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1Introduction

Three dimensional (3D) object representations have become a major

interactive graphical experience. A growing number of 3D graphic

applications have an impact on today’s society. These applications are be-

ing used in several domains ranging from digital entertainment, computer

aided design, to medical applications (see figure 1.1).

The rapid evolution of this domain has created the need for 3D pro-

cessing and analysing tools at the geometric, topological, and semantic

levels. In the same vein, the evolution of 3D databases which grow in

numbers and details precision, such as Google 3D-warehouse (a collec-

tion of 3D-data such as buildings, bridges, cars and so on). Google 3D-

warehouse is getting bigger every day and it is completely accessible for

every one to use. This evolution leads to look for a system that can auto-

matically retrieve the 3D-models visually similar to a requested 3D-object.

The problem of searching similar 3D objects arises in a number of fields.

For example, in the area of medicine, the detection of similar organ de-

formations can be used for diagnostic purposes. Another example, in the

industrial applications, a 3D model of the client’s foot is generated using

a 3D scanning tool. Then a similarity search is performed to retrieve the

most likely fitting models according to the client’s foot.

In this context, a 3D object search engine with a good performance in

time consuming and results becomes a need for the society. A few 3D

search engines that are available on-line such as 3D model Search Engine

proposed by the Princeton Shape and Analysis Group1 presented in figure

1 http://shape.cs.princeton.edu/search.html.

1

http://shape.cs.princeton.edu/search.html
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Figure 1.1 – From left to right and top to bottom: Remote visualization of stored 3D

models ( c©the Leland Stanford Junior University), life-changing facial reconstruction for

young Child ( c©Sensable), solid modelling 3D-CAD design ( c©Compucraft, Ltd),

AVChat3D 3D-video game ( c©Windows 8 App Store).

1.2, the Semantic3D project search engine2, the Taiwan University search

engine3 and Dejan Vranicś 3D Search Engine4.

These 3D search engines are still limited in performance. Most

proposed approaches for content-based retrieval are using statistical

histograms that measure some geometric characteristics of 3D objects.

The various measures of such characteristics are calculated from a 3D-

triangulated mesh surfaces (see figure 1.3). The mesh representation is the

simplest and the most frequently used.

In the literature, different kind of shape retrieval approaches exist. The

oldest methods are inspired from 2D-methods like Fourier descriptors

(30), invariant moments calculations (14), median line extraction, angu-

lar radial transform (89), etc. Shape description literature is very rich.

Global 3D-shape description approaches generally characterize the shape

of objects in a grossly way. They are often effective to discriminate simple

2 http://www-rech.telecom-lille1.eu/3dretrieval/.
3http://3d.csie.ntu.edu.tw/.
4http://merkur01.inf.uni-konstanz.de/CCCC/.

http://www-rech.telecom-lille1.eu/3dretrieval/
http://3d.csie.ntu.edu.tw/
http://merkur01.inf.uni-konstanz.de/CCCC/


3

Figure 1.2 – 3D search engine of the MIIRE research team.

Figure 1.3 – An example of 3D-object. From left to right: points, flat lines and flat

rendering.
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Figure 1.4 – 3D-objects under some deformations and transformations (affine, isometric,

scaling, partial, noisy, etc.)

shapes but insufficiently discriminative for more complex shapes. Con-

versely, 3D-local approaches characterize the local properties of the ob-

ject’s surface.

Existing solutions for 3D-shape retrieval are quite robust with respect

to rigid transformation like translation, rotation or even scale change.

However, figure 1.4 presents the acquired 3D shapes that suffer from high

variability towards transformations (like isometric or affine transforma-

tion), representation degradations (like noise, sampling or scaling varia-

tion) or partial representation (like model with missing parts or combined

with other). As a consequence, it leads to different descriptors for the

same shape under these transformations that affect the results and the

performance of the 3D search engine.

The aim of this thesis is to present an approach for 3D-model retrieval

that can be robust under non-rigid transformations as well as rigid trans-

formations and also handle 3D-partial retrieval.

1.1 Contributions

In this thesis, as a start point, we believe that global descriptors are not

very efficient for partial 3D-model retrieval. We need to define our sig-

nature based on a local descriptor. We have to decompose the 3D-models
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into sub-parts, without forgetting that similar 3D-models should be de-

composed similarly, then each part is affected to a local descriptor. The

descriptor should describe the form of each part. We chose to describe

each part by closed curves which encode the form of this part. In order

to decompose similar 3D-model into sub part similarly, even if these parts

do not have semantic meanings, we chose to define a scalar function on

the surface and for each scale value we detect a region.

We start our investigation in scalar functions defined on surfaces,

which in turn respects the main properties like the invariance to rigid

and non-rigid transformations, the insensitivity to noise, the robustness to

small topology changes, and the independence on parameters. The def-

inition of such a function remains an open question. In this thesis, we

respond to the question and we define an appropriate function on the sur-

face. We prove the effectiveness of this function by transforming it to a

Morse function then we computed the Reeb graph on a neutral pose 3d-

model and against variations in 3D-model poses. Also, we tested it on

different 3D-models including partial 3D-models and combined ones.

We continue by introducing a novel method for 3D-model retrieval

based on indexed closed curves using our scalar function. We generate

and analyse indexed closed curves raised from a source point (the source

point is detected automatically by our scalar function) of the 3D-model

using our scalar function. For each scale value of the function, we detect a

region then we describe the form of this region by a closed curve. Finally,

we analyse the 3D-model by analysing the shape of their corresponding

level curves. We tested our approach on two datasets. Our experiments

have good results but not very efficient for partial 3D-model retrieval.

Finally, we present a novel method, which in turn is an enhancement of

our indexed closed curves method by using the bag of feature technique.

Then we demonstrate the effectiveness of our approach on two sets of

experiments. First set of experiments evaluate our approach for 3D-model

retrieval and we compare our results to indexed closed curve approach.

The second set of experiments validate our approach towards partial 3D-

model retrieval.
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1.2 Outline

The rest of this manuscript is illustrated in figure 1.5 and is laid out as

follows.

In chapter 2, we introduce the assumption that the measure of sim-

ilarity between two 3D-objects can be reduced to a distance computing

between their two descriptors then we proceed by reviewing the existing

solutions for 3D-model retrieval and for partial 3D-model retrieval.

In chapter 3, we present an approach to define our scalar function

which in turn preserve invariance properties (see figure 1.5a).

In chapter 4, we apply our scalar function to compute Reeb graphs and

to prove the invariance properties of our function (see figure 1.5b).

In chapter 5, we present a novel method based on indexed closed

curves for 3D-model retrieval using our scalar functions (see figure 1.5c).

Chapter 6 is an enhancement of our indexed closed curves method

by using the bag of feature technique for partial 3D-model retrieval (see

figure 1.5d).

Finally, we conclude this manuscript by summarizing the contributions

of this thesis, enumerate remaining open problems and propose directions

for future research.

Introduction (en français)

La représentation tridimensionnelle d’objets (3D) est devenue une partie

intégrante de différentes applications modernes, un nombre croissant de

ces applications graphiques 3D ont un impact sur notre société. Elles sont

utilisées dans plusieurs domaines allant des produits de divertissement

numériques, de la conception assistée par ordinateur, aux applications

médicales (voir figure 1.1).

L’évolution rapide de ce domaine a créé le besoin pour le traitement

et l’analyse des outils 3D aux niveaux géométriques, topologiques et sé-

mantiques. Dans le même esprit, les bases de données 3D se dévelop-

pent en nombre et en précision de détails. Par exemple, Google 3D Ware-

house (une collection de données 3D telles que les bâtiments, les ponts, les
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(a) Chapter 3 is about definition of an invariant scalar function

(b) Chapter 4 is about Reeb graph computation

(c) Chapter 5 is about indexed closed curves approach for

3D-model retrieval

(d) Chapter 6 is about bag of feature technique for

3D-model and partial 3D-model retrieval

Figure 1.5 – The outline of the rest of this manuscript.
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voitures, etc.) s’agrandit chaque jour et est accessible à tous. Cette évolu-

tion conduit à rechercher un système qui peut automatiquement récupérer

les modèles 3D visuellement similaires à un modèle 3D demandé. Le

problème de la recherche des objets 3D similaires se pose dans un cer-

tain nombre de domaines. Par exemple, dans le domaine de la médecine,

la détection des déformations des organes similaires permet des diagnos-

tics plus précis. Un autre exemple, dans les applications industrielles, un

modèle 3D du pied du client est généré en utilisant un outil de scan 3D.

Puis une recherche de similarité est effectuée pour extraire les modèles les

plus adéquates au pied du client pour produire une chaussure.

Dans ce contexte, un moteur de recherche d’objets 3D avec une bonne

performance en résultats et en temps d’exécution devient une nécessité.

Quelques moteurs de recherche 3D sont disponibles en ligne tels que 3D

model Search Engine proposée par le groupe the Princeton Shape and Anal-

ysis5 presenté dans la figure 1.2, the Semantic3D project search engine6, the

Taiwan University search engine7 et le moteur de recherche des modèles 3D

du Dejan Vranic8.

Ces moteurs de recherche de modèles 3D sont encore limités en perfor-

mance. La plupart des approches proposées concernant leur contenu sont

basées sur les histogrammes statistiques qui mesurent certaines caractéris-

tiques géométriques des objets 3D. Les diverses mesures de ces caractéris-

tiques sont calculées à partir de maillages 3D des surfaces triangulaires

(voir figure 1.3). La représentation en maillage 3D est la représentation la

plus utilisée.

Dans la littérature, il existe différents types d’approches pour

l’indexation des modèles 3D. Les plus anciennes méthodes sont inspirées

des méthodes 2D comme les descripteurs de Fourier (30), les calculs des

moments (14), l’extraction de la ligne médiane, la transformation angu-

laire radiale (89), etc. La littérature concernant les descripteurs d’objets 3D

est très riche. Les méthodes basées sur une description globale d’objets

qui caractérise la forme des objets 3D d’une manière grossière sont sou-

5 http://shape.cs.princeton.edu/search.html.
6 http://www-rech.telecom-lille1.eu/3dretrieval/.
7http://3d.csie.ntu.edu.tw/.
8http://merkur01.inf.uni-konstanz.de/CCCC/.

http://shape.cs.princeton.edu/search.html
http://www-rech.telecom-lille1.eu/3dretrieval/
http://3d.csie.ntu.edu.tw/
http://merkur01.inf.uni-konstanz.de/CCCC/
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vent efficaces pour discriminer des formes simples mais insuffisantes pour

des formes plus complexes, contrairement aux méthodes basées sur des

descriptions locales.

Les solutions existantes pour l’indexation d’objets 3D sont assez ro-

bustes à l’égard des transformations rigides comme la translation, la ro-

tation ou le changement même de facteur d’échelle. Cependant, la figure

1.4 présente des formes 3D qui souffrent de la forte variabilité par rapport

à des transformations (comme la transformation isométrique ou affine), la

présence de dégradations (comme la variation de bruit, d’échantillonnage

ou de mise à l’échelle) ou la représentation partielle (comme le modèle

avec des pièces manquantes ou combiné avec d’autres). En conséquence,

les méthodes existantes conduisent à des descripteurs différents pour la

même forme sous ces transformations qui affectent les résultats et les per-

formances du moteur de recherche 3D.

L’objectif de cette thèse est de présenter une approche pour

l’indexation des modèles 3D qui est invariante aux transformations

rigides et non rigides et également robuste à l’indexation partielle de

modèles 3D.

Contributions

Dans cette thèse, comme point de départ, nous sommes persuadés que les

descripteurs globaux ne sont pas très efficaces pour l’indexation partielle

de modèles 3D. Nous proposons une signature basée sur un descripteur

local. Nous décomposons les modèles 3D en sous-parties; chaque partie

est affectée à un descripteur local. Le descripteur doit décrire la forme

de chaque partie. Nous avons choisi de décrire chaque partie par des

courbes fermées qui encodent la forme de cette partie. Pour décomposer

les modèles 3D similaires en partie de la même façon, même si ces pièces

n’ont pas de signification sémantique, nous avons choisi de définir une

fonction scalaire sur la surface et pour chaque valeur de cette dernière

nous détectons une région.

Nous commençons nos recherches dans les fonctions scalaires définies

sur des surfaces, qui respectent les propriétés principales comme
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l’invariance aux transformations rigides et non rigides, l’insensibilité

au bruit, la robustesse aux changements de topologie, et l’indépendance

des paramètres. La définition d’une telle fonction reste une question

ouverte. Dans cette thèse, nous définissons une fonction appropriée sur la

surface. Nous démontrons l’efficacité de cette fonction en la transformant

à une fonction de Morse, pour calculer le graphe de Reeb d’un modèle

3D. En outre, nous l’avons testée sur différents modèles 3D, y compris des

modèles 3D partiels et combinés.

Nous continuons par l’introduction d’une nouvelle méthode pour

l’indexation des modèles 3D basée sur des courbes de niveaux fermées en

utilisant notre fonction scalaire. Nous générons et analysons les courbes

de niveaux fermées à partir d’un point source (le point source est détecté

automatiquement par notre fonction scalaire) du modèle 3D en utilisant

notre fonction scalaire. Pour chaque valeur de la fonction, nous détectons

une région, puis nous décrivons la forme de cette région par une courbe

fermée. Enfin, nous comparons les modèles 3D en analysant la forme de

leurs courbes de niveau correspondant. Nous avons testé notre approche

sur deux bases de données. Nous concluons que notre méthode à de bons

résultats, mais n’est pas très efficace pour l’indexation partielle de modèles

3D.

Enfin, nous présentons une nouvelle méthode, qui à son tour est une

amélioration de notre approche mentionnée ci-dessus à l’aide de la tech-

nique sacs de mots. Ensuite, nous démontrons l’efficacité de notre ap-

proche sur deux séries d’expériences. La première série d’expériences

évalue notre approche sur l’indexation de modèles 3D et la deuxième série

d’expériences valide notre approche sur l’indexation partielle de modèles

3D.

Plan

Le reste de ce manuscrit est illustré dans la figure 1.5 et est exposé comme

suit.

Le chapitre 2 présente l’hypothèse que la mesure de similarité entre

deux objets 3D est réduite à un calcul de distance entre leurs deux de-
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scripteurs. Ensuite, nous procédons par l’introduction des solutions exis-

tantes pour l’indexation des modèles 3D et pour l’indexation partielle de

modèles 3D.

Dans le chapitre 3, nous présentons une approche pour définir notre

fonction d’application qui à son tour préserve les propriétés d’invariance

(voir figure 1.5a).

Dans le chapitre 4, nous utilisons notre fonction d’application pour

calculer les graphes de Reeb et prouvons les propriétés d’invariance de

notre fonction (voir figure 1.5b).

Dans le chapitre 5, nous présentons une nouvelle approche pour

l’indexation des modèles 3D basée sur des courbes de niveaux fermées

dans ℜ3. (voir figure 1.5c).

Le chapitre 6 est une amélioration de notre approche du chapitre

précédent en utilisant la technique sacs de mots pour l’indexation partielle

de modèles 3D (voir figure 1.5d).

Enfin, nous concluons ce manuscrit en résumant les contributions de

cette thèse, et en énumérant les problèmes qui restent ouverts et proposons

des orientations pour de futures recherches.
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This chapter introduces the assumption that the measure of similarity

between two 3D-objects can be reduced to a distance computing be-

tween their two descriptors discussed in section 2.1. Then we proceed by

introducing three sections. First section 2.2, is about reviewing the state-

of-the-art of three dimensional object retrieval using the 3D based meth-

ods. The second section 2.4, is about the state-of-the-art of three dimen-

sional object retrieval using the 2D based methods. The last section 2.5,

is about the state-of-the-art of partial three dimensional object retrieval.

Recently, researchers have investigated a lot of problems about 3D-object

retrieval. Also, they have done an extensive amount of literature. We will

give a brief discussion about the advantages and drawbacks of different

techniques. Before concluding with a comparison table of all or almost all

existing methods in the literature presented in section 2.6.

Introduction (en français)

Ce chapitre présente l’hypothèse que la mesure de similarité entre deux

objets 3D est réduite à un calcul de distance entre leurs deux descripteurs

discutée dans la section 2.1. Ensuite, nous procédons par l’introduction

de trois sections. La première section 2.2 présente l’état de l’art de la tech-

nologie récente en indexation des modèles 3D baseés sur les méthodes 3D.

La deuxième section 2.4 présente l’état de l’art de la technologie récente

en indexation des modèles 3D baseés sur les méthodes 2D. La dernière

section 2.5 présente l’état de l’art de la technologie récente en indexation

par similarité partielle de formes 3D.

Récemment, les chercheurs ont fait des nombreuses expériences con-

cernant les problèmes liés à l’indexation des modèles 3D. En outre, ils ont

introduit plusieurs solutions. Nous allons présenter une brève discussion

sur les avantages et les inconvénients des différentes techniques existantes

dans la littérature. Enfin, on conclut par un tableau de comparaison des

méthodes existantes.
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2.1 Shape matching concepts

3D-object retrieval based on content, requires having an automatic method

for measuring the similarity between two objects.

Generally, this is done based on the assumption that the measure of

similarity between two 3D-objects can be reduced to a distance computed

between them where small distance means small dissimilarity (large simi-

larity) and large distance means large dissimilarity (small similarity). The

definition of such distance (similarity distance) is given by:

d(si, sj) : S × S → ℜ+ (2.1)

Where si, sj ∈ S and S = {s1, s2, ..., si, ..sN} is a set of shapes. This distance

function d(si, sj) is called a metric if it respects the following properties:

• Identity means same shapes totally match if ∀si ∈ S, d(si, si) = 0.

• Positivity property ensures that two different shapes never match

completely: if ∀si, sj ∈ S, d(si, sj) > 0.

• Symmetry: if ∀si, sj ∈ S, d(si, sj) = d(sj, si)

• Triangle Inequality: if ∀si, sj, sk ∈ S, d(si, sj)(si, sk) + d(sk, sj)

The distance function d(si, sj) is called a transformation invariant

metric if d(si, sj) is a metric and respect the transformation invariance

(scaling, rotation or translation). Given a transformation group G, if

∀si, sj ∈ S, ∀g ∈ G, d(si, g(sj)) = d(si, sj).

The similarity distance of two shapes D(si, sj) = min(d(si, g(sj))) is

not an efficient similarity measure for 3D shapes since, the representa-

tion forms of 3D shapes are not well suited for matching. To define a

suitable similarity distance we have to deal with two main problems the

pose normalization (any combination of rigid transformation such as scal-

ing, rotation and translation), and the feature invariance that satisfies sev-

eral requirements for invariance. A typical set of requirements includes

invariance to similarity transformations, invariance to shape representa-

tions, invariance to geometrical and topological noise, and invariance to

articulation or global deformation.
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Figure 2.1 – Two main steps for 3D-objects comparison and a preprocessing step if

needed for rotation, translation and/or scaling invariance.

• to deal with the pose normalization, let G be a transformation group,

∀si, sj ∈ S, ∀g1, g2 ∈ G, d(si, sj) = d(g1(si, )g2(sj))

• to deal with the feature invariants, a shape is described by the in-

variants features under a function f that respects the d(si, sj) ≃

d( f (si), f (sj)) this function is called feature extraction function.

For 3D model matching, we need to define a shape descriptor or shape

signature that captures the significant features of the shapes. Let q a 3D

shape query and let S = {s1, s2, ..., si, ...sN} a 3D shape database. To re-

trieve 3D models that are similar to q we need to retrieve all the shapes

from S where the similarity distance D is lower than a given threshold t:

D(q, si) < t or we need to retrieve the first k shapes where D(q, si) are

minimum.

As we noticed a comparison between two 3D-objects as presented in

figure 2.1 involves two main steps the signature extraction (or object de-

scription) and similarity measure. Also most approaches involve a pre-

possessing step if needed by the descriptor, to handle the invariance to

rotation, translation, and/or scaling.

2.2 3D-model retrieval state of the art

Several 3D-object retrieval approaches and shape descriptors have been in-

troduced in the literature (82, 65, 105) and some of them are implemented
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in 3D search engines that are available on-line (3D model Search Engine)

proposed by the Princeton Shape and Analysis Group., the Taiwan uni-

versity search engine, etc. These approaches lead to a number of different

categorizations "Geometrical techniques, structural and topological tech-

nique, local methods, global methods, view based methods, etc".

I use a specific categorization since there are some approaches that

use a combination of methods and can be classified into more than one

category. I prefer to divide these methods into two main categories 3D

based methods and 2D based methods.

2.3 3D based methods for 3D-model retrieval

3D based methods for 3D-model retrieval involve all methods that took

into consideration the 3D model as itself to retrieve information and define

the descriptor. We can distinguish five families of approaches that are used

to describe 3D-objects: Global based methods, methods based on spectral

embeddings, methods based on extended Gaussian images, Local based

methods and graph based methods.

2.3.1 Global based methods

The global based methods present approaches where the descriptor char-

acterizes the whole 3D-model. All these methods or most of them do not

describe the details of the 3D-model that leads to affect their results. This

section introduces the main existing global methods and their respective

advantages and drawbacks.

The cord histogram

In 1997, Paquet and Rioux (78) released their first descriptor named the

cord descriptor. The authors used a database that consists of a large number

of objects digitized with 3D laser scanners which they have developed.

Using their scanners, the authors can simultaneously acquire the shape

and the colour of a 3D-object. The proposed indexing approach is based

on some statistics on the cords of the object to be indexed. The cords are
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Figure 2.2 – 3D search engine of the CNRC Ottawa.

defined here as the segments connecting the centre of gravity of the object

and the centres of each triangle of the mesh. The author proposed three

cord histograms that can be constructed:

• a histogram of the cord lengths;

• a histogram of the angles between the cords and the first principal

axis;

• a histogram of the angles between the cords and the second principal

axis.

This technique is presented in the Nefertiti project which is implemented

in the first 3D-model search engine. This search engine needs a prepro-

cessing algorithm for data normalization to handle isometric transforma-

tions and it is not good enough due to the fact that local shape features

are not well described neither robust toward perturbations. The time con-

suming process for execution is very good toward other techniques.
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Area and volume method

Zhang and Chen(120) extracted feature vector based on the area and the

volume of the mesh. The authors Compute the surface or the volume for

each element of the shape (triangles for meshes and voxels for volumetric),

then add up all the values for the mesh. This method is not categorized for

precise searching and details detecting. In my point of view, this method

can be used as a preprocessing stage for fast pruning data and accelerates

the query due to the fast computation of an area and a volume of an object.

3D Hough descriptor

The optimized 3D Hough Transform Descriptor presented by Zaharia and

Prêteux (119) is intrinsically invariant to connectivity representation is-

sues, but not to geometric transformation. The descriptor of this method

is based upon the principle of accumulating the representative parameters

from triangulated faces of the object in spherical representation (figure

2.3). For the choice of the weights, the authors consider the relative area

of the faces combined by their normal vectors.

Figure 2.3 – Switching to spherical coordinates for the Hough transform. The plan is

described by 3 parameters.

Shape distribution descriptor D2

The most famous descriptor of the "Shape Retrieval and Analysis" research

group, of Princeton University, USA, is the shape distribution descriptor

D2 (76). The shape distribution represents a probability distribution of a
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shape function measuring global geometric properties of the object. The

shape descriptor of a 3D object is given by a probability distribution that

counts the occurrence of Euclidean distances between pairs of points ran-

domly chosen on the surface of the object. The authors use histograms

Figure 2.4 – Shape distribution of different vehicles. Figure taken from Osada et al.(76).

containing 64 bins to represent their descriptor (see figure 2.4), and the

Minkowski norm to calculate the distances between histograms. The pro-

posed approach is invariant to rigid transformations and is robust to de-

formations of the mesh connectivity.

The shape distribution proposed by Princeton University is a proba-

bilistic method, whose main advantages are the ease of implementation,

computing time, the invariance to geometric transformations and the ro-

bustness with respect to the mesh noise (connectivity, decimation). The

descriptor characterizes the global shape of objects but not the details.

This approach can be applied to classify models. Since it fails to capture

the details of a shape, therefore it fails to discriminate among locally dis-

similar shapes.

2.3.2 Methods based on spectral embeddings

In this paragraph, we describe recent works based on spectral embed-

dings which provide approaches for 3D-shape analysis like correspon-

dence analysis (47, 15), for clustering (72, 121) and especially for non-rigid

3D-model retrieval and comparison (64, 87, 12).
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These works study the differential properties of a linear operator de-

fined on the mesh. Despite descriptors based on moments or multidimen-

sional scaling using geodesic distance presented by Elad and Kimmel (29),

we focused on 3D-model retrieval methods based on Laplace-Beltrami op-

erator due to their good results for non-rigid shape retrieval.

The discretization of Laplace-Beltrami operator on the mesh leads to

an eigensystem and the graph eigenvalues studies, that have interesting

insight in many areas of mathematics, particularly the interaction between

the spectral Reimannian geometry and spectral graph theory.

Sorkine (98) presents geometry processing that are related to the Lapla-

cian processing. Levy (59) explains how to compute an approximation of

the eigenfunctions of a differential operator. Belkin and Niyogi (4) present

shape embedding in a high dimensional space.

Reuter et al. (85, 86) improve the discretization to a higher level of

Laplace-Beltrami operator by adding extra nodes on each triangle in the

mesh. They use the spectra given by the first n eigenvalues as isometric

invariance descriptor since the eigenvalues properties are related almost

to all issues of invariants and transformations.

Mahmoudi and Sapiro (64) compare histogram of pairwise using the

diffusion distances between all vertices on the mesh. The descriptor ig-

nores important local information since it is defined to describe the whole

shape. The authors enhance their descriptor to local recognition by con-

sidering a graph connecting a number of patches. But this descriptor still

depends on a time parameter to detect the level of details.

Figure 2.5 – Isospectral shapes. Figure taken from Reuter et.al. (87).
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Reuter et al.(87) and Marini et al. (66) describe the shape by the spectra

(eigenvalues) of the Laplace-Beltrami operator. Reuter et al.(87) got good

results even though two different shapes may have the same spectrum

then the same descriptor (see figure 2.5). The authors assume that this

situation is rare and each shape has its own spectrum and similar shapes

have similar spectrum. Then the authors prove that isospectral shapes but

not isometric models can be discriminated by the spectrum of the bound-

ary surface. Marini et al. (66) investigate if the selection of a particular

spectrum sequence is the best choice or there exists other sequences of

eigenvalues that provide better results. In my point of view, the compu-

tation of the spectrum depends on the mesh density. For both methods

to be very accurate in the computation of the spectrum, they need to use

dense meshes that affect the time consuming for their methods.

Rustamov (91) creates a descriptor vector from the evaluated eigen-

functions of Laplace-Beltrami operator. The author computes histograms

that capture the distribution of distances between points based on the

Green function (the dot product of two d-dimensional vectors defined

from the eigenfunctions and the eigenvalues of Laplace-Beltrami opera-

tor) for uniformly sampled points on the mesh. Since the author uses the

cotangent weight to discretize laplace-Beltrami operator, this method does

not handle degenerated meshes also he didn’t propose boundary condi-

tion for surfaces with boundary.

Bronstein et al. (11) and Bronstein and Kokkinos (12) compute the re-

maining heat on each vertex after a scale time t. For scale invariance, they

improve the heat kernel signature (HKS) to scale-invariant heat kernel

signature (SI_HKS) by scaling and shifting using a logarithmic scale-space

based on Fourier transform shown in figure 2.6 where the curves remain

almost unchanged after scaling the object. For the discrete computation

of the heat kernels, they used the cotangent weight approximation of the

Laplace-Beltrami operator with the 200 smallest eigenvalues. Marini et

al. (66) investigate in the best particular spectrum sequence and using

the first 200 eigenvalues with cotangent weight is not the best choice for

original models.
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Figure 2.6 – The improvement of the HKS (left) and the SI_HKS(right) where the

curves remain almost unchanged after scaling the object. Figure taken from Bronstein

and Kokkinos (12).

2.3.3 Methods based on Extended Gaussian Images

The Extended Gaussian Images (EGI) descriptor consists to map a function

that synthesizes some information concerning the 3D-mesh on a Gauss

sphere partitioned into several facets. Each triangle contributes to its cor-

responding facet (the facet given by the direction of its normal) by a weight

equal to the area of the triangle (5).

There exists a variant of EGI, the Complex Extended Gaussian Images

(CEGI) gives as contributions to the facets, for each triangle, a complex

number whose magnitude is equal to the area of the triangle and whose

phase is equal to the distance from the center of the triangle to the center

of the sphere (50).

This representation allows to discriminate primitive shapes. In addi-

tion, it also allows to obtain many useful information as the symmetry

properties or the length of the cords. The disadvantages of the EGI are

its dependency on the connectivity of the mesh, the over representation of

information at the poles due to the discretization in spherical coordinates,

the non-invariance to some geometric transformations, and also the fact
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that the method is poorly suited to objects that are not homeomorphic to

a sphere.

2.3.4 Local based methods

The local based methods present approaches where 3D-objects can be

characterized by attributes computed on local surfaces or patches of the

object associated with local descriptors. To select local features of a given

object some authors use an object segmentation method. Other authors

use a sampling method and select patches according to some geometric

criterion, following successful approaches in 2D image recognition like

SIFT (63). More recently, some authors propose the use of feature points

extraction algorithm for detecting points of interest around which they

extract patches.

A local descriptor reflects the local geometric characteristics of a 3D-

object, unlike global methods which tend to describe globally the shape of

the 3D-objects.

Local descriptor based on closed curves

Lmaati et al.(62) reconstruct 3D closed curves and extract feature vector

as a descriptor. The feature vector is a combination of the area and the

dot product descriptors that describe the reconstructed 3D closed curve

in order to define the 3D curve analysis. This method needs to align the

model into canonical position before the construction of the closed curves.

Tabia et al. (103) detect feature points located at the extremities of a

3D model based on the geodesic distance presented by Tierny et al. (111).

For each feature point, they generate a collection of closed curves based

on the geodesic distance. Each feature point and its collection of closed

curves represent a part of the model (see figure 2.7). Finally, they use the

belief functions to define the global distance between 3D-models. This

method is very sensitive to topology and a small variation of the feature

point leads to a large variation in curves.
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Figure 2.7 – Representation of patches by an indexed collection of curves.

Local descriptors based on spherical harmonics

Saupe and Vranic (25) proposed to apply a Fourier transformation on

the sphere S2 by applying the spherical harmonics formulas proposed by

Healy et al. (43). Then, to overcome the problem of invariance to rotations,

Kazhdan and Funkhouser (52) proposed to implement the decomposition

in spherical harmonic functions defined by the intersection of the surface

of the 3D object with a set of concentric spheres (see figure 2.8).

Figure 2.8 – Computing the Harmonic Shape Representation.(Figure taken from

Kazhdan and Funkhouser 2002 ACM Press (52)).

The authors prove that the spherical harmonics method gives better
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results than their previous descriptor (D2 shape distribution). However,

it is based on a voxelization of 3D models and therefore depends on the

level of resolution of the voxelization, resulting in a loss of details in the

description of the object.

Vranic (115) proposed to apply the method directly on 3D-meshes with

new 3D spherical functions. The results he obtained on his database with

his method are superior to those based on voxel model, and less time con-

suming. However, these results also show that the encoded information

does not really allow accurate querying on the shapes. The drawbacks of

this method is the preprocessing step (like Principals Component Analy-

sis) needed for data normalization and finding the canonical position and

orientation of a model to insure the invariance requirement for the 3D-

shape descriptors. Also the main limitation is the number of concentric

spheres and the number of harmonic coefficients which remain, may be

too low. The author chooses in practice 32 and 16 concentric spheres by

harmonic spheres, or a descriptor of 32 * 16 = 512 coefficients.

Local methods based on spectral descriptors

Sun et al. (100) present a multi-scale local descriptor, the Heat Kernel

Signature (HKS) using the eigendecomposition of the Laplace Beltrami

operator. They compute the amount of heat that remains at point x after

time t. For each point x on the shape, its Heat Kernel Signature is an

n-dimensional descriptor vector of the form

p(x) = c(x)(Kt1(x, x), ..., Ktn(x, x)),

where c(x) is chosen in such a way that ‖p(x)‖2 = 1. The HKS is in-

formative, multi-scale that captures both local features and global shape

structure and thus isometry-invariant (two isometric shapes have equal

HKS) (see figure 2.9).

Recently another method also based on an eigendecomposition of the

Laplace-Beltrami operator presented by Ruggeri et al. (90). The authors

detect critical points of the eigenfunctions related to the smaller eigen-

values of the Laplace-Beltrami operator. Then, these points are origin of
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Figure 2.9 – Top left: dragon model; top right: scaled HKS at points 1, 2, 3 and 4. All

four signatures are close at small t’s while big t’s separate the points on the front claws

from those on back; bottom left: the points (blue), whose signature is close to the

signature of point 1 based on the smaller half of the t’s; bottom right: based on the entire

range of t’s.(Figure taken from Sun et al.(100)).

a smartly sampling technique using statistical criteria for controlling the

density and number of reference points. For each reference point they

associate a local descriptor consisting of the geodesic shape distribution

around the point. This method depends on a threshold to control the den-

sity of the reference points and also depends on the feature point detected

at first by the eigendecomposition of the Laplace-Beltrami operator which,

to our experience with this method, generates undesirable feature points

or misplaces them.

Another method proposed by Lavoué (57) based on the spectral coeffi-

cients amplitude that are computed using the eigenvectors of the Laplace-

Beltrami operator. The author selects a set of random point uniformly

sampled on the surface. Then, each point is associated with a local patch

by considering the connected set of facets belonging to a given sphere. His

descriptor is computed by projecting the geometry of each patch onto the

eigenvectors of the Laplace-Beltrami operator.
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2.3.5 Graph based methods

The graph based methods describe the topology structure of the shape by

linking the meaningful components of a 3D-object. In contrast to methods

discussed in previous paragraphs, which consider mostly the geometry of

the shape. Despite approaches based on model graph that are applicable

for 3D solid models produced by CAD system, we discussed two families

of approaches that are used in the literature: methods based on Reeb

graph and methods based on skeleton.

Methods based on Reeb graph

Reeb graphs are symbolic representation of a certain subset of Morse func-

tions. Their constructions are based on Morse theory (95) that character-

izes the topology of closed surfaces, we find as many cycles in graphs

as holes in objects (see figure 2.10). Reeb graphs have been introduced

in 1964 by Georges Reeb (84). Recently it has been in use for 3D-shape

applications. Resulting an expressive topology description and forming

a high level skeletal representation of the surface. The Reeb graph is de-

Figure 2.10 – There are as many cycles in the graphs as holes in the objects. (Figure

taken from Tung (113)).

fined as the quotient space of a shape and a quotient function. Tierny et

al. (111) define their quotient function to generate a set of critical points

based on a geodesic distance. This function computes for each vertex the

geodesic distance to the closest feature point (points located on the ex-

tremities of the mesh). Hilaga et al. (67) define quotient function by an
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integral geodesic distance and introduced the multiresolution Reeb graph

which allowed two kind of comparison of 3D-object, with low levels of

resolutions to get quick results, or using a maximum resolution to obtain

finer results. The multiresolution graph was expanded by Tung (113).

Biasotti et al. (7) compare Reeb graphs obtained by using different quo-

tient functions and highlight how the choice of these functions determines

the final matching result. For instance, the integral geodesic distance as

quotient function is especially suited for articulated objects, while the dis-

tance to the barycenter should be preferred if the aim is to distinguish

different poses of an articulated object.

To summarize, quotient functions defined using the geodesic distance

are suited for matching articulated 3D objects, but they are sensitive to

topological changes. Also, they cannot be applied to arbitrary meshes.

Methods based on skeleton graph

The skeleton graph is a modern variant of shape skeletons inspired by

the medial axis defined by Blum (9) in 1967 and has shown a great po-

tentiality in 3D-model. The corresponding medial axis for 3D shapes is

the medial surface (40), because in addition to curves, it can also contain

surface patches. However, 1-dimensional representations are reported to

be more convenient from an applicative point of view (1). Consequently,

most authors consider a pruned version of the medial surface, as shown

in figure 2.11.

We can found different techniques for skeleton graph extraction. Wang

et al.(116) present an approach using volume thinning. The curve skeleton

extracted can be used to describe the geometry and the topology of the 3D-

object. Another technique proposed by Oscar et al.(1) who use Laplacian

contraction. For a comprehensive survey on skeleton graph extraction we

refer the reader to Nicu et al. (21).

In 3D-model retrieval domain, Sundar et al. (101) use a skeletal graph

as a shape descriptor. The authors obtain a hierarchical graph structure

using different thinness parameters of a thinning algorithm developed by

Gavgani and Deborah (36). The skeletal points are connected in an undi-
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Figure 2.11 – A surface mesh, its medial surface and its graph skeleton. (Figure taken

from Tamal et al.(23)).

rected acyclic shape graph by applying the Minimum Spanning Tree algo-

rithm. For each nodes of the graph, the authors assign two vectors encod-

ing the radial distribution about the segment (geometrical information),

and the topology of the subtrees rooted at the node (topological informa-

tion). Generally, these methods using thinning algorithm are sensitive to

topology change and the process is quite time consuming.

2.4 2D based methods for 3D-model retrieval

The idea of using 2D-views to index 3D-models is based on the assump-

tion that two 3D models are similar, if they look similar from the same

viewpoints (angles of view), therefore a number of views (2D projections)

of objects could be used to represent the shape of the objects. Many au-

thors proposed 3D-model indexing methods based on 2D views. In this

section we will discuss some of these techniques.

2.4.1 Static 3D-model retrieval from 2D views

The fact that all 2D views representing a 3D-model do not contains the

same importance as information as shown in figure 2.13. For this issue,
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Chen et al.(16) proposed to describe the 3D-model by one hundred orthog-

onal projection excluding the symmetry projection to define different 2D

views. Then, each view is encoded as feature for 3D-model retrieval by

Zernike moments and Fourier descriptor. Similar to 2D-views, the silhou-

ettes are composed of the shape boundaries from one view point. In order

to represent a 3D shape, a set of silhouettes is extracted, from which, a set

of descriptors are computed and stored. Silhouettes can be seen as a more

economical representation compared to model based representations. This

representation is commonly used in object classification task where match-

ing is done between one silhouette of a 3D shape and a database of objects

represented as set of silhouettes of models (see figure 2.12).

Heczko et al. (44) characterize 3D-objects in terms of their silhouettes.

Silhouettes are obtained by parallel projections onto three planes. The

descriptor is obtained by concatenating Fourier descriptors of the three

resulting contours. Another descriptor based on image with the same

context as the silhouette called depth buffer but instead of three silhouettes,

it renders using parallel projection six grey-scale image. The experiments

of Bustos et al. (13) conclude that this method is able to outperform other

descriptors on Benchmark database. However, the problem with this kind

of descriptors is that, in theory, different 3D shapes might have the same

set of silhouette images.

Figure 2.12 – A typical example of the 10 silhouettes for a 3D model. (Figure taken

from Ding-Yun(16)).



32 Chapter 2. State-of-the-art of 3D-models retrieval

Figure 2.13 – Characteristic views of a cube. (Figure taken from Filali et al.(31)).

2.4.2 Dynamic 3D-model retrieval from 2D views

Another method proposed by Filali et al.(31) which provides an optimal

selection of 2D views from a 3D-model. Initials views are taken from a

camera placed on each face of the 320 faceted polyhedron, after scaling

and translating the 3D-model to its barycenter coincides with the center

of the polyhedron. Each view is represented by 49 coefficients of Zernike

moments. The selection of the characteristic views that best characterize

the 3D-model is an approach based on a method derived from K-means.

Then the Bayesian information decides if new characteristic views better

fits the data or not. Figure 2.14 presents a snapshot of the 3D-search engine

provided by the authors. Results show that their approach have better

results except for Light Field Descriptor (94) which consume much more

time for execution either a lot of memory since the Light Field Descriptor

is based on 100 characteristic view and two descriptors (Zernike moments

and Fourier transform). The main drawback of these methods is a loss of

topology information.

2.5 Partial 3D-model retrieval state of the art

Certain applications such as registration (45) or application where you

can create new shapes by cutting sub parts and pasting on other shapes,

need to index objects with regard to partial similarity. The partial 3D-
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Figure 2.14 – 3D search engine of the MIIRE research team.

model retrieval systems are expected to retrieve objects that have similar

sub-shapes even if they visually differ globally and is therefore robust

with respect to deformation. The partial 3D-model retrieval techniques are

facing two main difficulties that still exist for 3D model retrieval systems:

matching incomplete or partial models and matching combined models

(see figure 2.15).

Descriptors used to globally describe a 3D-models cannot be efficient

to describe partial or combined 3D-models. In the literature, we distin-

guish two main categories: local based methods and structural based

methods. Also we distinguish an efficient technique for partial 3D-model

retrieval based on the bag of feature.

2.5.1 Local based methods for partial 3D-model retrieval

Local based techniques aim to characterize the local properties by local

descriptors on a large number of feature points or patches selected from

the 3D-model. Then, similarity of partial 3D-model is estimated by feature

point-to-point or patch to patch correspondence matching. Local based

methods for 3D-model retrieval that are explored in section 2.3.4 can be

applied for partial 3D-model retrieval but they are not evaluated on an

existing partial 3D models database.
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(a) (b)

Figure 2.15 – Representation of a partial 3D-model and a combined 3D-model.

Despite local based methods for 3D-model retrieval discussed in sec-

tion 2.3.4, Liu et al. (61) propose to use a Monte-Carlo sampling on the

surface mesh and capture the local aspect of the shape with spin image

signatures (48), their descriptor is not invariant under non-rigid transfor-

mations. Gal et al.(37) present an interesting geometrical hashing mecha-

nism associated with a local surface description based on curvature anal-

ysis.

Funkhouser and Shilane (33) present a more sophisticated sampling

strategy and then describe local geometry with three different descrip-

tors based on Spherical Harmonics. Inspired by text document analysis,

the authors use complex data structures for the matching derived from

RANSAC. The drawbacks of this method is a preprocessing step needed

for data normalization to find the canonical position and orientation of a

model and to insure the invariance requirement for the 3D-shape descrip-

tors. Also the main limitation is the number of concentric spheres and the

number of harmonic coefficients which remain, may be too low.

Gal et al.(38) extend the shape context to the non-rigid setting, by using

geodesic distances. However signatures based on geodesic distances are

very sensitive to topological noise, since addition or removal of a small

connection can change geodesic distances dramatically over a large por-

tion of the shape.
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Figure 2.16 – Geometric parts extracted from a database of 3D models can be used to

create new objects. The large brown chair was built from the circled parts of the others.

(Figure taken from Funkhouser et al.(34)).

Other methods based on local descriptors using spectral embedding

like Sun et al. (100) introduced a multi-scale local descriptor, the authors

restrict his studies to the temporal domain and compute their signature

by observing the evolution of the heat diffusion over time. Recently, Dey

et al.(24) detect feature points based on the heat kernel signature from

spectral theory that shows this multi-scale property. Then, the authors

filter these feature points by considering only the ones where the maxima

of the heat kernel persist beyond a given threshold. This selection of t give

a more robust set of feature points then they are integrated into a region

matching algorithm.

Lavoué (57) considers a set of feature points uniformly sampled on the
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mesh and associates local Fourier descriptors for each feature point. A

visual dictionary is built by clustering a large set of feature descriptors,

then each 3D-model is described by an histogram of occurrences of these

visual words.

However, most of local descriptor methods base their partial similar-

ity estimation on point-to-point matching only. This is particularly detri-

mental in term of re-usability in applicative contexts such as modeling-

by-example (34) (see figure2.16) where the similar sub-parts have to be

explicitly identified and extracted.

2.5.2 Structural based methods for partial 3D-model retrieval

Structural based techniques aim to segment the 3D-model to sub-parts in

order to retrieve objects that have similar sub-shapes even if they visually

differ globally. Then the 3D-model will be presented by a graph linking its

sub-parts depicting the structural relations between them. These methods

present the advantage to explicitly identify the surface patches that have

been matched. Then, partial shape similarity is estimated using graph

matching techniques.

Cornea et al. (20) propose to extract the skeletal representations then

match the query skeleton against all other skeletons in the database. The

skeleton representation is the curve-skeleton extracted using generalized

potential field based on the method presented by Chuang et al. (17).

Then the matching process is based on the Earth Mover’s distance (53) to

evaluate the partial similarity of the skeletons. The sub-parts descriptors

are based on the Euclidean distance between the surface and its curve-

skeleton which makes the method quite sensitive to isometric transforma-

tions.

Tierny et al. (109) present a structural approach for partial 3D shape

retrieval, based on Reeb graphs. The authors enhanced the Reeb graph to

compute their topological skeleton by analyzing the Gaussian curvature

in each vertex of the mesh. The authors segment the topological skeleton

obtained into patches and propose sub-part geometry signature based on

parameterization techniques (Figure2.17). The Reeb graph is computed
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using the geodesic distance which make the overall method very sensitive

to topology change.

Figure 2.17 – Segmentation of a hand triangulated surface model into its Reeb charts.

(Figure taken from Tierny et al.(109)).

Biasotti et al. (8) proposed an efficient method based on a derived ver-

sion of multi-resolution Reeb graphs and Spherical Harmonics sub-parts

signatures (spherical harmonics). Even if the Reeb graph computation is

robust to isometric transformations, sub-parts signatures (spherical har-

monics) are not, which is slightly detrimental to the overall robustness of

the approach.

2.5.3 Bag-of-features technique

In 3D-model retrieval, the bag-of-features or bag-of-words technique is

inspired by the approach used in the text retrieval. It is defined by treating

the 3D-model features as words. All features of the 3D-model define the

document. Then, a classification task is performed. Finally, a 3D-model

is a vector of occurrence counts of words (see figure 6.1). The bag-of-

feature technique is very useful for partial 3D-model retrieval, since this

technique consider the max number of local features describing the model

to construct a valuable document.

Liu et al.(61) presented a 3D-shape descriptor named "Shape Topics"

and applied it to 3D partial shape retrieval. In their method, a 3D-object

is considered as a word histogram obtained by vector quantifying Spin

images of the object.

Ohbuchi et al.(74) introduced a view-based method using salient local

features. They represented 3D-objects as word histograms derived from
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Figure 2.18 – Bag-of-feature technique.

the vector quantifying of salient local descriptors extracted on the depth-

buffer views captured uniformly around the objects.

Ovsjanikov et al. (77) presented an approach to non-rigid shape re-

trieval similar in its spirit to text retrieval methods used in search engines.

They used the heat kernel signatures to construct shape descriptors that

are invariant to non-rigid transformations.

Toldo et al.(112) has used the bag-of-words for 3D-object categoriza-

tion. Toldo’s categorization framework is based on semantic segmentation.

In general, the problem of segmenting a 3D object into meaningful parts is

not a trivial issue. Their framework is quite sensitive to the identification

of the boundaries of the meaningful part.

The main drawback of this technique that it loses the spatial relation

between parts, since it ignores the position of each feature.

2.6 Conclusion and comparison of 3D-models re-

trieval methods.

We presented in this chapter the concept of shape matching that the mea-

sure of similarity between two 3D-objects can be reduced to a distance

computing between their two descriptors. Then, we review existing meth-

ods in the literature for 3D-model retrieval, and for partial 3D-model re-
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trieval. We discussed their drawback and their advantages. Generally

speaking, a method for 3D-model retrieval or partial 3D-model retrieval

which gives the ideal results do not exist yet.

To conclude, in this section we present a comparison table of the ex-

isting methods. As we noticed very few existing methods are able to

perform well on 3D-model retrieval and none of them have very good re-

sults concerning the partial 3D-model retrieval. In this thesis, we present

an approach for 3D-model retrieval. Then we enhanced our approach by

using the bag-of-features technique to handle partial 3D-model retrieval.
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In this chapter, we present an approach to define our invariant mapping

function. Later, in chapter 4, we will construct the Reeb graph to show

the stability and the invariance properties preserved by our mapping func-

tion. In chapter 5, we will define a novel method for 3D-model retrieval

based on this function, and in chapter 6, we will enhance our method to

handle partial 3D-model retrieval.

Our mapping function computes a real value for each vertex of the

mesh which provides interesting insights to describe the topology struc-

ture of the 3D-model, and respects some important properties. It is in-

variant to rigid and non rigid transformations, it is insensitive to noise, it

is robust to small topology changes, it does not depend on any parame-

ters, and it is practical to compute on a discrete mesh. However, current

methods that are presented in the state-of-the-art, do not have these basic

properties. The definition of our mapping function consists of two steps:

First, we extract feature points located at the extremities of prominent

components of the 3D-model. We combine local and global properties of

the diffusion distance to detect stable feature points.

Second, these feature points are used as origin to define our map-

ping function based on the commute-time distance. The commute-time

distance detects the local and global properties, since it takes into consid-

eration all paths connecting two nodes on the graph and do not depend

on any parameters.

This chapter is organized as follows: In section 3.1, we introduce

topological structure and function on surfaces related work. Section 3.2

presents mathematical background and definitions of the heat kernel, the

diffusion distance and the commute-time distance also we discussed their

properties. In section 3.3 we present an approach for stable feature point

extraction. We discuss the construction and the properties of our map-

ping function in section 3.4. Before concluding, we define the parameter

settings and the implementation of our mapping function in section 3.5.
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Introduction (en français)

Dans ce chapitre, nous présentons une approche pour définir notre fonc-

tion d’application. Plus tard, dans le chapitre 4, nous allons construire le

graphe de Reeb pour montrer la stabilité et les propriétés d’invariance

conservées par notre fonction. Dans le chapitre 5, nous allons définir

une nouvelle méthode pour l’indexation des modèles 3D basée sur cette

fonction, et dans le chapitre 6 nous allons améliorer notre méthode pour

l’indexation partielle de modèles 3D.

Notre fonction d’application calcule une valeur réelle pour chaque

sommet du maillage décrivant la structure topologique du modèle 3D.

Elle possède des propriétés importantes: elle est invariante à des transfor-

mations rigides et non rigides, elle est insensible au bruit, elle est robuste

à de petits changements topologiques, elle ne dépend pas de paramètres

et elle est facilement calculable sur un maillage discret.

Cependant, les méthodes actuelles qui sont présentées dans l’état de

l’art, ne possèdent pas ces propriétés de base. La définition de notre fonc-

tion d’application se compose en deux étapes.

Tout d’abord, on extrait des points caractéristiques situés aux ex-

trémités des éléments significatifs du modèle 3D. Nous combinons les

propriétés locales et globales de la distance de diffusion pour détecter

les points caractéristiques bien localisés.

Ensuite, ces points caractéristiques sont utilisés comme origine pour

définir notre fonction d’application basée sur la distance de migration

pendulaire (commute-time distance). La distance de migration pendulaire

détecte les propriétés locales et globales, car elle prend en compte tous

les chemins reliant deux sommets sur le graphe et ne dépend pas des

paramètres.

Ce chapitre est organisé comme suit. Notre méthode propose une so-

lution à la définition d’une fonction scalaire appropriée qui respecte la

stabilité et les propriétés d’invariance. Dans la section 3.1, nous nous

sommes concentrés sur les méthodes existantes dans l’état de l’art qui

traitent ce problème. La section 3.2 présente les définitions mathéma-

tiques du noyau de la chaleur, de la distance de diffusion et de la distance
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de migration pendulaire dont nous discutons aussi des propriétés. Dans

la section 3.3 nous présentons une approche pour l’extraction des points

caractéristiques. Nous discutons la construction et les propriétés de notre

fonction d’application dans la section 3.4. Avant de conclure, nous définis-

sons les paramètres et l’implémentation de notre fonction d’application

dans la section 3.5.
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3.1 Scalar function on surfaces related work

The scalar function f : S 7→ ℜ is defined by a real value for each vertex

on a polygonal mesh. Critical points are located with the help of this

function. The type and the number of these critical points are related to the

topology of the mesh. In the literature, the use of such functions computed

over triangulated surfaces is an important tool for a 3D-model analysis in

different tasks: topological structure of a 3D-model (73), surface coding

and modeling (95), molecular analysis (10), Reeb graph construction (39,

111) and so on.

Our method proposes a solution to the definition of an appropriate

scalar function. Currently, such functions defined on surfaces existing in

the state-of-the-art do not respect the stability and the invariance proper-

ties listed in the introduction of this chapter.

The height function was firstly applied by Shinagawa and Kunii (96)

and is a simple example to understand the Reeb graph. Most of the

methods define the scalar function using many techniques based on the

geodesic distance (the length of the shortest path between vertices along

the surface) (111, 93, 67). These functions are very sensitive to small topol-

ogy changes.

Mortara and Patané (71) extracted feature points where Gaussian cur-

vatures are dependant on a given threshold. However, the drawback of

this method appears when using constant curvature surfaces.

Gebal et al. (39) define an autodiffusion function depending on the

time variable that leads to very different levels of details. This function

computes the remaining heat on each vertex after a scale time t. For scale

invariance, the authors normalize the spectrum (eigenvalues) of the graph.

The autodiffusion is a function based on the heat kernel, which in turn

depends on eigenvalues and eigenvectors of Laplace-Beltrami operator. In

the discrete space for his application, the authors use the cotangent weight

(11, 80) that minimizes the Dirichlet energy. This may creates unexpected

local extrema due to the negative values of geometry weights.

Lazarus and Verroust (58) proposed to map a vertex to its geodesic

distance after the user choice of the source vertex. Tierny et al.(111) detect
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the farthest two points on the mesh, then the authors compute two sets

of feature points based on local maximum (a vertex such that all its direct

neighbours have a lower values) from the farthest two points. The inter-

section of the two sets computed eliminates the unwanted feature points

as it shown in Figure 3.1. The authors define the scalar function as the

geodesic distance to the nearest feature point. The method’s disadvantage

that is its sensitivity to a small topology change.

Figure 3.1 – The intersection of the two sets computed eliminates the unwanted feature

points on a triangulated surface. (Figure taken from Tierny et al.(109))

Ni et al. (73) solve the Laplace equation adding selected vertices as

constraints elements, the resulting function will be harmonic. This method

yields to a smooth function to eliminate local maximal point except at its

boundary.

The advantage of our scalar function is shown in table 3.1. Also, this

table presents an overview of these functions listed above compared to

our function which in turn will be defined later in this chapter.

3.2 Mathematical background and definition

In this section, we present the mathematical background needed to com-

pute our mapping function. We firstly present the general heat kernel

definition which will be used to define the diffusion distance and the

commute-time distance.
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Rigid Non rigid Noise and Topology Do not depend

transformation transformation perturbation changes on parameters

Height

Function − − − − +

Shinagawa

and Kunii (96)

Gaussian

curvature + + + − −

Motara and

Patané (71)

Laplace

equation + + + not clearly −

Ni et al. (73) discussed

Geodesic

distances + + − − −

Lazarus and Verroust (58)

Geodesic

distances + + + − −

Tierny et al.(111)

Auto diffusion

function + + + not clearly −

Gebal et al. (39) discussed

Our Function + + + + +

Table 3.1 – Scalar functions defined on surfaces existing in the state-of-the-art compared

to our function.
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3.2.1 Definition of the heat kernel

Let S be a connected closed Reimannian manifold. Given an initial heat

distribution U : S × [0, ∞[→ ℜ for all time t the U(0, x) = f (x), f (x) is a

given function on the mesh. The heat diffusion process on S is governed

by heat equation:

∆SU(x, t) = −
δU(x, t)

δt
(3.1)

for x ∈ S and 0 < t < ∞, and the distribution of the heat U is a function

defined on S× [0, ∞[→ ℜ, the solution U(x, t) is the amount of heat on the

surface S at point x in time t. ∆S is a generalization of the Laplacian to non-

euclidean domains (from flat spaces to manifolds) called Laplace-Beltrami

operator. We consider that the operator is separable, initial and boundary

conditions are on constant-coordinate surfaces. Using the separation of

variables method, we get the spectral problem:

∆SU(x, t) = λ2U(x, t) (3.2)

S is a compact manifold, ∆S is compact self-adjoint operator in L2(S).

By the finite-dimensional spectral theorem such operators have an or-

thonormal basis in which the operator can be represented as a diagonal

matrix with entries are real numbers. The basis is built on the surface

from the eigenfuctions ψn and all the eigenvalues λn are positives. The

operator −∆S is represented by the diagonal matrix λi (0 ≤ i ≤ n). By

the spectral theorem the operator et∆S has the diagonal matrix entries e−tλi .

− ∆Sψn = λnψn (3.3)

Since the equation 3.1 is a homogeneous linear equation the initial heat

distribution U(0, x) can be written in the basis as the following expansion:

U(0, x) =
∞

∑
n=0

< U(0, x), ψn(x) > ψn(x) (3.4)

where the inner product is defined as the surface integral

< U(0, x), ψn(x) >=
∫

S
(U(0, y)ψn(y))dy (3.5)
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The solution of the problem can be written as:

U(t, x) =
∞

∑
n=0

< U(0, x), ψn(x) > ψn(x)eλnt (3.6)

Finally

U(t, x) =
∫

S

∞

∑
n=0

eλntψn(y)ψn(x)

︸ ︷︷ ︸

K(t,x,y)

U(0, y)dy (3.7)

K(t, x, y) =
∞

∑
n=0

eλntψn(y)ψn(x) (3.8)

K(t, x, y): C∞((0, ∞)× S × S) → ℜ is the fundamental solution of the

heat equation corresponding to the initial condition of an initial point

source of heat at a known position called the heat kernel. The initial point

source of heat is k(t, x, .) = H(t, δ(x)) where H denote the heat distribu-

tion at time t and δ(x) is Dirac delta function at x: δ(x, z) = 0 for any

z 6= x , and
∫

S δ(x, z)dz = 1. For more details see Grigorian (41).

Properties of the heat kernel

The heat kernel is computed using the eigendecomposition of Laplace-

beltrami operator. The first eigenvectors (corresponding to small eigen-

values) are smooth, slowly varying functions on the mesh, and the last

eigenvectors have high frequency (rapid oscillations). For example, the

first eigenvector is the constant vector, that is, the smoothest mesh function

that does not vary at all. In fact, the Laplacian eigenbasis is an extension

of the discrete Fourier basis to irregular domains (107). The eigenvalues

can be interpreted as frequency and K(t, x, y) can be seen as as a low-pass

filter function (robust to perturbation and noise).

The Laplace-Beltrami operator is intrinsically linked to the geometry

of the mesh and involves intrinsic properties and invariance to isometric

deformations, which implies the properties to the heat kernel as well. The

heat kernel can be used to match articulated shapes such as animals in

different poses.

The heat kernels depend on the parameter t that reflects the multi-

scale property which means for small time parameter t the heat kernel

is determined by small neighborhoods and reflects local properties of the

shape. These neighborhoods grow bigger as t increases to reflect the global
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properties. The heat kernel’s properties was explored in different domains

for construction of global shape descriptor (87, 11), construction of multi-

scale shape descriptor (100), and parametrization of surfaces (59). We

will apply the heat kernel in order to compute the diffusion distance for

feature points extraction and also to compute the commute-time distance

to define our mapping function.

3.2.2 Diffusion distance

Coifman et al.(18) introduced diffusion maps and diffusion distances as a

method for data parametrization and dimensionality reduction. In gen-

eral, the diffusion kernel k(x, y) reflects the degree of proximity or mea-

sures the similarity between two points x and y it means that k(x, y) ≈

connectivity(x, y). It can be used to define a metric on S.

d2(x, y) = ‖k(x, .)− k(y, .)‖2
L2(S) (3.9)

Let k(x, y) be a positive symmetric diffusion kernel constructed over

all pairs of points on the surfaces and n is the number of points of the

shape S. That leads to n × n symmetric, positive, semi-definite matrix.

p(x, y) =
k(x, y)

Σyk(x, y)
(3.10)

where Σyk(x, y) is the sum of the elements of each row. Since p(x, y) ≥ 0;

Σy p(x, y) = 1; then p(x, y) can be interpreted as the probability for a

random walker on the shape to jump from x to y in a single time step. The

corresponding matrix P = p(x, y) is the transition matrix of this Markov

chain in a single time step. We multiply the entry of the matrix P by
√

Σyk(x,y)
Σxk(x,y) to transform the matrix P to symmetric version we called it ρ.

ρ(x, y) = p(x, y)

√

Σyk(x, y)

Σxk(x, y)
(3.11)

Using the random walk formulation the t-th power of the matrix ρ de-

termine the transition probability from x to y in t steps. Then the diffusion

distance between two points x, y is defined as

d2
t (x, y) = ∑

∣
∣ρt(x, .)− ρt(y, .)

∣
∣ (3.12)
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In spectral expression using the eigendecomposition of ρ, the diffusion

distance can be written as

d2
t (x, y) =

∞

∑
i=0

k2t(λi)ψi(x)ψi(y) (3.13)

Where λi and ψi(.) are the i-th eigenvalue and eigenfunction respectively

of Laplace-Beltrami operator.

Figure 3.2 – Diffusion distance diffused from a vertex located on the top of the head in

different scaled time t.

In our methods, we compute the diffusion distance based on the heat

kernel due to nice properties listed in the previous section, consequently

k2t(λi) = e−2λit. Back to equation 3.13 the diffusion distance can be repre-

sented as:

dS(t, x, y)2 =
∞

∑
i=1

e−2λit(ψi(x)− ψi(y))
2 (3.14)

3.2.3 Commute-time distance

Qiu and Hancock (83) presents a scale invariant kernel, the commute-time

kernel. The commute-time distance is defined similarly to the diffusion

distance. But the commute-time distance takes into consideration all paths

connecting a pair of nodes in the graph, not only paths with length t. This

is done by summing the diffusion distances over the possible discrete time-

steps on the graph. Let x, y two points on the graph S, and dS(t, x, y)2 the

diffusion distance between x and y. The commute-time distance dcS(x, y)2

is represented as:
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dcS(x, y)2 =
∞

∑
t=1

dS(t, x, y)2 (3.15)

Then

dcS(x, y)2 =
∞

∑
t=0

∞

∑
i=1

e−2λit(ψi(x)− ψi(y))
2 (3.16)

By the property of the power series, we got
∞

∑
t=0

e−2λit = 1/1 − e−2λi

finally the commute-time distance is represented as:

dcS(x, y)2 =
∞

∑
i=1

1/αi(ψi(x)− ψi(y))
2 (3.17)

Discussion

The diffusion and commute-time distances are an intrinsic metrics and

respect the invariance to isometric deformation. Since the diffusion dis-

tance and commute-time distances are a direct consequence of the invari-

ance of Laplace-Beltrami operator.

Also, the diffusion distance can be understood using random walks,

and the number of steps of a random walk is limited by the parameter t.

The parameter t plays the role of scale. That is to say, when t is small,

x and y are linked by short paths, and diffusion takes place only over a

very local neighborhood. As t becomes larger, the diffusion occurs over a

larger area. In other words, as t goes from zero to infinity, the diffusion

map measures the connectivity of x and y with a specific path length.

The diffusion distance describes locally and globally the shape de-

pending on the parameter t. We combine these properties in a technique

to extract feature points. On the other hand, the commute-time distance

is the sum of the diffusion distance over all possible paths connecting x

and y which makes it time independent. We use feature points extracted

as origin to define our mapping function based on the commute-time dis-

tance.

3.3 Feature point extraction

Feature points is a concept introduced by several authors (71, 51), for

which it is hard however to find a formal definition. We define vertices



3.3. Feature point extraction 55

Figure 3.3 – Feature point detected based on the heat kernel. To our concept, feature

point detected other than those located on the extremities are undesirable feature points.

Also, the method introduced by Bronstein et al.(11)) missed to detect feature point

located on the top of the head of the centaur. (Figure taken from Bronstein et al.(11))

located on the extremities of the important elements of the 3D-model as

feature points. These feature points will be used as origins of our mapping

function.

In the literature, many techniques were proposed to detect feature

points (51, 111, 39). Recently, several methods (11, 100) are using the heat

kernel to detect feature points. These methods compute the amount of

heat remaining at each vertex after a large time. These functions detect

feature points automatically since the quantity of heat that remains, will

be bigger on features or close to them. But to our experiments, this func-

tion generates undesirable feature points or misplaces them. Which means

to our concept taht feature points should be located only on the extrem-

ities. Methods based on the heat kernel generate feature points on the

extremities and on other parts. Also these methods miss to detect extrem-

ities of an important part, like the missing feature point that should be

located on the top of the head of the centaur as it is shown in figure 3.3.

Tierny et al. (111) proposed a crossed analysis method using two
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geodesic function. The author’s algorithm produces well-localized feature

points but very sensitive to topology changes.

Our Method is inspired from Tierny et al. (111) using the same technique

with diffusion distance. The method starts by feature points extraction us-

ing the diffusion distance. In a large time variable t, global properties are

detected and the farthest two feature points (where the diffusion distance

is minimum) are computed (see figure 3.4a). Let V1 and V2 be the farthest

feature points. These two feature points are used as origins for two scalar

function defined as

fV1(v, t) = dS(t, v, V1)
2 =

∞

∑
i=1

e−2λit(ψi(v)− ψi(V1))
2 (3.18)

fV2(v, t) = dS(t, v, V2)
2 =

∞

∑
i=1

e−2λit(ψi(v)− ψi(V2))
2 (3.19)

In a small variable time t, we compute local minimum diffusion distance

(vertex that all its level-one neighbours have a higher value) to detect lo-

cal properties. Let S1 and S2 be the set of local minima of fV1 and fV2

respectively (see figure 3.4b and figure 3.4c). The set of feature points is

the union of S1 and S2 presented in figure 3.4d.

In the discrete space, feature points will appear in the same neighbour-

hood of the vertex not exactly on the same ones this is why we put a limit

dependent on a two level neighbourhood (see figure 3.5). Then we extract

the nearest feature point to the barycenter of the all points constructing the

region. This combination of local and global properties to extract feature

points shows good results on different 3D-models under different rigid

and non-rigid transformations (see figure 3.6).

3.4 Definition of the mapping function

The concept of the mapping function is to reveal the most meaningful

parts of the model. Our mapping function computes a real value for each

vertex which provides interesting insights to describe topology structure

of the 3D-model, and respects some important properties. It is invariant

to rigid and non rigid transformations, it is insensitive to noise, it is robust
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(a) V1 and V2 are the farthest two feature

points

(b) The set of local minima of fV1 (c) The set of local minima of fV2

(d) Final Feature points set = V1 ∪ V2

Figure 3.4 – Approach for feature points detection. Figure 3.4a shows the farthest two

feature points detected. Figure 3.4b and figure 3.4c show the set of local minima of fV1

and fV2 respectively and figure 3.4d shows the final set of feature points.
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Figure 3.5 – Region detector for feature point. limit dependent on a two level

neighbourhood

to small topology changes, and it does not depend on parameters, and it

is practical to compute on a discrete mesh. These properties are discussed

in section 3.4.2.

Later, in chapter 4 we will use this function and we will add a pertur-

bation strategy to construct Reeb graph. In chapters 5 and 6 this function

will be used to construct closed curves as a descriptor for 3D-model re-

trieval and partial 3D-model retrieval respectively.

3.4.1 Construction of the mapping function

Tierny et al. (111) define a mapping function that computes for each vertex

v the geodesic distance to the nearest feature point. This function does not

handle small topology changes and is very sensitive to noise. Based on the

same technique using the commute-time distance, we define our mapping

function. The commute-time distance takes into consideration all paths

connecting a pair of nodes in the graph, a small topology change does not

affect enormously the results. We use this distance to define our mapping

function Fm that computes for each vertex v the commute-time distance to
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(a) Null 3D-model (b) Partiallity

(c) Sampling changed (d) Scale change

(e) Affine transformation (f) Isometric transformation

Figure 3.6 – Feature points extracted from different poses of a 3D-model taken from

SHREC 2011 database.
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the nearest feature point.

Fm(v) = max(dcS(v, Vi), i = 1..nbVi)) (3.20)

where Vi is the ith feature point and nbVi is the number of feature points.



3.4. Definition of the mapping function 61

(a) Null 3D-model (b) Partiallity

(c) Sampling changed (d) Scale change

(e) Affine transformation (f) Isometric transformation

Figure 3.7 – Figure(a) to figure(f) show the robustness of the mapping function against

variations in 3D-model pose, red to blue colors express the increasing values of the

mapping function.
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3.4.2 Properties of the mapping function

Our mapping function respects important properties and reveals the most

meaningful parts of the model that can be useful to describe a 3D-model

as it shown in figure 3.7. Since the commute-time distance is a direct

consequence of the invariance of Laplace-Beltrami operator presented in

section 3.2. In the following we discuss these properties.

• Topology information:

Our function computes for each vertex the commute time distance

to the nearest feature point. In other words, each vertex is assigned

with the commute time distance to a feature point, all vertices as-

signed to the same feature point define a region. Vertices having

the same distance to two or more feature points are also grouped to

define another region. In this way, our mapping function segments

the 3D-model into sub-parts and the evolution of these regions can

be used to describe the topology of the mesh. Later, in chapter 4 we

analyze the evolution of the region to construct the Reeb graph.

• Geometric information:

The mapping function is defined to be dependent only on the struc-

ture of the mesh. (for more details see section 3.2).

• Invariance to isometric deformation:

commute-time distances are an intrinsic metric and respect the in-

variance to isometric deformations. Since the commute-time dis-

tances are a direct consequence of the invariance of Laplace-Beltrami

operator which depends only on the structure of the mesh.

• Robustness to noise and perturbation:

The mapping function is defined by the commute-time distance. It

is computed using the eigenfunction and eigenvalue of the Laplace-

Beltrami operator. The first eigenvectors (corresponding to small

eigenvalues) are smooth, slowly varying functions on the mesh, and

the last eigenvectors have high frequency (rapid oscillations).

For example, the first eigenvector is the constant vector, that is, the

"smoothest" mesh function that does not vary at all. In fact, the
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Laplacian eigenbasis is an extension of the discrete Fourier basis to

irregular domains (107). The eigenvalues can be interpreted as fre-

quencies and we defined K(t, x, y) using the first eigenvalues. Con-

sequently it can be seen as a low-pass filter function (robust to per-

turbation and noise).

• Invariance to uniform scaling:

After the eigendecomposition of Laplace-beltrami, we normalized

the spectrum (eigenvalues) of the mesh. In this way, all models with

different scales are computed almost in the same base defined by

their eigenvalues.

• Handle small topology change:

The commute-time distance takes into consideration all paths con-

necting a pair of nodes in the graph, a small topology change does

not affect enormously the results.

• Does not depend on parameter:

Our function is based on the commute-time distance that consid-

ers all paths connecting two nodes on the graph, unlike Gebal et al.

(39) who define the autodiffusion function depending on the time

variable that leads to very different levels of details. All other pa-

rameters such as the number of the first eigenvalues are fixed for all

3D-models.

3.5 Parameter settings and implementation

In the discrete space, to formulate the diffusion distance and the commute-

time distance on surface meshes, we need to discretize the Laplace-

Beltrami operator and compute the eigenfunctions and the eigenvalues.

In the literature several discretizations of Laplace-Beltrami operator

have been proposed. Pinkall and Polthier (81) were the firsts who intro-

duce the geometric approach called the cotangent weights. Generally, the

cotangent weight discritization can be written in the following form:
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∆S f (pi) = ∑
j∈N(i)

wij( f (pi)− f (pj)) (3.21)

Where pi and pj are the vertices of the surface mesh S, N(i) is the set

of one ring neighbours of the vertex pi, f is a function defined on the

triangulated surface S, and wij are the weights defined on the geometric

of the mesh.

Desbrun et al. (22) and Meyer et al. (68) took almost the same dis-

cretization as Pinkall and Polthier (81) and added a normalization factor

ci. Then the discretization is written in the following form:

∆S f (pi) = ci ∑
j∈N(i)

wij( f (pi)− f (pj)) (3.22)

where Desbrun et al. (22) define ci =
3

Area(pi)
where Area(pi) is the area

of the triangles around pi.

Meyer et al. (68) define ci =
1

AreaM(pi)
where AreaM(pi) is the area of the

region shown in figure 3.8.

Figure 3.8 – Definition of the angles and the area around the vertex, qij is circumcenter

In practice, we numerically computed the eigenfunctions and the

eigenvalues using the discretization proposed by Meyer et al. (68). The

problem can be transformed in matrices notation where the eigensystem
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defined in the equation 3.3 is simplified to generalized symmetric eigen-

value problem:

Mψ = λSψ (3.23)

Where M is a symmetric matrix whose entries mij =
cot αij+cot βij

2 are the

cotangent weights. (α and β) are the angles shown in figure 3.8. The

matrix S whose entries are Si defined on the area around the vertex pi.

We solve the generalized eigenvalue problem using the Implicitly

Restarted Arnoldi Method implemented in MatLab.

3D-models with boundaries are solved by imposing the Newman

boundary condition (114). We force the outward normal derivative to be

zero on the boundary vertex.

We define the basis by 50 eigenfunctions related to the 50 smallest

eigenvalues. The first 50 eigenvalues are fairly enough to detect the most

important details and smooth enough to eliminate the noise, as we noticed

the eigenvalues can be interpreted as frequency and K(t,x,y) can be seen as

a low-pass filter function. To extract feature points described in section 3.3,

the diffusion distance is estimated in a small and in a large variable time

t. For small t ranging in [1..2], the diffusion is propagated significantly to

detect local properties. For a large t > 15, the diffusion distance remains

almost unchanged; so we fix it experimentally to 20.

3.6 Conclusion

To conclude, we presented in this chapter a robust invariant mapping

function which reveals the most meaningful parts of the 3D-model.

First, we start by introducing the mathematical background and the

properties of the heat kernel, diffusion distance and commute time dis-

tance. Then, we extract feature points defined on the extremities of a

3D-model. Our technique combines the local and global properties of

the diffusion distance to detect stable feature points. We present feature

point extracted on different 3D-models with different poses and transfor-

mations.

Second, these feature points are used as origin to define our mapping

function based on the commute time distance. This mapping function
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respects good properties as the invariance to rigid and non rigid trans-

formations, the insensitivity to noise, the robustness to small topology

changes, and do not depend on parameter.

The main drawback of our function is presented in 3D-models like

cups where feature points are not well defined due to the shapes itself of

these 3D-models where the extremities are difficult to define.

In the next chapter, we will use this function to construct Reeb graph

which encodes the topological information of the 3D-model and we will

prove the robustness of the mapping function.

In chapters 5 and 6 we will present two methods for 3D-model retrieval

and partial 3D-model retrieval respectively based on this function.
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Traditional skeleton extraction and mesh segmentation approaches

are not clearly defined to preserve topological properties of a 3D-

model faced to the Reeb graph theory (84). We see the benefits of topology

graphs, such as Reeb graph, in many applications in diverse fields. It has

shown to be interesting for shape description (6), surface parametrization

(99), mesh segmentation (93), 3D-model retrieval (67), and so on.

The mapping function defined in the previous chapter section 3.4 can

be seen as a piecewise linear function but not a Morse function.

When dealing with topological structure based on Reeb graph, obvi-

ously, we have to define an appropriate piecewise linear Morse function.

This function should respect the invariance to rigid and non rigid trans-

formations, the insensitivity to noise, the robustness to small topology

changes, and the independence on parameters. The definition of such a

Morse function remains an open question (6).

To answer this question, we propose in this chapter a solution based on

our function defined in the previous chapter. Also we present the stability

and the invariance properties of our piecewise linear Morse function for

Reeb graphs computation.

We organize this chapter as follows: The first section 4.1 introduces the

Morse theory in continuous and discrete space. Followed by section 4.2

which presents the computation of Reeb graph also in the continuous and

discrete space.

In section 4.3 we transform our piecewise linear function defined in

the previous chapter to a piecewise linear Morse function by adding a

perturbation strategy. Then, section 4.4 is about Reeb graph computation

and topological analysis of the mesh. Before the conclusion, the experi-

ments that prove the efficiency of our approach are explored in section 4.5.

Section 4.1 to section 4.3 are taken from Tierny’s Ph.D thesis (110).

Introduction (en français)

Les approches traditionnelles de segmentation d’un modèle 3D et

l’extraction de squelettes ne sont pas efficaces pour préserver les pro-

priétés topologiques d’un modèle 3D par rapport à la théorie de graphe
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de Reeb dans de nombreuses applications. Les graphes de Reeb sont

utilisés pour l’analyse de forme de modèles 3D (6), pour la paramétri-

sation des surfaces (99), pour la segmentation de maillages (93), pour

l’indexation de modèles 3D (67), etc.

La fonction d’application définie dans le chapitre précédent est vue

comme une fonction linéaire par morceaux, mais pas une fonction de

Morse. Pour analyser la structure topologique d’un modèle 3D par les

graphes de Reeb, il faut definir une fonction de Morse simple linéaire par

morceaux. Cette dernière doit respecter les propriétés d’invariance citées

dans le chapitre précédent en décrivant le modèle 3D. La définition d’une

telle fonction de Morse reste une question ouverte (6).

Pour répondre à cette question, nous proposons dans ce chapitre une

solution basée sur notre fonction définie dans le chapitre précédent. En

outre, nous présentons la stabilité et les propriétés d’invariance de notre

fonction de Morse linéaire par morceaux en l’appliquant sur le calcul de

graphes de Reeb.

Nous organisons ce chapitre comme suit: la première section introduit

la théorie de Morse dans l’espace continu et discret. La section suivante

présente le calcul du graphe de Reeb aussi dans l’espace continu et discret.

Dans la section 4.3 nous transformons notre fonction linéaire par

morceaux, définie dans le chapitre précédent, en une fonction de Morse

linéaire par morceaux en ajoutant une stratégie de perturbation. Ensuite,

la section 4.4 concerne le calcul de graphe de Reeb et l’analyse topologique

du maillage. Avant la conclusion, les expériences qui prouvent l’efficacité

de notre approche sont discutées dans la section 4.5. Les sections 4.1 à 4.3

sont tirées de la thèse de Tierny (110).
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4.1 Morse theory

In the beginning of the twentieth century, Marston Morse (70) presents the

Morse theory (32, 27) in differential topology to characterize the topology

of a manifold. The Morse theory analyzes the topology of the domain (in

our case the 3D-mesh) from the study of a scalar function defined on its

domain. these scalar functions are called Morse functions.

John Hart (42) illustrates the Morse theory by a simple example. The

observation of a doughnut progressively immersed in a coffee shown in

figure 4.1. He observed the evolution of the curve resulting from the in-

tersection of the coffee surface and that of the doughnut. This intersection

has been emphasized by showing the immersed portion of the doughnut

surface on the left of the pictures in figure 4.1.

Along the immersion, one can notice that the topology of the inter-

section curve evolves at very precise configurations of the doughnut. In

particular, the start point is the point where the doughnut touches the cof-

fee surface. Then, it progressively shifts to a connected closed curve, as

shown in figure 4.1b until this connected closed curve bifurcate into two

disjoint components and the intersection curveś topology varies at another

critical point called bifurcation point (figure 4.1d). These two connected

components individually evolve until they reconnect in another symmet-

ric critical point (figure 4.1e) called junction point. Finally, the intersection

curve evolves as a single connected component and fall to a point when

the doughnut is nearly completely immersed (figure 4.1f).

An interesting observation of this particular experiment is that the in-

tersection curve disconnected as many times as it reconnected. This ob-

servation is a topological invariant of the doughnut surface.

This experiment showed that by focusing on the topology of some

function level lines and specifically on the configurations where this topol-

ogy varies, one can infer some topological invariant of the whole surface.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1 – A shiny doughnut and a cup of coffee 4.1a set the stage to demonstrate

Morse theory. As the doughnut first touches the coffee 4.1b, the portion of the

doughnut′s surface in the coffee changes from the empty set to a shape homeomorphic to

a disk. At the instant the coffee reaches the doughnut hole 4.1c, the topology of the

dunked portion changes from a disk to a truncated cylinder 4.1d. At the instant the

doughnut hole is completely immersed 4.1e, the topology of the dunked portion changes

from a cylinder to a truncated torus 4.1f. Releasing the doughnut causes the coffee to

completely engulf the doughnut, completing the surface of the torus. Figure taken from

Hart (42).
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Definitions:

Let f be a real valued function defined on a compact manifold M,

f : M → ℜ and a point p ∈ M.

A point p is a critical point of f if the gradient (partial derivatives of

all orders in p) of the function at the point p equal zero else if p is not a

critical point is called a regular point.

Using the Hessian matrix H(p) (the matrix of second order partial

derivatives of f at point p )

H(p) =
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we can identify if the critical point p is non-degenerate.

a critical point p of a real valued function f is non-degenerate if the Hes-

sian matrix of f at p is non singular (a matrix is singular if its determinant

is equal to 0).

A real valued function f defined on a compact manifold M is called a

Morse function if all its critical points are non-degenerate.

4.1.1 Morse theory in the discrete space

Banchoff (3) investigated to transfer the Morse theory from the continuous

space to the discrete space (in our case triangulated surfaces). A piecewise

linear function on a triangulated surface can be seen as a sampling of a

function defined on a manifold. It is clear that a piecewise linear functions

are definitely not Morse functions. The author proved that it is possible to

define piecewise linear functions, called piecewise linear Morse functions,

whose properties resemble those of Morse functions in the continuous

setting. The author extends the Morse theory to triangulated surfaces.

We defined in the previous section that critical points are the points of

the manifold where the gradient of the function vanishes.

Several authors (106, 28) approximated these critical points to vertices

on the manifold, and they defined regular vertices and critical vertices.

Figure 4.2 presents a regular vertices and some critical vertices. We can



74 Chapter 4. Reeb Graph Computation And Topological Analysis Of The Mesh

Figure 4.2 – A regular vertex and some critical vertices. From left to right: regular

vertex, a minimum non-degenerate critical vertex, a maximum non-degenerate critical

vertex , a non-degenerate critical vertex and a degenerate critical vertex.(figure taken

from (110))

notice that the topology of f where the level lines (bright grey) splitting in

more than two connected components as it is shown in the last right image

in figure 4.2, then this vertex is a degenerate vertex and the piecewise

linear function is not a Morse function.

If all the critical vertices of the piecewise linear function are non-

degenerate this function is called a piecewise linear Morse function. In

section 4.3 we will introduce a perturbation strategy to transform a piece-

wise linear function to piecewise linear Morse function in order to con-

struct the Reeb graph.

4.2 Reeb graph

The Reeb graphs have been introduced by Georges Reeb (84). We see the

benefits of topology graphs such as Reeb graph in many applications in

diverse fields. It has shown to be interesting for shape description (6),

surface parametrization (99), mesh segmentation (93), 3D-model retrieval

(67), and so on.

The Reeb graph is an interesting graph to describe topology structure

that encodes the connectivity of its level sets based on the critical points

of a Morse function. In continuous space, Reeb graph is defined as follow:

Let S be a compact manifold and f : S → ℜ be a Morse function on S.

The Reeb graph of f is the quotient space of f in S ×ℜ by the equivalence

relation "∼" defined as

(vi, f (vi) ∼ (vj, f (vj)) (4.1)
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if and only if f (vi) = f (vj) and vi, vj belong to the same connected com-

ponent of f−1( f (vi)).

In an other way, all nodes having the same value under f are repre-

sented by one element in the Reeb graph. Figure 4.3 presents the height

function f , few level lines, concentric circles which correspond to the in-

dex of the critical points, and the Reeb graph on the right of the figure,

such that each equivalence class is contracted to a point on the bold lines.

Figure 4.3 – A smooth compact 2-manifold M and the Reeb graph of its height function

f , both embedded in ℜ3.(Figure taken from (110))

The Reeb graph inherits from the Morse theory the topological de-

scriptive, also the Reeb graphs provide an additional description from the

connectivity of the critical points through the tracking of level set topology

evolution, resulting in an expressive topology representation.

4.2.1 Rebb graph in the discrete space

In the discrete space, the computation of Reeb graphs on triangulated

surfaces requires piecewise linear Morse function where all the critical

vertices of the piecewise linear function are non-degenerate.

A simple local perturbation strategy discussed in section 4.3 can be

added to the input function to ensure that each vertex has a distinct value



76 Chapter 4. Reeb Graph Computation And Topological Analysis Of The Mesh

on the triangulated surface and transform the degenerated points to non-

degenerated ones, in order to transform the input function to a Morse

function.

Shinigawa et al. (95) introduce the first algorithm for Reeb graph com-

putation in the discrete space that runs in O(n2) steps with n the number

of edges of the triangulated surfaces. Cole-McLaughlin et al. (19) proposed

a Reeb graph computation algorithm for triangulated surfaces of arbitrary

genus running in O(nlog(n)) steps (with n the number of edges). The

main drawback of their approaches is that the equivalence classes of the

output Reeb graphs do not explicitly encode contours, they just contract

them to points in the graph. Consequently, it is possible to map a vertex

to its equivalence class, but not its inverse since contours are not explicitly

stored in data-structures. In the context of shape matching, some authors

(67, 8), propose to compute Reeb graph approximations by hierarchies

of dichotomies of the function base domain, called multi-resolution Reeb

graphs. Such representations have shown useful in the context of shape

comparison but they might not capture the topological descriptive proper-

ties of piecewise linear Morse functions since they are not based on critical

vertex analysis.

Despite this amount of literature, it is hard to find a formal definition

of the transposition of the Reeb graph concept to the discrete setting. Re-

cently, Pascucci et al. (79) proposed a robust technique for the computation

of Reeb graphs for functions defined on the surfaces. The algorithm is ro-

bust in handling non-manifold meshes and general in its applicability to

input models of any dimension. However, their method is very applicable

and simple to implement but not very clear how to deal with degener-

ated critical points. For this issue and to ensure that all critical points

are non-degenerated points, we applied a perturbation strategy. For more

information on Reeb graph and Morse theory see Tierny thesis (110).

4.3 Perturbation strategy of the mapping function

In the discrete space, Reeb graph needs to be defined relatively to a piece-

wise linear Morse function. One of the interest of Reeb graphs is that their
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invariance properties and the topological characteristics of the surface can

be formulated through the definition of the piecewise linear Morse func-

tion. Figure 4.4 illustrates an example of Reeb graph based on the piece-

wise linear Morse function f : M → ℜ such that f (p) = x, f (p) = y and

f (p) = z respectively in 4.4a, 4.4b and 4.4c.

As we noticed, the Reeb graph of the height function is not intrin-

sic to the surface since it will vary under isometric transformations, and

also vary to rigid and non rigid transformations, not robust to topology

change, and is very sensitive to noise and perturbations.

The important properties of our mapping function defined in previous

chapter in section 3.4 and discussed in section 3.4.2 are that it is invariant

to rigid and non rigid transformation, it describes the 3D model, it is

insensitive to noise, it is robust to topology changes, it does not depend

on parameters, and it is practical to compute on a discrete mesh. However,

currently methods that are presented in the state of the art, also discussed

in the previous chapter section 3.1, do not have all these basic properties.

In the discrete setting our mapping function is a piecewise linear func-

tion but not a Morse function. In order to compute the Reeb graph, we

have to transform our mapping function to a piecewise linear Morse func-

tion. We used a perturbation strategy as defined by Tierny in (110) such

that the mapping function (piecewise linear function) takes distinct values

in every vertex of the mesh.

Let Vs = v0, v1, ...vi, ...vn the set of vertices, where vi is the ith vertex. We

sorted Vs with regard to our mapping function, and added a constraint by

considering the neighbours of a vertex (when two vertices or more have

the same value of the mapping function I took the one in the neighbors

of the previous selected). Then, we introduced the perturbation strategy

induced by f : S → ℜ as follows:

f (vi) =
i

n
(4.2)

with n number of vertices in Vs.

The perturbation strategy is kind of sorting the vertices and ensure

that each vertex has a unique value. That will guarantee distinct values
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(a)

(b)

(c)

Figure 4.4 – The reeb graph of the 3D human model based on the piecewise linear

Morse function f : M → ℜ such that f (p) = x in 4.4a, f (p) = y in 4.4b and

f (p) = z in 4.4c
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of the function on critical points and transform degenerate critical points

into non degenerate ones (see figure 4.5).

The red node in figure 4.5a is a degenerated vertex because the level

lines are splitted into more than two connected components and creates

additional critical nodes. Indeed, the piecewise linear approximation of

non-differentiable functions (non Morse function) leads to the appearance

of additional critical vertices. Applying the peturbation strategy by sort-

ing the vertices and starting from the minimum values of f at the red

node the additional critical points will have bigger values thus the level

lines at the red nodes do not split in more than two connected compo-

nents. That will ensure the transformation of degenerated vertices to non-

degenerated ones. The perturbation strategy transform the red node to a

non-degenerated vertex, and thus the piecewise linear function to Morse

function.

4.4 Reeb graph computation and topological analysis

of the mesh

After the computation of our piecewise linear Morse function in the previ-

ous section 4.3 on the mesh, we use the defined function to generate level

sets (79).

Lazarus and Verroust (58) consider the piecewise linear Morse func-

tion which maps a vertex to its geodesic distance to a user-selected source

vertex. To get rid of the source vertex selection problem. Our mapping

function detects the source vertex automatically. It computes for each ver-

tex the commute-time distance to the nearest feature point. Consequently,

the farthest vertex (where the Morse function is minimum) of all feature

points will be detected and most of the time will be located in the center

of the 3D model. This vertex will be the source vertex to generate the level

sets.

These level sets are defined by the equivalence relation in section 4.2.

We analyse them to define 4 types of topological changes:
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(a)

(b)

Figure 4.5 – In each image in the figure the top right is the mapping function and

bottom right is the Morse function after the perturbation strategy of the mapping

function to transform critical vertices (the red node in figure 4.5a ) into non degenerate

ones.
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• The start point is located where the value of the Morse function is

the minimum (center of the 3D-model).

• Bifurcation are detected where the level sets split.

• Junction are detected where the level sets merge.

• The termination point.

The critical points are created in each iteration where we detect a topo-

logical changes. These critical points and the connection between them

correspond to the nodes and the edges of the Reeb graph.

Experiments and results of Reeb graphs on various 3D-models are gen-

erated using the Visualization Toolkit (VTK)1. The Visualization Toolkit

implements the most robust Reeb graph computation algorithms devel-

opped by Pascucci et al. (79). Their method is very applicable and simple

to implement. We add a perturbation strategy to ensure that all critical

points are non degenerated.

4.5 Experiments and results

In this section, we evaluate our method on 3D-models presented as con-

nected triangulated surfaces. In our experiments we focused on three

points: First the robustness of our piecewise linear Morse function. Then,

we extended our experiments and we computed the Reeb graphs on dif-

ferent types of 3D-models including partial and combined ones. Finally,

we prove robustness of our approach to topology changes.

4.5.1 Experiments on our mapping function

Our piecewise linear Morse function expresses the robustness against vari-

ations in 3D-model pose. In Fig 4.6, the same colors have been affected

to the same corresponding regions. Variation from red to blue colors ex-

presses the increasing values of the Morse function. Our Morse function

does not depend on a parameter to handle the level of details. It describes

the local details and describes the global as well (see figure 4.7j). As an

1The Visualization Toolkit (VTK) http://www.vtk.org/.

http://www.vtk.org/
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(a) Null 3D-model (b) Partiallity (c) sampling changed

(d) Null 3D-model (e) Partiallity (f) sampling changed

(g) scale

change

(h) Affine

transformation

(i) Isometric transformation

(j) scale change (k) Affine

transformation

(l) Isometric

transformation

Figure 4.6 – Images in the first and in the third rows show the robustness of the

piecewise linear Morse function against variations in 3D-model pose, red to blue colors

express the increasing values of the Morse function. Images in the second and the fourth

rows show the corresponding Reeb graph. The number of vertices in all 3D-models are

around 60000 vertices except 5.4a the number of vertices is reduced to 30000.

3D-models are taken from SHREC 2011 database.
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example, the small fingers and the back of the camel are detected. The

autodiffusion function defined by Gebal et al. (39) depends on a parame-

ter to handle the level of details. For a large variable time t, the function

describes the global details of the 3D-model and misses the small ones.

For a small variable time t, the autodiffusion function detects all details

and moreover, it manages an important number considered as details that

will lead to create unwanted branches in the Reeb graph.

Two reasons, as drawbacks of our method, lead to perturb the Reeb

graph. First, the scalar value based on the mapping function on each

vertex and its neighbours are very close or almost similar. These values

depend on a variation around 10−20 and affect a bifurcation to change

direction. In figure 4.8d the connection from the right breast to the right

shoulder changed to the left shoulder. After the perturbation strategy, the

Morse function takes into consideration the number of vertices to sort.

This leads to detect bifurcation or junction in the construction of the Reeb

graph, such as the chest of the human model in figure 4.6j.

4.5.2 Examples on different types of 3D-models

We tested our method on different types of 3D-models including 3D-

models with missing parts or combined with others. Figure 4.6a and

figure 4.6b show the robustness of our Morse function that leads to a

stable Reeb graph. The Reeb graph of a partial 3D-model (figure 4.6e) in-

cludes the Reeb graph of its null 3D-model (figure 4.6d). Figure 4.7 shows

examples of our method applied on 3D-models with rigid and non rigid

transformations.

4.5.3 Robustness to topology changes

Figure 4.8 shows the robustness of the Morse function toward a small

topology change. The colors remain the same after adding a small topol-

ogy change linking the hump and the hand in figure 4.8c. This proves the

invariance of our mapping function toward a topology change, due to the

commute-time distance which took into consideration all paths connect-

ing the vertices. If we apply a function based on the geodesic distance
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 4.7 – Reeb graph for different types of 3D-models.
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(a) Null model (b) Reeb graph

(c) Topology change (d) Reeb graph

Figure 4.8 – Robustness against topology changes.
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like the one defined by Tierny et al. (108), the Reeb graph will globally be

changed. But using our Morse function, the Reeb graph undergoes the

local change to describe the genus created toward the topology change.

4.6 Conclusion

To conclude, we start this chapter by introducing the Morse theory and the

Reeb graph. Then, we presented a robust invariant piecewise linear Morse

function for Reeb graph computation. Our Morse function is computed

based on our mapping function defined in the previous chapter section3.4

by adding a perturbation strategy to transform it to a piecewise linear

Morse function. This function inherits the properties from our mapping

function such as the invariance to rigid and non rigid transformations, the

insensitivity to noise and the robustness to small topology changes.

To compute the Reeb graph we need a Morse function and source

vertex which will be used as a start point to generates level sets. Unlike the

method defined by Lazarus and Verroust (58) where the source vertex is

selected by the user, our approach detects the source vertex automatically,

located at the centre of the 3D-model to generates level sets thanks to

the definition of our mapping function. These level sets are analysed to

describe the topology of the 3D-model.

We applied our method to a null 3D-model and a set of its variations

in 3D-model pose. Also, we applied our method to different types of

3D-models including partial and combined ones and we showed the ro-

bustness toward a topology change. Our results show the effectiveness of

our approach, consequently the effectiveness of our mapping function de-

fined in the previous chapter. In the following chapter, we will introduce

a novel method for 3D-model retrieval using indexed closed curves based

on our mapping function.
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This chapter presents an approach for 3D-model retrieval by creating

index of closed curves in ℜ3. Methods based on curves are more

popular in face analysis topic (92, 46, 2) than 3D Shape analysis of generic

3D surfaces. A few works based on curves for 3D-model retrieval are

presented in the literature, and none of them is very efficient.

Lmaati et al.(62) reconstruct 3D closed curves and extract feature vec-

tors as a descriptor. This method needs to align the 3D-model into canon-

ical position before the construction of the closed curves.

Tabia et al.(103) detect feature points located at the extremities of a 3D

model. For each feature point, they generate a collection of closed curves

based on the geodesic distance. Each feature point and its collection of

closed curves represent a part of the 3D-model. Finally, they use the belief

functions to define the global distance between 3D-models. This method

is very sensitive to topology and a small variation of the feature point

leads to a large variation in curves.

Our curves are generated from a source point detected automatically

located at the center of a 3D-model, using our mapping function defined

in chapter 3 in section 3.4. This function respects important properties

in order to compute robust closed curves. Each curve describes a small

region of the 3D-model. To describe all the mesh, we compute a set of

indexed closed curves. These curves lead to creates a descriptor which

is invariant to different transformations. Then we compute the distance

between models by comparing the indexed curves.

In order to evaluate our method, we used shapes from SHREC 2012

database. The results show the robustness of our method on various

classes of 3D-models with different positions. Also we compared our

approach to existing methods in the state-of-the-art using a dataset for

SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models.

This chapter is organized as follows. In section 5.1 an overview of

our method is given. Section 5.2 is about indexed closed curves genera-

tions, and the definition of our descriptor. In section 5.3 we analyze the

extracted curves. In section 5.4 we impose the parameter setting of our ap-

proach. In section 5.5 we define the performance measures for 3D-model
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retrieval. Before the conclusion in section 5.7, the experiments that prove

the efficiency of our approach are explored in section 5.6.

Introduction (en français)

Ce chapitre présente une approche pour l’indexation des modèles 3D par

la création de courbes de niveaux fermées dans ℜ3. Les méthodes basées

sur les courbes sont plus populaires dans le domaine d’analyse faciale

(92, 46, 2) que l’analyse de formes des modèles 3D. Quelques travaux

basés sur les courbes pour l’indexation de modèles 3D sont présentés dans

la littérature, et aucun d’entre eux est très efficace.

Lmaati et al.(62) reconstruisent des courbes fermées et extraient des

vecteurs caractéristiques comme descripteur. Cette méthode doit aligner

le modèle 3D en position canonique avant la construction des courbes

fermées.

Tabia et al.(103) détectent les points caractéristiques situés aux ex-

trémités d’un modèle 3D. Pour chaque point caractéristique, ils génèrent

un ensemble de courbes fermées en fonction de la distance géodésique.

Chaque point caractéristique et sa collection de courbes fermées représen-

tent une partie du modèle 3D. Enfin, ils utilisent les fonctions de croy-

ance pour définir la distance globale entre les modèles 3D. Cette méthode

est très sensible aux changements topologiques et une petite variation du

point caractéristique conduit à une grande variation dans les courbes.

Nos courbes sont générées à partir d’un point source détecté au-

tomatiquement au centre d’un modèle 3D, en utilisant notre fonction

d’application définie dans le chapitre 3. Cette fonction respecte des pro-

priétés importantes pour extraire des courbes de niveaux fermées et ro-

bustes. Chaque courbe décrit une petite région du modèle 3D. Pour

décrire tout le modèle, on calcule un ensemble de courbes de niveaux

fermées. Ces courbes conduisent à créer un descripteur invariant sous

différentes transformations. Ensuite, nous calculons la distance entre les

modèles en comparant les courbes de niveaux.

Afin d’évaluer notre méthode, nous avons utilisé des formes de la base

de données SHREC 2012. Les résultats montrent la robustesse de notre
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méthode aux différentes classes de modèles 3D avec des positions dif-

férentes. Aussi, nous avons comparé notre approche aux méthodes exis-

tantes dans l’état de l’art en utilisant la base de données de SHREC 2010

-Shape Retrieval Contest of Non-rigid 3D Models.

Ce chapitre est organisé comme suit. Dans la section 5.1 nous présen-

tons un simple résumé décrivant les étapes de notre approche. Dans la

section 5.2, nous extrayons les courbes de niveaux et nous définissons

notre descripteur. Puis, nous analysons les courbes extraites à la section

5.3. La section 5.4 présente l’implémentation de notre approche. Nous

continuons par la section 5.5 pour définir les mesures de performance de

l’indexation de modèles 3D. Avant la conclusion dans la section 5.7, les ex-

périences qui prouvent l’efficacité de notre approche sont explorées dans

la section 5.6.
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5.1 Method overview

As it is shown in figure 5.1, our method starts by detecting the feature

points (figure 5.1a) which are used as origin to define an appropriate scalar

function based on the commute time distance presented on figure 5.1b.

The feature points extraction and the definition of the mapping function

are discussed in chapter 3.

Then we generate and analyze indexed closed curves raised from a

source point of the 3D-model using our mapping function function (fig-

ure 5.1c). These curves are defined as level curves. A set of all curves of

each 3D-model are indexed to define our descriptor. We used Joshi et al’s

method (49) to analyze and compute the elastic metric between curves.

Finally, we analyze the 3D-model by analyzing the shape of their corre-

sponding level curves.

5.2 Definition of the descriptor

The source vertex is detected automatically to generate indexed closed

curves. Indeed, the farthest vertex of all feature points is detected by the

minimum of the mapping function (figure 5.1b), the black arrow points

to source vertex located in the center of the 3D model. From this vertex,

we generate indexed closed curves under a scale value of the mapping

function.

Due to the properties of the invariant mapping function defined on

the mesh, this function describes 3D-models with different transforma-

tions similarly that leads to detect small region described by closed curves

similarly. Each curve describes a small region as it is shown on figure 5.2.

Consequently, the set of closed curves describes the 3D model entirely.

Also, the indexing of the curves saves the spatial relation between small

regions. Thus, figure 5.1c presents that same levels describe the same

regions or almost the same regions as an example level 1 in the figure.

We analyze the 3D-model by analyzing the shape of their correspond-

ing level curves. Finally, our descriptor is defined as a set of indexed

closed curves. In order to compare two descriptors, we need to define
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(a) Feature points extraction.

(b) Mapping function, central point(black arrow).

(c) Indexed closed curves.

(d) Descriptor.

Figure 5.1 – The different steps of our approach applied to a neutral pose model and its

isometric transformation, topology change and partiality.
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Figure 5.2 – Each curve describe a small region.

a similarity measure between two curves that analyzes the shape of the

curve and respects the invariance to isometric transformation and to elas-

tic deformation. The similarity measure between two curves is discussed

in the next section.

5.3 Analysis of curves

In our approach, we treat curves as closed, parametrized in R3 with fixed

origins for parametrization and we rescale them to have the same length,

say 2π. This allows us to use one of many methods already available for

elastic analysis of closed curves. The key idea in elastic analysis is that

the points which are matched together are at unequal distances from their

origins. Such matching can be considered as an elastic matching, which

analyze the shape of the curves such as one curve has to (locally) stretch,

compress and bend to match the other.

Several authors, starting with Younes (56), followed by Michor and

Mumford (69) and others, have studied curves for planar shapes. More
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recently Joshi et al. (49) have extended it to curves in Rn using an efficient

representation of curves. Other authors, including Yezzi and Mennucci

(118), have also used Riemannian metrics on curve spaces. Their main

purpose was to study curves evolution rather than shape analysis. Here,

we adopt the Joshi et al.’s approach (49) because it simplifies the elastic

shape analysis. We summarize the whole method in the next 3 sections.

For more details we refer the reader to Joshi et al.’s paper:

5.3.1 Define a space of closed curves of interest

The three following sections are taken from Joshi et al. (49). We start

by considering a closed curve β in R3. Since it is a closed curve, it is

parametrizable using β : S1 → R3. We will assume that the parametriza-

tion is non-singular, i.e. ‖β̇(t)‖ 6= 0 for all t. The norm used here is the

Euclidean norm in R3. Note that the parametrization is not assumed to be

arc-length; we allow a larger class of parametrization for improved analy-

sis. To analyse the shape of β, we shall represent it mathematically using

a square-root velocity function (SRVF), denoted by q(t), according to:

q(t)
.
=

β̇(t)
√

‖β̇(t)‖
(5.1)

q(t) is a special function that captures the shape of β and is particularly

convenient for shape analysis, as we describe next. Firstly, the squared L2-

norm of q, given by:

‖q‖2 =
∫

S1
〈q(t), q(t)〉 dt =

∫

S1
‖β̇(t)‖dt (5.2)

which is the length of β. Therefore, the L2-norm is convenient to ana-

lyze curves of specific lengths.

5.3.2 Impose a Riemannian structure on this space using the elastic

metric

As shown in (49), the classical elastic metric for comparing shapes of

curves becomes the L2-metric under the SRVF representation. This point

is very important as it simplifies the calculus of elastic metric to the well-

known calculus of functional analysis under the L2-metric. In order to
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restrict our shape analysis to closed curves, we define the set:

C = {q : S
1 → R

3|
∫

S1
q(t)‖q(t)‖dt = 0} ⊂ L

2(S1, R
3) (5.3)

Here L2(S1, R3) denotes the set of all functions from S1 to R3 that are

square integrable. The quantity
∫

S1 q(t)‖q(t)‖dt denotes the total displace-

ment in R3 as one traverses along the curve from start to end. Setting it

equal to zero is equivalent to having a closed curve. Therefore, C is the set

of all closed curves in R3, each represented by its SRVF. Notice that the

elements of C are allowed to have different lengths. Due to a nonlinear

(closure) constraint on its elements, C is a nonlinear manifold. We can

make it a Riemannian manifold by using the metric: for any u, v ∈ Tq(C),

we define:

〈u, v〉 =
∫

S1
〈u(t), v(t)〉 dt . (5.4)

We have used the same notation for the Riemannian metric on C and

the Euclidean metric in R3 hoping that the difference is made clear by the

context. For instance, the metric on the left side is in C while the metric

inside the integral on the right side is in R3. For any q ∈ C, the tangent

space:

Tq(C) = {v : S
1 → R

3| 〈v, w〉 = 0, w ∈ Nq(C)} , (5.5)

where Nq(C), the space of normals at q is given by:

Nq(C) = span{
q1(t)

‖q(t)‖
q(t)+ ‖q(t)‖e1,

q2(t)

‖q(t)‖
q(t)+ ‖q(t)‖e2,

q3(t)

‖q(t)‖
q(t)+ ‖q(t)‖e3}

(5.6)

where {e1, e2, e3} form an orthonormal basis of R3.

It is easy to see that several elements of C can represent curves with

the same shape. For example, if we rotate a curve in R3, we get a different

SRVF but its shape remains unchanged. Another similar situation arises

when a curve is re-parametrized; a re-parametrization changes the SRVF

of curve but not its shape. In order to handle this variability, we define

orbits of the rotation group SO(3) and the re-parametrization group Γ as

the equivalence classes in C. Here, Γ is the set of all orientation-preserving



96 Chapter 5. Indexed Closed Curves for 3D model retreival

diffeomorphisms of S1 (to itself) and the elements of Γ are viewed as re

parametrization functions. For example, for a curve β : S1 → R3 and a

function γ : S1 → S1, γ ∈ Γ, the curve β(γ) is a re-parametrization of β.

The corresponding SRVF changes according to q(t) 7→
√

γ̇(t)q(γ(t)). We

set the elements of the set:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} (5.7)

to be equivalent from the perspective of shape analysis. The set of

such equivalence classes, denoted by S
.
= C/(SO(3) × Γ) is called the

shape space of closed curves in R3. S inherits a Riemannian metric from

the larger space C and is thus a Riemannian manifold itself. The main

ingredient in comparing and analyzing shapes of curves is the construc-

tion of a geodesic between any two elements of S , under the Riemannian

metric given in Eqn. 5.4.

5.3.3 Compute geodesic paths under this metric

Given any two curves β1 and β2, represented by their SVRFs q1 and q2,

we want to compute a geodesic path between the orbits [q1] and [q2] in

the shape space S . This task is accomplished using a path straightening

approach which was introduced in (54). The basic idea here is to connect

the two points [q1] and [q2] by an arbitrary initial path α and to iteratively

update this path using the negative gradient of an energy function

E[α] =
1
2

∫

s
〈α̇(s), α̇(s)〉 ds (5.8)

The interesting part is that the gradient of E has been derived ana-

lytically and can be used directly for updating α. As shown in (54), the

critical points of E are actually geodesic paths in S . Thus, this gradient-

based update leads to a feature point of E which, in turn, is a geodesic

path between the given points. We will use the notation d(β1, β2) to de-

note the geodesic distance, or the length of the geodesic in S , between

the two curves β1 and β2. Figure 5.3 is an example of geodesic path be-

tween two 3D-curves extracted from two different 3D surfaces; Figure 5.3a

illustrates the cow-head curve (left side) and the horse-head curve (right

side).
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(a) Geodesic path between cow-head curve and horse-head curve. (Figure taken from Tabia et

al.(102)).

(b) Geodesic paths between two curves (A,B).

Figure 5.3 – Geodesic paths between two curves.

5.4 Parameter setting of our approach

The computation and the parameter settings of our mapping function are

discussed in chapter 3. The farthest vertex of all feature points is detected

by the minimum of the mapping function and it is defined as a source

vertex. We generate closed curves under a scale value of the mapping

function in an ascending order which are raised from the source vertex

detected. We fixed the different scaled values of the mapping function

to 50 levels. All levels are indexed starting from the first level where the

mapping function is minimum and the region detected is very close to the

source vertex.

In our experiments, while testing our approach two difficulties oc-

curred:

1. Each model is described by 50 levels of closed curves in the database.

A level could contain more than one curve as it shown on figure 5.1c,
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where level x contained 4 curves. Matching two 3D-models, we need

to match the corresponding curves in each level.

2. The mapping function have a slight variation between two similar

models that leads to different levels of curves. Indeed, on figure 5.4

at level 15 the curve describes a small region at the knee of the 3D-

model, while on figure 5.4a at the same level, the curve describes a

small region near to the knee.

(a) Sampling changed. (b) Scale change.

Figure 5.4 – Red to blue colors express the increasing values of the mapping function. A

slight variation between two similar models that leads to different levels of curves.

To handle these two difficulties and match the corresponding curves

in each model, we describe the query by 25 levels of closed curves. Each

level of the query is compared to three levels of a model in the database.

As an example, for a level l, this level is compared to l − 1, l, l + 1 levels

with a model from the database (figure 5.5). Then, we take the one with

the smallest length of their geodesic path (the most similar). Finally, to

compute the similarity measure between two models, we compute the

length of the geodesic path between their corresponding level curves.
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Figure 5.5 – A level L in the query is compared to l − 1, l, l + 1 levels with a model

from the database.

5.5 Evaluation criterion

There are several different performance measures to evaluate retrieval

methods. In general, evaluation over the data set is performed by re-

moving one model to act as the query, and ranking the remaining models

from most similar to least similar. This ranked list can be evaluated in a

different ways listed below. Performance for a particular method or set of

parameters is given by averaging the performance over all query models.

The evaluation measures are:

• Nearest Neighbour (NN), First Tier (FT) and Second Tier (ST). These

evaluation measures share the similar idea, that is, to check the ratio

of models in the query’s class that also appear within the top K

matches, where K can be 1, the size of the query’s class, or the double

size of the query’s class. Specifically, for a class with ‖C‖ members,

K = 1 for Nearest Neighbor, K = ‖C‖ − 1 for the first tier, and
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K = 2(‖C‖− 1) for the second tier. The final score is an average over

all the objects in database.

• Precision vs Recall plots. Precision is the ratio of retrieved objects

that are relevant to all retrieved objects in the ranked list. Recall is

the ratio of relevant objects retrieved in the ranked list to all rele-

vant objects. They are well known in the literature of content-based

retrieval. The Precision vs Recall are defined as follow:

Precision =
N

A
andRecall =

N

R
(5.9)

where N is the number of relevant models retrieved in the top A re-

trievals. R is the number of relevant models in the collection, which

is the number of models to which the query belongs to.

• E-measure (E) and F-measures (F) are a combined measure of the

precision and recall for a fixed number of results (as an example the

evaluation neighborhood size is 32, the candidates is more interested

in the first page of query results than in later pages). The F-measure

is the weighted harmonic mean of precision and recall and it is de-

fined as:

F =
(1 + α) ∗ P ∗ R

α ∗ P + R
(5.10)

where precision (P), recall (R) and α is the weight. The weight

of precision and recall in all 3D-retrieval methods evaluation is the

same so α = 1.

The E-measure (E) is defined as E = 1 − F

E = 1 −
2 ∗ P ∗ R

P + R
(5.11)

The fact is that a user of a search engine is more interested in the

first page of query results than in later pages.

5.6 Experiments and results

The experiments was to retrieve 3D-models from a large database contain-

ing similar models with different types of transformations. The proposed

approach has been tested on two databases, the first one is to show the
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effectiveness of our method, and the second database is to compare our

approach to existing methods in the state-of-the-art.

5.6.1 Experiments to show the effectiveness of our method

(a) One typical example for each category of the database.

(b) 10 3D-models from human category.

Figure 5.6 – .

First database is a part of SHREC 2012 - Sketch-Based 3D Shape Re-

trieval Dataset1. The collection we used consists of 130 3D-models clas-

sified into 13 categories (Tables, Sharks, Pliers, Planes, Octopus, Human,

Hands, Glasses, Cups, Chairs, Bunnies, Birds and Ants). Each category

contains 10 3D-models. Figure 5.6 shows the collection of the dataset we

used. To evaluate our approach, we used the evaluation tool: the Precision

vs Recall plot discussed in the previous section.

We plot the Precision vs Recall graph for the whole dataset (figure 5.7a)

and also for each category (see figure 5.7). Our method shows very good

results due to the invariant mapping function defined on the mesh. This

function describes 3D-models with different transformations similarly that

leads to detect small region described by closed curves similarly. We also

1http://www.itl.nist.gov/iad/vug/sharp/contest/2012/SBR/data.html
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(a) PR curve All Data (b) PR curve Humans

(c) PR curve Cups (d) PR curve Glasses (e) PR curve Planes

(f) PR curve Ants (g) PR curve Chairs (h) PR curve Octopus

(i) PR curve Tables (j) PR curve Teddies (k) PR curve Hands

(l) PR curve Pliers (m) PR curve Sharks (n) PR curve Birds

Figure 5.7 – Precision vs Recall plot for each category and for the whole dataset.
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present the Nearest Neighbour (NN), First Tier (FT), Second Tier (ST) and

the E-measure scores in table 5.1. The E-measure only considers the first

10 retrieved models for every query and calculates the Precision and recall

values over those results since the user is more interested in the very first

retrieved results than in the later ones.

Table 5.1 – Retrieval statistics

Class NN FT ST E-Measure

All classes 0.81 0.57 0.71 0.59

Humans 0.70 0.35 0.40 0.34

Cups 0.60 0.30 0.40 0.28

Glasses 0.50 0.41 0.52 0.41

Planes 1 0.78 0.94 0.76

Ants 1 0.87 1 0.80

Chairs 0.9 0.52 0.70 0.49

Octopuses 0.5 0.39 0.56 0.38

Tables 1 0.45 0.56 0.43

Teddies 1 0.68 0.85 0.67

Hands 0.9 0.64 0.78 0.63

Pliers 1 0.99 1 0.94

Sharks 0.9 0.52 0.66 0.51

Birds 0.5 0.45 0.79 0.39

These scores show the excellent results of our method for some classes

like Planes, Ants, Pliers, Hands, Teddies but limited results for shapes as

Cups which affect to decrease the score of the whole dataset. This is due

to a few number of feature points detected in objects like cups. Also, we

present samples of retrieved objects in figure 5.8. Hands results and the

human model with topology changes used as a query show the robust-

ness of our method toward topology change pointed by a red arrow in

figure 5.8.
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Figure 5.8 – Example of retrieved results.

5.6.2 Experiments compared to existing methods

To assess the efficiency of our approach, we have compared it to existing

methods in the state-of-the-art and we used another database to evaluated

its performance.

Figure 5.9 – 3D-Models of the database is classified into 10 categories. Each category

contains 20 3D-models. Figure taken from (60).

The second database is a dataset for SHREC 2010 - Shape Retrieval

Contest of Non-rigid 3D Models2. It consists of 200 watertight 3D tri-

angular meshes, which are selected from the McGill Articulated Shape

2http://www.itl.nist.gov/iad/vug/sharp/contest/2010/NonRigidShapes/index.html



5.6. Experiments and results 105

Benchmark database3. It is equally classified into 10 categories based on

their semantic meanings, as shown in figure 5.9.

We compared our results to three different existing methods in the

state-of-the-art denoted as (Ohbuchi, Smeets and Wuhrer) and described

as follows:

Furuya and Ohbuchi (35) present an approach to compare 3D-models

based on their appearance. The authors rendered a set of depth images

from multiple view points, and for each image they extracted local fea-

tures based on the Scale Invariant Feature Transform (SIFT) algorithm intro-

duces by Lowe (63). The set of all features of all 3D-models is integrated

into a feature vector per 3D-model by using bag-of-features approach. The

algorithm is called Bag-of- Features Dense-SIFT with Extremely random-

ized tree.

Smeets et al. (97) present an approach based on two invariant matrices

for inelastic deformation invariant modal recognition. First, a pairwise

matrix between points on the surface containing the average of diffusion

distance (This distance is the probability that a particle, started in one

point, arrives at the other point after a diffusion process ran for a certain

time) for different diffusion times. Second one is pairwise matrix between

points based on the geodesic distance (This distance is the length of the

shortest path on the object surface between two points on the object). To

handle the sampling order of points on the surfaces, the authors used the

modal representation of these matrices by using a fixed number of the

largest singular values of them.

Wuhrer et al.(117) compute the canonical form (the mapping of the

surface to a target space) of a 3D-model using two steps: compute the

canonical form at low resolution then adding the remaining vertices by

minimizing the least squares energy function. Wuhrer and Shu’s approach

computes the dissimilarity of two models by computing the euclidean

distance between their canonical forms.
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Table 5.2 – Retrieval statistics of our method.

Class NN FT ST E-Measure

All classes 0.8150 0.5440 0.7445 0.5160

Ants 1 0.525 0.905 0.5923

Crabs 0.95 0.6825 0.8850 0.6442

Hands 1 0.6425 0.8125 0.5808

Humans 0.80 0.375 0.5275 0.3673

Octopuses 0.6 0.33 0.6025 0.3962

Pliers 1 0.8925 0.9675 0.7250

Snakes 0.1 0.25 0.5175 0.2904

Spectacles 1 0.7025 0.7875 0.5846

Spiders 0.7 0.445 0.705 0.4596

Teddies 1 0.59 0.735 0.5192

Results

We carry out evaluations not only on the average performance of the

whole database, but also on the result corresponding to each specific class.

The performance measures adopted here are the four quantitative statis-

tics the Nearest Neighbour (NN), the First Tier (FT), the Second Tier

(ST), the E-measure (E). We consider only the first 32 retrieved objects

for every query and computes the E-Measure over those results. Even

though, the number of elements of each class is 20 then the ideal results

for the E-Measure is not equal to 1. Table 5.2 shows the (NN, FT, ST and

E) for the whole database and for each class of our method.

Also we compute the Precision vs Recall plots for the whole database

(see figure 5.10) and for each class (see figure 5.11) of all methods. The

definition of these measures used to evaluate our method and to compare

it with other are discussed in section 5.5.

As we noticed from table 5.3 where the performance measures are

reported, all methods obtain good results but none of them obtain the

ideal results. Considering the values of NN Smeets’s method gives the

3http://http://www.cim.mcgill.ca/
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best results, while Ohbuchi’s method gives better results if we based the

evaluation on FT, STandE.

If we take a close look on the Precision vs Recall plots of each class

5.11, we notice that the four methods have limited results on the snakes

category. Especially, our method where the 3D-snakes models do not have

a lot of information facing the other categories. Thus, decomposing the

snakes into small region and describing these regions by closed curves

as we have defined our descriptor, we see that all the curves have almost

the same form and very similar to region described by closed curves for

other 3D-models like the fingers of hands category or the legs of the crabs

category.

This category affects enormously our results and decrease the score

of the whole dataset. In the other hand, we noticed that our method has

good results and very close to the ideal horizontal line for pliers category

in figure 5.11. Generally speaking, a method which gives the ideal results

do not exist yet. To conlude using this database, Ohbuchi’s method and

Smeets’s method outperform our method.

Figure 5.10 – Precision vs Recall curves of all methods evaluated for the whole database.
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Table 5.3 – Retrieval performance evaluated using four standard measures evaluated for

the whole database.

Partrticipant NN FT ST E-Measure

Ohbuchi, Ryutarou 0.9850 0.9092 0.9632 0.7055

Smeets, Dirk 1 0.8611 0.9571 0.7012

Wuhrer, Stefanie 0.9200 0.6347 0.7800 0.5527

Our method 0.8150 0.5440 0.7445 0.5160

Figure 5.11 – Precision vs Recall curves of all methods evaluated for each class. The

second and the fourth rows present the Precision vs Recall curves of our method.
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5.7 Conclusion

We presented in this chapter a novel approach for 3D-model retrieval.

Our approach detect the center of the 3D-model automatically to gener-

ate closed curves describing the shape of the 3D-model. We generated

indexed heat curves under different scale values of our invariant mapping

function raised from the center of the 3D-model. Each curve describes a

small region of the 3D-model. The set of all closed curves describes the

whole 3D-model. We index all curves in order to save the spatial relation-

ship between small region.

Finally we tested our approach on two datasets. We used the first

dataset to evaluate our approach on different categories of 3D-models,

each category contains 3D-models under different transformations and

deformations. We used the second dataset to compare our approach to

methods existed in the state-of-the-art and we discussed the results for

3-models retrieval.

In this chapter we realize that our experiments have very good results

in some classes like (pliers and ants) and poor results in others like (cups).

Also, our method has some limitation and do not handle partial 3D-model

retrieval.

In the next chapter, we will present a novel method, which in turn is

an enhancement of our indexed closed curves method by using the bag

of feature technique. Also, our novel method that we will present handle

partial 3D-model retrieval.
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The bag of features technique is a popular approach in areas of pattern

recognition and computer vision. Recently, it plays an important role

in shape analysis community and especially in 3D-model retrieval as we

saw in the state of the art chapter in section 2.5.3.

Firstly, the bag of features framework has been proposed in the text

retrieval and classification. Inspired by this approach, the bag of features

techniques in 3D-models retrieval require to build a visual vocabulary

which combines and merges local features into a global signature.

In the previous chapter, we generated a collection of closed curves

from a source point detected automatically. Each curve describes a small

region of the 3D-model. Based on the collection of all closed curves ex-

tracted, we construct our bag of features.

In this chapter, we discuss the main steps of the bag of features tech-

nique and we present our approach for 3d-model retrieval and also for

partial 3d-model retrieval using this technique based on closed curves.

We organized this chapter as follows. In section 6.1 we discuss the

main steps and the concept of the bag of features technique. Section 6.2

presents our approach by extracting and grouping local features described

by closed curves to define our visual vocabulary. In section 6.3 we test

our approach and compare our results to indexed closed curve approach

presented in the previous chapter. Before concluding in section 6.5, the

experiments that prove the efficiency of our approach towards partial 3d-

model retrieval are explored in section 6.4.

Introduction (en français)

Les techniques sacs de mots sont des outils très populaires dans le domaine

de la vision et de la reconnaissance des formes. Ces techniques ont récem-

ment gagné une grande popularité dans la communauté de l’analyse de

formes et surtout en indexation de modèles 3D, que nous avons vu dans

le chapitre 2.

Tout d’abord, l’approche de sacs de mots a été proposé dans la classifi-

cation et l’extraction de textes. Inspirée par cette approche, la technique

sacs de mots pour l’indexation des modèles 3D a besoin d’élaborer un vo-
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cabulaire visuel qui combine et fusionne les caractéristiques locales dans

une signature globale.

Dans le chapitre précédent, nous avons généré une collection de

courbes de niveaux fermées à partir d’un point source détecté automa-

tiquement. Chaque courbe décrit une petite région du modèle 3D. Une

fois la collection de toutes ces courbes fermées extraite, nous construisons

nos sacs de mots.

Dans ce chapitre, nous introduisons les étapes principales de la tech-

nique de sacs de mots et nous présentons notre approche pour l’indexation

des modèles 3D ainsi que l’indexation partielle de modèles 3D en utilisant

cette technique basée sur les courbes fermées.

Nous avons organisé ce chapitre comme suit. Dans la section 6.1, nous

discutons les étapes principales et le concept general de la technique de

sacs de mots. La section 6.2 présente notre approche par l’extraction et le re-

groupement des caractéristiques locales décrites par des courbes fermées

pour définir notre vocabulaire visuel.

Dans la section 6.3, nous testons notre approche et nous comparons

nos résultats à l’approche présentée dans le chapitre précédent. Avant de

conclure, dans la section 6.5, les expériences qui prouvent l’efficacité de

notre approche sur l’indexation partielle de modèles 3D sont explorées

dans la section 6.4.
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6.1 Concept of bag of features technique

There is a common concept of the bag of features technique which is

shared by all 3d-model retrieval existing methods in the state of the art.

In summary, the concept is composed into four main steps (figure 6.1):

Figure 6.1 – Bag-of-features technique.

1. Extraction of local features: Local features extracted should be in-

variant to variation that are irrelevant to the retrieval task but also

rich to carry enough information to be discriminative between dis-

similar objects.

There are different existing methods in the state of the art for lo-

cal features extraction. Some authors use an object segmentation

method (112). Other authors use a sampling method and select

patches according to some geometric criterion (57), following suc-

cessful approaches in 2D image recognition like SIFT (75). More

recently, some authors propose the use of features points extraction

algorithm for detecting points of interest around which they extract

patches (104) for more details see chapter 2.

2. Construction of the quantize features: Local features are extracted

and grouped. To quantify the local features extracted in the previous

step, a common method is adapted by arranging the local features

extracted into a finite number of clusters using a clustering tech-

niques. The centers of the classes (keywords in text retrieval methods
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or keyshape in 3d-model retrieval) obtained construct the quantize

feature vector and determine the size of the vocabulary.

To distinguish relevant changes in 3d-model features, the size of the

vocabulary plays an important role. It should not be too small, the

details can not be distinguished, neither too large as to distinguish

irrelevant variations such as noise. Most methods adapt the unsu-

pervised learning for clustering .

3. Generating the histogram: A 3d-model query is represented by its

keyshapes that are accumulated into an histogram having the num-

ber of the bins equal to the size of the vocabulary. The histogram

becomes the feature vector of the corresponding 3d-model.

4. feature vector and objects comparison: The feature vector obtained

in the previous step is a vector of occurrence counts of keyshapes.

The frequency vector is normalized by the sum of occurrences of

all terms of the considered vocabulary. 3d-models are compared by

comparing their feature vectors.

6.2 Bag of features technique based on closed curves

Our approach for 3d model retrieval illustrated in figure 6.2 is developed

following the main steps of the bag of features technique described in the

previous section. We start by the training stage illustrated in figure 6.2a

proceeding with the online stage illustrated in figure 6.2b.

6.2.1 Training stage

The training stage contains the first two steps of the bag of features tech-

nique: extraction of closed curves as local features then constructing our

bag of features to generate the quantize feature vector.

Extraction of closed curves as local features

We need to extract local features describing the local region on the 3d-

models. For each 3d-model in our database, we detect features points
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(a) Training stage. From left to right: mapping function of the 3d models, extraction of closed

curves, the collection of all curves to define the bag of features, quantize feature vector.

(b) Online stage. Extraction of closed curves of a query 3d-model, the vector quantizes the local

features into keyshapes that are accumulated into an histogram.

Figure 6.2 – The main steps of our bag of feature technique.



118 Chapter 6. Bag of features for partial 3D-model retrieval

located on the extremities. We used these features points as origins to

define our scalar function based on the commute time distance presented

on figure 6.2a. Detection of points located on the extremities and the

definition of the scalar function are discussed in chapter 3.

We generate a collection of closed curves under a scale value of the

scalar function from a source vertex detected automatically. Each model

is described by 25 levels of closed curves in the database. A level could

contain more than one curve (for example the average number of closed

curves for each human 3d-model is 200). Each curve describes a small

region of the 3d model. For more details on the extraction of the closed

curves see section 5.1 in the previous chapter. These closed curves ex-

tracted are defined as local features.

Local features extracted should be invariant to rigid and non rigid

transformations of the 3D-model. Indeed, for each 3D-model most of these

local features are not affected to global variation even if a part of the 3D-

model is missed (see figure 6.3).

Figure 6.3 – A global variation even models with missing data in the 3D-models do not

affect most of the closed curves extracted as local features.

Generate the quantize feature vector

The collection of closed curves of all 3D-models are grouped to define

our bag of features. To generate the quantize features and quantify the
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local features extracted we need to cluster our bag of features. We analyse

the curves extracted and define a distance between two curves for more

details see section 5.3 in the previous chapter. The number of classes or

the vocabulary should be large enough to distinguish relevant changes in

local features but not too large to distinguish irrelevant variations such

as noise. Thus, we choose the most widely used algorithms in computer

vision community: K means (26) implemented in MatLab. Though, other

methods K-medoids, histogram binning, etc. are certainly possible.

This algorithm is an iterative algorithm, in each iteration new clus-

ter centres are computed and each data point is reassigned to its nearest

centre. Two difficulties are that the K-means algorithm converges only to

local optima of the squared distortion, and that it does not determine the

parameter K. There exist methods allowing to automatically estimate the

number of clusters. However, in our case we do not know the density

or the compactness of our clusters. Moreover, we are not even interested

in a correct clustering in the sense of features distributions, but rather in

accurate categorization. We therefore run K-means several times with dif-

ferent number of desired representative vectors and different sets of initial

cluster centres. We select the final clustering giving the best results. The

centres of these classes are the key-shapes.

6.2.2 Online stage

The online stage is to categorize and describe the 3D-query by construct-

ing the bag of words and generating the histogram to obtain the feature

vector.

Constructing the bag of words

Having a query as a 3D-model, we extract the local features as closed

curves. The objective here is to vector quantize the local features into

key-shapes which will be the bag of words. Indeed, the bag of features is

constructed from sub-parts of all 3D-models. Then, the 3D-model query is

represented by its keyshapes that are accumulated into an histogram having
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the number of the bins equal to the size of the vocabulary. The histogram

becomes the feature vector of the corresponding 3D-model.

Computing the feature vector

The feature vector obtained defines the number of times a given Keyshapes

appears in that 3D-model query. It is usual to normalize the feature vec-

tor obtained by the sum of occurrences of all terms of the considered

3D-model query. The feature vector will be used as a descriptor for the

comparison of 3D-models.

6.3 Experiments on 3D-model retrieval

In this section, we present the experimental results in order to evaluate our

approach for 3D-model retrieval. For this purpose, our experiments were

to retrieve 3D-models from a database containing different categories of

3D-models also similar 3D-models with different types of transformations.

The collection of 3D-models contained in our database are collected

from the dataset for SHREC 2010 - Shape Retrieval Contest of Non-rigid

3D Models1. It consists of 25 watertight 3D triangular meshes, which are

selected from the McGill Articulated Shape Benchmark database2. It is

equally classified into 5 categories (ants, humans, pliers, snakes, teddies)

based on their semantic meanings.
We use this database to perform our experiments. We evaluate our

results using the evaluation tool: the Precision vs Recall plot, the Near-

est Neighbour (NN), First Tier (FT), Second Tier (ST) and the E-measure

scores. These measures are discussed in section 5.5 in the previous chap-

ter. The E-measure only considers the first 10 retrieved models for every

query. Also, we compare the results obtained by the bag of features tech-

nique based on closed curves to indexed closed curve method described

in the previous chapter.

Figure 6.4 presents the Precision vs Recall curve for the whole dataset

of the bag of features technique based on closed curves (figure 6.4a) and

1http://www.itl.nist.gov/iad/vug/sharp/contest/2010/NonRigidShapes/index.html
2http://http://www.cim.mcgill.ca/
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(a) PR curve all data using the bag of features

technique.

(b) PR curve all data using the indexed closed

curves method.

Figure 6.4 – Precision vs Recall plot for each category and for the whole dataset.

Table 6.1 – Retrieval statistics using our approach

Class NN FT ST E-Measure

All classes (Bag of features) 0.8800 0.8240 0.9680 0.6453

All classes (Indexed closed curves) 0.76 0.7360 0.9440 0.6293

Ants (Bag of features) 1 1 1 0.6667

Ants (Indexed closed curves) 0.8 0.72 1 0.6667

Humans (Bag of features) 0.8 0.68 1 0.6667

Humans(Indexed closed curves) 0.4 0.64 0.84 0.56

Pliers (Bag of features) 1 1 1 0.6667

Pliers (Indexed closed curves) 1 1 1 0.6667

Snakes (Bag of features) 1 1 1 0.6667

Snakes (Indexed closed curves) 0.6 0.6 1 0.6667

Teddies (Bag of features) 0.6 0.44 0.8 0.5333

Teddies(Indexed closed curves) 1 0.72 0.88 0.5867
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of the method presented in the previous chapter (figure 6.4b). This figure

clearly shows that the bag of features technique outperforms the indexed

closed curves method on this database. Indeed, if we look to the Precision

vs Recall curve for each class apart of the database presented in figure

6.5, we noticed that the bag of features have better results on most of the

classes except for the class of teddies where the indexed closed curves

method slightly outperforms the bag of features technique.

The Nearest Neighbour (NN), First Tier (FT), Second Tier (ST) and the

E-measure scores of the two methods are presented in the table 6.1. These

results show the effectiveness of our approach using the bag of features

technique based on the closed curves.

This is due to the forms of the closed curves. Each curve describes a

small region. The description of a small region is coded in the form of

the curves. Two 3D-models look similarly, if the repartition of the form of

their closed curves are similar.

Unlike, the indexed closed curves methods discussed in the previous

chapter which matches two 3D-models by matching their corresponding

curves of each level. Also, each level may have more than one curves.

Thus, it’s not easy to find their corresponding curves. This problem is

solved by the definition of the bag of features technique itself. And this is

shown in the results.
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Figure 6.5 – First column presents the Precision vs Recall plot of each category using

our approach based on the bag of features technique.

Second column presents the Precision vs Recall plot of each category using our approach

based on the index closed curves.
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6.4 Experiments toward partial 3D-model retrieval

Partial 3D-model retrieval is a complex problem, which is facing two main

difficulties. Matching partial or incomplete 3D-models and matching com-

bined 3D-models.

Methods using global descriptors cannot describe partial 3D-models.

Our approach based on closed curves which the form of each curve en-

codes the form of a small region on 3D-models. Then we group all these

curves to construct our bag of features. Using the bag of features tech-

nique shows good results for partial 3D-models retrieval.

Indeed, figure 6.6 presents a 3D-model ant and a partial 3D-model ant

which two of its legs are cut off. Figure 6.7 presents the mapping function

which remain the same after two legs are cut off, which it leads to closed

curves are generated from the same point and the forms of these curves

remain the same.

Figure 6.6 – A 3D-model ant which two of their legs are cut off.

Figure 6.7 – The mapping function of a 3D-model ant which two of their legs are cut off.

Even if a part of a 3D-model is cut off including the source point, our

approach will detect another source point in the centre of the object. Most

of the closed curves generated from this new point will not be affected just
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the first few ones. Since these curves are generated due to a scale value

of the mapping function. The scale of the function will vary but the form

of these curves remains almost the same. Because our mapping function

based on the commute-time distance is defined on the evolution of the

heat propagated in different time scale in the 3D-models by considering all

paths connecting a pair of nodes. The heat propagates in the same manner

in the same region and the form of these curves remains unchanged.

Also we tested our approach using a combined objects from our

database as it shown in figure 6.8. As an example of retrieved results,

figure 6.9 presents a partial and combined 3D-models used as a query

and the top five retrieved returned by our algorithm. Also we added the

partial 3D-model to the database and redo the experiments which leads to

good results.

Figure 6.8 – Combined 3D-model (pliers and snake) and its mapping function.
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Figure 6.9 – A partial 3D-model query retrieval results. First line to third line present

partial 3D-models used as query. The last two lines partial 3D-models added to the

database.

6.5 conclusion

In this chapter, we presented an approach of enhanced indexed closed

curves to partial 3D-model retrieval using the bag of feature technique.

Our mapping function based on the commute-time distance is defined

on the evolution of the heat propagated in different time scale in the 3D-

models by considering all paths connecting a pair of nodes. This is done

by summing the diffusion distance over the possible discrete time-steps

on the graph.

A scale of our mapping function detects a region. The form of these re-

gion are encoded in the form of the closed curves. The heat propagates in

the same manner in the same region and the form of these curves remain

unchanged even if a part of the model is missed.
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A local feature is a closed curve which describes a small region. The

collection of the closed curves of all the database constitutes our bag of

features. Clustering the bag of features in the sense in accurate catego-

rization. The centres of classes which contains a form of similar small

regions described by closed curves are defined as keyshapes. This method

is particularly interesting in the sense of quantifying the 3D-model by its

keyshapes that are accumulated into an histogram.

We demonstrated the effectiveness of our approach on two sets of ex-

periments. First set of experiments are made to evaluate our approach for

3D-model retrieval and we compared our results to indexed closed curve

approach defined in the previous chapter. The second set of experiments

are made to validate our approach towards partial 3D-model retrieval.

To conclude, we introduced in this chapter a novel method for par-

tial 3D-model retrieval based on bag of feature technique with very good

results but not the ideal results. For future work we are going to inves-

tigate more in two parts of this technique: The first part by doing more

experiments in different discretization of Laplace-Beltrami operator and

the second part searching for a better method to cluster the bag of feature.





7Conclusion

7.1 Summary

The rapid evolution of 3D graphics applications has created the need for

3D-model retrieval. Recently, researchers have investigated a lot of meth-

ods in this domain. We introduced the state-of-the-art for 3D-object re-

trieval and partial 3D-object retrieval. We discussed about the advantages

and drawbacks of different techniques. Then we summarized them in a

comparison table to allow the reader for a brief global view of the existing

methods. Consequently, we concluded till present that an ideal approach

for 3D-model retrieval and partial 3D-model retrieval does not exist.

In this thesis, we defined a novel invariant scalar function on the sur-

face of the 3D-model based on the heat kernel. We started by developing

a method to detect feature point located on the extremities that are used

as origin to define this function which in turn it computes a real value for

each vertex of the mesh and provides interesting insights to describe the

topology structure and the geometry of the 3D-model. Also, it respects

some important properties. It is invariant to rigid and non rigid transfor-

mations, it is insensitive to noise, it is robust to small topology changes,

it does not depend on any parameters, and it is practical to compute on

a discrete mesh. However, such a function that respects these basic prop-

erties do not exist in the state-of-the-art. Then we computed the Reeb

graph to illustrate the stability and the invariance properties preserved

by our function. Also, the topology graphs, such as Reeb graph is used

in many applications like mesh segmentation, 3D-model retrieval, and so

on. Then, we proposed two novel approaches for 3D-model retrieval and

partial 3D-model retrieval using our scalar function mentioned above.

129
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The first one is the indexed closed curve method for 3D-model re-

trieval. Our closed curves are generated from a source point detected

automatically at the centre of a 3D-model. For each scale of our scalar

function we detected a region. The form of these regions are encoded in

the form of the closed curves. All curves of each 3D-model are indexed

in correspondence to a scale value of our scalar function. The set of these

curves define our descriptor. We used Joshi et al’s method (49) to analyse

and compute the elastic metric between curves. Finally, we processed the

3D-model by analysing the shape of their corresponding level curves. Due

to the properties of the scalar function defined on the mesh, this function

describes 3D-models with different transformations similarly that leads to

detect small region described by closed curves similarly which made the

approach robust to isometric transformations as well as non rigid ones.

The second approach is an enhancement of the first method using the bag

of feature technique for partial 3D-model retrieval.

The first method has limited results on categories like snakes where

these 3D-models do not have a lot of information facing the other cate-

gories. Also, it is not very efficient for partial 3D-models retrieval. For

this purpose, we enhanced our approach by using the bag of feature tech-

nique. We validated our approach and tested on two sets of experiments.

First we compared our results to the previous method and the second we

validated it towards partial 3D-model retrieval. To conclude the results

show the effectiveness of our proposed method.

7.2 Open problems and directions

In this thesis, we presented new solutions for 3D models retrieval and

partial 3D model retrieval based on closed curve representation for 3D-

shape description. We believe that our solutions can be improved in three

points as follows:

Towards the definition of our scalar function. In the context of shape

similarity computing, we introduced two different methods: the indexed

closed curves approach and the bag of feature technique for partial 3D-
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model retrieval. In the two methods, we are using our invariant scalar

function based on Laplace-Beltrami operator. Marini et al. (66) investigate

if the selection of a particular spectrum sequence is the best choice or if

there exists other sequences of eigenvalues that provide better results. In

my point of view, the computation of the spectrum depends on the mesh

density. For both methods to be very accurate in the computation and

the selection of a particular spectrum sequence an improvement can be

done based on Marini et al. (66) investigations. Also, different authors

proposed different discretization of Laplace-Beltramii operator. Recently,

Reuter et al.(87) improve the discretization to a higher level of Laplace-

Beltrami operator by adding extra nodes on each triangle in the mesh. We

believe that using his discretization can improve our methods.

Towards shape analysis of parametrized surfaces. We proposed to anal-

yse shapes of 3D-surfaces using indexed closed curves generated from a

source point detected automatically based on our scalar function. In our

opinion, this kind of representation could be improved to guarantee more

robust results. In this sense, a pioneer work has been recently proposed by

Kurtek et al. (55) where a novel Riemannian framework for shape analysis

of parametrized surfaces is introduced. We are confident in the fact that

such an approach can be integrated and automated in our framework.

Towards spatial information in the bag of feature technique. The dis-

advantage of bags of features is the fact that they consider only the distri-

bution of the words and lose the relations between them. We believe that

in the future, the integration of the spatial relation between feature could

improve our approach for matching results. Computer vision techniques

for graph matching (88) like Reeb graph can be applied to preserve the

spatial relation between features in a given 3D-object.

Résumé (en français)

L’évolution rapide des applications 3D a créé le besoin pour l’indexation

de modèles 3D. Récemment, les chercheurs ont fait des nombreuses
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recherches concernant les problèmes liés à l’indexation des modèles 3D.

Nous avons introduit l’état de l’art pour l’indexation de modèles 3D et

l’indexation partielle de modèles 3D. Nous avons discuté les avantages

et les inconvénients des différentes techniques. Puis, nous les avons

résumées dans un tableau de comparaison pour permettre au lecteur

une brève vue globale des méthodes existantes. Par conséquent, nous

avons conclu jusqu’à présent qu’une approche idéale pour l’indexation et

l’indexation partielle de modèles 3D n’existe pas.

Dans cette thèse, nous avons défini une nouvelle fonction scalaire ap-

propriée qui respecte la stabilité et les propriétés d’invariance sur la sur-

face du modèle 3D basée sur le noyau de la chaleur. Nous avons com-

mencé à définir une méthode de détection de points caractéristiques situés

aux extrémités du modèle 3D. Ces points caractéristiques sont utilisés

comme origines pour définir notre fonction, qui à son tour, calcule une

valeur réelle pour chaque sommet du maillage dans le but de décrire la

structure topologique et la géométrie du modèle 3D. Cette dernière re-

specte les propriétés suivantes: elle est invariante aux transformations

rigides et non rigides, elle décrit le modèle 3D, elle est insensible au

bruit, elle est robuste aux changements topologiques, elle ne dépend pas

de paramètres, elle est simple à calculer sur le maillage. Ensuite, nous

avons calculé le graphe de Reeb pour illustrer la stabilité et les propriétés

d’invariance conservées par notre fonction. En outre, les graphes de

topologie, comme les graphes de Reeb, sont utilisés dans de nombreuses

applications telles que la segmentation du maillage, l’indexation de mod-

èles 3D, et ainsi de suite. Ensuite, nous avons proposé deux nouvelles

approches pour l’indexation et l’indexation partielle de modèles 3D en

utilisant notre fonction scalaire mentionnée ci-dessus.

La première approche pour l’indexation des modèles 3D est par la

création de courbes de niveaux fermées dans ℜ3. Nos courbes sont

générées à partir d’un point source détecté automatiquement au centre

d’un modèle 3D. Pour chaque valeur de notre fonction scalaire, nous avons

détecté une région. La forme de ces régions est encodée sous la forme de

courbes fermées. Toutes les courbes de chaque modèle 3D sont indexées
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en correspondance avec une valeur d’échelle de notre fonction scalaire.

L’ensemble de ces courbes définissent notre descripteur. Nous avons util-

isé la méthode proposée par Joshi et al (49) pour analyser et calculer la

distance entre les courbes. Enfin, nous avons comparé deux modèles 3D

par l’analyse de la forme de leurs courbes de niveau correspondantes. À

cause des propriétés de la fonction scalaire définie sur le maillage, cette

fonction décrit similairement les modèles 3D avec différentes transforma-

tions. Cette dernière mène à détecter similairement les petites régions

décrites par des courbes fermées ce qui justifie la robustesse aux transfor-

mations rigides et non rigides. La deuxième approche est une améliora-

tion de la première en utilisant la technique sacs de mots pour l’indexation

partielle de modèles 3D.

La première méthode donne des résultats limités sur des catégories

comme les serpents. En effet ces modèles 3D n’ont pas beaucoup

d’informations par rapport aux autres catégories. En outre, cette méth-

ode n’est pas très efficace pour l’indexation partielle de modèles 3D. À

cette fin, nous avons amélioré notre approche en utilisant la technique

sacs de mots. Nous avons validé notre approche et nous l’avons testée sur

deux séries d’expériences. Premièrement, nous avons comparé nos résul-

tats à la méthode précédente et deuxièmement nous avons validé notre

approche pour l’indexation partielle de modèles 3D. Pour conclure, les

résultats montrent l’efficacité de notre méthode.
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Titre Indexation partielle de modèles 3D

Résumé Un nombre croissant d’applications graphiques 3D ont un im-

pact sur notre société. Ces applications sont utilisées dans plusieurs do-

maines allant des produits de divertissement numérique, la conception

assistée par ordinateur, aux applications médicales. Dans ce contexte, un

moteur de recherche d’objets 3D avec de bonnes performances en résultats

et en temps d’exécution devient indispensable. Nous proposons une nou-

velle méthode pour l’indexation de modèles 3D basée sur des courbes fer-

mées. Nous proposons ensuite une amélioration de notre méthode pour

l’indexation partielle de modèles 3D. Notre approche commence par la

définition d’une nouvelle fonction d’application invariante. Notre fonc-

tion d’application possède des propriétés importantes : elle est invariante

aux transformations rigides et non rigides, elle est insensible au bruit, elle

est robuste à de petits changements topologiques et elle ne dépend pas de

paramètres. Cependant, dans la littérature, une telle fonction qui respecte

toutes ces propriétés n’existe pas. Pour respecter ces propriétés, nous

définissons notre fonction basée sur la distance de diffusion et la distance

de migration pendulaire. Pour prouver les propriétés de notre fonction,

nous calculons le graphe de Reeb de modèles 3D. Pour décrire un mod-

èle 3D complet, en utilisant notre fonction d’application, nous définis-

sons des courbes de niveaux fermées à partir d’un point source détecté

automatiquement au centre du modèle 3D. Chaque courbe décrit alors

une région du modèle 3D. Ces courbes créent un descripteur invariant à

différentes transformations. Pour montrer la robustesse de notre méth-

ode sur différentes classes de modèles 3D dans différentes poses, nous

utilisons des objets provenant de SHREC 2012. Nous comparons égale-

ment notre approche aux méthodes de l’état de l’art à l’aide de la base

SHREC 2010. Pour l’indexation partielle de modèles 3D, nous améliorons

notre approche en utilisant la technique sacs de mots, construits à partir des

courbes fermées extraites, et montrons leurs bonnes performances à l’aide

de la base précédente.



Mots-clés Modèles 3D ; Noyau de la chaleur ; Distance de diffusion ;

Distance de migration pendulaire ; Graphes de Reeb ; Indexation ; Index-

ation partielle ; Sacs de mots.



Title Partial 3D-shape indexing and retrieval

Abstract A growing number of 3D graphic applications have an impact

on today’s society. These applications are being used in several domains

ranging from digital entertainment, computer aided design, to medical

applications. In this context, a 3D object search engine with a good per-

formance in time consuming and results becomes mandatory. We propose

a novel approach for 3D-model retrieval based on closed curves. Then we

enhance our method to handle partial 3D-model retrieval. Our method

starts by the definition of an invariant mapping function. The important

properties of a mapping function are its invariance to rigid and non rigid

transformations, the correct description of the 3D-model, its insensitiv-

ity to noise, its robustness to topology changes, and its independance on

parameters. However, current state-of-the-art methods do not respect all

these properties. To respect these properties, we define our mapping func-

tion based on the diffusion and the commute-time distances. To prove the

properties of this function, we compute the Reeb graph of the 3D-models.

To describe the whole 3D-model, using our mapping function, we gen-

erate indexed closed curves from a source point detected automatically

at the center of a 3D-model. Each curve describes a small region of the

3D-model. These curves lead to create an invariant descriptor to differ-

ent transformations. To show the robustness of our method on various

classes of 3D-models with different poses, we use shapes from SHREC

2012. We also compare our approach to existing methods in the state-of-

the-art with a dataset from SHREC 2010. For partial 3D-model retrieval,

we enhance the proposed method using the Bag-Of-Features built with all

the extracted closed curves, and show the accurate performances using

the same dataset.

Keywords 3D-models; Heat kernel; Diffusion distance; Commute time

distance; Reeb graphs; Retrieval; Partial retrieval; Bag-Of-Features.
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