
HAL Id: tel-00833895
https://theses.hal.science/tel-00833895

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcement of Privacy Preferences in Data Services: A
SPARQL Query Rewriting Approach

Said Oulmakhzoune

To cite this version:
Said Oulmakhzoune. Enforcement of Privacy Preferences in Data Services: A SPARQL Query Rewrit-
ing Approach. Cryptography and Security [cs.CR]. Télécom Bretagne, Université de Rennes 1, 2013.
English. �NNT : �. �tel-00833895�

https://theses.hal.science/tel-00833895
https://hal.archives-ouvertes.fr


No d’ordre : 2013telb0274
Thèse
Présentée à

télécom Bretagne
en habilitation conjointe avec l’Université de Rennes I

pour obtenir le grade de
Docteur de Telecom Bretagne

Mention : Informatique

par

Said OULMAKHZOUNE

Enforcement of Privacy Policy Preferences in Data
Services: A SPARQL Query Rewriting Approach

soutenue le 29 avril 2013

Composition du Jury :

Président : - M. Dominique Méry, Professeur, LORIA & Université de Lorraine

Rapporteurs : - M. Abdelmalek Benzekri, Professeur, IRIT Université Paul Sabatier
- M. Ernesto Damiani, Professeur, Universita’ degli Studi di Milano

Examinateurs : - M. Frédéric Cuppens, Professeur, Telecom Bretagne
- Mme Nora Cuppens, Chercheur associé, Telecom Bretagne
- M. Vincent Frey, Ingénieur de recherche - Chef de projet, Orange
- M. Marcel Goldberg, Professeur, INSERM
- M. Stéphane Morucci, Directeur Général, SWID





Abstract

With the constant proliferation of information systems around the globe, the need
for decentralized and scalable data sharing mechanisms has become a major factor
of integration in a wide range of applications. Literature on information integration
across autonomous entities has tacitly assumed that the data of each party can be
revealed and shared to other parties. A lot of research, concerning the management
of heterogeneous sources and database integration, has been proposed, for example
based on centralized or distributed mediators that control access to data managed by
different parties.

On the other hand, real life data sharing scenarios in many application domains like
healthcare, e-commerce market, e-government show that data integration and sharing
are often hampered by legitimate and widespread data privacy and security concerns.
Thus, protecting the individual data may be a prerequisite for organizations to share
their data in open environments such as Internet.

Work undertaken in this thesis aims to ensure security and privacy requirements of
software systems, which take the form of web services, using query rewriting principles.
The user query (SPARQL query) is rewritten in such a way that only authorized
data are returned with respect to some confidentiality and privacy preferences policy.
Moreover, the rewriting algorithm is instrumented by an access control model (OrBAC)
for confidentiality constraints and a privacy-aware model (PrivOrBAC) for privacy
constraints.

A secure and privacy-preserving execution model for data services is then defined.
Our model exploits the services’ semantics to allow service providers to enforce locally
their privacy and security policies without changing the implementation of their data
services i.e., data services are considered as black boxes. We integrate our model to
the architecture of Axis 2.0 and evaluate its efficiency in the healthcare application
domain.





Résumé

Avec la prolifération constante des systèmes d’information à travers le monde, la né-
cessité d’une décentralisation des mécanismes de partage de données est devenue un
facteur important d’intégration dans une large gamme d’applications. La littérature
sur l’intégration d’information entre les entités autonomes a tacitement admis que les
données de chacune des parties peuvent être révélées et partagées avec d’autres par-
ties. Plusieurs travaux de recherches, concernant la gestion des sources hétérogènes et
l’intégration de base de données, ont été proposés, par exemple les systèmes à base de
médiateurs centralisés ou distribués qui contrôlent l’accès aux données gérées par des
différentes parties.

D’autre part, les scénarios réels de partage des données de nombreux do-
maines d’application tels que la santé, l’e-commerce, e-gouvernement montrent que
l’intégration et le partage de données sont souvent entravés par la confidentialité des
données privées et les problèmes de sécurité. Ainsi, la protection des données individu-
elles peut être une condition préalable aux organisations pour partager leurs données
dans des environnements ouverts tels que l’Internet.

Les travaux entrepris dans cette thèse ont pour objectif d’assurer les exigences de
sécurité et de confidentialité des systèmes informatiques, qui prennent la forme des ser-
vices web, en utilisant le principe de réécriture de requêtes. La requête de l’utilisateur,
exprimée en SPARQL, est réécrite de sorte que seules les données autorisées sont re-
tournées conformément à la politique de confidentialité et aux préférences des pos-
sesseurs des données. En outre, l’algorithme de réécriture est instrumenté, dans le cas
d’une politique de confidentialité, par un modèle de contrôle d’accès (OrBAC). Dans
le cas d’une politique de préférences utilisateurs, il est instrumenté par un modèle de
politique de privacy (PrivOrBAC).

Ensuite, nous avons défini un modèle d’exécution sécurisé et préservant la privacy
pour les services de données. Notre modèle exploite la sémantique des services afin de
permettre aux fournisseurs de services d’assurer localement leurs politiques de sécurité
et de privacy sans changer l’implémentation de leurs services. C’est-à-dire que les
services de données sont considérés comme des boites noires. Enfin, nous avons intégré
notre modèle dans l’architecture Axis 2.0 et nous avons aussi évalué ses performances
sur des données du domaine médical.





Contents

1 Introduction 1

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries and State of the Art 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 SPARQL/Update . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Semantic Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Security enforcement for mediators . . . . . . . . . . . . . . . . . . . . 10

2.4 Security of query evaluation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 View-based approach . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Pre-processing approach . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Post-processing approach . . . . . . . . . . . . . . . . . . . . . . 16

3 SPARQL Select Query Rewriting to Enforce Data Confidentiality 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Rewriting SPARQL Query: Basic Principles . . . . . . . . . . . . . . . 20



vi CONTENTS

3.3 Notations, Definitions and Theorems . . . . . . . . . . . . . . . . . . . 21

3.4 Security policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Prohibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 fQuery: Our query rewriting model . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Case of simple condition ω . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Case of involved condition ω . . . . . . . . . . . . . . . . . . . . 32

3.5.3 Case of complex condition ω . . . . . . . . . . . . . . . . . . . . 34

3.5.4 Composition of simple and involved conditions . . . . . . . . . . 37

3.6 Conclusion and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Rewriting of SPARQL/Update Queries for Securing Data access 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Principle of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Update access control . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Consistency between consultation and modification . . . . . . . 46

4.4 Conclusion and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 51

5 SPARQL Query Rewriting Instrumented by an Access Control Model 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 The OrBAC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Basic predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Role, activity and view definition . . . . . . . . . . . . . . . . . 56

5.2.3 Context definition . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.4 Hierarchy and inheritance . . . . . . . . . . . . . . . . . . . . . 58

5.3 Principle of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Modelling RDF Condition within OrBAC . . . . . . . . . . . . . . . . . 61



CONTENTS vii

5.4.1 RDF condition as context . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 RDF condition as view . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.3 RDF condition as view and context . . . . . . . . . . . . . . . . 66

5.5 Rewriting Query Instrumented by OrBAC rules . . . . . . . . . . . . . 67

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Privacy policy preferences enforced by SPARQL Query Rewriting 69

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Approach principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Privacy-aware Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 The correctness criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Rewriting Algorithm principle . . . . . . . . . . . . . . . . . . . . . . . 79

6.5.1 Normalization of triple patterns . . . . . . . . . . . . . . . . . . 79

6.5.2 Preferences acquisition . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.3 Preferences enforcement . . . . . . . . . . . . . . . . . . . . . . 81

6.5.4 SPARQL query without filter . . . . . . . . . . . . . . . . . . . 83

6.5.5 SPARQL query with filters . . . . . . . . . . . . . . . . . . . . . 86

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Privacy query rewriting algorithm instrumented by a privacy-aware
access control model 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 The privacy-aware OrBAC model (PrivOrBAC) . . . . . . . . . . . . . 90

7.2.1 Consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Our approach: PrivOrBAC query rewriting algorithm . . . . . . . . . . 95

7.3.1 PrivOrBAC services . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.2 PrivOrBAC SPARQL Service . . . . . . . . . . . . . . . . . . . 98



viii CONTENTS

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Secure and Privacy-preserving Execution Model for Data Services 103

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.1.1 Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . . 104

8.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 A Secure and Privacy-Preserving Execution Model for Data Services . . 106

8.2.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.2 Semantic models for data services and policies . . . . . . . . . . 107

8.2.3 RDF views rewriting to integrate security and privacy constraints 109

8.2.4 Rewriting the extended view in terms of data services . . . . . . 111

8.2.5 Enforcing security and privacy constraints . . . . . . . . . . . . 113

8.3 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 115

9 Architectures and Implementations 117

9.1 Implementation of fQuery . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1.1 MotOrBAC tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1.2 Implementation of fQuery-AC . . . . . . . . . . . . . . . . . . . 118

9.1.3 Implementation of fQuery-Privacy . . . . . . . . . . . . . . . . 123

9.2 Performance of fQuery-Privacy instrumented by PrivOrBAC . . . . . . 123

9.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2.2 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 129

9.3 Performance of Secure and Privacy-preserving Execution Model for Data
Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.4 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS ix

9.4.1 AGGREGO Server . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4.2 PAIRSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Conclusion and perspectives 141

A fQuery: réécriture de requêtes SPARQL 145

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3 fQuery-AC: Principe de base . . . . . . . . . . . . . . . . . . . . . . . 148

A.4 fQuery-Privacy: Principe de base . . . . . . . . . . . . . . . . . . . . . 149

A.5 Le cas des services de données . . . . . . . . . . . . . . . . . . . . . . . 151

A.6 Implémentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B Proof of theorem 3 chapter 3 155

C fQuery-AC Aspect 159

D fQuery-AC Visitor 163

List of Publications 167

Bibliography 168

List of Figures 183





CHAPTER

1 Introduction

1.1 Motivation and background

The problem of data sharing has been investigated for several years. Nowadays, sev-
eral companies as well as scientific communities and governments, feel a large need of
sharing their data (data of different structures). Indeed, there are many and varied
data sources (relational databases, object databases, files, etc.). This has led to a lot
of research work on the management of heterogenous sources and database integra-
tion. For instance, TSIMMIS [1], Information Manifold [2], HERMES [3], DISCO [4],
Garlic [5] and MMM [6]. The goal of such systems is to exploit of several independent
data sources as if they were a single source, with a single global schema. They allow
users to make complex queries over heterogeneous databases, as if they were a single
one. Whenever a user expresses a query in terms of relations in the global schema, the
system (mediator) translates the query into sub-queries using a query-reformulation
procedure. These sub-queries can be executed in sources and the system can collect
and combine returned results as the answer to the query.

However, Several proposed approaches, for data integration, do not take into ac-
count security issues and privacy requirements. Their main goal is the management of
heterogenous sources and database integration. They help data sharing among differ-
ent distributed sources but they increase the risk for data security, such as violating
access control rule [7]. Moreover, they suppose that the security and privacy issues are
only handled at the level of each data source.

1.2 Contributions

The integration of heterogeneous data sources must also consider security and privacy
concerns. It is important to consider whether the client has the necessary credentials
to access the data before the integration can occur.



2 CHAPTER 1. INTRODUCTION

We propose an approach that enforces the security and privacy requirements for a
semantic mediator that uses SPARQL as query language. Our approach is based on a
query rewriting principle. It is to rewrite the user query (SPARQL query) such that
only authorized data are returned with respect to some confidentiality and privacy
preferences policy.

In the case of confidentiality constraints, the rewriting algorithm is instrumented
by an access control model like the OrBAC model [8]. For instance, if we suppose that
a user U issues a SPARQL query Qi, the approach aims to get security constraints
defined for the user U and transform them into SPARQL filters and SPARQL triples
that will be inserted into the initial query Qi. The results returned by the rewritten
query are compliant with the confidentiality policy.

In the case of update queries, we show how to rewrite SPARQL update queries
without disclosing some other sensitive data whose access would be forbidden through
select queries. We present an approach based on rewriting SPARQL/Update queries.
It involves two steps. The first one satisfies the update constraints. The second one
handles consistency between select and update operators. Query rewriting is done
by adding positive and negative filters (corresponding respectively to permissions and
prohibitions) to the initial query.

In the case of privacy constraints, the rewriting algorithm is instrumented by a
privacy-aware model like the PrivOrBAC model [9]. Our approach aims to enforce
the privacy policy preferences by query transformation. We take into account various
dimensions of privacy preferences through the concepts of consent, accuracy, purpose
and recipient.

Finally, we propose a secure, privacy-preserving execution model for data services
based on our rewriting algorithms. This model allows service providers to enforce
their privacy and security policies without changing the implementation of their data
services i.e., data services are considered as black boxes.

1.3 Outline of the dissertation

In chapter 2 we present some key definitions and we start by introducing the concept of
semantic mediation system. Then we discuss about some existing security enforcement
for mediators and analyze other possible approaches for securing mediators, mainly the
security of query evaluation.



1.3. OUTLINE OF THE DISSERTATION 3

In chapter 3, we define fQuery, an approach used to protect SPARQL queries using
query transformation. We present a generic approach to specify and apply an access
control policy to protect resources viewed as RDF format. In this chapter, we consider
the case of select queries.

In chapter 4 we propose an extension that considers how to transform update queries
with respect to an access control policy. The access control policy is modelled as a set
of filters.

In chapter 5 we define a user friendly specification language to express such an
access control policy. We show how to derive the filter definition from the specification
of an access control policy based on OrBAC [8].

In chapter 6, we present an extension of our approach fQuery that aims to enforce
the privacy requirements by query rewriting in the case of SPARQL queries.

In chapter 7, we show how to instrument our privacy rewriting algorithm using an
existing privacy-aware model like the PrivOrBAC model.

In chapter 8 we present a use case of our rewriting approach. We proposed a
secure and privacy-preserving execution model for data services based on our fQuery
approach.

In chapter 9, we present concrete implementation of our approach fQuery. Finally,
chapter 10 makes an overview of the thesis, analyzes its strong and weak points and
suggests future work directions.





CHAPTER

2 Preliminaries and State
of the Art

In this chapter, we present some key definitions. Then we introduce the concept of
semantic mediation system. After, we discuss about existing security enforcement for
mediators. Finally we analyze other possible approaches for securing mediators, mainly
security of query evaluation.

2.1 Background

2.1.1 RDF

RDF [10](Resource Definition Framework) is a graph data model. It is based upon
the idea of making statements about resources (in particular Web resources) in the
form of subject-predicate-object expressions. These expressions are known as triples in
RDF terminology. The subject denotes the resource, and the predicate denotes traits
or aspects of the resource and expresses a relationship between the subject and the
object. For example, one way to represent the proposition "Bob’s salary is 60k” in
RDF is as the triple: a subject denoting "Bob”, a predicate denoting "has salary”, and
an object denoting "60k”. A collection of RDF statements intrinsically represents a
labeled, directed multi-graph. As such, an RDF-based data model is more naturally
suited to certain kinds of knowledge representation than the relational model and other
ontological models traditionally used in information systems today.

In practice, as more data is being stored in RDF format, a need has arisen for a
simple way to locate specific information. SPARQL [11] is a powerful query language
which fills that space, making it easy to find the data you need in the RDF graphs.



6 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

2.1.2 OWL

Ontology formally represents knowledge as a set of concepts within a domain, and the
relationships between pairs of concepts. It can be used to model a domain and support
reasoning about entities [12].

The Web Ontology Language (OWL) is a family of knowledge representation (KR)
languages for authoring ontologies [12]. OWL is endorsed by the World Wide Web
Consortium (W3C) and has attracted academic, medical and commercial interest.

There are three variants of OWL with different levels of expressiveness: (i)OWL
Lite, (ii)OWL DL and (iii)OWL Full.

• OWL Lite: a sublanguage of OWL that was originally intended to support a
classification hierarchy and simple constraints (e.g. a set is limited to 0 or 1
element).

• OWL DL (OWL Description Logics): a sublanguage of OWL that was designed
to provide the maximum expressiveness possible while retaining computational
completeness, decidability and the availability of practical reasoning algorithms.

• OWL Full: a sublanguage of OWL that was designed to preserve some compati-
bility with RDF Schema. It is based on a different semantics from OWL Lite or
OWL DL. OWL Full is undecidable, so no reasoning software is able to perform
complete reasoning for it.

2.1.3 SPARQL

SPARQL is the acronym of Simple Protocol And RDF Query Language. It is the
query language of the Semantic Web for accessing RDF databases. It was standardized
by the RDF Data Access Working Group of the World Wide Web Consortium, and is
considered a key semantic web technology.

A SPARQL query consists of triple patterns, conjunctions, disjunctions, and op-
tional patterns. SPARQL allows users to write globally unambiguous queries. For
example, the following query returns the name of all patients and their drug name.



2.1. BACKGROUND 7

1 PREFIX dt :<http :// ho sp i t a l . f r / pa t i en t s />
SELECT ?name ?drugName

3 FROM dt : i n f o s
WHERE{

5 ?p rd f : type dt : Pat ient .
?p dt : name ?name .

7 ?p dt : takes ?drug .
?drug dt : drugName ?drugName .

9 }

Variables are indicated by a "?” or "$” prefix. Bindings for ?name and ?drugName
will be returned.

Basically, the SPARQL syntax resembles SQL, but the advantage of SPARQL is that
it enables queries spanning multiple disparate (local or remote) data sources containing
heterogeneous semi-structured data. In the rest of this section we present two main
keywords that allow us to query local and remote data sources.

SPARQL Named Graph

SPARQL query is executed against RDF Dataset. An RDF Dataset is a collection of
RDF graphs. It always contains one default graph which does not have a name. It
contains also zero or more named graphs where each named graph is identified by an
IRI.

The RDF Dataset is referenced in the SPARQL query using keywords FROM and
FROM NAMED. A default graph consisting of the merge of the graphs referred to in
the FROM clauses. Named graphs are presented as (IRI, graph) pairs, one from each
FROM NAMED clause.

The GRAPH clause directs queries to particular named graphs. The figure 2.1 illustrates
an example of use of GRAPH clauses. The default graph is the merge of the two graphs
dt:drugs and dt:infos. The GRAPH keyword is used to match group pattern P against
the named graph pg:preferences.

SPARQL Service

SPARQL is also used to express queries across diverse data sources that are viewed as
RDF via middleware. The specification of SPARQL 1.1 defines the syntax and seman-
tics for executing distributed queries. It is presented in [13] as “SPARQL 1.1 Federation
Extensions”. It presents some features that allow us to merge data distributed across
the web. In particular, a SERVICE feature enables expression of the merging queries.



8 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

Figure 2.1: SPARQL Query with Graph clause

Figure 2.2: SPARQL Federated Query

It allows to direct a portion of a query to a particular SPARQL query service, like a
GRAPH which directs queries to particular named graphs. It is often referred to by the
informal term SPARQL endpoint (services that accept SPARQL queries and return
results).

The mechanics of executing a query over a graph differ from those of querying a
service. Typically, a GRAPH pattern is matched against an RDF graph which is in
the querying system. However the SERVICE pattern is matched against a SPARQL
endpoint which is not necessarily in the querying system.

The figure 2.2 illustrates an example of SPARQL query with preferences service
ps:preferences.



2.2. SEMANTIC MEDIATION 9

2.1.4 SPARQL/Update

There are also some recent proposals to extend SPARQL to specify queries for up-
dating RDF documents. SPARUL, also called SPARQL/Update [14], is an extension
to SPARQL. It provides the ability to insert, update, and delete RDF triples. The
update principle presented by this extension is to delete concerned triples and then
insert new ones. For example the following query illustrates an update of the graph
‘http://swid.fr/employees’ to rename all employees with the name ‘Safa’ to ‘Nora’.

1 PREFIX emp :<http :// swid . f r /emp/0 .1/>
WITH <http :// swid . f r / employees>

3 DELETE { ?emp emp : name ’ Safa ’ }
INSERT { ?emp emp : name ’Nora ’ }

5 WHERE
{

7 ?emp rd f : type emp : Employee .
?emp emp : name ’ Safa ’

9 }

The ‘WITH’ clause defines the graph that will be modified. ‘DELETE’ defines triples
to be deleted. ‘INSERT’ defines triples to be inserted. Finally, ‘WHERE’ defines the
quantification portion.

2.2 Semantic Mediation

A mediator has been introduced since 1992 by Wiederhold in [15]. Wiederhold defines
a mediator as “a software module that exploits encoded knowledge about some sets or
subsets of data to create information for a higher layer of applications”.

A mediator refers the problem of combining data residing at autonomous and het-
erogeneous sources, and providing users with a unified global schema (master schema).
It maintains a global schema and mappings between the global and source schemas.

The mediated query answering process can be divided into two phases [16]:

Request phase

• (a) A client C sends a global query Q to a mediator M .

• (b) The mediator M decomposes the query Q into a set of subqueries QS, where
the subquery QS is supposed to be appropriate for some source S.

• (c) The mediator sends the subqueryQS to the source S, for each relevant source S.



10 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

Delivery phase

• (d) Each relevant source S evaluates its subquery QS and produces a sub-answer
consisting of data DS.

• (e) Each relevant source S sends its sub-answer DS back to the mediator M .

• (f) The mediatorM integrates the received sub-answersDS into a global answerD.

• (g) The mediator sends back the global answer D following the directions given
by the return information.

Currently, there are two main basic approaches of mediators: Global-as-view
(GAV) [1, 17, 18, 19] and Local-as-View(LAV) [17, 19, 20, 21, 22]. The two approaches
differ in terms of how the mappings between the global schema and the schema of
original sources are defined. In the GAV integration, the relations in the global schema
are defined in terms of the relations in the source schemas. In the LAV approach, (the
definitions go the other way) the relations in the source schema are defined in terms
of the relations in the global schema. The LAV approach has all of the benefits of the
GAV approach but makes things easier for database administrators [23].

The semantic mediation is the mediation that is capable of taking advantage of
semantics [24]. It addresses not only the structure of the architecture of the data
integration, but how to resolve semantic conflicts between heterogeneous data sources.
For example, in the case of web services, identical services could use different vocabulary
on their descriptions, and vice-versa, i.e. different web services can use same vocabulary
for different meaning. The semantic mediation is used to resolve these heterogeneities
of meaning between the vocabularies used for describing Web services.

Table 2.1 shows an example of mediators and their used query language.

2.3 Security enforcement for mediators

As the distribution and sharing of information over the World Wide Web becomes
increasingly important, the needs for efficient yet secure access of data naturally arise.
Unfortunately, several approaches of mediation that have been proposed do not take
into account the security issues and privacy requirements. Moreover, they suppose that
the security and privacy issues are only handled locally at each data source level.

Considerable research efforts have been made to handle the issues related to access
control in a mediated environment [16, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].



2.3. SECURITY ENFORCEMENT FOR MEDIATORS 11

System Query Language Reference
Humboldt Discoverer SPARQL [25]
Semantic Agreement SPARQL [26]
AGGREGO SERVER SPARQL [27]
TSIMMIS LOREL [28]
SQPeer RQL [29]
Edutella RDF-QEL [30]
Bibster SeRQL [31]
RDFPeers RDQL [32]
GridVine RDQL [33]
PEPSINT c-XQuery/c-RDQL [34]
Piazza Subset of XQuery [35]
XPeer Subset of XQuery [36]
APPA XQuery [37]
PeerDB SQL [38]
AmbientDB SQL [39]
QueryFlow SQL [40]
Hyperion SQL [41]
FREddies SQL [42]
SwAP SQL [43]

Table 2.1: Example of mediators

Several proposed approaches aim to secure the mediation protocol mainly aspects of
authentication and communication between clients and datasources [16, 52, 53, 54]. For
instance [54] aims to preserve the anonymity of clients and confidentiality of data when
transmitting data from datasources to clients via a mediator. Authors of [54] present
three approaches that allow a mediator to compute a JOIN operation on encrypted
relations, based on specific encryption schema (Database-As-Service, commutative en-
cryption and homomorphic encryption/private matching).

However, there are few works that investigate the aspect related to the security
query evaluation. TIHI [56](Trusted Interoperation of Healthcare Information) es-
tablishes security by having a single security mediator that applies rules based pre-
processing (processing of query) and post-processing (processing of result) data filter-
ing to external client requests. The security mediator is the responsible for the security
in the mediation system. It insures that unauthorized data does not exit the mediator
system. It filters incoming and out-going data from TIHI’s data sources. The security
mediator is under the control of the security officer who may override the security me-



12 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

diator’s transaction. The security officer may process the request manually in the case
where the security rules are inadequate to process the request.

CHAOS [51](Configurable Heterogeneous Active Object System) tries to address the
limitation of TIHI by integrating objects that are dynamically loaded into a mediator.
CHAOS incorporates the security policies into the data objects as active nodes to
form active objects. In this case the active objects are represented by a special type
of XML objects that encompass data elements as well as active elements. An active
object contains one active node by mean of a Java class that must be interpreted by a
runtime environment. When a query is passed to one of the active objects, its active
node is dynamically loaded and executed by the security mediator. CHAOS does not
need to rely on a set of primitive security rules. To establish security policies CHAOS
provides an API to set the security policies with an active object. The CHAOS model
moves the responsibility of security to the source data provider, rather than through a
central authority.

Yang et al. [46, 47] proposed an approach based on RBAC [57] by utilizing the
mediation system’s Access Control and View Expander components and the mediation
spec database. Requests that are sent by the external clients are processed by the
Access Control unit that utilizes RBAC authorization. The View Expander enforces
proper client access right to insure that only proper database views are made available
to the external client [58].

2.4 Security of query evaluation

In this section we made an attempt to identify necessary building blocks for securing
mediators, mainly the aspect of security query evaluation. Then we present some
existing approaches that are based on these blocks and that could be used and/or
adapted for the security of mediation system.

Current mediators rely two main entities: (i) a user query and (ii) data sources.
For securing mediators we need a new entity that represents the security policy.

Secure mediator consists of three building blocks:

• Data D indicates data sources that contain the answers which users are looking
for.

• Query Q describes the information that users want. It is expressed in the query
language of associated mediator.



2.4. SECURITY OF QUERY EVALUATION 13

Q P D

(a)

 User

Data & 

Security policy

DBMS

&

Security

 Policy

Q

Result

(b)

ViewDBMS

Q

Result

(c)

Figure 2.3: View-based approach: (a) Combination of building blocks, (b) Illustration,
(c) Processing flow

• Security policy P represents the access control rules describing the security
policy associated to each user. It represents also the privacy policy preferences in
case of private data sources.

Note that D, Q and P are independent components, and thus can be located in-
dependently and processed separately. Based on these elements we present different
ways to enforce the security policy, namely, view-based approach, pre-processing, post-
processing.

2.4.1 View-based approach

View based approach aims to process security policy P and data D first (see figure 2.3).
The idea of view-based enforcement is to create and maintain a view for each user who
is authorized to access a specific portion/block of data. The view is generated by using
the set of authorizations granted to the user to filter off the nodes that the user should
not access. The view contains exactly the set of data that the user is authorized to
access. During runtime, each user can simply run his queries against his view. Although
views can be prepared offline. View-based enforcement has two serious limitations: (1)
not scalable in managing and maintaining views when there are a large number of roles
(or users), (2) high storage cost [59].



14 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

The examples of view-based approaches recently proposed for XML documents
include [60, 61, 62, 63, 64, 65]. Depending on the details of the algorithms, the views
can be maintained either physically or virtually.

In the case of XML, view-based approaches identify accessible XML nodes for each
user (role) to create a view and evaluate user queries on the view. Such approaches
provide fast access to the authorized data, especially when views are materialized,
but need to deal with view maintenance issues. Most proposals are actually based
on view materialization. In this case, for each user, the base of XML documents is
transformed to extract the sub-part called the authorized view which is compliant with
the access control policy. The query is then evaluated on the authorized view without
modification. Unfortunately, it is generally considered that the view materialization
process creates an intolerable overhead with respect to performance.

2.4.2 Pre-processing approach

This approach aims to handle a user query Q and security policy P prior to data D
as illustrated in figure 2.4. It consists in rewriting Q based on the corresponding P
to construct a secure query Q′ which will be executed directly over D. The returned
result of Q′ is conform to the security policy P .

Pre-processing approaches are also known in the literature as query rewriting, query
modification and query transformation. An interesting approach for relational DBMS
based on query transformation was suggested by Stonebraker [66]. In this case, the
query transformation is specified by adding conditions to the WHERE clause of the
original query. [66] assumes that a similar mechanism would apply to both select and
update operators, which is not generally true (see chapter 4 for more detail). He does
not handle the problem of consistency between data selection and update.

An interesting variant to transform SQL queries was suggested by Oracle with
VPD [67] (Virtual Private Database) mechanism. In this case, the security policy is
specified through the definition of predicates in PL-SQL that will apply as filters to
transform the query. The approach suggested by Oracle requires to know PL-SQL in
order to implement the access control policy. This may lead to security policies complex
to define and maintain. VPD supports the fine-grained access control (FGAC) through
policy functions. When a query is issued, it is dynamically modified by appending
predicates, returned by the policy function, to the where clause of the query. Moreover,
the policy functions are stored and managed locally.



2.4. SECURITY OF QUERY EVALUATION 15

Q P D

  User Data

DBMSQ Result

(b)

Security policy

P

Q’

(a)

DBMS

Q

Result(c)

Rewrite

Q’

P

Figure 2.4: Pre-Processing approach: (a) Combination of building blocks, (b) Illustra-
tion, (c) Processing flow

A more recent approach was proposed by Wang et al. [68] where the objective is
to securely maximize the answer provided to the user. [68] proposed a formal notion
of correctness for fine-grained access control in relational databases. They presented
three correctness criteria (sound, secure and maximum) that should be satisfied by any
query processing algorithm in order to be “correct”.
Soundness : An algorithm is sound if and only if its rewritten query Qrw returns only
correct answers i.e. answers to the initial query.
Maximality : An algorithm is maximum if and only if Qrw returns as much informa-
tion as possible.
Security : An algorithm is secure if and only if the result of Qrw respects the security
and privacy policy of the queried system.

LeFevre et al. [69] presented an approach that enforces limited disclosure expressed
by privacy policy in the case of Hippocratic databases. It is implemented by rewriting
queries. When a query Q is issued, it is transformed to Q′ so that the result of Q′



16 CHAPTER 2. PRELIMINARIES AND STATE OF THE ART

respects the cell-level disclosure policy P . Their approach is based on replacing all the
cells that are not allowed to be seen by P with NULL. After that, Q′ is evaluated
as a normal query with evaluation rules “NULL 6= NULL” and “NULL 6= cst”
for any constant value cst. [69] does not take into account the privacy requirement
accuracy. They only replace unauthorized data with “NULL”. Moreover, [69] does
not satisfy the sound property and maximum property [68]. Another issue is that
they only mask variables (fields) used in the header of the SQL query. They do not
handle the qualification portion. For instance, for the following query SELECT name
FROM Patients WHERE age=25, they only mask unauthorized name. However, if a
data-owner Alice, who is 25 years old, choses to disclose her name but not her age,
anyone looking at the results concludes that Alice is 25 years old. One way to correct
this problem is to normalize the SQL query by adding all variables used in the where
clause to the corresponding header of the query, e.g. the query above is normalized as
follows: SELECT name, age FROM Patients WHERE age=25. Then we rewrite the
normalized query and applies filter after transformation so that Alice will not appear
in the result.

In the case of XML documents, more recent proposals suggest using query trans-
formation, see for instance [70] that shows how to transform XPath queries and QFil-
ter [71] which is based on query rewriting. [71] is based on non-deterministic finite au-
tomata (NFA) and rewrites user’s queries such that parts violating access control rules
are pre-pruned. However, there is a main difference compared to RDF and SPARQL:
XML documents correspond to oriented graphs. As noticed in [65], this may lead to
complication to protect some relationships in an XML document. This issue has been
addressed using two different approaches: In [70], protection of XML relationships is
embedded in document transformation whereas [65] suggests specifying access control
policies using the concept of blocks in order to break some relationships that must be
protected.

2.4.3 Post-processing approach

Figures 2.5(a) and (c) illustrate the post-processing scenario, where Q is applied to D
first. No security enforcement is engaged. Then the security policy is examined second.
Q is processed by DBMS to produce unsafe answers, which goes through post-filtering
process to prune out the parts that violate security policy P and return only safe
parts. Checking the security after the query evaluation may disclose some confidential
information. For instance, a malicious user could issue a query that returns the name
of patients who are 25 years old. The returned result corresponds exactly to patients



2.4. SECURITY OF QUERY EVALUATION 17

Q PD

  Deliverer
Users

Q

(b)

Security policy

P1

(a)

DBMS

Q

(c)

YFilter

Result

P

  Data

DBMS Result P2

P3

Result1

Result2

Result3

Figure 2.5: Post-Processing approach: (a) Combination of building blocks, (b) Illus-
tration, (c) Processing flow

who are 25 years old even if the value of the age is hidden by the security policy. It is
necessary to keep additional information related to the query, and take it into account
at security filtering stage.

Post-processing approach is useful when security policy itself carries security con-
scious information and has to be stored securely. For instance, Figure 2.5(b) shows a
use case of post-processing approach, where Q and D are stored together and security
policy P is stored elsewhere. Note that in this case Q is not known from users. So the
problem of disclosing confidential information mentioned before, does not occur in this
case.

An interesting approach based on post-processing principle, to enforce access control
rules in the case of XML document, is presented in [72]. Authors of [72] present an
approach that extends regular query processing by going through a “post-filtering”
stage, named as AFilter, to filter out un-safe answers. [72] adopts YFilter [73], a query
processor for streaming XML data, as an implementation of AFilter.





CHAPTER

3 SPARQL Select Query
Rewriting to Enforce
Data Confidentiality

3.1 Introduction

SPARQL has been defined to easily locate and extract data in an RDF graph. It is also
used by several semantic mediators as a high level query language to express a user’s
query. SPARQL queries must be filtered so that only authorized data are returned with
respect to some confidentiality policy. In this chapter we propose an approach that
enforces the data confidentiality (access control constraints) in the case of SPARQL
queries. We model a confidentiality policy as a set of positive and negative filters
(corresponding respectively to permissions and prohibitions) that apply to SPARQL
queries. We then define rewriting algorithms that transform the queries so that the
results returned by transformed queries are compliant with the confidentiality policy.

Basically, the SPARQL syntax is similar to SQL, but the advantage of SPARQL
is that it enables queries spanning multiple disparate (local or remote) data sources
containing heterogeneous semi-structured data. However, since a SPARQL query may
access confidential data, it is necessary to design security mechanisms to control the
evaluation of SPARQL queries and prevent these queries from illegally disclosing con-
fidential data.

The approach is to rewrite the user SPARQL query by adding some SPARQL
filters to that query. When, the user sends his or her SPARQL query to the server, our
system will intercept this query and checks the security rules corresponding to that user
(Figure 3.1). Then it rewrites the query by adding the corresponding SPARQL filters.
The execution result of the rewritten query is returned to the user. The figure 3.1
illustrates our approach called fQuery [74].



20 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

In our approach, the answer to the rewritten query may differ from the user’s initial
query. In that case and as suggested in [75], we can check the query validity of the
rewritten query with respect to the initial query and notify the user when the query
validity is not guaranteed.

This chapter is organized as follows. Section 3.2 presents the basic principles of
rewriting SPARQL query and illustrate these principles through some examples. Sec-
tion 3.3 presents some definitions and theorems that are used in other sections. Section
3.4 defines the security policy model for SPARQL and some of its properties. In sec-
tion 3.5, we specify the rewriting query algorithm and finally section 3.6 concludes this
chapter.

Security 

Policy

User Security rules

Security rules

RDF DataResponse

Rewritten Query

SPARQL Query

Response

Figure 3.1: fQuery approach

3.2 Rewriting SPARQL Query: Basic Principles

Let us take an example of query transformation. We assume that the user Bob tries to
select the name and the salary of each employee. We assume also that Bob is not per-
mitted to see salaries of employees who earn more than 60K. The table 3.1 shows Bob’s
SPARQL query before and after transformation. The presence of the OPTIONAL con-
struct in the transformed query makes it a non-conjunctive (disjunctive) one. It means



3.3. NOTATIONS, DEFINITIONS AND THEOREMS 21

Before transformation After transformation

SELECT ?name ? s a l a r y
WHERE
{

? employee rd f : type emp : Employee .
? employee f o a f : name ?name .
? employee emp : s a l a r y ? s a l a r y .

}

SELECT ?name ? s a l a r y
WHERE
{

? employee rd f : type emp : Employee .
? employee f o a f : name ?name .
Optional {

? employee emp : s a l a r y ? s a l a r y .
Filter (? sa la ry <60000)

}
}

Table 3.1: Example of query transformation

that: if the condition inside the OPTIONAL clause is False then the value of the salary
variable is assigned to Null.

The access control policy is based on filter definitions. To each user or group of
users, we assign a set of filters. Depending on the policy type, we consider two different
types of filter: (1) Positive filters corresponding to permissions and (2) Negative filters
corresponding to prohibitions.

These filters may be associated with a simple condition or an involved condition.
Filters associated with involved condition provides means to protect relationships. In
our approach we assume that when a user asks a query, we can get additional infor-
mation like the user identity. This additional information may be used in the filter
definition (see the example 10, page 34).

Filters actually provide a generic approach to represent an access control policy for
RDF documents which does not rely on a specific language. However, it would be also
interesting to define a user friendly specification language to express an access control
policy for RDF documents (see chapter 5).

3.3 Notations, Definitions and Theorems

As mentioned in the introduction, an RDF database is represented by a set of triples.
So, we denote E the set of all RDF triples of our database. We denote Esubject (re-
spectively Epredicate,Eobject) the projection of E on subject (resp. predicate and object).
Esubject represents (resp. Epredicate, Eobject) the set of all subjects (resp. predicates,
objects) of the RDF triples of E.



22 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

Definition 1: RDF condition
We define a “condition of RDF triples” as the application ω : E → Boolean which
assigns each RDF triple x = (s, p, o) of E to an element of the set Boolean =
{True, False}.

ω : E → Boolean

x→ ω(x)

ω(x) is expressed in terms of s, p and o where x = (s, p, o). We define also the negation
of ω denoted ω̄ as follows:

ω̄ : E → Boolean

x→ ω̄(x)
such that (∀x ∈ E)ω̄(x) = ω(x) = ¬(ω(x))

For each element x of E, we say that ω(x) is satisfied if ω(x) = True. Otherwise
we say that ω(x) is not satisfied.

Definition 2: simple condition
We define the “simple condition of RDF triples” as the condition of RDF triples that
uses the same operators as the SPARQL filter (regex, bound,=, <,> ...) and constants
(see [11] for a complete list of possible operators).

Example 1 (∀x = (s, p, o) ∈ E)
ω(x) = (s 6=emp:Alice) ∨ ((p =foaf:name) ∧ (o 6=’Alice’))

Definition 3: involved condition
Let n ∈ N∗, {pi}1≤i≤n be a set of predicates of Epredicat and {ωi}1≤i≤n be a set of simple
conditions. Let x be an element of E where x = (s, p, o). The condition expressing
that s (subject of x) must have the properties {pi}1≤i≤n such that the value of each
property pi satisfies the condition ωi, is called an involved condition associated with
{(pi, ωi)}1≤i≤n. This condition, denoted ω, could be expressed as follows:

(∀x = (s, p, o) ∈ E)

ω(x) =


True if (∃(x1, ..., xn) ∈ En)/(∀1 ≤ i ≤ n)xi = (s, pi, oi)

where oi ∈ Eobject and ωi(oi) = True

False Otherwise

ω(x) does not depend only on the RDF triple x but it also depends on other RDF
triples (x1, ..., xn) that share the same subject of x and satisfy respectively the simple



3.3. NOTATIONS, DEFINITIONS AND THEOREMS 23

conditions (ω1, ..., ωn). The involved condition for an element x of E is the existence
of other properties {pi}1≤i≤n (predicates) of the subject of x and the value of each
property pi satisfies the simple condition ωi.

Let x = (s, p, o) be an element of E. In the case of a simple condition ωsimple,
we only need the s, p and o to evaluate ωsimple(x). But in the case of an involved
condition ωinvolved associated with {(pi, ωi)}1≤i≤n, the value of x is not sufficient to
evaluate ωinvolved(x). It requires knowledge about other elements of E.

Example 2 Bob is permitted to select the information of the network
department employees. The condition ω associated with this rule could be
expressed as follows:

(∀x = (s, p, o) ∈ E) ω(x) =

 True if (∃y ∈ E)|y = (s,emp:dept,’Network’)
False Otherwise

It means that Bob can select only the RDF triples where the subject has also
the predicate emp:dept with the value ‘Network’. ω(x) does not depend only
on the RDF triple x but it also depends on another RDF triple y that shares
the same subject of x and its predicate is emp : dept with the value ‘Network’.

An involved condition can be expressed as a SPARQL ‘Basic Graph Pattern’
(BGP) [11](a set of triple patterns) where all its triple patterns have the same subject s.

BGP={∧n
i=1 (tpi.Filter(ωi))} such that ∀i ∈ [0, n], tpi = (s, pi, oi).

Example 3 The following condition means that it is not allowed to see
the data of employees of network and security department who are more
than 30 years old.

1 NOT EXISTS {
? s rd f : type O: Employee ;

3 O: dept ?dep ;
O: age ? age .

5 FILTER(? age >30)
FILTER(? dept IN ( ’ Network ’ , ’ S e cu r i ty ’ ) )

7 }

Definition 4: complex condition

Let n be an integer, ω an RDF condition, {pi}1≤i≤n be a set of predicates and
{ωi}1≤i≤n be a set of RDF conditions. The condition ω is a complex condition as-
sociated with {(pi, ωi)}1≤i≤n with level L >= 1 if and only if {ωi}1≤i≤n are complex
conditions such that max(level(ωi)) = L− 1.



24 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

By definition a simple condition is a complex condition with level L = 0. So an
involved condition is a complex condition with level L = 1.

A complex condition could be also expressed as a SPARQL Group pattern (GP) [11].

Example 4 Doctor is allowed to see only the information of its own
patients.

1 GP={?s rd f : type O: Pat ient ;
O:mydoc ?doc .

3 ?doc rd f : type O: Doctor ;
O: hasId ? id .

5 FILTER(? id=doctor_id )
}

Definition 5: projection

Let tp be a triple pattern of the where clause of a SPARQL query and ω be a
condition on RDF triples. We define the projection of ω relative to tp as the condition
ω(tp) expressed in terms of the tp SPARQL variables. We denote that projection as
πω/tp, πω/tp = ω(tp).

Example 5 Let x = (s, p, o) ∈ E such that
ω(x) = (s 6= emp:Alice) ∧ (p =foaf:name) ∧ (s 6= o)
and tp = (emp:Charlie,?m,?n)
πω/tp = ω(tp)
πω/tp(?m, ?n) = (?m =foaf:name) ∧ (?n 6=emp:Charlie)

We denote constants of conditions of RDF triple ΩT rue and ΩF alse applications
defined as follows:

ΩT rue : E → Boolean ΩF alse : E → Boolean

x→ True x→ False

Definition 6: conjunction and disjunction

Let ω1 and ω2 be two conditions on RDF triples. We define the conditions ω1 ∧ ω2

and ω1 ∨ ω2 as follows:

ω1 ∧ ω2 : E → Boolean ω1 ∨ ω2 : E → Boolean

x→ ω1(x) ∧ ω2(x) x→ ω1(x) ∨ ω2(x)



3.3. NOTATIONS, DEFINITIONS AND THEOREMS 25

Definition 7: set I(ω)
Let ω be a condition on RDF triples. We define the subset of E that satisfies the
condition ω, denoted I(ω), as follows:

I(ω) = {x ∈ E| ω(x) = True}

We define the complement of the set I(ω) in E, denoted I(ω), as follows:

I(ω) = {x ∈ E| x /∈ I(ω)} = E\I(ω)

Theorem 1: Let ω be a condition on RDF triples, I(ω̄) = I(ω) = E\I(ω)

Proof of theorem 1:

x ∈ I(ω̄) ⇐⇒ {x ∈ E| ω̄(x) = True}
⇐⇒ {x ∈ E| ω(x) = True}
⇐⇒ {x ∈ E| ω(x) = False}
⇐⇒ {x ∈ E| x /∈ I(ω)}
⇐⇒ x ∈ I(ω). �

Theorem 2: Let ω1 and ω2 be two conditions on RDF triples. We have the
following properties: I(ω1 ∧ ω2) = I(ω1) ∩ I(ω2) and I(ω1 ∨ ω2) = I(ω1) ∪ I(ω2)

Proof of theorem 2:

x ∈ I(ω1 ∧ ω2) ⇐⇒ ω1(x) ∧ ω2(x) = True

⇐⇒ ω1(x) = True and ω2(x) = True

⇐⇒ x ∈ I(ω1) and x ∈ I(ω2)
⇐⇒ x ∈ I(ω1) ∩ I(ω2). �

Then I(ω1 ∧ ω2) = I(ω1) ∩ I(ω2)

With the same reasoning we can prove that I(ω1 ∨ ω2) = I(ω1) ∪ I(ω2).
By induction (recurrence) we can prove the properties bellow. �

Generalization of theorem 2: Let n ∈ N∗ and {ωi}0≤i≤n be a set of conditions on
RDF triples.

I(∧n
i=0ωi) = ∩n

i=0I(ωi)
I(∨n

i=0ωi) = ∪n
i=0I(ωi)

Definition 8: Abstract property
Let G be an RDF graph. Let A and B be two elements of G such that there exist an



26 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

indirect relation R (a path of length greater than or equal to 2) between A and B. We
define the “abstract property” PR

A,B as a predicate which is not part of predicates of G
and which represents the relation R.

The relation R is called the mapping associated with the abstract property PR
A,B.

Example 6 Let us take an example. We use the prefix ‘o’ to nominate a
concrete element and ‘ap’ to nominate abstract properties. Let us take the
following group of patterns:
{

2 ? s rd f : type o : Pat ient .
? s o : phys i c i an ?doc .

4 ?doc o : hasName ?docName .
}

This group of patterns could be represented by the following group of patterns:
1 {

? s rd f : type o : Pat ient .
3 ? s ap :myDocName ?docName .

}

such that ap:myDocName is the abstract property represented by the following
mapping between ?s and ?docName:

{
2 {? s ap :myDocName ?docName} <==> ? s o : phys i c i an ?doc .

?doc o : hasName ?docName .
4 }

Let us take another example. We consider the following group of patterns:
{

2 ? s rd f : type o : Pat ient .
? s o : name ?name .

4 ? p r e f rd f : type o : Pre f e r ence .
? p r e f o : dataOwner ?do .

6 ?do o : hasName ?name .
}

This group of patterns could be represented by the following group of patterns:
1 {

? s rd f : type o : Pat ient .
3 ? s ap : hasPre f e r ence ? p r e f .

}

such that ap:hasPreference is the abstract property represented by the follow-
ing mapping between ?s and ?pref :



3.4. SECURITY POLICY 27

{
2 ? s o : name ?name .

{? s ap : hasPre f e r ence ? p r e f } <==> ? pr e f rd f : type o : Pre f e r ence .
4 ? p r e f o : dataOwner ?do .

?do o : hasName ?name .
6 }

Theorem 3:
A complex condition ω with level l ≥ 2 could be represented by an involved condition
using abstract properties.

Proof of theorem 3: see appendix B.

3.4 Security policy

In this section we show how to factorize a set of permission rules (resp. prohibition
rules), assigned to a given user, as a single permission rule (resp. prohibition rule). In
our proposal we define the security policy as a set of permissions or a set of prohibitions.
We also assume that the policy is closed.

3.4.1 Permission

A security policy rule is defined as the permission for a user to select a set of RDF
triples of E that satisfies a condition on RDF triples denoted ω. It means that the
user is permitted to select only the RDF triples of the subset I(ω). We denote this
permission as Permission(ω).

Example 7 Bob is permitted to see the name and email of all employees
stored in the RDF database. This rule can be expressed as the permission
to select a set of RDF triples of E that satisfies the condition ω defined as
follows:

(∀x = (s, p, o) ∈ E) ω(x) =

 True if p ∈ P
False if p /∈ P

Such that P = {foaf:name, foaf:mbox} is a set of predicates associated with
the information name and email.

Let {Rulei}(1≤i≤n) be a set of security rules (permission rules) associated with a
user and {ωi}1≤i≤n be a set of conditions on RDF triples such that n ∈ N∗ and



28 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

Rulei = Permission(ωi). So the user could select the RDF triples of each set I(ωi).
It means that the user could select the RDF triples of the set ∪n

i=1I(ωi) . According to
the result of the theorem 2, the user is permitted to select the RDF triples of I(∨n

i=1ωi).
So the user is permitted to select RDF triples that satisfies the condition ω = ∨n

i=1ωi .
We deduce that:

n⋃
i=1

Permission(ωi) = Permission(
n∨

i=1
ωi)

It means that a set of permission rules {Permission(ωi)}1≤i≤n could be expressed as
one permission rule defined as the permission to select RDF triples that satisfies the
condition ω = ∨n

i=1ωi.

3.4.2 Prohibition

In the case of prohibition we define the security policy rule as the prohibition for a user
to select a set of RDF triples of E that satisfies a condition on RDF triples denoted ω.
It means that the user is prohibited to select any RDF triples of the subset I(ω). We
denote this prohibition as Prohibition(ω).

Example 8 Bob is not permitted to select the salary and the birth day
of all employees stored in a RDF database. This rule can be expressed as
Prohibition(ω) such that ω is defined as follows:

(∀x = (s, p, o) ∈ E) ω(x) =

 True if p ∈ P
False if p /∈ P

Such that P = {emp:salary, foaf:birthday} is a set of the predicates associated
with the information salary and birth day. So ω could be written as:
(∀x = (s, p, o) ∈ E) ω(x) = (p =emp:salary) ∨ (p =foaf:birthday)

With the same reasoning as in the previous section 3.4.1, we deduce that:
n⋃

i=1
Prohibition(ωi) = Prohibition(

n∨
i=1

ωi)

Assuming that {Prohibition(ωi)}1≤i≤n are all security rules associated with a user, we
can prove the following result:

n⋃
i=1

Prohibition(ωi) = Permission(
n∧

i=1
ωi)



3.5. FQUERY: OUR QUERY REWRITING MODEL 29

3.5 fQuery: Our query rewriting model

We rewrite the user query by adding filters and/or removing triples of pattern from
the where clause following the associated security policy (see section 3.5.1). Sometimes
it is also necessary to add triples of pattern to the query in order to handle involved
condition (see section 3.5.2).

Our query rewriting algorithm treats each BGP [11] (Basic Graph Pattern) of a
SPARQL query. Each BGP is handled separately from the others.

3.5.1 Case of simple condition ω

Let Bgp be a basic graph pattern of the where clause of a SPARQL query. We check
the security rule associated with the condition ω (Permission(ω) or Prohibition(ω))
for each triple pattern tp = (s, p, o) of Bgp by calculating the projection πω/tp. There
are three cases depending on the πω/tp value.

Permission case

• πω/tp = ΩT rue

It means that πω/tp is always true for each SPARQL variable of the triple pattern
tp. In this case the triple pattern tp matches the security policy. So there is no
action to do for tp. We check the security condition ω for the next triple pattern.

• πω/tp = ΩF alse

It means that πω/tp is always false for each SPARQL variable of the triple pattern
tp. In this case the triple pattern tp does not match the security policy. So we
delete this triple pattern tp from Bgp. Then we check the security condition ω for
the next triple pattern.

• Otherwise πω/tp is expressed in terms of tp variables. In this case, we put tp in an
OPTIONAL construct and we add the positive filter ϕ to it. Then we add this
optional construct to Bgp. The positive filter ϕ is defined as follows:

ϕ(tp) = FILTER(πω/tp) = FILTER(ω(tp))

This filter filters the RDF triples that satisfy the condition ω. The presence of the
OPTIONAL construct in the transformed query makes it a non-conjunctive one.



30 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

Prohibition case

• πω/tp = ΩT rue

It means that πω/tp is always true for each SPARQL variable of the triple pattern
tp. In this case, RDF triples that match with the triple pattern tp are prohibited.
So we delete this triple pattern tp from the basic graph pattern Bgp. Then we
check the security condition ω for the next triple pattern.

• πω/tp = ΩF alse

It means that πω/tp is always false for each SPARQL variable of the triple pattern
tp. In this case RDF triples that match with the triple pattern tp are allowed to
be selected. So there is no action to do for tp. We check the security condition ω
for the next triple pattern.

• Otherwise πω/tp is expressed in terms of tp variables. In this case, we put tp in an
OPTIONAL construct and we add the filter ϕ to it. Then we add this optional
construct to Bgp. The filter ϕ is defined as follows:

ϕ(tp) = FILTER(πω/tp) = FILTER(ω(tp))

This filter filters the RDF triples that do not satisfy the condition ω.

We define Algorithm 1, the query rewriting algorithm for a simple condition.

Example 9 Bob is not permitted to see salaries of employees who earn more
than 50K and their premiums if it is greater than 9K. This prohibition could
be expressed as Prohibition(ω) where ω is defined as: (∀x = (s, p, o) ∈ E)

ω(x) = ((p = emp:salary)∧ (o ≥ 50000))∨ ((p = emp:premium)∧ (o ≥ 9000))

Bob tries to select the name, the salary of each employee and their premium
if it is greater than 10K. He executes the following query:
SELECT ?name ? s a l a r y ?premium

2 WHERE {
? s1 f o a f : name ?name ,

4 emp : s a l a r y ? s a l a r y .
Optional{

6 ? s1 emp : premium ?premium . Filter (? premium > 10000)
}

8 }

Let tp1 = (?s1,foaf:name, ?name) and tp2 = (?s1,emp:salary, ?salary) and
tp3 = (?s1,emp:premium, 10000) be triples of pattern of the where clause of



3.5. FQUERY: OUR QUERY REWRITING MODEL 31

Algorithm 1 Algo1 (Query, ω, ruleType). Query rewriting Algorithm for a simple
condition
Require: ω is a simple condition
for each basic graph pattern Bgp of Query do
for each triple pattern tp of Bgp do
if πω/tp=ΩT rue then
if ruleType = PROHIBITION then
delete tp from Bgp

end if
else if πω/tp=ΩF alse then
if ruleType = PERMISSION then
delete tp from Bgp

end if
else
create new optional element opEl
move tp to opEl
if ruleType = PERMISSION then
add the filter FILTER(πω/tp) to opEl

else if ruleType = PROHIBITION then
add the filter FILTER(πω/tp) to opEl

end if
add opEl to Bgp

end if
end for

end for

Bob’s query. The query has two basic graph patterns Bgp1 = {tp1, tp2} and
Bgp2 = {tp3}.

We have πω/tp1 = ω(tp1) = False = ΩF alse

πω/tp2 = ω(tp2) = (?salary ≥ 50000)

πω/tp3 = ω(tp3) = (?premium ≥ 9000)

πω/tp1 = ΩF alse so there is nothing to do with the triple pattern tp1.
πω/tp2 = (?salary ≥ 50000) so we add the filter FILTER(?salary <

50000)=FILTER(πω/tp2) to the Bgp1.
πω/tp3 = (?premium ≥ 9000) so we add the filter FILTER(?premium < 9000)
to Bgp2. The rewritten query will be as follows:



32 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

SELECT ?name ? s a l a r y ?premium
2 WHERE

{
4 ? s1 f o a f : name ?name .

Optional{
6 ? s1 emp : s a l a r y ? s a l a r y .

FILTER (? s a l a r y < 50000)
8 }

Optional{
10 Optional{

? s1 emp : premium ?premium .
12 Filter (? premium < 9000)

}
14 Filter (? premium > 10000)

}
16 }

3.5.2 Case of involved condition ω

In this section, we define Algorithm 2, the query rewriting algorithm for an involved
condition.

Let Bgp be a basic graph pattern, {si}1≤i≤m the set of subjects of the Bgp triple
patterns and {Gpi}1≤i≤m a set of group patterns [11] where Gpi is a set of triple patterns
of Bgp which has the same subject si. There are two cases to consider: Permission(ω)
and Prohibition(ω).

Permission case: We handle eachGpi separately from the others. For each 1 ≤ j ≤ n,
the subject si should have the property pj such that its value should satisfy the simple
condition ωj. We verify if there exists a triple pattern tp = (s, p, o) of Gpi which has the
property pj (p = pj). If this triple exists, then it should satisfy the simple condition ωj.
For this purpose, we add a new SPARQL filter with the condition ωj(tp). If there is no
triple pattern with the property pj on Gpi then we create a new one tpij = (si, pj, ?αj)
and we add it to Gpi (where ?αj is a SPARQL variable). tpij should then satisfy the
simple condition ωj. So we add a new SPARQL filter with the condition ωj(tpij).

Prohibition case: In this case we verify for each 1 ≤ j ≤ n if there exists a triple
pattern tp = (s, p, o) of Gpi with the property pj (p = pj). If this pattern exists, then
there are two cases. If its value ’o’ is a SPARQL variable then it should not satisfy the
condition ωj or it should be unbound (i.e. si does not have the property pj). In this
case we add a new SPARQL filter with the condition (ωj(tp)∨!bound(o)) . Otherwise,
the value ’o’ could not be unbound, then the triple pattern tp should not satisfy ωj. In
this case we add a new filter with the condition ωj(tp).



3.5. FQUERY: OUR QUERY REWRITING MODEL 33

Algorithm 2 (Query, ω, ruleType). Query rewriting Algorithm for an involved con-
dition
Require: ω is an involved condition
for each basic graph pattern Bgp of Query do
Let {si}1≤i≤m be a set of the subjects of the Bgp triples pattern
for each subject si do
Let Gpi be a set of triple pattern of Bgp with the same subject si

{ωj}1≤i≤n a set of simple condition associated with ω
{pj}1≤i≤n a set of predicates associated with ω
for j = 1 to n do
if ∃tp = (s, p, o) ∈ Gpi| p = pj then
for each tp = (s, p, o) ∈ Gpi| p = pj do
if ruleType= PERMISSION then
add FILTER(πωj/tp) to Bgp

else if ruleType= PROHIBITION then
if o is a SPARQL variable then
add FILTER(πωj/tp∨!bound(o)) to Bgp

else
add FILTER(πωj/tp) to Bgp

end if
end if

end for
else
let tpj = (s, pj, ?αj) be a triple of pattern
add tpj to Gpi

if ruleType= PERMISSION then
add FILTER(πωj/tpj

) to Bgp
else if ruleType= PROHIBITION then
add FILTER(πωj/tpj

∨!bound(?αj)) to Bgp
end if

end if
end for

end for
end for

Now if there is no triple pattern with the property pj on Gpi, then we create a
new one tpij = (si, pj, ?αj) and we add it to Gpi. So tpij should not satisfy the
condition ωj or it should be unbound. In this case we add a new SPARQL filter with



34 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

Before transformation After transformation

SELECT ?name ? l o c a t i o n
WHERE
{

?p rd f : type pat : Pat ient .
?p f o a f : name ?name .
?p pat : l o c a t i o n ? l o c a t i o n .

}

SELECT ?name ? l o c a t i o n
WHERE
{

?p rd f : type pat : Pat ient .
?p f o a f : name ?name .
?p pat : l o c a t i o n ? l o c a t i o n .
?p pat : doctor ? doct .
Filter (? doct=Bob_id )

}

Table 3.2: Bob’s query transformation

the condition (ωj(tpij)∨!bound(?αj). The expression bound(variable) returns true if
’variable’ is bound to a value. It returns false otherwise [11].

Example 10 Bob is a doctor and he can see only the information of his
patients. The involved condition assigned (in the case of permission) to
doctor role could be expressed as:

(∀x = (s, p, o) ∈ E) ω(x) =

 True if (∃y ∈ E)|y = (s,pat:doctor,$Bob_id)
False Otherwise

where $Bob_id is the identifier of Bob. Bob tries to select names and lo-
cations of all patients. The table 3.2 shows Bob’s query before and after
transformation.

3.5.3 Case of complex condition ω

The query transformation could be done by using the SPARQL filter EXISTS and
NOT EXISTS or by using SPARQL optional portion. EXISTS and NOT EXISTS are
not supported by the standard SPARQL 1.0. They are defined in SPARQL1.1 [14].
However OPTIONAL operator is supported by the standard SPARQL 1.0.

In this section we presents the rewriting approach for both operators.

Let us take an example to illustrate the approach.

Example 11 Doctor Alice is allowed to see the data of her own patients.
The complex condition associated with this permission is as follows:



3.5. FQUERY: OUR QUERY REWRITING MODEL 35

EXISTS operator OPTIONAL operator

SELECT ?name
WHERE {

?p rd f : type O: Pat ient ;
O: name ?name ;
O: d i s e a s e ?d .

?d O: name ’X ’ .
FILTER EXISTS {

?p O: myDoctor ?md.
?md rd f : type O: Doctor ;

O: hasId ? docId .
FILTER (? docId = Alice_id )

}
}

SELECT ?name
WHERE {

?p rd f : type O: Pat ient ;
O: name ?n ;
O: d i s e a s e ?d .

?d O: name ’X ’ .
OPTIONAL {

?p O: myDoctor ?md.
?md rd f : type O: Doctor ;

O: hasId ? docId .
FILTER (? docId = Alice_id )

}
FILTER (bound(?p) and

bound(?md) and bound(? docId ) )
}

Table 3.3: Complex condition : FILTER EXISTS and OPTIONAL operator

{
2 ? s rd f : type O: Pat ient ;

O: myDoctor ?md.
4 ?md rd f : type O: Doctor ;

O: hasId ? docId . FILTER(? docId = Alice_id )
6 }

We assume that Doctor Alice is trying to select names of patients who have
disease ‘X’. Alice’s query before transformation is as follows:
SELECT ?name

2 WHERE {
?p rd f : type O: Pat ient ;

4 O: name ?name ;
O: d i s e a s e ?d .

6 ?d O: name ’X ’ .
}

The Table 3.3 shows the query transformation in both cases.

Let Q be the initial query,WQuery the where clause of Q and {?hi}1≤i≤n the variables
of WQuery used on the query head of Q.



36 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

EXISTS and NOT EXISTS filters

The use of EXISTS filter consists in selecting explicitly the data that satisfies the
condition expressed in the block of EXISTS FILTER. That block corresponds to
FILTER(ω). The transformed query Q′ is defined as follows:

Q’= SELECT {?hi}1≤i≤n

WHERE{
{WQuery. FILTER EXISTS(GP (ω))} }

Such that GP (ω) represents the group pattern associated with the complex condition
ω. In the case of prohibition, we use NOT EXISTS instead of the EXISTS operator.

OPTIONAL Operator

The second way to do the transformation is to use the optional portion OP . It is used
to check the satisfaction of the condition ω. It contains the condition ω and filters over
the variables used on the group pattern of ω.

OP = OPTIONAL{ GP (ω). F ILTER(∧i=m
i=1 bound(?ki))}

Such that {?ki}1≤i≤m are all variables used in GP (ω). If ω is satisfied then the variable
?ok is bound to value ‘true’ and vice-versa. At the end of the where clause we check if
the variable ?ok is bound to a value then the condition is satisfied. Since we are in the
permission case, the user u is allowed to see the selected data.

Q’= SELECT {?hi}1≤i≤n

WHERE{
WQuery.
OPTIONAL{ GP (ω)}
FILTER(∧i=m

i=1 bound(?ki))
}

In the prohibition case we used the filter FILTER(¬ ∧i=m
i=1 bound(?ki)).



3.5. FQUERY: OUR QUERY REWRITING MODEL 37

3.5.4 Composition of simple and involved conditions

In this section we study the rewriting algorithm in case of composition of simple and
involved conditions. The study is valid also for the composition of simple and complex
conditions.

Let Algo be a rewriting query algorithm which takes a query Q, a condition ω and
the type of security rule (permission, prohibition) as inputs and returns a new query
Q′. In the case of a permission rule, the execution result of the query Q′, denoted RQ′,
is composed of elements of I(ω), i.e. the execution result of Q′ satisfies the condition ω.
If we suppose that RQ is the execution result of Q, then RQ′ = RQ∩I(ω) (Figure 3.2-
A). In the case of a prohibition rule, the execution result of the query Q′ is composed
of elements of I(ω) = E\I(ω), i.e. RQ′ = RQ ∩ I(ω) = RQ\I(ω) (Figure 3.2-B).

E

RQ

I(ω)

RQ’

(A)

RQ’

E

RQ

I(ω) E\I(ω)

(B)

Figure 3.2: (A) Permission case. (B) Prohibition case

Composition in the case of permission

Let ω1 be a simple condition, ω2 be an involved condition, ω the condition ω1 ∧ ω2

and ω′ the condition ω1 ∨ ω2. Let Algo1 (section 3.5.1) and Algo2 (section 3.5.2)
be respectively the rewriting query algorithms of the simple conditions and involved
conditions. Let Q, Q1 and Q2 be SPARQL queries, RQ, RQ1 and RQ2 be respectively
the execution result of Q, Q1 and Q2 such that Q1 = Algo1(Q,ω1, permission) and
Q2 = Algo2(Q1, ω2, permission).
Logical AND: ω = ω1 ∧ ω2 (Figure 3.3-A)
We have RQ2 = RQ1 ∩ I(ω2) and RQ1 = RQ∩ I(ω1) then RQ2 = RQ∩ I(ω1)∩ I(ω2).
According to the result of theorem 2 we deduce that RQ2 = RQ ∩ I(ω1 ∧ ω2) =
RQ ∩ I(ω).



38 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

Thus we can use Algo1 and Algo2 to rewrite the query Q in order to satisfy the
security rule Permission(ω) = Permission(ω1 ∨ ω2). The rewriting query algorithm
corresponding to this case is defined as follows:

Algo(Q,ω1 ∧ ω2, permission) = Algo2(Algo1(Q,ω1, permission), ω2, permission)

Example 12 Bob is permitted to select salaries of the network de-
partment employees. This rule could be expressed as Permission(ω) =
Permission(ω1 ∨ ω2) where: ∀x = (s, p, o) ∈ E ω1(x) = (p =emp:salary)

ω2(x) =

 True if (∃y ∈ E)|y = (s,emp:dept, ’Network’)
False Otherwise

Logical OR: ω = ω1 ∨ ω2 (Figure 3.3-B)
Let Q

′
1 and Q

′
2 be SPARQL queries, RQ

′
1 and RQ

′
2 be respectively the ex-

ecution result of Q
′
1 and Q

′
2 such that Q

′
1 = Algo1(Q,ω1, permission) and

Q
′
2 = Algo2(Q,ω2, permission).

We have RQ
′
2 = RQ ∩ I(ω2) and RQ

′
1 = RQ ∩ I(ω1) then RQ

′
1 ∪ RQ

′
2 =

(RQ ∩ I(ω1)) ∪ (RQ ∩ I(ω2)) = RQ ∩ (RQ′
1 ∪RQ

′
2).

So RQ′
1 ∪RQ

′
2 = RQ ∩ I(ω1 ∨ ω2).

We deduce that the rewriting query Qfinal corresponding to Permission(ω′)
=Permission(ω1 ∨ ω2) is the union of the queries Q′

1 and Q
′
2. So we can write

Qfinal = Q
′
1 ∪Q

′
2 as well as

Algo(Q,ω1 ∨ ω2, permission) = Algo1(Q,ω1, permission)
⋃
Algo2(Q,ω2, permission)

Example 13 Bob is permitted to select the employees’ salaries. He is also
permitted to select all the information of the network department employees.
This rule could be expressed as Permission(ω) = Permission(ω1∨ω2) where:
∀x = (s, p, o) ∈ E, ω1(x) = (p =emp:salary)

ω2(x) =

 True if (∃y ∈ E)|y = (s,emp:dept, ’Network’)
False Otherwise

Composition in the case of prohibition

Let ω1 be a simple condition, ω2 be an involved condition. Let Algo1 and Algo2 be
respectively the rewriting query algorithms of the simple condition and the involved



3.6. CONCLUSION AND CONTRIBUTION 39

E

(A) (B)I(ω1) I(ω2)

RQ

E

I(ω1)
I(ω2)

RQ

E

I(ω1)
I(ω2)

RQ

I(ω1) I(ω2)

E

RQ

ω1Ùω2 ω1Úω2

ω1Ùω2 ω1Úω2

(D)(C)

Figure 3.3: (A) and (B) Permission case. (C) and (D) Prohibition case

condition. We use the same reasoning as in the previous section and by applying De
Morgan’s laws for sets, we obtain the following results:

Logical AND: ω = ω1 ∧ ω2 (Figure 3.3-C)

Algo(Q,ω1 ∧ ω2, prohibition) = Algo1(Q,ω1, prohibition)
⋃
Algo2(Q,ω2, prohibition)

Logical OR: ω = ω1 ∨ ω2 (Figure 3.3-D)

Algo(Q,ω1 ∨ ω2, prohibition) = Algo2(Algo1(Q,ω1, prohibition), ω2, prohibition)

3.6 Conclusion and Contribution

In this chapter, we have defined an approach to protect SPARQL select queries using
query transformation. It is a generic approach to specify and apply an access control
policy to protect RDF documents and/or resources viewed as RDF. An access control
policy is modelled as a set of filters. A filter may be associated with a simple condition
or an involved condition. Involved conditions provide means to protect relationships.
We consider two different types of filters: Positive filters corresponding to permission
and negative filters corresponding to prohibition.



40 CHAPTER 3. SPARQL SELECT QUERY REWRITING TO ENFORCE ...

In this chapter, we only consider the case of select queries. There are some recent
proposals to extend SPARQL to specify queries for updating RDF documents. The
next chapter (ch. 4) presents an extension that considers how to transform update
queries with respect to an access control policy.

Second, the access control policy is specified through a set of filters. This provides a
generic approach to represent an access control policy for RDF documents which does
not rely on a specific language. However and as suggested in section 3.2, a possible
extension would be to define a user friendly specification language to express such an
access control policy. For this purpose, the chapter 5 shows how to derive the filter
definition from the specification of an access control policy based on an existing access
control model such as the OrBAC model [8].



CHAPTER

4 Rewriting of
SPARQL/Update
Queries for Securing
Data access

4.1 Introduction

Several access control models for database management systems (DBMS) only consider
how to manage select queries and then assume that similar mechanism would apply
to update queries. However they do not take into account that updating data may
possibly disclose some other sensitive data whose access would be forbidden through
select queries. This is typically the case of current relational DBMS managed through
SQL which are wrongly specified and lead to inconsistency between select and update
queries. In this chapter, we show how to solve this problem in the case of SPARQL
queries. We present an approach based on rewriting SPARQL/Update queries. It
involves two steps. The first one satisfies the update constraints. The second one
handles consistency between select and update operators. Query rewriting is done
by adding positive and negative filters (corresponding respectively to permissions and
prohibitions) to the initial query.

In the literature, several access control models for database management systems
have been defined to implement a security mechanism that controls access to confi-
dential data. For instance, the view-based acces control model for relational database,
Stonebraker’s model [66] for Ingres database, query transformation model, etc. These
proposals assume that similar mechanism would apply to both select and update opera-
tors, which is not generally true. They do not enforce consistency between consultation
and modification of data.



42 CHAPTER 4. REWRITING OF SPARQL/UPDATE QUERIES FOR ...

name city salary
Said Rennes 45 000
Toutou Madrid 60 000
Aymane London 55 000
Alice Paris 90 000
Safa Paris 45 000

Table 4.1: result of select query on Employee table

For example in the case of a SPARQL query, let us assume that for two given
predicates p and q, we are allowed to select and modify the value of p, but we are
not allowed to select the value of q. If we update the value of p using a condition on
the predicate q, we can deduce the value of q (see the examples 2 and 3 in section
4.3.2). Here we use permission to update in order to disclose confidential information
which we are not allowed to see. Unfortunately, this problem is not taken into account
by several access control models and still exists in many implementations including
current relational DBMS compliant with SQL.

Our approach is to rewrite the user SPARQL update query by adding some filters
to that query. It involves two steps: (1) Satisfy the security constraints associated with
‘update’ and (2) handle the consistency between select and update operators.

This chapter is organized as follows. Section 4.2 presents our motivating example.
Section 4.3 formally defines our approach to manage SPARQL update queries. Finally,
section 4.4 concludes this chapter.

4.2 Motivating example

The model of view is an interesting access control model for relational databases. It
works pretty well for select operator, but when we move to update, there may be some
illegal disclosure of confidential data. Let us take an example to illustrate this problem.

We suppose that we have an ‘Employee’ table with fields ‘name’, ‘city’ and ‘salary’
and with the following data (see Table 4.1). We create a user named Bob. We suppose
then that Bob is not allowed to see the salary of employees. According to the view
model, we create a view with fields ‘name’ and ‘city’. Then, we give to Bob the
permission to ‘select’ on this view. Let Employee_view be that view which is defined
as follows:

Query: CREATE VIEW ‘Employee_view’ AS (select name, city from Employee)



4.2. MOTIVATING EXAMPLE 43

name city
Said Rennes
Toutou Madrid
Aymane London
Alice Paris
Safa Paris

Table 4.2: result of select query on Employee_view

name city
Said Brest
Toutou Madrid
Aymane London
Alice Paris
Safa Brest

Table 4.3: result of select query on Employee_view

We suppose now that Bob is allowed to select fields of ‘Employee_view’. So, he can
execute the following query:

Query: SELECT * FROM ‘Employee_view’

The result of that query is presented on the table 4.2. We note that Bob cannot see
the employees’ salary. Now let us assume that he is allowed to update data of the
‘Employee’ table. He updates, for example, the city of employees who earn 45 000
using the following SQL query:

Query: UPDATE Employee SET city="Brest" WHERE salary=45 000

Now, he takes a look at Employee_view in order to see if its content has been changed
or not. So, he executes the following query:

Query: SELECT * FROM ‘Employee_view’

As we can see if we compare with the content of the initial Employee_view (Table 4.3),
the city of employees Said and Safa is changed to “Brest”. So Bob deduces that their
salary is 45000, which he is not allowed to. Although Bob is not permitted to see the
salary of the employee table, he is able to learn, through an update command, that
there are two employees, Said and Safa, with a salary equal to 45000.



44 CHAPTER 4. REWRITING OF SPARQL/UPDATE QUERIES FOR ...

This kind of problem exists in all relational databases such as Oracle. It lies in
the SQL specification. It does not come from the security policy (Bob could have
permission to update the salaries without necessarily being allowed to consult them).
It comes from inadequate control on the update query. Let us show how to handle this
in the case of SPARQL queries.

4.3 Principle of our approach

Let ω be a condition of RDF triples and {pi}1≤i≤n a set of predicates of Epredicate. We
define our security rules as the permission or prohibition to select (or update) the value
of predicates {pi}1≤i≤n if the condition ω is satisfied.

Our approach involves two steps:

• (1) Satisfy the security constraints associated with ‘update’.

• (2) Handle the inconsistency between ‘select’ and ‘update’.

4.3.1 Update access control

In this case we similarly treat the ‘DELETE’ and ‘INSERT’ clause of the update query.

Let DQuery, IQuery andWQuery be respectively the DELETE, INSERT and WHERE
clause of a user’s update query. There are two cases, the case of prohibition and the
case of permission.

Prohibition case:

We assume that a user u is not allowed to update the value of predicates {pi}1≤i≤n if
the condition ω is satisfied. Since the security policy is closed then this user is allowed
to update the value of predicates that are not in {pi}1≤i≤n. Now, if this user tries to
update at least one predicate p of {pi}1≤i≤n, then we must check if the condition ω is
not satisfied (prohibition case). Which means adding the negative filter of ω toWQuery.

We deduce then the following expression in the case of prohibition:

[(∃p ∈ DQuery ∪ IQuery)|p ∈ {pi}1≤i≤n]→ [Filter(WQuery,ω)] (4.1)



4.3. PRINCIPLE OF OUR APPROACH 45

Where Filter(GP ,C) means adding the SPARQL filter of the RDF condition C to
the group of patterns GP .

Let Iu
Integ be the set of elements that the user u is permitted to update. For a

given predicate q we denote Sq a set of triple of E that has the predicate q. Let
Su

pred = ⋃n
i=1 Spi

.

The user u is not allowed to update the value of predicates {pi}1≤i≤n if the condition
ω is satisfied. This is equivalent to: Iu

Integ = Su
pred ∩ I(ω). According to the result of

Theorem 1 (section 3.3), we deduce that:

Iu
Integ = Su

pred ∪ I(ω)

Proof of integrity:
Let x be an element of E that has been updated by the user’s transformed query. There
are two cases: (i)x 6∈ Su

pred (ii) x ∈ Su
pred. In the case (i) we have x ∈ Su

pred ⊆ Iu
Integ.

So, x ∈ Iu
Integ. In the case (ii), we have x ∈ Su

pred. According to the expression 4.1
above, x satisfies the negation of the condition ω, which means that x ∈ I(ω) ⊆ Iu

Integ.
So, x ∈ Iu

Integ. In both cases, x ∈ Iu
Integ, which proves that the expression 4.1 above

preserves the integrity.

Permission case:

We assume that a user u is allowed to update the value of predicates {pi}1≤i≤n if the
condition ω is satisfied. So:

• (i) The user u is not allowed to update the value of predicates {pi}1≤i≤n if the
condition ω is satisfied.

• (ii) He is not allowed also to update the value of predicates that are not in
{pi}1≤i≤n. Which means that he is not allowed to update the value of predicates
Epredicate\{pi}1≤i≤n if the condition ΩT rue is satisfied.

According to the expression (4.1), the prohibition (i) is equivalent to:

[(∃p ∈ DQuery ∪ IQuery)|p ∈ {pi}1≤i≤n]→ [Filter(WQuery,ω)]

We have ω = ω. So,

[(∃p ∈ DQuery ∪ IQuery)|p ∈ {pi}1≤i≤n]→ [Filter(WQuery,ω)] (4.2)

The prohibition (ii) is equivalent to:

[(∃p ∈ DQuery ∪ IQuery)|p ∈ Epredicate\{pi}1≤i≤n]→ [Filter(WQuery,ΩT rue)]



46 CHAPTER 4. REWRITING OF SPARQL/UPDATE QUERIES FOR ...

RQ RQ

I
u

Conf I
u
Integ

(A) (B)

I
u

Integ

I
u
Conf I

u
Integ

(C)

RQ: Result of Query

Figure 4.1: Consistency between select and update operators

We have ΩT rue = False, so (ii) is equivalent to:

[(∃p ∈ DQuery ∪ IQuery)|p 6∈ {pi}1≤i≤n]→ [Filter(WQuery,False)] (4.3)

Adding false filter to WQuery means ignoring the execution of the query. So, we treat
the case (ii) first. If we need to add a false filter then we do not have to treat the case
(i), since the query is ignored. Otherwise, we treat the case (i).

4.3.2 Consistency between consultation and modification

This section treats the second step of our approach. It handles the consistency between
the ‘select’ and ‘update’ operators. This treatment is done only by analysing the
quantification portion of the update query.

Let u be a user and Iu
Conf (resp. Iu

Integ) be the set of elements that the user u is
permitted to select (resp. to update).

In general, in the case of the select operator, the result of the query must be a
subset of Iu

Conf (Figure 4.1 (A)) in order to preserve confidentiality. Similarly for the
update operator, the modified data must be a subset of Iu

Integ in order to preserve the
integrity (Figure 4.1 (B)). As shown in the motivating example, these two rules are not
sufficient to preserve confidentiality when the user has both authorizations to select



4.3. PRINCIPLE OF OUR APPROACH 47

and authorizations to update. In other words, the user can update an element x in
Iu

Conf ∩ Iu
Integ using reference to an element y of Iu

Conf = E\Iu
Conf in order to deduce

the value of y associated with x, which he is not allowed to see. There are two cases:
(1) Iu

Conf ∩ Iu
Integ = ∅, (2)Iu

Conf ∩ Iu
Integ 6= ∅. It is obvious that in the first case (1),

there is no such problem. However, in the current SQL implementation, we still have
another kind of problem of confidentiality. For exemple, in our motivating example, if
we suppose that the user Alice is allowed only to select names and cities of employees
and she is allowed to update only their salaries. This corresponds to the case (1). Alice
updates the salary of employees who earn exactly 45000 using the folowing SQL query:

SQL> UPDATE Employee SET salary=salary+100 WHERE salary=45 000;
2 rows updated

Although, Alice is not permitted to see the salary of employees, she has been able to
learn, through this update command, that there are two employees with a salary 45000.
This would correspond to a write down prohibited by the Bell-LaPadula model [76].
To solve it, we have just to delete the information message (number of rows that has
been updated).

Now let us assume that Iu
Conf ∩ Iu

Integ 6= ∅. Let x ∈ Iu
Conf ∩ Iu

Integ, we denote
IRef (x) a subset of elements of Iu

Conf that are in relation with x, i.e IRef (x) = {y ∈
Iu

Conf |∃R, a binary relation over E such that xRy}. If IRef (x) is not empty, then we
can deduce the value of each element of IRef (x). We simply update the value of x using
elements of IRef (x) in the where clause of our query. So, our problem is equivalent to
the following proposition:

[(∃x ∈ Iu
Conf ∩ Iu

Integ)|IRef (x) 6= ∅]→ [Interference(select, update)] (4.4)

Interference(select, update) means that there exists an interference between select
and update operators. To solve this problem, we must controlWQuery (the where clause
of the query) to avoid referencing a value that is not in Iu

Conf .

There are two cases:

Prohibition case

Let ω be a condition of RDF triples. We assume that a user u is not allowed to see
(select) values of predicates {pi}1≤i≤n where n ∈ N∗, if the condition ω is satisfied.

Let Su
pred be a set of all possible triples of E where predicates are elements of

{pi}1≤i≤n. Since we are in the case of prohibition, so, Iu
Conf = Su

pred ∩ I(ω). If the
WQuery of the update query uses at least one predicate of the set {pi}1≤i≤n, then the



48 CHAPTER 4. REWRITING OF SPARQL/UPDATE QUERIES FOR ...

condition ω should not be satisfied in order to enforce the security policy. In other
words we have to introduce the negative filter of ω in WQuery. This is equivalent to:

[(∃p ∈WQuery)|p ∈ {pi}1≤i≤n]→ Filter(WQuery,ω(xp)) (4.5)

where xp is the triple pattern of WQuery using the predicate p.

Proof of Confidentiality: We assume that the user u tries to update an element x
of Iu

Conf ∩Iu
Integ by referencing an element y ∈ E. It is obvious that if y ∈ Iu

Conf there is
no such problem. We assume that y 6∈ Iu

Conf i.e y ∈ Iu
Conf . Since Iu

Conf = Su
pred ∩ I(ω),

so, y ∈ I(ω) and y ∈ Su
pred.

Let us proceed by contradiction to proof that the update of x has not occurred.
We have y ∈ Su

pred, so according to the expression 4.5 above, the negative filter of ω
has been added to WQuery. If we assume that the user update takes place, then y

satisfies the negation of ω i.e y ∈ I(ω) = I(ω). This means that y 6∈ I(ω), so this is a
Contradiction. So, the update of x has not occurred.

Involved condition: Let P be the graph pattern of WQuery. Let ω be an involved
condition associated with {(qi, ωi)}1≤i≤m where {qi}1≤i≤m is a set of predicates and
{ωi}1≤i≤m is a set of simple conditions. In the case of an involved condition, negative
filter is equivalent to: (i) at least one simple condition of {ωi}1≤i≤m is not satisfied or
(ii) at least one predicate of {qi}1≤i≤m does not appear. That is WQuery corresponds to
the following transformed query:

WQuery = P1 UNION P2

where P1 and P2 are the following graph patterns:

P1 = (P AND (UNIONm
i=1(tpi FILTER ωi(tpi))))

P2 = (P OPT m
i=1(tpi) FILTER (∨m

i=0!bound(?obji)))

such that {tpi = (?emp, qi, ?obji)}1≤i≤m.
AND, UNION , OPT and FILTER are respectively the SPARQL binary operators
(.), UNION, OPTIONAL and FILTER. P1 guarantees that at least one simple condition
of {ωi}1≤i≤m is not satisfied. P2 represents the set of elements that does not have at
least one predicate of {qi}1≤i≤m.

In SPARQL 1.1 version [14], NOT EXIST and EXISTS are respectively two
filters using graph pattern in order to test for the absence or presence of a pat-
tern. In the case of prohibition for an involved condition, it comes to test
the non existence of triples pattern {tpi FILTER ωi(tpi)}1≤i≤m. In this case
WQuery corresponds, for example, to the following transformed query: WQuery =
P FILTER NOT EXIST (ANDm

i=1(tpi FILTER ωi(tpi)))



4.3. PRINCIPLE OF OUR APPROACH 49

Permission case

Let ω be a condition of RDF triples. We assume that a user is allowed to see (se-
lect) the value of predicates {pi}1≤i≤n where n ∈ N∗, if the condition ω is satisfied.
Since our security policy is closed, this permission could be expressed as the following
prohibitions:

• (a) The user is not allowed to see the value of predicates EP redicate\{pi}1≤i≤n

• (b) The user is not allowed to see the value of predicates {pi}1≤i≤n, if the condition
ω is satisfied.

Let us apply the expression 4.5 to the case (a) and then to the case (b). The case
(a) could be expressed as prohibition to see the value of predicates EP redicate\{pi}1≤i≤n

if the condition ΩT rue is satisfied. ΩT rue is a simple condition, so according to the pro-
hibition algorithm, if WQuery uses at least one predicate of the set EP redicate\{pi}1≤i≤n

then we add the corresponding negative filter of ΩT rue to WQuery, i.e.:

[(∃p ∈WQuery)|p ∈ EP redicate\{pi}1≤i≤n]→ [Filter(WQuery,ΩT rue(xp))]

where xp is the triple pattern of WQuery using the predicate p. This is equivalent to:

[(∃p ∈WQuery)|p 6∈ {pi}1≤i≤n]→ [Filter(WQuery,False)] (4.6)

Adding the False filter to WQuery, means ignoring the execution of the query. So, we
do not have to treat the case (b) since the query is ignored.

Now if all predicates ofWQuery belong to {pi}1≤i≤n. We treat the case (b). According
to the prohibition algorithm, (b) is equivalent to:

[(∀p ∈WQuery)|p ∈ {pi}1≤i≤n]→ [Filter(WQuery,ω(xp))]

The negative filter of ω is the positive filter of ω. So, the case (b) is equivalent to the
following proposition:

[(∀p ∈WQuery)|p ∈ {pi}1≤i≤n]→ [Filter(WQuery,ω(xp))] (4.7)

Example 14 (case of involved condition)

We assume that Bob is not allowed to see the name, age and salary of network
department employees having an age greater than 30. This prohibition could
be expressed as “Bob is not allowed to see values of predicates {emp:name,
emp:age, emp:salary} if the involved condition ω, defined below, is satisfied".



50 CHAPTER 4. REWRITING OF SPARQL/UPDATE QUERIES FOR ...

(∀x = (s, p, o) ∈ E)

ω(x) =


True if (∃(value1, value2) ∈ E2

Object)|ω1(x1) =True and ω1(x2) =True
where x1 = (s,emp:dept,value1) and x2 = (s,emp:age,value2)

False Otherwise

such that (∀y = (s′, p′, o′) ∈ E)

ω1(y) = ((p′=emp:dept) ∧ (o′="Network")) ∨ ((p′=emp:age) ∧ (o′ ≥ 30))

We assume also that Bob is allowed to update the city of all employees.
Bob tries to update the city of employees whose name is "Alice". So the
corresponding Bob’s update query will be as follows:
WITH <http :// swid . f r / employees>

2 DELETE { ?emp emp : c i t y ? c i t y }
INSERT { ?emp emp : c i t y ’ Rennes ’ }

4 WHERE {
?emp rd f : type emp : Employee ;

6 emp : name " A l i c e " .
}

We note that Bob uses the predicate name on WQuery. We know also that
this predicate is prohibited to be selected under the involved condition ω. We
assume that the employee Alice works in the network department and she is
34 years old. So the execution of this query allows Bob to deduce that there is
an employee named "Alice" on the network department and her age is greater
than 30.

According to the result above, the transformed query will be as follows:
1 WITH <http :// swid . f r / employees>

DELETE { ?emp emp : c i t y ? c i t y }
3 INSERT { ?emp emp : c i t y ’ Rennes ’ }

WHERE {
5 {

?emp rd f : type emp : Employee ;
7 emp : name " A l i c e " .

{
9 { ?emp emp : dept ? dept . FILTER(? dept != "Network " )}

UNION { ?emp emp : age ? age . FILTER(? age <30) }
11 }

} UNION {
13 ?emp rd f : type emp : Employee ;

emp : name " A l i c e " .
15 OPTIONAL{?emp emp : dept ? dept}

OPTIONAL{?emp emp : age ? age}
17 FILTER( !bound(? dept ) | | !bound(? age ) )

}
19 }

In the case of SPARQL 1.1, the transformed query will be as follows:



4.4. CONCLUSION AND CONTRIBUTION 51

1 WITH <http :// swid . f r / employees>
DELETE { ?emp emp : c i t y ? c i t y }

3 INSERT { ?emp emp : c i t y ’ Rennes ’ }
WHERE

5 { ?emp rd f : type emp : Employee ;
emp : name " A l i c e " .

7 FILTER NOT EXISTS {
?emp emp : dept ? dept . FILTER(? dept ="Network " )

9 ?emp emp : age ? age . FILTER(? age>=30)
}

11 }

i.e. the update will be done only on employees who are not in the network
department (or do not have the department property) or are less than 30
years old (or do not have the age property).

4.4 Conclusion and Contribution

In this chapter, we have defined an approach to protect SPARQL/Update queries using
query transformation. It involves two steps. The first one is to satisfy the update
constraints. The second one is to handle consistency between ‘select’ and ‘update’
operators by analyzing the WHERE clause of the update query. Query rewriting is
done by adding filters to the initial query: Positive filters corresponding to permission
and negative filters corresponding to prohibition. We also presented several proofs to
show the correctness of the rewriting approach for different cases.





CHAPTER

5 SPARQL Query
Rewriting Instrumented
by an Access Control
Model

5.1 Introduction

A possible way to enforce access control requirements when evaluating SPARQL queries
is based on rewriting the queries such that their evaluation fulfills the access control
policy, as illustrated in chapters 3 and 4. One may then define a new dedicated language
to express access control policies for SPARQL.

In this chapter, we suggest a different approach based on a generic access control
policy model in order to express the access control requirements. We present how to
instrument the rewriting algorithm using a set of security policy rules derived from the
OrBAC model [8].

In chapter 3, the policy constraints are presented as conditions of RDF triples. An
RDF condition is defined as an application ω : E −→ Boolean where E is the set
of all RDF triples of our RDF database. The condition ω associates each RDF triple
x = (s, p, o) of E with an element of the set Boolean = {True, False}.

Let us take an example:

Example 15 We assume that a user with the role manager is allowed to
read the information of its own employees. The RDF condition ω correspond-
ing to that constraint could be expressed using SPARQL syntax as follows
(question mark denotes variables):



54 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

1 Exists{
? e rd f : type O: Employee .

3 ? e O: hasManager ?m.
?m O: hasId ? reqId .

5 FILTER(? reqId=reques te r_id ) .
}

One way to express this security rule is as follows:
Rulesparql=Permission(manager,select,Employee,ω), which means that the
role manager is allowed to select data of the concept Employee if the RDF
condition ω is satisfied.

Every data model, like the relational model, has generally its own access control
model for expressing the security policy. For RDF views or databases, we can also
define a new model to express security policy as illustrated in the example above.
However, in the case of heterogeneous databases, it becomes difficult to manage these
different databases if they use different access control languages.

In this chapter we show how to define a SPARQL security policy in a generic
high level access control model (OrBAC [8]). Then, from this policy definition, we
extract the corresponding security constraints as an RDF condition ω by a simple
translation. Finally, the condition ω is used to rewrite the initial query using the
fQuery approach [74] presented in chapter 3.

This chapter is organized as follows. Section 5.2 presents the OrBAC model. Sec-
tion 5.3 presents the principle of our approach. Section 5.4 shows how we model RDF
condition in the OrBAC model. Then, section 5.5 presents how a rewriting query
algorithm is instrumented by OrBAC rules. Finally, section 5.6 concludes this chapter.

5.2 The OrBAC model

The Organization-Based Access Control model (OrBAC) [8] is a generic and expressive
access control model. It provides interesting concepts to express the security policy
and enables making distinction between an abstract policy specifying organizational
requirements and its implementation in a given information system. OrBAC is a model
built on top of Rule based access control (Rule-BAC) termed models. In this kind of
model, access control is defined as a set of rules Condition → Authorization where
Condition is a set of constraints over the subjects, actions and objects. The central
entity in OrBAC is the entity Organization. Intuitively, an organization can be seen as
any entity that is responsible for managing a given access control policy (e.g. hospitals



5.2. THE ORBAC MODEL 55

or companies are organizations). Therefore, instead of defining security rules that
directly apply to subject, action and object, the access control policy is defined at the
“organizational” level. For this purpose, subject, action and object are respectively
abstracted into role, activity and view. A view corresponds to a set of objects to
which the same security rules apply. An activity is similarly defined but for regrouping
actions. Finally, permissions and prohibitions only apply in specific contexts.

The OrBAC formalism is compatible with a stratified Datalog with negation pro-
gram [77]. Stratifying a Datalog program consists in ordering rules so that if a rule
contains a negative literal then the rule that defines this literal is computed first. A
stratified Datalog program is computable in polynomial time. To express rules and
facts, we shall actually use a prolog-like notation. Terms starting with a capital letter,
such as Subject, correspond to variables and terms starting with a lower case let-
ter, such as peter, correspond to constants. A fact, such as: Parent(peter, john).
says that peter is a parent of john, and a rule such as: Grand_parent(X,Z):-
Parent(X, Y ), Parent(Y, Z). says that X is a grand-parent of Z if there is a subject
Y such that X is a parent of Y and Y is a parent of Z.

5.2.1 Basic predicates

There are eight basic sets of entities: Org (a set of organizations), S (a set of subjects),
A (a set of actions), O (a set of objects), R (a set of roles), A (a set of activities), V (a
set of views) and C (a set of contexts). In the following we present the basic built-in
predicates:

- Empower is a predicate over domains Org x S x R. If org is an organization,
s is a subject and r is a role, then Empower(org,s,r) means that org empowers
subject s in role r.

- Use is a predicate over domains Org x O x V . If org is an organization, o is an
object and v is a view, then Use(org,o,v) means that org uses o in view v.

- Consider is a predicate over domains Org x A x A. If org is an organization, α
is an action and a is an activity, then Consider(org,α,a) means that org considers
that action α implements the activity a.

- Hold is a predicate over domains Org x S x A x O x C. If org is an organization, s
is a subject, α is an action, o is an object and c is a context, then Hold(org,s,α,o,c)
means that within organization org, context c holds between subject s, action α
and object o.



56 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

- Permission and Prohibition are predicates over domains Org x Rs x Aa x Vo

x C, where Rs=R∪S, Aa= A∪A and Vo=V ∪O. If org is an organization, g is a
role or a subject, t is a view or an object, p is an activity or an action and c is a
context, then Permission(org,g,p,t,c) (resp. Prohibition(org, g,p,t,c)) means that
in organization org, grantee g is granted permission (resp. prohibition) to perform
privilege p on target t in context c. These predicates enable a given organization
to specify permissions and prohibitions between roles, activities and views in a
given context.

- Is_permitted and Is_prohibited are predicates over domains SxAxO. These
predicates enable to specify permissions and prohibitions at the concrete level,
which are based on subjects, actions and objects. A concrete permission (prohi-
bition) is derived from an abstract permission (prohibition) when the associated
context holds as illustrated in the following rule RuleC .

RuleC

Is_permitted(Sub,Act, Obj)← Empower(Org, Sub,R)
∧ Consider(Org,Act, A)
∧ Use(Org,Obj, V )
∧ Permission(Org,R,A, V, C)
∧ Hold(Org, Sub, Act, Obj, C)

5.2.2 Role, activity and view definition

Instead of enumerating facts corresponding to instances of predicates Empower,
Consider and Use, it is also possible to specify role, activity and view definitions
which correspond to logical conditions that, when satisfied, are used to automatically
manage assignment of subject to role, action to activity and object to view, respectively.

For instance, a role definition corresponds to a logical rule that has the Empower
predicate in the conclusion and respects the Datalog restrictions as follows:

Empower(BS, s,Gold_customer)← Empower(BS, s, Customer)
∧ Membership(BS, s, d)
∧ d >= 10.

where Membership(BS, s, d) is an application dependent predicate meaning that sub-
ject s has been a customer of bookshop BS for d years.



5.2. THE ORBAC MODEL 57

This rule means that in a bookshop BS a subject s is empowered in role
Gold_customer, if this subject is empowered in role Customer and if he or she has
been a customer for more than 10 years.

Activity and view definitions are similarly used to automatically manage assignment
of action to activity and object to view. We assume that activity and view definitions
also respect the Datalog restrictions.

5.2.3 Context definition

Contexts are used to specify conditions, for example working hours, during vacation
or urgency. Conditions that must be satisfied to derive that a context is active are
modelled by a logical rule called context definition. More details and discussion about
contexts are given in [78]. Contexts are very useful to specify fine grained access control
requirements. For instance, let us consider the following context that simply says that
a subject executes an action on an object in context during vacation if this subject is
in vacation:

Hold(org, Subj, Act, Obj, during_vacation)←In_vacation(Subj).

Five kinds of contexts have been defined [78]:

- the Temporal context that depends on the time at which the subject is requesting
for an access to the system,

- the Spatial context that depends on the subject location,

- the User-declared context that depends on the subject objective (or purpose),

- the Prerequisite context that depends on characteristics that join the subject, the
action and the object.

- the Provisional context that depends on previous actions the subject has per-
formed in the system.

We can also combine these elementary contexts to define new composed contexts
by using conjunction, disjunction and negation operators: &, ⊕ and .̄ This means
that if c1 and c2 are two contexts, then c1 & c2 is a conjunctive context, c1 ⊕ c2 is a
disjunctive context and c̄ is a negative context. These composed contexts are defined
by the following rules:



58 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

Hold(org, s, α, o, c1&c2)← Hold(org, s, α, o, c1) ∧Hold(org, s, α, o, c2).

Hold(org, s, α, o, c1 ⊕ c2)← Hold(org, s, α, o, c1) ∨Hold(org, s, α, o, c2).

Hold(org, s, α, o, c̄)← ¬Hold(org, s, α, o, c).

There is also a context called nominal that is always active for any subject, action
and object.

Contexts are very useful and provide high flexibility to the OrBAC model. Indeed,
it is possible to specify complex conditions, to manage the security policy, that are not
supported by models based on RBAC. For instance, it is possible to specify the notion
of emergency which is very important in the medical environments. More details and
discussion about contexts are given in [78].

5.2.4 Hierarchy and inheritance

In the OrBAC model it is suggested to define hierarchies over roles as suggested in the
RBAC model [57] but also activities and views, and to associate permission inheritance
with these different hierarchies. This is modelled as follows:

- Sub_role, is a partial order relation over domains OrgxRxR. If Org is an organiza-
tion, R1 and R2 are roles, then Sub_role(Org,R1, R2) means that, in organization
Org, role R1 is a sub-role (also called senior role) of role R2. Permissions and pro-
hibitions are inherited through the role hierarchy. For instance, inheritance of
permissions is modelled by the following rule:

RuleSubR

Permission(Org,R1, A, V, C)← Permission(Org,R2, A, V, C)
∧ Sub_role(Org,R1, R2).

Similarly, there is a rule that derives prohibitions through the role hierarchy.

- Similar predicates Sub_view(Org, V1, V2) and Sub_activity(Org,A1, A2) are in-
troduced to respectively specify hierarchies over views and activities. Permissions
and prohibitions are also inherited through these hierarchies. For instance, per-
missions are inherited through the view and the activity hierarchy using RuleSubV

and RuleSubA
, that are similar to RuleSubR

where predicate Sub_role is replaced
by Sub_view and Sub_activity, respectively (for further details see [79]).

- Sub_context, is a relation over domains OrgxCxC. If Org is an organization, C1

and C2 are contexts, then Sub_context(Org, C1, C2) means that in organization



5.3. PRINCIPLE OF THE APPROACH 59

Org, C1 is a sub-context of C2. This means that C1 always holds between a
subject, an action and an object when C2 holds for the same subject, action and
object. Permissions are inherited through the context hierarchy as follows:

RuleSubC

Permission(Org,R,A, V, C2)← Permission(Org,R,A, V, C1)
∧ Sub_context(Org, C1, C2).

Similarly, there is a rule that derives prohibitions through the context hierarchy.

- Sub_organization, is a relation over domains OrgxOrg. If Org1 and Org2 are
two organizations then Sub_organization(Org1, Org2) means that Org1 is a sub-
organization of Org2. More details about organization hierarchies are given in [80].

5.3 Principle of the approach

One way to express the security rule corresponding to the example 15 in the OrBAC
model is as follows:

RuleAbst
SP ARQL

Permission(org,Manager,Read,EmployeeV iew,Ctxω).

Such that org is an organization, Manager is a role, the activity Read is mapped to
the SPARQL action Select, the view EmployeeView is mapped to the RDF concept
Employee. The RDF condition ω is expressed in the form of a context definition in
the context Ctxω as follows:

∀s, ∀α, ∀o Hold(org, s, α, o, Ctxω)← Employee(o, e) ∧ IsManagerOf(s, e)

where Employee(o, e) and IsManagerOf(s, e) are application dependent predicates.
Employee(o, e) means that o is an information of the employee e. IsManagerOf(s, e)
means that s is a manager of the employee e.

The principle of our approach is to generate RDF conditions from OrBAC rules.
Then they will be used by the fQuery algorithm [74] to rewrite the user query. Let us
take an example to illustrate our approach.

Example 16 Let us consider the OrBAC rule RuleAbst
SP ARQL. We

assume that, in the organization org, Bob has the role Manager i.e
Empower(org, Bob,Manager). The action Select implements the activity



60 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

Read i.e. Consider(org, Select, Read). The concept Employee corresponds
to the OrBAC view EmployeeView.

Let us now assume that Bob is trying to select the name and salary of em-
ployees. He issues the following SPARQL query:
SELECT ?name ? s a l a r y

2 WHERE{
? e a Employee .

4 ? e name ?name .
? e s a l a r y ? s a l a r y .

6 }

According to the query below, the user Bob is trying to select some information
(name and salary) of the concept Employee. So, we get context definitions of
all OrBAC contexts that are associated with permissions defined for the user
Bob and the action Select on the view EmployeeV iew i.e. context definition
of a context C that satisfies the following condition:

Permission(org, Role, Activity, EmployeeV iew,C)
∧ Empower(org, Bob,Role) ∧ Consider(org, Select, Activity)

According to the OrBAC rule RuleAbst
SP ARQL we deduce that C = Ctxω, Role =

Manager and Activity = Read. We get the context definition of Ctxω. Then
we translate it to an RDF condition as expressed in the example 15. So we
obtain the following SPARQL security rule:

RuleC
SP ARQL=Permission(Bob, Select, Employee, ω)

Finally we apply the fQuery algorithm using the condition ω of RuleC
SP ARQL.

The rewritten query is as follows:
SELECT ?name ? s a l a r y

2 WHERE{
? e a Employee .

4 ? e name ?name .
? e s a l a r y ? s a l a r y .

6 FILTER Exists{
? e hasManager ?m.

8 ?m hasId bob_id .
}

10 }

Then, as explained in chapter 3, the evaluation of this rewritten query will only provide
authorized answers with respect to the access control policy (rule RuleAbst

SP ARQL). This
approach can be adapted to handle update queries expressed in SPARQL/update as
explained in chapter 4.



5.4. MODELLING RDF CONDITION WITHIN ORBAC 61

5.4 Modelling RDF Condition within OrBAC

In this section we present how to model RDF condition (condition of RDF triples)
using the OrBAC model. RDF conditions could be presented as context, as view or as
both context and view.

5.4.1 RDF condition as context

Contexts are used to specify conditions, for example working hours, urgency... Condi-
tions that must be satisfied to derive that context is active, are modelled by a logical
rule called context definition. Contexts are very useful to deal with our requirements,
since they allow to specify RDF conditions without adding new components.

Simple condition

A simple condition ωsimple is expressed over term of an RDF triple tp = (x, y, z) where
x is a subject, y is a predicate and z is an object. Let us take an example to illustrate
the approach.

Example 17 We assume that a secretary is allowed to see salary of employ-
ees if its value is less than 45K, and is allowed to see name of all employees.
This condition could be expressed as follows:

∀tp = (x, y, z) ωsimple(tp) = (y = name) ∨ ((y = salary) ∧ (z < 45000))

The OrBAC rule corresponding to this permission is expressed as follows:

Permission(org, Secretary, Read, V iewEmployee, Cωsimple
)

such that:

Hold(org, s, α, o, Cωsimple
)← Is_name(o,N)

∨ (Is_salary(o, Z) ∧ Z < 45000).

where Is_salary (resp. Is_name) is an application dependent predicate
meaning that object o is a salary (resp. a name) with the value Z (resp. N).



62 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

Complex condition

A complex condition could be also represented as a logical rule corresponding to a
context definition.

Example 18 We assume that a secretary is allowed to see the information
of employees who are in the network department and are greater than 25
years old. The complex condition corresponding to that permission is as
follow: (∀tp = (x, y, z) ∈ E)

ωcomplex(tp) =


True if (∃(a, b) ∈ E2)|(a = (x, dept, D)) ∧ (D =′ Network′)

∧(b = (x, age, A)) ∧ (A ≥ 25)
False Otherwise

The OrBAC rule corresponding to this permission is expressed as follows:

Permission(org, Secretary, Read, V iewEmployee, Cωcomplex
)

such that:

Hold(org, s, α, o, Cωcomplex
)← Employee_infos(o, E)

∧ Has_dept(E,D) ∧ (D =′ Network′)
∧ Has_age(E,A) ∧ (A ≥ 25).

where Employee_infos, Has_dept and Has_age are application dependent
predicates. Employee_infos(o, E) means that o is an information of the em-
ployee E. Has_dept(E,D) means that the employee E is in the department
D. Has_age(E,A) means that the employee E has the age A.

Composition of RDF conditions

Let ω1 and ω2 be two RDF conditions, Cω1 and Cω2 their corresponding representation
as context respectively. The composition of the two RDF conditions ω1 and ω2 is
expressed as a composition of their corresponding context Cω1 and Cω2 . i.e.

Cω1∧ω2 = Cω1&Cω2

Cω1∨ω2 = Cω1 ⊕ Cω2

Example 19 Let us take the conjonction of the two conditions ωsimple of
the example 17 and ωcomplex of the example 18. We assume that a secretary
is allowed to see the salary if it is less than 45K and the name, of employees



5.4. MODELLING RDF CONDITION WITHIN ORBAC 63

who are in the network department and are greater than 25 years old. The
RDF condition ω corresponding to that permission is as follow:

ω = ωsimple ∧ ωcomplex

ω is then expressed by the context Cω = Cωsimple
&Cωcomplex

. The context
definition of Cω is defined as follow:

Hold(org, s, α, o, Cω)←− [Is_name(o,N) ∨ (Is_salary(o, Z) ∧ Z < 45000)]
∧ Employee_infos(o, E)
∧ Has_dept(E,D) ∧ (D =′ Network′)
∧ Has_age(E,A) ∧ (A ≥ 25).

The OrBAC rule corresponding to this permission is expressed as follows:

Permission(org, Secretary, Read, V iewEmployee, Cω)

5.4.2 RDF condition as view

In this section we present how to model an RDF condition as an OrBAC view.

The OrBAC model allows us to define constraints that manage the assignment of
an object to a view. These constraints are expressed as logical conditions using a view
definition.

Simple condition

Simple RDF conditions depends only on variables of an RDF triple pattern.

Let O be an ontology. We associate each concept C of the ontology O with an
OrBAC view VC. Each property P of the concept C is also associated with an Or-
BAC view VP such that VP is a sub view of VC (sub_view(VP , VC)). For instance,
figure 5.1 presents an example of a concept and its properties extracted from ontology
of employees, and figure 5.2 shows their corresponding OrBAC views.

Let ω be a simple condition. We decompose ω to a disjunction of simple conditions
{ωi}1≤i≤n such that each ωi handles only one property pi of the ontology O and

∀i, j ∈ [1, n] i 6= j ⇒ pi 6= pj.

The sentence ωi handles only one property pi of the ontology O means that :

∀j ∈ [1, n],∀tpj = (x, pj, z) ∈ E i 6= j ⇒ ωi(tpj) = False.



64 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

O:Employee

O:nameO:salary

rdfs:Literalrdfs:Literal

O:Employee  rdf:type     owl:Class.

O:salary     rdf:type         owl:DatatypeProperty;

                  rdfs:domain  O:Employee;

                  rdfs:range     xsd:double.

O:name     rdf:type         owl:DatatypeProperty;

                  rdfs:domain  O:Employee;

                  rdfs:range     xsd:string.

Figure 5.1: Example from the employee ontology

ViewEmployee

ViewSalaryViewName 

Figure 5.2: Example of a generated views from the employee ontology

For each condition ωi we create its corresponding OrBAC view Vωi
as follow:

Vωi
:

 Vωi
= Vpi

iff ∀tp = (x, y, z) ωi(tp) = (y = pi)
Sub_view(org, Vωi

, Vpi
) Otherwise

Such that the view definition of Vωi
is a logical rule that corresponds to ωi.

We define a new predicate denoted Sub_or_same_view defined as follow:

Sub_or_same_view(org, V1, V2)←− (V1 = V2) ∨ Sub_view(org, V1, V2)

So, ∀i ∈ [1, n] we have Sub_or_same_view(org, Vωi
, Vpi

).

Let us take an example.

Example 20 The RDF condition ωsimple presented in the example 17 could
be expressed as a disjunction of two RDF conditions ωsimple = ωname ∨ωsalary

such that:

∀tp = (x, y, z) ωname(tp) = (y = name)

∀tp = (x, y, z) ωsalary(tp) = (y = salary) ∧ (z < 45000)



5.4. MODELLING RDF CONDITION WITHIN ORBAC 65

Let Vωname and Vωsalary
be respectively OrBAC views corresponding to RDF

conditions ωname and ωsalary. View definitions of Vωname and Vωsalary
are defined

as follows:

Use(org, o, Vωname)← Is_name(o,N)

Use(org, o, Vωsalary
)← Is_salary(o, Z) ∧ (Z < 45000)

According to the view definitions above, it is obvious that Vωname corresponds
to V iewName (i.e. V iewName = Vωname) and Vωsalary

is a sub view of
V iewSalary. Figure 5.3 shows the relation between Vωname , Vωsalary

and gen-
erated views.

ViewEmployee

ViewSalaryViewName=Vωname 

Vωsalary

Figure 5.3: Relation between Vωname , Vωsalary
and generated views

Thus, if we decide to specify the OrBAC rules using view definition, then we
shall obtain the two following rules:

Rulename : Permission(org, Secretary, Read, V iewName,Nominal)

Rulesalary : Permission(org, Secretary, Read, Vωsalary
, Nominal)

Complex condition

In the case of complex conditions ω, we create a new OrBAC view where the view
definition is the logical rule corresponding to ω. Let us take an example to illustrate
this case.

Example 21 We consider the complex condition ωcomplex presented in the
example 18. Let Vωcomplex

be its corresponding OrBAC view. View definition
of Vωcomplex

is defined as follow:



66 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

Use(org, o, Vωcomplex
)← Employee_infos(o, E)

∧ Has_dept(E,D) ∧ (D =′ Network′)
∧ Has_age(E,A) ∧ (A ≥ 25).

Figure 5.4 shows the relation between Vωcomplex
and generated views. The

OrBAC rule corresponding to ωcomplex is as follows:

Rulecomplex : Permission(org, Secretary, Read, Vωcomplex
, Nominal)

such that Nominal is the context that is always true.

ViewEmployee

Vωcomplex

Figure 5.4: Relation between Vωcomplex
and generated views

Complex condition as view has some limitation. We can only represent a complex
condition that depends only on the object o. For instance, the condition represented
by the context Ctxω on section 5.3 could not be expressed as a view because it depends
on the subject s witch is not part of the view definition.

5.4.3 RDF condition as view and context

In section 5.4.1 we present how to model RDF conditions as context. In section 5.4.2
we present how to model simple condition as view. We explain also that some complex
conditions could not be represented as views.

In the rest of this chapter we assume that a complex condition is only expressed
as context. However, simple condition could be expressed as context and/or as view.
For instance, if we consider the RDF condition ω = ωsimple ∧ ωcomplex presented in the
example 19. ω could be expressed with the two following OrBAC rules:

Rule1 : Permission(org, Secretary, Read, V iewName,Cωcomplex
)

Rule2 : Permission(org, Secretary, Read, Vωsalary
, Cωcomplex

)



5.5. REWRITING QUERY INSTRUMENTED BY ORBAC RULES 67

In that case we are modeling a complex condition as a context and simple condition
as a view.

5.5 Rewriting Query Instrumented by OrBAC
rules

In this section we present how to instrument a rewriting algoritm (fQuery) using
security rules based on the OrBAC model [81]. In our case we only have two actions
‘read’ and ‘write’. The read action corresponds to SELECT query and the write action
corresponds to UPDATE query.

For a given SPARQL query, the subject s is the requestor. The action α corresponds
to the query type. For instance, action ‘read’ for SELECT query and action ‘write’ for
UPDATE query. Views can be retrieved by analyzing the clause WHERE of the query.
It corresponds to the concepts and/or properties of a given concept that are queried.
Each property pi of the where clause, corresponds to the view Vωpi

.

We define a new predicate When_permitted which allows us to get view definitions
and context definitions corresponding to a given subject s, action α and view V .

When_permitted is a predicate over domains OrgxSxAxV xDefxDef defined as
follows:

When_permitted(org, s, α, V,DCtx,DV iew)← Empower(org, s, R)
∧ Consider(org, α,A)
∧ Sub_or_same_view(org, V1, V )
∧ Permission(org, R,A, V1, C)
∧ DCtx

∧ DV iew

such that DCtx is the context definition of a given context C. DV iew is the view
definition of the given view V1. The RDF condition will be the conjonction of context
definition of C and view definition of V1 i.e. ω = DCtx ∧DV iew.

For a given view V , When_permitted allows us to get context definitions and view
definitions of corresponding permission defined on the view V or sub view of V . For
instance, if we consider OrBAC rules Rule1 and Rule2 presented in section 5.4.3, we
deduce that:



68 CHAPTER 5. SPARQL QUERY REWRITING INSTRUMENTED BY ...

• for the property name of the employee ontology i.e. V = Vname = V iewName:
When_permitted(org, s, α, V iewName,DCtx,DV iew) unifies DCtx to context
definition of Cωcomplex

and DV iew to view definition of V iewName.

• for the property salary of the employee ontology i.e. V = Vsalary = V iewSalary:
When_permitted(org, s, α, V iewSalary,DCtx,DV iew) unifies DCtx to context
definition of Cωcomplex

and DV iew to view definition of Vωsalary
.

Let C be a concept of the ontology O and {pi}1≤i≤n be a set of properties of C. We
have

∀i ∈ [1, n] Sub_or_same_view(org, Vpi
, VC)

So, we can get constraints defined for all properties {pi}1≤i≤n of a given concept C by
using When_permitted with the view V = VC corresponding to C.

For instance, for the Employee concept and based on the OrBAC rules Rule1 and
Rule2, When_permitted(org, s, α, V iewEmployee,DCtx,DV iew) unifies DCtx to
context definition of Cωcomplex

and DV iew to view definitions {V iewName, Vωsalary
}.

Afterwards, we parse the final logical rules in order to generate the corresponding
RDF condition. Then that condition and the initial query are used as inputs of the
query rewriting algorithm fQuery.

5.6 Conclusion

In this chapter, we present an approach that instruments a rewriting query algorithm
using the access control model OrBAC. The constraints used by the algorithm of query
modification are expressed as OrBAC contexts using logical rules. Simple condition
could be also represented as view. This approach remains valid for all rewriting query
algorithm which are based on constraints that could be modeled in the form of logical
rules. An advantage of our approach is that the policy is stored independently from
a specific data model unlike [66, 69]. For example, in the case of an heterogeneous
database we only have to express our security policy in a single security model like Or-
BAC or RBAC [57], which facilitates security policy management. Another advantage
is that the access control policy is not expressed only for rewriting query algorithm.
It is syntactically independent from the algorithm. The process of rewriting query is
responsible for translating policy constraints to the necessary format (e.g. to SPARQL
filters). Which means that the same access control policy could be used by other
services.



CHAPTER

6 Privacy policy
preferences enforced by
SPARQL Query
Rewriting

6.1 Introduction

Privacy is the right of individuals to determine for themselves when, how and to what
extent information about them is communicated to others1. The data subject (data
owner) is the one who specifies the privacy preferences, i.e. it decides how its data
should be used (purposes), to whom it may be disclosed (recipients) and under which
accuracy (anonymization, obfuscation, etc.).

Privacy principles express the conditions under which a requestor can access private
information. We explore existing privacy directives and laws [82, 83, 84, 85, 86, 87]
to derive privacy principles, such as consent. [9] specifies the most relevant privacy
requirements which are compliant with the current legislations in the field of privacy
protection [82, 83, 84, 85, 86, 87]. These requirements are the consent, accuracy,
provisional obligations and purposes. The consent is the user agreement for accessing
and/or processing his/her data. It is the requirement before delivering the personal
data to third parties. The accuracy is the level of anonymity and/or the level of the
accuracy of the data. The provisional obligations, refer to the actions to be taken by
the requestors after the access (usage control). The purpose is the goal that motivates
the access request.

In this chapter we present an approach that enforces the privacy policy preferences
by query transformation. We then present how to instrument this rewriting query

1Alan Westin, Professor Emeritus of Public Law and Government, Columbia University



70 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

algorithm using a privacy-aware model like PrivOrBAC (see chapter 7 for more details).
We take into account various dimensions of privacy preferences through the concepts
of consent, accuracy, purpose and recipient.

The goal of our approach is to enforce the privacy requirements by SPARQL query
rewriting. That rewriting algorithm is instrumented by a privacy-aware model. With-
out any loss of generality, we propose to use the privacy-aware OrBAC model PrivOr-
BAC [9] to express privacy policies.

In the literature there are two categories of approaches that handle the privacy
dimension. The first one aims to define a model or language to express privacy re-
quirements. For instance, models such as P-RBAC [88], Purpose-BAC [89] and Pu-
RBAC [90] define new languages to express access contexts, and they focus on purpose
entity and on other privacy requirements [83]. PrivOrBAC [9] extends the OrBAC
model [8]. It reuses most of existing mechanisms implemented in OrBAC to express
privacy requirements.

The second category aims to apply security requirements on data and/or using their
own new security model for a specific kind of database, for instance, LeFevre et al. [69]
and Huey [67]. [69] presents an approach that enforces limited disclosure expressed by
privacy policy in the case of Hippocratic databases. They store privacy requirements in
relational tables in the same database where the data to be protected is stored. Then
they enforce those requirements using a query rewriting approach. [67] is based on
the Oracle Virtual Private Database (VPD) and supports fine-grained access control
(FGAC) through policy functions. A function is associated with the table (or view)
that needs protection. When it is invoked, it returns various pieces of SQL, called
predicates, depending on the system context (e.g current time, current user, etc.) to
enforce FGAC. Policy functions are expressed in PL/SQL. Their approach is based on
query modification. When a query is issued, it is dynamically modified by appending
predicates, returned by the policy function, to the where clause of the query.

Regarding the enforcement of privacy requirements, our approach belongs to the
second category. But, in our case, requirements specification is based on an existing
privacy-aware model independently from the data. Thus, we avoid empiricity, manage
conflicts and can move to another privacy model when needed. We choose Priv-OrBAC
as it takes into account most of the privacy recommendations specified by well known
standards [83, 84, 85, 86].

Our contribution aims to enforce privacy policy preferences with the following fea-
tures:



6.2. APPROACH PRINCIPLE 71

• Enforcing privacy policy does not require any modification to existing databases
viewed as RDF graphs.

• Use of an existing privacy-aware model to store and manage privacy policy pref-
erences.

• The following privacy requirements are taken into account: consent, purpose, re-
cipient and accuracy.

• In the case of distributed systems, we only have to manage our privacy policy
preferences in a given system as SPARQL service (endpoint).

In our approach, the answer to the rewritten query may differ from the result of
the user’s initial query. In that case and as suggested in [75], we can check the query
validity of the rewritten query with respect to the initial query and notify the user
when the answer to the query is not complete.

The rest of this chapter is organized as follows. Section 6.2 presents an overview of
our approach. Section 6.3 presents an example of privacy preferences ontology used to
illustrate our approach. Section 6.4 introduces some criteria that should be satisfied by
our rewriting algorithm. Section 6.5 presents the principle of our rewriting algorithm.
Finally, section 6.6 concludes this chapter.

6.2 Approach principle

A SPARQL query consists of triple patterns, conjunctions, disjunctions, and optional
patterns. SPARQL allows users to write globally unambiguous queries. For example,
the following query returns the name of all patients and their drug name.
PREFIX dt :<http :// ho sp i t a l . f r / pa t i en t s />

2 SELECT ?name ?drugName
WHERE {

4 ?p rd f : type dt : Pat ient .
?p dt : name ?name .

6 ?p dt : takes ?drug .
?drug dt : drugName ?drugName .

8 }

Basically, the SPARQL syntax looks like SQL, but the advantage of SPARQL is that it
enables queries spanning multiple disparate (local or remote) data sources containing
heterogeneous semi-structured data.

The principle of our approach is to rewrite the initial SPARQL query in order
to protect personal data from unauthorized access. The privacy policy preferences is



72 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

expressed and stored using the PrivOrBAC model. We take into account the concepts
of consent, accuracy, purpose and recipient.

Figure 6.1 shows an overview of the approach. The SPARQL Rewriting Engine is
the component that implements the rewriting algorithm. It takes as input (i) the initial
SPARQL query, (ii) the preferences ontology OWLprivacy and (iii) a table mappingM.
(ii) and (iii) are explained in detail in section 6.3. SPARQL Rewriting Engine adds
security constraints (SPARQL conditions, filters and services) to the initial query such
that the returned result is compliant with the privacy policy defined by each data-
owner. The output is the rewritten SPARQL query denoted as Qrw.

Figure 6.1: Our approach principle

Let us first show a privacy unaware execution of a SPARQL query. We assume
that doctor Alice tries to get the name of all patients, and patient Charlie does not
want to disclose her information, including her name, to doctor Alice. Alice issues the
following query Qi:
PREFIX dt :<http :// ho sp i t a l . f r / pa t i en t s />

2 SELECT ?name
WHERE {

4 ?p rd f : type dt : Pat ient .
?p dt : name ?name .

6 }

The initial query Qi is executed by the SPARQL engine which evaluates it (with no
modifications and no filters) and gets the corresponding result from the queried RDF
data sources. Of course the returned result contains Charlie’s name.



6.3. PRIVACY-AWARE ONTOLOGY 73

PrivOrBAC proposes a set of web services used to access the privacy policy prefer-
ences. Using these web services we build our PrivOrBAC SPARQL service by imple-
menting the approach proposed in [91]. In [91] the received SPARQL query is decom-
posed into a set of web services that covers the initial query requirements. PrivOrBAC
SPARQL service is a server that receives a SPARQL query expressed in OWLprivacy.
It decomposes this SPARQL query into a set of PrivOrBAC web services that will be
invoked later. The collected result is correctly merged, filtered and formated, then
transfered to the requestor (see chapter 7). In the rest of this chapter we assume that
the privacy policy is accessed through SPARQL service based on preferences ontology
OWLprivacy presented in section 6.3. That is, the privacy policy is viewed as RDF
data.

In the case of privacy-aware model that does not provide web services, there exist
other approaches that allow building SPARQL services. For instance [92] and [93]
could be used when policies are stored in XML format.

Figure 6.2 illustrates the execution of the rewritten query Qrw. It can be summa-
rized as follows:

• SPARQL rewriting engine rewrites the initial query by inserting (i) a call to the
service of policy preferences and (ii) inserting corresponding security constraints.

• SPARQL engine executes the rewritten query Qrw. So, that execution will get
the data from ’RDF databases’ and the corresponding policy preferences from the
service of preferences that is injected by the rewriting engine. Then it applies
corresponding security filters and conditions to the query.

6.3 Privacy-aware Ontology

In this section we define an ontology of privacy preferences. This ontology allows
us to query the privacy policy preferences of PrivOrBAC via SPARQL as explained
in section 6.2. This ontology is independent from the data structure. It is denoted
OWLprivate. Obligations [9] are not taken into account by this ontology. We handle
the concepts of consent, accuracy, purpose and recipient as suggested in [9]. In the
rest of the chapter, we use the prefix P (resp. dt) for preference ontology (resp. data
ontology). Figure 6.3 presents this ontology. It is composed of three classes:

• P:Dataowner: represents the data-owner, he/she is identified by the property
P:hasId. Each data-owner has a set of preferences P:Preference via the object



74 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

Figure 6.2: Our approach using SPARQL Service

property P:hasPreference. We can express this in our ontology, using the N3
syntax2, as:

P:DataOwner rdf:type owl:Class;
P:hasId rdf:type owl:DatatypeProperty,

owl:FunctionalProperty;
rdfs:domain P:DataOwner;
rdfs:range xsd:string.

P:hasPreference rdf:type owl:ObjectProperty;
rdfs:domain P:DataOwner;
rdfs:range P:Preference.

2http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/



6.3. PRIVACY-AWARE ONTOLOGY 75

• P:Preference: represents preferences associated with triples (data-owner, recipient,
purpose). Each preference has a set of targets P:Target via the object property
P:hasTarget. P:hasPurpose corresponds to the purpose associated with this pref-
erence. P:hasRecipient represents the Requestor targeted by this preference.

P:Preference rdf:type owl:Class;
P:hasTarget rdf:type owl:ObjectProperty;

rdfs:domain P:Preference;
rdfs:range P:Target.

P:hasPurpose rdf:type owl:DatatypeProperty,
owl:FunctionalProperty;

rdfs:domain P:Preference;
rdfs:range xsd:string.

P:hasRecipient rdf:type owl:DatatypeProperty,
owl:FunctionalProperty;

rdfs:domain P:Preference;
rdfs:range xsd:string.

• P:Target: represents a particular preference item. It is composed of three proper-
ties. (1) P:hasName represents the name of a data item, e.g. age, name, address,
etc. (2) P:hasDecision represents the data-owner choice (consent) associated with
that target, e.g. Yes to indicate that the data-owner agrees to disclose the value of
that target to (resp. for) the corresponding recipient (resp. purpose) of the prefer-
ence, No otherwise. (3) P:hasAccuracy represents the accuracy that will be applied
to that target in the case of positive consent (decision=Yes), e.g. Anonymization,
Nullification, etc.

P:Target rdf:type owl:Class;
P:hasName rdf:type owl:DatatypeProperty,

owl:FunctionalProperty;
rdfs:domain P:Target;
rdfs:range xsd:string.

P:hasAccuracy rdf:type owl:DatatypeProperty;
rdfs:domain P:Target;
rdfs:range xsd:string.

P:hasDecision rdf:type owl:DatatypeProperty,
owl:FunctionalProperty;

rdfs:domain P:Target;
rdfs:range xsd:string.



76 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

Figure 6.3: Privacy Preferences Ontology

Figure 6.4 shows an example of privacy preferences defined by the data-owner Safaa
for the purpose purpose_1 and the recipient Bob. She decided to disclose her name in
clear (without accuracy) and her age after k-anonymization [94] with k = 15.

Let OWLdata be the data ontology or the ontology on which the initial query
is expressed. Properties of OWLdata are associated with the PrivOrBAC ontology
OWLprivOrBAC defined above, via a mapping table M. It is defined as follows: each
property of OWLdata (i.e. dt:name, dt:age) is mapped to a string value (‘name’, ‘age’
resp.) which is the value of the property P:hasName of an instance of the class P:Target.
We denote this mapping table asM. For instance, in figure 6.4, ‘_:t1 ’ is an instance
of the class P:Target. It corresponds to the preference defined by the data-owner for
the property dt:age.

The mapping table M represents also a mapping between values of the Target
attribute defined in the Consent_preference view, and OWLdata properties.



6.4. THE CORRECTNESS CRITERIA 77

Figure 6.4: Privacy Preferences Example

6.4 The correctness criteria

Before presenting our rewriting algorithm, we will first introduce some criteria that
should be satisfied by any rewriting algorithms.

Wang et al. [68] proposed a formal notion of correctness for fine-grained access
control in relational databases. They presented three correctness criteria (sound, secure
and maximum) that should be satisfied by any query processing algorithm in order to
be “correct”.



78 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

Soundness : An algorithm is sound if and only if its rewritten query Qrw returns
only correct answers i.e. answers to the initial query.

Maximality : An algorithm is maximum if and only if Qrw returns as much infor-
mation as possible.

Security : An algorithm is secure if and only if the result of Qrw respects the
security and privacy policy of the queried system.

In the rest of this section, we present a condition that should be satisfied by our
algorithm in order to satisfy the soundness, maximality and security criteria [68].

Let A be a query processing algorithm that enforces privacy policies. Let D be a
database, P a disclosure policy and Q a query. Let Q′ = A(P,Q) be the rewriting
query of Q using the policy P . We denote R = A(D,P,Q) the output result of Q′

on D.

Definition 1 : Given two tuples t1 = (x1, x2, ..., xn) and t2 = (y1, y2, ..., yn), we say
that t1 is subsumed by t2, denoted t1 v t2, if and only if ∀i ∈ [1..n] : (xi = yi) ∨ (xi =
unauthorized).

Definition 2 [68] : Given two relations R1 and R2, we say that R1 is subsumed by
R2, denoted R1 v R2, if and only if:

(∀t1 ∈ R1)(∃t2 ∈ R2)|t1 v t2

Definition 3 [68] : Two databases states D and D′ are “equivalent” with respect to
policy P (denoted as (D ≡ PD

′) if the information allowed by P in D is the same as
that allowed by P in D′.

Let S denote the standard query answering procedure and S(D,Q) the result of
the query Q in the database state D without any privacy restriction. [68] formalizes
the three criteria as follows: a query processing algorithm A is:

• sound if and only if :∀P∀Q∀D A(D,P,Q) v S(D,Q)

• secure if and only if:∀P∀Q∀D∀D′ [(D ≡ PD
′) −→ (A(D,P,Q) = A(D′, P,Q))]

• maximum if and only if: ∀D′∀R
if [(D ≡ PD

′) ∧ (R v S(D′, Q))] then we have R v A(P,D,Q)



6.5. REWRITING ALGORITHM PRINCIPLE 79

6.5 Rewriting Algorithm principle

For a given SPARQL query, we assume that we have the associated requestor (recipient)
and purpose. We assume that there is only one data-owner for each data item [95].
We do not handle the case where several data-owners share one data item. This issue
is not handled by PrivOrBAC.

The principle of our approach is summarized in the following items. For each
property of the where clause of the initial query:

1. we normalize the triple pattern corresponding to that property (Algorithm 3)

2. we get its associated choice (P:hasDecision) and accuracy (P:hasAccuracy) for
each data-owner.

3. we apply the corresponding choice and accuracy using algorithm 4.

6.5.1 Normalization of triple patterns

The normalization is applied to extract implicit filters in SPARQL queries. It trans-
forms the implicit filter into an explicit one with respect to the semantic of the initial
query.

The algorithm 3 aims to normalize a triple pattern tp, i.e. transforms tp to a
new triple pattern tpnorm where its object is a SPARQL variable. For example the
normalization of the triple pattern {?p dt:age 25} is the pattern {?p dt:age ?age.
Filter(?age=25)}.

Algorithm 3 Normalize a triple pattern
Require: Triple pattern tp← (s, p, o)
1: Let tpnorm be a triple pattern such that tpnorm ← tp

2: if the object o of tp is not a variable then
3: Let var be a SPARQL variable
4: tpnorm ← (s, p, ?var)
5: tpnorm ← tpnorm.F ilter(?var = o)
6: end if
7: return tpnorm

For a given property prop of a data-owner do, algorithm 4 returns the new value of
prop that do wants to return to the requester (recipient), by applying its corresponding



80 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

choice and accuracy. It checks if the choice (decision) is negative then it returns a null
value. Otherwise, if the accuracy is defined then it returns the value of prop by applying
the corresponding accuracy, using the function apply(value, accuracy). If the accuracy
is not defined, it returns the original value of prop.

Algorithm 4 Apply the choice and its accuracy on a property value
Require: choice, accuracy, value
1: if choice = ‘No’ then
2: return null
3: end if
4: if accuracy is bound to a value then
5: return apply(value,accuracy)
6: end if
7: return value

6.5.2 Preferences acquisition

Before defining the general algorithm we will first introduce some useful methods that
are used by the general rewriting algorithm.

The second step of our algorithm, after the normalization step, is to insert a call to
the privacy service in order to get preferences of each data-owner. The service block
corresponding to that call, denoted as ServiceBlock($purpose, $recipient), depends on
the purpose $purpose and recipient $recipient of the initial query. This service block is
defined as follow.

ServiceBlock($purpose, $recipient) = SERVICE ps:preferences {
?dp rdf:type P:DataOwner;

P:hasId ?id;
P:hasPreference ?pref.

?pref P:hasPurpose $purpose;
P:hasRecipient $recipient;

}

This block of service SB returns all data-owner’s preferences defined for the given
purpose $purpose and recipient $recipient. To filter preferences for specific targets,
we add corresponding triples to that service block. For that, we define a method,
denoted addTarget(SB:ServiceBlock, tn:Value), that takes as parameter a service block



6.5. REWRITING ALGORITHM PRINCIPLE 81

SB and the name of the target tn. The set of triples added to the block SB are to get
the decision and accuracy of the given target name tn. The algorithm 5 presents the
definition of the addTarget method. For example, In order to get preferences of the

Algorithm 5 addTarget method addTarget(SB:ServiceBlock, x:Value)
Require: Service block SB and value x
1: add the triple {?pref hastTarget ?tx} to SB
2: add the triple {?tx hasName x} to SB
3: add the triple {?tx hastDecision ?xDecision} to SB
4: Let Opt be the optional SPARQL element defined as follows
5: Opt = Optional{?tx hasAccuracy ?xAccuracy}
6: add Opt to SB

target ’name’ defined for the purpose $purpose and the recipient $recipient, we call the
method addTarget(SB, ’name’). The new value of SB is as follows:
SERVICE ps : p r e f e r e n c e s {

2 ?dp rd f : type P: DataOwner ;
P : hasId ? id ;

4 P: hasPre f e r ence ? p r e f .
? p r e f P : hasPurpose $purpose ;

6 P: hasRec ip i ent $ r e c i p i e n t ;
P : hasTarget ?tname .

8 ?tname P: hasName ’name ’ ;
P : hasDec i s ion ? nameDecision .

10 OPTIONAL {?tname P: hasAccuracy ?nameAcc}
}

6.5.3 Preferences enforcement

The third step is to apply the data-owner preferences (decision and accuracy), for
each target specified in the query, by using algorithm 4. This step aims to nullify
unauthorized data and to apply the corresponding accuracy, if defined, for authorized
ones. In our algorithm we handle a Basic Graph Pattern3 Bgp [11] of the initial
SPARQL query.

Let Bgp be a basic group of pattern, tn be a target name and tp = (s, p, o) be
the triple pattern of Bgp that corresponds to the target tn. The method addBind
(algorithm 6) aims to assign the authorized value to the variable o of tp = (s, o, p)
after applying the corresponding privacy preferences. The IF keyword is one of the
SPARQL 1.1 operators [96]. It is defined as follows:

3A simple set of SPARQL triples



82 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

Algorithm 6 addBind method: addBind(Bgp:BGP, x:Value, tp:TriplePattern)
Require: BGP Bgp, target name x and normalized triple pattern tp
1: Let o be the object variable of the triple tp = (s, p, o)
2: Let o′ be a SPARQL variable such that o 6= o′

3: We rename the variable o of tp by o′

4: Let C1 and C2 be the two conditions defined as follow:
5: C1 = (?xDecision = ‘No′)
6: C2 = bound(?xAccuracy)
7: Let V1, V2, Vaccuracy and Vbind be the values defined as follow:
8: V1 = null /*null to design unauthorized value*/
9: Vaccuracy = eval(o′, ?xAccuracy)
10: V2 = IF (C2, Vaccuracy, o

′)
11: Vbind = IF (C1, V1, V2)
12: Let B = Bind(Vbind AS o)
13: add the bind B to the BGP Bgp

rdfTerm IF(expr1, expr2, expr3)

It evaluates the first argument expr1, interprets it as a boolean value, then returns
the value of expr2 if the boolean value is true, otherwise it returns the value of expr3.
Only one of expr2 and expr3 is evaluated. For instance, the value of Vbind (line 11) is
V1 if the condition C1 is satisfied, otherwise Vbind = V2.

The Bind keyword is an explicit assignment of variables. It is included in
SPARQL1.1 with the syntax:

BIND(expr AS ?var)

The value of the expression ‘expr’ will be assigned to the SPARQL variable
‘?var’ [96].

The SPARQL function eval(value, accuracy) is an implementation of the function
apply used in algorithm 4.

The rewriting algorithm 7 aims to build the service block SB of the initial query,
based on algorithm 5. Then, it transforms each basic group of pattern, of the initial
query, based on algorithm 6.

In the rest of this section we will start by analyzing the case of SPARQL query
without filters after normalization. Then we will see the case of SPARQL query with
filters.



6.5. REWRITING ALGORITHM PRINCIPLE 83

Algorithm 7 Rewriting Query Algorithm
Require: purpose Pur, recipient Rec, query Q
1: Let Q′ be the normalized query of Q
2: Let SB = ServiceBlock(Pur,Rec)
3: for each basic group of pattern Bgp do
4: Let Bgp′ be its equivalent in Q′

5: for each triple pattern tp = (s, p, o) of Bgp do
6: Let tp′ = (s, p, o′) be the equivalent triple of tp in Bgp′

7: if the property p has mapping in M then
8: Let x be the mapping of p in M
9: addTarget(SB, x)
10: addBind(Bgp′, x, tp′)
11: end if
12: end for
13: end for
14: add the service bloc SB to Q′

15: return Q′

6.5.4 SPARQL query without filter

Let us take a simple example to illustrate our approach. Bob tries to select the name
and the age of all patients for the purpose purpose_1. He issues the following query:

1 PREFIX dt :<http :// ho sp i t a l . f r / pa t i en t s />
SELECT ?name ? age

3 FROM dt : i n f o s
WHERE {

5 ?p rd f : type dt : Pat ient ;
dt : name ?name ;

7 dt : age ? age .
}

We assume that in the mapping table M, the property dt:name (resp. dt:age)
corresponds to the string value ‘name’ (resp. ‘age’). So, The transformed query is as
follows:
01 .SELECT ?name ? age FROM dt : i n f o s WHERE {

2 02 . ?p rd f : type dt : Pat ient ;
03 . dt : id ? id ;

4 04 . dt : name ?n ; dt : age ?a .
05 . SERVICE ps : p r e f e r e n c e s {

6 06 . ?dp rd f : type P: DataOwner ; P : hasId ? id ;
07 . P: hasPre f e r ence ? p r e f .

8 08 . ? p r e f P: hasPurpose ’ purpose_1 ’ ;
09 . P : hasRec ip i ent ’Bob ’ ;

10 10 . P: hasTarget ? tp1 , ? tp2 .



84 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

11 . ? tp1 P: hasName ’name ’ ;
12 12 . P: hasDec i s ion ? nameDecision .

13 . OPTIONAL{? tp1 P: hasAccuracy ?nameAccu}
14 14 . ? tp2 P: hasName ’ age ’ ;

15 . P : hasDec i s ion ? ageDec i s ion .
16 16 . OPTIONAL{? tp2 P: hasAccuracy ?ageAccu}

17 . }
18 18 . BIND(IF (? nameDecision=’No ’ ,null ,

19 . IF (bound(?nameAccu ) ,
20 20 . udf : eva l (?n , ? nameAccu ) , ? n ) ) AS ?name ) .

21 . BIND(IF (? ageDec i s ion=’No ’ ,null ,
22 22 . IF (bound(? ageAccu ) ,

23 . udf : eva l (? a , ? ageAccu ) , ? a ) ) AS ? age ) .
24 24 .}

Lines 5 to 17 correspond to a call to the service of privacy preferences. In this clause
we get the choice and its accuracy of properties dt:name and dt:age corresponding
respectively to ‘name’ and ‘age’ (lines 11 to 16) for the triple (data-owner, purpose_1,
Bob) (lines 6, 8, 9).

Lines 18 to 20 (resp. 21 to 23) correspond to algorithm 6 for the property dt:name
(resp. dt:age). The function udf:eval(x,y) takes two parameters x and y. The first
parameter x is a value and the second parameter is the accuracy type to be applied to
the value x. This function returns the result of applying the accuracy y to the value x.

Table 6.1 shows an example of privacy policy preferences of the properties name
and age for the purpose purpose_1 and the recipient Bob. The value ‘anonym’ (resp.
‘k_anonym, k=15’) of the accuracy means that the value of the corresponding target
must be anonymized (resp. k-anonymized where k=15). Table 6.2 shows an example of
values of the properties name and age before and after applying the algorithm 4 based
on the preferences given in table 6.1. For instance, the value ‘axfd14’ (resp. [28,43])
is the anonymization (resp. k-anonymization with k=15) of the value 33 (resp. 30).
Finally, table 6.3 shows the result of the user query, presented in the example above,
before and after query transformation.

In the rest of this section we will study the case of a query with one triple, then the
case of a query with many triples. Let D be a database state, P be a disclosure policy,
tp = (s, pred, o) be a triple pattern where o is a variable, and var(tp) be all variables
defined in tp. We denote QD

tp the query defined as follow:

SELECT var(tp) FROM D WHERE {s pred o}

The result of QD
tp represents all triples that match with tp.

If the predicate pred does not have a mapping inM then the rewritten query of QD
tp

is the same as QD
tp (line 7 of algorithm 7). Otherwise, the rewritten query is as follow:



6.5. REWRITING ALGORITHM PRINCIPLE 85

ID Target Choice Accuracy
1 age Yes anonym
2 age No -
3 age Yes k_anonym, k=15
4 age Yes -
1 name Yes anonym
2 name No -
3 name Yes -
4 name Yes -

Table 6.1: Preferences of name and age properties for (purpose_1,Bob)
ID age Algo. 4
1 33 axfd14
2 42 null

3 30 [28,43]
4 27 27

ID name Algo. 4
1 Alice bob15s
2 Charlie null

3 Safaa Safaa
4 Said Said

Table 6.2: Values of name and age properties after and before applying algorithm 4
Before Transformation After Transformation
name age name age
Alice 33 bob15s axfd14
Charlie 42 null null

Safaa 30 Safaa [28,43]
Said 27 Said 27

Table 6.3: Result of the query before and after transformation

SELECT var(tp)FROM D
WHERE { SB.

s pred o’. BIND(fP,pred(o’) AS o)}

SB corresponds to the service block and fP,pred(o′) corresponds to Vbind which was
defined in algorithm 6. Vbind can take three possible values: (i) null for negative
decision, (ii) accuracy(o′) for positive decision with the accuracy accuracy and (ii) o′

otherwise. The result A(D,P,QD
tp) of the rewritten query corresponds to S(D,QD

tp)
by replacing values of o by fP,pred(o). So, for all t1 = (x1, ..., xn) of A(D,P,QD

tp)
there exists an element t2 = (y1, ..., yn) of S(D,QD

tp) such that ∀i ∈ [1..n] xi = yi or
xi = unauthorized where unauthorized denotes null or accuracy(o′). We deduce that
in that case the soundness property is satisfied.



86 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

Let QD
2 be a SPARQL query with two triples tp1 = (s1, pred1, o1) and tp2 =

(s2, pred2, o2). If pred1 and pred2 do not have a mapping in M then the rewritten
query of QD

2 is the same as QD
2 . Otherwise, we can write QD

2 as a join of two SPARQL
queries with one triple, as follow:

QD
2 = QD

tp1 ./ Q
D
tp2

If the join is based on the subject part of triples tp1 and tp2 i.e. s1 = s2 = s then
there is no impact for the join of the result of the rewriting queries of QD

tp1 and QD
tp2 .

If the join is based on the object part of tp1 and subject part of tp2 i.e. o1 = s2 = o

then the join of the result of the rewritten queries is based on fP,pred1(o) and o. Since
fP,pred1(o1) is not generally equal to s2 then A(D,P,QD

2 ) may contain unsound result.
The problem of join occurs, in the case of SPARQL query Q, when the where clause
of Q contains an object property that has a mapping in M .

By induction we can generalize the result bellow for SPARQL query composed of a
set of triples.

6.5.5 SPARQL query with filters

SPARQL query may contain filters. Filters are restrictions on solutions over the whole
group in which they appear. For instance, a query that gets name and age of patients
who are more than 25 years old, is expressed as follows :
SELECT ?name ? age FROM dt : i n f o s WHERE {

2 ?p rd f : type dt : Pat ient ;
dt : name ?name ;

4 dt : age ? age . FILTER(? age>=25)
}

As explained in section 6.5, the result of the query could be heterogeneous (nullified,
anonymized, etc.) after applying the policy preferences. There are two different strate-
gies for query rewriting. The first one is to execute filters before applying the privacy
policy preferences. It is obvious that this case is not secure. For instance, a malicious
user could issue a query that returns the name and age of patients who are 25 years
old. The returned result corresponds exactly to patients who are 25 years old even if
the value of the age is hidden.

The second strategy is to execute filters after applying the privacy policy preferences.
In this case, filters are executed on heterogeneous blinded data. Thus the returned re-
sult could not be sound. For instance, Bob tries to select patients who live in Rennes.
We assume that Alice lives in Paris and she chooses to disclose her city, to Bob, after
anonymization to ‘Rennes’. The result of the query issued by Bob will contain Alice



6.6. CONCLUSION 87

name age
Safaa [28,43]
Said 27

Table 6.4: The expected result
name age
Said 27

Table 6.5: The obtained Result

who is living in Paris. The returned result could also be not maximum. For exam-
ple, based on the data given in tables 6.1 and 6.2, the result of the query above after
transformation is obtained by applying the SPARQL filter FILTER(?age>=25) on the
data of table 6.3 after transformation. Table 6.5 shows the result of the query after
transformation4 and table 6.4 shows the expected result. As we can see the result is not
maximum. The value of the age of Safaa is in the interval [28, 43] (a k_anonymization
of 30 with precision k = 15) which is always greater than 25. One way to correct this
problem, is to extend the semantic of SPARQL filters. For example, in the case of
comparison operators, we have to take into account the comparison between numbers
and intervals. It depends also on the types of anonymization. Another way is to cate-
gorize those types and see which ones are applicable for preserving and implementing
the privacy requirements.

As explained above, in the case of normalized query with filters, the result of the
rewritten query may not be sound.

6.6 Conclusion

In this chapter we introduced an approach that preserves the privacy preferences by
query modification in the case of SPARQL query. We take into account various dimen-
sions of privacy preferences through the concepts of consent, accuracy, purpose and
recipient. A possible extension will be to handle provisional obligations.

Our approach satisfies the security criteria. However, the maximality and sound-
ness criteria may not be satisfied in the case of query with filters as illustrated in
section 6.5.5. They depend on the semantic of SPARQL filters and how they interpret
obfuscated and anonymized data. An interesting future work is to extend the semantic

4age ≥ 25 is interpreted as false for each value of age that is not a number



88 CHAPTER 6. PRIVACY POLICY PREFERENCES ENFORCED BY ...

of SPARQL filters, in the case of obfuscated data, in order to preserve the soundness
and maximality criteria.



CHAPTER

7 Privacy query rewriting
algorithm instrumented
by a privacy-aware
access control model

7.1 Introduction

In the literature, several approaches have been proposed for enforcing privacy require-
ments. The most significant effort to make privacy policies more readable and en-
forceable, is the Platform for Privacy Preferences (P3P) [97] which enables Web sites
to encode their data collection and data-use practices in a machine-readable XML for-
mat. Some work (see [98] for instance) reported how different aspects of data protection
can be handled by an extension of access control models. In point of fact, several formal
privacy aware models have been defined like [88], but formalization of their enforce-
ment process is rarely defined. Moreover, there are few research works related to web
services privacy policies specification and application. Enforcing privacy policy is still
thus an open issue.

Recently, several research papers on privacy enforcement focused on query rewrit-
ing. For instance [67, 68, 69] propose approaches based on SQL query rewriting. Each
of these rewriting algorithms uses a new dedicated privacy model unlike the approach
proposed in chapter 6 which is based on an existing privacy-aware model (PrivOr-
BAC [9], see section 7.2).

In this chapter we present an approach that instruments a SPARQL query rewriting
algorithm using a privacy aware acces control model. The verb instrument is used to
mean supplying appropriate constraints. We propose a lightweight vocabulary, on
top of the privacy aware access control model PrivOrBAC, that enables defining fine-
grained privacy preferences for each data element. Our approach is designed to view



90 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

privacy preferences as RDF data based on an ontology OWLprivacy. We take into
account various dimensions of privacy preferences through the concepts of consent,
accuracy, purpose and recipient. We implement and evaluate our process of privacy
enforcement by query rewriting.

We go further in this chapter, by transforming the hypothesis into a real and effec-
tive instrumentation process of the rewriting algorithm using an existing privacy aware
access control model like PrivOrBAC. PrivOrBAC has been chosen because it considers
all the privacy requirements appearing in the standards and recommendations like the
European Commission directives [85, 86, 99] or the OECD recommendations [83], but
of course it can be substituted with another privacy access model without upsetting
the whole process.

The rest of this chapter is organized as follow. Section 7.2 gives an overview of the
PrivOrBAC model. Section 7.3 presents our approach. Finally Section 7.4 concludes
this chapter.

7.2 The privacy-aware OrBAC model (PrivOr-
BAC)

In the literature there are several models of privacy used to model and integrate pri-
vacy requirements into a security policy. These security policies are generally specified
according to an access control model. This permits an easy upgrade of existing informa-
tion systems, which already implemented access control policies. For instance, models
such as P-RBAC [88], Purpose-BAC [89], Pu-RBAC [90] focused on purpose entity and
on some other privacy requirements [83], but this does not provide a complete set of
concepts to specify privacy policies.

PrivOrBac [9] is also a privacy policy model. It extends the OrBAC model [8]. It
reuses most of existing mechanisms implemented in OrBAC unlike other models that
propose major changes in existing models like the definition of new languages to express
access contexts. PrivOrBAC takes into account the main privacy requirements [85,
86, 83] through the concepts of consent, accuracy, purposes of the access, provisional
obligation and other concepts.

PrivOrBAC models (see figure 7.1) respectively the subject’s consent as a context,
view hierarchy based on the accuracy of objects, purpose as a user declared context,
provisional obligation following the access to sensitive information, the current state
context and the enhanced spatial context.



7.2. THE PRIVACY-AWARE ORBAC MODEL (PRIVORBAC) 91

Organization Role Activity View Context

     User-declared: purpose

     Provisional: Obligation

     .

     .

     .

     Consent

    View hierarchy based 

    on accuracy
Privacy

Requirements

Access & 

Usage 

Control 

Policy

Permission

Prohibition

Obligation

Figure 7.1: The Privacy-aware OrBAC model

7.2.1 Consent

Consent_preference view: Users store their consent preferences in the
consent_preference view. Each object in this view corresponds to a particular data
owner preference and has four attributes: Data-owner, who is the subscriber that the
object or the view referred to, Requester, who is the subject who requests the access to
the object, Target, which is the requested object, and NeedConsent, which is a Boolean
parameter whose value is true when the consent is needed.

Example 22 We assume that the user Alice permits Bob to see her
name without her consent. For this purpose, Alice defines the object Al-
ice_preference_1 :

- Requester: Bob

- Target: name

- Data-owner: Alice

- NeedConsent: false

This object must be inserted to the consent_preference to be effective:

Use(hospital, Alice_preference_1, consent_preference)

Consent context: The user consent is modelled in the OrBAC model as a new con-
text type. The consent context is a relevant parameter in the privacy preference. It
takes into account the data-owner preferences and/or notifies him when his personal
information is accessed. The subscribers can define their abstracted policy by specify-
ing that context preference should be checked before granting the access. Two cases



92 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

are identified. The first case is when the consent is needed (NeedConsent = true).
The data-owner response is modelled by a built-in predicate Consent_response. If
org is an organization, s is a subject, do is a data-owner, resp ∈ {accept, deny},
then Consent_response(org, do, s, resp) is the response returned by the data owner
to the organization. The second case is when the data owner does not require
his consent before revealing his private data to the requester. In this case, the
NeedConsent(cp) attribute is false. The access decision can be made without waiting
for the Consent_response.

The user consent context is specified as follows:

Ruleconsent : ∀org ∈ organization,∀s ∈ S,∀α ∈ A,∀o ∈ O, ∀cp ∈ O,
Hold(org, s, α, o, Consent_context)← Use(org, cp, Consent_preference)

∧Requester(cp, s)
∧ Target(cp, o)
∧Data_owner(cp, do)
∧ (¬NeedConsent(cp) ∨ Consent_response(Org, do, s, accept))

The above formula means that if org is an organization, s a subject, α an ac-
tion, v a view, cp is an object belonging to the Consent_preference view, and
Consent_response is the built-in predicate detailed above then the Consent_context
holds if there is an object cp, which has the attributes s, v and NeedConsent(cp).
When the latter is false we do not need the consent of the data owner of the object o,
which belongs to the view v, else the predicate Consent_response is needed. By this
means, the data owner can choose which view the subject can access.

Example 23 The OrBAC rule expressing that the consent of patients is
needed when nurses try to read patients information is expressed as follows:

Rulenurse : Permission(org,Nurse,Read, PatientV iew,Consent_context)

such that the context definition of Consent_context is expressed by Ruleconsent

7.2.2 Purpose

The purpose is modeled as a user-declared context. Each data owner can create purpose
objects to specify the purposes for which access to private objects are allowed. The
purpose objects are grouped in a Purpose view. Purpose values range over the purpose
value domain PV .

Each purpose object has two attributes [78].



7.2. THE PRIVACY-AWARE ORBAC MODEL (PRIVORBAC) 93

• Recipient: defines who takes advantage of the declared purpose,

• declared_purpose: associates a purpose value with the declared purpose object

Each data owner defines objects belonging to his purpose sub-view, say do-purpose
(data owner purpose). Purpose objects form a finite set denoted PO. They are used to
describe the user-declared context activated by some data owners. So, data owners have
to define these po objects, which have two attributes Recipient and Declared_purpose.

The purpose context is specified as follows:

Rulepurpose : ∀org ∈ Org, ∀s ∈ S,∀α ∈ A,∀o ∈ O, ∀pv ∈ PV, ∀po ∈ PO,
Hold(org, s, α, o, user_declared(pv))← data_owner(o, do)

∧ Use(org, po, do-purpose)
∧Recipient(po, s)
∧Declared_purpose(po, pv)

That is, in organization org, subject s performs action α on object o, which has do
as data owner, in the user declared context user_declared(pv), if there is a purpose
object po used in the subview view do-purpose by organization org such that s is
the recipient associated with po and pv is the declared purpose associated with po.
Each data owner, say do, has his own view do-purpose. The latter is a sub-view of
the Purpose view. We denote purpose_view_of(org, do, dop) as the predicate that
associates a data-owner do to his purpose view dop in the organization org. So the
Rulepurpose could be defined as follows:

Rulepurpose : ∀org ∈ Org, ∀s ∈ S,∀α ∈ A, ∀o ∈ O, ∀pv ∈ PV, ∀po ∈ PO,
Hold(org, s, α, o, user_declared(pv))← data_owner(o, do)

∧ purpose_view_of(org, do, dop)
∧ Use(org, po, dop)
∧Recipient(po, s)
∧Declared_purpose(po, pv)

Example 24 The OrBAC rule expressing that the patient‚Äôs consent is
needed when nurses try to read patients information for some medical pur-
poses (e.g., to ensure that patients receive the right medical dosages corre-
sponding to their ages, etc.), is expressed as follows:

Rulenurse2 : Permission(Hospital, Nurse,Read, PatientV iew,Consent ∧
Medical_Analysis)



94 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

such that the context definition of the Consent context is expressed in
Ruleconsent and the context Medical_Analysis is associated with Rulepurpose

by replacing the value pv by the value Medical_Treatment, i.e.:

RuleMedical_Analysis : ∀s ∈ S,∀α ∈ A, ∀o ∈ O, ∀po ∈ PO,
Hold(Hospital, s, α, o,Medical_Analysis)← data_owner(o, do)

∧ purpose_view_of(Hospital, do, dop)
∧ Use(Hospital, po, dop)
∧Recipient(po, s)
∧Declared_purpose(po,Medical_Treatment)

7.2.3 Accuracy

Privacy enforcement requires the use of different levels of accuracy depending on the
purpose and the subject requesting the access to the private data. That principle
is consistent with the privacy directive of collection limitation since service providers
cannot access more accurate objects than user preference and needed accuracy for the
service.

[9] suggests that private objects, of each data owner, may have different levels of
accuracy. The authors consider a hierarchy between the root view of one data owner
that groups the initially collected objects, and sub-views of that data owner. These
sub-views group the derived objects that have different accuracies. We recall that
Sub_view is a relation over domains Org x V x V , if org is an organisation, and v1

and v2 are views, then Sub_view(org, v1, v2) means that in organisation org, view v1

is a sub-view of v2. So, data owner can define several access policies depending on
accuracies of his private data objects.

When a data owner defines his anonymity preferences, it creates a view for each
preference. This means that each view contains the sensitive objects of the data owner
with specified anonymity preferences. Figure 7.2 shows an example of accuracy-based
object hierarchy of location data.

Each data-owner defines his own private data hierarchy, composed of different views.
Each view is described by the anonymity level field anonymity_level. The data-owner
can then specify a different privacy policy and access control for each view. “Permission
privilege” is granted to the authorized service providers by data-owners.



7.3. OUR APPROACH: PRIVORBAC QUERY REWRITING ALGORITHM 95

Location_View

Anonym_Location_View K-Anonym_Location_View Named_Location_View

Root view

Sub views

Figure 7.2: Accuracy levels of location data

7.3 Our approach: PrivOrBAC query rewriting al-
gorithm

Our approach is to instrument the privacy rewriting algorithm [100] by the privacy-
aware model PrivOrBAC. Figure 7.3 illustrates the architecture of the approach. It is
composed of three main components: (i) Queried System, (ii) PrivOrBAC SPARQL
Service and (iii) PrivOrBAC component. (i) is the component that implements the
privacy rewriting algorithm [100]. It transforms the received query Q to Q′ such that
the execution of Q′ invokes the preferences service (ii) via the subquery Qpref . (ii)
is the SPARQL endpoint of privacy preferences policy expressed by the PrivOrBAC
model in the component (iii). (ii) is a server that receives the SPARQL query Qpref

expressed in OWLprivacy. It decomposes this SPARQL query into a set of PrivOrBAC
web services that coversQpref (see section 7.3.2). (iii) represents the privacy preferences
expressed in the PrivOrBAC model and are accessed via web services S1, S2 and S3

(see section 7.3.1).

7.3.1 PrivOrBAC services

PrivOrBAC has two categories of services: (i) administration services and (ii) consul-
tation services. (i) represents services that add, remove or update preferences. (ii)
allow access to preferences of each data-owner. In this section we are interested in
some services of the second category, consultation services.

We use ’$’ to denote input variables and ’?’ to denote output variables. We are
interested in the following services:

• S1(?do): is a service that returns list of all data-owners ?do.



96 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

privacy preferences 

policy  

PrivOrBAC 

S1 

S3 

S2 

Mashup 

PrivOrBAC SPARQL Service 

Execution Engine 

RDF Query 

Rewriting 

Mashup Plan 

Generation 

RDF views of PrivOrBAC services 

SPARQL Query 

Rewriting 

OWL privacy 

Queried System 

DB viewed 

as RDF 

SPARQL Engine 

Data collection 
Binding  

& Filters 

Qdata Qpref 

Q’ 

Q 

Result 

Figure 7.3: The instrumentation approach of privacy rewriting

• S2($do, $t, $purp, $recip, ?c) : is the service that returns the consent ?c of the data-
owner $do of the target $t, defined for the recipient $recip and purpose $purp.

• S3($do, $t, $purp, $recip, ?a): is the service that returns the accuracy ?a defined
by the data-owner $do for the target $t.

For each service presented above we define an RDF view, based on OWLprivacy,
that represents its semantic. Figure 7.4 illustrates those RDF views.

Let Pred_S1, Pred_S2 and Pred_S3 be respectively application predicates of
services S1, S2 and S3.

Service S1

According to section 7.2.1, preferences of data-owners are stored in the view
Consent_preference. The predicate Pred_S1, that allows to get all data-owners,
is defined as follows:

Pred_S1(do)← Use(org, cp, Consent_preference) ∧Data_owner(cp, do)

For example, the fact Pred_S1(Alice) states that the user Alice defines at least one
preference on the current privacy policy.



7.3. OUR APPROACH: PRIVORBAC QUERY REWRITING ALGORITHM 97

P:DataOwner

D

rdf:type

P
:h

asId

$do

T

rdf:type

?a

P
:h

as
A

cc
ur

ac
y

P

P:Preference

rdf:type

P
:hasP

urpose

P:hasTarget
P:hasPreference

P:Target

$purp

(S3)

$recip

P
:h

as
R

ec
ip

ie
nt

$t

P
:h

asN
am

e

P:DataOwner

D

rdf:type

P
:h

asId

$do

T

rdf:type

?c

P
:h

as
D

ec
is

io
n

P

P:Preference

rdf:type

P
:hasP

urpose

P:hasTarget
P:hasPreference

P:Target

$purp

(S2)

$recip

P
:h

as
R

ec
ip

ie
nt

$t

P
:h

asN
am

e

P:DataOwner

D

rdf:type

P:hasId

?do

(S1)

Figure 7.4: RDF views of S1, S2 and S3

Service S2

Let do be a data-owner, tg be a target (name of an object of do), purp be a purpose
and recip be a recipient. The consent, denoted consent(do, tg, purp, recip), given by
the data-owner do to the recipient recip for the target tg and purpose purp corresponds
to Is_permitted(recip, read, tg) such that:

Data_owner(tg, do) ∧ User_declared_context(recip, purp)← true

where Data_owner and User_declared_context are application predicates.
Data_owner(tg, do) means that do is the data owner of the object tg.
User_declared_context(recip, purp) means that the subject recip declares the con-
text value purp. So the consent is modelled as follows:

consent(do, tg, purp, recip)← Is_permitted(recip, read, tg)∧Data_owner(tg, do)
∧ User_declared_context(recip, purp)



98 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

The predicate Pred_S2 is defined as follows:

Pred_S2(do, tg, purp, recip)← consent(do, tg, purp, recip)

For example, the fact Pred_S2(Alice, Age,Medical_Treatment, Bob) states that the
privacy policy allows the subject Bob to consult the age of the patient Alice for the
purpose Medical_Treatment.

Service S3

Service S3 returns the accuracy acc defined by a data owner do, for his target tg, to
the recipient recip for the purpose purp. As explained in section 7.2.3, the data-owner
assigns his data object o to a specific view Vaccuray which is a subview of the root view of
the private object o. Then the data owner do defines a permission privilege on Vaccuracy.
The predicate Pred_S3 is defined as follows:

Pred_S3(do, tg, purp, recip, acc)← Empower(Org, recip, R) ∧ Use(Org, tg, V )
∧ Consider(Org, read,Read)
∧ Permission(Org,R,Read, V, C)
∧Hold(Org, recip, read, tg, C)
∧Data_owner(tg, do) ∧ Anonymity_level(V, acc)

Anonymity_level(V, acc) means that acc is the anonymity level of the given view V .

For example, the fact Pred_S3(Alice, SSN,Medical_Treatment, Bob, Anonymous)
states that the privacy policy allows the subject Bob to consult the anonymized ver-
sion of the social security number SSN of the patient Alice for the purpose
Medical_Treatment.

7.3.2 PrivOrBAC SPARQL Service

PrivOrBAC SPARQL service is a SPARQL endpoint of privacy preferences. It receives
a SPARQL query Qpref expressed in term of the privacy ontology OWLprivacy. Then
it decomposes Qpref into a set of PrivOrBAC web services that will be invoked later.
The collected result is correctly merged, filtered and formatted, then transferred to the
requester (a SPARQL Engine in our case).

The PrivOrBAC SPARQL service relies on an RDF query rewriting algorithm that
is proposed in [101] to find the necessary services that cover the received query. The
algorithm assumes that all services are described by RDF views and includes two
phases:



7.3. OUR APPROACH: PRIVORBAC QUERY REWRITING ALGORITHM 99

• Finding the relevant services: in this phase the algorithm compares the preferences
SPARQL query Qpref to the RDF views of available services and determines the
parts of Qpref that are covered by these views.

• Combining the relevant services: in the second phase the algorithm combines the
different parts to cover the whole preferences query Qpref .

Let us take an example.

Example 25 We assume that Bob tries to select the name and the age of
all patients for the purpose purpose_1. He issues the following query:

1 SELECT ?name ? age
FROM dt : i n f o s WHERE {

3 ?p rd f : type dt : Pat ient ;
dt : name ?name ;

5 dt : age ? age .
}

We assume that in the mapping tableM, the property dt:name (resp. dt:age)
corresponds to the string value ‘name’ (resp. ‘age’). Figure 7.5 shows the
transformed query associated with Bob’s SPARQL query.

1. SELECT ?name ?age 

2. FROM dt:infos WHERE { 

3.    ?p rdf:type dt:Patient; 

4.       dt:id ?id; 

5.       dt:name ?n; 

6.       dt:age ?a. 

7. SERVICE ps:preferences { 

8.    ?dp   rdf:type P:DataOwner; 

9.          P:hasId ?id; 

10.        P:hasPreference ?pref. 

11.   ?pref P:hasPurpose ‘purpose_1’; 

12.         P:hasRecipient ‘Bob’; 

13.         P:hasTarget ?tp1, ?tp2. 

14.    ?tp1 P:hasName `name’; 

15.         P:hasDecision ?nameDecision. 

16.    OPTIONAL{ ?tp1 P:hasAccuracy ?nameAccuracy.} 

17.    ?tp2 P:hasName `age’; 

18.         P:hasDecision ?ageDecision. 

19.    OPTIONAL{ ?tp2 P:hasAccuracy ?ageAccuracy.} 

20. }  

21. BIND(IF(?nameDecision=`No’, null, IF(bound(?nameAccuracy), 

22.             udf:eval(?n,?nameAccuracy),?n)) AS ?name). 

23. BIND(IF(?ageDecision=`No', null, IF(bound(?ageAccuracy), 

24.             udf:eval(?a,?ageAccuracy),?a)) AS ?age). 

25.} 

Privacy 

Preferences 

Data 

Applying 

Preferences 

Figure 7.5: Transformation of Bob’s SPARQL Query



100 CHAPTER 7. PRIVACY QUERY REWRITING ALGORITHM INSTRUM...

Begin

(id)

(id, purpose_1, Bob, name, c1)

End

(id, purpose_1, Bob, age, c2)

(id, purpose_1, Bob, name, a1)

(id, purpose_1, Bob, age, a2)

S2

S2

S3

S3

(id, purpose_1, Bob, name, 

age, c1, c2, a1, a2)
JoinS1

Figure 7.6: Composition execution plan of V

Qpref corresponding to the service block of the rewritten query Q′, presented
in figure 7.5, is defined as follow.
SELECT ∗ FROM ps : p r e f e r e n c e s

2 WHERE {
?dp rd f : type P: DataOwner ;

4 P: hasId ? id ;
P : hasPre f e r ence ? p r e f .

6 ? p r e f P: hasPurpose ’ purpose_1 ’ ;
P : hasRec ip i ent ’Bob ’ ;

8 P: hasTarget ? tp1 , ? tp2 .
? tp1 P: hasName ’name ’ ;

10 P: hasDec i s ion ? nameDecision .
OPTIONAL {? tp1 P: hasAccuracy ?nameAccuracy}

12 ? tp2 P: hasName ’ age ’ ;
P : hasDec i s ion ? ageDec i s i on .

14 OPTIONAL {? tp2 P: hasAccuracy ? ageAccuracy}
}

We denote V as the RDF view corresponding to Qpref . We denote respectively
variables ?nameDecision, ?nameAccuracy, ?ageDecision and ?ageAccuracy
as ?c1, ?a1, ?c2 and ?a2.

After applying the algorithm defined in [101] we get the following composition:

V (“purpose_1”, “Bob”, ?id, ?c1, ?a1, ?c2, ?a2)← S1(?id)
∧ S2($id, “purpose_1”, “Bob”, “name”, ?c1)
∧ S2($id, “purpose_1”, “Bob”, “age”, ?c2)
∧ S3($id, “purpose_1”, “Bob”, “name”, ?a1)
∧ S3($id, “purpose_1”, “Bob”, “age”, ?a2).

Figure 7.6 shows the execution plan of the service composition of the RDF
view V associated with Qpref .



7.4. CONCLUSION 101

7.4 Conclusion

In this chapter we present an approach for “instrumenting” a query rewriting algorithm
that enforces privacy preferences based on SPARQL query rewriting.

Privacy preferences are defined using the PrivOrBAC model and are accessed via
SPARQL Services. However, our approach is independent of the privacy-aware model.
It could be integrated with any other privacy-aware access control models. We only
have to define new SPARQL services for the given privacy-aware model. If the later
proposes a web service then the approach is exactly the same as in PrivOrBAC. Oth-
erwise, we have to define adapters that allow us to query the preferences of the new
privacy-aware model using SPARQL queries based on OWLprivacy ontology. For in-
stance, [93] and [92] could be used when policies are stored in XML format.

In addition, we implemented our approach and tested its performance (see sec-
tion 9.2 for more details).





CHAPTER

8 Secure and
Privacy-preserving
Execution Model for
Data Services

8.1 Introduction

Data services have almost become a standard way for data publishing and sharing on
top of the Web. In this chapter, we present a secure and privacy-preserving execution
model for data services [102]. Our model controls the information returned during
service execution based on the identity of the data consumer and the purpose of the
invocation. We implemented and evaluated the proposed model in the healthcare
application domain and the obtained results are promising (see chapter 9).

Recently, Web services have started to be a popular medium for data publishing
and sharing on the Web. Modern enterprises are moving towards service-oriented
architectures for data sharing on the Web by developing Web service frontends on
top of their databases, thereby providing a well-documented, interoperable method for
interacting with their data [103, 104, 105, 106, 107]. We refer to this class of services
as data services in the rest of the chapter.

Data services are software components that encapsulate a wide range of data-centric
operations over “business objects” in underlying data sources. They abstract data con-
sumers from the details of where data pieces are located and how they should be
accessed. They allow data providers to restrain the way their business objects are
manipulated and enforce their own business rules and logic. Data services are used in
many contexts, for instance: data publishing [103, 108], data exchange and integra-
tion [109], service-oriented architectures (SOA) [104], data as a service (DaaS) [107],
and recently, cloud computing [110].



104 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

Most of the time data services are used to access privacy-sensitive information.
For example, in the healthcare domain, data services are widely used to access and
manipulate the electronic healthcare records [109]. Given the sensitive nature of the
accessed information and the social and legal implications for its disclosure [111, 112],
security and privacy are considered among the key challenging issues that still impede
the widespread adoption of data services [113].

A considerable body of recent research works have been devoted to security and
privacy in the area of Web services [114, 115, 116, 117]. Their focus was on providing
mechanisms for ensuring that services act only on the authorized requests and for
ensuring SOAP message confidentiality and integrity. However, this is not sufficient
as control over who can invoke which service is just one aspect of the security and
the privacy problem for data services. A fine-grained control over the information
disclosed by data service calls is required, where the same service call, depending on
the call issuer and the purpose of the invocation, can return more or less information to
the caller. Portions of the information returned by a data service call can be encrypted,
substituted, or altogether removed from the call’s results. We explain the privacy and
the security challenges for data services based on a concrete example.

8.1.1 Motivating Scenario

Let us consider a healthcare scenario in which a nurse Alice needs to consult the
personal information (e.g., name, date of birth, etc.) of patients admitted into her
healthcare organization ‘NetCare’ for some medical purposes (e.g., to ensure that pa-
tients receive the right medical dosages corresponding to their ages, etc.). The NetCare
organization involves many specialized departments (cardiology, nephrology, etc.) and
laboratories, and follows a data service based approach [103, 105, 109] to overcome the
heterogeneity of its data sources at their various locations. We assume that Alice works
in the cardiology department, and that she issued the following query: “Q: return the
names and dates of birth DoB for all patients”. We also assume that she has the fol-
lowing service at her disposal: S1($center, ?name, ?dob), where input parameters are
preceded by “$” and output parameters by “?”.

Obviously, the query Q can be resolved by simply invoking S1 with the value center
= NetCare. However, executing the service S1 involves handling security and privacy
concerns that could be associated with the service’s accessed data. For example, nurses
may be only allowed to access the information of patients from their own departments;
physicians may be only allowed to access the information of their own patients, etc.
These are security concerns that are typically defined in security policies. Furthermore,



8.1. INTRODUCTION 105

the patients should also be allowed to control who can access their data, for what
purposes and under what conditions. For example, two patients Bob and Sue whose
data are accessed by S1 may have different preferences regarding the disclosure of their
ages to a nurse for medical treatment purposes. These are privacy concerns that relate
to individuals and their requirements about their data. They are typically defined in
privacy policies.

8.1.2 Challenges

Based on our scenario, we identify the following two challenges which are addressed in
this chapter. The first challenge is how to enable the service providers (e.g., NetCare) to
handle the cited security and privacy constraints. A common approach in the database
field to handle such constraints is to push them to the underlying DBMS by rewriting
the query to include these constraints [69]. However, this may not be applicable to data
services as the same service may access a multitude of heterogeneous data sources that
may not necessarily have a DBMS (e.g., XML files, flat files, silos of legacy applications,
external Web services, etc.). An alternative approach is to enforce privacy and security
policies at the application level [118], by modifying, in our case, the source code of
data services. However, this also may not always be applicable nor advisable as most
of current data service creation platforms (e.g., AquaLogic [119]) provide data services
as black boxes that cannot be modified. Even if the code was modifiable, this solution
often leads to privacy leaks [69], as the dropped programming code may contain flaws;
i.e., its correctness is hard to be proven (especially for complex queries), compared
to declarative rewritten queries in the first approach. The second challenge is how
to specify and model the security and privacy concerns associated with data services.
There is a need for a model that provides explicit description of these concerns to
ensure the correct execution of services and the proper usage of their returned data.

8.1.3 Contributions

In this chapter, we propose a secure, privacy-preserving execution model for data ser-
vices allowing service providers to enforce their privacy and security policies without
changing the implementation of their data services. Our model is inspired by the
database approach to enforce privacy and security policies. It relies on a declarative
modeling of data services using RDF Views. When a data service is invoked, our model
modifies the RDF view of the corresponding service to take into account pertaining
security and privacy constraints. Our model uses our query rewriting techniques de-



106 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

RDF View & Contextual 

information Extraction 

RDF View

Rewriting

Service-based

View Rewriting

Privacy and Security 

Enforcement
S

Composition

Si

Security & Privacy 

Policies WSDL-S

(Si)
WSDL-S

(Si)
WSDL-S

(Si)

Refers to

Service 

Consumer

Si invocation 

request

Privacy-sanitized 

response

S

Si

S

S S
er

vi
ce

 E
xe

cu
ti

o
n

 E
n

g
in

e
Service 

Registry

Si’s RDF View,

<Recipient, purpose>

The Invocation Process of Si at the service provider side

RDF View with 

S&P constraints

Service description 

file WSDL

Figure 8.1: Overview of the Privacy and Security aware Execution Model

fined in chapters 3 and 6 to rewrite the modified view in terms of calls to data services
(including the initial one). Services are then executed, and the constraints are enforced
on the returned results. Our contributions are summarized as follows:

• We propose a semantic modeling for data services, privacy and security policies.
The modeling is based on RDF views and domain ontologies.

• We propose a secure and privacy-preserving execution model for data services. Our
model exploits our previous work on the areas of query rewriting and modification,
and defines new filtering semantics to protect the service’s accessed data.

• We integrated our model in the architecture of the widely used Web services con-
tainer AXIS 2.0, and carried out a thorough experimental evaluation.

The rest of the chapter is organized as follows. In Section 8.2, we present our
secure and privacy-preserving execution model for data services. We present also our
modeling to data services, security and privacy policies and then conclude the chapter
in Section 8.3.

8.2 A Secure and Privacy-Preserving Execution
Model for Data Services

In this section, we describe the proposed model for data service execution. We start
by giving an overview of our model. Then, we present our modeling to data services
and policies. Finally, we detail the different steps that need to be performed to enforce
privacy and security policies.



8.2. A SECURE AND PRIVACY-PRESERVING EXECUTION MODEL FOR...
107

8.2.1 Model Overview

Our model is inspired by the database approach to “declaratively” handle the secu-
rity and privacy concerns. Specifically, our model relies on modeling data services as
RDF Parameterized Views over domain ontologies to explicitly define their semantics.
An RDF view captures the semantics of the service’s inputs and outputs (and their
inter-relationships) using concepts and relations whose semantics are formally defined
in domain ontologies. Views can be integrated into the service description files WSDL
as annotations. Our model, as Figure 8.1 shows, enforces the privacy and the security
constraints associated with data services “declaratively” as follows. Upon the recep-
tion of a service invocation request for a given service (e.g., Si), it extracts the RDF
view of the corresponding service from the service description file and the contextual
information (e.g., the recipient of requested data, the purpose, the time and location,
etc.) from the invocation request. Then, the RDF view is rewritten to include the
security and privacy constraints that pertain to the data items referred in the view.
These constraints are defined in the security and privacy policies and have the form of
SPARQL expressions (which simplifies their inclusion in the RDF view). The generated
extended view may include now additional data items necessary for the evaluation of
the constraints (e.g., the consent of patients, the departments of nurses, etc.) that are
not covered by the initial service. Therefore, the extended view is rewritten in terms
of calls to (i) the initial service Si and (ii) the services covering the newly added data
items. Finally, the obtained composition is executed, and the constraints are evaluated
and enforced on the obtained results. The obtained results now respect the different
security and privacy concerns, and can be returned safely to the service consumer. We
explain and illustrate these steps in details in subsequent sections.

8.2.2 Semantic models for data services and policies

Semantic model for data services: The semantics of data services should be
explicitly defined to allow service consumers to correctly interpret and use the services’
returned data. In this work, we model data services as RDF Parameterized Views
(RPV s) over domain ontologies Ω. RPVs use concepts and relations from Ω to capture
the semantic relationships between input and output sets of a data service.

Formally, a data service Si is described over a domain ontology Ω as a predicate:
Si($Xi, ?Yi) : − < RPVi(Xi, Yi, Zi), Ci >, where:



108 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

(a) (b)

o:Patient

P

rdf:type

o:
ha

sD
is

ea
se o:hasN

am
e

?y

?z

o:hasDoB

C

o:admittedIn

rdf:type

$x

o:
na

m
e

o:Center

"Diabetes"

PREFIX    o:<http://hospital.fr/>

S1($x,?y,?z):-

?C    rdf:type          o:Center

?C    o:name           ?x

?P    rdf:type           o:Patient

?P    o:admittedIn   ?C

?P    o:hasName     ?y

?P    o:hasDoB       ?z

?P    o:hasDisease “Diabetes”

Figure 8.2: Part-A: the RDF View of S1; Part-B: its graphical representation

• Xi and Yi are the sets of input and output variables of Si, respectively. Input and
output variables are also called as distinguished variables. They are prefixed with
the symbols “$”and “?” respectively.

• RPVi(Xi, Yi, Zi) represents the semantic relationship between input and out-
put variables. Zi is the set of existential variables relating Xi and Yi.
RPVi(Xi, Yi, Zi) has the form of RDF triples where each triple is of the form
(subject.property.object).

• Ci is a set of data value constraints expressed over the Xi, Yi or Zi variables.

Figure 8.2 (Parts a and b) shows respectively the RDF view of S1 and its graph-
ical representation. The blue ovals (e.g., Patient, Center) are ontological concepts
(ontological concepts and relations are prefixed by the ontology namespace “o:”).

RDF views have the advantage of making the implicit assumptions made about
the service’s provided data explicit. These assumptions may be disclosed implicitly to
service consumers. For example, the names and DoBs returned by S1 are for patients
“who have diabetes”; i.e., the service consumer will know -implicitly- in addition to the
received names that these patients have diabetes. Modeling and explicitly describing
this implicit knowledge is the first step to handle this unwanted implicit information
disclosure. Note that RDF views can be integrated to the service description files as
annotations (e.g., using the WSDL-S approach (www.w3.org/Submission/WSDL-S/).

Security and privacy policies: In this work, we suppose the accessed data are
modeled using domain ontologies. We express therefore the security and privacy policies
over these ontologies. We adopt the OrBAC [8] and its extension PrivOrBAC [9] to
express the security and the privacy policies respectively.



8.2. A SECURE AND PRIVACY-PRESERVING EXECUTION MODEL FOR...
109

rdf:type

Prp:Preferences

p:hasPurpose

p:hasRecipient

T

p
:h

as
T

ar
g

et

p:hasDecision

p:propertyName

rdf:type

p:Target

o:PatientP
rdf:type

“Medical 

Treatment”

“Nurse”

“o:hasName”

“Yes”

p:hasPreferences
PREFIX    o:<http://hospital.fr/>

PREFIX    p:<http://privacypolicy.fr/>

Consent:-  ?P    rdf:type                 o:Patient, 

                  ?P    p:hasPreferences ?Pr, 

                  ?Pr  rdf:type                 p:Preferences,

                  ?Pr  p:hasPurpose       “Medical_Treatement”,

                  ?Pr  p:hasRecipient     “Nurse”, 

                  ?Pr  p:hasTarget          ?T, 

                  ?T   rdf:type                  p:Target, 

                  ?T   p:propertyName   “o:hasName”,

                  ?T   p:hasDecision      “Yes”

Figure 8.3: The SPARQL and the graphical representations of the patient’s consent

The security rules corresponding to the motivating example, i.e. nurses may be only
allowed to access the information of patients admitted in the same department, can be
expressed in the OrBAC model as follows:

SecRule1= Permission(NetCare, Nurse, Read, NameView, SameDepartment)

SecRule2= Permission(NetCare, Nurse, Read, DoBView, SameDepartment)

SecRule3= Permission(NetCare, Nurse, Read, DiseaseView, SameDepartment),
where the “SameDepartment” is the context defined as follows:
Hold(NetCare, s, α, o, SameDepartment)← Patient(p, o) ∧ TreatedIn(o, d)

∧ EmployedIn(s, d)

The privacy rules of our example are as follows:

PrivRule1= Permission(NetCare,Nurse,Medical_Treatment,Read,NameView,Consent),

PrivRule2= Permission(NetCare,Nurse,Medical_Treatment,Read,DoBView,Consent),

PrivRule3= Permission(NetCare,Nurse,Medical_Treatment,Read,DiseaseView,Consent),
where the “Consent” is the PrivOrBAC consent context. Consent context could be
expressed also against domain ontologies. Figure 8.3 shows the Consent expressed as
a SPARQL expression as well as its graphical representation.

8.2.3 RDF views rewriting to integrate security and privacy
constraints

In this step, the proposed model extends the RDF view of the queried service with the
applicable security and privacy rules (from the policies) as follows.

Our model extracts the RDF view of the invoked service from the service description
file, and consults the associated security and privacy policies to determine the applica-
ble rules for the given couple of (recipient, purpose). With respect to security policies,



110 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

o:Patient

P

rdf:type

o:
ha

sD
is

ea
se o

:h
asN

am
e

?y

?z

o:hasD
oB

C

o:admittedIn

rdf:type

$x

o
:n

am
e

(a)

rdf:type

P1p:Preferences

p:hasPurpose

p:hasRecipient

T1

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasName"

?w

rdf:type

P2p:Preferences

p:hasPurpose

p:hasRecipient

T2

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasDoB"

?q

rdf:type

P3p:Preferences

p:hasPurpose

p:hasRecipient

T3

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"dName"

?u

rdf:type

P4p:Preferences

p:hasPurpose

p:hasRecipient

T4

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasDisease"

?r

p:
ha

sP
re

fe
re

nc
es

(c)

o:Center

rdf:type
p:Target

rdf:type

p:Target

rdf:type

p:Target

rdf:type

p:Target

Const1 =

"Diabetes"

D

o:Department
rdf:type o:dName

Const2 = "cardiology"

o:composedOf o:treatedIn

o:Patient
P

rdf:type

o:
ha

sD
is

ea
se o

:h
asN

am
e

?y

?z

o:hasD
oB

C
o:admittedInrdf:type

$x

o
:n

am
e

o:Center

Const1 =

"Diabetes"

D

o:Department
rdf:type o:dName

Const2 = "cardiology"

o:composedOf o:treatedIn

o:Patient
P

rdf:type

o:
ha

sD
is

ea
se

o
:h

asN
am

e

?y

?z

o:hasD
oB

C
o:admittedInrdf:type

$x

o
:n

am
e

o:Center

Const1 =

"Diabetes"

(b)

Figure 8.4: (a) The original view of S1; (b) The extended view after applying the
security policy; (c) The extended view after applying the privacy policy

o:Patient

P

rdf:type

o
:h

asN
am

e

$a

C

rdf:type

?c

o
:n

am
e

D

o:Department

rdf:type

o
:d

N
am

e

o:composedOf o:treatedIn

o:Center

?b

rdf:type

Rp:Preferences

p:hasPurpose

p:hasRecipient

T

p
:h

as
T

ar
g

et

p:hasDecision

p:propertyName

?e

rdf:type

p:Target

$d

$c

$b

o:PatientP
rdf:type

o
:h

asN
am

e

$a

(a) (b)Service S2 Service S3

Figure 8.5: A graphical representation of the services S2 and S3

our model applies the access rules associated with each of the data items declared in
the view to remove unauthorized data items. In some cases, the access to a given data
item is granted only under certain conditions. For example, the security rules in our
example restrict the access to the patient’s personal information to the nurses working
in the department where the patients are treated. These conditions (which have con-



8.2. A SECURE AND PRIVACY-PRESERVING EXECUTION MODEL FOR...
111

cretely the form of SPARQL expressions) are accommodated in the RDF view. The
parts (a) and (b) of Figure 8.4 shows respectively the initial and the extended view; the
added RDF triples are marked in red. Similarly, our algorithm rewrites the extended
view to integrate the privacy rules. Returning to our example, the condition related
to the patient’s consent are added to the view. Figure 8.4 (Part-c) shows the extended
view, where the added RDF triples are marked in blue.

8.2.4 Rewriting the extended view in terms of data services

The extended RDF view vextended may include additional data items (denoted by ∆v =
vextended − voriginal) required to enforce security and privacy constraints. These data
items may not be necessary covered by the initial service. In our example (Figure 8.4,
Part-c), ∆v includes the RDF triples ensuring that the patients and the nurse have the
same departments, and the RDF triples querying the patient’s consent relative to the
disclosure of his personal and medical data.

In this step, we find the data services covering ∆v to prepare for the enforcement
of privacy and security conditions (in a later step), and rewrites vextended in terms of
these services along with the initial service. In this work, we assume the data items
necessary for the evaluation of the security and privacy constraints (e.g., consent, time,
location, etc.) are also provided as data services.

In our running example, the extended view in Figure 8.4 (Part-c) ensures that
the query issuer works in the same department as the one the queried patients have
been admitted to. It includes as well a schema-level representation of these patients’
preferences regarding the disclosure of their personal and medical information (i.e.,
names, DoBs and diseases).

Therefore in this step our proposed model finds the data services that provide the
additional information to prepare for the evaluation of privacy and security conditions.
We assume that this information is provided as services by service providers. Note that,
these services may include privacy and security dedicated services (e.g., the services
returning the patients’ preferences, the services returning the user’s groups and privi-
leges) as well as business services that could be used apart (e.g., the services returning
the department where a patient is treated, etc.).

Our rewriting algorithm that implements this step has two phases:

Phase 1: Finding the relevant services: In this phase, the algorithm compares
vextended to the RDF views of available services and determines the parts of vextended

that are covered by these views. We illustrate this phase based on our example. We



112 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

Service Partial Containment Mapping Covered nodes & object properties
S1($x, ?y, ?z) V ′.P → S1.P , V ′.C → S1.C P(y,z,const1), admittedIn(P,C), C(x)

x→ x, y → y, z → z, const1→ const1
S2($y, ?x, ?b) V ′.P → S2.P , V ′.D → S2.D, V ′.C → S2.C composedOf(C,D), treatedIn(P,D),

x→ c, y → a, const2→ b C(x),D(const2), P(y)
S3($y, $b, $c, $d, ?w) V ′.P → S3.P a, V ′.P1 → S3.P , P (y), hasP references(P, P1)

V ′.T1 → S3.T , y → a, b→ “HealthCare”, P1(“HealthCare”,“Nurse”),
c→ “Nurse′′, d→ “hasName”, w → e hasTarget(P1, T1), T1(“hasName”, w)

S3($y, $b, $c, $d, ?q) V ′.P → S3.P a, V ′.P2 → S3.P , P (y), hasP references(P, P2)
V ′.T2 → S3.T , y → a, b→ “HealthCare”, P2(“HealthCare”,“Nurse”),
c→ “Nurse′′, d→ “hasDoB”, q → e hasTarget(P2, T2), T2(“hasDoB”, q)

S3($y, $b, $c, $d, ?u) V ′.P → S3.P a, V ′.P1 → S3.P , P (y), hasP references(P, P3)
V ′.T3 → S3.T , y → a, b→ “HealthCare”, P3(“HealthCare”,“Nurse”)
c→ “Nurse”, d→ “dName”, u→ e hasTarget(P3, T1), T3(“dName”, u)

S3($y, $b, $c, $d, ?r) V ′.P → S3.P a, V ′.P1 → S3.P , P (y), hasP references(P, P4)
V ′.T4 → S3.T , y → a, b→ “HealthCare”, P4(“HealthCare”,“Nurse”),
c→ “Nurse′′, d→ “hasDisease”, r → e hasTarget(P4, T4), T4(“hasDisease”, r)

Table 8.1: The sample services along with the covered parts of the extended view V ′

assume the existence of a service S2 returning the centers and the departments where
a given patient is treated, and a service S3 returning the privacy preference of a given
patient regarding the disclosure of a given property (e.g., name, DoB, etc.) relative to
a given couple of recipient and purpose. The RDF views of these services are shown in
Figure 8.5. Table 8.1 shows our sample services and the parts they cover of vextended.
The service S2 covers the properties composedOf(C,P ) and treatedIn(P,D) and the
node D(const2 = “cardiology”), and covers from the nodes P and C the functional
properties (i.e., identifiers properties) hasName and dName that could be used to
make the connection with the other parts of vextended that are not covered by S2. The
service S3 covers the identical sub graphs involving a node of a Preferences type (e.g.,
P1, P2, P3, P4), a node of Target type (e.g., T1, T2, T3, T4) and the object properties
hasPreferences and hasTarget, hence its insertions in the third, fourth, fifth and
sixth rows of the Table 8.1.

Phase 2: Combining the relevant services: In the second phase, the algorithm
combines the different lines from the generated table (in the first phase) to cover vextended

entirely. In our example we need to combine all of Table-1’s lines to cover vextended.
vextended is expressed as follows:
Vextended($x,?y,?z,?w,?q,?u,?r)← S1($x,?y,?z)$ ∧ const1="Diabetes"

∧S2($y,?x,const2)∧ const2="cardiology"

∧S3($y,"HealthCare","Nurse","hasName",?w)

∧S3($y,"HealthCare","Nurse","hasDoB",?q)

∧S3($y,"HealthCare","Nurse","dName",?u)

∧S3($y,"HealthCare","Nurse","hasDisease",?r)



8.2. A SECURE AND PRIVACY-PRESERVING EXECUTION MODEL FOR...
113

S1

Begin

Composition Execution Plan

S2

S3

(x, y, z, di)
S3

S3

S3

Join Filter

(x, y, z, di, dep)

(x, y, z, di, w)

(x, y, z, di, u)

(x, y, z, di, q)

(x, y, z, di, r)

(x, y, z, di, dep, 

w, u, q, r)
Select Select

(x, y, z, di, dep, 

w, u, q, r)
Project

End
(y, z)

dep="Cardiology" di="Diabetes"

Figure 8.6: The Obtained Composition

8.2.5 Enforcing security and privacy constraints

The services selected in the previous step are orchestrated into a composition plan to
be executed. The composition plan defines the execution order of services and includes
filters to enforce privacy and security conditions. Figure 8.6 shows the execution plan
of the running example. The service S1 is first invoked with the name of the healthcare
center (x= “NetCARE”); the patient names obtained (denoted by the variable y) are
then used to invoke the service S3 which returns the patients’ preferences relative to
the disclosure of their properties (name, DoB, department, and disease). In parallel,
the service S2 is invoked to retrieve the departments where the patients are treated.
The results of these services are then joined. Figure 8.7 gives the outputs of the join
operator.

After the join operation has been realized, the obtained results are processed by
a privacy filter that uses the values of the properties that were added to the initial
view to evaluate the privacy constraints of the different properties that are subject
to privacy constraints in the view. Null values will be returned for properties whose
privacy constraints evaluate to False.

Privacy filters are added to the outputs of services returning privacy sensitive data.
The semantics of a privacy filter is defined as follows:

Definition 1:

Let t (resp., tp) be a tuple in the output table T (resp., Tp) of a service S returning pri-
vacy sensitive data, let n be the number of columns in T , let t[i] and tp[i] be the projected
datatype properties that are subject to privacy constraints, and let constraint(t[i]) be a
boolean function that evaluates the privacy constraints associated with t[i]. A tuple tp
is inserted in Tp as follows:



114 CHAPTER 8. SECURE AND PRIVACY-PRESERVING EXECUTION ...

y

Bob

John

z

1940

Null

The output of the Join operator The output of the Filter operator

The output of Select(const2= "cardiology")

The output of Project(y, z)

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t1

t2

y

Bob

x

John

Sue

Andy

Stacy

z

1940

1983

1977

1990

1980

w

Yes

Yes

Yes

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

NoYes

YesYes

r

Yes

Yes

No

Yes

Yes

cardiology

cardiology

cardiology

cardiology

Surgery

NetCare

NetCare

NetCare

NetCare

NetCare

Diabetes

Diabetes

Diabetes

Diabetes

Diabetes

y

Bob

x

John

Sue

Andy

Stacy

z

1940

Null

1977

1990

1980

w

Yes

Yes

Yes

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

NoYes

YesYes

r

Yes

Yes

No

Yes

Yes

cardiology

cardiology

cardiology

Null

Surgery

NetCare

NetCare

NetCare

NetCare

NetCare

Diabetes

Diabetes

Null

Diabetes

Diabetes

y

Bob

x

John

Sue

z

1940

Null

1977

w

Yes

const2

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

r

Yes

Yes

No

cardiology

cardiology

cardiology

NetCare

NetCare

NetCare

Diabetes

Diabetes

Null

const1 const2const1 const2

The output of Select(const1= "Diabetes")

t1

t2

y

Bob

x

John

z

1940

Null

w

Yes

Yes

u

Yes

q

Yes

YesNo

r

Yes

Yes

cardiology

cardiology

NetCare

NetCare

Diabetes

Diabetes

const1 const2const1

Figure 8.7: The intermediate and final results

For each tuple t ∈ T

For i = 1 to n

if constraint(t[i]) = true Then tp [i] = t[i]

else tp [i] = null

Discard all tuples that are null in all columns in Tp

Continuing with our running example, the added filter computes the values of y, z,
const1 (i.e, department) and const2 (i.e, disease) as follows:

y = y if w = “Yes”, otherwise y = Null

z = z if q = “Yes”, otherwise z = Null

const1 = const1 if u = “Yes”, otherwise const1 = Null

const2 = const2 if r = “Yes”, otherwise const2 = Null

After applying the privacy filter, the composition execution plan applies the predi-
cates of the extended view (e.g., dep =“cardiology”, and di=“Diabetes”) on the filter’s
outputs. This operation is required for two reasons: (i) to remove the tuples that the
recipient is not allowed to access according to the security policy, and (ii) to remove
the tuples that the recipient has access to, but whose disclosure would lead to a privacy
breach.

Figure 8.7 shows the output of the Select(dep= “cardiology”) operator. The tuples
t4 and t5 have been removed. t5 has been removed in compliance with the security
policy which requires the patient and recipient to be in the same department - the
patient Stacy is treated in the surgery department, whereas the recipientAlice works in



8.3. CONCLUSION AND PERSPECTIVES 115

the cardiology department). t4 was removed despite the fact that the patient and the
recipient are in the same department. Note that if t4 were disclosed, then the recipient
Alice would infer that the patient Andy is treated in the cardiology department which
violates Andy’s privacy preferences.

The Select(di= “Diabetes”) operator removes the tuple t3 by comparing the value
“Null” with the constant “Diabetes”. Note that if t3 was disclosed, then the recipi-
ent Alice would infer that the patient Sue has Diabetes which violates Sue’s privacy
preferences.

8.3 Conclusion and Perspectives

In this chapter, we tackle the problem of privacy and security management for data
services. We identify the following challenges. First, there is a need for service providers
to locally handle privacy and security concerns without affecting the code of their
business services. Second, there is a need for a model to describe and make explicit
the privacy and security concerns attached to data during the invocation process of
business services.

To address these challenges, we propose a secure, privacy-preserving execution
model for data services allowing service providers to enforce their privacy and se-
curity policies without changing the implementation of their data services (i.e., data
services are considered as black boxes). Our contribution consists of 1) a semantic
model to describe DaaS services as RDF views over domain ontologies, 2) a secure and
privacy-preserving execution model for data services that exploits our previous work
on the area of query rewriting, and 3) a prototype that demonstrates the applicability
of our model according to a scenario inspired from the healthcare domain. We provide
an implementation of our prototype for the Axis 2.0 Web service engine and discuss
our experimental results (chapter 9, section 9.3). Future work includes extending our
model to support privacy and security protection in data service composition, which
raises new problems related to relational operators such as joins and projections, and
related to composition constructs such as loops and conditions.





CHAPTER

9 Architectures and
Implementations

In this chapter we present concrete implementation of our approach fQuery. Then we
present some use cases.

This chapter is organized as follow. Section 9.1 presents the implementation of
the fQuery approach. Section 9.2 presents concrete implementation of the approach
presented in chapter 7 and shows experimental results. Section 9.3 presents the im-
plementation of the approach presented in chapter 8 which uses the fQuery module
to enforce the security and privacy policies in the execution model for data services.
Section 9.4 presents some use cases of our approach.

9.1 Implementation of fQuery

9.1.1 MotOrBAC tool

Before we present the implementation of the fQuery approach, we need first to in-
troduce the MotOrBAC tool. The MotOrBAC tool is used to implement the OrBAC
model and its administration model AdOrBAC [120]. It is developed and maintained
at Telecom Bretagne, by the SERES team. It is distributed under Mozilla licence.
It includes all the features supported by OrBAC and provides a user-friendly inter-
face (GUI) to specify and manage the security policy and also the administration
policy (more details about this tool are given in [121] and also in the MotOrBAC
website [122]). Figure 9.1 shows a screenshot of the MotOrBAC tool.

As shown in figure 9.2, the MotOrBAC tool is composed of two separate modules (1)
OrBAC API and (2) GUI, and can be extended through the use of the plug-in system.
The OrBAC application programming interface (API) manages and instantiates the
security policies. The GUI displays these policies with the associated entities.



118 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Figure 9.1: MotOrBAC Tool

9.1.2 Implementation of fQuery-AC

fQuery-AC is the implementation of the fQuery approach that enforces the access
control rules (confidentiality policy). fQuery-AC is developed in Java using the Jena-
ARQ API [123]. We developed two versions of fQuery-AC. The first one is based on
the pattern AOP (Aspect Oriented Programming). The second one uses the design
pattern Visitor provided with the Jena-ARQ API.

Version based AOP

Aspect-oriented programming (AOP) is a programming paradigm that aims to increase
modularity by allowing the separation of cross-cutting concerns [124]. There are many
implementation of that paradigm. In our case we are using the extension AspectJ.
AspectJ is an aspect-oriented extension for the Java programming language. Its aspects
can contain several entities like point-cuts, advice ... Point-cuts allow to specify join
points i.e well-defined moments in the execution of a program, for instance method call,
object instantiation, or variable access. A point-cut determines whether a given join



9.1. IMPLEMENTATION OF FQUERY 119

OrBAC API (Java API)

MotOrBAC GUI

Policy editing

Conflicts solving
Policy 

simulation

Plugins interface

Plugin1 Plugin2 Pluginn...

Separation 

constraints

Rule priorities

conflicts
Conflict 

detection 

request

Entity creation/deletion

Permission/Prohibition/Obligation

Creation and deletion

Plugin

Invocation

Figure 9.2: MotOrBAC Architecture

point matches. For example, this point-cut matches the call of the instance method
insert:

1 pointcut i n s e r tC a l l ( ) :
c a l l (void SPARQLParser10 . i n s e r t ( Tr i p l eCo l l e c t o r , int , Node , Node , Path , Node ) ) ;

A pointcut could be defined based on another point-cut. For example the following
point-cut is based on insertCall point-cut. It matches the call of the instance method
insert in an object of type SPARQLParser10:
pointcut i n s e r tT r i p l e (SPARQLParser10 par s e r ) : i n s e r tC a l l ( ) && target ( pa r s e r ) ;

Advice is used to specify code to run at a join point matched by a pointcut. The
actions can be performed before, after, or around the specified join point. The fol-
lowing example controls the execution of the method insert defined by the point-cut
insertTriple. If the condition ‘omega’ is not a simple condition then it executes the
insert method normally. Otherwise, it does another treatment (see appendix C for
more details).



120 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

1 void around(SPARQLParser10 par s e r ) : i n s e r tT r i p l e ( pa r s e r ){
i f ( ! ( omega instanceof SimpleCondit ion ) ){

3 proceed ( pa r s e r ) ;
return ;

5 }
SimpleCondit ion s cond i t i on = ( SimpleCondit ion ) omega ;

7 . . .
}

Version based Visitor

The visitor design pattern is a way of separating an algorithm from an object structure
on which it operates [125]. It offers the ability to add new operations to existing
object structures without modifying those structures. Jena-ARQ API implements this
mechanism at the algebra and syntax levels.

In our case we are interested in the syntax visitor. It provides a simple way to
get to the right parts of the query. It helps walking through the query elements and
defining specific behavior for each specific element. The appendix D shows in details
the implementation of our visitor RWElementVisitor. The following code illustrates an
example of using the visitor RWElementVisitor :

public stat ic Query trans form (Query or ig ina lQuery , Condit ion omega , boolean type ){
2 Query rwQuery = or ig ina lQuery . c l one ( ) ;

RWElementVisitor v i s i t o r = new RWElementVisitor ( omega , type ) ;
4 Element e l = rwQuery . getQueryPattern ( ) ;

v i s i t o r . v is i tAsGroup ( e l ) ;
6 return rwQuery ;

}

fQuery-AC MotOrBAC plugin

We developed a MotOrBAC plugin that (i) manages RDF conditions, (ii) assigns a
composition of RDF conditions to an OrBAC context as a definition context, (iii)
manages the abstract properties mapping and (iv) manages the alias of prefixes.

fQuery plugin is composed of four tabs. The first one (RDF conditions tab) is used
to add and manage RDF conditions as shown in figure 9.3.

The second tab “fQuery Contexts” (figure 9.4), loads OrBAC contexts that are
instance of fQueryContext. Then, it allows us to assign a composition of selected RDF
conditions to the selected instance of OrBAC context.

The third tab “Property mapping” (figure 9.5), allows defining the mapping asso-
ciated with abstract property in case of representing complex condition by an involved



9.1. IMPLEMENTATION OF FQUERY 121

Figure 9.3: Management of RDF conditions

Figure 9.4: OrBAC Context and RDF condition assignment

one (as defined in chapter 3). For instance, figure 9.5 shows an example of mapping
defined for the abstract property ‘fap:myDoctorId’.

The fourth tab “Prefixes” presented in figure 9.6 is used to define an alias for each
given prefix. This alias will be used as shortcut of the associated prefix. For example
instead of writing the following simple condition:



122 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Figure 9.5: Predicates Management: Mapping and definitions

Figure 9.6: Definition of prefixes: URI shortcut

ω(s, p, o)=(p != <http://tb.eu/patient/0.1/#dept>)
we can write simply ω(s, p, o)=(p != o:dept).



9.2. PERFS: FQUERY-PRIVACY INSTRUMENTED BY PRIVORBAC 123

9.1.3 Implementation of fQuery-Privacy

fQuery-Privacy is the implementation of the fQuery approach that enforces the pri-
vacy preferences policy of each data-owner. It is developed also in Java based on the
design pattern Visitor (element visitor) provided with the Jena-ARQ API.

We also developed a REST (REpresentational State Transfer) service for the
PrivOrBAC policy, based on the RESTFul API “JBoss RestEasy v2.3.5”. Then we
developed a SPARQL service that allows accessing users’ preferences modelled in the
PrivOrBAC policy (see section 9.2). Finally we developed a MotOrBAC plugin that
manages users’ preferences, PrivOrBAC SPARQL service, the mapping tableM (de-
fine in chapter 6, section 6.3) and allows testing our fQuery-Privacy algorithm.

fQuery-Privacy MotOrBAC plugin

fQuery-Privacy plugin is composed of three tabs. The first one entitled “Process”
(figure 9.7) allows to simulate and test our fQuery-Privacy API. It is used to rewrite
a SPARQL query then execute the initial and the rewritten query.

The second tab “Mapping”, shown in figure 9.8, is used to define and declare private
properties of given ontology. Each property declared as private will be taken into
account by the rewritten query algorithm.

The third tab “PrivOrBAC Service” (figure 9.9) is used to start/stop the PrivOr-
BAC SPARQL Service and to manage users’ preferences. It refreshes preferences (load
preferences fromMotOrBAC current policy), modify and/or delete selected preferences,
or adding new ones.

9.2 Performance of fQuery-Privacy instrumented
by PrivOrBAC

In this section, we present concrete implementation of the approach presented in chap-
ter 7 and show experimental results. Section 9.2.1 shows the architecture of our imple-
mentation and used technology. Section 9.2.2 presents a use case of our implementation.
Section 9.2.3 shows experimental results.



124 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Figure 9.7: Test and simulation screen of fQuery-Privacy algorithm

Figure 9.8: Managing private properties mappingM



9.2. PERFS: FQUERY-PRIVACY INSTRUMENTED BY PRIVORBAC 125

Figure 9.9: Managing users’ preferences and PrivOrBAC SPARQL Service

9.2.1 Architecture

Figure 9.10 shows the architecture of the implementation of our approach. It is com-
posed of three servers.

• Server 1: a server that intercepts a user’s SPARQL query1. It is implemented
using “the Embedded jetty Web Server 9.0”. Each query sent to the address
“http:localhost:8081/query/” is processed by the Query Handler component that
handles queries sent to the path “/query”. Each intercepted query is rewritten
by the “fQuery-Privacy” API [100]. Then the rewritten query is executed by the
SPARQL engine “Jena-ARQ” [123].

• Server 2: a server that proposes SPARQL services. It is implemented using the
“Embedded jetty Web Server 9.0”. The PrivOrBAC SPARQL service is accessi-
ble at the address “http:localhost:8082/privorbac/” and is based on the ontology
OWLprivacy. Each query sent to the path “/privorbac” is handled by the compo-
nent “PrivOrBAC Handler”. The later splits the received query into a composition
of PrivOrBAC services which will be executed by the “Service Execution” compo-
nent.

• Server 3: a server that stores the privOrBAC policy. User’s preferences are ac-
cessed via web services based on the REST (REpresentational State Transfer)
architecture. It is implemented using JBoss RestEasy 2.3.5 integrated with “jetty
Web Server 9.0”.

1SOH: SPARQL Over HTTP



126 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Server 1: 
http://localhost:8081/query/ 

Server 3:  
http://localhost:8083/privacy/ 

Server 2: 
http://localhost:8082/privorbac/ 

Je
tt

y 
Em

b
ed

d
ed

 w
eb

 
Se

rv
er

 9
.0

 
Jena ARQ 

2.9.4 

fQuery-
Privacy 1.0 

Q
u

e
ry

 H
an

d
le

r 

RDF 
Database 

Je
tt

y 
Em

b
ed

d
ed

 w
eb

 
Se

rv
er

 9
.0

 

P
ri

vO
rB

A
C

 H
an

d
le

r 

Service 
Execution 

Service 
Composition 

1.0 

PrivOrBAC Policy 

OrBAC API 1.2.2 

PrivOrBAC REST Services based on JBoss RESTEasy 2.3.5 

Service1: 
/dataowners 

Service2: 
/consent 

Service3: 
/accuracy 

SOH SOH 

Figure 9.10: Implementation architecture of our approach

name value
Processor 2.9GHz Intel core i7
RAM 8Go 1600MHz DDR3
System type 64-bit Operating System
OS Mac OS X 10.7.5

Table 9.1: The characteristics of the machine used for test

The characteristics of the machine used for test are shown in table 9.1. Table 9.2 shows
technologies and APIs used in our implementation.

9.2.2 Use case

This section illustrates a scenario used for test in an organization Hospital. We consider
a healthcare scenario in which a nurse Bob needs to consult the personal information
(name, age, place of birth, etc.) of patients admitted into her healthcare organization
for some medical purposes, e.g. to ensure that patients receive the right medical dosages



9.2. PERFS: FQUERY-PRIVACY INSTRUMENTED BY PRIVORBAC 127

name value
JVM Java 7
Server Embedded jetty Web Server 9.0
OrBAC API v1.2.2
RESTFul API JBoss RestEasy v2.3.5
SPARQL Engine Jena-ARQ v2.9.4

Table 9.2: Technology used for the implementation

corresponding to their ages, etc. We assume that the privacy policy defined in that
healthcare organization for nurses is as follows:

• Nurses are allowed to see the admitted department of all patients.

• Nurses are allowed to see the age of patients who agree to disclose their age to the
requestor.

• Nurses are allowed to see the place of birth of patient only for medical treatment
purposes.

• Nurses are allowed to see the name of patients who agree to disclose their name
to the requestor and only for medical treatment purposes.

To define the OrBAC organizational policy of Hospital, we consider the following
simple entities:

• Roles: Nurse

• Activities: Read_activity

• Views: Name_view, Age_view, Dept_view and Birthplace_view

• Contexts: Consent, Medical_Analysis, Nominal

Then we consider the OrBAC policy corresponding to the permissions assigned to
‘Nurse’:

• Permission(Hospital, Nurse, Read_activity, Dept_view, Nominal)

• Permission(Hospital, Nurse, Read_activity, Age_view, Consent)

• Permission(Hospital, Nurse, Read_activity, Birthplace_view, Medical_Analysis)



128 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

• Permission(Hospital, Nurse, Read_activity, Name_view, Consent & Medi-
cal_Analysis)

Finally we filled PrivOrBAC policy with 2000 preferences of 1000 patients. The scenario
that we consider to check our approach, is as follows. Bob is empowered to the role
Doctor. We consider three cases.

• (i) Bob tries to get age, department and birthplace of the patient Alice.

• (ii) Bob tries to get name, age, department and birthplace of patients who are less
than 20 years old.

• (iii) Bob tries to get name, age, department and birthplace of all patients.

We assume that in all cases, Bob declares the purpose Medical_Treatment.

In the Case (i), the SPARQL query Q1 corresponding to Bob request is as follows:
1 SELECT ? age ? dept ?bp WHERE {

?p rd f : type o : Pat ient ;
3 o : name " A l i c e " ; o : age ? age ;

o : b i r t hp l a c e ?bp ; o : dept ?d .
5 ?d o : deptName ?dept .

}

The query Q1 will be normalized before being rewritten. The normalized query QN1 is
as follows:
SELECT ? age ? dept ?bp WHERE {

2 ?p rd f : type o : Pat ient ; o : name ?name ; o : age ? age ;
o : b i r t hp l a c e ?bp ; o : dept ?d .

4 ?d o : deptName ?dept . FILTER(?name=" Al i c e " )
}

In the case (ii), the SPARQL query Q2 corresponding to Bob request in this case is as
follows:

1 SELECT ?name ? age ? dept ?bp WHERE {
?p rd f : type o : Pat ient ; o : name ?name ; o : age ? age ;

3 o : b i r t hp l a c e ?bp ; o : dept ?d .
?d o : deptName ?dept . FILTER(? age <= 20)

5 }

The normalized query QN2 of Q2 is the same (QN2 = Q2).

In the case (iii), the SPARQL query Q3 issued by Bob in this case is as follows:
1 SELECT ?name ? age ? dept ?bp WHERE {

?p rd f : type o : Pat ient ; o : name ?name ; o : age ? age ;
3 o : b i r t hp l a c e ?bp ; o : dept ?d .

?d o : deptName ?dept .
5 }



9.2. PERFS: FQUERY-PRIVACY INSTRUMENTED BY PRIVORBAC 129

The normalized query QN3 of Q3 is the same (QN3 = Q3).

The rewritten query Qrw3 of QN3 contains a block of service that allows remote
access to privacy preferences (see figure 9.11). In our case we are using the Jena-
ARQ API as SPARQL engine to evaluate our queries. In Jena-ARQ implementation,
the algebra operation is executed while disregarding how selective the pattern is. So
the order of the query will affect the speed of execution. Because it involves HTTP
operations, asking the query in the right order matters a lot [123]. So inserting the block
service at the beginning of the query means that the SPARQL engine will first execute
the remote query before proceeding the local data. That means that the Engine will
get preferences defined for targets name, age, birthplace and department of all patients.
So the execution time of the rewritten query depends on the privacy server response
time (privacy SPARQL endpoint) and the time of applying inserted bindings.

As we can see, queries QN1, QN2 and QN3 have the same triples pattern in the
where clause portion. In the rest of this section we will study the case of the query
QN3. The same approach is valid for QN1 and QN2.

9.2.3 Experimental results

For each case illustrated in the above section, firstly we execute Bob’s initial queries
directly over RDF databases i.e without rewriting process. Secondly we rerun the same
test using our transformation approach. Then we show the execution time between the
two executions. We fixed the number of privacy preferences defined on PrivOrBAC to
2000 preferences and 1000 data-owners.

Figure 9.12 shows the execution time of initial queriesQ1, Q2 andQ3. The execution
time varies from 3 to 50 milliseconds. It depends on the filters of queries. The execution
time of the query Q3 is greater than the one of other queries, because the query Q3

selects the information (name, age, birthplace and department) of all patients of the
database.

Figure 9.13 show the execution time of the rewritten queries Qrw1, Qrw2 and Qrw3 of
Q1, Q2 and Q3 respectively. This time includes the server 2 response time (SPARQL
Privacy Service) where the average is about 1100 ms. The execution time of the
rewritten queries varies from 1200 to 2900 milliseconds.

As shown in figure 9.13, the execution time of the rewritten query of Q3 is less
than the other two queries. It is due to the normalization of the initial queries before
applying the rewriting algorithm. That is, when we normalize a query, we transform
all implicit filters into explicit ones. Since the explicit filters are applied at the end of



130 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

1 PREFIX p : <http :// orbac . org /privOrBAC/ endpoint#>
PREFIX o : <http :// tb . eu/ pa t i en t /0.1/#>

3 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX udf : <http :// orbac . org /privOrBAC/UserDef inedFunction#>

5 SELECT ?name ? age ? dept ?bp WHERE {
#s e r v i c e Block

7 SERVICE <http :// l o c a l h o s t :8082/ pr ivorbac />
{ ?do rd f : type p : DataOwner ;

9 p : hasId ?name_1 ;
p : hasPre f e r ence ? p r e f .

11 ? p r e f p : hasPurpose "Medical_Treatment " ;
p : hasRec ip i ent "Bob" ;

13 p : hasTarget ? t0 .
? t0 p : hasName "name" ;

15 p : hasDec i s ion ? nameDecision .
OPTIONAL { ? t0 p : hasAccuracy ?nameAccuracy}

17 ? p r e f p : hasTarget ? t1 .
? t1 p : hasName " age " ;

19 p : hasDec i s ion ? ageDec i s ion .
OPTIONAL { ? t1 p : hasAccuracy ? ageAccuracy}

21 ? p r e f p : hasTarget ? t2 .
? t2 p : hasName " dept " ;

23 p : hasDec i s ion ? deptDec i s ion .
OPTIONAL { ? t2 p : hasAccuracy ? deptAccuracy}

25 ? p r e f p : hasTarget ? t3 .
? t3 p : hasName " b i r t hp l a c e " ;

27 p : hasDec i s ion ? b i r t hp l a c eDec i s i on .
OPTIONAL { ? t3 p : hasAccuracy ? b i r thp laceAccuracy }

29 }
{ #i n i t i a l normal ized query with new va r i a b l e s

31 ?p rd f : type o : Pat ient ;
o : dept ?d .

33 ?d o : deptName ?dept_1 .
?p o : age ?age_1 ;

35 o : b i r t hp l a c e ?bp_1 ;
o : name ?name_1 .

37 #Applying p r e f e r e n c e s
BIND( i f ( ( ? nameDecision = "No" ) , "−" ,

39 i f (bound(? nameAccuracy ) , udf : eva l (?name_1 , ? nameAccuracy ) , ?name_1) ) AS ?name)
BIND( i f ( ( ? ageDec i s ion = "No" ) , "−" ,

41 i f (bound(? ageAccuracy ) , udf : eva l (? age_1 , ? ageAccuracy ) , ?age_1 ) ) AS ? age )
BIND( i f ( ( ? deptDec i s ion = "No" ) , "−" ,

43 i f (bound(? deptAccuracy ) , udf : eva l (? dept_1 , ? deptAccuracy ) , ?dept_1 ) ) AS ? dept )
BIND( i f ( ( ? b i r t hp l a c eDec i s i on = "No" ) , "−" ,

45 i f (bound(? b i r thp laceAccuracy ) ,
udf : eva l (?bp_1 , ? b i r thp laceAccuracy ) , ?bp_1 ) ) AS ?bp)

47 }
}

Figure 9.11: The rewritten query Qrw3 of QN3



9.3. PERFORMANCE OF SECURE AND PRIVACY-PRESERVING EXECUTION
MODEL FOR DATA SERVICES 131

Figure 9.12: Execution time of initial queries Q1, Q2 and Q3

the query evaluation, and queries Qrw1, Qrw2 and Qrw3 have the same triples pattern,
then the execution time of the three rewritten queries Qrw1, Qrw2 and Qrw3 will depend
on their filter execution time. Qrw3 has no filter that is why the execution time is less
than the other queries.

9.3 Performance of Secure and Privacy-preserving
Execution Model for Data Services

In this section, we present the implementation of the approach presented in chapter 8
which uses the fQuery module to enforce the security and privacy policies in the
execution model for data services. The following implementation is developed by SOC
Team (Service Oriented Computing) 2 using our fQuery API.

2Computer Science Department - IUT A, Claude Bernard Lyon I University



132 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Figure 9.13: Execution time of rewritten queries Qrw1, Qrw2 and Qrw3

9.3.1 Implementation

In order to validate and evaluate our proposal, we exploited the extensibility support
provided by Axis 2, specifically the ability to deploy user modules, to implement our
privacy-preserving service invocation model. As shown in Figure 9.14, we extended the
AXIS 2.0 architecture with a privacy module consisting of two handlers: the Input
and Output handlers, detailed as follows.

Input Handler : This handler intercepts incoming SOAP messages and uses the
AXIOM API (http://ws.apache.org/axiom/) to extract context information and
the request contents, which are then stored into an XML file. The context information
of the request is extracted from the SOAP header and contains the recipient identity
and the purpose of the invocation. The business service in then invoked by our Axis2
engine.

Output Handler : The output handler intercepts the output SOAP response message
before it is sent out of the service engine and makes sure that it complies with the ap-
plicable privacy and security policies. To do so, the RDF View Modification component

http://ws.apache.org/axiom/


9.3. FQUERY: EXECUTION MODEL FOR DATA SERVICES 133

AXIS 2.0

OUT

Handler
IN

Handler

Transport 

Sender

AXIS 

Internal 

Processing

OutFlow

Transport 

Listner

InFlow

AXIS 

Internal 

Processing

Service Consumer

SOAP Message SOAP Message

OUT Handler

OUT Message 

Interception

RDF View 

Extraction

RDF View 

Modification

RDF View 

Rewriting

Composition 

Execution

Results 

Filtering
OUT Message 

Construction

WSDL-S

Files Privacy & Security 

Policies
Privacy & Security 

Policies
Privacy & Security 

Policies

Privacy sanitized 

output message

Composition

Figure 9.14: The extended architecture of AXIS 2.0

parses the security and privacy policies associated with the invoked service using the
DOM API and extracts the rules that apply to the accessed data items for the recip-
ient and the purpose at hand. It rewrites the RDF view to take into account these
extracted rules as explained in the previous sections. Then, the RDF View Rewriting
component decomposes the obtained extended view into a set of calls to data services
that retrieve the different data items requested by the extended view. The obtained
composition is then executed. As a final step, the Result Filtering component enforces
the privacy and the security constraints on the obtained results. The output SOAP
message is built and the filtered results are sent to the service consumer.

9.3.2 Evaluation

To evaluate the efficiency of our model, we applied it to the healthcare do-
main. In the context of the PAIRSE Project (http://picoforge.int-evry.fr/cgi-
bin/twiki/view/Pairse/), we were provided with a set of /411/ medical data services
accessing synthetic medical information (e.g., diseases, medical tests, allergies, etc) of
more than /30,000/ patients. The access to these medical data was conditioned by a
set of /47/ privacy and security rules. For each patient, we have randomly generated
data disclosure preferences with regard to /10/ medical actors (e.g., researcher, physi-
cian, nurse, etc.) and different purposes (e.g., scientific research). These preferences
are stored in an independent database and accessed via /10/ data services, each giving
the preferences relative to a particular type of medical data (e.g., ongoing treatments,
allergies, etc.). We deployed all of these services on our extended AXIS server running
on a machine with 2.2GHz of CPU and 8GB of memory.



134 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

0

1000

2000

3000

4000

5000

6000

7000

Q1 Q2 Q3

Without Privacy

Preservation

With Privacy

Preservation

ms

0

1000

2000

3000

4000

5000

6000

7000

8000

Q1 Q2 Q3

Without Privacy

Preservation

With Privacy

Preservation

ms

1-class-node 

services

3-class-node 

services

5-class-node 

services

Without security & 

privacy enforcement

With security & 

privacy enforcement

Without security & 

privacy enforcement

With security & 

privacy enforcement

1-class-node 

services

3-class-node 

services

5-class-node 

services

0

1000

2000

3000

4000

5000

6000

7000

0

1000

2000

3000

4000

5000

6000

7000

8000

Set 1 Set 2

Figure 9.15: The experimental results
We conducted a set of experiments to measure the cost incurred in the enforcement

of security and privacy policies during the service invocation. Specifically, we evaluated:
(i) the cost c1 incurred in computing the extended view and writing it in terms of
services, and (ii) the cost c2 incurred in enforcing the security and privacy constraints
on retrieved data (i.e., the cost incurred in the filters). For that purpose, in the first
set of experiments we executed the services to return the medical information about
one given patient (e.g., patient Bob). In the second set, we executed the same services
to return the medical information for all patients. In the first set of experiments,
as the services return the information of one patient only, c2 can be neglected and
remains only c1. In the second set, c2 is amplified by the number of processed patients.
The executed services in our experiments were selected such that they have different
sizes of RDF views (namely, /1/ class-node, /3/ class-nodes, and /5/class-nodes). The
invocations were made by the same actor (a researcher) and for the same purpose
(medical research). Figure 9.15 depicts the results obtained for the invocations in
Sets 1 and 2. The results for Set 1 show that security and privacy handling adds
only a slight increase in the service invocation time. This could be attributed to the
following reasons: (i) the time needed to inject the security and privacy constraints
in the service’s RDF view is almost negligible, (ii) rewriting the vextended in terms of
services is not expensive, as most of vextended’s graph is already covered by voriginal and
the size of (∆v) does not exceed generally 20% of the size of voriginal, and finally (iii)
there is no network overhead incurred in invoking the additional services as they are
already deployed on the server. The results for Set 2 show that c2 is still relatively
low if compared to the time required for executing the services without addressing the
security and privacy concerns.



9.4. USE CASES 135

Business Applications

SPARQL

MEDIATOR

ReconciliationAnalyze Rewriting Orchestration Optimization

A
G

G
R

E
G

O
 S

E
R

V
E

R

Adapter AdapterAdapterAdapterAdapter

Web servicesXMLRDMS Files
Business 

Applications

Ontology

RDFS

Views

WSDL 2.0

}

Figure 9.16: AGGREGO Server architecture

9.4 Use cases

9.4.1 AGGREGO Server

AGGREGO [27] is a commercial semantic mediation system. It uses SPARQL as query
language. Figure 9.16 shows the AGGREGO architecture.

AGGREGO does not take into account security issues and privacy requirements. Its
main goal is the management of heterogenous sources and database integration. Our
goal is to integrate our component fQuery into AGGREGO in order to handle and
take into account the security and privacy requirements. fQuery produces queries that
are expressed in SPARQL 1.1. However AGGREGO does not supports SPARQL 1.1,
it supports only queries that are expressed in SPARQL 1.0. fQuery-AC could be
configured in order to produce queries that are expressed in SPARQL 1.0 (see chapter 3
for more details). However, fQuery-Privacy output contains a service block which is
not supported by SPARQL 1.0. So, the output of the privacy rewriting algorithm could
not be used as an input of the AGGREGO system.

To solve this problem, we proposed and developed a component Smart-fQuery,
based on fQuery-AC and fQuery-Privacy and SPARQL engine (Jena-ARQ for
SPARQL 1.1). Figure 9.17 illustrates the architecture of the component Smart-fQuery.



136 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Smart-fQuery component is located between the mediator and the business appli-
cations. It considers the AGGREGO mediator as datasource accessible via a SPARQL
service. It intercepts SPARQL query Q0 issued by a business application. Afterwards
it rewrites Q0 into Q1 using fQuery-AC. Then it rewrites Q1 into Q2 using fQuery-
Privacy such that Q2 contains two service blocks. The first one aims to invoke the
mediator in order to get the corresponding data (Qdata) and the second one aims to get
corresponding preferences (Qpref ). Finally Q2 is executed by the SPARQL engine 1.1.

Let us take an example to illustrate the approach. We assume that a doctor Bob
is allowed to see information of his patients. Bob is trying to select the name and age
of all patients. So the SPARQL query Q0 issued by Bob is as follow:
SELECT ?name ? age

2 WHERE {
?p rd f : type O: Pat ient .

4 ?p O: hasName ?name .
?p O: hasAge ? age .

6 }

fQuery-AC

(SPARQL 1.0)

fQuery-Privacy

(SPARQL 1.1)

Q0

Q1

Q2S
m

a
rt

-f
Q

u
e

ry
 

C
o

m
p

o
n

e
n

t

AGGREGO Server

Qdata

Access Control 

Rules

PrivOrBAC 

SPARQL Service

Qpref

MotOrBAC

S
e

c
u

rity
 P

o
lic

y

Business Applications

SPARQL Engine

(SPARQL 1.1)

Figure 9.17: Smart-fQuery component architecture



9.4. USE CASES 137

We assume that a business application issues the query Q0 on-behalf of Bob. Q1,
the rewritten query of Q0 using fQuery-AC, is as follows:
SELECT ?name ? age

2 WHERE {
?p rd f : type O: Pat ient .

4 ?p O: hasName ?name .
?p O: hasAge ? age .

6 {
?p O: myDoctor ?d .

8 ?d rd f : type O: Doctor .
?d O: hasId "Bob" .

10 }
}

Q1 is then rewritten into Q2 using fQuery-Privacy as follows:
1 SELECT ?name ? age

WHERE {
3 # Q_data : mediator

SERVICE <http :// l o c a l h o s t /mediator / aggrego>{
5 ?p rd f : type O: Pat ient .

?p O: hasName ?name_1 .
7 ?p O: hasAge ?age_1 .

{
9 ?p O: myDoctor ?d .

?d rd f : type O: Doctor .
11 ?d O: hasId "Bob" .

}
13 }

# Q_pref : privOrBAC s e r v i c e
15 SERVICE <http :// l o c a l h o s t :8082/ pr ivorbac>{

?do rd f : type p : DataOwner ;
17 p : hasId ?name_1 ;

p : hasPre f e r ence ? p r e f .
19 ? p r e f p : hasPurpose " purpose−1" ;

p : hasRec ip i ent "Bob" ;
21 p : hasTarget ? t0 .

? t0 p : hasName "name" ;
23 p : hasDec i s ion ? nameDecision .

OPTIONAL { ? t0 p : hasAccuracy ?nameAccuracy}
25 ? p r e f p : hasTarget ? t1 .

? t1 p : hasName " age " ;
27 p : hasDec i s ion ? ageDec i s ion .

OPTIONAL{ ? t1 p : hasAccuracy ? ageAccuracy}
29 }

#Applying p r e f e r e n c e s
31 BIND(IF ( ( ? nameDecision = "No" ) , "−" ,

IF (bound(? nameAccuracy ) , udf : eva l (?name_1 , ? nameAccuracy ) , ?name_1) ) AS ?name)
33 BIND(IF ( ( ? ageDec i s i on = "No" ) , "−" ,

IF (bound(? ageAccuracy ) , udf : eva l (? age_1 , ? ageAccuracy ) , ?age_1 ) ) AS ? age )
35 }



138 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

So the SPARQL query Qdata that will be executed by the mediator is as follows:
1 SELECT ∗ WHERE {

?p rd f : type O: Pat ient .
3 ?p O: hasName ?name_1 .

?p O: hasAge ?age_1 .
5 {

?p O: myDoctor ?d .
7 ?d rd f : type O: Doctor .

?d O: hasId "Bob" .
9 }

}

9.4.2 PAIRSE

The ANR PAIRSE project [126] addresses the challenges of heterogeneity and efficient
query-processing for the need of data sharing in P2P environments, by advancing a
web service-based approach and by taking into account the data privacy dimension.
In the PAIRSE framework (see figure 9.18), there are two types of query processing;
Single and Multi Peer query processing.

In Single query processing, the peer handles local queries which are issued against
its local ontology by local users. Queries are expressed in the SPARQL query language.
Local queries are resolved using local data-providing web services (DP) and a service
composition approach based on an efficient RDF query rewriting algorithm. The later
takes as input the query Q and the defined RDF views of local services, and produces
as an output a composition of DP services that would answer the query.

In the multi peer query processing mode (MPQP), there are some interaction with
other peers in the network for the resolution of a query (either a global query or local
query that cannot be answered locally). The query has to be splited into sub-queries
(SPARQL queries). The component MPQP determines which sub-queries can be solved
locally. For parts which cannot be solved locally, they will be relayed on to neighboring
peers for processing.

There are two levels of security policy: (i) global policy and (ii) local policy. Global
policy is the commun policy defined for all PAIRSE peers. Local policy is specific to a
PAIRSE peer. Figure 9.19 illustrates the integration of our approach fQuery into the
PAIRSE framework. The global policy is enforced by the smart-fQuery component
which is integrated between a user and PAIRSE peer. The local policy is enforced by
the local service provider using the approach presented in chapter 8.



9.4. USE CASES 139

Figure 9.18: General architecture of the PAIRSE framework



140 CHAPTER 9. ARCHITECTURES AND IMPLEMENTATIONS

Smart

fQuery
PAIRSE Peer

Q1 Q0

Local policy

fQuery inside service 

composition

Sub-queries 

SQi

Web services

Global policy

Figure 9.19: fQuery Component integration in PAIRSE framework



CHAPTER

10 Conclusion and
perspectives

In this thesis we present an approach that enforces the security and privacy require-
ments based on pre-processing principle for SPARQL query language. It is to rewrite
the SPARQL user query such that the execution of the rewritten query returns only
authorized data with respect to some confidentiality and privacy preferences policy.
Moreover, the rewriting algorithm is instrumented by an access control model (OrBAC)
for confidentiality constraints and a privacy-aware model (PrivOrBAC) for privacy con-
straints. We take into account various dimensions of privacy preferences through the
concepts of consent, accuracy, purpose and recipient. However, obligations are not yet
taken into account. A possible extension will be to handle provisional obligations.

We show also that the algorithm used in the case of select queries could not be used
for update ones. So, we present another approach for update queries, based on query
rewriting. This approach aims to rewrite SPARQL update queries without disclosing
some other sensitive data whose access would be forbidden through select queries.

Then we present a use case of our approach in the case of web services. We proposed
a secure and privacy-preserving execution model for data services. Our model exploits
the services’ semantics to allow service providers to enforce locally their privacy and
security policies without changing the implementation of their data services i.e., data
services are considered as black boxes. We integrated our model to the architecture
of Axis 2.0 and evaluated its efficiency in the healthcare application domain. The
obtained results are promising. As a future work, we plan to address data privacy
concerns when composing autonomous data services with conflicting privacy policies.

We show also that our approach fQuery could be integrated in mediation system,
as AGGREGO Server [27], Humboldt Discoverer [25] and Semantic Agreement [26], in
order to :



142 CHAPTER 10. CONCLUSION AND PERSPECTIVES

• enforce the global policy1 by adding the fQuery module among the mediator as
illustrated in chapter 9.

• enforce the local policy2 by implementing the secure web services model presented
in chapter 8.

Perspectives

Correctness

Our approach satisfies the security criteria. However, the maximality and soundness
criteria may not be satisfied like in the case of query with filters as illustrated in
chapter 6. it depends on the semantic of SPARQL filters and how they interpret
obfuscated and anonymized data. An interesting future work is to extend the semantic
of SPARQL filters, in the case of obfuscated data, in order to preserve the soundness
and maximality criteria. For instance, the comparaison operators could be extended
in order to interpret and compare intervals and numbers.

RDFS: RDF Schema

The actual version of fQuery does not take into account all RDFS properties. For
instance, the inheritance of concepts (classes). Let Person and Employee be two con-
cepts such that Employee inherits from Person. Normally, if a user is not allowed to
see properties of individuals of Person concept, then he is not allowed to see proper-
ties of individuals of Employee concept. But this inference is not yet implemented by
fQuery. There are two possible ways to add this into our approach. The first one is to
integrate the inference process into the instrumentation process (dynamic approach).
The second one is to infer all possible policy rules form the RDFS ontology of the
system (where the SPARQL query is expressed) and the existing policy rules (static
approach) without changing the actual version of fQuery.

Extending Query Normalization

SPARQL queries that contain patterns where predicates are variables (SPARQL vari-
ables), are not supported by the current version of fQuery approach. This kind of

1security policy defined at the mediator level
2security policy defined at each source provider level



143

queries are rejected from the normalization step, because they have more than one in-
terpretation, i.e. they could match with more than one property or concept of the main
ontology. For example the following query returns all the triples stored in databases:

SELECT ?s ?p ?o
WHERE{
?s ?p ?o
}

Actually the query normalization transforms implicit filters to explicit ones. A
possible extension is to take into account this kind of queries. For example, in the
normalization step we generate possible queries by replacing predicates variables with
a concrete value, then rewriting each query.





APPENDIX

A Mise en oeuvre de
politiques de
protection de données
à caractère personnel:
une approche
reposant sur la
réécriture de requêtes
SPARQL

A.1 Introduction

Les travaux présentés dans cette thèse consistent à développer des algorithmes de
réécriture de requêtes d’accès aux ressources basés sur des langages ontologiques. Nous
nous intéressons plus particulièrement aux requêtes exprimées dans le langage SPARQL
sur une base de données RDF. Il s’agit de montrer que ces algorithmes permettent
d’assurer la protection de la vie privée lors de la composition de web services pour
satisfaire ces requêtes.

En premier lieu, nous avons défini des algorithmes de réécriture des requêtes
SPARQL pour assurer la confidentialité des données reposant sur le langage ontologique
RDF. Dans cette approche, que nous avons appelée fQuery, nous modélisons une poli-
tique de confidentialité comme un ensemble de filtres positifs et négatifs (correspon-



146 APPENDIX A. FQUERY: RÉÉCRITURE DE REQUÊTES SPARQL

dant respectivement à des autorisations et interdictions) qui s’appliquent aux requêtes
SPARQL.

En deuxième lieu, nous avons défini d’autres algorithmes de réécriture visant à
protéger les requêtes de mise à jour SPARQL/Update en utilisant la transformation de
requête. Ils assurent la confidentialité et l’intégrité des documents RDF. Ils consistent à
contrôler la cohérence entre les politiques de mise à jour et de consultation des données
(entre les opérateurs ‘select’ et ‘update’). L’approche utilisée reste aussi valable pour
les autres modèles comme le modèle des vues pour SQL et le modèle de Stonebraker
pour les bases de données INGRES. Enfin, nous avons implanté un prototype, pour
l’approche fQuery.

En troisième lieu, nous avons montré la possibilité de représenter et d’exprimer
une telle politique de sécurité avec le même langage de spécification utilisé par le
modèle de contrôle d’accès OrBAC [8]. Dans l’approche fQuery, la politique de contrôle
d’accès est spécifiée par un ensemble de filtres. Ces derniers sont représentés dans le
modèle OrBAC sous forme de conditions logiques du premier ordre à l’aide de l’entité
“Contexte”. En outre, nous avons défini une approche qui instrumente les algorithmes
de réécriture cités auparavant par un modèle de contrôle d’accès tel que OrBAC [8] ou
RBAC [57]...

En quatrième lieu, nous avons défini une nouvelle approche qui prend en compte la
dimension de “privacy” reposant sur la réécriture des requêtes SPARQL. Nous mod-
élisons la politique de préférences des utilisateurs à l’aide du modèle de privacy PrivOr-
BAC (basé sur le modèle de contrôle d’accès OrBAC). Afin de simplifier l’accès aux
préférences des utilisateurs via le langage SPARQL, nous avons défini une ontolo-
gie de préférence qui consiste à représenter le point d’entrée aux services du modèle
PrivOrBAC. Cette ontologie est instrumentée par le modèle PrivOrBAC. Le but de
cette approche est d’assurer la prise en charge des contraintes de sécurité (préférences)
définies par les possesseurs des données.

En cinquième lieu, nous avons intégré nos approches dans le cas de composition des
services web. Dans le cas d’une composition normale, lorsqu’un utilisateur exprime sa
demande, une liste des algorithmes propose à celui-ci une composition des services qui
couvre sa demande. Dans l’autre cas (l’ajout des contraintes de sécurité), la demande
de l’utilisateur subira des modifications en lui rajoutant des contraintes de sécurité et
de privacy à l’aide des algorithmes de réécriture définis auparavant. Le résultat de
cette réécriture est composé d’une liste des filtres F et d’une nouvelle demande D qui
sera l’entrée des algorithmes de composition de services. Le résultat de l’invocation de
la composition de D sera filtré à l’aide de l’ensemble de filtres F.



A.2. GÉNÉRALITÉS 147

En dernier lieu, nous avons implanté notre approche fQuery. Ensuite nous l’avons
intégré dans plusieurs systèmes comme AGGREGO [27], PAIRSE et dans des systèmes
de gestion de composition des services web.

A.2 Généralités

RDF [10](Resource Definition Framework) est un modèle de graphe pour décrire les
données. Il est basé sur l’idée de représenter des ressources (en particulier les ressources
Web) sous la forme d’expressions de type sujet-prédicat-objet. Ces expressions sont
appelées des triplets dans la terminologie RDF. Le “sujet” représente la ressource à
décrire, le “prédicat” représente les propriétés ou les aspects de la ressource et exprime
une relation entre le sujet et l’objet. Par exemple, une façon de représenter la proposi-
tion “le salaire de Bob est 60K” est le triplet : un sujet noté “Bob”, un prédicat noté
“a le salaire” et un objet noté “60K”. Une collection des déclarations RDF représente
un multi-graphe orienté. En tant que tel, un modèle de données RDF est plus adapté à
certains types de représentations des connaissances que le modèle relationnel et d’autres
modèles ontologiques traditionnellement utilisés dans l’informatique d’aujourd’hui.

En pratique, de plus en plus de données sont stockées dans des formats RDF. Ceci
a donné naissance au besoin d’un moyen simple d’extraire et localiser des informations
spécifiques. SPARQL [13] est un langage de requête puissant qui remplit ce besoin. Il
facilite la recherche des données dans un graphe RDF. Il est standardisé par le groupe
de travail Data Access du Consortium W3C, et est considéré comme une technologie
clé du web sémantique. Une requête SPARQL est composée de motifs de graphe
(graph patterns) obligatoires ou optionnels ainsi que de leurs conjonctions ou de leurs
disjonctions. Par exemple, la requête ci-dessous retourne les noms et les salaires de
tous les employés.
PREFIX emp :<http :// tb . eu/ employer /0 .1/>

2 SELECT ?nom ? s a l a i r e
WHERE {

4 ? employe rd f : type emp : Employe .
? employe emp :nom ?nom.

6 ? employe emp : s a l a i r e ? s a l a i r e .
}

La syntaxe de SPARQL ressemble à celle de SQL. Mais l’avantage de SPARQL est
de permettre des requêtes s’appliquant à de multiples sources disparates (locales ou
distantes) de données contenant des données hétérogènes semi-structurées. Puisque
une requête SPARQL peut accéder à des données confidentielles, il est nécessaire de
concevoir des mécanismes de sécurité pour contrôler l’évaluation des requêtes SPARQL



148 APPENDIX A. FQUERY: RÉÉCRITURE DE REQUÊTES SPARQL

Avant la transformation Après la transformation

SELECT ?name ? s a l a r y
WHERE
{

? employee rd f : type emp : Employee .
? employee f o a f : name ?name .
? employee emp : s a l a r y ? s a l a r y .

}

SELECT ?name ? s a l a r y
WHERE
{

? employee rd f : type emp : Employee .
? employee f o a f : name ?name .
Optional {

? employee emp : s a l a r y ? s a l a r y .
Filter (? sa la ry <60000)

}
}

Table A.1: Exemple de transformation de requête

et empêcher les divulgations non autorisées de données confidentielles et des données
relatives à la vie privée.

Notre approche consiste à réécrire une requête SPARQL en appliquant des filtres
SPARQL. Lorsqu’un utilisateur envoie sa requête SPARQL au serveur, notre système
l’intercepte de manière à vérifier les règles de sécurité s’appliquant à cet utilisateur.
Il réécrit ensuite la requête en ajoutant les filtres SPARQL correspondants. Enfin, le
résultat de l’exécution de la requête réécrite est envoyé à l’utilisateur.

A.3 fQuery-AC: Principe de base

fQuery-AC est le nom de l’approche qui assure la confidentialité des données. Prenons
un exemple de transformation de requête pour illustrer notre approche. Nous supposons
que l’utilisateur Bob essaie de sélectionner les noms et les salaires des employés. Nous
supposons également que Bob n’est pas autorisé à voir les salaires des employés qui
gagnent plus que 60K. Le tableau A.1 montre la requête SPARQL de Bob, avant
et après la transformation. La présence de la partie OPTIONAL dans la requête
transformée en fait une requête disjonctive. Cela signifie que si la condition à l’intérieur
de la clause OPTIONAL est fausse, alors la valeur de la variable salaire est affectée à
NULL.

La politique de contrôle d’accès est basée sur des définitions de filtres. Pour chaque
utilisateur ou groupe d’utilisateurs, nous définissons un ensemble de filtres. Selon le
type de la politique de sécurité, nous considérons deux types de filtres : (1) des filtres
positifs correspondant à des permissions et (2) des filtres négatifs correspondant à des
interdictions.



A.4. FQUERY-PRIVACY: PRINCIPE DE BASE 149

Ces filtres peuvent être associés à une condition simple ou une condition composée.
Les filtres associés à une condition composée fournissent les moyens de protéger les
associations. Dans notre approche, nous supposons que lorsqu’un utilisateur formule
une requête, nous pouvons obtenir des informations supplémentaires sur cet utilisateur,
comme son identité. Ces informations peuvent être utilisées dans la définition du filtre.

Les filtres fournissent une approche générique pour représenter une politique de con-
trôle d’accès pour les documents RDF qui n’est pas reliée à un langage spécifique. En
outre, nous avons montré la possibilité de représenter et d’exprimer une telle politique
de sécurité avec le même langage du modèle de contrôle d’accès OrBAC. Les filtres
sont représentés dans le modèle OrBAC sous forme de conditions logiques du premier
ordre à l’aide de l’entité “Contexte”.

Dans le cas de mise à jour, la réécriture se fait en deux étapes. La première étape
consiste à satisfaire les contraintes de mise à jour. La deuxième est de traiter la
cohérence entre les règles de mise à jour et celles de consultation afin d’éviter des
violations des règles de confidentialité en effectuant des mises à jour. Le principe de
l’approche consiste (i) à restreindre la modification de la requête de l’utilisateur sur
l’ensemble des données que l’utilisateur a le droit de modifier. Ensuite (ii) contrôler les
conditions de la clause WHERE de la requête de mise à jour afin de limiter la lecture
sur l’ensemble des données que l’utilisateur a le droit de consulter.

A.4 fQuery-Privacy: Principe de base

fQuery-Privacy est le nom de l’approche que nous proposons pour protéger la vie
privée des utilisateurs. Elle consiste à réécrire la requête de l’utilisateur de sorte que les
préférences des propriétaires des données soient prises en compte. Nous nous sommes
focalisés sur les législations nationales et les conventions internationales [82, 83, 84, 85,
86, 87] en vigueur pour déduire les principes de la vie privée. Nous avons extrait les
cinq dimensions qui sont repris par la majorité de ces lois:

• Le Propriétaire de la donnée: Le propriétaire est la personne physique que ces
données permettent d’identifier directement ou indirectement. Il a un droit
d’opposition sur ses données sur une simple demande.

• La Spécification de l’objectif : l’objectif de la collecte ou la consultation doit être
spécifié avant d’accéder aux données.

• Le Demandeur : La personne à qui ces données vont être divulguées.



150 APPENDIX A. FQUERY: RÉÉCRITURE DE REQUÊTES SPARQL

• La précision: La précision à appliquer sur les données après avoir eu l’autorisation
d’y accéder.

• Le contrôle d’usage: Contrôler l’usage des données après y avoir accédé.

Les étapes de réécriture peuvent être résumées par les points suivants:

• La requête initiale est réécrite en insérant un appel au service de préférences et en
insérant les contraintes de sécurité correspondantes.

• La réécriture a pour objectif d’assurer l’exécution de la requête réécrite (i)
récupère les données (ii) et leurs préférences correspondantes à partir de service
de préférences inséré dans la première étape de réécriture. Ensuite (iii) il applique
les filtres de sécurité correspondants ainsi que ceux de la requête initiale.

Notre algorithme de réécriture est instrumenté par un modèle de protection de
la vie privée (PrivOrBAC) reposant sur le modèle OrBAC. PrivOrBAC [9] propose
une liste de service web permettant de lire et modifier les préférences des utilisateurs.
En utilisant ces services, nous avons construit un service SPARQL qui nous permet
de récupérer les préférences définies dans le model PrivOrBAC à l’aide des requêtes
SPARQL.

Prenons un exemple pour illustrer notre approche. Supposons que le docteur Bob
veut sélectionner les noms et les âges des patients majeurs pour un traitement médical.
La requête SPARQL initiale Qi de Bob est comme suit:

1 PREFIX o :<http :// tb . eu/ pa t i en t /0.1/#>
SELECT ?name ? age WHERE {

3 ?p rd f : type o : Pat ient ;
o : name ?name ;

5 o : age ? age . FILTER(? age >= 18)
}

L’approche consiste à insérer l’appel au service des préférences de la vie privée
dans la requête initiale. Ce service consiste à récupérer les préférences définies par
chaque propriétaire de données (patients) pour le demandeur Bob, pour un objectif
de traitement médical, par rapport aux deux propriétés nom et âge. Puis récupérer
les données demandées dans la requête initiale (sans les filtres). Ensuite appliquer les
préférences de la vie privée associées à chaque donnée. Finalement appliquer les filtres
de la requête initiale sur les nouvelles valeurs. La requête réécrite Qrw de Qi est comme
suit:



A.5. LE CAS DES SERVICES DE DONNÉES 151

PREFIX p : <http :// orbac . org /privOrBAC/ endpoint#>
2 PREFIX o : <http :// tb . eu/ pa t i en t /0.1/#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
4 PREFIX udf : <http :// orbac . org /privOrBAC/UserDef inedFunction#>

SELECT ?name ? age WHERE {
6 # Bloque Se rv i c e : appel au s e r v i c e des p r e f e r e n c e s

SERVICE <http :// l o c a l h o s t :8082/ pr ivorbac />
8 { ?do rd f : type p : DataOwner ;

p : hasId ?name_1 ;
10 p : hasPre f e r ence ? p r e f .

? p r e f p : hasPurpose " MedicalTraitment " ;
12 p : hasRec ip i ent "Bob" ;

p : hasTarget ? t0 .
14 ? t0 p : hasName "name" ;

p : hasDec i s ion ? nameDecision .
16 OPTIONAL { ? t0 p : hasAccuracy ?nameAccuracy }

? p r e f p : hasTarget ? t1 .
18 ? t1 p : hasName " age " ;

p : hasDec i s ion ? ageDec i s ion .
20 OPTIONAL { ? t1 p : hasAccuracy ? ageAccuracy }

}
22 {

#La pa r t i e de l a requete qui recupere l e s donnees
24 ?p rd f : type o : Pat ient ;

o : age ?age_1 ;
26 o : name ?name_1 .

#Appl i ca t ion des p r e f e r e n c e s
28 BIND( i f ( ( ? nameDecision = "No" ) , "−" ,

i f (bound(? nameAccuracy ) , udf : eva l (?name_1 , ? nameAccuracy ) , ?name_1) ) AS ?name)
30 BIND( i f ( ( ? ageDec i s i on = "No" ) , "−" ,

i f (bound(? ageAccuracy ) , udf : eva l (? age_1 , ? ageAccuracy ) , ?age_1 ) ) AS ? age ) .
32 # F i l t r e s de l a requete i n i t i a l e

FILTER(? age >=18)
34 }

}

Lignes 5-21 représentent l’appel au service de préférences de la vie privée. Lignes
24-26 correspondent à la partie qui récupère les données. Lignes 27-32 correspondent
à la partie qui applique les préférences sur les données récupérées. Finalement la ligne
35 correspond à l’exécution des filtres de la requête initiale sur les nouvelles valeurs des
champs, c’est à dire la valeur de champ âge après avoir appliqué les préférences de la
vie privée correspondantes.

A.5 Le cas des services de données

Les services de données sont des composants logiciels qui encapsulent une séries
d’opérations centrées sur les données à travers des objets métiers. Ils rendent les détails
sur la localisation des sources de données et comment elles sont accédées, abstraits en



152 APPENDIX A. FQUERY: RÉÉCRITURE DE REQUÊTES SPARQL

P

O:Patient

rdf:type

O
:h

asA
g
e

?age

?name
O:hasName

(S1)

Figure A.1: La vue RDF du service S1

vue de l’utilisateur des données. Les services de données sont utilisés dans plusieurs
domaine comme le Cloud Computing, les architectures orientées services SOA ...

Notre challenge est de permettre aux fournisseurs de services de pouvoir prendre
en compte les dimensions de la sécurité et de la vie privée sans changer le code source
de leurs services. C’est à dire que les services de données sont considérés comme des
boites noires.

Notre approche s’appuie sur une modélisation déclarative des services de données
en utilisant des vues RDF. Lorsqu’un service de données est invoqué, notre modèle
réécrit la vue RDF du service en utilisant nos deux approches précédentes fQuery-
Ac et fQuery-Privacy, afin de prendre en compte les contraintes de sécurité et de la
vie privée. Ensuite la vue réécrite est transformée en termes d’appels des services de
données à l’aide d’un service de composition. Ce dernier prend en entrée une vue RDF
et il produit un plan d’exécution de services de données qui couvre la totalité de la vue
RDF. Enfin les services sont alors exécutés, et les contraintes sont appliquées sur les
résultats retournés.

Prenons un exemple pour illustrer notre approche. Dans un hôpital X, on suppose
que les infermières ont le droit de consulter les informations des patients du départe-
ment cardiologie. Les données des patients sont aussi contrôlées par une politique de
la vie privée définie par chaque patient. Supposons que dans l’hôpital X, on dispose
des services suivants:

• S1(?name, ?age): un service qui retourne les noms et les âges des patients



A.5. LE CAS DES SERVICES DE DONNÉES 153

• S2($name, ?department): un service qui prend en entrée le nom d’un patient et
qui retourne les départements dont lesquels ce patient est traité.

• S3($name, $recipient, $purpose, $target, ?content): un service de préférence de la
vie privée. Il prend en entrée le nom de patient, le demandeur, l’objectif de
la demande, le nom de la propriété demandée et il retourne le consentement de
patient.

Alice est une infirmière. Elle veut consulter les noms et les ages des patients de
l’hôpital X. Alice va donc invoquer le service S1 qui couvre sa demande. Notre
approche consiste à récupérer la vue RDF de service S1 (voir figure A.1) lors de son
invocation. Ensuite on réécrit cette vue avec nos deux algorithmes fQuery-AC et
fQuery-Privacy. Cette réécriture consiste à rajouter la contrainte du contrôle d’accès
associée à l’infirmière Alice, ensuite récupérer les préférences de toutes les propriétés

 T1
rdf:type

?c1P:hasDecision

PrP:Preference
rdf:type P:hasPurpose

P
:h

asT
arg

et

P:hasPreference

P:Target

MedicalTreatment

NurseP:hasRecipient

nameP:hasName

T2

rdf:type

?c2

P:hasDecision

P:hasTarget

P:Target

age
P:hasName

T3

rdf:type

?c3

P:hasTarget

P:Target

dept
P:hasName

P:hasDecision

O:Department

D

rdf:type

O
:d

ep
tN

am
e

« Cardiology »

P

O:Patient

rdf:type

O
:h

asA
g
e

O:treatedIn

?age

?name
O:hasName

(V’)

Figure A.2: La vue réécrite V ′ du service S1



154 APPENDIX A. FQUERY: RÉÉCRITURE DE REQUÊTES SPARQL

privées impliquées dans la requête. La figure A.2 illustre le résultat de la réécriture V ′

de la vue RDF de service S1.

Finalement, la vue réécrite V ′ sera transformée en appels de services de données à
l’aide d’un algorithme de composition des services. La figure A.3 illustre un exemple
de plan d’exécution associé à la vue V ′.

Begin

(name, age)

(name, dept)

End

(name, ‘MedicalTreatment’, 

‘Nurse’, ‘name’, c1)

S2

S3

S3

S3

(name, ‘MedicalTreatment’, ‘Nurse’, 

age, dept, c1, c2, c3)
JoinS1

(name, ‘MedicalTreatment’, 

‘Nurse’, ‘age’, c2)

(name, ‘MedicalTreatment’, 

‘Nurse’, ‘dept’, c3)
Apply 

preferences

Select

dept=‘Cardiology’

Project
(name, ‘MedicalTreatment’, ‘Nurse’, 

age, dept, c1, c2, c3)

(name, age)

Figure A.3: Le plan d’exécution associé à la vue réécrite V ′

Ce plan d’exécution consiste à invoquer le service S1 afin de récupérer les noms et
les âges des patients. Ensuite, pour chaque nom de patient, il invoque en parallèles
les services S2 et S3. Le service S2 est invoqué afin de récupérer les départements de
chaque patient. Le service S3 est invoqué pour récupérer le consentement de chaque
patient concernant la consultation de son nom, âge et département par une infirmière
pour un objectif de traitement médical. Après une jointure des résultats d’invocation,
on applique les préférences sur les données et on sélectionne les données ayant comme
valeur de département “Cardiologie”. Enfin, on projette le résultat sur les propriétés
nom et âge.

A.6 Implémentation

Notre approche fQuery a été développée, intégrée et testée dans plusieurs systèmes,
par exemple (1) le système de médiation sémantique commercial AGGREGO [27],
(2) la plateforme de médiation sémantique du domaine médical PAIRSE, avec une
architecture Pair-à-Pair, et (3) dans le service web Axis 2.0. Voir le chapitre 9 pour
plus de détails sur l’implémentation de l’approche fQuery.



APPENDIX

B Proof of theorem 3
chapter 3

In this appendix we prove the theorem 3 of chapter 3. The theorem says that all
complex conditions with level L ≥ 2 could be represented by an involved condition by
using abstract properties.

Our proof is based on “mathematical induction”. We start by proving the result for
L = 2. Then we suppose that this result is valid for L ≥ 2 and we prove it for L+ 1.

Case of L = 2

Let n ∈ N∗. Let ω be a complex condition associated with {(pi, ωi)}1≤i≤n with level
L = 2.

We have: (∀x = (s, p, o) ∈ E)

ω(x) =


True if (∃(x1, ..., xn) ∈ En)/(∀1 ≤ i ≤ n)xi = (s, pi, oi)

where oi ∈ Eobject and ωi(oi) = True

False Otherwise
such that max(level(ωi)) = 1 i.e. level(ωi) ∈ {0, 1}. So ωi is a simple condition
(level(ωi) = 0) or an involved condition (level(ωi) = 1).

Let J be a subset of [1, n] such that:

(∀j ∈ J) level(ωj) = 1 i.e. ωj is an involved condition

Let x = (s, p, o) be an element of E such that ω(x) = True.

Then (∃(x1, ..., xn) ∈ En)/(∀i ∈ [1, n])xi = (s, pi, oi) and ωi(oi) = True

In particular, (∀j ∈ J) xj = (s, pj, oj) and ωj(oj) = True such that ωj is an
involved condition.



156 APPENDIX B. PROOF OF THEOREM 3 CHAPTER ??

Let j ∈ J. Let {ωj,k}1≤k≤mj
be a set of simple conditions associated to the involved

condition ωj.

By definition of an involved condition we have:

ωj(oj) = True ⇐⇒ [(∃(y1, ..., ymj
) ∈ Emj )/∀k ∈ [1,mj] yk = (oj, pj,k, oj,k)

and ωj,k(oj,k) = True]

Let k ∈ [1,mj], we denote pabst
j,k the abstract property defining the relation between

s (subject of x) and oj,k. pabst
j,k is defined as follows:

1 {
{ s pabst

j,k oj,k} <==> s pj oj .
3 oj pj,k oj,k .

}

We denote zk = (s, pabst
j,k , oj,k). We deduce that:

(∀j ∈ J)(∃(z1, ..., zmj
) ∈ Emj )/(∀k ∈ [1,mj])zk = (s, pabst

j,k , oj,k)
and ωj,k(oj,k) = True and ωj,k is a simple condition.

Finally:

(∀x = (s, p, o) ∈ E)

ω(x) =


True if (∃(x1, ..., xN) ∈ EN)/(∀i ∈ [1, N ])xi = (s, pi, oi)

where oi ∈ Eobject and ωN,i(oi) = True

False Otherwise

such that {ωN,i}1≤i≤N are simple conditions, N = (n− card(J)) + ∑
j∈J(mj) and

(∀j ∈ J) pj is an abstract property.

Case of L ≥ 2

Let L be an integer such that L ≥ 2. We suppose that the result of the theorem is
valid for each level l of [2, L], then we prove that it is valid for the level L+ 1.

Let n ∈ N∗. Let ω be a complex condition associated with {(pi, ωi)}1≤i≤n with level
L+ 1.

We have: (∀x = (s, p, o) ∈ E)

ω(x) =


True if (∃(x1, ..., xn) ∈ En)/(∀1 ≤ i ≤ n)xi = (s, pi, oi)

where oi ∈ Eobject and ωi(oi) = True

False Otherwise



157

such that max(level(ωi)) = L, so (∀i ∈ [0, n]) level(ωi) ∈ [0, L].

Let C,I and S be subsets of [1, n] such that:
(∀j ∈ C) level(ωj) ∈ [2, L]
(∀j ∈ I) level(ωj) = 1
(∀j ∈ S) level(ωj) = 0
C ∪ I ∪ S = [1, n]

Let j ∈ [1, n]. We distinguish three cases:

- if j ∈ C i.e. level(ωj) ∈ [2, L], then, following the assumption, ωj could be
presented as an involved condition, denoted ψj.

- if j ∈ I i.e. level(ωj) = 1, then, by definition, ωj is an involved condition.

- if j ∈ S i.e. level(ωj) = 0, then, by definition, ωj is a simple condition.

For j ∈ (I ∪ S) we define ψj as ωj i.e. ψj = ωj.

We deduce that ω could be presented by a complex condition ψ associated with
{(qi, ψi)}1≤i≤n with level L = 2, such that:

(∀i ∈ [1, n]) level(ψi) =

 1 if i ∈ C ∪ I
0 if i ∈ S

According to the case L = 2, we deduce that ψ could be presented by an involved
condition φ.

Finally, ω, a complex condition with level L+ 1, could be presented by the involved
condition φ.





APPENDIX

C fQuery-AC Aspect

/∗∗
2 ∗

∗/
4 package f r . enstb . l u s s i . fquery . a lgo . aspect ;

6 import java . u t i l . I t e r a t o r ;
. . .

8

/∗∗
10 ∗ Aspect o f SPARQL Query Rewrit ing Algorithm f o r

∗ s e c u r i t y reasons .
12 ∗

∗ @author Said OULMAKHZOUNE
14 ∗

∗/
16 public aspect Algorithm {

private Condit ion omega ;
18 private boolean permis s ion ;

private List<ElementFi l ter> f i l t e r s ;
20

/∗∗
22 ∗

∗ @param omega
24 ∗ @param permis s ion

∗/
26 public Algorithm ( ) {

omega = new Defau l tCondit ion ( ) ;
28 permis s ion = fa l se ;

f i l t e r s = new LinkedList<ElementFi l ter >() ;
30 }

32 /∗∗
∗

34 ∗ This po int cut i s used in order to i n s e r t cor re spond ing
∗ f i l t e r o f each Tr ip l e sB lock

36 ∗/
pointcut eachGroupElement ( ) :

38 c a l l ( Element SPARQLParser10 . GroupGraphPatternSub ( ) ) && target (SPARQLParser10 ) ;

40 /∗∗
∗ This po int cut i s used in order to handle each parsed t r i p l e pattern .

42 ∗ Check i f i t r e s p e c t s the s e c u r i t y po l i c y
∗/

44 pointcut i n s e r tC a l l ( ) :



160 APPENDIX C. FQUERY-AC ASPECT

c a l l (void SPARQLParser10 . i n s e r t ( Tr i p l eCo l l e c t o r , int , Node , Node , Path , Node ) ) ;
46

/∗∗
48 ∗

∗ @param par s e r
50 ∗/

pointcut i n s e r tT r i p l e (SPARQLParser10 par s e r ) : i n s e r tC a l l ( ) && target ( pa r s e r ) ;
52

/∗∗
54 ∗

∗ @param par s e r
56 ∗/

void around(SPARQLParser10 par s e r ) : i n s e r tT r i p l e ( pa r s e r ){
58 i f ( ! ( omega instanceof SimpleCondit ion ) ){

proceed ( pa r s e r ) ;
60 return ;

}
62 SimpleCondit ion s cond i t i on = ( SimpleCondit ion ) omega ;

Object [ ] args = thisJoinPoint . getArgs ( ) ;
64 // Tr i p l eCo l l e c t o r acc = ( Tr i p l eCo l l e c t o r ) args [ 0 ] ;

// i n t index = ( In t eg e r ) args [ 1 ] ;
66 Node s = (Node ) args [ 2 ] ;

Node p = (Node ) args [ 3 ] ;
68 //Path path=(Path ) args [ 4 ] ;

Node o = (Node ) args [ 5 ] ;
70

i f (p==null ){
72 proceed ( pa r s e r ) ;

return ;
74 }

76 Tr ip l e t r i p l e = new Tr ip l e ( s , p , o ) ;
OmegaResult v = OmegaHelpers . eva l ( s cond i t i on , t r i p l e ) ;

78 i f ( EValue .TRUE. equa l s ( v . getEValue ( ) ) ) {
i f ( permis s ion ){

80 proceed ( pa r s e r ) ; // nothing todo
}

82 }
else i f ( EValue .FALSE. equa l s ( v . getEValue ( ) ) ) {

84 i f ( ! pe rmis s ion ){
proceed ( pa r s e r ) ; // nothing todo

86 }
}

88 else i f ( EValue .EXPR. equa l s ( v . getEValue ( ) ) ) {
//Omega( t r i p l e ) i s expres sed on terms o f t r i p l e s v a r i a b l e

90 proceed ( pa r s e r ) ;
S t r ing expr ;

92 i f ( permis s ion )
expr = v . getExpres s ion ( ) ;

94 else
expr = " ! ( "+v . getExpres s ion ()+ " ) " ;

96

ElementFi l t e r e l = Helpers . createSPARQLFilter ( expr ) ;
98 f i l t e r s . add ( e l ) ;

}
100 else {

System . out . p r i n t l n ( " Error " ) ;
102 }



161

}
104

/∗∗
106 ∗

∗ @return
108 ∗/

Element around ( ) : eachGroupElement ( ){
110 ElementGroup e l = (ElementGroup )proceed ( ) ;

i f ( omega instanceof Defau l tCondit ion )
112 return e l ; //normal case : nothing to do

114 i f ( omega instanceof Invo lvedCondit ion ){
Lis t<Element> elements = e l . getElements ( ) ;

116 for ( I t e r a t o r <Element> i t e r a t o r = elements . i t e r a t o r ( ) ; i t e r a t o r . hasNext ( ) ; ) {
Element element = i t e r a t o r . next ( ) ;

118 i f ( element instanceof ElementTrip lesBlock ) {
ElementTrip lesBlock etb = ( ElementTrip lesBlock ) element ;

120 Invo lvedCondit ion i c = ( Invo lvedCondit ion ) omega
a lgor i thmInvo lvedCondi t ion ( ic , etb . getPattern ( ) . g e tL i s t ( ) ) ;

122 }
}

124 }
/∗======== The f o l l ow i n g code i s a v a i l a b l e f o r each kind o f cond i t i on ====∗/

126 /∗ add f i l t e r s ∗/
for ( E lementFi l t e r f i l t e r : f i l t e r s ) {

128 e l . addElement ( f i l t e r ) ;
}

130 /∗ then c l ean the f i l t e r l i s t ∗/
f i l t e r s . c l e a r ( ) ;

132 return e l ;
}

134

/∗∗
136 ∗

∗ @param omega
138 ∗ @param t r i p l e s

∗/
140 public void a lgor i thmInvo lvedCondi t ion ( Invo lvedCondit ion omega ,

L i s t<Trip le> t r i p l e s ){
142 Condit ionResult s cResu l t =

AlgorithmTools . a lgo Invo lvedCondi t ion (omega , permiss ion , t r i p l e s ) ;
144 t r i p l e s . addAll ( s cResu l t . getTriplesToAdd ( ) ) ;

f i l t e r s . addAll ( s cResu l t . g e t F i l t e r s ( ) ) ;
146 }

148 /∗∗
∗ @return the permis s ion

150 ∗/
public boolean i sPe rmi s s i on ( ) {

152 return permis s ion ;
}

154

/∗∗
156 ∗ @param permis s ion the permis s ion to s e t

∗/
158 public void s e tPermi s s i on (boolean permis s ion ) {

this . pe rmis s ion = permis s ion ;
160 }



162 APPENDIX C. FQUERY-AC ASPECT

162 /∗∗
∗ @return the omega

164 ∗/
public Condit ion getOmega ( ) {

166 return omega ;
}

168

/∗∗
170 ∗ @param omega the omega to s e t

∗/
172 public void setOmega ( Condit ion omega ) {

this . omega = omega ;
174 }

}



APPENDIX

D fQuery-AC Visitor

1 /∗∗
∗

3 ∗/
package f r . swid . fquery . cond i t i on . spa rq l . v i s i t o r ;

5

import java . u t i l . I t e r a t o r ;
7 . . .

9 /∗∗
∗ fQuery−AC: Rewrit ing a lgor i thm as v i s i t o r

11 ∗
∗ @author Said OULMAKHZOUNE

13 ∗/
public class RWElementVisitor implements ElementVis i tor {

15

private Condit ion omega ;
17 private boolean permis s ion ;

19 private LinkedList<List<ElementFi l ter>> f i l t e r s ;

21 /∗∗
∗ @param omega

23 ∗ @param permis s ion
∗/

25 public RWElementVisitor ( Condit ion omega , boolean permis s ion ) {
super ( ) ;

27 this . omega = omega ;
this . pe rmis s ion = permis s ion ;

29 this . f i l t e r s = new LinkedList<List<ElementFi l ter >>();
}

31

/∗∗
33 ∗ Block o f t r i p l e s .

∗ Add s e c u r i t y f i l t e r f o r each t r i p l e
35 ∗ @see com . hp . hpl . j ena . spa rq l . syntax . ElementVis i tor#v i s i t (

∗ com . hp . hpl . j ena . spa rq l . syntax . ElementTrip lesBlock )
37 ∗/

@Override
39 public void v i s i t ( ElementTrip lesBlock e l ) {

System . out . p r i n t l n ( "# Here i s the t r i p l e s b lock o f e lements " ) ;
41 i f ( omega instanceof SimpleCondit ion ){

Bas icPattern pattern = e l . getPattern ( ) ;
43 SimpleCondit ion sc = ( SimpleCondit ion ) omega ;

Condit ionResult s cResu l t =



164 APPENDIX D. FQUERY-AC VISITOR

45 AlgorithmTools . a lgoSimpleCondit ion ( sc , permiss ion , pattern ) ;
for ( Tr ip l e t r i p l e : s cResu l t . g e tT r i p l e s ( ) ) {

47 pattern . remove ( t r i p l e ) ;
}

49 // f i l t e r s
this . f i l t e r s . addLast ( s cResu l t . g e t F i l t e r s ( ) ) ;

51 return ;
}

53

i f ( omega instanceof Invo lvedCondit ion ){
55 Bas icPattern pattern = e l . getPattern ( ) ;

Invo lvedCondit ion i c = ( Invo lvedCondit ion ) omega ;
57 Condit ionResult s cResu l t =

AlgorithmTools . a lgo Invo lvedCondi t ion ( ic , permiss ion , pattern . g e tL i s t ( ) ) ;
59 for ( Tr ip l e t r i p l e : s cResu l t . g e tT r i p l e s ( ) ) {

pattern . add ( t r i p l e ) ;
61 }

// f i l t e r s
63 this . f i l t e r s . addLast ( s cResu l t . g e t F i l t e r s ( ) ) ;

return ;
65 }

}
67

/∗∗
69 ∗ When v i s i t i n g an union block

∗ @see com . hp . hpl . j ena . spa rq l . syntax . ElementVis i tor#v i s i t (
71 ∗ com . hp . hpl . j ena . spa rq l . syntax . ElementUnion )

∗/
73 @Override

public void v i s i t ( ElementUnion e l ) {
75 for ( I t e r a t o r <Element> i t e r=e l . getElements ( ) . l i s t I t e r a t o r ( ) ; i t e r . hasNext ( ) ; ) {

Element subElement = i t e r . next ( ) ;
77 subElement . v i s i t ( this ) ;

}
79 }

81 /∗∗
∗ When v i s i t i n g an op t i ona l b lock

83 ∗ @see com . hp . hpl . j ena . spa rq l . syntax . ElementVis i tor#v i s i t (
∗ com . hp . hpl . j ena . spa rq l . syntax . ElementOptional )

85 ∗/
@Override

87 public void v i s i t ( ElementOptional e l ) {
vis i tAsGroup ( e l . getOptionalElement ( ) ) ;

89 }

91 /∗∗
∗ When v i s i t i n g a group element block

93 ∗ @see com . hp . hpl . j ena . spa rq l . syntax . ElementVis i tor#v i s i t (
∗ com . hp . hpl . j ena . spa rq l . syntax . ElementGroup )

95 ∗/
@Override

97 public void v i s i t ( ElementGroup e l ) {
for ( I t e r a t o r <Element> i t e r=e l . getElements ( ) . l i s t I t e r a t o r ( ) ; i t e r . hasNext ( ) ; ) {

99 Element subElement = i t e r . next ( ) ;
subElement . v i s i t ( this ) ;

101 }
// adding f i l t e r s here



165

103 List<ElementFi l ter> g r o u p f i l t e r s = f i l t e r s . removeLast ( ) ;
for ( E lementFi l t e r f i l t e r : g r o u p f i l t e r s ) {

105 e l . addElement ( f i l t e r ) ;
}

107 }
/∗∗

109 ∗ @param e l
∗/

111 public void vis itAsGroup ( Element e l ){
e l . v i s i t ( this ) ;

113 }
@Override

115 public void v i s i t ( E lementFi l t e r e l ) {}
@Override

117 public void v i s i t ( ElementDataset e l ) {}
@Override

119 public void v i s i t ( ElementAssign e l ) {}
@Override

121 public void v i s i t ( ElementPathBlock e l ) {}
@Override

123 public void v i s i t (ElementNamedGraph e l ) {}
@Override

125 public void v i s i t ( ElementService e l ) {}
@Override

127 public void v i s i t ( ElementFetch e l ) {}
@Override

129 public void v i s i t ( ElementSubQuery e l ) {}
@Override

131 public void v i s i t ( ElementExists e l ) {}
@Override

133 public void v i s i t ( ElementNotExists e l ) {}
}





List of Publications

International Conferences

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci, “fQuery:
SPARQL query rewriting to enforce data confidentiality”. 24th Annual IFIP WG
11.3 Working Conference on Data and Applications Security and Privacy DB-
Sec’2010, Rome, Italy, June 21-23, 2010. Lecture notes in computer science, 2010,
vol. 6166, pp. 146-161

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci, “Rewriting
of SPARQL/update queries for securing data access”. 12th International Confer-
ence on Information and Communications Security ICICS’2010, December 15-17,
2010, Barcelona, Spain. Lecture notes in computer science, 2010, vol. 6476, pp.
4-15

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci, “SPARQL
query rewriting instrumented by access control model”. 1st International Sympo-
sium on Data-Driven Process Discovery and Analysis 2011, 29 june - 01 july 2011,
Campione D’Italia, Italy, 2011, pp. 3-6, ISBN 978-88-903120-2-1

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci, “Privacy
Policy Preferences Enforced by SPARQL Query Rewriting”. Seventh International
Conference on Availability, Reliability and Security (ARES) 2012, August 20th -
24th, 2012, Prague, Czech Republic, 2012

• M. Barhamgi, D. Benslimane, S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cup-
pens, M. Mrissa and H. Taktak “Secure and Privacy-preserving Execution Model
for Data Services”. 25th International Conference on Advanced Information Sys-
tems Engineering CAiSE’13. June 17-21 2013, Valencia, Spain.



168 LIST OF PUBLICATIONS

International Journals

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, S. Morucci, M. Barhamgi
and D. Benslimane, “Privacy query rewriting algorithm instrumented by a privacy-
aware access control model”. Annal of Telecommunications 2013, May 2013. Lec-
ture notes in computer science, 2013, ISSN 0003-4347, vol. 68.

• D. Benslimane, M. Barhamgi, F. Cuppens, F. Morvan, B. Defude, E. Nageba,
F. Paulus, S. Morucci, M. Mrissa, N. Cuppens-Boulahia, C. Ghedira, R. Mokadem,
S. Oulmakhzoune and J. Fayn. “PAIRSE: A Privacy-Preserving Service-Oriented
Data Integration System”. SIGMOD-RECORD 2013 - submitted

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci,
“SPARQL Query Rewriting Instrumented by the OrBAC Access Control Model”.
Paper being submitted for publication at Transaction on Data Privacy.

National Conferences

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci,
“fQuery: réécriture de requêtes SPARQL pour assurer la confidentialité des don-
nées”. XXIIIe congrès INFORSID, 25 mai 2010, Marseille, France, 2010.

National Journals

• S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens and S. Morucci,
“fQuery: réécriture de requêtes SPARQL pour assurer la confidentialité des don-
nées”. Génie logiciel, 2010, vol. 94, pp. 20-25



Bibliography

[1] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The tsimmis project: Integration of heterogenous
information sources. 1994. 1, 10

[2] T. Kirk, A.Y. Levy, Y. Sagiv, D. Srivastava, et al. The information manifold.
In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from
Heterogeneous, Distributed Enviroments, volume 7, pages 85–91, 1995. 1

[3] S. Adali and R. Emery. A uniform framework for integrating knowledge in het-
erogeneous knowledge systems. In Data Engineering, 1995. Proceedings of the
Eleventh International Conference on, pages 513–520. IEEE, 1995. 1

[4] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and
the design of disco. In Distributed Computing Systems, 1996., Proceedings of the
16th International Conference on, pages 449–457. IEEE, 1996. 1

[5] M.T. Roth and P. Schwarz. Don‚Äôt scrap it, wrap it! a wrapper architecture
for legacy data sources. In Proceedings of 23rd International Conference on Very
Large Data Bases, pages 266–275. DTIC Document, 1997. 1

[6] C. Altenschmidt, J. Biskup, J. Freitag, and B. Sprick. Weakly constraining
multimedia types based on a type embedding ordering. Advances in Multimedia
Information Systems, pages 121–129, 1998. 1

[7] L. Yang and R.K. Ege. Security enforced mediation systems for data integration.
INFOCOMP Journal of Computer Science, 5:87–95, 2005. 1

[8] A.A.E. Kalam, RE Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin. Organization based access control. In
Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY 2003.
IEEE 4th International Workshop on, pages 120–131, Lake Como, Italy, June
2003. IEEE. 2, 3, 40, 53, 54, 70, 90, 108, 146



170 BIBLIOGRAPHY

[9] N. Ajam, N. Cuppens-Boulahia, and F. Cuppens. Contextual privacy manage-
ment in extended role based access control model. In DPM/SETOP, pages 21–35,
2009. 2, 69, 70, 73, 89, 90, 94, 108, 150

[10] G. Klyne and JJ. Carroll. Resource description framework (rdf): Concepts and
abstract syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.
5, 147

[11] E. Prud’Hommeaux and A. Seaborne. Sparql query language for rdf. http:
//www.w3.org/TR/rdf-sparql-query/, January 2008. 5, 22, 23, 24, 29, 32, 34,
81

[12] Web ontology language. http://en.wikipedia.org/wiki/Web_Ontology_
Language, 2012. 6

[13] E. Prud’Hommeaux and A. Seaborne. Sparql 1.1 federation extensions. http:
//www.w3.org/TR/sparql11-federated-query/, June 2010. 7, 147

[14] P. Gearon, A. Passant, and A. Polleres. Sparql query language for rdf. http:
//www.w3.org/TR/sparql11-update/, January 2008. 9, 34, 48

[15] G. Wiederhold. Mediators in the architecture of future information systems.
Computer, 25(3):38–49, 1992. 9

[16] C. Altenschmidt, J. Biskup, U. Flegel, and Y. Karabulut. Secure mediation:
requirements, design, and architecture. Journal of Computer Security, 11(3):365–
398, 2003. 9, 10, 11

[17] L. Xu, D.W. Embley, et al. Combining the best of global-as-view and local-as-
view for data integration. In Proc. of the 3rd International Conference ISTA,
pages 123–135, 2004. 10

[18] S. Adali, K.S. Candan, Y. Papakonstantinou, and VS Subrahmanian. Query
caching and optimization in distributed mediator systems. In ACM SIGMOD
Record, volume 25, pages 137–146. ACM, 1996. 10

[19] M. Friedman, A. Levy, T. Millstein, et al. Navigational plans for data integration.
In Proceedings of the National Conference on Artificial Intelligence, pages 67–73.
JOHN WILEY & SONS LTD, 1999. 10

[20] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information
sources using source descriptions. 1996. 10

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/


BIBLIOGRAPHY 171

[21] M.R. Genesereth, A.M. Keller, and O.M. Duschka. Infomaster: An information
integration system. ACM SIGMOD Record, 26(2):539–542, 1997. 10

[22] C.T. Kwok, D.S. Weld, et al. Planning to gather information. In PROCEEDINGS
OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE,
pages 32–39. Citeseer, 1996. 10

[23] M. Genesereth. Data integration: The relational logic approach. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, 4(1):1–97, 2010. 10

[24] I. Navas-Delgado and J.F. Aldana-Montes. A distributed semantic mediation
architecture. Journal of Information and Organizational Sciences, 28(1-2):135–
150, 2004. 10

[25] S. Herschel and R. Heese. Humboldt discoverer: A semantic p2p index for pdms.
In International Workshop Data Integration and the Semantic Web (DISWeb).
Citeseer, 2005. 11, 141

[26] I.W.S. Wicaksana. A peer-to-peer (p2p) based semantic agreement approach for
spatial information interoperability. Gunadarma University, 2006. 11, 141

[27] F. Paulus. Aggrego server| semsoft. http://semsoft-corp.com/fr/content/
aggrego-server, 2012. 11, 135, 141, 147, 154

[28] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across
heterogeneous information sources. In Data Engineering, 1995. Proceedings of
the Eleventh International Conference on, pages 251–260. IEEE, 1995. 11

[29] G. Kokkinidis and V. Christophides. Semantic query routing and processing in
p2p database systems: The ics-forth sqpeer middleware. In Current Trends in
Database Technology-EDBT 2004 Workshops, pages 433–436. Springer, 2005. 11

[30] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. Edutella: a p2p networking infrastructure based on rdf. In Pro-
ceedings of the 11th international conference on World Wide Web, pages 604–615.
ACM, 2002. 11

[31] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Olko, M. Plechawski,
P. Pyszlak, B. Schnizler, R. Siebes, et al. Bibster: a semantics-based bibliographic
peer-to-peer system. The Semantic Web–ISWC 2004, pages 122–136, 2004. 11

[32] M. Cai and M. Frank. Rdfpeers: a scalable distributed rdf repository based
on a structured peer-to-peer network. In Proceedings of the 13th international
conference on World Wide Web, pages 650–657. ACM, 2004. 11

http://semsoft-corp.com/fr/content/aggrego-server
http://semsoft-corp.com/fr/content/aggrego-server


172 BIBLIOGRAPHY

[33] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt. Gridvine: Build-
ing internet-scale semantic overlay networks. The Semantic Web–ISWC 2004,
pages 107–121, 2004. 11

[34] I. Cruz, H. Xiao, and F. Hsu. Peer-to-peer semantic integration of xml and rdf
data sources. Agents and Peer-to-Peer Computing, pages 108–119, 2005. 11

[35] A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The
piazza peer data management system. Knowledge and Data Engineering, IEEE
Transactions on, 16(7):787–798, 2004. 11

[36] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. Xpeer: A self-organizing xml
p2p database system. In Current Trends in Database Technology-EDBT 2004
Workshops, pages 429–432. Springer, 2005. 11

[37] R. Akbarinia, V. Martins, E. Pacitti, P. Valduriez, et al. Replication and query
processing in the appa data management system. Submitted for publication, 2004.
11

[38] W.S. Ng, B.C. Ooi, K.L. Tan, and A. Zhou. Peerdb: A p2p-based system for
distributed data sharing. In Data Engineering, 2003. Proceedings. 19th Interna-
tional Conference on, pages 633–644. IEEE, 2003. 11

[39] P. Boncz and C. Treijtel. Ambientdb: relational query processing in a p2p net-
work. In In Proceedings of the International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P), LNCS 2788. Citeseer, 2003.
11

[40] A. Kemper and C. Wiesner. Hyperqueries: Dynamic distributed query processing
on the internet. In PROCEEDINGS OF THE INTERNATIONAL CONFER-
ENCE ON VERY LARGE DATA BASES, pages 551–560, 2001. 11

[41] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R.J. Miller, and J. My-
lopoulos. The hyperion project: from data integration to data coordination. ACM
SIGMOD Record, 32(3):53–58, 2003. 11

[42] R. Huebsch and S.R. Jeffery. FREddies: DHT-based adaptive query processing
via FedeRated Eddies. Citeseer, 2004. 11

[43] Y. Zhou, B.C. Ooi, K.L. Tan, and W.H. Tok. An adaptable distributed query
processing architecture. Data & Knowledge Engineering, 53(3):283–309, 2005. 11



BIBLIOGRAPHY 173

[44] S. Dawson, S. Qian, and P. Samarati. Providing security and interoperation of
heterogeneous systems. Distributed and Parallel Databases, 8(1):119–145, 2000.
10

[45] N. Dagdee and R. Vijaywargiya. Credential based mediator architecture for access
control and data integration in multiple data sources environment. International
Journal of Network Security & Its Applications, 3(3), 2011. 10

[46] L. Yang, R.K. Ege, and H. Yu. Mediation security specification and enforcement
for heterogeneous databases. In Proceedings of the 2005 ACM symposium on
Applied computing, pages 354–358. ACM, 2005. 10, 12

[47] L. Yang, R.K. Ege, O. Ezenwoye, and Q. Kharma. A role-based access control
model for information mediation. In Information Reuse and Integration, 2004.
IRI 2004. Proceedings of the 2004 IEEE International Conference on, pages 277–
282. IEEE, 2004. 10, 12

[48] M. Ezziyani, M. Bennouna, and L. Cherrat. An advanced xml mediator for
heterogeneous information systems based on application domain specification.
International journal of computer science and applications, 3(2), 2006. 10

[49] S. Dawson, P. Samarati, S. De Capitani di Vimercati, P. Lincoln, G. Wiederhold,
M. Bilello, J. Akella, and Y. Tan. Secure access wrapper: Mediating security be-
tween heterogeneous databases. In DARPA Information Survivability Conference
and Exposition, 2000. DISCEX’00. Proceedings, volume 2, pages 308–322. IEEE,
2000. 10

[50] L. Rostad, O. Nytro, IA Tondel, and PH Meland. Access control and integration
of health care systems: An experience report and future challenges. In Avail-
ability, Reliability and Security, 2007. ARES 2007. The Second International
Conference on, pages 871–878. IEEE, 2007. 10

[51] D. Liu, K. Law, and G. Wiederhold. Chaos: An active security mediation system.
In Advanced Information Systems Engineering, pages 232–246. Springer, 2000.
10, 12

[52] J. Biskup and Y. Karabulut. A hybrid pki model: Application to secure media-
tion. In 16th Annual IFIP WG, volume 11, pages 271–282, 2003. 10, 11

[53] J. Biskup, U. Flegel, Y. Karabulut, et al. Towards secure mediation. In Workshop
Sicherheit und Electronic Commerce, Essen, Germany. Citeseer, 1998. 10, 11



174 BIBLIOGRAPHY

[54] J. Biskup, C. Tsatedem, and L. Wiese. Secure mediation of join queries by
processing ciphertexts. In Data Engineering Workshop, 2007 IEEE 23rd Inter-
national Conference on, pages 715–724. IEEE, 2007. 10, 11

[55] P. Mitra, C.C. Pan, P. Liu, and V. Atluri. Privacy-preserving semantic inter-
operation and access control of heterogeneous databases. In Proceedings of the
2006 ACM Symposium on Information, computer and communications security,
pages 66–77. ACM, 2006. 10

[56] G. Wiederhold, M. Bilello, V. Sarathy, and X.L. Qian. A security mediator for
health care information. In Proceedings of the AMIA Annual Fall Symposium,
page 120. American Medical Informatics Association, 1996. 11

[57] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST Standard for Role-Based Access Control. ACM Transactions on
Information and Systems Security (TISSEC), 4(3), 2001. 12, 58, 68, 146

[58] R. Whittaker, G. Argote-Garcia, P.J. Clarke, and R.K. Ege. Decentralized medi-
ation security. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–6. IEEE, 2008. 12

[59] B. Luo, D. Lee, W.C. Lee, and P. Liu. A flexible framework for architecting xml
access control enforcement mechanisms. In Secure Data Management, VLDB
2004 Workshop, pages 133–147. Springer, 2004. 13

[60] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A
fine-grained access control system for xml documents. ACM Trans. Inf. Syst.
Secur., vol. 5(2), 2002. 14

[61] A. Gabillon. A formal access control model for xml databases. In Proc. Of the
2005 VLDB Workshop on Secure Data Management (SDM), 2005. 14

[62] B. Finance, S. Medjdoub, and P. Pucheral. The case for access control on xml
relationships. Proc. of CIKM, 2005. 14

[63] M. Kudo and S. Hada. Xml document security based on provisional authorization.
Proc. of ACM CCS, 2000. 14

[64] A. Stoica and C. Farkas. Secure xml views. Proc. of the 16th IFIP WG11.3
Working Conference on Database and Application Security, 2002. 14

[65] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Protection of relationships in
xml documents with the xml-bb model. In Proc. of ICISS2005, 2005. 14, 16



BIBLIOGRAPHY 175

[66] M. Stonebraker and E. Wong. Access control in a relational data base manage-
ment system by query modification. Proceedings of the 1974 annual conference,
pages 180–186, June 1974. 14, 41, 68

[67] P. Huey. Oracle database security guide : Chapter 7, using oracle virtual pri-
vate database to control data access. http://download.oracle.com/docs/cd/
E11882_01/network.112/e10574.pdf. 14, 70, 89

[68] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J. Byun. On the cor-
rectness criteria of fine-grained access control in relational databases. Proceedings
of the 33rd international conference on Very large data bases, September 2007.
15, 16, 77, 78, 89

[69] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting disclosure in hippocratic databases. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, pages 108–119.
VLDB Endowment, 2004. 15, 16, 68, 70, 89, 105

[70] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A general approach to
securely querying xml. In Proc. of the 5th International Workshop on Security
in Information Systems (WOSIS 2007), 2007. 16

[71] B. Luo, D. Lee, W.C. Lee, and P. Liu. Qfilter: fine-grained run-time xml access
control via nfa-based query rewriting. In Proceedings of the thirteenth ACM
international conference on Information and knowledge management, pages 543–
552. ACM, 2004. 16

[72] B. Luo, D. Lee, W.C. Lee, and P. Liu. Qfilter: rewriting insecure xml queries
to secure ones using non-deterministic finite automata. The VLDB Journal,
20(3):397–415, 2011. 17

[73] Y. Diao, P. Fischer, M.J. Franklin, and R. To. Yfilter: Efficient and scalable
filtering of xml documents. In Data Engineering, 2002. Proceedings. 18th Inter-
national Conference on, pages 341–342. IEEE, 2002. 17

[74] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, and S. Morucci. fQuery:
SPARQL Query Rewriting to Enforce Data Confidentiality. Proc. of the 24th
IFIP WG11.3 Working Conference on Data and Applications Security and Pri-
vacy. Rome, Italy, 21-23 June 2010. 19, 54, 59

[75] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting
techniques for fine-grained access control. Proc. ACM Sigmod Conf., June 2004.
20, 71

http://download.oracle.com/docs/cd/E11882_01/network.112/e10574.pdf
http://download.oracle.com/docs/cd/E11882_01/network.112/e10574.pdf


176 BIBLIOGRAPHY

[76] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and
multics interpretation. Technical report, DTIC Document, 1976. 47

[77] J. D. Ullman. Principles of Database and Knowledge-Base Systems: Volume II:
The New Technologies. W. H. Freeman & Co., New York, USA, 1990. 55

[78] Frederic Cuppens and Nora Cuppens-Boulahia. Modelling contextual security
policies. International Journal of Information Security, 2007. 57, 58, 92

[79] F. Cuppens, N. Cuppens-Boulahia, and A. Miège. Inheritance Hierarchies in
the Or-BAC Model and Application in a Network Environment. In Proceedings
of the 3rd Workshop on Foundations of Computer Security (FCS‚Äô04), Turku,
Finland, July 2004. 58

[80] Fredéric Cuppens, Nora Cuppens-Boulahia, and Céline Coma. Multi-Granular
Licences to Decentralize Security Administration. In Proceedings of the First In-
ternational Workshop on Reliability, Availability and Security (WRAS’07), Paris,
France, November 2007. 59

[81] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, S. Morucci, et al. Sparql
query rewriting instrumented by access control model. In 1st International Sym-
posium on Data-Driven Process Discovery and Analysis 2011, pages 3–6, 2011.
67

[82] Standards for privacy of individually identifiable health information:
Final rule. http://www.hhs.gov/ocr/privacy/hipaa/administrative/
privacyrule/privrulepd.pdf, August 2002. 69, 149

[83] OECD. Organisation for economic co-operation and development. ’protection of
privacy and transborder flows of personal data’. September 1980. 69, 70, 90, 149

[84] Caslon analytics, caslon analytics privacy guide. http://www.caslon.com.au/
privacyguide.htm. 69, 70, 149

[85] European commission, directive 95/46, ’the processing of personal data and on
the free movement of such data’. http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31995L0046:EN:HTML, October 1995. 69, 70, 90,
149

[86] European commission, directive 02/58,’privacy and electronic communica-
tions’. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:
2002:201:0037:0047:EN:PDF, July 2002. 69, 70, 90, 149

http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/privrulepd.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/privrulepd.pdf
http://www.caslon.com.au/privacyguide.htm
http://www.caslon.com.au/privacyguide.htm
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:201:0037:0047:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:201:0037:0047:EN:PDF


BIBLIOGRAPHY 177

[87] Loi du 6 janvier 1978 relative á l’informatique, aux fichiers et aux libertés
modifiée. http://www.cnil.fr/fileadmin/documents/approfondir/textes/
CNIL-78-17_definitive-annotee.pdf, October 2011. 69, 149

[88] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. Privacy-aware role based access
control. In Proceedings of the 12th ACM symposium on Access control models
and technologies, pages 41–50. ACM, 2007. 70, 89, 90

[89] N. Yang, H. Barringer, and N. Zhang. A purpose-based access control model.
In Information Assurance and Security, 2007. IAS 2007. Third International
Symposium on, pages 143–148. IEEE, 2007. 70, 90

[90] A. Masoumzadeh and J. Joshi. Purbac: Purpose-aware role-based access control.
On the Move to Meaningful Internet Systems: OTM 2008, pages 1104–1121,
2008. 70, 90

[91] M. Barhamgi, P.A. Champin, D. Benslimane, and A. Ouksel. Composing data-
providing web services in p2p-based collaboration environments. In Advanced
Information Systems Engineering, pages 531–545. Springer, 2007. 73

[92] I. Stavrakantonakis, C. Tsinaraki, N. Bikakis, N. Gioldasis, and
S. Christodoulakis. Sparql2xquery 2.0: Supporting semantic-based queries
over xml data. In Semantic Media Adaptation and Personalization (SMAP),
2010 5th International Workshop on, pages 76–84. IEEE, 2010. 73, 101

[93] N. Bikakis, N. Gioldasis, C. Tsinaraki, and S. Christodoulakis. Semantic based
access over xml data. Visioning and Engineering the Knowledge Society. A Web
Science Perspective, pages 259–267, 2009. 73, 101

[94] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.
76

[95] A.C. Squicciarini, M. Shehab, and F. Paci. Collective privacy management in
social networks. In Proceedings of the 18th international conference on World
wide web, pages 521–530. ACM, 2009. 79

[96] S. Harris et al. Sparql 1.1 query language. http://www.w3.org/TR/
sparql11-query/, May 2011. 81, 82

[97] L. Cranor, G. Hogben, M. Langheinrich, M. Marchiori, M. Presler-Marshall,
J. Reagle, and M. Schunter. The platform for privacy preference 1.1(p3p 1.1)
specification. Tech. Rep. Note 13, November 2006. 89

http://www.cnil.fr/fileadmin/documents/approfondir/textes/CNIL-78-17_definitive-annotee.pdf
http://www.cnil.fr/fileadmin/documents/approfondir/textes/CNIL-78-17_definitive-annotee.pdf
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/


178 BIBLIOGRAPHY

[98] M. Hilty, D. Basin, and A. Pretschner. On obligations. 10th European Symposium
on Research in Computer Security, Milan, Italy, 3679:98–117, 2005. 89

[99] European Commission. Directive 97/66, the processing of personal data and the
protection of privacy in the telecommunications sector. December 1997. 90

[100] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, and S. Morucci. Privacy
policy preferences enforced by sparql query rewriting. In 2012 Seventh Interna-
tional Conference on Availability, Reliability and Security (ARES), pages 335–
342. IEEE, 2012. 95, 125

[101] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed. A query
rewriting approach for web service composition. IEEE Transactions on Services
Computing, 3(3):206–222, 2010. 98, 100

[102] Mahmoud Barhamgi, Djamal Benslimane, Said Oulmakhzoune, Nora Cuppens-
Boulahia, Frederic Cuppens, Michael Mrissa, and Hajer Taktak. Secure and
privacy-preserving execution model for data services. In 25th International Con-
ference on Advanced Information Systems Engineering CAiSE’13, 2013. 103

[103] Michael J. Carey, Nicola Onose, and Michalis Petropoulos. Data services. Com-
mun. ACM, 55(6):86–97, 2012. 103, 104

[104] Michael J. Carey. Declarative data services: This is your data on soa. In SOCA,
page 4, 2007. 103

[105] Schahram Dustdar, Reinhard Pichler, Vadim Savenkov, and Hong Linh Truong.
Quality-aware service-oriented data integration: requirements, state of the art
and open challenges. SIGMOD Record, 41(1):11–19, 2012. 103, 104

[106] Vishal Dwivedi and Naveen N. Kulkarni. Information as a service in a data
analytics scenario - a case study. In ICWS, pages 615–620, 2008. 103

[107] Quang Vu, Tran Vu Pham, Hong Linh Truong, and Schahram Dustdar. Demods:
A description model for data-as-a-service. In AINA, pages 05–12, 2012. 103

[108] Mike Gilpin, Noel Yuhanna, Katie Smillie, Gene Leganza, Randy Heffner, and
Jost Hoppermann. Information-as-a-service: What’s behind this hot new trend?
Forrester Research, Research Report, 2007., 3(3):206–222, 2007. 103

[109] Asuman Dogac. Interoperability in ehealth systems (tutorial). PVLDB,
5(12):2026–2027, 2012. 103, 104



BIBLIOGRAPHY 179

[110] Divyakant Agrawal, Amr El Abbadi, Shyam Antony, and Sudipto Das. Data
management challenges in cloud computing infrastructures. In DNIS, pages 1–
10, 2010. 103

[111] Us department of health and human services: http://www.hhs.gov/ocr/hipaa.
Commun. ACM, 40(8):92–100, 1997. 104

[112] Thomas C. Rindfleisch. Privacy, information technology, and health care. Com-
mun. ACM, 40(8):92–100, 1997. 104

[113] Divyakant Agrawal, Amr El Abbadi, and Shiyuan Wang. Secure and privacy-
preserving data services in the cloud: A data centric view. In VLDB 2012, volume
2012, pages 270–294, 2001. 104

[114] Ernesto Damiani. Web service security. In Encyclopedia of Cryptography and
Security (2nd Ed.), pages 1365–1377. 2011. 104

[115] Stefan Durbeck, Christoph Fritsch, Günther Pernul, and Rolf Schillinger. A
semantic security architecture for web services. In ARES, pages 222–227, 2010.
104

[116] Stephen S. Yau and Yin Yin. A privacy preserving repository for data integration
across data sharing services. IEEE T. Services Computing, 1(3):130–140, 2008.
104

[117] Hassina Meziane, Salima Benbernou, and Mike P. Papazoglou. A view-based
monitoring for privacy-aware web services. In ICDE, pages 1129–1132, 2010. 104

[118] Paul Ashley and David Moore. Enforcing privacy within an enterprise using ibm
tivoli privacy manager for e-business. In VLDB, pages 108–119, 2003. 105

[119] Michael J. Carey, Panagiotis Reveliotis, and Sachin Thatte. Data service model-
ing in the aqualogic data services platform. In SERVICES I, pages 78–80, 2008.
105

[120] Frederic Cuppens and Alexandre Miege. Adorbac: an administration model
for or-bac. International Journal of Computer Systems Science & Engineering,
19(3):151–162, 2004. 117

[121] Fabien Autrel, Frederic Cuppens, Nora Cuppens, and Celine Coma. MotOrBAC
2: A Security Policy Tool. In Proceedings the 3rd Conference on Security in
Network Architecture and Information Systems (SARSSI’08), Loctudy, France,
October 2008. 117



180 BIBLIOGRAPHY

[122] The Motorbac Tool. http://motorbac.sourceforge.net/. 117

[123] Apache jena. http://jena.apache.org/, October 2012. 118, 125, 129

[124] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
Springer, 1997. 118

[125] John Vlissides, R Helm, R Johnson, and E Gamma. Design patterns: Elements
of reusable object-oriented software. Reading: Addison-Wesley, 49, 1995. 120

[126] Anr pairse project. http://picoforge.int-evry.fr/cgi-bin/twiki/view/
Pairse/, 2012. 138

http://jena.apache.org/
http://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/
http://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/


List of Figures

2.1 SPARQL Query with Graph clause . . . . . . . . . . . . . . . . . . . . 8

2.2 SPARQL Federated Query . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 View-based approach: (a) Combination of building blocks, (b) Illustra-
tion, (c) Processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Pre-Processing approach: (a) Combination of building blocks, (b) Illus-
tration, (c) Processing flow . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Post-Processing approach: (a) Combination of building blocks, (b) Il-
lustration, (c) Processing flow . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 fQuery approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 (A) Permission case. (B) Prohibition case . . . . . . . . . . . . . . . . 37

3.3 (A) and (B) Permission case. (C) and (D) Prohibition case . . . . . . . 39

4.1 Consistency between select and update operators . . . . . . . . . . . . 46

5.1 Example from the employee ontology . . . . . . . . . . . . . . . . . . . 64

5.2 Example of a generated views from the employee ontology . . . . . . . 64

5.3 Relation between Vωname , Vωsalary
and generated views . . . . . . . . . . 65

5.4 Relation between Vωcomplex
and generated views . . . . . . . . . . . . . . 66

6.1 Our approach principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Our approach using SPARQL Service . . . . . . . . . . . . . . . . . . . 74

6.3 Privacy Preferences Ontology . . . . . . . . . . . . . . . . . . . . . . . 76



182 LIST OF FIGURES

6.4 Privacy Preferences Example . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 The Privacy-aware OrBAC model . . . . . . . . . . . . . . . . . . . . . 91

7.2 Accuracy levels of location data . . . . . . . . . . . . . . . . . . . . . . 95

7.3 The instrumentation approach of privacy rewriting . . . . . . . . . . . 96

7.4 RDF views of S1, S2 and S3 . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Transformation of Bob’s SPARQL Query . . . . . . . . . . . . . . . . . 99

7.6 Composition execution plan of V . . . . . . . . . . . . . . . . . . . . . 100

8.1 Overview of the Privacy and Security aware Execution Model . . . . . 106

8.2 Part-A: the RDF View of S1; Part-B: its graphical representation . . . 108

8.3 The SPARQL and the graphical representations of the patient’s consent 109

8.4 (a) The original view of S1; (b) The extended view after applying the
security policy; (c) The extended view after applying the privacy policy 110

8.5 A graphical representation of the services S2 and S3 . . . . . . . . . . . 110

8.6 The Obtained Composition . . . . . . . . . . . . . . . . . . . . . . . . 113

8.7 The intermediate and final results . . . . . . . . . . . . . . . . . . . . . 114

9.1 MotOrBAC Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 MotOrBAC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Management of RDF conditions . . . . . . . . . . . . . . . . . . . . . . 121

9.4 OrBAC Context and RDF condition assignment . . . . . . . . . . . . . 121

9.5 Predicates Management: Mapping and definitions . . . . . . . . . . . . 122

9.6 Definition of prefixes: URI shortcut . . . . . . . . . . . . . . . . . . . . 122

9.7 Test and simulation screen of fQuery-Privacy algorithm . . . . . . . . 124

9.8 Managing private properties mappingM . . . . . . . . . . . . . . . . . 124

9.9 Managing users’ preferences and PrivOrBAC SPARQL Service . . . . . 125

9.10 Implementation architecture of our approach . . . . . . . . . . . . . . . 126

9.11 The rewritten query Qrw3 of QN3 . . . . . . . . . . . . . . . . . . . . . 130



LIST OF FIGURES 183

9.12 Execution time of initial queries Q1, Q2 and Q3 . . . . . . . . . . . . . 131

9.13 Execution time of rewritten queries Qrw1, Qrw2 and Qrw3 . . . . . . . . 132

9.14 The extended architecture of AXIS 2.0 . . . . . . . . . . . . . . . . . . 133

9.15 The experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.16 AGGREGO Server architecture . . . . . . . . . . . . . . . . . . . . . . 135

9.17 Smart-fQuery component architecture . . . . . . . . . . . . . . . . . . . 136

9.18 General architecture of the PAIRSE framework . . . . . . . . . . . . . 139

9.19 fQuery Component integration in PAIRSE framework . . . . . . . . . 140

A.1 La vue RDF du service S1 . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2 La vue réécrite V ′ du service S1 . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Le plan d’exécution associé à la vue réécrite V ′ . . . . . . . . . . . . . 154


	Introduction
	Motivation and background
	Contributions
	Outline of the dissertation

	Preliminaries and State of the Art
	Background
	RDF
	OWL
	SPARQL
	SPARQL/Update

	Semantic Mediation
	Security enforcement for mediators
	Security of query evaluation
	View-based approach
	Pre-processing approach
	Post-processing approach


	SPARQL Select Query Rewriting to Enforce Data Confidentiality
	Introduction
	Rewriting SPARQL Query: Basic Principles
	Notations, Definitions and Theorems
	Security policy
	Permission
	Prohibition

	fQuery: Our query rewriting model
	Case of simple condition 
	Case of involved condition 
	Case of complex condition 
	Composition of simple and involved conditions

	Conclusion and Contribution

	Rewriting of SPARQL/Update Queries for Securing Data access
	Introduction
	Motivating example
	Principle of our approach
	Update access control
	Consistency between consultation and modification

	Conclusion and Contribution

	SPARQL Query Rewriting Instrumented by an Access Control Model
	Introduction
	The OrBAC model
	Basic predicates
	Role, activity and view definition
	Context definition
	Hierarchy and inheritance

	Principle of the approach
	Modelling RDF Condition within OrBAC
	RDF condition as context
	RDF condition as view
	RDF condition as view and context

	Rewriting Query Instrumented by OrBAC rules
	Conclusion

	Privacy policy preferences enforced by SPARQL Query Rewriting
	Introduction
	Approach principle
	Privacy-aware Ontology
	The correctness criteria
	Rewriting Algorithm principle
	Normalization of triple patterns
	Preferences acquisition
	Preferences enforcement
	SPARQL query without filter
	SPARQL query with filters

	Conclusion

	Privacy query rewriting algorithm instrumented by a privacy-aware access control model
	Introduction
	The privacy-aware OrBAC model (PrivOrBAC)
	Consent
	Purpose
	Accuracy

	Our approach: PrivOrBAC query rewriting algorithm
	PrivOrBAC services
	PrivOrBAC SPARQL Service

	Conclusion

	Secure and Privacy-preserving Execution Model for Data Services
	Introduction
	Motivating Scenario
	Challenges
	Contributions

	A Secure and Privacy-Preserving Execution Model for Data Services
	Model Overview
	Semantic models for data services and policies
	RDF views rewriting to integrate security and privacy constraints
	Rewriting the extended view in terms of data services
	Enforcing security and privacy constraints

	Conclusion and Perspectives

	Architectures and Implementations
	Implementation of fQuery
	MotOrBAC tool
	Implementation of fQuery-AC
	Implementation of fQuery-Privacy

	Performance of fQuery-Privacy instrumented by PrivOrBAC
	Architecture
	Use case
	Experimental results

	Performance of Secure and Privacy-preserving Execution Model for Data Services
	Implementation
	Evaluation

	Use cases
	AGGREGO Server
	PAIRSE


	Conclusion and perspectives
	fQuery: réécriture de requêtes SPARQL
	Introduction
	Généralités
	fQuery-AC: Principe de base
	fQuery-Privacy: Principe de base
	Le cas des services de données
	Implémentation

	Proof of theorem 3 chapter 3
	fQuery-AC Aspect
	fQuery-AC Visitor
	List of Publications
	Bibliography
	List of Figures


