D. Results, 148 3.1. Conduction mechanism in small models: DFT investigation, p.148

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, A General Approach to the Size? and Shape?Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen

D. P. Wilkinson, Z. Liu, and S. Holdcroft, High temperature PEM fuel cells, Journal of Power Sources, vol.160, pp.872-891, 2006.

J. J. Baschuk and X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells

T. Zawodzinski, C. Karuppaiah, F. Uribe, and S. Gottesfeld, Aspects of CO tolerance in polymer electrolyte fuel cells: some experimental findings, Electrode Materials and Processes for Energy Conversion and Storage IV, 1997.

J. S. Yi and T. V. Nguyen, An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, vol.145, issue.4, pp.1149-1159, 1998.
DOI : 10.1149/1.1838431

Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 ??C, Chemistry of Materials, vol.15, issue.26, pp.4896-4915, 2003.
DOI : 10.1021/cm0310519

A. Z. Weber and J. Newman, Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.12, pp.2205-2214, 2006.
DOI : 10.1149/1.2352039

P. Berg, K. Promislow, J. S. Pierre, J. Stumper, and B. Wetton, Water Management in PEM Fuel Cells, Journal of The Electrochemical Society, vol.151, issue.3, pp.341-353, 2004.
DOI : 10.1149/1.1641033

W. H. Hogarth, J. C. Diniz-da-costa, and G. Q. Lu, Solid acid membranes for high temperature (??140?? C) proton exchange membrane fuel cells, Journal of Power Sources, vol.142, issue.1-2, pp.223-237, 2005.
DOI : 10.1016/j.jpowsour.2004.11.020

A. Parthasarathy, S. Srinivasan, A. J. Appleby, and C. Martin, Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum

L. Zhang, J. Zhang, D. P. Wilkinson, and H. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions, Journal of Power Sources, vol.156, issue.2, pp.171-182, 2006.
DOI : 10.1016/j.jpowsour.2005.05.069

B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources, vol.152, issue.50
DOI : 10.1016/j.jpowsour.2005.05.098

K. Scott, W. Taama, P. Argyropoulos, and K. Sundmacher, The impact of mass transport and methanol crossover on the direct methanol fuel cell, Journal of Power Sources, vol.83, issue.1-2, pp.204-216, 1999.
DOI : 10.1016/S0378-7753(99)00303-1

R. Rashidi, I. Dincer, G. F. Naterer, and P. Berg, Performance evaluation of direct methanol fuel cells for portable applications, Journal of Power Sources, vol.187, issue.2, pp.509-516, 2009.
DOI : 10.1016/j.jpowsour.2008.11.044

J. S. Wallace, K. Kordesch, V. Hacker, and . Gsellmann, Development of a Carbon Dioxide Continuous Scrubber (CDOCS) System for Alkaline Fuel Cells, J.; Cifrain, M P, issue.55, 2006.

R. Fankhauser, M. Ortner, M. Muhr, and R. R. Aronson, Alkaline fuel cells applications, Journal of Power Sources, vol.86, pp.162-165, 2000.

N. Sammes, R. Bove, and K. Stahl, Phosphoric acid fuel cells: Fundamentals and applications, Current Opinion in Solid State and Materials Science, vol.8, issue.5
DOI : 10.1016/j.cossms.2005.01.001

S. Bose, T. Kuila, T. X. Nguyen, N. H. Kim, K. Lau et al., Polymer membranes for high temperature proton exchange membrane fuel cell

M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. Mcgrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs) Chemical Review, pp.4587-4612, 2004.

K. D. Kreuer, A. Rabenau, and W. Weppner, Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angewandte Chemie International Edition in English, vol.49, issue.4, pp.208-209, 1982.
DOI : 10.1002/anie.198202082

D. Grotthuss and C. J. , Memoir upon the decomposition of water, and of the bodies which it holds in solution, by means of galvanic electricity, Philosophical Magazine Series, vol.1, issue.25, pp.1806-330

N. Agmon, The Grotthuss mechanism, Chemical Physics Letters, vol.244, issue.5-6, pp.456-462, 1995.
DOI : 10.1016/0009-2614(95)00905-J

J. Hermet, P. Cortona, and C. Adamo, New range-separated hybrids based on the TCA density functional, Chemical Physics Letters, vol.519, issue.520, pp.519-520
DOI : 10.1016/j.cplett.2011.11.027

URL : https://hal.archives-ouvertes.fr/hal-00694473

M. J. Frisch, M. Head-gordon, and J. A. Pople, A direct MP2 gradient method, Chemical Physics Letters, vol.166, issue.3, pp.275-280, 1990.
DOI : 10.1016/0009-2614(90)80029-D

J. A. Pople, M. Head-gordon, and K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies, The Journal of Chemical Physics, vol.87, issue.10, pp.5968-5975, 1987.
DOI : 10.1063/1.453520

F. Weinhold and C. R. Landis, NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS, Chem. Educ. Res. Pract., vol.2, issue.2, pp.91-104, 2001.
DOI : 10.1039/B1RP90011K

M. Rini, B. Magnes, E. Pines, and E. T. Nibbering, Real-Time Observation of Bimodal Proton Transfer in Acid-Base Pairs in Water, Science, vol.301, issue.5631, pp.349-352, 2003.
DOI : 10.1126/science.1085762

A. L. Sobolewski, W. Domcke, and C. Hättig, Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes, Proceedings of the National Academy of Sciences, vol.102, issue.50, pp.17903-17906, 2005.
DOI : 10.1073/pnas.0504087102

F. Duarte, E. Vöhringer-martinez, and A. Toro-labbé, Insights on the mechanism of proton transfer reactions in amino acids, Physical Chemistry Chemical Physics, vol.56, issue.17, pp.7773-7782, 2011.
DOI : 10.1039/c0cp02076a

M. Leopoldini, N. Russo, and M. Toscano, The Preferred Reaction Path for the Oxidation of Methanol by PQQ?Containing Methanol Dehydrogenase: Addition?Elimination versus

I. Matanovi?, N. Do?li?, and Z. Mihali?, Exploring the potential energy surface for proton transfer in acetylacetone, Chemical Physics, vol.306, issue.1-3, pp.201-207, 2004.
DOI : 10.1016/j.chemphys.2004.07.030

V. Barone, L. Orlandini, and C. Adamo, Proton transfer in small model systems: A density functional study, International Journal of Quantum Chemistry, vol.4, issue.6, pp.697-705, 2004.
DOI : 10.1002/qua.560560607

Q. Zhang, R. Bell, and T. N. Truong, Ab Initio and Density Functional Theory Studies of Proton Transfer Reactions in Multiple Hydrogen Bond Systems, The Journal of Physical Chemistry, vol.99, issue.2, pp.592-599, 1995.
DOI : 10.1021/j100002a022

M. Iannuzzi, Proton transfer in imidazole-based molecular crystals, The Journal of Chemical Physics, vol.124, issue.20, pp.204710-204710, 2006.
DOI : 10.1063/1.2202323

W. Deng, V. Molinero, and W. A. Goddard, Fluorinated Imidazoles as Proton Carriers for Water-Free Fuel Cell Membranes, Journal of the American Chemical Society, vol.126, issue.48, pp.15644-15645, 2004.
DOI : 10.1021/ja046999y

R. Subbaraman, H. Ghassemi, and T. Zawodzinski-jr, Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells, Solid State Ionics, vol.180, issue.20-22, pp.1143-1150, 2009.
DOI : 10.1016/j.ssi.2009.05.018

A. Li, T. Yan, and P. Shen, Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method, Journal of Power Sources, vol.196, issue.3, pp.905-910
DOI : 10.1016/j.jpowsour.2010.09.006

A. D. Boese and J. M. Martin, Development of density functionals for thermochemical kinetics, The Journal of Chemical Physics, vol.121, issue.8, pp.3405-3416, 2004.
DOI : 10.1063/1.1774975

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.98-5648, 1993.
DOI : 10.1063/1.464913

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.1157-1174, 2004.
DOI : 10.1002/jcc.20035

J. Wang, W. Wang, P. A. Kollman, and D. A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, Journal of Molecular Graphics and Modelling, vol.25, issue.2, pp.247-260, 2006.
DOI : 10.1016/j.jmgm.2005.12.005

C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, The Journal of Physical Chemistry, vol.97, issue.40, pp.10269-10280, 1993.
DOI : 10.1021/j100142a004

W. D. Cornell, P. Cieplak, C. I. Bayly, and P. A. Kollmann, Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation, Journal of the American Chemical Society, vol.115, issue.21
DOI : 10.1021/ja00074a030

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.
DOI : 10.1063/1.439486

G. M. Torrie and J. P. Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid, Chemical Physics Letters, vol.28, issue.4, pp.578-581, 1974.
DOI : 10.1016/0009-2614(74)80109-0

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, Journal of Computational Chemistry, vol.22, issue.8, pp.1011-1021, 1992.
DOI : 10.1002/jcc.540130812

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, Multidimensional free-energy calculations using the weighted histogram analysis method, Journal of Computational Chemistry, vol.61, issue.11, pp.1339-1350, 1995.
DOI : 10.1002/jcc.540161104

M. Armand, Polymer solid electrolytes - an overview, Solid State Ionics, vol.9, issue.10, pp.9-10
DOI : 10.1016/0167-2738(83)90083-8

M. A. Ratner, J. R. Mac-callum, and C. A. Vincent, Polymer Electrolyte Review-1, 1987.

S. Thayumanavan, Importance of dynamic hydrogen bonds and reorientation barriers in proton transport, Chemical Communications, vol.47, pp.6638-6640, 2011.

J. C. Persson and P. Jannasch, Intrinsically Proton-Conducting Benzimidazole Units Tethered to Polysiloxanes, Macromolecules, vol.38, issue.8, pp.3283-3289, 2005.
DOI : 10.1021/ma047482+

M. O-'keeffe and C. Perrino, Proton conductivity in pure and doped KH2PO4, Journal of Physics and Chemistry of Solids, vol.28, issue.2, pp.211-218, 1967.
DOI : 10.1016/0022-3697(67)90110-2

S. A. Rosen, P. R. Gaffney, B. Spiess, and I. Gould, Understanding the relative affinity and specificity of the pleckstrin homology domain of protein kinase B for inositol phosphates, Phys. Chem. Chem. Phys., vol.2, issue.2
DOI : 10.1039/C1CP22240F

L. Wang, B. J. Berne, and R. A. Friesner, On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities, Proceedings of the National Academy of Sciences 2012, pp.1937-1942
DOI : 10.1073/pnas.1114017109

F. Weinhold and C. R. Landis, NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS, Chem. Educ. Res. Pract., vol.2, issue.2, pp.91-104, 2001.
DOI : 10.1039/B1RP90011K

P. Mustarelli, E. Quartarone, S. Grandi, S. Angioni, and A. Magistris, Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, pp.228-231, 2012.

H. Zhang and P. K. Shen, Recent Development of Polymer Electrolyte Membranes for Fuel Cells, Chemical Reviews, vol.112, issue.5, pp.2780-2832, 2012.
DOI : 10.1021/cr200035s

F. Conti, A. Majerus, V. Di-noto, C. Korte, W. Lehnert et al., Raman study of the polybenzimidazole???phosphoric acid interactions in membranes for fuel cells, Physical Chemistry Chemical Physics, vol.151, issue.4, pp.10022-10026, 2012.
DOI : 10.1039/c2cp40553a

G. F. Mangiatordi, C. Adamo, C. G. Densmore, P. G. Rasmussen, and G. Goward, Can the wire tethering directs the charge trasport in polyimidazole membranes? A theoretical study Probing Hydrogen Bonding and Proton Mobility in Dicyanoimidazole Monomers and Polymers, References Macromolecules, vol.38, issue.12, pp.416-421, 2004.

G. F. Mangiatordi, V. Butera, N. Russo, D. Laage, C. Adamo et al., Charge transport in polyimidazole membranes: a fresh appraisal of the Grotthuss mechanism Development and testing of a general amber force field Automatic atom type and bond type perception in molecular mechanical calculations A computer simulation model for proton transport in liquid imidazole, Polymeric Electrolytes for Fuel Cells Goward, G. R. Probing Proton Mobility in Polyvinazene and its Sulfonated Derivatives Using 1H Solid-State NMR, pp.3942-3948, 2004.

S. Ü. Çelik, A. Bozkurt, and S. S. Hosseini, Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes, References, issue.1

P. Mustarelli, E. Quartarone, S. Grandi, S. Angioni, A. Magistris et al., Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, in press Recent development of polymer electrolyte membranes for fuel cells, Progress in Polymer Science 2012, pp.1265-1291

T. Venkataraman, D. Zhou, Z. Liu, R. Wang, J. Li et al., Intra-and Intermolecular Proton Transfer in 1H(2H)-1,2,3-Triazole Based Systems, Journal of Materials Chemistry 2012, pp.1-1, 2006.

M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. Mcgrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs) ChemInform, 2004.

A. E. Steck, New Materials for Fuel Cell Systems, Proc. 1st International Symposium Montreal, p.74, 1995.

M. Rikukawa and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymeric Science, pp.1463-1502, 2000.

M. Casciola, G. Alberti, M. Sganappa, and R. Narducci, On the decay of Nafion proton conductivity at high temperature and relative humidity, Journal of Power Sources, vol.162, issue.1, pp.141-145, 2006.
DOI : 10.1016/j.jpowsour.2006.06.023

J. J. Baschuk and X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells

W. H. Hogarth, J. C. Diniz-da-costa, and G. Q. Lu, Solid acid membranes for high temperature (??140?? C) proton exchange membrane fuel cells, Journal of Power Sources, vol.142, issue.1-2, pp.223-237, 2005.
DOI : 10.1016/j.jpowsour.2004.11.020

Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 ??C, Chemistry of Materials, vol.15, issue.26, pp.4896-4915, 2003.
DOI : 10.1021/cm0310519

L. Zhang, J. Zhang, D. P. Wilkinson, and H. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions, Journal of Power Sources, vol.156, issue.2, pp.171-182, 2006.
DOI : 10.1016/j.jpowsour.2005.05.069

B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources, vol.152, issue.23, pp.1-15, 2005.
DOI : 10.1016/j.jpowsour.2005.05.098

H. Zhang and P. K. Shen, Advances in the high performance polymer electrolyte membranes for fuel cells, Chemical Society Reviews, vol.3, issue.6, pp.2382-2394, 2012.
DOI : 10.1039/c2cs15269j

Y. Choi, Y. Kim, H. K. Kim, and J. S. Lee, Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic???inorganic composite membranes, Journal of Membrane Science, vol.357, issue.1-2, pp.199-205, 2010.
DOI : 10.1016/j.memsci.2010.04.024

F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert et al., Advanced Mesostructured Hybrid Silica???Nafion Membranes for High-Performance PEM Fuel Cell, Chemistry of Materials, vol.20, issue.5, pp.1710-1718, 2008.
DOI : 10.1021/cm070929j

URL : https://hal.archives-ouvertes.fr/hal-00347595

B. Lafitte, L. E. Karlsson, and P. Jannasch, Sulfophenylation of Polysulfones for Proton-Conducting Fuel Cell Membranes, Macromolecular Rapid Communications, vol.23, issue.15, pp.896-900, 2002.
DOI : 10.1002/1521-3927(20021001)23:15<896::AID-MARC896>3.0.CO;2-P

J. A. Asensio, S. Borros, and P. Gomez-romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles, Journal of Polymer Science Part A: Polymer Chemistry, vol.20, issue.138, pp.3703-3710, 2002.
DOI : 10.1002/pola.10451

K. Kreuer, A. Rabenau, and W. Weppner, Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angewandte Chemie International Edition in English, vol.49, issue.4, pp.208-209, 1982.
DOI : 10.1002/anie.198202082

D. Grotthuss and C. J. , Memoir upon the decomposition of water, and of the bodies which it holds in solution, by means of galvanic electricity, Philosophical Magazine Series, vol.1, issue.25, pp.1806-330

N. Agmon, The Grotthuss mechanism, Chemical Physics Letters, vol.244, issue.5-6, pp.456-462, 1995.
DOI : 10.1016/0009-2614(95)00905-J

K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, vol.43, issue.10-11, pp.1281-1288, 1998.
DOI : 10.1016/S0013-4686(97)10031-7

W. Münch, K. Kreuer, W. Silvestri, J. Maier, and G. Seifert, The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study, Solid State Ionics, vol.145, issue.1-4, pp.437-443, 2001.
DOI : 10.1016/S0167-2738(01)00941-9

Z. Zhou, S. Li, Y. Zhang, M. Liu, and W. Li, -1,2,3-Triazole, Journal of the American Chemical Society, vol.127, issue.31, pp.10824-10825, 2005.
DOI : 10.1021/ja052280u

URL : https://hal.archives-ouvertes.fr/hal-00109342

A. Fernicola, S. Panero, and B. Scrosati, Proton-conducting membranes based on protic ionic liquids, Journal of Power Sources, vol.178, issue.2, pp.591-595, 2008.
DOI : 10.1016/j.jpowsour.2007.08.079

A. Bozkurt and W. Meyer, Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid, Solid State Ionics, vol.138, issue.3-4, pp.259-265, 2001.
DOI : 10.1016/S0167-2738(00)00779-7

H. Pu, J. Wu, D. Wan, and Z. Chang, Synthesis and anhydrous proton conductivity of poly(5-vinyltetrazole) prepared by free radical polymerization, Journal of Membrane Science, vol.322, issue.2, pp.392-399, 2008.
DOI : 10.1016/j.memsci.2008.05.063

S. Ü. Çelik, A. Aslan, and A. Bozkurt, Phosphoric acid-doped poly(1-vinyl-1,2,4-triazole) as water-free proton conducting polymer electrolytes, Solid State Ionics, vol.179, issue.19-20, pp.683-688, 2008.
DOI : 10.1016/j.ssi.2008.04.033

C. G. Densmore, P. G. Rasmussen, and G. Goward, Probing Hydrogen Bonding and Proton Mobility in Dicyanoimidazole Monomers and Polymers, Macromolecules, vol.38, issue.2, pp.416-421, 2004.
DOI : 10.1021/ma048167q

D. M. Johnson and P. G. Rasmussen, An Improved Synthesis of 2-Vinyl-4,5-dicyanoimidazole and Characterization of Its Polymers, Macromolecules, vol.33, issue.23, pp.8597-8603, 2000.
DOI : 10.1021/ma000779x

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.464913

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, vol.110, issue.13, pp.6158-6170, 1999.
DOI : 10.1063/1.478522

X. Xu and W. A. Goddard, From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proceedings of the National Academy of Sciences, pp.2673-2677, 2004.
DOI : 10.1073/pnas.0308730100

C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, The Journal of Chemical Physics, vol.108, issue.2, pp.664-675, 1998.
DOI : 10.1063/1.475428

A. Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers, Journal of Physical Chemistry A, vol.110, pp.5121-5129, 2006.

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, pp.215-241, 2007.

O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals, The Journal of Chemical Physics, vol.125, issue.7, pp.74106-074115, 2006.
DOI : 10.1063/1.2244560

O. A. Vydrov and G. Scuseria, Assessment of a long-range corrected hybrid functional, The Journal of Chemical Physics, vol.125, issue.23, pp.234109-234118, 2006.
DOI : 10.1063/1.2409292

V. Tognetti, P. Cortona, and C. Adamo, A new parameter-free correlation functional based on an average atomic reduced density gradient analysis, The Journal of Chemical Physics, vol.128, issue.3, pp.34101-034109, 2008.
DOI : 10.1063/1.2816137

J. Hermet, P. Cortona, and C. Adamo, New range-separated hybrids based on the TCA density functional, Chemical Physics Letters, vol.519, issue.520, pp.519-520
DOI : 10.1016/j.cplett.2011.11.027

URL : https://hal.archives-ouvertes.fr/hal-00694473

J. A. Pople, M. Head-gordon, and K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies, The Journal of Chemical Physics, vol.87, issue.10, pp.5968-5975, 1987.
DOI : 10.1063/1.453520

M. J. Frisch, M. Head-gordon, and J. A. Pople, A direct MP2 gradient method, Chemical Physics Letters, vol.166, issue.3, pp.275-280, 1990.
DOI : 10.1016/0009-2614(90)80029-D

M. Head-gordon, J. A. Pople, and M. J. Frisch, MP2 energy evaluation by direct methods, Chemical Physics Letters, vol.153, issue.6, pp.503-506, 1988.
DOI : 10.1016/0009-2614(88)85250-3

W. Tatara, M. J. Wojcik, J. Lindgren, and M. Probst, Theoretical Study of Structures, Energies, and Vibrational Spectra of the Imidazole???Imidazolium System, The Journal of Physical Chemistry A, vol.107, issue.39, pp.7827-7831, 2003.
DOI : 10.1021/jp030065z

Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu et al., )-1,2,3-Triazole Based Systems, The Journal of Physical Chemistry A, vol.110, issue.7, pp.2322-2324, 2006.
DOI : 10.1021/jp057265q

R. Subbaraman, H. Ghassemi, and T. Zawodzinski-jr, Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells, Solid State Ionics, vol.180, issue.20-22, pp.1143-1150, 2009.
DOI : 10.1016/j.ssi.2009.05.018

A. Li, T. Yan, and P. Shen, Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method, Journal of Power Sources, vol.196, issue.3, pp.905-910, 2011.
DOI : 10.1016/j.jpowsour.2010.09.006

G. F. Mangiatordi, J. Hermet, and C. Adamo, Modeling Proton Transfer in Imidazole-like Dimers: A Density Functional Theory Study, The Journal of Physical Chemistry A, vol.115, issue.12, pp.2627-2634, 2011.
DOI : 10.1021/jp111327m

M. Iannuzzi and M. Parrinello, Proton Transfer in Heterocycle Crystals, Physical Review Letters, vol.93, issue.2, pp.25901-025910, 2004.
DOI : 10.1103/PhysRevLett.93.025901

M. Iannuzzi, Proton transfer in imidazole-based molecular crystals, The Journal of Chemical Physics, vol.124, issue.20, pp.204710-204710, 2006.
DOI : 10.1063/1.2202323

W. Deng, V. Molinero, and W. A. Goddard, Fluorinated Imidazoles as Proton Carriers for Water-Free Fuel Cell Membranes, Journal of the American Chemical Society, vol.126, issue.48, pp.15644-15645, 2004.
DOI : 10.1021/ja046999y

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.1157-1174, 2004.
DOI : 10.1002/jcc.20035

J. Wang, W. Wang, P. A. Kollman, and D. A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, Journal of Molecular Graphics and Modelling, vol.25, issue.2, pp.247-260, 2006.
DOI : 10.1016/j.jmgm.2005.12.005

G. F. Mangiatordi, V. Butera, N. Russo, D. Laage, and C. Adamo, Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism, Physical Chemistry Chemical Physics, vol.145, issue.31, pp.10910-10918, 2012.
DOI : 10.1039/c2cp23727j

S. Ü. Çelik, A. Bozkurt, and S. S. Hosseini, Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes, Progress in Polymeric Science 2012, pp.1265-1291

G. F. List-of-publications-mangiatordi, J. Hermet, and C. Adamo, Modeling Proton Transfer in Imidazole-like Dimers: A Density Functional Theory Study, The Journal of Physical Chemistry A, vol.115, issue.12, pp.2627-2634, 2011.
DOI : 10.1021/jp111327m

G. F. Mangiatordi, V. Butera, N. Russo, D. Laage, and C. Adamo, Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism, Physical Chemistry Chemical Physics, vol.145, issue.31, pp.10910-10918, 2012.
DOI : 10.1039/c2cp23727j

G. F. Mangiatordi, E. Brémond, and C. Adamo, DFT and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics, Journal of Chemical Theory and Computation, vol.8, issue.9, pp.3082-3088, 2012.
DOI : 10.1021/ct300338y

G. F. Publication-submitted-mangiatordi, C. Adamo, G. F. Mangiatordi, and E. Sicilia, Can the wire tethering directs the charge trasport in polyimidazole membranes? A theoretical study, submitted. Publication in preparation Butera, Adamo, C. On the phosphoric acid rule on charge transport in blends of poly(4-vinylimidazole): a theoretical investigation

O. Communications-mangiatordi and G. F. , Azoles as proton transport facilitators in PEMFCs: a theoretical investigation" Hypomap M12 meeting, 2010.

G. F. Mangiatordi, Modeling proton transfer in poly(4-vinyl-imidazole): a density functional theory study

G. F. Mangiatordi, Modeling proton transfer in fuel cells Journée Chimie Théorique et Modélisation de l'Ecole Doctorale de Chimie Physique et Chimie Analytique de Paris Centre, pp.4-6, 2011.

G. F. Mangiatordi, Proton transfer in fuel cells: a combined DFT-MD approach Journèes Modèlisation de Paris, 18.05, 2011.

G. F. Mangiatordi, Proton Transfer in fuel cells: a combined DFT-MD approach, 2011.

G. F. Mangiatordi, Proton Transfer in fuel cells: a combined DFT-MD approach, pp.16-25

G. F. Mangiatordi, Charge transport in poly-imidazole membranes: a fresch appraisal of the Grotthuss mechanism" Final Hypomap M12 meeting

G. F. Mangiatordi, Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism, The Energy and Materials Research Conference
DOI : 10.1039/c2cp23727j

G. F. Mangiatordi, Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism, Solid State Proton Conductors Conference
DOI : 10.1039/c2cp23727j

G. F. Mangiatordi, Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism, Physical Chemistry Chemical Physics, vol.145, issue.31, pp.20-29
DOI : 10.1039/c2cp23727j