular processes according to their ability to bind heme and their regulation profile.
In this report, we investigated the roles of the four heme binding proteins of
Bartonella henselae. We show that these heme binding proteins can bind Congo red in
vivo and heme in vitro. They can enhance the efficiency of heme uptake when
co-expressed with a heme transporter in E. coli. Using B. henselae Hbps knockdown
mutants, we show that these proteins are involved in the defense against oxidative
stress response, colonization of human endothelial cell and survival inside the flea.

Keywords: Bartonella/ heme utilization/ oxidative stress/ HemS/ heme binding
proteins/ endothelial cells invasion/ flea transmission
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CHAPTER ONE

Bartonella and its survival in different microenvironments

The a-proteobacterium Bartonellae employs erythrocyte parasitism and
arthropod-mediated transmission as common parasitism strategies (Dehio and Sander,
1999; Schulein et al., 2001). Currently, 26 distinct Bartonella species have been
described (Table 1) (Kaiser et al., 2011). Each Bartonella species appears to be
transmitted by specific blood-sucking arthropod vectors, and is highly adapted to one
or several mammalian reservoir hosts, in which it causes long-lasting
intra-erythrocytic bacteremia as a hallmark of infection (Schroder and Dehio, 2005).
Bartonellae are also able to infect the non-reservoir host and cause various clinical
manifestations without conspicuous erythrocyte parasitism (Schulein et al., 2001).
Typically, cats are the natural reservoir for Bartonella henselae (B. henselae); infected
cats usually develop intra-erythrocytic bacteremia (Kordick and Breitschwerdt, 1995).
However, humans infected by B. henselae show no evidence of erythrocyte parasitism,
although one group claimed that B. henselae can infect human erythrocytes in vitro
(Pitassi et al., 2007). Bartonella bacilliformis, Bartonella quintana and B. henselae
are the three most important human pathogens (Dehio, 2005; Florin et al., 2008;
Guptill, 2010). Man is the reservoir host for B. bacilliformis and B. quintana, in
whom they cause various clinical manifestations associated with both
intra-erythrocytic bacteremia and endothelial cell infection (Hill et al., 1992; Maurin
and Raoult, 1996). B. bacilliformis causes Oroya fever and verruga peruana (Herrer,

1953a, b). B. quintana causes trench fever (Vinson et al., 1969). B. henselae causes



cat scratch disease (CSD) and bacillary peliosis (Jones, 1993). Both B. quintana and B.

henselae can cause bacillary angiomatosis in immunodeficient patients (Sander et al.,

1996; Spach et al., 1995).

Table 1: Bartonella species, their natural reservoirs and vectors, and resulting human

diseases. (Kaiser et al., 2011).

Bartonella species Reservoir Vector Human disease(s)
Human-specific species
B. bacilliformis Human Sandfly Carrion’s disease: Oroya fever and
verruga peruanar
B. quintana Human Body louse, cat flea, Trench fever, endocarditis,
tick bacillary angiomatosis
Zoonotic species
B. alsatica Rabbit Unknown Endocarditis, lymphadenitis
B. clarridgeiae Cat Cat flea Cat-scratch disease
B. elizabethae Rat Unknown Endocarditis, neuroretinitis
B. grahamii Mouse, vole Rodent flea Neuroretinitis
B. henselae Cat, dog Cat flea Cat-scratch disease, endocarditis,
bacillary angiomatosis, bacillary
peliosis, neuroretinitis, bacteremia
with fever
B. koehlerae Cat Unknown Endocarditis
B. rochalimae Fox, raccoon, coyote flea Bacteremia with fever
B. tamiae Rat (?) Mite (?) Bacteremia with fever
B. vinsonii subsp. arupensis Mouse Tick (?7) Bacteremia with fever
Endocarditis (?)
B. vinsonii subsp. berkhoffii Dog Tick (?) Endocarditis
B. washoensis Ground squirrel Unknown Myocarditis, endocarditis (?)
Animal-specific species
B. birtlesii Mouse Unknown Unknown
B. bovis (=B. weissii) Cattle/cat Unknown Unknown
B. capreoli Roe deer Unknown Unknown
B. chomelii Cattle Unknown Unknown
B. doshiae Vole Unknown Unknown
B. peromysci Deer, mouse Unknown Unknown
B. phoceensis Rat Unknown Unknown
B. rattimassiliensis Rat Unknown Unknown
B. schoenbuchensis Roe deer Unknown Unknown
B. talpae Vole Unknown Unknown
B. taylorii Mouse, vole Rodent flea Unknown
B. tribocorum Rat Unknown Unknown
B. vinsonii subsp. Vinsonii Vole Unknown Unknown




1. Analysis of Bartonellae genomes

The complete sequences of 10 Bartonella species genomes are now available.
Comparison of five Bartonella genomes (B. bacilliformis, B. grahamii, B. henselae,

B. gqintana, B. tribocorum) contained in the MicroScope database
(https://www.genoscope.cns.fr/agc/microscope/home/index.php) revealed a low G+C
content (38.2-38.8%), a low-coding density of 72.3 to 81.6% and a core genome
containing 1016 genes.

Table 2; Fig. 1 Comparison of five Bartonella genomes.

B. bacilliformis  B. grahamii B. henselae B. quintana  B. tribocorum
Genome size (bp) 1,445,021 2,341,328 1,931,047 1,581,384 2,619,061
Total genes (bp) 1,401 2,330 1,906 1,502 2,650
Core genome (bp) 1,016 1,121 1,018 1,034 1,034
Specific genes (bp) 334 647 482 399 758

O B. baciiliformis
"% B. grahamii
2 )B. henselue

1.2 B. quintana

O B. tirihacoriimn

Comparison of B. henselae and B. quintana genomes indicates that the B.
quintana is a reduced version of the B. henselae genome. B. henselae has a 1.93
megabase pair (Mb) genome containing 1,906 protein coding genes. Among them,

482 are unique to B. henselae. B. quintana has a 1.58 Mb genome encoding 1,502
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proteins. Among them, 399 are unique to B. quintana (Alsmark et al., 2004). Like B.
quintana, B. bacilliformis has a small genome consisting of a 1.44 Mb genome
encoding 1,401 proteins, 334 of which are unique to B. bacilliformis (Fig 1; Table 2).
Genomic analysis also revealed the presence of type IV secretion systems in
“modern” species such as B. henselae and B. quintana, but not in “ancient” species,
1.e. B. bacilliformis. Flagella of B. bacilliformis were replaced by the Trw T4SS in
“modern” species (Harms and Dehio, 2012).

This relatively small core genome reflects specific adaptations to the
host-associated lifestyle. A striking example of specific adaptation is that of heme.
This important source of iron and porphyrin is particularly abundant in some of the
niches colonized by Bartonellae, i.e., the intracellular spaces of erythrocytes and the
mid-gut lumen of bloodsucking arthropods. The strict heme requirement for growth of
Bartonellae in vitro correlates with the absence of a heme biosynthesis pathway in
these organisms (Alsmark et al., 2004). Moreover, these bacteria contain genes
encoding for four to five heme binding proteins and a heme uptake system.

Bartonella genome analysis revealed that homologues of 38 genes shown to be
essential for Escherichia coli are not present (Table 3). In E. coli, these essential genes
are involved in biosynthesis of heme, tetrahydrofolate, thiamine, isoprenenoid,
ubiquinone, undecaprenyl-PP, lipid A, phospholipid and murein. Two of these genes
are involved in the biosynthesis and export of lipopolysaccharides. In addition,
homologues of genes involved in cell division, chromosome partitioning, secretion,

replication and oligoribonucleotide degradation are also not present in Bartonella



genomes. Likewise, many homologues of genes involved in the oxidative stress
response are not present in Bartonella genomes. The absence of some of the above
mentioned genes can be easily explained by the lifestyle of Bartonella. For example,
Bartonella can replicate inside the erythrocyte and arthropod gut where heme is
available (see above). The function of other genes involved in processes like cell
division, oligoribonucleotide degradation and the oxidative stress response are

undoubtedly assumed by functional analogs.



Table 3. Essential E. coli genes not present in Bartonellae genomes.

Gene Pathway

csrA Pleiotropic  regulatory protein for carbon source
metabolism

Can Carbonic anhydrase 2

hemA Heme biosythesis

hemB Heme biosynthesis

hemC Heme biosynthesis

hemD Heme biosynthesis

hemG Heme biosynthesis

hemH Heme biosynthesis

hemL Heme biosynthesis

folB Tetrahydrofolate biosynthesis

folK Tetrahydrofolate biosynthesis

thil Thiamine biosynthesis

fldA Isoprenoid biosynthesis

Dxr Ubiquinone biosynthesis

ispU UPP biosynthesis

IpxH Lipid A biosynthesis

kdsC Lipid A biosynthesis

plsB Phospholipid biosynthesis

mreB Murein biosynthesis

mreD Murein biosynthesis

mreC Murein biosynthesis

ripB Lipopolysaccharide assembly

IptA LPS export

ftsB Essential cell division protein

ftsL Essential cell division protein

ftsN Essential cell division protein

secM Secretion

mukF Chromosome partitioning

mukE Chromosome partitioning

mukB Chromosome partitioning

dnaT DNA replication

Orn Oligoribonuclease

yeeQ) Uncharacterized protein

yfio Outer membrane assembly lipoprotein

vgjD Uncharacterized protein

yrbK Uncharacterized protein

yrfF Uncharacterized protein

yihA GTP binding protein




2. Diseases caused in humans; diagnosis and treatment of Bartonellosis
2.1. Clinical features
Oroya fever and verruga peruana caused by B. bacilliformis

Bartonellosis caused by B. bacilliformis infection is referred to as Carrion’s
disease. The pathogen is endemic in some areas of Peru and is transmitted by the
sandfly Lutzomyia verrucarum (Caceres, 1993). Carrion’s disease is comprised of two
different phases: an acute stage, that of Oroya fever, and an eruptive rash phase
referred to as verruga peruana (Garcia-Caceres and Garcia, 1991; Schultz, 1968).
During the acute stage, 80% of red blood cells are parasitized and lysed (Reynafarje
and Ramos, 1961), leading to severe hemolytic anemia (Garcia-Caceres and Garcia,
1991). The mortality rate in untreated patients during this phase may attain 40-80%
(Gray et al., 1990; Ihler, 1996; Schultz, 1968). The verruga peruana stage usually
occurs four to eight weeks after symptoms of Oroya fever have resolved, and is
characterized by hemangiomas (benign vascular tumors) (Garcia et al., 1990).
Vasculature infection provokes endothelial cell hyperplasia and neovascularization,
resulting in formation of new blood capillaries, a process defined as angiogenesis
(Garcia et al., 1990). In this phase, proliferating endothelial cells, along with
inflammatory and growth factors induced by B. bacilliformis, culminate in pyogenic
granulomatous hemangiomas, referred to as verruga peruana (Garcia-Caceres and
Garcia, 1991).
Trench fever caused by B. quintana

B. quintana is the agent of trench fever, the common name for the acute febrile



syndrome. The louse Pediculus humanus corporis is the vector of B. quintana (Byam
and Lloyd, 1920). Trench fever was epidemic during World Wars 1 and 2 (Hunt and
Rankin, 1915; Maurin and Raoult, 1996). The most common characterization included
acute onset of fever (39—40°C) lasting 1-3 days, followed by relapse, with decreasing
episodes of fever every 5 days. Chronic bacteremia can persist up to 8 year after
initial infection (Kostrzewski, 1950). Chronic infection causes endocarditis, bacillary
angiomatosis and bacillary peliosis (Spach and Koehler, 1998). It has mainly been
reported in the homeless, alcoholics and immunodeficient patients (Brouqui et al.,
1999; Spach et al., 1995).
Cat scratch disease caused by B. henselae

The most common disease caused by B. henselae in humans is cat scratch
disease (CSD), a self-limiting lymphadenopathy transmitted by a cat scratch or bite
(Anderson and Neuman, 1997). Regional lymphadenopathy (swollen enlarged lymph
nodes) and suppurative papules at the site of inoculation are characteristic clinical
manifestations of CSD. Symptoms can occur within several weeks or months and
resolve spontaneously. Chronic B. henselae infection in immunocompromised
individuals causes tumor proliferation of endothelial cells in the skin and internal
organs, referred to as bacillary angiomatosis (BA) and peliosis hepatis (PH),
respectively (Adal et al., 1994).
2.2. Diagnosis and treatment

In cases of suspected Bartonellosis, diagnosis is usually performed by blood

culture and serological testing. Blood culture techniques have been successful, but



Bartonella can take up to two weeks to grow and is thus not useful for treatment.
Numerous serological tests are available, such as indirect immunofluorescence assay
(IFA) (Regnery et al., 1992). However, cross-reactivity exists with intracellular
pathogens such as Chlamydia pneumoniae (Maurin et al., 1997) and Coxiella burnetti
(La Scola and Raoult, 1996). Therefore, an additional diagnostic test is necessary,
such as PCR performed on blood and various tissues including lymph nodes, skin and
liver (Fenollar and Raoult, 2004). In an early work, amplification of 16S rRNA genes
was used to detect Bartonella species (Kerkhoff et al., 1999). However, detection of
the 16S rRNA gene is not convenient for distinguishing which Bartonella species is
responsible for infection, since 16S rRNA genes in Bartonella species share > 97.8%
similarity (Fenollar and Raoult, 2004). Recently, new target genes have been used to
detect different Bartonella species such as the citrate synthase gene (g/t4) (Patel et al.,
1999), the riboflavin synthase a-chain gene (7ibC) (Bereswill et al., 1999), the heat
shock protein (groEL) (Zeaiter et al., 2002) and the 16S-23S rRNA intergenic spacer
region (ITS) (Jensen et al., 2000).

Currently, Bartonellosis is treated with penicillin, chloramphenicol, doxycycline,
erythromycin and tetracycline (Kordick et al., 1997; Regnery et al., 1996). Despite the
fact that trench fever and CSD are self-limiting, antibiotics are recommended. Trench
fever treated with chloramphenicol or tetracycline has given good results. CSD
patients have been advised to use erythromycin and doxycycline (Maguina et al.,
2009).

3. The cycle of Bartonella in the mammalian reservoir host



Intra-erythrocytic bacteremia caused by Bartonella in the host has been studied
in different rodent models (B. birtlesii/mouse, B. tribocorum/rat) (Boulouis et al.,
2001; Marignac et al., 2010; Schulein et al., 2001). The most detailed information
came from the rat model of B. tribocorum infection (Schulein et al., 2001). After
intravenous inoculation with in-vitro-grown B. tribocorum, the bacteria rapidly
disappeared in the circulating blood system within a few hours, and blood remained
sterile for 3-4 days (Schulein et al., 2001). Niches that supported bacterial division
and rendered bacteria competent toward erythrocytes during that time have not been
clearly identified. Although it was shown that endothelial cells are an important
constituent of this primary niche (Dehio, 2005), it was also speculated that CD34"
progenitor cells could comprise the primary niche (Mandle et al., 2005).

About 4 to 5 days post-infection, bacteria seeded from the primary niche to the
bloodstream are able to adhere and to invade mature erythrocytes (Schulein et al.,
2001). Inside erythrocytes, bacteria multiply until reaching a steady number (an
average of eight intracellular bacteria per infected erythrocyte), which is maintained
for the remaining life span of the infected cell (Fig. 2) (Schulein et al., 2001).
Bacterial persistence within erythrocytes is an original strategy enabling its
persistence in its host, and the resulting long-lasting intra-erythrocytic bacteremia is
considered a unique adaptation to the mode of transmission by bloodsucking
arthropod vectors (Schulein et al., 2001). The number of infected erythrocytes
decreases after day 6 (Schulein et al., 2001). However, the recurrent erythrocyte

infection wave is detected after 3 to 6 days, suggesting that it was seeded from the



same primary niche (Fig. 2) (Dehio, 2001) and could be related to fever relapse in
human trench fever (Schulein et al., 2001). Intra-erythrocytic bacteremia in the B.
tribocorum rat model is persistent for eight to ten weeks (Schulein et al., 2001). This
infectious procedure was also observed in a mouse model of B. grahamii and B.
birtlesii (Koesling et al., 2001; Marignac et al., 2010).

Since the intravenous route is not the natural route of infection, Marignac et al.
(2010) experimentally infected mice wusing B. birtlesii via the intravenous,
subcutaneous, intradermal, oral or ocular route. The experiment showed that all routes
of infection can cause bacteremia in infected mice (Marignac et al., 2010). This
infection strategy is presumably shared by most Bartonella species, except for B.
bacilliformis, which causes massive hemolysis of colonized human erythrocytes

(Hendrix, 2000).

Enfection of blood-sucking arthrupod]

Infection of the primary
niche in mammalian

reservoir host

Infection waves
seeded from the

primary niche

Ba clefum

_~Erythrocyle
~@ - -

Adhesion Invasion Replication Persistence

Fig. 2 Model of the infection cycle of Bartonella in their reservoir host. Adapted from

(Pulliainen and Dehio, 2012).



4. Bartonella and erythrocyte parasitism

Mammalian erythrocytes are generally characterized as disks that are bi-concave
in shape and red in color due to the spectral properties of the hemoglobins, the most
abundant proteins in these cells (Morera and Mackenzie, 2011). Hemoglobin is
responsible for the transport of more than 98% of oxygen. Mammalian erythrocytes
are non-nucleated in their mature form. Moreover, they lose all other cell organelles,
such as their mitochondria, Golgi apparatus and endoplasmic reticulum. Adult humans
have roughly 4-6 million erythrocytes per microliter. Human erythrocytes live in
blood circulation for about 100-120 days. At the end of their life span, they are
removed from the circulation. There are currently more than 50 known membrane
proteins in erythrocytes. These membrane proteins perform a wide diversity of
functions, including transport of ions and molecules across the red cell membrane,
adhesion and interaction with cells such as endothelial cells, and other currently
unknown functions.

During the primary phase (hematic) of bartonellosis caused by B. bacilliformis,
about 80% of circulating erythrocytes are lysed (Reynafarje and Ramos, 1961). Other
infections caused by B. henselae and B. quintana have not been associated with
evidence of hemolysis (Iwaki-Egawa and Ihler, 1997; Rolain et al., 2003a), although
the B. henselae and B. quintana genomes contain genes coding for hemolysin activity
(http://www.ncbi.nlm.nih.gov/nuccore/NC _005956.1;http://www.ncbi.nlm.nih.gov/nu
ccore/NC _005955.1). Bartonella entry into erythrocytes is an active process, since

mature erythrocytes do not contain an active cytoskeleton that can be subverted by
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bacteria to assist in its uptake (Dramsi and Cossart, 1998). Moreover, Bartonella
adhesion is unaffected when erythrocytes are pretreated with inhibitors of glycolysis
(NaF) or a thiol reagent (N-ethyl maleimide), indicating that the erythrocyte does not
contribute to energy-dependent adhesion (Walker and Winkler, 1981). Treatment of B.
bacilliformis with a respiratory inhibitor (KCN), a protonmotive force uncoupler
(dinitrophenol) or thiol reagent (N-ethyl maleimide), significantly reduces its ability to
adhere to erythrocytes, an indication that this process is energy-dependent (Walker
and Winkler, 1981). The multiple-surface-exposed proteins of human erythrocytes,
including o- and B-subunits of spectrin, band 3 protein and glycophorin A/B, were
shown to interact with B. bacilliformis (Buckles and McGinnis Hill, 2000). Bartonella
factors that contribute to erythrocyte parasitism have been identified, mainly
flagella-mediated motility and surface proteins associated with the Trw type IV

secretion system (T4SS), deformin and lalA/IalB.
4.1. Flagella

Bacteria adhesion is the first step in the erythrocyte invasion process.
Interestingly, B. bacilliformis adherence is related to its motility, and this motility is
related to expression of multiple polar flagella. Each B. bacilliformis possesses a polar
tuft composed of one to ten flagella (Scherer et al., 1993). Early works showed that
non-motile variants of B. bacilliformis exhibit weaker binding to erythrocytes,
suggesting that this process requires bacterial motility (Benson et al.,, 1986; Walker
and Winkler, 1981). Later, Scherer et al. showed that invasion of human erythrocytes
significantly decreases when bacteria are pre-incubated with antiflagellin antibodies

(Scherer et al., 1993). Recently, it was shown that a non-flagellated mutant displayed



75% reduced binding to human erythrocytes; moreover, this phenotype could be
rescued by complementation with the wild type locus (Battisti and Minnick, 1999).
However, many other Bartonella species (e.g. B. henselae, B. quintana) that do not
encode flagella are able to invade erythrocytes (Kordick and Breitschwerdt, 1995;
Rolain et al., 2002). The apparent exchange of flagella for Trw T4SS (see below) in
many other Bartonella species (e.g. B. henselae, B. quintana) and the common
function of both virulence factors in erythrocyte invasion indicate that Trw T4SS may
somehow have functionally replaced the flagella, either directly or indirectly (Dehio,
2008).
4.2. Deformin

One feature of the B. bacilliformis interaction with human erythrocytes is
production of deeply invaginated pits and trenches in the erythrocyte membrane,
considered an invasion passage for bacteria (Benson et al., 1986). This phenomenon is
triggered by deformin, a bacterial factor secreted by B. bacilliformis and B. henselae
(Iwaki-Egawa and Ihler, 1997), but that is not responsible for the hemolytic activity
caused by B. bacilliformis (Hendrix, 2000). Supernatants of culture medium from
both B. bacilliformis and B. henselae can cause invagination of human red cell
membranes and formation of intracellular vacuoles, although B. henselae cannot
invade human erythrocytes (Iwaki-Egawa and Ihler, 1997). Earlier reports showed
that deformin was a heat-sensitive protein of 65 or 130 kDa (Mernaugh and Ihler,
1992; Xu et al., 1995). Subsequently, the same group showed that deformin activity

was associated with a small hydrophobic molecule having high affinity for albumin



(Derrick and Thler, 2001). At present, no further data concerning this putative
deformin activity have been published, and the nature of the deforming factor remains
mysterious. How deformin causes invagination pits and trenches at the erythrocyte
surface remains unknown.
4.3. IalA and IalB

Another factor involved in erythrocyte invasion in B. bacilliformis is that of the
invasion-associated loci (ial), ialA and ialB. The ial locus is highly conserved within
the genus Bartonella (Mitchell and Minnick, 1997). Earlier work showed that
expression of IalA and lalB in E. coli confers an invasion phenotype upon human
erythrocytes (Mitchell and Minnick, 1995). Consistent with these phenotypes, the B.
bacilliformis ialA/ialB mutant strain was strongly impaired in its erythrocyte
invasion activity (10-fold less) (Mitchell and Minnick, 1995). Recently, it was shown
that the ialA/B mutant of B. birtlesii adheres normally to erythrocytes but is impaired
in invasion (Vayssier-Tausat et al., 2010). The gene ia/4 encodes a 21 kDa protein, a
nucleoside polyphosphate hydrolase of the MutT motif family (Cartwright et al., 1999;
Conyers and Bessman, 1999). The function of IalA was presumed to be that of
eliminating toxic nucleotide derivatives from the cell and regulating the levels of
important signaling nucleotides and their metabolites (Cartwright et al, 1999).
Homologs of IalA in other pathogens were shown to be crucial for infectivity
(Edelstein et al., 2005; Ismail et al., 2003). A homolog in Rickettsia prowazekii was
suggested to buffer bacterial homeostasis against stressful conditions during growth in

a hostile intracellular environment (Gaywee et al., 2002). Thus, it is reasonable to



assume that [alA may indirectly contribute to invasion.

Recently, it was shown that B. bacilliformis ialB mutant strains are severely
impaired in their ability to invade in vitro human erythrocytes. The capacity to invade
erythrocytes was restored by complementation with the wild type locus (Coleman and
Minnick, 2001). An ia/B mutant of B. birtlesii was shown to be unable to generate
bacteremia in mice (Mavris et al., 2005). The ialB gene encodes for an 18 kDa protein
that shares 63.6% sequence conservation with Ail of Yersinia enterocolitica, a 17 kDa
protein involved in attachment and invasion of epithelial cells (Miller and Falkow,
1988). IalB was shown to be an outer membrane fraction in B. henselae (Chenoweth
et al., 2004a; Coleman and Minnick, 2001). The crystal structure of IalB of B.
henselae also confirmed its localization in the outer membrane (Koebnik et al., 2000).
It is thus easily conceivable that [alB may be directly involved in erythrocyte invasion,
possibly by interacting with one or more of the red blood cell surface proteins bound
by Bartonella. However, the erythrocyte ligands that are bound to IalB remain
unidentified.

4.4. Type IV secretion systems (T4SSs)

Type IV secretion systems (T4SSs) act as transporters of Gram-negative bacteria,
injecting bacterial virulence factors and DNA substrates into eukaryotic target cells
(Dehio, 2008). An increasing number of bacteria are shown to encode type IV
secretion systems. The prototype of T4SSs is the VirB-D4 system of Agrobacterium
tumefaciens, which delivers oncogenic nucleoprotein particles to plant cells (Christie,

2004). Eleven proteins encoded by the virB operon and one protein encoded by virD4



build up a pilus and pore complex, which spans both the Gram-negative bacterial
membrane and the host cell membrane, allowing bacteria to transport a nucleoprotein
complex from the bacterial cytoplasm directly into the host cytoplasm (Dehio,

2004)(Fig. 3).

Fig 3. Model of VirB/VirD4 T4SS machinery. T4SS machinery spans the inner and
outer membranes of Gram-negative bacteria. This transporter is able to secrete
substrates from the bacterial cytoplasm directly into the cytoplasm of infected host
cells and into the extracellular milieu. Adapted from (Schroder and Dehio, 2005).

The VirB-D4 type IV secretion system has been recently identified in B. henselae,
which shares extensive homology with the prototypic virB locus of Agrobacterium
tumefaciens and the virB locus of Brucella spp. (O'Callaghan et al., 1999;

Schmiederer and Anderson, 2000) (Fig 4). The difference is that B. henselae has no



VirB1, while VirB5 and VirB7 were replaced by two unrelated proteins of 17 kDa and
15 kDa, which do not have extensive amino acid sequence similarities to other known
proteins (Dehio, 2001) (Fig 4). The 17 kDa protein was identified as an
immunodominant protein in B. henselae and is well conserved in the genus Bartonella
(except from B. bacilliformis) (Sweger et al., 2000). Bartonella species (except for B.
bacilliformis) encode two distinct T4SSs, VirB-D4 and Trw, both of which are
essential for infection in an animal model (Schulein and Dehio, 2002; Seubert et al.,

2003).
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Fig 4. The VirB-like type IV secretion systems of (a) Agrobacterium tumefaciens, (b)
Brucella suis and (c) Bartonella henselae and Bartonella tribocorum. Homologous
genes are represented in the same number. Adapted from (Seubert et al., 2002).

B. tribocorum rat models and B. birtlesii mouse models showed that mutants
impaired in VirB/VirD4 and Trw T4SS lost their ability to cause intra-erythrocytic
parasitism in infected rats/mice (Mavris et al., 2005; Saenz et al., 2007). The loss of
intra-erythrocytic parasitism in mammals can be explained by the inability to infect
the primary niche, or they may be the consequence of a defect in invasion of

erythrocytes. Schulein and Dehio (2002) showed that the VirB/VirD4 system is



required at an early infection phase, prior to the onset of bacteremia occurring on day
4 or 5 (Schulein and Dehio, 2002), suggesting that the VirB/VirD4 system plays an
important role in establishing a primary niche infection.

The second T4SS of Bartonella, Trw, was first identified in B. henselae, where it
is upexpressed and activated during endothelial cell infection (Seubert et al., 2003).
The Trw system of B. tribocorum shares high sequence similarity with the Trw
conjugation machinery of broad-host-range antibiotic resistance plasmid R388 of
enterobacterial origin (Dehio, 2004) (Fig 5). Except for the presence of multiple
tandem gene duplications of #wL and trwJ-trwH, the trw genes of Bartonella are

co-linear with the respective genes of plasmid R388 (Dehio, 2008) (Fig 5).
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Fig 5. Organization of B. tribocorum Trw (Seubert et al., 2003) and R388-Trw(de Paz
et al., 2005; Seubert et al, 2003). Homologous genes have the same color. B.
tribocorum presents seven TrwL repetitions and five TrwJ-Trwl-TrwH repetitions.
Adapted from (de Paz et al., 2005; Seubert et al., 2003).

Complementation assays showed that functions are also conserved between Trw



of Bartonella and plasmid R388 (de Paz et al., 2005; Seubert et al., 2003). The t#rwE
mutant in B. tribocorum cannot establish a bacteremic infection course in a rat model.
However, this mutant is still able to infect a primary niche (Dehio, 2004). Likewise, it
was hypothesized that Trw is required for colonization of erythrocytes and
intra-erythrocytic replication. Recently, it was shown that the mutant of trw (trwD,
trwE, trwF, trwJ2, trwL1, trwL2) in B. birtlesii was impaired in adhesion and invasion
into mouse erythrocytes both in vitro and in vivo (Vayssier-Taussat et al., 2010).
Duplicated genes trwL and trwJ of Bartonella encode for variant forms of
surface-exposed pilus components that may bind bind erythrocyte surface antigens
(Seubert et al., 2003). Proteins encoded by other duplicated genes of #rwl and trwH
are required for pilus elongation and its anchorage to the outer membrane,
respectively (Dehio, 2008). However, the 7w system of Bartonella lacks trwB, which
is required for substrate transport in other T4SSs (Cascales and Christie, 2003) and
plasmid R388 (Seubert et al., 2003). It was suggested that the function of Trw T4SS is
to establish binding to erythrocytes rather than translocation of effector molecules to
the host cell (Dehio, 2004). Interestingly, ectopic expression of Trw of B. tribocorum
in B. henselae and B. quintana conferred upon them the ability to infect rat
erythrocytes, suggesting that the Trw system plays a role in determining the host
specificity of erythrocyte infection (Vayssier-Taussat et al., 2010). Recently, it was
showed that only TrwJ1 and TrwJ2 were expressed and localized at the cell surface of
B. birtlesii and were bound to band 3, one of the major outer membrane glycoproteins

of mouse erythrocyte (Deng et al., 2012).



5. Bartonella interaction with endothelial cells

Another remarkable pathologic feature of Barfonella infection is that it causes
vasoproliferative lesions in a process of pathological angiogenesis (Dehio, 2004).
Typical manifestations of Bartonella-triggered tumor formation are verruga peruana
(B. bacilliformis) and bacilliary angiomatosis (BA) (B. quintana and B. henselae). The
lesions consist of proliferating endothelial cells, bacteria and a mixture of
macrophages/monocytes and polymorphonuclear neutrophils (Kostianovsky and
Greco, 1994; Manders, 1996). Bartonella were found in aggregates both surrounding
and within endothelial cells. Clearance of the infection by antibiotics caused complete
regression of vascular lesions, indicating that vascular endothelial cells are a target for
Bartonella colonization in vivo (Manders, 1996). Primary human umbilical vein
endothelial cells (HUVEC) have been used as a model to study the interaction
between the human vascular endothelium and Barfonella. Infection of vascular
endothelial cells with Bartonella in vitro results in cytoskeletal rearrangements that
mediate bacterial internalization caused by activation of the small GTPase Rho (Dehio,
2001); activation of transcription factor nuclear factor NF-kappaB, which mediates
recruitment and adhesion of leukocytes (Fuhrmann et al, 2001); inhibition of
apoptosis (Kirby and Nekorchuk, 2002); and direct mitogenic stimulation (Conley et
al., 1994), resulting in endothelial proliferation and formation of vasoproliferative
tumors (Pulliainen and Dehio, 2009). These cellular changes might be linked to
Bartonella trimeric autotransporter adhesins (TAAs) (BadA) (see below) (Riess et al.,

2004) and the VirB/VirD4 type IV system (Schulein et al., 2005).



5.1. BadA

Bartonella adhesion A (BadA) of B. henselae (Riess et al., 2004), together with
variably expressed omps (Vomps) of B. quintana (Zhang et al., 2004) and Bartonella
repetitive protein A (BrpA) of B. vinsonii (Zhang et al., 2004), are defined as
Bartonella trimeric autotransporter adhesins (TAAs). TAAs are widespread in a-, -
and y-proteobacteria and are related to the pathogenicity of many Gram-negative
bacteria (Girard and Mourez, 2006). All share a similar trimeric ‘lollipop-like’
structure. They have been designated as membrane anchor, stalk, neck and head,

respectively (Linke et al., 2006) (Fig 6).
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Fig 6. Domain organization of representative trimeric autotransporter adhesins (A)

and full model structure of YadA (B). Head domains are shown in red, stalk in green,



membrane anchor in orange and neck in khaki. Sequences are: BadA of B. henselae,
NadA of Neisseria meningitidis, YadA of Yersinia enterocolitica, Hia of
Haemophilus influenzae, UspAl of Moraxella catarrhalis and XadA of Xanthomonas
oryzae. Adapted from (Linke et al., 2006).

The C-terminal membrane anchor domain is highly conserved throughout the
TAA family (Girard and Mourez, 2006). In Y. enterocolitica, it is known to form a
pore by building a trimeric 12-stranded B-barrel in the outer membrane, and head and
stalk domains are transported to the cell surface through the pore (Zhang et al., 2004).
BadA of B. henselae is a large TAA with a monomeric molecular weight of 340 kDa
(Riess et al., 2004); Expression of BadA forms a dense layer on the bacterial surface
(length ~240 nm) (O'Rourke et al., 2011). The N-terminal signal sequence of BadA is
followed by the head, which is composed of three domains: an N-terminal YadA-like
head repeat, a Trp ring and a GIN domain (Kaiser et al., 2012). The BadA head is
linked to the anchor by a long, highly repetitive neck-stalk module rich in coiled coils.
These modules differ significantly in length between Bartonella species (Kaiser et al.,
2012) and even among different B. henselae isolates (Riess et al., 2007).

It was demonstrated that BadA of B. henselae is essential for adhesion to host
endothelial cells and extracellular matrix proteins. Expression of BadA is crucial for
activation of hypoxia-inducible factor 1 and secretion of pro-angiogenic cytokines
(VEGHF, interleukin-8) (Riess et al., 2004), related to the capacity of B. henselae to
trigger a pro-angiogenic host cell response. Sera (~70-80%) of B. henselae-infected

patients contain BadA-specific antibodies, suggesting that BadA is an



immunodominant protein and a promising vaccine candidate (Wagner et al., 2008).
The head of BadA was shown to play a role in auto-aggregation, binding to collagen
and triggering pro-angiogenic host cell responses (Kaiser et al., 2008). The mutant
strain of B. henselae lacking the ‘neck and stalk’ region is impaired in fibronectin
binding, there is no effect on host cell adhesion or induction of VEGF secretion
(Kaiser et al., 2008). Genes encoding BadA-homologous TAAs have been found in all
other Bartonella species investigated thus far (O'Rourke et al., 2011), suggesting that
there exists a conserved role for them in Bartonella pathogenicity (Gilmore et al,,
2005; Zhang et al., 2004). In the case of B. quintana, TAAs (Vomps) are also involved
in auto-aggregation of the bacteria and collagen binding (Zhang et al., 2004). It was
later shown that the strain of B. quintana lacking expression of vomp did not induce
VEGEF secretion (Schulte et al., 2006) and the vomp mutant strain of B. quintana did
not cause bacteremia in the animal model (MacKichan et al., 2008).
5.2. T4SS: the VirB/VirD4 type IV system

As described above, the VirB/VirD4 type IV system was shown to be related to
endothelial cell parasitism. In fact, the VirB/VirD4 type IV system was revealed to be
a 17 kDa immunodominant antigen, a VirB5 homolog encoded in the virB operon in B.
henselae (Padmalayam et al., 2000). Subsequently, the VirB/VirD4 type IV system
was widely studied. The VirB/VirD4 type IV system of B. henselae is able to transport
Bartonella effector proteins (Beps) BepA to BepG, which are encoded downstream
from the virB/virD4 locus of B. henselae (Schulein et al., 2005), into the host cell

cytosol (Schmid et al, 2006). These Beps contain a conserved Bep intracellular



delivery (BID) domain close to the C-terminus, which, together with a C-terminal
positively charged tail sequence, constitutes a bipartite signal for T4SS-mediated
protein translocation (Schroder et al., 2011). The main functions of the Beps are as
follows: modification of the endothelial cell, including formation of the cellular
structure invasome that mediates cell invasion (Rhomberg et al., 2009); activation of
proinflammatory reaction factors (nuclear factor (NF)-xB, IL-8, ICAM-1); inhibition
of endothelial cell apoptosis; and capillary-like sprout formation of endothelial cell
aggregates (O'Rourke et al,, 2011). The functions of BepA to BepG have recently
been studied. BepA inhibits endothelial cell apoptosis and is responsible for capillary
sprout formation in a more complex infection model (Schmid et al.,, 2006). BepF has
been implicated in triggering the formation of invasomes together with BepC
(Truttmann et al., 2011). BepG, that triggers cytoskeletal rearrangements, potently
inhibits sprout formation (Scheidegger et al, 2009). Recently, it has been
demonstrated that the virB/virD4 system of B. henselae is able to transfer DNA into
endothelial cells, and BepD increases the transfer rate, suggesting that
T4SS-dependent DNA transfer into host cells may occur naturally during human
infection with Bartonella, and its capacity for DNA transfer increases its potential use
in gene therapy and vaccination (Schroder et al., 2011).
6. Bartonellae and their vectors

Bartonella species are transmitted to mammals by various arthropod vectors,
mainly including sandflies (Townsend, 1913), human lice (Varela et al., 1954), cat

fleas (Chomel et al., 1996), some rodent fleas (Morick et al., 2010), various hard tick



species (Eskow et al., 2001; Kruszewska and Tylewska-Wierzbanowska, 1996) and
various biting fly species (Dehio et al., 2004; Halos et al., 2004). A single mammal
host may be infected by many Bartonella species (Table 1) and one vector can also be
infected by various Bartonella species (Bown et al, 2004; Rolain et al., 2003b).
However, the diversity of Bartonella species DNA identified in ectoparasites is much
broader than that of species detected in their mammalian hosts (Tsai et al., 2011a; Tsai
et al., 2011b), suggesting that Bartonella species are better adapted to their vectors
than to their mammal hosts (Tsai et al., 2011a). Mechanisms leading to fitness in
vectors and their mammal hosts warrant further experimental investigation.
6.1. B. bacilliformis and sandflies

Lutzomyia verrucarum, a native sandfly species in Peru, is the natural vector of B.
bacilliformis (Townsend, 1913). Townsend was the first to propose L. verrucarum as
an etiological agent of human bartonellosis (Oroya fever) based on epidemiological
data (Townsend, 1913). Subsequently, in order to experimentally demonstrate that B.
bacilliformis is the etiological agent of human bartonellosis, several experimental
infection models were created in monkeys, which are able to reproduce B.
bacilliformis bacteremia (Noguchi et al., 1929). Battistini et al., (1931) established
that sandfly bites can induce verruga peruana in monkeys under experimental
conditions; they demonstrated that B. bacilliformis could be isolated from blood of
infected monkeys, and they revealed the presence of B. bacilliformis in midgut and
feces of sandflies (Battistini, 1931). In addition to L. verrucarum, another unknown

vector might exist as a potential transmission vector because of inconsistency between



the distribution of Carrion’s disease and L. verrucarum (Scheidegger et al., 2009).
6.2. B. quintana and human body lice

The ability of body lice (Pediculus humanus corporis) to transmit B. quintana
was first reported in 1920 (Byam and Lloyd, 1920). Recently, B. quintana was
detected by PCR in body lice of homeless persons in France, Russia, Japan and the
USA (Bonilla et al., 2009; Foucault et al.,, 2002; Rydkina et al., 1999; Sasaki et al.,
2002). B. quintana replicates in the louse intestinal tract without affecting the life span
of the louse (Seki et al., 2007). Transmission to humans is thought to be due to
inoculation during scratching of B. quintana contained in louse feces. (Raoult and
Roux, 1999). B. quintana is able to survive and remain infectious up to one year in
louse feces (Kostrzewski, 1950). Up until now, there has been no evidence
demonstrating that B. quintana can be transmitted to offspring (eggs and larvae) of
infected lice. In addition to humans, B. quintana is also able to infect other mammals
(monkeys, cats and dogs) (Breitschwerdt et al., 2007; Kelly et al., 2006; O'Rourke et
al., 2005). B. quintana can also be detected in cat fleas (Rolain et al., 2003b) and ticks
(Chang et al., 2001).
6.3. B. henselae and cat fleas

The role of cat fleas (Ctenocephalides felis) in transmission of B. henselae was
reported in northern California in the early 1990s (Koehler et al., 1994). Subsequently,
it was experimentally demonstrated that infected fleas can transmit B. henselae to cats
(Chomel et al., 1996). B. henselae replicates in the gut of the cat flea and is able to

survive several days in flea feces (Chomel et al., 2009). Bacteria were shown to be



present in flea gut 3 h post-feeding, and persisted for more than 9 days after
inoculation (Higgins et al., 1996). Similarly to louse feces, flea feces appear to be the
principal infectious source of B. henselae. Transmission from cats to humans occurs
through cat scratch. Apart from cat scratch, the role of cat bites in transmission has
also been suggested (Demers et al., 1995; Jendro et al., 1998).
6.4. Ticks

The first demonstration of the role of ticks in Bartonella infection was provided
by Noguchi, who showed that B. bacilliformis was transmitted from infected to
normal rhesus monkeys by a bite from the tick Dermacentor andersoni (Noguchi,
1926). The first case report of human B. henselae infection associated with tick bite
transmission was described by Lucey et al. (Lucey et al., 1992). Later, it was reported
that Bartonella DNA was detected in patients exposed to tick bites (Billeter et al.,
2008). Hard ticks, including Ixodes spp., Dermacentor spp., Rhipicephalus spp. and
Haemaphysalis from many parts of the world have been shown to harbor Bartonella
DNA (Billeter et al., 2008). However, the presence of Bartonella DNA in ticks does
not prove vector competence. Recently, it was claimed that transmission of any
Bartonella spp. from ticks to animals or humans has not been established (Telford and
Wormser, 2010). The specific role of ticks in Bartonella transmission requires further

studies.



CHAPTER TWO

Iron/heme uptake in Bartonella

Iron is one of the most important elements necessary for growth of most living
organisms, including bacteria. As an enzyme catalytic center, it is believed to be
involved in various biological processes, including photosynthesis, respiration, the
tricarboxylic acid cycle, oxygen transport, gene regulation and DNA biosynthesis
(Krewulak and Vogel, 2008).

Despite the fact that iron is abundant on the earth’s surface, very little free iron is
biologically available. In aerobic inorganic enviroments, iron is present essentially in
an oxidized ferric form Fe(Ill), which aggregates into highly insoluble oxyhydroxide
polymers. The poor solubility of iron (10'M at pH 7.0) cannot satisfy growth
requirements of bacteria for aerobic growth (107 to 10°M). In mammals, 99.9% of
iron is intracellular. Extracellular iron (0.1%) is bound to iron carrier proteins such as
transferrin and lactoferrin. Transferrin is found in serum and lactoferrin is found in
lymph and mucosal secretions (Wandersman and Delepelaire, 2004). Moreover,
approximately 95% of iron in mammals is sequestered in protoporphyrin IX to form
heme, which is primarily bound to hemoproteins such as hemopexin and hemoglobin
(Otto et al., 1992).

Bacteria growing aerobically in cell-free aquatic or soil-based media generally
encounter insoluble Fe(Ill). Following colonization of multicellular organisms,
pathogenic bacteria must also confront iron limitation, since no free iron is available.

Bacteria have developed several iron supply strategies to acquire iron for overcoming



the iron shortage encountered in their biotopes. They use two general mechanisms to
obtain iron/heme. The first involves direct contact between the bacteria and the
exogenous iron/heme source. The second consists of bacterial synthesis and release of
siderophores or hemophores into the extracellular medium to trap iron or heme.
1. Free Fe(II) and its transport

Under acidic and anaerobic conditions, ferrous iron Fe(Il) predominates. This
soluble iron can diffuse freely through the outer membrane porins and is transported
through the cytoplasmic membrane via a high-affinity ferrous ion uptake (feo) system
in many Gram-negative bacteria (Kammler et al., 1993). In Escherichia coli, feoA and
B encode for the Fe(Il) transporter (Kammler et al., 1993) (Fig.1). These feo genes are
conserved in many bacteria, but feoB is often present in the absence of feo4 (Andrews
et al., 2003). The feoB gene is present in ~50% of the bacterial genomes sequenced to
date (Hantke, 2003). FeoB was identified as an ATP-dependent transporter (Kammler
et al., 1993) and has been shown to function as a G protein (Hantke, 2003). Feo
mutants of Salmonella enterica and E. coli colonize mouse intestine less efficiently
than the wild type (Stojiljkovic et al., 1993; Tsolis et al.,, 1996). In Legionella
pneumophila, disruption of feoB decreases Fe(Il) uptake, leading to reduced
intracellular growth (Robey and Cianciotto, 2002). FeoB is the most important iron
uptake system for Helicobacter pylori, which colonizes the stomach, an acidic

environment (Velayudhan et al., 2000).
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Fig.1 The Fe*" transport system of E. coli. Fe*" can pass through the porin freely and
is transported by the Feo system into the cytoplasm.
2. Transferrin and lactoferrin iron transport

Many bacterial species such as Neisseria and Haemophilus influenzae have
transferrin and/or lactoferrin receptors (Cornelissen and Sparling, 1994; Fuller et al.,
1998). Iron is stripped by these receptors from transferrin and lactoferrin and iron-free
proteins are released. The functional transferrin receptor in Neisseria consists of TbpA
and TbpB subunits. TbpA is analogous to TonB-dependent outer membrane receptors
and TbpB is a lipoprotein anchored in the outer leaflet of the outer membrane
(Legrain et al., 1993). TbpA is strictly required, whereas the requirement for TbpB is
not as stringent. Uptake of iron by TbpA is TonB-ExbB-ExbD and pmf-dependent
(Cornelissen et al., 1997). The bipartite lactoferrin LbpAB receptors of Neisseria
(Schryvers et al., 1998) and H. influenzae (Ekins et al., 2004) function similarly, with
only Fe(Ill) crossing the outer membrane. In the periplasm, Fe(Ill) binds FbpA in

association with the bipartite receptor TbpAB (Gomez et al., 1998). FbpA shuttles



Fe(III) across the periplasm to an ABC permease in the cytoplasmic membrane (Ekins
et al.,, 2004). This ABC permease translocates ferric iron across the cytoplasmic
membrane into the cytosol.
3. Siderophores and hemophores
3.1. Synthesis and excretion of siderophores

To overcome the problem of the low solubility of Fe (III), many bacteria
synthesize and secrete strong iron chelators: siderophores. Siderophores chelate iron
from the extracellular medium; the iron-loaded siderophore is then taken up by the
cell through a specific uptake system (Fig.2). Siderophores are low-molecular-weight
compounds (400 to 1,000 Da) produced by microorganisms. They are synthesized by
non-ribosomal cytoplasmic peptide synthetases resembling machinery used for the
biosynthesis of peptide antibiotics. Following their synthesis, siderophores are
excreted into the extracellular medium. These molecules are thought to be too large to
diffuse through the envelope. In E. coli, entS, which is located in the enterobactin
biosynthesis and transport gene cluster, encodes a membrane protein belonging to the
major facilitator superfamily. The proteins of this family are involved in proton
motive-force-dependent membrane efflux pumps. The protein EntS was shown to be

directly involved in enterobactin export (Furrer et al., 2002).
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Fig 2. Organization of the siderophore-dependent Fe’™ uptake system in
Gram-negative bacteria. Adapted from (Wandersman and Delepelaire, 2004).

3.2. Hemophores

Hemophores have been found in Gram-negative and Gram-positive bacteria.
Hemophores are either anchored to the cell surface or released into the extracellar
medium to capture free heme or to extract heme from hemoproteins such as
hemoglobin in the external medium and present it to specific outer membrane
receptors (Wandersman and Delepelaire, 2004, 2012).
The HasA hemophore

HasA from Serratia marcescens was the first hemophore to be discovered
(Letoffe et al., 1994a). Later, hemophores were identified in P. aeruginosa (Letoffe et

al., 1998), P. fluorescens (Idei et al., 1999), Y. pestis ((Rossi et al., 2001), Bacillus



anthracis (Fabian et al., 2009) and Porphyromonas gingivalis (Gao et al., 2010).
HasA hemophores are conserved in several Gram-negative species (Wandersman and
Delepelaire, 2012).

In S. marcescens, HasA, a 19 kDa monomer, exhibits very high affinity for heme
(Kd~10""M) at 1:1 stoichiometry (Izadi-Pruneyre et al., 2006). The crystal structure
of holo HasA shows a globular protein with a two-faced fold (4 a-helices on one face
and 7 B-strands on the other) and a heme pocket with potential iron ligands (Arnoux et
al., 1999). The heme iron atom is ligated by tyrosine 75 and histidine 32 (Letofte et al.,
2001). Histidine 83 also plays an important role in heme binding, since it stabilizes

Tyr-75 and strengthens the Tyr-75 iron coordination bond (Wolff et al., 2002) (Fig. 3).

Fig 3. Crystal structure of holo-HasA from S. marcescens. Heme is ligated by tyrosine
75 and histidine 32. Histidine 83 stabilizes Tyr-75 and strengthens the Tyr-75 iron
coordination bond. Adapted from (Arnoux et al., 1999).

HasA is secreted by ABC transporters made up of three envelope proteins
associated in a protein complex (Letoffe et al., 1994b) (Fig 4). This complex includes

an inner membrane ATPase, HasD, a membrane fusion protein, HasE, located in the



inner membrane and HasF, an outer membrane protein of the TolC family

(Wandersman and Delepelaire, 1990) (Fig 4).
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Fig 4. Organization of the has operon of S. marcescens. HasDEF and SecB allow
secretion of the HasA hemophore into the extracellular medium, where it binds heme
and returns it to the HasR receptor. Adapted from (Wandersman and Delepelaire,
2004).

HasA is able to capture heme from hemoglobin, holo-hemopexin and myoglobin
(Benevides-Matos and Biville, 2010; Wandersman and Delepelaire, 2004). In S.
marcescens, heme is directly taken up at concentrations higher than 10°M in the
presence of iron depletion. Hemophore HasA is required to mediate heme uptake only
under strong iron depletion conditions and low heme concentrations (lower than
10"M) (Benevides-Matos and Biville, 2010).

The HxuCBA system of H. influenzae

Another hemophore system has been described in H. influenzae that lacks the



heme biosynthetic pathway and requires exogenous heme for aerobic growth (White
and Granick, 1963). In H. influenzae, the gene cluster hxuC, hxuB, and hxuA is
required for heme-hemopexin utilization (Cope et al., 1995). HuxA is a 100 kDa
protein that can be found on the H. influenzae cell surface and in culture supernatants
(Cope et al., 1994). In the reconstituted E. coli system, most HuxA remains associated
with the cell and only a small fraction of HxuA is released into the extracellular
medium (Fournier et al., 2011). HxuA is secreted by a signal-peptide-dependent
pathway requiring one helper protein, HxuB (Cope et al., 1995). HxuB was
hypothesized as being involved in release of soluble HxuA from the cell surface
(Cope et al., 1995). Unlike HasA, there is no heme capture by HxuA, but heme is
released into the medium when HxuA interacts with heme-hemopexin (Wandersman
and Delepelaire, 2012). In reconstituted E. coli strain C600AhemA, expression of
HxuC alone enabled use of free heme or hemoglobin as a heme source (Fournier et al.,
2011). However, co-expression of HxuA, HxuB and HxuC in C6004hemA is required
for heme acquisition from heme-loaded hemopexin (Fournier et al., 2011). It was
shown that when HxuA interacts with holo-hemopexin, heme is released from
hemopexin and immediately binds its cognate receptor HxuC, which transports heme
through the outer membrane (Fournier et al., 2011).
4. Receptors for siderophores and heme/hemophores
4.1 Receptors for siderophores

Loaded siderophore complexes are too large to freely pass through the porins.

The first step in ferri-siderophore internalization requires a specific outer membrane



receptor having high affinity (Kd 0.1-100nM) for the ferri-siderophore complex
(Stintzi and Raymond, 2000). Outer membrane receptors involved in recognition and
transport of iron-loaded siderophores are specific, but have structural and functional
characteristics in common (Koster, 2001). These receptors all display a plug and
barrel organization (Biville, 2008; Krewulak and Vogel, 2008). The N-terminus part
of the protein, which constitutes the plug, is folded inside a (-barrel anchored in the
outer membrane. The plug delimits two interacting surfaces, one on the outside of the
membrane and the other on the periplasmic side. The substrate sits on the top of the
plug, facing the extracellular medium. This brings it into contact with residues of the
extracellular loops and the plug apices. There is no channel large enough to
accommodate the substrate. Determination of the crystal structure of FecA complexed
with ferric citrate and of FhuA complexed with iron-containning ferrichrome has
provided information on the transport process (Locher et al., 1998; Yue et al., 2003).
Substrate binding triggers small changes in the conformation of the plus apices, with
larger movements observed on the periplasmic side where the TonB box is found
(Ferguson and Deisenhofer, 2004). The TonB box consists of five conserved residues
towards the N-terminus of outer membrane siderophore receptors. These residues
have been implicated in the functioning of the TonB complex (Postle, 1993). It is
thought that substrate binding leads to closure of the outside loops around the
substrate and movement on the periplasmic side, allowing the TonB complex to
function. Closing of the outside loops prevents the substrate from being released into

the medium (Eisenhauer et al., 2005).



4.2 Receptors for heme

Heme receptors were subdivided into three categories: the first group recognizes
free heme, the second recognizes host hemoproteins (Fig 5) and the third interacts
with hemophores (Fig 4) (Tong and Guo, 2009). The receptors that recognize
hemoproteins and hemophores can also take up free heme. All these receptors share
overall common structural attributes within the family and also share significant
homology with siderophore receptors (Wilks and Burkhard, 2007).

The outer membrane receptor binds heme free or bound to hemoproteins, and
transports it into the periplasm via a TonB-dependent process (Fig 5). Inside the
periplasm, heme is bound by the heme periplasmic binding protein, which addresses it
to an inner membrane ATP binding cassette (ABC) transporter (Fig 5). Inside the
cytoplasm, heme is rapidly transferred to a heme oxygenase (HO)/heme-degrading

protein which are able to release iron from heme (Fig. 5).
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Fig 5. Organization of the direct heme uptake system in Gram-negative bacteria.
5. The TonB-ExbB-ExbD complex

Transportation of ferri-siderophores or heme through the outer membrane is
energy-dependent. This transport against a concentration gradient depends on a
complex of three proteins in the cytoplasmic membrane:TonB, ExbB and ExbD
(Moeck and Coulton, 1998). This TonB-ExbB-ExbD complex transduces the energy
generated by the electrochemical gradient across the cytoplasmic membrane
(Bradbeer, 1993). TonB-ExbB-ExbD proteins are found in many Gram-negative
bacteria. The structure and function of this system has been extensively studied in E.
coli.

The TonB protein is associated with the inner membrane, with a large part of the



protein occupying the periplasmic space (Fig. 6). TonB spans the periplasm and
directly contacts outer membrane active transport proteins. ExbB and ExbD are
integral cytoplasmic membrane proteins. ExbB has three transmembrane segments
and its N-terminus projects into the periplasm (Fig. 6). ExbD has only one
transmembrane domain and most of the protein is in the periplasm (Braun and Braun,
2002) (Fig. 6). The three proteins, ExbB, ExbD and TonB, seem to act as a complex,

since ExbB and ExbD interact with each other in vitro (Braun et al., 1996).

Outer Membrance Receptor

ExbD NH.  NH: ExbB
TonB TonB

Fig. 6 The structure of the complex TonB-ExbB-ExbD. OM, outer membrane; PP,
periplasmic space; CM, cytoplasmic membrane. Adapted from (Tong and Guo,
2009).
6. Transport across the periplasm and cytoplasmic membrane

Transport of ferri-siderophore complexes and heme across the periplasmic space
and the cytoplasmic membrane is mediated by periplasmic binding proteins associated

with inner membrane transporters. The periplasmic binding proteins shuttle



ferri-siderophore or heme from the outer membrane receptor or the periplasm and
deliver it to a cognate permease in the inner membrane (Koster, 2001). The
periplasmic binding proteins are less specific than the outer membrane receptors.
ABC permeases are responsible for transport across the inner membrane. ABC
permeases consist of a periplasmic domain and an inner membrane complex energized
by an ABC ATPase (Koster, 2001).
7. Fate of the ferri-siderophore and heme in the cytoplasm

After internalization, iron must be released from the siderophore. Two
mechanisms have been proposed for release of iron from the ferri-siderophore into the
cytoplasm. Spontaneous dissociation of the ferri-siderophore may be related to the
relatively low affinity of siderophores for Fe (II). A specific ferric reductase is
probably required for this pathway (Matzanke et al., 2004). The second mechanism
involves intracellular breakdown of the ferri-siderophore, implying that siderophores
are used only once. In E. coli, the use of ferri-enterobactin requires esterase activity
encoded by the fes gene, located in a cluster of genes involved in enterobactin
biosynthesis and uptake. Fes 1is a cytoplasmic esterase that hydrolyzes
ferri-enterobactin, producing 2,3-dihydroxybenzoyl serine (Brickman and Mclntosh,
1992). Iron is released from heme as soon as it is transported to the cytoplasm (see
paper one, Introduction).
8. Regulation of iron and heme uptake in Gram-negative bacteria

Iron is an essential element for most bacteria. However, overload iron may be

harmful because of its toxic properties. Via the Fenton reaction (Fe(Il)+H,O,—



Fe(III)+OH+OH"), oxidized iron and toxic hydroxyl radicals are created, the latter of
which can damage biological macromolecules (Halliwell and Gutteridge, 1984).
Many bacteria incorporate intracellular iron into iron storage proteins. Three classes
of iron storage proteins have been characterized in bacteria: ferritins (Abdul-Tehrani
et al., 1999), heme-containing bacterioferritins (Andrews et al., 1989) and Dps, or
small DNA binding polypeptides found only in prokaryotes (Almiron et al., 1992).
Ferritin and bacterioferritin take up soluble Fe(Il) and catalyze its oxidation to give
Fe(IlI), using oxygen and peroxide, respectively, as electron acceptors. The insoluble
ferric iron Fe(IIl) is then deposited in the central cavity to give a ferrihydrite core of
about 5,000 iron ions (Carrondo, 2003). Dp DNA binding proteins catalyze
peroxide-dependent Fe(Il) oxidation and protect DNA against oxidative damage; they
store 500 iron ions per 12-mer (Andrews et al., 2003). Thus, under iron deficiency
conditions, genes involved in iron uptake are expressed. When the intracellular iron
concentration is high, these genes are repressed.

In many bacteria such as E. coli (Hantke, 1981), V. cholerae (Litwin et al., 1992)
and Y. pestis (Staggs and Perry, 1991), genes involved in iron and heme uptake are
negatively regulated by the global determinant ferric uptake regulator protein (Fur).
Fur is a homodimer composed of two identical 17 kDa subunits (Coy and Neilands,
1991). The N-terminal domain of Fur is involved in DNA binding and the C-terminal
of Fur, which is rich in His residues, is involved in iron binding and dimerisation
(Stojiljkovic and Hantke, 1995). Under iron-rich conditions, Fur binds to Fe*" and

forms a Fur-Fe*" complex which binds the Fur box, a 19 bp consensus sequence



(GATAATGATAATCATTATC). Generally, the Fur box is located in between the -35
and -10 sites of Fur-regulated promoters (Baichoo and Helmann, 2002). Binding of
Fur protein to the Fur box represses transcription of iron/heme uptake genes. On the
other hand, when iron is limiting, divalent iron will be released from Fur, which no
longer binds the Fur box, thus allowing RNA polymerase to bind the promoter region
and start transcription.

Another regulatory mechanism involves specific extracytoplasmic function (ECF)
sigma factors. Most sigma factors are associated with membrane-bound anti-sigma
factors. An extracytoplasmic signal provokes release of the sigma factor from its
cognate anti-sigma factor, thus leading to transcription of target operons (Helmann,
2002; Raivio and Silhavy, 2001). The best documented example and the first to be
fully characterized is the E. coli ferric citrate uptake system (Braun et al., 2003). Fecl,
the iron starvation ECF sigma, binds to the RNA core polymerase, initiating
transcription of fecABCDE genes which encode the outer membrane receptor and
binding-protein-dependent ABC permease. Under conditions of iron depletion,
binding of ferric citrate to its specific outer membrane receptor FecA without
transport is sufficient to initiate the signaling cascade leading to induction of the
fecABCDE operon (Braun et al., 2003).

The has operon of S. marcescens encodes for a completely
hemophore-dependent heme uptake system. Two genes upstream from the sas operon

encode for Hasl (an ECF sigma factor) and HasS (an anti-sigma factor) (Fig.7).



Holo-HasA Apo-HasA

{+ I i -
hasR . i hasR

Induction No induction

(A) (B)
Fig. 7 The has operon signaling cascade. Adapted from (Cescau et al., 2007)

When there is enough heme, HasS anti-sigma activity is turned off by binding of
holo-HasA to HasR, and Hasl induces transcription of /asS and the has operon (Fig.
7A). This leads to accumulation of HasS molecules which are inactive as long as
HasR is loaded with holo-hasA. HasS molecules become active when HasR ceases to
be occupied by holo-HasA. Thus, as soon as there is a heme shortage, HasS is
released from HasR and can then bind Hasl, which thus cannot activate has operon
transcription (Fig. 7B) (Biville et al., 2004; Cwerman et al., 2006).

9. The heme uptake system in Bartonella
9.1. Heme requirements in Bartonella

In 1921, Sikora first reported propagation of Rickettsia pediculi (B. quintana) on
human blood agar. Later, it was shown that erythrocytes contain an essential factor or
factors for multiplication of B. quintana (Vinson, 1966). Hemoglobin was suspected
to be the critical factor provided by them (Vinson, 1966). Hemoglobin alone could not
replace erythrocytes in the medium, but a combination of hemoglobin and high serum

concentrations enabled multiplication of B. quintana, suggesting that serum contains a



substance that is able to promote growth of Bartonella (Vinson, 1966). Myers et al.
(1969) showed that hemoglobin and heme, but not protoporphyrin, were able to
substitute for the red cell lysate in the presence of serum, and the requirement for
heme was relatively high (20 to 40 pg/ml) in B. quintana (Myers et al., 1969). This
high requirement had already suggested that it functions not as a nutrient precursor in
formation of hemoproteins, but rather, as a catalyst for destruction of hydrogen
peroxide (Lascelles, 1962). Further analysis indicated that starch or charcoal can
replace serum or bovine serum albumin for growth and it was suggested that serum
does not play an essential nutritive role, but rather serves as a detoxification function
(Lascelles, 1962). Recently, studies on B. henselae showed that protoporphyrin IX
alone or together with FeCl, or FeCl; as well as transferrin or lactoferrin did not
support growth, indicating that B. henselae alone cannot synthesize heme, whereas
heme is essential for sustaining growth of Bartonella with both an iron and heme
source (Sander et al., 2000b). This observation was consistent with the hypothesis that
Bartonella species lack most of the enzymes required to synthesize heme (Alsmark et
al., 2004). Except for solid medium, several liquid media have been developed for
culture of Bartonella (Chenoweth et al., 2004b; Maggi et al., 2005; Riess et al., 2008;
Schwartzman et al., 1993; Wong et al., 1995). Whether in solid or liquid medium,
supplementation with blood, erythrocytes or serum seems to be required for growth of
Bartonella.

9.2. The heme uptake system in Bartonella

Genomic analysis of Bartonella indicated that these bacteria neither encode for



siderophore biosynthesis pathway, nor for a complete Fe*" transport system (Table 1).

Only genes sharing strong homology with all compounds of the Fe*" uptake system

already characterized in Yersinia pestis (Perry et al., 2007) and Photorhabdus

luminescens (Watson et al., 2010) are present in Bartonella genomes.

Table 1. Genes involved in heme/iron uptake of Bartonella.

Bartonella
Transport of iron (Fe%) YfeABCD
Sidrophore biosynthesis No
Synthesis of heme No
Heme uptake system HutA, HutB, HmuV, HutC, HemS
Heme binding proteins HbpA, B, C, D
Energy suppliers TonB, ExbB, ExbD
Iron storage No
Regulation Fur/Irr/RirA

In addition, Bartonella genomes encode for a complete heme uptake system

(Table 1). The cluster of genes devoted to heme uptake includes heme receptor HutA,

a TonB-like energy transducer, an ABC transporter comprised of three proteins, HutB,

HutC and HmuY, and a putative cytoplasmic heme storage/degradation protein, HemS

(Fig 8).
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Fig. 8 Proposed organization of the heme acquisition system of Bartonella. The heme
uptake system consists of HutA, a TonB-dependent heme receptor, HutB, HutC and
HmuV (ABC transport system), and HemS (heme trafficking or degradation protein).
Adapted from (Minnick and Battisti, 2009).

Sequence comparison showed that HutA of B. quintana has conserved FRAP and
NPNL domains with HemR of Yersinia enterocolitica and HumR of Yersinia pestis
(Parrow et al.,, 2009). It was shown that HutA of B. quintana exhibited
TonB-dependent heme transport activity through complementation of the E. coli hemA
mutant (Parrow et al., 2009). However, experiments were performed in the presence
of high heme concentrations in liquid medium and indicated that weak growth
restoration could be the consequence of mutation-enhancing outer membrane
permeability (Olczak et al., 2008). Such complementation assays failed for an E. coli
K-12 hemA mutant expressing HutA from B. birtlessii when grown on
heme-supplemented solid medium (Nijssen et al., 2009). Finally, Bartonella encode
for an outer membrane heme binding protein family--HbpA-E for B. quintana and
HbpA-D for B. henselae, which do not have sequence similarity to classical heme
receptors (see paper two) (Carroll et al., 2000).

9.3. Regulation of heme uptake in Bartonella

Like other bacteria, Bartonella need to create a balance between obtaining
sufficient heme in a limited environment for survival and preventing accumulation of
intracellular heme that is toxic. Bartonellae are able to survive in a mammal

heme-limiting environment and in heme-repleted arthropod gut; thus, the heme



acquisition process is tightly regulated in Bartonella. 1t has been shown that the
transcription level of suf locus genes was slightly increased (~1.5 fold) in response to
low heme limitations (0.05 mM) and ~2.2-fold-decreased in response to heme excess
(2.5 mM) (Parrow et al, 2009). In Bartonella, there are at least three
iron/heme-responsive regulators, namely Fur, Irr (iron response regulator) and RirA
(rhizobial iron regulator A).

The B. henselae Fur protein has 38% amino acid identity with E. coli and Vibrio
cholerae Fur (Park et al., 2001). Corresponding fur genes were also identified in B.
bacilliformis and B. quintana (Park et al., 2001). Functional analysis of B. henselae
fur indicated that it is able to complement a V. cholerae fur mutant (Park et al., 2001).
Recently, it was shown that B. quintana fur was able to complement an E. coli fur
mutant. Overexpression of fur represses hbpC and tonB expression of B. quintana in
the presence of heme excess. Other genes of the hut locus and other #bp genes are not
repressed under the same conditions (Parrow et al., 2009). However, the Fur protein
was not detected in B. quintana using immunoblotting, thus suggesting a weak fur
expression level (Parrow et al., 2009).

In Bartonella genomes, two alternative iron-responsive regulators have been
identified (Battisti et al., 2007). One is the Rhizobial iron regulator RirA, which was
first identified in Rhizobium leguminosarum (Todd et al., 2005). In B. quintana, it was
shown that rird overexpression does not affect transcription of Aut locus genes
regardless of the ambient heme concentration (Parrow et al., 2009).

The second regulator is Irr (iron response regulator), a member of the Fur family



that responds directly to intracellular heme concentrations rather than to iron in
Bradyrhizobium japonicum (Yang et al., 2006). In constrast to Fur, which is
widespread in all Gram-negative bacteria, Irr is restricted to members of the
a-proteobacteria (Rudolph et al., 2006). Homologues of Irr were found in all Rhizobia
(Rudolph et al., 2006). Irr was first identified in B. japonicum as a transcriptional
repressor of hemB which encodes for heme biosynthetic enzyme 6-aminolevulinic
acid dehydratase (Hamza et al., 1998). Irr has been described as a regulator of iron-
and heme-associated genes in B. japonicum (Hamza et al., 2000), R. leguminosarum
(Singleton et al., 2010) and B. abortus (Martinez et al., 2005). B. japonicum Irr
expression is under the transcriptional control of Fur. It was shown that B. japonicum
Fur binds to the irr gene promoter with high affinity, although without a consensus
Fur box (Friedman and O'Brian, 2003). However, R. leguminosarum irr expression is
not mediated by Fur, and purified Fur cannot bind the promoter region of Irr (Wexler
et al., 2003). Overexpression of Irr was shown to repress transcription of the sut locus
of B. quintana (Parrow et al., 2009). These data suggested that Irr plays an important

role as a heme-responsive transcriptional regulator in Bartonella (Parrow et al., 2009).






CHAPTER THREE
Research significance and Purpose of the work

Research significance

Arthropod vector-borne Bartonellae species have strong heme requirements for
growth in vitro. In vivo, Bartonellae cause long-standing bacteremia as a hallmark of
infection in its reservoir host (Schulein et al., 2001). Invasion of erythrocytes was
hypothesized as being a strategy for obtaining heme that cannot be synthesized by
them. When confronting invading erythrocytes, Bartonellae must replicate and gain
competence in a primary niche, characterized as the endothelial cell (Dehio, 2005).

Sequence analysis showed that Bartonellae genomes encode for a complete
heme uptake system. In the gene cluster devoted to heme uptake, HutA was identified
as a heme receptor in B. quintana (Parrow et al., 2009). However, the fate of heme in
the cytoplasm was unknown. In addition to the classical heme uptake system,
Bartonellae synthesize heme binding proteins located in the outer membrane. The
regulation profile of heme binding protein expression has been widely investigated,
but its function remains to be defined. It was suggested that heme binding proteins of
Bartonellae play an important role during transition between a low heme
concentration biotope (inside mammalial host) and a high heme concentration biotope

(flea gut).



Purpose of the work

In this project, we focused on identification of bacterial genes involved in heme
uptake and utilization, mainly the semS and hbp families of B. henselae, using two
strategies. The first approach was to characterize the function of genes via use of a
heterologous E. coli model. The second strategy was to elucidate physiological effects
related to knockdown of hemS and hbpA-D in B. henselae.

The first set of experiments focused on characterizing the function of HemS of B.
henselae in iron release from heme. We initially examined the capacity of HemsS to
act as a heme-degrading protein by complementation of the E. co/i mutant impaired in
iron release from heme. Our second aim was to express and purify recombinant HemS
and examine the capacity of purified recombinant HemS to bind heme and degrade it
in the presence of a suitable electron donor. If HemS could degrade heme, then it was
reasonable to believe that HemS could prevent deleterious effects of heme
accumulation in the cytoplasm. Moreover, homologues of many genes involved in the
oxidative stress response in E. coli are not present in Bartonellae genomes. Thus, our
final goal was to determine the effect of HemS knockdown upon the oxidative stress
response.

The second part of our project sought to characterize the function of heme
binding proteins of B. henselae. Our primary goal was to examine the ability of heme
binding proteins to bind Congo red/heme in vivo and in vitro. The functions of heme
binding proteins in heme utilization remain to be defined. The second aim was to
verify whether heme binding proteins of B. henselae can transport heme when

expressed in the E. coli hemA mutant. We next determined whether heme binding



proteins modify the heme uptake process through co-expression of heme binding
proteins and the heme transporter in E. coli mutant.

Bartonellae must overcome immune defenses such as oxidative stress produced
by the mammal host in response to bacterial invasion and in the arthropod vector gut.
However, many homologues of genes involved in the oxidative stress response in E.
coli are not present in the Bartonellae genome. It was proposed that heme binding
proteins might be a way of facing oxidative stress using the intrinsic peroxidase
activity of heme (Battisti et al., 2006). The third goal was to check whether heme
binding proteins are involved in the oxidative stress response through knockdown
expression of heme binding proteins in B. henselae. Finally, the effect of heme
binding protein knockdown expression upon colonization in the endothelial cell and
the flea was investigated, since bacteria must face oxidative stress inside endothelial

cells and in the flea gut.
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State of the art concerning the fate of heme in the cytoplasm

Iron release from heme requires heme degradation. Some species, including
Pseudomonas aeruginosa (Ratliff et al., 2001), Neisseria meningitidis (Zhu et al.,
2000b) and Corynebacterium diphtheria (Hirotsu et al., 2004), possess enzymes
homologous to human oxygenase (HO) which can degrade heme to iron, biliverdin
and carbon monoxide in the presence of a suitable electron donor such as ascorbate or
NADPH-cytochrome P450 reductase (Fig. 1). Characterized HO family members are

listed in Table 1.

a-verdoheme a-biliverdin

Fig. 1 Heme degradation, as catalyzed by the heme oxygenase reaction. Adapted from
(Wilks and Burkhard, 2007).

However, many species that can use heme as an iron source do not have a heme
oxygenase homologue. In Staphylococcus aureus, two enzymes, IsdG and Isdl, can
degrade heme (Skaar et al., 2004). IsdG heme-degrading enzymes have been
identified in S. aureus (Skaar et al., 2004), Bacillus antracis (Skaar et al., 2006),
Bradyrhizobium japonicum (Puri and O'Brian, 2006), Mycobacterium tuberculosis
(Chim et al., 2010) and Brucella melitensis (Table 1) (Puri and O'Brian, 2006). IsdG
homologues were predicted to be encoded in the Alphaproteobacteria, Streptomyces,

Deinococcus-Thermus and Chloroflexi (Anzaldi and Skaar, 2010). The IsdG family,



which differs from HO, degrades heme to release free iron and staphylobilin
(5-0x0-8-bilirubin and 15-ox0-B-bilirubin) (Fig. 2) in the presence of a reducing agent
(Reniere et al., 2007; Reniere et al., 2010).
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5-0x0-0-bilirubin 15-ox0-B-bilirubin

Fig 2. Linear representation of heme degradation products produced by the IsdG
family. Adapted from (Reniere et al., 2010).

It was shown that YfeX and EfeB of E. coli K12 remove iron from heme without
destroying the tetrapyrrole ring (Letoffe et al., 2009). Recently, it was shown that
YfeX exhibits peroxidase activity possibly responsible for iron release from heme
(Dailey et al., 2011). Some cytoplasmic heme binding proteins of Gram-negative

bacteria have been hypothesized to function as heme trafficking or storage proteins

(Table 1).



Table 1. Characterized heme oxygenase, heme-degrading and heme-trafficking

proteins in bacteria.

Protein Organism Function Reference
ShuS Shigella dysenteriae Heme trafficking (Wilks, 2001)
HemS Yersinia enterocolitica Heme trafficking (Schneider et al., 2006)
HmuS Yersinia pestis Heme trafficking (Thompson et al., 1999)
HutZ Vibrio cholerae Heme trafficking or storage (Wyckoff et al., 2004)
PhuS Pseudomonas aeruginosa Heme trafficking (Lansky et al., 2006)
PigA Pseudomonas aeruginosa Heme oxygenase (Ratliff et al., 2001)
BphO Pseudomonas aeruginosa Heme oxygenase (Wegele et al., 2004)
HmuO Corynebacterium diphteriae Heme oxygenase (Wilks and Schmitt, 1998)
HemO Neisseria meningitidis Heme oxygenase (Zhu et al., 2000b)
ChuS Escherichia coli O157:H7 Heme oxygenase (Suits et al., 2005)
HugZ Helicobacter pylori Heme oxygenase (Guo et al., 2008)
IsdG Staphylococcus aureus Heme-degrading enzyme (Skaar et al., 2004)
IsdG Staphylococcus lugdunensis Heme-degrading enzyme (Haley et al., 2011)
IsdI Staphylococcus aureus Heme-degrading enzyme (Skaar et al., 2004)
IsdG Bacillus anthracis Heme-degrading monooxygenase (Skaar et al., 2006)
HmuQ Bradyrhizobium japonicum Heme-degrading enzyme (Puri and O'Brian, 2006)
HmuD Bradyrhizobium japonicum Heme-degrading enzyme (Puri and O'Brian, 2006)
MhuD Mpycobacterium tuberculosis Heme-degrading enzyme (Chim et al., 2010)

Heme oxygenases have been shown to be important in heme iron utilization.
Inactivation of N. gonorrhoeae hemO caused a growth defect when the mutant was
grown in liquid culture in which heme was the only iron source (Zhu et al., 2000a).
Disruption of B. anthracis isdG causes growth inhibition when heme is the sole iron
source (Skaar et al., 2006). The Helicobacter pylori hugZ mutant showed poor growth
when hemoglobin was provided as an iron source under iron-restricted conditions
(Guo et al., 2008). Disruption of P. aeruginosa pigA impaired heme utilization in
iron-poor media supplemented with heme, while this defect was abolished by addition

of FeSO, (Ratliff et al., 2001; Wyckoff et al., 2005). Deletion of Y. enterocolitica



HemS is lethal, but hemS expression in E. coli prevents heme toxicity (Stojiljkovic

and Hantke, 1994).



Introduction

Bartonellae species have a strong heme requirement for growth in vitro (Myers
et al., 1969). In vivo, erythrocyte persistence is a hallmark of Bartonellae infection, a
possible strategy used by Bartonella species for obtaining heme that cannot be
synthesized by them (Alsmark et al., 2004). Moreover, heme added to an
iron-depleted medium supported growth of B. henselae, thus indicating the utility of
heme as an iron source (Sander et al., 2000a). Analysis of the complete genomic
sequences of Bartonella genomes showed that they encode for a complete heme
transport system shown to be active in the presence of high heme concentrations in B.
quintana (Parrow et al., 2009). In the cluster of genes devoted to heme uptake, one
gene, hemsS, shares homology with both heme-degrading and heme-trafficking
enzymes. The function of HemS in heme uptake remains unknown.

Homologues of a number of genes involved in the oxidative stress response in E.
coli are not present in Bartonellae genomes. In addition, many bacterial catalases
contain heme as a prosthetic group (Frankenberg et al., 2002). Thus, it is reasonable to
suggest that HemS may act to protect Bartonellae from the oxidative stress response.

In this report, we investigated the function of HemS of B. henselae using a
functional complementation Escherichia coli mutant that cannot release iron from
heme. The recombinant protein was expressed and purified from E. coli and tested for
heme binding and degradation. Finally, the effect of hemS knockdown on the

oxidative stress response was also investigated in B. henselae.
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Introduction required for the growth of B kenslee It was also shown that
addition of heme in an wron depleted mediom supported the
growth of B, kmselas, thus showing the use of heme 2z an iron
source [10]. Analysis of the complete genomic sequences of B
guintana and B, kerselae supports the ahsolute requirement for heme
since these two Barfoanells species do not contain genes encoding for
heme bhiosynthesis [11]. All the sequenced Barforells genomes
indicate that all these bacteria do not encode for siderophore
biosynthesis and 2 complete iron Fe™ ranspont sysem. Only
genes sharing strong homologies with all the compounds of a Fe®
uptake system already characterized in Yesima pests [12], and
Fhohabdis lwminerems [13] are presemt in Bartanells genomes.
Bartansla genomes encode for 2 complete heme transport system
that was shown to be active in the presence of high hems
concentration for B e [14]. In the custer of genes devoted
to heme uptake, one gene, femS, shares homology both with heme
degrading enezymes and heme trafficking enzymes. The activity of
heme degrading enzymes is required for the release of iron from
heme afier its wansportation into the cytoplasm [15]. Different
activities allowing the release of iron from heme have been
characterized already. The more common, is a heme oxygenase
first put in evidence in Copnsbacterinm  diphtheria [16]. Other

Bartnella species are now well established as human pathogens
responsible for several emerging soonoses [1]. Bartorells bocilliformis
(B, bacillifirmis), Bartonella gumtana (B, guintang) and Bantonella henselas
(B, henslag are the most medically important species although
several others have also been described as pathogens [2]. B henselae
is now recognized 2= one of the most common zoonoses acquired
from companion animals in industrialised countries [3]. The
bacterivm causes cat scratch disease as well as being increasingly
associated with a number of other syndromes [4]. Most Boertaneilz
species appear to share a similar natural cyele that involves
arthropod transmission, then exploitation of a mammalian host.
Each Bartarella species appears to be highly adapted to one or few
reservoir hosts in which Berfarella cavses a long lasting intra-
erythrocytic bacteraemia as a hallmark of infection. The hacterial
persistence in erythrocyte is an original strategy for its persistence
in itz host and the resulting longlasting  intracrythrocytic
hacterarmia s considered to represent a unigue adaptation to
the mode of transmission by blood sucking arthropod vectors,
Flagella [5], a deformin activity [6], and a locus containing iald
and inlf genes [7] were shown o be imponant for erythrocytes
invasion by B bacdlifiemiz. Al=o, the importance of the Trw T455

for erythrocytes invasion was demonstrated for B tribocorzm [B]
and B. bintleai [9]. The erythrocytes invasion can ako be proposed
to he a strategy for Bertanella species to get heme that is absolutely

e
@ PLoS ONE | wwaw.plosonearg

bacterial heme ooypenases, that provoke the release of iron by
degrading heme to billiverdin were also characterized in Gram
negative and Gram positive bacteria such as Prmdomonas asmginsa
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[17], or Clogridim temni [18] (for a review see: [15]) Other heme
degrading mono-oxygenases were identified in Gram  positive
hacteria such as Baciller anthrecis [19] and Gram negative bacteria
such as Bradwhyzobinm jgponicem [20]. Protein sequestering heme
have been identified in hacteria such as Yersinia svemmlitea [21],
Shigella dysenterine [22], Preudomonas asuginara [23], Enzyme allowing
the release of iron from protoparphyrin IX leaving ring intact was
identified in Ercheckia cof (E. ok [24]. Controversial data about
this heme dechelatase activity were published recently [25].In this
report, we investigated the imction of HemS for B heselue, using
functional complementation, and partial biochemical character-
ization. The effect of kand knock down was also investigated in B,
henselae.

Materials and Methods

Bacterial strains and plasmid
Bacterial strains and plasmids used in this study are hsted in
Tahble 1.

Media and growth conditions

Bovine hemoglobin (Hb), and 2, E'rlip}'rirl}'] (Dip) were obtained
from Sigma Chemical. Heme was dissolved immediately hefore
use in (002 M NaOH. Hb was dissolved in 10 mM NaCl. Heme
amnd Hb solutions were filter-sterilized with (.26 pm pore size
Millipore filters for bacterial growth experiments. . cali strains

Table 1. Strains and plasmids used in this study.

Hems Degrade Heme in Bartonella

were grown on LB medivm or M63 minimal medium aerobically
at 37°C [26]. M63 medium was supplemented with 0.4% glyceral
(Gly) as carbon source. Solid media contained 1.5% Difco agar,
Soft M63 agar medium contained 0.7% Difco agar. Tron-depleted
medinm was obtained with the addition of Dip at a 70 pM final
concentrations. Antibiotics were added to the following final
concentrations (ug ml— 1}: Ampicillin (Amp), 50; Kanamycin (Km],
5 Spectinomycin Spc), 50, Chloramphenicol  (Cmp), 20
Arahinose was added at 0.2% for induction of the Py, promoter
as indicated. B, henselaz was grown on Columbia blood agar (CHBA)
plate containing 5% defibrinated sheep blood (Biomériews; ref
43041}, or in Schneider’s medium (Giboo) supplemented with 10%
fetal calf serum [27] at 35°C under 5% C0y atmosphere.

Use of heme as iron source: E coli assay

Tested strains were grown at 37°C for 18 hours in ME3
medium without iron, with 0.4% glycerol as carbon source, and in
the presence of (.2% arabinose. Culture were checked for OD at
gy, and & 100 pl sample of an overnight culture of tested strain
adjusted to ODgyg=1 was mixed with 4 ml of soft agar and
poured onto MG3 pltes containing 0.4%  Glycerol, 0.2%
arabinose, and 70 pM Dip (MGE3DY. Wells (5 mm in diameter)
were cut in the agar and filled with 100 gl of 50 ubd, 10 phd,
S ub, or 1 ub of filker sterilized Hb solution. Growth around the
wells was recorded after one and two day incubation at 37°C. All
experiments were performed in riplicate,

E. coli strains Genotype

Source or reference

XL 1-blue F~ supEdd hask17 recAl endAT gyA4S thi relAT lac”™ F' proAB” lacl Laboratory collection
I3cZAMTS TaTo (Tet")

17313 ara139 relA rpsl 150 thi 855301 flacll 139) deo? ptsFs Aara 174 Labvoratony coll sction

MGIS5S mHACmg F nadaCmp Cmp® B

FEa27 Fo, Alaz X74 entFaTnphad's, Tet® a7

FERZT (pAMZIBhak) FE27 pAM2IB:hash Tet®, Spc® [24]

FEAIT efefakan yfeXCmp |pAMI3E:hash) FEB 27 efeBKan yleXsCmp, pAMshash, Tet®, Sp”, Kan®, Cmg" 124

KL 1-bhue (pBAD A= hem Sy, HL1-Bhue pBAD2M-hems,,, Amp® This. study

JP313 (pBADEA) IP313 pBAD2A Amg® This study

JF313 (pBADM:hems, ) IP313 pEADZAhemS,,, Amg® This. study

FEL27ipAM 238:hash), (pBAD24) FEE 27 pAM2Itchask pBAD24, Tert”, Spc” Amg® This study

FELZT efefakan yleXaCmp (pAMZ3E:hash), (pBAD M) xﬁz ;:_zm ¥leX, pAM:ha, pBAD3, Tet® Spc®, Kan®, This. study

FEAZT efelakon yeXaCmp |pAMI3B:hask), FBE27 efeRKan yeX:sCmp, pAM:haR, pBAD2A-hemS,, Ter™, Spc”, Kan® Amp®,  This study

(pEADRAhem Seul omg®

Bartonella strains Genotype Source or reference

B. henselae . henselge Houston-1, ATCC asaga’ Laboratory coll ection

B. henselge (pHSITr) &, henselae Houston-1{pNS2Tre) Kan® This study

5. henselae (pNSITrc:hem Sas) 8. hensele Houston-1, pNa2Trehems a, Kan® Thits study

Plasmids

PROBEGA ‘red functions, Amp™ [43]

pEAD24 pEBfE23 araC, arabinoseinducible promoter, Amp® (50

S 2Tre Kan® [41]

pAMZIEsha i pAMZIBzhask Spc® [51]

pBAD2A-hems,, PBAD2 carrying B. henselae hemsy,, Amp® This study

NG 2 Tre shems as pNS2Trc carmying antisense hemss from 5. henselae. This. study

dod 10,1371 o urnal pone 003 76300001
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Effect of the hem$ knockdown in B. henselae

To evaluate the effect of kemS knock down on growth of B
henselae, tested srains were grown both in Schoeider’s liquid
medivm and on CBA plates. B hmselee (pNS2Tre) and 8. hensalne
(PMNS2TreskemSas) were collected afier 5 days growth on CBA
plates and suspended in Schoeider’s medium. The ODgo of the
bacterial suspension was adjusted to 0.05. Two ml of this
suspension were poured into 12 welk plate and grown at 3570
in the presence of 5% 005, The QD was checked at day 2, 4, 6,
and 7 after inoculation. Serial dilutions of bacterial suspension
were plated on CBA plates, and the colony size was evaluated afer
6 and 10 days of growth at 35°C in the presence of 5% CO..

Hz0; challenge

B. heselae (pNS2Tre) and B, henselae pNS2Trochons, ) were
grown on CBA plates during 5 days at 35°C under 5% GO,
atmosphere, Bacteria collected from one plate were suspended,
and washed twice in PBS buffer. Cell suspension was then diluted
to ODggq 0.5, Before HyOy challenges, serial dilutions of the tested
cell suspension were spread on CBA plates (Ty). For challenge
assay, bacteria were incubated 30 minutes in PBS buffer in the
presence of 1mb, or 10 mM HyOy at 35°0 under 5% 00,
atmosphere, After exposure to HaOy, bacteria were washed twice
in PBS huffer and several dilutions plated on CBA plates (T}
After 15 days incubation at 35°C under 5% GOy atmosphere,
colonies were counted. Survival rate was expressed by (T,/
Ty} 1001%. All experiments were performed in triplicate,

Genetic technigues

E eoli cells were transformed by the calcium chloride method
[28]. PI lysates and wansductions were performed as previously
described by Miller [26]. Banorells cells were transformed by
electroporation as previously described [20].

Nenpolar deletion of yleX in E. coli by red linear DNA
gene inactivation

Anon paar mutation that deletes the entire g X gene was created
by allelic exchange as previously described [30]. Briefly, plasmid
pROBEGA an ampicillim-resistant dervvative of pKOBEG) (see
Table 1) was introduced into the target strain, and electrocompe tent
cells were prepared at 30°C after induction of the & red system
carried by pROBEGA with 0.2% arabinose, A three-step PCR
procedure was used to produce a PCR product in which the aif gene
from pHP45£2 (9] is flanked by 500-bp homology arms correspond-
ing to DNA regions located upstream and downstream from the
wEeX start and stop codons, respectively. The following primers were
used: for the left 500-bp yeX homology am, AmtAmtyfeX and
AmtAvlfeX and for the right 500-bp wEY homdogy am,
AviamityfeX and AvlAvlyfeX. The caf gene cassette (0.9 kb) was
amplified from strain £ coli MGIG55 #dd:Cm [31] using the
primers Cath and Cat3. The PCR product resubting from the three-
step procedure was introduced nto £, eoli XL1 blue /pROBEGA
using electroporation, and chloramphenicolresstant  deletion
mutants produced by allelic exchange were selected at 37°C fio
eliminate the thermosensitive plasmid pROBEGA). Correct chro-
mosamal insertion was checked by PCR amplification using the cat
primers Cath and Catd in combination with AvlAwyfeX and
AmtAmityfeX, respectively. The pEV:Omp mutation was then
introduced in strain FBO.27 giaB:fan using Pl wransduction,

DMA manipulations

B, hmselze chromosomal DNA was isolated using the Wizard
Genomic DNA purification kit (Promega). Small-scale plasmid DNA

'@ PLaS ONE | wwne plosonearg
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preparation was performed by using a QLAprep Spin Miniprep kit
(Qiagen). Restriction endonuclesse digestions, and ligation were
carried out according to the manufacture’s recommendation. DINA
fragments were amplified m 2 Hybaid PCR thermocycler using
Phusion DINA polymerase (Finmmaymes). Nudeotide sequencing was
performed by Ewrafine MWG Operon,  Purification of DINA
fragments from PCR reaction, restriction reaction, and agarose gels
were performed using Macherey-Nagel Nur]mSpin'E' Factract IT ki,

Construction of a recombinant vector expressing HemS
from B. henselae

The entire coding region of kemS was amplified by PCR from
the B, henselpe chromosomal DNA usimg primers hemShamont,
containing Nhel restriction site and allowing addition of a Hisg
tag at the N-terminus part of the protein, and primer hemShaval
containing a Kpnl restriction site (Table 2}, The 1070 bp PCR
product was purified, digested by Nhel and Kpnl, and ligated with
plasmid pBATI24, digested with Nhel and Epnl, to give plasmid
pBAD24kem S, Ligation product was introduced in . coli strain
XLI blue, using calcium chloride method. Transformants were
sereened wing PCR method with hemShamont and hemShaval
primers. Six POR positive clones were then sequenced.

Constructions of the vector for decreasing HemS amount
in B henselae

The entire coding region of kemS was amplified by POR from the
B henselne chramosomal DNA using primers hemSantisensamt,
containing a BamHI restriction site, and hemSantizensav], contain-
ing an Xhal restriction site (Table 2). The 1054 bp PCR product was
purified, digested with BamHI and Xbal and then ligated with
plasmids pNS2Tre digested with BamHI and Xhbal o give
pNS2TrehemSys, Ligation mixtures were introduced in & cali
strain X L1 blue usmg calcium chlonde method. Transformants were
screened, using PCR. method with hemSantisensamt, and hemSan-
tisensavl primers. Six PCR positive clones were then sequenced.

Expression and Purification of HemS His-tagged protein

Strain JP313 (pBAD24:hean Sy} was grown overmght at 37°Cin
LB medium containing 50 pg/ml Ampicillin, One liter of LB
mediim, containing 50 pg/ml Ampicillin, was moculated at
ODGM of 0.05 with the overnight culre. Bacteria were grown
at 37°C to an ODEOD of about 0.5, Arabincse at 0.2% final
concentration was added and bacteria grown for an additional 4 h
at 37°C. Bacteria were harvested by centrifugation for 10 min at
3000 g at 4°C, and the pellet was suspended in 20 ml hinding
buffer (30 mM  Tri=-HCl pH 8.0, 2.5 mM MgS0Oy, 10 mM
imidazole, 0.05%Triton). Lysis of bacteria was obtained by
somication (7 s somication followed by a 3s pause) during
30 min. The suspension was then centrifuged at 15,000 g for
30 min at 4°C. The supematant, containing the sduble fraction
was mined with 500 pl of Ni-agarose beads (Qiagen), previously
pre-equilibrated with the hinding buffer, and the mixture was
incubated | hour with gente shaking at 4°C and  purified
following the manufacturer’s protocol. Purified protein was
dialyzed twice against a buffer containing 50 mM Tris-HCI to
eliminate any residual imidazole. The protein was estimated to he
=95% pure through SDS gel electrophoresis and was stable for
several months when kept at =900 with 20% glycerol.

Heme binding assay

After migration in SDS-PAGE, the heme binding ability of
HemS was imvestigated according to the protocol of Vargas [32].
Briefly, samples were mieed with loading buffer in which no DTT
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was added. And samples were not boiled hefore electrophoresis,
4 ug of HemS protein and 5 ug of BEA were separated on 12%
SDE-PAGE. One gel was stained with coomassie brilliant blue R.
Another gel was transferred to nitrocellulose by the general methods
of Towbin ef al. [33]. Heme-binding blot was done according the
protocol of Caroll & al. [34]. Briefly, the resulting blots were rinsed
with TBST buffer (10 mM Tris-HC1 pH 8.0, 150 mM NaCl, 0.1%
Tween 20} three times for 10 min and subsequently probed for
1.5 h with TBS contaming heme .:lﬂ_“ M} at room temperature,
Thenitrocelulose was washed three times for 10 min with TBST at
room temperature, Heme was visualized by it intrimsic peroxidase
activity using enhanced chemiluminescence [ECL) reagents (Amer-
sham pharmacia, Piscataway, N J). Heme binding protein bands
were visualized by exposimg the hlot to autoradiographic film
(Labscientific, Livingston, N.J.).

Absorption spectroscopy

Heme bindmg assays also were carried out usmg absorption
spectroscopy method. HemS and heme were respectively diluted to
10 pM, and 200 pM i Tris-HCL 50 mb pH 8.0, Aliquots of heme
(raising heme concentration from 1 pM to 20 pM final concentra-
tion) were successively added into the cuvette containing 100 pl of
10 pM HemS. Absorbance spectra from 300 nm to 700 nm were
recorded 5 mins afier each heme addition on a nanodrop 2000
spectrophotometer. Experiments were performed in triplicate.

Reaction of Hem5-heme complex with NADPH-
cytochrome P450 reductase

The reaction was performed acoording to Zhu of af [35] and Skaar o
al [19]. Human cytochrome P50 oddoreductase (Sigma-Aldrich)
was added to the HemS-heme complex (10 pM) at aratio of reductase
to HemS equalto 0.3:1 in a final volume of 100 ul 50 mM Tris-HCl
(pH B.10). Imitiation of the reaction was carmied out by the addition of
NADPH m 10 pM merements o 2 final concentration of 108 g,
The: spectral changes between 300 and 700 nm were monitored after
each addition. Experiments were performed in triplicate,

Reaction of Hem5-heme complex with ascorbate
Ascorbic acid-dependent degradation of heme was monitored
spectrophotometrically as previously described [35]. HemS<heme
complex (10 ubd) m 50 mM Trns-HCL (pH 8.0} was mcubated
with ascorbic acid (10 mM), and the spectral changes between 300

'@ PLoS ONE | www.plosonearg

Table 2. Primers used in this study.
Primer Gene Organism Sequence
hemShamont hems5 . henselge STTITGGECTAGCAGGAGGAATTCACCATGCATCATC ACCATCACCATTCATATACAGCCGAAAT 3
hemShaval Irems . henselge 5 ATOCCCGGGTACCATGGETCTAAGC GAC TGCTAC TR GTGECT TTGAGEL 3°
hemSantisansav Antisens hems . henselge 5 COCTCTAGAATGTCATATACAGCCGAAAT 3°
hemSantissngamt Antisenshams . henselge 5 COCGGATCOCTAAGCGACTGLTACTGOGT '
AmtAmiyfeX Upstream of pfek HL1-bhee 5 ATTGTGGOG TTAATCTGGE TG TGS
Amit A hfie X Upstream of pfek HL 1D 5 GOGCATGAATCLCAGAAATTTETTOC TCCTGARARATAATAATCES'
Cats Cmp cartridge MGIE55 5 AATTTCTGOCATTCATOC GO
TidA-Cmp
Can3 Cmp cartridge MG1655 5 TTGATCG GCACGTAAGAGETS
faA-Cmp
Adamnfax Downstrieam of yfaX  XL1blee S ACCTCOTTACGTGCCEATCAATTAC TTCTGCT T TAACGC CGCATALS”
A yfei Dowmnstream of pfaX  KL1blee 5 TTTAAACCCCAACAAATTGCOGOCT”
ol 10.1371 fournal pone 003 7630_0002

and 700 nm were recorded every | mim. Experniments were

performed in triplicate,

Antibodies preparation

200wl of an emulsion containing purified HemS (10 ug), 154
61 VG adjuvant (Seppic Paris France) (120 ul) and completed with
MNaCl 0.9% were inoculated twice (with one month interval) by
subcutaneous  route in C57B6 mice (Charles River) (Ethic
committee Anses/ENVA/UPEC  agreement n™: 14/06/201 1-1).
Two weeks after the second inoculation, 200 pl blood samples
were collected each 3 week, using retro orbital bleeding method.
Blood samples were centrifuged twice (3600 rpm 5 min} and sera
were stored at —20°C. Before wse, unspecific antibodies were
removed by incubating the immune serum with E coli cell extract
| hour at 4°C and centrifugation 10 min at 8000 rpm. The

supernatant was then used as serum.

Protein analysis by Electrophoresis
Proteins were analyzed 12% sodivm dodecyl sulfate-
polyacrylamide gel (SDS-PAGE) electrophoresis [36], followed

by Coomassie blue staining,

Immunoblot analysis

Sodium dodecyl sulfate-polyacrylamide  gel  electrophoresis
(SDS-PAGE) and mmunoblotting for detecting the decrease
expression of HemS in 8. henselae were performed as follows: B
keselne (pNS2Tre) and B henselae ([pNS2TrehemS ng) were
harvested afier 5 days of growth on CBA plates. Proteins
contained in 20 ug of each sample were separated by 12% SDS-
PAGE and transferred to a nitrocellulose membrane [Hybond-C
Extra, GE Healthcare) according to Towhin o al [33]. Nonspecific
hinding sites were blocked with 5% skim milk in TBS-Tween
200.05% ). The immunoblot was probed with pdydonal mice sera
raised agamst recombinant HemS (1:200], followed by a 1:1,000
dilution of a rabbit anti-mice IgG akaline phosphatase-conjugated
secondary antibody (Sigma ref. A4312) The hinding of antibodies
to HemS was revealed using chemiluminescence reagents BCIPS
NBT solution following the manufacturer’s instructions (Sigma).

Protein assay
The concentration of the protein was determmed by BO Assay
protein Quantitation kit (interchim)
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Statistical analysis

Data was expressed by mean = standard errors of the means,
The statistical analysis was performed vang GraphPad Prism 5
software for Windows, Statistical significance of the data was
ascertained by use of the Student’s ¢ test. A value of P<0.05 was
considered significant.

Results

Hem5 from B henselae is able to complement E coli
mutants impaired in iron release from heme

Bartnella genomes contain 2 gene encoding for HemS or HmuoS
that could likely be involved in the release of iron from heme,
These proteins, which are 341 AA to 347 AA in size, share 72% to
77% identity. Searching for homologues of these proteins in
hacterial genomes showed that these proteins share homology with
mumerous polypeptides annotated as heme degrading or heme
trafficking enzymes. When searching for homologies with func-
tionally characterized heme degrading enzymes and  heme
trafficking enzymes, HemS/HmuS from Baronalls shared 35% to
42% identity with some of these polypeptides [Fig. 1) Analysis of
the identical regions did not allow predicting that HemS/HmuS
from Bartanella were heme degrading enzyme or heme trafficking
proteins, To atternpt defining the HemS activity from B, hengelas,
its structural gene was amplified using a forward primer designed
to add a 6xHis-tag at its Nterminus, and cloned in plasmid
pBAD24. The recombinant plasmid pBATDI24:hemf,, was intro-
duced in E. coli strain FBA.27 gfB:Km yeXoOmp (pAM 2hasR) 1o
check for complementation ability. This E. coli strain, similarly
with strain FBB.27 (pAM:has), which cannot grown on an iron
depleted medium since it is impaired in enterobactin biosynthesis
[37]. When heme s added on iron depleted medium, stram
FBA.27 (pAM Al can grow, due to the presence of the HasR
heme transporter from  Sermatia marceseens contained in plasmid
pAMhasR [38]. Heme s transported through  the outer
membrane by HasR, and the deferrocheltion activity of EfeB
and YieX allows the release of ivon required for growth [24]. In £
coli train FBA.27 gell:fim yoX:Cmp (pAM - hasB), deferrochelation
activity is absent and consequently, heme dependent growth was
aholished, When hemS from B, hmsloe, was expressed in strain
FBA.2T efilizBm e XoCmp  pAMzhas®) (pBAD24:kemS) it
restored the heme dependent growth on iron depleted medium
(Fig. 2). This result clearly indicates that HemS activity allows the
release of iron from heme in sz,

Expression and Purification of HemS His-tagged protein

To produce and purify the recombinant HemS protein from E,
coli, plasmid pBAD24:bans,, was introduced into strain JPP313.
To check for amounts of HemS in £ caf strain JIP313, SDS gel
electrophoresis (PAGE] was used to compare protein extracts of
the strain JP313 (pBAD24ckemSy,) and JP313 (pBADZ24). A
supplementary visible band of 40 KIDa was observed only for the
strain  containing the recombinant plasmid pBATI24: hemSy,,,
grown in the presence of arabinose (data not shown). In stram
JP313  (pBAD24:kemSy), grown in the presence of 0.2%
arabinose, Histagged HemS was expressed as a soluble protein,
The protein was purified by Ni-agarose affinity chromatography,
yielding a distinct protein (35% pure) migrating at ~40 KDa as a
distinct band on SD5-PAGE Fig. 51). This size was found to be in
accordance with the predicted size,

Hem5 can bind heme specifically in vitro

To test if pure HemS can bind heme specifically m viga, a
standard method, which has already vsed for detected heme
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hinding of cytochrome C, was used. Pure HemS (4 ug and BSA
(5 ug) were run in two SDS-PAGE gels, One gel was stained with
conmassie brilliant blue B (Fig. 3A). Another gel was randerred to
a nitrocellulose filter to perform heme blotting and subsequent
detection by ECL method. Pure HemS was able to hind heme
added at 107% M concentration (Fig. 3B} In contrast, in our
condition assay, BSA was unable to bind heme (Fig. 3B). This
latter result underlines the specificity of the HemS heme binding.
Alzo, a crude extract obtained from E cofi strain JP313
(PBADZ4shem8y,), expressed a protein of about 40 KDa that
can hind heme. In contrast such a protein was not observed in a
crude extract obtained from strain JP313 pBAD24 (data not
shown). Taken together, these above data demonstrate that HemS
from B. hmalae is able to bind heme i o,

HemS binds heme with a 1/1 stoechiometry

The binding of heme by HemS was also assessed spetropho-
tometrically. The spectral properties of heme changed when
bound to a protein giving a specific Soret hand. The spectrum of
HemS-heme complex showed a peak at 411 nm (Fig 4A).
Titration of 10 MM HemS solution with increasing amount of
heme was used to check for the HemS heme binding properties
(Fig. 4B). The absorption at 411 nm increase leveled off at about
10 pM heme, showing a 1:1 stoichiometry of heme to HemS
(Fig. 48).

HemS can degrade heme in vitro

Various monoheme-protein complexes like heme oxygenases
[39], and other biochemicaly uncharacterized heme degrading
enzymes [40], [20] were shown to degrade heme in wtro in the
presence of electron donors like, ascorbate or Cytochrome
NADPH-cytochrome P450 reductaze. We thus tested whether
HemS was able to degrade heme in it first in the presence of
ascorbate or Cytochrome NADPH-cytochrome P450 reductase.
The HemS-heme complex was incubated with ascorhic acid
(5 mM), and the spectral changes between 5300 and 700 nm were
recorded every | min. As shown in Fig. 5A, the disappearance of
the Soret hand was nearly complete 5 min after addition of
ascorhate, In the absence of ascothate, the Soret band was stable
at least for more than 30 min (data not shown). In a second
experiment, HemS dependent heme degradation was measured
spectrophotometrically using human oytochrome PAS0-NADIPH
as the electron donor. Cytochrome P450 reductase was added to
HemS-heme complex and heme degradation was intiated by
adding NADPH and the spectral changes between 500 and
700 nm spectral were recorded, The Soret hand decreased after
each addition of NADPH, and disappears after addition of
100 uhd NADPH (Fig. 5B). The Soret band of HemS-heme
complex did not change if NADPH or cytochrome P50 were
added alone mto the mixture (data not shown). And heme
degradation did not ocour in the midure containing  only
cytochrome P450-heme-NADPH (data not shown). All these data
demonstrate that HemS is able to degrade heme in sitm through an
enzymatic dependent process that requires addition of electron
donors,

The hem5 knockdown increased B. henselae sensitivity to
hydrogen peroxide

As seen ahove, when expressed in B eof, HemS was able to
provoke the release of iron from heme. Biochemical results
strengthen this observation. The question arises whether HemS
activity is required for Barfensis. According to the conclusions
provided by analysis of the genome content of Bartarells, we
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es sequence alignment. Clustal W alignment of Hems from B henselog, Phus from

Pseudomanas aeruginasa [52], Chus from E. coll [46], Shus from Shigella dysenteriae [43], Hems from Yersinia enteracalitica [21], Hmus from Yersinia
pestis [47]. This alignment was generated by Clustal W. Amino acids conserved in five or more polypeptides are highlighted in grey. Amino acids

conserved in all protein are indicated with a star.
doi:10.137 1/journal pone0037630.9001

hypothesized that HemS s required for growth since its activity
provides irom source when bacteria are grown in aerchic
condition,  Preliminary  unsuccessful  assays  to disrupt  femS
ate genetic tools, it is presently not possible to generate mutant for
genes presumed to be essential for B berselae. However it is possible
to analyse the effect of the decrease of an essential gene product in

this genus via knocking down gene expression. This method was
used successfully to investigate the function of genes in B, kersaloe
[41], [42]. We cloned femS of B, hensalae into a vector that allowed
high level expression, pNS2Tre [41]. The gene was oriented in the
reverse orientation such that the antisense strand was transcribed.
PMasmids pNS2Tre and pNS2Tre:hemS g were introduced into B,
hmselae by electroporation. We first checked if the level of HemS
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Figure 2. Functional complementation of the E coli mutants impaired in iron release from heme. £ coll strains FBE.27 pAMzhask
(pBADZ24) (A], FBE.27 efezKan yfeX-Cmp (pAMzhask] (pBAD24] (B) and FBE.27 efeB:Kan yfeX=Cmp (pANChash |, (pBAD24:hem Syl (C) were tested for
the use of heme as an iron source on iron depleted medium M&3 (Gly 0.4%, Ara 02%, Dip 70 pM, Spc, Ampl. Growth around the wells containing
1 M, 5 ph, 10 g, or 50 pM Hb were performed as described in “Materials and Methods”. Growth around the wells was assessed by visible turbidity
in the agar. These pictures were taken after 48 hours of growth at 37°C. Experiment was repeated three times. A representative result is presented.

dai 10,137 1journal pone 00376300002

A S B

BaE,

i

Figure 3. HemS heme blotting. After SDS gel electropharesis, ane
gel was stained with comassie bailliant blue R Another gel was
transferred to a nitrocellulose filter to do heme blotting and detectad
by ECL. (A) Coomassie blue staining: Line 1, 5 pg BSA; Line 2, 4 pg
HemS; (Bl Heme binding: Line 1, 5pg BSA; Line 2 4 pg Hems.
Experiment was performed in triplicate and a single representative
experiment is presented.

dai: 10.137 1/journal pone 00376309003
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was decreased in strain B, henselae (pNS2Tre zhemS g as compared
with strain B hensalpe (pNS2Trc) using western blot experiment
performed with anti HemS mice antibodies. As seen in Fig. 68, the
level of HemnS contained in strain B, hmselas (pNS 2 TrohemS o was
lower than in strain B fmselee (pNS2Trc). Strains B, hensalae
(pMNS2ITre) and B, hosele (pNS2Tre shemS g were then tested for
growth on both on CBA plates and in Schneider’s medium, Our
results showed that the knock down of HemS in strain 8. henselae
(pMNS2TrexhemS o did not significantly decrease its growth ahiliry.
Thus, the level of HemS in B henselae (pNS2TroshemS g is
sufficient to support a normal growth on CBA plates and in
Schneider’s medinm,

HemS can degrade heme and thus can prevent its accumulation
in the cytoplasm. Consequently, HemS  could  prevent the
deleterious effects of heme accumulation in the cytoplasm,
Therefore a decrease of HemS level in the oytoplasm could
induce heme accumulation and lead to a higher sensitivity to
oxidative stress. Such protecting activity against heme toxicity was
demonstrated for ShuS that was evidenced to promote heme
utilization in Skigeiln dyseaterine. In this bacteria, sheS disruption did
not increased  sensitivity to hydrogen  peroxide  [43]. Shigella
dyminas genome (htpd S wwwonchionlmonihogovd genome £
frerm = Shigella % 20dysenteriae %20) containe genes  endoding
for Katls, AhpC, and AhplF Alkyl Hydroperoxide Reductase,
that are mvolved in hydrogen peroxide degradation [44]. Also,
Oy R that regulates the response to HyOy induced oxidative stress
is present [44]. Analysis of the Baromells genomes indicated that
these hacteria would not he able to face oxidative stress using
canonical pathways since many genes involved in oxidative stress
response are not present. Homologs of genes encoding for
hydrogen peroxide degrading enzymes like KaG and KatE
catalases, AhpC, and AhpF Allyl Hydroperoxide Feductase, Dps
and Oy R are ahsent in Bantonalls genomes (hitp:/ Swww nchinlm,
mih.gov/ protein?term = zwi% 20Bartonella 20henselae).  Never-
theless, a previous report showed that Bartonella bacilffommis was
able to sustain successfully a 30 minutes exposure o 1 mM HayO,
[45]. This latter result srongly suggested that cellular activities
allow this bacterium to face oxidative stress generated by exposure
to HyOy. HemS, that is involved in heme disruption, could be an
actor of this defense against oxidative stress, Therefore, we tested
the effect of hemS knock down on the ahility of B, hensslas to face a
30 minutes exposure to 1 mM and 10 mM hydrogen peroxide.
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Figure 4. Binding of heme to HemS5. (Al Increasing amounts of heme {1 pM-20 pM final concentration) were added to HemS (10 pM) as
decribed in “Materials and Methods” and the spectrum (300 nm-700 nm) was recorded after 5 min for each addition. The Soret band at 411 nm
increases with each addition of heme as demonstrated by absorbance peak increases at 411 nm. (B): Absorbance at 411 nm was measurad for each
sample and plotted versus heme concentration. Experiments were parformed in triplicate and a single reprasentative experiment is presented.

doi: 10,137 1/joumnal pone 003 76309004

After exposure to 1 mM HyOy, the survival was about 50% for
hoth strains, After exposure to 10 mM HayOy, the survival was
about 20% for the control strain B hewselas (pNS2Trc). With strain
8. henslne (pNS2TronhanS g, the survival was decreased by three
fold (Fig. 7). This result showed that lowering HemS level in B
henwlae enhanced itz sensitivity 1o HyOy,

Discussion

In this report, we mvestigated the fimction of HemS in &
henwlne. Homologs of this protein are present in all the Banonells
genome that have been sequenced. This underlines the impor-
tance of itz fimction for these Aiphapmisobacteia. Predicting an
important role for HemS in Barforelly is mainly driven by the fact
that these bacteriz use heme as iron source, The use of heme as

B o
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5 H
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a
: i
0.05
]
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Wavalenghth{nm]

iron source requires its transportation through the outer mem-
hrane, the periplasm, and the mner membrane, The release of ivon
from heme inside the cytoplasm requires an enzymatic activity
[15]. An ivon releaze activity from heme was demonstrated in
many bacteria, using physiological tests. Some of these activities
were also biochemically demonstrated and characterized. In most
cases, the release of heme was the consequence of the protopor-
phyrin ring degradation [15]. Heme oxygenase first characte rized
in Corymebactrinm diphirize [39], releases heme by degrading heme
to forming  ag-hillverdin, GO and free won. Others heme
oxygenases that degrade heme and release iron in the presence
of a reducing agent were characterized first, in Bacilins anthracis
[19]. Members of these two classes of heme oxygenases were
identified n various Gram negative and Gram positive hacteria

‘Wavelength|rm]

Figure 5. Hem5 dependent degradation of heme. (Al 10 mM final concentration of ascorbate was added to the HemS-heme complex (10 pML
The spectral changes from 300-700 nm were recorded every 1 min. [B): Cytochrome P450 reductase was added to 10 pM HemS-heme complex with
a 0.3:1 maolar ratio and heme degradation was initiated by adding NADPH 10 pM increments to a final concentration of 100 pM. The spedra were
recorded from 300-700 nm after each addition. All Experiments were performed in triplicate and a single representative experiment is presented.

doi: 10,137 1/joumnal pone 003 76309005
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Figure 6. Detection of HemS expression level in B henselae
pMNS52Trc and 8. henselae pNS2TrczhemS, s by immunoblotting.
20 pg samples of B henselae pNS2Tre (1) and B. henselae pNS2Trozhemn-
Sas (2), 20 ng sample of purified his<tagged HemS (3} were loaded on
SD5-PAGE. After electrophoresis, ane gel was stained with comassie
brilliant blue R (AL Another gel was transferred to a nitrocellulose filter
to do immune blotting as decribed in “‘Materials and Methods” (Bl
Measurement of HemS band intensity using Image J software gave the
following results: & henseloe pN52Tro mean gray value 24, integrated
density: 3218 8. hensgloe pMS2TrechemS A% mean gray wvalue 14,
integrated density: 2075.

doi: 10,137 1fjournal pone0037630.9006

[15]. Finally, a deferrochelation activity was shown to be
responsible for the release iron from heme in £ cofi. In this latter
case, the release of iron occurs without breakage of the tetrapyrrol
skeleton [24]. For some other bacteria, like Yersinig entaracolifica, the
heme degrading activity was demonstrated, but the reaction
products were not characterized. This was the case for HemS from
Yersinia entemcalgica [21], Chu from K. eafi O157:H7 [46]. Other
proteing involved in the use of heme, and sharing significant
sequence homology with heme degrading enzymes, were charac-
terized in Ferrinia pestts [47] or in Skigells disenteriae [43]. For Hem5
from 8. henselae, both complementation abilities and hiochemical
assays show that HemS can degrade heme. Similarly with IsdG
from Bacillus anthmacis, purified HemS from B, heselie can degrade
heme in the presence of a reducting agent. During the heme
degradation in the presence of NADPH-cytochrome  P450
reductase, the soret band of the heme-HemS complex only
decreased i intensity, This was not the caze for HmuQ from
Cormebacterium dphiheriae since the Soret band wavelength of the
heme-Hmu( complex also vary during the heme degradation in
the presence of NADPH-cytochrome P450 reductaze [39]. Heme
degradation enzymes of the IsdG family were characterized in
Alphaproteabacteria like Bradyrhizobium joponicam [20] and Brucela
melitmts [20]. The heme degradation in Sradwhizebmm japaricum
produces hilliverdin [20]. In Brucella melitmtis the product of heme
degradion by BmeIID706 was not characterized [20]. Similarly
with BroelI0706 from Brucells mefteniis [ 20], HemS from B, fenselas
and B. birtlerii (data not shown) exhibits a Soret band at 411 nmin
the presence of heme, thus suggestng a similar environment for
heme, Our study however does not show the products, which
would be useful to distinguish true HO activity from peroxide-
coupled oxidation,. HemS lmock down only provoked a slight
slowdown growing effect when bhacteria were grown on hlood

'@' PLaS OME | www. plasoneorg
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Figure 7. Hem5S knockdown decreases 8. henselae ability to face
exposure to HyO,. B. henselae pHS2Trc and B. henselae pNS2Trezhem-
Saz were challenged with 10 mM Hy0, as deseribed in “Materials and
Meathods”. Experiments were performed in triplicate and a single
representative expariment is presented.
doil 0.137 1journal pone 00376309007

plates. When bacteria were grown in Schmeider medium, no
growing effect was obhserved.

The more striking effect related o HemS knockdown was to
decrease the ability B Amalse to sustain exposure o hydrogen
peroxide, This result suggests that HemS could be an actor of the
pathway used by Bartonells to face oxidative stress, Since classical
pathways used to face oxidative stress characterized in K coli are
not present in Badorella, we hypothesized that Barfanefls develop
altematives strategies to face oxidative stress encountered  in
erythrocytes or macrophages and during vectorisation by the cat
flea Ctenacephalides felis. Inside erythrocytes, and in the flea gut, Hb
and heme concentration are high [48]. Thus, HemS may be
proposed to have a dual vole for Batmella, since its heme
degrading activity allows iron supplying and the control of heme
homeostasis,

Supporting Information

Figure 51 Purification if His-tagged HemS. Purification of
the His-tagged HemS protein was achieved by Ni-agarose
purification followed by gel filiration. Purified protein (5 ug) was
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mn on 12% sodium SDS-PAGE and stained with Coomassie bhue.
Line MW: molecular weight markers, Line 1: purified HemS,
TIF)
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Conclusion

Although one heme acquisition system, that of HutA of B. quintana, has been
characterized as a heme transporter (Parrow et al., 2009), the fate of heme in the
cytoplasm and the mechanisms used for iron release are unknown. We are seeking to
identify the function of HemS as a heme-degrading protein for the following reasons:
1) Heme is the sole iron source for Bartonella; 2) HemsS is located in the Hut locus
devoted to heme uptake; 3) Numerous functions of HemS homologues in other
bacterial species contribute to heme trafficking, heme degrading and DNA binding.

Recently, identification of YfeX and EfeB in E. coli KI2 as a protein for
releasing iron from heme provided a research model for analyzing the function of
HemS in vivo (Letoffe et al., 2009). Like heme oxygenase PigA of P. aeruginosa,
HemS of B. henselae is able to complement the E. coli K12 yfeX efeB double mutant,
suggesting that HemS is able to release iron from heme in vivo. Further investigation
in vitro in the presence of a suitable electron donor also showed that HemS exhibited
a heme-degrading activity, as observed spectrophotometrically. However, we failed to
detect the product of heme degradation: biliverdin produced by heme oxygenase or
PPIX produced by YfeX or EfeB. Moreover, overexpression of HemS in E. coli did
not produce a colored bacterial culture as a result of biliverdin formation from
degradation of heme by other heme oxygenases. We therefore hypothesized that
HemS degrades heme to produce staphylobilin produced by the IsdG family protein.
This hypothesis was supported by the fact that [sdG orthologs have been characterized

in the Alphaproteobactera Bradyrhizobium japonicum and Brucella melitentis (Puri



and O'Brian, 2006). However, HemS of Bartonella do not have any similarity with the
heme-degrading protein of B. melitentis or B. japonicum. Homologues of B. henselae
HemS are mainly present in Bartonella species with high identity (70%-79%) and
other o-, B- and y-proteobacteria with low identity (40%-48%). Thus, it is also
possible that HemS-degraded heme produces uncharacterized compounds. Further
experiments will seek to identify products of heme degradation by HemS and to
reveal the functions of products in Bartonella.

To search for the function of HemS in B. henselae, we first tried to knock out
HemS. Although many attempts were made, we failed to knock it out. One possibility
is that HemS 1is essential for Bartonella, a hypothesis supported by the fact that heme
is the only source of iron and that the activity of HemS is crucial in this process.
However, knockdown HemsS of B. henselae had only a slight effect upon growth. One
explanation is that a low expression level of HemS provides enough iron for
growth. The most striking effect of HemS knockdown is a decrease in B. henselae
ability to face exposure to hydrogen peroxide. HemS could be involved in the
pathway used by Bartonella to face oxidative stress. This is consistent with the
observation that many genes involved in the classical pathway used by E. coli to face
oxidative stress are not present in Bartonella genomes. We hypothesized that HemS
has peroxidase activity responsible for iron release from heme, or that the product of
heme degradation produced by HemS acts as an antioxidant, like the products of
vertebrate heme catabolism. For example, in eukaryotes, biliverdin is transformed into

bilirubin to protect cells against oxidative damage. Thus, we proposed that HemS



plays a dual role in heme degrading and the oxidative stress response in Bartonella.
This work established the role of B. henselae HemS in heme iron utilization and in
confronting oxidative stress, processes required for survival of Bartonella and its
infection cycle. Thus, our results should help to develop a novel target for

anti-infection and anti-transmission strategies in Bartonella.
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State of the art concerning outer membrane heme binding proteins of Bartonella
1. Outer membrane heme binding proteins in Gram-negative bacteria

Outer membrane heme binding proteins have been found and characterized in
some Gram-negative bacteria, including Haemophilus influenzae (Lee, 1992),
Neisseria meningitidis (Lee, 1994), Brucella ovis (Delpino et al.,, 2006),
Porphyromonas gingivalis (Olczak et al., 2008) and Bartonella quintana (Carroll et
al., 2000). Lee (1992, 1994) identified an outer membrane heme binding protein with
a molecular weight of 39.5 kDa in H. influenzae (Lee, 1992) and two outer membrane
heme binding proteins of molecular masses 97 and 50 kDa in N. meningitides using
heme affinity chromatography (Lee, 1994). These proteins were detected only under
conditions of iron limitation (Lee, 1994). Later, it was shown that a monoclonal
antibody against the 97 kDa heme binding protein inhibited heme-dependent growth
of N. gonorrhoeae in a concentration-dependent manner (Lee and Levesque, 1997).
These outer membrane proteins from H. influenzae and Neisseria have not been
further investigated. In B. ovis, Omp31, a 31 kDa outer membrane protein, was
identified as a heme binding protein through heme blotting (Delpino et al., 2006). E.
coli expressing recombinant Omp31 exhibited a heme binding phenotype, suggesting
that recombinant Omp31 exhibited an exposed surface when expressed in E. coli
(Delpino et al., 2006). Incubation of B. ovis with antibodies directed against Omp31
decreased its heme binding activity. This suggested that Omp31 plays an important
role in the heme binding capacity of B. ovis (Delpino et al., 2006). The expression

level of Omp31 was increased by iron limitation. However, this increase in expression



did not occur when the iron-depleted medium was supplemented with heme,
suggesting that Omp31 plays a role in heme utilization. Later, it was shown that the
Omp31 mutant was more susceptible to hydrogen peroxide than its parental wild type
strain (Caro-Hernandez et al., 2007). In P. gingivalis, HmuY was identified as a
membrane-associated heme binding lipoprotein (Olczak et al., 2006; Olczak et al.,
2008; Wojtowicz et al., 2009). The hmuY gene encodes for a 23 kDa protein without
significant similarity to any other protein (Wojtowicz et al., 2009). HmuY is present
as a homodimer under heme-depleted conditions, but as a tetramer under
heme-repleted conditions (Olczak et al., 2008). It was proposed that the tetramer form
would protect heme from host scavengers (Wojtowicz et al., 2009). Gene hAmuY is
located in one operon containing AmuR, which encodes for an outer membrane heme
receptor and four uncharacterized genes (Olczak et al., 2008). Under heme-restricted
conditions, expression of ~muY is increased (Olczak et al., 2008). The AmuY mutant
was shown to grow more slowly and to bind lower amounts of heme and hemoglobin
than the wild type strain (Olczak et al., 2008). Complementation of an E. coli hemA
mutation showed that only cells expressing both HmuY and HmuR can grow in the
presence of heme (Olczak et al., 2008). It was proposed that HmuY binds heme at the
cell surface as an initial heme receptor and heme is then passed to the
TonB-dependent outer membrane heme receptor HmuR (Olczak et al., 2008). This
mechanism was further investigated by determination of the crystal structure of
HmuY loaded with heme (Wojtowicz et al., 2009). Once bound by HmuR, heme

would be transported into the periplasm.



2. The finding of heme binding proteins in Bartonella and their structure
Bartonellae genomes encode for 3 to 5 heme binding proteins (Minnick and
Battisti, 2009) presumed to be involved in the heme utilization process. Heme binding
proteins of Bartonella are a group of porin-like outer membrane proteins that contain
a B-barrel structure and lack similarity with known heme receptors (Minnick et al.,
2003). Heme binding protein A was the first such binding protein to be identified in B.
quintana based on the heme binding phenotype (Carroll et al., 2000). Subsequently,
using sequence analysis, the same group identified four additional heme binding
proteins in B. quintana (Minnick et al., 2003). In B. quintana, genes hbpCAB form a
cluster, hbpD and hbpE are located elsewhere in the chromosome (Minnick et al.,
2003). At present, there are three hbps in B. bacilliformis and four in B. henselae
(Harms and Dehio, 2012). Multiple sequence alignment of the heme binding proteins
of B. henselae reveals a high degree of amino acid sequence conservation (Fig.l).
Heme binding protein family members of B. henselae share 49-56% amino acid
identity. Each protein contains a predicted signal peptide and a terminal phenylalanine.
hbpA, hbpC and hbpD genes are 840, 831, and 825 bp in length, respectively. They
encode for immature proteins with 29.9 kDa, 29.956 kDa and 30.2 kDa masses,
respectively. The hbpB gene is 1, 176 bp in length due to a ~300 bp insert near the
center of its open reading frame. The hbpB gene encodes for an immature protein of
41.4 kDa. Secondary structure predictions suggested that heme binding protein family
members are [-barrels located in the outer membrane and contain eight

transmembrane domains (Fig. 1).
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Fig 1. Multiple sequence alignment of the predicted proteins encoded by the hbp
gene family of B. henselae. 1dentical residuals are shaded in black. Predicted B-strand
transmembrane domains are boxed and numbered. Secretory signal sequence cleavage

sites are indicated by an arrowhead.



The predicted heme binding protein three-dimensional model structure of B. henselae

shows that HbpA, C and D exhibit a “pore-like” structure (Fig 2).

HbpC HbpD
Fig 2. Three-dimensional models of B. henselae HbpA (region: 42aa-279aa), HbpB
(region: 278aa-391aa), HbpC (region: 42aa-276aa) and HbpD (region: 41aa-274aa)
were predicted by the ModBase Model.

BLAST search revealed that the closest homologs of heme binding proteins of B.
henselae in the databases are Brucella OMP31(Vizcaino et al, 1996) and A.
tumefaciens OMP25 (Goodner et al., 2001). Sequence identities of HbpA with other
characterized heme binding proteins range from 30% (OMP25) to 32% (Brucella

OMP31). OMP25 of A. tumefaciens was identified as an immunogenic surface protein



(Goodner et al., 2001). However, the functions of these proteins have not been fully
elucidated (Goodner et al., 2001). BLASTp searches with heme binding proteins also
generated numerous “hits” for Neisseria opacity (Opa), although the overall sequence
identity value between heme binding proteins and Opa is only about 25%. It was
shown that Opa plays a critical role in Neisseria adherence and entry into the host
epithelial cell (Weel et al., 1991). In addition to adherence, Opa plays a role in
immunomodulation, including inhibition of T-lymphocyte activation and proliferation
and B-cell antibody production (Sadarangani et al., 2011; van Putten et al., 1998).
3. Heme binding proteins cannot transport heme

Recombinant HbpA of B. quintana was shown to be able to bind heme in vitro
(Carroll et al., 2000). However, it did not confer a heme binding phenotype in vivo
when expressed in E. coli (Carroll et al., 2000). The very low expression level of
HbpA in E. coli and its misfolding were hypothesized to explain this result (Carroll et
al., 2000). Pretreatment of B. quintana with HbpA antibody inhibited heme binding
(Carroll et al., 2000). Subsequently, Zimmermann et al., (2003) identified a prominent
heme binding protein Pap31 (HbpA), through a heme binding blot performed with
membrane proteins from B. henselae. They showed that expressing Pap31 in an E.
coli K12 hemA mutant strain restored its growth when heme was added at 30 uM and
above (Zimmermann et al,, 2003). Growth restoration was claimed to be related to
heme transport activity of HbpA. However, the level of Pap31 was very low, since
only the use of a monoclonal antibody enabled detecting this protein (Zimmermann et

al., 2003). Moreover, heme binding ability and a B-barrel porin-like structure does not



equate with competence in directly transporting heme. Complementation assays were
performed in liquid medium and at high heme concentrations. Under such conditions,
the onset of a spontaneous mutant could explain the growth observed (Olczak et al.,
2008). Thus, the activity of HbpA as a heme transporter was questioned by other
authors. Recently, it was claimed that HbpA of B. quintana was not able to
complement the E. coli hemA mutant strain in the presence of heme (Minnick and
Battisti, 2009). Complementation assays using the E. coli hemA mutant strain on solid
medium in the presence of different heme concentrations also showed that HbpA
cannot transport heme (F. Biville personal communication). Moreover, Bartonella
genomes encode for a complete heme uptake system (see chapter 2). The functions of
heme binding proteins of Bartonella in the heme uptake process remain unknown,
although many hypothetical functions have been discussed (Battisti et al., 2006;
Battisti et al., 2007; Minnick and Battisti, 2009; Parrow et al., 2009; Roden et al.,
2012). It was proposed that the putative role of heme binding proteins was to
accumulate heme around the bacteria (Minnick and Battisti, 2009). First, this heme
accumulation would facilitate the heme uptake process and serve as a heme reservoir
(Battisti et al., 2006). Secondly, such heme accumulation around the bacteria might
protect against oxidative stress produced during invasion of endothelial cells (Rydkina
et al., 2002; Rydkina et al., 2010) or replication inside the arthropod gut (Graca-Souza
et al., 2006) using its intrinsic peroxidase activity (Battisti et al., 2006). Finally, it was
suggested that heme accumulation by heme binding proteins decreased the oxygen

level around the bacteria similarly to different rhizobia (Battisti et al., 2006; Battisti et



al., 2007; O'Brian, 1996, Wittenberg et al., 1986). No experimental data have been
obtained to validate these hypotheses.
4. Heme binding proteins and interactions with the infected host

Outer membrane proteins of Gram-negative bacteria play an important role in the
interaction between bacteria and the infected host. Some of them are prime targets of
the host humoral response (Chenoweth et al., 2004a). Heme binding proteins (HbpA,
HbpC, HbpD and HbpE) of B. quintana and heme binding proteins (HbpA, HbpC,
HbpD) of B. henselae have been identified as predominant outer membrane proteins
(Boonjakuakul et al., 2007; Chenoweth et al., 2004a; Eberhardt et al., 2009; Li et al.,
2011; Rhomberg et al., 2004; Roden et al., 2012; Saisongkorh et al., 2010). Previously,
Taye et al. (2005) had identified Pap31 (HbpA) of B. bacilliformis as a dominant
antigen, using western blot analysis of patient sera after whole cell lysate separated on
a two-dimensional gel (Taye et al., 2005). ELISA assay showed that recombinant
Pap31 exhibited both high sensitivity and specificity with patient serum, suggesting
that recombinant Pap31 could be used for diagnosis of B. bacilliformis infection (Taye
et al., 2005). Later, it was shown in western blot that recombinant Pap31 (HbpA) of B.
henselae can be recognized by rabbit anti-live B. henselae serum. This suggested that
Pap31 (HbpA) of B. henselae provokes an immune reaction in rabbits (Dabo et al.,
2006a). Likewise, Boonjakuakul et al. (2007) identified the predominant B. quintana
outer membrane antigen using two-dimensional immunoblotting of sera of B.
quintana-infected patients. Among the outer membrane antigens, HbpE was most

frequently recognized by patient sera, implying that HbpE of B. quintana may be a



candidate diagnostic antigen (Boonjakuakul et al., 2007). Recently, Saisongkorh et al.
(2010) identified candidate serodiagnostic proteins for bartonellosis caused by B.
henselae. 1t was shown that Pap31 (HbpA) was immunoreactive with high antibody
titer infective endocarditis (IE) sera, but not with low antibody titer cat scratch disease
(CSD) sera (Saisongkorh et al., 2010).

However, discrepancies exist in results. Chenoweth et al. (2004), via
two-dimensional immunoblotting, identified B. henselae outer membrane proteins that
reacted with infected cat sera. They did not find any heme binding protein that reacted
with the cat sera (Chenoweth et al., 2004a). Consistent with this result, other authors
failed to detect antibodies against heme binding proteins of B. henselae with patient
sera (Eberhardt et al., 2009). Recently, using a large set of cat sera and protein
microarray, no antibodies were detected against heme binding proteins of B. henselae
(Vigil et al., 2010). These inconsistent results might be explained as follows: 1)
Bartonella is well adapted to invasion and long-term survival in its natural host
(Chenoweth et al., 2004a) and thus does not provoke a predominant immune reaction
in the reservoir host; 2) the different experimental procedures used, including various
means of preparing the outer membrane, along with the different sera titers, may have
led to this discrepancy (Saisongkorh et al., 2010).

In addition to provoking an immune reaction in the infected host, outer
membrane proteins also mediate important steps in pathogenesis, such as adhesion,
invasion, intracellular survival and replication (Dehio, 2004). HbpB of B. tribocorum

was found to be essential for establishing bacteremia in a B. fribocorum rat model



(Saenz et al., 2007), suggesting that HbpB is an important factor in pathogenesis in
bartonellosis. Initiation of Bartonella infection requires a wound to enter the skin.
Extracellular matrix (ECM) molecules were reported to be involved in this process as
a target of Bartonella infection (Dabo et al., 2006b). It has been demonstrated that
adhesion to ECM molecules, such as fibronectin (Fn), collagen (Cn) and
heparin-sulfate-containing proteoglycans, is a critical step in the process of bacterial
invasion into the host cell, particularly for wound-associated infection
(Dziewanowska et al., 1999; Joh et al., 1999; Unkmeir et al., 2002). Dabo et al.,
(2006b) showed that B. henselae can bind to ECM proteins (Fn, Cn), and pretreatment
of endothelial cells with anti-Fn antibodies resulted in a significant reduction in
bacterial adherence, suggesting that Fn were exposed at the surface of endothelial
cells (Dabo et al., 2006b). Furthermore, they identified major Fn binding proteins in
the B. henselae outer membrane, including Omp89, Omp43 and Pap31 (HbpA) (Dabo
et al., 2006b). Later, that same group showed that Pap31 (HbpA) can bind endothelial
cells in a dose-dependent manner. Moreover, adherence of B. henselae to endothelial
cells was inhibited by anti-Pap31 antibodies in a dose-dependent manner, indicating
that Bartonella adhesion to endothelial cell involves an interaction with Pap31
(HbpA)-Fn (Dabo et al., 2006a). After entry into endothelial cells, B. henselae was
shown to survive in a specialized non-endocytic membrane-bound vacuole (Kyme et
al., 2005), and this structure was claimed to prevent bacterial fusion with
lysosomes of endothelial cells (Kyme et al., 2005). However, dead B. henselae were

unable to delay fusion with lysosomes, suggesting that bacterial viability is required



for intracellular trafficking of B. henselae (Kyme et al., 2005). Screening of the B.
henselae transposon mutant library for mutants that cannot delay lysosomal fusion
demonstrated that 2bpD disruption significantly reduced viability inside endothelial
cells. The latter result suggested that the hbpD mutant was unable to escape
phagosome maturation (Kyme et al., 2005).
5. Regulation of expression of heme binding proteins in Bartonella

To survive and proliferate, Bartonella must confront various environments in the
host and vector. In mammals, free heme is rare (Baker et al., 2003) and the blood
oxygen concentration is low (5% compared to 21% in the atmosphere) (Battisti et al.,
2006). In contrast, in arthropod vectors, there exists a toxic heme level in the
arthropod gut (Graca-Souza et al., 2006; Oliveira et al., 1999; Vaughan and Azad,
1993) and the oxygen concentration is high. Regulation of expression of heme binding
proteins encoding genes was thus investigated based on conditions mimicking the
natural host and vector for B. quintana (Battisti et al., 2006). Heme binding proteins
were divided into two subgroups based on their regulatory pattern under conditions of
varying heme concentrations, temperature and oxygen concentrations. The first group
contained hbpB and hbpC, overexpressed under conditions mimicking the arthropod
environment (high heme concentration, 30°C) (Table 1). Strikingly, transcription of
hbpC was increased 108-fold at 30°C compared to 37°C (Battisti et al., 2006). The
transcription level of hbpB and hbpC was higher at high heme concentrations (2.5 to 5
mM). The authors suggested that HbpB and HbpC might play a critical role in an

abundant heme environment such as that of the arthropod gut (Battisti et al., 2006).



The second group contained hbpA, hbpD and hbpE that were overexpressed under
conditions mimicking the mammal environment (low heme concentrations and 37°C)
(Battisti et al., 2006) (Table 1). Transcription of hbpA, hbpD and hbpE was increased
at low heme concentrations (0.05 mM) at 37°C, whereas transcription of #bpB and
hbpC remained relatively unchanged (Battisti et al., 2006). The authors proposed that
hbpA, hbpD and hbpE are required when the heme concentration is low, as in the
mammal reservoir host (Battisti et al., 2006). Consistent with this subgroup division,
the first subgroup of AbpB and hbpC was upregulated during infection of endothelial
cells, while #bpA and hbpD were downregulated (Quebatte et al., 2010). Expression
levels of all heme binding proteins decreased when the oxygen concentration
decreased to bloodstream-like conditions (5%) (Battisti et al., 2006) (Table 1). Thus, it
was hypothesized that heme binding proteins do not play an important role inside
erythrocytes (Harms and Dehio, 2012).

Heme- or iron-related transcription regulators (Irr, Fur, RirA) (see chapter two)
were examined for their effect on hbp gene expression (Battisti et al., 2007). The
expression profiles of these transcription factors were verified under “louse-like”
(30°C, high heme) and human “bloodstream-like” (5% O,, low heme) conditions
using qRT-PCR. Under “bloodstream-like” (5% O,, low heme) conditions, irr and fur
expression was slightly increased, whereas rirdA expression slightly decreased (Table
1). Under “louse-like” (30°C, high heme) conditions, irr expression decreased
(Battisti et al., 2007). Transcription of fur and rirA could not be detected at 30°C, but

a slight increase occurred under abundant heme conditions (Table 1). Finally, a



>5-fold decrease in irr expression was observed at 30°C compared to 37°C. The latter
result suggested that Irr might repress 2bpC expression (Battisti et al., 2007).

To further investigate the relationship between irr and the hbp family, an
Irr-overexpressing B. quintana strain was constructed and the transcription level of
the hbp family was evaluated under normal growth conditions (37°C, 21% CO,,0.15
mM heme). Irr overexpression in B. quintana led to repression of hbpB and hbpC
expression and an increase in hbpA, hbpD and hbpE expression (Battisti et al., 2007).
Since “blood-stream-like” stimuli (37°C, low heme) resulted in significant increases
in hbpA, hbpD and hbpE expression levels (Battisti et al., 2006), it was suggested that
the strain overexpressing Irr exhibits a “blood-stream-like” expression pattern of sbp
genes (Battisti et al., 2007). The relationship between Irr and hbp expression was also
studied under “louse-like” conditions (30°C, 21%CO,) (Battisti et al., 2007).

Table 1. Expression regulation profiles of heme binding proteins, Irr, Fur and RirA of
B. quintana at different concentrations of oxygen, temperature and heme used to for

growth (Battisti et al., 2006; Battisti et al., 2007).

30°C Compared to

S 5% Compared to 21% O,, 0.05 mM Compared 5 mM Compared to
(37°C, 0.15 mMheme) to 0.15 mM heme 0.15 mM heme
(0.15 mM heme)
hbpA No difference Decreased Elevated No difference
hbpB No difference Decreased No difference Elevated
hbpC Significantly elevated Decreased No difference Elevated
hbpD No difference Decreased Elevated No difference
hbpE No difference Decreased Elevated No difference
Regulator
irr Significantly reduced Slightly elevated Slightly elevated Slightly reduced
fur No difference Slightly elevated Slightly elevated Slightly elevated

rirA No difference Slightly reduced Slightly reduced Slightly elevated




Irr overexpression blocked the sharp increase in #pbC expression provoked when the
temperature decreased to 30°C (see above). This indicated that Irr inhibits AbpC
transcription (Battisti et al., 2007). In B. quintana, rirA and fur expression was
increased when irr was overexpressed. This suggested that Irr regulates fur and rirA
expression (Battisti et al., 2007). Furthermore, the relationship between fur, rird and
the hbp family was investigated (Battisti et al., 2007). There were no remarkable
changes observed in expression of the #bp family when Fur was overexpressed in B.
quintana under normal growth conditions (Battisti et al., 2007). It was hypothesized
that Fur did not play an important role when Irr was present in B. quintana, as in other
Rhizobiales (Johnston et al., 2007; Wexler et al., 2003). Rir4 overexpression in B.
quintana leads to repression of hbpB and hbpC expression, and the increase in hbpA,
hbpD and hbpE expression is analogous to a “blood-stream-like” expression pattern of
hbp genes under normal growth conditions (Battisti et al., 2007). Finally, the authors
found that Irr binds the #bpC promoter element (TTTTTACTACAGAT) referred to as
the “H-box”. This H-box is highly conserved in Bartonella hbp genes and other open
reading frames, including five members of a six-member family of co-hemolysin

autotransporters (Battisti et al., 2007).



Introduction

Persistence inside erythrocytes was believed to be a strategy enabling
Bartonellae species to obtain heme, an absolute requirement for their growth.
Bartonellae are able to rapidly shift between heme-limited conditions in the mammal
host and heme-replete conditions in the arthropod gut (Battisti et al., 2006). Thus,
Bartonellae must not only be able to obtain heme for growth when it is scarce, but
must also be able to protect themselves from heme-mediated toxicity when it is
abundant.

Bartonellae genomes encode for a complete heme transport system shown to be
active in the presence of high heme concentrations in B. quintana (Parrow et al.,
2009). In addition to a classical heme uptake system, Bartonellae genomes also
encode three to five heme binding proteins located in the outer membrane. The
regulation pattern leading to expression of ibp genes was thus investigated in B.
quintana. Based on their regulatory patterns, 4bp genes were divided into two groups.
The first contained hbpB and hbpC, overexpressed under conditions that mimic the
gut arthropod environment (abundant heme concentrations and low temperature,
high O, concentrations) (Battisti et al., 2006). The authors suggested that HbpB and
HbpC play a critical role in the arthropod gut. Transcription of hbpA, hbpD and hbpE
was increased at low heme concentrations (0.05mM) at 37°C (Battisti et al., 2006).
The authors suggested that HbpA, HbpD and HbpE are required when the free heme
concentration is low, as in blood circulation of the mammal host.

Various reports demonstrated that HbpA of B. henselae, which shares homology



with Opa of N. meningitides, plays a role in the endothelial cell adhesion process
(Dabo et al., 2006a). HbpB of B. tribocorum was shown to be required for
establishing long-term bacteremia in a rat model, but its role remains unidentified
(Saenz et al., 2007). HpbC of B. henselae was recently shown to be a
heme-detoxifying protein (Roden et al., 2012). Finally, HbpD of B. henselae was
hypothesized to be required for survival in endothelial cells (Kyme et al., 2005).
However, the functions of heme binding proteins in heme utilization, cell colonization
and arthropod transmission remain unknown.

In the present report, we investigated the activity of four B. henselae heme
binding proteins (HbpA, B, C, D) using both homologous and heterologous (E. coli)
models. In E. coli, the ability to bind Congo red/heme was investigated in vivo and in
vitro. In B. henselae, hbp knockdown was investigated for determining growth ability,
the oxidative stress response and the capacity to invade and survive in endothelial
cells. In addition, these mutants were tested for their ability to develop in the B.

henselae arthropod vector Ctenocepahlides felis.
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Abstract

Bartonella are hemotropic bacteria responsible for emerging zoonosis. These
heme auxotroph alphaproteobacteria must import heme for their growth, since
they cannot synthesize it. To import exogenous heme, Bartonella genomes encode
for a complete heme uptake system enabling transportation of this compound
into the cytoplasm and degrading it to release iron. In addition, these bacteria
encode for four or five outer membrane heme binding proteins (Hbps). The
structural genes of these highly homologous proteins are expressed differently
depending on oxygen, temperature and heme concentrations. These proteins
were hypothesized as being involved in various cellular processes according to
their ability to bind heme and their regulation profile. In this report, we
investigated the roles of the four Hbps of Bartonella henselae, responsible for cat
scratch disease. We show that Hbps can bind heme in vitro. They are able to
enhance the efficiency of heme uptake when co-expressed with a heme
transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we
show that these proteins are involved in defense against the oxidative stress,

colonization of human endothelial cell and survival in the flea.



Introduction

B. henselae is now recognized as one of the most common zoonoses acquired
from animal companions in industrialized countries [1]. The bacterium causes cat
scratch disease as well as a number of other syndromes associated with tumoral
proliferation of endothelial cells [2]. Most Bartonellae species appear to share a
similar natural cycle that involves arthropod transmission, followed by exploitation of
a mammalian host. Each Bartonella species appears to be highly adapted to one or
several reservoir hosts in which it causes long-lasting intra-erythrocytic bacteremia as
a hallmark of infection. Before colonizing erythrocytes, the bacteria need to replicate
and become competent in a primary niche [3] such as endothelial cells, although other
nucleated cells might constitute part of the primary niche [4]. Bacterial persistence in
erythrocytes is an original strategy, and is considered an adaptation to the mode of
transmission by bloodsucking arthropod vectors. The invasion of erythrocytes might
also be a strategy for Bartonellae species to obtain heme, an absolute requirement for
growth [5]. Not all of the already sequenced Bartonellae genomes contain heme
biosynthesis genes [6]. Moreover, these genomes do not encode for siderophore
biosynthesis or a complete iron Fe’* transport system. Only genes sharing strong
homology with all compounds of an Fe*" already characterized in Yersinia pestis [7]
and Photorhabdus luminescens [8] are present in Bartonellae genomes. Moreover,
Bartonellae genomes encode for a complete heme transport system shown to be active
in Bartonella quintana [9].

Analysis of Bartonellae genomes sequenced to date clearly shows the absence



of numerous genes proven to be required for E. coli in order to face oxidative stress
[10]. Genes coding for polypeptides involved in degradation of hydrogen peroxide,
like catalase and peroxidase [11], methyl sufoxide reduction (MsrA and MsrB)[12]
and oxidative stress response regulation (SoxR, OxyR) [13] [14], are not contained
in Bartonellae genomes. Based on the above information relating to Bartonellae
genome contents, it can be hypothesized that Bartonellae are highly sensitive to
oxidative stress. However, hydrogen peroxide challenges performed with B.
bacilliformis clearly show that this bacterium can efficiently face exposure to 1 mM
H,0O, for 30 min [15]. Moreover, the lifestyle of Bartonellae suggests that these
bacteria must face oxidative stress after the blood meal of the arthropod vector [16].
Bartonellae genomes are small in size, 1.2 to 2 M bases. In spite of their reduced
size, they encode for three to five heme binding proteins (Hbps) [17]. Comparison
of B. quintana Hbps (HbpA, HbpB, HbpC and HbpD) shows that three of these
proteins are close in size and peptide sequences. The HbpA, HbpC and HbpD
sequences of these approximately 30 kDa polypeptides are nearly 53% identical.
HbpB can be distinguished from other Hbps, as this polypeptide is about 11 kDa
bigger than the other Hbps and contains a central part not present in other Hbps
from B. quintana [17].

To survive and multiply, Bartonellae are forced to encounter various
environments in their hosts and vectors. In mammals, free heme is rare [18] and the
blood oxygen concentration is low (5% compared to 21% in the atmosphere) [19].

In contrast, in arthropod vectors, toxic level heme is found in the gut and the oxygen



concentration is high [16]. The regulation pattern of #bp gene expression was thus
investigated in B. quintana [19]. Under all conditions tested, hbp4A was more
strongly expressed than other 4bp genes [19]. Based on their regulatory pattern, 2bp
genes were divided into two groups. The first contained hbpB and hbpC, over
expressed under conditions that mimick the gut arthropod environment (high heme
concentration and low temperature, high O, concentration). The transcription level
of hbpB and hbpC was higher at high heme concentrations (2.5 to 5 mM) [19].
Those authors suggested that HbpB and HbpC play a critical role in the arthropod
gut [19]. The transcription of hbpA, hbpD and hbpE was increased at low heme
concentrations (0.05 mM) at 37°C. The authors suggested that HbpA, HbpD and
HbpE are required when the free heme concentration is low, such as in blood
circulation in the mammalian host. However, it was recently shown that
transcription of B. henselae hbpA is also significantly increased at 28°C, suggesting
that HbpA could protect B. henselae from heme toxicity in the arthropod gut [20].
The function of HbpA was first investigated in B. henselae. Controversial
results excluded a direct role for HbpA in the heme uptake process [21], [22].
Various reports demonstrated that HbpA of B. henselae, which shares homology
with Opa from Neisseria meningitides [23], plays a role in the endothelial cell
adhesion process [24] [25]. HbpB of B. tribocorum was shown to be required for
establishing long-term bacteremia in a rat model, but its role has not been elucidated
[26]. HpbC of B. henselae was recently identified as a heme detoxifying protein

[20]. Finally, it was suggested that HbpD of B. henselae is required for survival in



endothelial cells [27].

In this report, we investigated the activity of four Hbps (HbpA, B, C, D) of B.
henselae using both homologous and heterologous (E. coli) models. In E. coli, the
ability to bind Congo red and heme was investigated, respectively, in vivo and in vitro.
In B. henselae, hbp knockdowns were checked for their growth ability, oxidative
stress response and capacity to invade and survive within endothelial cells. Moreover,
these mutants were tested for their ability to develop within the B. henselae arthropod

vector Ctenocephalides felis.



Materials and methods

Bacterial strains and plasmids. Bacterial strains and plasmids used in this study are

listed in Table 1.

Media and growth conditions. Bovine hemoglobin (Hb) and 2, 2’dipyridyl (Dip)
were obtained from Sigma Chemical. Heme was dissolved immediately before use in
0.02 M NaOH. Hb was dissolved in 100 mM NaCl. Heme and Hb solutions were
filter-sterilized with 0.20 pm Millipore filters for bacterial growth experiments. E. coli
strains were grown on LB medium (Sigma), M63 minimal medium, aerobically at
37°C [28] or on Congo red plates. M63 medium was supplemented with 0.4%
glycerol (Gly) as carbon source. Solid media and soft agar respectively contained
1.5% or 0.7% Difco agar. Congo red plates consisted of solid BHI medium (Difco)
supplemented with Congo red dye (0.02% final concentration). Iron-depleted medium
was obtained with the addition of Dip at an 80 uM final concentration. Antibiotics
were added to the following final concentrations (ug ml™): ampicillin (Amp), 50;
kanamycin (Km), 50; and spectinomycin (Spc), 50. Arabinose (Ara) was added to a
final concentration of 0.02%, 0.2% or 0.4% for induction of the P,, promoter. B.
henselae was grown on a Columbia blood agar (CBA) plate containing 5%
defibrinated sheep blood (Biomérieux; ref 43041) or in Schneider’s medium (Gibco)
supplemented with 10% fetal calf serum [29] at 35°C under a 5% CO, atmosphere.

For flea infection assays, Bartonella strains were collected after 5 days of growth on



CBA plates and suspended in PBS buffer. The bacterial suspension was diluted with
PBS to obtain a cell density of 1.98 X 10® bacteria/ml. The survival of bacteria in PBS

buffer was not significantly decreased after 24 h storage at room temperature.

Congo red binding assay. Tested strains containing pBAD derivatives expressing
Hbps were grown overnight at 37°C in LB medium containing 50 pg/ml ampicillin.
Two ml of LB medium containing 50 pg/ml ampicillin were inoculated to an ODgg of
0.05 with overnight culture and grown at 37°C. Expression was induced at an ODgo
of about 0.6 for 2 h by adding arabinose (0.4% final concentration). Cultures were

diluted, plated on Congo red plates and incubated at 37°C for 24 h.

E. coli heme-dependent growth assays. Tested strains were grown for 18 h in M63
medium without iron with 0.4% glycerol as carbon source, and in the presence of
0.02% arabinose. Cultures were checked for OD at 600,,, and adjusted to ODgpp =1. A
100 pl sample of the bacterial suspension was mixed with 4 ml of soft agar. The
mixture was poured onto M63 plates containing 0.4% glycerol, 0.02% arabinose and
80 uM Dip (M63D). Wells (5 mm in diameter) were cut in the agar and filled with
100 pl of 50 uM, 10 uM, 5 puM, or 1 uM of filter-sterilized Hb solution. Growth
around the wells was recorded after 2-day incubation at 37°C. All experiments were

performed in triplicate.

Physiological characterization of hbp knockdown strains. To evaluate the effect of



hbp knockdown on growth of B. henselae, tested strains were grown both in liquid
Schneider’s medium and on CBA plates. B. henselae pNS2Trc and B. henselae
pNS2Trc.:hbpsas were collected after 5 days of growth on CBA plates and suspended
in Schneider’s medium or phosphate buffered saline (PBS). For growth in Schneider’s
medium, the ODg of the bacterial suspension was adjusted to 0.05. Five ml samples
of this suspension were poured into 6-well plates and grown at 35°C in the presence
of 5% CO,. ODgoo was checked at days 2, 4, 5 and 7 after inoculation. For growth on
CBA plates, serial dilutions of bacterial suspension in PBS were plated on CBA plates
and colony size was evaluated after 6 and 10 days of growth at 35°C in the presence

of 5% CO,. All experiments were performed in triplicate.

H,O, challenge. B. henselae pNS2Trc and B. henselae pNS2Trc::hbpsas were grown
on CBA plates for five days at 35°C under a 5% CO; atmosphere. Bacteria collected
from one plate were suspended and washed twice in PBS buffer. The cell suspension
was then diluted to ODgg 0.5. Before H,O; challenge, several dilutions of the tested
cell suspension were spread on CBA plates (Ty). For the challenge assay, bacteria
were incubated 30 min in PBS buffer in the presence of 1 mM and 10 mM H,0, at
35°C under a 5% CO, atmosphere. After exposure to H,O,, bacteria were washed
twice in PBS buffer and several dilutions plated onto CBA plates (T;). After 15-day
incubation at 35°C under a 5% CO; atmosphere, colonies were counted. Survival rate

was expressed by (T1/ To) X100%. All experiments were performed in triplicate.



Endothelial cell culture and invasion assay. Endothelial cell line Ea.hy 926
resulting from a fusion of HUVEC and lung carcinoma cell line A549 were cultured
in DMEM medium (Gibco) supplemented with 10% fetal bovine serum
decomplemented by heating 30 min at 56°C before use. When required, kanamycin
was added at a 50 pg/ml final concentration. Cells were incubated at 37°C in
humidified 5% CO, and cultured every 7 days using 0.025% trypsin and 1 mM EDTA
in Hanks’ balanced salt solution [30]. Endothelial cells were seeded in 24-well plates
at a density of 10 cells/well. After 6 days, cell number was estimated as 1.5x10°/well.
Bartonella strains harvested from CBA plates after 5-day growth at 35°C under a 5%
CO, atmosphere were washed twice in modified DMEM buffer and then resuspended
in the same medium. Bacterial number was adjusted to 3x10*/ml (10D was estimated
at 6.6 X 10%/ml). For cell invasion assays, medium in the well was removed and 0.5 ml
of modified DMEM containing 1.5x10* colony-forming units (CFUs) of the B.
henselae tested strains were added to the well to obtain 0.1 multiplicity of infection
(m.o.i). After remaining for 1 h at 37°C, 1.5 ml of modified DMEM medium was
supplemented in the well. The number of bacteria was controlled by plating several
dilutions on CBA plates, and CFUs were determined after 15 days of growth (Ty).
Mixtures were incubated at 37°C at 5% CO; for 24 h. After 24 h, the number of
viable bacteria was determined by plating serial dilutions of mixtures on CBA plates,
and CFUs were determined after 15 days growth (Ta4). After 24 h, bacterial viability
was nearly 100%. The intracellular bacterial population was quantified by the

gentamicin protection assay as described by Mehock [31]. Brieflyy, DMEM with



gentamicin (final concentration 250 pg/ml) was added to the mixture assay and
removed after 2 h at 37°C in the presence of 5% CO,. A control B. henselae bacterial
suspension showed no survival after 2 h exposure to gentamicin (250 pg/ml). After
removing modified DMEM medium containing gentamicin, endothelial cells were
then washed three times with modified DMEM medium to remove residual antibiotic.
Endothelial cells were then collected after 4 min incubation with 400 pl trypsin at
37°C. After centrifuging at 12,000 rpm, cells were suspended in 1 ml of sterile water
and disrupted using a 1 ml syringe and a 0.4 mmx20 mm needle and 5 pushes [32].
Microscopic controls revealed that, after 5 pushes, all cells were lysed. Cell lysates
were supplemented with 100 pl 10 XPBS to overcome osmotic lysis. The number of
viable bacteria was determined by plating lysates on CBA plates. After 15 days of
incubation at 35°C under a 5% CO, atmosphere, colonies were counted (T;). The
invasion rate was expressed as (Ty/Ty) X 100%. Each assay was performed in double

wells and all experiments were performed in triplicate.

Survival assay in endothelial cells. To perform survival assays of B. henselae
pNS2Trc and B. henselae pNS2Trc::hbpsss in endothelial cells, the monolayer
contained in mixtures challenged for gentamicin killing was washed three times and
incubated in modified DMEM medium at 37°C and 5% CO, for 24 and 48 h. Cells
were treated as described above and the number of viable bacteria was determined by
plating the lysates on CBA plates. After 15-day incubation at 35°C under a 5% CO;

atmosphere, colonies were counted (Tsz4 or Tssg). The survival rate was expressed as



(Ts24/Tr or Tsas/Tr) X 100%. Each assay was performed in double wells and all

experiments were performed in triplicate.

Flea maintenance and supply. Strain Ctenocephalides felis (C. felis) (Siphonaptera:
Pulicidae) originating from a wild strain harvested from a cat has been maintained

under laboratory conditions since 1990.

Feeding of C. felis with B. henselae pNS2Tre- or B. henselae
pNS2Trc::hbpsas-infected blood. Dog blood used in all experiments was obtained
from 3 beagles from the Ectoparasite Laboratory of the National Veterinary School in
Toulouse, France. The absence of Bartonella spp. in the blood of these dogs was
confirmed by PCR. Lithium heparin—coated vacutainer tubes (Venosafe, Terumo
Europe) were used to draw blood by venipuncture. Blood functional complement was
deactivated by maintaining blood samples at room temperature for 2 h after the blood
test and before storing them at 4°C. Blood samples were stored less than 48 h at 4°C.
When required, kanamycin was added to blood at a 50 pg/ml final concentration.
Kanamycin was previously determined to have no effect on C. felis feeding, viability
or egg production. A total of 500 unfed fleas (males and females aged between 8-10
days) were placed in a plexiglas box in contact with a glass feeder closed at the
bottom by a parafilm membrane. To stimulate flea blood-feeding, a constant
temperature (38.5°C) was maintained by a water-jacket circulation system through the

glass feeder. For blood infection, 500 pL of bacterial suspension at a concentration of



approximately 1.98 X 10® bacteria/ml in PBS were added to 5 ml of blood. Viability of
Bartonella in blood was about 100% after 2-h incubation. Blood was complemented
by bacterial suspension for the first two days of feeding. Then, fleas were fed with
uninfected dog blood for the next 8 days. Every 24 h, the glass feeder was cleaned, a
new parafilm membrane was stretched and blood was changed. At the same time, flea
feces were collected. All samples were stored at -20°C until PCR analysis. Ethanol

70% was added to flea feces samples.

Genetic techniques. E. coli cells were transformed by the calcium chloride method
[33]. Bartonella cells were transformed by electroporation as previously described

[34].

DNA manipulations. A small-scale plasmid DNA preparation was performed
using a QIAprep Spin Miniprep kit (Qiagen). Restriction, modification, and ligation
were carried out according to the manufacturer’s recommendations. DNA fragments
were amplified in a Hybaid PCR thermocycler using Phusion DNA polymerase
(Finnzymes). Nucleotide sequencing was performed by Eurofins MWG Operon.
Purification of DNA fragments from the PCR reaction, restriction reaction or agarose

gels was performed using the Macherey-Nagel NucleoSpin® Extract II kit.

Construction of a recombinant vector expressing Hbps of B. henselae.
Complete B. henselae hbpA, hbpB, hbpC and hbpD genes with a C-terminal Histag (6

His) were amplified by PCR from B. henselae chromosomal DNA using primers



HbpABhamont and HbpABhaval, HbpBBhamont and HbpBBhaval, HbpCBhamont
and HbpCBhaval or HbpDBhamont and HbpDBhaval, respectively (Table 2). The
fragments amplified (890 bp for hbpA, 881 bp for hbpC and 875 bp for hbpD) were
purified and digested with Nhel and Kpnl. The hbpB fragment (1235bp) was purified
and digested with Nhel and Hind III. Then, fragments were ligated with pBAD24
plasmid digested with Nhel and Kpnl or Nhel and Hind III. Ligation mixtures were
introduced into CaCl,-competent E. coli strain XL1 Blue cells and transformants were
selected on LB plates containing ampicillin. Clones were screened by the PCR

method with corresponding primers. Six PCR-positive clones were then sequenced.

Construction of the vector for decreasing the amount of Hbp in B. henselae. The
entire coding region of hbpA, hbpB, hbpC and hbpD was amplified by PCR from the
B. henselae chromosomal DNA using primers hbpAantisensamt and hbpAantisensavl,
hbpBantisensamt and hbpBantisensavl, hbpCantisensamt and hbpCantisensavl or
hbpDantisensamt and hbpDantisensavl, respectively (Table 2). The PCR product (846
bp for hbpA, 1,182 bp for hbpB, 837 bp for hbpC and 831 bp for hbpD) was purified,
digested with BamHI and Xbal and then ligated with plasmid pNS2Trc digested with
BamHI and Xbal. Ligation mixtures were introduced into CaCl,-competent E. coli
strain XL1 Blue cells. Transformants were screened by PCR with corresponding

primers. Six PCR-positive clones were then sequenced.

Extraction of DNA from flea feces. DNA was extracted from flea feces using the



Nucleospin tissue kit according to the manufacturer’s instructions (NucleoSpin®
Tissue, Macherey-Nagel). The quantity of biological material used for DNA
extraction was about 30-40 mg of feces. Flea feces were incubated overnight to 56°C
for the pre-lysis step. For all samples, the final elution volume was 100 pL. The
concentration of DNA extraction in all samples was measured using a nanodrop

spectrophotometer (NanoDrop 2000, Thermo Scientific).

Detection of B. henselae DNA from flea feces. DNA of B. henselae was detected by
amplification of a 1,052 bp fragment containing B. henselae bh02390 gene
https://www.genoscope.cns.fr/agc/microscope/home/index.php using primers
bh2390fo, and bh2390re (Table 2). DNA of C. felis was detected by amplification of a
fragment of C. felis 18S rDNA using primers Cf18Sf and Cf18Sr (Table 2) [35].
Amplifications were performed with at least 20 ng of DNA extract for flea feces. Each
reaction was conducted in a total volume of 20 pL with 0.5 uM of each primer, 200
UM of each ANTP, 4 puL of 5% PCR buffer G/C and 0.02U/ul of Taq DNA polymerase
(Phusion® High-Fidelity DNA Polymerase, Thermo scientific). The PCR program
was as follows: an initial denaturation step for 30 s at 98°C, followed by 40 cycles of
denaturation for 10 s at 98°C, annealing for 30 s at 55°C and extension for 1 min at

72°C, and a final extension step at 72°C for 7 min.

Expression and purification of recombinant His-tagged Hbps. Strain XL1-Blue

pBAD24::hbpA, XL1-Blue pBAD24::hbpB, XL1-Blue pBAD24::hbpC and


https://www.genoscope.cns.fr/agc/microscope/home/index.php

XL1-Blue pBAD24::hbpD were grown overnight at 37°C in LB medium containing
50 pg/ml ampicillin. Then, 200 ml of LB medium containing 50 pg/ml ampicillin was
were inoculated to an ODggo of 0.05 with the overnight culture and grown at 37°C.
Expression was induced at an ODggo of about 0.6 for 2 h by adding arabinose (0.4%
final concentration). Bacteria were harvested by centrifugation for 10 min at 3,000 g
at 4°C, and the pellet was suspended in 20 ml binding buffer (50 mM Tris-HCI, 8M
urea, 0.05% triton, pH 8.0). Lysis of bacteria was obtained by incubation at room
temperature with rotation for 3 h. The suspension was then centrifuged at 13,000 g for
30 min at 4°C. The supernatant containing the soluble fraction was mixed with 200 pl
of Ni-agarose beads (Qiagen) according to the manufacturer’s instructions. Purified
protein was dialyzed twice against a buffer containing 50 mM Tris-HCI to eliminate
any residual imidazole and urea. The protein was stable for at least one month when

kept at -80°C with 20% glycerol.

Heme binding assay in vitro. For heme blotting, proteins were separated on standard
12.5% SDS gels followed by electrophoretic transfer to nitrocellulose membranes
according to the protocol of Vargas [36]. Briefly, samples were mixed with loading
buffer to which no DTT was added and samples were not boiled before
electrophoresis. 1 pg of HbpA, HbpB, HbpC and HbpD or 3 pg of BSA was separated
on 12.5% SDS-PAGE. One gel was stained with Coomassie brilliant Blue R. Another
gel was transferred to nitrocellulose using the general methods of Towbin et al. [37].

The heme binding blot was done according to the protocol of Carroll et al. [22].



Briefly, the resulting blots were rinsed with Tris-buffered saline containing 0.1%
Tween 20 (TBST; 10 mM pH 8.0 Tris-HCI containing 150 mM NaCl and 0.1% Tween
20) three times for 30 min and subsequently probed for 1.5 h with TBS containing
heme (10°M) at room temperature. Nitrocellulose was washed three times for 30 min
with TBS-Tween 20 (0.1%) at room temperature. Heme was visualized via it intrinsic
peroxidase activity [38] using enhanced chemiluminescence (ECL) reagents
(Amersham Pharmacia, Piscataway, N.J). Hbp bands were visualized by exposing the

blot to autoradiographic film (Labscientific, Livingston, N.J.).

Antibody preparation. 200 ul of an emulsion containing purified HbpB (10 pg) and
ISA 61 VG adjuvant (Seppic) (120 ul), completed with NaCl 0.9%, were inoculated
twice (at a 1-month interval) subcutaneously into C57B6 mice (Charles River) (Ethics
Committee Anses/ENVA/UPEC agreement n°:14/06/2011-1). Two weeks after the
second inoculation, 200 pl blood samples were collected every 3 weeks via
retro-orbital bleeding. Blood samples were centrifuged twice (3,600 rpm 5 min) to
obtain serum which was stored at -20°C. Before use, non-specific antibodies were
removed by incubating the immune serum with E. coli cell extract for 1 h at 4°C and

centrifugation for 10 min at 8,000 rpm. The supernatant was then used as serum.

Protein analysis by electrophoresis. Proteins were analyzed by 12% sodium dodecyl
sulfate polyacrylamide gel (SDS-PAGE) electrophoresis [39], followed by Coomassie

Blue staining.



Immunoblot analysis. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis
(SDS-PAGE) and immunoblotting for detecting decreased expression of HbpA in B.
henselae were performed as follows. Tested strain biomass was collected after 5 days
of growth on CBA plates, suspended in PBS buffer and centrifuged. Bacterial pellets
calculated to contain 40 pg of proteins were suspended in loading buffer and heated
for 5 min at 100°C. Proteins were separated by 12% SDS-PAGE and transferred to a
nitrocellulose membrane (Hybond-C Extra, GE Healthcare) according to Towbin et a/
[37]. Non-specific binding sites were blocked with 5% skim milk in TBS-Tween
20(0.05%). The immunoblot was probed with polyclonal mouse sera raised against
recombinant HbpB (1:200), followed by a 1:1,000 dilution of a rabbit anti-mouse IgG
horseradish peroxidase[HRP]-conjugated secondary antibody (cell signaling).
Visualization of the HRP signal was performed using enhanced chemiluminescence
(ECL) reagents (Amersham Pharmacia, Piscataway, N.J). HbpA bands were
visualized by exposing the blot to autoradiographic film (Labscientific, Livingston,

NJ, USA).

Protein assay. The concentration of the protein was determined using the BC assay

protein quantitation kit (Interchim).

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5
software for Windows. Statistical significance of the data was ascertained by use of

Student’s ¢ test. A value of P <0.05 was considered significant.



Results

Hbps are able to bind Congo red when expressed in E. coli. To determine that
Hbps of B. henselae can bind heme, we first checked for Congo red binding activity,
since it had been shown that Hbps can also bind Congo red [40]. Moreover, it had
already been shown that expressing a Congo red binding protein on the outer
membrane of E. coli conferred a Congo red binding phenotype [41]. We transformed
E. coli XL1-Blue with plasmids pBAD24, pBAD24::hbpA, pBAD24::hbpB,
pBAD24::hbpC and pBAD24::hbpD to determine whether 2bp genes can produce a
Congo red binding phenotype. Strain XL1-Blue with plasmid pBAD24 did not confer
a Congo red phenotype when grown on the plate with 0.2% arabinose (Fig IB).
However, strains expressing HbpA, B, C and D formed a red colony on the plate with
0.2% arabinose (Fig 1 C, D, E, F). Without arabinose, neither XL1-Blue pBAD24 nor
XL1-Blue pBAD24::hbpA, XL1-Blue pBAD24::hbpB, XL1-Blue pBAD24::hbpC,
XL1-Blue pBAD24::hbpD, conferred a Congo red binding phenotype (data not
shown). Taken together, these data showed that Hbps can bind Congo red and

confirmed that Hbps were exposed on the cell surface when expressed in E. coli.

Recombinant HbpA, HbpB, HbpC and HbpD can specifically bind heme in vitro.
To produce and purify recombinant HbpA, B, C, D from E. coli, we amplified their
structural gene using B. henselae chromosomal DNA as template and primers
allowing addition of a six His-tag at the C-terminal of the protein. The fragments were
cloned into the pBAD24 plasmid as described in Materials and methods. Plasmids

pBAD24::hbpA, pBAD24::hbpB, pBAD24::hbpC and pBAD24::hbpD were



introduced into strain XL1-Blue. To check for quantities of Hbps in E. coli strain
XL1-Blue, SDS gel electrophoresis (SDS-PAGE) was used to compare protein
extracts of strain XL1-Blue pBAD24::hbpsys and XL1-Blue pBAD24. A
supplementary visible band was observed on SDS page gel for XL1-Blue derivatives
harboring  plasmid pBAD24::hbpA, pBAD24::hbpB, pBAD24::hbpC  or
pBAD24::hbpD when grown in the presence of 0.4% arabinose (Fig 1A).
Recombinant Hbp proteins were purified by Ni-agarose affinity chromatography as
described in Materials and methods. The size of purified Hbp proteins corresponded
well to those predicted from their sequences.

To test whether pure Hbps can specifically bind heme in vitro, a standard method
already used for detecting heme binding of cytochrome C was used [36]. Pure HbpA,
HbpB, HbpC, HbpD and BSA were separated on two SDS-polyacrylamide gels. One
gel was then stained with Coomassie brilliant Blue R (Fig. 2A). Another gel was
transferred to a nitrocellulose filter to perform heme blotting and ECL detection (Fig.
2B). Pure Hbps were able to bind heme added at 10°M concentration (Fig. 2B). In
contrast, under our assay conditions, BSA was unable to bind heme (Fig. 2B). The
latter result underlines the specificity of the proteins that bind heme. Taken as a whole,

we conclude that when purified, all Hbps can bind heme in vitro.

Hbps increase the efficiency of heme uptake mediated by HemR from Serratia
marcescens in E. coli. Conflicting results concerning the heme transport activity of

HbpA encouraged us to first check for the ability of Hbps to transport heme using E.



coli hemA mutant complementation. Our results demonstrated that Hbps from B.
henselae did not act as heme transporters (Supplement table 1). These results are at
variance with those obtained for Pap31 (HbpA) from B. henselae [21], but are in
agreement with those obtained for HbpA of B. quintana [9] and Bartonella birtlesii
(Biville F, unpublished data). We checked whether Hbps could modulate the
efficiency of the heme uptake process. We first verified the effect of Hbps on the
activity of HutA of B. henselae expressed in E. coli. HutA from B. quintana was
shown to transport heme and, consequently, to restore growth of an E. coli hemA
mutant. [9]. Experiments were performed in the presence of high heme concentrations
in liquid medium. The weak growth restoration may have been the consequence of
mutations enhancing outer membrane permeability [42]. These complementation
assays failed for an E. coli K-12 hemA mutant expressing HutA of B. birtlessii when
grown on heme-supplemented solid medium [43]. To avoid factual results concerning
the heme transportation activity of HutA from B. henselae, we expressed it in an E.
coli entF’ mutant that cannot grow in the presence of an iron chelator [44]. When a
heme transporter is expressed in such strain, addition of heme to the medium restores
growth. In order to be used as an iron source, the amount of heme required is 100
times greater than that required for its use as a heme source. Such a complementation
assay had already been used to check the heme transport activity of HasR from
Serratia marcescens [45] and also for characterization of heme-degrading enzymes
[46,47]. No growth was observed in the E. coli entF strain expressing HutA from B.

henselae when grown in iron-depleted medium in the presence of hemoglobin



(Supplement table 2). To check for the effect of Hbps from B. henselae upon the heme
uptake process, plasmids harboring hbps genes were introduced into the E. coli entF
mutant [44] expressing a HemR heme transporter from S. marcescens [48]. Strains
obtained were tested for growth on iron-depleted medium in the presence of
hemoglobin added at different concentrations. As seen in table 3, HemR alone led to
growth around the well containing hemoglobin at 50 uM in the presence of 80 uM dip.
Strains expressing hbpA, hbpB, hbpC and hbpD were able to grow at lower
concentrations of Hb (Table 3), suggesting that HbpA, HbpB, HbpC and HbpD
increase the efficiency of the HemR-mediated heme uptake process. HbpB and HbpD
were more efficient than HbpA and HbpC (Table 3). To further investigate the
efficiency of heme uptake mediated by Hbps and HemR, we grew the bacteria on a
minimal iron-depleted plate with 100 pM Dip in the presence of different
concentrations of Hb. For the control strain only expressing HemR and strains
co-expressing HbpA or HbpC and HemR, no growth was observed around the well
whatever the concentration of Hb added (Table 3). The strain co-expressing HbpD and
HemR showed growth only around the well containing 50 puM Hb. The strain
co-expressing HbpB and HemR was able to grow around the well whatever the
concentration of Hb (Table 3). Taken together, we concluded that HbpB and HbpD
were more efficient than others at increasing heme uptake when expressed in E. coli,
and thus they might play an important role at low heme concentrations. Similar results
were obtained by introducing plasmids harboring hbps genes in an E. coli entF’ mutant

expressing HasR from S. marcescens (data not shown). Binding of heme by Hbps



increased its concentration around the bacteria and consequently facilitated its uptake.

Hbp activity is important for B. henselae growth. Since Hbps can modulate heme
uptake efficiency when expressed in E. coli, a similar activity was hypothesized in B.
henselae. In that bacterium, heme serves both as heme and as an iron source [47].
Thus, abolishing or decreasing synthesis of the different Hbps in B. henselae could
potentially affect its growth capacity. Knockout of HbpA in B. henselae was
hypothesized as being lethal to the bacteria [20]. A preliminary unsuccessful assay in
our lab to disrupt hbpA of B. henselae was in agreement with this hypothesis. To
investigate the function of the four Hbps of B. henselae using the same genetic tool,
we chose the knockdown method that had been successfully used for B. henselae [47],
[49], [50]. We cloned hbps of B. henselae oriented in the reverse direction such that
the anti-sense strand was transcribed in plasmid pNSTrc [49]. Plasmids pNS2Trc,
pNS2Trc.::hbpAs, pNS2Trc::hbpBss pNS2Trc::hbpCys and pNS2Trc::hbpD,s were
introduced into B. henselae using electroporation. We first checked for the
knockdown effect on the Hbp expression level in B. henselae using a western blot
experiment. Multiple sequence alignment of Hbps of B. henselae revealed a high
degree of amino acid sequence conservation at its N-terminal and C-terminal parts
even for HbpB, which is longer than other Hbps. According to its size, HbpB can
easily be distinguished from other Hbps. Mouse anti-serum against HbpB was
prepared and tested for recognition of purified Hbps. Our results demonstrated that

anti-HbpB antibody can recognize well-purified HbpB and HbpA. For HbpD and



HbpC, recognition by anti-HbpB antibodies was lower or absent (data not shown).
Detection of HbpB expression in B. henselae was investigated using anti-HbpB
anti-serum. We failed to detect HbpB in B. henselae using the western blot method.
This result is in good agreement with those of proteomic analysis of outer membrane
fractions of B. henselae and B. quintana [51], [52], [53], [54], [55], [56], which
showed that HbpB was not detectable using this method. Since HbpA is the most
abundant Hbp in B. henselae [52] [51], we checked its level in B. henselae pNS2Trc
and B. henselae pNS2Trc::hbpAas using mouse antibody directed against HbpB. As
seen in Fig. 3, the level of HbpA was lower in strain B. henselae pNS2Trc::hbpAs
than in strain B. henselae pNS2Trc.

The strains obtained were tested for growth on both blood agar plates and in
Schneider’s medium as described in Materials and methods. After 6 and 10 days of
growth on blood agar plates, colonies produced by strain B. henselae harboring
pNS2Trc::hbpAas, pNS2Trc::hbpBas, pNS2Trc::hbpCas or pNS2Trc::hbpDas were
much smaller than those formed by B. henselae pNS2Trc (Table 4). The B. henselae
strain containing pNS2Trc::hbps,s also grew more slowly than B. henselae pNS2Trc
in Schneider’s medium (Fig 4). These results indicated that a decrease in the amount

of Hbps slowed growth of B. henselae.

Knockdown of Hbps increased B. henselae sensitivity to hydrogen peroxide
Analyses of Bartonellae genomes demonstrated that numerous genes involved in the

oxidative stress response were not present. However, it was shown that Bartonella



bacilliformis was able to successfully endure 30 min exposure to 1 mM H,O, [15],
suggesting that certain activities enable this bacterium to undergo oxidative stress
generated by exposure to H>O,. It was suggested that one potential role for Hbps was
to bind heme at the surface of the bacteria and provide an antioxidant barrier via heme
intrinsic peroxidase activity [57]. To examine this hypothesis, we tested the effect of
hbp knockdown on the ability of B. henselae to face 30 min exposure to 1 mM and 10
mM hydrogen peroxide. After exposure to 1 mM H,0O,, survival was about 50% for
both control strain B. henselae pNS2Trc and B. henselae pNS2Trc::hbpCys. There
existed slightly decreased survival capacity for B. henselae pNS2Trc::hbpAus, B.
henselae pNS2Trc::hbpB4s and B. henselae pNS2Trc::hbpD s (data not shown). After
exposure to 10 mM H,O,, survival was about 25 % for control strain B. henselae
pNS2Trc. With strain B. henselae pNS2Trc::hbpAs, B. henselae pNS2Trc::hbpB4s
and B. henselae pNS2Trc::hbpCys, sensitivity to hydrogen peroxide increased about
3-4-fold (Figure. 5). Decreasing HbpD levels more sharply increased B. henselae
sensitivity to hydrogen peroxide (Figure. 5). These results indicated that lowering the

Hbp level in B. henselae significantly increased its sensitivity to H,O,.

Effect of Hbp knockdown on B. henselae capacity to invade endothelial cells.

In mammals, reactive oxygen species (ROS) are a part of immune defenses [58].
Within cells, bacterial infection was shown to induce ROS production [59]. Thus,
decreasing the ability to undergo oxidative stress is expected to decrease the ability of

B. henselae to survive in endothelial cells. This promoted us to check the effect of



Hbp knockdown upon the capacity of B. henselae to invade human endothelial cells
and to survive within them.

For endothelial cell invasion, both B. henselae pNS2Trc::hbpB4s and B.
henselae pNS2Trc::hbpC,s exhibited the same invasion rate as control strain B.
henselae pNS2Trc (about 2%) (Fig. 6). However, invasion rates of B. henselae
pNS2Trc::hbpAs and B. henselae pNS2Trc::hbpD s decreased 3-fold compared to
the control strain (Fig. 6).

For survival in the endothelial cell assay, mixtures were grown for 24 h or 48 h
after the gentamicin killing assay. After 24 h in endothelial cell, cell lysates were
spread on the blood plate to check viable bacterial number. Surprisingly, no bacteria
were visible on the blood plate after 2-week incubation. To overcome this problem,
we first grew the mixture in Schneider’s liquid medium overnight, sustaining primary
isolation of B. henselae [29] before plating it on blood plates. Colony count after
2-week incubation showed a decrease in viable bacteria for all strains tested, though it
has been claimed that B. henselae is able to replicate inside endothelial cell through
bacterial rRNA replication [60]. Survival rates for B. henselae pNS2Trc::hbps4s were
much lower than those of control B. henselae pNS2Trc (Fig 4), after 24 h or 48 h
growth in endothelial cells. To check for an effect of overnight growth in Schneider’s
medium, about 600 B. henselae pNS2Trc or B. henselae pNS2Trc.:hbps,s bacteria
were grown overnight in that medium and plated on blood plates for enumeration. The
increase in bacterial numbers was calculated for all tested strains. The increase was

about 20-30% for both B. henselae pNS2Trc and B. henselae pNS2Trc::hbpss. The



differing survival rates of B. henselae pNS2Trc and B. henselae pNS2Trc::hbps 4s
were not related to a growth defect in Schneider’s medium. We conclude that Hbps of

B. henselae play an important role in survival within endothelial cells.

Hbps are involved in multiplication of B. henselae in C. felis. The role of cat fleas
(C. felis) in transmission of B. henselae was reported in northern California in the
early 1990s [61]. Later, it was experimentally demonstrated that B. henselae-infected
fleas can transmit B. henselae to cats [62] and that B. henselae can replicate in the gut
of the cat flea [63]. Transmission to humans is thought to occur via a cat scratch
contaminated with flea feces [63]. Inside the arthropod gut, bacteria confront
oxidative stress after each blood meal [16]. Since Hbps of B. henselae play a
protective role against H,O,-produced oxidative stress, this prompted us to check for a
Hbp knockdown effect on B. henselae multiplication in fleas. After feeding fleas for 2
days with blood containing the bacteria, fleas were fed with blood without bacteria for
another 8 days. For control strain B. henselae pNS2Trc, we were able to detect B.
henselae DNA in the feces from day 1 to day 10 (Table 5). For strains with a
decreased amount of HbpA, HbpB, HbpC or HbpD, no bacterial DNA could be
detected after day 6. To exclude the possibility that this result was due to small
amounts or to the quality of DNA from flea feces, we amplified flea 18S rDNA from
day-7-to-10 flea feces samples using primers Cf18Sf and Cf18Sr. Flea 18S rDNA was
detected in all of the day-7-to-10 flea feces samples (data not shown). This

suggests that Hbps play an important role in multiplication of B. henselae in fleas.



Discussion

In this report, we investigated the role of B. henselae Hbps in heme utilization,
the oxidative stress response, cell colonization and survival within arthropod vector C.
felis. Previous data had shown that recombinant HbpA of B. quintana was able to bind
heme in vitro, but did not confer a heme binding phenotype in vivo when expressed in
E. coli [22]. Later it was claimed that HbpB of B. quintana did not bind heme [19].
Recently, it was shown that #1bpC of B. henselae, when expressed in E. coli, confers a
heme binding phenotype in vivo [20].

Our results clearly show that expression of all Hbps from B. henselae in E. coli
confers a Congo red binding phenotype (Fig 1), thus suggesting that Hbps have a
surface location when expressed in E. coli. We also demonstrate that, in vitro, all
purified Hbps specifically bind heme. To characterize the physiological importance of
Hbps, we first investigated their effect on the heme uptake process. Pap31 (HbpA) of
B. henselae was claimed to act as a heme porin when expressed in E. coli [21], but
conflicting data about this activity were published for HbpA of B. quintana [57].
Moreover, we failed to visualize any heme porin activity for Hbps of B. henselae
when expressed in E. coli. Based on the above results, we hypothesized that the Hbp
family of Bartonella could act as a heme reservoir, thus rendering it available under
heme-limited conditions. This hypothesis is in good agreement with the absence of
genes encoding for heme and iron storage proteins in Bartonellae genomes. Such
heme storage activity might enhance the efficiency of the heme uptake process. We

examined the effect of Hbps on the activity of heterologous heme transporters HemR



and HasR of S. marcescens [48], [64]. All Hbps increased  heme uptake efficiency
mediated by HemR and HasR. Efficiency at low heme concentrations was better with
HbpB and HbpD than with HbpA and HbpC. Such differences in efficacy could be
related to the differing levels of Hbps in E. coli. This is the case for HbpB, but not for
HbpD (Fig 1). This result suggests that HbpD might be active when the heme
concentration is low. This conclusion is in good agreement with the increase in hbpD
expression when B. quintana was grown in the presence of low heme concentrations
[19]. How heme is transferred from heme binding proteins to HemR and HasR heme
transporters remains unknown.

During mammal and flea invasion, Bartonellae must face microenvironmental
shifts, stress and the host immune defense. For example, it was shown that reactive
oxygen species (ROS: O,’, H,O, and OH") production is an important immune defense
mechanism for mammal hosts and arthropod vectors against pathogenic bacteria [16]
[65]. Recently, it was shown that ROS (H»0;) levels in midgut were higher (over 10
mM) in infected fleas. Antioxidant treatment prior to infection decreased ROS levels
and resulted in higher Yersinia pestis loads [66]. An OxyR Y. pestis mutant showed
reduced growth in fleas early after infection [66]. ROS are potentially toxic for both
the host cell and pathogenic bacteria [16,67,68,69]. Host cells are protected from
oxidative damage by enzymes that detoxify ROS, such as SOD, catalase, glutathione
peroxidase (Gpx) and thioredoxin peroxidase, that detoxify H,O, [70]. In arthropod
vectors, the adaptive response to ROS has also been thoroughly investigated [16]. B.

henselae replicates in the gut of the cat flea and is able to survive several days in flea



feces [63]. It was shown that the hematophagous vector has a substantial need for
huge amounts of blood at each meal; digestion of hemoglobin within the gut of the
vector releases large quantities of heme, which has potential pro-oxidant and
cytotoxic effects if not bound to proteins [71,72]. To successfully replicate in the cat
flea gut, B. henselae must confront toxic ROS and repair damage. Many homologues
of genes involved in the oxidative stress response in E. coli are not present in the B.
henselae genome. The absence of homologues of these genes suggests that
Bartonellae must possess uncharacterized mechanisms in response to oxidative stress.
One actor in this oxidative stress response was recently identified as being a
heme-degrading enzyme enabling release of iron from heme [47]. In this report, we
demonstrate that all Hbps are required to efficiently undergo exposure to hydrogen
peroxide. A role for the intrinsic peroxidase activity of heme bound to Hbps was
hypothesized for B. quintana [19] and was shown to be the case for Porphyromonas.
gingivalis [73]. The competence of Hbps in detoxifying H,O, might also be required
for efficient invasion and survival in endothelial cells, major target cell types for
bacterial colonization in the reservoir host(s) as well as in the infected host [74].
Bacterial infection was shown to induce ROS production in endothelial cells [59]. As
a consequence, the weaker survival capacity in endothelial cells, related to
knockdown of all Hbps, might be related to lower resistance to oxidative stress.

For HbpA and HbpD, we also show a weakening in the endothelial cell invasion
process when their level decreases. For HbpA, this effect might be related to its Opa

domain, which has been shown to be involved in entry into the host epithelial cell in



Neisseria gonorrhoeae [75]. Indeed, previous data also showed that Pap31 (HbpA) of
B. henselae was able to bind endothelial cells in a dose-dependent manner, and
binding was inhibited by anti-Pap31 antibodies [24]. However, HbpD involvement in
the endothelial cell invasion process is striking, and can be explained by greater
sensitivity to oxidative stress produced by endothelial cells, thus leading to more rapid
killing of bacteria. This hypothesis is supported by the fact that the mutant of HbpD
cannot delay lysosomal fusion, leading to significantly reduced viability within
endothelial cells [27].

Clearance of bacteria in the flea feces can be explained by a decrease in
survival within the arthropod. Our results clearly demonstrate more rapid clearance of
B. henselae in the flea feces when invasion assays are performed using Hbp
knockdown mutants. In addition, this more rapid clearance of bacteria in the flea feces
can be attributed to decreased ability to confront oxidative stress. Thus, the
ROS-detoxifying activity of Hbps also plays an important role during colonization of
fleas. Taken together, we reveal the functions of Hbps in heme utilization, the
oxidative stress response, cell colonization and flea transmission. The ability of Hbps
to bind heme provides competence in destroying ROS, thus constituting an important
immune defense system for host cell and arthropod vectors. Functional identification
of Hbp families in cell interactions and flea transmission should help to develop
strategies for fighting infection and transmission. It will be interesting in the future to

elucidate anti-oxidant mechanisms used by other vector-borne pathogens.
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Table 1. Strains and plasmids used in this study

E. coli strains

Genotype

Source or reference

XL1-Blue

F" supE44 hdsR17 recAl endA1 gyrA46 thi relAl lac F’
proAB” lacl? lacZAM15 Tn10 (Tet®)

Laboratory collection

XL1-Blue pBAD24 XL1-Blue carrying pBAD24, Amp® This study
XL1-Blue pBAD24::hbpA XL1-Blue carrying pBAD24::hbpA, Amp® This study
XL1-Blue pBAD24::hbpB XL1-Blue carrying pBAD24::hbpB, Amp® This study
XL1-Blue pBAD24::hbpC XL1-Blue carrying pBAD24::hbpC, Amp® This study
XL1-Blue pBAD24::hbpD XL1-Blue carrying pBAD24::hbpD, Amp® This study

FB8.27 F, Alac X74, entF::TnphoA’5, Tet® [44]
FB8.27 pAM239::hemR, R R R )
PBAD24 FB8.27 pAM239::hemR, pBAD24, Tet", Spc™, Amp This study
FB8.27 pAM239::hemR, FB8.27 pAM239::hemR, pBAD24::hbpA, Tet®, Spc®, )
pBAD24::hbpA Amp"® This study
FB8.27 pAM239::hemR, FB8.27 pAM239::hemR, pBAD24::hbpB, Tet®, Spck, )
pBAD24::hbpB Amp"® This study
FB8.27 pAM239::hemR, FB8.27 pAM239::hemR, pBAD24::hbpC, Tet®, SpcF, )
pBAD24::hbpC Amp"® This study
FB8.27 pAM239::hemR, FB8.27 pAM239: :hemR, pBAD24::hbpD, Tet®, Spc®, )
pBAD24::hbpD Amp"® This study
Bartonella strains Genotype Source or reference

B. henselae Houston-1

B. henselae pPNS2Trc
B. henselae pNS2Trc::hbpA as
B. henselae pNS2Trc::hbpB as
B. henselae pNS2Trc::hbpC Ag
B. henselae pNS2Trc.::hbpD As

Houston-1, ATCC 49882"
B. henselae carrying pNS2Trc, Amp®
B. henselae carrying pNS2Trc.:hbpA x5, Amp®
B. henselae carrying pNS2Trc.:hbpB x5, Amp®
B. henselae carrying pNS2Trc::hbpC ag, Amp®
B. henselae carrying pNS2Trc.:hbpD x5, Amp®

Laboratory collection
This study
This study
This study
This study
This study

Plasmids

pBAD24
PAM239::hemR
pBAD24::hbpA
pBAD24::hbpB
pBAD24::hbpC
pBAD24::hbpD
pNS2Trc
pNS2Trc::hbpA s
pNS2Trc::hbpB s
PNS2Trc::hbpC ag
pNS2Trc::hbpD s

pBR322 araC, arabinose-inducible promoter, Amp®
PAM239 carrying hemR from Serratia marcesns
pBAD24 carrying hbpA from B. henselae, Amp®
pBAD24 carrying hbpB from B. henselae, Amp®
pBAD24 carrying hbpC from B. henselae, Amp®
pBAD24 carrying hbpD from B. henselae, Amp®
Km®
pNS2Trc carrying anti-sense hbpA, km®
pNS2Trc carrying anti-sense hbpB, km®
pNS2Trc carrying anti-sense ~bpC, km®
pNS2Trc carrying anti-sense hbpD, km®

Laboratory collection
[76]
This study
This study
This study
This study
This study
This study
This study
This study
This study




Table 2. Primers used in this study

Primer Gene Organism Sequence
HbpABhamont hbpA B. henselae 5’ CTAGCTAGCAGGAGGAATTCACCATGAATATAAAATCTTTAATGA 3’
HbpABhaval hbpA B. henselae 5’ CGGGGTACCTCAGTGGTGGTGGTGGTGGTGGAATTTGTACGCTACACCAACACGG 3’
HbpBBhamont hbpB B. henselae 5’ CTAGCTAGCAGGAGGAATTCACCATGAATACGAAACGTTTAATAACAG 3’
HbpBBhaval hbpB B. henselae 5’ ATCCCCGAAGCTTATGGTTTAGTGGTGGTGGTGGTGGTGGAATTTGTAAGCGACAC 3’
HbpCBhamont hbpC B. henselae 5’ CTAGCTAGCAGGAGGAATTCACCATGAAATCGCGTGTTCAAATAT3’
HbpCBhaval hbpC B. henselae 5’ CGGGGTACCTCAGTGGTGGTGGTGGTGGTGAAATTTATAAGCGACACCAACACGG 3’
HbpDBhamont hbpD B. henselae 5’ CTAGCTAGCAGGAGGAATTCACCATGACTACAAAATATTTAATCACAA 3’
HbpDBhaval hbpD B. henselae 5’ CGGGGTACCTCAGTGGTGGTGGTGGTGGTGAAACTTGTACGCTACACCAACACGA 3’
hbpAantisensamt Antisens hbpA B. henselae 5’ CCCGGATCCTTAGAATTTGTACGCTACACC3’
hbpAantisensavl Antisens hbpA B. henselae 5’CCCTCTAGAATGAATATAAAATCTTTAATG 3’
hbpBantisensamt Antisens hbpB B. henselae 5’ CCCGGATCCTTAGAATTTGTAAGCGACACC3’
hbpBantisensavl Antisens hbpB B. henselae 5 CCCTCTAGAATGAATACGAAACGTTTAATAAC3’
hbpCantisensamt Antisens hbpC B. henselae 5" CCCGGATCCTTAAAATTTATAAGCGACACC3’
hbpCantisensavl Antisens hbpC B. henselae 5’ CCCTCTAGAATGAATATAAAATGGTTAATA3’
hbpDantisensamt Antisens hbpD B. henselae 5 CCCGGATCCTCAAAACTTGTACGCTACACCA 3’
hbpDantisensavl Antisens hbpD B. henselae 5" CCCTCTAGAATGACTACAAAATATTTAATCACA 3’
bh2390fo bh2390 B. henselae 5'-GGTGAATGTGTGCAAAGTTTTAAG 3’
bh2390re bh2390 B. henselae 5' CCAATAAACGCCAACAAAGAC 3'.
Cf18Sf 18S rDNA C. felis 5' TGCTCACCGTTTGACTTGG 3’
Cf18Sr 18S rDNA C. felis 5'GTTTCTCAGGCTCCCTCTCC 3’




Table 3. The effect of Hbps on HemR-dependent heme uptake.
E. coli strains FB8.27 pAM239::hemR pBAD24, FB8.27 pAM239::hemR

pBAD24::hbpA FB8.27 pAM239::hemR pBAD24.:hbpB, FB8.27 pAM239::hemR
pBAD24::hbpC and FB8.27 pAM239::hemR pBAD24::hbpD were tested for
efficiency of heme utilization as an iron source in iron-depleted medium M63 (Gly
0.4%, Ara 0.02%, Dip 80 or 100 uM, Spc, Amp). Growth around the wells containing
1 uM, 5 uM, 10 uM, or 50 uM Hb was as described in Materials and methods. After
48 h of growth, the diameter of the zone of turbidity aground the well was measured
in quadruplicate for each plate and the mean diameter was calculated. Results are

expressed as mean+SD of the diameter (in cm) obtained for the three plates. NM: Not

measurable
E_ coli strain Diameter of the halo (cm) (Dip 80 pM)
50 pM 10 pM 5uM 1 pM

FB8.27 pAM::hemR (pBAD24) 1.82£0.015 NM NM NM
FB8.27 pAM::hemR (pBAD24::hbpA) 2.2340.04 1.78+0.03  1.48%0.09 NM
FB8.27 pAM::hemR (pBAD24::hbpB) 2.77%0.11 2.374+0.08 2.31+0.09 1.84%0.1
FB8.27 pAM::hemR (pBAD24.::hbpC) 2.0940.04 1.64+0.03 1.4240.08 NM
FB8.27 pAM::hemR (pBAD24::hbpD) 2.55%0.10 1.92+0.09 1.68%+0.09 1.22+0.06

Diameter of the halo (cm) (Dip 100 pM)

E. coli strain
50 pM 10 pM 5uM 1M
FB8.27 pAM::hemR (pBAD24) - - - -
FB8.27 pAM::hemR (pBAD24::hbpA) - - - -
FB8.27 pAM::hemR (pBAD24::hbpB) + + + +
FB8.27 pAM::hemR (pBAD24.::hbpC) - - - -
FB8.27 pAM::hemR (pBAD24::hbpD) + - - -




Table 4. Effect of hbps knockdown on growth of B. henselae on blood plates.

For the growth test on CBA plates, strains B. henselae (pNS2Trc), B. henselae
(PNS2Trc::hbpA 4s), B. henselae (pPNS2Trc::hbpB 4s), B. henselae (pNS2Trc.::hbpC 4s)
and B. henselae (pNS2Trc.:hbpD,s) were collected after 5 days of growth on CBA
plates and suspended in PBS buffer to obtain about 10° CFU ml™. Two-hundred
microliters of cell suspension were plated on the CBA plate. Colony sizes were
measured after 6 and 10 days of growth at 35°C in the presence of 5% CO,. Data are
the mean diameter (mm) = SD of 10 colonies from one representative experiment.
Standard deviations were calculated using Statview software. All experiments were

repeated three times. NM: not measurable

Strain Colony size (mm)
Day 6 Day 10
B. henselae (pNS2Trc) 0.58+0.12 1.00% 0.149
B. henselae (pNS2Trc::hbpA 45) NM 0.50=+ 0.105 (p<0.0001)
B. henselae (pNS2Trc::hbpB ) NM 0.53+ 0.125 (p<0.0001)
B. henselae (pNS2Trc::hbpCys) NM 0.51+ 0.120 (p<0.0001)

B. henselae (pNS2Trc::hbpD 45) NM 0.449 + 0.072 (p<0.0001)




Table 5. Detection of B. henselae DNA from flea feces samples using PCR.
About 500 fleas were first feed with blood containing 500 pl bacteria (2} 10%/ml) for
2 days and then fed uninfected blood for 8 days. Flea feces were collected every day.

DNA was extracted from flea feces and PCR was performed as described in Materials

and methods.

Flea feces samples (days)

1 2 3 5 6 7 8 9 10

B. henselae pNS2Trc + + + + + + +

B. henselae pNS2Tre::hbpAas + + + + + + - - - -
B. henselae pNS2Tre::hbpBas + + + + + + - - - -
B. henselae pNS2Tre::hbpCas + + + + + + - - - -
B. henselae pNS2Tre::hbpDas  + + + + + + - - - -




Fig 1. Congo red binding assays. Strains XL1-Blue pBAD24 and XL1-Blue
pBAD24 expressing Hbps were expressed for 2 h at 37°C as described in Materials
and methods. Expression was evident in SDS-PAGE (A). Line 1: XL1-Blue pBAD24,
lines 2 to 5: XL1-Blue pBAD24 expressing HbpA, B, C, D, respectively (20 pg).
After plating on Congo red plates supplemented with 0.2% arabinose, strains were
grown for 20 h at 37°C. Strain XL1-Blue pBAD24 (B) formed white colonies. Strain
XL1-Blue pBAD24::hbpA (C), XL1-Blue pBAD24::hbpB (D), XLI1-Blue

pBAD24::hbpC (E) and XL1-Blue pBAD24::hbpD (F) formed red colonies.

Fig 2. Detection of heme binding by Hbps. After SDS gel electrophoresis, one gel
was stained with Coomassie brilliant Blue R. Another gel was transferred to a
nitrocellulose filter to perform heme blotting and was detected by ECL as described in
Materials and methods. (A) Coomassie Blue staining result. Line 1: 1 ug HbpA, line 2:
1 ng HbpB, line 3: 1 pg HbpC, line 4: 1 pg HbpD, line 5: 3 pg BSA. (B) Heme
binding results. Line 1: 1 pg HbpA, line 2:1 pg HbpB, line 3: 1 pg HbpC, line 4: 1 pg

HbpD, line 5: 3 ug BSA.

Fig 3. Detection of HbpA expression levels in B. henselae pNS2Trc and B.
henselae pNS2Tre::hbpA as by immunoblotting.

40 pg samples of B. henselae pNS2Trc (line 1) and B. henselae pNS2Trc::hbpAs
(line 2) and a 100 ng sample of purified his-tagged HbpA (line 3) were loaded on

SDS-PAGE. After electrophoresis, one gel was stained with Coomassie brilliant Blue



R (A). Another gel was transferred to a nitrocellulose filter for performing immune

blotting as described in Materials and methods (B).

Fig 4. Effect of hbps knockdown on growth of B. henselae in Schneider’s
medium.

Strains B. henselae pNS2Trc and B. henselae pNS2Trc::hbpsss were cultured in
Schneider’s medium, collected after 5-day growth on CBA blood plates and
suspended in Schneider’s medium. The bacterial suspension was used to inoculate
Schneider’s medium at an ODggp of 0.05. Cultures were grown at 35°C in the presence
of 5% CO, and ODgpp was measured on days 2, 4, 5 and 7 after inoculation. All

experiments were repeated three times.

Fig. 5. Hbp knockdown decreases the ability of B. henselae to undergo exposure
to H,O0,.

B. henselae pNS2Trc and B. henselae pNS2Trc::hbpsas were challenged with 10 mM
H,0, as described in Materials and methods. Experiments were performed in
triplicate; survival rates were expressed as described in Materials and methods.

(*P<0.05, **P<0.01 compared to B. henselae pNS2Trc).

Fig 6. Effect of Hbp knockdown on endothelial cell invasion.

Invasion of endothelial cells by B. henselae pNS2Trc and B. henselae



pNS2Trc.:hbpsys. Cells were mixed with bacteria at 0.1 m.o.i. After 24 h, infected
cell were treated with gentamicin to kill extracellular bacteria and lysates were plated
on the CBA blood plate to determine the number of intracellular bacteria. Invasion
was calculated using the equation provided in Materials and methods. (***P<0.005

compared to B. henselae pNS2Trc)

Fig 7. Effect of Hbp knockdown on survival of B. henselae in endothelial cells.

Survival of B. henselae pNS2Trc and B. henselae pNS2Trc::hbps s in endothelial cell.
After gentamicin killing, infected cell were grown for 24 h or 48 h in modified
DMEM medium. Lysates were incubated in Schneider’s medium overnight. Then
lysates were collected by centrifuge and plated on CBA blood plates to determine the
number of intracellular bacteria. The survival rate was calculated using the equation
provided in Materials and methods. (*P<0.05, **P<0.01, ***P<0.005 compared to B.

henselae pNS2Trc)



Fig 1. Congo red binding phenotype of XL1-Blue (pBAD24) (B), XL1-Blue
(pBAD24::hbpA) (C), XL1-Blue (pBAD24::hbpB) (D), XL1-Blue (pBAD24::hbpC)
(E) and XL1-Blue (pBAD24::hbpD) (F).
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Fig 2. Detection of Hbp binding to heme.
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Fig 3. Detection of the HbpA expression level in B. henselae pNS2Trc and B.

henselae pNS2Trc::hbpAas by immunoblotting.




Fig 4. Effect of hbp knockdown on growth of B. henselae in Schneider’s medium.
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Fig 5: Hbp knockdown decreases B. henselae capacity to face H,O, challenge.
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Fig 6: Effect of Hbp knockdown on endothelial cell invasion.
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Fig 7:

Effect of Hbp knockdown on survival of B. henselae in endothelial cells.
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Supplement Table 1

Heme acquisition of an E. coli hemA strain expressing the B. henselae Hbps
protein.

C600AhemA is incapable of the synthesis of Aala, a heme precursor that is necessary
for bacterial growth in an aerobic environment on LB rich medium. Because E. coli
does not have a heme transport system, in the presence of extra cellular heme does not
permit bacterial growth unless such a transport system is introduced. E. coli strains
C600 A hemA pAM::hasR (positive control), C600 A hemA pBAD24 (negative
control), C600AhemA pBAD24 expressing Hbps were tested for heme transport
activity in LB plates (Ara 0.02%). Wells were cut in the agar and filled with 100 pl of
10'4M, 10°M or 10°M of filter-sterilized Hb or heme solution. Growth was recorded
around the wells after 48-hours incubation at 37°C. This growth assay was used with
success to visualize heme acquisition by the heme transporter HasR of Serratia
marcescens (S. marcescens). C600 AhemA pBAD24 expressing Hbps have no any

growth was observed.

C600AhemA  C600AhemA  C600AhemA C600AhemA C600AhemA C600AhemA

Wells pAM::hasR pBAD24  pBAD24:hbpA pBAD24:hbpB  pBAD24:hbpC  pBAD24::hbpD

Hemel0™“*M + - - - - -

Hemel0°M + - - - - -
Hemel0°M - - - - - -
Hb 10*M + - - - - -
Hb 10°M + - - - - -

Hb 10°M - - - - - -




Supplement Table 2

Iron acquisition of an E. coli strains FB8.27 expressing the B. henselae HutA
protein.

E. coli strains FB8.27 pAM239::hemR (positive control), FB8.27 pBAD24 (negative
control) and FB8.27 pBAD24::hutA were tested for heme utilization as an iron source
in iron-depleted medium M63 (Gly 0.4%, Ara 0.02%, Dip 80, Spc or Amp). Wells
were cut in the agar and filled with 100 pl of 50 pM, 10 uM, 5 uM, 1 uM of
filter-sterilized Hb solution. Growth was recorded around the wells after 48-hours

incubation at 37°C.

Hb

E. coli strain
50 pM 10 pM 5uM 1 pM

FB8.27 pAM::hemR + + - -
FBS8.27 pBAD24 - - - -
FB8.27 pBAD24::hutA - - - -




Conclusion

In the present report, we investigated the function of heme binding proteins in
heme utilization, the oxidative stress response, endothelial cell colonization and flea
transmission. For heme utilization, we first showed that heme binding proteins are
able to bind Congo red in vivo and heme in vitro. We next showed that heme binding
proteins of B. henselae cannot transport heme when expressed in the E. coli hemA
mutant. We then sought to determine whether heme binding proteins affect
HutA-mediated heme uptake activity when co-expressed in E. coli. We failed to
reconstitute the activity of HutA as a heme transporter in E. coli, although it has been
claimed that HutA of B. quintana can transport heme when expressed in an E. coli
hemA mutant in the presence of high heme concentrations (Parrow et al., 2009). We
thus examined the effect of heme binding proteins on the heme uptake activity of
heme transporter HemR of S. marcescens when expressed in E. coli. Our results
clearly showed that heme binding proteins increase HemR-mediated heme transport
when expressed in E. coli. We hypothesized that expression of heme binding proteins
increased the heme concentration surrounding the bacteria, thus facilitating heme
transport activity.

In order to reside in endothelial cells and fleas, B. henselae must confront the
oxidative stress provoked by bacterial infection (Rydkina et al., 2002; Zhou et al.,
2012). However, many homologues of genes involved in the oxidative stress response
in E. coli are not present in Bartonellae. The fact that B. bacilliformis was able to
successfully endure 30 min exposure to 1| mM H,0O, (Coleman and Minnick, 2003)

implies that Bartonellae can efficiently sustain oxidative stress using an



uncharacterized pathway. It was proposed that heme binding proteins might be a way
of facing oxidative stress using the intrinsic peroxidase activity of heme (Battisti et al.,
2006). Therefore, we first checked whether heme binding proteins are involved in an
oxidative stress response by decreasing the expression of heme binding proteins in B.

henselae. Our results showed that HbpA, HbpB, HbpC and HbpD knockdown
decreases the capacity of B. henselae to endure oxidative stress induced by exposure

to H,O,.

Since heme binding proteins were shown to be involved in oxidative stress in
vitro, it was reasonable to hypothesize that heme binding protein knockdown
expression in B. henselae might affect invasion and survival in endothelial cells and
flea gut. We first verified the effect of heme binding protein knockdown upon
invasion of B. henselae into endothelial cells and survival within them. We showed
that HbpA and HbpD are involved in endothelial cell invasion, and that all heme
binding proteins are involved in survival of B. henselae inside endothelial cell.
Involvement of HbpA in endothelial cell invasion had already been described (Dabo
et al., 2006a). The Opa domain of HbpA, which has been shown to be involved in
entry into host epithelial cells in Neisseria gonorrhoeae (Weel et al., 1991), lends
support to this conclusion. For HbpD, its involvement in the endothelial cell invasion
process is striking. The higher sensitivity to oxidative stress produced by endothelial
cells in response to bacterial invasion might explain our observation. This hypothesis
is also supported by the fact that the B. henselae hbpD mutant cannot delay lysosomal

fusion, thus leading to reduced viability inside endothelial cells (Kyme et al., 2005).



In subsequent experiments, we also showed that decreased expression of heme
binding proteins affected the ability of B. henselae to survive inside the flea. Taken
together, these results demonstrate that the anti-oxidative stress response activity of

heme binding proteins is important in the infection cycle of B. henselae.






Discussion and perspectives

To accomplish their infection cycle, Bartonellae must overcome two main
hurdles: meeting the necessary nutrient requirements and confronting oxidative stress
immune defenses produced by hosts in their resident niches.

To meet nutrient requirements, heme is one of the most important elements in
growth of Bartonella. The latter cannot synthesize this compound, which is also the
main iron source. Although it is one component of the heme acquisition system,
HutA of B. quintana has been characterized as a heme transporter (Parrow et al.,
2009), though the fate of heme in the cytoplasm is unclear. Moreover, the function of
outer membrane proteins able to bind heme has remained unidentified. In the present
report, our data clearly show that HemS can degrade heme in vivo and in vitro.

We established that heme binding proteins are able to bind Congo red in vivo and
heme in vitro. We failed to observe heme transport activity when expressing heme
binding proteins of B. henselae in E. coli. In contrast, we showed that heme binding
proteins increase heme uptake efficiency when co-expressed with a heterologous
heme transporter in an E. coli model strain. Bartonella species have an arthropod
vector infection cycle. In the gut of the arthropod, high heme levels are present and
are toxic. In contrast, in the mammalian host, available heme is scarce. Bartonella
genomes do not encode for bacterioferritin, ferritin-like heme or iron storage proteins.
It has been proposed that heme binding proteins function as a heme reservoir on the
surface of Bartonella (Battisti et al., 2006). Here we propose that heme binding

proteins increase the heme concentration around the bacteria in the arthropod vector,



thus facilitating Bartonella use of heme after exploitation in the mammalian host. An
intriguing parallel occurs in the flea-borne agent of bubonic plague Yersinia pestis,
where the outer membrane is the primary site of exogenous heme storage
(Hinnebusch et al., 1996). Future work should focus on the mechanism by which
heme is transferred from heme binding proteins to the heme transporter.

Compared to other pathogens that also lack heme synthesis, the heme
requirement of Bartonella is 100-fold higher than that of Porphyromonas gingivalis
and 1,000-fold higher than that of Haemophilus influenze under aerobic iron-replete
conditions (Liu et al., 2006; Myers et al., 1972; White and Granick, 1963). It was
hypothesized by other authors that a high heme requirement consists not only of
metabolic nutrients but also of mediators of metabolic homeostasis (Battisti et al.,
2006), where heme may function as a defense mechanism against ROS, or else
exogenously generate a decreased oxygen environment for the bacteria (Battisti et al.,
2006).

It is generally agreed that Bartonella species are aerobic (Birtles et al., 1995).
During aerobic respiration, superoxide (O;) and hydrogen peroxide (H,O,) are
naturally generated, and superoxide dismutase and catalase/peroxidase are normally
used for intracellular detoxification (Messner and Imlay, 1999). Moreover, it was
shown that ROS production is an important immune defense mechanism of the
mammal host and arthropod vector against pathogenic bacteria (Graca-Souza et al.,
2006). As a consequence, Bartonellae must possess enzymes to prevent and repair

oxidative stress damages.



are not present in Bartonellae genomes (Table 1).

Table 1. Genes involved in oxidative defense in E. coli and Bartonella.

Many homologues of genes involved in the oxidative stress response in E. coli

Function in E. coli B. henselae B. quintana B. bacilliformis
Ros degradation
SOdA Manganese superoxide dismutase + + +
sodB Iron superoxide dismutase + + +
sodC Copper-zinc superoxide dismutase - - -
katG Hydroperoxidase | - - -
katE Hydroperoxidase II - - -
ahpC Alkyl hydroperoxide reductase - - -
ahpF Alkyl hydroperoxide reductase - - -
dps Non-specific DNA binding protein - - -
acrA ROS excretion ? ? ?
acrB ROS excretion + + +
ROS damage repair

gorA Glutathione ruductase + + +
grxA Glutaredoxin 1 + + +
msrA Methionine sulfoxide reductase - - -
msrB Methionine sulfoxide reductase - - -
trxB Thioredoxin reductase + + +

zwf Glucose-6-phosphate dehydrogenase + + -

fpr Ferredoxin reductase + + +

nfo Endonuclease IV - - -
xthA Exonuclease 111 + + +

Regulators

SOXR sodA , acrA, acrB, zwf, frp, nfo, xtha - - -
O0XyR katG, ahpC, ahpF, gor, grxA - - -
rpoS sodC, katE, dps, gor, trxB, xthA - - -

It was thus hypothesized that Bartonellae use an uncharacterized pathway to confront

oxidative stress. We found that HemS was involved in the oxidative stress response of

B. henselae in vivo. B. henselae HemS is the first identified heme-degrading protein

shown to be involved in the oxidative stress response. However, HemS knockdown in

B. henselae did not have any effect on the ability to survive inside endothelial cells

(data not shown), where ROS are produced in response to bacterial invasion. One

possible explanation is that HemS destroys only endogenous H,O,. This hypothesis

was supported by the absence of a strategy for endogenous H,O, detoxification,

according to genome analysis (Table 1). For heme binding proteins, we showed that B.



henselae was more sensitive to HO, exposure when heme binding proteins showed
decreased expression. In addition, the heme blotting technique that we used to identify
heme binding proteins relies on the intrinsic peroxidase activity of heme. These
results strongly support the hypothesis that heme binding proteins may serve as an
antioxidant barrier in Bartonella. Similarly, it was shown that P. gingivalis stores
heme on its surface. Stored heme can function as an antioxidant due to its intrinsic
peroxidase activity (Smalley et al., 2000) and might also exclude oxygen from the cell
(Smalley et al., 1998). Bartonella are members of the order Rhizobiales. Many
rhizobia form a symbiotic relationship with their legume host plant by fixing
atmospheric nitrogen in root nodules. For nitrogen fixation to occur, a microaerophilic
environment must be established for the bacteria. This is accomplished by
plant-generated leghemoglobin, a molecule similar to hemoglobin binding to the
rhizobial surface to shield the bacteria from oxygen (Appleby et al., 1983).
Considering the close relationship of Bartonella and rhizobia, it has been proposed
that heme binding is a common strategy used by members of this order to decrease
oxygen in the environment (Battisti et al., 2006).

Interestingly, when compared to B. henselae HbpA, B, C knockdown mutants,
the B. henselae HbpD mutant appears to be more sensitive to H,O,. We hypothesized
that HbpD might be more efficient at confronting oxidative stress in B. henselae. To
further understand the role of heme binding proteins in B. henselae physiology, we
checked for the effect of hbps knockdown on the B. henselae capacity to invade

erythrocytes and endothelial cells. We also investigated the effect of #bps knockdown



on the B. henselae capacity to survive in the flea.

Concerning erythrocyte invasion, we did not see any effect when expression of
heme binding proteins was decreased. Consistently, it has been shown that all hbp
transcripts  significantly decrease when B. quintana is grown at an O,
concentration(5%) that simulates the human bloodstream (Battisti et al., 2006). It was
proposed that bacteria grown at 5% oxygen encounter fewer ROS; thus, fewer heme
binding proteins are necessary to combat ROS (Battisti et al., 2006). Recently, it was
proposed by other authors that heme binding proteins did not play a role in the blood
stream (Harms and Dehio, 2012).

For endothelial cell invasion, we showed that B. henselae less efficiently invaded
endothelial cells when HbpA or HbpD expression was decreased. It has already been
shown that recombinant HbpA of B. henselae is able to adhere to endothelial cells
(Dabo et al., 2006a) and this result is easily explained by the the presence of an “Opa”
domain in HbpA. The Opa protein was shown to be involved in entry into the host
epithelial cell in Neisseria gonorrhoeae (Weel et al., 1991). The involvement of HbpD
in the endothelial cell invasion process is more striking and could be explained by
greater sensitivity to oxidative stress produced by endothelial cells, thus leading to
more rapid killing of bacteria. This hypothesis needs to be further confirmed
experimentally.

We also clearly showed that all heme binding proteins are involved in survival of
B. henselae inside endothelial cell. The weaker survival capacity in endothelial cells,

related to knockdown of all heme binding proteins, might be related to weaker



resistance to oxidative stress. It has already been shown that the HbpD mutant of B.
henselae is attenuated in intracellular survival in endothelial cells because it can not
delay lysosomal fusion (Kyme et al., 2005). How heme binding proteins might
modify the intracellular signal cascade needs to be further experimentally
demonstrated.

Many arthropod vectors, such as sandflies, body lice and fleas have been
implicated as vectors in Bartonella transmission. These arthropod vectors acquire
blood meal several times daily (Graca-Souza et al., 2006), whereupon erythrocytes are
hemolyzed almost immediately. As a result, the bacteria are exposed to waves of
potentially toxic heme and ROS with each blood meal (Graca-Souza et al., 2006).
Since we showed that B. henselae heme binding proteins against H,O, produced
oxidative stress damage, it was reasonable to hypothesize that Hbp knockdown
expression affects colonization of B. henselae in fleas. Here, our results showed that B.
henselae heme binding protein knockdown mutant strains were eliminated more
quickly in flea feces than the wild type, suggesting decreased ability of heme binding
protein knockdown mutant strains to colonize fleas. This result was supported by
profiles of regulation of heme binding proteins. It was shown that the expression of
HbpC of B. quintana increased 108-fold at the louse-like temperature (30°C) than at
37°C. Recently, it was also shown that hbpA transcript expression is significantly
increased in B. henselae at 28°C compared to 37°C(Roden et al., 2012), suggesting

that HbpA and HbpC might affect arthropods. In any case, all heme binding proteins



are related to survival in the flea, probably due to the anti-oxidant activity of heme
binding proteins.

To accomplish the infection cycle, Bartonella must be able to survive and
replicate in the different niches they encounter, namely the arthropod vector, the
primary niche (endothelial cells) and erythrocytes. As we have shown in this report,
heme binding proteins of B. henselae play an important role in its two resident
microniches: endothelial cells and fleas. The anti-oxidant activity of heme binding
proteins might be crucial for survival in these two resident micro-niches. In summary,
we conclude that heme binding proteins of Barfonella play an important role in
virulence and the infection cycle. A better understanding of the function of the heme
binding protein family should help us to develop strategies for fighting infection and
transmission. However, other factors might also be involved in the Bartonella
oxidative stress response. Further experiments are necessary to elucidate this question.

As described above, the oxidative stress response plays an important role in the
infection cycle of Bartonellae. This led us to attempt to identify other actors in the B.
henselae oxidative stress response. Genome analysis showed that Bartonellae encode
for homologues of YfeABCD from Yersinia pestis and SitABCD from avian
pathogenic E. coli that had been characterized as Fe*" and Mn”" transporters (Anjem
et al., 2009; Sabri et al., 2006). It was shown that manganese contributes to protection
against oxidative stress as a cofactor in a number of enzymes in bacteria (Kehres and
Maguire, 2003) and might also contribute directly to degradation of hydrogen

peroxide (Horsburgh et al., 2002). It was shown that disruption of manganese



transporters increases sensitivity to hydrogen peroxide in avian pathogenic E. coli
(Sabri et al., 2006). To identify the function of YfeABCD in B. henselae, we first
checked for the effect of YfeAB knockdown upon the ability to face exposure to
hydrogen peroxide. Our results clearly demonstrated that yfe4B knockdown strongly
increases the sensitivity of B. henselae to hydrogen peroxide exposure. A weaker
effect was observed with yfe4 knockdown (Figure 1). Consequently, we searched for
the effects of yfe4 and yfeAB knockdown on the ability of B. henselae to survive
inside endothelial cells and fleas. Our results showed that yfeAB knockdown
decreased the ability of B. henselae to survive inside both endothelial cells and fleas
(Fig 2 and Table 2). Thus, manganese transport can be proposed as an actor in the
oxidative stress response and, consequently, survival inside cells and fleas in B.
henselae. Further experiments should investigate whether the YfeABCD transporter
of B. henselae is involved in manganese transport and anti-oxidant activity in an E.

coli model strain.
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Fig. 1: YfeA and YfeAB knockdown decreases the ability of B. henselae to face

exposure to H,O».
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Fig 2: Effect of YfeA and YfeAB knockdown on survival of B. henselae in
endothelial cells.
Table 2: Effect of YfeA and YfeAB knockdown on survival of B. henselae in fleas. B.

henselae DNA was detected from flea feces samples using PCR.

Flea feces samples (days)
3 45 6 7 8 9 10

1

B. henselae pNS2Trc + + + + + +
B. henselae pNS2Trc::yfeAas +
+

B. henselae pNS2Trc::yfeABas

+ o+ + |

_|_
+ o+ o+ + o+ o+
_l_

+ + + - - - -

In the present report, we identified three actors, HemS, heme binding proteins
and YfeABCD, involved in the oxidative stress response in B. henselae. Oxidative

stress is caused by exposure to reactive oxygen intermediates such as superoxide



anion (O, ¢), hydrogen peroxide (H,O;) and hydroxyl radicals (HO ¢) (Storz and Imlay,
1999). The sources of oxidative stress mainly include the following: 1) ROS,
endogenously produced by aerobic metabolism (Storz and Imlay, 1999). O, and H,0,
are formed whenever molecular oxygen chemically oxidizes electron carriers (Fig 3).

Reduced flavoproteins have been implicated in this process in E. coli (Storz and Imlay,

1999).
e, 2H* e, 2H* e-, H*
0, L—»0 M H,0, “— HO- > OH
-0.16 V +0.94 V +0.38 V +2.33V

Fig. 3 The redox state of oxygen with standard reduction potential. Adapted from
(Imlay, 2008).

2) Plants, other microorganism and animals that exploit ROS to attack bacterial
competitors (Storz and Imlay, 1999). In the case of Bartonella, it is generally agreed
that Bartonella species are aerobic (Birtles et al., 1995). Thus, superoxide (O,) and
hydrogen peroxide (H»O,) are naturally generated. During its infection cycle,
Bartonella must survive in its arthropod vector and primary niche, the endothelial cell,
presumed to produce ROS to face bacterial invasion (Graca-Souza et al., 2006;
Rydkina et al., 2002; Rydkina et al., 2010). Based on our results, we proposed that
HemS and YfeABCD are mainly involved in destroying endogenous H,O, produced
by aerobic bacterial metabolism. Heme binding proteins could degrade exogenous
H,0, encountered in the flea gut and during endothelial cell invasion. Since all
Bartonella species have a similar life cycle, these genes might have a conserved

function in this genus.



ROS attack most macromolecules, including nucleic acids, cysteine and
methionine protein residues and lipids (Ezraty et al., 2005). To protect against damage
caused by oxidative stress, bacteria possess not only a number of antioxidant enzymes,
but also repair activities such as DNA and protein repair. However, Bartonella
genomes do not encode for methionine sulfoxide reductase activity (MsrA and MsrB)
(Table 1), which makes methionine oxidation a reversible process. Here we proposed
that Bartonella do not need these genes to repair protein, or else they use another
means of repairing methionine sulfoxide. Oxidative stress responses coordinated by
specific regulators ensure bacterial survival during episodic exposure to exogenous
ROS or to ROS generated as a consequence of normal respiration (Chiang and
Schellhorn, 2012). In E. coli, gene responses to oxidative stress are regulated mainly
by three regulators, OxyR, SoxR and RpoS (Chiang and Schellhorn, 2012). OxyR
controls a regulon of almost 40 genes which protects the cell from hydrogen peroxide
toxicity in E. coli (Chiang and Schellhorn, 2012). SoxR is a regulator of resistance to
superoxide radicals (Tsaneva and Weiss, 1990), while RpoS is a stationary phase
general stress response regulator (Lange and Hengge-Aronis, 1991). However,
Bartonella genomes also do not encode for these regulators. For regulation of heme
binding proteins, it has been suggested that, when Bartonella grow in an arthropod
vector where the temperature is lower and the heme concentration is higher, heme
binding proteins are upregulated by temperature and heme concentration to face
oxidative stress. When Bartonella grow in erythrocytes where the oxygen

concentration is lower, heme binding proteins are downregulated by the oxygen



concentration, corresponding to less oxidative stress. For regulation of HemsS, it has
been shown that hemS is regulated, at least in part, by Irr (Parrow et al., 2009). Free
intracellular iron is easily oxidized by H,O, to form the reactive hydroxyl radical via
the Fenton reaction. Therefore, homeostatic control of free intracellular iron levels is
important for minimizing oxidative stress. The Fur repressor is the principal regulator
of iron homeostasis. For the transporter YfeABCD, we found that a Fur box is present
upstream from the yfeABCD promoter. Thus, we proposed that YfeABCD was
regulated by Fur. Also, it has already been shown that the iron-containing superoxide
dismutase gene sodB was positively regulated by Fur (Niederhoffer et al., 1990).
The manganese-containing superoxide dismutase gene sod4 was negatively regulated
by Fur in E. coli (Touati, 2000). Since iron homeostasis and the oxidative stress
response are connected via regulatory interactions, we proposed that other Bartonella
genes involved in oxidative stress, such as sodB, were regulated by the iron regulators

Fur, Irr and RirA.
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Introduction

Comparative genomics is the reference tool for identifying essential biological
functions. However, there is no one-to-one correspondence between structure and
function, and comparison of 1,000 prokaryotic genomes has recently shown that there
is no protein coding gene common to all prokaryotes. Thus, direct experimental
approaches must be used to identify essential enzymes when they have no common
ancestor. A case in point is the activity of nanoRNases, the enzymes that degrade RNA
leftovers remaining after the action of RNases on long RNA molecules, in particular,
messenger RNAs. These very short RNA oligos (3-5 mer) have been termed
‘nanoRNASs’ to distinguish them from the longer microRNAs. Among RNases with
the ability to degrade nanoRNA are Orn of Escherichia coli and NrnA and NrnB of
Bacillus subtilis (Fang et al., 2009). Orn homologs are widely present in
Actinobacteria, Betaproteobacteria and Gammaproteobacteria. The homologs of NrnA
or NmB are widely present in Chlorobi/Bacteroidetes, Firmicutes and
Deltaproteobacteria. Neither Alphaproteobacteria nor Cyanobacteria contain Orn, nor
do NrnA or NrnB homologues. In the class of Alphaproteobacteria, numerous genera
belonging to the Rhizobiales order contain plant symbionts (Stacey et al., 2006).
Other members of the Rhizobiales order, like Brucellaceae and Bartonellaceae, have
been reported to be pathogenic for mammals (Guerra, 2007), (Minnick and Battisti,
2009). The genus Bartonella comprises a unique group of facultative intracellular
bacteria that use hemotrophism and arthropod transmission as a mammalian

parasitism strategy (Chomel et al., 2009). Bartonella genomes sequenced to date are



short: 1.4 to 1.9 mega bases in size (Alsmark ef al., 2004), and are the smallest of the
Rhizobiales order.

In the present report, we identified a functional Orn analog in the
Alphaproteobacteria family member B. birtlesii. This protein, BA0969 (now renamed
NrnC), was identified by screening a genomic library of B. birtlesii for genes that
complement a conditional lethal orn mutant in E. coli. NrnC was characterized both in

vitro and in vivo in E. coli and B. henselae.
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In Escherichia coli, anly one essential oligoribonuclease (Om) can degrade oligoribonucleotides
of five residues and shorter in length (nancRMA). In Bacillus subtilis, MrnA and NrB, which do not
show any sequence similarity to Orn, have been identified as functional analogues of Om.
Sequence comparnsons did not identify om, nrmA or nrnB homologues in the genomes of the
Chlamydial Cyanobactera and Alphaproteobacteria family members. Screening a genomic library
from Bartonella bittlesii, a member of the Alphaproteobacteria, for genes that can complement a
conditional orn mutant in £, coli, we identified BADSEY (NmC) as a functional analogue of Om.
NmC is highly conserved (more than B0 % identity) in the Bartonella genomes sequenced to date.
Biochemical charcterization showed that this protein exhibits oligo RNA degradation activity
{nanoRMase activity). Like Orn from £ coli, NrnC is inhibited by micromolar amounts of 3'-
phosphoadencsine 5'-phosphate in witro, NenC homologues are widely present in genomes of
Alphaproteobactena, Knock down of nrnC decreases the growth ability of Bartonella henselae,
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demonstrating the importance of nanoRMNase activity in this bacterium.

INTRODUCTION

Comparative genomics is the reference tool to identify
essential  biological functions, yet comparing genome
sequences is not always successful. Indeed, there is no
one-to-one correspondence between structure and func
tion, and it has recently been shown that comparing 1000
prokaryotic genomes leaves no protein coding gene in
common to all prokaryotes (Lagesen et al, 2010). Direct
experimental approaches must be used to identify essential
enzymes when they have no common ancestor. A case in
point is the activity of nanoRNases, the enzymes that

Abbreviations: Amp, ampicilin; Ate, anhydrotetracydine; Km, kanamyan
Om, digoribonuclease; PAA, polyacrydamide; pAp 3-phosphoadenosine
E'-phosphate.

The GanBank/EMBL/DDE] sccession number far the 8. birtlesd nm
locus is HEBD3S16,

One supplemantary table and three supplementary figures are svailable
with tha anline version of this papar.

degrade RNA remaining after the action of processive
RNases on long RNA molecules, in particular mBENAs.
Investigation of RNA degradation in prokaryotes showed
that different sets of enzymes can be devoted to this process
in different bacteria. In the Gram-negative model bac

terium Escherichia coli, close to 20 RNases have been
identified so far (Armiano et al, 2010). In this organism,
the essential RNase E initiates the degradation of RNA
endonucleolytically (Condon, 2007), and other RMNases
exhibiting a 3' to 5" activity complete RNA degradation.
RNase IT produces 3- to Smers or 4 to omers (Cheng &
Deutscher, 2002) as end products of degradation, whereas
RNase R produces 2- to 3mers (Cheng & Deutscher, 2002;
Vincent & Deutscher, 2006). The complete degradation of
mBNAs requires the activity of oligoribonudease (Orn)
{Yu & Deutscher, 1995), the only E. coli exoribonuclease
able to degrade 2- to 5mers (Zhang et al, 1998). These very
short RNA oligos have been termed ‘nanoRNAs™ to
distinguish them from the longer microRNAs (Mechold

BBG

054619 @ 2012 536M  Printed in Greal Britain



A new oligorbonuclease in Bartoneda

et al, 2007 ). Orn activity was shown to be essential in E.
coli (Ghosh & Deutscher, 1999). When accumulated,
nanoRNA can be used to prime transcription initiation
and alter global gene expression (Goldman er al, 2011;
MNickels & Dove, 2011). NanoRNase activity of Orn and its
human homologue, 5fn, was shown to be inhibited by 3’

phosphoadenosine 5'-phosphate (pAp) in vitro (Mechold
et al., 2006). Among the RNases with the ability to degrade
nanoRNA are NmA and NrnB from Bacillus subtilis (Fang
et al, 2009). Similarly to Orn from E. coli, these enzymes
strongly prefer nanoBNA as substrate over longer RNA
molecules. NrnA  homologues are widely present in
bacterial species that do not have a homologue of Om.
In addition to its activity on nanoBRNA, NrnA can degrade
pAp (Mechold et al., 2007). In contrast to an earlier report
on the NroA homologue of Streprococcus mutans (Zhang &
Biswas, 2009), bifunctionality seems to be common among
NrnA homologues (Postic et al,, 2012). NanoRMases from
Gammaproteobacteria and A+ Terich Firmicutes, in par

ticular, have widely divergent structures while displaying
the same activity (Fang et al, 2009). In Chlampdiae,
Cyanobacteria and Alphaproteobacteria, no counterparts of
the enzymes of either the Gammaproteobacteria or the
Firmicutes were readily identified from the available genome
sequences. [nthe class Alphaprotanbacteria, numerous genera
belonging to the order Rhizobiales contain plant symbionts
(Stacey et al, 2006). Other members of the Rhizobiales, such
as Brucellaceae and Bartonellaceae, are described as patho

genic for mammals (Guerra, 2007; Minnick & Battisti, 2009 ).
The genus Bartonella comprises a unique group of facultative
intracellular bacteria that use haemotrophism and arthropod
transmission as a mammalian parasitism strategy (Chomel

et al., 2009). Among the 25 species identified to date (Guptill,
2010), 10 were shown to be human pathogens. Bartorella
species are recognized to be responsible for emerging zoonoses
{Breitschwerdt et al, 2010). Genomes of Bartondla species
sequenced to date are short, 1.4-1.9 Mb in size (Alsmark et al,
2004), and are the smallest of the order Rhizobiales. A search
for genes with homology to genes that are required for growth
of E. coli revealed that homologues of 38 of these essential E.
coli genes are not present in Barfonella genomes. In particular,
no counterparts of either the Gammaproteobacteria or the
Firmicutes nanoBRNases were readily identified from the
Bartondla genome sequences. Here we identify a functional
Orn analogae in the Alphaproteobacteria family member
Bartondla birtlesii. This protein, BA0969 (now renamed
Nrn(l), was identified by screening a genomic library of B.
birtlesii for genes that can complement a conditonal lethal orn
mutant in E. cli. NroC was characterized both in viro and in
vivo in E. wli and Bartoniella henselae.

METHODS

Bacterial strains and plasmids. Bacterial strains and plasmids used
in this study are listed in Table 1.

Media and growth conditions. E coli strains were grown on Luria—
Bertani (LB} medivm (Sigma) or M63 minimal mediom aerobically
at 37 °C (Miller, 1972). Mo3 medium was supplemented with 0.4 %
ghecerol as carbon source. Solid media contained 1.5% Difeo agar.
When required, ampicillin (Ampl or kanamycin (Km) was added to a
final concentration of 50 pgml™". Arabinose was added to a final
concentration of 0.2% for induction of the F,, promoter as
indicated. Anhydrotetracycline (Atc) was added to a concentration

Table 1. Strains and plasmids used in this study

Strain or plasmid

Genotype

Source or reference

E coli
KL1-blue

P33

Un341

UM2ES

UM341 (plU M4DE)
Bartonella

B. Wirtlesii

B. henselne Houston-1
Flasmid
PACYC184
pUM408

pBAD24

pHSZAmMp
pMNS2Tre

pBAD24 :: nmC
pBADZ2 12 mrnC-s
pBAD24 :: nmCE R
PHSZAmMp: : nrmCas
PMNSZITrc:: nrml s

E™ supBdd hi:RI7 recAl endAl gyrAd6 thi rlAT lac™ F' proAB” lacP
lacZAMI15 Tn 10 (Tet™)

aral ]38 relA rpzL 150 thi AB5300 (laclV139) deo? prsF25 Aaral74

CF10230 with orm under contral of Fry,.,, Tat™ Em®

As CFL0230 but AgsQ, Km™

CFI0230 with orm under control of Pryg y, pUM4DE, Tat™ Km™ .|i'.rrrpR

IBS 1357, CIP 1066917
Houston-1, ATCC 495627

Amp®™ Cmp®

As pBADIE (Guzman er al, 1995), Orn with C-terminal His-tag, Amp"
pBR322 arat, arabinose-inducible promoter, Amp"™

Km®

Km"

PBAD24 carrying nenC from B, birtlesn, J"\.rnp.R

pBADZ4 carrying B birtlesti menC synthetic gene with C-terminal His-tag
PBADZ4 carrying nrnC from B henselag, Amp“

PHSZAmp carrying antisense e, Em®

pMS2Trc arrying antisense mrl, Km'™

Laboratory collection

Laboratory collection
Mechold et al. (2007
Mechold e al. (2006)
Mechold e al. (2007)

Laboratory collection
Lahoratory oollection

Laboratory collection
Mechald et al. (2006)
Guzman et al. [ 1995)
Gillaspie et al (2009)
Gillaspie er al (2009)
This study
“This study
This study
This study
This study
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of 250 ng ml™" for induction of the Prec: promoter. B. birtlesii and
B. henselae were grown on 5 % defibrinated rabbit blood brain heart
infusion (BHI} agar (Difeo) or in Schneider’s medium (Giboo}
supplemented with 10% fetal calf serum (Riess er al,, 2008) at 35 °C
under 5% COy atmosphere.

Physiological characterzation of nrnC knockdown strains. To
evaluate the effect of mmC knock down on growth of Bartonella, the test
strains were grown bath in Schneider’s liquid medium and on BHI blood
agar plates. B hemselae pNS2Tre and B. henselae pNS2Tre:: mrmCys were
collected after 5 days growth on BHI blood agar plates and suspended in
Schneider's medium. The Ol of the bacterial suspension was adjusted
to 0,05, Then, 2 mlof this suspension was poured into a 1 2-wel plate and
grown at 35 "Cin the presence of 5 % 0y, Ol was chedked on days 2,
4, 6 and 7 after inoculation. Serial dilutions of the bacterial aspension
were plated on BHI blood agar plates, and colony size was evaluated after
6 and 10 days growth at 35 °C in the presence of 5 % C05

Genetic technigques. E. coli cdls were transformed by the calcium
chloride method ( Maniatis et al, 198%) or electroporation (Dower
et al, 1988). Baronella cdls were transformed by dectroporation
(Ricss et al, 2003,

DNA manipulations. B. kirlesi chromosomal DNA was isolated
using the Wizard Genomic DNA purification kit (Promega). Small-
scale plasmid DNA preparation was performed by using a QlAprep
Spin Miniprep kit (Qiagen ). Restriction endonuclease digestions and
ligation were carried out according to the manufacturer’s recommen-
dations, DNA fragments were amplified in a Hybaid PCR thermogycler
using Phusion DMNA polymerase { Finnzymes). Nudeotide sequencing
was performed by Eurofins MWG Operon. Purification of DINA
fragments from PCRs, restriction reactions or agarose gels was

performed using a Macherey-Magel MucleoSpin Extract [T kit

Preparation of the B birtlesii genomic library. B. lirfleai DNA
was submitted to partial digestion by Sau3AL After migration on 1%
agarose gol, fragments of 2-3 kbp in length were purified from
agarose and partially filled with A and G using DNA Polymerase [,
Large (Klenow) Fragment (Invitrogen). Flasmid pACYC184 was
digested by Sall, purified and partially filled with Cand T using DINA
Polymerase [, Large (Klenow) Fragment (Invitrogen). Vector and
chromosomal DNA fragments were mixed, ligated and introduced
into E. colt strain XL1-blue by using electroporation.

Construction of a recombinant vector expressing NraC from B.
birttesii. The complete B birtlesti nenC gene with a C-terminal His-tag
{Hiss) was synthesized according to the E. coli codon usage (Millegen)
(see Sopplementary Fig. 51, available with the online version of this
paper). The synthetic gene coding for the C-terminally Hisg-tagged
nrmC gene was amplified by PCR using primers ornBbamontsynt and
ornBhavalsynt (Table 2). The amplified products (682 bp) were
purified, digested with Nhel and Epnl, and ligated with pBADZ4
plasmid digested with Nhd and Kped. Ligation mixtures were

introduced into CaCl-competent E. coli strain XL1-bloe cells
Transformants were screened by PCR with primers ornBbam ontsynt
and ornBhavalsynt. Six PCR-positive dones were then sequenced.

Construction of a meombinant vector expressing NraC from B.
henselae. The complete B herselae mnC gene (named mdl in the B,
henselae genome database WNC_005956) was amplified by PCR with
primers ornBhamont and ornBhaval (Table 2) using B henselae
chromosomal DNA as template. Thea58 bp PCR prodoct was purified,
digested with Nhd and Kpol, and ligated with pBADZ4 plasmid
digested with Nhel and Kpnl. Ligation mixtures were introduced into
CaCly-competent E. coli strain XL1-blue cells. Transformants were
screened by PCR with primers ornBhamont and ornBhaval (Table 2).
Sic PCR-positive clones were then sequenced.

Construction of the vector to decrease the amount of NraC in
B. hensalae. The entire coding region of nenC (named rmdl in the B.
henzelae genome database NC_005956] was amplified by PCR from B.
henselae chromosomal DN A using primers ornantisensamt, contain-
ing a BamHI restriction site, and ornantisensavl, containing an Xbal
restriction site (Table 2). The 627 bp PCR product was purified,
digested with BamHI and Xbal, and then ligated with plasmids
pHSZAmp or pNSITre digested with Bapdl and Xbal. Ligation
mixtures were introduced into CaCl;-competent E coli strain XL1-
blue cells. Transformants were screened by PCR with primers
ornantisensamt and ornantisensavl. For each plasmmid, six PCR-

positive clones were then sequenced.

Expression and purification of NrnC His-tagged protein. Strain
JP313 (pBAD24::nrmC-5) was grown overnight at 37 °C in LB
medium containing 50 pg Amp ml™% One litre of LB medium
containing 50 pg Amp ml~" was inoculated to 0Dy, 0.05 with the
overnight culture and grown at 37 °C. Expression was induced at
O D05 for 4 h by adding arabinose (0.2% final concentration ).
Bacteria were harvested by centrifugation for 10 min at 3000 g at
4 °C, and the pellet was suspended in 20 ml binding buffer (50 mM
Trisf HCL, pH 8.0, 250 mM MaCl). Bacteria were lysed by incubation
at 4 °C for 30 min in the presence of lysozyme (1 mg ml™') and
sonication (7 s sonication followed by a 3 s panse) for 30 min. The
suspension was then centrifuged at 13000 g for 30 min at 4 “C. The
supernatant containing the soloble fraction was mixed with 500 pl
Ni-agarose beads (Qiagen) and purified following the manufacturer’s
protocol. Purified protein was dialysed twice against a buffer
containing 50 mM Tris/HCl and 250 mb NaCl to eliminate any
residnal imidazole. The protein was estimated to be >95% pure
throngh 5065 gd electrophoresis and was stable for several months
when kept at — 20 °C with 20% glycerol.

NrnC activity assays. Activity assays on nanoBNA were performed
on a custom-made RNA fluorescent-tagged Smer (5°Cy5-AAAAAR')
as described previously (Mechold er al, 2007). The optimal buffer for
MrnC activity was 50 mM Trist HCL, pH 8.0, containing 5 mb MgCl,

Table 2. Primers used in this study

Primer Gene Organism Sequence (5°-37)
ornBhavalsynt Synthesized nemCC B. birtlesii ATCCCCGOGTACCATGGTCGCCATGAGCTCTTATTAGTGGTGATG
ornBhamontsynt  Synthesized e B. birtlesii TTTTGGGCTAGCAGGAGGAATTCACCATGA CCGAAGTTCGTGTTCATCAG
arnBhamont Wild-type nm B. hernselae TTTTGGGLOCTAGCAGGAGGAATTCACCATGACGGAAATCCGTGTTCATC
ornBhaval Wild-type rmC B. herselae ATCCCCGOGTACCATGGTTTAGCTATGOGC AAAAATATCAATC
arnantisensavl Antisense nrnl b herselae COCTCTAGAATGACGGAAATCCGTGTTCA
arpantisensamt Antisense nrll B herselae COOGGATCCTTAGCTATGOGCAMAAATATC
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or 5 mi MnCl;. Mixtures containing 50 mM Tris/ HCL pH 80,5 mM
MgClz and 0.3 pM substrate were pre-incubated for 5 min at 37 °C.
The reaction was initiated by adding 0,05 pg protein (40 nM final
concentration) at 37 “C. At the indicated times (from 0.5 to 30 min},
4.5 plreaction aliquots were added to an equal volume of sample buffer
[4 = Tris-borate-EDTA (TBE), 100 mM dithiothreitol, 16% glyceral
and 20 mM EDTA] to stop the reaction and stored at —20 *C. For
analysis of the reaction products, 1.5 pl of sample was resobved by
electrophoresis through 22% polyacrylamide (PAA) gel prepared in
1 % TBE runnming buffer. Flnorescent RNA oligos were visualized using
a Molecular Dynamics STORM 860 in 650 nm long- pass filter mode.
[Data quantification was bhased on defining the total amount of
fluorescence measured in the substrate and the reaction produas for
each time point and expressing the amount of each reaction product as
a fraction of the total. Companison of M activity on Smer A (5"Cy5-
AMAMAZT), Smer C (5'Cy5-COCCAC3"), Imer A (5" Cy5-AAA3") and
3mer C (5'Cy5-0CC3") was performed in 20 pl reactions containing
50 mM Tris/HCL pH 80, 5 mM MnCl, 0,15 pM  sobstrate and
006 ug protein (120 nhl). Relative activities were measured by
following the disappearance of substrate Smers or Imes.

NrnC activity on 24mer RNA. Analysis of NrnC activity on a longer
substrate was performed nsing a costom-made Z4meric RNA oligo
[5'CACACACACACACACACACACACAIT 5"-end labdled with
[v-"*FJATP as described previously (Fang er al., 2009). The estimated
concentration of hibelled substrate was 166 pmol ul ™%, Five micro-
litres of substrate was first incubated for 5 min at 37 °C with 45 pl of
buffer containing 50 mM TrisdHCL, pH 80 and 5 mM MnCl,.
Reactions were started by adding 0.5 pg MNrnC. Aliquots (6 pll were
taken at the times indicated and added to an equal volume of loading
buffer and set on ice to stop the reaction. After 3 min at 95 °C, 7 pl of
the samples was resolved on a 20 % PAA, 7 Murea gel containing 2 «
TBE. Labelling of the Decade-marker was performed as described
previously (Mechold er al, 2007 ).

Protein analysis by electrophoresis. Proteins were analysed by
SDS-PAGE (Laermmli, 1970) on 12% PAA-SDS gels, followed by
Coomassie blue staining,

Protein assay. The concentration of the protein was determined
using the BC Assay protein quantification kit ( Interchim).

Statistical analysis. Data regarding colony diameter measured on
blood agar plates for the B. henselae wild-type strain and the B
henselae nmC knockdown strain are reported as mean+ spa of 10
colonies. The experiments were performed three times. Statistical
significance of the data was ascertained by use of Student’s +test, A
value of P<<0.05 was considered significant.

Phylogenetic analysis. The sequence of the B lirtkesi nmC locus
was deposited at the EMBL-EBI under accession no. HEG03915. A total
of 1705 completdy sequenced bacterial genomes deposited before
October 2001 in the EMBL-EE] database were analysed for the presence
of homologues of the N protein using FASTA comparisons.

RESULTS

Identification of a functional analogue of Orn in
B. birtlesii

To search for the gene coding for a potential nanoR Nase, we
constructed a genomic library of B, birtlesii. This genomic
library was introduced into the conditional om mutant of E.
coli (strain UM341) by electroporation. In this strain, orn
expression is under the control of the Atc-inducible

promoter Pryg (Mechold et al, 2007), A growth defect of
this mutant strain was easily observable on LB plates without
Atc. Transformants of this strain with the vector control
(pBAD24) produced pinpoint-sized colonies after overnight
growth in the absence of Atc whereas growth of the mutant
strains expressing a plasmid-borne copy of orn from E. coli
(pUM408) was not affected on LB plates lacking Atc
(Mechold et al, 2006). After introduction of the B, birtlesii
genomic library into strain UM341, three clones exhibited
normal growth on LB plates in the absence of Atc. Two
clones were shown to harbour a recombinant plasmid
encoding a MucR family transcriptional regulator {Mueller
& Gongzalez, 2011) that can interfere with the Pry..
promaoter. One recombinant plasmid contained the struc

tural gene coding for BAOY6Y. This protein had bheen
annotated as an RNase D using sequence comparisons as the
exonuclease domains of KNase D and BAD96Y are 30 %
identical. In fact, most of the amino acids that constitute the
conserved motifs, Exol, II and III (Zuo & Deutscher, 2001 ),
and many other amino acids that are highly conserved in
RMNase D family members, are present in BA0969, BAOYSS
can be placed into the DEDDy subfamily of DEDD
exonuclease proteins (Zuo & Deutscher, 2001). The
DEDDy residues are represented by Asp25 and Glu2? in
Exol, Asp84in Exoll, and Tyrl 51 and Aspl55 in ExolIl. The
DW-x(2)-RPL maotif, which is the signature of the RNase D
family, is only partially conserved in BAO%69 as the
conserved Arg and Leu residues are missing (Fig. 1).
BA096Y and E. cali Orn show some local homology in the
N-terminal part of the two proteins covering approximately
35 amino acids (data not shown ). This raises the possibility
that this region might be involved in determining substrate
specificity. We cloned ba969 into plasmid pBAD24 giving
pBAD24:: nmC, and this plasmid, as well as the vector
control, was introduced into strain UM341. Strain UM341
harbouring the pBAD24 vector control produced pinpoint

sized colonies on LB plates without Atc, whereas strain
UM341 containing pBAD24 ::nrrC formed normal-sized
colonies on LB plates without Atc as compared with those
on LB plates that contained Atc (Fig. 2). Thus, expression of
BAO96Y (now renamed NrnC ) could complement the lack of
Orn in E. wli, suggesting that this protein is able to degrade
nanoRNA in vive in E. coli.

Expression and purification of recombinant NrnC
from E. coli

To produce and purify the recombinant B. birtlesii NrnC
protein expressed in E. coli, we amplified its structural gene
from B. birtlesii chromosomal DNA, using a reverse primer
that allows the addition of a Hiss-tagat the C terminus of the
protein. The fragment was cloned into pBAD24 plasmid.
This recombinant plasmid (pBAD24:: nrmC) was able to
rescue the growth defect of E wli strain UM341 in the
absence of Atc (data not shown). However, when introduced
into strain JP313, the amount of NmC protein produced did
not allow purification {data not shown). The G+ C content
of the B. Firtlesii genome (37.8 mol%) is lower than that of
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the E wli genome (50 mol%:). The different G+ C content
could lead to different codon usage in these two bacteria and
potentially to a low expression of a B. birtlesii gene in E. coli.

-ATC +ATC

pUM408B

pBAD24::ba0969

pBAD24

Fig. 2. Complemantation of the conditional E colfl om mutant by
ba0969 from B. bitfesii Strains UM341 cortaining pBAD24
(vector contrel), pUMA40B {expressing Orn frem £ col) or
pBAD24 ::ba0969 (mpressing NG from B birtlesi) were
spread on LB apar plates containing 0.2% arabinose in the
absence or in the presence of anhydrotetracycline (ATC,
250 ng mi~'). The experment was repeated three fimes; a
reprasantative result is presantad.

Therefore, we decided to use a synthetic ba0969 gene
i Millegen) with E. coli codon usage coding fora C-terminally
His-tagged protein. This synthetic gene (ba(0969-5) was cloned
into plasmid pBAD24, yielding plasmid pBAD24 :: nmC-s
Expression of ba(%69-s was able to completely rescue the
growth defect of the E. wli om mutant strain UM341 in the
presence of arabinose (data not shown). When grown in the
ahsence of Atc, colony sizes of the strain expressing bal()969-5
were similar to those of the strain expressing E. coli orn
However, complementation could not be seen when bacteria
were grown in the ahsence of arabinose (data not shown). The
amount of NmC in E. coli strain JP313 was investigated using
SD5- PAGE comparing protein extracts of the strain
containing the recombinant plasmid with those of the strain
containing the empty vector. An additional 24 kDa band was
observed only in extracts of the strain containing the
recombinant plasmid pBAD24::nmC-s and only when
expression was induced by arabinose (data not shown).
Strain JP313 carrying pBAD24 ::nmC-s expressed soluble
His-tagged NrnC protein when induced by the addition of
arabinose to a concentration of 0.2%. The protein was
purified by Ni-agarose affinity chromatography, yielding a
protein that migrated at ~24 kDa as a distinct band on SDS

PAGE and was estimated to be at least 95% pure
(Supplementary Fig. 52, available with the online version of
this paper). This mass corresponds well with the predicted
value from the amino acid sequence.

NanoRNase activity of NrnC

First experiments to measure nanoRNase activity of NrnC
were performed in 50 mM Trs/HCL, pH 8.0, in the presence
of 5 mM MgCl, or MnCl and showed that NrnC was able
to degrade a nanoRMNA Smer (5'Cy5-AAAAA3). To define

B0
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the optimal conditions for nanoRNase activity of NrnC,
we first measured activity on a nanoRNA Smer (5'Cy5-
AAAAAY) at different pH, in 50 mM Tris/HCI buffer, and
in the presence of different divalent cations (magnesium,
manganese, cobalt or calcium). Our results clearly indicate
that the nanoRNase activity of NrnC was higher at pH 8.0
than at pH 7.0, 7.5 and 9.0 (data not shown). Activity was
similar in the presence of manganese or magnesium and
considerably lower, but still appreciable, in the presence of
cobalt (data not shown). We were unable to detect any
activity in the presence of calcdium in 50 mM Tris'HCL,
pH 8.0, buffer. Therefore, subsequent experiments to
measure activity of NrnC were performed in 50 mM Tris/
HCI, pH 8.0, and in the presence of 5 mM MgCl or MnCl.
The sequential appearance of reaction products (Fig. 3)
resembled Orn-catalysed reactions (Mechold et al, 2007),
and pointed to a similar reaction mechanism (Fig. 3). Under

(a)

1mar

- ————
- e
s
Smer

- 05 1 2 3 &5 10 20 30 min

(b) 120

; e BN
E =B=d4mar
E —— e
E e VS
'-E' =1 mar
'3

Tiare (rabin)

Fig. 3. NrnC-catalysed degradation of a nanoRMNA Smer (5'Cy5-
AMAAATY), The reaction products were separated on 22%
polyacrylamide gels (a) The comesponding reaction products
were guantified (b). The estimated activity of NmC, measured as
the disappearance of substrate Bmers, was B nmol min™' pg™".
The experiment was repeated three times. A representative result
is presented.

the conditions tested, the activity of NrnC measured as the
disappearance of substrate Smers was 8 nmol min : pg !
(Fig. 3). We also tested the activity of NrmC on other
RNA oligos, namely 5'Cy5-CCCCC3', 5'Cy5-CCC3' and
5'Cy5-AAA3Y, as substrate, NrnC degraded RNA Smer
5'Cy5-AAAAA3" more rapidly than 5'Cy5-CCCCC3’ (Sup-
plementary Fig. 53, available with the online version of this
paper). RNA 3mer 5 Cy5-AAA3 was also degraded more
efficiently by NmC than RNA 3mer 5 Cy5-CCC3' (Supple-
mentary Fig, 53). In addition, quantification of the activity
on different substrates revealed that, similarly to NrnB

catalysed degradation (Fang et al, 2009), RNA Smers were a
better substrate for NmC than RNA 3mers.

NanoRNase activity of NrnC is inhibited by pAp

In E. coli, pAp is generated from phosphoadenosine 5'-
phosphosulfate during sulfur assimilation. In E. cofi, pAp
inhibits the activity of Om (Mechold et al., 2006). In
contrast, NrnA from B. subtilis is able to degrade pAp in vitro
and in vivo (Mechold et al, 2007). As a consequence, when
expressed in E coli, nmA from B. subtilis can restore normal
growth of a cpsQ mutant grown in the absence of cysteine
(Mechold et al, 2007). We thus wondered whether nmC
from B. birtlesii could restore the growth to an E. coli grsQ
mutant (UM285), Complementation assays showed that
expression of nrnC did not restore the growth of E. calistrain
UM285 in the absence of cysteine (data not shown). Wealso
investigated whether pAp could inhibit the degradation of
5'Cy5-AAAAAY by NrnC nanoRNase activity, using 5'Cy5-
AAAAAY as substrate. As shown in Fig. 4, the presence of
50 pM pAp inhibited NmC nanoRNase activity.

Activity of NrnC on RNA 24mer

To check whether NrnC specifically degrades nanoRNA, or is
active on longer RNAs as well, we tested degradation of an
RNA 24mer 5-end labelled with [*f\ij]ATI’. The NrnC-
catalysed turnover of 24mers into monomers could be roughly
estimated from this experiment as 8.3 pmol min ™! pg !
{Fig. 5). The activity of B. birtlesii NmC on the 24mer was
lower than that on nanoRNA, but was 4.1-fold higher than that
of NrnB an 24mers and 830-fold higher than that of B. subtilis
NmA on 24mers (Mechold er al, 2007; Fang et al, 2009).

NrnC activity is important for growth in B. henselae

In E. coli, nanoRMase activity of Orn is required for growth
{Ghosh & Deutscher, 1999). When expressed in E. coli, B.
birtlesii nraC can complement the om mutation. We
investigated whether NrnC activity was required for
normal growth in Bartonella. Due to the lack of genetic
tools, it is presently not possible to generate mutants in
essential genes of Bartonella. However, it is possible to
analyse the effect of the lack of an essential gene product in
this genus via knockdown gene expression. We used pNS2
vector derivatives that had been used previously for
knockdown experiments in B. henselae (Gillaspie et al,
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Fig. 4. NmC activity on nanoRNA is inhibited by pAp. NrnC activity on Smer A (5'Cy5- AAMAAS") was measured in the absence
of pAp (g, ¢) or in the presence of 50 M pAp (b, d). (a, b) Separation of the correspending reaction preducts on 22 %
polyacrylamide gels. (¢, d) Quantfication of reaction products and intermediates of degradation. The experiments were

repeated three times. Representative results are presented,

2009). In spite of numerous attempts, we failed to
introduce the pNS2 vector and its derivatives into B
birtlesii. Therefore, we decided to try to determine the effects
of knocking down nmCin B. henselae. The primary sequence
of NmC from B. fienselae is 90 % identical to that of NrnC
from B. birtlesti. To test whether NmC from B, henselae has
nanoRMNase activity in vivo similar to NmC from B, birtlesdi,
we cloned nraCfrom B. hienselae into pBAD24. The plasmid
expressing B. henselae nmC, pBAD24: : nmCB.h, was then
introduced into E. coli strain UM341 to test for comple
mentation of the lack of Orn. Our experiments demonstrated
that expression of NmC from B. henselae can rescue the
growth defect of strain UM341 in the absence of Atc (data
not shown). We cloned nrnC of B. henselae into a vector that
allowed low-level expression, pNS2Amp, and a vector that
allowed high-level expression, pN52Trc (Gillaspie et al,
2009). The gene was in the reverse orentation such that
the antisense strand was transcribed. Plasmids pNS2Amp,
pNS2Tre, pNS2ZAmp:: nrnCy and pNS2Trc:: nrnC, were
introduced into B. henselae by electroporation. The strains
obtained were tested for growth on blood agar plates

and in Schneider’s medium. B. henselae containing plasmid
pNS2Amp 1 nreCas grew (data not shown) as well as the two
control strains, B. henselae (pNS2Amp) (data not shown)
and B. henselae (pNS2Trc). In contrast, the B. fienselae strain
containing pNS2Trc:: mmCys grew more slowly in
Schneider’s medium (Fig. &). The doubling time of the
strain carrying pNS2Trc::nrmC,g (12 h) was longer than
that observed for the strain carrying the wvector control
pNS2Trc (7 h). After 10 days of growth on blood agar plates,
colonies produced by B. henselae (pNS2Trc:: nmiCq5) were
much smaller ((.65+0.1 mm) than those formed by B
henselae (pNS2Trc) (0.56+0.09 and 1.15+ 0,13 mm after 6
and 10 days, respectively). These results show that a decrease
in the amount of NrnC slowed the growth of Bartonella,
and demonstrate the importance of NmC activity for the
physiology of this alphaproteobacterium.

Phylogenic distribution of NrnC

Searching for NmC homologues in bacterial genomes
sequenced to date showed that this protein is well conserved

Bo2

Microbiology 156



A new oligonbonuclease in Sartoned

nt M H 05 2 5 10 20 40 60 C

150 —m.

100
a0
70

30

‘2'0_.

Fig. 5. Activity of NmC on an RNA 24mer. The degradation of 5
[y-FPIATP-labelled RNA 24mers (5'CACCACCACCACCACC-
ACCACACAS") by NrriC, Samples were taken alter 0.5, 2,5, 10,20,
40 and B0 min and analysed as describad in Methods. The negative
control was parformedin the absence of MrC. M, decade marker; H,
alkaline hydrolysis control; C, negative control. The experiment was
rapaated three times; a represantative result is presented.

in all Bartonella. B. birtlesii NrnC was 87-91 % identical to
the NrnC homologues found in the six Bartorella genomes
present in the databases (http:/fwww.nebinlm. nih.gov/). In
addition, we found NrnC homologues in the genomes of
many other Alphaproteabacteria with identities ranging from
77% for Brucelln melitensis to 43% for Candidatus
pelagibacter (Supplementary Table 51, available with the
online version of this paper). Other NrnC homologues that
fulfilled our criterion of varying less than 20% in size were
found in Cyanobacteria, and were between 42 and 50 %
identical to Wm(C (Supplementary Table 51). Genomes of
some Spirochaetes also encode NmC homologues that are
between 44 and 48 % identical to NrnC (Supplementary
Table 51). NrnC homologues were absent in Betaproteo-
bacteria and Garmaproteobacteria genomes that harbour
homologues of Orn (Mechald er al., 2007). Also, NroC
homologues were absent in  ChiorobiBacteridetes and
Firmicutes that have NrnA homologues. Thus, NrnC
represents a third class of nanoRMNase that is mainly present
in Alphaprotechacteria and Cyanobacteria. According to its
size, NrnC is closer to Orn from E coli (181 aa) (Ghosh &
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Fig. 6. Effect of nmC knock down on growth of B. henselae. Strains
B. henselae (pNS2Tre) and B. henselae (pNS2Tre :inmG ag) ware
cultured in Schneider's medium, collectad after B days growth on
BHI blood agar plates and suspended in PBS buffer. The bacterial
suspansion was usedtoinoculate Schneider's medium at an ODgge
of 0,056, Cultures were grown with shaking at 35 “C in the prasence
of 5% COz and ODggo was measured on days 2, 4, 6 and 7 after
inoculation. All expariments were repeated three times.

Deutscher, 1999) than to NrnA (313 aa) (Mechold et al.,
2007) and NmB (399 aa) from B. subtilis (Fang et al., 2009).
Similarity between NmC and its functional analogues E. coli
Orn and B. subtilis NmA and NmB was negligible, 22, 16
and 11% identity, respectively.

DISCUSSION

Exploring Bartonella genomes sequenced to date revealed
the lack of homologues for 38 of the 302 essential genes
identified in the E. coli genome. These essential genes are, in
E. coli, involved in the biosynthesis of haem tetrahydrofolate,
thiamine, isoprenenoid, ubiquinone, undecaprenyl-PP, lipid
A, phospholipid and murein. Two of these genes are
involved in the biosynthesis and export of lipopolysacchar

ides. In addition, homologues of certain genes involved in
cell division, chromosome partitioning, secretion, replica

tion and oligodbonudeotide degradation are also missing in
Bartoniella genomes. Absence of some of the above

mentioned genes can be easily explained by the life style of
Bartonella. For example, Bartonella can replicate inside
erythrocytes where haem is available. The function of other
genes involved in processes such as cell division, DNA
replication or oligoribonucleotide degradation are undoubt

edly assumed by functional analogues. We demonstrate here
that this is the case for Orn, an ENase exoribonuclease that is
essential for cell growth in E coli Screening for B, birtlesii
genes that could complement a conditional lethal mutant of
E. coli om, we identified a gene ba09%% that encodes a
polypeptide that has 30 % identity to the catalytic domain of
E. coli RNase D. However, the B. birtlesii protein is 206 aa
shorter than E. coli RNase D (375 aa) (Zuo et al, 2005), and
the two C-terminal domains, HRDC1 and HRDC2, are not
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present in WmC. Despite the similarities between RNase D
and Nm(, it is noteworthy that RNase D from E. coli cannat
replace Orn and was found to be essentially devoid of
oligoribonucease activity in vitro (Yu & Deutscher, 1995).

Biochemical characterization of NmOC from B. birtlesii
clearly showed that this protein can degrade nanoBRNA in
the presence of magnesium or manganese. In both cases,
the specific activity of NrnC is higher than those measured
for B. subtilis NrnA and NenB (Mechold ef al,, 2007).

The nanoRMNase activity of NrnC is higher at pH 8.0-9.0
than at pH 7.0, similar to what was shown to be optimal
for Orn from E. coli (Niyogi & Datta, 1975). As shown in
this report, NrnC can also degrade RNA 24mers. To our
knowledge, Orn from E. coli was not tested on oligos of a
similar length or longer. However, exploring the activity on
2- to Smers, we noted the general tendency of decreased
reaction rate with increasing chain length (Datta & Niyogi,
1975). The activity of NrnA from B. subtilis on 24mer
aligos was shown to be insignificant (Mechold et al, 2007).
Despite the fact that NrnB from B. subtilis is more active
on RNA 24mers compared with NmA, this activity is
nevertheless three orders of magnitude lower than the
activity on nanoRNA (Fang et al, 2009). For NrnC, the
activity on RNA 24mers (8.3 pmol min ! ng Y s 1000
times lower than the activity on nanoBRNA (8 nmaol
min ! pg~'). Hence all these enzymes strongly prefer
nanoRNA over longer RNA substrates. Similar to Orn
activity (Mechold et al, 2006}, the nanoRNase activity of
NrnC is strongly inhibited by pAp. In contrast, the
nanoRNase activity of NrnA is not sensitive to pAp at
low concentrations. However, pAp is a substrate for NrnA
and as such pAp can compete with nanoBRNA for
degradation by NrnA. In agreement with this in vitro
activity, NrnA can restore the growth of an E. coli strain
impaired in pAp degradation due to the lack of a
functional Cys() and thus enables this strain to grow in
the absence of cysteine (Mechold et al., 2007 ). NrnC from
B. birtlesii cannot restore growth of the E. coli cpsQ mutant,
and hence pAp is not a substrate for this enzyme.

NrnC is present and well conserved in the genomes of
Bartonella species. In agreement with this abservation, we
show that the NrnC homologue from B. henselae could
equally complement an E. wli orn mutant, pointing to
conserved function of NrnC homologues.

Orn isessential in E. colf and its function cannot be assumed
by any other RMase. In contrast, growth of B. subtilis is not
affected in the absence of NmA and NrnB, and it seems that
other RNases can substitute for their function (Fang et al,
2009). Comparison of growth rates of B. henselae carrying
pNS2Trc:: nmCas (doubling time 12 h), and the corres

ponding vector control (doubling time 7 h) shows that
knocking down sirnC in B. henselae slows growth. This result
suggests that a full nanoR Nase activity of NrnC is important
for optimal growth at least in this Bartonella species and that
other ENases cannot take over this function. Hence, similar

to E. coli, in Bartonella only one enzyme, here NrnC, might
be responsible for nanoRNA degradation.

NmC homologues can be found in the genomes of numerous
alphaproteobacteria with identities in the range 48.8-77 %.
Additional NmC homologues are present in Cyanabacteria
genomes and are between 45,9 and 51.2% identical to Nrn(
Members of the genem Alphaproteobacteria and Cypanobac-
teria do not contain Om, or NrnA or NmB homologues. We
propose that NrnCC homologues fulfil the function of
degrading nanoRNA in these organisms. Thus, NrnC
represents a new, third member of the family of proteins
that are specialized in degrading nanoRNA.

As reported here, 38 of the 302 essential E. coli genes do not
have homologues in Barfonella genomes. The essential
functions of these gene products may therefore be encoded
by functional analogues of these genes. Here, we identify
one of these functional analogues. Similarly, it might be
possible to identify further functional analogues of essential
E. coli genes by screening a genomic library of Bartonella
species for genes that complement the corresponding
conditional E. cofi mutants. This would contribute to a
better understanding of the physiology of Bartonella, which
encounter varmous environments during their invasion of
erythrocytes and endothelial cells, or during their presence
inside arthropod guts and faeces.
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Conclusion

By screening a genomic library from B. birtlesii through complementation assays
of the E. coli orn mutant, we identified an Orn functional homolog in B. birtlesii (now
named NrnC). This Orn functional homolog is well conserved (more than 80%
identity) in already sequenced Bartonella genomes. Further biochemical
characterization revealed that NrnC exhibits nanoRNA degradation activity in the
presence of magnesium and manganese and is able to bind pAp, but it is not able to
complement the auxotrophy of an E. coli cysQ mutant impaired in pAp degradation.
The nanoRNase activity of NrnC is strongly inhibited by pAp. NrmC can also degrade
longer RNA of 24 mers, but with less efficiency. According to its activity, NrC is
close to the Orn characterized in E. coli.

Knockdown of nrnC significantly decreases the growth capacity of B. henselae,
thus demonstrating the importance of NrmC activity in this bacterium. Sequence
comparisons revealed that the gene encoding for the homologue of NrnC is present in
the genome of numerous Alphaproteobacteria, with identities in the range of 48.8% to
77%. Additional NrnC homologues are present in Cyanobacteria genomes and are
between 45.9% and 51.2% identical to NrC.

In summary, we have identified a new nanoRNase family in Bartonella. Among
the 302 genes characterized as essential in E. coli, 38 do not have homologues in
Bartonella genomes. The essential functions of these gene products may be encoded
by functional analogues. Here we report identification of one of these functional
analogues. Similarly, it might be possible to identify further functional analogues of

essential genes missing in the B. henselae genome by screening a genomic library of



this organism using complementation assays of E. coli mutants. This would contribute
to a better understanding of the physiology of Bartonella, which must confront

varying types of environment during their infection cycle.
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