D. J. Aldous, Deterministic and Stochastic Models for Coalescence (Aggregation and Coagulation): A Review of the Mean-Field Theory for Probabilists, Bernoulli, vol.5, issue.1, pp.3-48, 1999.
DOI : 10.2307/3318611

L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, 2005.

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, Journal of Statistical Physics, vol.80, issue.1-2, pp.203-234, 1990.
DOI : 10.1007/BF01013961

J. Banasiak, Transport processes with coagulation and strong fragmentation, Discrete and Continuous Dynamical Systems - Series B, vol.17, issue.2, pp.445-472, 2012.
DOI : 10.3934/dcdsb.2012.17.445

J. Banasiak and W. Lamb, Global strict solutions to continuous coagulation???fragmentation equations with strong fragmentation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.141, issue.03, pp.465-480, 2011.
DOI : 10.1017/S0308210509001255

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation???fragmentation equations with unbounded rates, Journal of Mathematical Analysis and Applications, vol.391, issue.1, pp.312-322, 2012.
DOI : 10.1016/j.jmaa.2012.02.002

URL : http://dx.doi.org/10.1016/j.jmaa.2012.02.002

J. Berestycki, Exchangeable Fragmentation-Coalescence Processes and their Equilibrium Measures, Electronic Journal of Probability, vol.9, issue.0, pp.770-824, 2004.
DOI : 10.1214/EJP.v9-227

URL : https://hal.archives-ouvertes.fr/hal-00001256

J. Bertoin, Homogeneous fragmentation processes, Probability Theory and Related Fields, vol.121, issue.3, pp.301-318, 2001.
DOI : 10.1007/s004400100152

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Bertoin, Self-similar fragmentations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.38, issue.3, pp.319-340, 2002.
DOI : 10.1016/S0246-0203(00)01073-6

URL : https://hal.archives-ouvertes.fr/hal-00103546

J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Series on Statistical and Probability Mathematics, 2006.
DOI : 10.1017/CBO9780511617768

URL : https://hal.archives-ouvertes.fr/hal-00103015

B. Bollobás, Random Graphs, 1985.

D. Broizat, A kinetic model for coagulation???fragmentation, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.27, issue.3, pp.809-836, 2010.
DOI : 10.1016/j.anihpc.2009.11.014

J. Carr, F. P. Da, and C. , Asymptotic behavoir of solutions to the Coagulation-Fragmentation equations, J. Stat. Phys, vol.167, pp.89-123, 1994.

D. Cohn, Measure Theory, 1980.

P. Laurençot, On a Class of Continuous Coagulation-Fragmentation Equations, Journal of Differential Equations, vol.167, issue.2, pp.245-274, 2000.
DOI : 10.1006/jdeq.2000.3809

P. V. Coveney and J. A. Wattis, Analysis of a Generalized Becker-Doring Model of Self-Reproducing Micelles, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.452, issue.1952, pp.2079-2102, 1996.
DOI : 10.1098/rspa.1996.0110

D. Beysens, X. Campi, and E. Pefferkorn, Fragmentation Phenomena, World Scientific, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00088155

M. Deaconu, N. Fournier, and E. Tanré, Rate of Convergence of a Stochastic Particle System for the Smoluchowski Coagulation equation, Methodology and Computing in Applied Probability, issue.5, pp.131-158, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01080453

L. Desvilletes and K. Fellner, Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion, SIAM Journal on Mathematical Analysis, vol.41, issue.6
DOI : 10.1137/090752602

P. B. Dubovski and I. W. Stewart, Existence, Uniqueness and Mass Conservation for the Coagulation-Fragmentation Equation, Mathematical Methods in the Applied Sciences, vol.18, issue.7, pp.571-591, 1996.
DOI : 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q

A. Eibeck and W. Wagner, An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena, SIAM Journal on Scientific Computing, vol.22, issue.3, pp.802-821, 2000.
DOI : 10.1137/S1064827599353488

A. Eibeck and W. Wagner, Stochastic Particle Approximations for Smoluchowski's Coagulation Equation. Markov Processes and Related Fields, pp.103-130, 2003.

B. Farizon, M. Farizon, M. J. Gaillard, R. Genre, S. Loucand et al., Mass distribution and multiple fragmentation events in high energy cluster???cluster collisions: evidence for a predicted phase transition, International Journal of Mass Spectrometry and Ion Processes, vol.164, issue.3, pp.225-230, 1997.
DOI : 10.1016/S0168-1176(97)00091-8

URL : https://hal.archives-ouvertes.fr/in2p3-00000123

P. J. Flory, Principles of polymer chemistry, 1953.

N. Fournier, A distance for coagulation, Stoch. Proc. Appl, vol.12, issue.2, pp.399-406, 2006.

N. Fournier, On some stochastic coalescents. Proba. Theory Related Fields, pp.509-523, 2006.

N. Fournier, Standard stochastic coalescence with sum kernels, Electron. Comm. Probab, vol.11, pp.141-148, 2006.

N. Fournier and J. S. Giet, On small particles in Coagulation-Fragmentation equations, Journal of Statistical Physics, vol.111, issue.5/6, pp.1299-1329, 2003.
DOI : 10.1023/A:1023060417976

N. Fournier and J. S. Giet, Convergence of the Marcus???Lushnikov Process, Methodology and Computing in Applied Probability, vol.6, issue.2, pp.219-231, 2004.
DOI : 10.1023/B:MCAP.0000017714.56667.67

URL : https://hal.archives-ouvertes.fr/hal-00149187

N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods and Applications, vol.10, issue.2, pp.95-106, 2004.
DOI : 10.1515/156939604777303253

URL : https://hal.archives-ouvertes.fr/hal-00143798

N. Fournier, . Ph, and . Laurençot, Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels, Journal of Functional Analysis, vol.233, issue.2, pp.351-379, 2006.
DOI : 10.1016/j.jfa.2005.07.013

N. Fournier and E. Löcherbach, Stochastic coalescence with homogeneous-like interaction rates, Stochastic Processes and their Applications, vol.119, issue.1, pp.45-73, 2009.
DOI : 10.1016/j.spa.2008.01.007

URL : https://hal.archives-ouvertes.fr/hal-00731540

A. K. Giri, On the uniqueness for coagulation and multiple fragmentation equation, Kinetic and Related Models, vol.6, issue.3, p.2012
DOI : 10.3934/krm.2013.6.589

E. K. Giri, J. Kumar, and G. Warnecke, The continuous coagulation equation with multiple fragmentation, Journal of Mathematical Analysis and Applications, vol.374, issue.1, pp.71-87, 2011.
DOI : 10.1016/j.jmaa.2010.08.037

URL : https://hal.archives-ouvertes.fr/hal-00557803

D. E. Grady and J. Lipkin, Criteria for impulsive rock fracture, Geophysical Research Letters, vol.4, issue.20, pp.255-258, 1980.
DOI : 10.1029/GL007i004p00255

B. Haas, Loss of mass in deterministic and random fragmentations. Stochastic Process, Appl, vol.106, issue.2, pp.245-277, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103921

K. R. Housen and K. A. Holsapple, On the fragmentation of asteroids and planetary satellites, Icarus, vol.84, issue.1, pp.226-253, 1990.
DOI : 10.1016/0019-1035(90)90168-9

J. Jacod and A. N. Shiryaev, Limit theorems for stochastics processes, 2003.
DOI : 10.1007/978-3-662-02514-7

I. Jeon, Existence of Gelling Solutions for Coagulation-Fragmentation Equations, Communications in Mathematical Physics, vol.194, issue.3, pp.541-567, 1998.
DOI : 10.1007/s002200050368

B. Jourdain, Nonlinear Process Associated with the Discrete Smoluchowski Coagulation-Fragmentation Equation. Markov Processes and Related Fields, pp.103-130, 2003.

J. F. Kingman, The Coalescent. Stochastic Process, Appl, vol.13, pp.235-248, 1982.

J. F. Kingman, Poisson Processes. Oxford Studies in Probability, 1993.

V. Kolokoltsov, The Central Limit Theorem for the Smoluchowski Coagulation Model. arXiv:0708.0329v1 [math.PR]. Probability Theory and Related Fields, pp.87-153, 2010.

J. Lankford and C. R. Blanchard, Fragmentation of brittle materials at high rates of loading, Journal of Materials Science, vol.62, issue.11, pp.3067-3072, 1991.
DOI : 10.1007/BF01124844

M. H. Lee, On the Validity of the Coagulation Equation and the Nature of Runaway Growth, Icarus, vol.143, issue.1, pp.74-86, 2000.
DOI : 10.1006/icar.1999.6239

A. Lushnikov, Some New Aspects of Coagulation Theory, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosfer. I Okeana, vol.14, pp.738-743, 1978.

A. Markus, Stochastic Coalescence, Technometrics, vol.285, issue.1, pp.78-109, 1968.
DOI : 10.1080/00401706.1968.10490541

Z. A. Melzak, A scalar transport equation, Transactions of the American Mathematical Society, vol.85, issue.2, pp.547-560, 1957.
DOI : 10.1090/S0002-9947-1957-0087880-6

P. Michel, E. Benz, P. Tangaand, and D. C. Richardson, Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites, Science, vol.294, issue.5547, pp.1696-1700, 2001.
DOI : 10.1126/science.1065189

P. Michel, W. Benz, and D. C. Richardson, Catastrophic disruption of pre-shattered parent bodies, Icarus, vol.168, issue.2, pp.420-432, 2004.
DOI : 10.1016/j.icarus.2003.12.011

J. R. Norris, Markov Chains. Cambridge Series on Statistical and Probability Mathematics, 1998.

J. R. Norris, Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, The Annals of Applied Probability, vol.9, issue.1, pp.78-109, 1999.
DOI : 10.1214/aoap/1029962598

J. R. Norris, Cluster Coagulation, Communications in Mathematical Physics, vol.209, issue.2, pp.407-435, 2000.
DOI : 10.1007/s002200050026

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Aerosol Science and Technology, vol.28, issue.4, 1978.
DOI : 10.1080/02786829808965531

B. Ráth, Mean Field Frozen Percolation, Journal of Statistical Physics, vol.16, issue.2, pp.459-499, 2009.
DOI : 10.1007/s10955-009-9863-5

W. Rudin, Real and Complex Analysis, Series in Higher Mathematics, 1985.

O. Sotolongo-costa and A. Posadas, Fragment-Asperity Interaction Model for Earthquakes, Physical Review Letters, vol.92, issue.4, 2004.
DOI : 10.1103/PhysRevLett.92.048501

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Mathematical Methods in the Applied Sciences, vol.18, issue.5, pp.627-648, 1989.
DOI : 10.1002/mma.1670110505

I. W. Stewart, A uniqueness existence theorem for the coagulation fragmentation equation, Math. Proc. Camb, pp.573-578, 1990.

W. H. Stockmayer, Theory of Molecular Size Distribution and Gel Formation in Branched???Chain Polymers, The Journal of Chemical Physics, vol.11, issue.2, pp.45-55, 1943.
DOI : 10.1063/1.1723803

S. Tavare, Line-of-descent and genealogical processes, and their applications in population genetics models, Theoretical Population Biology, vol.26, issue.2, pp.119-164, 1984.
DOI : 10.1016/0040-5809(84)90027-3

H. Thorisson, Coupling, stationarity, and regeneration, 2000.
DOI : 10.1007/978-1-4612-1236-2

C. Villani, Topics in Optimal Transportation, Amer. Mathematical Society, vol.58, 2003.
DOI : 10.1090/gsm/058

C. Villani, Optimal Transport: old and new, 2008.
DOI : 10.1007/978-3-540-71050-9

S. N. Wall and G. E. Aniansson, Numerical calculations on the kinetics of stepwise micelle association, The Journal of Physical Chemistry, vol.84, issue.7, pp.727-736, 1980.
DOI : 10.1021/j100444a009

J. A. Wattis, An introduction to mathematical models of coagulationfragmentation processes: A discrete deterministic mean-field approach, pp.1-20, 2006.

W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, 1989.

R. M. Ziff and E. D. Mcgrady, Kinetics of polymer degradation, Macromolecules, vol.19, issue.10, pp.2513-2519, 1986.
DOI : 10.1021/ma00164a010