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Engenharia Informática e de Computadores

Orientadores: Doutora Ana Teresa Correia de Freitas

Doutor Hidde de Jong

Co-orientator: Doutor Radu Mateescu

Júri
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Acknowledgments

I wish to thank everyone who made this work possible, but specifically:

• For the opportunity given to me to attend the PhD Program on Computational Biology

at Instituto Gulbenkian de Ciência, where I had the chance of receiving courses on the

main aspects of computational biology directly by those who where doing the research

on each of the subjects lectured.

• To all the co-authors of the articles and posters included in this thesis: Estelle Dumas,

Bruno Besson, Hidde de Jong, Radu Mateescu, Miguel Teixeira, Ana Teresa Freitas,

Paulo Dias, Delphine Ropers, Arlindo Oliveira, Isabel Sá-Correia and Michel Page.
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Abstract

The study of biological networks has led to the development of increasingly large and

detailed models. While whole-cell models are not on the horizon yet, complex networks

underlying specific cellular processes have been modeled in detail. The study of these models

by means of analysis and simulation tools leads to large amounts of predictions, typically

time-courses of the concentration of several dozens of molecular components in a variety of

physiological conditions and genetic backgrounds. This raises the question how to make sense

of these simulations, that is, how to obtain an understanding of the way in which particular

molecular mechanisms control the cellular process under study, and how to identify interesting

predictions of novel phenomena that can be confronted with experimental data.

Formal verification techniques based on model-checking provide a powerful technology to

keep up with this increase in scale and complexity. The basic idea underlying model checking

is to specify dynamical properties of interest as statements in temporal logic, and to use

model-checking algorithms to automatically and efficiently verify whether the properties are

satisfied or not by the model. The application of model-checking techniques is hampered,

however, by several key issues described in this thesis.

First, the systems biology domain brought to the fore a few properties of the network

dynamics that are not easily expressed using classical temporal logics, like Computation Tree

Logic (Ctl) and Linear Time Logic (Ltl). On the one hand, questions about multistability

are important in the analysis of biological regulatory networks, but difficult (or impossible) to

express in Ltl. On the other hand, Ctl is capable of dealing with branching time, important

for multistability and other properties of non-deterministic models, but it does not do a good

job when faced with questions about cycles in a Kripke structure. Second, the problem of

posing relevant and interesting questions is critical in modeling in general, but even more so

in the context of applying model-checking techniques, due to the fact that it is not easy for

non-experts to formulate queries in temporal logic. Finally, most of the existing modeling

and simulation tools are not capable of applying model-checking techniques in a transparent

way. In particular, they do not hide from the user the technical details of the installation of

the model checker, the export in a suitable format of the model and the query, the call of the

model checker, and the import of the results produced by the model checker (the true/false

verdict and witness/counterexample).

In order to address these issues, in this thesis we propose three different approaches

to tackle each of the issues. First, we propose a new temporal logic, called Computation

Tree Regular Logic (Ctrl), powerful enough to capture the biological properties of mul-

tistability (branching-time) and oscillations (linear-time). Ctrl extends Ctl with regular

expressions and fairness operators, achieving a good compromise between expressive power,

user-friendliness and complexity of model checking. Second, we propose a new pattern system,

based on frequently-asked questions posed by modelers in systems biology. Each pattern is
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a high-level query template formulated in structured natural language rather than temporal

logic, providing an automatic translation into temporal logic formulas. Third, we propose a

service-oriented architecture capable of integrating modeling and simulation tools with current

model-checking tools, providing a common environment for the modeling and the verification

of biological regulatory networks. This architecture is generic and modular, capable of in-

tegrating different model checkers through the use of a plugin system and permitting the

connection from different modeling and simulation tools.

The proposed methods were implemented in a new version of the tool Genetic Network

Analyzer (Gna 7.0), through the development of a new verification module. This module

provides a graphical user interface capable of helping the user with the specification of biolog-

ical properties, as well as with the visualization and interpretation of verification results. In

order to illustrate the use and applicability of the developed methods, Gna 7.0 has been used

for the validation of two complex biological models. The first is a model of the network of

regulators controlling the carbon starvation response in the bacterium Escherichia coli. The

second is a model of the activation of the 12-spanner H+ drug antiporter encoding gene FLR1

in the presence of the fungicide mancozeb in the eukaryote Saccharomyces cerevisiae. Both

models were checked for inconsistencies by confronting the model predictions with available

experimental data. The identified inconsistencies were subject to further experiments and/or

to model revisions.

Formal verification methods are promising tools for upscaling the analysis of biological

regulatory networks. The implementation of the proposed approaches into a single integrative

environment provide the modeler with a scalable and automated method for analysis of these

networks. This thesis helps lower the obstacles to the use of formal verification technology in

biology, opening the way for new perspectives like the exploration of symbolic approaches to

further scale the size and complexity of the models, and the definition of diagnostics for the

semi-automatic revision of the models.

Keywords: systems biology, biological regulatory networks, qualitative simulation, formal

verification, temporal logic, model checking.
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Resumo

O estudo de redes biológicas tem originado o desenvolvimento de modelos cada vez mais

complexos e detalhados. Apesar de ainda não ser posśıvel ter modelos integrais de uma

célula, têm sido modeladas em detalhe redes complexas correspondendo a processos celulares

espećıficos. O estudo destes modelos utilizando ferramentas de análise e simulação origina

grandes quantidades de previsões, que correspondem normalmente à evolução temporal da

concentração de dezenas de componentes celulares numa variedade de condições fisiológicas

e genéticas. Isto levanta a questão de como interpretar esta quantidade de simulações, ou

seja, como compreender a forma como mecanismos moleculares espećıficos controlam um dado

processo celular, e como identificar previsões interessantes de novos fenómenos que possam

ser comparados com dados experimentais.

As técnicas de verificação formal baseadas em model-checking são consideradas uma tec-

nologia poderosa, permitindo acompanhar o aumento de escala e complexidade do problema.

A ideia por detrás da técnica de model-checking consiste na especificação de propriedades de

interesse como formulas em lógica temporal, e na utilização de algoritmos de model-checking

para verificar de forma automática e eficaz se estas propriedades são ou não satisfeitas pelo

modelo. No entanto, a aplicação destas técnicas tem sido dificultada por um conjunto impor-

tante de factores, descritos e analisados no âmbito desta tese.

Em primeiro lugar, na área cient́ıfica da biologia de sistemas têm sido tratadas diversas

questões, tais como a identificação e a caracterização de propriedades dinâmicas de uma

rede biológica que não são facilmente expressas usando lógicas temporais clássicas, como as

lógicas Computation Tree Logic (Ctl) e Linear Time Logic (Ltl). Por um lado, questões

acerca da multi-estabilidade são importantes na análise de redes biológicas, sendo no entanto

dif́ıceis (ou imposśıveis) de expressar usando a lógica Ltl. Por outro lado, a lógica Ctl é

suficientemente expressiva para lidar com a ramificação temporal, condição necessária para a

multi-estabilidade e outras propriedades de modelos não-determińısticos, mas não é adequada

para a expressão de oscilações. Em segundo lugar, o problema de como elaborar perguntas

relevantes é essencial no processo de modelação em geral, mas ainda mais relevante no contexto

da aplicação de técnicas de model-checking à validação de modelos biológicos, devido ao facto

de não ser fácil para o utilizador comum formular questões em lógica temporal. Em terceiro

lugar, a maioria das ferramentas de modelação e simulação existentes não estão preparadas

para a aplicação de técnicas de model-checking de forma transparente. Em particular, estas

não escondem do utilizador os detalhes de instalação de um model checker, a exportação de

um modelo e de propriedades num formato adequado, a chamada de execução de um model

checker e finalmente a importação dos resultados produzidos (o veredicto verdadeiro/falso e

a testemunha/contra-exemplo) de volta ao ambiente de modelação.

De forma a minimizar cada uma das limitações da utilização de técnicas de model-checking

na análise de redes biológicas, são propostas três soluções diferentes no âmbito desta tese.
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Primeiro, é proposta uma nova lógica temporal, denominada Computation Tree Regular Logic

(Ctrl), suficientemente expressiva para representar propriedades biológicas como a multi-

estabilidade (tempo-ramificado) e as oscilações (tempo-linear). A nova lógica Ctrl estende

a lógica Ctl usando expressões regulares e operadores de justiça, conseguindo um bom com-

promisso entre poder expressivo, usabilidade e complexidade de model-checking. Segundo, é

proposto um sistema de padrões, baseado em perguntas frequentemente formuladas por quem

estuda e modela redes biológicas. Cada padrão é uma pergunta que utiliza uma linguagem

natural estruturada, sendo posteriormente traduzida, de forma automática, para formulas em

lógica temporal. Terceiro, é proposta uma arquitectura baseada em serviços capaz de inte-

grar ferramentas de modelação e simulação com ferramentas de model-checking, fornecendo

um ambiente comum para a modelação e verificação de redes de regulação biológicas. Esta ar-

quitectura é genérica e modular, permitindo a integração de diferentes model checkers através

do uso de um sistema de plugins e permitindo a ligação de ferramentas de modelação e sim-

ulação diferentes.

Os métodos propostos foram implementados na nova versão da ferramenta Genetic Net-

work Analyzer (Gna 7.0), através do desenvolvimento de um novo módulo de verificação.

Este módulo fornece uma interface gráfica capaz de ajudar o utilizador na especificação de

propriedades biológicas, bem como na visualização e interpretação dos resultados. De forma

a demonstrar o uso e a aplicabilidade dos métodos desenvolvidos, o Gna 7.0 foi usado na

validação de dois modelos biológicos complexos. O primeiro é um modelo de uma rede de

reguladores que controlam a resposta à ausência de carbono na bactéria Escherichia coli. O

segundo é um modelo de uma rede de activação do gene FLR1, codificador de um trans-

portador de membrana celular, na resposta à presença do fungicida mancozeb no organismo

eucariota Saccharomyces cerevisiae. Em ambos os modelos foi verificada a existência de

inconsistências entre as predições do modelo e os dados experimentais dispońıveis. As in-

consistências identificadas deram origem a novas experiências laboratoriais e a revisões do

modelo computacional.

Os métodos de verificação formal são ferramentas promissoras para o problema da escala-

bilidade da análise de redes de regulação biológicas. A implementação dos métodos propostos

fornece ao modelador um ambiente único de integração que abre novas perspectivas, como é o

caso da exploração de utilização de abordagens simbólicas para permitir a análise de modelos

maiores e mais complexos, e ainda a definição de diagnósticos para a revisão semi-automática

de modelos.

Palavras chave: biologia de sistemas, redes de regulação biológicas, simulação qualitativa,

verificação formal, lógica temporal, model checking.
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Résumé

L’étude de réseaux biologiques donne lieu à des modèles de plus en plus grands et détaillés.

Bien que des modèles complets de la cellule ne soient pas encore d’actualité, des réseaux com-

plexes qui interviennent dans certains processus cellulaires spécifiques ont déjà été modélisés

en détail. L’étude de ces modèles par l’utilisation d’outils d’analyse et de simulation conduit

à un grand nombre de prédictions, généralement sous forme d’évolutions temporelles de la

concentration de plusieurs dizaines de composants moléculaires sous une variété de conditions

physiologiques et génétiques. Cela soulève la question de savoir comment ces simulations peu-

vent nous aider à mieux comprendre la manière dont les mécanismes moléculaires contrôlent

un processus cellulaire donné, et comment identifier les prédictions intéressantes de nouveaux

phénomènes, qui peuvent ensuite être confrontées à des données expérimentales.

Les techniques de vérification formelle basées sur le model checking constituent une tech-

nologie puissante pour faire face à cette augmentation d’échelle et de complexité. L’idée de

base du model checking est de spécifier des propriétés dynamiques intéressantes sous forme

de déclarations en logique temporelle, et d’utiliser des algorithmes de model checking pour

vérifier de façon automatique et efficace si les propriétés sont satisfaites ou non par le modèle.

L’application directe des techniques de model checking est par contre dificile, pour plusieurs

raisons.

Premièrement, nous verrons que le domaine de la biologie des systèmes demande l’analyse

de quelques propriétés dynamiques du réseau qui ne sont pas facilement exprimables avec

les logiques temporelles classiques, comme par example Computation Tree Logic (Ctl) et

Linear Time Logic (Ltl). Par example, des questions sur la multistabilité sont importantes

dans l’analyse de réseaux de régulation biologiques, mais sont difficiles (voire impossibles)

à exprimer à l’aide de Ltl. Aussi, Ctl est capable de traiter le branchement temporel,

ce qui est important pour traiter la multistabilité et d’autres propriétés de modèles non-

déterministes, mais n’est pas capable de formuler des requêtes concernant les cycles dans une

structure de Kripke. Ensuite, le difficulté de poser des questions pertinentes et intéressantes

est essentielle dans la modélisation en général, mais c’est encore plus le cas dans le contexte de

l’application des techniques de model checking, parce qu’il n’est pas facile pour des non-experts

de formuler des requêtes en logique temporelle. Enfin, la plupart des modèles existants et des

outils de simulation ne sont pas capables d’appliquer des techniques de model checking d’une

manière transparente. En particulier, ils ne cachent pas à l’utilisateur les détails techniques

de l’installation du model checker, l’export du modèle et de la requête dans un format adapté,

l’appel du model checker, et l’import des résultats produits par le model checker (le verdict

vrai/faux et le témoin/contre-exemple).

Dans le contexte de cette thèse, nous proposons trois approches différentes pour abor-

der chacune des questions. Premièrement, nous proposons une nouvelle logique temporelle,

appelée Computation Tree Regular Logic (Ctrl), qui est suffisamment puissante pour cap-
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turer les propriétés biologiques de multistabilité (branchement temporel) et des oscillations.

Ctrl étend Ctl avec des expressions régulières et des opérateurs d’équité, en cherchant un

bon compromis entre l’expressivité de la logique, la la facilité d’utilisation et la complexité

des algorithmes de model checking. Deuxièmement, nous proposons un système de patterns

nouveau, basé sur les questions fréquemment posées par les modélisateurs en biologie des

systèmes. Chaque pattern est une requête de haut niveau, formulée en langage naturel struc-

turé au lieu d’une formule de logique temporelle, qui peut être traduite automatiquement dans

des formules en logique temporelle. Troisièmement, nous proposons une architecture orientée

services capable d’intégrer des outils de modélisation et de simulation avec des outils exis-

tants de model checking, de façon à fournir un environnement commun pour la modélisation

et la vérification de réseaux de régulation biologiques. Cette architecture est générique et

modulaire, capable d’intégrer des model checkers différents grâce à l’utilisation d’un système

de plugins, et permettant en principe aussi l’intégration de différents outils de modélisation

et simulation.

Les méthodes qui sont proposées ont été mises en ouvre dans une nouvelle version de l’outil

Genetic Network Analyzer (Gna 7.0), à travers du développement d’un nouveaux module de

vérification. Ce module fournit une interface utilisateur graphique capable d’aider l’utilisateur

avec la spécification des propriétés biologiques, ainsi que la visualisation et l’interprétation

des résultats de la vérification. Afin d’illustrer l’utilisation et l’applicabilité des méthodes

développées, Gna 7.0 a été utilisé pour la validation de deux modèles biologiques com-

plexes. Le premier est un modèle du réseau des régulateurs globaux qui contrôle la réponse

à l’épuisement de sources de carbone chez la bactérie Escherichia coli. Le deuxième est un

modèle de l’activation du 12-H+ anti-porteur des drogues, codé par le gène FLR1, dans la

présence du fongicide mancozeb chez l’eucaryote Saccharomyces cerevisiae. Ces deux modèles

ont été analysées en confrontant les prédictions du modèle avec des données expérimentales

disponibles. Les incohérences trouvées ont mené à des expériences complémentaires et/ou à

des révisions du modèle.

Les méthodes de vérification formelle sont des outils prometteurs pour l’analyse de réseaux

de régulation biologiques de plus en plus grands. La mise en oeuvre des approches pro-

posées dans un environnement unique intégré permet à l’utilisateur une méthode automa-

tique pour l’analyse de ces réseaux complexes. Cette thèse contribue à enlever des obstacles

pour l’utilisation de la technologie de vérification formelle en biologie, et ouvre une voie à de

nouvelles perspectives comme l’exploration d’approches symboliques pour continuer à aug-

menter la taille et la complexité de modèles, et la définition de diagnostiques pour la révision

semi-automatique de modèles.

Mots-clés: biologie des systèmes, réseaux de régulation biologique, simulation qualitative,

vérification formelle, logique temporelle, model checking.
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Chapter 1

Introduction

Cellular interaction networks consist of genes, proteins, small molecules, and their mutual

interactions, which are involved in the control of cellular functions. Most of these networks

are large and complex, thus defying our capacity to understand how the dynamic behavior

of the cell emerges from the structure of interactions. This has led to the development of

increasingly large and detailed models [77], consisting of dozens or even hundreds of variables

describing the molecular species involved in a variety of intracellular processes [34, 33, 58,

81, 94, 120]. The study of these models by means of analysis and simulation tools leads to

large amounts of predictions, typically time-courses of the concentration of several dozens

of molecular components in a variety of physiological conditions and genetic backgrounds.

This raises the question how to make sense of these simulations, that is, how to obtain

an understanding of the way in which particular molecular mechanisms control the cellular

process under study, and how to identify interesting predictions of novel phenomena that can

be confronted with experimental data.

For instance, Figure 1.1 presents a interaction network between different functional mod-

ules involved in the response of Saccharomyces cerevisiae to osmotic shock. This complex

network may be used to answer questions like the following “Is the basal glycerol production

level combined with rapid closure of Fps1 sufficient to explain an initial glycerol accumulation

after osmotic shock?”. Another question that arises is how to encode these biological ques-

tions in a non-ambiguous formal manner. In addition, it is clear that verifying the existence

of a particular behavior against all the predictions generated by simulation tools, quickly

becomes a challenging task that cannot be manually performed.

Methods from the field of formal verification provide a promising way to deal with the

analysis of large and complex models of cellular interaction networks [56]. These methods pro-

ceed by an exploration of all possible behaviors of the system, following two main approaches:

logic inference, based on the use of axioms and proof rules [99], and model checking, based on

an automatic and exhaustive search of the state space [40]. Model checking is the most used

approach, and its basic idea is to specify dynamical properties of interest as statements in
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Figure 1.1: Overview of the response of Saccharomyces cerevisiae to hyperosmotic stress,
divided into several functional modules defined by level of biological organization [81].

temporal logic, and to use model checking algorithms to automatically and efficiently verify

whether the properties are satisfied or not by the model [40]. In recent years, several examples

of the application of model checking to the analysis of biological regulatory networks have

been published in the literature (e.g., [4, 8, 9, 14, 15, 18, 21, 26, 29, 64, 57, 123]).

1.1 Problem

Three major problems exist regarding the use of formal verification techniques by model-

ers in systems biology. First, the study of biological systems has recently shown that classical

temporal logics are not expressive enough to describe accurately the dynamical behavior

of some biological properties needing both multistability (branching-time) and oscillations

(linear-time). Second, the formulation of biological questions in temporal logic and the inter-

pretation of the verification results is far from obvious, especially for non-expert users who are

not used to this kind of reasoning. Third, most of the existing modeling and simulation tools

are not capable of applying model checking techniques in a transparent way. In particular,

they do not hide from the user the intricates of temporal logic formulas and details of verifica-

tion procedures, and they do not provide good graphical user interfaces for the presentation

of the verification results.

Non-expert users, especially modelers in systems biology are thus impaired at several

levels to use model checking techniques, hindering the wide-spread use of these techniques in
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biological modeling.

1.2 Approach

In order to address these issues, four specific research lines are proposed in the context of

this PhD thesis.

To tackle the first issue, the temporal logic expressiveness problem, we propose to devise

a new temporal logic powerful enough to capture the biological properties of multistability

(branching-time) and oscillations (linear-time). This temporal logic should have a small

number of operators, and a succinct and intuitive user-friendly syntax for non-expert users.

Also, it should be state-based in order to be directly interpreted on Kripke structures (see

Section 2.1 for formal definition), which provide a general description of dynamic systems.

Also, this temporal logic should have a reasonable model checking complexity.

There is however, a syntax and semantics associated to all temporal logics that needs to

be understood by users. Modelers in systems biology are not expected to know it in order

to formulate biological questions. For this issue, we propose to devise a set of query pattern

templates, based on a review of frequently-asked questions by modelers, and to automatically

translate these templates into temporal logic formulas.

To solve the third issue, we propose an implementation of a service-oriented architecture,

connecting the modeling and simulation tools to model checking servers. This architecture

should abstract the users from all the verification details and provide a graphical user interface

for the presentation of the verification results.

Finally, in order to validate the proposed approach and to illustrate its applicability in

a real case scenario, we propose the analysis of two large and complex biological models of

genetic regulatory networks whose predictions cannot be manually verified.

1.3 Contributions

We developed several contributions in the context of this thesis.

First, we defined a new temporal logic, named Computation Tree Regular Logic (Ctrl),

adapted to the specification of biological concepts. Most temporal logics are either branching-

time or linear-time, allowing the specification of either multistability or oscillations, respec-

tively. The use of temporal logics of higher expressive power, like propositional µ-calculus [84],

permits the specification of both these biological properties. However, as the expressive power

of a temporal logic increases, so does the complexity of its semantics, and therefore the diffi-

culty of specifying a property. Ctrl extends Ctl [39] with regular expressions and fairness

operators, achieving a good compromise between expressiveness, user-friendliness and com-

plexity of model checking. A model checker for Ctrl was obtained through the implemen-

tation of a translation from Ctrl to Hennessy-Milner Logic with Recursion and the reuse of
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the verification engine Cadp [61]. This work has resulted in a publication in the Automated

Technology for Verification and Analysis conference [102] and is under revision for a computer

science journal.

Second, we developed a set of patterns capable of capturing frequently-asked biological

questions, by formulating them in the form of query templates in structured natural language.

We started by performing a careful analysis of previous modeling studies and applications of

formal verification in systems biology, and we realized that a set of questions emerged as the

most frequently-asked by modelers. We are able to provide the user this set of patterns to-

gether with the corresponding variants, corresponding to dynamic behaviors like reachability,

sequences or invariance of events. The patterns can then be automatically translated into

temporal logic formulas without the user intervention. This work was published in a special

issue of Bioinformatics [109].

Third, we developed a service-oriented architecture which connects the modeling and

simulation clients to a model-checking server via web-service technology. This connection

enables users to access formal verification technology through a single environment through

the modeling and simulation tools. It hides from the user all the formal verification technical

details like the export of the model and the query into a model-checker specific format, the

call of the model checker, and the import and interpretation of its results. This connection

was implemented and is fully operational through the Genetic Network Analyzer (Gna 7.0)

modeling and simulation tool which connects to the implemented formal verification servers

at INRIA Grenoble Rhône-Alpes, supporting the NuSmv and Cadp model checkers. This

work has resulted in a publication in BMC Bioinformatics [108].

Finally, the whole infrastructure was validated by the analysis of two biological systems

in two model organisms, the bacterium Escherichia coli and the eukaryote Saccharomyces

cerevisiae. The first model describes a complex genetic regulatory network involved in the

carbon starvation response in E. coli, extending a previous model [118] with additional regu-

lators to better account for the control of DNA supercoiling during growth transitions of the

bacteria. This work has resulted in the publication [109]. The second model describes a ge-

netic regulatory network involved in the stress response to the drug mancozeb in S. cerevisiae,

by taking into account the cascade of transcription factors that activate the gene FLR1, re-

sponsible for exporting the drug out of the cell. Preliminary results were published in [106],

while a complete description of the model was submitted for publication in BMC Systems

Biology [107].

1.4 Thesis outline

This thesis is organized as follows:
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Chapter 2 introduces fundamental notions of finite state transition systems, temporal logic

and the basic model checking problem with a running example. Also, applications of model

checking to the field of systems biology are shown, stressing their problems and limitations.

Chapter 3 describes the first contribution, the Ctrl language, including its syntax, se-

mantics and expressiveness. It is also presented the translation steps to Hennessy-Milner logic

with recursion (HmlR) [92] and a description of the connection to the Evaluator model

checker of the Cadp toolbox [61].

Chapter 4 describes the second contribution, a pattern system in the form of query tem-

plates in structured natural language, capable of capturing frequently-asked questions posed

by modelers in systems biology. It is also presented the translations of the patterns to several

temporal logics.

Chapter 5 describes the third contribution, the implementation of a framework that inte-

grates modeling and simulation tools with model checkers through a service-oriented archi-

tecture. It is also described the necessary translation steps for the model and the properties

from the modeling and simulation tools towards the model checkers and vice-versa.

Chapter 6 presents a validation of the developed system by applying it to the verification of

the biological models of two organisms, the bacterium E. coli and the eukaryote S. cerevisiae.

Chapter 7 summarizes the developed contributions and places them in context of the

current use of formal verification techniques in the field of systems biology.

Appendix A presents the logic proofs that support the semantic definition of the temporal

logic Ctrl, as well as the necessary translation steps to transform a Ctrl temporal logic

formula into a HmlR equation block.

Appendix B shows some screenshots of the Gna usage to support the analysis of two

genetic regulatory networks in Chapter 6.
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Chapter 2

Related work

The application of methods from the field of formal verification for the analysis of biological

complex models, putted forward the necessity to understand concepts coming from both fields.

This chapter starts by introducing the basic concepts and data structures that are used

to represent the possible behaviors of a dynamical system. Next, a brief overview is given

over some of the different types of existing temporal logics necessary for the specification

of properties in a system. It also presents the model checking problem, which consists in

determining if a given system satisfies a given set of properties.

Some of the recent applications of model checking techniques in systems biology are also

presented in Section 2.4. These applications concern different types of biological systems

using different mathematical formalisms to represent the model. However, they all share the

necessity to represent the behaviors of the system as a Fsts and to use temporal logic as

means to specify dynamic properties.

Finally, despite the existence of successful applications of model checking techniques for

querying biological systems, the usage of these techniques is not natural for most users,

especially those coming from the systems biology community. Section 2.5 presents some

problems and limitations that currently hamper the natural use of these techniques.

2.1 Finite state transition systems

In the context of this thesis, the problem of determining whether the dynamical behavior of

a biological model satisfy some properties, must be translated into a model checking problem

(see Section 2.3 for formal definition).

The application of formal verification techniques to computational systems biology corre-

sponds to the same methodology as the one developed for hardware and software verification.

In order to reuse it, one must transform the systems biology problem into a hardware/software

problem. The most used formal verification method is model checking, typically representing

the behavior of a discrete system or a continuous one that been discretized under a suit-
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able abstraction criterion, through a graph structure (implicit or explicit), where the nodes

represent the states of the system and the edges the possible transitions between the states.

This graph will contain information about the system, where each state of the graph

represents the state of the system at a given instant. This specific information contained in

a state is often called atomic proposition. The atomic propositions considered in this thesis

contain information about the concentration bounds of the variables, the trend of the variables

in that state (increasing, decreasing or steady), among other things.

There are two main approaches to represent atomic propositions in model checking: using

Kripke structures, introduced by Saul Kripke in 1963 [86], where this information is annotated

on the nodes by means of atomic propositions, or by using labeled transition systems [113],

where this information is annotated on the transition arcs, by means of labels called actions.

Definition 1 (Kripke Structure) A Kripke structure K is tuple 〈S, S0, AP, L, TR〉 where

S is the set of states, S0 ⊆ S is the set of initial states, AP is the set of atomic propositions,

L : S → 2AP is the state labeling function which labels each state with a set of atomic

propositions true in that state, TR ⊆ S × S is the transition relation which is assumed to be

total (i.e., for each state s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ T ).

A state s in the Kripke structure is characterized by its label, which contain the set of

atomic propositions Qs ⊆ AP that are valid in that state.

Definition 2 (Labeled Transition System) A labeled transition system LTS is tuple

〈S, S0, Act,→〉 where S is the set of states, S0 ⊆ S is the set of initial states, Act is a

set of actions, →⊆ S × Act × S is the transition relation. A transition (s, a, s′) ∈→ if the

system can move from s to s′ by performing action a, also notated s
a
→ s′.

Contrary to the Kripke structure where each state is labeled with a set of atomic propo-

sitions, in a labeled transition system the transitions are labeled with single actions.

Definition 3 (Computation tree) A computation tree is an acyclic (possibly infinite) graph

of nodes and edges, where each node represents a single computation state and each edge rep-

resents a transition to the next possible computation state.

One can imagine the unwinding of the state transition system in Figure 2.1 into a data

structure called computation tree (Figure 2.2) where the level of the tree represents time

and a given state on the computation tree represents the current state, having one or more

successors representing the possible future states.

2.2 Temporal logic

Temporal logic is a formalism for describing sequences of transitions between states in a

reactive system. In classical temporal logics the notion of time is not mentioned explicitly [40].
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Figure 2.1: State transition system.
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Figure 2.2: Computation tree.

Instead, the notion of time-order is introduced through the use of temporal operators to

describe statements like some designated state is eventually reached, or that an error state is

never reached.

Several temporal logics have been defined since the 80s, differing in many characteristics.

All of them however, can be characterized based on two main characteristics. The first

characteristic separates linear time logics, where each execution has one single possible future,

from the branching time logics, where at each instant a choice can be made between alternate

courses representing multiple possible futures. The second characteristic separates the logics

that are state based from those that are action based, in other words, those that associate

atomic propositions to states from those that associate actions to transitions.

The most used branching-time state-based logic is Ctl [39] and due to its simplicity it

will be used to explain the basic syntax and semantic of temporal logic formulas. Other

temporal logics will be discussed as well, differing on their expressive power and their way of

representing a given property.

2.2.1 Computation Tree Logic (Ctl)

Ctl formulas are composed of the standard propositional operators together with tem-

poral operators and path quantifiers [39]. These formulas describe properties of computation

trees, which are formed by picking an initial state in a Kripke structure and unwinding the

structure into an infinite tree with the designated state at the root (Figure 2.2). This resulting

computation tree shows all the possible executions starting from that designated state. The

notion of computation path refers to a (not necessarily infinite) set of sequentially connected

states along the computation tree.

There are two types of formulas in Ctl: state formulas (which are true in a specific state)

and path formulas (which are true in a specific path) [40]. In order to describe the branching

structure in the computation tree, there are two path quantifiers (Table 2.1). The existential

(E) and the universal (A) path quantifiers denote that a given path formula f at state s,

should hold for some computation path or for all computation paths, respectively.
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In order to describe properties of a path along the tree, temporal operators are used

(Table 2.1). Given a state formula ψ and a current path starting at state s, the formula X ψ

(X for next) is valid if the next state along the path satisfies the property ψ. The formula

F ψ (F for future) is valid if some future state along the path satisfies the property ψ. The

formula G ψ (G for globally) is valid if every state along the path satisfies the property ψ.

The formula φ U ψ (U for until) is valid if some state along the path satisfies ψ and every

preceding state on that path satisfies φ.

E (f) “Exists” f has to hold for some computation path

A (f) “For all” f has to hold for all computation paths

X ψ “Next” ψ has to hold at the next state

F ψ “Future” ψ eventually has to hold on some future state

G ψ “Globally” ψ has to hold at the entire subsequent path

φ U ψ “Until” φ has to hold in all states up until ψ holds
(this implies that ψ will be verified in the future)

Table 2.1: Ctl path quantifiers and temporal operators.

2.2.1.1 Ctl syntax and semantics

By combining the previously defined path quantifiers with the temporal operators, in such

a way that each temporal operator is always immediately preceded by a path quantifier, we

obtain the following list of Ctl operators defining the syntax for Ctl formulas:

φ, ψ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ

| EX φ | AX φ | EF φ | AF φ | EG φ | AG φ | E[φ U ψ] | A[φ U ψ]

where p ranges over a (finite) set Ap of atomic propositions.

We define the semantics of Ctl with respect to a Kripke structure M (Section 2.1). We

use πi to denote the ith state of a path π. The interval going from the ith state of a path

π to the jth state inclusively (where i ≤ j) is noted πi,j . An interval π0,i is called prefix of

π. For each state s ∈ S, Path(s) denotes the set of all paths going out of s, i.e., the paths π

such that π0 = s. The semantics of the Ctl language is described in Table 2.2.

A state s of M satisfies the atomic proposition p (notation M, s � p) if and only if

p ⊂ Labels(s), where labels(s) denotes the set of all atomic propositions belonging to state

s. The semantics of boolean operators is defined in the standard way. A state satisfies the

formula EX φ if and only if it has at least a successor satisfying φ. A state satisfies the formula

AX φ if and only if all its successors satisfy φ. A state satisfies the formula EF φ if and only

if it has an outgoing path leading to a state satisfying φ. A state satisfies the formula AF φ

if and only if all its outgoing paths lead to states satisfying φ. A state satisfies the formula

EG φ if and only if it has an outgoing path with all its states satisfying φ. A state satisfies
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M, s � p ⇔ p ∈ L(s)
M, s � ¬φ ⇔ M, s 2 φ
M, s � φ1 ∨ φ2 ⇔ M, s � φ1 or M, s � φ2

M, s � φ1 ∧ φ2 ⇔ M, s � φ1 and M, s � φ2

M, s � EX φ ⇔ ∃π∈Path(s).M, π1 � φ

M, s � AX φ ⇔ ∀π∈Path(s).M, π1 � φ

M, s � EF φ ⇔ ∃π∈Path(s).∃i≥0.M, πi � φ

M, s � AF φ ⇔ ∀π∈Path(s).∃i≥0.M, πi � φ

M, s � EG φ ⇔ ∃π∈Path(s).∀i≥0.M, πi � φ

M, s � AG φ ⇔ ∀π∈Path(s).∀i≥0.M, πi � φ

M, s � E[φ1 U φ2] ⇔ ∃π∈Path(s).∃i≥0.∀0≤j<i.M, πj � φ1 ∧M,πi � φ2

M, s � A[φ1 U φ2] ⇔ ∀π∈Path(s).∃i≥0.∀0≤j<i.M, πj � φ1 ∧M,πi � φ2

Table 2.2: Semantics of Ctl [40].

the formula AG φ if and only if all its outgoing paths have all their states satisfying φ. A

state satisfies the formula E[φ1 U φ2] if and only if it has an outgoing path leading to a state

satisfying φ2 after zero or more states satisfying φ1. A state satisfies the formula A[φ1 U φ2]

if and only if all its outgoing paths lead to states φ2 after zero or more states satisfying φ1.

The four operators that are used most widely are illustrated in Figure 2.3. These operators

are easy to understand in terms of the computation tree obtained by unfolding the Kripke

structure, having the state s as its root.

g

s

g

g

g

s

M, s � EFg M, s � EGg

gg

g

s

gg

g

g g

g

g

s

M, s � AFg M, s � AGg

Figure 2.3: Most widely used Ctl operators [40].

By looking at the semantics of each operator it can be easily seen that the path quantifiers

13



are dual between themselves, as well as some of the temporal operators. The existing dualities

and some equivalences are presented in Table 2.3.

A φ ≡ ¬E (¬φ)
G φ ≡ ¬F (¬φ)
F φ ≡ true U φ

AX φ ≡ ¬EX (¬φ)
EF φ ≡ E[true U φ]
AG φ ≡ ¬EF (¬φ)
AF φ ≡ ¬EG (¬φ)
A[φ U ψ] ≡ ¬E[(¬ψ) U (¬φ ∧ ¬ψ)] ∧ ¬EG (¬ψ)

Table 2.3: Dualities and equivalences in Ctl.

The use of Ctl operators is illustrated bellow for the specification of biological properties.

For instance, the property “gene g is never expressed” corresponds to the following Ctl

formula, where φg denotes the expression of gene g:

AG (φg = 0)

For a more complex example, the property “gene g is eventually expressed, and is nec-

essarily preceded over the whole duration of the experiment by a concentration larger than

0.9 µM of the transcription factor P” corresponds to the following Ctl formula, where φg

denotes the expression of gene g:

EF (φg > 0) ∧ AG (¬([P ] > 0.9µM) ⇒ AG (φg = 0))

2.2.2 Computation Tree Logic∗ (Ctl∗)

Starting from the syntax and semantics of the Ctl language defined above, the Ctl∗

language can be introduced by dropping the syntactic restriction stating that each temporal

operator must be preceded by a path quantifier, resulting in the following syntax:

φ, ψ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | X φ | F φ | G φ | φ U ψ | E φ | A φ

where p ranges over a (finite) set Ap of atomic propositions.

This means that the Ctl∗ language can not only express the same formulas as Ctl,

but also express all the formulas composed by two or more consecutive temporal operators

without having to precede each one of them with a path quantifier. Ctl∗ is therefore more

expressive than Ctl [38]. Examples of Ctl∗ formulas that are not expressible in Ctl are the

following:

E (FG p)
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and

A (FG p) ∨ AG (EF p)

2.2.3 Linear Time Logic (Ltl)

The two previously described logics were state-based branching-time logics. Ltl [40] is a

linear-time state-based logic, less expressive than Ctl∗ [51, 90], consisting on the suppression

of the path quantifiers from its formulas, resulting in the following syntax:

φ, ψ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | X φ | F φ | G φ | φ U ψ

where p ranges over a (finite) set Ap of atomic propositions.

The Ltl formulas are in the form A (f), denoting that all the executions must satisfy

formula f , where f is prevented from using path quantifiers to combine with the temporal

operators. Examples of such formulas are the following:

FG p

and

F (p⇒ G p)

Although Ctl and Ltl are two subsets of Ctl∗, neither of them totally includes the

other, and therefore their expressive power cannot be compared [40].

2.2.4 Modal µ-calculus

The µ-calculus is a modal logic using greatest and least fixpoint operators. It was originally

introduced by Kozen [84], to be interpreted on Kripke structures with labeled transitions, and

by Kupferman et al. [87], to be interpreted on classical Kripke structures.

µ-calculus formulas are composed of two types of operators: the least (µ) and greatest

(ν) fixed points, and the modal operators possibility (♦) and necessity (�). Intuitively, least

fixpoints correspond to eventualities or finite recursions of a formula, while greatest fixpoints

correspond to properties that should hold forever or infinite recursions of a formula. For

instance, given a state and a path starting from that state, the fact that a property p holds

for some state or for all states of the path is expressed using a least (µ) or a greatest (ν)

fixed point, respectively. Modal operators are used to specify that, given a state, a property

p possibly (♦ p) or necessarily (� p) holds on the next state of some or all of its outgoing

paths.

Modal µ-calculus formulas are defined over a set of actions a ∈ A and a set of variables
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X ∈ X , and are constructed according to the following syntax:

φ, ψ ::= true | false | p | ¬p | φ ∧ ψ | φ ∨ ψ | [a]φ | 〈a〉φ | X | µX.φ | νX.φ

where p ranges over a (finite) set Ap of atomic propositions.

To the biological property “gene g is never expressed”, previously specified in Ctl, where

φg denotes the expression of the gene g, corresponds the following µ-calculus formula:

νX.((φg = 0) ∧ [true]X)

To the second biological property stating that “gene g is eventually expressed, and is

necessarily preceded over the whole duration of the experiment by a concentration larger

than 0.9µM of the transcription factor P”, corresponds the following µ-calculus formula:

µX.((φg > 0) ∨ 〈true〉X) ∧ νY.((¬([P ] > 0.9µM) ⇒ νZ.((φg = 0) ∧ [true]Z)) ∧ [true]Y )

µ-calculus is more expressive than Ctl or even Ctl∗ [43]. Some of the properties presented

in Chapter 6 cannot be expressed in Ctl and need a temporal logic as expressive as µ-calculus.

But, to a more expressive temporal logic typically corresponds to a more complex syntax,

which in practice means that even the simplest properties are difficult to specify, especially

for a non-expert user.

2.2.5 Hennessy-Milner Logic with Recursion (HmlR)

Hennessy-Milner Logic (Hml) is a simple modal logic introduced by Hennessy and Milner

in [71], considered a standard for modal logics interpreted on labeled transition systems. It

has a limited expressiveness, but its presentation is of interest because it defines the basis for

the Hennessy-Milner Logic with recursion (HmlR) that will be used in Ctrl.

Hml is defined over a set of actions a ∈ A, and the formulas follow the following syntax:

ϕ ::= true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ

Given a Lts T = 〈S,A,→〉, the inductive definition of when a state s ∈ S satisfies the

formula ϕ is given by the following rules:

s � true s 2 false

s � ϕ1 ∧ ϕ2 iff s � ϕ1 and s � ϕ2

s � ϕ1 ∨ ϕ2 iff s � ϕ1 or s � ϕ2

s � [a]ϕ iff for all t with s
a
→ t, t � ϕ

s � 〈a〉ϕ iff there is t with s
a
→ t and t � ϕ

The branching time modalities [a] and 〈a〉 relate a state to its a-successors (Figure 2.4).
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While [a] holds for a state if all its a-successors satisfy formula ϕ, 〈a〉 holds if an a-successor

satisfying formula ϕ exists.

...

...

...

...

a

a

aa ϕ

ϕ

ϕ[a]ϕ:

ϕ

〈a〉ϕ:

Figure 2.4: Illustration of branching-time modalities.

HmlR [92] replaces the fixpoint operators of the modal µ-calculus by blocks of recursive

equations, where all equations belonging to a given block have the same fixpoint sign (µ or

ν). Each equation is composed on the left by a propositional variable and on the right by an

Hml formula.

Definition 4 (Fixed-point equation block) A fixed-point equation block is a set of equa-

tions sharing the same fixed-point sign where the unguarded occurrences of variables occurring

on the right-hand side of the equations are bounded by equations of the same block if the fixed-

point sign is kept, or by equations of another block if the fixed-point sign is changed.

To the biological property “gene g is never expressed”, previously specified in Ctl, where

φg denotes the expression of the gene g, corresponds the following HmlR equation block:

〈X1, {X1
ν
= X2 ∧X3, X2

ν
= [true]X1, X3

ν
= 〈(φg = 0)〉true}〉

where X1 is the main variable and must be bound in the first block of the equation block.

The response to the biological property is obtained by interpreting the equation block on a

Lts and obtaining the value of the variable X1.

To the second biological property stating that “gene g is eventually expressed, and is

necessarily preceded over the whole duration of the experiment by a concentration larger

than 0.9µM of the transcription factor P”, corresponds the following HmlR specification

containing five equation blocks:

〈X1, {X1
µ
= X2 ∧X5},

{X2
µ
= X3 ∨X4, X3

µ
= 〈true〉X2, X4

µ
= 〈(φg > 0)〉true},

{X5
ν
= X6 ∧X7, X6

ν
= [true]X5},

{X7
µ
= X8 ∨X9, X8

µ
= 〈(P > 0.9µM)〉true},

{X9
ν
= X10 ∧X11, X10

ν
= [true]X9, X11

ν
= 〈(φg = 0)〉true}〉

The Ctl formula AG(ϕ⇒ EFψ) is represented in HmlR by two equation blocks: {X1
ν
=

[true]X1 ∧X2} and {X2
µ
= 〈¬ϕ〉true ∨X3, X3

µ
= 〈ψ〉true ∨ 〈true〉X3}, where the main variable

X1 represents the property.
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HmlR is as expressive as the modal µ-calculus and will be used later in this thesis as a

target language for the translation process described in Chapter 3, to be interpreted by the

Evaluator model checker.

2.3 Model checking

In this section we describe model checking procedures. Throughout the years several

approaches and improvements were developed, like for example the use of symbolic model

checking using Binary Decision Diagrams (Bdds) [24] as the internal structure to represent

the model. However in this section, for illustrative purposes only the model checking algorithm

for Ctl initially developed by Queille and Sifakis [115] and Clarke, Emerson and Sistla [39]

is presented.

Definition 5 (Model-checking problem) Given a Kripke structure K = 〈S, S0, AP, L, TR〉,

representing a finite-state transition system, and a temporal logic formula f expressing a given

specification, find the set of all states in S that satisfy f : {s ∈ S : M, s � f}.

2.3.1 Model checking Ctl

This algorithm relies on the fact that Ctl can only express state formulas, and thus

the model checking problem can be solved by computing the sets of states satisfying the

subformulas, without inspecting the execution paths in the Kripke structure. This is achieved

by a recursive labeling algorithm which will work backwards from the states satisfying the

atomic propositions contained in the formula to the initial state(s) and check if the formula

is present on the labels of the initial state(s). Since some of the Ctl operators present some

dualities and equivalences between themselves (Table 2.3), it is sufficient for the recursive

labeling algorithm (Algorithm 1) to handle six cases, depending on whether the formula f is

atomic or has one of the following forms: ¬, ∨, EX, EU and EG. Algorithm 2 and Algorithm 3

respectively handle the case of operators EU and EG.

Given a Ctl formula f and a Kripke structure K, the model checking Algorithm 1, by

recursion on f , computes the set label(s) for all the states s ∈ S. Upon termination, a state

s � f if f ∈ label(s). The formula f is valid on the Kripke structure K if and only if there is

at least one state s ∈ S0 such that s � f .

The Ctl model-checking procedure is exemplified with a running example, by verifying

the Ctl formula f = E[a U b] on the state transition graph presented on Figure 2.1. The

Figure 2.5 shows the computation tree presented in Figure 2.2 with a state numbering, before

the application of the model checking algorithm.

Let us consider s1 belonging to the set of initial states S0. We first start by applying

the Algorithm 1 to the formula f , which states that we have to recursively apply the same

Algorithm 1 to each of the arguments of the Until operator, and then apply Algorithm 2 to
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Algorithm 1 Procedure for labeling states satisfying f : mc ctl(f)

if f = p then
add p to label(s) for those states s with p ∈ L(s)

else if f = g0 ∨ g1 then
mc ctl(g0);mc ctl(g1); add f to all states labeled with g0 or g1

else if f = ¬g then
mc ctl(g); add f to all states not labeled with g

else if f = EX g then
mc ctl(g); add f to all states with an TR-successor labeled by g

else if f = E[g0 U g1] then
mc ctl(g0);mc ctl(g1); check eu(g0, g1);

else if f = EG g then
mc ctl(g); check eg(g);

end if

Algorithm 2 Procedure for labeling states satisfying E[f U g]: check eu(f, g)

T := {s | g ∈ label(s)};
for all s ∈ T do
label(s) := label(s) ∪ {E[f U g]};

end for
while T 6= ∅ do

choose s ∈ T ;
T := T \ {s};
for all t such that TR(t, s) do

if E[f U g] 6∈ label(t) and f ∈ label(t) then
label(t) := label(t) ∪ {E[f U g]};
T := T ∪ {t};

end if
end for

end while

. . .

. . .

. . .

. . .

. . .

. . .

c

d

d

c

a

b

d

db b

b

s10 s11

s1

s2 s3

s4 s5 s6 s7

s8 s9

Figure 2.5: Computation tree for the state transition graph on Figure 2.1 with state numbers,
before applying the labeling procedure.
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Algorithm 3 Procedure for labeling states satisfying EGf : check eg(f)

S′ := {s | f ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S′};
T :=

⋃

C∈SCC{s | s ∈ C};
for all s ∈ T do
label(s) := label(s) ∪ {EG f};

end for
while T 6= ∅ do

choose s ∈ T ;
T := T \ {s};
for all t such that t ∈ S′ and TR(t, s) do

if EGf 6∈ label(t) then
label(t) := label(t) ∪ {EG f};
T := T \ {t};

end if
end for

end while

the Until operator. Upon the first application, Algorithm 1 will label si = {a} all the states

si which have the atomic proposition a valid. Next, Algorithm 1 is applied to the second

argument of the formula where all the states si with the atomic proposition b valid in that

state will be labeled si = {b}. Finally, the Algorithm 2 is applied to the Until operator itself.

The application of Algorithm 2 will start with the definition of the set T = {s3, s7, s9, s11},

corresponding to the states that were previously labeled with the atomic proposition b. Next,

the Until operator is added to the label of all the states in T . The state s11 is then picked

and removed from the set T , and it is checked if any of its incoming states are labeled with

the atomic proposition a and are not labeled with the Until operator. In this case, s6 is an

incoming state of s11 but the atomic proposition a 6∈ label(s6). Proceeding with the cycle, in

the next two iterations pick the states s7 and s9 and remove them from the set T . They are

both checked if any of their incoming states is labeled with the atomic proposition a and are

not labeled with the Until operator. Also, in this case, only s3 and s5 are incoming states but

without the atomic proposition a in their labels. The final state to be picked and removed

from the set T is the state s3. The state s1 is an incoming state of the state s3, labeled with

the atomic proposition a and not yet labeled with the Until operator. The Until operator is

therefore added the set label(s1) and this state is added to the set T . Continuing the cycle,

the state s1 is now picked and removed from the set T . Since there are no incoming states

and no more states in the set T , the Algorithm 2 terminates and recursively falls back to the

Algorithm 1. This algorithm also terminates, finalizing the state labeling procedure for the

formula f = E[a U b] on the state transition graph presented on Figure 2.1. The resulting

labeled computation tree is presented in Figure 2.6.

In this example, it is verified if the transition system in Figure 2.1 satisfies formula f =
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Figure 2.6: Computation tree for the state transition graph on Figure 2.1 with state numbers,
after applying the labeling procedure for the formula f = E[a U b].

E[a U b]. Like previously mentioned, the model checking procedure states that a given formula

f is valid if and only if there is at least one state s ∈ S0 such that s � f . Since, in this example

the formula f = E[a U b] is present in the label of the initial state s1, the model checking

procedure returns true, meaning that the transition system satisfies the formula.

The description of the simple model-checking procedure for Ctl is just a brief example of

a simple automated algorithm for the verification of the validity of property in a system. The

following section presents some examples of the application of this automated model-checking

procedure for the verification of real biological systems.

2.4 Model checking in computational systems biology

Several applications of model checking in the field of systems biology have been proposed

in recent years [4, 8, 9, 14, 15, 18, 21, 26, 29, 57, 64, 123]. These applications differ for

example in the type of model that is being analyzed or the formalism used to represent the

model. Examples of such formalisms are Boolean and other logical models [95, 124, 134],

Petri nets [31, 64, 82], ordinary differential equations [20, 44], among others. In the sequel,

we briefly review some of these applications.

Gilles Bernot et al. [18] applied model checking for the verification of a model of a

genetic regulatory network illustrating mucus production [66] in Pseudomonas aeruginosa.

These bacteria are commonly present in the environment and secrete mucus in lungs affected

by cystic fibrosis, increasing the respiratory deficiency of the patient.

The authors were interested in the development of a multi-stable model, satisfying the

experimental biological results, where one stable state regularly produces mucus and the other

does not. The developed network is presented in Figure 2.7. The main regulator of mucus

production is the gene algU . It codes for the protein AlgU which positively regulates both an
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operon and all genes involved in the mucus synthesis. The operon is made up of algU itself

(positive autoregulation) and 4 other genes which code for an inhibitor complex (anti-AlgU)

of the protein AlgU.

Figure 2.7: Main regulatory genes of mucus production in Pseudomonas aeruginosa [18].

To model this network the authors used the discrete multivalued approach developed by

Thomas [132], obtaining an asynchronous state transition graph representing all the possible

behaviors of the system, and the Ctl temporal logic was chosen to describe these behaviors.

The existence of a stable state with a regular production of mucus, was expressed with

the following Ctl formula:

(x = 2) ⇒ AX AF (x = 2)

where x represents the concentration of mucus.

Moreover, the following Ctl formula was used to test if the wild bacteria never produce

mucus by themselves when starting from a basal state:

(x = 0) ⇒ AG( ¬(x = 2))

The formal verification of these biological properties, was carried out using the Smv model

checker [105]. The authors started from a set of 648 possible models that were cutted down

to 4 models satisfying several criteria, including the two previous formulas. These 4 models

correspond to 2 possible networks having the 2 desired stable states each.

Muffy Calder et al. [26] applied model checking for the analysis of a signal transduction

pathway, where mitogenic and differentiation signals are transmitted from the cell membrane

to the nucleus, in particular the RKIP inhibited ERK pathway [35] (Figure 2.8). The authors

were interested in understanding the role of the kinase inhibitor protein RKIP in the behavior

of the pathway.
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To build the models, the authors considered discrete approximations of protein concentra-

tions due to the lack of quantitative data. The models were based on high level descriptions of

stochastic transition systems, in particular, continuous time Markov chains (CTMCs). Con-

tinuous Stochastic Logic (Csl) was used to express and check a variety of temporal queries

for both transient and steady state behaviors.

Figure 2.8: Graphical representation of the RKIP inhibited ERK pathway [35]. A circle
represents a state for the concentration of a protein and a bar a kinetic parameter of reaction
to be estimated. The directed arc (arrows) connecting a circle and a bar represents a direction
of a signal flow. The bi-directional thick arrows represent a association and a dissociation
rate at same time. The thin unidirectional arrows represent a production rate of products.

Several types of temporal properties were considered, like: steady state analysis of stability

of a protein (i.e., a protein reaches and then remains within certain bounds), steady state

analysis of protein stability when varying reaction rates (i.e., a protein is more likely to be

stable for certain reaction rates) and transient analysis of protein activation sequence (i.e.,

concentration peak ordering).

An example of such a property is: “What is the probability that the concentration of Raf-

1*/RKIP/ERK-PP complex will be less than Level M until Raf-1*/RKIP complex reaches

concentration Level C?”, which corresponds to the following Csl formula1:

P =? [(Raf − 1∗/RKIP/ERK − PP < M) U (Raf − 1∗/RKIP = C)]

1Continuous Stochastic Logic (CSL) [6] was not introduced in this thesis, but the Csl formula above
exemplifies the possibility of asking for the probability of a given formula being true rather than asking if it is
true or false.
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The models were described using the language of the Prism model checker [88], where the

reactions were synchronous processes and concentrations discrete, abstract quantities. The

results were then compared with traditional ordinary differential equation-based simulations.

Chabrier and Fages [28] applied model checking for the analysis of the mammalian cell

cycle control [83]. The authors were interested in characterizing the activity of two major

types of proteins: cyclins and cyclin-dependent kinases. The cyclin-dependent kinases activity

requires the binding to a cyclin, and it is controlled by specific inhibitors and by stimulatory

or inhibitory phosphorylations by several kinases or phosphatases which in turn may produce

positive feedback loops.

Similarly to [26], due to the lack of quantitative data the authors considered discrete

approximations of protein concentrations, in this case, all variables were considered boolean.

To model this network, the authors used concurrent transition systems, introduced by [122],

for reasoning about concurrent programs. The chosen temporal logic was Ctl, to capture

the branching type behavior of the system.

An example of a biological property is “Can the cell reach a state s1 while passing by

another state s2?”, which corresponds to the following Ctl formula:

EF (s2 ∧ EF (s1))

or “Is a certain (partially described) state s of the cell a stable state?”, corresponding to the

following Ctl formula:

AG s

To perform the verification of these biological queries, the authors used the symbolic model

checking approach using the NuSmv model checker [37]. The authors were mainly interested

in putting forward the advantages of using this kind of approach with respect to the use

of just simulation techniques. In subsequent work, the authors applied these techniques to

answer some biological questions (e.g., Rizk et al. [116]).

2.5 Problems and limitations

Despite the existence of successful examples of the application of model-checking tech-

niques to systems biology, several problems and limitations still persist, preventing these

techniques from being naturally used by the systems biology community.

First, the expressiveness of the existing temporal logics is not sufficient to express all bio-

logical properties. Second, the formulation of biological properties as statements in temporal

logic is not obvious, especially for non-expert users. And third, most of the existing modeling

and simulation tools are not capable of applying model-checking techniques in a transparent

way.

24



2.5.1 Expressiveness of standard temporal logics (CTL/LTL)

Definition 6 (Multistability) Multistability is a property of a system containing multiple

attractors, representing a choice on the evolution of the system from the set of initial states.

Typically, one can force the system to alternate between these attractors by changing the input

values of the system.

Definition 7 (Oscillations) In a Kripke structure K = 〈S, S0, AP, L, TR〉, an oscillation is

defined by a set of states O ∈ S constituting a finite path πi,j (i < j), where the set of atomic

propositions characterizing state πi is equal to the set of atomic propositions characterizing

state πj (label(πi) = label(πj)).

Formal verification based on model-checking techniques has been mostly applied to the

analysis of hardware and software systems. Most of the existing examples in these domains

use classical temporal logics, like Ctl [39] and Ltl [99], to capture branching-time and

linear-time behaviors, respectively. However, the application to actual biological systems

brought to the fore the necessity of expressing both of these behaviors using a single temporal

logic. In particular, the expression of multistability and other properties of non-deterministic

models (corresponding to branching-time properties), as well as the expression of (damped)

oscillations in the concentration of molecular species (corresponding to linear-time properties).

For example, the description of an oscillatory behavior between two genes g1 and g2 cannot

be represented in Ctl and is described using the following Ltl formula:

¬G((inc g1 ∧ ¬F inc g2) ∨ (inc g2 ∧ ¬F dec g1)

∨ (dec g1 ∧ ¬F dec g2) ∨ (dec g2 ∧ ¬F inc g1))

where the atomic propositions inc g1, dec g1, inc g2 and dec g2 indicate the increasing and

decreasing expression of genes g1 and g2, respectively.

An obvious solution would be to consider the previously described Ctl∗ [51] language or

the more expressive propositional µ-calculus [84], since both subsume Ctl and Ltl. However,

these powerful temporal logics are complex to understand and use by non-experts.

The desirable situation would be to have a temporal logic at least as expressive as Ctl∗

to allow the expression of properties of biological interest, while keeping a good compromise

with user-friendliness.

2.5.2 Formulation of temporal logic properties by non-expert users

Despite the fact that formal verification based on model checking provides a powerful

technology to query biological systems, finding good questions is not evident. The problem

of posing relevant and interesting questions is critical in modeling in general, but even more

so in the context of applying formal verification techniques, due to the fact that it is not easy
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to formulate queries in temporal logic, especially for non-expert users who are not familiar

with this kind of reasoning.

For instance, considering ψg to denote the expression of gene g, what does the following

Ctl formula specify?

EF (φg) ∧ ¬E(true U (¬([P ] > 0.9 µM) ∧ E(true U φg)))

This Ctl formula specifies that “gene g is eventually expressed, and necessarily preceded

over the whole duration of the experiment by a concentration larger than 0.9 µM of the

transcription factor P”.

A non-expert user will find it hard to formulate a biological question in temporal logic

from scratch, since he is not familiar with the existing temporal logics, in particular their

syntax and semantics. In this sense, what is missing is some sort of set of pre-structured

biological questions that could serve as a basis for the inexperienced user.

In this sense, one step forward will be the definition of a set of pre-structured questions

to be used to formulate the main biological questions initially performed by biologists during

model analysis.

2.5.3 Computational infrastructure

Most of the existing modeling and simulation tools perform some kind of analysis of

the model, like simulation, attractor search or some kind of reachability analysis, but are

not capable of applying model-checking techniques in a transparent way or simply provide

some kind of connection to model checkers. Some modeling tools like GINsim [110] and

previous versions of Gna [45] are capable of exporting the model in an implicit or explicit

format accepted by the model checker, continuing the entire analysis in the model-checking

environment, without any feedback from the modeling tool. An exception is the modeling

tool Biocham [27], which integrates the model checker NuSmv and allows for a more flexible

iterative modeling and verification approach.

Current model checkers were developed by the formal verification community for the

verification of hardware and software systems. Such model checkers have specific languages

for describing a model and a property of a system, making their application difficult for the

non-expert user from its usage. Additionally, a successful usage of a model checker still has

to face the problem of interpretation of the verification result.

What is missing is the definition and development of a generic architecture capable of

integrating modeling and simulation tools with formal verification tools, in a transparent

way, in combination with a graphical user interface capable of helping the user with the

visualization and interpretation of verification results.
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Chapter 3

Computation Tree Regular Logic

(Ctrl)

The application to actual biological systems brought a few properties of the network dy-

namics to the fore that are not easily expressed in these logics. For instance, questions about

multistability are important in the analysis of biological regulatory networks [49, 133], but

difficult (or impossible) to express in Ltl. Ctl is capable of dealing with branching time,

important for multistability and other properties of non-deterministic models. However, it

does not do a good job when faced with questions about cycles in a Kripke structure. Such

cycles may correspond to sustained or damped oscillations in the concentration of molecular

species, underlying cellular rhythms [33, 94]. Ctl is not expressive enough to specify the

occurrence of oscillations of indefinite length, a special kind of fairness property [14]. An

obvious solution would be to consider Ctl∗ [51] or the propositional µ-calculus [84], both

of which subsume Ctl and Ltl; however, these powerful branching-time logics are complex

to understand and use by non-experts. More generally, temporal logics have difficulties in

expressing experimental observations, which often take the form of patterns of events corre-

sponding to variations of system parameters (protein concentrations, their derivatives, etc.).

Observations are conveniently and concisely formulated in terms of regular expressions, but

these are not provided by standard temporal logics such as Ctl and Ltl.

In this chapter, we describe a temporal specification language that allows expressing prop-

erties of biological interest and strikes a suitable compromise between expressive power, user-

friendliness, and complexity of model checking. In order to achieve this objective, we propose

a specification language named Ctrl (Computation Tree Regular Logic), which extends Ctl

with regular expressions and fairness operators [102]. Ctrl is more expressive than previous

extensions of Ctl with regular expressions, such as Rctl [17] and RegCtl [22], whilst hav-

ing a simpler syntax due to a different choice of primitive temporal operators, inspired from

dynamic logics like Pdl (Propositional Dynamic Logic) [55]. Ctrl also subsumes Ctl, Ltl,

and Pdl-∆ [126], allowing in particular the concise expression of bistability and oscillation
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properties by using potentiality and fairness operators, respectively.

As regards the evaluation of Ctrl formulas on Kripke structures, we attempt to avoid

the effort of building a model checker from scratch by reusing as much as possible existing

verification technology. We adopt as verification engine Cadp [61], a state-of-the-art verifica-

tion toolbox for concurrent asynchronous systems that provides, among other functionalities,

on-the-fly model checking and diagnostic generation for µ-calculus formulas on labeled transi-

tion systems (Ltss). In order to reuse this technology, we have to move from the state-based

setting (Ctrl and Kripke structures) to the action-based setting (µ-calculus and Ltss). The

translation from Kripke structures to Ltss is done in the standard way [40], simply by mi-

grating information from states to transition labels without changing the structure of the

model, i.e., keeping the same states and transition relations. The translation from Ctrl to

an action-based logic is carried out by considering as target language HmlR [92], an alter-

native equational representation of the modal µ-calculus. Since HmlR is accepted as input

by the Evaluator 3.6 [103] model checker of Cadp, the development of a translator from

Ctrl to HmlR results in the immediate availability of an on-the-fly model checker equipped

with full diagnostic features (generation of examples and counterexamples).

Section 3.1 defines the syntax and semantics of Ctrl and discusses its expressiveness

w.r.t. existing widely-used logics. Section 3.2 defines the regular equation systems (Ress), an

intermediate equational form into which Ctrl formulas will be translated. Subsections 3.2.2

and 3.2.3 present the translations from Ctrl to Ress and then to modal equation systems

(Mess). Section 3.3 describes the on-the-fly model checking procedure for Ctrl, indicates

its complexity, and shows its implementation in connection with Cadp. Section 3.4 provides

some concluding remarks.

3.1 Ctrl definition

3.1.1 Syntax and semantics

In this section, it is assumed the existence of a Kripke structure K = 〈S, S0, AP, L, TR〉

(see Section 2.1 for the formal definition), on which all formulas will be interpreted.

The syntax and semantics of Ctrl are defined in Figure 3.1. The logic contains two

kinds of entities: state formulas (noted ϕ) and regular formulas (noted ρ), which characterize

properties of states and path intervals, respectively. State formulas are built from atomic

propositions p ∈ AP by using standard boolean operators and the EF, AF, EF∞, AF∞ tempo-

ral operators indexed by regular formulas ρ. Regular formulas are built from state formulas

by using standard regular expression operators.

The interpretation [[ϕ]]K of a state formula denotes the set of states of the Kripke structure

K that satisfy ϕ. The notation πi,j (where i ≤ j) stands for the interval going from the ith

state of a path π to the jth state inclusively. The interpretation of regular formulas is
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Syntax
State formulas:

ϕ ::= p (atomic proposition)
| ¬ϕ | ϕ1 ∨ ϕ2 (boolean connectors)
| EFρϕ (potentiality)
| AFρϕ (inevitability)
| EF∞

ρ (potential looping)
| AF∞

ρ (inevitable looping)
Regular formulas:

ρ ::= ϕ (one-step interval)
| ρ1.ρ2 (concatenation)
| ρ1|ρ2 (choice)
| ρ∗ (iteration 0 or more times)

Semantics
State formulas:

[[p]]K = {s ∈ S | p ∈ L(s)}
[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K
[[EFρϕ]]K = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[AFρϕ]]K = {s ∈ S | ∀π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[EF∞

ρ ]]K = {s ∈ S | ∃π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
[[AF∞

ρ ]]K = {s ∈ S | ∀π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
Regular formulas:

πi,j |=K ϕ iff j = i+ 1 ∧ πi |=K ϕ
πi,j |=K ρ1.ρ2 iff ∃k ∈ [i, j].πi,k |=K ρ1 ∧ πk,j |=K ρ2

πi,j |=K ρ1|ρ2 iff πi,j |=K ρ1 ∨ πi,j |=K ρ2

πi,j |=K ρ∗ iff ∃k ≥ 0.πi,j |=K ρk

Figure 3.1: Syntax and semantics of Ctrl.

defined by the satisfaction relation |=K , which indicates whether an interval πi,j of a path

in a Kripke structure K satisfies a regular formula ρ (notation πi,j |=K ρ). The notation ρj

(where j ≥ 0) stands for the concatenation ρ . . . ρ, where ρ occurs j times. The semantics of

boolean operators is defined in the standard way. A state satisfies the potentiality formula

EFρϕ (resp. inevitability formula AFρϕ) iff some (resp. all) of its outgoing paths contain a

prefix satisfying ρ and lead to a state satisfying ϕ. A state satisfies the potential looping

formula EF∞
ρ (resp. the inevitable looping formula AF∞

ρ ) iff some (resp. all) of its outgoing

paths consist of an infinite concatenation of intervals satisfying ρ. An interval satisfies the

one-step interval formula ϕ iff it consists of two states, the first of which satisfies ϕ. An

interval satisfies the concatenation formula ρ1.ρ2 if it is the concatenation of two subintervals,

the first one satisfying ρ1 and the second one satisfying ρ2. An interval satisfies the choice

formula ρ1|ρ2 iff it satisfies either ρ1, or ρ2. An interval satisfies the iteration formula ρ∗ iff it

is the concatenation of (0 or more) subintervals satisfying ρ. By definition, an empty interval

πi,i satisfies ρ0 for any regular formula ρ. A Kripke structure K satisfies a state formula ϕ

31



(notation K |= ϕ) iff there is at least one state s ∈ S0 such that s ∈ [[ϕ]]K .

Figure 3.2 shows several derived operators on states and intervals defined in order to

facilitate the specification of properties. The trajectory operator EGρϕ and the invariance

operator AGρϕ are defined as duals of inevitability and potentiality operators, respectively,

similarly to the their Ctl counterparts (obtained by dropping the ρ formulas). They express

that for some (resp. each) path going out of a state, all of its prefixes satisfying ρ lead to states

satisfying ϕ. The potential saturation operator EG⊣
ρ and the inevitable saturation operator

AG⊣
ρ express that some (resp. each) path going out of a state contains a prefix satisfying ρ∗

such that no other larger prefix satisfies ρ∗; in other words, only a finite number of intervals

satisfying ρ can be concatenated at the beginning of the path. The empty interval operator

nil is defined as the iteration (0 or more times) of the false proposition; an interval satisfies

the formula nil iff it contains a single state. The iteration (1 or more times) operator ‘+’ is

defined in the standard way; an interval satisfies ρ+ iff it is the concatenation of (1 or more)

intervals satisfying ρ.

true = p ∨ ¬p (true, p ∈ AP )
false = ¬true (false)

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) (conjunction)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2 (implication)
ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1) (equivalence)

EGρϕ = ¬AFρ¬ϕ (trajectory)
AGρϕ = ¬EFρ¬ϕ (invariance)
EG⊣

ρ = ¬AF∞
ρ (potential saturation)

AG⊣
ρ = ¬EF∞

ρ (inevitable saturation)

nil = false
∗ (empty interval)

ρ+ = ρ.ρ∗ (iteration 1 or more times)

Figure 3.2: Derived (boolean, temporal, and regular) operators of Ctrl.

To facilitate the manipulation of Ctrl state formulas, we transform them in positive

normal form (Pnf) by propagating the negations downwards, using the rules in Figure 3.2,

until they reach the atomic propositions p. For convenience, we also include in the set AP

the negations of all propositions p, as well as the boolean constants true and false. State

formulas in Pnf are thus composed of atomic propositions, disjunctions and conjunctions,

and all primitive and derived Ctrl temporal operators defined in Figures 3.1 and 3.2.

3.1.2 Examples of temporal properties

We illustrate below the use of Ctrl operators for specifying typical temporal properties of

biological regulatory networks. The analogy with properties of communication protocols and

concurrent systems is made explicit through the terminology of safety, liveness and fairness.
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Safety properties Informally, these properties specify that “something bad never hap-

pens” during the functioning of the system. They can be expressed in Ctrl by identify-

ing the sequences of states corresponding to violations of the safe progression of execution,

characterizing them using a regular formula ρ, and forbidding their existence in the Kripke

structure by checking the formula AGρfalse. For example, the Ctrl formula below states that

it is impossible to express cell cycle genes g1 and g2 in response to an external stress signal:

AGtrue∗.sig+.(g1|g2)false

where the atomic proposition sig indicates the presence of the external signal, and g1 and g2

the expression of the cell cycle genes. This property can also be specified in Ctl using two

nested temporal operators:

AG(sig ⇒ ¬E[sig U (g1 ∨ g2)])

where AG ϕ = ¬E[true U ¬ϕ] is the invariance operator of Ctl.

Liveness properties Informally, these properties specify that “something good eventually

happens” during the functioning of the system. They can be expressed in Ctrl by capturing

the desirable sequences of states, characterizing them using a regular formula ρ, and expressing

their potential or inevitable presence in the Kripke structure using the EFρ and AFρ operators,

respectively. For instance, the Ctrl formula below states that every time a particular nutrient

nut is present in the medium, it will eventually be taken up and consumed by the cell, as

witnessed by the expression of gene gnut coding for an appropriate transporter. This may be

preceded by the expression of one or more genes in the set G, responsible for the uptake and

consumption of other nutrients:

AGtrue∗.nutAF(true∗.G)∗.gnut
true

where the atomic proposition G indicates that one or more genes in the corresponding set are

expressed. This property cannot be specified in Ctl because of the two nested ∗ operators

in the regular subformula of AF.

Fairness properties Informally, these properties specify the progression of certain concur-

rent processes in the system, which are possibly antagonistic. In Ctrl, fairness properties can

be expressed by identifying the infinite sequences of events denoting the proper progression of

a certain process, characterizing them using the EF∞
ρ operator, and requiring their presence

in the Kripke structure. The Ctrl formula below captures the oscillatory expression patterns
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of two genes g1 and g2 involved in the circadian rhythm:

EFtrue∗EF
∞
inc g1.true∗.inc g2.true∗.dec g1.true∗.dec g2.true∗

where the atomic propositions inc g1, dec g1, inc g2, dec g2 indicate the increasing and de-

creasing expression of genes g1 and g2, respectively. This property is unexpressible in Ctl

because of the repeated alternation of inc g i and dec g i, but it can be stated in Ltl using

five temporal operators:

¬G((inc g1 ∧ ¬Finc g2) ∨ (inc g2 ∧ ¬Fdec g1)

∨ (dec g1 ∧ ¬Fdec g2) ∨ (dec g2 ∧ ¬Finc g1))

Ctrl was designed such that fairness operators (EF∞
ρ and AF∞

ρ ) are at the same level as

the other temporal operators of the logic. Compared to other logics, such as fair Ctl [53],

in which fairness constraints are added as side formulas modifying the interpretation of the

temporal operators, we believe that an explicit presence of infinite looping operators in the

logic allows a more direct and intuitive description of complex cycles (e.g., matching regular

expressions containing nested iteration operators) present in the behavior of genetic regulatory

networks.

3.1.3 Expressiveness

Ctrl is a natural extension of Ctl [39], whose main temporal operators can be described

using the EF and AF operators of Ctrl as follows:

E[ϕ1 U ϕ2] = EFϕ∗

1
ϕ2 A[ϕ1 U ϕ2] = AFϕ∗

1
ϕ2

The until operator U of Ctl is not primitive in Ctrl; this is a difference w.r.t. other

extensions of Ctl, such as Rctl [17] and RegCtl [22], which keep the U operator primitive

as in the original logic.

Ctrl also subsumes Ltl [99], because the potential looping operator EF∞ is able to

capture the acceptance condition of Büchi automata. Assuming that the atomic proposition p

characterizes the accepting states in a Büchi automaton (represented as a Kripke structure),

the formula below expresses the existence of an infinite sequence passing infinitely often

through an accepting state:

EF
∞
true∗.p.true+

The + operator is necessary in order to avoid empty sequences consisting of a single state

satisfying p. Of course, the EF∞ operator does not allow a direct encoding of Ltl operators,

but may serve as an intermediate form for Ltl model checking; in this respect, EF∞ is similar

to the “never claims” used for specifying properties in the early versions of the Spin model
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checker [73].

Thus, Ctrl subsumes both Ctl and Ltl. This subsumption is strict, since these two

logics are uncomparable w.r.t. their expressive power (i.e., each one can describe proper-

ties unexpressible in the other one) [40]. In fact, the Ctrl fragment containing the boolean

connectors and the temporal operators EF and EF∞ can be seen as a state-based variant of

Pdl-∆ [126]. It was shown that this logic subsumes Ctl∗, whose operators can be encoded

(although not in a succinct way) in Pdl-∆ by means of the translation proposed first in [136]

and reconsidered later in [43]. This subsumption is strict, because Pdl-∆ can characterize se-

quences that match regular expressions containing nested iteration operators, such as (a.b)∗.c,

which cannot be expressed in Ctl∗ [52]. Since Ctrl syntactically subsumes (a state-based

variant of) Pdl-∆, it follows from the above expressiveness results that Ctrl also subsumes

Ctl∗.

As regards other existing extensions of Ctl with regular operators, Ctrl also subsumes

RegCtl, whose U operator indexed by a regular formula can be expressed using the EF

operator of Ctrl as follows:

E[ϕ1 U
ρ ϕ2] = EFρ & ϕ∗

1
ϕ2

The & operator stands for the intersection of regular formulas; although this operator is not

present in Ctrl, its occurrence above can be expanded in terms of the regular operators

available in Ctrl by applying the rules below:

ϕ′ & ϕ∗ = ϕ′ & ϕ (ρ1.ρ2) & ϕ∗ = (ρ1 & ϕ∗).(ρ2 & ϕ∗)

(ρ1|ρ2) & ϕ∗ = (ρ1 & ϕ∗)|(ρ2 & ϕ∗) (ρ1
∗) & ϕ∗ = (ρ1 & ϕ∗)∗

The subsumption of RegCtl is strict because the U operator of RegCtl cannot describe

an infinite concatenation of intervals satisfying a regular formula ρ, which is specified in

Ctrl using the EF∞
ρ operator. Brázdil and Cerná [22] show that RegCtl is more expressive

than Rctl [17], the extension of Ctl with regular expressions underlying the Sugar [16]

specification language; consequently, Ctrl also subsumes Rctl.

3.2 Translation from Ctrl to modal equation systems

Building an efficient model checker for a branching-time temporal logic equipped with

regular expressions, such as Ctrl, is a complex and time-consuming task. Here we aim at

facilitating this task by reusing as much as possible existing verification technology available

in the field of concurrent systems, namely the Cadp toolbox [61]. A model checker for Ctrl

can thus be obtained by translating this logic into HmlR [92], one of the input languages

accepted by Cadp.

This technical section is devoted to the translation of Ctrl state formulas into modal

equation systems (Mess), which are the state-based counterpart of HmlR. Using such a

35



translation to obtain a model checking procedure for a temporal logic with regular constructs

is not common practice, most of the existing procedures for this kind of logics being based on

automata [17, 22]. Therefore, we describe this translation in sufficient detail and we illustrate

it with examples. Readers from the bioinformatics and systems biology field that are not

necessarily interested in the technical details of temporal logic translations can safely skip

Section 3.2 and go directly to Section 3.3 to get an overall view of the Ctrl model checker.

The translation of a Ctrl state formula ϕ into a Mes involves two steps: first the formula

is translated into a regular equation system (Res), and then the Res is transformed into a

Mes. These two steps are purely syntactic, i.e., they do not depend upon the Kripke structure

on which the formulas and the equation systems are interpreted. We first define the syntax

and semantics of Ress and Mess, and then we detail the two translation steps. Appendix A

contains the proofs of the translation phases from Ctrl to Mess.

3.2.1 Regular and modal equation systems

To apply our model checking method, we need to translate Ctrl state formulas into an

equational representation, which is more suitable than the tree-like representation underlying

the syntax definition in Figure 3.1. To achieve this, we first need to extend the grammar of

Ctrl state formulas with propositional variables X ∈ X , which denote sets of states:

ϕ ::= X | p | . . .

Propositional variables are interpreted w.r.t. a Kripke structure K by an environment δ :

X → 2S , which is a partial function mapping propositional variables to state sets. The

interpretation of state formulas must be extended to handle propositional variables: [[ϕ]]Kδ

denotes the set of states satisfying ϕ in the context of δ, which must map every variable

occurring in ϕ to a state set. The interpretation of propositional variables is defined as

follows: [[X]]Kδ = δ(X). The interpretation of the other state formulas defined in Figure 3.1

remains unchanged, except that an extra parameter δ is added to the interpretation [[ ]]. The

translation to Mess ensures that all occurrences of propositional variables in state formulas

are positive, i.e., they fall under an even number of negations. This syntactic monotonicity

condition was proposed initially to ensure the well-definedness of propositional µ-calculus

formulas [84].

As intermediate language for translating Ctrl state formulas, we use regular equation

systems (Ress), which are the propositional counterpart of the PdlR (Pdl with recursion)

specifications introduced Mateescu and Sighireanu [103]. The syntax and semantics of Ress

are defined in Figure 3.3. Equation blocks B are sets of fixed point equations having propo-

sitional variables X ∈ X in the left-hand sides and Ctrl state formulas (possibly containing

propositional variables) in the right-hand sides. All equations of a block have the same fixed
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point sign σ ∈ {µ, ν}, where µ and ν denote minimal and maximal fixed points, respectively.

The free (fv) and bound (bv) variables in an equation block list are defined as follows:

fv(ε) = ∅ bv(ε) = ∅

fv(B.BL) = (fv(B) \ bv(BL)) ∪ fv(BL) bv(B.BL) = bv(B) ∪ bv(BL)

fv({Xi
σ
= ϕi}1≤i≤n) =

⋃n
i=1 fv(ϕi) bv({Xi

σ
= ϕi}1≤i≤n) = {X1, ..., Xn}

Syntax
R ::= 〈X,BL〉 (regular equation system)

BL ::= ε | B.BL (equation block list)

B ::= {Xi
σ
= ϕi}1≤i≤n (equation block)

Semantics
[[〈X,BL〉]]K = ([[BL]]K)(X)

[[ε]]Kδ = [ ]
[[B.BL]]Kδ = [[B]]K(δ ⊘ [[BL]]Kδ) ⊘ [[BL]]Kδ

[[{Xi
σ
= ϕi}1≤i≤n]]Kδ = [(σΦδ)1/X1, ..., (σΦδ)n/Xn]

Φδ : (2S)n → (2S)n, Φδ(U1, ..., Un) = 〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

Figure 3.3: Syntax and semantics of regular equation systems.

The set fv(ϕi) contains all propositional variables occurring in ϕi. A block list BL is

closed if fv(BL) = ∅. We consider that all nonempty block lists B.BL satisfy the following

conditions: bv(B) ∩ bv(BL) = ∅ (normal form) and fv(B) ⊆ bv(B) ∪ bv(BL) (alternation-

free). In a block list B.BL, block B depends upon another block B′ of BL if fv(B)∩bv(B′) 6=

∅, i.e., B contains a free variable bound in B′. The alternation-free condition means that

there are no cyclic dependencies between equation blocks, and block B depends only upon

the blocks of BL, placed at his right in the list B.BL. In a Res R = 〈X,BL〉, BL is assumed

to be nonempty and closed. X is called the main variable and must be bound in the first

block of BL.

The interpretation of a Res R = 〈X,BL〉 on a Kripke structure K = 〈S, S0, AP, L, TR〉 is

the value of variable X as obtained by solving the block list BL. The interpretation [[BL]]Kδ

of a block list in the context of an environment δ is another environment assigning state sets to

all variables bound in BL. Since the blocks of BL depend upon each other from left to right,

the interpretation of BL can be defined inductively, by solving the blocks from right to left.

The notation δ ⊘ [U1/X1, ..., Un/Xn] stands for the extension of δ with [U1/X1, ..., Un/Xn],

i.e., an environment identical to δ except for variables X1, ..., Xn, which are mapped to the

state sets U1, ..., Un, respectively. The empty environment is noted [ ]. The interpretation of

an equation block B is the environment mapping the variables bound in B to the state sets

given by the corresponding fixed point of the functional associated to the block. When BL is

closed, the δ environment is omitted. The state formulas in the right-hand sides of equations
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are assumed to be syntactically monotonic, which according to Tarski’s theorem [128] ensures

the well-definedness of the functionals associated to blocks.

A modal equation system (Mes)M = 〈X,BL〉 is a Res where all Ctrl temporal operators

occurring in the right-hand sides of equations contain only atomic regular formulas, i.e.,

without any regular operator (‘.’, ‘|’, ‘∗’). Mess are the propositional counterpart of the

HmlR specifications, proposed by Larsen [92] as an equational form of the modal µ-calculus.

3.2.2 Translation to regular equation systems

The translation of a Ctrl state formula ϕ into a Res is defined by the syntactic func-

tion t(ϕ) = 〈tX(ϕ), tBL(ϕ)〉 given in Figure 3.4. The two components tX(ϕ) and tBL(ϕ)

denote the main variable and the equation block list produced by t(ϕ), respectively. For

each translation rule, X denotes a “fresh” propositional variable, different from all the other

variables contained in ϕ and in t(ϕ). The notation BL1;BL2 indicates the concatenation of

two equation block lists BL1, BL2 and is defined inductively as follows: ε;BL2 = BL2, and

(B.BL1);BL2 = B.(BL1;BL2).

For simplicity, in the translation of propositional constants we omitted the empty block

list, i.e., we wrote {X
µ
= p} instead of {X

µ
= p}.ε. If ϕ is closed, then the block list produced

by the translation is also closed, i.e., bv(tBL(ϕ)) = ∅. The translation given in Figure 3.4

preserves the interpretation of formulas, as stated by the proposition below.

Proposition 1 (Translation from Ctrl to Ress) Let K be a Kripke structure and ϕ a

state formula of Ctrl. Then:

[[ϕ]]Kδ = [[t(ϕ)]]Kδ

for any propositional environment δ.

t(p) = 〈X, {X
µ
= p}〉

t(ϕ1 ∨ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(ϕ1 ∧ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∧ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(EFρϕ) = 〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉

t(AFρϕ) = 〈X, {X
µ
= AFρtX(ϕ)}.tBL(ϕ)〉

t(EGρϕ) = 〈X, {X
ν
= EGρtX(ϕ)}.tBL(ϕ)〉

t(AGρϕ) = 〈X, {X
ν
= AGρtX(ϕ)}.tBL(ϕ)〉

t(EF∞
ρ ) = 〈X, {X

ν
= EFρX}〉

t(AF∞
ρ ) = 〈X, {X

ν
= AFρX}〉

t(EG⊣
ρ ) = 〈X, {X

µ
= EGρX}〉

t(AG⊣
ρ ) = 〈X, {X

µ
= AGρX}〉

Figure 3.4: Translation of Ctrl state formulas into Ress.
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To illustrate the translation of Ctrl formulas into Ress, we consider the bistability prop-

erty [49, 134], which specifies that after an initial state, two different equilibrium states can

be potentially reached. This branching-time property can be expressed in Ctrl as follows:

AGtrue∗.init(EFtrue∗eql1 ∧ EFtrue∗eql2)

where the atomic propositions init , eql1 and eql2 denote the initial state and the two equilib-

rium states, respectively. By applying the translation defined in Figure 3.4 to this formula,

we obtain the Res below:

〈X, {X
ν
= AGtrue∗.initY }.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= EFtrue∗U1}.{U1

µ
= eql1}.{Z2

µ
= EFtrue∗U2}.{U2

µ
= eql2}.ε〉

The ‘;’ operator produced by translating EFtrue∗eql1 ∧ EFtrue∗eql2 was expanded in terms of

the ‘.’ operator using the definition of ‘;’.

The size (number of variables and operators) of the Res t(ϕ) produced by the translation

is linear in the size (number of operators) of the formula ϕ, because every rule in Figure 3.4

creates, for each operator present in ϕ, one block containing a single equation with one

operator in its right-hand side.

For simplicity, the translation of a state formula ϕ given in Figure 3.4 does not take care

of the state subformulas ψ that may occur inside the regular formulas ρ. However, these

subformulas must also be translated into Ress in order to be evaluated on a Kripke structure

K by the model checking procedure. This is done by applying the translation recursively on

every subformula ψ of a regular formula ρ, yielding an additional Res t(ψ) = 〈tX(ψ), tBL(ψ)〉.

In practice, the block list tBL(ψ) of each additional Res t(ψ) is concatenated to the block

list tBL(ϕ) of the Res t(ϕ), and the main variable tX(ψ) replaces the occurrence of the

corresponding subformula ψ, as illustrated by the formula EF(AGtrue∗p)
∗q, whose translation

yields the Res 〈X, {X
µ
= EFY ∗Z}.{Z

µ
= q}.{Y

ν
= AGtrue∗U}.{U

ν
= p}.ε〉.

However, in order to simplify notations, we can exploit the fact that the Ress produced

by translating the subformulas ψ are closed, and hence their main variables can be evaluated

independently from the Res t(ϕ). This allows to safely replace each subformula ψ by a “fresh”

atomic proposition pψ, whose interpretation on K is obtained by evaluating the main variable

tX(ψ) of the Res t(ψ). On the example above, the Res becomes 〈X, {X
µ
= EFr∗Z}.{Z

µ
=

q}.ε〉, where r has the same interpretation as the variable Y of the additional Res 〈Y, {Y
ν
=

AGtrue∗U}.{U
ν
= p}.ε〉. Therefore, in the sequel we will restrict ourselves to Ress in which

the regular formulas occurring in the right-hand sides of equations are built only upon atomic

propositions.
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3.2.3 Translation to modal equation systems

Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block. An equation block {Xn

σ
= ψn, Yj

σ
=

ψj}n<j≤m is suitable for the substitution of equation Xn
σ
= ϕn if fv(ψn) ∪

⋃m
j=n+1 fv(ψj) =

fv(ϕn) and
⋃n
i=1 fv(ϕi)∩{Yn+1, ..., Ym} = ∅. The notation {Xi

σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m] represents the syntactic substitution of the equation Xn

σ
= ϕn by the

equations {Xn
σ
= ψn, Yj

σ
= ψj}n<j≤m in B. This definition of substitution, which allows to

replace only the last equation of a block, is general enough: since all equations of a block have

the same fixed point sign, their order does not influence the values of the variables defined

in the block, and therefore any equation of the block can be substituted by bringing it in the

last position.

The translation of a Res equation block into a corresponding Mes equation block is

performed by repeatedly applying various transformations, most of them being substitutions

of equations.

3.2.3.1 Operators EFρ and AGρ

In order to translate the equation blocks of the form {X
µ
= EFρY } and {X

ν
= AGρY } into

Mess, we eliminate the regular expressions ρ by repeatedly applying appropriate substitu-

tions. Each equation containing an EFρ or AGρ operator in its right-hand side is substituted

with a suitable equation block containing simpler regular formulas, as defined in Figure 3.5

(Z and U are “fresh” propositional variables). The application of any substitution given in

Figure 3.5 preserves the interpretation of equation blocks, as stated by the proposition below.

Equation Substitution block

X
µ
= EFρ1.ρ2

Y {X
µ
= EFρ1

Z,Z
µ
= EFρ2

Y }

X
µ
= EFρ1|ρ2

Y {X
µ
= Z ∨ U,Z

µ
= EFρ1

Y,U
µ
= EFρ2

Y }

X
µ
= EFρ∗Y {X

µ
= Y ∨ Z,Z

µ
= EFρX}

X
ν
= AGρ1.ρ2

Y {X
ν
= AGρ1

Z,Z
ν
= AGρ2

Y }

X
ν
= AGρ1|ρ2

Y {X
ν
= Z ∧ U,Z

ν
= AGρ1

Y,U
ν
= AGρ2

Y }

X
ν
= AGρ∗Y {X

ν
= Y ∧ Z,Z

ν
= AGρX}

Figure 3.5: Substitutions for the EFρ and AGρ operators.

Proposition 2 (Substitution of EF and AG) Let K be a Kripke structure and B1 = {Xi
µ
=

ϕi}1≤i≤n, B2 = {Xi
ν
= ϕi}1≤i≤n be two equation blocks. Then, for any propositional envi-

ronment δ, the interpretation of B1 (resp. B2) w.r.t. δ does not change when a substitution

given in the upper part (resp. the lower part) of Figure 3.5 is applied.

By repeatedly applying these substitutions, all occurrences of regular operators in the

right-hand sides of the equations can be eliminated. For the Res of the bistability property,
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this translation yields the following Mes:

〈X, {X
ν
= Y1 ∧ Y2, Y1

ν
= AGinitY, Y2

ν
= AGtrueX}.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= U1 ∨ Z3, Z3

µ
= EFtrueZ1}.{U1

µ
= eql1}.

{Z2
µ
= U2 ∨ Z4, Z4

µ
= EFtrueZ2}.{U2

µ
= eql2}.ε〉

The equation block {X
ν
= AGtrue∗.initY } was translated by successively applying the first and

the third substitutions in the lower part of Figure 3.5.

The size of the Mes equation block resulting from the translation of a Res equation block

B of the form {X
µ
= EFρY } (resp. {X

ν
= AGρY }) remains linear w.r.t. the size of B (and

hence linear w.r.t. the size of the initial Ctrl formula ϕ), since each substitution in Figure 3.5

replaces a regular operator by at most two variables and two temporal operators EF (resp.

AG).

3.2.3.2 Operators AFρ and EGρ

The translation of the equation blocks {X
µ
= AFρY } and {X

ν
= EGρY } into Mess is more

complicated than the translation of their EFρ and AGρ counterparts, because the substitutions

given in Figure 3.5 to eliminate the regular expressions ρ are no longer valid for the AFρ and

EGρ operators. We consider below only blocks of the form {X
µ
= AFρY }, the processing of

their EGρ counterparts being dual.

The translation of the {X
µ
= AFρY } equation blocks into Mess consists of three steps.

First, the Res is temporarily transformed in potentiality form {X
µ
= EFρY } and subsequently

translated into a potentiality Mes by eliminating the regular expression ρ using the substi-

tutions given in Section 3.2.3.1. Then, the resulting Mes is transformed in guarded form, by

eliminating all unguarded (i.e., not preceded by a temporal operator) occurrences of variables

in the right-hand sides of equations. Finally, the guarded Mes is determinized, by replacing

all occurrences of EF operators in the right-hand sides of equations by appropriate occur-

rences of AF operators in order to retrieve the interpretation of the initial equation block

{X
µ
= AFρY }. We will illustrate each step of the translation on the following equation block:

{X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }.

Translation to potentiality form The difficulty of translating an equation block {X
µ
=

AFρY } into a Mes stems from the fact that all transition sequences going out of a state have

to satisfy ρ before reaching a state satisfying Y , whereas the substitutions in Figure 3.5 allow

to eliminate ρ on individual sequences only. To avoid this difficulty, we switch temporarily

to the potentiality form {X
µ
= EFρY }, we eliminate ρ by applying the substitutions, and we

continue working with the resulting potentiality Mes, which characterizes the existence of

individual sequences satisfying ρ. The size of this Mes is linear w.r.t. the size of the initial
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block {X
µ
= AFρY }, as stated in Section 3.2.3.1. Figure 3.6 shows the potentiality Mes

obtained from the equation block above by switching to potentiality form and applying the

substitutions in Figure 3.5 (all equations have the sign µ, omitted for simplicity).

X = EF(q|p∗)∗Z1 X = Z3 ∨ Z1 X = Z3 ∨ Z1

Z3 = EFq|p∗X Z3 = Z4 ∨ Z5 Z3 = Z4 ∨ Z5

Z5 = EFqX Z5 = EFqX
Z4 = EFp∗X Z4 = Z6 ∨X Z4 = Z6 ∨X

Z6 = EFpZ4 Z6 = EFpZ4

Z1 = EFqr∗Z2 Z1 = EFqZ7 Z1 = EFqZ7

Z7 = EFr∗Z2 Z7 = Z8 ∨ Z2 Z7 = Z8 ∨ Z2

Z8 = EFrZ7 Z8 = EFrZ7

Z2 = EFp∗|q∗Y Z2 = Z9 ∨ Z10 Z2 = Z9 ∨ Z10

Z9 = EFp∗Y Z9 = Z11 ∨ Y Z9 = Z11 ∨ Y
Z11 = EFpZ9 Z11 = EFpZ9

Z10 = EFq∗Y Z10 = Z12 ∨ Y Z10 = Z12 ∨ Y
Z12 = EFqZ10 Z12 = EFqZ10

Figure 3.6: Translation of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } to a potentiality Mes.

The right-hand sides of the equations of the potentiality Mes may contain unguarded

occurrences of propositional variables (i.e., not preceded by any EF operator), such as variable

Z1 in the equation X = Z3 ∨Z1. These occurrences will be eliminated in the next step of the

translation.

Translation to guarded form The translation of a potentiality Mes to guarded form

eliminates all unguarded occurrences of variables in the right-hand sides of equations using

the lemma below.

Lemma 1 (Absorption) Let K be a Kripke structure and B = {Xi
µ
= ϕi}1≤i≤n be an

equation block such that ϕn = Xn ∨ ϕ and Xn 6∈ fv(ϕ). Then:

[[{Xi
µ
= ϕi}1≤i≤n[Xn

µ
= Xn ∨ ϕ := Xn

µ
= ϕ]]]Kδ = [[{Xi

µ
= ϕi}1≤i≤n]]Kδ

for any propositional environment δ.

The equations of a potentiality Mes, produced by the rules in Figure 3.5, have two possible

forms: either unguarded (i.e., containing disjunctions of variables in their right-hand side), or

guarded (i.e., containing a single occurrence of an EF operator in their right-hand side). The

elimination of unguarded occurrences of variables is carried out by Algorithm 4. The first loop

of the algorithm applies the absorption lemma and the idempotency of disjunction on each

unguarded equation defining a variable X in order to eliminate the unguarded occurrences of

X, and afterwards expands inline all unguarded occurrences of X in all the other equations

of the Mes. After executing the first loop on the potentiality Mes given in Figure 3.6, we
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obtain the Mes shown in Figure 3.7. Upon termination of the first loop, the formulas in the

right-hand sides of equations may contain only unguarded occurrences of Y and of variables

X defined by guarded equations of the Mes. The second loop of the algorithm expands inline

those variables, thus eliminating all unguarded occurrences except those of Y . The result of

applying the second loop on the Mes in Figure 3.7 yields the Mes shown in Figure 3.8.

Algorithm 4 Translation of a potentiality Mes to guarded form

for all unguarded equations X
µ
=
∨

j Xj do
Eliminate X among Xj by applying the absorption lemma
for all unguarded occurrences of X in the rsh of other equations do

Substitute X by
∨

j Xj

end for
end for
for all guarded equations X

µ
= EFpXj do

Substitute X by EFpXj in all unguarded equations
end for

Initial list of 1st loop of Algorithm 4
unguarded eqns. Var. Updated equations

X = Z3 ∨ Z1 X: Z4 = Z6 ∨ Z3 ∨ Z1

Z2 = Z9 ∨ Z10 Z2: Z7 = Z8 ∨ Z9 ∨ Z10

Z3 = Z4 ∨ Z5 Z3: X = Z4 ∨ Z5 ∨ Z1

Z4 = Z6 ∨X Z4 = Z6∨Z4∨Z5 ∨ Z1

Z7 = Z8 ∨ Z2 Z4: X = Z6 ∨ Z5 ∨ Z1∨Z5∨Z1

Z9 = Z11 ∨ Y Z3 = Z1 ∨ Z5 ∨ Z6∨Z5

Z10 = Z12 ∨ Y Z9: Z2 = Z11 ∨ Y ∨ Z10

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z10

Z10: Z2 = Z11 ∨ Y ∨ Z12∨Y
Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12∨Y

Figure 3.7: Translation of a potentiality Mes to guarded form (1st part).

The guarded Mess obtained by applying Algorithm 4 can be further simplified by elimi-

nating duplicate and unreachable equations. In the Mes shown in Figure 3.8, the equations

defining X, Z3 and Z4 have identical right-hand sides, and therefore variables Z4 and Z3

can be replaced by X and their equations deleted. Also, some of the variables will no longer

be referenced after these substitutions, and therefore their equations can be safely removed.

Finally, variables can be renamed in order to have a proper numbering, leading to the Mes

shown in Figure 3.9. This guarded Mes is equivalent to {X
µ
= EF(q|p∗)∗.(qr∗).(p∗|q∗)Y }, the

potentiality form of our running example. Intuitively, each variable defined by this Mes

denotes the suffix of a transition sequence in the Kripke structure satisfying the regular for-

mula indexing the EF operator. In this respect, guarded potentiality Mess are similar to the

equation systems defining the derivatives of regular expressions [25].

43



Equations after 2nd loop of Algorithm 4
the 1st loop Var. Updated equations

X = Z6 ∨ Z5 ∨ Z1 Z1: X = Z6 ∨ Z5 ∨ EFqZ7

Z2 = Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ Z5 ∨ Z6

Z3 = Z1 ∨ Z5 ∨ Z6 Z4 = Z6 ∨ Z5 ∨ EFqZ7

Z4 = Z6 ∨ Z5 ∨ Z1 Z5: X = Z6 ∨ EFqX ∨ EFqZ7

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ EFqX ∨ Z6

Z9 = Z11 ∨ Y Z4 = Z6 ∨ EFqX ∨ EFqZ7

Z10 = Z12 ∨ Y Z6: X = EFpZ4 ∨ EFqX ∨ EFqZ7

Z1 = EFqZ7 Z3 = EFqZ7 ∨ EFqX ∨ EFpZ4

Z5 = EFqX Z4 = EFpZ4 ∨ EFqX ∨ EFqZ7

Z6 = EFpZ4 Z8: Z7 = EFrZ7 ∨ Z11 ∨ Y ∨ Z12

Z8 = EFrZ7 Z11: Z2 = EFpZ9 ∨ Y ∨ Z12

Z11 = EFpZ9 Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ Z12

Z12 = EFqZ10 Z9 = EFpZ9 ∨ Y
Z12: Z2 = EFpZ9 ∨ Y ∨ EFqZ10

Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ EFqZ10

Z10 = EFqZ10 ∨ Y

Figure 3.8: Translation of a potentiality Mes to guarded form (2nd part).















X = EFpX ∨ EFqX ∨ EFqZ7

Z7 = EFrZ7 ∨ EFpZ9 ∨ EFqZ10 ∨ Y
Z10 = EFqZ10 ∨ Y
Z9 = EFpZ9 ∨ Y





























X1 = EFpX1 ∨ EFqX1 ∨ EFqX2

X2 = EFpX4 ∨ EFqX3 ∨ EFrX2 ∨ Y
X3 = EFqX3 ∨ Y
X4 = EFpX4 ∨ Y















Figure 3.9: Guarded potentiality Mes after simplifications (left) and renaming (right).

The guarded potentiality Mess produced by applying Algorithm 4 have at most the same

number of variables as the original Mess, but may present in the worst-case a quadratic

increase in the number of operators. However, we observed in practice that the number of

variables in the guarded Mess is much smaller than in the original Mess (thanks to elimination

of redundant equations) and the number of operators remains close to linear w.r.t. the original

Mess, and hence w.r.t. the size of the initial Ctrl formula.

Determinization The last step of the translation consists in determinizing the guarded

potentiality Mes obtained so far in order to obtain a Mes with the same meaning as the

initial Res {X
µ
= AFρY }. Consider the following potentiality Mes in guarded form:







Xi
µ
=

n
∨

j=1

(hij ∧ EFpij
Xj) ∨ (hi ∧ Y )







1≤i≤n

where hij , hi ∈ Bool and pij ∈ AP for all 1 ≤ i, j ≤ n. The coefficients hij and hi allow

to simplify notations: only the terms EFpij
Xj with their coefficients hij equal to true (and
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similarly for the unguarded occurrences of Y with their hi equal to true) are present in the

right-hand sides of equations. An equation defining variable Xi is said to have the index

i. Note that the translation to guarded potentiality form may produce equations containing

guarded occurrences of Y , e.g., formulas EFpY in their right-hand sides; in this case, bringing

the Mes to the form above requires to introduce an extra equation Xn+1
µ
= Y and to replace

by Xn+1 all guarded occurrences of Y (but not its unguarded occurrences). The determinized

Mes corresponding to the guarded potentiality Mes above is defined as follows:







XI
µ
=

∨

∅⊂Q⊆prop(I)

AFQXvars(Q,I) ∨ (h(I) ∧ Y )







I⊆[1,n]

where:

• prop(I)
d
= {pij | i ∈ I ∧ j ∈ [1, n] ∧ hij} is the set of atomic propositions occurring

as subscripts of EF operators in the equations of the guarded potentiality Mes having

their index in the set I.

• vars(Q, I)
d
= {j ∈ [1, n] | ∃i ∈ I.(hij ∧ pij ∈ Q)} is the set of indexes of propositional

variables which occur in the right-hand side of some equation having its index in the

set I and whose corresponding EF operator is subscripted by some atomic proposition

contained in the set Q.

• h(I)
d
= ∃i ∈ I.hi is equal to true iff Y occurs unguarded in some equation having its

index in the set I.

In the AF operators of the determinized Mes, the subscript Q stands for the conjunction of

all the atomic propositions contained in the set Q.

The determinization restores the meaning of the initial equation block {X
µ
= AFρY }, as

stated by the proposition below.

Proposition 3 (Determinization correctness) Let K be a Kripke structure, R = {X1
µ
=

AFρY } an equation block, and M the Mes obtained from R after translation in guarded

potentiality form and determinization. Then:

([[M ]]Kδ)(X{1}) = ([[R]]Kδ)(X1)

for any propositional environment δ.

Figure 3.10 shows the determinized version of the guarded potentiality Mes produced

by the previous translation phases from the equation block {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }.

For conciseness, we represent index sets just by concatenating their elements, e.g., the set

{1, 2, 3} is denoted by 123. We observe that this Mes can be simplified by eliminating
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duplicate equations (e.g., the equations defining variables X12, X123, X124 and those defining

X2, X23, X24, X234) and by absorbing certain operands using the identity AFpXI ∨AFpqXI =

AFpXI , yielding the Mes on the left of Figure 3.11. Finally, the right-hand side formulas of

some equations may occur as subformulas in other equations and can therefore be replaced

by their corresponding left-hand side variables, leading to the final determinized Mes shown

on the right of Figure 3.11. In practice, these simplifications can be carried out incrementally

as the equations are generated, avoiding the complete construction of the determinized Mes

prior to simplification. Moreover, sometimes it is possible to determine statically whether

certain atomic propositions are mutually exclusive, which allows to remove the AF operators

whose index subformulas contain those propositions together.



































































































X1
µ
=AFpX1 ∨ AFqX12 ∨ AFpqX12

X12
µ
=AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X123
µ
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Figure 3.10: Determinized Mes produced from {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }.
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Figure 3.11: Determinized Mes of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } after simplifications.

The determinization of a guarded potentiality Mes defined above is similar to the subset

construction procedure used for determinizing finite automata [1]. In the worst-case, the size

of the determinized Mes resulting from the translation of an equation block {X
µ
= AFρY }
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is exponential w.r.t. the size (number of operators and atomic propositions) of the regular

formula ρ. However in practice, the size of determinized Mess obtained after simplifications

is close to linear w.r.t. the size of ρ, as illustrated by the final Mes shown in Figure 3.11.

When ρ is deterministic (i.e., each atomic proposition occurs only once in the right-hand side

of each equation of the guarded potentiality Mes used as intermediate form, and all atomic

propositions are mutually exclusive on the states of the Kripke structure), the size of the

resulting determinized Mes remains linear w.r.t. the size of ρ.

3.2.3.3 Operators EF∞
ρ , AF∞

ρ , EG⊣
ρ , and AG⊣

ρ

According to the rules given in Fig 3.4, the EF∞
ρ and AF∞

ρ operators are translated into

equation blocks of the form {X
ν
= EFρX} and {X

ν
= AFρX}, respectively. The interpretation

of these equation blocks is given by νΦe and νΦa, where the functionals Φe,Φa : 2S → 2S are

defined as follows:

Φe(U) = [[EFρX]]K [U/X] = ([[{X1
µ
= EFρX}]]K [U/X])(X1)

Φa(U) = [[AFρX]]K [U/X] = ([[{X1
µ
= AFρX}]]K [U/X])(X1).

The evaluation of the EF∞
ρ and AF∞

ρ operators requires to compute the maximal fixed points

of the functionals Φe and Φa, which are defined as the minimal fixed points of the functionals

associated to the Ress Re = {X1
µ
= EFρX} and Ra = {X1

µ
= AFρX}. Therefore, these

operators belong to Lµ2, the µ-calculus fragment of alternation depth 2 [52], which allows

one level of mutual recursion between minimal and maximal fixed points. The operators EG⊣
ρ

and AG⊣
ρ are handled dually w.r.t. AF∞

ρ and EF∞
ρ , respectively.

3.3 An on-the-fly model checker for Ctrl

The translation from Ctrl to Mess presented in Section 3.2 provides the basis of a

model checking procedure, which was implemented by reusing as much as possible the on-

the-fly verification technology available in the Cadp toolbox [61]. The resulting Ctrl model

checker was coupled with the qualitative simulation tool Gna [14], which was enhanced in

order to allow the specification of biological properties as temporal logic formulas. We outline

below the principles of the implementation of the Ctrl model checker.

3.3.1 Implementation

The most direct way of obtaining a model checker for Ctrl was to take advantage of

existing verification technology. As verification engine, we use Cadp1 (Construction and

Analysis of Distributed Processes) [61], a state-of-the-art verification toolbox for concurrent

1http://www.inrialpes.fr/vasy/cadp
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Figure 3.12: Model checker for Ctrl. Ctrl formulas are translated into HmlR specifications,
which can be evaluated by the on-the-fly model checker Evaluator 3.6.

asynchronous systems. Cadp offers a wide range of functionalities assisting the user through-

out the design process: compilation and rapid prototyping, random execution, interactive

and guided simulation, model checking and equivalence checking, test generation, and perfor-

mance evaluation. The toolbox accepts as input process algebraic descriptions in Lotos [76]

or Chp [100], as well as networks of communicating automata in the Exp language [91].

The tools of Cadp operate on labeled transition systems (Ltss), which are represented

either explicitly (by their list of transitions) as compact binary files encoded in the Bcg

(Binary Coded Graphs) format, or implicitly (by their successor function) as C programs

compliant with the Open/Cæsar interface [60]. Cadp contains the on-the-fly model checker

Evaluator 3.6 [103], which evaluates regular alternation-free µ-calculus (Lµreg
1 ) formulas on

implicit Ltss. The tool works by translating the verification problem in terms of the local

resolution of a boolean equation system, which is performed using the algorithms available

in the generic Cæsar Solve library [101]. Evaluator 3.6 uses HmlR as intermediate lan-

guage: Lµreg
1 formulas are translated into HmlR specifications, whose evaluation on implicit

Ltss can be straightforwardly encoded as a local boolean equation system resolution [41, 103].

The tool also generates full diagnostics (examples and counterexamples) illustrating the truth

value of the formulas.
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In order to reuse Evaluator 3.6, we had the choice of translating Ctrl formulas either

to Lµreg
1 formulas, or to HmlR specifications. We adopted the second solution because it

leads to a more succinct translation and avoids the translation step from Lµreg
1 to HmlR

present in Evaluator 3.6. This technical choice motivated the definition of the translation

from Ctrl to Mess in the first place. The architecture of the Ctrl translator (about 12, 000

lines of code) is shown in Figure 3.12. The tool takes as input a Ctrl state formula and

translates it to a Mes following the phases described in Section 3.2, which are different for

the EFρ and AFρ operators and their dual counterparts. The Mes obtained is then converted

into a HmlR specification by expanding the basic Ctrl temporal operators in terms of Hml

modalities as described in [102].

3.3.2 Complexity

Table 3.1 summarizes the complexity of our model checking procedure for Ctrl. The

EFρ and EF∞
ρ operators, together with their respective duals AGρ and AG⊣

ρ , are evaluated in

linear-time w.r.t. the size of the formula and the size of the Kripke structure by applying the

boolean equation system resolution algorithms given in [101, 104]. Moreover, the evaluation

of these operators has a memory complexity O(|ρ| · |S|), meaning that only the states (and

not the transitions) of the Kripke structure are stored. This fragment of Ctrl is the state-

based counterpart of Pdl-∆ [126], which is more expressive than Ctl∗ [51]. Of course, this

does not yield a linear-time model checking procedure for Ctl∗ (nor for its fragment Ltl),

because the translation from Ctl∗ to Pdl-∆ is not succinct [136]. However, the linear-time

evaluation of the EF∞
ρ operator allows an efficient detection of complex cycles describing

oscillation properties [29].

Operator Complexity
ρ deterministic ρ nondeterministic

EFρ AGρ O(|ρ| · (|S| + |T |))

AFρ EGρ O(|ρ| · (|S| + |T |)) O(2|ρ| · (|S| + |T |))
EF∞

ρ AG⊣
ρ O(|ρ| · (|S| + |T |))

AF∞
ρ EG⊣

ρ O(|ρ| · (|S| + |T |)) O(22|ρ| · (|S| + |T |)2)

Table 3.1: Complexity of model checking Ctrl operators on K = 〈S, S0, AP, L, TR〉.

The AFρ operator and its dual EGρ are evaluated in linear-time only when the regular

subformula ρ is deterministic (i.e., without any choice operator ’|’ in the regular subformula

ρ). In the general case, these operators are evaluated in exponential-time w.r.t. the size of

ρ (because of the determinization phase) but still in linear-time in the size of the Kripke

structure. In practice, the size of temporal formulas is much smaller than the size of Kripke

structures, which reduces the impact of the factor 2|ρ| on the total cost of model checking.

Finally, the AF∞
ρ operator and its dual EG⊣

ρ are evaluated in linear-time when ρ is deterministic
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by applying a symmetric version of the boolean equation system resolution algorithm in [104];

in the general case, these operators are evaluated in doubly exponential-time w.r.t. the size

of ρ and in quadratic-time w.r.t. the size of the Kripke structure. This complexity seems

difficult to lower, since the boolean equation systems produced by translating these operators

are of alternation depth 2 and have a general shape (arbitrary amounts of disjunctive and

conjunctive equations).

3.4 Conclusions

Applications of model checking in systems biology have demonstrated its usefulness for

understanding the dynamic behavior of regulatory networks in living cells, but also outlined

certain limitations in expressiveness and user-friendliness. This work aims at alleviating these

limitations in order to promote the practical usage of model checking in the bioinformatics and

systems biology communities. The temporal logic Ctrl that we proposed, an extension of

Ctl with regular expressions and fairness operators, allows a natural and concise description

of typical properties of biological interest, such as the presence of multistability or oscillations

in the concentrations of molecular species.

The extension of classical temporal logics with regular language constructs to increase

their expressiveness and user-friendliness is a long-standing line of research. One of the first

proposals in this direction was Etl [137], an extension of Ltl with regular grammars, which

is strictly more expressive than Ltl while still having the same complexity of evaluation on

Kripke structures. Another manner of increasing expressiveness is to enhance temporal oper-

ators with automata on infinite sequences; this was attempted for Ctl [68] and Ctl∗ [135].

Despite their expressive power, these extensions are difficult to implement and use in practice

because of their complex syntax.

A more user-friendly approach, which led to successful implementations, is to index tem-

poral operators by regular expressions instead of automata. ForSpec [5] and Eagle [10] are

extensions of Ltl with regular expressions and data handling mechanisms, dedicated respec-

tively to hardware and runtime verification. Rctl [17] is an extension of Ctl with regular

expressions, which served subsequently as basis for the Sugar [16] and Psl [75] specifica-

tion languages used for hardware verification. RegCtl [22] is another extension of Ctl with

regular expressions, more expressive than Rctl, obtained by indexing the Until operator of

Ctl with regular expressions.

Our proposal is in line with these latter approaches, but focuses on the translation of Ctrl

to HmlR, an alternative equational representation of the modal µ-calculus. We were able

to obtain an on-the-fly model checker for Ctrl by defining and implementing a translation

from Ctrl to HmlR, and by reusing the verification and diagnostic generation features of

the Evaluator 3.6 model checker of Cadp. This modular architecture allowed us to reduce
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the development effort and to take advantage of existing, robust model checking technology.

Ctrl is interpreted on Kripke structures, which provide a general description of dynamical

systems that implicitly or explicitly underlie many of the existing discrete formalisms used

for the modeling of regulatory networks in the cell, such as Boolean networks and their

generalizations, Petri nets, and process algebras [30, 56]. In addition, other types of continuous

models of regulatory networks, by defining appropriate discrete abstractions, can possibly be

mapped to Kripke structures as well. As a consequence, Ctrl can be combined with many

of the other approaches proposed for the application of formal verification tools to biological

regulatory networks [4, 9, 14, 18, 26, 29, 57]. The application of Ctrl to biological examples

will be shown in Chapter 6.

Although Ctrl provides a user-friendlier syntax with respect to existing temporal logics,

non-expert users still have difficulties posing relevant and interesting biological questions and

formulating them in temporal logic. The next chapter addresses this issue and proposes a

solution.
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Chapter 4

Patterns

The problem of posing relevant and interesting questions is critical in modeling in general,

but even more so in the context of applying formal verification techniques, due to the fact

that it is not easy for non-experts to formulate queries in temporal logic (see example in

Section 2.5.2). Although one of the objectives of the previously described Ctrl language is

to provide a simpler syntax to help non-expert users formulate complex biological queries,

the formulation of these questions directly into temporal logic remains a difficult task.

The response to this problem proposed by the formal verification community is the use

of patterns, that is, high-level query templates that capture recurring questions in a specific

application domain and that can be automatically translated to temporal logic [50]. The aim

is to provide a set of patterns capable of covering not all possible questions an expert can

think of, but rather to simplify the formulation of those that are primary.

During several years the formal verification community has worked on the grouping of

recurring questions, like the invariance or the consequence of events, in order to build a base

for future questions even between experts in the domain. With the introduction of formal

verification techniques in the modeling of biological systems this set of patterns provide a

fruitful starting-point to help non-expert users formulate their questions and provide a better

and easier integration between these two fields.

In Section 1 we present an overview of the use of patterns in the formal verification and

software engineering fields, as well as the types of properties encountered in the systems

biology field. Section 2 contains a description of the pattern identification process and the

resulting set of patterns and their variants. In Section 3 we describe the translation of the

set of patterns into three different temporal logics: Ctl, µ-calculus and Ctrl. We present

some conclusions in Section 4.
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4.1 Patterns in formal verification and systems biology

4.1.1 Usage of patterns

The notion of patterns originates in the field of architecture [3] and was introduced in the

domain of software engineering as a means to capture expert solutions to recurring problems

in program design [59]. This originated an extensive list of patterns (e.g., singleton, ab-

stract factory or proxy) for program design, mostly known in the context of object-oriented

programming languages.

In the formal verification domain several attempts have also been made to identify classes

of properties that are often used. In the late 70s, one of the first to notice that there exist kinds

of properties that one would often want a concurrent program to verify was Lamport [89].

He suggested an informal partition into two categories: safety and liveness. The first states

that something bad never happens, that is, the program never enters an unacceptable state

p. The second states that something good eventually does happen, that is, the program

eventually enters a desirable state q. The Ctl encoding of such properties is ¬EF p and

AG(p =⇒ EF q), respectively.

In the early 90s, Manna and Pnueli [98] considered three different classes of properties

which, according to the authors, were able “to cover the majority of properties one would ever

wish to verify”. These classes were: invariance, stating that all states arising in a computation

satisfy p; response, stating that every state arising in a computation satisfying p is eventually

followed by a state satisfying q; and precedence, stating that a state satisfying p initiates a

q-interval (i.e., an interval all of whose states satisfy q) which, either runs to the end of the

computation, or is terminated by a state satisfying r.

Property Patterns

Occurrence

Absence

Universality Response

Compound

Bounded

Existence

Existence

Precedence

Order

Chains Boolean

Precedence Response

Figure 4.1: Pattern hierarchy proposed by Dwyer et al. [50].

In the late 90s, an influential paper by Dwyer et al. [50], proposed a specification pattern

system based on more than 500 examples of property specifications for software specification.

This system organizes the patterns according to their semantics into a hierarchy (Figure 4.1).

For example, some patterns require events to occur or not occur (e.g., the Absence or Existence
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patterns), while other patterns constrain the order of events (e.g., the Response or Precedence

patterns). For each of the defined patterns there is an associated scope, which is the extent

of the program execution over which the pattern must hold. The scope is determined by

specifying a starting and an ending state or action depending if the specification formalism is

state-based or action-based. There are five basic kinds of scopes: global (the entire program

execution), before (the execution up to a given state/event), after (the execution after a given

state/event), between (any part of the execution from one given state/event to another given

state/event) and after-until (like between, but the designated part of the execution continues

even if the second state/event does not occur).

There are also examples of pattern systems for specific application domains within formal

verification. An example is the work by Janssen et al. [78], who define a set of patterns for

the formal verification of business process models. A large number of business cases were

analyzed and lists of relevant questions were extracted and divided into four main categories:

sequence of activities, consequence of activities, combined occurrence or exclusion and required

precedence of activities. For each of the category a pattern in structured natural language

was created with a set of available choices, like an, each, all, ever, never and always, acting

as quantifiers.

4.1.2 Model checking applications in systems biology

Notwithstanding the existence of the specification pattern system proposed by Dwyer et

al., the expertise necessary for its application remains an important obstacle for modelers

coming from specific domains like systems biology. A systematic definition of structured

biological queries has not received any attention thus far, apart from a list of example queries

by Chabrier-Rivier et al. [29]. Some of the first applications of model checking in systems

biology are presented next, emphasizing on the biological queries used in each study and its

representation in natural language. The compilation of these examples serves as a preliminary

work for the development of the query patterns in systems biology in the next section.

Chabrier-Rivier et al. [29] were one of the first applying model-checking approaches in

systems biology. The authors used the symbolic model checker NuSmv [36] to verify properties

expressed in Ctl, on models of two biological processes: a qualitative model of mammalian

cell cycle control after Kohn’s diagrams [83], and a quantitative model of gene expression

regulation. For both biological models, a list of biological questions was identified and the

authors then explored the possibility of encoding each one of the questions into Ctl. The

chosen temporal logic presents some drawbacks, since it cannot answer questions like: What

are the stable states? or how long does it take for a molecule to become activated? In Ctl, it

is only possible to check whether a specific (or implicitly defined) state is a stable state. Also,

the notion of time in temporal logic Ctl is a qualitative notion, providing only an ordering

relation between events.
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Bernot et al. [18] applied model-checking techniques to the analysis of a model of mucus

secretion by Pseudomonas aeruginosa in lungs affected by cystic fibrosis [66]. The network

consists of two genes, algU and mucB, and two proteins, AlgU and anti-AlgU. AlgU has a

positive influence on its own gene and on mucB, which in turn has an inhibitory effect on

algU . The authors focused on the analysis of the bistable behavior of the system. An example

of a question encountered in this work is “Does the bacteria regularly produces mucus (the

concentration level is repeatedly equal to a)?”. Even though it was possible to encode all the

questions into Ctl, several phrases could be used to represent the same meaning.

Batt et al. [11, 14] provided some examples where the qualitative models of genetic reg-

ulatory networks are analyzed. An early version of the E. coli carbon starvation response

network described in Section 6.1.1 of this thesis. An also a generic network consisting of two

genes, a and b, and two proteins, A and B. When a gene is expressed, the corresponding

protein is synthesized, which, in turn, can regulate the expression of its own and the other

gene. Like Bernot et al., the authors focused on the analysis of the bistable behavior of the

system, but identified other biologically interesting properties like the reachability of certain

equilibrium states and the existence of behaviors satisfying certain constraints on protein

concentrations. The authors also stated that the use of a temporal logic more expressive

than Ctl could facilitate the specification of certain properties, and could be closer to the

biological reality.

Calder et al. [26] applied model checking techniques to the analysis of a signal trans-

duction pathway. The models were based on high level descriptions of stochastic transition

systems, i.e., continuous time Markov chains (Ctmcs). Continuous Stochastic Logic (Csl)

was used to express and check a variety of temporal queries for both transient and steady

state behaviors, using the Prism [72] model checker. Besides the properties considered in

[29], the authors concentrated on further properties which are specific to signaling network

models with discretized protein concentrations.

4.2 Patterns of biological queries

4.2.1 Identification of patterns

The difficulty of proposing patterns is to come up with a limited number of query schemas

that are sufficiently generic to be applicable in a variety of situations, and at the same time

sufficiently concrete to be comprehensible for the non-expert user. Moreover, the overlap

between the patterns should be minimal. In order to identify a set of patterns, we started by

analyzing a large number of modeling studies in systems biology (starting from the references

in [127]), as well as previous applications of model checking and temporal logic (Section 2.4).

This bibliographic research allowed us to identify an open-ended list of concepts (Figure 4.2)

on the dynamics of genetic, metabolic, and signal transduction networks.
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Figure 4.2: Open-ended list of biological concepts used on modeling studies and previous
applications of model checking in systems biology.

The identified biological concepts were evaluated and classified into three types: simple

concepts, compound concepts and atomic propositions. Simple concepts are concepts that

can be obtained using a temporal logic formula and cannot be obtained by combining other

simple concepts (e.g., exclusion or causality). Compound concepts are concepts that can

be obtained by using a combination of one or more simple concepts (e.g., cross-inhibition).

Atomic propositions are concepts that characterize a state of the Fsts rather than a behavior

in the Fsts composed by several states (see Section 4.2.2).

Taking into account the natural language meaning of each concept, four main categories of

concepts were defined, reaching a compromise between comprehensibility and generality. The

categories concerned the occurrence/exclusion, consequence, sequence, and invariance of cel-

lular events. For each of these categories, we developed the appropriate pattern in structured

natural language, capturing the essence of the question. Also, to discriminate between some

concepts within a category, we developed the most relevant variants thus allowing particular

biological behaviors to be captured.
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4.2.2 Description of patterns

The patterns consist of structured natural language phrases, represented in schematic

form, with placeholders for so-called state descriptors. A state descriptor is a statement

expressing a state property, and takes the form of (a Boolean combination of) atomic propo-

sitions. Let φ, ψ be state descriptors, then

φ, ψ ::= p1 ∈ AP | p2 ∈ AP | . . .

¬φ | φ ∧ ψ | φ⇒ ψ | . . .

The state descriptors are interpreted on the Fsts, in the sense that their meaning is

formally defined as the set of states S1 ⊆ S satisfying the state descriptor. In addition to

(Boolean combinations of) atomic propositions, the state descriptors may be temporal-logic

formulas defined on the atomic propositions. This generalization will be discussed in the

conclusion (Section 4.4).

It is often convenient to introduce predefined state descriptors that capture Boolean com-

binations of atomic propositions that are recurrently used. Some examples of predefined state

descriptors that we found useful are the following:

• Increasesi/Decreasesi: the concentration of molecular component i increases/decreases

in this state;

• IsSteadyState: the concentrations of all molecular components are steady in this state;

• IsOscillatoryState: this state is part of a set of states containing an oscillation of the

concentrations of some molecular components.

Notice that the precise definition of the state descriptors depends on the particular type

of Fsts that is used, as the latter determines the set of atomic propositions AP .

Definition 8 (Occurrence/exclusion pattern)

It is possible

is not possible

for a state to occurφ

This pattern represents the concepts of occurrence and its negation, exclusion. It will

often be used during the development of a model to check for the presence or absence of

some property that was experimentally observed. For instance, “It is possible for a state φ

with a high concentration of protein P1 to occur”. Using this pattern, we can also check

for mutual exclusion, by using the negation of the pattern in combination with a conjunctive
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state descriptor. For instance, “It is not possible for a state φ to occur in which there is a

high concentration of protein P1 and protein P2”.

More generally, the exclusion pattern captures the safety properties used in the domain

of concurrent systems. A safety property (of which mutual exclusion is a typical example)

expresses that “something bad never happens” during the execution of the system, in our

example a bad state violating mutual exclusion.

Definition 9 (Consequence pattern)

If a state occurs,

then it is possibly

necessarily

followed by a state ψ

φ

The consequence pattern relates two events separated in time. More precisely, it expresses

that if the first state φ occurs, then it is possibly or necessarily followed by the occurrence

of the second state ψ. If the latter state necessarily follows, then the consequence pattern

expresses a form of causal relation. Instances of this pattern are, for instance, “If a state

φ occurs in which protein P is phosphorylated, then it is possibly followed by a state ψ in

which the expression of gene g decreases”, or “If a state φ occurs in which the concentration

of protein P is below 5 µM, then it is necessarily followed by a state ψ in which the expression

of gene g is at its basal level”.

Definition 10 (Sequence pattern)

by a stateat some time

all the time

preceded

necessarily

possiblyis

A state is reachable and

φ

ψ

The sequence pattern represents an ordering relation between two events. It ought not

to be confused with the consequence pattern, since the conditional occurrence of the second

state which characterizes the latter, is absent in the sequence pattern. It must be possible

to observe both the first and the second state, in that order, for an instance of the sequence

pattern to be true.

Four variants of the pattern are distinguished, depending on whether the second state ψ

follows possibly or necessarily after the first state φ, and whether the system is in the first

state all the time or only at some time before the occurrence of the second state. Instances

of this pattern are “A state ψ in which reactions R1 and R2 occur at a high rate is reached

after 2 min, and is possibly preceded at some time by a state φ in which the transcription

factor P is phosphorylated” or “A steady state ψ is reachable and is necessarily preceded all

the time by a state φ in which nutrient N is absent”.
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Definition 11 (Invariance pattern)

A state

must

can persist indefinitelyφ

The invariance pattern is used to check if the system can or must remain indefinitely in

a state φ. In contrast with the occurrence/exclusion pattern, the question is not whether a

particular state can be reached, but rather whether a particular state is invariable. Instances

of the pattern are “A state φ in which reaction R occurs at a high rate can persist indefinitely”

and “A state φ with a basal expression of gene g must persist indefinitely”.

4.3 Translation to temporal logic

By defining a translation into temporal logic of the patterns, the user queries can be

automatically cast in a form that allows the verification of the specified property by means of

model-checking tools. The set of patterns previously defined are independent of a particular

temporal logic, which allows the same high-level specification of a user query to be verified by

means of different approaches and tools. It is worth noticing though that some of the patterns

we propose have a branching-time nature (e.g., the consequence and the sequence patterns),

and therefore these are not translatable into a linear-time formalism, such as Ltl [99].

The following subsections present the translations of the set of patterns into three different

temporal logics: Ctl, µ-calculus and Ctrl. In all translations, formulas are built upon

atomic propositions.

4.3.1 Translation into Ctl

Natural language query templates CTL

Occurrence/Exclusion pattern

It is possible for a state φ to occur EF (φ)
It is not possible for a state φ to occur ¬EF (φ)

Consequence pattern

If a state φ occurs, then it is possibly followed by a state ψ AG (φ⇒ EF (ψ))
If a state φ occurs, then it is necessarily followed by a state ψ AG (φ⇒ AF (ψ))

Sequence pattern

A state ψ is reachable and is possibly preceded at some time by a state φ EF (φ ∧ EF (ψ))
A state ψ is reachable and is possibly preceded all the time by a state φ E (φ U ψ)
A state ψ is reachable and is necessarily preceded at some time by a state φ EF (ψ) ∧ ¬E (¬φ U ψ)
A state ψ is reachable and is necessarily preceded all the time by a state φ EF (ψ) ∧ AG (¬φ⇒ AG (¬ψ)))

Invariance pattern

A state φ can persist indefinitely EG (φ)
A state φ must persist indefinitely AG (φ)

Table 4.1: Rules for the translation of the patterns into Ctl. For each of the four patterns,
the translation of all variants is shown.
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The first variant of the occurrence pattern specifies that it is possible for a given state φ

to occur, without specifying any conditions or its duration. In Ctl it is represented by the

potentiality operator EF, that specifies that “there is at least one path leading to a future

state satisfying φ”. The second variant of the occurrence pattern specifies the negation of

the first. It is often known as a safety property and it is represented in Ctl by negating the

operator EF, specifying that “there is no path leading to a future state satisfying φ”.

The consequence pattern specifies a causal relation between two events without any con-

dition regarding the appearance of the first event. This will be specified by the use of the

invariance operator AG, which will verify the existence of the causal relation throughout the

entire Fsts. The causality is specified through the use of the logical implication. The condi-

tion regarding the appearance of the second event generates two variants. The first specifies

that it will possibly happen, being represented by the potentiality operator EF. The second

specifies that it will necessarily happen, being represented by the inevitability operator AF,

specifying that “all the paths lead to future states satisfying ψ”.

The sequence pattern presents four variants due to duration and branching conditions.

The first represents a simple sequence of two events with no time constraints between them,

specified through the use of the potentiality operator EF. The second variant states that

an event φ is always true through the path that leads to the event ψ, being specified with

the until operator E[φ U ψ]. The third states that all the attainable occurrences of ψ are

preceded by at least one occurrence of φ. This is easier to specify in Ctl by saying that it

is not possible not to have an occurrence φ until the occurrences of ψ. The fourth variant

specifies that all the occurrences of ψ are always preceded by a constant presence of φ. Once

again, it is easier to specify that throughout the system it holds that not having φ implies not

having ψ in the future, using the invariance operator AG. In both the third and the fourth

variant the second part of the property is only being verified if there is at least one occurrence

of ψ.

The invariance pattern specifies that a state persists indefinitely, considering two variants.

The first, where a state can persist indefinitely is represented in Ctl by the trajectory operator

EG, which specifies that “there is at least one path where all its states satisfy φ”. The second,

where a state must persist indefinitely is represented in Ctl by the invariance operator AG,

which specifies that “all the paths have all their states satisfying φ”.

4.3.2 Translation into µ-calculus

The occurrence pattern represents the possibility of a given state φ to occur. In µ-calculus,

this concept is represented using the least (µ) fixed point operator together with the possibility

(♦) modal operator. The use of the logical or lets the recursive formula unfold to the next

state, if the current state does not yet satisfy φ. The second variant is analogous and is

obtained by the negation of the whole formula.
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Natural language query templates µ-calculus

Occurrence/Exclusion pattern

It is possible for a state φ to occur µX.(φ ∨ ♦X)
It is not possible for a state φ to occur ¬µX.(φ ∨ ♦X)

Consequence pattern

If a state φ occurs, then it is possibly followed by a state ψ νX.((φ⇒ µY.(ψ ∨ ♦Y )) ∧ �X)
If a state φ occurs, then it is necessarily followed by a state ψ νX.((φ⇒ µY.(ψ ∨ �Y )) ∧ �X)

Sequence pattern

A state ψ is reachable and is possibly preceded at some time by a state φ µX.((φ ∧ µY.(ψ ∨ ♦Y )) ∨ ♦X)
A state ψ is reachable and is possibly preceded all the time by a state φ µX.(ψ ∨ (φ ∧ ♦X))
A state ψ is reachable and is necessarily preceded at some time by a state φ µX.(ψ ∨ ♦X) ∧

¬µY.(ψ ∨ (¬φ ∧ ♦Y ))
A state ψ is reachable and is necessarily preceded all the time by a state φ µX.(ψ ∨ ♦X) ∧ νY.(

(¬φ ⇒ νZ.(¬ψ ∧ �Z)) ∧ �Y )

Invariance pattern

A state φ can persist indefinitely νX.(φ ∧ ♦X)
A state φ must persist indefinitely νX.(φ ∧ �X)

Table 4.2: Rules for the translation of the patterns into µ-calculus. For each of the four
patterns, the translation of all variants is shown. We use the version of µ-calculus presented
in [87], which is interpreted on classical Kripke structures (Section 2.2.4).

The consequence pattern specifies a causal relation between two events throughout the

entire Fsts, which is represented by the greatest (ν) fixed point operator together with the

necessity (�) modal operator. There is however the necessity to combine these operators with

the logical and, in order to verify the current state and the subsequent ones. The possibility

variant affecting the second operator uses the same operators used in the occurrence pattern.

To obtain the necessity variant it suffices to change the modal operator affecting the second

event, from possibility (♦) to necessity (�).

The sequence pattern presents four variants due to duration and branching conditions.

The encoding of the first variant is achieved using one least (µ) fixed point operator together

with the possibility (♦) modal operator inside another least (µ) fixed point operator together

with the possibility (♦) modal operator. The second variant uses one least (µ) fixed point

operator and a logical or to specify that either ψ is true in the current state or φ must be

true and the same logic is applied to its successors. The third and fourth variants use the

equivalent operators in µ-calculus to represent the corresponding Ctl formulas.

The encoding of the invariance pattern is achieved by the use of the greatest (ν) fixed

point operator together with the logical and operator. Together these operators encode the

persistence concept. To discriminate between both variants, we look at the branching of

the successor states, that are encoded by using in the first variant the possibility (♦) modal

operator and in the second variant the necessity (�) modal operator.
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Natural language query templates CTRL

Occurrence/Exclusion pattern

It is possible for a state φ to occur EFtrue∗ (φ)
It is not possible for a state φ to occur ¬EFtrue∗ (φ)

Consequence pattern

If a state φ occurs, then it is possibly followed by a state ψ AGtrue∗ (φ⇒ EFtrue∗ (ψ))
If a state φ occurs, then it is necessarily followed by a state ψ AGtrue∗ (φ⇒ AFtrue∗ (ψ))

Sequence pattern

A state ψ is reachable and is possibly preceded at some time by a state φ EFtrue∗ (φ ∧ EFtrue∗ (ψ))
A state ψ is reachable and is possibly preceded all the time by a state φ EFφ∗ (ψ)
A state ψ is reachable and is necessarily preceded at some time by a state φ EF (ψ) ∧

¬EF(¬φ)∗ (ψ)

A state ψ is reachable and is necessarily preceded all the time by a state φ EFtrue∗ (ψ) ∧
AGtrue∗ (¬φ⇒ AGtrue∗ (¬ψ)))

Invariance pattern

A state φ can persist indefinitely EGtrue∗ (φ)
A state φ must persist indefinitely AGtrue∗ (φ)

Table 4.3: Rules for the translation of the patterns into Ctrl. For each of the four patterns,
the translation of all variants is shown.

4.3.3 Translation into Ctrl

The encoding of the occurrence, consequence and invariance patterns in Ctrl is analogous

to the Ctl encoding, by using the equivalent form of Ctrl operators indexed with the neutral

regular expression true∗.

The encoding of the sequence pattern differs from the Ctl encoding on the second and

third variants, exploiting the possibility of using the operator Ctrl EF operator together with

regular expressions, to express the Ctl until U operator. This potentiality operator specifies

that at least one of the outgoing paths contains a prefix satisfying the regular expression ρ

and lead to a state satisfying ϕ. By specifying the regular expression ρ as a concatenation of

the first argument of the Ctl until operator, we get an equivalent expression.

4.4 Conclusions

The widespread adoption of model-checking approaches for the analysis of biological sys-

tems is restrained by the difficulty for non-expert users to formulate appropriate questions in

temporal logics. Following the work in the formal verification community [50, 98], this chapter

presents a formulation of a set of patterns in the form of query templates in structured natu-

ral language. The patterns capture a large number of frequently-asked questions by modelers

in systems biology, but they are not restricted to a particular type of network, a particular

biological system or a particular modeling tool. In addition, translations of the patterns are

provided to three different temporal logics, Ctl, µ-calculus and Ctrl. However, the patterns

can be translated to other temporal logics provided that these have enough expressive power

to represent the same concept (e.g., being of branching-time nature).
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The patterns described in this chapter are globally consistent with those discussed by

Dwyer et al. [50], but there are differences due to the specific application domain for which

our patterns were developed. For instance, the notion of scope used by Dwyer et al. [50] is

not commonly defined for all the patterns, but implicitly present through the use of specific

variants for each pattern. Also, we have not explicitly included patterns that can be obtained

by the recursive application of other patterns, such as the chain response pattern defined in

Dwyer et al. [50]. While patterns have not been used for the querying of cellular interaction

networks thus far, some papers list example questions. It is reassuring to observe that all

questions listed by Chabrier-Rivier et al. [29] can be expressed by means of the patterns in

Section 4.2.2.

An obvious generalization of the patterns described in this chapter, already briefly men-

tioned, would be to allow state descriptors that are formulas in temporal logic. For instance,

instead of using atomic propositions to label states belonging to a (terminal) cycle in the

Fsts, which requires the preliminary detection of strongly connected components in the state

transition graph, we could use temporal logic formulas [14]. The introduction of temporal

logic formulas as state descriptors makes the patterns more general, but also potentially more

complicated to formulate and dependent on a particular temporal logic. A compromise trad-

ing some expressive power for user-friendliness would be to restrict the possible temporal logic

formulas to simple forms and introduce these as predefined state descriptors (Section 4.2.2).

This is consistent with the main idea underlying the use of patterns, namely that they cannot

be expected to cover all possible queries, but rather should allow users to formulate frequent

questions without worrying about their translation to temporal logic.
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Chapter 5

Implementation of a

service-oriented architecture

Despite the fact that several examples of the application of model checking to the analysis

of biological regulatory networks have been published in the literature (e.g., [4, 8, 9, 14, 15,

18, 21, 26, 29, 57, 64, 123]), two major obstacles still prevent modelers in systems biology

from drawing maximal benefit from formal verification tools.

First, the formulation of biological questions in temporal logic (shown in Chapter 4) and

the interpretation of the verification results is far from obvious, especially for non-expert

users who are not used to this kind of reasoning. Second, most of the existing modeling and

simulation tools are not capable of applying model-checking techniques in a transparent way.

In particular, they do not hide from the user the technical details of the installation of the

model checker, the export in a suitable format of the model and the query, the call of the

model checker, and the import of the results produced by the model checker (the true/false

verdict and witnesses/counterexamples). In other words, what is missing is a framework that

tightly integrates modeling and simulation tools with formal verification tools, on both the

conceptual and the implementational level.

In order to address these issues, we propose a service-oriented architecture (SOA) [54] for

the integrated modeling and formal verification of genetic regulatory networks, which reuses

existing technology as much as possible. The architecture connects modeling and simulation

clients to a formal verification server, via an intermediate request manager. In particular,

the client can perform verification requests through the web, which the request manager

dispatches to an appropriate formal verification server. When the formal verification server

has answered the request, the results are sent back to the modeling and simulation client

for display and further analysis in the graphical user interface of the tool. The interactions

of the client with the remote web server are handled by a verification module assisting the

specification of biological queries through a property editor, either by directly choosing the

appropriate temporal logic operators or by using a tailored set of query patterns [109].
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The first section provides a description of the architecture and presents the used model-

ing and simulation tool Gna [45]. Section 2 describes the verification module, showing the

pattern-based property editor, the client-side plugins and the connection with the request

manager through a running example. Section 3 presents the request manager, in particular

the queue and authentication manager and the load balancer. Section 4 presents the formal

verification server and the server-side plugins. Section 5 describes the possibility of integration

of new formal verification tools, as well as new modeling tools into the architecture. Section

6 provides some concluding remarks about its usefulness.

5.1 Service-oriented architecture

Figure 5.1 shows the overall architecture of the developed system, specifying its three com-

ponents: the modeling and simulation tool with its verification module, the request manager,

and the formal verification server. These three components have been implemented in Java 1.5

and their web-service interface is based on Apache Axis 1.3 (http://ws.apache.org/axis/).

The implementation followed two main principles: a service-oriented architecture and the

use of plugins. A service-oriented architecture is particularly well suited for our purpose. The

formal verification service is remotely executed through the web and is implemented using

standard protocols and languages like TCP/IP, SOAP and XML. A user of a modeling tool

wishing to perform a verification request does not need to install a model checker or other

formal verification tool locally on his or her machine. The use of plugins provides a flexible

and extensible way to abstract a particular formal verification tool. It allows one to apply

the tool without worrying about the details of its implementation.

5.1.1 Modeling and simulation tool

The service-oriented architecture is accessible for users of version 7.0 of the qualita-

tive modeling and simulation tool Genetic Network Analyzer (Gna)1. Gna uses a class

of piecewise-linear (PL) differential equations, originally introduced by Glass and Kauff-

man [65], providing a coarse-grained picture of the dynamics of genetic regulatory networks,

well-adapted to the current lack of quantitative information on many networks of interest.

The models associate a protein concentration variable to each of the genes in the network, and

capture the switch-like character of gene regulation by means of step functions that change

their value at threshold concentrations of regulatory proteins. The advantage of using Pl

models is that the qualitative dynamics of the high-dimensional systems are relatively simple

to analyze, using inequality constraints on the parameters rather than exact numerical val-

ues [13, 14]. This makes the Pl models a valuable tool for the analysis of genetic regulatory

1Gna is distributed by Genostar (http://www.genostar.com/). Free license for non-commercial academic
users granted upon request on the Gna home page (http://ibis.inrialpes.fr/article122.html).
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Figure 5.1: Service-oriented architecture for the integration of tools for the modeling and
simulation of genetic regulatory networks with formal verification (FV) tools. In particular,
the architecture has been implemented to connect Gna with the model checkers NuSmv
and Cadp. Gna is extended with a verification module responsible for the transformation
of the model and properties into a format specific to a formal verification tool, and for the
communication with the other components of the service-oriented architecture.

networks in the absence of quantitative information on the parameter values. The graphical

user interface of Gna supports the modeler in building step-by-step a Pl model of the network

under study (see the tutorial available at the Gna web site, for details and examples).

Gna computes discrete abstractions of the continuous dynamics of the Pl models, re-

sulting in a finite-state transition system (Fsts) [40] (see Section 2.1 for a formal definition).

Each of its states corresponds to a hyperrectangular region in the concentration space, defined

by the thresholds of the concentration variables. And each of its transitions corresponds to a

solution trajectory entering one region from another [13].

Gna allows the user to visualize the Fsts, i.e., to display the corresponding state transi-
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tion graph, and analyze the atomic propositions characterizing the states. For large graphs

visual inspection quickly becomes infeasible and formal verification tools are needed. Previ-

ous versions of Gna supported the export of the Fsts to text files accepted by several model

checkers [12, 14]. Version 7.0 extends Gna with a verification module that integrates the tool

into the service-oriented architecture.

5.2 Verification module

The verification module consists of three components: a pattern-based property editor, a

property translator, and a formal verification client (Figure 5.1).

5.2.1 Pattern-based property editor and translator

The problem of posing relevant and interesting questions is critical in modeling in general,

but even more so in the context of applying formal verification methods, due to the fact that

is not easy for non-experts to formulate queries in temporal logic. The pattern-based property

editor is a user interface implementing the set of patterns defined in Chapter 4. It allows the

specification of biologically-relevant properties in the form of temporal logic formulas. This

specification can be achieved in two distinct ways: for common biological properties through

the use of a pattern system, and for more specific or complex properties through the use of a

text editor of temporal logic formulas.

Figure 5.2 shows the pattern-based property editor of Gna. It presents the four different

types of patterns as templates to be completed by the user. The completion of the templates

requires the modeler to have previously defined atomic propositions, each of which describes

characteristics of a state of the network, such as an increasing or decreasing protein concen-

tration, a steady state, or a protein concentration above a certain threshold. When a pattern

has been specified, it is automatically translated into Computation Tree Logic (Ctl) [40].

The pattern-based property editor and translator were also made available as a stand-alone

Java application under the name Procrustes2. An application programming interface (API)

is also provided, so that the patterns can be integrated into other modeling tools that wish

to implement the encoding of biological properties into temporal logic formulas (Ctl, Ctrl

and µ-calculus are currently supported).

More complex biological properties can be directly specified in the Ctrl language (see

Chapter 3 for a detailed description) [102]. The text editor allows the modeler to specify

any temporal logic formula by freely combining the set of Ctl and Ctrl operators with

propositional logic operators and the user-defined atomic propositions. The temporal logic

properties can be stored for later use with the Gna model in a single project file.

2Procrustes: pattern-based property editor is publicly available (http://ibis.inrialpes.fr/article938.html).
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Figure 5.2: Graphical user interface for the specification of biological properties. The modeler
can use a pattern-based property editor for frequently-asked questions, and a text editor for
the specification of more complex biological properties (expert mode).

In order to illustrate the use of the developed architecture, we consider as a running exam-

ple a scenario of the network of global regulators controlling the carbon starvation response

in the enterobacterium Escherichia coli (see Section 6.1 for a detailed description). Given

the important role of RpoS for the survival of the cell, we are interested in verifying if the

entry into stationary phase upon carbon starvation is always preceded by the accumulation

of RpoS in the cell.

The first step in answering this question using the formal verification module of Gna

consists in identifying elements of the question that refer to the state of the biological system

and in stating these as atomic propositions. We represent the entry into stationary phase

of the system by a low level of stable RNAs encoded by the rrn operons. This character-

istic is specified using the property editor, where we create an atomic proposition named

low rrn (Figure 5.3), restricting the concentration values for the variable rrn to those below

its (single) threshold. We also introduce an atomic proposition high RpoS, representing the

accumulation of RpoS to a value above its threshold t RpoS.
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Figure 5.3: Atomic proposition specification window, where atomic propositions are defined
in terms of restrictions applied to a state (e.g., restrictions on concentration values, focal
sets, derivatives, and other state descriptors). In this case, the value of the concentration is
restricted to lie below the threshold t rrn.

The second step is the formulation of the biological property using the pattern-based

property editor and translator. We choose the sequence pattern to account for the temporal

ordering of the two states: stationary phase and high expression of RpoS. The sequence

pattern is instantiated by selecting the previously defined atomic propositions (Figure 5.2):

A state low rrn is reachable and is

necessarily preceded at some time by a state high RpoS

Once the pattern is fully instantiated, it is automatically translated into the corresponding
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Ctl formula: EF (low rrn) ∧ ¬E (¬high RpoS U low rrn).

5.2.2 Formal verification client and client-side plugins

The formal verification client is the component that enables Gna to communicate with the

request manager. It thus gives the user an easy access to the formal verification technology

without having to locally install a tool or worrying about how to get it to work. To perform

a verification request, the modeler needs to choose which tool to use, which property to

verify, etc. These choices may be guided by the estimation of the model size (e.g., for large

regulatory networks containing dozens of genes, symbolic model checking is likely to scale up

better than explicit-state model checking) or by the nature of the properties to be verified

(e.g., linear-time or branching-time, with/without regular expressions, etc.).

The Fsts on which the property is to be verified can be defined explicitly or implicitly. In

the former case, the Fsts is completely generated by the simulation module of Gna, while in

the latter case it is given by the set of initial states and a function that computes the successors

of any given state. The formal verification client performs a request by sending the implicit

or explicit description of the Fsts through the web and waiting for the result. The implicit

definition has the advantage of considerably reducing the size of the specification of the Fsts,

and thus limiting the size of the files transmitted and the response delays. This may be critical

for large Fstss. The verification result is composed of a true (false) verdict supported by a

witness (counterexample). The witness or counterexample consists of a sequence of states in

the Fsts, displayed in the graphical user interface of Gna.

In order to make the verification module of the modeling tool independent of a specific for-

mal verification tool, we have developed a plugin system. Currently, a plugin for the model

checker NuSmv is available, while a beta version for Cadp has been completed. All data

transformations specific to a particular model checker are taken in charge by the correspond-

ing plugin, thus leaving the service-oriented architecture free to manage generic verification

requests. Each plugin has a client-side and a server-side (see Figure 5.1). The client-side plu-

gin has the responsibility of translating the Fsts and the property into a format accepted by

the corresponding formal verification tool, while the server-side plugin is in charge of receiving

the translated Fsts and property, feeding them into the formal verification tool executable,

and parsing the results returned by the tool.

At the present time, the model checkers integrated in the architecture are invoked using

the default parameters. More elaborate choices could be partially automated by incorporating

into the plugin some knowledge of the verification method and the underlying algorithms.

Continuing with the considered running example, we can now pass to the verification

stage by configuring the verification request in the verification window (Figure 5.4). First,

we choose the name and version of the model checker plugin to be used (version 1.0 of the

NuSmv implicit plugin was used in the example). Second, we specify the initial conditions.
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The resulting implicit Fsts represents the transition from exponential phase to stationary

phase, starting from initial conditions corresponding to carbon depletion. We then run the

verification request, which is sent to the Request manager component, which will be described

in the next section.

Figure 5.4: Configuration of a verification request by specifying the model checker plugin to be
used and, if the plugin supports an implicit representation of the Fsts, the initial conditions
for the qualitative simulation of the network.

5.3 Request manager

The request manager is a component of the service-oriented architecture with a public

address (http://java1.inrialpes.fr), acting as an intermediary service that ensures the

communication between all the modeling tools and formal verification servers.

5.3.1 Queue and authentication manager

In order to keep track of the state of all verification requests and the available formal

verification servers, a queue and authentication manager have been implemented. Upon each
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verification request the authentication manager, together with the server-side plugin, checks

for the credentials of the request. If successful, the queue manager registers the request in

the queue, checks for an available formal verification server, and hands over the request. The

queue manager will continue to poll the formal verification server for a response until one of

three events happens: the verification has completed, the user has aborted the verification re-

quest, or a timeout has occurred. The verification result (verdict and witness/counterexample)

is then returned to the user.

To ensure the service security, each authenticated request registered in the queue, gener-

ates an Universally Unique Identifier (UUID) that is returned to the client, so that only this

client is able to retrieve the verification result. Furthermore, when the result is retrieved,

both the request manager and the formal verification server, that handled the request, delete

the model and temporal logic formula, leaving no traces of the request in the server.

5.3.2 Load balancer

The service-oriented architecture has been designed to support several formal verification

servers. The address of every server, as well as all the types of model checkers and other

formal verification tools locally installed on each of the servers, are registered in the request

manager. Upon a verification request, the load balancer chooses an idle formal verification

server with the required tool and server-side plugin installed. When all formal verification

servers are busy, the load balancer waits until one becomes idle.

5.4 Formal verification server

A formal verification server has the responsibility of verifying properties submitted by the

request manager. One or several formal verification tools can be installed on a server provided

that the corresponding server-side plugins are also installed on this server.

5.4.1 Formal verification server and server-side plugins

The formal verification server contains the web-service interface, which is responsible for

receiving the requests from the request manager, the choice of the corresponding server-side

plugin, and the construction of the verification result to be returned.

Each plugin specific to a formal verification tool has an authentication module which

responds to the authentication requests made by the request manager. In addition, upon a

verification request, the plugin pre-processes the model description and the property in order

to transform them into the format accepted by the formal verification tool, and calls the latter

with the appropriate parameters. When the formal verification tool finishes the verification of

the request, it produces the verdict as well as the corresponding witness (or counterexample).
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Since this witness has a format specific to a particular formal verification tool, it is up to

the plugin to parse the results and perform the necessary data transformations to a common

format that is sent back to the modeling tool. The required transformations depend on

whether the request involves a Fsts of an implicit or explicit type. In the explicit case, the

witness is simply a subgraph of the Fsts sent to the formal verification tool, whereas in the

implicit case the state information needs to be reconstructed from the output of the tool.

Figure 5.5: Result of the verification of a biological property, consisting of a false verdict and
the corresponding counterexample composed of a subgraph of the Fsts (see left panel). The
qualitative evolution of the concentration variables of the selected states of the counterexample
can also be visualized (see right panel).

Concluding the running example, the model checker returns false after 4 seconds. It means

that the entry into stationary phase is not always preceded by the accumulation of RpoS in
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the cell. The counterexample is presented to the user as shown in the left panel of Figure 5.5.

It consists of a subgraph of the initial Fsts, starting from the specified initial state and ending

in a state where the property fails. By selecting a path in this subgraph, Gna allows the

qualitative changes in the concentration of all the variables to be displayed (right panel of

Figure 5.5). Looking at the evolution of the variables we immediately observe that there is

(at least) one sequence of states leading to a low expression level of the rrn operons without

having previously passed through a state with a high concentration of RpoS. This illustrates

the negative verification result, and witnesses that the downregulation of the stable RNAs

does not require the previous accumulation of RpoS.

5.5 Integration of new tools

The architecture is generic and modular, but we develop it here in the context of one par-

ticular modeling and simulation tool (Gna [45]) and two different model checkers (NuSmv [36]

and Cadp [62]). This modularity permits the delegation to plugins of all operations that are

specific to a particular tool, allowing a flexible integration of new tools. Detailed information

on the integration of new tools with the developed architecture can be obtained by contacting

directly the IBIS team3.

5.5.1 Integration of new modeling tools

A first generalization of this architecture would be to extend it to other modeling and

simulation tools. A variety of tools have been used in combination with model checkers,

such as GINsim [110], Ina [125], Biocham [27], Gna [45] or Rovergene [15], based on

formalisms like Boolean and other logical models [95, 124, 134], Petri nets [31, 64, 82] and

ordinary differential equations [20, 44]. Developers wanting to integrate their modeling tools

with the architecture can do so by developing a verification module. This verification module

will be responsible for several tasks. Firstly, the specification of biological properties and

their translation into temporal logic formulas. This can be easily obtained by integrating

the publicly available pattern-based property editor Procrustes. Next, both the temporal

logic formulas and the model must be given to the client-side plugin that will perform the

necessary data transformations to be recognized by the corresponding formal verification tool

installed on a remote formal verification server. Thirdly, the developer must implement all the

web-service methods (specified in the public address http://java1.inrialpes.fr/) to correctly

submit verification requests to the request manager, as well as to receive the corresponding

verification result. Finally, the verification module must implement a graphical user interface

to correctly display the verification results.

3IBIS team website (http://ibis.inrialpes.fr/)
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5.5.2 Integration of new formal verification tools

A second generalization of this architecture would be to integrate other formal verification

tools into the architecture. This possibility is anticipated through the use of a plugin system,

where each plugin contains all data transformations and operations specific to a particular

formal verification tool. This simplifies the integration of a new tool to the creation of the

corresponding plugin. Two plugins have been developed until now: one for NuSmv (released

with the Gna distribution) and one for Cadp (beta version completed). Developers wanting

to integrate plugins for different model checkers or other formal verification tools can do so

through the following main steps: the development of a client-side plugin, the development

of a server-side plugin, and the installation of the server-side plugin on a server on which the

new tool is running.

The client-side plugin takes a .jar file that must be placed in the plugins directory of Gna,

allowing the modeling tool to export the Fsts to a file that can be read by the new formal

verification tool. Gna dynamically recognizes the available client-side plugins, using the Java

Plugin Framework technology. The development of a server-side plugin results in a Java class

that needs to be copied in an appropriate directory of the wrapper on the formal verification

server. The latter server must register its web service connection parameters in the request

manager, so as to enable the latter to dispatch the requests to the correct formal verification

server.

5.6 Conclusions

We have proposed a generic and modular service-oriented architecture to integrate the

modeling of genetic regulatory networks with existing formal verification tools. Currently,

the service-oriented architecture connects the Gna modeling tool, extended with a formal

verification module, with the NuSmv and Cadp model checkers. We have given a detailed

description of the existing components and motivated our implementation decisions. Addi-

tionally, we have illustrated the use of this architecture with the analysis of the complex

network of global regulators involved in the carbon starvation response in E. coli, which will

be further discussed in the next chapter. Gna is freely available for non-profit academic

research, while the main component of the formal verification module, the pattern-based

property editor and translator, is also available separately.

Formal verification methods have historically been used for the verification of hard-

ware and software systems. Some of the existing model checkers, such as Prism [72] and

NuSmv [36], have recently been applied to the verification of biological systems. Prism

verifies properties specified in Continuous time Stochastic Logic (CSL) and has been used

to perform quantitative analysis [26] of the ERK intracellular signaling pathway model [35].

NuSmv has been used for the analysis of biological models like the carbon starvation response
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in E. coli [14], the cell-cycle control in C. crescentus [123], the mucus production in P. aerug-

inosa [18], and the mammalian cell-cycle control [29]. In most cases, the biological models

are built using modeling tools that are not connected to model checkers. Some modeling tools

like GINsim [110] and previous versions of Gna [12] are capable of exporting the model in an

implicit or explicit format accepted by the model checker and the entire analysis is carried out

in the model checking environment, without any feedback to the modeling tool. An exception

is the modeling tool Biocham [27], which integrates the model checker NuSmv and allows

for a more flexible iterative modeling and verification approach.

We carried further the integration of the modeling and formal verification of biological net-

works, by proposing a service-oriented architecture that presents several advantages. First of

all, the proposed connection between modeling and verification tools is completely transpar-

ent for the modeler and platform-independent. It requires web access but this is becoming less

and less of a constraint in the current age of pervasive internet use. Second, the web-service

based integration of the tools coming from different domains makes it possible to exploit the

strong points of each. On the modeling side, the graphical user interfaces present the proper-

ties to be verified and the verification results in a way accessible to the modeler. For instance,

the specification of biological properties by means of query patterns (see Chapter 4) [109]

does not require prior knowledge of any specific temporal logic. On the verification side, the

latest developments of state-of-the-art model checkers can be immediately integrated. Third,

the plugin system provides a modular way to add new formal verification methods without

having to develop a new version of the modeling tool. The upgrade to future releases of a

formal verification tool can also be performed through a simple plugin update.

The architecture has been implemented in the context of Gna, but generalizations to

other modeling and simulation tools is obviously possible and facilitated by the modular

structure. The integration of such tools into the architecture requires them to implement a

verification module responsible for the specification of biological properties, the call of plugins

for specific formal verification tools and the exchange of verification requests with the request

manager. However, this implementation work is facilitated by the availability of the pattern-

based property editor as a stand-alone Java application. In addition, the development of

new plugins for tools based on model formalisms that can be mapped to Fstss, explicitly or

implicitly, are conveniently designed after plugins already available for Gna.

The modular infrastructure that we proposed is capable of connecting modeling and formal

verification tools. In combination with graphical user interfaces capable of presenting data

in a form accessible to modelers, we expect this to lower the obstacles to the use of formal

verification technology in the analysis of biological regulatory networks.
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Part III

Applications and discussion
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Chapter 6

Analysis of genetic regulatory

networks in E. coli and S.

cerevisiae

After the definition and implementation of the methods developed in the context of this

PhD thesis, this chapter shows their practical application. It illustrates the analysis of two

biological systems from two different model organisms, the bacterium Escherichia coli and

the eukaryote Saccharomyces cerevisiae. The analysis of these two systems allowed a better

understanding of the biological processes under study.

The first model concerns the response of the global regulators of transcription of E. coli

cells upon carbon starvation conditions. We first start by providing a description of the bio-

logical process under study. Then, a piecewise-linear model is presented which tries to predict

the response of the E. coli cells to carbon starvation. Finally, an analysis and verification of

this model is performed, using the previously described methods.

The second model concerns the FLR1 response to the stress induced by the fungicide

mancozeb in S. cerevisiae. Analogously, we start by providing a description of the biological

process under study. Then, we present a piecewise-linear model which predicts the FLR1

response to the presence of mancozeb. Finally, we perform the analysis and verification of

the model.

These two models are defined using the Gna modeling and simulation tool (Section 5.1.1)

to generate their possible behaviors. These behaviors are exported by Gna as Fstss, which

are then verified for the occurrence of the observed biological behaviors with the help of

the previously described formal verification architecture (Chapter 5). These behaviors can be

represented in two distinct ways. Either by simulating all the reachable states and representing

them explicitly through a Fsts, or through an implicit representation where the transitions

between states are only explored at the model checking stage.
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Each of the properties to be verified can be specified either by using the pattern-based

property editor (Chapter 4) or by directly using the Ctrl language (Chapter 3) in the case

of complex biological properties with the need for more expressive power.

The model checkers considered in the analysis and verification of these two biological

models were NuSmv and Evaluator from Cadp toolbox. For NuSmv both the implicit

and explicit Fsts representation were used to test properties of the model. For Evaluator

only the explicit Fsts representation was considered, because the implicit representation is

not implemented yet.

The documentation of the verification procedure is enriched with screen-shots of Gna’s

graphical user interface, which can be found in Appendix B.

6.1 Analysis of carbon starvation response in E. coli

6.1.1 Carbon starvation response in E. coli

In order to survive, E. coli cells constantly have to adapt their functioning to the avail-

ability of carbon sources, essential for growth. Under favorable environmental conditions,

bacterial cells quickly grow and divide, leading to an exponential increase of their biomass,

called exponential phase. Upon a variety of stress conditions, like the depletion of carbon

sources, the bacteria abandon exponential phase and enter a state in which cells stop divid-

ing, capitalizing upon the few available resources to maintain the basic metabolic functions

necessary for survival. This so-called stationary phase is rapidly reversed and fast growth

restored once the environmental conditions become favorable again [74].

Glucose is the preferred carbon source of E. coli. The adaptation of the bacteria to the

depletion of glucose from the growth medium is under the control of a large and complex

network involving multiple levels of regulation, from metabolic fluxes and enzyme activity to

gene regulation [67, 69, 85]. The role of the metabolic and signalling networks in the adapta-

tion of E. coli to carbon source starvation have been extensively studied (e.g., [19, 32, 117]),

but much less has been done at the level of gene expression. For this system1, we focus on

the role of the global regulators of transcription, such as CRP, Fis, DNA supercoiling, and

RpoS. These global regulators form the backbone of the network coordinating the long-term

response of E. coli cells to starvation conditions (Figure 6.1). The transcription factors re-

spond directly or indirectly to glucose depletion, by controlling in a combinatorial fashion the

expression of a large number of genes involved in cellular adaptation and survival. In addi-

tion, they control each other’s expression, thus giving rise to a complex regulatory network.

It is not well understood how the interactions between the global regulators coordinate the

cascades of molecular events driving the growth arrest of E. coli cells starved for glucose.

1In this subsection, the notation used for the gene and protein names are those consistent with the com-
munity working with the E. coli : use of italic minuscules for gene names (i.e., crp, fis and cya) and non-italic
for protein names (i.e., CRP, Fis and Cya).
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Figure 6.1: Network of key genes, proteins and regulatory interactions involved in the carbon
starvation response network in E. coli [109, 118]. It includes well-known pleiotropic transcrip-
tion regulators, like the histone-like protein Fis, the catabolic repressor cAMP·CRP (resulting
from the expression of genes crp and cya, and the activation of Cya by carbon depletion),
and the general stress response factor RpoS or σS (whose stability is regulated by RssB).
Changes in DNA topology and its dependence on the relative expression level of the genes
gyrA, gyrB, gyrI, and topA are also considered, as the three-dimensional structure of DNA
modulates the transcription of a large number of genes. Finally, stable RNAs expressed from
the rrn operons are considered as their amount provides a reliable indicator of the growth
rate of the cell, being high during an exponential phase and low during a stationary phase.

6.1.2 Model of carbon starvation response in E. coli

Due to the lack of biological data, it is not possible to build a quantitative model of

this network. There is, however, enough data available in the literature to build a qualitative

model, in order to analyze the dynamic behavior of the regulatory network. A piecewise-linear

model (Section 5.1.1) for the carbon starvation network was therefore built. The qualitative

dynamics of the network are described by nine coupled piecewise-linear differential equations,

and fifty inequality constraints on the parameter values (Table 6.1) [109, 118]. The qualitative

analysis of a network of this size and complexity generates huge Kripke structures: the entire

state set consists of approximately O(1010) states, while the subset of states that is most

relevant for our purpose, i.e., the states that are reachable from an initial state corresponding

to a particular growth state of the bacteria, still consists of O(104) states. It is obvious

that Kripke structures of this size cannot be analyzed by visual inspection, and that formal

verification techniques are needed to get a better insight into the transient and asymptotic
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ẋfis = κ1
fis

(1 − s+(xcrp, θ1crp) s+(xcya, θ1cya) s+(usignal, θsignal)) s
−(xfis, θ

5
fis

)

+ κ2
fis

s+(xgyrAB , θ
1
gyrAB) s−(xgyrI , θ

2
gyrI) s−(xtopA, θ

2
topA) s−(xfis, θ

5
fis

)

(1 − s+(xcrp, θ1crp) s+(xcya, θ1cya) s+(usignal, θsignal))
- γfis xfis

zerofis < θ1
fis

< κ1
fis
/γfis < θ2

fis
< θ3

fis
< θ4

fis
< θ5

fis
< (κ1

fis
+ κ2

fis
)/γfis < maxFis
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Table 6.1: Piecewise-linear differential equations and parameters inequalities for the carbon
starvation response network in E. coli.
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dynamics of the network.

6.1.3 Analysis and verification of the carbon starvation response in E. coli

Several questions could be presented here in order to illustrate the verification of biological

properties. However, only a few properties are presented, enough to illustrate each of the

previously defined biological patterns (Chapter 4) and the Ctrl language (Chapter 3). In

particular, properties related to the conditions of reachability of each of the steady state

attractors are explored.

6.1.3.1 Mutual inhibition of Fis and CRP

The regulatory protein CRP is the target of a signal-transduction pathway, which activates

the adenylate cyclase Cya in case of carbon starvation. In turn, the latter synthesizes a

small molecule, cAMP, which binds to CRP. This active form of CRP is able to regulate

the expression of a large number of genes. In particular, CRP·cAMP binds to the promoter

region of the gene fis, thereby preventing synthesis of new Fis proteins. Fis is an important

regulator of genes involved in the cellular metabolism but it also inhibits crp expression, by

binding to multiple sites in the two promoter regions of the gene, P1 and P2 (Figure 6.1).

The regulatory interactions between genes fis and crp form a positive feedback loop, a motif

often found in the genetic regulatory networks. When present in isolation, this kind of motif

has been shown to lead to bistability [63]. In particular, it excludes simultaneous high or

low levels of Fis and CRP at steady state. The question can be asked whether the motif is

also functional in the context of the carbon starvation response network. For instance, the

expression of fis is not only controlled by CRP·cAMP, but also by the DNA supercoiling level

and Fis itself.

In order to answer this question, we first need to identify the elements that refer to the

state of the biological system and stating these as atomic propositions. We start by creating

an atomic proposition high CRP to represent the accumulation of CRP to its maximum level

where xcrp ≥ (κ1
crp + κ2

crp + κ3
crp)/γcrp. Then we create another atomic proposition low CRP

to restrict the concentrations values to a low level where xcrp ≤ κ1
crp/γcrp. Analogously, we

create an atomic proposition high Fis to represent the accumulation of Fis to a high level

where xfis ≥ κ4
fis/γfis, and an atomic proposition low Fis to restrict the concentration values

of Fis to a low level where xfis ≤ κ1
fis/γfis.

After the specification of these atomic propositions we then proceed with the formulation

of the biological properties to be verified. We choose two occurrence/exclusion patterns to

check both for the exclusion of states with high levels of CRP and Fis and states with low

levels of CRP and Fis. The occurrence/exclusion patterns are then instantiated with the

previously defined atomic propositions:
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It is not possible for a state high CRP and high Fis to occur

It is not possible for a state low CRP and low Fis to occur

The patterns are then automatically translated into the following Ctl formulas:

¬EF(high CRP ∧ high Fis) (6.1)

¬EF(low CRP ∧ low Fis) (6.2)

The model checker NuSmv returns true in less than 2 seconds for both properties, confirm-

ing the mutual exclusion of Fis and CRP, meaning that the positive feedback loop involving

fis and crp is functional.

One could now be interested in studying the conditions for the bistability of the system. In

particular, the influence of the carbon starvation signal in the transitions between exponential

and stationary phase. In order to verify this, we first need to characterize both attractors in

Gna by means of atomic propositions. The stationary-phase attractor astat is characterized

by a low basal expression level of the stable RNAs (xrrn ≤ θrrn), an indicator of growth

arrest. The exponential-phase attractor aexp is characterized by a high expression level of

the stable RNAs (xrrn > θrrn), characteristic of the high growth rate in exponential phase.

To denote the presence of the carbon starvation input signal, the atomic proposition sig is

characterized by low values of variable usignal (usignal < θsignal). Considering these atomic

propositions, one can specify the following properties using the consequence pattern:

If a state sig occurs,

then it is necessarily followed by a state astat

If a state ¬sig occurs,

then it is necessarily followed by a state aexp

The patterns are then automatically translated into the following Ctl formulas:

AG(sig =⇒ AF(astat)) (6.3)

AG(¬sig =⇒ AF(aexp)) (6.4)

Choosing again the whole phase space for the initial conditions, the model checker returns

true for both properties, indicating that for given nutrient conditions the attractors are mutu-

ally exclusive. More precisely, if sig is present (nutrient depletion) then the stationary-phase

attractor is inevitably reached, whereas in the absence of sig (nutrient availability), the sys-
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tem necessarily evolves towards the exponential-phase attractor. In mathematical terms, the

system is therefore not bistable, but has a monostable steady-state response to each of the

two possible inputs (nutrient depletion vs. nutrient availability).

6.1.3.2 Control of entry into stationary phase by RpoS

One of the extensions of this model relative to the one described by Ropers et al. [118],

is the inclusion of the sigma factor RpoS. A question that naturally arises is to know what

role RpoS plays in the dynamics of the system (This question was answered in Chapter 5

as a running example for the service-oriented architecture, but it is developed here in more

detail).

RpoS or σs is a sigma factor that allows cells to adapt to and survive under harmful

conditions by expressing a variety of stress response genes [70]. Due to its key role in the

cell, the concentration of RpoS is tightly regulated at the transcriptional, translational, and

post-translational levels. This model focuses on the conditions of stability of the protein.

While cells grow on a carbon source, RpoS is actively degraded through the protein RssB,

which binds to RpoS and targets the factor to an intracellular protease (Figure 6.1). However,

the depletion of the carbon source inactivates RssB, thus allowing RpoS to accumulate to a

high concentration. Given the important role of RpoS for the survival of the cell, one may

ask whether the entry into stationary phase upon carbon starvation is always preceded by

the accumulation of RpoS in the cell.

The first step in answering this question using the formal verification module of Gna

consists in identifying elements of the question that refer to the state of the biological system

and in stating these as atomic propositions. We represent the entry into stationary phase of

the system by a low level of stable RNAs encoded by the rrn operons. This is motivated

by the fact that stationary-phase cells do not need high levels of stable RNAs, contrary to

what is required by the high translational activity in exponential phase. These characteris-

tics are specified using the pattern-based property editor (Section 5.2.1), where we use the

previously created atomic proposition astat, restricting the concentration values for the vari-

able rrn to those below its (single) threshold θrrn. We also introduce an atomic proposition

high RpoS, representing the accumulation of RpoS to a value above its (single) threshold

θrpoS (Figure B.1).

The second step is the formulation of the biological property using the pattern-based

property editor and translator. We choose the sequence pattern to account for the temporal

ordering of the two states: stationary phase and high expression of RpoS. The sequence

pattern is instantiated by selecting the previously defined atomic propositions (Figure B.2):

A state astat is reachable and is

necessarily preceded at some time by a state high RpoS
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Once the pattern is fully instantiated, it is automatically translated into the corresponding

Ctl formula:

EF (astat) ∧ ¬E (¬high RpoS U astat)

After the specification of the property, one passes to the verification stage. For this

step, the verification request must be configured in the verification window (Figure 5.4).

First, we choose the name and version of the model checker plugin to be used (version 1.0

of the NuSmv implicit plugin was used in the example). Second, we specify the initial

conditions. The resulting implicit Fsts represents the transition from exponential phase to

stationary phase, starting from initial conditions corresponding to carbon depletion. We then

run the verification request, which is treated by the service-oriented architecture as described

in Chapter 5.

In response to the query the model checker returns false after 4 seconds. It means that

the entry into stationary phase is not always preceded by the accumulation of RpoS in the

cell. The counterexample is presented to the user as shown in the left panel of Figure 5.5. It

consists of a subgraph of the initial Fsts, starting from the specified initial state and ending

in a state where the property fails. By selecting a path in this subgraph, Gna allows the

qualitative changes in the concentration of all the variables to be displayed (right panel of

Figure 5.5). Looking at the evolution of the variables we immediately observe that there is

(at least) one sequence of states leading to a low expression level of the rrn operons without

having previously passed through a state with a high concentration of RpoS. This illustrates

the negative verification result, and witnesses that the down-regulation of the stable RNAs

does not require the previous accumulation of RpoS.

6.1.3.3 Expression of topA during growth-phase transitions

The model described by Ropers et al. [118] was not capable of accounting for the control

of DNA supercoiling during growth-phase transition. In particular, TopA was predicted to be

never expressed, which is inconsistent with published data [114]. The extension of the model

with RpoS makes it possible to refine the description of the control of the DNA supercoiling

level. On the one hand, GyrAB activity is regulated by GyrI, as mentioned previously, and

on the other hand, the topA promoter is activated by RpoS. One question that arises is if

topA is expressed in response to the carbon source availability?

In order to answer this question we verify its negation. In particular, we check if the

absence of topA expression persists throughout the evolution of the system. First, we start by

creating an atomic proposition low topA representing the absence of topA expression where

its value is xtopA ≤ θ1
topA. We then proceed by choosing the invariance pattern to verify if

topA expression maintains the value low topA:
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A state low topA can persist indefinitely

The pattern is then automatically translated into the following Ctl formula:

EG(low topA) (6.5)

For the verification stage, we choose the name and version of the model checker plugin

to be used (version 1.0 of the NuSmv implicit plugin was used in this example). Then,

we specify the initial conditions corresponding to the exponential-phase conditions. The

resulting implicit Fsts represents the transition from exponential phase to stationary phase.

In response to the query the model checker returns false after 3 seconds, showing that the

expression of topA is stimulated at the entry into stationary phase, most likely under the

influence of RpoS. Indeed, following carbon starvation, the protein RssB is inactivated, which

leads to the accumulation of RpoS at high levels. RpoS in turn stimulates the expression of

topA.

6.1.3.4 Damped oscillations after carbon upshift

In the carbon starvation response network there is a negative feedback loop, involving the

genes gyrAB, topA, and fis (Figure 6.1). GyrAB is a gyrase protein which supercoils the DNA

structure, whereas the topoisomerase TopA relaxes it. An increase of the DNA supercoiling

level stimulates expression of Fis, which in turn decreases the supercoiling level, by stimulating

topA expression and inhibiting gyrAB expression. The resulting negative feedback loop was

predicted to give rise to (damped) oscillations of Fis, GyrAB and stable RNA concentrations

after a carbon upshift [118]. In the version of the carbon starvation model presented in this

thesis, additional interactions contribute to controlling the DNA supercoiling level. Hence,

the gyrase inhibitor GyrI represses the activity of GyrAB by forming a complex with the

protein. The expression of gyrI is notably stimulated by RpoS [112]. An important validation

of this model is to check whether the carbon upshift is still a necessary condition for the

occurrence of damped oscillations.

To check for the occurrence of oscillations we can proceed in two distinct ways. The first

way makes use of the Gna’s state labeling procedure upon generation of the explicit Fsts,

where each state of the Fsts that is identified as belonging to a (terminal) cycle is labeled

with that information. A user can therefore define an atomic proposition isOscillatoryState

making use of that particular information. By using the previously defined atomic proposition

sig to indicate the presence of the carbon starvation signal, one can instantiate the consequence

pattern as follows:
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If a state ¬sig occurs,

then it is necessarily followed by a state isOscillatoryState

with the pattern being automatically translated into the following Ctl formula:

AG(¬sig =⇒ AF(isOscillatoryState)) (6.6)

The second way to check for the occurrence of oscillations is through the use of the Ctrl

language (defined in Chapter 3). Since it is a more expressive language than Ctl, one can

characterize a specific pattern in the oscillation, like the (damped) oscillations of the stable

RNAs concentration when entering exponential phase. We create the atomic proposition

dec rrn (inc rrn) to represent a decreasing (increasing) concentration of the stable RNAs,

and we specify the query with the following Ctrl formula:

AG¬sig.true∗EF
∞
(true∗.inc rrn+.true∗.dec rrn+)+ (6.7)

For the verification stage, we specify the initial conditions corresponding to the stationary-

phase conditions. The resulting explicit Fsts represents the transition from stationary phase

to exponential phase. We then choose the name and version of the model checker plugin to

be used. The NuSmv explicit plugin for the Ctl formula 6.6, and the Cadp explicit plugin

for the Ctrl formula 6.7. In response to both queries the model checker returns true in 9 and

45 seconds respectively, showing that in this model extension damped oscillations still occur

following a carbon upshift.

In Section 6.1.3.1 we concluded that the system was monostable with a mutual exclusion

of Fis and CRP concentrations. One could use that information to confirm the conditions

that drive the system towards the terminal cycle. Stationary phase (the initial condition) is

characterized by a high concentration of CRP and a low concentration of Fis, and exponential

phase (terminal cycle) is characterized by a low concentration of CRP and a high concentration

of Fis. By creating the atomic proposition dec CRP which looks at the sign of the derivative

of the CRP variable, one can represent its decrease of concentration. The following Ctrl

formula checks for the existence of a path passing through a state where the concentration of

CRP decreases, reaching exponential phase where the terminal cycle is characterized by the

oscillation of the concentration of the stable RNAs:

AG¬sig.true∗.dec CRP+.aexp
EF

∞
(true∗.inc rrn+.true∗.dec rrn+)+ (6.8)

Considering the same (stationary phase) initial conditions and the same model checker

(Cadp explicit) plugin, one can proceed with the verification of property 6.8. The Ctrl model

checker takes more than 2 minutes to return the verdict true, suggesting that the decrease
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of the concentration of CRP drives the system towards the terminal cycle. Interestingly, the

verification module inside Gna has the corresponding verification witness available. The user

can visualize the path of states starting from the initial conditions at stationary phase leading

to the terminal cycle. Also, by selecting these states the user has the possibility to observe

the evolution of each variable of the system throughout this path, visualizing the decrease of

the concentration of CRP and the oscillation of the concentration of the stable RNAs.

6.2 Analysis of the FLR1 transcriptional response to man-

cozeb stress in S. cerevisiae

6.2.1 FLR1 stress response to mancozeb in S. cerevisiae

Drugs, pesticides and other chemical compounds are not usually present in the natural

ecosystems of most living organisms. However, multidrug resistance (MDR), i.e. the ability

to acquire simultaneous resistance to unrelated chemical compounds, is a widespread phe-

nomenon. This capability is often the result of the activation of multidrug efflux pumps

which are able to catalyze the extrusion of chemically and structurally diverse substrates

from the cytosol to the outer medium [79, 119]. Upon exposure to drugs and other chemi-

cal stresses, cells respond through the transcriptional up-regulation of genes encoding these

MDR transporters. Long term multidrug resistance is acquired usually through the arising of

point mutations leading to the constitutive activation of these proteins or to the constitutive

activation or over-expression of their transcriptional activators [47, 131]. Understanding how

multidrug efflux pumps are regulated at the transcriptional level is therefore crucial to define

suitable strategies to overcome drug resistance, including the definition of new drug targets

and the design of new drugs.

Transcriptional regulation has been extensively studied in the model eukaryotic organism

S. cerevisiae. Although much knowledge has been gathered on the effect of individual tran-

scription factors in individual target genes, little is still known on how transcription factors

interact and cross-talk to produce the registered transcriptional responses. The few exam-

ples studied in more detail [96, 97, 129] strongly suggest that, in most cases, transcriptional

control results from the balance of the action of diverse transcription factors which may act

alone or as interacting partners, may regulate and be regulated by other transcription factors

and may control their own expression through complex feedback loops [93].

Figure 6.2 presents a specific network of five (including one unidentified) transcription

factors regulating the transcriptional activation of the FLR1 gene in yeast cells exposed to

the agricultural fungicide mancozeb2. FLR1 encodes a plasma membrane member of the

2In this subsection, the notation used for the gene and protein names are those consistent with the com-
munity working with the S. cerevisiae: use of italic majuscules for gene names (i.e., PDR3 and RPN4 ) and
non-italic for protein names (i.e., Pdr3 and Rpn4).
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Figure 6.2: Network of key genes, proteins and regulatory interactions involved in the FLR1
response in the presence of mancozeb in S. cerevisiae [106].

12-spanner Drug:H+ Antiporter family 1 of the Major Facilitator Superfamily [119], being

involved in the multidrug resistance phenomenon by conferring resistance to drugs and other

inhibitory chemicals [2, 23, 111, 129, 130]. FLR1 transcriptional activation was registered

upon exposure to drugs, oxidants and pro-oxidants, being fully dependent on the bZIP tran-

scription factor Yap1 [2, 111, 130], implicated in oxidative stress response and pleiotropic

drug resistance. However, maximal levels of FLR1 induction by the agricultural fungicide

benomyl were only observed in the presence of Pdr3, but where independent of Pdr1 [23, 130].

Pdr1 and Pdr3 being the first described major regulators of the MDR phenomenon in yeast.

A fourth transcription factor, Rpn4, controlling the expression of proteosome genes, was seen

to be further required for maximal FLR1 up-regulation in yeast cells challenged with man-

cozeb [129]. The importance of these transcription factors in yeast resistance and response

to mancozeb was stressed in previous chemogenomics [48] and expression proteomics [121]

analysis.

6.2.2 Model of FLR1 stress response to mancozeb in S. cerevisiae

Similarly to the E. coli network, it is not possible to build a quantitative model of the S.

cerevisiae network, due to the lack of biological data. We used the same approach to build a

qualitative model, by specifying the rules of the dynamics of the elements of the system. The

qualitative dynamics of the network are described by six coupled piecewise-linear differential

equations and forty eight inequality constraints on the parameter values (Table 6.2) [106]. The

92



qualitative analysis of this network generates Kripke structures of the order of approximately

O(105) states, while the subset of states that is most relevant for our purpose, i.e., the states

that are reachable from an initial state corresponding to the low concentration of the FLR1

gene, still consists on O(102) states. Even though the qualitative behaviors of this network

are significantly smaller than the previous network, it is still difficult to analyze them by

visual inspection, and formal verification techniques are still required to get a better insight

into the transient and asymptotic dynamics of the network.

6.2.3 Analysis and verification of the FLR1 stress response to mancozeb

in S. cerevisiae

In this section, generic properties concerning the reachability of the attractors of the

system are presented, as well as properties concerning the validation of particular interactions.

6.2.3.1 Attractors reachability

We start by first looking into the existence of attractors in the system, and the conditions

for their reachability. Using the attractor search functionality [46] available in the Gna

modeling and simulation tool, two attractors were identified. The first attractor identified by

means of Gna is a state in the Kripke structure corresponding to an asymptotically stable

steady state of the piecewise-linear model. This state is characterized by a low expression

of all the transcription factors and the FLR1 gene. This is due to the fact that the signal

corresponding to the entry of mancozeb into the cytosol is absent. The second attractor

corresponds to another steady state of the piecewise-linear model. This state is characterized

by a presence of the mancozeb signal and a high expression of all the transcription factors

and of the FLR1 gene. This is consistent with the fact that the presence of the mancozeb

signal will activate the cascade of regulators that will increase the expression of FLR1.

In order to verify the conditions for the reachability of these attractors, we start by

characterizing them in Gna by means of atomic propositions. The steady state corresponding

to a low expression of FLR1 (xflr1 ≤ κbflr1) is labeled anormal. The steady state corresponding

to a maximal expression of FLR1 (xflr1 ≥ (κbflr1 + κ1
flr1 + κ2

flr1 + κ3
flr1)/γflr1) is labeled

aresponse. The occurrence pattern is then picked to check for the reachability of both steady

states, and we instantiate them with the corresponding atomic propositions (Figure B.3):

It is possible for a state anormal to occur

It is possible for a state aresponse to occur
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Table 6.2: Piecewise-linear differential equations and parameters inequalities for the FLR1
stress response to mancozeb network in S. cerevisiae.
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The patterns are then automatically translated into the following Ctl formulas:

EF(anormal) (6.9)

EF(aresponse) (6.10)

For the verification stage, we choose the name and version of the model checker plugin to

be used (version 1.0 of the NuSmv implicit plugin was used with these properties). Then we

choose the whole phase space for the initial conditions. We then run the verification request,

which is treated by the service-oriented architecture. The model checker returns true for

both properties confirming the reachability of these two steady states in the model. We are

now interested in verifying if their occurrence is dependent of the presence of the mancozeb

signal. We introduce the atomic proposition sigm to denote the presence of mancozeb. Both

properties are specified using the consequence pattern (Figure B.4):

If a state ¬sigm occurs,

then it is necessarily followed by a state anormal

If a state sigm occurs,

then it is necessarily followed by a state aresponse

The patterns are then automatically translated into the following Ctl formulas:

AG(¬sigm =⇒ AF(anormal)) (6.11)

AG(sigm =⇒ AF(aresponse)) (6.12)

Choosing again all the phase space for the initial conditions, the model checker returns

true for both properties, indicating that the attractors are mutually exclusive and dependent

on the presence of the mancozeb signal. Like the previous system, in mathematical terms the

FLR1 response is not bistable, but has a monostable response to each of the possible values

for the input variable (mancozeb presence vs. mancozeb absence).

6.2.3.2 Pdr3 necessity for FLR1 maximum expression

Like previously mentioned, the full activation of FLR1 is dependent on Yap1, Yrr1, Pdr3

and Rpn4 [129]. The effect of Yap1 and Yrr1 in FLR1 transcription is known to be direct [42,

97]. Rpn4-binding locus cannot be found in the FLR1 promoter region, so Rpn4 is assumed

to influence FLR1 through Yap1, whose expression is dependent on Rpn4 in presence of

mancozeb [129]. Although the Pdr3-binding locus can be found in the FLR1 promoter region,

there is still no experimental evidence to support this hypothesis. We made the assumption
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that Pdr3 acts as co-transcription factor of Yrr1 when regulating FLR1, and we are interested

in confirming that the model accounts for the fact that the full activation of FLR1 is dependent

on Pdr3.

In order to answer this question, we first state the biological elements as atomic proposi-

tions in Gna. An atomic proposition aresponse was already defined to represent the maximal

expression of FLR1. We introduce a new atomic proposition high Pdr3 to represent a high

expression of PDR3, restricting the concentration values for the variable pdr3 to those above

its threshold xpdr3 ≥ θpdr3.

We choose the sequence pattern to account for the temporal ordering of these two events:

maximal expression of FLR1 and high expression of PDR3. The sequence pattern is then

instantiated with these atomic propositions:

A state aresponse is reachable and

is necessarily preceded at some time by a state high Pdr3

Once the pattern is fully instantiated, it is automatically translated into the corresponding

Ctl formula:

EF (aresponse) ∧ ¬E (¬high Pdr3 U aresponse)

We choose the NuSmv implicit plugin in the configuration window and we select anormal

steady state for the initial conditions, turning the sigm on to represent the presence of man-

cozeb. In response to this query, the model checker returns true confirming that the maximal

expression of FLR1 is dependent on its co-regulation by Pdr3 and Yrr1 transcription factors.

6.2.3.3 Validation of a new Yap1 regulator

The verification of the previous property, suggested the acquisition of more biological

data. In particular, double mutants knockout experiments in order to validate the interactions

between the considered transcription factors.

The double deletion mutant ∆yrr1∆pdr3 exhibits yap1 transcript levels coincident with

those found in the ∆yrr1 single deletion mutant, suggesting that Pdr3 influence on the YAP1

up-regulation is dependent on Yrr1. Regarding the Rpn4 influence on YAP1 up-regulation,

the double deletion mutant ∆yrr1∆rpn4 exhibits YAP1 transcript levels qualitatively lower

than those observed for the single mutants ∆yrr1 and ∆rpn4, meaning that there is an addic-

tive effect of Yrr1 and Rpn4 in YAP1 up-regulation. However, in the initial considered ver-

sion of the model we had the assumption that Yrr1 could only influence YAP1 up-regulation

through Rpn4. This new information led us to revise a previous version of the model, includ-

ing a new transcription factor FactorX (bold in Figure 6.2 and Table 6.2). Given that there

is also no previous evidence for a direct role of Yrr1 in YAP1 transcription and that there is
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no Yrr1 binding site in the YAP1 promoter region, an unknown transcription factor FactorX

is proposed to perform this interaction between Yrr1 and YAP1.

In order to verify if the current model accounts for the new biological data, we simulate a

∆rpn4 knockout in the model by restricting the values to zero of the equation corresponding

to Rpn4. Then we create an atomic proposition low Y ap1 to restrict the concentration

values of YAP1 to a level where xfis < (κbyap1 + κ3
yap1)/γyap1. We then proceed by choosing

the invariance pattern to verify if YAP1 expression is maintained at low levels through the

mancozeb response.

A state low yap1 must persist indefinitely

The pattern is then automatically translated into the following Ctl formula:

AG(low yap1) (6.13)

We choose the version 1.0 of the NuSmv implicit plugin and the initial conditions cor-

responding to the steady state anormal, turning the signal sigm on to represent the presence

of mancozeb. In response to this query, the model checker returns false together with a

counterexample showing increase of YRR1 expression, followed by an increase of factorX

expression, with the final increase of expression of YAP1. This means that the extension of

the model with a new regulator of YAP1 is sufficient to produce the behavior consistent with

the biological data. In particular, the fact that a ∆rpn4 knockout should not be sufficient to

prevent the observation of some YAP1 expression.

Once again, this property shows the necessity of further biological experiments in order

to validate the assumption of the existence of a FactorX to control the expression of YAP1.

However, the identification of this transcription factor remains to be established.

6.3 Conclusions

In this chapter two genetic regulatory networks from two model organisms were analyzed.

Both networks have a model containing only a few number of variables, but they are enough

to generate behaviors composed by thousands of states. It is clear that as the complexity and

size of the models increase and more biological data becomes available, it becomes impractical

to manually analyze the simulated behaviors. The use of automated methods like formal veri-

fication techniques based on model-checking becomes imperative for the automated validation

of these behaviors.

The obtained results illustrate that the use of the proposed framework lowers the obstacles

of using formal verification technology in systems biology. In particular, the natural usage

of the developed set of patterns, which are sufficient to express most of the biological prop-
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erties. Also, the Ctrl language proves to be adequate whenever there is a necessity for a

more expressive temporal logic to describe events occurring inside an oscillation, or to easily

specify sequences of events through the use of regular expressions. The specification of these

properties is not possible using only the Ctl language.

Another important result is the better performance of verification when using an implicit

representation with respect to using an explicit representation for the Fstss containing all the

system’s behaviors. Properties verified using implicit representations never took more than

2-4 seconds, for the studied examples. This is due to the fact that implicit representations

encode a transition function in order to delay the exploration of the states. This delay avoids

the exhaustive enumeration of all the states in the phase space occurring in the simulation

side, performing the exploration of only the necessary ones on the model checking side. Also, it

avoids sending the resulting explicit Fsts through the web with the developed architecture.

For example, the E. coli carbon starvation model generates an explicit Fsts bigger than

500Mb when considering all the phase space as initial conditions.

Finally, the use of these methods prove to be important, not only for the automated com-

parison of the simulated behaviors with current available biological data, but also for quickly

testing new predictions before verifying them experimentally. New biological meaningful in-

sights were obtained for both tested examples. For example, in the E. coli model we were

able to indicate that the down-regulation of the stable RNAs does not require the previous

accumulation of RpoS. Also, for the S. cerevisiae model we were able to indicate an unknown

transcription factor that helps explaining the current available biological data.
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Chapter 7

Conclusions

This chapter summarizes the achievements of my thesis and it presents some directions

for future work.

7.1 Summary of achievements

The study of biological regulatory networks has led to the development of increasingly large

and complex models. However, as the size of these models increases, it becomes infeasible

to manually verify the predictions against experimental biological data or identify interesting

features in dozens of simulation traces. This calls for the use of automated and scalable

methods that help the modeler with the identification and verification of interesting dynamical

properties of the network. Formal verification methods have historically been used for the

verification of hardware and software systems. In recent years, several applications of formal

verification methods to biological models have shown that these methods are a promising way

to deal with the analysis of large and complex biological models.

Despite of the recent success of the application of formal verification techniques for the

analysis of large biological models, it became clear that several problems and limitations exist,

preventing these techniques from being naturally used by the systems biology community. In

this PhD thesis I have three major achievements for alleviating at different levels the usage of

model checking techniques for the automated verification of biological regulatory networks.

The first achievement is the definition of a new temporal logic adapted to the specifica-

tion of biological concepts, the Ctrl language. Ctrl achieves a higher expressive power

by extending Ctl with regular expressions and fairness operators. It has the capability of

expressing biological concepts like the multistability of several biological attractors or the

identification and characterization of oscillations, which typically need to be specified with

either branching-time or linear-time logics, respectively. It proves to be a suitable alternative

to other temporal logics with high expressive power, like the propositional µ-calculus [84],

obtaining a good compromise between expressive power, user-friendliness and complexity of
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model checking. In addition, it is capable of specifying sequences of events (experimental

observations) in a concise manner by using the power of regular expressions. Moreover, we

were able to obtain a real on-the-fly model checker for Ctrl by defining and implementing

a translation from Ctrl to HmlR, and by reusing the verification and diagnostic generation

features of the Evaluator 3.6 model checker of Cadp.

The formulation of properties in temporal logic is far from obvious, especially for non-

expert users. In response to this problem, the formal verification community proposed the

use of patterns [50], that is, high-level query templates that capture recurring questions in

a specific application domain and that can be automatically translated to temporal logic.

Inspired by this work, I proposed in a set of biological patterns formulated in structured

natural language, to facilitate the use of formal verification methods in the systems biology

field. These patterns capture a large number of frequently-asked questions by modelers in

systems biology, without being restricted to a particular type of network, a particular biolog-

ical system or a particular modeling tool. They were made available through a stand-alone

Java application and an application programming interface (API) that can be integrated into

other modeling tools, providing translations into three different temporal logics: Ctl, Ctrl

and µ-calculus. Complex biological properties, like multistability or oscillations, still need to

be specified using a temporal logic with high expressive power, like Ctrl. However, this is

consistent with the main idea underlying the use of patterns, namely that they cannot be

expected to cover all possible queries, but rather should allow users to formulate frequent

questions without worrying about their translation to temporal logic.

The third achievement consists of a service-oriented architecture for the integration of

modeling tools with formal verification tools, providing a single integrated working envi-

ronment. The proposed architecture is completely transparent for the modeler and it is

platform-independent. Furthermore, its plugin system provides a modular way to add new

formal verification methods without having to change the modeling tool. This architecture

has been implemented in the context of Gna modeling tool, and with the NuSmv and Cadp

model checkers. Gna was extended with a verification module which connects the model-

ing tool to the architecture, also integrating the pattern-based property editor and providing

graphical user interfaces to present the verification results to the modeler in an accessible

way.

The applicability and validation of the developed methods was illustrated by the analysis

of genetic regulatory networks of two model organisms, E. coli and S. cerevisiae. These

two networks are too complex to allow manual verification of dynamic properties, which

has motivated the application of the above-mentioned integrated modeling and verification

environment. New insights were gained for both analyzed biological systems, like the extension

of the S. cerevisiae model with a new transcription factor. This new information will now

need to be confirmed by the acquisition of new biological data.
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7.2 Directions of future work

As future work for this PhD thesis, one might think on some directions to improve and

extend the proposed methods and their applications.

One immediate improvement regarding the representation of the model with Fstss, is the

specification of an implicit version to be used with the Evaluator model checker. This would

enable to fully use the expressive power of the Ctrl language for the specification of complex

biological properties, without having to explicitly generate the Fsts. Additionally, this model

representation would mean better verification performance, since the implicit representation

of the model would be smaller and faster to transmit through the implemented architecture

than its explicit counterpart.

There is also room for improvement regarding the usage of the information returned

by the model checker. Current model checkers give a true/false verdict together with the

corresponding witness/counterexample. This witness/counterexample is a path in the Fsts

containing valuable information on the conditions for which the considered property was

evaluated true or false. One might envisage the usage of this specific information for semi-

automatic model revision. As model revision, we can consider the validation or refutation of

some of the existing interactions in the model, or a specific ordering of the model parameters.

Another possible direction is the use of symbolic approaches for model encoding. During

the modeling process, one may start with an incomplete model, since it is not always possible

to have enough biological data to specify the complete ordering of the equation parameters.

The symbolic representation of the model has the advantage of enabling the specification of

only a partial order for these parameters. Such a model representation is in fact describing a

general class of all the fully-specified sub-models. Symbolic model checkers can interpret these

representations, verifying in this way the equivalent of a large number of qualitative models

without explicitly enumerating them. One can also use this method to navigate through the

classes of models by using the verdict returned by the model checker to discard or select

individual models or sets of models.

Further tests on the usability of the developed interfaces are also necessary in order to

assess the major needs of a larger audience of users. Most of the tests on usability were

performed by either people closely related to the development of the Gna modeling and

simulation tool, or by students without any previous contact with modeling and simulation

tools or even modeling itself. There are however expert modeling users coming from other

modeling and simulation tools that could provide some important insights, in particular, on

the presentation and interpretation of verification results.

Finally, the scalability of the proposed methods should be tested by their application to

the analysis of larger and more complex biological systems. Also, in addition to genetic regu-

latory networks, these methods should be tested with networks integrating different kinds of

biological data (e.g., signaling pathways or metabolic data). Such an example, is the work by
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Baldazzi et al. [7] where the methods presented in this thesis were applied for the construction

of a large model. The authors extended the previously described carbon starvation response

model in E. coli integrating genetic and metabolic information.
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Appendix A

Proofs of the translation from Ctrl

to Mess

A.1 Translation from Ctrl to Ress

A few additional definitions and lemmas are required in order to prove Proposition 1.

Given a propositional environment δ = [U1/X1, ..., Un/Xn], its support is defined as supp(δ) =

{X1, ..., Xn}, i.e., the set of variables that are mapped by δ to state sets. It is straightforward

to show that, for environments with disjoint supports, the ⊘ operator is associative, commuta-

tive, and has the empty environment [ ] as neutral element. Moreover, supp([[B]]Kδ) = bv(B)

and supp([[BL]]Kδ) = bv(BL) for any Kripke structure K, equation block B, equation block

list BL, and environment δ.

Lemma 2 Let K be a Kripke structure, B an equation block, and δ1, δ2 two propositional

environments such that supp(δ1) ∩ supp(δ2) = ∅ and fv(B) ⊆ supp(δ1). Then:

[[B]]K(δ1 ⊘ δ2) = [[B]]Kδ1.

Proof Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block and δ1, δ2 two propositional environ-

ments as stated in the hypothesis. The semantics of B in the context of an environment δ is

determined by the associated functional Φδ : (2S)n → (2S)n defined as follows:

Φδ(U1, ..., Un) = 〈[[ϕi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

To prove the lemma, we show that the two functionals Φ(δ1⊘δ2) and Φδ1 are identical, i.e.,

[[ϕ]]K((δ1 ⊘ δ2)⊘ [U1/X1, ..., Un/Xn]) = [[ϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) for any formula ϕ and

any U1, ..., Un ⊆ S. We proceed by structural induction on ϕ.

• ϕ ::= p:
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[[p]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= {s ∈ S | p ∈ L(s)} by def. of [[ ]]

= [[p]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[ ]].

• ϕ ::= X:

Two cases are possible.

1. X ∈ {X1, ..., Xn}, i.e., X is bound in B. Let i ∈ [1, n] such that X = Xi.

[[Xi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(Xi) by def. of [[ ]]

= [U1/X1, ..., Un/Xn](Xi) by def. of ⊘

= Ui by def. of [ ]

= [[Xi]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[ ]].

2. X 6∈ {X1, ..., Xn}, i.e., X is free in B. This means X ∈ supp(δ1).

[[X]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(X) by def. of [[ ]]

= (δ1 ⊘ δ2)(X) by def. of ⊘

= δ1(X) fv(B) 6⊆ supp(δ2)

= [[X]]Kδ1 by def. of [[ ]]

= [[X]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of ⊘.

• ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):

[[ϕ1 ∨ ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= ([[ϕ1]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn]))∪

([[ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])) by def. of [[ ]]

= [[ϕ1]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) ∪ [[ϕ2]]K((δ1 ⊘ [U1/X1, ..., Un/Xn])

by inductive hypothesis

= [[ϕ1 ∨ ϕ2]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[ ]].

• ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

[[EFρϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[ϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])} by def. of [[ ]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[ϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn])} by inductive hypothesis

= [[EFρϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[ ]].

• ϕ ::= EF∞
ρ (similarly for ϕ ::= AF∞

ρ | EG⊣
ρ | AG⊣

ρ ):

[[EF∞
ρ ]]K(δ1⊘δ2) = [[EF∞

ρ ]]Kδ1 because EF∞
ρ is closed, so its interpretation is independent

of any environment δ.

106



�

Lemma 3 Let K be a Kripke structure and BL1, BL2 be two closed equation block lists.

Then:

[[BL1;BL2]]K = [[BL1]]K ⊘ [[BL2]]K .

Proof Let K,BL1, BL2 as stated in the hypothesis. We proceed by structural induction on

BL1.

• BL1 ::= ε:

[[ε;BL2]]K = [[BL2]]K by def. of ;

= [ ] ⊘ [[BL2]]K

= [[ε]]K ⊘ [[BL2]]K by def. of [[ ]].

• BL1 ::= B.BL1:

[[(B.BL1);BL2]]K = [[B.(BL1;BL2)]]K

by def. of ;

= [[B]]K([[BL1;BL2]]K) ⊘ [[BL1;BL2]]K

by def. of [[ ]]

= [[B]]K([[BL1]]K ⊘ [[BL2]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K)

by ind. hyp.

= [[B]]K([[BL1]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K)

by Lemma 2

= ([[B]]K([[BL1]]K) ⊘ [[BL1]]K) ⊘ [[BL2]]K

by assoc.

= [[B.BL1]]K ⊘ [[BL2]]K

by def. of [[ ]].

�

Proof (Proposition 1). Let K be a Kripke structure, ϕ be a state formula of Ctrl, and δ

be a propositional environment. We proceed by structural induction on ϕ.

• ϕ ::= p:

[[t(p)]]Kδ = [[〈X, {X
µ
= p}〉]]Kδ by def. of t

= ([[{X
µ
= p}]]Kδ)(X) by def. of [[ ]]

= [[p]]Kδ by def. of [[ ]].

• ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):
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[[t(ϕ1 ∨ ϕ2)]]Kδ = [[〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉]]Kδ

by def. of t

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))]]Kδ)(X)

by def. of [[ ]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ)

⊘([[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X)

by def. of [[ ]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X)

= [[tX(ϕ1)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ) ∪

[[tX(ϕ2)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ)

= [[tX(ϕ1)]]K([[tBL(ϕ1)]]Kδ) ∪ [[tX(ϕ2)]]K([[tBL(ϕ2)]]Kδ)

by Lemma 2

= [[t(ϕ1)]]Kδ ∪ [[t(ϕ2)]]Kδ

by def. of t

= [[ϕ1]]Kδ ∪ [[ϕ2]]Kδ

by ind. hyp.

= [[ϕ1 ∨ ϕ2]]Kδ

by def. of [[ ]].

• ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

[[t(EFρϕ)]]Kδ = [[〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉]]Kδ

by def. of t

= ([[tBL(ϕ)]]Kδ ⊘ [[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X)

by def. of [[ ]]

= ([[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X)

= [[{EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ)

by def. of [[ ]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[tX(ϕ)]]K([[tBL(ϕ)]]Kδ)}

by def. of [[ ]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[ϕ]]Kδ}

by ind. hyp.

= [[EFρϕ]]Kδ

by def. of [[ ]].

• ϕ ::= EF∞
ρ (similarly for ϕ ::= AG⊣

ρ ):

[[t(EF∞
ρ )]]Kδ = [[〈X, {X

ν
= EFρX}〉]]K by def. of t.

= ([[{X
ν
= EFρX}]]K)(X) = νΦ by def. of [[ ]],
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where Φ : 2S → 2S , Φ(U) = [[EFρX]]K [U/X]. Note that the δ environment is omitted

in the definition of Φ because the equation block {X
ν
= EFρX} is closed.

The lattice 〈2S , ∅, S,∩,∪〉 being finite, the maximal fixed point νΦ has also the following

iterative characterization [80]:

νΦ =
⋂

j≥0

Φj(S), where Φ0(S) = S, Φj(S) = [[EFρX]]K [Φj−1(S)/X].

Intuitively, the terms Φj(S) contain those states from which there is an outoing sequence

having a prefix that matches ρj :

Φj(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj}

This can be easily shown by induction on j. For j = 0, we take i = 0 (empty prefix).

For the inductive step, we have:

Φj+1(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ Φj(S)}

by def. of Φ

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.

π0,i |=K ρ ∧ ∃π′ ∈ PathK(πi).∃l ≥ 0.π′0,l |=K ρj}

by ind. hyp.

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj+1}

repl. i by i+ l.

To show that [[EF∞
ρ ]]K ⊆ νΦ, let s ∈ [[EF∞

ρ ]]K and j ≥ 0. From the definition of EF∞
ρ ,

there exists π ∈ PathK(s) and i ≥ 0 such that π0,i |=K ρj , which implies s ∈ Φj(S).

Since this holds for every j ≥ 0, it means that s ∈
⋂

j≥0 Φj(S), i.e., s ∈ νΦ.

To show that νΦ ⊆ [[EF∞
ρ ]]K , let s ∈ νΦ. Since νΦ is a fixed point of Φ, we have:

νΦ = Φ(νΦ) = [[EFρX]]K [νΦ/X]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ νΦ}.

Based on this, we construct the following path:

π = πi0 → · · · → πi1 → · · · → πi2 → · · · → πij · · ·

where πij ∈ νΦ for every j ≥ 0, i0 = 0, πi0 = s, and the intervals πij → · · · → πm →

· · · → πij+1
are defined as follows. Since πij ∈ νΦ, according to the equation above,

there exists π ∈ PathK(πij ) and l ≥ 0 such that π0,l |=K ρ and πl ∈ νΦ. We take

ij+1 = ij + l and for each m ∈ [ij , ij+1], πm = πm−ij . The infinite path π is such that

for every j ≥ 0, there exists i′ = ij such that π0,i′ |=K ρj , and therefore s ∈ [[EF∞
ρ ]]K .

�
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A.2 Translation from RESs to MESs

Some additional definitions and lemmas are needed in order to prove the translation.

Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block and Φδ : (2S)n → (2S)n, Φδ(U1, ..., Un) =

〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n be its associated functional in the context of a Kripke

structure K and an environment δ. For a given l ∈ [1, n], the projection of Φδ on the

equations [l, n], noted Φl,n : (2S)n−l+1 → (2S)n−l+1, is defined as follows: Φl,n
δ (Ul, ..., Un) =

〈[[ϕj ]]K(δ⊘ [Ul/Xl, ..., Un/Xn])〉l≤j≤n. Similarly, the projection of a value 〈U1, ..., Un〉 ∈ (2S)n

on the fields [l, n] is defined as 〈U1, ..., Un〉[l,n] = 〈Ul, ..., Un〉.

A.2.1 Operators EFρ and AGρ

Lemma 4 Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block, K be a Kripke structure, δ be an

environment, and Φδ : (2S)n → (2S)n be the functional associated to B, K, and δ. Then, for

all l ∈ [1, n]:

σΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1] = 〈(σΦδ)l, ..., (σΦδ)n〉

where Φl,n
δ : (2S)n−l+1 → (2S)n−l+1 is the projection of Φδ on the equations [l, n].

Proof Let B, K, δ, and l as stated in the hypothesis. We show the equality by double

inclusion, only for σ = µ, the proof for the case σ = ν being symmetric.

Inclusion “⊒”: By definition of fixed points we have µΦδ = Φδ(µΦδ), meaning that for all

l ≤ j ≤ n:

(µΦδ)j = [[ϕj ]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn]) =

[[ϕj ]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘ [(µΦδ)l/Xl, ..., (µΦδ)n/Xn])

This in turn means that:

Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]((µΦδ)l, ..., (µΦδ)n) = 〈(µΦδ)l, ..., (µΦδ)n〉

i.e., 〈(µΦδ)l, ..., (µΦδ)n〉 is a fixed point of Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1], and therefore it is

greater than the least fixed point of this functional:

µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1] ⊑ 〈(µΦδ)l, ..., (µΦδ)n〉.

Inclusion “⊒”: We use the iterative characterization [80] of µΦδ on the finite lattice 〈2S
n
, ∅, Sn,⊓,⊔〉

(the operations ⊓ and ⊔ are the pairwise extensions of ∩ and ∪):

µΦδ =
⋃

k≥0

Φk
δ (∅

n), where Φ0
δ(∅

n) = ∅n, Φk+1
δ (∅n) = Φδ(Φ

k
δ (∅

n)).
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We show, by induction on k, that (Φk
δ (∅

n))[l,n] ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Base step. (Φ0
δ(∅

n))[l,n] = (∅n)[l,n] = ∅n−l+1 ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Inductive step. We have:

(Φk+1
δ (∅n))[l,n] = (Φδ(Φ

k
δ (∅

n)))[l,n]

= 〈[[ϕj ]]K(δ ⊘ [(Φk
δ (∅

n))1/X1, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n

by def. of Φ

= 〈[[ϕj ]]K((δ ⊘ [(Φk
δ (∅

n))1/X1, ..., (Φ
k
δ (∅

n))l−1/Xl−1]) ⊘

[(Φk
δ (∅

n))l/Xl, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n

⊑ 〈[[ϕj ]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘

[(Φk
δ (∅

n))l/Xl, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n

by monotonicity

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]((Φ

k
δ (∅

n))l, ..., (Φ
k
δ (∅

n))n)

by def. of Φl,n

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]((Φ

k
δ (∅

n))[l,n])

⊑ Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1](µΦl,n

δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1])

by ind. hyp.

= µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]

by def. of µ.

Thus, (µΦδ)[l,n] = (
⋃

k≥0 Φk
δ (∅

n))[l,n] =
⋃

k≥0(Φ
k
δ (∅

n))[l,n] ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1],

which concludes the proof. �

The following lemma allows to replace an equation of a block by a set of equations,

provided that the interpretation of the variable in the left-hand side of the equation remains

unchanged in the original and the substituting block w.r.t. all environments.

Lemma 5 (Substitution) Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block, and let {Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m be another block suitable for the substitution of the equation Xn

σ
= ϕn such

that ([[{Xn
σ
= ϕn}]]Kδ)(Xn) = ([[{Xn

σ
= ψn, Yj

σ
= ψj}n<j≤m]]Kδ)(Xn) for any Kripke structure

K and environment δ. Then:

([[{Xi
σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
= ψn, Yj

σ
= ψj ]n<j≤m]]Kδ)(Xi) =

([[{Xi
σ
= ϕi}1≤i≤n]]Kδ)(Xi)

for all i ∈ [1, n] and for any K, δ.

Proof We show the lemma for σ = µ, the proof for the case σ = ν being symmetric. Let

Φ1,m
δ : (2S)m → (2S)m be the functional associated to the substituted equation block, defined

as follows:

Φ1,m
δ (U1, ..., Un,Wn+1, ...,Wn) =

〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym]),

[[ψj ]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym])〉1≤i<n,n≤j≤m

111



We first show that 〈(µΦ1,m
δ )1, ..., (µΦ1,m

δ )n〉 is a fixed point of the functional Φδ associated to B

and δ. From the definition of µΦ1,m
δ , it follows that [[ϕi]]K(δ⊘[(µΦ1,m

δ )1/X1, ..., (µΦ1,m
δ )n/Xn, (µΦ1,m

δ )n+1/Yn+1, ...,

(µΦ1,m
δ )i for all i ∈ [1, n − 1]. The suitability condition

⋃n
i=1 fv(ϕi) ∩ {Yn+1, ..., Ym} = ∅

implies that all formulas ϕi for i ∈ [1, n − 1] depend only upon X1, ..., Xn and therefore

[[ϕi]]K(δ⊘ [(µΦ1,m
δ )1/X1, ..., (µΦ1,m

δ )n/Xn]) = (µΦ1,m
δ )i. To show that this equality also holds

for i = n, we apply Lemma 4 for l = n on the substituted block and we obtain:

µΦn,m

δ⊘[(µΦ1,m
δ

)1/X1,...,(µΦ1,m
δ

)n−1/Xn−1]
= 〈(µΦ1,m

δ )n, ..., (µΦ1,m
δ )m〉

where Φn,m
δ : (2S)m−n+1 → (2S)m−n+1 is the projection of Φ1,m

δ on the equations [n,m].

From the hypothesis of the lemma and the definition of the interpretation [[{Xn
σ
= ψn, Yj

σ
=

ψj}n<j≤m]]Kδ, this implies:

([[{Xn
σ
= ϕn}]]K(δ ⊘ [(µΦ1,m

δ )1/X1, ..., (µΦ1,m
δ )n−1/Xn−1]))(Xn) = (µΦ1,m

δ )n

or, according to the definition of [[{Xn
σ
= ϕn}]]Kδ:

µΦn
δ⊘[(µΦ1,m

δ
)1/X1,...,(µΦ1,m

δ
)n−1/Xn−1]

= (µΦ1,m
δ )n

where Φn
δ : 2S → 2S , Φn

δ (U) = [[ϕn]]K(δ ⊘ [U/Xn]). Since (µΦ1,m
δ )n is by definition a fixed

point of Φn
δ⊘[(µΦ1,m

δ
)1/X1,...,(µΦ1,m

δ
)n−1/Xn−1]

, this means:

([[ϕn]]K((δ ⊘ [(µΦ1,m
δ )1/X1, ..., (µΦ1,m

δ )n−1/Xn−1])⊘

[(µΦ1,m
δ )n/Xn]))((µΦ1,m

δ )n) = (µΦ1,m
δ )n

i.e.,

([[ϕn]]K(δ ⊘ [(µΦ1,m
δ )1/X1, ..., (µΦ1,m

δ )n/Xn]))((µΦ1,m
δ )n) = (µΦ1,m

δ )n.

Therefore, 〈(µΦ1,m
δ )i〉1≤i≤n is a fixed point of Φδ.

It remains to show that this is indeed the minimal fixed point of Φδ. Since the lattice

〈2S
m
, ∅, Sm,⊓,⊔〉 is finite (the operations ⊓ and ⊔ being the pairwise extensions of ∩ and ∪),

the minimal fixed point µΦ1,m
δ also has an iterative characterization [80]:

µΦ1,m
δ =

⋃

k≥0

(Φ1,m
δ )k(∅m)

where (Φ1,m
δ )0(∅m) = ∅m, (Φ1,m

δ )k+1(∅m) = Φ1,m
δ ((Φ1,m

δ )k(∅m)).

We show, by induction on k, that ((Φ1,m
δ )k(∅m))i ⊆ (µΦδ)i for all i ∈ [1, n] and k ≥ 0. Let

i ∈ [1, n].

Base step. ((Φ1,m
δ )0(∅m))i = ∅ ⊆ (µΦδ)i.

Inductive step. For i ∈ [1, n− 1], we have:
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((Φ1,m
δ )k+1(∅m))i = (Φ1,m

δ ((Φ1,m
δ )k(∅m)))i

= [[ϕi]]K(δ ⊘ [((Φ1,m
δ )k(∅m))1/X1, ..., ((Φ

1,m
δ )k(∅m))m/Ym])

by def. of [[ ]]

= [[ϕi]]K(δ ⊘ [((Φ1,m
δ )k(∅m))1/X1, ..., ((Φ

1,m
δ )k(∅m))n/Xn])

by suitability

⊆ [[ϕi]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn])

by ind. hyp.

= (µΦδ)i

by def. of µΦδ.
For i = n, we have:

((Φ1,m
δ )k+1(∅m))n = [[ψn]]K(δ ⊘ [((Φ1,m

δ )k(∅m))1/X1, ..., ((Φ
1,m
δ )k(∅m))m/Ym])

⊆ [[ψn]]K(δ ⊘ [((Φ1,m
δ )k(∅m))1/X1, ..., ((Φ

1,m
δ )k(∅m))n−1/Xn−1,

(µΦ1,m
δ )n/Xn, ..., (µΦ1,m

δ )m/Ym])

by def. µΦ1,m
δ

= ([[{Xn
µ
= ψn, Yj

µ
= ψj}n<j≤m]]K

(δ ⊘ [((Φ1,m
δ )k(∅m))1/X1, ..., ((Φ

1,m
δ )k(∅m))n−1/Xn−1]))(Xn)

by def. of [[ ]]

= ([[Xn
µ
= ϕn]]K

(δ ⊘ [((Φ1,m
δ )k(∅m))1/X1, ..., ((Φ

1,m
δ )k(∅m))n−1/Xn−1]))(Xn)

by hyp.

= µΦn
δ⊘[((Φ1,m

δ
)k(∅m))1/X1,...,((Φ

1,m
δ

)k(∅m))n−1/Xn−1]

by def. of [[ ]]

⊆ µΦn
δ⊘[(µΦδ)1/X1,...,(µΦδ)n−1/Xn−1]

by ind. hyp.

= (µΦδ)n

by Lemma 4.

The last application of Lemma 4 above considers the block B = {Xi
σ
= ϕi}1≤i≤n and takes

l = n. This concludes the proof that 〈(µΦ1,m
δ )i〉1≤i≤n is the least fixed point of Φδ. �

Lemma 5 allows to prove the correctness of a substitution by focusing only on the equations

involved in the substitution, as illustrated in the proof below.

Proof (Proposition 2). Let K be a Kripke structure, B1 = {Xi
µ
= ϕi}1≤i≤n and B2 = {Xi

ν
=

ϕi}1≤i≤n two equation blocks, and δ a propositional environment as stated in the hypothesis.

We show the proposition only for blocks of type B1 and the substitutions in the upper part

of Figure 3.5, the other cases being dual.

• Substitution X
µ
= EFρ1.ρ2Y := X

µ
= EFρ1Z,Z

µ
= EFρ2Y . It is sufficient to show that this

113



substitution satisfies the condition in the hypothesis of Lemma 5:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X) = ([[{X

µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[ ]] and simple properties about substitution of variables

in a Res, we obtain:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X)

= [[EFρ1.ρ2Y ]]Kδ

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1.ρ2 ∧ πi ∈ [[Y ]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ∈ [0, i].

π0,k |=K ρ1 ∧ πk,i |=K ρ2 ∧ πi ∈ [[Y ]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.

π0,k |=K ρ1 ∧ ∃i ≥ k.πk,i |=K ρ2 ∧ πi ∈ [[Y ]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ1 ∧ ∃π′ ∈ PathK(πk).∃i ≥ k.

π′k,i |=K ρ2 ∧ π
′
i ∈ [[Y ]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ ∧ πk ∈ [[EFρ2Y ]]K}

= [[EFρ1EFρ2Y ]]Kδ

= ([[{X
µ
= EFρ1EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

• Substitution X
µ
= EFρ1|ρ2Y := X

µ
= Z ∨ U,Z

µ
= EFρ1Y, U

µ
= EFρ2Y . As above, it is

sufficient to show that:

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X) =

([[{X
µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[ ]] and simple properties about substitution of variables

in a Res, we obtain:

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X)

= [[EFρ1|ρ2Y ]]Kδ

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1|ρ2 ∧ πi ∈ [[Y ]]Kδ}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.(π0,i |=K ρ1 ∨ π0,i |=K ρ2) ∧

πi ∈ [[Y ]]Kδ}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.((π0,i |=K ρ1 ∧ πi ∈ [[Y ]]Kδ) ∨

(π0,i |=K ρ2 ∧ πi ∈ [[Y ]]Kδ))}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1 ∧ πi ∈ [[Y ]]Kδ ∨

∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ2 ∧ πi ∈ [[Y ]]Kδ}

= [[EFρ1Y ∨ EFρ2Y ]]Kδ

= ([[{X
µ
= EFρ1Y ∨ EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }]]Kδ)(X).
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• Substitution X
µ
= EFρ∗Y := X

µ
= Y ∨ Z,Z

µ
= EFρX. As above, it is sufficient to show

that:

([[{X
µ
= EFρ∗Y }]]Kδ)(X) = ([[{X

µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X).

Let A = ([[{X
µ
= EFρ∗Y }]]Kδ)(X). We have:

([[{X
µ
= EFρ∗Y }]]Kδ)(X) = by def. of [[ ]]

[[EFρ∗Y ]]Kδ =

{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ∗ ∧ πi ∈ [[Y ]]Kδ} =

{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y )}.

Let B = ([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X). We have:

([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X) = by subst. on Y

([[{X
µ
= Y ∨ EFρX}]]Kδ)(X) = µΦδ

where the functional Φδ : 2S → 2S is defined as follows:

Φδ(U) = [[Y ∨ EFρX]]K(δ ⊘ [U/X])

= [[Y ]]K(δ ⊘ [U/X]) ∪ [[EFρX]]K(δ ⊘ [U/X])

= δ(Y ) ∪ [[EFρX]]K [U/X].

The lattice 〈2S , ∅, S,∩,∪〉 being finite, the minimal fixed point µΦδ has also the following

iterative characterization [80]:

µΦδ =
⋃

k≥0

Φk(∅),

where Φ0(∅) = ∅, Φk+1(∅) = δ(Y ) ∪ [[EFρX]]K [Φk(∅)/X].

Intuitively, Φk+1(∅) contains those states having an outgoing sequence that matches ρj

for some j ∈ [0, k] and leads to a state in δ(Y ):

Φk+1(∅) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].

π0,i |=K ρj ∧ πi ∈ δ(Y )}.

This statement can be easily shown by induction on k.

Base step.

Φ1(∅) = δ(Y ) ∪ [[EFρX]]K [Φ0(∅)/X]

= δ(Y ) ∪ [[EFρX]]K [∅/X]

= δ(Y )

= {s ∈ S | ∃π ∈ PathK(s).π0,0 |=K ρ0 ∧ π0 ∈ δ(Y )}

by choosing i, j = 0.

Inductive step.
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Φk+2(∅) = Φ(Φk+1(∅)) by def. of Φ

= δ(Y ) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.

π0,i |=K ρ ∧ πi ∈ Φk+1(∅)} by ind. hyp.

= δ(Y ) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

∃π′ ∈ PathK(πi).∃i
′ ≥ 0.∃j ∈ [0, k].

π′0,i′ |=K ρj ∧ π′i′ ∈ δ(Y )}

= δ(Y ) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].

π0,i |=K ρj+1 ∧ πi ∈ δ(Y )} repl. i by i+ i′

= δ(Y ) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [1, k + 1].

π0,i |=K ρj ∧ πi ∈ δ(Y )}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k + 1].

π0,i |=K ρj ∧ πi ∈ δ(Y )}.

From the above statement, we obtain:

B =
⋃

k≥0 Φk(∅) = Φ0(∅) ∪
⋃

k≥0 Φk+1(∅) =
⋃

k≥0 Φk+1(∅)

=
⋃

k≥0{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].

π0,i |=K ρj ∧ πi ∈ δ(Y )}

= {s ∈ S | ∃k ≥ 0.∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].

π0,i |=K ρj ∧ πi ∈ δ(Y )}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.∃j ∈ [0, k].

π0,i |=K ρj ∧ πi ∈ δ(Y )}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y )}

choose j = k

= A.

�

A.2.2 Operators AFρ and EGρ

Translation to guarded form

Proof (Lemma 1). Let K be a Kripke structure, B = {Xi
µ
= ϕi}1≤i≤n be an equation block

and δ a propositional environment as stated in the hypothesis. It is sufficient to show that

the absorption substitution satisfies the condition in the hypothesis of Lemma 5:

([[{X
µ
= X ∨ ϕ}]]Kδ)(X) = ([[{X

µ
= ϕ}]]Kδ)(X)

which amounts to show, applying the definition of [[ ]], that:

µΦδ = [[ϕ]]Kδ
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where the functional Φδ : 2S → 2S is defined as Φδ(U) = [[X ∨ ϕ]]K(δ ⊘ [U/X]) = U ∪ [[ϕ]]Kδ.

The lattice 〈2S , ∅, S,∩,∪〉 being finite, the minimal fixed point µΦδ has also the following

iterative characterization [80]:

µΦδ =
⋃

k≥0

Φk(∅), where Φ0
δ(∅) = ∅, Φk+1

δ (∅) = Φk
δ (∅) ∪ [[ϕ]]Kδ.

To obtain the desired equality, it is therefore sufficient to show that Φk+1
δ (∅) = [[ϕ]]Kδ for

every k ≥ 0. We proceed by induction on k.

Base step: Φ1
δ(∅) = Φ0

δ(∅) ∪ [[ϕ]]Kδ = [[ϕ]]Kδ.

Inductive step:

Φk+1
δ (∅) = Φk

δ (∅) ∪ [[ϕ]]Kδ by def.

= [[ϕ]]Kδ ∪ [[ϕ]]Kδ by ind. hyp.

= [[ϕ]]Kδ.

�

Determinization

Several definitions and lemmas are needed in order to prove Proposition 3. Consider a

Kripke structure K and the following potentiality Res:







Xi
µ
=

n
∨

j=1

(hij ∧ EFρij
Xj) ∨ (hi ∧ Y )







1≤i≤n

(∗)

where hij , hi ∈ Bool and ρij are regular formulas for all 1 ≤ i, j ≤ n. Unguarded occurrences

of variables Xj in the right-hand sides of the equations are obtained by taking ρij = nil.

Ress of the form (∗) are encountered throughout the translation from a potentiality Res

to its guarded form. For instance, a potentiality Res {X1
µ
= EFρY } can be rewritten as

{X1
µ
= EFρX2, X2

µ
= Y }, which is in the form above by considering n = 2, h11 = false,

h12 = true, ρ12 = ρ, h1 = false, h21 = h22 = false, and h2 = true. Similarly, a guarded

potentiality Res is a particular case of form (∗) in which all regular formulas ρij are simply

atomic propositions pij .

To each propositional variable Xi of the potentiality Res (∗) and environment δ is asso-

ciated a path predicate Pδ,i : PathK → Bool characterizing the paths denoted by Xi in the

context of δ. These path predicates are defined by the following equation system:







Pδ,i(π)
µ
=

n
∨

j=1

(

hij ∧ ∃lij ≥ 0.π0,lij |= ρij ∧ Pδ,j(πlij ,∞)
)

∨ (hi ∧ π0 ∈ δ(Y ))







1≤i≤n

where πlij ,∞ denotes the suffix of path π starting at the state of index lij .
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The translation from a potentiality Mes {X1
µ
= EFρY } to its guarded form preserves the

path predicate associated to the main variable X1, as shown by the lemma below.

Lemma 6 Let K be a Kripke structure, R = {X1
µ
= EFρY } be an equation block, M be

its corresponding guarded potentiality Mes in the form (∗), and Pδ,i be its associated path

predicates. Then:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y )

for any π ∈ PathK and any propositional environment δ.

Proof Let K be a Kripke structure and δ be a propositional environment. Let the equation

block R = {X1
µ
= EFρX2, X2

µ
= Y } in form (∗). Its associated path predicates are defined as

follows:
Pδ,1(π) = ∃l12 ≥ 0.π0,l12 |= ρ12 ∧ Pδ,2(πl12,∞)

Pδ,2(π) = π0 ∈ δ(Y )

where π ∈ PathK . After appropriate renamings, we obtain the desired equality:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y ).

It remains to show that this equality also holds along the translation of R into guarded

form. This translation consists of two phases: elimination of the regular operators present

in ρ (Proposition 2) and elimination of unguarded occurrences of variables (Lemma 1). The

substitutions performed in both phases preserve the path predicates associated to the variables

defined by the substituted equations. This can be shown using similar arguments as in

Proposition 2 and Lemma 1; we show below the path predicate preservation only for the first

rule in Proposition 2, leaving the other ones as exercises for the interested reader.

This rule transforms the Res R = {X
µ
= EFρ1.ρ2Y } into the Res R′ = {X

µ
= EFρ1Z,Z

µ
=

EFρ2Y }. The predicate P ′
δ,1 associated to X1 in R′ is defined as follows:

P ′
δ,1(π) = ∃l ≥ 0.π0,l |= ρ1 ∧ P

′
δ,2(πl,∞) by def. of P ′

δ,1

= ∃l ≥ 0.π0,l |= ρ1 ∧ ∃l′ ≥ 0.πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y ) by def. of P ′
δ,2

= ∃l ≥ 0.∃l′ ≥ 0.π0,l |= ρ1 ∧ πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y )

= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y )

by taking k = l + l′ and j = l

= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y ) by def. of ρ1.ρ2

which coincides with the definition of Pδ,1 in R. Thus, the path predicate Pδ,1 associated to

X1 in R remains unchanged during the translation of R into guarded form, which shows the

desired equality. �

The relation between the path predicates associated to a guarded potentiality Mes and

the interpretation of the corresponding determinized Mes is given by the lemma below.
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Lemma 7 Let K be a Kripke structure, M be a guarded potentiality Mes in the form (∗), and

Pδ,i be its associated path predicates. The determinized Mes corresponding to M is defined

as in Section 3.2.3.2. Then:

([[{

XI
µ
=
∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y )
}

I⊆[1,n]

]]

K
δ
)

(XJ)

=

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}

for any index set J ⊆ [1, n] and any propositional environment δ.

Proof Let K, M , δ, and Pδ,i as stated in the hypothesis. The functional Φδ : (2S)
2n−1

→

(2S)
2n−1

associated to the determinized Mes corresponding to M is defined as follows:

Φδ(〈UJ〉J⊆[1,n]) =
〈 [[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y )
]]

K

(δ ⊘ [UJ/XJ ]J⊆[1,n])
〉

I⊆[1,n]

The interpretation of the determinized Mes is equal to µΦδ. Let U = 〈{s ∈ S | ∀π ∈

PathK(s).∃j ∈ J.Pδ,j(π)}〉J⊆[1,n]. We must show that µΦδ = U , which we split into a double

inclusion.

Inclusion ⊆. By Tarski’s theorem [128], showing that µΦδ ⊆ U amounts to show that

Φδ(U) ⊆ U . We have:

Φδ(U) =
〈 [[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y )
]]

K

(δ ⊘ [{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}/XJ ]J⊆[1,n])
〉

I⊆[1,n]

Let I ⊆ [1, n] and s ∈ (Φδ(U))I . By using the definition of Φδ and the interpretation of

AF, and doing a simple first order reasoning, this is equivalent to the disjunction of the two

conditions below:

(a) ∃∅ ⊂ Q ⊆ prop(I).(s |= Q ∧ ∀π ∈ PathK(s).∃j ∈ vars(Q, I).Pδ,j(π1,∞))

(b) h(I) ∧ s ∈ δ(Y ).

We must show that s ∈ UI , i.e., that ∀π ∈ Path(s).∃i ∈ I.Pδ,i(π). By applying the

definition of path predicates, this expands as follows:

∀π ∈ Path(s).∃i ∈ I.(∃j ∈ [1, n].(hij ∧ s |= pij ∧ Pδ,j(π1,∞)) ∨ (hi ∧ s ∈ δ(Y )))

which is equivalent to the disjunction of the two conditions below:
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(a’) ∀π ∈ Path(s).∃j ∈ [1, n].(∃i ∈ I.(hij ∧ s |= pij) ∧ Pδ,j(π1,∞))

(b’) ∃i ∈ I.hi ∧ s ∈ δ(Y ).

Two cases are possible, depending on the fact that (a) or (b) holds.

Case (a). Let Q ⊆ prop(I) such that s ∈ Q and for all π ∈ PathK(s) there exists j ∈

vars(Q, I) such that Pδ,j(π1,∞). Let π ∈ PathK(s). From condition (a), we can choose

j ∈ vars(Q, I) such that Pδ,j(π1,∞). Based on the definition of vars(Q, I), we can choose

i ∈ I such that pij ∈ Q and hij = true. Since s |= Q and pij ∈ Q, it follows that s |= pij

(recall from Section 3.2.3.2 that Q stands for the conjunction of all atomic propositions

that it contains). This implies condition (a’).

Case (b). Assume that h(I) = true and s ∈ δ(Y ). From the definition of h(I), it follows

that we can choose i ∈ I such that hi = true. This implies condition (b’).

Inclusion ⊇. The equation system defining the path predicates associated to M is defined

as follows:

{

Pδ,j(π)
µ
=

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pδ,k(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y ))

}

1≤j≤n

For simplicity, we assume that all predicates occurring in the right-hand sides of equations

are defined by some other equations of the system; this corresponds to the fact that M

does not have free propositional variables excepting Y , whose interpretation is given by the

environment δ. The functional Πδ : (PathK → Bool)n → (PathK → Bool)n associated to

this system is defined below:

Πδ(P1, ..., Pn) =

〈

λπ.

(

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pk(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y ))

)〉

1≤j≤n

It is straightforward to check that the functional Πδ is continuous on the lattice 〈(PathK →

Bool)n, (λπ.false)n, (λπ.true)n,⊓,⊔〉, where ⊔ and ⊓ are the pointwise extensions of disjunc-

tion and conjunction operations on path predicates. Therefore, its minimal fixed point µΠδ,

which gives the interpretation of the equation system, has the following iterative characteri-

zation [80]:

µΠδ =
⊔

k≥0

Πk
δ ((λπ.false)

n), Π0
δ((λπ.false)

n) = (λπ.false)n.

We note 〈P kδ,j〉1≤j≤n = Πk
δ ((λπ.false)

n). From the iterative characterization of µΠδ and
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the definition of ⊔, we have:

Pδ,j(π) =





⊔

k≥0

〈P kδ,j〉1≤j≤n



 (π) = ∃k ≥ 0.P kδ,j(π).

To obtain the desired inclusion, we use the following statement:

∀k ≥ 0.

(

〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P kδ,j(π)}
〉

J⊆[1,n]
⊆ µΦδ

)

(∗∗)

To show that U ⊆ µΦδ, let J ⊆ [1, n] and let s ∈ UJ , which means that for all π ∈

PathK(s), there exists j ∈ J such that Pδ,j(π). The definition of Pδ,j(π) above ensures that

we can find k ≥ 0 such that P kδ,j(π). By applying (∗∗) for that k, we obtain s ∈ (µΦδ)J , which

implies in turn the desired inclusion U ⊆ µΦδ.

It remains to show the (∗∗) statement. We proceed by induction on k.

Base step.
〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P 0
δ,j(π)}

〉

J⊆[1,n]
= by def. Π0

δ((λπ.false)
n)

〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.false}〉J⊆[1,n] = 〈∅〉J⊆[1,n] ⊆ µΦδ.

Inductive step. Let Uk = 〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P kδ,j(π)}〉J⊆[1,n]. We show

below that Uk+1 ⊆ Φδ(U
k), which together with the inductive hypothesis and the definition

of minimal fixed points implies Uk+1 ⊆ Φδ(U
k) ⊆ Φδ(µΦδ) = µΦδ, i.e., the desired inequality.

Let J ⊆ [1, n] and let s ∈ (Uk+1)J , which means that for every π ∈ PathK(s) there exists

j ∈ J such that P k+1
δ,j (π). From the definition of Πδ and P kδ,j , we have:

P k+1
δ,j (π) =

n
∨

l=1

(hjl ∧ π0 |= pjl ∧ P
k
δ,l(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y )).

By expanding this equality and doing a simple first order reasoning, the conditions above

can be rewritten as the disjunction of the two conditions below:

(c) ∀π ∈ PathK(s).∃l ∈ [1, n].(∃j ∈ J.(hjl ∧ s |= pjl) ∧ P
k
δ,l(π1,∞))

(d) ∃j ∈ J.hj ∧ s ∈ δ(Y ).

Let s ∈ (Φδ(U
k))J . From the definition of Φδ, this is equivalent to:

s ∈
[[

∨

∅⊂Q⊆prop(J) AFQXvars(Q,J) ∨ (h(J) ∧ Y )
]]

K
(δ ⊘ [(Uk)L/XL]L⊆[1,n])

Using the definition of Uk and the interpretation of AF, and doing a simple first order

reasoning, this is equivalent to the disjunction of the two conditions below:
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(c’) ∃∅ ⊂ Q ⊆ prop(J).(s |= Q ∧ ∀π ∈ PathK(s).∃l ∈ vars(Q, J).P kδ,l(π1,∞))

(d’) h(J) ∧ s ∈ δ(Y ).

Two cases are possible, depending on the fact that (c) or (d) holds.

Case (c). Let the set of atomic propositions Q be defined as follows:

Q =
⋃

π∈PathK(s)

{pjl | j ∈ J ∧ l ∈ [1, n] ∧ s |= pjl}

Condition (c) guarantees that Q is not empty and the definition of prop(J) implies

that Q ⊆ prop(J). Since s |= pjl for every pjl ∈ Q, it follows that s |= Q (recall

from Section 3.2.3.2 that Q stands for the conjunction of all atomic propositions that

it contains). Let π ∈ PathK(s). From condition (c), we can find l ∈ [1, n] and j ∈ J

such that hjl and s |= pjl and Pδ,j(π1,∞). Since pjl ∈ Q by definition of Q, from the

definition of vars(Q, J) it follows that l ∈ vars(Q, J). This implies condition (c’).

Case (d). Let j ∈ J such that hj = true. From the definition of h(J), it follows that

h(J) = true. Since s ∈ δ(Y ) from condition (d), this implies condition (d’).

This concludes the proof of the lemma. �

We are finally ready to prove Proposition 3.

Proof (Proposition 3).

Let K be a Kripke structure, δ be a propositional environment, R = {X1
µ
= AFρY } an

equation block. Let Pδ,i be the path predicates associated to the guarded potentiality Mes

obtained by translating R, and let M be the Mes further obtained after determinization.

We have:

([[M ]]Kδ)(X{1}) = by Lemma 7

{s ∈ S | ∀π ∈ PathK(s).Pδ,1(π)} = by Lemma 6

{s ∈ S | ∀π ∈ PathK(s).∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y )} = by def. of AFρY

and [[ ]]

([[{X1
µ
= AFρY }]]Kδ)(X1).

�
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Appendix B

Gna modeling and simulation tool

screenshots
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Figure B.1: Atomic proposition specification window, where atomic propositions are defined
in terms of restrictions applied to a state (e.g., restrictions on concentration values, focal
sets, derivatives, and other state descriptors). In this case, the value of the concentration is
restricted to lie below the threshold high RpoS.



Figure B.2: Graphical user interface for the specification of biological properties. The mod-
eler can use a pattern-based property editor for frequently-asked questions, and a text editor
for the specification of more complex biological properties (expert mode). In this case, the
sequence pattern is selected and instantiated with the astat and the high RpoS atomic propo-
sitions.
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Figure B.3: Graphical user interface for the specification of biological properties. The modeler
can use a pattern-based property editor for frequently-asked questions, and a text editor for
the specification of more complex biological properties (expert mode). In this case, the
occurrence pattern is selected and instantiated with the anormal atomic proposition.
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Figure B.4: Graphical user interface for the specification of biological properties. The mod-
eler can use a pattern-based property editor for frequently-asked questions, and a text editor
for the specification of more complex biological properties (expert mode). In this case, the
consequence pattern is selected and instantiated with the sigm and aresponse atomic proposi-
tions.
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involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3,

and Yrr1. Biochem. Biophys. Res. Commun., 367(2):249–255, 2008. 91, 92, 95
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