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Abstract:
This dissertation focuses on a widely used linear algebra kernel to solve linear systems, that is the LU
decomposition. Usually, to perform such a computation one uses the Gaussian elimination with partial
pivoting (GEPP). The backward stability of GEPP depends on a quantity which is referred to as the
growth factor, it is known that in general GEPP leads to modest element growth in practice. However
its parallel version does not attain the communication lower bounds. Indeed the panel factorization rep-
resents a bottleneck in terms of communication. To overcome this communication bottleneck, Grigori
et al [60] have developed a communication avoiding LU factorization (CALU), which is asymptotically
optimal in terms of communication cost at the cost of some redundant computation. In theory, the upper
bound of the growth factor is larger than that of Gaussian elimination with partial pivoting, however
CALU is stable in practice. To improve the upper bound of the growth factor, we study a new pivoting
strategy based on strong rank revealing QR factorization. Thus we develop a new block algorithm for
the LU factorization. This algorithm has a smaller growth factor upper bound compared to Gaussian
elimination with partial pivoting. The strong rank revealing pivoting is then combined with tournament
pivoting strategy to produce a communication avoiding LU factorization that is more stable than CALU.
For hierarchical systems, multiple levels of parallelism are available. However, none of the previously
cited methods fully exploit these hierarchical systems. We propose and study two recursive algorithms
based on the communication avoiding LU algorithm, which are more suitable for architectures with
multiple levels of parallelism. For an accurate and realistic cost analysis of these hierarchical algo-
rithms, we introduce a hierarchical parallel performance model that takes into account processor and
network hierarchies. This analysis enables us to accurately predict the performance of the hierarchical
LU factorization on an exascale platform.

Keywords:
LU factorization, Gaussian elimination with partial pivoting, growth factor, strong rank re-
vealing QR factorization, minimizing the communication cost, parallel algorithms, hierarchi-
cal systems, performance models, pivoting strategies.



Résumé :
Cette thèse traite d’une routine d’algèbre linéaire largement utilisée pour la résolution des systèmes li-
néaires, il s’agit de la factorisation LU. Habituellement, pour calculer une telle décomposition, on utilise
l’élimination de Gauss avec pivotage partiel (GEPP). La stabilité numérique de l’élimination de Gauss
avec pivotage partiel est caractérisée par un facteur de croissance qui est reste assez petit en pratique.
Toutefois, la version parallèle de cet algorithme ne permet pas d’atteindre les bornes inférieures qui ca-
ractérisent le coût de communication pour un algorithme donné. En effet, la factorisation d’un bloc de
colonnes constitue un goulot d’étranglement en termes de communication. Pour remédier à ce problème,
Grigori et al [60] ont développé une factorisation LU qui minimise la communication(CALU) au prix
de quelques calculs redondants. En théorie la borne supérieure du facteur de croissance de CALU est
plus grande que celle de l’élimination de Gauss avec pivotage partiel, cependant CALU est stable en
pratique. Pour améliorer la borne supérieure du facteur de croissance, nous étudions une nouvelle stra-
tégie de pivotage utilisant la factorisation QR avec forte révélation de rang. Ainsi nous développons un
nouvel algorithme pour la factorisation LU par blocs. La borne supérieure du facteur de croissance de
cet algorithme est plus petite que celle de l’élimination de Gauss avec pivotage partiel. Cette stratégie
de pivotage est ensuite combinée avec le pivotage basé sur un tournoi pour produire une factorisation
LU qui minimise la communication et qui est plus stable que CALU. Pour les systèmes hiérarchiques,
plusieurs niveaux de parallélisme sont disponibles. Cependant, aucune des méthodes précédemment ci-
tées n’exploite pleinement ces ressources. Nous proposons et étudions alors deux algorithmes récursifs
qui utilisent les mêmes principes que CALU mais qui sont plus appropriés pour des architectures à plu-
sieurs niveaux de parallélisme. Pour analyser d’une façon précise et réaliste les coûts de ces algorithmes
hiérarchiques, nous introduisons un modèle de performance hiérarchique parallèle qui prend en compte
aussi bien l’organisation hiérarchique des processeurs et la hiérarchie réseau. Cette analyse nous permet
de prédire d’une manière réaliste la performance de ces factorisations hiérarchiques sur une plate-forme
exascale.

Mots-clés :
Factorisation LU, élimination de Gauss avec pivotage partiel, facteur de croissance, facto-
risation QR avec forte révélation de rang, minimisation de la communication, algorithmes
parallèles, systèmes hiérarchiques, modèles de performance, stratégies de pivotage.
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Introduction

In many computational applications dense linear algebra represents an essential and fundamental
part. Hence for several scientific and engineering applications, the core phase of resolution consists of
solving a linear system of equations Ax = b. For that reason the dense linear algebra algorithms have
to be numerically stable, robust, and accurate. Furthermore these applications are more and more in-
volving large linear systems. Thus the developed algorithms must be scalable and efficient on massively
parallel computers with multi-core nodes. This is a part of High performance Computing (HPC), which
represents a wide research area that includes the design and the analysis of parallel algorithms to be
efficient and scalable on massively parallel computers. The principal reason behind the significant and
increasing interest in HPC is the widespread adoption of multi-core processor systems. Thus designing
high performance algorithms for dense matrix computations is a very demanding and challenging task,
especially to be well adapted to the multi-core architectures. These architectures ranging from multicore
processors to petascale and exascale platforms offer an increasing computing power. However it is not
always easy to efficiently use and fully exploit this power, since in addition to the issues related to the
development of sequential algorithms, one has to take into consideration both the opportunities and the
limitations of the underlying hardware on which the parallel algorithms are executed. In this work we
focus on the LU decomposition with respect to two directions. The first direction is the numerical stabil-
ity, which mainly aims at developing accurate algorithms and the second direction is the communication
issue, which if it is taken into account at the design level leads to efficient and scalable algorithms. Thus
these two axis are important to achieve the goals presented above. Note that we study both sequential
and parallel algorithms.

It was shown by Wilkinson that much insight into the behavior of numerical algorithms can be gained
through studying their backward stability [96]. This observation has lead to a significant advance in nu-
merical analysis. Considering the LU decomposition, a stability issue is that the Gaussian elimination
with partial pivoting, although it is stable in practice, is not backward stable. To quantify the numeri-
cal stability of Gaussian elimination with partial pivoting, one should consider a quantity referred to as
the growth factor gW , which measures how large the entries of the input matrix are getting during the
elimination steps. Wilkinson showed that for a square matrix of size n × n, the growth factor is upper
bounded by 2n−1, and that this upper bound is attainted for a small class of matrices. However extensive
experiment sets showed that it is still small in practice. Understanding such a behavior remains since
decades an unsolved linear algebra problem. The previous example shows how challenging is the design
of numerical stable algorithms.

The second issue we consider throughout this work is communication, which refers to the data
movement between processors in the parallel case and between memory levels (typically main and fast
memory) in the sequential case. This problem was addressed in prior work [69, 72, 15]. Due to the
increasing number of processors in actual machines, running a classical algorithm on such a system
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might significantly reduce its performance. The processors are indeed spending much more time com-
municating than performing actual computations. Based on this observation, it becomes necessary to
design new algorithms or rearrange the classical ones in order to reduce the amount of communication
and thus be more adapted for exascale machines. An attempt to meet these requirements has lead to the
design of a class of algorithms referred to as communication avoiding algorithms [38, 60, 59]. These
algorithms asymptotically attain lower bounds on communication. Furthermore they perform some ex-
tra floating-point operations, which remain however a lower order term. Thus this class of algorithms
leads to significant performance gains comparing to classical algorithms, since it allows to overcome
the communication bottlenecks. In the framework of these algorithms, a communication avoiding LU
factorization referred to as CALU was developed by Grigori et al in [60], where the authors introduce
a new pivoting strategy, referred to as tournament pivoting based on Gaussian elimination with partial
pivoting. The tournament pivoting strategy allows to minimize the amount of communication during the
panel factorization. However using such a pivoting strategy results in a less stable factorization in terms
of growth factor upper bound comparing to the original method, that is Gaussian elimination with partial
pivoting. Improving the numerical stability of the communication avoiding LU factorization presents
the motivation behind the first part of our work, that is the second and the third chapters.

In this thesis, we study both sequential and parallel algorithms that compute a dense LU decom-
position. For the sake of accuracy and efficiency, we discuss their numerical stability as well as their
ability to reduce the amount of communication. The methods presented throughout this work are based
on the communication avoiding algorithms techniques and principle, in particular the communication
avoiding pivoting strategy, however they aim at improving the numerical stability of the existing algo-
rithms and leading to better performance on systems with multiple levels of parallelism. Thus the thesis
is mainly composed of three parts. The first part introduces a new LU factorization using a new pivoting
strategy based on strong rank revealing QR factorization. This algorithm is more stable than Gaussian
elimination with partial pivoting in terms of growth factor upper bound. The second part presents a
communication avoiding variant of the algorithm presented in the previous part. Besides reducing com-
munication, this algorithm is more stable than the original communication avoiding LU factorization. In
the last part, we study hierarchical LU algorithms that are suitable for machines with multiple levels of
parallelism.

Summary and contributions

The rest of this thesis is organized as follows.

– Chapter 1 presents a background of our work and discusses the state of the art approaches. It
especially includes previous research works, we think they are relevant to our work and contribu-
tions. First we present the two key linear algebra direct methods used for solving linear systems
of equations, that is the LU factorization and the QR factorization. In particular we discuss their
numerical stability, which is an important axis of the work presented throughout this thesis (sec-
tion 1.2). After that we move to the second axis, that is communication (section 1.3). We mainly
define communication and explain why it might be an important issue to address when designing
parallel algorithms. Then we present state of the art parallel pivoting strategies including those
we use throughout this thesis (section 1.4). In section 1.5, we describe some principles of par-
allel dense matrix computations ranging from algorithmic techniques to scheduling techniques.
Finally, we present several parallel performance models and discuss both the contributions and
the drawbacks of each (section 1.6).
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– Chapter 2 introduces a new algorithm, referred to as LU_PRRP, for the LU decomposition. This
algorithm uses a new pivoting strategy based on strong rank revealing QR factorization. The first
step of the algorithm produces a block LU decomposition, where the factors L and U are block
matrices. The LU_PRRP algorithm mainly aims at improving the numerical stability of the LU
factorization. We start by presenting the algorithm in section 2.2. Then we discuss its numerical
stability (section 2.2.1). Finally we evaluate the LU_PRRP algorithm based on an extensive ex-
periment set (section 2.2.2).

– Chapter 3 presents a communication avoiding version of LU_PRRP, referred to as CALU_PRRP.
This algorithm aims at overcoming the communication bottleneck during the panel factorization
if we consider a parallel version of LU_PRRP. We show that CALU_PRRP is asymptotically op-
timal in terms of both bandwidth and latency. Moreover, it is more stable than the communication
avoiding LU factorization based on Gaussian elimination with partial pivoting in terms of growth
factor upper bound. We detail the algebra of the CALU_PRRP algorithm and discuss its numerical
stability in section 3.2. This chapter together with the previous one has lead to an under revision
publication in SIAM Journal Matrix Analysis Applications as LU Factorization with Panel Rank
Revealing Pivoting and its Communication Avoiding version [A. Khabou, J. Demmel, L. Grigori,
and M. Gu] [A2].

– Chapter 4 introduces two hierarchical LU factorizations suitable for systems with multiple levels
of parallelism. These algorithms are based on recursive calls to the CALU routine suitable for
one level of parallelism. The first algorithm, referred to as multilevel CALU, is based on bi-
dimensional recursive pattern, where CALU is recursively applied to blocks of the input matrix.
The second algorithm, referred to as recursive CALU, is based on an uni-dimensional recursive
pattern, where CALU is recursively performed on an entire block of columns. In this chapter we
present the two algorithms (sections 4.2 and 4.3). However we limit our analysis to two levels
of parallelism. Thus we study both 2-level multilevel CALU, referred to as 2-level CALU, and
2-level recursive CALU, referred to as 2-recursive CALU. We show that the former is asymp-
totically optimal in terms of both latency and bandwidth at each level of parallelism, while the
latter only minimizes the bandwidth cost, because the recursive call is performed on the entire
panel. Note that the part of this chapter dealing with multilevel CALU has lead to a publication
in EuroPar2012 as Avoiding Communication through a Multilevel LU Factorization [S. Donfack,
L. Grigori, and A. Khabou] [A1].

– Chapter 5 presents a more detailed study of multilevel CALU, one of the hierarchical algorithms
introduced in the previous chapter. To be able to model in a realistic way the multilevel CALU
algorithm, we first build a performance model, the HCP model, that takes into account both the
processor hierarchy and the network hierarchy (section 5.2). Then we introduce a multilevel
Cannon algorithm that we use as a tool to model matrix matrix operations performed during the
multilevel CALU algorithm (section 5.3). The evaluation of our algorithm under the HCP model
shows that the multilevel CALU algorithm is asymptotically optimal in terms of both bandwidth
and latency at each level of the hierarchy (section 5.4). We also show that multilevel CALU is
predicted to be significantly faster than CALU on exascale machines with multiple levels of par-
allelism (section 5.5).

– Appendix A presents all our experimental results for algorithms introduced throughout this work
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including the LU_PRRP factorization, the binary tree based CALU_PRRP, the flat tree based
CALU_PRRP, the binary tree based 2-level CALU, and the binary tree based 3-level CALU. The
tested matrices include random matrices and a set of special matrices. For each algorithm, we
show results obtained for both the LU decomposition and the linear solver. We also display the
growth factor and results for Gaussian elimination with partial pivoting for comparison.

– Appendix B details the costs analysis performed along this thesis. All these costs are evalu-
ated, with respect to the critical path, in terms of arithmetic cost and communication cost. The
communication cost includes both the latency cost, due to the number of messages sent, and the
bandwidth cost, due to the volume of data communicated during the execution. We first present
the cost analysis of the LU_PRRP algorithm and that of the CALU_PRRP algorithm. These two
evaluations are performed with respect to a simplified bandwidth-latency performance model.
Then we present the costs analysis of both 2-level CALU and 2-recursive CALU, using the same
simplified performance model extended by several constraint on memory. Finally we detail the
cost of multilevel CALU with respect to our hierarchical performance model (HCP).

– Appendix C presents the algebra of the block parallel CALU_PRRP algorithm, a less stable com-
munication avoiding variant of the LU_PRRP algorithm introduced in chapter 3.

– Appendix D presents the MATLAB code used to generate a generalized Wilkinson matrix.

This thesis makes the following contributions.

– The design of a new algorithm (LU_PRRP) that produces an LU decomposition. This algorithm
uses strong rank revealing QR to select sets of pivot rows and to compute the L21 factor of each
panel. Due to both the new pivoting strategy and the manner used to compute the L21 factors, the
LU_PRRP algorithm is more stable than Gaussian elimination with partial pivoting in terms of
growth factor upper bound.

– Using the previous pivoting strategy, together with the tournament pivoting strategy introduced in
the context of CALU, we design a communication avoiding version of LU_PRRP (CALU_PRRP)
which on one hand asymptotically attains the lower bounds on communication, and on the other
hand is more stable than the CALU factorization in terms of growth factor upper bound.

– The design of a hierarchical parallel performance model which is both simple and realistic (the
HCP model).

– The design of a hierarchical LU factorization (multilevel CALU) that is asymptotically optimal in
terms of both latency and bandwidth at each level of the hierarchy with respect to the HCP model.



Chapter 1

High performance numerical linear algebra

1.1 Introduction

This chapter presents a background of our work. It is organized as follows. We start with presenting
the linear algebra direct methods, we either work on or use throughout this work (section 1.2). This
section includes mainly several versions of both LU factorization and QR factorization. We consider in
particular Gaussian elimination with partial pivoting and strong rank revealing QR factorization. Hence
in chapter 2 we introduce an algorithm based on strong rank revealing pivoting strategy in order to com-
pute a block LU decomposition. Then in section 1.3, we briefly explain what communication means
for both sequential and parallel algorithms and why it is important to consider in design efficient algo-
rithms. In this context a class of algorithms referred to as communication avoiding was first introduced
in [55, 80] for tall and skinny matrices (with many more rows than columns) using a binary tree reduc-
tion for the QR factorization, then generalized by Demmel et al. in [39] to any reduction tree shape and
to rectangular matrices. Here we only focus on the communication avoiding LU factorization (CALU).
Note however that a similar algorithm exists for the QR factorization. In section 1.4, we detail and
discuss state-of the art parallel pivoting strategies and their numerical stability. After that we present
some principles of parallel dense matrix computation (section 1.5), including both algorithmic methods
( block algorithms, recursive algorithms, tiled algorithms) and implementation techniques, for which we
restrict our discussion to task decomposition and scheduling methods. Finally in section 1.6, we discuss
several performance models. The point here is to motivate the design of our performance model HCP
introduced in chapter 5, and which takes into account in a simple way the different level of parallelism
in a hierarchical system. Note here that in all the algorithms we use MATLAB notations.

1.2 Direct methods

Many scientific applications require the resolution of linear systems,

Ax = b.

In this section we introduce two main computational kernels widely used in direct linear algebra, the
LU factorization and the QR factorization. We first present the original algorithms of these two methods
and some other variants which were relevant to our work, including Gaussian elimination with partial
pivoting (GEPP) and strong rank revealing QR (strong RRQR). Then we discuss the numerical stability
of these algorithms and address some issues.

1
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1.2.1 The LU factorization

Suppose we want to solve a nonsingular n by n linear system

Ax = b. (1.1)

One way to do that is to use Gaussian elimination without pivoting, which decomposes the matrix A
into a lower triangular matrix L, and an upper triangular matrix U . Thus the linear system above is very
easy to solve by forward substitution for the lower triangular matrix and backward substitution for the
upper triangular matrix.

Algorithm 1: LU factorization without pivoting (in place)

Input: n× n matrix A
for k = 1:n-1 do

for i = k+1:n do
A(i, k) = A(i, k)/A(k, k)

for i = k+1:n do
for j = k+1:n do

A(i, j) = A(i, j)−A(i, k) ∗A(k, j)

For dense matrices, LU factorization can be performed in-place. It means that the output LU factors
overwrite the input matrix A. We recall that the floating-point operations of the LU decomposition
applied to a square matrix is (2n3/3). However Gaussian elimination without pivoting is numerically
unstable unless A is for example diagonal dominant or positive definite. Thus to improve the numerical
stability of this method pivoting is required (PA = LU), in particular we discuss Gaussian elimination
with partial pivoting.

Partitioned LU factorization

The Algorithm 1 presented above is based on products of scalars. To allow more parallelism and to
lead to better performance on machines with hierarchical memories, the LU factorization can be rear-
ranged in order to allow the use of matrix-vector operations (BLAS 2) [2] and matrix-matrix operations
(BLAS 3) [2]. Given a matrix A of size n× n and a block of size b, after the first step of the partitioned
LU we have,

A =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 In−b

]
×
[
U11 U12

0 As22

]
,

whereA11 = L11U11, U12 = L−111 A12, L21 = A21U
−1
11 , andAs22 = A22−L21U12. Algorithm 2 presents

a partitioned LU factorization, where we assume that n is a multiplier of b.

Block LU factorization

Here we introduce a block LU factorization, which is relevant to our work. This factorization pro-
duces a block LU decomposition, where the factors L and U are composed of blocks [40]. Here is the
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Algorithm 2: Partitioned LU factorization without pivoting (in place)

Input: n× n matrix A, block size b
N= n/b
for k = 1 : N do

Let K = (k − 1) ∗ b+ 1 : k ∗ b
/* Compute the LU factorization of the current diagonal block */
A(K,K) = L(K,K)U(K,K)
/* Compute the block column of L */
A(k ∗ b+ 1 : n,K) = A(k ∗ b+ 1 : n,K)U(K,K)−1

/* Compute the block row of U */
A(K, k ∗ b+ 1 : n) = L(K,K)−1A(K, k ∗ b+ 1 : n)
/* Update the trailing matrix */
A(k∗b+1 : n, k∗b+1 : n) = A(k∗b+1 : n, k∗b+1 : n)−A(k∗b+1 : n,K)A(K, k∗b+1 : n)

detail of one step of the block LU factorization, where we assume that A11 is a non singular matrix of
size b× b:

A =

[
A11 A12

A21 A22

]
=

[
Ib 0
L21 In−b

]
×
[
A11 A12

0 As22

]
Note that the algorithms that we will introduce in chapters 2 and 3, without additional Gaussian

eliminations on the diagonal blocks, produce a block LU factorization as defined here.

Numerical stability

The division by A(k, k) in Algorithm 1 might break down the algorithm if A(k, k) is equal to zero
or cause a numerical problem if it is small in magnitude. If such a problem occurs, the factorization
fails. Moreover, giving that the accuracy of a computation is limited by the number representation on
a computer, the computed term A(i, k) may grow ( line 3 in 1) because of rounding errors, and thus
becomes dominating during the update of the trailing matrix. For that reason it is necessary to perform
pivoting, that is to move a larger element into the diagonal position by swapping rows (partial pivoting),
columns, or rows and columns( complete pivoting, rook pivoting) in the matrix. We will discuss several
parallel pivoting strategies in 1.4. Here we consider partial pivoting that only performs row interchanges.

Algorithm 3: LU factorization with partial pivoting (in place)

Input: n× n matrix A
for k = 1:n do

i = index of max element in |A(k : n, k)|
piv(k) = i
swap rows k and i of A
A(k + 1 : n, k) = A(k + 1 : n, k)/A(k, k)
A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n)−A(k + 1 : n, k) ∗A(k, k + 1 : n)
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The first step in Algorithm 3 determines the largest entry in the k-th column in the subdiagonal part
of A. After row swaps, the process continues as described for the LU factorization without pivoting.
Thus the decomposition that it produces is of the form A = P TLU or PA = LU , where P is the
permutation matrix that illustrates the pivoting process.
The stability of an LU decomposition mainly depends on the growth factor gW , which measures how
large the elements of the input matrix are getting during the elimination,

gW =
maxi,j,k |a

(k)
ij |

maxi,j |aij | ≥ 1,

where a(k)ij denotes the entry in position (i, j) obtained after k steps of elimination.
In [96], Wilkinson showed that for partial pivoting, the growth factor upper bound is 2n−1. This

worst case growth factor is attainable. In fact Gaussian elimination with partial pivoting could fail for a
small set of problems, including a set of matrices designed to make the partial pivoting strategy fail [67]
and some matrices arising from practical applications [50, 99]. Note however, that Gaussian elimination
with partial pivoting is stable in practice. Understanding such a behavior is still one of the biggest
unsolved problems in numerical analysis.

1.2.2 The QR factorization

In this section we first recall the classic QR factorization. We mainly discuss its different versions.
One interesting variant of the QR decomposition is the rank revealing QR (RRQR). QR factorization is
one of the major one-sided factorizations in dense linear algebra. Based on orthogonal transformations,
this method is well known to be numerically stable and is a first step toward the resolution of least square
systems.

Classic QR factorization

The QR factorization decomposes a given matrix A into the product of an orthogonal matrix Q and
an upper triangular matrix R. There are several methods to compute the QR factorization of a matrix,
such as the Gram-Schmidt process, the Householder transformations, or the Givens rotations [54]. The
numerical stability of the QR factorization depends on the approach used.

The most common approach is that based on Householder transformations. During this factorization
successive orthogonal matrices of the form,

H = I − 2

‖u‖2
uuT ,

are computed. These are the Householder matrices. During the factorization, applying the Householder
matrices to the input matrix A allow to successively annihilate all elements below the diagonal element,
and thus obtain the upper triangular factor R. Let’s note Hk the Householder matrix that eliminates the
subdiagonal elements of the kth column of the input matrix. Therefore we obtain,

HnHn−1 · · ·H2H1A = R.

Thus,
A = (HnHn−1 · · ·H2H1)

−1R = QR = HT
1 H

T
2 · · ·HT

n−1H
T
nR,
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since the Householder matrices are orthogonal. Note that the Q factor is never explicitly formed. To
apply the Householder matrix H to a given matrix A, we rather proceed as follows,

HA = (I − 2

‖u‖2
uuT )A = A− 2

‖u‖2
u(uTA).

Hence it consists of a rank-1 modification of the identity. Algorithm 4 illustrates a QR factorization
based on Householder transformations.

Algorithm 4: Householder QR factorization

for k = 1:n-1 do
αk = sign(A(k,k))

‖A(k:m,k)‖2
uk = [0 · · · 0A(k, k) · · ·A(m, k)]T − αkek
βk = uTu
if βk = 0 then

continue with next k

for j = k to n do
A(k + 1 : m, j) = A(k + 1 : m, j)− 2

βk
(uTA(k + 1 : m, j))u

Rank revealing QR with column pivoting

In many numerical problems including subset selection, total least squares, regularization, and ma-
trix approximation, it is necessary to compute the rank of a matrix [32]. The most reliable method to
find the numerical rank of a matrix is the singular value decomposition (SVD). However the SVD has
a high computational complexity comparing to the QR factorization. Hansen and Chan showed in [32]
that rank revealing QR factorization with column pivoting is a reliable alternative to the SVD. This fac-
torization defined in [20], is competitive for solving the problems cited above. Hence the rank revealing
QR factorization produces tight bounds for the small singular values of a matrix and builds an approxi-
mated basis to its null-space.

Algorithm 5 details the different steps of rank revealing QR with column pivoting. This factoriza-
tion was introduced by Golub and Businger [21]. The algorithm iteratively performs computations on
columns of the matrix. At each step j, the column with the largest norm is found and moved to the first
position, a Householder matrix is generated and applied to the trailing matrix.

Strong rank Revealing QR

Here we describe the strong RRQR introduced by M. Gu and S. Eisenstat in [61]. This factorization
will be used in our new LU decomposition algorithm, which aims to obtain an upper bound of the growth
factor smaller than that of GEPP (see Section 2.2). Consider a given threshold τ > 1 and an h×pmatrix
B with p > h, which is the case of interest for our research. A Strong RRQR factorization on such a
matrix B gives (with an empty (2, 2) block)

BTΠ = QR = Q
[
R11 R12

]
,

where ‖R−111 R12‖max ≤ τ , with ‖ . ‖max being the biggest entry of a given matrix in absolute value.
This factorization can be computed by a classical rank revealing QR factorization with column pivoting
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Algorithm 5: Classical Rank Revealing QR based on column pivoting

Column norm vector: colnorms(j) = ‖A(:, j)‖2 (j = 1 : n)
for j = 1 : n do

Find the column with the vector i with the maximal norm:
colnorms(i) = max(colnorms(j : n))
Interchange column i and column j: A(:, [j i]) = A(:, [i j]) and
colnorms([j i]) = colnorms([i j])
Reduction: Determine a Householder matrix Hj such that
HjA(j : m, j) = ±‖A(j : m, j)‖2e1
Matrix Update: A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n)
Norm Downdate: colnorms(j + 1 : n) = colnorms(j + 1 : n)−A(j, j + 1 : n)2

introduced in section 1.2.2 followed by a limited number of additional swaps and QR updates if neces-
sary.

Algorithm 6: Strong RRQR

Compute BTΠ = QR using the classical RRQR with column pivoting
while there exist i and j such that |(R−111 R12)ij | > τ do

Set Π = ΠΠij and compute the QR factorization of R Πij (QR updates)

Ensure BTΠ = QR with ‖R−111 R12‖max ≤ τ

The while loop in Algorithm 6 interchanges any pairs of columns that can increase |det(R11)| by at
least a factor τ . At most O(logτ n) such interchanges are necessary before Algorithm 6 finds a strong
RRQR factorization. The QR factorization of BTΠ can be computed numerically via efficient and
numerically stable QR updating procedures. See [61] for details.

Numerical stability

The stability of the QR factorization highly depends on the transformation used. The orthogonal
transformations including Householder transformations and Givens rotations are very stable [98], since
the update of the matrix is based on rank-1 modification of the identity.

1.3 Communication "avoiding" algorithms

In this section, we first define communication, then explain why its cost is expensive comparing to
the arithmetic cost. This represents the reasons behind developing communication avoiding algorithms,
which communicate less than the standard methods, at the cost of some redundant computations. In
section 1.3.1, we define communication. It includes both data movement between processors and data
movement between levels of the memory hierarchy. Then in section 1.3.2, we describe the latency band-
width performance model used to estimate the performance of the communication avoiding algorithms,
including those developed throughout this work, before the design of our performance model HCP. In
section 1.3.3 we introduce lower bounds on communication with respect to a simplified performance
model. Thus an algorithm would be communication avoiding if it asymptotically attains these lower
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bounds. After that, we present the ScaLAPACK LU routine, a case of interest that motivates the design
of communication avoiding algorithms (section 1.3.4). Finally, in sections 1.3.5, we present an example
of communication avoiding algorithms, communication avoiding LU factorization (CALU), and discuss
its numerical stability in 1.3.6. For details, see for example [39, 59, 38, 83].

1.3.1 Communication

To be able to avoid communication, we should first understand its meaning. To model the perfor-
mance of computers and predict the performance of algorithms running on these systems, we consider
both computation and communication. Computation means floating-point operations, such as addition,
multiplication, or division of two floating-point numbers. Communication means data movement. It in-
cludes both data movement between levels of a memory hierarchy (sequential case), and data movement
between processors working in parallel (parallel case).

Communication between parallel processors may take the following forms, among others:
– Messages between processors considering a distributed-memory system.
– Cache coherency traffic considering a shared-memory system.

Communication between levels of a memory hierarchy can be for example between main memory
and disk, this is the case of an out-of-core code.

1.3.2 A simplified performance model

The performance model introduced in the context of communication avoiding algorithms and used
to estimate the run time of an algorithm is based on a latency-bandwidth model. In this model, com-
munication is performed in messages. Each message is a sequence of n words in consecutive memory
locations. The same model is used whether the implementation uses a shared-memory or distributed-
memory programming model, or whether the data is moving between processors or between slow and
fast memory on a single processor.

– To send a message containing w words, the required time is

TimeMessage(w) = α+ β · w,

where α is the latency and β is the inverse of the bandwidth.

This communication model implies that for any pair of nodes in the parallel machine, the time to
communicate is the same. This means that we assume a completely connected network, that is
each node in the network has a direct communication link to every other node. It is also important
to note that this simplified communication cost is still valid as long as there is no congestion that
occurs in any part of the network. Hence a given communication pattern might lead to a network
congestion regarding the underlying architecture and the network topology.

– To perform n floating-point operations, the required time is

TimeFlops(n) = γ · n,

where γ is the time required to perform one floating-point operation.
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For parallel algorithms, the runtime is evaluated along the critical path of the algorithm. Note that
throughout this work all our cost analysis is performed on the critical path.

Mark Hoemmen stated in his PhD dissertation [68] that "Arithmetic is cheap, bandwidth is money,
latency is physics". Hence computation performance scales with the number of transistors on a chip and
bandwidth scales with cost of hardware (number of wires, pipes, disks, . . . ). However, the latency is still
the most difficult to improve, because it is in general limited by physical laws. These hard facts represent
the main motivations behind the development of new algorithms which take into consideration the phys-
ical (and economic) laws of hardware. Thus, rearranging classical algorithms to reduce communication
can often lead to better performance, even when some redundant computation is required.

1.3.3 Theoretical lower bounds

In [69] Hong and Kung proved a lower bound on the amount of data moved between fast memory
and slow memory (sequential case) in the context of dense n-by-n matrix-multiplication based on the
classical O(n3) algorithm. Then Irony, Toledo and Tiskin [72] presented a new proof of this result
and extended it to the parallel case, that is considering the amount of data moved between processors.
In [15], these lower bounds on communications have been generalized for linear algebra. The authors
show that these lower bounds apply for a wide class of problems that could be written as three nested
loops (matrix-multiplication-like problems). These lower bounds apply to both sequential and parallel
distributed memory model. We refer to the number of moved words as W , to the number of messages
as S, and the number of floating-point operations as #flops.

We recall that to describe lower bounds we use the big-omega notation f(n) = Ω(g(n)), saying that
for some constant c > 0 and all large enough n, f(n) ≥ cg(n).

Given a system with a fast memory of size M , the communication bandwidth is lower bounded by

W = Ω

(
#flops√
M

)
,

and the latency is lower bounded by

S = Ω

(
#flops

M
3
2

)
.

Considering a system composed of p processors and a memory of sizeM , and a matrix-multiplication-
like problem performed on a dense n-by-n matrix, the lower bounds above become,

W = Ω

(
n3/p√
M

)
,

S = Ω

(
n3/p

M
3
2

)
.

These lower bounds apply for what we call 2D-algorithms, that is when one copy of input/output ma-
trices are distributed across a 2D grid of processors, p =

√
p×√p. In this case M ≈ 3n2/p. For exam-

ple Cannon’s algorithm [27] simultaneously balances the load, minimizes the number of words moved
(bandwidth), and minimizes the number of messages (latency). They also apply for 3D-algorithms,
that is when p1/3 copies of the input/output matrices are distributed across a 3D grid of processors,
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p = p1/3 × p1/3 × p1/3. Therefore the memory size of each processor satisfies M ≈ 3n2/p2/3. Ex-
amples of such algorithms are presented in [8, 9, 35]. Thus considering the two extreme cases detailed
above, the memory size must satisfy n2/p ≤M ≤ n2/p2/3.

In the context of 2.5D algorithms, an intermediate variant between 2D algorithms and 3D algorithms,
it was shown that the lower bound on bandwidth can be attained for Gaussian-elimination without piv-
oting or with tournament pivoting factorizations [83].

1.3.4 Motivation case: LU factorization as in ScaLAPACK (pdgetrf)

Considering a parallel implementation of Gaussian elimination with partial pivoting, as for example
the PDGETRF routine in ScaLAPACK, we can see that the panel factorization is a bottleneck in terms
of latency cost. Thus to select the largest element in each column of a given panel of size b, O(b logP )
messages need to be exchanged. In other words during the panel factorization the synchronization of the
processors is required at each column, and O(n logP ) synchronizations are needed overall.

Algorithm 7: LU factorization on a P = Pr × Pc grid of processors

for ib = 1 to n− 1, step b do
Aib = A(ib : n, ib : n)

1. Compute panel factorization (pdgetf2): O(n log2(Pr))
– Find pivot in each column, swap rows

2. Apply all row permutations (pdlaswp): O(nb (log2(Pr) + log2(Pc)))
– Broadcast pivot information along the rows
– Swap rows at left and right

3. Compute block row of U (pdtrsm): O(nb log2(Pc))
– Broadcast right diagonal block of L of current panel

4. Update trailing matrix (pdgemm): O(nb (log2(Pr) + log2(Pc)))
– Broadcast right block column of L
– Broadcast down block row of U

L

U

Aib
(1)

L

U

Aib
(2)

L

U

Aib
(3)

L

U

Aib
(4)

L

U

A(i+1)b

The LU factorization, as implemented is ScaLAPACK, does not attain the lower bounds previously
introduced in terms of latency. This is because of the partial pivoting. In order to reduce the number of
messages and thereby overcome the latency bottleneck during the panel factorization, a new algorithm
was introduced, referred to as communication avoiding LU factorization.
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1.3.5 Communication avoiding LU (CALU)

The communication avoiding LU factorization aims at minimizing the number of messages ex-
changed during the panel factorization. To show the improvement that CALU performs in terms of
latency cost, we consider for example the routine, cited above, performing the LU factorization as im-
plemented in ScaLAPACK. This routine is based on Gaussian elimination with partial pivoting. Thus
for each column of the matrix processor synchronization is required to find the element of maximum
magnitude and move it to the diagonal position. However for CALU synchronization of processors is
needed only for each block of columns. Hence given a square matrix of size n, and a panel of size b,
CALU will only exchangeO(n/b logP ) messages while the corresponding routine in ScaLAPACK will
perform O(n logP ) messages. So the larger the panel is, the lower the number of messages which need
to be exchanged is.

CALU algorithm

Here we describe briefly the CALU algorithm and show that comparing to a classic LU factorization,
the main difference lies on the panel factorization referred to as TSLU. CALU is a partitioned algorithm
that performs iteratively on blocks of columns (panels). At each iteration a block column is distributed
over the P processors working on the panel. First each processor performs Gaussian elimination with
partial pivoting on its block to select b candidate pivot rows. The next step of the panel factorization is a
reduction operation where the previously selected pivot rows are merged with respect to the underlying
reduction tree. For example considering a binary reduction tree, at the first level of the reduction the P
sets of b pivot candidates are merged two by two, and again Gaussian elimination with partial pivoting
is applied to the block of size 2b× b to select b pivot candidates for the next level of the reduction. After
logP steps of reduction, the binary tree is traversed bottom up and a final set of b pivot rows is selected.
The different steps of reduction (preprocessing step) are depicted in Figure 1.1, where we consider a
panel W partitioned over 4 processors and a binary reduction tree. The final b rows are then moved
to the first positions of the current panel and an LU factorization without pivoting is performed on the
panel. Finally the block row of U is computed and the trailing matrix is updated. These two last steps
of the CALU factorization are performed as in a classic LU factorization.

The performance model of parallel CALU (as detailed in [60]), with respect to the latency-bandwidth
model introduced previously, is presented in table 1.1. Considering a 2D grid of processors P = Pr×Pc ,
to attain the communication bounds recalled in 1.3.3, an optimal layout is used. This optimal layout was
first introduced in the context of the communication avoiding QR factorization [38]:

Pr =

√
mP

n
, Pc =

√
nP

m
and b = log−2

(√
mP

n

)
·
√
mn

P
, (1.2)

The optimal block size b is chosen such that on one hand the lower bound on latency is attained, mod-
ulo polylogarithmic factor factors, and on the other hand the number of extra floating point operations
remains a lower order term. With this layout, the cost model of parallel CALU is given in Table 1.1. We
can see that CALU attains the lower bounds on both number of words and number of messages, modulo
polylogarithmic factors. For recall, these counts assume a globally load balance and are performed with
respect to the critical path. More details about the later will be given in 1.5.2. Note that for all the
communication avoiding algorithms we develop in this work we use the same optimal layout detailed
above.
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Π00W00 = L00U00

Π10W10 = L10U10

Π20W20 = L20U20

Π30W30 = L30U30

Π01W01 = L01U01

Π21W21 = L21U21

Π02W02 = L02U02

Π00W00(1 : b, 1 : b)

Π10W10(1 : b, 1 : b)

Π20W20(1 : b, 1 : b)

Π30W30(1 : b, 1 : b)

Π01W01(1 : b, 1 : b)

Π21W21(1 : b, 1 : b)

Π02W02(1 : b, 1 : b)

b selected pivot rows

P0

P1

P2

P3

Figure 1.1: Selection of b pivot rows for the panel factorization using the CALU algorithm: preprocess-
ing step.

CALU implementation

Several implementations of the communication avoiding LU factorization were performed recently,
including a distributed implementation and a multithreaded implementation. In [44], Donfack et al.
have developed a fully dynamic multithread communication avoiding LU factorization, which leads to
significant speedup comparing to MKL and PLASMA routines, especially for tall and skinny matrices.
Note that we will use this implementation in our hybrid MPI-pthread multilevel LU factorization in
chapter 4. Hence the distributed implementation based on MPI is called at the first level of recursion
and the multithreaded implementation is used at the second level of recursion as reduction operator
instead of Gaussian elimination with partial pivoting. In [43], the authors present an implementation of
CALU based on a hybrid static/dynamic scheduling strategy of the task dependency graph, a strategy
that ensures a balance of data locality, load balance, and low dequeue overhead. This implementation
results on significant performance gains. Thus further improvements could be considered regarding the
multilevel LU factorization presented in this work 4.5. Note that task decomposition and scheduling
techniques will be discussed more in details in section 1.5.2.

1.3.6 Numerical stability

The numerical stability of communication avoiding LU factorization is quite different from that of
Gaussian elimination with partial pivoting in theory, because it is based on a new pivoting strategy re-
ferred to as tournament pivoting. It is shown in [60] that in exact arithmetic, performing communication
avoiding LU on a matrix A is equivalent to applying Gaussian elimination with partial pivoting to a
larger matrix formed by blocks of A, sometimes slightly perturbed to get rid of singular blocks. Thus
the growth factor upper bound of CALU is 2n(H+1)−1, where H is the height of the reduction tree used
during the preprocessing step and n is the number of columns of the input matrix. Thereby the growth
factor upper bound of communication avoiding LU is worse than that of Gaussian elimination with par-
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Parallel CALU with optimal layout Lower bound
Input matrix of size m× n

# messages 3
√

nP
m log2

(√
mP
n

)
logP Ω(

√
nP
m )

# words
√

mn3

P

(
log−1

(√
mP
n

)
+ log P 2m

n

)
Ω(
√

mn3

P )

# flops 1
P

(
mn2 − n3

3

)
+ 5mn2

2Plog2

(√
mP
n

) + 5mn2

3Plog3

(√
mP
n

) 1
P

(
mn2 − n3

3

)
Input matrix of size n× n

# messages 3
√
P log3 P Ω(

√
P )

# words n2
√
P

(
2 log−1 P + 1.25 logP

)
Ω( n

2
√
P

)

# flops 1
P

2n3

3 + 5n3

2P log2 P
+ 5n3

3P log3 P
1
P

(
mn2 − n3

3

)
Table 1.1: Performance models binary tree based communication avoiding LU factorization.

tial pivoting (2n−1). Note that for a binary tree based CALU and given P processors working on the
panel, the height of the reduction tree H is equal to logP. Therefore, with an increasing number of
processor working on the panel, the theoretical upper bound of the growth factor increases, which might
lead to a less accurate factorization. However, Grigori et al. have shown in [60] via an extensive set of
experiments including tests on random matrices and a set of special matrices, that CALU is stable in
practice. Thus the upper bound cited above is never attained in practice. The experiments show that in
practice the binary tree based CALU growth factor increases as C · n2/3, where C is around 3/2. Tre-
fthen et al. have presented in [92] an average case stability of Gaussian elimination with partial pivoting,
where it is shown that the growth factor of GEPP grows as O(n2/3). Note that the core motivation of
the two first chapters of this work is the improvement of the numerical stability of CALU. Thus we in-
troduce in chapter 3, an LU factorization that also reduces the communication and which is more stable
than CALU in terms of the upper bound of the growth factor.

1.4 Parallel pivoting strategies

As it can be seen from the previous section, the main difficulty regarding the development of an
efficient parallel algorithm for the LU decomposition is the pivoting strategy used. The algorithm should
ensure a trade-off between efficient parallelization and numerical stability. Here we present some state-
of the art approaches.

Pairwise pivoting

Gaussian elimination based on pairwise pivoting is illustrated in Algorithm 8. We can see that the
selection of the largest element in a column is performed pairwise, which allows more parallelism.

More details about this pivoting strategy could be found in [86], where it is shown that the growth
factor upper bound using pairwise pivoting is 4n−1, which is 2 times larger than the upper bound of
the growth factor of Gaussian elimination with partial pivoting. However, it is shown to be stable in
practice, since it is based on low rank update in practice, according to the experiments performed in [92]
on random matrices. Grigori et al. developed in [60] a block pairwise pivoting strategy to compute a
communication avoiding LU factorization, where they observe, for random matrices, that the elements
grow faster than linearly with respect to the matrix size.
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Algorithm 8: LU factorization with pairwise pivoting

for k = 1:n-1 do
for i = k+1:n do

if A(k,k) < A(i,k) then
swap rows i and k

A(i, k) = A(i, k)/A(k, k)

for i = k+1:n do
for j = k+1:n do

A(i, j) = A(i, j)−A(i, k) ∗A(k, j)

Parallel pivoting (incremental pivoting)

This pivoting strategy for the LU decomposition, was first implemented in [81]. The main idea of
this methods is to divide the panel into tiles, factorize the diagonal block (tile) using partial pivoting
then annihilate pairwise the subdiagonal blocks. This strategy can be considered as a block version of
pairwise algorithm. Thus, if the tile size is equal to the problem size (t = n), the algorithm becomes
Gaussian elimination with partial pivoting, while if the size of the tile is one element then the algorithm
becomes Gaussian elimination with pairwise pivoting. Despite the significant gain in terms of efficiency,
this pivoting strategy still deserves further investigations. Similarly here a block parallel pivoting strat-
egy was explored in [60] as alternative to develop a communication avoiding LU factorization, where
the panel factorization is performed only once. The numerical experiments performed do not allow to
make any general conclusion. Note that in chapter 3 of this work we also consider similar approaches to
develop alternatives to our LU factorization.

Tournament pivoting

This refers to the pivoting strategy introduced in the context of the communication avoiding LU fac-
torization and recalled previously when describing the CALU algorithm (section 1.3.5). Remember that
this pivoting strategy is mainly based on a reduction tree scheme, where at each level of the reduction,
sets of candidate pivot rows are selected using Gaussian elimination with partial pivoting as a reduction
operator. As discussed before, this pivoting strategy present a good trade-off between parallelism and
numerical stability. Throughout this work, we use the same pivoting strategy for our communication
avoiding algorithms, either for the CALU_PRRP algorithm in chapter 3 or in chapter 4 for multilevel
CALU algorithms (1D recursive and 2D recursive). The main difference lies in the reduction operator
used to select pivot rows. For example, for the CALU_PRRP factorization, the reduction operator will
be strong rank revealing QR.

1.5 Principles of parallel dense matrix computations

The goal of this section is to introduce some principles of parallel dense matrix computations. We
consider both algorithmic and implementation techniques.
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1.5.1 Parallel algorithms

Partitioned algorithms

This technique basically aims at rearranging classical algorithms in order to replace scaler operations
by matrix operations (matrix-vector operations BLAS 2 or matrix-matrix operations BLAS 3). We have
already presented such an algorithm (Algorithm 2) for the LU factorization in section 1.2.1. Similar
algorithm exists for the QR factorization using the technique introduced in [19], where the authors pro-
posed a new way to represent products of Householder matrices (WY representation), a representation
that allows to rearrange a typical Householder matrix algorithm to obtain matrix operations.

Recursive approach

A recursive algorithm typically decomposes the input matrix in equal parts, and recursively repeats
the same computations in each part. Each level of recursion includes a factorization step and an update
step. The main benefit from recursion formulation consists, first, of an automatic variable blocking [62],
that is the recursive algorithm will be called recursively until reaching a level of recursion, where the
handled matrix is small enough to fit in the cache memory of the processor. At this level of recursion a
classical algorithm will be applied without generating cache misses during the computation. Thus recur-
sion results in what is referred to as cache oblivious algorithms [52, 73]. Moreover recursive algorithms
replace BLAS 2 operations in a standard partitioned algorithm with BLAS 3 operations, which improves
the performance. An example of recursive LU factorization is discussed in [91]. Note, however, that
these algorithms result in significant additional computation, because of the recursive updates. We will
use recursive formulation in chapter 4 in order to design hierarchical algorithms suitable for systems
with multiple levels of parallelism.

Tiled algorithms

Tiled algorithms [26] consist of decomposing the computation performed by a given algorithm into
small tasks. These tasks can be executed with respect to the existing dependencies. Thus independent
tasks are executed in parallel. The main goal behind developing such algorithms is to get rid of the
sequential nature of the algorithms implemented in LAPACK. Additionally, the data layout used for
tiled algorithms is based on contiguous blocks, while LAPACK uses a column-wise data layout. Note
that the tile data layout allows to exploit cache locality and reuse. Hence it enforces the computation to
be applied to small blocks of data that fit into cache.

Parallel implementations

Several libraries implement several routines for solving systems of linear equations, eigenvalue prob-
lems, and singular value decomposition. They basically implement partitioned algorithms discussed
above. These libraries include the Linear Algebra PACKage, LAPACK [4], which can be adapted for
shared memories, the Scalable Linear Algebra PACKage, ScaLAPACK [7], which is adapted for dis-
tributed systems, and the Parallel Linear Algebra for Scalable Multi-core Architectures, PLASMA [6],
which basically implements tiled algorithms.

1.5.2 Tasks decomposition and scheduling techniques

Considering a parallel algorithm running on a parallel system, to ensure a good performance, the
algorithm should be decomposed into small computations referred to as tasks to be scheduled onto
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Figure 1.2: An example of task dependency graph, it represents 8 tasks and the precedence constraints
between them. The red arrows corresponds to the critical path.

available processors. There are many different techniques for both the decomposition into tasks and the
scheduling. Here we discuss some of these techniques, which we think are most relevant to our work.
The decomposition of a computation into tasks can be performed in a static way, that is the tasks have
a fixed size along the execution, or in a dynamic way, that is the size of tasks might vary during the
execution.

One of the most important parameters to take into account when performing the task decomposition
is the granularity of the tasks. The number of tasks to run does not only affect the scheduling overhead
but also the performance of the tasks. On one hand fine grained tasks expose more parallelism but might
use less efficiently the memory hierarchy, and hence it becomes difficult to perform each task efficiently.
On the other hand coarse grained task decomposition exhibits less task parallelism but improves task
performance since it can be executed more efficiently. Thus there is a trade-off between the potential
task parallelism and the performance of each task. In other words, finding the best task decomposition
can easily become an issue [11].

After the task decomposition we focus on the assignment of these tasks to the available processors,
that is the scheduling. The scheduling can be static, dynamic, or hybrid, which includes both static
and dynamic techniques with proportions that ensure an efficient performance. An example of hybrid
scheduling used in the context of linear algebra kernels can be found in [43].

To obtain accurate results, the scheduler should respect the order of task execution, which is charac-
terized by precedence constraints. Each of these constraints determines which tasks must finish before
that a given task can start running. The dependency between tasks can be modeled by a graph such as
a Directed Acyclic Graph (DAG). In such a graph the nodes represent the different tasks and the edges
represent the precedence constraints, which determine the dependency between tasks. In Figure 1.2 we
give an example of graph dependency. There we can see that all the tasks depend on task 1. Thus task
1 should run first. At the next step, tasks 2, 3, and 4 can be performed in parallel, and so on. The red
path represents a critical path: 1 → 2 → 5 → 6 → 8, which imposes a lower bound on the running
time. We recall that a critical path is a path with maximal length. The path length is given by the sum
of the task running times, when the communication between tasks is ignored. Assuming an uniform
processing time for all tasks, the execution order presented in Figure 1.3 is optimal since it respects the
linear order dictated by the critical path. We note here that in this work all the costs of our algorithms
are evaluated on the critical path.
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Figure 1.3: An example of execution of the task dependency graph depicted in Figure 1.2 using 3
processors, the red part represents the critical path.

P1 S1 P2 S2 P3 S3

iteration 1 iteration 2 iteration 3

Figure 1.4: The task dependency graph of LU factorization without lookahead.

However, it turns out that it is very difficult in practice to determine an optimal execution order
even considering strong assumptions such as uniform task running time. Hence there are many param-
eters that can affect a task running time including system noise, caches reuse, data locality, and even
the scheduling technique itself. Therefore in order to find an efficient schedule for parallel algorithms
including matrix computations, many heuristics are used, see for example [79].

In the following we focus on the scheduling techniques used for one-sided parallel matrix factor-
ization algorithms. We study in particular the LU factorization but the same reasoning still applies to
Cholesky and QR factorizations. We first discuss the lookahead concept, then tiled algorithms.

Here we consider a right-looking variant of the LU factorization. This algorithm performs iteratively
on block of columns. Each iteration is composed of two parts: the panel factorization and the update of
the trailing matrix using the previously factorized panel. If we note ’Pi’ the task corresponding to the
panel factorization and ’Si’ the task corresponding to the trailing matrix update for an iteration i, then
we obtain the task dependency graph depicted in Figure 1.4. We note that with respect to the previous
graph, there is no possible overlap between the panel factorization and the update of the trailing matrix,
which can lead to significant performance decrease and scalability. Hence it is more challenging and
more difficult to parallelize and to improve the panel factorization.

Since the panel factorization lies on the critical path, it is important to parallelize it. However at
a given iteration, the factorization of the next panel of the matrix only depends on the update of that
panel and not on the update of the entire trailing matrix. Thus the task ’Si’ in Figure 1.4 can be split
into two tasks: the update of the next panel referred to as ’SPi’ and the update of the rest of the trailing
matrix referred to as ’SRi’. Figure 1.5 illustrates the new task dependency graph. We can see for
example that the task ’P2’ can start once the task ’SP1’ finished. There is no need to wait anymore
for the update of the entire trailing matrix. This new task decomposition improves the possibility of
overlapping communication and computation and it is referred to as lookahead technique. The usage of
this technique increases the scalability of the LU factorization and similar factorizations (QR, Cholesky)
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on parallel architectures [31, 71, 25].

P1 SP1 P2 SP2 P3 SP3

SR1 SR2 SR3

iteration 1 iteration 2 iteration 3

Figure 1.5: The task dependency graph of LU factorization with lookahead.

The two task decompositions detailed in figures 1.4 and 1.5 do not exhibit a lot of parallelism. We
note that if we schedule the first panel factorization to the first processor, then the rest of the proces-
sors are idle during this factorization. Additionally, the first processor is idle during the update of the
trailing matrix. To extract more parallelism and to improve the overlap and thus the performance of
the factorization, the panel factorization and the update of the trailing matrix can be further partitioned
into smaller tasks. However these tasks should not be too small to keep a good local performance and
to not increase too much the scheduling overhead. We note that the utilization of the first panel can
be improved by making it participate in the update of the trailing matrix whenever the panel is fac-
tored. One way to do so is to use dynamic scheduling via a queue of tasks [30]. This approach improves
the overall execution time, that is the length of the critical path, when the size of the tasks is well chosen.

The technique detailed above is used in many implementations of one sided factorizations. We cite
here some examples and techniques used for tiled algorithms [84, 47, 24, 63, 74]. In particular, we detail
the task scheduling for multithreaded CALU. This routine developed in [44] is used as a building block
in the 2-level CALU algorithm that we introduce in chapter 4.

Task scheduling for multithreaded CALU

Here we detail the different tasks executed by multithreaded CALU at each iteration. We consider a
matrix of size m× n, a panel of size b, and Tr threads working on the panel.

– Task P is a part of the preprocessing step. It corresponds to the application of Gaussian elimination
with partial pivoting to a block of size m/Tr × b or 2b× b depending on the reduction level.

– Task L computes a chunk of size m/Tr × b of the block column L.
– Task U apply row permutation to a block of the matrix and computes a chunk of size b× b of the

block row U .
– Task S updates a chunk of the trailing matrix of size m/Tr × b.

Figure 1.6 illustrates an example of task graph dependency of CALU performed on a matrix, parti-
tioned into 4×4 blocks, using 2 threads. Each task is presented by circle. The yellow circles correspond
to the preprocessing step, that is the selection of candidate pivot rows. In the example, there is only
one level of reduction for each panel since we have 2 threads. Each red circle and each green circle
corresponds respectively to the computation of a chunk of the current block column of L and a chunk
of the current block row of U . Finally, each blue circle represents the update of a block of the trailing
matrix. For recall, stable implementation of the tournament pivoting strategy requires that the panel
factorization remains in the critical path.
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Figure 1.6: A task graph dependency of CALU applied to a matrix partitioned into 4 × 4 blocks, and
using 2 threads.

We note that the updates are performed on blocks of size m/Tr × b with respect to the lookahead
technique. We also note that the multithreaded CALU ensures considerable speedups, especially for tall
and skinny matrices comparing to its corresponding routines in MKL and PLASMA. Further details and
experiments can be found in [44].

1.6 Parallel performance models

Shared-memory and network models were widely used for the design of parallel algorithms, espe-
cially in the 1980’s. However these models present several issues regarding the accuracy of the perfor-
mance prediction they produce and their portability. We first discuss the PRAM model [64], which is
an extension of the sequential Random Access Machine model (RAM) [76] to the parallel case. After
that, we present network models and some bridging models, and discuss the drawbacks of each model.
Note that similarly to the simplified model previously presented in section 1.3.2, the bridging models
discussed here are also bandwidth-latency based.
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1.6.1 PRAM model

The PRAM model is based on p processors working synchronously [77]. Each processor has a local
memory and inter-processor communication is modeled by access to a shared memory. We note that the
PRAM model does not make any distinction between shared and local memory accesses. This represents
one of its major drawbacks since in general inter-processor communication is more expensive than local
memory access. Thus the PRAM model is unrealistic and the cost estimation it produces is in general
far from the real performance observed on parallel systems. Several drawbacks of the PRAM model are
addressed in [95] and some references therein.

1.6.2 Network models

We now consider the network model class. For these models the communication is only performed
between processors that are directly connected. Thus only nearest neighbors can communicate directly.
The communication between the other processors is performed via explicit forward operated by inter-
mediate processors. The main issue with this class of models is the lack of robustness. An algorithm
designed with respect to a particular network model such as mesh, hypercube, or butterfly can be effi-
cient on that specific interconnection structure. However significant change in the algorithm efficiency
may occur if the network topology of the underlying architecture is different from the network topology
of the initial model. More details on network models can be found in [75].

1.6.3 Bridging models

A bridging model "is intended neither as a hardware nor a programming model but something in
between" [93]. Thus this class of models aims at reducing the gap between algorithm design and paral-
lel system architecture. The main significant improvements of such models comparing to the previous
ones consist of taking into account interprocessor communication costs and attempting to be the most
independent from the underlying hardware. These models mainly address the issue of limited commu-
nication bandwidth. Here we only present the most relevant bridging models. Several other variations
exist.

Some variants of Bulk-Synchronous Parallel models (BSP)

To analyze a given algorithm based on the BSP model [93], one should divide the algorithm into
supersteps (Figure 1.7). Each superstep includes three phases, first independent computation performed
by the processors on local data, then point-to-point communication between the processors, and finally
a synchronization phase. Thus the model decouples computation and communication. The performance
analysis based on a BSP model involves three parameters including the number of processors p, the gap
g, which is the minimum interval between consecutive messages (the inverse of the bandwidth), and the
latency l that qualifies the minimum time between subsequent synchronizations. Note that the original
BSP model does not support nested supersteps. Thus it only allows to analyze algorithms running on
systems with one level of parallelism.

The multi-BSP model [94] is a hierarchical model, which takes into account hierarchies both in
communication and in the cache/memory system. Hence it extends the BSP model by adding a fourth
parameter, which is the memory size. This idea was first presented by Tiskin in [78, 90]. Another hier-
archical variant of BSP model referred to as decomposable BSP model (D-BSP) was proposed in [17].
D-BSP models a computational platform by a suitable decomposition into subset of processors. Each
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Figure 1.7: Supersteps under the BSP model [12].

subset is characterized by its own bandwidth and latency parameters. Thereby the D-BSP only captures
communication hierarchy. Thus at each level of the hierarchy the communication within one subset
of processors is faster than between different subsets. Both D-BSP model and multi-BSP models are
more realistic than the original BSP model, since they are hierarchical models. But this comes along
with some additional difficulties using these models. Note that the performance model we develop in
section 5.2 is also based on communication hierarchy. However it uses a different technique to model
how the messages are routed through the different levels of hierarchy.

LogP model

The LogP model was introduced in [33]. It is a bandwidth-latency model in which processors com-
municate by point-to-point messages. However comparing to the BSP model, LogP model takes into
account the overhead o, that is the time when processor is either sending or receiving a message. It is
shown in [18] that despite of being important for more accurate prediction, it is not compulsory to con-
sider such a parameter when analyzing the algorithms asymptoticly. Furthermore, the LogP model uses
a form of message passing based on pairwise synchronization, and defines the inverse of the bandwidth
g for each processor, while it is defined globally in the original BSP model. To sum things up we can
say that "LogP + barriers - overhead = BSP"(see e.g [5]). A more detailed comparison between the BSP
model and the LogP model can be found in [18]. Note that this model does not enable the analysis of
algorithms of hierarchical systems, since it is based on one level of parallelism.

Coarse-Grained Multicomputer (CGM)

The BSP model presented above might have non accurate speedup predictions, this is because of
small messages. In order to overcome such a problem the coarse-grained multicomputer (CGM) model
was proposed in [34]. This model performs communication based on message grouping. It does not
make any assumption regarding the network topology and allows both distributed and shared memory.
Similarly to the BSP model, the CGM model decomposes the algorithm into supersteps, each includes
a computation phase and a communication phase. However during the communication phase, the mes-
sages that need to be sent by a given processor to the same target are aggregated up to the available
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memory size, O(n/p), where n is the problem size and p the number of processors.

1.6.4 Discussion

Performance is an important feature of parallel and distributed computing systems. Therefore, the
performance evaluation of parallel algorithms on these computing systems is a necessary step towards
both efficient algorithms and computing systems. Above, we have presented several state of the art
approaches for performance modeling. Each model has its contributions and its drawbacks. Here we
present a summary of the main issues we have identified and that motivate the development of our own
performance model in chapter 5. We are mainly interested in analyzing hierarchical algorithms suitable
for systems with multiple levels of parallelism, for that reason the only models of interest for us would
be the hierarchical models, in particular the multi-BSP and the D-BSP models presented above. These
two models does not explicit how parallel messages are handled throughout the network hierarchy. In
our model we explicitly describe how messages are routed, we mainly use message grouping technique
detailed in the context of the coarse-grained multicomputer (CGM) model. However we establish a
different criterion for message aggregation. Details will be given in section 5.2.
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Chapter 2

LU factorization with panel rank revealing
pivoting

2.1 Introduction

The LU factorization is an important operation in numerical linear algebra since it is widely used
for solving linear systems of equations, computing the determinant of a matrix, or as a building block of
other operations. It consists of the decomposition of a matrix A into the product A = LU , where L is a
lower triangular matrix and U is an upper triangular matrix. The performance of the LU decomposition
is critical for many applications, and it has received significant attention over the years. Recently large
efforts have been invested in optimizing this linear algebra kernel, in terms of both numerical stability
and performance on emerging parallel architectures.

As detailed is the previous chapter, the LU decomposition can be computed using Gaussian elimi-
nation with partial pivoting, a very stable operation in practice, except for pathological cases such as the
Wilkinson matrix [96, 66], the Foster matrix [50], or the Wright matrix [99]. Many papers [92, 82, 88]
discuss the stability of the Gaussian elimination, and it is known [66, 56, 49] that the pivoting strategy
used, such as complete pivoting, partial pivoting, or rook pivoting, has an important impact on the nu-
merical stability of this method, which depends on a quantity referred to as the growth factor, which
measures how large the elements of the input matrix are getting during elimination steps. However, in
terms of performance, these pivoting strategies represent a limitation, since they require asympotically
more communication than established lower bounds on communication indicate is necessary [38, 15].

In this chapter we study the LU_PRRP factorization, a novel LU decomposition algorithm based on
what we call panel rank revealing pivoting (PRRP). The LU_PRRP factorization is based on a block
algorithm that computes the LU decomposition as follows. At each step of the block factorization, a
block of columns (panel) is factored by computing the strong rank revealing QR (RRQR) factorization
[61] of its transpose. The permutation returned by the panel rank revealing factorization is applied to the
rows of the input matrix, and the L factor of the panel is computed based on the R factor of the strong
RRQR factorization. Then the trailing matrix is updated. In exact arithmetic, the LU_PRRP factoriza-
tion first computes a block LU decomposition [40], here is one step of the block LU factorization, where
we assume that A11 is a non singular matrix of size b× b:

A =

[
A11 A12

A21 A22

]
=

[
I 0
L21 I

]
×
[
A11 A12

0 As22

]
23
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Our block LU factorization is based on a new pivoting strategy, the panel rank revealing pivoting. Then
the U factors and the diagonal blocks of L are produced by GEPP. The factors obtained from this decom-
position can be stored in place, and so the LU_PRRP factorization has the same memory requirements
as standard LU and can easily replace it in any application.

We show that LU_PRRP is more stable than GEPP. Its growth factor is upper bounded by
(1 + τb)(n/b)−1, where b is the size of the panel, n is the number of columns of the input matrix, and
τ is a parameter of the panel strong RRQR factorization. This bound is smaller than 2n−1, the upper
bound of the growth factor for GEPP. For example, if the size of the panel is b = 64 and τ = 2, then
(1 + 2b)(n/b)−1 = (1.079)n−64 � 2n−1. In terms of cost, LU_PRRP performs only O(n2b) more float-
ing point operations than GEPP. In addition, our extensive numerical experiments on random matrices
and on a set of special matrices show that the LU_PRRP factorization is very stable in practice and leads
to modest growth factors, smaller than those obtained with GEPP.

We also discuss the backward stability of LU_PRRP using three metrics, the relative error
‖PA− LU‖/‖A‖, the normwise backward error (2.10), and the componentwise backward error (2.11).

For the matrices in our set, the relative error, the normwise backward error, and the componentwise
backward error are all of the order of 10−14 (with the exception of three matrices, sprandn, compan, and
Demmel, for which the componentwise backward error is 1.3 × 10−13, 6.9 × 10−12, and 1.16 × 10−8

respectively). Later in this chapter, Figure 2.2 displays the ratios of these errors versus the errors of
GEPP, obtained by dividing the maximum of the backward errors of LU_PRRP and the machine epsilon
(2−53) by the maximum of those of GEPP and the machine epsilon. For all the matrices in our set,
the growth factor of LU_PRRP is always smaller than that of GEPP (with the exception of one matrix,
the compar matrix). For random matrices, the relative error of the factorization of LU_PRRP is always
smaller than that of GEPP. However, for the normwise and the componentwise backward errors, GEPP
is slightly better, with a ratio of at most 2 between the two. For the set of special matrices, the ratio of
the relative error is at most 1 in over 75% of cases, that is LU_PRRP is more stable than GEPP. For the
rest of the 25% of the cases, the ratio is at most 3, except for one matrix (hadamard) for which the ratio
is 23 and the backward error is on the order of 10−15. The ratio of the normwise backward errors is at
most 1 in over 75% of cases, and always 3.4 or smaller. The ratio of the componentwise backward errors
is at most 2 in over 81% of cases, and always 3 or smaller (except for one matrix, the compan matrix,
for which the componentwise backward error is 6.9× 10−12 for LU_PRRP and 6.2× 10−13 for GEPP).

The rest of this chapter is organized as follows. Section 2.2 presents LU_PRRP, the new algorithm
designed to improve the numerical stability of the LU factorisation. Section 2.2.1 studies its numerical
stability and derives new bounds on the growth factor. In section 2.2.2 we evaluate the behavior of the
algorithm on various matrices. We also experimentally evaluate this algorithm, together with GEPP on a
set of special matrices. Finally in Section 2.3, we provide final remarks, and directions for future work.

2.2 Matrix algebra

In this section we introduce the LU_PRRP factorization, an LU decomposition algorithm based on
panel rank revealing pivoting strategy. It is based on a block algorithm, that factors at each step a block
of columns (a panel), and then it updates the trailing matrix. The main difference between LU_PRRP
and GEPP resides in the panel factorization. In the partitioned version of GEPP, the panel factorization
is computed using LU with partial pivoting, while in LU_PRRP it is computed by performing a strong
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RRQR factorization of its transpose. This leads to a different selection of pivot rows, and the obtained
R factor is used to compute the block L factor of the panel. In exact arithmetic, LU_PRRP performs
a block LU decomposition with a different pivoting scheme, which aims at improving the numerical
stability of the factorization by bounding more efficiently the growth of the elements. We also discuss
the numerical stability of LU_PRRP, and we show that both in theory and in practice, LU_PRRP is more
stable than GEPP.

LU_PRRP is based on a block algorithm that factors the input matrix A of size m× n by traversing
blocks of columns of size b. Consider the first step of the factorization, with the matrix A having the
following partition,

A =

[
A11 A12

A21 A22

]
, (2.1)

where A11 is of size b × b, A21 is of size (m − b) × b, A12 is of size b × (n − b), and A22 is of size
(m− b)× (n− b).

The main idea of the LU_PRRP factorization is to eliminate the elements below the b × b diagonal
block such that the multipliers used during the update of the trailing matrix are bounded by a given
threshold τ . For this, we perform a strong RRQR factorization on the transpose of the first panel of size
m× b to identify a permutation matrix Π, that is b pivot rows,

[
A11

A21

]T
Π =

[
Ā11

Ā21

]T
= Q

[
R(1 : b, 1 : b) R(1 : b, b+ 1 : m)

]
= Q

[
R11 R12

]
,

where Ā denotes the permuted matrix A. The strong RRQR factorization ensures that the quantity
RT12(R

−1
11 )T is bounded by a given threshold τ in the max norm. The strong RRQR factorization, as

described in Algorithm 6 in section 1.2.2, computes first the QR factorization with column pivoting,
followed by additional swaps of the columns of the R factor and updates of the QR factorization, so that
‖RT12(R

−1
11 )T ‖max ≤ τ .

After the panel factorization, the transpose of the computed permutation Π is applied to the input
matrix A, and then the update of the trailing matrix is performed,

Ā = ΠTA =

[
Ib
L21 Im−b

] [
Ā11 Ā12

Ās22

]
, (2.2)

where

Ās22 = Ā22 − L21Ā12. (2.3)

Note that in exact arithmetic, we have L21 = Ā21Ā
−1
11 = RT12(R

−1
11 )T . Hence the factorization in

equation (2.2) is equivalent to the factorization

Ā = ΠTA =

[
Ib

Ā21Ā
−1
11 Im−b

] [
Ā11 Ā12

Ās22

]
,
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where

Ās22 = Ā22 − Ā21Ā
−1
11 Ā12, (2.4)

and Ā21Ā
−1
11 was computed in a numerically stable way such that it is bounded in max norm by τ .

Since the block size is in general b ≥ 2, performing LU_PRRP on a given matrix A first leads to a
block LU factorization, with the diagonal blocks Āii being square of size b × b. The block LU_PRRP
factorization is described in Algorithm 9.

Algorithm 9: Block LU_PRRP factorization of a matrix A of size n× n using a panel of size b

Let B1 be the first panel B1 = A(1 : n, 1 : b).
Compute panel factorization BT

1 Π1 := Q1R1 using strong RRQR factorization,
L21 := (R1(1 : b, 1 : b)−1R1(1 : b, b+ 1 : n))T .

Apply the permutation matrix ΠT
1 to the entire matrix, A = ΠT

1A.
U11 := A(1 : b, 1 : b) , U12 := A(1 : b, b+ 1 : n).
Update the trailing matrix,
A(b+ 1 : n, b+ 1 : n) = A(b+ 1 : n, b+ 1 : n)− L21U12.

Compute the block LU_PRRP factorization of A(b+ 1 : n, b+ 1 : n), recursively.

An additional Gaussian elimination with partial pivoting is performed on the b × b diagonal block
Ā11 as well as the update of the corresponding trailing matrix Ā12. Then the decomposition obtained
after the elimination of the first panel of the input matrix A is

Ā = ΠTA =

[
Ib
L21 Im−b

] [
Ā11 Ā12

Ās22

]
,

Ā = ΠTA =

[
Ib
L21 Im−b

] [
L11

Im−b

] [
U11 U12

Ās22

]
, (2.5)

where L11 is a lower triangular b×bmatrix with unit diagonal and U11 is an upper triangular b×bmatrix.
We show in section 2.2.1 that this step does not affect the stability of the LU_PRRP factorization. Note
that the factors L and U can be stored in place, and so LU_PRRP has the same memory requirements as
the standard LU decomposition and can easily replace it in any application.

Algorithm 10 presents the LU_PRRP factorization of a matrixA of size n×n partitioned into (n/b)
panels. The number of floating-point operations performed by this algorithm is

#flops =
2

3
n3 +O(n2b),

which is only O(n2b) more floating point operations than GEPP. The detailed counts are presented
in Appendix B .1. When the QR factorization with column pivoting is sufficient to obtain the desired
bound for each panel factorization, and no additional swaps are performed, the total cost is

#flops =
2

3
n3 +

3

2
n2b.
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Algorithm 10: LU_PRRP factorization of a matrix A of size n× n
for j from 1 to n

b do
Let Aj = A((j − 1)b+ 1 : n, (j − 1)b+ 1 : jb) be the current panel.
Compute panel factorization ATj Πj := QjRj using strong RRQR factorization,
L2j := (Rj(1 : b, 1 : b)−1Rj(1 : b, b+ 1 : n− (j − 1)b))T .

Apply the permutation matrix ΠT
j to the entire matrix, A = ΠT

j A.
Update the trailing matrix,
A(jb+ 1 : n, jb+ 1 : n)− = L2jA((j − 1)b+ 1 : jb, jb+ 1 : n).

Let Ajj be the current b× b diagonal block,
Ajj = A((j − 1)b+ 1 : jb, (j − 1)b+ 1 : jb).

Compute Ajj = ΠjjLjjUjj using GEPP.
Compute U((j − 1)b+ 1 : jb, jb+ 1 : n) = L−1jj ΠT

jjA((j − 1)b+ 1 : jb, jb+ 1 : n).

As detailed previously, the LU_PRRP factorization involves 5 steps. We illustrate this different steps
in the following figures, which use the legend described below.

Legend :
original matrix permuted matrix L21 matrix

L11 matrix U matrix updated matrix

1. The L21 factor is computed by applying a Strong Rank Revealing QR (Strong RRQR) on the

transpose of the first panel
(
A11

A21

)
(the pivot search is done on the entire panel),

L21 = Ā21Ā
−1
11 = RT12(R

−1
11 )T .

b

b

2. We apply the permutation on the rest of the matrix,
(
A12

A22

)
.
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b

b

3. We update the trailing matrix as follows, Ās22 = Ā22 − Ā21Ā
−1
11 Ā12.

b

b

4. We perform Gaussian elimination with partial pivoting (GEPP) on the b× b diagonal block Ā11.

b

b

5. We compute U12 by solving the triangular linear system U12 = L−111 Ā12.

b

b
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6. We perform the same steps 1 to 5 on the trailing matrix.

2.2.1 Numerical stability

In this section we discuss the numerical stability of the LU_PRRP factorization. The stability of an
LU decomposition mainly depends on the growth factor. In his backward error analysis [96], Wilkinson
proved that the computed solution x̂ of the linear system Ax = b, where A is of size n× n, obtained by
Gaussian elimination with partial pivoting or complete pivoting satisfies

(A+ ∆A)x̂ = b, ‖∆A‖∞ ≤ p(n)gWu‖A‖∞.

Here, p(n) is a cubic polynomial, u is the machine precision, and gW is the growth factor defined by

gW =
maxi,j,k |a

(k)
ij |

maxi,j |aij |
≥ 1,

where a(k)ij denotes the entry in position (i, j) obtained after k steps of elimination. Thus the growth
factor measures the growth of the elements during the elimination. The LU factorization is backward
stable if gW is small. Lemma 9.6 of [65] (section 9.3) states a more general result, showing that the
LU factorization without pivoting of A is backward stable if the growth factor is small. Wilkinson [96]
showed that for partial pivoting, the growth factor gW ≤ 2n−1, and this bound is attainable. He also
showed that for complete pivoting, the upper bound satisfies gW ≤ n1/2(2.31/2......n1/(n−1))1/2 ∼
cn1/2n1/4 logn. In practice the growth factors are much smaller than the upper bounds.

In the following, we derive an upper bound for the growth factor for the LU_PRRP factorization.
We use the same notation as in the previous section and we assume without loss of generality that the
permutation matrix is the identity. It is easy to see that the growth factor obtained after the elimination
of the first panel is bounded by |1 + τb|. At the k-th step of the block factorization, the active matrix
A(k) is of size (m − (k − 1)b) × (n − (k − 1)b), and the decomposition performed at this step can be
written as

A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
=

[
Ib

L
(k)
21 Im−(k+1)b

][
A

(k)
11 A

(k)
12

A
(k)s
22

]
.

The active matrix at the (k + 1)-st step is A(k+1)
22 = A

(k)s
22 = A

(k)
22 − L

(k)
21 A

(k)
12 . Then maxi,j |a(k+1)

i,j | ≤
maxi,j |a(k)i,j |(1 + τb) with maxi,j |L(k)

21 (i, j)| ≤ τ and we have

gW
(k+1) ≤ gW (k)(1 + τb). (2.6)

Induction on equation (2.6) leads to a growth factor of the block factorization based on LU_PRRP
performed on the n

b panels of the matrix A that satisfies

gW ≤ (1 + τb)(n/b)−1. (2.7)

As explained in section 2.2, the LU_PRRP factorization leads first to a block LU factorization, which is
completed with additional GEPP factorizations of the diagonal b×b blocks and updates of corresponding
blocks of rows of the trailing matrix. These additional factorizations lead to a growth factor bounded
by 2b−1 on the trailing blocks of rows. We note that for the last b × b diagonal block, the element
growth generated by GEPP is added to that generated by the first steps of LU_PRRP, that is the block
LU decomposition. Thus the maximum element of the factor U in equation ( 2.5) is bounded by
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gW ≤ (1 + τb)(n/b)−1 × 2b−1. (2.8)

We note that when b� n, the growth factor of the entire factorization is still bounded by (1+τb)(n/b)−1.
The improvement of the upper bound of the growth factor of the block factorization based on

LU_PRRP with respect to GEPP is illustrated in Table 2.1, where the panel size varies from 8 to 128,
and the parameter τ is set to 2. The worst case growth factor becomes arbitrarily smaller than for GEPP,
for b ≥ 64.

Table 2.1: Upper bounds of the growth factor gW obtained from factoring a matrix of size m× n using
the block factorization based on LU_PRRP with different panel sizes and τ = 2.

b 8 16 32 64 128
gW (1.425)n−8 (1.244)n−16 (1.139)n−32 (1.078)n−64 (1.044)n−128

Despite the complexity of our algorithm in pivot selection, we still compute an LU factorization,
only with different pivots. Consequently, the rounding error analysis for LU factorization still applies
(see, for example, [36]), which indicates that element growth is the only factor controlling the numerical
stability of our algorithm.

2.2.2 Experimental results

We measure the stability of the LU_PRRP factorization experimentally on a large set of test matrices
by using the growth factor, the normwise backward stability, and the componentwise backward stability.
The tests are performed using MATLAB. In the tests, in most of the cases, the panel factorization is per-
formed by using the QR with column pivoting factorization instead of the strong RRQR factorization.
This is because in practiceRT12(R

−1
11 )T is already well bounded after performing the RRQR factorization

with column pivoting (‖RT12(R
−1
11 )T ‖max is rarely bigger than 3 for random matrices). Hence no addi-

tional swaps are needed to ensure that the elements are well bounded. However, for the ill-conditionned
special matrices (condition number ≥ 1014), to get small growth factors, we perform the panel factor-
ization by using the strong RRQR factorization. In fact, for these cases, QR with column pivoting does
not ensure a small bound for RT12(R

−1
11 )T .

We use a collection of matrices that includes random matrices, a set of special matrices described
in Table 3, and several pathological matrices on which Gaussian elimination with partial pivoting fails
because of large growth factors. The set of special matrices includes ill-conditioned matrices as well as
sparse matrices. The pathological matrices considered are the Wilkinson matrix and two matrices aris-
ing from practical applications, presented by Foster [50] and Wright [99], for which the growth factor
of GEPP grows exponentially. The Wilkinson matrix was constructed to attain the upper bound of the
growth factor of GEPP [96, 66], and a general layout of such a matrix is

A = diag(±1)



1 0 0 · · · 0 1
−1 1 0 ... 0 1

−1 −1 1
. . .

...
...

...
...

. . . . . . 0 1
−1 −1 · · · −1 1 1
−1 −1 · · · −1 −1 1


×


0

T
...
0

0 · · · 0 θ

 ,
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where T is an (n − 1) × (n − 1) non-singular upper triangular matrix and θ = max|aij |. We also
test a generalized Wilkinson matrix, the general form of such a matrix is

A =



1 0 0 · · · 0 1
0 1 0 ... 0 1

1
. . .

...
...

...
. . . . . . 0 1

1 1
0 · · · 0 1


+ T T ,

where T is a n × n strictly upper triangular matrix. The MATLAB code of the matrix A is detailed
in Appendix D.

The Foster matrix represents a concrete physical example that arises from using the quadrature
method to solve a certain Volterra integral equation and it is of the form

A =



1 0 0 · · · 0 −1
c

−kh
2 1− kh

2 0 ... 0 −1
c

−kh
2 −kh 1− kh

2

. . .
...

...
...

...
. . . 0 −1

c

−kh
2 −kh · · · −kh 1− kh

2 −1
c

−kh
2 −kh · · · −kh −kh 1− 1

c −
kh
2


.

Wright [99] discusses two-point boundary value problems for which standard solution techniques
give rise to matrices with exponential growth factor when Gaussian elimination with partial pivoting is
used. This kind of problems arise for example from the multiple shooting algorithm [23]. A particular
example of this problem is presented by the following matrix,

A =


I I

−eMh I 0

−eMh I
...

. . . . . . 0
−eMh I

 ,

where eMh = I +Mh+O(h2).

The experimental results show that the LU_PRRP factorization is very stable. Figure 2.1 displays
the growth factor of LU_PRRP for random matrices of size varying from 1024 to 8192 and for sizes
of the panel varying from 8 to 128. We observe that the smaller the size of the panel is, the bigger the
element growth is. In fact, for a smaller size of the panel, the number of panels and the number of up-
dates on the trailing matrix is bigger, and this leads to a larger growth factor. But for all panel sizes, the
growth factor of LU_PRRP is smaller than the growth factor of GEPP. For example, for a random matrix
of size 4096 and a panel of size 64, the growth factor is only about 19, which is smaller than the growth
factor obtained by GEPP, and as expected, much smaller than the theoretical upper bound of (1.078)4095.
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Figure 2.1: Growth factor gW of the LU_PRRP factorization of random matrices.

Tables 4 and 5 in Appendix A present more detailed results showing the stability of the LU_PRRP
factorization for random matrices and a set of special matrices. There, we include different metrics,
such as the norm of the factors, the value of their maximum element and the backward error of the LU
factorization.

We evaluate the normwise backward stability by computing an accuracy test as performed in the
HPL (High-Performance Linpack) benchmark [45], and denoted as HPL3.

HPL3 = ||Ax− b||∞/(ε||A||∞||x||∞ ∗N). (2.9)

In HPL, the method is considered to be accurate if the value of HPL3 is smaller than 16. More
generally, the value should be of order O(1). For the LU_PRRP factorization HPL3 is at most 1.60 ×
10−2. We also display the normwise backward error, using the 1-norm,

η :=
||r||

||A|| ||x̂||+ ||b||
, (2.10)

and the componentwise backward error

w := max
i

|ri|
(|A| |x̂|+ |b|)i

, (2.11)

where x̂ is a computed solution to Ax = b, and r = b − Ax̂ is the computed residual. For our tests
residuals are computed with double-working precision.

Figure 2.2 summarizes all our stability results for LU_PRRP. This figure displays the ratio of the
maximum between the backward error and machine epsilon of LU_PRRP versus GEPP. The backward
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error is measured using three metrics, the relative error ‖PA− LU‖/‖A‖, the normwise backward error
η, and the componentwise backward error w of LU_PRRP versus GEPP, and the machine epsilon. We
take the maximum of the computed error with epsilon since smaller values are mostly roundoff error, and
so taking ratios can lead to extreme values with little reliability. Results for all the matrices in our test
set are presented, that is 20 random matrices for which results are presented in Table 4, and 37 special
matrices for which results are presented in Tables 11 and 5. This figure shows that for random matrices,
almost all ratios are between 0.5 and 2. For special matrices, there are few outliers, up to 23.71 (GEPP
is more stable) for the backward error ratio of the special matrix hadamard and down to 2.12 × 10−2

(LU_PRRP is more stable) for the backward error ratio of the special matrix molar.

Figure 2.2: A summary of all our experimental data, showing the ratio between max(LU_PRRP’s back-
ward error, machine epsilon) and max(GEPP’s backward error, machine epsilon) for all the test matrices
in our set. Bars above 100 = 1 mean that LU_PRRP’s backward error is larger, and bars below 1 mean
that GEPP’s backward error is larger. The test matrices are further labeled either as “randn”, which are
randomly generated, or “special”, listed in Table 3.

We consider now pathological matrices on which GEPP fails. Table 2.2 presents results for the linear
solver using the LU_PRRP factorization for a Wilkinson matrix [97] of size 2048 with a size of the panel
varying from 8 to 128. The growth factor is 1 and the relative error ‖PA− LU‖/‖A‖ is on the order of
10−19. Table 2.3 presents results for the linear solver using the LU_PRRP algorithm for a generalized
Wilkinson matrix of size 2048 with a size of the panel varying from 8 to 128.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 1.02e+03 6.09e+00 1 1.95e+00 4.25e-20
64 1 1.02e+03 6.09e+00 1 1.95e+00 5.29e-20
32 1 1.02e+03 6.09e+00 1 1.95e+00 8.63e-20
16 1 1.02e+03 6.09e+00 1 1.95e+00 1.13e-19
8 1 1.02e+03 6.09e+00 1 1.95e+00 1.57e-19

Table 2.2: Stability of the LU_PRRP factorization of a Wilkinson matrix on which GEPP fails.

For the Foster matrix, it was shown that when c = 1 and kh = 2/3, the growth factor of GEPP is
(23)(2n−1 − 1), which is close to the maximum theoretical growth factor of GEPP of 2n−1. Table 2.4
presents results for the linear solver using the LU_PRRP factorization for a Foster matrix of size 2048
with a size of the panel varying from 8 to 128 ( c = 1, h = 1 and k = 2/3 ). According to the obtained
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n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.69 1.23e+03 1.39e+02 1.21e+03 1.17e+03 1.05e-15
64 2.61 9.09e+02 1.12e+02 1.36e+03 1.15e+03 9.43e-16
32 2.41 8.20e+02 1.28e+02 1.39e+03 9.77e+02 5.53e-16
16 4.08 1.27e+03 2.79e+02 1.41e+03 1.19e+03 7.92e-16
8 3.35 1.36e+03 2.19e+02 1.41e+03 1.73e+03 1.02e-15

Table 2.3: Stability of the LU_PRRP factorization of a generalized Wilkinson matrix on which GEPP
fails.

results, LU_PRRP gives a modest growth factor of 2.66 for this practical matrix, while GEPP has a
growth factor of 1018 for the same parameters.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.66 1.28e+03 1.87e+00 1.92e+03 1.92e+03 4.67e-16
64 2.66 1.19e+03 1.87e+00 1.98e+03 1.79e+03 2.64e-16
32 2.66 4.33e+01 1.87e+00 2.01e+03 3.30e+01 2.83e-16
16 2.66 1.35e+03 1.87e+00 2.03e+03 2.03e+00 2.38e-16
8 2.66 1.35e+03 1.87e+00 2.04e+03 2.02e+00 5.36e-17

Table 2.4: Stability of the LU_PRRP factorization of a practical matrix (Foster) on which GEPP fails.

For matrices arising from the two-point boundary value problems described by Wright, it was shown
that when h is chosen small enough such that all elements of eMh are less than 1 in magnitude, the

growth factor obtained using GEPP is exponential. For our experiment the matrix M =

[
−1

6 1
1 −1

6

]
,

that is eMh ≈
[

1− h
6 h

h 1− h
6

]
, and h = 0.3. Table 2.5 presents results for the linear solver using

the LU_PRRP factorization for a Wright matrix of size 2048 with a size of the panel varying from 8 to
128. According to the obtained results, again LU_PRRP gives minimum possible pivot growth 1 for this
practical matrix, compared to the GEPP method which leads to a growth factor of 1095 using the same
parameters.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
64 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
32 1 3.25e+00 8.00e+00 2.05e+00 2.07e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.44e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 3.65e+00 1.26e-16

Table 2.5: Stability of the LU_PRRP factorization on a practical matrix (Wright) on which GEPP fails.

All the previous tests show that the LU_PRRP factorization is very stable for random, and for more
special matrices, and it also gives modest growth factor for the pathological matrices on which GEPP
fails. We note that we were not able to find matrices for which LU_PRRP attains the upper bound of
(1 + τb)(n/b)−1 for the growth factor.
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2.3 Conclusion

In this chapter, we have introduced an LU factorization which is more stable than Gaussian elimi-
nation with partial pivoting in terms of the upper bound of the growth factor. It is also very stable in
practice for various classes of matrices, including pathological cases on which GEPP fails. For exam-
ple LU_PRRP gives modest growth factor for wilkinson matrix, while GEPP gives exponential growth.
Note that we are currently working on extending the backward stability analysis of block LU factoriza-
tion provided in [40] to our block LU_PRRP algorithm. As in Gaussian elimination with partial pivoting,
the panel factorization in LU_PRRP is a bottleneck in terms of latency. Hence the strong rank revealing
QR is performed on the transpose of the panel. To overcome this drawback in terms of communication
cost, we have further developed a communication avoiding version of LU_PRRP. This algorithm is de-
tailed in the next chapter 3.

As future work we intend to develop routines that implement LU_PRRP and that will be integrated
in LAPACK and ScaLAPACK. That is a sequential and a parallel code for this algorithm. We are also
considering different other aspects of the numerical stability including the design of a matrix that attains
the growth factor upper bound, a deeper study of the behavior of LU_PRRP on sparse matrices and the
amount of the fill in that it could generate.
An other direction is the design of an incomplete LU preconditioner based on the panel rank revealing
pivoting (ILU0_PRRP). we believe that such a preconditioner would be more stable than ILU0 and
hence it would be very useful for the resolution of sparse linear systems.
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Chapter 3

Communication avoiding LU factorization
with panel rank revealing pivoting

3.1 Introduction

Technological trends show that computing floating point operations is becoming exponentially faster
than moving data from the memory where they are stored to the place where the computation occurs.
Due to this, the communication becomes in many cases a dominant factor of the runtime of an algorithm,
that leads to a loss of its efficiency. This is a problem for both sequential algorithms, where data needs to
be moved between different levels of the memory hierarchy, and parallel algorithms, where data needs
to be communicated between processors.

This challenging problem has prompted research on algorithms that reduce the communication to a
minimum, while being numerically as stable as classic algorithms, and without increasing significantly
the number of floating point operations performed [38, 59]. We refer to these algorithms as commu-
nication avoiding. One of the first such algorithms is the communication avoiding LU factorization
(CALU) [59, 60]. This algorithm is optimal in terms of communication, that is it performs polylog-
arithmic factors more than the theoretical lower bounds on communication [38, 15]. Thus, it brings
considerable improvements to the performance of the LU factorization compared to the classic routines
that perform the LU decomposition such as the PDGETRF routine of ScaLAPACK, thanks to a novel
pivoting strategy referred to as tournament pivoting. It was shown that CALU is faster in practice than
the corresponding routine PDGETRF implemented in libraries as ScaLAPACK or vendor libraries, on
both distributed [59] and shared memory computers [42], especially on tall and skinny matrices. While
in practice CALU is as stable as GEPP, in theory the upper bound of its growth factor is worse than that
obtained with GEPP. One of our goals is to design an algorithm that minimizes communication and that
has a smaller upper bound of its growth factor than CALU.

In this chapter we introduce the CALU_PRRP factorization, the communication avoiding version
of LU_PRRP, the algorithm discussed in chapter 2. CALU_PRRP is based on tournament pivoting, a
strategy introduced in [60] in the context of CALU, a communication avoiding version of GEPP. With
tournament pivoting, the panel factorization is performed in two steps. The first step selects b pivot rows
from the entire panel at a minimum communication cost. For this, sets of b candidate pivot rows are
selected from blocks of the panel, which are then combined together through a reduction-like procedure,
until a final set of b pivot rows are chosen. CALU_PRRP uses the strong RRQR factorization to select b
rows at each step of the reduction operation, while CALU is based on GEPP. In the second step of the

37
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panel factorization, the pivot rows are permuted to the diagonal positions, and the QR factorization with
no pivoting of the transpose of the panel is computed. Then the algorithm proceeds as the LU_PRRP
factorization introduced previously. Note that the usage of the strong RRQR factorization ensures that
bounds are respected locally at each step of the reduction operation, but it does not ensure that the growth
factor is bounded globally as in LU_PRRP.

To address the numerical stability of the communication avoiding factorization, we show that per-
forming the CALU_PRRP factorization of a matrix A is equivalent to performing the LU_PRRP factor-
ization of a larger matrix, formed by blocks ofA and zeros. This equivalence suggests that CALU_PRRP
will behave as LU_PRRP in practice and it will be stable. The dimension and the sparsity structure of
the larger matrix also allows us to upper bound the growth factor of CALU_PRRP by (1+τb)

n
b
(H+1)−1,

where in addition to the parameters n, b, and τ previously defined, H is the height of the reduction tree
used during tournament pivoting.

This algorithm has two significant advantages over other classic factorization algorithms. First, it
minimizes communication, and hence it will be more efficient than LU_PRRP and GEPP on archi-
tectures where communication is expensive. Here communication refers to both latency and bandwidth
costs of moving data between levels of the memory hierarchy in the sequential case, and the cost of mov-
ing data between processors in the parallel case. Second, it is more stable than CALU. Theoretically,
the upper bound of the growth factor of CALU_PRRP is smaller than that of CALU, for a reduction
tree with a same height. More importantly, there are cases of interest for which it is smaller than that
of GEPP as well. Given a reduction tree of height H = logP , where P is the number of processors on
which the algorithm is executed, the panel size b and the parameter τ can be chosen such that the upper
bound of the growth factor is smaller than 2n−1. Extensive experimental results show that CALU_PRRP
is as stable as LU_PRRP, GEPP, and CALU on random matrices and a set of special matrices. Its growth
factor is slightly smaller than that of CALU. In addition, it is also stable for matrices on which GEPP
fails.

As for the LU_PRRP factorization, we discuss the stability of CALU_PRRP using three metrics.
For the set of matrices we tested, the relative error is at most 9.14×10−14, the normwise backward error
is at most 1.37 × 10−14, and the componentwise backward error is at most 1.14 × 10−8 for Demmel
matrix. Figure 3.4 displays the ratios of the errors with respect to those of GEPP, obtained by dividing
the maximum of the backward errors of CALU_PRRP and the machine epsilon by the maximum of
those of GEPP and the machine epsilon. For random matrices, all the backward error ratios are at most
2.4. For the set of special matrices, the ratios of the relative error are at most 1 in over 62% of cases, and
always smaller than 2, except for 8% of cases, where the ratios are between 2.4 and 24.2. The ratios of
the normwise backward errors are at most 1 in over 75% of cases, and always 3.9 or smaller. The ratios
of componentwise backward errors are at most 1 in over 47% of cases, and always 3 or smaller, except
for 7 ratios which have values up to 74.

We also discuss other versions of LU_PRRP that minimize communication, but can be less stable
than CALU_PRRP, our method of choice for reducing communication. In this different version, the
panel factorization is performed only once, during which its off-diagonal blocks are annihilated using
a reduce-like operation, with the strong RRQR factorization being the operator used at each step of the
reduction. Every such factorization of a block of rows of the panel leads to the update of a block of rows
of the trailing matrix. Independently of the shape of the reduction tree, the upper bound of the growth
factor of this method is the same as that of LU_PRRP. This is because at every step of the algorithm,
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a row of the current trailing matrix is updated only once. We refer to the version based on a binary
reduction tree as block parallel LU_PRRP, and to the version based on a flat tree as block pairwise
LU_PRRP. There are similarities between these two algorithms, the LU factorization based on block
parallel pivoting (an unstable factorization), and the LU factorization based on block pairwise pivoting
(whose stability is still under investigation) [85, 92, 16].

All these methods perform the panel factorization as a reduction operation, and the factorization
performed at every step of the reduction leads to an update of the trailing matrix. However, in block
parallel pivoting and block pairwise pivoting, GEPP is used at every step of the reduction, and hence U
factors are combined together during the reduction phase. While in the block parallel and block pairwise
LU_PRRP, the reduction operates always on original rows of the current panel.

We note that despite having better bounds, the block parallel LU_PRRP based on a binary reduction
tree of height H = logP is unstable for certain values of the panel size b and the number of processors
P . The block pairwise LU_PRRP based on a flat tree of height H = n

b appears to be more stable. The
growth factor is larger than that of CALU_PRRP, but it is smaller than n for the sizes of the matrices in
our test set. Hence, potentially this version can be more stable than block pairwise pivoting, but requires
further investigation.

The remainder of the chapter is organized as follows. Section 3.2 presents the algebra of CALU_PRRP,
a communication avoiding version of LU_PRRP. It describes similarities between CALU_PRRP and
LU_PRRP and it discusses its stability. The communication optimality of CALU_PRRP is shown in
section 3.3, where we also compare its performance model with that of the CALU algorithm. Sec-
tion 3.4 discusses two alternative algorithms that can also reduce communication, but can be less stable
in practice. Finally section 3.5 presents our conclusions and give some perspectives.

3.2 Communication avoiding LU_PRRP

In this section we present a version of the LU_PRRP algorithm that minimizes communication, and
so it will be more efficient than LU_PRRP and GEPP on architectures where communication is expen-
sive. We show in this section that this algorithm is more stable than CALU, an existing communication
avoiding algorithm for computing the LU factorization [60]. More importantly, its parallel version is
also more stable than GEPP (under certain conditions).

3.2.1 Matrix algebra

CALU_PRRP is a block algorithm that uses tournament pivoting, a strategy introduced in [60] that
allows to minimize communication. As in LU_PRRP, at each step the factorization of the current panel
is computed, and then the trailing matrix is updated. However, in CALU_PRRP the panel factorization
is performed in two steps. The first step, which is a preprocessing step, uses a reduction operation to
identify b pivot rows with a minimum amount of communication. The strong RRQR factorization is the
operator used at each node of the reduction tree to select a new set of b candidate pivot rows from the
candidate pivot rows selected at previous stages of the reduction. The final b pivot rows are permuted
into the first positions, and then the QR factorization with no pivoting of the transpose of the entire panel
is computed.

In the following we illustrate tournament pivoting on the first panel, with the input matrix A parti-
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tioned as in equation (2.1). We consider that the first panel is partitioned into P = 4 blocks of rows,

A(:, 1 : b) =


A00

A10

A20

A30

 .
The preprocessing step uses a binary reduction tree in our example, and we number the levels of the
binary reduction tree starting from 0. At the leaves of the reduction tree, a set of b candidate rows are
selected from each block of rows Ai0 by performing the strong RRQR factorization on the transpose of
each block Ai0. This gives the following decomposition,

AT00Π00

AT10Π10

AT20Π20

AT30Π30

 =


Q00R00

Q10R10

Q20R20

Q30R30

 ,
which can be written as

A(:, 1 : b)T Π̄0 = A(:, 1 : b)T


Π00

Π10

Π20

Π30

 =


Q00R00

Q10R10

Q20R20

Q30R30

 ,
where Π̄0 is an m × m permutation matrix with diagonal blocks of size (m/P ) × (m/P ), Qi0 is an
orthogonal matrix of size b× b, and each factor Ri0 is an upper triangular matrix of size b× (m/P ).

There are now 4 sets of b pivot candidate rows. At the next level of the binary reduction tree, two
matrices A01 and A11 are formed by combining together two sets of candidate rows,

A01 =

[
(ΠT

00A00)(1 : b, 1 : b)
(ΠT

10A10)(1 : b, 1 : b)

]
A11 =

[
(ΠT

20A20)(1 : b, 1 : b)
(ΠT

30A30)(1 : b, 1 : b)

]
.

Two new sets of candidate rows are identified by performing the strong RRQR factorization of each
matrix A01 and A11,

AT01Π01 = Q01R01,

AT11Π11 = Q11R11,

where Π10, Π11 are permutation matrices of size 2b×2b, Q01, Q11 are orthogonal matrices of size b×b,
and R01, R11 are upper triangular factors of size b× 2b.

The final b pivot rows are obtained by performing one last strong RRQR factorization on the trans-
pose of the following b× 2b matrix :

A02 =

[
(ΠT

01A01)(1 : b, 1 : b)
(ΠT

11A11)(1 : b, 1 : b)

]
,

that is

AT02Π02 = Q02R02,
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where Π02 is a permutation matrix of size 2b×2b,Q02 is an orthogonal matrix of size b×b, andR02 is an
upper triangular matrix of size b×2b. This operation is performed at the root of the binary reduction tree,
and this ends the first step of the panel factorization. In the second step, the final pivot rows identified
by tournament pivoting are permuted to the first positions of A,

Ā = Π̄TA = Π̄T
2 Π̄T

1 Π̄T
0A,

where the matrices Π̄i are obtained by extending the matrices Π̄ to the dimension m×m, that is

Π̄1 =

[
Π̄01

Π̄11

]
,

with Π̄i1, for i = 0, 1 formed as

Π̄i1 =


Πi1(1 : b, 1 : b) Πi1(1 : b, b+ 1 : 2b)

Im
P
−b

Πi1(b+ 1 : 2b, 1 : b) Πi1(b+ 1 : 2b, b+ 1 : 2b)
Im

P
−b

 ,
and

Π̄2 =


Π02(1 : b, 1 : b) Π02(1 : b, b+ 1 : 2b)

I2m
P
−b

Π02(b+ 1 : 2b, 1 : b) Π02(b+ 1 : 2b, b+ 1 : 2b)
I2m

P
−b

 .
Once the pivot rows are in the diagonal positions, the QR factorization with no pivoting is performed

on the transpose of the first panel,

ĀT (1 : b, :) = QR = Q
[
R11 R12

]
.

This factorization is used to update the trailing matrix, and the elimination of the first panel leads to the
following decomposition (we use the same notation as in section 2.2),

Ā =

[
Ib

Ā21Ā
−1
11 Im−b

] [
Ā11 Ā12

Ās22

]
,

where

Ās22 = Ā22 − Ā21Ā
−1
11 Ā12.

Figure 3.1 illustrates an example of a panel factorization using CALU_PRRP with 4 processors
working on the panel. Every processor is represented by a color. The dashed arrows represent the
computations at each level of the binary reduction tree, that is the application of strong RRQR to each
block ATij . The solid arrows represent communication between processors, that is the merge of 2 b × b
blocks.

As in the LU_PRRP factorization, the CALU_PRRP factorization computes a block LU factoriza-
tion of the input matrix A. To obtain the full LU factorization, an additional GEPP is performed on
the diagonal block Ā11, followed by the update of the block row Ā12. The CALU_PRRP factorization
continues the same procedure on the trailing matrix Ās22.
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AT
00Π00 = Q00R00

AT
10Π10 = Q10R10

AT
20Π20 = Q20R20

AT
30Π30 = Q30R30

AT
01Π01 = Q01R01

AT
21Π21 = Q21R21

AT
02Π02 = Q02R02

ΠT
00A00(1 : b, 1 : b)

ΠT
10A10(1 : b, 1 : b)

ΠT
20A20(1 : b, 1 : b)

ΠT
30A30(1 : b, 1 : b)

ΠT
01A01(1 : b, 1 : b)

ΠT
21A21(1 : b, 1 : b)

ΠT
02A02(1 : b, 1 : b)

b selected pivot roAs

P0

P1

P2

P3

Figure 3.1: Selection of b pivot rows for the panel factorization using the CALU_PRRP factorization,
preprocessing step.

Note that the factors L and U obtained by the CALU_PRRP factorization are different from the
factors obtained by the LU_PRRP factorization. The two algorithms use different pivot rows, and in
particular the factor L of CALU_PRRP is no longer bounded by a given threshold τ as in LU_PRRP.
This leads to a different worst case growth factor for CALU_PRRP, that we will discuss in the following
section.

The following figure displays the binary tree based tournament pivoting performed on the first panel
using an arrow notation (as in [60]). The function f(Aij) computes a strong RRQR of the matrix ATij
to select a set of b candidate rows. At each node of the reduction tree, two sets of b candidate rows are
merged together and form a matrix Aij , the function f is applied to Aij , and another set of b candidate
pivot rows is selected. While in this section we focused on binary trees, tournament pivoting can use
any reduction tree, and this allows the algorithm to adapt on different architectures. Later in the paper
we will consider also a flat reduction tree.

A30 f(A30)

A20 f(A20)

A10 f(A10)

A00 f(A00)

f(A11)

f(A01)

f(A02)
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3.2.2 Numerical Stability of CALU_PRRP

In this section we discuss the stability of the CALU_PRRP factorization and we identify similarities
with the LU_PRRP factorization. We also discuss the growth factor of the CALU_PRRP factorization,
and we show that its upper bound depends on the height of the reduction tree. For the same reduction
tree, this upper bound is smaller than that obtained with CALU. More importantly, for cases of interest,
the upper bound of the growth factor of CALU_PRRP is also smaller than that obtained with GEPP.

To address the numerical stability of CALU_PRRP, we show that in exact arithmetic, performing
CALU_PRRP on a matrix A is equivalent to performing LU_PRRP on a larger matrix ALU_PRRP ,
which is formed by blocks of A (sometimes slightly perturbed) and blocks of zeros. This reasoning
is also used in [60] to show the same equivalence between CALU and GEPP. While this similarity is
explained in detail in [60], here we focus only on the first step of the CALU_PRRP factorization. We
explain the construction of the larger matrix ALU_PRRP to expose the equivalence between the first step
of the CALU_PRRP factorization of A and the LU_PRRP factorization of ALU_PRRP .

Consider a nonsingular matrix A of size m × n and the first step of its CALU_PRRP factorization
using a general reduction tree of heightH . Tournament pivoting selects b candidate rows at each node of
the reduction tree by using the strong RRQR factorization. Each such factorization leads to an L factor
which is bounded locally by a given threshold τ . However this bound is not guaranteed globally. When
the factorization of the first panel is computed using the b pivot rows selected by tournament pivoting,
the L factor will not be bounded by τ . This results in a larger growth factor than the one obtained with
the LU_PRRP factorization. Recall that in LU_PRRP, the strong RRQR factorization is performed on
the transpose of the whole panel, and so every entry of the obtained lower triangular factor L is bounded
by τ .

However, we show now that in exact arithmetic, the growth factor gW obtained after the first step of
the CALU_PRRP factorization is bounded by (1 + τb)H+1, where

gW =
maxi,j,k |a

(k)
ij |

maxi,j |aij |
.

Consider a row j, and let As(j, b + 1 : n) be the updated row obtained after the first step of elimi-
nation of CALU_PRRP. Suppose that row j of A is a candidate row at level k − 1 of the reduction tree,
and so it participates in the strong RRQR factorization computed at a node sk at level k of the reduction
tree, but it is not selected as a candidate row by this factorization. We refer to the matrix formed by the
candidate rows at node sk as Āk. Hence, row j is not used to form the matrix Āk. Similarly, for every
node i on the path from node sk to the root of the reduction tree of height H , we refer to the matrix
formed by the candidate rows selected by strong RRQR as Āi. Note that in practice it can happen that
one of the blocks of the panel is singular, while the entire panel is nonsingular. In this case strong RRQR
will select less than b linearly independent rows that will be passed along the reduction tree. However,
for simplicity, we assume in the following that the matrices Āi are nonsingular. For a more general
solution, the reader can consult [60].

Let Π be the permutation returned by the tournament pivoting strategy performed on the first panel,
that is the permutation that puts the matrix ĀH on diagonal. The following equation is satisfied,(

ĀH
¯̄AH

A(j, 1 : b) A(j, b+ 1 : n)

)
=

(
Ib

A(j, 1 : b)Ā−1H 1

)
·
(
ĀH

¯̄AH
As(j, b+ 1 : n)

)
, (3.1)
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where

ĀH = (ΠA)(1 : b, 1 : b),
¯̄AH = (ΠA)(1 : b, b+ 1 : n).

The updated row As(j, b + 1 : n) can be also obtained by performing LU_PRRP on a larger matrix
ALU_PRRP of dimension ((H − k + 1)b+ 1)× ((H − k + 1)b+ 1),

ALU_PRRP =



ĀH
¯̄AH

ĀH−1 ĀH−1
ĀH−2 ĀH−2

. . . . . .
Āk Āk

(−1)H−kA(j, 1 : b) A(j, b+ 1 : n)



=



Ib
ĀH−1Ā

−1
H Ib

ĀH−2Ā
−1
H−1 Ib

. . . . . .
ĀkĀ

−1
k+1 Ib

(−1)H−kA(j, 1 : b)Ā−1k 1



·



ĀH
¯̄AH

ĀH−1
¯̄AH−1

ĀH−2
¯̄AH−2

. . .
...

Āk
¯̄Ak

As(j, b+ 1 : n)


, (3.2)

where

¯̄AH−i =

{
ĀH if i = 0,

−ĀH−iĀ−1H−i+1
¯̄AH−i+1 if 0 < i ≤ H − k. (3.3)

Equation (3.2) can be easily verified, since

As(j, b+ 1 : n) = A(j, b+ 1 : n)− (−1)H−kA(j, 1 : b)Ā−1k (−1)H−k ¯̄Ak

= A(j, b+ 1 : n)−A(j, 1 : b)Ā−1k ĀkĀ
−1
k+1 . . . ĀH−2Ā

−1
H−1ĀH−1Ā

−1
H

¯̄AH

= A(j, b+ 1 : n)−A(j, 1 : b)Ā−1H
¯̄AH .

Equations (3.1) and (3.2) show that in exact arithmetic, the Schur complement obtained after each
step of performing the CALU_PRRP factorization of a matrix A is equivalent to the Schur complement
obtained after performing the LU_PRRP factorization of a larger matrix ALU_PRRP , formed by blocks
of A (sometimes slightly perturbed) and blocks of zeros. More generally, this implies that the entire
CALU_PRRP factorization of A is equivalent to the LU_PRRP factorization of a larger and very sparse
matrix, formed by blocks of A and blocks of zeros (we omit the proofs here, since they are similar to the
proofs presented in [60]).

Equation (3.2) is used to derive the upper bound of the growth factor of CALU_PRRP from the
upper bound of the growth factor of LU_PRRP. The elimination of each row of the first panel using
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CALU_PRRP can be obtained by performing LU_PRRP on a matrix of maximum dimensionm× b(H + 1).
Hence the upper bound of the growth factor obtained after one step of CALU_PRRP is (1 + τb)H+1. In
exact arithmetic, this leads to an upper bound of (1 + τb)

n
b
(H+1)−1 for a matrix of size m× n.

Table 3.1 summarizes the bounds of the growth factor of CALU_PRRP derived in this section, and
also recalls the bounds of LU_PRRP, GEPP, and CALU, the communication avoiding version of GEPP.
It considers the growth factor obtained after the elimination of b columns of a matrix of sizem× (b+1),
and also the general case of a matrix of size m × n. As discussed in section 2.2.1 already, LU_PRRP
is more stable than GEPP in terms of worst case growth factor. From Table 3.1, it can be seen that for
a reduction tree of a same height, CALU_PRRP is more stable than CALU. We note here that we limit
our analysis to the block factorizations. Hence we consider that LU_PRRP and CALU_PRRP are block
factorizations, and the growth factor does not include the additional Gaussian elimination with partial
pivoting applied to the diagonal blocks.

In the following we show that CALU_PRRP can have a smaller worst case growth factor than GEPP.
Consider a parallel version of CALU_PRRP based on a binary reduction tree of height
H = log(P ), where P is the number of processors. The upper bound of the growth factor becomes
(1 + τb)(n/b)(logP+1)−1, which is smaller than 2n(logP+1)−1, the upper bound of the growth factor of
CALU. For example, if the threshold is τ = 2, the panel size is b = 64, and the number of processors is
P = 128 = 27, then gWCALU_PRRP ≈ (1.8)n. This quantity is much smaller than 27n the upper bound
of CALU, and even smaller than the worst case growth factor of GEPP of 2n−1. In general, the upper
bound of CALU_PRRP can be smaller than the one of GEPP, if the different parameters τ , H , and b are
chosen such that the condition

H ≤ b

(log b+ log τ)
(3.4)

is satisfied. For a binary tree of height H = logP , it becomes logP ≤ b/(log b+ log τ). This is a
condition which can be satisfied in practice, by choosing b and τ appropriately for a given number of
processors P . For example, when P ≤ 512, b = 64, and τ = 2, the condition (3.4) is satisfied, and the
worst case growth factor of CALU_PRRP is smaller than the one of GEPP.

However, for a sequential version of CALU_PRRP using a flat tree of heightH = n/b, the condition
to be satisfied becomes n ≤ b2/(log b+ log τ), which is more restrictive. In practice, the size of b is
chosen depending on the size of the memory, and it might be the case that it will not satisfy the condition
in equation (3.4).

3.2.3 Experimental results

In this section we present experimental results and show that CALU_PRRP is stable in practice and
compare them with those obtained from CALU and GEPP in [60]. We present results for both the binary
tree scheme and the flat tree scheme.

As in section 2.2.2, we perform our tests on matrices whose elements follow a normal distribution.
In MATLAB notation, the test matrix is A = randn(n, n), and the right hand side is b = randn(n, 1).
The size of the matrix is chosen such that n is a power of 2, that is n = 2k, and the sample size is
10 if k < 13 and 3 if k ≥ 13. To measure the stability of CALU_PRRP, we discuss several metrics,
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Table 3.1: Bounds for the growth factor gW obtained from factoring a matrix of size m × (b + 1) and
a matrix of size m × n using CALU_PRRP, LU_PRRP, CALU, and GEPP. CALU_PRRP and CALU
use a reduction tree of height H . The strong RRQR used in LU_PRRP and CALU_PRRP depends on
a threshold τ . For the matrix of size m × (b + 1), the result corresponds to the growth factor obtained
after eliminating b columns.

matrix of size m× (b+ 1)
TSLU(b,H) LU_PRRP(b,H) GEPP LU_PRRP

gW upper bound 2b(H+1) (1 + τb)H+1 2b 1 + τb
matrix of size m× n

CALU CALU_PRRP GEPP LU_PRRP
gW upper bound 2n(H+1)−1 (1 + τb)

n(H+1)
b −1 2n−1 (1 + τb)

n
b

that concern the LU decomposition and the linear solver using it, such as the growth factor, normwise
and componentwise backward errors. We also perform tests on several special matrices including sparse
matrices, they are described in Appendix A.

Figure 3.2 displays the values of the growth factor gW of the binary tree based CALU_PRRP, for
different block sizes b and different number of processors P . Here the growth factor is determined by
using the computed values of A,

gW =
maxi,j,k |â

(k)
ij |

maxi,j |âij |
.

As explained in section 3.2.1, the block size determines the size of the panel, while the number of
processors determines the number of block rows in which the panel is partitioned. This corresponds
to the number of leaves of the binary tree. We observe that the growth factor of binary tree based
CALU_PRRP is in the most of the cases better than GEPP. The curves of the growth factor lie be-
tween 1

2n
1/2 and 3

4n
1/2 in our tests on random matrices. These results show that binary tree based

CALU_PRRP is stable and the growth factor values obtained for the different layouts are better than
those obtained with binary tree based CALU. The Figure 3.2 includes also the growth factor of the
LU_PRRP method with a panel of size b = 64. We note that that results are better than those of binary
tree based CALU_PRRP.

Figure 3.3 displays the values of the growth factor gW for flat tree based CALU_PRRP with a block
size b varying from 8 to 128. The growth factor gW is decreasing with increasing the panel size b. We
note that the curves of the growth factor lie between 1

4n
1/2 and 3

4n
1/2 in our tests on random matrices.

We also note that the results obtained with the LU_PRRP method with a panel of size b = 64 are better
than those of flat tree based CALU_PRRP. The growth factors of both binary tree based and flat tree
based CALU_PRRP have similar (sometimes better) behavior than the growth factors of GEPP.

Table 3.2 presents results for the linear solver using binary tree based CALU_PRRP, together with
binary tree based CALU and GEPP for comparaison and Table 3.3 presents results for the linear solver
using flat tree based CALU_PRRP, together with flat tree based CALU and GEPP for comparaison.
We note that for the binary tree based CALU_PRRP, when m/P = b, for the algorithm we only use
P1 = m/(b+ 1) processors, since to perform a Strong RRQR on a given block, the number of its rows
should be at least equal to the number of its columns +1.
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Figure 3.2: Growth factor gW of binary tree based CALU_PRRP for random matrices.

Figure 3.3: Growth factor gW of flat tree based CALU_PRRP for random matrices.
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Tables 3.2 and 3.3 also include results obtained by iterative refinement used to improve the accuracy
of the solution. For this, the componentwise backward error in equation (2.11) is used. In the previous
tables, wb denotes the componentwise backward error before iterative refinement and NIR denotes the
number of steps of iterative refinement. NIR is not always an integer since it represents an average. For
all the matrices tested CALU_PRRP leads to results as accurate as the results obtained with CALU and
GEPP.

In Appendix A we present more detailed results. There we include some other metrics, such as the
norm of the factors, the norm of the inverse of the factors, their conditioning, the value of their maximum
element, and the backward error of the LU factorization. Through the results detailed in this section and
in Appendix A we show that binary tree based and flat tree based CALU_PRRP are stable, have the
same behavior as GEPP for random matrices, and are more stable than binary tree based and flat tree
based CALU in terms of growth factor.

Figure 3.4 summarizes all our stability results for the CALU_PRRP factorization based on both
binary tree and flat tree schemes, which is analogous to Figure 2.2. Results for all the matrices in our
test set are presented, that is 25 random matrices for binary tree base CALU_PRRP from Table 8, 20
random matrices for flat tree based CALU_PRRP from Table 6, and 37 special matrices from Tables
7 and 9. As can be seen, nearly all ratios are between 0.5 and 2.5 for random matrices. However
there are few outliers, for example the relative error ratio has values between 24.2 for the special matrix
hadamard, and 5.8× 10−3 for the special matrix moler.

We consider now the same set of pathological matrices as in section 2.2.2 on which GEPP fails. For
the Wilkinson matrix, both CALU and CALU_PRRP based on flat and binary tree give modest element
growth. For the generalized Wilkinson matrix, the Foster matrix, and Wright matrix, CALU fails with
both flat tree and binary tree reduction schemes.

Tables 3.4 and 3.5 present the results obtained for the linear solver using the CALU_PRRP factor-
ization based on flat and binary tree schemes for a generalized Wilkinson matrix of size 2048 with a size
of the panel varying from 8 to 128 for the flat tree scheme and a number of processors varying from 32
to 128 for the binary tree scheme. The growth factor is of order 1 and the quantity ||PA− LU ||/||A|| is
on the order of 10−16. Both flat tree based CALU and binary tree based CALU fails on this pathological
matrix. For example for a generalized Wilkinson matrix of size 1024 and a panel of size b = 128, the
growth factor obtained with flat tree based CALU is of size 10234.

For the Foster matrix, we have seen in section 2.2.2 that LU_PRRP gives modest pivot growth,
whereas GEPP fails. Both flat tree based CALU and binary tree based CALU fails on this matrix. How-
ever flat tree based CALU_PRRP and binary tree based CALU_PRRP solve easily this pathological
matrix.

Tables 3.6 and 3.7 present results for the linear solver using the CALU_PRRP factorization based on
the flat tree scheme and the binary tree scheme, respectively. We test a Foster matrix of size 2048 with a
panel size varying from 8 to 128 for the flat tree based CALU_PRRP and a number of processors varying
from 32 to 128 for the binary tree based CALU_PRRP. We use the same parameters as in section 2.2.2,
that is c = 1, h = 1 and k = 2

3 . According to the obtained results, CALU_PRRP gives a modest growth
factor of 1.33 for this practical matrix.

As GEPP, both the flat tree based and the binary tree based CALU fail on the Wright matrix. In fact
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Table 3.2: Stability of the linear solver using binary tree based CALU_PRRP, flat tree based CALU, and
GEPP.

n P b η wb NIR HPL3
Binary tree based CALU_PRRP

8192

256
32 7.5E-15 4.4E-14 2 4.4E-03
16 6.7E-15 4.1E-14 2 4.6E-03

128
64 7.6E-15 4.7E-14 2 4.9E-03
32 7.5E-15 4.9E-14 2 4.9E-03
16 7.3E-15 5.1E-14 2 5.7E-03

64

128 7.6E-15 5.0E-14 2 5.2E-03
64 7.9E-15 5.3E-14 2 5.9E-03
32 7.8E-15 5.0E-14 2 5.0E-03
16 6.7E-15 5.0E-14 2 5.7E-03

4096

256 16 3.5E-15 2.2E-14 2 5.1E-03

128
32 3.8E-15 2.3E-14 2 5.1E-03
16 3.6E-15 2.2E-14 1.6 5.1E-03

64
64 4.0E-15 2.3E-14 2 4.9E-03
32 3.9E-15 2.4E-14 2 5.7E-03
16 3.8E-15 2.4E-14 1.6 5.2E-03

2048
128 16 1.8E-15 1.0E-14 2 4.8E-03

64
32 1.8E-15 1.2E-14 2 5.6E-03
16 1.9E-15 1.2E-14 1.8 5.4E-03

1024 64 16 1.0E-15 6.3E-15 1.3 6.1E-03
Binary tree based CALU

8192

256
32 6.2E-15 4.1E-14 2 4.5E-03
16 5.8E-15 3.9E-14 2 4.1E-03

128
64 6.1E-15 4.2E-14 2 4.6E-03
32 6.3E-15 4.0E-14 2 4.4E-03
16 5.8E-15 4.0E-14 2 4.3E-03

64

128 5.8E-15 3.6E-14 2 3.9E-03
64 6.2E-15 4.3E-14 2 4.4E-03
32 6.3E-15 4.1E-14 2 4.5E-03
16 6.0E-15 4.1E-14 2 4.2E-03

4096

256 16 3.1E-15 2.1E-14 1.7 4.4E-03

128
32 3.2E-15 2.3E-14 2 5.1E-03
16 3.1E-15 1.8E-14 2 4.0E-03

64
64 3.2E-15 2.1E-14 1.7 4.6E-03
32 3.2E-15 2.2E-14 1.3 4.7E-03
16 3.1E-15 2.0E-14 2 4.3E-03

2048
128 16 1.7E-15 1.1E-14 1.8 5.1E-03

64
32 1.7E-15 1.0E-14 1.6 4.6E-03
16 1.6E-15 1.1E-14 1.8 4.9E-03

1024 64 16 8.7E-16 5.2E-15 1.6 4.7E-03
GEPP

8192 - 3.9E-15 2.6E-14 1.6 2.8E-03
4096 - 2.1E-15 1.4E-14 1.6 2.9E-03
2048 - 1.1E-15 7.4E-15 2 3.4E-03
1024 - 6.6E-16 4.0E-15 2 3.7E-03
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Table 3.3: Stability of the linear solver using flat tree based CALU_PRRP, flat tree based CALU, and
GEPP.

n P b η wb NIR HPL3
Flat tree based CALU_PRRP

8096

- 8 6.2E-15 3.8E-14 1 4.0E-03
- 16 6.6E-15 4.3E-14 1 4.3E-03
- 32 7.2E-15 4.8E-14 1 5.3E-03
- 64 7.3E-15 5.1E-14 1 5.4E-03

4096

- 8 3.2E-15 2.0E-14 1 4.7E-03
- 16 3.6E-15 2.3E-14 1 5.1E-03
- 32 3.8E-15 2.4E-14 1 5.5E-03
- 64 3.7E-15 2.5E-14 1 5.6E-03

2048

- 8 1.4E-15 1.1E-14 1 5.1E-03
- 16 1.9E-15 1.1E-14 1 5.3E-03
- 32 2.1E-15 1.3E-14 1 5.8E-03
- 64 1.9E-15 1.25E-14 1 5.9E-03

1024

- 8 9.4E-16 5.5E-15 1 5.3E-03
- 16 1.0E-15 6.0E-15 1 5.4E-03
- 32 1.0E-15 5.6E-15 1 5.4E-03
- 64 1.0E-15 6.8E-15 1 6.7E-03

Flat tree based CALU

8096

- 8 4.5E-15 3.1E-14 1.7 3.4E-03
- 16 5.6E-15 3.7E-14 2 3.3E-03
- 32 6.7E-15 4.4E-14 2 4.7E-03
- 64 6.5E-15 4.2E-14 2 4.6E-03

4096

- 8 2.6E-15 1.7E-14 1.3 4.0E-03
- 16 3.0E-15 1.9E-14 1.7 3.9E-03
- 32 3.8E-15 2.4E-14 2 5.1E-03
- 64 3.4E-15 2.0E-14 2 4.1E-03

2048

- 8 1.5E-15 8.7E-15 1.6 4.2E-03
- 16 1.6E-15 1.0E-14 2 4.5E-03
- 32 1.8E-15 1.1E-14 1.8 5.1E-03
- 64 1.7E-15 1.0E-14 1.2 4.5E-03

1024

- 8 7.8E-16 4.9E-15 1.6 4.9E-03
- 16 9.2E-16 5.2E-15 1.2 4.8E-03
- 32 9.6E-16 5.8E-15 1.1 5.6E-03
- 64 8.7E-16 4.9E-15 1.3 4.5E-03

GEPP
8192 - 3.9E-15 2.6E-14 1.6 2.8E-03
4096 - 2.1E-15 1.4E-14 1.6 2.9E-03
2048 - 1.1E-15 7.4E-15 2 3.4E-03
1024 - 6.6E-16 4.0E-15 2 3.7E-03
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n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 2.01 1.01e+03 1.40e+02 1.31e+03 9.76e+02 9.56e-16
64 2.02 1.18e+03 1.64e+02 1.27e+03 1.16e+03 1.01e-15
32 2.04 8.34e+02 1.60e+02 1.30e+03 7.44e+02 7.91e-16
16 2.15 9.10e+02 1.45e+02 1.31e+03 8.22e+02 8.07e-16
8 2.15 8.71e+02 1.57e+02 1.371e+03 5.46e+02 6.09e-16

Table 3.4: Stability of the flat tree based CALU_PRRP factorization of a generalized Wilkinson matrix
on which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 2.10e+00 1.33e+03 1.29e+02 1.34e+03 1.33e+03 1.08e-15

64
16 2.04e+00 6.85e+02 1.30e+02 1.30e+03 6.85e+02 7.85e-16
8 8.78e+01 1.21e+03 1.60e+02 1.33e+03 1.01e+03 9.54e-16

32
32 2.08e+00 9.47e+02 1.58e+02 1.41e+03 9.36e+02 5.95e-16
16 2.08e+00 1.24e+03 1.32e+02 1.35e+03 1.24e+03 1.01e-15
8 1.45e+02 1.03e+03 1.54e+02 1.37e+03 6.61e+02 6.91e-16

Table 3.5: Stability of the binary tree based CALU_PRRP factorization of a generalized Wilkinson
matrix on which GEPP fails.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1.33 1.71e+02 1.87e+00 1.92e+03 1.29e+02 6.51e-17
64 1.33 8.60e+01 1.87e+00 1.98e+03 6.50e+01 4.87e-17
32 1.33 4.33e+01 1.87e+00 2.01e+03 3.30e+01 2.91e-17
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

Table 3.6: Stability of the flat tree based CALU_PRRP factorization of a practical matrix (Foster) on
which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

64
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

32
32 1.33 4.33e+01 1.87e+00 2.01e+03 3.300e+01 2.91e-17
16 1.33 2.20e+01 1.87e+00 2.03e+03 1.70e+01 4.80e-17
8 1.33 1.13e+01 1.87e+00 2.04e+03 9.00e+00 6.07e-17

Table 3.7: Stability of the binary tree based CALU_PRRP factorization of a practical matrix (Foster) on
which GEPP fails.
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for a matrix of size 2048, a parameter h = 0.3, with a panel of size b = 128, the flat tree based CALU
gives a growth factor of 1098. With a number of processors P = 64 and a panel of size b = 16, the
binary tree based CALU also gives a growth factor of 1098. Tables 3.8 and 3.9 present results for the lin-
ear solver using the CALU_PRRP factorization for a Wright matrix of size 2048. For the flat tree based
CALU_PRRP, the size of the panel is varying from 8 to 128. For the binary tree based CALU_PRRP,
the number of processors is varying from 32 to 128 and the size of the panel from 16 to 64 such that the
number of rows in the leaf nodes is equal or bigger than two times the size of the panel. The obtained
results, show that CALU_PRRP gives a modest growth factor equal to 1 for this practical matrix.

n b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
64 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
32 1 3.25e+00 8.00e+00 2.05e+00 2.02e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

Table 3.8: Stability of the flat tree based CALU_PRRP factorization of a practical matrix (Wright) on
which GEPP fails.

n P b gW ||U ||1 ||U−1||1 ||L||1 ||L−1||1 ||PA−LU ||F
||A||F

2048

128 8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

64
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

32
32 1 3.25e+00 8.00e+00 2.05e+00 2.02e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.18e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 2.47e+00 1.26e-16

Table 3.9: Stability of the binary tree based CALU_PRRP factorization of a practical matrix (Wright)
on which GEPP fails.

All the previous tests show that the CALU_PRRP factorization is very stable for random and more
special matrices, and it also gives modest growth factor for the pathological matrices on which CALU
fails, this is for both binary tree and flat tree based CALU_PRRP.

3.3 Cost analysis of CALU_PRRP

In this section we focus on the parallel CALU_PRRP algorithm based on a binary reduction tree,
and we show that it minimizes the communication between different processors of a parallel computer,
modulo polylogarithmic factors. For this, we use known lower bounds on the communication performed
during the LU factorization of a dense matrix of size n× n, which are

# words_moved = Ω

(
n3√
M

)
, (3.5)

# messages = Ω

(
n3

M
3
2

)
, (3.6)
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where # words_moved refers to the volume of communication, # messages refers to the number of mes-
sages exchanged, and M refers to the size of the memory (the fast memory in the sequential case, or the
memory per processor in the parallel case). These lower bounds were first introduced for dense matrix
multiplication [69], [72], generalized later to LU factorization [38], and then to almost all direct linear
algebra [15].

Note that these lower bounds apply to algorithms based on orthogonal transformations under certain
conditions [15]. However, this is not relevant to our case, since CALU_PRRP uses orthogonal transfor-
mations that need communication only to select pivot rows, while the update of the trailing matrix is still
performed as in the classic LU factorization algorithm. We note that at the end of the preprocessing step,
each processor working on the panel has the final set of b pivot rows. Thus all these processors perform
in parallel a QR factorization without pivoting on the transpose of the final b× b block. After this phase
each processor below the diagonal has the R11 factor, computes his chunk of R12, and finally computes
his block of L21 factor as detailed previously. Therefore the QR factorization applied to the transpose of
the panel does not imply any communication. Hence the lower bounds from equations (3.5) and, (3.6)
are valid for CALU_PRRP.

More details about the parallel block factorization of a panel using CALU_PRRP are presented in
Algorithm 11. We consider a panel is of sizem×b. It is partitioned over a set of P processors using a 1-
D block row layout. Based on strong rank revealing QR factorization, the tournament pivoting identifies
b pivot rows using a reduction tree of height H . Assuming that the tournament pivoting is performed in
an all-reduce manner, we ensure that at the end of the preprocessing step all the processors have the final
result. Hence all the processors participate at all the levels of the reduction. We note that Algorithm 11
does not include the Gaussian elimination step that is applied to the b× b diagonal block to complete the
LU factorization.

We estimate now the cost of computing in parallel the CALU_PRRP factorization of a matrix A of
size m × n. The matrix is distributed on a grid of P = Pr × Pc processors using a two-dimensional
(2D) block cyclic layout. We use the following performance model. Let γ be the cost of performing a
floating point operation, and let α + βw be the cost of sending a message of size w words, where α is
the latency cost and β is the inverse of the bandwidth. Then, the total running time of an algorithm is
estimated to be

α · (# messages) + β · (# words_moved) + γ · (# flops),

where #messages, #words_moved, and #flops are counted along the critical path of the algorithm.

Table 3.10 displays the performance estimation of parallel CALU_PRRP (a detailed estimation of
the counts is presented in Appendix B .2). It also recalls the performance of two existing algorithms,
the PDGETRF routine from ScaLAPACK which implements GEPP, and the CALU factorization. All
three algorithms have the same volume of communication, since it is known that PDGETRF already
minimizes the volume of communication. However, the number of messages of both CALU_PRRP
and CALU is smaller by a factor of the order of b than the number of messages of PDGETRF. This
improvement is achieved thanks to tournament pivoting. In fact, partial pivoting, as used in the routine
PDGETRF, leads to an O(n logP ) number of messages, and because of this, GEPP cannot minimize
the number of messages.
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Algorithm 11: Parallel TSLU_PRRP: block phase

Require S is the set of P processors, i ∈ S is my processor’s index.
Require All-reduction tree with height H .
Require The m× b input matrix A(:, 1 : b) is distributed using a 1-D block row layout; Ai,0 is
the block of rows belonging to my processor i.
Compute ATi,0Πi,0 = Qi,0Ri,0 using Strong Rank Revealing QR.
for k from 1 to H do

if I have any neighbors in the all-reduction tree at this level then
Let q be the number of neighbors.
Send (ΠT

i,k−1Ai,k−1)(1 : b, 1 : b) to each neighbor j
Receive (ΠT

j,k−1Aj,k−1)(1 : b, 1 : b) from each neighbor j
Form the matrix Ai,k of size qb× b by stacking the matrices (ΠT

j,k−1Aj,k−1)(1 : b, 1 : b)

from all neighbors.
Compute ATi,kΠi,k = Qi,kRi,k using Strong Rank Revealing QR.

else
ATi,k := ATi,k−1Πi,k−1
Πi,k := Ib×b

Compute the final permutation Π̄ = Π̄H . . . Π̄1Π̄0, where Π̄i represents the permutation matrix
corresponding to each level in the reduction tree, formed by the permutation matrices of the
nodes at this level extended by appropriate identity matrices to the dimension m×m.
Compute the QR factorization with no pivoting of (AT Π̄)(1 : b, :) = QR = Q [R11R12]

Compute the L21 factor based on the previous QR factorization L21 = RT12(R
−1
11 )T

Ensure Ri,H is the R11 factor obtained at the end of the preprocessing step, for all processors
i ∈ S.

Compared to CALU, CALU_PRRP sends a small factor of less messages (depending on Pr and Pc)
and performs 1

Pr

(
2mn− n2

)
b+ nb2

3 (5 log2 Pr + 1) more flops (which represents a lower order term).
This is because CALU_PRRP uses the strong RRQR factorization at every node of the reduction tree of
every panel factorization, while CALU uses GEPP.

We show now that CALU_PRRP is optimal in terms of communication. We choose optimal values
of the parameters Pr, Pc, and b, as used in CAQR [38] and CALU [60], that is,

Pr =

√
mP

n
, Pc =

√
nP

m
and b =

1

4
log−2

(√
mP

n

)
·
√
mn

P
= log−2

(
mP

n

)
·
√
mn

P
.

For a square matrix of size n× n, the optimal parameters are,

Pr =
√
P , Pc =

√
P and b =

1

4
log−2

(√
P
)
· n√

P
= log−2 (P ) · n√

P
.

Table 3.11 presents the performance estimation of parallel CALU_PRRP and parallel CALU when
using the optimal layout. It also recalls the lower bounds on communication from equations (3.5) and
(3.6) when the size of the memory per processor is on the order of (n2/P ). Both CALU_PRRP and
CALU attain the lower bounds on the number of words and on the number of messages, modulo poly-
logarithmic factors. Note that the optimal layout allows to reduce communication, while keeping the
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Parallel CALU_PRRP
# messages 3n

b log2 Pr + 2n
b log2 Pc

# words
(
nb+ 3

2
n2

Pc

)
log2 Pr + 1

Pr

(
mn− n2

2

)
log2 Pc

# flops 1
P

(
mn2 − n3

3

)
+ 2

Pr

(
2mn− n2

)
b+ n2b

2Pc
+ 10nb2

3 log2 Pr

Parallel CALU
# messages 3n

b log2 Pr + 3n
b log2 Pc

# words
(
nb+ 3n2

2Pc

)
log2 Pr + 1

Pr

(
mn− n2

2

)
log2 Pc

# flops 1
P

(
mn2 − n3

3

)
+ 1

Pr

(
2mn− n2

)
b+ n2b

2Pc
+ nb2

3 (5 log2 Pr − 1)

PDGETRF
# messages 2n

(
1 + 2

b

)
log2 Pr + 3n

b log2 Pc

# words
(
nb
2 + 3n2

2Pc

)
log2 Pr + log2 Pc

1
Pr

(
mn− n2

2

)
# flops 1

P

(
mn2 − n3

3

)
+ 1

Pr

(
mn− n2

2

)
b+ n2b

2Pc

Table 3.10: Performance estimation of parallel (binary tree based) CALU_PRRP, parallel CALU, and
PDGETRF routine when factoring an m× n matrix, m ≥ n. The input matrix is distributed using a 2D
block cyclic layout on a Pr × Pc grid of processors. Some lower order terms are omitted.

number of extra floating point operations performed due to tournament pivoting as a lower order term.
While in this section we focused on minimizing communication between the processors of a parallel
computer, it is straightforward to show that the usage of a flat tree during tournament pivoting allows
CALU_PRRP to minimize communication between different levels of the memory hierarchy in the se-
quential case.

Parallel CALU_PRRP with optimal layout Lower bound
# messages 5

2

√
P log3 P Ω(

√
P )

# words n2
√
P

(
1
2 log−1 P + logP

)
Ω( n

2
√
P

)

# flops 1
P

2n3

3 + 5n3

2P log2 P
+ 5n3

3P log3 P
1
P

2n3

3

Parallel CALU with optimal layout Lower bound
# messages 3

√
P log3 P Ω(

√
P )

# words n2
√
P

(
1
2 log−1 P + logP

)
Ω( n

2
√
P

)

# flops 1
P

2n3

3 + 3n3

2P log2 P
+ 5n3

6P log3 P
1
P

2n3

3

Table 3.11: Performance estimation of parallel (binary tree based) CALU_PRRP and CALU with an
optimal layout. The matrix factored is of size n× n. Some lower-order terms are omitted.

3.4 Less stable factorizations that can also minimize communica-
tion

In this section, we present briefly two alternative algorithms that are based on panel strong RRQR
pivoting and that are conceived such that they can minimize communication. But we will see that they
can be unstable in practice. These algorithms are also based on block algorithms, that factor the input
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matrix by traversing panels of size b. The main difference between them and CALU_PRRP is the panel
factorization, which is performed only once in the alternative algorithms.

We present first a parallel alternative algorithm, which we refer to as block parallel LU_PRRP. At
each step of the block factorization, the panel is partitioned into P block-rows [A0;A1; . . . ;AP−1]. The
blocks below the diagonal b × b block of the current panel are eliminated by performing a binary tree
of strong RRQR factorizations. At the leaves of the tree, the elements below the diagonal block of each
block Ai are eliminated using strong RRQR. The elimination of each such block row is followed by the
update of the corresponding block row of the trailing matrix.

The algorithm continues by performing the strong RRQR factorization of pairs of b×b blocks stacked
atop one another, until all the blocks below the diagonal block are eliminated and the corresponding trail-
ing matrices are updated. The algebra of the block parallel LU_PRRP algorithm is detailed in Appendix
C, while in Figure 3.5 we illustrate one step of the factorization by using arrow notation, where the
function g(Aij) computes a strong RRQR on the matrix ATij and updates the trailing matrix in the same
step.

A30 g(A30)

A20 g(A20)

A10 g(A10)

A00 g(A00)

g(A11)

g(A01)

g(A02)

Figure 3.5: Block parallel LU_PRRP

A sequential version of the algorithm is based on the usage of a flat tree, and we refer to this algo-
rithm as block pairwise LU_PRRP. Using the arrow notation, the Figure 3.6 illustrates the elimination
of one panel.

A30

A20

A10

A00 g(A00) g(A01) g(A02) g(A03)

Figure 3.6: Block pairwise LU_PRRP

The block parallel LU_PRRP and the block pairwise LU_PRRP algorithms have similarities with
the block parallel pivoting and the block pairwise pivoting algorithms. These two latter algorithms
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were shown to be potentially unstable in [60]. There is a main difference between all these alterna-
tive algorithms and algorithms that compute a classic LU factorization as GEPP, LU_PRRP, and their
communication avoiding variants. The alternative algorithms compute a factorization in the form of a
product of lower triangular factors and an upper triangular factor. And the elimination of each column
leads to a rank update of the trailing matrix larger than one. It is thought in [92] that the rank-1 update
property of algorithms that compute an LU factorization inhibits potential element growth during the
factorization, while a large rank update might lead to an unstable factorization.

Note however that at each step of the factorization, block parallel and block pairwise LU_PRRP use
at each level of the reduction tree original rows of the active matrix. Block parallel pivoting and block
pairwise pivoting algorithms use U factors previously computed to achieve the factorization, and this
could potentially lead to a faster propagation of ill-conditioning.

Figure 3.7: Growth factor of block parallel LU_PRRP for varying block size b and number of processors
P .

The upper bound of the growth factor of both block parallel and block pairwise LU_PRRP is
(1 + τb)(n/b)−1, since for every panel factorization, a row is updated only once. Hence they have the
same bounds as the LU_PRRP factorization, and smaller than that of the CALU_PRRP factorization.
Despite this, they are less stable than the CALU_PRRP factorization. Figures 3.7 and 3.8 display the
growth factor of block parallel LU_PRRP and block pairwise LU_PRRP for matrices following a normal
distribution. In figure 3.7, the number of processors P working on the panel is partitioned is varying
from 16 to 32, and the block size b is varying from 2 to 16. The matrix size varies from 64 to 2048, but
we have observed the same behavior for matrices of size up to 8192. When the number of processors P
is equal to 1, the block parallel LU_PRRP corresponds to the LU_PRRP factorization. The results show
that there are values of P and b for which this method can be very unstable. For the sizes of matrices
tested, when b is chosen such that the blocks at the leaves of the reduction tree have more than 2b rows,
the number of processors P has an important impact, the growth factor increases with increasing P , and
the method is unstable.



3.5. CONCLUSION 59

In Figure 3.8, the matrix size varies from 1024 to 8192. For a given matrix size, the growth factor
increases with decreasing the size of the panel b, as one could expect. We note that the growth factor
of block pairwise LU_PRRP is larger than that obtained with the CALU_PRRP factorization based on
a flat tree scheme presented in Table 6. But it stays smaller than the size of the matrix n for different
panel sizes. Hence this method is more stable than block parallel LU_PRRP. Further investigations are
required to conclude on the stability of these methods.

Figure 3.8: Growth factor of block pairwise LU_PRRP for varying matrix size and varying block size b.

3.5 Conclusion

In this chapter we have introduced CALU_PRRP, a communication avoiding LU algorithm. The
main motivation behind the design of such an algorithm is the improvement of the numerical stability of
CALU, the communication avoiding version of GEPP, especially in terms of worst case growth factor.
The upper bound of the growth factor of CALU is worst than that of Gaussian elimination with partial
pivoting.

The CALU_PRRP is the communication avoiding version of LU_PRRP, the algorithm introduced
in chapter 2. This algorithm is performed in two main phases: the first phase produces a block LU
factorization, which is completed by Gaussian eliminations with partial pivoting on the diagonal blocks
to compute block rows of U and diagonal blocks of L. Thus the factorization is organized as a product
of L factors and an U factor. In this chapter we focus on the first phase, which is also performed in two
steps, the preprocessing step that aims at finding a "good" set of pivot rows for the panel factorization
based on strong rank revealing pivoting, then the update of the trailing matrix.
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To discuss the numerical stability of the CALU_PRRP algorithm, we have first studied the similar-
ities between CALU_PRRP and LU_PRRP. Thus in exact arithmetic, performing CALU_PRRP on a
given matrix A is equivalent to performing LU_PRRP on a larger and more sparse matrix formed by
blocks of A. This proof was done in a similar way to that in [60]. From the previous equivalence we
derive an upper bound of the growth factor of CALU_PRRP. We note that CALU_PRRP is more sta-
ble in terms of worst case growth factor than CALU. More importantly, there are cases of interest for
which the upper bound of the growth factor of CALU_PRRP is smaller than that of GEPP. Extensive
experiments show that CALU_PRRP is very stable in practice and leads to results of the same order of
magnitude as GEPP, sometimes even better.

We note that recently Toledo et al have stated in [100] that TSLU can produce large growth factor
and becomes unstable when the block of columns is singular and large (e.g., RIS and Fiedler). We note
that the authors used communication avoiding LU as a building block in their block Aasen’s algorithm.
We tested our method on these matrices and we got modest growth comparing to that obtained with
CALU. Nevertheless we think that further investigations should be done in this direction. Hence while
LU_PRRP easily overcomes the rank deficiency since it is based on strong rank revealing QR, the same
conclusion is not straightforward in the case of CALU_PRRP because of the use of tournament pivoting.

Our future work focuses on two main directions. The first direction investigates the design of a com-
munication avoiding algorithm that has smaller bounds on the growth factor than that of GEPP in gen-
eral. We note that this implies a certain bound on the additional swaps performed during the strong rank
revealing pivoting. The second direction consists of estimating the performance of CALU_PRRP on
parallel machines based on multicore processors, and comparing it with the performance of CALU. We
mention here that the implementation of CALU_PRRP is an ongoing work but it is still unachieved. Thus
we were unable to give performance results of our algorithm in this work. We expect that CALU_PRRP
would be better than the corresponding routine in ScaLAPACK, but we do not think that it will outper-
form CALU since it performs more floating-point operations because of the QR factorizations.



Chapter 4

Avoiding communication through a multilevel
LU factorization

4.1 Introduction

Due to the ubiquity of multicore processors, solvers should be adapted to better exploit the hierar-
chical structure of modern architectures, where the tendency is towards multiple levels of parallelism.
Thus with the increasing complexity of nodes, it is important to exploit multiple levels of parallelism
even within a single compute node. In this chapter we present a hierarchical algorithm for the LU factor-
ization of a dense matrix. We aim at ensuring a good performance. For that reason we need to adjust the
classical algorithms to be more adapted to these modern architectures that expose parallelism at different
levels in the hierarchy. The performance of our algorithm relies on its ability to minimize the amount of
communication and synchronization at each level of the hierarchy of parallelism. In essence we adapt
the algorithm to the machine architecture. We believe that such an approach is appropriate for petascale
and exascale computers that are hierarchical in structure.

A good example of machine with two levels of parallelism is a computer formed by nodes of multi-
core processors. With respect to these two levels of parallelism, this kind of machine exhibits two levels
of communication: inter-node communication, that is communication between two or more nodes, and
intra-node communication, that is communication performed inside one node. To take advantage of
such an architecture, a given algorithm should be tailored considering the specific features of the archi-
tecture at the design level. One way to adapt an existing algorithm to such an architecture is the use of
hybrid programming model. For example,in algorithms based on MPI programming model, a possible
adaptation consists of identifying sequential routines running on a node, and replacing them by parallel
routines based on multithreaded programming model. Such a hybrid approach, which combines MPI
and threads, has been utilized in several applications. However, it can have several drawbacks such
as increasing the amount of communication and synchronization between MPI processes or between
threads, load imbalance inside each node, and the difficulty to manually tune the different parameters of
the algorithm. Therefore a simple adaptation of an existing algorithm can lead to an important decrease
of the overall performance on these modern architectures.

Motivated by the increasing gap between the cost of communication and the cost of computa-
tion [57], a new class of algorithms has been introduced in the recent years for dense linear algebra,
referred to as communication avoiding algorithms. These algorithms were first presented in the con-
text of dense LU factorization (CALU) [60] and QR factorization (CAQR) [37]. The comminication

61
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avoiding algorithms aim at minimizing the cost of communication between the different processors of
a compute system in the parallel case (the memory hierarchy is not taken into account in that case),
and between fast and slow memory of one processor in the sequential case. These algorithms were
shown to be as stable as the corresponding classic algorithms as for example those implemented in
LAPACK [13] and ScaLAPACK [22]. They also exhibited a good performance on distributed memory
machines [37, 60], on multicore processors [41], and on grids [10]. The distributed version of CALU
and CAQR are implemented using MPI processes. For this version, the input matrix is partitioned over
processors. And during the different steps of the factorization, the processors communicate via MPI
messages. The multithreaded version of CALU [41] is based on threads. It is adapted for multicore
processors. For this version, each operation applied to a block is identified as a task, which is scheduled
statically or dynamically to the available cores. However, none of these algorithms has addressed the
more realistic model of today’s hierarchical parallel computers, which combine both memory hierarchy
and parallelism hierarchy.

In this chapter we introduce two hierarchical algorithms computing the LU factorization of a dense
matrix. These algorithms are adapted for computer systems with multiple levels of parallelism, and
strongly rely on the CALU routine [59, 60]. Hence the first algorithm is based on bi-dimensional re-
cursive calls to CALU, since CALU is recursively performed on blocks of a given panel. Therefore it
can be called 2D-multilevel CALU. While the second algorithm is based on recursive calls to CALU
on the entire panel. Thus it illustrates a 1D-multilevel CALU algorithm, where the recursion is uni-
dimensional. For simplicity, throughout this work, we refer to the first algorithm as multilevel CALU
(ML-CALU) and to the second algorithm as recursive CALU (Rec-CALU). We recall that the initial
1-level CALU algorithm is described in details in section 1.3.5.

Both multilevel CALU (ML-CALU) and recursive CALU (Rec-CALU) use the same approach
as CALU, and they are based on tournament pivoting and an optimal distribution of the input matrix
among compute units. Hence the main goal is to reduce the communication at each level of the hierar-
chy. For multilevel CALU, each building block is itself a recursive function that allows to be optimal at
the next level of the hierarchy of parallelism. For the panel factorization, at each node of the reduction
tree of tournament pivoting, ML-CALU is used instead of GEPP to select pivot rows, using an optimal
layout adapted to the current level of parallelism. Hence it minimizes the communication in terms of
both bandwidth and latency at each level of the hierarchy, and it is based on a multilevel tournament piv-
oting strategy. While recursive CALU only minimizes the volume of communication but the pivoting
strategy used is tournament pivoting. In fact recursive CALU recursively calls CALU to perform the
factorization of the entire current panel, which means that at the deepest level of the recursion, the com-
munication is performed along all the hierarchy. We also model the performance of our two approaches
by computing the number of floating-point operations, the volume of communication, and the number
of messages exchanged on a computer system with two levels of parallelism. We show that multilevel
CALU is optimal at every level of the hierarchy and attains the lower bounds on communication of the
LU factorization (modulo polylogarithmic factors). The lower bounds on communication for the multi-
plication of two dense matrices were introduced in [70, 72] and were shown to apply to LU factorization
in [37]. We discuss how these bounds can be used in the case of two levels of parallelism under certain
conditions on the memory constraints. Due to the multiple calls to CALU, both multilevel CALU and
recursive CALU perform additional flops compared to 1-level CALU. It is known in the literature that
in some cases, these extra flops can degrade the performance of a recursive algorithm (see for exam-
ple [48]). However, for two levels of parallelism, the choice of an optimal layout at each level of the
hierarchy allows to keep the extra flops as a lower order term. Furthermore, while recursive CALU has



4.2. LU FACTORIZATION SUITABLE FOR HIERARCHICAL COMPUTER SYSTEMS 63

the same stability as 1-level CALU, multilevel CALU may change the stability of the 1-level CALU.
We argue in section 4.2.2 through numerical experiments that 2-level CALU and 3-level CALU specif-
ically studied here are stable in practice. We also show that multilevel CALU is up to 4.5 times faster
than the corresponding routine PDGETRF from ScaLAPACK tested in multithreaded mode on a cluster
of multicore processors.

Note that, in the following, multilevel CALU refers to bi-dimensional (2D) multilevel CALU and
recursive CALU refers to uni-dimensional (1D) multilevel CALU, regarding the recursion pattern used.
Note also that for simplicity, i-level CALU refers to i-level multilevel CALU and i-recursive CALU
refers to i-level recursive CALU. Thus for example, by 2-level CALU we mean 2-level multilevel
CALU.

The remainder of the chapter is organized as follows. We start by introducing the multilevel CALU
algorithm in section 4.2 and discussing its stability in section 4.2.2, where we provide experiments
showing that multilevel CALU is stable in practice (at least up to three levels of parallelism). Then we
present the recursive CALU algorithm in section 4.3. In section 4.4, we analyze the cost of respectively
2-recursive CALU and 2-level CALU. Then we show through a set of experiments that multilevel
CALU (2 levels) outperforms the corresponding routine PDGETRF from ScaLAPACK (section 4.5).
Finally we present our conclusions ans final remarks in section 4.6.

Note that the multilevel CALU algorithm and the evaluation of the performance of 2-level CALU
on a multi-core cluster system was performed as a collaboration with Simplice Donfack and the text
presented in section 4.2 and section 4.5 is in part from [A1].

4.2 LU factorization suitable for hierarchical computer systems

In this section we consider a hierarchical computer system with l levels of parallelism. Each com-
pute unit at a given level i is formed by Pi−1 compute units of level i− 1. Correspondingly, the memory
associated with a compute unit at level i is formed by the sum of the memories associated with the Pi−1
compute units of level i− 1. Level l is the topmost level and level 1 is the deepest level of the hierarchy
of parallelism. Here we describe our multilevel CALU algorithm and show how it is suitable for such
an architecture. Note that we use such a hierarchical system in the entire chapter.

In this section we introduce a multilevel communication avoiding LU factorization, presented in
Algorithm 12, that is suitable for a hierarchical computer system with l levels of parallelism. Multilevel
CALU aims at minimizing the communication amount at every level of a hierarchical system. Mul-
tilevel CALU is based on a bi-dimensional recursive approach, where at every level of the recursion
optimal parameters are chosen, such as optimal layout and distribution of the matrix over compute units,
optimal reduction tree for tournament pivoting.

Multilevel CALU is applied to a matrix A of size m× n. For simplicity we consider that the input
matrix A is partitioned into blocks of size bl × bl,

A =


A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
...

AM1 AM2 . . . AMN

 ,
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where M = m/bl and N = n/bl. The block size bl and the dimension of the grid Prl × Pcl are
chosen such that the communication at the top level of the hierarchy is minimized, by following the same
approach as for the 1-level CALU algorithm [60]. That is, the blocks of the matrix are distributed among
the Pl compute units using a two-dimensional block cyclic distribution over the two-dimensional grid of
compute units Pl = Prl × Pcl (we will discuss later the values of Prl and Pcl) and tournament pivoting
is based on a binary reduction tree. At each step of the factorization, a block of bl columns (panel) of
L is factored, a block of bl rows of U is computed, and then the trailing submatrix is updated. Each of
these steps is performed by calling recursively functions that will be able to minimize communication at
the next levels of the hierarchy of parallelism.

4.2.1 Multilevel CALU algorithm (2D multilevel CALU)

Algorithm 12 receives as input the matrix A of size m×n, the number of levels of parallelism in the
hierarchy l, and the number of compute units Pl that will be used at the topmost level of the hierarchy
and that are organized as a two-dimensional grid of compute units of size Pl = Prl × Pcl .

Note that Algorithms 12 and 13 do not detail the communication performed during the factoriza-
tion, which is triggered by the distribution of the data. A multilevel CALU algorithm (Algorithm 16),
where we give the details of the communication between the processors is presented in section 5.4.
By abuse of notation, the permutation matrices need to be considered as extended by identity matrices
to the correct dimensions. For simplicity, we also consider that the number of processors are powers of 2.

We describe in more detail now the panel factorization (line 8 of Algorithm 12) computed by using
multilevel TSLU (ML-TSLU), described in Algorithm 13. ML-TSLU is a multilevel version of TSLU,
the panel factorization used in the 1-level CALU algorithm [59]. Let B denote the first panel of size
m × bl, which is partitioned into Prl blocks. As in TSLU, ML-TSLU is performed in two steps. In the
first step, a set of bl pivot rows are selected by using tournament pivoting. In the second step, these rows
are permuted into the first positions of the panel, and then the LU factorization with no pivoting of the
panel is computed. Tournament pivoting uses a reduction operation, where at the leaves of the tree bl
candidate pivot rows are selected from each block BI of B. Then a tournament is performed among the
Prl sets of candidate pivot rows to select the final pivot rows that will be used for the factorization of
the panel. Thus the reduction tree is traversed bottom-up. At each node of the reduction tree, a new set
of candidate pivot rows is selected from the sets of candidate pivot rows of the nodes of the previous
level in the reduction tree. 1-level TSLU uses GEPP as a reduction operator to select a set of candidate
pivot rows. However this means that at the next level of parallelism, the compute units involved in one
GEPP factorization will need to exchange O(bl) messages for each call to GEPP because of the use of
partial pivoting, and hence the number of messages will not be minimized at that level of the hierarchy
of parallelism. While multilevel TSLU (ML-TSLU) selects a set of pivot rows by calling multilevel
CALU at each node of the reaction tree, hence being able to minimize communication cost (modulo
polylogarithmic factors) at the next levels of parallelism. That is, at each level of the reduction tree ev-
ery compute unit from the topmost level calls multilevel CALU on its blocks with adapted parameters
and data layout. At the deepest level of recursion (level 1), 1-level CALU is called. Note that in the
algorithms we refer to 1-level CALU as CALU.

After the panel factorization, the trailing submatrix is updated using a multilevel solve for a trian-
gular system of equations (referred to as dtrsm) and a multilevel algorithm for multiplying two matrices
(referred to as dgemm). We do not detail here these algorithms, but one should use recursive versions of
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Cannon [27], or SUMMA [53], or a cache oblivious approach [51] if the transfer of data across different
levels of the memory hierarchy is to be minimized as well (with appropriate data storages).

In this chapter we will estimate the performance of the multilevel CALU algorithm on a machine
with two levels of parallelism. In the next chapter we will estimate the running time of multilevel
CALU in a hierarchical platform, and there we will use multilevel Cannon to model the matrix-matrix
computations, this algorithm is introduced later in section 5.3.

Algorithm 12: ML-CALU: multilevel communication avoiding LU factorization
Input: m× n matrix A, level of parallelism l in the hierarchy, block size bl, number of compute
units Pl = Prl × Pcl
if l == 1 then

[Πl, Ll, Ul] = CALU(A, bl, Pl)

else
M = m/bl, N = n/bl
for K = 1 to N do

[ΠKK , LK:M,K , UKK ] = ML− TSLU(AK:M,K , l, bl, Prl)
/* Apply permutation and compute block row of U */
AK:M,: = ΠKKAK:M,:

for each compute unit at level l owning a block AK,J , J = K + 1 to N in parallel do
UK,J = L−1KKAK,J
/* call multilevel dtrsm on Pcl compute units */

/* Update the trailing submatrix */
for each compute unit at level l owning a block AI,J of the trailing submatrix,
I, J = K + 1 to M,N in parallel do

AI,J = AI,J − LI,KUK,J
/* call multilevel dgemm on Pl compute units */

Figure 4.1 illustrates the first step of multilevel TSLU on a machine with two levels of parallelism
that is each compute unit has several cores. We consider P2 nodes (3 are presented in the figure), each
having P1 cores (P1 = 6 in the figure). There are two kinds of communication: the communication
between the different nodes, which corresponds to the topmost reduction tree and the synchronization
between the different cores inside a node, which corresponds to the internal reduction trees. Hence the
figure presents two levels of reduction. The topmost reduction tree allows compute units to synchronize
and perform inter-node communication. The deepest reduction trees represent the communication inside
each compute unit.

As we can see in Figure 4.1, at the deepest level of the parallelism, each block of size (m/P2)× b2
assigned to one compute unit is again partitioned into block columns of size b1 (b2 = 3b1 in the figure)
and 1-level CALU is performed on these blocks by applying some steps of 1-level TSLU to panels of
size b1. These blocks correspond to the matrices located on the leaves of the topmost reduction tree.
At the end of this step, b2 candidate pivot rows are selected from each block. Then they are merged
tow by two,and 1-level CALU is performed on blocks of size 2b2 × b2 using a panel of size b1. Here
again b1 candidate pivot rows are selected from each panel and at the end b2 = 3b1 pivot rows are
selected from the entire block. Then the final set of b2 pivot rows is moved to the first position and the
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Algorithm 13: ML-TSLU: multilevel panel factorization

Input: panel B, level of parallelism l in the hierarchy, block size bl, number of compute units Prl
Partition B on Prl blocks /* Here B = (BT

1 , B
T
2 , · · · , BT

Prl
)T */

/*Each compute unit owns a block BI*/
for each block BI in parallel do

[ΠI , LI , UI ] = ML-CALU(BI , l − 1, bl−1, Pl−1)
Let BI be formed by the pivot rows, BI = (ΠIBI)(1 : bl, :)

for level = 1 to log2(Prl) do
for each block BI in parallel do

if ((I − 1) mod 2level−1 == 0) then
[ΠI , LI , UI ] = ML-CALU([BI ;BI+2level−1 ], l − 1, bl−1, Pl−1)
Let BI be formed by the pivot rows, BI = (ΠI [BI ;BI+2level−1 ])(1 : bl, :)

Let ΠKK be the permutation performed for this panel
/* Compute block column of L */
for each block BI in parallel do

LI = BIU1(1 : bl, :)
−1 /* using multilevel dtrsm on Prl compute units */

LU factorization with no pivoting of the panel is performed. We note that at the second level we select
blocks of size b1 × b1 that we extend to blocks of size b1 × b2, which are used as pivots for the entire
panel. We show in the section 4.2.2 that this could affect the numerical stability of multilevel CALU
especially beyond 2 or 3 levels of parallelism.

4.2.2 Numerical stability of multilevel CALU

We discuss here the numerical stability of multilevel CALU factorization. In particular we focus on
the 2-level CALU case. Note that we were unable to derive a theoretical upper bound for the growth
factor of multilevel CALU. However the entire experiment set we performed suggests that multilevel
CALU is stable in practice, at least up to three levels of parallelism. We also present experimental
results for both 2-level CALU and 3-level CALU on random matrices and a set of special matrices
presented in Appendix A.

On the numerical stability of the 2-level CALU case

In this section we show that there is a relation between 2-level CALU and Gaussian elimination
with partial pivoting at each node of the reduction tree. However, we are not able to find a direct rela-
tion between these blocks along the reduction tree. Thus multilevel CALU does not allow to obtain a
bounded growth factor. Here we present our approach to make conclusion about the numerical stability
of multilevel CALU.

To address the numerical stability of the 2-level CALU factorization, we consider the matrix A
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Figure 4.1: First step of multilevel TSLU on a machine with two levels of parallelism

partitioned as follows,

A =



A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

A51 A52 A53

A61 A62 A63

 ,
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where A11, A12, A21, A22, A41, A42, A51 and A52 are of size b1 × b1, A31, A32, A61, and A62 are of
size (m2 − 2b1) × b1, A13, A23, A43, and A53 are of size b1 × (n − 2b1), and A33 and A63 are of size
(m2 − 2b1)× (n− 2b1).

We first focus on 2-level TSLU, that is the factorization of the panel. We show that the reduction
operation performed by 2-level TSLU at each block located at a node of the global reduction tree is
equivalent to the reduction operation performed by 1-level TSLU on a larger block. Hence as stated
before, there is an equivalence between 1-level CALU and Gaussian elimination with partial pivoting in
exact arithmetic. However, the entire preprocessing phases are not equivalent. Thus the different levels
of the global reduction tree are decoupled. Thereby we were unable to derive a bound on the blocks
which are not involved in the final reduction operation.

We suppose that b2 = 2b1, and we perform 2-level CALU on the matrix A. We first consider the
panel A(:, 1 : b2), and we apply 2-level TSLU on that panel. That is, we perform 1-level CALU on the
blocks located at the leaves of the global reduction tree,

 A11 A12

A21 A22

A31 A32

 and
 A41 A42

A51 A52

A61 A62

 ,
using a panel of size b1. For that we perform two 1-level TSLUs on the blocks A(1 : m

2 − 2b1, 1 : b1)
and A(m2 − 2b1 + 1 : m, 1 : b1). Here, without loss of generality, we consider the simple case where the
reduction tree used to apply 1-level TSLU is of height one.

A31

A21

A11

↗
↘

A21

-

�
��7

Ā11

A61

A51

A41

↗
↘

A51

-

�
��7

Ā41

We first perform Gaussian elimination with partial pivoting (GEPP) on the blocks [A21;A31] and
[A51;A61]. At this step we suppose that the pivots are the diagonal elements of the blocks A21 and A51.
Then GEPP is applied to the blocks [A11;A21] and [A41;A51]. After this step, we refer to the pivot
rows selected for the factorization of the first panel of each block as Ā11 and Ā41. In order to use the
schur complement notation for the global trailing matrix, here we note Ãij an updated block and ˜̄Aij a
permuted and updated block. We note Π0 the computed permutation. After applying Π0 to the original
matrix, we obtain:

(Π0A)(1 : (
m

2
− 2b1), 1 : b2) =

 Ā11 Ā12

Ā21 Ā22

A31 A32

 =

 L̄11

L̄21 Ib1
L̄31 Im

2
−2b1

 ·
 Ū11 Ū12

˜̄A22

Ã32


(Π0A)((

m

2
− 2b1) + 1 : m, 1 : b2) =

 Ā41 Ā42

Ā51 Ā52

A61 A62

 =

 L̄41

L̄51 Ib1
L̄61 Im

2
−2b1

 ·
 Ū41 Ū42

˜̄A52

Ã62

 .
Then a second 1-level TSLU is applied to the panels [ ˜̄A22; Ã32] and [ ˜̄A52; Ã62] with respect to the
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following reduction trees, where we suppose that the pivot rows are already on the first positions,

Ã32

˜̄A22

↗
↘ ˜̄A22

Ã62

˜̄A52

↗
↘ ˜̄A52

Thus for the second panels, the b1 selected pivot rows from each block are ˜̄A22 and ˜̄A52. For each
block, these 2 steps of 1-level TSLU are equivalent to some b1 steps of GEPP which involves independent
factorizations of submatrices of dimension b1(H1 + 1), where H1 is the height of the reduction tree at
the deepest level of parallelism. We note that each independent factorization updates only one block of
the trailing matrix. Moreover, the update is only performed on the trailing matrix corresponding to the
block where 1-level CALU is applied, and not the entire trailing matrix.
Let’s consider the block,

A1 = (Π0A)(1 : (
m

2
− 2b1), 1 : n) =

 Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

A31 A32 A33

 ,
and the following matrices:

(1) :

 Ā11 Ā12 Ā13

A21 A21

−A31 A32 A33

 , (2) :

[
Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

]
, and (3) :

[
˜̄A22

˜̄A23
˜̄A32

˜̄A33

]
.

The blocks ˜̄A22 and ˜̄A23 are obtained after performing b1 steps of GEPP on the matrix (2) (or
directly on the matrix A1, but we define here matrix (2) to detail the different steps). The blocks ˜̄A32

and ˜̄A33 are obtained after performing 2 b1 steps of GEPP on the matrix (1). These independent GEPP
factorizations correspond to the first 1-level TSLU of the 1-level CALU factorization applied to A1.
Then b1 steps of GEPP are applied to the matrix (3), which correspond to the second 1-level TSLU
factorization performed on A1. At this level, as described before, we suppose that the pivot rows are
already on the first positions ˜̄A22. The different GEPP steps detailed previously could be applied to the
following matrix,

G1 =


Ā11 Ā12 Ā13

A21 A21

Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

−A31 A32 A33

 ,

G1 =


L̄11

A21Ū
−1
11 L21

L̄11

L̄21
˜̄L22

−L31 L̃32 Im
2
−2b2

 .

Ū11 Ū12 Ū13

U21 −L−121 A21Ū
−1
11 Ū12 −L−121 A21Ū

−1
11 Ū13

Ū11 Ū12 Ū13
˜̄U22

˜̄U23

Ãs33

 .
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Then applying 2 steps of 1-level CALU with a panel of size b1 to the block A1 is equivalent to
performing 4 × b1 steps of GEPP on the matrix G1. This reasoning applies to each block located at a
node of the topmost reduction tree. Thus a matrix G2 similar to G1 can be derived for the second block.

At the second level of the topmost reduction tree, the two b2× b2 blocks formed by the selected can-
didate pivot rows are merged, and again 1-level CALU is performed on the resulting 2b2× b2 block. We
note Π1 the permutation computed during this step. It is extended by the appropriate identity matrices
to the correct dimension.

[
(Π0Π1A)(1 : b2, 1 : b2)

(Π0Π1A)(m2 − 2b1 + 1 : m2 − 2b1 + 1 + b2, 1 : b2)

]
=


Ā11 Ā12

Ā21 Ā22

Ā41 Ā42

Ā51 Ā52

 ,
We first perform 1-level TSLU on the first panel [Ā11; Ā21; Ā41; Ā51] of size 2b2 × b1 using the

following binary reduction tree.

¯̄A11

Ā41

Ā51

Ā41

Ā11

Ā21

Ā11

At the first level of the reduction tree, we suppose that the pivot rows are on the blocks Ā11 and Ā41.
Then we merge the two blocks Ā11 and Ā41, and apply GEPP to the panel [Ā11; Ā41] to select b1
candidate pivot rows. We note Π2 the permutation computed during this step. Then we obtain:

Π2 ×


Ā11 Ā12

Ā21 Ā22

Ā41 Ā42

Ā51 Ā52

 =


¯̄A11

¯̄A12

Ā21 Ā22
¯̄A41

¯̄A42

Ā51 Ā52

 =


¯̄L11

L̄21 Ib1
¯̄L41 Ib1
L̄51 Ib1

×


¯̄U11
¯̄U12

Ās22
¯̄As42
Ās52

 .

Here we use the same notations as in the previous step and we perform 1-level TSLU on the panel
[ ˜̄A22;

˜̄̄
A42;

˜̄A52] with respect to the following local reduction tree,

˜̄A52

˜̄̄
A42

˜̄A22

↗
↘ ˜̄̄

A42

-

�
��7

˜̄A22



4.2. LU FACTORIZATION SUITABLE FOR HIERARCHICAL COMPUTER SYSTEMS 71

Again the entire 1-level CALU process, that is the two steps of 1-level TSLU, is equivalent, in exact
arithmetic, to performing GEPP on the following matrix, formed by permuted blocks of the input matrix
A,

G =



¯̄A11
¯̄A12

¯̄A13
¯̄A11

¯̄A12
¯̄A13

¯̄A11
¯̄A12

¯̄A13
¯̄A11

¯̄A12
¯̄A13

Ā21 Ā22 Ā23

Ā21 Ā22 Ā23
¯̄A41

¯̄A42
¯̄A43

Ā51 −Ā52 Ā53


.

Note that applying a reduction across the pivot row sets selected from matricesG1 andG2, we are not
able to construct the matrix G. Thus we were unable to make conclusion about the theoretical numerical
stability of 2-level CALU and as a consequence about multilevel CALU. Hence for multilevel CALU
we are not able to derive a bound on the growth factor.

Experimental results

It was shown in [60] that communication avoiding LU is very stable in practice. Since multilevel
CALU is based on a bi-dimensional recursive call to CALU, its stability can be different from that of
CALU. We present here a set of experiments performed on random matrices and a set of special ma-
trices that were also used in [60] for discussing the stability CALU. We present numerical results both
2-level CALU and 3-level CALU. These results show that up to three levels of parallelism multilevel
CALU exhibits a good stability, however further investigation is required if more than three levels of
parallelism are used. The size of the test matrices is varying from 1024 to 8192. We study both the
stability of the LU decomposition and of the linear solver, in terms of growth factor and three different
backward errors: the normwise backward error, the componentwise backward error, and the relative
error ‖PA− LU‖/‖A‖.

2-level CALU

For 2-level CALU we use different combinations of the number of processors P1 and P2 and of
the panel sizes b1 and b2. For all the test matrices, the worst growth factor obtained is of order 102.

Figure 4.2 shows the values of the growth factor gW for binary tree based 2-level CALU for dif-
ferent block sizes b2 and b1 and different number of processors P2 and P1. As explained previously,
the block size b2 determines the size of the panel at the top level of parallelism and the block size b1
determines the size of the panel at the deep level of parallelism, while the number of processors P2 and
P1 determine the number of block rows in which the panels are partitioned at each level of parallelism.
This corresponds respectively to the number of leaves of the top level binary reduction tree, and the deep
level binary reduction tree. In our tests on random matrices, we observe that the curves of the growth
factor lie between 1

5n
2/3 and 2

5n
2/3. We can also note that the growth factor of binary tree based 2-level

CALU has similar behavior to the growth factor of both GEPP and binary tree based 1-level CALU.
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Table 4.1: Stability of the linear solver using binary tree based 2-level CALU, binary tree based CALU,
and GEPP.

n P2 b2 P1 b1 η wb NIR HPL3
Binary tree based 2-level CALU

8192

64
32 4 8 6.1E-14 4.7E-14 2 4.7E-03
16 4 4 5.8E-14 4.5E-14 2 4.9E-03

32
64 4 16 6.4E-14 4.7E-14 2 5.2E-03
32 4 8 6.2E-14 4.6E-14 2 4.4E-03
16 4 4 5.8E-14 4.3E-14 2 4.5E-03

16

128 4 32 6.3E-14 4.4E-14 2 5.2E-03
64 4 16 6.3E-14 4.6E-14 2 4.7E-03
32 4 8 6.2E-14 4.5E-14 2 5.0E-03
16 4 4 5.7E-14 4.3E-14 2 4.9E-03

4096

64 16 4 4 2.9E-14 2.2E-14 2 5.0E-03

32
32 4 8 3.1E-14 2.1E-14 2 5.1E-03
16 4 4 3.0E-14 2.0E-14 2 4.5E-02

16
64 4 16 3.2E-14 2.3E-14 2 5.4E-03
32 4 8 3.1E-14 2.0E-14 2 4.6E-03
16 4 4 2.9E-14 2.1E-14 2 5.1E-03

2048
32 16 4 4 1.5E-14 1.0E-14 1.8 4.5E-03

16
32 4 8 1.5E-14 1.0E-14 2 4.8E-03
16 4 4 1.5E-14 9.9E-15 1.8 4.5E-03

1024 16 16 4 4 7.4E-15 5.2E-15 1.5 4.9E-03
Binary tree based CALU

8192

256
32 - - 6.2E-15 4.1E-14 2 4.5E-03
16 - - 5.8E-15 3.9E-14 2 4.1E-03

128
64 - - 6.1E-15 4.2E-14 2 4.6E-03
32 - - 6.3E-15 4.0E-14 2 4.4E-03
16 - - 5.8E-15 4.0E-14 2 4.3E-03

64

128 - - 5.8E-15 3.6E-14 2 3.9E-03
64 - - 6.2E-15 4.3E-14 2 4.4E-03
32 - - 6.3E-15 4.1E-14 2 4.5E-03
16 - - 6.0E-15 4.1E-14 2 4.2E-03

4096

256 16 - - 3.1E-15 2.1E-14 1.7 4.4E-03

128
32 - - 3.2E-15 2.3E-14 2 5.1E-03
16 - - 3.1E-15 1.8E-14 2 4.0E-03

64
64 - - 3.2E-15 2.1E-14 1.7 4.6E-03
32 - - 3.2E-15 2.2E-14 1.3 4.7E-03
16 - - 3.1E-15 2.0E-14 2 4.3E-03

2048
128 16 - - 1.7E-15 1.1E-14 1.8 5.1E-03

64
32 - - 1.7E-15 1.0E-14 1.6 4.6E-03
16 - - 1.6E-15 1.1E-14 1.8 4.9E-03

1024 64 16 - - 8.7E-16 5.2E-15 1.6 4.7E-03
GEPP

8192 - 3.9E-15 2.6E-14 1.6 2.8E-03
4096 - 2.1E-15 1.4E-14 1.6 2.9E-03
2048 - 1.1E-15 7.4E-15 2 3.4E-03
1024 - 6.6E-16 4.0E-15 2 3.7E-03
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Figure 4.2: Growth factor gW of binary tree based 2-level CALU for random matrices.

Table 4.1 presents results for the linear solver using binary tree based 2-level CALU, together with
binary tree based 1-level CALU and GEPP for the comparison. The normwise backward stability is
evaluated by computing an accuracy test denoted as HPL3 (2.9). We also display the normwise back-
ward error η (2.10), the componentwise backward error wb (2.11) before iterative refinement, and the
number of steps of iterative refinement NIR. We note that for the different numerical experiments de-
tailed in Table 4.1 , 2-level CALU leads to results within a factor of 10 of the results of both 1-level
CALU and GEPP.

More detailed results on random and special matrices are presented in Appendix A in Tables 10, 13,
and 16, where we consider different metrics including the norm of the factors L and U, their condition-
ing, and the value of their maximum element.

Figure 4.3: The ratios of 2-level CALU’s backward errors to GEPP’s backward errors.

Figure 4.3 shows the ratios of 2-level CALU’s backward errors to those of GEPP for random matri-
ces of varying sizes from 1024 to 8192 and for special matrices of size 4096. For almost all test matrices,
2-level CALU’s normwise backward error is at most 3× larger than GEPP’s normwise backward error.
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However, for special matrices the other two backward errors of 2-level CALU can be larger by a factor
of the order of 102 than the corresponding backward errors of GEPP. We note that for several test matri-
ces, at most two steps of iterative refinement are necessary to attain the machine epsilon.

3-level CALU

Figure 4.4 displays the values of the ratios of 3-level CALU’s growth factor and backward errors
to those of GEPP for 36 special matrices (those detailed in Appendix A except poisson matrix). The
tested matrices are of size 8192. The parameters used for these numerical experiments are as follows: at
the topmost level of parallelism, the number of processors working on the panel factorization is P3 = 16
and the panel size is b3 = 64, that is the blocks located at the leaves of the topmost reduction tree are
of size 512 × 64. At the second level of recursion, the number of processors working on the panel
factorization is P2 = 4 and the panel size is b2 = 32, and finally at the deepest level of parallelism, the
number of processors working on the panel factorization is P1 = 4 and the panel size is b1 = 8, that is
the blocks located at the leaves of the deepest reduction tree are of size 32× 8.

Figure 4.4 shows that with these parameters, 3-level CALU exhibits a good numerical stability, even
better than that of 2-level CALU. In fact as it can be seen, nearly all ratios are between 0.002 and 2.4
for all tested matrices. For the growth factors, the ratio is of order 1 in 69% of the cases. For the relative
errors, the ratio is of order 1 in 47% of the cases.

The previous results show how crucial the choice of the parameters is for the numerical stability of
ML-CALU in general. For that reason, further investigations are needed to be able to conclude on the
effect of the recursion on the numerical behavior of the multilevel CALU algorithm.

Figure 4.4: The ratios of 3-level CALU’s growth factor and backward errors to GEPP’s growth factor
and backward errors.

Note that in general, ML-CALU uses tournament pivoting to select candidate pivot rows at each
level of the recursion, which does not ensure that the element of maximum magnitude in the column
is used as pivot, neither at each level of the hierarchy, nor at each step of the LU factorization, that is
globally for the panel. For that reason, for our two cases (binary tree based 2-level CALU and 3-level
CALU), we consider a threshold τk, defined as the quotient of the pivot used at step k divided by the
maximum value in column k. In our numerical experiments, we compute the minimum value and the
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average value of τk, τmin = mink τk and τave = (
∑n−1

k=1 τk)/(n− 1), where n is the number of columns
of the input matrix. We observe that in practice the pivots used by recursive tournament pivoting are
close to the elements of maximum magnitude in the respective columns for both binary tree based 2-
level CALU and binary tree based 3-level CALU. For example, for binary tree based 2-level CALU
the minimum threshold τmin is larger than 0.29 on all our test matrices. For binary tree based 3-level
CALU, the selected pivots are equal to the elements of maximum magnitude in 63% of the cases, and
for the rest of the cases the minimum threshold τmin is larger than 0.30. These values are detailed in
Table 17 in Appendix A.

4.3 Recursive CALU (1D multilevel CALU)

Given that multilevel CALU does not allow to obtain a bounded growth factor, we present here a
different algorithm which has the same numerical stability as CALU and minimizes the volume of data
to send at each level of the hierarchy, but not the number of messages. We refer to this algorithm as
Rec-CALU. Here we present the recursive CALU algorithm, then discuss its numerical stability.

4.3.1 Recursive CALU algorithm

Recursive CALU is described in Algorithm 14. It is applied to a matrix A of size m × n, using l
levels of recursion and a total number of P =

∏l
i=1 Pi compute units of level 1 at the topmost level of

the recursion. These compute units are organized as a two-dimensional grid at each level, Pi = Pri×Pci .

As multilevel CALU, recursive CALU is based on the communication avoiding LU factorization
(CALU). The main difference between these two algorithms consists of the panel factorization. Thus
considering l levels of recursion, Recursive CALU calls recursively CALU at each step of the recursion
to perform the entire panel factorization. At each level l of the recursion, the total number of compute
units of level 1 working on the panel factorization is Pr ×

∏l−1
i=1 Pci . Hence only the number of the

compute units on the horizontal dimension is varying. For example at the deepest level of recursion, the
panel of size m× b1 is factored using Pr ×Pc1 compute units of level 1. This factorization is performed
using TSLU, where Gaussian elimination with partial pivoting is applied to blocks of size (m/Pr)× b1
at the first step of the factorization and at the first level of the reduction tree. Note here that the efficiency
of the reduction tree highly depends on the underlying structure of the hierarchical architecture. For ex-
ample if we assume that the number of processors at each level of the hierarchy and at each dimension
is a power of 2, then a binary reduction tree will be optimal. Hence during the reduction process, com-
munication between compute units of level i > 1 will only occur after log(

∏i−1
k=1 Prk) reduction steps.

Figure 4.5 illustrates the reduction tree used at the deepest level of recursive CALU running on a hi-
erarchy with 3 levels of parallelism. The dashed black arrows correspond to the reduction operation, that
is the application of GEPP to the blocks of the current panel. The black arrows represent the intra-node
communication, which correspond to the communication between the compute units of level 1. The red
arrows represent a communication that involves two compute units belonging to two different nodes of
level 2. Finally the green arrows correspond to a communication between two compute units belonging
to two different nodes of level 3.

Thus considering a parallel platform combining parallel distributed multi-core nodes, the prepro-
cessing step uses a hierarchical approach. Hence for each panel, first local binary trees are performed
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Algorithm 14: Recursive-CALU: recursive communication avoiding LU factorization
Input: m× n matrix A, the recursion level l, block size bl, the total number of compute units
P =

∏l
i=1 Pi = Pr × Pc

if l == 1 then
[Π1, L1, U1] = CALU(A, b1, Pr × Pc1)

else
M = m/bl, N = n/bl
for K = 1 to N do

[ΠKK , LK:M,K , UKK ] = Recursive− CALU(AK:M,K , l − 1, bl−1, Pr ×
∏l−1
i=1 Pci)

/* Apply permutation and compute block row of U */
AK:M,: = ΠKKAK:M,:

for each compute unit at level l owning a block AK,J , J = K + 1 to N in parallel do
UK,J = L−1KKAK,J

/* call multilevel dtrsm using Pcl ×
∏l−1
i=1 Pi processing node of level 1 */

/* Update the trailing submatrix */
for each compute unit at level l owning a block AI,J of the trailing submatrix,
I, J = K + 1 to M,N in parallel do

AI,J = AI,J − LI,KUK,J
/* call multilevel dgemm using Pr ×

∏l
i=1 Pci processing node of level 1 */

in parallel within each node, then several global reduction trees are applied across the different levels of
the hierarchy. Note that the global reduction operations involve inter-node communications, which are
slower than intra-node shared memory accesses. Additionally, the local reduction trees depend on the
degree of parallelism of the cluster. A binary tree is more suitable for a cluster with many cores, while a
flat tree allows more locality and CPU efficiency. The choice of the reduction trees at each hierarchical
level was addressed in the context of tiled QR factorization, where at least two levels of reduction trees
are combined [46].

Once the panel is factored, a block of rows of U is computed (line 12 in Algorithm 14). At level l of
recursion, this computation is performed using Pcl×

∏l−1
i=1 Pi compute units of level 1. Then the trailing

matrix is updated (line 17 in Algorithm 14), using Pr ×
∏l
i=1 Pci compute units of level 1. Note that

in Algorithm 14, we neither detail the communication between the processing node at each level of the
hierarchy nor explicit how multilevel dtrsm and multilevel dgemm are performed. Later to estimate the
running time of recursive CALU, we assume that these computations are performed using multilevel
Cannon (Algorithm 15), a hierarchical algorithm for matrix multiplication.

In terms of stability, recursive CALU is equivalent to calling CALU on a matrix of size m × n,
using a block size b1 and a grid of processors P = Pr × Pc . In other words, 1D multilevel CALU uses
tournament pivoting performed on a binary tree of height logPr .



4.4. PERFORMANCE MODEL OF HIERARCHICAL LU FACTORIZATIONS 77

P0

P1

P2

P3

final pivot rows

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

Figure 4.5: TSLU on a hierarchical system with 3 levels of hierarchy.

4.4 Performance model of hierarchical LU factorizations

In this section we present a performance model of both 2-recursive CALU and 2-level CALU fac-
torizations of a matrix of size n × n in terms of the number of floating-point operations (#flops), the
volume of communication (#words moved), and the number of messages exchanged (#messages) dur-
ing the factorization. Note that our counts are computed on the critical path. We show that 2-level
CALU attains the lower bounds modulo polylogarithmic factors at each level of the hierarchy. While
2-recursive CALU attains the lower bounds modulo polylogarithmic factors only at the deepest level of
the hierarchy. At the top level of the hierarchy 2-recursive CALU exceeds the lower bound by a factor√
P1. Thus 2-recursive CALU is latency bounded at the top level of the hierarchy.

Note that the performance model used for this analysis is quite simplified, since it does not take
into account the memory constraints. To be able to give a more general and more realistic performance
model for both recursive CALU and multilevel CALU, we introduce in chapter 5 a hierarchical cluster
platform model (HCP). There we discuss more in details the drawbacks of the current model and we
estimate in a more realistic way the cost of multilevel CALU running on a hierarchical system with l
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levels of parallelism.

We condider a hiearchical system with 2 levels of parallelism. Let P2 = Pr2 × Pc2 be the number
of processors and b2 be the block size at the top level of parallelism. Each compute unit P2 is formed by
P1 = Pr1 × Pc1 compute units at the bottom level of parallelism. Hence the total number of compute
units at the deepest level of parallelism is P = P2 · P1. Let b1 the block size at the deepest level of
parallelism.

4.4.1 Cost analysis of 2-level CALU

In this section we estimate the flops, the messages, and the words counts of 2-level based multilevel
CALU. We note CALU (m, n, P, b) the routine that performs 1-level CALU on a matrix of size m× n
with P processors and a panel of size b.

We first consider the arithmetic cost of 2-level CALU. It includes the factorization of the panel, the
computation of a block row of U , and the update of the trailing matrix, at each step k of the algorithm.
To factorize the panel k of size b2, we perform 1-level CALU on each block located at a node of the
reduction tree, using a 2D-grid of P1 smaller compute units and a panel of size b1. The number of flops
performed to factor the k-th panel is,

#flops(CALU(
nk
Pr2

, b2, P1, b1)) + logPr2 · #flops(CALU(2b2, b2, P1, b1)),

where nk denotes the number of rows of the k-th panel.

To perform the rank-b2 update, first the input matrix of size n × n is divided into P2 blocks of size
(n/Pr2)× (n/Pc2). Then each block is further divided among P1 compute units. Hence each processor
from the deepest level computes a rank-b2 update on a block of size n/(Pr2.Pr1) × n/(Pc2.Pc1). It
is then possible to estimate the flops count of this step as a rank-b2 update of a matrix of size n × n
distributed into Pr2.Pr1 × Pc2.Pc1 processors. The same reasoning holds for the arithmetic cost of the
computation of a block row of U.

We estimate now the communication cost at each level of parallelism. At the topmost level we con-
sider the communication between the P2 compute units. This corresponds to the communication cost
of the initial 1-level CALU algorithm, which is presented in detail in [60]. The size of the memory
of one compute unit at the top level is formed by the sum of the sizes of the memories of the compute
units at the next level in the hierarchy. We consider here that this size is of O(n2/P2), that is each node
stores a part of the input and output matrices, and this is sufficient for determining a lower bound on
the volume of communication that needs to be performed by our algorithm. However, the number of
messages that are transferred at this level depends on the maximum size of data that can be transferred
from one compute unit to another compute unit in one single message. We consider here the case when
the size of one single message is of the order of (n2/P2), which is realistic if shared memory is used
at the deepest level of parallelism. However, if the size of one single message is smaller, and it can be
as small as (n2/P ) when distributed memory is used at the deepest level of parallelism, the number of
messages and the lower bounds presented in this section need to be adjusted for the given memory size.
For that reason we introduce a more general performance model in section 5.2.

At the deepest level we consider in addition the communication between the P1 smaller compute
units inside each compute unit of the top level. We note that we consider Cannon’s matrix-matrix
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multiplication algorithm [27] in our model. Here we detail the communication cost of the factorization
of a panel k at the deepest level of parallelism. Inside each node we first distribute the data on a grid of
P1 processors, then we apply 1-level CALU using P1 processors and a panel of size b1. Thus,

#messagesk = #messages(CALU( nk
Pr2

, b2, P1, b1))

+ logPr2 · #messages(CALU(2b2, b2, P1, b1)) + logP1 × (1 + logPr2),

#wordsk = #words(CALU( nk
Pr2

, b2, P1, b1))

+ logPr2 · #words(CALU(2b2, b2, P1, b1)) + b22 logP1 × (1 + logPr2).

Then at the deepest level of 2-level CALU, the number of messages and the volume of data that
need to be sent during the panel factorizations with respect to the critical path are,

# messages = 3n
b1

(1 + logPr2)(logPr1 + logPc1),

# words = n(b1 + 3b2
2Pc1

)(1 + logPr2) + 3
2
nb2
Pr1

logPr2 logPc1 + n
Pr1

( m
Pr2
− b2

2 ) logPc1.

The detailed counts of the entire factorization are presented in Appendix B .3.

We estimate now the performance model for a square matrix using an optimal layout, that is we
choose values of Pri, Pci, and bi at each level of the hierarchy that allow to attain the lower bounds
on communication. By following the same approach as in [60], for two levels of parallelism these
parameters can be written as Pr2 = Pc2 =

√
P2, Pr1 = Pc1 =

√
P1, b2 = n√

P2
log−2(

√
P2), and

b1 = b2√
P1
log−2(

√
P1) = n√

P1P2
log−2(

√
P1)log

−2(
√
P2). We note that P = P2 × P1.

Table 4.2 presents the performance model of 2-level CALU. It shows that 2-level CALU attains
the lower bounds on communication of dense LU factorization, modulo polylogarithmic factors, at each
level of parallelism.

4.4.2 Cost analysis of 2-recursive CALU

In this section we focus on 2-recursive CALU. The main difference between this factorization and
2-level CALU lies on the panel factorization. Hence to factor a panel of size b2, 2-level CALU applies
1-level CALU to the blocks located at the nodes of the global reduction tree using a panel of size b1
and P1 compute units of level 1 for each reduction operation, while 2-recursive CALU performs 1-level
CALU on the entire panel using a panel of size b1 and Pr ×Pc1 compute units of level 1. Thus for each
step of TSLU applied to a panel of size b1, 2-recursive CALU exchanges O(H2) messages between
nodes of level 2, where H2 is the height of the segment corresponding to the communication between
nodes of level 2. However 2-level CALU performs such a communication only once.

The remainder of the factorization, that is the computation of the factor U and the update of the
global trailing matrix is performed in the same way as for 2-level CALU. Note that here again we use
Cannon’s algorithm for matrix-matrix multiplication. In the following, we only detail the panel factor-
ization. At each step of the panel factorization, TSLU is applied to a panel of size b1 using a reduction
tree of height (H1 + H2). It performs O(H1) intra-node messages, that is messages between compute
units of level 1, and O(H2) inter-node messages, that is messages between nodes of level 2. Here we
consider a binary reduction tree at both the intra-node and the inter-node levels, H2 = logPr2, and
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Table 4.2: Performance estimation of parallel (binary tree based) 2-level CALU with optimal layout.
The matrix factored is of size n× n. Some lower-order terms are omitted.

Communication cost Lower bound Memory size
at the top level of parallelism

# messages O(
√
P2 log3 P2) Ω(

√
P2) O(n

2

P2
)

# words O( n2
√
P2

logP2) Ω( n2
√
P2

) O(n
2

P2
)

Communication cost
at the bottom level of parallelism

# messages O(
√
P log6 P2 +

√
P log3 P2 log3 P1) Ω(

√
P ) O(n

2

P )

# words O( n
2
√
P

log2 P2) Ω( n
2
√
P

) O(n
2

P )

Arithmetic cost of 2-level CALU

# flops 1
P

2n3

3 + 3n3

2P log2 P
+ 5n3

6P log3 P
1
P

2n3

3

H1 = logPr1. For the rest of the panel factorization, a communication performed along rows of pro-
cessors is local, that is inside one node of level 2, while a communication along columns of processors
involves both local and global communications, that is inside and between nodes of level 2.

The number of messages and the volume of data at the top level of parallelism are,

# messages = 3n
b1

logPr2 + 2n
b2

logPr2 + 3n
b2

logPc2,

# words = ( 3n2

2Pc2
+ 3nb2

2 + nb1) logPr2 + ( 1
Pr2

(mn− n2

2 ) + nb2
2 + n) logPc2.

The detailed counts of the entire factorization are presented in Appendix B .4.

Table 4.3 presents the performance model of 2-recursive CALU using the same optimal layout de-
tailed in section 4.4.1. It shows that 2-recursive CALU attains the lower bounds of communication,
modulo polylogarithmic factor, at the deepest level of the hierarchy. However it is not optimal at the top
level of the hierarchy in terms of latency, unless P1 << P2, which is not the case in general.

In the following we focus on the performance of multilevel CALU on a multi-core cluster system
since it is optimal up to some polylogarithmic factors at each level of the hierarchy, and it is also stable
in practice.

4.5 Multilevel CALU performance

4.5.1 Implementation on a cluster of multicore processors

In the following we describe the specific implementation of ML-CALU on a cluster of nodes of
multicore processors. At the top level, we have used a static distribution of the data on the nodes,
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Table 4.3: Performance estimation of parallel (binary tree based) 2-recursive CALU with optimal layout.
The matrix factored is of size n× n. Some lower-order terms are omitted.

Communication cost Lower bound Memory size
at the top level of parallelism

# messages O(
√
P2

√
P1 log2 P2 log3 P2) Ω(

√
P2) O(n

2

P2
)

# words O( n2
√
P2

logP2) Ω( n2
√
P2

) O(n
2

P2
)

Communication cost
at the bottom level of parallelism

# messages O(
√
P log6 P2) Ω(

√
P ) O(n

2

P )

# words O( n
2
√
P

log2 P2) Ω( n
2
√
P

) O(n
2

P )

Arithmetic cost of 2-recursive CALU

# flops 1
P

2n3

3 + n3

2P log2 P1 log4 P2
+ 5n3

6P log3 P1 log4 P2

1
P

2n3

3

more specifically the matrix is distributed using a two-dimensional block cyclic partitioning on a two-
dimensional grid of processors. This is similar to the distribution used in 1-level CALU [59], and hence
the communication between nodes is performed as in the 1-level CALU factorization. For each node,
the blocks are again decomposed using a two-dimensional layout, and the computation of each block
is associated with a task. A dynamic scheduler is used to schedule the tasks to the available threads as
described in [41], and recalled in section 1.5.2.

4.5.2 Performance of 2-level CALU

In this section we evaluate the performance of 2-level CALU on a cluster of multicore processors.
The cluster is composed of 32 nodes based on Intel Xeon EMT64 processor. Each node has 8 cores
formed by two-socket, quad-core and each core has a frequency of 2.50GHz. The cluster is part of grid
5000 [28].

Both ScaLAPACK and multilevel CALU are linked with the Intel BLAS from MKL 10.1. We
compare the performance of our algorithm with the corresponding routines of ScaLAPACK used in a
multithreaded mode. The algorithm is implemented using MPI and Pthreads. P is the number of pro-
cessors, T is the number of threads per node, and b2 and b1 are the block sizes used respectively at
the topmost and the deepest level of the hierarchy. The choice of the optimal block size at each level
depends on the architecture, the number of levels in the hierarchy, and the input matrix size. Thus a
small block size increases the parallelism and also the scheduling overhead which can slow down the
algorithm. However, a large block size can help to exploit more BLAS-3 possibility but may reduce the
parallelism and cause inactivity. In our experiments, we empirically tune block size b2 and b1. However
the optimal parameters should be determined based on an automatic approach such as an autotuning
algorithm for a machine with multiple levels of parallelism.

At the deepest level of parallelism, 2-level CALU uses a grid of T threads T = Tr × Tc, where Tr
is the number of threads on the vertical dimension, that is working on the panel and Tc is is the number
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of threads on the horizontal dimension. Here we evaluate the performance of 3 variants: T = 8 × 1,
T = 4× 2, and T = 2× 4.

The three variants of our algorithm behave asymptotically in the same way and are all faster than
ScaLAPACK routine. For m ≤ 104, the variant T = 2 × 4 is better than the others but for m ≥ 106,
the variant T = 8 × 1 becomes better. The reason is that communication avoiding algorithms perform
well on tall and skinny matrices. Hence when we increase the number of rows, the panel becomes very
tall and skinny, and too large for the number of processors working on it. Then the algorithm spends
more time factorizing the panel than updating the trailing matrix. In that case, increasing the number of
processors working on the panel increases the efficiency of the panel factorization, but it also augments
the number of tasks and the synchronization time. To ensure a certain trade-off, Tr can be chosen close

to the optimal layout
√

mT
n with respect to the memory constraints.

Figure 4.6 shows the performance of 2-level CALU relative to ScaLAPACK routine on tall and
skinny matrices with varying row number. We observe that 2-level CALU is scalable and faster than
ScaLAPACK. For a matrix of size 106 × 1200, 2-level CALU is 2 times faster than ScaLAPACK. Fur-
thermore, an important loss of performance is observed for ScaLAPACK around m = 104, while all the
variants of 2-level CALU lead to good performance. Hence ScaLAPACK routine does not optimize the
latency at any level of the memory, while multilevel TSLU reduces significantly the amount of commu-
nication and memory transfers during the panel factorization.

We recall that the number of tasks and the synchronization time increase with the number of proces-
sors working on the panel. For a matrix that is relatively square (m ≈ n), Tr can be chosen around

√
T ,

which is close to the optimal layout
√

mT
n . This change requires several adaptation to respect memory

constraints. Thus b should be chosen such as the task, of size m
Tr
× b, fits in the thread memory.
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Figure 4.6: Performance of 2-level CALU and ScaLAPACK on a grid 4x8 nodes, for matrices with
n=1200 , b2 = 150, and m varying from 103 to 106. b1 = MIN(b1, 100).

Figure 4.7 shows the performance of 2-level CALU on tall and skinny matrices with varying number
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Figure 4.7: Performance of 2-level CALU and ScaLAPACK on a grid Pr × 1 nodes, for matrices with
n = b2 = 150, m = 105, and b1 = MIN(b1, 100).

2 2.5 3 3.5 4 4.5 5

25

30

35

40

45

50

55

60

65

70

log2(P)

G
Fl

op
s/

s

Square Matrix, CALU,  m=n=104, b=150, P = PrxPc, T=8

scalapack_pdgetrf
calu (T=2x4)
calu (T=4x2)
calu (T=8x1)

Figure 4.8: Performance of 2level-CALU and ScaLAPACK on a grid P = Pr × Pc nodes, for matrices
with m = n = 104, b2 = 150, and b1 = MIN(b1, 100).
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of processors working on the panel factorization. Since the matrix has only one panel, 2-level TSLU is
called at the top level of the hierarchy and the adapted multhithreaded CALU is called at the deepest
level of the hierarchy. We observe that for Pr = 4, 2-level CALU is 4.5 times faster than ScaLAPACK.
Note that for Pr > 4, ScaLAPACK performance is bounded by 10 GFlops/s, while 2-level CALU shows
an increasing performance up to 30 GFlops/s, that is 200% faster. For Pr = 8, the variant T = 8× 1 is
slightly better than the others. This shows the importance of determining a good layout at runtime. This
figure also shows the scalability of 2-level CALU when the number of processors increases.

Figure 4.8 shows the performance of 2-level CALU on a square matrix using varying processor
number. For each value of P , we choose the optimal layout for ScaLAPACK and we use the same lay-
out at the top level of 2-level CALU. The layout at the deepest level is determined by one of the three
variants detailed above. We observe that all the variants of 2-level CALU are faster than ScaLAPACK.
The variant T = 2 × 4 is usually better than the others. This behavior has also been observed in mul-
tithreaded 1-level CALU. We recall that the matrix is partitioned into Tr × N/b blocks, increasing Tr
increases the number of tasks and then the scheduling overhead which impact the performance of the
entire algorithm. In that case, the panel will be factorized efficiently, but the entire algorithm will be
slowed down by the large number of updates in the trailing matrix. Hence the scheduling overhead has a
considerable impact on the performance of the algorithm on large square matrices. Therefore the 2-level
CALU algorithm needs to choose the parameters that ensure a good trade-off between the fast panel
factorization and the scheduling overhead.

In summary, when the matrix is tall and skinny, the variant T = 8×1 achieves the best performance,
but the variant T = 2× 4 becomes better when the number of columns increases. We note that increas-
ing the number of threads Tr at the second level of the parallelism leads to better performance on tall
and skinny matrices. Our experiments show robustness of 2-level CALU especially for tall and skinny
matrices.

4.6 Conclusion

In this chapter we have introduced two hierarchical algorithms for the LU factorization, recursive
CALU (1D multilevel CALU) and multilevel CALU (2D multilevel CALU). These two methods are
based on communication avoiding LU algorithm and are adapted for a computer system with multiple
levels of parallelism. Recursive CALU is equivalent to CALU with tournament pivoting in terms of
numerical stability. However it does not reduce the latency cost at each level of the hierarchical ma-
chine. Hence for the panel factorization at the deepest level of recursion, Rec-CALU uses a hierarchical
reduction tree, that combines several levels of reduction: one for each level of parallelism. Multilevel
CALU minimizes communication at each level of the hierarchy of parallelism in terms of both volume
of data and number of messages exchanged during the decomposition. We have presented experimental
results for both 2-level and 3-level CALU, showing that multilevel CALU is stable in practice up to
three levels of parallelism.

On a multi-core cluster system, that is a system with two levels of parallelism (distributed memory at
the top level and shared memory at the deepest level), our experiment set shows that multilevel CALU
outperforms ScaLAPACK, especially for tall and skinny matrices.
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The performance model we have used to analyze the cost of 2-level CALU and 2-recursive CALU
is a simple model which is not adapted for a hierarchical structure of architecture including both mem-
ory hierarchy and parallelism hierarchy. In order to have a more realistic estimation of the running time
of multilevel algorithms over the different levels of parallelism. we introduce in section 5.2 the HCP
model, a performance model which takes into account the complex structure of the architecture.

Future work includes several promising directions. From a theoretical perspective, we could further
study the numerical stability of multilevel CALU or design a hybrid algorithm that takes advantages of
both the numerical stability of recursive CALU and the efficiency of multilevel CALU. From a more
practical perspective, we could implement a more flexible and modular multilevel CALU algorithm for
clusters of multi-core processors, where it would be possible to choose the reduction tree at each level of
parallelism in order to be cache efficient at the core level and communication avoiding at the distributed
level. Note that such an algorithm was implemented for the QR factorization [46].
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Chapter 5

On the performance of multilevel CALU

5.1 Introduction

There has been a considerable research work aiming at developing programming models, which are
efficient across machine architectures and are easy to use. Similarly, designing architectures that achieve
optimal performance for a class of applications is still a challenging task. Thus the design of accurate
performance models is of primary importance for both algorithm and system design. We have discussed
several performance models in section 1.6. We have mainly enumerated the advantages and the draw-
backs of each model, in particular the state-of-the-art hierarchical performance models. The design of
these models aims at understanding costs, bottlenecks, and unpredictable communication performance
of parallel algorithms running on systems with multiple levels of parallelism. Motivated by the different
issues detailed above and for the sake of a realistic performance model that is able to capture the most
important features of a hierarchical architecture, we develop our hierarchical performance model, the
HCP model, that we believe is suitable for hierarchical platforms. We note that our model takes into
consideration both the network hierarchy and the compute node hierarchy. It is also based on a quite
simple routing technique, which facilitates the analysis of the communication cost of parallel algorithms.
Thus, despite its few drawbacks that will be discussed in this chapter, the HCP model presents a trade-
off between accuracy and simplicity regarding the existing hierarchical performance models.

In particular, we use the HCP model to derive the performance model of multilevel Cannon algo-
rithm, a hierarchical algorithm for matrix multiplication based on recursive calls to Cannon’s algorithm.
We introduce such an algorithm to be able to model the matrix-matrix operations performed during the
multilevel CALU algorithm presented in the previous chapter 4. We show through the cost analysis
of multilevel Cannon with respect to the HCP model that, this algorithm is asymptotically optimal in
terms of both latency cost and bandwidth cost, modulo a factor that depends on the number of levels
in the hierarchy and the number of processors at each level. Moreover, multilevel Cannon performs the
same amount of computation as the classical Cannon’s algorithm. We then estimate the running time of
multilevel CALU with respect to the HCP model. We show that this algorithm attains asymptotically
the lower bound on communication at each level of parallelism. However, since it is based on recursive
calls, multilevel CALU performs extra computation. Thus we discuss the panel size aiming at mini-
mizing the communication cost, while the number of floating-point operations increases as a function of
the number of levels in the hierrachy. Furthermore, our performance prediction on an exascale platform
show that with respect to appropriate panel sizes, multilevel CALU leads to a significant improvement
over CALU, especially for three levels of parallelism.
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The remainder of this chapter is organized as follows. We start with detailing the key principles
underlying the design of the HCP model in section 5.2. The design of the HCP model is one of the
core contributions of this chapter. Then we introduce in section 5.3 the multilevel Cannon algorithm
and we evaluate its cost in terms of both computation and communication under the HCP model. Sec-
tion 5.4 describes the communication details of multilevel CALU and estimates its running time under
the HCP model. We show that both multilevel Cannon and multilevel CALU are asymptotically optimal
regarding the lower bounds derived with respect to the HCP model. After that, section 5.5 presents per-
formance predictions comparing multilevel CALU to CALU on an exascale platform based on Hopper
supercomputer as a building block. In section 5.6 we present some related work. Section 5.7 presents
concluding remarks and some perspectives.

Note that the design of the HCP model was performed as a collaboration with Mathias Jacquelin,
who focuses on a multilevel QR factorization.

5.2 Toward a realistic Hierarchical Cluster Platform model (HCP)

Dual core chip Dual core chip Dual core chip Dual core chip

core core core core core core core core

L2 cache L2 cacheL2
cache

L2
cache

L2
cache

L2
cache

Memory Memory Memory

Network

NUMA design BUS design

Inter_node communication

intra_node communication
= inter_chip communication

intra_node communication
= inter_chip communication

intra_chip communicationintra_chip communication

Figure 5.1: Cluster of multicore processors.

We target here hierarchical platforms implementing deeper and deeper hierarchies. Typically, these
platforms are composed of two kinds of hierarchies: (1) a network hierarchy composed of intercon-
nected network nodes, which is stacked on top of a (2) computing nodes hierarchy [29]. This compute
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hierarchy can be composed for instance of a shared memory NUMA multicore platform. Figure 5.1
illustrates a simple example of such a platform. It also presents the different possible communication,
including intra-node communication and inter-node communication.

We model such platforms with l levels of parallelism, and use the following notations:

Level i Pi Pi

Bi+1

Pi+1Level i+ 1

Bi Bi

βi+1

βi βi

βi

βi+1 βi+1

network node

Figure 5.2: The components of a level i of the HCP model.

– l is the total number of levels in the hierarchy, and also denotes the index of the highest level in
the hierarchy. Thus there are Pl nodes of level l.

– Level 1 is the deepest level in the hierarchy, actual processing elements are on this level. Compute
units at this level present either a distributed memory, a shared memory, or a NUMA architecture.
At each node of level 2, there are P1 compute units.

– Let Pi = Pri × Pci be the number of computational nodes of level i inside a node of level i + 1.
The total number of compute units of the entire platform is given by the relation P =

∏l
i=1 Pi.

These P compute units are organized as a two-dimensional grid, P = Pr × Pc . Such a 2D grid
topology is used at each level in the hierarchy.

– We let Bi be the network buffer size at a given level i. This buffer size possibly allows message
aggregation, as we will discuss later. Hence we assume network nodes that provide support for
internal buffering.

– We letMi be the memory size of a computational node of level i > 1. We assume thatMi = M1
∏i−1
j=1 Pj ,

where M1 is the memory size of a compute unit of level 1. A detailed relation between Mi and
Bi will be explained thereafter.

– αi is the network latency at level i while βi is the inverse of the bandwidth.
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– Si is the number of messages sent by a node of level i at a given step of an algorithm.

– Wi is the volume of data (the number of words) that is sent by a node of level i at a given step of
an algorithm.

– S̄i is the cost due to the communication of Si messages at level i, S̄i = Si × αi. We refer to this
cost as the latency cost.

– Similarly, W̄i is the cost due to the communication of a volume of dataWi at level i, W̄i = Wi×βi.
We refer to this cost as the bandwidth cost.

Note that we will use these notations throughout the rest of the chapter.
An intermediate level i > 1 is depicted on Figure 5.2, where we present the bandwidth of the links

connecting computational nodes and network nodes.

Communicating under the HCP model.

We now describe how communication happens in the HCP model, and how messages are routed
between the different levels of the network hierarchy. In our model, we assume that if a computational
node of level i communicates, all of the nodes below it are involved, leading to a total of

∏i−1
j=1 Pj

compute units of level 1 participating in that communication. Remember that Wi is the amount of data
that is sent by a node of level i. We therefore have the following relation:

Wi =
Wi+1

Pi
.

As an example, we now detail a communication taking place between two nodes of a given level
i. For this specific communication,

∏i−1
j=1 Pj compute units of level 1 are involved in sending a global

volume of data Wi. Each of these compute units has to send a chunk of data W1 = Wi/(
∏i−1
j=1 Pj).

Since this amount of data has to fit in the memory of a compute unit of level 1, we obviously have
∀i,M1 ≥ W1 = Wi/(

∏i−1
j=1 Pj). Here for the sake of simplicity, and to be able to derive general lower

bounds valid for each level of the hierarchy, we assume the network buffer size at level 1 to be equal to
the memory size of a compute unit of level 1, B1 = M1, which means that the first level of the network
is fully-pipelined. Therefore, data is always sent using only one message at level 1, by a compute unit
at this level. The corresponding bandwidth cost is W1 × β1.

These blocks are then transmitted to the level above in the hierarchy, i.e. to level 2. A computational
node of level 2 has to send a volume of data W2 = P1W1. Since the network buffer size at level 2 is B2,
this can be performed in (W2/B2) messages.

The same holds for any level k with 1 < k ≤ i, where data is forwarded by sending(Wk/Bk)
messages, therefore we have the following counts for the number of words and the number of messages,

Wk =
Wi∏i−1
j=k Pj

,

Sk =
Wk

Bk
=

Wi

Bk
∏i−1
j=k Pj

.
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The corresponding costs are,

W̄k =
Wi∏i−1
j=k Pj

βk,

S̄k =
Wk

Bk
=

Wi

Bk
∏i−1
j=k Pj

αk.

Network types.

We assume three kinds of networks, depending on their buffer size.

1. A fully-pipelined network, which is able to aggregate all the messages coming from the deeper
network levels in the hierarchy into a single message. This means that Bi ≥Mi, since the largest
volume of data a node can send is of size Mi.

2. A bufferized network, which is able to aggregate messages up to its buffer size. For such a network
Bi < Mi. This is the most common case.

3. A forward network, which just forwards the messages coming from below to the level above it.
This means that starting from a certain network level, the buffer size remains a constant.

The two particular kinds of network, fully-pipelined and forward, enforce constraint on network
buffer sizes:

– For a given level i, the forward network requires that Bi = Bi−1. In the case when all the Pi−1
compute units from the level i−1 send Si−1 messages each, the number of messages send by one
compute unit of level i is Si = Pi−1Si−1.

– The fully-pipelined network case is ensured whenever Bi ≥ Pi−1Wi−1, where Wi−1 denotes the
volume of data sent by each single node of level i − 1 below. We thus consider that Bi = Mi,
since Mi is the size of the largest message which could be sent by a node at level i using full
pipelining. We also assume that all levels below a fully-pipelined level are themselves fully
pipelined. Therefore, the constraint on the buffer size for a network of a given level i becomes
Bi = Mi = Pi−1Mi−1 = Pi−1Bi−1.

Based on these two extreme cases, we can safely assume that the buffer size Bi of a given level i
satsfies,

Bi−1 ≤ Bi ≤ Pi−1Bi−1. (5.1)

Moreover, on matrix product-like problems, assuming that one copy of the input matrix is stored in
memory, the largest block exchanged at the topmost level l generally has a size of (n2/Pl). Therefore,
the largest block exchanged at a given level i has a size of Wi ≤ (n2/

∏l
j=i Pj).

Note that for our performance predictions we consider either a fully pipelined network at each level
of the hierarchy, that is at each level Bi = Mi, or a fully forward network at each level of the hierarchy,
that is at each level the buffer size satisfies Bi = M1.
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Lower bounds on communication

Lower bounds on communication have been generalized in [14] for direct methods of linear algebra
algorithms which can be expressed as three nested loops. We refine these lower bounds under our

hierarchical model. We assume that for a given node of level i, the memory size Mi = Ω

(
n2∏l
j=i Pj

)
.

Therefore, the lower bound on bandwidth at each level i becomes,

Wi ≥ Ω

(
n3∏l

j=i Pj
√
Mi

)
,

≥ Ω

(
n2∏l

j=i

√
Pj

)
.

The lower bound on latency depends on the network capacity (buffer size) of the current level i. We
have Wi words to send in messages of size Bi. Therefore the lower bound on latency at each level i
becomes,

Si ≥ Ω

(
n3

Bi
∏l
j=i Pj

√
Mi

)
,

≥ Ω

(
n2

Bi
∏l
j=i

√
Pj

)
.

Note that although our performance model (HCP) is more realistic than simpler performance mod-
els, since it takes into account both the network hierarchy and the compute node hierarchy, it still suffers
from a few drawbacks. We enumerate some of them here. First, the HCP model does not include the
routing overhead at each network node. This could be important especially when modeling the store-
and-forward case. Moreover, this particular routing technique ensures a high level of error-free network
traffic. However, the associated checking process could also result in an important delay. Additionally,
in the HCP model we assume that a communication between two compute units of level 1, belonging
to two different nodes of level k, should be routed up to the network level k, then down to the network
level 1. Thus we consider the hierarchical aspect of the network. However, our model does not take
into consideration the network topology at each level of the network hierarchy, and thus its connectivity.
Therefore it does not minimize the routing paths with respect to the underlying network topology at each
level of the hierarchy. Furthermore, for the sake of simplicity, and because it is difficult to estimate the
congestion degree of a given link in the network, our model does not handle the congestions that may
occur in parts of the network hierarchy. Hence we not consider adaptive routing schemes.

To sum things up, despite the few drawbacks enumerated above and which might slightly impact the
accuracy of our performance predictions, we believe that the HCP model presents a reasonable trade-off
between simplicity and reality.
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5.3 Cost analysis of multilevel Cannon algorithm under the HCP
model

To perform matrix multiplication C = C + A · B, we can use Cannon’s algorithm. It is a parallel
algorithm that uses a square processor grid

√
P×
√
P .
√
P shifts of both A and B are achieved along the

two dimensions of the grid of processors. For a matrix of size n× n, each processor sends a volume of
data of order O(n2/

√
P ) using O(

√
P ) messages along the two dimensions of the grid. It is known that

(see for example [14]) assuming minimal memory usage, Cannon’s algorithm is asymptotically optimal
in terms of both bandwidth, and latency, that is the volume of data and the number of messages send
by each processor are asymptotically optimal. This analysis is based on a simple performance model,
which assumes in the parallel case P processors without memory hierarchy. In the following we evaluate
the cost of recursive Cannon algorithm over a hierarchy of nodes. We refer to this algorithm as ML-
CANNON, and we consider l levels of parallelism. We restrict our discussion to square matrices and to
a hierarchy of parallelism where Pk can be written as Pk =

√
Pk ×

√
Pk at each level k. Algorithm 15

presents the communication details of multilevel Cannon.

We design such an algorithm to estimate the cost of multilevel CALU (ML-CALU) introduced in
the previous chapter. Hence the multilevel dgemm and the multilevel dtrsm presented in ML-CALU
algorithm 12 and in ML-TSLU algorithm 13 will be evaluated based on the cost analysis of multilevel
Cannon below.

Algorithm 15: ML− CANNON(C,A,B, Pk, k)

Input: three square matrices C, A, and B, k the number of recursion level, Pk the number of
processors at level k
Output: C = C +AB
if k == 1 then

CANNON(C,A,B, P1)

else
for i = 1 to

√
Pk in parallel do

left-circular-shift row i of A by i

for i = 1 to
√
Pk in parallel do

up-circular-shift column i of B by i

for h = 1 to
√
Pk (sequential) do

for i = 1 to
√
Pk and j = 1 to

√
Pk in parallel do

ML− CANNON(C(i, j), A(i, j), B(i, j), Pk−1, k − 1)
left-circular-shift row i of A by 1
up-circular-shift column i of B by 1

We analyze both the communication cost, and the computation cost of ML-CANNON algorithm
described in Algorithm 15 with respect to the HCP model. All the costs presented below are computed
on the critical path.

We first define the following costs:
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– for Cannon’s algorithm applied to two square matrices of size n × n using a square grid of P1

processors, we note:
– W̄CANNON (n, n, P1) the cost due to the communication of a volume of dataWCANNON (n, n, P1)

on the critical path,
– S̄CANNON (n, n, P1) the cost of the communication of SCANNON (n, n, P1) messages on the crit-

ical path,
– FCANNON (n, n, P1) the number of floating-point operations performed on the critical path.

– for multilevel Cannon’s algorithm applied to two square matrices of size n×n using a square grid
of Pl processors at level l of the recursion, we note:
– W̄ML-CANNON (n, n, Pl, l) the cost of the communication of a volume of dataWML-CANNON (n, n, Pl, l)

on the critical path,
– S̄ML-CANNON (n, n, Pl, l) the cost of the communication of SML-CANNON (n, n, Pl, l) messages

on the critical path,
– FML-CANNON (n, n, Pl, l) the number of floating-point operations performed on the critical path.

Communication cost

The volume of data which needs to be sent by each node at the top level l is 4n2
√
Pl

, since the num-

ber of shifts at this level is 4
√
Pl. With respect to the HCP model, this volume of data is sent by

processors of level 1. Therefore,

W̄ML-CANNON (n, n, Pl, l) =


∑l

k=1
4n2
√
Pl∏l

j=k Pj
βk +

√
PlW̄ML-CANNON

(
n√
Pl
, n√

Pl
, Pl−1, l − 1

)
if l > 1

W̄CANNON (n, n, P1) if l = 1

Then going down in the recursion, we obtain:

W̄ML-CANNON (n, n, Pl, l) =
∑l

k=1

(
4n2∏l
j=k Pj

∑l
i=k

(∏l
j=i

√
Pj

)
βk

)
.

We can upper bound this cost as in the following, where we assume that

∑l
i=k

(∏l
j=i

√
Pj

)
=

(
1 + 1√

Pk
+ 1√

Pk

√
Pk+1

+ · · ·+ 1∏l−1
j=i

√
Pj

)∏l
j=k

√
Pj

≤
(

1 + l−k√
Pk

)∏l
j=k

√
Pj .

Therefore,

W̄ML-CANNON (n, n, Pl, l) ≤


∑l

k=1

[
4
(

1 + l−k√
Pk

)
n2∏l

j=k

√
P j
βk

]
if l > 1

4n2
√
P1
β1 if l = 1

At a given level k of the hierarchy, the number of messages to send depends on the network capacity.
Thus,
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S̄ML-CANNON (n, n, Pl, l) ≤


∑l

k=1

[
4
(

1 + l−k√
Pk

)
n2

Bk
∏l

j=k

√
P j
αk

]
if l > 1

4
√
P1α1 if l = 1

Computation cost

To evaluate the number of floating point operations performed by multilevel Cannon, we consider
the following recursion:

FML-CANNON (n, n, Pl, l) =
√
P lFML-CANNON

(
n√
Pl
, n√

Pl
, Pl−1, l − 1

)
,

=
∏l
j=1

√
PjFCANNON

(
n∏l

j=1

√
Pj
, n∏l

j=1

√
Pj
, P1

)
,

= 2n3∏l
j=1 Pj

= 2n3

P .

Finally the total cost of multilevel cannon’s algorithm is bounded as follows,

TML-CANNON (n, n, Pl, l) ≤


2n3

P γ +
∑l

k=1

[
4
(

1 + l−k√
Pk

)
n2∏l

j=k

√
P j

]
(βk + αk

Bk
) if l > 1

2n3

P1
γ + 4n2

√
P1
β1 + 4

√
P1α1 if l = 1

We can then conclude that multilevel Cannon algorithm is asymptotically optimal at each level of
parallelism, in terms of both latency and bandwidth, regarding the lower bounds of the HCP model.

5.4 Cost analysis of multilevel CALU under the HCP model

Here we estimate the running time of the multilevel CALU algorithm, presented in Algorithm 12
in chapter 4, with respect to the HCP model. We show that this algorithm asymptotically attains the
communication lower bounds detailed in section 5.2 at each level of the recursion.

The ML-CALU algorithm, given in Algorithm 16, details the communication performed during the
factorization. We recall here that multilevel CALU proceeds as follows: (1) it first recursively factors
the panel with ML-CALU with a block size corresponding to the next level in the hierarchy; (2) the se-
lected sets of candidate pivot rows are merged two-by-two along the reduction tree, where the reduction
operator is ML-CALU; (3) at the end of the preprocessing step, the final set of pivot rows is selected
and each node working on the panel has the pivot information and the diagonal block of U ; (4) then the
computed permutation is applied to the input matrix, the block column of L and the block row of U are
computed; (5) finally, after the broadcast of the block column of L along rows of the process grid and
the block row of U along columns of the process grid, the trailing matrix is updated. Note that at the
deepest level of recursion, hence in the hierarchy, ML-CALU calls the communication optimal CALU
algorithm.
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Algorithm 16: ML-CALU(A,m, n, l, Pl)

Input: m× n matrix A, level of parallelism l in the hierarchy, block size bl, number of nodes
Pl = Prl × Pcl
if l = 1 then

Call CALU(A,m, n, 1, P1)

else
for k = 1 to n/bl do

mp = (m− (k − 1)bl)/Prl
np = (n− (k − 1)bl)/Pcl
/* factor leaves of the panel */
for Processor p = 1 to Prl in parallel do

leaf = A((k − 1) · bl + (p− 1)mp + 1 : (k − 1) · bl + p ·mp, (k − 1) · bl + 1 : k · bl)
Call ML-CALU(leaf,mp, bl, l − 1, Pl−1)

/* Reduction steps */
for j = 1 to logPrl do

Stack two bl-by-bl sets of candidate pivot rows in B
Call ML-CALU(B, 2bl, bl, l − 1, Pl−1)

/* Compute block column of L */
for Processor p = 1 to Prl in parallel do

Compute Lp,k = L(k · bl + (p− 1)mp + 1 : k · bl + p ·mp, (k − 1) · bl + 1 : k · bl)
/* (Lp,k = Lp,k · U−1k,k ) using multilevel algorithm with Pl−1 nodes at level (l − 1) */

/* Apply all row permutations */
for Processor p = 1 to Prl in parallel do

Broadcast pivot information along the rows of the process grid
/* all to all reduce operation using Pl processors of level l */
Swap rows at left and right

Broadcast right diagonal block of Lk,k along rows of the process grid
/* Compute block row of U */
for Processor p = 1 to Pcl in parallel do

Compute Uk,p= U((k − 1) · bl + 1 : k · bl, k · bl + (p− 1)np + 1 : k · bl + p · np)
/* (Uk,p = L−1k,k ·A

−1
k,p) using multilevel algorithm with Pl−1 nodes at level (l − 1) */

/* Update trailing matrix */
for Processor p = 1 to Pcl in parallel do

Broadcast Uk,p along the columns of the process grid

for Processor p = 1 to Prl in parallel do
Broadcast Lp,k along the rows of the process grid

for Processor p = 1 to Pl in parallel do
A(k · bl + (p− 1)mp + 1 : k · bl + p ·mp, k · bl + (p− 1)np + 1 : k · bl + p · np) =
A(k · bl + (p− 1)mp + 1 : k · bl + p ·mp, k · bl + (p− 1)np + 1 : k · bl + p · np)− Lp,k · Uk,p

/* using multilevel Cannon with Pl nodes at level l */
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Let P be the total number of processors in the hierarchy. Let Pl = Prl × Pcl be the number of
processors at the l-th level of the processor hierarchy and bl the block size at this level. The total num-
ber of processors across the different levels of the hierarchy is

∏l
k=1 Pk = P . Note that forsimplicity

Algorithm 16 assumes that m and n are respectively multiples of Prl and Pcl .

To estimate the cost of ML-CALU, we first define the following costs, where W̄ refers to the cost
of communicating a volume of data W , S̄ to the cost of sending S messages, and F to the number of
floating-point operations. We note that all of these costs are evaluated on the critical path.

– TCALU (m,n, b, P ) is the cost of factoring a matrix of size m × n with 1-level CALU using P
processors and a block size b.

TCALU (m,n, b, P ) = W̄CALU (m,n, b, P ) + S̄CALU (m,n, b, P ) + FCALU (m,n, b, P ) γ,
= WCALU (m,n, b, P )β1 + SCALU (m,n, b, P )α1 + FCALU (m,n, b, P ) γ.

– TML-CALU (m,n, bl, Pl, l) is the cost of factoring a matrix of size m × n with multilevel CALU
using Pl processors and a block size bl at the top level of recursion. We note k a given level of the
hierarchy.

TML-CALU (m,n, bl, Pl, l) = W̄ML-CALU (m,n, bl, Pl, l) + S̄ML-CALU (m,n, bl, Pl, l)
+ FML-CALU (m,n, bl, Pl, l) γ,

=
∑l

k=1

(
WML-CALU (m,n, bl, Pl, k)βk + SML-CALU (m,n, bl, Pl, k)αk

)
+ FML-CALU (m,n, bl, Pl, l) γ.

– TML-LU-Fact (m,n, b, P, l) includes the broadcast of the pivot information along the rows of the
process grid, the application of the pivot information to the remainder of the rows, the broadcast
of the bl × bl upper part of the current panel of L along row of processes owning the corre-
sponding block of U , and finally the computation of the block column of L and the block row of
U . We refer to this step as the panel factorization. It is performed once the pivot rows are selected.

TML-LU-Fact (m,n, bl, Pl, l) = W̄ML-LU-Fact (m,n, bl, Pl, l) + S̄ML-LU-Fact (m,n, bl, Pl, l)
+ FML-LU-Fact (m,n, bl, Pl, l) γ,

=
∑l

k=1

(
WML-LU-Fact (m,n, bl, Pl, k)βk + SML-LU-Fact (m,n, bl, Pl, k)αk

)
+ FML-LU-Fact (m,n, bl, Pl, l) γ.

– TML-LU-Up (m,n, bl, Pl, l) is the cost of the update of the trailing matrix. It includes the broadcast
of the block column of L along rows of processors of the grid, the broadcast of the block row of
U along columns of processors of the grid, and the rank-b update of the trailing matrix.

TML-LU-Up (m,n, bl, Pl, l) = W̄ML-LU-Up (m,n, bl, Pl, l) + S̄ML-LU-Up (m,n, bl, Pl, l)
+ FML-LU-Up (m,n, bl, Pl, l) γ,

=
∑l

k=1

(
WML-LU-Up (m,n, bl, Pl, l) kβk + SML-LU-Up (m,n, bl, Pl, l) kαk

)
+ FML-LU-Up (m,n, bl, Pl, l) γ.

– In the formulas, we note TFactUp-ML-CALU (m,n, bl, Pl, l) the cost of both the factorization of the
current panel without pivoting and the update of the corresponding trailing matrix. That is,

TFactUp-ML-CALU (m,n, bl, Pl, l) =
∑n/bl

s=1 TML-LU-Fact

(
m−sbl
Prl

, n−sblPcl
, bl, Pl, l

)
+

∑n/bl
s=1 TML-LU-Up

(
m−sbl
Prl

, n−sblPcl
, bl, Pl, l

)
.
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The recursive cost of multilevel CALU is given by the contributions detailed below. We consider
l levels of parallelism, and we denote s the current step of ML-CALU. We first focus on the recursive
preprocessing step, which includes the application of ML-CALU to the blocks located at the leaves of
the top level reduction tree to select bl candidate pivot rows from each block (Equation 5.2),

n/bl∑
s=1

TML-CALU

(
m− (s− 1)bl

Prl
, bl, bl−1, Pl−1, l − 1

)
. (5.2)

Additionaly, along the reduction tree, blocks of size bl × bl are merged two by two and again we
perform ML-CALU on these blocks, each of size 2bl × bl at level l, to select bl candidate pivot rows
(Equation 5.3),

n/bl∑
s=1

log(Prl)TML-CALU (2bl, bl, bl−1, Pl−1, l − 1) . (5.3)

To form 2bl × bl blocks, a volume of data of size b2l needs to be sent, logPrl times along the critical
path. This communication is performed by processors of level 1 as presented in Figure 5.3, where we
consider a hierarchy of 3 levels. The cost of this operation is (Equation 5.4),

logPrl

(
l∑

k=1

b2l Pl∏l
j=k Pj

(βk +
1

Bk
αk)

)
. (5.4)

b3 candidate pivot rows

b3 candidate pivot rows 2− level CALU

Figure 5.3: Communication between two nodes of level 3: merge of two blocks of b3 candidate pivot
rows

Therefore the cost of the preprocessing step is given by the following terms,∑n/bl
s=1 TML-CALU

(
m−(s−1)bl

Prl
, bl, bl−1, Pl−1, l − 1

)
+

∑n/bl
s=1 log(Prl)TML-CALU (2bl, bl, bl−1, Pl−1, l − 1)

+ n
bl
logPrl

(∑l
k=1

b2l Pl∏l
j=k Pj

(βk + 1
Bk
αk)

)
.

Thus the following formula presents the general recursive cost of multilevel CALU, where s is the
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current step of the algorithm and k is the level of parallelism in the hierarchy.

TML-CALU (m,n, bl, Pl, l) =



∑n/bl
s=1

[
TML-CALU

(
m−(s−1)bl

Prl
, bl, bl−1, Pl−1, l − 1

)
+ logPrlTML-CALU (2bl, bl, bl−1, Pl−1, l − 1)

+ logPrl
∑l

k=1
b2l Pl∏l
j=k Pj

(βk + 1
Bk
αk)
]

+ TFactUp-ML-CALU (m,n, bl, Pl, l)

if l > 1

TCALU (m,n, b1, P1) if l = 1

If l ≥ 3, going down in the recursion and knowing that m−sblPrl
≤ m

Prl
, we can upper bound this cost

as in the following,

TML-CALU (m,n, bl, Pl, l) ≤



n
bl−1

TML-CALU

(
m

Prl
Prl−1

, bl−1, bl−2, Pl−2, l − 2
)

+ n
bl−1

logPrlTML-CALU

(
2bl
Prl−1

, bl−1, bl−2, Pl−2, l − 2
)

+ n
bl−1

(logPrl−1
logPrl + logPrl−1

)TML-CALU (2bl−1, bl−1, bl−2, Pl−2, l − 2)

+ n
bl−1

(logPrl−1
logPrl + logPrl−1

)
∑l−1

k=1

b2l−1Pl−1∏l−1
j=k Pj

(βk + αk
Bk

)

+ n
bl
logPrl

∑l
k=1

b2l Pl∏l
j=k Pj

(βk + 1
Bk
αk)

+ n
bl
TFactUp-ML-CALU

(
m
Prl
, bl, bl−1, Pl−1, l − 1

)
+ n

bl
logPrlTFactUp-ML-CALU (2bl, bl, bl−1, Pl−1, l − 1)

+ TFactUp-ML-CALU (m,n, bl, Pl, l)

if l > 1

TCALU (m,n, b1, P1) if l = 1

Here we assume that (logPrl−1
logPrl + logPrl−1

) ≤ 2logPrl−1
logPrl . We make the same assump-

tion at each level of recursion. Thus, going down in the recursion we get the cost of multilevel CALU
for l levels of recursion (l ≥ 2), where r denotes the level of recursion and k the level of parallelism
in the hierarchy. Hence each recursion level r invokes communication over all levels of parallelism k,
1 ≤ k ≤ r. Note that the recursive call r is performed at level r of parallelism.

TML-CALU (m,n, bl, Pl, l) . n
b2
TCALU

(
m∏l

j=2 Prj

, b2, b1, P1

)
(1)

+ n
b2

∑l
r=3 2l−r

∏l
j=r logPrjTCALU

(
2br∏r−1

j=2 Prj

, b2, b1, P1

)
(1)

+ n
b2

2l−2
∏l
j=2 logPrjTCALU (2b2, b2, b1, P1) (1)

+
∑l

r=3
n
br
TFactUp-ML-CALU

(
m∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)
(2)

+
∑l

k=4

∑k−1
r=3

n
br

2l−k
∏l
j=k logPrjTFactUp-ML-CALU

(
2bk∏k−1

j=r Prj

, br, br−1, Pr−1, r − 1

)
(2)

+
∑l

r=3
n
br

2l−r
∏l
j=r logPrjTFactUp-ML-CALU (2br, br, br−1, Pr, r − 1) (2)

+
∑l

r=2
n
br

∏l
j=r logPrj

∑r
k=1

b2rPr∏r
j=k Pj

(βk + αk
Bk

) (3)

+ TFactUp-ML-CALU (m,n, bl, Pl, l) (4)
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In the previous equation, the three first terms (1) correspond to the cost of applying 1-level CALU at
the deepest level of the recursion. This includes leaves of size (m/

∏l
j=2 Prj )× b2, intermediate blocks

of size (2br/
∏r−1
j=2 Prj )× b2, and blocks of size 2b2× b2. The three following terms (2) present the cost

of the panel factorizations and the updates performed through all the recursion levels l > 2, during the
preprocessing step. The term (3) corresponds to the cost of merging blocks of pivot candidate rows along
all the reduction trees and through all the recursion levels r ≥ 2. Thus the first 7 terms of the previous
equation correspond to the preprocessing step of ML-CALU. Finally the last term, (4), corresponds to
the cost of the panel factorization and the update of the principal trailing matrix throughout all the steps
of the algorithm.

Now we estimate the cost of TFactUp-ML-CALU (m,n, bl, Pl, l). The detailed counts and approxima-
tions are presented in Appendix B .5. We first consider the panel factorization then the update of the
trailing matrix. Then we give an estimation of the total running time of multilevel CALU. The counts
here are given for a square matrix of size n × n using a square grid of processors at each level r of
recursion, that for each level r, Prr = Pcr =

√
Pr. We discuss later the panel size br.

The panel factorization

The arithmetic cost of the panel factorization corresponds to the computation of a block column of L
of size (n− sbl)× bl and a block row of U of size bl× (n− sbl). To evaluate this cost we use the multi-
level Cannon algorithm detailed in section 5.3. The communication cost includes the broadcast of the bl
pivots selected during the preprocessing step, the permutation of the remainder of the rows (this commu-
nication is performed using an all to all reduce operation), the broadcast of the bl×bl upper part of L, and
finally the communication cost due to the computation of the block column of L and the block row of
U using ML-CANNON. We obtain the following costs on the critical path (low order terms are omitted),

– Arithmetic cost

n/bl∑
s=1

FML-LU-Fact

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
γ =

2n2bl√
Pl
∏l−1
j=1 Pj

γ.

– Communication cost

n/bl∑
s=1

W̄ML-LU-Fact

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
+ S̄ML-LU-Fact

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
=

n/bl∑
s=1

l∑
k=1

WML-LU-Fact

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, k

)
βk+SML-LU-Fact

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, k

)
αk ≤

l∑
k=1

(nblPl + n2
√
Pl∏l

j=k Pj
log
√
Pl +

4n2
(

1 + l−k√
Pk

)
bl
√
Pl
∏l
j=k

√
Pj

)
(βk +

αk
Bk

).
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The update of the trailing matrix

Here again to evaluate the arithmetic cost corresponding to the trailing matrix update we utilize ML-
CANNON. The communication cost includes the broadcast of a block column of L, the broadcast of a
block row of U , and finally the communication cost due to the matrix multiplication using multilevel
Cannon. Regarding the critical path, we obtain the following costs,

– Arithmetic cost

n/bl∑
s=1

FML-LU-Up

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
γ ≈ 2

3

n3

P
γ.

– Communication cost

n/bl∑
s=1

W̄ML-LU-Up

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
+ S̄ML-LU-Up

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, l

)
=

n/bl∑
s=1

l∑
k=1

WML-LU-Up

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, k

)
βk+SML-LU-Up

(
n− sbl√

Pl
,
n− sbl√

Pl
, bl, Pl, k

)
αk ≤

l∑
k=1

(
n2
√
Pl∏l

j=k Pj
log
√
Pl +

4n3

3blPl
∏l−1
j=k

√
Pj

(1 +
l − k√
Pk

)

)
(βk +

αk
Bk

).

Total cost of multilevel CALU

Here we estimate the total cost of multilevel CALU on a square n× n matrix, using l levels of recur-
sion (l ≥ 2), with respect to the HCP model. We present an approximation of the computation time, the
bandwidth cost, and the latency cost, all evaluated on the critical path. At each level r of recursion we
consider the following parameters, Prr = Pcr =

√
Pr and br = n/(8× 2l−r

∏l
j=r(

√
Pj log2 (

√
Pj)))

Note that to derive these approximations, we assume that at each level k of hierarchy, the number of
nodes Pk ≥ 16. This assumption results in a non dominating panel factorization in terms of computa-
tion. The details of the counts are presented in Appendix B .5.

The computation time of multilevel CALU on the critical path is

FML-CALU (m,n, bl, Pl, l) γ ≈
(
2n3

3P + n3

Plog2Pl
+ n3

P

(
3
8

)l−2(
5
16 l −

53
128

))
γ.

The previous equation shows that multilevel CALU performs more floating-point operations than 1-
level CALU, and thus Gaussian elimination with partial pivoting. This is because of the recursive calls
during the panel factorization. Note that certain assumptions should be done regarding the hierarchical
structure of the computational system in order to keep the extra flops as a low order term, and therefore
asymptotically attain the lower bounds on computation. For example, if we consider a hierarchy with
two levels and two nodes at level 2, then the estimated computation time becomes of order O(56

n3

P ). In
this case multilevel CALU exceeds the lower bounds on computation by a constant factor.
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The bandwidth cost of multilevel CALU, evaluated on the critical path, is bounded as follows

W̄ML-CALU (m,n, bl, Pl, l) =
∑l

k=1WML-CALU (m,n, bl, Pl, k)βk

≤ n2

2
∏l

j=1

√
Pj
logP1

∏l
j=2(1 + 1

2 logPj)β1

+
∑l

k=1

[
n2∏l

j=k

√
Pj

(
8
3 log

2Pl(1 + l−k√
Pk

)

+ (l−2)
8 (1 + l

4)
∏l
j=3(1 + 1

2 logPj)
)]
βk.

Finally the latency cost of multilevel CALU with respect to network capacity of each level of hier-
archy is bounded as follows

S̄ML-CALU (m,n, bl, Pl, l) =
∑l

k=1 SML-CALU (m,n, bl, Pl, k)αk

≤ n2

2
∏l

j=1

√
Pj
logP1

∏l
j=2(1 + 1

2 logPj)
α1
B1

+
∑l

k=1

[
n2∏l

j=k

√
Pj

(
8
3 log

2Pl(1 + l−k√
Pk

)

+ (l−2)
8 (1 + l

4)
∏l
j=3(1 + 1

2 logPj)
)]

αk
Bk
.

In summary,

W̄ML-CALU (m,n, bl, Pl, l) ≤ O(
∑l

k=1

[
n2∏l

j=k

√
Pj
l2
∏l
j=2 logPj

]
βk),

S̄ML-CALU (m,n, bl, Pl, l) ≤ O(
∑l

k=1

[
n2∏l

j=k

√
Pj
l2
∏l
j=2 logPj

]
αk
Bk

).

We recall here the lower bounds on bandwidth and latency under the HCP model at a level k of
parallelism.

Wk ≥ Ω

(
n2∏l

j=k

√
Pj

)
, Sk ≥ Ω

(
n2

Bk
∏l
j=k

√
Pj

)
.

We can therefore conclude that multilevel CALU attains these lower bounds modulo a factor that
depends on l2

∏l
j=2 logPj at each level k of hierarchy. Thus it reduces the communication cost at each

level of a hierarchical system. Note that in practice the number of levels is going to remain small, while
the number of processors will be large.

5.5 Performance predictions

In this section, we present performance predictions of the multilevel CALU algorithm on a large
scale platform. Indeed, current petascale platforms already display a hierarchical nature, with heteroge-
neous network bandwidths and latencies strongly impacting performance of parallel applications. This
trend will even be amplified when exascale platforms will become available. We plan here to provide an
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insight on what could be observed on such platforms.

We start by modeling an exascale platform with respect to the HCP model, then estimate the run-
ning time of our algorithm on this platform. The platform we build here is based on the NERSC Hopper
supercomputer [3]. We evaluate the performance of both multilevel CALU and its corresponding 1-level
routine on a matrix of size n×n, distributed over a square 2D grid of Pk processors at each level k of the
hierarchy, Pk =

√
Pk ×

√
Pk. The matrix size n is varied in the range of 24, 25, . . . 230. The number of

processors of the platform is varied in the same range. For CALU, we set the panel size b to the optimal
value used in [60], that is b = n/

∏l
j=1(

√
Pj log2

√
Pj). Using this panel size for multilevel CALU,

when l ≥ 2, minimizes both the bandwidth cost and the latency cost at each level of parallelism, with
respect to the lower bounds on communication in the HCP model. However it does not allow to keep
the extra computation performed during the preprocessing step as a low order term.

To be able to minimize both the communication cost and the additional arithmetic cost, due to the
recursive calls, we set the panel size of multilevel CALU to its "best" experimental value, that is,

bi =
n

8× 2l−i
∏l
j=i(

√
Pj log2 (

√
Pj))

.

Note that for all the figures we present in this section, the white regions in the plots signify either that
the problem needs too much memory with respect to the memory available on the platform (the upper
left corner), or that it is too small to involve all the compute units of the hierarchy (the bottom right
corner). Note also that the two vertical lines in all the figures separate the three levels of parallelism.
Thus the first part corresponds to one level of parallelism, the second part to two levels of parallelism,
and the third part to three levels of parallelism. Moreover, we would like to mention that, in our figures,
the displayed labels correspond to an average of four test cases.

As displayed in Figure 5.4, the use of the "best" experimental panel size results on few test cases,
because we only present cases where bi ≥ 1. Indeed, we assume that each processor participat-
ing in the execution holds at least one element of the input matrix. These cases correspond to the
blue region in Figure 5.4. In order to display some additional cases, we the set the panel size bi to

n

8×2l−i
∏l

j=i(
√
Pj log

2 (
√
Pj))

. The test cases that use this panel size correspond to the green region.

When the previous panel size become smaller than 1, we set the panel size bi to the optimal panel size
of CALU at each level of recursion, that is, bi = n/

∏l
j=i(

√
Pj log2

√
Pj). The test cases using this

panel size are presented in the orange region. For all our figures which present result for multilevel
CALU, we display all the previous test cases except for figures 5.6, 5.16, and 5.17. There, we delimit
the three region as follows, a black path between test cases displayed in the blue region and those dis-
played in the green region and a red path between the latter and test cases presented in the orange region.

For both 1-level CALU and multilevel CALU, we detail the fraction of time in computation, in
bandwidth, and in latency on our model of an exascale platform. We also discuss the speedup predic-
tions, comparing 1-level CALU to multilevel CALU on the exascale platform. Then we present the
computation to communication ratio for each algorithm. In all our experiments, we assume that for a
given level of parallelism, at least 16 compute nodes are used at each level.
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Figure 5.4: All test cases using three different panel sizes.

5.5.1 Modeling an Exascale platform with HCP

There are many unknowns regarding the architecture of exascale platforms. Here we use the charac-
teristics of the NERSC Hopper supercomputer as a building block of our exascale platform [1]. Hopper
is a petascale platform which is planned to be upgraded to reach the exascale around year 2018. It is
composed of Compute Nodes made out of four hexacore AMD Opteron processors Magny-cours run-
ning at 2.1 GHz. Each of these 12 cores offers a peak performance of 8.4 GFlop/s. Each node has a total
of 32 GB of memory and a HyperTransport interconnect allowing the processors to communicate with
an average bandwidth of 19.8 GB/s. Two of these Compute Nodes are connected to a Gemini ASIC
through an HyperTransport link providing a bandwidth of 10.4 GB/s to each node. Finally, these Gemini
ASICs are interconnected through the Gemini network, offering an average bandwidth of 3.5GB/s on
each link [89, 58]. The parameters of the Hopper platform are presented in Table 5.1.

Level # Bandwidth Latency
2x 6-cores Opterons (level 1) 12 19.8 GB/s 1× 10−9s
Hopper nodes (level 2) 2 10.4 GB/s 1× 10−6s
Geminis (level 3) 9350 3.5 GB/s 1.5× 10−6s

Table 5.1: The Hopper platform (2009).

In order to model an exascale platform based on this architecture, we increase the number of nodes
at each level. For the first level we consider 1024 cores instead of 12 cores. We also increase the number
of nodes to 32 and the number of interconnects so as to reach a total of 1M nodes. This leads to a total
of 32768 interconnects. We keep the same amount of memory per core as in the Hopper platform, that
is a total of, approximately, 1.3 GB of memory. To estimate the latency and the bandwidth at each level
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of the exascale platform, we consider a decrease of order 15% each year for the latency and an increase
of order 26% for the bandwidth. The parameters of such a platform are detailed in Table 5.2. We can
see that inter-core bandwidth is higher than the intra-socket bandwidth, which is higher than the network
chip bandwidth. Note, however, that this is only an attempt to build such an exascale platform. Thus the
parameters used here and the number of nodes at each level might be reconsidered with respect to actual
exascale system.

Level # Bandwidth Latency
Multi-core processors (level 1) 1024 300 GB/s 1× 10−10s
Nodes (level 2) 32 150 GB/s 1× 10−7s
Interconnects (level 3) 32768 50 GB/s 1.5× 10−7s

Table 5.2: Exascale parameters based on the Hopper platform. (2018)

In order to compare the predicted performance of multilevel algorithms to state-of-the-art commu-
nication avoiding algorithms on exascale platforms, we need to estimate the cost of the latter under the
HCP model. We therefore make the following assumptions,

– Each communication in a 1-level algorithm corresponds to a communications launched at the
deepest level of the hierarchy in the HCP model.

– Each communication goes through the entire hierarchy of the HCP model. In other words, each
communication is performed between two compute units belonging to two distant nodes located
at the highest level l of the hierarchy. Thus its bandwidth cost is βl.

– Communication running in parallel share the bandwidth βl. Thus the effective bandwidth is
βl/
∏l−1
i=1 Pi.

In the following, we estimate the running time of our algorithm using an extreme case of the HCP
model, where all the network levels are full pipelining. It means that at each level of the network, we set
the buffer size Bi of a switch node to the aggregated memory size of the compute units at this level of
hierarchy. Thus, for our estimations, we set B1 to M1, that is 1.3 GB, B2 to 1331.2 GB, and B3 to 42.6
TB. Similar predictions are obtained regarding a full forward network hierarchy, where the buffer size of
a switch node of a given level is set to the memory size of an actual compute unit of level 1. The absence
of differences between these two extreme cases of the HCP model is mainly due to the fact that we are
not analyzing latency bounded cases, which correspond to the bottom right corner. Note, however, that
a more realistic model would be in between, that is, it includes both forward and pipelining network
levels.

5.5.2 Performance predictions of multilevel CALU

In this section we estimate the running time of multilevel CALU and 1-level CALU on our model
of an exascale platform. We base our predictions on the cost model developed in section 5.4 with respect
to the HCP model. Figures 5.9, 5.5, 5.11, 5.10, 5.7, and 5.12 show our performance estimations. We
consider the division of the running time between computation time, latency cost, and bandwidth cost.
Figures 5.9, 5.5, and 5.11 present this division for 1-level CALU. Note that we estimate the running time
of 1-level CALU on the exascale platform with respect to the assumptions detailed in section 5.5.1. Fig-
ures 5.10, 5.7, and 5.12 present the running time division into floating-point operations cost, latency



106 CHAPTER 5. ON THE PERFORMANCE OF MULTILEVEL CALU

cost, and bandwidth cost for multilevel CALU.
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Figure 5.5: Prediction of fraction of time in latency of 1-level CALU on an exascale platform.

These figures show that for both 1-level CALU and multilevel CALU, the estimated computation
time dominates the estimated total running time in the upper left corner, that is when the algorithms
are applied to large problem using a small number of processors. However when these algorithms are
applied to relatively small problems using a large number of processors, the estimated latency is dom-
inating. This corresponds for example, in the case of 1-level CALU, to the bottom part of Figure 5.6.
Note that this figure displays non realistic cases, where we allow small block sizes (smaller than 1), just
to be able to see cases where the latency matter. We only present it to show the latency cost. While the
bandwidth dominates the estimated total running time in the middle region between the two previous
ones. Regarding the realistic cases displayed, the bandwidth region corresponds to the bottom part in
figures 5.9 and 5.10.

Considering the figures 5.5 and 5.7, which present the latency cost of 1-level CALU and multilevel
CALU, we can see that in both cases the latency cost is not dominant, since it is minimized. However
we can see in Figure 5.8, that beyond two levels of parallelism the fraction of time in latency is smaller
for the multilevel CALU comparing to 1-level CALU. Indeed the ratio of 1-level CALU latency cost to
multilevel CALU latency cost is between 6.2 and 10.8. Thus multilevel CALU is expected to be more
effective in decreasing the latency cost. Note, however, that the comparison between the two algorithms
in terms of latency cost could be improved by estimating the 1-level CALU algorithm with respect to
the HCP model.

Figures 5.9 and 5.10 display the fraction of time in bandwidth for respectively 1-level CALU and
multilevel CALU. We can see that for 1-level CALU, there are more test cases for which the bandwidth
cost is dominant. It is even a bottleneck in the bottom right corner. Moreover, in the region where both
multilevel CALU and 1-level CALU are bandwidth-bounded, for the same test case, that is the same
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Figure 5.6: Prediction of fraction of time in latency of 1-level CALU on an exascale platform (including
non realistic cases, where not all processors have data to compute).
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Figure 5.7: Prediction of fraction of time in latency of multilevel CALU on an exascale platform.

matrix size and the same hierarchical system, the fraction of time in bandwidth of multilevel CALU is
smaller than that of 1-level CALU. This shows that multilevel CALU is expected to significantly reduce
the volume of data which needs to be sent during the hierarchical factorization.

As we can see, in figures 5.11 and 5.12, for multilevel CALU, there are more test cases for which
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Figure 5.8: Prediction of latency ratio of multilevel CALU comparing to CALU on an exascale plat-
form.
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Figure 5.9: Prediction of fraction of time in bandwidth of 1-level CALU on an exascale platform.

the fraction of time spent in computation is dominating, that is where the algorithm is compute-bounded.
This is because of, on one hand, the efficiency of multilevel CALU at minimizing the communication
cost (hence it is expected to spend more time doing effective computation than communicating), and on
the other hand because of the extra computation due to the recursive calls. Thus 1-level CALU is likely
to be inefficient for hierarchical systems with multiple levels of parallelism, while multilevel CALU is
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Figure 5.10: Prediction of fraction of time in bandwidth of multilevel CALU on an exascale platform.

predicted to be more efficient on exascale platforms. We can observe in Figure 5.12 that for two levels
of parallelism, multilevel CALU is almost performing computation all the time, and this is due to the
use of the "best" experimental panel size. While when the CALU panel size is used, the communication
cost is reduced compared to CALU, but it is still dominant.

Figure 5.13 presents the predicted ratio of computation time of multilevel CALU with respect to the
computation time of 1-level CALU. We can see that this ratio is varying from 1.1 to 13.2 for l ≥ 2.
In this figure, we can easily distinguish the top region, corresponding to the "best" experimental panel
size, from the bottom region, where the panel size is is respectively set to the sizes previously detailed.
Indeed, for the first region, the predicted computation ratio is between 1.1 and 1.3, since the panel size
chosen here allows to keep the extra floating-point operations performed during the preprocessing step
as a lower order term comparing to the dominant arithmetic cost. Having a small computation ratio in
this region of the plot is important, because it displays cases where both multilevel CALU and 1-level
CALU are compute-bounded. However, in the bottom region, the computation ratio varies between 1.8
and 13.2. Thus, the use of the two alternative panel sizes does not allow to reduce the extra floating-point
operations.

Figures 5.14 and 5.15 illustrate the division of the computation time between the preprocessing step,
that is the selection of the final set of pivot rows, and the rest of the factorization, which includes both the
panel factorization and the update of the trailing matrix once the computed permutation is applied to the
input matrix. For one level of parallelism, Gaussian elimination with partial pivoting is applied to blocks
of the current panel in order to select the final pivot rows. As shown in the first region of Figure 5.14,
the computation cost of the preprocessing step is negligible with resoect to the total computation time.
While multilevel CALU recursively applies CALU to blocks of the panel during the preprocessing step.
For l ≥ 2, we can see in Figure 5.14 that in the region which corresponds to the "best" experimental
panel size, the overall predicted preprocessing step time is still much smaller than the predicted time
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Figure 5.11: Prediction of fraction of time in computations of 1-level CALU on an exascale platform.
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Figure 5.12: Prediction of fraction of time in computations of multilevel CALU on an exascale platform.

spent performing the panel factorizations and the updates. However, when the alternative panel sizes are
used, the predicted fraction of time in preprocessing is becoming larger. Thus it attains 90% of the esti-
mated total computation time, when the CALU optimal panel size is used at each level of the recursion.
This shows again how important the choice of the panel size is.

Figures 5.16 and 5.17 present the ratio of computation time to communication time for CALU and
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Figure 5.13: Prediction of computation ratio of multilevel CALU comparing to CALU on an exascale
platform.
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Figure 5.14: Prediction of fraction of time in preprocessing computation comparing to total computation
time on an exascale platform.
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Figure 5.15: Prediction of fraction of time in panel and update computation comparing to total compu-
tation time on an exascale platform.

multilevel CALU respectively. Note that in these two figures we only display experiments with the two
first panel sizes, which correspond to the blue and the green regions in Figure 5.4. We can see that in all
test cases, multilevel CALU performs more computation than communication. The estimated ratio is
varying from 363.6 to 9.9. CALU performs more communication than effective computation in the case
of three levels of parallelism. For example, for a matrix of size 220 running on a total of 217 processors,
the predicted communication time of CALU is up to 100× the predicted computation time, while the
predicted communication time of multilevel CALU is approximately 0.9× the computation time for the
same test case. This is because of both the reduction of the communication and the additional compu-
tation due to recursive calls. Thus 1-level CALU is predicted to be inefficient for hierarchical systems
with multiple level of parallelism, while multilevel CALU is estimated to be more efficient on exascale
platforms.

Multilevel CALU leads to significant improvements with respect to 1-level CALU when the com-
munication represents an important fraction of the total time. As it can be seen in Figure 5.18, multilevel
CALU is expected to show good scalability for large matrices. For example, for a matrix of size n = 215,
we measure a predicted speedup of almost 100× compared to 1-level CALU using a total of 524288
cores and three levels of paralleism. Note that multilevel CALU leads to more significant improvements
when the bandwidth represents an important fraction of the total time. This mainly corresponds to the
central lower part of Figure 5.18. We can see that the most important predicted speedup is observed
in the region where three levels of parallelism are used. In the region which corresponds to two lev-
els of parallelism, the expected speedup of multilevel CALU with respect to 1-level CALU is up to
4.1×. This means that, because of the extra computation during recursive calls, the reduction of com-
munication amount does not ensure significant speedup. Furthermore, CALU outperforms multilevel
CALU in a very small set of cases (0.85 speed down) in the 2 level region. For these cases, the gain
in terms of communication cost does not cover the cost of the additional computation performed during
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Figure 5.16: Prediction of the ratio of computation time to communication time for 1-level CALU

12.3

24.5 12.3

46.6 23.9 12.3

90.9 46.5 24.1 11.2

181.8 92.5 47.1 21.9

363.6 185.0 93.8 43.0 15.4

187.7 85.8 30.5 11.7

60.7 23.0 11.6

23.0 11.6

9.9

10 12 14 16 18 20 22 24

12

14

16

18

20

22

24

26

2

4

8

16

32

64

128

256

512

1024level 3level 2

L
og

2(
n)

(m
at

ri
x

si
ze

)

Log2(Number of nodes)

Figure 5.17: Prediction of the ratio of computation time to communication time for ML-CALU

the preprocessing step.

5.6 Related work

The αDBSP model is a recent hierarchical performance model that also takes into accounts varying
bandwidths at each level of parallelism. This model is introduced in [87] and it is mainly based on the
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Figure 5.18: Speedup prediction comparing CALU and ML-CALU on an exascale platform

decomposable BSP (DBSP) model. For recall, the DBSP model is an extension of the BSP model which
allows to execute supersteps on different sets of processors. Each set is characterized by its latency
and its bandwidth. Thus the DBSP model captures different levels of parallelism. The αDBSP model
aims at estimating hierarchical bandwidth requirements in order to avoid bandwidth bottleneck. Thus
it introduces an α bandwidth growth factor that allows for the computation of a lower bound on the
required hierarchical bandwidth and link capacity. At each level of parallelism, the bandwidth and the
latency are defined as a function of the bandwidth growth factor and the number of compute units at this
level. The bandwidth growth factor, and as a consequence the αDBSP model, highly depends on the
network topology. Note that the main difference between the αDBSP model and our model consists of
the way the bandwidth are evaluated. In fact, our model is based on discrete bandwidths.

5.7 Conclusion

In this chapter we have introduced a performance model (HCP) that captures the features of a sys-
tem with multiple levels of parallelism. This model describes how messages and data are routed through
the different levels of the network hierarchy. We believe that our model is both simple and realistic. We
have also designed a multilevel Cannon algorithm that we use as a tool to model matrix matrix opera-
tions performed during the multilevel CALU factorization. We have used the HCP model to analyze
the cost of both multilevel Cannon and multilevel CALU. These model costs show that these multilevel
algorithms asymptotically attain the lower bounds on communication at each level of parallelism. To
have an insight on how might multilevel CALU perform on an exascale platform, we have first designed
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a model of such a platform, then we have evaluated our algorithm on it. Our predictions show that mul-
tilevel CALU leads to significant speedups with respect to 1-level CALU, especially beyond two levels
of parallelism.

One possible perspective might be the improvement of the HCP performance model in order to take
into account the network topology at each level of the network hierarchy and the overhead of the switch-
ing process, without increasing analysis effort. This is a challenging task, since improving a cost model
in general means including further details, which results into a less practical model. Furthermore, we
intend to derive the optimal panel size for multilevel CALU. We conjecture that this corresponds to the
"best" experimental panel size presented in this chapter. However we still need to prove that it is optimal
regarding the minimization of the extra computation performed during the preprocessing step. Note that
a possible improvement of our performance predictions might be the analysis of the cost of CALU under
the HCP model. Additionally, as mentioned in the previous chapter, using recursive CALU together
with multilevel CALU to build an hybrid hierarchical CALU algorithm is likely to further improve
the performance of our hierarchical LU factorization, mainly when many levels of parallelism are used.
Hence performing recursive CALU at levels where communication is not expensive would reduce the
amount of additional computation, since the recursive calls are applied to entire panels.
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Conclusion

Throughout this thesis we have studied several methods that compute dense LU decomposition. We
have mainly focused on numerical stability and communication cost of these methods. In the first part
of our work, we have introduced a sequential LU factorization, LU_PRRP, which is more stable than
Gaussian elimination with partial pivoting in terms of growth factor upper bound. This novel algorithm
is based on a new pivoting strategy that uses the strong rank revealing QR factorization to select pivot
rows and to compute a block LU factorization. We have also shown through extensive experiments on a
large set of matrices that the block LU_PRRP factorization is very stable in practice.

In the second part of this thesis we have developed a communication avoiding version of LU_PRRP.
This algorithm, referred to as CALU_PRRP, aims on one hand at overcoming the communication bot-
tleneck due to the panel factorization during the LU_PRRP decomposition, and on the other hand at
improving the numerical stability of CALU, the communication avoiding version of GEPP. Thus the
CALU_PRRP algorithm asymptotically attains the lower bounds on communication in terms of both
the volume of data communicated, that is the bandwidth, and the number of messages sent, that is the
latency. This improvement in terms of communication cost, in particular latency cost, is due to the use of
the tournament pivoting strategy. Moreover the CALU_PRRP factorization is more stable than CALU
in terms of worst case growth factor, since the tournament pivoting is based on the same pivoting strat-
egy as the LU_PRRP factorization, that is the strong rank revealing QR pivoting. To be able to make
such a conclusion about the numerical stability of the CALU_PRRP algorithm, we have proved that in
exact arithmetic, performing CALU_PRRP on a given matrix A is equivalent to performing LU_PRRP
on a larger and more sparse matrix formed by blocks of A and blocks of zeros. We note that there are
cases of interest for which the upper bound of the growth factor of CALU_PRRP is smaller than that of
Gaussian elimination with partial pivoting. Our experiment set shows that CALU_PRRP is very stable
in practice and leads to results of the same order of magnitude as GEPP, sometimes even better.

In the third part of this thesis we have presented two hierarchical algorithms for the LU factorization,
uni-dimensional recursive CALU (recursive CALU) and bi-dimensional recursive CALU (multilevel
CALU). These two methods are based on communication avoiding LU factorization and are designed
to better exploit computer systems with multiple levels of parallelism. Regarding the numerical stabil-
ity, recursive CALU is equivalent to CALU with tournament pivoting based on Gaussian elimination
with partial pivoting. However it only reduces the bandwidth cost at each level of the hierarchical sys-
tem. Thus the latency is still a bottleneck, since at the deepest level of recursion, and during the panel
factorization, recursive CALU uses a hierarchical reduction tree, which is based on several levels of
reduction, one for each level of parallelism. However multilevel CALU minimizes communication at
each level of parallelism in terms of both volume of data and number of messages exchanged during
the decomposition. On a multi-core cluster system, that is a system with two levels of parallelism (dis-
tributed memory at the top level and shared memory at the deepest level), our experiment set shows
that multilevel CALU outperforms ScaLAPACK, especially for tall and skinny matrices. To have an
insight on how might multilevel CALU perform on an exascale platform with more than two levels of
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parallelism, we have introduced a hierarchical performance model (HCP) that captures the features of a
system with multiple levels of parallelism. Then we have evaluated the cost of multilevel CALU with
respect to this model. We have shown that it asymptotically attain the lower bounds on communication
at each level of parallelism, and that it leads to significant speedups with respect to 1-level CALU.

Perspectives

Future work includes several promising directions. From a theoretical perspective, we could further
study the behavior of LU_PRRP on sparse matrices and the amount of the fill in that it could generate.
Sophie Moufawad considers in her PhD thesis work the design of an incomplete LU preconditioner
(ILU0_PRRP) based on our new pivoting strategy, that is the panel rank revealing pivoting. We believe
that such a preconditioner would be more stable than ILU0 and hence it could be very useful for the
resolution of large and sparse linear systems. In the context of the communication avoiding algorithms,
it is possible to investigate the design of an LU algorithm that minimizes the communication and that has
a smaller bound on the growth factor than Gaussian elimination with partial pivoting in general, since,
as stated before, the CALU_PRRP algorithm designed in this work could be more stable than GEPP
in terms of growth factor upper bound under certain conditions on the reduction tree and the threshold
τ . Another direction to explore would be the use of the panel rank revealing pivoting technique in
the context of the LDLT decomposition, for both sequential and parallel cases. However this is a
challenging task because of the symmetry. We also intend to further study the numerical stability of
multilevel CALU or design a hybrid algorithm that takes advantages of both the numerical stability of
recursive CALU and the efficiency of multilevel CALU. This means that until a certain level in the
recursion, we use recursive CALU, and beyond this level we rather use multilevel CALU. We note
that a possible improvement in the numerical stability of multilevel CALU would be the design of a
multilevel CALU_PRRP algorithm, since the CALU_PRRP factorization is more stable than CALU.

From a more practical perspective, we intend to develop routines that implement the LU_PRRP al-
gorithm and that will be integrated in LAPACK and ScaLAPACK libraries. We also intend to finish our
implementation of the CALU_PRRP algorithm in order to estimate the performance of this algorithm
on parallel machines based on multicore processors, and comparing it with the performance of CALU.
Furthermore, we could implement a more flexible and modular hierarchical CALU algorithm for clus-
ters of multi-core processors, where it would be possible to choose the reduction tree at each level of
parallelism in order to be cache efficient at the core level and communication avoiding at the distributed
level.



Appendix A

Here we present experimental results for the LU_PRRP factorization, the binary tree based CALU_PRRP,
and the flat tree based CALU_PRRP. We show results obtained for the LU decomposition and the linear
solver. Tables 4, 6, and 8 display the results obtained for random matrices. They show the growth factor,
the norm of the factor L and U and their inverses, and the relative error of the decomposition.
Tables 5, 7, and 9 display the results obtained for the special matrices presented in Table 3. The size of
the tested matrices is n = 4096. For LU_PRRP and flat tree based CALU_PRRP, the size of the panel
is b = 8. For binary tree based CALU_PRRP, we use 64 processors (P = 64) and a panel of size 8
(b = 8), this means that the size of the matrices used at the leaves of the reduction tree is 64× 8.

We also present experimental results for binary tree based CALU, binary tree based 2-level CALU,
and binary tree based 3-level CALU. Here again we show results obtained for both the LU decom-
position and the linear solver. Tables 12 and 13 display the results obtained for the special matrices
presented in Table 3. The size of the tested matrices is n = 4096. For binary tree based CALU we use
64 processors and a panel of size 8, this means that the size of the matrices used at the leaves of the
reduction tree is 64 × 8. For binary tree based 2-level CALU, we use P1 = P2 = 8, b2 = 32, and
b1 = 8, this means that the size of the matrices used at the leaves of the first level reduction tree is
512 × 32, while the size of the matrices used at the leaves of the second level reduction tree is 64 × 8.
Note that for the set of special matrices, we could not test the matrix poisson with our code for n = 8192.

The tables are presented in the following order.
– Table 4: Stability of the LU decomposition for LU_PRRP and GEPP on random matrices.
– Table 5: Stability of the LU decomposition for LU_PRRP on special matrices.
– Table 6: Stability of the LU decomposition for flat tree based CALU_PRRP and GEPP on random

matrices.
– Table 7: Stability of the LU decomposition for flat tree based CALU_PRRP on special matrices.
– Table 8: Stability of the LU decomposition for binary tree based CALU_PRRP and GEPP on

random matrices.
– Table 9: Stability of the LU decomposition for binary tree based CALU_PRRP on special matri-

ces.
– Table 10: Stability of the LU decomposition for 2-level CALU and GEPP on random matrices.
– Table 11: Stability of the LU decomposition for GEPP on special matrices of size 4096.
– Table 12: Stability of the LU decomposition for 1-level CALU on special matrices of size 4096.
– Table 13: Stability of the LU decomposition for 2-level CALU on special matrices of size 4096.
– Table 14: Stability of the LU decomposition for GEPP on special matrices of size 8192.
– Table 15: Stability of the LU decomposition for 1-level CALU on special matrices of size 8192.
– Table 16: Stability of the LU decomposition for 2-level CALU on special matrices of size 8192.
– Table 17: Stability of the LU decomposition for 3-level CALU on special matrices of size 8192.
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Table 3: Special matrices in our test set.

No. Matrix Remarks
1 hadamard Hadamard matrix, hadamard(n), where n, n/12, or n/20 is power of

2.
2 house Householder matrix, A = eye(n) − β ∗ v ∗ v′, where [v, β, s] =

gallery(’house’, randn(n, 1)).
3 parter Parter matrix, a Toeplitz matrix with most of singular values near π.

gallery(’parter’, n), or A(i, j) = 1/(i− j + 0.5).
4 ris Ris matrix, matrix with elements A(i, j) = 0.5/(n− i− j+ 1.5). The

eigenvalues cluster around −π/2 and π/2. gallery(’ris’, n).
5 kms Kac-Murdock-Szego Toeplitz matrix. Its inverse is tridiagonal.

gallery(’kms’, n) or gallery(’kms’, n, rand).
6 toeppen Pentadiagonal Toeplitz matrix (sparse).
7 condex Counter-example matrix to condition estimators. gallery(’condex’, n).
8 moler Moler matrix, a symmetric positive definite (spd) matrix.

gallery(’moler’, n).
9 circul Circulant matrix, gallery(’circul’, randn(n, 1)).

10 randcorr Random n × n correlation matrix with random eigenvalues from
a uniform distribution, a symmetric positive semi-definite matrix.
gallery(’randcorr’, n).

11 poisson Block tridiagonal matrix from Poisson’s equation (sparse), A =
gallery(’poisson’,sqrt(n)).

12 hankel Hankel matrix, A = hankel(c, r), where c=randn(n, 1), r=randn(n, 1),
and c(n) = r(1).

13 jordbloc Jordan block matrix (sparse).
14 compan Companion matrix (sparse), A = compan(randn(n+1,1)).
15 pei Pei matrix, a symmetric matrix. gallery(’pei’, n) or gallery(’pei’, n,

randn).
16 randcolu Random matrix with normalized cols and specified singular values.

gallery(’randcolu’, n).
17 sprandn Sparse normally distributed random matrix, A = sprandn(n, n,0.02).
18 riemann Matrix associated with the Riemann hypothesis. gallery(’riemann’, n).
19 compar Comparison matrix, gallery(’compar’, randn(n), unidrnd(2)−1).
20 tridiag Tridiagonal matrix (sparse).
21 chebspec Chebyshev spectral differentiation matrix, gallery(’chebspec’, n, 1).
22 lehmer Lehmer matrix, a symmetric positive definite matrix such that

A(i, j) = i/j for j ≥ i. Its inverse is tridiagonal. gallery(’lehmer’,
n).

23 toeppd Symmetric positive semi-definite Toeplitz matrix. gallery(’toeppd’, n).
24 minij Symmetric positive definite matrix with A(i, j) = min(i, j).

gallery(’minij’, n).
25 randsvd Random matrix with preassigned singular values and specified band-

width. gallery(’randsvd’, n).
26 forsythe Forsythe matrix, a perturbed Jordan block matrix (sparse).
27 fiedler Fiedler matrix, gallery(’fiedler’, n), or gallery(’fiedler’, randn(n, 1)).
28 dorr Dorr matrix, a diagonally dominant, ill-conditioned, tridiagonal matrix

(sparse).
29 demmel A = D∗(eye(n) + 10−7∗rand(n)), where D = diag(1014∗(0:n−1)/n)

[36].
30 chebvand Chebyshev Vandermonde matrix based on n equally spaced points on

the interval [0, 1]. gallery(’chebvand’, n).
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31 invhess A=gallery(’invhess’, n, rand(n− 1, 1)). Its inverse is an upper Hessen-
berg matrix.

32 prolate Prolate matrix, a spd ill-conditioned Toeplitz matrix. gallery(’prolate’,
n).

33 frank Frank matrix, an upper Hessenberg matrix with ill-conditioned eigen-
values.

34 cauchy Cauchy matrix, gallery(’cauchy’, randn(n, 1), randn(n, 1)).
35 hilb Hilbert matrix with elements 1/(i+ j − 1). A =hilb(n).
36 lotkin Lotkin matrix, the Hilbert matrix with its first row altered to all ones.

gallery(’lotkin’, n).
37 kahan Kahan matrix, an upper trapezoidal matrix.
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Appendix B

.1 Cost analysis of LU_PRRP

Here we summarize the floating-point operation counts for the LU_PRRP algorithm performed on an input
matrix A of size m× n, where m ≥ n . We first focus on the step k of the algorithm, that is we consider the kth

panel of size (m− (k− 1)b)× b. We first perform a Strong RRQR on the transpose of the considered panel, then
update the trailing matrix of size (m−kb)×(n−kb), finally we perform GEPP on the diagonal block of size b×b.
We assume that m − (k − 1)b ≥ b + 1. The Strong RRQR performs nearly as many floating-point operations as
the QR with column pivoting. Here we consider that is the same, since in practice performing RRQR with column
pivoting is enough to obtain the bound τ , and thus it is

FlopsSRRQR,1block,stepk = 2(m− (k − 1)b)b2 − 2

3
b3.

If we consider the update step (2.3), then the flops count is

Flopsupdate,stepk = 2b(m− kb)(n− kb).

For the additional GEPP on the diagonal block, the flops count is

Flopsgepp,stepk =
2

3
b3 + (n− kb)b2.

Then the flops count for the step k is

FlopsLU_PRRP,stepk = b2(2m+ n− 3(k − 1)b)− b3 + 2b(m− kb)(n− kb).

This gives us an arithmetic operation count of

FlopsLU_PRRP (m,n, b) = Σ
n
b

k=1

[
b2(2m+ n− 2(k − 1)b− kb) + 2b(m− kb)(n− kb)

]
,

F lopsLU_PRRP (m,n, b) = mn2 + 2mnb+ 2nb2 − 1

2
n2b− 1

3
n3

∼ mn2 − 1

3
n3 + 2mnb− 1

2
n2b.

Then for a square matrix of size n× n, the flops count is

FlopsLU_PRRP (n, n, b) =
2

3
n3 +

3

2
n2b+ 2nb2 ∼ 2

3
n3 +

3

2
n2b.

.2 Cost analysis of CALU_PRRP

Here we detail the performance model of the parallel version of the CALU_PRRP factorization performed on
an input matrix A of sizem×nwhere,m ≥ n. We consider a 2D layout P = Pr×Pc . We first focus on the panel
factorization for the block LU factorization, that is the selection of the b pivot rows with the tournament pivoting
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strategy. This step is similar to CALU except that the reduction operator is Strong RRQR instead of GEPP, then
for each panel the amount of communication is the same as for TSLU:

# messages = logPr

# words = b2 logPr

However the floating-point operations count is different. We consider as in Appendix C that Strong RRQR per-
forms as many flops as QR with columns pivoting, then the panel factorization performs the QR factorization with
columns pivoting on the transpose of the blocks of the panel and logPr reduction steps:

# flops = 2
m− (k − 1)b

Pr
b2 − 2

3
b3 + logPr(2(2b)b2 − 2

3
b3)

= 2
m− (k − 1)b

Pr
b2 +

10

3
b3 logPr −

2

3
b3

To perform the QR factorization without pivoting on the transpose of the panel, and the update of the trailing
matrix:

– broadcast the pivot information along the rows of the process grid.

# messages = logPc

# words = b logPc

– apply the pivot information to the original rows.

# messages = logPr

# words =
nb

Pc
logPr

– Compute the block column L and broadcast it through blocks of columns

# messages = logPc

# words =
m− kb
Pr

b logPc

# flops = 2
m− kb
Pr

b2

– broadcast the upper block of the permuted matrix A through blocks of rows

# messages = logPr

# words =
n− kb
Pc

b logPr

– perform a rank-b update of the trailing matrix

# flops = 2b
m− kb
Pr

n− kb
Pc

Thus to get the block LU factorization :

# messages =
3n

b
logPr +

2n

b
logPc

# words = (
mn

Pr
− 1

2

n2

Pr
+ n) logPc + (nb+

3

2

n2

Pc
) logPr

# flops =
1

P
(mn2 − 1

3
n3) +

2

3
nb2(5 logPr − 1) +

b

Pr
(4mn+ 2nb− 2n2)

∼ 1

P
(mn2 − 1

3
n3) +

2

3
nb2(5 logPr − 1) +

4

Pr
(mn− n2

2
)b
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Then to obtain the full LU factorization, for each b × b block, we perform the Gaussian elimination with partial
pivoting and we update the corresponding trailing matrix of size b× n− kb. During this additional step, we first
perform GEPP on the diagonal block, broadcast pivot rows through column blocks (this broadcast can be done
together with the previous broadcast of L, thus there is no additional message to send), apply pivots, and finally
compute U.

# words = n(1 + b
2 ) logPc

# flops =

n
b∑

k=1

[
2

3
b3 +

n− kb
Pc

b2
]

=
2

3
nb2 +

1

2

n2b

Pc

Finally the total count is :

# messages =
3n

b
logPr +

2n

b
logPc

# words = (
mn

Pr
− 1

2

n2

Pr
+
nb

2
+ 2n) logPc + (nb+

3

2

n2

Pc
) logPr

≈ (
mn

Pr
− 1

2

n2

Pr
) logPc + (nb+

3

2

n2

Pc
) logPr

# flops =
1

P
(mn2 − 1

3
n3) +

4

Pr
(mn− n2

2
)b+

n2b

2Pc
+

10

3
nb2 logPr

.3 Cost analysis of 2-level CALU
In the following we estimate the performance of 2-level CALU. The input matrix is of size m × n. It is

distributed over a grid of P2 = Pr2 × Pc2 nodes. Each node has P1 = Pr1 × Pc1 processors. The block size is
b2 at the top level of parallelism, and b1 at the deepest level of parallelism. We consider the runtime estimation of
each iteration k of 2-level CALU. We note mk × nk the size of the active matrix at the top level of parallelism,
wheremk = m−(k−1)b2 and nk = n−(k−1)b2. We note CALU(rows, columns, processors, b) the routine that
performs 1-level CALU on a matrix of size rows× columns with P processors and a panel of size b. We suppose
that the communication between two nodes of the top level of parallelism is performed between two nodes of the
deepest level of parallelism, which then broadcast or distribute the recieved chunks of data over the rest of the
processors. For that reason we assume that the chunks of data transferred between nodes of the top level fit in the
memory of the processors of the deepest level of parallelism. We note that this is a strong assumption considering
a distributed memory model.

1. Compute 2-level TSLU of current panel. k
– Communication

– At the top level of parallelism:

# messagesk = logPr2

# wordsk = b22 logPr2

– At the deepest level of parallelism:

# messagesk = # messages(CALU(
mk

Pr2
, b2, P1, b1)) + logPr2 · # messages(CALU(2b2, b2, P1, b1))

+ logP1 · (1 + logPr2)

# wordsk = # words(CALU(
mk

Pr2
, b2, P1, b1)) + logPr2 · # words(CALU(2b2, b2, P1, b1))

+
b22
P1

logP1 · (1 + logPr2)
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– Floating point operations, this includes only reduction operations. The computation of the block column
k of L will be detailed later.

# flopsk = # flops(CALU(
mk

Pr2
, b2, P1, b1)) + logPr2 · # flops(CALU(2b2, b2, P1, b1))

2. Broadcast the pivot information along the columns of the process grid.
– Communication

– At the top level of parallelism:

# messagesk = logPc2

# wordsk = b2 logPc2

– At the deepest level of parallelism: collect the different chunks on one processor of the deepest level,
then distribute the received chunk over the different processors of the deepest level.

# messagesk = logP1

# wordsk = b2 logP1

3. Apply the pivot information to remainder of the rows. We consider that this is performed using an all to all
reduce operation.
– Communication

– At the top level of parallelism:

# messagesk = logPr2

# wordsk =
nkb2
Pc2

logPr2

– At the deepest level of parallelism: distribute the received block among P1 processors.

# messagesk = logP1

# wordsk =
nkb2
P1Pc2

logP1

4. Boradcast of the b2 × b2 upper part of panel k of L along columns of the process grid owning block row k
of U .
– Communication

– At the top level of parallelism:

# messagesk = logPc2

# wordsk =
b22
2

logPc2

– At the deepest level of parallelism: distribute the received block among P1 processors

# messagesk = logP1

# wordsk =
b22

2P1
logP1
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5. Compute block row k of U and block column k of L: matrix matrix multiplication using a grid of P1

processors in each node.
For the U factor, the multiplied blocks are of sizes b2 × b2 and b2 × nk

Pc2
. For the L factor, the multiplied

blocks are of sizes mk

Pr2
× b2 and b2 × b2. To model these steps we consider recursive Cannon’s algorithm.

– Communication

# messagesk = (
⌈ nk
Pc2b2

⌉
+
⌈ mk

Pr2b2

⌉
)4
√
P1

# wordsk = (
⌈ nk
Pc2b2

⌉
+
⌈ mk

Pr2b2

⌉
)

4b22√
P1

– Floating-point operations

# flopsk = (
⌈ nk
Pc2b2

⌉
+
⌈ mk

Pr2b2

⌉
)
2b32
P1

6. Broadcast the block column k of L along columns of the process grid.
– Communication

– At the top level of parallelism

# messagesk = logPc2

# wordsk =
(mk − b2)b2

Pr2
logPc2

– At the deepest level of parallelism

# messagesk = logP1

# wordsk =
(mk − b2)b2
Pr2P1

logP1

7. Broadcast the block row k of U along rows of the process grid.
– Communication

– At the top level of parallelism

# messagesk = logPr2

# wordsk =
(nk − b2)b2

Pc2
logPr2

– At the deepest level of parallelism

# messagesk = logP1

# wordsk =
(nk − b2)b2
Pc2P1

logP1
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8. Perform the update of the trailing matrix: matrix matrix multiplication using a grid of P1 processors in each
node.
The multiplied blocks are of sizes (mk−b2)

Pr2
× b2 and b2 × (nk−b2)

Pc2
. Here again we use recursive Cannon’s

algorithm to model the matrix matrix multiplication.
– Communication

# messagesk =
⌈mk − b2
Pr2b2

⌉⌈nk − b2
Pc2b2

⌉
4
√
P1

# wordsk =
⌈mk − b2
Pr2b2

⌉⌈nk − b2
Pc2b2

⌉ 4b22√
P1

– Floating-point operations

# flopsk =
mk − b2
Pr2b2

nk − b2
Pc2b2

2b32
P1

.4 Cost analysis of 2-recursive CALU
In the following we estimate the performance of 2-recursive CALU. The input matrix is of m × n. It is

distributed over a grid of P2 = Pr2 × Pc2 nodes. Each node has P1 = Pr1 × Pc1 processors. The block size
is b2 at the top level of recursion, and b1 at the deepest level of recursion. We estimate the running time of each
iteration k of 2-recursive CALU. We notemk×nk the size of the active matrix at the top level of recursion, where
mk = m− (k − 1)b2 and nk = n− (k − 1)b2, and ms × b2s the size of the active matrix at the deepest level of
recursion, where ms = mk − (s− 1)b1 and b2s = b2 − (s− 1)b1. Note that the computation of the factor U and
the update of the global trailing matrix is performed in the same way as for 2-level CALU. Thus in the following,
we only focus on the panel factorization.

1. Compute TSLU of current panel s of size ms × b1.
– Communication

– At the top level of parallelism:

# messagess = logPr2

# wordss = b21 logPr2

– At the deepest level of parallelism:

# messagess = logPr1

# wordss = b21 logPr1

– Floating point operations for (b2/b1) panels s

# flops =
1

Pr
(2mkb2 − b22)b1 +

b2b
2
1

3
(5 logPr − 1)

Note here that for the rest of the panel factorization, a communication performed along columns of the
process grid is local, that is inside one node of level 2, while a communication along rows of the process
grid involves both local and global communications, that is inside and between nodes of level 2.
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2. Broadcast the pivot information along columns of the process grid.
– Communication

– At the deepest level of parallelism:

# messagess = logPc1

# wordss = b1 logPc1

3. Apply the pivot information to remainder of the rows. We consider that this is performed using an all to all
reduce operation.
– Communication

– At the top level of parallelism:

# messagess = logPr2

# wordss = b2sb1 logPr2

– At the deepest level of parallelism: distribute the received block among P1 processors

# messagesk = logP1

# wordsk =
b2sb1
P1

logP1

4. Boradcast of the b1 × b1 upper part of panel s of L along columns of the process grid owning block row s
of U
– Communication

– At the deepest level of parallelism:

# messagess = logPc1

# wordss =
b21
2

logPc1

5. Compute block row s of U
– Floating-point operations

# flops =
b22b1
2Pc1

6. Broadcast the block column s of L along columns of the process grid.
– Communication

– At the deepest level of parallelism

# messagess = logPc1

# wordss =
(ms − b1)b1

Pr
logPc1

7. Broadcast the block row s of U along rows of the process grid.
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– Communication
– At the top level of parallelism

# messagess = logPr2

# wordss = (b2s − b1)b1 logPr2

– At the deepest level of parallelism

# messagess = logP1

# wordss =
(b2s − b1)b1

P1
logP1

8. Perform the update of the trailing matrix
– Floating-point operations

# flops =
1

PrPc1
(mkb

2
2 −

b32
3

)

Thus for the factorization of the current panel k we have,
– Communication

– At the top level of parallelism

# messagesk =
3b2
b1

logPr2

# wordsk = (
3b22
2

+ b2b1) logPr2

– At the deepest level of parallelism

# messagesk =
3b2
b1

logPc1 +
b2
b1

logPr1 +
2b2
b1

logP1

# wordsk = (mkb2 −
b22
2

+
b2b1

2
+ b2) logPc1 + b2b1 logPr1 +

b22
P1

logP1

– Floating-point operations

# flopsk =
1

Pr
(2mkb2 − b22)b1 +

b2b
2
1

3
(5 logPr − 1) +

b22b1
2Pc1

+
1

PrPc1
(mkb

2
2 −

b32
3

)

.5 Cost analysis of multilevel CALU

Here we estimate the running time of multilevel CALU using the same notations as in section 5.4. We
especially give the detailed counts.
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The panel factorization

We first evaluate the cost of the panel factorization once the pivot rows are selected, that is after the pre-
processing step. This corresponds to the following term

n/bl∑
s=1

TML-LU-Fact

(
m− sbl
Prl

,
n− sbl
Pcl

, bl, Pl, l

)
.

– Arithmetic cost

The arithmetic cost corresponds to the computation of the block columns of L of size (m−sbl)×bl and the
block rows of U of size bl× (n− sbl). For that we use multilevel Cannon algorithm detailed in section 5.3.
Since ML-CANNON uses a square 2D grid, we assume a square processor grid topology at each level k
of the hierarchy, that is Prk = Pck =

√
Pk. Each node Pcl has to multiply two matrices of sizes bl × bl

and bl × (n− sbl/Pcl). And each node Prl working on the panel has to multiply two matrices of sizes
(m− sbl)× bl and bl × bl. Since Cannon’s algorithm applies to square matrices, we consider matrices of
size bl × bl, then the cost of this computation is,∑n/bl

s=1 FML-LU-Fact

(
m−sbl
Prl

, n−sblPcl
, bl, Pl, l

)
≈

∑n/bl
s=1

(⌈
m−sbl
bl
√
Pl

⌉
+
⌈
n−sbl
bl
√
Pl

⌉)
FML-CANNON (bl, bl, Pl−1, l − 1)

= (2mn−n2)bl√
Pl

∏l−1
j=1 Pj

+ n2bl√
Pl

∏l−1
j=1 Pj

= 2mnbl√
Pl

∏l−1
j=1 Pj

.

– Communication cost

We first consider the broadcast of the bl pivots selected during the preprocessing step. These pivots are
distributed over the diagonal nodes. For each level k, there are (bl/bk) processors of level k taking part
in the broadcast of the pivot information, each sends a chunk of size bk. In Figure 19, where we consider
3 levels of hierarchy, processors of level 1 participating in the broadcast are presented by the red blocks.
We note that in our performance model, we prefer intra-node communication to inter-node communication.
For example, the pivot information broadcast will be performed with respect to the communication scheme
presented in Figure 19. We discard the extreme case presented in Figure 20, where all the communication
are performed between processors belonging to different nodes of the topmost level.
Therefore the volume of data communicated during the broadcast of the pivot information along the rows
at a given level k of the hierarchy is

n/bl∑
s=1

bk log

 l∏
j=k

Pcj

 =
nbk
bl

log

 l∏
j=k

Pcj

 =
nbk
bl

log

 l∏
j=k

√
Pj

 .

b3 selected pivot rows

Figure 19: Broadcast of the pivot information along one row of processors (first scheme)
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b3 selected pivot rows

Figure 20: Broadcast of the pivot information along one row of processors (second scheme)

To apply the pivot information to the remainder of the rows, we consider an all to all reduce operation.
Thus the amount of data to send by a node of a given level k of the hierarchy is (nbl)/(Pcl

∏l−1
j=k Pj).

Then the volume of data to send at given level k of the hierarchy is

n/bl∑
s=1

nbl

Pcl
∏l−1
j=k Pj

logPrl =
n2Prl∏l
j=k Pj

logPrl =
n2
√
Pl∏l

j=k Pj
log
√
Pl.

Now we consider the broadcast of the bl × bl upper part of L. There are (Pl−1)/2 nodes of level (l − 1)
participating in the broadcast. Then at a given level k, 1 ≤ k < l, the volume of data to be sent is,

n/bl∑
s=1

b2l∏l−1
j=k Pj

logPcl =
nbl∏l−1
j=k Pj

logPcl =
nbl∏l−1
j=k Pj

log
√
Pl.

If k = l, the volume of data communicated is,

n/bl∑
s=1

b2l
2

logPcl =
nbl
2

logPcl =
nbl
2

log
√
Pl.

For simplicity, we consider that the volume of data to send is the same for each level k of the hierarchy,
1 ≤ k ≤ l, and it is,

nblPl∏l
j=k Pj

logPcl =
nblPl∏l
j=k Pj

log
√
Pl.

Here we evaluate the communication cost due to the computation of blocks L and U using multilevel
Cannon. The volume of data to be sent at a given level k of the hierarchy is,

n/bl∑
s=1

(⌈m− sbl
blPrl

⌉
+
⌈n− sbl
blPcl

⌉)
WML-CANNON (bl, bl, Pl−1, l − 1) ≤

2

bl
∏l
j=k

√
Pj

(
1 +

l − k√
Pk

)( 1

Prl
(2mn− n2) +

n2

Pcl

)
=

2

bl
∏l
j=k

√
Pj

(
1 +

l − k√
Pk

)
2mn√
Pl
.

Finally the cost due to the volume of data communicated during the panel factorization once the pivot rows
are selected is bounded by,

l∑
k=1

(nblPl + n2
√
Pl∏l

j=k Pj
log
√
Pl +

nbk
bl

log

 l∏
j=k

√
Pj

+
2
(

1 + l−k√
Pk

)
bl
∏l
j=k

√
Pj

2mn√
Pl

)
βk.
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The corresponding cost in terms of latency with respect to the network capacity of each level k of the hier-
archy is bounded by,

l∑
k=1

(nblPl + n2
√
Pl∏l

j=k Pj
log
√
Pl +

nbk
bl

log

 l∏
j=k

√
Pj

+
2
(

1 + l−k√
Pk

)
bl
∏l
j=k

√
Pj

2mn√
Pl

)αk
Bk

.

The update of the trailing matrix

In the following we evaluate the cost of the update of the trailing matrix over the different levels of the hi-
erarchy. This corresponds to the term

∑n/bl
s=1 TML-LU-Up

(
m−sbl
Prl

, n−sblPcl
, bl, Pl, l

)
in the general recursive cost

presented in section 5.4.

– Arithmetic cost

Here again we perform the update using multilevel Cannon algorithm and a square 2D grid of processors.
Each node of level l multiplies two matrices of size (m− sbl)/Prl × bl and (n− sbl)/Pcl × bl over (l−1)
levels of hierarchy at each step s of the factorization. Then the cost of the update on the critical path is,

n/bl∑
s=1

FML-LU-Up

(
m− sbl
Prl

,
n− sbl
Pcl

, bl, Pl, l

)
≈

n/bl∑
s=1

⌈m− sbl
bl
√
Pl

⌉⌈n− sbl
bl
√
Pl

⌉
FML-CANNON (bl, bl, Pl−1, l − 1) ≈ 1

P

(
mn2 − n3

3

)
.

– Communication cost

The communication cost includes the broadcast of the block columns of L along columns of the process
grid and the broadcast of the block rows of U along rows of the process grid. At the topmost level of
parallelism the volume of data which needs to be sent for a given panel at iteration s is,

(m− sbl)bl
Prl

logPcl +
(n− sbl)bl

Pcl
logPrl .

Each node of level k broadcasts a chunk of data of size ((n− sbl)bl)/(Pcl
∏l−1
j=k Pj) along the homologous

row processors, and a chunk of data of size ((m− sbl)bl)/(Prl
∏l−1
j=k Pj) along the homologous column

processors. Then the volume of data to send at a given level k of the hierarchy is

n/bl∑
s=1

(m− sbl)blPcl∏l
j=k Pj

logPcl +
(n− sbl)blPrl∏l

j=k Pj
logPrl

≈ 1∏l
j=k Pj

(
(mn− n2

2
)Pcl logPcl +

n2

2
Prl logPrl

)

≈ mn
√
Pl∏l

j=k Pj
log
√
Pl.

Regarding the communication due to the matrix multiplication performed using multilevel Cannon, the
additional volume of data communicated at a given level k of the hierarchy is,

n/bl∑
s=1

⌈m− sbl
blPrl

⌉⌈n− sbl
blPcl

⌉
WML-CANNON (bl, bl, Pl−1, l − 1)
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≤ 2

blPl
∏l−1
j=1

√
Pj

(mn2 − n3

3
)(1 +

l − k√
Pk

).

Finally the volume of data corresponding to the update of the trailing matrix along the critical path is
bounded by,

l∑
k=1

(
mn
√
Pl∏l

j=k Pj
log
√
Pl +

2

blPl
∏l−1
j=k

√
Pj

(mn2 − n3

3
)(1 +

l − k√
Pk

)

)
βk.

The corresponding latency cost with respect to the network capacity of each level k of the hierarchy is
bounded by

l∑
k=1

(
mn
√
Pl∏l

j=k Pj
log
√
Pl +

2

blPl
∏l−1
j=k

√
Pj

(mn2 − n3

3
)(1 +

l − k√
Pk

)

)
αk
Bk

.

The preprocessing step: selection of pivot rows

The cost of the preprocessing step corresponds to the following terms detailed in section 5.4,

n
b2
TCALU

(
m∏l

j=2 Prj

, b2, b1, P1

)
+ n

b2

∑l
r=3 2l−r

∏l
j=r logPrjTCALU

(
2br∏r−1

j=2 Prj

, b2, b1, P1

)
+ n

b2
2l−2

∏l
j=2 logPrjTCALU (2b2, b2, b1, P1)

+
∑l
r=3

n
br
TFactUp-ML-CALU

(
m∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
k=4

∑k−1
r=3

n
br

2l−k
∏l
j=k logPrjTFactUp-ML-CALU

(
2bk∏k−1

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
r=3

n
br

2l−r
∏l
j=r logPrjTFactUp-ML-CALU (2br, br, br−1, Pr, r − 1)

+
∑l
r=2

n
br

∏l
j=r logPrj

∑r
k=1

b2rPr∏r
j=k Pj

(βk + αk

Bk
)

– Arithmetic cost

At a given level r of the recursive preprocessing step, (r − 1)-level CALU is used as a redaction operator
to select a set of br candidate pivot rows. At the deepest level of the recursion, the routine used to select
pivot candidates from each block is 1-level CALU. Thus along all the recursion levels, from l down to
1, the number of computations performed to select the final set of pivot rows is given by the following
contributions, where the three first terms correspond to the application of 1-level CALU and the three last
terms present the panel factorizations and the updates performed during the preprocessing step,

n
b2
FCALU

(
m∏l

j=2 Prj

, b2, b1, P1

)
+ n

b2

∑l
r=3 2l−r

∏l
j=r logPrjFCALU

(
2br∏r−1

j=2 Prj

, b2, b1, P1

)
+ n

b2
2l−2

∏l
j=2 logPrjFCALU (2b2, b2, b1, P1)

+
∑l
r=3

n
br
FFactUp-ML-CALU

(
m∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
k=4

∑k−1
r=3

n
br

2l−k
∏l
j=k logPrjFFactUp-ML-CALU

(
2bk∏k−1

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
r=3

n
br

2l−r
∏l
j=r logPrjFFactUp-ML-CALU (2br, br, br−1, Pr, r − 1) ,

which can be bounded as follows,
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n
b2

∏l
j=2(1 + logPrj )FCALU

(
m∏l

j=2 Prj

, b2, b1, P1

)
+
∑l
r=3

n
br

[∏l
j=r(1 + logPrj )FFactUp-ML-CALU

(
m∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)]
.

To estimate the previous cost, we consider a square matrix and the "best" experimental panel size, that is
for each level r of recursion these parameters can be written as Prr = Pcr =

√
Pr and

br = n/(8× 2l−r
∏l
j=r(

√
Pj log2 (

√
Pj))). With respect to the previous parameters, we get the following

upper bounds, where we assume that Pr ≥ 16 at each level of parallelism,

n
b2

∏l
j=2(1 + logPrj )FCALU

(
n∏l

j=2 Prj

, b2, b1, P1

)
≈ n3

P ( 1
2 + 1

log2P1
)2l−1

∏l
j=2

(1+ 1
2 logPj)

log2(Pj)

≤ 9n3

16P 2l−1
∏l
j=2

(1+ 1
2 logPj)

log2(Pj)

≤ 9n3

16P ( 3
8 )l−1.

∑l
r=3

n
br

∏l
j=r(1 + logPrj )FFactUp-ML-CALU

(
n∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)
≈
∑l
r=3

n3

P ( 1
2 + 2

log2Pr−1
)2l−r

∏l
j=r

(1+ 1
2 logPj)

log2(Pj)

≤
∑l
r=3

5n3

16P
3
8

l−r+1

≤ 5n3

16P (l − 2)( 3
8 )l−2.

Therefore, the multilevel preprocessing step, that is the recursive selection of the pivot rows for the panel
factorization is bounded as follows,

FPreprocessingML-CALU (m,n, bl, Pl) ≤
n3

P

(3

8

)l−2( 5

16
l − 53

128

)
<

2n3

3P
, (l ≥ 2).

Thus, we can see that the preprocessing step is not dominating in terms of floating-point operations.

– Communication cost

The bandwidth cost of multilevel CALU preprocessing step is given by the following terms,

n
b2
WCALU

(
m∏l

j=2 Prj

, b2, b1, P1

)
+ n

b2

∑l
r=3 2l−r

∏l
j=r logPrjWCALU

(
2br∏r−1

j=2 Prj

, b2, b1, P1

)
+ n

b2
2l−2

∏l
j=2 logPrjWCALU (2b2, b2, b1, P1)

+
∑l
r=3

n
br
WFactUP-ML-CALU

(
m∏l

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
k=4

∑k−1
r=3

n
br

2l−k
∏l
j=k logPrjWFactUP-ML-CALU

(
2bk∏k−1

j=r Prj

, br, br−1, Pr−1, r − 1

)
+

∑l
r=3

n
br

2l−r
∏l
j=r logPrjWFactUP-ML-CALU (2br, br, br−1, Pr, r − 1)

+
∑l
r=2

n
br

∏l
j=r logPrj

∑r
k=1

b2rPr∏r
j=k Pj

βk,

which can be bounded as follows,

n
b2

∏l
j=2(1 + logPrj )WCALU

(
n∏l

j=2 Prj

, b2, b1, P1

)
β1

+
∑l
r=3

n
br

[∏l
j=r(1 + logPrj )

∑r
k=1WFactUP-ML-CALU

(
n∏l

j=r Prj

, br, br−1, Pr−1, k

)
βk

]
+

∑l
r=2

n
br

∏l
j=r logPrj

∑r
k=1

b2rPr∏r
j=k Pj

βk.
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The first term corresponds to bandwidth cost at the deepest level of the recursion, where we call 1-level
CALU to select b2 pivot rows from each block. With the parameters detailed above we have (lower order
terms are omitted),

n
b2

∏l
j=2(1 + logPrj )WCALU

(
n∏l

j=2 Prj

, b2, b1, P1

)
β1 ≈ n2

2
∏l

j=1

√
Pj

logP1

∏l
j=2(1 + 1

2 logPj)β1

The second term presents the bandwidth cost of panel factorizations and updates performed during the pre-
processing steps by calling r-level CALU, 3 ≤ r ≤ (l − 1). The dominant cost in this term is that due to
the updates, and it is bounded as follows,

∑l
r=3

n
br

[∏l
j=r(1 + logPrj )

∑r
k=1WFactUP-ML-CALU

(
n∏l

j=r Prj

, br, br−1, Pr−1, k

)
βk

]
≈
∑l
r=3

[∏l
j=r(1 + logPrj )

∑r
k=1

2n2

Pr
∏l

j=k

√
Pj

(1 + r−k√
Pk

)βk

]
≤
∑l
k=1

n2

8
∏l

j=k

√
Pj

(l − 2)(1 + l
4 )
∏l
j=3(1 + 1

2 logPj)βk.

The last term present the cost of merging blocks two by two along the different recursion levels of the
preprocessing steps. Using the parameters detailed above we have,

∑l
r=2

n
br

∏l
j=r logPrj

∑r
k=1

b2rPr∏r
j=k Pj

βk ≤
∑l
k=1

n2∏l
j=k

√
Pj

l−1
4P1

∏l
j=k logPj

βk,

which is negligible comparing to the previous term. Thus, the bandwidth cost of multilevel CALU prepro-
cessing step can be bounded by,

n2

2
∏l

j=1

√
Pj

logP1

∏l
j=2(1 + 1

2 logPj)β1

+
∑l
k=1

n2

8
∏l

j=k

√
Pj

(l − 2)(1 + l
4 )
∏l
j=3(1 + 1

2 logPj)βk.

Total cost of multilevel CALU

Here we give the total cost of multilevel CALU with l levels of recursion (l ≥ 2), using a panel size
br = n/(8× 2l−r

∏l
j=r(

√
Pj log2 (

√
Pj))) at each level r of recursion.

The computation time of multilevel CALU on the critical path is,

FML-CALU (m,n, bl, Pl, l) γ ≈
(

2n3

3P + n3

Plog2Pl
+ n3

P

(
3
8

)l−2(
5
16 l −

53
128

))
γ.

The bandwidth cost of multilevel CALU, evaluated on the critical path, is bounded as follows (some lower
order terms are omitted),∑l

k=1WML-CALU (m,n, bl, Pl, k)βk ≤ n2

2
∏l

j=1

√
Pj

logP1

∏l
j=2(1 + 1

2 logPj)β1

+
∑l
k=1

[
n2∏l

j=k

√
Pj

(
8
3 log

2Pl(1 + l−k√
Pk

)

+ (l−2)
8 (1 + l

4 )
∏l
j=3(1 + 1

2 logPj)
)]
βk.

Finally the latency cost of multilevel CALU with respect to network capacity of each level of hierarchy is
bounded as follows,
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∑l
k=1 SML-CALU (m,n, bl, Pl, k)αk ≤ n2

2
∏l

j=1

√
Pj

logP1

∏l
j=2(1 + 1

2 logPj)
α1

B1

+
∑l
k=1

[
n2∏l

j=k

√
Pj

(
8
3 log

2Pl(1 + l−k√
Pk

)

+ (l−2)
8 (1 + l

4 )
∏l
j=3(1 + 1

2 logPj)
)]

αk

Bk
.
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Appendix C

Here we detail the algebra of the block parallel LU-PRRP introduced in section 3.4. At the first iteration, the
matrix A has the following partition,

A =

[
A11 A12

A21 A22

]
.

The block A11 is of size m/P × b, where P is the number of processors used assuming that m/P ≥ b + 1.
The block A12 is of size m/P × n − b, the block A21 is of size (m −m/P ) × b, and the block A22 is of size
(m−m/P )× (n− b).

To describe the algebra, we consider 4 processors and a block of size b. We first focus on the first panel,

A(:, 1 : b) =


A0

A1

A2

A3

 .
Each blockAi is of sizem/P ×b. In the following we describe the different steps of the panel factorization. First,
we perform Strong RRQR factorization on the transpose of each block Ai so we obtain,

AT0 Π00 = Q00R00,
AT1 Π10 = Q10R10,
AT2 Π20 = Q20R20,
AT3 Π30 = Q30R30.

Each matrix Ri is of size b×m/P . Using MATLAB notations, we can write Ri as follows,

R̄i = Ri(1 : b, 1 : b) ¯̄Ri = Ri(1 : b, b+ 1 : m/P )

This step aims at eliminating the last m/P − b rows of each block Ai. We define the matrix D0Π0 as follows,

D0Π0 =



[
Ib

−D00 Im/P−b

]
[

Ib
−D10 Im/P−b

]
[

Ib
−D20 Im/P−b

]
[

Ib
−D30 Im/P−b

]


×


ΠT

00
ΠT

10
ΠT

20
ΠT

30

 ,

where

D00 = ¯̄RT00(R̄−100 )T ,

D10 = ¯̄RT10(R̄−110 )T ,

D20 = ¯̄RT20(R̄−120 )T ,

D30 = ¯̄RT30(R̄−130 )T .

Multiplying A(:, 1 : b) by D0Π0 we obtain,
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D0Π0 ×A(:, 1 : b) =



(ΠT
00 ×A0)(1 : b, 1 : b)

0m/P−b

(ΠT
10 ×A1)(1 : b, 1 : b)

0m/P−b

(ΠT
20 ×A2)(1 : b, 1 : b)

0m/P−b

(ΠT
30 ×A3)(1 : b, 1 : b)

0m/P−b



=



A01

0m/P−b

A11

0m/P−b

A21

0m/p−b

A31

0m/P−b



.

The second step corresponds to the second level of the reduction tree. We merge pairs of b× b blocks and as
in the previous step we perform Strong RRQR factorization on the transpose of the 2b× b blocks,[

A01

A11

]
and [

A21

A31

]
.

We obtain,

[
A01

A11

]T
Π̄01 = Q01R01,[

A21

A31

]T
Π̄11 = Q11R11.

We note,

R̄01 = R01(1 : b, 1 : b) ¯̄R01 = R01(1 : b, b+ 1 : 2b),

R̄11 = R11(1 : b, 1 : b) ¯̄R11 = R11(1 : b, b+ 1 : 2b).

As in the previous level, we aim at eliminating b rows in each block. For that reason we consider the following
matrix,

D1Π1 =




Ib

Im/P−b
−D01 Ib

Im/P−b

 
Ib

Im/P−b
−D11 Ib

Im/P−b




×
[

ΠT
01

ΠT
11

]
,

where

D01 = ¯̄RT01(R̄−101 )T ,

D11 = ¯̄RT11(R̄−101 )T .

The matrices Π̄01 and Π̄11 are the permutations are obtained when performing the Strong RRQR factorizations
on the two 2b × b blocks. The matrices Π01 and Π11 can easily be deduced from the matrices Π̄01 and Π̄11

extended by the appropriate identity matrices to get matrices of size 2m/P × 2m/P . The multiplication of the
block D0Π0A(:, 1 : b) with the matrix D1Π1 leeds to,
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D1Π1D0Π0A(:, 1 : b) =



[
Π̄T

01 ×
[
A01

A11

]]
(1 : b, 1 : b)

02m/P−b[
Π̄T

11 ×
[
A21

A31

]]
(1 : b, 1 : b)

02m/P−b


.

This matrix can be written as,

D1Π1D0Π0A(:, 1 : b) =



[
Π̄T

01 ×
[

(ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

]]
(1 : b, 1 : b)

02m/P−b[
Π̄T

11 ×
[

(ΠT
20 ×A2(1 : b, 1 : b))

(ΠT
30 ×A3(1 : b, 1 : b))

]]
(1 : b, 1 : b)

02m/P−b


=


A02

02m/P−b

A12

02m/P−b

 .

For the final step we consider the last 2b× b block[
A02

A12

]
.

We perform a Strong RRQR factorization on the transpose of this block. Thus we obtain,[
A02

A12

]T
Π̄02 = Q02R02.

We note

R̄02 = R02(1 : b, 1 : b) and ¯̄R02 = R02(1 : b, b+ 1 : 2b).

We define the matrix D2Π2 as,

D2Π2 =



Ib
Im/P−b

Ib
Im/P−b

−D02 Ib
Im/P−b

Ib
Im/P−b


×ΠT

02,

where

D02 = ¯̄RT02(R̄−102 )T ,

and the permutation matrix Π02 can easily be deduced from the permutation matrix Π̄02.
The multiplication of the block D1Π1D0Π0A(:, 1 : b) by the matrix D2Π2 leeds to,



156 APPENDIX C

D2Π2D1Π1D0Π0A(:, 1 : b) =

[
RT021Q

T
02

04m/P−b

]
= ΠT

02 ×
[

A02

04m/P−b

]
=

[
A03

04m/P−b

]
.

If we consider the block A(:, 1 : b) of the beginning and all the steps performed, we get,

D2Π2D1Π1D0Π0A(:, 1 : b) =


[
Π̄T

02 ×
[
A02

A12

]
(1 : b, 1 : b)

]
04m/P−b

 ,
which can can be written as,

D2Π2D1Π1D0Π0A(:, 1 : b) =




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/P−b


.

Thus,

A(:, 1 : b) = (D2Π2D1Π1D0Π0)−1




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/P−b


,

A(:, 1 : b) = ΠT
0D
−1
0 ΠT

1D
−1
1 ΠT

2D
−1
2




Π̄T

02 ×

Π̄T
01 ×

 (ΠT
00 ×A0)(1 : b, 1 : b)

(ΠT
10 ×A1)(1 : b, 1 : b)

 (1 : b, 1 : b)

Π̄T
11 ×

 (ΠT
20 ×A2)(1 : b, 1 : b)

(ΠT
30 ×A3)(1 : b, 1 : b)

 (1 : b, 1 : b)


(1 : b, 1 : b)

04m/P−b


,

where

ΠT
0 =


Π00

Π10

Π20

Π30

 ,
and
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D−10 =



[
Ib
D00 Im/P−b

]
[

Ib
D10 Im/P−b

]
[

Ib
D20 Im/P−b

]
[

Ib
D30 Im/P−b

]


.

For each Strong RRQR performed previously, the corresponding trailing matrix is updated at the same time. Thus,
at the end of the process, we have

A = ΠT
0D
−1
0 ΠT

1D
−1
1 ΠT

2D
−1
2 ×

[
A03 Â12

04m/P−b Â22

]
,

where A03 is the b × b diagonal block containing the b selected pivot rows from the current panel. An additional
GEPP should be performed on this block to get the full LU factorization. Â22 is the trailing matrix already updated,
and on which the block parallel LU-PRRP should be continued.
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Appendix D

Here is the MATLAB code for generating the matrix T used in section 2.2.2 to define a generalized Wilkinson
matrix on which GEPP fails. For any given integer r > 0, this generalized Wilkinson matrix is an upper triangular
semi-separable matrix with rank at most r in all of its submatrices above the main diagonal. The entries are all
negative and are chosen randomly. The Wilkinson matrix corresponds to the special case, where r = 1, and every
entry above the main diagonal is 1.

function [A] = counterexample_GEPP(n,r,u,v);
% Function counterexample_GEPP generates a matrix which fails
% GEPP in terms of large element growth.
% This is a generalization of the Wilkinson matrix.
%
if (nargin == 2)

u = rand(n,r);
v = rand(n,r);
A = - triu(u * v’);
for k = 2:n

umax = max(abs(A(k-1,k:n))) * (1 + 1/n);
A(k-1,k:n) = A(k-1,k:n) / umax;

end
A = A - diag(diag(A));
A = A’ + eye(n);
A(1:n-1,n) = ones(n-1,1);

else
A = triu(u * v’);
A = A - diag(diag(A));
A = A’ + eye(n);
A(1:n-1,n) = ones(n-1,1);

end
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