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Abstract

On-chip systems (also known as System-on-chip or soc) are more and more
complex. soc design heavily relies on reuse of building blocks, called ips (In-
tellectual Property). These ips are built by different designers working with
different tools. So, there is an urgent demand for interoperability of ips, that
is, ensuring format compatibility and unique interpretation of the descriptions.
ip-xact is a de facto standard defined in the context of electronic system design
to provide portable representations of (electronic) components and ips. It suc-
ceeds in syntactic compatibility but neglects the behavioral aspects. uml is a
classical modeling language for software engineering. It provides several model
elements to cover all aspects of a design (structural and behavioral). We advo-
cate a conjoint use of uml and ip-xact to achieve the required interoperability.
More specifically, we reuse the uml Profile for marte to extend uml elements
with specific features for embedded and real-time systems. marte Generic Re-
source Modeling (grm) package is extended to add ip-xact structural features.
marte Time Model extends the untimed uml with an abstract concept of time,
adequate to model at the Electronic System Level.

The first contribution of this thesis is the definition of an ip-xact domain
model. This domain model is used to build a uml Profile for ip-xact that
reuses, as much as possible, marte stereotypes and defines new ones only when
required. A model transformation has been implemented in atl to use uml
graphical editors as front-ends for the specification of ips and to generate ip-
xact code.

The second contribution addresses the modeling of the ip time properties and
constraints. uml behavioral diagrams are enriched with logical clocks and clock
constraints using the marte Clock Constraint Specification Language (ccsl).
The ccsl specification can serve as a “golden model” for the expected time be-
havior and the verification of candidate implementations at different abstraction
levels (rtl or tlm). Time properties are verified through the use of a dedicated
library of observers.
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Résumé

Les Systèmes sur puce (soc) sont de plus en plus complexes. Leur concep-
tion repose largement sur la réutilisation des blocs, appelés ip (Intellectual Pro-
perty). Ces ip sont construites par des concepteurs différents travaillant avec
des outils différents. Aussi existe-t-il une demande pressante concernant l’in-
teropérabilité des ip, c’est-à-dire d’assurer la compatibilité des formats et l’uni-
cité d’interprétation de leurs descriptions. ip-xact constitue un standard de facto
défini dans le cadre de la conception de systèmes électroniques pour fournir des
représentations portables de composants (électroniques) et d’ip. ip-xact a réussi
à assurer la compatibilité syntaxique, mais il a négligé les aspects comportemen-
taux. uml est un langage de modélisation classique pour le génie logiciel. Il four-
nit des éléments de modèle propres à couvrir tous les aspects structurels et com-
portementaux d’une conception. Nous prônons une utilisation conjointe d’uml
et d’ip-xact pour réaliser la nécessaire interopérabilité. Plus précisément, nous
réutilisons le profil uml pour marte pour étendre uml avec des caractéristiques
temps réel embarquées. Le paquetage Modélisation Générique de Ressources de
marte est étendu pour prendre en compte des spécificités structurelles d’ip-
xact. Le Modèle de temps de marte étend le modèle atemporel d’uml avec
le concept de temps logique bien adapté à la modélisation au niveau système
électronique.

La première contribution de cette thèse est la définition d’un modèle de do-
maine pour ip-xact. Ce modèle de domaine est utilisé pour construire un profil
uml pour ip-xact qui réutilise autant que possible les stéréotypes de marte et en
définit de nouveaux uniquement en cas de besoin. Une transformation de modèle
a été mise en œuvre dans ATL permettant d’utiliser des éditeurs graphiques uml
comme front-end pour la spécification d’ip et la génération des spécifications ip-
xact correspondantes. Inversement, des fichiers ip-xact peuvent être importés
dans un outil uml par une autre transformation de modèles.

La deuxième contribution porte sur la modélisation de propriétés et de con-
traintes temporelles portant sur des ip. Les diagrammes comportementaux d’uml
sont enrichis avec des horloges logiques et des contraintes d’horloge exprimées
dans le langage de specification de contraintes d’horloge (ccsl) de marte. La
spécification ccsl peut alors servir de � modèle de référence � pour le com-
portement temporel attendu et la vérification des implémentations à différents
niveaux d’abstraction (rtl ou tlm). Les propriétés temporelles sont vérifiées en
utilisant une bibliothèque spécialisée d’observateurs.
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Chapter 1

Introduction

In our daily lives, miniaturization and the growing complexity of electronic systems has re-
sulted in a generalization of the use of on-chip systems. This growing complexity is driven by
the consumer demands and the ability of the modern techniques to address complex physical
hardware. On-chip system (also called system-on-a-chip or soc) refers to integrating all com-
ponents of an electronic system into a single integrated circuit (an ic chip). It is a blend of
software and silicon hardware components intended to perform predefined functions in order
to serve a given market. The distinctive feature of these systems is to be concentrated on
a single block, the chip, to provide the maximum functionality. These soc designs are very
diverse, consisting of multiple design domains (hardware, software, analog), multiple source
components (Core ips, dsps, asics, etc.) and have diverse constraint limitations (real-time,
low power, cost efficiency, etc.). All these things make the socs very complex. This growth
of complexity has been made possible by the unrelenting progress of technology integration of
transistors on a chip. In short, a soc is a complete system which would have been assembled
on a circuit board just a few years back, but now can fit entirely in a single chip.

With the exponential growth of system complexity, designing systems at lower levels has
become more difficult. So the focus of soc designers has shifted to more abstract representa-
tions. The traditional approach of designing chips, their functionalities, implementation, and
verification techniques does not follow the same innovative techniques to match the growth of
the soc complexity. This complexity can only be addressed by modeling at higher level and
relying on greater component reuse. Many research initiatives are destined to address these
issues to increase productivity techniques and innovations to meet the economic and technical
constraints in demand.

1.1 Issues Addressed

soc designs heavily rely on the reuse of building blocks, called ips (Intellectual Property).
These ips are built by different designers working with different tools. Reuse and integration
of these heterogeneous ips from multiple vendors is a major issue of soc design. The attempt
to validate assembled designs by global co-simulation at the implementation level is doomed to
failure because of the increasing complexity and size of actual socs. Thus, there is a clear de-
mand for a multi-level description of soc with verification, analysis, and optimization possibly
conducted at the various modeling levels. In particular, analysis of general platform parti-
tioning, based on a coarse abstraction of ip components, is highly looked after. This requires
interoperability of ip components described at the corresponding stages, and the use of trace-

1



2 CHAPTER 1. INTRODUCTION

ability to switch between different abstraction layers. Although this is partially promoted by
emerging specifications (or standards), it is still insufficiently supported by current methodolo-
gies. Such specifications include SystemC [IEE05], ip-xact [SPI08], OpenAccess api [GL06],
and also Unified Modeling Language (uml [OMG07]) based specifications like the uml Pro-
file for Modeling and Analysis of Real-Time and Embedded systems (marte [OMG08c]) that
specifically targets real-time and embedded systems.

System Modeling requires representation of both structural aspects at different levels of
abstraction as well as functional aspects possibly considering time-related viewpoints such
as untimed, logical synchronous, or timed models. So the focus areas of our work are both
architectural and behavioral aspects of ips.

For system architecture representation, uml uses class, component, and composite structure
diagrams, while sysml [Wei08] (a uml profile for systems engineering) uses block diagrams.
uml is a classical modeling language for software engineering. It provides several model el-
ements to cover all structural as well as behavioral aspects of a design but it contains no
specific constructs for modeling ips. Tools like Esterel Studio, and virtual platforms like CoW-
are, Synopsys CoreAssembler and arm RealView, introduce their own architecture diagrams,
resulting in non-interoperable models. On the other side, ip-xact relies on xml schemas for
specification of ip meta-data and tool interfaces. It has become a de facto standard in the
context of esl design. It presents some adl (Architecture Description Language) features
for the declaration of externally visible design interfaces and the component interconnections.
It provides portable representations of electronic components and ips, thus ensuring a kind
of syntactic compatibility. It also describes book-keeping information (ownership, versioning,
tool chain used, etc.) and memory mappings, useful in deployment and simulation. However,
ip-xact scatters information, with data duplication sometimes over various locations. This
makes ip-xact difficult to handle manually. Moreover, it also lacks abstract representation
of ips, like the Communication Processes (cp) level. To sum up, we are still looking for a
standard, covering all the aspects of the structural description of ips.

For component behavior representation, we consider various abstraction levels discussed by
Gajski [CG03] like cp (Communicating Processes), tlm (Transaction Level Modeling) with
its sub-levels pv (Programmers View) and pvt (Programmer View with Time), cc (Cycle
Callable), ca (Cycle Accurate), and rtl (Register Transfer Level). ip-xact provides support
for the behavior representation at low abstraction level (rtl), and medium level (tlm/pv,
tlm/pvt, cc) through systemc and vhdl files. These languages provide support for the
timed modeling but are not used for abstract levels (cp). On the other hand, uml state-
machines, sequence and activity diagrams can be used for modeling at abstract levels like
cp (Communicating Processes). But uml lacks the notion of time required to model timed
abstract systems. marte could be seen as introducing the relevant timed version at this level
through logical time and abstract user-defined logical clocks.

1.2 Proposed Approach

In this thesis, we are addressing the issues of integration and interoperability between the
various building blocks (IPs) of a SoC both at structural and functional levels.

The first contribution of this thesis is the definition of an ip-xact domain model (meta-
model). We propose a joint use of uml and ip-xact, targeting a better integration of both
specifications. By this effort, we are able to utilize the graphical and tool capabilities of uml
(graphical modular designing, component reuse, different representation views, etc.), jointly
with ip-xact. For this purpose, we partially extend the uml profile for marte with ip-xact-
specific stereotypes. Relying on a profiling approach allows easy creation and extension of
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model editors for ip-xact based on existing uml graphical editors (e.g.,Eclipse uml, Magic-
Draw by NoMagic, Rational Software Architect by ibm, Artisan, Papyrus, . . . ). Selected uml
structural models are extended with ip-xact capabilities and uml behavior models complement
the current ip-xact/SystemC specifications. marte time model adds the necessary abilities
to specify time requirements. This combined approach allows us the use of ip-xact in a more
abstract-level modeling environment. A transformation engine is built to export models to
ip-xact-dedicated tools. We chose to do this by specializing the marte profile, which already
provides a number of modeling features for extra-functional aspects and for introducing logi-
cal time in the uml. We only define new stereotypes when nothing equivalent exist either in
standard uml or in marte.

The second contribution of our research work addresses the modeling of time properties
and constraints for the ips. For component behavior representation, we enrich the uml behav-
ioral diagrams with the marte time model and its associated clock constraint specification
language (ccsl) to attach time/behavioral information to an ip structural representation. Our
effort related to time information does not attempt to represent the behavior in its entirety but
focuses on the ip timing properties extracted directly from the ip specification (datasheets).
Expected time properties are expressed in ccsl. Such ccsl specifications then serve as the ref-
erence model for the expected time behavior and drive the verification of ips. These properties
are verified with ccsl observers for different implementations of the ip at various abstraction
levels, to give some functional equivalence. As an example, we include the time information
extracted from the ip datasheets and show how this information can be used to generate
test-benches tailored for the different abstraction levels to test the desired ip properties.

1.3 Document Organization

This document is organized into three main parts. The first part consists of chapters 2, 3, and
4. It introduces the basic concepts involved in soc design flow and model driven engineering
(mde). This introduction prepares a ground for discussing the more advanced issues. Thus, in
chapter 2 we compare the traditional and a current approach for the design of socs. Later on,
we review some of the languages used at the various abstraction levels for soc designs. Readers
from the eda community can comfortably skip this chapter. In chapter 3, we focus on the
classical model-driven approach. This includes a view on the use of models and metamodels
in general, and the uml in particular. We introduce the profiling mechanism of uml and
a discussion follows on the popular uml profiles related to this work. We then propose a
transformation of uml models into ip-xact models empowering us with the automation of
design process. Readers familiar with model-driven engineering can skip these details. Finally
in chapter 4, we introduce a simplified computer system example starting from high-level
models and refining it to more concrete implementations. This example covers almost all the
aspects of our research work. It functions as a running example for this contribution and is
often referred to in the following chapters.

Second part of the thesis relates to our contribution regarding the description, integration
and interoperability of structural building blocks of socs. It consists of chapters 5 and 6.
Chapter 5 introduces our representation of the domain view of ip-xact specification. This
representation is then utilized in chapter 6 for creating the uml profile for ip-xact based on
the existing uml profile for marte. Later we model the Leon II system architecture in uml
using this newly introduced profile.

In the last part of the thesis, we present our contribution to time behavioral aspects of ips.
This part consists of chapters 7 and 8. In chapter 7, we discuss the behavioral representation
of our running example at various abstraction levels. This is followed by an introduction
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to the clock constraint specification language (ccsl) and on suggestions to integrate this
information into the ip-xact specification. In chapter 8, we introduce the implementation
of ccsl constraints in vhdl language which are then used to test and verify the selective
properties of Leon II-based embedded system architecture.

The last chapter of this work concludes by recalling the main points of our contribution,
the results of using our models with the tools from Synopsys coreAssembler and Innovator,
and by providing some perspectives for future works.
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Electronic System-Level (esl) design is the use of appropriate abstraction layers to max-
imize the understanding of the system while reducing the development time and cost to the
system. On the one hand this approach focuses the concurrent development of software/hard-
ware design while on the other hand it introduces abstract modeling layers like transaction level
modeling (tlm).

In this chapter we explore the different concepts related to the esl design including SoC
design flow and different abstraction layers. These concepts are then utilized in the structural
and behavioral modeling of embedded systems. In the last part, we explore three families of lan-
guages (synchronous languages, system-level languages, and hardware description languages)
that are used in the other chapters of this thesis for architectural and behavioral descriptions.

5
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2.1 New trends in Electronic Systems Design

Electronic systems are increasingly present in our daily lives. Advances in miniaturization
allow chip design carrying a continually increasing number of features. Simple mobile phones
of the past are now increasing having multiple features like advanced communications like gsm
and 3g, camera, video recording, touch sensitive menus, Internet and wireless access, or gps
navigation system, all integrated into a single chip. These all features are associated with a
processing chip lying at the center of any electronic device. This chip is an equivalent of the
old designs of dispersed devices connected through the buses on the motherboard. Such a chip
known as System-on-a-Chip or soc is the brain of most the embedded devices designed these
days.

The doubling of the complexing of systems on chips, approximately every two years as
predicted by Moore’s Law, has given us systems that are increasingly sophisticated, and are
at the same time more and more difficult to conceive. On the other hand, the productivity of
a system designer/developer was comparatively slow. Thus, there is a growing gap between
the evolution of the physical chip designs and the software support for them, termed as the
design gap. This problem gave way into finding the new trends focused on system design
methodology.

Daniel D. Gajski has discussed, in his paper [Gaj07] and a panel discussion [SSS+03],
about the strategies for dealing with the rising Systems-on-Chip (SoCs) complexity by using
the higher abstraction levels. An abstraction level is a means of addressing the inability of the
human mind to totally comprehend a complex system at a very detailed level [BMP07]. Thus
we increase the size of the basic building blocks that are used in our designs. Presently used
complex SoCs cannot be properly represented in the traditional register transfer level based
methodologies.

In this chapter, we firstly present the design flow for the realization of Systems on Chips.
Later, we explore in detail the major stages of this design flow including Register Transfer
Level (rtl) and Transaction Level Modeling (tlm). Finally we try identify their shortcomings
and the areas of possible improvement.

2.2 Systems on Chip (SoCs) Design Flow

2.2.1 Traditional/Classical Design Flow Approaches

Frank Ghenassia in his book [Ghe05] states that the design flow is a rigorous engineering
methodology or process for conceiving, verifying, validating, and delivering a final integrated
circuit design to production, at a precisely controlled level of quality. Moreover, he gives also
a look into the traditional design flow of an embedded system as shown in figure 2.1. This
design flow starts with the design specification given by the client. Based on this specification
two separate developments of the hardware and software begins independently. Note that the
two developments take place totally independently without any regard of others’ existence.
The two designs are kept separate until the prototype of the system-under-design is ready to
be tested.

In a traditional design flow, the hardware design development usually begins with the
creation of hardware models using hardware description languages (HDLs) like vhdl or Verilog.
These models are then simulated for functional verification or correctness of the behavior of
the module. Finally, synthesis is performed to obtain the code netlist. Later this design is
laid on the chip to build our basic prototype. On the other hand, the software development
goes independently without any knowledge about the hardware design. Although the software
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Figure 2.1: Traditional SoC Design Flow.

coding starts quite early in this way, but the testing of this code can only happen when the
hardware design prototype is available.

One of the biggest disadvantages of the traditional design flow approach is the system
validation at quite late stages of the design. Until the system prototype is ready and simulated
along with the software design, we cannot validate the system. This problem is augmented
with the fact that the software and hardware designs are modeled independently and without
co-ordination. Hence, when at the later design stages a problem evolves, it costs more to
correct it and re-design the system prototype. Moreover, the simulation speed for the designs
at this level is very slow making the task of validating huge designs to be very long.

A new and classical system level design flow approach is shown in the figure 2.2. This
classical design flow differs from the traditional system design flow in many ways. The tradi-
tional design flow uses a single system specification to describe both hardware and software.
On the other hand, classical design flow models use the Y-chart methodology [Erb06] for the
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hardware/software partitioning. This methodology uses a clear separation between an algo-
rithmic/application model, an architecture model and an explicit mapping step to relate the
algorithmic model to the architecture model. The application model describes the functional
behavior of an application independent of architectural specification whereas the architecture
model defines the system architecture characteristics. Thus, unlike the traditional approach
in which hardware and software simulation are regarded as the co-operating parts, the Y-
chart approach distinguishes algorithm/application and architecture simulation where the lat-
ter involves simulation of programmable as well as reconfigurable/dedicated parts [Erb06].
Moreover, in the traditional design flow, the system validation is not possible until the design
prototype is ready whereas in the present time classical modeling approaches, the system can
be hardware/software co-simulated just after the initial design specification phase. This co-
simulation [Sch03] is absolutely necessary for the software development such that the software
design teams can have an idea of the underlying hardware resources to be utilized efficiently.
In the traditional approach, the software development can only proceed when the hardware
development phase has completed whereas in the current practice, hardware and software are
partitioned to co-simulate at the same time. Partitioning is the process of choosing what al-
gorithms (or parts thereof) defined in the specification to implement in software components
running on processors, what to implement in hardware components, and the division of al-
gorithms within the software and hardware components [BMP07]. There are limitations for
this as the developed code depends on the underlying hardware used. For this purpose, tech-
niques have been developed to enable the software to run on virtual hardware models or virtual
platforms like the ones using transaction models (discussed in detail later). This approach
dramatically reduces the Time-to-Market (TTM) duration due to reduced number of errors
and early system validation. Time-to-Market is the time duration that it takes for a system
chip design to be materialized and introduced to the market and is an important index to
judge the performance of design techniques used.

2.2.2 Stages of SoC Design Flow

A classical system level design flow (shown in the figure 2.2) can be divided into three main
phases: system specification phase, architecture exploration phase and the system implemen-
tation phase, all discussed next.

System specification

In the system specification phase, we identify the requirements that the chip has to fulfill. SoC
provides a variety of features on a single chip including interaction with the other component
modules and with the user, which makes it quite complex. The SoC specification includes
the desired requirements from the end-user and the specific constraints being enforced by the
surrounding environment. These constraints can be of a vast variety. For instance, for a
multimedia application, the loss of data is not as important as the jitters and the delay in the
communication whereas for critical embedded applications like in avionics, the systems have
to be real-time as well as accurate in data. All such constraints are taken into account while
designing a chip.

Architecture exploration

System specification phase leads to the architecture exploration phase during which the system
architect determines the hardware configuration that will be necessary to meet the needs
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expressed before. This step is broken down into two parts: functional modeling phase and
system analysis phase.

During the functional modeling phase, different executable models for the hardware and
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the software of the system are designed. Usually hardware modeling deals with the resource
allocation while software modeling includes the definition of key functions, programs and rou-
tines. These models identify the key building blocks of the system and their interconnections.
They provide the possibility of an early functional and architectural validation of the system,
co-designing hardware and software models. These models also give us a big picture about
the requirements and interdependence of system modules leading to early detection of logical
system errors. The algorithmic and architectural models used for the creation of functional
model are rarely rebuilt from scratch in each new chip but are usually reused from an IP
library. Here, a standard like ip-xact [SPI08], which is at the heart of this thesis, plays a key
role by providing component IP databases. In fact the blocks which constitute a system on
chip are generally created to be reused and usually a new system design architecture reuses and
integrates these components, leading us to the concept of platform based systems [SVCDBS04].

System analysis phase decides the low level details about the system design. This step
crucially determines the remaining design flow as by this time the system architect must
determine how the chip will be incorporated to meet the requirements specified in the previous
phase. A key parameter for this determination is the hardware/software partitioning. At the
end of this phase we obtain a hardware/software partitioned system that has an adequately
allocated proportion of design functionality between the hardware and the software. After this
phase our system architecture is finalized and we can proceed with the system implementation
phase. As an example we consider a functional model of a system running some specific
programs. There are several ways to execute this specific program on the given model. In one
approach, we can assign the task to a processor and hence algorithm is implemented in the
software. This approach is quite easy and offers great flexibility as we can alter the program (to
a limit) even after the hardware fabrication. However, if the executed program is too complex,
the processors are not an efficient choice in terms of time and power consumption. This
leads us to the second approach of creating asics (Application Specific Integrated Circuits)
which costs us the flexibility to modify but are very efficient in terms of energy and time
consumption leading to shorter time-to-market durations. A third approach placed in between
these two is of the use of fpgas. fpgas are fully customizable hardware units and give more
flexibility for hardware design as compared to asics. The system analysis process finally leads
us to the determination of a system whose software has been specified as well as components
that will execute it. This gives way to the development of respective software or hardware
implementations in the next phase.

System implementation

Following the system analysis, we have the system implementation phase after which we have
the software and hardware implementation models of the system.

In the present times, the software implementation for a SoC design has become a pivotal
part for the overall system development. Software development includes variety of program-
ming including the low level device drivers coding, the operating system development and
management, and finally the problem specific end-user application. With the current trends of
evolution of system-on-chip architectures, having generalized multiprocessor system designs,
the importance of implementation software augments. The device drivers and operating sys-
tems are the softwares that are directly dependent on the underlying hardware and make the
application programming simple and hardware independent. Software programming heavily
depends on the system requirements specification. On one side a simple SoC design can have
a naive software implementation whereas on the other side if the software is implemented for
the critical embedded applications like in avionics or life saving devices, its correctness and
proper functioning matters a lot. Various design techniques have emerged in the eda industry
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The hardware implementation is the process of creating models that may be synthesized
into gate-level models. These models of a system design can be represented at different mod-
eling levels. Every design engineer can have his own view of the abstraction level of system
design. There can be potentially hundreds of abstraction levels for an electronic system design,
but mainly we focus on three commonly used abstraction levels [Rev08] namely System Archi-
tectural Model (SAM), Transactional Level Modeling (tlm), and Register Transfer Level (rtl)
(as shown in figure 2.3). From a system designer’s view point, the design starts from a model
specification. System Architectural Model comprises of design specification and its algorithmic
model. The design specification is the system requirement usually documented in a textual
language. Then this requirement specification is converted into a simple model comprising
of functions. Both these representations give the broad picture of the system representation
and are usually not meant for simulation purposes. These representations are characterized by
untimed transactions and can be used for high level system validation purposes. At the higher
levels of abstraction, the range of modeling levels is coarsely defined and overlaps with the
adjacent levels. Transaction Level Modeling (tlm) is an abstract modeling level providing the
initial executable model of the system, hence leading to early system simulation and validation.
While most of these levels are optional and are only there to facilitate the design flow, the last
rtl model is mandatory. rtl models give the most precise way to represent the components
present on the chip, and which can be automatically synthesized into a logical combination of
elementary operations (logic gates) whose implementation is materialized through the transis-
tors and integrated circuits (ICs) engraved on the circuit chips. These different modeling levels
demand different models and languages. We present three families of languages addressing the
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various levels.

2.3 Synchronous Languages

Most electronic systems are reactive and present to some extent real-time features. Syn-
chronous languages have been developed to deal with reactive systems. We present them in
this chapter on electronic systems for three main reasons:

� the importance of electronic systems in real-time and embedded applications;

� the intrinsic interest of the synchronous paradigm and its relationship with synchronous
circuits;

� the recent evolution of some synchronous languages, like Esterel, to electronic system
design.

2.3.1 Reactive and real-time systems

Reactive systems interact with the real-world environment by reading the sensors or receiving
interrupts and produce the output commands/information. For correct functionality they have
to produce valid data under strict time constraints (deadlines) hence leading to both logical
and temporal correctness of real-time systems [BB91]. Safety is a critical issue for many real-
time systems with numerous human lives at stake. The behavior programming in general
and especially of such systems can be done using combination of finite state machines (fsms).
StateCharts [Har87], which are hierarchical and concurrent state-transition models, can be
used instead of a collection of fsms. Both fsms and StateCharts are normally implemented in
hdls or C language. Such low-level languages do not help much to deal with the complexity
of the systems and have limited component reuse, difficult to debug, and error-prone (with
error detection at late design stages). Moreover, these languages are not adequate for high level
design for which system-level design languages like SystemC [IEE05] and SpecC [DGG02] were
introduced lately. These system-level languages facilitated the hardware/software co-design
and co-simulation leading to early system validation. However they lack a formal semantics and
hence are not a good choice for the formal verification and the correct-by-construction [Ber07]
implementation of systems.

Computer systems broadly fall into three categories based on their behavior; transforma-
tional systems, interactive systems, and reactive/reflex systems [Hal92, chapter 1]. Example
of transformational systems is the compiler which takes input code and generates an output
targeted for a specific architecture. The interactive systems are the ones which intake several
input stimuli and produce various output signals according to the input signals, without any
regard for the time taken to process this information. This means that the environment/client
does not know when the output will be available. On the other side, the reactive systems are
the ones in which correct functioning of the system not only depends on processing the input
but also on the timely response of the system (just like our reflexes). Hence the interactive
systems are non-deterministic while the reactive systems are predictable. In another way, we
can say that the interactive systems have got their own pace of execution while interacting with
the environment whereas the reactive systems theoretically react instantly to the inputs and
their pace of execution is dictated by the environment. All these types of computer systems
are shown graphically in the figure 2.4.

The behavior of a reactive system is usually described as a sequence of reactions, resulting
from execution cycles in which (sequentially) it reads inputs from the sensors, processes that
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input data based on the control commands, and finally generates output to manipulate the
actuators. The reactive systems are generally implemented by finite state machines (fsms).
Traditionally, the tools to design reactive systems forced the users to choose between the de-
terminism and concurrency for a system. Contrary to the traditional programming languages,
synchronous languages prove to be the good candidate for the programming of reactive/real-
time systems. These languages provided the system designers with the ideal primitives to
deal with the issues related to reactive systems design. Synchronous Languages were initially
introduced in the beginning of 1980s 1. They are based on the perfect synchrony hypothe-
sis [Ber00b], in which concurrent processes are able to perform computation and exchange
information in zero time. Such a synchronous model has a great appeal in the real-time mod-
eling domain including embedded systems (avionics, SoC design), communication systems and
hardware design. These languages can be classified as declarative languages and imperative
languages, based on their programming style. Declarative synchronous languages adopt a data-
flow style. They express the logic of a computation without explicitly describing its control
flow. They focus on ‘what’ the program should accomplish. Synchronous programming lan-
guages like Lustre [HCRP91] and Signal [LGLBLM91] represent this category. The former is
a synchronous flow language that relies on equations; the latter is more general and considers
relations. Both can be efficiently used for steady-process control and signal processing applica-
tions. In the contrast, imperative synchronous languages describe (reactive) behavior in terms
of statements that change a program state; they focus on the ‘how’. Esterel [BdS91, Ber00b]
and SyncCharts [And96] represent such languages. They are better used in control-intensive

1http://www.esterel-technologies.com/technology/history/
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applications. Recently, developments in the synchronous language tools have made this classi-
fication a bit vague. For instance SCADE, a Lustre-based industrial synchronous methodology
and tool-set 2, has integrated ssms (Safe State Machines, a variant of SyncCharts) which are
control-oriented, and Esterel (version 7) now supports Lustre-like equations.

The synchronous languages provide the formal semantics as well as the abstract represen-
tation of designs at system level which makes them a good choice for behavior representation.
The imperative programming languages like Esterel also facilitate the designing of fsms, dis-
cussed in the next subsection.

2.3.2 Esterel Language

In our work, to program the reactive applications and fsms, we have used Esterel Language
along with SyncCharts. These applications can be represented using textual (Esterel) as well
as graphical (SyncCharts) forms. SyncCharts is a graphical language expressing hierarchical
and concurrent state machines. SyncCharts is a model akin to StateCharts. However, they
differ on their semantics: SyncCharts adheres to the perfect synchrony hypothesis while State-
Charts has many synchronous but not perfect synchronous semantics [vdB94, HN96]. Because
SyncCharts and Esterel share a common semantics, they can be freely mixed in a specifica-
tion. In the Esterel Studio Suite, a syncChart is first translated into a semantically equivalent
Esterel program, and then treated as an ordinary Esterel program. In the following, an Esterel
program stands for its textual as well its graphical format. The compilation chain of Esterel
can generate program codes in languages like C, vhdl, or SystemC. These programs have a
behavior equivalent to the one specified by the Esterel program, but concurrency has been
compiled out.

The early versions of the Esterel language [BdS91] (in the 80’s and 90’s) targeted reactive
systems and safety-critical systems without special consideration for electronic systems. Since
1999, within an industrial context, the Esterel compiler has undergone broad syntactic exten-
sions, leading to Esterel v7 [Est05], and its main application domain has become electronic
system design. To understand this evolution we have to briefly describe the basics of Esterel
and bring out the main changes in the language.

Esterel v5

The syntax and an informal semantics of Esterel v5 are presented in a language primer [Ber00a].
A book [PBEB07] describes formal semantics of the language and different compilers. An
Esterel program can be seen as specifying a collection of communicating threads running
concurrently. Here, concurrency should be understood as cooperation, not competition as it
is often the case in interactive systems. Note that most of the Esterel compilers generate a
sequential executable code; thus the threads we consider are logical or conceptual, not physical
(run-time threads).

The simplest way to understand the behavior of a synchronous program is to consider
that each thread performs a cycle-based computation in which environment actions strictly
alternates with thread actions. The many threads that constitute the program communicate
and interact during their active phase. These concurrent/cooperative evolutions define an
instant. All the actions and the information exchanges are simultaneous (i.e.,at the same
instant).

In Esterel, signals are the only means of communication and provide the unique support
for communication between threads. When a thread emits a signal, this signal is instantly
broadcast and thus can be seen by any thread that may be concerned. A signal is either

2http://www.esterel-technologies.com/products/scade-suite/
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present or absent at a given instant. Pure signals carry only this presence information. Valued
signals also convey a typed value.

To emit or test a signal is a reactive statement in Esterel. Preemptions are other typical
reactive statements. Preemption is the capability for a thread to block the execution of another
thread. The preemption can be temporary (suspension) or definitive (abortion). The simplest
form of abortion is the await statement which makes a thread wait for the next presence of a
signal.

Syntactically, an Esterel program consists of one or several modules. A module is a program
unit that has a declarative part (header) and an imperative part (body). The header specifies
the interface of the module: it declares signals with their direction (input, output, inputoutput)
and their type. The body contains executable statements and structured blocks of statements
that can be nested and composed in parallel or in sequence. Modules can also be instantiated
in a module, allowing hierarchical specifications. Local signals declared within the body of a
module serve as communication medium for its concurrent threads.

The semantics of Esterel guarantees that preemptions at any depth and any degree of con-
currency are always deterministic. The unicity of each signal status (presence and value, if any)
is also assured at each instant. This makes Esterel an outstanding language for programming
complex control-dominated systems that require fully predictable behavior.

Note that Esterel, like the other synchronous languages [Hal92], relies on a logical time
rather than physical time. Only the ordering of event occurrences is meaningful, not the
“physical” duration between them. An event can occur before or after another one, but it is
also possible for them to occur simultaneously. In contrast to non-synchronous models, the
notion of simultaneity is precisely defined in synchronous languages and characterizes things
occurring at the same instant.

The compilation of an Esterel program is a hard task [Ber00b, PBEB07]. Each signal must
respect two coherence rules:

1. a signal is only present or absent in an instant, never both;

2. during a reaction, for any output or local signal, all the emit actions must precede any
test action.

The latter rule is a form of causality relationship not easy to check on complex programs. The
constructive semantics has defined simple correctness criteria for causality. A second difficulty
came from the size of the generated code when fsms were taken as target representation.
In the mid 90’s appeared the circuit semantics of Esterel. This semantics translates Esterel
programs into sequential circuits, or equivalently into logical equations, similar to the ones
found in Lustre programs. This logical representation is amenable to powerful optimizations
that have been extensively studied in the hardware community. Direct implementations in
hardware and software can be generated from the optimized circuits. The close relationship
between the Esterel semantics and the circuits is probably one of the main reasons why Esterel
has successfully evolved to Esterel v7 which is equipped to address electronic design.

Esterel v7

Esterel v5 failed at modeling/programming large-scale system-level or hardware designs. It
lacked prominent features [BKS03] in its ability to describe data paths, to deal with bit-
vectors, to directly support Moore machines, etc. Esterel v7 has corrected these deficiencies
by syntactic improvements that have left the semantics of the language mostly unchanged.

For our usage of Esterel in this thesis, the most interesting changes are in the declarative
part. Three types of program units are now available:
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� Data unit which declares data types, constants, functions, or procedures. It can extend
one or several other data units by importing all the objects they declare.

� Interface unit which primarily declares input/output signals and can also extend other
data and interface units by importing all their data and signal declarations. Interface
units can also be declared as mirror of some other interface which means that the inter-
face type is the same, but the interface signal directions are reversed.

� Module unit that defines the reactive behavior of the system. The header of the module
can extend data and interface units by importing the objects they declare.

Units can be generic, which allows better reuse. Also of interest is the introduction of
port. A port is a group of signals typed by an interface. A port allows renaming of signals
in interface instantiations. Esterel v7 supports arrays. Ports and signals can be declared as
arrays. The array mechanism facilitates the specification and the handling of large structures
like buses in computer architecture.

Modern hardware designs usually have more than one clock. Moreover, for power saving,
these clocks can be turned on and off. To address these new design challenges, Esterel v7
supports multi-clocking and adopts the GALS (Globally Asynchronous Locally Synchronous)
design paradigm. A new kind of signal (clock) and a new kind of unit (multi-clock) have
been added to the language. A multi-clock unit is similar to a module unit but it declares
one or many clocks in its header. It can also define local signals and clocks. Several module
and multi-clock units can be instantiated in a multi-clock unit. The classic module instances
perform computations, usually driven by an explicit clock, while the enclosing multi-clock unit
only deals with clocks and signals.

All the correct Esterel programs are synthesizable in hardware and software, including
multi-clock designs. Moreover, the programming structure of Esterel v7 resembles more to the
hdls. So, the advent of Esterel v7 has greatly improved the capabilities of the language for use
in eda (Electronic Design Automation) applications. Besides all these language improvements,
Esterel Studio now supports architecture diagrams, a graphical notation similar to hardware
block-diagrams and representing the Esterel design structure.

2.4 Transactional Level Modeling

Transaction Level Modeling (tlm) is a high level approach to modeling digital systems where
details of communication among modules are separated from the details of the implementation
of the functional units or of the communication architecture [Gro02]. Low simulation speeds
and complex SoC designs turn the system designers towards the more abstract level system
representations. Transaction Level Modeling (tlm) is one such abstract system representa-
tion which can be regarded as the first representation of the implemented components after
hardware/software partitioning. Because of its high level of abstraction, tlm gives us high
simulation speeds for a complete system on chip design representation as compared to respec-
tive rtl models. Figure 2.3 shows the tlm abstraction layer. The transactional level itself is
not a particularly defined modeling level but is a collective logical name for four model layers
communicating processes (cp), communicating processes with time (cpt), bus cycle accurate
(bca), and cycle accurate (ca).

The communicating processes (cp) models are also called as untimed functional models
(utf). They are the architectural models targeted at early functional modeling and verifi-
cation of systems where timing annotations are not required. They consist of asynchronous
concurrent message-passing elements as there is no notion of time at this level just as for
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system architectural models. As they do not contain unnecessary implementation details,
they can be developed, optimized and rapidly modified to the designers’ needs. These models
are characterized by high simulation speeds and less complex design models. On the other
hand, the communicating processes with time (cpt) model is a micro-architectural model con-
taining essential time annotations for behavioral and communication specifications [Ghe05].
Compared to cp models, these cpt models are closer to rtl models. These models focus on
the simulation accuracy, architecture analysis and real-time software development. The Open
SystemC Initiative (OSCI) 3 has defined the above given modeling levels from the software
engineering point of view. cp level is also called as the programmers’ view (pv) and cpt level
is called as programmers’ view with time (pvt).

The bus cycle accurate (BCA) models consider the temporal granularity at the bus trans-
action levels. The message passing is usually atomic. At bus cycle accurate levels also known
as cycle-approximate levels, the actual operations of the bus or ip accesses are present, but
the timing between them is not known precisely. In cycle accurate models, the communication
information is passed at clock boundaries and exact cycle counts are known. Gate propagation
level is the most detailed hardware implementation model at which the timing within the clock
period is also known precisely.

Electronic System Level being an established approach for System-on-a-chip (SoC) design
can be accomplished through the use of SystemC as an abstract modeling language. SystemC
language was developed by OSCI, a not-for-profit organization [SystemC], in 1999. It is a
actually a collection library of C++ routines, macros and classes that can be compiled with
any conventional C++ compiler. Its working and capabilities are similar to hdls (vhdl
and Verilog) like the simulation of concurrent processes, events, and signals but provides
more flexibility, greater expressiveness, different templates, and data types, as well as the
full power of the C++ language. It can be considered as a language for high level structure
modeling and behavior representation using constructs like communication channels, buses,
interfaces, modules and threads. Due to these features, SystemC is often duly associated
with esl design and tlm. It has got a wide variety of application like software development,
system-level modeling, architectural exploration, functional verification, high-level synthesis,
and performance modeling.

Modules are the basic building blocks of a SystemC design structure. A SystemC model
usually consists of several modules that communicate through ports. Modules are represented
using two types of C++ functions, methods and threads. Threads are the function calls that
can be paused using the wait statement whereas methods run till the end of their execution
once triggered or called. SystemC models execute in discrete events of time. Channels are
the main communication of SystemC connecting module interfaces. They can be either simple
wires or complex communication mechanisms like FIFOs. Modules, ports, interfaces, and
Channels together form interface-based design style, where computation and communication
can be modeled separately. SystemC also introduces a number of different data types.

2.5 Register Transfer Level

Register transfer level (rtl) refers to that level of abstraction at which a circuit is described as
synchronous transfers between functional units, such as multipliers and arithmetic-logic units,
and register files [Gro02]. The basic building blocks of an rtl design are modules constructed
from simple gates. These building blocks are comprised of functional units, such as adders
and comparators, storage components, such as registers, and data routing components, such
as multiplexers. This abstraction level is also referred to as module-level abstraction [Chu06].

3http://www.systemc.org/home/

http://www.systemc.org/home/
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Contrary to the gate level representation, rt level data representation is more abstract. Ports
and data types are used to represent groups of hardware connections and signals respectively.
Similarly, the behavioral description of a system, to specify the functional operations at this
level, generally uses finite state machines (fsms) to express the data flow. The system state
of the fsm describes the internal behavior state of the system at any specific instance of time.
The timing representation at the rt level is shown by a clock signal input to the storage
components like register blocks. These clock signals act as a trigger for the actions in the
synchronous modules. Data is manipulated (latched, sampled, read, written etc.) on the edge
(rising or falling) of these clock signals. In this way, these clocks act as the synchronizing pulse
for the system. The clock pulses have frequency limitations by the hardware implementation.
Clock signals have to be of long enough durations that they account for the system propagation
delays. Thus due to the use of clocks, we do not usually consider the system changes occurring
within the clock cycle and the system timing is considered in terms of number of clock cycles.

A digital system design can be described at different levels of abstraction and with variety
of view points, depending on the background and knowledge of the designer and requirements
of the system. Here comes the role of the hardware description languages (hdls) which let the
designers to accurately model the designs from the structural and behavioral view points, at a
desired level of abstraction. This thing gives the system designers an opportunity to focus their
efforts on the design and do not mix up the different view points of a design also. This effort
also gives a standardized approach to the system design and make various designs compatible
with each other. Traditional programming languages are not adequate for modeling digital
hardware which also increases the necessity of the role of hardware description languages.
The traditional general purpose languages like C follow the sequential process paradigm which
helps the programmers to easily formulate a step by step design approach. On the other
hand the digital hardware consists of concurrently operating small modules of sequential or
combinational circuits. Such sort of design modeling is not possible with general purpose
languages.

One of the popular hardware description language that we focus on in our work is vhdl.
vhdl stands for vhsic (Very High Speed Integrated Circuit) hdl. It is used to describe the
structure and behavior of a system. It can describe a system at various levels like behavior,
data flow, and structure. vhdl system design and programming is usually a top-down de-
sign methodology where a system design is modeled at a higher level. Later this model is
tested using simulation techniques and then refined to low level synthesizable hardware im-
plementations. A typical vhdl module consists of two major parts: an entity declaration
and an architecture description. The entity declaration defines the interface of the module.
This interface is visible and available to the other components. The architecture body spec-
ifies the internal operation or organization of the circuit. vhdl supports “hardware” types
(bit, bit vector,. . . ), and multi-valued logic types (sd logic) through its ieee library. The
statements inside the architecture body are executed as concurrent building blocks (in paral-
lel). An after keyword is used to trigger the statement blocks at a particular instance of time
relative to the input clock. These vhdl modules (also known as components) once declared
and defined, can be instantiated in the architecture body of other modules. Hence, we can
have a library of defined components which can be used in our designs as needed. Common
vhdl editors/simulators come with a set of such libraries having commonly used digital design
components. When instantiating a component in our design, the port map keyword is used
to bind the interfaces of the instantiated component to the ports of the component specifica-
tion. Such a structural description of our design facilitates the hierarchical design of complex
systems. vhdl also facilitates us to program sequential statements. Such a code is sometimes
also referred to as behavioral description. These features are considered as an exception to the
vhdl semantics [Chu06]. These statements are encapsulated in a special construct known as
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a process. A process can have a sensitivity list, a set of signals, which trigger its execution.
One of the major advantages of programming at the rtl level in languages like vhdl is of

program simulation. This helps us to study the functioning of our program (and eventually
the hardware) or its functional verification. Testing and verification are studied in chapter 8.

2.6 Conclusion

In this chapter we have described the general concepts of esl design especially in context of
different levels of abstraction. We have initially presented the traditional view of design-flow
approach used, followed by the focus on new trends like co-simulation and hardware/software
partitioning. In the end, we have introduced programming languages for modeling at differ-
ent abstraction levels. These languages are later utilized while dealing with the behavioral
representation of electronic systems (chapter 7).
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Model-driven engineering (mde) is a software development methodology which focuses on
models, meta-models, and model transformations. The Unified Modeling Language (uml) has
greatly contributed to the popularity of the mde in software engineering. Specialized forms
of uml extend modeling capability of uml far beyond the scope of software engineering, for
instance to Systems Engineering with sysml. This thesis is in line with this approach and
proposes a uml-based modeling of electronic systems.

This chapter is a brief introduction to uml, focusing on a subset of this modeling language
on which relies the uml profile for ip-xact, our contribution developed in chapter 6. Parts of
the uml profile for real-time and embedded systems (marte), reused in our profile, are also
presented. Model to model transformation, seen as an mde actvity, is briefly explained in a
last section.
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3.1 Introduction

Model-driven engineering (mde) is a software development methodology focusing on creating
specialized engineering models or abstractions. A model is the simplified representation of a
system that highlights the properties of interest for a given purpose or point of view. Thus,
a model effectively is an abstraction of the real world problem/system removing or hiding all
the irrelevant details giving a more understandable view. A good model further enforces that
it correctly represents the properties of interest of the system. It should also be capable of
accurately predicting the behavior of that modeled system. Model-driven engineering increases
productivity by simplifying the process of design, maximizing compatibility between systems,
and enhancing communication between individuals and teams working on the system. A
modeling paradigm for mde is considered effective if its models are useful from the point of
view of the user and can serve as a basis for implementing systems.

Model-driven development (mdd), another term frequently used in this domain, is an ap-
proach to software development in which models become essential artifacts of the system de-
velopment process rather than merely serving as inessential supporting blocks [Sel06]. As the
models approach completion, they enable the development of software and systems through the
use of model transformation techniques. An increase of automation in program development
is reached by using computer aided automated transformations in which higher-level models
are transformed into lower-level models until the model can be made executable using either
code generation or model interpretation.

In this chapter, the basic building blocks of model-driven techniques, i.e.,the models and
metamodels are described in the next section. In Section 3.3, we dig into the basics of the
metamodel of uml, a general purpose modeling language. In section 3.4, we describe parts
of the marte profile for uml we reuse in our approach. Section 3.5 addresses model to model
transformation, another pillar of mde, which will allow transformation of uml models into
ip-xact specifications.

3.2 Models and metamodels

mde aims to raise the level of abstraction in program specification and increase automation
in program development. The idea promoted by mde is to use models at different levels of
abstraction for developing systems. Similarly, in Electronic System Design, different languages
are used for various representations of the same components at different view points like
SystemC for tlm modeling and Verilog/vhdl for rtl modeling. These models differ in the
amount of information they contain. For instance, tlm-pv lacks timing information whereas
the tlm-pvt also includes the timing and behavior information of the same design under
consideration.

A model is specified in some notation or language. Since model languages are mostly
tailored to a certain domain, such a language is often called a Domain-Specific Language
(DSL). A DSL can be visual or textual. A sound language description contains its abstract
syntax, one or more concrete syntax descriptions, mappings between abstract and concrete
syntax, and a description of the semantics. The abstract syntax of a language is often defined
using a metamodel. A metamodel is a precise definition of the constructs and rules needed for
creating well-formed, i.e.,legal models.
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Model hierarchy

The mde defines a relationship, called “isRepresentedBy”, which relates a system, or simply
anything of interest and its model. The “conformsTo” relationship is another one which binds a
model to its metamodel. A metamodel is actually a model representing a collection of models. A
model from this collection is said to conform to the metamodel. Since in the mde, a metamodel
itself is also a model and it has to conform to its metamodel (or meta metamodel of the system).
The relationship “conformsTo” could therefore apply an indefinite number of times as each
metamodel being itself a model has to comply to a superior meta-model. Fortunately, in
mde, the meta metamodel is self-describing, so that 3 levels of abstraction suffice. In the
omg approach to mde—called Model Driven Architecture or mdar—the meta metamodel
is the mof (Meta-Object Facility), an omg standard that enables metadata management
and modeling language definition. uml is one of the modeling language whose metamodel is
specified in mof. The matter is a bit more complex, because with uml 2, the mof and the
uml kernel are now closely dependent.

3.3 UML

Unified Modeling Language (uml) is an omg standardized general-purpose modeling language
in the field of software engineering. uml includes a set of graphical notations to create models
of specific systems. A uml model consists of number of different model elements put in dif-
ferent diagrams targeted to a specific use. These diagrams include class diagrams, component
diagrams, composite structure diagrams for structural aspects; activity diagrams, state ma-
chine diagrams, and sequence diagrams for the behavioral aspects. A uml model must conform
to the uml metamodel specified in a huge omg document entitled “uml Superstructure” (742
pages for the last version [OMG09b]). In this section, we describe some selected uml meta-
classes and propose simplified excerpts of the uml metamodel. As said before, the abstract
syntax of uml should be specified with a mof-based metamodel. However, the Infrastructure-
Library defined in the “Unified Modeling Language: Infrastructure” [OMG09a] can be strictly
reused by mof 2.0 specifications, so that the uml metamodel looks like a uml model. This
maybe a source of confusion for the reader. The level of modeling (uml users’s model or uml
metamodel) will be explicitly given in case of ambiguity.

3.3.1 UML Classifiers

uml model elements are grouped in hierarchical packages.

The UML::Classes::Kernel package contains the core modeling concepts of the uml. uml
has the general concept of Classifier. A classifier describes a set of objects; an object is an
individual thing with a state and relationships to other objets. Thus, a classifier describes
a set of instances that have features in common. A classifier is an abstract metaclass1: it is
not directly instantiable, only its concrete specialized subclasses are. The class diagram in
figure 3.1 represents some metaclasses of the Kernel package and their relationships. This
diagram shows that a Classifier is a Namespace, i.e.,it contains a set of named elements that
can be identified by name. It also appears that Class is a subclass of Classifier. A class owns
0 or many properties, and 0 or many operations. A Property is a structural feature (related to
the structure of instances of the classifier). An Operation is a behavioral feature (related to an
aspect of the behavior of the instances of the classifier). Class is the most used uml metaclass.

1On graphical representations, the name of an abstract metaclass is written in italics.
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Its instances are called objects. Note that a class may own nested classifiers, a property we
will exploit in our profile for ip-xact (chapter 6).

UML::Classes::Kernel

Class

Classifier Property

StructuralFeature

Operation

BehavioralFeature

Parameter

0..*

+ class

0..1

+ ownedOperation

+ ownedParameter

+ operation0..1
0..*

Namespace

+ nestedClassifier

+ class
0..1
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+ ownedAttribute

+ class

0..1

0..*

Type
+ /type

0..*0..1

TypedElementType
0..1

type

NamedElement

Figure 3.1: Simplified class diagram of the Kernel metaclasses.

The Kernel package also contains the Constraint metaclass, not shown in figure 3.1. A
constraint is a condition or a restriction that precises the semantics of an element. Constraints
can be expressed in ocl [OMG03], which is a formal language used to describe expression on
uml models and metamodels. These expressions specify invariant conditions that must hold
for a valid model. At the metamodel level, ocl constraints are useful to fix the semantics of
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some elements, especially when defining profiles.

Classes, such as defined in the Kernel package, along with associations, are the main model
elements encountered in a user’s class diagram. These diagrams have the same form as the one
in figure 3.1, but they are not at the same modeling level. In a user’s model, an association
specifies a semantic relationships between typed instances. This association is general, not
specific to particular usages or contexts. Class diagrams were the main static structural rep-
resentations in uml 1.x. Early attempts at modeling complex Real-Time systems [Sel98] and
more generally using uml as a standard architecture description language (adl) [RSRS99]
showed that uml 1.x class diagrams even combined with collaboration diagrams were not
sufficient to deal with architectural aspects. A major improvement of uml 2 has been the
introduction of composite structure diagrams and structured classifiers described in the next
subsection.

3.3.2 UML Structured Classes

An architecture defines the high-level structure and behavior of a system during execution [WGK+00].
Quoting this paper, “Architecture is concerned with the decomposition of a system into parts,
the connections between these parts, and the interaction of the parts of the system required
for the functioning of the system”. This definition applies as well to electronic systems. When
modeling an architecture, we want to know “who speaks to whom” in the particular context of
the system at hand. This information is not provided by a class diagram that does not reflect
the effective decomposition of the system. In fact, the architecture of a system is composed
of instances—not classes—of various kinds and their interconnections. An object diagram, fa-
miliar to Object-Oriented programmers, is not a solution either because objects models show
completely reified objects, i.e.,examples, and thus are not reusable. To address this modeling
issue, uml 2 has introduced a new diagram: the Composite Structure Diagram and related
new concepts (Structured Classifier, Ports,. . . ). These model elements are shown in figure 3.2.
Note that some concepts, like Property or Class, already defined in the kernel package, reap-
pear in the newly introduced packages. This is usual in the uml specification and is known as
a merge increment : the increment is additional characteristics given to an element (e.g.,the
capability to have an internal structure and ports for Class), the merge applies to packages
and combines their contents. This is a complex operation we will not detail. For the user
it is sufficient to be aware that a uml model element can be enriched several times in the
specification, and this results in a model element with all the additional features.

Connectable Elements and Structured Classifiers

uml 2 has introduced the concept of connectable element. A ConnectableElement is an abstract
metaclass representing a set of instances that play roles of a classifier. Property is a concrete
subtype of ConnectableElement (another example of merge increment). A StructuredClassifier
is an abstract metaclass that represents any classifier whose behavior can be described by the
collaboration of owned or referenced instances. Properties—as connectable elements—owned
by a structured classifier are called parts. The choice of this word is judicious. It can be
understood in two ways: as part of a whole, i.e.,a piece, an element of a composite structure,
and as a role performed by an actor. Thus, structured classifiers fit to architecture modeling,
and connectable elements can conveniently represent the components.

A connector is a link that enables communication between two or more instances. A
Connector is not an Association. It makes it clear “who speaks to whom”.
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UML::CompositeStructures::StructuredClasses
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Figure 3.2: Simplified class diagram of the CompositeStructures metaclasses.

Ports and Encapsulated Classifiers

An EncapsulatedClassifier is a classifier that owns ports, through which it may interact with its
environment. A Port is a property of its owning classifier that specifies a distinct interaction
point between that classifier and its environment or between the (behavior of the) classifier and
its internal parts. Ports are connected to properties of the classifier by connectors through
which requests can be made to invoke the behavioral features of a classifier. A Port may
specify the services a classifier provides (offers) to its environment as well as the services that
a classifier expects (requires) of its environment. Ports can either delegate received requests
to internal parts, or they can deliver these directly to the behavior of the structured classifier
which owns this port.

Class with internal structure

The subpackage UML::CompositeStructures::StructuredClasses contains only one metaclass (Class)
which extends the kernel metaclass Class with the capability to have internal structure and
ports.

Usually, classes with internal structure are represented in Composite Structure Diagrams,
this is a new kind of static structure diagram not present in uml 1. This diagram represents
the internal structure of a class and the collaborations that this structure makes possible. It
is the composition of interconnected elements, representing run-time instances collaborating
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over communications links to achieve some common objectives. Figure 3.6 on page 29 is an
instance of such a diagram.

3.3.3 UML Profiles

uml is a general purpose modeling language. It can represent concepts from many specific
domains and adapt its semantics accordingly. Lightweight extensions of uml modify semantics
of uml concepts by specialization. This specialization must not contradict the semantics of
uml, taken as the reference model. On the contrary, heavyweight extensions introduce non-
conformant concepts or incompatible change to existing uml semantics/concepts. Heavyweight
extensions are defined at the mof level, whereas lightweight extensions modify (specialize) the
uml metamodel through the uml profile mechanism, a specific metamodeling technique. In
this thesis we consider leightweight extensions only.

Class Extension

ExtensionEndStereotype

1ownedEnd

type

1

*1

/metaclass /extension

/

Profile

*

1

/ownedStereotype

InfrastructureLibrary::Core::

Constructs::Package

UML::Profiles

Figure 3.3: Simplified class diagram of the Profiles metaclasses.

The UML::Profiles package contains the uml metaclasses that allow lightweight extensions.
Figure 3.3 shows some of these model elements. A Profile is a specialization of Package. This
package contains imported elements, imported packages and stereotypes. A Stereotype gives
specific roles and semantics to existing metaclasses and records additional context-specific
information in meta-attributes also known as tagged values. Having a closer look at figure 3.3,
we see that an Extension, which is a kind of Association, relates a Stereotype to the metaclass
it extends. Here, there is an issue with this metamodel, since a metaclass could only be
a Class or one of its numerous specializations. Thus, metaclasses like Property, Operation,
etc. could not be stereotyped. This is in total contradiction with what is supported by uml
(meta)modeling tools. This metamodel inconsistency has been reported in a paper entitled



28 CHAPTER 3. MODEL DRIVEN ENGINEERING

“Uses and Abuses of the Stereotype Mechanism in uml 1.x and uml 2” [HSGP06]. This
problem has also been identified within the omg and is being worked on. It seems that there
is a confusion between two concepts of Class. The Extension::metaclass association end from
Extension to Class should terminate on MOF::Class, whereas the Stereotype metaclass should
extend the (uml) Class. There is no such example of mixing mof and uml levels in the uml
superstructure specification, that may be the reason for the delayed fixing of this metamodel
error. In what follows, we assume that any uml metaclass, but the Stereotype metaclass, can
be stereotyped. In fact, a stereotype may only generalize or specialize another stereotype.

3.3.4 Example of UML modeling of a Timer

A simple timer counts occurrences of an event and signals when a given number of occurrences
has been received. Often the event is bound to time, for instance clock pulses, hence the given
name of timer. A Timer is a device made of one or several simple timers.

Timer

read():Integer

write(m:Integer)

mem:Integer

Register

decrement()

elapsed():Boolean

Counter

1..*regs 1..*cnts

1load

Figure 3.4: A class diagram for a Timer.

A simple timer consists of a register and a counter. The register contains the number of
occurrences to be counted, the counter effectively (down) counts the occurrences and checks
if the count is 0. A class diagram is proposed in figure 3.4. The class Register owns an
integer attribute mem, and has two access operations: read and write. The class Counter is a
specialization of Register with an additional property (load), and two additional operations:
decrement and elapsed. Once Counter.mem is 0, its value is updated to the value contained in
the associated register (Counter.load.mem).

Figure 3.5 introduces classes with ports to represent registers and counters. The port named
access of the Register class offers read and write functionalities. The ports of the Counter class
offers additional functionalities (decrementation and end-of-count signaling). Note that, due
to the generalization relationship between Register and Counter, the latter has also an access
port, as shown in the right-hand side of the figure.

The class diagram in figure 3.4 does not show “who speak to whom”. This information is
clearly visible on a composite structure diagram (figure 3.6). The class Timer2 consists of two
independent timers and a prescaler that divides the frequency of the incoming clock (clk port).
Indeed, the prescaler is a simple timer whose elapsed port feeds the two other simple timers.
The command port is a behavioral port through which behavioral features of the classifier can
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Register
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decrement elapsed

Counter

decrement elapsed
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Figure 3.5: Class with ports.

be invoked, for instance to load a new count value in a timer or the prescaler. Ports to1 and
to2 stand for timeout ports. They are connected to the corresponding elapsed ports.
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Figure 3.6: Timer as a Structured Class.

3.4 The UML Profile for MARTE

3.4.1 Overview

The new omg uml profile for marte supersedes and extends the former uml profile for
Schedulability, Performance and Time (SPT [OMG05]). marte also addresses new require-
ments: specification of both software and hardware model aspects; separated abstract models
of applications and execution platforms; modeling of allocation of the former onto the latter;
modeling of various notions of Time and Non-Functional properties.

Figure 3.7 represents an overview of the marte domain model. marte consists of three
main packages. The first package defines the foundational concepts used in the real-time and
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MARTE domain model

MARTEFoundations
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CoreElements
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Hardware Resource Modeling

Figure 3.7: MARTE overview.

embedded domain. These foundational concepts are refined in the two other packages to re-
spectively support modeling and analysis concerns of real-time embedded systems. The second
package addresses model-based design. It provides high-level model constructs to depict real-
time and embedded features of applications, but also detailed software and hardware execution
platforms. The third package addresses model-based analysis. It provides a generic basis for
quantitative analysis sub-domains. Our profile for ip-xact reuses several model elements from
the first and second packages. The following subsections briefly describe these borrowings,
highlighted in figure 3.7 as red texts in note symbols. The marte Time profile receives a
special attention for its advanced applications in chapter 7.

3.4.2 Resources and Allocation

The central concept of resource is introduced in Generic Resource Modeling (grm) package
of marte. A resource represents a physically or logically persistent entity that offers one or
more services. A Resource is a classifier endowed with behavior (a BehavioredClassifier in uml
terminology), while a ResourceService is a behavior. Resource and ResourceService are types of
their respective instance models. See figure 3.8 for the domain view of the Generic resource
Modeling. The grm profile (one of the sub-profiles of marte) defined two stereotypes Resource
and GrService to represent the concepts of resource and resource service respectively. These
sterotypes extend several uml metaclasses. We just mention some: Classifier, Property, and
InstanceSpecification for Resource, and BehavioralFeature for GrService.

Several kinds of resources are proposed in marte like ComputingResource, StorageResource,
CommunicationResource, TimingResource. Two special kinds of communication resource are
defined: CommunicationMedia and CommunicationEndPoint. The communication endpoint acts
as a terminal for connecting to a communication medium; typical associated services are data
sending and receiving.

For structural modeling, marte enriches the concepts defined in the uml composite struc-
tures. For instance, the uml metaclass Port has been extended into two stereotypes: FlowPort
and ClientServerPort. Flow Ports model interaction points through which information flows.
The direction of the flow is specified by the direction metaattribute. Possible direction val-
ues are in, out, or inout. Client-server ports have been introduced to make easier the use
of uml ports. The metaattribute clientSeverKind makes it explicit whether a port provides,
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Figure 3.8: MARTE resource domain view.

requires, or both provides and requires behavioral features. In electronic systems these new
ports can be useful to represent data exchanges (FlowPorts at RTL level) and transactions
(ClientServerPorts at TM level).

The marte Allocation associates functional application elements with the available re-
sources (the execution platform). This comprises both spatial distribution and temporal
scheduling aspects, in order to map various algorithmic operations onto available computing
and communication resources and services. It also differentiates Allocation from Refinement.
The former deals with models of a different nature: application/algorithm on the one side, to
be allocated to an execution platform on the other side. The latter allows navigation through
different abstraction levels of a single model: System-level, rtl and tlm views.

The Detailed Resource Modeling (drm) package of marte specializes these concepts. It con-
sists of two sub-packages: Software Resource Modeling (srm) and Hardware Resource Modeling
(hrm). Only the latter is considered in this thesis.

As shown in figure 3.9, HwResource (HwResourceService resp.) specializes Resource (Resource-
Service resp.) defined in the grm package. A hardware resource provides (hence the prefix
‘p ’ in the role name) at least one resource service and may require (‘r ’ prefix) some services
from other resources. Note that a HwResource can be hierarchical. The hrm package is fur-
ther decomposed into two sub-packages: HW Logical and HW Physical. The former provides
a functional classification of hardware entities; the latter defines a set of active processing
resources used in execution platform modeling and close to several Spirit ip-xact concepts.
HwResource is specialized in the same way as the generic resource of the grm package (lower
part of figure 3.9).

3.4.3 Time in MARTE

Both Resource and Allocation refer to the time model defined in the Time package of marte.
While spt considered only time models based on physical time, marte introduces two distinct
models called chronometric and logical time. The former supersedes the spt model and its
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Figure 3.9: Excerpt from marte hardware resource profile.

time values are expressed in classical time units (second or one of its sub-multiples). The
latter may “count” time in ticks, cycles, busCycles, or any other units. In fact, any event can
define a logical clock that ticks at every occurrence of the event. Thus, logical time focuses on
the ordering of instants, not on the physical duration between instants. Another noteworthy
feature of the marte time model is the support of multiple time bases, required to address
distributed embedded systems and modern electronic sytem designs.

In marte, the underlying model of time is a set of time bases. A time base is an ordered
set of instants. Instants from different time bases can be bound by relationships (coincidence
or precedence), so that time bases are not independent and instants are partially ordered. This
partial ordering of instants characterizes the time structure of the application. This model of
time is sufficient to check the logical correctness of the application. Quantitative information
can be added to this structure when quantitative analyses become necessary.

A Clock is the model element that gives access to the instants of a time base; a ClockCon-
straint—a stereotype of uml Constraints—imposes dependency between instants of different
time bases. Complex time structures and temporal properties can be specified by a combined
usage of clocks and clock constraints. Examples are given in chapter 7.

marte also introduces the concept of timed model element. A TimedElement associates
at least one clock with a model element. This association enriches the semantics of the ele-
ment with temporal aspects. Thus, a TimedValueSpecification necessarily refers to clocks. A
TimedEvent is an event whose occurrences are explicitly bound to a clock. A TimedProcessing
represents an activity that has known start and finish times, or a known duration, and whose
instants and durations are explicitly bound to clocks. The stereotype TimedProcessing may be
applied to uml Action, Behavior, and even Message.
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The marte Time and Allocation models are introduced in the marte specification, but
for a better understanding of the underlying concepts and their practical use, the reader is
urged to refer to academic papers. The paper [AMdS07] entitled “Modeling Time(s)” is a
general introduction to the marte time model and the associated semantics. The clock con-
straints, which are not detailed in the uml specification, can be specified with ccsl, the
Clock Constraint Specification Language, a formal language whose syntax and semantics are
described in papers [MA09, AM09a] and a research report [And09b]. Publications about
applications of marte are many, ranging from first assessments of the profile for control sys-
tem specification [DTA+08] to more specific uses of the Time profile in different domains:
automotive [AMPF07, MPA09], and avionics standards [AMdS08, MdS09, MAD09]. No sur-
prisingly, most of the references of Time in marte are from the project-team aoste, because
the Time and Allocation profiles have been proposed, written and maintained by members
of this project. For more general references on marte, the reader may consult the dedicated
website (http://www.omgmarte.org/).

3.5 Model to model transformation

Automation of the design process is one of the objectives of the mde aimed at applying the
mde techniques to the practical world. One of the key steps of this design automation is
the model to model transformation, which converts one design representation/abstraction into
another form. A set of nice definitions related to model transformation are given in the book
‘mda Explained’ by Kleppe et al. [KWB03]. It defines a model to model transformation as the
automatic generation of a target model from a source model, according to a transformation
definition. A transformation definition is a set of transformation rules that together describe
how a model in the source language can be transformed into a model in the target language. A
transformation rule is a description of how one or more constructs in the source language can
be transformed into one or more constructs in the target language. The underlying theme of
model transformation is to form a correspondence relationship between the input and output
models of the system, as shown in the figure 3.10. The transformation rules are themselves
a model and hence conform to a metamodel, which is usually provided by the transformation
engine. These models can be expressed in a variety of ways like we can use uml to design
graphical models or some programming languages to express the program source code. All
these models must conform to their metamodels (shown in figure 3.10) which defines their
syntax and semantics.

The model to model transformations can be categorized as endogenous or exogenous trans-
formations based on the kind of conversion they perform [MG06]. The endogenous transfor-
mations (also referred to as rephrasing) are the one in which the input and the output models
use the same metamodel for their syntax and semantics definitions. This means that the two
models are expressed in the same language. Examples of such transformations are optimiza-
tion (like code optimization to enhance the performance), refactoring (changing the internal
structure of a design), and normalization (where complex syntactic constructs of a model are
broken down into smaller simple modules). On the other side, the exogenous transformations
are between models expressed using different languages, thus having different metamodels at
the input and output. Typical examples of such transformation are synthesis (conversion of
high level abstract model into low level concrete model, like in code generation or model compi-
lation), reverse engineering (extracting abstract model specification from an implementation),
and migration (transforming the code in one language like Java into another one like C++
without changing the level of detail of the model).

In the figure 3.10, the transformation engine takes only one input model and produces a

http://www.omgmarte.org/
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Figure 3.10: Model to model transformation.

single output model, but in other cases, it is possible to have several input and/or output mod-
els conforming to different meta-models. Moreover, we can have a single meta-model used for
the input and output models, in which case we call such a transformation as model refinement.
There are some indigenously coined terms in the model transformation domain referring to
different concepts. As an example, Tom Mens et al. use the above given term ‘refinement’ for
the vertical transformation mentioning that a model is refined to a low level implementation,
whereas research leading to tool like atl (Atlas Transformation Language) [Fou06] uses the
terms refinement or refining for horizontal or endogenous transformations, giving an output
model resulting from the ’fine tuning’ of input model. In our work, we shall stick to the ter-
minology used by the popular model transformation tools (like atl) as they concern us the
most. In such tools, model refinement is usually the single metamodel transformation and
model elements are relocated in it.

There are several model to model transformation tools in the mde world notably the
atl (Atlas Transformation Language)[JABK08, JAB+06] developed at inria. It is one of
the most powerful tool implemented on the qvt (Query View Transform) standard defined
by the omg [OMG08a]. It is also used in our model transformation experiments (described
in subsequent chapters). In our model transformation project (converting uml models into
ip-xact models), the atl language allows us to program model transformation algorithms
(UML2IPXACT.atl) implementing the transformation rules which must conform to the trans-
formation metamodel provided by atl. Both the input model provided to the transformation
and the output model produced by the transformation conform to their respective metamod-
els. Figure 3.11 shows the transformation mechanism along with the example transformation.
Here the role of transformation engine is to load the input uml model Leon2tlm.ecore in
compliance to the input uml meta-model UML2.ecore, later it interprets the rules to create
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the instances of elements of the output model mapped to the input model elements. The
output model IPXACTOut.xml is generated in a way that it conforms to the output meta-
model IPXACT.ecore. The input and output meta-models must conform to the omg’s mof
(MetaObject Facility) specification.
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Figure 3.11: Model to model transformation using ATL.

Another important feature to consider in model transformation is the declarative or im-
perative approach used [MG06]. This concept is similar to the one discussed before about the
synchronous languages. The declarative approach focuses on the model elements themselves
(focus on data flow) or on the what aspect, i.e.,what needs to be transformed into what?
Such an approach is best suited from the theoretical point of view, giving us simpler formally
founded models. On the other hand, the imperative/operational approach focuses on process of
transformation (focus on control flow) or on the how aspect, i.e.,how input model elements will
be transformed into the output model elements. These transformations are better suited to the
transformation leading to an incremental updating of source model. The atl transformation
tool provides both types of transformation approaches but mostly the designers recommend
declarative approach in the model transformations 2.

In our present work, model transformation is used to transform the uml based models into
the ip-xact xml models (discussed later in chapter 5). Hence, we get the power of representing
the textual ip-xact model information into uml graphical models. Other than this we can
have numerous other applications for the model transformations. We can define models at one
abstraction level like tlm and later write transformation rules to transform those models into
another representation like rtl, hence providing the interoperability of models. Moreover, the
model refinement techniques (using similar input/output meta-models) allow us to analyze

2http://wiki.eclipse.org/ATL FAQ
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the input models and produce processed output models for a particular point of view. Model
transformations allow us to create output model skeletons deduced from the input models.
This can be helpful to reduce the development time of a design structure. As an example, we
consider the work done by Revol [Rev08] in which he designs a model in uml representing the
behavior of a system. Then the model transformation is used to generate the skeleton of code
modules in SystemC language, to better simulate the behavior at later stages. Such a code
skeleton can then be tailored to give the optimum desired results.

3.6 Conclusion

In this chapter we introduced the basic concepts of mde followed by one of its greatest represen-
tatives, the uml. We have also highlighted the concept of profiles as an extension mechanism
to this language, allowing us to cover the key aspects of our work. In the next chapters, we will
apply these mde concepts, including uml and its marte profile, to ip-xact. Model transfor-
mation then will help to transform uml-based design models into ip-xact specification, which
is one of the objectives of this thesis.
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In this chapter, firstly we propose a definition of protocol associated with a communication.
Then we establish an example of a simplified acquisition system which can cover all the aspects
of our research work discussed later. Finally, we model the structural aspects of this application
with different languages: Esterel, vhdl, and SystemC.
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4.1 Communications and interactions

4.1.1 Protocol

Modeling a system as a mocc brings a clear separation of computations and communications.
The system can be represented by its architecture that consists of computation units and
interconnections between these units. Architecture description languages (adls) have been
proposed as modeling notations to support architecture-based development [MT00].

Communications or interactions between computation units often follow some well-established
set of rules, known as a protocol. This term was first used, with this meaning, in telecommu-
nication systems. The protocol is there a set of rules governing the format and chronology of
message exchange in a communications system. We aim at a more general concept. B.P. Dou-
glass [Dou98] proposed a wider definition he applied to multiprocessor systems. “The overall
structure of the protocol represents a set of important architectural decisions. A protocol is de-
fined to be the rules, formats, and procedures agreed upon by objects wanting to communicate.
By this definition, a protocol includes not only the physical characteristics of the medium but
also the additional rules of behavior governing the use of the medium”. Thus, a protocol im-
poses the format of the exchanges, the role of each communicating partner and the sequencing
(behavioral aspect). In this thesis, we focus on the last two points (roles and behavior) in our
models. We use protocols as a high-level description of communications, covering both struc-
tural and behavioral aspects. Similar approaches have been proposed in the past for real-time
embedded systems. Besides the already mentioned Douglass’s book [Dou98] on Real-Time
uml, room [Sel96] can be considered as a pioneer in this domain. It was a real-time object-
oriented modeling proposed by Bran Selic in the 90’s. In room, the application is described
as a collection of concurrent objects called actors. An actor communicates with other objects
through one or more interface objects called ports bound to a protocol. Rumpe et al. [RSRS99]
analyzed the limitations of such an approach relying on objects and uml1. They suggested
extensions to make uml an effective adl (Architecture Description Language). Selic has re-
vised [Sel05] his approach by integrating new modeling features of uml2. Our proposition
clearly comes within this model-driven approach, relying on uml2 structured classes instead
of limited uml1 classes.

4.1.2 Protocol metamodel

In our structural modeling, we attach a protocol to a set of ports. Figure 4.1 is the metamodel
we propose for protocols and related concepts. This metamodel does not pretend to cover
all the features of protocols. The influence of our application domain (electronic systems) is
manifest.

A Protocol coordinates two or more protocol ports. It adopts a style, for instance the
masterSlave control pattern style. The master is the participant that initiates the commu-
nication/interaction. The property isDirect set to true says that a master can be directly
connected to a slave. Otherwise, there must be at least one intermediate component between
the master and the slave. A procotol refers to a set of messages. This is a derived property
deduced from the protocol port types. A message represents an exchange of information. It
can either be a (uml) Signal or an Operation. Both are BehavioralFeatures in the uml.

A classic uml port can be specialized as a ProtocolPort. This port has a portType and two
special attributes (role and isMirrored). The latter deserves an explanation and is related to
the portType of the port. The ProtocolPortType is a set of declarations consisting of pairs
‘direction, message’. The direction has different interpretations according to the nature of the
behavioral feature. The interpretations are given in table 4.1. The last column shows the
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Figure 4.1: Protocol metamodel.

“mirrored” direction.

direction operation signal mirrored
in provided reception out

out required sending in
inout both dir. both dir. inout

Table 4.1: Interpretations of the direction attribute.

A protocol specifies legal (partial) orderings on the occurrences of protocol messages. It
can be expressed in natural language, interaction diagram, activity diagram, or (protocol)
state-machine.

4.1.3 Protocol profile

Figure 4.2 contains a uml profile for protocols. It is applied in the next section.

4.2 Acquisition system

4.2.1 System overview

We have chosen a very simplified and partial data acquisition system as a running example for
the thesis. This is a component-based description which highlights protocol-based communica-
tions. The system consists of two processors getting information from two sensors and storing
data in one of its three memories. The choice of the target memory is left unspecified in this
presentation. Note that this system is a “black hole”: information is sinking into memory but
never read. Describing stored data accesses and their exploitations would have brought no
new interesting modeling issues.

Figure 4.3 is an informal representation of the system. It shows a network of communicating
processing units. The clouds in the figure indicate communications ruled by protocols. The
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Figure 4.2: Protocol profile.

acquisition protocol drives a simple point-to-point communication. The data saving protocol
is more complex: it addresses a two-to-three communication.

p1:Processor p2:Processor

m1:Memory

s1:Sensor s2:Sensor

m2:Memory m3:Memory

SaveProtocol

Acquisition
Protocol

Acquisition
Protocol

Figure 4.3: A simple acquisition system.
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System model revised

When interconnecting ips, connections are generally 1-to-1, possibly using busses that are
themselves modeled as components. So, we propose a revised version in figure 4.4. The Bus
has been added. Its color and the color of its adjacent edges (light orange) suggest that they
all participate in the data saving protocol. Similarly, the green edge between a sensor and a
processor denotes a communication respecting the acquisition protocol.

b:Bus

p1:Processor p2:Processor

m1:Memory

s1:Sensor s2:Sensor

m2:Memory m3:Memory

Figure 4.4: A simple acquisition system (revised version).

4.2.2 Specification of the protocols of the application

We focus on special cases, we have no intention to address generality. The two protocols are
specified in conformance with the metamodel given in subsection 4.1.2. We have taken some
liberties with the concrete syntax, especially in the notation of protocol port types. Giving
behavioral features prefixed by a direction is more convenient than the uml representation of
interfaces, where provided and required interfaces are separate. We also make use of stereotype
property compartments as proposed in sysml.

Protocol AcqP

� Purpose: On-demand acquisition of data in the sensor and transfer to the processor.

� Behavior : The protocol imposes the alternation of messages SAMPLE and TRANSFER.
The first message causes the sampling of a new value by the sensor, the second causes
the effective transfer from the sensor to the processor.

Note that, at this point, nothing has been said about who is doing what. Other prescrip-
tions are given in figure 4.5. The Protocol AcqP specifies that we adopt a master-slave control,
the connection master-slave is direct, and the messages are SAMPLE and TRANSFER. The
ProtocolPorts explain the role of each partner: the master (i.e.,the initiator of the communi-
cation) is the processor, the slave is the sensor. The type of the ProtocolPort M A is AcqT, so
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that message SAMPLE is an outgoing message from M A, while message TRANSFER is incom-
ing. The messages have the opposite directions at S A because the type of S A is mirrored

AcqT.
At this abstract level, we do not mention whether messages are Operations or Signals.

« protocol »
style = masterSlave
isDirect = true
ports = { M_A, S_A }
/ messages = { SAMPLE, 

  TRANSFER }

« protocol »
AcqP

in TRANSFER
out SAMPLE

« protocolPortType »
« interface »

AcqT

« protocolPort »
protocol = AcqP
role = master
type = AcqT

« protocolPort »
M_A

« protocolPort »
protocol = AcqP
role = slave
type = mirrored AcqT

« protocolPort »
S_A

Figure 4.5: Acquisition protocol.

Protocol SaveP

� Purpose: Storing data contained in the processor into a memory. The choice of the
memory is left unspecified at this modeling level.

� Behavior : The protocol is more complex because it involves two masters and three slaves
(this information is extracted from figure 4.6). Informally, a master will first request for
the bus (BREQx), wait for the bus grant (GRANTx), set the address (ADDR) and the
data (DATA). One SELx then occurs. The value of x results from the chosen address in
an unspecified way. DONEx indicates the end of the saving.

Note that we have two different protocol port types (MSaveT and SSaveT). The former
types the master ports whereas the latter types slave ports. In figure 4.6, property ports of
protocol SaveP has been omitted. It can be deduced from the structure diagram in figure 4.7.

4.2.3 Architecture model

Figure 4.7 is a model of the acquisition system including protocols. Stereotyped ports are
represented by special notations explained in the legend. The two protocols are not explicit
in the figure. Protocol aspects appear only through the protocol port types and the iconic
representations of the protocol ports.

4.2.4 Components

Connectors and ports in figure 4.7 are high-level representations of the actual connections.
So, we have to specify how to refine these model elements. This can be done by providing a
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Figure 4.6: Save protocol.

black-box view of each component along with a port mapping. The component exposes only
its (actual) component ports. The mapping links component ports to protocol messages.

Processor

Figure 4.8 specifies the component Processor with its ports (left part of the figure). The
mapping is given in a tabular form (right-hand side).

Figure 4.9 shows how the high-level view (upper part of the figure) can be interpreted
(lower part).

Memory

The component ports and the port map of the component Memory are given in figure 4.10.

Sensor

The connections of the component Sensor are described in figure 4.11.

Bus

Component Bus involves more protocol ports. Figures 4.12 represents its ports and the port
map.
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4.3 Esterel modeling

In this section we propose to represent the structural aspects of the acquisition system in
Esterel. This exercise will highlight the facilities offered by this language in architecture
modeling.

4.3.1 Data units

In the data unit ApplTypes we gather the all the application-specific types. According to the
modeling level, we provide two different implementations of this unit.

For a tlm description it is sufficient to say that the address and the data types are natural
numbers, hence the use of the unsigned predefined type.

data ApplTypes :
type Data t = unsigned ;
type Addr t = unsigned ;

end data

For a rtl description, we fix the size of each type. Here we choose bitvectors (bool[ ]).

data ApplTypes :
type Data t = bool [ 8 ] ;
type Addr t = bool [ 1 6 ] ;

end data

In both cases, the rest of the program refers to these types only by their name.

4.3.2 Interfaces specifications

In the interface units we introduce signals and ports. In Esterel, a signal is the basic commu-
nication support, and a port is a collection of signals with their direction. A ProtocolPortType
can be represented by an (Esterel) interface.

For the acquisition protocol

interface AcqT :
extends ApplTypes ;
input Value : Data t ;
output Sample ;

end interface

The statement ‘extends ApplTypes’ imports the application types defined in the data unit
ApplTypes. Value is an input valued signal whose type is Data t, whereas Sample is an output
pure signal.

For the data saving protocol

interface CommonT:
extends ApplTypes ;
output Data : Data t ;
output Addr : Addr t ;

end interface

The interface CommonT gathers two signals (Data and Addr) that are common to the two
protocol port types MSaveT and SSaveT.
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interface MSaveT :
extends CommonT;
input Grant , Done ;
output Breq ;

end interface

The statement ‘extends CommonT’ imports an interface and thus all the signals contained
in this interface.

interface SSaveT :
extends mirror CommonT;
input Se l ;

end interface

Esterel offers the facility (use of the keyword ‘mirror’) to import an interface while reversing
the direction of the signals.

4.3.3 Modules

Component representation

Esterel modules can represent the application components. In this section we specify the inter-
face only. The behavioral part is hidden. The Esterel ports in the modules below correspond
to the protocol ports.

module Proces sor :
port M A: AcqT ;
port M B: MSaveT ;
// b eha v i o r a l par t

end module

module Sensor :
port S A : mirror AcqT ;
// b eha v i o r a l par t

end module

module Bus :
port MM 1: mirror MSaveT ;
port MM 2: mirror MSaveT ;
port MS 1 : mirror SSaveT ;
port MS 2 : mirror SSaveT ;
port MS 3 : mirror SSaveT ;
// b eha v i o r a l par t

end module

module Memory :
port S B : SSaveT ;
// b eha v i o r a l par t

end module

Architecture

The components have now to be connected. Figure 4.13 is a screen copy of the architecture
diagram built with Esterel Studio.
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Figure 4.13: Esterel Architecture Diagram of the application.

The following module is the textual translation of the architecture diagram. It better
shows how Esterel works. First, this module is the top-level module (keyword main). In
this simplified version of the acquisition system there is no input/output declaration (the
connections with the environment have not been specified). All the modules representing the
application components are instantiated (keyword run) and run in parallel (|| operator). Local
ports are defined (SPx, MMPx, and MSPx), they represent the connectors. The port mapping
is done by signal and port renamings. The connections are specified in the braketed part of
the run. The syntax is actual element / formal element.

main module Appl i ca t ion :
// header : connect ions wi th the environment
// omit ted
signal

port {SP1 , SP2 } : AcqT ,
port {MMP1,MMP2} : MSaveT ,
port {MSP1,MSP2,MSP3} : SSaveT

in
run S1/ Sensor [ SP1/S A ]

| |
run S2/ Sensor [ SP2/S A ]

| |
run P1/ Proces sor [ SP1/M A,MMP1/M B]

| |
run P2/ Proces sor [ SP2/M A,MMP2/M B]
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| |
run M1/Memory [MSP1/S B ]

| |
run M2/Memory [MSP2/S B ]

| |
run M3/Memory [MSP3/S B ]

| |
run Bus [MMP1/MM 1,MMP2/MM 2,

MSP1/MS 1 ,MSP2/MS 2 ,MSP3/MS 3 ]
end signal

end module

It appears that the Esterel program is an almost direct transposition of the architecture
shown in figure 4.7.

4.4 VHDL modeling

Like Esterel, vhdl allows type declarations, component interface definitions (entities), behav-
ior specifications, and component assembly (architecture). Only the structural aspects are
illutrated in this section.

4.4.1 Application types

vhdl is a language with strong typing. It supports hardware-oriented types, like bit vectors
of any size, and thanks to its ieee–1164 library, can represent multi-valued logics (std logic

type). The definition of user’s types, borrowed from ada, avoids implicit conversions and bad
mixture of data. For the Acquisition system, we define two new sub-types of std logic vector:

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
package ApplTypes i s

subtype Data t i s s t d l o g i c v e c t o r (7 downto 0 ) ;
subtype Addr t i s s t d l o g i c v e c t o r (15 downto 0 ) ;

end ApplTypes ;

4.4.2 Component specifications

All the entity specifications include a ‘use’ statement to access the types definitions:

use work . ApplTypes . a l l ;

A component interface specifies the ports through which the component communicates
with its environment. A signal is declared with a direction, a type, and an optional initial
value.

entity s enso r i s
PORT (

S A Value : out Data t ;
S A Sample : in Bit ) ;

end s enso r ;

entity memory i s
PORT (

S B Addr : in Addr t ;
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S B Data : in Data t ;
S B Sel : in Bit ) ;

end memory ;

entity pro c e s s o r i s
PORT (

M A Value : in Data t ;
M A Sample : out Bit ;
M B Addr : out Addr t ;
M B Data : out Data t ;
M B Breq : out Bit ;
M B Grant : in Bit ;
M B Done : in Bit ) ;

end pro c e s s o r ;

entity a bus i s
PORT (

MM 1 Addr : in Addr t ;
MM 1 Data : in Data t ;
MM 1 Breq : in Bit ;
MM 1 Grant : out Bit ;
MM 1 Done : out Bit ;
MM 2 Addr : in Addr t ;
. . .
MM 1 Done : out Bit ;
MS 1 Addr : out Addr t ;
MS 1 Data : out Data t ;
MS 1 Sel : out Bit ;
MS 2 Addr : out Addr t ;
. . .
MS 3 Sel : out Bit ) ;

end pro c e s s o r ;

The contents of the declarations is the same as the Esterel ones. It appears that the Esterel
ports and interface units make the declarations more concise and readable.

4.4.3 Architecture

The description of an architecture is also similar to the Esterel description.

1 architecture Acquis i t ionSystem i s
2 component s enso r
3 PORT (
4 S A Value : out Data t ;
5 S A Sample : in Bit ) ;
6 end component ;
7 component pro c e s s o r
8 PORT (
9 . . . ) ;

10 end component ;
11 component a bus
12 PORT (
13 . . . ) ;
14 end component ;
15 component memory
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16 PORT (
17 . . . ) ;
18 end component ;
19

20 signal SP1 Value , SP2 Value : Data t ;
21 signal SP1 Sample , SP2 Sample : Bit ;
22 signal MMP1 Addr , MMP2 Addr : Addr t ;
23 . . .
24 signal MMP1 Done , MMP2 Done : Bit ;
25 signal MSP1 Addr , MSP2 Addr , MSP3 Addr : Addr t ;
26 . . .
27 signal MSP1 Sel , MSP2 Sel , MSP3 Sel : Bit ;
28

29 begin
30 S1 : s enso r port map (
31 S A Value => SP1 Value ;
32 S A Sample => SP1 Sample ) ;
33 S2 : s enso r port map (
34 S A Value => SP2 Value ;
35 S A Sample => SP2 Sample ) ;
36 P1 : p ro c e s s o r port map (
37 . . .
38 ) ;
39 P2 : p ro c e s s o r port map (
40 . . .
41 ) ;
42 M1: memory port map (
43 . . .
44 ) ;
45 . . .
46 M13 : memory port map (
47 . . .
48 ) ;
49 B : a bus port map (
50 . . .
51 ) ;
52 end architecture Acquis i t ionSystem ;

Firstly, the component signatures are declared (lines 2–18). Then signals used in com-
munications are declared (lines 20–27). The architecture itself is specified in lines 29 to 51.
The components are instantiated and their connections are given by a port map. Of course,
many vhdl programing environments propose a graphical interface in which components can
be instantiated by simple drag-and-drop and then interconnected.

4.5 SystemC modeling

The Esterel and vhdl descriptions in the previous sections rely on signals. This is usual in
rtl descriptions. We consider now a tlm description programmed in systemc. Note that this
choice does not mean that Esterel cannot be used at the transactional modeling level. Here
we describe the master, slave and bus modules for our running example of acquisition system
with the focus on their transactional ports. This focus will help us to better understand the
tlm style of modeling electronic systems.



4.5. SYSTEMC MODELING 53

4.5.1 Transaction level modeling
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Figure 4.14: Abstract Modeling using TLM Library

The advantages of modeling at the transaction level are evident in figure 4.14. Use of
systemc and tlm libraries provides us with the predefined function modules which give an
abstract view to the computation and communication in the system. At the lowest level,
systemc library provides simple structures like sc port and sc export to represent the inter-
faces of the structure of a component. This is the basic modeling requirement to implement
the co-design paradigm (i.e.,to represent structures using software code). These port modules
from the basic systemc library correspond to detailed views of the design and as such can be
used at register transfer level. Communication between the components at this modeling level
is through transport function calls.

With the passage of time, systemc proved its worth as a co-design and co-simulation lan-
guage and further improvements were made by adding tlm libraries. This addition provided
the system designers to implement models at abstract levels like tlm. Here the behavior rep-
resentation gave the application layer programmers simple functions like read() and write()

to implement complex communication transactions. In our present model, we have added
a custom layer to further simplify these implementations. This layer consists of predefined
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implementations of key communication modules and is present in the osci tlm examples. It
consists of modules like fully functional initiator and target ports, routers and arbiters to rep-
resent the bus components. Such a modular and library-based approach of designing abstract
systems provides the ease that we just have to pick the required module and integrate it into
our system model. Quite evidently, this approach gives us easier ways to model systems than
the alternative Esterel and vhdl approaches. Conclusively such an approach facilitates with
the design of communication modules and allows the designers to concentrate their efforts on
the computational modules.

4.5.2 Modules

Here, we present the structural aspects of the systemc tlm model of the acquisition system.
Full code of the acquisition system implemented in systemc is given in the Appendix B.2.

processor

1 #inc lude <systemc . h>
2 #inc lude "tlm.h"

3 #inc lude "pv_initiator_port.h"

4 #inc lude "types.h"

5

6 class pr oc e s s o r : public sc module {
7 public :
8 SC HAS PROCESS( p ro c e s s o r ) ;
9 pr oc e s s o r ( sc module name module name ) ;

10 ˜ p roc e s s o r ( ) ;
11 // I n t e r f a c e s
12 p v i n i t i a t o r p o r t < Addr t , Data t > M A;
13 p v i n i t i a t o r p o r t < Addr t , Data t > M B;
14 private :
15 Data t lData ;
16 Addr t lAddr ;
17 } ;

We firstly describe the interface of the processor in systemc modeled at transactional level.
The processor class contains two transactional ports M A (line 12) and M B (line 13). The
M A port communicates with the sensor component and the M B port communicates with the
bus. Both the ports are initiator ports as they are the ones to initiate the transactions. The
initiator and target port are the terms standardized by systemc and are also adopted by the
ip-xact standard. These ports are defined in the pv initiator port.h header file (line 3).
They are presented in the supplementary example code given in the tlm library provided by
the osci organization. This port definition is the systemc class implementing the interfaces
and channels from the tlm standard library (like tlm transport if [Ayn09]). These ports
use the custom data types defined in the types.h header file just as we defined earlier for
Esterel program:

typedef unsigned int Addr t ;
typedef unsigned int Data t ;

These types are used as input arguments by these transactional initiator ports to perform
the read and write operations. In the read operation, the data variable provided is used to get
the return value for the particular address location.
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Bus

On the bus side, we have chosen the pv router class implemented in the examples of the tlm
distribution library. Here pv router class determines dynamically the number of target ports
(slave module ports) attached to the bus and marks address range for those ports given in
the map file. This map file has entries like mytop.umem0.S B 0000 1000, where mytop is
the instantiation of the main module and umem0 is the instance 0 of memory module. This
instruction assigns the memory module’s slave (target) port with a starting address (0000),
and the total address range size (1000). Later on, all the transaction requests for the slave
modules are routed to the respective slave instances. This routing mechanism is implemented
in the pv router class provided in the tlm library.

1 #inc lude <systemc . h>
2 #inc lude "pv_router.h"

3 #inc lude "types.h"

4

5 // t h i s c l a s s has 2 t a r g e t po r t s and 3 i n i t i a t o r por t s
6 typedef pv router< Addr t , Data t > b a s i c r o u t e r ;
7

8 class bus : public b a s i c r o u t e r {
9 public :

10 bus ( sc module name module name , const char* mapFile ) :
11 b a s i c r o u t e r ( module name , mapFile ) {}
12 void e n d o f e l a b o r a t i o n ( ) {
13 b a s i c r o u t e r : : e n d o f e l a b o r a t i o n ( ) ;
14 cout << name ( ) << " constructed." << endl ;
15 }
16 } ;

Memory

Lastly, the interface of slave memory module consists of a target port and its read/write
functions. The target port S B (line 16) is connected to the bus’s initiator port during the
instantiation phase. Two functions write (lines 19–23) and read (line 25–29), defined in
the tlm library’s header file pv target port.h, provide the required reception functionality.
Whenever a read or write function call is initiated by a master module, the respective functions
in slave module are invoked. These functions can then use the input parameters and in case
of read function, the value stored in the ‘data’ variable is updated. All other parameters
are optionally present based on the initiator port’s implementation. Finally, the memory
module contains a data array (line 31) to describe the internal storage cells of the memory.
The behavior of the different modules and tlm transaction calls are explained in detail in
chapter 7.

1 #inc lude <systemc . h>
2 #inc lude "tlm.h"

3 #inc lude "pv_slave_base.h"

4 #inc lude "pv_target_port.h"

5 #inc lude "types.h"

6

7 class memory :
8 public sc module ,
9 public pv s lave base< Addr t , Data t >

10 {
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11 public :
12 SC HAS PROCESS(memory ) ;
13 memory( sc module name module name ) ;
14 ˜memory ( ) ;
15 // bus s i d e i n t e r f a c e
16 pv ta rge t po r t< Addr t , Data t > S B ;
17

18 // bus f unc t i on s
19 tlm : : t lm s ta tu s wr i t e (
20 const Addr t &addr , const Data t &data ,
21 const unsigned int byte enab l e = tlm : : NO BE,
22 const tlm : : tlm mode mode = tlm : :REGULAR,
23 const unsigned int e x p o r t i d = 0 ) ;
24

25 tlm : : t lm s ta tu s read (
26 const Addr t &addr , Data t &data ,
27 const unsigned int byte enab l e = tlm : : NO BE,
28 const tlm : : tlm mode mode = tlm : :REGULAR,
29 const unsigned int e x p o r t i d = 0 ) ;
30 private :
31 Data t iMemory [ 0 x1000 ] ;
32 } ;

The slave sensor module is similar to the memory module. Its class is omitted but available
in Appendix B.2.

Architecture

Once these components are modeled, they are connected together in a main module that
instantiates all other components. In our Acquisition example, the module top (declared in
the top.h file) is used for this purpose. Here we provide only some part of the code with
dotted lines marking the omitted code. In the class top, we define local systemc signal (line
7) which connects with the simulation interface of the processor module. In the constructor
of the main module, we define a one-time execution thread Simulation (line 11) that runs
the simulation patterns (described later in chapter 7). This precedes the instantiation of all
the components (lines 13–17) in the design. Finally we define the port connections (bindings)
between the various component (lines 20–27). With this the constructor execution ends and
control passes to the systemc kernel for elaboration phase.

1 #inc lude <systemc . h>
2 #inc lude "sensor.h"

3 . . .
4

5 SCMODULE( top ) {
6 public :
7 s c s i g n a l <int> myStart0 ;
8 . . .
9

10 SCCTOR( top ) {
11 SCTHREAD( S imulat ion ) ; // Thread Dec lara t ion
12

13 s enso r i s e n s o r 0 ("usensor0" ) ; // i n s t a n t i a t i o n
14 pro c e s s o r i p r o c 0 ("uproc0" ) ;
15 bus i b u s ("ubus" ) ;
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16 memory i mem 0 ("umem0" ) ;
17 . . .
18 cout<< "Instantiated..." << endl ;
19

20 i p r o c 0−>Star t ( myStart0 ) ; // In t e r f a c e Binding
21 . . .
22 i p r o c 0−>M A( i s e n s o r 0−>S A ) ;
23 . . .
24 i p r o c 0−>M B( i bus−>t a r g e t p o r t ) ;
25 . . .
26 i bus−> i n i t i a t o r p o r t ( i mem 0−>S B ) ;
27 . . .
28 cout<< "Ports Binding done" << endl ;
29 }
30 } ;

4.6 Conclusion

In this chapter, we have explored the modeling and programming techniques used with different
languages. Designing systems with high-level modeling languages through the structure/block
diagrams is easy to understand and implement. These languages are design concepts intensive
and need less programming efforts. uml is an obvious choice for modeling at such levels using
various diagrams. Esterel language is the next ideal for such a programming with constructs
(like mirroring, port grouping) to deal with abstraction. Low level modeling is more textual
and programming intensive. These models contain more details about the structure and are
usually programmed in languages like vhdl or systemc.

ip-xact is another standard, to be discussed in the next chapter, which comes as a blend
of high and low level modeling features. Here we focused on the structural aspects while
comparing these modeling paradigms and the functional aspects with focus on these languages
will be discussed in chapter 7.
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In this chapter, we propose a domain view (or metamodel) for ip-xact. This metamodel
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5.1 Introduction

ip-xact is a standard proposed by the consortium of major players in the electronics industry—
like electronic design automation (EDA), semiconductor, electronic intellectual property (IP)
providers, and system design communities—grouped in the SPIRIT Consortium1 to provide
with a well-defined and unified specification for the meta-data which represents the components
and designs within an electronic system [SPI08]. The main goal of this specification is to enable
delivery of compatible IP descriptions from multiple IP vendors; better enable importing and
exporting complex IP bundles to, from and between EDA tools for SoC design (system on a
chip design environments); better express configurable IP by using IP meta-data; and better
enable provision of EDA vendor-neutral IP creation.

The ip-xact specification is a mechanism to express and exchange information about an
IP design and its required configuration. Indeed, the final format of a component is generally
in its description in a synthesizable implementation language such as VHDL or Verilog. The
information on the interface of these implementations, defining their connectivity and thus
their integrability in a system, are embedded in the details of the code. Traditionally, a design
engineer had to open these files and check if a given component can be connected to the target
component, and these connections were then done by hand considering what signal entering or
leaving a component must be connected to another. With the ip-xact standard, the primary
purpose is to facilitate this IP management, encapsulating these implementations in a descrip-
tion based on xml. Thus by defining a machine readable and an automated way of storing
information about the interfaces of the components, it becomes possible to use graphical tools
to manipulate and interconnect these components. Such CAD (Computer Aided Design) tools
can then automatically generate RTL implementation of the netlist physically instantiating
and interconnecting the different components.

The ip-xact specification is formally defined in the xml schema definition (xsd) files which
specify the structure of metadata. These schema files contain seven top-level schema definitions
( each related to an important ip-xact concept) for Component, Bus definition, Abstraction
definition, Design, Abstractor, Generator chain, and Configuration.

5.1.1 Design Environment

Before going to the ip-xact metamodel, an important term to understand is of the ip-xact
Design Environment (DE). An ip-xact design environment is an ip-xact design tool that enables
the designer to work with ip-xact design IPs through a coordinated front-end and IP design
database. In fact, the DE coordinates a set of tools and IPs (or representations of those
IPs as models), through the creation and maintenance of meta-data descriptions of the whole
SoC such that its system-design and implementation flows are efficient and re-use centric.
These tools create and manage the top-level meta-description of system design as shown in
the figure 5.1 which is inspired from an example design environment given in the ip-xact
specification [SPI08]. Such a design environment can be graphical like the tools from Magillem
Design Services2 and coreTools from Synopsys3 or XML tree structure representation like in
Eclipse ip-xact plug-in4. These design environment tools import the IP component descriptions
from the vendor provided database along with the buses information (abstraction and bus
definitions). Then the design files and design configurations can be created in the environment

1http://www.spiritconsortium.org
2http://www.magillem.com
3https://www.synopsys.com/dw/doc.php/ds/o/coretools ds.pdf
4http://www.eclipse.org/dsdp/dd/ipxact/gettingstarted/QuickStart.html
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or can be imported also. Finally, these design files are used to automatically generate the
interconnection netlist files for the given abstraction level.
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IP-XACT Compliant 
Design Environment
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Figure 5.1: IP-XACT Design Environment.

5.1.2 IP-XACT Metamodel Overview

In this chapter, we focus on the most important concepts of our domain view considering the
ip-xact Component, Bus definition, Abstraction definition, Design, and Abstractor. The Generator
chain and the Configuration parts are related to the IP code generation and netlist creation
and thus, does not come in the direct focus of this work.

A domain view is a technology-independent representation of domain concepts and allows
interactions with domain experts, which are not necessarily familiar with modeling languages
like uml. The domain view also serves as a reference model to ensure that all concepts have
been implemented in the chosen technology, i.e.,a uml profile in our case. Building a domain
view before building a profile is considered as best practice in the profiling community [Sel07].
This domain view or metamodel is not provided in the ip-xact specification by the SPIRIT
Consortium and is one of the contributions of this thesis work.
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Component

BusDefinition AbstractionDefinition
« import »

« import » « import »

Design« import »

Abstractor

« import »« import »

SPIRIT

« import »

UserDatatype

Figure 5.2: IP-XACT Metamodel Overview.

Figure 5.2 gives a broad overview of our domain view of ip-xact specification. The princi-
pal ip-xact concepts are shown as the packages grouping together the related elements. These
packages are interdependent and interlinked, with the component and the bus information
being in the center place. The component package contains the elements which describe the
structure of an IP component and works in close collaboration with the bus elements rep-
resented by the bus definition and the abstraction definition. BusDefinition gives the basic
information about the bus imported inside the system (like amba), whereas the Abstraction-
Definition gives bus information related to a particular abstraction level (like tlm, rtl). The
Abstractor package contains elements that are used to form a bridge between ip-xact com-
ponents implemented at different levels of abstraction. It requires the bus and component
interfacing related informations to function. Finally, the Design package instantiates the com-
ponents to depict the functioning electronic system.

An important point to note here is that all the key ip-xact elements instantiated in the
top level design environment (i.e.,the five packages given above) are uniquely identified by an
identifier whose type is VersionedIdentifier. This unique identifier of the element consists of its
name, the containing library (or the package it belongs to), its vendor and its version number
and is also known as the vlnv of the component (where vlnv is the acronym for Vendor,
Library, Name, and Version). VersionedIdentifier is defined as a data type in the UserDataType
package of our domain view, as shown in figure 5.4. This package introduces user-defined
data types which are frequently used in ip-xact specification but are not available in uml.
These data types include PositiveNumber (from 1 to infinity) and a NameValuePair type
which is actually collection of a property name and its associated value. Similarly, there are
several other optional attributes common among all these top level elements like the description
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+ vendor: String [1]
+ library: String [1]
+ name: String [1]
+ version: String [1]

VersionedIdentifier

SPIRIT::UserDatatype

+ name: String [1]
+ value: String [1]

NameValuePair

Values > 0

PositiveNumber

Figure 5.3: IP-XACT Custom Datatypes.

attribute which adds textual description to the element to precise its intended role and the
vendorExtensions which gives the flexibility to tailor the elements beyond the scope of ip-xact
specification. For the sake of simplicity, we have omitted such attributes in our domain view.

In the further sections, the packages introduced before are explained one by one, in detail.
First we sketch the specification of the Acquisition system in ip-xact.

5.1.3 The Acquisition system in IP-Xact

An ip-xact description consists of many model elements scattered over several structures or
files. Table 5.1 indicates the names given to these model elements in ip-xact and the place
where they are specified. This may help the reader and will be illustrated with our Aquisition
system example.

Model element Name in ip-xact Described in
Architecture Design Design
Component Component Component
Protocol port Bus interface Bus definition
Component port Component port Component
Message Logical port Abstraction definition
PortMap PortMap Component
Port role mode Component

Table 5.1: Main IP-Xact model elements and their location.

5.2 Component

An ip-xact component is the central placeholder for the objects meta-data. Components
are used to describe cores (processors, co-processors, dsps, etc.), peripherals (memories, dma
controllers, timers, uart, etc.), storage elements (memory, cache), and buses (simple buses,
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multi-layer buses, cross-bars, network on chip, etc.). In ip-xact, every IP is described as a
component without distinction of type, whether it represents a computation core, a peripheral
device, a storage element, or an interconnect. In general, components can be either static or
configurable, where the static components can not be altered while the configurable compo-
nents can have parameterized instances initialized in the design environment. Moreover, the
ip-xact components can also contain other ip-xact components in a hierarchical fashion.

Memory

Model

+ ident: VersionedIdentifier [1]

Component

Model

+name: String [1]

Channel
*

+ channels

+ busInterfaces
*

0..1 + model

+ cpus
*

+ addressSpaceRef 1..*

2..* + busInterfaceRef

+ addressSpaces
*

MemoryMap
+ memoryMaps

*

SPIRIT::Component

+ ident: VersionedIdentifier [1]

SPIRIT::Design::Design

0..1 +hierarchyRef

+ name: String [1]

PhysicalPort
+ name: String [1]
+ envIdentifier: String [1..*]
+ language: String [*]

View

+ views
**

+ ports

+ name: String [1]

Cpu

AddressSpace

BusInterface::
BusInterface

FileSet::FileSet
*

+ fileSets

Figure 5.4: IP-XACT Component Metamodel.

Figure 5.4 shows the main features of our ip-xact component metamodel: the interfaces
and the memory hierarchy. The vlnv identifier, discussed earlier, is the only mandatory
element of the component and all other elements are optional for the component specification.
The ip-xact component consists mainly of the model, bus interface and the description of the
memory hierarchy (address spaces and memory mappings). We discuss them in detail in the
following subsections.

Acquisition system: For this system four components are specified: Sensor, Processor,
Memory, and Bus.

5.2.1 Model

Component Model is the basic building block of the component. It gives the concrete structure
of a component describing the views and ports of the given component. The view mechanism
is a provision for having several descriptions of the same component at different levels of
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abstraction like rtl or tlm, shown in figure 5.4. A model may have many different views. As an
example, an rtl view may describe the source hardware entity in vhdl along with its pin level
interface information while the tlm view may define the source module behavior using C files
along with its .h file interface information. The model view must contain at least one hardware
environment in which this view applies, defined by the envIdentifier variable. The format of
the variable string is language:tool:vendor extension, with each piece being optional. The
language part indicates this view may be compatible with a particular tool, but only if this
language is supported in that tool and tool part indicates the tool name for which this view is
targeted. An example value taken from the Leon 2 architecture of ip-xact specification [SPI08]
is :osci.systemc.org:. Having more than one envIdentifier indicates that the view applies to
multiple environments. The hierarchyRef attribute references a Spirit design or configuration
document that provides a design for the given component. It is required only if the view is
used to reference a hierarchical design. View specifies the hardware description language used
for it (like Verilog, vhdl or SystemC) by using the language attribute.

SPIRIT::Component::Model

+ allLogicalDirectionsAllowed: Boolean [0..1]

PhysicalPort

+ direction: DirectionKind [1]

WirePort
in

out

inout

phantom

DirectionKind

TransactionalPort

+ initiative: InitiativeKind [1]

Service

requires

provides

both

phantom

InitiativeKind

+ service

1

Figure 5.5: IP-XACT Physical Port Metamodel.

Other than the views, the ip-xact component model also contains all the ports that are
present in the component. The Physical Ports are represented by an abstract class. The
concrete classes are given in the Component::Model package (figure 5.5). An abstract physical
port can either be a rtl low level port called WirePort or a tlm transactional level port called
TransactionalPort. The wire port can also be used in the transactional models to show non-
bus type ports. These two ports together constitute the physical ports which are referred to
by the port maps and the models. The structure of both the wire and the transactional ports
is quite similar. We have direction of the port having values in, out, inout and phantom. The
phantom port defined here is the port in the component port list, which does not correspond
to ports of the implementation. Correspondingly, we have service in the transactional ports,
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which is mandatory to define. Service defines the connection type initiative of the port like it
requires or provides the connection. Service optionally gives the type of the ports represented
by any predefined type, such as Boolean or some user-defined type, such as addr type. The
type can also be definition by providing a link to the file location where the type is defined
e.g.,some SystemC include file containing the type definition. The optional attribute allLogi-
calInitiativesAllowed defines whether the port may be mapped to a logical port in an abstraction
definition with a different initiative (see subsection 5.3).

Acquisition system

For each component, the associated xml file defines its (physical) ports. In this application, all
ports are wire port, therefore implicitly Boolean. Some are arrays of Booleans, called vectors
in ip-xact. In this case the size and the bit ordering are given.

The information associated with two of the system components is given below in a tabular
form.

Sensor :

port name direction vector
left right

sample in
value out 7 0

Processor :

port name direction vector
left right

sample out
value in 7 0
addr out 15 0
data out 7 0
breq out
grant in
done in

5.2.2 Bus Interface

BusInterface is the most important interface element of an ip-xact component. It is a grouping
of ports related to a function (i.e.,collaborate to a single protocol), typically a bus, defined by
a bus definition and an abstraction definition (see next subsection). Components communicate
with each other through their bus interfaces tailored for a specific bus. Bus interfaces provide
the link between the component and the bus; they are shown in both figures 5.4 and 5.10
along with the component and the bus definitions respectively. Broadly, we can divide the
bus interfaces into three main parts; reference to the buses, mode of the bus interface and
the port maps. As bus interfaces are tailored for a specific bus, they have to mention the bus
definition in the busType. The abstraction definition, being an abstract view of the bus, is
not mandatory to mention and is referred to by the abstractionType attribute. The two bus
definitions are discussed in detail in the subsequent sections. The bus interface and its relation
with the ports and the definitions files is well depicted in the figure 5.6.

The second mandatory property of the bus interface is its interfaceMode. The busInterface’s
mode designates the purpose of the busInterface on this component. There are seven possible
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SPIRIT::Component::BusInterface

PortMap

Spirit::BusDefinition::
BusDefinition

Spirit::AbstractionDefinition::
AbstractionDefinition

+ name: String [1]
+ mode: InterfaceModeKind [1]
+ connectionRequired: Boolean [0..1]
+ bitsInLau: PositiveNumber [0..1]

BusInterface

Spirit::AbstractionDefinition::LogicalPort

+ abstractionType

0..1

+ busType
1

+ portMaps*

+ logicalPort

1

SPIRIT::Component::Model::PhysicalPort
+ physicalPort

1

master
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system
mirroredMaster
mirroredSlave
mirroredSystem

InterfaceModeKind

Figure 5.6: IP-XACT Component Bus Interface.

modes: three pairs of standard functional interfaces and their mirrored counterparts, and
a monitor interface for component IP verification. These modes can be master, mirrored
master, slave, mirrored slave, system, mirrored system and monitor. The master interface
(or an initiator) is one that initiates transactions whereas the slave interface (or the target)
is the one that responds to the transactions. The system interface is an interface that is
neither a master nor slave interface, and allows specialized (non-standard) connections to a
bus (e.g.,clock). The mirroring mechanism guarantees that an output port of a given type is
connected to an input port of a compatible type, and vice versa. The monitor interface is a
special interface that can be used for verification by gathering data from other interfaces. A
monitor connection is a connection between a monitor interface and any other interface mode.
Monitor connections are purely for non-intrusive observation of an interface. More than one
monitor may be attached to the same interface.

The bus interfaces map the physical ports of the component to the logical ports of the
abstraction definition (see figure 5.6). This mapping is done inside the optional portMap
attributes. A bus interface can have indefinite number of port mappings. Once a port map
is defined, both the logical and physical ports are mandatory to be provided. It is important
to note that the same physical port may be mapped to a number of different logical ports on
the same or different bus interfaces, and similarly the same logical port may be mapped to a
number of different physical ports.
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The optional connectionRequired Boolean attribute, if true, specifies that this interface shall
be connected to another interface for the component integration to be valid. The bitsInLau
attribute describes the least unit of memory addressable by the bus interface, with the default
value being 8.

Acquisition system

Each component description specifies its bus interfaces, defines its ports (physical ports), refers
to logical ports, and provides port maps. Bus interfaces are declared but their definition is
delegated to other descriptions (bus definition and abstraction definition). Similarly logical
ports are used in a port map but their specifications are given elsewhere in the abstraction def-
inition. Only the physical ports and the port maps are effectively contained in the component
description. The port map is a list of pairs < logical port,physical port>. This is illustrated
on two components.

Sensor:

� Bus Interface: S A, bus type = Acq, mode = slave

– Logical ports: TRANSFER, SAMPLE

– Port map: <SAMPLE,sample>, <TRANSFER,value>

� Physical ports: sample, value.

Processor:

� Bus Interface: M A, bus type = Acq, mode = master

– Logical ports: TRANSFER, SAMPLE

– Port map: <SAMPLE,sample>, <TRANSFER,value>

� Bus Interface: M B, bus type = Save, mode = master

– Logical ports: ADDR, DATA, BREQx, GRANTx, DONEx

– Port map: <ADDR,addr>, <DATA,data>, <BREQx,breq>, <GRANTx,grant>,
<DONEx,done>

� Physical ports: sample, value, addr, data, breq, grant, done.

5.2.3 Memory

The memory of a component is of two types: address spaces and memory maps, shown also
in figure 5.8. An AddressSpace specifies the addressable area as seen from master bus inter-
faces or from cpus whereas a MemoryMap specifies the addressable area as seen from slave
bus interfaces. An AddressSpace is the logical addressable space of memory and each master
interface can be assigned a logical address space. Address spaces are effectively the program-
mer’s view looking out from a port of a master bus interface. Some components may have
address spaces associated with more than one master interface while other components may
have multiple address spaces. For instance, Harvard architecture processors have one address
space for instruction and another one for code.

An address space as well as a memory map must provide the range and width of the
memory. Range gives the address range of an address space and is expressed as the number
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of addressable units of the address space. The size of an addressable unit is defined by the
addressUnitBits element. Width is the bit width of a row in the address space expressed in
whole numbers. Figure 5.7 illustrates an example of memory block. Some processor compo-
nents require specifying a memory map that is local to the component. Local memory maps,
expressed by the localMemoryMap element in the AddressSpace, are blocks of memory within
a component that can be accessed and seen exclusively by the master bus interface viewing
this address space. On the other side, a MemoryMap is the map of address space blocks on the
slave bus interface and can be defined for each slave interface of a component.

0123

addressUnitBits

width

row

addressable unit

Example:
addressableUnitBits = 8
width = 32
range = 28

Figure 5.7: Example of memory block.

Other than the logical view of memories, both the address spaces and the memory maps are
similar and are made up of address banks and address blocks. An addressable area can either
be a single block or an address bank itself further decomposed into other banks or address
blocks. The addressBlock element describes a single, contiguous block of memory that is part
of a memory map. Its baseAddress element specifies the starting address of the block. The bank
element allows multiple address blocks, or banks to be concatenated together horizontally or
vertically as a single entity. The usage and the access attributes describe together the type of
the memory. For an example, the ROM memory has the usage set as memory and the access as
readOnly. With an access type of readWrite, the memory behaves as a RAM. The memory bank
also contains the mandatory bankAlignment argument. A parallel bank alignment specifies each
item (constituent bank or address block) is located at the same base address with different
bit offsets whereas the serial alignment specifies the first item is located at the bank’s base
address and each subsequent item is located at the previous item’s address plus the range of
that item. This allows the user to specify only a single base address for the bank and have
each item line up correctly.

Some address blocks can be reserved to be locations for registers. A Register is a storage
location internal to the the processing elements like processors. The mandatory size attribute
gives the width of the register, counting in bits. The addressOffset describes the offset, in
addressing units from the containing memoryMap element. Lastly, the reset element describes
the value of a register at reset. The registers are further decomposed into fields, with which
a value is associated. A field element of a register describes a smaller bit-field of a register.
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SPIRIT::Component::Memory

+ name: String [1]
+ range: PositiveNumber [1]
+ width: UnlimitedNatural [1]
+ addressUnitBits: PositiveNumber [0..1]

AddressSpace

+ name: String [1]
+ addressUnitBits: PositiveNumber [0..1]
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+ access: AccessKind [0..1]
+ range: PositiveNumber [1]
+ width: UnlimitedNatural [1]
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Figure 5.8: IP-XACT Component Memory Metamodel.

Contrary to registers, it contains the bitOffset element which describes the offset (from bit 0
of the register) where this bit-field starts.

Our memory metamodel reflects the actual ip-xact specification. However, S. Revol has
proposed an alternative metamodel [RTT+08], which is much more flexible and relies on the
pattern Item/Descriptor. He distinguishes register definitions from register instances. The former
consists in a generic definition of a register whereas the latter gives the specifics. For instance,
all registers of the same size and type have the same definition. This is a valuable improvement
to the ip-xact specification, however, the purpose of our domain view is to provide a synthetic
and faithful overview of ip-xact concepts and to check the conformity of the proposed profile
with this view. We do not intend here to improve this particular aspect of ip-xact and therefore
we adopt the metamodel shown in figure 5.8.

5.2.4 Other Elements

At the start of this subsection we described that the ip-xact components are used to describe
cores, peripherals, storage elements, and buses without any distinction of their type. But in
actual, to a little extent, ip-xact specification keeps provision for the processing core elements
(figure 5.4). The Cpu model element describes a containing component with a programmable
core that has some sized address space. That same address space may also be referenced by
a master interface and used to create a link for the programmable core to know from which
interface transaction the software departs. Its mandatory addressSpaceRef element indicates
which address space maps into this cpu and gives the reference to a unique address space.

An ip-xact component may also contain channels. A Channel model element is a special
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object that can be used to describe multi-point connections between regular components,
which may require some interface adaptation. Each channel element contains a list of all the
mirrored bus interfaces in the containing component that belong to the same channel. Channel
interfaces are always mirrored interfaces. A channel connects component master, slave, and
system interfaces on the same bus. A channel can represent a simple wiring interconnection or
a more complex structure, such as a bus. Channels support memory mappings but can only
have one address space.

SPIRIT::Component::FileSet

+ name: String [1]
+ fileType: String [1..*]
+ isIncludeFile: Boolean [0..1]
+ logicalName: String [0..1]
+ exportedName: String [*]
+ dependency: String [*]
+ define: NameValuePair [*]

File

+ name: String [1]
+ group: String [*]
+ dependency: String [*]

FileSet

+ file
*

Figure 5.9: IP-XACT Component FileSet Metamodel.

5.3 Interface Definitions

In ip-xact, a group of ports that together perform a function are described by a set of elements
and attributes split across two descriptions, a bus definition and an abstraction definition. In
ip-xact, these two definitions are collective called as interface definitions. These two descrip-
tions are referenced by components or abstractors in their bus or abstractor interfaces, also
shown in figure 5.2, page 62. We go through the two definitions in the subsequent subsections.

5.3.1 Bus Definition

The busDefinition element describes the high-level attributes of the interfaces connected to a
bus or interconnect (see figure 5.10). It defines the structural information associated with a
bus type, independent of the abstraction level, like the maximum number of masters and slaves
allowed on the bus defined by the maxMasters and the maxSlaves attributes respectively. As
we expressed before, just like components the two bus definition elements being the top level
elements are uniquely identified by the identifier of the type VersionedIdentifier. A mandatory
directConnection Boolean variable specifies what connections are allowed. A value of true
specifies these interfaces may be connected in a direct ‘master to slave’ fashion whereas the
false indicates only non-mirror to mirror type connections are allowed (like master to mirrored
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master, etc.). The last mandatory Boolean variable isAddressable specifies if true, that the
bus has addressing information and a memory map can be traced through this interface or
conversely do not contain any traceable addressing information.

ip-xact also provides a mechanism to extend bus definitions. Extending an existing bus
definition allows the definition of compatibility rules with legacy buses. For instance, an ahb
(Advanced High-performance Bus) definition may extend the ahblite bus definition (one of
the basic version of the bus from amba). The extensions are constrained. An example of
compatibility rule is that an extending bus definition must not declare more masters and
slaves than the extended one. The extends element contains the vlnv reference of the other
bus definition.

SPIRIT::BusDefinition

SPIRIT::AbstractionDefinition

+ ident: VersionedIdentifier [1]
+ directConnection: Boolean [1]
+ isAddressable: Boolean [1]
+ maxMasters: WholeNum [0..1]
+ maxSlaves: WholeNum [0..1]

BusDefinition

+ ident: VersionedIdentifier[1]

AbstractionDefinition

+ extends0..1

+ extends0..1

+ logicalName: String [1]

LogicalPort

+ ports1..*

LogWirePort LogTransactionalPort

busType

1

Figure 5.10: IP-XACT Interface Definitions Metamodel.

5.3.2 Abstraction Definition

The AbstractionDefinition model element describes the low-level aspects of a bus or intercon-
nect. Note that using the word abstraction for low-level aspects can be somewhat misleading.
However, we keep this name to follow the ip-xact standard. An abstraction definition gives
more specific attributes for a given bus definition. There can be several abstraction defi-
nitions for the same bus definition, like ahb rtl and ahb tlm from the Leon 2 example of
ip-xact specification [SPI08]. An abstraction definition must contain two mandatory elements,
busType and ports. The busType attribute gives the reference to the bus definition for which
this abstraction definition exists. Just like the bus definition, an abstraction definition can
also extend another abstraction definition with some compatibility constraints to enforce. The
extending abstraction definition may change the definition of logical ports, add new ports, or
mark existing logical ports illegal. Here we have to keep an important point in consideration
that if an abstraction definition extends another abstraction definition, then the corresponding
bus definitions referred to in the two abstraction definitions must also extend each other. This
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can be stated by the following ocl rule:

context A b s t r a c t i o n D e f i n i t i o n inv :
s e l f . extends . busType = s e l f . busType . extends

As an illustration, we consider the example given in the ip-xact specification [SPI08] shown
in figure 5.11. Here, the abstraction definition ahb rtl extends the ahblite rtl which implies
that the bus definition ahb also extends the basic bus structure ahblite.

« busDefinition »

AHBLite

« busDefinition »

AHB

extends

« abstractionDefinition »

AHBLite_rtl

« abstractionDefinition »

AHB_rtl

extends

busType

busType

Figure 5.11: Bus Extension Constraint Example.

The extension such as used in bus and abstraction definitions shows one of the weakness
of an xsd-based standard. The relationship between the extending and the extended model
elements is typically a generalization relationship. The standard speaks about the “extends
relation hierarchy tree”, along with a concept of inter-connectability, which appears to be
close to substitutability. Because ip-xact ignores generalization, the standard imposes that “all
the elements and attributes of the extended bus definition and abstraction definition pair shall
be specified in the extending bus definition and abstraction definition pair”. This surely leads
to verbose models.

The abstraction definition specifies the ports elements and constrains them (type, direction
. . . ). These ports are logical ports, contrary to the physical ports parts of the Model Compo-
nent (figure 5.4). In fact, we can say that the abstraction definition is a collection of logical
ports at given abstraction level that may appear on a bus interface for a particular bus type.
Each logical port must define the logicalName attribute which gives a name to the logical port
that can be used later in component descriptions when the mapping is done from a logical
abstraction definition port to the component physical port, through port maps, already pre-
sented in the Component::BusInterface package. The logical name shall be unique within the
abstraction definition. Each port also requires a wire element or a transactional element to
further describe the details about this port.

A LogWirePort model element represents a port that carries logic values or an array of
logic values. This logical wire port contains two sets of optional constraints for a wire port, to
which it is mapped inside a component’s or abstractor’s bus interface. First one is the qualifier
which indicates that this is an address, data, clock or reset port. The second set contains
the optional constraints like presence of the port on the bus interface, its direction and width
and is defined separately for master, slave and the system. It indicates the behavior of the
port with respect to its containing bus interface’s mode type. A LogTransactionalPort carries
information that is represented on a higher level of abstraction. This logical transactional
port may provide optional constraints for a transactional port, to which it is mapped inside a
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component’s or abstractor’s bus interface. The optional constraints for the transactional ports
are little different from the wire port. The qualifier element indicates that the port is address
or data port. There is no provision for the clock or reset as this port is at transaction level.
Also, instead of the direction and width elements of the wire port, transactional ports have
service attribute describing the behavior of the port. Further details of these constraints can
be consulted in the ip-xact specification [SPI08].

Bus and abstraction definitions for the Acquisition system

SAMPLE
TRANSFER

Acq

On Master On Slave

  out
in

  in
out

In Bus Definition
direct connection Master/Slave = true
maximal number of Masters = 1
maximal number of Slaves = 1

Logical port

In Abstraction Definition

w
w

Figure 5.12: Definitions of the Acq bus type.

Figure 5.12 contains several information relative to bus interface Acq used in components Sensor
and Processor of the Acquisition system. The Bus Definition specifies that the connection
master/slave is 1 to 1, and direct. The abstraction definition introduces two wire logical ports
(SAMPLE and TRANSFER), and their respective directions according to their mode (master
or slave).
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direct connection Master/Slave = false
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In Abstraction Definition

w
w
w
w
w
w

Figure 5.13: Definitions of the Save bus type.



5.4. DESIGN 75

Bus interface Save is a bit more complex because, according to the mode, some logical ports
are forbidden. This is shown in figure 5.13 with the keyword illegal. The logical ports are
wire ports. The bus definition says that only non-mirrored to mirrored type connections are
allowed. The maximum numbers of masters and slaves has been taken as 4 and 16 arbitrarily.

5.4 Design

An ip-xact design is the central placeholder for the assembly of component objects. It repre-
sents a system or a sub-system defining the set of component instances and their interconnec-
tions, also shown in figure 5.14. The interconnections may be between interfaces or between
ports on a component. Thus a design description is analogous to a schematic of components.

SPIRIT::Design

+ InterfaceRef: String [1]

HierConnection
+ activeInterface

1

+ ident: VersionedIdentifier [1]

Design

+ instanceName: String [1]

ComponentInstance

Connection

+ ident: VersionedIdentifier [1]

SPIRIT::Component::Component

+ componentInstances

* + referenceId: String [1]
+ value: String [0..1]

ConfigurableElementType
+ configurableElementValues

*

1 + componentRef

+ busRef: String [1]
+ componentRef: String [1]

Interface

+ name: String [1]
+ tiedValue: UnlimitedNatural [0..1]

AdHocConnection

+ name: String [1]

Interconnection
+ activeInterface

2

+ name: String [1]

MonitorInterconnection + activeInterface 1 1..* + monitorInterface

+ componentRef: String [1]
+ portRef: String [1]

InternalPort

+ portRef: String [1]

ExternalPort

+ internalPortRef
1..*

+ externalPortRef
*

Figure 5.14: IP-XACT Design Metamodel.

The design componentInstance refers to the original component description. As this design
element represents a system, these component instances can be configured to the specific de-
sign needs like providing clock specifications (period, offset) or providing addressable memory
range, etc.. These configurable values are given using the configurableElementValues element
for providing the value of a specific component parameter. The designer can then connect the
components using various types of connection elements. The key types of connections are the
interconnection, monitor interconnection, ad-hoc, and hierarchical connections. Interconnec-
tion is the point-to-point connection of bus interfaces from two sibling components and hence,
is the standard connection type used to connect the components in the same design. It spec-
ifies exactly two bus interfaces that are part of the interconnection using the activeInterface
element having the type Interface. Interconnections can only connect two bus interfaces and
broadcasting of interconnections is not allowed. MonitorInterconnection is a special kind of
interconnection which specifies the connection between a component bus interface and a list
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of monitor interfaces (a kind of bus interface mode, discussed earlier) on other component in-
stances. AdHocConnection connects two ports directly, wire ports but also transactional ports,
without using a bus interface. It can also connect the component instance ports and ports
of the encompassing component (in the case of a hierarchical component). It must contain
at least one reference to the internalPort specifying the component and its desired port. On
the other end of the connection, there can be another internal port or an externalPort which
exists outside the design hierarchy and only specifies the target port without any reference
to the containing component. Lastly, the hierarchical connections (HierConnection) connect
components from different hierarchical levels (e.g.,a parent to one of its children). A hier-
archical connection represents a hierarchical interface connection between a bus interface on
the encompassing component and a bus interface on a component instance of the design. It
contains a single mandatory reference to a component bus interface (activeInterface) which is
then delegated to the containing component.

Acquisition system

The design of the acquisition application contains component instances and the interconnec-
tions between bus interfaces. An interconnection between bus interfaces is specified by a pair
of activeInterfaces. An activeInterface (an ip-xact element) consists of a component instance
reference and a bus interface reference. As usual in ip-xact, these references are made by
names.

� component instances: s1:Sensor, s2:Sensor, p1:Precessor, p2:Precessor, m1:Memory,
m2:Memory, m3:Memory, and b:ABus

� interconnections: for instance, Bus interface M A of component instance p1 is connected
with bus interface S A of component instance s1.

Figure 5.15 shows a partial view of the repository for a design of the Acquisition system.
Rounded-corner rectangles with dashed outlines are not part of the instance model, they only
group objects whose specifications are in a same location (e.g.,component specification, design
specification, etc.).

5.5 Abstractor

System level design (sld) is the design methodology to deal with the complexities of Systems-
on-Chip (SoC) by using the higher abstraction levels. Today, the system designs are usually
formulated at high abstraction levels like tlm and then are automatically or manually trans-
formed into low level models like rtl, finally paving the way for the chip synthesis. In actual,
this transformation does not occur in a holistic way and the discrete blocks of models are
treated separately. Usually, a single independent ip block (like a communication bus) is trans-
formed into the low level design whereas the rest of the system works at the same high level.
This ensures the avoidance of complexity in the design transformations by dividing them into
smaller parts and that each block can be verified independently. For this form of discrete
step-by-step transformation, we need the transactor elements which are used to bridge the
gap between the communication interfaces at different abstraction levels. A transactor works
as a translator from tlm function calls to sequences of rtl statements, hence providing the
mapping between transaction-level requests, made by tlm components, and detailed signal-
level protocols on the interface of rtl ips [BDF08]. This transactor translations are two
way phenomenon and also includes the mappings of the structural design architectures. A
transactor will break down the tlm level channel communication into several wires and buses,
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s1:ComponentInstance Sensor:Component

:Behavior
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S_A: BusInterface

Acq: BusDefinition

: AbstractionDefinition

busType

busType
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abstractionType

Design

Component

Component

Figure 5.15: (partial) repository of the Acquisition system Design.

introducing many new signals like clocks, reset, etc.which did not existed at higher abstraction
level (like tlm-pv, which does not contain timing information). Thus, the transactors often
introduce valuable information into the design of a system and for the functional verification
of such models, it is absolutely necessary to verify these transactors also.

In ip-xact, the concept of transactors is represented by the abstractors. Abstractor is
the top level ip-xact element used to convert between two bus interfaces having different
abstraction types and sharing the same bus type (figure 5.16). Designs that incorporate
ip models using different interface modeling styles (e.g.,tlm and rtl modeling styles) may
contain interconnections between such component interfaces using different abstractions of
the same bus type. An abstractor contains two interfaces, which shall be of the same bus
definition and different abstraction definitions. Unlike a component, an abstractor is not
referenced from a design description, but instead is referenced from a design configuration
description. Abstractor consists of the mandatory elements of abstractorMode, busType and
the abstractorBusInterface. The bus type, just as in bus interface, refers to the unique bus
definition associated with the abstractor.

An abstractor contains two mandatory abstractorInterface elements. Each abstractor In-
terface element defines properties of this specific interface in an abstractor. It contains an
obligatory reference to the abstraction definition for this abstractor interface. Abstractor in-
terfaces can also contain a list of optional portMap elements taken from the bus interfaces.
Each port map element describes the mapping between the logical ports, defined in the ref-
erenced abstraction definition, to the physical ports, defined in the containing component
description (see bus interface for details). The abstractorMode element is some what similar
to the interfaceMode element of the bus interface. But it contains four values master, slave,
direct and system representing the four possible modes of interconnection between the two
mandatory abstractor bus interfaces. The master mode specifies that the first abstraction
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SPIRIT::Abstractor

SPIRIT::Component::
BusInterface::PortMap

SPIRIT::AbstractionDefinition::
AbstractionDefinition

SPIRIT::BusDefinition::
BusDefinition

+ ident: VersionedIdentifier [1]
+ abstractorMode: AbstractorModeKind [1]
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AbstractorBusInterface

1 + busType
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1..*
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AbstractorView

AbstractorPort
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InterfaceModeKind

+ ports
*
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Figure 5.16: ip-xact Abstractor Metamodel.

definition interface connects to the master, whereas the second connects to the mirroredmaster
and similarly for the other modes. The abstractor model element is exactly similar to the bus
interface model element other than the naming terminology used. It contains the abstractor
views and the abstractor ports. We advice to refer to the bus interface subsection for further
details on it.

5.6 Conclusion

At several places in this chapter we have shown that ip-xact is syntactically rich but complex.
The scattering of information has been demonstrated through the acquisition system example.
Even if the ip-xact specification can be exploited by tools, it remains hard to understand
and build for a human user. This provided the idea to extract the essence of ip-xact to a
metamodel, with the intent to propose a simpler front-end to ip-xact specifications.

We have taken advantage of opportunities offered by the metamodeling concepts to simplify
the representation of many of the mechanisms provided by the ip-xact standard. The proposed
metamodel can now function as the reference metamodel for the design of ip-xact systems
even without the use of modeling languages like uml. Moreover, our domain view also gives a
better understanding of ip-xact concepts involving multiple hierarchies which is not possible
to comprehend directly from the ip-xact specification or by seeing the ip-xact xml description
files. Putting on the concepts of ip-xact in metamodeling allows us to benefit from the
enormous work done by the Spirit consortium for modeling electronic components. It positions
our metamodel as a comprehensive state of the art initiative and the center point for the future
work on design and modeling of ip-xact concepts. In the following chapters, we illustrate how
to use this information to model ip-xact in uml and to automate the design flow of systems
on chip by relying on techniques of mde.
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This chapter describes the representation of ip-xact models in uml. We use a combination
of uml concepts, marte, and our own profile in our attempt to specify ip-xact models in uml.
We have defined uml stereotypes with parsimony and have also introduced a model library to
provide a set of data types equivalent to ip-xact primitive types. The stereotypes and the model
library are gathered within a new profile named uml profile for ip-xact.
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6.1 Introduction

The analysis of the ip-xact metamodel in the previous chapter leads us to the need to introduce
a profile for ip-xact facilitating the integration of approaches based on uml in the context of
ip-xact. To fulfill this requirement, we introduce our uml profile for ip-xact. Here we bring
the concepts of the metamodeling in ip-xact to the uml syntax through the mechanism of
profile. In this way, the metamodeling concepts are applied to use the graphical and tooling
capabilities of uml (graphical modular designing, component reuse, different representation
views, etc.) and the user-defined profile. This chapter describes the representation of ip-xact
models in uml. We use a combination of uml concepts, marte and our own profile in our
attempt to describe the ip-xact models in uml. Following B. Selic [Selic 2007], we have tried
to define stereotypes with parsimony and to create new ones when no equivalent concepts were
available in uml or in marte. In addition to stereotypes, we have also defined a model library
to provide a set of data types equivalent to ip-xact primitive types. The new stereotypes and
the model library are gathered within a new profile named uml profile for ip-xact. We will
explain each of the concepts introduced to clarify the reasons that why we have defined them.
Moreover, we justify the way in which we have transformed the UML models into ip-xact
models and compare our approach with the other approaches.

There have been several propositions to use uml in SoC Design [CSL+03, Sch05] including
usage of profiling mechanisms (uml for SoC [MM05, OMG06], Omega-RT [GOO06] and uml
for SystemC [RSRB05]). There are also some combined uml/sysml-based environments to
support analysis and produce SystemC outputs [VSBR06]. However, our work specifically fo-
cuses on the interoperability among ip-xact models and makes an extensive use of the marte
profile and its time model. Some preliminary works [ZBG+08, AMMdS08, SX08] have con-
sidered solutions to model ip-xact designs in general purpose modeling languages like uml
with or without the support of marte profile. These approaches mostly focus on structural
aspects, whereas we also consider behavior and time information of IPs. The uml profile for
esl proposed by Revol [RTT+08, Rev08] supports bidirectional transformations between uml
and ip-xact as well as the generation of SystemC code skeletons based on the register map
information provided by ip-xact. This profile focuses on tlm models and abstracts away all
the rtl-related information. It was designed to provide a good integration with ST Micro-
electronics tlm design flow. Our work is complementary as Revol focuses on the structural
aspects while we also look at the relationship with the behavior.

In this chapter, firstly we identify the key elements of our profile. Then, in section 6.3,
we again go through the main ip-xact concepts and for each of them we explain our mapping
rules and justify the creation of required new stereotypes. Thereafter, we illustrate the use of
this profile in Section 6.4.

6.2 Mapping IP-XACT Concepts

As stated earlier, our first step of the construction of our profile is to identify the concepts
that we desire to manipulate in our uml models. More specifically, as our goal is to have
an interoperability between ip-xact based models and other conventional tools in the esl
community, we need to determine the concepts of this standard that we want to represent in
uml. Some notions of uml are not expressible in ip-xact, similarly transforming ip-xact to the
uml concepts is also not easy. Here we get the major advantage from our ip-xact domain view
introduced in the previous chapter. This domain view acts as a bridge between the general
ip-xact concepts described in xsd files and the uml structural modeling. Our end goal is
to take advantage of the strengths of these two standards while ensuring equivalence (with
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respect to the tools) between models expressed in both formats. There are many approaches
given by various authors revolving around uml [ZBG+08, RTT+08, SXM09] which we will
discuss and compare from time to time in the next two sections. Each approach differs in the
way the ip-xact concepts are perceived in mind and then mapped to uml. One can not draw
a line of right or wrong for such approaches and all these attempts, including ours, lie in the
gray area, where we consider the bargain of gain and loss by using one particular approach.

ip-xact represents the structural aspects of a SoC design and hence, at the later stages helps
in the better integration of the system. For this purpose, ip-xact is quite strict in representing
and identifying the components, their design constraints and their interconnections. All these
issues are not focally covered in the uml and for this purpose, we try to take advantage from our
custom built profile. This profile is a mix of the stereotypes introduced along with the new data
types and enumerations defined, and stereotypes borrowed from marte. The new stereotypes
are only considered to be introduced when the existing metaclasses of uml, the available
marte stereotypes or the modeling diagrams fail to facilitate the concept representation. As
an observation, the ip-xact multiple hierarchy structure is better handled by the uml whereas
the specialized ip-xact concepts (like bus interfaces) are better handled by the new stereotypes
(but surely with the help of existing uml structures). Practical examples will further illustrate
these points.

Briefly, the profile (stereotypes and model library), the modeling techniques and principles
of use make the effective environment to develop the ip-xact models in uml. We take care for
each of the concepts introduced to clarify the reasons that led us to define them. In addition,
we justify the use of various techniques in uml modeling and profiling by referring to similar
approaches found in the related works. Table 6.1 shows the general mapping relation with the
key ip-xact concepts highlighted. Our ip-xact models are mainly built in uml using the class
diagrams and the composite structure diagrams. Class diagrams represent the various bus
definitions (the library elements of ip-xact) whereas the composite structure diagrams rep-
resent all other concrete elements present in ip-xact, like components and abstractors. This
partitioning is coherent with the uml concepts in the way that the uml structure diagrams
are used to represent the concrete structured elements and instances. This approach also helps
us to represent the ip-xact hierarchical components which are composed of other components.
Hence, the ip-xact models in uml are represented by using uml along with the marte pro-
file and our ip-xact profile. We discuss the use of two profiles separately in the subsequent
subsections.

6.3 UML Profile for IP-XACT

6.3.1 UML and MARTE Profile

marte profile is the successor of spt profile for uml. It is dedicated to the design and
modeling of real-time embedded systems. It has got special focus on representing hardware as
well as software structures and their behavioral models including time. As questioned by many
authors recently about the use of marte profile in our research work, we wanted to clarify and
emphasize few things. The base of uml modeling is the extensibility and re-usability features
of designs [Sel98]. uml profiles provide a mechanism that has led to the development of various
domain specific profiles. So our use of marte profile as the base for our work on ip-xact profile
avoided us from reinventing the wheel. It provided us with hardware components which are
equally used by the ip-xact specification. Also, marte profile has got quite acceptance in
the mde community and is supported by the uml modeling tools like Papyrus. Moreover, the
marte time model is a comprehensive specification dealing with time related properties of a
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Spirit ip-xact uml marte Profile for ip-xact

vlnv �versionedIdentifier�

Component Structured Class �hwResource�

Hierarchical Component Structured Class �hwResource�

Processor Structured Class �hwProcessor�

Bus Interface Port �busInterface�

Bus Interface Mode Enumeration InterfaceModeKind

Address Space Structured Class �addressSpace�

Memory Map Structured Class �memoryMap�

Address Bank Structured Class �addressBank�

Address Block Structured Class �addressBlock�

Register Structured Class �register�

Field Structured Class �field�

Memory Usage Type Enumeration UsageKind

Memory Access Type Enumeration AccessKind

Memory Bank Alignment Enumeration BankAlignmentKind

View Property �view�

Physical Port Port �wirePort�,
�transactionalPort�

Wire Port Direction Enumeration DirectionKind

Transactional Port Initiative Enumeration InitiativeKind

Cpu Property �cpu�

Communication Bus Structured Class �hwBus�

Channel Property �channel�

ram Structured Class �hwRAM�

Bridge Structured Class �hwBridge�

Timer Structured Class �hwTimer�

Bus Definition Class �busDefinition�

Abstraction Definition Class �abstractionDefinition�

Logical Port Property �logWirePort�,
�logTransactionalPort�

Port Presence Type Enumeration PresenceKind

Abstractor Structured Class �abstractor�

Abstractor Interface Port �abstractorBusInterface�

Abstractor Interface Mode Enumeration AbstractorModeKind

Design Structured Class

Component Instance Part (Property)

Instance configuration Property �configurableElementValue�

Connection Connector

Table 6.1: Mapping ip-xact concepts to uml(Structured Class is an abbreviation to denote the metaclass

Class from the StructuredClasses package)

system. In the last part of this thesis, we have used the marte time model concepts along with
its clock representation language ccsl. In the future, we try to merge our work to represent
ip behavior, using ccsl and time model, with the ip-xact specification. Currently ip-xact
specification is mostly dealing with structural aspects of esl designs and such a proposal for
behavior integration will be a great contribution. Thus, use of marte profile as the base of
our sub-profile for ip-xact is helpful not only from the structural view-point but is also of
a potential use for behavioral representation. Last but not least, our aoste team at inria
Sophia Antipolis has got major contributions in the development of marte profile, so its
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visionary to find its possible use next to ip-xact specification.
Our sub-profile for ip-xact borrows several concepts and stereotypes from marte. These

stereotypes are used to represent the ip-xact components in uml. As discussed in the preced-
ing chapter, the Hardware Resource Modeling (hrm) package from the marte profile contains
a large collection of hardware element stereotypes. They can be used to represent the vast
variety of components represented in ip-xact. ip-xact does not explicitly differentiate be-
tween hardware elements (like the processor and the ram both represented by the ip-xact
component). But at a closer look, the internal structure of the various components makes
them distinct. For example, the ip-xact channels are the collection of mirrored bus interfaces
(either they are master, slave or system) which normally exist on the bus components only.
Similarly, the ip-xact cpu element can exist on the processing element. Thus using the marte
profile, we highlight the difference of these components by applying distinct stereotypes. We
apply marte stereotypes from the hrm package to identify components that must be trans-
formed into ip-xact components. More specifically, we apply the stereotype HwResource and
some of its sub-stereotypes. Components stereotyped by � hwProcessor �, � hwMemory � and
� hwBus � are all transformed into ip-xact components but give us the opportunity to organize
and represent the information in a better way in uml. This method gives us the advantage
to benefit the most from the graphical features of uml. As an example, the different types
of memories in ip-xact are differentiated by the access type (readOnly, writeOnly, readWrite)
and usage type (memory, register, reserved) in their properties. But in uml, using the marte
HwRAM or HwROM stereotypes, we can visually show different types of memories in our uml
models even though they are represented by the same ip-xact component type. Similarly, the
HwBridge and HwTimer stereotypes are the respective equivalent of ip-xact bridge and timer
components. All these mappings between the ip-xact concepts and the marte profile is shown
in table 6.1. Illustrations are given in section 6.4 of this chapter. For instance, figure 6.10
on page 94 shows our sample ip-xact processor component with the HwProcessor stereotype
applied from the marte profile. Note that we have followed the naming convention imposed by
the authors of the Leon2 architecture example given by the Spirit consortium, even though it
is generally admitted that class names should start with a capital letter. This was introduced
to better present ip-xact files, similar to the ones given by the authors, after the automatic
model transformation. ip-xact components get more complex when we consider the industrial
applications. All such components of a type not even represented in marte can be shown by
the generic stereotype HwResource (see figure 6.17, page 101 for a hierarchical component).

6.3.2 UML and IP-XACT Profile

Other than the marte profile, we use a combination of uml features and our specialized ip-
xact profile for the representation of various ip-xact model elements. Here we discuss one by
one the model elements of the profile for ip-xact.

Component

Components are represented in the composite structure diagrams by the classes from the Struc-
turedClasses package in uml metamodel. The uml Class of the StructuredClasses package is
different from the Class of the kernel package in the way that the former is an Encapsulated-
Classifier and a StructuredClassifier (refer back to figure 3.2 on page 26) and so, may have an
internal structure and ports. In what follows, we use the terms “Structured Class” to denote
class with internal structure and ports, even if it is not the name of a uml metaclass. An
ip-xact component inherently can contain component attributes and ports. This way a Struc-
tured Class can perfectly represent any hardware element containing parts, ports, attributes
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or interconnections. We refer to figure 5.4 on page 64 from the preceding chapter to show
the relationship of ip-xact components with other elements. The ip-xact vlnv information
is provided by the VersionedIdentifier stereotype which contains the two attributes vendor and
version of the ip-xact component. The component’s qualified package name contributes to the
vlnv information as library name, along with the component name itself for the rest of the
two fields. The component name of the structured class, contributing indirectly to the vlnv,
is mandatory as the structured classes are uml NamedElement.

Note that stereotype VersionedIdentifier is abstract and extends no uml metaclass. This
solution, already adopted for the TimedElement stereotype from marte, has been preferred to
another solution effectively taking a metaclass (i.e.,PackageableElement [SXM09]). The Ver-
sionedIdentifier stereotype is used as a generalization for several other (concrete) stereotypes,
which all need the information carried by the versioned identifier. Figure 6.1 shows Versione-
dIdentifier stereotype, useful data types, and some of the ip-xact component sub-elements
implemented as stereotypes extending the uml metaclass Property.

(uml)
Property

+ addressSpaceRef: AddressSpace [1..*]

«stereotype»
Cpu

(uml)
Property

+ envIdentifier: String [1..*]
+ hierarchyRef: String [0..1]
+ language: String [0..1]
+ modelName: String [0..1]

«stereotype»
View

(uml)
Property

+ busInterfaceRef: BusInterface [2..*]

«stereotype»
Channel

+ vendor: String [1]
+ version: String [1]

«stereotype»
VersionedIdentifier

+ name: String [1]
+ value: String [1]

«dataType»
NameValuePair

«primitiveType»
PositiveInteger

«stereotype»
FileSet+ fileSetRef

*

Figure 6.1: vlnv and ip-xact Component element stereotypes

Just like in our metamodel, we describe the component from the most basic part i.e.,its
model. In ip-xact, model is a collection of component views and physical ports. We implement
ip-xact physical ports and views as distinct entities in our uml models for ip-xact. A View is
defined as a stereotype that extends the metaclass Property, as shown in figure 6.1. As these
ip-xact elements and their attributes were thoroughly discussed in the metamodel, so here
we only provide their mapping onto uml elements. For any confusion regarding the ip-xact
terms and concepts, one can refer to the preceding chapters. The View stereotype contains the
hierarchyRef attribute which contains the name of the design file of the component (discussed
in subsection 6.4.3). In the similar way, we represent the Cpu and the Channel stereotypes
as properties of the structured classifier (hence, ip-xact component). The Cpu stereotype
contains an optional reference to the component’s memory map and specifies all the elements
stereotyped with � addressSpace �. Similarly, the Channel stereotype refers to the bus interfaces
of the component (ports stereotyped as � busInterface �).
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+ direction: DirectionKind [1]

«stereotype»
WirePort

(uml)
Port

+ serviceInitiative: InitiativeKind [1]

«stereotype»
TransactionalPort

+ displayName: String [0..1]
+ description: String [0..1]
+ allLogicalDirectionsAllowed: Boolean [0..1]

«stereotype»
PhysicalPort

+ requires
+ provides
+ both
+ phantom

«enumeration»
InitiativeKind

Figure 6.2: Physical Port Stereotypes.

Physical ports

The ip-xact physical ports are represented by the abstract stereotype PhysicalPort which ex-
tends the uml Port metaclass, also shown in figure 6.2. We have chosen to represent the
ip-xact ports as uml port because they can also be used communicate with the environment
just like bus interfaces. These ports can then be connected with external ports using ad-hoc
connections. In the profile we have declared the PhysicalPort as an abstract stereotype, so
effectively we have to use concrete sub-stereotypes: either WirePort or TransactionalPort. The
initiative type of transactional ports and the direction of the wire ports are implemented as
enumeration in the profile.

BusInterfaces

ip-xact bus interfaces, as defined previously, are the collection of similar ports adhering to
some common protocol. They are the main element to communicate with other components.
As they are similar to the physical ports, we again use the uml ports to represent them.
The applied stereotype BusInterface (figure 6.3) differentiates these ports from the ip-xact
physical ports. This BusInterface stereotype extends the uml Port metaclass. Some of the
approaches [ZBG+08] have used uml interfaces to represent ip-xact bus interfaces but we
prefer to use uml ports to represent ip-xact bus interfaces, as they are merely the collections
of similar physical ports.

The interfaceMode for the bus interface is defined in the profile as uml enumeration Inter-
faceModeKind having six mode values. A master interface mode (also known as an initiator)
is the one that initiates transactions whereas a slave interface mode (also known as a target)
responds to transactions. A system interface mode is used for some classes of interfaces that
are standard on different bus types, but do not fit into the master or slave category, like clock
or reset bus interfaces. Interface mode has always been a source of confusion for the researchers
trying to model ip-xact in uml. Various authors [ZBG+08, RTT+08, SX08, SXM09] tried to
introduce a separate class or stereotype for each of these interface modes. Whereas some other
approaches [ASHH09] and our initial attempt [AMMdS08] for modeling ip-xact introduced the
enumerations to deal with interface mode of bus interfaces. We kept focus on design simplic-
ity and the general rules of parsimony while introducing new stereotypes [Sel07]. One of the
thing that compelled authors for the former approach was the set of attributes associated with
each mode type of bus interfaces, sometimes mandatory while optional usually. For example,
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+ displayName: String [0..1]
+ description: String [0..1]
+ busType: BusDefinition [1]
+ abstractionType: AbstractionDefinition [0..1]
+ interfaceMode: InterfaceModeKind [1]
+ addressSpaceRef: AddressSpace [0..1]
+ memoryMapRef: MemoryMap [0..1]
+ systemInterfaceGroup: String [0..1]
+ connectionRequired: Boolean [0..1]
+ portMap: PortMap [*]
+ bitsInLau: UnlimitedNatural [0..1]

«stereotype»
BusInterface

(uml)
Port

+ master
+ slave
+ system
+ mirroredMaster
+ mirroredSlave
+ mirroredSystem

«enumeration»
InterfaceModeKind

+ logicalPort: LogicalPort [1]
+ physicalPort: PhysicalPort [1]

«dataType»
PortMap

Figure 6.3: Bus interface stereotype.

the master and slave bus interfaces contain a mandatory attribute referring to their address
spaces and memory maps respectively. The system mode bus interface contains a mandatory
attribute ‘group’ specifying which names the group of the interface to which it belongs to like
clock ports, reset ports etc.. We have combined all these attributes in our busInterface stereo-
type and have added ocl constraints to channelize their use. For the above group attribute,
we have added the systemInterfaceGroup attribute and it must match a group name present
on one or more ports in the corresponding abstraction definition. In this way, the ‘system’
bus interface is associated with the underlying logical ports. The system interface group name
must not be available to the designer if the interface mode is not system. In uml, we apply
the following ocl constraints to the BusInterface stereotype:

context BusInte r f ace
inv ifMode :

( s e l f . inter faceMode = InterfaceModeKind : : master )
implies ( s e l f . addressSpaceRef−>s i z e ()= 1) and

( s e l f . inter faceMode = InterfaceModeKind : : s l a v e )
implies ( s e l f . memoryMapRef−>s i z e ()= 1) and

( s e l f . inter faceMode = InterfaceModeKind : : system )
implies ( s e l f . systemInterfaceGroup−>s i z e ()= 1)

Similarly, the optional presence of the bus interface model library also contains the PortMap
data type that is used to represent the ip-xact port maps. Just like the models, port map is
also a collection with references to the logical and physical ports defined elsewhere. But unlike
models, we prefer to introduce data type for the port maps because they are used to specify
the mapping between the logical and the physical ports and neglecting this container will also
loose this mapping information.
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Memories

Summarizing the description given before about the memories, a memory (i.e.,address space
and memory map) of an ip-xact component is a collection of register locations of an addressable
area of the component as seen from its bus interfaces. Address spaces are reserved for the
master bus interfaces and can contain local memory maps. Memories (of any type) are made
up of address banks and address blocks as their building blocks. Moreover, memories can
be of the type ‘registers’ composed of smaller units called fields. All of the seven described
memory types are implemented as stereotypes extending the uml Class metaclass shown in
figure 6.4. In the memory profile library we also introduce two data types, one for the register
reset value and the other for the field values. All the options regarding memory unit’s access,
usage and alignment are implemented as uml enumerations. ip-xact memories are hierarchical
and are dealt in uml using the class hierarchies as shown in the component model figure 6.11
on page 95.

+ memory
+ register
+ reserved

«enumeration»
UsageKind

+ range: UnlimitedNatural [1]
+ width: UnlimitedNatural [1]
+ addressUnitBits: UnlimitedNatural [0..1]

«stereotype»
AddressSpace

+ localMemoryMap
[*]

[*]
+ memoryMap

+ baseAddress: UnlimitedNatural [1]
+ usage: UsageKind [0..1]
+ volatile: Boolean [0..1]
+ access: AccessKind [0..1]
+ bankAlignment: BankAlignmentKind [0..1]

«stereotype»
AddressBank

+ baseAddress: UnlimitedNatural [1]
+ range: String [1]
+ width: UnlimitedNatural [1]
+ usage: UsageKind [0..1]
+ volatile: Boolean [0..1]
+ access: AccessKind [0..1]
+ register: Register [*]

«stereotype»
AddressBlock

+ readOnly
+ writeOnly
+ ReadWrite

«enumeration»
AccessKind

+ serial
+ parallel

«enumeration»
BankAlignmentKind

+ memoryMap: MemoryMap [*]
+ bank: AddressBank [*]
+ addressBlock: AddressBlock [*]

«stereotype»
LocalMemoryMap

+ bank: AddressBank [*]
+ addressBlock: AddressBlock [*]

«stereotype»
MemoryMap

(uml)
Class

(uml)
Class

(uml)
Class

(uml)
Class

(uml)
Class

+ addressOffset: UnlimitedNatural [1]
+ size: UnlimitedNatural [1]
+ volatile: Boolean [0..1]
+ access: AccessKind [0..1]
+ reset: Reset [0..1]

«stereotype»
Register

(uml)
Class

+ bitOffset: UnlimitedNatural [1]
+ bitWidth: UnlimitedNatural [1]
+ access: AccessKind [0..1]
+ values: value [*]

«stereotype»
Field

(uml)
Class

+ value: UnlimitedNatural [1]
+ mask: UnlimitedNatural [0..1]

«dataType»
Reset

+ value: UnlimitedNatural [1]
+ name: String [1]

«dataType»
Value

+ addressBlock
[*]

+ field
[*]

Figure 6.4: Component’s Memory Model: Address Spaces and Memory Maps

Interface Definitions

To represent the abstraction definitions and the bus definitions (also called collectively as
interface definitions in the standard), we use stereotypes extending the Class metaclass and
specializing the VersionedIdentifier abstract stereotype. We do not use the structured classes to
represent these interface definitions as these definitions do not contribute directly (by providing
any concrete element) to the system design environment, and hence just work as the libraries
to be referred to for concerned attributes and constraints. This approach is also used by the
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+ extends

0..1 [0..1]

+ extends

[1]

+ busType+ directConnection: Boolean [1]
+ isAddressable: Boolean [1]
+ maxMasters: UnlimitedNatural [0..1]
+ maxSlaves: UnlimitedNatural [0..1]
+ description: String [0..1]

«stereotype»
BusDefinition

+ description: String [0..1]
+ logicalPort: LogicalPort [1..*]

«stereotype»
AbstractionDefinition

(uml)
Class

(uml)
Class

«stereotype»
VersionedIdentifier

Figure 6.5: Bus definition and Abstraction definition stereotypes.

professional tools dealing with ip-xact like coreAssembler from the Synopsys coreTools1. This
coreAssembler tool also requires the buses definitions as a library but does not use them as an
object in the assembly project. This all seems quite natural also because the two definitions
are merely the set of constraints and the configuration attributes of their respective buses. The
two definition stereotypes are shown in figure 6.5. Both the bus and the abstraction definitions
specialize the abstract stereotype VersionedIdentifier, thus introducing the identifier attributes
to these stereotypes. For both interface definitions, the extends attribute is used to refer to
the other definition files (but of the same type) used as the base for this definition description
(shown also in figure 6.20 and 6.21). Additionally, for the abstraction definition we specify the
mandatory busType attribute to mention the underlying bus definition.

Abstraction definition also refers to a collection of logical ports, as shown in figure 6.6. The
logical ports are represented by the Property metaclass extended by the LogicalPort stereotype.
These ports represent the set of constraints applied to the underlying physical ports. Logical-
Port is an abstract stereotype and hence the two stereotypes that can be applied to the model
are the LogWirePort and the LogTransactionalPort. Both the port stereotypes contain set of
attributes, implemented as data type in the profile, called Qualifier which tells us the type
of information that this port carries. The Qualifier for logical transactional port consists of
two Boolean attributes isAddress and isData showing whether the port is an address port or a
data port. The wire logical port also contains the additional Boolean attributes of isClock and
isReset showing if these ports are dedicated for the clock and reset control signals respectively.

Logical ports can have distinct set of constraints for the respective physical port depending
on its presence on a master, a slave or a system bus interface. This way, we define the
behavior of the port based on its environment. For example, the presence attribute, specifying
the existence of the port, can have three values one each for master, slave and system and
hence depicts that if the physical port belongs to a master bus interface then this logical port
is present or not. The serviceInitiative and the presence optional attributes are implemented as
uml enumerations. The service initiative attribute tells that the port implements the function
itself (provides) or it requires the target component to implement it (requires). This initiative
concept is somewhat similar to the SystemC concepts of sc port and sc export. The group
attribute is used to group system ports into different groups within a common bus. These
groupings are then obligatorily referred from the system mode bus interfaces, if they exist.

1https://www.synopsys.com/dw/doc.php/ds/o/coretools ds.pdf
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+ qualifier: LogWireQualifier [0..1]

+ onMaster: LogWireConstraints [0..1]

+ onSlave: LogWireConstraints [0..1]

+ onSystem: LogWireConstraints [*]

«stereotype»

LogWirePort
(uml)

Property

+ qualifier: LogTransactionalQualifier [0..1]

+ onMaster: LogTransactionalConstraints [0..1]

+ onSlave: LogTransactionalConstraints [0..1]

+ onSystem: LogTransactionalConstraints [*]

«stereotype»

LogTransactionalPort

+ displayName: String [0..1]

+ description: String [0..1]

«stereotype»

LogicalPort

+ required

+ illegal

+ optional

«enumeration»

PresenceKind
+ in

+ out

+ inout

+ phantom

«enumeration»

DirectionKind

+ isAddress: Boolean [0..1]

+ isData: Boolean [0..1]

+ isClock: Boolean [0..1]

+ isReset: Boolean [0..1]

«dataType»

LogWireQualifier

+ presence: PresenceKind [0..1]

+ width: UnlimitedNatural [0..1]

+ direction: DirectionKind [0..1]

+ group: String [0..1]

«dataType»

LogWireConstraints

+ isAddress: Boolean [0..1]

+ isData: Boolean [0..1]

«dataType»

LogTransactionalQualifier

+ presence: PresenceKind [0..1]

+ serviceInitiative: InitiativeKind [1]

+ serviceType: String [1..*]

+ group: String [0..1]

«dataType»

LogTransactionalConstraints

Figure 6.6: Logical Port Stereotype.

So the group attribute is restricted (using ocl constraints) as mandatory when the onSystem
constraints are chosen whereas it is not allowed for other constraint types, also enforced by
ocl constraints, as shown below:

context Log ica lPor t
inv logPortBehavior :

( s e l f . onMaster . group−>s i z e ()= 0) and
( s e l f . onSlave . group−>s i z e ()= 0) and
( s e l f . onSystem . group−>s i z e ()= 1)

Abstractor

An ip-xact abstractor component acts as a bridge between the two components at differ-
ent levels of abstraction. The Abstractor stereotype extends the UML::StructuredClasses::Class
metaclass and specializes the abstract VersionedIdentifier stereotype (as shown in the figure 6.7).
An Abstractor contains a mandatory link to a bus definition. It also references exactly two
AbstractorBusInterface, each referring to an abstraction definition element. Thus in total, an
abstractor must exactly refer to a bus definition and two abstraction definition elements. The
AbstractorBusInterface stereotype extends the uml Port metaclass and hence can be applied to
the ports of the abstractor structured class. The attribute abstractorMode defines the mode for
the interfaces on the abstractor. For master mode, one interface connects to the master while
the other connects to the mirroredMaster bus interface. For slave mode, one interface connects
to the mirroredSlave while the other connects to the slave bus interface. For direct mode, one
interface connects to the master while the other connects directly to the slave bus interface
(hence direct connection, bypassing mirrored interfaces). For system mode, one interface con-
nects to the system while the other connects to the mirroredSystem bus interface. For system
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(uml)

Class

+ abstractorMode: AbstractorModeKind [1]

+ systemInterfaceGroup: String [0..1]

+ busType: BusDefinition [1]

«stereotype»

Abstractor

+ abstractionType: AbstractionDefinition [1]

+ portMap: PortMap [*]

«stereotype»

AbstractorBusInterface+ abstractorInterfaces

[2]

«stereotype»

VersionedIdentifier

+ master

+ slave

+ direct

+ system

«enumeration»

AbstractorModeKind

(uml)

Port

Figure 6.7: Abstractor stereotype.

abstractor interface mode, the systemInterfaceGroup attribute is obligatory to be specified and
is ensured by the following ocl constraint:

context Abstractor
inv abstMode :

( s e l f . abstractorMode = AbstractorModeKind : : master )
implies ( s e l f . systemInterfaceGroup−>s i z e ()= 0) and

( s e l f . abstractorMode = AbstractorModeKind : : s l a v e )
implies ( s e l f . systemInterfaceGroup−>s i z e ()= 0) and

( s e l f . abstractorMode = AbstractorModeKind : : d i r e c t )
implies ( s e l f . systemInterfaceGroup−>s i z e ()= 0) and

( s e l f . abstractorMode = AbstractorModeKind : : system )
implies ( s e l f . systemInterfaceGroup−>s i z e ()= 1)

Hierarchical Components

The component instances in the ip-xact top level design or the hierarchical components are
stereotyped by ComponentInstance. This stereotype, as shown in the figure 6.8, contains two
attributes: designViewRef and configurableElementValues. The designViewRef refers to the view
element of the component that refers to this component instance. This is needed to bound
a component instance with a design view, as a component can have several views and each
referring to its own internal design structure. This additional attribute did not existed in our
metamodel for ip-xact and its introduction is justified in the section 6.4.3. The other attribute
is a collection of configurable element values whose type is ConfigurableElementType. This data
type allows the designer to give, if needed, custom parameters with the first argument giving
its identifier and the second with its value.
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(uml)
Property

+ designViewRef: View [0..1]
+ configurableElementValues: ConfigurableElementType [*]

«stereotype»
ComponentInstance

+ referenceId: String [1]
+ value: String [0..1]

«dataType»
ConfigurableElementType

Figure 6.8: Hierarchical Design Model Library.

6.4 IP-XACT Models in UML

After introducing our ip-xact profile for uml, we now apply it to use in modeling ip-xact
components. While modeling ip-xact in uml, we use the profiling feature to introduce new
concepts as well as use the existing uml modeling facilities like elements from class diagrams
and composite structure diagrams. Thus describing the ip-xact profile for uml is the half job
done and rest of the task is taken into account in the uml models. In what follows, we use
class diagrams to represent interface definitions (bus and abstraction definitions) and all other
ip-xact components and abstractors are represented using the composite structure diagrams.

In this section, we discuss the modeling of different ip-xact elements. Firstly, in the next
subsection we give an overview of the Leon II example also used by the Spirit consortium in the
ip-xact specification. Later, we explain the modeling of ip-xact components in the following
subsections.

6.4.1 Leon II Architecture based Example

The Leon Architecture is a complete open source model available to the general public. It was
initially developed by Jiri Gaisler while working for the European Scape Agency (esa). Cur-
rently Gaisler Research (or Aeroflex Gaisler)2 is maintaining (and enhancing) the model. The
core component of the Leon architecture consists of Leon II processor which is a synthesizable
vhdl model of a 32-bit processor with sparc V8 instruction set. Gaisler research recommends
to use the new Leon III processor core enhanced applications but still the full source code of
Leon II is freely available for the development of SoC devices. Communication base of the
architecture consists of amba buses ahb and apb. This allows to easily add any new amba
compliant devices to the system.

Main components of the Leon architecture consist of processor core (with cache, floating-
point and co-processor), dma, memory module, timers, uart, interrupt controller, ahb and
apb amba buses, and the ahb to apb bridge. It also contains separate modules for clock
and reset controllers. Our research work mainly focuses on the processor, memory, timers,
interrupt controllers, amba buses, and the bridge. These components fulfill our minimum
requirements to create a simple read/write system starting from the processor and ending at
the timers or interrupt controller. This system is then used as a platform to test and verify our

2http://www.gaisler.com
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research work for both structural and functional aspects. Spirit is also using Leon architecture
to present an implementation of their ip-xact standard. Presently as ip-xact’s Leon based
representation is the only comprehensive example freely available, it also motivated us for the
use of Leon architecture. Moreover, Leon architecture implementation is highly configurable
and is well-documented, supported by online help (in terms of forums) available for the issues
encountered.

ahbramprocessor

dma

Irqctrl timers cgu rgu

apbbus

ah
bb

us
apbmst

Figure 6.9: Leon 2 based system architecture.

Figure 6.9 shows the Leon architecture as used by the ip-xact specification. At the base of
the architecture’s communication are the two buses from the arm’s open standard Advanced
Microprocessor Bus Architecture (amba) [ARM99]. amba specification defines the on-chip
communication standards for designing efficient embedded devices. amba specification defines
three distinct buses: Advanced High-performance Bus (ahb), Advanced System Bus (asb),
and Advanced Peripheral Bus (apb). asb is obsolete now and is mostly replace by the ahb.
The recent amba 3 specification introduces new types of buses: ahblite, atb, and axi. The
last two are not considered in the Leon II example, so we will not present them.

ahb is a high bandwidth bus intended to address the high-performance system designs. It
supports multiple bus masters with arbitration features. The two bus masters for our design
case are the processor and the dma. Memory module ahbram and the apb bridge apbmst

are the two slave units on the ahb. An ahb Master is the unit that is able to initiate read
and write operations by providing address, data, and control information. At any particular
moment only a single bus master can command the ahb bus and is decided by the ahb arbiter
based on some predefined protocol. An ahb Slave is a sort of passive component which can
not initiate any transaction on its own. It responds to the read or write operations directed
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towards its address space range.

apb is a low bandwidth bus intended for minimal power consumption and reduced interface
complexity. This bus contains only one bus master, the apb bridge (apbmst). As apb bridge
is also a slave on the ahb, its primary function is to convert system bus transactions into apb
transactions. On an ahb transaction request, it latches and decodes the address, selects the
destined peripheral, and drives the data onto the apb bus. For a read transaction, it transfers
apb data onto the system bus.

In our sample architecture we have got four apb slave modules: interrupt controller, timers,
clock and reset generation units. apb slaves have simple and flexible module interfaces. In
the figure 6.9, the yellowish module units are combined together as a sub-component called
apbSubSystem in the ip-xact specification example. This demarcation allows to organize high-
bandwidth and low-bandwidth components separately. Moreover, it also allows to depict the
hierarchical approach used by the ip-xact specification.

6.4.2 Component

A typical ip-xact component consists of bus interfaces, memory maps, ports, views, and the
file set sub-units. If the ip-xact component is of type processor, then it can have an Cpu

module, mentioning the name of the processor. If the component is a bus, then we can have
a Channel sub-module.

ip-xact components are represented by the structured classifiers in the composite structure
diagrams. These structured classes allow us to represent both the ports and the properties
of the components. Moreover, the structured classes gave us the advantage to efficiently
represent the ip-xact hierarchical component (which we discuss in section 6.4.3). In the uml
component representation, above the component name is the qualified package name of which
this component is a part. Here it is worth mentioning that the component name and the names
of all other elements that are identified in ip-xact by the vlnv (VersionedIdentifier stereotype)
are mandatory to be provided. Taking advantage of modeling in uml, we have divided the
view of ip-xact components over several diagrams, like ports shown in one diagram and the
memory maps in another. These all diagrams show the different sub-modules of the same uml
component like processor. We show all these diagrams one by one along with their descriptions.

The ip-xact physical ports are represented by the uml ports of structured classes, ports
that are stereotyped as � physicalPort �, as shown in figure 6.10-A. These ports can then be
connected with external ports using ad-hoc connections. For commodity, the service initiative
type of transactional ports and the direction of the wire ports (implemented as enumeration
in uml ip-xact profile) are shown graphically on the component ports by icons (see table 6.2).
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«hwProcessor»
(SPIRIT::Leon2TLM)

processor

AHB_Master

APB_Slave

INT_Slave

JTAG

«hwProcessor»
(SPIRIT::Leon2TLM)

processor

ahb_master_port

apb_slave_portirl_port

intack_port

irqvec_port

R

Pi

i

o

(A) Physical ports (B) Bus Interfaces

Figure 6.10: Processor Component Definition in uml: Ports and Bus Interfaces.

�physicalTransactionalPort�

serviceInitiative Graphical Notation Description

requires R Requires port implementation

provides P Provides port implementation

both B Can require or provide port implementation

phantom X An abstract port

�physicalWirePort�

direction Graphical Notation Description

in i Input port

out o Output port

inout b Bi-directional port

phantom – An abstract port

Table 6.2: Iconic representation of Ports.

Similar to the ports, the ip-xact bus interfaces are also represented as uml ports on the
components stereotyped with the � busInterface �. The interface mode values of the bus in-
terface are reflected in the model with different colored icons in the uml ports (as shown in
the table 6.3), as proposed in the ip-xact tlm examples application note [SPI08] (shown in
figure 6.10-B). Thus finally we get the component models with the colored uml ports repre-
senting the ip-xact bus interfaces whereas other non colored ports representing the ip-xact
physical ports. All these graphical representations for the bus interfaces and ports are shown in
Tables 6.2 and 6.3. Both the bus interfaces and physical ports contain most of the information
in the applied stereotypes. This information is not shown on the model diagram purposely
and can be displayed if needed.
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�busInterface�

interfaceMode Graphical Notation Description

master Interface in master mode

slave Interface in slave mode

system Interface in system mode

mirroredMaster Mirror of master Interface

mirroredSlave Mirror of slave Interface

mirroredSystem Mirror of system Interface

Table 6.3: Color notation for Bus Interface Modes.

«addressSpace»
main_AS

«memoryMap»
APB_MM

«localMemoryMap»
ahbLocalMemoryMap

«addressBlock»
proc_block1

«addressBank»
proc_bank1

«addressBlock»
registers

«register»
Failures

«field»
NumFailures

«addressBlock»
lowest1k

«addressBlock»
midlow1k

«hwProcessor»
(SPIRIT::Leon2TLM)

processor

«addressSpace»
main_AS

«cpu»
+ addressSpaceRef = main_AS

processor

«memoryMap»
APB_MM

Figure 6.11: Processor Component with memories.

An ip-xact component contains two types of information relative to memories: address
spaces and memory maps, just as shown in figure 6.11. Note that the red arrows are not part
of the specification, they only indicates the refinements. Memories are represented using the
hierarchical classes in their respective components. Here in the component model, the address
space APB MM contains an address bank, several address blocks, and a register containing a
field (shown in figure 6.11, right-hand side). These memory units are created in hierarchy just
as in ip-xact files and are stereotyped appropriately. Then in the stereotype attributes, these
memory units are properly referred to. For example, the address bank proc bank1 consists of
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three address blocks. All these blocks are represented as nested classes inside the address bank
and then they are referred to in the address bank stereotype by the addressBlock attribute
(refer back to figure 6.4 on page 87). This is the common approach widely used in this work
to tackle with the hierarchy concept of ip-xact. These memory units could have been referred
to by the stereotypes without the use of class hierarchy but that would make these models
untidy, difficult to comprehend and most importantly would not be a good representation of
ip-xact models. One thing to remember here is that ip-xact as a whole is a very complex
standard with large set of attributes for various object. We have focused our efforts on the
key elements only and did not tried to map each and every thing. Figure 6.11 also shows the
Cpu component with a reference to the name of the processor.

Figure 6.12 shows the file set and model view sub-modules of the component. ip-xact uses
file sets to refer to external behavior files, like ‘processor.cc’ and ‘processor.h’ shown here. The
component view defines the environment for the ip and the language used for the behavior
specification of the ip. Moreover, it contains the name of the design file, if the component is
hierarchical.

«hwProcessor»
(SPIRIT::Leon2TLM)

processor

«fileSet»
+ file: File [*]= [tlmsrc/processor.cc, tlmsrc/processor.h]

sourceCode

«file»
+ fileType: String [1..*]= [systemCSource]

tlmsrc/processor.cc

«file»
+ fileType: String [1..*]= [systemCSource]
+ isIncludeFile: Boolean [0..1]= true
+ logicalName: String [0..1]= ‘processor’

tlmsrc/processor.h

«view»
+ envIdentifier= [:osci.systemc.org:]
+ language= ‘systemc’
+ modelName= ‘apbbus’
+ fileSetRef= sourceCode

TLM_PV

Figure 6.12: Processor Component Definition in uml: Associated code.

Figure 6.13 shows another ip-xact component represented in uml. This component is
ahbbus22, an amba ahb bus. It contains the structural information about the bus along with



6.4. IP-XACT MODELS IN UML 97

the source code files representing the bus behavior (like arbitration). The bus component differs
from the other components in the way that it usually contains the mirrored bus interfaces.
Moreover, it also has a Channel element which contains the logical collections of bus interfaces
present on the component. All these interfaces in the channel must be mirrored interfaces.

«hwBus»
(SPIRIT::Leon2TLM)

ahbbus22

AHB_MirroredMaster0

AHB_MirroredMaster1

AHB_MirroredSlave0

AHB_MirroredSlave1

initiator_port

target_port

R

P

«view»
+ envIdentifier= [:osci.systemc.org:]
+ language= ‘systemc’
+ modelName= ‘apbbus’
+ fileSetRef= sourceCode

TLM_PV

«channel»
busInterfaceRef = [AHB_MirroredMaster0, AHB_MirroredMaster1,

           AHB_MirroredSlave0, AHB_MirroredSlave1]

AHBChannel

«fileSet»
+ file: File [*]= [tlmsrc/ahbbus.h]

sourceCode

«file»
+ fileType: String [1..*]= [systemCSource]
+ isIncludeFile: Boolean [0..1]= true
+ logicalName: String [0..1]= ‘ahbbus’

tlmsrc/ahbbus.h

Figure 6.13: AMBA AHB Bus Component in uml.

6.4.3 Design and Hierarchical Components

After discussing the ip-xact components and their sub-elements, we shift our focus to the
hierarchical components. Hierarchical components are same as the simple ip-xact compo-
nents but contain the internal design consisting of instances of other components and their
interconnections. In ip-xact, hierarchical components are represented using two files, one for
the component definition itself (ip-xact component file) and the other for the internal design
of that hierarchical component (ip-xact design file). In the subsequent subsections, we dis-
cuss the different views points of representing ip-xact hierarchical components followed by the
modeling of Leon II example hierarchical component as a uml model for ip-xact.

Discussion

Hierarchical components and their internal designs are a controversial (and most important)
issue amongst the researches working on the link between ip-xact and uml models. Because hi-
erarchical components consist of instances of other components, some authors [Rev08, SXM09]
have preferred to represent ip-xact component designs as object diagrams instantiating other
components. The use of object diagrams shows that the authors consider the design files to be
at the instance level instead of the model level. This also raises questions in the mind that how
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come the elements at different modeling levels can communicate with or refer to each other,
as the views of components refer to their respective design files. Some others [ZBG+08] have
interconnected the uml components (representing ip-xact components) directly and have not
given any explicit solution to deal with the hierarchical components. Whereas some authors
(including us) [ASHH09, AMMdS08] have used uml composite structure parts to represent ip-
xact component instances. In one of our previous attempts to represent ip-xact [AMMdS08],
we used component diagrams to represent the ip-xact components and the composite structure
diagrams to represent the design structure. In that approach we had produced two models to
represent an ip-xact hierarchical component, just as is the case of ip-xact specification.

To resolve this issue, we have to closely observe the ip-xact design files and their related
components. Each ip-xact hierarchical component is represented by two ip-xact files: a com-
ponent file and a design file. The hierarchical component files define all their interfaces (either
bus interfaces or ports). They are just like any other non-hierarchical component with the only
difference that the hierarchical components contain the reference to their respective design files
using the hierarchyRef attribute of their views. Design files instantiate the components (other
than the parent componen that refers to it) and then interconnect them with each other and to
the interface of the container hierarchical component. This design file does not define the con-
tainer component’s interfaces and directly uses them. Thus this design file is of no use without
the help of the original container component. This whole concept is easy to understand for the
people having the know-how of vhdl or Verilog models, as ip-xact structural representation
is very close to these hardware description languages. In vhdl, the design file is the one that
instantiates other components and interconnects them. It exists at the same modeling level
as other component files and just encapsulates the component entities. One more thing that
confuses the whole matter is the use of ConfigurableElementValues to add specific attributes to
the component instances. At an initial look it looks as if an object has been initialized but
in fact this is not the case. This configuring is just usual in vhdl design files where we can
parameterize the component instances by providing the instantiation values. One such vhdl
instantiation example from our work is:

u Ccs l R sampl ing : Ccs l R sampl ing port map
(

c lk , r s t ,
A => rEdge ,
B => msti ( 1 ) . hready ,
O => O,
KIND => '1 ' ,
KIND data => Ccsl PrecKIND NONSTRICT

) ;

where the signals clk, rst, A, B, and O are linked to their respective targets while the kind
and the kind data signals are used to parameterize/initialize the component instantiated with
the values of 1 and a predefined constant Ccsl Preckind nonstrict respectively. The ip-xact
configurable elements are a more general way to configure ip components and the design file can
itself specify the parameter and its value. These configurable elements are helpful to specify
such constraints which can not be described in the ip-xact component itself. coreAssembler, the
professional modeling tool from Synopsys, also converts the ip-xact design files into such ‘glue’
vhdl files which interlink other components. The keywords confusing the ip-xact audience
are instance from uml and instantiate from vhdl, where the latter is used in the concepts of
ip-xact. Considering these arguments, the use of object diagrams to represent ip-xact design
files in uml is not preferred. In this case of vhdl models, the object diagrams represent the
run-time behavior of a system.
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«hwResource»
(SPIRIT::Leon2TLM)

apbSubSystem

«view»
envIdentifier = [::Hierarchy]
hierarchyRef = design_apbSubSystem

spirit-design

«view»
envIdentifier = [:osci.systemc.org:]
language = SystemC
modelName = apb_subsystem

TLM_PV

«fileSet»
+ file: File [*]= [tlmsrc/apb_subsystem.h]

sourceCode

«file»
+ fileType: String [1..*]= [systemCSource]
+ isIncludeFile: Boolean [0..1]= true
+ logicalName: String [0..1]= ‘apb_subsystem’

tlmsrc/apb_subsystem.h

Figure 6.14: AMBA AHB Bus Component in uml: Associated code.

A panel discussion by Bran Selic on ‘Modeling of Architectures with UML’ and a paper by
Y. Vanderperren et al. [VMD08] give a detailed view about the use of different uml diagrams
especially in the field of engineering. This paper has a nice discussion on the use of compo-
nents, structured classes, parts and objects. It clearly states that for engineering applications,
Composite Structure Diagrams are the most frequently used means to represent hierarchically
linked blocks. A Composite Structure Diagram depicts the internal structure of structured
classifiers, such as structured classes, by describing the interaction between the internal parts,
ports, and connectors. A part represents a set of instances which are owned by an object, for
example, or instances of another classifier. Thus we use structured classes to represent each
ip-xact component and design file of a hierarchical component. As stated before, the ip-xact
design files are ‘not complete’ depending on their container components for the definition of
outer interfaces. So we duplicate the ip-xact component interface (ports and bus interfaces) on
the design element. These interface definitions do not exist in the ip-xact specification of the
design file, but we introduce them in the uml models to ease the system designing. Later on
during the transformation phase, this redundant information is discarded. This is absolutely
necessary as the design files use the component interfaces without defining them but in uml we
can not do so. The design connectors directly connect the uml parts with the container com-
ponent’s interface. The design structured class is then referred to, in the hierarchyRef attribute
of the view of the component structured class, as shown in figure 6.14. ip-xact components can
have several views (like tlm-pv, vhdlsource from the Leon II example) and each view can refer
to an internal design of the component (refer to figure 5.4 on page 64). Using this approach
we can achieve any sort of component hierarchy as specified in the ip-xact. Figure 6.15-A and
6.15-B represent the hierarchical component’s bus interface and ports respectively.
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«hwResource»
(SPIRIT::Leon2TLM)

apbSubSystem

INT_Master

INT_Slave

AHB_SlaveAPB_MSlave4

APB_MSlave5

APB_MSlave6

APB_MSlave7

«hwResource»
(SPIRIT::Leon2TLM)

apbSubSystem

irl_master_port

irq_slave_port

ack_slave_port

apb4_mslave_port ahb_slave_portR P
apb5_mslave_portR
apb6_mslave_portR
apb7_mslave_portR

int4_slave_port i

i

i

iclk_timersi

(A) Bus Interfaces (B) Physical ports

Figure 6.15: AMBA AHB Bus Component in uml.

Modeling Hierarchical Components

The ip-xact component and design files are represented separately in uml using the struc-
tured classes. The ‘design’ structured class of an ip-xact component is shown in figure 6.16,
representing the tlm view of a component design. Inside the design element, the uml parts
represent the component instances duly stereotyped with � componentInstance�. Here uml
gives us the liberty that we can visually hide the ports/bus interfaces that we do not deal
with. Also we can graphically show several representations of the same structured classifier
(or even a part), which helps us to better organize our models. For example, one represen-
tation of the structure classifier may contain only the clock and reset port connections while
the other one can have the bus connections. In actual, all these diagrams are only the visual
representation of the same element and show a particular dimension of the representation.

There is an important issue with the use of parts as ip-xact component instances. In ip-
xact, just like vhdl the instance declaration creates a new instance of the original component
and we can have several such instances of the same component. But in uml, the composite
structure parts represent the property of the structured classifier that relates it to the target
classifier. So the parts in uml are not distinct entities and they represent their parent classifiers.
So any change on the part (like renaming its port) will be reflected on the component itself.
Hence, if we want to create multiple instances of the same ip-xact component (like processor),
then in uml we have to create the structured classifiers representing each of those elements.
This task is not of any trouble to a uml designer as the copy/paste of the original classifier
will be enough to do the job.

As shown in the metamodel of the ip-xact design (figure 5.14 on page 75), there are
several types of connector elements in ip-xact including Interconnection, AdHocConnection,
HierConnection and MonitorInterconnection. We implement them in our uml models using
the uml Connector. In ip-xact, all these connectors are similar except the source and target
elements that they connect to. So in uml we use simple connectors to represent them and
later on during the model transformation we judge the source and target elements to determine
their type. The Interconnection is a uml connector connecting the bus interfaces of any of the
two parts (component instances) in the design whereas the HierConnection (or hierarchical
connection) connects the bus interface of a part to the bus interface of the container element.
Note that these two connectors only connect the bus interfaces in the design. On the other
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(SPIRIT::Leon2TLM)
design_apbSubSystem

«componentInstance»
i_h2p: apbmst [1]

«componentInstance»
i_apb: apbbus8 [1]

«componentInstance»
i_irq: irqctrl [1]

«componentInstance»
i_tim: timers [1]

INT_Master

INT_Slave4

AHB_Slave

APB_Master

APB_MirroredMaster

APB_Slave

INT_Slave3

INT_Slave2

APB_MirroredSlave4

APB_MirroredSlave5

APB_MirroredSlave6

APB_MirroredSlave7

APB_MirroredSlave1
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APB_Slave

APB_MirroredSlave0

clk_timersiclk i

APB_MSlave4
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APB_MSlave6
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AHB_Slave

INT_Master
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clk_timers

Figure 6.16: Design of Hierarchical Component in uml.

«hwComponent»
(SPIRIT::Leon2TLM)

Leon2Platform

envIdentifier = [::Hierarchy]
hierarchyRef = design_Leon2Platform

«view»
spirit-design

envIdentifier = [:osci.systemc.org:]
language = SystemC
modelName = top_design

«view»
TLM_PV

rstin_an i

«fileSet»
+ file: File [*]= [tlmsrc/top_design.h]

sourceCode

«file»
+ fileType: String [1..*]= [systemCSource]
+ isIncludeFile: Boolean [0..1]= true
+ logicalName: String [0..1]= top_design’

tlmsrc/top_design.h

Figure 6.17: ip-xact Top-level Component.

hand, the AdHocConnection is used to connect the ports within the system. These ports
can be on the uml parts or on the container element itself. Hence, the ad-hoc connection
represent the combination of interconnections and hierarchical connections but for ports only.
The MonitorInterconnection contains only one bus interface at one end while the other end can
have one or many monitor bus interfaces connecting to it.

On page 100, figure 6.15-B shows a number of ports on the hierarchical component which
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(SPIRIT::Leon2TLM)
design_Leon2Platform

«componentInstance»
i_proc: processor [1]

«componentInstance»
i_ahb: ahbbus22 [1]

«componentInstance»
i_mem: ahbram [1]

«componentInstance»
i_sub: apbSubSystem [1]
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Figure 6.18: Design of ip-xact Top-level Component.

are defined but are not used in the design. These ports are not connected over here in the
diagram but are indirectly used by the bus interfaces of the component. An ip-xact top
level design component is just another hierarchical component with the only difference that
it contains minimum number of interfaces (bus interfaces and ports) defined in it. This is
quite natural as the top level component is an independent module and does not depend on its
environment for execution. Usually the top level component contains the definitions of clock
and reset control signal ports, as shown in figure 6.17 and 6.18.

6.4.4 Abstractor

Just like the components and hierarchical components, the ip-xact abstractor is also repre-
sented in uml using the structured classes. The name of the abstractor component is manda-
tory to be specified along with the vendor and version attributes of the stereotype to uniquely
identify the component. The abstractorMode specifies the type of bus interfaces that can
connect to the bus interfaces of this component. This abstractor mode is not represented
graphically like the ports or bus interfaces of ip-xact components. The bus interfaces of an ip-
xact abstractor are the uml ports stereotyped with � abstractorBusInterface �. The abstractor
bus interfaces do not have any interface mode of their own and the abstractor’s own interface
mode defines their type. These bus interfaces are also not represented graphically and are left
as they are. The ip-xact ports implemented on the abstractor class are just like the ports on
the ip-xact uml components. They are appropriately stereotyped and shown by the icons on
the structured class. An abstractor also specifies a mandatory link to the underlying bus def-
inition used by it. Figure 6.19 shows our example ip-xact abstractor pvapb 2 tacapb bridging
the two bus interfaces pv apb and tac apb.
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«abstractor»
+ vendor: String [1]= ‘spiritconsortium.org’
+ version: String [1]= ‘1.4’
+ abstractorMode: AbstractorModeKind [1] = slave
+ busType: BusDefinition [1]= Leon2TLM::AMBA2::APB

(SPIRIT::abstractor.tlm)
pvapb_2_tacapb

PV_APB

TAC_APB

tac_master_port

tlmpv_slave_port

R

P

«view»
envIdentifier = [systemCSource:OSCI:v21,

      systemCSource:NCSim:ncsc]
language = systemc2.1
modelName = pv2tac

PV2TAC

«fileSet»
+ file: File [*]= [tlmsrc/pv2tac.h]

sourceCode

«file»
+ fileType: String [1..*]= [systemCSource-2.1]
+ isIncludeFile: Boolean [0..1]= true
+ logicalName: String [0..1]= ‘pv2tac’

tlmsrc/pv2tac.h

Figure 6.19: An ip-xact Abstractor Component.

6.4.5 Interface Definitions

Figure 6.20 and 6.21 shows the modeling of interface definitions in uml class diagrams. The
interface definitions are implemented by introducing classes with the name of the definition
files and stereotyped appropriately. Again just like components, the name and library infor-
mation about the buses is not saved on the stereotypes and is taken directly from the model,
meaning that the name of the classes representing bus definitions and abstraction definitions
are mandatory.

The logical ports are the attributes of the abstraction definition class stereotyped with
one of the two logical port stereotypes. Here we use the same technique that we used earlier
with the ip-xact component memory to specify the containment relation. Hence, we define
logical ports by stereotyping the attributes of the abstraction definition class and then refer to
these ports inside the abstractionDefinition stereotype, just as shown in figure 6.20. Unlike the
physical ports and the bus interfaces, the logical port attributes (like direction, initiative) are
not represented graphically on the models because the logical port behavior varies depending
on the underlying physical ports and also because the logical ports do not represent a concrete
structure.
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SPIRIT::Leon2TLM

abstractiondef.tlm

«abstractionDefinition»

+ vendor: String [1]= ‘spiritconsortium.org’

+ version: String [1]= '1.4'

+ busType: BusDefinition [1]= AMBA2::AHB

+ logicalPort: LogicalPort [1..*]= [PV_TRANS]

+ «logTransactionalPort» PV_TRANS

ahb_pv

«abstractionDefinition»

+ vendor: String [1]= ‘spiritconsortium.org’

+ version: String [1]= '1.4'

+ busType: BusDefinition [1]= AMBA2::APB

+ logicalPort: LogicalPort [1..*]= [PV_TRANS]

+ «logTransactionalPort» PV_TRANS

apb_pv

Figure 6.20: Abstraction definition Model Element

As the bus definitions (figure 6.21) could be referenced by the other bus definition (as
extension) or the abstraction definitions (as bus type), the best way to model is to initially
define all the bus definitions and then create other interface definitions with the appropriate
reference to the bus definitions.

AMBA2

«busDefinition»

+ vendor: String [1]= ‘amba.com’

+ version: String [1]= ‘r1p0_6’

+ directConnection: Boolean [1]= false

+ isAddressable: Boolean [1]= false

+ maxMasters: Integer [0..1]= 16

+ maxSlaves: Integer [0..1]= 256

AHBLite

«busDefinition»

+ version: String [1]= ‘r2p0_6’

+ extends: BusDefinition [0..1]= AHBLite

AHB

«busDefinition»

+ vendor: String [1]= ‘amba.com’

+ version: String [1]= ‘r2p0_4’

+ maxMasters: Integer [0..1]= 1

+ maxSlaves: Integer [0..1]= 16

APB

SPIRIT::Leon2TLM

Figure 6.21: Bus definition Model Element.

6.5 Conclusion

In this chapter we discussed the application of our domain view for ip-xact introduced in
the previous chapter. Based on this domain view, we developed our ip-xact profile for uml
based on the existing uml extension of marte profile. In the later part of the chapter, we use
this profile to model an example of Leon II processor-based architecture which is then used
to generate ip-xact component files. This model transformation technique helps to show the
interaction possibilities between the ip-xact and the esl profile, illustrating how information
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contained in such a profile can be used for a specific implementation.
This chapter concludes our discussion on the possibility of better structural integration and

interoperability of ips. In the next chapters, we focus on the functional aspects of integration
and interoperability of ips.
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Behavior Modeling
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In this chapter, we discuss the issues related to behavior representation at three different
abstraction levels using Esterel, systemc, vhdl. Then we introduce a more abstract way to
represent behaviors related to time through clock constraints specification. Finally we discuss
the integration of behavior representations within ip-xact.

107



108 CHAPTER 7. BEHAVIOR MODELING

7.1 Introduction

System Modeling requires representation of both structural and behavioral aspects. In model-
based design these aspects, shown on the Y-chart model in figure 2.2 on Page 9, are known
as architectural and algorithmic aspects respectively. They are essential parts of the classical
SoC design flow.

The structure has been discussed in the previous chapters. The present chapter addresses
behavior. Behavior is about the what and the when of the system. The former concerns what
the system have to do (actions, tasks. . . ), the latter specifies partial ordering on these actions.
Time-related requirements have direct impacts on the when. In classical approaches, time
information is often used as extra-functional real-time annotations, giving for instance the
duration of an execution or the deadline of an event occurrence. This kind of time information
is mostly used in simulation or can be input to (real-time) scheduling analysis tools. In soc
design, time information has more functional intents. During the design, Multiform logical
times are a better choice than “physical” time. For instance, in a data flow application,
we can specify that the activation clock of a producer component is twice as fast as the
activation clock of a consumer component, and that the latter component consumes every
other produced item. This time specification is clearly functional and should be exploited by
circuit synthesizer/compiler and model transformations.

uml being a general-purpose specification language, proves to be a strong candidate for
architectural description providing great diversity in designing due to its profile extension
mechanism. sysml [OMG08b, Wei08] is one such uml profile dedicated for systems engineer-
ing domain, providing uml with the features to model hardware elements. On the behavior
representation side also, we prefer to use uml as it utilizes the syntactical notations for its
diagrams which are also used by synchronous languages and formal models. uml offers various
diagrams like activity, block, state machine and sequence diagrams to represent the system
behavior. These behavioral diagrams provide a support for describing untimed algorithms,
augmented by uml profile for marte providing the support for logically or physically timed
behaviors. The marte extension for uml specifically targets real-time and embedded systems.
Using the uml for structural as well as functional representation of a system helps us to create
our golden model which acts as a reference for all other tools.

The introduction of Clock Constraint Specification Language (ccsl) [Mal08] provided uml
with the explicit and formal semantics to model the behavioral description of embedded sys-
tems. ccsl, introduced in the annex of the marte specification (recently adopted by the
omg), provides the timed causality model to the given design. It relies on the marte time
sub-profile for the behavioral description of uml components. ccsl and logical time (explained
before) work in close relation.

In this chapter, we discuss various techniques of behavior representation supported by our
running example. In Section 7.2, we discuss the behavior modeling in synchronous languages,
followed by vhdl and systemc representations. Then in section 7.3, we discuss our behavior
modeling approach using ccsl specification on our running example.

7.2 Reactive behaviors

In subsection 4.3, we have specified an acquisition system and proposed different formalisms
to represent its structural aspects. Now, we turn to the behavioral specifications. The pre-
sentation is limited to the behavioral models we have effectively used in this thesis: Esterel
(subsection 7.2.1), models with delta cycles (subsection 7.2.2), and ccsl (section 7.3).
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7.2.1 Synchronous languages

Imperative synchronous languages support concurrency and offer a wide range of reactive
statements. Through examples (components from the acquisition system), we introduce some
of the reactive statements of Esterel and explain their behaviors in an informal way. The
structural modeling in Esterel given in section 4.3 has only addressed the communications
between components. The behavioral modeling demands additional signals that represent
interactions of the components with the environment.

Sensor

A sensor gets values of a quantity1. The input signal Val:Data t (line 3) represents the
obtained value. The measurement takes a non-null amount of time.

1 module Sensor :
2 extends ApplTypes ;
3 port S A : mirror AcqT ;
4 input Val : value Data t ; // `` phys i ca l ' ' va lue
5

6 loop
7 await S A . Sample ;
8 await 3 tick ; // s imu la t e s an a c q u i s i t i o n
9 emit ?S A . Value <= ?Val

10 end loop
11 end module

The input signal Val stands for the actual value of the sensor (line 4). This value is set
by the environment. The keyword value indicates that this signal has no presence status: it
cannot trigger a reaction. The behavior is specified in lines 6 to 10. A delay as been added
(line 8) to simulation the duration of the acquisition. When a measurement completes (at the
end of line 8), the sensor sends the valued signal S A.Value that conveys the result of the
measurement (line 9).

Processor

The processor initiates two activities: new acquisition and storage of a value. These two
activities are triggered by two new signals (line 4). The address where to store a value is
determined by a function (line 3) that takes a value as an argument and returns an address.
In Esterel the semantics of the function is abstract. It is supposed to be free of side-effects on
program signals/variables and executed instantly (0-duration).

1 module Proces sor :
2 extends ApplTypes ;
3 function DetermineAddr ( Data t ) : Addr t ;
4 input StartAcq , StartW ;
5 port M A: AcqT ;
6 port M B: MSaveT ;
7

8 // behav ior
9 loop

10 await

1quantity is the “property of a phenomenon, body, or substance, where the property has a magnitude that
can be expressed as a number and a reference”, definition from the International Vocabulary of Metrology
(VIM) [JCG08]
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11 case StartAcq do
12 emit M A. Sample ; // t r i g g e r a new acq
13 await M A. Value ; // re turned va lue
14 case StartW do
15 abort
16 sustain M B. Breq
17 when M B. Grant ;
18 // now the bus i s granted : s t o r e data
19 emit {
20 ?M B. Data <= ?M A. Value ,
21 ?M B. Addr<= DetermineAddr (?M A. Value )
22 } ;
23 await M B. Done
24 end await
25 end loop
26 end module

The behavior is specified in lines 9 to 25. It is a cyclic behavior. For simplicity, acquisition
and storage are made exclusive. So, the processor waits (line 10) for StartAcq (line 11) or
StartW (line 14). In Esterel, the multiple cases await statement is fully deterministic. If the two
signals StartAcq and StartW are simultaneously present, the processor enters the acquisition
activity (lines 12 and 13) and discards the storage request. This activity is very simple:
the processor sends its request (line 12) and waits for the value (line 13). The acquisition
activity finishes with this reception. The storage activity is more complex because there is a
competition for bus access. The processor has to keep emitting the pure signal M B.Breq (line
16) until the bus is granted (‘abort ... when M B.Grant’ statement, lines 15–17). As soon
as the bus is granted, the processor emits the valued signals M B.Data (line 20) and M B.Addr

(line 21). The two emissions are concurrent (not ordered) and simultaneous.The processor
then waits for the signal M B.Done that indicates the end of the storage activity.

Connections

The Esterel code below is an excerpt from the module Application.

1 module Appl i ca t ion :
2 . . .
3 input Val [ 2 ] : Data t , EndAcq [ 2 ] ; // f o r sensors
4 input StartAcq [ 2 ] , StartW [ 2 ] ; // f o r proce s so r s
5 . . .
6 signal
7 port SP [ 2 ] : AcqT ,
8 port MMP[ 2 ] : MSaveT ,
9 port MSP[ 3 ] : SSaveT

10 in
11 run S1/ Sensor
12 [
13 SP [ 0 ] / S A ,
14 Val [ 0 ] / Val ,
15 EndAcq [ 0 ] / EndAcq
16 ]
17 | |
18 run P1/ Proces sor
19 [
20 SP [ 0 ] /M A,



7.2. REACTIVE BEHAVIORS 111

21 MMP[ 0 ] /M B,
22 StartAcq [ 0 ] / StartAcq ,
23 StartW [ 0 ] / StartW
24 ]
25 | |
26 . . .

Lines 3 and 4 contain the newly introduced signals. They are arrays of dimension two (to
deal with the two sensors and the two processors). The connection between a processor and a
sensor is direct. In the Esterel program we use a local port SP (declared in line 7). SP[0] is
connected on the one side to the port S A of the sensor S1, and on the other side to the port
M A of the processor P1.

The behavior of the Bus and the Memory are given in Appendix B.1. We will check in
section 8.2 that the acquisition protocol is respected by this implementation.

7.2.2 Formalisms with microstep simulation semantics

Most modeling languages that support concurrent evolutions have been given a simulation
semantics. Many, like vhdl and systemc, adopt an event-driven simulation. In these simula-
tions several iterations (microsteps or delta-cycles) can be necessary to compute the result of
concurrent evolutions at a given point in time.

Microsteps are found in several StateCharts semantics, for instance, the “asynchronous time
model” in the Statemate semantics of StateCharts [HN96]. Delta-cycles have been introduced
in hdl and are also present in system-level design languages like systemc. We briefly describe
the simulation semantics of vhdl and systemc.

VHDL simulation semantics

Elaboration and execution of a vhdl model are specified in the vhdl Language Reference
Manual [IEE00, chapter 12]. Elaboration is the process by which declarations become effective.
The elaboration of a vhdl design hierarchy results in a collection of processes interconnected
by nets, named by the standard as model. This model can then be executed in order to simulate
the design. A simulation consists of executions of interacting user-defined processes. These
executions are coordinated by an event driven simulation kernel, also known as the vhdl
simulator. Remind that in vhdl, any concurrent signal assignment is equivalent to a process
that contains only this signal assignment and is sensitive to all the signals occurring in the
right-hand side part of the assignment.

The simulation is a cyclic process. It comprises a sequence of simulation cycles. A global
clock holds the current simulation time. This time is not decreasing and is incremented by
discrete steps. Usually, several simulation cycles, called delta cycles, are executed at the same
simulation time. The delta-delay, which separates the successive delta cycles, is considered as
an infinitesimally small interval of time. The issue is to determine when the simulation time
has to (effectively) progress and when a delta cycle has to be performed. The key concept is
the activity status of a signal and its associated driver.

A signal driver contains the projected output waveform of the associated signal. The pro-
jected waveform is a sequence of transactions. Each transaction2 consists of a value/time pair.
The vhdl transactions are ordered with respect to their time component. The projected wave-
form represents the expected future values of the signal at precise points in time. For each
driver, there is exactly one transaction whose time component is not greater than the current

2Note that in vhdl transaction has a very specific and somewhat confusing meaning. In the rest of the
thesis, we explicitly mention “vhdl transaction” when ambiguity may exist.
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simulation time. The value of this transaction is the current value of the driver. As simulation
time advances, the time component of the next transaction in a driver may become equal to
the current time. In this case, the first transaction is deleted and the next becomes the current
transaction of the driver. The driver is said to be active during this simulation cycle and the
associated signal also. Note that this updating does not imply a change of the value, however
if it causes the current value of that signal to change, then an event is said to have occurred on
the signal. This event can then awake one or many processes that are sensitive to this signal.
Each awoken process resumes its execution. In turn processes can update signals, and so on.

Thus, a simulation cycle consists of two separate phases: active signal updating and pro-
cesses executions.

1. Each active signal is updated. This may cause events.

2. For each process P , if P is currently sensitive to a signal on which an event has occurred
in this simulation cycle, then P resumes and executes3 until it suspends.

If any driver becomes active during the simulation cycle, time is not passing and a delta
cycle is executed instead. In fact, the current time changes only after a “steady-state” is
reached.

Because of the neat separation between updating and processing phases during a simulation
cycle, the result of the simulation is deterministic: it does not depend on the order in which
processes are executed.

SystemC simulation semantics

Elaboration and simulation semantics of systemc are specified in the systemc Language Ref-
erence Manual [IEE05, chapter 4]. On many points, they are similar to the vhdl ones. Elabo-
ration phase consists of the instructions coming before the sc start() function call including the
initialization of data structures and connectivity of interfaces. These steps then lead to the ex-
ecution phase, where the control flow is transfered to the systemc simulation kernel which then
performs the step-by-step execution of process threads to emulate concurrency. The systemc
simulation kernel is event driven. Processes are scheduled based on their sensitivity to events.
Contrasting with vhdl, systemc can model software and non-deterministic behavior. Thus,
a process may call function notify to emit an event that will be used immediatly, in the next
delta cycle or at some future simulation time. A simulation cycle consists of two separate
phases:

1. evaluation phase: the scheduler selects a process P from the set of runnable processes.
It triggers or resumes the execution of P . P executes without being preempted up to
a point where it either returns or calls the function wait. An executing process may
call function request update, which will cause a function update to be called during
the very next update phase. The evaluation phase terminates when there is no eligible
process left.

2. update phase: any and all pending calls to function update are executed.

When the update phase terminates, if time-outs exist or delta event notifications have been
issued in the current cycle, then the simulator executes a delta cycle. Otherwise, it advances
to the next simulation time that has pending events.

Finally, when no further evaluation cycle is left, the simulation terminates by calling the
cleanup phase (this includes the class destructors). figure 7.1 sums up the different phases.

3Actually only a non postponed process executes.
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Elaborate

Cleanup

Initialize Time Elapse

sc_main ()

sc_start ()

SystemC Simulation Kernel

while 
processes

∆ cycle

Update

Evaluate

Figure 7.1: SystemC simulation phases

Being based on c++, systemc programs can be non-deterministic. Even though systemc
can be used in a restricted way to model hardware systems at rtl level, the immediate notifi-
cation (notify()), which causes an event to be generated and used in the very same evaluation
phase, may lead to unexpected behaviors.

Microstep vs. perfect synchronous evolutions

Even if in vhdl (and in some systemc programs) delta cycles allow deterministic simulations,
they may cause glitches (i.e.,a false or spurious transient signal variations). This is usual in
combinatorial circuits and is generally harmless. This is not the case when the glitch triggers
some visible effect. Through a simple example we explain the relationship between delta cycles
and glitches in vhdl. We then explain why the same circuit modeled in Esterel is free of glitch.
Finally, we give a solution to eliminate glitches in vhdl models.

A V

B

Figure 7.2: Simple circuit with transient signal.

The circuit (figure 7.2) has one input signal A and two output signals B and V . The logical
equations are:

B = ¬A (7.1)

V = (A⇔ B) (7.2)

Therefore, V =
(
A⇔ (¬A)

)
= false, that is, V should always be ’0’.

The following vhdl code represents this circuit. An assertion (line 6) says that V should
always be ’0’. When a violation of this assertion occurs a warning is emitted.



114 CHAPTER 7. BEHAVIOR MODELING

1 entity CheckExclusion i s
2 port ( A: in Bit ; B,V: inout Bit ) ;
3 begin
4 process (V) i s
5 begin
6 assert V = '0 '

7 report "Violation" severity warning ;
8 end process ;
9 end entity CheckExclusion ;

10

11 architecture CExc of CheckExclusion i s
12 begin
13 gate1 : B <= not A;
14 gate2 : V <= A xnor B;
15 end architecture Cexc ;

Glitch on V

Modelsim warning to signal 
assertion violation

Figure 7.3: VHDL Simulation.

Figure 7.3 shows a simulation trace. At the simulation time 400 ns a violation occurs and
a 0-width glitch appears on V . The expression “0-width glitch” means that zooming in the
waveform will not increase the width of the glitch: its duration is 0, or more precisely one or
several consecutive delta cycles. This can be explained as follows. At the simulation time 400
ns, A goes from ’0’ to ’1’. Just before this time A was ’0’, B ’1’, and V ’0’. So, A is active
and an event is generated on A. The (implicit) processes associated with gate1 (line 13) and
gate2 (line 14) are sensitive to A so that they compute the new values of B and V : ’0’ and
’1’ respectively. Since B becomes active, a new simulation cycle (a delta cycle) is executed.
During the update phase, B and V are effectively updated to ’0’ and ’1’ respectively, while A
is left unchanged to ’1’. During the execution phase a new value (’0’) is computed for V . Since
V has become active, a new delta cycle is launched. V is updated to ’0’. Since no process is
sentitive to V the simulation cycle terminates. The circuit is in a new steady-state: A set to
’1’, B to ’0’, and V to ’0’. It appears that V has got a transient ’1’ during the first delta cycle.

Now, consider an Esterel program for the same circuit:

1 module CheckExclusion :
2 input A;
3 output B, V;
4 sustain {
5 V i f not (A xor B) ,
6 B i f not A
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7 }
8 end module

The statement sustain { ... } (lines 4 to 7) is an infinite loop that executes its inner
statements at each instant. The order in which the inner statements are written is irrelevant.
The statements are conditional. B is emitted whenever A is absent. V is emitted whenever A
and B are both either present or absent. An execution trace (figure 7.4) shows that there is
no glitch on V .

The difference of behavior between the vhdl and the Esterel simulation is due to the
different underlying semantics. Esterel does not rely on microsteps. It is forbidden for a signal
(say V in our example) to have different status during a reaction. Whenever A is present, B is
absent (line 6) and V is absent (line 5). The compiler determines an execution ordering that
respects the coherence rules (section 2.3.2, on page 15): B, then V so that no microsteps are
needed.

Figure 7.4: Esterel Simulation.

0-width glitches could be avoided in vhdl if only steady-states were considered. vhdl’93
has provided a new facility that is useful in delta delay models. The keyword postponed
allows deferred executions of a process during delta cycles. During an execution phase, a
postponed process is not executed even if it is currently sensitive to a signal on which an event
has occurred. Instead, it waits for the end of the last delta cycle of the current simulation time
to execute. Of course, a postponed process must not cause a new delta cycle. In the following
vhdl code, the assignment of V is postponed (line 14). This way, there is no glitch on V as
shown in the execution trace (figure 7.5).

1 entity CheckExclusion i s
2 port ( A: in Bit ; B,V: inout Bit ) ;
3 begin
4 process (V) i s
5 begin
6 assert now = 0 f s or V = '0 '

7 report "Violation" ;
8 end process ;
9 end entity CheckExclusion ;

10

11 architecture CExc of CheckExclusion i s
12 begin
13 gate1 : B <= not A;
14 gate2 : postponed V <= A xnor B;
15 end architecture CExc ;

The capability of Esterel and vhdl (with postponed) to check signal values in steady
states will be used in our property observers (section 8.2).
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Figure 7.5: VHDL Simulation with postponed process.

7.2.3 Transaction Level Modeling

In the domain of embedded systems, systemc along with its transaction level modeling libraries
are used for the early validation of embedded softwares. This early validation is possible due
to the ability of systemc to represent both hardware and software through the use of virtual
platforms. The main elements of an embedded system are modeled as asynchronous processes
communicating with each other. As expressed before, the Esterel and vhdl descriptions rely
on signals whereas the tlm description in systemc uses transactions or function calls for
communication. Here we describe the behavior of the master, slave and top-level modules for
our running example of acquisition system with the focus on data transactions. This focus
will help us to better understand the tlm style of modeling electronic systems.

Processor

1 #inc lude "processor.h"

2

3 pro c e s s o r : : p r o c e s s o r ( sc module name module name ) :
4 sc module ( module name ) ,
5 M A("M_A" ) ,
6 M B("M_B" ) ,
7 Star t ("Start" )
8 {
9 SCTHREAD(Compute ) ;

10 }
11

12 pro c e s s o r : : ˜ p ro c e s s o r ( ) {}
13

14 void pro c e s s o r : : Compute ( ) {
15 tlm : : t lm s ta tu s s t a t u s ;
16 Command t lCmd ;
17 while (1 ) {
18 wait ( eS ta r t ) ;
19 eSta r t . cance l ( ) ;
20 wait (SC ZERO TIME ) ;
21 lCmd = Star t . read ( ) ;
22 switch ( lCmd)
23 {
24 case ACQ: // read sensor
25 s t a t u s = M A. read (0 , lData ) ; // only 1 address
26 i f ( s t a t u s . i s o k ( ) ){
27 cout << pro c e s s o r : : name ( ) << ": Data Acquired"

28 << endl ;
29 } else {
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30 cout << pr oc e s s o r : : name ( ) << ": Data Acquire Failed"

31 << endl ;
32 }
33 break ;
34 case SAVE: // save the va lue conta ined in lData
35 lAddr = calcAddr ( lData ) ;
36 s t a t u s = M B. wr i t e ( lAddr , lData ) ;
37 i f ( s t a t u s . i s o k ( ) ){
38 cout << pr oc e s s o r : : name ( ) << ": Data Sent" << endl ;
39 } else {
40 cout << pr oc e s s o r : : name ( ) << ": Data Sending Failed"

41 << endl ;
42 }
43 break ;
44 }
45 }
46 }

The programming in systemc is modular, based on threads (SC THREAD) and modules
(SC MODULE). Here for the processor module we use thread function named Compute (lines
9, 14–45) to process the transaction commands sent to the sensor and the bus modules. As
usual in systemc, the thread contains an infinite loop (lines 17–44) to process the instructions
repetitively. The header of the class contains the component definition along with interface
bindings (lines 3–7). For simulation purposes we have introduced a signal and a systemc event
in the processor component’s header file, just as given next.

sc in<Command t> Star t ;
sc event eSta r t ;

The role of these simulation signals is very simple and is almost similar to the ones used
in Esterel program. The Start systemc input port is used to get the input command value
which is then used to decide the operation of the processor. Input commands are defined in
the types.h file as enumeration literals:

enum Command t {ACQ, SAVE} ;

Hence, for an input command of ‘ACQ’, the processor sends a request to the sensor for data
acquisition while the input command ‘SAVE’ causes the processor to send the stored data (‘0’
if nothing is stored previously) to the appropriate slave memory module. The eStart signal
is used to detect the arrival of new commands by using in the wait statement (line 18) inside
the process thread. Once an eStart event is detected by the wait statement, we use cancel()

systemc routine to prepare for the next event notification. The calcAddr function is a local
function called (line 35) in the Compute thread to calculate the address of the data received
from the sensor. For our experimentation, this address calculation is based on the value of
data received. In line 20, we use the wait statement for a time period of SC ZERO TIME,
which is the delay of delta time allowing the signal values to reflect the change occurred in the
same simulation cycle. This concept is previously described in figure 7.1 on page 113. The
data reading and writing is performed through the simple read() (line 25) and write() (line
36) function calls. Here the main difference lies between the programming at tlm level from
the Esterel and vhdl programming: we use function calls to initiate or to respond to data
transactions.

Memory

Here we consider the slave side memory module (same applies to sensor module) where these
data transactions terminate. In the constructor of the memory module we bind the slave port
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to the class itself (line 8) followed by an initialization of the memory cells (line 9). The write
and read operations are the essence of the slave module functionality. In the write function,
we store the data argument passed to the specified addr address location (line 23). Note that
in the case of write function, the data and addr arguments are passed as read-only arguments,
while in the case of read function, the data argument is passed-by-reference (line 29). Lastly,
tlm status data type defined in both the functions is a class definition from the tlm library
which ensures about the validity of the transactions occurred and also communicates the
transaction status between master and slave modules.

1 #inc lude "memory.h"

2

3 memory : : memory( sc module name module name ) :
4 sc module ( module name ) ,
5 pv s lave base< Addr t , Data t >(name ( ) ) ,
6 S B ("S_B" )
7 {
8 S B ( * this ) ;
9 for ( int i =0; i < 0x1000 ; i++) iMemory [ i ]=0;

10 }
11

12 memory : : ˜ memory ( ) { }
13

14 tlm : : t lm s ta tu s memory : : wr i t e (
15 const Addr t &addr , const Data t &data ,
16 const unsigned int byte enable ,
17 const tlm : : tlm mode mode ,
18 const unsigned int e x p o r t i d )
19 {
20 tlm : : t lm s ta tu s s t a t u s ;
21 p r i n t f ("\%s : Writing DATA = \%x at ADDRESS = \%x \n" ,
22 memory : : name ( ) , data , addr ) ;
23 iMemory [ addr ] = data ;
24 s t a t u s . s e t o k ( ) ;
25 return s t a t u s ;
26 }
27

28 tlm : : t lm s ta tu s memory : : read (
29 const Addr t &addr , Data t &data ,
30 const unsigned int byte enable ,
31 const tlm : : tlm mode mode ,
32 const unsigned int e x p o r t i d )
33 {
34 tlm : : t lm s ta tu s s t a t u s ;
35 data = iMemory [ addr ] ;
36 p r i n t f ("\%s : Reading DATA = \%x at ADDRESS = \%x \n" ,
37 memory : : name ( ) , data , addr ) ;
38 s t a t u s . s e t o k ( ) ;
39 return s t a t u s ;
40 }

Simulation

Finally in the top level module (top.h), we instantiate the components and the Simulation()
thread (as explained before in section 4.5 on page 56). This thread does not contain any
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while(1) infinite loop and hence executes only once during the simulation. It inputs the
required data values to run the system as desired. First step of the simulation consists of
writing ‘ACQ’ to the myStart0 and trigger eStart event by the notify() systemc call (line
10). This command directs the processor to request the sensor for data acquisition. The second
(and the last) step instructs the processor for storing this data in a memory location attached
to the bus (line 15). There are several wait() statements introduced in the code to trigger
different transactions.

1 void Simulat ion ( ) {
2 // S ta r t S imulat ion
3 wait (50 ,SC NS) ;
4

5 // System Reset
6 cout << endl << "@Top: Resetting System at time "

7 << sc t ime stamp ( ) << endl << endl ;
8 // System I n i t i a l i z e
9 cout<< " start0 = ACQ " << endl ;

10 myStart0 . wr i t e (ACQ) ; i p r o c 0−>eSta r t . notify ( ) ;
11 . . .
12 wait (50 ,SC NS) ;
13

14 cout<< " start0 = SAVE " << endl ;
15 myStart0 . wr i t e (SAVE) ; i p r o c 0−>eSta r t . notify ( ) ;
16 . . .
17 wait (50 ,SC NS) ;
18 }

7.3 Modeling with logical clocks

7.3.1 Multiform logical time

Leslie Lamport [Lam78] introduced logical clocks in the late 70’s. The logical clocks associate
numbers (logical timestamps) with events in a distributed system, such that there exists a
consistent total ordering of all the events of the system. These clocks can be implemented by
counters with no actual timing mechanisms. In the 80’s, the synchronous languages [BB91]
introduced their own concept of logical time. This logical time shares with Lamport’s time the
fact that they need not actually refer to physical time. Logical time only relies on (partial or
total) ordering of instants. In what follows, we consider logical time in the sense of synchronous
languages. In the synchronous language Signal, a signal s is an infinite totally ordered sequence
(st)t∈N of typed elements. Index t denotes a logical instant. At each logical instant of its clock, a
signal is present and carries a unique value. Signal is a multi-clock (or polychronous) language:
it does not assume the existence of a global clock. Instead, it allows multiple logical clocks.
Signal composition is ruled by operators which are either mono-clock operators (composing
signals defined on a same clock) or multi-clock operators (allowing composition of signals
having different clocks).

Logical time is widely used in electronic system design. The activity of a processor makes
reference to its “clock”. This clock can be closely linked to physical time, when the clock is
for instance generated by a quartz oscillator. However, with power-aware systems, the period
of the clock can be dynamically changed. Thus a logical clock, whose ticks are associated
with (not necessarily evenly interspaced) clock pulses, is a far better time reference than usual
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chronometric clocks for this kind of applications. Note that hardware description languages
(hdls) [BK08] also refer to logical clocks in their simulations.

Indeed, a logical clock can be associated with any event. This point of view has been
adopted in the marte time model [OMG08c, Chap. 10]. A logical clock “ticks” with each new
occurrence of its associated event. Synchronous languages like Esterel exploit this property. In
an Esterel program, time may be counted in seconds, meters, laps. . . (see the Berry’s RUNNER
program [Ber00a] which describes the training of a runner). This variety of events supporting
time leads to the concept of multiform time. More technical examples can be found in au-
tomotive applications. For instance, the electronic ignition is driven by the angular position
of the crankshaft rather than by a chronometric time (see a study of a knock controller in a
4-stroke engine [AMPF07]).

In this thesis, we consider a multiform discrete logical time. We briefly introduce discrete
logical clocks and relationships between instants of different clocks. Then, clock relations are
defined and the specification language for clock constraints is presented.

Relations between instants

We introduce the concept of instant relations through a simple system with three events A, B,
and C. Its behavior is as follows: Every nth occurrence of A ask for an execution of action C.
The request for execution is the event B. Any execution of C must be done before the next
request (i.e.,the next occurrence of B).

1

1

2

2

1

3

3

2

a

b

c

4 5 6

3

Figure 7.6: Three independent logical clocks.

We associate a clock with each event (clock a with A, clock b with B, and clock c with
C). These clocks are a priori independent (figure 7.6). The instants of each clock are strictly
ordered and indexed by natural numbers.

In fact, dependencies exist between instants of the different clocks. We introduce two
kinds of relationships between instants: precedence (denoted ≺) and coincidence (denoted ≡).
Figure 7.7 shows these additional relations in a simple case (n = 2).
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Figure 7.7: Imposing relations between instants.

Let X[k] denote the kth instant of clock X. The relations contained in the figure correspond
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to equations:

∀k ∈ N?, b[k] ≡ a[2k] (7.3)

∀k ∈ N?, b[k] ≺ c[k] ≺ b[k + 1] (7.4)

Eq. 7.3 states that the kth instant of b and the 2kth instant of a are coincident (i.e.,the two
clocks tick jointly). Eq. 7.4 expresses that the kth instant of b is before the kth instant of c,
which is itself before the (k + 1)th instant of b (i.e.,ticks of b and c alternate).

These relations result in the time structure shown in figure 7.8. It is a partial ordering
on instants. Note that coincident instants received a special treatment: they are grouped
together. In fact, the time structure is a POset on equivalence classes of the coincidence
relation [AMdS07].
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Figure 7.8: Resulting structure.

There exist two other relations on instants: the non strict precedence (denoted 4) and
the exclusion (denoted #). They are respectively defined by 4 , ≺ ∪ ≡ and # , ≺ ∪ ≺−1.
Table 7.1 sums up the instant relations and their notations.

instant relation symbol graphical representation
strict precedence ≺

(non strict) precedence 4
coincidence ≡
exclusion # #

Table 7.1: Instant relations

The precedence relation often represents causal dependency. The coincidence relation
may reflect strong physical coupling (i.e.,revolutions of the camshaft vs. revolutions of the
crankshaft), strong synchronizations (i.e.,rendez-vous), or simple design choices.

Specifying a full time structure using only instant relations is not realistic. Moreover a set
of instants is usually infinite, thus forbidding an enumerative specification of instant relations.
Hence the idea to extend relations to clocks. ccsl has been defined for this purpose. It is
presented in the next section.

7.3.2 Clock Constraints

ccsl has been introduced in an annex of the marte specification [OMG08c, Annex C.3]. It
is a language to specify clock constraints. This language is non normative (the marte profile
implementors are not obliged to support it). The semantics of ccsl given in the specification is
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informal. A first formal semantics, based on mathematical expressions has been proposed in a
paper [Mal08] and a research report [AM08], which is an extended version of the paper. In this
thesis we adopt this kind of semantics. The expressiveness of ccsl has been compared to two
models (Signal and Time Petri nets) [MA09]. The former can easily express the synchronous
clock constraints, the latter is well-adapted to asynchronous clock constraints, but none is
convenient to represent mixed clock constraints. A precise definition of the syntax of a kernel
of ccsl along with a structural operational semantics is now available [And09b, AM09a]. This
semantics is the golden reference for the ccsl constraint solver implemented in timesquare4,
the software environment that supports ccsl and the marte time profile.

A ccsl specification consists of clock declarations and a set of binary clock relations. These
relations apply to clock or to clock expressions. This section presents the basic (i.e.,part of
the kernel) clock relations and a selection of clock expressions, reused in the thesis. These
definitions are borrowed from the previously mentioned papers on ccsl.

Clock relations

Let a and b two clocks. Five primitive relations on clocks are defined:

� Equality: a = b is a typical synchronous clock relation. There is a bijection between
instants of a and b. This bijection is order preserving and the instants are point-wise
coincident. In a formal way:

a = b⇔
(
∀k ∈ N?, a[k] ≡ b[k]

)
(7.5)

� Subclocking: a ⊂ b is a weaker synchronous clock relation. The mapping f from a to b
is injective and order preserving. a is said to be a sub-clock of b, and b a super-clock of
a.

a ⊂ b⇔

{
∀k ∈ N?,∃l ∈ N?, a[k] ≡ b[l] = f(a[k])

∀k1, k2 ∈ N?, a[k1] ≺ a[k2]⇒ f(a[k1]) ≺ f(a[k2])
(7.6)

� Precedence: a 4 b is an asynchronous clock relation. a is said to be faster than b.

a 4 b⇔
(
∀k ∈ N?, a[k] 4 b[k]

)
(7.7)

� Strict precedence: a ≺ b is similar to the previous one but considering the strict prece-
dence instead.

a ≺ b⇔
(
∀k ∈ N?, a[k] ≺ b[k]

)
(7.8)

� Exclusion: a # b means that a and b have no coincident instants.

a # b⇔
(
∀j, k ∈ N?,¬(a[j] ≡ b[k])

)
(7.9)

We mention an often used non-primitive clock relation: the alternation. a ∼ b is an
asynchronous clock relation such that

a ∼ b⇔
(
∀k ∈ N?, a[k] ≺ b[k] ≺ a[k + 1]

)
(7.10)

For instance, in figure 7.7, b ∼ c.

4http://www-sop.inria.fr/aoste/dev/time_square

http://www-sop.inria.fr/aoste/dev/time_square
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Clock expressions

A clock expression allows the creation of new clocks from existing ones. We present three
examples of clock expressions respectively synchronous, asynchronous, and mixed. Others will
be explained when needed.

For the first expression we have to introduce the concept of binary words. A binary word
is a finite or infinite sequence of bits:

� a finite binary word is a word of (0 + 1)∗

� an infinite binary word is a word of (0 + 1)ω

� a periodic binary word is an infinite binary word w defined by:

w ::= u (v)
ω

u ::= ε | 0 | 1 | 0 • u | 1 • u
v ::= 0 | 1 | 0 • v | 1 • v

u is called the prefix of w, v is the period of w, and (v)
ω

= limn v
n denotes the infinite

repetition of v. Let BW be the set of the finite or infinite binary words. For any binary word
w, w[k] for k ∈ N? is the kth bit of w. w ↑ k denotes the index of the kth one in the binary
word w.

Example of clock relations

� Filtering: a H w, read ‘a filtered by w’, where a is a clock and w is a binary word, is a
synchronous clock expression which defines a sub-clock, say b, of a such that

b = a H w ⇔ ∀k ∈ N?, b[k] ≡ a[w ↑ k] (7.11)

In figure 7.7, b = a H (01)
ω

� inf: a ∧ b, read ‘inf of a and b’, is an asynchronous clock expression which defines a new
clock, say c, such that

c = a ∧ b⇔ ∀k ∈ N?, c[k] ≡

{
a[k] if a[k] 4 b[k]

b[k] otherwise.
(7.12)

In other words, c is the slowest clock among those which are faster than both a and b.
See figure 7.9 for an example. There also exists the dual operator sup, denoted ∨, such
that

c = a ∨ b⇔ ∀k ∈ N?, c[k] ≡

{
b[k] if a[k] 4 b[k]

a[k] otherwise.
(7.13)

That is, c is the fastest clock among those which are slower than both a and b.

� Delay: a ( δ )  b, read ‘a delayed for δ on b’, where δ is a non-null natural number, is
an example of mixed expression. It defines a new clock, say c, sub-clock of b, such that:

c = a ( δ ) b⇔ ∀k ∈ N?,∃l,m ∈ N?, l > δ,

c[k] ≡ b[l] ∧ b[l − δ − 1] ≺ a[m] 4 b[l − δ] (7.14)

So, ticks of a plays the role of a trigger, and they cause a tick of c after δ ticks of b.
Figure 7.10 illustrates a delay for 2 ticks. Note that this delay operator is polychronous
(involving two different clocks a and b) contrasting with the monochronous delay operator
of the language Signal [MA09].



124 CHAPTER 7. BEHAVIOR MODELING

1

1

1

2

2

2

3

3

3

a

b

a b

4

4

5

5

4

c a b= ∧

Figure 7.9: The inf expression operator.
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Figure 7.10: The delay expression operator.

7.3.3 CCSL in the Acquisition system

Following the principle that a logical clock can be associated with any event (section 7.3.1),
the constraints implied by a protocol can be specified by clock constraints expressed in ccsl.
We apply this to the Acquisition system.

Acquisition protocol

The protocol is a simple request/response protocol expressed in ccsl as req ∼ resp, where
req and resp are the logical clocks associated with the events request and response, respectively.

Referring to the Esterel program given in section 7.2.1, we have to specify two instances
of the acquisition protocol, where the request is called Sample and the response Value. For
simplicity, we adopt the convention that names a clock after the name of the associated event
prefixed by a “c ”. This leads to:

c SAP [i].Sample ∼ c SAP [i].V alue for i = 0, 1 (7.15)

Saving protocol

The saving protocol is a generalized request/response protocol with several sources of requests
and responses. Moreover a form of exclusion is imposed on the transfers of data.

In the Acquisition example, a bus request (Breq) must precede a bus granting (Grant),
which in turn precedes a memory selection (Sel). This precedence chain is repeated forever.
To deal with multiple sources, we need the union relational operator on clocks.

� Union: a + b, read ‘a union b’, where a and b are clocks, is a synchronous clock expression
which defines a clock, say c such that

c = a + b⇔ ∀k ∈ N?,∃l, j ∈ N?, (c[k] ≡ a[j]) or (c[k] ≡ b[j]) (7.16)
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Two local clocks c G and c S are used represent any Grant and any Sel, respectively. The
exclusion between data transfers is ensured by the alternation of c G and c S. The whole
protocol is then specified as follows:

c G = c MMP [0].Grant + c MMP [1].Grant (7.17)

c MMP [0].Grant # c MMP [1].Grant (7.18)

c S = c MSP [0].Sel + c MSP [1].Sel + c MSP [2].Sel (7.19)

c MSP [0].Sel # c MSP [1].Sel (7.20)

c MSP [1].Sel # c MSP [2].Sel (7.21)

c MSP [0].Sel # c MSP [2].Sel (7.22)

c MMP [0].Breq ∼ c MMP [0].Grant (7.23)

c MMP [1].Breq ∼ c MMP [1].Grant (7.24)

c G ∼ c S (7.25)

Equations 7.23 and 7.24 impose behaviors that can be represented by the regular expression
(Breq[i];Grant[i])∗. Equation 7.25 imposes the cyclic behavior (G;S)∗. Equation 7.18 makes
the Grants exclusive; equations 7.20–7.22 do the same with the Sels. Figure 7.11 shows a
possible execution trace for this protocol specification. Blue dashed arrows are displayed (on
demand) by the timesquare viewer. Red annotations have been manually added to the figure.

1 2 3 4 5

1 2 3
c_G1

c_B2

c_G2

c_S2

c_S1

c_S3

c_B1

Transfer 
caused by 
Breq[1][2]

Transfer 
caused by 
Breq[0][2]

Transfer 
caused by 
Breq[1][1]

Transfer 
caused by 
Breq[0][1]

Figure 7.11: A possible execution trace for the Saving protocol.

7.4 IP-XACT and Behavior

7.4.1 Specification of the behavior

ip-xact offers little support to behavioral specifications. We briefly describe the two supported
facilities: expression of time constraints and references to external behavior specifications.
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Time constraints

Optional constraints may be provided for wire ports. A constraint named requiresDriver spec-
ifies whether a driver has to be present in a complete design. Attribute driverType further
qualifies what driver type is required. The values clock and singleshot explicitly refer to
time constraints.

Component driver/clockDriver. This element defines the properties of a (repetitive)
clock waveform. Four mandatory elements describe the properties of the waveform. A fifth
optional element attaches a name to the clock driver.

1. clockPeriod (mandatory) specifies the overall length (in time) of one cycle of the wave-
form. The duration is expressed by a real number and a unit. The default unit is the
nanosecond (ns) equal to 10−9 seconds. Picosecond (ps) can be used instead and is
equal to 10−12 seconds. All other time-related properties adopt the same notation for
duration.

2. clockPulseOffset (mandatory) specifies the time delay from the start of the waveform
to the first transition.

3. clockPulseValue (mandatory) specifies the logic value (0 or 1) to which the port transi-
tions. Note that this value is the opposite of the value from which the waveform starts5.

4. clockPulseDuration (mandatory) specifies how long the waveform remains at the value
specified by clockPulseValue.

5. clockName (optional) attribute specifies a name for the clock driver. If this is not defined,
the name of the port to which this clockDriver is applied shall be used.

Figure 7.12 depicts these elements.

clockPeriod

clockPulseOffset clockPulseDuration

clockPulseValue

Figure 7.12: ClockDriver elements.

Component driver/SingleShotDriver. This driver is similar to the clock drive but defines
non-repetitive waveforms. The durations are specified is the same way as for clock drivers.

The singleShotDriver element contains three elements that describe the properties of the
waveform (see also figure 7.13).

5This leads to a clumsy specification when the pulse offset is 0.
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1. singleShotOffset (mandatory) specifies the time delay from the start of the waveform
to the transition.

2. singleShotValue (mandatory) specifies the logic value to which the port transitions.
This value is also the opposite of the value from which the waveform starts.

3. singleShotDuration (mandatory) specifies how long the waveform remains at the value
specified by singleShotValue.

clockPeriod

singleShotOffset singleShotDuration

singleShotValue

Figure 7.13: SingleShotDriver elements.

Port timing constraints. They appear within wire ports in an abstraction definition.
The timingConstraint element defines a technology-independent timing constraint associ-
ated with the containing wire port of a component or abstraction definition. The values are
expressed as a percentage which represents the ratio of the cycle time to be allocated to the
timing constraint on the port.

1. clockEdge (optional) specifies to which edge of the clock the constraint is relative (either
rise or fall).

2. delayType (optional) restricts the constraint to applying to only best-case (minimum)
or worst-case (maximum) timing analysis. By default, the constraint is applied to both.
The delayType attribute may have two values min or max.

3. clockName (mandatory) specifies the reference clock.

An example of ip-xact timing constraint follows:

1 <s p i r i t : t i m i n g C o n s t r a i n t sp i r i t : c l o ckName="hclk">
2 50
3 </ s p i r i t : t i m i n g C o n s t r a i n t>
4 <s p i r i t : t i m i n g C o n s t r a i n t sp i r i t : c l o ckName="hclk"

5 s p i r i t : c l o c k E d g e="fall" s p i r i t : d e l a y T y p e="min">
6 40
7 </ s p i r i t : t i m i n g C o n s t r a i n t>
8 <s p i r i t : t i m i n g C o n s t r a i n t sp i r i t : c l o ckName="hclk"

9 s p i r i t : c l o c k E d g e="fall" s p i r i t : d e l a y T y p e="max">
10 60
11 </ s p i r i t : t i m i n g C o n s t r a i n t>
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Lines 1 to 3 specify that the delay of the contrained element is 50% of the period of clock
hclk, relative to the rising edge of the clock (default value of attribute clockEdge). This
values applies to both best and worse case (absence of the attribute delayType). Line 4 to 7
specify a delay of 40 % of the clock cycle, relative to the falling edge, and applicable to the
best case. The third constraint (lines 8 to 11) applies to the worst case timing.

External specifications

Timer module has already been briefly introduced in the chapter 3 on page 3.4. But that
example was more basic and hypothetical. Here we focus on the timer module from the
Leon II architecture (presented on page 91). Leon II timer unit implements two 24-bit timers,
one 24-bit watchdog and one 10-bit shared prescaler, as shown in the figure 7.14.

tick

prescaler reload

prescaler counter

decrement

timer1 counter

timer2 counter

watchdog

decrement

timer2 reload

timer1 reload

irq 8

irq 9

wdog

Figure 7.14: Leon II Timer Module Structure

The prescaler module is used to divide the system clock frequency. It produces an output
named tick that then drives the timer 1, timer 2, and Watchdog modules. The prescaler
loads/reloads the count-down value from the prescaler reload register (or can be directly loaded
also). This value is then decremented on each system clock event. Once the counter reaches
zero, the output tick is produced and the prescaler counter (prescaler value) is reloaded. The
effective division rate of the prescaler is equal to the reload register value + 1.

The prescaler module is always running and is independent of the timers 1 and 2 which
are controlled through their respective timer control registers. These timer control registers
currently consist of only three control bits enable, reload, and load. The enable bit enables
the timer and it starts decrementing the timer counter on each tick signal coming from the
prescaler. If the reload bit is enabled, the timer will load the value in the reload register into
the timer counter register on the next counter underflow. If reload is disabled, the timer will
reload itself with the maximum possible value. The load register bit, when set, instantly loads
the timer counter with the reload value. This load bit is a kind of write only bit as reading
it always returns the value ‘0’. When the timer counter reaches zero, the respective interrupt
is generated. The watchdog counter differs in the way that it does not have a control or the
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reload register and is always running. The two timers and the watchdog all share the same
prescaler decrement counter’s output tick.

This behavior is described in external files reachable through the fileSet specification.
This is relative to a particular view, in the model part of the Timer component. Listing 7.2
contains references to vhdl files. Lines 8 to 10 select the language, lines 14 to 18 refer to the
source files. Listing 7.3 contains the same kind of information for a systemc source code.

1 <s p i r i t : m o d e l>
2 <s p i r i t : v i e w s>
3 <s p i r i t : v i e w>
4 <s p i r i t : n a m e>vhdl source</ s p i r i t : n a m e>
5 < s p i r i t : e n v I d e n t i f i e r>
6 : d e s i g n c o m p i l e r . synopsys . com:
7 </ s p i r i t : e n v I d e n t i f i e r>
8 <s p i r i t : l a n g u a g e s p i r i t : s t r i c t="true">
9 vhdl

10 </ s p i r i t : l a n g u a g e>
11 <spir i t :modelName>
12 leon2Timers ( s t r u c t )
13 </ spir i t :modelName>
14 < s p i r i t : f i l e S e t R e f>
15 <s p i r i t : l o c a l N a m e>
16 f s−vhdlSource
17 </ s p i r i t : l o c a l N a m e>
18 </ s p i r i t : f i l e S e t R e f>
19 </ s p i r i t : v i e w>
20 </ s p i r i t : v i e w s>
21 . . .
22 </ s p i r i t : m o d e l>

Table 7.2: External references to vhdl files.

1 <s p i r i t : m o d e l>
2 <s p i r i t : v i e w s>
3 <s p i r i t : v i e w>
4 <s p i r i t : n a m e>TLM PV</ s p i r i t : n a m e>
5 < s p i r i t : e n v I d e n t i f i e r>
6 : * S imu la t i on :
7 </ s p i r i t : e n v I d e n t i f i e r>
8 <s p i r i t : l a n g u a g e>systemc</ s p i r i t : l a n g u a g e>
9 <spir i t :modelName>t imers</ spir i t :modelName>

10 < s p i r i t : f i l e S e t R e f>
11 <s p i r i t : l o c a l N a m e>
12 sourceCode
13 </ s p i r i t : l o c a l N a m e>
14 </ s p i r i t : f i l e S e t R e f>
15 </ s p i r i t : v i e w>
16 </ s p i r i t : v i e w s>
17 . . .
18 </ s p i r i t : m o d e l>

Table 7.3: External references to systemc files.



130 CHAPTER 7. BEHAVIOR MODELING

7.4.2 Behavior triggering

Fields

ip-xact defines a field as an array of consecutive bits included in a register (see our Component
Memory Metamodel, in Figure 5.8 on page 70). A unique identifier may be assigned to a field
making references easier. Other elements are used to characterize a field. We detail three of
them that are linked to behavioral aspects.

access is an optional element which indicates the accessibility of the field and the existence
of possible side-effect while reading or writing. Possible values for this element are given in
the following table.

Value Effect
read-only returns a value related to the values in the field
write-only affects the contents of the field
read-write combines both previous effects
writeOnce only the first writing after power up may

affect the contents of the field
read-writeOnce like the previous with reading capability

modifiedWriteValue is another optional element which describes the manipulation of data
written to a field. This is typical of (hardware) control registers in which writing a value often
results in a different value. When this element is omitted, the value written to the field is the
value stored in the field.

Value Effect
oneToClear writing a 1 clears the corresponding bit
oneToSet writing a 1 sets the corresponding bit
oneToToggle writing a 1 toggles the corresponding bit
zeroToClear writing a 0 clears the corresponding bit
zeroToSet writing a 0 sets the corresponding bit
zeroToToggle writing a 0 toggles the corresponding bit
clear all the bits are cleared
set all the bits are set
modify all the bits may be modified by the writing

readAction is an optional element which describes the effects of a read operation on the
bits of the field. When this element is omitted, the field is not modifed by a read operation.

Value Effect
clear the field is cleared after a read operation
set the field is set after a read operation
modify the field is modified in some way after a read operation

Besides possible bit changes, a field access operation can trigger specific actions. This is
illustrated with Leon II timers.
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Figure 7.15: Timer Control Register.

Example of the Leon II timers

Figure 7.15 represents the structure of a Timer Control Register. This structure is also described
in the xml listing. Lines 9 to 18 specify the field named enable (line 10) and denoted as EN in
the figure. Line 14 indicates the offset of the field whithin the register (offset = 0). The width
of the field is one bit (line 15). This field can be accessed for both read and write operations
(line 17). A description (lines 11–13) gives the purpose of this field. This is an informal textual
specification. The other fields of this register are described in a similar way. Note that the
loadCounter field, denoted as LD in the figure, does not store what it is given as argument for
a write operation. Lines 40–42 make clear that when a ‘1’ is written in LD, its contents (a bit)
is cleared.

1 < s p i r i t : r e g i s t e r>
2 <s p i r i t : n a m e>t imerContro l</ s p i r i t : n a m e>
3 <sp i r i t : d i sp l ayName>t imerContro l</ sp i r i t : d i sp l ayName>
4 < s p i r i t : d e s c r i p t i o n>Timer Control Reg i s t e r</ s p i r i t : d e s c r i p t i o n>
5 <s p i r i t : a d d r e s s O f f s e t>0x8</ s p i r i t : a d d r e s s O f f s e t>
6 < s p i r i t : s i z e>32</ s p i r i t : s i z e>
7 < s p i r i t : a c c e s s>read−wr i t e</ s p i r i t : a c c e s s>
8 . . .
9 < s p i r i t : f i e l d>

10 <s p i r i t : n a m e>enable</ s p i r i t : n a m e>
11 < s p i r i t : d e s c r i p t i o n>
12 Enables the t imer when s e t .
13 </ s p i r i t : d e s c r i p t i o n>
14 < s p i r i t : b i t O f f s e t>0</ s p i r i t : b i t O f f s e t>
15 <s p i r i t : b i t W i d t h>1</ s p i r i t : b i t W i d t h>
16 < s p i r i t : v o l a t i l e>t rue</ s p i r i t : v o l a t i l e>
17 < s p i r i t : a c c e s s>read−wr i t e</ s p i r i t : a c c e s s>
18 </ s p i r i t : f i e l d>
19 < s p i r i t : f i e l d>
20 <s p i r i t : n a m e>re loadCounter</ s p i r i t : n a m e>
21 < s p i r i t : d e s c r i p t i o n>
22 When s e t to 1 the counter w i l l automat i ca l l y
23 be re loaded with the r e l oad value a f t e r
24 each underf low .
25 </ s p i r i t : d e s c r i p t i o n>
26 < s p i r i t : b i t O f f s e t>1</ s p i r i t : b i t O f f s e t>
27 <s p i r i t : b i t W i d t h>1</ s p i r i t : b i t W i d t h>
28 < s p i r i t : a c c e s s>read−wr i t e</ s p i r i t : a c c e s s>
29 </ s p i r i t : f i e l d>
30 < s p i r i t : f i e l d>
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31 <s p i r i t : n a m e>loadCounter</ s p i r i t : n a m e>
32 < s p i r i t : d e s c r i p t i o n>
33 When wr i t t en with 1 , w i l l load the t imer r e l oad
34 r e g i s t e r i n to the t imer counter r e g i s t e r .
35 Always reads as a 0 .
36 </ s p i r i t : d e s c r i p t i o n>
37 < s p i r i t : b i t O f f s e t>2</ s p i r i t : b i t O f f s e t>
38 <s p i r i t : b i t W i d t h>1</ s p i r i t : b i t W i d t h>
39 < s p i r i t : a c c e s s>read−wr i t e</ s p i r i t : a c c e s s>
40 <s p i r i t : m o d i f i e d W r i t e V a l u e>
41 oneToClear
42 </ s p i r i t : m o d i f i e d W r i t e V a l u e>
43 </ s p i r i t : f i e l d>
44 < s p i r i t : f i e l d>
45 <s p i r i t : n a m e>r e s e rved</ s p i r i t : n a m e>
46 < s p i r i t : d e s c r i p t i o n>Reserved</ s p i r i t : d e s c r i p t i o n>
47 < s p i r i t : b i t O f f s e t>3</ s p i r i t : b i t O f f s e t>
48 <s p i r i t : b i t W i d t h>29</ s p i r i t : b i t W i d t h>
49 < s p i r i t : a c c e s s>read−only</ s p i r i t : a c c e s s>
50 < s p i r i t : t e s t a b l e>t rue</ s p i r i t : t e s t a b l e>
51 </ s p i r i t : f i e l d>
52 </ s p i r i t : r e g i s t e r>

Besides the informal specifications given in the description elements, the precise behavior
triggered by the write operations in the Timer Control Register is described in external files
referenced in the fileSet (see page 129). We propose to go further by linking fields to behaviors.

Extension to the metamodel

We have already used uml and marte in our ip-xact profile. As demonstrated in this section,
ip-xact offers little direct support to behavioral specifications. In constrast, uml has many
ways to represent behaviors. Our metamodel of ip-xact can be easily extended to allow a
better connection between structure and behavior. Figure 7.16 contains our unified notion of
component: on the left side, the structural aspects covered by ip-xact; on the right side, the
behavioral aspects brought by uml (shown with a hatched background). Writing in fields of
control registers may trigger the execution of some behavior, which in turn uses data contained
in other fields of registers as input parameters.

Moreover, a uml functional model can be annotated with time information using the marte
time model. Hence the modified figure 7.17. Considering this metamodel, we propose to
extend ip-xact descriptions with time requirements of ips. It is neither practical nor desirable
to include the whole behavior since it would require adding all uml behavioral model elements
to ip-xact. It is also not practical in most cases since implementations of the same IP at
different abstraction levels are usually made by different teams and may result in components
that do not even have the same interfaces. For example, a simple read or write communication
at tlm level boils down to more complex control signals at rtl level. The same rtl signals
can also be shared by completely different transactions. Rather than addressing the whole IP
behavior, we focus on their time requirements. These requirements, almost missing in ip-xact,
are usually described as waveforms in datasheets. We specify them as a ccsl specification (see
section 7.3). Then, we rely on ccsl operational semantics to execute the specification and
automatically produce waveforms. These specifications are then used to generated dedicated
observers of temporal properties. This is developed in the next chapter.
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7.5 Conclusion

In this chapter, we have seen the different implementations of behavior of the ips at different
abstraction levels. Esterel is seen to be the best choice for the abstract behavior representation
with the advantage of use of logical clocks. systemc is also widely used for abstract level
modeling but causes the loss of precision while designing at such levels. After describing our
uml profile for ip-xact (in the previous chapters) that builds on marte to model ip-xact
designs, here we propose to use the marte Time model and its constraint language ccsl to
complement ip-xact specification for selective behavior representation. We also explored the
way behavior can be coupled to the structural constructs in the ip-xact specification. In the
next chapter, we use ccsl constructs to practical use by the development of vhdl observers
for them and then creating testbenches from those observers.
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This chapter continues the discussion on the concepts introduced in the previous chapter
regarding behavior representation. We consider different approaches for verification techniques
and testbench development. Then we introduce a verification approach relying on ccsl clock
constraints and observers. A library of vhdl observers is proposed. Finally, these observers
are put to use for a verification of time properties of a Leon II-based system.
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8.1 Introduction

Verification is a process used to demonstrate the functional correctness of a design [Ber02].
It is an act of reviewing and testing, and hence determining and documenting whether the
design output meets design input requirements. In the present times, the system verification
takes almost 70% time of the total design efforts necessitating the use of new techniques to
reduce verification time and efforts. Designing at higher abstraction levels enables us to work
more efficiently without worrying about low-level details. At this level, signal and pin details
of the architecture are hidden, hence the designer can better focus on the overall functional
correctness of the model. Simulating design models is also very fast at this level. Hence, the
verification process at the abstract levels is efficient. But we have to note that at higher levels
of abstraction, we have loss of information about the design (like pin/signal details) resulting
in reduction of control over the system. Therefore using system abstraction for verification
purposes must be chosen wisely as it may lead to wrong functional output.

The purpose of the verification process is to ensure that the result of given transformation
is as expected. We use the reconvergence model to know what exactly is being verified. The
reconvergence model [Ber02] is a conceptual representation of the verification process and is
used to illustrate what exactly is being verified. For a verification process, the design-under-test
(dut) and the verification process must have the same starting point. The verification process
is of several types: formal verification, functional verification, and test bench generation, as
defined in the subsequent paragraphs.

The formal verification is the act of proving the correctness of a system through its under-
lying algorithms with respect to a certain formal specification or property. Formal verification
can be further divided into two sub-categories: equivalence checking and model checking. The
equivalence checking compares two models to mathematically prove that the source and the
output are logically equivalent and that the transformation preserves its functionality. Model
checking is the verification technique that looks for the violation of user-defined rules about
the behavior of the design. It verifies that the assertions or characteristics of a design are
formally proven or not. As an example, it can check a system behavior based on automata by
checking all states in a design for unreachable, isolated states, or deadlocks.

The functional verification ensures that a design correctly implements intended function-
ality. The functional verification (a design meets the intent of its specification) can only be
performed when the specification itself is written in a formal language with precise semantics.
Without functional verification, one must trust that the transformation of a design specification
into low level code was performed correctly, without misinterpretation of the specifier’s intent.
Note that in software engineering, functional verification is usually called validation [Boe84],
and according to Boehm, answers the question “Am I building the right product?”, while
verification answers “Am I building the product right?”.

In hdls, testbench refers to a code structure used to create a pre-determined input sequence
to a design and then to optionally observe the response. Testbenches are the piece of code that
can generate stimulus to exercise code or expose bugs [Ber02]. Testbenches are used either to
increase code coverage or to simulate the design to check if it violates a property. Figure 8.1
shows how a testbench interacts with a dut. In this testing structure, the testbench initially
provides inputs to the design and monitors any outputs. The design and its testbench together
create a closed system where no other external stimulus or observation is introduced from the
user of the system or the environment. For the design under test, such a system is the model
of the universe (or the external environment). The task of the test and verification process is
to consider what input patterns to supply to the design and what shall be the expected output
of a properly working design.

Generally, there are three distinct approaches to functionally verify a system: black-box,
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Figure 8.1: Generic Structure of Design Verification.

white-box, and gray-box. The black-box verification approach is performed without any knowl-
edge of the actual implementation of a design. Verification is performed by interacting with the
available interfaces of the dut and having no knowledge of the internal structure or behavior
implementation. This drawback leads to difficulties in interacting with very large or complex
designs. In such complex designs, we then need additional non-functional modifications to pro-
vide extended visibility and controllability of the system. Such non-functional modifications
can be like adding few testbench accessible internal registers which can then be used to trace
the internal state of the design modules. On the positive side, black-box approach does not
depend on any specific implementation of the design and hence provides portability.

The white-box verification approach has complete visibility and control of the internal
structure and behavior implementation of the dut. Due to such a knowledge of the system,
this approach can easily isolate the different modules of the design and can correctly diagnose
the problems related to a particular sub-module. White-box verification approach strictly
depends on the implementation of design which hinders portability. The gray-box verification
approach is a mix of black-box and white-box approaches. Just like black-box approach, gray-
box approach controls and observes a design through its interfaces but it contains significant
knowledge about the system just like in white-box approach.

In the previous chapter, we have discussed in detail that how useful ccsl is in representation
of timed behavior patterns. We have also given its practical application on our running example
of Acquisition Protocol. That example is tested using the timesquare tool in Eclipse for
simulating ccsl constraints. In this chapter, we have used the black-box approach for our
ccsl based constraint observers. This means that our observer modules are only concerned
with the interface of dut and does not need to know the internal structure specification
of the ip. This internal structure may or may not be known to the design verifier. Little
knowledge of component’s internal structure may help to rapidly/easily diagnose the problems
indicated in terms of specific constraint violation. The advantages of black-box approach are
also there for our ccsl observer modules. Black-box approach provides us greater portability
meaning that testbenches implemented through such approach do not depend on the target
implementation technology. It means that our observers are equally valid for ip modules
implemented either at rtl level (vhdl) or abstract levels like tlm (systemc) and cp (Esterel
implementation). This compliance will exist till the interfaces provided by the various ip



138 CHAPTER 8. VERIFICATION AND TESTBENCHES

implementations remain same. Hence, one of our goals, of selective behavior pattern matching
between various implementations of an ip, is achieved.

In this chapter, we firstly discuss the various aspects of property checking and observers
in section 8.2. Then in section 8.3, we focus on the creation of observers in Esterel and vhdl.
Finally in section 8.4, we use our developed vhdl observers to test a few properties of the
Leon II based system.

8.2 Property checking

8.2.1 Principle

As discussed before, comparing implementations at different levels is very difficult. So instead,
we have investigated the possibility to generate a skeleton from the abstract specification of
the behavior. However, this is not practical because of huge libraries of legacy IPs and because
it would impose one single methodology and design flow to all IP providers. As an example we
considered the ip implementations in vhdl and systemc provided by the Spirit Consortium in
the ip-xact 1.4 specification. We noted that as the ips at tlm and rtl level are implemented
by different teams/group of people, they differ a lot in their behavior implementation and
structure. Moreover, ips at abstract levels contain less information as compared to their
counterparts at rtl level. For instance, at rtl level we have a complex set of signals which
are replaced by bus/channel structures at tlm level implementations. Hence, practically it is
quite impossible to compare the behavior as a whole of the two implementations of the same
ip. Moreover, most of the ips are implemented using black box approach and thus their codes
can not be compared directly.

From the behavioral point of view, instead of considering the ip behavior as a whole we
decide to focus on specific time properties of the ip. We can then prove these properties to
be equivalent for the diverse ip implementations. These properties shall be related to time
like delay between the input and output, alternating input patterns, or one input always
precedes another. Such an information can be directly deduced from the specification of the
ip. Traditionally ips datasheets always contains a separate section for the timing diagrams
and state machines, describing a test case to show the response of the ip under a specific
environment. One such waveform for the apb bridge ip taken from the amba specification
is shown in figure 8.16 on page 155. We will discuss this waveform in the last section of the
chapter and will show that how this waveform was helpful to define the timing properties
that are verified later on the actual ips. This approach is quite non-intrusive as we do not
need to know the internal structure of the ip. All the ip vendors provide timing specifications
or datasheets to their third party customers. These ip timing properties finally help us to
create ccsl constraints, as shown in figure 8.2. ccsl constraints creation depends on the
skills and knowledge of the system verifier. But still this step is not too much difficult as
ccsl constraint constructs are quite basic and we can combine multiple constraints to make
a meaningful property specifications. While using ccsl constraints two points are to be kept
in focus. Firstly, the design verifier needs to have some understanding of ccsl constructs
and their functioning to avoid errors while utilizing those constraints. Secondly, the ccsl
constraints need to have same input interface for all ip implementations (as marked red in the
figure), no matter at tlm or rtl level. For this purpose, we use transactors with the ips to
convert the abstraction-level specific interfaces to the ones that are required by our observers.
For example at the tlm level, the bus communication takes place in terms of transactions
between the ports while the observers require individual signals for their functioning. Hence
the role of a transactor over here is to get the signal information from a data transaction. These
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signals are then converted into special signals representing ccsl clocks using the adaptors.
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Figure 8.2: Principle of property checking.

Once the ccsl constraints are developed we can simulate them in timesquare compiler
(plug-in for eclipse) developed by the aoste team of inria Sophia Antipolis. In this software
we provide sample values for the inputs, taken directly from the specification. Once we are
satisfied with the selection and the proper representation of timing properties, we proceed
to the next phase. Next phase is to develop the testbenches for the ips under test. These
testbenches consist of collection of ccsl constraint implementations called as observers. In the
further sections we discuss observers and their implementations in detail. These observers are
modular objects where each one of them represents a ccsl constraint independently. Moreover,
these observers are untimed modules needing no external clock. They react to the input signals
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only. Inside the testbench these observers are instantiated along with other helper modules.
Esterel language implementation of observers is already available [AM09b, And09a]. We

can use Esterel Studio to generate systemc observers for the tlm level and vhdl observers
for the rtl level ips from the Esterel observers. The generated code for the testbenches
is run against the respective ip implementations. In this way we are sure that the same
observer implementation is used to verify time properties at different abstraction levels. Use
of Esterel language has got an extra advantage that using the Esterel Studio verification tools,
we can formally verify the ips and their corresponding testbenches. Using Esterel Studio, the
verification at the cp level is exhaustive so we can guarantee that the cp model will never
violate a checked property.

Alternatively we can use the direct implementation of observers being of the same abstrac-
tion level as are the ips under test. We have created such observers for rtl implementation
ips in vhdl. This library allows us to directly check candidate implementations without re-
lying on Esterel Studio code generation tools. These observers do not guarantee that the two
implementations of an ip (rtl/tlm) are correct, but it does verify (in simulation) that the
timing properties simulated on the ccsl compiler still hold for rtl and tlm implementations.
Contrary to Esterel, with lower level implementations the simulation will not cover 100% of
the state space (i.e.,no model checking).

8.2.2 Observers

Verification by observers is a technique widely applied to synchronous languages [HLR94].
The principle is given in figure 8.3. An observer (right-hand box in the figure) is a reactive
program expressing a safety property P that has to be verified for a program (middle box).
In synchronous language, the observer is put in (synchronous) parallel with the program. The
observer has a unique output that signals possible violations of P . The observer receives the
same input signals as the program. It also receives its output signals. Thus, the observer is
purely passive: it only listen to the program without interfering with it. Often, a property holds
only under some contexts. The assumptions made on the system environment are represented
by another reactive program called Environment (left box in the figure). The Environment
only generates useful input sequences.

Program Observer
Violation

Environment
Inputs Outputs

Figure 8.3: Property checking of reactive programs.

The verification consists of checking that the synchronous parallel composition of the three
reactive programs Environment, Program, and Observer never emits a violation for any input
sequence provided by the Environment. The analysis can be done by standard reachability
analysis techniques. If the property is false, an input sequence leading to the violation can be
generated. This is called a counter-example.

With the synchronous languages, the observers can be written in the very same language
as the program to verify. This is illustrated with Esterel on the Acquisition system in sub-
section 8.3.1. Non-synchronous languages are also possible targets, this is demonstrated with
vhdl in subsection 8.3.2. Before, we give a guide-line for implementing ccsl observers.
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Implementing CCSL observers

In order to check properties specified in ccsl with observers, we have first to represent the
concept of logical clock in the target language. We have also to represent ccsl clock relations
and ccsl clock expressions. For convenience, we propose a modular approach: the observers
are built on predefined modules available in a library. The library contains observer, gen-
erator, and adaptor modules, which represent clock relations, clock expressions, and clocks,
respectively. An observer module signals a Violation whenever the associated ccsl relation
is violated. A generator module generates a new object which represents the clock defined by
the associated ccsl expression. Finally, an adapter module defines the object which repre-
sents a ccsl clock. In what follows, we adopt a uniform naming convention for the identifiers:
adaptors are prefixed by Ccsl A , observers by Ccsl R , generators by Ccsl E , and clock
representations by c .

8.3 Observer implementation

8.3.1 Esterel observers of the Acquisition system

For Esterel, a ccsl clock is represented as a pure signal. A library of ccsl observers, gener-
ators, and adaptors is available for this language [And09a]. We briefly present the modules
effectively used in the Acquisition application.

Adaptors

In Esterel a logical clock can be associated with any signal. This clock ticks whenever the
signal is present. Hence, an Esterel adaptor maps an Esterel signal to a pure Esterel signal,
standing for a ccsl clock.

For a pure signal A, the adaptor code is obvious:

module Ccsl A pure :
input A;
output c A ;

sustain c A i f A
end module

For a valued signal, the adaptor code is also very simple. It is a generic module which
considers only the presence status of the input signal.

module Ccs l A valued :
generic type T;
input A:T;
output c A ;

sustain c A i f A
end module

Since the presence status of a signal is not persistent, hand-shake in Esterel is often imple-
mented as

abort
sustain r e s q u e s t

when re sponse

The actual event in this case is the “rising edge” of signal request (i.e.,a signal present at
the first instant of the sustain). The RisingEdge adaptor represents this behavior (Synchart
in figure 8.4).
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Figure 8.4: SyncChart of the Rising Edge adaptor.

Note that the first two adaptors are so simple that their code is usually in-lined.

CCSL relation observers

Each ccsl relation observer has two input “c clocks” and an output that signals possible
violations. In Esterel, three pure signals are used:

interface C c s l R I n t f :
input A,B;
output Vio l a t i on ;

end interface

The ccsl specification of the Acquisition example (section 7.3.3) contains three ccsl rela-
tions: equality, exclusion, and alternation. The code of the first two observers is very simple:

1 module Ccs l R equa l :
2 extends interface C c s l R I n t f ;
3 sustain Vio l a t i on i f (A xor B)
4 end module

Violation is emitted (line 3) whenever the presence statuses of A and B are different.

1 module C c s l R e x c l u s i v e :
2 extends interface C c s l R I n t f ;
3 sustain Vio l a t i on i f (A and B)
4 end module

For the exclusion, Violation is emitted (line 3) whenever both A and B are present.
For the alternation, a SyncCharts specification is simpler than an Esterel code (figure 8.5).

Note the priority given to the transitions that detect a violation.

CCSL expressions

In the Acquisition application we use only the union of clocks:

1 module Ccs l E union :
2 input A,B;
3 output C;
4 sustain C i f (A or B)
5 end module
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Figure 8.5: SyncChart of the alternation observer.

This module emits C (line 4) whenever A or B is present.

Observation of the Acquisition system

Figure 8.6 shows the observer for the alternation between Breq1 and Grant1 specified in equa-
tion 7.23 (c MMP [0].Breq ∼ c MMP [0].Grant).

     Esterel Observer of  1 1Breq Grant∼

Esterel

program

RE

Adaptor

pure

Adaptor

CCSL

Alternation

Observer

{ STRICT }

MMP[0].Breq

MMP[0].Grant

c_B1

c_G1

V_BG1

Figure 8.6: Observer for alternation of Breq and Grant.

The observer in figure 8.7 contains a more complex observer that covers a set of ccsl
constraints:

� c G = c MMP [0].Grant + c MMP [1].Grant (Eq. 7.17),

� c S = c MSP [0].Sel + c MSP [1].Sel + c MSP [2] (Eq. 7.19), and

� c G ∼ c S (Eq. 7.25).

The program and the observers are submitted to the model checking tools provided with
Esterel Studio. Figure 8.8 is a commented screen copy of the results of the model checking
when applied to the system without an environment module (no left box in figure 8.3). Only
two properties are certainly true (the exclusion on the Grants and the exclusion on the Sels).
The others are inconclusive. The column message says the reached depth of the exploration
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Figure 8.7: Observer for alternation of Grant and Sel.

when the execution has been aborted. The partial conclusion is that there exist no counter-
examples for the observed properties, shorter than the depth given in the message. Note that
the result for the last property is especially poor.

Model Checking

Aborted by the user

Partially conclusive

Checked properties

Figure 8.8: Verification using Esterel Studio tools without environment.

In fact, without environment constraints, the model checker, in its exhaustive search, has
tried meaningless or at least unrealistic scenarios like making only acquisitions and no savings.
Moreover, our programming of the bus gives priority to Breq1 over Breq2, thus there exist
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Figure 8.9: Verification using Esterel Studio tools with an environment.

unfair executions (always ignoring Breq2 in the presence of Breq1). To discard these behaviors
we have defined an environment module which states that on each processor the requests
for acquisition and for saving alternate. Under these assumptions, the model checker has
concluded that all the checked properties are true (Figure 8.9).

8.3.2 VHDL observer library

For the practical usage of ccsl constraints in physical embedded devices, we have developed
a library of vhdl implementations for ccsl. This library contains observers representing each
ccsl constraint and other constructs related to ccsl. This is one of our contributions in the
domain of behavior representation using ccsl and its use in property verification.

As discussed in section 8.2.2, ccsl observers, generators, and adaptors represent ccsl
relations, expressions, and clocks. In this section, we show the implementation of these modules
in vhdl. From all the three types modules, observers are the ones which assess the ccsl clock
constraints. All these program implementations are untimed and there is no clock input to
these modules.

In this section, we initially define adaptors in the next sub-section. These adaptors are
practically shown in use while considering the detailed example in section 8.4. Later in the
next sub-section, we discuss vhdl implementations of observers from our ccsl library for
vhdl. In the last sub-section, we discuss the vhdl implementation of generators for the ccsl
clock expressions.

Adaptors

In vhdl, we represent a logical clock as a pulse-shape signal whose type is Bit (figure 8.10).
The width of the pulse is as small as possible, but not 0. In vhdl simulation, this means that
a “c-clock” pulse has its rising edge and its falling edge in two consecutive simulation instants.
The upper waveform in the figure represents an actual vhdl signal S. If we consider the event
which is characterized by the rising edges of S, a ccsl clock S (lower part of the figure) can
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Figure 8.10: Logical clock representation in VHDL.

be associated with this event. This clock is then represented in vhdl as the pulsed signal c S

(middle waveform).

The pulse-width of a c-clock is EPSILON, a constant we have defined in the CCSL package:

Package Ccsl i s
constant EPSILON: Time ;

end Ccsl ;

Package body Ccsl i s
−− the sma l l e s t dura t ion as p o s s i b l e
constant EPSILON: Time:= 1 f s ;

end Ccsl ;

In all the following vhdl listings, we assume that EPSILON is known through a ‘use’ state-
ment: ‘use Work.Ccsl.all;’.

Adaptor Ccsl A risingEdge, which generates a c-clock, is simple vhdl code:

1 entity Ccs l A r i s ingEdge i s
2 port (
3 a : in s t d l o g i c ;
4 c a : out b i t := ' 0 ' ) ;
5 end entity Ccs l A r i s ingEdge ;
6

7 architecture Ccs l A r i s ingEdge a r ch of Ccs l A r i s ingEdge i s
8 begin
9 process

10 begin
11 wait until r i s i n g e d g e ( a ) ;
12 c a <= '1 ' , '0 ' after EPSILON;
13 end process ;
14 end Ccs l A r i s ingEdge a r ch ;
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Line 12 generates a pulse of width EPSILON whenever the input signal a has a rising edge.
Note that, according to our hypothesis, EPSILON is surely shorter (actually far shorter) than
the time during which a is high. An adaptor for falling edge is similar, just changing line 11
for ‘wait until falling edge (a);’.

CCSL Relation Observers

As discussed in the previous chapter, we will define here the observers for the five basic
constraint relations including precedence, equality, exclusion, sub-clocking, and alternation.
The issue is that the (rising edge of the) c-clock signals do not necessarily arrive in the same
delta cycle. So, the observer implementations must be delta delays insensitive, leading to code
more complex than expected at first. To eliminate transient violations (glitch phenomenon due
to micro-step semantics and explained in section 7.2.2) we recourse to the vhdl postponed

statement. This is done in line 9 of the equality observer code below. This instruction is
executed only when all the signals are stabilized.

Equality relation :

1 entity Ccs l R equa l i s
2 port (
3 c a , c b : in b i t ;
4 v : out b i t := ' 0 ' ) ;
5 end entity Ccs l R equa l ;
6

7 architecture Ccs l R equa l a r ch of Ccs l R equa l i s
8 begin
9 postponed v <= not ( c a xnor c b ) ;

10 end architecture Ccs l R equa l a r ch ;

Observers for exclusion (Ccsl R exclusive) and for sub-clocking (Ccsl R subclock) are
similar except the code in line 9 which is redefined as

‘postponed v <= c a and c b;’ for the exclusion, and as
‘postponed v <= c a and not(c b);’ for the sub-clocking.

Precedence relation :

1 entity Ccs l R precedes i s
2 port (
3 c a , c b : in b i t ;
4 v : out b i t := ' 0 ' ) ;
5 end entity Ccs l R precedes ;
6

7 architecture Ccs l R precede s a r ch of Ccs l R precedes i s
8 signal d : i n t e g e r := 0 ;
9 begin

10 process ( c a , c b )
11 variable c : i n t e g e r := 0 ;
12 begin
13 −− i gnore now = 0
14 i f now >= EPSILON then
15 i f c a ' event and c a = '1 ' then
16 c := c + 1 ;
17 end i f ;
18 i f c b ' event and c b = '1 ' then
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19 c := c − 1 ;
20 end i f ;
21 d <= c ;
22 end i f ;
23 end process ;
24

25 postponed v <= '1 ' when d<0 else ' 0 ' ;
26 end architecture Ccs l R precede s a r ch ;

To deal with precedence, the module has to manage a signal (d, declared at line 8) that
counts the difference between ticks of the incoming c-clocks. Since the rising edges of c a

and c b may occur at the same delta cycle, an auxiliary variable c is needed.
Module Ccsl R precedes implements the observer of the non strict form of precedence.

The strict form is more complex and is given in appendix C.2 on page 187.

Alternation relation This relation is not primitive and can be constructed by combining
precedence and filtering. Nevertheless, it is a quite usual relation. Its frequent uses demand
an efficient implementation of its observer. Thus we propose a direct programming of the
alternation observer.

S0 Sv S1

↑A

↑B ↑A

↑B

Figure 8.11: Incorrect state machine of the strict alternation observer.

The automaton shown in figure 8.11 is directly derived from the syncChart in figure 8.5.
Label ↑ X denotes a rising edge on X, ↓ X a falling edge. When implemented in Esterel, there
is no problem at all, whereas in vhdl, the behavior is incorrect. The reason is again that ↑ A
and ↑ B may arrive in any order during delta cycles. For instance, starting from state S0, if
↑ A occurs first, then the next state is S1, even if ↑ B occurs in a next delta cycle. To solve this
issue, we propose an automaton (figure 8.12) with transient states (gray background). The
steady states (yellow background) are reached only after EPSILON, when all the delta cycles of
the current simulation step are over. This is specified by transitions triggered by ↓ A or ↓ B.

The code of the Ccsl R s alternates observer is available in the appendix on page 189.

CCSL Expressions

Generators also face the issue of possible non-simultaneous occurrences of c-clock rising edges.
It is even worse because a generator module may produce c-clock pulses for other generators
or observers, so that the ‘postponed’ statement cannot be used.

Inf expression: The generator code relies on three signals (lines 8–10) that count the ticks
of the two input c-clocks and the output c-clock. Knowing the contents of these counters
is sufficient to decide whether the output c-clock must tick or not.

1 entity C c s l E i n f i s
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S0 Sv S1

T01

↑A

↑B

↑B

↑A

T10

↓A

↑B
↑A

↓B

Figure 8.12: Correct state machine of the strict alternation observer.

2 port (
3 c a , c b : in b i t ;
4 c c : out b i t := ' 0 ' ) ;
5 end entity C c s l E i n f ;
6

7 architecture C c s l E i n f a r c h of C c s l E i n f i s
8 signal cnta : i n t e g e r := 0 ;
9 signal cntb : i n t e g e r := 0 ;

10 signal cntc : i n t e g e r := 0 ;
11 signal do c : b i t := ' 0 ' ;
12 begin
13 process ( c a , c b , do c )
14 begin
15 −− i gnore now = 0
16 i f now >= EPSILON then
17 i f c a ' event and c a = '1 ' then
18 cnta <= cnta +1;
19 i f cnta = cntc then
20 do c <= ' 1 ' ;
21 end i f ;
22 end i f ;
23 i f c b ' event and c b = '1 ' then
24 cntb <= cntb + 1 ;
25 i f cntb = cntc then
26 do c <= ' 1 ' ;
27 end i f ;
28 end i f ;
29 i f do c ' event and do c = '1 ' then
30 c c <= '1 ' , '0 ' after EPSILON;
31 cntc <= cntc + 1 ;
32 do c <= '0 ' after EPSILON;
33 end i f ;
34 end i f ;
35 end process ;
36 end architecture C c s l E i n f a r c h ;

The local signal do c (line 11) is set when the input c-clock, which has the greater index,
ticks (lines 19–21 and 25–27). On line 30, the output c-clock pulse is generated. Line 32 is
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just a delayed re-initialization of signal do c.

Filtering expression: the generator has only one input c-clock named c sup, which is the
super clock. The output c-clock named c sub is a sub-clock of c sup, obtained by filtering
according to the periodic binary word specified by two bit vectors: init (line 3) for the initial
part, and period (line 4) for the periodic part. Since there is only one input c-clock, there is
no risk of critical race. The code is a variant of a shift register. The output pulse is generated
in line 14 for the initial part, or in line 19 for the periodic part.

1 entity C c s l E f i l t e r i s
2 generic (
3 i n i t : b i t v e c t o r := "" ;
4 per iod : b i t v e c t o r := "1" ) ;
5 port (
6 c sup : in b i t ;
7 c sub : out b i t := ' 0 ' ) ;
8 end C c s l E f i l t e r ;

1 architecture C c s l E f i l t e r a r c h of C c s l E f i l t e r i s
2 signal nIn i t , nPeriod : i n t e g e r := 0 ;
3 begin
4 process ( c sup )
5 constant i n i t s i z e : Natural := i n i t ' l ength ;
6 constant p e r i o d s i z e : Natural := per iod ' l ength ;
7 begin
8 −− i gnore f i r s t i n s t an t
9 i f now >= EPSILON then

10 i f c sup ' event and c sup = '1 ' then
11 i f ( n I n i t < i n i t s i z e ) then
12 −− in i n i t i a l phase
13 i f i n i t ( n I n i t ) = '1 ' then
14 c sub <= '1 ' , '0 ' after EPSILON;
15 end i f ;
16 n I n i t <= n I n i t + 1 ;
17 else −− in p e r i o d i c phase
18 i f per iod ( nPeriod ) = '1 ' then
19 c sub <= '1 ' , '0 ' after EPSILON;
20 end i f ;
21 nPeriod <= ( nPeriod + 1) mod p e r i o d s i z e ;
22 end i f ;
23 end i f ;
24 end i f ;
25 end process ;
26 end C c s l E f i l t e r a r c h ;

Minus expression: this ccsl expression has not been defined yet. c = a − b specifies that
c is a sub-clock of a, and that c ticks whenever a ticks provided b does not tick at the same
instant. The issue with this specification is that it implies a reaction to absence. Reaction to
absence has a well-defined semantics in synchronous languages like Esterel; it is not the case
with most other languages. The Esterel compiler tries to prove the absence of a signal during
a reaction whereas a classical language compiler determines that a signal is absent only when
the reaction is done. This is typically a causality problem.
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↓A

S0

Sa

Sp
↑A

↑B ↑B↓B

Figure 8.13: State machine of the minus generator.

The automaton shown in figure 8.13 is an attempt to represent the behavior of the minus
operator. Unfortunately in vhdl, we have no way to ensure before the end of the simulation
step that state Sp is the current state. The code given below makes the choice to generate a
pulse on the output c-clock during the transition from state S0 to state Sp (line 20), even if it
means that this output can be reset later on (line 31). Thus the minus generator can generate
a glitch. This is one of the limitations we analyze in the next sub-section.

1 entity Ccsl E minus i s
2 port (
3 c a , c b : in b i t ;
4 c c : out b i t := ' 0 ' ) ;
5 end entity Ccsl E minus ;
6

7 architecture Ccs l E minus arch of Ccsl E minus i s
8 type S t a t e t i s ( S0 , Sa , Sp ) ;
9 signal State : S t a t e t := S0 ;

10 begin
11 process ( c a , c b )
12 begin
13 case State i s
14 when S0 =>
15 i f c b ' event and c b = '1 ' then
16 State <= Sa ; −− absent
17 e l s i f c a ' event and c a = '1 ' then
18 −− p o s s i b l y pre sen t
19 State <= Sp ;
20 c c <= '1 ' , '0 ' after EPSILON;
21 end i f ;
22

23 when Sa =>
24 i f c b ' event and c b = '0 ' then
25 −− next s imu la t i on i n s t an t
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26 State <= S0 ;
27 end i f ;
28 when Sp =>
29 i f c b ' event and c b = '1 ' then
30 State <= Sa ;
31 c c <= ' 0 ' ;
32 e l s i f c a ' event and c a = '0 ' then
33 −− next s imu la t i on i n s t an t
34 State <= S0 ;
35 end i f ;
36

37 end case ;
38 end process ;
39

40 end architecture Ccs l E minus arch ;

Limitation of the VHDL observer approach

As just seen before, generators involving reaction to absence may cause glitches and therefore
lead to erroneous conclusions in verification with observers. Generator minus is the sole module
in the vhdl observer library that exhibits such a behavior.

When the minus module is directly connected to an observer, it causes no harm because
the observer takes account of the stabilized signal values, which are the values at the end of
the simulation step. On the other hand, a minus module feeding other generators may cause
issues by sending erroneous clock pulses. A solution consists in adding delta cycles on input
c a, so that a possible rising edge of c b occurs before a rising edge of c a. The number of
delta cycles to add can be determined by an analysis of the paths leading to the inputs of
the minus module. Nevertheless this solution supposes that the observer signals (input to the
adaptors) are free of glitches, which can be checked with a glitch detector (figure 8.14).

« adaptor »
RisingEdge

« adaptor »
FallingEdge

« observer »
Exclusion

S S_glitch

c_Su

c_Sd

Figure 8.14: A glitch detector.

When observed signals are not glitch-free, we propose an ultimate solution whose drawback
is to rely on an external language, namely Esterel. The principle is to program the whole
observation chain (generators, observers, and their inteconnections) in Esterel and then to
generate a semantically equivalent sequential code in vhdl. The Esterel compiler supports
this kind of generation. Being a purely sequential code there is no possible critical races. The
generated sequential code is put in a vhdl process. To make this solution operational, the
execution scheme has to be slightly modified. The verification will now need two phases (each
of duration EPSILON). The simulation step of the vhdl code under verification is executed first
at instant t. The execution of the compiled observation chain takes place at t + ε. Auxiliary
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signals are reset at t+ 2ε. The adaptors have also to be modified to adhere to this simulation
process. The vhdl code for the rising edge adaptor follows.

1 entity Ccs l A r i s ingEdge i s
2 port (
3 a : in S t d l o g i c ;
4 c a : buffer b i t := ' 0 ' ) ;
5 end Ccs l A r i s ingEdge ;
6

7 architecture Ccs l A r i s ingEdge a r ch of Ccs l A r i s ingEdge i s
8 type S t a t e t i s ( S0 , S1 ) ;
9 signal State : S t a t e t := S0 ;

10 begin
11 process ( a , c a )
12 begin
13 case State i s
14 when S0 =>
15 i f a ' event and a = '1 ' then
16 State <= S1 ;
17 end i f ;
18 when S1 =>
19 i f a ' event and a = '0 ' then
20 State <= S0 ;
21 e l s i f c a ' event and c a = '1 ' then
22 −− t h i s occurs in the v e r i f i c a t i o n phase
23 State <= S0 ; −− re− i n i t i a l i z a t i o n
24 end i f ;
25 end case ;
26 end process ;
27

28 postponed c a <= '0 ' when State = S0 else
29 '1 ' after EPSILON;
30 end architecture Ccs l A r i s ingEdge a r ch ;

8.4 Observers Example

In the previous section, we have discussed various types of vhdl observers for ccsl. We
applied the Esterel based observers to our running example of Acquisition System. However,
one may argue that such demonstrations are usually done on basic/toy examples and do not
effectively prove the importance of the concept introduced. To satisfy this purpose, we explain
here the use of vhdl observers on some more realistic components. We have chosen the Leon
II computer architecture described before in section 6.4.1 on page 91. Leon II is an adequate
choice for this demonstration as being one the few free industrial standard ips available to the
research community. Moreover, Leon II is also used with the ip-xact specification we discussed
earlier. It consists of components like processor, memory, bus arbiter, bus bridge, uarts, and
timers. We have tested our property checking methods using observers on the ahb to apb
bridge and the amba ahb bus arbiter.

In this section, we will focus on the ahb to apb bridge. The discussion ahead gives an
informal description of the bridge and later on introduces the use of ccsl observers to verify
the properties of our ip as per defined by the amba specification. Then, follows a discussion
on how to use such a formal specification to compare different implementations of the bridge,
possibly at different abstraction levels (tlm, rtl).
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8.4.1 APB Bridge Specification

In the Leon II bus architecture, ip components are connected through two amba buses. ahb
bus is used for high throughput requirements like dma devices, processor, and memory. apb
bus is used for low throughput devices, avoiding the narrow-bus peripherals to load the system
bus. In our present work, we have considered the communications between the processor and
the timer. The processor is a master on the ahb bus and the communication must go through
the bridge to reach the timer attached to the apb bus. Such a communication covers all the
aspects of our research interests like functioning of arbiter and bridge (for this section), and
functioning of timers (discussed in context of field-address mappings in the previous chapter).

The apb bridge interfaces the ahb to the apb and converts system bus transfers into
apb transfers. It buffers address, control, and data from the ahb, drives the apb peripherals
and returns data or response signals to the ahb. On a data transfer request, it decodes the
address using an internal address map and generates a peripheral select, pselx. Only one
select signal can be active during a transfer. Then the bridge drives the data onto the apb
for a write transfer or in case of read transfer it drives the apb data onto the system bus.
amba specification does not force to implement specific design for apb bridges, and there
are many variants of the apb bridge present in the industry. For our research work, the ip
implementation from the Gaisler Research1, is designed to operate when the apb and ahb
clocks have the same frequency and phase. There are some other design variants also (but
we do not have their code) where there are two clock domains in the apb bridge (hclk and
pclk) for the two buses. This bridge does not perform any alignment of the data, but transfers
data from the ahb to the apb for write cycles and from the apb to the ahb for read cycles.
For the actual read/write operations, apb bridge generates a timing strobe penable for the
read/write clock cycles.
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HSEL
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HADDR
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PENABLE
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PADDR
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Figure 8.15: apb Bridge Low-level Architecture

1www.gaisler.com
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Figure 8.15 shows structural description of the bridge. apb bridge acts as a slave for the ahb
bus with the ahb side interface signals denoted as Hxxx. For the apb bus, it acts as a master
with the interface signals denoted as Pxxx. The initiation of a data transfer starts when the
ahb arbiter selects (signal hsel of) the bridge to indicate a possible data transfer. The bridge
then decodes the address available from haddr and select the corresponding apb slave. There
can be as many as 16 apb slaves for the Gaisler’s bridge implementation. On write transactions,
the apb bridge provides the select (psel), enable (penable), write control (pwrite), address
(paddr), and data (pwdata) to the targeted peripheral. On read transactions, it multiplexes
the targeted peripheral’s data (prdatax) to the ahb hrdata. The bridge also returns the
signal hready back to the ahb master to indicate that it has completed the apb transaction
and the slave is ready for the next transaction.

T1 T2 T3 T4 T5 T6

HADDR
HWRITE

HWDATA
HREADY

PADDR
PWRITE

PSEL
PENABLE
PWDATA

Addr 1

Data 1

Addr 1

Data 1

Figure 8.16: APB Bridge Single Write Operation

As per the amba Bus Specification [ARM99], the apb bridge implementation must contain
two buffer registers to store the address (and data) for the next transaction (read or write)
while performing the current read/write operation. Figure 8.16 shows a sample single write
operation as proposed by the amba specification. The signal hready turns low when the buffer
is full, informing the ahb master to pause the transfer. When one operation is performed
and one address can be discarded, the signal hready goes high again. To illustrate our
approach of using ccsl observers for property checking, we have focused on this aspect of the
communication.

Gaisler’s Leon II example is a running practical example consisting of multiple vhdl mod-
ules at different hierarchical levels. It is freely available from the Gaisler’s site2. The description
of the functioning of these modules is given in the Gaisler’s ip cores user’s manual [Aer09].
To understand how to run this project in ModelSim tool (on both Windows and Linux) is
explained in the Gaisler’s ip library user’s manual [GHC09]. For most of the modules like
that of the processor or ram, we leave them intact and will focus on the modules of our in-
terest only. The most important module in the whole architecture is the mcore module which
groups and instantiates all other important modules. It contains the module representing the
ahb to apb bridge called apbmst. Moreover, it contains the module ambacomp (short for

2http://www.gaisler.com/cms/index.php?option=com content&task=view&id=156&Itemid=104
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amba components) which gathers the definition headers of the components instantiated in the
system.

8.4.2 Applying CCSL Constraints

As we know, ccsl constraints can specify selected temporal behaviors of a system. What is
the criteria of selection of those properties depends upon the relationship of different signals.
This has been explained earlier using the example of Bus Request and Bus Grant signals which
alternate with each other. In this sub-section, first we introduce adaptors for the signals used
from the apb bridge. Then, we explain the selection and use of some constraints applied to
the apb bridge.

Adaptors

Table 8.1 shows the signals that we use in our constraints. The signal names are complex and
also refer to the component instance they belong to. Signal hsel that we use for observation
is an input signal of the second slave module (ahbsi(1)) of ahb bus (which is apb bridge).
Similarly, signal penable is the output of apb bridge connected to the sixth slave module
(apbi(5)) of the apb bus (which is timers module). For the ease of use, in the text further,
we will use the short form of signals names that we introduced.

Signal Name Used Actual Design Signal Description

clk clk System Clock.
hsel ahbsi(1).hsel Select probe of the ahb Bridge.
hselD hsel delayed for 1 instant.
hselD2 hsel delayed for 2 instants.
invhready ahbso(1).hready Ready signal falling edge used.
penable apbi(5).penable Signal showing transaction cycles on apb.
penableD2 penable delayed for 2 instants.

Table 8.1: Mapping of signal notation used to the actual design signal.

To convert these vhdl signals into c-clocks, we use the rising clock edge policy except for
the hready signal, which we will explain later. The time duration EPSILON of the c-clock

pulses is preferably 1 femto second, but as the vhdl simulator we use (viz. ModelSim) does not
allow such a value, we use 1 nanosecond instead. The instantiations of the adaptor modules
are given next. We describe their use, in the next sub-sections.

i R i s i n g c l k : Ccs l A r i s ingEdge
port map ( a=>c lk , c a=>c c l k ) ;

i R i s i n g h s e l : Ccs l A r i s ingEdge
port map ( a=>ahbs i ( 1 ) . hse l , c a=>c h s e l ) ;

i R i s i n g p e n a b l e : Ccs l A r i s ingEdge
port map ( a=>apbi ( 5 ) . penable , c a=>c penab le ) ;

i F a l l i n g h r e a d y : Cc s l A fa l l i ngEdge
port map ( a=>ahbso ( 1 ) . hready , c a=>c invhready ) ;
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Constraint 1

The first ccsl constraint is a simple one and verifies that any apb bridge transaction on the
apb bus is always as a result of a transaction command from the ahb bus. Thus, it tests that
the signal hsel always strictly precedes the output signal penable. We could not use the
psel signal as psel is unique for each apb slave device. Contrarily, the penable signal is not
specific to one slave, and is always functional whenever there is a transaction call (hsel) on
the bridge. We test the property relation of equation 8.1.

hsel ≺ penable (8.1)

To check this property, we input c-clocks c hsel and c penable to the precedence ob-
server instantiated in the mcore main module of Leon II Architecture.

c s t r 1 1 s p r e c e d e s : Cc s l R s p r e c ede s
port map ( c a=>c h s e l , c b=>c penable , v=>v1 ) ;

Where v1 is a local bit signal defined to trace the violation occurred. Here note that
in the equation we use ccsl clocks hsel and penable while in the vhdl programming, we
use the implementation equivalent of those clocks i.e.,c hsel and c penable respectively.
This nomenclature for ccsl is used through out the presented research efforts and are used
reciprocally in the text.

Constraint 2

Second property that we verify is also related to the hsel and penable signals. It ensures
that before the current transaction is completed, at most one new request can be sent by the
ahb bus master. This constraint is as per the amba specification of apb bridge. It is to ensure
that the master module does not overflow the apb bridge with chunk of data. This property
is not meant for burst mode transfers, as that would be a violation of this property. Gaisler’s
Leon 2 Bridge implementation also does not support burst mode for data transfer. Stated in
another way, any instant i of penable output signal must always precede the instant i+ 2 of
hsel input signal, as represented in equation 8.2.

penable ≺
(
hsel H 0b00(1)

)
(8.2)

This constraint 8.2 can be split into two sub-constraints 8.3 and 8.4.

hselD2 =
(
hsel H 0b00(1)

)
(8.3)

penable ≺ hselD2 (8.4)

These two constraints can then be implemented using a filter generator and a precedence
observer module. Here first we created a delayed version of the hsel signal denoted by a local
clock c hselD2 using the filter generation function with an initial pattern ’00’ and the periodic
pattern ’1’. Later, this delayed version of the original clock is compared with the penable
clock for a strict precedence relation.

c s t r 2 1 f i l t e r : C c s l E f i l t e r
generic map ( i n i t=>"00" , pe r iod=>"1" )
port map ( c sup=>c h s e l , c sub=>c hse lD2 ) ;

c s t r 2 2 s p r e c e d e s : Cc s l R s p r e c ede s
port map ( c a=>c penable , c b=>c hselD2 , v=>v2 ) ;



158 CHAPTER 8. VERIFICATION AND TESTBENCHES

Note that the constraint 8.2 is a loose constraint which only checks for the flooding of
data caused by the ahb master. This constraint is not effective to check if the buffer size
implementation is less than two. This is the case with Gaisler’s Leon II implementation which
has a smaller internal buffer size but successfully passes this constraint verification. The next
constraint gives a more strict version of this property.

Constraint 3

Considering the previous two constraints 8.1 and 8.2 together, they specify the property that

∀i ∈ N?, hsel[i] ≺ penable[i] ≺ hsel[i+ 2] (8.5)

This is a typical producer-consumer relationship with a bounded buffer of capacity 2. As
discussed before this property is a loosely bound property and a more relevant property is the
saturation of the buffer. We would like a signal full to be emitted whenever the buffet gets
saturated. This can be expressed as full =

(
#hsel = #penable + 2

)
, where #s stands for

the number of occurrences of s since the origin of the execution. Unfortunately, there is no
direct specification of this behavior in ccsl. We have to use a combination of ccsl expressions
and relations. Figure 8.17 represents a possible evolution of the system when only hsel and
penable are observed. All the allowed trajectories (i.e.,respecting constraint 8.5) are confined
to a strip limited by two parallel lines. Whenever the trajectory touches the lower line, the
buffer is full. We have distinguished two points a and b on a possible trajectory:

Point #HSEL #PENABLE full
a 4 3 false
b 5 3 true

# HSEL

# PENABLE

full

empty

1

1

a

b

0

Figure 8.17: A possible evolution.

On this figure, we may see that the buffer gets full whenever hsel[i+1] ≺ penable[i]. This
is the case at point b where the index of HSEL is 5, and the ‘still to occur’ index of PENABLE is
(or more exactly, will be) 4. Hence, we can reformulate the saturation of the buffer in terms
of logical clocks as:

∀j ∈ N?,∃k ∈ N?,
(
hsel[j + 1] ≺ penable[j]

)
⇒
(
full[k] ≡ hsel[j + 1]

)
(8.6)

We create new local c-clocks: hselD (hsel delayed for 1 instant), and first (the first to
occur between hselD and penable at the same index). These c-clocks are characterized by
the following mathematical expressions:
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∀k ∈ N?, hselD[k] ≡ hsel[k + 1] (8.7)

∀k ∈ N?, first[k] ≡

{
hselD[k] if hselD[k] 4 penable[k],

penable[k] otherwise.
(8.8)

The ccsl transcription in terms of clock constraints are

hselD =
(
hsel H 0b0(1)

)
(8.9)

first =
(
hselD ∧ penable

)
(8.10)

full =
(
first − penable

)
(8.11)

Clock constraint 8.11 keeps only the instants of first that are not coincident with an
instant of penable. This reflects the fact that whenever first and penable tick in coincidence,
the difference #hsel −#penable is unchanged, and therefore full cannot tick.

The equations 8.9, 8.10, and 8.11 can also be termed as the verification of the internal buffer
size property checking of the apb bridge. Based on the status full of the buffer, we can check
the hready signal of the apb bridge to see if it reflects the internal status properly (i.e.,busy
only when buffer is full), just as in equation 8.12. For this purpose, we introduce the inverse
of hready signal (falling edge event of hready) in ccsl represented by clock invhready. We
can then compare this clock invhready with the clock full. The adaptor for hready signal
is given before in the sub-section related to adaptors.

invhready = full (8.12)

« adaptor »
risingEdge

« generator »
filter

(( 0 0(1)) )invhready hsel b penable penable∧ −= ▼

APB 
Bridge

HSEL

HREADY

PENABLE

0b0(1)

« generator »
inf

« generator »
minus

« observer »
equal v3

Testbench

input-only 
passive 

interfaces

c_hsel

c_first

c_fullD

c_penable

c_invhready

« generator »
delay

c_hselD

c_full

CLK
c_clk

1

« adaptor »
risingEdge

« adaptor »
risingEdge

« adaptor »
fallingEdge

Figure 8.18: Functioning of VHDL Observer based Testbench.
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All this working of the testbench based on the observers created in vhdl is shown in
figure 8.18. One thing to note regarding all these constraints is that all the data/control clocks
are the sub-clock of the system master clock clk. This information is omitted in the testbench
figure but has to be kept in mind. In the figure 8.18, the filter pattern determines the size of
the buffer to be checked. Here the buffer size is considered to be two (filter pattern 0b0(1)).
The vhdl implementation of these set of constraints is given next.

c s t r 3 1 f i l t e r : C c s l E f i l t e r
generic map ( i n i t=>"0" , pe r iod=>"1" )
port map ( c sup=>c h s e l , c sub=>c hse lD ) ;

c s t r 3 2 i n f : C c s l E i n f
port map ( c a=>c hselD , c b=>c penable , c c=>c f i r s t ) ;

c s t r33 minus : Ccsl E minus
port map ( c a=>c f i r s t , c b=>c penable , c c=>c f u l l ) ;

c s t r 3 4 d e l a y : Ccs l E de lay
generic map (n=>1)
port map ( c a=>c f u l l , c b=>c c l k , c c=>c f u l l D ) ;

c s t r 3 5 e q u a l : Ccs l R equa l
port map ( c a=>c fu l lD , c b=>c invhready , v=>v3 ) ;

Before testing our constraints in the vhdl environment, we simulate it in the Eclipse based
ccsl simulator (timesquare). One possible result of the simulation of our third constraint is
shown in figure 8.19. In this figure, we test for the buffer being of size two. Whenever the clock
full event occurs, the next event of hready is not present. In this way, through simulation,
when once we have some confidence in our constraints and applied logic, we move to the vhdl
implementation. Such a practice also saves time and effort for us.

clk

hsel

penable

full

hready

0# items 1 1 1 1 1 21 1 1 1 2 1

1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.19: Sample Execution of Constraint 3 on CCSL Simulator

For the case of buffer size of one, hsel has not to be delayed, so equations 8.9 to 8.12
reduces to equation 8.13.

invhready =
(
hsel ∧ penable

)
− penable (8.13)

While working with the Gaisler’s Leon II architecture platform, we noticed that the test
for equation 8.12 failed for his apb bridge implementation whereas it worked well for the equa-
tion 8.13. This showed that he did not complied fully with the amba specification regarding
the bridge implementation. This ip may function well in their system, but for other systems it
can have different results. This anomalous behavior, against the norms specified in the amba
specification, is shown as ‘v3’ in the figure 8.20. In this figure, the invhready clock shows that
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the buffer is full whereas our calculation of buffer (clock fullD) does not show any such signs
and hence causes a violation (v3). When the buffer size ‘1’ is considered, then our calculations
match the actual results.

Violation v3 full and 
hready does not match

Figure 8.20: Simulation showing Specification Violation of Bridge IP Behavior.

Constraint 4

The first three constraints were interrelated and starting from a basic constraint, we built a
complex relation to check the buffer size of apb bridge. Here our last ccsl constraint is relative
to penable signal. In apb bus protocol, each single write operation on the apb bus takes at
least two clock cycles. The psel signal is high for both the write clock cycles, while penable
is high for one cycle only. Hence, we can verify this feature that the penable signal can never
go high in less than two clock cycles. This is to ensure that the minimum delay of two cycles
between the consecutive occurrences of penable is present, as stated in equation 8.14.

penable ∼ (penable ( 2 ) clk) (8.14)

Here the signal of our interest are clk and penable. For this property verification, initially
a delayed version of penable signal called c penableD2 is created. Later on this local signal
is tested for alternate occurrences with the penable signal. Hence our preceding constraint
can be divided into two sub-constraints of equations 8.15 and 8.16.

penableD2 =
(
penable ( 2 ) clk

)
(8.15)

penable ∼ penableD2 (8.16)

Finally the vhdl implementation of these equations is quite straight-forward.

c s t r 4 1 d e l a y : Ccs l E de lay
generic map (n=>2)
port map ( c a=>c penable , c b=>c c l k , c c=>c penableD2 ) ;

c s t r 4 2 s a l t e r n a t e s : C c s l R s a l t e r n a t e s
port map ( c a=>c penable , c b=>c penableD2 , v=>v4 ) ;
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Summary

In this section, we viewed the practical implementation of ccsl constraints through observers
created in vhdl. We also visualized the use of these observer constructs to create complex
testbenches. Moreover, we also analyzed our results obtained from simulation in timesquare
ccsl compiler and the ModelSim vhdl. This section provided concrete examples to support
our concepts established earlier.

8.5 Conclusion

Early validation of systems built by assembling components requires to associate abstract be-
havioral and timing models with ips. In this chapter, ccsl is proposed as an alternative for
the representation of time properties at a high abstraction level. The ccsl description acts as
a specification of timing requirements for ip-xact components as waveforms and timing dia-
grams do in the paper datasheets. We also show how this specification can be used to generate
testbenches of valid scenarios that must be satisfied by the component implementations what-
ever their level of abstraction and the language used is. Generating testbenches for models
at various abstraction levels from the same formal specification is an important step towards
establishing the equivalence, or at least the consistency of rtl and tlm implementations.



Chapter 9

Conclusion

9.1 Contributions

The objective of this thesis was to understand how the new technology driven engineering mod-
els could provide solutions for increased productivity, design integration, and interoperability
of system-on-chips, from both structural and functional view points. The first part of this
manuscript summarizes the reasoning that motivated our work. Discussions in the chapters 2
and 3 related to esl design and mde highlight the need for some glue approach between in-
dustrial ip implementations and uml-based abstract design approaches. In the later chapters,
our contribution focuses on a few main points:

� Definition of the uml profile for ip-xact that provides a junction between the marte
profile and the ip-xact standard for ip reuse, integration and interoperability.

� Application of this profile through mde techniques, enabling automation of uml models
and making possible the integration of a uml design flow with the industrial standard
for the structural assimilation of ips i.e.,ip-xact. Later we show the use of this profile
over the practical application of Leon II architecture and demonstrate design automation
(model to model transformation) techniques to generate ip-xact files.

� Proposition of an approach to express and verify time-related functionalities of ips using
ccsl observers.

The benefits of the concepts of carrying ip-xact in uml are many. Firstly, the uml is more
and more used in the industry both for general-purpose and for domain-specific modeling
(through the use of dedicated profiles). Thus the integration of uml models with ip-xact
specifications enables the utilization of a wide variety of uml tools, encouraging its exploitation
without considering to invest into specialized tools for ip-xact. The export of uml-based ip
components to the ip-xact design promotes the exchange of components with third party
vendors and their better integration into the industrial cad tools.

uml models are much more adequate for human processing than ip-xact xml files. Here,
uml with our profile defined in chapter 6 allows the use of uml models as input for building ip-
xact specifications. The application of uml in the process of identification and interconnection
of components guarantees the compatibility of various components used.

From our case study of Leon II based system, we saw a huge difference between the levels of
complexity of the ip-xact description of those components and that of uml. The information
present in the uml models is well organized and graphical. Moreover, this model information
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is not scattered as is the case with ip-xact. The elevation of the level of abstraction for the
system design (from ip-xact to uml) allows the system designers to focus more on the analysis
phase of the design-flow. Also, it provides a bridge between the high-level modeling (focusing
on concepts) and the low-level modeling (mostly focusing on the implementation issues).

In the framework of a collaboration of the aoste team within the cimpaca design plat-
form1, we had the opportunity to test our work with the industrial tools bought by cimpaca.
Firstly, we used the coreTools from Synopsys for our experimentation. We imported our Leon
II ip-xact files generated from uml with the coreAssembler tool from Synopsys. This tool
is used for the integration of ips and works with both the ips created with the coreBuilder
tool and any other third party ip. It works only with the ips at the rtl level. Our ips were
well imported and integrated in the coreAssembler with other components without any issue.
For the tlm level ip implementations, we successfully tested our generated ips with another
Synopsys tool, Innovator. With the successful integration with these Synopsys tools, it is
easier and much attractive to take advantage of Synopsys Design-ware System Level Library
(dw-sll) for modeling systems at abstract levels.

In chapters 7 and 8, we have compared various formalisms to define an abstract timed
model for ips. We started by an enumeration of alternative implementations of our running
example at different abstraction levels. The expressivity of Esterel and the use of logical clocks
appeared as the best match for the abstract behavior representation. ccsl time model brings
polychronous logical clocks into uml (via marte) and we then proposed to complement the
structural description with a ccsl specification of ip time properties. The ccsl specification
is then used to verify that the time properties hold on candidate implementations of ip-xact
components. For this purpose, we have built a library of vhdl observers for each and every
ccsl constraint. The use of those observers is illustrated on a vhdl implementation of a
Leon II-based architecture. In the same way that paper datasheets come with waveforms
or timing diagrams to describe the expected time behavior of ips, we think that ip-xact
specifications should come with an equivalent representation. Using uml marte as a front-
end for ip specification allows the use of ccsl for specifying classical physical-time properties
(thus replacing waveforms) but also more logical time properties, thus widening the field of
properties that can be expressed. ccsl specification being part of the model opens possibilities
for various analysis that must be further explored in future works.

9.2 Future works

Using the marte profile we have presented our approach to represent ip-xact models in uml.
These models are transformed into ip-xact using the atl language. ip-xact as a whole is
a huge standard covering almost every aspect of modeling an esl design. There is need for
constant efforts to improve the transformation process as well as the representation mechanisms
in uml. Recently, similar model transformation efforts have been done in the framework of
id-tlm project including the model transformation from ip-xact to uml models.

For the functional aspects of ip integration, we introduced logical clocks and clock con-
straints expressed in ccsl. A technique of verification of temporal properties using observers
was proposed. This work has been done at the rtl level using vhdl. Now for the future,
we need rtl and tlm or any other candidate implementation to verify the same set of time
constraints expressed by ccsl description. So, implementing observers for the tlm level,
preferably in systemc, may be a short term development task.

Another aspect to explore regarding the ccsl observers is of the role of transactors and their
effect on observers. As we discussed before in section 8.2.1 on page 138, for the equivalence

1https://ssl.arcsis.org/cimpaca.html
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checking of ip implementations, the ccsl observers need the same interfaces. At different
abstraction levels (like rtl, tlm) we have different types of interfaces and hence transactors
prove to be of vital role. However, it will be necessary to clarify the role of transactors on the
use of ccsl observers and their effect on the time properties of an ip.

Finally, in sub-section 8.4.2 we have seen the creation of some testbenches based on prop-
erties extracted from the data sheet specification of an ip. Some of the properties are simple
while others are constituted of a complex network of generators and observers. For future,
it can be a great effort to create a library of such properties like maximum jitter, delay on
output, buffer size to verify on the ips. These properties are quite universal in their nature
and with little or no modification, should work for most ips. In fact this will be an important
contribution as ccsl and its observers will be more effective with such a library.



166 CHAPTER 9. CONCLUSION



Appendices

167





Appendix A

Acronyms, abbreviations and
definitions

A.1 Electronic systems

The following list gives a short description of the acronyms, abbreviations and definitions used
throughout this report, together with their explanation.

Term Description

ARM Acorn RISC Machines (Company)
AMBA Advanced Microprocessor Bus Architecture
AHB Advanced High-speed Bus
ASB Advanced System Bus
APB Advanced Peripheral Bus
SPARC Scalable Processor ARChitecture
DSP Digital Signal Processor
DMA Direct Memory Access
UART Universal Asynchronous Receiver-Transmitter
DUT Design under Test
SSM Safe State Machine
FSM Finite State Machine
FPGA Field Programmable Gate Array
ASIC Application-Specific Integrated Circuit
VHSIC Very High-Speed Integrated Circuit
VHDL VHSIC Hardware Description Language
SPRINT Open SoC Design Platform for Reuse and Integration of IPs
MOCC Model of Computation and Communication
DE Design Environment
EDA Electronic Design Automation
ESL Electronic System Level
ESD Electronic System Design
MDE Model-Driven Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
SLD System Level Design
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Term Description

CAD Computer Aided Design
TTM Time to Market
SPT Schedulability, Performance and Time (Profile)
ADL Architecture Description Language
HDL Hardware Description Language
API Application Program Interface
NFP Non-Functional Properties
LAU Least Addressable Unit (of memory)
OSCI Open SystemC Initiative
PV Programmers View
PVT Programmers View with Timing
RTL Register Transfer Level
SoC System-on-a-Chip
IC Integrated Circuit
CIMPACA Centre Intégré de Microélectronique Provence-Alpes-Côte d’Azur
SPIRIT Structure for Packaging, Integrating and Re-using IP

within Tool flows
IP-XACT Standard proposed by SPIRIT Consortium
TLM Transaction-Level Modeling
UTF Untimed Functional Models
CP Communicating Processes
CPT Communicating Processes with Time
BCA Bus Cycle Accurate
CA Cycle Accurate
CC Cycle-Callable
VLNV Vendor Library Name Version
ATL ATLAS Transformation Language
XSLT XSL Transform
XML eXtensible Markup Language
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A.2 CCSL symbols

Mathematical symbols

Symbol Meaning
N the set of the natural numbers: 0, 1, 2, · · ·
N? the set of the natural numbers without 0: 1, 2, · · ·

Discrete clocks

Notation Meaning
c[k]for k ∈ N? kth instant of clock c

Instant relations

Notation Meaning
i ≡ j Instant i coincides with instant j
i ≺ j Instant i strictly precedes instant j
i 4 j Instant i (non strictly) precedes instant j
i # j Instant i and instant j are not coincident

Clock relations

Notation Meaning

a = b clock a and b are synchronous

a # b clock a and b are exclusive

a ⊂ b clock a is a sub-clock of clock b

a ≺ b clock a strictly precedes clock b

a 4 b clock a (non strictly) precedes clock b

a ∼ b clock a (strictly) alternates with clock b
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Appendix B

Acquisition System Codes

B.1 Esterel code

Interfaces

data ApplTypes :
type Data t = unsigned <[8]>;
type Addr t = unsigned <[16]>;

end data

interface AcqT :
extends ApplTypes ;
input Value : Data t ;
output Sample ;

end interface

interface CommonT:
extends ApplTypes ;
output Data : Data t ;
output Addr : Addr t ;

end interface

interface MSaveT :
extends CommonT;
input Grant , Done ;
output Breq ;

end interface

interface SSaveT :
extends mirror CommonT;
input Se l ;

end interface

Sensor

module Sensor :
extends ApplTypes ;
port S A : mirror AcqT ;
input Val : value Data t ; // `` phys i ca l ' ' va lue

loop
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await S A . Sample ;
await 3 tick ; // s imu la t e s an a c q u i s i t i o n
emit ?S A . Value <= ?Val

end loop
end module

Processor

module Proces sor :
extends ApplTypes ;
function DetermineAddr ( Data t ) : Addr t ;
input StartAcq , StartW ;
port M A: AcqT ;
port M B: MSaveT ;

// behav ior
loop

await
case StartAcq do

emit M A. Sample ; // t r i g g e r a new acq
await M A. Value ; // returned va lue

case StartW do
abort

sustain M B. Breq
when M B. Grant ;
// now the bus i s granted : s t o r e data
emit {

?M B. Data <= ?M A. Value ,
?M B. Addr<= DetermineAddr (?M A. Value )

} ;
await M B. Done

end await
end loop

end module

Memory

module Memory :
extends ApplTypes ;
port S B : SSaveT ;

output JustWritten : Data t ; // fo r simul

signal m: Data t in i t 0 in
loop

await S B . Se l ;
// ignore Addr
emit {

?m <= ?S B . Data ,
? JustWritten <= ?m

}
end loop

end signal
end module

Bus

module Bus :
extends ApplTypes ;
port MM 1: mirror MSaveT ;
port MM 2: mirror MSaveT ;
port MS 1 : mirror SSaveT ;
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port MS 2 : mirror SSaveT ;
port MS 3 : mirror SSaveT ;

// behav ior

signal
LData : Data t , LAddr : Addr t , I l l e ga lWhere

in
loop

await
case MM 1. Breq do

pause ;
emit MM 1. Grant ;
pause ;
emit {

?LAddr <= ?MM 1. Addr ,
?LData <= ?MM 1. Data

}
case MM 2. Breq do

pause ;
emit MM 2. Grant ;
pause ;
emit {

?LAddr <= ?MM 2. Addr ,
?LData <= ?MM 2. Data

}
end await ;
i f // emit to which i s concerned

case ?LAddr = 0 do
emit {

MS 1 . Sel ,
?MS 1 . Addr <= ?LAddr ,
?MS 1 . Data <= ?LData

}
case ?LAddr = 1 do

emit {
MS 2 . Sel ,
?MS 2 . Addr <= ?LAddr ,
?MS 2 . Data <= ?LData

}
case ?LAddr = 2 do

emit {
MS 3 . Sel ,
?MS 3 . Addr <= ?LAddr ,
?MS 3 . Data <= ?LData

}
d e f a u l t do

emit I l l e ga lWhere
end i f

end loop
end signal

end module

Application

main module Appl i ca t ion :
extends ApplTypes ;

input StartAcq [ 2 ] , StartW [ 2 ] ; // fo r simul
input EndAcq [ 2 ] , Val [ 2 ] : Data t ; // fo r simul
output JustWritten [ 3 ] : Data t ;
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signal
port SAP [ 2 ] : AcqT ,
port MMP[ 2 ] : MSaveT ,
port MSP[ 3 ] : SSaveT

in
run S1/ Sensor

[
SAP[ 0 ] / S A ,
Val [ 0 ] / Val ,
EndAcq [ 0 ] / EndAcq

]
| |

run S2/ Sensor
[

SAP[ 1 ] / S A ,
Val [ 1 ] / Val ,
EndAcq [ 1 ] / EndAcq

]
| |

run P1/ Proces sor
[

SAP[ 0 ] /M A,
MMP[ 0 ] /M B,
StartAcq [ 0 ] / StartAcq ,
StartW [ 0 ] / StartW

]
| |

run P2/ Proces sor
[

SAP[ 1 ] /M A,
MMP[ 1 ] /M B,
StartAcq [ 1 ] / StartAcq ,
StartW [ 1 ] / StartW

]
| |

run M1/Memory
[

MSP[ 0 ] / S B ,
JustWritten [ 0 ] / JustWritten

]
| |

run M2/Memory
[

MSP[ 1 ] / S B ,
JustWritten [ 1 ] / JustWritten

]
| |

run M3/Memory
[

MSP[ 2 ] / S B ,
JustWritten [ 2 ] / JustWritten

]
| |

run Bus
[

MMP[ 0 ] /MM 1,
MMP[ 1 ] /MM 2,
MSP[ 0 ] / MS 1 ,
MSP[ 1 ] / MS 2 ,
MSP[ 2 ] / MS 3

]
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end signal

end module

B.2 SystemC code

Sensor

sensor.h

#i f n d e f SENSOR H
#d e f i n e SENSOR H

#inc lude <systemc . h>
#inc lude "tlm.h"

#inc lude "pv_slave_base.h"

#inc lude "pv_target_port.h"

#inc lude "types.h"

class s enso r : sc module ,
public pv s lave base< Addr t , Data t >

{
public :

SC HAS PROCESS( s enso r ) ;
s enso r ( sc module name module name ) ;
˜ s enso r ( ) ;
// bus s i d e i n t e r f a c e
pv ta rge t po r t< Addr t , Data t > S A ;

// bus f unc t i on s
tlm : : t lm s ta tu s wr i t e (

const Addr t &addr , const Data t &data ,
const unsigned int byte enab l e = tlm : : NO BE,
const tlm : : tlm mode mode = tlm : :REGULAR,
const unsigned int e x p o r t i d = 0 ) ;

tlm : : t lm s ta tu s read (
const Addr t &addr , Data t &data ,
const unsigned int byte enab l e = tlm : : NO BE,
const tlm : : tlm mode mode = tlm : :REGULAR,
const unsigned int e x p o r t i d = 0 ) ;

private :
Data t lAcq ;

} ;

#e n d i f

sensor.cpp

#inc lude "sensor.h"

s enso r : : s en so r ( sc module name module name ) :
sc module ( module name ) ,
pv s l ave base< Addr t , Data t >(name ( ) ) ,
S A ("S_A" )
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{
S A ( * this ) ;

}

s enso r : : ˜ s enso r ( ) {}

tlm : : t lm s ta tu s s enso r : : read (
const Addr t &addr , Data t &data ,
const unsigned int byte enable ,
const tlm : : tlm mode mode ,
const unsigned int e x p o r t i d )

{
tlm : : t lm s ta tu s s t a t u s ;
cout << s enso r : : name ( ) << "::bevSample()" << endl ;
cout << s enso r : : name ( ) << ": Sample value = " ;
c in >> lAcq ;
cout << s enso r : : name ( ) << ": Data sent to Processor = "

<< lAcq << endl ;
data = lAcq ;
s t a t u s . s e t o k ( ) ;
return s t a t u s ;

}

tlm : : t lm s ta tu s s enso r : : wr i t e (
const Addr t &addr , const Data t &data ,
const unsigned int byte enable ,
const tlm : : tlm mode mode ,
const unsigned int e x p o r t i d )

{
tlm : : t lm s ta tu s s t a t u s ;
s t a t u s . s e t o k ( ) ;
return s t a t u s ;

}

Processor

processor.h

#i f n d e f PROCESSOR H
#d e f i n e PROCESSOR H

#inc lude <systemc . h>
#inc lude "tlm.h"

#inc lude "pv_initiator_port.h"

#inc lude "types.h"

class pr oc e s s o r :
public sc module

{
public :

SC HAS PROCESS( p ro c e s s o r ) ;
p r o c e s s o r ( sc module name module name ) ;
˜ p ro c e s s o r ( ) ;
// bus s i d e i n t e r f a c e
p v i n i t i a t o r p o r t < Addr t , Data t > M A;
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p v i n i t i a t o r p o r t < Addr t , Data t > M B;
sc in<Command t> Star t ;
sc event eSta r t ;

private :
void Compute ( ) ;
Addr t calcAddr ( Data t ) ;
Data t lData ;
Addr t lAddr ;

} ;

#e n d i f

processor.cpp

#inc lude "processor.h"

pro c e s s o r : : p r o c e s s o r ( sc module name module name ) :
sc module ( module name ) ,
M A("M_A" ) ,
M B("M_B" ) ,
S ta r t ("Start" )

{
SCTHREAD(Compute ) ;
}

pro c e s s o r : : ˜ p ro c e s s o r ( ) {}

void pr oc e s s o r : : Compute ( ) {
tlm : : t lm s ta tu s s t a t u s ;
Command t lCmd ;
while (1 ) {

wait ( eS ta r t ) ;
eS ta r t . cance l ( ) ;
wait (SC ZERO TIME ) ;
lCmd = Star t . read ( ) ;
switch ( lCmd)
{
case ACQ: // read sensor

s t a t u s = M A. read (0 , lData ) ; // only 1 address
i f ( s t a t u s . i s o k ( ) ){

cout << pr oc e s s o r : : name ( ) << ": Data Acquired"

<< endl ;
} else {

cout << pr oc e s s o r : : name ( ) << ": Data Acquire Failed"

<< endl ;
}
break ;

case SAVE: // save the va lue conta ined in lData
lAddr = calcAddr ( lData ) ;
s t a t u s = M B. wr i t e ( lAddr , lData ) ;
i f ( s t a t u s . i s o k ( ) ){

cout << pr oc e s s o r : : name ( ) << ": Data Sent" << endl ;
} else {

cout << pr oc e s s o r : : name ( ) << ": Data Sending Failed"
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<< endl ;
}
break ;

}
}

}

Addr t p ro c e s s o r : : calcAddr ( Data t temp ){
i f ( temp < (0x2FFF*5)) // 61435

return ( temp / 5 ) ;
else

return 0x2FFF ;
}

Bus

bus.h

#i f n d e f BUS H
#d e f i n e BUS H

#inc lude <systemc . h>
#inc lude "pv_router.h"

#inc lude "types.h"

// t h i s c l a s s has 2 t a r g e t po r t s and 3 i n i t i a t o r por t s
typedef pv router< Addr t , Data t > b a s i c r o u t e r ;

class bus : public b a s i c r o u t e r
{
public :

bus ( sc module name module name , const char* mapFile ) :
b a s i c r o u t e r ( module name , mapFile ) {}

void e n d o f e l a b o r a t i o n ( ) {
b a s i c r o u t e r : : e n d o f e l a b o r a t i o n ( ) ;
cout << name ( ) << " constructed." << endl ;

}
} ;

#e n d i f

Memory

memory.h

#i f n d e f MEMORY H
#d e f i n e MEMORY H

#inc lude <systemc . h>
#inc lude "tlm.h"

#inc lude "pv_slave_base.h"

#inc lude "pv_target_port.h"

#inc lude "types.h"

class memory : public sc module ,
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public pv s lave base< Addr t , Data t >
{
public :

SC HAS PROCESS(memory ) ;
memory( sc module name module name ) ;
˜memory ( ) ;

// bus s i d e i n t e r f a c e
pv ta rge t po r t< Addr t , Data t > S B ;

// bus f unc t i on s
tlm : : t lm s ta tu s wr i t e (

const Addr t &addr , const Data t &data ,
const unsigned int byte enab l e = tlm : : NO BE,
const tlm : : tlm mode mode = tlm : :REGULAR,
const unsigned int e x p o r t i d = 0 ) ;

tlm : : t lm s ta tu s read (
const Addr t &addr , Data t &data ,
const unsigned int byte enab l e = tlm : : NO BE,
const tlm : : tlm mode mode = tlm : :REGULAR,
const unsigned int e x p o r t i d = 0 ) ;

private :
Data t iMemory [ 0 x1000 ] ;

} ;

#e n d i f

memory.cpp

#inc lude "memory.h"

memory : : memory( sc module name module name ) :
sc module ( module name ) ,
pv s l ave base< Addr t , Data t >(name ( ) ) ,
S B ("S_B" )

{
S B ( * this ) ;

}

memory : : ˜ memory ( ) {
for ( int i =0; i < 0x1000 ; i++) iMemory [ i ]=0;

}

tlm : : t lm s ta tu s memory : : wr i t e (
const Addr t &addr , const Data t &data ,
const unsigned int byte enable ,
const tlm : : tlm mode mode ,
const unsigned int e x p o r t i d )

{
tlm : : t lm s ta tu s s t a t u s ;
p r i n t f ("\%s : Writing DATA = \%x at ADDRESS = \%x \n" ,

memory : : name ( ) , data , addr ) ;
iMemory [ addr ] = data ;
s t a t u s . s e t o k ( ) ;
return s t a t u s ;

}
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tlm : : t lm s ta tu s memory : : read (
const Addr t &addr , Data t &data ,
const unsigned int byte enable ,
const tlm : : tlm mode mode ,
const unsigned int e x p o r t i d )

{
tlm : : t lm s ta tu s s t a t u s ;
data = iMemory [ addr ] ;
p r i n t f ("\%s : Reading DATA = \%x at ADDRESS = \%x \n" ,

memory : : name ( ) , data , addr ) ;
s t a t u s . s e t o k ( ) ;
return s t a t u s ;

}

Top and Other Modules

types.h

#i f n d e f TYPES H
#d e f i n e TYPES H

enum Command t {ACQ, SAVE} ;
typedef unsigned int Addr t ;
typedef unsigned int Data t ;

#e n d i f

bus.map

mytop .umem0 . S B 0000 1000
mytop .umem1 . S B 1000 1000
mytop .umem2 . S B 2000 1000

top.h

#i f n d e f TOP H
#d e f i n e TOP H

#inc lude <systemc . h>
#inc lude "sensor.h"

#inc lude "processor.h"

#inc lude "bus.h"

#inc lude "memory.h"

#inc lude "types.h"

SCMODULE( top )
{
public :

s c s i g n a l <Command t> myStart0 ;
s c s i g n a l <Command t> myStart1 ;

// component in s t ance s
s enso r * i s e n s o r 0 ;
s enso r * i s e n s o r 1 ;
p r o c e s s o r * i p r o c 0 ;
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pr oc e s s o r * i p r o c 1 ;
bus* i b u s ;
memory* i mem 0 ;
memory* i mem 1 ;
memory* i mem 2 ;

SCCTOR( top ) {
// Thread Dec lara t ion
SCTHREAD( S imulat ion ) ;
// i n s t a n t i a t i o n
i s e n s o r 0 = new s enso r ("usensor0" ) ;
i s e n s o r 1 = new s enso r ("usensor1" ) ;
i p r o c 0 = new pro c e s s o r ("uproc0" ) ;
i p r o c 1 = new pro c e s s o r ("uproc1" ) ;
i b u s = new bus ("ubus" ,"bus.map" ) ;
i mem 0 = new memory("umem0" ) ;
i mem 1 = new memory("umem1" ) ;
i mem 2 = new memory("umem2" ) ;

cout<< "Instantiated..." << endl ;

// In t e r f a c e Binding
i p r o c 0−>Star t ( myStart0 ) ;
i p r o c 1−>Star t ( myStart1 ) ;

i p r o c 0−>M A( i s e n s o r 0−>S A ) ;
i p r o c 1−>M A( i s e n s o r 1−>S A ) ;

i p r o c 0−>M B( i bus−>t a r g e t p o r t ) ;
i p r o c 1−>M B( i bus−>t a r g e t p o r t ) ;

i bus−> i n i t i a t o r p o r t ( i mem 0−>S B ) ;
i bus−> i n i t i a t o r p o r t ( i mem 1−>S B ) ;
i bus−> i n i t i a t o r p o r t ( i mem 2−>S B ) ;

cout<< "Ports Binding done!" << endl ;
}

˜ top ( ) {
delete i s e n s o r 0 ;
delete i s e n s o r 1 ;
delete i p r o c 0 ;
delete i p r o c 1 ;
delete i b u s ;
delete i mem 0 ;
delete i mem 1 ;
delete i mem 2 ;

}

void Simulat ion ( ) {
// S ta r t S imulat ion
wait (50 ,SC NS) ;

// System Reset
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cout << endl << "@Top: Resetting System at time "

<< sc t ime stamp ( ) << endl << endl ;
// System I n i t i a l i z e
cout<< " start0 = ACQ " << endl ;
myStart0 . wr i t e (ACQ) ; i p r o c 0−>eSta r t . notify ( ) ;
cout<< " start1 = ACQ " << endl ;
myStart1 . wr i t e (ACQ) ; i p r o c 1−>eSta r t . notify ( ) ;
wait (50 ,SC NS) ;

cout<< " start0 = SAVE " << endl ;
myStart0 . wr i t e (SAVE) ; i p r o c 0−>eSta r t . notify ( ) ;
cout<< " start1 = SAVE " << endl ;
myStart1 . wr i t e (SAVE) ; i p r o c 1−>eSta r t . notify ( ) ;
wait (50 ,SC NS) ;

}

} ;

#e n d i f

top.cpp

#inc lude "top.h"

int sc main ( int argc , char ** argv )
{

top mytop ("mytop" ) ;

s c s t a r t (10000 ,SC NS) ;
cout << "@Top: Simulation ended at ... "

<< sc t ime stamp ( ) << endl ;
system ("pause" ) ;

return 0 ;
}
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CCSL and VHDL Observers

Package Ccsl i s
constant EPSILON: Time ;

end Ccsl ;

Package body Ccsl i s
−− the sma l l e s t dura t ion as p o s s i b l e
constant EPSILON: Time:= 1 f s ;

end Ccsl ;

C.1 Adaptors

Rising edge adaptor

entity Ccs l A r i s ingEdge i s
port (

a : in s t d l o g i c ;
c a : out b i t := ' 0 ' ) ;

end entity Ccs l A r i s ingEdge ;

architecture Ccs l A r i s ingEdge a r ch of Ccs l A r i s ingEdge i s
begin

process
begin

wait until r i s i n g e d g e ( a ) ;
c a <= '1 ' , '0 ' after EPSILON;

end process ;
end Ccs l A r i s ingEdge a r ch ;

Falling edge adaptor

entity Ccs l A fa l l i ngEdge i s
port (

a : in s t d l o g i c ;
c a : out b i t := ' 0 ' ) ;

end entity Ccs l A r i s ingEdge ;

architecture C c s l A f a l l i n g E d g e a r c h of Ccs l A fa l l i ngEdge i s

185
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begin
process
begin

wait until f a l l i n g e d g e ( a ) ;
c a <= '1 ' , '0 ' after EPSILON;

end process ;
end C c s l A f a l l i n g E d g e a r c h ;

C.2 Observers

Equality

entity Ccs l R equa l i s
port (

c a , c b : in b i t ;
v : out b i t := ' 0 ' ) ;

end entity Ccs l R equa l ;

architecture Ccs l R equa l a r ch of Ccs l R equa l i s
begin

postponed v <= not ( c a xnor c b ) ;
end architecture Ccs l R equa l a r ch ;

Exclusion

entity C c s l R e x c l u s i v e i s
port (

c a , c b : in b i t ;
v : out b i t := ' 0 ' ) ;

end entity Ccs l R equa l ;

architecture C c s l R e x c l u s i v e a r c h of C c s l R e x c l u s i v e i s
begin

postponed v <= c a and c b ;
end architecture C c s l R e x c l u s i v e a r c h ;

Subclocking

entity Ccs l R subc lock i s
port (

c a , c b : in b i t ;
v : out b i t := ' 0 ' ) ;

end entity Ccs l R subc lock ;

architecture Ccs l R subc lock arch of Ccs l R subc lock i s
begin

postponed v <= c a and not ( c b ) ;
end architecture Ccs l R subc lock arch ;

(non strict) precedence

entity Ccs l R precedes i s
port (

c a , c b : in b i t ;
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v : out b i t := ' 0 ' ) ;
end entity Ccs l R precedes ;

architecture Ccs l R precede s a r ch of Ccs l R precedes i s
signal d : i n t e g e r := 0 ;

begin
process ( c a , c b )

variable c : i n t e g e r := 0 ;
begin
−− i gnore now = 0
i f now >= EPSILON then

i f c a ' event and c a = '1 ' then
c := c + 1 ;

end i f ;
i f c b ' event and c b = '1 ' then

c := c − 1 ;
end i f ;
d <= c ;

end i f ;
end process ;

postponed v <= '1 ' when d<0 else ' 0 ' ;
end architecture Ccs l R precede s a r ch ;

strict precedence

entity Ccs l R s p r e c ede s i s
port (

c a , c b : in b i t ;
v : out b i t := ' 0 ' ) ;

end entity Ccs l R s p r e c ede s ;

architecture C c s l R s p r e c e d e s a r c h of Ccs l R s p r e c ede s i s
type S t a t e t i s ( Sz , Sp , Sv , Tp, Tap , Tbp , Tbz , Tabp ) ;
signal State : S t a t e t := Sz ;

begin
process ( c a , c b )

variable d : i n t e g e r := 0 ;
begin
−− i gnore now = 0
i f now >= EPSILON then

case State i s
when Sz =>

i f c b ' event and c b = '1 ' then
−− ˆB
State <= Sv ;

e l s i f c a ' event and c a = '1 ' then
−− ˆA
State <= Tp;

end i f ;
when Tp =>

i f c b ' event and c b = '1 ' then
State <= Sv ;

e l s i f c a ' event and c a = '0 ' then
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d := 1 ;
State <= Sp ;

end i f ;
when Sp =>

i f c a ' event and c a = '1 ' then
i f c b ' event and c b = '1 ' then
−− both ˆA and ˆB
State <= Tabp ;

else
−− ˆA only
d := d + 1 ;
State <= Tap ;

end i f ;
e l s i f c b ' event and c b = '1 ' then
−− ˆB only
i f d > 1 then

d := d − 1 ;
State <= Tbp ;

else −− d = 1
d := 0 ;
State <= Tbz ;

end i f ;
end i f ;

when Tap =>
i f c b ' event and c b = '1 ' then

d := d − 1 ;
State <= Tabp ;

e l s i f c a ' event and c a = '0 ' then
−− next s imu la t i on time
State <= Sp ;

end i f ;
when Tbp =>

i f c a ' event and c a = '1 ' then
d := d + 1 ;
State <= Tabp ;

e l s i f c b ' event and c b = '0 ' then
−− next s imu la t i on time
State <= Sp ;

end i f ;
when Tbz =>

i f c a ' event and c a = '1 ' then
d := 1 ;
State <= Tabp ;

e l s i f c b ' event and c b = '0 ' then
−− next s imu la t i on time
State <= Sz ;

end i f ;
when Tabp =>

i f c a ' event and c a = '0 ' then
−− next s imu la t i on time
State <= Sp ;

end i f ;
when Sv =>

null ; −− t h i s s t a t e i s a s ink
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end case ;
end i f ;

end process ;

postponed v <= '1 ' when State = Sv else ' 0 ' ;
end architecture C c s l R s p r e c e d e s a r c h ;

strict alternation

entity C c s l R s a l t e r n a t e s i s
port (

c a , c b : in b i t ;
v : out b i t := ' 0 ' ) ;

end entity C c s l R s a l t e r n a t e s ;

architecture C c s l R s a l t e r n a t e s a r c h of C c s l R s a l t e r n a t e s i s
type S t a t e t i s ( S0 , S1 , Sv , T01 , T10 ) ;
signal State : S t a t e t := S0 ;

begin
process ( c a , c b )
begin
−− i gnore now = 0
i f now >= EPSILON then

case State i s
when S0 =>

i f c b ' event and c b = '1 ' then
State <= Sv ;

e l s i f c a ' event and c a = '1 ' then
State <= T01 ;

end i f ;
when S1 =>

i f c a ' event and c a = '1 ' then
State <= Sv ;

e l s i f c b ' event and c b = '1 ' then
State <= T10 ;

end i f ;
when Sv =>

null ; −− t h i s s t a t e i s a s ink
when T01 =>

i f c b ' event and c b = '1 ' then
State <= Sv ;

e l s i f c a ' event and c a = '0 ' then
−− next s imu la t i on time
State <= S1 ;

end i f ;
when T10 =>

i f c a ' event and c a = '1 ' then
State <= Sv ;

e l s i f c b ' event and c b = '0 ' then
−− next s imu la t i on time
State <= S0 ;

end i f ;
end case ;

end i f ;
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end process ;

postponed v <= '1 ' when State = Sv else ' 0 ' ;
end architecture C c s l R s a l t e r n a t e s a r c h ;

C.3 Generators

inf

entity C c s l E i n f i s
port (

c a , c b : in b i t ;
c c : out b i t := ' 0 ' ) ;

end entity C c s l E i n f ;

architecture C c s l E i n f a r c h of C c s l E i n f i s
signal cnta : i n t e g e r := 0 ;
signal cntb : i n t e g e r := 0 ;
signal cntc : i n t e g e r := 0 ;
signal do c : b i t := ' 0 ' ;

begin
process ( c a , c b , do c )
begin
−− i gnore now = 0
i f now >= EPSILON then

i f c a ' event and c a = '1 ' then
cnta <= cnta +1;
i f cnta = cntc then

do c <= ' 1 ' ;
end i f ;

end i f ;
i f c b ' event and c b = '1 ' then

cntb <= cntb + 1 ;
i f cntb = cntc then

do c <= ' 1 ' ;
end i f ;

end i f ;
i f do c ' event and do c = '1 ' then

c c <= '1 ' , '0 ' after EPSILON;
cntc <= cntc + 1 ;
do c <= '0 ' after EPSILON;

end i f ;
end i f ;

end process ;
end architecture C c s l E i n f a r c h ;

delayedFor

entity Ccs l E de lay i s
generic (n : p o s i t i v e := 3 ) ;
port (

c a , c b : in b i t ;
c c : out b i t := ' 0 ' ) ;

end Ccs l E de lay ;
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architecture Ccs l E de l ay a r ch of Ccs l E de lay i s
type S t a t e t i s ( S0 , Sa , Sb , Sab ) ;
signal State : S t a t e t := S0 ;
signal bu f f : b i t v e c t o r ( ( n−1) downto 0) :=( others => '0 ');

begin
process ( c a , c b )
begin
−− i gnore now = 0
i f now >= EPSILON then

case State i s
when S0 =>

i f c b ' event and c b = '1 ' then
i f bu f f (0 ) = '1 ' then

c c <= '1 ' , '0 ' after EPSILON;
end i f ;
i f c a ' event and c a = '1 ' then

State <= Sab ;
else

State <= Sb ;
end i f ;

e l s i f c a ' event and c a = '1 ' then
State <= Sa ;

end i f ;
when Sa =>

i f c b ' event and c b = '1 ' then
i f bu f f (0 ) = '1 ' then

c c <= '1 ' , '0 ' after EPSILON;
end i f ;
State <= Sab ;

e l s i f c a ' event and c a = '0 ' then
−− next i n s t an t
State <= S0 ;
−− memorize t r i g g e r
bu f f (n−1)<= ' 1 ' ;

end i f ;
when Sb =>

i f c a ' event and c a = '1 ' then
State <= Sab ;

e l s i f c b ' event and c b = '0 ' then
−− next i n s t an t
State <= S0 ;
−− s h i f t w i thou t memorizing
i f n > 1 then

bu f f ( ( n−2) downto 0)<= buf f ( ( n−1) downto 1 ) ;
end i f ;
bu f f (n−1)<= ' 0 ' ;

end i f ;
when Sab =>

i f c a ' event and c a = '0 ' then
−− next i n s t an t
State <= S0 ;
−− s h i f t , then memorize
bu f f ( ( n−2) downto 0)<= buf f ( ( n−1) downto 1 ) ;
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bu f f (n−1)<= ' 1 ' ;
end i f ;

end case ;
end i f ;

end process ;
end Ccs l E de l ay a r ch ;

filteredBy

entity C c s l E f i l t e r i s
generic (

i n i t : b i t v e c t o r := "" ;
pe r iod : b i t v e c t o r := "1" ) ;

port (
c sup : in b i t ;
c sub : out b i t := ' 0 ' ) ;

end C c s l E f i l t e r ;

architecture C c s l E f i l t e r a r c h of C c s l E f i l t e r i s
signal nIn i t , nPeriod : i n t e g e r := 0 ;

begin
process ( c sup )

constant i n i t s i z e : Natural := i n i t ' l ength ;
constant p e r i o d s i z e : Natural := per iod ' l ength ;

begin
−− i gnore f i r s t i n s t an t
i f now >= EPSILON then

i f c sup ' event and c sup = '1 ' then
i f ( n I n i t < i n i t s i z e ) then
−− in i n i t i a l phase
i f i n i t ( n I n i t ) = '1 ' then

c sub <= '1 ' , '0 ' after EPSILON;
end i f ;
n I n i t <= n I n i t + 1 ;

else −− in p e r i o d i c phase
i f per iod ( nPeriod ) = '1 ' then

c sub <= '1 ' , '0 ' after EPSILON;
end i f ;
nPeriod <= ( nPeriod + 1) mod p e r i o d s i z e ;

end i f ;
end i f ;

end i f ;
end process ;

end C c s l E f i l t e r a r c h ;

minus

entity Ccsl E minus i s
port (

c a , c b : in b i t ;
c c : out b i t := ' 0 ' ) ;

end entity Ccsl E minus ;

architecture Ccs l E minus arch of Ccsl E minus i s
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type S t a t e t i s ( S0 , Sa , Sp ) ;
signal State : S t a t e t := S0 ;

begin
process ( c a , c b )
begin

case State i s
when S0 =>

i f c b ' event and c b = '1 ' then
State <= Sa ; −− absent

e l s i f c a ' event and c a = '1 ' then
−− p o s s i b l y pre sen t
State <= Sp ;
c c <= '1 ' , '0 ' after EPSILON;

end i f ;

when Sa =>
i f c b ' event and c b = '0 ' then
−− next s imu la t i on i n s t an t
State <= S0 ;

end i f ;
when Sp =>

i f c b ' event and c b = '1 ' then
State <= Sa ;
c c <= ' 0 ' ;

e l s i f c a ' event and c a = '0 ' then
−− next s imu la t i on i n s t an t
State <= S0 ;

end i f ;

end case ;
end process ;

end architecture Ccs l E minus arch ;



194 APPENDIX C. CCSL AND VHDL OBSERVERS



Bibliography

[Aer09] Aeroflex Gaisler Research. GRLIB IP Core User’s Manual, August 2009.
http://www.gaisler.com/products/grlib/grip.pdf.
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Evaluating UML2 Modeling of IP-XACT Objects for Automatic MP-SoC In-
tegration onto FPGA. In Conf. on Design, Automation and Test in Europe
(DATE), April 2009.

[Ayn09] Aynsley, John. OSCI TLM-2.0 Language Reference Manual. Open SystemC
Initiative, 2009.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. Proceeding of the IEEE, 79(9):1270–1282, September 1991.

[BDF08] Nicola Bombieri, Nicola Deganello, and Franco Fummi. Integrating rtl ips into
tlm designs through automatic transactor generation. In DATE, pages 15–20.
IEEE, 2008.

[BdS91] Frédéric Boussinot and Robert de Simone. The esterel language. another look at
real time programming. Proceedings of the IEEE, 79(9):1293–1304, September
1991.

[Ber00a] Gérard Berry. The Esterel Language Primer, version v5 91. Ecole des Mines de
Paris, CMA, INRIA, July 2000.

[Ber00b] Gérard Berry. The foundations of Esterel. In C. Stirling G. Plotkin and M. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press, 2000.

[Ber02] Janick Bergeron. Writing Testbenches, Functional Verification of HDL Models.
Kluwer Academic Publishers, 2002.

[Ber07] Gérard Berry. SCADE: Synchronous design and validation of embedded control
software. In S. Ramesh and Prahladavaradan Sampath, editors, Next Gener-
ation Design and Verification Methodologies for Distributed Embedded Control
Systems, pages 19–33. Springer-Verlag, 2007.

[BK08] V.S. Bagad and S.P. Kawachale. VLSI Design. Technical Publications Pune,
2008.

[BKS03] Gérard Berry, Michael Kishinevsky, and Satnam Singh. System level design and
verification using a synchronous language. In ICCAD, pages 433–440. IEEE
Computer Society / ACM, 2003.

[BMP07] Brian Bailey, Grant Martin, and Andrew Piziali. ESL Design and Verification,
A Prescription for Electronic System-Level Methodology. Morgan Kaufmann
Academic Press, 2007.

[Boe84] B. W. Boehm. Verifying and validating software requirements and design spec-
ifications. IEEE Softw., 1(1):75–88, 1984.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. In
Rajesh Gupta, Yukihiro Nakamura, Alex Orailoglu, and Pai H. Chou, editors,
CODES+ISSS, pages 19–24. ACM, 2003.



BIBLIOGRAPHY 197

[Chu06] Pong P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency, Porta-
bility, and Scalability. Wiley-IEEE Press, 2006.

[CSL+03] Rong Chen, Marco Sgroi, Luciano Lavagno, Grant Martin, Alberto Sangiovanni-
Vincentelli, and Jan Rabaey. UML and platform-based design. In UML for real:
design of embedded real-time systems, pages 107–126, Norwell, MA, USA, 2003.
Kluwer Academic Publishers.

[DGG02] Rainer Dømer, Andreas Gerstlauer, and Daniel Gajski. SpecC Language Refer-
ence Manual, Version 2.0. SpecC Technology Open Consortium, 2002.

[Dou98] Bruce P. Douglass. Real-Time UML. Developing efficient objects for embedded
systems. Object technology. Addison Wesley Longman, Inc., 1998.
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