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the Andreev Bound States

in a Carbon Nanotube

Superconductivity is a fascinating electronic order in which electrons
pair up due to an attractive interaction and condense in a
macroscopic quantum state that can carry dissipationless currents,
i.e. supercurrents. In hybrid structures where superconductors (S)
are put in contact with non-superconducting material (X), electronic
pairs propagating from the superconductor “contaminate” the non-
superconducting material conferring it superconducting-like
properties close to the interface, among which the ability to carry
supercurrent. This “contamination”, known as the superconducting
proximity effect is a truly generic phenomenon.
The transmission of a supercurrent through any S-X-S structure is
explained by the constructive interference of pairs of electrons
traversing X. Indeed, much as in an optical Fabry-Perot resonator,
such constructive interference of electronic pairs occurs only for
special resonant electronic states in X, known as the Andreev
Bound States (ABS). In the recent years it has been possible to
fabricate a variety of nanostructures in which X could be for instance
nanowires, carbon nanotubes or even molecules. Such devices
have in common that their X contains only few conduction electrons
which implies that ABS are also in small number. In this case, if one
wants to quantitatively understand proximity effect in these systems,
it is necessary to understand in detail how individual ABS form. This
can be seen as a central question in the development of nanoscale
superconducting electronics.
In this thesis, we observed individual ABS by tunneling
spectroscopy in a carbon nanotube.
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Chapter 1

Introduction

Superconductivity is a fascinating electronic order in which electrons pair
up due to an effective attractive interaction and condense into a state, char-
acterized by a macroscopic phase, that can carry dissipationless currents,
i.e. supercurrents. It was observed and understood for a long time that in
hybrid structures where superconductors (S) are put in contact with non-
superconducting materials (X), electronic pairs propagating from the su-
perconductor “contaminate” the non-superconducting material conferring it
superconducting-like properties close to the interface, among which notably
the ability to transmit supercurrent. This “contamination”, known as the su-
perconducting proximity effect was gradually understood to be truly generic:
whatever the electronics properties of X, proximity effect will occur, albeit
possibly only on a range of the order of the interatomic distance in unfavor-
able cases.

The transmission of a supercurrent through any S-X-S hybrid structure is
explained by the constructive interference of pairs of electrons traversing X.
Indeed, much as in an optical Fabry-Perot resonator, such constructive inter-
ference of electronic pairs occurs only for special resonant electronic states
confined inside X, known as the Andreev Bound States (ABS). Reciprocally,
knowing the properties of the ABS is enough to characterize the supercon-
ducting properties of the S-X-S structure.

In hybrid nanostructures containing many ABSs, a statistical knowledge
about the ABSs provided by quasiclassical theories suffices to predict the su-
percurrent in the structure. This is the case for instance in Superconductor-
Normal metal-Superconductor (S-N-S) microbridges. However, in the recent
years its has been possible to fabricate a variety of hybrid nanostructures
in which X could be for instance semiconducting nanowires [1, 2, 3], carbon
nanotubes [4, 5, 6, 7, 8, 9, 10, 11], aggregates [12, 13, 14] or even molecules
[15]. Such devices have in common that their X contains only few conduction

13
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electrons which implies that ABS are also in small number. In this case, if
one wants to quantitatively understand proximity effect in these systems, it is
necessary to understand in detail how the individual ABS form in such device
for which quasiclassical methods are ineffective. This can be seen as a cen-
tral question in the development of nanoscale or molecular superconducting
electronics.

In a first step to address this question, the initial goal of this thesis work
was to observe individual ABSs in a system expected to contain only a few
of them. To do so, we have set up an experiment with an hybrid device in
which X was a carbon nanotube (CNT). In such a structure, it was indeed
expected that there would be only a small number of ABS that one could
resolve individually by performing tunneling spectroscopy directly on the
CNT.

When wanting to understand the formation of ABS in systems with few
electrons, one is rapidly faced with the question of Coulomb interaction: in
contrast to the (quasi-)electrons of the superconductor that experience an
effective attractive interaction, in a nanoscale X with few electrons, Coulom-
bian repulsion is expected to play a large role. Hence a second question one
has to address is: how do ABSs form in a system with Coulomb repulsion
(obviously opposing superconducting pairing)? Prior to this thesis work,
many theoretical works had addressed this point, but there had been no ex-
perimental counterpart taking the point of view of the ABS formation. Our
experimental results shed light on the effect of Coulomb repulsion on ABSs.

1.1 Observation of the ABSs
The concept of ABSs has been widely used to understand a large panel of
experiments in hybrid nanostructures. Yet, no experiment had so far allowed
a detailed and direct spectroscopy of the ABSs. In this thesis work, we report
the first spectroscopy of individually resolved ABSs, in a CNT-based hybrid
device.

CNTs are suitable to perform the spectroscopy of ABSs, first, because as
already mentioned they should host only a reduced number of ABSs when
contacted to Ss. Also, establishing good contacts to superconducting leads
has already been demonstrated [4, 7, 8], and they have a favorable elongated
geometry providing an easy access to a tunnel probe. In our setup the CNT
is contacted to aluminum electrodes distant of 0.7 µm. These electrodes
become superconducting below ∼ 1K and “contaminate” the CNT. As elec-
trodes are reconnected, they form a loop. This geometry permits to impose
a superconducting phase difference δ across the CNT by threading a mag-
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Spectroscopy of the Andreev Bound States
Figure 1.1: Colorplot of the density of states (D.O.S.) of a CNT measured
as a function of the superconducting phase difference δ between electrodes.
Andreev Bound States appear as resonances (bright lines on this graph)
whose energies depend periodically on δ. The solid trace corresponds to a
cross-section of the data at the phase indicated by the dashed line.

netic flux in the loop. In between these electrodes, a tunnel probe is weakly
contacted to the CNT in order to measure its density of states by tunnel-
ing spectroscopy. The detailed description of our process of fabrication is
exposed in part IV.

In part II, we present a first experiment realized on such structure in which
we have successfully observed individual ABSs in the CNT. They appear as
resonances in the density of states of the CNT within a gap of width 2∆ where
∆ is the amplitude of the order parameter of the superconducting electrodes
(see Fig. 1.1). We were also able to measure the 2π-periodic dependence with
δ of the ABSs’ energies. This phase dependence is a signature of the ABSs
and is intimately related to their role in the transport of supercurrent in the
CNT, even though that current was not actually measured in the experiment.
The supercurrent carried by an ABS is indeed given by the derivative if its
energy with respect to δ. In chapter 6, based on this behaviour, we evaluate
the performance of our device as a SQUID-magnetometer.

1.2 ABSs in Quantum Dots
Trying to interpret this first experiment has led us to address the question
of the formation of ABSs in Quantum Dots (QDs). This is because, most
experiments involving electronic transport through CNTs can be interpreted
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Figure 1.2: Experimental (upper graph) and theoretical (lower graph) de-
pendence of the Andreev Bound States spectra with the voltage applied on
a back gate. Comparison of our experimental results and calculations per-
formed within the phenomenological approach of Ref. [16] yields a very good
agreement. In this model, ABSs appear as facing bell-shaped resonances
with their bases resting against opposite edges of the superconducting gap.
For large enough Coulomb repulsion these resonances may form a loop. The
features observed in experimental data can be identified as such bell-shaped
resonances corresponding thus to different orbitals in the nanotube. Closer
inspection reveals however that adjacent resonances are sometimes coupled,
forming avoided crossings, so that we need to consider the case where two
orbitals contribute simultaneously to the spectral properties within the su-
perconducting gap. For this, we extend the model to two serially-connected
QD each containing an orbital, with a significant hopping term in between.
This model is fairly natural, given that the centre tunnel probe electrode is
likely to act as an efficient scatterer.
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in terms of QD, and ours in no exception. In QDs, the electronic structure,
prior to the connection to superconducting leads, is quantized in orbitals that
can each contain two electrons of opposite spin, and a gate electrode allows
to control the filling of these orbitals. Moreover, due to Coulomb repulsion,
the energy necessary to add an electron to the QD - the charging energy -
is one of the biggest energy scale of the system. In our experiments it is ten
times larger than the characteristic energy of superconductivity ∆.

Our experiment showed that by applying a voltage on a capacitively cou-
pled gate, one can tune the ABSs’ energies. The observations were consistent
with ABSs arising from the hybridization of levels of opposite spin belong-
ing to orbitals of the CNT behaving as a double quantum dot. In part I,
we introduce the theoretical approaches which allow to describe these ex-
perimental results. A first approach is based on an effective non-interacting
model developed in Ref. [16] by Vecino et al. It consists in a phenomenolog-
ical treatment - Hartree-Fock like - of the Coulomb repulsion in the CNT.
Though based on rough approximations, this approach yields a rather good
agreement with experimental results (see Fig. 1.2) allowing to extract de-
tailed information on our sample: couplings between CNT and the leads or
strength of Coulomb repulsion. Spectra of ABSs constitute thus a powerful
spectroscopic tool for QDs. We validate this phenomenological approach, for
the parameters range of our experiment, by comparison with exact numerical
renormalization group (NRG) calculations.

In part III, we report on a second experiment that aimed at filling the
gaps left in the analysis of the first experiment. In particular we wanted
to check the double-dot analysis that we had used for the first experiment.
A second goal of this experiment was to investigate the possible interplay
between the PE in a QD and the Kondo effect. The Kondo effect is complex
many-body phenomenon which arises in a QD connected to normal leads (i.e.
non superconducting). When the QD contains, in its last occupied orbital,
a single electron, its spin degree of freedom interacts with conduction seas
of the electrodes. Virtual charge fluctuations, in which an electron briefly
migrates off, or into the QD lead to spin-exchange between the local moment
and the conduction sea [17]. This spin-exchange gives rise to the formation
of a many-body spin-singlet state characterized by an energy scale TK : its
Kondo temperature. This state manifests by a peak at the Fermi level in
the density of states of the CNT. Its interplay with superconductivity has
been the subject of numerous experimental [5, 9, 14, 18, 19, 20, 21] and
theoretical works (see for example [22, 23, 24, 25]). There are however still
few quantitative experimental investigations leaving many open questions,
like: is there an interplay between Kondo effect and superconductivity ruled
by the ratio TK/∆? We explored this interplay through the spectroscopy of
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ABSs by comparing normal state and superconducting state measurements
of the CNT’s density of states (see Fig. 1.3). Our experimental results show
that, within the parameters range of our experiment, Kondo effect observed
in the normal state induces no qualitative change in the behaviour of ABSs.
The behaviour that we observe experimentally is well described by NRG
calculations which can capture both the Kondo effect and the formation
of ABSs in QDs, as is shown in Fig. 1.3. We also discuss the quantum
transition between a spin-singlet and a spin-1/2 ground state of the QD in the
superconducting state when the gate voltage is varied. The most spectacular
effect of such transition is the reversal of the supercurrent by adding a single
extra electron in the QD. This is directly visible in our spectroscopy by an
ABS that crosses the Fermi level in forming a loop pattern as a function of the
gate voltage in an odd valley of the QD. A second signature of this transition
is a phase shift of π in the phase-dependence of the ABSs, indicating that
the CNT goes from a zero to a pi-junction behaviour. Finally in this second
experiment we show some spectroscopic features that are specific of double-
QD physics.

1.3 Perspectives
Our observation of the ABSs in a CNT constitutes an important step forward
in the exploration of PE in nanostructure. This experiment is not just the
confirmation of a fifty years old prediction [26, 27, 28], but is at the heart
of modern issues on hybrid nanostructure with superconducting leads. This
field is presently very active. People are considering all sorts of S-X-S de-
vices with all possible electronic properties for X, and some of them are very
promising. For instance, if X is a topological insulator (or a semiconductor
with strong spin-orbit coupling and Zeeman splitting), it is predicted that -
under appropriate circumstances - some ABSs should take the appearance of
Majorana fermions which could be a basis for the implementation of topolog-
ical quantum information processing. But so far, only a limited number of
predictions have considered the effect of interactions [29]. Our work should
give some insight in order to picture the influence of interaction on the for-
mation of Majorana fermions. Apart from this exciting perspective, other
cornerstone experiments could extend the present work.

Semiconducting nanowires (NW) are characterized by a large spin-orbit
interaction and can be contacted to Ss. Since they share similar geometry
than CNTs, the spectroscopy of ABSs could, in principle, be realized in the
same way than in our experiment. Such spectroscopy would open exciting
perspective for the understanding of the interplay between superconductivity
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Figure 1.3: On the left: densities of states of the CNT measured as a function
of the gate voltage Vbg when the leads are driven into their normal state with
a magnetic field (upper graph), and when they are in their superconducting
state (lower graph). In normal state measurements, Kondo peaks (indicated
by black diamond) appear at the Fermi level. In the superconducting state,
these peaks disappear because of the opening of a superconducting gap be-
tween −∆ and +∆. Within this gap, ABSs appear because of proximity
effect. They form loop when we tune the gate voltage Vbg. All these be-
haviours are nicely captured by NRG approach, as shown by the matching
graphs on the right.
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and spin orbit interaction.
Some two-dimensional electron gases (2DEG) in semiconductor heterostruc-

tures are also characterized by a strong spin orbit [30, 31]. Hence, they were
also proposed as candidate for the observation of Majorana fermions [32].
Moreover, the possibility of patterning the 2DEG and introducing lateral
gates offer an even richer degree of control than CNTs or NWs: couplings
to the leads as well as charging energies would be tunable parameters, in
contrast to our experiment where they are essentially imposed during fabri-
cation of the device. Moreover, as coupling between the tunnel probe and the
QD could also be tuned, it would make possible to limit the broadening of
ABSs due to the coupling to the probe, thereby increasing the resolution of
Andreev Bound States spectra as a spectroscopic tool. We could also, as in
Ref. [33], realize this spectroscopy through an extra QD acting as an energy
filter and reach an even better resolution.



Part I

Andreev Bound States in
Quantum Dots
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Superconducting proximity effect and Josephson effect Close to an
interface with a superconductor (denoted by S), materials that are not in-
trinsic superconductors (hereafter called normal materials and denoted by
X) acquire some characteristic properties of the superconductor. This effect,
generically known as “the proximity effect”, is of wide generality although its
strength and length-scale depend on the electronic properties of the normal
material and on the quality of the interface.

A striking manifestation of this proximity effect can be observed in S-
X-S junctions: if X is thin enough and the temperature low enough, such a
junction can sustain a supercurrent. Such phenomenon constitutes a general-
ization of the supercurrent flow through an insulating barrier (S-I-S junction)
described by B. Josephson, and, by extension, it is also called Josephson ef-
fect.

The physics of the proximity effect was investigated and understood soon
after the discovery of the BCS theory. The group led by de Gennes in Orsay
notably contributed to this work [27, 34, 35].

With the advent of mesoscopic physics there was a renewed interest on
the proximity effect that started in the 90’s. This revival was pushed both by
the development of microfabrication techniques that allowed to make elabo-
rate heterostructures at the scales relevant for the proximity effect, but also
by the emergence of new ideas in the domain of mesoscopic physics, such
as the Landauer-Büttiker scattering formalism [36], Random matrices [37],
Nazarov’s circuit theory [38], etc...

This has led to consider proximity and Josephson effects in countless
structures, where X could be anything among molecules (graphene, carbon
nanotube, fullerene), diffusive normal metals, ferromagnetic materials, semi-
conductors (two dimensional electron gas or nanowires) and atomic contacts.
In the recent years the introduction of new materials has made the field of
proximity effect richer with for instance the observation of a striking µm-
range proximity effect though ferromagnetic layers presumably due to equal-
spin Cooper pairs (a.k.a. “spin-triplet”) [39, 40, 41], or predictions of the
presence of composite “Majorana fermions” in exotic proximity structures
involving topological insulators or semiconductors with strong spin-orbit cou-
pling [42].

The behaviour of all the above mentioned structures, despite their very
different electronic properties, can be qualitatively understood within a re-
markably uniform language based on key concepts of the superconducting
proximity effect: Andreev reflections and Andreev bound states [26, 28,
43]. These two concepts are easily understood and depicted in the com-
bined framework of the Landauer-Büttiker scattering formalism and the
Bogoliubov-de Gennes formulation [44] of the BCS theory [45, 46, 47]. We
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first introduce them below.
Then we will restrict the topic to proximity effect in Quantum dots (a

general introduction to Quantum Dots is provided in appendix A). Many
experiments have already reported the measurement of a Josephson super-
current through QDs [48], but the link between these observations and the
underlying phenomena remained rather qualitative. By addressing the DOS
of the QD in proximity effect, we reach a deeper understanding of these
experiments.

In chapter 2, we will introduce the concepts of Andreev reflection and
Andreev Bound States with scattering formalism which provides intuitive
pictures of those notions. Afterward, in chapter 3, we will introduce a Green’s
function description of the superconducting proximity effect in QD. This
formal tool affords a handy and straightforward way to calculate observables
in a QD. In this part of the thesis, we will first focus on not too strongly
coupled QD in which effective non-interacting models are appropriate. Later
on, we will address the case of QD displaying Kondo effect [49].



Chapter 2

Scattering description of the
proximity effect

In the present chapter, we adopt the scattering approach to describe general
properties of the proximity effect. This approach, pioneered by C. Lambert
[50] and C. Beenakker [51], allows to obtain the quasiparticle excitation spec-
trum of a Josephson junction including the Andreev Bound States. From this
spectrum can be deduced various observables such as the supercurrent.

Here, we follow closely Beenakker’s method and notations to introduce
the process of Andreev reflections and the formation of Andreev Bound States
in S-X-S junctions. Finally, since the experiments we performed use a carbon
nanotubes as a QD, we eventually apply this description to a quantum dot
in which interactions are treated in a minimal fashion.

2.1 Andreev reflection
Andreev reflection is the process by which charge carriers from a normal
metal (X) can enter a superconductor (S). Addressing this problem amounts
to solve the Bogoliubov-de Gennes equations at an X-S interface, and this is a
difficult problem since one should in principle determine the superconducting
order parameter ∆ (see appendix F for definition) self-consistently while
solving the equations. Fortunately, in many experimental situations where
a weak link is connected to much more massive superconducting electrodes,
approximating the order parameter as a step function at the interface yields a
simple and yet very good approximation. In this case, the Andreev reflection
amplitude can be obtained by simply matching wave functions of the normal
metal with those of the bulk superconductor.

Let us consider an electron in the normal metal (x < 0) at an energy

25
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Andreev Reflection of an electron into its time-reversed
conjugated hole at a X-S interface

Figure 2.1: Schematic representation (bottom diagram) of the Andreev re-
flection of an electron into its time-reversed conjugated hole at a X-S in-
terface. The latter is represented in the top diagram with the X part on
the left and the S part on the right. When a right-moving spin up electron
in the X part, with an energy E smaller than the superconducting gap ∆,
reaches the interface with a S part (represented by its density of states in
blue) at x = 0, it cannot enter by itself the superconductor. It may be either
normally reflected (if the interface is not perfect) or Andreev reflected into
its time-reversed conjugated hole (left-moving and spin down). In the latter
case, a Cooper pair is transferred to the superconductor S.
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(defined with respect to the Fermi level EF ) lower than the superconducting
gap |ϵ| < ∆ propagating toward the superconducting part (x > 0). Since
the solutions to the BdG equation in the superconductor (equivalent of the
Schrödinger’s equation in normal materials) are in the Nambu space, we also
describe the normal metal states in this space. The incident electron is then
a state: [

1
0

]
eikx

that we need to match to states in the S region (see Eq. F.7 of section F.2
in appendix F) at the interface (x = 0 see Fig. 2.1). For matching the hole
part, it is necessary to introduce a reflected hole component on the N side
(l.h.s.): [

1
0

]
eikx + λ

[
0
1

]
eikx = µ

[
1

a
(

ϵ
|∆|

)
e−iϕ

]
eik+(ϵ)x

where λ and µ are coefficients to be determined (one rapidly sees that µ = 1)
and a is a function of the energy given by the ratio of the coherence factors
(see appendix F). Since |ϵ| < ∆, the wavevectors are imaginary on the S
side (r.h.s.) and only the evanescent wave (Im [k+(ϵ)] > 0) is an acceptable
physical solution. The hole reflection amplitude is simply:

λ = a

(
ϵ

|∆|

)
e−iϕ

For |ϵ| < ∆, one has |a|2 = 1 so that, the electron is reflected as a hole with
unit probability (|λ|2 = 1). Note that the phase of reflected hole relative to
that of the incident electron depends both on energy (through arg(a)) and on
the phase ϕ of the order parameter of the superconductor (see Fig. F.3). A
hole in X incident on S is conversely reflected as an electron. However, a hole
propagating to the right has a negative wave vector and has to be matched
with a −k−(E) solution. The reflection coefficient is then a

(
ϵ

|∆|

)
e+iϕ, where

ϵ is the energy of the reflected electron.
This is the Andreev reflection process that explains how charges pass

from N to S: the right-propagating incident electron carries a charge −e,
and it is reflected as a left-propagating hole of charge +e. By conservation, a
charge −2e has to enter the superconductor as a Cooper pair, in the so-called
"superconducting condensate".

The Andreev process is not restricted to |ϵ| < ∆; the same reasoning can
be made at all energies in exactly the same way, with the same formal result:
the a function correctly gives the probability amplitude for the hole reflection
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process at all energies. Thus the a function is generally called the Andreev
reflection amplitude. As shown in appendix F (Fig. F.3), for |ϵ| > ∆, the
Andreev reflection probability is less than unity, falling off rapidly away from
the gap edge.

2.1.1 Scattering description of AR
From the point of view of electrons and holes in the normal metal, one
can describe the Andreev reflection process using a scattering matrix, that
relates the amplitudes of the incoming states on the NS interface and outgoing
(reflected) states:(

eout
hout

)
= a

(
ϵ

|∆|

)(
0 e−iϕ

eiϕ 0

)(
ein
hin

)

This scattering matrix is unitary (i.e. particle-number conserving) only
for energies |ϵ| < ∆. At larger energies, propagating quasiparticles can enter
the superconductor and Andreev reflection is only partial.

2.1.2 Case of non ideal materials and interfaces
The above description of plane wave matching to describe the Andreev re-
flection is not essential. The process also occurs in diffusive materials, and
the Andreev reflection amplitude is exactly the same for diffusive states, as
long as the inverse proximity effect can be neglected.

In cases where the inverse proximity effect cannot be neglected, the or-
der parameter has a spatial dependence different from a step function at
the interface. Then one cannot simply match the wave functions of the N
side with the bulk superconductor wave functions. However the fact that
no propagating states exist in S at energies |ϵ| < ∆ is still true, so that
full Andreev reflection remains exactly valid. The only change will be that
the detailed energy dependence of the AR amplitude will be quantitatively
different from that given above, but not qualitatively. Hence, whatever the
interface, whatever the materials, AR remains perfect and can be seen as a
spectral property of NS interfaces.

For interfaces with imperfect transparency, a normal (non-Andreev) scat-
tering also occurs at the interface, partly reflecting electrons as electrons and
holes as holes, in addition of the AR process. Both these processes can be
cast into a single scattering matrix that remains unitary at energies below
the gap. The normal scattering process can also be formally separated from
the pure AR process. This is what we do in the following.
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2.2 ABS in S-X-S systems

The Landauer description of coherent conductors [36] (Fig. 2.2) in the nor-
mal state allows to describe transport in terms of independent channels, the
Landauer channels. This picture, valid in absence of electron-electron and
inelastic interactions inside the device, elegantly deals with interferences in
quantum devices and yields a powerful and intuitive description of such sys-
tems. This approach can be adapted to describe systems with superconduct-
ing reservoirs provided we can neglect the pairing interaction in the central
part of the device, that is, when the scattering of electrons and of holes can be
considered separately. This assumption is justified if either the central part
is not intrinsically superconducting (the pairing interaction is zero inside the
central part), or the central part is much shorter than the coherence length
of superconductor so that the pairing interaction has a negligible weight in
that part compared to the reservoirs. Moreover, as in Ref. [51], we assume
that the only scattering in the superconductors consists of Andreev reflection
at the SN interfaces, i.e. normal scattering happens only within the central
part of the device.

We first write the scattering matrix for electrons and holes in this system
in the normal state.

2.2.1 Normal state scattering matrices

For electrons in the central part, the vectors of incident (a) and reflected
(b) electronic modes in the left (n1 modes) and right (n2 modes) leads are
related by the scattering matrix according to:

(
ben1
ben2

)
= Se.

(
aen1
aen2

)

where Se, the scattering matrix, a priori depends on energy and has the block
structure:

Se = Se(ϵ) =
(
r(ϵ) t(ϵ)
t′(ϵ) r′(ϵ)

)
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Figure 2.2: In the Landauer description, a coherent conductor is described

by a matrix SN =
(
Se 0
0 Sh

)
containing the probability amplitudes for a

mode of a reservoir to be either reflected or transmitted.

(in systems obeying time-reversal symmetry1 t′ = t). Similarly, the hole
scattering is given by: (

bhn1
bhn2

)
= Sh.

(
ahn1
ahn2

)

For a given electron at energy ϵ (relative to EF ), its conjugated hole
in Nambu space has opposite energy. In systems where electron and hole
components of the Nambu space inside X have the same symmetries as BCS
superconductors (that is, all states are spin-degenerate and holes are exact
time-reversed symmetric particles of electrons), the scattering of holes can
be obtained simply by “projecting the electron movie in reverse motion”. In
that case the Se and Sh matrices for holes and electrons are linked by:

Sh(ϵ) = (Se(−ϵ))∗

Combined scattering of electrons and holes on X can thus be expressed
1In mesoscopic physics, a time-reversal symmetry is considered to be broken when par-

ticles with opposite spins going in opposite directions have different amplitude probability
to be transmitted, for example in presence of a magnetic field. However time-reversal
symmetry, in the sense of particle physics, is of course not broken: if we really reverse
time, we also reverse magnetic field and a particle will go over the same trajectory, simply
reversed.
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as: 
ben1
ben2
bhn1
bhn2

 = SN .


aen1
aen2
ahn1
ahn2


where SN can be cast as a block matrix:

SN =
(
Se 0
0 Sh

)

with 0 a matrix with all its entries equal to 0.

2.2.2 Andreev scattering
As shown above in section 2.1.1, the Andreev reflection can be described as
a scattering process for which the b states become incident and the a are
emergent: 

aen1
aen2
ahn1
ahn2

 = SA.


ben1
ben2
bhn1
bhn2


where SA can also be cast as a block matrix:

SA = a

(
ϵ

|∆|

)
0 In1e

−iϕ1 0
0 In2e

−iϕ2

In1e
iϕ1 0

0 In2e
iϕ2 0


where In is a n × n identity matrix and ϕ1 and ϕ2 are the superconducting
phases of the two reservoirs.

2.2.3 Resonant bound states : Andreev Bound States
Cascading the above SN and SA matrices, an incident state ain =

(
aen1a

e
n2a

h
n1a

h
n2

)
is stationary and bound inside X (with only evanescent tails into the su-
perconductors) whenever ain = SA.SNain. This condition implies that the
energies which give the roots of the equation2:

Det [I − SA.SN ] = 0 (2.1)
2I is a (n1 + n2) × (n1 + n2) identity matrix.
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are the energies of these bound states. These states mediated by the An-
dreev reflection are the so-called ABSs. Therefore, if X is described by an
appropriate scattering matrix SN , the ABSs energies can always be found
with relation 2.1. The existence of Andreev Bound States is thus a universal
feature of hybrid S-X-S junction3.

Beenakker and van Houten pointed out [52] that this situation was analo-
gous to a Fabry-Perot optical resonator with phase-conjugating mirrors. The
role of the optical cavity is played by the coherent conductor, a CNT in our
experiment, and its interfaces with superconducting leads play the role of
the mirrors. Andreev reflection is analogous to optical phase conjugation:
an electron in the nanostructure with energy below the superconducting gap
is reflected as its time-reverse conjugated hole. This hole can be subse-
quently reflected as an electron, and if the phase acquired during this cycle
fulfils a resonant condition, ABSs form. ABSs thus correspond to optical
resonant standing waves, being however electronic excitations constituted
by a superposition of time-reversed states with opposite spins. Within the
superconducting gap, ABS form a discrete spectrum which depends on the
superconducting phase difference δ = ϕ1 − ϕ2 between the left and right
superconducting electrodes, as we can see by rewriting Eq. 2.1 in the form:

Det

I − a

(
ϵ

|∆|

)2 (
e−i δ

2 0
0 ei

δ
2

)
Se (ϵ)

(
ei

δ
2 0

0 e−i δ
2

)
Sh (ϵ)

 = 0

This phase dependence is the manifestation of the fact that in each AR the
electron (resp. hole) acquires a phase4 ϕ1 or ϕ2 (resp. −ϕ1 or −ϕ2), such that
after a cycle the phase acquired depends on δ. The phase difference is thus
analogous to the length of the optical Fabry-Perot. This phase dependence
is a characteristic signature of the ABSs in S-X-S structures and the proof
that they carry supercurrent (see 3.1.5, appendix C and Ref. [51, 53, 54]).

In appendix F, we discuss the well-known case of an infinitely short single
channel with perfect and finite transmission.

2.2.4 Supercurrent in S-X-S junctions: contribution of
ABSs

The scattering formalism is not restricted to the extraction of the ABSs’
spectrum. Beenakker has indeed shown in Ref. [54] the link between the

3It is also true for S-X structures where bound states can form at interfaces. In this
case the ABSs’s energies don’t depend on the phase.

4Not only, as it also acquires an energy-dependent phase arg
(
a
(

E
|∆|

))
in each AR,

and also a phase due to propagation and scattering in the coherent conductor.
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spectrum of a S-X-S junction and the supercurrent flowing through it. He
decomposes the latter in two parts:

• the contribution of the ABSs which is related to the derivative of their
energies with respect to δ,

• and the contribution of the continuum (for |E| > ∆).

He shows in particular that for the case of a quantum point contact, the
second contribution is negligible and all the supercurrent is carried by the
ABSs.

In appendix C, we give an alternative demonstration, for the case of a
Quantum Dot, of these physical properties using Green’s function techniques.

2.3 ABS in S-QD-S system from the scatter-
ing description

We now consider the case where the central scatterer is a quantum dot (QD).
In a QD, scattering occurs via resonant tunneling through discrete states.

2.3.1 Non-interacting dot
If we consider, as a first approach, that electrons do not to interact in the
QD, the lead-QD-lead structure can be modelled as a double barrier system.
The energy levels are then discrete spin-degenerate states given by the ladder
of waves-in-a-box solutions to the Schrödinger equation.

Let ϵr be the energy of one of these resonant levels, relative to the Fermi
energy EF in the reservoirs, and let ΓL/~ and ΓR/~ be the tunnel rates
through the left and right barriers. We denote Γ = ΓL+ΓR. If Γ ≪ ∆E (with
∆E the level spacing in the quantum dot) and T ≪ Γ/kB, we can assume that
transport through the QD occurs exclusively via resonant tunneling through
the spin degenerate level of energy ϵr. The conductance G of the QD has
thus the form[55, 56, 57]:

G = 2e2

h

4ΓLΓR
ϵ2

r + Γ2 = 2e2

h
TBW (2.2)

where TBW is the Breit-Wigner transmission probability at the Fermi level.
Assuming the resonance couples to a single mode in the reservoirs (general-
ization to many modes is straightforward, see Ref. [58]), the normal-state
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Breit-Wigner scattering matrix sϵr(ϵ) which yields this conductance has the
form [56]:

sϵr(ϵ) =

 (
1 − i2ΓL

ϵ−ϵr+iΓ

)
ei2δL − i

√
4ΓLΓR

ϵ−ϵr+iΓ ei(δL+δR)

− i
√

4ΓLΓR

ϵ−ϵr+iΓ ei(δL+δR)
(
1 − i2ΓR

ϵ−ϵr+iΓ

)
ei2δR

 (2.3)

Note that since the reflection phases δL and δR later vanish in the determi-
nation of the energies of the ABS, we do not need to specify them. Büttiker
has shown how the conductance, given by Eq. 2.2, follows, via the Landauer
formula (see Ref. [36]), from the Breit-Wigner scattering matrix 2.3.

As we are able to describe a non-interacting QD by scattering matrix, we
can perfectly describe the superconducting proximity effect in QDs in term
of ABSs and find their energies with relation 2.1. Beenakker and van Houten
[59] have considered the ABSs occurring through such spin-degenerate reso-
nance, that is when both spin components of the ABS are parts of the same
resonant level. They found results for the supercurrent in agreement with
the perturbative approach of Glazman and Matveev [22], validating their
scattering approaches for description of the superconducting proximity effect
in QDs with small charging energies.

2.3.2 Weakly-coupled interacting dot: simple effective
model

However, in real QDs, in addition to the confinement energy mentioned
above, Coulomb repulsion has to be taken into account. In simplest situa-
tions one can nevertheless recover a simple effective non-interacting picture,
in which each time an electron is added to the QD one merely pays a charg-
ing energy and possibly the configuration energy necessary to access the next
free orbital (see the appendix A for a more detailed discussion of QDs).

When the coupling to the leads is weak, one needs to invoke states of
opposite spin to build an ABS. In a dot where time-reversal symmetry is not
broken, the most favorable states for making an ABS correspond to a pair of
state arising from a single orbital of the dot, that is a singly-occupied orbital
(odd electron number in the dot) followed by the doubly occupied orbital
(even electron number). Such a pair of states are the closest in energy, only
separated by the effective charging energy of the dot, and the two electrons
involved in these states have opposite spin by virtue of the Pauli exclusion
principle. Moreover these states are coupled in an identical manner to the
reservoirs since this coupling arises from properties of the orbital. Neverthe-
less taking into account this interaction together with the coupling to the
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ABSs energies ϵ− and ϵ+ from scattering description

Figure 2.3: In solid lines, we have represented ϵ− and ϵ+ as a function of δ
obtained from Eq. 2.4 with ϵ↑ = −2.5∆, ϵ↓ = 2.5∆, ΓL = 2∆, ΓR = ∆. In
dashed lines, we have represented the ABSs for the same parameters except
that we have inverted spin up and spin down.

electrodes terribly complicates the problem and no fully analytic results ex-
ists (See appendix A). Yet, within some range of parameters, most of the
effect of Coulomb interaction of the electrons in the dot can be mimicked
by introducing a phenomenological breaking of the spin degeneracy of these
states (see Appendix A, and Refs [16]). Such a "caricature" of the problem
yields a tractable non-interacting effective model that still contains a good
deal of the interesting physics of this system. Discussing or justifying this
approximation is beyond the scope of this experimental thesis, but in chapter
3 we will show how the results of this phenomenological model compare with
exact numerical results.

We thus consider a pair of levels:

ϵ↑ = ϵ0 + U/2
ϵ↓ = ϵ0 − U/2

where ϵ0 is the mean position of the levels (we will see in part II, that this
parameter can be controlled experimentally by a gate voltage), and U =
|ϵ↑ − ϵ↓| is the effective charging energy (which of the spin up or down state
is highest in energy will turn out to be unimportant, we will discuss it later).



36 2. Scattering description of the proximity effect

The scattering matrix SN then takes the form:

SN =
(
sϵ↑(ϵ) 0

0 sϵ↓(−ϵ)∗

)

With this scattering matrix, Eq. 2.1 giving the positions of the ABS
yields the equation in ϵ:

Det

I2 − a

(
ϵ

|∆|

)2 (
e−iδ 0

0 eiδ

)
sϵ↑(ϵ)

(
eiδ 0
0 e−iδ

)
sϵ↓(−ϵ)∗

 = 0 (2.4)

where δ = ϕ1 − ϕ2 is the superconducting phase difference between the two
reservoirs.

Expending the determinant, this equation takes the algebraic form5:

D (ϵ) 4 (∆2 − ϵ2)
∆2 (ϵ− ϵ↑ + iΓ) (−ϵ− ϵr − iΓ)

a

(
ϵ

|∆|

)2

= 0

with:

D (ϵ) =
[
ϵ+ U

2
− Γg (ϵ)

]2
− ϵ2

0 − Γ2
[
1 +

(
1 − δΓ2

Γ2

)
sin2

(
δ

2

)]
f (ϵ)2 (2.5)

where δΓ = ΓL − ΓR, g (ϵ) = −ϵ√
∆2−ϵ2 and f (ϵ) = ∆√

∆2−ϵ2 . Roots of Eq. 2.5
give the energy of the ABSs. As shown in Fig. 2.3, within the gap of the
superconductors, there are 2 solutions ϵ+, ϵ− to the equation D (ϵ) = 0, such
that −∆ < ϵ−, ϵ+ < ∆.

2.3.3 Meaning of the sign of the eigenenergies; arbi-
trariness of the description

In the previous section, we arbitrarily assumed that the spin up electron state
has an energy lower by U than the spin down electron state. This choice led
to get two eigenenergies ϵ+ and ϵ− that are not symmetric with respect to
the Fermi level. Making the opposite choice (or equivalently chosen U < 0),
the sign of the eigen-energies would have been reversed (dashed lines in Fig.

5To reach this expression we use the fact that sϵ↓(−ϵ)∗ is unitary

(i.e. sϵ↓(−ϵ)†sϵ↓(−ϵ) = I2) to transform Eq. 2.4 into:
a
(

ϵ
|∆|

)2

Det[sϵ↓ (−ϵ)] ×

Det

[
a
(

ϵ
|∆|

)∗
sϵ↓(−ϵ)

(
e−iδ 0

0 eiδ

)
− a

(
ϵ

|∆|

)( e−iδ 0
0 eiδ

)
sϵ↑(ϵ)

]
= 0 and we

use the relation sϵ↓(−ϵ) =
(
sϵ↑(ϵ) − 1

)
× ϵ−ϵ↑+iΓ

−ϵ−ϵ↓+iΓ + 1.
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2.3). However, physical observables, such as the Josephson current or the
tunnel density of states will end to be the same whether we choose, in our
model, U to be positive (spin up lower in energy) or negative (spin up higher
in energy).

This is related to the fact that signs of the energies, that are roots of Eq.
2.5, have no real physical meaning and are just conventional features related
to the Nambu space. This is discussed in section F.1.
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Chapter 3

Proximity effects in QD in
terms of Greens functions

The scattering formalism described above offers a clear physical picture to
understand how ABSs form in general, and in a QD, in particular. However
a Green’s functions (GF) description of the proximity effect in QD is a more
straightforward technique to calculate physical observables of the system,
such as the Josephson current carried by the QD or its DOS. We stress that
the two formalisms are rigorously equivalent (see for example [60, 61, 62] or
Appendix A of Ref. [49]), and thus observables could also be computed in
the scattering approach. In this chapter divided in three sections, we tackle
the problem of a S-QD-S junction using GF techniques.

To calculate the GFs that will allow us to obtain these observables, we
need to write down the Hamiltonian of the S-QD-S system. The latter can be
correctly described by a single-level Anderson model (introduced in detail in
appendix A) but where normal leads are replaced by BCS superconductors.
There are, however, no exact analytical solution for this model. Therefore,
following Ref. [16], we first use an approximation (see also section A.4.1)
which gives rise to an effective non-interacting model that we can solve.
Then, we will use Numerical Renormalization Group (NRG) technique, which
allows an exact numerical treatment of the QD with superconducting leads,
in order to validate the phenomenological model and to find out its region of
applicability.

In the first section 3.1, we use the effective model of Ref. [16] in which
Coulomb repulsion in the QD is addressed phenomenologically in the same
non-interacting picture than in section 2.3. In order to calculate the TDOS
and the supercurrent through the QD, we express the Green’s functions which
will be introduced in subsection 3.1.1. General properties of GFs like self-
energy and poles will be included in this subsection in order to gain a physical

39
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insight on this formalism. Next in subsection 3.1.2, we explain how to ex-
tract from QD’s GF a first observable: the QD’s density of states. Then we
analyze the GF’s expression for an asymmetric QD in section 3.1.3, and we
extend our model to a double QD in which two QDs are connected in series
between two superconducting electrodes in section 3.1.4. In section 3.1.5,
we explain how to calculate, from QD’s GFs a second observable: the super-
current flowing through the QD. We also discuss how the phenomenological
model describes the singlet-doublet transition of the device and the resulting
reversal of supercurrent (the so-called 0 − π transition) [3, 48].

In section 3.2, we briefly introduced the NRG technique. We will discuss
how one can used NRG calculations to obtain exact numerical results on the
proximity effect in QD.

Finally in section 3.3, we analyze the influence of the physical ingre-
dients of the model on the QD’s DOS and particularly on the ABSs. In
parallel to this analysis, we carry out a comparison between NRG and the
simplified non-interacting treatment in order to understand the limits of the
phenomenological approach.

3.1 Effective description of the S-QD-S junc-
tion

3.1.1 Green’s function of a QD connected to supercon-
ducting leads

We use here exactly the same effective non-interacting picture of a QD cou-
pled to superconducting leads (see section A.4.1 appendix A) as in the scat-
tering description of section 2.3. However, in contrast with the scattering
approach where we used known results without making explicit the Hamil-
tonian of the system, here we write down this Hamiltonian, as we will need
it to express the GF.

3.1.1.1 Effective Hamiltonian of a S-QD-S junction

As in section 2.3, we restrict to a single orbital of the QD, as most of the
relevant physics is captured in this simple case. There are at most two
electrons in the dot, which then are necessarily of opposite spin, due to
the Pauli principle. We also adopt the same approximate treatment of the
Coulomb interaction by introducing a phenomenological breaking of the spin
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degeneracy of this single level1 (See Appendix A). The QD is thus described
by a spin up level of energy ϵ↑ = ϵ0 + U/2 and a spin down level of energy
ϵ↓ = ϵ0 − U/2, with U the effective charging energy. Hence the QD itself is
simply described by:

HQD =
∑
σ=↑,↓

ϵσd
†
σdσ

where dσ is the annihilation operator of an electron in the QD of energy ϵσ
with a spin σ.

The left and right superconducting electrodes are described by the BCS
Hamiltonian:

HL = ∑
l,σ ϵlc

†
lσclσ +∑

l

(
∆eiϕLc†

l↑c
†
−l↓ + ∆e−iϕLc−l↓cl↑

)
HR = ∑

r,σ ϵrc
†
rσcrσ +∑

r

(
∆eiϕRc†

r↑c
†
−r↓ + ∆e−iϕRc−r↓cr↑

)
Here cl(r)σ is the annihilation operator of an electron of the left (resp. right)
electrode in state l (r) with an energy ϵl (ϵr), and spin σ. In this notation, l
and r represent a synthetic index for all the quantum numbers of the electrons
in electrodes, except their spin, and such that c−l−σ is the time reversed-
state of clσ. ∆eiϕL(R) is the complex order parameter in electrode L(R) with
modulus ∆ (also known as the gap energy) and phase ϕL(R).

Finally, the coupling of the dot to the leads is described by a hopping
term:

HTL
= ∑

l,σ

(
tLd

†
σclσ + t∗Lc

†
lσdσ

)
HTR

= ∑
r,σ

(
tRd

†
σcrσ + t∗Rc

†
rσdσ

)
where tL(R) is the energy associated to the transfer of an electron between
left (right) electrode and the dot. We assume these couplings to be energy-
independent as in Refs. [63, 64]. The whole system is schematized in Fig.
3.1.

Electron-hole spinor field operator in Nambu space As supercon-
ductivity induces correlations between electrons and holes of opposite spins,
we will need to express GF with electron-hole spinor field operators in Nambu

space, ψl(r) =
(

cl(r)↑
c†

−l(−r)↓

)
and ψd =

(
d↑

d†
↓

)
.

1This lift of degeneracy used to model phenomenologically the Coulomb interaction is
not a real Zeeman splitting: there are no magnetic field and the axis of spin quantization
is not even specified.
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S SQD

tL tRU

QD connected to superconducting leads

Figure 3.1: In our model, the QD is characterized by three parameters: the
coupling to the left (resp. right) lead tL (resp. tR) and the effective charging
energy U .

In this spinor basis, the Hamiltonian can be written as a matrix expres-
sion2:

H =
∑
i=l,r

ψ†
iEiψi + ψ†

dEQDψd +
∑
l

[
ψ†
dETL

ψl + h.c.
]

+
∑
r

[
ψ†
dETR

ψr + h.c.
]

where:

EQD =
(
ϵ↑ 0
0 −ϵ↓

)
, El(r) =

(
ϵl(r) ∆eiϕL(R)

∆e−iϕL(R) −ϵl(r)

)
, and ETL(R) =

(
tL(R) 0

0 −t∗L(R)

)

that will be useful to write GF in a simple and compact matrix form.

3.1.1.2 Green’s function of the Quantum Dot

As discussed in introduction of this chapter, properties of the QD are encoded
in the QD’s GF. In this section, we define the QD’s GF in Nambu space and
give its expression (the detailed derivations are given in appendix B).

Definition of the QD Green’s function In Nambu notation and in time
domain, the QD GF takes the form3:

Ĝdd (t) = −i⟨Ttψd (t)ψ†
d (0)⟩

= −i
(

⟨Ttd↑ (t) d†
↑ (0)⟩ ⟨Ttd↑ (t) d↓ (0)⟩

⟨Ttd†
↓ (t) d†

↑ (0)⟩ ⟨Ttd†
↓ (t) d↓ (0)⟩

) (3.1)

2In this writing we have dropped an unimportant constant equal to
∑

l ϵl +
∑

r ϵr + ϵ↓
that does not change the physics.

3The symbolˆis here to distinguish the 2×2 matrix in Nambu space from its coefficients.
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where Tt is the time-ordering operator:

Ttψd (t)ψ†
d (0) = θ (t)ψd (t)ψ†

d (0) − θ (−t)ψ†
d (0)ψd (t)

which preserves GF causality, and ⟨A⟩ represents the expectation value of
operator A (defined by Eq. B.1).

Diagonal elements of Ĝdd (t) give the temporal evolution of a bare elec-
tron or hole injected in the QD4, in this respect they are also called propa-
gators. We will see that this is directly linked to the QD’s density of states.
Non-diagonal parts of Ĝdd (t), also called “anomalous” GFs, indicate pair
correlations amplitude in the QD and are equal to zero in absence of super-
conductivity.

Expression for the QD GF In section B.3, we carry out the full deriva-
tion of the GF from its equation of motion (EOM) in the Matsubara formal-
ism. Below we simply present and use the result of this derivation.

A convenient way to express the GF is to introduce the analytic contin-
uation Ĝdd (z) of the Fourier transform of Ĝdd (t), where z has the dimension
of an energy and can take values in the entire complex plane. The resolution
of the EOM yields5:

Ĝdd (z) =
[
z − EQD − Σ̂ (z)

]−1
(3.2)

in which the QD’s self-energy:

Σ̂ (z) = Σ̂L (z) + Σ̂R (z)

Σ̂L (z) =
∑
l

ETL
[z − El]−1 E†

TL

Σ̂R (z) =
∑
r

ETR
[z − Er]−1 E†

TR

is due to the connection to superconducting leads. After summation over
indexes l and r, Σ̂ (z) becomes:

Σ̂ (z) =
∑
i=L,R

Γi
(

g (z) −f (z) eiϕi

−f (z) e−iϕi g (z)

)

4This point is discussed in section B.3.5.
5Here and in the following, we don’t write explicitly matrices proportional to the 2 ×

2 unit matrix I2, but replace them for convenience by a scalar factor. For example,(
z 0
0 z

)
= z × I2 is noted z.
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where we have introduced functions g (z) = −z√
∆2−z2 and f (z) = ∆√

∆2−z2 , but
also exchange rates between the QD and the leads Γi = πρF |ti|2 with ρF the
density of states at the Fermi level of the electrodes in their normal state.
These rates are the same that those of matrix 2.3.

Properties of the GF The QD’s GF contains the local properties of
the QD. In particular, eigenstates appear as isolated poles of the diagonal
elements of Ĝdd (z) on the real axis, or as a branch cut in the real axis for
a continuum of states. If the GF has complex poles, they correspond to
quasiparticle states of finite lifetime. From Ĝdd (z), we define the retarded
and advanced GF that are the value of Ĝdd (z) approaching the real axis from
the upper and lower half of the complex plane [65], respectively (here ω and
η are real and η → 0+):

ĜR
dd (ω) = Ĝdd (ω + iη)

ĜA
dd (ω) = Ĝdd (ω − iη)

and from which we will obtain the density of states of the QD.

ABS as real poles and decaying states as complex poles To illustrate
the two types of poles that we have mentioned above, let us look at three
peculiar cases: an isolated QD, a QD connected to normal leads and a QD
connected to superconducting leads.

• The GF describing the isolated QD is given by [z − EQD]−1. As ex-
pected, diagonal elements of the GF have only real poles ϵ↑ and ϵ↓
that correspond to energies of the QD’s eigenstates which have infinite
lifetime. This is characteristic of an eigenstates.

• For a QD connected to normal leads (∆ = 0), the retarded GF is
changed in: [

ω + iη − EQD + i

(
ΓL + ΓR 0

0 ΓL + ΓR

)]−1

In that case, the poles take complex values ϵ↑ − i (ΓL + ΓR) and ϵ↑ −
i (ΓL + ΓR). As a consequence, when t > 0, the propagator is an expo-
nentially decaying function of the time:

Ĝdd (t > 0) = −iθ (t) e−iEQDte−(ΓL+ΓR)t

which means that an electron or a hole injected in the QD has a char-
acteristic lifetime ~/(ΓL+ΓR), given by the imaginary part of the poles
for escaping to the leads.
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• As discussed in section B.3.4, when the leads are superconducting, the
poles of the GF are the roots of equationD (z) = Det

(
z − EQD − Σ̂ (z)

)
=

0 (or equivalently Det
(
ĜR
dd (z)−1

)
= 0). On the real axis and when

|ω| < ∆, D (ω) has two poles ϵ+ and ϵ− defined by the equality:[
ϵ± + U

2
− Γg (ϵ±)

]2
− ϵ2

0 − Γ2
[
1 +

(
1 − δΓ2

Γ2

)
sin2

(
δ

2

)]
f (ϵ±)2 = 0

(3.3)
where Γ = ΓL + ΓR, δΓ = ΓL − ΓR and δ = ϕL −ϕR. Eq. 3.3 is exactly
the same as 2.5. Hence, these poles coincide with the ABSs calculated
in the scattering approach of section 2.3 illustrating the equivalence of
the two approaches.

3.1.2 Tunneling spectroscopy of a QD in terms of GF
To observe the ABS, we have chosen to explore our system by tunneling
spectroscopy. This technique consists to inject or extract, with a well char-
acterized tunnel probe under a given voltage bias, electrons in the QD and
at well defined energies. By measuring the differential conductance between
the probe and the QD we have rather direct access to the spectral function
of the QD. In this section we give the link between the spectral function of
the QD and its GF and we will discuss what would be this link for other
types of spectroscopy. We also discuss how the ABSs appear in a tunneling
spectroscopy, in particular the fact that each of them appear twice in the
spectrum.

3.1.2.1 Definition of the QD’s DOS

The spectral function of the QD is defined by the equality (see for example
the textbook [65]):

Add (ω) = − 1
π

Im
[
TrN

(
ĜR
dd (ω)

)]
where TrN is the trace in Nambu space:

TrN
(
ĜR
dd (ω)

)
= ĜR11

dd (ω) + ĜR22
dd (−ω)

We can show, that, when a voltage V is applied to the tunnel probe,
the tunnel current through the QD is given by (a demonstration is given in
appendix D):

⟨I (V )⟩ = 2e
~

|tprobe|2×
ˆ +∞

−∞
Aprobe (ω + eV ) Add (ω) [fFD (ω) − fFD (ω + eV )] dω
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where fFD (ω) is the Fermi-Dirac distribution, tprobe the coupling to the probe
and Aprobe (ω) the spectral function of the probe. The differential conduc-
tance, which is the quantity that we measure experimentally, is thus given
by:

G (V ) = 2e
~

|tprobe|2×
ˆ +∞

−∞
Add (ω) ∂

∂V
[Aprobe (ω + eV ) (fFD (ω) − fFD (ω + eV ))] dω

In our experiments Aprobe (ω) is given by the well known BCS DOS (see Fig.
2.1 and Ref. [47]). The differential conductance gives thus a direct access to
the spectral density of the quantum dot.

We can show that the QD’s spectral density take the form6 (see textbook
[65]):

Add (ω) =
∑
α,σ

{∣∣∣⟨α ∣∣∣d†
σ

∣∣∣ψ0
⟩∣∣∣2 δ (ω − Eα) + |⟨α |dσ|ψ0⟩|2 δ (ω + Eα)

}
(3.4)

where |ψ0⟩ is the system ground state, |α⟩ are all the possible states of the
system (QD plus superconducting leads) and Eα their energies with respect
to the ground state energy. In this writing, the left term in the sum can
be interpreted as the probability to inject an electron in the QD creating an
excitation of energy Eα, and the right one as the probability to extract an
electron from the QD creating an excitation of energy Eα.

The spectral density we obtained is local as we inject electrons in the
system only into the QD, and is usually called the tunnel DOS or TDOS.

3.1.2.2 Comparison with other type of QD spectroscopy

The TDOS spectroscopy allows to explore the excitations of a system by
creation or annihilation of an electron. This technique, like in the case of
ARPES measurements [66], does not conserve the number of quasiparticles
of the system under test.

However in ARPES, the system is excited by a photon of several tens
of eV which expels an electron collected by a detector. As a result, since a
photon cannot expel a hole from the system, the DOS obtained is limited to
ω < 0 and we only have access to the second part of the sum in 3.4.

There are other types of spectroscopies to probe the QD density of states
that conserve the number of electrons in the system. For example by sending
optical photons on the system and measuring the absorption spectra, we

6There is a more general temperature-dependent form of the TDOS. But in the effective
approach, the TDOS does not depend on temperature.
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would have access to another type of quantity such as:
∑
i,f

∣∣∣⟨αN ∣∣∣d†
2σd1σ

∣∣∣ψ0N
⟩∣∣∣2 δ (ω − EαN + E0N)

where |ψ0N⟩ is the system ground state (energy E0N) with N electrons and
|αN⟩ are the excited states of the system with the same number of electrons
(energy EαN). Operator d†

2σd1σ is an “exciton” operator which creates an
electron-hole pair in the QD by exciting an electron with a spin σ from an
orbital labelled 1 to an orbital labelled7 2. This process conserves the number
of electron in the system and is always associated to a positive ω because
EαN > E0N by definition of the ground state. We then have ω = ~ν with ν
the frequency of absorption.

In the rest of the manuscript, the denomination “DOS” will only concern
TDOS as we are only dealing with tunnel spectroscopy.

3.1.2.3 Tunneling into ABSs

Width of ABSs: phenomenological inelastic loss ηinel The above
theoretical treatment of ABSs predicts they are infinitely thin peaks in the
spectral density. Even if this description was correct, in an actual tunneling
spectroscopy experiment however, the energy resolution would be limited for
example by temperature, voltage noise or coupling to the probe. In order to
mimic this effect we include a depairing Dynes parameter [67] in g (ω) and
f (ω), replacing ω by ω + iηinel. This gives a width to ABSs, allowing us to
reproduce qualitatively the observed linewidth (see article in part II).

The origin of the measured linewidth is discussed in section D.2 appendix
D, where we show that the main contribution is probably due to the coupling
to the probe.

Double observation of the ABSs In tunneling spectroscopy measure-
ments, ABSs appear twice in the DOS as is illustrated in Fig. 3.2. These
states (like all Bogoliubons as explained in appendix F) have a hole part
and an electron part and there is, as a consequence, a finite probability to
inject an electron or a hole into an ABS. The injection of an electron (resp.
hole) occurs when we apply a negative (resp. positive) voltage V on the
tunnel probe. When performing the tunneling spectroscopy of ABSs, they
will thus appear both at positive voltage and negative voltage. Therefore, we

7We precise here, to avoid confusion, that |ψ0N ⟩ and |αN ⟩ are many-body states of
the system whereas d†

2σ and d1σ are creation and annihilation operators of single particle
states.
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Double observation of the ABSs in the TDOS
Figure 3.2: TDOS of a QD as a function of the energy ω, within [−∆,+∆],
and the superconducting phase difference δ, obtained using GF technique
with parameters of Fig. 2.3, superimposed with solid color traces representing
the energy of the ABS. The DOS is equal to zero almost everywhere (brown
areas), except for four phase-dependent peaks which are the ABSs (in white,
they should be infinitely thin, but we give them an artificial width taking
ηinel = 0.01∆). The ABSs energies ϵ+ and ϵ− (respectively in blue and
green) are obtained within the scattering formalism (ϵ+ and ϵ− are roots of
equation 2.5). As the two approaches are equivalent, the blue and green
curves perfectly match with the white peaks of DOS.

will observe them twice symmetrically with V = 0. This explains why the
arbitrariness in the sign of the ABSs’s energies, mentioned in section 2.3.3,
due to the sign of U and the choice of Nambu space has no incidence on the
TDOS measured experimentally.

ABS weight As a consequence, two ABSs (labelled + and -), formed from
a single orbital of the QD, appear twice in the TDOS to form four peaks at
energies ω = ±ϵ± with |ϵ±| < ∆ and D (ϵ±) = Det

[
Ĝdd (ϵ±)−1

]
= 0. Each

peak has a different spectral weight at positive and negative energy which
can be determined from the QD GF residues:

W+
1 = lim

ω→ϵ+

ω + ϵ↓ + Γg (ω)
D′ (ω)

W−
1 = lim

ω→ϵ−

ω + ϵ↓ + Γg (ω)
D′ (ω)
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Figure 3.3: TDOS of a QD connected to superconducting leads as a function
of the energy ω. In [−∆,+∆], ABSs are infinitely thin and are represented
by vertical lines whose heights represent their weights. Parameters of the
plot: Γ = 2∆, ϵ↑ = ∆, ϵ↓ = 2∆, δΓ = 0 , and δ = π

2 .

W+
2 = lim

ω→ϵ+

ω − ϵ↑ + Γg (ω)
D′ (ω)

W−
2 = lim

ω→ϵ−

ω − ϵ↑ + Γg (ω)
D′ (ω)

where W±
1 and W±

2 represent respectively the spin ↑ electron and spin ↓ hole
parts of ABS ±.For |ω| < ∆, the TDOS thus reads:

Add (ω) = W+
1 δ (ω − ϵ+) +W−

1 δ (ω − ϵ−) +W+
2 δ (ω + ϵ+) +W−

2 δ (ω + ϵ−)

The latter, plotted on Fig. 3.3 with parameters indicated in the caption,
exhibits then two peaks at ϵ± with weights W±

1 and two others at −ϵ± with
weights W±

2 .

ABSs spins As mentioned above, each ABS has a spin ↑ and a spin ↓
part that can be deduced from weights W±

1(2). The spin S± of ABS ± can be
simply defined as:

S± = 1
2
(
W±

1 −W±
2

)
For the parameters of Fig. 3.3, ABSs have their spin in opposite directions
with S+ ≈ −0.104 and S− ≈ 0.101. The orientation of these spins is of
course relative as the quantization axis is not defined.
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3.1.3 Asymmetric QD
In a real sample, the coupling to the left and right leads are generally not
equal. When we take into account this asymmetry δΓ = ΓL−ΓR, the general
form of the QD GF as a function of Γ = ΓL + ΓR and δΓ is:

Ĝdd (z) =

 z − ϵ↑ − g (z) Γ f (z) ei
ϕL+ϕR

2

(
Γcos δ2 + iδΓsin δ

2

)
f (z) Γe−iϕL+ϕR

2

(
Γcos δ2 − iδΓsin δ

2

)
z − ϵ↓ − g (z) Γ

−1

For a phase difference δ = 0, only the total coupling strength Γ enters
the Green functions (we actually take ϕR = 0 and ϕL = δ to get rid of phase
factors that play no role in the TDOS):

Ĝdd (z)δ=0 =
(
z − ϵ↑ − g (z) Γ f (z) Γ

f (z) Γ z − ϵ↓ − g (z) Γ

)−1

The coupling asymmetry δΓ = ΓL − ΓR plays therefore a role at finite phase
difference. For instance, at δ = π, the Green’s functions read:

Ĝdd (z)δ=π =
(
z − ϵ↑ − g (z) Γ −f (z) δΓ

−f (z) δΓ z − ϵ↓ − g (z) Γ

)−1

showing that the spin up and spin down levels are completely decoupled at
δ = π in a perfectly symmetric QD where δΓ = 0.

In the extreme opposite case where |δΓ| = Γ, the dot is closed on one
side. There still are ABSs, but there is no phase dependence of the Green
functions. In other words, an asymmetry reduces the phase dependence of the
ABSs and consequently, as we will see later in section 3.1.5, the supercurrent
passing through the QD (see in particular Eq. 3.11). This is linked to a loss
in transmission of the dot in the normal state as the latter depends strongly
on δΓ. The Breit-Wigner formula (see for example [56]) gives us indeed the
QD conductance:

G (ω) = e2

h

∑
σ

Tσ (ω) = e2

h

∑
σ

4ΓRΓL
(ϵσ − ω)2 + (ΓR + ΓL)2 (3.5)

From which we can isolate the transmission, for the channel of spin σ, Tσ (ω)
as a function of Γ and δΓ:

Tσ (ω) = 4ΓRΓL
(ϵσ − ω)2 + (ΓR + ΓL)2 = Γ2 − δΓ2

(ϵσ − ω)2 + Γ2
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We see that for a maximum asymmetry Γ = δΓ the transmission is equal to
zero, this situation corresponding to an open circuit (ΓL or ΓR equal to zero).
It is interesting to notice that this transmission takes a particularly simple
expression when the level ϵσ is at resonances with the electrodes Fermi level
(ω = ϵσ = 0):

Tσ,ω=ϵσ=0 = 1 −
(
δΓ
Γ

)2

As a consequence, whereas the lifetime of a charge in the QD is limited by
the bigger coupling because this charge sees the two contacts in parallel, the
transmission in series is rather limited by the smallest coupling. Indeed when
a charge is going in the QD through the more open contact, it will go back
where it comes from rather than going through the less transmitted contact.

3.1.4 Extension of the effective model to a double QD

In this section we explain how to apply this formalism to the case of a double
QD (DQD) in which two QDs are in series between the superconducting leads.

In our experiments, the CNT behaves as a DQD because of the influence
of the probe. The latter acts as a scatterer which separates the CNT in two
QDs which are strongly coupled together. Further in the manuscript (see
part III), measurement which proves this interpretation will be shown and
compared to other experiments with similar geometry.

S SQDL QDR

tL tRt’

Figure 3.4: Our DQD model consists of two coupled QDs in series, QDL
being connected to the left lead and QDR to the right lead.
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DQD Hamiltonian To modify our model to a DQD, we need to replace
first, in H, HQD by HDQD:

HDQD =
∑

σ,α=L,R
ϵασd

†
ασdασ +

∑
σ

(
t′d†

LσdRσ + t′∗d†
RσdLσ

)
with indexes L and R referring to the QDL or QDR (cf Fig. 3.4), σ the spin,
and t the interdot coupling. The second modification consists in changing
HTi

:
HTL

= ∑
l,σ

(
tLd

†
Lσclσ + t∗Lc

†
lσdLσ

)
HTR

= ∑
r,σ

(
tRd

†
Rσcrσ + t∗Rc

†
lσdRσ

)
This is a crude approach missing a lot of important physics, such as

interdot electrostatic interaction (UmnL↑nR↓), exchange (−JSL.SR)... But it
contains the essential ingredients to understand how ABSs form over the all
DQD.

DQD spinors, Green functions and spectral density By introducing
new spinors ψd and ψe

8:

ψd =


dL↑

d†
L↓
dR↑

d†
R↓

 and ψe =


cl↑
c†

−l↓
cr↑
c†

−r↓


we can give to H the form;

H =
∑
e

ψ†
eEeψe + ψ†

dEDQDψd +
∑
e

[
ψ†
dETψe + h.c.

]
where Ee, EDQD and ET are 4 × 4 matrices with block structures:

Ee =
(

El 02
02 Er

)
EDQD =

(
EQDL ETID

ETID
EQDR

)
ET =

(
ETL

02
02 ETR

)

with EQDL =
(
ϵL↑ 0
0 −ϵL↓

)
, EQDR =

(
ϵR↑ 0
0 −ϵR↓

)
and ETID

=
(
t′ 0
0 −t′∗

)
Replicating exactly the single QD approach, we can calculate the DQD Green
functions and obtain:

Ĝdd (z) = 1
z − EDQD − Σ̂DQD (z)

8The index e designates pairs of index l, r chosen such that they appear in only one
pair.
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where ΣDQD (z) is the self-energy due to the superconducting leads:

Σ̂DQD (z) = ∑
e ET [z − Ee]−1 E†

T

=
(

Σ̂L (z) 02

02 Σ̂R (z)

)

The total DQD spectral density is obtain similarly than before:

Add (ω) = − 1
π

Im
[
TrDQD

(
ĜR
dd (ω)

)]
TrDQD is the trace in Nambu space over the two QDs9:

TrDQD
(
ĜR
dd (ω)

)
= ĜR11

dd (ω) + ĜR22
dd (−ω) + ĜR33

dd (ω) + ĜR44
dd (−ω)

3.1.5 Supercurrent within the effective model
The supercurrent flowing through the QD can be calculated, as the TDOS,
with GFs. We will show in this section that it can be directly related to
the QD density of states that we measure10. Unfortunately, this supercur-
rent is not measurable experimentally in our present setup. Nevertheless,
the following explains how we can have indirect access to the magnitude of
supercurrents in our samples from the measured spectra. Note that this eval-
uation of the QD supercurrent might be checked in the future, using a more
elaborate setup giving direct access to the loop supercurrent, as was done for
atomic contacts [68, 69] (see Fig. 3.5).

Using the expression of the supercurrent we obtained from the QD’s GF,
we discuss how our model describe the so-called 0 − π transition.

3.1.5.1 Calculation of the supercurrent

Supercurrent definition Since number of particles and phase are conju-
gated quantum variable, the equilibrium supercurrent IJ flowing through a
Josephson junction is given by the fundamental relation [43, 53, 54]:

IJ = 2e
~

⟨
dH

dδ

⟩
9Tunneling rates between the tunnel probe and the two sides of the DQD may be

different. For fitting of experimental TDOS, we may thus introduce a factor of relative
intensity α: TrN

(
ĜR

dd (ω)
)

= α×
(

ĜR11
dd (ω) + ĜR22

dd (−ω)
)

+
(

ĜR33
dd (ω) + ĜR44

dd (−ω)
)

10The system being at equilibrium, there is no quasiparticle current through the QD,
but just a DC supercurrent.
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Figure 3.5: Diagram of the experimental setup and a SEM picture of the
sample used to measure the current-phase relation of an atomic contact (Fig.
from Ref. [69]). The atomic contact is obtained within the break junction by
bending of the sample and forms in parallel with a large Josephson junction
an atomic SQUID. The current-phase relation is extracted from the switching
current of the atomic SQUID.

where H is the Hamiltonian of the junction and δ the superconducting phase
difference across the junction11.

In a QD described by the effective Hamiltonian given in section 3.1.1.1,
a convenient form of this relation can be obtained by performing a gauge
transformation on the operators of the leads:

cl(r)σ → cl(r)σe
i

ϕL(R)
2

which transfers the phase into the tunnel matrix elements tL(R) → tL(R)e
i

ϕL(R)
2 .

Then it can be shown that the Josephson current carried by the QD from

11If we want to relate this current with the time-derivative of the charge in the left
lead, we can write IJ = e d

dt

⟨
N̂L (t)

⟩
= e d

dt

⟨
ei H

~ tN̂Le
−i H

~ t
⟩

= ie
~

⟨[
H, N̂L (t)

]⟩
. But the

commutator of N̂L (t) with the full Hamiltonian introduces spurious terms of the type⟨
c†

kL↑c
†
−kL↓

⟩
because of charge fluctuations within the lead. These fluctuations appear

because the mean-field BCS Hamiltonian doesn’t conserve the charge:
[
HBCS−MF , N̂L

]
̸=

0. This is not the case for the Hamiltonian on which has not been performed a mean-field
approximation, so we can consider that these terms are not relevant for current calculation
through the system. For a more detailed discussion see Ref. [70].
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the left to the right takes the simple expression12:

IJ = ie

~
⟨[HT , NL]⟩ (3.6)

where NL(R) is the number operator of the left (right) electrode13:

NL(R) =
∑
l(r),σ

c†
l(r)σcl(r)σ

From expression 3.6, we can relate the current to correlation functions
between the QD and the left lead:

IJ = ie

~
∑
l,σ

{
tL
⟨
d†
σclσ

⟩
− tL

⟨
c†
lσdσ

⟩}
(3.7)

that we can calculate with GF techniques.

Lesser and greater GF Correlation functions in expression 3.7 are slightly
different from those defined in Eq. 3.1. They are linked to the QD greater
Green functions (taking t → 0):

Ĝ>
ld (t) = −i

⟨
ψl (t)ψ†

d (0)
⟩

(3.8)

At equilibrium, one can show that its Fourier transform is simply related
to Fermi-Dirac distribution fFD, the retarded and the advanced GFs which
both contain the equilibrium properties of the system:

Ĝ>
ld (ω) = fFD (−ω)

[
ĜR
ld (ω) − ĜA

ld (ω)
]

(3.9)

(a demonstration of this relation is given in section B.4).

Expression of the current as a function of the QD Green’s functions
By combining Eq. 3.7, 3.8 and 3.9, we get, after some algebra, the following
intermediate expression for IJ :

IJ = −2e
~

ˆ
fFD (−ω)

∑
l

Re
{
TrN

[
ETL

(
ĜR
ld (ω) − ĜA

ld (ω)
)]} dω

2π

12We take here the example ϕL = δ and ϕR = 0 without any loss of generality.
13Because of charge conservation, IJ could also be written IJ = − ie

~ ⟨[HT , NR]⟩, see
appendix C for demonstration



56 3. Proximity effects in QD in terms of Greens functions

which is actually a Fourier transform taken at t = 0. The GF of the QD
does not appear explicitly in this expression. However, since Ĝld (z) obeys
the Schrödinger-like equation14:

z × Ĝld (z) = ElĜld (z) + E†
TL

Ĝdd (z)

we have:
Ĝld (z) = [z − EL]−1 E†

TL
Ĝdd (z)

with notations of section 3.1.1.1. From this expression, we can write a very
compact formula for the current that is only function of the known QD’s GF
and self energy of the left lead:

IJ = 2e
~

´
fFD (ω) Re TrN [Σ̂L (−ω − iη) Ĝdd (−ω − iη)

−Σ̂L (−ω + iη) Ĝdd (−ω + iη)]dω2π
(3.10)

In appendix C, we show how equation 3.10 is equivalent to Beenakker’s
formula of Ref. [51, 58] giving the supercurrent carried by the ABSs:

IABS = − e

~
∑
±

tanh
(
βϵ±

2

)
∂ϵ±

∂δ
(3.11)

and discuss the contribution of the continuum.

Supercurrent in DQDs

To obtain the supercurrent carried by a DQD between two superconducting
leads, one can generalize Eq. 3.10 simply replacing Σ̂L (z) by Σ̂L

DQD (z) with:

Σ̂L
DQD (z) =

(
Σ̂L (z) 02

02 02

)

3.1.5.2 Singlet-doublet transition

The singlet-doublet transition is a quantum transition between two ground
states of the QD with different spins: a spin-singlet state (S=0) and a mag-
netic doublet (S=1/2) [24, 71]. In the TDOS, this transition is directly visible
through the progressive intercrossing, inside the superconducting gap, of the

14This is actually an Equation of Motion (EOM), see Eq. B.7 in section B.3.



3.1. Effective description of the S-QD-S junction 57

two inner resonances15 [16]. In other words, this means that an ABS that
is above the Fermi level (or below depending on the chosen point of view,
as discussed in section 2.3.3) crosses the latter. Hence this ABS, which was
initially empty, suddenly becomes filled. This induces a change of ground
states. We will see, in section 3.3.2 (see in particular Fig. 3.14), how this
transition is described by the phenomenological model and the Numerical
Renormalization group (introduced briefly in section 3.2).

3.1.5.3 Reversal of supercurrent (0 − π transition) in a S-QD-
S junction: description with our phenomenological ap-
proach

One of the manifestation of the singlet-doublet transition is the so called 0−π
transition [72, 73, 74]. The 0 − π transition is a sign reversal of the current-
phase relation induced by a change of a parameter in the system. This
phenomenon has been observed in a wide variety of controllable Josephson
junctions [3, 73, 74, 75], including CNT based junctions [8, 20, 76] where the
parameter of control is the CNT’s chemical potential that is tuned with a
back gate voltage. In those experiments, the observation of the 0 − π tran-
sition is performed through measurement of the critical current. During the
transition, the latter decreases, cancels and then increases again indicating
its change of sign. Such junctions are suggested as potential element in the
architecture of novel quantum devices [48]. Here, we give a brief illustration,
based on our phenomenological model, of the 0−π transition and discuss the
role of the Coulomb repulsion. Despite the rough approximations we have
made in this model, the predicted behaviour of the system is consistent with
the observation realized in the references mentioned above.

Reversal of the current changing ϵ In a QD, the 0−π transition appears
when the Coulomb repulsion inside the QD is sufficiently high such that a
single electron may be localized in the QD, the latter being as a consequence
in its magnetic ground state S=1/2. In Ref. [72], Spivak et al. showed that
the transfer of a Cooper pair through the dot may be then accompanied by
an exchange of spin between electrons of the pair which translates into a
negative contribution in the supercurrent. When this contribution is higher
than the direct transfer of Cooper pairs from one electrode to the other, the
supercurrent reverses its sign.

15ABSs we see in the TDOS are excitations which correspond to transitions between
these two states (S=0 and S=1/2). At the quantum transition, these two states are
degenerate and ABSs are thus zero energy excitations. That’s why a progressive change
of ground states coincides with the crossing of an ABS with the Fermi level.
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Figure 3.6: Phase diagram of the Josephson current (top) in color scale as
a function of the mean position level ϵ of the QD and the phenomenological
Coulomb repulsion U at δ = π/2. Below, there are two graphs: one in the
middle with three cuts (in red, green and blue) of the diagram, indicated
by the dashed line on the colorplot, showing the jumps in the supercurrent
when ϵ is changed and another one at the bottom with the corresponding
ABSs. The jumps in supercurrent correspond to the filling or emptying of an
ABS when it crosses the Fermi level. Here when ϵ = −10∆, the upper ABS
is empty (empty circle), but if ϵ is increased to 0, the ABS may cross the
Fermi level and becomes filled (filled circle). Parameters used for calculation
are: U = 1, 12, 20∆ (resp. for the red, green and blue curve), Γ = 6.25∆,
δΓ = 1.75∆, η = 0.001∆ and T = 0. IJ is obtained from Eq. 3.10 and the
energy of the ABSs are obtained from Eq. 3.3 based on the phenomenological
model.
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Figure 3.7: Phase dependence of the Josephson current, at the top, with ϵ = 0
for the same parameters than in Fig. 3.6 and U = 1, 12 and 20 respectively
for the red, green and blue curves. The supercurrent can either increase
(red curve) or decrease (blue curve) with δ depending if the junction is in
the 0 (small U) or π (large U) regime. For intermediate values of U , the
junction can transit, by tuning the phase, between the two regimes. Below
the corresponding phase dependence of the ABSs are traced. In the 0 regime
the ABSs are on each side of the Fermi level, whereas in the π regime they
are on the same side.
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This can be seen in the colorplot of Fig. 3.6 where we have represented
calculation of the Josephson current carried by a QD connected between two
superconducting leads, at a superconducting phase difference δ = π/2, as a
function of the mean position level, noted here ϵ, and the Coulomb repulsion
inside the QD U normalized with the superconducting gap ∆. IJ is obtained
from Eq. 3.10 (or Eq. C.10) based on the phenomenological model.

In this diagram, there are two areas: one of positive Josephson current
that appears in green and yellow and one where the current is negative and
which is blue (they are respectively labelled 0 and π on the graph). Below,
we have chosen to trace three cuts of this diagram: the current is plotted as a
function of ϵ (controlled experimentally with gates) and shows, for sufficiently
high U , abrupt transitions from positive to negative current. Comparing this
graph with the one below, we can see that these sudden jumps correspond
exactly to the crossing of an ABS with the Fermi level.

Phase dependence The phase dependence of these ABSs is represented
in Fig. 3.7 as well as the supercurrent carried by the QD. For small U ,
the junction is in its ground state for δ = 0, where its energy reaches its
minimum. The S-QD-S junction is then in its 0-state. However if U is large,
the junction is in its lower energy state for δ = π, the supercurrent flows
then in opposite direction than in the previous case. The junction is, this
time, in its π-state. For intermediate values of U , variation of δ may cause
the crossing of one ABS with the Fermi level inducing jumps in the current-
phase relation. When the junction is in this regime, it is conventionally called
0′ or π′ junction depending if the system is more stable at δ = 0 or δ = π.

3.2 Exact treatment of the Quantum Dot with
superconducting leads: the Numerical Renor-
malization Group

In this section we briefly discuss how one can used NRG calculations to obtain
exact numerical results on the proximity effect in QD. The comparison of this
technique with the simplified non-interacting treatment made in the previous
sections will be carried out in the next section.

3.2.1 Anderson impurity model in NRG
Like before we consider a single orbital of the quantum dot, but in contrast
to the simplified approach, the NRG approach yields the exact solutions of
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the system, taking into account the Coulomb interaction in the dot. This
problem is exactly the Anderson impurity model (AIM) with superconducting
leads, described by the Hamiltonian:

H = HQD +HL +HR +HTL
+HTR

with:

HQD = ϵorb (n↑ + n↓) + Ecn↑n↓ with nσ = d†
σdσ

HL =
∑
l,σ

ϵlc
†
lσclσ +

∑
l

(
∆eiϕLc†

l↑c
†
−l↓ + ∆e−iϕLc−l↓cl↑

)
HR =

∑
r,σ

ϵrc
†
rσcrσ +

∑
l

(
∆eiϕRc†

r↑c
†
−r↓ + ∆e−iϕRc−r↓cr↑

)

HTL
=
∑
l,σ

(
tLd

†
σclσ + t∗Lc

†
lσdσ

)
HTR

=
∑
r,σ

(
tRd

†
σcrσ + t∗Rc

†
rσdσ

)

Here, dσ is the annihilation operator of an electron with a spin σ in the
orbital of energy ϵorb and Ec is the charging energy due to the repulsion
between two electrons occupying the QD. Operator cl(r)σ annihilates, in the
left (resp. right) electrode, an electron of spin σ in state l (r) with an energy
ϵl(r). In this notation, l and r represent a synthetic index for all the quantum
numbers of the electrons in electrodes, except their spin, and such that c−l−σ
is the time reversed-state of clσ. ∆eiϕL(R) is the complex order parameter in
electrode L(R) with modulus ∆ (also known as the gap energy) and phase
ϕL(R). tL(R) is the energy associated to the transfer of an electron between
left (right) electrode and the dot.

In the resolution of the problem, the method takes into account all four
states of the uncoupled orbital, with their spin degeneracy:

Ec
S = 0 (singlet)

S = 1/2 (doublet)

Energy

S = 0 (singlet)
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For the numerical calculations we have used the “NRG Ljubjana” open-
source code written by Rok Žitko16. We gratefully acknowledge extended
help from the author.

For any given set of parameters of the Hamiltonian, the NRG calculation
yields the quasi-exact17 complete low energy spectrum of a discretized system.
In particular it determines the ground state, and the subgap excitations
(the ABSs) giving their total spin and degeneracies. NRG can also provide
arbitrary spectral functions of operators, and in particular, the tunneling
density of states into the dot. Since NRG calculation is performed for a
discretized Hamiltonian, the spectral function is represented in form of a
weighted set of delta peaks. For the sub-gap part this is, in fact, an exact
representation of the ABSs. For the continuum, however, in order to obtain a
smooth plot, one has to do spectral averaging (over several NRG calculations
with different discretizations) together with some broadening.

3.2.2 Zero vs finite superconducting phase difference
across the QD

In principle, the AIM with an arbitrary number of identical leads (normal or
superconducting) remains a “single-channel” problem, since one can perform
a suitable Gram-Schmidt orthogonalization to a single effective channel, while
all other states fully decouple.

In practice however, in the case of two superconducting channels with
different SC amplitude and/or phase the results of such a transformation is
difficult to use in NRG. In that case, in order to circumvent this difficulty,
one has rather recourse to a “two channels” NRG calculations (one channel
for each lead), which is unfortunately much more demanding in terms of
computational power. Indeed, compared to the zero phase difference case,
an NRG calculation of a QD at finite phase difference is slower by about
three orders of magnitude. This explains why in the following we give only
results of NRG calculations at zero phase difference.

16See http://nrgljubljana.ijs.si/ for an introduction to quantum impurity problems, an
explanation of the NRG method, downloadable number-crunching NRG code, documen-
tation and examples.

17It is not formally exact because the resolution is performed with discrete states instead
of a continuum, but we can control the precision of the results.
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3.3 Predictions for the DOS of a QD con-
nected to superconductors

In this section we look how the DOS of the QD, and in particular the ABSs,
depends on the parameters of the effective model we have used to obtain the
Green’s functions. To better grasp the limitations of this effective model, we
compare its results with those of the exact NRG solution of the Anderson
impurity model. We introduce the following correspondence between the
notations of the NRG (see section 3.2.1) and those of the effective model (see
section 3.1.1.1):

ϵorb ↔ ϵ0 − U/2
Ec ↔ U

in order to compare their respective results. In the following, we will call ϵ0
the “mean position level” and U the “charging energy” for both approaches.
Concerning the coupling to the leads ΓL and ΓR, they are defined in the same
way in both approaches.

Among the parameters of the models we discuss here, we will distin-
guish those that are tunable parameters (that we can tune during the exper-
iment18): the mean position level ϵ0 and phase dependence δ, and others that
will be considered as fixed sample-dependent, or setup-dependent parame-
ters: the couplings to the leads Γ = ΓL + ΓR, its asymmetry δΓ = ΓL − ΓR
and the charging energy U .

3.3.1 Modification of the spectral density of a QD upon
coupling to superconducting contacts

Superconducting proximity effect in QD modifies its TDOS in a characteristic
way. In order to identify signatures that are peculiar to this effect, we first
look how the connection to normal leads modifies the QD’s spectral density
and then we turn them superconducting. Experimentally the latter transition
can be achieved by lowering a magnetic field or the temperature.

Spectral density of a QD connected to normal leads An isolated
QD has a very simple spectral density composed of two Dirac peaks spaced
of the charging energy at ω = ϵ0 − U/2 and ϵ0 + U/2. They correspond to
eigenstates of the isolated QD and have, as a consequence, infinite lifetime.

18We need to mention that there are other parameters that we can control experimentally
and are not in the model as the temperature, the magnetic field or the current flowing
through the sample.
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That’s why they are infinitely thin. As we can see in Fig. 3.8, NRG and the
effective approach give the same TDOS (plotted in dashed gray in the first
line of graphs) for this elementary case.

When we couple the QD to two normal leads, the levels of the dots are not
anymore eigenstates: an electron placed into the QD can escape to the leads
in a finite time. Hence, the levels are broaden in a Lorentzian shape. In the
effective approach, their half-width at half-maximum are given by ΓL + ΓR
(see Fig. 3.8, first graph from the top of the central column), whereas NRG
shows levels that are sensitively wider for the chosen set of parameters. The
most striking difference, between NRG and the effective approach, is the
formation of a Kondo peak19 at the Fermi level that is not captured at all
by the effective approach but only by NRG (a brief discussion about this
particularity of the effective non-interacting model can be found in section
A.4.2 appendix A). Because the Kondo peak gets wider with increasing Γ,
the comparison between the two approaches become completely inaccurate
for large coupling to the leads.

Since this effect essentially disappears of the TDOS when the leads are
turned superconducting, we will ignore Kondo effect in this chapter, but this
phenomenon will be tackled in details in part III.

Spectral density of a QD connected to superconducting leads: for-
mation of ABSs When the leads connected to the QD are turned super-
conducting (Fig. 3.8 second line of graphs from the top), a superconducting
gap is induced in the dot around the Fermi level and ABSs appear in it. As
they are eigenstates, they have infinite lifetime and appear as infinitely thin
peaks.

Taking ηinel ̸= 0, we increase their linewidth such that they become vis-
ible in the DOS. We can then compare results of the effective model with
exact NRG calculations (in which the ABSs’ linewidth is added artificially).
In the third line of graphs of Fig. 3.8, we can see that the TDOS obtained
from the two different approaches are qualitatively similar. ABSs are located
approximately at the same energies and continuums outside of the gap are
comparable. This similarity between approaches hold only for large charg-
ing energy and small or moderate coupling to the leads compared to the
superconducting gap. For large Γ, the effective model breaks down and gives
TDOS which shows large discrepancy with exact NRG calculations.

19See appendix A.
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Figure 3.9: Energies of the QD levels can be tuned with a back gate voltage
coupled capacitively to the sample.

3.3.2 Influence of the parameters on ABSs

3.3.2.1 Tunable parameters

In our experiment, we control the superconducting phase difference δ between
the superconducting electrodes connected to the QD with a magnetic field.
With a gate voltage, we can tune the energy level of the QD’s orbital which
is equivalent, in the model, to control ϵ0 (see Fig. 3.9). Experimental details
on how we control these parameters are given in part II.

3.3.2.2 Phase dependence: signature of the ABSs

As mentioned above (section 3.2.2), calculations of the TDOS at δ ̸= 0 is
a too much time-demanding process in NRG. In this respect, the effective
model provides the interesting possibility to access the phase-dependence of
the TDOS. In Fig. 3.10, we have represented, for three different values of δ (in
green, blue and red), the TDOS of a QD connected to two superconducting
leads. Below, is plotted the phase dependence of the ABSs (degenerate for
the chosen parameters) which are 2π-periodic. This phase dependence is a
signature of the ABSs and an indirect evidence that they carry supercurrent
(see section 3.1.5 above).
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(a
.u
.)

EABS
Figure 3.10: Plot of the spectral density of a QD connected to supercon-
ducting leads (top) as a function of the energy ω obtained with the effective
model for three different phases and energies of the ABSs (bottom) as a func-
tion of δ. The ABS are 2π-periodic with δ (not shown). Parameters taken
for these plots: U = 0, ϵ0 = 0, ΓL = 10∆, ΓR = 8∆, η = 0.00001∆, and
δ = π/3 (red) , 2π/3 (green) and π (blue) .
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3.3.2.3 Influence of ΓL, ΓR and U on ABSs “gate dependence”

The other parameters of the model ΓL, ΓR and U are not tunable20 and corre-
sponds to intrinsic aspects of the sample that depend on microscopic details
determined during fabrication of the sample. To understand their influence
on the QD spectral density, it is helpful to look at the TDOS dependence with
the mean position level (ϵ0 tuned with Vg) for different parameters ΓL, ΓR
and U . First we analyze, as in previous section, the case of a QD connected
to normal leads which is contained in the models, simply setting ∆ = 0, and
then look at the case of a QD connected to superconducting leads (∆ = 1),
to see how ABSs are affected by those parameters.

• Dependence with the mean level position ϵ0 in the normal state:

In Fig. 3.11, we have arranged side by side three calculations of TDOS of a
QD connected to normal leads. In addition to NRG (right) and the effective
approach (left), we have chosen to represent results obtained within a self-
consistent mean field approach (central graphs) that we will not described
here but which is explained in appendix B.

Effective model In the effective model, as we have seen before (see first
line of Fig. 3.8), for a given ϵ0 when U ̸= 0, we obtain two broad levels with
Lorentzian shapes in the TDOS (in the particular case U = 0, the degeneracy
between those levels is not broken and there is only one Lorentzian). The
half-width at half maximum of these levels is equal to Γ = ΓL + ΓR. When
ϵ0 is changed, these Lorentzians are simply linearly translated. The Fermi
level of the leads EF play no particular role, this invariance will be broken
when ∆ ̸= 0.

Self-consistent approach The self-consistent approach gets a step further
in modeling the interaction, as occupancy of the QDs starts to play its role
and introduces selection rules in the spectrum of excitations. Thereby, for ϵ0
well above 0 (resp. well under 0), the TDOS shows a single peak at ϵ0 −U/2
(resp. at ϵ0 +U/2) corresponding to the only excitation available when doing
tunneling spectroscopy: addition (resp. extraction) of an electron when the
QD is empty (resp. filled). When ϵ0 is between −U/2 and U/2, the QD is
singly occupied and two excitations are available: injection of an electron at
ϵ0 + U/2 (orbital plus charging energy) or extraction of the electron which

20Later, in this thesis, we will see however that these parameters may vary with the gate
voltages. But as these variations are small in the voltage ranges that we consider here, we
ignore these dependences in this part.
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has an energy of ϵ0 −U/2. These selection rules generate the diamond shape
features that is commonly observed in QD’s density of states (see appendix
A).

Numerical Renormalization Group The NRG, which is the more com-
plete approach as it is “exact”, gives a similar spectrum than the self-consistent
approach except for low energies where a Kondo peak forms for single oc-
cupancy (−U/2 < ϵ0 < U/2). This is the only approach within those three
that captures the physics of Kondo effect. Moreover looking at the cuts in
Fig. 3.11, we see that quasiparticles peaks at ±U/2 are much wider in the
NRG approach than in the effective model and the self-consistent approach.

• Dependence with the mean position level ϵ0 in the superconducting
state:

If now the leads are driven superconducting, this spectral density is modi-
fied. We have already seen that a superconducting gap [−∆,+∆] is induced
around the Fermi level and that this gap contains Dirac peaks at the energies
of the ABSs (note that the continuum is also affected). As shown in Fig. 3.12
and 3.13, locations of these ABSs evolves with ϵ0 and this evolution depends
on the parameters of the system.

Characteristic pattern: pairs of bell-shaped resonances ABSs ap-
pear in the gap only when ϵ0 − U/2 and ϵ0 + U/2 are in a range of ∼ Γ of
the gap. Otherwise, the ABSs are weak and very close to the gap edge such
that they don’t show up as a separate features in the DOS. When the mean
position of the levels is tuned (see Fig. 3.12), ABSs move to draw facing pairs
of bell-shaped resonances centred at ϵ0 = 0 with their bases resting against
opposite edges of the superconducting gap. By changing the total coupling
to the leads Γ = ΓL + ΓR, we change the profile of these bells. In Fig. 3.12,
whereas the effective model and NRG are in perfect agreement for U = 0, it
shows a striking difference for small U : ABSs are degenerate in NRG and not
in the effective model. This latter aspect underlines one of the limits of the
phenomenological approach for taking properly into account interactions in
the QD. ABSs having spin, their degeneracy is indeed broken in the presence
of a Zeeman field, like the one we have inserted in the effective model to de-
scribe the Coulomb repulsion. Yet interactions have no reason to break the
spin degeneracy since they are not directly sensitive to the spins of electrons.
A more systematic investigation of the influence of U on the ABSs is shown
in Fig. 3.13.
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Figure 3.12: DOS as a function of the energy ω and the levels mean position
ϵ0 calculated within the effective model (6 upper graphs) and using NRG (6
lower graphs) for decreasing Γ from the left to the right for U = 0 (first and
third lines) and U = 0.6∆ (second and fourth lines). The coupling to the
leads influences strongly the ABSs dependence with ϵ0. Parameters: δ = 0,
ΓL = ΓR = 0.7, 0.5, and 0.3∆, and ηinel = 0.01∆.
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Influence of the strength of U It shows that, as just mentioned, for small
U (left graphs) the phenomenological approach fails to describe correctly this
influence because ABSs are predicted to be degenerate by the NRG whereas
the effective non-interacting model predicts that this degeneracy is broken.

For U ∼ ∆ (central graphs), the degeneracy between ABS is broken in
both approaches and four resonances corresponding to two ABSs may appear
within the gap. However in NRG, this happens only when one of the ABS has
crossed the Fermi level, i.e. after the singlet-doublet transition mentioned
in section 3.1.5.2. It results in a “hanging” ABS for a reduced region of ϵ0.
This feature is missed by the phenomenological approach because it is due
to selection rules related to QD’s occupancy[77], not taken into account in
this approach. Indeed, in the ground state, the QD is either occupied by an
odd number of electron or by an even number of electron (superconducting
singlet-states): the spin S of the dot is thus either equal to 1/2 or 0. As
tunneling spectroscopy explores excitations of the system through injection
of electrons, it allows only to see transitions that do not conserve the spin
of the dot. In Fig. 3.14, we have plotted the energies of the different states
available for the system21 as a function of ϵ0. There are four of them: two
S = 0 states with one that is always higher in energy and two degenerate
S = 1/2 states. For ϵ0 far from 0, the ground state is a S = 0 state and
tunneling spectroscopy allows to explore only the degenerate S = 1/2 dou-
blet, resulting in a single resonance between 0 and ∆ in the TDOS. After
crossing of an ABS with the Fermi level, the ground state is the degenerate
doublet S = 1/2, and transition toward S = 0 states can be seen by tunnel-
ing spectroscopy, resulting in two resonances between 0 and ∆ in the TDOS.
As the effective approach ignores selection rules due to QD occupancy, all
the possible transitions are seen in the spectrum and ABSs are never “inter-
rupted” this way. It can be noticed that it is not because states cannot be
seen through transition authorized by tunneling spectroscopy that they do
not exist. Besides, performing a spectroscopy through microwave irradiation,
we would obtained transition between S = 0 states, completing the whole
spectrum.

For large U , the calculated TDOS are in satisfying agreement between the
two approaches (at least concerning the ABSs). The two central bells cross
to form a loop, and the external states merge into the continuum beyond ±∆
(see Fig. 3.13). At some point only one ABS appears in the spectral density
(but twice, at ω > 0 and ω < 0), the other one being stuck to the edge. This
is the most common situation in our measurements.

21Be careful that we distinguish states of the whole system and excitations of the system
(which are transitions between states).
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Figure 3.14: On the top, is represented a spectrum calculated in NRG of Fig.
3.13, where a “hanging” ABS appear around ϵ0 = 0. Below, we have plotted
energies of the four lowest states (in energy) of the system as a function of
ϵ0 (the ground state is always chosen as the origin). The blue lines indicate
energies of S = 0 states, whereas energies of degenerate S = 1/2 states are
traced in pink. As measuring the TDOS, we do not conserve the spin of the
dot (one electron is added or extracted) we cannot see transitions between
S = 0 states (red arrow), but only transition between S = 0 and S = 1/2
states (green arrows). The inversion of ground state, or singlet-doublet tran-
sition, occurring at the crossing of an ABS with the Fermi level induces a
lift of degeneracy between excitations of the system. As a consequence, an
abrupt transition between two and four resonances in the gap happens in the
TDOS. The lower graph shows what we should obtain by microwave spec-
troscopy as a function of the frequency and ϵ0: we would explore transitions
from S = 0 ground states to S = 0 excited states.
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Effect of the contact asymmetry on the ABSs
Figure 3.15: DOS obtained from the phenomenological approach for symmet-
ric (top) and asymmetric (right) contacts connected to the QD. On the left
δΓ = 0 and on the right δΓ = 0.2∆. The contact asymmetry δΓ introduces
a coupling between the ABSs which form an avoided crossing at δ = π when
δΓ ̸= 0. For both DOS, we used Γ = 1.8∆, ϵ0 = 0, Eex = 0 and ηinel = 0.01∆
in the calculation.

Role of the coupling asymmetry δΓ = ΓL − ΓR in the phase depen-
dence As we explain previously, in section 3.1.3, the coupling asymmetry
to the electrodes δΓ = ΓL − ΓR only plays a role at finite δ. In figures 3.12
and 3.13, the TDOS is always calculated at a phase difference δ = 0, so that
only the total coupling strength Γ enters the Green’s functions and δΓ has
no influence.

However, we can then see the influence of the coupling asymmetry δΓ
in the phase dependence of the spectral density. Figure 3.15 represents two
colorplots of the spectral density phase dependence for δΓ = 0 and δΓ ̸= 0
but with a similar Γ. The asymmetry introduces a coupling between ABSs
which anticross at δ = π only when δΓ ̸= 0.
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Role of the interdot coupling t′ Compared to a single QD, the DQD
nature of the CNT introduces new physics which is governed by the strength
of the interdot coupling t′. In chapter 7 of part III, we will see how it affects
the electronic structure of the CNT within a self-consistent approach (NRG
for DQD is not done here as it is more complicated and time-demanding than
for single QD).

Here, we analyze its influence on the ABSs formation within our crude
approach and particularly their phase dependence. When t′ = 0, the electri-
cal circuit is open between the two superconducting leads: no supercurrent
can flow and there is thus no phase dependence of the DOS. Yet ABSs do
form in both QDs, they just do not carry supercurrent and are not coupled
with each others. In Fig. 3.16, the gate dependence of the DQD density
of states exhibit the characteristic “bells” within [−∆,+∆] which appear
independently.

If now t′ ̸= 0, the electrical circuit is closed and can sustain supercurrent.
The “bells” are now interacting because of the interdot coupling and form an
anticrossing where ABSs cross each other as on Fig. 3.16. At this anticrossing
ABSs get their maximum phase dependence and it remains essentially phase
independent elsewhere.
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Figure 3.16: Colorplots of the QD’s TDOS as a function of the energy ω and
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avoided crossing, the flux dependence is maximum. On the left graph, dashed
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are, for each value of ϵ0, levels of spin up and down of the left (resp. right)
QD. Parameters are: ϵL↑ = ϵ0 + 2, 5∆, ϵL↓ = ϵ0 + 0, 5∆, ϵR↑ = ϵ0 − 0, 5∆,
ϵR↓ = ϵ0 − 2, 5∆, ΓL = ΓR = 1, 2∆, ηinel = 0, 01∆ and δ = π.
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Part II

Experimental observation of
the Andreev Bound States
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Andreev Bound States concept has led to many successful interpretations
for experiments on mesoscopic superconductivity [69, 78, 79, 80, 81], and
exotic or high-Tc superconductors [82, 83, 84, 85, 86]. Moreover they are
now inspiring possible experimental realizations in mesoscopic circuits for
the observation of Majorana Bound States [32, 42, 87, 88], which suppos-
edly behave as non-abelian anyons [89]. Despite the fundamental interest
they arouse and though there have been already some strong indications of
their existence [69], no direct observation of individually resolved ABSs were
performed so far. In this chapter we present the first observation of ABSs
realized by tunneling spectroscopy in a supercurrent-carrying CNT.

For the purpose of probing the ABSs, we have fabricated samples with
open superconducting loops closed by a CNT in order to form S-CNT-S
structures with a tunable superconducting phase difference δ. Additionally,
in the middle of these structure, a superconducting tunnel probe is connected
to the CNT in order to measure its DOS.

With such devices, we observed individually resolved ABSs and their
δ-dependence, which is the ABSs’s main signature and is related to their
supercurrent-carrying nature. Moreover thanks to external gate voltages
and by confronting our experimental results with the phenomenological DQD
model described in previous part, we were able to link ABSs with the elec-
tronic structure of the CNT and to extract information on parameters of the
system such as the coupling to the leads and the charging energy of the QDs.

In this part of the thesis, we first describe the samples and the mea-
surement setup. Then we present the ABSs tunneling spectroscopy that we
have realized in a CNT connected to superconducting leads, and discuss the
observation of the 0 − π transition in the TDOS of our device. Finally, we
discuss the performance of our device as a magnetic flux sensor using the
δ-dependence of the ABSs.



82



Chapter 4

Description of the samples and
measurement setup

In this section, we describe the samples we measured and discuss the role
of controllable parameters of the experiment: gate voltages, bias voltage,
magnetic field, temperature. We also describe the measurement setup which
is connected to these samples in order to measure CNTs’ DOS.

4.1 Samples description and role of control-
lable parameters

Samples geometry Samples we used to perform ABSs spectroscopy are
composed of several metallic structures connected to CNTs (see part IV).
These structures are constituted by a superconducting “fork” and a super-
conducting tunnel probe connected to a single CNT, as depicted on Fig.
4.1.

Within this geometry, we create two QDs (QDL and QDR in Fig. 4.1)
localized between the two arms of the fork and on each side of the tunnel
probe.

Voltage bias V The fork, which is well connected to the CNT, is grounded,
whereas the tunnel probe, which is weakly coupled to the CNT, is biased with
a voltage V . By tuning this voltage we control the energies at which we probe
the TDOS of the CNT (see appendix D). This TDOS is extracted from lock-
in measurements of the differential conductance G (V ) between the tunnel
probe and the fork (see subsection 4.2).
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dI
dV NT(E)
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nT=35 mK
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SiO2 substrate
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VLg V

I

Vbg

QDL

QDRQDL

Diagram of the structures and connection to control devices
Figure 4.1: Each structure is connected to two (or three) DC voltage sources:
a back gate voltage Vbg which controls the CNTs’ electro-chemical potential
(some structures have an additional lateral gate voltage VLg which allows
to tune locally the electro-chemical potential) and a voltage bias V that we
apply on the tunnel probe in order to measure the differential conductance
G (V ). From G (V ), we extract the CNT’s DOS (see appendix D). Addition-
ally, we can generate, perpendicularly to the sample, a magnetic field that we
use either to tune the magnetic flux Φ in order to produce a superconducting
phase bias δ = ϕL − ϕR across the CNT (low magnetic field ≤ 50 Gauss),
or to drive the electrodes in their normal state (high magnetic field ≥ 500
Gauss.).
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Gate voltages Each sample is capacitively coupled to a back gate voltage
Vbg, and some structures (but not all) have an additional lateral gate coupled
to the left part of the CNT1 biased with a voltage VLg. When biased, the back
gate voltage Vbg shift the electro-chemical potential of CNTs homogeneously,
thereby accumulating electrons or holes in the CNT, whereas VLg has just a
local influence and allows to change the number of charge carriers only on
one side of the CNT (in QDL).

Magnetic flux Φ In our experiment the two superconducting contacts are
connected to the CNT on one side and shorted together on the other side,
thereby forming a loop with the CNT. In this geometry, with the magnetic
flux Φ enclosed by the loop, we control the superconducting phase difference
δ = ϕL − ϕR between the two superconducting electrodes connected to the
QD.

As the total magnetic flux threading the loop determines the integral
of the phase gradient around the complete loop [47], the flux Φ and the
superconducting phase difference δ are related through the relation:

Φ = Φ0

2π
(δ + δAl) − Φscreen

where Φ0 = h/2e is the flux quantum, δAl is the phase difference accumulated
along the aluminum part of the loop and Φscreen is a screening flux created
by the current Iloop that develops in the loop. This two contributions are
respectively proportional to the kinetic inductance LAl

K of the aluminum part
of the loop (δAl = 2π

Φ0
LAl
K Iloop) and the geometric inductance LG of the loop

(Φscreen = LGIloop).
However, as LAl

K and LG are negligible compared to the kinetic inductance
LCNT
K of the CNT2, the magnetic flux threading the loop essentially imposes

a phase difference δ across the CNT. The latter is thus simply given by:

δ = 2π Φ
Φ0

across the CNT (see Ref. [90] for a detail discussion on how to achieve a
good phase bias).

The magnetic field is generated with a current circulating in a supercon-
ducting coil below the sample. When we want to generate a magnetic field
in order to tune the superconducting phase difference, we use magnetic field
lower than 50 Gauss. But we can also generate a higher magnetic field (of

1A right lateral gate was also coupled to the sample but floating.
2We have indeed LG < LAl

K ≪ LCNT
K , as LG ≈ 1pH, LAl

K ≈ 10pH and LCNT
K > 10nH.
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the order of 500 Gauss) in order to drive the aluminum electrodes in their
normal state.

Temperature Measurements presented in chapter 5 and 7 were performed
at fixed temperature, in a dilution fridge with a base temperature of 35 mK.

In chapter 9 of part III, we also performed temperature dependence mea-
surements. This is performed heating up the sample between 35 mK and ∼ 1
K increasing the temperature of the dilution fridge.

4.2 Measurement setup
The measurement setup is similar to the one of Ref. [90] where the reader
can find all the details. Here we just describe the basic principles of mea-
surements.

The measurement setup is sketched in Fig. 4.2. Voltages are applied on
the samples with Yokogawa 7651 DC generators and the differential conduc-
tance is measured using standard lock-in techniques with a SR830 Lock In
Amplifier (LIA).

A small AC voltage excitation, (sinusoidal with a 0.3 Vrms amplitude
and a frequency ranging between 150 and 200 Hz) generated by the LIA,
is divided by 100 and combined with a DC signal (delivered by a voltage
source) in a low noise summing amplifier. This signal is then divided by
1000 and applied on the tunnel probe. The resulting current I is converted
to a voltage by a home-made current to voltage converter (CVC), described
in Ref. [91], with a gain of 107 (determined by a feedback resistance R of 10
MΩ) and then measured by the LIA. This measurement gives us access to
the differential conductance G (V ) = dI

dV
.

To reduce as much as possible the amount of noise, all the amplifiers are
battery powered in order to decouple the experiment from the rest of the
electronics, and contained in an Electro-Magnetic Interference (EMI) shield-
ing in order to isolate the measurement setup from ambient electromagnetic
noise. Furthermore, the voltage is applied on the sample through the CVC
(mounted right at the output connector of the refrigerator in order to avoid
for extra noise) in order to obtain a differential sensing of the voltage applied
on the sample with respect to a well-referenced cold ground. And finally
there is an additional home made amplifier with unit gain at the output,
decoupling the experiment from the LIA in order to avoid ground loops.



4.2. Measurement setup 87

+ Summing differential amplifier

GPIB
Computer

control

DC source
Yokogawa 7651

Lock-in amplifier
SR380

Stanford research

DC source
Yokogawa 7651

DC source
Yokogawa 7651

Current to
voltage

converter +

Vout=RI

VAC

VDC

I

Cold ground

Fr
id

ge
EMI shielding

100

VLg

Vbg

in

out

10
 M

Ω

V

1 2 3
4

5

Measurement setup

Vout=RI

+

‐

Differential
amplifier

1 kΩ

1 Ω

+

‐

I V

1 2 3

5

4

V

Current to voltage converter

Simplified diagram of the current to voltage converter
Figure 4.2: Diagram (top) of the measurement setup and simplified schematic
(bottom) of the current to voltage converter (CVC). Measured structures are
cooled down on top of a Sionludi dilution fridge at a base temperature of 35
mK. Their back gate and lateral gate are connected to DC generators through
filters (not represented). A voltage V , including a DC part and an AC exci-
tation, is applied on the tunnel probe. The resulting current is amplified and
converted into a voltage by the CVC, it is then measured with the Lock-In
Amplifier (AC coupled). From this measurement, we deduce the differential
conductance G = dI

dV
. All low levels signals amplifiers are battery-powered

and contained in an Electro-Magnetic Interference (EMI) shielding in order
to isolate the measurement setup from ambient electromagnetic noise. The
signal VOUT (see bottom diagram) is measured through a home made ampli-
fier with unit gain (not represented) that decouples the experiment ground
from the rest of the electronics in order to avoid the so-called ground loops.
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Chapter 5

Tunneling spectroscopy of the
Andreev Bound States

In this chapter which is the heart of the thesis, we first reproduce our article
published in Ref. [92] and its supplementary information on the observation
of the ABSs by tunneling spectroscopy of a CNT connected to superconduct-
ing leads. Then we discuss the singlet-doublet transition that we do observe
in Ref. [92] but that we didn’t mention.

5.1 Paper “Andreev bound states in supercurrent-
carrying carbon nanotubes revealed”
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Carbon nanotubes (CNTs) are not intrinsically superconducting but they can

carry a supercurrent when connected to superconducting electrodes [1–4]. This

supercurrent is mainly transmitted by discrete entangled electron-hole states

confined to the nanotube, called Andreev Bound States (ABS). These states

are a key concept in mesoscopic superconductivity as they provide a universal

description of Josephson-like effects in quantum-coherent nanostructures (e.g.

molecules, nanowires, magnetic or normal metallic layers) connected to super-

conducting leads [5]. We report here the first tunneling spectroscopy of indi-

vidually resolved ABS, in a nanotube-superconductor device. Analyzing the

evolution of the ABS spectrum with a gate voltage, we show that the ABS arise

from the discrete electronic levels of the molecule and that they reveal detailed

information about the energies of these levels, their relative spin orientation

and the coupling to the leads. Such measurements hence constitute a power-

ful new spectroscopic technique capable of elucidating the electronic structure

of CNT-based devices, including those with well-coupled leads. This is rele-

vant for conventional applications (e.g. superconducting or normal transistors,

SQUIDs [3]) and quantum information processing (e.g. entangled electron pairs

generation [6, 7], ABS-based qubits [8] ). Finally, our device is a new type of

dc-measurable SQUID.

First envisioned four decades ago [9], ABS are electronic analogues of the resonant states

in a Fabry-Pérot resonator. The cavity is here a nanostructure and its interfaces with super-

conducting leads play the role of the mirrors. Furthermore, these “mirrors” behave similarly

to optical phase-conjugate mirrors: because of the superconducting pairing, electrons in

the nanostructure with energies below the superconducting gap are reflected as their time-

reversed particle – a process known as Andreev Reflection (AR). As a result, the resonant

standing waves – the ABS – are entangled pair of time-reversed electronic states which have

opposite spins (Fig. 1a); they form a set of discrete levels within the superconducting gap

(Fig. 1b) and have fermionic character. Changing the superconducting phase difference ϕ

between the leads is analoguous to moving the mirrors and changes the energies En(ϕ) of

the ABS. In response, a populated ABS carries a supercurrent 2e
h

∂En(ϕ)
∂ϕ

through the device,

while states in the continuous spectrum (outside the superconducting gap) have negligible

or minor contributions in most common cases [5]. Therefore, the finite set of ABS gener-
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ically determines Josephson-like effects in such systems. As such, ABS play a central role

in mesoscopic superconductivity and can be seen as the superconducting counterpart of the

Landauer channels for the normal state: in both cases, only a handful of them suffices to

account for all the transport properties of complex many-electron systems such as atomic

contacts or CNTs. In effect, the ABS concept quantitatively explains the Josephson effect

in atomic contacts [10]; it also explains tunneling spectroscopy of vortex cores and surface

states in some superconductors [11]. However, there has been to date no detailed direct

spectroscopic observation of individual ABS. Interest in such spectroscopy has increased

with recent proposals for using ABS as quantum bits [8], and AR as a source of entangled

spin states [6].

Nanotubes are particularly good candidates for the observation of ABS. First, CNT-

superconductor hybrid systems are expected to show a small number of ABS, and the typical

meV energy scales involved in nanotube devices are comparable with conventional supercon-

ducting gaps. These are favourable conditions for a well-resolved spectroscopy experiment.

Second, given the length of CNTs, it is possible to introduce an additional tunnel probe which

enables straightforward tunneling spectroscopy [12]. Furthermore, CNTs are of fundamental

interest as nearly ideal, tunable one-dimensional systems in which a wealth of phenomena

(e.g. Luttinger-liquid behavior [13], Kondo effects [3, 14] and spin-orbit coupling [15]) has

been observed, whose rich interplay with superconducting coupling has attracted a lot of

interest [16–22].

Our sample is described in Figure 1. A CNT is well connected to two superconducting

metallic contacts 0.7 µm apart, leaving enough space to place a weakly-coupled tunnel

electrode in between. The electrodes are made of aluminum with a few nm of titanium as a

sticking layer (see SI for details); they become superconducting below ∼ 1K. The two outer

contacts are reconnected, forming a loop. A magnetic flux Φ threaded through the loop

produces a superconducting phase difference ϕ = 2e
h
Φ across the tube. By measuring the

differential conductance of the tunnel contact at low temperature (T ∼ 40mK) we observe

(see Fig. 2a, 3a) well-defined resonances inside the superconducting gap. The energies of

these resonances strongly depend on the voltage applied on the back-gate of the device,

and vary periodically with the phase difference accross the CNT, a signature of ABS. From

the raw measurement of the differential conductance between the tunnel probe and the

loop we can extract the density of states (DOS) in the tube (see e.g. fig. 2b) through a

3



Lead 1

a

↓ ↑ ↓ ↑

Nanostructure

Energy

Lead 2

DOS

Nanostructure

b

↑

↓

Figure 1: a : Generic schematic for an Andreev Bound State (ABS) in a nanostructure between two super-

conducting leads, which have Densities of States (DOS) with a gap ∆, and with respective superconducting

phases ϕ1,2. At energies within the superconducting gap (grey band) the Andreev reflection process (which

reflects an electron (e) as a hole (h) – its time-reversed particle – and vice versa) leads to the formation of

discrete resonant states of entangled e − h pairs confined between the superconductors. These states –the

ABS– are electronic analogues to the resonances in an optical Fabry-Pérot cavity. b : The local DOS in

the nanostructure is thus expected to display a set of resonances in the gap at the energies of the ABS.

The energies of the ABS should depend periodically on the superconducting phase difference ϕ = ϕ1 − ϕ2

which is analogous to the optical cavity length. c : Color-enhanced scanning electron micrograph of a device

fabricated for the spectroscopy of ABS in a CNT which appears here as the thin vertical grey line. The

substrate consists of highly doped silicon serving as a back gate (figured here in violet), with a 1µm-thick

surface oxide layer. A grounded superconducting fork (green) is well connected to the tube, forming a loop.

The measurement of the differential conductance ∂I/∂V of a superconducting tunnel probe (red) weakly

connected to the tube gives acces to the density of states in the CNT, where ABS are confined. The energies

of the ABS can be tuned by varying the gate voltage Vg and the magnetic flux Φ threading the loop.
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b  DOS

a  dI/dV

Figure 2: a: Differential conductance of the tunnel probe at a fixed gate voltageVg = −0.5V as a function of

the bias voltage V of the probe junction (vertical axis) and of the current in a coil (top axis) which controls

the flux Φ through the loop. The sharp resonances are the signature of the ABS, and the periodicity of

the pattern demonstrates that ABS coherently connect the two end contacts and are sensitive to their

superconducting phase difference ϕ (bottom axis). The solid color traces correspond to cross sections of the

data at the flux indicated by the dashed line. G0 = 2e²/h denotes the conductance quantum. b DOS in

the CNT as ‌deconvolved from the data in panel a, assuming BCS DOS in the tunnel probe. The device

can be operated as a dc-current SQUID magnetometer by biasing it at a point which maximize ∂I/∂Φ, as

indicated by a red circle. The fact that the phase is not zero at zero current in the coil is due to a residual

magnetic field in our setup.

straightforward deconvolution procedure (see SI). Figure 2 shows the dependence of the ABS

spectrum on the flux in the loop at a fixed gate voltage. By dc-biasing this device at a point

which maximizes ∂I/∂Φ (see Fig. 2a), it can be used as a SQUID magnetometer which

combines the advantages of Refs [23] and [3]. Being nanotube-based, our SQUID should be
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a  dI/dV

b  DOS

c

DOS Thy.

Figure 3: Note: These color plots display well on computer screens. However, the printed

appearance might be too dark depending on the printer used.

a Gate dependence of the differential conductance of the tunnel probe. b DOS in the CNT as deconvolved

from the data in panel a, after correcting for the gating effect of the probe junction which appears as a

slight horizontal shear in panel a. The ABS form an intricate pattern of intertwined lines. Predicted from a

basic quantum-dot model for the CNT, the green dotted bell-shaped lines are the positions of ABS arising

from a single Spin-Split Pair of Levels (SSPL - white dashed lines) crossing the gap as the gate voltage is

increased. The spin labelling indicates only the relative orientations of the spins in these levels. Most of the

resonances observed in this panel have similar shapes and can be attributed to different SSPL. However, some

resonances corresponding to two different SSPL are connected together where indicated by the diamonds. c

Calculated DOS involving several coupled SSPL in a double quantum dot model. Here a SSPL is represented

by a pair of dashed lines of the same color. The positions of the levels and their coupling to the electrodes

were adjusted to provide best overall agreement with 2b. This simple model captures many of the observed

features and shows how ABS spectroscopy allows the identification of the dot levels, and in particular of

their relative spin, without applying any magnetic field.
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Exp.

Exp.Exp.

Model

Model Model

Figure 4: top panels: experimental deconvolved DOS as a function of Vg and predictions of our double

quantum dot model, at phase ϕ = 0. Bottom pannels: experimental phase dependence taken at gate

voltages indicated by the plain coloured lines in the top panels, and corresponding predictions of the model.

All theoretical panels use the same set of parameters; the corresponding level positions are indicated by the

dashed lines in the second pannel. The spin labelling indicates only the relative orientations of the spins in

these coupled levels.

able to detect the reversal of magnetic moments of only a few Bohr magnetons[3]. At the

same time, the present device can be read out with a dc current measurement (similar to

[23]) and requires a single gate voltage, making it easier to operate than Ref. [3]. The gate

voltage dependence of the DOS shows a pattern of resonance lines (Fig. 3b) which is more

or less intricate depending on the strength of the coupling to the leads (see SI).

We now show that the ABS observed in this device arise from the discrete molecular levels
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in the CNT. For this we describe phenomenologically our nanotube as a Quantum Dot (QD)

coupled to superconducting leads (See the SI for a detailed discussion of the model). The

essential physics of ABS in this system is already captured when one considers a single orbital

of the QD filled with either one or two electrons. Due to the Pauli exclusion principle, these

two electrons have opposite spins and can thus be coupled by Andreev Reflection. Also, the

doubly occupied state is higher in energy by an effective charging energy Ũ which can be

determined from the experimental data. Hence, the minimal effective model consists of a

Spin-Split Pair of Levels (SSPL) whose parameters are the splitting Ũ , the mean position

E of the SSPL relative to the Fermi level (which is controlled by the gate voltage Vg), and

the coupling to the leads (see Fig. S1a in SI). Previous theoretical work [24, 25] has shown

that there can be up to four ABS, symmetric (in position, but not in intensity) about the

Fermi Level. For sufficiently large Ũ (respectively, E), however, the two outer (respectively,

all) ABS merge with the continuum and are no longer visible in the spectrum [24–26].

We now discuss the dependence of the ABS energies on the gate voltage Vg. The ABS

appear as facing pairs of bell-shaped resonances centred at E(Vg) = 0 and with their bases

resting against opposite edges of the superconducting gap (see green dashed curves in Fig.

3b.). For large enough Ũ the inner resonances cross at the Fermi energy, forming a loop

(Fig. 3b.). Such loops are a distinct signature of SSPL in this model (spin-degenerate levels

(Ũ = 0) cannot give loops). Most of the features observed in Fig. 3b can be identified as

such pairs of bell-shaped resonances corresponding thus to different SSPL in the nanotube.

Closer inspection reveals however that adjacent resonances are sometimes coupled, form-

ing avoided crossings (as indicated by ♦ symbols in Fig. 3b, 4), so that we need to consider

the case where two SSPL contribute simultaneously to the spectral properties within the

superconducting gap. For this, we extend the model to two serially-connected QD each

containing a SSPL, with a significant hopping term in between. This model is fairly natural,

given that the centre tunnel probe electrode is likely to act as an efficient scatterer. The

full description of the model, the derivation of the retarded Green function from which we

obtain the spectral properties, and the parameters used to produce the theoretical panels

in Figures 3&4 are detailed in the SI. Assuming for simplicity that all states in the two

dots are identically capacitively coupled to the gate and that the couplings to the leads are

independent of Vg, we can locally reproduce most features of the gate-voltage dependence

of the DOS, and simultaneously the flux dependence at fixed Vg (see fig. 4). By summing
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contributions of independent SSPLs and pairs of coupled SSPLs, (i.e. isolated orbitals and

coupled pairs of QD orbitals) we can also reproduce the observed dependence on an extended

Vg range (See Fig. 3 b & c, and discussion in the SI).

Note that a single superconducting terminal is sufficient to induce ABS in a QD (in which

case, of course, there can be no supercurrent) (see Refs. [27, 28]). Given this, and in light

of our analysis, we think that some features observed in Refs [29, 30] which were tentatively

explained as out-of-equilibrium second order AR can now be reinterpreted as equilibrium

ABS spectroscopy on a QD well connected to one superconducting lead, as in Refs. [27, 28],

with the second lead acting as a superconducting tunnel probe.

The agreement between experiment and theory in Figs. 3 and 4 shows that ABS spectra

constitute an entirely new spectroscopic tool for QDs and CNTs. This spectroscopy provides

extremely detailed information, in particular about the relative spin state of the nanotube

levels without requiring high magnetic fields. Note that, in contrast to the usual Coulomb

blockade spectroscopy of QDs, the energy resolution is here essentially independent of the

temperature (as long as kBT ≪ ∆) and of the strength of the coupling to the leads. It

should therefore allow the exploration of the transition between the Fabry-Pérot (where

the Luttinger-Liquid physics is expected to play a role [18, 19]) and the Coulomb blockade

regimes in CNT. We also expect this new technique to be able to provide key insights in cases

where simple charge transport measurements are not sufficient to fully probe the physics at

work. In particular, it should allow detailed investigation of the competition between super-

conductivity and the Kondo effect [16] which arise for stronger couplings to the leads. Also,

used in combination with an in-plane magnetic field, it could also probe spin-orbit interac-

tions [20–22]. Finally it should be emphasized that even while our phenomenological model

successfully describes the observed experimental data further theoretical work is needed in

order to establish a truly microscopic theory which should predict the level splittings from

the bare many-body Hamiltonian.

The information extracted from such spectroscopy may also help to optimize Field Effect

Transistors, SQUIDs or even Nano Electromechanical devices based on nanotubes, by better

understanding how current is carried through the device. It could also be used for evaluating

recently proposed devices for quantum information processing such as entangled electron pair

generation by crossed Andreev reflection [6] or ABS-based quantum bits [8]. Regarding the

latter, our observation of tunable ABS is heartening even though the measured spectroscopic
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linewidth (30 − 40 µeV FWHM) seems to question the feasability of such qubits (if it were

intrinsic to the sample, it would correspond to sub-ns coherence time). The present linewidth

is however likely to be caused simply by spurious noise in the experimental setup. More

investigations are needed in order to assess the potential of nanotube ABS as qubits.

To summarize, we have performed the first tunneling spectroscopy of individually resolved

ABS which provide a universal description for the Josephson effect in weak links. The

analysis of the ABS spectrum constitutes a powerful and promising spectroscopic technique

capable of elucidating the electronic structure of CNT-based devices, including those with

well-coupled leads.
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Sample fabrication

Carbon nanotubes were grown by chemical vapor deposition from catalyst grains de-

posited on a 1 µm SiO2 insulating layer atop a highly doped Si substrate used as a back

gate. As measured with an atomic force microscope, the tubes have diameters of 1-3 nm

and are thus expected to be single-walled carbon nanotubes (SWNT). The SWNTs are then

located with respect to gold alignment marks using Scanning Electron Microscopy (SEM)

and electron-beam lithography of a MAA-PMMA bilayer is used to form a suspended mask

through which we deposit the electrodes. The electrodes consist of 3 nm Ti/100 nm Al for the

loop and 1 nm Ti/40 nm Al for the tunnel probe; they are deposited through the suspended

mask at di�erent angles in a single pump-down. The loop, which is well-connected to the

CNT was deposited �rst after 2 hours of heating at 110°C in a vacuum of ∼ 10−7mb followed

by rapid quenching down to -80°C. Evaporation is started when the temperature is around

0°C. The tunnel contact is then evaporated at another angle. This process yields quite

frequently contact resistances measured at room temperature of 15 − 25 kΩ and ∼ 100 kΩ

respectively which depend weakly on back gate voltage. Room temperature conductance

measurements between two well-connected electrodes on either side of such tunnel probes

indicate that the latter does not cut the tube. After lift-o�, the sample was wire-bonded

and cooled down in a dilution refrigerator equiped with carefully �ltered lines.

Measurements

The di�erential conductance of the tunnel probe was measured using standard lock-in

techniques at frequencies ∼ 200Hz and an ac excitation of 2 µV. All electrical lines are

shielded and �ltered and we use a room temperature ampli�er with a low back action on

the tunnel contact to ensure a low electronic temperature. In previous experiments a very

similar setup was shown to have a tunneling spectroscopy resolution of ∼ 15µeV [1].

Extracting the Density of States (DOS) from the di�erential conductance

Assuming thermal equilibrium and energy-independent transmission between the probe

and the tube, the tunnel current is expressed as
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I(V ) ∝

ˆ

(nTP (ε− eV)− nNT (ε)) ρNT (ε)ρTP (ε− eV)dε

where ni are Fermi functions and ρi are DOSs, withNT (TP ) standing for Nanotube (Tunnel

probe). In the present experiment, the tunnel probe is superconducting. We assume that its

DOS is nearly BCS, with a phenomenological Dynes �depairing� imaginary part iγ∆ added

to the energy, to smooth out the BCS singularity (here γ is a dimensionless parameter) [2]:

ρTP (ε) = Re
|ε|

√

(ε+ iγ∆)2 −∆2

The di�erential conductance can be expressed as a convolution product (⊗)

∂I

∂V
(V ) ∝ (g ⊗ ρNT ) (eV ) =

ˆ

g(eV − ε, V )ρNT (ε)dε

of the unknown tube DOS ρNT with the �xed function

g(E, V ) = (nNT (E − eV )− nTP (E)) ρ
′
TP (E)− n′

TP (E)ρTP (E),

with respect to E.

Since convolution is a linear operation, its implementation on a discretized set of data
[

∂I
∂V

]

can be expressed as a matrix operation :

[

∂I

∂V

]

∝Mg. [ρNT ]

where Mg is a matrix appropriately sampling g over its two variables. We obtain the least-

square error estimate of the DOS in the nanotube by left-multiplying the latter equation

by the Moore-Penrose pseudo-inverse [3] of Mg. The di�erential conductance can thus be

deconvolved to get ρNT simply by multiplying it by a �xed matrix. We have checked that

edge e�ects due to the �nite measurement range are negligible. The adjustable parameters

in this deconvolution process are the probe gap ∆, the depairing amplitude γ, and the

temperature. However, variations of the temperature within a reasonable range have a

negligible e�ect; thus, the Fermi functions can e�ectively be replaced by step functions. The

values of γ providing adequate deconvolution (i.e. artefact-free, positive DOS) depend on

the data sampling; they were determined empirically and found to fall in the 0.5%-2% range.

The value of ∆ = 152 ± 5µeV was determined to provide best overall consistency and is

compatible with the estimated gap of our Ti/Al bilayer.
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Figure S1: Schematic representation of the models used for describing the experimental data using

a single (left panel) our a double (right panel) Quantum Dot model. See text for a more detailed

explanation.

Spectral density for a double-quantum dot model connected to superconducting

leads

Like in many experiments on nanotubes, our model is directly based on the standard

quantum dot picture: The dot is seen as a series of electronic orbitals with di�erent con-

�guration energy that can each accommodate two electrons, and the Coulomb interaction

between electrons is taken into account by a charging energy for each added electron. Even

when this system is a many-body problem which cannot be solved exactly when the cou-

pling to the leads is �nite, it is possible to have a fairly good representation of its spectral

properties using an e�ective non-interacting model. We shall �rst discuss how this e�ective

model arises from a more general interacting Hamiltonian and then derive the DOS within

this simple framework.

We start with a model of the nanotube as a double Quantum Dot (QD) connected to

superconducting leads, restricting to a single orbital per dot, but with interactions and

arbitrary couplings. Note that this model with a single dot (Fig. S1a, corresponding to the

Anderson impurity model) would be su�cient to have ABS, but we have found necessary to

consider a double dot structure to capture all the features observed in the data. The model

is schematically depicted in Fig. S1b and the corresponding Hamiltonian can be written as

Ĥ = Ĥd + ĤT + ĤL + ĤR, where
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Ĥd =
∑

α,σ

εαd
†
ασdασ +

∑

α

Uαnα↑nα↓ +
∑

σ

t′d†1σd2σ + h.c.,

describe the electronic states and their Coulomb interactions in the central region. Here d†ασ

creates an electron in dot α = 1, 2 with spin σ =↑, ↓ and nασ = d†ασdασ. The interactions are

reduced to the local charging energies Uα on each dot. For the sake of simplicity we neglect

the interdot Coulomb interaction which was found to be negligible in experiments on double

QD systems based on CNTs [4]. The term in t′ corresponds to the interdot tunneling.

On the other hand the leads are described as ideal conductors accomodating one spin-

degenerate channel with BCS pairing:

Hj =
∑

kσ

ξkc
†
jkσcjkσ +

∑

k

(

∆eiϕjc†jk↑c
†
j,−k,↓ + h.c.

)

,

where c†jk,σ creates an electron with wavevectork in lead j = L/R, ξk and∆ are the single-

particle energy and the gap parameter respectively (assumed to be equal for j = L/R) while

in the main text ϕ = ϕL − ϕR denotes the superconducting phase di�erence between the

leads. The leads are also characterized by a normal density of states ρn. Finally, the spin-

conserving tunneling Hamiltonian can be written as HT =
∑

jkσ tjc
†
jkσdαjσ + h.c., where

αj = 1(2) for j = L(R) and tj denote the hopping elements t`,r illustrated in the right panel

of Fig. S1. For simplicity we take tj and t
′ to be real quantities.

Finding the spectral properties of this model in the general case, including the e�ects of

electron correlations, is a formidable task. For the case of the Anderson impurity model with

superconducting leads several techniques have been applied, including Hartree-Fock approx-

imation (HFA) [5], perturbation theory in U [6], Quantum Monte Carlo [7] and Numerical

Renormalization Group (NRG) [8, 9]. In brief these works demonstrate that the system ex-

hibits a magnetic S=1/2 ground state for ∆ > kBTK , where TK is the Kondo temperature.

In this regime the Andreev states spectrum predicted by the more sophisticated numerical

techniques (NRG) [9] can be mimicked by a those of a simple non-interacting HFA [5] in

which the level splitting between the two spin orientations is simply the charging energy

times the di�erence in their population. We expect that other e�ects such as spin-orbit or

exchange interactions (that the Anderson model cannot handle) could also modify the level

splitting.
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To describe in a simple way the behavior of the Andreev states spectrum in the dif-

ferent regimes, in the present work we thus adopt a phenomenological non-interacting

approach similar to HFA but with e�ective parameters. For this, we replace Hd by

Heff
d =

∑

α,σ ε̃ασd
†
ασdασ +

∑

σ t
′d†1σd2σ + h.c., where ε̃α↓ = ε̃α↑ + Ũα. In this way the model

describes both the case of nearly degenerate spin states (for Ũα � ∆) and well resolved spin

states (for Ũα � ∆). The e�ective charging energy Ũα is then a parameter which has to be

determined by �tting the experiment. Notice that the ordering of the spin states implied

by ε̃α↓ = ε̃α↑ + Ũα is conventional. We cannot tell which spin direction is populated �rst in

a given dot but once a spin orientation is selected for the �rst electron, the second electron

should have the opposite. It should be emphasized that spin symmetry is not broken on

average.

We can then obtain the spectral properties of this model from the retarded Green function

in the orbital-Nambu space de�ned as Ĝσ(t, t
′) = −iθ(t, t′) <

[

ψσ(t), ψ
†
σ(t

′)
]

+
>, where

ψσ = (d1,σ, d2,σ, d
†
1,−σ, d

†
2,−σ). In the frequency representation this quantity adopts the form

Ĝσ(ω) =
[

ω − ĥσ − Σ̂(ω)
]−1

, where

ĥσ =





















ε̃1,σ t′ 0 0

t′ ε̃2,σ 0 0

0 0 −ε̃1,−σ −t′

0 0 −t′ −ε̃2,−σ





















and

Σ̂(ω) =





















Σee
1 0 Σeh

1 0

0 Σee
2 0 Σeh

2

Σhe
1 0 Σhh

1 0

0 Σhe
2 0 Σhh

2





















,

with Σee
αj

= Σhh
αj

= Γjg(ω) and Σeh,he
αj

= −Γje
±iϕjf(ω). In these expressions f(ω) =

∆/
√

∆2 − (ω + iη)2 and g(ω) = −(ω + iη)f(ω)/∆ are the dimensionless BCS green func-

tions of the uncoupled leads (where we have included a �nite inelastic relaxation rate η as

a phenomenological parameter) and Γj = πρnt
2
j are the so-called normal tunneling rates to

the leads. Obtaining Ĝσ(ω) thus corresponds to the inversion of a 4 × 4 matrix which we

perform numerically. From this quantity one can directly express the spectral densities as

ρασ(ω) = −
1

π
Im

[

Ĝσ(ω)
]

α,α
.
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Note that in the �ts of the di�erential conductance we allow for di�erent tunneling rates,

Γp
α between the probe electrode and the two sides of the double-QD. This is justi�ed by the

broken symmetry which is expected between the two quantum dots. Figures 3c and 4 thus

show the quantity
∑

α,σ Γ
p
αρασ(ω). We do not �t the total intensity but rather �x the relative

visibility Γp
1/Γ

p
2 (the complete list of parameters for the �ts of Figs. 3c and 4 is given below).

Parameters used for the theoretical �gures

The parameters used in �gure 3c of the article are:

group 1 2 3 4 5 6 7

V 0
n (V) -10.12 -10.08 -10.33 -9.84 -9.49 -9.25 -9.045 -8.807 -8.08 -7.95 -7.84 -7.43 -6.739 -6.408 -6.65 -6.65 -6.00 -5.77 -5.48 -5.19

spin ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

Γ`,r/∆ 0.90 0.81 1.21 1.0 0.81 1.96 1.21 2.10 0.75 2.40

t′/∆ - 1.25 - 0.8 - - 1.1

visibility 0.5 1 0.5 1 1 0.5 1 0.5 1 0.5

and those in �gure 4 of the article are:

group 1

V 0
n (V) -11.65 -11.53 -11.382 -11.085

spin ↑ ↓ ↑ ↓

Γ`,r/∆ 2.10 1.11

t′/∆ 1.0

visibility 0.5 1

In these tables, V 0
n is the gate voltage at which the given level crosses the Fermi level. The

spin orientation shown here only indicate the relative spin orientation within a given group.

We have assumed that all levels have identical capacitances to the gate. Their respective

energies as a function of the gate voltage are thus given by εn(Vg) = λ∆ × (Vg − V 0
n ), with

a value of λ = +12V −1 determined in data where the Coulomb diamonds are most visible.

For groups of levels involving two SSPL, one of them is coupled to the left lead with Γ`, the

other one to the right lead with Γr, and they are coupled together with a hopping term t′, as

show on the right panel of Figure S1. For single SSPLs Γ`,r denotes either the left or right

coupling. The visibility gives the relative weight of a pair of levels in the measurement of

7



dot 1 dot 2

Figure S2: Possible arrangement of the levels of Fig. 3c in the two dots. In this picture, each color

corresponds to a pair of levels extracted from the ABS spectroscopy and given in the table (we

use the same colors as the lines in Fig. 3c). The various orbitals were assigned to either dot to

yield the most uniform level spacing in each dot, which is of course an "aesthetic" and arbitrary

assumption we cast on the system. The boxes represent the pairs of levels for which we needed to

take into account inter-dot coupling, to reproduce avoided crossing. In each pair the electrons are

of opposite spin, but there is no preferred overall orientation. Hence, the arrows shown here only

indicate the relative spin orientation of the levels, as obtained from ABS spectroscopy.

the DOS by the tunnel probe (see previous section).

From these parameters we can give a tentative picture of the ladder of levels in the two

dots, as shown in Fig S2. Such a level representation is easier to apprehend than the set of

apparently random lines shown in Fig 3c.

Quantum dot vs. Fabry-Pérot description

We also measured a device, shown in Fig. S3, which was better coupled to the leads

than the sample analyzed in the main text (for which we had coupling Γ in the range

0.8−2.4×∆). The DOS at energies |E| ≥ ∆ (the continuum) shows weak modulations with

the gate voltage rather than sharp features. These modulations can arise in two di�erent

regimes.
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Figure S3: Top panel : Deconvolved DOS data from a di�erent device than the one shown in the

main text. We see almost everywhere more ABS in the gap, each extending on larger Vg range and

overlapping with others. This indicates that the nanotube in this device was better coupled to the

leads than the one in the main article. Bottom panel: �ux dependence at Vg = −6.02V .

In the �rst regime, the nanotube is characterized by a continuum of states (this would

be true for nanotube devices in which �nite-size e�ects are negligible). In this situation

the weak modulations of the DOS at energies above the gap are generated by Fabry-Perot

9



interference due to weak backscattering at the two contacts. Moreover, for energies below

the gap, this model predicts continuous bands of ABSs.

The second situation that can give rise to weak modulations of the DOS above the gap

is that of a nanotube exhibiting discrete levels that are well separated in energy (i.e. a

short nanotube behaving as a quantum dot), but also well coupled to the leads. This is the

model discussed in the previous two sections. Above the gap, this model shows that the

good coupling with the leads gives rise to weak modulations of the DOS: the stronger the

coupling, the smoother the �uctuations in the DOS. However, inside the gap, one should see

discrete Andreev levels that are not broadened by the coupling with the leads. Nevertheless,

the good coupling makes the variation of the ABS energies with the gate voltage slower

than in the weak coupling situation, thus the observed ABS remain within the gap for larger

intervals of gate voltages and, consequently, a larger number of ABS resonances are observed

at a given gate voltage.

Thus we see that, while two possible models for the nanotube can give rise to the same

type of features in the spectroscopic features above the gap, inside the gap the two models

give rise to very distinct features, as long as one can resolve discrete ABS. In particular,

since our experimental data shows distinct ABS inside the gap, it suggests that the studied

nanotube behaves as a discrete quantum dot rather than as a plain continuum of states.

On the other hand, a continuum model properly including all the e�ects of backscattering

should also be able to account for the observed features.

Our results indicate that for nanotube devices with good coupling to the leads, quantum

dot models may be more broadly applicable than previously thought. This also underlines

that in e�orts to reveal Luttinger Liquid physics in nanotube devices, it is important to take

�nite-size e�ects and in particular discrete energy spectra into account.

Width of the resonances - Lifetime of the ABS

The analysis of the ABS linewidth in the deconvolved DOS gives a FWHM of 30-40 µeV,

independent of gate voltage and �ux. If this linewidth is intrinsic, it would correspond to a

sub-ns coherence time of the ABS. Possible extrinsic sources for this linewidth are

� Charge or �ux noise. These cannot be the dominant contribution to the linewidth

since the latter is essentially independant of the �ux and of the gate voltage.

10



� The tunneling current from the probe. The electron tunneling rate from the probe

limits the lifetime of the ABS. This rate can be exactly evaluated by integrating the

di�erential current measurements. This mechanism would give a linewidth of less than

1 µeV for all peaks shown.

� Non thermal-equilibrium voltage noise on the tunnel probe. This would smear out the

measured peaks and it would also dephase the ABS by the capacitive action of the

probe. The level of noise necessary to explain the observations would be somewhat

higher than what was measured (∼ 15µeV) previously in a very closely related setup

[1]. This cannot be ruled out at present, however.

� Finally, a �nite residual density of states in the superconducting gap could also yield

this linewidth. This can easily be included in the theory by the introduction of a Dynes

depairing parameter [2], and it is exactly what we have done to produce the theoretical

predictions of the DOS from the Green functions. This turns out to produce ABS

linewidth independent of gate voltage and �ux. The observed linewidth is qualitatively

reproduced for a Dynes depairing parameter of ∼ 10 − 15% of ∆. Unfortunately we

could not check directly in this setup the density of states of the superconducting

electrodes, and moreover, it is di�cult to distinguish such a depairing e�ect from that

of voltage noise [10]. Repeating such an experiment with di�erent superconducting

materials could shed some light on this issue.

For the time being, the simplest candidate explanation for the measured linewidth is the

presence of uncontrolled noise in the measurement. Further investigation is clearly needed

to precisely establish the origin of the measured linewidth and assess the potential of ABS

as qubits.
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114 5. Tunneling spectroscopy of the Andreev Bound States

5.2 Singlet-doublet transition observed in the
TDOS

In the experimental data presented in Fig. 4 of Ref. [92], we observe the
crossing of an ABS with the Fermi level around Vbg = −11.35 V. At this
point, the system undergoes a singlet-doublet transition. This means that
the ground state of the system changes, for increasing gate voltage, from
a spin-singlet ground state (S=0) to a degenerate magnetic ground state
(S=1/2) (see section 3.1.5.2). When the ground state is a singlet, the energy
of the system is minimized for a superconducting phase difference between
the leads δ equal to 0, whereas in the magnetic ground state the energy is
minimized for δ = π [16, 71]. This induces a π phase shift in the phase
dependence of the ABSs’ energies and, as a consequence, a reversal of the
supercurrent.

Reversal of supercurrent (0 − π transition) In Fig. 5.1, we have rep-
resented, on the top, the TDOS of the device measured as a function of the
gate voltage for δ = π. Below, we show two graphs of the TDOS and the
supercurrent calculated, using the phenomenological model (see section 3.1
of chapter 3), with parameters1 used in Fig. 4 of Ref. [92], for the same
gate voltage range but for δ = π/2 (the supercurrent is equal to 0 at δ = 0).
These calculations confirm that the crossing of an ABS with the Fermi level
coincides with a brutal transition of the supercurrent from positive to nega-
tive values. This behaviour is called 0 − π transition and has inspired some
potential applications, such as a transistor in which the direction of a su-
percurrent can be reversed by adding just one electron to a quantum dot
[48].

The order of magnitude obtained for the supercurrent, from our phe-
nomenological approach, is smaller from what would be expected from the
Ambegaokar and Baratoff formula2 [93] which rather predicts 10 nA for a
junction such as ours. It is however in good agreement with experimental
results of Ref. [7, 8, 9, 20] where the critical currents measured are of the
order of the nA.

1There is a mistake in Fig. 4 of Ref. [92]: in the top panel the experimental and
predicted DOS as a function of Vg are respectively measured and calculated at φ = π and
not φ = 0. Moreover the φ axis in the bottom panel is shifted of π.

2This formula gives the critical current Ic as a function of the normal state resistance
RN of a tunnel junction and the superconducting gap Ic = ∆π

2RN
.
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Figure 5.1: The top graph represent the TDOS of the CNT plotted as a func-
tion of the gate voltage and the energy for a superconducting phase difference
across the junction δ = π. Below, we show the TDOS of a DQD connected
to superconducting leads as a function of the back gate voltage obtained
from the phenomenological approach of Ref. [16] with parameters used in
Fig. 4 of Ref. [92]. At the bottom, we have traced the Josephson current
calculated with the same parameters. Parameters are: δ = π/2, ΓL = 2.10∆,
ΓR = 1.11∆, t′ = ∆ and ϵ↑(↓)L(R) = λ∆

(
Vbg − Vbg↑(↓)L(R)

)
with Vbg↑L = 11.65

V, Vbg↓L = 11.53 V, Vbg↑R = 11.382 V, Vbg↓R = 11.085 V and λ = 12 V−1.
We see that the crossing of the inner ABS with the Fermi level coincides
with a brutal transition of the supercurrent from positive to negative values
(magenta diamond). This transition is smoothed if we add a phenomenolog-
ical broadening ηinel to the ABSs, the supercurrent magnitude remaining of
the same order of magnitude though slightly reduced (this reduction has also
been predicted in Ref. [94] for the case of a ballistic S-N-S junction coupled
to a normal side probe).
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π phase shift in the δ-dependence of the ABSs In Ref. [92], we did
not performed supercurrent measurements and were thus not able to observe
reversals of the supercurrent. These measurements were not possible in our
setup3. However, we did see, in the TDOS of the CNT, the π phase shift in
the δ-dependence of the ABS’s energies.

This is what we show in Fig. 5.2. We have represented measurements of
the TDOS as a function of the energy and the superconducting phase differ-
ence δ across the CNT. They are taken at different gate voltages indicated by
the white dashed lines in Fig. 5.1. We observe up to four resonances inside
the gap corresponding to two ABSs of different energy (two orbitals, each
one belonging to a different QD, are involved in their formation). The outer
ABS has a smaller phase dependence and merge into the continuum during
the transition. The inner one has a larger δ-dependence meaning that it is
carrying more supercurrent. Its energy increases when we tune δ from 0 to
π and hence we have a 0-junction which means that the ground state is a
spin-singlet.

Across the singlet-doublet transition, we observe the progressive inter-
crossing of the two inner resonances inside the gap. Eventually, when this
intercrossing is complete the whole δ-dependence of the TDOS has acquired
a π phase shift. We have thus a π junction. The ground state is hence
a degenerate magnetic doublet. For the states in the intermediate region,
conventionally designed as 0’ or π’ [16], the ground state depends on the
superconducting phase difference δ we impose across the junction.

3As mentioned in section 3.1.5, evaluation of the QD supercurrent might be checked in
the future, using a more elaborate setup giving direct access to the loop supercurrent, as
was done for atomic contacts [68, 69]).
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Chapter 6

Measurement of the flux
sensitivity of our devices

In this chapter of the thesis, we study the magnetic flux sensitivity of our
devices. The latter have indeed current-voltage characteristics that depend
on the flux enclosed inside their loops, these behaviours relying on the phase-
dependence of the ABSs’ energies.

Our devices work thus as flux-tunnel current transducers showing flux
noise down to 5.10−5ϕ0/

√
Hz. As in Ref. [8], thanks to CNTs’ aspect ratios,

such device should be able to detect the reversal of the magnetic moment
of single nanometer-sized particles or single molecules. They are moreover
easier to operate than devices of Ref. [8] since they can be read through a
simple DC measurements of the current, as in Ref. [95].

Here, we discuss the principle of detection of a small signal generated by
variation of the magnetic field. Then we present our measurement technique
to evaluate the devices’ flux noise. Finally we explain how we optimize, with
gates, the operation point of our devices and discuss their performances as
well as the limiting sources of noise of our CNT-based magnetometer.

6.1 Principle of detection
The detection principle of our CNT device is based on the flux dependence
of ABSs’ energy. As previously explained (see section 4.1), the flux Φ en-
closed by the superconducting loop imposes a superconducting phase dif-
ference across the CNT. Since the phase difference determines the energy
position of ABS, a flux variation will modify the CNT TDOS. In this sense
our device constitutes a flux-tunnel current transducer.

In Fig. 6.1, we show two current-voltage characteristics measured at
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6.2. Definition of the flux sensitivity 121

35 mK for different values of the applied flux. At given voltage bias V , a
current variation ∆I is induced when Φ is changed of half a flux quantum.
The detection of a variation of the magnetic field relies on this property of
the device.

6.2 Definition of the flux sensitivity
We define the flux sensitivity of our device as the smallest signal (generated
by a magnetic flux variation) we can detect within a bandwidth δf . This
limit is given by the flux noise SΦδf , expressed in ϕ2

0, where SX is the power
spectrum of the noise on X. It constitutes thereby the relevant figure of
merit to characterize performances of our device as a flux sensor.

If IN is the intrinsic current-noise of the device in the bandwidth δf , the
equivalent flux noise is given by:

SΦδf = ϕ2
0SIN

×
(
dI

dΦ

)−2

The flux sensitivity is therefore optimum when the flux-tunnel current trans-
fer function dI

dΦ is maximum and the current noise is minimum.
In the following, we describe the setup we use for measurements of the

transfer function dI
dΦ . Then we explain how we maximize the latter. And

finally we evaluate the flux noise of our device SΦ and discuss its performance
as a magnetic flux sensor.

6.3 Setup
In order to measure the differential flux-tunnel current transfer function, we
use Lock-In measurement techniques described in section 4.2. The setup,
represented in Fig. 6.2, combined dI

dΦ and G = dI
dV

measurements.
For G and dI

dΦ measurements, two Lock-In Amplifiers (LIA), operating
at different frequencies, generate two AC excitations (respectively VAC and
V

′
AC), each one being subsequently combined with a DC voltage (respectively
VDC and V

′
DC) generated with a programmable DC source 7651 from Yoko-

gawa. One of the composite signal is applied on the tunnel probe for G
measurement, whereas the other is applied, through a 200 Ω resistor, on a
superconducting coil, inside the fridge and underneath the sample, for dI

dΦ
measurements.

The resulting current flowing through the sample is amplified by the cur-
rent to voltage converter (see Fig. 4.2) and the output signal is then fed to
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Figure 6.2: Schematic of the measurement setup

the inputs of the two LIAs for independent narrow band measurements of dI
dΦ

and G, respectively at 134 Hz and 193.29 Hz.

6.4 Maximization of the flux-tunnel current
transfer function dI

dΦ

As mentioned in section 6.2, the flux sensitivity of our device is optimized
when the flux-tunnel current transfer function dI

dΦ is maximized. Similarly
to the differential conductance G, it depends on the bias voltage V applied
across the device, the flux Φ enclosed inside its loop, and the gate voltages
Vbg and VLg. In order to find the optimum operating point, one has thus
to measure dI

dΦ as a function of these four parameters at the same time, a
procedure which is highly time-demanding.

We can however find a quicker method. In our sample, at a fixed Vg, the
flux variation of an ABS is maximum around ϕ0/3. At this magnetic flux,
the position in energy of an ABS is generally around ∆/2. So, to roughly
map regions with high flux sensitivity in the (Vbg, VLg) plane, we DC biased
the device at Φ ≈ ϕ0/3 and V ≈ 3

2e∆ (voltage corresponding to ∆/2 of the
deconvoluted DOS) and sweep Vbg and VLg. Thereafter, we fixed Vbg and VLg
at the highest dI

dΦ and we measured the flux-tunnel current transfer function
as a function of V and Φ in order to find the the best operating point.

In Fig. 6.3, we show measurements of the differential conductance G and
the flux-tunnel current transfer function dI

dΦ (respectively the upper and lower
graphics). They are taken in the superconducting state, at low magnetic field
and at 35 mK, as functions of Vbg and VLg at V = 0.2 mV and Φ ≈ ϕ0/3.

In differential conductance measurements, areas of low conductance ap-
pear in violet, areas of negative conductance in dark violet and areas of high
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conductance in white. These measurements resemble those obtained in the
normal state (see chapter 7) except that ABSs appear much thinner than
normal resonant levels of the CNT. In the inset with the thick orange frame,
we have zoomed on the area indicated by the dashed orange frame where
ABSs of the left and right QD meet each other to form avoided crossings.
Such pattern is a manifestation of the coupling between the left and right QD
which happens when they are both in resonance. This situation is favorable
for the flow of supercurrent between the left and right electrodes of the fork,
and therefore for a large Φ-dependence. However, we do observe also large
flux dependence, though smaller, in situations where one of the dot in not
necessarily at resonance.

Below, flux-tunnel current transfer function measurements show that, in
this situation, the tunnel current variation induced by the flux excitation is
maximum. This is the expression of a large flux-dependence of the ABSs, or
equivalently a large supercurrent circulating in the loop formed by the fork
and the CNT. In the thick yellow frame, we have represented a zoom on the
same area than before but for the dI

dΦ measurements. The large yellow point
indicates where we have chosen to optimize dI

dΦ adjusting V and Φ: at the
avoided crossings formed by the ABSs (Vbg = 10.96 V and VLg = −2 V).

In Fig. 6.4, we have represented the dependence with V and Φ of the
differential conductance and flux-tunnel current transfer function measure-
ments at this operating point. As expected, we see that dI

dΦ is close to zero
where the ABSs have no flux dependence and is maximum where the ABSs
energies are strongly phase dependent. A maximum value of dI

dΦ is obtained
at Φ = 0.32ϕ0 and V = −0.1875 mV and reaches 1.6 nA/ϕ0.

In the following, we evaluate the flux sensitivity of our device at this
optimal point by measurement of the flux noise with a spectrum analyzer.

6.5 Flux noise measurements
In Fig. 6.5, we show the noise spectrum from 10 to 1610 Hz of the output
signal of the current to voltage converter (CVC, see Fig. 6.2), measured at
the operating point indicated by the brown dot in Fig. 6.4 (Vbg = 10.96 V,
VLg = −2 V, Φ ≈ 0.32ϕ0 and V = −0.1875 mV). The AC flux excitation,
controlled with V

′
AC , is taken with an amplitude equal to 0.01 × ϕ0 with a

frequency equal to 134 Hz. Yet, we don’t send any AC excitation directly on
the tunnel probe (i.e. VAC = 0).

On the tunnel current noise spectrum, we observe a peak at 134 Hz cor-
responding to the AC flux excitation we send to the coil, and a noise floor
between ∼ 10−12 and ∼ 10−11 V2/Hz. This noise floor is partly due to intrin-
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Figure 6.3: Colorplots of the differential conductance (upper graphic) and
flux-tunnel current transfer function (lower graphic) measured as functions of
Vbg and VLg, with V = 0.2 mV and Φ ≈ 1

3ϕ0. In orange and yellow frames, we
have zoomed on a region where ABSs of the left and right QDs of the device
meet and form an avoided crossing. This yields a high flux dependence of the
tunnel current and is favorable for detection of small magnetic flux variation
inside the loop of the device. The yellow point indicates the operating point
where measurements of Fig. 6.4 were taken.
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Figure 6.4: Colorplots of the differential conductance (upper graphic) and
flux-tunnel current transfer function (lower graphic) measured as functions
of the voltage bias across the device V and the flux inside the loop Φ. In
differential conductance measurements, two cuts are represented at Φ = 0
and Φ = −ϕ0/2 where the ABSs’ energies reach their extreme positions. In
flux-tunnel current transfer function measurement, a cut is represented at
Φ ≈ 0.32 × ϕ0 where we obtain our largest dI

dΦ . The brown point indicates
where the spectrum of Fig. 6.5 was taken.
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Figure 6.5: Graph representing the density of noise of the output signal of
the CVC, when an AC excitation at 134 Hz with an amplitude corresponding
to 0.01×ϕ0 is send to the coil below the sample and generating the magnetic
field. A peak is clearly visible at 134 Hz and there is a noise floor between
10−11 and 10−12 V2/Hz. This noise floor gives the limit of flux sensitivity SΦ
of our device.

sic charge noise of the device which depends experimentally on gate voltages,
but the principal source of noise in our device is the shot noise [36]. Indeed,
when biased, the device carries a current of quasiparticle which induces noise
(because of the discrete charge of the carriers) proportional to the current
amplitude. Therefore, as can be seen in Fig. 6.6, this noise increases with
the bias voltage applied across the device.

In Fig. 6.5, at the bottom of the AC flux excitation peak, this noise floor
reaches SV = 3.10−12 V2/Hz. As we know that the peak is induced by an
excitation with a RMS amplitude corresponding to 0.01 × ϕ0, it gives us a
benchmark to convert this voltage noise in its equivalent flux noise. The
integral below the peak being equal to 10−7 V2, the flux noise at 134 Hz of
our device S1/2

Φ is equal to:

S
1/2
Φ =

√√√√(0.01 × ϕ0)2

⟨Vex⟩2 SV = 5.10−5ϕ0/
√

Hz
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Figure 6.6: Noise floor of the device measured with a spectrum analyzer
for different voltage bias applied between the tunnel probe and the grounded
superconducting loop. The fact that the noise increases with the quasiparticle
current carried by the device is an indication that the noise floor may be
partly due to shot noise.
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Our flux sensitivity is therefore low enough to detect in less than 1 s a flux
variation of 10−4ϕ0.



Part III

Second experiment: exploring
Kondo and Andreev Bound
States in a Double Quantum

Dot
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In confined quantum conductors, Coulomb repulsion between electrons
may lead to the localization of one or several electrons and consequently to
a many-body effect called the Kondo effect (see appendix A). It occurs when
these localized electrons, forming an artificial magnetic impurity, are coupled
to electrodes with continuous density of states. Through cotunneling spin-flip
processes, conduction electrons of the leads screen the spin of the localized
electrons resulting in a many-body singlet state. When the impurity has a 1/2
spin, the Kondo effect manifests by a peak at the Fermi level in the density
of states (DOS) of the QD. The most spectacular experimental consequence
of this effect is the opening (for symmetrically contacted QD) of a perfectly
transmitted conduction channel at the Fermi level (with a conductance of
2e2/h) for temperature well below the so-called Kondo temperature TK .

Carbon nanotube-based electronic devices generally exhibit Kondo effect
when cooled down at temperatures reached in a cryogenic fridge [96, 97]. Like
semiconductor heterostructures, nanowires or molecular devices, these coher-
ent quantum conductors have thereby offered the opportunity to explore, in
a controlled way, various type of Kondo effects1 with electronic transport
experiments. As spins of electrons play an important role in these phenom-
ena, they are strongly affected by an eventual spin ordering inherent to the
electrodes or the quantum conductor. The various nature of the electrodes
that can be contacted to carbon nanotubes (CNT) or nanowires has thereby
motivated many experimental realizations aiming to explore the interplay
between Kondo effect and ferromagnetism [98, 99] or BCS superconductivity
[5, 9, 10, 14, 18, 19, 20, 21, 100]. Otherwise, in certain situations, a local spin
ordering takes place directly in the QD by formations, for example, of singlet
or triplet states between electrons belonging to different orbitals [101, 102], or
different part of the conductor when the latter behaves as a double quantum
dot (DQD). This second situation can be achieved either by defining several
coupled quantum dots during fabrication [103, 104, 105, 106, 107, 108] or in
presence of a parasitic magnetic impurity [11, 109]. Whether the spin order-
ing forms in the leads or the QD, the Kondo effect is modified compared to
the spin-1/2 Kondo state and, sometimes, even suppressed.

In this part of the thesis, we present tunneling spectroscopy measure-
ments, in the normal and superconducting states, performed on a CNT-based
device with several gates coupled to the sample. This experiment was follow-
ing the one presented in part II and realized for two different purposes. First,
we were able to verify the DQD behaviour of our device using external gates
which were lacking in the previous experiment. Secondly, as parameters ex-
tracted from measurements of part II suggested that our sample should have

1See for example references indicated in section A.5.2.
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Kondo temperature (between 0.5 and 2K) higher than the base temperature
of our fridge (35 mK), we took measurements in the normal state in order to
observe how Kondo effect develops in our samples. The results we obtained
shed light on the interplay between Kondo effect and two phenomena that
lead to different type of spin orderings: exchange between two QDs and BCS
superconductivity induced in the CNT by proximity effect.

In chapter 7, we show experimental results proving the DQD behaviour of
our sample and comment the role of microscopic parameters. Then in chap-
ter 8, we analyze the interplay between Kondo effect and superconductivity
within a single effective QD. Finally in chapter 9, we focus on effects that
are inherent to the DQD behaviour of our device and discuss in particular
splittings of the Kondo resonance that we observe in our sample.



Chapter 7

Proof of Double Quantum Dot
behaviour

In the previous part, interpretation of our measurements was based on the
supposition that our CNT-based device behaves as a double quantum dot
(DQD). We supposed that the tunnel probe splits the CNT into two coupled
QDs. Other experiments realized on three terminals devices based on a single
CNT [105, 108] have already shown the DQD behaviour of such structures
and motivated a theoretical proposal of a scheme for a spin quantum bit
based on a DQD contacted with ferromagnetic leads [110].

In this chapter, we present TDOS measurements, taken in the normal
state and at 35 mK, of a CNT-based device with multiple gates (see Fig.
7.1). A single and a double QD show qualitatively distinct behaviour. In
a DQD, if the gates are coupled differently to the two dots, the stability
diagram shows two families of parallel lines, each one reflecting the addition
of electrons in one of the QD. Therefore, measuring the TDOS as a function
of the gate voltages, we can demonstrate the DQD behaviour of our device.

In section 7.1, we first show the charge stability diagram of the device and
explain why the different features we observe are consistent with a system of
two coupled QDs. We will discuss the role of each parameter characterizing
our device (see Fig. 7.1). Then in section 7.2, we show that we obtain
a satisfactory agreement between our measurements and TDOS of a DQD
obtained within a self-consistent mean-field approximation on the intradot
Coulomb repulsion. It yields, in particular, a correct description of the role of
the interdot coupling in contrast to the phenomenological approach presented
in chapter 2.
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Figure 7.1: Schematic representation of the system with its parameters (left)
and SEM picture with false colors of a typical sample (right). The behaviour
of the device can be characterized by exchange rates with the left (resp.
right) leads ΓL(R), charging energies UL(R), energy difference between orbitals
∆EL(R) and the coupling t′ between the left and right dots (QDL and QDR).
These parameters are orbital dependent and vary with the gate voltages. We
measure the TDOS of the CNT with a tunnel probe (in red) that is weakly
coupled to the device.
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7.1 Charge stability diagram of a DQD
In Fig. 7.2, we have represented the charge stability diagram of the device.
It maps the CNT’s TDOS measured at the Fermi level of the electrodes (i.e.
V = 0 on the probe) as a function of VLg and Vbg. Here, we discuss in detail
the pattern we observe.

Electronic levels of the left and right dot In the upper graph that
shows the raw data, we see that the TDOS resembles a diamond pattern
with pairs of bright lines running mainly in two directions and forming
avoided crossings. Below, in the lower graph, we have superimposed the
same data with two sets of orange and green parallel lines. The latter cor-
respond schematically to a typical TDOS we expect in absence of coupling
between the dots (coupling by exchange of electrons, or capacitive coupling),
whether they are in sequential [111, 112] or coherent [107, 108] regime. When
an electronic level of one of the dots is at resonance with the Fermi level of
the electrodes, a current can flow between the probe and the fork giving rise
to a peak of conductance. As the right dot is more weakly influenced by VLg
than Vbg and the left QD is more evenly affected by VLg and Vbg, slopes of
the lines allow to identify that green lines correspond to electronic levels of
the right dot, whereas orange lines to those of the left dot.

Even-odd alternation These lines are separated by Coulomb blockaded
areas, or valleys, in blue. In this regions, none of the dots are at resonance but
rather at a stable charge state. As distances between these lines are related
to addition energies of the dots (see section A.3), we can identify the parity of
these valleys. For an odd occupancy, addition of an electron costs a charging
energy UL(R) due to repulsion between electrons. For an even occupancy, as
the last occupied orbital is already filled, the addition energy is given by the
charging energy plus the energy difference between orbitals UL(R) + ∆EL(R).
In Fig. 7.2, two levels with opposite spins belonging to same orbital appear
therefore as a neighboring pair. The large blue pockets between pairs of lines
define regions where dots are in an even-even configuration, whereas a pair
of lines delimits regions where occupancy of the corresponding dot is odd (as
indicated in the lower graph of Fig. 7.2).

Levels width When the temperature kBT is negligible compared to the
coupling to the leads ΓL(R) (as in our experiment, see next chapter), the
sharpness of the resonances emphasized, for each orbitals, the strength of
the coupling to the electrodes [56, 113]. Thin sharp lines correspond to
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Figure 7.2: Colorplot of the CNT TDOS (represented twice) measured, in
the normal state, at V = 0 as a function of VLg and Vbg and showing the
DQD behaviour of the device. The upper graph shows the raw data. On
the lower graph, we have added guides to the eyes showing electronic levels
of the isolated QDs (in absence of coupling, i.e. t′ = 0). Orange (resp.
green) lines highlight to resonances of the left (resp. right) QD. Distances
between lines are proportional to the addition energy UL(R) for odd valleys
and UL(R)+∆EL(R) for even valleys. The avoided crossings reveal the interdot
coupling by electron exchange.
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weaker coupling and large fuzzy lines to strong coupling. We also observe
that two levels of a pair sometimes connect forming a wide single band. This
may be due to a Kondo resonance. We will not discuss Kondo effect, here,
but it will be addressed in the next chapter.

Avoided crossings When electronic levels of two different orbitals meet,
in the (Vbg, VLg) plane, they generally (but not always) form an avoided
crossing. This behaviour underlines the coupling between the dots. The usual
electrostatic approach1 [111, 112] or the phenomenological model presented in
chapter 2 fail to describe all the features of the avoided crossings we observe.
In the next section, we propose another approach based on a self-consistent
mean-field approximation on the intradot Coulomb repulsion.

7.2 Description of the avoided crossings in
the stability diagram

7.2.1 Mean-field approximation on the Coulomb re-
pulsion

The phenomenological approach of section 3.1.4 does not capture the ap-
pearance of avoided crossings because the Coulomb repulsion was taken into
account with a phenomenological splitting that forbids spin fluctuations of
electrons in QDs. Levels of opposite spin, belonging to different QDs, re-
mains thus uncoupled when electrodes are in their normal state (they are
however coupled by superconductivity). As a consequence, they simply cross
each other in the stability diagram whatever the value of t′.

Following Bruus and Flensberg [65], we can take into account correla-
tions, due to Coulomb repulsion inside the DQD performing a self-consistent
calculation of the DQD occupancy within a mean-field approximation. We
do not describe in detail this approximation here but send the reader to
appendix E.

This approach renders correctly the pattern observed (see Fig. E.2 of
annex E). Like in the electrostatic classical approach, regions corresponding

1Actually, the electrostatic approach does predict avoided crossing for capacitive cou-
pling between dots (the honeycomb lattice). However, the latter is a priori small compared
to the other parameters in our device [105]. Moreover, it is predicted to give rise to angular
avoided crossings whereas they are rather smooth in our data. Furthermore, the hopping
between dots is necessary in the model to interpret the phase dependence of the ABSs
shown in previous chapter; if t′ = 0 the loop is open and there is no phase dependence.
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to different charge states are separated by frontiers corresponding to con-
ductance peaks. However this coherent approach allows to understand the
width of these frontiers and the fact that the latter are rounded rather than
angular as in an electrostatic approach [111, 112] (see Fig. E.1 and E.2 of
annex E).

7.2.2 Interdot couplings
This approach confirms that the avoided crossings we observe are indeed
induced by the interdot coupling. They occur near points where the levels
would cross in absence of interdot coupling t′, that is to say where the orange
and green dashed lines cross in the lower graph of Fig. 7.2. Because of
interdot coupling t′, the levels hybridize to form bonding and antibonding
energy levels.

In Fig. 7.3, we have shown a zoom of Fig. 7.2 on a particular avoided
crossings. These data can be reproduced using the theoretical approach de-
veloped in annex E. As shown in Fig. 7.3, results obtained theoretically
are in reasonable agreement with experiment for an interdot coupling ap-
proximately equal to t′ ≈ 0.5 meV. To extract this value, we have actually
anticipated on next chapter where we explain how to convert gate voltages
in energy thanks to measurements of the Coulomb diamonds (see Fig 8.4
below).
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Figure 7.3: The upper graph represents a zoom on the stability diagram of
Fig. 7.2. The dashed green and orange lines show the supposed trajectories of
the electronic levels for t′ = 0. We have also indicated the charge state of the
valleys. The lower graph represents the TDOS of the DQD calculated within
the theoretical approach described in annex E. We can see that this approach
describes the avoided crossings observed experimentally. Parameters are:
ΓL = 0.15 meV, ΓR = 0.25 meV, t′ = 0.5 meV, UL = 1.35 meV, UR = 1.1
meV, ϵL = 64.5 meV and ϵR = 99.9 meV.
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Chapter 8

Kondo vs superconductivity in
single QD

Kondo effect and superconductivity are often argued to develop a delicate
interplay (and sometimes a competition) in QDs [22, 23, 24, 25, 114, 115].
This is because the conduction electrons of the leads are condensed into
spin-singlet Cooper pairs (S=0) which cannot participate to spin-flip pro-
cesses responsible of the Kondo effect (see section A.5), and also because the
superconducting gap induced by the leads in the QD suppresses the Kondo
peak. This interplay was explored in several experiments performed on S-
QD-S junctions, with visible Kondo effect when the leads are driven into their
normal state. They consisted either in electronic transport (for example with
nanotubes, nanowires, etc...)[5, 9, 10, 14, 18, 19, 116], or in tunneling spec-
troscopy experiments (molecules adsorbed on superconducting surface)[21].
Interpretations of these experiments are not direct: the former are realized far
from equilibrium and the latter suffer from a lack of controllable parameters
(the chemical potential, for example, cannot be controlled).

In this chapter, we analyze the interplay between superconductivity and
Kondo effect through the tunneling spectroscopy of the Andreev Bound
States (ABSs) in a CNT. We measured the TDOS of our DQD-device main-
taining one of the QD in an even charge state. This way, we obtain the
TDOS of an (effective) single QD isolated from the other one. Comparing
measurements taken in the normal (N) and superconducting (S) state, we get
a direct observation of the interplay between superconductivity and Kondo
effect. This observation leads however to the conclusion that Kondo effect
doesn’t change qualitatively the formation of the ABSs in our range of param-
eters neither determine whether the system’s ground state is a spin-singlet
or a magnetic state (see section 3.1.5.2).
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8.1 TDOS of an effective single QD

In this section, we focused on the particular regions of the (Vbg, VLg) space,
or stability diagram, depicted in Fig. 8.1. We present measurements taken
along the black dashed lines of the stability diagrams, parallel to the levels of
QDR, as a function of the gate voltages and the voltage applied on the probe
V . Along this lines, one of the dots is maintained in an even charge state (i.e.
“out of resonance”). Therefore, these measurements yield the spectroscopy
of the other dot that is quasi-isolated from the other dot. We will compare
measurements taken in the normal and the superconducting state in order
to figure out whether or not we see a signature of Kondo effect in the ABSs.

8.1.1 Comparison between measurements in the Nor-
mal and Superconducting state

8.1.1.1 N state measurements

Upper graphs of Fig. 8.2 and 8.3 show tunneling spectroscopy measurements
taken along the black dashed lines of Fig. 8.1 as function of the voltage
applied on the probe and the gate voltages. Along these trajectories, the left
and right QDs are effectively isolated from each other.

In those measurements, we observe diamond-shaped valleys of blockade
in blue where the dot is in a well-defined charge state (QDL in Fig. 8.2 and
QDR in Fig. 8.3). Alternation between small and large diamonds emphasizes
the succession between even and odd occupancies of the dot. Indeed, as
discussed in previous chapter and in appendix A (section A.3.2), widths
and heights of the diamonds correspond to the addition energy (allowing to
convert gate voltages into energy, see Fig. 8.4). For odd occupancy, the
latter is given by the Coulomb repulsion between electrons UL(R), whereas
for even occupancy the energy difference between orbitals ∆EL(R) adds as
the last occupied orbital is full. From diamonds of Fig. 8.2 and 8.3, we
evaluate charging energies of UR ≈ 1 meV and UL ≈ 2 meV, and energy
differences between orbitals of ∆ER ≈ 2 meV and ∆EL ≈ 3 meV. The
overall pattern, called the Coulomb diamonds, is well known and routinely
observed in experiments on single QDs (see references of appendix A).

In even valleys, the TDOS is suppressed around V = 0. In contrast,
in odd valleys, we observe the formation of resonances, the so-called Kondo
ridges. The widths of these resonances give the Kondo temperatures (see
appendix A). Extraction of the latter are discussed in section 8.1.2.
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Figure 8.1: Color scaled measurements of the TDOS in the N state in two
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trajectories followed in Fig. 8.2 and 8.3. Along them the right and left dot
are maintained in an even charge state in order to perform the spectroscopy
of effective single QDs. A, B, C, D, E and F are Kondo ridges we will analyze
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Figure 8.2: The upper graph shows differential conductance measurements
taken in the normal (N) state as a function of V and the gate voltages of
our CNT-based device. These measurements are performed on an effective
single dot (the left one) while the other dot is maintained out of resonance
with an even occupancy. The measurements show the development of Kondo
ridges in diamonds where the dot has an odd occupancy. Double arrows
indicate the charging energy of each diamond in odd valleys which is given
by their half height (here UA = 1.8 ± 0.2 meV, UB = 2.2 ± 0.1 meV and
UC = 2.05 ± 0.1 meV). Dashed lines show two edges of each diamond: their
slopes give the factor of proportionality to convert gate voltages in energy.
Below, we show the same measurements but taken in the superconducting
(S) state. We see that ABSs have formed in odd valleys suggesting that they
come from the hybridization, through Andreev reflections, of two levels of
opposite spin belonging to the same orbital. The discontinuity at Vbg = 13 V
is a jump of offset charge.
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Figure 8.4: The QDs’ electro-chemical potentials are controlled linearly by
the back and lateral gates through conversion factors κL(R)

bg and κ
L(R)
Lg . A

variation of gate voltage ∆Vg = (∆Vbg,∆VLg) induces an electro-chemical
potential variation ∆µ = (∆µL,∆µR) through the linear relation (this rela-
tion is not always linear but this assumption is justified experimentally in

our case, see [117]) ∆Vg = κ∆µ where κ =
(
κbgL κbgR
κLgL κLgR

)
. From the aspect

ratio of the diamonds and the slopes observed in Fig. 7.2, we can extract:
κRLg ≈ −0.5±0.1 meV.V−1, κRbg ≈ −9±1 meV.V−1, κLLg ≈ −3±0.3 meV.V−1

and κLbg ≈ −6 ± 0.6 meV.V−1.
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8.1.1.2 S state measurements

The lower graphs of Fig. 8.2 and 8.3 show TDOS measurements, of the same
diamonds but with the leads in their S state (obtained after deconvolution
of the differential conductance, see section D.3).

Between + and −∆, we observe the opening of a superconducting gap
induced by proximity effect. Within this gap, ABSs appear as bright and
thin lines which form loops of different size. In diamond B, the loop is as
large as the gap, whereas in diamond F, the loop is almost closed. ABSs
appear in odd valleys (just like the Kondo ridges) showing that they form by
hybridization, through Andreev reflections, of two levels with opposite spin
and belonging to the same orbital. This is expected as we know from NRG
(see Fig. 3.14 of section 3.3 in chapter 3) that the formation of a loop occurs
only for odd occupancy as it is related to a change of ground state from
a spin-singlet S = 0 (even number of electrons) to a S = 1/2 doublet (odd
number of electrons). In even valleys, ABSs have merged with the continuum
and stay at the edge of the superconducting gap that can then be estimated.

Yet, the behaviour of the ABS does not seem to be impacted whether or
not there is Kondo effect. Indeed, we know that we are able to predict (at
least qualitatively) the formation of loops from the phenomenological model
(see part I), even if the latter completely ignores Kondo effect (see section
A.4.2). We will see in section 8.2 that NRG predicts the formation of a loop
when TK becomes smaller than ∆ but only in the regime U ≫ Γ ≫ ∆.
However, in our experiment we rather have U > Γ ∼ ∆ (see below) and the
role of Kondo effect remains rather limited.

8.1.2 Kondo temperatures
The Kondo temperature TK can be estimated from the shape of the Kondo
ridges. For this, we fit the latter with Lorentzian curves whose half widths at
half maximum (HWHM) give the order of magnitude of TK , provided that
T ≪ TK , through the relation e × HWHM/kB ∼ TK (see appendix A and
Ref. [101, 118, 119]). This is what we have done, for example, in Fig. 8.5
for the ridge A.

The obtained Kondo temperatures, for our sample, is generally around
∼ 0.5 K which means that they are all smaller than the superconducting
gap (∆ = 0.15 meV or 1.74 K). These values are in agreement with Kondo
temperatures obtained by fitting the temperature dependences of the heights
of the ridges [120]. We did not measure systematically these dependences for
practical reasons, but some of them are presented and commented in next
chapter.
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Figure 8.5: Kondo resonance measured in the middle of diamond A repre-
sented in Fig. 8.2. The resonance is fitted by a Lorentzian function (full
line) whose HWHM give the order of magnitude of the Kondo temperature
TK ∼ e × HWHM/kB. In our sample, TK generally lies around 0.5 K. The
corresponding ΓL and ΓR extracted using Eq. 8.1 are approximately equal
to 1 or 2∆ (with ∆ = 0.15 meV).

From the known form of the Kondo temperature in the middle of the
ridge1 [49, 115, 119, 121]:

TK =
√

ΓU
2

exp
(

−πU

8Γ

)
(8.1)

we can then estimate the couplings to the leads ΓL ≈ ΓR ≈ 0.3 meV. We
can notice that we have ΓL and ΓR ≫ kBT (kBT ≈ 3 µeV). As mentioned in
section 7.1, the widths of the electronic levels in the normal state are thus
indeed given by ΓL,R rather than kBT .

8.2 Comparison of the data with NRG calcu-
lations

In Fig. 8.6 and 8.7, we present superconducting states TDOS measurements
of diamonds A from F (on the left) and TDOS calculated with NRG (on the
right). In our NRG calculations, the parameters are:

• the charging energies U , obtained from the size of the diamonds (see
Fig. 8.2 and 8.3),

1We need to mention that, in this definition of the Kondo temperature, Γ is the HWHM
of the electronic levels of the QD. This is the convention we use everywhere in this thesis.
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Figure 8.6: TDOS measured (on the left) in diamonds A, B and C in the
superconducting case. We observe ABSs forming loops when we tune the
gate voltage. On the right, we present results obtained by NRG. For the
calculations, we used charging energies extracted in Fig. 8.2 and the coupling
are obtained by fitting the loops formed by the ABSs (from A to C): Γ =
1.367∆, 1.0085∆, 1.739∆ (∆ = 0.15 meV). We have added an artificial width
to the ABSs in our calculations because otherwise they would be infinitely
thin and we could not see them.
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Figure 8.7: Graphs similar to those of Fig. 8.6 but for diamonds D, E and
F. Couplings obtained with NRG are (from D to F): Γ = 1.01∆, 1.163∆,
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• the superconducting gap ∆ that can directly be read in TDOS mea-
surements,

• the conversion factor from gate voltages to energy which is given by
the aspect ratio of the diamonds,

• and the couplings to the lead Γ (only one lead is relevant in these
measurements: the left for A, B and C, and the right for D, E and F)
that are fit parameters obtained from the size of the loop.

With the single fit parameter Γ, we obtain a very satisfying agreement be-
tween NRG and the experimental results.

A new spectroscopic tool As explained in Ref. [92], this good agreement
shows that ABSs spectra constitute an entirely new spectroscopic tool for
quantum dots and CNTs. Fits shown in Fig. 8.6 and 8.7 give a direct
measurements of the coupling to the leads Γ. The energy resolution, in
contrast to the usual Coulomb spectroscopy, is essentially independent of the
temperature (as long as kBT ≪ ∆). In our experiment, the resolution is
rather limited by the coupling between the CNT and the tunnel probe (see
appendix D). This parameter could, in principle, be improved, by reducing
it, in a subsequent experiment. The sharpness of the ABSs (which are much
thinner than the electronic levels of the QD in the normal state) should
yield a better precision than the Coulomb spectroscopy in regime of strong
coupling to the leads Γ ∼ U . Sensitivity of this procedure is illustrated in
Fig. 8.8. Provided that U is measured with enough precision (i.e. more than
Γ), the size of the loop yields a value of Γ with less than 10% of uncertainty.

Influence of the Kondo effect Results of Fig. 8.6 and 8.7 also shows
that in our range of parameters (U > Γ ∼ ∆), Kondo effect seems to play
no particular role concerning the formation of ABSs in our experiment. This
explains why the phenomenological model, described in section 3.1, quali-
tatively captures how ABSs form in QDs even though it completely ignores
Kondo effect (see section A.4.2).

In Ref. [24], NRG calculations of Bauer et al. predict that the crossing of
ABSs with the Fermi level, i.e. the singlet-doublet transition in single QD,
follows a universal behaviour with TK/∆ but only in the regime U ≫ Γ ≫ ∆.
This could be realized fabricating samples where the leads are more strongly
coupled and define smaller QDs. However, to really state that Kondo effect
arises in S-QD-S device, a more straightforward proof could be, for example,
the direct detection of a Kondo cloud. The latter is a cloud of electrons which
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is predicted to form over a mesoscopic distance from the QD when there
is Kondo effect. Several experimental realizations were already proposed
for detection of this cloud in the normal state: for example by tunneling
spectroscopy measurements on adatoms adsorbed on a metallic surface [122],
or by measurements of persistent currents in quantum wires [123].
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Chapter 9

Specific Double Quantum Dot
features

In chapter 7, we proved, with measurements of the stability diagram, the
DQD behaviour of our device. Afterward, we analyzed the interplay between
Kondo effect and superconductivity along lines of the (Vbg, VLg) plane where
the device behaves as an effective single QD (the other dot being maintained
out of resonance in an even charge state). Here, we will focus on specific
effects that we observe in TDOS measurements of the device which cannot
be interpreted by a single dot behaviour.

In a first section, we present measurements of the TDOS of an effective
single QD (taken as in previous chapter with the other dot in an even charge
state) where we observe, beside conventional Kondo (CK) effect, split Kondo
(SK) resonances. These split resonances are not predicted to occur in single
QD [49]. In section 9.2, we will analyze in details a transition between CK
and SK occurring in a region of the stability diagram where the coupling
between the two dots t′ is so large (t′ ≫ Γ, U) that they can be regarded as
a single one. Finally, in section 9.3, we discuss the hybridization of Kondo
resonances in two weakly coupled QDs (t′ < Γ, U).

9.1 Conventional and split Kondo (CK and
SK) in a single effective QD

Charge stability diagram In Fig. 9.1, we show a stability diagram of
our device measured at V = 0 as a function of the gate voltages. It is very
similar to the one presented in chapter 7, but with a richer variety of interdot
couplings. Widths of the avoided crossings emphasize interdot couplings from
very weak (t′ ≪ Γ, U as in rectangle α of Fig. 9.1) to very strong (t′ ≫ Γ, U

155
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as in rectangle γ of Fig. 9.1).
As discussed in chapter 7, when two levels of the same orbital appear as

a single wide stripe (as indicated by the small black diamond in Fig. 9.1)
rather than two peaks, it is a manifestation of CK effect (a Kondo resonance
connects these two levels). In contrast, when two levels of the same orbital
appear as two distinct peaks (see the point indicated by the black triangle),
it shows the absence of Kondo resonance.

Coulomb diamonds in normal (N) state In the upper graph of Fig.
9.2, we show the Coulomb diamonds of the right QD, taken in the N state,
following the black dashed line of Fig. 9.1 where the left dot is maintained
in an even charge state. We observe 15 Coulomb diamonds. Even diamonds
(i.e. corresponding to an even charge state of the DQD) are featureless
around V = 0, whereas odd diamonds present characteristic features of the
Kondo effect around V = 0. Some of them are CK resonances but others are
SK resonances.

TDOS in the superconducting (S) state of the ABSs In the lower
graph of Fig. 9.2, the TDOS are taken in the S state. It shows that the
behaviour of the ABSs is qualitatively the same whether the Kondo ridge is
split or not. The loops formed by ABSs are slightly larger in diamonds with
SK ridges. This is presumably due to larger charging energies in diamonds
where SK ridge have formed. It corresponds then to diamonds where TK
should be smaller implying a weaker Kondo effect.

Origin of the SK effect The origin of this SK effect is at present not
known with certainty, but could be due to exchange with the other QD1.
SK effect has already been seen in other experiments performed on CNTs
[10, 11, 98, 109], semi-conductor QDs [103, 106] or gold nanoparticles in the
Kondo regime [125]. In Ref. [103, 106], SK was only observed (in contrast
to us) for even occupancy (each QD in odd occupancy) and was interpreted
as spin entanglement between the excess electrons on each dot. In Ref.
[10, 11], it was explained by the probable coupling via exchange interaction
to a localized electron trapped in the gate oxide close to the nanotube. It
was suggested, in Ref. [109], that the interaction with magnetic particles of

1Recent theoretical works based on NRG calculations [124] shows that a splitting of
Kondo ridges could happen for odd occupancy of the DQD provided that there is a non-
negligible interdot coupling together with an interdot Coulomb repulsion comparable to
the intradot Coulomb repulsion. Interdot Coulomb repulsion is however generally smaller
than Coulomb repulsion in DQD CNTs [105].
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the catalyst pads used for CNTs’ growth (see part IV) could be responsible of
this split Kondo. However, this should not be the case in our sample as these
particles should remain far from the QDs. In Ref. [125], the authors showed
that the split Kondo they observed was caused by the RKKY interaction
between a single electron localized in a gold QD and magnetic impurities
deposited deliberately on the electrodes. This splitting could also be caused
by a magnetic field [11, 98, 126]. This is however excluded in our experiment
as we apply magnetic fields which should induce Zeeman splitting of only 3
µeV, below our experimental resolution.

More investigation is needed to understand the origin of these SK ridges.

9.2 Strongly coupled QDs: transition from
CK to SK

Here, we focus on the transition between CK and SK resonance, in a region
of the stability diagram where the coupling between the two dots t′ is so
large that they can be regarded as a single one. In section 9.2.1, we will
show that we can drive the system across this transition with gate voltages.
Afterward, in section 9.2.2, we will see that we can extract two characteristic
Kondo energy scales from the temperature dependence of the CK and SK
resonances.

9.2.1 Gate-controlled transition
Gate driven transition In Fig. 9.3, we show a color scaled measurement
of the differential conductance taken at V = 0 as a function of the gate
voltages. We observe two pairs of two lines moving in parallel with a slope
that is intermediate between those of the independent QDs (given by the
orange and green dashed line for the left and right QD). The coupling between
the two dots t′ is actually so large that they can be regarded as a single
composite QD. The coupled QDs form bonding and antibonding orbitals that
we can fill sequentially from 2n (empty orbitals) to 2n + 4 (filled orbitals)
electrons tuning the gate voltages. We recognize even and odd valleys of
the large effective dot, with more or less developed Kondo effect in the odd
valleys.

Measurements of Fig. 9.4 show differential conductance measurements as
a function of V following the red dashed arrow along the center of the 2n+ 1
valley of the composite dot in the N (upper graph) and S (lower graph) state.

On this trajectory, N state measurements (upper graph) clearly show a
transition from a CK peak to a SK peak. This transition is continuous:
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angle of Fig. 9.1. Along the red arrow, the coupling between the two dots
is so strong that they almost merge into a single one. The green and orange
dashed lines show the respective slopes of the right and left QD when they
are isolated from each other. Some valleys of even occupancies are indicated
(2n, 2n+ 2 and 2n+ 4). A fuzzy Kondo resonance follow the orange dashed
line and hybridize with an orbital of the right dot at the point indicated by
a red diamond.
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Figure 9.4: Two graphs of TDOS measured along the red dashed arrow in
the stability diagram of Fig. 9.3. The upper diagram is measured in the
N state and the lower one in the S state. In the upper graph, we observe
a CK peak for gate voltages above VLg ≈ −2.9 V. It evolves into a SK
resonance below −2.9 V. In dark blue and green, we have plotted cuts at
points indicated by blue and green diamonds in the stability diagram of
Fig. 9.3. In the S case, the Kondo peaks have disappeared because of the
opening of a superconducting gap. They are replaced by an ABS whose
energy changes with the gate voltage. They get closer to the edge of the gap
where there is a SK resonance in the N state.
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the splitting of the resonance decreases, for increasing gate voltage, until it
completely closes. Interpretation of the transition observed in Fig. 9.3 and
9.4 is not straightforward, as, by changing the electrostatic environment of
the CNT with the gates, several internal parameters of the system may be
modified. For example, the left (resp. right) charging energies UL (resp. UR)
can change as the effective size of the QD depends on gate voltages. The
tunneling rates ΓL(R) may also depend strongly on the gate voltages as the
latter will distort the internal electrostatic barriers that control the transit of
electrons. Finally, the interdot coupling t′ or the interdot Coulomb repulsion
UID (we ignore this parameter in the model developed in section 3.1.4) may
also be modified by the gates and change the properties of the composite
QD. All of these parameters influence the formation of a Kondo state: it is
not possible to identify which one changes and is responsible of this splitting.

In the S state, CK and SK resonances disappear with the opening of the
induced S gap. They are replaced by an ABS whose energy is changing with
the gate voltage. In Fig. 9.2, the loops formed by these ABSs seem bigger
for orbitals where SK ridge appears in the normal state suggesting a smaller
coupling to the leads.

ABSs in diamonds with CK or SK ridge In Fig. 9.5, we have rep-
resented TDOS measured, in the N and S state, along two cuts (KR1 and
KR2) of the Kondo ridge of the 2n+ 1 valley (see Fig. 9.3).

In N state measurements, we observe Coulomb diamonds with different
type of Kondo effect: a CK resonance for KR1 and a SK resonance for KR2.
When the leads are driven in their S state, the TDOS measured along KR1
and KR2 becomes very similar. Kondo ridges are replaced by ABSs which,
as usual, form loops when we tune the gate.

We observe however a more important difference between KR1 and KR2
if we measure the S state TDOS as a function of the superconducting phase
difference δ between the leads. In Fig. 9.5, we show such δ-dependences taken
in the middle of the Kondo ridges (two lower graphs). While ABS of KR1
is almost insensitive to the phase, ABS of KR2 shows a large δ-dependence
with an amplitude that is roughly half the gap. The supercurrent flowing in
the loop formed by our device is thus higher when the working point is the
middle of KR2 (where there is a SK ridge in the N state), than the middle
of KR1 (where the ridge is conventional in the N state). In both cases, the
phase dependence shows that the device is in a π state. This is expected
as this δ-dependences are measured in the middle of the loops where the
system’s ground state is a magnetic doublet (see section 3.1.5.2).
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Figure 9.5: The four upper graphs show color scaled differential conductance
measurements of the device taken along black dashed lines of Fig. 9.3 (KR1
and KR2) as a function of V , in the N (graph in blue, yellow and red) and
S state (graph in white and brown). In the N case, we observe Coulomb
diamonds with Kondo resonances: CK ridge for KR1 and SK ridge for KR2.
Cuts taken in the middle of the diamonds are plotted in black. For KR1,
a fit with a Lorentzian function of the CK resonance is plotted in the inset
and allows to extract a Kondo temperature TK = 0.93 K. In the S case,
the TDOS measured as a function of Vbg are very similar: we observe ABSs
forming loop. In the middle of the diamonds, we measured dependence with
the difference of superconducting phase δ between the leads. We observe a
much larger dependence of the ABS’s energy for KR2 suggesting a higher
supercurrent circulating in the loop.
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Figure 9.6: Temperature evolution of the CK ridge KR1 and the SK ridge
KR2. For increasing temperature, KR1 follows the usual logarithmic decrease
of spin 1/2 Kondo resonances. The SK resonance KR2 first merges into a
single resonance which then decreases until it vanishes.

9.2.2 Temperature dependences

In Fig. 9.6, we show the temperature dependence of the differential conduc-
tance measured in the middle of Kondo ridges KR1 and KR2. We observe
that the amplitude of the CK ridge KR1 decreases with increasing tempera-
ture. This is the expected behaviour for CK effect. For KR2, the differential
conductance shows two peaks around V = 0 distant of 120 µV. When we
increase the temperature, these two peaks merge into a single one above a
threshold temperature T ∗. Beyond T ∗, this single peak subsequently de-
creases in amplitude.

As shown in Fig. 9.7, the conductance at V = 0 of the CK resonance
(where the Kondo peak is maximum) has the usual logarithmic decrease of
spin-1/2 Kondo resonances [119, 120]. We can extract TK from this temper-
ature dependence using the empirical formula for the conductance G (T ) of
Ref. [120]:

G (T ) = GT=0(
1 + (21/0.22 − 1)

(
T
TK

)2
)0.22

which is widely used to fit experimental data in experiments on the Kondo
effect (see for example Ref. [5, 10, 14]). We obtain reasonable fits for values
of the Kondo temperatures TK = 800 ± 50 mK. These values are comparable
to those obtained in other experiments performed on CNTs [9, 96, 97].

As was done in section 8.1.2, we can also evaluate the Kondo temperature
from the shape of the KR1 Kondo ridge measured as a function of V . In order
to do so, we fit the ridge with a Lorentzian function with a half width at half
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Figure 9.7: Temperature dependences in logarithmic scale of the Kondo res-
onances amplitude at V = 0. We see that the conventional Kondo resonance
KR1 follows the usual logarithmic decrease, whereas the split Kondo reso-
nance KR2 has a non-monotonic temperature dependence with a maximum
around T = 220 mK. A fit is plotted in cyan for KR1 with the empirical
formula of Ref. [120]. They give Kondo temperatures around 0.8 K in agree-
ment with those obtain from fits of the Kondo ridge (see Fig. 9.5). In dashed
gray, we have plotted a fit, using the same formula, for the SK ridge KR2
that matches with point above T ∗. It yields a Kondo temperature of 950
mK.
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maximum HWHM given by:

HWHM ∼ kBTK
e

where e is the charge of the electron, kB the Boltzmann constant and TK the
Kondo temperature. As shown in the inset of Fig. 9.5 (N state of KR1), this
fit gives a Kondo temperature slightly different than those obtained from the
temperature dependence. This procedure can therefore gives a good order of
magnitude for TK but the only reliable method to measure precisely TK is
the temperature dependence.

In contrast to KR1, for KR2 the temperature dependence of the conduc-
tance measured at V = 0, is non monotonic. As shown in Fig. 9.7, the
conductance increases until T ∗, around 220 mK, and then decreases until the
peak has completely vanished.

Such non-monotonic temperature dependence has also been observed in
Ref. [125] and was interpreted as the manifestation of the competition be-
tween the Kondo effect and RKKY interaction. In our sample, the origin
of the suppression of CK effect for T < T ∗ is not clearly identified. It may
be due to the interaction with another QD [127] or with a parasitic spin
that could be localized in a neighboring impurity (for example another CNT
or a charge trapped in the gate oxide). They would form a non-degenerate
ground state, and, therefore, suppress the Kondo effect which happens only
for degenerate ground states of the QD (spin up and spin down). The Kondo
resonance would be replaced in the Coulomb diamond by finite bias cotun-
neling features at voltages corresponding to transition between the ground
state and an excited state (as appear in Ref. [101, 102, 128]). This would
look like two symmetric peaks centered around V = 0. Note that in the case
of an antiferromagnetic coupling due to superexchange [129], these peaks
would be distant of 2J ≈ 8t2p/U with tp the coupling to the impurity [130].
Unfortunately, it is not possible for us to identify experimentally the real
reason of this splitting.

More investigation on DQD physics is needed to understand these results.

9.3 Weakly coupled QDs: hybridization of
two Kondo resonances

In this section we discuss, the influence of a weak interdot coupling (t′ < U,Γ)
when two Kondo resonances meet in the (Vbg, VLg) plane, that is to say when
the two last occupied orbital of the two QDs are degenerate and both half
occupied.
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This situation occurs in the stability diagram of Fig. 9.3. Indeed, follow-
ing the orange dashed line, a fuzzy Kondo resonances of the left dot meets
an orbital of the right dot. At the point of meeting (red diamonds of Fig.
9.3), the two orbitals form an avoided crossing. Its width is smaller than
the width of the Kondo resonance underlining a small interdot coupling (i.e.
t′ < U,Γ). Far from the point of meeting, the two levels of the right dot
orbital are connected by a ridge of conductance but remains distinguishable.
However, they completely reconnect when they start to hybridize with the
Kondo resonance of the left dot.

This weak avoided crossing is an intermediate situation between weak
coupling (t′ ≪ U,Γ) and strong coupling t′ ≫ U,Γ. In Fig. 9.8, we illustrate
these three situations showing cuts of avoided crossings (labelled α, β and
γ) in the stability diagram. These cuts are measured along the dotted lines
of Fig. 9.1 and Fig. 9.3. In these three situations, the interdot coupling t′
plays a predominant role. Let’s discuss them separately.

Very weak interdot coupling When the QDs are almost uncoupled (as
we suppose along α), each QD is independently in the Kondo regime when
singly occupied. They develop their own single dot Kondo resonance at the
Fermi level (see diagram (a) of Fig. 9.9). We thus observe, in the (Vbg, VLg)
plane, two conventional Kondo resonances that simply add their DOS, and
apparently cross each other. Therefore, if we measure the TDOS of the DQD
maintaining the two orbitals of the two QDs in a degenerate situation (the
two orbitals are maintained at equal energy following the dotted black line in
rectangle α of Fig. 9.1), we observe, as shown in Fig. 9.8, a single peak that
is just the sum of the two Kondo resonances of the two independent QDs.

Very strong interdot coupling In the extreme opposite case, that is to
say if t′ is the biggest energy scale of the system (and is in particular bigger
than TK), orbitals of the left and right QDs hybridize to form bonding and
antibonding orbitals delocalized over the DQD. The two QDs actually merge
to form an effective single QD. As explained in section 9.2, the slope of this
new single dot is roughly the average one of the left and right dot. In the
rectangle γ of Fig. 9.1, we thus see two wide parallel stripes which simply
show the area where the bonding and antibonding orbitals are successively
singly occupied and develop Kondo effect (see Fig. 9.10). As shown in Fig.
9.8, following the black dotted line in rectangle γ of Fig. 9.1 we thus observe
two successive conventional Kondo resonances as we would expect with two
orbitals of a single QD.
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Figure 9.8: Differential conductance of the device measured at V = 0 along
the dotted line α, β and γ of Fig. 9.1 and 9.3. Along these lines, two
orbitals of the two dots, showing Kondo effect, are degenerate and cross the
Fermi level. In those three graphs, we are confronted to different situations
that we interpret as being of different interdot coupling t′. When t′ is small
(situation α, t′ ≪ U,Γ), we observe one peak in the TDOS which is the
superposition of the two Kondo resonances of the uncoupled dot. For large
t′ (situation γ, t′ ≫ U,Γ), the two QDs can be regarded as a single one
and the two orbitals of the two dots form bonding and antibonding orbitals.
If t′ is intermediate and moderate (situation β, t′ < U,Γ), the two Kondo
resonances are hybridized and form a split resonance.
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Kondo state Kondo state 

QDL QDR Right electrode Left electrode 

TK  t’,T 

a) 

Formation of two independent Kondo singlet states

Singlet state 

QDL QDR Right electrode Left electrode 

t’  TK ,T 

b) 

Formation of a local singlet state preventing Kondo effect

(i) 

QDL QDR Right electrode Left electrode 

(ii) 

(iii) 

Singlet state 

Superexchange => Antiferromagnetic coupling c) 

Antiferromagnetic coupling through superexchange

Figure 9.9: The upper diagram (a) shows what happens for strong coupling
to the leads and vanishing interdot coupling (TK ≫ t′): two independent
Kondo states form between dots and leads. In the Kondo state, electrons are
delocalized between leads and dots (see the simplified wave function of Ref.
[131]). In the second diagram (b), the coupling between the dots favors the
formation of a local singlet state which prevents Kondo effect (TK ≪ t′). In
this singlet state, electrons are localized and could be described by the simple
vector |↑↓⟩−|↓↑⟩√

2 . The formation of this singlet state is due to an effective ferro-
magnetic interaction between the dots illustrated by the sequence (c). When
the last orbital of each dot is singly occupied (i), an effective antiferromag-
netic coupling may arise by superexchange through an intermediate virtual
state of double occupancy (ii). This leads to the formation of a spin-singlet
state delocalized over the two dots (iii).
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Figure 9.10: Schematic representation explaining TDOS measurements γ of
Fig. 9.8. When the dots are very strongly coupled, they merge into a single
effective dot and form bonding and antibonding orbitals distant of an energy
≈ 2t′. By tuning the gates, these orbitals fill sequentially and Kondo effect
happens for odd occupancies of the effective single dot.
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Intermediate interdot coupling If the coupling between the QDs is in-
termediate between the two previous situation (as we suppose along β), single
dot Kondo effect develops independently in the two QDs if their last occupied
orbitals are not degenerate. However, when the two Kondo ridges meet each
other in the (Vbg, VLg) plane (i.e. when orbitals of the QDs are degenerate),
we can see “an avoided Kondo ridge crossing” forming with a non-zero con-
ductance minimum in-between. If we measure the TDOS as a function of
the gate voltages following the black dotted line β (along which the orbitals
are roughly maintained degenerate), we thus observe two peaks symmetrical
with the point of meeting (see Fig. 9.8). The transition between the pre-
vious case (γ) and this one is actually continuous for decreasing t′ with the
conductance at V = 0 falling to zero when the two ridges move away from
each other. This case is of particular interest because, in contrast with the
two others, it leads to specific physics of the DQD as we will explain in the
following.

In Fig. 9.11, we have represents the TDOS of the DQD measured along
the dotted line β and as a function of V . We recognize, on the left and the
right, two blue areas of blockade where the occupancy of the DQD is even
with no feature around V = 0. In between these two regions, we observe a
large region of conductance, that resembles an odd diamond of a single QD
with a Kondo ridge (see N state measurements of KR1 in Fig. 9.5, or for
example Ref. [96]). However, in contrast to single QD, the Kondo ridge of
Fig. 9.11 is interrupted between VLg =-1.2 and -1.45 V. This part is replaced
by an asymmetric split Kondo resonance, as can be seen in the inset.

This “avoided Kondo ridge crossing” can be interpreted in terms of com-
petition between formation of a singlet state in the DQD and independent
Kondo effect between the two dots (see the two upper diagrams of Fig. 9.9).
When the coupling between QDs, characterized by t′, is absent, we are in
the α case and QDs develop Kondo effect independently. If t′ gets a bit
larger, an effective antiferromagnetic exchange between the dots is generated
by superexchange [129, 132] (see lower diagram of Fig. 9.9), characterized by
the energy scale J ∼ 4t′2/U . If J gets of the order of magnitude of TK , this
antiferromagnetic exchange favors the formation of a non-degenerate singlet
state within the DQD. This state prevents the development of singlet Kondo
state as the latter is based on the degeneracy of two spin states. The Kondo
peak is then split into two peaks distant of an energy 2J [130] that are inter-
preted in some theoretical works as molecular levels between Kondo resonant
states [133, 134].
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Figure 9.11: TDOS of the device measured in the N state along the black
dotted line in the stability diagram of Fig. 9.3. We see two regions of
blockade on the left and on the right where the occupancy of the DQD is
even. In the middle, we see a Coulomb diamond with a Kondo ridge that is
interrupted between VLg =-1.2 and -1.45 V. This part of the Kondo ridge is
replaced by an asymmetric split Kondo resonance, as can be seen in the cut
of differential conductance represented in the inset and measured along the
magenta dashed line.
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Chapter 10

Fabrication of a sample

In order to perform the spectroscopy of ABSs in carbon nanotubes (CNTs),
it is necessary to well connect an individual CNT with two superconducting
electrodes less than a µm apart and place a weakly coupled tunnel electrode
in between. The fabrication of this superconducting CNT-based circuit con-
cerns three steps:

• on chip CNTs growth,

• localization of CNTs,

• nanofabrication of superconducting CNT-based circuit.
All these steps rely on the use of standard e-beam lithography technique that
we describe in detail in the following section. In section 10.2, we explain how
we synthesized on chip high quality CNTs, sufficiently long and isolated to
be contacted individually. Then in section 10.3 and 10.4, we present the
techniques used to localize and fabricate on such CNTs the circuits designed
to observe the ABS by tunneling spectroscopy. The last section is devoted
to room temperature characterization of samples in their final form.

10.1 Lithography techniques
Along our fabrication scheme, we use electron lithography three times in
order to fabricate resist masks, as depicted on Fig. 10.1 and 10.2, with
patterns smaller than 100 nm.

10.1.1 Coating the substrate with resist
Mask fabrication starts by coating the substrate with an electro-sensitive
resist single layer of polymethyl-meta-acrylate (PMMA) for the case depicted

175
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Resist SiO2 Si 

(a) Resist deposition (b) Spinning and baking

Electron beam 

(c) Exposure (d) After development

Figure 10.1: Typical procedure of electronic lithography

in Fig. 10.1 or a bilayer of polymethyl-meta-acrylate/meta-acrylate acid
(PMMA/MAA) for the case depicted in Fig. 10.2. Parameters used are
detailed in subsection 11.1.

10.1.2 Exposure
Once substrate is coated, we expose the resist with the electron beam of
a SEM Philips XL30 fitted with Elphy Quantum lithography system from
Raith. The Elphy Quantum software (EQ) controls the exposure of patterns
defined in a GDSII file (for example see Fig. 10.9).

These patterns are divided by the software when needed into rectangles
and triangles that are scanned step by step in meander. The electron beam
stays at each step during a time called dwell time until the programmed
charge dose is reached. With a positive resist, polymer chains are locally
broken in these exposed areas which will be removed during the development.
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Thermally grown SiO2 

Highly doped Si 

Layer of PMMA 

Layer of MAA 

Exposed resist 

(c) Development

Figure 10.2: Similar procedure than figure 10.1 but for a PMMA/MAA bi-
layer
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We choose the appropriate exposure dose depending on the resist de-
posited on the chip (see subsection 11.2.1 in chapter 11) and the pattern we
want to obtain. If the coating is a bilayer, we expose generally undercut
boxes at low doses (see Fig. 10.2 (b)) in order to have a larger undercut, re-
quired to perform a subsequent angle evaporation. Doses for undercut boxes
are high enough to get rid of MAA during development but not of PMMA,
getting part of the mask suspended.

10.1.3 Development
After exposition, we develop the resist in methyl-isobutyl ketone (MIBK)
diluted 1:3 in volume with isopropanol (IPA) for 45 s. We subsequently rinse
the chip in IPA to stop development and dry it under N2 flow. MIBK dissolve
the exposed resist yielding the designed patterns (see in section 11.2.2).

10.2 Nanotubes growth on Si substrate
In this section we describe the method to obtain CNTs on an insulating layer
of thermally grown silica (SiO2) atop highly doped silicium (Si) substrate.
As we want in the end to perform transport experiments, we need CNTs with
coherence lengths greater than 1 µm. This is provided by a chemical vapor
deposition technique which yields CNTs with a low defect concentration [135]
in comparison for example to arc discharge technique [136, 137].

10.2.1 Substrate characteristics
We use commercial 4-inch wafers constituted by a 1 µm thick insulating layer
of SiO2 atop a Si substrate. The SiO2 layer is obtained by oxidation of a Si
crystal. Si is heavily doped (typically 5 mΩ/cm) remaining conducting even
at very low temperature. We use it as a back gate capacitively coupled to
the sample.

Such commercial wafers provide us a sufficiently flat surface to fabricate
electrical circuits with elements of the order of the nanometer like CNT. We
cut up these wafers with a diamond tip in chips of 1 × 1 cm2 and we process
them individually (see Fig. 10.3).

10.2.2 CNT grown by Chemical Vapor Deposition (CVD)
To obtain CNTs we choose the CVD technique. It provides individual CNTs
with low defect density, single wall, with diameters of 1-3 nm and lengths of
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(a) Si Wafer (b) 1 × 1 cm2 chip

Figure 10.3 – Samples are fabricated on a chip cut out from a highly doped
Si wafer with a 1µm thick oxide layer.

up to tens of micrometres.

Catalyst deposition In this method CNTs grow from catalyst pads de-
posited on the substrate as depicted in Fig. 10.4. In order to isolate a single
CNT and have zones free of catalyst for circuit fabrication, we prepare cat-
alyst pads of 1 × 1 or 2 × 2 µm2 sufficiently far from each other to get a low
CNT density (see Fig. 10.4).

We obtain catalyst pads by dispensing, through a resist mask made from
a single layer of PMMA (see table 11.1), a few drops of a suspension of
the catalyst in methanol (see recipe in subsection 11.3.1 and [135]). After
evaporation of the methanol and lift off of the resist (see for details subsection
11.3.2), only catalyst pads networks patterned on the mask remain on the
chip (see Fig. 10.4 (d)).

The chip is then divided into four parts that will give four different sam-
ples. Each one has a network of 30 catalyst pads distant of 40 µm

Nanotubes growth by chemical vapor deposition (CVD) After cat-
alyst deposition, the chip is placed in a quartz tube. This quartz tube lies in
a furnace1 (see Fig. 10.5) which can heat up to 900◦C. It is linked by pipes
on one end to gas cylinders of Ar, H2 and CH4, and on the other end to an
exhaust pipe.

The growth starts by heating up the quartz tube to 900◦C with a flow
of Ar (1500 ml/min) passing through the tube. Then, during 8 minutes a
H2 flow (200 ml/min) cleans the chip. The growth is then performed by

1We used the furnace of LPA Mesoscopic Physics group at ENS Paris.
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(a) Single layer of PMMA mask (b) Deposition of catalyst suspension

Catalyst pads 

(c) After methanol evaporation (d) Pads of catalyst after lift off

5 mm

40 µm

catalyst pad

Si chip

CNT

2 µm

Catalyst deposition and CNTs growth
Figure 10.4: Procedure of catalyst deposition (diagrams a, b, c and d). Op-
tical microscope pictures (red and green frames) in dark field showing the
resulting catalyst pads and SEM picture (blue frame) showing a single cata-
lyst pad after CNT growth.
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quartz tube 

heated to 900°C 

gases inlet 

to exhaust 

Figure 10.5: Picture of the ENS CVD furnace.

injecting an additional flow of CH4 during 10 minutes (1000 ml/min) after
that the furnace slowly cools down to room temperature in an Ar flow.

10.3 Localizing nanotubes

To locate nanotubes, we first add gold alignment marks on the chip by per-
forming standard e-beam lithography on a MAA-PMMA bilayer (see table
11.1). These gold alignment marks include 7 large crosses of 200 µm (distant
of 1392.5 µm) on the edge of the chip and a grid of 12 × 12 small labelled
crosses inside a 150 µm2 box in the center of the chip (see Fig. 10.6), where
CNTs were grown.

We locate CNTs on the chip using our SEM Philips XL30 working in
Ultra High Resolution mode with accelerating voltages that ranges over 0.5
and 1.5 kV. In order to minimize carbon contamination and possible damage
of CNTs, we imaged them quickly. We take pictures of approximately 25×35
µm in 1 minute.

In the SEM we find the central region where we grew CNT, using large
crosses. CNTs are located with respect to the labelled crosses (see Fig. 10.7a)
by taking pictures.
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15 µm 

2 µm 
1 mm 

Gold alignment marks for CNTs localization and for
fabrication

Figure 10.6: The central area where CNTs are grown is located thanks to
large crosses (optical microscope picture on the top right). Small crosses are
used to define a coordinate system for lithography alignment of the contacts
on the CNTs (SEM pictures with red and green frames).
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10.4 Contacting nanotubes with metallic leads
The sample we want to obtain includes a superconducting fork well connected
to a CNT and at the same time a superconducting tunnel probe weakly
coupled to its central part in order to measure the density of states (see
section “experimental measurement of the TDOS” and Fig. 10.8). In this
section we explain how we obtain these two types of contact in a single
lithography step.

10.4.1 Mask fabrication to contact CNTs
Drawing the circuits for e-beam lithography Once CNTs are located,
we draw (see Figs. 10.7a and 10.9) a circuit to connect them (our drawings
are encoded in standard GDSII database file format). The drawing is done
in layer in which SEM pictures of labelled crosses and CNTs are inserted.
On Fig. 10.7a, we have represented, in dark red and on top of such a picture,
several structures constituted by a fork and a tunnel probe. These structures
are linked to pads of 300 µm2 (see Fig. 10.9), that will subsequently serve
to bond the sample with aluminum wires of 25µm and connect it to the
measurement circuit (see Fig. 10.10).

Alignment procedure Prior to the exposure step, we perform a three
steps alignment. On the first step we focus on the surface of the sample at
three different places on three scratches at corners of the chip. EQ software
will use these data to interpolate the correct focus at the position where the
exposure is performed in case the sample is not laid down flat on the sample
holder. On the second step, we define the chip coordinate system thanks to
large crosses. And on the last step, we used small crosses to fine-tune the
geometry of the exposed field.

We performed this exposure on a bilayer of PMMA-MAA (see section
11.1). This gives a suspended mask that will allow us to perform metal angle
evaporation (see below).

10.4.2 Metal deposition
In order to obtain the two required types of superconducting contact on
the CNT in a single step (well connected electrodes and tunnel contacts),
we evaporate the metal (as described in subsection 11.4.1) at two different
angles (see Fig. 10.11). We evaporate all the contacts in a single pump
down instead of fabricating the good contacts and the tunnel contacts in
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(a) Drawing in GDSII format of the circuits in Elphy Quantum
on top of a SEM picture showing the CNT used to make the
sample of Ref. [92] and gold alignment marks labelled 53 and
63. In green are represented undercut boxes and in orange
replica of the labelled crosses we use to align the drawing.

(b) SEM picture of the sample T9 (left) fabricated on this CNT

Figure 10.7: Pictures of the sample of Ref. [92]. Differential conductance
measurement of the structure on the left are presented in the supplementary
information of Ref. [92].
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CNT

Fork (good contacts)

Tunnel
probe

Figure 10.8: SEM picture of the sample of Ref. [92]

Figure 10.9: Drawing in a GDSII file and picture taken after angle evapora-
tion with an optical microscope of the sample of Ref. [92]
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(a) Sample D03 on a 5 mm chip glued by silver paint on the metallic
part of a sample holder. On this metallic part can be applied a back gate
voltage to tune the chemical potential of the CNT. The sample is bonded
to contacts for transport measurements.

(b) SEM picture of sample D03 with aluminum bonding wires

Figure 10.10: Picture of the sample of Ref. [92] after measurements
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two consecutive processes because reprocessing killed the contacts previously
made each time we tried.

Electrodes composition We choose Aluminum (Al) to fabricate these
superconducting contacts because of its well-known superconducting BCS
behaviour below 1.2 K. However Al directly evaporated on CNT doesn’t
provide measurable contacts [138]. In order to obtain good electrical contacts,
we thus need to add, between CNTs and Al, a sticking layer of Palladium
(Pd) or Titanium (Ti) thin enough for Al to induce superconductivity in
CNTs.

Contacting a single wall CNT is generally achieved with Pd electrodes
because it affords statistically the best contacts [139]. Also efficient though
less reliable than Pd, other materials such as Ti or Platinum (Pt) provides
as well transparent contacts. We chose a sticking layer of Ti as we did not
have Pd in our evaporator2.

A thin layer of Ti (3 nm thick) proves to be enough to obtain well con-
nected contacts. To obtain tunnel contacts, we evaporate only 1 nm of Ti. It
gives us contacts which are on average ten times more resistive than contacts
with 3 nm of Ti (see section 10.5). We evaporate on top of these Ti layer
100 nm of Al for the fork and 40 nm of Al for the tunnel probe.

We need to mention that Ti is actually superconducting below 400 mK
and one can imagine that we could have simply evaporate only Ti instead of
a Ti/Al bilayer. However the temperature of the fridge (35 mK) is not neg-
ligible compare to the Ti superconducting gap and temperature could excite
quasiparticles which would limit our spectroscopic resolution. With a Ti/Al
bilayer we get superconducting electrodes with a superconducting gap which
can be three times higher. The resulting gap decreases exponentially with
the Ti thickness [140], we choose then a thickness of Ti negligible compare
to the Al thickness (1 or 3 nm compared to 40 or 100 nm).

Evaporation Before evaporation the sample is heated up to 110◦C for two
hours. It is subsequently cool down to -80◦C, evaporation being started at
0◦C (see Fig. 10.12). We choose to perform this temperature cycling for two
reasons:

1. we expect to get rid of the residual water on the chip surface during
heating up,

2Actually we had at our disposal two evaporators. One of them could evaporate Pd but
it was not possible to cool down the sample holder at liquid N2 temperature. Furthermore
its loadlock pressure was higher of one order of magnitude.
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Figure 10.11: Well connected and tunnel contacts are evaporated in a single
pump down at different angles.
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2. we want to benefit from the fact that pressure in the loadlock is lower
at low temperature and this way to minimize pollution of the contacts
during evaporation.

Our detailed procedure of evaporation is the following:

• we pump the sample during 12 hours in the evaporator to reach a
pressure of 5.10−8 mbar in the loadlock,

• we heat the sample at 110◦C during 2 hours to get rid of the residual
water on the surface of the chip,

• we start circulation of liquid nitrogen in the sample holder to rapidly
cool down the sample3 (see the temperature evolution during evap-
oration on Fig. 10.12). Temperature reaches 0◦C in 1 minute and
continues to decrease.

• At 0◦C, we start the deposition of a 3 nm layer of Ti the normal axis
of the sample being tilted of 30◦ with respect to the direction of evap-
oration (like on Fig. 10.11). Afterward we evaporate 1 nm of Ti the
sample being tilted of -30◦. At this point the temperature is around
-40◦C and the pressure gets down to 3.10−8 mbar.

• Next we evaporate 100 nm of Al at -30◦ and 40 nm of Al at +30◦. At
the end temperature has reached -80◦C.

• Finally the sample is heated up at room temperature.

10.5 Room temperature characterization
When fabrication is finished, we test our samples in a probe station at room
temperature. Sample contact resistances are measured between pairs of big
aluminum pads.

Transparency of the good contacts The transparency of the good con-
tacts are evaluated by two-points measurements between two nearby forks.

3Pipelines have to be cooled down before. It avoids that the liquid nitrogen evaporates
before reaching the sample holder and allows a more rapid cooling.
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Cooling down

Start heating

Temperature (°C)

time
hh:mm:ss

0:00:00 1:00:00 2:00:00 3:00:00

-50

0

50

100 Heating at 110°C (2 hours)

Starting evaporation

Warming up

Figure 10.12: Evolution of temperature in the loadlock during our evapora-
tion procedure

This measurement gives, for roughly one third of the samples, contact resis-
tances between 11 and 50 kΩ4. This result has to be compared to the maxi-
mum resistance expected for a ballistic CNT which corresponds to about 6.5
kΩ [141]. Transmissions of devices are then included between 0.5 and 0.15.

If this first test is conclusive, we test resistances between tunnel probes
and their corresponding forks.

Tunnel contacts characterization To be in the tunneling regime, the
resistance between a tunnel probe and its corresponding fork has to be 10
times higher than quantum of resistance RK = h/e2. At room temperature,
this two-points measurement gives generally on a given sample very hetero-
geneous results between 80 kΩ and 10 MΩ or even more. They could thus
not all be selected to perform the spectroscopy of ABS.

We found out experimentally that, once cooled down, a sample is indeed
4The rest of the samples were either not showing measurable contacts or contacts up

to several MΩ.
5The criterion to know if contacts are good enough for us is not simple. But we knew

from theoretical estimation that if the transmission was lower than 0.1, we expected the
ABS to have an energy dependence with the phase smaller than 5% of |∆|. This has to be
compared with the ABS full width at half maximum (FWHM) which gives approximately
our limit of resolution. The ABS we have observed have a FWHM of roughly 10% of |∆|.
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in the tunnel regime if its room temperature tunnel contact is above 150 kΩ.
At 35 mK such resistances increase to reach values above 200 kΩ.

Our procedure of fabrication gives us about 10% of samples with well con-
nected electrodes and tunnel electrodes with appropriate contact resistances
at the same time. It yields well connected electrode 30% of the time. But
when we obtain good contacts, tunnel contacts are in the required range only
20-30% of the time. The efficiency of this fabrication process is only 10% in
the end.

Influence of the probe We have checked if the tunnel probe did not
cut electrically the CNT by measuring the two-points resistance at room
temperature between pairs of good contacts that are separated by a tunnel
probe (see Fig. 10.13). This indicates that tunnel probes don’t cut electri-
cally CNT. However this test has not been done systematically on our sample
as it requires a specific geometry which was not needed for the experiment
we wanted to perform.
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E1 E2 

T2 

CNT 

T1 

E3 

Ei=1,2,3 = good contacts 

Ti=1,2 = tunnel contacts 

Pairs of electrode Resistance value between 
them 

E1-E2 14 kȍ 

E2-E3 34 kȍ 

T1-E1 750 kȍ 

T1-E2 720 kȍ 

T2-E2 500 kȍ 

T2-E3 480 kȍ 

Influence of the tunnel probe on the conductance between
good contacts

Figure 10.13: SEM picture and two-points resistance values of a test sample
used to prove that tunnel probes don’t cut electrically CNT between two
good contacts.
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Parameters and techniques for
fabrication

11.1 Preparation of the resist layers or bilay-
ers

To coat the substrates, we deposit on it drops of resist diluted in solvent. We
then spin it at 4000 revolutions per minute (rpm) to form an homogeneous
layer. Next we bake it on a hot plate at 170◦C. This procedure can be
repeated to form a thicker layer of resist or a bilayer of distinct resists. The
baking at 170◦C evaporates the solvent and avoids the mixing of the different
layers on the chip.

We use two different kinds of masks that are obtained by different recipes
given in table 11.1. They differ by the type of resist layer coated on the
substrate. This is either a single layer of polymethyl-meta-acrylate (PMMA)
or a bilayer of polymethyl-meta-acrylate/meta-acrylate acid (PMMA/MAA).
MAA being more electro-sensitive than PMMA, a bilayer of PMMA/MAA
gives suspended masks after development.

11.2 Exposure: parameters and resulting masks
after development

11.2.1 Parameters of exposure

In this table are detailed parameters used during exposure in the SEM for
each type of mask.

193
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Mask for the catalyst pads (thick PMMA single layer):
1. Spin 950K A6 PMMAa at 4000 rpm for 1 minute,

2. bake at 170◦C for 1 minute,

3. spin another identical layer,

4. bake at 170◦C for 10 minutes.

This first recipe gives a thick single layer of PMMA which is sufficient for
catalyst deposition.

Mask for the alignment marks (PMMA/MAA bilayer):

1. Spin MAA 8.5 EL10b at 4000 rpm for 1 minute,

2. bake at 170◦C for 10 minutes,

3. spin 950K PMMA A3c at 4000 rpm for 1 minute,

4. bake at 170◦C for 15 minutes.

This second recipe gives a bilayer of PMMA/MAA which makes the lift off
easier after metal deposition.

Mask for the contacts to the nanotube (PMMA/thick MAA bi-
layer):

1. Spin MAA 8.5 EL10 at 4000 rpm for 1 minute,

2. bake at 170◦C for 1 minute,

3. Spin MAA 8.5 EL10 at 4000 rpm for 1 minute,

4. bake at 170◦C for 10 minutes,

5. spin 950K PMMA A3 at 4000 rpm for 1 minute,

6. bake at 170◦C for 15 minutes.

This third recipe gives a bilayer of PMMA/MAA with a thick layer of MAA.
For a given shift between metal evaporations (see Fig. 10.11), this thickness
will allow us to perform angle evaporations with smaller angle than with a
thinner layer of MAA.

aPMMA of molecular weight 950000 diluted at 6% in anisole from MicroChem
bMAA of molecular weight 8500 diluted at 10% in ethyl-lactate from MicroChem
cPMMA of molecular weight 950000 diluted at 3% in anisole from MicroChem

Table 11.1: Recipes to obtain an homogeneous layer of PMMA or bilayers of
PMMA/MAA.
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pattern exposed Dose and parameters
catalyst pads 350µC/cm2 at 25 kV spot 11

alignment marks 4000µC/cm at 10 kV spot 5
contacts to the nanotubes 250µC/cm2 (×1.4 for small structures) at 25 kV spot 1

undercut boxes 25µC/cm2 at 25 kV spot 1

When we want to expose an area, we have to choose a dose defined in
µC/cm2. But for patterns defined by lines, the dose is defined in µC/cm and
the width of the obtained patterned line depends on the magnitude of the
dose.

The chosen step of exposure is 2 nm for the small structures to obtain a
high enough resolution. We choose several µm for large structure.

Once we have chosen the current of exposure and the step, EQ calculate
automatically the dwell time given by:

tdwell time = Dose× step2

current

11.2.2 Resulting masks after development
• Development for a PMMA single layer:

Development of a 950K A6 PMMA single layer gives an non suspended mask.
If we wanted to evaporate metal, a suspended mask would be preferable (see
below). But when we want to deposit catalyst, a single thick layer is sufficient
to obtain well defined patterns that will give compact and dense catalyst pads
yielding an efficient and controlled growth of CNT (see Fig. 11.1).

Figure 11.1: CNT growth obtained from well defined catalyst pads.

1Spot 1 corresponds typically to 20 pA and spot 5 to 2 nA of current for the electron
beam.
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Before lift off 

After lift off 

Evaporated metal
Silica
Highly doped Si
Layer of PMMA
Layer of MAA
Exposed resist

Figure 11.2: With a single layer of PMMA and after a metal evaporation,
the mask may not lift properly or not at all if the resist cannot be reached
by its solvent.

• Development for PMMA/MAA bilayer:

Development of a PMMA/MAA bilayer gives suspended masks of PMMA
supported by MAA (see Fig. 10.2). We perform angle evaporation using
this kind of mask. It can be also useful to make the lift off easier for small
structures which may not lift properly otherwise (see Fig. 11.2).

With such mask, because of proximity effect, represented by a zigzag
arrow in Fig. 10.2 (a), we need several iterations to obtain a correct mask.

Once a mask is done, we deposit either catalyst for CNTs growth, or
metals with an electron beam evaporator for alignment marks and electrodes
connecting CNTs. After deposition, the mask is removed by lift off in ace-
tone. Technique of catalyst deposition and principle of metal evaporation
are described respectively in section 11.3 and 11.4.

11.3 Catalyst preparation and deposition

11.3.1 Catalyst suspension preparation
The catalyst suspension is obtained by dispersion of the following ingredients
in 15 ml of methanol:

• 20mg iron nonahydrate powder,
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• 15mg aluminum oxide powder,

• 1mg bis(acetylaceto)-dioxomolybdenum (VI) powder.

The solution is sonicated during 15 minutes to homogenise suspension. The
sonication has also to be performed 10 minutes before each deposition.

11.3.2 Catalyst deposition
Disposition of the catalyst on the chip influences dramatically the concen-
tration of CNT grown on the substrate (see Fig. 11.1). We have determined
empirically that we obtain the appropriate concentration by having on the
chip 4 networks of 30 pads. Pads are distant of 40 µm from each other. The
4 networks will give 4 different potential samples after the 1×1 cm2 chip has
been cut up in four 5 × 5 mm2 chips (see Fig. 10.4).

To obtain such networks, we dispense on the chip on the mask 2 drops of
the catalyst suspension which has been freshly sonicated during 10 minutes.
The methanol is evaporated from the chip slowly under a petri dish slightly
tilted so that the vapor can escape. This process lets a thin layer of catalyst.
After a lift off of 10 minutes in acetone at 65◦C, only catalyst remains in
the lithographically defined pads. The chip is then rinsed with acetone and
isopropanol.

11.4 Metal deposition and lift-off

11.4.1 Description of the electron gun evaporator
We deposit gold (Au), titanium (Ti) and aluminum (Al) on our samples in
two similar electron gun evaporators2 . They are divided in two chambers:
a loadlock and a main chamber (see Fig. 11.3).

In the main chamber are located crucibles in which are positioned the
different available metals. Deposition is realized by heating the desired target
with an electron beam gun. Deposition rate, typically between 0.1 and 1
nm/s, is computer controlled through a quartz microbalance.

In the loadlock, a sample holder is attached to an arm which can be
tilted between - and +90◦ for angle evaporation. This sample holder can be
heated by an electrical heater to 400◦C, or cooled down to nearly -200◦C by
circulation of liquid nitrogen. Pressure in this chamber3 is lower than 10−6

mbar after 30 minutes of pumping and reaches 3.10−8 mbar after one night.
2Electron gun evaporator fabricated by PLASSYS
3Pressure in the lower chamber is slightly lower.
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Figure 11.3: Schematic and picture of a PLASSYS e-gun
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When we vent the loadlock, the main chamber remains isolated thanks to
a valve to maintain its pressure low. Repumping after venting is then faster
and there are less risks of pollution of the main chamber. This low pressure
environment is crucial to obtain good metallic contacts by evaporation on
nanotube.

11.4.2 Lift off
The last step of fabrication is the lift off. The resist on the chip is dissolved
during 10 minutes in acetone heated on a hot plate at 65◦C. Afterward, only
metallic patterns and CNT remain on the chip (see Fig. 11.4).

Metal 

Figure 11.4: After metal deposition, the resist is removed by lift off and just
metal and CNTs remain on the chip.



200 11. Parameters and techniques for fabrication



Part V

Appendices

201





Appendix A

Introduction to Quantum dots

The term of Quantum Dot (QD) designates systems such as molecules, small
aggregates of semiconducting or metallic materials which are semi-isolated
from bulk conducting materials and in which few-electron effects play a large
role. The ab-initio physics of QD is a complicated many-body problem that
cannot be solved exactly. However in some ranges of parameters, QD may
be described by some fairly simple effective models, such as a independent
particle-in-a-box model with interactions accounted for simply by a charging
energy. In this case, when the dot is weakly connected to electrodes, one deals
with simple Coulomb blockade physics, electrons being added one by one to
the dot. On the other hand, when the dot is well coupled to some conducting
reservoirs, many-body interaction effects lead to a variety of Kondo effects
that require elaborate theoretical methods to capture them.

A.1 Energy quantization in QDs
Confined systems or QDs, such as those mentioned above, are first of all
boxes or “pools” of electrons [17] whose electronic structures are quantized
in discrete quantum states like in atoms. For that matter, they are often
regarded as artificial atoms [142].

If we ignore for the moment Coulomb interactions, this quantization arises
from boundary conditions of the box and, therefore, depends only on its ge-
ometry. For example, in nanopillars of semiconductor, the cylindrical geom-
etry leads to orbital states with quantized radial and angular components
[143]. When, as in our experiment, the QD is a quasi one-dimensional single
walled CNT whose boundaries are marked by the leads, the system can be
regarded as a quasi one-dimensional box. The CNT acquires thus a sim-
ple electronic structure whose levels form a ladder of discrete energies [144],

203
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L R QD 

Gate 

Figure A.1: Illustration of a QD connected to left (L) and right (R) elec-
trodes through tunneling processes. An additional electrode called the gate
is capacitively coupled to the QD in order to control its electro-chemical
potential with a voltage. In such geometry, one can perform an electronic
transport experiment which gives access to the energy spectrum of the latter
in the weak coupling limit (see section A.3).

each of these levels being moreover fourfold degenerate [128, 145] because
of the spin and the quantized orbital momentum1 symmetries [146]. In ab-
sence of interaction, a QD can thus be adequately described by the following
Hamiltonian:

HD0 =
∑
n,σ

ϵnσd
†
nσdnσ

where dnσ is a fermionic annihilation operator associated to a QD’s eigenstate
of energy ϵnσ, orbital state n and spin σ.

To explore the energy spectrum of a QD, one can perform electronic
transport experiments between a source and a drain, with an additional
capacitively coupled gate electrode controlling the electro-chemical potential
of the dot. The system is illustrated in Fig. A.1 with a left and right electrode
that we respectively call from now on the source and the drain.

It is, however, crucial in this case to understand how the coupling to
metallic electrodes affects the system and what will be the influence of
Coulomb repulsion between electrons. In the following, we discuss these
aspects in regimes of weak coupling to the leads and strong coupling to the
leads. In QDs, the physics is actually dominated by these essential ingredi-
ents. But first, we explain how to describe the system of an interacting QD

1In dirty CNTs the orbital symmetry is generally broken and this fourfold degeneracy
is lost.
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connected to electrodes.

A.2 Hamiltonian description of the system
A QD can be modelled through the following Hamiltonian:

H = HL +HR +HD +HT (A.1)

where HL (resp. HR) describes the left (resp. right) isolated leads, HD the
isolated dot itself and HT the coupling between the dot and the leads.

HL (resp. HR) describes a normal non-interacting Fermi liquid2:

HL(R) =
∑
l(r),σ

ϵl(r)c
†
l(r)σcl(r)σ

with cl(r)σ a fermionic operator associated to the annihilation of an electron
of spin σ in the eigenstate l (resp. r) of the isolated left (resp. right) lead.

The coupling HT describes the hopping that takes place between states
of the leads and the dot:

HT =
∑
n,l,σ

tn,ld
†
nσclσ + t∗n,lc

†
lσdnσ +

∑
n,r,σ

tn,rd
†
nσcrσ + t∗n,rc

†
rσdnσ

Finally, HD concerns the QD and is composed of HD0, describing elec-
trons as independent particles occupying orbital eigenstates of the dot, and
Hint which introduces correlations between them via interactions. The lat-
ter may include coupling of the electrons to mechanical vibrations of the
QD’s atomic lattice [147, 148] (electron-phonon interaction), spin-orbit cou-
pling [149], exchange [98] (for a double QD) or Coulomb interaction between
electrons.

In the following, we will consider only local Coulomb repulsion. In a QD
containing many electrons, this type of interaction takes the universal form
[150]:

Hint = EC
2

(ND − N )2

with ND = ∑
n,σ d

†
nσdnσ the particle number operator of the dot, EC = e2

C

the charging energy of the dot where C is the capacitance of the dot (C =
Cg + Cs + Cd with Cg the capacitance between the dot and the gate, Cs
between the source and the dot, and Cd between the drain and the dot). N
is a scalar, it gives the average number of electrons in the ground state and

2They may be replaced by BCS Hamiltonians for the case of superconducting leads.
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depends on voltages applied on the gate and the source. This description, in
which we parametrize the Coulomb interaction by a constant capacitor C, is
actually fully justified only for large dots in which N ≫ 1. Validity of this
approach is discussed in great details in Ref. [151, 152].

Physics of such system is governed by the interplay between the coupling
of the QD to the leads which allows current to flow between L and R, and Hint

which tends either to limit this flow, or to localize a spin in the QD driving the
ground state in a highly correlated Kondo state. In the following discussion,
we will distinguish two cases: weakly coupled QDs (⟨HT ⟩ ≪ ⟨Hint⟩) and
strongly coupled QDs (⟨HT ⟩ ≫ or ≈ ⟨Hint⟩).

A.3 Weakly coupled QDs

For an interacting QD weakly coupled to its leads (⟨HT ⟩ ≪ ⟨Hint⟩), we can
address interactions in an essentially classical way (see for example Ref. [113])
where the physics is governed by the quantization of the charge. Indeed, in
this case, the dot can be considered as isolated (H ≈ HD) and eigenstates of
the system are given by the familiar classical state: one charge in the dot,
two charges in the dot, etc... The number of charge can be regarded as a
classical variable. This assumption is completely valid if the time spent by
an electron in the dot is the largest time scale of the system including the
coherence time: we will say that the system is in the classical regime.

In this regime and provided that energies ϵnσ are unaffected by interac-
tions, the ground state energy of the system containing N electrons is given
by [117]:

U (N) = 1
2C

[e (N −N0) − CgVg − CsV ]2 +
∑
N

ϵnσ

where Vg is the voltage applied on the gate, V the voltage applied on the
source (the drain is grounded), N0 the number of electrons3 in the dot when
V = Vg = 0, and the sum in the last term runs over all the occupied state.

From U (N), we can deduce the electronic transport properties of the
system. In particular, we can describe how the QD is sequentially filled
when tuning the backgate, and also the so-called Coulomb blockade.

3We need to mention that in systems with a large number of electrons, we do not know
N0. We use as a variable the number of electrons in excess (N −N0).



A.3. Weakly coupled QDs 207

A.3.1 Sequential filling
In this regime, we can perform a sequential filling of the QD, electron by
electron and orbital after orbital. Indeed, if µ is the common electrochemical-
potential of the left and right leads, the condition for the QD to contain N
electrons is:

µ (N + 1) > µ > µ (N)

with µ (N) the electro-chemical potential of the dot when it contains N
electrons:

µ (N) = U (N + 1) − U (N)

Thereby, increasing the gate voltage, we can bring µ (N + 1) below µ and
add an extra electron in the dot.

This is illustrated in Fig. A.2 (adapted from figure 2. (b) of Ref. [117])
where orbitals are represented by black circles (whose radii indicate the rel-
ative magnitude of the orbital energies), electrons by blue dots, and the red
dot symbolizes the center of the QD. At the beginning of this sequence, the
QD is singly occupied with, in the lower orbital, an electron that is free to
choose its spin. Increasing Vg, we add, in the same orbital, a second electron
that, due to the Pauli principle, must be of exactly opposite spin. Despite
the degeneracy of these two states, this process can only happen if the system
is sufficiently lowered in energy (with the gate) to compensate the charging
energy EC . If we continue to increase Vg, we will add a third electron in the
system but in the next orbital. The addition energy includes this time the
charging energy plus the energy difference between orbitals ∆E = ϵn+1σ−ϵnσ.
The fourth electron will end in the same orbital but with a spin that is the
exact opposite of the third one.

Note that this simple sequential filling of the orbitals is not always ob-
served. For instance, in QDs with a reduced number of electrons [143], and
with a shell of degenerate orbitals, this shell is first filled, by virtue of Hunds
rule, with electrons of parallel spins until the shell is half full. After that, the
filling continues with anti-parallel spins. Also, in QDs with reduced number
of electrons, the charging energy may vary from one orbital to another.

A.3.2 Coulomb spectroscopy and Coulomb diamonds
The fact that the QD fills sequentially allows to perform a Coulomb spec-
troscopy of the QD. It can be realized through measurements of the differ-
ential conductance between the left source and the right drain at V = 0.
Each time the QD’s electro-chemical potential is equal to those of the left
and right electrodes µ, electrons can flow through the QD and a peak of
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Increasing Vg 

EC EC EC+ǻE 

Schematic representation of electron additions in orbitals of
a QD

Figure A.2: When a first electron is occupying an orbital, addition of a
second electron costs an extra energy EC = e2/C. As the orbital can hold
only two electrons, the second one is necessarily of opposite spin (by virtue
of the Pauli principle), moreover addition of a third electron will take place
in the next orbital and will cost EC + ∆E with ∆E = ϵn+1σ − ϵnσ the energy
difference between orbitals.
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conductance develops whose width ∼ kBT is imposed, in this regime, by
the temperature (T is the temperature and kB is the Boltzmann constant)
[113]. As a consequence, provided that the charging energy EC is constant
and kBT < EC , we have a direct measurement of the relative orbital energies
ϵnσ. For example, in the sequence pictured in Fig. A.2, by increasing Vg
we would observe three consecutive peaks of differential conductance with
distance between them corresponding to ∆Vg = EC+∆E

Cg/C
between the first two

peaks and only ∆Vg = EC

Cg/C
between the second and the third.

Extending this Coulomb spectroscopy to finite voltage bias, we obtain the
so-called Coulomb diamonds. Indeed, when a voltage V is applied between
the left and right leads, the condition for the QD to carry electrons from the
left to right electrode (resp. from the right to left electrode) is µL ≥ µ (N) ≥
µR (resp. µL ≤ µ (N) ≤ µR) with µL and µR the electrochemical potentials
of the left and right leads (with µL − µR = −eV ). These conditions define
in the (Vg, V ) plane, areas of blockade for each N , which take the shape of
diamonds and where the charge in the QD is well defined.

In Fig. A.3, we have represented these diamonds for N = 2n+ 1, 2n+ 2,
2n + 3 and 2n + 4 (n is an arbitrary integer). Widths and heights of these
diamonds are directly related to their corresponding addition energies. Even
diamonds (i.e. areas where the QD contains an even number of charge) are
thus larger than odd diamonds: when N is even, addition of an electron
necessarily takes place in the next orbital and the addition energy includes
the charging energy plus the energy difference between orbital ∆E.

The Coulomb blockade has been observed extensively in CNTs and has
allowed, for example, to observe the fourfold degeneracy through periodicity
of the diamonds [153, 154, 145], electron-hole symmetry in semiconducting
CNT [155], or spin-orbit coupling [149, 128]. Note that in these two last ref-
erences the spectroscopy, though based on the same principle, was performed
differently: in Ref. [149], the Coulomb spectroscopy was performed at fixed
Vg and tuning V , whereas in Ref. [128] the spectroscopy was performed in
the inelastic cotunneling regime (in this appendix, we will not address co-
tunneling events that are exchange of electrons occurring between the source
and the drain at finite V through second order coherent tunneling processes).

Whereas the classical description we have presented so far is sufficient
to understand physics related to the charge quantization, it cannot however
describe phenomena that are of coherent nature like coherent exchange of
electrons between the QD and its leads. It is indeed only valid under the
assumptions that ⟨HT ⟩ ≪ ⟨Hint⟩ but also if particles systematically lose their
coherence during the time spent in the QD. In the following, we present a
phenomenological approach, from Ref. [16], which allows to address coherent
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Coulomb diamonds
Figure A.3: Schematic representation of four Coulomb diamonds in the
(Vg, V ) plane. In regions of blockade (in violet), the charge in the QD is
well defined and takes values N = 2n + 1, 2n + 2, 2n + 3 and 2n + 4 (n is
an arbitrary integer). Borders of this violet areas are defined by the con-
ditions µ (N) = µL (in blue) or µ (N) = µL (in red) and, as indicated on
the diagram, slopes of these borders are related to the capacitive couplings
between the dot and the electrodes (including the gate). The height and
the width of a diamond is related to the addition energy which is equal to
the charging energy EC for odd diamonds and the charging energy plus the
energy difference between orbitals EC + ∆E for even diamonds.
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exchange of electrons between the QD and its leads in the weakly coupled
regime.

A.4 Weakly coupled QDs in a coherent regime:
a phenomenological approach

Whereas coherence of electrons in non-interacting QDs can be elegantly ad-
dressed with the scattering approach of Büttiker [56], and the interplay be-
tween charge and energy quantization can be correctly described with a semi-
classical constant interaction model [113, 117], the simplest available model
which brings together all these ingredients is the Anderson impurity model
[63]. Unfortunately, and as mentioned before, there has been so far no exact
solution found for this model. It has been yet analyzed using various approx-
imations such as mean-field theory, perturbation expansion in the Coulomb
interaction or in the tunnel coupling, but also exact numerical simulations
based on the numerical renormalization group (NRG) (an exhaustive list of
these methods can be found in Ref. [49] for the case of a QD connected to
normal electrodes and Ref. [16, 71] and references therein for superconduct-
ing electrodes). However, all these methods either suffer of inaccuracy or are
simply too much time-demanding.

A.4.1 A phenomenological approach
In Ref. [16], Vecino et al. have developed an effective and exactly solvable
model which can correctly describe, for weakly coupled QDs, the coherent
exchange of electrons between an interacting QD and its leads (in their work,
the leads are actually superconducting and exchange electrons with the QD
through Andreev reflections, but here we will only consider the case of normal
electrodes in order to focus on the way they addressed interaction). This
approach is based on a Hartree-Fock approximation. They describe the QD
connected to its electrodes by means of a single-orbital Anderson model [63]:

H = HL +HR +
∑
σ=↑,↓

ϵ0d
†
σdσ + ECn↑n↓ +

∑
σ=↑,↓

(
tLd

†
σclσ + tRd

†
σcrσ + h.c.

)

where ϵ0 is the energy of the single orbital and nσ = d†
σdσ. Then, the central

approximation consists in replacing phenomenologically the repulsive inter-
action inside the QD by a local exchange field in such a way that:

ϵ↑ = ϵ0 − U

2
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ϵ↓ = ϵ0 + U

2
with U a constant and ϵ↑ (resp. ϵ↓) the energy of a spin up (resp. down)
electron in the QD. In absence of bias voltage between the leads, these ener-
gies can be related to the gate voltage as we have (with notations of previous
section):

ϵ0 = µ− e
Cg
C
Vg

We end up with an effective (non-interacting) Hamiltonian describing the
system:

Heff = HL +HR +
∑
σ=↑,↓

ϵσd
†
σdσ +

∑
σ=↑,↓

(
tLd

†
σclσ + tRd

†
σcrσ + h.c.

)

where dσ is an annihilation operator for an electron of spin σ and the last
term describes the coupling with the leads.

This model is formally equivalent to a mean field solution of Hamiltonian
A.1, with the prescription U = EC

⟨n↓−n↑⟩
2 , except that here we will choose

that U is a constant instead of calculating it self-consistently. It should be
noted that, whereas in the classical approach of section A.3 spins of electrons
were only taken into account through Pauli principle, here, an arbitrary
spin is attributed to each level of the QD. If this can appear as an abusive
symmetry breaking4 introduced in the model, one has to keep in mind that
the spin axis of quantization is actually not even specified. This choice just
implies that if a second electron is added in the QD, it must have a spin
opposite to that of the first one.

In the end, this model combines the advantages of a complete Hamiltonian
treatment which allows to take into account the coherence of the system, and
the ingredients of the classical approach: electrons take opposite spins within
an orbital and fill sequentially the QD when increasing the gate. Except, here,
the energies of the addition spectrum are replaced by single particle energy
levels with the correspondence:

µ (1) ↔ ϵ↑ and µ (2) ↔ ϵ↓

In this thesis, we extensively used this phenomenological approach of Ve-
cino et al., to explain the formation of Andreev bound States in an interacting
QD connected to superconducting leads.

4Broken symmetry is possible when the object that breaks the symmetry involves a
macroscopic number of degrees of freedom, but here, we are dealing with a single spin.
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A.4.2 Limits of this effective non-interacting model
This effective non-interacting model provides correct descriptions for mech-
anism based on single particle phenomena. It captures, for example, the
broadening of the QD’s levels caused by the coupling to leads with a con-
tinuum of states (reduction of quasiparticles’ lifetime), or some aspects of
the formation of Andreev Bound States when the leads are superconduct-
ing (see chapter 3 for comparison between exact NRG and phenomenological
approach calculations).

There are however some shortcomings related to the fact that this ap-
proximation by essence completely ignores effects due to correlations between
electrons. For example, as the spin operator:

S = d†
↑d↑ − d†

↓d↓ +
∑
l

c†
l↑cl↑ − c†

l↓cl↓ +
∑
r

c†
r↑cr↑ − c†

r↓cr↓

commute with Heff , spins of electrons are completely frozen and cannot
fluctuate. Yet, in presence of interactions, electrons localized in the dot
always have a certain quantum mechanical amplitude for their spin to flip
by inversion with an electron of opposite spin from the electrodes. The
corresponding spin flip rate τsf defines a temperature scale [17]:

kBTK = ~
τsp

called the Kondo temperature above which these fluctuations are driven by
thermal activation rather than quantum correlations. However for T < TK ,
these fluctuations are quantum and lead to the formation of a many-body
Kondo singlet state in which electrons of the leads screen the magnetic mo-
ment formed by electrons localized in the dot. In the following section, we
discuss this phenomenon which arises when an interacting QD is strongly
coupled to its leads

A.5 QDs with stronger coupling
For QDs which are more strongly coupled to their leads, the picture of a se-
quential filling with single electrons is generally not correct. One can mention
the particular case of electronic devices made with single nanotubes which
are so strongly coupled to their leads that charging effect becomes negligible.
The CNTs thus act as coherent electron waveguides [7, 141] and electronic
transport measurements can be understood within the Landauer-Büttiker
formalism. This is called the Fabry-Perot regime. In this section, we focus
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on an intermediate case in which the coupling to the leads is strong and
the Coulomb repulsion plays an important role driving the system into the
Kondo regime in which electrons are highly correlated.

A.5.1 Spin-1/2 Kondo effect in nanostructures
The concept of Kondo state was originally introduced by Kondo to explain an
anomalous increase of resistance which occurs in some metals at low temper-
ature [49]. This phenomenon arises because of the formation, around residual
magnetic impurities, of clouds of conduction electrons which scatter charge
carriers near the Fermi level. In the ground state of the system, the magnetic
moment and the conduction electrons form then a many-body singlet state.

The recent possibility to fabricate confined conductors has allowed to
observe the Kondo effect on artificial magnetic impurities constituted by
localized electrons [118, 126] and study this many-body phenomenon in a
controlled way. The competition between coherent exchange of electrons
with the leads and Coulomb repulsion inside the QD may indeed drive the
system into a Kondo state. Because of Coulomb repulsion, a single electron
can be trapped in the dot and form a localized magnetic moment. If the
coupling to the leads is strong enough, the conduction electrons of the leads
tends to screen this artificial magnetic impurity. This can be formally seen
performing a Schrieffer-Wolff transformation on the Anderson Hamiltonian
[65] which changes HT+Hint into an antiferromagnetic interaction of the form
J × S⃗cond.S⃗QD between the localized electron and the conduction electrons
(S⃗QD is the spin of the QD, S⃗cond is the sum of the spins of the conduction
electrons and J is the strength of the antiferromagnetic interaction).

In nanostructures, the Kondo effect manifests by the apparition of a peak
of density of states at the Fermi level (or an enhancement of the conductiv-
ity, up to perfect transmission, at zero voltage bias in electronic transport
experiment) for temperature below the so-called Kondo temperature. As
a consequence, differential conductance measurements show, as in previous
section, a Coulomb blockade pattern with Kondo ridge around V = 0 in
areas of blockade corresponding to an odd number of charge in the QD (see
Fig.A.4).

The Kondo temperature depends both on the strength of the Coulomb
repulsion U and the coupling to the leads Γ = πρ0 (t2L + t2R) and takes the
following form [49, 115, 119, 121]:

kBTK =
√

ΓU
2

exp
(
πϵ0 (ϵ0 − U)

2ΓU

)
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Figure A.4: Schematic representation of differential conductance measure-
ments for a QD in the Kondo regime. The pattern is similar to the one
of Fig. A.3 except that peaks of conductance, also called Kondo ridges, has
appeared around V = 0 in diamonds corresponding to an odd number of elec-
trons in the QD. These ridges appear at low temperature and their width is
given by the Kondo temperature.

Note that since there is no analytic solution to the Kondo problem, this
formula derived by Haldane is not expected to be exact. For increasing
temperature, the zero-bias conductance amplitude in a quantum dot obeys
a logarithmic dependence with T/TK and completely disappears when T is
far above TK . When T ≪ TK , this energy scale also gives the HWHM of the
conductance peaks through the relation:

HWHM ∼ kBTK
e

A.5.2 Variety and universality of the Kondo effect
The Kondo effect has now been observed in a wide variety of man-made
nanostructures: carbon nanotubes connected to normal [96], ferromagnetic
[98] or superconducting contacts [9], molecular devices (see the review [119]
and references therein) including fullerene [101] or adatoms deposited on a
metallic surface [21, 156].

Moreover, it has also been seen in various type of situations: in double
QDs [103], in systems with two degenerate orbitals [97], or in which the arti-
ficial magnetic impurities is not constituted by the spin of a single localized
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electron but rather by its orbital momentum [157] or the spins of two local-
ized electrons in a triplet-state (S = 1). In the latter case, a major change
with the spin-1/2 Kondo effect comes from the fact that the spin-1 Kondo
effect happens for an even number of electrons localized in the QD [102] and
involves two channels of screening.

In all these experiments, the various kind of many-body Kondo states
differ in the details of their manifestation (double peak structure in double
QDs, nonmonotonic temperature dependence of the Kondo ridge amplitude
for S = 1 with much weaker Kondo temperature than for S = 1/2...), but
share common robust universal features [158]: peaks of density of states at
low energy, reduction of the zero-bias conductance with temperature, maxi-
mum transmission at V = 0, universal scaling with T/TK ...



Appendix B

Quantum dot Green’s function

In this appendix we give some general definitions on Green’s functions for
system at equilibrium (section B.1 and B.2) and explain how to calculate
the quantum dot’s (QD) Green’s function (GF) using equation of motion
techniques (section B.3). In the last section, we show useful identities for
calculation of the supercurrent and tunnel current, between lesser, greater,
retarded and advanced GFs.

In all this appendix, Hamiltonian H is time-independent. In the particu-
lar case of a QD connected to superconducting electrodes, this supposes that
none of the electrodes are voltage biased.

B.1 Definitions of the QD’s GFs and TDOS

B.1.1 Green’s functions in real time
The QD’s GF is a causal correlation function from which can be calculated
physical observables of the QD. In Nambu notation and time domain, it takes
the form1:

Ĝdd (t) = −i⟨Ttψd (t)ψ†
d (0)⟩

= −i
(

⟨Ttd↑ (t) d†
↑ (0)⟩ ⟨Ttd↑ (t) d↓ (0)⟩

⟨Ttd†
↓ (t) d†

↑ (0)⟩ ⟨Ttd†
↓ (t) d↓ (0)⟩

)

with t a time variable, ψd (t) = eiHtψde
−iHt the Heisenberg notation for the

QD spinor field operator taking ~ = 1 (we choose this convention for the
1We consider a problem with a time-independent Hamiltonian (or in other words a

system invariant by translation in time) such that ⟨Ttψd (t− t′)ψ†
d (0)⟩ = ⟨Ttψd (t)ψ†

d (t′)⟩.
We can thus only consider correlation functions of the form ⟨Ttψd (t)ψ†

d (0)⟩.

217
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all appendix) and H the Hamiltonian. Tt is the time-ordering operator, it
preserves causality of the Green’s functions and is defined by:

Ttψd (t)ψ†
d (0) = θ (t)ψd (t)ψ†

d (0) − θ (−t)ψ†
d (0)ψd (t)

with θ (t) the Heavyside function, and the brackets ⟨A⟩ symbolizes a thermal
average of the quantum operator A. It can be expressed with the density
matrix operator ρ:

ρ ≡ e−βH

Z
= 1
Z

∑
α

|α⟩e−βEα⟨α|

with {|α⟩} a complete basis set of the system, Eα the energy of state |α⟩,
β = 1/kBT (with kB the Boltzmann constant and T the temperature) and
Z = Tr

[
e−βH

]
is the partition function. With this definition we have:

⟨A⟩ = Tr [ρA] = 1
Z

∑
α

⟨α |A|α⟩e−βEα (B.1)

At T = 0, this thermal average becomes an expectation value of A in the
system ground state |ψ0⟩: ⟨ψ0 |A|ψ0⟩.

B.1.2 Retarded and advanced Green’s function in real
time

We can also define the retarded and advanced GF of the QD by:

ĜR
dd (t) = −iθ (t) ⟨

{
ψd (t) , ψ†

d (0)
}
⟩ (B.2)

ĜA
dd (t) = iθ (−t) ⟨

{
ψd (t) , ψ†

d (0)
}
⟩ (B.3)

with: {
ψd (t) , ψ†

d (0)
}

=

{d↑ (t) , d†
↑ (0)

}
{d↑ (t) , d↓ (0)}{

d†
↓ (t) , d†

↑ (0)
} {

d†
↓ (t) , d↓ (0)

}
and {A,B} = AB + BA the anticommutator. They are useful for TDOS
computation of the QD.

For supercurrent and tunnel current calculation, we need also to introduce
the greater and lesser GF:

Ĝ>
id (t) = −i⟨ψi (t)ψ†

d (0)⟩

Ĝ<
id (t) = i⟨ψd (0)† ψi (t)⟩

where i = l or r are index for the states of the left and right leads.
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B.2 Matsubara formalism and equation of mo-
tion

The QD GF can be obtained by resolution of the equation of motion (EOM),
a Heisenberg-like equation for GFs. This resolution is particularly simple in
Matsubara formalism.

Here we introduce GFs in the Matsubara formalism and their EOM.

B.2.1 Notation in Matsubara imaginary time
For calculation of the QD’s GF, it is convenient to introduce GFs in Matsub-
ara formalism in which time and frequency arguments are imaginary quan-
tities. They are defined by:

Ĝdd (τ) = −⟨Tτψd (τ)ψ†
d (0)⟩

= −
(

⟨Tτd↑ (τ) d†
↑ (0)⟩ ⟨Tτd↑ (τ) d↓ (0)⟩

⟨Tτd†
↓ (τ) d†

↑ (0)⟩ ⟨Tτd†
↓ (τ) d↓ (0)⟩

) (B.4)

with τ real, ψd (τ) = eHτψde
−Hτ (the Heisenberg notation in imaginary time

for the QD spinor field operator) and Tτ is a time-ordering operator acting
on variable τ :

Tτψd (τ)ψ†
d (0) = θ (τ)ψd (τ)ψ†

d (0) − θ (−τ)ψ†
d (0)ψd (τ)

B.2.2 Fourier transform of the Matsubara GF
The imaginary time QD’s GF can be expressed in frequency domain by
Fourier transformation. And as we have the property Ĝdd (τ + β) = −Ĝdd (τ)
(this can be shown from expression − 1

Z
Tr

[
e−βHTτψd (τ)ψ†

d (0)
]

of the GF,
see for example [65]), the QD’s GF Ĝdd (iωn) is then defined only on Matsub-
ara frequencies ωn taking discrete values:

ωn = 2n+ 1
β

π with n ∈ Z and β = kBT

with:

Ĝdd (τ) = 1
β

+∞∑
n=−∞

e−iωnτ Ĝdd (iωn) and Ĝdd (iωn) =
ˆ β

0
eiωnτ Ĝdd (τ) dτ

The Fourier transform Ĝdd (iωn) can be extended by analytical continuation
everywhere in the complex plane into Ĝdd (z).
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The retarded and advanced GFs’ Fourier transform are given by the value
of this analytical continuation approaching the real axis from the upper and
lower half of the complex plane (see section B.4), respectively2 (here ω and
η are real, and η → 0+):

ĜR
dd (ω) = Ĝdd (ω + iη)

ĜA
dd (ω) = Ĝdd (ω − iη)

They give access to every observable of the system at equilibrium [159].

B.2.3 Equation of motion
GFs can be calculated by resolution of the equation of motion (EOM). The
latter is obtained by derivation of matrix B.4 with respect to time:

∂Ĝdd (τ)
∂τ

= −∂θ (τ)
∂τ

⟨
ψd (τ)ψ†

d (0)
⟩
+∂θ (−τ)

∂τ

⟨
ψ†
d (0)ψd (τ)

⟩
−⟨Tτ

∂ψd (τ)
∂τ

ψ†
d (0)⟩

from which we can deduce the final form of the EOM:

∂Ĝdd (τ)
∂τ

= −δ (τ)
⟨{
ψd (0) , ψ†

d (0)
}⟩

− ⟨Tτ
∂ψd (τ)
∂τ

ψ†
d (0)⟩ (B.5)

In the following section, we solve this equation for a QD connected to super-
conducting leads.

B.3 Calculation of the QD’s GF by resolution
of the EOM

Here we calculate the QD’s GF by resolution of the EOM.
We recall from section 3.1.1 that the QD is described by the following

Hamiltonian:

H =
∑
i=l,r

ψ†
iEiψi + ψ†

dEQDψd +
∑
l

[
ψ†
dETL

ψl + h.c.
]

+
∑
r

[
ψ†
dETR

ψr + h.c.
]

with EQD =
(
ϵ↑ 0
0 −ϵ↓

)
, El(r) =

(
ϵl(r) ∆eiϕL(R)

∆e−iϕL(R) −ϵl(r)

)
, and ETL(R) =

(
tL(R) 0

0 −t∗L(R)

)
.

2These expressions in the frequency domain are of course consistent with Eq. B.2 and
B.3 where retarded and advanced GF are expressed in time-domain (see Ref. [65]).
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B.3.1 Resolution of the EOM
The GF, that will give us access to the spectral density of the dot, Ĝdd (τ) is
obtained by resolution of the EOM B.5. The latter starts by calculating the
anticommutators

{
ψd (0) , ψ†

d (0)
}

and the derivative ∂ψ̂d(τ)
∂τ

:

⟨{
ψd (0) , ψ†

d (0)
}⟩

=

⟨{d↑, d
†
↑

}⟩
⟨{d↑, d↓}⟩⟨{

d†
↓, d

†
↑

}⟩ ⟨{
d†

↓, d↓
}⟩ =

(
1 0
0 1

)
= 1

∂ψ̂d (τ)
∂τ

=
(

[H, d↑ (τ)][
H, d†

↓ (τ)
] ) = −EQDψd (τ) −

∑
l

ETL
ψl (τ) −

∑
r

ETR
ψr (τ)

It can then be written in a Schrödinger like form:

∂Ĝdd (τ)
∂τ

= −δ (τ) 1 − EQDĜdd (τ) −
∑
l

ETL
Ĝld (τ) −

∑
r

ETR
Ĝrd (τ)

With the same method, we can also write the equations of motion followed
by Ĝl(r)d (τ):

∂Ĝl(r)d (τ)
∂τ

= −El(r)Ĝl(r)d (τ) − ETL(R)Ĝdd (τ)

Fourier transformations in Matsubara frequency of these equations provides
the central linear system whose solutions are our quantities of interest:−iωnĜdd (iωn) = −1 − EQDĜdd (iωn) −∑

l ETL
Ĝld (iωn) −∑

r ETR
Ĝrd (iωn)

−iωnĜl(r)d (iωn) = −El(r)Ĝl(r)d (iωn) − E†
TL(R)

Ĝdd (iωn)
(B.6)

The second equation of B.6 gives the expression of Ĝl(r)d (iωn) as a function
of Ĝdd (iωn):

Ĝl(r)d (iωn) =
[
iωn − El(r)

]−1
E†
TL(R)

Ĝdd (iωn) (B.7)
This matrix is useful for Josephson current calculation. But for the moment
by combining it with first equation of B.6 we can solve the system and extend
the GF to all the complex plane by replacing iωn by z, where z can take any
value in the complex plane:

Ĝdd (z) =
[
z − EQD − Σ̂ (z)

]−1
(B.8)

with:
Σ̂ (z) = Σ̂L (z) + Σ̂R (z)

Σ̂L (z) =
∑
l

ETL
[z − El]−1 E†

TL
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Σ̂R (z) =
∑
r

ETR
[z − Er]−1 E†

TR

To make this expression usable for further spectral density calculation,
we need in a last step to evaluate the self-energy due to the coupling to the
leads Σ̂ (z).

B.3.2 Calculation of the QD’s self-energy
The self-energy takes the form of two discrete sums over l and r:

Σ̂L(R) (z) =
∑
l(r)

|tl(r)|2

z2 − ϵ2
l(r) − ∆2

(
z + ϵl(r) ∆eiϕL(R)

∆e−iϕL(R) z − ϵl(r)

)

To get rid of the discrete sum we need to make some assumptions, in order
to replace it by an integral. As the superconducting gap ∆ is generally orders
of magnitude smaller than the bandwidth D (∆ ≪ D: ∆ of aluminum is 210
µeV when bandwidth D is several eV large), we can reasonably approximate
D as infinite and that the bands are flat. Within these assumptions, the
self-energy becomes:

Σ̂L(R) (z) =
ˆ +∞

−∞
ρF

|tL(R)|2

z2 − ϵ2 − ∆2

(
z + ϵ ∆eiϕL(R)

∆e−iϕL(R) z − ϵ

)
dϵ

with ρF the density of states for each spin population at the Fermi energy
(in fact at any energies within our approximations) of the electrodes in their
normal state.

Because ϵ
z2−ϵ2−|∆|2 is an odd function with respect to ϵ, its integration

from −∞ to +∞ is equal to zero and gives no contribution to Σ (z).
By performing the variable change x = ϵ√

∆2−(iωn)2 , we obtain the final

expression for Σ̂ (z):

Σ̂ (z) =
∑
i=L,R

− ρF |ti|2√
∆2 − z2

(
z ∆eiϕi

∆e−iϕi z

)ˆ +∞

−∞

1
1 + x2dx

=
∑
i=L,R

πρF |ti|2√
∆2 − z2

(
−z −∆eiϕi

−∆e−iϕi −z

)

With the introduction of functions g (ω) = −ω√
|∆|2−ω2

and f (ω) = ∆√
∆2−ω2 ,

the self-energy adopts then the compact form:

Σ̂ (z) =
∑
i=L,R

Γi
(

g (z) −f (z) eiϕi

−f (z) e−iϕi g (z)

)

where ΓL(R) = πρF
∣∣∣tL(R)

∣∣∣2.
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B.3.3 Comment on the temperature dependence of the
QD’s GF

According to the final expression of Ĝdd (z) and Σ̂ (z), there is no temperature
dependence of the TDOS Add (ω), given by the imaginary part of the retarded
GF (see section 3.1.2 in chapter 3). Even if nowhere in the calculation we have
specified at which temperature we calculate expectation values of operators.

The reason is that ∆ and U are considered, in our model, as fixed phe-
nomenological parameters. They should however be calculated self-consistently,
and in this case they would exhibit a temperature dependence (see for ex-
ample [63] or [65]). A temperature variation would cause a redistribution of
Add (ω) over the energy spectrum. This is actually a general property of the
strongly correlated system, but in our case we use an effective model of free
quasiparticles, that’s why there is no temperature dependence (the spectral
density of a Fermi liquid for example has also no temperature dependence).

Yet, there are a temperature dependence of the tunnel current. Indeed
the latter depends not only on the spectral density of the probe and the
sample, but also on their thermal distributions (see appendix D).

B.3.4 Poles as roots of the inverse GF’s determinant
The poles of the GF’s diagonal elements are also the roots of the inverse GF’s
determinant.

Indeed, equation B.8 can also be written:

Ĝdd (z) = 1
Det

(
z − EQD − Σ̂ (z)

) tcom
[
z − EQD − Σ̂ (z)

]

where tcom
[
z − EQD − Σ̂ (z)

]
is the transposed comatrix of

[
z − EQD − Σ̂ (z)

]
.

As elements of tcom
[
z − EQD − Σ̂ (z)

]
have no pole except at ±∆, poles of

the diagonal element of Ĝdd (z) are given by the roots ofD (z) = Det
(
z − EQD − Σ̂ (z)

)
or equivalently by Det

(
Ĝdd (z)−1

)
= 0.

B.3.5 Physical signification of a GF
Due to its physical signification, a GF is also called a propagator. Indeed, its
diagonal elements contain information about the evolution of a bare particle
(electron or hole) injected in the system, and its antidiagonal elements about
the tendency for electrons to exist in pair in the ground state.
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If we consider, for example, the case t > 0, the spin up diagonal elements
of the GF is proportional to:

⟨ψ0|eiHtd↑e
−iHtd†

↑|ψ0⟩ (B.9)

This function is the recovering between states:

e−iHtd†
↑|ψ0⟩

and:

d†
↑e

−iHt|ψ0⟩

The first one gives the dynamic of a spin up electron injected in the ground
state, through the QD, that we let evolve under H during a time t, whereas
the second corresponds to a spin up electron injected in the system at t.
Function B.9 compares this two states to test how much the injected elec-
tron has changed, and gives through its decaying time information on the
electron’s lifetime (infinite if the injected particle corresponds to an eigen-
state of the system). For t < 0, the diagonal spin up element of the GF fulfils
the same role but for a hole injected in the QD.

The non diagonal terms of the GF (or anomalous correlation functions),
they contain information about pairing between electrons of opposite spin in
the QD. For example:

⟨ψ0|eiHtd†
↓e

−iHtd†
↑|ψ0⟩

is the recovering product between states:

e−iHtd†
↑|ψ0⟩

and:

d↓e
−iHt|ψ0⟩

It gives therefore the probability amplitude to find, after a lapse time t, the
time-reverse conjugated hole of an electron injected in the QD. In absence
of induced superconductivity, these correlations functions would be equal
to zero for charge conservation consideration. However, superconductivity
authorizes charge fluctuations and these anomalous correlation functions can
be different from zero.
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B.4 Useful identities for calculation of the
tunnel Density of states and supercur-
rent

In this section, we give demonstrations of the following relations (valid for
any time-independent Hamiltonian):

fFD (−ω)
[
ĜR
ld (ω) − ĜA

ld (ω)
]

= Ĝ>
ld (ω) and −fFD (ω)

[
ĜR
ld (ω) − ĜA

ld (ω)
]

= Ĝ<
ld (ω)

(B.10)
where fFD (ω) is the Fermi-Dirac distribution. These relations are useful for
calculation of the supercurrent (see section 3.1.5) and the tunnel current (it
is done in section D.1.2.2).

First, we need to introduce the Lehmann representation of the advanced
and retarded GF.

B.4.1 Lehmann representation
The Lehmann representation of a GF function is a decomposition on the
eigenstates basis of H, noted {|α⟩}. To illustrate it, we consider a GF in real
time:

G (t) = −i ⟨Tta (t) b⟩ = −i
Z

∑
α

e−βEα (θ (t) ⟨α |a (t) b|α⟩ − θ (−t) ⟨α |ba (t)|α⟩)

where a and b are two operators creation or annihilation.
Using the property3 ∑

α′ |α′⟩⟨α′| = I, we can write these GF:

G (t) = − i
Z

∑
α,α′ e−βEα(θ (t)

⟨
α
∣∣∣eiHtae−iHt |α′⟩⟨α′| b

∣∣∣α⟩
−θ (−t)

⟨
α
∣∣∣b |α′⟩⟨α′| eiHtae−iHt

∣∣∣α⟩)
and as we have H|α⟩ = Eα|α⟩, it becomes:

G (t) = − i
Z

∑
α,α′ e−βEα(θ (t) ei(Eα−Eα′ )t ⟨α |a |α′⟩⟨α′| b|α⟩

−θ (−t) ei(Eα′ −Eα)t ⟨α |b |α′⟩⟨α′| a|α⟩)

After Fourier transform, we end up with the Lehmann representation of
G (t):

G (ω) = 1
Z

∑
α,α′

e−βEα

(
⟨α |a |α′⟩⟨α′| b|α⟩
ω + iη + Eα − Eα′

+ ⟨α |b |α′⟩⟨α′| a|α⟩
ω − iη − Eα + Eα′

)

3I is the identity operator.
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where the inverse and direct Fourier transform a of function h are respectively
given by:

h (t) =
ˆ
h (ω) e−iωtdω

2π
and h (ω) =

ˆ
h (t) eiωtdt

and the Heaviside function Fourier transform (with η → 0+)4:
ˆ
θ (t) eiωtdt = i

1
ω + iη

and
ˆ
θ (−t) eiωtdt = −i 1

ω − iη

Following the same reasoning, we can find the Lehmann representation
of the retarded (GR (ω)) and advanced (GA (ω)) GF:

GR (ω) = 1
Z

∑
α,α′

e−βEα

(
⟨α |a |α′⟩⟨α′| b|α⟩
ω + iη + Eα − Eα′

+ ⟨α |b |α′⟩⟨α′| a|α⟩
ω + iη − Eα + Eα′

)
(B.11)

GA (ω) = 1
Z

∑
α,α′

e−βEα

(
⟨α |a |α′⟩⟨α′| b|α⟩
ω − iη + Eα − Eα′

+ ⟨α |b |α′⟩⟨α′| a|α⟩
ω − iη − Eα + Eα′

)
(B.12)

B.4.2 Relation between lesser, greater, advanced and
retarded GFs at equilibrium

Using Lehmann representations B.11 and B.12, we can find an expression for
the greater and lesser GFs as a function of the retarded and advanced GFs.
For this, we consider a greater GF with a general form (here again {|α⟩} is
the eigenstates basis of H):

G> (t) = −i ⟨a (t) b⟩ = −i
Z

∑
α

e−βEα ⟨α |a (t) b|α⟩

where a and b are two creation or annihilation operators. Using the property∑
α′ |α′⟩⟨α′| = I, we can write:

G> (t) = − i

Z

∑
α,α′

⟨α |a |α′⟩⟨α′| b|α⟩ ei(Eα−Eα′ )te−βEα

After Fourier transform we find:

G> (ω) = −2iπ 1
Z

∑
α,α′

⟨α |a |α′⟩⟨α′| b|α⟩ δ (ω + Eα − Eα′) e−βEα (B.13)

4This can be shown using residues theorem.
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or thanks to the Dirac function:

G> (ω) = −2iπ 1
Z

∑
α,α′

⟨α |a |α′⟩⟨α′| b|α⟩ δ (ω + Eα − Eα′) e−βEα′eβω (B.14)

Moreover, as we have the equality 1
x+iη − 1

x−iη = −2πiδ (x), the difference
between the retarded (B.11) and advanced (B.12) GFs gives:

GR (ω)−GA (ω) = −2iπ 1
Z

∑
α,α′

⟨α|a|α′⟩⟨α′|b|α⟩δ (ω + Eα − Eα′)
(
e−βEα + e−βEα′

)
This expression is actually also equal to the sum of Eq. B.13 and Eq. B.14
multiplied by e−βω.

Therefore, we have the following relation between greater, advanced and
retarded GF:

GR (ω) − GA (ω) = G> (ω)
(
1 + e−βω

)
or by introducing the Fermi-Dirac distribution fFD (ω), we end up with a
relation between the greater, retarded and advanced GFs:

fFD (−ω)
[
GR (ω) − GA (ω)

]
= G> (ω) (B.15)

With the same method, we could also show:

− fFD (ω)
[
GR (ω) − GA (ω)

]
= G< (ω) (B.16)

Note that in an out-of-equilibrium situation, H would depend on time and the
distribution would be different from the Fermi-Dirac distribution function.

Replacing a and b, by the appropriate operators we find indeed equations
B.10, useful for calculations of the Josephson current flowing through a QD.

A particular case In the particular case b = a† (useful for calculation of
the tunnel current in section D.1.2.2), we have the relation GA (ω) = GR (ω)∗.
Equations B.15 and B.16 thus becomes:

2 (1 − fFD (ω)) iIm
[
GR (ω)

]
= G> (ω)

−2fFD (ω) iIm
[
GR (ω)

]
= G< (ω)

or if we introduce the TDOS A (ω) = −πIm
[
GR (ω)

]
:

− 2iπ (1 − fFD (ω)) A (ω) = G> (ω) (B.17)

2iπfFD (ω) A (ω) = G< (ω) (B.18)
In appendix D, we will use Eq. B.17 and B.18 to calculate the tunnel

current flowing between the tunnel probe and the QD in our experiment.
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Appendix C

Relation between ABS’s
energies and Josephson current

In section 3.1.5, we have demonstrated that the Josephson current carried
by a QD connected to two superconducting leads is equal to:

IJ = 2e
~

ˆ
fFD (ω) Re

[
TrN

(
ÎL (−ω − iη) − ÎL (−ω + iη)

)] dω
2π

(C.1)

with:
ÎL (z) = Σ̂L (z) Ĝdd (z)

We will call matrix ÎL (z) the “current GF” in the following, −e is the charge
of electron, ~ the reduced Planck constant, fFD (ω) the Fermi-Dirac distri-
bution, TrN the trace in Nambu space, ΣL (z) the self-energy of the left lead
and Ĝdd (z) the QD’s GF.

Here we show how to relate this definition of the Josephson current with
the phase derivative of the ABS’s energies ϵ±. For this we first derive an
expression of the Josephson current GF in terms of the parameters of the
system Γ, U , etc... Then we separate this current in two contributions, one
carried by the ABSs and the other by the continuum of the QD’s TDOS. We
will see that the first contribution is given by the phase derivative of ϵ±.

C.1 Josephson current carried by a S-QD-S
junction

In this section, we derive an expression of the Josephson current expressed in
terms of the system’s parameters. For this, we first perform a symmetriza-
tion, based on current conservation, of the current GF with respect to the

229
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left and right leads. We take afterward its trace in Nambu space to end up
with a simple form for the Josephson current.

C.1.1 Symmetrization of the current GF

Current conservation Expression C.1 was originally obtained in section
3.1.5 from:

IJ = ie

~
⟨[HT , NL]⟩ (C.2)

We can however find a symmetric expression of the Josephson current with
operator NR. For this we start with an argument of current conservation:
at equilibrium the charge in the QD, given by operator ND = ∑

σ d
†
σdσ,

remains constant in average1. Therefore, if we write ND in its Heisenberg
representation we have: ⟨

dND

dt

⟩
= 0 (C.3)

Then, using the fact that the QD’s charge variation is given by
⟨
dND

dt

⟩
=

i
~ ⟨[H,ND]⟩, we also have2:

⟨
dND

dt

⟩
= − i

~
⟨[HT , NL]⟩ − i

~
⟨[HT , NR]⟩ (C.4)

Combining Eq. C.2, C.3 and C.4, we can finally write an expression of the
Jospehson current with operator NR:

IJ = −ie

~
⟨[HT , NR]⟩ (C.5)

In the following, we will use both Eq. C.2 and C.5 to express the current,
so we note for convenience IJL = ie

~ ⟨[HT , NL]⟩ and IJR = ie
~ ⟨[HT , NR]⟩, where

IJL (resp. IJR) is the current going out of the left (resp. right) electrode.
It is interesting to note that, combining Eq. C.3 and C.4, we can show that
IJL = −IJR and thus that the current is conserved along the circuit.

1In a real closed system, the charge is of course always constant. But in our model, it
is only true in average as we describe the leads with mean-field BCS Hamiltonians which
do not conserve the charge and induce fluctuations.

2This comes from the fact that, for our Hamiltonian: [H,ND] = − [HT , NL]− [HT , NR]
which can be straightforwardly shown by calculating the commutators.
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Symmetrization Using the relation between the Josephson current going
out of the left and right electrode IJL = −IJR, we can write a more symmetric
expression of the Josephson current IJ . Indeed, for any constant x, we have3:

IJ = xIJL − (1 − x) IJR

If we choose x = ΓR

ΓL+ΓR
, this expression becomes:

IJ = 2e
~

ˆ
fFD (ω) Re

[
TrN

(
Î (−ω − iη) − Î (−ω + iη)

)] dω
2π

(C.6)

with the following definition of symmetric current GF Î (z):

Î (z) = ΓR
ΓL + ΓR

Σ̂L (z) Ĝdd (z) − ΓL
ΓL + ΓR

Σ̂R (z) Ĝdd (z) (C.7)

This expression is more symmetric and will naturally simplify the following
calculations.

C.1.2 Expression of the current GF
In order to express the current GF in terms of the parameters of the sys-
tem, we need first to express Σ̂L (z) Ĝdd (z) (and by deduction Σ̂R (z) Ĝdd (z))
explicitly.

The starting expression of the current GF is:

Σ̂L (z) Ĝdd (z) =
[

g (z) ΓL f (z) ΓLeiϕL

f (z) ΓLe−iϕL g (z) ΓL

] [
z − ϵ↑ − g (z) Γ f (z)∑i Γieiϕi

f (z)∑i Γie−iϕi z + ϵ↓ − g (z) Γ

]−1

where we remind that:

g (z) = − z√
∆2 − z2

and f (z) = ∆√
∆2 − z2

After inversion of the second matrix, it becomes:

Σ̂L (z) Ĝdd (z) =
[

g (z) ΓL f (z) ΓLeiϕL

f (z) ΓLe−iϕL g (z) ΓL

]

× 1
D(z)

[
z + ϵ↓ − g (z) Γ −f (z)∑i Γieiϕi

−f (z)∑i Γie−iϕi z − ϵ↑ − g (z) Γ

] (C.8)

3Indeed, as IJL = −IJR, then xIJL − (1 − x) IJR = (x+ 1 − x) IJL = IJL = IJ .
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with D (z) the determinant of the QD’s GF inverse:

D (z) = Det
(
Ĝdd (z)−1

)
= (z − ϵ↑ − g (z) Γ) (z + ϵ↓ − g (z) Γ)−f (z)2

∣∣∣∣∣∑
i

Γieiϕi

∣∣∣∣∣
2

From expression C.8 of Σ̂L (z) Ĝdd (z) (and the equivalent expression of
Σ̂R (z) Ĝdd (z)) and Eq. C.7, we can calculate the symmetric current GF (we
take ϕL = −ϕR = δ/2 in the following to get rid of a phase factor without
any loss of generality):

Î (z) = i
ΓLΓR

ΓL + ΓR
f (z)2 sin

(
δ

2

)
1

D (z)

 −∑
i Γieiϕi

(z−ϵ↑−g(z)Γ)
f(z)

(−z−ϵ↓+g(z)Γ)
f(z)

∑
i Γie−iϕi


At this stage, it is more convenient to express Î (z) as a function of

Γ = ΓL + ΓR and δΓ = ΓL − ΓR rather than ΓL and ΓR. As we have
ΓLeiϕL + ΓReiϕR = Γcos

(
δ
2

)
+ iδΓsin

(
δ
2

)
and ΓLΓR

ΓL+ΓR
= 1

2
Γ2−δΓ2

Γ , we can write:

Î (z) = i
2

Γ2−δΓ2

Γ f (z)2 sin
(
δ
2

)
× 1
D(z)

 −Γcos
(
δ
2

)
+ iδΓsin

(
δ
2

) (z−ϵ↑−g(z)Γ)
f(z)

(−z−ϵ↓+g(z)Γ)
f(z) Γcos

(
δ
2

)
+ iδΓsin

(
δ
2

)


and by taking the trace in Nambu space, we obtain:

TrN
(
Î (ω + iη)

)
= ∑

σ
i
2 (Γ2 − δΓ2) f (σω + iη)2

× 1
D(σω+iη)

(
−σ sin(δ)

2 + i δΓΓ
1−cos(δ)

2

) (C.9)

with σ = ±1 respectively for the spin up part and the spin down part of Î (z)
(i.e. Î11 (ω + iη) and Î22 (−ω + iη)).

Final expression of the Josephson current Now by inserting expres-
sion C.9 in C.6, IJ becomes:

IJ = −2e
~

ˆ
dω

2π
fFD (ω) 1

2
(
Γ2 − δΓ2

)∑
σ

Im
[
F (ω)

(
−σ sin (δ)

2
+ i

δΓ
Γ

1 − cos (δ)
2

)]

where the factor F (ω):

F (ω) =
(
f (−σω − iη)2 1

D (−σω − iη)
− f (−σω + iη)2 1

D (−σω + iη)

)
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is purely imaginary because
[
f(−ω−iη)2

D(−ω−iη)

]∗
= f(−ω+iη)2

D(−ω+iη) .
This allows a simplification of the previous expression to:

IJ = e
~

´
fFD (ω)

×∑
σ Im

[
(Γ2 − δΓ2)

(
∆2

∆2−(−σω+iη)2
1

D(−σω+iη)

)
(−σsin (δ))

]
dω
2π
(C.10)

This expression is the one we use to compute the Josephson current in the
following and the rest of this thesis.

C.2 Supercurrent carried by the ABSs
We can distinguish two contributions in the Josephson current (or supercur-
rent): one carried by the ABSs (IABS) which corresponds to |ω| < ∆, and
another one carried by the continuum (Icont) which corresponds to |ω| > ∆:

ˆ
→
ˆ ∆

−∆
+
ˆ
θ (∆ − |ω|)

In this section we express the first contribution in terms of the phase
derivative of the ABSs’s energies E±

ABS. We only treat the case ηinel = 0 for
simplicity.

Evaluation of the integral with the residue theorem As D (ϵ±) = 0,
for η → 0 the integral in IABS has two real poles ϵ+ and ϵ− corresponding
to the energies of the ABSs. We can thus evaluate IABS by applying, on this
integral, the residue theorem.

The latter tells us that:

ˆ
θ (|ω| − ∆) fFD (ω)

(
∆2

∆2 − ω2
1

D (ω)

)
dω

2π
= 1

2
∑
±
fFD (ϵ±) ∆2

∆2 − ϵ2
±

Im

i 1
D′ (ϵ±)︸ ︷︷ ︸
purely real


so that the current carried by the ABSs becomes:

IABS = e

~
1
2
∑
σ

∑
±
fFD (−σϵ±)

(
Γ2 − δΓ2

)
(−σsin (δ)) ∆2

∆2 − ϵ2
±

1
D′ (ϵ±)

(C.11)
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Expression of ∂ϵ±
∂δ

as a function of D′ (ϵ±) The final step consists in
expressing ∂ϵ±

∂δ
as a function of D′ (ϵ±). For this we take the derivative of the

following equation (corresponding to D (ϵ±) = 0):

(ϵ± − ϵ↑ − g (ϵ±) Γ) (ϵ± + ϵ↓ − g (ϵ±) Γ)−f (ϵ±)2 1
2
[
Γ2 + δΓ2 +

(
Γ2 − δΓ2

)
cos (δ)

]
= 0

with respect to the superconducting phase difference δ, and obtain:

∂ϵ±

∂δ
= −

f (ϵ±)2 (Γ2−δΓ2)
2 sin (δ)

D′ (ϵ±)
(C.12)

Current carried by the ABSs If now we use relations C.12 to transform
expression C.11, we end up with the final result:

IABS = e

~
∑
σ

∑
±
fFD (−σϵ±)

(
σ
∂ϵ±

∂δ

)

or:

IABS = − e

~
∑
±

tanh
(
βϵ±

2

)
∂ϵ±

∂δ

This result is in agreement with Ref. [51] of Beenakker who treats the case
where the two ABS are degenerated4 and thus ϵ+ = −ϵ−.

It is interesting to note that this expression doesn’t depend on the heights
of the ABSs in the TDOS, and that both ABSs + and − carry supercurrent
whatever the temperature consistent with the fact that their position above
or below the Fermi level is arbitrary.

Furthermore if we consider the case where the spin degeneracy has not
been broken (U = 0 in our phenomenological model), for a system at zero
temperature, we recover the well-known formula:

IABS = − e

~
∑
±

sign (ϵ±) ∂ϵ±

∂δ
= IABS = 2e

~
∂ϵ−

∂δ

The presence of a single ABS in this latter expression is due to the peculiar
symmetry of the system.

4For us, this is only true when ϵ↑ = ϵ↓ or equivalently when U = 0.
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C.3 Supercurrent carried by the continuum
In the general case, the continuum carries supercurrent that is not always
negligible compared to the contribution of the ABSs. We can say however,
from Eq. C.10, that for large ω the continuum contribution decreases as
1
ω4 . Therefore, the part of the continuum that may carry significantly su-
percurrent is around ω ≈ ±∆. Moreover, because of the factor ∆2

∆2−ω2 , the
supercurrent carried by the continuum (|ω| > ∆) may flow in opposite direc-
tion than the one carried by the ABS (|ω| > ∆).

In this section, we compare the contribution of the continuum and the
ABSs for three cases:

• non-interacting resonant QD with highly coupled symmetric contact
(U = 0, ϵ = 0, δΓ = 0 and Γ ≫ ∆),

• non-interacting out-of-resonance QD with weakly coupled symmetric
contact (U = 0, ϵ ̸= 0, δΓ = 0 and Γ ≈ ∆),

• interacting resonant QD with weakly coupled symmetric contact (U ≈
∆, ϵ = 0, δΓ = 0 and Γ ≈ ∆).

In Fig. C.1, we have represented the phase dependence of the supercurrent IJ
separating contributions of the ABSs (in red) and the continuum (in green)
for these three different cases.

The first case, that concerns an experimental situation where the weak
link connecting the two superconducting reservoirs is an atomic contact with
perfect transmission, shows a completely negligible contribution of the con-
tinuum. The latter can thus be ignored to interpret experimental results
obtained with an atomic contact. This is actually a general property of weak
links where Γ is the largest characteristic energy of the system.

In the second case, the QD is driven out of resonance. This reduces the
transmission of the weak link and suppresses the abrupt change at δ = π
which occurs in the previous case (introducing an asymmetry δΓ would have
the same effect). Furthermore we have drastically reduced the coupling to
the leads in order to raise the contribution of the continuum. Besides, the
latter becomes comparable to the contribution of the ABSs and is in opposite
direction. Therefore, if one wants to describe an experimental situation where
a QD is coupled to the leads with a characteristic energy comparable to ∆
(as it is typically the case for CNTs), the current carried by the continuum
cannot be ignored.

The third case is interesting because, around δ = π, it is an extreme
case where the contribution of the ABSs becomes negligible compared to the
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supercurrent carried by the continuum. This is actually quite rare and may
only happen when the system is in between a 0 state and a π state (see
section 3.1.5.3).



C.3. Supercurrent carried by the continuum 237

0 Π 2 Π

0

eD

Ñ

-
eD

Ñ

∆

I
J

Continuum

ABS

0 Π 2 Π

0

eD

Ñ

-
eD

Ñ

∆

I
J

0 Π 2 Π

0

eD

Ñ

-
eD

Ñ

∆

I
J

Comparison between contributions to the supercurrent of
the ABSs (red) and the continuum (green)

Figure C.1: Josephson current IJ carried by the ABSs (red) and the con-
tinuum (green) respectively from top to bottom for the following param-
eters: U = 0, 0, and 2∆, Γ = 20000∆, 2∆, and 2∆, δΓ = 0, 0, and 0,
ηinel = 0, 0, and 0 and ϵ = 0, −∆, and 0.
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Appendix D

Tunneling spectroscopy

The tunneling spectroscopy is a technique aiming to explore the DOS of a
sample by injecting or extracting electrons from a well characterized probe
(we therefore talk about tunneling DOS (TDOS)). For this purpose, the
sample is separated from the probe by a thin barrier which can be for example
a few nanometers of vacuum or insulator. In this configuration, electrons can
tunnel through the insulator (see Fig. D.1). If the probe and the sample are
coupled weakly enough to be described by two independent sets of states,
they are said to be in the tunnel regime. We can consider henceforth that
the probe and the sample both remain at equilibrium.

In this regime, and provided that we know the probe DOS, measurements
of the tunnel current flowing between the probe and the sample I (V ) , with
V the voltage applied on the probe, gives a direct access to the sample DOS.
Indeed, under some hypotheses that we will detail below, the tunnel current
is proportional to the following product of convolution:

I(V ) ∝
ˆ

Aprobe(ω + eV )Asample(ω) (fsample(ω) − fprobe(ω + eV )) dω (D.1)

with e = 1.6×10−19C the charge of an electron, Aprobe(ω) and Asample(ω) the
TDOS of the probe and the sample at energy ω, and fsample(ω) = fprobe(ω) =
fFD (ω) the Fermi-Dirac distribution. With a deconvolution procedure that
we describe in section D.3, we can thus extract Asample(ω) from the tunnel
current.

In the following, we first show how Eq. D.1 which relates tunnel current
and TDOS can be obtained by a perturbative approach. Afterward we discuss
the impact of the tunnel probe on the ABSs linewidth, for the cases of a
normal and a superconducting probe. In the last section, we explain how to
perform the deconvolution procedure.

239
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Figure D.1: The wave function of an electron in the left part decreases ex-
ponentially in the barrier and reach the right part. If the barrier is not too
thick, the probability for an electron to “jump” from an electronic state of
the left part to one of the right part is not negligible and a current can flow.

D.1 The tunnel current and tunnel density of
states

In this section, we define the tunnel current and the tunnel density of states,
and show how the latter is related to the imaginary part of the Green’s
function.

For this purpose, we introduce the Hamiltonian H describing the ex-
change of electrons between a tunnel probe biased with a voltage V and a
sample connected to the ground. It contains in particular the “tunneling
Hamiltonian” HT of Ref. [70, 160]. Then we calculate the tunnel current, to
the lowest order in HT , by mean of a generalized Kubo formula [161], when
a voltage V is applied on the probe.

D.1.1 Description of the system and tunneling Hamil-
tonian

Tunneling Hamiltonian To describe the coupling between a tunnel probe
(L) and a sample (R), weakly connected together, we need to introduce, in
addition to their respective Hamiltonian HL and HR, an Hamiltonian HT so
that the complete Hamiltonian H describing the system reads:

H = HL +HR +HT
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with the tunneling Hamiltonian:

HT =
∑
l,r

tlrc
†
l cr + t∗lrc

†
rcl

and HL (resp. HR) represents the Hamiltonian of the isolated probe L (resp.
sample R) on the left (resp. right), as in Fig. D.1.

Operators c†
l and c†

r are creation operators of single-electron states of L
and R. These states |l⟩ and |r⟩ constitute complete sets of eigenstates for
L and R. The coupling HT describes thus exchange of normal electrons be-
tween L and R (even if one of them is a BCS superconductor), by a hopping
term like in a tight-binding model. The tunnel matrix elements tlr repre-
sent overlap integrals of electronic wave functions between states |l⟩ and |r⟩,
belonging respectively to L and R. In the following we will consider that
matrix elements tlr are energy independent and all equal to a constant tprobe
(in Ref. [64], Bardeen showed that this assumption is plausible).

Voltage in the phase of the tunneling amplitude When a voltage is
applied on the probe, the tunneling Hamiltonian becomes time-dependent
(see Ref. [162]) and takes the form:

HT (t) = T † (t) + T (t) (D.2)

where:
T † (t) =

∑
l,r

tprobee
−i eV

~ tc†
l cr

This time-dependence makes the problem very difficult to solve, but this
difficulty can be circumvented by performing a perturbative calculation of the
tunnel current to the first order in HT (t). This is explained in the following.

D.1.2 Calculation of the tunnel current
In this section, we briefly explain how to calculate the tunnel current follow-
ing Ref. [65] where the readers can find all the details.

D.1.2.1 Definition of the tunnel current operator

In order to obtain the tunnel current, we need to define a tunnel current
operator I (t) as the time derivative of the number of particles operator of
the probe:

I (t) = dNL (t)
dt
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where NL (t) is in Heisenberg representation:
NL (t) = eiHt

∑
l

c†
l cle

−iHt

From this definition, we can show the following equality:

I (t) = ie

~
[HT (t) , NL (t)] = ie

~
(
T † (t) − T (t)

)
(D.3)

The average value of this operator gives the current flowing between the
probe and the sample. In the following, we calculate ⟨I (t)⟩ perturbatively by
means of the Kubo formula which gives the expectation value of the current
up to linear order in HT (t).

D.1.2.2 Calculation of the tunnel current using the Kubo formula

According to the Kubo formula (see chapter 8 of Ref. [65]), the tunnel current
to first order in HT (t) is given by:

⟨I (t)⟩ = − i

~

ˆ +∞

−∞
θ (t− t′) ⟨[I (t) , HT (t′)]⟩0 dt

′ (D.4)

where ⟨.⟩0 is the thermal average in absence of tunnel coupling, i.e. with
HT (t) = 0.

Inserting equations D.3 and D.2 in the Kubo formula D.4, we get two
terms and their complex conjugates so that the current reads:

⟨I (t)⟩ = 2e
~2 × Re

[ˆ +∞

−∞
θ (t− t′)

(⟨[
T † (t) , T (t′)

]⟩
0

− ⟨[T (t) , T (t′)]⟩0

)
dt′
]

The term ⟨[T (t) , T (t′)]⟩0, involving the creation of an electron pair in R and
the annihilation of another one in L, concerns the flow of Josephson current
between L and R. In our experiment, we don’t see this contribution. Indeed,
at finite V , this current is oscillating at GHz frequency, whereas we perform
experimentally DC measurements, and at V = 0, the branch of supercurrent
is too small to be measured. We will therefore neglect this term from now
on.

Expectation values are evaluated for operators governed by H0 = HL +
HR. As a consequence L and R are completely independent, and we can
write

⟨[
T † (t) , T (t′)

]⟩
0

as the product of two correlation functions calculated
respectively over states of L and R in such a way that ⟨I (t)⟩ becomes:

⟨I (t)⟩ = 2e
~2 |tprobe|2 × Re[

ˆ +∞

−∞
e−i eV

~ (t−t′)θ (t− t′)

×
∑
l,r,l′,r′

(⟨
c†
l (t) cl′ (t′)

⟩
0

⟨
cr (t) c†

r′ (t′)
⟩

0
−
⟨
cl′ (t′) c†

l (t)
⟩

0

⟨
c†
r′ (t′) cr (t)

⟩
0

)
dt′]
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For simplicity, we choose a basis set {|l⟩, |r⟩} in which H0 is diagonal, such
that those correlation functions are different from 0 only if r = r′ and l = l′.
After the variable change t′ → t′ + t and thanks to the fact that these
correlation functions are invariant by time-translation1, we can express the
tunnel current with lesser and greater Green’s functions of L and R (see
section B.1 appendix B for definitions):

⟨I (t)⟩ = 2e
~2 |tprobe|2

×Re
[´ +∞

−∞ e−i eV
~ (−t′)θ (−t′)∑l,r (G<

ll (t′) G>
rr (−t′) − G>

ll (t′) G<
rr (−t′)) dt′

]
which is equal to2:

⟨I (t)⟩ = e

~
|tprobe|2×

ˆ +∞

−∞

∑
l,r

(G<
ll (ω + eV ) G>

rr (ω) − G>
ll (ω + eV ) G<

rr (ω)) dω
2π

As shown in section B.4, these lesser and greater GFs for a time-independent
Hamiltonian can be related to the TDOS and the Fermi-Dirac distribution
in the following way:

2 (1 − fFD (ω)) iIm
[
GR
ll (ω)

]
= G>

ll (ω)

−2fFD (ω) iIm
[
GR
ll (ω)

]
= G<

ld (ω)

We thus end up with formula D.1:

⟨I (t)⟩ = 2e
~

|tprobe|2×
ˆ +∞

−∞
Aprobe (ω + eV ) Asample (ω) [fFD (ω) − fFD (ω + eV )] dω

(D.5)
where:

Aprobe (ω) = −π
∑
l

Im
[
GR
ll (ω)

]
and Asample (ω) = −π

∑
r

Im
[
GR
rr (ω)

]
At this point, we see that the tunnel current doesn’t depend on time, as
the time-variable does not appear in expression D.5. This formula can be
interpreted as a balance of electrons exchange between L and R as it involves
the product between the availability of states and the TDOS of the probe
and the sample. By sweeping V and as we know the TDOS of the probe, we
can explore the TDOS of the sample.

1This is true because H0 does not depend on time.
2Here we have used the fact that the lesser and greater GFs are purely imaginary, see

Eq. B.17 and B.18.
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D.1.2.3 Tunnel differential conductance

Derivation with respect to V of equation D.5 gives access to the differential
conductance G (V ), the quantity that we measure experimentally:

G (V ) = 2e
~ |tprobe|2

×
´ +∞

−∞ Asample (ω) ∂
∂V

[Aprobe (ω + eV ) (fFD (ω) − fFD (ω + eV ))] dω
(D.6)

D.2 Broadening of the ABSs due to the cou-
pling to the tunnel probe

Theory predicts ABSs as infinitely thin peaks in the spectral density. In
experiments however, we expect measurements to be smeared either by tem-
perature or voltage fluctuations of the bias on the tunnel probe. These peaks
should then appear experimentally as bell-shaped function with a character-
istic width of kBTeff , with Teff =

√
T 2 + 3 (eVrms/kBπ) [163] where T is the

temperature and Vrms is the rms amplitude of the voltage noise. Our appa-
ratus was characterized in a previous experiment [79] and expected to have
a limiting resolution of ∼ 15 µeV. However we observe experimentally that
ABSs are bell-shaped with a full-width at half-maximum between 30 and 40
µeV.

Here we show that broadening due to the coupling to the probe is sufficient
to understand this experimental linewidth.

D.2.1 ABSs coupled to a normal tunnel probe
Self-energy of the normal probe If we take into account the coupling
of the QD to a normal tunnel probe into the retarded GF ĜR

dd (ω), we simply
have to add the self-energy of the probe:

Σ̂P (ω + iη) =
[

−iΓP 0
0 −iΓP

]

into the QD GF. Here ΓP = πρF |tP |2 is the strength of this coupling to the
probe, with tP the hopping term between the latter and the QD. The QD
GF, initially given by Eq. 3.2 in chapter 3, thus becomes:

ĜR
dd (ω) =

[
ω + iη − EQD − Σ̂ (ω + iη) − Σ̂P (ω + iη)

]−1
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Consequence on the ABSs When the QD is not coupled to the tunnel
probe, the ABSs are real poles of the QD GF and consequently appear as
infinitely thin peaks in the TDOS. If the QD is coupled to a continuum
spectrum of energy (for example the normal tunnel probe), a quasiparticle
lying in an ABS may escape from the QD and acquires thus a finite lifetime.
It becomes a complex pole because of the imaginary part iΓP and appears
as a broaden peak in the QD TDOS3.

In Fig. D.2, we show the TDOS of a QD in three cases:

• the QD is not coupled to the probe and there is no phenomenological
loss introduced,

• the QD is not coupled to the probe and there is a phenomenological
loss introduced,

• the QD is coupled to the probe and there is no phenomenological loss
introduced.

We can see that the coupling to a normal tunnel probe has a very similar
effect than the phenomenological inelastic loss.

There are however some differences. Whereas ηinel seems to give a Lorentzian
shape to the ABSs, ΣP gives them a bell-shaped which cannot be fitted by
a Lorentzian. Furthermore the TDOS cancels to zero at ±∆ whatever the
value of ΓP , but takes a finite value as soon as ηinel ̸= 0.

Conductance between the tunnel probe and the superconducting
loop The maximum conductance Gp between the tunnel probe and the
superconducting loop (when ϵd = 0∆) is of the order of4:

Gp = 2 × 4ΓΓP[
U2

4 + (Γ + ΓP )2
] e2

h

where we have supposed that the tunnel probe sees the left and right electrode
in parallel and the factor 2 takes into account the spin. For typical parameters
(those of Fig. D.2), Gp is of the order of 0.1 e2

h
. This corresponds to a tunnel

resistance of about 250 kΩ in adequacy to our experimental values (see for
example part IV).

3In Ref. [94], Chang and Bagwell demonstrate that ABSs also acquire a finite linewidth,
in the case of a ballistic S-N-S junction where the N part is coupled to a normal side probe.
This width increases with the coupling to the probe.

4We use here the Breit-Wigner formula (see for example [56] or Eq. 3.5 from chapter
3).
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Figure D.2: TDOS of a QD connected to superconducting leads for three
different cases. Common parameters are Γ = 2∆, δΓ = 0, U = 6∆ and
δ = 0. As they are not visible for ηinel = ΓP = 0, the ABSs are indicated in
white dashed line on the left.

D.2.2 ABSs coupled to a superconducting tunnel probe
When a system is coupled to a biased electrode, out-of-equilibrium processes
(quasiparticle current, inelastic tunneling of Cooper pairs [164], multiple An-
dreev reflection (MAR) current [68]...) may happen such that the system
cannot be described anymore by a thermal distribution function.

Here we suppose that the current between the tunnel probe and the left
and right superconducting electrodes is sufficiently low to maintain them at
thermal equilibrium. Under such approximations the tunnel probe can be
taken into account in the QD GF by adding the self-energy ΣSP (z):

ΣSP (z) =
∑
p

[ √
ΓP 0
0 −

√
ΓP

] [
ϵp − eVbias ∆P

∆P −ϵp − eVbias

]−1 [ √
ΓP 0
0 −

√
ΓP

]

ΣSP (z) =
(

ΓPgP (z) −ΓPfP (z)
−ΓPfP (z) ΓPgP (z)

)

with gP (z) = −(z−eVbias)√
∆2

P −(z−eVbias)2 and fP (z) = ∆P√
∆2

P −(z−eVbias)2 . Here ΓP is the
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coupling strength between the QD and the probe and ∆P is the supercon-
ducting gap of the probe.

We have set the superconducting phase of the probe ϕP to zero, throwing
away all the dynamics induced by the time-dependent nature of the Hamilto-
nian. Indeed, when the tunnel probe is biased, ϕP is actually equal to 2eVbiast

~ .
This phase is generally important as it is the cause of the MAR processes
(see [165, 166]). However as we are in the tunnel regime, these processes
are negligible and we can neglect them by taking ϕP = 0 (as in [167] for
example).

Consequence on the ABSs If the QD is coupled to a superconducting
probe, the latter doesn’t broaden the ABSs when at equilibrium. Indeed
when the voltage on the probe Vbias is equal to zero, the ABSs see only
the superconducting gap of the tunnel probe and not its continuum. As
a consequence quasiparticles lying in an ABS cannot escape and the ABS
conserves its infinite lifetime. However, when the superconducting tunnel
probe is biased, ABSs see the continuum spectrum of the tunnel probe and
acquire a finite lifetime (see Fig. D.3).
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Figure D.3: TDOS of a QD connected to superconducting leads for different
Vbias applied on the superconducting tunnel probe. Common parameters are
Γ = 2∆, δΓ = 0, U = 3∆, ΓP = 0.3∆, ηinel = 0 and δ = 0.

D.3 Extracting the Density of States (DOS)
from the differential conductance

In our experiment we measure the tunnel differential conductance between a
BCS probe and a CNT. This differential conductance is given by expression
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(see Eq. D.6):

G (V ) = 2e
~ |tprobe|2

×
´ +∞

−∞ Asample (ω) ∂
∂V

[Aprobe (ω + eV ) (fFD (ω) − fFD (ω + eV ))] dω

where Asample (ω) is the CNT TDOS. We note this TDOS A (ω) in the fol-
lowing for compactness. To extract A (ω) from G (V ) we need to perform a
deconvolution procedure. Here we described this technique.

D.3.1 Principle of the deconvolution procedure
Discretization of the integral The normalized differential conductance:

g (V ) = G (V ) 1
|tprobe|2

~
2e2

can be expressed as the integral of convolution:

g (V ) =
ˆ +∞

−∞
h (ω, V ) A (ω) dω (D.7)

where h (ω, V ) is defined as:

h (ω, V ) = ∂
∂V

[Aprobe (ω + eV )] (fFD (ω) − fFD (ω + eV ))
+Aprobe (ω + eV ) ∂

∂V
[fFD (ω + eV )]

with Aprobe (ω) the TDOS of the tunnel probe and fFD (ω) the Fermi-Dirac
distribution function.

Since convolution is a linear operation, its implementation on a discretized
set of data [g (V )] can be expressed as a matrix operation:

[g (V )] = M. [A (ω)] (D.8)

with [A (ω)] a discretized DOS.
Here, [g (V )] is a vector containing 2N + 1 experimental points of differ-

ential conductance measured between −V0 and V0 with a step s = V0
N

:

[g (V )] =



g (−V0)
g (−V0 + s)
g (−V0 + 2s)

...
g (V0)


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[A (ω)] is a vector of 2P + 1 points of the CNT TDOS from energy −P × s
to P × s expressed in eV:

[A (ω)] =



A
(
− P
N

× V0
)

A
(
− P
N

× V0 − +s
)

...
A (0)

...

...
A
(
P
N

× V0
)


M is thus a matrix of dimensions (2N + 1) × (2P + 1) just depending on

Aprobe and fFD, with its coefficients given by:

Mij = h
(

(j − 1) × s− P

N
× V0, (i− 1) × s− V0

)
× s

Equation D.8 then reads:

[g (V )]i =
∑
j

h
(

(j − 1) × s− P

N
× V0, (i− 1) × s− V0

)
[A (ω)]j × s

which corresponds indeed to the discretization of integral D.7, except that
boundaries of the integral ±∞ are replaced by finite boundaries ± P

N
×V0 for

pratical purpose.

Deconvolution by multiplication to a fixed matrix [A (ω)] is obtained
by multiplying [g (V )] by the “inverse” of M . Yet M is not necessarily an
inversible matrix, and is generally not even a square matrix.

There exists though a unique Moore-Penrose pseudo-inverse (see Wikipedia)
M−1 so that, for any vector b with the appropriate length, the vector x =
M−1.b gives the minimum of:

∥Mx− b∥2

This pseudoinverse can be obtained in Mathematica with the command:
"M−1"=Pseudoinverse[M], or in MatLab with the command: "M−1"=M\I2N+1.

We obtain the least-square error estimate of the DOS in the nanotube by
left-multiplying the measured differential conductance [g (V )] by the Moore-
Penrose pseudo-inverse of M . The differential conductance can thus be de-
convolved to get CNT DOS simply by multiplying it by a fixed matrix.
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D.3.2 Introduction of a Dynes parameter
To smooth the BCS singularity that may be responsible of divergences in the
numerical calculation of M , we assume that the probe have a BCS DOS with
a Dynes “depairing” imaginary part iγ∆p (γ is a dimensionless parameter and
∆p the superconducting gap of the probe) added to ω:

Aprobe (ω) = nLFRe

 |ω|√
(ω + iγ∆p)2 − ∆2

p


with nF the DOS of the probe in its normal state at the Fermi level. This
avoids to obtain unphysical TDOS after deconvolution (negative TDOS, os-
cillations, divergences...), but also to take into account the finite differential
conductance measured, in the energy range [−∆p,∆p], that should be equal
to zero for a perfect BCS tunnel probe.

During data treatments, we chose Dynes parameters lying between 0.5
and 2% of the superconducting gap. A value of about 150 eV for ∆p gave us
generally the best overall consistency and was compatible with the estimated
gap of our Ti/Al bilayers.

D.3.3 Influence of the finite measurement range
The integration bounds of integral D.7 are infinite. We should therefore
measure g (V ) between −∞ and +∞ in order to perform the deconvolution
procedure properly. Similarly P should be also infinite (as it corresponds to
the integration bounds) and we should pseudo-inverse an infinite matrix.

However as we are almost at zero temperature, fFD becomes a step func-
tion and the bounds are effectively 0 and −eV . Therefore in Eq. D.7, ω takes
values only in the interval [−eV0, eV0] and the knowledge of g (V ) in this in-
terval is sufficient to deduce A (ω) for the interval [−e (V0 − ∆) , e (V0 − ∆)].
The latter is smaller because, within the gap of the tunnel probe, we do not
extract information about the TDOS.



Appendix E

Calculation of Coulomb
blockade peaks for a DQD

In this thesis, we model the DQD structure of our sample’s CNTs with
an Anderson-type Hamiltonian where Coulomb interaction has been phe-
nomenologically replaced by a Zeeman splitting. The latter mimics indeed
quite reasonably the effect of repulsion between electrons which compels to
pay a charging energy to add a second electron of opposite spin in an orbital.
This allows us to understand in detail how ABSs form in our system and to
fit our data with a good qualitative agreement.

However, we are experimentally confronted to some situations (not to
mention the Kondo effect) where this approach completely falls apart. For
example, in Fig. 7.3, we can observe experimental data taken in the normal
state in which four levels of two different orbitals, each one belonging to a
different QD, form avoided crossings. This four avoided crossings cannot be
rendered by our phenomenological approach as we have assigned a spin to
each level and levels of opposite spin are not coupled together.

Here we adopt a slightly different approach, based on self-consistent cal-
culation of the DQD occupancy. We use the Anderson model’s equations of
motion (EOM) in which we neglect terms responsible of the Kondo effect.
With this approach, we can describe patterns such as the one of Fig. 7.3
missed by the phenomenological approach. The method we present in this
appendix is an extension of the Coulomb blockade peaks calculation in QD
explained in chapter 10 of Ref. [65] but for a DQD connected to normal
leads.
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E.1 GF of an interacting DQD connected to
normal leads

E.1.1 DQD Anderson-type Hamiltonian
Here we consider an Anderson-type Hamiltonian with a left and right QDs,
in series, that have on site Coulomb repulsion (we neglect interdot Coulomb
repulsion) and a hopping term that couples them together:

H int
DQD =

∑
σ,α=L,R

ϵαd
†
ασdασ +

∑
α=L,R

Uαnα↑nα↓ +
∑
σ

(
t′d†

LσdRσ + t′d†
RσdLσ

)
with nασ = d†

ασdασ and with notation of section 3.1.4. This DQD is coupled
to normal electrodes described by:

HL = ∑
l

∑
σ ϵlc

†
lσclσ

HR = ∑
r

∑
σ ϵrc

†
rσcrσ

through the terms1:

HTL
= ∑

l,σ

(
tLd

†
Lσclσ + tLc

†
lσdLσ

)
HTR

= ∑
r,σ

(
tRd

†
Rσcrσ + tRc

†
lσdRσ

)
The complete Hamiltonian is thus equal to:

H = HL +HR +H int
DQD +HTL

+HTR

To calculate the DQD’s TDOS ADQD (ω), we need to find the DQD’s GF.
As in this model there are no superconducting correlations and no breaking
of spin degeneracy, we just need to calculate the normal spin up GFs of each
QD:

GL↑L↑ (τ) = −
⟨
TτdL↑ (τ) d†

L↑

⟩
and GR↑R↑ (τ) = −

⟨
TτdR↑ (τ) d†

R↑

⟩
from which we can deduce the spin down GFs by symmetry:

GL↑L↑ (τ) = GL↓L↓ (τ) and GR↑R↑ (τ) = GR↓R↓ (τ) (E.1)

The DQD’s TDOS is obtained just by taking the imaginary part of those
GFs’s Fourier transform:

ADQD (ω) = − 1
π

Im
[
GR
L↑L↑ (ω) + GR

R↑R↑ (ω) + GR
L↓L↓ (ω) + GR

R↓R↓ (ω)
]

where the superscript R means that these GFs are the retarded ones.
1Note that we have considered t′, tL and tR real for simplicity.
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E.1.2 Interacting DQD’s GF calculation
Those GFs in Matsubara frequencies are obtained by resolution of the EOM
as done in appendix B:

∂

∂τ
Gασασ (τ) = −δ (τ)

⟨{
dασ, d

†
ασ

}⟩
−
⟨
Tτ [H, dασ (τ)] d†

ασ

⟩
where α = L or R and σ =↑ or ↓.

EOM for the left QD For the left QD and after Fourier transform in
Matsubara frequency and extension to all the complex plane, these equations
read:− (z − ϵL) GL↑L↑ (z) = −1 − t′GR↑L↑ (z) −∑

l tLGl↑L↑ (z) − UDL↑L↑ (z)
−zGl↑L↑ (z) = −ϵlGl↑L↑ (z) − tLGL↑L↑ (z)

(E.2)
where we have introduced the Fourier transform of additional GFs:

GR↑L↑ (τ) = −
⟨
TτdR↑ (τ) d†

L↑

⟩
Gl↑L↑ (τ) = −

⟨
Tτcl (τ) d†

L↑

⟩
and a two-particles correlation function due to the Coulomb repulsion:

DL↑L↑ (τ) = −
⟨
TτnL↓ (τ) dL↑ (τ) d†

L↑

⟩
(E.3)

related to the evolution of a spin up electron in the left QD already occupied
by a spin down electron.

Higher order correlation functions This function is also solution of its
own equation of motion that we obtain by deriving Eq. E.3 with respect to
the time variable (in the same way than in section B.2.3):

∂

∂τ
DL↑L↑ (τ) = −δ (τ)

⟨{
nL↓d↑, d

†
↑

}⟩
−
⟨
Tτ [H,nL↓ (τ) dL↑ (τ)] d†

↑

⟩
(E.4)

The anti-commutator introduces the mean value of the left QD spin up
occupancy that we will evaluate self-consistently:⟨{

nL↓d↑, d
†
↑

}⟩
= ⟨nL↓⟩

whereas the commutator is equal to:

[H,nL↓dL↑] = −ϵLnL↓dL↑ − UnL↓dL↑ − t′nL↓dR↑ −∑
l tLnL↓cl↑

−
[
t′d†

L↓dR↓dL↑ −∑
l tLd

†
L↓cl↓dL↑

] (E.5)
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where we have used the fact that (nL↓)2 = nL↓.
The first two terms of Eq. E.5 just give correlation functions proportional

to DL↑L↑ (τ). The third and fourth term give correlation functions related to
the possibility for an interacting electron of the left QD to go respectively in
the right QD or the left electrode and come back in the left QD. The last
terms in brackets introduce higher order correlations where the spin of the
left QD flips by exchange with an electron of the right QD or the left lead.
These processes are responsible for the Kondo effect. Our first approximation
is to ignore them in the following, but they should be taken into account if
one wants to see all the effects of on-site Coulomb interaction.

After Fourier transform Eq. E.4 becomes:

(−z + ϵL + U) DL↑L↑ (z) = − ⟨nL↓⟩ − t′DR↑L↑ (z) −
∑
l

tLDl↑L↑ (z) (E.6)

where we have defined:

Dl↑L↑ (τ) = −
⟨
TτnL↓ (τ) cl↑ (τ) d†

L↑

⟩
and:

DR↑L↑ (τ) = −
⟨
TτnL↓ (τ) dR↑ (τ) d†

L↑

⟩
Using the same method that we have used for DL↑L↑ (τ) (EOM with omis-

sion of terms responsible for the Kondo effect), we can evaluate Dl↑L↑ (τ) and
find its Fourier transform:

(z − ϵl) Dl↑L↑ (z) = tLDL↑L↑ (z)

On DR↑L↑ (τ) we perform a Hartree-Fock approximation, this avoids to
introduce higher order correlation functions with six fermions operators:

DR↑L↑ (τ) = ⟨nL↓⟩ GR↑L↑ (τ)

This is our second approximation.

GF of the left QD If we introduce the left electrode self-energy that we
calculate with the same approximation than in section B.3.2:

ΣL (z) =
∑
l

t2L
(z − ϵl)

= −iΓsign [Im (z)]

we can rewrite system E.2 and Eq. E.6 in the following form:(z − ϵL + ΣL (z)) GL↑L↑ (z) = 1 + t′GR↑L↑ (z) + UDL↑L↑ (z)
(z − ϵL − U + ΣL (z)) DL↑L↑ (z) = ⟨nL↓⟩ + t′ ⟨nL↓⟩ GR↑L↑ (τ) (z)
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And by combining them we find:

GL↑L↑ (z) = Gt′=0
L↑L↑ (z) (1 + t′GR↑L↑ (z))

with Gt′=0
L↑L↑ (z) the GF of the left QD for t′ = 0:

Gt′=0
L↑L↑ (z) =

[
1 − ⟨nL↓⟩

(z − ϵL + ΣL (z))
+ ⟨nL↓⟩

(z − ϵL − U + ΣL (z))

]

And following exactly the same calculations (from the beginning) for GR↑L↑ (z),
we end up with:

GR↑L↑ (z) = Gt′=0
R↑R↑ (z) t′GL↑L↑ (z)

As a conclusion of this calculation, we obtain the left QD’s GF for spin
up:

GL↑L↑ (z) =
Gt′=0
L↑L↑ (z)

1 − t′2Gt′=0
L↑L↑ (z) Gt′=0

R↑R↑ (z)
and by symmetry the right QD’s GF for spin up:

GR↑R↑ (z) =
Gt′=0
R↑R↑ (z)

1 − t′2Gt′=0
R↑R↑ (z) Gt′=0

L↑L↑ (z)

Again using an argument of symmetry we can deduce the spin down GFs
using Eq. E.1.

E.2 Self-consistent calculation of the DQD’s
occupancy and TDOS

E.2.1 Self-consistency
Once we have the DQD’s GF, its imaginary part gives us the DQD’s TDOS.
From now on, we can define the left QD’s TDOS:

ALQD (ω) = − 1
π

Im [GL↑L↑ (ω) + GL↓L↓ (ω)] = − 2
π

Im [GL↑L↑ (ω)]

the right QD’s TDOS:

ARQD (ω) = − 2
π

Im [GR↑R↑ (ω)]

and the DQD’s TDOS:

ADQD (ω) = ALQD (ω) + ARQD (ω)
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These TDOS depend on the DQD’s occupancy numbers ⟨nL⟩ = ⟨nL↑⟩+⟨nL↓⟩
and ⟨nR⟩ = ⟨nR↑⟩ + ⟨nR↓⟩ which themselves depend on these TDOS as we
have:

⟨nL⟩ =
ˆ
fFD (ω) ALQD (ω) dω (E.7)

⟨nR⟩ =
ˆ
fFD (ω) ARQD (ω) dω (E.8)

where fFD (ω) is the Fermi-Dirac distribution. occupancies ⟨nL⟩ and ⟨nR⟩
depend thus on temperature. However, in the following, we take the temper-
ature equal to zero for simplicity.

Eq. E.7 and E.8 constitute a self-consistent system that we can easily
solve numerically and from which we can deduce the DQD’s TDOS.

E.2.2 DQD’s TDOS
Here we show some results of calculation based on the self-consistent sys-
tem defined above. We show that we have indeed obtained as expected the
avoided crossings that were missing in our previous model where the Coulomb
repulsion was replaced by a Zeeman splitting.

DQD’s occupancy In Fig. E.1, we have plotted in three dimensions the
DQD’s occupancy as a function of ϵL and ϵR for a set of parameters that
are given in the figure’s legend. We can see that when we increase ϵL and
ϵR the occupancy number decreases taking the shape of a staircase. Each
intermediate plateau has a width approximately equal to the charging energy
of the DQD but limited by the coupling to the leads which rounds this plateau
on the edge.

DQD’s TDOS and avoided crossings If we compare the DQD’s occu-
pancy with its TDOS represented in Fig. E.2, we see that there is a complete
correspondence between occupancy and TDOS. This is expected as a peak
in the TDOS corresponds to a configuration where it is possible to inject or
extract an electron in the system (see appendix D).

We see that we obtain, with these calculations, the four avoided crossings
which appear experimentally when four levels of two orbitals meet each other,
contrary to the phenomenological model. This allows us to make a better
estimation of parameter t′ which couples the two QDs.

Another interesting aspect of this approach is that the coupling t′ in-
troduces some asymmetry in the peaks of the TDOS in the vicinity of the



E.2. Self-consistent calculation of the DQD’s occupancy and TDOS 257

-10 -5 0 5
-10

-5

0

5

Ε
L

HmeVL

Ε
L

Hm
e

V
L

0

2.0

4.0

D
Q

D
's

O
c
c
u

p
a

n
c
y

DQD’s occupancy

Figure E.1: Color plot of the DQD’s occupancy (left) calculated within
the approach described in this appendix. Parameters: UL = UR = 5meV,
ΓL = ΓR = 1 meV, t′ = 1.75 meV. For comparison, we also show on the right
a figure from Ref. [112] which represents a DQD’s occupancy calculated
within an electrostatic approach as a function of the gate voltages applied
on the two dots. We can see that the boundaries between areas of differ-
ent occupancies are rather smooth in our approach and angular within the
electrostatic approach.

avoided crossings (see cuts of Fig. E.2), this may explain some asymmetries
that we observe sometimes experimentally for certain Coulomb peaks.
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Figure E.2: Colorplot and cuts (shifted for clarity) of the TDOS calculated
within the approach explained in this appendix. Parameters: UL = UR =
5meV, ΓL = ΓR = 1 meV, t′ = 1.75 meV



Appendix F

Bogoliubov de Gennes
equations formalism

The Bogoliubov-de Gennes (BdG) equations formalism provides a compact
theoretical description of mesoscopic systems with inhomogeneous supercon-
ductivity.

In this appendix, we first introduce the basic principles of this formalism
and explain how it can be interpreted as “one particle” wave equations (see
also Ref. [168] for more details). We also discuss why this description con-
tains some arbitrariness that does not however change the physics described.
Then we will see that these equations have evanescent solutions with energies
smaller than the superconducting gap. These evanescent waves form bound
states in presence of an interface with a non-superconducting material. In
the next appendix, we will study a simple case where hybridization of such
evanescent states allows the formation of the ABSs: the infinitely short one
dimensional single channel.

F.1 Inhomogeneous superconductivity

F.1.1 Effective Hamiltonian describing an inhomoge-
neous superconductors

A system with inhomogeneous superconductivity can be described by an
effective HamiltonianHeff obtained by mean-field approximation on the BCS
Hamiltonian1. This Hamiltonian is composed of a “normal” term HN and a

1We consider a problem in one dimension along x for simplicity. Furthermore a constant
term

´ |∆|2

g dr +
´

U2

4g dr (−g is the interaction constant of the BCS theory of supercon-
ductivity and U a Zeeman energy) that plays no role in the discussion has been dropped
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pairing interaction HS, source of superconductivity through the formation of
Cooper pairs. They read [44, 47]:

HN =
∑

k,σ=↑,↓
ξkσc

†
kσckσ

HS =
∑
k

∆kc
†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑

where {k, σ} constitutes a complete states basis in which HN is diagonal with
σ the spin and k a quantum number that we do not need to specify here.
ckσ (resp. c†

kσ) is an annihilation (resp. creation) operator for an electron
in state (k, σ). The latter has a kinetic energy2 ξkσ and is paired with its
time-reverse conjugated state (−k,−σ). The strength of this pairing is given
by the potential ∆k:

∆k =
ˆ
ϕk↑ (x)∗ ∆ (x)ϕ−k↓ (x)∗ dx

with ∆ (x) = |∆ (x)| eiϕ(x) the inhomogeneous superconducting complex or-
der parameter and ϕk↑ (x) (resp. ϕ−k↓ (x)) the wave function of state (k, ↑)
(resp. (−k, ↓)).

For a system with inhomogeneous superconductivity, HS contains nor-
mally terms of pairing between states that are not time-reverse conjugated
(for example ∆pqc

†
pσc

†
qσ with q ̸= −p). However as they are generally smaller,

and to simplify the discussion, we drop them in this appendix.

F.1.2 Bogoliubov-de Gennes equations
The BdG equations are obtained by diagonalization of Heff in Nambu space
in which eigenstates of the system are expressed in term of electron-hole
superposition.

In order to perform this diagonalization, we introduce spinors ψk that
have two components: a spin up k-electron component and spin down (−k)-
hole component:

ψk =
(

ck↑

c†
−k↓

)

(see Ref. [54, 168]). It appears when one does the mean field approximation on the BCS
Hamiltonian [47]. Without this term the interaction energy is counted twice and therefore
the condensation energy is wrong, but the physics we are looking here does not depend
on this condensation energy.

2For a Fermi liquid in presence of a magnetic field, we would have ξkσ = ~2k2/2m −
EF + ϵσU/2 with ~ the Planck constant, m the electron effective mass, EF the Fermi
level and U the Zeeman energy. This term can also contain a contribution due to a static
potential caused by disorder.
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Hamiltonian Heff can hence be written:

Heff =
∑
k

ψ†
k

(
ξk↑ ∆k

∆∗
k −ξ−k↓

)
ψk +

∑
k

ξ−k↓ (F.1)

and its diagonalization reduces to the diagonalization of 2 × 2 matrices of
the first term. We thus have to solve the following system, with uk and vk
unknown variables that are known as the “coherence factors”:(

ξk↑ ∆k

∆∗
k −ξ−k↓

)(
uk
vk

)
= E

(
uk
vk

)
(F.2)

System F.2 constitutes the BdG equations of the system. It has two

eigenvectors, that we can note |k+⟩ =
(
uk+
vk+

)
and |k−⟩ =

(
uk−
vk−

)
, with

eigenenergies ϵk+ and ϵk−. Factor uk± (resp. vk±) represents the electron
(resp. hole) part of state |k±⟩ and energies ϵk± may be positive or negative.

F.1.3 Interpretation of the BdG equations as ’one-particle’
wave equations

Equations F.2 can be interpreted as ’one-particle’ wave equations, as the
Schrödinger equation of a normal metal. In this interpretation, eigenstates
(or Bogoliubons) fill a “vacuum” |V ⟩, very much like the electrons of a normal
metal fill the vacuum of electron |0⟩ until the Fermi level.

Bogoliubons |k+⟩ and |k−⟩ can thus be seen as “particles” to which we
can associate creation operators γ†

k+ and γ†
k−:

γ†
k+ = uk+c

†
k↑ + vk+c−k↓ and γ†

k− = uk−c
†
k↑ + vk−c−k↓ (F.3)

These “particles” may have positive or negative energy, as electrons in a
normal metal. To simplify the discussion with no loss of generality, let’s
consider a particular case where, for all k, ϵk+ ≥ 0 and ϵk− ≤ 0 (this is true
for example in a spin degenerate system, and, for the case of a QD, in absence
of local Coulomb repulsion).

Within the new algebra F.3, we can write Heff :

Heff =
∑
k

ϵk+γ
†
k+γk+ + ϵk−γ

†
k−γk− +

∑
k

ξk↓︸ ︷︷ ︸
energy of the vacuum |V ⟩

In this form, the Hamiltonian is made of three terms: the first and sec-
ond terms concern respectively Bogoliubons of positive and negative energy,
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whereas the third concerns the energy of the “vacuum” |V ⟩, mentioned above,
constituted by an empty band of spin up and a full band of spin down (see
Fig. F.1 (a)):

|V ⟩ =
∏
k

c†
−k↓|0⟩

The term ∑
k ξk↓ comes from the anti-commutation rule for fermions: we

have replaced c†
−k↓c−k↓ by 1 − c−k↓c

†
−k↓, an operation which corresponds to

the inversion of the spin down band.
Eigenstates |k+⟩ and |k−⟩ can thus be seen as “particles” of wave func-

tions: (
uk+ϕk↑ (x)
vk+ϕ−k↓ (x)∗

)
and

(
uk−ϕk↑ (x)
vk−ϕ−k↓ (x)∗

)
that propagates into |V ⟩.

In this context, the ground state of the system |G⟩ is obtained by popu-
lating this “vacuum” with Bogoliubons of negative energies3:

|G⟩ =
∏
k

γ†
k−|V ⟩ =

∏
k

(
vk− + uk−c

†
k↑c

†
−k↓

)
|0⟩

whereas the excitations γk−|G⟩ and γ†
k+|G⟩ , that have always positive ener-

gies |ϵk−| and |ϵk+|, correspond to the creation of a quasi-hole with operator
γk− and the creation of a quasi-electron with operator γ†

k+ (in complete anal-
ogy with the normal metal which has hole or electron excitations of positive
energy respectively below an above the Fermi level).

F.1.4 Arbitrariness of the description and diagonaliza-
tion with a different spinor

F.1.4.1 Arbitrariness of the description

This description contains some arbitrariness due to the choice of the spinor.
Indeed, if we diagonalize the Hamiltonian, for example, using spinor ψk =(

c†
k↑

c−k↓

)
, we can show that equation F.1 becomes:

Heff =
∑
k

ψk
†
(

−ξk↑ −∆∗
k

−∆k ξ−k↓

)
ψk +

∑
k

ξk↑ (F.4)

3In particular, in a system with homogeneous superconductivity |G⟩ corresponds to
the well-known BCS ground state |G⟩ = |ψBCS⟩ =

∏
k(uk − v∗

kc
†
k↑c

†
−k↓)|0⟩ with the

“coherence factors” uk = 1√
2

√
1 + ξk

Ek
and vk = e−iϕ

√
2

√
1 − ξk

Ek
, where ξk = ξk↑ =

ξ−k↓, Ek =
√
ξ2

k + |∆|2 and ϕ is the phase of the superconducting order parameter.
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and after diagonalization Heff reads:

Heff =
∑
k

−ϵk+γ
†
k+γk+ − ϵk−γ

†
k−γk− +

∑
k

ξk↑

with4:
γ†
k+ = γk+ and γ†

k− = γk− (F.5)
and energies ϵk± are the same than before.

We see that we have inverted the role of spin up and down, the “vacuum”
|V ⟩ in particular is now constituted by a full band of spin up and an empty
band of spin down (as can be seen with the third term giving the energy of the
vacuum). Moreover the new “particles” |k+⟩ and |k−⟩ are the “antiparticles”
of |k+⟩ and |k−⟩, and therefore have the opposite energies −ϵk+ and −ϵk−.

The signs of these energies is thus arbitrary and depend on the spinor
chosen.

F.1.4.2 Same physics described

However, despite the apparent differences with the description of section
F.1.3, the physics described is the same, i.e. the ground state and its exci-
tations have not changed.

Indeed, the new ground state |G⟩ is:

|G⟩ =
∏
k

γ†
k+|V ⟩ =

∏
k

(
u∗
k+ − v∗

k+c
†
k↑c

†
−k↓

)
|0⟩

but, as |k+⟩ and |k−⟩ are orthogonal, we have u∗
k+ = vk− and −v∗

k+ = uk−,
so that5:

|G⟩ = |G⟩ (F.6)
The ground states are the same whatever the choice of the spinor, and this
is expected as we start from exactly the same Hamiltonian.

Concerning the new excitations, they include the quasiholes γk+|G⟩ of
energy |ϵk+| and the quasielectrons γ†

k−|G⟩ of energy |ϵk−|. They are the
same than in section F.1.3, as we can show the following equalities:

γk+|G⟩ = γ†
k+|G⟩ and γ†

k−|G⟩ = γk−|G⟩

combining equations F.6 and F.5.
4This comes simply from the fact that the 2 × 2 matrix in F.4 is the opposite of the

complex conjugate of the matrix in F.1: −
(

−ξk↑ −∆∗
k

−∆k ξ−k↓

)∗

=
(
ξk↑ ∆k

∆∗
k −ξ−k↓

)
.

5To obtain u∗
k+ = vk− and −v∗

k+ = uk−, we actually use the orthogonality ⟨k+|k−⟩ =
u∗

k+uk− + v∗
k+vk− = 0, but also the normalizations |uk±|2 + |vk±|2 = 1 of the vectors.
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F.1.4.3 Diagonalization using a spinor with equivalence between
the spins

The spinor used to diagonalize Heff can be adapted to the symmetry of the
system. A clever choice provides solutions with clearer physical meanings.
For example in graphene a four-dimensional spinor [169] is suitable to solve
BdG equations because of the spin and valley degeneracies. The two valleys
are indeed time-reversal conjugated and thus coupled by superconductivity.

The spinor ψk, that we chose above for diagonalization of Heff , is an
interesting option when the spin symmetry is broken. Otherwise this choice
remains purely arbitrary and another one can be made leading to a different
vacuum and different solutions to fill it. The previous “vacuum” |V ⟩ (resp.
|V ⟩) contains a distinction between spins because we choose to diagonalize
Heff in Nambu space in which solutions are described in terms of electrons
(resp. holes) of spin up and holes (resp. electrons) of spin down.

However, to diagonalize Heff , we could perfectly choose a spinor with
equivalence between spins. For example if k is the momentum, we can con-

sider a spinor ψ̃kσ =
(

ckσ
c†

−k−σ

)
with k > 0, and write Heff differently than

F.1 and F.4:

Heff =
∑
σ

∑
k>0

ψ̃†
kσ

(
ξkσ ϵσ∆k

ϵσ∆∗
k −ξ−k−σ

)
ψ̃kσ +

∑
σ

∑
k>0

ξ−kσ

with ϵσ = 1 (resp. −1) for σ =↑ (resp. ↓).
Within the Nambu space defined by ψ̃kσ, excitations are described in

terms of electron of positive momentum and hole of negative momentum,
propagating in a new vacuum |Ṽ ⟩:

|Ṽ ⟩ =
∏
σ

∏
k>0

c†
−k−σ|0⟩

This vacuum corresponds to an empty band of k > 0 and a full band of k < 0
(see Fig. F.1 (b)) and Bogoliubons are described in terms of electron with
positive momentum and hole with negative momentum.

But in the end, as we start from the same Hamiltonian than in section
F.1.3, this description with no spin symmetry breaking will bring the same
physics than a diagonalization of Heff with ψk or ψk. The broken spin
symmetry, introduced when we use spinor ψk or ψk is thus purely apparent
and has no influence on the physics described.
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Empty band of spin up Full band of spin down 

E E 

k k 

(a) Vacuum after inversion of a spin down band

Full band for k<0 

Empty band for k>0 

E E 

k k 

(b) Vacuum after inversion of the k < 0 band

Figure F.1: Depending on the choice of the spinor used to diagonalize the
Hamiltonian, solutions of the BdG equations fill different kinds of vacuum.
When solutions of the BdG equations are expressed in terms of electron of
spin up and holes of spin down, the vacuum is constituted by an empty band
of spin up and a full band of spin down because of a spin down band inversion.
But if they are expressed in terms of electron of positive momentum and hole
of negative momentum, the vacuum is an empty band for positive momentum
and a full band for negative momentum.
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F.1.4.4 Excitation picture

The excitation picture (see Ref. [168]) provides a different way (but com-
pletely equivalent) to describe a system with superconductivity. In this pic-
ture, we arrange the states of the system according to their total energy.
From the ground state, one can only create positive-energy excitations (see
Fig. F.2 on the left). Our system has thus excitations at energy |ϵ+| and |ϵ−|
which correspond to emptying a negative-energy ABS or filling a positive-
energy ABS (see Fig. F.2 on the right). However, the energies of these
excitations do not depend on the initial convention regarding electrons and
holes.

Ground state

EF

EF

Excitations

filled level empty level

Representation of the system’s excitations with two
different conventions

Figure F.2: Diagrammatic representation of system’s excitations from the
ground state, for two different conventions: description in terms of electron of
spin up and hole of spin down (top diagram with dotted frame), or description
in terms of electron of spin down and hole of spin up (bottom diagram with
dashed-dotted frame). Depending on the chosen convention, excitation of
energy |ϵ+| (thick red arrows) corresponds either to emptying an ABS of
energy − |ϵ+| below the Fermi level EF or filling one of energy |ϵ+| above EF ,
whereas excitation of energy |ϵ−| (thick green arrows) corresponds either to
emptying an ABS of energy − |ϵ−| below the Fermi level or filling one of
energy of energy |ϵ−| above the Fermi level.

The fact that we talk about positive and negative energies is just a con-
venient way to describe BCS superconductor’s eigenstates, it corresponds to
the so-called semiconductor model [47, 167, 168]. But, contrarily to a real
semiconductor, it is impossible to distinguish states of positive and nega-
tive energies, as they depend of an arbitrary choice made when defining the
Nambu space.
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F.2 States in gap
In section F.1, we have expressed the eigenenergies and eigenvectors of the
mean field BCS Hamiltonian using a parametrization of the states in k, and
introducing the “coherence factors” uk± and vk±. If we parametrize these
eigenstates by their energy, we can see that some of these solutions are
evanescent waves with energy smaller than the superconducting gap (in a
bulk superconductor there are no quasiparticle state between − |∆| and |∆|,
see Ref. [47]).

Let’s consider the case of an homogeneous spin degenerate BCS supercon-
ductor [47] (ξk↑ = ξ−k↓ = ξk = ~2k2

2m − µ with ~ the reduced Planck constant,
m the mass of electron and EF the Fermi level) with a superconducting order
parameter ∆ = |∆| eiϕ. We have the eigenstates:(

uk
vk

)
and

(
−v∗

k

uk

)

with:

uk = 1√
2

√√√√1 + ξk√
ξ2
k + |∆|2

and vk = e−iϕ
√

2

√√√√1 − ξk√
ξ2
k + |∆|2

that have eigenenergies ϵk± = ±
√
ξ2
k + |∆|2 roots of the equation in ϵ:

Det
(
ξk − ϵ ∆

∆∗ −ξk − ϵ

)
= 0

The kinetic energy ξk reads then:

ξ2
k = ϵ2 − |∆|2

and can take real or complex values:

ξk =

 ±
√
ϵ2 − |∆|2 for |ϵ| > |∆|

±i
√

|∆|2 − ϵ2 for |ϵ| < |∆|

Therefore, as around the Fermi level ξk ≃ 2EF ( k
kF

− 1), eigenstates’ momen-
tum are given by:

k±(ϵ) =


kF

(
1 ±

√
ϵ2−|∆|2
2EF

)
for |ϵ| > |∆|

kF

(
1 ± i

√
|∆|2−ϵ2
2EF

)
for |ϵ| < |∆|
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We hence have solutions corresponding to waves that decay or rise slowly
(|Im [k±]| ≪ Re [k±] = kF ) while propagating. They must necessarily be
bounded in space on the side where they grow (for instance by reaching an
interface), otherwise the wavefunction is not normalized.

In this parametrization, the eigenvectors6 can be written as:

eik+(ϵ)x√
1 +

∣∣∣a ( ϵ
|∆|

)∣∣∣2
[

1
a
(

ϵ
|∆|

)
e−iϕ

]
; eik−(ϵ)r√

1 +
∣∣∣a ( ϵ

|∆|

)∣∣∣2
[
a
(

ϵ
|∆|

)
e+iϕ

1

]
(F.7)

where a (ε) is given by the ratio between the coherence factor parametrized
in energy:

a(ε) =


sign(ε)

∣∣∣ε−
√
ε2 − 1

∣∣∣ for |ε| > 1

ε− i
√

1 − ε2 = e−i arccos(ε) for |ε| < 1

The function a (ε) has the properties:

∀ε − a(−ε) = (a(ε))∗ (for |ε| > 1, a is real and thus simply odd)

|ε| < 1 1
a(ε)

= (a(ε))∗ ⇔ |a(ε)| = 1

and is represented in Fig. F.3.

0.5

-3 -2 -1 1 2 3

-1.0

-0.5

-1 1

-1

1.0

Figure F.3: Plot of the modulus, real part and imaginary part (l.h.s.), and
parametric plot in the complex plan (r.h.s.) of the function a (ε) as a function
of ε.

6Note that these vectors are orthogonal because of their different k vectors, not their
e-h components.



Appendix G

Andreev Bound States in a
well-known system

In this appendix, we analyze the formation of Andreev Bound States (ABSs)
in well-known model systems. We address cases where the weak link con-
necting two superconducting reservoirs is an infinitely short one dimensional
single channel (achievable experimentally in a superconducting atomic-size
quantum point contact). It has been proposed [170] for the realization of a
new type of superconducting qubit where a two-level system is constituted
by the ABS.

We analyze first a system with a weak link of perfect transmission, and
then a system with a weak link of finite transmission.

G.1 ABSs in an infinitely short perfectly trans-
mitted one dimensional single channel

In Fig. G.1, we have sketched an infinitely short single channel in one dimen-
sion with a perfect transmission connected on both side to superconducting
leads. In such system, for electrons with an energy smaller than the super-
conducting gap ∆, superconducting electrodes act as perfect mirrors where
electrons are reflected as their time reversal conjugated holes propagating
in opposite direction. This constitutes therefore a kind of Fabry-Perot for
electrons with infinite finesse and phase-conjugated mirrors [52].

In this “Fabry-Perot”, a right moving electron, with energy |ϵ| < ∆, is
reflected on the right mirror as a left moving hole with opposite spin, while a
Cooper pair of charge 2e is transferred in the superconductor. The reflected
hole acquired a phase arg[a(ϵ/∆)e−iϕR ] with respect to the electron, this
phase depending on the energy of the electron and the superconducting phase
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S 

Electron 

Hole 

L=0+ 

S 
φL φR 

Figure G.1: Schematic representation of a S-N-S junction based on an in-
finitely short unidimensional single channel. A S-N-S junction acts as Fabry-
Perot resonator with phase-conjugating mirrors for electrons and holes.

of the lead ϕR (see section F.2). As it propagates in opposite direction, this
hole is reflected on the left mirror as right moving electron, while a Cooper
pair is extracted from the left superconductor. The electron acquires an
additional phase of arg[a(ϵ/∆)eiϕL ] with respect to the hole.

The resonant condition of this Fabry-Perot is reached if the total phase
acquired is a multiple of 2π. Or in other words if:

a(ϵ/∆)2ei(ϕL−ϕR) = 1

two ABSs, responsible of the supercurrent flow, form with energies, repre-
sented in Fig. G.2), that are 2π periodic:

ϵ± = ∓∆cos
(
δ

2

)
sign

[
sin

(
δ

2

)]

where δ = ϕL − ϕR.
Each of these two states carry supercurrent in opposite direction. As

explained in Ref. [171], the latter is given by the following current-phase
relationship:

I± = 1
ϕ0

∂ϵ±

∂ϕ
= ±2e∆

2~

∣∣∣∣∣sin
(
δ

2

)∣∣∣∣∣
where ϕ0 is the flux quantum.

G.2 ABSs in an infinitely short one dimen-
sional single channel with finite trans-
mission

If the weak link connecting the superconducting reservoirs has a finite trans-
mission, these two ABSs are hybridized and form an avoided crossing around
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0 Π 2 Π
-D

D

0

∆

Ε- Ε+

Figure G.2: Energies of the two Andreev Bound States ϵ±, as a function
of the superconducting phase difference δ, in an infinitely short perfectly
transmitted weak link with a single channel.

δ = π. Describing the weak link by the following scattering matrix for elec-
trons (with r and t real numbers):

Se =
(

−ir t
t −ir

)

ABSs’ energies can be found using Eq. 2.1. This leads the expression:

ϵ± = ±∆

√√√√1 − τ sin2
(
δ

2

)
(G.1)

where τ = |t|2 = 1 − |r|2 is the transmission probability of the weak link. A
gap is thus open around δ = π, and increases with a decreasing transmission
of the weak link.

In Fig. G.3, we have traced, in red, ϵ+ and ϵ− for τ = 1, 0.8 and 0.6 using
expressions G.1. The dashed green lines are also ϵ+ and ϵ− but obtained from
the GF formalism (chapter 3) for a single non-interacting QD (U = 0), highly
coupled to its leads (Γ ≫ ∆), at resonance with the Fermi level (ϵ0 = 0) and
with δΓ chosen in such way that the QD transmission obtained from the
Breit-Wigner formula [56]:

τ = 1 −
(
δΓ
Γ

)2

is equal to 1, 0.8 and 0.6. Let’s point out that we could have decrease the
transmission of the QD, keeping δΓ = 0, but driving the QD out of resonance
(ϵ0 ̸= 0). We can see that the two formalisms yield completely equivalent
results.
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0 Π 2 Π
-D

D

0

∆
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Τ

1

0.8
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Figure G.3: Energies of the two Andreev Bound States ϵ±, as a function of
the superconducting phase difference δ, in an infinitely short weak link with
a single channel with transmission τ = 1, 0.8 and 0.6, calculated from the
scattering formalism of chapter 2 (red). In green, ϵ± are calculated, within
the GF formalism of chapter 3, for a QD with transmission 1, 0.8 and 0.6
obtained respectively with ΓR = 100∆, ∼ 38.2∆, ∼ 22.5∆ and the following
common parameters: ΓL = 100∆, U = 0 and ϵ0 = 0. The two formalisms
yields completely equivalent results.
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