
HAL Id: tel-00833311
https://theses.hal.science/tel-00833311

Submitted on 12 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New methods for biological sequence alignment
Marta L. Gîrdea

To cite this version:
Marta L. Gîrdea. New methods for biological sequence alignment. Bioinformatics [q-bio.QM]. Uni-
versité des Sciences et Technologie de Lille - Lille I, 2010. English. �NNT : �. �tel-00833311�

https://theses.hal.science/tel-00833311
https://hal.archives-ouvertes.fr


New methods for biological sequence
alignment

THÈSE
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pour l’obtention du
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Abstract

Biological sequence alignment is a fundamental technique in bioinformatics, and consists of iden-
tifying series of similar (conserved) characters that appear in the same order in both sequences,
and eventually deducing a set of modifications (substitutions, insertions and deletions) involved
in the transformation of one sequence into the other. This technique allows one to infer, based
on sequence similarity, if two or more biological sequences are potentially homologous, i.e. if
they share a common ancestor, thus enabling the understanding of sequence evolution.

This thesis addresses sequence comparison problems in two different contexts: homology
detection and high throughput DNA sequencing. The goal of this work is to develop sensitive
alignment methods that provide solutions to the following two problems: i) the detection of
hidden protein homologies by protein sequence comparison, when the source of the divergence
are frameshift mutations, and ii) mapping short SOLiD reads (sequences of overlapping di-
nucleotides encoded as colors) to a reference genome. In both cases, the same general idea is
applied: to implicitly compare DNA sequences for detecting changes occurring at this level, while
manipulating, in practice, other representations (protein sequences, sequences of di-nucleotide
codes) that provide additional information and thus help to improve the similarity search. The
aim is to design and implement exact and heuristic alignment methods, along with scoring
schemes, adapted to these scenarios.

Résumé
L’alignement de séquences biologiques est une technique fondamentale en bioinformatique,

et consiste à identifier des séries de caractères similaires (conservés) qui apparaissent dans le
même ordre dans les deux séquences, et à inférer un ensemble de modifications (substitutions,
insertions et suppressions) impliquées dans la transformation d’une séquence en l’autre. Cette
technique permet de déduire, sur la base de la similarité de séquence, si deux ou plusieurs
séquences biologiques sont potentiellement homologues, donc si elles partagent un ancêtre com-
mun, permettant ainsi de mieux comprendre l’évolution des séquences.

Cette thèse aborde les problèmes de comparaison de séquences dans deux cadres différents:
la détection d’homologies et le séquençage à haut débit. L’objectif de ce travail est de développer
des méthodes d’alignement qui peuvent apporter des solutions aux deux problèmes suivants: i)
la détection d’homologies cachées entre des protéines par comparaison de séquences protéiques,
lorsque la source de leur divergence sont les mutations qui changent le cadre de lecture, et ii) le
mapping de reads SOLiD (séquences de di-nucléotides chevauchantes codés par des couleurs) sur
un génome de référence. Dans les deux cas, la même idée générale est appliquée: comparer im-
plicitement les séquences d’ADN pour la détection de changements qui se produisent à ce niveau,
en manipulant, en pratique, d’autres représentations (séquences de protéines, séquences de codes
di-nucléotides) qui fournissent des informations supplémentaires et qui aident à améliorer la
recherche de similarités. Le but est de concevoir et d’appliquer des méthodes exactes et heuris-
tiques d’alignement, ainsi que des systemes de scores, adaptés à ces scénarios.

iii



Abstract

iv



Table of contents

List of Figures ix

List of Tables xiii
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De nouvelles méthodes pour
l’alignement des séquences

biologiques

Introduction

L’alignement de séquences biologiques est une technique fondamentale en bioinformatique, et
consiste à identifier des séries de caractères similaires (conservés) qui apparaissent dans le même
ordre dans les deux séquences, et à inférer un ensemble de modifications (substitutions, insertions
et suppressions) impliquées dans la transformation d’une séquence en l’autre. Cette technique
permet de déduire, sur la base de la similarité de séquence, si deux ou plusieurs séquences
biologiques sont potentiellement homologues, donc si elles partagent un ancêtre commun, per-
mettant ainsi de mieux comprendre l’évolution des séquences.

Du point de vue computationnel, la comparaison de séquences biologiques est fortement liée
à l’édition de châınes de caractères, car les séquences biologiques sont généralement représentées
comme des châınes de caractères sur un certain alphabet: l’alphabet des quatre nucléotides dans
le cas des séquences d’ADN, ou l’alphabet des vingt acides aminés pour les protéines. Le degré
de similarité des séquences alignées est quantifiée par le score associé à leur alignement, qui
comprend les scores associés (généralement de façon indépendante) aux couples de caractères
alignés, tenant compte de leur similitude. En général, les algorithmes utilisent une approche
basée sur la programmation dynamique afin d’obtenir le meilleur alignement de séquences par
rapport à un certain système de score. Les premiers algorithmes d’alignement [75, 150, 188] et
les systèmes de score [51,86] ont été proposés il y a plusieurs décennies, et sont toujours utilisés
en pratique. Plus tard, l’émergence des technologies de séquençage [170, 176, 181] conduit à
l’accumulation d’une quantité impressionnante de données qui ont besoin d’être analysées. Ainsi,
en complément des algorithmes exacts d’alignement, des approches heuristiques plus rapides [11,
130,164] ont été développées afin de faire face aux séquences de grande taille dont l’alignement
exact exigerait un temps de calcul excessif. Ces heuristiques sont basées sur l’hypothèse que
des séquences suffisamment liées doivent partager au moins une région bien conservée, appelé
graine. L’approche consiste essentiellement à identifier cette région si elle existe, et ensuite à
construire d’un alignement optimal autour d’elle.

Cette “recette” algorithmique générique convient aux problèmes classiques de compara-
ison de séquences d’ADN ou de protéines. Néanmoins, avec les quantités croissantes de
données disponibles et les nouvelles applications, viennent des problèmes spécifiques qui peu-
vent nécessiter d’adapter de nombreux aspects de ce cadre général à leurs caractéristiques. De
nombreuses approches développées par la suite ont montré que, par exemple, les procédures
de traitement de paires de symboles alignés et de traitement des gaps au sein de l’algorithme
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d’alignement [15,16,39,79,85,106,113,166,168,214], le système de scores [40,65,167], ou bien les
similarités considérées comme “pertinentes” dans les alignements basées sur des graines peuvent
être ajustés pour tenir compte des connaissances sur un certain problème et ainsi capturer le
degré de similitude entre les structures comparées. En outre, une grande attention a été donnée
à la conception des graines, afin de se conformer à des modèles qui donnent les caractéristiques
des séquences alignées [30,31,99,105,110,133].

Cette thèse aborde les problèmes de comparaison de séquences dans deux cadres différents:
la détection d’homologies et le séquençage à haut débit.

La comparaison de séquences en tant qu’outil pour la détection d’homologies s’appuie sur
le fait connu que la duplication de gènes suivie d’une divergence joue un rôle important dans
l’évolution [4]. “Natural selection merely modified, while redundancy created” [158] est une hy-
pothèse formulée il y a plusieurs décennies dans une tentative d’expliquer les progrès majeurs
dans l’évolution, tels que la transition des formes de vie unicellulaires vers des organismes com-
plexes [145]. Plus tard, des études sur les génomes de plusieurs organismes, entièrement ou
presque entièrement séquencés, ont montré qu’une grande proportion de gènes ont en effet été
générés par duplication, tandis que l’origine d’autres est soupçonnée résider dans ce mécanisme,
mais la preuve est entravée par leur divergence avancée [213]. Ainsi, la similarité de séquence
est considérée comme un indice fort de l’homologie, mais elle ne garantit pas l’homologie. In-
versement, des séquences qui paraissent différentes ne sont pas nécessairement indépendantes.
D’où la nécessité de mettre en place des méthodes de comparaison assez puissantes pour révéler
des similitudes de séquences qui sont réellement pertinentes pour détecter l’homologie.

La divergence de séquences après duplication est le résultat de divers types de mutations,
telles que les substitutions, insertions, ou délétions de nucléotides. Si elles affectent une séquence
codante, c’est à dire un morceau d’ADN qui code pour une protéine ayant une certaine fonction
dans l’organisme, ces modifications ont implicitement des effets sur le produit de cette séquence,
la protéine traduite, et elles peuvent en modifier la fonction ou la rendre non fonctionnelle. Un
problème de détection d’homologies particulièrement intéressant consiste à trouver des simili-
tudes entre les protéines ayant divergé suite à un frameshift. Les frameshifts sont des insertions
ou des suppressions de plusieurs nucléotides d’une séquence d’ADN codante. Une seule mu-
tation frameshift introduit un changement radical dans la protéine traduite, tout en ayant un
faible effet sur la séquence d’ADN touché, qui resté à première vue majoritairement inchangé.
Toutefois, si des substitutions de nucléotides sont impliquées dans la divergence, la similitude
au niveau de l’ADN peut être elle aussi réduite au-delà du seuil de reconnaissance. Suite aux
changements importants survenant dans les séquences d’ADN et leurs traductions, les algo-
rithmes d’alignement classiques sont alors susceptibles d’échouer à détecter l’homologie, aussi
bien au niveau de l’ADN qu’au niveau de la séquence protéique. Des solutions algorithmiques
pour résoudre ce problème sont proposées dans la partie “Découverte de frameshifts dans les
protéines en utilisant la traduction inverse” de cette thèse.

La détection d’homologies n’est pas le seul contexte où l’analyse de séquences biologiques est
basée sur la comparaison de séquences. Les méthodes d’alignement sont un ingrédient clé dans
l’assemblage ou le mapping sur un génome de référence de “reads” produits par les technologies
de séquençage à haut débit. Les reads sont des morceaux de la séquence cible, qui peuvent avoir
de quelques dizaines à des centaines de symboles. Dans le contexte du read mapping, l’un des
défis consiste à identifier la position candidate sur la séquence de référence pour chaque read.
Cette dernière exige essentiellement de savoir détecter rapidement des similarités pertinentes
entre le read et la référence. L’identification, ainsi que l’alignement lui-même du read sur la
séquence de référence, doivent faire face non seulement aux variations biologiques, mais aussi
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aux erreurs de séquençage, ainsi qu’aux artefacts technologiques qui peuvent modifier le read.
La plate-forme de séquençage SOLiD [1] utilise un encodage particulier ayant la capacité de

corriger certaines erreurs afin d’améliorer la distinction entre les erreurs de séquençage et les
variations biologiques. Ainsi, au lieu d’être une séquence de symboles de nucléotides, un read
SOLiD est une séquence de couleurs, chaque couleur codant pour deux nucléotides consécutifs
et chaque nucléotide étant encodé par deux couleurs consécutives dans la séquence. En raison
de double codage des nucléotides en couleurs adjacentes, les positions d’un read ne peuvent pas
être interprétée de manière indépendante, ce qui empêche les algorithmes d’alignement classiques
de capturer le similarités au niveau des séquences ADN par simple alignement de séquences de
couleurs. Par contre, les variations biologiques et les erreurs de lecture peuvent être reconnues et
distinguées en analysant simultanément plusieurs couleurs consécutives. Ce problème est abordé
dans la partie “Algorithmes pour le mapping de reads SOLiD” de la thèse, qui traite des
méthodes adaptées à ces particularités.

Pour résumer, l’objectif de ce travail est de développer des méthodes d’alignement qui peu-
vent apporter des solutions aux deux problèmes suivants: i) la détection d’homologies cachées
entre des protéines par comparaison de séquences protéiques, lorsque la source de leur divergence
sont les mutations qui changent le cadre de lecture, et ii) le mapping de reads SOLiD (séquences
de di-nucléotides chevauchants codés par des couleurs) sur un génome de référence. Dans les
deux cas, la même idée générale est appliquée: implicitement comparer les séquences d’ADN
pour la détection changements qui se produisent à ce niveau, lors de la manipulation, en pra-
tique, d’autres représentations (séquences de protéines, des séquences de codes di-nucléotides)
qui fournissent des informations supplémentaires et qui aident à améliorer la recherche de simi-
larités. Le but est de concevoir et appliquer des méthodes exactes et heuristiques d’alignement,
ainsi que des systèmes de scores et des techniques d’évaluation, adaptés à ces scénarios.

Découverte de frameshifts dans les protéines en utilisant la traduc-
tion inverse

Dans le cadre de la découverte d’homologies cachés entre des protéines lorsque la divergence est
causée par un frameshift, par utilisation directe de la comparaison de séquences protéiques, le
scénario suivant de “duplication et divergence” est considéré. Un gène codant pour une protéine
est dupliqué. Un des deux exemplaires subit une mutation frameshift. Par la suite, les deux
copies peuvent être affectés par des substitutions de nucléotides, la plupart étant synonymes
pour l’une des copies, afin de préserver la fonction, mais sans restriction pour la copie dont le
cadre de lecture a changé.

Comme expliqué précédemment, sous cette hypothèse, l’origine commune des deux séquences
peut être difficile à retracer après une longue période d’évolution, en raison des modifications à
la fois sur les séquences d’ADN et sur les protéines encodées par ces séquences. Pour répondre
à ce problème, nous proposons ici une méthode [68–70] basée sur des modèles d’évolution des
codons, qui combine les connaissances sur les séquences d’ADN et de protéines afin de saisir
la dynamique des séquences codantes. La méthode peut être utilisée pour plusieurs tâches de
comparaison des protéines, mais convient notamment à deux situations particulières:

• Quand les protéines sont directement obtenues par spectrométrie de masse, et les séquences
d’ADN correspondantes ne sont donc pas connues.

• Quand l’ADN codant est disponible, mais le degré de divergence est tel que la simple
comparaison de séquences d’ADN ne peut pas montrer leur similarité.
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Figure 1: Exemple de graphe de traduction inverse pour la séquence d’acides aminés YSH, décrivant
toutes les séquences d’ADN qui peuvent encoder ces acides aminés.

Cette approche permet également de détecter des homologies de protéines moins lointaines,
avec ou sans frameshifts, ou bien des erreurs de séquençage de type insertion / suppression.
Cependant, ces derniers cas d’utilisation ne sont pas son objectif principal.

Graphes de traduction inverse

La méthode proposée s’appuie sur la notion de traduction inverse de protéines, qui permet
d’obtenir l’ensemble des séquences d’ADN codant pour une protéine donnée sous la forme com-
pacte d’un graphe de traduction inverse. Ce dernier est un graphe acyclique dirigé, avec des
nœuds étiquetés par des symboles de nucléotides, et dont les chemins décrivent les séquences
d’ADN putatives. Comme l’illustre la Figure 1, le graphe est en fait organisé en 3n positions, où
n est la longueur de la séquence protéique. Chaque position i du graphe a un ou plusieurs nœuds
correspondants, et chaque nœud représente un nucléotide qui peut apparâıtre à une position i
dans au moins l’une des séquences codantes putatives. Pour un graphe plus compact, les codes
IUPAC d’ambigüıté de nucléotides permettent de représenter tous les acides aminés codés par
2-4 codons avec une seule séquence de 3 symboles, où les 3ème symbole peut comprendre 1, 2,
3 ou 4 nucléotides. Les acides aminés encodés par 6 codons peuvent être représentés par deux
segments de 3 symboles.

Algorithme pour l’alignement de deux graphes de traduction inverse

Étant donnés deux graphes GA et GB obtenus par traduction inverse des protéines PA et PB,
l’algorithme trouve le meilleur alignement local entre deux séquences d’ADN comprises dans ces
graphes. Les solutions partielles sont stockées dans une table de programmation dynamique M .
Pour chaque entrée M [i, j, (αi, βj)], i et j sont des positions respectives dans les graphes GA et
GB. αi et βj énumèrent les paires possibles de nœuds qui se trouvent respectivement dans le
graphe GA à la position i, et dans le graphe GB à la position j. En conséquence, M [i, j, (αi, βj)]
contient le score du meilleur alignement entre les deux préfixes DA

1..i et DB
1..j des séquences d’ADN

DA et DB avec traduction(DA) = PA et traduction(DB) = PB, tel que DA
i ∈ αi et DB

j ∈ βj .

L’algorithme de programmation dynamique commence avec une initialisation de M qui
est classique pour l’alignement local. L’étape de récursion est décrite par la relation (1).
Les frameshifts sont traitées par l’algorithme à l’aide d’une fonction non-monotone de pénalité
des gaps, où les insertions et suppressions de codons complets sont moins pénalisées que les
changements de cadre de lecture. En outre, puisque les frameshifts sont considérés comme des
événements très rares, une extension ce cet algorithme donne la possibilité de limiter leur nombre

4



dans un alignement.

M [i, j, (αi, βj)] =

max





0 (a)
M [i− 1, j − 1, (αi−1, βi−1)] + σ(αi, βj), αi−1 ∈ predGA

(αi); (b)
βj−1 ∈ predGB

(βj);

M [i, j − 1, (αi, βj−1)] + fsGapPenalty, βj−1 ∈ predGB
(βj); (c)

M [i, j − 1, (αi, βj−1)] + fsExtensionPenalty, βj−1 ∈ predGB
(βj); (c′)

(seulement si l’entrée précédente sur le chemin de l’alignement est dans M [i, j − 2])

M [i− 1, j, (αi−1, βj)] + fsGapPenalty, αi−1 ∈ predGA
(αi); (d)

M [i− 1, j, (αi−1, βj)] + fsExtensionPenalty, αi−1 ∈ predGA
(αi); (d′)

(seulement si l’entrée précédente sur le chemin de l’alignement est dans M [i− 2, j])

M [i, j − 3, (αi, βj−3)] + tripleGapPenalty, j ≥ 3, j multiple de 3; (e)

M [i− 3, j, (αi−3, βj)] + tripleGapPenalty, i ≥ 3, i multiple de 3; . (f)
(1)

Système de scores

L’algorithme utilise un système de scores conçu pour refléter le processus réel d’évolution, basé
sur un modèle de substitution de codons. Les scores sont définis sur des paires de triplets
(α, p, a), où α est un symbole de nucléotide, p est sa position dans le codon, et a est l’acide
aminé encodé par ce codon. Ainsi, les différents contextes de la substitution sont clairement
différenciés. Pour les symboles de nucléotides non ambiguës, il existe 99 triplets valides sur
le total de 240 combinaisons hypothétiques, alors que 69 triplets valides existent dans le cas
des symboles ambiguës. Les scores d’alignement par paires sont calculés pour toutes les paires
possibles de triplets (ti, tj) = ((αi, pi, ai), (αj , pj , Aj)) par une formule de log-odds ratio classique:

σ(ti, tj) = λ log
ftitj

btitj

. (2)

Dans cette formule, ftitj est la fréquence de la substitution ti ↔ tj dans des séquences ap-
parentées, et btitj = p(ti)p(tj) est la probabilité de retrouver cette paire de symboles dans des
alignements aléatoires.

Les probabilités ftitj sont définies par rapport au scénario de divergence présenté

précédemment. Soit p(c′
θ
→ c) la probabilité que le codon c′ se transforme en c par muta-

tions ponctuelles en temps évolutif θ, et p
Ii,Ij

f (ci, cj) la probabilité que les codons ci et cj soient
alignés avec un décalage de cadre de lecture f , et qu’ils se chevauchent dans leur alignement

sur les intervalles définis par Ii et Ij . Les probabilités p(c′
θ
→ c) sont données par un modèle de

substitution des codons, alors que les valeurs de p
Ii,Ij

f (ci, cj) peuvent être obtenues à partir des
fréquences des codons πc et des sous-séquences communes des codons sur des cadres de lecture
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différents. Ensuite, les probabilités ftitj sont données par:

ftitj = p((αi, pi, ai), (αj , pj , aj)) =
∑

ciencodes ai,

cjencodes aj

∑

c′i,c
′
j :c
′
i[Ii]≡c′j [Ij ]

p(c′i[Ii] ≡ c′j [Ij ]) · p(c′i
θ
→ ci) · p(c′j

θ
→ cj).

(3)

La probabilité btitj peut être exprimée comme la probabilité que les deux symboles ti et tj
apparaissent de manière indépendante dans les séquences:

btitj = b(αi,pi,ai),(αj ,pj ,aj) =
∑

ciencodes ai,

cjencodes aj

πci
πcj

. (4)

Expériences

L’approche est illustrée par quelques exemples (connus et nouveaux) d’alignements de protéines
avec des frameshifts, dont certaines ne sont pas détectables par les méthodes classiques
d’alignement, car la similarité de leur séquences codantes est très faible. Ces exemples sou-
tiennent l’applicabilité de la méthode dans la découverte d’homologies lointaines.

Perspectives

Des futurs travaux concernent des raffinements du système de score, par exemple pour améliorer
la détection des doubles changements de cadre de lecture séparées par un petit nombre de
nucléotides, dont le deuxième changement corrige le déphasages créé par le premier. Des telles
modifications se produisent assez fréquemment [175], mais sont souvent fortement pénalisés par
les méthodes classiques de comparaison de séquences, qui rejettent l’alignement correct en faveur
d’un autre alignement sans gaps et avec un score plus élevé.

Parmi les extensions possibles de ce travail, il serait intéressantde réaliser des alignements
multiples de graphes de traduction inverse. Cette fonctionnalité pourrait être utile pour con-
firmer des frameshifts par similitude entre protéines qui sont issues d’une même famille.

Algorithmes d’alignement pour la technologie de séquençage
SOLiD

Cette partie de la thèse propose des méthodes pour le mapping sur un génome de référence de
reads obtenus par la plate-forme de séquençage à haut débit SOLiD.

La plate-forme SOLiD produit des reads de 35-50 paires de bases, représentés comme des
séquences de 4 couleurs préfixés par un symbole de nucléotide qui permet leur décodage sans am-
bigüıté. Ces reads sont généralement alignés (mappés) sur une séquence génomique de référence
qui est proche de celle qui a été séquencée, dans le but de découvrir des variations biologiques
telles que des SNPs, des insertions/suppressions de nucléotides, ou même variations de structure.
Le codage utilise 4 couleurs pour désigner les 16 paires possibles de nucléotides adjacents qui
peuvent apparâıtre dans une séquence. En raison de l’utilisation du double codage des paires
de nucléotides adjacents en couleurs, les positions d’un read ne peuvent pas être interprétées
de manière indépendante, ce qui empêche les algorithmes d’alignement classiques d’exploiter la
capacité de correction d’erreurs du code, et de capturer la similarité au niveau des séquences
d’ADN par simple alignement de séquences de couleurs.
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Le codage utilisant des paires de nucléotides adjacents est lié à la chimie de séquençage
SOLiD. La plate-forme SOLiD utilise le séquençage par ligature, où deux nucléotides consécutifs
sont interrogés tous les 5ème positions, en 5 étapes consistant en des cycles de plusieurs ligatures.
Cela suggère que les erreurs de lecture peuvent avoir tendance à apparâıtre avec une périodicité
de 5, une intuition confirmée par une analyse statistique effectuée sur les données de séquençage.
En conséquence, une bonne compréhension de la plupart des types d’erreurs fréquentes et leur
répartition sur le read peut améliorer sensiblement les résultats des outils de read mapping.

Conception de graines pour la technologie SOLiD

Une première contribution, présentée dans [71, 154, 155], consiste à concevoir des graines en se
basant sur des modèles probabilistes qui modélisent à la fois les erreurs de lecture du séquenceur
et les différences de nature biologique entre les reads et la séquence référence. La conception de
graines utilise une approche formelle basée sur des automates finis, proposée dans [110]. Dans
ce cadre, nous proposons un nouveau principe de graine spécialement adapté au read mapping,
qui consiste à utiliser un petit nombre de graines conçus conjointement avec un ensemble de
positions sur le read. Ces graines positionnées permettent de prendre en compte des propriétés
telles que la distribution non-uniforme des erreurs de lecture sur le read, ou bien de mieux
prendre en compte leur tendance à se produire plus régulièrement à des distances de 5 positions.
Des graines espacées avec perte et sans perte peuvent être conçues dans ce cadre.

Conception de graines avec perte Il existe deux sources indépendantes créant des
différences entre des reads et un génome de référence: d’une part les erreurs de lecture du
séquenceur, et d’autre part les variations de séquence (SNPs, insertions/suppressions que l’on
note aussi indels). Nous représentons chacune de ces sources par un Modèle de Markov Caché
(Figure 2 et Figure 3). Les deux modèles sont ensuite combinés (par produit d’automates) dans
un modèle qui permet de cumuler tous les types d’erreurs dans les séquences résultantes, tel
qu’il est montré dans l’exemple de la Figure .

La sensibilité d’une famille de graines est ensuite calculée l’aide de la technique de program-
mation dynamique proposée dans [110] sur le produit de l’automate spécifiant une famille de
graines avec le modèle d’alignement cible construit comme expliqué ci-dessus.

Conception de graines sans perte Nous proposons un algorithme de programmation dy-
namique efficace appliqué directement à l’automate Q, correspondant à une graine (ou à une
famille de graines) donné. Cet algorithme peut vérifier si la graine est sans perte par rapport
aux alignements de taille m avec un certain nombre d’erreurs k : elle est capable de détecter tous
les alignements de taille m ayant k erreurs. Cet algorithme calcule, pour chaque état q de Q, et
pour chaque itération i ∈ [1..m], le nombre minimal de changements de couleurs (substitutions)
nécessaires pour atteindre tout état q à l’étape i. La condition “sans perte pour k erreurs” est
vraie si et seulement si, à l’étape m, tous les états non-finaux ont un nombre de substitutions
supérieur à k. En effet, s’il existe un état non-final avec un nombre d’erreurs inférieur ou égal
à k après m itérations, alors il y a au moins une châıne de longueur m avec moins de k (ou k)
substitutions qui n’est pas acceptée par l’automate, ce qui contredit la condition sans perte. Cet
algorithme est de complexité temporelle O(|Q| · |A| ·m), et de complexité en espace O(|Q| · |A|),
avec A définissant l’alphabet des alignements cible.

Dans le cadre des alignements de séquences de couleurs, il est intéressant de définir la pro-
priété sans perte par rapport à une certaine combinaison d’erreurs de lecture et substitutions
de nucléotides (SNPs). Un exemple d’automate qui reconnâıt l’ensemble des alignements avec
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Figure 2: Modèle de Markov des variations biologiques. Les états décrivent l’alignement au niveau de
l’ADN, et les transitions décrivent l’alignement au niveau du code couleur. Les couleurs des transitions
correspondent aux émissions: en noir pour les paires de couleurs identiques, en rouge pour les substitutions
de couleurs, en jaune pour les insertions/suppressions, en rouge foncé pour un mélange de substitutions
et conservations.
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MSNP/I 1 1 1 0 0 1 1 1 0 0 1 1 1 0 I 1 1 1 1 1 I 1 1 1 1 1 1

×
MRE 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0

= —————————————————————–
M(SNP/I)×RE 1 1 1 0 0 1 1 1 0 0 1 1 1 0 I 1 1 1 1 0 I 0 1 0 1 0 0

Figure 4: Le modèle d’alignement qui combine les deux sources d’erreurs (variations biologiques et
erreurs de lecture) génère des alignements où tous les types d’erreurs sont cumulés. Ici, tt 1 est désigne
une paire de couleurs identiques alignées, 0 représente une substitution de couleur, et I représente une
insertion dans le read.
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Figure 5: Automate qui modélise les alignements avec 1 SNP & 2 erreurs de lecture.

1 SNP et 2 erreurs de lecture est illustré dans la Figure 5. La construction de cet automate
s’appuie sur le fait que, dans l’espace de couleurs, un SNP apparâıt en fait comme deux substi-
tutions de couleurs consécutives. Dans une approche similaire, des automates plus complexes
qui tiennent compte des insertions et suppressions peuvent être conçus.

Pour vérifier si une graine est sans perte par rapport aux alignements avec une certaine com-
binaison d’erreurs, il suffit de “croiser” l’automate qui modélise ces alignements avec l’automate
de la graine (limitant ainsi l’ensemble des alignements reconnus par la graine à ceux ayant la
combinaison d’erreurs établie) et de soumettre ensuite le résultat à l’algorithme de programma-
tion dynamique décrit ci-dessus.

Algorithme d’alignement pour des séquences de couleurs

L’objectif de cet algorithme est d’obtenir des alignements de séquences de couleurs qui sont sig-
nificatifs au niveau de la séquence des nucléotides, c’est à dire de correctement faire la distinction
entre les erreurs de lecture et les variations biologiques. L’algorithme effectue un alignement
dit en bandwidth, dont la largeur est ajustée pour tenir compte du nombre maximum autorisé
d’insertions/suppressions. Il est basé sur l’approche classique d’alignement semi-global, enrichi
d’une mémoire limitée des décalages de couleurs sur chaque chemin (alignement partiel). En
bref, tout décalage de couleur qui n’est pas “corrigé” (suivi par d’autres décalages qui mèneront
éventuellement à la même base dans les deux séquences de nucléotides) après un certain nombre
de paires de couleurs est considéré comme une erreur de lecture.
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Expériences

Les concepts présentés ci-dessus ont été mis en œuvre dans un outil expérimental de read map-
ping. Les expériences montrent la compétitivité des graines conçues avec notre approche par
rapport aux autres logiciels de read mapping existants.

Perspectives

L’objectif principal de ce travail est de proposer un cadre de conception de graines adaptées
à l’alignement des reads SOLiD avec une séquence génomique de référence. Les contributions
comprennent le concept de graine positionnée, particulièrement adapté pour des alignements
courts avec une distribution d’erreurs non-uniforme; un modèle qui capture les caractéristiques
statistiques des reads SOLiD, utilisé pour l’évaluation des graines avec perte; un algorithme
efficace de programmation dynamique pour vérifier si une graine ou une famille de graines est
sans perte; la capacité à distinguer les SNPs, les erreurs de lecture et les indels dans la conception
des graines sans perte; un algorithme pour l’alignement des séquences de couleurs, qui donne
la possibilité de distinguer les mutations et les erreurs de lecture; un outil expérimental de read
mapping qui met en œuvre ces concepts.

De futurs travaux comprendront une estimation plus précise des probabilités utilisées dans les
modèles. En outre, le logiciel Iedera peut bénéficier d’une extension permettant de concevoir
des familles de graines pour des stratégies de hit multiple. Une autre question intéressante à
étudier est la conception de graines efficaces qui sont à la fois avec perte et sans perte, donc qui
garantissent de trouver tous les alignements avec un certain nombre d’erreurs et qui continuent
à avoir une bonne sensibilité lorsque ce seuil est dépassé. Toutefois, puisque les graines sans
perte ont tendance à avoir une structure régulière [109], tandis que les meilleures graines avec
perte sont souvent asymétriques et irrégulières, obtenir telles graines peut être difficile.

Conclusions

Cette thèse porte sur la conception d’algorithmes d’alignement exacts et heuristiques pour
répondre à deux problèmes complexes de similarité de séquences: i) la détection d’homologies
cachés entre les protéines par comparaison de séquences protéiques, lorsque la source de la diver-
gence est dû à des mutations qui changent le cadre de lecture, et ii) le mapping de reads SOLiD
(séquences de di-nucléotides chevauchants codés par des couleurs) sur un génome de référence.

L’approche proposée pour le premier problème est basée sur des modèles d’évolution de
codons. Les origines communes des protéines sont recherchées par alignement implicite de toutes
leur séquences d’ADN possibles, stockées efficacement dans des graphes de traduction inverse.
Les propriétés de triplet de l’ADN codant sont capturées dans l’algorithme de programma-
tion dynamique conçu pour aligner ces graphes et dans son système de scores. Contrairement
aux algorithmes classiques d’alignement de séquences, cette approche ne fait pas l’hypothèse
d’indépendance entre les paires de symboles alignés. Le système de scores prend en compte la
traduction des séquences alignées, afin d’obtenir des alignements qui reflètent la dynamique des
séquences codantes.

Pour le deuxième problème, les solutions algorithmiques proposées intègrent les connais-
sances sur les caractéristiques de l’encodage SOLiD et sur les artefacts de cette technologie de
séquençage. Ces deux aspects sont capturés par des modèles probabilistes. Le double codage
des nucléotides en couleurs adjacentes est géré par l’interprétation implicite des séquences de
couleurs comme des séquences ADN, en tenant également compte des erreurs de lecture possibles.
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L’accent est principalement mis sur la conception de graines espacées efficaces qui permettent
d’identifier les positions candidates des reads sur le génome de référence. Cette étape a des effets
importants sur la qualité et la vitesse du processus de read mapping.

En conclusion, dans les deux cas, la même idée générale est appliquée: la comparaison im-
plicite des séquences d’ADN pour la détection de changements qui se produisent à ce niveau, lors
de la manipulation, en pratique, d’autres représentations (séquences de protéines, des séquences
de codes di-nucléotides). Ces autres représentations fournissent à chaque fois des informa-
tions supplémentaires et aident à améliorer la recherche de similarités. La thèse propose des
méthodes génériques pour résoudre les problèmes abordés, ainsi que des implémentassions pour
ces méthodes, librement disponibles pour l’utilisation en ligne ou en téléchargement.

Ce travail ouvre de nouvelles perspectives dans la conception de modèles et d’algorithmes
adaptés aux problèmes spécifiques d’alignement de séquences, et soutient l’idée de comprendre et
d’utiliser les propriétés statistiques des séquences alignées, en les capturant dans des algorithmes
d’alignement dédiés, des fonctions de scores associées, et des concepts de graines adaptés à ces
propriétés.

11
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Introduction

Biological sequence alignment is a fundamental technique in bioinformatics, and consists of iden-
tifying series of similar (conserved) characters that appear in the same order in both sequences,
and eventually deducing a set of modifications (substitutions, insertions and deletions) involved
in the transformation of one sequence into another. This technique allows one to infer, based on
sequence similarity, if two or more biological sequences are potentially homologous, i.e. if they
share a common ancestor, thus enabling the understanding of sequence evolution.

From a computational perspective, sequence comparison methods are strongly related to
string editing, since biological sequences are usually represented as strings over a certain al-
phabet: the alphabet of the four nucleotides for DNA sequences, or the alphabet of the twenty
amino acids for proteins. The relatedness of the aligned sequences is quantified by the score
assigned to their alignment, which comprises the scores associated (usually independently) to
individual pairs of aligned characters, reflecting their similarity. Algorithms generally employ
a dynamic programming approach in order to obtain the best sequence alignment with respect
to a certain scoring scheme. The first such algorithms [75,150,188] and scoring systems [51,86]
were proposed several decades ago, and continue to be used in practice. Later on, the emer-
gence of DNA sequencing technologies [170,176,181] led to impressive amounts of data becoming
available and needing to be analyzed. Thus, in complement to exact alignment algorithms, fast
heuristic approaches [11,130,164] have been developed in order to cope with very large sequences
whose exact alignment would require an unreasonable computation time. These heuristics are
based on the assumption that sufficiently related sequences must share at least a well conserved
region, called seed. The approach basically consists of identifying that region if it exists, and
then constructing an optimal alignment around it.

This generic algorithmic recipe is suited for most classic problems of protein or DNA sequence
comparison. Nevertheless, with the increasing amounts of available data and the wide range of
new applications, specific problems have emerged that may require many aspects of the general
framework to be adapted to their characteristics. Various approaches subsequently developed
have shown that for instance, the procedures of handling pairs of aligned symbols and gaps within
the alignment algorithm [15,16,39,79,85,106,113,166,168,214], the scoring scheme [40,65,167],
or the similarity patterns considered “relevant” in seeded alignments [26, 216] can be adjusted
to incorporate knowledge about a certain problem and thus capture the degree of similarity
between the compared structures. Moreover, much attention has been channeled towards the
actual design of similarity patterns sought by seeds in order to comply with models capturing
the characteristics of the aligned sequences [30,31,99,105,110,133].

This thesis addresses sequence comparison problems in two different contexts: homology
detection and high throughput DNA sequencing.

The use of sequence comparison as an instrument for homology detection relies on the known
fact that gene duplication followed by divergence plays an impressive role in evolution [4].
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Introduction

“Natural selection merely modified, while redundancy created” [158] is a hypothesis formu-
lated decades ago in an attempt to explain major advances in evolution, such as the transition
from single cell life forms to complex multicellular organisms [145]. Later on, studies on com-
pletely or nearly completely sequenced genomes from a wide range of organisms have shown
that a large proportion of genes have indeed been generated via duplication, while the origin of
others is thought to reside in this mechanism, but the proof is hindered by their advanced diver-
gence [213]. As such, while sequence similarity is considered to be strong evidence of homology,
it does not guarantee homology if present, and conversely sequences that seem dissimilar are not
necessarily unrelated, hence the need for comparison methods powerful enough to reveal sequence
similarities that are actually relevant to homology.

Sequence divergence after duplication is the result of various types of mutations, such as
substitutions, insertions, deletions of nucleotides. If they affect a coding sequence, i.e. a piece
of DNA that encodes a protein with a certain function within the organism, these modifica-
tions implicitly influence the product of that sequence, namely the protein translated from it,
and may change its function or make it nonfunctional. A particularly interesting homology
detection problem consists in finding similarities between proteins having diverged as result of
a frameshift. Frameshifts are insertions or deletions of several nucleotides in a coding DNA
sequence. A single frameshift mutation introduces a drastic change in the translated protein
sequence, completely changing the translation after the frameshift, while having a small effect on
the affected DNA sequence, most of which is left unchanged. However, if additional nucleotide
substitutions are further involved in the divergence, the similarity at the DNA level may be
reduced beyond recognition. With such important changes occurring in the DNA sequences and
their translations, classic alignment algorithms are likely to fail at detecting the homology, both
at the DNA and protein sequence level. Algorithmic solutions for this problem are proposed in
Part II of the thesis.

Homology detection is not the only context where biological sequence analysis relies on se-
quence comparison. Alignment methods are a key ingredient in assembling or mapping onto
a reference genome short “reads” produced by high throughput sequencing technologies, rep-
resenting pieces of the target sequence that can range from tens to hundreds of symbols. In
the context of read mapping, one of the challenges resides in the identification of the candidate
mapping position on the reference sequence for each read, which basically requires fast detection
of relevant similarities between the read and the reference. The identification, as well as the
alignment itself of the read onto the reference sequence, must cope with possible sequencing
errors and technology artifacts that may alter the reads, in addition to biological variations.

One particular sequencing technology, the SOLiD platform [1], features a 2-base encoding
with an error-correcting capability with the purpose of improving the distinction between se-
quencing errors and biological variations. Basically, instead of being a sequence of nucleotide
symbols, a SOLiD read is a sequence of four possible colors, each color encoding two consecutive
nucleotides and each nucleotide being comprised in two consecutive colors in the sequence. Be-
cause of the dually encoded nucleotide information in adjacent colors, read positions cannot be
interpreted independently, which prevents classic pairwise alignment algorithms from capturing
the DNA sequence similarities by simple color sequence alignment, since classic alignment meth-
ods generally handle pairs of aligned symbols independently. Instead, biological modifications
and reading errors can be recognized and distinguished by analyzing several consecutive color
positions simultaneously. This problem is approached in Part III of the thesis, which discusses
methods adapted to its characteristics.

To sum up, the goal of this work is to develop sensitive alignment methods that provide

14



solutions to the following two problems: i) the detection of hidden protein homologies by pro-
tein sequence comparison, when the source of the divergence are frameshift mutations, and ii)
mapping short SOLiD reads (sequences of overlapping di-nucleotides encoded as colors) to a
reference genome. In both cases, the same general idea is applied: to implicitly compare DNA
sequences for detecting changes occurring at this level, while manipulating, in practice, other
representations (protein sequences, sequences of di-nucleotide codes) that provide additional in-
formation and thus help to improve the similarity search. The aim is to design and implement
exact and heuristic alignment methods, along with scoring schemes and evaluation techniques,
adapted to these scenarios.

Structure of this thesis

Part I of this thesis gives the state of the art, introducing biological concepts and algorithmic
methods that constitute the basis of the work presented in the rest of the thesis.

As such, Chapter 1 presents the biological entities involved in the problems addressed by
this thesis. It first presents nucleic acids (DNA and RNA) and proteins, with their respective
physical and chemical properties and their roles within the organisms. It further gives an
overview of the central dogma of molecular biology, which is fundamental for understanding the
flow of information from coding sequences (DNA, RNA) to those ensuring the functioning of the
organism (proteins). A section on the subject of mutations, which are at the origin of evolution
and whose discovery is the target of sequence comparison methods, concludes this chapter.

Chapter 2 gives an overview of sequencing technologies which allow “reading” the genome
and produce data for its computational analysis. The DNA replication presented briefly in the
previous chapter in the context of the central dogma of molecular biology creates a foundation
for understanding the chemistry behind sequencing.

Chapter 3 gives a computational perspective of sequence comparison. First, classic algo-
rithms for pairwise sequence alignment are presented, followed by an overview of existing scoring
systems for sequence comparison, and the methods employed for their creation. The final part
of this chapter focuses on heuristic methods based on seeds for detecting similarities in large
sequence databases, and discusses the design of spaced seeds adapted for a specific sequence
comparison problems.

Part II addresses the problem of finding hidden protein homologies whose divergence is caused
by a frameshift, using direct protein comparison.

First, Chapter 4 introduces the problem, gives a related work overview and summarizes
the contributions of this part.

The proposed alignment method is presented in Chapter 5. After describing the concept
of protein back-translation on which the approach relies, and introducing the representation of
proteins as back-translation graphs, a new dynamic programming algorithm for aligning two such
graphs is proposed. Within this algorithm, frameshifts are handled via a non-monotonic gap
penalty function, where insertions and deletions of full codons are penalized less than reading
frame disruptive gaps. Additionally, since frameshifts are considered to be very rare events, the
algorithm offers the possibility to restrict their number in an alignment. This algorithm is used
in conjunction with a powerful scoring system designed to reflect the actual evolution process
from a codon-oriented perspective.

To facilitate large scale analysis, Chapter 6 proposes seeding techniques for the search of
protein similarities when frameshifts are involved in their divergence.
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The approach is illustrated in Chapter 7 with several alignment examples of known and hy-
pothetical frameshifted proteins, some of which are not detectable via classic alignment methods
because of the low coding sequence similarity.

Part III proposes solutions for mapping to a reference genome short reads obtained by next
generation sequencing technologies, and focuses on the SOLiD platform in particular.

Chapter 8 first describes the SOLiD encoding and presents the observed artifacts of the
platform, in order to explain the difficulties encountered in the context of mapping SOLiD reads,
and continues with overview of existing approaches (algorithms and tools). The contributions
are then announced in a summary of the following three chapters.

Chapter 9 focuses on a seed design framework based on Hidden Markov Models of read
matches, using a formal finite automata-based approach previously developed in [110]. The
framework allows the design of spaced seeds, both lossless and lossy, based on a probabilistic
model of SOLiD read alignments incorporating reading errors, SNPs and base indels, A new
seeding principle especially adapted for read mapping is proposed, relying on the use of a small
number of seeds designed simultaneously with a set of position on the read where they can hit.
This principle of positioned seeds allows taking into account, in a subtle way, read properties
such as a non-uniform distribution of reading errors along the read, or a tendency of reading
errors to occur periodically, which are observed artifacts of the SOLiD technology.

Chapter 10 discusses a “base-intelligent” alignment method designed for color sequences,
which makes use of the encoding’s error-correcting properties and implicitly takes into account
the similarity at the DNA sequence level, thus improving the distinction between reading errors
and biological variations.

Finally, Chapter 11 presents an experimental read mapping tool designed for SOLiD which
implements these idea, discussed in comparison with several existing read mapping applications.

The thesis concludes with a brief overview of the contributions and perspectives.
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Chapter 1

Biological context

This chapter presents the biological context of the problems approached in the thesis. It intro-
duces notions related to the biological entities and processes that are the object of our work.
Hence, we begin by overviewing the characteristics of information-carrying biopolymers, with
focus on DNA and proteins. We then proceed to present the basics of the central dogma of
molecular biology, which aims at explaining the information transfer between DNA, RNA and
protein sequences through the transcription and translation processes. Finally, we discuss dif-
ferent types of mutations and their possible effects on the functioning of the affected organism.

1.1 Nucleic acids

1.1.1 The deoxyribonucleic acid (DNA)

Role within the organism

DNA is a macromolecule forming the genome of living organisms. It can be considered the source
code of life, because it stores the genetic information necessary for development, functioning
and reproduction. The DNA is found in the cytoplasm of prokaryotic organism cells, whereas in
eukaryotic organisms it is contained in majority inside the cell nucleus, and in small proportions
inside organelles such as mitochondria. In multicellular eukaryotes, each nucleated cell has a
full copy of the genome, since DNA possesses the genetic information that ensures heredity and
thus it is essential for cell reproduction.

DNA is organized in chromosomes. A chromosome consists of a single, very long DNA
molecule that contains a linear array of many genes, regulatory elements and other nucleotide
sequences, along with DNA-bound proteins, which serve to package the DNA in a compact form
and control its functions. Genes are the DNA regions that carry the genetic information. In
addition to these, DNA has other regions with structural purposes, or involved in regulating
the expression of genes. Different variants of a gene that can appear at a given locus (specific
location on a chromosome) are called alleles [5]. While the DNA of prokaryotes has relatively
few non-coding regions, in more complex organisms the majority of the DNA remains without a
clearly identified function. As an example, approximately 2% of the human genome is actually
protein-coding [178].
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Chapter 1. Biological context

Figure 1.1: DNA double helix (schematic repre-
sentation).
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Figure 1.2: The chemical structure of the DNA.

Chemical structure

DNA is usually found as a double strand, forming the famous double helix model (Figure 1.1)
that was published by James Watson and Francis Crick in 1953 [207], as evidenced in the X-ray
diffraction images taken in 1952 by Rosalind Franklin and Raymond Gosling [63].

Figure 1.2 zooms in on the chemical structure and gives a schematic representation at the
atomic level of a small DNA segment (4 base pairs), in order to illustrate the following details
concerning the actual composition.

The DNA consists of two long polymers of units called nucleotides. The two polymers have
backbones made of five-carbon sugars (deoxyribose) linked by phosphate groups, and each sugar
is attached to one of four types of molecules called nucleobases, or simply bases (Figure 1.3):
adenine (A), guanine (G), cytosine (C) and thymine (T). The nucleotide is composed of one
base, one sugar (together forming a compound called a nucleoside) and one phosphate [120].
Adenine and guanine are known as purines, and resemble in that they have a double ring in
their chemical structure, while cytosine and thymine are called pyrimidines, and have a single
ring [87]. It is the succession of these bases in the DNA sequence that encodes the
entire genetic information of a living organism.

The carbons in the sugar are conventionally numbered from 1 to 5, and the phosphate groups
are linked to carbons 3 and 5 (Figure 1.5). At one end of the polymer, the last carbon in the
chain is a number 5 carbon, and at the other end, the last carbon is a number 3, thus the names
5’ end and 3’ end. It is considered that a strand begins at 5’ and ends at 3’, to comply with the
direction of reading the genetic information [87].

The two polymers (strands) are held together by hydrogen bonds between the bases A and
T and between C and G (Figure 1.4). The paired bases are called complementary (A is the
complementary of T and forms with it 3 hydrogen bonds, and C is the complementary of
G, forming two hydrogen bonds with it). The two strands have completely complementary
sequences and opposite directions (the 5’ end of one strand corresponds to the 3’ end of the
other, i.e. they are antiparallel) and they are coiled around one another in the shape of a double
helix [207].
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1.2. Proteins
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Figure 1.3: The five bases that can be found in DNA and RNA: adenine, cytosine, guanine (DNA and
RNA), thymine (DNA), uracil (RNA).
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1.1.2 The ribonucleic acid (RNA)

Also a polymer of nucleotide units, RNA differs from DNA in both structure and function in
several ways. First, RNA is usually a single-stranded, much shorter molecule. Secondly, the
sugar contained in the RNA nucleotides is a ribose (similar to the deoxyribose sugar from the
deoxynucleotides forming the DNA, with an extra hydroxyl group attached to carbon number
2, see Figure 1.5), which makes RNA less stable than DNA because it is more prone to hydrol-
ysis [19]. Finally, the complementary base to adenine is not thymine, as in DNA, but another
pyrimidine called uracil (U) [19] illustrated in Figure 1.3, and some RNAs (such as tRNA) may
contain a variety of modified bases, especially by methylation [56,189].

Function-wise, there are several known types of RNA, involved in cellular processes such as
regulation, translation, RNA processing. Two of these, messenger RNA (mRNA) and transfer
RNA (tRNA), will be explained in Section 1.3 in the context of protein synthesis.

1.2 Proteins

Role within the organism

Proteins play an essential part in the functioning of an organism. They are actively involved in
the vast majority of cellular processes [131]: biochemical reaction catalysis (enzymes), transport
and storage of nutrients and other molecules, regulatory functions (hormones), defense (anti-
bodies), providing structural rigidity to the cell (strengthening protective coverings such as hair,
feathers, horns, and beaks, or providing support for connective tissues such as tendons and
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ligaments) or causing motion (such as muscle contraction).

The function of a protein is determined by its shape in three dimensions, which depends on
its chemical composition and is influenced by environmental factors [20,131].

Chemical structure

A protein is a chain of (usually several hundreds of) units called amino acids. These amino acids
are organic compounds having an amine group (NH2) and a carboxylic acid (COOH) linked to
a carbon atom called the α carbon [20]. Their general structure is depicted in Figure 1.6. The
amino acids are chained via a peptide bond, formed by removing an OH from one amino acid
and a H from the next, with the release of a water molecule [20], as illustrated in Figure 1.7.
At the two ends of a protein, there remain an unlinked amine (NH2) and an unlinked carboxyl
(COOH) respectively, hence the names N terminus and C terminus. The order of amino acids
in the chain is considered conventionally from the N terminus to the C terminus, to comply with
the sense of the protein’s synthesis [87] (see Section 1.3).

The proteins of most organisms are composed of the 20 amino acids shown in Figure 1.8. In
some eukaryote proteins, a 21st amino acid called Selenocytosine may appear [90]. The amino
acids differ by the nature of their side-chain group, denoted R in Figure 1.6, and attached to the
α carbon. The succession of amino acids in the chain defines the protein sequence
(also known as primary structure).

The 4 atoms involved in the peptide bond are located in the same plane and cannot rotate
relatively to one another. Thus, the shape of the protein backbone is mostly given by the bonds
involving the α carbon [87].

The protein’s secondary structure (Figure 1.9) is given by the general three-dimensional form
of local segments, defined by patterns of hydrogen bonds between backbone amide and carboxyl
groups. The most common secondary structures are α helices (in which every backbone NH
group donates a hydrogen bond to the backbone CO group of the amino acid four positions
earlier) and β sheets (consisting of two parallel or antiparallel strands in which the NH groups
in the backbones of one strand establish hydrogen bonds with the CO groups in the backbone
of the adjacent strand). The tertiary structure is defined by specific atomic positions in three-
dimensional space, and finally the quaternary structure refers to the arrangement of multiple
folded macromolecules in a complex [20].
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Figure 1.9: Protein structure levels.
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In the following (Part II), we will not discuss protein folding and interactions. We will mainly
be interested in the protein’s primary structure, since we search for similarities at the sequence
level. A protein’s sequence of amino acids is encoded in the genome by its corresponding gene,
and is synthesized as explained in Section 1.3.

1.3 Central dogma of molecular biology

The central dogma of molecular biology, first stated by Francis Crick in 1958 and published in
1970 [45], aims at explaining the transfer of sequence information between biopolymers (nucleic
acids and proteins) in living organisms.

Basically, the dogma states that DNA acts as a template to replicate itself, DNA is also tran-
scribed into RNA, and RNA is translated into protein. The information transfer is schematically
illustrated in Figure 1.10.

1.3.1 Transcription

As mentioned in Section 1.1.1, genes are regions of DNA that contain the information necessary
for defining the primary structure of RNA and proteins.

The synthesis of an RNA copy of a coding DNA region is called transcription, and it is
performed by an enzyme called RNA polymerase. During transcription, the two DNA strands
are temporarily separated. The polymerase binds to one of the strands, called template strand,
and, sliding from its 3’ end towards the 5’ end, it catalyzes the chaining of ribonucleotides in a
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1.3. Central dogma of molecular biology

RNA strand that is complementary to the template, and therefore equivalent to the non-template
strand of the DNA being transcribed [6].

Splicing

The RNA resulting from the transcription is called messenger RNA (mRNA), and contains
the information necessary to produce the protein, along with some regions that will not be
translated. In prokaryotes these untranslated regions are rather short and located only at the
ends of the RNA sequence. In eukaryotes the composition of the newly transcribed RNA (called
pre-mRNA) is more complex and requires additional processing before translation. Eukaryotic
gene sequences are composed of alternating regions: exons, holding the information for protein
coding, and introns that do not contain protein-coding information and will not be translated [7].
The removal of introns from the RNA in order to obtain a contiguous sequence formed only from
exons is called splicing and is performed by the spliceosome, a complex of several types of RNA
and proteins [88].

In eukaryotes, both the transcription and the RNA processing take place in the cell nucleus.
Then, resulting mRNA is then transported out of the nucleus, and its translation is done in the
cytoplasm.

1.3.2 Translation

The genetic code

The mRNA, a sequence of 4 possible types of nucleotides, contains the information for producing
a protein, a chain formed with (usually) 20 possible types of amino acids. To build the protein
sequence using mRNA as a template, the mRNA is read from its 5’ end to the 3’ end, in groups
of 3 bases called codons, and each codon is interpreted as an amino acid [46] (Figure 1.11). The
contiguous and non-overlapping set of 3 nucleotide codons is known as reading frame. Since there
are 43 = 64 different codons that can be obtained with the four nucleotides, and 20 amino acids,
this encoding is redundant, and at least some of the amino acids have several corresponding
codons. However, the code is not ambiguous: a codon cannot encode more than one amino acid.

The general rules of association between codons and amino acids are known as the genetic
code [44,46,138,152,153], given in Figure 1.12. In this standard genetic code, 61 of the 64 codons
encode amino acids, and the remaining 3 codons, namely UAA, UAG and UGA, are called stop
codons and mark the termination of a coding sequence (translation is not carried beyond this
marker). The codon AUG, encoding the amino acid Methionine, is also known as the start
codon, since it is the point where translation is normally initiated. Out of the 20 amino acids,
two are encoded by a single codon (Methionine and Tryptophan), 9 have 2 corresponding codons,
one (Isoleucine) can be obtained from 3 different encodings, 5 amino acids have 4 codons each,
and 3 (Arginine, Leucine and Serine) are encoded by 6 different codons. It can be observed
that the codons corresponding to the same amino acid are very similar, and usually they have
different bases only on their 3rd position. This rule is valid for all amino acids encoded by 2, 3
or 4 codons, but does not fully apply to those that are encoded by 6 codons, although each of
them has two subsets of 4 and 2 codons respectively that have two identical positions. Thus, the
codon sets of Arginine and Leucine also present differences on their first position, and Serine
has encodings that differ on all three positions.

When initially discovered, this code was considered universal [44]. Later on, it was found that
this code is extremely common, but not completely universal. It applies to almost all prokaryote
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genomes and to the nuclear genomes of most eukaryotes. Different interpretations of several
codons were found in mitochondrial genomes [103] and some eukaryotes [57]. For example,
alternative start codons, such as GUG or UUG, have been discovered in some mammalian
species [201], as well as in bacteria and archaea [57]. Also, in certain proteins, stop codons are
interpreted as non-standard amino acids, as is the case of Selenocytosine being translated from
the codon UGA [57,90].

Protein synthesis

Proteins are synthesized by ribosomes using mRNA as a template. The ribosome is a complex of
RNAs and proteins, and has two subunits: a small subunit that binds to the mRNA, and a large
subunit that binds to the transfer RNA (tRNA) which carry the amino acids that will compose
the resulting protein. The transfer RNA (tRNA) is folded in a clover shape (Figure 1.13), and
its key element is a sequence of 3 bases called an anticodon. Each tRNA contains a specific
anticodon that can form complementary base pairs with one or more codons in the mRNA
which encode a certain amino acid.

The protein synthesis process is illustrated in Figure 1.14. The ribosome slides along the
mRNA reading codon by codon, and facilitates the binding of the tRNA with the corresponding
anticodon to the mRNA. The tRNA is carrying the appropriate amino acid, which is removed
and attached to the C terminus of the protein chain under construction. The tRNA is then
detached and can be recharged and reused. Translation ends when the ribosome reaches a stop
codon, which does not have a matching tRNA. Instead, a protein known as release factor triggers
the release of the completed protein from the ribosome [87].

1.3.3 DNA replication

DNA replication is fundamental for cell division in all living organisms, and constitutes the basis
for biological inheritance. During DNA replication, each of the two strands of the original DNA
serves as a template for the creation of a new strand. The two resulting DNA molecules will
inherit one strand from the original DNA and a newly synthesised complementary strand.
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Figure 1.13: Cloverleaf structure
of the tRNA.
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Image source: http://en.wikipedia.org/wiki/File:Ribosome mRNA translation en.svg

Figure 1.14: Protein synthesis.

Image source: http://en.wikipedia.org/wiki/File:DNA replication en.svg

Figure 1.15: DNA replication. At the “replication fork”, the helicase breaks the hydrogen bonds in
the double helix and SBB proteins separate the strands, while the topoisomerase keeps the DNA from
tangling. On the leading strand, the polymerase copies the sequence from 5’ to 3’. The lagging strand is
copied also from 5’ to 3’, in short fragments (Okazaki fragments) initiated by RNA primers and connected
by the DNA ligase.
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The replication process is illustrated in Figure 1.15. It is initiated in regions of the DNA
molecule called replication origins [21] which are rich in adenine-thymine pairs, mainly because
these pairs only have two hydrogen bonds, hence being easier to separate [132]. Proteins called
DNA helicases and single-strand DNA-binding (SSB) proteins break the double helix and sepa-
rate the two DNA strands, forming a Y-shaped structure (hence the name “replication fork”) [7].

On each strand, a highly accurate self-correcting DNA polymerase enzyme catalyzes nu-
cleotide polymerization in a 5’-to-3’ direction, copying the DNA template. The free nucleotides
contain 3 phosphate groups, two of which are removed when the nucleotide is incorporared in
the chain. The polymerase is not capable of initiating a sequence, as it works by extending the 3’
end of an existing sequence paired with the DNA template. To cope with this, short fragments
of RNA called primers are created by an enzyme called primase and serve as starting-points for
the polymerase. The two DNA template strands being antiparallel, the 5’-to-3’ DNA synthesis
can take place continuously on only one of them (the leading strand). On the other (the lagging
strand), the synthesis is discontinuous, and occurs in patches of short DNA fragments (approx-
imately 250 base pairs) known as Okazaki fragments, initiated by RNA primer molecules [7].
The primers are then replaced with DNA by a polymerase and the fragments are connected by
another enzyme called ligase, in order to obtain a contiguous strand.

The DNA polymerase has proofreading capabilities, being able to remove the nucleotide at
the 3’ end if that nucleotide does not match the template. The estimated fidelity of DNA
polymerization ranges between 10−7 and 10−8 [114], and is remarkably higher (up to 100 000
times) than RNA polymerization [7]. Yet, although very accurate [141], this error correcting
mechanism is not perfect, which places replication errors among the possible causes of changes
(mutations) in the DNA sequence: the polymerase may chain the wrong nucleotide and fail to
correct it, or may “slip” a few bases (especially in repeating regions, where proofreading is likely
to be mislead by the repeated matching pairs) [88].

DNA replication is also achievable in vitro, by using DNA polymerases isolated from cells and
artificial DNA primers. The technique is called polymerase chain reaction (PCR) [148,180], and
is based on cyclic enzymatic replications of the DNA. As PCR progresses, the generated DNA
becomes a template for replication, maintaining a chain reaction in which the DNA template is
exponentially amplified. PCR has various applications in biological and medical research. One
of them is DNA cloning involved in several of the sequencing technologies that we discuss in
Chapter 2.

1.4 Mutations

Mutations are chemical changes in the DNA sequence of a cell’s genome. They are caused either
by external factors such as radiation, viruses, mutagenic chemicals [132], by transposons [140]
(stretches of DNA can relocate to different positions within the genome of a cell), by internal
cellular mechanisms like somatic hypermutation (which enables the immune system to adapt
and learn to recognize new foreign elements [101]) or by flaws occurring in the process of DNA
replication. While some mutations contribute to evolution by enabling the generation of new
functions in order to find a proper response to stress conditions [4], many are harmful and are
associated with a wide range of medical conditions such as blood disorders, neurological disorders
or cancers [24,41,84,98,116,132,143,149,161,196,217].

Mutations can either affect only several nucleotides, or they can be large-scale modifications
of long DNA segments spanning one or more genes that are duplicated, deleted, moved or
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reversed [88]. We will further give details regarding small-scale mutations, since these are the
mutations we mainly aim at revealing with our proposed methods.

Point mutations are substitutions of one nucleotide in the DNA sequence for another type
of nucleotide. A substitution of one purine for another (A ↔ G) or one pyrimidine for an-
other (C ↔ T) is called a transition. Substitutions between purines and pyrimidines are called
transversions.

Point mutations can have different effects, according to the place where they occur and the
nature of the substitution. If the substitution takes place in a non-coding DNA region with no
actual function, it will most likely have no effect. Mutations in functional non-coding regions,
such as regions that contain signals regulating the initiation and termination of transcription
and translation, will have significant effects on the controlled gene’s level of expression [88].
Finally, a point mutation in coding DNA may change one amino acid in the sequence translated
from that gene, depending on the codon it modifies and the nature of the modification:

• Synonymous substitutions change a codon into another that encodes the same amino acid.
They are silent mutations, i.e. they have no effect on the functioning of the resulting
protein. As can be seen in Figure 1.12, most transitions occurring on the third position of
a codon are silent. It is also the case of some third position transversions (for amino acids
encoded by 3, 4 or 6 codons), as well as for some first position substitutions in the codons
of Arginine or Leucine.

• Non-synonymous mutations are substitutions that change the codon so that it no longer
encodes the same amino acid. These mutations are classified as missense – when the new
codon encodes a different amino acid, and nonsense – when the new codon is a stop codon.

Nonsense mutations are almost always harmful since their consequence is the premature
termination of the protein. An illustrative example in this case is the nonsense mutation
causing cystic fibrosis [24]. Missense mutations may contribute to evolution by helping
to create new gene functions, but several have been shown responsible for diseases such
as epilepsy [143] or sicke-cell anemia [196] (a disorder causing premature death, but also
conferring resistance to the malaria virus), as well as a variety of cancers [41,98,149,161].

A variation in a DNA sequence that consists of a single nucleotide in the genome being
different between members of a species, with sufficiently frequent occurrences of the variants
within the population (at least 1%), is called a single nucleotide polymorphism (SNP). SNPs
are usually considered to be point mutations that have been evolutionarily successful enough to
recur in a significant proportion of the population [204].

Insertions and deletions of one or more nucleotides (commonly referred to as indels)
can also vary in effects depending on where they take place in the DNA sequence. Of particular
interest are indels that occur in coding sequences. The triplet nature of gene expression by
codons makes them easily corruptible by indels. If the number of inserted or deleted nucleotides
is not a multiple of 3 (the length of a codon), the reading frame is disrupted, resulting in a
completely different translation after the point of insertion or deletion. Such mutations are
known as frameshift mutations [194]. They are drastic changes of the coding sequence and are
likely to cause loss of function or malfunctioning to the affected gene.

Several known frameshift mutations are associated with diseases such as hereditary hemolytic
anemia [84], antithrombin deficiency and thrombosis [160], or renal failure [8].
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However, the loss of function does not necessarily have completely destructive effects on the
organism. As such, some frameshifts are correlated with changes defining an entire species. It
is the case of a gene encoding the predominant myosin heavy chain (MYH), inactivated by a
frameshift mutation after the lineages leading to humans and chimpanzees diverged [190]. This
mutation deprives humans from the powerful masticatory muscles found in other primates, and
explains the smaller jaw conformation. Another classic example of frameshift is given by the
alleles of the ABO gene associated with the ABO blood group system [50, 211] in humans and
several other animals, which basically gives a classification depending on the types of antigens
(molecules recognized by the immune system) present in the organism. The ABO locus has
three main allelic forms: A, B, and O. The products of A and B have enzymatic activities, and
catalyze modifications of the antigen present in all blood types (the H antigen). The O allele
differs from the A allele by of a single missing nucleotide, causing frameshift and thus encoding
an almost entirely different protein without this enzymatic activity, hence the H antigen remains
unmodified in individuals that only possess the O allele.

Moreover, some frameshifts were shown to have triggered functional diversification. Several
cases of functional genes created via duplications followed by frameshifts were reported by a
study on the human genome [159]. Additionally, in [82], the authors determined some human-
specific frameshift mutations producing functional proteins by comparison with the chimpanzee
genome. Another experiment consisting of screening an exhaustive set of vertebrate gene families
showed that, when a second functional copy of the original gene compensates for this mutation,
frameshift mutations can be retained for millions of years and enable new gene functions to be
acquired [172]. As a final example, [64] shows that frameshift mutations are involved for struc-
tural and functional diversification of the venom system in the advanced snakes. These findings
supports the idea that frameshift mutations, although very disruptive, can be an instrument of
evolution.

In conclusion, mutations cause genomic sequences to diverge, and their effects – if any – on
the affected organism vary from function diversification to function loss or disease. The common
origins of genomic sequences of different individuals or species and the mutational events that
may have caused their divergence can be inferred via sequence comparison methods. An overview
of the most common approaches for biological sequence comparison is given in Chapter 3.
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Chapter 2

DNA Sequencing

To be able to perform computational analysis of the information enclosed in the genome, the
DNA sequence (i.e. the exact order of nucleotides in the DNA molecule) needs to be deter-
mined. This is achieved via DNA sequencing methods. In this chapter, we give an overview of
several sequencing methods, from the initial approaches [139, 181] to the platforms most used
currently [1, 61, 137, 202] that combine parallel chemical processes and digital imaging to boost
the sequencing throughput, and to the newly emerging methods that promise to reduce or elim-
inate the need for expensive reactants and hardware [25, 200]. Among these technologies, we
focus on the SOLiD [1] platform, which features a specific error-correcting read encoding, and
for this reason requires read mapping methods that are adapted to the encoding’s properties.

2.1 First approaches

Historically, the first notable sequencing methods were proposed by Maxam and Gilbert [139],
and by Sanger and Coulson [181] respectively.

2.1.1 Chemical sequencing: the Maxam method

The Maxam method, also known as chemical sequencing, relies on radioactive labeling at one
end of the DNA molecules and 4 separate reactions of targeted chemical destruction of each of
the 4 types of nucleotides, producing labeled fragments, the length of which marks the position
of a certain type of nucleotide in the sequence. The obtained fragments are then separated
by size via gel electrophoresis, a technique consisting of applying an electric field in order to
move molecules through a gel. Under the electric field, the molecules will migrate in the gel at
different rates, depending on their mass, which enables their separation by size. Consequently,
the sequence can be inferred from the relative position in the gel of each labeled fragment [139].
Initially very popular, this approach was then completely replaced by the Sanger method, which
had the advantage of relying on fewer dangerous chemicals and less radioactivity.

2.1.2 The chain-terminator method: Sanger

The Sanger approach is inspired by the DNA replication process. It involves the use of a DNA
polymerase and DNA primers to produce radioactively or fluorescently labeled DNA fragments
of all possible lengths, with the single-stranded DNA molecule to be sequenced as a template.
The core idea is the use of nucleotides containing a dideoxyribose sugar (Figure 2.1) that cannot
link to another nucleotide at the 3’ end. Once such a nucleotide is chained by the polymerase
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to the DNA fragment under construction, the extension is no longer possible and the fragment
is ended [181], hence the name of chain-terminator method.

Basically, a classic Sanger sequencing experiment begins with the amplification of the tem-
plate, either by cloning the randomly fragmented DNA into a high-copy-number plasmid im-
planted in Escherichiae coli, or via PCR with primers flanking the target [185]. Templates then
enter a “cycle sequencing” reaction [185], consisting of successive steps where the DNA strands
first are separated, then the primers, chosen to be complementary to a known sequence imme-
diately flanking the region of interest [185], are attached to the single-stranded template and
are subsequently extended. As mentioned above, a certain proportion of the nucleotides used in
the extension step are dideoxynucleotides , which force the extension to terminate. Either the
primers or the dideoxynucleotides are labeled with a fluorescent dye, the latter option allowing
the four reactions for detecting the four types of nucleotides to be carried simultaneously in the
same recipient [170]. In consequence, the label on each fragment resulting from this extension
will correspond to the nucleotide identity on its terminal position [185]. A well-proportionate
combination of deoxynucleotides and dideoxynucleotides will yield extension products with labels
for each position of the template.

The actual sequence is obtained by reading the result of electrophoretic separation of the
labeled fragments, via laser excitation of the fluorescent dyes and detection of the four color
emission intensities (Figure 2.2). The resulting gel image, consisting of bands of four different
colors, each band corresponding to the fragments of a certain length (also known as a Sanger
sequencing “trace”), is then submitted to computer analysis for translation into a base sequence
called a read [185].

Sequencing error probabilities can be additionally inferred by the dedicated read trans-
lation software, and actual quality values for each read base are computed in order to provide
reliable accuracy measures. A first program to obtain such quality scores for Sanger sequencing
was Phred [58,59]. The reading error probability calculation relies on parameters obtained from
data for which the correct sequence is known, and the quality score Qi of the base at position
i in the inferred sequence depends logarithmically on the error probability Pi for that position,
as shown in equation (2.1):

Qi = −10log10Pi. (2.1)

Similar quality-scoring methods were later developed for newer sequencing technologies.

Variations of the Sanger method have been intensively used for a wide variety of sequencing
tasks for over three decades [185]. Nevertheless, the new biological and medical research chal-
lenges call for faster, cheaper methods that facilitate reading and analyzing entire genomes of
complex organisms within days, at an affordable cost [183].

2.2 Next generation sequencing

The most important advantage of next generation sequencing technologies is the massively par-
allel throughput, enabling the processing of millions of sequence reads simultaneously [136],
which is a significant improvement over previous technologies. On the down side, the length of
the reads currently ranges from 35 to 250 base pairs, whereas the reads produced by advanced
implementations of the Sanger method can reach 1000 base pairs [185].

Several methodological choices contribute to the aforementioned throughput leap [136,185].
Reads are produced from fragment “libraries”, obtained by random fragmentation of DNA and
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ligation of common adapter sequences, either isolated or mate-paired with controllable distance
distributions. The amplification step is designed to reduce biases, hence the Escherichiae coli
transformation is completely replaced with advanced approaches such as emulsion PCR1 [53]
(Roche/454, SOLiD) or bridge PCR2 [2, 61] (Illumina/Solexa). In all cases, PCR amplicon
derived from a single molecule are spatially clustered, which facilitates the further process-
ing. Generally, the sequencing is performed by synthesis (extension of primers according to
a template), using either a polymerase (Roche/454, Illumina/Solexa) or a ligase (SOLiD). The
synthesis steps alternate with image acquisitions of the entire array of templates in progress, and
the successive captures of light signals carrying information about the molecules incorporated
at each step are then interpreted to infer the corresponding nucleotide sequence.

The remainder of this section discusses the particularities of the three main DNA sequencing
platforms that are currently available commercially.

2.2.1 Pyrosequencing: Roche/454

The 454 system [137] works on the principle of “pyrosequencing” [176], which engages the
pyrophosphate (or diphosphate) molecule released on nucleotide incorporation by the polymerase
in a set of reactions having as final result a light emission [136].

The platform uses DNA templates prepared by emulsion PCR. The resulted beads are de-
posited into individual wells, together with other reactants (polymerase that catalyzes the se-
quencing by synthesis, sulfurylase and luciferase that facilitate the light reaction). Individual
nucleotides are then added in a predetermined order. The incorporation of a nucleotide releases
a pyrophospate that produces light in the presence of other reactants, which is captured by a
charged-coupled-device (CCD) camera. The light signal is generally proportional to the number
of incorporated nucleotides if that number is up to approximately 6. This allows the machine to
correctly determine the length of small homopolymers. Concerning sequencing errors, the reads
obtained with this technique are more likely to be affected by sequencing errors derived from mis-
counting the incorporated nucleotides, i.e. insertions and deletions, especially in homopolymers,
rather than substitutions [144].

1DNA molecules and primer-coated beads are isolated in droplets of water in oil.
2Primers are covalently linked to a solid-support surface, forcing amplicons to remain immobilized and clustered

in a single physical location.
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2.2.2 Cyclic reversible termination: Illumina/Solexa Genome analyzer

The Illumina/Solexa Genome analyzer [61, 202] uses a technique called cyclic reversible termi-
nation, which basically implies cycles of incorporating a fluorescently modified chain terminator
nucleotide that represents the complement of the template base, capturing an image that helps
to determine its identity, and finally cleaving off the fluorescent dye and restoring the 3’ OH
group of the nucleotide, which enables the extension in the next cycle [144].

Within this platform, libraries are composed of adapter-flanked fragments with lengths that
reach several hundred base-pairs. The amplification process relies on bridge PCR [61], where
both forward and reverse PCR primers are immobilized on a solid substrate, such that all
amplicons produced from any single template molecule remain clustered to a single physical
location [185]. The resulting single stranded amplicons enter a cyclic sequence interrogation
process, as explained above. The most common sequencing errors that occur when using this
technique are nucleotide substitutions [144].

2.2.3 Sequencing by ligation: SOLiD

The AB SOLiD technology [43, 165] (Sequencing by Oligo Ligation and Detection), based on
the work described in [186] and [142], uses dye-labeled oligonucleotide probes in a sequencing-
by-ligation process catalyzed by a DNA ligase, one probe determining two nucleotide positions
from the template at a time. The sixteen possible 2-base combinations are encoded by four fluo-
rescent dyes (Figure 2.3 e), and the color-dinucleotide association features some error correcting
properties [1] that we will discuss below.

Basically, this sequencing technique follows several steps. First, the genomic DNA to be
sequenced is fragmented, and two specific adapter sequences are attached to the 5’ and 3’ ends
of each fragment. The fragments are amplified by emulsion PCR [53] on the surface of magnetic
beads, eventually resulting in beads enriched with PCR products from a single template, which
are deposited onto a glass slide.

Further, the actual sequencing process begins by annealing a universal sequencing primer
that is complementary to the adapters on the library fragments (Figure 2.3 a). Subsequently,
fluorescently labeled 8-mer oligonucleotides are successively hybridized on the template. The
oligonucleotides contain 6 universal bases (that can form pairs with any base on the template)
and two adjacent nucleotides at the 3’ end that identify a pair of bases at the corresponding
position on the template, correlated with the identity of the fluorescent labels at their 5’ end.
After annealing and ligation of the oligonucleotide at the 5’ end of the primer, the fluorescent
signal of the label is captured and measured, and bases 6-8 are then cleaved off, along with
the fluorescent dye, leaving 5 nucleotides to extend the primer, with a free 5’ phosphate group
available for the next ligation (Figure 2.3 b). Hence, positions p + 1 and p + 2 are correctly
base-paired after attaching one oligonucleotide, followed by the bases at distance 5 (p + 6 and
p + 7) being correctly paired with the next oligonucleotide, as shown in Figure 2.3 c. The
nucleotides at positions that do not fit this pattern are determined in subsequent rounds. Five
rounds consisting of several ligation cycles are necessary to cover the template (Figure 2.3 f).
At the beginning of each round, the position of the primer is shifted by one, thus enabling the
reading of a different subset of bases (Figure 2.3 d).

The colored labels registered after each ligation describe all the pairs of adjacent nucleotides
in the template. A SOLiD read (Figure 2.3 g) is a sequence of colors, each color representing two
nucleotides in which the second base of each dinucleotide unit constitutes the first base of the
following dinucleotide. The color sequence is prefixed by a base symbol (the last nucleotide of
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Figure 2.3: Sequencing by ligation technique used in the SOLiD technology. (a) Primer annealing and
hybridization of a fluorescently labeled 8-mer oligonucleotides on the template. (b) The fluorescent signal
of the label is captured and measured, and bases 6-8 are then cleaved off. (c) Positions p+1 and p+2 are
correctly base-paired after attaching one oligonucleotide, followed by the bases at distance 5 (p + 6 and
p + 7) being correctly paired with the next oligonucleotide. (d) At the beginning of each ligation round,
the position of the primer is shifted by one. (e) Di-nucleotie colors table. (f) Five rounds consisting of
several ligation cycles are necessary to cover the template. (g) Example of a SOLiD read.
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the primer) which helps the translation without ambiguities. The SOLiD encoding is explained
in detail later in Section 8.1. A quality prediction algorithm obtains Q values that conform to
the industry-standard relation [66,203] established by the Phred software [58].

2.3 Next-next generation sequencing

The next steps in DNA sequencing aim at reducing or eliminating the need for expensive com-
ponents such as fluorescent molecular labels and optical hardware for base differentiation, as
well as fragment library amplification which, besides from being costly and time-consuming, is
also a possible source of errors and data inaccuracies.

2.3.1 Semiconductor sequencing: Ion Torrent

Ion Torrent [200] implements a technique called semiconductor sequencing, which combines
semiconductor technology with a simple sequencing chemistry and creates a direct connection
between the chemical information and the digital information. As in many other platforms, the
sequencing is catalyzed by a polymerase which copies a DNA template. This biochemical process
takes place in a massively parallel way, in a high-density array of micro-machined wells, each
well containing a different DNA template. A certain type of nucleotide (A, C, T or G) is made
available at each cycle. If that nucleotide is incorporated by the polymerase, a hydrogen ion is
released as a byproduct, and its charge will change the pH of the solution. This modification
is detected by the ion sensor, and the base is immediately taken into account [169]. If several
bases of the same type are incorporated in the same cycle, a hydrogen ion is released for each of
them and a higher voltage is generated, allowing the sensor to account for the right number of
consecutive identical bases. If the base from the current cycle does not match, the pH remains
unchanged and the sensor is not activated.

2.3.2 Nanopore sequencing

Another innovative technology [191, 199] consists of detecting molecules as they are driven
through nanopores. The system relies on nanopores [52] bounded by an engineered protein
called alpha-hemolysin, introduced in a lipid bilayer. A pair of electrodes are placed on either
side of the bilayer, which has a high electrical resistance, thus forcing the current to flow only
through the nanopore. The nanopores are coupled with an enzyme called exonuclease that is
responsible for capturing DNA strands, sequentially cleaving individual bases from the strand,
and directing the bases into the aperture of the nanopore. As individual DNA bases sequentially
pass through the nanopore, they temporarily bind to an engineered cyclodextrin3 sensor, placed
inside the surface of the nanopore, disturbing the current and creating a characteristic signal for
each type of base. Consequently, the electrical current trace provides a record of the sequence of
bases passing through the nanopore. The technology is still being perfected, and more accurate
ways of determining the base identity are being explored [192].

2.4 Applications

The advances in DNA sequencing, and new generation sequencing in particular, have given a
boost to a wide range of genomics research fields, improving the technical and financial feasibility

3Compound made of sugar molecules bound together in a ring.
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of a wide range of sequencing experiments [205], with applications in evolutionary biology,
medicine and drug design. Recently, these techniques have also made possible genome-scale
analyses of genomes of extinct organisms [77,78].

The sequencing process generates a large collection of reads, i.e. sequences that correspond
to fragments of the nucleic acid molecule(s) given as input. Depending on the data source
and intended application, these reads are either mapped to a reference sequence or assembled
de novo. Generally, the technologies producing longer reads (such as Roche/454) are better
suited for assembling genomes in the absence of a reference, while resequencing tasks can be
successfully accomplished with both long- and short-read technologies [205]. Actual applications
include genome analysis, metagenomics, targeted sequencing or transciptome sequencing.

The high-throughput of new generation sequencing technologies facilitates the sequencing of
entire genomes, from microbes to humans, with multiple scientific benefits [205]. For instance, in
disease-causing bacteria and viruses, which tend to evolve continuously in order to gain resistance
to antibiotics and antivirals [136], the identification of mutations in a certain resistant strain is
achieved by complete genome sequencing and comparison (read mapping) to a reference (usually
non-virulent) genome [89, 206]. Also, the recent sequencing of the genome of cytogenetically
normal acute myeloid leukemia cells allowed the identification of novel, tumor-specific gene
mutations [121].

Cancer research also benefits from targeted genomic resequencing, i.e. sequencing genomic
subregions and gene sets in order to detect polymorphisms and mutations in genes thought to
be implicated in cancer.

On a larger scale, new generation sequencing technologies have a key role in metagenomics,
the study of microbial diversity in environmental and clinical samples. Basically, genomic DNA
extracted from such samples is sequenced, and the result is either aligned to known reference
sequences for microorganisms to support the presence of species related to them in the analyzed
sample, or submitted to de novo assembly to infer the presence of known and potentially new
species. In addition, analysis of the number of reads found to correspond to each species provides
quantitative information regarding the sample’s composition [205].

Transciptome sequencing is involved in mapping and quantifying transcripts in biological
samples. In this context, gene expression levels can be deduced from the number of reads that
map to an exon of a gene, and both qualitative and quantitative information regarding splicing
diversity can be inferred [205].

Regardless of the protocol and application, any sequencing task depends on subsequent
computational processing of the reads, either for assembly or for mapping on a reference genome.
Part III of this thesis discusses read mapping software, focusing on methods designed for the
SOLiD technology.
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Chapter 3

Algorithms and tools for biological
sequence alignment

Sequence comparison is a fundamental instrument for understanding the origins and functions
of biological sequences. In living organisms, genetic diversity is achieved by alterations of pre-
existing sequences rather than de novo creation. While DNA sequences with no genetic function
can diverge without restriction, for coding and regulatory regions the diversification is balanced
by a purifying selection mechanism, which tends to eliminate individuals carrying mutations that
disrupt important genetic functions. Consequently, genes with similar functions usually share
important similarities at the nucleotide sequence level [4]. Although sequence similarity does
not guarantee relatedness and unmistakable function homology, it is considered strong evidence
in this direction and constitutes the basis for analyzing and predicting the meaning of newly
discovered sequences [54].

In this chapter we discuss state-of-the-art methods and tools for similarity search. After
a short reminder of the representations used for biological sequences, we introduce the notion
of sequence alignment and present the classic dynamic programming algorithms for optimally
aligning two sequences, as well as the most common similarity measures employed for comparing
DNA and proteins respectively. We continue with an overview of heuristic methods, which are
less accurate, but faster and therefore better suited for comparisons of large databases. Finally,
among the different heuristics we focus on the technique of spaced seeds, and discuss their
properties and approaches for their design.

3.1 Biological sequence representation

From the computational point of view, the biopolymers discussed in Chapter 1 are strings over
an alphabet of symbols representing their respective structural units. As such, in our context, a
DNA sequence has the representation of a string over the four-letter alphabet N = {A, C,G, T}
(standing for the four bases adenine, cytosine, guanine and thymine). Note that, since the two
DNA strands are complementary, it suffices to store the sequence of one strand only. Similarly,
the RNA sequence is a string over the four-letter alphabet N ′ = {A, C,G, U} (where U is
the symbol of uracil), and proteins sequences are usually strings over the 20-letter alphabet of
amino acid symbols: A = {A, C,D, E, F,G, H, I,K, L, M, N, P,Q, R, S, T, V,W, Y }. To handle
ambiguities at a given position in a nucleotide sequence, the IUPAC nucleotide codes [42], given
in Table 3.1, provide symbols for all possible subsets of bases. Several groups of very similar
amino acids can also be denoted by a single symbol, as can be seen in Table 3.2.
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Code Base
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil

Code Base
R A or G (Purines)
Y C or T (Pyrimidines)
S G or C
W A or T
K G or T
M A or C

Code Base
B C or G or T
D A or G or T
H A or C or T
V A or C or G
N any base

Table 3.1: IUPAC nucleotide codes.

Code Amino Acid
A (Ala) Alanine
C (Cys) Cysteine
D (Asp) Aspartic Acid
E (Glu) Glutamic Acid
F (Phe) Phenylalanine
G (Gly) Glycine
H (His) Histidine
I (Ile) Isoleucine

K (Lys) Lysine
L (Leu) Leucine

Code Amino Acid
M (Met) Methionine
N (Asn) Asparagine
P (Pro) Proline
Q (Gln) Glutamine
R (Arg) Arginine
S (Ser) Serine
T (Thr) Threonine
V (Val) Valine
W (Trp) Tryptophan
Y (Tyr) Tyrosine

Code Amino Acids
B (Asx) Aspartic acid

or
Asparagine

J (Xle) Leucine
or

Isoleucine

Z (Glx) Glutamine
or

Glutamic acid

X (Xaa) Any amino acid

Table 3.2: Amino acid codes.

3.2 Pairwise sequence alignment

Since biological sequences are represented as strings over a certain alphabet, their comparison
methods are strongly related to string editing. In Section 1.4 we briefly presented various types
of mutations that can affect genetic sequences and cause their divergence, in particular point
mutations and indels. From a string editing perspective, these correspond to operations of
character substitution, or insertion/deletion of one or several characters in a string respectively.

The alignment of two or more sequences is a procedure which allows one to identify series
of similar (conserved) characters that appear in the same order in the aligned sequences, and
eventually to infer a set of modifications (substitutions and indels) involved in the transformation
of one sequence into another. In the following, we will not give details regarding methods of
simultaneously comparing multiple sequences, but rather focus on pairwise sequence alignment.
The next sections present basic, state-of-the art sequence alignment algorithms. Nonetheless,
the literature provides a plethora of variations and adaptions of these algorithms to specific
problems, such as aligning coding DNA [16,79,85,106,166,168,214] by making use of its triplet
nature imposed by codons, or constraining functional sites (motifs) to be aligned together in
protein alignment [15,39,113].

3.2.1 Definition and representation

Definition 1. Given two sequences S = s1...sn and T = t1...tm over an alphabet Σ (where Σ
is either the alphabet of nucleotides for nucleic acid sequences, or the alphabet of amino acids
for proteins) their alignment consists of two equally sized sequences S′ = s′1...s

′
l and T ′ = t′1...t

′
l,

obtained by inserting zero or more gaps (represented by a symbol − /∈ Σ) between the symbols
of S and T respectively, in order to shift on the same position intervals subsequences that are
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ATATTT--GATATT-CAACTCGACTGGTGTA---ATTCGAG

||.||| |||||| |:|||| ||||||| ||.|:||

ATTTTTACGATATTTCGACTC---TGGTGTACTCATGCAAG

(a)

GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

(b)

Figure 3.1: Examples of pairwise alignment between two DNA sequences (a) and two proteins (b).

similar in both S and T , with the constraint that ∄h ∈ {1, ..., l} : s′h = t′h = −.

The two symbols at position i in S′ and T ′, s′i and t′i, are aligned. If both s′i and t′i ∈ Σ, then
this aligned pair corresponds to either a match when s′i = t′i, or a mismatch (substitution) when
they are different. If one of the symbols is a gap, then this aligned pair marks an indel [212].
By convention, gaps cannot occur at the same position in both S′ and T ′.

The alignment of two sequences S and T is typically represented as a matrix, where each
sequence occupies a row with a character per column, with gaps denoted by a symbol “-“/∈ Σ that
may be inserted between the characters (Figure 3.1). An additional row, usually placed between
those corresponding to sequences, gives a “summary” of the similarities encountered within this
alignment. For DNA sequences (Figure 3.1 a), the symbol “|” conventionally denotes matches,
and “.” stands for mismatches. Some alignment tools [157] distinguish between transversion
mismatches (purine-pyrimidine pairs) and transition mismatches (when the aligned nucleotides
are both purines or both pyrimidines) by marking the latter with a different symbol “:” in the
alignment representation. For protein alignment (Figure 3.1 b), pairs of identical characters
are marked by their corresponding symbol, and other related pairs are simply denoted by a
“+” [102].

3.2.2 Score

The alignment provides information regarding mutations that may have been involved in the di-
vergence of the two sequences, under the hypothesis that the sequences have a common ancestor.
The relatedness of the aligned sequences is quantified by the score assigned to their alignment,
which comprises the scores associated to individual pairs of aligned characters, reflecting their
similarity. Typically, identical or related character pairs are rewarded with a positive score,
while gaps and pairs of characters that do not match are penalized with a negative value.

Substitution scores The scores basically aim at expressing the relative likelihood that se-
quences are related as opposed to being unrelated. For example, DNA sequence alignments are
often scored under a simple +m (for matches) / −x (for mismatches) system, where (m, x) is
a pair of integer values, for example (5, 4). On the other hand, amino acids similarities are
more complex and cannot be properly expressed in simple terms of match and mismatch. Gen-
erally, mutations that result in amino acids with the same physical and chemical properties
(size, charge, polarity, presented in Figure 1.8) as the original are more likely to survive natural
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selection, since the resulting protein is likely to be capable of carrying the same function. Conse-
quently, some substitutions are more likely to be encountered in evolving sequences than others,
and this fact needs to be reflected in the score for a proper evaluation of the sequence similarity.

Formally, a score σ(a, b) (where a, b denote either nucleotides or amino acids) can be ob-
tained [55,104] from

• the joint probability qab that a and b have been derived from a common ancestor, and

• the probability that a and b occur by chance with their respective frequencies pa and pb.

as the log-odds ratio of these probabilities:

σ(a, b) = log

(
qab

papb

)
. (3.1)

Indeed, the obtained values σ(a, b) will be positive for (a, b) pairs that are more likely to have a
common ancestor than to occur by chance, and negative in the opposite case.

The overall score σ̂ungapped(S1, S2) of the ungapped alignment of two sequences S1 and S2

of equal length is given by the log-odds ratio of the two probabilities of divergence from a
common ancestor and independent occurrence respectively, under the assumption that mutations
at different positions in the sequences have occurred independently:

σ̂ungapped(S, T ) = log

∏
i qsiti∏

i psi

∏
i pti

= log
∏

i

qsiti

psi
pti

=
∑

i

log
qsiti

psi
pti

=
∑

i

σ(si, ti) (3.2)

where si and ti are the symbols occurring at position i in S and T respectively, hence the additive
nature of sequence alignment scores.

Section 3.3 presents several widely used scoring schemes for evaluating pairs of nucleotides or
amino acids, generally obtained via empirical studies on manually curated ungapped alignments.

Gap penalties In addition to matching and substitution scores, costs (denoted γ(g)) are
associated with gaps depending on their length g. In practice, for efficient implementations of
alignment algorithms (discussed in Section 3.2.3) the dependence is typically either linear

γ(g) = −g · d (3.3)

or affine
γ(g) = −d− (g − 1) · e (3.4)

where d is the penalty for gap opening, and e is the penalty for gap extensions. Gap extensions
are usually less penalized than gap openings, which makes affine gap costs useful whenever gaps
spanning several positions are expected almost as frequently as gaps of size one [55].

Let S′ = s′1...s
′
n and T ′ = t′1...t

′
n be two sequences obtained by inserting gaps in S and

T in order to obtain their gapped alignment. The score σ̂gapped(S, T ) of the gapped alignment
of two sequences S and T is given by the summed scores of the aligned symbols, added to the
penalties corresponding to each gap, namely:

σ̂gapped(S, T ) = σ̂(S′, T ′) =
∑

s′i∈Σ,t′i∈Σ

σ(s′i, t
′
i) +

∑

[s′i...s′i+g−1]={−}g

maximal gap

γ(g) +
∑

[t′i...t′i+g−1]={−}g

maximal gap

γ(g).

(3.5)
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M(i− 1, j − 1) M(i− 1, j)
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Figure 3.2: General dynamic programming alignment algorithm: illustration of the recurrence relation.

3.2.3 Pairwise alignment algorithms

The optimal gapped alignment between two sequences S = s1...sm and T = t1...tn is typically
obtained via dynamic programming approaches that aim at maximizing the alignment score.
Depending on the type of problem that requires sequence comparison, one may be interested
either in aligning the sequences globally, or in finding local similarities, i.e. similar subsequences.
However, regardless of whether the sought similarities are global or local, the algorithms basically
follow the same protocol: the optimal alignment is recursively built using previous solutions for
optimal alignments of smaller substrings.

Like in all dynamic programming approaches, these partial solutions are stored in a two
dimensional table M for re-usage at subsequent steps: M(i, j) stores the score of the best
alignment obtained between the subsequences s1...si and t1...tj . The basic idea is illustrated by
Figure 3.2 and formalized in equation (3.6). The recurrence corresponds to the computation
of global alignments. The detection of local similarities requires a modification in order to
discard partial solutions with negative scores, which we will discuss below in the context of local
alignment algorithms. Knowing all the best solutions for aligning the subsequences S1..k = s1...sk

and T1..h = t1...th of S and T for all k < i and h ≤ j or k ≤ i and h < j, the best alignment
of S1..i = s1...si and T1..j = t1...tj is obtained by extending either the alignment of S1..i−1 and
T1..j−1 with the pair formed with the next symbols in each sequence (si, tj) (a), or by adding a
gap of length g to the alignment of one of the sequences with a prefix of the other (b and c).

M(i, j) = max





M(i− 1, j − 1) + σ(si, tj) (a)
M(i− g, j)− γ(g), ∀g ∈ {1, ..., i− 1} (b)
M(i, j − g)− γ(g), ∀g ∈ {1, ..., i− 1} (c)

(3.6)

The original algorithms for aligning globally [150] and locally [188] two sequences of lengths
m and n were designed for arbitrary gap penalty functions and had an execution time of
Θ(m2n) [75]. The modification proposed later in [75] reduces the complexity to Θ(mn) by
establishing the affine dependence of the gap penalty costs, and thereby reducing the depth
of the partial solution dependence and the number of partial solutions taken into account at
each step by allowing growing gaps to be evaluated progressively. Instead of a single table for
storing partial solutions, this approach uses 3 tables: M storing all partial solutions consisting
of alignments that end with matches, and GS , GT storing the scores of alignments that end with
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Figure 3.3: Sequence alignment with affine gap costs: illustration of the recurrence relation.
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Figure 3.4: Sequence alignment with linear gap costs: illustration of the recurrence relation.

gaps in S and T respectively. In this setup, gaps are opened and extended one position at a
time, allowing each partial solution to depend only on a small, constant number of previously
computed values (equation (3.7), Figure 3.3).

M(i, j) = max





M(i− 1, j − 1) + σ(si, tj)
GS(i− 1, j − 1) + σ(si, tj)
GT (i− 1, j − 1) + σ(si, tj)

GS(i, j) = max

{
M(i, j − 1)− d
GS(i, j − 1)− e

(3.7)

GT (i, j) = max

{
M(i− 1, j)− d
GT (i− 1, j)− e

For linearly penalized gaps, the dependency formula (equation (3.8), Figure 3.4) becomes
less complex, requiring a single table for storing partial solutions and only 3 partial solutions to
be evaluated at each step. For simplicity, the following descriptions of local and global alignment
algorithms will rely on this linear gap approach.

M(i, j) = max





M(i− 1, j − 1) + σ(si, tj)
M(i, j − 1)− d
M(i− 1, j)− d

(3.8)

Global alignment

The recurrence relation for computing a global alignment between two sequences S = s1...sm

and T = t1...tn with linearly penalized gaps is given by equation (3.8). The algorithm populates
a two dimensional table M of size (m + 1) × (n + 1). The border cells M(i, 0) and M(0, j)
correspond to the insertions given by equation (3.9). These partial alignments correspond to
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the insertion of gaps before one of the sequences.

M(0, 0) = 0
M(i, 0) = M(i− 1, 0)− d = −id, ∀i ∈ {1, ...,m}
M(0, j) = M(0, j − 1)− d = −jd, ∀j ∈ {1, ..., n}

(3.9)

The global alignment score is retrieved from M(m, n). The actual alignment can be con-
structed by tracing back from M(m, n) the partial solutions M(i, j) that were chosen at each
recursive step, until M(0, 0) is reached. This can be done by re-calculating (3.8) for each M(i, j)
on the path from M(m, n) to M(0, 0) and following the cell providing the maximum score. Al-
ternatively, the coordinates of the cell contributing to each partial solution can be determined
at the recursion step and memorized in a separate bi-dimensional table. Let S′ = s′1...s

′
l and

T ′ = t′1...t
′
l be strings of equal length l obtained from S and T by inserting gaps in order to

construct an alignment with the best score, given by M(m, n). For any M(i, j), let (iprev, jprev)
be the coordinates of the cell in M contributing to the partial solution M(i, j). The strings S′

and T ′ are obtained backwards as shown in Algorithm 1.

Local alignment

The local alignment algorithm of two sequences S = s1...sm and T = t1...tn allows determining
similarities between subsequences rather than forcing a global comparison. A local alignment
is allowed to start and end at any point in the sequences, and its score must not be influenced
by dissimilar regions flanking the aligned ones. In consequence, the algorithm ignores partial
alignments between very dissimilar subsequences. To do this, the top-left border of the matrix
M is initialized to 0

M(0, 0) = 0
M(i, 0) = 0, ∀i ∈ {1, ...,m}
M(0, j) = 0, ∀j ∈ {1, ..., n}

(3.10)

and the recursion step differs from (3.8) by an additional option, allowing the algorithm to
discard negative scoring alignments and mark each zero-valued cell as a potential start point of
a local similarity:

M(i, j) = max





0
M(i− 1, j − 1) + σ(si, tj)
M(i, j − 1)− d
M(i− 1, j)− d

(3.11)

The score of the best local alignment is given by the highest value M(i, j) in the matrix.
The corresponding local alignment can be retrieved by a traceback procedure similar to the one
described in Algorithm 1, starting in the best scoring cell and ending at the first cell (i′, j′) with
M(i′, j′) = 0.

Semi-global alignment

The semi-global alignment method allows determining if one of the sequences is contained in the
other, or if the two overlap on the extremities. This approach is generally useful for mapping or
assembly. Basically, the method combines the local alignment initialization given by (3.10) and
the global alignment recursion given by (3.8) in order to obtain the best scoring overlaps. The
score of the best semi-global alignment is the highest value that appears on the bottom-right
border of M (maxi∈{1,...,m},j∈{1,...,n}{M(i, n), M(m, j)}). The alignment can be obtained via
traceback from this highest scoring cell until the top-left border of M is reached.
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Input:

Two sequences S and T ;

The dynamic programming table M obtained by the alignment algorithm given in (3.9)
and (3.6), holding the best-scoring alignment of S and T .

Output: The best scoring alignment in the form of two strings S′ and T ′.
begin

i← m, j ← n, h← 1
while i 6= 0 and j 6= 0 do

(iprev, jprev)← arg max





M(i− 1, j − 1) + σ(si, tj)
M(i, j − 1)− d
M(i− 1, j)− d;

if iprev == i then
s′h ← ‘− ’;

else
s′h ← si;

end
if jprev == j then

t′h ← ‘− ’;
else

t′h ← tj ;
end
h← h + 1;
i← iprev, j ← jprev;

end
reverse(S′);
reverse(T ′);
return {S′, T ′};

end
Algorithm 1: Traceback algorithm on a dynamic programming matrix M for retrieving the best

global alignment between two sequences S = s1...sm and T = t1...tn, of lengths m and n respectively.

The score of the best alignment is given by M(m, n). The alignment is obtained in the form of two

strings S′ = s′
1
...s′l and T ′ = t′

1
...t′l of equal length l, obtained from S and T by inserting gaps, with

(s′h, t′h), h ∈ {1, ..., l} giving the aligned symbols.
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3.3 Defining sequence similarity via substitution scores

This section presents how biological sequence similarity scores are obtained in practice, following
the methodology described in Section 3.2.2.

3.3.1 Amino acids

PAM matrices

The PAM (Accepted Point Mutation) [51] matrices are among the first amino acid substitution
matrices for protein comparison used in practice. Accepted point mutations are replacements
of one amino acid by another which survive by natural selection. Several PAM matrices for
different evolutionary distances between the compared sequences were computed. As a reference,
one PAM denotes the evolutionary time period over which 1% of the amino acids in a sequence
are expected to be modified by accepted substitutions.

The similarity scores are obtained from mutation patterns observed in alignments of closely
related proteins. According to [51], the data was acquired from phylogenetic trees corresponding
to 71 families of strongly similar proteins (at least 85% identity between any two within the
family), and mutations are considered relatively to the inferred ancestral sequences.

To build the matrix, the numbers of accepted point mutations Aab were first counted for
all pairs of a and b occurring at the same position in sequences and their immediate ancestor
in the tree. These values are considered to be symmetric, i.e. any encountered pair (a, b)
contributes to both Aab and Aba. The probability of substituting a by b is then derived from
these counts. Although the original paper provides a more complex reasoning and formula for
these probabilities, the calculation can be simplified [35,55] as

qab =
Aab∑
c Aac

. (3.12)

To ensure the 1% expected substitution rate, these probabilities are scaled by a fixed constant
λ as follows:

Mab = λ
Aab∑
c Aac

(3.13)

and

Maa = 1−
∑

c 6=a

Mac (3.14)

with λ chosen so that only 1 in 100 amino acids change, i.e.

∑

a

pa

∑

b6=a

Mab =
1

100
⇒
∑

a

pa

∑

b6=a

λ
Aab∑
c Aac

=
1

100
(3.15)

with pa the occurrence probability of amino acid a.

The probability matrix M defined in equations (3.13) and (3.14) can serve as a basis for
obtaining mutation probabilities M (n) corresponding to higher evolutionary distances (n PAMs),
which are derived from M by matrix multiplication, i.e. M (n) = Mn.

The substitution scores result from the mutation probabilities as the log-odds ratio given by
equation (3.1). In this case, the joint probability that a and b have been derived from a common

47



Chapter 3. Algorithms and tools for biological sequence alignment

ancestor is given by the probability of encountering a (denoted pa) and, given a the probability
of substituting a for b, i.e. Mab. Consequently, the score assigned to a pair (a, b) is

PAMn(a, b) = C log

(
paM

(n)
ab

papb

)
= C log

(
M

(n)
ab

pb

)
(3.16)

where C is a scaling constant originally set to 10, for more precision when truncating scores to
integer values.

BLOSUM matrices

With the goal of achieving better precision when aligning protein sequences that are very distant
evolutionarily, the BLOSUM (BLOck SUbstitution Matrix) matrices [86] are constructed using
multiple alignments of evolutionarily divergent proteins.

The probabilities used in the matrix calculation are computed from multiple ungapped local
alignments represented as blocks with each row a different protein segment and each column an
aligned residue position. More than 2000 blocks of aligned sequence segments were involved in
this analysis, characterizing over 500 groups of related proteins. For each block in the database,
all possible pairs in each column of each block are counted and summed. A block consisting of
s segments of w amino acids contributes with ws(s− 1)/2 amino acid pairs to the count.

Consider that the amino acids are uniquely labeled by numbers from 1 to 20, and let fij

denote the number of times the pair (i, j) is observed in the data. The probability of occurrence
for each (i, j) pair is obtained as

qij =
fij∑

i

∑
k≤i fik

. (3.17)

The frequency of i is further calculated as

pi = qii +

∑
j 6=i qij

2
=
∑

j≤i

qij (3.18)

where the division by 2 is a compensation for the symmetric counts.

Further, for each (i, j) pair, the expected probability eij of alignment by chance is given by

eij =

{
pipj if i = j
pipj + pjpi = 2pipj if i 6= j

(3.19)

thereby leading to the similarity scores obtained from these probabilities as a log-odds ratio:

σ(i, j) = C log

(
qij

eij

)
(3.20)

with C originally set to 2.

To reduce multiple contributions to amino acid pair frequencies from sequences that are
too closely related, segments with a sequence identity above a certain threshold are clustered
and each cluster is accounted for as a single sequence. Several substitution matrices for differ-
ent identity thresholds were computed, with the convention that a matrix denoted BLOSUMn
corresponds to a n% identity threshold for clustering.
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3.3.2 DNA substitution scores

Although less complex than amino acid similarities and replacement patterns, nucleotide substi-
tution scores can also be calibrated to comply with a certain evolutionary distance, in a PAM-like
approach [35].

In practice, one of the following two assumptions are generally made: either all nucleotide
mutations occur at equal rates (a scenario adopted in general when dealing with non-coding
DNA), or transitions are more likely to occur and be accepted than transversions due to their
silent effect in some cases in coding DNA. Assuming that all 4 nucleotides occur with quasi-
equal probabilities, and denoting by κ (usually 3) the transition/transversion ratio, and by α
the percentage of mutated bases (which is set to 1%, i.e. 1 PAM), a simple DNA mutation
probability matrix can be expressed as

M =




1− α 1
κ+2α κ

κ+2α 1
κ+2α

1
κ+2α 1− α 1

κ+2α κ
κ+2α

κ
κ+2α 1

κ+2α 1− α 1
κ+2α

1
κ+2α κ

κ+2α 1
κ+2α 1− α


 (3.21)

where A, C,G, T label the first, second, third and fourth row/column respectively. The matrix
of substitution probabilities after n PAMs is obtained by n successive multiplications of M .

Finally, the PAMn nucleotide substitution score results from the log-odds ratio

σ(a, b) = log

(
paMab

papb

)
= log(4Mab) (3.22)

(since pa is considered 1
4 for any nucleotide a). In this manner, one can obtain scores best fit for

the conservation rate of the compared sequences. Interestingly, at sufficiently large evolutionary
distances (more than 87 PAMs and less than 50% sequence conservation), transition mutations
reach a positive score, thereby becoming supporting evidence for sequence homology [35].

Alternatively to this simplified model, nucleotide substitution scores may be derived from
real ungapped DNA alignments [38], under a protocol similar to the calculation of the BLOSUM
matrices for amino acid substitution. Basically, Chiaromonte et al. [38] extract the data from
ungapped alignments of homologous sequences from human and mouse. To exclude strongly
conserved regions and thus avoid biases, alignments of sequences that exceed 70% identity are
discarded from this analysis. Each aligned pair of nucleotides (a, b) encountered in the data con-
tributes to four counts: the occurrences of (a, b), (b, a), (complementary(a), complementary(b))
and (complementary(b), complementary(a)), which makes the frequencies both species sym-
metric and strand symmetric. The scores are obtained from the observed frequencies of aligned
pairs via the classic log-odds ratio given by equation (3.1), scaled and rounded to permit integer
arithmetic. Three substitution score matrices are proposed (Figure 3.5), derived from regions
with different G+C contents, the second matrix being currently used by BLASTZ [12,184].

3.3.3 Codon substitution models

Substitution probabilities and scores can equally be defined with respect to codons, with the goal
of better describing the dynamics of coding DNA. Two notable approaches of deriving codon
substitution probabilities exist: the mechanistic approach, which relies on a Markov model of
codon substitutions, and the empiric approach, which derives the substitution probabilities from
databases of aligned sequences of coding DNA, as it was previously done for computing amino
acid similarity scores.
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A C G T A C G T A C G T
A 67 -96 -20 -117 A 91 -114 -31 -123 A 100 -123 -28 -109
C -96 100 -79 -20 C -114 100 -125 -31 C -123 91 -140 -28
G -20 -79 100 -96 G -31 -125 100 -114 G -28 -140 91 -123
T -117 -20 -96 67 T -123 -31 -114 91 T -109 -28 -123 100

Figure 3.5: Three nucleotide substitution score matrices proposed in [38], derived from alignments of
sequences with 37.4% G+C, 47.5% G+C and 53.7% G+C respectively.

Mechanistic codon substitution models

In [73, 107], codon substitutions are modeled by a Markov model that specifies the relative
instantaneous substitution rate from codon i to codon j as:

Qij =





0 if i or j is a stop codon, or
if i→ j requires more than 1 nucleotide substitution,

πj if i→ j is a synonymous transversion,
πjκ if i→ j is a synonymous transition,
πjω if i→ j is a non synonymous transversion,
πjκω if i→ j is a non synonymous transition.

(3.23)

for all i 6= j. Here, the parameter ω represents the non synonymous-synonymous rate ratio, κ
the transition-transversions rate ratio, and πj the equilibrium frequency of codon j. As in all
Markov models of sequence evolution, absolute rates are found by normalizing the relative rates
to a mean rate of 1 at equilibrium, that is, by enforcing

∑
i

∑
j 6=i πiQij = 1 and completing the

instantaneous rate matrix Q by defining Qii = −
∑

j 6=i Qij to give a form in which the transition

probability matrix is calculated as P (θ) = eθQ [129]. Evolutionary times θ are measured in
expected number of nucleotide substitutions per codon.

Empirical codon substitution model

While the mechanistic codon substitution model simulates substitutions with accurate parame-
ters, it does not take into account sufficiently the selective pressure and the resulting effects on
the codon conservation. Basically, the mechanistic model focuses on simple mutational events,
such as the “third base mutation”, which in most cases does not change the encoded amino acid
if it is a transition mutation; this is true in some cases of transversion mutations as well.

Nevertheless, there are several other specific conservation families not properly captured
by this simulation. A first example is the aliphatic conservation (amino acids L, I, V ) where
corresponding amino acid codons share T at their second base. The last base is, within this
group, almost a free choice, while the first has a large degree of freedom. Consequently, it
is expected to observe the second T conserved on such codons when aligned with the aliphatic
group. A similar phenomenon (however with a weaker frequency) appears for the subset (A, S, T )
of the small amino acids, where the codons have in common the second base C. In other
chemically related amino acid groups, the succession of nucleotide substitutions at the codon
level follows more complex paths, as it is the case for positively charged amino acids (R,K),
aromatic amino acids (F, Y, W ), etc. Such different and complex conservation patterns are
difficult to express and model with simple rules. As most of the matrices built for proteins, an
empirical estimation gives a better global approximation.
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[182] provides the first empirical codon substitution matrix entirely built from alignments
of coding sequences from vertebrate. A set of 17,502 alignments of orthologous sequences from
five vertebrate genomes yielded 8.3 million aligned codons. The numbers of codon substitutions
encountered in this data were used for computing, in a protocol similar to the computation
of the popular amino acid similarity scores presented above, 64 × 64 substitution probability
matrices and similarity score matrices for various evolutionary distances.

3.3.4 Statistical significance measures for alignment scores

The alignment score alone does not provide sufficient information for deciding sequence homol-
ogy, since it needs an interpretation with respect to the results of other alignments in a similar
setup. For local alignments, a far more accurate measure of sequence relatedness is given by
statistical evaluations of the scores. More precisely, for a score threshold σ, the P − value gives
the probability that a local alignment scoring at least σ is found by chance, and the E − value
estimates the number of expected local alignments with a score σ or greater that are found by
chance.

According to [104], the number of distinct local alignments between two random sequences
of length m and n that have a score at least σ is approximately Poisson distributed, with the
mean

E(σ) ≈ Kmne−λσ (3.24)

where the parameters λ and K can be calculated based on the occurrence probabilities of the
symbols forming the sequences’ alphabet and their similarity scores, as shown in [104]. Also,
the optimal alignment score σ approximately follows an extreme-value distribution [81]:

P (σ′ ≥ σ) ≈ 1− e−Kmne−λσ

. (3.25)

This methodology was introduced in the BLAST [11] software, for expressing the significance of
alignment scores between a query sequence and its potential homologs found in a database.

Although there is no rigorous theory supporting a score distribution approximation for
gapped local alignments, it was experimentally shown that equations (3.24) and (3.25) can
be applied to this case provided that the parameters λ and K are correctly estimated [10].

The estimation method proposed in [162] and further discussed in [10], called the island
method, is basically an empirical estimation relying on the analysis of sufficiently many local
alignments. These alignments are obtained either from two very large sequences, or from several
pairs of smaller ones, using a slightly modified Smith-Waterman [188] algorithm that allows
memorizing the starting cell of each local alignment within the dynamic programming matrix.
In the context of this method, an island is then defined as the set of all local alignments starting
at the same cell, and the score σi assigned to such an island i is the maximum score among the
alignments it represents.

Since equation (3.24) is more accurate for larger score values, only islands scoring above a
certain threshold c should be considered in order to ensure a good estimate of the statistical
parameters [10]. Assuming that there are Rc such islands forming a set denoted Ic, λc is
estimated to

λc = ln

(
1 +

1

σ̄c

)
+ α

(
1

m
+

1

n

)
(3.26)

where m, n are the sizes of the compared sequences, σ̄c is the mean island score in excess of c:

σ̄c =
1

Rc

∑

i∈Ic

(σi − c) (3.27)
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and the term α
(

1
m + 1

n

)
is an “edge effect” correction, aiming at reducing biases introduced by

considering alignments of limited length, with α chosen as explained in [10]. Depending on λc,
the estimate for Kc is

Kc =
Rce

λcc

Nnm
(3.28)

with N the number of sequence pairs participating to the comparison and m, n the respective
sizes within each pair.

As can be seen from their respective estimation formulas, λ and K are scoring scheme
specific, and, introduced in equations (3.24) and (3.25), they give meaning to the alignment
scores obtained under that scoring scheme. The obtained values are expected to be very low
for related sequences. For instance, a low P-value for an alignment score σ is interpreted as a
weak possibility that the compared sequences could be aligned with a score at least σ by chance,
enabling one to reject this hypothesis and consider the alignment of score σ as valid homology
evidence.

3.4 Seeding techniques for sequence alignment

Section 3.2.3 presented algorithms for finding the optimal alignment between two sequences in
quadratic time Θ(m, n), where m and n are the lengths of the aligned sequences. For values of
m and n that have the order of millions, the time necessary to perform the complete calculations
cross the acceptable limit, and the optimal answer might be obtained too late to be of any use
(for instance, with the current computer power, the exact alignment of two genomic sequences
of 100,000,000 characters each is expected to be computed in over 100 years). To overcome this
complexity issue, one must relax the requirements and sacrifice optimality in favor of speed.

Most heuristic approaches to finding the alignment of two sequences are based on the as-
sumption that sufficiently related sequences must share at least a well conserved region, called
seed. The approach basically consists of identifying that region if it exists, and then extending
it progressively to the right and to the left as long as the neighboring regions remain suffi-
ciently similar. The optimal alignment of the subsequences identified in this manner can then
be constructed with a classic alignment algorithm.

3.4.1 Look-up tables

A key step that contributes to the efficiency of heuristic approaches is the construction of look-up
tables that allow instant identification of conserved fragments. The tables are usually based on
hashing words of fixed size in conjunction with the use of a linked list connecting all occurrences
of the same word in a sequence database [119]. The hashing function generally results from
the pattern of matches defined by the seed. For instance, when looking for conserved regions
consisting of k consecutive matching symbols in sequences over an alphabet Σ, the hashing
function computes for each word w of length k an integer-valued key as

key(w) =

k−1∑

i=0

code(w[i]) · |Σ|i (3.29)

where code(·) associates an unique value between 0 and |Σ| − 1 to each symbol in Σ. The
formula can be adapted to more complex similarity patterns (such as those described forward in
Section 3.4.3 and Section 3.4.5) by ignoring some positions within the word or associating the
same code to several elements of Σ.
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3.4.2 First implementations of heuristic approaches: FASTA and BLAST

FASTA/FASTP [130,164] were among the first homology search tools to implement the heuristic
approach. They use look-up tables to locate identities or groups of identities between two
sequences, typically searching for several groups consisting of k consecutive matches (k = 4 to
6 in DNA comparison), that are submitted to several subsequent processing steps and may be
joined and extended to an alignment depending on their relative locations.

Later on, to respond to the need of aligning very large sequences, BLAST [11] used a more
restrictive procedure for identifying conserved regions, consisting in searching a single subse-
quence of length k identical in both of the compared sequences (k-word), with k significantly
larger than the one used in FASTA (typically 11-13 for DNA sequence alignment). Such long
identities are expected to be found less often by chance, and are considered a more trustworthy
evidence of sequence homology.

For protein alignment, BLASTP uses an approach better suited for the complex similarity
relations between amino acids. First, the length k of the k-word considered as a possible core of
a similarity region is much smaller in this case (typically 3). Second, instead k-words that are
identical in both sequences, BLASTP searches, in one sequence, for a k-word that produces a
score higher than a threshold T when aligned with a k-word from the other sequence.

A refinement of BLAST, called Gapped BLAST [13], introduced the notion of multiple hit as
a compromise between the original FASTA and BLAST approaches. Based on the observation
that interesting sequence similarities span much more than the length of a single k-word, the
existence of two identity stretches of slightly smaller sizes, on the same diagonal at a relatively
short distance, is used instead for locating similarity regions. With the slight disadvantage of
space consumption for storing the positions of encountered hits, the approach was shown to
improve both the sensitivity and the speed of the search [13].

3.4.3 Spaced seeds

Although the expressiveness of non-contiguous matching patterns in heuristic similarity search
had been explored in previous works [29,31,33], spaced seeds were first proposed as a concept in
the context of DNA sequence alignment by the PatternHunter algorithm [133], and the design
of such spaced patterns was discussed in [133] and [31].

Using a spaced seed instead of a contiguous stretch of identical nucleotides to select a po-
tential similarity region has been shown to boost the number of significant alignments that are
detected without increasing the rate of random hits [133]. Furthermore, using a seed family,
i.e. several seeds simultaneously instead of a single seed, can bring further improvements in this
direction [125,197].

A crucial feature of spaced seeds is their capacity to be adapted to different search situations.
Spaced seeds can be designed to capture statistical properties of sequences to be searched. An
illustrative example is provided by [26, 216] which report on designing spaced seeds adapted to
the search of coding regions.

In this section we focus on designing spaced seeds that are appropriate for a class of target
alignments with specific statistical properties. We first introduce some general notions that help
define the fitness of a seed, and then proceed to discuss models and methods for spaced seed
design.
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Alignments in the context of heuristic similarity search

Let A be an ungapped alignment of two sequences S, T ∈ Σ+. In the context of heuristic
similarity search via spaced seeds, the essential information concerning sequence alignments
relies in their succession of matches and mismatches. An alignment A is thereby represented as
a sequence over an alphabet A = {0, 1}:

A = a0...an−1 ∈ {0, 1}∗ (3.30)

where 0 marks symbol mismatches and 1 stands for identities [125,133].

Spaced seed: definition and representation

Definition 2. A spaced seed π denotes a pattern of required matches and acceptable mismatches
in a word of length k, and is generally defined as a subset Iπ of positions from {0, ..., k − 1}
which are the required matching positions.

A spaced seed can be represented more explicitly in form of a string over an alphabet B =
{1, ∗}, starting and ending with 1, where the symbol 1 stands for one required match, and ∗
(or “don’t care”) accepts one match or one mismatch. For a seed π, the following concepts are
defined:

Definition 3. The span of a seed π, denoted span(π), is the length of π’s representation as a
string over the alphabet B.

Definition 4. The weight of a seed π, denoted weight(π), is the the number of 1’s appearing
in π’s string representation, i.e. the number of matching positions required by π.

Definition 5. A seed π is said to hit an alignment A = a0...an−1 at position p ∈ {0, ..., n −
span(π)} if and only if

∀i ∈ {0, ..., span(π)− 1}, π[i] = 1⇒ A[p + i] = 1. (3.31)

Selectivity and specificity

The efficiency of a seed π is generally expressed by its sensitivity and specificity.
The sensitivity refers to the true positive rate, i.e. the chance that an alignment of interest

is hit by the seed at least at one position. More formally,

sensitivity(π) =
number of alignments of interest that are hit by π

total number of alignments of interest
. (3.32)

Complementary to the sensitivity, the specificity basically denotes the seed’s capacity of
avoiding random alignments, and is calculated as 1 minus the false positive rate, the latter
expressing the chance that an alignment which is not biologically meaningful is hit by the seed:

specificity(π) = 1−
number of alignments without biological meaning hit by π

total number of alignments without biological meaning
. (3.33)

Seeds should be chosen to have an advantageous sensitivity/specificity trade-off. Generally,
a less constraining seed, with fewer compulsory match positions, is likely to hit more alignments
and achieve a better sensitivity that a seed with more matching positions. However, among
the hit alignments, many are likely to be false positives, which makes the seed less selective
than a more constraining one. More false positives means more hits that are submitted to a
time-consuming similarity evaluation procedure (typically an ungapped or gapped alignment
algorithm) that will not produce produce useful results. A good sensitivity/specificity balance
is therefore crucial in seed filtration [36], but is generally difficult to achieve.
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Lossy seeds vs. lossless seeds

One has to distinguish between the lossy and lossless cases of seed-based search. These concepts
are related to the seed’s sensitivity.

Lossy seeds are allowed to miss a fraction of target alignments. When designing spaced seeds,
the usual goal is to maximize sensitivity over a class of seeds verifying a certain selectivity level.

On the other hand, lossless seeds [31] must detect all alignments verifying a given dissimilarity
threshold (expressed in terms of a number of errors or a minimal score), and the goal of seed
design is to compute a minimal set of seeds with the best selectivity that still ensures the lossless
search.

3.4.4 Designing spaced seeds

To address the complex issue of optimal spaced seed design [125, 134, 151], several approaches
have been proposed, based on dynamic programming [26,30,105,110], integer programming [210],
automata theory [26,30,110], or heuristic methods [99,100].

Generally, the goal of spaced seed design is to obtain spaced seeds or seed families with
an advantageous selectivity/specificity trade-off, ensuring effective detection of all or most of
the alignments of interest, while minimizing the number of spurious hits. The latter is rather
difficult to quantify in practice, but can generally be correlated with the seed’s weight: the larger
its weight, the less likely is the seed to hit random alignments. On the other hand, the former
can be determined with respect to a theoretical model of the target alignments.

In this section, several dynamic programming methods [26, 30, 105, 110] for computing a
seed’s sensitivity are first discussed. These are generally used in conjunction with sampling,
enumerating or otherwise generating spaced seed patterns, and choosing the solution with the
highest sensitivity.

Finally, the alternative heuristic approach of [99, 100] is briefly presented, where seed sensi-
tivity is estimated from the overlap complexity of the patterns.

Hit probability computed via dynamic programming on a Bernoulli model

The Keich algorithm [105] was the first dynamic programming approach proposed for computing
the probability that a spaced seed π hits a random alignment A of length n generated by a
Bernoulli model over the alphabet A = {0, 1} with the probability p of generating the symbol 1
and 1− p of generating 0.

This hit probability is the probability of the union of events
⋃n−span(π)

j=0 Hj where Hj is
the event “π hits A at position j”. These events are not independent, since any non-empty
subsequence of A influences the presence of hits at several different positions. The approach
consists of progressively computing hit probabilities f(i, b) on all prefixes of A with lengths i
ranging from span(π) to n at all positions j from 0 to n− span(π), conditioned by all possible

suffixes b of length at most span(π): f(i, b) = P (
⋃i−span(π)

j=0 Hj : ai−|b|...ai−1 = b)

Informally, the order of calculations of f(i, b) is such that the length i is progressively in-
creased and for each such length the suffix conditioning is progressively relaxed (longer b words
are imposed first), until the value of interest, given by f(n, ǫ), is obtained, where ǫ is the empty
string.

Each f(i, b) depends on previously computed values of hit probability on a prefix of the
word, and on the hit possibilities added by extending that prefix with b. Words b that are not
compatible with π are discarded from the calculation, since they do not bring any information:
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the hit probability is 0 at positions where the presence of 1’s does not correspond to the pattern
of the seed. Basically, f(i, b) = 1 for all compatible strings of length |b| = span(π), since the hit is
ensured by b regardless of the rest of the word. For all compatible words with |b| < span(π), the
recursion takes into account the already computed values corresponding to the same alignment
length i and conditioned by a longer suffix. Longer suffixes are obtained by prefixing b with
either 0 or 1, each of these having a probability dictated by the underlying Bernoulli model (i.e.
1 − p and p respectively). Hence, f(i, b) = (1 − p)f(i, 0b) + pf(i, 1b). Note that, while 1b is
always compatible with π if b is compatible, meaning that f(i, 1b) can be found in the dynamic
programming table, it is not always the case for 0b. If b′ = 0b is not compatible, then it prevents
any hits from occurring at position i − span(π). In this case the hit probability f(i, b′) is no
different from f(i− 1, b′ ≫ 1), where b≫ j is obtained from b by removing the last j symbols.
f(i − 1, b′ ≫ 1) can either be found in the table if b′ ≫ 1 is compatible with π, or can be
computed recursively by the same reasoning otherwise.

This approach is adapted in [26] to alignments generated by a more complex model, in order
to obtain a seed’s sensitivity with respect to alignments of coding regions modeled by HMMs.

Approaches based on automata theory

Seed automaton Considering the formalization of the concept of hit given by definition 5, it
is useful to think of the symbols in the alphabet B of the seed pattern as representatives of a
certain subset of A (the alphabet of ungapped alignments), which they accept. This association
is the basis of an extension of spaced seeds, called subset seeds [110], which we briefly discuss in
Section 3.4.5. In the case of spaced seeds, the symbol 1 ∈ B represents (and thereby accepts)
the subset {1} of A, and the symbol ∗ ∈ B represents and accepts the subset {0, 1} of A. From
this perspective, it is easy to perceive a seed π as a regular expression defining the acceptable
matching patterns. For example, a seed π = 11*1 describes the words of length 4 with 1’s
at their first, second and last positions (Iπ = {0, 1, 3}), which are captured by the regular
expression 11(0|1)1. Moreover, according to equation (3.31), all alignments containing one of
this class of words are hit by the seed π. All alignments hit by π are therefore captured by the
regular expression (0|1)∗11(0|1)1(0|1)∗, which basically describes the language of words over the
alphabet A containing the pattern of the seed π at some arbitrary position.

Since, for any regular expression, there is a finite state automaton that defines the same
language [95], the complete set of alignments recognized by a seed can be represented as an
automaton. In the following, we give some formal definitions for several automata-related con-
cepts.

Definition 6. A deterministic finite automaton (DFA) D is defined by a 5-uple (Q,Σ, δ, q0, F )
where:

• Q is a finite set of states;

• Σ is a finite state of input symbols;

• δ : Q×Σ→ Q is a transition function which switches to a new state in Q given a current
state and an input symbol;

• q0 ∈ Q is the initial state;

• F ⊆ Q is a set of final or accepting states.
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The function δ can be extended to words in the form of δ̂ : Q× Σ∗ → Q whose definition is
based on successive applications of δ:

δ̂(q, ǫ) = q

δ̂(q, wa) = δ(δ̂(q, w), a) (3.34)

where ǫ is the empty string, a ∈ Σ is an input symbol and w ∈ Σ∗ is a word on the alphabet of
input symbols.

Definition 7. The language accepted by a DFA D = (Q,Σ, δ, q0, F ) is defined by

L(D) = {w|δ̂(q0, w) ∈ F}. (3.35)

More general than deterministic automata, non-deterministic automata can have several
current states simultaneously. The main difference with respect to the deterministic case is the
transition function δ which, given a current state and an input symbol, returns a subset of Q
that can contain more than one state.

Definition 8. A non-deterministic finite automaton (NFA) N is defined by a 5-uple
(Q,Σ, δ, q0, F ) where:

• Q is a finite set of states;

• Σ is a finite state of input symbols;

• δ : Q × Σ → 2Q is a transition function which associates to a current state and an input
symbol a possibly empty subset of Q;

• q0 ∈ Q is the initial state;

• F ⊆ Q is a set of final or accepting states.

Definition 9. The language accepted by a NFA N = (Q,Σ, δ, q0, F ) is defined by

L(N) = {w|δ̂(q0, w) ∩ F 6= ∅}. (3.36)

For some languages (including the language of alignments accepted by a spaced seed) a NFA
is easier to construct than a DFA. Nevertheless, every NFA has an equivalent DFA that accepts
the same language, and every DFA has an equivalent NFA [96]. An NFA N = (QN ,Σ, δN , q0, FN )
can be transformed in its equivalent DFA D = (QD,Σ, δD, q0D, FD) with the same input alphabet
Σ by subset construction [96]:

QD = 2QN

q0D = {q0}

FD = {S ∈ QD|S ∩ FN 6= ∅}

δD(S, a) =
⋃

q∈S

δN (q, a), with δD : QD × Σ→ QD.

Since QD is the power set of QN , the number of states of a DFA can be exponential relatively
to the number of states of its NFA equivalent. However, in practice, some states in this power set
are not accessible from the initial state and can therefore be ignored. Moreover, this construction
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Figure 3.6: Non-deterministic finite-state automaton describing the language of alignments accepted by
the seed 11*1.
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Figure 3.7: Deterministic finite-state automaton describing the language of alignments accepted by the
seed 11*1, equivalent to the non-deterministic finite-state automaton of Figure 3.6.

does not guarantee the resulting DFA is defined without redundancies, and some states may be
equivalent. The equivalence relation of two states qi and qj is defined formally as

∀w ∈ Σ∗, δ̂(qi, w) ∈ F ⇔ δ̂(qj , w) ∈ F. (3.37)

Being an equivalence, this relation is transitive [97], which allows sets of equivalent states to
be replaced by a single state without any effects on the language defined by the automaton.
Reducing the number of states of an automaton is called minimization, and several methods
exist for performing this transformation [94,146].

The NFA of the seed 11*1 is depicted in Figure 3.6, which makes use of the classic directed
graph representation of automata, where states are nodes and transitions are arcs labeled with
the respective input symbols. Its construction follows easily from the aforementioned regular
expression describing the alignments recognized by the seed: (0|1)∗11(0|1)1(0|1)∗. Generally,
any NFA Nπ = (Q,A, δ, q0, {qn−1}) corresponding to a seed π will have a linear shape, with a
number of states n = 1+span(π), with looping transitions in its initial state q0 and its only final
state qn−1 for all input symbols in A (the alignment alphabet), and with transitions between
states qi, qi+1 labeled by the subset of A accepted by the symbol at position i in the seed pattern.
The equivalent DFA is depicted in Figure 3.7.

The concept can be easily extended for multiple spaced seeds (spaced seed families) in order
to express the complete set of alignments recognized by at least one member of the family, as
depicted in Figure 3.8.

We have chosen to represent seeds by NFA automata because obtaining the structure of the
NFA from the seed pattern is straightforward. However, in practice, an equivalent DFA is used
instead due to its deterministic functioning. Moreover, the subset construction of the seed DFA
from the corresponding NFA is not used in the seed design approaches we discuss below [30,108].
Instead, the DFA is obtained directly using specific methods.
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Figure 3.8: Non-deterministic finite-state automaton describing the language of alignments accepted by
the seed family {11*1, 1*1*1}.

Construction of the spaced seed DFA using the Aho-Corasick algorithm In [30],
Buhler et. al. propose a method based on the Aho-Corasick algorithm [3] for constructing the
DFA that accepts all the alignments recognized by a spaced seed.

Given a spaced seed π of weight w and span s, and Wπ the set of all the 2s−w strings accepted
by the seed π, the algorithm consists of transforming the trie constructed with Wπ into a DFA
Dπ = (Q, {0, 1}, δ, q0, F ) that accepts all the strings of arbitrary length larger or equal to s,
containing a member of Wπ. First, every node in the trie becomes a state in Dπ, the root of the
trie corresponding to the initial state, and its leaves to final states. The arcs in the trie become
transitions in Dπ. Considering that the nodes (and, in consequence, the states) are labeled with
strings corresponding to the path followed in the trie from the root to reach them, transitions
corresponding to failure links are added, from any state labeled with a string S to the state
labeled with its longest proper suffix (which can be empty). Hence, whenever a 0 symbol in an
input string prevents from following the trie, a 0 labeled transition allows the search to continue
with its largest compatible suffix.

At this point, the Aho-Corasick algorithm constructed a DFA that accepts all the words of
arbitrary length over the alphabet {0, 1} which end with a word from Wπ. To ensure that all
words having a substring from Wπ at any position are accepted, all final states qf are transformed
into absorbing states, i.e. transitions to themselves are added for all input symbols. Finally,
since all final states are obviously equivalent, they can be compacted into a single one.

The automaton obtained with the above process for the seed 1*11 is illustrated in Figure 3.9.
The algorithm does not guarantee to obtain the minimal DFA.

A more compact spaced seed DFA construction In [111], a method for constructing the
DFA for subset seeds (briefly presented later in Section 3.4.5) is proposed. Since subset seeds
are an extension of spaced seeds, this construction directly applies to spaced seeds.

Let π ∈ {1, ∗}∗ be a spaced seed of span s and weight w, Rπ the set containing the positions
of *’s in the seed pattern, with |Rπ| = s − w = r, and Dπ = (Q, {0, 1}, δ, q0, {qf}) the DFA
defining the language of alignments recognized by π. The states of Dπ are labeled with pairs
〈X, t〉, X ⊆ Rπ, t ∈ {0, ..., s}, such that, for any input a1...ap reaching the state 〈X, t〉, t is the
largest value ≤ s to verify ap−t+1...ap = 1t, and X contains all xi ∈ Rπ such that a π1...πxi

matches a suffix of a1...ap−t. This labeling helps to determine, at the DFA construction step,
transitions similar to failure links, i.e. the largest prefix of the seed that matches a suffix of the
input.

The initial state of this automaton is labeled 〈∅, 0〉. The transition function δ : Q×{0, 1} → Q
is defined by:
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Figure 3.9: DFA constructed using the Aho-Corasick algorithm for the spaced seed 1*11, accepting
the alignments (0|1)∗1(0|1)11(0|1)∗. Each state is labeled with the string corresponding to the paths in
the trie that led to it from the root. The black transitions correspond to paths in the trie of the set
{1011, 1111}. The transitions in grey correspond to failure links. The accepting states are equivalent and
can be compacted into a single state.

• δ(〈X, t〉, 1) = 〈X, t + 1〉;

• δ(〈X, t〉, 0) = 〈{x ∈ Rπ|x ≤ t + 1} ∪ {(x + t + 1) ∈ Rπ|x ∈ X}, 0〉.

All states 〈X, t〉 with max(X)+ t = s are final and equivalent, and can be compacted in a single
state qf .

This method was shown to construct automata that have a number of states smaller than
or equal to the Aho-Corasick automaton described above.

Seed sensitivity in a Markov model of ungapped alignments A dynamic programming
algorithm for computing the probability that an automaton Dπ = (Q, {0, 1}, δ, q0, {qf}) accepts a
random alignment of length n generated by a kth-order Markov model is proposed in [30]. A kth-
order Markov model M describes a discrete stochastic process with a finite set of states QM , each
state having a certain probability to be the initial state, where the transitions to a state s ∈ QM

at any given step t is conditioned by the previous k steps: PM (st = s|st−1 = si1 , ..., st−k = sik).
For this particular case, QM coincides with {0, 1}, and the succession of states at n consecutive
steps describes a string A of length n over the alphabet {0, 1} of ungapped alignments.

Let α ∈ {0, 1}k be a string of length k. For any state q ∈ Q of the automaton Dπ and
any b ∈ {0, 1}, let δ−1(q, b) = {q′ ∈ Q : δ(q′, b) = q}, be the set of states that transition to q
on the input b. The probability that the automaton Dπ reaches state q after reading an input
A ∈ {0, 1}t, A = a1...at, with the last k steps of A corresponding to the history αb, is recursively
defined as

P (q, t, αb) = PM (at = b|at−1...at−k = α) ·
∑

q′∈δ−1(q,b)

∑

b′∈{0,1}

P (q′, t− 1, b′α) (3.38)

where PM (at = b|at−1...at−k = α) is the transition probability given by M . For inputs shorter
than k, the history is truncated to the last t steps. The initialization sets P (q0, 0, ǫ) = 1 for the
initial state, and P (q, 0, ǫ) = 0,∀q ∈ Q\{q0}. The calculation stops at step t = n, and the seed

60



3.4. Seeding techniques for sequence alignment

sensitivity is the probability that Dπ has reached its final state qf :

sensitivity(π) =
∑

β∈{0,1}n

P (qf , n, β). (3.39)

Seed sensitivity in any probabilistic model In [110], a more general methodology based
on the finite automata theory is proposed for designing spaced seeds. The central idea is to
model the set of target alignments by a finite-state probability transducer, i.e. finite automata
without final states whose transitions output probabilities, which can basically express any of
the aforementioned probabilistic models for biological sequences.

Definition 10. A probability transducer G over an alphabet A is a 4-uple (QG,A, ρG, q0), where:

• QG is a finite set of states;

• ρG : QG × A × QG → [0, 1] is a probability function such that ∀q ∈
QG,

∑
q′∈QG,a∈A ρG(q, a, q′) = 1;

• q0 ∈ QG is an initial state.

The triplets e =< q, a, q′ > with non-zero probabilities define transitions in the transducer,
and each such transition is labeled by its symbol a ∈ A. In deterministic transducers, there is
at most one transition < q, a, q′ > for any a ∈ A and any q ∈ Q.

A path P = (e1, ..., en) in G, labeled by the concatenation of the symbols ai corresponding
to each transition, is called initial if it starts in the state q0, and has the associated probability

ρ(P ) =
∏

ei∈P

ρ(ei). (3.40)

More generally, the probability of a word w, P(w) is the sum of all probabilities ρ(P ) of initial
paths labeled with w. Finally, the probability of a language L is defined as

P(L) =
∑

w∈L

P(w). (3.41)

The sensitivity of a seed π accepting a set (language) of alignments Lπ defined by the au-
tomaton Dπ, with respect to a set (language) of target alignments LT defined by the automaton
DT , and a probability transducer G is given by the conditional probability

PG(Lπ ∩ LT )

PG(LT )
. (3.42)

The language intersection Lπ ∩ LT is the language defined by the product of Dπ and DT .
In order to compute the probabilities in (3.42) as shown by (3.41), a probability-weighted
automaton is computed as the product between the automaton defining the language of in-
terest and the transducer. The result of this product can be seen as a non-deterministic
probability transducer with final states. More formally, the product between an automa-
ton K = (QK , {0, 1}, δK , q0

K , FK) defining the language LK and a probability transducer
G = (QG, {0, 1}, ρG, q0

G) is W = (QW , {0, 1}, δW , q0
W , FW ) with:

• QW = QK ×QG;
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• q0
W = (q0

K , q0
G);

• FW = {(qK , qG)|qK ∈ FK};

• δW ((qK , qG), a, (q′K , q′G)) =

{
ρG(qG, a, q′G), if δK(qK , a) = q′K
0, otherwise.

Final states in this probability-weighted automaton correspond to accepting states in the
automaton K, meaning that any input reaching such a final state belongs to the language ac-
cepted by K. In consequence, the probability of the language LK with respect to the transducer
G can be computed as

PG(LK) =
∑

P :P is a full path in W

ρ(P ) (3.43)

where a full path is an initial path ending in a final state.

The method is implemented in the Iedera software [110–112] that uses the above algorithm
to explore the space of possible seeds and select most sensitive seeds using a sampling proce-
dure for seeds and respective hit positions and by performing a local optimization on the best
candidates.

Heuristic optimization of multiple spaced seeds

In [100], a heuristic approach for optimizing multiple spaced seeds is proposed. The method
relies on the overlap complexity, which is empirically shown to be well correlated with sensitivity,
but much easier to compute. Intuitively, good seeds should have a low number of overlapping
hits, because overlapping hits generally detect the same similarity regions.

Given two spaced seeds π1 and π2, the number of non-overlapping hits is estimated by first
computing the values σ(i), the number of 1’s aligned together when a copy of π2 shifted by i
positions is aligned against π1, for all (possibly negative) i ranging from 1 − |π2| to |π1| − 1.
Then, the overlap complexity for two seeds is defined as

OC(π1, π2) =
∑

i

2σ(i). (3.44)

The overlap complexity of a seed family {π1, ..., πk} is obtained as the sum of overlap complexities
for all possible pairs of seeds OC(πi, πj), 0 ≤ i ≤ j < k.

With this measure for approximating the sensitivity, a polynomial heuristic algorithm for
designing multiple spaced seeds is then proposed. Basically, the method consists of starting
with fixed seeds and repeatedly modifying them (changing 1’s into *’s) as long as the overlap
complexity improves. This approach has the advantage of being very fast while also giving
good results in general. Although no explicit mechanism is proposed for correlating the seed
patterns with a specific model (mismatch distribution) in the target alignments, the method
could be refined in this direction by introducing in (3.44) different weights for the overlapping
seed positions.

3.4.5 Other types of seeds

The methods for detecting the well conserved regions of two sequences have evolved beyond
contiguous and spaced matching patterns, leading to the emergence of more complex models [28].
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Vector seeds [27] were proposed as a generalization of spaced seeds. Such a seed π consists
in a vector v of l integers and a score T , with the meaning that π hits an alignment A = a0...an

if there is a position i in this alignment such that v · (ai, ..., ai+l−1) ≥ T . Both contiguous and
spaced seeds can easily be defined as vector seeds (v, T ) by making v a vector whose length
equals the seed’s span and has a 1 for every position corresponding to a match and a 0 for every
position corresponding to a mismatch in the seed pattern, and finally setting the threshold T
to be the weight of the seed. Although very powerful in theory for expressing local similarities,
vector seeds are not always compatible with direct hashing methods and require rather complex
and time consuming approaches for seed detection.

Neighbor seeds [48], initially named daughter seeds [47], were proposed as an approximation
of vector seeds. In conjunction with a two step extension approach which consists of extending
a hit only if other matching positions are found besides the ones defined by the seed pattern,
daughter seeds are essentially multi-pass filters based on spaced seed patterns which allow the
expressiveness of vector seeds to be achieved while using an efficient hash-based index imple-
mentation, and giving the possibility to maximize independence between seeds, which is known
to improve the overall sensitivity.

Subset seeds [108], another extension of spaced seeds, combine the expressiveness of an
arbitrary alignment alphabet with the advantages of using direct hashing [119] for locating
seeds. Basically, the target alignments are words over an alphabet A containing a symbol
1 which denotes exact matches and other symbols for different mismatch classes. The seed
pattern is defined over an alphabet B, where each symbol in B accepts a set of symbols (types
of mismatches) from A, with the additional constraint that every symbol in B accepts matches
(its corresponding subset of A necessarily contains the symbol 1) and there is a symbol in B
accepting only matches.

In practice, the subset seeds for DNA alignment generally distinguish between transitions
and transversions mismatches [156, 215], while in proteins [177] the set of amino acids can be
partitioned in various similarity groups based on their physical and chemical properties.

Indel seeds [135] are a seed models which explicitly allow indels, and were designed with
the primary goal of boosting the sensitivity of heuristic search in non-coding DNA, especially
in repeats where insertions and deletions are relatively common. The alignment alphabet A =
{0, 1, 2, 3} contains, in addition to the usual symbols 1 for matches and 0 for mismatches, two
symbols standing for insertion and deletion respectively. In turn, indel seeds are patterns over
the alphabet {1, ∗,×}, where × accepts all possible mutational events, indels included. Applying
an indel seed to a sequence means selecting not just one subset of positions as it is done, for
instance, in the case of spaced seeds, but up to 3k different sets, where k is the number of ×
symbols in the seed pattern.

As reported by their respective authors, most theoretical aspects discussed for spaced seeds,
i.e. the evaluation of seed sensitivity based on the automata theory, apply to the alignment
and seed models presented above, with the additional complexity resulting from a more refined
alphabet for both the target alignments and the seed pattern.
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Frameshift mutation discovery via
protein back-translation
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Chapter 4

Context and motivation

4.1 Problem statement

Gene duplication and divergence provide a critical source of genetic novelty during evolution [4].
It is believed that, after duplication, there is basically no selection pressure for maintaining both
copies in an identical functional state, since one copy suffices for accomplishing the function [4].
Hence, one of the copies may undergo loss-of-function mutation that can remain uncorrected
without affecting the functioning of the organism. However, it is not unlikely that both copies
remain functional, while their sequence and expression patterns diverge and they assume different
roles within the organism. This hypothesis may actually explain large families of genes with
related functions in complex organisms [4].

Here, we address the problem of finding distant homologies, in particular when frameshift
events are involved in the divergence. We consider the following “duplication and divergence
scenario”. A gene encoding a protein is duplicated. One of the copies undergoes a frameshift
mutation. Subsequently, both copies may be affected by point mutations, mostly synonymous
for one of them in order to preserve the function, but unrestricted for its frameshifted copy.

Tracing back the common origins of the two sequences may become difficult after a long
period of evolution. As mentioned earlier in Section 1.4, a single frameshift mutation introduces
a drastic change in the translated protein sequence, completely changing the translation after the
frameshift (Figure 4.1), while having a small effect on the affected DNA sequence, most of which
is left unchanged. However, if additional point mutations are involved in the divergence, the
similarity at the DNA level may be reduced beyond recognition. It has been shown [76,80,187]
that, in coding DNA, there is a base compositional bias among codon positions, that no longer
applies after a reading frame change. A frameshifted coding sequence can be affected by base
substitutions leading to a composition that complies with this bias. If, in a long evolutionary
time, a large number of codons in one or both sequences undergo such changes, they may be
altered to such an extent that the common origin becomes difficult to observe by direct DNA
comparison. Figure 4.2 illustrates such an extreme case. The sequences from Figure 4.1 were
altered by synonymous mutation following the frameshift. Note that the protein sequences
remain unchanged when compared to Figure 4.1, but the mutated DNA presents an impressive
number of mismatches, making it difficult for a sequence alignment algorithm to detect any
similarity.

In conclusion, such divergence scenarios may become difficult to detect both at the DNA
and protein sequence level. Here, we discuss the design of a procedure that combines DNA and
protein sequence information in order to improve homology detection.
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A C L I M E G A E F T E
. . . GCCTGTCTCATCATGGAAGGCGCTGAATTTACGGAA . . .

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. . . CCTGTCTCATCATGGAAGGCGCTGAATTTACGGAAG . . .

P V S S W K A L N L R K

Figure 4.1: Proteins encoded on identical DNA sequences, with a frameshift.

A C L I M E G A E F T E
. . . GCGTGCCTAATTATGGAGGGGGCCGAGTTCACAGAG . . .

| . . | . . . . . . . . | | | | . . | . . . . . | . . . . . . . . | .

. . . CCCGTGAGTAGCTGGAAAGCTTTAAACCTGAGAAAG . . .

P V S S W K A L N L R K

Figure 4.2: The same proteins, encoded on sequences that were identical at one point, but subsequently
underwent a series of synonymous mutations.

4.2 Related work

The problem of detecting frameshift mutations that led to functional divergence has so far
known several approaches. Several studies [82, 83, 159, 172] assumed sufficient similarity at the
DNA level and used the straightforward solution given by BLAST [11,13] alignment approach:
either BLASTN on DNA and mRNA, or TBLASTN on mRNA and proteins. Although capable
of insightful results thanks to the six frame translations, TBLASTN addresses the problem of
frameshifts only indirectly and in a heuristic manner. TBLASTN uses a greedy algorithm to
link nearby distinct alignments and computes an E-value for these linked sets [9]. However,
frameshifts are not labeled as such by TBLASTN, and the only evidence that the sets are
correctly linked is that they are in a consistent order and yield a lower E-value than each
alignment would if taken on its own [67].

Interestingly, years before the publication of these results, various algorithmic methods spe-
cific to frameshift discovery had already been proposed.

4.2.1 Amino acid substitution score matrices for frameshift detection

For handling frameshifts at the protein level, [40] and [167] propose to use 5 substitution score
matrices, each capable of detecting a different frameshift: insertion, deletion, and inversion in 3
reading frames. These scores are obtained as a classic log-odds ratio

σ(i, j) =
1

λ
log

(
qij

pipj

)
(4.1)

with qij the probability that i and j have evolved from a common ancestor and pi the probability
of occurrence of i, and can thereby be integrated directly with regular alignment tools, such as
BLASTP. Both approaches are based on evolution scenarios involving gene duplication, followed
by a frameshift in one of the copies, and subsequent point mutations and in-frame insertions
and deletions in both sequences. An alternative scenario is proposed in [40] for simulating the
occurrence of a sequencing error: the frameshift is more recent and affects one of the sequences
after both already drifted by point mutations.

Since the hypothetical evolution process has several distinct stages, different evolution models
are considered for each stage and combined to obtain the joint probabilities qij .
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More precisely, [40] proposes to compute the probabilities qij as

qij = pi

∑

k

Mik

∑

l

TklMlj = pi(MTM)ij (4.2)

where Mik gives the i → k substitution frequency according to the point mutation process
(in practice, PAM models), and Tlk is the probability of l turning into k due to a certain
type of frameshift (e.g. one base insertion). The latter depends on the genetic code and the
codon frequencies, and takes into consideration codons on different reading frames that have
at least two consecutive nucleotides in common. For example, the deletion of a nucleotide
can trigger transformations such as C1C2C3 → C2C3N , where C1C2C3 is a codon, with Ci ∈
{A, C,G, T}, and N denotes any nucleotide. Five theoretical T models (one for each of the
five different frameshifts mentioned above) are derived from these codon transformations by
shifting, in conjunction with the known codon frequencies. The resulting scoring matrices are
asymmetric, due to the asymmetry of Tlk.

In the model proposed in [167], point mutation rates are retrieved from the BLOSUM [86]
substitution scores, by “reverse-engineering” equation (3.20) (Chapter 3, Section 3.3):

PB(i→ j) = pj2
BLOSUM62ij/2 (4.3)

with pj chosen so that
∑

i PB(i→ j) = 1. The effect of the frameshift is captured in a separate
matrix Pfs, which accounts for the conversion of a particular codon for amino acid i into amino
acid j in a different reading frame, based on the same reasoning as above,

Pfs(i→ j) =
pfs(i, j)

pfs(i)
(4.4)

where pfs(i, j) is the probability of finding the (i, j) amino acid pair and pfs(i) is the probability
of finding the amino acid i. The possible effects of codon bias are not taken into account. Finally,
the full frameshift substitution probability matrix must capture the fact that a frameshift is
followed in both sequences by point mutation, and is therefore computed as

Ptot(i→ j) = Pn
B(i→ k)Pfs(k → l)Pn

B(i→ j) (4.5)

where Pn
B is the nth power of Pn

B, allowing one to obtain scores that comply with a certain
evolutionary distance. This probability matrix is then converted to log-odds scores according to
the classic formula:

σ(i, j) = log
piPtot(i→ j)

pipj
= log

Ptot(i→ j)

pj
. (4.6)

As mentioned above, these scoring matrices have the advantage of being ready to use with
classic sequence alignment methods, such as BLAST or any dynamic programming aligner based
on the Smith-Waterman algorithm. On the downside, multiple reading frame changes within the
same alignment (for example, if two sequences start on the same reading frame and a frameshift
occurring in the middle of one of the sequences switches the reading frame until its end) are
difficult to manage when using these regular alignment methods.

Another disadvantage, this time of the scores themselves, is the partial loss of information.
Frameshifts are considered independently with respect to each amino acid in the sequence,
taking into account the largest codon part that was preserved. The scoring scheme does not
capture the fact that, after the reading frame change, the codons following the frameshift are
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Figure 4.3: Illustration of an alignment (a) with an overestimated score under the scoring schemes
of [40] and [167]. Since only the largest codon overlaps (2 positions) are taken into account by the scores,
while the smaller overlaps (of one codon position) are ignored, the score of this alignment is likely to be
overestimated. The pairs (Q,R) and (W,G) have high substitution scores respectively, because they share
two consecutive nucleotides on different reading frames. Nevertheless, the overlap between the last codon
position of R (a purine) and the first codon position of W (a pyrimidine) is not taken into account by
the scoring system. Assuming evolution of the sequences by point mutations, if these sequences share a
common ancestor, then some purine-pyrimidine mutation should have taken place during the evolution,
either on the first position of the codon of W (b), or on the last position of the codon of R (c). However,
both these mutations are improbable, as suggested by their negative BLOSUM62 scores.

composed of parts from two consecutive codons from the original coding sequence. For instance,
a deletion (C1C2C3 → C2C3N) produces codons whose last nucleotide was the first nucleotide of
the codons in the original coding sequence, prior to the frameshift. If considered in the context of
two consecutive codons, the deletion should be expressed as C1C2C3 C ′1C

′
2C

′
3 → C2C3C

′
1 C ′2C

′
3N ,

constraining the choice of amino acids that should have a high score in an alignment when paired
with the amino acid encoded by C1C2C3 to those compatible with C ′1 on the last position of
their codons. While this compatibility is not an issue for the amino acids encoded by codons
with all possible nucleotides on their third position, as they are not constrained by the following
codon C ′1C

′
2C

′
3, ignoring the first position/third position shifting is a rough approximation in

general. Take, for example, the amino acid Q, encoded by the codons CAA and CAG. Under
the assumption of a deletion frameshift on the first codon position (C1C2C3 → C2C3N), the
amino acids whose codons start with AA and AG should be obtained, namely S, R, K and N .
To obtain R or K, a codon starting with a purine must follow the one encoding the original Q,
and to obtain S or N the next codon must start with a pyrimidine. Even assuming evolution
by point mutations, some purine/pyrimidine substitutions on the first or last codon position
are unlikely since they trigger substitutions between amino acids with different characteristics.
It is the case of amino acids substitutions such as W ↔ R, W ↔ G, Y ↔ D, P ↔ T , etc.
Differences between their respective physical and chemical properties have been illustrated earlier
in Figure 1.8 of Chapter 1, Section 1.2. Additionally, their low substitution rates are reflected in
the negative scores given by classic amino acid substitution matrices such as BLOSUM62. An
example of score overestimation issues that arise from ignoring the double codon overlap in the
scoring scheme when performing frameshifted alignments directly at the protein level is given in
Figure 4.3.

The following chapter will describe a way to reduce the approximation and the information
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loss resulted here from handling frameshifted amino acids independently, in addition to flexible
handling of multiple reading frames within the same alignment.

4.2.2 Dynamic programming alignment algorithms that handle frameshifts

Several dynamic programming approaches have been proposed for handling frameshifts in DNA-
protein or DNA-DNA pairwise alignment [16,79,85,106,166,168,214], which are, to some extent,
adaptations of the local alignment algorithm [188].

Based on the idea that proteins evolve slower than DNA, these algorithms make use of
the translation of the DNA sequence to determine homologies or detect off-frame sequencing
errors. In consequence, aligned sequences are generally handled in groups of consecutive symbols
denoting codons. These groups are of size 3 if no gaps exist within the codon, but segments
of size 1 2, 4 or 5 are considered for more flexible placements of gaps. Scoring the alignment
between two such segments, between a segment and an amino acid is based on the amino acids
similarity scores provided by popular matrices such as BLOSUM62 in conjunction with the
segment’s possible translations as an amino acid. When multiple translations are possible, as is
the case for segments of sizes different than 3, where symbols need to be added or removed to
obtain a standard codon, the translation resulting in the best pairwise score is the translation
of choice. In general, different reading frames are handled in different dynamic programming
tables, and a frameshift is marked in a partial alignment whenever a switch to a different reading
frame yields a better score in a partial alignment.

The formalizations of these methods are rather complex, since they involve segment align-
ments, translations, and specific gapping rules. Nevertheless, they rigorously model the evolution
of coding DNA and provide a way to handle mutations in their context rather than uniformly
at any point of the coding sequence.

4.2.3 Protein back-translation and alignment of sequence graphs

Back-translation (or reverse translation) of a protein usually refers to obtaining one of the DNA
sequences that encodes the given protein. Several methods for achieving this exist [74, 193],
aiming at finding the DNA sequence that is most likely to encode that protein. Some programs
use multiple protein alignments to improve the back-translation [72, 147]. This concept can be
considered opposite to the “translation way”, where translation is used to improve coding DNA
alignments or assess new coding DNA [22,62,168,198,209].

From a different perspective, instead of being a goal, back-translation can be used as a
powerful instrument in the context of protein homology discovery. The back-translation of
amino acids in a protein sequence into their respective codons and comparisons at the codon
level can provide more flexibility to sequence alignments.

For example, the score matrices mentioned in Section 4.2.1 make use of the amino acids’ back-
translation in order to infer rates of mutations caused by frameshifts. Marginally related to this
idea, yet not designed for dealing with frameshifts, the non-statistical approach of [117, 118]
for analyzing the homology and the “genetic semi-homology” in protein sequences is another
example of using knowledge about coding DNA when aligning amino acid sequences. Instead
of using a statistically computed scoring matrix, amino acid similarities are scored according to
the complexity of the substitution process at the DNA level, depending on the number and type
(transition/transversion) of nucleotide changes that are necessary for replacing one amino acid
by the other. This ensures a differentiated treatment of amino acid substitutions at different
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positions of the protein sequence, thus avoiding possible rough approximations resulting from
scoring them equally, based on a classic scoring matrix.

A more explicit use of the protein back-translation is given in [17]. The author proposed to
search for protein homologies by aligning their sequence graphs with a variation of the algorithm
for coding DNA alignment described in [16]. Basically, such a graph associated to a protein
sequence is a directed acyclic graph with nodes labeled by nucleotides, where every maximal
path describes a DNA sequence that can be translated into that protein. This is a straightforward
compact representation of all the sequences that encode a protein, suggested by the fact that the
codons encoding an amino acid generally differ by the nucleotide on their third position. The next
chapter will provide a more rigorous discussion and a more compact representation of this data
type, denoted from this point forward by the more illustrative term back-translation graph. Thus,
the notion of back-translation is extended to refer to all the putative DNA sequences, encoded
by a graph structure. This allows an exhaustive exploration and alignment with potential
frameshifts of all putative DNA sequences encoding two proteins. Although the number of such
sequences may be exponential with respect to the length of the protein, their alignment can be
performed in polynomial (quadratic) time thanks to this compact representation.

4.3 Contributions

Most of the methods described in Section 4.2 date from over a decade ago and has enjoyed rather
little visibility since. One can distinguish recurring approaches, such as building score matrices
for frameshifted amino acid similarities, or using both the DNA and its corresponding protein
sequence, via translation or back-translation, to improve similarity detection in the comparison
of sequences affected by frameshifts. Although emerged and initially conducted independently
from them, the algorithms proposed in the following chapters revive some ideas explored in the
aforementioned efforts, bringing several scientific and technical variations and improvements, and
eventually leading to a first (to our knowledge) fully featured, freely available implementation
of a protein alignment approach targeting frameshift detection.

Basically, the goal of this work is to provide a method for finding hidden protein homologies
whose divergence is caused by a frameshift, by direct protein comparison. While the same method
can be used for any protein comparison task, it makes more sense in two particular contexts:

• When the proteins are not obtained from sequenced transcripts, but come directly from
mass spectrometry, and there is no coding DNA available for making comparisons and
detecting frameshifts at the DNA level.

• When the coding DNA is available, but the degree of divergence is so high that it cannot
be handled by DNA comparison alone.

This approach can also detect less distant protein homologies, with or without frameshifts, or
to obtain evidence of indel sequencing errors, but these use cases are not its primary goal.

The proposed method relies on the concept of protein back-translation. First, the complete
set of DNA sequences encoding the proteins of interest is retrieved in the compact form as back-
translation graphs (Section 5.1). Second, a new dynamic programming algorithm for aligning
two back-translation graphs is proposed, which builds expressive alignments between the hypo-
thetical nucleotide sequences obtained by back-translating the proteins, that can provide some
information about the common ancestral sequence, if such a sequence exists. Frameshifts are
handled by within the algorithm via a non-monotonic gap penalty function, where insertions and

72



4.3. Contributions

deletions of full codons are less penalized than reading frame disruptive gaps. Additionally, since
frameshifts are considered to be very rare events, the algorithm offers the possibility to restrict
their number in an alignment by other means than very strong frameshift penalties which may
bias the score statistics. This algorithm, described in Section 5.2, is simpler than its predeces-
sors in that it handles pairs of symbols individually, and not as sequence segments. However,
this simplification does not trigger the loss of contextual information, which is captured by a
powerful scoring system designed to reflect the actual evolution process from a codon-oriented
perspective, as explained in Section 5.3. Chapter 6 presents preliminary work on a heuristic
seed-based approach for similarity search on all possible frameshifts. The proposed seeds ba-
sically take into account matches at the codon level, and allow the use of the same index for
similarity search on different frameshifts. The implementation of this method is presented in
Chapter 7, along with some experimental results and their discussion.
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Chapter 5

Alignment of protein sequences with
a frameshift

This chapter presents an algorithm for aligning protein sequences with a frameshift. The method
does not rely on the actual coding DNA of each protein. Instead, the proteins are back-translated
as graphs comprising all the putative DNA sequences in a compact form, as explained in Sec-
tion 5.1, and a dynamic programming method for aligning such graphs is proposed in Section 5.2.

5.1 Back-translation graphs

The number of putative DNA sequences that can be translated into the same protein is, on
average, exponential with respect to the length of the protein. This estimation follows from
the number of codons encoding each of the amino acids that compose a protein. According to
the standard genetic code, presented earlier in Chapter 1, Figure 1.12, the encoding of amino
acids by codons is non-ambiguous and redundant, i.e. some amino acids are encoded by several
different codons. In fact, with the exception of M and W , which have a single corresponding
codon each, all amino acids are encoded by 2 (C, D, E, F , H, K, N , Q, Y ), 3 (I), 4 (A, G,
P , T , V ) or 6 (L, R, S) codons. Assuming an amino acid composition similar to the figures
given by Table 5.1, corresponding to the standard genetic code, one can expect about 95%
of all amino acids composing a protein to be encoded by at least 2 codons, which yields an
exponential explosion of coding sequence possibilities. Basically, a protein sequence of length
n with the approximate amino acid composition of Table 5.1 is expected to have a number of
putative coding DNA sequences in the order of 3n.

Nevertheless, these coding sequences are very similar, sharing identical nucleotides on roughly
more than half of their length on average. This results from the simple observation that, for
any amino acid encoded by 2-4 codons, all these codons are identical on the first and second
position, and differ only by their last. Similarly, when 6 different codons encode the same amino
acid, they can be separated into two groups of 4 and 2 respectively that have the same property.

5.1.1 Back-translation graph representation

Based on these observations, all the putative DNA sequences for a given protein can be rep-
resented efficiently as a directed acyclic graph, with nodes labeled by nucleotide symbols, and
paths describing putative DNA sequences. As illustrated in Figure 5.1 (a), the graph is basically
organized in 3n positions, where n is the length of the protein sequence. Every position i of the
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Amino Acid Percentage

A (Ala) 8.3%
C (Cys) 1.7%
D (Asp) 5.3%
E (Glu) 6.2%
F (Phe) 3.9%
G (Gly) 7.2%
H (His) 2.2%
I (Ile) 5.2%

K (Lys) 5.7%
L (Leu) 9.0%

Amino Acid Percentage

M (Met) 2.4%
N (Asn) 4.4%
P (Pro) 5.1%
Q (Gln) 4.0%
R (Arg) 5.7%
S (Ser) 6.9%
T (Thr) 5.8%
V (Val) 6.6%
W (Trp) 1.3%
Y (Tyr) 3.2%

Table 5.1: Amino acid distribution according to the standard genetic code.
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Figure 5.1: Back-translation graph example for the amino acid sequence Y SH, describing all putative
DNA sequences.

graph has one or more corresponding nodes, each node representing a possible nucleotide that
can appear at position i in at least one of the putative coding sequences.

For identical nucleotides that appear at the same position of different codons for the same
amino acid, and are preceded by different nucleotides within their respective codon, (as it is the
case for bases C and T at the second position of the codons corresponding to amino acids S and L
respectively), different nodes with the same label are introduced into the graph in order to avoid
the creation of paths that do not correspond to actual putative DNA sequences for the given
protein. Also, as the scoring system proposed in Section 5.3 requires to differentiate identical
symbols by their context, identical nucleotides appearing at the second and third position of
different codons for amino acids L, S and R will have different corresponding nodes in the back-
translation graph. Basically, each nucleotide symbol α from a putative coding DNA sequence
belonging to some codon c is labeled with a word w which is its prefix in the codon c. Depending
on the position of α in c, w has length 0, 1 or 2. Here we denote such a labeled symbol by α(w).

For example, let us consider the 6 codons encoding the amino acid R: AGA, AGG, CGA,
CGC, CGG, CGT . All nucleotides on the first positions of these codons have empty prefixes
within their codons, and are therefore labeled with the empty word ǫ: A(ǫ), A(ǫ), C(ǫ), C(ǫ),
C(ǫ), C(ǫ) respectively. Thus, there are 2 unique labeled symbols, A(ǫ) appearing twice and C(ǫ)

appearing four times. On the second position of each codon we find the nucleotide G, but with
different prefixes: G(A) in the first two codons and G(C) in the last four. Finally, the labeled
symbols on the last position of the codons are A(AG), G(AG), A(CG), C(CG), G(CG), T (CG). Here
there are two nucleotides (A and G) appearing on the third position of two different codons
each, but with different prefixes (or labels w), namely AG and CG.
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Figure 5.2: The construction of simple back-translation graphs for the amino acids R, encoded by 6
codons, and I, encoded by 3 codons. Identical nucleotides are associated to different nodes if they have
different prefixes in the codons where they appear.
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Figure 5.3: Back-translation graphs using ambiguous nucleotide codes for the amino acids R, encoded
by 6 codons, and I, encoded by 3 codons.

In later formalizations the w label may be dropped for notation simplicity, and this differ-
entiation will be considered implicit. Two symbols that appear at the same position of two
putative DNA sequences encoding the same protein are identical (and are thereby represented
by the same node) if and only if they represent the same nucleotide and their labels are identical.
Two nodes at consecutive positions are linked by an arc if and only if they are either consecutive
nucleotides of the same codon, or they are respectively the third and the first base of two con-
secutive codons. No other arcs exist in the graph. The construction of a simple back-translation
graph for the amino acids R and I is illustrated in Figure 5.2.

5.1.2 Compact back-translation graph representation using IUPAC ambigu-
ity codes

The graph representing the set of putative DNA sequences for a protein has a number of nodes
and arcs that depend linearly on the length n of the protein sequence. This follows directly from
the fact that the graph models 3n positions in a DNA sequence, with no more than 6 nodes
each, and there are arcs only between nodes on consecutive positions. The graph size can be

further decreased if we represent all the different symbols α
(w)
i appearing at the same position i

of the graph and having identical non-empty labels (prefixes within their codon) w by a single
node whose name is given by the IUPAC ambiguity code [42] denoting the set {αi}. These
nucleotide ambiguity codes (given previously in Chapter 3, Table 3.1) enable the representation
of all the amino acids encoded by 2-4 codons by a single sequence of 3 symbols, where the 3rd
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Figure 5.4: Back-translation graph example for the amino acid sequence Y SH: (a) explicitly describing
all putative DNA sequences and (b) compact representation using ambiguity codes.

symbol may account for 1, 2, 3 or 4 nucleotides. The amino acids encoded by 6 codons can
be represented by two such segments of 3 symbols, as shown in Table 5.1.2. Considering this
set of “ambiguous” codons for each amino acid, a back-translation graph can be constructed in
the similar manner as described above, as illustrated in Figure 5.3 and Figure 5.4. Under this
nucleotide encoding, the size of the back-translation graph is dramatically reduced, since most
amino acid (78% according to Table 5.1) are expected to be back-translated into a single path
of length 3, and the others require 6 nodes (two paths of length 3) to be represented.

A more formal definition of the back-translation graph is given below. The ambiguity codes
are interchangeably used as symbols denoting a node in the graph, and sets of nucleotides they
represent. For instance, R ≡ {A, G}, N ≡ {A, C,G, T}, C ≡ {C}. The definition stands whether
the ambiguity codes are used or not, as long as it is accepted that α ≡ {α},∀α ∈ {A, C,G, T}.

Definition 11. A back-translation graph associated to a protein sequence P of length n is a
directed acyclic graph GP = (VP , EP ) where:

VP =
3·n⋃

i=1

{α
(w)
i |∀x ∈ αi,∃D ∈ {A, C,G, T}3n : P = translation(D) ∧ w · x ∈ suffix(D[1..i])}

(5.1)

where α
(w)
i is a symbol that appears at position i in the graph, denoting a set of nucleotides that

appear on position i of at least one of the protein’s putative coding sequences and has the prefix
w in its codon (as explained earlier in Section 5.1.1), and

EP = {(α
(w1)
i , α

(w2)
i+1 ) | ∃D ∈ {A, C,G, T}3n : P = translation(D)∧

∃x ∈ αi : w1 · x ∈ suffix(D[1..i])∧
∃x′ ∈ αi+1 : w2 · x

′ ∈ suffix(D[1..i + 1])}

(5.2)

are arcs between nodes corresponding to symbols that are consecutive in one of the protein’s
putative coding sequences.

A similar definition was given in [17], with the remark that it explicitly enumerated all
the nucleotide possibilities on the third position of the codon, basically because the associated
alignment algorithm was not designed to work with ambiguity codes. On the other hand,
the scoring system proposed here in Section 5.3 allows the use of this compact form, with no
information loss.

In the remainder of this chapter, the term back-translation graph will refer to the compact
representation using ambiguity codes, and expanded back-translation graph will denote back-
translation graphs where possible nucleotides on each position are explicitly represented by
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Amino Acid Codons

A (Ala) GCN
C (Cys) TGY
D (Asp) GAY
E (Glu) GAR
F (Phe) TTY
G (Gly) GGN
H (His) CAY
I (Ile) ATH

K (Lys) AAR
L (Leu) TTR, CTN

Amino Acid Codons

M (Met) ATG
N (Asn) AAY
P (Pro) CCN
Q (Gln) CAR
R (Arg) AGR, CGN
S (Ser) AGY, TCN
T (Thr) ACN
V (Val) GTN
W (Trp) TGG
Y (Tyr) TAY

Table 5.2: Sets of codons encoding each amino acid, represented using the IUPAC ambiguity codes.

nodes in the graph. The latter is occasionally used in this chapter in examples only. The
implementation of this method is based on the compact representation, which helps to save
both time and memory.

5.1.3 Space complexity

The space necessary for storing the back-translation graph of a protein sequence P of size
n depends linearly on n. Basically, as mentioned in Section 5.1.2, the back-translation graph

GP = (VP , EP ) consists of 3 ·n groups of nodes {α
(w)
i } (as each of the n amino-acids are encoded

by sequences of 3 nucleotides). In the expanded form of the back-translation graph, every group i
contains the nodes corresponding to the nucleotides that appear at position i in at least one of the
putative coding sequences. The number of nodes in a group is limited by the number of codons
that encode an amino acid, which is 6 in the worst case scenario for non-ambiguous symbols,
thus does not depend on the protein’s length. Arcs exist only between nodes in consecutive
groups (equation (5.2)), therefore each node can have a limited number of neighbors, also not
depending on the protein’s length. Consequently, the overall memory consumption for storing
the expanded back-translation graph of a protein sequence P of size n is O(n), with a number
of nodes necessary for the representation of each amino acids ranging between 3 and 10. The
worst case scenario is a protein sequence composed only of the amino acids L, S, R, which are
encoded by 6 codons each, and hence have the most complex back-translation. For each such
amino acid, 10 nodes and 20 arcs are necessary (as depicted in Figure 5.2), yielding a maximum
memory size of 30n for the entire graph.

The reasoning is similar for the compact back-translation graphs, where the ambiguous
nucleotide symbol encoding is used. However, in this representation, only 6 nodes and 6 arcs
are necessary in the worst case for an amino acid, while most amino acids require just 3 nodes
and 3 arcs for their back-translation.

5.1.4 Reverse complementary of a back-translation graph

The reverse complementary of a back-translation graph can be obtained in a classic manner, by
reversing the arcs and complementing the nucleotide symbols that label the nodes, as illustrated
in Figure 5.5. The complementary of an ambiguous nucleotide symbol α is the symbol denoting
the set of nucleotides that are complementary to the ones contained in the set represented by
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Figure 5.6: Alignment example: A path (corresponding to a putative DNA sequence) was chosen from
each graph so that the match/mismatch ratio is maximized.

α. Thus, the complementaries of R, Y , H and N are Y , R, D and N respectively.

5.2 Alignment algorithm

When aligning two back-translation protein sequences, the goal is to find the two putative DNA
sequences (one for each protein) that are most similar with respect to an established scoring
scheme, as shown in a small example in Figure 5.6. By extending Definition 1, an alignment of
two back-translation graphs is defined as follows:

Definition 12. Given two back-translation graphs GA and GB, their alignment consists of two
equally sized sequences S′A = a1...al and S′B = b1...bl, over an alphabet Σ ∪ {−} (where Σ is the
alphabet of nucleotides, and − /∈ Σ represents a gap in the alignment) obtained by inserting zero
or more gaps between the symbols of two DNA sequences SA and SB comprised in the graphs
GA and GB respectively, in order to shift on the same position intervals subsequences that are
similar in both SA and SB, with the constraint that ∄h ∈ {1, ..., l} : ah = bh = −.

This section presents a dynamic programming method, inspired from the Smith-Waterman
algorithm [188], designed to align back-translation graphs and handle frameshifts via its gap
related restrictions.

5.2.1 The dynamic programming table

Given the input graphs GA and GB obtained by back-translating proteins PA and PB, the
algorithm finds the best scoring local alignment between two DNA sequences comprised in the
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5.2. Alignment algorithm

back-translation graphs. Partial solutions are stored in a table M . For each entry M [i, j, (αi, βj)],
i and j are positions of GA and GB respectively, and (αi, βj) enumerates the possible pairs
of nodes that can be found in GA at position i, and in GB at position j, respectively. In
consequence, M [i, j, (αi, βj)] holds the score of the best alignment ending at positions i and
j respectively between two prefixes DA

1..i and DB
1..j of the DNA sequences DA and DB with

translation(DA) = PA and translation(DB) = PB, such that DA
i ∈ αi and DB

j ∈ βj .
An example of table M is given in Figure 5.7 for expanded back-translation graphs, and

Figure 5.8 depicts the table M for the equivalent condensed back-translation graphs. Note
that the back-translation graphs are 1-indexed, while the table M is 0-indexed, i.e. M [0, 0, ·],
M [i, 0, ·], M [0, j, ·] are defined. This apparent inconsistency is necessary in order to allow the
storage in M of partial solutions (scores) for alignments consisting of gaps being inserted before
one of the sequences, which are necessary in the initialization step (relation (5.3)), and at the
same time to ensure that the definition of M [i, j, (αi, βj)] given above holds under this condition.

5.2.2 Recurrence relations

The dynamic programming algorithm begins with a classic local alignment initialization of
M , i.e. 0 at the top and left borders, as shown in (5.3), where the symbol ’-’ replacing a graph
node denotes the fact that only gaps have been inserted before one of the sequences in the
corresponding partial alignment.

M [0, 0, (−,−)] = 0

M [i, 0, (αi,−)] = 0 (5.3)

M [0, j, (−, βj)] = 0

The recursion step is described by relation (5.5). The partial alignment score of each entry
M [i, j, (αi, βj)] is computed as the maximum of 6 types of values:

(a) 0 (similarly to the classic Smith-Waterman algorithm, only positive scores are considered
for local alignments).

(b) the substitution score of symbols (αi, βj), denoted score(αi, βj), added to the score of the
best partial alignment ending in M [i− 1, j − 1], provided that the partially aligned paths
contain αi at position i and βj on position j respectively; this condition is ensured by
restricting the entries of M [i− 1, j − 1] to those labeled with symbols that precede αi and
βj in the graphs, and is expressed in (5.5) by αi−1 ∈ predGA

(αi), βj−1 ∈ predGB
(βj).

(c) the cost fsGapPenalty of a deletion frameshift (gap of size 1 or extension of a gap of
size 1) in sequence A, added to the score of the best partial alignment that ends in a
cell M [i, j − 1, (αi, βj−1)], provided that βj−1 precedes βj in the second graph (βj−1 ∈
predGB

(βj)).

(c’) the cost fsExtensionPenalty of a deletion frameshift (extension of a gap of size 1) in
sequence A, added to the score of the best partial alignment that ends in a cell M [i, j −
1, (αi, βj−1)], provided that βj−1 precedes βj in the second graph (βj−1 ∈ predGB

(βj)); this
case is considered only if the previous pair on the current partial alignment is a frameshift
gap in sequence A.

(d) the cost of a deletion frameshift in sequence B, added to a partial alignment score defined
as in (c).
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Figure 5.7: Example of dynamic programming table M for computing the best local alignment of two
expanded back-translation graphs: M [i, j] is a “cell” of M corresponding to position i of the first graph
and position j of the second graph, and contains entries (αi, βj) corresponding to pairs of nodes occurring
in the first graph at position i, and in the second graph at position j, respectively.
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Figure 5.8: Example of dynamic programming table M for computing the best local alignment of two
compact back-translation graphs: similarly to Figure 5.7, M [i, j] is a “cell” of M corresponding to position
i of the first graph and position j of the second graph, and contains entries (αi, βj) corresponding to pairs
of nodes occurring in the first graph at position i, and in the second graph at position j, respectively.

(d’) the cost fsExtensionGapPenalty of a deletion frameshift (extension of a gap of size 1) in
sequence B, added to a partial alignment score defined as in (c’).

(e) the cost tripleGapPenalty of skipping an entire codon from sequence B (i.e. an actual
amino acid from PB), added to the score of the best partial alignment ending in a cell
M [i, j − 3, (αi, βj−3)], with no restrictions imposed to βj−3.

(f) the cost of skipping an entire codon from sequence A, added to the score of the best
partial alignment ending in a cell M [i− 3, j, (αi−3, βj)], also with no restrictions on αi−3.
In practice, the codon gap penalty is smaller than the cumulated penalty for 3 frameshifts,
as explained in Section 5.2.3.

The recurrence relations are illustrated in Figure 5.9 and Figure 5.10. When aligning ex-
panded back-translation graphs (Figure 5.9), for indices i and j corresponding to the last position
of the codon, the number of choices can be significantly larger than in the case of compact back-
translation graphs (Figure 5.10), since in the former all nucleotides on the third codon position
are explicitly represented by nodes. Nevertheless, the scoring scheme ensures that relation (5.5)
produces the same result in both cases. Namely, as will be shown in detail in Section 5.3, the
score σ(α, β) of two ambiguous symbols α and β is pre-computed as

σ(α, β) = max
x∈α,y∈β

σ(x, y). (5.4)
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Figure 5.9: Illustration of the recurrence relations given by (5.5) for computing partial solutions in
a dynamic programming table that will give the best scoring alignment between two expanded back-
translation graphs.
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Figure 5.10: Illustration of the recurrence relations given by (5.5) for computing partial solutions in
a dynamic programming table that will give the best scoring alignment between two compact back-
translation graphs. The number of table entries to interrogate for computing a new partial solution in
generally smaller than in the case of aligning the equivalent expanded back-translation graphs, depicted
in Figure 5.9.

M [i, j, (αi, βj)] =

max





0 (a)
M [i− 1, j − 1, (αi−1, βi−1)] + σ(αi, βj), αi−1 ∈ predGA

(αi); (b)
βj−1 ∈ predGB

(βj);

M [i, j − 1, (αi, βj−1)] + fsGapPenalty, βj−1 ∈ predGB
(βj); (c)

M [i, j − 1, (αi, βj−1)] + fsExtensionPenalty, βj−1 ∈ predGB
(βj); (c′)

(only if the previous entry on the alignment path is in M [i, j − 2])

M [i− 1, j, (αi−1, βj)] + fsGapPenalty, αi−1 ∈ predGA
(αi); (d)

M [i− 1, j, (αi−1, βj)] + fsExtensionPenalty, αi−1 ∈ predGA
(αi); (d′)

(only if the previous entry on the alignment path is in M [i− 2, j])

M [i, j − 3, (αi, βj−3)] + tripleGapPenalty, j ≥ 3, j multiple of 3; (e)

M [i− 3, j, (αi−3, βj)] + tripleGapPenalty, i ≥ 3, i multiple of 3; . (f)
(5.5)
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5.2.3 Handling frameshifts

The algorithm adopts a non-monotonic gap penalty function, where insertions and deletions of
full codons are penalized less than reading frame disruptive gaps. More precisely, as can be seen
in equation (5.5), two particular kinds of gaps are considered: frameshifts – gaps of size 1 or
2, with high penalty, and codon skips – gaps of size 3 which correspond to the insertion or
deletion of a whole codon. The fact that the penalty for frameshifts is higher than the penalty
for in-frame gaps ensures that no gap of length g multiple of 3 is wrongfully considered as a
series of frameshifts.

Additionally, since frameshifts are considered to be very rare events, one may be interested in
imposing a maximum number F of frameshifts in the alignments. To cope with this restriction,
the alignment algorithm described above is adapted in order to find alignments that have at
most F frameshifts as explained below.

Let GA and GB be the back-translation graphs to align, obtained by back-translating proteins
PA and PB. We maintain F +1 dynamic programming tables Mf , ∀f ∈ {0, ..., F}, organized as
explained in Section 5.2.1. The entry Mf [i, j, (αi, βj)] now holds the score of the best alignment
with f frameshifts between two prefixes DA

1..i and DB
1..j of the DNA sequences DA and DB

with translation(DA) = PA and translation(DB) = PB, such that DA
i ∈ αi and DB

j ∈ βj .

The initialization of Mf is done according to relations (5.6) – (5.8). This initialization
differs slightly from (5.3), and basically ensures that the correct number of frameshifts is taken
into account for alignments starting on the top-left border of M . As such, alignments beginning
at positions (i, j) with i = 0 or j = 0 with i− j multiple of 3 start “in-frame” and should appear
in M0, while those where i− j is not multiple of 3 start with a frameshift and belong in M1. All
other entries on the top-left borders of Mf are invalidated by setting their value to −∞, which
forces the algorithm to discard them when recursively computing the partial solutions. Note
that, in alignments starting with a reading frame difference, the initial frameshift is counted but
not penalized.

M0[0, 0, (−,−)] = 0

M0[i, 0, (αi,−)] =

{
0, i multiple of 3;
−∞, i not multiple of 3.

(5.6)

M0[0, j, (−, βj)] =

{
0, j multiple of 3;
−∞, j not multiple of 3.

M1[0, 0, (−,−)] = −∞

M1[i, 0, (αi,−)] =

{
−∞, i multiple of 3;
0, i not multiple of 3.

(5.7)

M1[0, j, (−, βj)] =

{
−∞, j multiple of 3;
0, j not multiple of 3.

Mf [0, 0, (−,−)] = −∞,∀f ∈ {2, ..., F}

Mf [i, 0, (αi,−)] = −∞,∀f ∈ {2, ..., F} (5.8)

Mf [0, j, (−, βj)] = −∞,∀f ∈ {2, ..., F}.
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The recursion step is described by relation (5.9). The main difference from (5.5) appears in
options (c) and (d), which state that opening a frameshift gap creates a “jump” of the alignment
path from Mf−1 to Mf , thus taking into account the correct number f of frameshifts along the
current alignment path. Note that options (c) and (d) are disabled for M(0). Also, since an
alignment cannot start with more than one frameshift, the option 0 (a) of relation (5.9), which
marks the beginning of a potential local alignment, is valid only for the entries Mf [i, j, (αi, βj)]
where: i) either f = 0 and i− j is multiple of 3, meaning that the local alignment begins with
both sequences on the same reading frame, or ii) f = 1 and i− j is not multiple of 3, meaning
that the local alignment begins with a reading frame difference (see also the initialization step
and relations (5.6) – (5.8)). This prevents from initializing with a wrong value the number of
frameshifts for local alignments that begin at positions (i, j) with i > 0 and j > 0.

Mf [i, j, (αi, βj)] =

max





0 if f = 0 and (i− j) multiple of 3

or f = 1 and (i− j) not multiple of 3; (a)

Mf [i− 1, j − 1, (αi−1, βi−1)] + σ(αi, βj), αi−1 ∈ predGA
(αi); (b)

βj−1 ∈ predGB
(βj);

Mf−1[i, j − 1, (αi, βj−1)] + fsGapPenalty, βj−1 ∈ predGB
(βj), f > 0; (c)

Mf [i, j − 1, (αi, βj−1)] + fsExtensionPenalty, βj−1 ∈ predGB
(βj), f > 0; (c′)

(if the previous entry on the alignment path is in Mf−1[i, j − 2])

Mf−1[i− 1, j, (αi−1, βj)] + fsGapPenalty, αi−1 ∈ predGA
(αi), f > 0; (d)

Mf [i− 1, j, (αi−1, βj)] + fsExtensionPenalty, αi−1 ∈ predGA
(αi), f > 0; (d′)

(if the previous entry on the alignment path is in Mf−1[i− 2, j])

Mf [i, j − 3, (αi, βj−3)] + tripleGapPenalty, j ≥ 3, j multiple of 3; (e)

Mf [i− 3, j, (αi−3, βj)] + tripleGapPenalty, i ≥ 3, i multiple of 3; . (f)
(5.9)

The score of the best alignment between the back-translation graphs GA and GB is given
by the entry Mfb [ib, jb, (α

b
ib
, βb

jb
)] = maxf,i,j,αi,αj

Mf [i, j, (αi, βj)] holding the best score, i.e. the
highest value in the dynamic programming table.

5.2.4 Traceback: retrieving the alignment

Let Cf [i, j, (αi, βj)] = [f ′, i′, j′, (α′i′ , β
′
j′)] denote the traceback coordinates of the entry

Mf ′ [i′, j′, (α′i′ , β
′
j′)] whose value is chosen in the recurrence relation (5.9) for computing

Mf [i, j, (αi, βj)]. Note that, if there is no restriction on the number of frameshifts allowed
in an alignment, then the algorithm given by (5.5) is used instead of (5.9), and the value f is
therefore ignored. The best alignment can be traced back from Mfb [ib, jb, (α

b
ib
, βb

jb
)], as indicated

by this table C of traceback coordinates, until the first entry Mfs [is, js, (α
s
is

, βs
js

)] = 0 is reached.
However, if α and β are ambiguous symbols, this procedure does not retrieve the actual DNA
sequences Db

A and Db
B yielding the highest alignment score. To obtain them, an additional
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matrix τ is pre-computed together with the scoring matrix σ, described in Section 5.3, storing
the actual pair of non-ambiguous nucleotide symbols x ∈ α and y ∈ β that have the highest
score and give the value of σ(α, β):

τ(α, β) = arg max
x∈α,y∈β

σ(x, y). (5.10)

For reasons of consistency between concepts involving expanded and compact back-translation
graphs, τ is defined in theory for alignments of expanded back-translation graphs as

τ(α, β) = (α, β). (5.11)

The traceback procedure is described by Algorithm 2, an extension of Algorithm 1 of Chap-
ter 3, Section 3.2.3, adapted to local alignments of back-translation graphs. Starting from the
cell Mfb [ib, jb, (α

b
ib
, βb

jb
)] that holds the highest score, it builds two strings D′

A = a′1...a
′
l and

D′
B = b′1...b

′
l of equal lengths l that describe the alignment of two putative DNA sequences

DA = ai1 ...aik and DB = bj1 ...bjh
comprised in the back-translation graphs GA and GB respec-

tively. D′
A and D′

B are basically the sequences DA and DB with gaps (−) inserted between their
symbols.

5.2.5 Complexity

Let GA and GB be graphs obtained by back-translating proteins PA and PB, of lengths nA and
nB respectively. It was shown earlier in Section 5.1.3 that their sizes depend linearly on the
back-translated protein lengths. The dynamic programming table M computed by the alignment
algorithm will have 3 · nA + 1 rows and 3 · nB + 1 columns. Each cell M [i, j] has several entries
corresponding to the possible pairs of nodes from each sequence. The number of entries is
bounded by the square of the number of nodes C that can appear on each position in the graph
(C2). Consequently, the total number of entries in the table is at most C2 ·(3 ·nA +1) ·(3 ·nB +1),
hence O(nA · nB). In addition to the table M , a table C with the same number of entries as M
is used by the algorithm for storing the coordinates necessary for tracing back the alignment.

If there is a restriction F of the number of frameshifts allowed in an alignment, then F + 1
matrices Mf and Cf of size O(nA · nB) are used, as explained in Section 5.2.3. In consequence,
the total size of the dynamic programming tables is O((F + 1) · nA · nB). Nevertheless, this
restriction makes sense only for small values of F (usually 1 or 2), which means a reasonable
practical increase of used memory.

For computing each score in the dynamic programming table, the expressions that need to
be evaluated are given by equation (5.5) (or (5.9)), by querying some of the entries from 7 other
cells in the table. Since the number of entries in each cell is bounded by C2, this operation is
considered to be performed in constant time. Consequently, the overall time complexity of the
algorithm is O(nA · nB), or O((F + 1) · nA · nB) with frameshift gap restrictions. To recover
the best alignment and the two actual sequences that produce it, we use a traceback algorithm
with an execution time depending linearly on the alignment length, which by definition cannot
be larger than (3 · nA + 3 · nB + 1).

5.3 Scoring scheme

This section introduces a new translation-dependent scoring system suitable for the alignment
algorithm presented in Section 5.2. This scoring scheme incorporates information about possible
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5.3. Scoring scheme

Input:

Two back-translation graphs GA and GB;

The dynamic programming table M obtained by the alignment algorithm given by
(5.6) – (5.9), holding the best-scoring alignment of GA and GB;

The table C of traceback coordinates.

Output: The best scoring alignment in the form of two strings D′
A and D′

B.
begin

/* Start from the coordinates of the entry of M holding the highest
score */

[f, i, j, (αi, βj)]← [fb, ib, jb, (α
b
ib
, βb

jb
)];

D′
A ← “” // initialize with empty string

D′
B ← “” // initialize with empty string

while Mf [i, j, (αi, βj)] 6= 0 do
(f ′, i′, j′, (αi′ , βj′)) = Cf [i, j, (αi, βj)];
if i′ == i− 1 and j′ == j − 1 then

// match or substitution:

(a, b) ← τ(αi, βj) // see equation (5.10)
DA ← DA · a ;
DB ← DB · b ;

else
if i′ == i then

// gap in D′
A:

DA ← DA · ‘− ’(j−j′) ;
DB ← DB · 〈any DNA sequence comprised in a path in GB starting at j′

and ending at j〉 ;

else
// gap in D′

B:

DB ← DB · ‘− ’(i−i′) ;
DA ← DA · 〈any DNA sequence comprised in a path in GA starting at i′

and ending at i〉 ;

end

end
/* Go to the previous entry of M */

(f, i, j, (αi, βj)) ← (f ′, i′, j′, (αi′ , βj′));

end
reverse(D′

A);
reverse(D′

B);
return {D′

A, D′
B};

end
Algorithm 2: Traceback algorithm on a dynamic programming table M for retrieving the best local

alignment between two sequences DA = ai1 ...aik
and D′B = bj1 ...bjh

comprised in the back-translation

graphs GA and GB respectively. The score of the best alignment is given by a cell Mfb [ib, jb, (α
b
ib

, βb
jb

)]

holding the highest value in M , which is the starting point of the traceback. The alignment is obtained

in the form of two strings D′A = a′
1
...a′l and D′B = b′

1
...b′l of equal length l, resulting from DA and DB

by inserting gaps. The pairs (a′h, b′h), h = 1..l give the actual aligned symbols.
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A B C

a1 a2 a3 b1 b2 b3
c1 c2 c3

d1 d2 d3
e1 e2 e3 f1 f2 f3

D E F

Figure 5.11: Generic example of alignment between frameshifted protein sequences. A, B, C, D, E, F
are amino acids encoded respectively by the codons a1a2a3, b1b2b3 etc. In the depicted alignment, the
DNA sequence encoding ABC is shifted by 1 relatively to the DNA sequence encoding DEF. Scoring
functions that operate at the amino acid level, such as those proposed previously in [40] and [167], take
into account only partially the alignment at the DNA level. As such, some of the codon overlaps (depicted
here outside the regions emphasized by a rectangular marker) are ignored by the scoring function.

mutational patterns for coding sequences, based on a codon substitution model, with the aim
of filtering out alignments between sequences that are unlikely to have common origins.

Mutation rates have been shown to vary within genomes, under the influence of different
factors, including neighbor bases [23]. Consequently, a model where all base mismatches are
equally penalized is oversimplified, and ignores possibly precious information about the context
of the substitution. With the goal of being an instrument for retracing the sequence’s evolution
and revealing which base substitutions are more likely to occur within a given codon, this scoring
system is defined on pairs of triplets (α, p, a), where α is a nucleotide symbol, p is its position in
the codon, and a is the amino acid encoded by that codon, thus differentiating various contexts
of a substitution. For non-ambiguous nucleotide symbols, there are 99 valid triplets out of the
total of 240 hypothetical combinations, while 69 valid triplets exist when ambiguous symbols
are used.

Unlike the scores previously proposed in [40] and [167] for aligning protein sequences directly
with a frameshift, the scoring system discussed here takes into account all possible overlaps
between codons that are frameshifted in the two aligned sequences. Taking as example the
situation illustrated in Figure 5.11, the scores of [40] and [167] implicitly rely, at the nucleotide
sequence level, on the pairs (a2, d1), (a3, d2), (b2, e1), (b3, e2), (c2, f1), (c3, f2), but ignore smaller
codon overlaps, in this case (b1, d3) and (c1, e3). This may result in over-estimating the alignment
score for some input sequences, as explained earlier in Section 4.2.1. This issue is addressed
here by explicitly defining substitution scores for all nucleotides, with respect to an established
reading frame, based on their position in the codon and the amino acid encoded by that codon.

5.3.1 Method for obtaining translation-dependent scores

In this section, the scores for non-ambiguous symbols are first defined, and constitute the basis
for defining the substitution scores for ambiguous symbols, which are in fact used in practice.
The pairwise alignment scores are computed for all possible pairs of valid triplets (ti, tj) =
((αi, pi, ai), (αj , pj , aj)) as a classic log-odds ratio:

σ(ti, tj) = λ log
ftitj

btitj

(5.12)

where ftitj is the frequency of the ti ↔ tj substitution in related sequences, and btitj = p(ti)p(tj)
is the background probability. This scoring function is used in the algorithm as shown by
equation (5.5)(b), where it appears as σ(αA, αB), without explicitly mentioning the context –
amino acid and position in the corresponding codon – of the paired nucleotides. These details
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codonscodons

coding sequence
duplication

frameshift

independent

divergence

pair of symbols with

“common origins”

Figure 5.12: Sequence divergence by duplication and frameshift: a coding DNA sequence is duplicated,
and one of the copies undergoes a frameshift mutation; subsequently, the two copies continue to di-
verge independently, via synonymous and non-synonymous point mutations, or full codon insertions and
removals.

were omitted in equation (5.5) for generality (so that other scoring functions, that do not depend
on the translation, can be used by the algorithm as well) and for notation simplicity.

The foreground probabilities ftitj are defined according to the divergence scenario presented
in Section 4.1 and depicted in Figure 5.12: a coding DNA sequence is duplicated, and one of
the copies undergoes a frameshift mutation; subsequently, the two copies continue to diverge
independently, via synonymous and non-synonymous point mutations, or full codon insertions
and removals.

The insignificant amount of available real data that fits this hypothesis does not allow classi-
cal, statistical computation of the foreground and background probabilities. Therefore, instead
of doing statistics on real data directly, the proposed scores rely on codon frequency tables
and codon substitution models, either mechanistic [107] or empirically constructed [182]. These
models were discussed earlier in Section 3.3.3, and basically express all the probabilities Pci,cj

(θ)
that codon ci is substituted by codon cj after an evolutionary time θ, measured in expected
number of nucleotide substitutions per codon.

Foreground probabilities

Once the codon substitution probabilities are obtained, ftitj can be deduced in several steps.
Basically, we first need to identify all pairs of codons with a common subsequence, that have a
perfect semi-global alignment (for instance, codons CAT and ATG satisfy this condition, hav-
ing the common subsequence AT ; this example is further explained below). We then assume
that the codons from each pair undergo independent evolution, according to the codon substi-
tution model. For the resulting codons, we compute, based on all possible original codon pairs,
p((αi, pi, ci), (αj , pj , cj)) – the probability that nucleotide αi, located at position pi of codon ci,
and nucleotide αj , situated on position pj of codon cj have a common origin (equation (5.15)).
From these, we can proceed to compute the probabilities p((αi, pi, ai), (αj , pj , aj)), corresponding
to the foreground probabilities ftitj , where ti = (αi, pi, ai) and tj = (αj , pj , aj). The computa-
tion formula combines the values p((αi, pi, ci), (αj , pj , cj)) corresponding to all codons ci and cj

that encode the amino acids ai and aj respectively, as shown in equation (5.16).

In the following, p(ci
θ
→ cj) stands for the probability of the event codon ci mutates into

codon cj in evolutionary time θ, and is given by a codon substitution probability matrix Pci,cj
(θ),

obtained as explained earlier in Section 3.3.3.

The notation ci[Ii] ≡ cj[Ij] states that codon ci restricted to the positions given by the interval
Ii is a sequence identical to cj restricted to the positions given by Ij . This is equivalent to having
a word w obtained by “merging” the two codons. For instance, if ci = CAT and cj = ATG,
with their common substring being placed in Ii = [2..3] and Ij = [1..2] respectively, w is CATG.
Table 5.3 illustrates the overlapping intervals that need to be taken into consideration in each of
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Reading frame Aligned codon positions IA IB

+0 A: 123123 [1..3] [1..3]
B: 123123

+1 A: 123123 [2..3] [1..2]
B: 123123 [1] [3]

+2 A: 123123 [3] [1]
B: 123123 [1..2] [2..3]

-1 A: 123123 [2..3] [3..2]
B: 321321 [1] [1]

-2 A: 123123 [1..2] [2..1]
B: 321321 [3] [3]

-3 A: 123123 [1..3] [3..1]
B: 321321

Table 5.3: Overlapping codon intervals in each of the possible reading frame differences. Each case is
labeled by an integer value representing the distance between the first position of the codons in the two
sequences. Negative values (-1,-2,-3) are assigned to the cases when the second sequence is reversed and
complemented.

the possible reading frame differences. Each case is labeled by an integer value representing the
distance between the first position of the codons in the two sequences. Negative values (-1,-2,-3)
are assigned to the cases when the second sequence is reversed and complemented.

We denote by p(ci[Ii] ≡ cj[Ij]) the probability to have ci and cj , in the relation described
above, and we compute it as the probability of the word w obtained by “merging” the two
codons. This function should be symmetric, it should depend on the codon distribution, and
the probabilities of all the words w of a given length should sum to 1. However, since we consider
the case where the same DNA sequence is translated on two different reading frames, one of the
two translated sequences would have an atypical composition. Consequently, the probability of
a word w is computed as if the sequence had the known codon composition when translated
on the reading frame imposed by the first codon, or on the one imposed by the second. This
hypothesis can be formalized as:

p(w) = p(w on rf1 OR w on rf2) = prf1(w) + prf2(w)− prf1(w) · prf2(w) (5.13)

where prf1(w) and prf2(w) are the probabilities of the word w in the reading frame imposed by
the position of the first and second codon, respectively. This is computed as the products of
the probabilities of the codons and codon pieces that compose the word w in the established
reading frame. In the previous example, the probabilities of w = CATG in the first and second
reading frame are:

prf1(CATG) = p(CAT ) · p(G ∗ ∗) = p(CAT ) ·
∑

c:c starts with G

p(c)

prf2(CATG) = p(∗ ∗ C) · p(ATG) =
∑

c:c ends with C

p(c) · p(ATG).

We denote the probability that codon ci and cj align with a frameshift f , overlapping in

92



5.3. Scoring scheme

their alignment on the intervals Ii and Ij , by p
Ii,Ij

f (ci, cj), obtained as

p
Ii,Ij

f (ci, cj) =
∑

c′i,c
′
j :c
′
i[Ii]≡c′j [Ij ]

p(c′i[Ii] ≡ c′j [Ij ]) · p(c′i
θ
→ ci) · p(c′j

θ
→ cj). (5.14)

The notation p
Ii,Ij

f is intentionally redundant, i.e. f can be deduced from Ii, Ij and viceversa.

Finally, the values of p((αi, pi, ci), (αj , pj , cj)) are computed as:

p((αi, pi, ci), (αj , pj , cj)) = p
Ii,Ij

f (ci, cj) (5.15)

such that pi ∈ Ii and pj = Ij are aligned codon positions when ci and cj are aligned with the
frameshift f . From these, obtaining the foreground probabilities is straightforward:

ftitj = p((αi, pi, ai), (αj , pj , aj)) =
∑

ciencodes ai,

cjencodes aj

p((αi, pi, ci), (αj , pj , cj)). (5.16)

Background probabilities

The background probabilities of (ti, tj), btitj can be simply expressed as the probability of
the two symbols appearing independently in the sequences:

btitj = b(αi,pi,ai),(αj ,pj ,aj) =
∑

ciencodes ai,

cjencodes aj

πci
πcj

. (5.17)

Substitution matrix for ambiguous symbols

The values ftitj and btitj are substituted in (5.12) to obtain the pairwise alignment scores for
all (ti, tj) = ((αi, pi, ai), (αj , pj , aj)), where αi, αj are non-ambiguous nucleotide symbols, i.e.
αi, αj ∈ {A, C, T,G}, pi, pj are their positions in the codon, and ai, aj are the amino acids
encoded by those respective codons. However, ambiguous nucleotide symbols are used in practice
to improve time and memory consumption while providing the same final results. The scores
for ambiguous nucleotide symbol pairs are easily obtained as follows:

σ((αi, pi, ai), (αj , pj , aj)) = max
xi∈αi,xj∈αj

σ((xi, pi, ai), (xj , pj , aj)) (5.18)

where αi is an ambiguous nucleotide symbol representing the possible nucleotides that can ap-
pear on position pi of the codons that encode the amino acid ai, and xi ∈ αi denotes the
non-ambiguous nucleotide symbols represented by αi. Basically, the score of pairing two am-
biguous symbols is the maximum over all substitution scores for all pairs of nucleotides from the
respective sets.

By using ambiguous symbols, less triplets are formed for each amino acid when compared
with the non-ambiguous symbol case. 17 amino acids can be anti-translated as tri-mers with
just one ambiguous symbol per position, while the others have two alternatives each of the three
positions. Therefore, there are only 69 different triplets with ambiguity codes to be paired (as
opposed to 99). It follows that the score matrix for non-ambiguous symbols has 99 · 99 = 9801
entries, while the number of entries in the matrix for ambiguous is 69 ·69 = 4761, thus requiring
approximately twice less storage space necessary. In consequence, using ambiguous symbols for
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encoding the protein’s back-translation graph brings benefits not only to the size of the graphs
and the complexity of the alignment algorithm, but also to the size of the matrix holding the
pre-computed scores.

For the reconstruction of the non-ambiguous putative DNA sequences at traceback, the
actual pair of nucleotides that have the highest substitution score from the sets corresponding to
two paired ambiguous symbols is required. These are easily obtained for each pair of ambiguous
symbols as

τ((αi, pi, ai), (αj , pj , aj)) = arg max
xi∈αi,xj∈αj

σ((xi, pi, ai), (xj , pj , aj)). (5.19)

Parametrization

This section presented a general framework that helps to compute a translation dependent
scoring function for DNA sequence pairs, parametrized by a codon substitution model and an
evolutionary time measured in expected number of mutations per codon. We consider that the
sequences evolve independently, and the distance is relative to the original sequence.

5.3.2 Score evaluation

The score significance is estimated according to the Gumbel distribution, where the parameters λ
and K are computed with the method proposed in [10,162] and presented earlier in Section 3.3.4.

We use two different score evaluation parameter sets for the forward alignment (where the
two back-translated graphs that are aligned have the same translation sense) and the reverse
complementary alignment (where one of the graphs is aligned with the reverse complementary
of the other), because these are two independent cases with different score distributions.

In order to obtain a more refined evaluation of the alignments, we introduce (λ, K) pa-
rameters for estimating the score significance of alignment fragments inside which the reading
frame difference is preserved. Therefore, there are eight (λ, K) parameters that help to evaluate
the alignments (four for the forward alignment sense and four for the reverse complementary
alignment sense):

• (λFW , KFW ) for the forward sense and (λRC , KRC) for the reverse complementary sense
respectively, that are used for evaluating the score of the whole alignment.

• (λ+i, K+i) for the forward sense and (λ−i, K−i) for the reverse complementary sense re-
spectively, with i ∈ {0, 1, 2} that are used for evaluating the scores of each alignment
fragment within which the reading frame difference is preserved. This second evaluation
aims at providing a measure of the actual contribution of each such fragment to the score
of the alignment.

The parameters (λ±i, K±i) are estimated on alignments restricted to the respective reading
frame difference, where further frameshifts are not allowed, while (λFW , KFW ) and (λRC , KRC)
are computed in a more flexible setup, where a limited number of frameshifts is accepted.

5.3.3 Comparison with classic amino acid and DNA substitution scores

In this section we discuss the behavior of the proposed scoring system when aligning protein
sequences without a frameshift. Given their construction method, we expect the scores to reflect
the amino acid similarities, but also to be influenced by similarities at the DNA level.
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Translation dependent scoring matrix DNA BLOSUM 62

TDSM (0.1) 0.86 0.52
TDSM (0.3) 0.81 0.50
TDSM (0.5) 0.77 0.50
TDSM (0.7) 0.75 0.50
TDSM (1.0) 0.71 0.47

TDSE 0.59 0.88

Table 5.4: Correlation coefficients of the translation dependent scores used on non-frameshifted amino
acids, with BLOSUM scores and classic DNA scores. The correlation coefficients between several types of
scores that can be used to align amino acids without a frameshift: i) expected amino acid pair scores ob-
tained from codon alignment with a classic match/mismatch scoring scheme (denoted DNA); ii) expected
amino acid pair scores obtained from the translation-dependent scoring matrices based on the mecha-
nistic codon substitution model (denoted TDSM ); iii) expected amino acid pair scores obtained from
the translation-dependent scoring matrices based on the empirical codon substitution model (denoted
TDSE); iv) BLOSUM matrices for amino acid sequence alignment.

To evaluate how our scores, used in non-frameshifted alignments, would relate to the classic
scoring systems used by biological sequence comparison methods, we first compute, for each
scoring matrix T corresponding to an evolutionary distance θ, the expected score for each amino
acid pair, as:

TAA(ai, aj) =

3∑

pos=1

∑

t,t′:∃αk,αl:

t=(αk,pos,ai),t
′=(αl,pos,aj)

p(t, t′)T (t, t′) (5.20)

where
p(t, t′) =

∑

c:c encodes ai,

c[pos]=αk

p(c) ·
∑

c′:c′ encodes aj,

c′[pos]=αl

p(c′). (5.21)

Then, considering each amino acid pair as an observation, we compute the correlation coef-
ficient of these expected scores and the BLOSUM matrices as given by [86].

We also evaluate the correlation with the expected amino acid pair scores obtained when the
sequences are aligned using a classic nucleotide match/mismatch system. The latter expected
amino acid pair scores are also obtained as weighted sums of scores, in a manner similar to the
one described by equations (5.20) and (5.21), where the score for aligning two symbols has one
of the three established values for match, transition mutation or transversion mutation. For
these classic scores, we used the values +5,−3,−4 in the examples reported below, although we
have not noticed any drastic changes when different sets of values are used.

The obtained correlation coefficients are reported in Table 5.3.3. These results suggest that
the obtained translation dependent score matrices, either obtained from mechanistic or empirical
codon substitution models, are a compromise between the “fully selective” BLOSUM matrices
and the non-selective DNA scores.

On the one hand, the scores obtained using the mechanistic model do not make use of the
selective pressure, and for this reason are more likely to be correlated with the classic DNA
scores. On the other hand, the scores based on empirical codon substitution models reflect the
constraints imposed by the similarity of the amino acids encoded by the codons. Hence, they
show a strong correlation with the BLOSUM matrices when used without a frameshift.
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Chapter 6

Seeds for heuristic similarity search
in proteins with a frameshift

The quadratic time complexity of the alignment algorithm presented in Chapter 5 makes it
unsuitable to large scale experiments. This chapter proposes a heuristic seed-based approach
for speeding up the similarity search in large protein databases. Since the interest is in proteins
that may share similarities at the coding DNA level with a frameshift, the main challenge in
this context is to determine, directly on protein sequences, potential conserved regions of DNA
that encode the proteins on different reading frames.

This chapter presents preliminary work concerning a seeding concept adapted for the
heuristic detection of potential frameshifted alignments of protein sequences. The basis of the
proposed seeding concept is introduced in Section 6.1.1 and formally explained in Section 6.1.2.
The actual protocol of searching for frameshifted similarities between a query sequence and a
database is presented in Section 6.2. Finally, Section 6.3 sets the foundation of a framework for
analysing the efficiency of such seeds.

6.1 The concept of frameshift seeds

6.1.1 Informal introduction

The goal of the work presented in this chapter is to detect potential frameshifted alignments
between protein sequences. It does not consider the non-frameshifted case, since the latter is a
classic problem already addressed by several existing approaches.

One possible solution for detecting conserved regions is inspired by BLASTP, and consists of
searching for two short protein sequences that have a high-scoring frameshifted alignment with
respect to the scoring system discussed in Section 5.3. Nevertheless, the implementation of this
approach is generally quite costly, since it relies on a more elaborate mechanism than simple
hashing of short subsequences and direct retrieval of similar regions based on their hash key.
Also, searching for similarities on 5 different reading frames would require 5 different indexes.
We investigate here the possibility of using simpler seeding concepts, such as spaced seeds [133]
or subset seeds [110] (presented earlier in Chapter 3, Section 3.4.3 and Section 3.4.5), that allow
direct hashing and using the same index for several reading frames while also capturing, albeit
less accurately, relevant similarities between frameshifted protein sequences. To do so, we first
examine the conservation patterns at the DNA level and subsequently devise the means to
express it at the protein level.
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Reading frame Aligned codon positions

+1 A: 123123

B: 123123

+2 A: 123123

B: 123123

−1 A: 123123

B: 321321

−2 A: 123123

B: 321321

−3 A: 123123

B: 321321

Table 6.1: Paired codon positions in frameshifted DNA alignments. Each frameshift scenario is identified
by an integer value, and negative identifiers (−1,−2,−3) are assigned to the cases when the second
sequence is reversed and complemented. The 3rd positions of each codon, represented in gray, generally
varies significantly within the set of codons for each amino acid, and for this reason cannot be considered
as conservation evidence in an alignment. Positions 1 and 2 of the codons are more stable, and, when
matched in two aligned sequences (cases represented in blue), may be used as anchors for inferring similar
regions.

As can be deduced from Figure 1.12 (Chapter 1), the codons encoding a given amino acid
tend to be identical on positions 1 and 2, and vary on the 3rd position. Since the back-translation
graph of a protein implicitly incorporates all possible codons for every amino acid in the sequence,
it follows that every 3rd position of this graph is likely to be ambiguous, i.e. present more than
one possible nucleotide. As explained in the previous chapter, this is true for 18 out of the 20
amino acids. Moreover, 8 of the 20 amino acids are encoded by at least 4 codons and therefore
their corresponding subgraphs have all possible nucleotides on their 3rd position. In conclusion,
the 3rd position of any back-translation graph is generally unreliable when searching for DNA
sequence similarities, and any evidence of sequence relatedness should be obtained by examining
the nucleotides appearing on the 1st and 2nd positions of the codons.

This pattern, which ignores the 3rd codon position due to its instability, has already been
successfully used for similarity search in coding DNA [26, 216]. Nevertheless, in the case of
frameshifted alignments, the 3rd codon position of one sequence is aligned to the 1st or 2nd
codon position of the other sequence. Table 6.1 enumerates the 5 possible frameshift situations:
two for forward alignment and three corresponding to alignments when the second sequence is
reversed and complemented, i.e. the first sequence is aligned to the opposite strand of the second.
In each case, the pairs of codon positions that can provide evidence of sequence similarity at
the DNA level is represented in bold. With the exception of the −2 scenario, only one position
out of 3 for each codon can provide sufficient information (it is not ambiguous nor aligned to
an ambiguous position of the other sequence) for inferring conservation. In terms of spaced
seeds, this corresponds to the similarity pattern 1∗∗1∗∗1∗∗1... applied on the underlying DNA
sequences.

However, it is preferred to recognize conserved regions directly on the protein sequences,
in order to prevent from performing back-translation operations on proteins that will not be
involved in any significant alignment. The transition from the DNA similarity pattern that
searches for one in three matching position to the protein similarity pattern is straightforward:
the amino acids can be “tagged” with the set of nucleotide(s) appearing on the first or second
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Codon position Nucleotide Code Amino acids

1 A 0 I,M,T,N,K,S,R
C 1 L,P,H,Q,R
G 2 V,A,D,E,G
T 3 F,L,S,Y,C,W

2 A 0 Y,H,Q,N,K,D,E
C 1 S,P,T,A
G 2 C,W,R,S,G
T 3 F,L,I,M,V

−1 A 0 F,L,S,Y,C,W
(1 in reverse complementary) C 1 V,A,D,E,G

G 2 L,P,H,Q,R
T 3 I,M,T,N,K,S,R

−2 A 0 F,L,I,M,V
(2 in reverse complementary) C 1 C,W,R,S,G

G 2 S,P,T,A
T 3 Y,H,Q,N,K,D,E

Table 6.2: Sets of amino acids with the same nucleotide on a certain position of their codons (either
first or second position). The 3rd codon position is ignored on purpose, since it does not provide reliable
information, as explained in Section 6.1.1. This labeling does not partition the set of amino acids, i.e.
some amino acids (L, R, S) have multiple labels. However, less than 12% of all amino acids in a protein
sequence are expected to be multiply labeled.

position of their codons, as shown in Table 6.2, and the hashing function takes into account,
for a given sequence fragment, the representative nucleotide of each amino acid in the fragment.
Similarities are detected via identical hash values that take into account different codon positions
in the two sequences, as suggested by Table 6.1.

Since amino acids are organized in sets, and members of a set are considered to behave
identically, this seeding technique seems related to the concept of subset seeds [110]. However,
there are several fundamental differences between the approach introduced here and the original
subset seeds. Basically, the pattern of subset seeds is defined over an alphabet B, where each
symbol in B accepts a certain set of mismatches between aligned amino acids, with the additional
constraints that every symbol in B accepts matches, and there is a symbol in B accepting only
matches. These two conditions are not true in the setup presented above: first, an amino acid
does not necessarily align with itself with a frameshift, and second, because of the asymmetry
of the frameshifted alignments, two amino acids that match with a frameshift may not match
with the same frameshift if swapped. Several examples illustrating these situations are given in
Figure 6.1. Nevertheless, as will be shown in Section 6.3, the theory behind subset seeds can
be used in this context, provided that the representation of the target alignments is adapted to
comply with the subset seed restrictions.

6.1.2 Definition

Let Σ = {A, C,D, E, F,G, H, I,K, L, M, N, P,Q, R, S, T, V,W, Y } be the alphabet of amino acid
symbols. According to Table 6.2, we can define a function codep : Σ → {0, 1, 2, 3}{1,2}, which
associates to each amino acid one or two numeric values. These values express the nucleotide

99



Chapter 6. Seeds for heuristic similarity search in proteins with a frameshift

P Y A Q

CCN TAY GCN CAR

CCN TAY CAR GCN

P Y Q A

(a) (b) (c) (d)

Figure 6.1: Illustrations of the asymmetry of frameshifted alignment at the amino acid level. For
example, in a +1 frameshifted alignment, only 6 of the 20 amino acids (P – illustrated in (a), F , L, N ,
K, G) match with themselves at the DNA level in a +1 frameshift, while most of them do not, as is the
case of the amino acid Y shown in (b). Additionally, if two different amino acids match at the DNA level
in a +1 frameshifted alignment, the converse is not necessarily true, as illustrated by the pair of amino
acids A and Q in (c) and (d).

N V A

AAYGTNGCN
| | | | | | | |

ATGTGGCCN

M W P

Figure 6.2: Frameshifted alignment between two short amino acid sequences: NV A and MWP . The
alignment at the DNA level highlights nucleotide matches occurring every 3rd position (1 ∗ ∗1 ∗ ∗1).

or nucleotides appearing on the position indicated by p ∈ {1, 2,−1,−2} in at least one of the
codons that encode the amino acid. Negative values of p indicate that the codons are reversed
and complemented. For example, code2(M) = {3} (standing for T , which appears on the
second position of codon ATG that encodes M) and code−1(L) = {0, 2} (standing for A – the
complementary of T , and G – the complementary of C, both appearing on the first position of
codons CTN and TTR which encode L). The codes for each amino acid are given by Table 6.3.

Small local frameshifted alignments similarities between two sequences S = s0...sm−1 and
T = t0...tn−1 can be detected by identifying words of length k in S and T , namely Si..i+k−1 =
si...si+k−1 and Tj..j+k−1 = tj ...tj+k−1, such that

codep(si+d) ∩ codeq(tj+d) 6= ∅,∀d ∈ {0, ..., k − 1}. (6.1)

This condition basically states that, in the back-translation of Si..i+k−1 and Tj..j+k−1, there
are nucleotides on the pth and qth position of each codon which are respectively identical.
For instance, let k = 3 and let the words Si..i+k−1 and Tj..j+k−1 be the amino acid sequences
NV A and MWP respectively. Then, according to Table 6.3, code2(N) = code1(M) = {0},
code2(V ) = code1(W ) = {3}, code2(A) = code1(P ) = {1}, and this match corresponds to the
frameshifted alignment in Figure 6.2. Note that the definition still holds when hashing gapped
k-mers instead of contiguous words.

Any of the 5 frameshifted alignment scenarios displayed in Table 6.1 is detectable by a certain
pair of codon positions p and q, that select the nucleotides to match in a certain reading frame
difference, as shown in table Table 6.4.

In order to identify pairs of matching k-words, we define H = {Hp : Σk → N{1,...,2k}} as a
family of hash functions,

Hp(w0...wk−1) =
⋃
{

k−1∑

i=0

ci · 4
i|ci ∈ codep(wi)

}
(6.2)
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Amino acid Codons code1 code2 code−1 code−2

A GCN {2} {1} {1} {2}
C TGY {3} {2} {0} {1}
D GAY {2} {0} {1} {3}
E GAR {2} {0} {1} {3}
F TTY {3} {3} {0} {0}
G GGN {2} {2} {1} {1}
H CAY {1} {0} {2} {3}
I ATH {0} {3} {3} {0}
K AAR {0} {0} {3} {3}
L CTN, TTR {1, 3} {3} {0, 2} {0}
M ATG {0} {3} {3} {0}
N AAY {0} {0} {3} {3}
P CCN {1} {1} {2} {2}
Q CAR {1} {0} {2} {3}
R AGR, CGN {0, 1} {2} {2, 3} {1}
S AGY, TCN {0, 3} {1, 2} {0, 3} {1, 2}
T ACN {0} {1} {3} {2}
V GTN {2} {3} {1} {0}
Y TAY {3} {0} {0} {3}
W TGG {3} {2} {0} {1}

Table 6.3: The values of the functions codep : Σ → {0, 1, 2, 3}{1,2}, where p ∈ {1, 2,−1,−2} and
Σ = {A, C,D, E, F,G, H, I,K, L, M, N, P,Q, R, S, T, V,W, Y } is the alphabet of amino acid symbols.
codep(·) associates to each amino acid in Σ one or two numeric values, expressing the nucleotide(s) that
appear on position p of the codons encoding the amino acid. Negative values of p indicate that the codons
are reversed and complemented. The nucleotides A, C, G, T are encoded as 0, 1, 2, 3 respectively.

Reading frame p q

+1 2 1
+2 1 2
−1 1 −1
−2 1 −2

2 −1
−3 2 −2

Table 6.4: Codon positions that need to be matched for detecting similarities on each frameshift. The
first column identifies each frameshift, illustrated earlier in Table 6.1, while p and q indicate the codon
position to take into account in the first and second sequence respectively.
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Chapter 6. Seeds for heuristic similarity search in proteins with a frameshift

with p ∈ {1, 2,−1,−2} and codep defined as above. For a word w ∈ Σk, w = w0...wk−1, Hp(w)
basically expresses, in the same manner as spaced seeds, which nucleotide symbols appear at
the codon positions indicated by p in putative DNA sequences of w. For example,

H1(APY ) = {2 · 40 + 1 · 41 + 3 · 42} = {36}

H2(SAL) = {1 · 40 + 2 · 41 + 3 · 42, 2 · 40 + 2 · 41 + 3 · 42} = {41, 42}.

Although, in theory, a k-mer could have a large exponential number (2k) of corresponding keys
in the index, in practice the expected number of keys per k-mer is about 20.216k according to
Table 6.3 and assuming the amino acid composition of Table 5.1. For example, the number of
keys per 4-mer is about 1.82, and 8-mers are expected to have approximately 3.3 keys in the
index. Alternatively, a single key can be for each k-mer, probabilistically according to codon
frequencies, with the price of a sensitivity decrease.

To identify similarities between sequences S = s0...sm−1 and T = t0...tn−1 using the hashing
functions in H, all words of length k in S and T are hashed, and those with the same hash
value are selected. As such, relation (6.1) defining when two k-words Si..i+k−1 = si...si+k−1 and
Tj..j+k−1 = tj ...tj+k−1 match becomes

Hp(Si..i+k−1) ∩Hq(Tj..j+k−1) 6= ∅ (6.3)

with p and q chosen as indicated by Table 6.4 for a particular frameshift. In the example
above (Figure 6.2), where the alignment with a +1 frameshift requires that p = 2 and q = 1,
H2(NV A) = {0 · 40 + 3 · 41 + 1 · 42} = {28} and H1(MWP ) = {0 · 40 + 3 · 41 + 1 · 42} = {28}
according to (6.2), hence H2(NV A) ∩H1(MWP ) 6= ∅.

6.2 Similarity search procedure

As can be deduced from Table 6.4, one of the sequences can be processed using only H1 and H2,
while for the other sequence all four hash functions must be used in order to determine possible
frameshifted alignments in the forward and reverse complementary sense.

Let D = {S1, ..., SN} be a database of protein sequences and Q a query (protein sequence)
to be searched in D, with S1, ..., SN , Q ∈ Σ+. Note that any processing described below relies
on the representation as protein sequences, i.e. S1, ..., SN , Q are strings over the alphabet Σ =
{A, C,D, E, F,G, H, I,K, L, M, N, P,Q, R, S, T, V,W, Y } of amino acids symbols, not yet back-
translated. As such, a k-mer appearing at position d of a protein sequence S = s0...sn−1 ∈
D ∪ {Q} is a word w ∈ Σk, with wj = sd+j ,∀j = 0..k − 1.

Prior to the actual query search, D is indexed using the hashing functions H1 and H2. For
an established k, all the k-mers appearing in the sequences Si are hashed using these functions.
Let I1 and I2 be the indexes resulting from processing D with H1 and H2 respectively. Each
index Ip (p = 1, 2) contains the set of keys ranging from 0 to 4k, and every key h points to a
list of pairs (i, d) giving the identifier i of the sequence Si ∈ D and the actual position d within
Si where there is a k-mer w with h ∈ Hp(w). This list is denoted Ip[h]. The indexing step is
performed only once for a database, and the index is stored in order to be used for subsequent
queries.

To detect potential frameshifted alignments between a query sequence Q and the sequences
Si in D, Q is processed, in four passes, with the 4 hashing functions H1, H2, H−1, H−2. All
k-mers appearing in Q are hashed using these functions, and the resulted keys are searched in
I1 and I2 accordingly with Table 6.4. Namely, let w = w0...wk−1 be a k-mer appearing at some
position d′ in Q. Then, hits are identified as follows:
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• Let h1 = H1(w).
I2[h1] = {(i, d)} gives the list of potential local similarities between Q (at position d′) and
the sequences Si ∈ D (at their respective positions d) on the +1 frameshift.

• Let h2 = H2(w).
I1[h2] = {(i, d)} gives the list of potential local similarities between Q (at position d′) and
the sequences Si ∈ D (at their respective positions d) on the +2 frameshift.

• Let h−1 = H−1(w).
I1[h−1] = {(i, d)} gives the list of potential local similarities between Q (at position d′)
and the sequences Si ∈ D (at their respective positions d) on the −1 frameshift.
I2[h−1] = {(i, d)} gives the list of potential local similarities between Q (at position d′)
and the sequences Si ∈ D (at their respective positions d) on the −2 frameshift.

• Let h−2 = H−2(w).
I1[h−1] = {(i, d)} gives the list of potential local similarities between Q (at position d′)
and the sequences Si ∈ D (at their respective positions d) on the −2 frameshift.
I2[h−1] = {(i, d)} gives the list of potential local similarities between Q (at position d′)
and the sequences Si ∈ D (at their respective positions d) on the −3 frameshift.

Both single and multiple hit strategies (provided that multiple hits appear on the same
frameshift) can be used for identifying significant local similarities. When significant hits are
detected in a sequence Si ∈ D, the query Q and Si are submitted to the alignment algorithm of
Chapter 5 for validation.

6.3 Analysis

The sensitivity of such seeds, i.e. their capacity to detect significant frameshifted protein align-
ments, can be evaluated using the Iedera software [110–112]. As explained earlier in Sec-
tion 3.4.4, Iedera is designed for spaced/subset seeds, and relies on a probabilistic model of
target alignments with respect to which it computes the theoretical sensitivity of a seed.

To comply with the representation of target alignments required by Iedera, ungapped
frameshifted alignments are defined by:

Definition 13. An ungapped protein alignment with a frameshift f ∈ {+1,+2,−1,−2,−3}
(see Table 6.1) is defined as a word A = a1...an over the alphabet A = {0, 1}, where 1 (match)
denotes a pair of aligned amino acids x and y such that codep(x) ∩ codeq(y) 6= ∅, as explained
earlier in relation (6.1), and 0 (mismatch) denotes a pair of aligned amino acids x and y such
that codep(x) ∩ codeq(y) = ∅.

Additionally, we remind that a spaced seed is a word π over the alphabet B = {∗, 1}, such
that 1 accepts a match and * accepts either a match or a mismatch. Note that, from this
point forward, matches and mismatches are not considered with respect to individual
nucleotides. As mentioned by Definition 13, two amino acids x and y “match” with a frameshift
f if and only if codep(x) ∩ codeq(y) 6= ∅, i.e. if a nucleotide appearing at position p of a codon
encoding x matches (in the classic sense) a nucleotide appearing on position q of a codon encoding
y, with p and q chosen as indicated earlier in Table 6.4. With this definition for “matches”
between amino acids, the similarities are in fact considered at the codon level. Consequently,
it makes sense to model frameshifted codon alignments and evaluate seeds with respect to
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Chapter 6. Seeds for heuristic similarity search in proteins with a frameshift

such alignments. The seeds can then be used directly on amino acids sequences thanks to the
hashing function given by (6.2), which implicitly takes into account matches at the codon level.

In order to compute the sensitivity of a seed, Iedera requires as input, besides the seed pat-
tern, a foreground model of significant frameshifted alignments, based on which the probability
to hit a target alignment is determined, as well as a background model of random alignments.
Both models are described below.

6.3.1 Modeling frameshifted alignments

With the exception of the −3 frameshift, where aligned amino acids overlap completely, allowing
successive symbols of the alignment representation to be generated independently of each other
according to their respective probabilities, all other frameshifted alignments (+1,+2,−1,−2)
have some degree of dependency of the symbol at position i on the symbol at position i − 1,
since 1 codon in one sequence is partly aligned with 2 codons in the other sequence.

In the following, let us explain the model for significant frameshifted alignments for
the +1 frameshift, where the first codon position in one sequence is aligned to the second

codon position in the other sequence: 123
123 . The other frameshift cases can then be handled in

a similar manner, and therefore a detailed description of their corresponding models is omitted.

Notations

Since we are interested in similarities occurring at the codon level, codons are explicitly repre-
sented from this point forward by their 3 nucleotide symbols, for example ABC. The following
probabilities, obtained as explained in Chapter 5, Section 5.3 will be involved in
the definition of the model:

• The occurrence probability in a coding sequence of each codon ABC, denoted p(ABC);

• The probability that codon ci and cj align with a frameshift f , overlapping in their
alignment on the intervals Ii and Ij , given by relation (5.14) of Section 5.3, Chapter 5

and originally denoted p
Ii,Ij

f (ci, cj); here we use a notation that expresses visually the

frameshift and the aligned intervals, namely p
(
ABC
DEF

)
for the +1 frameshift or p

(
ABC

DEF

)

for the +2 frameshift; note also that, by definition, p
(
ABC
DEF

)
= p

(
DEF
ABC

)
.

Naive foreground model for alignments with a +1 frameshift

A straightforward model of significant alignments with a +1 frameshift can be obtained as

follows. A state represents a pair of codons aligned with the +1 frameshift, denoted ABC
DEF .

Transitions from a state ABC
DEF to another state GHI

JKL have the meaning that, in an alignment

with a +1 frameshift, codon GHI follows ABC in one sequence and JKL follows DEF in the other,

producing the alignment ABCGHI
DEFJKL. As such, symbol F is aligned to symbol G, and the transition

probability should depend on the chance to have these two symbols aligned in significant align-

ments. The emissions that occur when transitioning to a state ABC
DEF only depend on whether

code2(ABC) = code1(DEF), i.e. whether the nucleotide symbols B and D match.

More formally, this model is defined by:
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• A set of states Q = {S} ∪
{
ABC
DEF

}
, where S is the initial state and (ABC, DEF) enumerate

all possible pairs of codons; the size of Q is C2 + 1, where C is the number of possible
codons encoding for amino acids; note that STOP codons are not considered here;

• A function ι : Q → [0, 1] giving the probability of each state in Q to be the initial state,
with

ι[S] = 1 (6.4)

ι
[
ABC
DEF

]
= 0,∀ ABCDEF ∈ Q \ {S}; (6.5)

• A transition probability function δ : Q×Q→ [0, 1]:

δ
(
S, ABCDEF

)
= p

(
ABC
DEF

)
(6.6)

δ
(
ABC
DEF , GHIJKL

)
=

p
(

GHI
DEF

)

∑
x,y,z p

(
xyz

DEF

) ·
p
(
GHI
JKL

)

∑
x,y,z p

(
GHI
xyz

) . (6.7)

where x, y, z are nucleotide symbols, such that xyz instantiate all possible non-STOP

codons; relation (6.7) basically states that the transition probability from ABC
DEF to GHI

JKL

depends on the probability that, in significant +1 frameshifted alignments, the last nu-
cleotide of codon DEF be aligned to the first nucleotide of codon GHI among all possible
alignment choices for DEF, and the last two nucleotides of codon GHI be aligned to the
first two nucleotide of codon JKL among all possible alignment choices for GHI;

• An emission alphabet A = {0, 1}, where 0 denotes a “mismatch” and 1 denotes a “match”,
in the sense given by Definition 13;

• An emission probability function β : Q×Q×A → [0, 1], such that:

β
(
q, ABCDEF , 1

)
=

{
1, if B = D;
0, otherwise

,∀q ∈ Q (6.8)

β
(
q, ABCDEF , 0

)
=

{
0, if B = D;
1, otherwise

,∀q ∈ Q. (6.9)

The model is depicted in Figure 6.3. It has 3722 states (612 + 1) if unambiguous codons are
considered. This number can be reduced to 530 by the use of ambiguous codons (see Table 5.1.2
of Chapter 5) in its definition. Nevertheless, the number of states remains very large and is
likely to have considerable effects on the speed of the algorithms computing the seed sensitivity.

Improved foreground model for alignments with a +1 frameshift

In the following, we define a probabilistic model of significant alignments with a +1 frameshift
that is equivalent to the one described above, but has a significantly smaller number of states
and transitions. This is done by grouping states according to symbols appearing on
specific codon positions, and adjusting transition and emission probabilities accordingly, as
explained below.

Let ABC
DEF and GHI

JKL be two states of the probabilistic model described above. The following

pairs of symbols influence the transition and emission probabilities:
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S
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0

1

1

Figure 6.3: Model for generating gapped alignments on a +1 frameshift: 3722 states.

• F and G are involved in the probability of transition from ABC
DEF to GHI

JKL according to

relation (6.7);

• B and D dictate the emission probabilities when entering ABC
DEF , according to (6.8) and (6.9);

in the same manner, H and J dictate the emission probabilities when entering GHI
JKL .

Based on these observations, the number of states can be reduced by grouping them according
to these symbol positions in their representative codon alignments. As such, states have the form
Ann
DnF , representing all pairs of codons aligned with a +1 frameshift, where the first codon starts

with the symbol A and the second codon has the symbol D on its first position and the symbol
F on its last position. The codon positions where the nucleotide symbol is not fixed are marked
by n. Note that B (the second position of the first codon in the aligned pair) is not fixed, and
matches/mismatches are emitted with probabilities depending only on D and codon frequencies,
as explained below.

For example, let Gnn be all the ambiguous codons starting with the nucleotide G, AnY rep-
resent all the ambiguous codons having the nucleotide A on the first position and the ambiguous

symbol Y (standing for pyrimidines C and T ) on the last. Then the state labeled Gnn
AnY denotes

the following set of pairs of codons aligned with a +1 frameshift: GTN
AAY , GCN

AAY , GAR
AAY , GAY

AAY , GGNAAY ,

GTN
AGY , GCN

AGY , GAR
AGY , GAY

AGY , GGNAGY .

According to Table 5.1.2 of Chapter 5, there are 4 symbol posibilities for the first position of
the codon (meaning that codons can be grouped according to their first symbol in Ann, Cnn,
Gnn, Tnn) and 15 valid DnF variants among the possible ambiguous codons (namely AnG,
AnH, AnY , AnR, AnN , CnY , CnR, CnN , GnR, GnY , GnN , TnG, TnR, TnY , TnN). Con-

sequently, considering the states corresponding to the possible Ann
DnF combinations and adding a

start state S as before, the number of states for this automaton becomes 4 · 15 + 1 = 61.

The improved model is depricted in Figure 6.4 and is formally defined by:
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S

Cnn

GnY
...Ann

AnR

Ann

AnG
... Tnn

TnY

Tnn

TnN

β
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S, Ann

AnG

)

β
(
S, Tnn

TnY

)

β
(
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AnG
, Ann

AnG

)

β
(
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, Tnn

TnN

)

β
(
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, Cnn
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)

β
(
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AnG

)

β
(
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TnN
, Tnn

TnN

)

Figure 6.4: Improved model for generating gapped alignments on a +1 frameshift: 61 states.

• A set of states Q = {S} ∪
{
Ann
DnF |A,D ∈ {A, C,G, T}, F ∈ {G, R, Y,H,N}

}
, where S is

the initial state, and Ann
DnF represents all alignments with a +1 frameshift of codons Ann

starting with the symbol A, and codons DnF starting with D and ending with F;

• A function ι : Q → [0, 1] giving the probability of each state in Q to be the initial state,
with

ι[S] = 1 (6.10)

ι
[
Ann
DnF

]
= 0,∀ AnnDnF ∈ Q \ {S}; (6.11)

• A transition probability function δ : Q×Q→ [0, 1]:

δ
(
S, AnnDnF

)
=

∑

b,c,e

p
(
Abc
DeF

)
(6.12)

δ
(
Ann
DnF , GnnJnL

)
=

∑

e,h,i,k




p
(

Ghi
DeF

)

∑
x,y,z p

(
xyz

DeF

) ·
p
(
Ghi
JkL

)

∑
x,y,z p

(
Ghi
xyz

)


. (6.13)

where e, h, i, x, y, z are ambiguous nucleotide symbols, e, h, x, y ∈ {A, C,G, T} and i, z ∈
{G, R, Y,H,N}, such that DeF and Ghi instantiate possible ambiguous codons with the
fixed symbols D, F and G respectively, and xyz ennumerates all possible ambiguous codons
encoding for amino acids; relation (6.13) is obtained from relation (6.7) by taking into
account the hypothesis of (6.7) for all combinations of codons corresponding to groups
Ann, DnF, Gnn and JnL;

• An emission alphabet A = {0, 1}, defined as above;
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• An emission probability function β : Q×Q×A → [0, 1], such that:

β
(
q, AnnDnF , 1

)
=

∑
c,e p

(
ADc
DeF

)

∑
b,c,e p

(
Abc
DeF

) ,∀q ∈ Q (6.14)

β
(
q, AnnDnF , 0

)
=

∑
b6=D,c,e p

(
Abc
DeF

)

∑
b,c,e p

(
Abc
DeF

) ,∀q ∈ Q (6.15)

where b, c, e are ambiguous nucleotide symbols, b, e ∈ {A, C,G, T} and c ∈ {G, R, Y,H, N},
such that ADc, Abc and DeF instantiate possible ambiguous codons with the fixed symbols
A, D, F respectively.

This model generates words over the alphabet A = {0, 1}, where 0 denotes mismatches and
1 denotes matches of amino acids with a +1 frameshift, defined as in Definition 13.

Background probabilities

The background model of random frameshifted alignments does not require any correlation
between successive pairs of aligned symbols. In consequence, it is a simple Bernoulli model,
independently generating random matches and mismatches with the probabilities

P (1) =
∑

ABC,DEF:B=D

p(ABC) · p(DEF) (6.16)

P (0) = 1− P (1). (6.17)

Relations (6.16) and (6.17) hold for +1 and +2 frameshifted alignments. The reasoning for other
cases is very similar and therefore omitted here.

The models presented in this section can be integrated in Iedera in order to determine the
sensitivity of spaced seeds with respect to target frameshifted alignments. The actual design of
such seeds is work in progress. In practice, a single contiguous seed of size k between 4 and 6 is
used for heuristic similarity search.
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Chapter 7

Experiments and discussion

7.1 Implementation

This part of the thesis focused on novel methods for detecting hidden protein similarities. First, a
dynamic programming algorithm is proposed for aligning protein sequences with frameshifts, by
back-translating the proteins into graphs that implicitly contain all the putative DNA sequences,
using a scoring system taylored for this problem. Second, a heuristic approach based on seeding
was designed for high speed similarity search in large databases. These concepts are implemeted
in the Java software tool called Path, currently available for download or via a web interface
at http://bioinfo.lifl.fr/path/. The files containing translation dependent score matrices
computed for several evolutionary distances are also available for download at the same URL.

7.2 Experimental results

We will further present several significant frameshifted alignments obtained with our method.
The experimental results presented here were obtained in the following experimental setup:
a search for frameshifted forward alignments was launched on samples from the full NCBI
protein databases for several species, using a 00.50 base per codon divergence scoring matrix;
the alignments with an E-value < 10−9, presenting at least one significant frameshift, were
selected.

Yersinia pestis: Frameshifted transposases Figure 7.1 displays the alignment of two
transposase variants from Yersinia pestis. Both proteins are widely present on the NCBI nr

database. The mechanism involved is (most probably) a programmed translational frameshifting
since such mechanism has been quite frequently observed in several other transposases from
related species, e.g. as in E. coli [127].

Xylella fastidiosa: Frameshifted β-glucosidases Two β-glucosidase variants from Xylella
fastidiosa are aligned on Figure 7.2 with both variants widely present on the NCBI nr database.
Xylella fastidiosa is a plant pathogen transmitted by Cicadellidae insects (Homalodisca vitripen-
nis,Homalodisca liturata) and responsible for phoney disease on the peach tree, leaf scorch on
the oleander, and Pierce’s disease on grape. The β-glucosidase is usually required by several
organisms to consume cellulose.

Interestingly, β-glucosidase frameshifts have already been studied in [175] on several bacteria
including such γ-proteobacteria as Erwinia herbicola and Escherichia coli of Enterobacteriales
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N P G N G N R S R D Q R P G I S W R N D H S Q G I H S F S L

AATCCCGGCAACGGTAATCGCTCGAGAGATCAGAGACCAGGGATATCGTGGAGGAATGACCATTCTCAGGGCATTCATTCGTTCTCTCTC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

AATCCCGGCAACGGTAATCGCTCGAGAGATCAGAGACCAGGGATATCGTGGAGGAATGACCATTCTCAGGGCATTCATTCGTTCTCTCTC

I P A T V I A R E I R D Q G Y R G G M T I L R A F I R S L S

G S S G A G A A V R F E T E P G R Q M Q V D W G T

GGTTCCTCAGGAGCAGGAGCC - GCAGTAAGATTTGAAACAGAACCAGGAAGACAAATGCAAGTAGATTGGGGAACA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

GGTTCCTCAGGAGCAGGAGCCGGCAGTAAGATTTGAAACAGAACCAGGAAGACAAATGCAAGTAGATTGGGGAACA

V P Q E Q E P A V R F E T E P G R Q M Q V D W G T

Figure 7.1: Yersinia pestis transposases: The alignment of two transposase variants from Yersinia
pestis, [GenBank:167423046] – subsequence 4-167 of the back-translation, and [GenBank:EDR63673.1] –
subsequence 225-389 of the back-translation. The frameshift mutation at position 115/336 corrects the
reading frame. The frameshifted alignment fragment has an E-value of 10−7.

W S E G L H G I A R N G Y A T V F P Q A I G L A A S W N T D

M E R R T A R H R P Q R L R H S I S P S H W P G S K L E H R

L L Q H V G T V T S T E A R A K F N L T G G P G K D H P R Y

P T A T L G T V T S T E A R A K F N L T G G P G K D H P R Y

A G L T L W S P N I N I F R D P R W G R G M E T Y G E D P Y

A G L T L W S P N I N I F R D P R W G R G M E T Y G E D P Y

TGGAGCGAAGGACTGCACGGCATCGCCCGCAACGGTTACGCCACAGTATTTCCCCAAGCCATTGGCCTGGCAGCAAGTTGGAACACAGAC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

TGGAGCGAAGGACTGCACGGCATCGCCCGCAACGGTTACGCCACAGTATTTCCCCAAGCCATTGGCCTGGCAGCAAGTTGGAACACAGAC

CTACTGCAACATGTGGGAACAGTAACATCAACAGAAGCAAGAGCAAAATTTAATTTAACAGGAGGACCAGGAAAAGATCATCCAAGATAT
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

CTACTGCAACAT - TGGGAACAGTAACATCAACAGAAGCAAGAGCAAAATTTAATTTAACAGGAGGACCAGGAAAAGATCATCCAAGATAT

GCAGGATTAACATTATGGTCACCAAATATAAATATATTTAGAGATCCAAGATGGGGAAGAGGAATGGAAACATATGGAGAAGATCCATAT
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

GCAGGATTAACATTATGGTCACCAAATATAAATATATTTAGAGATCCAAGATGGGGAAGAGGAATGGAAACATATGGAGAAGATCCATAT

Figure 7.2: Xylella fastidiosa glucosidases: Two β-glucosidase variants from Xylella fastidiosa, [Gen-
Bank:AAO29662.1] – subsequence 202-2645 of the back-translation, and [GenBank:EAO32640.1] – subse-
quence 2-2444 of the back-translation. We only show in this image a fragment of the full alignment (the
first 239 base pairs). The second part is not particularly interesting in our context because the sequences
are aligned on the same reading frame, with a very small number of mismatches. In the first part, the
sequences are aligned with a reading frame difference that is corrected starting with positions 304/104.
The frameshifted alignment fragment has an E-value of 10−8.

but not directly observed in Xanthomonadales.

Venom neurotoxins Diversification of venom toxins has been studied in [64] for advanced
snakes: frameshifts were one of the most significant mechanisms involved in the “evolution of
the arsenal” and its diversification toward specialized prey capture, sometime with a loss of
neurotoxicity [124]. We thus studied neurotoxins from several higher snakes.

In Figure 7.3, we show the alignment of two presynaptic neurotoxins from two higher snakes of
the Elapidae family (Bungarus candidus and Naja kaouthia). Most of the sites are conserved: the
primary metal binding site and the putative hydrophobic channel remain before the frameshift,
and only the fourth (and last) part of the catalytic network seems changed. We also noticed
that, in the original second sequence, the Cysteine regions are more conserved at the DNA level
than other amino acids, even after the frameshift, which is a strong hint of the non randomness
of this part of the alignment.

Following the discovered frameshift of Figure 7.3, we took into consideration the sequences
of Bungarus candidus species that were similar to the non-frameshifted presynaptic neurotoxin
of Naja kaouthia. An interesting alignment is presented in Figure 7.4, showing a protein that
aligns to it well but not perfectly (at least 4 non synonymous transitions before the frameshift
and 1 transversion after): this lets open the potential “duplicated first then frameshifted” origin
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F M K M I R Y T I P C E K T W G E Y V D Y G C Y C G V G G S

TTTATGAAAATGATACGGTATACAATACCATGCGAGAAGACGTGGGGGGAATACGTGGATTATGGATGTTATTGTGGAGTGGGAGGATCA
| | | | . | | | . | | | | | | | : | | : | | | | : | | | | | : | . | : | . | | | | | . | | | | . | . | | : | | | | | | | | | | | | | | | | | | | | | | : . | | | | | | | | | |

TTTAAGAATATGATACAGTGTACAGTACCA - - - AACAGGTCGTGGTGGGATTTCGCGGATTATGGATGTTATTGTGGAAGGGGAGGATCA

F K N M I Q C T V P N R S W W D F A D Y G C Y C G R G G S

G R P I D A L D R C C Y V H D N C Y G D A E K K H K C N P K

GGAAGGCCAATAGATGCCTTAGATAGATGTTGTTACGTACATGATAATTGTTATGGCGATGCAGAAAAAAAACACAAGTGTAACCCAAAG
| | | | . | | | | : | | | | | | . | | | | | | | | | | | | | | | | : | . | | | | | | | | | | | | | | | | | | | : | | | . | | | | | | | | | | . | . : | | : | | | | . : . | | | . | .

GGAACGCCAGTAGATGACTTAGATAGATGTTGTCAAGTACATGATAATTGTTATGACGAAGCAGAAAAAATAAGCAGGTGTTGGCCATAC

G T P V D D L D R C C Q V H D N C Y D E A E K I S R C W P Y

M Q S Y S Y K L T K R T T S A M V P Q V L V H V L S V I V T

ATGCAGTCGTATTCATATAAG - TTAACCAAGAGAACCACATCTGCAATGGTGCCACAAGTGCTTGTGCACGTGCTGTCTGTGATTGTGAC
. | . . | | . | | | | | | | | | | | : | | . | | : | | | | | : | | . | | . | | : | | | | | | . : : | | . | | . . | : | | | | | | | | | | . . | | | | | | | | | | | | | | | | | | |

TTCAAGACGTATTCATATGAGTGTAGCCAAGGGACCCTCACCTGCAAAAATGGCAACAATGCTTGTGCAGCTGCTGTCTGTGATTGTGAC

F K T Y S Y E C S Q G T L T C K N G N N A C A A A V C D C D

A R Q P S A S A I L N T S S G T R I L T P R D I A

CGCTCGGCAGCCATCTGCTTCGGCGATACTCAATACATCATCAGGAACTAGAATATTGACCCCAAGGGACATTGCC
| | | | : | | | | | | | | | | | | | | | | | . | | : | : | | | . | | | | | . | | . | | : . | | | | | . | | | | | | | | | | : | | | | | . | | : | | | | |

CGCTTGGCAGCCATCTGCTTCGCCGGTGCTCCATACAACAACAATAACTATAATATTGACCTCAAGGCACGTTGCC

R L A A I C F A G A P Y N N N N Y N I D L K A R C

Figure 7.3: Elapidae neurotoxins (1): Two presynaptic neurotoxins from two higher snakes of the
Elapidae family (Bungarus candidus and Naja kaouthia), [Swiss-Prot:Q8AY47.1] – subsequence 64-407
of the back-translation, and [PIR:PSNJ2K] – subsequence 13-354 of the back-translation. The sequences
are aligned on the same reading frame up to position 186/135, and on a +1 reading frame from that
point forward. The frameshifted fragment has an E-value of 10−9.

of the frameshifted protein. This assumption was strongly supported by the alignment of the
two corresponding cDNA [GenBank:AY057881.1] and [GenBank:AY057880.1] of two homologous
proteins.

Furthermore, Figure 7.5 displays an alignment of two presynaptic neurotoxins from two
higher snakes of the Elapidae family (Laticauda colubrina and Laticauda laticaudata). It shows
that the unidentified peptide is in fact an alternative splicing (or frameshifted) variant of the
neurotoxin. Note that BLASTP identification of the frameshifted peptide on the NCBI nr

database gives high E-values (minimal is of 0.67) and is thus expected to be missed by automatic
prediction tools (since most of the features specific to neurotoxin are not present), whereas the
non frameshifted peptide fragment, once identified, gives several E-values < 10−10 on NCBI nr.

Platelet-derived growth factor Platelet-derived growth factor is a potent mitogen for cells
of mesenchymal origin. Binding of this growth factor to its affinity receptor elicits a variety
of cellular responses. It is released by platelets upon wounding and plays an important role in
stimulating adjacent cells to grow and thereby heals the wound. In Figure 7.6, we show the
alignment of the back-translated human and rat platelet-derived growth factor proteins. The
two proteins share high similarity at the amino acid level on the subsequences 1-84 and 113-195.
The amino acids 85-112 can be easily aligned with a frameshift, as can be seen in Figure 7.6,
while classic protein alignment reveals little similarity in these areas (Figure 7.7).

It is interesting to notice that this double frameshift (if confirmed) may have little influence
on the protein (only the beginning of the receptor binding interface is modified). It is also
interesting to notice that both the “inducing” and “correcting” frameshifts are located on two
different exons.
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A V C V S L L G A A N I P P H P F N L I N F M K M I R Y T I

GCAGTATGTGTATCATTATTAGGAGCAGCAAATATACCACCACATCCATTCAATTTAATAAATTTTATGAAGATGATAAGATATACAATA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | |

GCAGTATGTGTATCATTATTAGGAGCAGCAAATATACCACCACATCCACTCAATTTAATAAATTTTATGGAGATGATAAGATATACAATA

A V C V S L L G A A N I P P H P L N L I N F M E M I R Y T I

P C E K T W G E Y V D Y G C Y C G V G G S G R P I D A L D R

CCATGTGAAAAAACATGGGGAGAATATGTGGATTATGGATGTTATTGTGGAGTGGGAGGATCAGGAAGACCAATAGATGCATTAGATAGA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

CCATGTGAAAAAACATGGGGAGAATATGCGGATTATGGATGTTATTGTGGAGCGGGAGGATCAGGAAGACCAATAGATGCATTAGATAGA

P C E K T W G E Y A D Y G C Y C G A G G S G R P I D A L D R

C C Y V H D N C Y G D A E K K H K C N P K M Q S Y S Y K L T

TGTTGTTATGTACATGATAATTGTTATGGAGATGCAGAAAAAAAACATAAATGTAATCCAAAAATGCAATCATATTCATATAAATTAACA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | |

TGTTGTTATGTACATGATAATTGTTATGGAGATGCAGAAAAAAAACATAAATGTAATCCAAAAACGCAATCATATTCATATAAATTAACA

C C Y V H D N C Y G D A E K K H K C N P K T Q S Y S Y K L T

K R T T S A M V P Q V L V H V L S V I V T A R Q P S A S A I

AAAAGAACAAC - ATCTGCTATGGTGCCGCAGGTACTTGTGCACGTATTGTCTGTGATTGTGACCGCACGGCAGCCCTCTGCTTCGGCGAT
| | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

AAAAGAACAATCATCTGCTATGGTGCCGCAGGTACTTGTGCACGTATTGTCTGTGATTGTGACCGCACGGCAGCCCTCTGCTTCGGCGAT

K R T I I C Y G A A G T C A R I V C D C D R T A A L C F G D

L N T S S G T R I L T P R D I A

TCTGAATACATCGAGCGGCACAAGAATATTGACACCGCGAGATATTGCC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | . | | | | |

TCTGAATACATCGAGCGGCACAAGAATATTGACACCGCGAGATTTTGCC

S E Y I E R H K N I D T A R F C

Figure 7.4: Elapidae neurotoxins (2): Two Bungarus candidus proteins, very similar at the DNA level
([Swiss-Prot:Q8AY47.1] and [Swiss-Prot:Q8AY48.1]). From the first 94 amino acid pairs, only 4 present
mismatches (which are transitions at the coding DNA level). A frameshift mutation is visible at position
284 of the back-translated sequences. The fragments following it are almost perfectly aligned with a
frameshift, with an E-value of 10−9.

K T L L L T L V V V T M V C L D L G Y T R R C F N Q Q S

AAAACATTATTATTAACATTAGTAGTAGTAACAATGGTATGTTTAGATTTAGGA - - - - - TACACCAGAAGATGTTTCAACCAACAGTCAT
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

AAAACATTATTATTAACATTAGTAGTAGTAACAATAGTATGTTTAGATTTAGGAAAGGATACACCAGAAGATGTTTCAACCAACAGTCAT

K T L L L T L V V V T I V C L D L G K D T P E D V S T N S H

S Q P K T T K S C P L G E N S C Y N K Q W R D H R G S

CACAACCTAAAACCACTAAAAGTTGTCCACTTGGGGAGAACTCTTGCTATAATAAGCAGTGGAGAGATCACCGTGGAAGTA
| | . | | | | | | | | | | | | . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : . | | | | | | | | | | | | | | | | | | | | | | | | | . | |

CAAAACCTAAAACCAATAAAAGTTGTCCACTTGGGGAGAACTCTTGCTATAGAAAGCAGTGGAGAGATCACCGTGGAATTA
Q N L K P I K V V H L G R T L A I E S S G E I T V E L

Figure 7.5: Elapidae neurotoxins (3): Two presynaptic neurotoxins from two higher snakes of the
Elapidae family ([DDBJ:BAA75760.1] of Laticauda colubrina and [DDBJ:BAC78208.1] of Laticauda lati-
caudata): It shows that the unidentified peptide is in fact an alternative splicing (or frameshifted) variant
of the neurotoxin. The frameshifted fragment has an E-value of 10−10.
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M R T L A C L L L L G C G Y L A H V L A E E A E I P R E V I

ATGAGAACATTGGCATGTTTATTATTATTAGGATGTGGATATTTAGCACATGTGTTAGCAGAAGAAGCAGAAATACCAAGAGAAGTGATA
| | | | | | | | | | . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | . | | | | |

ATGAGAACATGGGCATGTTTATTATTATTAGGATGTGGATATTTAGCACATGCGTTAGCAGAAGAAGCAGAAATACCAAGAGAACTGATA

M R T W A C L L L L G C G Y L A H A L A E E A E I P R E L I

E R L A R S Q I H S I R D L Q R L L E I D S V G S E D S L D

GAAAGATTAGCAAGATCACAAATACATTCAATAAGAGATTTACAAAGATTATTAGAAATAGATTCAGTAGGATCGGAAGATTCGTTAGAT
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | . | | | | | | | | . | | | | | | | .

GAAAGATTAGCAAGATCACAAATACATTCAATAAGAGATTTACAAAGATTATTAGAAATAGATTCAGTAGGAGCGGAAGATGCGTTAGAA

E R L A R S Q I H S I R D L Q R L L E I D S V G A E D A L E

T S L R A H G V H A T K H V P E K R P L P I R R K R S I E E

ACAAGTTTAAGAGCACATGGAGTGCATGCGACGAAACATGTACCAGAAAAAAGACCACTGCCAATAAGAAGAAAGAGAAGTATTGAGGAA
| | | | : | | | | | | | | | | | | | | | | . : | | | | : | | : : | | | | | | | | | | | | | | | | | | | | | | | | | . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

ACAAATTTAAGAGCACATGGATCGCATACGGTGAAACATGTACCAGAAAAAAGACCAGTGCCAATAAGAAGA - AGAGAAGTATTGAGGAA

T N L R A H G S H T V K H V P E K R P V P I R R R E V L R K

A V P A V C K T R T V I Y E I P R S Q V D P T S A N F L I W

GCCGTTCCCGCAGTTTGCAAGACCAGGACGGTCATTTACGAGATACCTAGGAGCCAGGTGGAC - CCAACATCAGCAAATTTTTTAATATG
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

GCCGTTCCCGCAGTTTGCAAGACCAGGACGGTCATTTACGAGATACCTAGGAGCCAGGTGGACCCCAACATCAGCAAATTTTTTAATATG

P F P Q F A R P G R S F T R Y L G A R W T P T S A N F L I W

P P C V E V K R C T G C C N T S S V K C Q P S R V H H R S V

GCCACCATGTGTAGAAGTAAAAAGATGTACAGGATGTTGTAATACATCATCAGTAAAATGTCAACCATCAAGAGTACATCATAGATCAGT
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

GCCACCATGTGTAGAAGTAAAAAGATGTACAGGATGTTGTAATACATCATCAGTAAAATGTCAACCATCAAGAGTACATCATAGATCAGT

P P C V E V K R C T G C C N T S S V K C Q P S R V H H R S V

K V A K V E Y V R K K P K L K E V Q V R L E E H L E C A C A

AAAAGTAGCAAAAGTAGAATATGTAAGAAAAAAACCAAAATTAAAAGAAGTACAAGTAAGATTAGAAGAACATTTAGAATGTGCATGTGC
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

AAAAGTAGCAAAAGTAGAATATGTAAGAAAAAAACCAAAATTAAAAGAAGTACAAGTAAGATTAGAAGAACATTTAGAATGTGCATGTGC

K V A K V E Y V R K K P K L K E V Q V R L E E H L E C A C A

T T S L N P D Y R E E D T G

AACAACGAGTTTAAATCCAGATTACAGAGAAGAAGATACAGGC
| | | | . | | | : | | | | | | | | | | | | | : | | | | | | | | | | | | | . | | | | : |

AACATCGAATTTAAATCCAGATCACAGAGAAGAAGAAACAGAC

T S N L N P D H R E E E T D

Figure 7.6: Platelet-derived growth factor proteins: The alignment of the back-translated
platelet-derived growth factor proteins from Homo sapiens and Ratus sp ([Swiss-Prot:P04085.1] and
[DDBJ:BAA00987.1]). The two proteins share high similarity at the amino acid level on the subse-
quences 1-84 and 113-195. The amino acids 85-112 can be easily aligned with a frameshift, with an
E-value of 10−6. Both the “inducing” and “correcting” frameshifts are located on two different exons.

PDGFA_HUMAN 1 MRTLACLLLLGCGYLAHVLAEEAEIPREVIERLARSQIHSIRDLQRLLEI 50

|||.|||||||||||||.||||||||||:|||||||||||||||||||||

BAA00987.1 1 MRTWACLLLLGCGYLAHALAEEAEIPRELIERLARSQIHSIRDLQRLLEI 50

PDGFA_HUMAN 51 DSVGSEDSLDTSLRAHGVHATKHVPEKRPLPIRRKRSIEEAVPAVCKTRT 100

||||:||:|:|:|||||.|..||||||||:||||:..:.:..|...:...

BAA00987.1 51 DSVGAEDALETNLRAHGSHTVKHVPEKRPVPIRRREVLRKPFPQFARPGR 100

PDGFA_HUMAN 101 VIYEIPRSQVDPTSANFLIWPPCVEVKRCTGCCNTSSVKCQPSRVHHRSV 150

.......::..|||||||||||||||||||||||||||||||||||||||

BAA00987.1 101 SFTRYLGARWTPTSANFLIWPPCVEVKRCTGCCNTSSVKCQPSRVHHRSV 150

PDGFA_HUMAN 151 KVAKVEYVRKKPKLKEVQVRLEEHLECACATTSLNPDYREEDT 193

|||||||||||||||||||||||||||||||::||||:|||:|

BAA00987.1 151 KVAKVEYVRKKPKLKEVQVRLEEHLECACATSNLNPDHREEET 193

Figure 7.7: Classic protein alignment of the platelet-derived growth factor proteins: The classic pro-
tein alignment of the platelet-derived growth factor proteins from Homo sapiens and Ratus sp ([Swiss-
Prot:P04085.1] and [DDBJ:BAA00987.1]) shows very little amino acid similarity between the 85-112
subsequences, that we have successfully aligned on a +1 frameshift.
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7.3 Conclusions and perspectives

The problem of finding distant protein homologies, in particular affected by frameshift events, is
addressed in this work from a codon evolution perspective. We search for protein common origins
by implicitly aligning all their putative coding DNA sequences, stored in efficient data structures
called back-translation graphs. The approach relies on a dynamic programming alignment algo-
rithm for these graphs, which involves a non-monotonic gap penalty that handling frameshifts
and full codon indels differently. We designed a powerful translation-dependent scoring function
for nucleotide pairs, based on codon substitution models whose purpose is to reflect the expected
dynamics of coding DNA sequences.

The approach is illustrated in this chapter with several alignment examples of known and hy-
pothetical frameshifted proteins, some of which are not detectable via classic alignment methods
because of the low coding sequence similarity. Such examples support our method’s applicability
in the discovery of distant protein homologies and functional frameshifts.

Future work regards further improvements and refinements of the scoring system, for exam-
ple in order to focus on the detection of short double correcting frameshifts (two frameshifts
separated by a small number of bases, where the second corrects the reading frame disrupted by
the first). Such cases have been shown to occur frequently [175], but are often highly penalized
by sequence comparison methods, that discard the correct alignment in favor of an ungapped
one with a higher score.

Some extensions of this work include the support for multiple alignments of back-translation
graphs. This feature can be useful for confirming frameshifts by similarity of the frameshifted
subsequence with the corresponding fragments from several members of a family. Also, for
boosting the efficiency, seeding techniques for back-translation graphs could be further analysed
and explored.
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Chapter 8

Context and motivation

The advent of high-throughput sequencing technologies, discussed earlier in Chapter 2, consti-
tuted a major advance in genomic studies, offering new prospects in a wide range of applications.
Among these, the SOLiD system, presented in Section 2.2.3, features a 2-base encoding with an
error-correcting capability helping to better distinguish between sequencing errors and biologi-
cal SNPs. The platform produces short reads of 35-50 base pairs, represented as sequences of 4
colors prefixed by one base symbol which allows decoding the read unambiguously. These reads
are generally mapped onto a reference genomic sequence in order to determine possible sequence
variations such as SNPs and indels. The encoding uses 4 colors to denote the 16 possible pairs
of adjacent nucleotides that can appear in a sequence. Because of the dually encoded nucleotide
information in adjacent colors, read positions cannot be interpreted independently, which pre-
vents classic pairwise alignment algorithms from capturing the DNA sequence similarities by
simple color sequence alignment.

8.1 Properties of the 2-base SOLiD encoding

The theoretical principles behind the error-correcting properties of the SOLiD encoding are
explained in [1]. A read is represented as an initial base followed by a sequence of overlapping
dimers, each encoded with one of four colors using a degenerate coding scheme (Figure 8.1).
In the following, color(B1B2) will denote the color associated to the dinucleotide B1B2. The
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Template sequence

Figure 8.1: 2-base color encoding: (c1) a pair of
bases has the same color regardless of the order;
(c2) each base yields a different color when paired
with a different base; (c3) all pairs of identical
bases have the same color; (c4) a pair of adjacent
bases has the same color as its complementary.

A C G A G G T

C A T C T T G

G T A G A A C

T G C T C C A

Figure 8.2: Unambiguous translation of a color
sequence starting from a known base. According
to rule c2 (Figure 8.1), if the color and the first
symbol of a dinucleotide are known, then the base
second symbol can be uniquely determined.
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encoding satisfies several rules:

(c1) A pair of bases has the same color regardless of the order, e.g.,

color(AG) = color(GA)

(c2) Given a base, it always results in a different color when paired with a different base, e.g.,

color(AT ) 6= color(AG) 6= color(AC) 6= color(AA)

and
color(TA) 6= color(GA) 6= color(CA) 6= color(AA)

Hence, although a single color in a read can represent any of four dimers, the overlapping
properties of the dimers and the nature of the color code eliminate ambiguities (Figure 8.2).

(c3) All dinucleotides formed with two identical bases have the same color:

color(AA) = color(CC) = color(GG) = color(TT )

(c4) A pair of bases and its complementary have the same color, e.g.

color(AG) = color(TC)

In conjunction with property c1, this allows obtaining the reverse complementary of a
read by reversing the color sequence.

From Figure 8.1, we notice that:

• the color for two identical nucleotides (AA, CC, GG, TT) is blue (B);

• if both nucleotides are either purines (AG, GA) or pyrimidines (CT, TC) the associated
color is yellow (Y);

• red (R) labels pairs of complementary bases (AT, TA, CG, GC);

• the other 4 dinucleotides (AC, CA, GT, TG), formed with one purine and one pyrimidine
that are not complementary are colored green (G).

Since two different dinucleotides with the same base on the first position get different colors
(rule c2), the nucleotide symbol on the first position and the color uniquely determine the
nucleotide on their second position. We will denote by next(B1, color) the function that retrieves
the second symbol in a dinucleotide, given the first symbol and the color associated to the
pair. Obtaining the translation of a color sequence prefixed with a known base symbol is now
straightforward: the nucleotide at position p is determined by the nucleotide at position p − 1
and the (p− 1)-th color in the sequence, as illustrated in Figure 8.2:

Bp = next(Bp−1, colorp−1) (8.1)

In this context, colors can be seen as transformations of bases rather than dinucleotide
labels. Let B = {A, C,G, T} be the set of base symbols. A color c is a function fc : B → B that
“transforms” base B into base B′. Namely, fB is the identity function since it maps each symbol
to itself (fB(A) = A, fB(C) = C etc), fY swaps a purine with another purine or a pyrimidine
with another pyrimidine (fY(A) = G, fY(C) = T , etc), fR maps each base to its complementary
(fR(A) = T , fR(C) = G, etc), and fG swaps A with C and G with T.
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Figure 8.3: Color composition table, depicting
the effect of two successive color transformations.
Applying the same color twice successively on a
base will lead to the same base symbol, thus hav-
ing the same effect as the transformation by the
color B (e.g. RR = B, GG = B). Similarly, we can
determine that B in combination with any other
color has the same effect as that color (e.g. YB =
Y), and two colors other than B combined have the
effect of the third color (e.g. RY = G).

C A T C T T G

C A A C T T G

C A T C T T G

C A A G A A C

Figure 8.4: A simple rule for distinguishing SNPs
form reading errors. Since each base is com-
prised in two consecutive colors, a SNP is visi-
ble in the color sequence as two consecutive color
changes, where the new colors have the same com-
position as the original colors. In this illustra-
tion, RY = BG = G. Reading errors are usually
isolated color changes which, if translated, would
completely change the entire nucleotide sequence.

Entire sequences of colors can also be treated as transformations, and allow determining the
base at an arbitrary position p without explicitly computing intermediate bases. For example,
the result of applying the color sequence RG to the base T is C.

We can therefore define function composition on colors. The combined effect of applying
two successive color transformations is illustrated in Figure 8.3. In this color composition table,
lines are labeled with the first color, columns with the second, and each cell gives the single
color transformation equivalent to the sequence.

The following observations can be made with respect to the color composition. First, each
color composed with blue (B) is equivalent to itself alone, meaning that B has neutral effects
in color composition, since it does not change the identity of the base it transforms (rule c3).
Second, each color composed with itself has the same effect as B, due to the color transformation
symmetry (rule c1). Third, any two different colors other than B have the combined effect of
the third color (as a consequence of rules c1 and c2). Additionally, we see that if the colors blue
(B), green (G), yellow (Y) and red (R) are encoded by the binary string values 00 (0), 01 (1), 10
(2) and 11 (3) respectively, the color composition can be easily implemented as a bitwise XOR
operation.

As a side observation, the set of four colors C = {B, G,Y, R} along with the composition
operation (denoted “⊕”) behaves like a Klein four-group [14], meaning that it has the following
properties:

(g1) Closure: if ci ∈ C and cj ∈ C then ci ⊕ cj ∈ C

(g2) Associativity: (ci ⊕ cj)⊕ ck = ci ⊕ (cj ⊕ ck)

(g3) Identity: there is an element c1 such that c1⊕ c = c⊕ c1 = c,∀c ∈ C (the identity element
is blue (B))

(g4) Inverse: ∀c ∈ C ∃c−1 ∈ C such that c⊕ c−1 = c−1 ⊕ c = c1 (each color is its own inverse)

(g5) Commutativity: ci ⊕ cj = cj ⊕ ci
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Figure 8.5: Detection of single base
variations in color sequence alignments.
One base change triggers two adjacent
color modifications such that the mod-
ified pair has the same composition as
the original pair. If the original colors
are identical, then the modified colors
must also be identical for the change to
be valid. If the original colors are dif-
ferent, then valid changes are restricted
to their reversal, or the other two colors
regardless of the order.
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c′
1

= c1 · c2 · c3 · c4

Figure 8.6: Detection of consecutive substitutions or indels
in color sequence alignments. For substitutions, the compo-
sition of the color sequences that transform the same base B1

into different bases (Bi, B′i) must also be different (according
to rule c2). While, in this setting, the first and last color in
the two color subsequences corresponding to the series of sub-
stitutions always mismatch, there is no rule concerning the
matches/mismatches of intermediary color pairs. In case of
indels, all the colors encoding the bases that appear only in
one sequence are replaced in the other by a single color equal
to their composition, which encodes directly the dinucleotide
formed by the remaining neighbors of the missing bases.

The colors as composable transformations are the foundation for deriving rules that help
the detection of nucleotide changes by color sequence comparison. In the following,
we will consider examples of local alignments of nucleotide sequences, with substitutions, inser-
tions and deletions, and determine how these variations are reflected in the alignment of the
corresponding color sequences.

In a correct local alignment, we expect any sequence mismatches to be flanked by significant
zones of matching symbol pairs. If we focus on a single contiguous succession of mismatches in
such an alignment, this basically means that, starting from a symbol B and passing through two
different sequences of intermediary symbols, the same symbol B′ is eventually reached. Con-
sidering the color code transformation and composition properties discussed above, this means
that, in the respective color sequences, the corresponding colors will have equal compositions.

For example, a single base change is reflected in the color sequence by the change of
two adjacent colors, corresponding to the two dinucleotides that contain the modified base
(Figure 8.4). Note that a single color modification would completely change the translated
nucleotide sequence. Here is a first proof of the error-correcting capabilities of the encoding.
While with classic reads encoded directly as nucleotide sequences it can be difficult, under
certain circumstances, to decide whether a mismatch is due to reading errors or is actually a
mutation, the fact that in this 2-base encoding each position is practically interrogated twice
helps to confirm detected changes. Not only must there be two adjacent colors that confirm
the modification, but the valid color changes must satisfy the equal composition rule mentioned
above (Figure 8.5).

This reasoning can be extended for multiple consecutive base changes, as illustrated in
Figure 8.6 and Figure 8.7.

In the case of consecutive substitutions, the essential rule is that all intermediate bases
are different in the two nucleotide sequences, meaning that partial color compositions starting
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G C A T C T T G A T G A A T G G A G T A T C G

| | . . . | | . | . | | . - - | | | - - | |

G C A C A T T G C G G A A - - G A G - - T C G

(a) (b) (c) (d)

Figure 8.7: Illustration of various cases of consecutive substitutions and indels, and how they are reflected
in the color mismatches: (a) 2 consecutive nucleotide substitutions, corresponding to 3 consecutive
color substitutions in the color sequences; (b) 2 consecutive nucleotide substitutions, corresponding to
a mismatch - match - mismatch sequence at the color level; this example illustrates the fact that only
the first and last color in the subsequences corresponding to the variation must differ (according to rule
c1, switching from the same base to two different bases results in two different colors and symmetrically,
switching to the same base from two different bases results in two different colors), but there is no rule
concerning the matches/mismatches of individual intermediary color pairs; here, the dinucleotide AT has
the same color as the dinucleotide CG, resulting, at the color sequence level, in 2 apparently isolated
color mismatches that are in fact part of subsequences with equal compositions and stand for a series of
consecutive base substitutions; (c) 2 nucleotide deletions, reflected in the color sequences by one color
substitution followed by 2 color deletions; the color Y preceding the gap encodes the dinucleotide AG
formed by the remaining neighbors of the missing bases T and G; thus, color Y (in the second sequence)
replaces colors R, G, B (in the first sequence), and R⊕G⊕B = Y; (d) 2 nucleotide deletions, reflected in
the color sequences by 2 color deletions; incidentally, in this case there is no color substitution before the
gap because the nucleotide T following the removed bases TA is identical to the first deleted nucleotide,
and thereby produces the same color G in combination with its precedent G.

from the first color mismatch are also different in the color sequences (Figure 8.6). This does
not necessarily imply that all intermediate color pairs mismatch, as depicted in Figure 8.7 (a)
and (b). Only the first and last color in the subsequences corresponding to the variation are
necessarily different (according to rule c1, switching from the same base to two different bases
results in two different colors and symmetrically, switching to the same base from two different
bases results in two different colors). There is no rule concerning the matches/mismatches of
individual intermediary color pairs. Hence, apparently isolated color mismatches that are part
of subsequences with equal compositions may stand for a series of consecutive base substitutions,
as shown in the example of Figure 8.7 (b).

When inserting or deleting bases, all the colors corresponding to the bases that appear
only in one sequence are replaced in the other sequence by a single color equal to their composi-
tion, which encodes directly the dinucleotide formed by the remaining neighbors of the missing
bases (Figure 8.6, Figure 8.7 (c) and (d)). Occasionally, this single color might be identical to
one of the colors in the other sequence, as illustrated in Figure 8.7 (d).

In consequence, in alignment algorithms for 2-base color sequences, pairs of aligned colors
should not be considered isolated. Instead, local color compositions are likely to provide the
necessary information regarding variations in the corresponding nucleotide sequences.

8.2 Challenges of mapping SOLiD short reads

Some aspects that need to be taken into account when comparing color sequences follow directly
from the nature of the encoding, and refer to recognizing SNPs and indels by analyzing several
consecutive color positions simultaneously, as discussed in Section 8.1. In addition to these, read
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Figure 8.8: Position quality correlation coefficient depending on the distance between read positions.

mapping tools should take into consideration the possibility of reading errors. A good under-
standing of the most frequent error types and their distribution along the read can significantly
improve the results.

In the SOLiD technology, the sequencing chemistry (presented earlier in Section 2.2.3) sug-
gests periodical occurrences of reading errors. Basically, the sequencing by ligation process
within the SOLiD platform relies on successive hybridizations of 8-mer oligonucleotides on the
template to be sequenced. The oligonucleotides contain 3 universal base, 3 degenerate bases
and 2 adjacent bases that identify two positions on the template, correlated with the identity
of the fluorescent labels at their 5’ end. After ligation, bases 6-8 are cleaved off, along with the
fluorescent dye, leaving the 5’ end available for another ligation. Hence, two positions p and
p + 1 are correctly base-paired after attaching one oligonucleotide, and the positions at distance
5 (p+5 and p+6) are determined by the next oligonucleotide. The nucleotides at positions that
do not fit this pattern are determined in subsequent rounds. Five rounds consisting of several
ligation cycles are necessary to cover the template. Therefore, we expect reading error biases to
propagate during such a sequencing round, thus appearing with a periodicity of 5.

To confirm this intuition, we studied the variation of the reading error probability along the
read by analyzing statistical properties of about a million of SOLiD reads of the Saccharomyces
cerevisiae genome. In this analysis, we used the qualities Ql associated to each position l on the
read, which relate to the error probability pl

e through Ql = −10 · log10 (pl
e) [58].

We computed the quality correlation between read positions depending on the distance
between them. Formally, if m is the read length, then for each i ∈ {1, ..,m − 1}, we computed

the correlation through the following standard formula c(i) =
E((Qj− eQ)(Qj+i− eQ))

(σQ)2
, where E(·) is

the expectation, Q̃ the average quality along the read, and σQ the standard deviation of quality
values. The result is given in Figure 8.8. It shows significantly higher correlations (up to 0.63)
between pairs of positions located at distances that are multiples of 5. Additionally, we studied
the behavior of reading error probability values along the read. As shown in Figure 8.9, the
error probability tends to increase towards the end of the read, making the last positions of the
color sequence less reliable when searching for similarities.
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Figure 8.9: Average reading error probability at each read position.

These observations, in conjunction with the properties of the color encoding, serve as a
basis for designing efficient and accurate methods for mapping SOLiD color-encoded reads to a
reference genomic sequence. The goal is to achieve high sensitivity even in the presence of reading
errors and SNPs/indels, and to provide a reliable method for assessing genomic variations and
distinguishing them from misread data.

8.3 Related work

8.3.1 Read mapping software tools

A number of algorithms and associated software programs for read mapping have been recently
published. Several of them such as MAQ [123], MOSAIK [195], MPSCAN [173] PASS [34],
PerM [37], RazerS [208], SHRiMP [179] ZOOM [128], GASSST [174] or Crema [49] apply con-
tiguous or spaced seeding techniques, requiring one or several hits per read. Other programs
approach the problem differently, e.g., by using the Burrows-Wheeler transform (Bowtie [115],
BWA [122], SOAP2 [126]), suffix arrays (segemehl [91], BFAST [92]), variations of the Rabin-
Karp algorithm (SOCS [163]) or a non-deterministic automata matching algorithm on a key-
word tree of the search strings (PatMaN [171]). Some tools, such as segemehl [91] or Eland [18],
are designed for 454 and Illumina reads and thus do not deal with the characteristics of the
SOLiD encoding. Also, it should be noted that, in many cases, sensitivity is sacrificed in favor
of speed: most methods find similarities up to a small number of mismatches, and few ap-
proaches [91,122,171,179] perform alignments between the read and the reference that account
for nucleotide insertions and deletions.

8.3.2 Seeding techniques for color read mapping

Seed-based methods for read mapping use different seeding strategies. SHRiMP [179] uses spaced
seeds that can hit at any position of the read and introduces a lower bound on the number of
hits within one read. MAQ [123] uses six light-weight seeds allowed to hit in the initial part of
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the read. ZOOM [128] proposes to use a small number (4-6) of spaced seeds each applying at a
fixed position, to ensure a lossless search with respect to a given number of mismatches. Also
in the lossless framework, PerM [37] proposes to use “periodic seeds” to save on the index size.

The approach encountered most often is to translate the reference sequence into colors and
index it in the translated form. The spaced seed patterns used in practice usually present
double “don’t care”s in order to accept SNPs [37, 179], and some of the proposed seed families
are guaranteed to be lossless for some combination of a small number of mismatches [37,128].

A slightly different direction is taken in Crema [49], the difference consisting mostly in the
hashing function associated to the spaced seed. For practical reasons, the reference is represented
as a sequence of codes {0, 1, 2, 3} corresponding to A, C,G, T respectively, while the reads are,
in turn, sequences over the same set of integers {0, 1, 2, 3} standing for the four colors of the
SOLiD encoding B, G, Y, R. The authors introduce the phase representation of a read (color
sequence) c1...cm, namely a sequence φ0...φm, with φ0 = 0 and φk = φk−1 ⊕ ck,∀k = 1..m,
where ⊕ is the XOR operation, as explained earlier in Section 8.1. Basically, φi = c1 ⊕ ... ⊕ ci

is the composition of the entire color sequence up to position i, and, further composed with the
code of the first nucleotide of the read t0 would give the code ti of the nucleotide at the ith
position of the translation. More generally, if the code tk at any position k of the translation is
known, tk+j can be obtained as tk+j = t0 ⊕ φk+j = tk ⊕ φk ⊕ φk+j since t0 = tk ⊕ φk (following
directly from the properties of the XOR operation ⊕: commutativity, associativity, x ⊕ x = 0,
x⊕ 0 = 0⊕ x = x).

Consider a spaced seed π of length l and weight w, defined by the set of positions {δ1, ..., δw} ⊆
{1, ..., l}. Applied at position i of some sequence x0...xn (either nucleotide or color sequence),
it selects the set of values h(xi...xi+l) = y1...yw where yk = xi+δ1 ⊕ xi+δk

,∀k = 1..w. The
seed is applied on the reference sequence s0...sN and on the phased representation of the read
sequence φ0...φm, and a hit is found when h(si...si+l) = h(φj ...φj+l), namely si+δ1 ⊕ si+δk

=
φj+δ1 ⊕ φj+δk

,∀k = 1..w. This relation is equivalent to si+δk
= si+δ1 ⊕ φj+δ1 ⊕ φj+δk

,∀k = 1..w.
In consequence, hits correspond to fragments of the read for which one of the four possible
translations matches the reference according to the spaced seed pattern. Note that this approach
does not handle reading errors inside the indexed fragment by design.

Despite the variety of proposed solutions, none of them relies on a systematic method taking
into account (other than very empirically) statistical properties of reads, such as those discussed
in Section 8.2. This aspect is adressed in this thesis in Chapter 9.

8.3.3 Alignment algorithms for color sequences

A straightforward approach to aligning reads (represented as color sequences) to a reference
genome (a nucleotide sequence) is to translate either the reads or the genome into the alphabet of
the other, which would allow performing the alignment with slightly adapted existing methods.
Translating reads as nucleotide sequences is obviously a poor choice, since any reading error
alters the translation of the entire nucleotide sequence following the misread position, as it
was illustrated earlier in Figure 8.2, Section 8.1. Translating the genome into color-space is
considered in some works [179] to lack rigor and prevent from properly distinguishing SNPs.
Indeed, applying a classic alignment algorithm on color sequences does not allow to make this
distinction. To cope with this issue, Chapter 10 proposes an algorithm for two color sequences
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specifically designed for detecting reading errors, SNPs (isolated or consecutive), insertions and
deletions.

Several alternatives to direct color sequence alignment have been proposed and implemented
in existing read mapping tools.

The method adopted by SHRiMP [179] relies on the observation that, while a color-space
error causes the rest of the sequence to be mistranslated, the genome will match one of the other
three possible translations. The classical dynamic programming algorithm is thereby adapted
to simultaneously align the genome to all four possible translations of the read, allowing the
algorithm to move from one translation to another with the price of a sequencing error penalty.
Basically, because the sequences are aligned in letter-space, the algorithm handles matches,
mismatches, and indels, allowing the use of standard scoring schemes and affine gap penalties.

In a similar approach, the algorithm of [93] aligns a color sequence to a DNA sequence by
exploring all possible nucleotide and color substitutions, in a 12-layer alignment matrix which
can handle affine gaps.

In Crema [49], the read alignment problem is defined as the problem of aligning an unknown
target sequence t to a known reference DNA sequence s = s1..n, using a color sequence c that
encodes t but may contain sequencing errors. In order to allow an evaluation with respect
to the implied nucleotide mismatches and gaps, as well as the implied sequencing errors, an
alignment is, in the context of [49], composed of columns contaning three cells: a reference cell
s, a color cell c and a target cell t, the latter belonging to the inferred target sequence. All
s, c, t ∈ {0, 1, 2, 3,�}, with {0, 1, 2, 3} being the numeric codes for {A, C,G, T} (in the reference
and the target sequences) and {B,G,Y,R} in the color sequence respectively, and � denoting
indels. The columns describe seven types of alignment events: inferred nucleotide match with
correct color (denoted M1 in the paper), inferred nucleotide match with color error (M2), inferred
nucleotide mismatch with correct color (M3), inferred nucleotide mismatch with color error (M4),
deletion from the reference sequence (D), insertion in the target sequence with correct color (I1),
insertion in the target sequence with color error (I2). Indel characters may not occupy all three
cells, and indels must appear together in the color and target cells.

Two algorithms for aligning a color sequence to a reference are proposed in [49]. First,
a greedy algorithm obtains an alignment with at most dmax indels and at most emax errors
(nucleotide mismatches, color errors or indels, i.e. alignment colums different from M1). Second,
a statistical alignment is performed on the basis of a pair-HMM which defines a probability
distribution over alignments between nucleotide and color sequences. Basically, its states are
of the form {M, I,D} × {0, 1, 2, 3}, with M, I,D denoting events of match/mismatch, insertion
and deletion, associated with a code t ∈ {0, 1, 2, 3} of the last inferred nucleotide in the target
sequence. Transitions emit pairs of symbols (s, c) from the reference and the color sequence
respectively. The probability of generating erroneous colors is established within this model from
the qualities associated to the read sequences, according to the classic relation quality = ⌊−10 ·

log10(error probability)⌋ which gives error probability ≈ 10−
quality

10 , and the rate of nucleotide
substitutions between reference and target complies with an assumed Markov model of DNA
sequence evolution. Finally, on this model, the best (most probable) alignment can be computed
via dynamic programming [49].
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8.4 Contributions

The following chapters focus on a rigorous and flexible algorithmic approach to mapping SOLiD
color-space reads to a reference genome, capable to take into account various external parameters
as well as intrinsic properties of reads resulting from the SOLiD technology.

As such, a first and most notable contribution, presented in Chapter 9, is a seed design
framework based on Hidden Markov Models of read matches, using a formal finite automata-
based approach previously developed in [110]. The main novelty of the method is an advanced
seed design based on a faithful probabilistic model of SOLiD read alignments incorporating read-
ing errors, SNPs and base indels, and, on the other hand, on a new seeding principle especially
adapted for read mapping. The latter relies on the use of a small number of seeds designed
simultaneously with a set of position on the read where they can hit. This principle of positioned
seeds allows taking into account, in a subtle way, read properties such as a non-uniform distri-
bution of reading errors along the read, or a tendency of reading errors to occur periodically at
a distance of 5 positions, which are observed artifacts of the SOLiD technology. Both lossless
and lossy spaced seeds can be designed in this framework, as will be explained in Chapter 9.
For lossless seeds, where the goal is to detect all read occurrences within a specified number of
mismatches, the approach offers the flexibility of partitioning this number into reading errors,
SNPs and indels.

In addition to the advanced use of seed design, an alignment algorithm suited for color
sequences is proposed in Chapter 10. For validating candidate mapping positions, a “base-
intelligent” alignment method designed for color sequences makes advanced use of the encoding’s
error-correcting properties and implicitly takes into account the similarity at the DNA sequence
level, thus improving the distinction between reading errors and SNPs.

Finally, these ideas are implemented in an experimental read mapping tool designed for
SOLiD, discussed in Chapter 11 in comparison with several existing read mapping applications.
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Seed design for SOLiD reads

This chapter presents a methodology for designing spaced seeds to be used for mapping SOLiD
color-space reads to a reference genome. By making use of their capacity to be adapted to
different similarity search situations, this approach creates spaced seeds that capture statistical
properties of sequences to be searched.

First, Section 9.1 proposes a seeding principle called positioned seeds, especially adapted for
read mapping, consisting in the use of a small number of seeds designed simultaneously with a
set of position on the read where they can hit. This setup suits read mapping tasks because the
fixed lenght of the reads to be mapped and the known error distribution along the read allow
gaining time by identifying and ignoring from the search process parts of the read containing
unreliable information.

The design of both positioned and classic spaced seeds, lossless and lossy, is subsequently
discussed in the following sections. In the lossy case we are allowed to miss a fraction of target
matches, and the usual goal of seed design is to maximize the sensitivity over a class of seeds
verifying a certain selectivity level. In the lossless case we must detect all matches within a given
dissimilarity threshold (expressed in terms of a number of errors or a minimal score), and the
goal of seed design is to compute a minimal set of seeds with the best selectivity that still ensures
the lossless search. In the context of read mapping for high-throughput sequencing technologies,
both lossy [123,179] and lossless [37,128] frameworks have been used.

The seed design approach proposed here relies on the methodology of [110], based on the finite
automata theory. As explained earlier in Section 3.4.4, the central idea of the methodology idea
is to model the set of target alignments by a finite-state probability transducer, which subsumes
the Hidden Markov Model commonly used in biosequence analysis, and to represent a seed or
a seed family, a seed automaton accepting the language of all alignments detected by that seed.
Consequently, in this setup, it suffices to define an accurrate model of “good alignments” and
integrate it into the Iedera software [110–112], which implements this methodology, in order
to design sensitive or lossless spaced seeds for mapping SOLiD reads. Section 9.2 describes the
such a model, that combines SNPs, indels and reading errors.

Section 9.3 focuses on lossless seed design, and proposes a fast algorithm for verifying the
lossless property of a seed with respect to with a number of errors, with the possibility of
partitioning them into SNPs, indels and reading errors.

Finally, Section 9.4 consists in a comparison and discussion of the seeds designed using the
approaches described in this chapter.
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q0start q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
* * * * * * * * * *

*

1 * 1 1
1 * 1 1

1 * 1 1
1 * 1 1

Figure 9.1: Example of position automaton λP for restricting the seed π = 1*11 to positions P =
{0, 1, 3, 4}, on a read of length m = 10.

9.1 Positioned spaced seeds.

As shown Section 8.2, the reading error probability increases towards the end of the read,
implying that a search for similarity within the last positions of the read could lead to erroneous
results or no results at all. Hence, the seed selectivity can be improved by favoring hits at initial
positions of the read where matches are more likely to be significant. We then define each seed
π jointly with a set of positions P to which it is applied on the read.

We use the framework of [110] where a seed π is represented by a deterministic finite automa-
ton Q over the alignment alphabet A which is here the binary match/mismatch alphabet. Let
m be the read size. To take into account the set of allowed positions, we compute the product
of Q with an automaton λP consisting of a linear chain of m + 1 states q0, q1, . . . , qm, where q0

is the initial state, and for every qi, both outgoing transitions lead to qi+1. Final states of the
automaton reflect the set of possible positions P where the seed is allowed to hit: a state qi

is final iff i − s ∈ P . A position automaton λP for restricting the seed π = 1*11 to positions
P = {0, 1, 3, 4}, on a read of length m = 10 is illustrated in Figure 9.1.

The size of Q is a crucial parameter in the algorithm of [110] for computing the sensitivity of
the seed. An efficient construction of such an automaton has been studied in [111]: it has the size
at most (w+1)2s−w states, where s and w are respectively the span (length) and weight (number
of match symbols) of the seed. A trivial upper bound on the size of the product automaton for
a spaced seed of span s and weight w is (w + 1) · 2s−w ·m. This bound can be improved using
the notion of matching prefix, as explained in [111]. Thus, an economical implementation of the
product of Q by λ taking into account the set of matching positions P always produces at most
((w + 1) · 2s−w · |P |+ m) states.

9.2 Lossy framework

This section proposes a model for color sequence alignments, built on the properties of the
SOLiD encoding presented earlier in Section 8.1 and on the observations of Section 8.2. Note
that we consider the reference genome translated into the color alphabet, i.e. both the reads
and the genome are represented in color space. This model of interesting/relevant alignments is
integrated into the Iedera software [110–112], where the sensitivity of the designed seeds will
be evaluated with respect to the alignments it represents.

As explained in Section 8.2, there are two independent sources of errors in reads with respect
to the reference genome: reading errors and SNPs/indels, i.e., bona fide differences between the
reference genome and sequenced data. We represent each of these sources by a separate Hidden
Markov Model (viewed as a probabilistic transducer), combined in a model which allows all error
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Figure 9.2: Model of SNPs and Indels (MSNP/I). Colors of transitions correspond to emitted errors:
black for color matches, red for mismatches, yellow for indels, and dark red for a mixture of matches
(0.25) and mismatches (0.75).

types to be cumulated in the resulting sequences.

9.2.1 Biological variation HMM

The SNP/Indel model, denoted MSNP/I , (Figure 9.2) has three states: Match, SNP and
Indel, referring to matches, mismatches, and indels at the nucleotide level, and is parameterized
by SNP and Indel occurrence probabilities, denoted pSNP and pIndel. Each transition of MSNP/I

generates a color match, mismatch or indel, with probabilities pc
m, pc

e, and pc
i respectively,

defined as follows. An insertion or deletion of n nucleotides appears at the color level as an
insertion/deletion of n colors preceded in 3/4 cases by a color mismatch [1]. Hence, the pc

e = 0.75
for transitions incoming to the Indel state, and pc

i = 1 for any transition outgoing from the Indel
state. A nucleotide mutation is reflected in the color encoding by a change of two adjacent colors
(and, more generally, n consecutive mutations affect n + 1 consecutive colors [1]). Thus, pc

e = 1
when entering or leaving the SNP state, and a color match/mismatch mixture when staying in
the mismatch state, since color matches may occur inside stretches of consecutive SNPs. Finally,
pc

m = 1 when looping on the M state.

9.2.2 Reading error HMM

The reading errors are handled by a more complex model, denoted MRE (Figure 9.3). Basi-
cally, it is composed of several submodels, one for each possible arrangement of reading errors
on a cycle of 5 positions. Within these submodels, the transitions shown in red correspond to
periodic reading errors, and generate reading errors with a fixed probability perr. This simulates
the periodicity property shown in Figure 8.8, Section 8.2. Switching from one cyclic submodel
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0/5 reading errors
1/5 reading error
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2/5 reading errors

ps
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3/5 reading errors
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4/5 reading errors

ps

ps

ps

ps

5/5 reading errors

ps

Figure 9.3: Reading error HMM (MRE).

to another with a higher reading error rate (by adding another red transition with high error
probability) can occur at any moment with a fixed probability ps.

The transitions shown in black in the model in Figure 9.3 have an error emission probability
of 0. However, in the complete reading error model, we wish to simulate the error probability
that increases towards the end (in conformity with Figure 8.9). We do this by ensuring that
reading errors are generated by these transitions with a probability p′err(pos) (lower than perr)
given by an increasing function of the current position pos on the read. Technically, this is
achieved by multiplying the automaton in Figure 9.3 by a linear automaton with m + 1 states,
where m is the read length and the i-th transition generates a reading error (color mismatch)
with the probability p′err(i). The reading error emission probability in the product model is
computed as the maximum of the two reading error probabilities encountered in the multiplied
models.

9.2.3 Combining biological variations and reading errors

The final model, which combines both error sources, is the product of MSNP/I and MRE . While
the states and transitions of the product model are defined in the classic manner, the emissions
are defined through specific rules based on symbol priorities. If corresponding transitions of
MSNP/I and MRE generate symbols α and β with probabilities p1 and p2 respectively, then
the product automaton generates the dominant symbol between α and β with probability p1p2.
Different probabilities obtained in this way for the same symbol are added up.

The dominance relation is defined as follows: indels are dominant over both mismatches
and matches, and mismatches dominate matches. For example, (indel,mismatch) results in an
indel, (mismatch, mismatch) and (match, mismatch) represent mismatch, (match, match) is
a match. This approach ensures that errors generated by each of the two models are superposed,
as illustrated in Figure 9.2.3.
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9.3. Lossless framework

MSNP/I 1 1 1 0 0 1 1 1 0 0 1 1 1 0 I 1 1 1 1 1 I 1 1 1 1 1 1

×
MRE 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0

= —————————————————————–
M(SNP/I)×RE 1 1 1 0 0 1 1 1 0 0 1 1 1 0 I 1 1 1 1 0 I 0 1 0 1 0 0

Figure 9.4: The model of alignments which combine both error sources, i.e. biological variations and
reading errors, is the product of MSNP/I and MRE , and generates alignments where all types of errors
are commulated, as shown in the example above. Here, 1 denotes color matches, 0 represents color
mismatches, and I stands for insertions in the read.

9.2.4 Seed sensitivity with respect to target alignments

The sensitivity of a seed family is defined [105,133] as the probability for at least one of the seeds
to hit a read alignment with respect to a given probabilistic model of the alignment. As outlined
earlier in Section 3.4.4, Chapter 3 this is done using the dynamic programming technique of [110]
on the product of the automaton Q specifying a family of seeds possibly restricted to a set of
positions, and the model of target alignments constructed as explained above.

9.3 Lossless framework

In the lossless framework, we have to test if the seed specified by Q is lossless, i.e. hits all
the target alignments. The set of target alignments is defined through a threshold number of
allowed mismatches.

9.3.1 Efficient algorithm for testing the lossless property

A straightforward way to test the lossless property ofQ is to construct a deterministic automaton
recognizing the set of all target alignments and then to test if the language of this automaton
is included in the language of Q. This, however, is unfeasible in practice. The automaton of
all target alignments is much too costly to construct: for example, in the case of threshold
of k mismatches, there are

∑k
a=0

(

m
a

)

different alignments of length m, and the Aho-Corasick

automaton of these strings would have
∑k+1

a=0

(

m
a

)

states. Moreover, testing the inclusion would
lead to computing the product of this automaton with Q, which would multiply the number of
states of this automaton by the number of states of Q.

Alternatively, we propose an efficient dynamic programming algorithm directly applied to
Q that can verify the inclusion (Algorithm 3). This algorithm computes, for each state q of Q,
and for each iteration i ∈ [1..m], the minimal number of mismatches needed to reach q at step i.
Let k be the threshold for the number of mismatches. Then, the lossless condition holds if and
only if, at step m, all non-final states have a number of mismatches greater than k. Indeed, if
there is a non-final state that has a number of errors at most k after m steps, then there is at
least one string of length m with at most k mismatches that is not detected by the automaton,
which contradicts the lossless condition. This algorithm is of time complexity O(|Q| · |A| ·m),
and space complexity O(|Q| · |A|), where A is the alphabet of the alignment sequences.

To illustrate the efficiency of this algorithm, consider the case of a single spaced seed of span
s and weight w, yielding an automaton with at most (w + 1) · 2s−w states [30, 110]. On this
automaton, our method runs in time O(m ·w2s−w) which brings an improvement by a factor of
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Chapter 9. Seed design for SOLiD reads

Input:

m = read length

Q = 〈S,A, δ, q0, F 〉 the deterministic seed automaton (see also Definition 6, Section 3.4.4)

k = the threshold for the number of mismatches

Output: true if the seed represented by Q is lossless for alignments of length m with at
most k mismatches; false otherwise

begin
/* Initialisation */

foreach state q of Q do
cost(q, 0) ← 0 ;

end
/* Mismatches have the cost 1 */

unit cost[0] = 1;
/* Matches have the cost 0 */

unit cost[1] = 0;

/* Recursion */

foreach iteration i ∈ [1..m] do
foreach state q of Q do

/* δ−1(q, a) retrieves the set of states in Q that transition to

state q with symbol a */

P ← δ−1(q, a);
/* Compute the minimal number of mismatches needed to reach q at

step i */

cost(q, i) ← mina∈A,q′∈P cost(q′, i− 1) + unit cost[a];

end

end

/* The lossless condition holds iff at step m, all non-final states have

a number of mismatches greater than k. */

foreach non-final state q of Q do
if cost(q, m) ≤ k then

return false;
end

end
return true;

end
Algorithm 3: Lossless property verification algorithm.
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Figure 9.5: Building an automaton for k SNPs and h color mismatches from a repeated 3-state pattern.
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w of the general bound O(m2s) from [32].

9.3.2 Lossless seeds with respect to SNPs and reading errors

In the context of color sequence mapping, it is interesting to define the lossless property with
respect to a maximal number of allowed mismatches that is split between SNPs and reading
errors. Since, in the color space, a SNP appears as two adjacent color mismatches, having k
non-consecutive SNPs and h color mismatches implies the possibility to accept 2k+h mismatches
with the additional restriction that there exist at least k pairs of adjacent ones. The automaton
that recognizes the set of alignments verifying this condition on mismatches can be obtained
by combining simple 3-state building blocks as depicted in Figure 9.5. An example of such an
automaton, accepting 1 SNP and 2 reading errors, is illustrated in Figure 9.6 (1 and 0 denote
match and mismatch respectively).

Note that the case of consecutive SNPs, resulting in sequences of adjacent color mismatches,
is a simpler problem (since consecutive SNPs produce less mismatches in the color representation
than the same number of non-consecutive SNPs) and is covered by the proposed model: a seed
that is lossless for alignments with non-consecutive SNPs will also be lossless for alignments
with the same number of consecutive SNPs.

To verify the lossless property for k SNPs and h color mismatches, we intersect the corre-
sponding automaton with the seed automaton (thus restricting the set of alignments recognized
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Figure 9.7: Modeling matches (a), reading errors, SNPs (b) and indels (c). If we consider the costs 0,
2, 3 and 4 respectively: (a) the cost of a match is 0; (b) the cost of single mismatch is 2, and a mismatch
that follows it has the cost 1, summing to 3 which is the cost of a SNP; (c) the cost of an indel is 4, and
a subsequent mismatch is accepted at zero additional cost.

by the seed to those with k SNPs and h color mismatches) and submit the result to the dynamic
programming algorithm described above.

9.3.3 Lossless seeds with respect to SNPs, reading errors and indels

In a similar approach, a more complex automaton that takes into account insertions and deletions
can be constructed, and intersected with the seed automaton in order to compute its lossless
property using the given dynamic programming algorithm. We chose a cost for each event
(match, mismatch – reading error or SNP, and indel), and with the same reasoning as above we
consider alignments under a certain total cost rather than under a certain number of mismatches.
In our experiments, we have chosen to use the costs: 0 for match, 2 for one color mismatch,
3 for one SNP (equivalent to having a 1 cost for a color mismatch preceded by another color
mismatch), and 4 for indels.

In Section 9.2, we explained how modifications at the DNA sequence level are visible as
differences between the associated color sequences. Following the same principle, we can build
automata that represent alignments with a limited number of errors, in various combinations.
The building blocks of such automata are represented in Figure 9.7. Sequences of matches
are represented by looping into the same state without any cost modification (a). SNPs are
represented by two consecutive color mismatches with different costs, while reading errors are
represented as isolated mismatches (b). Finally, indels of bases correspond to indels of colors
that may or may not be followed by a color mismatch (c), hence color mismatches preceded by
an indel event are considered to have zero costs. A complete automaton example is not given
here for complexity reasons. The next section will present seeds that are lossless for alignments
with cost 7 under the cost associations given above, which accounts for several possible error
combinations: 1 indel and 1 SNP , 1 indel and 1 reading error, 1 SNP and 2 reading errors,
or 2 SNPs.

Note that our seeds are not indel seeds [135], i.e. the seed alphabet does not contain a symbol
for insertions and deletions. Instead, the seeds must be placed between the indels within the
alignments modeled by this automaton.

9.4 Designed seeds

We present now several efficient seed designs illustrating our methodology (more examples can
be found at http://bioinfo.lifl.fr/yass/iedera_solid).
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1-Lossy-10p: sensitivity 0.9543 2-Lossy-10p: sensitivity 0.9627

1 5 10 15 20 25 30 1 5 10 15 20 25 30

1111111**111 : : : : 1111111111 : : : :
: 1111111**111: : : : : : 1111111111 : : :
: 1111111**111 : : : : : : 1111111111 : :
: : 1111111**111 : : : : : : : 1111111111:
: : 1111111**111 : : : : : : : 1111111111
: : :1111111**111 : : 111111****1111: : : :
: : : 1111111**111: : : : 111111****1111 : :
: : : :1111111**111 : : : : 111111****1111 :
: : : : 1111111**111 : : : : 111111****1111
: : : : : 1111111**111 : : : : :111111****1111

1-Lossy-12p: sensitivity 0.9626 2-Lossy-12p: sensitivity 0.9685

1 5 10 15 20 25 30 1 5 10 15 20 25 30

1111111**111 : : : : 1111111111 : : : :
: 1111111**111: : : : : : 1111111111 : : :
: 1111111**111 : : : : : :1111111111 : :
: : 1111111**111 : : : : : : :1111111111 :
: : 1111111**111 : : : : : : :1111111111
: : :1111111**111 : : : : : : : 1111111111
: : : 1111111**111: : 1111**11**1111: : : :
: : : 1111111**111 : : 1111**11**1111 : : :
: : : : 1111111**111 : : 1111**11**1111 : : :
: : : : 1111111**111 : : 1111**11**1111 : :
: : : : :1111111**111 : : 1111**11**1111 : :
: : : : : 1111111**111 : : : : :1111**11**1111

Figure 9.8: Positioned seeds for 10 (above) and 12 (below) allowed positions. Different placements of a
seed correspond to the allowed positions.

9.4.1 Lossy seeds

We first computed several sets of lossy seeds of weight 10, restricted to either 10 or 12 positions
among the 34 positions of SOLiD reads, each including one or two seeds. Figure 9.8 shows some
of the resulting seeds, together with the corresponding sensitivity values, computed through the
methods described in Section 9.2.

Interestingly, both single seeds 1-Lossy-10p and 1-Lossy-12p contain a double gap, which
may reflect that an SNP modifies two adjacent colors. However, this gap is not centered but
rather shifted at the two-third of the seed (as observed for the best single seeds of [109]). Note
also that in the two-seed families 2-Lossy-10p and 2-Lossy-12p, one of the chosen seeds is
ungapped. This may be a consequence of the fact that we consider indels in our lossy model,
which usually forces the seeds to have a smaller span. Another interesting observation is that
two-seed families 2-Lossy-10p and 2-Lossy-12p are actually lossless for the threshold of 3
mismatches, whereas single seeds 1-Lossy-10p and 1-Lossy-12p are not lossless for this setting.

9.4.2 Lossless seeds

For SNPs and reading errors

We then focused on the lossless case where the maximal number of allowed mismatches is split
between SNPs and reading errors. Using the procedure described in Section 9.3, we computed
lossless single and double seeds for one SNP and two reading errors. Results are shown in
Figure 9.9.

Note that the seed 1-Lossless-14p is one of several single seeds of weight 10 we found that
satisfied this lossless condition, with no restriction on allowed positions. Interestingly, they all
have a very large span (21) and a regular pattern with a periodic structure that can be obtained
by iterating a simpler pattern solving the lossless problem for an appropriate cyclic problem,
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1-Lossless-14p 2-Lossless-8p

1 5 10 15 20 25 30 1 5 10 15 20 25 30

1111**1*******1111**1 : : 1111111111 : : : :
:1111**1*******1111**1 : : : : 1111111111 : : :
: 1111**1*******1111**1 : : : : : : 1111111111 :
: 1111**1*******1111**1: : : : : : : 1111111111
: ... : : 11111*****11111 : : :
: : : 1111**1*******1111**1 :11111*****11111 : : :

: : : : 11111*****11111
(14 consecutive placements) : : : : 11111*****11111

Figure 9.9: Lossless positioned seeds for 1 SNP and 2 reading errors.

2-Lossless-Indel

1 5 10 15 20 25 30 1 5 10 15 20 25 30

11111**1**11111 : : : 1111111111 : : : :
:11111**1**11111 : : : :1111111111 : : : :
: 11111**1**11111 : : : : 1111111111 : : : :
: 11111**1**11111: : : : 1111111111 : : : :
: ... : : : ... : :
: : : : 11111**1**11111 : : : : : 1111111111

(all possible placements)

Figure 9.10: A family of two spaced seeds, lossless for 4 different error combinations: 1 indel and 1 SNP,
1 indel and 1 reading error, 2 SNPs, or 1 SNP and 2 reading errors.

following the property we previously described in [109]. For two-seed families, Figure 9.9 shows
a lossless pair of seeds 2-Lossless-8p for read length 33 (which then remains lossless for larger
lengths), where each seed is restricted to apply to four positions only.

For SNPs, reading errors and indels

Figure 9.10 displays a seed family that is lossless for 1 indel and 1 SNP or 1 indel and 1 reading
error, 2 SNPs, or 1 SNP and 2 reading errors. As in the case of lossy seeds where indels are
taken into account, these lossless seeds tend to have smaller lengths and therefore fewer gaps,
in order to avoid any possible indel position.

9.4.3 Seed comparison

Figure 9.11 compares the theoretical selectivity/sensitivity of several single seeds, for weight
ranging from 11 to 14, depending on the number of read positions the seed can be applied
at. Note that restricting the number of possible hitting positions affects the seed template.
The red polyline connects points corresponding to seeds optimized without restrictions on the
number of positions. Relative to this line, we observe a good performance of seeds restricted
to 24, 16 and 12 positions, with corresponding polylines lying above the red one, which means
a better sensitivity/selectivity trade-off. This confirms that positioned seeds can be superior
to unrestricted seeds, taking advantage of preferentially hitting positions where errors are less
likely.

Furthermore, to get a better idea of the sensitivity of the obtained seeds applied to real data,
we tested them on 100000 reads of length 34 from Saccharomyces cerevisiae and computed the
number of read alignments hit by each (single or double) seed. Alignments were defined through
the score varying from 28 to 34, under the scoring scheme +1 for match, 0 for color mismatch or
SNP, -2 for gaps. Results are presented in Figure 9.12. One conclusion we can draw is that the
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9.4. Designed seeds

Figure 9.11: Theoretical selectivity/sensitivity of single seeds. X-axis corresponds to selectivity (1 minus
the probability of hitting a random alignment) and Y axis to sensitivity. Color clouds highlight seeds of
the same weight.
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Figure 9.12: Number of read alignments with scores between 28 and 34 hit by each seed.
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Chapter 9. Seed design for SOLiD reads

performance of lossless seeds 1-Lossless-14p and 2-Lossless-8p decreases quite fast when the
alignment score goes down, compared to lossy seeds. Intuitively, this is, in a sense, a price to pay
for the lossless condition which usually makes these seeds less appropriate for the alignments
with a number of errors exceeding the threshold. Another observation is that, as expected,
single seeds perform worse than double seeds, although the overall number of positions where
seeds apply is the same for both single and double seeds.

Note finally that the choice of the best seed can be affected, on the one hand, by different
properties of the class of target alignments (number, type and distribution of mismatches and
indels etc.) and, on the other hand, by the size of the data and available computational resources.
The former can be captured by our probabilistic models described in Section 9.2. The latter
is related to the choice of the selectivity level, directly affecting the speed of the search, which
is defined by the seed weight and the number of allowed positions. Depending on the chosen
selectivity, different seeds can (and should) be preferred. Note in this regard that seeds appearing
in Figure 9.12 have different selectivity and are then incomparable stricto sensu.
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Chapter 10

Color sequence alignment

The previous chapter focused on the design of spaced seed families for identifying candidate
mapping positions for each read. The seed hits are extended using two alignment algorithms for
color sequences, described below. The first is a fast SIMD bandwidth alignment algorithm of
two color sequences which acts as a second filter, with the goal of eliminating most of the false
positive hits of the spaced seeds. The alignments that pass this second filter are then submitted
to the algorithm for aligning two color sequences of Section 10.3. The goal of this step is to
obtain alignments of color sequences that are meaningful at the nucleotide level, i.e. to make
the distinction between mismatches caused by reading errors and by SNPs and indels, and to
properly assign the corresponding score penalties. The best scoring candidate mapping positions
are stored for each read.

With the purpose of being an instrument for evaluating the significance of the seeds designed
as explained in Chapter 9, these algorithms are implemented, along with the seeding concepts
presented previously, in an experimental read mapping software tool which is used for the tests
presented later in Chapter 11.

10.1 Setup

When mapping a read to a reference genome, one expects little difference between the sequenced
data and the reference data. For this reason, it makes sense to avoid building a full dynamic pro-
gramming alignment table and explore all possible alignments, and compute only a bandwidth
alignment table instead. The advantages are twofold: first, bandwidth alignment is significantly
less time-consuming than full alignment, and second, alignments with many insertions / dele-
tions are discarded from the start, and the algorithm obtains significant alignments revealing
important conservation between the reads and the reference, if such alignments exist. The actual
“width” of the bandwidth alignment is from a parameter k which gives the maximum number
of insertions or deletions accepted in an alignment. As such, the number of diagonals in the
dynamic programming table that are actually computed by the alignment algorithm is 2 · k + 1.

Let m be the read length, and let i and j be the positions of a hit by a seed π on the
read R = r1...m and the reference sequence S = s1...sN respectively. S, R ∈ {B,G,Y,R}∗,
with colors encoded internally as the integers 0, 1, 2, 3 as explained earlier in Section 8.1. Note
that, like in the previous chapter, the color translation of the reference sequence is used by
the alignment algorithms. The single-hit strategy is considered, i.e. one seed hit is sufficient
to trigger the further processing. Then, any alignment with at most k indels that contains
the matches detected by the seed will involve a subsequence of the reference that is contained
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between positions j − i− k and j − i + m + k. Let T be the subsequence S(j−i−k)..(j−i+m+k) of
the reference, of length m + 2k. To extend the hit, the bandwidth alignment is performed in
color space between the read R and the subsequence T of the reference.

10.2 SIMD filtration

A SIMD bandwidth alignment algorithm acts as a second filter, with the goal of eliminating
most of the false positive hits of the spaced seeds. It can process several hits in a single run,
and performs a classic bandwidth sequence alignment, with no built-in mechanism for handling
the properties of the color encoding. The pairs of color sequences that align with a score above
an established threshold θ (by default, which have at least 70% color matches) are further
submitted to the second alignment algorithm, while the sequences that do not share sufficient
color similarity are discarded.

Technically, this filter uses the sse2 instruction set and implements the local alignment
algorithm of Gotoh [75] on compressed data (2 bits per color). For example, on reads of length
64 aligned with at most 7 indels (16 diagonals), the filter processes 2 millions hits in less than 1
second, using only one core of a 2.57 GHz Core2 Dual processor. We noticed that the optimal
speed is reached when processing pairs of hits in a single run (the four hits per runs and the
single hit per run being a little bit slower). In our case, 1 million pairs of hits (of reads of length
64) are processed in less than 1 second on a 2.57 Ghz Core 2 dual; at 2048 cells per pair of
hits, this gives 2 billions SW-cells per second, which is comparable with the full SW version
implemented in [60] and [179] (3 billions SW-cells and 0.5 billions SW-cells). Note that the
“practical” speedup heavily depends on the fact that only the bandwidth is computed in our
implementation.

10.3 “Base-intelligent” algorithm

Biological variations in color space (revisited) The goal of this algorithm is to obtain
alignments of color sequences that are meaningful at the nucleotide level, i.e. to make the
distinction between mismatches caused by reading errors and those caused by SNPs and indels,
and to properly assign the corresponding scores and penalties. This can be done thanks to the
interpretation of colors as transformations of bases [1] (for example, the color R transforms C in
G, as shown earlier by Figure 8.1, Section 8.1). From this perspective, valid DNA modifications
correspond to an alignment of different color sequences that “transform” a base symbol A into
another base symbol B, passing through different intermediate symbols, as discussed earlier in
Section 8.1 of Chapter 8 and illustrated by Figure 8.7. Consequently, it does not suffice to align
pairs of colors to detect the changes at the DNA level. Instead, colors need to be considered
and evaluated in their context. To achieve this, the alignment of color sequences needs a limited
memory of the previous color mismatches on each path of the alignment matrix, as will be
explained below.

Handling reading errors on top of biological variations In addition to SNPs and indels
defining DNA sequence differences between the read and the reference, sequencing errors affect-
ing the read sequence must be handled by the alignment algorithm. Section 8.1 explained earlier
how to distinguish between isolated reading errors and SNPs in a color sequence alignment. This
task becomes more difficult if one wishes to handle more complex situations, such as sequences
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of color matches and mismatches that could correspond, in theory, either to biological variations
or to reading errors.

To answer this issue, the basic idea of the approach adopted by the alignment algorithm
presented here is the following: unless a color mismatch is “corrected” (followed by other mis-
matches that will eventually lead to the same base in both nucleotide sequences) within a number
of steps, it is considered a reading error. The algorithm is essentially a heuristic based on a
dynamic programming approach, hybridized with a greedy evaluation of color mismatches as
reading errors or SNPs based on paired colors within a certain distance. The main difference
with respect to algorithms such as [49, 93, 179] discussed previously in Section 8.3.3 resides in
the fact that this algorithm does not explore explicitly all possible translations of the read. The
choice is basically motivated by the fact that the probability of having n consecutive SNPs in an
alignment decreases drastically with the growth of n, hence the choice to label as “reading error”
any mismatch not corrected within a small number of steps. Although this greedy approach does
not guarantee the “correct” assessment of reading errors and SNPs, it handles situations that
can occur in an alignment of sufficiently similar color sequences.

Let M be the dynamic programming table storing the scores associated to partial color
sequence alignments between the read R and the reference fragment T , with M [i, j] giving the
score of the best semi-global alignment between the prefix R1..i of the read and the prefix T1..j

of the reference fragment. Three additional bandwidth tables are maintained in order to ensure
the availability of context information for each of the explored alignment paths:

• C holds, for each partial alignment, a color code which basically states whether the current
alignment is “in phase”, meaning that all previous color mismatches have been either
canceled by subsequent mismatches as being part of SNPs, or identified as reading errors
and corrected manually. As such, C[i, j] =B when all mismatches on this alignment path
have been identified as either SNPs or reading errors, and C[i, j] 6=B when the sources
of the latest mismatch(es) have not yet been assessed. In principle, in the absence of
identified reading errors, C[i, j] = r1⊕ ...⊕ ri⊕ t1⊕ ...⊕ tj , where ri is the color at the ith
position of the read R, and ti is the color at the ith position of the reference fragment T .
Whenever a misread color rh is detected a position h of the read, then the correct value
of rh is assumed to be the color th′ to which it is aligned.

• H holds a limited history of the mismatches having occurred on each aliment path. Let
(ri, tj) be a pair of aligned symbols, with (ri, tj) ∈ {B,G,Y,R,−}2 \ {(−,−)}. Then their
alignment can be captured by a color h as follows:

hi,j =







ri ⊕ tj if ri 6= − and tj 6= −
ri if tj = −
tj if ri = −.

(10.1)

If H[i, j] = hi,j defined as above is set to a value other than B, this value is propagated
in subsequent cells belonging to alignments that pass through [i, j] (i.e., if H[i − 1, j −
1] 6=B and the alignment ending at [i− 1, j − 1] passes through [i, j], then H[i, j] becomes
H[i− 1, j− 1] instead of being computed according to relation (10.1). The history is reset
to B once the nature of the (ri, tj) mismatch is determined in a larger context, as will be
explained below.

The algorithm is given by relations (10.2) - (10.5). After a classic initialization for semi-global
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reference

path status (C)
change history (H)

read

reading error 2 base

mutations

2 base

deletions

reading error SNP reading error 1 base

insertion

(a) (b) (c) (d) (e)

Figure 10.1: Examples of SNP, reading error and indel detection on an alignment path. (a) An isolated
reading error corresponds to a color mismatch that remains uncorrected for several steps, after which the
values of C and H are reset to B. (b) Two consecutive nucleotide mutations correspond to two sequences
of three colors. The last of the three color mismatches changes C to B and is therefore not penalized
(according to (10.4 b). The history is reset since the sources of mismatches have been identified. (c)
Two consecutive nucleotide deletions correspond to two color deletions preceded (in this case) by a color
change. The last nucleotide paired with a gap changes C to B (case handled by (10.5 a). The history is
reset since the sources of mismatches have been identified. (d) In case of a reading error followed by a
SNP, the last color mismatch of the SNP changes C to match H. The sequence is recognized as a SNP
and therefore the last mismatch is not penalized (according to (10.4 b), in order to account for a single
mismatch at the DNA level. The color change introduced by the preceding reading error is eliminated
from C and H is reset. (e) Similarly to (d), in case of a reading error followed by a nucleotide deletion,
the last nucleotide paired with a gap changes C to match H (case handled by (10.5 a). The C and H
are reset since the sources of mismatches have been identified.

alignment, the score for each partial solution is computed as shown by relation (10.2).

M [i, j] = max







M [i− 1, j − 1] + score(ri, tj , C[i− 1, j − 1], H[i− 1, j − 1]);
M [i, j − 1] + gapPenalty(tj , C[i, j − 1], H[i, j − 1]);
M [i− 1, j] + gapPenalty(ri, C[i− 1, j], H[i− 1, j]).

(10.2)

The score for aligning a pair of colors depends not only on the aligned colors, but also on the
mismatches having occurred previously, which are captured by H and C, with H handled as
explained above and C basically given by relation (10.3), where [iprev, jprev] are the coordinates
of the entry chosen in (10.2) for obtaining M [i, j].

C[i, j] =







C[i− 1, j − 1]⊕ ri ⊕ tj if [iprev, jprev] = [i− 1, j − 1];
C[i, j − 1]⊕ tj if [iprev, jprev] = [i, j − 1];
C[i− 1, j]⊕ ri if [iprev, jprev] = [i− 1, j].

(10.3)

The scoring function is given by relations (10.4) and(10.5). Options (a), (c) of (10.4) and (b) of
(10.5) basically correspond to classic match, mismatch and gap scores respectively. In addition
to these, some special cases are considered. This scoring function does not penalize mismatches
of colors that “correct” the color on a path, such as the last mismatch in a series corresponding
to SNPs – (10.4 b), or the mismatch that is part of a base indel – option (10.5 a). This choice
of scoring function is based on the observation (illustrated earlier in Figure 8.7 a and c) that
n consecutive nucleotide modifications can affect n + 1 color pairs. As such, one of the n + 1
penalties must be eliminated. More precisely, option (10.4 b) assigns score 0 to the last mismatch
of a sequence corresponding to a series of SNPs, while option (10.5 a) adds the absolute value
of a mismatch to the gap penalty in order to compensate for the mismatch (if any) preceding
the color indel. Such a color correction is detected by the fact that it either resets C to the
neutral color B, or it changes C to match the first color change in the series, stored in H. The
latter situation basically identifies this initial color change as a reading error, followed by one
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or more color mismatches corresponding to SNPs or being part of indels, As such, this kind of
color correction triggers the reset of both C[i, j] and H[i, j] to B. C[i, j] and H[i, j] are also reset
if the color mismatch indicated by H[i, j] is not corrected within a number of steps.

score(r, t, c, h) =







match if r = t; (a)
0 if r 6= t and (c⊕ r ⊕ t = B or c⊕ r ⊕ t = h); (b)
−mismatch otherwise. (e)

(10.4)

gapPenalty(s, c, h) =
{

−d + mismatch if (c 6= B and c⊕ s = B) or (c 6= h and c⊕ s = h); (a)
−d otherwise. (b)

(10.5)

When read qualities are available, match and mismatch scores depend on the quality of the
paired read position, in that their absolute value is proportionally decreased for poor quality
colors, which hold less reliable information.

Various color mismatch situations and the way they are handled within the presented algo-
rithm are illustrated by Figure 10.1.

Perspectives Primarily developed only as an instrument for evaluating the significance of
the designed seeds, this algorithm can further be improved via a more rigorous scoring scheme
and mismatch source assessment (i.e. whether color mismatches correspond to reading errors or
DNA variations) by managing a more advanced mismatch history.
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Experiments and discussion

This chapter presents and discusses several experiments meant to evaluate the efficiency of the
seeds designed using the method of Chapter 9. These were performed using our experimen-
tal read mapping tool SToRM, which uses positioned seeds and implements the hit extension
algorithms mentioned in the previous chapter.

11.1 Comparison with other methods

The performance of the proposed seeds is compared here with that of MAQ 0.7.1 [123],
SHRiMP 1.3.2 [179] and 2.0, and PerM 0.2.6 [37] which are popular software tools for mapping
SOLiD reads using the seed approach, and with two tools implementing the Burrows-Wheeler
Transform approach: Bowtie 0.12.5 [115], and BWA 0.5.7 [122]. The tools were tested with their
default settings, on a machine with 8 Intel Xeon CPUs running at 2GHz and 4G RAM.

Since the emphasis of this experiment is on seed accuracy, we run our implementation
(SToRM) with the spaced seeds proposed by other seed-based tools in addition to the seeds
designed with our method, in order to establish the quality of all the seed families in the same
setup.

Table 11.1 shows seed families used in our experiments. SHRiMP-default is the default
set of SHRiMP. PerM-F3-S20 is composed of seeds F3 and S2,0 of [37] taken together. Seeds
3-Lossy-12 and 3-Lossless-10-24p are two seed families of weights 12 and 10 respectively,
designed with our method, using the following parameters for the underlying model: SNP prob-
ability 0.0085, indel probability 0.0015, reading error probability at the beginning of the read
0.01, reading error probability at the end of the read 0.1, periodic reading error probability 0.02.
3-Lossy-12 is the default seed family for SToRM, and 3-Lossless-10-24p are positioned seeds
(24 positions) lossless for 1 indel and 1 SNP, 1 indel and 1 reading error, 2 SNPs, or 1 SNP and
2 reading errors.

11.1.1 Read-mapping tools comparison

Tables 11.2 and 11.3 show the results of experiments run respectively on 1,280,536 reads from
Saccharomyces cerevisiae mapped on a 12,160,680 bp genome, and on 1,000,000 and reads from
Escherichia coli mapped on a 4,573,347 bp genome (the latter is a public dataset available on
the Applied Biosystems website).

We can see that the approaches based on the Burrows-Wheeler Transform, Bowtie and BWA,
are very fast but less accurate than most of the other tools. PerM is by far the fastest among
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Seed set ID Patterns Positions
SHRiMP-default 11111***1111111 All

1111**111**1**1111
111**1**1***111**1111
1111**1****1***1**1**1111

PerM-F3-S20 111*1**1***111*1**1***11 All
1111**1****1111**1****11

3-Lossy-12 1111*1111*1111 All
1111*111**1****1111
1111****11**11*1111

3-Lossless-10-24p 1111*11*1111 0,1,2,3,4,5,6,7,8,18,19,20
1*11111111*1 2,12,15,16,18,19,20,21
1111*1*******1*1111 0,1,11,14

Table 11.1: Seed families used in the experiments.

Program Mapped reads Unique mapping positions Execution time

Bowtie 553,140 (43.20%) 512,086 (39.99%) 0m50s
BWA 422,550 (33.00%) 395,342 (30.87%) 0m38s
MAQ 616,497 (48.14%) 567,549 (44.32%) 1m20s
PerM 418,524 (32.68%) 347,668 (27.15%) 0m31s

SHRiMP 1.3.2 663,923 (51.85%) - 7m56s
SHRiMP 2.0 709,146 (55.38%) - 1m22s

STORM 839,633 (65.57%) 754,402 (58.91%) 2m10s

Table 11.2: Comparison of 6 read-mapping tools on the S. cerevisiae dataset. The execution time refers
to all steps, including index construction for the tools that can reuse the result of this step (Bowtie,
BWA, MAQ).

Program Mapped reads Unique mapping positions Execution time

Bowtie 456,416 (45.64%) 423,541 (42.35%) 0m18s
BWA 456,928 (45.69%) 424,239 (42.42%) 0m21s
MAQ 646,523 (64.65%) 588,362 (58.84%) 1m08s
PerM 413,102 (41.31%) 384,050 (38.40%) 0m23s

SHRiMP 1.3.2 687,855 (68.79%) - 3m33s
SHRiMP 2.0 714,662 (71.47%) - 0m41s

STORM 773,155 (77.32%) 697,164 (69.72%) 0m57s

Table 11.3: Comparison of 6 read-mapping tools on the E. coli dataset. The execution time refers to
all steps, including index construction for the tools that can reuse the result of this step (Bowtie, BWA,
MAQ).

148



11.1. Comparison with other methods

Seed family Mapped reads Unique mapping positions Execution time

PerM-F3-S20 768,732 (60.03%) 694,951 (54.27%) 0m55s
SHRiMP-default 836,899 (65.36%) 751,761 (58.71%) 2m15s

3-lossy-12 839,633 (65.57%) 754,402 (58.91%) 2m10s
3-lossless-10-24p 839,072 (65.53%) 755,208 (58.98%) 2m06s

Table 11.4: Comparison of 4 different seed families on the S. cerevisiae dataset.

Seed family Mapped reads Unique mapping positions Execution time

PerM-F3-S20 731,447 (73.14%) 662,666 (66.27%) 0m33s
SHRiMP-default 772,861 (77.29%) 696,903 (69.69%) 1m02s

3-lossy-12 773,155 (77.32%) 697,164 (69.72%) 0m57s
3-lossless-10-24p 772,336 (77.23%) 696,615 (69.66%) 0m44s

Table 11.5: Comparison of 4 different seed families on the E. coli dataset.

the seed-based tools, thanks to its efficient periodic pattern indexing, but on the downside, it
has a very poor sensitivity. This is caused by the fact that PerM seeds are designed lossless
with respect to mismatches and SNPs but do not deal well with indels, most likely because of
their large span. Note also that the quality of lossless seeds is mediocre on alignments exceeding
their error threshold, as illustrated previously by Figure 9.12, Section 9.4. Finally, SToRM has
an advantageous percentage of mapped reads and execution time tradeoff among the seed-based
tools.

11.1.2 Seed families comparison

We further focused on the performance of the seed families described in Table 11.1, which we
tested within our implementation on the aforementioned data sets. The test setup was identical
for all seed families and consisted of the default SToRM parameters: the scores for match,
mismatch, gap opening and gap extension were 5, -4, -6, -4 respectively, seeds were used with
a single-hit strategy, the acceptance threshold score for the SIMD filter was 100, and obtained
alignments were considered significant above the score 115. The results are given in Tables 11.4
and 11.5.

The PerM seeds have the smallest sensitivity, which is due, as mentioned above, to their
large span and the fact that they are lossless for a small number of errors. These seeds would
perform very well on data with few reading errors and no indels, but are unsuited for data with
higher variations.

Comparing, within our program, the default seeds of SHRiMP of weight 12 (SHRiMP-

default) with those with the same weight designed using our method, we observe a higher
sensitivity of our seeds, reached with a smaller number of seeds, hence with less memory used
for the index.

Finally, the family of positioned seeds of weight 10 (3-lossless-10-24p) has a performance
comparable to that of 3-lossy-12 in number of mapped reads, thus illustrating the advantageous
sensitivity/selectivity tradeoff of positioned seeds depicted earlier in Figure 9.11, and commented
in Section 9.4. More precisely, we notice that the positioned seeds performed slightly better
than 3-lossy-12 on the S. cerevisiae dataset, and slightly worse on the E. coli dataset, most
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likely because the periodic reading error bias is less obvious on the latter. Hence, we are
confident that position-restricted seeds can be beneficial on data with a higher variation of
reading error level, as well as for data sets with larger read lengths. Furthermore, while the
execution time improvements brought by 3-lossless-10-24p in comparison with 3-lossless-

12 are not impressive, the benefits are significant on the index size, since all the keys for a seed
of weight 10 can be stored in 16 times less memory that the keys for a seed of weight 12.

11.2 Conclusions and perspectives

The main focus of this work is a seed design framework for mapping SOLiD reads to a reference
genomic sequence. The contributions include the concept of position-restricted seeds, particu-
larly suitable for short alignments with non-uniform error distribution; a model that captures
the statistical characteristics of the SOLiD reads, used for the evaluation of lossy seeds; an ef-
ficient dynamic programming algorithm for verifying the lossless property of seeds; the ability
to distinguish between SNPs, reading errors and indels in seed design; an algorithm for aligning
color sequences with the possibility of handling overlapping mutations and reading errors; an
experimental read mapping tool that implements these concepts.

Further work will include a more rigorous training of our models and in particular a more
accurate estimation of involved probabilities, possibly using advanced methods of assessing the
fit of a model. Additionally, the Iedera framework can benefit from an extension allowing
the design of seed famlies for multiple hit stategies, i.e. the evaluation of the sensitivity when
several hits are required before proceding to the alignment. Another interesting question to
study is the design of efficient combined lossy/lossless seeds which provide a guarantee to hit
all the alignments with a specified number of errors and still have a good sensitivity when this
threshold is exceeded. However, since lossless seeds tend to have a regular structure (see [109])
while best lossy seeds often have asymmetric and irregular structure, computing such seeds may
be difficult.
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Concluding remarks

This thesis focused on the design of exact and heuristic alignment algorithms, and scoring
schemes answering two complex sequence similarity problems: i) the detection of hidden protein
homologies by protein sequence comparison, when the source of the divergence are frameshift
mutations, and ii) mapping short SOLiD reads (sequences of overlapping di-nucleotides encoded
as colors) to a reference genome.

The first problem was addressed in Part II, from a codon evolution perspective. Common
origins of proteins are sought by implicitly aligning all their putative coding DNA sequences,
stored in efficient data structures called back-translation graphs. The triplet nature of coding
DNA is captured in the dynamic programming algorithm designed for aligning these graphs
and in its scoring scheme. Unlike classic sequence alignment algorithms, this approach does not
make the assumption of independence between pairs of aligned symbols. Instead, the translation-
dependent scoring function for nucleotide pairs, ensures that the obtained alignments reflect the
expected dynamics of coding DNA sequences.

For the second problem, Part III proposes algorithmic solutions which incorporate knowl-
edge about the characteristics of the SOLiD encoding and the observed artifacts of this sequenc-
ing technology, both captured by probabilistic models of read alignments. The dually encoded
nucleotide information in adjacent colors is handled by implicit interpretation of color sequences
as DNA, also taking into account possible reading errors. In this part, the focus is mainly on
designing efficient spaced seeds for mapping such color-encoded reads. These seeds allow iden-
tifying mapping positions for the reads on the reference genome, which is is a crucial step with
effects on both the quality and the speed of the read mapping process.

In conclusion, in both cases, the same general idea was applied: to implicitly compare
DNA sequences for detecting changes occurring at this level, while manipulating, in practice,
other representations (protein sequences represented as graphs, sequences of di-nucleotide codes)
that provide additional information and thus help to improve the similarity search. The thesis
proposes generic methods for approaching the respective problems, as well as implementations
of these methods, freely available for download or online use.

This work opens new perspectives in designing models and algorithms adapted to specific
sequence alignment problems, and supports the idea of understanding and making full use of
the statistical characteristics of the aligned sequences, by capturing them in specially designed
alignment algorithms, scoring functions, and adapted seeding concepts.
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Glossary

α helix A common motif in the secondary structure of proteins. A coiled or spiral conformation,
in which every backbone NH group created a hydrogen bond with the backbone CO group
of the amino acid four positions earlier. 22

β sheet A form of regular secondary structure in proteins consisting of parallel or antiparallel
strands in which the NH groups in the backbone of one strand establish hydrogen bonds
with the CO groups in the backbone of the adjacent strand. 22

adapter A short, chemically synthesized DNA molecule which is used to link the ends of two
other molecules. 33, 34

allele A variant of the DNA sequence at a given locus. 19, 30

amino acid Molecules containing an amine group, a carboxylic acid group and a side chain.
Amino acids are the structural units of proteins. 22, 24–26, 29, 39–42, 47–51, 53, 63,
69–72, 75–79, 83, 90, 91, 93, 98–100, 102–105, 108

amplicon A short DNA sequence whose multiple copies are a product of the amplification
process of the polymerase chain reaction. 33, 34

anticodon A sequence of 3 nucleotides in the tRNA that can form complementary base pairs
with one or more codons in the mRNA which encode a specific amino acid. 26

antiparallel Two molecules are antiparallel if they run side-by-side in opposite directions. 20,
22, 28

backbone In a polymer, the covalently bonded atoms that create the continuous chain of the
molecule. 20, 22

biopolymer Polymer produced by a living organism. 24

cell The functional basic unit of all known living organisms. It is the smallest unit of life that
is classified as a living thing. 19, 25

chromosome An organized structure of DNA and protein. A chromosome consists of a single
piece of coiled DNA composed of regions with different purposes such as genes or regulatory
elements, along with DNA-bound proteins, which serve to package the DNA and control
its functions. 19

codon Tri-nucleotide sequence in coding DNA, which encodes an amino acid or marks the
termination of the coding sequence. 25, 26, 29, 40, 49–51, 67, 69–72, 75, 76, 90, 91, 93,
98, 100

cytoplasm The part of a cell that is enclosed within the cell membrane. 19, 25

deoxynucleotide A nucleotide containing a deoxyribose sugar. Deoxyibonucleotides are found
in DNA molecules. 21, 32

dideoxynucleotide A nucleotide containing a dideoxyribose sugar. Dideoxyribonucleotides
are used as chain terminators in Sanger sequencing methods. 32

DNA deoxyribonucleic acid. 19–21, 24–26, 28, 31, 39, 49, 53, 67, 68, 72, 75, 119, 128, 142
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enzyme Protein that catalyzes (i.e., increase the rates of) chemical reactions. 21, 24, 28, 36

eukaryote Organism whose cells contain complex structures inside the membranes. The defin-
ing membrane-bound structure that sets eukaryotic cells apart from prokaryotic cells is the
nucleus, or nuclear envelope, within which the genetic material is carried. Most eukaryotic
cells also contain other membrane-bound organelles such as mitochondria, chloroplasts
and the Golgi apparatus. Almost all species of large organisms are eukaryotes, including
animals, plants and fungi. 19, 22, 25, 26

exon A region of a transcribed gene present in the final functional RNA molecule. 25

folding The process by which a molecule assumes its shape or conformation. 24

frameshift Insertion or deletion of a number of nucleotides that is not evenly divisible by 3 in
a coding sequence, which disrupts gene expression by codons. 14, 15, 29, 30, 67–73, 75,
80, 81, 83, 86–88, 90, 91, 93, 97, 99, 102–104, 106–109, 114

gene A segment of DNA corresponding to a “unit of inheritance” that codes for a type of
protein or for an RNA chain that has a function in the organism. 19, 24, 25, 30, 67

genome The complete genetic information of an organism. 19

hydrogen bond The attractive interaction of a hydrogen atom with an electronegative atom,
like nitrogen, oxygen or fluorin. The hydrogen must be covalently bonded to another
electronegative atom to create the bond. These bonds can occur between molecules (in-
termolecularly), or within different parts of a single molecule (intramolecularly). The
hydrogen bond is weaker than covalent or ionic bonds. 20, 22, 28

indel Insertion or deletion of one or more structural units from a polymer (nucleotides from a
nucleic acid sequence, or amino acids from a protein sequence). 29, 40, 41, 63, 72, 119,
123, 125, 127–129, 131, 142

intron A DNA region within a gene that is not translated into protein. 25

ligase Enzyme that catalyses the joining of two large molecules by forming a new chemical
bond. 28, 33

locus Specific location of a gene or DNA sequence on a chromosome. 19, 30

macromolecule A very large molecule most often created by some form of polymerization. 19,
22

mitochondrion A membrane-enclosed organelle found in most eukaryotic cells. Mithocondria
supply cellular energy, and are involved in several processes such as signaling, cellular
differentiation, cell death, the control of the cell cycle and cell growth. The mitochondrion
has its own independent genome. 19

mRNA messenger RNA. 21, 25, 26

mutation Modification in the DNA sequence of a cell’s genome. 19, 29, 39–42, 47, 49, 50,
67–69, 71
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Glossary

nucleoside A molecule composed of a nucleobase (nitrogenous base) and a five-carbon sugar
(either ribose or 2’-deoxyribose). 20

nucleotide A molecule composed of a nucleobase (nitrogenous base), a five-carbon sugar (ei-
ther ribose or 2’-deoxyribose), and one to three phosphate groups. Nucleotides are the
structural units of nucleic acids (DNA and RNA). 19–21, 25, 28, 29, 31–34, 36, 39–42, 49,
69, 72, 75, 78, 80, 98, 127

nucleus A membrane-enclosed organelle found in eukaryotic cells. It contains most of the cell’s
genetic material, organized as multiple long linear DNA molecules in complex with a large
variety of proteins, such as histones, to form chromosomes. 19, 25

oligonucleotide A short sequence of nucleotides, typically with twenty or fewer bases. 34

organelle A specialized subunit within a cell that has a specific function, and is usually sepa-
rately enclosed within its own membrane. 19

PCR polymerase chain reaction. 28, 32–34

peptide bond Chemical bond formed between two molecules when the carboxyl group of one
molecule reacts with the amine group of the other molecule, releasing a molecule of water.
22

polymer A large molecule (macromolecule) composed of repeating structural units. 20, 21

polymerase Enzyme whose primary function is the polymerization of new DNA or RNA
against an existing DNA or RNA template in the processes of replication and transcription.
24, 28, 33, 36

primer A strand of nucleic acid (a sequence of nucleotides) that serves as a starting point
for DNA or RNA synthesis. Primers are required because the enzymes that catalyze
replication, DNA polymerases, can only add new nucleotides to an existing strand of DNA
ant are not capable of initiating a strand. 28, 31–34

prokaryote Organism that lacks a cell nucleus (= karyon), or any other membrane-bound
organelles. Most prokaryotes are unicellular, with a few exceptions (e.g. myxobacteria)
which have multicellular stages in their life cycles. Domains: the bacteria and the archaea.
19, 25

protein Organic compound made of amino acids arranged in a linear chain and folded into a
globular form. 19, 21, 22, 24–26, 28, 36, 39, 40, 53, 67, 71, 72, 75

purine A basic compound, composed of two fused heterocyclic rings. The purines occuring in
nucleic acids are adenine (A) and guanine (G). 20, 29, 40, 41, 70, 120

pyrimidine A nitrogen-containing, single-ring, basic compound. The pyrimidines that occurs
in DNA are cytosine (C) and thymine (T). In RNA, the thymine is replaced by uracil (U).
20, 29, 40, 41, 70, 106, 120

read mapping The process of finding matching segments on a reference genome for a set of
short reads obtained from DNA sequencing. 37, 128
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Glossary

reading frame The contiguous and non-overlapping set of 3 nucleotide codons in a coding
DNA sequence. 25, 29, 67, 69, 71, 90, 92, 97, 100

ribonucleotide A nucleotide containing a ribose sugar. Ribonucleotides are found in RNA
molecules. 24

ribosome The components of cells that build proteins from amino acids, by binding to a mes-
senger RNA (mRNA) and using it as a template for the sequence of amino acids in a
particular protein. The amino acids are attached to transfer RNA (tRNA) molecules,
which enter one part of the ribosome and bind to the mRNA sequence. The attached
amino acids are then joined together, and the ribosome moves along the mRNA, “read-
ing” its sequence and producing the amino acid chain. 26

RNA ribonucleic acid. 19, 21, 24–26, 39

SNP single nucleotide polymorphism. 29, 119, 123, 125, 126, 128, 129, 142

splicing A modification of an RNA after transcription, in which introns are removed and exons
are joined. 25

transcription The process of creating an equivalent RNA copy of a DNA sequence. 19, 24, 25,
29

transition A point mutation that changes a purine nucleotide to another purine (A ↔ G) or a
pyrimidine nucleotide to another pyrimidine (C ↔ T). 29, 41, 49, 50, 63, 71

translation The process of interpreting the information encoded in a messenger in order to
produce a specific protein. 19, 25, 29, 72

transversion The substitution of a purine for a pyrimidine or a pyrimidine for a purine. 29,
41, 49, 50, 63, 71

tRNA transfer RNA. 21, 26
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