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Study of a nonlinear, non-dispersive, completely integrable equation and its perturbations

Résumé

On étudie dans cette thèse l'équation de Szegö sur la droite réelle i∂ t u = Π + (|u| 2 u), (t, x) ∈ R × R, où Π + est le projecteur sur les fréquences positives. On étudie également ses perturbations.

Cette équation a été introduite il y a quelques années par Gérard et Grellier comme modèle mathématique d'une équation non linéaire totalement non dispersive. L'équation de Szegö apparait naturellement dans l'étude de l'équation de Schrödinger non linéaire (NLS) dans certaines situations sur-critiques où l'on constate un manque de dispersion, par exemple lorsque l'on considère NLS sur le groupe de Heisenberg. Par conséquent, une des motivations de cette thèse est d'établir des résultats concernant l'équation de Szegö qui pourront éventuellement être utilisés dans le contexte de l'équation de Schrödinger non linéaire.

Le premier résultat de cette thèse est la classication des solitons de l'équation de Szegö.

On montre que ce sont tous des fonctions rationnelles ayant un unique pôle qui est simple.

De plus, on prouve que les solitons sont orbitalement stables.

La propriété la plus remarquable de l'équation de Szegö est le fait qu'elle est complètement intégrable, ce qui permet notamment d'établir une formule explicite de sa solution.

Comme applications de cette formule, on obtient les trois résultats suivants. (A) On montre que les solutions fonctions rationnelles génériques se décomposent en une somme de solitons et d'un reste qui est petit lorsque le temps tend vers l'inni. (B) On met en évidence un exemple de solution non générique dont les grandes normes de Sobolev tendent vers l'inni avec le temps. (C) On détermine des coordonnées action-angle généralisées lorsque l'on restreint l'équation de Szegö à une sous-variété de dimension nie. En particulier, on en déduit qu'une grande partie des trajectoires de cette équation sont des spirales autour de cylindres toroïdaux T N × R N . Comme l'équation de Szegö est complètement intégrable, il est ensuite naturel d'étudier ses perturbations et d'établir de nouvelles propriétés pour celles-ci à partir des résultats connus pour l'équation de Szegö. Une perturbation de l'équation de Szegö est l'équation des ondes non linéaire suivante (NLW) de donnée bien préparée i∂ t v -|D|v = |v| 2 v, (t, x) ∈ R × R.

On prouve que si la donnée initiale de NLW est petite et à support dans l'ensemble des fréquences positives, la solution de NLW est alors approximée pour un temps long par la solution de l'équation de Szegö. Autrement dit, on démontre ainsi que l'équation de Szegö est la première approximation de NLW. On construit ensuite une solution de NLW dont les grandes normes de Sobolev augmentent (relativement à la norme de la donnée initiale).

Sur le tore T, Gérard et Grellier ont démontré un résultat analogue d'approximation de NLW. On améliore ce résultat en trouvant une approximation plus ne, de deuxième ordre.

Dans une dernière partie, on s'intéresse à l'équation de Szegö perturbée par un potentiel multiplicatif petit. On étudie l'interaction de ce potentiel avec les solitons. Plus précisément, on montre que, si la donnée initiale est celle d'un soliton pour l'équation non perturbée, la solution de l'équation perturbée garde la forme d'un soliton sur un long temps. De plus, on déduit la dynamique eective, i.e. les équations diérentielles satisfaites par les paramètres du soliton. Une présentation générale de l'équation de Szegö sur la droite réelle .
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Introduction générale

Cette thèse est consacrée à l'analyse détaillée de l'équation de Szegö sur la droite réelle et de ses perturbations. L'équation de Szegö s'écrit

i∂ t u = Π + (|u| 2 u) u(0) = u 0 , (SZ) 
où Π + est le projecteur de Szegö sur les fréquences positives ou nulles. Elle a été récemment introduite par Gérard et Grellier dans [START_REF] Gérard | L'équation de Szegö cubique[END_REF][START_REF] Gérard | The cubic Szegö equation[END_REF] comme un modèle mathématique d'une équation hamiltonienne non linéaire totalement non dispersive. Une propriété remarquable de l'équation de Szegö est le fait qu'elle est complètement intégrable. Il est donc naturel d'étudier ses perturbations.

La première perturbation à laquelle on s'intéresse est l'équation des ondes non linéaire suivante :

i∂ t u -|D|u = |u| 2 u u(0) = u 0 . (NLW)
Si la donnée initiale est ε-petite et entièrement supportée sur des fréquences positives ou nulles, alors on montre que la première approximation de (NLW) est l'équation de Szegö.

La deuxième perturbation que l'on étudie dans cette thèse est la perturbation par un potentiel petit de type Toeplitz εT b u, où T b u = Π + (bu) :

i∂ t u = Π + (|u| 2 u) + εT b u u(0) = u 0 .
(TSZ)

Le potentiel de type Toeplitz est la généralisation naturelle d'un potentiel multiplicatif qui nous permet de garder la structure hamiltonienne de l'équation. Dans la section suivante, on décrit ce qui a motivé l'introduction de l'équation de Szegö.

1.1 Motivation : l'équation de Schrödinger non linéaire dans des régimes non dispersives et sur-critiques

La structure de l'équation de Szegö (SZ) apparait naturellement dans l'étude de l'équation de Schrödinger non linéaire défocalisante : sur M = R n . Grâce à la transformation de Fourier, on a une formule explicite pour la solution u L (t, x) = e it∆ u 0 de cette équation :

i∂ t u + ∆u = |u| 2 u u(0) = u 0 , ( 
u L (t, x) = 1 (4πit) n 2
R n e i 4t |x-y| 2 u 0 (y)dy.

Alors, u L (t, x) satisfait l'estimation de dispersion suivante :

u L (t) L ∞ (R n ) ≤ C |t| n 2 u 0 L 1 (R n ) .
(1.1.1) 1.1.2 -Le problème de Cauchy pour l'équation de Schrödinger non linéaire cubique 15 D'autre part, la norme L 2 est conservée : u L (t) L 2 = u 0 L 2 pour tout t ∈ R. Par conséquent, quand le temps augmente, la norme L ∞ de u L (t) décroit, tandis que la norme L 2 reste constante. C'est ce phénomène que l'on appelle la dispersion. La conséquence principale de l'estimation de dispersion (1.1.1) est représentée par les estimations de Strichartz, qui sont un outil très important dans l'étude de (NLS).

Elles arment que

R R n

|u L (t, x)| q dx p q

1 p = u L L p (R,L q (R n )) ≤ C u 0 L 2 (R n ) ,
si (p, q) est une paire admissible, i.e. p ≥ 2, (p, q, n) = (2, ∞, 2) et

2 p + n q = n 2 .
Par exemple, pour M = R 2 et (p, q) = (4, 4), on obtient

u L L 4 (R×R 2 ) ≤ C u 0 L 2 (R 2 ) .
1.1.2 Le problème de Cauchy pour l'équation de Schrödinger non linéaire cubique L'équation (NLS) est hamiltonienne d'énergie :

E(u) = 1 2 u 2 Ḣ1 + 1 4 u 4 L 4 ,
où la norme homogène de Sobolev Ḣ1 est dénie par

f Ḣ1 := 1 2π R |ξ| 2 | f (ξ)| 2 dξ 1/2
. Donc, au moins formellement, l'énergie de la solution est conservée : E(u(t)) = E(u 0 ) pour tout t ∈ R. L'invariance de l'équation par rapport aux modulations prouve que la norme L 2 de la solution est aussi conservée : u(t) L 2 = u 0 L 2 pour tout t ∈ R.

L'équation (NLS) cubique a la propriété de scaling suivante : si u(t, x) est solution de l'équation (NLS), alors u λ (t, x) = λu(λ 2 t, λx) l'est aussi. De plus, en considérant l'équation (NLS) sur M = R 4 , on obtient u λ Ḣ1 (R 4 ) = u Ḣ1 (R 4 ) et E(u λ ) = E(u).

Motivation : l'équation de Schrödinger non linéaire dans des régimes non dispersives et sur-critiques Dans ce cas, on dit que l'équation (NLS) est critique du point de vue de l'énergie sur Ḣ1 (R 4 ). On dira qu'elle est sous-critique sur Ḣs (R 4 ) si s > 1 et sur-critique sur Ḣs (R 4 ) si 0 ≤ s < 1.

Les estimations de Strichartz jouent un rôle très important dans la preuve du fait que l'équation (NLS) est régulièrement localement bien posée. Le fait qu'une équation soit bien posée fait référence à l'existence et l'unicité de la solution sur un intervalle du temps [-T, T ], ainsi qu'à la dépendance continue par rapport aux données initiales.

Le fait qu'une équation soit régulièrement bien posée est plus restrictif et est déni comme suit : Denition 1. On dit que l'équation (NLS) est régulièrement bien posée sur H s (M ) si pour tout sous-ensemble borné B de H s (M ), il existe T > 0 et un espace de Banach X T continuellement inclus dans C([-T, T ], H s (M )) de sorte que :

1. Pour tout u 0 ∈ B, l'équation (NLS) a une solution unique u ∈ X T telle que u(0) = u 0 .

2. Si u 0 ∈ H σ (M ) pour σ > s, alors u ∈ C([-T, T ], H σ (M )).

3. L'application u 0 ∈ B → u ∈ X T est régulière.

La restriction la plus importante de cette dénition réside dans le fait que la solution dépend d'une manière régulière de la donnée initiale, et pas seulement d'une manière continue. La technique classique qui combine un argument de point xe avec les estimations de Strichartz prouve que l'équation (NLS) est régulièrement bien posée dans des régimes sous-critiques. De plus, les estimations de Strichartz constituent une condition nécessaire pour que l'équation soit bien posée, comme cela a été démontré dans [17, Remarque 2.12] et dans [START_REF] Gérard | The cubic Szegö equation[END_REF]. On cite ci-dessous la Proposition 10 dans [START_REF] Gérard | The cubic Szegö equation[END_REF].

Proposition 1.1.1. Si l'équation (NLS) est régulièrement bien posée dans H s (M ) avec s ≥ 0, alors pour tout r > s on a :

u L L 4 ([0,1]×M ) ≤ C r u 0 H r/2 (M ) .
Si on peut étendre la solution locale pour tout temps, alors on dit que l'équation est globalement bien posée. Le fait que l'équation (NLS) est globalement bien posée dans des régimes sous-critiques est une conséquence de la conservation de l'énergie et de la norme L 2 .

Dans des régimes critiques, on peut démontrer sans beaucoup de diculté que l'équation est globalement bien posée pour des données petites. Dans le cas critique de l'équation (NLS) sur H 1 (R 4 ), le fait qu'elle est globalement bien posée a été démontré pour des données arbitraires dans [START_REF] Ryckman | Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+4[END_REF][START_REF] Visan | Global well-posedness and scattering for the defocusing cubic NLS in four dimensions[END_REF]. L'argument est beaucoup plus complexe que dans le cas des données petites, et il suit les grandes lignes de [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF], où les auteurs prouvent que l'équation (NLS) quintique sur R 3 est globalement bien posée.

1.1.3 -L'équation de Schrödinger sur le groupe de Heisenberg 1.1.3 L'équation de Schrödinger sur le groupe de Heisenberg Dans [START_REF] Burq | An instability property of the nonlinear Schrödinger equation on S d[END_REF][START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF][START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF], Burq, Gérard et Tzvetkov ont étudié l'équation (NLS) sur des variétés Riemanniennes compactes. Ils ont remarqué que ses propriétés dispersives sont inuencées par la géométrie de la variété. En allant encore plus loin, Bahouri, Gérard et Xu [START_REF] Bahouri | Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg[END_REF] et ensuite Gérard et Grellier [START_REF] Gérard | L'équation de Szegö cubique[END_REF] ont observé un manque de dispersion de l'équation (NLS) sur des variétés sous-riemanniennes, comme le groupe de Heisenberg.

Dans ce qui suit, on considère l'équation (NLS) sur le groupe de Heisenberg [START_REF] Gérard | L'équation de Szegö cubique[END_REF], on explique ce qui a conduit à la conclusion que, dans ce contexte, il existe un manque de dispersion et que l'équation (NLS) est sur-critique.

H 1 = C z × R s . En suivant
Le symbole ∆ désigne le laplacien de Kohn, déni par ∆ = 1 2 (Z Z + ZZ), où Z := ∂ z -iz∂ s , Z := ∂ z + iz∂ s .

Le hamiltonien est dans ce cas donné par

E(u) = H 1 (|∇ h u| 2 + 1 2 |u| 4 )|dzds|,
où ∇ h = (Zu, Zu) est le gradient horizontal de u. On remarque que l'énergie a le même scaling que Ḣ1 h (H 1 ) et que la dimension homogène de H 1 est égale à quatre. Par conséquent, l'argument utilisé dans le cas de R 4 nous dit que l'équation (NLS) sur Ḣ1

h (H 1 ) devrait être critique et qu'elle devrait donc être globalement régulièrement bien posée, au moins pour des données petites. Si ceci était vrai, la Proposition 1.1.1 impliquerait que u L L 4 ([0,1]×H 1 ) ≤ C r u 0 H r/2 (H 1 ) .

(1.1.2) si r > 1.

On montre ci-dessous qu'une telle inégalité ne peut être vraie que si r ≥ 2.

On se restreint pour cela au cas plus simple qui consiste à considérer des données initiales radiales dans L 2 (H 1 ). Comme cela a été démontré dans [START_REF] Bahouri | Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg[END_REF], le sous-espace des fonctions radiales de L 2 (H 1 ) s'écrit sous la forme d'une somme directe orthogonale

⊕ ± ⊕ ∞ m=0 V ± m , où ∆ |V ± m = ±i(2m + 1)∂ s .
Alors, pour u 0 ∈ V ± m , on a e it∆ u 0 (z, s) = u 0 (z, s ∓ (2m + 1)t) et donc e it∆ u 0 (z, s) L 4 ([0,1],H 1 ) = u 0 L 4 (H 1 ) .

Motivation : l'équation de Schrödinger non linéaire dans des régimes non dispersives et sur-critiques

Ensuite, on dispose des inclusions de Sobolev sur H 1 : Ḣs (H 1 ) ⊂ L 4 (H 1 ), si s ≥ 1, qui montrent que l'inégalité (1.1.2) est vraie pour u 0 ∈ V ± m seulement si r ≥ 2.

La diérence d'une demi-dérivée dans le membre de droite de (1.1.2), entre les prédictions qui ont été faites d'après le cas de R 4 et la situation spécique de H 1 , prouve qu'il y a un manque de dispersion pour l'équation (NLS) sur le groupe de Heisenberg H 1 . De plus, ceci montre aussi que (NLS) ne peut pas avoir un ot régulier dans Ḣ1 (H 1 ). Cela peut seulement être vrai pour une régularité supérieure ou égale à Ḣ2 (H 1 ). Par conséquent, les prédictions faites en se basant sur le cas de R 4 sont fausses et l'équation de Schrödinger non linéaire sur Ḣ1 (H 1 ) devrait être considérée plutôt comme sur-critique que comme critique.

On remarque aussi que, en notant par Π ± m la projection orthogonale sur V ± m et u ± m = Π ± m (u), on obtient que l'équation (NLS) est équivalente au système inni suivant d'équations de transport :

i(∂ t ± (2m + 1)∂ s )u ± m = Π ± m (|u| 2 u), pour m ∈ N.
Par conséquent, une meilleure compréhension de l'équation de Schrödinger non linéaire sur le groupe de Heisenberg demande l'étude de l'interaction entre la nonlinéarité |u| 2 u et les projecteurs Π ± m . L'équation la plus simple dans laquelle une telle interaction apparait est l'équation de Szegö i∂ t u = Π + (|u| 2 u), où Π + est le projecteur sur les fréquences positives ou nulles.

Un autre exemple pour lequel une analyse similaire peut être faite est l'équation de Schrödinger non linéaire sur R 2

x,y dans laquelle le laplacien est remplacé par l'opérateur de Grushin G := ∂ 2

x + x 2 ∂ 2 y . Comme précédemment, l'équation de Szegö apparait naturellement dans l'analyse. Pour plus de détails on renvoie à [START_REF] Gérard | The cubic Szegö equation[END_REF].

Une équation des ondes non linéaire

Un troisième exemple qui motive l'introduction de l'équation de Szegö est l'équation d'onde non linéaire suivante : e -itA u 0 L 4 ([0,1]×R 2 ) ≤ C r u 0 H r/2 (R 2 ) .

i∂ t u -Au = |u 2 |u, où A = |D x 1 | + |D x 2 |, (x 1 , x 2 ) ∈ R
(1. 1.3) On considère la décomposition suivante de L 2 (R 2 ) :

L 2 (R 2 ) := σ∈{-1,1} 2 L 2 σ (R 2 ), où L 2 σ (R 2 ) = f ∈ L 2 (R 2 ) supp f ⊂ {(ξ 1 , ξ 2 ), σ 1 ξ 1 ≥ 0, σ 2 ξ 2 ≥ 0} .
On observe que si u 0 ∈ L 2 σ (R 2 ), alors e -itA u 0 (x 1 , x 2 ) = u 0 (x 1 -σ 1 t, x 2 -σ 2 t). Ensuite, en utilisant l'inclusion de Sobolev, on obtient que (1.1.3) est vraie seulement lorsque r ≥ 1. En conclusion, il existe une perte d'une demi-dérivée à cause du manque de dispersion. Le système formé par quatre équations de transport, obtenu en projetant l'équation sur les sous-espaces de L 2 σ (R 2 ) suggère de nouveau l'étude de l'équation de Szegö.

Si on remplace l'opérateur A par |D| := |D 

Une présentation générale de l'équation de Szegö sur la droite réelle

On considère l'espace de Hardy L 2 + (R) déni par

L 2 + (R) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)}.
On dénit l'espace de Sobolev correspondant H s + (R) = H s (R) ∩ L 2 + (R), pour s ≥ 0 et d'une manière similaire l'espace de Sobolev homogène correspondant. On introduit le projecteur de Szegö Π + : L 2 (R) → L 2 + (R) comme étant le projecteur sur les fréquences positives ou nulles,

Π + (f )(x) = 1 2π
∞ 0 e ixξ f (ξ)dξ.

Une présentation générale de l'équation de Szegö sur la droite réelle

On pose aussi Π -= I -Π + . Quand il n'y a aucune confusion on écrit Π au lieu de Π + pour simplier les notations. Pour u ∈ L 2 + (R), on considère l'équation de Szegö sur la droite réelle : i∂ t u = Π + (|u| 2 u), (t, x) ∈ R × R.

(1.2.1)

Si l'on munit L 2 + de la forme symplectique ω(u, v) = Im R uv, on obtient que l'équation de Szegö est l'évolution hamiltonienne associée à l'énergie

E(u) = 1 4 R |u| 4 dx
dénie sur L 4 + (R). Cette structure implique la conservation formelle de l'énergie E(u(t)) = E(u(0)). L'invariance par rapport aux modulations et aux translations fournit deux autres lois de conservation, celle de la masse Q(u(t)) = Q(u(0)) et celle de l'impulsion M (u(t)) = M (u(0)), où l'on pose

Q(u) = R |u| 2 dx et M (u) = R ūDu dx, avec D = -i∂ x . En observant que Q(u)+M (u) = u 2 H 1/2 + (R) , on obtient u(t) H 1/2 + (R) = u(0) H 1/2 + (R)
.

Par suite, H 

H u (h) = Π + (u h).
Alors, comme on le démontre dans le Lemme 3.3.5, H u est un opérateur de Hilbert-Schmidt C-anti-linéaire. De plus, l'opérateur H 2 u est un opérateur linéaire, à trace et auto-adjoint.

Un objet important dans l'étude des opérateurs de Hankel est l'opérateur de shift, déni par la multiplication par e ix ( la multiplication par la variable complexe z sur T). En eet, en notant par T α la multiplication par e iαx , un opérateur borné H sur L 2 + (R) est un opérateur de Hankel si et seulement si HT α = T * α H pour tout α > 0.

Alors, U (t) est un opérateur unitaire et si u est une solution de l'équation de Szegö (1.2.1) de donnée initiale u 0 , on obtient :

H u(t) = U (t)H u 0 U (t) * . (1.2.2)
En particulier, ceci montre que le rang et le spectre de H u(t) sont conservés par le ot de l'équation de Szegö.

Il existe donc une suite innie de lois de conservation. Plus précisément, on a le corollaire suivant Corollary 1.2.4. On dénit J n (u) := (u, H n-2 u u) pour tout n ≥ 2. Pour tout k ∈ N * , les quantités J 2k (u) sont des quantités conservées pour l'équation de Szegö. En particulier, J 2 (u) = Q(u), J 4 (u) = E(u) 2 et l'on récupère ainsi les lois de conservation de la masse et de l'énergie.

On démontre que J 2k (u) ≤ u 2k . La loi de conservation de la norme H 1/2 + est donc plus forte que toutes les lois de conservation J 2k avec k ∈ N * . Une brève présentation de l'équation des ondes non linéaire (NLW) 1.3 Une brève présentation de l'équation des ondes non linéaire (NLW)

On considère l'équation

i∂ t v -|D|v = |v| 2 v v(0) = v 0 , (NLW) 
où D = -i∂ x . C'est en eet une équation des ondes non linéaire car si l'on applique l'opérateur i∂ t + |D| aux deux membres de l'équation, on obtient

-∂ tt v + ∆v = |v| 4 v + 2|v| 2 (|D|v) -v 2 (|D|v) + |D|(|v| 2 v).
On remarque tout d'abord que l'équation (NLW) est non-dispersive parce que, si l'on la projette sur des fréquences positives/négatives, on obtient le système suivant d'équations de transport :

i(∂ t v + + ∂ x v + ) = Π + (|v| 2 v) i(∂ t v --∂ x v -) = Π -(|v| 2 v).
L'équation (NLW) est hamiltonienne d'énergie

E(v) = 1 2 (|D|v, v) + 1 4 v 4 L 4 .
Cette structure montre que, au moins formellement, l'énergie est conservée :

E(v(t)) = E(v(0)) pour tout t ∈ R. L'invariance par rapport aux translations et aux modulations fournit deux autres lois de conservation :

Q(v(t)) = Q(v(0)) et M (v(t)) = M (v(0)), où Q(v) = v 2 L 2 et M (v) = (Dv, v).
La conservation de la masse et de l'énergie implique que la norme H 1/2 de la solution de (NLW) est uniformément bornée en temps. Donc H 1/2 est un espace naturel pour étudier si l'équation (NLW) est bien posée.

Proposition 1.3.1. L'équation des ondes non linéaire (NLW) est globalement bien posée dans H 1/2 (T) ainsi que dans H 1/2 (R). De plus, si v 0 ∈ H s pour s > 1 2 , alors v ∈ C(R; H s ).

1.4.1 -Classication des solitons de l'équation de Szegö sur R 23 1.4 Résultats concernant l'équation de Szegö L'équation de Szegö a été introduite et étudiée dans [START_REF] Gérard | L'équation de Szegö cubique[END_REF][START_REF] Gérard | The cubic Szegö equation[END_REF][START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF][START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] sur T. Une grande partie de ma thèse concerne l'étude de cette équation sur R. A cause des problèmes spectraux, de la perte de compacité des inclusions de Sobolev, de la diculté de caractériser les opérateurs de Hankel en utilisant l'opérateurs de shift e ix et des problèmes liés aux petits diviseurs, l'étude de cette équation sur R ore des nouveaux phénomènes à comprendre. On énonce à présent très brièvement les résultats obtenus dans cette thèse concernant l'équation de Szegö.

Dans le Chapitre 3, on classie tous les solitons de l'équation de Szegö sur R et l'on démontre qu'ils sont orbitalement stables, ce qui signie que si la donnée initiale est proche de celle d'un soliton, alors pour tout temps, la solution correspondante reste proche du soliton modulo les isométries de l'espace.

Dans le Chapitre 4, on trouve une formule explicite pour la solution de l'équation de Szegö sur R. Cette formule nous permet de démontrer que les solutions génériques" s'écrivent comme une somme de solitons et d'un reste petit quand le temps tend vers ±∞. Pour ce qui est des données non génériques, on construit un exemple pour lequel la résolution en solitons est vraie dans H s , 0 ≤ s < 1/2, tandis que les grandes normes de Sobolev tendent vers l'inni en temps, i.e. lim t→±∞ u(t) H s = ∞, s > 1/2.

La formule explicite nous permet aussi d'introduire des coordonnées action-angle généralisées si l'on se restreint à une sous-variété de l'espace de Hardy de dimension nie. Par conséquent, la plupart des solutions de l'équation de Szegö sur R ont une trajectoire en forme de spirale autour d'un cylindre toroïdal T N × R N . L'étude de ces problèmes a été motivée par des résultats similaires qui ont été obtenus pour d'autres équations complètement intégrables comme NLS cubique en dimension un, KdV et mKdV. Ces équations ont été résolues par la méthode de scattering inverse [START_REF] Ablowitz | The inverse scattering transform Fourier analysis for nonlinear problems[END_REF][START_REF] Deift | Inverse scattering on the line[END_REF][START_REF] Gardner | Method for Solving the Korteweg-de Vries Equation[END_REF], qui a aussi donné la résolution en solitons pour des données génériques" [START_REF] Eckhaus | The emergence of solitons of the Korteweg de Vries equation from arbitrary initial conditions[END_REF][START_REF] Novikov | Theory of Solitons : The Inverse Scattering Method[END_REF].

Dans ce qui suit, on décrit plus rigoureusement les résultats énoncés ci-dessus. On les compare aussi avec des résultats déjà existants à propos de l'équation de Szegö sur T, NLS et KdV. On décrit brièvement les particularités de chaque preuve ainsi que les dicultés rencontrées. 1.4.1 Classication des solitons de l'équation de Szegö sur R On dit qu'une solution de l'équation de Szegö est un soliton s'il existe une fonction u 0 et c, ω ∈ R de sorte que u(t, x) = e -iωt u 0 (x -ct), x ∈ R, t ∈ R.

Theorem 1.4.1 ([75]). Une fonction u ∈ C(R, H 1/2 + (R)) est un soliton si et seulement si c'est une fonction rationnelle avec un seul pôle simple : u(t, x) = Ce -iωt x -ct -p , où c = c(C, p), ω = ω(C, p) et Imp < 0.

Une classication des solitons de l'équation de Szegö sur T est disponible dans [START_REF] Gérard | The cubic Szegö equation[END_REF]. Les solitons sont dans ce cas, toutes les fonctions rationnelles z z N -p N , où |p| > 1, = 1, 2, . . . , N -1 ainsi que tous les produits de Blaschke nis (donnés par la formule (1.4.1) ci-dessous). Une comparaison immédiate de ces deux résultats montre qu'il existe beaucoup moins de solitons dans le cas de R que dans le cas de T.

Contrairement à son énoncé très court, la preuve du Théorème 1.4.1 combine plusieurs arguments provenant de domaines divers de l'analyse comme la théorie spectrale, l'analyse complexe et la théorie des systèmes dynamiques complètement intégrables. La preuve contient deux parties principales :

• Les solitons sont des fonctions rationnelles. Sur T, cette armation est une conséquence directe du fait que l'opérateur A u := D -1 c T |u| 2 a une résolvante compacte et n'a donc qu'un spectre discret, ce qui découle de l'inclusion de Sobolev compacte H 1 (T) ⊂ L 2 (T). Par contre, sur R, cette inclusion n'est plus compacte et l'opérateur A u a aussi un spectre continu. La partie du spectre de A u qui nous intéresse le plus est le spectre absolument continu.

Pour l'étudier, on prouve d'abord l'existence et la complétude des opérateurs d'ondes 

Ω ± (D, A u ), où D = -i∂ x . Les opérateurs d'ondes Ω ± (D, A u )
φ(x) = N j=1
x -λ j x -λj , où Im(λ j ) > 0.

(1.4.1)

On en déduit que Ran(H u ) est engendré par

1 x-λj N j=1
et donc que H u est de rang ni, ce qui prouve que le soliton u est une fonction rationnelle. Notons que, sur T, aucune des techniques que l'on vient de décrire n'est nécessaire.

• Les solitons ont un seul pôle et celui-ci est simple.

Dans le cas de T, on montre ce résultat en utilisant l'opérateur de shift T z donné par la multiplication par la variable complexe z, qui commute avec l'opérateur de Hankel : H u T z = T * z H u . Dans le cas de R, il est dicile de travailler avec le semigroupe d'opérateurs de shift T α donnés par la multiplication par e iαx , qui satisfont H u T α = T * α H u pour tout α > 0. C'est pourquoi l'on introduit l'opérateur de shift innitésimal compressé T qui correspond à la multiplication par x". C'est le générateur innitésimal du semi-groupe P u T α , où P u est le projecteur orthogonal sur Ran H u . Il satisfait la même relation de commutation H u T = T * H u , mais l'on doit faire attention lorsque l'on manipule cet opérateur : en eet, la multiplication par x est un opérateur non borné sur L 2 + (R). 

u 4 L 4 + ≤ 1 π u 2 L 2 + u 2 Ḣ1/2 + .
Résultats concernant l'équation de Szegö Notons que, sur T, les solitons 1 z-p avec |p| > 1, sont aussi orbitalement stable [START_REF] Gérard | The cubic Szegö equation[END_REF].

Dans ce cas-là, l'argument variationnel présenté ci-dessus et le théorème de compacité de Rellich sont susants pour conclure. Malheureusement, un tel théorème de compacité n'est pas vrai sur R. Par conséquent, sur R, on utilise la concentrationcompacité, introduite par Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. II[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. I[END_REF]. Plus précisément, on applique un théorème de décomposition en prols pour des suites bornées dans H 1/2 + (R), dans l'esprit des travaux de Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] et Hmidi et Keraani [START_REF] Hmidi | Remarks on the blow-up for the L 2 -critical nonlinear Schrödinger equations[END_REF]. Ce théorème arme que toute suite bornée dans H 

M(N ) = A(z) B(z) ∈ L 2 + deg(B) = N, deg(A) ≤ N -1, B(0) = 1, pgcd(A, B) = 1 . Si u 0 ∈ M(N ), le corollaire 1.2.3 assure alors que rk H u(t) = rk H u 0 = N pour tout t ∈ R.
Le théorème de type Kronecker implique donc dans ce cas que u(t) ∈ M(N ).

Par conséquent, la première information que l'on détient est que si la donnée initiale est une fonction rationnelle, alors la solution reste une fonction rationnelle pour tout temps. Il s'avère que l'on peut trouver une formule explicite de la solution, comme on l'énonce dans le théorème suivant. On xe d'abord quelques notations.

Supposons que u 0 ∈ M(N ). Il existe alors g 0 ∈ Ran(H u 0 ) tel que H u 0 g 0 = u 0 . Notons par λ 2 1 ≤ λ 2 2 ≤ • • • ≤ λ 2 N les valeurs propres de H 2 u 0
tel que λ j > 0. Comme, par le Lemme 3.3.6, on a Ran(H u 0 ) = Ran(H 2 u 0 ), on peut choisir une base orthonormale complexe {e j } N j=1 de Ran(H u 0 ) formée de vecteurs propres de H 2 u 0 vériant H u 0 e j = λ j e j pour tout j = 1, 2, . . . , N . Posons aussi β j = (g 0 , e j ).

Theorem 1.4.3 (Formule explicite pour les solutions qui ont comme conditions initiales des fonctions rationnelles [START_REF] Pocovnicu | Explicit formula for the solution of the Szegö equation on the real line and applications[END_REF] ). Supposons que u 0 ∈ M(N ) et notons 

T f (x) := xf -lim x→∞ xf (x) (1 -g 0 ). (1.4.2)
On introduit un opérateur S(t) qui agit de la manière suivante sur Ran H u 0 . On xe j ∈ {1, . . . , N } et on note M j ⊂ N l'ensemble de tous les indices k tels que H u 0 e k = λ j e k . L'opérateur S(t) est déni dans la base {e j } N j=1 par la matrice (S(t) k,j ) k,j , où l'on pose :

S(t) k,j =    λ j 2πi(λ 2 k -λ 2 j ) λ j e i t 2 (λ 2 k -λ 2 j ) β j β k -λ k e i t 2 (λ 2 j -λ 2 k ) β j β k , si k ∈ {1, . . . , N } \ M j , λ 2 j 2π β j β k t + (T e j , e k ), si k ∈ M j .
La formule suivante dénit alors la solution de l'équation de Szegö : vériant H u 0 e j = λ j e j pour tout j ∈ N * et posons β j = 1 λ j (e j , u 0 ).

u(t, x) = i 2π u 0 , W (t)(S(t) -xI) -1 W (t)g 0 L 2 pour tout (t, x) ∈ R × R. (1.4.
Résultats concernant l'équation de Szegö Theorem 1.4.4 (Formule explicite de la solution à donnée initiale générale [START_REF] Pocovnicu | Explicit formula for the solution of the Szegö equation on the real line and applications[END_REF]).

Soit

u 0 ∈ H s + , s ≥ 1 telle que xu 0 ∈ L ∞ (R). Notons W (t) = e i t 2 H 2 u 0 . On dénit l'opérateur T * : Ran(H u 0 ) → Ran(H u 0 ) par T * (H u 0 f ) := Π + (xu 0 f ). (1.4.4)
On introduit un opérateur S * (t) qui agit de la manière suivante sur Ran H u 0 . On xe j ∈ {1, . . . , N } et on note M j ⊂ N l'ensemble de tous les indices k tels que H u 0 e k = λ j e k . L'opérateur S * (t) est déni dans la base {e j } ∞ j=1 par :

(S * (t)e j , e k ) =    λ k 2πi(λ 2 k -λ 2 j ) λ k e i t 2 (λ 2 k -λ 2 j ) β j β k -λ j e i t 2 (λ 2 j -λ 2 k ) β j β k , si k ∈ N \ M j , λ 2 k β j β k 2π t + (T * e j , e k ), si k ∈ M j .
Si A est la fermeture de S * dans L 2 + (R), on a alors la formule suivante pour la solution de l'équation de Szegö :

u(t, z) = lim ε→0 i 2π W * (t)(A -zI) -1 W * (t)u 0 , 1 1 -iεz ,
pour Imz > 0.

On remarque d'abord que u 0 n'appartient pas toujours à RanH u 0 , comme c'était le cas pour les fonctions rationnelles, où l'on avait u 0 = H u 0 g 0 . Par conséquent, il est nécessaire de trouver une fonction qui remplace g 0 dans la formule (1.4.3). On peut démontrer que pour tout u 0 ∈ L 2 + (R) on a u 0 ∈ RanH u 0 , et que de plus, si T directement, on arrive à dénir l'adjoint" de T par T * (H

u 0 ∈ H s + (R) avec s ≥ 1 et xu 0 (x) ∈ L ∞ (R), alors u 0 = lim ε→0 H u 0 ( 1 1-iεx
u(t) ∈ H s + (R) avec s ≥ 1 et xu(t, x) ∈ L ∞ (R) pour tout t ∈ R. Ceci entraine que u(t, x) = lim ε→0 H u(t) ( 1 1-iεx
u 0 f ) = Π + (xu 0 f ) comme dans l'équation (1.4.4). Si f ∈ L 2 + (R) et xu 0 ∈ L ∞ (R), on a alors xu 0 f ∈ L 2 (R)
, et la dénition ci-dessus a donc un sens. Ceci explique l'apparition de l'opérateur S * (t) plutôt que celle de S(t) dans le Théorème 1.4.4.

1.4.4 -Résolution en solitons pour l'équation de Szegö sur R 29 Une formule explicite de la solution de l'équation de Szegö sur T est obtenue dans [START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF] comme conséquence de l'introduction des coordonnées action-angle. On discutera plus tard, lorsqu'il sera question des coordonnées action-angle généralisées pour l'équation de Szegö sur R, des similarités et des diérences entre les formules donnant la solution sur R et sur T.

Dans ce qui suit, on présente deux applications de la formule explicite de l'équation de Szegö sur R. 

< λ 2 1 < λ 2 2 < • • • < λ 2 N avec (u 0 , e j ) = 0, pour tout j = 1, 2, . . . , N et |(u 0 , e j )| = |(u 0 , e k )| pour tout k = j.
On note M(N ) sgen l'ensemble des fonctions fortement génériques ("strongly generic").

Theorem 1.4.5 ([76]). Soit u 0 ∈ M(N ) sgen une donnée initiale fortement générique pour l'équation de Szegö. Alors, la solution correspondante s'écrit comme une somme de N solitons et d'un reste. Plus précisément, on a

u(t, x) = N j=1 C j e -iω j t x -c j t -p j + ε(t, x), où lim t→±∞ ε(t, x) H s + (R) = 0 pour tout s ≥ 0.
La résolution en solitons est valable pour d'autres équations complètement intégrables comme KdV [START_REF] Eckhaus | The emergence of solitons of the Korteweg de Vries equation from arbitrary initial conditions[END_REF] et NLS cubique en dimension un [START_REF] Novikov | Theory of Solitons : The Inverse Scattering Method[END_REF]. Pour KdV, la résolu-

tion en solitons a lieu dans L ∞ (R + ), dans le sens où lim t→∞ ε(t, •) L ∞ (R + ) = 0. Par contre, lim t→∞ ε(t, •) H 1 (R) n'est pas nécessairement égale à zéro. Ceci montre que,
contrairement au cas de l'équation de Szegö, le reste est une onde dispersée, qui peut cependant porter une partie de l'énergie initiale.

Pour NLS, la résolution en solitons a lieu dans L 2 (R) :

u(t, x) = Solitons + e it∆ f + ε(t, x), où lim t→∞ ε(t, x) L 2 = 0.
Pour l'équation de Szegö sur T, on n'a pas de résultat de résolution en solitons. 

u(t) = N j=1 C j (t)
x-p j (t) +O( 1 t ). La remarque clé dans la preuve est le fait que les conjugués complexes des pôles p j (t) de u(t) sont les valeurs propres de l'opérateur de shift innitésimal T .

• Si u 0 ∈ M(N ) sgen , alors pour tout j, on a p j (t) = a j t+b j +O( 1 t ) quand t → ±∞, avec a j = 0, a j = a k , pour j = k, et Im(b j ) = 0. Dans ce cas, on obtient la résolution en solitons dans H s + (R) pour tout s ≥ 0.

• Si u 0 est telle que H 2 u 0 a une seule valeur propre double, alors il existe p j 0 avec p j 0 (t) = b j 0 + O( 1 t ) quand t → ±∞ et Im(b j 0 ) = 0.
Par conséquent, un des pôles de u(t) s'approche de la droite réelle, ce qui provoque la croissance de grandes normes de Sobolev. 1.4.6 Coordonnées action-angle généralisées pour l'équation de Szegö restreinte à des variétés de dimension nie

M(N )

Les coordonnées action-angle généralisées sont la généralisation au cas noncompact des coordonnées action-angle dénies dans le théorème de Liouville-Arnold.

On renvoie à la section 2.3.2 pour l'énoncé du théorème de Liouville-Arnold et de sa généralisation au cas non-compact.

Comme nous l'avons vu au début de la section 1.4. 

0 < λ 2 1 < λ 2 2 < • • • < λ 2
N et si (u, e j ) = 0, pour tout j = 1, 2, . . . , N . On note M(N ) gen l'ensemble de telles fonctions génériques. Theorem 1.4.7 ([76]). Pour u ∈ M(N ) gen , on note 0 < λ 2 1 < λ 2 2 < . . . λ 2 N les valeurs propres de H 2 u et {e j } N j=1 une base orthonormale complexe de Ran(H u ) formée de vecteurs propres de H 2 u tels que H u e j = λ j e j . Il existe un unique élément g ∈ Ran(H u ) tel que u = H u g. Notons ν j = |(g, e j )|, φ j = arg(g, e j ) et γ j = Re (T e j , e j ).

Alors,

I j = 4λ 2 j ν 2 j , Ĩj = 4πλ 2 j , φ j ∈ T, γ j ∈ R, j = 1, 2, .
. . , N sont des coordonnées action-angle généralisées. L'équation de Szegö s'écrit dans ces nouvelles coordonnées

         d dt I j = 0 d dt φ j (t) = I j d dt Ĩj = 0 d dt γ j (t) = Ĩj .
De plus, les solutions de l'équation de Szegö avec des données initiales qui sont des fonctions rationnelles génériques ont des trajectoires en forme de spirale autour des cylindres toroïdaux T N × R N .

Pour l'équation KdV sur le tore T, les coordonnées action-angle globales peuvent être trouvées par exemple dans le livre de Kappeler et Pöschel [START_REF] Kappeler | A Series of Modern Surveys in Mathematics[END_REF], la compacité permettant de ne pas avoir besoin d'angles généralisés. Pour l'équation de Szegö sur T, des coordonnées action-angle ont été introduites dans [START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF] sur un sous-ensemble G δ de L 2 + (T). La moitié des actions et des angles, Ĩj , φ j , j = 1, 2, . . . , N , coïncide dans les deux analyses et est liée aux valeurs propres et aux fonctions propres de l'opérateur de Hankel H u . Cependant, l'autre moitié est complètement diérente. Dans le cas de T, on considère un nouvel opérateur K u = H u T z dont les valeurs propres et les fonctions propres donnent le reste des coordonnées. Dans le cas de R, les angles généralisés sont dénis à l'aide de l'opérateur de shift innitésimal T , spécique au cas de la droite réelle, en posant γ j = Re(T e j , e j ).

La preuve du Théorème 1.4.7 suit la stratégie utilisée dans [START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF]. On considère l'application χ dénie sur M(N ) gen par χ(u) = (I j , Ĩj , φ j , γ j ), qui est à valeurs dans

Ω = (R * + ) N ×{0 < x 1 < x 2 < • • • < x N }×T N ×R N .
On prouve en plusieurs étapes que χ est un diéomorphisme symplectique, ce qui signie que c'est un diéomorphisme tel que • χ est une application injective. Cette armation est équivalente à la résolution du problème spectral inverse pour l'opérateur de Hankel H u . Par des calculs similaires à ceux permettant de retrouver la formule explicite de la solution de l'équation de Szegö, on obtient une formule pour u en termes de I j , Ĩj , φ j , γ j , ce qui montre que χ est injective.

{I j , φ k } = δ jk { Ĩj , γ k } = δ jk
• χ est un diéomorphisme local. Ceci revient à prouver que les diérentielles dI j , d Ĩj , dφ j , dγ j , j = 1, 2, . . . , N sont libres. On démontre cela facilement une fois que l'on a calculé une partie de crochets de Poisson, plus précisément 

∂ t u = X J 2n (u) u(0) = u 0 . (1.4.5) On peut démontrer que J 2n (u) = N j=1 λ 2n j ν 2 j = C N j=1 I j Ĩn-1
+ = 2πTr(H 2 u ) = 1 2 N j=1
Ĩj . Si, dans le cas de T, on utilise un lemme abstrait de théorie spectrale, la preuve dans le cas de R utilise simplement la formule que l'on a trouvée pour u dans l'étape où l'on a démontré l'injectivité de χ.

• χ est une transformation symplectique. Ceci revient à prouver que les crochets de Poisson {φ j , φ k }, {φ j , γ k } et {γ j , γ k } sont nuls. Pour le premier, on procède comme dans le cas de T. On considère {J 1 , J 3 }, où J 1 (u) = (u, g) et J 3 (u) = (H 2 u u, g). On calcule d'abord la valeur de ce crochet en utilisant les dénitions ci-dessus de J 1 et J 3 . Deuxièmement, on la calcule en utilisant le fait que J 1 = N j=1 λ j ν 2 j e -2iφ j et J 3 = N j=1 λ 3 j ν 2 j e -2iφ j . En identiant les deux expressions on obtient que {φ j , φ k } = 0. 

i∂ t v -|D|v = |v| 2 v v(0) = v 0 (NLW)
sur R et aussi sur T. Sur R, on prouve que si la donnée initiale est petite est entièrement supportée sur des fréquences positives ou nulles, alors la solution correspondante est proche de celle de l'équation de Szegö avec la même donnée initiale, pour un temps long (approximation de premier ordre). Comme corollaire, on donne un exemple de solution de l'équation (NLW) pour laquelle les normes de Sobolev croissent en temps relativement à la norme de la donnée initiale. Un résultat similaire d'approximation a été prouvé dans [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] sur T. On améliore ce résultat en trouvant une approximation de deuxième ordre de (NLW) sur T, qui fournit une erreur plus petite. Celle-ci est donnée par une équation plus compliquée que celle de Szegö.

Dans le Chapitre 6 on étudie l'équation de Szegö sur R perturbée par un petit potentiel de Toeplitz εT b u, où T b u = Π + (bu) :

i∂ t u = Π + (|u| 2 u) + εT b u u(0) = u 0 . (TSZ)
On montre que, si la donnée initiale est celle d'un soliton pour l'équation de Szegö, alors la solution correspondante est proche d'une fonction qui a la forme d'un soliton et pour laquelle on peut prescrire les dynamiques eectives pour un temps long. Theorem 1.5.1 ([78]). Soient

0 < ε 1, s > 1 2 et W 0 ∈ H s + (R). Soit v(t) la solution de l'équation (NLW) sur R i∂ t v -|D|v = |v| 2 v v(0) = W 0 = εW 0 . Notons W ∈ C(R, H s + (R)) la solution de l'équation de Szegö sur R i∂ t W = Π + (|W| 2 W) W(0) = W 0 ,
avec la même donnée initiale. Supposons qu'il existe 0 ≤ α ≤ 1 2 et δ > 0 susamment petit de sorte que W(t)

H s ≤ Cε log( 1 ε δ ) α pour tout t ∈ R. Alors, si 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
, on a 

v(t) -e -i|D|t W(t) H s ≤ C * ε 2-C 0 δ , où C 0 > 0
1 4s-1 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1 , on obtient v(t) H s (R) v(0) H s (R) ≥ C log( 1 ε δ ) 4s-2 4s-1
1.

Des résultats analogues au Théorème 1. Pour la preuve du Théorème 1.5.1 on applique la méthode du groupe de renormalisation introduite par Chen, Goldfend et Oono dans le contexte de la physique théorique [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF][START_REF] Chen | Renormalization group and singular perturbations : multiple scales, boundary layers, and reductive perturbation theory[END_REF]. Cette méthode a été justiée mathématiquement pour une grande classe d'EDO dans [START_REF] Ziane | On a certain renormalization group method[END_REF][START_REF] Ville | Analysis of a renormalization group method and normal form theory for perturbed ordinary dierential equations[END_REF]. Elle a aussi été appliquée rigoureusement à des EDP sur des intervalles bornés : équations de Navier-Stokes [START_REF] Moise | Renormalization group method. Applications to Navier-Stokes equation[END_REF], équation d'un uide peu compressible, équation de Swift-Hohenberg [START_REF] Moise | Renormalization Group Method. Applications to Partial Differential Equations[END_REF], ainsi qu'aux équations primitives de l'atmosphère et de l'océan [START_REF] Petcu | Renormalization group method applied to the primitive equations[END_REF]. Dans [START_REF] Abou | On the renormalization group approach to perturbation theory for PDEs[END_REF] elle a été appliquée à l'équation de Schrödinger non linéaire quadratique sur R 3 . L'idée de base de cette méthode est de décomposer la non linéarité dans une partie résonnante et une partie oscillatoire.

Cette décomposition a été appliqué avec beaucoup d'ecacité par Germain, Masmoudi et Shatah pour montrer l'existence globale à donnée petite pour plusieurs équations non linéaires dispersives [START_REF] Germain | Space-time resonances[END_REF][START_REF] Germain | Global solutions for 2D quadratic Schrödinger equations[END_REF][START_REF] Germain | Global existence for coupled Klein-Gordon equations with dierent speeds[END_REF][START_REF] Germain | Global solutions for the gravity water waves equation in dimension 3[END_REF][START_REF] Germain | Global solutions for 3D quadratic Schrödinger equations[END_REF][START_REF] Shatah | Space-time resonances[END_REF]. Une présentation détaillée de la méthode du groupe de renormalisation est donnée dans la section 2.5.2 des préliminaires.

Le changement de variables u(t) = 1 ε e i|D|t v(t) dans l'équation (NLW), permet de vérier que u satisfait l'équation suivante :

∂ t u = -iε 2 e i|D|t (|e -i|D|t u| 2 e -i|D|t u) =: ε 2 f (u, t) u(0) = W 0 .
La première étape de la méthode du groupe de renormalisation consiste à écrire la non linéarité f (u, t) dans l'espace de Fourier et à la décomposer en une partie résonnante, qui ne dépend pas explicitement du temps, et en une partie oscillatoire : 

F f (u, s) (ξ) = -i R R e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη.
f res (u) = -iF -1 φ=0 û(η -ζ)û(ζ)û(η -ξ)dζdη, f osc (u, s) = -iF -1 φ =0 e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη.
f res (u) = -i Π + (|u + | 2 u + ) + Π -(|u -| 2 u -) .
L'idée de base de la méthode du groupe de renormalisation est que la dynamique d'une équation est dominée par ses résonances. On considère donc l'équation suivante, dite de renormalisation :

∂ t W = ε 2 f res (W ) W (0) = W 0 (RG)
et l'on montre que W est une bonne approximation pour u. C'est ici qu'intervient le choix que l'on a fait pour la donnée initiale W 0 . On a supposé qu'elle est supportée sur des fréquences positives, de sorte que l'on a W 0,-= 0. En projetant l'équation (RG) sur les fréquences négatives, on obtient

i∂ t W -= ε 2 Π -(|W -| 2 W -) W -(0) = 0.
Par suite, on a W -(t) = 0 pour tout t ∈ R, et l'approximation de notre solution est donc donnée par W = W + , qui satisfait l'équation

i∂ t W + = ε 2 Π + (|W + | 2 W + ) W + (0) = W 0 .
Notons que, en faisant le changement de variables W = εW , on trouve que W satisfait l'équation de Szegö de donnée initiale εW 0 . Cependant, on n'arrive pas à montrer directement que W est une bonne approximation de u, à cause de dicultés techniques. Pour surmonter ces dicultés, on considère l'ansatz suivant pour l'approximation de u :

u app (t) = W (t) + ε 2 F osc (W (t), t),
où l'on pose F osc (W (t), t) := t 0 f osc (W (t), s)ds. On trouve ensuite l'équation satisfaite par w = u -u app et l'on montre, par un argument de bootstrap et en utilisant l'inégalité de Gronwall, que w H s (R) ≤ ε 1-C 0 δ . Comme on a une bonne estimation pour F osc (W (t), t), on obtient en fait que u -W H s (R) ≤ ε 1-C 0 δ pour un temps long. Le résultat nal est obtenu en revenant aux variables v et W.

1.5.2 Approximation de deuxième ordre pour l'équation des ondes non linéaire (NLW) sur T

Comme on l'a déjà dit, un résultat similaire au Théorème 1.5.1 pour le cas de l'équation (NLW) sur T a été démontré dans [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF]. Grâce à de meilleures estimations, l'erreur est de l'ordre O(ε 3-) dans le cas de T, et pas seulement de l'ordre O(ε 2-) comme dans le cas de R. On améliore ce résultat en trouvant une solution approchée de sorte que l'erreur est encore plus petite, puisque de l'ordre O(ε 5-). Cette nouvelle approximation est donnée par une équation plus compliquée que l'équation de Szegö.

Theorem 1.5.3 ([78]). Soient 0 < ε 1, s > 1 2 , 0 ≤ α ≤ 1 2 et δ > 0 susamment petit. Soit W 0 ∈ H s + (T) telle que la solution de l'équation de Szegö de donnée initiale εW 0 soit uniformément bornée par ε log(

1 ε δ ) α pour tout t ∈ R. Notons v(t) la solution de l'équation (NLW) sur T i∂ t v -|D|v = |v| 2 v v(0) = W 0 = εW 0 . Considérons W ∈ C(R, H s + (T)
) la solution de l'équation suivante sur T :

i∂ t W = Π(|W| 2 W) -Π + (|W| 2 1 D Π -(|W| 2 W)) -1 2 Π + (W 2 1 D Π -(|W| 2 W)) W(0) = W 0 = εW 0 , (1.5.1)
avec la même donnée initiale. Pour toute fonction h ∈ H s (T), on pose

f osc (h, t) = e i|D|t (|e -i|D|t h| 2 e -i|D|t h) - 1 2π
2π 0 e i|D|τ (|e -i|D|τ h| 2 e -i|D|τ h)dτ, 

Alors, si 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
, on a 

v(t) -v app (t) H s ≤ ε 5-C 0 δ , où C 0 > 0
u app (t) = W (t) + ε 2 F osc (W (t), t) + ε 4 N 2 (W, t),
où W est la solution de l'équation moyennée suivante :

∂ t W = ε 2 f res (W ) + ε 4 R 2 (W ) W (0) = W 0 .
On détermine R 2 et N 2 en faisant un développement de Taylor de la non linéarité f (u app , t) en W , en imposant que u app soit une solution approchée et en identiant les diérentes puissances de ε. En particulier, on trouve que

R 2 (W ) = {f (W, t) • F osc (W, t)} res .
En utilisant le choix que l'on a fait de la donnée initiale, comme dans le cas de (NLW)

sur R, on trouve que l'équation moyennée est équivalente à l'équation (1.5.1). Le reste de la preuve suit les même lignes que celle du Théorème 1.5.1.

Interaction des solitons avec un potentiel Toeplitz petit pour l'équation de Szegö sur R

On considère l'équation de Szegö perturbée par un potentiel Toeplitz petit εT b u, 

où T b u = Π + (bu) avec b ∈ L ∞ (R) : i∂ t u = Π + (|u| 2 u) + εT b u,
u 0 = α 0 e iφ 0 x -a 0 + i µ 0 = α 0 e iφ 0 µ 0 η(µ 0 (x -a 0 )), (1.5.2)
où a 0 , φ 0 ∈ R et α 0 , µ 0 ∈ (0, ∞). De plus, pour tout temps t ∈ R, le soliton u(t) a la même forme :

u(t) = α(t)e iφ(t) x -a(t) + i µ(t) = α(t)e iφ(t) µ(t)η(µ(t)(x -a(t))), où α(t) = α 0 , µ(t) = µ 0 , φ(t) = - α 2 0 µ 2 0 4 t + φ 0 et a(t) = α 2 0 µ 0 2 t + a 0 .
La solution de l'équation de Szegö perturbée par un potentiel Toeplitz petit, de donnée initiale soliton, garde la forme d'un soliton dépendant de quatre paramètres,

pour un temps 0 ≤ t ≤ 1 ε 1 2 -δ (1 + 2δ 5 ln c 0 ln( 1 ε )).
De plus, on peut préciser les équations diérentielles satisfaites par les paramètres a(t), α(t), φ(t), µ(t). Plus précisément, on a le théorème suivant. Theorem 1.5.4 ([77]). Soit b : R → R une fonction dans H 1 (R) telle que b ∈ L 1 (R).

Soient 0 < ε << 1 et 0 < δ < 1 2 . Si u est la solution du problème de Cauchy

i∂ t u = Π(|u| 2 u) + εT b u u(0, x) = α 0 e iφ 0 µ 0 η(µ 0 (x -a 0 )), (1.5.3) avec a 0 , φ 0 ∈ R et α 0 , µ 0 ∈ (0, ∞), alors u(t) -α(t)e iφ(t) µ(t)η(µ(t)(x -a(t))) H 1 2 + ≤ Cε 1 2 + δ 3 , pour des temps 0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ), où c 0 est une constante dépendant seulement de α 0 et µ 0 , et a, α, φ, µ satisfont            ȧ = α 2 µ 2 -2ε πµ b (a + x µ ) x µ |η(x)| 2 dx + O(ε 1+ 2δ 3 ), α = εα πµ b (a + x µ )|η(x)| 2 dx + O(ε 1+ 2δ 3 ), φ = -α 2 µ 2 4 -ε π b(a + x µ )|η(x)| 2 dx -ε π b (a + x µ ) x µ |η(x)| 2 dx + O(ε 1+ 2δ 3 ), μ = -2ε π b (a + x µ )|η(x)| 2 dx + O(ε 1+ 2δ 3 ).
De plus, si ā, ᾱ, φ, μ satisfont

           ȧ = ᾱ2 μ 2 -2ε π μ b (ā + x μ ) x μ |η(x)| 2 dx, α = ε ᾱ π μ b (ā + x μ )|η(x)| 2 dx, φ = - ᾱ2 μ2 4 -ε π b(ā + x μ )|η(x)| 2 dx -ε π b (ā + x μ ) x μ |η(x)| 2 dx, μ = -2ε π b (ā + x μ )|η(x)| 2 dx,
avec les même données initiales a 0 , α 0 , φ 0 , µ 0 , on a alors

         |a -ā| ≤ c0 δε 1 2 +δ ln( 1 ε ), |α -ᾱ| ≤ c0 δε 1 2 +δ ln( 1 ε ), |φ -φ| ≤ c0 δε 2δ ln( 1 ε ) 2 , |µ -μ| ≤ c0 δε 1 2 +δ ln( 1 ε ).
où c0 dépend de α 0 , µ 0 .

Par conséquent, si ε est susamment petit et 3 10 < δ < 1 2 , on a pour des temps

0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ) l'estimation u(t) -ᾱ(t)e i φ(t) μ(t)η(μ(t)(x -ā(t))) H 1 2 + ≤ Cε 1 2 + δ 3 .
L'étude de l'interaction des solitons avec un potentiel a été abordée dans le cadre de l'équation de Schrödinger non linéaire, de l'équation de Hartree et de l'équation mKdV, dans une série de papiers parmi lesquels on cite [START_REF] Bronski | Soliton dynamics in a potential[END_REF][START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF][START_REF] Fröhlich | On the point-particle (Newtonian) limit of the nonlinear Hartree equation[END_REF][START_REF] Fröhlich | Solitary wave dynamics in an external potential[END_REF][START_REF] Fröhlich | Long time motion of NLS solitary waves in a conning potential[END_REF]. Certains de ces résultats ont été améliorés dans [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF][START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF][START_REF] Holmer | Eective dynamics of double solitons for perturbed mKdV[END_REF] 

H b (u) = 1 4 R |u(x)| 4 dx + ε 2 R b(x)|u(x)| 2 dx.
On note par M la variété des solitons de dimension quatre :

M = {e iφ αµη(x -a)), φ, a ∈ R, α > 0, µ > 0}.
Le point de départ de la preuve du Théorème 1.5.4 est de déterminer le champ vectoriel qui correspond à la restriction H b | M du hamiltonien à la variété des solitons.

Ensuite, on détermine le ot de ce champ de vecteurs, que l'on appelle la dynamique eective.

On décompose la solution de l'équation de Szegö perturbée (1.5.3) dans une partie qui appartient à la variété M et en une partie qui est symplectiquement orthogonale à M . On prouve ensuite que la partie qui est orthogonale à M est petite, ce qui montre que le ot de (1.5.3) est proche de la variété M . L'heuristique de Holmer et Zworski suggère alors que le ot doit être proche du ot de H b | M , i.e. de la dynamique eective.

La partie principale de la preuve consiste à estimer la partie de la solution qui est orthogonale à M . L'élément clé de cette estimation est la coercivité de l'opérateur linéarisé autour du soliton, que l'on dénit ci-dessous.

On considère d'abord la fonctionnelle de Lyapounov E :

H 1/2 + (R) → R, E(u) = 1 4 |u| 4 dx + i 4 (∂ x u)ūdx - 1 8 |u| 2 dx. Alors η = 1 x+i est un point critique de E (i.e. d η E = 0), car l'on vérie facilement que i 2 ∂ x η + Π(|η| 2 η) - η 4 = 0.
L'opérateur linéarisé L : H

1 2 + (R) → R autour de η est déni par L(w) = E η w = - i 2 ∂ x w -2T |η| 2 w -H η 2 w + 1 4
w.

On démontre que l'opérateur linéarisé L est coercif dans toutes les directions orthogonales à M , i.e. Lw, w ≥ 

0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1
. On aimerait donc trouver une approximation de la solution de l'équation (NLW) pour un temps plus long. Cette approximation n'est probablement plus donnée par l'équation Problèmes ouverts de Szegö (pour laquelle on sait qu'il existe des solutions dont les normes de Sobolev croissent vers l'inni). Il est plus probable qu'une telle approximation soit donnée par une équation similaire à celle trouvée dans le Théorème 1.5.3, concernant l'approximation de deuxième ordre. Cette équation semble beaucoup plus compliquée et l'on ne sait pas si elle possède des solutions dont les normes de Sobolev sont très grandes.

Enn, pour l'équation de Szegö avec un potentiel Toeplitz petit, la question est de savoir si le temps pour lequel on a la stabilité des solitons est optimal. Si ce n'est pas optimal, on aimerait savoir s'il serait possible de l'améliorer. Dans la preuve du Théorème 1.5.3, on utilise seulement la structure hamiltonienne de l'équation. On se pose donc la question de savoir s'il est possible d'améliorer le temps en utilisant l'intégrabilité complète de l'équation de Szegö. Un tel résultat a été obtenu par Holmer, Perelman et Zworski pour l'équation mKdV avec un potentiel qui varie lentement et pour un double soliton, à l'aide des lois de conservation de cette équation ainsi que des plusieurs relations algébriques. 

Espaces de Hardy des fonctions holomorphes dans le demi-plan supérieur

La théorie des espaces de Hardy des fonctions holomorphes dans le disque unité D = {z ∈ C; |z| < 1} est classique en analyse complexe [START_REF] Rudin | Real and Complex Analysis[END_REF]. On rappelle la dénition des espaces de Hardy des fonctions holomorphes dans le disque unité D :

L p + (T) = f ∈ Hol(D) f p L p + (T) = sup 0≤r<1 2π 0 |f (re ix )| p dx 2π < ∞ si 0 < p < ∞ et L ∞ + (T) = f ∈ Hol(D) f L ∞ + (T) = sup z∈D |f (z)| < ∞ .
Notons ω : C + → D l'application conforme dans le demi-plan supérieur C + = {z ∈ C|Imz > 0} à valeurs dans le disque unité D, dont on rappelle qu'elle est dénie par :

ω(z) = z -i z + i , z ∈ C + .

Préliminaires d'analyse complexe

Elle permet de faire le transfert vers le demi-plan supérieur, et l'on obtient alors que si f ∈ L p + (T), la fonction U p f dénie par 

U p f (z) = 1 π(z + i) 2 1/p f z -i z + i , z ∈ C + ,
g L p + (R) = sup y>0 R |g(x + iy)| p dx 1/p < ∞ si p < ∞ et g L ∞ + (R) = sup z∈C + |g(z)| < ∞.
On a la formule de Poisson suivante pour les fonctions appartenant à de tels espaces.

Proposition 2.1.1 (Formule de Poisson). Si f ∈ L p

+ (R) avec 1 ≤ p ≤ ∞, alors f (x + iy) = 1 π R y (x -t) 2 + y 2 f (t)dt si y > 0.
Une importance particulière est accordée à l'espace L 2 + (R). Cela est dû au fait que L 2 + (R) est un espace de Hilbert facilement identiable à un sous-espace de L 2 (R), comme on le voit dans le théorème suivant.

Theorem 2.1.2 (Paley, Wiener, 1934). On a l'identication

L 2 + (R) = F -1 L 2 (R + ) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)},
où on note par F la transformation de Fourier. 

f = φ[f ],
où φ est une fonction intérieure et [f ] est le facteur extérieur de Schwarz-Herglotz :

[f ](z) := exp 1 πi R 1 + tz t -z log |f (t)| dt 1 + t 2 , z ∈ C + .
Toute fonction dans un espace de Hardy, satisfait une condition sur ses zéros dans C + , appelée condition de Blaschke et s'énonçant comme suit. Proposition 2.1.4. Soit f ∈ L p + (R) avec 1 ≤ p ≤ ∞, f = 0. Notons λ n ses zéros dans C + comptés avec leurs multiplicités. On a alors :

n Imλ n 1 + |λ n | 2 < ∞.
De plus, si l'on note B le produit de Blaschke construit avec les zéros de f déni par

B(z) = n ε n z -λ n z -λ n , z ∈ C + , avec ε n = |λ 2 n +1| λ 2 n +1 si λ n = i et ε n = 1 si λ n = i, il existe g ∈ L p + (R) avec g(z) = 0 pour z ∈ C + telle que f = B • g et f L p + (R) = g L p + (R) .
Remarquons 

(τ α f )(x) = f (x -α), pour tout x ∈ R et pour α ∈ R.
Les translations forment un groupe d'opérateurs unitaires sur L 2 (R). L'image par la transformation de Fourier de l'opérateur de translation τ α est l'opérateur de multiplication par e iαx , car τ α (Ff ) = F(e iαx f ) pour toute fonction f ∈ L 2 (R). Par conséquent, on a τ α = Fe iαx F -1 , ce qui assure que les groupes (τ α ) α∈R et (e iαx ) α∈R sont conjugués via la transformation de Fourier. En utilisant le Théorème 2.1.2, on obtient alors qu'un sous-espace E de L 2 + (R) est invariant par rapport à la multiplication par e iαx , i.e. e iαx E ⊂ E, si et seulement si le sous-espace de L 2 (R + ) qui contient toutes les transformations de Fourier des fonctions de E est invariant par la translation τ α , i.e. τ α (F(E)) ⊂ F(E). Ces sous-espaces invariants de l'espace de Hardy L 2 + (R) ont été caractérisés par Lax [START_REF] Lax | Translation invariant spaces[END_REF], qui a démontré le résultat suivant. On énonce son résultat ci-dessous.

Theorem 2.1.6 (Sous-espaces invariants par rapport à la translation). Tout sousespace fermé et non vide de L 2 + (R) qui est invariant par rapport à la multiplication par e iαx pour tout α ≥ 0 est de la forme φL 2 + (R), où φ est une fonction intérieure analytique. De plus, φ est uniquement déterminée modulo la multiplication par des nombres complexes de module 1.

Signalons que dans le cas de l'espace de Hardy des fonctions holomorphes sur le disque unité L 2 + (T), un énoncé analogue avait été démontré précédemment par Beurling [START_REF] Rudin | Real and Complex Analysis[END_REF]. 

Opérateurs de Hankel et de Toeplitz sur l'espace de Hardy

L 2 + (R) Une matrice de Hankel est une matrice innie Γ = (γ ij ) i,j≥0 pour laquelle il existe une suite (a n ) n≥0 telle que γ ij = a i+j pour tout i, j ≥ 0 : Γ =          a 0 a 1 a 2 a 3 • • • a 1 a 2 a 3 . . . a 2 a 3 . . . a 3 . . . . . .         
L 2 + (T) → 2 = 2 (Z + ) dénie par f → ( f (n)) n≥0 .
Elle permet de dénir un opérateur de Hankel sur L 2 + (T) à l'aide de la matrice de Hankel (γ ij ) i,j≥0 , par Γ :

2 → 2 , Γ : (x n ) n≥0 → k≥0 γ nk x k , Dans le cas de L 2 + (R), on pose la dénition suivante. Denition 4. Soit Π + : L 2 (R) → L 2
+ (R) le projecteur de Szegö, i.e. le projecteur sur des fréquences positives ou nulles :

Π + (f )(x) = 1 2π ∞ 0 e ixξ f (ξ)dξ. L'opérateur de Hankel H u : L 2 + (R) → L 2 + (R) de symbole u ∈ H 1/2 (R) ∩ L 2 + (R) est alors déni par : H u (h) = Π + (u h).
Cette dénition est justiée par l'égalité

H u (h)(ξ) = 1 2π ∞ 0 û(ξ + η) ĥ(η)dη,
que l'on retrouvera dans la preuve du Théorème 3.2.1. On voit apparaitre û(ξ + η) exactement comme on avait γ nk = a n+k dans le cas de L 2 + (T).

Comme il sera démontré dans le Lemme 3.3.5, H u est un opérateur de Hilbert-Schmidt donc c'est en particulier un opérateur compact. De plus, il est C-antilinéaire et il satisfait à l'identité suivante :

(H u (h 1 ), h 2 ) L 2 = (H u (h 2 ), h 1 ) L 2 , (2.1.1) pour toutes h 1 , h 2 ∈ L 2 + (R). Par conséquent, H 2 
u est un opérateur linéaire positif à trace et auto-adjoint.

Une matrice de Toeplitz est une matrice innie (Λ ij ) i,j≥0 pour laquelle il existe une suite (b n ) n∈Z telle que Λ ij = b i-j pour tous i, j ≥ 0. En utilisant de nouveau l'identication de L 2 + (T) avec 2 , on peut dénir un opérateur de Toeplitz sur L 2 + (T). Dans le cas de L 2 + (R), on utilise la dénition suivante, qui peut être justiée comme on l'a fait précédemment pour des opérateurs de Hankel.

Préliminaires d'analyse complexe Denition 5. L'opérateur de Toeplitz 

T b : L 2 + (R) → L 2 + (R) de symbole b ∈ L ∞ (R) est déni par : T b (h) = Π + (bh).
M(N ) := A(z) B(z) ∈ L 2 + (R) deg(B) = N, deg(A) ≤ N -1, B(0) = 1, pgcd(A, B) = 1 .
Pour une preuve de ce théorème on renvoie au Chapitre 3.

Caractérisation d'un opérateur de Hankel à l'aide des relations de commutation avec des opérateurs de shift

On peut reformuler à l'aide des opérateurs de shift la condition disant qu'une matrice est de Hankel. On dénit l'opérateur de shift S par S(x 0 , x 1 , . . . ) = (0, x 0 , x 1 , . . . )

On note S * son inverse :

S * (y 0 , y 1 , . . . ) = (y 1 , y 2 , . . . ).

La matrice Γ est alors une matrice de Hankel si et seulement si ΓS = S * Γ. 

L 2 + (T) si et seulement si ΓT z = T * z Γ, où T z est l'opérateur de shift T z : L 2 + (T) → L 2 + (T) déni par T z f (z) = zf (z) = e ix f (e ix ),
avec z = e ix ∈ T.

Dans le cas des opérateurs de Hankel sur L 2 + (R), le rôle de l'opérateur de multiplication par z est joué par le semi-groupe d'opérateurs {T α } α>0 qui agissent sur

L 2 + (R) par T α f (x) = e iαx f (x). Proposition 2.1.8. Un opérateur H : L 2 + (R) → L 2 + (R) est de Hankel si et seulement si HT α = T * α H pour tout α > 0.

Préliminaires de théorie spectrale

On rappelle dans cette section la dénition et les propriétés de base des opérateurs de Hilbert-Schmidt, des opérateurs à trace et des opérateurs d'ondes de la théorie dite de "scattering". Pour plus de détails on renvoie aux Chapitres IV à IX de [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF].

Opérateurs de Hilbert-Schmidt

Dans ce qui suit on considère des opérateurs qui agissent sur des espaces de Hilbert 

T H-S := ∞ n=0 T φ n 2 1/2 < ∞.
Cette quantité ne dépend pas du choix de la base {φ n } n∈N et représente la norme de Hilbert-Schmidt de d'opérateur T .

La condition ci-dessus est dicile à vérier en pratique. Le théorème suivant nous donne une autre caractérisation des opérateurs de Hilbert-Schmidt qui est plus facile à vérier. Il nous dit qu'un opérateur déni sur L 2 à l'aide d'un noyau est de Hilbert-Schmidt si et seulement si son noyau appartient à L 2

x,y .

Theorem 2.2.1 (Théorème VI.23, [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]). Soient (M, µ) un espace mesuré et

H = L 2 (M, dµ). L'opérateur T ∈ L(H) est de Hilbert-Schmidt si et seulement s'il existe une fonction K ∈ L 2 (M × M, dµ ⊗ dµ) telle que T f (x) = K(x, y)f (y)dµ(y).
De plus, on a alors

T H-S = |K(x, y)| 2 dµ(x)dµ(y) 1/2 .

Opérateurs à trace

Les opérateurs à trace forment une sous-famille de l'ensemble des opérateurs de 

Le théorème spectral

Le théorème spectral a plusieurs formulations apparemment distinctes, mais qui sont en un certain sens équivalentes. La formulation la plus simple dit que tout opérateur auto-adjoint est un opérateur de multiplication dans une certaine base. 

U : H → L 2 (M, µ) tels que U AU -1 φ(x) = f (x)φ(x), pour tout φ ∈ U (D(A)).
Ce résultat est une généralisation du théorème spectral en dimension nie, qui assure que chaque matrice carrée auto-adjointe est diagonalisable.

Ce théorème fournit une manière naturelle de dénir des fonctions sur l'espace des opérateurs auto-adjoints. Étant donnée une fonction borélienne g sur R, on peut poser On introduit de plus les sous-espaces de l'espace de Hilbert H suivants. Denition 9. Soit A un opérateur auto-adjoint sur l'espace de Hilbert H. On dénit : On peut alors introduire la dénition suivante.

g(A) := U -1 T g(f ) U, où T g(f ) est l'opérateur sur L 2 (M, µ) de
H pp :={ψ ∈ H| µ ψ est
Denition 10. Notons par σ(T ) le spectre d'un opérateur arbitraire T . Soit A un opérateur auto-adjoint sur l'espace de Hilbert H. On pose :

σ pp (A) :=σ(A |Hpp ), σ ac (A) :=σ(A |Hac ), σ sing (A) :=σ(A |H sing ),
qui désignent respectivement le spectre purement ponctuel, le spectre absolument continu, et le spectre singulier de A.

Théorie du scattering. Existence et complétude des opérateurs d'ondes généralisés

Soient A et B deux opérateurs auto-adjoints sur un espace de Hilbert H. Le principe de base de la théorie du scattering consiste à comparer les dynamiques linéaires correspondant à e -iAt et e -iBt . Le fait que e -iBt φ "soit asymptotiquement linéaire" par rapport à A, quand t → -∞, signie qu'il existe φ + ∈ H tel que

lim t→-∞ e -iBt φ -e -itA φ + = 0, ce qui équivaut à dire que lim t→-∞
e iAt e -itB φ -φ + = 0.

On se restreint donc au problème de l'existence d'une limite forte. (i) Les opérateurs d'ondes Ω ± (A, B) sont des isométries partielles dans H ac (B) à valeurs dans Ran Ω ± (A, B). Theorem 2.2.6 (Théorème de Kuroda-Birman, Théorème XI.9, [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]). Soient A et B deux opérateurs auto-adjoints tels que (A + i) -1 -(B + i) -1 est un opérateur à trace. Alors, les opérateurs d'ondes généralisés Ω ± (A, B) existent et sont complets.

(ii) Ω ± D(B) ⊂ D(A) et AΩ ± (A, B) = Ω ± (A, B)B.

Préliminaires de théorie des systèmes dynamiques complètement intégrables

Dans cette section on rappelle la dénition d'un système de dimension innie complètement intégrable au sens de Lax.

On rappelle ensuite le théorème de Liouville-Arnold pour des systèmes complètement intégrables de dimension nie, ainsi que la notion de coordonnées action-angle.

On énonce de plus un théorème qui généralise ces coordonnées au cas non-compact.

Paires de Lax

Une paire de Lax pour un système dynamique complètement intégrable est une paire d'opérateurs qui dépendent du temps et qui décrivent le système correspondant.

La notion de paire de Lax a été introduite pour la première fois par Peter Lax dans [START_REF] Lax | Integral of nonlinear equations of evolution and solitary waves[END_REF]. On renvoie à cet article pour plus de détails.

Denition 13. Une paire d'opérateurs linéaires qui dépendent du temps (L(t), B(t))

est appelée une paire de Lax si B(t) est anti-symétrique pour tout t, si B * = -B et si l'équation suivante est satisfaite : Proposition 2.3.1. On considère une équation d'évolution non-linéaire de la forme

∂ t L = [B, L], (2.3 
∂ t u = K(u), (2.3.2)
telle que u(t) appartient à un espace de fonctions B xé, pour tout t. Supposons que l'on puisse associer à chaque élément u ∈ B un opérateur linéaire L u sur un espace de Hilbert. Supposons aussi qu'il existe des opérateurs anti-symétriques B(t) tels que (L u(t) , B(t)) soit une paire de Lax.

Les valeurs propres, ou plus généralement le spectre de L u(t) , sont alors des intégrales premières de l'équation (2.3.2).

Démonstration. L'équation (2.3.1) est équivalente à

-BL + ∂ t L + LB = 0. (2.3.3) Soit {U (t)} t∈R la famille d'opérateurs satisfaisant ∂ t U = BU. (2.3.4) Comme B est anti-symétrique, il n'est pas dicile de montrer que U (t) est unitaire pour tout t, i.e. U -1 = U * . En remplaçant B = (∂ t U )U -1 dans l'équation (2.3.3), et en multipliant l'équation obtenue par U -1 à droite et par U à gauche, on obtient que : -U -1 (∂ t U )U -1 LU + U -1 (∂ t L)U + U -1 L(∂ t U ) = 0. Ceci prouve que ∂ t U (t) -1 L u(t) U (t) = 0. L'opérateur L u(t) est donc conjugué à L u(0)
pour tout t. En particulier, les valeurs propres (ou plus généralement le spectre de L u(t) ) sont conservées par le ot de l'équation (2.3.2).

La paire de Lax est un outil très important pour résoudre des équations complètement intégrables en se ramenant à un problème spectral inverse ou de scattering inverse.

Théorème de Liouville-Arnold et coordonnées actionangle

Soit (M, ω) une variété symplectique de dimension 2n, où ω est la forme symplectique sur M . Une fonction F : 

M → R de classe C ∞ admet un champ hamiltonien de vecteurs X F si d u F (h) = ω(h, X F (u)), pour tout u ∈ M et h ∈ T u M .
∂ t u = X F (u).
Si les fonctions F, G : M → R admettent les champs hamiltoniens de vecteurs X F , X G , on dénit alors le crochet de Poisson de F et G par :

{F, G}(u) = ω(X F (u), X G (u)) = d u G(X F (u)).
Denition 15. 1. On dit que F est une intégrale première de l'équation hamiltonienne de hamiltonien H si {F, H} ≡ 0.

Deux fonctions

F 1 , F 2 : M → R sont en involution si leur crochet de Poisson est nul.
On a la dénition suivante d'un système complètement intégrable de dimension nie.

Denition 16. Un système hamiltonien de hamiltonien H sur la variété symplectique M de dimension 2n est dit complètement intégrable s'il existe n intégrales premières F 1 = H, F 2 , . . . , F n qui sont libres (i.e. les diérentielles dF 1 , . . . , dF n sont libres en chaque point de M f ) et en involution.

Theorem 2.3.2 (Théorème de Liouville-Arnold, [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]). Soit M une variété symplectique de dimension 2n. Soient F 1 , F 2 , . . . , F n n fonctions en involution sur M . Si

f = (f 1 , . . . , f n ) ∈ R n , notons M f = x ∈ M F i (x) = f i pour i = 1, 2, . . . , n
l'ensemble de niveau des fonctions F 1 , . . . , F n . Supposons que F 1 , . . . , F n sont libres sur M f . Alors :

1. M f est une variété invariante par rapport au ot de l'équation hamiltonienne de hamiltonien H = F 1 .

Si la variété M f est compacte et connexe, elle est alors diéomorphe au tore

T n = {(φ 1 , . . . , φ n ) mod 2π} de dimension n.
3. Le mouvement induit sur M f par le ot de l'équation hamiltonienne de hamiltonien H = F 1 est quasi-périodique. Plus précisément, il existe des coordonnées angulaires (φ 1 , . . . , φ n ) sur M f tels que l'équation hamiltonienne mentionnée s'écrit dans ces coordonnées

∂ t φ = w, où la vitesse w = w(f ) est constante sur M f .
4. L'équation hamiltonienne de hamiltonien H = F 1 est intégrable par quadratures.

On s'intéresse maintenant à un voisinage de la variété compacte et connexe M f . Sur M f , qui est diéomorphe au tore T n , on a déjà introduit des coordonnées angulaires (φ 1 , . . . , φ n ) ∈ T n . On peut démontrer que M f possède un voisinage qui est diéomorphe à D n × T n , où D n est le disque unité de R n . Les coordonnées que l'on introduit sur ce voisinage sont (F 1 , . . . , F N , φ 1 , . . . , φ N ). Dans ces coordonnées, l'équation hamiltonienne de hamiltonien H s'écrit

∂ t F = 0 ∂ t φ = w(f )
et s'intègre facilement. En revanche, les coordonnées (F, φ) ne sont en général pas symplectiques. Il s'avère qu'il existe des fonctions de F , que l'on note I = I(F), qui sont des actions et des angles φ, de sorte que les coordonnées (I, φ) sont symplectiques, ce qui signie que la forme symplectique ω s'écrit :

ω = n i=1 dI i ∧ d φi .
(I, φ) s'appellent les coordonnées action-angle. On énonce maintenant un théorème qui assure l'existence de telles coordonnées. Pour plus de détails on renvoie à [START_REF] Arnold | Ergodic Problems of Classical Mechanics[END_REF][START_REF] Markus | Generic Hamiltonian Systems are Neither Integrable nor Ergodic[END_REF][START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF][START_REF] Duistermaat | On global action-angle coordinates[END_REF].

Theorem 2.3.3 (Coordonnées action-angle, [START_REF] Arnold | Ergodic Problems of Classical Mechanics[END_REF][START_REF] Markus | Generic Hamiltonian Systems are Neither Integrable nor Ergodic[END_REF]). Soit (M, ω) une variété sym-

plectique de dimension 2n. Soient F 1 , F 2 , . . . , F n n fonctions de classe C ∞ en involu- tion sur M . Posons F(x) = (F 1 (x), . . . , F n (x)) ∈ R n et M r := x ∈ M dF 1 (x), . . . , dF n (x) sont libres . M F(x) := y ∈ M r F i (y) = F i (x) pour i = 1, 2, . . . , n M r,c :={x ∈ M r | M F(x) est compact}.
L'ensemble M r,c est alors une partie ouverte de M . De plus, pour x ∈ M r,c , il existe un voisinage ouvert U de M F(x) dans M , invariant par rapport au ot de l'équation de hamiltonien H = F 1 , et un diéomorphisme (I, φ) : U → V × T n avec V un ouvert de R n , tels que I puisse être écrit sous la forme I = χ • F pour un diéomorphisme χ : F(U ) → V et tels que l'on ait aussi : Theorem 2.3.4 (Coordonnées action-angle généralisées, [START_REF] Fiorani | The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds[END_REF]). Soit (W, ω) une variété symplectique de dimension 2n sur laquelle on considère un système hamiltonien de hamiltonien H. Soient F 1 := H, F 2 , . . . , F n n intégrales premières réelles, de classe

ω = n i=1 dI i ∧ dφ i sur U.
C ∞ , libres et en involution. Notons π := (F 1 , . . . , F N ) : W → R n .
Soit M une sous-variété connexe invariante de W . Il existe alors un voisinage ouvert U de M tel que π :

U → N := π(U )
est une bration sur un ensemble ouvert N ⊂ R n . Supposons que :

(i) toutes les bres de la variété brée π : U → N := π(U ) sont mutuellement diéomorphes, (ii) les champs de vecteurs hamiltoniens de F j , j = 1, 2, . . . , n sont complets, ce qui signie que les solutions des systèmes hamiltoniens correspondants existent pour tout temps.

Il existe alors un voisinage U M de M tel que les bres de

U M → π(U M ) soient dif- féomorphes à un cylindre toroïdal T k × R n-k , k ∈ {1, 2, . . . , N -1}.
De plus, on peut introduire sur U M des coordonnées action-angle généralisées I i , J j , φ i ∈ T, γ j ∈ R telles que le système hamiltonien peut s'écrire comme suit dans les nouvelles coordonnées :

           ∂ t I i = 0 ∂ t Ĩj = 0 ∂ t φ i = ∂H ∂I i ∂ t γ j = ∂H ∂ Ĩj , pour tout i = 1, 2, . . . , k, j = 1, 2, . . . , n-k, et telles que la forme symplectique s'écrite ω = k i=1 dI i ∧ dφ i + n-k j=1 d Ĩj ∧ dγ j .
Préliminaires d'analyse fonctionnelle

Préliminaires d'analyse fonctionnelle

Dans cette section on rappelle quelques inégalités utiles dans l'étude des EDP.

On discute aussi la méthode de décomposition en prols.

Inclusions de Sobolev et inégalités de Yudovich,

Brezis-Gallouët et Gagliardo-Nirenberg

Theorem 2.4.1 (Inclusions de Sobolev). On a les inclusions continues suivantes :

Si s > n 2 , alors H s (R n ) ⊂ L ∞ (R n ). Si 0 ≤ s < n 2 , alors H s (R n ) ⊂ L p (R n ) pour 1 p ≥ 1 2 -s n . Si 0 ≤ s < n 2 , alors Ḣs (R n ) ⊂ L p (R n ) pour 1 p = 1 2 -s n .
Par conséquent, quand n = 1 on a :

Si s > 1 2 , alors H s (R) ⊂ L ∞ (R). Si 0 ≤ s < 1 2 , alors H s (R) ⊂ L p (R) pour 1 p ≥ 1 2 -s.
En utilisant la dernière inclusion et le fait que

H 1/2 (R) ⊂ H s (R) pour tout 0 ≤ s ≤ 1/2
, on obtient les inclusions continues suivantes :

H 1/2 (R) ⊂ L p (R) pour tout 2 ≤ p < ∞.
Ceci équivaut à l'existence de constantes C p dépendant seulement de p, telles que

u L p (R) ≤ C p u H 1/2 (R) pour tout u ∈ H 1/2 (R). Il s'avère que C p = C √ p, où C est une constante absolue, et l'on a donc u L p (R) ≤ C √ p u H 1/2 (R) .
Des inégalités similaires ont été utilisées par Yudovich [START_REF] Yudovich | Non-stationary ows of an ideal incompressible uid[END_REF], Vladimirov [START_REF] Vladimirov | On the solvability of a mixed problem for a nonlinear equation of Schrödinger type[END_REF] et Ozawa [START_REF] Ogawa | A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations[END_REF]. On renvoie à [START_REF] Gérard | The cubic Szegö equation[END_REF] pour une preuve dans le cas de T, qui peut être facilement adaptée au cas de R.

Notons que la constante C p = C √ p tend vers l'inni quand p → ∞, ce qui montre que H 1/2 (R) n'est pas inclus dans L ∞ (R).
En revanche, on a l'inégalité logarithmique suivante montrée par Brezis et Gallouët :

u L ∞ (R) ≤ C(s) u H 1/2 (R) log 2 + u H s (R) u H 1/2(R) 1/2 , 2.4.2 -Décomposition en prols 61 pour tout s > 1/2 et u ∈ H s (R).
Une conséquence des inégalités de Sobolev est l'inégalité suivante de Gagliardo-Nirenberg.

Theorem 2.4.2 (Inégalité de Gagliardo-Nirenberg). Pour tout p ≥ 2 si n = 1, 2, et

pour tout 2 ≤ p < 2n n-2 si n > 2, il existe une constante C > 0 telle que u L p (R n ) ≤ C u 1-θ L 2 (R n ) ∇u θ L 2 (R n ) , où θ = n 2 -n p .
Si l'on considère des fonctions u ∈ H

1/2 + (R) = H 1/2 (R) ∩ L 2 + (R)
, dans l'espace de Sobolev correspondant à l'espace de Hardy L 2 + (R), on obtient l'inégalité de Gagliardo-Nirenberg suivante :

u L 4 + (R) ≤ 1 4 √ π u 1 2 L 2 + u 1 2 Ḣ1/2 + ,
dont une preuve est donnée dans la Proposition 3.1.5.

Décomposition en prols

Theorem 2.4.3 (Théorème de Rellich). Soit Ω un sous-ensemble ouvert borné de R n de classe C 1 . Toute suite bornée dans H 1 (Ω) contient alors une sous-suite convergente dans L 2 (Ω). On dit que l'inclusion H 1 (Ω) ⊂ L 2 (Ω) est compacte.

En revanche, quand Ω = R n , l'inclusion n'est pas compacte. Dans ce cas, on utilise la décomposition en prols [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] pour décrire précisément l'obstruction pour une suite bornée dans Ḣs

(R n ), 0 < s < n 2 , à sa convergence dans L p (R n ) avec 1 p = 1 2 -s n .
Le principe de la décomposition en prols, que l'on explique ci-dessous, trouve ses origines dans la méthode de concentration-compacité introduite par Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. II[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. I[END_REF].

Cette méthode a été rané pour fournir un théorème de décomposition en prols par Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], Merle et Vega [START_REF] Merle | Compactness at blowup time for L2 solutions of the critical nonlinear Schrödinger equations in 2D[END_REF], Hmidi et Keraani [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF], Bahouri et Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF],

Keraani [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equations[END_REF] et d'autres.

On suit l'approche de [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF] pour décrire le défaut de compacité de l'inclusion de Sobolev H

1/2 + (R) ⊂ L p (R) pour tout 2 < p < ∞.
Le théorème suivant montre que l'obstruction pour une suite bornée dans H 1/2 + à sa convergence dans L p (R) est précisément une superposition de translations de prols xes.

Theorem 2.4.4 (Théorème de décomposition en prols pour des suites bornées dans

H 1/2 + (R)). Soit {v n } n∈N une suite bornée dans H 1/2 + (R).
Il existe alors une sous-suite de {v n } n∈N , notée encore {v n } n∈N , une suite de prols xes {V (j) } j∈N dans H 1/2 + (R) et une famille de suites réelles {x (j) } j∈N telles que pour tout ∈ N * on a

v n = j=1 V (j) (x -x (j) n ) + r ( ) n , avec lim →∞ lim sup n→∞ r ( ) n L p (R) = 0 pour tout p ∈ (2, ∞) et v n 2 L 2 = j=1 V (j) 2 L 2 + r ( ) n 2 L 2 + o(1) quand n → ∞, v n 2 Ḣ1/2 + = j=1 V (j) 2 Ḣ1/2 + + r ( ) n 2 Ḣ1/2 + + o(1) quand n → ∞.
2.5 Préliminaires de théorie des perturbations

Dynamique des solitons dans des potentiels petits ou à variation lente

Un soliton pour une équation non linéaire hamiltonienne sur R d est une solution S(t, x) pour laquelle il existe une fonction S 0 , il existe ω ∈ R et c ∈ R d tels que S(t, x) = e -itω S 0 (x -ct).

Supposons que l'équation soit invariante par rapport aux symétries, comme les translations dans l'espace, les modulations, le scaling ou la transformation galiléenne. En appliquant l'une de ces symétries au soliton S(t, x), on obtient alors un autre soliton. Cette procédure permet de construire la sous-variété M des solitons dans l'espace des phases. Souvent, c'est une sous-variété de dimension nie qui a comme coordonnées les paramètres de translation, modulation, scaling et le paramètre galiléen.

On considère à présent le problème suivant. Soit (E) une équation hamiltonienne non linéaire pour laquelle on sait déterminer tous les solitons et montrer qu'ils sont stables. On perturbe cette équation en ajoutant un potentiel linéaire multiplicatif petit εV (x) ou un potentiel linéaire multiplicatif à variation lente V (εx) qui est tel que la nouvelle équation (EV ) soit encore hamiltonienne. On se propose d'étudier la dynamique des solutions de l'équation (EV ) ayant pour données initiales les données 2.5.1 -Dynamique des solitons dans des potentiels petits ou à variation lente 63 initiales S(0, x) des solitons pour l'équation (E). Notre but est de prouver que, dans certains cas, ces solutions gardent la forme d'un soliton et que, de plus, on peut écrire explicitement les équations diérentielles satisfaites par les paramètres de ce soliton.

Ce type de résultat a été obtenu par Bronski et Jerrard [START_REF] Bronski | Soliton dynamics in a potential[END_REF] et Keraani [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF][START_REF] Keraani | Semiclassical limit for nonlinear Schrödinger equation with potential[END_REF] pour NLS cubique sur R n avec un potentiel à variation lente, par Fröhlich, Tsau, et Yau [START_REF] Fröhlich | On the point-particle (Newtonian) limit of the nonlinear Hartree equation[END_REF] pour l'équation de Hartree sur R n avec un potentiel à variation lente, par Fröhlich, Gustafson, Jonsson, Sigal [START_REF] Fröhlich | Solitary wave dynamics in an external potential[END_REF][START_REF] Fröhlich | Long time motion of NLS solitary waves in a conning potential[END_REF] pour NLS avec une non linéarité générale et l'équation de Hartree avec un potentiel à variation lente, par Holmer et Zworski [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF][START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF] pour NLS cubique sur R avec un potentiel à variation lente et avec un potentiel de Dirac petit et nalement par Holmer, Perelman, et Zworski [START_REF] Holmer | Eective dynamics of double solitons for perturbed mKdV[END_REF] pour mKdV.

On décrit ci-dessous le principe général de la preuve d'une telle armation, en suivant surtout les trois derniers articles cités. On considère d'abord la sous-variété de dimension nie M des solitons stables et l'on détermine son espace tangent. On calcule ensuite la restriction de la forme symplectique à cette sous-variété et l'on vérie qu'elle est non dégénérée.

L'étape suivante consiste à calculer la restriction à la sous-variété M du hamiltonien de l'équation (EV ), que l'on note H V . On calcule le champ hamiltonien sur M de H V M et l'on détermine le ot qu'il génère. Ce ot s'appelle " la dynamique eective". Le but est de montrer que la dynamique de l'équation (EV ) avec donnée initiale de type soliton S(0, x) est gouvernée par la dynamique eective. Pour montrer ceci, on commence par reparamétriser la solution de l'équation (EV ). Comme la restriction de la forme symplectique à M est non dégénérée, on peut démontrer que la solution u de (EV ) se décompose dans un voisinage de M en une partie u M qui appartient à M et une autre partie w qui est symplectiquement orthogonale à M :

u = u M + w.
Le point important de l'argument est de démontrer que w est petit. Ceci implique que le ot de l'équation (EV ) est proche de la sous-variété des solitons M , ce qui permet d'en déduire formellement que le ot de l'équation (EV ) est proche de celui de H V M sur M , et donc de la dynamique eective.

Pour prouver que w est petit, on réécrit convenablement l'équation satisfaite par w. On introduit aussi la fonctionnelle de Lyapounov pour laquelle le soliton est un point critique, ainsi que l'opérateur linéarisé autour du soliton. On utilise de manière cruciale les propriétés de coercivité de cet opérateur linéarisé.

Dans le Chapitre 6, on applique cette méthode pour étudier la dynamique des solitons de l'équation de Szegö avec un potentiel de type Toeplitz petit. Le potentiel de type Toeplitz petit εT V u = εΠ + (V u) est la généralisation naturelle d'un potentiel linéaire multiplicatif petit εV u permettant de préserver la structure hamiltonienne Préliminaires de théorie des perturbations de l'équation.

Méthode du groupe de renormalisation

La méthode du groupe de renormalisation a été introduite par Chen, Goldfend et Oono [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF][START_REF] Chen | Renormalization group and singular perturbations : multiple scales, boundary layers, and reductive perturbation theory[END_REF] dans le contexte de la physique théorique. Cette méthode est le plus souvent utilisée pour trouver une solution approchée d'une équation perturbée de sorte que cette approximation soit valable pour un temps long.

L'avantage principal de la méthode du groupe de renormalisation est qu'elle fournit un algorithme pouvant être facilement appliqué pour un grand nombre d'équations. Le point de départ consiste en un développement naïf de la solution, pour lequel aucune hypothèse spécique n'est nécessaire. Ensuite, les termes divergents du développement sont enlevés par renormalisation. La solution approchée est alors donnée par la solution de l'équation de renormalisation. L'ecacité de la méthode du groupe de renormalisation a été illustrée dans une variété d'exemples d'EDO traditionnellement analysées à l'aide de méthodes disparates. La méthode a été justiée mathématiquement pour une large classe d'EDO [START_REF] Ziane | On a certain renormalization group method[END_REF][START_REF] Ville | Analysis of a renormalization group method and normal form theory for perturbed ordinary dierential equations[END_REF] et a aussi été appliquée de manière rigoureuse à plusieurs EDP [START_REF] Moise | Renormalization group method. Applications to Navier-Stokes equation[END_REF][START_REF] Moise | Renormalization Group Method. Applications to Partial Differential Equations[END_REF][START_REF] Petcu | Renormalization group method applied to the primitive equations[END_REF][START_REF] Abou | On the renormalization group approach to perturbation theory for PDEs[END_REF].

Dans ce qui suit on décrit la méthode du groupe de renormalisation dans le cas de l'équation des ondes non linéaire (NLW) :

i∂ t v -|D|v = |v| 2 v v(0) = v 0 . (NLW)
On commence par faire le changement de variables u(t) = 1 ε e i|D|t v(t) et l'on pose ε := ε 2 . La fonction u satisfait alors l'équation suivante :

∂ t u = -iεe i|D|t (|e -i|D|t u| 2 e -i|D|t u) =: εf (u, t) u(0) = 1 ε v 0 =: u 0 .
En remplaçant les deux derniers développements dans l'équation satisfaite par u et en identiant les puissances de ε, on obtient

     ∂ t u (0) = 0 ∂ t u (1) = f (u (0) , t) . . . Par conséquent, on a u (0) (t) = u 0 pour tout t ∈ R et u (1) (t) = t 0 f (u 0 , s)ds,
ce qui donne la solution approchée

u(t) = u 0 + εu (1) (t) + O(ε 2 ) = u 0 + ε t 0 f (u 0 , s)ds + O(ε 2 ).
Ensuite, on décompose la non linéarité f (u, t) en une partie résonnante et une partie oscillatoire. Pour cela, on calcule d'abord la transformée de Fourier de la non linéarité : 

F f (u, s) (ξ) = -i R R e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη.
f res (u) = -iF -1 φ=0 û(η -ζ)û(ζ)û(η -ξ)dζdη, f osc (u, s) = -iF -1 φ =0 e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη. Notons que, lorsque ξ est xé, l'ensemble {φ(ξ, η, ζ) = 0} ⊂ R 2 est de mesure de
Lebesgue non nulle, ce qui permet d'intégrer sur cet ensemble.

Cette décomposition implique que la solution approchée s'écrit

u(t) = u 0 + εtf res (u 0 ) + ε t 0 f osc (u 0 , s)ds + O(ε 2 ).
Notons que la partie résonnante de la non linéarité provoque l'apparition d'un terme εtf res (u 0 ) qui croit en temps et à cause duquel l'approximation devient fausse lorsque le temps s'approche de 1 ε . L'idée de la méthode du groupe de renormalisation est de considérer le terme u 0 + εtf res (u 0 ) comme le développement limité à l'ordre un d'une fonction W (t) autour de t = 0. On introduit alors l'équation de renormalisation : + (R). On prouve ensuite que l'on a de bonnes estimations pour F osc (W, t) qui vont nous permettre de négliger le deuxième terme de la solution approchée ci-dessus.

∂ t W = εf res (W ) W (0) = u 0 , et l'

Méthode de moyennisation

On explique à présent le principe de la méthode de moyennisation dans le contexte de l'équation des ondes non linéaire (NLW) sur T. Cette méthode a été utilisée par Temam et Wirosoetisno [START_REF] Temam | Averaging of dierential equations generating oscillations and an application to control, Special issue dedicated to the memory of Jacques-Louis Lions[END_REF], et est proche de la méthode du groupe de renormalisation si l'on regarde à l'ordre un.

Comme dans la section précédente, un changement de variables permet d'écrire l'équation des ondes non linéaire (NLW) sur T sous la forme :

∂ t u = -iεe i|D|t (|e -i|D|t u| 2 e -i|D|t u) =: εf (u, t) u(0) = 1 ε v 0 =: u 0 .
Pour obtenir une meilleure approximation que celle obtenue à partir du développement naïf de la section précédente, les auteurs ci-dessus proposent d'utiliser l'ansatz suivant :

u app (t) = W (t) + εN 1 (W, t) + ε2 N 2 (W, t) + • • • =: N (W, t, ε),
où W (t) est solution de l'équation de moyennisation suivante : 

∂ t W = εR 1 (W ) + ε2 R 2 (W ) + • • • =: R(W, ε) W (0) = u 0 . Notons que N (W, t, ε) et R(W,
∂ t u app = D W N (W, t, ε) • ∂W ∂t + ∂N ∂t (W, t, ε) = D W N (W, t, ε) • R(W, ε) + ∂N ∂t (W, t, ε). Formellement, l'égalité ∂ t u app = εf (u app , t) implique que D W N (W, t, ε) • R(W, ε) + ∂N ∂t (W, t, ε) = εf (N (W, t, ε), t).
(2.5.1)

On dispose aussi du développement suivant de la fonction f autour de W :

f (u app , t) =f (W, t) + εf (W, t)N 1 (W, t) + ε2 1 2 f (W, t) • N 1 (W, t) ⊗ N 1 (W, t) + f (W, t) • N 2 (W, t) + . . . = ∞ k=0 k m=1 |j|=k εk P(j) m! f (m) (W, t) • N j 1 (W, t) ⊗ • • • ⊗ N jm (W, t),
où |j| := j 1 + j 2 + . . . j k et où la valeur exacte de P(j) est donnée par la formule de Faà di Bruno. On substitue les expressions que l'on a pour N (W, t, ε) et R(W, ε), ainsi que le développement de Taylor de f dans l'équation (2.5.1). En identiant les diérentes puissances de ε, on obtient ainsi que 

∂N 1 ∂t (W, t) + R 1 (W ) = f (W, t) (2.5.2) ∂N k ∂t (W, t) + R k (W ) = - k-1 =1 D W N • R k- + k-1 m=1 |j|=k-1 P(j) m! f (m) (W, t) • N j 1 ⊗ • ⊗ N jm , =: Φ k (W, t) pour k ≥ 2.
a(t) = a res + ∂ ∂t a posc (t).
L'équation (2.5.2), permet alors d'écrire que :

R 1 (W ) = f res (W ) et N 1 (W, t) = f posc (W, t) = F osc (W, t),
ce qui redonne à l'ordre un la solution approchée donnée par la méthode du groupe de renormalisation. A l'ordre supérieur k ≥ 2, on obtient que

R k (W ) = Φ k (W, t) res , et N k (W, t) = Φ k (W, t) posc .
Notons que, grâce à l'expression de Φ k (W, t) 

on peut toujours déterminer R k (W ) et N k (W, t) à partir de R et N d'ordres inférieurs.
i∂ t u + ∆u = |u| 2 u, (t, x) ∈ R × M, (3.1.1) 
Burq, Gérard, and Tzvetkov [START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF] observed that the dispersive properties are strongly inuenced by the geometry of the underlying manifold M . Taking this idea further, Gérard and Grellier [START_REF] Gérard | L'équation de Szegö cubique[END_REF] remarked that dispersion disappears completely when M is a sub-Riemannian manifold (for example, the Heisenberg group). In this situation, structure and an innite sequence of conservation laws. Moreover, the dynamics can be approximated by a sequence of nite dimensional completely integrable Hamiltonian systems. To illustrate the degeneracy of this completely integrable structure, several instability phenomena were established in [START_REF] Gérard | The cubic Szegö equation[END_REF].

The Szëgo equation was studied in [START_REF] Gérard | The cubic Szegö equation[END_REF][START_REF] Gérard | L'équation de Szegö cubique[END_REF] on the circle S 1 . More precisely, solutions were considered to belong at all time to the Hardy space L 2 + (S 1 ) on the unit disk D = {|z| < 1}. This is the space of L 2 -functions on S 1 with f (k) = 0 for all k < 0. These functions can be extended as holomorphic functions on the unit disk.

Several properties of the Hardy space on the unit disk naturally transfer to the Hardy space L 2 + (R) on the upper half-plane C + = {z; Imz > 0}, dened by

L 2 + (R) = f holomorphic on C + ; g L 2 + (R) := sup y>0 R |g(x + iy)| 2 dx 1/2 < ∞ .
In view of the Paley-Wiener theorem, we identify this space of holomorphic functions on C + with the space of its boundary values :

L 2 + (R) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)}. The transfer from L 2 + (S 1 ) to L 2 + (R) is made by the usual conformal transformation ω : D → C + given by ω(z) = i 1 + z 1 -z .
However, the image of a solution of the Szëgo equation on S 1 under the conformal transformation is no longer a solution of the Szëgo equation on R. Therefore, we directly study the Szëgo equation on R in the following.

Endowing L 2 (R) with the usual scalar product (u, v) = R uv, we dene the Szegö projector Π : L 2 (R) → L 2 + (R) to be the projector onto the non-negative frequencies,

Π(f )(x) = 1 2π ∞ 0 e ixξ f (ξ)dξ.
For u ∈ L 2 + (R), we consider the Szëgo equation on the real line :

i∂ t u = Π(|u| 2 u), x ∈ R. (3.1.2)
This is a Hamiltonian evolution associated to the Hamiltonian

E(u) = R |u| 4 dx dened on L 4 + (R).
From this structure, we obtain the formal conservation law E(u(t)) = E(u(0)). The invariance under translations and under modulations provides two more conservation laws, Q(u(t)) = Q(u(0)) and M (u(t)) = M (u(0)), where

Q(u) = R |u| 2 dx and M (u) = R ūDu dx, with D = -i∂ x .
Now, we dene the Sobolev spaces H s + (R) for s ≥ 0 :

H s + (R) = h ∈ L 2 + (R); h H s + := 1 2π ∞ 0 (1 + |ξ| 2 ) s | ĥ(ξ)| 2 dξ 1/2 < ∞ .
Similarly, we dene the homogeneous Sobolev norm for h ∈ Ḣs

+ by ||h Ḣs + := 1 2π ∞ 0 |ξ| 2s | ĥ(ξ)| 2 1/2 < ∞.
Slight modications of the proof of the corresponding result in [START_REF] Gérard | The cubic Szegö equation[END_REF] lead to the following well-posedness result : In this paper, we concentrate on the study of traveling waves. The two main goals are the classication of traveling waves and their stability. As a result, we show that the situation on the real line is essentially dierent from that on the circle.

A solution for the cubic Szegö equation on the real line (3.1.2) is called a traveling wave or a soliton if there exist c, ω ∈ R such that In the following, we use the simpler notation u instead of u 0 , when we study timeindependent problems. From (3.1.4), we see that traveling waves with nonzero velocity, c = 0, have good regularity. Indeed, we prove that u ∈ H s + (R) for all s ≥ 0 in 

u(t, z) = e -iωt u 0 (z -ct), z ∈ C + ∪ R, t ∈ R (3.1.3) for some u 0 ∈ H 1/2 + (R). Note that a solution to (3.1.2) in H 1/2 + (R)
C(a, r) = α z -p ; |α| = a, Imp = -r . Let {u n 0 } ⊂ H 1/2 + with inf φ∈C(a,r) u n 0 -φ H 1/2 + → 0 as n → +∞,
and let u n denote the solution to (3.1.2) with initial data u n 0 . Then

sup t∈R inf φ∈C(a,r) u n (t, x) -φ(x) H 1/2 + → 0.
Let us compare our results to those obtained in [START_REF] Gérard | The cubic Szegö equation[END_REF]. In the case of the Szegö As in [START_REF] Gérard | The cubic Szegö equation[END_REF], an important property of the Szëgo equation on R is the existence of a Lax pair structure. Using the Szegö projector, we rst dene two important classes of operators on L 2 + : the Hankel and Toeplitz operators. We use these operators to nd a Lax pair. See Proposition 3.1.4.

A Hankel operator H u :

L 2 + → L 2 + of symbol u ∈ H 1/2 + is dened by H u (h) = Π(u h).
Note that H u is C-antilinear and satises

(H u (h 1 ), h 2 ) = (H u (h 2 ), h 1 ). (3.1.7)
In Lemma 3.3.5 below we prove that H u is a Hilbert-Schmidt operator of Hilbert- 

Schmidt norm 1 √ 2π u Ḣ1/2 . A Toeplitz operator T b : L 2 + → L 2 + of symbol b ∈ L ∞ (R) is dened by T b (h) = Π(bh). T b is C-linear. Moreover, T b is self-adjoint if
d dt H u = [B u , H u ], (3.1.8) 
where

B u = i 2 H 2 u -iT |u| 2 .
In other words, the pair (H u , B u ) is a Lax pair for the cubic Szegö equation on the real line.

The proof of Proposition 3.1.4 follows the same lines as that of the corresponding result on S 1 in [START_REF] Gérard | The cubic Szegö equation[END_REF], and is based on the following identity :

H Π(|u| 2 u) = T |u| 2 H u + H u T |u| 2 -H 3 u .
(3.1.9)

Combining (3.1.4) and (3.1.9), we deduce that if u is a traveling wave with c = 0, then the following identity holds :

A u H u + H u A u + ω c H u + 1 c H 3 u = 0, (3.1.10) 
where

A u = D - 1 c T |u| 2 . (3.1.11)
In Section 2, we prove a Kronecker-type theorem for the Hardy space L 2 + (R), where we classify all the symbols u such that the operator H u has nite rank. For a proof of the classical theorem for L 2 + (S 1 ), due to Kronecker, see [START_REF] Gérard | The cubic Szegö equation[END_REF].

We prove Theorem 3.1.2 in Section 4. We rst prove that all the traveling waves are rational fractions. On S 

cDφ = |u| 2 φ.
However, as an inner function, φ satises a canonical factorization (3.4.3). From this, it follows that φ belongs to a special class of inner functions, the nite Blaschke products, i.e.

φ(z) = N j=1 z -λ j z -λ j ,
where N ∈ N and Imλ j > 0 for all j = 1, 2, . . . , N . The Kronecker-type theorem then yields that the traveling wave u is a rational fraction.

In the case of S 1 , the natural shift, multiplication by e ix , was used in concluding traveling waves are of the form (3.1.6). In our case, we use the innitesimal" shift, multiplication by x, to show that traveling waves are of the form (3.1.5).

Finally, we prove Theorem 3.1.3 in Section 5. The orbital stability of traveling waves is a consequence of the fact that traveling waves are ground states for the following inequality, an analogue of Weinstein's sharp Gagliardo-Nirenberg inequality in [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF].

Proposition 3.1.5. For all u ∈ H 1/2 + (R) the following Gagliardo-Nirenberg inequality holds :

u L 4 ≤ 1 4 √ π u 1/2 L 2 u 1/2 Ḣ1/2 + , (3.1.12)
or, equivalently, 

E ≤ 1 π M Q. Moreover,
v ∈ H 1/2 + → M (v)Q(v) -πE(v),
the dierential of this functional at u is zero. Thus,

1 2 Q(u)Du + 1 2 M (u)u -πΠ(|u| 2 u) = 0.
Consequently, u is a solution of equation (3.1.4) with

c = Q(u) 2π = |C| 2 -2Imp , ω = M (u) 2π = |C| 4 4(-Imp) 3
and hence it is an initial datum for a traveling wave.

In the case of S 1 , the Gagliardo-Nirenberg inequality suces to conclude the stability of the traveling waves with N = 1. However, in the case of R, we need to use in addition a concentration-compactness argument. This concentration-compactness argument, which rst appeared in the work of Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], was rened and turned into prole decomposition theorems by Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] and later by Hmidi and Keraani [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF]. We use it in the form of Proposition 3.5.1, a prole decomposition theorem for bounded sequences in H 1/2 + .

We conclude this introduction by presenting two open problems. Here, we use the term soliton instead of traveling wave, so that we put into light several connections with existing works. The rst problem is the soliton resolution, which consists in writing any solution as a superposition of solitons and radiation. For the KdV equation, this property was rigorously stated in [START_REF] Eckhaus | The emergence of solitons of the Korteweg de Vries equation from arbitrary initial conditions[END_REF] for initial data to which the Inverse Scattering Transform applies. Therefore, for the Szëgo equation, one needs to solve inverse spectral problems for the Hankel operators and also nd explicit action angle coordinates.

The second open problem is the interaction of solitons with external potentials.

Consider the Szëgo equation with a linear potential, where initial data are taken to be of the form (3.1.5). As in the works of Holmer and Zworski [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF] and Perelman [START_REF] Perelman | A remark on soliton-potential interactions for nonlinear Schrödinger equations[END_REF], it would be interesting to investigate if solutions of the perturbed Szëgo equation can be approximated by traveling wave solutions to the original Szegö equation (3.1.2).

A Kronecker-type theorem

A theorem by Kronecker asserts in the setting of S 1 that the set of symbols u such that H u is of rank N is precisely a 2N -dimensional complex submanifold of L 2 + (S 1 ) containing only rational fractions. In this section, we prove the analogue of this theorem in the case of L 2 + (R). For a dierent proof of a similar result on some Hankel operators on L 2 + (R) dened in a slightly dierent way, we refer to Lemma 8.12, p.54 in [START_REF] Peller | Hankel Operators and Their Applications[END_REF].

Denition 17. Let N ∈ N * . We denote by M(N ) the set of rational fractions of the form

A(z) B(z) ,

where 

A ∈ C N -1 [z], B ∈ C N [z], 0 ≤ deg(A) ≤ N -1, deg(B) = N , B(0) = 1, B(z) = 0, for all z ∈ C + ∪ R,
H u has complex rank N. Moreover, if u ∈ M(N ), u(z) = A(z) B(z)
, where B(z) = J j=1 (z -p j ) m j , with J j=1 m j = N and Imp j < 0 for all j = 1, 2, ..., J, then the range of H u is given by

Ran H u = span C 1 (z -p j ) m , 1 ≤ m ≤ m j J j=1 (3.2.1)
Démonstration. The theorem will follow once we prove :

(i) u ∈ M(N ) =⇒ rk(H u ) ≤ N (ii) rk(H u ) = N =⇒ u ∈ M(N ). Let us rst prove (i). Let u ∈ M(N ), i.e. u is a linear combination of 1 (z -p) m ,
where Imp < 0, 1 ≤ m ≤ m p , and m p = N . Then, computing the integral R e -ixξ (x -p) m dx, using the residue theorem, we obtain that û(ξ) = 0 for all ξ ≤ 0 and û(ξ) is a linear combination of ξ m-1 e -ipξ , with 1 ≤ m ≤ m p , for ξ > 0.

Given h ∈ L 2 + , we have H u (h)(ξ) = 0 for ξ < 0. Moreover, for ξ > 0, we have

H u (h)(ξ) = 1 2π 0 -∞ û(ξ -η) ĥ(η)dη = 1 2π ∞ 0 û(ξ + η) ĥ(η)dη (3.2.2) = 1≤m≤mp mp=N c m,p m-1 k=0 C k m-1 ξ m-1-k ∞ 0 η k ĥ(η)e -ipη dη e -ipξ = 1≤m≤mp mp=N dm,p (u, h)ξ m-1 e -ipξ = 1≤m≤mp mp=N d m,p (u, h) 1 (x -p) m ∧ (ξ),
where c m,p , dm,p , d m,p are constants depending on p and m.

Hence,

H u (h)(x) = 1≤m≤mp mp=N d m,p (u, h) (x -p) m (3.2.3)
and rk(H u ) ≤ N .

Let us now prove (ii). Assume that rank(H u ) = N , i.e. the range of H u , Ran H u , is a 2N -dimensional real vector space. As H u is C-antilinear, one can choose a basis of Ran H u of eigenvectors of H u in the following way :

{v 1 , iv 1 , ..., v N , iv N ; H u (v j ) = λ j v j , λ j > 0, j = 1, 2, . . . , N } Let w j = √ λ j v j . If h ∈ L 2
+ , then by Parseval's identity we have

H u (h) = N j=1 (H u (h), v j )v j + N j=1 (H u (h), iv j )iv j = 2 N j=1 (H u (h), v j )v j = 2 N j=1 (H u (v j ), h)v j = 2 N j=1 (λ j v j , h)v j = 2 N j=1 (w j , h)w j = 1 π N j=1 ∞ 0 ŵj (η) ĥ(η)dη w j .
Consequently,

H u (h)(ξ) = 1 2π 1 1 1 ξ≥0 ∞ 0 û(ξ + η) ĥ(η)dη = 1 π 1 1 1 ξ≥0 N j=1 ∞ 0 ŵj (η) ŵj (ξ) ĥ(η)dη.
and hence,

1 1 1 ξ≥0 ∞ 0 û(ξ + η) -2 N j=1
ŵj (η) ŵj (ξ) ĥ(η)dη = 0, for all h ∈ L 2 + . Therefore, for all ξ, η ≥ 0, we have

û(ξ + η) = 2 N j=1 ŵj (η) ŵj (ξ). (3.2.4) 
Let L > 2N + 1 be an even integer and φ be the probability density function of the chi-square distribution dened by

φ(ξ) =    1 2 L 2 Γ( L 2 ) ξ L 2 -1 e -ξ 2 , if ξ ≥ 0 0, if ξ < 0,
where Γ is the Gamma function. Then, its Fourier transform is

φ(x) = (1 + 2ix) -L 2 . Notice that φ ∈ H N (R) since φ 2 H N = R x 2N |1 + 2ix| L dx which is convergent if and only if 2N -L < -1. Let θ, ψ = R θ(x)ψ(x) for all θ ∈ H -N (R) and ψ ∈ H N (R). Consider the matrix A φ dened by :      ŵ1 , φ ŵ 1 , φ • • • ŵ(N) 1 , φ ŵ2 , φ ŵ 2 , φ • • • ŵ(N) 2 , φ . . . . . . . . . . . . ŵN , φ ŵ N , φ • • • ŵ(N) N , φ     
Since rk(A φ ) ≤ N , it results that there exists (c 0 , c 1 , . . . , c N ) = 0 such that

N k=0 c k ŵj (k) , φ = 0,
for all j = 1, 2, . . . , N . Then, since supp φ ⊂ [0, ∞) and by (3.2.4), we have for all η ≥ 0 that

N k=0 c k û(k) (ξ), φ(ξ -η) ξ = N k=0 c k û(k) (ξ + η), φ(ξ) ξ = N k=0 (-1) k c k ∞ 0 û(ξ + η)φ (k) (ξ)dξ = 2 N k=0 (-1) k c k ∞ 0 N j=1 ŵj (η) ŵj (ξ) φ (k) (ξ)dξ = 2 N j=1 ŵj (η) N k=0 c k ŵ(k) j (ξ), φ(ξ) = 0.
Denote T = N k=0 c k û(k) . Then T ∈ H -N and supp T ∈ [0, ∞). We have just proved that for all η ≥ 0

0 = T, φ(• -η) = R T (ξ)φ(ξ -η)dξ = R T (ξ) R e ix(ξ-η) (1 + 2ix) L/2 dx dξ = R R T (ξ)e ixξ dξ e -ixη (1 + 2ix) L/2 dx = R F -1 T (x) e -ixη (1 + 2ix) L/2 dx. Denoting R(x) := 1 (1+2ix) L/2 F -1 T (x), we have R ∈ H L/2-N (R) ⊂ H 1/2 (R) and 0 = R R(x)e -ixη dx = R(η), for all η ≥ 0. Thus supp R ⊂ (-∞, 0]. By the denition of R, (1 -2D ξ ) L/2 R(ξ) = T (ξ).
Since the left hand-side is supported on (-∞, 0] and the right hand-side is supported on [0, ∞), we deduce that supp T ⊂ 0. In particular, T |ξ>0 = 0. This yields that û|ξ>0 is a weak solution on (0, ∞) of the following linear ordinary dierential equation :

N k=0 c k v (k) (ξ) = 0. (3.2.5)
Then, by [51, Theorem 4.4.8, p.115], we have that û|ξ>0 ∈ C N ((0, ∞)), û|ξ>0 is a classical solution of this equation and therefore it is a linear combination of ξ m-1 e qξ where q ∈ C is a root of the polynomial P (X) = N k=0 c k X k with multiplicity m q , 1 ≤ m ≤ m q , and q m q = N . Note that we must have Re q < 0, because u ∈ L 2 + (R). Therefore we will denote q = -ip, with Im p < 0 and obtain that û(ξ) is a linear combination of ξ m-1 e -ipξ for ξ > 0. By the hypothesis u ∈ L 2 + (R), we obtain û(ξ) = 0 for ξ ≤ 0. Hence for all ξ ∈ R, û(ξ) is a linear combination of

1 (x-p) m ∧ (ξ), with 1 ≤ q ≤ m q and
m q = N . Thus u ∈ M(N ) for some N ≤ N . If N < N , then (i) yields rk(H u ) ≤ N , which contradicts our assumption. In conclusion u ∈ M(N ). As a consequence of (3.2.1) we make the following remark. Remark 3.2.2. If u ∈ M(N ), then u ∈ Ran H u .

Spectral properties of the operator A u for a soliton u

Let us rst recall the denition and the basic properties of the generalized wave operators, which are the main objects in scattering theory. We refer to chapter XI in [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF] for more details.

Let A and B be two self-adjoint operators on a Hilbert space H. The basic principle of scattering theory is to compare the free dynamics corresponding to e -iAt and e -iBt . The fact that e -iBt φ "looks asymptotically free" as t → -∞, with respect to A, means that there exists φ

+ ∈ H such that lim t→-∞ e -iBt φ -e -itA φ + = 0 or equivalently, lim t→-∞
e iAt e -itB φ -φ + = 0.

Hence, we reduced ourselves to the problem of the existence of a strong limit. Let H ac (B) be the absolutely continuous subspace for B and let P ac (B) be the orthogonal projection onto this subspace. In the denition of the generalized wave operators we have φ ∈ H ac (B).

We say that the generalized wave operators exist if the following strong limits exist : The wave operators Ω ± (A, B) are partial isometries with initial subspace H ac (B) and with values in Ran Ω ± (A, B). Moreover, Ran Ω ± (A, B) ⊂ H ac (A). If Ran Ω ± (A, B) = H ac (A), we say that the generalized wave operators are complete.

Ω ± (A, B) = lim
Lastly, we note that the following equality holds :

AΩ ± (A, B) = Ω ± (A, B)B. (3.3.2) Lemma 3.3.1. If u ∈ H 1/2
+ is a traveling wave, then u ∈ H s + (R) for all s ≥ 0. In particular, by Sobolev embedding theorem, we have u ∈ L p (R) for 2 ≤ p ≤ ∞. Démonstration. We prove rst that for all f ∈ L 2 (R), the operator (D+i

Démonstration. Because u ∈ H 1/2 (R), the Sobolev embedding theorem yields u ∈ L p (R), for all 2 ≤ p < ∞. Therefore |u| 2 u ∈ L 2 (R) and thus Π(|u| 2 u) ∈ L 2 + . Using equation (3.1.4) cDu + ωu = Π(|u| 2 u),
) -1 f , dened on L 2 (R) by (D + i) -1 f h(x) = (D + i) -1 (f h)(x)
is Hilbert-Schmidt. Denote by F the Fourier transform. Using the isomorphism of L 2 (R) induced by the Fourier transform, we have that (D+i) -1 f is a Hilbert-Schmidt operator if and only if F(D + i) -1 f is a Hilbert-Schmidt operator. The latter is an integral operator of kernel K(ξ, η)

= 1 2π • 1 ξ+i f (ξ -η). Indeed, F (D+i) -1 f h (ξ) = 1 2π • 1 ξ + i f h(ξ) = 1 2π R 1 ξ + i f (ξ-η) ĥ(η)dη = R K(ξ, η) ĥ(η)dη. Therefore, it is Hilbert-Schmidt if and only if K(ξ, η) ∈ L 2 ξ,η (R × R). By the change of variables η → ζ = ξ -η we have K(ξ, η) 2 L 2 ξ,η = 1 4π 2 R dξ ξ 2 + 1 R | f (ζ)| 2 dζ = C f 2 L 2 < ∞.
Hence (D + i) -1 f is a Hilbert-Schmidt operator and so is f (D + i) -1 , its adjoint. According to Lemma 3.3.1, u ∈ L ∞ (R) and thus |u| 2 ∈ L 2 (R). Taking f = |u| 2 and f = u, we conclude that the operators (D + i) -1 |u| 2 , (D + i) -1 u, and ū(D + i) -1 are all Hilbert-Schmidt.

We write

(A u + i) -1 -(D + i) -1 = (D + i) -1 (D -A u )(A u + i) -1 = 1 c (D + i) -1 T |u| 2 (A u + i) -1 = 1 c Π(D + i) -1 |u| 2 (A u + i) -1 = L(A u + i) -1 , where L = 1 c Π(D + i) -1 |u| 2 .
Note that L is a Hilbert-Schmidt operator since it is the composition of the bounded operator 1

c Π : L 2 (R) → L 2
+ with the Hilbert-Schmidt operator (D + i) -1 |u| 2 . Finally, we write, using the latter formula twice

(A u + i) -1 -(D + i) -1 = L(L(A u + i) -1 + (D + i) -1 ) = L • L • (A u + i) -1 + 1 c Π(D + i) -1 u • ū(D + i) -1 .
We obtain that (A Démonstration. This easily follows from Kuroda-Birman theorem that we state below [81, Theorem XI.9] :

u + i) -1 -(D + i) -1 is
Let A and B be two self-adjoint operators on a Hilbert space such that (A + i) -1 -(B + i) -1 is a trace class operator. Then Ω ± (A, B) exist and are complete. Démonstration. Since Ω ± (D, A u ) are complete, it results that they are isometries from H ac (A u ) onto H ac (D) = L 2 + . By (3.3.2), we then have

A u| Hac(Au) = [Ω ± (D, A u ) | Hac(Au) ] -1 DΩ ± (D, A u ) | Hac(Au) . Consequently, σ ac (A u ) = σ ac (D) = [0, +∞).
Our main goal in the following is to prove H ac (A u ) ⊂ Ker H u . As we see below, it is enough to prove that Ω + (D, A u )H 2 u (H ac (A u )) = 0. 

H u (h)(ξ) = 1 2π 1 1 1 ξ≥0 ∞ 0 û(ξ + η) ĥ(η)dη.
Then, we obtain

H u (h)(x) = 1 4π 2 ∞ 0 ∞ 0 e ixξ û(ξ + η) ĥ(η)dηdξ = 1 4π 2 R ∞ 0 ∞ 0
e ixξ e iyη û(ξ + η)dηdξ h(y)dy.

Using the fact that the Hilbert-Schmidt norm of an operator is equal to the norm of its integral kernel, Plancherel's formula, and Fubini's theorem, we have

H u (h) 2 HS = 1 16π 4 ∞ 0 ∞ 0 e ixξ e iyη û(ξ + η)dηdξ 2 L 2 x,y = 1 4π 2 1 1 1 ξ≥0 1 1 1 η≥0 û(ξ + η) 2 L 2 η,ξ = 1 4π 2 ∞ 0 ∞ 0 |û(ξ + η)| 2 dηdξ = 1 4π 2 ∞ 0 ∞ ξ |û(ζ)| 2 dζdξ = 1 4π 2 ∞ 0 ζ 0 dξ |û(ζ)| 2 dζ = 1 4π 2 ∞ 0 ζ|û(ζ)| 2 dζ = 1 2π u 2 Ḣ1/2 . Lemma 3.3.6. Ker H 2 u = Ker H u . Moreover, if RanH u is nite dimensional, then Ran H 2 u = Ran H u . Démonstration. Let f ∈ Ker H 2 u . Then, by (3.1.7), (H u (h 1 ), h 2 ) = (H u (h 2 ), h 1 ) for all h 1 , h 2 ∈ L 2 + ,
we have

H u f 2 L 2 = (H u f, H u f ) = (H 2 u f, f ) = 0
and thus H u f = 0. Hence, Ker H 2 u ⊂ KerH u . Therefore, we obtain Ker H 2 u = KerH u since the inverse inclusion is obvious.

The identity (3.1.7) yields also KerH u = (RanH u ) ⊥ . Moreover, it implies that H 2 u is a self-adjoint operator and therefore, KerH 2 u = (RanH 2 u ) ⊥ . Hence, we obtain

(RanH 2 u ) ⊥ = (RanH u ) ⊥ . Démonstration. It is enough to prove that Ω + (D, A u )H 2 u H ac (A u ) = 0. If this holds, then we have H 2 u H ac (A u ) = 0 since H 2 u H ac (A u ) ⊂ H ac (A u ) and Ω + (D, A u ) is an isometry on H ac (A u ). Therefore, H ac (A u ) ⊂ Ker H 2 u = Ker H u .
Let us rst note that

H u e itD = e itD H τt(u) , (3.3.4) 
where τ a denotes the translation τ a u(x) = u(x -a). Indeed, for f ∈ L 2 + , passing into the Fourier space, we have 

H u e itD f ∧ (ξ) = 1 1 1 ξ≥0 ue itD f ∧ (ξ) = 1 2π 1 1 1 ξ≥0 R û(ξ -η)e itη f (η)dη = 1 2π 1 1 1 ξ≥0 e itξ e -it(ξ-η) û(ξ -η) f (η)dη = 1 1 1 ξ≥0 e itξ τ t (u) f ∧ (ξ) = 1 1 1 ξ≥0 e itD (τ t (u) f ) ∧ (ξ) = e itD H τt(u) f ∧ (ξ).
e itD e -itAu P ac H 2 u f = e itD e -itAu H 2 u f = e itD H 2 u e -itAu f = e itD H u H u e -itD e itD e -itAu f = e itD H u e -itD H τ -t (u) e itD e -itAu f = H 2 τ -t (u)
e itD e -itAu P ac (A u )f.

We intend to prove that H 2 τ -t (u) e itD e -itAu P ac (A u )f tends to 0 in the L 2 + -norm as t → -∞. From this, we conclude that Ω + (D, A u )H 2 u f = 0.

Since, by Lemma 3.3.5, H τ -t (u) is a uniformly bounded operator, it is enough to prove that H τ -t (u) e itD e -itAu P ac (A u )f tends to 0.

H τ -t (u) e itD e -itAu P ac (A u )f L 2 + ≤ H τ -t (u) e itD e -itAu P ac (A u )f -Ω + (D, A u )f L 2 + + H τ -t (u) Ω + (D, A u )f L 2 + ≤ 1 √ 2π u Ḣ1/2 e itD e -itAu P ac (A u )f -Ω + (D, A u )f L 2 + + R |u(x + t)| 2 |Ω + (D, A u )f (x)| 2 dx (3.3.5)
The rst term in (3.3.5) converges to 0 by the denition of the wave operator Ω + (D, A u ).

Since u is a traveling wave, Lemma 3.4.2. If u ∈ H s

u ∈ s≥0 H s (R) ⊂ C ∞ →0 (R), where C ∞ →0 (R) is the space of functions f of class C ∞ such that lim x→-∞ D k f (x) = lim x→∞ D k f (x) = 0 for all k ∈ N. Therefore, for arbitrary xed x, we have lim t→-∞ τ -t (u)(x) = lim t→-∞ u(x + t) = 0. Note also that |u(x + t)| 2 |Ω + (D, A u )f (x)| 2 ≤ u L ∞ |Ω + (D, A u )f (x)| 2 for all x ∈ R.
+ for s > 1 2 and v ∈ Ker H u , then ūv ∈ L 2 + . Moreover, if u ∈ L ∞ (R), then T |u| 2 v = |u| 2 v. Démonstration. Indeed, 0 = H u (v) = Π(uv) and thus ūv ∈ L 2 + . Furthermore, since u, ūv ∈ L 2 + , we obtain T |u| 2 v = Π(uūv) = |u| 2 v. Lemma 3.4.3. Let u ∈ H s + , s > 1 2
, be a solution of the cubic Szegö equation (3.1.2). Consider the following Cauchy problem :

i∂ t ψ = |u(t)| 2 ψ ψ t=0 = ψ 0 , (3.4.1) If ψ 0 ∈ Ker H u(0) , then ψ(t) ∈ Ker H u(t) for all t ∈ R.
Démonstration. Let us rst consider :

i∂ t ψ 1 = T |u(t)| 2 ψ 1 ψ 1 t=0 = ψ 0 ,
Using the Lax pair structure, we have

∂ t H u (ψ 1 ) = [B u , H u ]ψ 1 + H u ∂ t ψ 1 = [ i 2 H 2 u -iT |u| 2 , H u ]ψ 1 + H u (-iT |u| 2 ψ 1 ) = -iT |u| 2 H u ψ 1 -iH u T |u| 2 ψ 1 + iH u T |u| 2 ψ 1 = -iT |u| 2 H u ψ 1 .
The solution of this linear Cauchy problem

∂ t H u (ψ 1 ) = -iT |u| 2 H u ψ 1 H u (ψ 1 (0)) = 0 is identically zero. i.e., H u(t) ψ 1 (t) = 0 for all t ∈ R. Consequently, ψ 1 (t) ∈ Ker H u(t) and by Lemma 3.4.2 we obtain T |u| 2 ψ 1 = |u| 2 ψ 1 . In conclusion, ψ(t) = ψ 1 (t) ∈ Ker H u(t) .
The space Ker H u is invariant under multiplication by e iαx , for all α ≥ 0. Indeed, suppose f ∈ Ker H u . Then u f (ξ) = 0, for all ξ ≥ 0 and

H u (e iαx f ) ∧ (ξ) = e -iαx u f ∧ (ξ) = u f (ξ + α) = 0,
for all ξ, α ≥ 0. Hence, e iαx f ∈ Ker H u for all α ≥ 0.

One can then apply the following theorem to the subspaces Ker H u 0 .

Proposition 3.4.4 (Lax [58]). Every non-empty closed subspace of L 2 + which is invariant under multiplication by e iαx for all α ≥ 0 is of the form F L 2 + , where F is an analytic function in the upper-half plane, |F (z)| ≤ 1 for all z ∈ C + , and |F (x)| = 1 for all x ∈ R. Moreover, F is uniquely determined up to multiplication by a complex constant of absolute value 1.

We deduce that Ker H u 0 = φL 2 + , where φ is a holomorphic function in the upper half-plane C + , satisfying |φ(x)| = 1 on R and |φ(z)| ≤ 1 for all z ∈ C + .

Functions satisfying the properties in Lax's theorem are called inner functions in the sense of Beurling-Lax. A special class of inner functions is given by the Blaschke products. Given λ j ∈ C such that for all j Im λ j > 0 and

j Im λ j 1 + |λ j | 2 < ∞,
the corresponding Blaschke product is dened by

B(z) = j ε j z -λ j z -λ j , (3.4.2) 
where

ε j = |λ 2 j +1| λ 2 j +1
(by denition ε j = 1 if λ j = 1). 

F (z) = λB(z)e iaz e i R 1+tz t-z dν(t) , (3.4.3) 
where Démonstration. Since u(t, x) = e -iωt u 0 (x-ct), we have H u(t) = e -iωt τ ct H u 0 τ -ct . Thus,

z ∈ C + , λ ∈ C with |λ| = 1, a ≥ 0, B is a Blaschke product,
Ker H u(t) = τ ct Ker H u 0 = τ ct (φ)L 2 + .
Let f ∈ L 2 + and let ψ 0 = φf ∈ KerH u 0 be the initial data of the Cauchy problem (3.4.1) in Lemma 3.4.3. We then have φe -i t 0 |us| 2 ds f ∈ KerH u(t) . Therefore, 

φe -i t 0 |us| 2 ds L 2 + ⊂ τ ct (φ)L 2 + . ( 3 
τ ct (φ)L 2 + ⊂ φe -i t 0 |us| 2 ds L 2 +
and thus, the two sets are equal.

Let us rst prove that φ t := φe -i t 0 |us| 2 ds is an inner function. Note that φ t is well dened on R and its absolute value is 1 on R. Consider the function dened by h(x) = φt(x) x+i , for all x ∈ R. Since h ∈ L 2 + , we can write using the Poisson integral that

h(z) = 1 π ∞ -∞ Imz h(x) |z -x| 2 dx, for all z ∈ C + . Then, zh(z) = 1 π ∞ -∞ Imz xh(x) |z -x| 2 dx + 1 π ∞ -∞ Imz (z -x)h(x) |z -x| 2 dx. Note that the last integral is equal to ∞ -∞ Imz h(x)
z-x dx. By the residue theorem and using the fact that the function h z-x is holomorphic on C + , we have that this integral is zero and thus

zh(z) = 1 π ∞ -∞ Imz xh(x) |z -x| 2 dx.
Therefore, we can use the Poisson integral to extend φ t to C + as a holomorphic function.

φ t (z) = (z + i)h(z) = 1 π ∞ -∞ Imz (x + i)h(x) |z -x| 2 dx = 1 π ∞ -∞ Imz φ t (x) |z -x| 2 dx. (3.4.6) Moreover, |φ t (z)| ≤ 1 π ∞ -∞ Imz 1 |z -x| 2 dx = 1,
for all z ∈ C + . Hence φ t is an inner function.

Since τ ct (φ) and φe -i t 0 |us| 2 ds are inner functions and

φe -i t 0 |us| 2 ds L 2 + = τ ct (φ)L 2 + ,
Proposition 3.4.4 yields the existence of a real valued function γ such that γ(0) = 0 and φe -i t 0 |us| 2 ds = τ ct (φ)e iγ(t) .

Taking the derivative with respect to t we obtain that φ satises the following equation : We prove in the following that k = 0. First, note that k c ≥ 0. The function φu 0 ∈ KerH u 0 and by Lemma 3.4.2, we have |u 0

cDφ(x) = |u(t, x + ct)| 2 φ(x) + γ(t)φ(x).
| 2 φ = u 0 (u 0 φ) ∈ L 2 + . If k c is negative, denoting χ := 1 c |u 0 | 2 φ ∈ L 2
+ and passing into the Fourier space, we have :

φ(ξ) = 1 ξ -k c χ(ξ) 1 1 1 [0,∞) (ξ).
This implies that φ ∈ L 2 + , contradicting |φ(x)| = 1 for all x ∈ R. 

A u 0 (φh) = (D -1 c |u 0 | 2 )(φh) = φ(D -1 c |u 0 | 2 )(h) + hDφ = φ(D + k c )h.
Denoting by µ φh (A u 0 ) the spectral measure corresponding to φh, we have +∞). By Proposition 3.3.9, we have H ac (A u 0 ) ⊂ Ker H u 0 , and therefore

f dµ φh = (φh, f (A u 0 )φh) = (φh, φf (D + k c )h) = (h, f (D + k c )h) = 1 2π ∞ 0 f (ξ + k c )| ĥ(ξ)| 2 dξ = 1 2π ∞ k c f (η)| ĥ(η -k c )| 2 dη. Consequently, supp µ φh (A u 0 ) ⊂ [ k c ,
σ ac (A u 0 ) = ψ∈Hac(Au 0 ) supp µ ψ ⊂ φh∈KerHu 0 supp µ φh ⊂ k c , ∞ .
Since, by Corollary 3.3.4, σ ac (A u 0 ) = [0, ∞), this yields k = 0.

Proposition 3.4.6. All traveling waves are rational fractions.

Démonstration. We rst prove that φ is a Blaschke product.

Since φ is an inner function in the sense of Beurling-Lax, it has the following canonical decomposition :

φ(z) = λB(z)e iaz e i R 1+tz t-z dν(t) , (3.4.8) 
where z ∈ C + , λ is a complex number of absolute value 1, a ≥ 0, B is a Blaschke product having exactly the same zeroes as φ, and ν is a positive singular measure with respect to the Lebesgue measure.

Because φ satises the equation (3.4.4) and u 0 ∈ L ∞ (R), we obtain that φ has bounded derivative on R and hence it is uniformly continuous on R. Then, since φ satises the Poisson formula (3.4.6), it follows that φ(x + iε) → φ(x), as ε → 0, uniformly for x ∈ R. φ being uniformly continuous on R and |φ(x)| = 1, ∀x ∈ R, we deduce that the zeroes of φ and hence, those of the Blaschcke product B as well, lie outside a strip {z ∈ C; 0 ≤ Imz ≤ ε 0 }, for some ε 0 > 0. Therefore, we have

φ(x + iε) B(x + iε) → φ(x) B(x)
, as ε → 0 uniformly for x in compact subsets of R. Taking the logarithm of the absolute value and noticing that φ(x)

B(x) = 1, we obtain R ε (x -t) 2 + ε 2 dν(t) → 0,
uniformly for x in compact subsets in R. In particular, for all δ > 0 there exists 0 < ε 1 ≤ ε 0 such that for all 0 < ε ≤ ε 1 and for all x ∈ [0, 1], we have

1 2ε ν([x -ε, x + ε]) ≤ x+ε x-ε ε (x -t) 2 + ε 2 dν(t) ≤ R ε (x -t) 2 + ε 2 dν(t) ≤ δ. Taking ε = 1 2N ≤ ε 1 with N ∈ N * , we obtain ν([0, 1]) = ν N -1 k=0 [ k N , k + 1 N ] ≤ N δ 1 N = δ.
In conclusion ν([0, 1]) = 0, and one can prove similarly that the measure ν of any compact interval in R is zero. Hence ν ≡ 0.

Consequently, φ(x) = λB(x)e iax for all x ∈ R. On the other hand, because φ satises the equation (3.4.4), we have φ(x) = φ(0)e i c

x

0 |u 0 | 2
and, in particular,

lim x→∞ φ(x) = φ(0)e i c ∞ 0 |u 0 | 2
. Since lim x→∞ B(x) = 1, we conclude that a = 0. Substituting φ = λB in the equation (3.4.4), we obtain

c i B B = |u 0 | 2 . Then 1 i ∞ -∞ B (x) B(x) dx < ∞. Computing this integral, we obtain that 1 i ∞ -∞ B (x) B(x) dx = 2 j ∞ -∞ Imλ j |x -λ j | 2 dx = 2 j π
and thus it is nite if and only if B is a nite Blaschke product, B(x) = N j=1 ε j

x-λ j x-λ j .

Let us prove that the traveling wave u is a rational fraction.

Ker

H u = φL 2 + = BL 2 + . Notice that BL 2 + = span C 1 x-λ j N j=1 ⊥ . Indeed, f ∈ span C 1 x-λ j N j=1 ⊥ if and only if f (λ j ) = 1 2π R e iξλ j f (ξ)dξ = 1 2π f , e -iλ j ξ = f, 1 x -λ j = 0, if and only if there exists h ∈ L 2 + such that f = Bh. Hence Ker H u = span C 1 x -λ j N j=1 ⊥ This yields Ran H u = span C 1 x-λ j N j=1 . By Remark 3.2.2 it follows that u is a rational fraction. More precisely, u ∈ Ran H u = span C 1 x-λ j N j=1 .
Proposition 3.4.7. If u is a traveling wave, then there exists λ > 0 such that

H 2 u u = λu.
Démonstration. According to Remark 3.2.2, since u is a rational fraction, we have u ∈ Ran H u .

Secondly, u satises the equation of the traveling waves (3.1.4), which is equivalent to A u (u) = -ω c u. Therefore, u is an eigenfunction of the operator A u for the eigenvalue ω c

. Applying the identity (3.1.10),

A u H u + H u A u + ω c H u + 1 c H 3 u = 0, to u and then to H u u, one deduces that A u H 2 u u = -ω c H 2 u u.
Therefore, the conclusion of the proposition follows once we prove all the eigenfunctions of the operator A u belonging to Ran H u , corresponding to the same eigenvalue, are linearly dependent.

Let a be en eigenvalue of the operator A u and let ψ 1 , ψ 2 ∈ Ker (A u -a) ∩ Ran H u . Since u is a rational fraction, by the Kronecker type theorem 3.2.1, ψ 1 and ψ 2 are also non-constant rational fractions. Then, one can nd α, β ∈ C, (α, β) = (0, 0), such that ψ :

= αψ 1 + βψ 2 = O( 1 x 2 ) as x → ∞. Moreover, we have ψ ∈ L 1 (R), xψ ∈ L 2 (R)
, and thus we can compute A u (xψ).

Passing into the Fourier space we have,

Π(xf )(ξ) = i(∂ ξ f )1 1 1 ξ≥0 = i∂ ξ ( f1 1 1 ξ≥0 ) -i f (ξ)δ ξ=0 = xΠf (ξ) -i f (0)δ ξ=0 , for all f ∈ L 1 (R). Thus, we obtain Π(xf ) = xΠ(f ) + 1 2πi f (0) for all f ∈ L 1 (R). We then have A u (xψ) = xA u (ψ) + 1 i ψ - 1 2cπi R |u| 2 ψdx
and therefore, since 

A u ψ = aψ, A u (xψ) = axψ + 1 i ψ - 1 2cπi R |u| 2 ψdx. ( 3 
(A u -a)(xψ) = 1 i ψ.
(3.4.10)

Applying the self-adjoint operator A u -a to both sides of the equation (3.4.10), we obtain (A u -a) 2 (xψ) = 0 and Proof of Theorem 3.1.2. Since u ∈ Ran H u , there exists a unique function g ∈ Ran H u such that u = H u (g). By Lemma 3.4.7, it results that H u (u) = λg.

(A u -a)(xψ) 2 L 2 = ((A u -a)(xψ), (A u -a)(xψ)) = ((A u -a) 2 (xψ), xψ) = 0.
Applying the identity (3.1.10),

A u H u + H u A u + ω c H u + 1 c H 3 u = 0, to g and using A u u = -ω c u, one obtains H u (A u g + λ c g) = 0. Since A u (Ran H u ) ⊂ Ran H u , we have A u g + λ c g ∈ Ran H u ∩ Ker H u . Therefore, A u g + λ c g = 0, which is equivalent to cDg -T |u| 2 g + λg = 0.
In the following we intend to nd a simpler version of the above equation, in order to determine the function g explicitly. Note that ū(1 -g) ∈ L 2 + , since it is orthogonal to each complex conjugate of a holomorphic function f ∈ L 2 + :

(ū(1 -g), f ) = (f (1 -g), u) = (f, u) -(f, H u (g)) = 0. Thus, T |u| 2 (g) = Π(|u| 2 ) -Π(|u| 2 (1 -g)) = H u (u) -|u| 2 (1 -g) = λg -|u| 2 (1 -g).
Passing into the Fourier space and using the fact that |u| 2 is a real valued function, one can write

|u| 2 = ∞ 0 e ixξ |u| 2 (ξ)dξ + ∞ 0 e -ixξ |u| 2 (ξ)dξ = Π(|u| 2 ) + Π(|u| 2 ). Therefore |u| 2 = H u (u) + H u (u) = λ(g + g). Consequently, T |u| 2 (g) = λ(-ḡ + g 2 + |g| 2 )
and g solves the equation cDg -λg 2 + λ(g + ḡ -|g| 2 ) = 0.

(3.4.11)

We prove that g + ḡ -|g| 2 = 0. First, note that ū(1 -g) ∈ L 2 + , also yields

(1-g)f ∈ Ker H u , for all f ∈ L 2 + . Secondly, let us prove that g + ḡ -|g| 2 is orthogonal to the complex conjugate of all f ∈ L 2 + : (g+ḡ-|g| 2 , f ) = (g, f )-(f (1-g), g) = -(f (1-g), 1 λ H u (u)) = -1 λ (u, H u (f (1-g))) = 0.
In addition, since g + ḡ -|g| 2 is a real valued function, we have

(g + ḡ -|g| 2 , f ) = (g + ḡ -|g| 2 , f ) = 0
for all f ∈ L 2 + . Therefore, g + ḡ -|g| 2 is orthogonal to all the functions in L 2 (R) and thus g + ḡ -|g| 2 = 0. This is equivalent to |1 -g| = 1 on R. Moreover, equation (3.4.11) gives the precise formula for g,

g(z) = r z -p ,
where r, p ∈ C and Im(p) < 0. Thus 1 -g(x) = x-p

x-p for all x ∈ R and Ker H 1

z-p = z - p z -p L 2 + = (1 -g)L 2 + ⊂ Ker H u . Consequently, u ∈ Ran H u ⊂ Ran H 1 z-p = C z-p .

Orbital stability of traveling waves

In order to prove the orbital stability of traveling waves, we rst use the fact that they are minimizers of the Gagliardo-Nirenberg inequality. We begin this section by proving this inequality, more precisely proposition 3.1.5. the proof of Gagliardo-Nirenberg inequality for the circle, in [START_REF] Gérard | L'équation de Szegö cubique[END_REF]. The idea is to write all the norms in the Fourier space, using Plancherel's identity.

E = u 4 L 4 = u 2 2 L 2 = 1 2π u 2 2 L 2 = 1 2π R | u 2 (ξ)| 2 dξ.
Using the fact that u ∈ L 2 + and Cauchy-Schwarz inequality, we have :

| u 2 (ξ)| 2 = 1 4π 2 ξ 0 u(η) u(ξ -η)dη 2 ≤ 1 4π 2 ξ ξ 0 | u(η)| 2 | u(ξ -η)| 2 dη ≤ 1 4π 2 ξ 0 η| u(η)| 2 | u(ξ -η)| 2 dη + ξ 0 (ξ -η)| u(η)| 2 | u(ξ -η)| 2 dη .
By change of variables ξ -η → η in the second integral, we have

| u 2 (ξ)| 2 ≤ 1 2π 2 ξ 0 η| u(η)| 2 | u(ξ -η)| 2 dη. By Fubini's theorem and change of variables ζ = ξ -η it results that E ≤ 1 4π 3 R ξ 0 η| u(η)| 2 | u(ξ-η)| 2 dηdξ = 1 4π 3 +∞ 0 η| u(η)| 2 dη +∞ 0 | u(ζ)| 2 dζ = 1 π M Q.
Moreover, equality holds if and only if we have equality in Cauchy-Schwarz inequality, i.e.

u(ξ) u(η) = u(ξ + η) u(0), for all ξ, η ≥ 0. This is true if and only if u(ξ) = e -ipξ u(0), for all ξ ≥ 0. Since u ∈ H 1/2 + , this yields Im(p) < 0 and u(x) = C

x-p , for some constant C.

The second argument we use in proving stability of traveling waves is a prole decomposition theorem. It states that bounded sequences in H 1/2 + can be written as superposition of translations of xed proles and of a remainder term. The remainder is small in all the L p -norms, 2 < p < ∞. Moreover, the superposition is almost orthogonal in the H 1/2 + -norm. Proposition 3.5.1 (The prole decomposition theorem for bounded sequences in H 1/2 + ). Let {v n } n∈N be a bounded sequence in H 1/2 + . Then, there exist a subsequence of {v n } n∈N , still denoted by {v n } n∈N , a sequence of xed proles in H 1/2 + , {V (j) } j∈N , and a family of real sequences {x (j) } j∈N such that for all ∈ N * we have

v n = j=1 V (j) (x -x (j) n ) + r ( ) n ,
where lim

→∞ lim sup n→∞ r ( ) n L p (R) = 0
for all p ∈ (2, ∞), and

v n 2 L 2 = j=1 V (j) 2 L 2 + r ( ) n 2 L 2 + o(1), as n → ∞, v n 2 Ḣ1/2 + = j=1 V (j) 2 Ḣ1/2 + + r ( ) n 2 Ḣ1/2 + + o(1), as n → ∞, lim n→∞ v n 4 L 4 = ∞ j=1 V (j) 4 L 4 .
The proof of this proposition follows exactly the same lines as that of the prole decomposition theorem for bounded sequences in H 1 (R), [54, Proposition 2.1]. However, note that in our case, the proles V (j) belong to the space H 1/2 + , (not only to the space H 1/2 (R)), as they are weak limits of translations of the sequence {v n } n∈N .

Proof of Corollary 3. We denote the inmum by m(a, r).

Since inf φ∈C(a,r)

u n 0 -φ H 1/2 + → 0,
by the Sobolev embedding theorem, we deduce

Q(u n 0 ) → q(a, r), E(u n 0 ) → e(a, r), M (u n 0 ) → m(a,

r).

Let {t n } n∈N be an arbitrary sequence of real numbers. The conservation laws yield

Q(u n (t n )) → q(a, r), E(u n (t n )) → e(a, r), M (u n (t n )) → m(a,

r).

We can choose two sequences of positive numbers {a n } and {λ n } such that

v n (x) := a n u n (t n , λ n x) satises v n L 2 (R) = 1, v n L 4 (R) = 1. Notice that a n → a ∞ , λ n → λ ∞ , where a ∞ > 0, λ ∞ > 0, and λ ∞ a 4 ∞ = e(a, r), λ ∞ a 2 ∞ = q(a, r). Then v n 1/2 Ḣ1/2 + = v n 1/2 L 2 v n 1/2 Ḣ1/2 + v n L 4 = u n (t n ) 1/2 L 2 u n (t n ) 1/2 Ḣ1/2 + u n (t n ) L 4 ,
for all n ∈ N. In particular, as a consequence of the Gagliardo-Nirenberg inequality,

lim n→∞ v n Ḣ1/2 + = √ π.
Thus, the sequence {v n } n∈N is bounded in H 1/2 + . Applying the prole decomposition theorem (Proposition 3.5.1), we obtain that there exist real sequences {x (j) } j∈N depending on the sequence {t n } n∈N in the denition of {v n } n∈N , such that for all ∈ N * we have :

v n = j=1 V (j) (x -x (j) n ) + r ( ) n , where lim →∞ lim sup n→∞ r ( ) n L p (R) = 0
for all p ∈ (2, ∞), and

v n 2 L 2 = j=1 V (j) 2 L 2 + r ( ) n 2 L 2 + o(1), as n → ∞, v n 2 Ḣ1/2 + = j=1 V (j) 2 Ḣ1/2 + + r ( ) n 2 Ḣ1/2 + + o(1), as n → ∞, lim n→∞ v n 4 L 4 = ∞ j=1 V (j) 4 L 4 .
Consequently,

1 ≥ ∞ j=1 V (j) 2 L 2 , π ≥ ∞ j=1 V (j) 2 Ḣ1/2 + , 1 = ∞ j=1 V (j) 4 L 4 . (3.5.1)
Therefore, by the Gagliardo-Nirenberg inequality (3.1.12), we have

π ≥ ( ∞ j=1 V (j) 2 L 2 )( ∞ j=1 V (j) 2 Ḣ1/2 + ) ≥ ∞ j=1 V (j) 2 L 2 V (j) 2 Ḣ1/2 + ≥ π ∞ j=1 V (j) 4 L 4 = π.
Thus, there exist only one prole V := V (1) and a sequence x = x (1) such that

v n =V (x -x n ) + r n , v n 2 L 2 = V 2 L 2 + r n 2 L 2 + o(1), as n → ∞, (3.5.2) v n 2 Ḣ1/2 + = V 2 Ḣ1/2 + + r n 2 Ḣ1/2 + + o(1), as n → ∞. (3.5.3) According to (3.5.1), V satises 1 ≥ V 2 L 2 , π ≥ V 2 Ḣ1/2 + , and V 4 L 4 = 1. In conclu- sion, π = π V 4 L 4 ≤ V 2 L 2 V 2 Ḣ1/2 + ≤ π.
Hence, V is a minimizer in the Gagliardo-Nirenberg inequality. Moreover,

V 2 L 2 = 1 = v n L 2 , V 2 Ḣ1/2 + = π = lim n→∞ v n 2 Ḣ1/2 + , By (3.5.2) and (3.5.3), we have r n → 0 in H 1/2 + as n → ∞. Consequently, v n (• + x n ) → V in H 1/2 + , or equivalently, lim n→∞ a n u n (t n , λ n x) -V (x -x n ) H 1/2 + = 0.
We then have

lim n→∞ u n (t n , x) - 1 a ∞ V ( x -x n λ ∞ λ ∞ ) H 1/2 + = 0.
Notice that, since V is a minimizer in the Gagliardo-Nirenberg inequality, we have φ(x) : 

= 1 a∞ V ( x λ∞ ) = α x-p ∈ C(a, r). Then, since x n λ ∞ ∈ R, we have φ(x) = φ(x -x n λ ∞ ) = α x-p ∈ C(a, r). Thus, inf φ∈C(a,r) u n (t n , x) -φ(x) H 1/2 + → 0, as n → ∞.

Introduction

One of the most important properties in the study of the nonlinear Schrödinger equations (NLS) is dispersion. It is often exhibited in the form of the Strichartz estimates of the corresponding linear ow. In case of the cubic NLS :

i∂ t u + ∆u = |u| 2 u, (t, x) ∈ R × M, (4.1.1) 
Gérard and Grellier [START_REF] Gérard | L'équation de Szegö cubique[END_REF] remarked that there is a lack of dispersion when M is a sub-Riemannian manifold (for example, the Heisenberg group). In this situation, many of the classical arguments used in the study of NLS no longer hold. As a consequence, even the problem of global well-posedness of (4. The study of this equation is expected to give new tools to be used in understanding existence and other properties of smooth solutions of NLS in the absence of dispersion.

In this paper we will consider the Szegö equation on the real line. The space of solutions in this case is the Hardy space L 2 + (R) on the upper half-plane 100 Introduction C + = {z; Imz > 0}, dened by

L 2 + (R) = f holomorphic on C + ; g L 2 + (R) := sup y>0 R |g(x + iy)| 2 dx 1/2 < ∞ .
In view of the Paley-Wiener theorem, we identify this space of holomorphic functions on C + with the space of their boundary values :

L 2 + (R) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)}.
The corresponding Sobolev spaces H s + (R), s ≥ 0 are dened by :

H s + (R) = h ∈ L 2 + (R); h H s + := 1 2π ∞ 0 (1 + |ξ| 2 ) s | ĥ(ξ)| 2 dξ 1/2 < ∞ .
Similarly, we dene the homogeneous Sobolev norm for h ∈ Ḣs

+ by ||h Ḣs + := 1 2π ∞ 0 |ξ| 2s | ĥ(ξ)| 2 1/2 < ∞.
Endowing L 2 (R) with the usual scalar product (u, v) = R uv, we dene the Szegö projector Π : L 2 (R) → L 2 + (R) to be the projector onto the non-negative frequencies,

Π(f )(x) = 1 2π
∞ 0 e ixξ f (ξ)dξ.

For u ∈ L 2 + (R), we consider the Szëgo equation on the real line : 

i∂ t u = Π(|u| 2 u), (t, x) ∈ R × R.
∈ H s + (R) for some s > 1 2 , then u ∈ C(R, H s + (R)).
First of all we recall some notions and properties concerning the Szegö equation.

We refer the readers to [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF] for more details. The main property of the Szegö equation is that it is completely integrable in the sense that it possesses a Lax pair structure 

A Hankel operator H

u : L 2 + → L 2 + of symbol u ∈ H 1/2 + is dened by H u (h) = Π(u h).
Then, as it was shown in Lemma 3.5 in [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF], H u is Hilbert-Schmidt and C-antilinear.

Moreover, it satises the following identity :

(H u (h 1 ), h 2 ) = (H u (h 2 ), h 1 ). (4.1.3) 
As a consequence, H 2 u is a self-adjoint linear operator. A Toeplitz operator

T b : L 2 + → L 2 + of symbol b ∈ L ∞ (R) is dened by T b (h) = Π(bh).
Then, T b is C-linear and bounded. Moreover, T b is self-adjoint if and only if b is real-valued.

Proposition 4.1.1 (Proposition 1.5 in [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]). Let u ∈ C(R; H s + ) for some s > 1 2 . The cubic Szegö equation (4.1.2) is equivalent to the following evolution equation :

d dt H u = [B u , H u ],
where

B u = i 2 H 2 u -iT |u| 2 . (4.1.4)
In other words, the pair (H u , B u ) is a Lax pair for the cubic Szegö equation on the real line.

According to the classical theory developed by Lax [START_REF] Lax | Integral of nonlinear equations of evolution and solitary waves[END_REF], a direct consequence of the above proposition is the following corollary : Then, U (t) is a unitary operator and if u is a solution of the Szegö equation (4.1.2) with initial condition u 0 , we have :

d dt U (t) = B u(t) U (t), U ( 
H u(t) = U (t)H u 0 U (t) * . (4.1.6)
This yields

U (t) Ker(H u 0 ) ⊂ Ker(H u(t) ), U (t) Ran(H u 0 ) ⊂ Ran(H u(t)
). 

(u) = Q(u), J 4 (u) = E(u)
2 , and we recover the conservation laws of the mass and energy. Remark 4.1.4. Using the Mikhlin multiplier theorem, we can prove that

J 2k (u) ≤ u 2k L 2k .
Then, by the Sobolev embedding we have that J 2k (u) ≤ u 2k

H 1/2 +
. This shows that the strongest conservation law for the Szegö equation is the H 1/2 + - norm.

Main results

It turns out that rational functions play an important role in studying the Hankel operators, and thus the Szegö equation. In the following, we rst consider solutions for the Szegö equation with rational function initial data u 0 ∈ M(N ), where M(N ) is dened below. Denition 18. Let N ∈ N * . We denote by M(N ) the set of rational functions of the form

A(z) B(z) ,

where In the general case, when u is not a rational function, u does not always belong to Ran(H u ). Thus, g satisfying (4.1.9) does not always exist. If such g does not exist, the above denition (4.1.12) of T does not make sense. We then propose, in Section 3, to extend a denition for T * (see (4.3.3) below) and pursue our work using T * rather than T .

A ∈ C N -1 [z], B ∈ C N [z], 0 ≤ deg(A) ≤ N -1, deg(B) = N , B(0) = 1, B(z) = 0, for all z ∈ C + ∪ R,
Next, we recall the denition and the characterization of soliton solutions for the Szegö equation. See [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF] for details. Denition 19. A soliton for the Szegö equation on the real line is a solution u with the property that there exist c, ω ∈ R, c = 0 such that u(t, x) = e -itω u 0 (x -ct).

In [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]Theorem 2] it was proved that all the solitons for the Szegö equation on R are of the form u(t, x) = e -iωt φ C,p (x -ct), We are now ready to state the main results of this paper. In the rst place we nd an explicit formula for the solutions of the Szegö equation with rational function data.

Theorem 4.1.7 (Explicit formula in the case of rational function data). Suppose that u 0 ∈ M(N ) and H 2 u 0 has positive eigenvalues λ

2 1 ≤ λ 2 2 ≤ • • • ≤ λ 2 N .
We will assume that λ j > 0 for all j = 1, 2, . . . , N . Choose a complex orthonormal basis {e j } N j=1 of Ran(H u 0 ), consisting of eigenvectors of H 2 u 0 such that H u 0 e j = λ j e j for all j = 1, 2, . . . , N . Let W (t) = e i t 2 H 2 u 0 and β j = (g 0 , e j ).

We dene an operator S(t) on Ran(H u 0 ) in the following way. Fix j ∈ {1, . . . , N }, and let λ 2 j be an eigenvalue of multiplicity m j . Moreover, let M j ⊂ N be the set of all indices k such that H u 0 e k = λ j e k . Then, S(t) in the basis {e j } N j=1 is dened by the matrix Then, we have the following explicit formula for the solution of the Szegö equation :

S(t) k,j =    λ j 2πi(λ 2 k -λ 2 j ) λ j e i t 2 (λ 2 k -λ 2 j ) β j β k -λ k e i t 2 (λ 2 j -λ 2 k ) β j β k , if k ∈ {1, . . . , N } \ M j , λ 2 j 2π β j β k t + (T e j , e k ), if k ∈ M j .
u(t, x) = i 2π u 0 , W (t)(S -xI) -1 W (t)g 0 , for all (t, x) ∈ R × R.
We extend the explicit formula to more general initial data, that are not necessarily rational functions, in the following corollary.

Corollary 4.1.8 (A rst generalization of the explicit formula). Let u 0 ∈ H 1/2 + be a general initial condition. Denote by {λ 2 j } ∞ j=1 the positive eigenvalues of the operator H 2 u 0 . We assume that λ j > 0 for all j ∈ N. Choose a complex orthonormal basis {e j } ∞ j=1 of Ran(H u 0 ) consisting of eigenvectors of H 2 u 0 such that H u 0 e j = λ j e j for all j ∈ N * . Denote W (t) = e i t 2 H 2 u 0 and β j = 1 λ j (e j , u 0 ). We dene an operator S(t) on Ran(H u 0 ) in the following way. Fix j ∈ N * , and let λ 2 j be an eigenvalue of multiplicity m j . Moreover, let M j ⊂ N * be the set of all indices k such that H u 0 e k = λ j e k . Then, S(t) is dened by

S(t)e j , e k =    λ j 2πi(λ 2 k -λ 2 j ) λ j e i t 2 (λ 2 k -λ 2 j ) β j β k -λ k e i t 2 (λ 2 j -λ 2 k ) β j β k , if k ∈ N \ M j , λ 2 j 2π β j β k t + (T e j , e k ), if k ∈ M j .
Denote by S the closure of the operator S.

If the sequence {β j } j∈N is in 2 , then there exists g 0 ∈ Ran(H u 0 ) such that u 0 = H u 0 (g 0 ). Moreover, for Imz > 0, the following formula for the solution of the Szegö equation with initial condition u 0 holds :

u(t, z) = i 2π u 0 , W (t)( S -zI) -1 W (t)g 0 .
The condition {β j } j∈N ∈ 2 characterizes all initial data satisfying u 0 ∈ RanH u 0 .

In particular, by (4.1.9), it is satised by all rational functions. However, simple nonrational functions, like e iαx x+i with α > 0, do not satisfy it, and hence Corollary 4.1.8

is not applicable. In the following theorem, we extend the explicit formula to even more general initial data.

Theorem 4.1.9 (Explicit formula for general data). Let

u 0 ∈ H s + , s > 1 2 , xu 0 ∈ L ∞ (R).
With the notations in Corollary 4.1.8, we dene an operator S * (t) on Ran(H u 0 ) in the following way. Fix j ∈ N * . If λ 2 j is an eigenvalue of multiplicity m j and M j ⊂ N is the set of all indices k such that H u 0 e k = λ j e k , then

(S * (t)e j , e k ) =    λ k 2πi(λ 2 k -λ 2 j ) λ k e i t 2 (λ 2 k -λ 2 j ) β j β k -λ j e i t 2 (λ 2 j -λ 2 k ) β j β k , if k ∈ N \ M j , λ 2 k β j β k 2π t + (T * e j , e k ), if k ∈ M j .
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Let A be the closure of S * . Then, for Imz > 0, the solution of the Szegö equation writes

u(t, z) = lim ε→0 i 2π W * (t)(A -zI) -1 W * (t)u 0 , 1 1 -iεz .
Let S * λ be the semi-group of contractions whose innitesimal generator is -iA. Then, the above formula is equivalent to

u(t, λ) = lim ε→0 1 2π W * (t)S * λ (t)W * (t)u 0 , 1 1 -iεx , a.e. λ ∈ R. Denition 20. A function u 0 ∈ M(N ) is called generic if the operator H 2 u 0 has simple eigenvalues 0 < λ 2 1 < λ 2 2 < • • • < λ 2
N and |(u 0 , e j )| = 0, for all j = 1, 2, . . . , N . We denote by M(N ) gen the set of generic rational functions in M(N ).

A function u 0 is called strongly generic if it is generic and, in addition, |(u 0 , e j )| = |(u 0 , e k )| for all k = j. We denote by M(N ) sgen the set of strongly generic rational functions in M(N ).

The sets M(N ) gen and M(N ) sgen are indeed generic, in the sense that they are open, dense subsets of M(N ). As in [START_REF] Gérard | The cubic Szegö equation[END_REF]Theorem 7.1], we have that det J 2(m+n) 1≤m,n≤N = 0 if and only if H 2k u (g), k = 1, 2, . . . , n, are linearly independent. Decomposing g, H 2 g, . . . , H 2(N -1) g in the basis {e j } N j=1 , we obtain that the determinant of the matrix which contains these vectors as columns is :

ν 1 λ 2 1 ν 1 . . . λ 2(N -1) 1 ν 1 ν 2 λ 2 2 ν 2 . . . λ 2(N -1) 2 ν 2 . . . . . . . . . . . . ν N λ 2 N ν N . . . λ 2(N -1) N ν N = ν 1 . . . ν N 1 λ 2 1 . . . λ 2(N -1) 1 1 λ 2 2 . . . λ 2(N -1) 2 . . . . . . . . . . . . 1 λ 2 N . . . λ 2(N -1) N
, where ν j := 1 λ j |(u, e j )|. Thus, the fact that g, H 2 g, . . . , H 2(N -1) g are linearly independent is equivalent to (u, e j ) = 0, j = 1, 2, . . . , N and λ j are all distinct. Therefore,

M(N ) gen = u 0 ∈ M(N ) det J 2(m+n) 1≤m,n≤N = 0
is an open, dense subset of M(N ). By Theorem 4.1.14 below, we obtain that χ : M(N ) gen → Ω (see (4.1.16) blow) is a dieomorphism. Since M(N ) sgen corresponds, through χ, to an open dense subset of Ω, it results that M(N ) sgen is also generic. Denition 21. We say that soliton resolution holds in H s for a solution u(t) of the Szegö equation, if u(t) can be written as the sum of a nite number of solitons and a remainder ε(t, x) with the property that lim t→±∞ ε(t, x) H s = 0.

Using the above explicit formula for the solution, we prove the following result : Theorem 4.1.10 (Soliton resolution for strongly generic data). Let u 0 ∈ M(N ) sgen be a strongly generic initial data for the Szegö equation. Then, the corresponding solution satises the property of soliton resolution in H s for all s ≥ 0. More precisely, with the notations in Theorem 4.1.7, we have

u(t, x) = N j=1 e -itλ 2 j φ C j ,p j (x - λ 2 j ν 2 j 2π t) + ε(t, x),
where

C j = iλ j β2 j 2π , p j = Re(c j (0)) -i ν 2 j 4π
, and lim t→±∞ ε(t, x) H s + = 0 for all s ≥ 0.

Studying the case of non-generic initial data u 0 ∈ M(2), such that H 2 u 0 has a double eigenvalue λ 2 1 = λ 2 2 , we can prove that the soliton resolution holds in H s only for 0 ≤ s < 1/2. It turns out that the H s -norms with s > 1/2 of such non-generic solutions grow to ∞ as t → ±∞. be such that H 2 u 0 has a double eigenvalue λ 2 > 0. Then the corresponding solution satises the property of soliton resolution in H s for 0 ≤ s < 1/2. More precisely,

u(t, x) =e -itλ 2 φ C,p x - u 0 2 L 2 2π t + ε(t, x),
where the rst term is a soliton with |C| =

u 0 2 L 2 √ π u 0 Ḣ1/2 , Im(p) = - u 0 L 2 u 0 Ḣ1

2

, and ε(t, x) → 0 in the all the H s -norms with 0 ≤ s < 1/2. However, ε(t, x) stays away from zero and is bounded in the L ∞ -norm and

H 1/2 - norm. Moreover, lim t→±∞ ε(t, x) H s = ∞ if s > 1/2.
As a consequence, we obtain the following result : Corollary 4.1.12 (Growth of high Sobolev norms). The Szegö equation admits solutions u(t) whose high Sobolev norms H s , for s > 1/2, grow to innity :

u(t) H s → ∞ as t → ±∞.
More precisely, there exists a solution u of the Szegö equation and a constant C > 0 such that u(t) H s ≥ C|t| 2s-1 for suciently large |t|.

Remark 4.1.13. Corollary 4.1.12 presents an example of solutions whose high Sobolev norms grow to innity. We could observe this phenomenon by considering non-generic initial data u 0 such that the operator H 2 u 0 has a double eigenvalue. We believe that the non-dispersive character of the Szegö equation plays an important role in the occurrence of this phenomenon. For example, consider the dispersionless NLS, iu t = |u| 2 u. Then, u(t, x) = φ(x) exp(-i|φ(x)| 2 t) with smooth φ is a solution, satisfying u(t) H s ∼ |t| s for s ∈ N. However, the situation is more subtle for the Szegö equation, due to the conservation of the H 1/2 -norm. In particular, this explains why, for the Szegö equation, only the H s -norms with s > 1/2 grow to innity.

Corollary 4.1.12 shows that the energy is supported on higher frequencies while the mass is supported on lower frequencies. This phenomenon is called forward cascade"

and is consistent with some predictions in the weak turbulence theory.

Previously, Bourgain constructed, in [START_REF] Bourgain | On the Cauchy problem for periodic KdV-type equations, Proceedings of the Conference in Honor of Jean-Pierre Kahane[END_REF][START_REF] Bourgain | Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations[END_REF][START_REF] Bourgain | On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE[END_REF], solutions with Sobolev norms growing to innity. He considered, however, Hamiltonian PDEs involving a spectrally dened Laplacian. For general (dispersive) Hamiltonian PDEs, such a phenomenon is not known, but there are several partial results in this direction. In [35, Corollary 5], Gérard and Grellier noticed the growth of Sobolev norms for the Szegö equation on T. However, their construction of a sequence of solutions u ε (t ε ) whose Sobolev norms become larger depends on the small parameter ε. In [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF], Colliander, Keel, Stalani, Takaoka, and Tao constructed solutions for the defocusing cubic NLS on T 2 whose high Sobolev norms become greater than any xed constant at some time. Kuksin considered in [START_REF] Kuksin | Oscillations in space-periodic nonlinear Schrödinger equations[END_REF] the case of small dispersion NLS, -i∂ t u + δ∆u = |u| 2 u, 1 with odd periodic boundary condition, where δ is a small parameter. He proved that Sobolev norms of solutions with relatively generic data of unit mass, grow larger than a negative power of δ. However, these constructions do not give an example of solution such that sup t u(t) H s = ∞.

In the following theorem we introduce generalized action-angle coordinates for the Szegö equation in the case of generic rational functions.

Theorem 4.1.14 (Generalized action-angle coordinates). For u ∈ M(N ) gen denote by 0 < λ 2 1 < λ 2 2 < . . . λ 2 N the simple positive eigenvalues of H 2 u and by {e j } N j=1 an orthonormal basis of Ran(H u ) such that H u e j = λ j e j . Denote ν j = |(g, e j )|, φ j = arg(g, e j ), and γ j = Re (T e j , e j ).

Set

Ω := (R * + ) N × {0 < x 1 < x 2 • • • < x N } × T N × R N . The application χ : M(N ) gen → Ω dened by χ(u) = {2λ 2 j ν 2 j } N j=1 , {4πλ 2 j } N j=1 , {2φ j } N j=1 , {γ j } N j=1 , (4.1.16)
is a symplectic dieomorphism. Moreover, 2λ 2 j ν 2 j , 4πλ 2 j , 2φ j ∈ T, γ j ∈ R, j = 1, 2, . . . , N are generalized action-angle coordinates for the Szegö equation on the real line.

As a corollary, we obtain that in the generic case, the trajectories of the Szegö equation spiral around toroidal-cylinders T N × R N , N ∈ N * .

1. Note that this can be considered as a perturbation of the dispersionless NLS. See p.138 in [START_REF] Bourgain | Nonlinear Schrödinger Equations, Hyperbolic equations and frequency interactions[END_REF] u , H 2 u 0 have same eigenvalues λ 2 j and same ν j .

(4.1.17)

Then, u(t) ∈ T C(u 0 ) for all t ∈ R, and the set T C(u 0 ) is dieomorphic to a toroidal cylinder T N × R N parameterized by the coordinates (2φ j , γ j ) N j=1 , where γ j ∈ R, 2φ j ∈ T.

It seems dicult to extend Theorem 4.1.14 and Corollary 4.1.15 to arbitrary generic functions, which are not necessarily rational, as we did in Theorem 4.1.9.

The main reasons are the lack of compactness and the fact that we are unable to characterize the conditions u 0 ∈ H s + , s > 1/2 and xu 0 (x) ∈ L ∞ (R) in terms of the spectral data.

The present paper was inspired by [START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF], where Gérard and Grellier introduced action-angle coordinates for the Szegö equation on T. However, [START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF] does not treat the question of soliton resolution and growth of high Sobolev norms. Dierent diculties are to be overcome in the two settings. In the case of R, these diculties are mostly related to the innitesimal shift operator T in (4.1.12), which does not appear in the case of T.

Structure of the Chapter 4

We conclude this introduction by discussing the structure of the paper with some details. In Section 2, we prove Theorem 4.1.7, i.e. nd an explicit formula for the solution of the Szegö equation with rational function initial condition. In the case of other completely integrable equations like KdV and one dimensional cubic NLS, an explicit formula for solutions was determined by the inverse scattering method [START_REF] Ablowitz | The inverse scattering transform Fourier analysis for nonlinear problems[END_REF][START_REF] Deift | Inverse scattering on the line[END_REF][START_REF] Gardner | Method for Solving the Korteweg-de Vries Equation[END_REF]. Since in our case the operator H u is compact, we will not apply the inverse scattering method. We nd a direct approach to solve the inverse spectral problem for the Hankel operator H u , using the Lax pair structure and the commutation relation (4.1.13) between the operator H u and the innitesimal shift T .

The inverse spectral problem for Hankel operators was considered in several papers, among which we cite [START_REF] Abakumov | The inverse spectral problem for Hankel operators of nite rank[END_REF][START_REF] Megretskii | The inverse spectral problem for selfadjoint Hankel operators[END_REF]. Our results are more precise than the previous ones and allow us to have a formula for the symbol u of the Hankel operator H u only in terms of the spectral data.

Let us describe our strategy in Section 2. First we notice that û(λ) = (u, e iλx g), λ > 0. Then, we introduce the operators S λ (t) = P u 0 U * (t)T λ (t)U (t), where Introduction S(t) = U * (t)T (t)U (t) is acting on Ran(H u 0 ). Exploiting the Lax pair structure, we obtain that

u(t, x) = i 2π u 0 , W (t)(S -xI) -1 W (t)g 0 . (4.1.18)
Since S is dened using U (t) and since the denition of U (t) (4.1.5) depends on u(t) itself, the above formula is a vicious circle. To break it, we determine S without using U (t). The explicit expression for S is obtained by computing the commutator [H 2 u 0 , S] and the derivative d dt S(t).

In Section 3, we prove Corollary 4.1.8 and Theorem 4.1.9. The proof of Theorem 4.1.9 uses an approximation argument, based on the remark that u ∈ Ran(H u ) for all u ∈ H 1/2 + . The crucial step is to dene the adjoint of the innitesimal shift operator", T * , for functions which are not necessarily rational functions (it seems more delicate to dene the operator T directly).

Notice that in Theorem 4.1.7, S is a matrix whose eigenvalues are not real and thus the inverse (S -xI) -1 can be explicitly computed. The result obtained in Theorem 4.1.9 is weaker. The operator S * acts between innite dimensional spaces. Explicitly computing (A -zI) -1 or the semi-group S * λ comes down to solving an innite system of linear dierential equations. Therefore, Theorem 4.1.9 actually states that we can transform our nonlinear innite dimensional dynamical system into a linear one.

In Section 4, we prove Theorem 4.1.10. The soliton resolution conjecture is believed to be true for many dispersive equations for which the non-linearity is not strong enough to create nite-time blow-up. However, this was proved only for few equations like KdV [START_REF] Eckhaus | The emergence of solitons of the Korteweg de Vries equation from arbitrary initial conditions[END_REF] and one dimensional cubic NLS [START_REF] Novikov | Theory of Solitons : The Inverse Scattering Method[END_REF][START_REF] Manakov | Theory of Solitons. The Inverse Scattering Method[END_REF], for which an explicit formula for the solution is available. For KdV, soliton resolution was proved in L ∞ and it was noticed that it is unlikely to hold in H 1 (R) (the remainder may carry a part of the initial energy). For NLS, soliton resolution was proved in L 2 . In this case, in addition to solitons, the solution contains a radiation term, which is a solution of the linear Schrödinger equation. For both KdV and NLS, the conjecture holds only for "generic" data. In Theorem 4.1.10 we prove that for strongly generic, rational functions solutions of the Szegö equation, soliton resolution holds in all H s , s ≥ 0.

In Section 5, we prove Theorem 4.1.11 and Corollary 4.1.12. We show that soliton resolution still holds, even for non-generic solutions, but only in H s , 0 ≤ s < 1/2. This is probably due to the fact that H 1/2 is the space of critical regularity.

The starting point in proving Theorems 4.1.10 and 4.1.11 is the explicit formula found in section 2, which we are able to write as a sum of simple fractions C j (t) x-E j (t) , j = 1, 2, . . . , N . The key remark is that the complex conjugates of the poles of u(t), E j (t), are the eigenvalues of the operator T (t) acting on Ran(H u(t) ). In the strongly generic case, the eigenvalues of T (t) satisfy E j (t) = a j t + b j + O( 1 t ) as t → ±∞ with a j = 0 and Im(b j ) = 0. This leads to the soliton resolution u(t, x) = N j=1 C j (t)

x-ā j t-bj + ε(t, x) in H s for all s ≥ 0. In the non-generic case, there is j 0 such that E j 0 (t) = Re(b j 0 ) + O( 1 t ) as t → ±∞. Then, Im(E j 0 ) = O( 1 t ) and thus, one of the poles of the solution approaches the real line as |t| → ∞. This causes u(t) H s to grow to ∞ if s > 1/2.

In Section 6, we prove Theorem 4.1.14 and Corollary 4.1.15. The Szegö equation is an innite dimensional, completely integrable system. The Lax pair structure yields the existence of an innite sequence of prime integrals J 2n = (u, H 2n-2 u u), n ∈ N. Since the nite dimensional manifolds M(N ) are invariant under the ow, by restricting the Szegö equation to M(N ), we obtain a 4N -dimensional, completely integrable system. The common level sets of the prime integrals J 2n are not compact. Then, a generalization of the Liouville-Arnold theorem [START_REF] Fiorani | Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds[END_REF][START_REF] Fiorani | The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds[END_REF] to the case of a 4Ndimensional, completely integrable system, with non-compact level sets, states the existence of generalized action-angle coordinates, if certain conditions are satised. In these coordinates (2N invariant action coordinates, k angle coordinates belonging to T, and 2N -k generalized angle coordinates belonging to R) the equation can be easily integrated. In Theorem 4.1.14, we explicitly introduce generalized action-angle coordinates in terms of the spectral data.

Our strategy is to use the Szegö hierarchy, i.e. the the innite family of completely integrable systems corresponding to the Hamiltonian vector elds of J 2n . The diculty consists in proving that γ j = Re (T e j , e j ) are the generalized angles.

Explicit formula for the solution in the case of rational function initial data

In this section we nd the explicit formula for the solution in the case of rational functions data. f, 1 (x -p j ) l j = 0 for all j = 1, 2, . . . , k and l j = 1, 2, . . . , m j .

By the residue theorem we have that

1 (x -p j ) l j (ξ) = R e -ixξ (x -p j ) l j = 2π(-i) l j (l j -1)! ξ l j -1 e -ip j ξ . (4.2.2)
Using the Plancherel formula, we obtain that 0 = ( f (ξ), ξ l j -1 e -ip j ξ ) = e ip j ξ f (ξ)ξ l j -1 dξ and thus (D l j -1 f )(p j ) = 0, for all j = 1, 2, . . . , k and l j = 1, 2, . . . , m j . Then, the classical property [START_REF] Nikolskii | Operators, Functions and Systems : An Easy Reading[END_REF]Corollary 3.7.4,p.38] 

stating that if f ∈ L 2 + is such that f (p) = 0, Im(p) < 0, then f (x) = x-p x-p f (x) with f ∈ L 2 +
, applied recurrently to f , Df ,...,D m j -1 f yields the formula for b u . Using this formula we obtain

Π(u bu ) = Π A (x -p1 ) m 1 . . . (x -pk ) m k = 0. (4.2.3)
Moreover, equation (4.1.8) yields that 1 -b u ∈ Ran(H u ) and by (4.1.9) we have that

H u (1 -b u ) = Π(u -u bu ) = u = H u (g).
Since H u is one to one on its range, we conclude that 1 -b u = g.

Lemma 4.2.2. If u ∈ M(N ) and if g is such that u = H u (g), then û(λ) = (u, e iλx g) for all λ > 0.

Démonstration. Denoting by F the Fourier transform, we have that

û(λ) = e -iλx udx = e -iλx u(1 -ḡ)dx + e -iλx uḡdx = F(u(1 -ḡ))(λ) + (u, e iλx g) = F(ū(1 -g))(-λ) + (u, e iλx g).
By (4.1.10) we have that ū(1 -g) ∈ L 2 + . Thus, the rst term is the Fourier transform at -λ < 0 of a function in L 

d dt U * u = -U * B u u -iU * T |u| 2 u = -U * (-iT |u| 2 u + i 2 H 2 u u) -iU * T |u| 2 u = - i 2 U * H 2 u u = - i 2 H 2 u 0 U * u.
Since U * (0) = U (0) = I, this yields the rst equality. By equation (4.1.6) and using the fact that the operator H u is skew-symmetric, we can rewrite (4.2.4) as

H u 0 U * (t)g(t) -e i t 2 H 2 u 0 g 0 = 0.
By (4.1.7) we have that U * (t)g(t) -e i t 2 H 2 u 0 g 0 ∈ Ran(H u 0 ) and since H u 0 is one to one on Ran(H u 0 ), the second equality follows.

In the following we denote the unitary operator e i t 2 H 2 u 0 by W (t). The skewsymmetry of the Hankel operator H u 0 yields

H u 0 W = W * H u 0 . (4.2.5)
We also set ẽ(t) := U * (t)g(t) = e i t 2 H 2 u 0 g 0 = W (t)g 0 . 

u(t) = H u(t) (g(t)) = U (t)H u 0 U * (t)g(t) = U (t)(H u 0 ẽ(t)). (4.2.7)
Denition 22. Let us denote by P u the orthogonal projection on Ran(H u ). We also denote by T λ , λ > 0, the compressed shift operators acting on Ran(H u ) by

T λ f = P u (e iλx f ), for all f ∈ Ran(H u ).
If u(t) is the solution of the Szegö equation with initial condition u 0 and T λ (t) acts on Ran(H u(t) ), then we dene the operators S λ (t), λ > 0, t ∈ R on Ran(H u 0 ) by

S λ (t)f = U * (t)T λ (t)U (t) = P u 0 U * (t)e iλx U (t)f. for all f ∈ Ran(H u 0 ),
Notice that using (4.1.7), we have 

P u(t) e iλx g(t) = U (t)(P u 0 U * (t)e iλx U (t))U * (t)g(t) = U (t)(S λ (t)ẽ).
(0) = 1, B(x) = (x -p 1 ) m 1 . . . (x -p k ) m k , m 1 + . . . m k = N ,
and Im(p j ) < 0 for all j = 1, 2, . . . , k. For all f ∈ Ran(H u ),

f = k j=1 α j x -p j + k j=1 m j l j =2 β l j (x -p j ) l j ,
we dene

Λ(f ) := k j=1 α j = lim x→∞ xf (x).
The innitesimal shift operator is the linear operator T dened on Ran(H u ) by :

T (f ) = xf -Λ(f )b u . (4.2.9)
Notice that by (4.1.8), we have that T (f ) ∈ Ran(H u ) for all f ∈ Ran(H u ).

If u(t) is the solution of the Szegö equation with initial condition u 0 and T (t) is the operator T acting on Ran(H u(t) ), we introduce the family of operators S(t) acting on Ran(H u 0 ), by Remark 4.2.5. Notice that we can extend the denition of Λ to

S(t) = U * (t)T (t)U (t).
T |u| 2 Ran(H u ) = k j=1 2m j l j =1 β l j (x -p j ) l j ; β l j ∈ C .
We then use formula (4.2.9) to extend the denition of T to T |u| 2 Ran(H u ) . Lemma 4.2.6. The operator iS is the innitesimal generator of the semi-group S λ , i.e. S λ = e iλS for all λ > 0.

Démonstration. Because of the denitions of S and S λ in terms of T and T λ , it is enough to prove that

-i d dλ|λ=0 T λ f = T T λ|λ=0 f,
where T and T λ act on Ran(H u ).

Dene the linear operator L :

Hol(C + ) → C N by L : f → ∂ m x f (p j ) j ∈ {1, 2, . . . , k}, m ∈ {0, 2, . . . , m j -1} ,
where p 1 , p 2 , . . . , p k are the poles of u and m j is the multiplicity of the pole p j .

Then, we have that KerL = b u Hol(C + ), where b u = k j=1

x-p j x-p j m j . In particular,

L |Ran(Hu) : Ran(H u ) → L(Ran(H u )) is a isomorphism. Since T λ f, T f ∈ Ran(H u ) for all f ∈ Ran(H u ), the lemma is proved once we show that L(-i d dλ |λ=0 T λ f ) = L(T f ). This is indeed true since L(b u ) = 0, L(h) = L(P u h) for all h ∈ L 2 + , and d dλ|λ=0 L(T λ f ) = d dλ|λ=0 L(P u (e iλx f )) = d dλ|λ=0 L(e iλx f ) = iL(xf ) = iL(xf -Λ(f )b u ) = iL(T f ).
Proposition 4.2.7. If u(t) is the solution of the Szegö equation corresponding to the initial data u 0 ∈ M(N ), then the following formula holds : 

u(t, x) = i 2π u 0 , W (t)(S -xI) -1 W (t)g 0 . ( 4 
u(z, t) = 1 2πi ∞ 0 u(x) x -z dx = 1 4π 2 i ∞ 0 u(t, λ) 1 x - z dλ = 1 2π ∞ 0 e izλ u(t, λ)dλ = 1 2π ∞ 0 e izλ (u(t), e iλx g(t))dλ = 1 2π ∞ 0 e izλ (u(t), P u(t) e iλx g(t))dλ = 1 2π ∞ 0 e izλ U (t)(H u 0 ẽ), U (t)(S λ (t)ẽ) dλ = 1 2π ∞ 0 e izλ H u 0 ẽ, S λ (t)ẽ dλ = 1 2π ∞ 0 e izλ H u 0 (W (t)g 0 ), S λ (t)W (t)g 0 dλ = 1 2π ∞ 0 e izλ W (t) * H u 0 g 0 , S λ (t)W (t)g 0 dλ = 1 2π W (t) * u 0 , ∞ 0 e λ(iS-izI) dλW (t)g 0 = 1 2π u 0 , W (t)(iS -izI) -1 W (t)g 0 .
The above formula also holds for x ∈ R since, by Lemma 4.2.4, the eigenvalues of S are not real numbers.

Notice that in this formula for u(t), the operator S(t) is dened using U (t) whose denition depends on u(t). Our goal is to characterize S(t) without using U (t). In order to do that, we need to determine the derivative in time of S(t)h, for any h ∈ Ran(H u 0 ). This derivative is expressed in terms of commutators of T with Hankel and Toeplitz operators, that we compute in the following.

The below formula, that can be proved by passing into the Fourier space, will be useful :

Π(xf ) = xΠ(f ) + 1 2πi f, (4.2.11) if f ∈ L 1 (R) ∩ L 2 (R) and xf ∈ L 2 (R). Lemma 4.2.8. If u ∈ M(N ) and f ∈ Ran(H u ), then Λ(H u f ) = - 1 2πi u f , (4.2.12) Λ(f ) = - 1 2πi (f, g) for all f ∈ Ran(H u ), (4.2.13) 
Λ(T |u| 2 f ) = - 1 2πi |u| 2 f. (4.2.14)
Démonstration. The result follows once we prove that for all f 1 , f 2 ∈ M(N ) that have the same poles, p 1 , . . . , p k , we have

Λ(Π(f 1 f2 )) = - 1 2πi f 1 f2 . (4.2.15)
Indeed, (4.2.12) follows taking f 1 = u, f 2 = f and (4.2.14) follows taking f 1 = uf , f 2 = u. Then, (4.2.13) is a direct consequence of (4.2.12). In order to prove (4.2.15) we decompose f 1 f2 into simple rational fractions :

f 1 f2 = A 1 x -p 1 +• • •+ A k x -p k + B 1 x -p1 +• • •+ B k x -pk + k j=1 m j l j =2 A l j j (x -p j ) l j + k j=1 m j l j =2 B l j j (x -pj ) l j .
Since Im(p j ) < 0 for all j = 1, 2, . . . , k, the residue theorem yield :

f 1 f2 = -2πi(A 1 + • • • + A k ) = -2πiΛ(Π(f 1 f2 )).
Suppose that λ j is an eigenvalue of multiplicity m j and that M j is the set of all indices k such that H u 0 e k = λ j e k . Plugging ẽ = N k=1 (ẽ, e k )e k in the above formula we have :

(H 2 u 0 -λ 2 j )Se j = λ j 2πi k / ∈M j λ j (e j , ẽ)(ẽ, e k ) -λ k (ẽ, e j )(e k , ẽ) e k + λ 2 j 2πi k∈M j (e j , ẽ)(ẽ, e k ) -(ẽ, e j )(e k , ẽ) e k . Since (ẽ, e j ) = (e i t 2 H 2 u 0 g 0 , e j ) = e i t 2 λ 2 j (g 0 , e j ) = e i t 2 λ 2 j β j , we obtain (H 2 u 0 -λ 2 j )Se j = λ j 2πi k / ∈M j λ j e i t 2 (λ 2 k -λ 2 j ) β j β k -λ k e i t 2 (λ 2 j -λ 2 k ) β j β k e k + λ 2 j 2πi k∈M j (β j β k -β j β k )e k Writing S(t)e j = N k=1 c k j (t)e k ,
we have

(H 2 u 0 -λ 2 j )S(t)e j = k / ∈M j (λ 2 k -λ 2 j )c k j (t)e k .
Identifying the coecients of (H 2 u 0 -λ 2 j )S(t)e j in the basis {e k } N k=1 , we obtain that 

β j β k ∈ R, for all k ∈ M j (4.2.22) and c k j (t) = λ j 2πi(λ 2 k -λ 2 j ) λ j e i t 2 (λ 2 k -λ 2 j ) β j β k -λ k e i t 2 (λ 2 j -λ 2 k ) β j β k
= λ 2 j 4π (β j β k + β j β k ) = λ 2 j 2π β j β k .
Therefore, for k ∈ M j we have

c k j (t) = λ 2 j 2π β j β k t + c k j (0),
where c k j (0) = (S(0)e j , e k ) = (T e j , e k ).

Extension of the formula to general initial data

Proof of Corollary 4.1.8. The proof of Theorem 4.1.7 can be adapted to the case of a general initial data, as long as u 0 ∈ Ran(H u 0 ), i.e. there exists g 0 ∈ Ran(H u 0 ) such that u 0 = H u 0 (g 0 ). Writing g 0 = ∞ j=1 (g 0 , e j )e j in the basis {e j } ∞ j=1 , the fact

that g 0 ∈ L 2 (R) is equivalent to ∞ j=1 |(g 0 , e j )| 2 < ∞. Since u 0 = H u 0 (g 0 ) yields (u 0 , e j ) = λ j (e j , g) for all j ∈ N * , it follows that {β j } ∞ j=1 = { 1 λ j (u 0 , e j )} ∞ j=1 ∈ 2 .
The main dierence with the case of rational functions data is that S is no longer a matrix, but an operator acting between innite dimensional spaces. Then, the innitesimal generator of the semi-group S λ is not iS, but its closure i S (like in Proposition 4.3.4). This explains the operator S appearing in the explicit formula. Démonstration. The local well-posedness follows using a xed point argument in the space (L ∞ t , X), where

X := H s + (R) ∩ f xf (x) ∈ L ∞ (R) .
By equation (4.2.11), the Hölder inequality, and Sobolev embedding, we have :

x T 0 Π |u(t)| 2 u(t) dt L ∞ t,x ≤ T xΠ |u(t)| 2 u(t) L ∞ t,x = T Π x|u(t)| 2 u(t) - 1 2πi |u(t)| 2 u(t)dx L ∞ t,x ≤ T Π x|u(t)| 2 u(t) L ∞ t,x + T 2π |u(t)| 2 u(t)dx L ∞ t ≤ T Π x|u(t)| 2 u(t) L ∞ t H 1 x + T 2π |u(t)| 2 u(t)dx L ∞ t ≤ T x|u(t)| 2 u(t) L ∞ t H 1 x + T 2π u L ∞ t,x u 2 L ∞ t L 2 x ≤ T 4 xu L ∞ t,x + u L ∞ t H s x u 2 L ∞ t H s x + T 2π u 3 L ∞ t H s x .
The global well-posedness is a consequence of the Brezis-Gälouet estimate

u L ∞ (R) ≤ C u H 1/2 (R) log 2 + u H s u H 1/2 1 2
, and of Gronwall's inequality.

Lemma 4.3.2. For all u ∈ H 1/2 + , we have that u ∈ Ran(H u ).

Moreover, if u ∈ H s (R), s > 1 2 and xu(x) ∈ L ∞ (R), we have that u = lim ε→0 H u ( 1 1-iεx ).
Démonstration. For h ∈ L 2 + , we have that

(u, h) = lim ε→0 u, h 1 -iεx = lim ε→0 u h, 1 1 -iεx = lim ε→0 H u h, 1 1 -iεx . (4.3.1)
Taking h ∈ Ker(H u ), it follows that (u, h) = 0 and u ∈ (Ker(H u )) ⊥ = Ran(H u ).

By (4.1.3), the above equation also yields that for all h ∈ L 2 + , we have that

(u, h) = lim ε→0 H u 1 1 -iεx , h .
Then, H u 1 1-iεx converges weakly to u in L 2 + . We now intend to prove that, if Computing the Fourier transform with the residue theorem, we have that

u ∈ H s (R) and xu(x) ∈ L ∞ (R), then H u 1 1-iεx L 2 → u L 2 . This yields that the convergence is strong in L 2 + .
H u 1 1 -iεx = Π u(x) 1 + iεx = 1 iε Π u(x) x -i ε = 1 iε • u(x) -u( i ε ) x -i ε (4.3.2) = u(x) -u( i ε ) 1 + iεx . By the Sobolev embedding H s (R) ⊂ L ∞ (R) for s > 1 2
, we have that there exists

C 0 > 0 such that |u(x)| ≤ C 0 for all x ∈ R. Since u is a holomorphic function in C + ,
we can write using the Poisson integral

u(z) = 1 π ∞ -∞ Imz u(x) |z -x| 2 dx, for all z ∈ C + . Then |u(z)| ≤ C 0 π Imz ∞ -∞ 1 |z -x| 2 dx = C 0 , for all z ∈ C + . Thus, u is bounded in C + ∪ R. Similarly, since xu(x) ∈ L ∞ (R), we have that zu(z) is bounded in C + ∪ R by a constant C 1 . In particular, we have that i ε u( i ε ) ≤ C 1 and thus lim ε→0 u( i ε ) = 0. Then, by (4.3.2), we have that H u 1 1-iεx converges pointwise to u(x). Furthermore, H u 1 1 -iεx 2 = u(x) -u( i ε ) 1 + iεx 2 ≤ |u(x) -u( i ε )| 2 ≤ 2(|u(x)| 2 + |u( i ε )| 2 ) ≤ 4C 0 and H u 1 1 -iεx 2 ≤ 2(|u(x)| 2 + |u( i ε )| 2 ) 1 + ε 2 x 2 ≤ C 1 x 2 + C 1 ε 2 1 + ε 2 x 2 = C 1 x 2 .
Then, the functions H u

1 1-iεx 2
are bounded by an integrable function. By the dominated convergence theorem, it follows that

H u 1 1-iεx L 2 → u L 2 . Hence, H u 1 1-iεx → u in L 2 + .
The key point in extending the explicit formula for the solution to the case of general initial data is the below denition of the operator T * : Démonstration. For all f ∈ Ran(H u ) and h ∈ Ker(H u ), we have that

Ran(H u ) → L 2 + , T * (H u f ) = xH u (f ) + 1 2πi (u, f ).
(T * f, h) = (Π(xu f ), h) = (xu f , h) = lim ε→0 (xu f , h 1 -iεx ) = lim ε→0 (u h, x f 1 -iεx ) = lim ε→0 (H u h, x f 1 -iεx ) = 0. Then, T * f ∈ (Ker(H u )) ⊥ = Ran(H u ).
For λ > 0, we introduce the operators T * λ :

L 2 + → L 2 + by T * λ h(x) = P u e -iλx F -1 ( ĥ(ξ)χ [λ,+∞) (ξ)) = P u e -iλx h(x) - e -iλx 2π R h(x -y) e iλy -1 iy dy . Then lim λ→0 T * λ h(x) -h(x) λ = P u -ixh(x) - 1 2π R h(x)dx .
Let us now conjugate T * and T * λ using the operators U (t). 

lim λ→0 T * λ h(x) -h(x) λ = -iP u xh(x) + 1 2πi (u, f ) = -iT * h.
u(t) = lim ε→0 H u(t) ( 1 1 -iεx ) in L 2 + .
By Plancherel's identity, this is equivalent to

lim ε→0 F u(t) 1 - 1 1 + iεx = 0 in L 2 (R + ).
Since,

u(t, λ) = R e -iλx u(t, x)dx = R e -iλx u(t) 1 - 1 1 + iεx dx + R e -iλx u(t) 1 1 + iεx dx = F u(t) 1 - 1 1 + iεx (λ) + R e -iλx u(t) 1 1 -iεx dx.
we obtain that

u(t, λ) = lim ε→0 u(t), e iλx 1 1 -iεx dx.
The rest of the proof follows the same lines as the proof of Theorem 4.1.7, but uses T * and S * instead of T and S. Special attention should be given to the fact that the innitesimal generator of the semi-group S * λ is not -iS * , but its closure -iA.

Soliton resolution of strongly generic, rational function solutions

We prove that all the solutions with strongly generic, rational function initial data u 0 ∈ M(N ) sgen resolve into N solitons and a remainder which tends to zero in all the H s -norms for s ≥ 0, when t → ±∞.

Proof of Theorem 4.1.10. The strategy is to write all the vectors in Ran(H u 0 ) in the basis {e j } N j=1 and make formula (4.2.10) more explicit.

According to Theorem 4.1. for all j = i and all t ∈ R. Denoting A j = λ 2 j ν 2 j 2π t + (S(0)e j , e j ), the operator S in the basis {e j } N j=1 can be written as the following matrix :

S =      A 1 a 12 • • • a 1N a 21 A 2 • • • a 2N . . . . . . . . . . . . a N 1 a N 2 • • • A N     
Let us rst compute Im(A j ) = Im S(0)e j , e j for t large enough. By equation (4.2.20) and noting that ẽ(0) = g 0 , we have that 2iIm S(0)e j , e j = S(0)e j , e j -e j , S(0)e j = (S(0) -S(0) * )e j , e j = -1 2πi (e j , g 0 )g 0 , e j = i 2π |(g 0 , e j )| 2 .

Therefore

Im S(0)e j , e j = ν 2 j 4π . Then, we notice that

∞ -∞ dx |x -at + ib| 2 |x -ct + id| 2 = O( 1 t 2 ) as t → ±∞, (4.4.2)
if 0 < a < c and b, d = 0. This can be proved by estimating the integral on each of the intervals (-∞, at

-1], [at -1, at + 1], [at + 1, ct -1], [ct -1, ct + 1], [ct + 1, ∞) if t > 0 large enough,
and similarly for t < 0. Since Im(A j ) = ν 2 j 4π > 0 and by the strong genericity hypothesis

λ 2 j ν 2 j 2π = λ 2 k ν 2 k 2π for j = k, this yields that 1 (x -A j )(x -A k ) = O( 1 |t| ) in L 2 (R) as t → ±∞, Moreover, using 1 x-A j L ∞ = 1 ImA j = 4π ν 2 j
, we have that 1

(x-A j )(x-A k ) = O( 1 t ) in H s (R)
for all s ≥ 0. Furthermore, we have

1 (x -A j )(x -A k ) L ∞ = 1 A k -A j 1 (x -A j ) - 1 (x -A k ) L ∞ ≤ 1 |A k -A j | 1 x -A j L ∞ + 1 x -A j ∞ = 1 |A k -A j | 4π ν 2 j + 4π ν 2 k = O( 1 t ).
Therefore, det(S-xI)

(A 1 -x)...(A N -x) -1 → 0 in L ∞ (R) and in H s , s ≥ 0, as t → ±∞, since it is equal to a linear combination of 1 (x-A j )(x-A k ) ,..., 1 (x-A 1 )...(x-A N )
. We notice that, using the denition of the determinant, the terms 1 x-A j do not appear in the above linear combination.

Then,

(S-xI) -1 = 1 det(S -xI)      C 11 C 12 • • • C 1N C 21 C 22 • • • C 2N . . . . . . . . . . . . C N 1 C N 2 • • • C N N      = (A 1 -x) . . . (A N -x) det(S -xI)      C 11 (A 1 -x)...(A N -x) C 12 (A 1 -x)...(A N -x) • • • C 1N (A 1 -x)...(A N -x) C 21 (A 1 -x)...(A N -x) C 22 (A 1 -x)...(A N -x) • • • C 2N (A 1 -x)...(A N -x) . . . . . . . . . . . . C N 1 (A 1 -x)...(A N -x) C N 2 (A 1 -x)...(A N -x) • • • C N N (A 1 -x)...(A N -x)     
where C jj is the cofactor of A j -x, equal to the sum of (A 1 -x) . . . (A j-1 -x)(A j+1 -x) . . . (A N -x) and a linear combination of terms containing at most N -2 factors (A j -x), and C ij , i = j is the cofactor of a ij , equal to a linear combination of terms containing at most N -2 factors (A j -x). Then, we have

(S -xI) -1 =      1 A 1 -x + O( 1 t ) O( 1 t ) • • • O( 1 t ) O( 1 t ) 1 A 2 -x + O( 1 t ) • • • O( 1 t ) . . . . . . . . . . . . O( 1 t ) O( 1 t ) • • • 1 A N -x + O( 1 t )      in H s (R).
Therefore,

W (S -xI) -1 W g 0 = W (S -xI) -1 (β 1 e i t 2 λ 2 1 , . . . , β N e i t 2 λ 2 N ) t = e itλ 2 1 β 1 x -A 1 + O( 1 t ), . . . , e itλ 2 N β N x -A N + O( 1 t ) t .
Since u 0 = N j=1 (u 0 , e j )e j and by (4.1.3), (u 0 , e j ) = (H u 0 g 0 , e j ) = (H u 0 e j , g 0 ) = λ j (g 0 , e j ) = λ j β j , we have

u(t) = 1 2π u 0 , W (S -xI) -1 W g 0 = 1 2π • e -itλ 2 1 λ 1 β 2 1 x -Ā1 + • • • + 1 2π • e -itλ 2 N λ N β 2 N x -ĀN + O( 1 t ) in H s , s ≥ 0. Since Im( Āj ) = - ν 2 j 4π < 0, we have that u ∈ H s + . Moreover, by (4.1.14),
we have that each of the functions

1 2π • e -itλ 2 j λ 1 β 2 j x-Āj is a soliton of speed c = λ 2 j ν 2 j 2π and 
frequency ω = λ 2 j .
Let us notice that the result in Theorem 4.1.10 can also be restated in terms of N -solitons.

Denition 24. A N -soliton is a solution of the Szegö equation u(t), such that there

exist N solitons C 1 (t) x-q 1 (t) , . . . , C N (t) x-q N (t) satisfying u(t) - N j=1 C j (t) x -q j (t) H 1/2 + → 0 as t → -∞.
If, moreover, there exist δ j ∈ R, j = 1, 2, . . . , N such that

u(t) - N j=1 C j (t) x -δ j -q j (t) H 1/2 + → 0 as t → +∞,
we say that the N -soliton is pure or that the collision of the N solitons

C j (t)
x-p j (t) is elastic, in the sense that there is no loss of energy in the collision. Theorem 4.1.10 states for s = 1/2 that if u 0 ∈ M(N ) sgen , then the corresponding solution is a pure N -soliton. Moreover, there is no shift in the trajectories of the N solitons, i.e. δ j = 0 for all j = 1, 2, . . . , N . This situation is characteristic to completely integrable equations. For the one dimensional cubic NLS, KdV and mKdV, which are all completely integrable, it is known that N -solitons exist and are pure [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF][START_REF] Hirota | Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[END_REF]. For the gKdV equation with fourth order nonlinearity, which is not completely integrable, it was proved in [START_REF] Martel | Description of two soliton collision for the quartic gKdV equations[END_REF] that the collision of solitons fails to be elastic by loss of a small quantity of energy. We show that when u 0 ∈ M(2) is such that H 2 u 0 has a double eigenvalue, then the solution u behaves as the sum of a soliton and a remainder, which tends to zero in the H s -norms, 0 ≤ s < 1/2. However, u(t)

H s → ∞ if s > 1/2. An example of such an initial condition is u 0 = 2 x+i -4 x+2i 
. The operator H 2 u 0 has the double eigenvalue

( 1 3 ) 2 in this case.
Let us consider an orthonormal basis {ẽ 1 , ẽ2 } of Ran(H u 0 ) such that H u 0 ẽj = λẽ j . Denoting βj = (g 0 , ẽj ) and νj = | βj | we have g 0 = β1 ẽ1 + β2 ẽ2 and g 0 2

L 2 = ν2 1 + ν2 2 .
By (4.2.22), we have that β1 β2 ∈ R. We assume that β1 β2 = ν1 ν2 , and thus βj = e iθ νj for j = 1, 2.

We make the following change of basis

e 1 := 1 g 0 L 2 (ν 1 ẽ1 + ν2 ẽ2 ), e 2 := 1 g 0 L 2 (ν 2 ẽ1 -ν1 ẽ2 ).
Notice that this is also an orthonormal basis of Ran(H u 0 ) and H u 0 e j = λe j . Moreover, setting β j := (g 0 , e j ) and ν j = |β j |, we have β 2 := (g 0 , e 2 ) = 0, 

A := λ 2 ν 2 1 2π , (4.5.2) 
B := λ 2 ν 2 1 π (c 1 (0) -d 2 (0)), C := (c 1 (0) -d 2 (0)) 2 + 4c 2 (0)d 1 (0). Then, 4A 2 C -B 2 > 0 and Im(B) = λ 2 ν 4 1 4π 2 > 0.
Im(B) = λ 2 ν 2 1 π Imc 1 (0) = λ 2 ν 4 1 4π 2 . (4.5.3) 
Let us notice that

β j = 2πiΛ(e j ). (4.5.4) 
Indeed, since e j ∈ Ran(H u 0 ), there exists f j ∈ L 2 + such that e j = H u 0 (f j ) and by equation (4.2.12) we have

Λ(e j ) = Λ(H u 0 (f j )) = - 1 2πi (u 0 , f j ) = - 1 2πi (H u 0 g 0 , f j ) = - 1 2πi (H u 0 f j , g 0 ) = - 1 2πi β j .
Then,

4A 2 C -B 2 =4 λ 2 ν 2 1 2π 2 (c 1 (0) -d 2 (0)) 2 + 4c 2 (0)d 1 (0) -4 λ 2 ν 2 1 2π 2 (c 1 (0) -d 2 (0)) 2 =16 λ 2 ν 2 1 2π 2 c 2 (0)d 1 (0).
By equation (4.2.20) and noticing that ẽ(0) = g 0 , we have

d 1 (0) = (S(0)e 2 , e 1 ) = (S * (0)e 2 , e 1 ) - 1 2πi (e 2 , g 0 )(g 0 , e 1 ) = (S * (0)e 2 , e 1 )
= (e 2 , S(0)e 1 ) = c 2 (0).

Thus,

4A 2 C -B 2 = 16 λ 2 ν 2 1 2π 2 |d 2 (0)| 2 .
Suppose by absurd that d 2 (0) = (S(0)e 2 , e 1 ) = 0. Since (e 2 , e 1 ) = 0, and since e 1 , e 2 , S(0)e 2 belong to the two dimensional complex vector space Ran(H u 0 ), it results that there exists a ∈ C such that S(0)e 2 = ae 2 . Using the fact that S(0) = T and the denition of T , we obtain that e 2 (x -a) = Λ(e 2 )b u 0 . Then, by equation (4.5.1) and (4.5.4), we obtain that Λ(e 2 ) = 0 and therefore e 2 = 0, which is a contradiction. Hence, 4A 2 C -B 2 > 0.

Proof of Theorem 4.1.11. Let us rst express S in the basis {e 1 , e 2 } of Ran(H u 0 ). By Theorem 4.1.7 we have

S(t)e 1 = c 1 (t)e 1 + c 2 (t)e 2 , with c 1 (t) = λ 2 ν 2 1 2π t + c 1 (0) and c 2 (t) = λ 2 2π β 1 β 2 t + c 2 (0) = c 2 (0), and 
S(t)e 2 = d 1 (t)e 1 + d 2 (t)e 2 , with d 1 (t) = λ 2 2π β 1 β 2 t + d 1 (0) = d 1 (0) and d 2 (t) = λ 2 ν 2 2 2π t + d 2 (0) = d 2 (0)
. We denoted c j (0) = S(0)e 1 , e j and d j (0) = S(0)e 2 , e j ), j = 1, 2. Moreover, by equation (4.2.22), we have that β 1 β 2 ∈ R.

Therefore, in the basis {e 1 , e 2 }, the operator S is the matrix

S = c 1 d 1 c 2 d 2 .
and its characteristic equation is

x 2 -(c 1 +d 2 )+c 1 d 2 -d 1 c 2 = 0. Since ( β1 β 2 ) 2 = ν 2 1 ν 2
2 , we obtain that the discriminant of this equation writes

∆ =(c 1 -d 2 ) 2 + 4d 1 c 2 = λ 2 ν 2 1 2π t + c 1 (0) -d 2 (0) 2 + 4c 2 (0)d 1 (0) (4.5.5) = λ 2 ν 2 1 2π 2 t 2 + λ 2 ν 2 1 π (c 1 (0) -d 2 (0))t + c 1 (0) -d 2 (0) 2 + 4c 2 (0)d 1 (0) =A 2 t 2 + Bt + C,
where A, B, C are dened in (4.5.2). The eigenvalues of S will be written in terms of √ ∆, where we use the principal determination of the square root. In order to do so, we have to make sure that ∆ is not negative. We will show that when |t| is large enough, ∆ cannot be a real number. In what follows we suppose that t > 0. The case t < 0 can be treated similarly.

Using equations (4.4.1) and (β

1 β 2 ) 2 = ν 2 1 ν 2 2 , we obtain Im(∆) = λ 2 ν 2 1 π Im(c 1 (0)) -Im(d 2 (0)) t + Im c 1 (0) -d 2 (0) 2 + 4c 2 (0)d 1 (0) = λ 2 ν 4 1 4π 2 t + Im c 1 (0) -d 2 (0) 2 + 4c 2 (0)d 1 (0)
and thus Im(∆) = 0 for |t| large enough. Using the Taylor approximation

(1 + x) 1/2 = 1 + x 2 -x 2 8 + x 3 16 + x 3 ε(x) if |x| < 1, we have by (4.5.5) that √ ∆ =At 1 + B A 2 t + C A 2 t 2 1/2 =At 1 + B 2A 2 t + C 2A 2 t 2 - 1 8 B A 2 t + C A 2 t 2 2 + 1 16 
B A 2 t + C A 2 t 2 3 + B A 2 t + C A 2 t 2 3 ε B A 2 t + C A 2 t 2 =At 1 + B 2A 2 t + 1 t 2 C 2A 2 - B 2 8A 4 + 1 t 3 - BC 4A 4 + B 3 16A 6 + O( 1 t 4 ) =At + B 2A + 4A 2 C -B 2 8A 3 • 1 t + B(B 2 -4A 2 C) 16A 6 • 1 t 2 + O( 1 t 3 )
We set 

F (t) := 4A 2 C -B 2 8A 3 • 1 t + B(B 2 -4A 2 C) 16A 6 • 1 t 2 + O( 1 t 3 ).
|F (t)| = 4A 2 C -B 2 8A 3 • 1 t + O( 1 t 2 ), (4.5.7) 
Im

F (t) = - λ 2 ν 4 1 4π 2 • (4A 2 C -B 2 ) 16A 6 • 1 t 2 + O( 1 t 3 ) (4.5.8) with 4A 2 C -B 2 > 0. Then, we have √ ∆ = At + B 2A + F (t) = At + c 1 (0) -d 2 (0) + F (t). (4.5.9) 
and the eigenvalues of S are

E 1 = c 1 + d 2 + √ ∆ 2 = λ 2 ν 2 1 2π t + c 1 (0) + F (t) 2 (4.5.10) 
E 2 = c 1 + d 2 - √ ∆ 2 = d 2 (0) - F (t) 2 . (4.5.11) 
Therefore,

(S -xI) -1 = 1 det(S -xI) d 2 -x -d 1 -c 2 c 1 -x = 1 (x -E 1 )(x -E 2 ) d 2 -x -d 1 -c 2 c 1 -x and (S -xI) -1 W g 0 = (S -xI) -1 (e i t 2 λ 2 β 1 , 0) t = e i t 2 λ 2 d 2 (0) -x β 1 (x -E 1 )(x -E 2 ) , -e i t 2 λ 2 c 2 (0)β 1 (x -E 1 )(x -E 2 ) e 2 .
Since u 0 = λ β1 e 1 + λ β2 e 2 = λ β1 e 1 , we obtain

u(t) = 1 2π u 0 , W (S -xI) -1 W g 0 = λe -itλ 2 2π • d 2 (0) -x β 2 1 (x -Ē1 )(x -Ē2
) .

(4.5.12) Using (4.5.11), we obtain that

u(t) = - λ 2π e -itλ 2 β 2 1 x -E 1 + F (t) λ 4π e -itλ 2 β 2 1 (x -Ē1 )(x -Ē2 ) . Let us denote R(t, x) = F (t) λ 4π e -itλ 2 β 2 1 (x -Ē1 )(x -Ē2
) .

We will study the H s -norms of R, for s ≥ 0 . First, we determine Im(E 1 ) and Im(E 2 ).

By equations (4.5.11), (4.4.1), and (4.5.1), we have

Im(E 2 ) = Im(d 2 (0)) - ImF (t) 2 = ν 2 2 4π - ImF (t) 2 = - ImF (t) 2 .
and similarly, we obtain that

Im(E 1 ) = ν 2 1 4π + ImF (t) 2 .
Let us now estimate R(t, x) H s . First, we write

R(t, x) = F (t) Ē1 -Ē2 • λ 4π e -itλ 2 β 1 x -Ē1 - 1 x -Ē2 . (4.5.13) 
We compute the Ḣs -norm, s ≥ 0, of each of the two terms in R. Let p ∈ C, Imp < 0.

By (4.2.2), we have that

1 x -p 2 Ḣs = ∞ 0 ξ 2s F 1 x -p (ξ) 2 dξ = c ∞ 0 ξ 2s |e -ipξ | 2 dξ = c ∞ 0
ξ 2s e 2Im(p)ξ dξ.

Integrating by parts, we can explicitly compute the last integral. If p = Ē2 , then Im(p) = Im( Ē2 ) and we obtain

1 x -Ē2 Ḣs = O 1 |Im( Ē2 )| (2s+1)/2 = O 1 |ImF (t)| (2s+1)/2 .
More precisely, by (4.5.8) there exist c, C > 0 such that

c|t| 2s+1 ≤ 1 x -Ē2 Ḣs ≤ C|t| 2s+1 .
Similarly, for p = Ē1 , we have Im(p) = Im( Ē1 ) = - Consequently, by (4.5.13), (4.5.10), (4.5.11), (4.5.7), (4.5.8) we obtain for

ν 2 1 +ν 2 2 4π -ImF (t)
0 ≤ s < 1 2 that R(t, x) H s ≤ C |F (t)| |E 1 -E 2 | 1 x -Ē1 L 2 + 1 x -Ē2 L 2 + C |F (t)| |E 1 -E 2 | 1 x -Ē1 Ḣs + 1 x -Ē2 Ḣs ≤ C |t| 2 |t| + |t| 2s+1 . and thus R(t, x) H s → 0 for 0 ≤ s < 1 2 . For s > 1 2 we have that R(t, x) Ḣs ≥ C |F (t)| |E 1 -E 2 | 1 x -Ē2 H s - 1 x -Ē1 H s ≥ C |t| 2 |t| 2s+1 -|t| . Therefore, R(t, x) H s → +∞ if s > 1 2 . Moreover, for s = 1/2 we have c |F (t)| |E 1 -E 2 | 1 x -Ē2 L 2 - 1 x -Ē1 L 2 + 1 x -Ē2 Ḣ1/2 - 1 x -Ē1 Ḣ1/2 ≤ R(t, x) H 1/2 ≤ C |F (t)| |E 1 -E 2 | 1 x -Ē1 L 2 + 1 x -Ē2 L 2 + 1 x -Ē1 Ḣ1/2 + 1 x -Ē2 Ḣ1/2 .
and thus there exist

0 < c ≤ C such that c ≤ R(t, x) H 1/2 ≤ C for |t| large enough. We proceed similarly for R(t, x) L ∞ . c |F (t)| |E 1 -E 2 | 1 x -Ē2 L ∞ - 1 x -Ē1 L ∞ ≤ R(t, x) L ∞ ≤ C |F (t)| |E 1 -E 2 | 1 x -Ē1 L ∞ + 1 x -Ē2 L ∞ . Since 1 x-Ēj L ∞ = 1 |ImE j | for j = 1, 2, there exist 0 < c ≤ C such that c < c 1 t 2 (t 2 -1) ≤ R(t, x) L ∞ ≤ C 1 t 2 (t 2 + 1) < C.
Hence, R(t, x) stays away from zero in the H 1/2 -norm and L ∞ -norm. 

p(t) := λ 2 ν 2 1 2π t + Re(c 1 (0)) -i ν 2 1 4π we have Ē1 (t) = p(t) + O( 1 t ) as t → ±∞ and u(t, x) = - λ 2π β 2 1 e -itλ 2 x -p(t) + R(t, x) + ε(t, x). (4.5.14) 
where

ε(t, x) = -λ 2π β 2 1 e -itλ 2 1 
x-Ē1 -1

x-p(t) and

ε(t, x) = C Ē1 -p(t) (x -Ē1 )(x -p(t)) = O( 1 t
) in all H s , s ≥ 0.

By (4.1.14), the rst term in the sum in (4.5.14) is a soliton. Using equation (4.5.1), we have that u 0 2

L 2 = (u 0 , u 0 ) = (H u 0 g 0 , H u 0 g 0 ) = λ 2 ν 2 1 .
In [75, Lemma 3.5] it was shown that H u 0 is a Hilbert-Schmidt operator of Hilbert-Schmidt norm

u 0 Ḣ1/2 √ 2π . Then, 2λ 2 = Tr(H 2 u 0 ) = u 0 2 Ḣ1/2 2π
. Therefore, the soliton satises 

λ 2π β 2 1 e -itλ 2 = λν 2 1 2π = λ 2 ν 2 1 2πλ = u 0 2 L 2 √ π u 0 Ḣ1/2 , Im(p) = - ν 2 1 4π = - λ 2 ν 2 1 λ 2 = - u 0 2 L 2 u 0 2 Ḣ1/2 . We set ε(t, x) = R(t, x) + ε(t, x). Then, ε(t, x) → 0 as t → ±∞ in all the H s -norms, 0 ≤ s < 1/2. However, lim t→∞ ε(t, x) H s = ∞ if s > 1/
H iX J(x,u) (h) = 1 2 H w (h) + x 2 H wHu(w) (h) = 1 2 H w (h) + x 2 H uHu(w) (h) + x 2 2 H H 2 u (w)Hu(w) (h) = G u H u (h) + H u D u (h), where G u (h) = x 2 wΠ( wh) D u (h) = 1 2 ∞ n=0 x n hH 2n-1 u (u) + x 2 H h H u (w) + x 2 2 H u (w)Π(H u (w)) Since, by (4.1.3), H iX J(x,u) (h) = 1 2 H w (h) + x 2 H wHu(w) (h) satises (H iX J(x,u) (h 1 ), h 2 ) = (H iX J(x,u) (h 2 ), h 1 )
Therefore, the eigenvalues λ 2 j , j = 1, 2, . . . , N of H 2 u(t) are conserved in time. Moreover, if we denote by {e j (0)} N j=0 an orthonormal basis of Ran(H u 0 ) such that H u 0 e j (0) = λ j e j (0), then e j (t) = U n (t)e j (0) form a basis of Ran(H u(t) ) such that H u(t) e j (t) = λ j e j (t). Then, by (4.6.9) and using the fact that B u,n is a skew-symmetric operator, we have

d dt e j (t), g(t) = B u,n e j (t), g(t) - i 4 e j (t), H 2n-2 u (g(t)) + e j (t), B u,n (g(t)) = - i 4 λ 2n-2 j e j (t), g (t) 
.

Therefore e j (t), g(t) = e -iφ j (t) e j (0), g 0 , with

d dt φ j = λ 2n-2 j 4
. Thus e j (t), g(t) = e j (0), g 0 and u(t) ∈ T C(u 0 ) for all t ∈ R. 

Λ(H u h) = - 1 2πi (u, h) = - 1 2πi lim ε→0 H u h, 1 1 -iεx . Then d dt γ j (t) = d dt T (t)e j (t), e j (t) = lim ε→0 d dt xe j (t) - 1 2πi e j (t), 1 1 -iεx (g(t) -1), e j (t) = lim ε→0 xB u,n e j (t) - 1 2πi B u,n e j (t), 1 1 -iεx (g(t) -1), e j (t) - 1 2πi lim ε→0 (e j (t), 1 1 -iεx ) i 4 H 2n-2 u (g) + B u,n (g), e j (t) + T (t)e j (t), B u,n e j (t) = [T, B u,n ]e j (t), e j (t) + Λ(e j (t)) i 4 H 2n-2 u (g) + B u,n (g), e j (t) = 1 8π 2n-2 k=1 e j (t), H 2n-2-k u (g) H k u (g), e j (t) + 1 8π e j (t), H 2n-2 u (g) g, e j (t) -Λ(e j (t)) B u,n (g), e j (t) + i 4 Λ(e j (t)) H 2n-2 u (g), e j (t) + Λ(e j (t)) B u,n (g), e j (t) . Writing e j (t) = H u(t) f j (t) ∈ Ran(H u(t) ), we have Λ(e j (t)) = Λ H u(t) f j (t) = - 1 2πi u(t), f j (t) = - 1 2πi H u(t) g(t), f j (t) = - 1 2πi H u(t) f j (t), g(t) = - 1 2πi e j (t), g (t) 
= -1 2πi e -iφ j (t) e j (0), g 0 = -1 2πi e j (t), g(t) . 

(t) = 1 8π 2n-2 k=1 λ 2n-2 j ν 2 j + 1 8π λ 2n-2 j ν 2 j - 1 8π λ 2n-2 j ν 2 j = n -1 4π λ 2n-2 j ν 2 j .
Proposition 4.6.6. If u ∈ M(N ) gen , then

u(x) = i 2π N j,k=1 λ j ν j ν k e 2iφ j (T -xI) -1 jk ,
where

T e j = k =j λ j ν j ν k 2πi • λ j -λ k e i(2φ j -2φ k ) λ 2 k -λ 2 j e k + (γ j + i ν 2 j 4π )e j , (4.6.10) 
for all j ∈ {1, 2, . . . , N }. In particular, χ is a one to one map.

Démonstration. The proof follows the same lines as the proof of Theorem 4.1.7. The only dierence is that we work with the orthonormal basis ẽj = e iφ j e j . Since H u is anti-linear, the orhonormal basis {e j } N j=1 satisfying H u e j = λ j e j is determined only modulo the sign of e j . Therefore, φ j = arg(e j , u 0 ) is determined modulo π. We intend to introduce generalized action-angle coordinates, and the angles should be dened modulo 2π. Considering the basis ẽj , the formulas we obtain only depend on 2φ j , which are therefore good candidates for the angles.

Proof of Theorem 4.1.14. Let us rst notice that, if we prove that χ is a symplectic dieomorphism, then the coordinates (2λ 2 j ν 2 j , 4πλ 2 j , 2φ j , γ j ) are canonical. Denote I j = 2λ 2 j ν 2 j . By equation E = 2J 4 = 2 N j=1 λ 4 j ν 2 j = N j=1 λ 2 j I j and using Proposition 4.6.5, we obtain that for the ow of the Szegö equation we have :

d dt (2φ j (t)) = {E, 2φ j } = 4{J 4 , φ j } = λ 2 j d dt γ j (t) = {E, γ j } = 2{J 4 , γ j } = λ 2 j ν 2 j 2π .
Thus, the Szegö equation can be indeed rewritten as

           d dt I j = 0 d dt φ j (t) = ∂E ∂I j d dt (4πλ 2 j ) = 0 d dt γ j (t) = ∂E ∂(4πλ 2 j ) .
The rst step in proving that χ is a symplectic dieomorphism is to compute the Poisson brackets between actions and (generalized) angles. This will lead to χ being a local dieomorphism.

Poisson brackets between actions and (generalized) angles

First notice that

J 2n (u) = (u, H 2n-2 u u) = N k=1 λ 2n k ν 2 k . (4.6.11) Fix j ∈ {1, 2, . . . , N }. Writing {J 2n , 2φ j } = N k=1 λ 2n-2 k {λ 2 k ν 2 k , 2φ j } + N k=1 (n -1)λ 2n-2 k ν 2 k {λ 2 k , 2φ j }
for all n = 1, 2, . . . , 2N we obtain the following linear system of equations :

N k=1 λ 2n-2 k {λ 2 k ν 2 k , 2φ j } + N k=1 (n -1)λ 2n-2 k ν 2 k {λ 2 k , 2φ j } = λ 2n-2 j 2 with 2N unknowns, {λ 2 k ν 2 k , φ j } and λ 2 k ν 2 k {λ 2 k , φ j }.
The matrix of this system is invertible. Indeed, supposing by absurd that the matrix is not invertible, it results that the columns are linearly dependent. Therefore, there exist numbers a n , n = 1, 2, . . . , 2N , not all zero, such that

2N n=1 a n (λ 2 k ) n-1 = 0, 2N n=1 a n (n -1)(λ 2 k ) n-2 = 0.
Considering the polynomial P (x) = 2N n=1 a n X n-1 , this yields P (λ 2 k ) = 0, P (λ 2 k ) = 0. Thus, each λ 2 k is a double root of the polynomial. Since a polynomial of degree 2N -1 with 2N roots is identically zero, we obtain a contradiction. Therefore, the system is a Cramer system and one can easily verify that its solutions are

{λ 2 k ν 2 k , 2φ j } = δ kj 2 (4.6.12)
{λ 2 k , 2φ j } = 0. Similarly, computing {J 2n , γ j }, we obtain the Cramer system

N k=1 λ 2n-2 k {λ 2 k ν 2 k , γ j } + N k=1 (n -1)λ 2n-2 k ν 2 k {λ 2 k , γ j } = n -1 4 λ 2n-2 j ν 2 j 4.6.2 -χ is a local dieomorphism 143 with solutions {λ 2 k ν 2 k , γ j } = 0 (4.6.14) {λ 2 k , γ j } = δ kj 4π . (4.6.15) 
Since λ 2 j and ν 2 j are conserved by the ow of any of the equations in the Szegö hierarchy, we have that

{J 2n , λ 2 j } = d dt λ 2 j = 0, {J 2n , ν 2 j } = d dt ν 2 j = 0.
Proceeding as above, we have two homogeneous Cramer systems, whose solutions must be null. Thus, we obtain

{λ 2 k ν 2 k , λ 2 j } = 0 (4.6.16) {λ 2 k , λ 2 j } = 0 (4.6.17) {λ 2 k ν 2 k , λ 2 j ν 2 j } = 0.
(4.6.18)

χ is a local dieomorphism

The fact that χ is a local dieomorphism is equivalent to proving that the dierentials dλ 2 j , d(λ 2 j ν 2 j ), dφ j , dγ j , j = 1, 2, . . . , N , are linearly independent. Suppose N j=1 α j d(λ 2 j ) + β j d(λ 2 j ν 2 j ) + θ j dφ j + η j dγ j = 0.

Applying this dierential to the vector eld X λ 2 k , using df (X g ) = {g, f }, (4.6.17), (4.6.16), (4.6.13), and (4.6.15), we obtain

N j=1 η j δ kj 4π = 0
and thus η k = 0, for all k = 1, 2, . . . , N . Applying the same dierential to X λ 2 k ν 2 k and using (4.6.16), (4.6.18), and (4.6.12), we obtain θ k = 0 for all k = 1, 2, . . . , N . Applying the dierential to X φ k and using (4.6.13) and (4.6.12) we have β k = 0 for all k = 1, 2, . . . , N . Finally, applying the dierential to X c k and using (4.6.15) we obtain α k = 0 for all k = 1, 2, . . . , N . Therefore, dλ 2 j , d(λ 2 j ν 2 j ), dφ j , dγ j , j = 1, 2, . . . , N , are linearly independent and χ is a local dieomorphism.

Since a bijective local dieomorphism is a dieomorphism, and we have by Proposition 4.6.6 that χ is one to one, we only need to show that χ is onto. A proper local dieomorphism taking values in a connected manifold is onto. Thus, it is enough to show that χ is proper.

χ is a proper mapping

Let K ⊂ Ω be a compact set. Set

I (p) , Ĩ(p) , 2φ (p) , γ (p) := 2 λ (p) j 2 ν (p) j 2 , 4π λ (p) j 2 , 2φ (p) j , γ (p) j N j=1 (I, Ĩ, 2φ, γ) := 2λ 2 j ν 2 j , 4πλ 2 j , 2φ j , γ j N j=1
.

Let (I (p) , Ĩ(p) , 2φ (p) , γ (p) ), (I, Ĩ, 2φ, γ) ∈ K such that I (p) j , Ĩ(p) j , 2φ (p) j , γ (p) j 
→ (I, Ĩ, 2φ, γ) as p → ∞. By Lemma 3.5 in [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF], which states that H u is a Hilbert-Schmidt operator of norm

H u H-S = 1 √ 2π u Ḣ1/2 + , we have that u p 2 L 2 + =J 2 (u p ) = N j=1 λ (p) j 2 (ν (p) j ) 2 = 1 2 N j=1 I (p) j , u p 2 Ḣ1/2 
+ =2π H up 2 H-S = 2πTr(H 2 up ) = 2π N j=1 λ (p) j 2 = 1 2 N j=1 Ĩ(p) j .
Since I (p) → I and Ĩ(p) → Ĩ as p → ∞, this yields that u p H 1/2 is bounded. Consequently, there exists u ∈ H

1/2 + such that u p u in H 1/2 + .
It follows in particular that u p → u in L 2 loc . We denote by λ j (u), ν j (u), φ j (u), and γ j (u) the spectral data for u.

By Proposition 4.6.6, we have that

u p (x) = i 2π N j,k=1 λ (p) j ν (p) j ν (p) k e 2iφ (p) j (T (p) -xI) -1 jk , where (T (p) -xI) -1 jk is a component of the matrix (T (p) -xI) -1 in the basis {e (p) j } N
j=1 , and

T (p) e (p) j = k =j λ (p) j ν (p) j ν (p) k 2πi • λ (p) j -λ (p) k e i(2φ (p) j -2φ (p) k ) (λ (p) 
k ) 2 -(λ (p) j ) 2 e k + γ (p) j + i ν (p) j 2 4π e j ,
We prove in the following that λ j (u) = λ j and ν j (u) = ν j . Since, by equation (4.6.11), J 2(n+1)

(u p ) = N j=1 λ (p) j 2(n+1) ν (p) j 2 , we have that ∞ n=0 x n J 2(n+1) (u p ) = ∞ n=0 x n N j=1 λ (p) j 2(n+1) ν (p) j 2 = N j=1 λ (p) j 2 ν (p) j 2 ∞ n=0 x n λ (p) j 2n = N j=1 λ (p) j 2 ν (p) j 2 1 -x λ (p) j 2 , 
for |x| < 1/λ 2 j , and thus for every x distinct from the poles. Then, using λ

→ ν j , we obtain

∞ n=0 x n J 2(n+1) (u p ) → N j=1 λ 2 j ν 2 j 1 -xλ 2 j .
On the other hand, we have that

∞ n=0 x n J 2(n+1) (u p ) → ∞ n=0 x n J 2(n+1) (u) = N j=1 λ j (u) 2 ν j (u) 2 1 -x λ j (u) 2 .
Therefore,

N j=1 λ 2 j ν 2 j 1 -xλ 2 j = N j=1 λ j (u) 2 ν j (u) 2 1 -x λ j (u) 2 ,
which yields, by identication, λ j (u) = λ j and ν j (u) = ν j .

At last, we show that e j (u p ) → ±e j (u). It then follows that 2φ (p) j =2φ j (u p ) = arg(u p , e j (u p )) 2 → arg(u, e j (u)) 2 = 2φ j (u) γ (p) j =γ j (u p ) = Re(T (p) e j (u p ), e j (u p )) → Re(T e j (u), e j (u)) = γ j (u). (p) j → γ j , we obtain that 2φ j (u) = 2φ j and γ j (u) = γ j . Hence χ(u) = (I, Ĩ, 2φ, γ) ∈ K, and u ∈ χ -1 (K). Thus χ -1 (K) is compact, which proves that χ is proper.

We still need to show that e j (u p ) → ±e j (u). Using λ (p)

j → λ j = λ j (u), ν (p) j → ν j = ν j (u), we have that u p Ḣ1/2 + = N j=1 λ (p) j 2 ν (p) j 2 → N j=1 λ j (u) 2 ν j (u) 2 = u Ḣ1/2 + . Since u p u in H 1/2 + and u → u in L 2 + , it follows that u p → u in H 1/2 + .
This yields that H up → H u in the sense of the norm. As a consequence, setting P (p) j h := (h, e j (u p ))e j (u p ).

to be the orthogonal projection onto the eigenspace of H 2 up , corresponding to the eigenvalue λ (p) j 2 and similarly, P j (u)h := (h, e j (u))e j (u)

to be the orthogonal projection onto the eigenspace of H 2 u , corresponding to the eigenvalue λ 2 j (u), we have by Theorem VIII.23 in [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF], that P (p) j → P j (u).

Therefore, (h, e j (u p ))e j (u p ) → (h, e j (u))e j (u) as p → ∞, for all h ∈ L 2 + . Taking h = e j (u), we have that (e j (u), e j (u p ))e j (u p ) → e j (u). Since e j (u p ) and e j (u) are unitary vectors, we notice that |(e j (u), e j (u p ))| = 1. Then, using the relation (4.1.3), we have (e j (u), e j (u p )) = 1

λ (p) j (e j (u), H up e j (u p )) = 1 λ (p) j (e j (u), H u e j (u p )) + 1 λ (p) j (e j (u), H up-u e j (u p )) = 1 λ (p) j (e j (u p ), H u e j (u)) + 1 λ (p) j (e j (u), H up-u e j (u p )) = λ j (u) λ (p) j (e j (u p ), e j (u)) + 1 λ (p) j (e j (u p ), H up-u e j (u))
Letting p → ∞, we obtain lim p→∞ (e j (u), e j (u p )) = lim p→∞ (e j (u p ), e j (u)) = lim p→∞ (e j (u), e j (u p )).

Since the above limit is of absolute value 1, we obtain that lim p→∞ (e j (u), e j (u p )) = ±1 and therefore e j (u p ) → ±e j (u) as p → ∞.

{A, C}(u) = d u C • X ReA + id u C • X ImA . Since d u A(h) = 2Re(h, T u) + Λ(u) g(1 -g), h + h, 1 2πi (u, g)g , 
for all h rational function (notice that we extend the denition of T to N ∈N * M(N )),

we obtain the following Hamiltonian vector elds :

X ReA = - i 2 T u - i 4 Λ(u)g(1 -g) - 1 8π (u, g)g, X ImA = - 1 4 Λ(u)g(1 -g) - i 8π (u, g)g.
Similarly we have

d u C(h) = Λ(u)(f (1 -g), h) - 1 2πi (u, g)(h, f (1 -g)) + (T h, g) + (h, (1 -g)T g),
where f is the unique element in Ran(H u ) such that H u f = g. By Lemma 4.2.1, we have that Ker(H u ) = (1 -g)L 2 + and using the orthogonality of Ker(H u ) and Ran(H u )

we obtain

{A, C} = - i 2 (T 2 u, g) + 1 4π Λ(u)(u, g)(g, f ) - i 2 Λ(u)(T g(1 -g), g) - i 2 Λ(u)(g, T g).
Notice also that, by Lemmas 4.2.1 and 4.2.11, we have

T g(1 -g) = xg(1 -g) -Λ g(1 -g) (1 -g) = xg(1 -g) -Λ(g)(1 -g) = (1 -g)T * g ∈ Ker(H u ),
and thus by orthogonality of Ker(H u ) and Ran(H u ), the third term vanishes. By (4.2.21), we rewrite the rst term as

- i 2 (T 2 u, g) = - i 2 T * T u - 1 2πi (T u, g)g, g = - i 2 (T u, T g) + 1 4π (T u, g)(g, g).
Hence, we have

{A, C} = - i 2 (T u, T g) + 1 4π (T u, g)(g, g) + 1 4π Λ(u)(u, g)(g, f ) - i 2 Λ(u)(g, T g).
Proceeding as in the case of {J 1 , J 3 }, we obtain after tedious computations that {γ j , 2φ k } = 0 and {γ j , γ k } = 0 for all j, k ∈ {1, 2, . . . , N }, which proves that the coordinates we dened are symplectic.

Proof of Corollary 4.1.15. Fixing λ j and ν j the application χ in Theorem 4.1.14 yields a dieomorphism between T C(u 0 ) and T N × R N .

Introduction

In this paper we consider the following nonlinear wave equation on R and T :

i∂ t v -|D|v = |v| 2 v, v(0) = v 0 (NLW)
where D = -i∂ x . It is indeed a nonlinear wave equation since by applying the operator i∂ t + |D| to both sides of the equation, we obtain :

-∂ tt v + ∆v = |v| 4 v + 2|v| 2 (|D|v) -v 2 (|D|v) + |D|(|v| 2 v).
Equation (NLW) was studied on T by Gérard and Grellier in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF].

We consider the Hardy spaces on the unit disc and upper upper-half plane :

L 2 + (T) = {f ∈ L 2 (T); f (k) = 0 if k < 0}, L 2 + (R) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)},
and the corresponding Sobolev spaces H s

+ (T) = L 2 + (T) ∩ H s (T) and H s + (R) = L 2 + (R) ∩ H s (R), s ≥ 0.
The Szegö projector onto the Hardy space of the unit disc is

Π + : L 2 (T) → L 2 + (T),
dened by :

Π + f (x) = ∞ k=0 f (k)e ikx .
In the case of R, the Szegö projector Π + : L 2 (R) → L 2 + (R) can be dened similarly by :

Π + f (ξ) = f (ξ), if ξ ≥ 0, 0, if ξ < 0
We also dene Π -= I -Π + , where I is the identity operator. Applying the projectors Π + and Π -and writing v = v + + v -, where v + = Π + (v), and v -= Π -(v), we obtain that equation (NLW) is equivalent to the following system :

i(∂ t v + + ∂ x v + ) = Π + (|v| 2 v) i(∂ t v --∂ x v -) = Π -(|v| 2 v).
(5. 1.3) Notice that this is a system of transport equations similar to the one obtained from the Schrödinger equation (5.1.2). We expect that the study of this system and therefore 

E(v) = 1 2 (|D|v, v) + 1 4 v 4 L 4 ,
with respect to the symplectic form ω(u, v) = Im uvdx. From this structure, we obtain the formal conservation law of energy E(v(t)) = E(v(0)). The invariance under translations and under modulations provides two more conservation laws,

Q(v(t)) = Q(v(0)) and M (v(t)) = M (v(0)), where Q(v) = v 2 L 2 and M (v) = (Dv, v).
The conservation of the mass and energy yields a uniform bound on the H 1/2 -norm of the solution of (NLW). Therefore it seems natural to study the well-posedness of (NLW) in H 1/2 . The following result from [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] states that indeed, the (NLW) equation on T is globally well-posed in H 1 2 (T).

Proposition 5.1.1 ([37]). The nonlinear wave equation (NLW) is globally well-posed in

H 1 2 (T). Moreover, if v 0 ∈ H s (T) for some s > 1 2 , then v ∈ C(R; H s ).
An analogous result holds for (NLW) equation on R.

In this paper we prove that the solution of the (NLW) equation on R with an initial condition of order O(ε) and supported only on positive frequencies, can be approximated by the solution of a simpler equation with the same initial data. The approximation is of order O(ε 2 ) and holds for a long time. The approximate equation is the Szegö equation, recently introduced by Gérard and Grellier : i∂ t u = Π + (|u| 2 u). (5.1.4) This equation was studied in details on T in [START_REF] Gérard | The cubic Szegö equation[END_REF][START_REF] Gérard | Invariant tori for the cubic Szegö equation[END_REF] and on R in [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF][START_REF] Pocovnicu | Explicit formula for the solution of the Szegö equation on the real line and applications[END_REF]. It is globally well-posed in H s + (T) and H s + (R) for s ≥ 1/2. Its most remarkable property is that it is completely integrable, in the sense that it admits a Lax pair. In particular, it possesses an innite sequence of conservation laws, the strongest one being the

H 1/2 + -norm.
The approximation result for the (NLW) equation on R was motivated by a similar one proved by Gérard, Grellier [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] in the case of T. The case of R brings new diculties related, as we see below, to the low frequencies. Moreover, the method used in the case of T is the theory of Birkho normal forms, which seems dicult to adapt to the case of R. Our result will be proved using the renormalization group method of Chen, Goldfend and Oono [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF][START_REF] Chen | Renormalization group and singular perturbations : multiple scales, boundary layers, and reductive perturbation theory[END_REF] coming from theoretical physics.

where C 0 > 0 is an absolute constant and C * is a constant depending only on the H

1/2 + (R)-norm of W 0 .
Notice that the approximation in Theorem 5.1.2 in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] for the case of T, is better than the one in Theorem 5.1.3 for the case of R (ε 3 instead of ε 2 ). This is what we expected even from our heuristic argument above. We will see in the proof that the estimates we have in the case of R are worse than those for the case of T, due to low frequencies.

Remark 5.1.4. Theorem 5.1.2 was proved in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] using the theory of Birkho normal forms. This method seems to be dicult to adapt to the case of R. The method we use in this paper is the renormalization group method, coming from theoretical physics.

The two methods are intimately related. In [START_REF] Ziane | On a certain renormalization group method[END_REF], it was noticed that, for a large class of autonomous ODEs, the nonlinearity which appears in the RG equation of order one is actually the Birkho normal form. This result was extended in [START_REF] Ville | Analysis of a renormalization group method and normal form theory for perturbed ordinary dierential equations[END_REF] to order two, for the same class of autonomous ODEs, and to rst order, for a class of non-autonomous ODEs. The advantage of the RG method over the normal form theory is that the secular terms are more readily identied by inspection of a naive perturbation expansion, than by inspection of the vector eld.

The purpose of the approximation Theorem 5.1.3 is to deduce some information on the (NLW) equation from the known results one has for the Szegö equation. Some particularly interesting solutions of the Szegö equation are those whose initial conditions are non-generic rational functions, for example W 0 = 1 x+i -2

x+2i

. For such solutions, we proved in [START_REF] Pocovnicu | Explicit formula for the solution of the Szegö equation on the real line and applications[END_REF] the following result :

Proposition 5.1.5 ([76]). Let s > 1/2. Let W ∈ C(R, H s + (R)) be the solution of the Szegö equation

i∂ t W = Π + (|W | 2 W ) with non-generic initial condition W 0 = 1 x+i -2 x+2i ∈ H s + (R).
Then, for t large enough, there exist C, c > 0 such that

c t 2s-1 ≤ W (t) H s ≤ Ct 2s-1 .
In particular, W (t) H s → ∞ as t → ∞. Then, for

1 2ε 2 log( 1 ε δ ) 1 4s-1 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1 , we have that v(t) H s (R) v(0) H s (R) ≥ C log( 1 ε δ ) 4s-2 4s-1 .
A similar result is available for the case of T [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF].

The time on which the approximation in Theorem 5.1.3 is available,

t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
, does not allow us to prove the existence of a time t ε such that v(t ε ) H s (R) → ∞ as ε → 0. For that to happen, we would need an approximation at least up to a time of order 1 ε 2+β where β > 0.

In the case of T, we nd the second order approximation, that is an approximation with an error of order ε 5 instead of ε 3 . We notice that the eective dynamics are no longer given by the Szegö equation. 

i∂ t v -|D|v = |v| 2 v v(0) = W 0 = εW 0 . Consider W ∈ C(R, H s + (T)
) to be the solution of the following equation on T :

i∂ t W = Π(|W| 2 W) -Π + (|W| 2 1 D Π -(|W| 2 W)) -1 2 Π + (W 2 1 D Π -(|W| 2 W)) W(0) = W 0 .
(5. 1.9) with the same initial condition.

For a function h ∈ H s (T) set

f osc (h, t) = e i|D|t (|e -i|D|t h| 2 e -i|D|t h) - 1 2π
2π 0 e i|D|τ (|e -i|D|τ h| 2 e -i|D|τ h)dτ.

The specicity of the (NLW) equation is that the resonant set does not have measure zero, as it was the case in the above cited papers. For this reason it is natural not to expect scattering, but a long-time approximation of the solution by some eective dynamics governed by the eect of the resonant part of the non-linearity.

The decomposition in resonant and non-resonant part, was used in [START_REF] Abou | On the renormalization group approach to perturbation theory for PDEs[END_REF], precisely in this purpose in the case of the quadratic Schrödinger equation in dimension 3.

The structure of the paper is as follows. In the rest of the introduction, we heuristically explain the need of splitting the nonlinearity into its resonant and oscillatory part, which is at the basis of both the RG and averaging method. In Section 2, we present the RG method and use it to prove Theorem 5.1.3, dealing with the rst order approximation in the case of R. We also prove Corollary 5.1.6 which refers to high Sobolev norm ination in the case of non-generic initial data. To have a good comparison between the case of R and that of T, and for a better understanding of the second order approximation in the case of T, in Section 3 we re-prove Theorem 5.1.2 from [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] using the RG method. In Section 4, we present the averaging method at second order and use it to prove Theorem 5.1.7 treating the second order approximation in the case of T.

Heuristics of the proof of Theorem 5.1.3

The rst approach to proving Theorem 5.1.3 is the following one. Consider the change of variables u(t) = 1 ε e i|D|t v(t). Then u satises the equation :

∂ t u = -iε 2 e i|D|t (|e -i|D|t u| 2 e -i|D|t u) u(0) = W 0 .

(5.1.10)

Let us now set W (t) := W(t)

ε . Then W (t) satises i∂ t W = ε 2 Π + (|W | 2 W ) W (0) = W 0 .
(5.1.11)

Then, setting w(t) = u(t) -W (t), we have

v(t) -e -i|D|t W H s = ε e -i|D|t u(t) -W (t) H s = ε w(t) H s .
We have that w satises the equation 

∂ t w = -iε 2 e i|D|t (|e -i|D|t u| 2 e -i|D|t u) + iε 2 Π + (|W | 2 W ) w(0) = 0.
f (W (τ ), τ ) = -iΠ + (|W (τ )| 2 W (τ )) + f osc (W (τ ), τ ).
Therefore,

w(t) = ε 2 t 0 f (u(τ ), τ ) -f (W (τ ), τ ) dτ + t 0 f osc (W (τ ), τ )dτ
The rst term will indeed yield w = u -W , and we are left with estimating the integral of the oscillatory part f osc (W (τ ), τ ). Since it depends on τ both explicitly and implicitly, it turns out that it can be dicult to estimate its integral. For that reason we consider in the following F osc (W (t), t) = t 0 f osc (W (t), τ )dτ , where the integrand depends only explicitly on τ . We construct an ansatz using F osc (W, t) and we prove that with this ansatz, the error is indeed small.

First order approximation for the (NLW)

equation on R

The renormalization group method at order one

In what follows we describe the RG method of rst order in the case of the (NLW) equation on R.

In the (NLW) equation, we make the change of variables u(t) = 1 ε e i|D|t v(t) and set ε := ε 2 . Then u satises the equation :

∂ t u = -iεe i|D|t (|e -i|D|t u| 2 e -i|D|t u) =: εf (u, t) u(0) = 1 ε v 0 =: u 0 .
(5.2.1)

First order approximation for the (NLW) equation on R

The starting point of the RG method is the naive perturbation expansion u(t) = u (0) (t) + εu (1) (t) + ε2 u (2) (t) + . . .

Taylor-expanding f (u, t) around u (0) , we obtain 0) , t) + εf (u (0) , t)u (1) (t) + . . .

f (u, t) = f (u (0) , t) + f (u (0) , t)(u(t) -u (0) (t)) + • • • = f (u ( 
Plugging the last two expansions into the equation (5.2.1) and identifying the coecients according to the powers of ε, we obtain :

         ∂ t u (0) = 0 ∂ t u (1) = f (u (0) , t) ∂ t u (2) = f (u (0) , t) • u (1) (t) . . . (5.2.2)
Therefore, u (0) (t) = u 0 for all t ∈ R, and using Duhamel's formula we have u (1) (t) = t 0 f (u 0 , s)ds.

Here we assumed that u (1) (0) = 0. As it was shown in [START_REF] Ziane | On a certain renormalization group method[END_REF], this assumption does not cause a loss of generality for an approximation of order ε. Thus, if we look for an approximation of the solution up to order O(ε) and neglect any terms O(ε 2 ), we have

u(t) = u 0 + εu (1) (t) + O(ε 2 ) = u 0 + ε t 0 f (u 0 , s)ds + O(ε 2 ).
(5.2.3)

Now we decompose the nonlinearity f (u, t) into its resonant and non-resonant part. In order to do that, we rst write the nonlinearity in the Fourier space : 

F f (u, s) (ξ) = -ie i|ξ|s F |e -i|D|s u| 2 e -i|D|s u (ξ) = -ie i|ξ|s R F (e -i|D|s u) 2 (η)F e -i|D|s u (ξ -η)dη = -ie i|ξ|s R R F e -i|D|s u (η -ζ)F e -i|D|s u (ζ)F e -i|D|s u) (ξ -η)dζdη = -i R R e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη.
f osc (u, s) = -iF -1 φ =0 e is(|ξ|-|ζ|+|η-ξ|-|η-ζ|) û(η -ζ)û(ζ)û(η -ξ)dζdη.
As it will be proved in Lemma 5. 

u(t) = u 0 + εtf res (u 0 ) + ε t 0 f osc (u 0 , s)ds + O(ε 2 ).
We notice that the resonant part of the non-linearity, which is constant in time, causes the appearance of the secular term εtf res (u 0 ). This term will grow with time and will cause the approximation to break down as time approaches 1 ε . The purpose of the renormalization group method consists in renormalizing the secular term. By doing that, its main contribution is taken into account in such a way that the approximation of u stays valid at least up to a time of order 1 ε . The idea behind the renormalization group method is to regard the term u 0 + εtf res (u 0 ) as being the Taylor expansion of order one of a function W (t) around t = 0. Then, one introduces the renormalization group equation :

∂ t W = εf res (W ) W (0) = u 0 (5.2.6) An approximation of order O(ε) of u(t) is then u(t) = W (t) + εF osc (W (t), t),
where we set F osc (h, t) := t 0 f osc (h, s)ds for all h ∈ H 1 2 + .

Approximate solution for the (NLW) equation on R

In this section we construct an approximate solution based on the solution of the RG equation. We rst determine the resonant part of the non-linearity f res . For that purpose we x ξ ∈ R, and determine the area in the (ζ, η)-plane in which φ(ξ, η, ζ) vanishes.

First order approximation for the (NLW) equation on R Let us rst make the following notations :

ξ 1 = ξ, ξ 2 = ζ, ξ 3 = η -ξ, ξ 4 = η -ζ. Notice that ξ 1 -ξ 2 + ξ 3 -ξ 4 = 0. Then, φ(ξ, η, ζ) = 0 is equivalent to |ξ 1 | -|ξ 2 | + |ξ 3 | -|ξ 4 | = 0.
We have the following lemma, whose proof follows its analogue in the case of T [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF]. Lemma 5.2.1. The set of (ξ 1 , ξ 2 , ξ 3 , ξ 4 ) ∈ R 4 such that ξ 1 -ξ 2 + ξ 3 -ξ 4 = 0 and

|ξ 1 | -|ξ 2 | + |ξ 3 | -|ξ 4 | = 0, is M :={(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) ∈ R 4 , ξ 1 = ξ 2 , ξ 1 = ξ 4 ξ 1 , ξ 2 , ξ 3 , ξ 4 ≥ 0} ∪ {(ξ 1 , ξ 2 , ξ 3 , ξ 4 ) ∈ R 4 , ξ 1 = ξ 2 , ξ 1 = ξ 4 ξ 1 , ξ 2 , ξ 3 , ξ 4 ≤ 0} ∪ {(ξ 1 , ξ 1 , ξ 3 , ξ 3 ) ∈ R 4 } ∪ {(ξ 1 , ξ 2 , ξ 2 , ξ 1 ) ∈ R 4 }.
Démonstration. Suppose ξ 1 = ξ 2 and ξ 1 = ξ 4 . Without loss of generality, we can assume that one of the four elements is strictly positive. Otherwise, all are smaller or equal to zero. Suppose ξ 1 > 0. Subtracting the two relations in the hypothesis we obtain

|ξ 3 | -ξ 3 = |ξ 2 | -ξ 2 + |ξ 4 | -ξ 4 .
Then, if ξ 3 ≥ 0, this yields ξ 2 , ξ 4 ≥ 0. If ξ 3 < 0, at least one of ξ 2 or ξ 4 is negative. If both are negative, then we obtain ξ 3 = ξ 2 + ξ 4 , and thus ξ 1 = 0, which is a contradiction. If ξ 2 < 0 and ξ 4 ≥ 0, we have ξ 3 = ξ 2 , and consequently ξ 1 = ξ 4 , which contradicts our assumption. Similarly, if ξ 4 < 0 and ξ 2 ≥ 0, we obtain the contradiction ξ 1 = ξ 2 . Thus, the set of (ξ

1 , ξ 2 , ξ 3 , ξ 4 ) ∈ R 4 such that ξ 1 -ξ 2 + ξ 3 -ξ 4 = 0 and |ξ 1 | -|ξ 2 | + |ξ 3 | -|ξ 4 | = 0 is M .
Coming back to the notations in ξ, η, and ζ, we have that φ(ξ, η, ζ) = 0 in the following cases :

If ξ > 0 and (η, ζ) ∈ {(η, ζ) ∈ R 2 |η ≥ ξ, η ≥ ζ ≥ 0} ∪ {ζ = ξ} ∪ {η -ζ = ξ} If ξ < 0 and (η, ζ) ∈ {(η, ζ) ∈ R 2 |η ≤ ξ, η ≤ ζ ≤ 0} ∪ {ζ = ξ} ∪ {η -ζ = ξ}
Since, for xed ξ ∈ R, the sets {ζ = ξ} and {η -ζ = ξ} are of measure zero in the (ζ, η)-plane, they do not interfere in the integration in equation (5.2.5), and thus we can neglect them. We are therefore left with the following two terms of F f res (u) :

1. The case ξ > 0, ζ ≥ 0, η -ζ ≥ 0, η -ξ ≥ 0 : -i1 1 1 ξ>0 û(η -ζ)û(ζ)û(η -ξ)1 1 1 ζ≥0 1 1 1 η-ζ≥0 1 1 1 η-ξ≥0 dζdη = -i1 1 1 ξ>0 û+ (η -ζ)û + (ζ)û + (η -ξ)dζdη = -iF Π + (|u + | 2 u + ) (ξ)1 1 1 ξ>0 . 2. The case ξ < 0, ζ < 0, η -ζ < 0, η -ξ < 0 : -i1 1 1 ξ<0 û(η -ζ)û(ζ)û(η -ξ)1 1 1 ζ<0 1 1 1 η-ζ<0 1 1 1 η-ξ<0 dζdη = -1 1 1 ξ<0 i û-(η -ζ)û -(ζ)û -(η -ξ)dζdη = -iF Π -(|u -| 2 u -) (ξ)1 1 1 ξ<0 .
Thus, the resonant part of the nonlinearity is

f res (u) = -i Π + (|u + | 2 u + ) + Π -(|u -| 2 u -) (5.2.7) 
Let W 0 ∈ H s + (R), s > 1/2. We consider the renormalization group equation :

∂ t W = ε 2 f res (W ) W (0) = W 0 (5.2.8)
Projecting onto non-negative and negative frequencies, we obtain two equations, one for W + := Π + (W ) and one for W -:= Π -(W ). Notice rst that, since W 0 ∈ H s + (R), we have that W 0,-= 0 and W 0,+ = W 0 . Then, the equations we obtain are :

i∂ t W + = ε 2 Π + (|W + | 2 W + ) W + (0) = W 0 and i∂ t W -= ε 2 Π -(|W -| 2 W -) W -(0) = 0.
By the Cauchy-Lipschitz theorem, we have that W -(t) = 0 for all t ∈ R, and thus W = W + . We construct an approximate solution by u app (t) = W (t) + ε 2 F osc (W (t), t).

(5.2.9)

F osc (W, t) H s ≤ C * t 1/2 + C W 3 H s , D W F osc (W (t), t) • f res (W (t)) H s ≤ C * t 1/2 + C W 5 H s ,
where C > 0 is an absolute constant and C * > 0 is a constant depending only on the

H 1/2 + (R)-norm of W 0 .
Démonstration. Since W ∈ L 2 + (R) and using Lemma 5.2.1, we have that f osc (W (t), s, ξ)

= -i φ =0 e isφ(ξ,η,ζ) Ŵ (t, η -ζ) Ŵ (t, ζ) Ŵ (t, η -ξ)1 1 1 η-ζ≥0 1 1 1 ζ≥0 1 1 1 η-ξ≥0 dηdζ = -i1 1 1 ξ<0 e isφ(ξ,η,ζ) Ŵ (t, η -ζ) Ŵ (t, ζ) Ŵ (t, η -ξ)1 1 1 η≥ζ 1 1 1 ζ≥0 dηdζ.
Then, Then,

F osc (W (t),t, ξ) = t 0 f osc (W (t), s, ξ)ds = -i1 1 1 ξ<0 e itφ(ξ,η,ζ) -1 iφ Ŵ (t, η -ζ) Ŵ (t, ζ) Ŵ (t, η -ξ)1 1 1 η≥ζ 1 1 1 ζ≥0 dηdζ.
F osc (W (t), t, ξ) = e -2itξ -1 2ξ F(|W | 2 W )(ξ)1 1 1 ξ<0 .
(5.2.12)

We now compute the L 2 -norm of F osc (W (t), t), using Parseval's identity :

2π F osc (W (t), t) 2 L 2 (R) = F osc (W (t), t) 2 L 2 (R) = 0 -∞ sin 2 (tξ) ξ 2 F(|W | 2 W )(ξ) 2 dξ ≤ F(|W | 2 W ) 2 L ∞ (R) 0 -∞ sin 2 (tξ) ξ 2 dξ ≤ |W | 2 W 2 L 1 (R) t ∞ 0 sin 2 x x 2 dx ≤ Ct W 6 L 3 (R) ≤ Ct W (t) 6 H 1/2 + (R) ≤ Ct W 0 6 H 1/2 + (R) .
The last inequality is due to the conservation of the H 1/2 + -norm by the ow of the Szegö equation. Therefore, F osc (W (t), t) L 2 (R) ≤ C * t 1/2 for all t ∈ R.

Let us now estimate the Ḣs -norm of F osc (W (t), t) for s ≥ 1.

F osc (W (t), t) 2 Ḣs (R) = 0 -∞ ξ 2s sin 2 (tξ) ξ 2 |F(|W | 2 W )(ξ) 2 dξ ≤ 0 -∞ ξ 2(s-1) |F(|W | 2 W )(ξ) 2 dξ ≤ |W | 2 W 2 Ḣs-1 (R) ≤ |W | 2 W 2 H s (R) ≤ W 6 H s (R) .
Therefore,

F osc (W (t), t) 2 H s (R) ≤ C * (t 1/2 + W 3 H s (R) ).
We proceed similarly for D W F osc (W (t), t) • f res (W ). First, we notice that

F D W F osc (W, t) • f res (W ) (ξ) =2 e -2itξ -1 2ξ F(|W | 2 f res (W ))(ξ)1 1 1 ξ<0 + e -2itξ -1 2ξ F(W 2 f res (W ))(ξ)1 1 1 ξ<0 .
We use in what follows the fact that f res (W ) = Π + (|W | 2 W ), which is a consequence of equation (5.2.7) and of W ∈ L 2 + (R). We estimate the L 2 -norm, using Parseval's identity :

2π D W F osc (W, t) • f res (W ) 2 L 2 (R) = F D W F osc (W, t) • f res (W ) (ξ) 2 L 2 (R) ≤ C 0 -∞ sin 2 (tξ) ξ 2 F(|W | 2 f res (W )(ξ) 2 dξ + C 0 -∞ sin 2 (tξ) ξ 2 F(W 2 f res (W )(ξ) 2 dξ ≤ C F(|W | 2 f res (W ) 2 L ∞ (R) + F(W 2 f res (W )) 2 L ∞ (R) 0 -∞ sin 2 (tξ) ξ 2 dξ ≤ C |W | 2 f res (W ) 2 L 1 (R) + W 2 f res (W ) 2 L 1 (R) t ∞ 0 sin 2 x x 2 dx ≤ Ct W 4 L 4 (R) f res (W ) 2 L 2 (R) ≤ Ct W 4 L 4 (R) Π + (|W | 2 W ) 2 L 2 (R) ≤ Ct W 4 L 4 (R) W 6 L 6 (R) ≤ Ct W (t) 10 H 1/2 + (R) ≤ C W 0 10 H 1/2 + (R) t ≤ C * t.
Then, proceeding as in the case of F osc (W ) and using the structure of an algebra of H s , s ≥ 1, we have that

D W F osc (W, t) • f res (W ) 2 Ḣs (R) ≤ C |W | 2 f res (W ) 2 Ḣs-1 (R) + C W 2 f res (W ) 2 Ḣs-1 (R) ≤ C W 4 H s (R) f res (W ) 2 H s (R) ≤ C W 4 H s (R) |W | 2 W 2 H s (R) ≤ W 10 H s (R) .
Therefore, for s ≥ 1 we have 

D W F osc (W, t) • f res (W ) H s (R) ≤ C * (t 1/2 + W 5 H s (R) ).
u app (t) H s ≤ W H s + ε 2 F osc(W,t) H s ≤ W H s + ε 2 C * t 1/2 + ε 2 C W 3 H s .
Then, we have

I H s ≤ ε 2 t 0 w(τ ) H s u(τ ) 2 H s + u app (τ ) 2 H s dτ ≤ Cε 2 t 0 w(τ ) H s w(τ ) 2 H s + u app (τ ) 2 H s dτ ≤ Cε 2 t 0 w(τ ) H s w(τ ) 2 H s + W 2 H s + ε 4 C * t + ε 4 C W 6 H s dτ.
Using W (s) -u app (s) = -ε 2 F osc (W (s), s), and proceeding as above, we obtain

II H s ≤ ε 4 t F osc (t, W (t)) L ∞ ([0,t],H s ) W 2 L ∞ ([0,t],H s ) + u app 2 L ∞ ([0,t],H s ) ≤ C * ε 4 t(t 1/2 + W 3 L ∞ ([0,t],H s ) )( W 2 L ∞ ([0,t],H s ) + ε 4 t + ε 4 W 6 L ∞ ([0,t],H s ) ).
and

III H s ≤ C * ε 4 t(t 1/2 + W 5 L ∞ ([0,t],H s ) ).
In order to estimate w we will use a bootstrap argument. Let 0 ≤ α ≤ 1 2 , δ > 0 small enough, and set T := sup t ≥ 0 w(t) H s ≤ 1 .

(5.2.14)

We will prove that T > 1

ε 2 log( 1 ε δ ) 1-2α
. Suppose by contradiction that

T ≤ 1 ε 2 log( 1 ε δ ) 1-2α
.

(5.2.15)

According to the hypothesis on W and since W = εW , we have that

W (t) H s (R) ≤ C log( 1 ε δ )
α for all t ∈ R. Using the estimates of I, II, III, we obtain

for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α that w(t) H s ≤Cε 2 t 0 w(τ ) H s (1 + W 2 H s + ε 4 C * τ + ε 4 C W 6 H s )dτ + C * ε 4 t(t 1/2 + W 3 H s )( W 2 H s + ε 4 t + ε 4 W 6 H s ) + C * ε 4 t(t 1/2 + W 5 H s ) ≤Cε 2 log( 1 ε δ ) 2α t 0 w(τ ) H s dτ + C * ε log( 1 ε δ ) 3 2 (1-2α) log( 1 ε δ ) 2α + C * ε log( 1 ε δ ) 3 2 (1-2α)
.

By Gronwall's inequality it follows, for 0

≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α , that w(t) H s ≤ C * ε log( 1 ε δ ) 3 2 -α e C log( 1 ε δ ) ≤ C * ε log( 1 ε δ ) 3 2 -α 1 ε Cδ ≤ C * ε 1-C 0 δ ,
If δ is suciently small, this bound is much better than the one imposed in the denition of T . Since w is continuous with respect to t, it follows that there exists γ > 0 such that w(t) H s ≤ 1,

for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
+ γ. This contradicts the assumption (5.2.15) we made on T . Therefore, T > 1

ε 2 log( 1 ε δ ) 1-2α
and, moreover, w(t)

H s ≤ ε 1-C 0 δ for all 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α . This yields u(t) -W (t) -ε 2 F osc (W (t), t) H s (R) ≤ C * ε 1-C 0 δ for all 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
. Since by Lemma 5.2.2, we have that 

ε 2 F osc (W (t), t) H s (R) ≤ ε 2 (C * t 1/2 + C W 3 H s ) ≤ C * ε log( 1 ε δ ) 1 2 (1-2α) ≤ C * ε 1-C 0 δ for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α , we obtain u(t) -W (t) H s (R) ≤ C * ε 1-C 0 δ .
i∂ t W = ε 2 Π + (|W | 2 W ) W (0) = W 0 .
With the change of variables W (t, x) = y(ε 2 t, x), we have that y satises the Szegö equation :

i∂ t y = Π + (|y| 2 y) y(0) = W 0 .
Then, according to Proposition 5.1.5, we have that y(t) H s (R) ∼ t 2s-1 , for all s > 1 2 and for t > 1 suciently large. Consequently, we have

W (t) H s (R) ∼ (ε 2 t) 2s-1 for ε 2 t suciently large. Suppose 1 2ε 2 log( 1 ε δ ) 1 4s-1 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1 . Then, c 2 2s-1 log( 1 ε δ ) 2s-1 4s-1 ≤ W (t) H s (R) ≤ C log( 1 ε δ ) 2s-1 4s-1 .
(5.2.17)

Applying Theorem 5.1.3 with α = 2s-1 4s-1 ∈ (0, 1 2 ), we obtain that v(t) -e -i|D|t εW (t) H s (R) ≤ Cε 2-C 0 δ , (5.2.18) for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1
. Then, equations (5.2.17) and (5.2.18) yield

v(t) H s ≥ εW (t) H s -v(t) -e -i|D|t εW (t) H s ≥ c 2 2s-1 ε log( 1 ε δ ) 2s-1 4s-1 -Cε 2-C 0 δ ≥ Cε log( 1 ε δ ) 2s-1 4s-1 .
Since v(0) = εW 0 , it follows that, for 1 2ε 2 log( 1 ε δ )

1 4s-1 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1 4s-1 , we have v(t) H s v(0) H s ≥ C log( 1 ε δ ) 2s-1 4s-1 .
5.3 First order approximation for the (NLW) equation on T

The renormalization group equation for the case of T

We decompose a 2π-periodic function a(t) in the following way :

a(t) = a res + a osc (t), (5.3.1) 
where

a res = 1 2π 2π 0 a(τ )dτ (5.3.2)
is the mean of the function a(t) or equivalently, the Fourier coecient at zero. The oscillatory part is then

a osc (t) = k =0
a(k)e itk .

(5. 3.3) With this decomposition, we notice that for the torus, the resonant and non-resonant part of the nonlinearity are the following :

f res (u, x) = -i ∞ k=-∞ e ikx k-l+m-j=0 |k|-|l|+|m|-|j|=0 û(j)û(l)û(m), f osc (u, s, x) = -i ∞ k=-∞ e ikx k-l+m-j=0 |k|-|l|+|m|-|j| =0 e is(|k|-|l|+|m|-|j|) û(j)û(l)û(m).
A slight dierence with the case of R is the denition of F osc (u, t) :

F osc (u, t, x) := -i ∞ k=-∞ e ikx k-l+m-j=0 |k|-|l|+|m|-|j| =0 e it(|k|-|l|+|m|-|j|) i(|k| -|l| + |m| -|j|) û(j)û(l)û(m),
whereas for R, we had F osc (u, t) = t 0 f osc (u, s)ds. Notice that in both cases we have that ∂Fosc ∂t (u, t, x) = f osc (u, t, x).

As it was shown in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF], the following lemma holds : f res (u). We obtain the following twelve terms :

1. The case k, l, m, j ≥ 0 :

-

i k-l+m-j=0 k,l,m,j≥0 û(j)û(l)û(m) = -iF Π + (|u + | 2 u + ) (k)1 1 1 k≥0 . 2. The case k ≥ 0, k = l, m = j < 0 : -i l=k≥0 m=j<0 û(j)û(l)û(m) = -iû(k)1 1 1 k≥0 -1 j=-∞ |û(j)| 2 = -i u - 2 L 2 û+ (k)1 1 1 k≥0 .
3. The case k ≥ 0, k = j, m = l < 0. We obtain as above -i u - 2 L 2 û+ (k)1 1 1 k≥0 . 4. The case k = 0 and l, m, j < 0 :

-i -l+m-j=0 l,m,j<0 û(j)û(l)û(m) = -iF |u -| 2 u -(0). 5. The case k, l, m, j < 0 : -i k-l+m-j=0 k,l,m,j<0 û(j)û(l)û(m) = -iF Π -(|u -| 2 u -) (k)1 1 1 k<0 . 6. The case k < 0, l = 0, j < 0, m < 0 : -i k+m-j=0,l=0, k,m,j<0 û(j)û(l)û(m) = -iû(0)1 1 1 k<0 -1 j=k-1 û(j)û(j -k) = -iû(0)F Π -|u -| 2 ) (k)1 1 1 k<0 .
7. The case k < 0, j = 0, l < 0, m < 0. We obtain as above -iû(0

)F Π -|u -| 2 ) (k)1 1 1 k<0 . 8. The case k < 0, m = 0, l < 0, j < 0 : -i k-l-j=0,m=0, k,l,j<0 û(j)û(l)û(m) = -iû(0)1 1 1 k<0 -1 j=k-1 û(j)û(k -j) = -iû(0)F u 2 -(k)1 1 1 k<0 . 9. The case k < 0, k = l, m = j ≥ 0 : -i k=l<0, m=j≥0 û(j)û(l)û(m) = -iû(k)1 1 1 k<0 ∞ j=0 |û(j)| 2 = -i u + 2 L 2 û-(k)1 1 1 k<0 . 10. The case k < 0, k = j, l = m ≥ 0. We obtain as above -i u + 2 L 2 û-(k)1 1 1 k<0 .
Thus, the resonant part of the nonlinearity is

f res (u, x) = -i ∞ k=0 F Π + (|u + | 2 u + ) (k)e ikx -2i u - 2 L 2 ∞ k=0 û+ (k)e ikx -iF |u -| 2 u -(0) -i -1 k=-∞ F Π -(|u -| 2 u -) (k)e ikx -2iû(0) -1 k=-∞ F Π -(|u -| 2 ) (k)e ikx -iû(0) -1 k=-∞ F(u 2 -)(k)e ikx -2i u + 2 L 2 -1 k=-∞ û-(k)e ikx or equivalently, f res (u, x) = -iΠ + (|u + | 2 u + ) -2i u - 2 L 2 u + -iF |u -| 2 u -(0) (5.3.4) -iΠ -(|u -| 2 u -) -2iû(0)Π -(|u -| 2 ) -iû(0)u 2 --2i u + 2 L 2 u -.
Lemma 5.3.2. Let s > 1 2 and W 0 ∈ H s + (T). We consider the renormalization group equation : 

∂ t u = ε 2 f res (u) u(0) = W 0 (5.3.5)
i∂ t W = ε 2 Π + (|W | 2 W ) W (0) = W 0 (5.3.6)
In particular, u -(t) = 0 for all t ∈ R.

Démonstration. We rst notice that f res :

H s (T) → H s (T), s > 1 2
, dened in equation (5.3.4) is a locally Lipschitz mapping. Indeed, one can prove using the structure of algebra of H s (T), that

f res (u) -f res (v) H s ≤ u -v H s ( u 2 H s + v 2 H s ),
for all u, v ∈ H s (T). Then, by the Cauchy-Lipschitz theorem it follows that equation (5.3.5) has an unique solution in H s (T).

With the change of variables W (t, x) = y(ε 2 t, x), we obtain from equation (5.3.6) that y satises the Szegö equation (5.1.4). The Szegö equation has a unique global solution supported on non-negative frequencies. Thus W is unique and satises W -(t) = 0 for all t ∈ R. The only term in the expression of f res (u) (5.3.4), which does not contain u -is -iΠ(|u + | 2 u + ). Therefore we immediately notice that the solution of the equation (5.3.6) is also the solution of the equation (5.3.5).

Estimates for the oscillatory part of the nonlinearity in the case of T

To re-prove Theorem 5.1.2 we apply exactly the same method used in the proof of Theorem 5.1.3. The only change that appears is in the estimate of F osc (W (t), t).

We show that in the case of the torus, we obtain a better estimate than in the case of the real line.

Lemma 5.3.3. Let s > 1 2 . For all W ∈ H s + (T), we have that

F osc (W, t) H s (T) ≤C s W 3 H s (T) , D W F osc (W, t) • f res (W ) H s (T) ≤C s W 5 H s (T) ,
where C s is a constant depending only on s.

Démonstration. The Fourier coecients of F osc (W, t) are :

F(F osc )(W, t, k) = - k-l+m-j=0, |k|-|l|+|m|-|j| =0 e it(|k|-|l|+|m|-|j|) i(|k| -|l| + |m| -|j|) Ŵ (j) Ŵ (l) Ŵ (m).
Setting Ŵk := Ŵ (k) for all k ∈ Z, and using the convexity of the function |x| α if α > 1, we have that

F osc (W, t) 2 H s (T) = k∈Z (1 + |k| 2 ) s k-l+m-j=0, |k|-|l|+|m|-|j| =0 e it(|k|-|l|+|m|-|j|) |k| -|l| + |m| -|j| Ŵj Ŵl Ŵ m 2 ≤ k∈Z (1 + |k| 2 ) s k=l-m+j | Ŵj Ŵl Ŵ m | 2 ≤ k∈Z (1 + |k| 2 ) s k=l-m+j | Ŵj Ŵl Ŵ m | k= l-m+ j | Ŵj Ŵl Ŵ m| ≤ k∈Z (1 + |k| 2 ) s k=l-m+j, k= l-m+ j | Ŵj Ŵl Ŵ m Ŵj Ŵl Ŵ m| = l-l-m+ m+j-j=0 (1 + |l -m + j| 2 ) s/2 (1 + | l -m + j| 2 ) s/2 | Ŵj || Ŵl || Ŵm || Ŵj || Ŵl || Ŵ m| ≤ l-l-m+ m+j-j=0 (1 + 3(|l| 2 + |m| 2 + |j| 2 )) s/2 (1 + 3(| l| 2 + | m| 2 + | j| 2 )) s/2 × | Ŵj || Ŵl || Ŵm || Ŵj || Ŵl || Ŵ m| ≤ 9 l-l-m+ m+j-j=0 [(1 + |l| 2 ) + (1 + |m| 2 ) + (1 + |j| 2 )] s/2 × [(1 + | l| 2 ) + (1 + | m| 2 ) + (1 + | j| 2 )] s/2 | Ŵj || Ŵl || Ŵm || Ŵj || Ŵl || Ŵ m| ≤ C s l-l-m+ m+j-j=0 [(1 + |l| 2 ) s/2 + (1 + |m| 2 ) s/2 + (1 + |j| 2 ) s/2 ] × [(1 + | l| 2 ) s/2 + (1 + | m| 2 ) s/2 + (1 + | j| 2 ) s/2 ]| Ŵj || Ŵl || Ŵm || Ŵj || Ŵl || Ŵ m| ≤ C s l-l-m+ m+j-j=0 (1 + |j| 2 ) s/2 | Ŵj || Ŵl || Ŵm |(1 + | j| 2 ) s/2 | Ŵj || Ŵl || Ŵ m| + similar terms
We consider the functions V * = j∈Z e ixj V * j and U * = j∈Z e ixj Û * j , where

V * j :=| Ŵj | Û * j :=(1 + |j| 2 ) s/2 | Ŵj |.
Ignoring the other terms in the above sum, which can be treated in a similar manner as the term we keep, and using the Sobolev embedding H

s (T) ⊂ L ∞ (T) if s > 1/2, we obtain F osc (W (t), t) 2 H s (T) ≤ C s l-l-m+ m+j-j=0 Û * j V * l V * m Û * j V * l V * m ≤ C s T U * U * (V * ) 2 (V * ) 2 dz ≤ C s T |U * | 2 |V * | 4 dz ≤ C s U * 2 L 2 (T) V * 4 L ∞ (T) ≤ C s U * 2 L 2 (T) V * 4 H s (T) ≤ C s V * 2 H s (T) V * 4 H s (T) ≤ C s W 6 H s (T) ,
where C s denotes a constant depending on s.

The second estimate in the statement,

D W F osc (W, t) • f res (W ) H s (T) ≤ C s W 5 H s (T) ,
can be proved similarly. 

0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α w(t) H s ≤ C log( 1 ε δ ) 2α ε 2 t 0 w(τ ) H s dτ + Cε 4 log( 1 ε δ ) 5α t.
This yields, by Gronwall's inequality, for 0

≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α , that w(t) H s ≤ Cε 4 log( 1 ε δ ) 5α te Cε 2 log( 1 ε δ ) 2α t ≤ ε 2-C 0 δ , where C 0 > 0. Since w(t) = u(t) -W (t) -ε 2 F osc (W (t), t) and F osc (W (t), t) H s ≤ C log( 1 ε δ ) 3α , it follows that u(t) -W (t) H s (T) ≤ Cε 2-C 0 δ if 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
.

Then, the changes of variables v(t) = εe i|D|t u(t) and W = εW yield the conclusion

v(t) -e -i|D|t W(t) H s (T) ≤ Cε 3-C 0 δ if 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α . 
5.4 Second order approximation for the (NLW) equation on T

5.4.1

The averaging method at order two As before, in the (NLW) equation with initial condition v(0) = W 0 = εW 0 , we make the change of variables u(t) = 1 ε e i|D|t v(t). Then u satises the equation :

∂ t u = -iε 2 e i|D|t (|e -i|D|t u| 2 e -i|D|t u) =: f (u, t) u(0) = W 0 .
The averaging method at order two introduced by Temam and Wirosoetisno in [START_REF] Temam | Averaging of dierential equations generating oscillations and an application to control, Special issue dedicated to the memory of Jacques-Louis Lions[END_REF],

consists in considering the following averaging ansatz :

u app (t) = W (t) + ε 2 N 1 (W, t) + ε 4 N 2 (W, t) =: N (W, t, ε), (5.4.1)
where W is a solution of the following averaged equation :

∂ t W = ε 2 R 1 (W ) + ε 4 R 2 (W ) =: R(W, ε) W (0) = W 0 . (5.4.2) 
The use of these notations is explained by the fact that R 1 , R 2 turn out to be resonant terms, while N 1 , N 2 are non-resonant (oscillatory) terms.

A formal computation then shows that

∂ t u app (t) = ∂N (W, t, ε) ∂t = N (W, t, ε) • ∂W ∂t + ∂N ∂t (W, t, ε) =(ε 2 N 1 (W, t) + ε 4 N 2 (W, t)) • (ε 2 R 1 (W ) + ε 4 R 2 (W )) + ∂W ∂t + ε 2 ∂N 1 ∂t (W, t) + ε 4 ∂N 2 ∂t (W, t) =ε 2 R 1 (W ) + ∂N 1 ∂t (W, t) + ε 4 R 2 (W ) + N 1 (W, t) • R 1 (W ) + ∂N 2 ∂t (W, t) + O(ε 6 ).
We now formally Taylor-expand f (u app (t), t) around W (t),

f (u app , t) = f (W, t) + f (W, t) • (u app -W ) + O(ε 4 ) = f (W, t) + ε 2 f (W, t) • N 1 (W, t) + O(ε 4 ).

-
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We replace the two expansions into the equation

∂ t u app = ε 2 f (u app , t) + O(ε 6 )
in order to determine R 1 , R 2 , N 1 , N 2 which yield an approximate solution. Identifying the coecients according to the powers of ε, we obtain the equations

R 1 (W ) + ∂N 1 ∂t (W, t) =f (W, t) (5.4.3) R 2 (W ) + N 1 (W, t) • R 1 (W ) + ∂N 2 ∂t (W, t) =f (W, t) • N 1 (W, t) (5.4.4)
Thus, R 1 is the part of f (W, t) which does not explicitly depend on t. According to the decomposition given in equations (5.3.1), (5.3.2), and (5.3.3), we have :

R 1 (W ) = f res (W ) and N 1 (W, t) = F osc (W, t).
Then, from the second equation we have :

R 2 (W ) ={f (W, t) • N 1 (W, t)} res -{N 1 (W, t) • R 1 (W )} res (5.4.5) ∂N 2 ∂t (W, t) ={f (W, t) • N 1 (W, t)} osc -{N 1 (W, t) • R 1 (W )} osc .
Replacing R 1 , N 1 and noticing that F osc (W, t) • f res (W ) does not have a resonant part, we obtain :

R 2 (W ) ={f (W, t) • F osc (W, t)} res -{F osc (W, t) • f res (W )} res (5.4.6) ={f (W, t) • F osc (W, t)} res ∂N 2 ∂t (W, t) ={f (W, t) • F osc (W, t)} osc -F osc (W, t) • f res (W ).
We set w(t) := u(t) -u app (t). In what follows, we determined a simplied version of the equation satised by w. First, by the denition of u app (5.4.1), we have that w satises :

∂w ∂t = ε 2 f (u, t) -∂W ∂t -ε 2 ∂N 1 ∂t (W, t) -ε 2 N 1 (W, t) • ∂W ∂t -ε 4 ∂N 2 ∂t (W, t) -ε 4 N 2 (W, t) • ∂W ∂t w(0) = 0
We consider the following Taylor expansion of f (u) around W :

f (u, t) =f (w + u app ) = f (w + W + ε 2 N 1 + ε 4 N 2 , t) =f (W, t) + f (W, t) • (w + ε 2 N 1 + ε 4 N 2 ) + 1 0 f (α(w + ε 2 N 1 + ε 4 N 2 ) + W ) • (w + ε 2 N 1 + ε 4 N 2 ) ⊗ (w + ε 2 N 1 + ε 4 N 2 )(1 -α)dα.
Replacing this into the equation of w and using the equation (5.4.2), we obtain that ∂w ∂t

=ε 2 f (W, t) + ε 2 f (W, t) • (w + ε 2 N 1 + ε 4 N 2 ) + ε 2 1 0 f (α(w + ε 2 N 1 + ε 4 N 2 ) + W ) • (w + ε 2 N 1 + ε 4 N 2 ) ⊗ (w + ε 2 N 1 + ε 4 N 2 )(1 -α)dα -ε 2 R 1 (W ) -ε 4 R 2 (W ) -ε 2 ∂N 1 ∂t (W, t) -ε 2 N 1 (W, t) • (ε 2 R 1 (W ) + ε 4 R 2 (W )) -ε 4 ∂N 2 ∂t (W, t) -ε 4 N 2 (W, t) • (ε 2 R 1 (W ) + ε 4 R 2 (W )).
By the equations (5.4.3), it follows that

∂w ∂t =ε 2 f (W, t) • (w + ε 4 N 2 ) + ε 2 1 0 f (α(w + ε 2 N 1 + ε 4 N 2 ) + W ) • (w + ε 2 N 1 + ε 4 N 2 ) ⊗ (w + ε 2 N 1 + ε 4 N 2 )(1 -α)dα -ε 6 N 1 (W, t) • R 2 (W ) -ε 4 N 2 (W, t) • (ε 2 R 1 (W ) + ε 4 R 2 (W )).
Integrating from 0 to t, we then obtain that

w(t) =ε 2 t 0 f (W, τ ) • w(τ )dτ + ε 6 t 0 f (W, τ ) • N 2 (W, τ )dτ (5.4.7) -ε 6 t 0 N 1 (W, τ ) • R 2 (W )dτ -ε 4 t 0 N 2 (W, τ ) • (ε 2 R 1 (W ) + ε 4 R 2 (W ))dτ + ε 2 t 0 1 0 f (α(w + ε 2 N 1 + ε 4 N 2 ) + W ) • (w + ε 2 N 1 + ε 4 N 2 ) ⊗ (w + ε 2 N 1 + ε 4 N 2 )(1 -α)dαdτ.

Study of the second order averaged equation in the case of T

Let W 0 ∈ H s + (T), s > 1/2. We consider the averaged equation

∂ t W = ε 2 R 1 (W ) + ε 4 R 2 (W ) W (0) = W 0 .
Since we already computed R 1 and R 2 , we can rewrite this equation as : Setting W = εW , we have that W satises the equation :

∂ t W = ε 2 f res (W ) + ε 4 {f (W, t) • F osc (W, t)} res W (0) = W 0 .
∂ t W = f res (W) + {f (W, t) • F osc (W, t)} res W(0) = εW 0 =: W 0 .
( Démonstration. We rst estimate the two terms on the right hand-side of equation (5.4.8). By equation (5.3.4), we have that

R 1 (W) H s (T) = f res (W) H s (T) ≤ C W 3 H s (T) .
Then, we explicitly write the Fourier coecients of {f (W, t)

• F osc (W, t)} res . Since we have F f (W) (k) = -i k-l+m-j=0 e it(|k|-|l|+|m|-|j|) Ŵ(j) Ŵ(l) Ŵ(m), it follows that F f (W) • F osc (W, t) (k) (5.4.9) = -2i k-l+m-j=0 e it(|k|-|l|+|m|-|j|) F osc (W, t)(j) Ŵ(l) Ŵ(m) -i k-l+m-j=0 e it(|k|-|l|+|m|-|j|) Ŵ(j) Ŵ(l) F osc (W)(m) = 2i k-l+m-j=0 j-n+p-q=0 |j|-|n|+|p|-|q| =0 e it(|k|-|l|+|m|-|j|) e it(|j|-|n|+|p|-|q|) |j| -|n| + |p| -|q| Ŵ(n) Ŵ(q) Ŵ(p) Ŵ(l) Ŵ(m) + i k-l+m-j=0 m-n+p-q=0 |m|-|n|+|p|-|q| =0 e it(|k|-|l|+|m|-|j|) Ŵ(j) Ŵ(l) e -it(|m|-|n|+|p|-|q|) |m| -|n| + |p| -|q| Ŵ(n) Ŵ(q) Ŵ(p).
Then, R 2 (W), the resonant part of f (W, t) • F osc (W, t), has the following Fourier coecients :

F(R 2 (W)) =F {f (W) • F osc (W, t)} res (k) (5.4.10) =2i k-l+m-j=0 j-n+p-q=0 |j|-|n|+|p|-|q| =0 |k|-|l|+|m|-|n|+|p|-|q|=0 1 |j| -|n| + |p| -|q| Ŵ(n) Ŵ(q) Ŵ(p) Ŵ(l) Ŵ(m) + i k-l+m-j=0 m-n+p-q=0 |m|-|n|+|p|-|q| =0 |k|-|l|-|j|+|n|-|p|+|q|=0 1 |m| -|n| + |p| -|q| Ŵ(j) Ŵ(l) Ŵ(n) Ŵ(q) Ŵ(p) Noticing that |F {f (W) • F osc (W, t)} res (k)| ≤ 2 k-l+m-n+p-q=0 | Ŵ(n) Ŵ(q) Ŵ(p) Ŵ(l) Ŵ(m)| + k-l-j+n-p+q=0 | Ŵ(j) Ŵ(l) Ŵ(n) Ŵ(q) Ŵ(p)|,
and proceeding as in the proof of Lemma 5.3.3, we obtain

R 2 (W) H s (T) = {f (W) • F osc (W, t)} res H s ≤ C W 5
H s (T) .

( We intend to show that there is T = C ε 2 such that A is a contraction of the ball

B(R) = W ∈ C([0, T ], H s ) W L ∞ ([0,T ],H s (T)) ≤ R , where R = 2 W 0 H s (T) = 2ε W 0 H s (T) . First we notice that A acts on the ball B(R). Indeed, let W ∈ B(R). Then, AW L ∞ ([0,T ],H s (T)) ≤ W(0) H s (T) + T f res (W(τ )) L ∞ ([0,T ],H s (T)) + T {f (W(τ ), τ ) • F osc (W(τ ), τ )} res L ∞ ([0,T ],H s (T)) ≤ W(0) H s (T) + CT W 3 H s (T) (1 + W 2 H s (T) ) ≤ R 2 + CT R 3 (1 + R 2 ).
The second condition we have for the above sum is |k|-|l|+|m|-|n|+|p|-|q| = 0. As a consequence, this yields |k| -|l| + |m| -|j| = -(|j| -|n| + |p| -|q|) = 0. Thus, k, l, m, j cannot be simultaneously non-positive or non-negative, k = l, and k = j.

Since in the above sum we see appear the product Ŵ(l) Ŵ(m), if we only want to have W + , it follows that we have two choices :

(i) k, l, m ≥ 0; j < 0 and k = l, (ii) k < 0; l, m ≥ 0; j < 0.

Note that if k, l, m ≥ 0, j < 0 and if k = l, then k -l + m -n = 0 yields m = j, which contradicts the fact that m and j have dierent signs. Thus, the condition k = l in (i) is redundant.

We compute |k| -|l| + |m| -|n| + |p| -|q| for the second case (ii) :

|k| -|l| + |m| -|n| + |p| -|q| = -k -l + m -n + p -q = -2k + (k -l + m -j) + (j -n + p -q) = -2k < 0.
This contradicts the condition |k| -|l| + |m| -|n| + |p| -|q| = 0, and thus the case (ii) does not take place.

In the case (i), we have

|k| -|l| + |m| -|n| + |p| -|q| = k -l + m -n + p -q = (k -l + m -j) + (j -n + p -q) = 0. Moreover, |j| -|n| + |p| -|q| = -j -n + p -q = -2j + (j -n + p -q) = -2j = -2(n -p + q).
Thus the only possible choice if we want to obtain terms that do not contain W -, is the following :

2i k-l+m-n+p-q=0 n-p+q<0 k,l,m,n,p,q≥0 1 -2(n -p + q) Ŵ(n) Ŵ(q) Ŵ(p) Ŵ(l) Ŵ(m) = -i k-l+m-(n-p+q)=0 n-p+q<0 k,l,m,n,p,q≥0 F 1 D Π -(|W| 2 W) (n -p + q) Ŵ(l) Ŵ(m) = -iF Π |W| 2 1 D Π -(|W| 2 W) (k).
Proceeding similarly with the second resonant part in equation (5.4.10), which is

equal to i k-l+m-j=0 m-n+p-q=0 |m|-|n|+|p|-|q| =0 |k|-|l|-|j|+|n|-|p|+|q|=0 1 |m| -|n| + |p| -|q| Ŵ(j) Ŵ(l) Ŵ(n) Ŵ(q) Ŵ(p),
we obtain that it contains only one term in which W -does not appear, which is

- i 2 F Π + W 2 1 D Π -(|W| 2 W) (k).
Therefore, the conclusion of the proposition follows.

Proposition 5.4.3. Let s > 1 2 , 0 ≤ α ≤ 1 2 , and δ > 0 small enough. Consider the equations

∂ t Y = -iε 2 Π + (|Y | 2 Y ) -iε 4 Π + (|Y | 2 1 D Π -(|Y | 2 Y )) -iε 4 2 Π + (Y 2 1 D Π -(|Y | 2 Y )) Y (0) = W 0 and ∂ t U = -iε 2 Π + (|U | 2 U ) U (0) = W 0 . (5.4.13) Assume that U (t) H s ≤ C log( 1 ε δ ) α for all t ∈ R. Then, for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
, we have that 

Y (t) -U (t) H s ≤ ε 2-C 0 δ , where C 0 > 0 is a constant and δ is chosen small enough such that C 0 δ < 1. In particular, Y (t) H s ≤ C log( 1 ε δ ) α . Démonstration. Set Z := Y -U . Then Z satises the equation        ∂ t Z = -iε 2 Π + (|Y | 2 Y ) -Π + (|U | 2 U ) -iε 4 Π + (|Y | 2 1 D Π -(|Y | 2 Y )) -iε 4 2 Π + (Y 2 1 D Π -(|Y | 2 Y )) Z(0) = 0.
= -iΠ + (|U | 2 U ) g(U ) : = -iΠ + (|U | 2 1 D Π -(|U | 2 U )) - i 2 Π + (U 2 1 D Π -(|U | 2 U )).
Then, we have

Z(t) = ε 2 t 0 h(Y (τ )) -h(U (τ )) dτ + ε 4 t 0 g(Y (τ ))dτ.
In what follows, we use a bootstrap argument. Set

T := sup t ≥ 0 Z(t) H s (T) ≤ 1 . We prove that T > 1 ε 2 log( 1 ε δ ) 1-2α . Suppose by contradiction that T ≤ 1 ε 2 log( 1 ε δ ) 1-2α . (5.4.14) 
The following inequalities hold :

h(Y (t)) -h(U (t)) H s (T) ≤ Z(t) H s (T) sup α∈[0,1] h (αZ(t) + U (t)) (5.4.15) g(Y (t)) H s (T) ≤ g(U (t)) H s (T) + Z(t) H s (T) sup α∈[0,1] g (αZ(t) + U (t))
where

• denotes the norm of a bounded linear operator acting on H s . Then, for 0 ≤ t ≤ T , we have

Z(t) H s (T) ≤ ε 2 t 0 Z(τ ) H s (T) sup α∈[0,1] h (αZ(τ ) + U (τ )) dτ (5.4.16) + ε 4 t 0 g(U (τ )) H s (T) dτ + ε 4 t 0 Z(τ ) H s (T) sup α∈[0,1] g (αZ(τ ) + U (τ )) dτ.
Let us rst show that the suprema in (5.4.15) are nite if 0 ≤ t ≤ T . Using the fact that for s > 1/2, H s is an algebra, we have that : 

h (X 1 ) • X 2 H s = 2Π + (|X 2 1 |X 2 ) + Π + (X 2 1 X 2 ) H s ≤ 3 X 1 2 H s X 2 H s . Since U (t) H s (T) ≤ C log( 1 ε δ ) α , we obtain that sup α∈[0,1] h (αZ(t) + U (t)) ≤ 3 αZ(t) + U (t) 2 H s (T) ≤ C log( 1 ε δ ) 2α .
g (X 1 ) • X 2 = -iΠ + (X 2 X 1 1 D Π -(|X 1 | 2 X 1 )) -iΠ + (X 1 X 2 1 D Π -(|X 1 | 2 X 1 )) -2iΠ + (|X 1 | 2 1 D Π -(X 2 |X 1 | 2 )) -iΠ + (|X 1 | 2 1 D Π -(X 2 1 X 2 )) -iΠ + (X 2 X 1 1 D Π -(|X 1 | 2 X 1 )) -iΠ + (X 2 1 1 D Π -(X 2 |X 1 | 2 )) - i 2 Π + (X 2 1 1 D Π -(X 2 1 X 2 )).
All the terms can be treated similarly. For example, for the rst one we have

-iΠ(X 2 X 1 1 D Π -(|X 1 | 2 X 1 )) H s (T) ≤ X 1 H s (T) X 2 H s (T) 1 D Π -(|X 1 | 2 X 1 )) H s (T) ≤ X 1 H s (T) X 2 H s (T) k≤-1 (1 + |k| 2 ) s k 2 |X 1 | 2 X 1 (k) 2 1/2 ≤ X 1 H s (T) X 2 H s (T) k≤-1 (1 + |k| 2 ) s |X 1 | 2 X 1 (k) 2 1/2 ≤ X 1 H s (T) X 2 H s (T) |X 1 | 2 X 1 H s (T) ≤ X 1 4 H s (T) X 2 H s (T) . Therefore, sup α∈[0,1] g (αZ(t) + U (t)) ≤ αZ(t) + U (t) 4 H s (T) ≤ C log( 1 ε δ ) 4α , for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α . Similarly, we prove that g(U (t)) H s (T) ≤ C U (t) 5 H s (T) ≤ C log( 1 ε δ ) 5α .
By equation (5.4.16), we then have

Z(t) H s (T) ≤ε 2 log( 1 ε δ ) 2α C t 0 Z(τ ) dτ + ε 4 t 0 g(U (τ )) H s (T) dτ ≤ε 2 log( 1 ε δ ) 2α C t 0 Z(τ ) dτ + ε 4 log( 1 ε δ ) 5α 
Ct.

Using Gronwall's inequality, we thus obtain for if 0

≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α , that Z(t) H s (T) ≤Cε 4 log( 1 ε δ ) 5α te Cε 2 log( 1 ε δ ) 2α t ≤Cε 2 log( 1 ε δ ) 1+3α e C log( 1 ε δ ) ≤ ε 2-C 0 δ
where C 0 > 0 is a constant. If δ is small enough, then this estimate is much better than the one considered in the denition of T . Therefore, there exists γ > 0 such that

for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
+ γ we have that Z(t) H s (T) ≤ 1. This contradicts the assumption (5.4.14) we made on T . Thus, T > 1

ε 2 log( 1 ε δ ) 1-2α
, and moreover

Z(t) H s ≤ ε 2-C 0 δ for all 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α . 
5.4.3 Proof of Theorem 5.1.7

Lemma 5.4.4. For W ∈ H s (T) we have that

f (W, t) ≤C W 2 H s , f (W, t) ≤C W H s .
where • denotes the operator norm of a bounded linear operator acting on H s (T).

In addition, the following applications are continuous and N -linear on H s (T) :

1. W → N 2 (W, t) with N = 5, 2. W → f (W, t) • R 2 (W ), W → N 1 (W, t) • R 2 (W ), W → N 2 (W, t) • R 1 (W ) with N = 7, 3. W → N 2 (W, t) • R 2 (W ) with N = 9.
In particular, if W H s (T) ≤ log( 

w(t) H s (T) ≤ε 2 log( 1 ε δ ) 2α C t 0 w(τ ) H s (T) dτ + ε 6 log( 1 ε δ ) 9α Ct, for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α
. Then, by Gronwall's inequality we obtain

w(t) H s (T) ≤ε 6 log( 1 ε δ ) 9α Cte ε 2 log( 1 ε δ ) 2α Ct ≤ε 4 log( 1 ε δ ) 1+7α e C log( 1 ε δ ) ≤ ε 4-C 0 δ , where C 0 > 0. Thus, u(t) -W (t) -ε 2 N 1 (W, t) -ε 4 N 2 (W, t) H s ≤ ε 4-C 0 δ for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ ) 1-2α . Since N 2 (W, t) H s (T) ≤ C log( 1 ε δ ) 5α , this yields u(t) -W (t) -ε 2 F osc (W, t) H s (T) = u(t) -W (t) -ε 2 N 1 (W, t) H s (T) ≤ ε 4-C 0 δ .
Changing back to the variables v = εe -i|D|t u and W = εW , the conclusion of the theorem follows :

v(t) -e -i|D|t W(t) + F osc (W, t) H s (T) = u(t) -W (t) -ε 2 N 1 (W, t) H s (T) ≤ ε 5-C 0 δ .

Chapitre 6

Soliton interaction with small Toeplitz potential for the Szegö equation on the real line Ce chapitre est la reprise d'un article en préparation.

Introduction

One of the most important properties in the study of the nonlinear Schrödinger equations (NLS) is dispersion. It is often exhibited in the form of the Strichartz estimates of the corresponding linear ow. In case of the cubic NLS :

i∂ t u + ∆u = |u| 2 u, (t, x) ∈ R × M, (6.1.1) 
Gérard and Grellier [START_REF] Gérard | L'équation de Szegö cubique[END_REF] remarked that there is a lack of dispersion when M is a sub-Riemannian manifold (for example, the Heisenberg group). In this situation, many of the classical arguments used in the study of NLS no longer hold. As a consequence, even the problem of global well-posedness of (6. The study of this equation is expected to give new tools to be used in understanding existence and other properties of smooth solutions of NLS in the absence of dispersion.

In this paper we will consider the Szegö equation on the real line. The space of solutions in this case is the Hardy space L 2 + (R) on the upper half-plane C + = {z; Imz > 0}, dened by

L 2 + (R) = {f ∈ L 2 (R); supp f ⊂ [0, ∞)}. A Hankel operator H u : L 2 + → L 2 + of symbol u ∈ H 1/2 + is dened by H u (h) = Π(u h).
H u is a Hilbert-Schmidt operator, it is C-anti-linear and satises 

(H u (h 1 ), h 2 ) = (H u (h 2 ), h 1 ). (6.1.3) A Toeplitz operator T b : L 2 + → L 2 + of symbol b ∈ L ∞ (R) is dened by T b (h) = Π(bh
+ (R) if b ∈ H 1 (R).
(u) = 1 4 R |u(x)| 4 dx + ε 2 R b(x)|u(x)| 2 dx.
This yields that the Hamiltonian H b is formally conserved by the ow. Note also that the fact that b is a real valued function, yields the conservation of the mass Q(u) = |u| 2 dx.

The goal of the paper is to study the long time behavior of the solution of the perturbed Szegö equation (6.1.4) having as initial condition a soliton of the unperturbed equation.

Denition 25. A soliton for the Szegö equation on the real line is a solution u with the property that there exist c, ω ∈ R, c = 0 such that u(t, x) = e -itω u 0 (x -ct).

Introduction

In addition, if ā, ᾱ, φ, μ satisfy

           ȧ = ᾱ2 μ 2 -2ε π μ b (ā + x μ ) x μ |η(x)| 2 dx, α = ε ᾱ π μ b (ā + x μ )|η(x)| 2 dx, φ = - ᾱ2 μ2 4 -ε π b(ā + x μ )|η(x)| 2 dx -ε π b (ā + x μ ) x μ |η(x)| 2 dx, μ = -2ε π b (ā + x μ )|η(x)| 2 dx, (6.1.9) 
with the same initial data a 0 , α 0 , φ 0 , µ 0 , then where c0 depends on α 0 , µ 0 .

         |a -ā| ≤ c0 δε 1 2 +δ ln( 1 ε ), |α -ᾱ| ≤ c0 δε 1 2 +δ ln( 1 ε ), |φ -φ| ≤ c0 δε 2δ ln( 1 ε ) 2 , |µ -μ| ≤ c0 δε
As a consequence, if ε is small enough and 3 10 < δ < 1 2 , then for times

0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ) we have that u(t) -ᾱ(t)e i φ(t) μ(t)η(μ(t)(x -ā(t))) H 1 2 + ≤ Cε 1 2 + δ 3 . (6.1.11) 
The problem of studying the solution of a perturbed equation having as initial condition a soliton of the unperturbed equation was rst addressed in the setting of the nonlinear Schrödinger equation by Bronski and Jerrard in [START_REF] Bronski | Soliton dynamics in a potential[END_REF] and their result was improved by Keraani in [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF][START_REF] Keraani | Semiclassical limit for nonlinear Schrödinger equation with potential[END_REF]. They considered the semiclassical regime which is equivalent to adding a slowly varying potential V (εx). The method consists in using the orbital stability of the soliton and the result states that the center of mass moves according to Newton's equation a (t) = -DV (a). It seems dicult to adapt this method to the setting of the Szegö equation since it extensively exploits the relations between the densities of mass, energy, and momentum. These identities have no correspondent for the Szegö equation.

This problem was also considered by Fröhlich, Tsai, and Yau and Fröhlich, Gustafson, Jonsson, and Sigal in the settings of the Hartree equation and of the nonlinear Schrödinger equation with a general nonlinearity in [START_REF] Fröhlich | On the point-particle (Newtonian) limit of the nonlinear Hartree equation[END_REF][START_REF] Fröhlich | Solitary wave dynamics in an external potential[END_REF][START_REF] Fröhlich | Long time motion of NLS solitary waves in a conning potential[END_REF]. Some of these results were improved in [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF][START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF] ln( 1 ε ).) For larger times, the approximation is only given by a, α, φ, µ, which are perturbations of the eective dynamics. The fact that we cannot approximate the solution by the exact eective dynamics for larger times (i.e. 0 < δ < 3 10 ) is due to the estimate on |φ -φ| which is only of order O(ε 2δ-), while we need an approximation of order O(ε

1 2 + δ 3 ).
This diculty is caused by the complicated form of the eective dynamics and by the fact that the perturbed equation does not conserve the momentum u 2 Ḣ1/2 + . In the case of the nonlinear Schrödinger equation with a Dirac or a slowly varying potential, the eective dynamics have a simpler form and give a good approximation of the solution for all the range of times considered in [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF][START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF].

The structure of the paper is as follows. In section 2 we briey describe the manifold of solitons. In section 3 we nd the eective dynamics. In section 4 we use the implicit function theorem to prove the orthogonal decomposition of the ow and determine the equation of w, the part of the ow which is orthogonal to M . In section 5 we prove the coerciveness of the linearized operator in directions orthogonal to the manifold M . In section 6 we estimate w using a bootstrap argument and in section 7 we conclude the proof of Theorem 6.1.1.

Manifold of solitons

We introduce below the manifold of solitons for the Szegö equation on the real line. Notice that according to [START_REF] Nikolskii | Operators, Functions and Systems : An Easy Reading[END_REF][Lemma 6.2.1], we have that ∪ N ∈N M(N ) is dense in L 2 + (R).

The action g is conformally symplectic in the sense that g * ω = α 2 (g)µ(g)ω. We then make the following identications : For b = 0, the ow of H 0 is tangent to the manifold of solitons M . This corresponds to the fact that if u(0, x) ∈ M , then u(t, x) ∈ M for all t ∈ R. More precisely, by equations (6.1.5) and (6.1.6), we have that if u(0, x) = e iφ αµη(µ(x -a)), then u(t, x) = g(t) • η = e iφ(t) α(t)µ(t)η µ(t)(x -a(t) , 

M = G • η G, T η M = g • η g.

Eective dynamics

We will compute in this section the restriction to the manifold of solitons M of the symplectic form ω| M and prove that (M, ω| M ) is a symplectic manifold. Then, we compute the restriction of the Hamiltonian H b | M , as well as the vector eld associated to H b | M . This vector eld yields a ow on the manifold of solitons M , that we refer to as the eective dynamics. Let us now compute (ω| M ) g•η for arbitrary g ∈ G. By (6.2.3) we can identify the action of g on M with the action g : G → G given by (6.2.1). Then, we have that the dierential d η g : T η M → T g•η M is given by d η g = 1 µ da + αdα + dφ + µdµ. One can easily verify that ω| M is a non-degenerate symplectic form and therefore, (M, ω| M ) is a symplectic manifold.

(ω| M ) g•η X 1 ( ∂ ∂a ) g•η + X 2 ( ∂ ∂α ) g•η + X 3 ( ∂ ∂φ ) g•η + X 4 ( ∂ ∂µ ) g•η , Y 1 ( ∂ ∂a ) g•η + Y 2 ( ∂ ∂α ) g•η + Y 3 ( ∂ ∂φ ) g•η + Y 4 ( ∂ ∂µ g•η = α 2 µ(ω| M ) η µX 1 ( ∂ ∂a ) η + X 2 α ( ∂ ∂α ) η + X 3 ( ∂ ∂φ ) η + X 4 µ ( ∂ ∂µ ) η ,
Let f be a function dened on M G. Then, f admits a Hamiltonian vector eld X f on M if ω| M (•, X f ) = df = f a da + f α dα + f µ dµ + f φ dφ, where f a = ∂f ∂a and f α , f φ , and f µ are dened similarly. Denoting X f = X 1

∂ ∂a +X 2 ∂ ∂α + X 3 ∂ ∂φ + X 4 ∂ ∂µ
and using (6.3.4), the above equation is equivalent to

Reparametrized evolution

Our goal is to show that the ow generated by H b can be approximated by the eective ow of H b | M . In order to do so, we decompose the solution u(t) of the Szegö equation with small Toeplitz potential (6.1.4), into a component belonging to M and a component which is symplectically orthogonal to M in the sense that : u(t) = g(t) • (η + w(t)), ω(w(t), Xη) = 0, ∀X ∈ g. The key point is to prove that the orthogonal component w is small. Let us show that the above decomposition/reparametrization is indeed possible at least for short time. There exists γ 0 = γ 0 (Σ) such that if u ∈ U Σ,γ , with γ ≤ γ 0 , then there exists a unique element g(u) ∈ Σ with the property ω(g(u) -1 • u -η, X • η) = 0, ∀X ∈ g. + × G → g * , F (u, h)(X) = ω(h • u -η, X • η).

We want to solve F (u, h) = 0 for h = h(u). We verify that the function F satises the hypotheses of the Implicit Function Theorem : (i) F (u, h) is of class C 1 in h, (ii) F (g • η, g -1 ) = 0 for all g ∈ G, (iii) d h F (g • η, g -1 ) : T g -1 G → g * is invertible for all g ∈ G.

The rst two properties can be checked directly. As for the third property, it is enough to check it for g = e = (1, 0, 1, 0), the unity of the group G. Thus, since T e G = g, it is enough to check that d h F (η, e) : g → g * is invertible. But Remark 6.4.5. Notice that X ≡ 0 is equivalent to a, α, φ, µ satisfying the eective dynamics (6.1.9). Lemma 6.4.6. If the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as in Lemma 6.4.1, u(t) = g(t) • (η + w(t)) at time t, then the L 2 -norm of w(t) is equal to

w(t) 2 L 2 = π α 2 0 µ 0 α 2 (t)µ(t) -1 .
Consequently, α 2 (t)µ(t) ≤ α 2 0 µ 0 .

Démonstration. By the conservation of the L 2 -norm of the solution of the Szegö equation with a Toeplitz potential, we have that

η + w(t) 2 L 2 = g(t) -1 u(t) 2 L 2 = 1 α 2 (t)µ(t) u(t) 2 L 2 = u(0) 2 L 2 α 2 (t)µ(t) = πα 2 0 µ 0 α 2 (t)µ(t)
.

By the orthogonality of w and η, we have that ω(w, X • η) = 0, for all X ∈ g. In particular, taking X = e 3 , we obtain w, η = Re wηdx = -Im wiηdx = -ω(w, e 3 • η) = 0. and the conclusion follows.

Next we dene P , the symplectically orthogonal projection on the manifold of solitons M . We also give two technical lemmas concerning some properties of P . The conclusion follows by using the Cauchy-Schwarz inequality and integration by parts. For example, for P Démonstration. Let Y = 4 j=1 a j e j be an arbitrary vector in g. By the denition of the projection P , the conclusion follows.

Lemma 6.4.9. Démonstration. Take f (x) = εb(a + x µ ) in the above lemma.

Remark 6.4.10. Lemma 6.4.9 and equation (6.4.4) show that

P -Y η -iεΠ b(a + x µ )η = -X - α 2 µ 2 2 e 1 + α 2 µ 2 4 e 3 .
Thus, X is the orthogonal projection on the manifold of solitons of a signicant term of the right-hand side of the equation (6.4.3) satised by w.

In the following we intend to give an estimate for X . We need the following denition and Lemma that we cite from [ + . Then

T |η| 2 f = Π 1 (x + i)(x -i) ( x -i x + i ) 2 h = Π x -i (x + i) 3 h = x -i (x + i) 3 h and L(f ) = - i 2 ∂ x f -2T |η| 2 f -H η 2 f + 1 4 f = 2 x -i (x + i) 3 h - i 2 x -i x + i 2 ∂ x h -2
x -i (x + i) 3 h + 1 4

x -i x + i 2 h = x -i x + i 2 (- i 2 ∂ x h + 1 4 h),
and thus, using | x-i x+i | = 1 and the Plancherel identity, we obtain

L(f ), f = x -i x + i 2 (- i 2 ∂ x h + 1 4 h), x -i x + i 2 h = - i 2 ∂ x h + 1 4 h, h = 1 2 ∞ 0 ξ| ĥ(ξ)|dξ + 1 4 f 2 L 2 ≥ 1 4 f 2 H 1 2 +
.

In what follows we need a Kronecker-type theorem characterizing the Hankel operators of nite rank. We state this theorem bellow. For the proof we refer to [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]. 

+ (R).

In what follows we focus on such terms, the rest of the terms being easier to handle.

We set X = 4 j=1 a j e j . By Lemma 6.4.12, we have that

|a j | ≤ c(ε w L 2 + w 2 H 1 2 + + w 3 H 1 2 +
).

For I, ).

For II, integrating by parts and using Cauchy-Schwarz, we have Re

i 2 ∂ x w • iεb(a + x µ )ηdx = ε 2 Re wb (a + x µ ) 1 µ ηdx + wb(a + x µ )η dx ≤ cε w L 2 η L ∞ b L 2 µ 1/2 µ + cε w L 2 η L 2 b L ∞ ≤ cε(1 + 1 µ 1/2 ) w L 2 .
Using the equation (6.4.5) for the rest of the terms, we obtain |II| ≤ cε w L 2 . ).

For IV we have By the equations (6.4.5) and the Sobolev embedding H ).

In the following, we combine the inequality in Lemma 6.6. This gives us the conclusion with the constant c 0 = max (32, 24c) depending only on α 0 , µ 0 .

The proposition below is the main step in proving Theorem 6.1.1.

Proposition 6.6.3. Let Σ be a compact subset of R × R * + × T × R * + , 0 < δ < 1 2 , and let ε > 0 be such that ε 1 2 < γ 0 , where γ 0 was dened in Lemma 6.4.1. Suppose inf g∈Σ u(0) -g • η

H 1 2 + ≤ ε 1 2 + δ 2 .
Then, for all

0 < t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ),
the solution of the perturbed Szegö equation ( 6 ≤ c k 0 w(0)

H 1 2 + + c 0 ( k-1 j=0 c j 0 )ε 1+δ 2
= c k 0 w(0)

H 1 2 + + c 0 c k 0 -1 c 0 -1 ε 1+δ 2 .
Since c 0 > 2, we have that c 0 

c k 0 -1 c 0 -1 ≤ 2c k 0 . Take k such that c k 0 = ε -δ 6 ,
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14 Motivation

 14 : l'équation de Schrödinger non linéaire dans des régimes non dispersives et sur-critiques

  NLS) où u : R t × M x → C et M est une variété. L'équation (NLS) est un modèle de propagation des ondes dans les bres optiques et en mécanique quantique. Elle a été intensivement étudiée dans les trois dernières décennies par des mathématiciens de diverses branches pures et appliquées ainsi que par des physiciens. 1.1.1 Propriétés de dispersion de l'équation de Schrödinger La propriété principale de (NLS) est la dispersion. Celle-ci est caractérisée par le fait que si l'on n'impose aucune condition au bord, alors les solutions de l'équation ont tendance à s'étaler dans le temps. Pour formaliser cette assertion, on considère l'équation de Schrödinger linéaire i∂ t u L + ∆u L = 0 u L (0) = u 0 (LS)

x 1 | 2 +

 12 |D x 2 | 2 , on obtient l'équation suivante sur R 2 : i∂ t u -|D|u = |u| 2 u, u(0) = u 0 . (NLW) et les deux analyses coïncident. Une équation intermédiaire entre l'équation de Szegö sur R et (NLW) sur R 2 est (NLW) sur R.

  et que tous les autres crochets de Poisson sont nuls.

1. 5

 5 .1 -L'équation de Szegö comme première approximation de l'équation des ondes non linéaire (NLW) sur R 37 En posant φ(ξ, η, ζ) := |ξ| -|ζ| + |η -ξ| -|η -ζ|, on a alors f (u, s) = f res (u) + f osc (u, s), où l'on a posé

  La spécicité de l'équation (NLW) est qu'elle a beaucoup de résonances. Plus précisément, l'ensemble {φ(ξ, η, ζ) = 0} ⊂ R 2 a une mesure de Lebesgue non nulle, ce qui permet d'intégrer sur cet ensemble. En fait, à ξ xé, {φ(ξ, η, ζ) = 0} est l'ensemble des paires (η, ζ) ∈ R 2 telles que ζ, η -ξ et η -ζ aient le même signe que ξ où ζ = ξ où η -ζ = ξ. On en déduit alors que

  avec une donnée initiale qui coïncide avec celle d'un soliton pour l'équation de Szegö non perturbée. En posant η(x) := 1 x+i , on voit que la donnée initiale d'un soliton pour l'équation de Szegö s'écrit

Chapitre 2 Préliminaires 2 . 1

 221 Préliminaires d'analyse complexe On rappelle dans cette section quelques propriétés des espaces de Hardy des fonctions holomorphes dans le demi-plan supérieur, et des opérateurs de Hankel et Toeplitz qui agissent sur ces espaces. Pour plus de détails on renvoie à [69, Chapitre 6, Partie A] et [69, Chapitres 1,4, Partie B].

2. 1 . 4 - 2 + (R) 49 Dans

 14249 Opérateurs de Hankel et de Toeplitz sur l'espace de Hardy L le cas de l'espace de Hardy L 2 + (T) des fonctions holomorphes sur D, l'on considère l'application d'identication

  Hilbert-Schmidt, et constituent donc une sous-classe d'opérateurs compacts. Tout comme pour les opérateurs de Hilbert-Schmidt, les opérateurs de rang ni en forment un sous-espace dense. Denition 7. Soient H un espace de Hilbert séparable et {φ n } n∈N une base orthonormale de H. Un opérateur T ∈ L(H) est dit à trace si T 1 := tr|T | = ∞ n=0 (φ n , |T |φ n ) < ∞, où l'on pose |T | = √ T * T . Cette quantité ne dépend pas du choix de la base {φ n } n∈N et représente la norme trace de d'opérateur T . On a la caractérisation suivante des opérateurs à trace en fonction des opérateurs de Hilbert-Schmidt. Proposition 2.2.2. L'opérateur A est à trace si et seulement s'il existe deux opérateurs de Hilbert-Schmidt B et C tels que A = BC.

2. 2 . 3 - 53 Theorem 2 . 2 . 3 (

 2353223 Le théorème spectral Le théorème spectral, Théorème VIII.4,[START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]). Soit A un opérateur auto-adjoint dont le domaine D(A) est un sous-ensemble d'un espace de Hilbert séparable H. Il existe alors un espace mesuré (M, µ), une fonction mesurable f sur M et un opérateur unitaire

  multiplication par la fonction g • f . Ceci nous permet de construire des mesures spectrales pour des vecteurs cycliques. On rappelle qu'un vecteur ψ est dit cyclique pour A si {g(A)ψ| g ∈ C ∞ (R)} est dense dans H. Denition 8. Soit ψ ∈ H un vecteur cyclique pour A. La mesure µ ψ associée au vecteur ψ est dénie par R g(x)dµ ψ (x) = (ψ, g(A)ψ).

Denition 11 .

 11 Soient A et B deux opérateurs auto-adjoints sur un espace de Hilbert H. Soient H ac (B) le sous-espace absolument continu par rapport à B et P ac (B) le projecteur orthogonal sur ce sous-espace. On dit que les opérateurs d'ondes généralisés existent lorsque la limite forte suivante existe : Ω ± (A, B) = lim t→∓∞ e itA e -itB P ac (B).

( 2 . 2 . 1 )

 221 Les opérateurs d'ondes Ω ± ont les propriétés suivantes. Proposition 2.2.5 (Proposition 1, XI.3,[START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]). Supposons que les opérateurs d'ondes généralisés Ω ± (A, B) existent.

2. 3 . 1 -

 31 Paires de Lax 55 On sait aussi que : Ran Ω ± (A, B) est inclus dans H ac (A). Dans le cas où l'on a égalité, on dit que Ω ± (A, B) sont complets. Denition 12. Supposons que Ω ± (A, B) existent. Si Ran Ω ± (A, B) = H ac (A), on dit que les opérateurs d'ondes généralisés sont complets. Il existe plusieurs méthodes pour montrer que les opérateurs d'ondes existent et sont complets. Dans cette thèse, la méthode suivante s'avère utile.

. 1 )

 1 où [B, L] = BL -LB est le commutateur de B et L.L'avantage de disposer d'une paire de Lax pour une équation d'évolution est qu'elle fournit des lois de conservation pour cette équation, comme on peut le voir dans la proposition suivante.

2. 3 . 2 - 57 Denition 14 .

 325714 Théorème de Liouville-Arnold et coordonnées action-angle Supposons que la fonction F : M → R admette un champ hamiltonien de vecteurs X F . L'équation hamiltonienne de hamiltonien F est l'équation d'évolution suivante :

2. 3 . 3 -

 33 Coordonnées action-angle généralisées[START_REF] Lax | Linear algebra[END_REF] 2.3.3 Coordonnées action-angle généraliséesLe théorème de Liouville-Arnold ne peut être appliqué que lorsque les ensembles de niveau des intégrales premières sont compacts. Dans[START_REF] Fiorani | The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds[END_REF], Fiorani, Giachetta et Sardanashvily démontrent que ce théorème se généralise aussi au cas non-compact. Ils prouvent que, sous certaines conditions, on peut introduire des coordonnées actionangle généralisées pour un système complètement intégrable, formées d'actions (intégrales premières pour le système), d'angles appartenant à T et d'angles généralisés appartenant à R. Au lieu d'obtenir des tores invariants, l'on obtient des cylindres toroïdaux T k × R n-k invariants. On cite ci-dessous le Théorème 1 dans[START_REF] Fiorani | The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds[END_REF].

  Si l'on pose φ(ξ, η, ζ) := |ξ| -|ζ| + |η -ξ| -|η -ζ|, on peut alors écrire que f (u, s) = f res (u) + f osc (u, s), où l'on a posé

Chapitre 3 Classication

 3 and stability of solitons for the cubic Szegö equation on the real line Ce chapitre est la reprise d'un article à paraitre dans le journal Analysis and PDEs".

3. 1

 1 IntroductionOne of the most important properties in the study of the nonlinear Schrödinger equations (NLS) is dispersion. It is often exhibited in the form of the Strichartz estimates of the corresponding linear ow. In case of the cubic NLS :

  many of the classical arguments used in the study of NLS no longer hold. As a consequence, even the problem of global well-posedness of (3.1.1) on a sub-Riemannian manifold still remains open.In[START_REF] Gérard | The cubic Szegö equation[END_REF][START_REF] Gérard | L'équation de Szegö cubique[END_REF], Gérard and Grellier introduced a model of a non-dispersive Hamiltonian equation called the cubic Szëgo equation. (See (3.1.2) below.) The study of this equation is the rst step toward understanding existence and other properties of smooth solutions of NLS in the absence of dispersion. Remarkably, the Szegö equation turned out to be completely integrable in the following sense. It possesses a Lax pair 69

  has a natural extension onto C + , and we have used this viewpoint in (3.1.3). Substituting (3.1.3) into (3.1.2), we obtain that u 0 satises the following equation on R : cDu 0 + ωu 0 = Π(|u 0 | 2 u 0 ).

Lemma 3 . 3 . 1 .

 331 In particular, by Sobolev embedding theorem, we have u ∈ L p + (R) for 2 ≤ p ≤ ∞. On the other hand, equation (3.1.4) yields in Lemma 3.4.1 that there exist no nontrivial stationary waves, i.e. traveling waves of velocity c = 0, in L 2 + . Now, we present our main results : Theorem 3.1.2. A function u ∈ C(R, H 1/2 + (R)) is a traveling wave if and only if there exist C, p ∈ C with Im p < 0 such that u(0, z) = C z -p .

( 3 . 1 . 5 )

 315 Theorem 3.1.3. Let a > 0, r > 0, and consider the cylinder

equation on S 1 ,

 1 the nontrivial stationary waves (c = 0) are nite Blaschke products of the form α N j=1 z -p j 1 -p j z , where |α| 2 = ω, N ∈ N, and p 1 , p 2 , ..., p N ∈ D, and the traveling waves with nonzero velocity are rational fractions of the form : Cz l z N -p , (3.1.6) where N ∈ N, l ∈ {0, 1, . . . , N -1}, C, p ∈ C, and |p| > 1. Moreover, instability phenomena were displayed for some of the above traveling waves. For the cubic Szegö equation on R, Theorems 3.1.2 and 3.1.3 state that there exist less traveling waves (corresponding to N = 1 and l = 0 in (3.1.6)) and that there is no instability phenomenon. The proof of Theorem 3.1.2 involves arguments from several areas of analysis : a Kronecker-type theorem, scattering theory, existence of a Lax pair structure, a theorem by Lax on invariant subspaces of the Hardy space, and canonical factorization of Beurling-Lax inner functions. In the following, we introduce the main notions and known results, and briey describe the strategy of the proof.

Finally

  , when u ∈ M(N ) we have rk(H u ) = N and equation (3.2.3), and thus (3.2.1) follows.

t→∓∞e

  itA e -itB P ac (B).

1 + 2 +

 12 we deduce that Du ∈ L 2 + . Consequently, u ∈ H and by Sobolev embedding theoremwe have u ∈ L ∞ (R). Then u 2 Dū, |u| 2 Du ∈ L 2 (R).Applying the operator D to both sides of equation (3.1.4), we obtain D 2 u ∈ L 2 (R) and hence u ∈ H . Iterating this argument innitely many times, the conclusion follows. Proposition 3.3.2. Let u be a traveling wave. Then, (A u + i) -1 -(D + i) -1 is a trace class operator.

  a trace class operator since the composition of two Hilbert-Schmidt operators is a trace class operator. Corollary 3.3.3. If u is a traveling wave, then the wave operators Ω ± (D, A u ) exist and are complete.

Corollary 3 . 3 . 4 .

 334 If u is a traveling wave, then σ ac (A u ) = [0, +∞).

Lemma 3 . 3 . 5 . 2 +

 3352 The operator H u is a Hilbert-Schmidt operator on L us denote by T HS the Hilbert-Schmidt norm of a Hilbert-Schmidt operator T . By (3.2.2), we have

F(|u| 4 -

 4 Then the second term in(3.3.5) converges to 0 by the dominated convergence theorem. HenceΩ + (D, A u )H 2 u H ac (A u ) = 0.3.4 Classication of traveling wavesLemma 3.4.1. There are no nontrivial traveling waves of velocity c = 0 in L 2 + (R). Démonstration. Let u be a nontrivial traveling wave of velocity c = 0. Then, equation 3.1.4 gives Π(|u| 2 u) = ωu. Taking the scalar product with e iξx u(x), where ξ ≥ 0, we obtain ω|u| 2 )(ξ) = 0, where F denotes the Fourier transform. Since |u| 4 -ω|u| 2 is a real valued function, we have that the last equality holds for all ξ ∈ R. Thus |u| 4 -ω|u| 2 = 0 on R and therefore u(x) = 0 or |u(x)| 2 = ω > 0, for all x ∈ R. Since the function u is holomorphic on C + , its trace on R is either identically zero, or the set of zeros of u on R has Lebesgue measure zero. In conclusion, we have |u| 2 = ω > 0 a.e. on R and thus u is not a function in L 2 + (R).

  and ν is a positive singular measure with respect to the Lebesgue measure. In particular, the inner function φ has such a canonical factorization. Proposition 3.4.5. Let u be a traveling wave and denote by φ an inner function such that Ker H u 0 = φL 2 + . Then, φ satises the following equation on R : cDφ = |u 0 | 2 φ.(3.4.4)

.4. 5 ) 2 +

 52 Conversely, by solving backward the problem (3.4.1) with the initial data in τ ct (φ)L at time t, up to the time t = 0, we obtain

  for all t ∈ R. Since u is a traveling wave, we have |u(t, x+ct)| = |e -iωt u 0 (x)| = |u 0 (x)|.Then we deduce that γ(t) = k and hence γ(t) = kt, for some k ∈ R. Therefore, cDφ = (|u 0 | 2 + k)φ.

( 3 .

 3 4.7) 

  Thus, (A u -a)(xψ) = 0. In conclusion, by equation (3.4.10), ψ = 0 and therefore all the eigenfunctions belonging to Ran H u , corresponding to the same eigenvalue a, are linearly dependent.

CHAPITRE 3 .

 3 CLASSIFICATION AND STABILITY OF SOLITONS FOR THE SZEGÖ EQUATION ON R 95 Proof of Proposition 3.1.5, Gagliardo-Nirenberg inequality. The proof is similar to

1 . 3 . 2 +

 132 According to Proposition 3.1.5, C(a, r) is the set of minimizers of the problem inf{M (u) u ∈ H 1/, Q(u) = q(a, r), E(u) = e(a, r)},

( 3 . 5 . 4 ) 4

 3544 The conclusion follows by approximating the supremum in the statement by the sequence in (3.5.4) with an appropriate {t n } n∈N . Chapitre Explicit formula for the solution of the Szegö equation on the real line and applications Ce chapitre est la reprise d'un article accepté dans le journal Discrete and Continuous Dynamical Systems A".

1 . 1 )

 11 on a sub-Riemannian manifold still remains open. In [35, 34], Gérard and Grellier introduced a model of a nondispersive Hamiltonian equation called the cubic Szëgo equation. (See (4.1.2) below.)

L 2 +

 2 with the symplectic structure ω(u, v) = 4Im R uv, we have that the Szegö equation is a Hamiltonian evolution associated to the HamiltonianE(u) = R |u| 4 dx dened on L 4 + (R).From this structure, we obtain the formal conservation law of the energy E(u(t)) = E(u(0)). The invariance under translations and under modulations provides two more conservation laws, the mass Q(u(t)) = Q(u(0)) and the momentum M (u(t)) = M (u(0)), whereQ(u) =R |u| 2 dx and M (u) = R ūDu dx, with D = -i∂ x .

CHAPITRE 4 . 2 H 1 / 2 +

 4212 EXPLICIT FORMULA FOR THE SOLUTION OF THE SZEGÖ EQUATION ON R AND APPLICATIONS 101 Noting that Q(u) + M (u) = u is the natural space for studying the well-posedness of the equation. In [75, Theorem 1.1], it was shown that the Szegö equation on the real line is globally well-posed in H (R) and satises the persistence of regularity, i.e. if u 0

[ 75 ,

 75 Proposition 1.4]. We rst dene two important classes of operators on L 2 + , the Hankel and Toeplitz operators. The Lax pair is given in terms of these operators in Proposition 4.1.1.

  0) = I.

( 4 . 1 . 7 )

 417 Another consequence of the Lax pair structure is the existence of an innite sequence of conservation laws. More precisely, the following corollary holds.Corollary 4.1.3. Dene J n (u) := (u, H n-2 u u) for all n ≥ 2. Then J 2k (u), k ∈ N * , are conserved quantities for the Szegö equation. In particular, J 2

  Introduction and prove thatT * H u = H u T.

( 4 .

 4 1.14) where φ C,p = C x-p, ω = |C| 2 4(Imp) 2 , c = |C| 2 -2Imp, C, p ∈ C, and Imp < 0. Hence, a soliton of the Szegö equation on R is a simple fraction u(t, x) = Ce -iωt x-ct-p ∈ M(1), where Im(p) < 0.

Theorem 4 . 1 . 11 (

 4111 Partial soliton resolution for non-generic data). Let u 0 ∈ M[START_REF] Ablowitz | The inverse scattering transform Fourier analysis for nonlinear problems[END_REF] 

4. 1 . 2 -

 12 Structure of the Chapter 4 109 Corollary 4.1.15 (Lagrangian toroidal cylinders). Let u 0 ∈ M(N ) gen . Consider T C(u 0 ) := u ∈ M(N ) gen |H 2

Lemma 4 . 2 . 1 .

 421 Let u = A B ∈ M(N ), where A and B are relatively prime, B(0) = 1, B(x) = (x -p 1 ) m 1 . . . (x -p k ) m k , m 1 + . . . m k = N ,and Im(p j ) < 0 for all j = 1, 2, . . . , k. Then Ker(H u ) = b u L 2 + , where b u = k j=1 (x -pj ) m j (x -p j ) m j and g = 1 -b u .

( 4 . 2 . 1 )

 421 Démonstration. Let f ∈ Ker(H u ) = Ran(H u ) ⊥ . Then by equation (4.1.8) we have that

( 4 . 2 . 6 )

 426 With these notations we have, by equation (4.1.6), that

( 4 . 2 . 8 )

 428 Explicit formula for the solution in the case of rational function initial data Denition 23. Let u = A B ∈ M(N ), where A and B are relatively prime, B

Lemma 4 . 2 . 4 .

 424 The eigenvalues of T and S are the complex conjugates of the poles of u. In particular, the eigenvalues of T and S have strictly positive imaginary part.Démonstration. Since T and S are conjugated, they have the same eigenvalues. If T f = λf , then we have that (x -λ)f = Λ(f )b u . Taking x = λ, we obtain that b u (λ) = 0. Then, Lemma 4.2.1 yields that λ = pj .

Proposition 4 . 3 . 1 .

 431 Let s ≥ 1. If u 0 ∈ H s + and xu 0 ∈ L ∞ (R), then the corresponding solution of the Szegö equation satises xu(t, x) ∈ L ∞ (R) for all t ∈ R.

4. 1 . 2 -

 12 Structure of the Chapter 4 123

( 4 . 3 . 3 )

 433 If xu ∈ L ∞ (R), by (4.2.11) we have thatT * (H u f ) = Π(xu f ).

124

  Extension of the formula to general initial data Remark 4.3.3. If u ∈ H s + for s > 1 2 and xu ∈ L ∞ (R), then the operator T * takes values in Ran(H u ).

4. 1 . 2 -129 4 . 5

 1245 Structure of the Chapter 4 Growth of high Sobolev norms of non-generic, rational function solutions

( 4 . 5 . 1 ) and ν 2 :

 4512 = |β 2 | = 0. In the case when β1 β2 = -ν 1 ν2 , we can similarly choose an orthonormal basis for which β 2 = ν 2 = 0. Lemma 4.5.1. With the notations in Theorem 4.1.11 we set c j (0) = (S(0)e 1 , e j ), d j (0) = (S(0)e 2 , e j ) for j = 1, 2 and

Démonstration. By equation ( 4 . 4 . 1 ) we have that Im c 1 (

 4411 

2 and thus 1 x

 21 -Ē1 Ḣs = O(1).

( 4 . 6 . 19 )

 4619 Consider u p ∈ χ -1 I (p) , Ĩ(p) , 2φ (p) , γ (p) . Then λ (p) j 2 are the eigenvalues of H 2 up .

4. 6 . 3 -

 63 χ is a proper mapping 147 Since, by (4.6.19), we also have 2φ (p) j → 2φ j and γ

CHAPITRE 5 .

 5 FIRST AND SECOND ORDER APPROXIMATIONS FOR A NONLINEAR WAVE EQUATION 153 the study of the (NLW) equation help us understand better NLS in the case of lack of dispersion. The (NLW) equation is a Hamiltonian evolution associated to the Hamiltonian

  The following corollary proves that the high Sobolev norms of the (NLW) equation with initial condition εW 0 = ε x+i -2ε x+2i grow relatively to the norm of the initial condition. Corollary 5.1.6. Let 0 < ε 1, s > 1 2 , and δ > 0 suciently small. Let W 0 ∈ H s + (R) be the non-generic rational function W 0 = 1 x+i -2 x+2i . Denote by v(t) be the solution of the (NLW) equation on R i∂ t v -|D|v = |v| 2 v v(0) = εW 0 .

Theorem 5 . 1 . 7 .

 517 Let 0 < ε 1, s > 1 2 , 0 ≤ α ≤ 1 2, and δ > 0 small enough. Let W 0 ∈ H s + (T) be such that the solution of the Szegö equation (5.1.4) with initial condition εW 0 is uniformly bounded by ε log( 1 ε δ ) α for all t ∈ R. Denote by v(t) the solution of the (NLW) equation on T

5. 2 . 1 - 0 e

 210 The renormalization group method at order one 161 Therefore,w(t) = -iε 2 t i|D|τ (|e -i|D|τ u| 2 e -i|D|τ u) -Π + (|W (τ )| 2 W (τ )) dτThe classical technique of estimating w(t) consists in writing the right-hand side in such a way that we see w(τ ) appear under the integral, and then use Gronwall's inequality. However, w(τ ) = u(τ ) -W (τ ), and in the above relation the only term in which u appears is f (u, τ ) := -ie i|D|τ (|e -i|D|τ u| 2 e -i|D|τ u). It is thus natural to decompose the term f (u, τ ) into a part which does not explicitly depend on τ called the resonant part, f res (u), and a part which depends on τ called the oscillatory part, f osc (u, τ ). Then, f res (u) -Π + (|W | 2 W ) provides us with a term w = u -W .Since we have more information on W (τ ), which can be transformed with a simple change of variables into the solution of the Szegö equation (5.1.4), it may be more convenient to decompose f (W, τ ) = -ie i|D|τ (|e -i|D|τ W | 2 e -i|D|τ W ). It turns out that its resonant part is exactly -iΠ + (|W | 2 W ) and thus

5 . 2 . 2 -

 522 Setting φ(ξ, η, ζ) := |ξ| -|ζ| + |η -ξ| -|η -ζ|, we can write f (u, s) = f res (u) + f osc (u, s), (5.2.4) Approximate solution for the (NLW) equation on R 163 where f res (u) = -iF -1 φ=0 û(η -ζ)û(ζ)û(η -ξ)dζdη, (5.2.5)

5. 2 . 3 -

 23 Estimates for the oscillatory part of the nonlinearity in the case of R 167 Notice that in the region ξ < 0 and {(η,ζ) ∈ R 2 η ≥ ζ ≥ 0}, we have that φ(ξ, η, ζ) = |ξ| -|ζ| + |η -ξ| -|η -ζ| = -ξ -ζ + η -ξ -η + ζ = -2ξ.

Lemma 5 . 3 . 1 .

 531 We have that k -l + m -j = 0 and |k| -|l| + |m| -|j| = 0 if and only if we are in one of the following cases :(i) If k > 0 and {l, m, j ≥ 0} ∪ {k = l} ∪ {k = j} (ii) If k = 0 and {l, m, j ≥ 0} ∪ {l, m, j ≤ 0} (iii) If k < 0 and {l, m, j ≤ 0} ∪ {k = l} ∪ {k = j}.We decompose the region where k -l + m -j = 0 and |k| -|l| + |m| -|j| = 0 into disjoint sub-regions, and we compute the Fourier transform of the resonant part

5. 3 . 2 -

 32 Estimates for the oscillatory part of the nonlinearity in the case of T 175 This equation has a unique global solution in H s (T) which coincides with W ∈ C(R, H s (T)), the solution of the following equation

5. 4 . 2 -

 42 Study of the second order averaged equation in the case of T 181

.4. 8 )Lemma 5 . 4 . 1 . 1 2.

 85411 Let s > The problem(5.4.8) is locally well-posed in H s (T) at least on a time-interval [0, C ε 2 ], where C > 0.

.4. 11 )

 11 We use a standard xed point argument to prove that equation (5.4.8) is locally well-posed. Dene AW(t) := W(0) + t 0 f res (W(τ ))dτ + t 0 {f (W(τ ), τ ) • F osc (W(τ ), τ )} res dτ.

186

  Second order approximation for the (NLW) equation on TWe set also h(U ) :

1 . 1 )

 11 on a sub-Riemannian manifold still remains open. In [35, 34], Gérard and Grellier introduced a model of a nondispersive Hamiltonian equation called the cubic Szëgo equation. (See (6.1.2) below.)

  This can be proved by following the lines of the proof of Theorem 2.1 in[START_REF] Gérard | The cubic Szegö equation[END_REF] on the global well-posedness of the Szegö equation. If instead of the Toeplitz potential we considered a multiplicative linear potential bu, then the corresponding equation would no longer be Hamiltonian. However, if we project to L 2 + , obtaining this way a Toeplitz potential T b u = Π(bu), we conserve the Hamiltonian structure of the Szegö equation. For this reason, the Toeplitz potential is the natural generalization of the linear multiplicative potential in the case of the Szegö equation. The Hamiltonian of equation (6.1.4) is H b

1 2

 1 +δ ln( 1 ε ).

1 2 , instead of that of order ε 1 2 + δ 3

 113 by Zworski and Holmer in the case of the one dimensional nonlinear Schrödinger equation with a Dirac potential and with a slowly varying potential. In this paper we adapt the method of Zworski and Holmer to the case of the Szegö equation. The starting point in proving Theorem 6.1.1 is to determine the vector eld corresponding to the restriction H b | M of the Hamiltonian to the four-dimensional manifold Manifold of solitonsNotice that the exact eective dynamics given by ā, ᾱ, φ, μ, are an approximation of the solution of the perturbed equation only for times we agree to have an approximation of order ε that we have, we can actually go up to times 0 < t ≤ δ 6 ln c 0 • 1ε 1 4

For

  g = (a, α, φ, µ) ∈ R × R * + × T × R * + , where T = R/2πZ, we dene the following map on L 2 + (R) u → g • u, g • u(x) := e iφ αµu(µ(x -a)).This action gives a group structure on R × R * + × T × R * + :(a, α, φ, µ) • (a , α , φ , µ ) = (a , α , φ , µ ), φ = φ + φ µ = µµ .

( 6 . 2 . 1 )

 621 We denote this group by G. In order to determine the Lie algebra g corresponding to this Lie group, we compute∂ a [(a, 1, 0, 1) • u] a=0 = -∂ x u ∂ α [(0, α, 0, 1) • u] α=1 = u ∂ φ [(0, 1, φ, 1) • u] φ=0 = iu ∂ µ [(0, 1, 0, µ) • u] µ=1 = x∂ x u + u = ∂ x (x • u).Then, the Lie algebra g is generated bye 1 = -∂ x , e 2 = 1, e 3 = i, e 4 = ∂ x • x.It acts on ∪ N ∈N M(N ), where M(N ) := A(z) B(z) ∈ L 2 + deg(B) = N, deg(A) ≤ N -1, B(0) = 1, pgcd(A, B) = 1 .

( 6 . 2 . 2 )

 622 Indeed, with the change of variables y = µ(x -a)(g * ω)(u, v) = Im R e iφ αµu(µ(x -a))e -iφ αµv(µ(x -a))dx = α 2 µIm R u(y)v(y)dy = α 2 µω(u, v).Denition 26. The manifold of solitons is the orbit of η, η(x) = 1 x+i , under the action of the group G :M = G • η = {e iφ αµη(µ(x -a)), φ, a ∈ R, α > 0, µ > 0}.

α 2 µ 2 α

 2 (t) = 0 φ(t) = -α 2 µ 2 4 μ(t) = 0.

Firstπ 2 , 2 ,

 22 we compute (ω| M ) η on T η M , at the point η. Using(ω| M ) η (e i , e j ) = Im R (e i • η)(x)(e j • η)(x)dx,and the residue theorem, we get(ω| M ) η (e 1 , e 2 ) = -Im R (ω| M ) η (e 1 , e 3 ) =0, (ω| M ) η (e 1 , e 4 ) = -π (ω| M ) η (e 2 , e 3 ) = -π (ω| M ) η (e 2 ,e 4 ) =0, (ω| M ) η (e 3 , e 4 ) = π 2 . Hence (ω| M ) η = π 2 (dα ∧ da + dµ ∧ da + 2dφ ∧ dα + dφ ∧ dµ).

( 6 .

 6 3.1) 

( 6 . 3 . 2 )

 632 By equation (6.2.2), we have thatω g•η d η g(u), d η g(v) = α 2 µω η (u, v).

( 6 . 3 . 3 )

 633 Then, equations (6.3.2), (6.3.3), and (6.3.1) yield

Lemma 6 . 4 . 1 . 1 2

 6411 For a compact subset Σ of R × R * + × T × R *+ and γ > 0, denote byU Σ,γ = u ∈ H tubular neighborhood of Σ.

  Démonstration. Consider the function F : H 1 2

α 2 µ 2 2 + 2B e 1 - 2 + α 2 µ 2 4 + A + B e 3 + 2Ce 4 ,- α 2 µ 2 2 e 1 • η = α 2 µ 2 2 ∂ x η, α 4 µ 3 4 e 3 • η = i 4 α 4 µ 2 ∂ x w - w 4 - 2 ∂ x η - η 4 -

 212434242424 d h F (η, e) = (ω| M ) η which is non-degenerate because, in the basis {e j • η} 4 j=1 of g, Ce 3 η, and similar relations hold for w, we obtain∂ t w = -Xη + -iεΠ b(a + x µ )η + 2Be 1 • η -Ce 2 • η + (A + B)e 3 • η + 2Ce 4 • η -Xw + -iεΠ b(a + x µ )w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w -iα 2 µ 2 Π 2|η| 2 w + η 2 w + i iα 2 µ 2 Π(|η| 2 η) + i iα 2 µ 2 Π |w| 2 w + 2Re(η w)w + |w| 2 η .Equation (6.1.13) and (6.1.14) yield the conclusion.

CHAPITRE 6 .

 6 SOLITON INTERACTION WITH SMALL TOEPLITZ POTENTIAL FOR THE SZEGÖ EQUATION ON R 205 Then η+ w(t) 2 L 2 = η 2 L 2 + w(t) 2 L 2 = π + w(t) 2 L 2 ,

Denition 27 . 2 +

 272 Dene the projection onto T η M = g • η g byP : ∪ N ∈N M(N ) → g, ω(u -P (u)η, Y η) = 0, ∀Y ∈ g.Lemma 6.4.7. Let • be a norm on g obtained by using the standard R 4 norm in the basis {e 1 , e 2 , e 3 , e 4 }. Then, for all w ∈ H 1 and Y ∈ g, we have P (Y w) ≤ C Y w L 2 , P (iN w) ≤ C w 2

H

  

1 2+ 4 j=1PP 2 - π 2 P 4 + 2 P 1 -πP 3 + 2 P 4 +P 1 - π 2 P 3 P 1

 14224213241231 P = 4 j=1 P j e j , P j : H -→ R. Then the denition of P yields(ω| M ) η (uj e j • η, a 1 e 1 • η + a 2 e 2 • η + a 3 e 3 • η + a 4 e 4 • η) = 0, for all a i ∈ R. Then, it follows that a 1 ω(u, e 1 • η) -π 2 a 2 ω(u, e 2 • η) + π a 3 ω(u, e 3 • η) + πP 2 + π a 4 ω(u, e 4 • η) + π 2 = 0, for all a i ∈ R. Therefore, (u) = 2 π ω(u, e 2 • η) -2ω(u, e 4 • η) , P 2 (u) = 2 π -ω(u, e 3 • η) -ω(u, e 1 • η) , P 3 (u) = 2 π ω(u, e 2 • η) -ω(u, e 4 • η) , P 4 (u) = 2π 2ω(u, e 1 • η) + ω(u, e 3 • η) .

Lemma 6 . 4 . 8 .

 648 If f : R → R is a function of class C 1 such that f ∈ L 1 (R) ∩ L 2 (R) and f ∈ L ∞ (R), then P (Π(if η)) = 2 π f (x)x|η(x)| 2 dx e 1 -1 π f (x)|η(x)| 2 dx e 2 + 1 π f (x)|η(x)| 2 dx + f (x)x|η(x)| 2 dx e 3 + 2 π f (x)|η(x)| 2 dx e 4 .

P

  -iεΠ b(a + x µ )η + 2Be 1 • η -Ce 2 • η + (A + B)e 3 • η + 2Ce 4 • η = 0.

Theorem 6 . 5 . 2 (

 652 [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]). The Hankel operator H u has nite rank N if and only if u is a rational function which belongs to M(N ), whereM(N ) = A(z) B(z) ∈ L 2 + deg(B) = N, deg(A) ≤ N -1, B(0) = 1, p.g.c.d.(A, B) = 1 . Lw, w = Lw, ∂ t w = Lw, -Xη + Lw, -iεΠ b(a + x µ )η + 2Be 1 • η -Ce 2 • η + (A + B)e 3 • η + 2Ce 4 • η + Lw, -Xw + Lw, -iεΠ b(a + x µ )w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w) + Lw, iα 2 µ 2 Lw -Lw, iα 2 µ 2 N w =I + II + III + IV + V + VIand we will estimate each of the six terms. The challenge is to deal with the terms containing ∂ x w since we only have w ∈ H 1 2

CHAPITRE 6 . 4 j=1 a j i 2 ∂ x we j • wdx + 2 4 j=1 a j |η| 2 we j • wdx + 4 j=1 a j η 2 we j • wdx - 1 4 4 j=1a

 642444 SOLITON INTERACTION WITH SMALL TOEPLITZ POTENTIAL FOR THE SZEGÖ EQUATION ON R 213For III and IV we analyze each term. Besides integrating by parts and using Cauchy-Schwarz or Hölder inequalities, a key ingredient is the fact that we deal with the real scalar product. III = Lw, -Xw = Re j we j • wdx = (i) + (ii) + (iii) + (iv).

IV = Re i 2 ∂ 4

 24 x w iεb(a + x µ ) w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w dx + 2Re |η| 2 w iεΠ b(a + x µ )w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w dx + Re η 2 w iεΠ b(a + x µ )w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w dx -1 Re w iεb(a + x µ ) w + 2Be 1 • w -Ce 2 • w + (A + B)e 3 • w + 2Ce 4 • w dx = (i)+(ii)+(iii)+(iv).

  2 . Le hamiltonien de cette équation est Une équation des ondes non linéaire 19 et il a le même scaling que l'espace Ḣ1/2 (R 2 ). Une condition nécessaire pour avoir un ot régulier par rapport à la donnée initiale dans Ḣr (R 2 ) est cette fois donnée par :

	1.1.4 -		
	E = (Au, u) L 2 +	1 2	u 4 L 4

  : les opérateurs de Hankel et de Toeplitz. La paire de Lax est donnée en terme de ces opérateurs dans la Proposition 1.2.2.

	1/2
	Un opérateur de Hankel H 1/2

+ (R) est un espace naturel dans lequel on peut étudier si l'équation de Szegö est bien-posée. Theorem 1.2.1. L'équation de Szegö cubique (1.2.1) est globalement bien posée dans H s + (R) pour s ≥ 1 2 . La propriété la plus importante de l'équation de Szegö est le fait qu'elle est complètement intégrable au sens où elle possède une paire de Lax. On commence par introduire deux classes d'opérateurs sur L 2 + (R) u : L 2 + (R) → L 2 + (R) de symbole u ∈ H + (R) est déni par

  réalisent une comparaison entre les dynamiques induites par e -itD et e -itAu quand t → ∓∞. En particulier, leur existence et leur complétude montrent que le spectre absolument continu de A u coïncide avec celui de D, donc avec [0, ∞). Pour plus de détails concernant les opérateurs d'ondes, on renvoie à la section 2.2.4 des préliminaires.Un autre élément important de la preuve est un théorème de type Kronecker (Théorème 2.1.7) qui caractérise les opérateurs de Hankel de rang ni (on rappelle que les opérateurs de Hankel sont compacts). Ce théorème arme que l'opérateur de Hankel H u est de rang ni si et seulement si u est une fonction rationnelle dans L 2 + (R). Pour démontrer que le soliton u est une fonction rationnelle, il sut donc de démontrer que dim(RanH u ) < ∞. Dans la preuve, on reformule ceci en termes de propriétés pour Ker H u . Ce noyau est invariant par rapport à la multiplication par e iαx , pour tout α > 0. Un théorème de Lax (Théorème 2.1.6) concernant de tels sous-espaces invariants, montre alors que Ker H u = φL 2

+ (R), où φ est une fonction intérieure, c'est à dire une fonction holomorphe bornée dans le demi-plan supérieur et dont la valeur au bord est de valeur absolue 1. En utilisant les propriétés des fonctions 1.4.2 -Stabilité orbitale des solitons de l'équation de Szegö sur R 25 intérieures, on démontre que φ est en fait égale à un produit de Blaschke ni :

  Hankel H u 0 est de rang ni. Les opérateur de Hankel de rang ni sont denses dans la classe des opérateurs de Hankel, les opérateurs de Hankel étant tous compacts. Un théorème de type Kronecker (Théorème 2.1.7) arme que H u 0 est de rang ni N si et seulement si u 0 est une fonction rationnelle appartenant à l'ensemble M(N ) déni par

	1/2 + (R) s'écrit comme une superposition presque orthogonale des
	translations des prols xes et d'un reste qui tend vers zéro dans toutes les normes
	L p (R), p ∈ (2, ∞). Pour un énoncé plus précis, on renvoie au Théorème 2.4.5 des
	préliminaires.		
	On remarque que tous les solitons pour l'équation de Szegö sur T, à l'exception
	de ceux qui sont de la forme	1 z-p	avec |p| > 1, sont instables [36].
	1.4.3 Formule explicite de la solution de l'équation de Szegö sur R

On considère d'abord le cas d'une donnée initiale u 0 pour laquelle l'opérateur de

  1.4.3 -Formule explicite de la solution de l'équation de Szegö sur R . On dénit l'opérateur de shift innitésimal compressé T : Ran(H u 0 ) → Ran(H u 0 ) par :

	27
	W (t) = e i t 2 H 2 u 0

  Le fait que la dernière égalité soit vraie pour u 0 reste tout de même insusant. Comme on veut obtenir une formule pour u(t), il est nécessaire que cette propriété soit vraie pour tout u(t), t ∈ R. En utilisant un argument de point xe, on démontre que

).

  ), et donc que la fonction qui remplace g 0 dans la formule

	(1.4.3) est	1 1-iεx	.

Le point le plus délicat dans la preuve du Théorème 1.4.4 est la dénition de l'opérateur de shift innitésimal T , qui devrait être la multiplication par x". Il n'est plus susant de multiplier par x et ensuite de soustraire une constante", comme dans le cas des fonctions rationnelles (1.4.2). Cependant, même si l'on ne sait pas dénir

  Pour des solutions qui sont des fonctions rationnelles génériques, on démontre qu'elles sont des superpositions des solitons et d'un reste quand le temps tend vers ±∞. Pour des solutions non génériques, on trouve un exemple pour lequel les grandes normes de Sobolev croissent vers l'inni en temps. 1.4.4 Résolution en solitons pour l'équation de Szegö sur R Une donnée initiale u 0 ∈ M(N ) est dite fortement générique si l'opérateur H 2

	u 0

a ses valeurs propres non nulles simples 0

  1.4.5 Croissance de grandes normes de Sobolev pour des solutions non génériques de l'équation de Szegö sur R Plus précisément, il existe une solution u de l'équation de Szegö avec une donnée initiale non générique u 0 telle que H 2 u 0 ait une seule valeur propre double et telle que u(t) H s (R) ∼ |t| 2s-1 pour |t| susamment grand.Le théorème précédent est une conséquence du caractère non-dispersif de l'équation de Szegö. Si on considère l'équation NLS sans dispersion, iu t = |u| 2 u, alors u(t, x) = φ(x) exp(-i|φ(x)| 2 t). Si φ est régulier, alors u(t) H s ∼ |t| s pour s ∈ N. En particulier, ceci explique pourquoi, pour l'équation de Szegö, seules les normes H s est un paramètre petit. Il a prouvé que les normes de Sobolev des solutions avec des données génériques et de masse unitaire deviennent plus grandes qu'une puissance négative de δ. Cependant, ces constructions ne donnent aucun exemple de solution telle que sup t u(t) H s = ∞. point de départ de la preuve des Théorèmes 1.4.5 et 1.4.6 est la formule explicite de la solution dont on dispose pour des données initiales u 0 ∈ M(N ). On sait déjà que la solution correspondante u(t) est une fonction rationnelle et donc on peut d'abord écrire son développement asymptotique comme une somme de fractions simples :

	Theorem 1.4.6 ([76]). L'équation de Szegö admet des solutions u(t) dont les grandes
	normes de Sobolev H s + (R) pour s > 1/2, croissent vers l'inni : Le
	u(t) H La situation est plus subtile pour l'équation de Szegö, à cause de la conservation de
	la norme H	1/2

s (R) → ∞ quand t → ±∞.

+ (R). + (R) avec s > 1/2 croissent vers l'inni.

Le Théorème 1.4.6 montre que l'énergie est supportée sur des fréquences de plus en plus hautes, tandis que la masse est supportée sur des basses fréquences. Ce phénomène s'appelle forward cascade" et est compatible avec certaines prédictions faites dans la théorie de la turbulence faible (weak turbulence theory").

Bourgain a construit dans

[START_REF] Bourgain | On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE[END_REF] 

des solutions dont le supremum en temps des normes de Sobolev est inni. Il a tout de même considéré une équation des ondes non linéaire sur T avec un laplacien spectralement déni, de la forme B 2 , où B est diagonal par rapport à la base des exponentielles et a des valeurs propres µ n = µ -n , µ n = |n| + O(1). Dans

[START_REF] Bourgain | Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations[END_REF]

, Bourgain a construit des solutions avec la même propriété pour une équation de Schrödinger non linéaire sur T avec une non linéarité petite et tronquée en fréquences. Récemment, Hani a construit dans sa thèse

[START_REF] Hani | Global and dynamical aspects of nonlinear Schrödinger equations on compact manifolds[END_REF] 

le même type de solutions génériques de NLS sur T 2 avec une non linéarité cubique tronquée.

Cependant, dans le cas des EDP hamiltoniennes générales (dispersives), un tel résultat n'est pas connu, mais il existe plusieurs résultats partiels dans cette direction.

Dans

[START_REF] Gérard | The cubic Szegö equation[END_REF] Corollary 5]

, Gérard et Grellier ont observé la croissances de grandes normes de Sobolev pour l'équation de Szegö sur T. Cependant, leur construction d'une suite de solutions u ε (t ε ) dont les normes de Sobolev deviennent grandes dépend du paramètre petit ε. Dans

[START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF]

, Colliander, Keel, Stalani, Takaoka et Tao ont construit une solution pour l'équation NLS cubique défocalisante sur T 2 dont les grandes normes de Sobolev deviennent plus grandes que n'importe quelle constante xée après un certain temps. Kuksin a considéré dans

[START_REF] Kuksin | Oscillations in space-periodic nonlinear Schrödinger equations[END_REF] 

le cas de l'équation NLS avec peu de dispersion, -i∂ t u + δ∆u = |u| 2 u, 1 avec une condition au bord périodique et impaire, où 1. On remarque que cette équation peut être considérée comme une perturbation de l'équation 1.4.6 -Coordonnées action-angle généralisées pour l'équation de Szegö restreinte à des variétés de dimension nie M(N ) 31 δ

  2N actions invariantes par le ot et telles que le hamiltonien s'exprime exclusivement en termes d'actions, de N angles qui appartiennent au tore T et de N angles généralisés qui appartiennent à la droite réelle R.

	Dans ces nouvelles
	coordonnées, l'équation de Szegö a alors une forme très simple et peut être intégrée
	facilement.
	Une fonction u ∈ M(N ) est dite générique si l'opérateur H 2 u a seulement des

3, les sous-variétés M(N )

sont invariantes par le ot de l'équation de Szegö. En restreignant l'équation de Szegö à M(N ), on obtient un système complètement intégrable de dimension 4N .

On peut donc introduire explicitement des coordonnées action-angle généralisées pour ce système, formées de NLS sans dispersion. On renvoie à

[13, p.138] 

Résultats concernant l'équation de Szegö valeurs propres non nulles simples

  {action, angle} et {action, angle généralisé}. Cependant, il est dicile de calculer directement ces crochets de Poisson. Le point clé pour faire ce calcul est d'utiliser la hiérarchie de Szegö. C'est une suite innie d'équations hamiltoniennes correspondant aux champs vectoriels des quantités conservées J 2n dénies dans le Corollaire 1.2.4 :

  est un diéomorphisme local, d'où il résulte que χ est une application ouverte. Si l'on prouve que χ est aussi une application fermée, la connexité de Ω va impliquer que χ(M(N ) gen ) = Ω, et donc χ est surjective. Pour démontrer que χ est fermée, on prouve qu'elle est propre, ce qui signie que la pré-image de tout sous-ensemble compact de Ω par χ est compacte.

	dφ j dt	et	dγ j dt	, et donc de
	La preuve utilise de nouveau les quantités J 2n (u) ainsi que le fait que
	u 2 Ḣ1/2			

j

. Par conséquent, si l'on arrive à calculer {J 2n , φ j } et {J 2n , γ j }, on retrouve les crochets de Poisson désirés, à savoir {I j , φ j }, { Ĩj , φ j }, {I j , γ j }, { Ĩj , γ j }. Dans le but de calculer {J 2n , φ j }, on observe que {J 2n , φ j } = dφ j dt est l'évolution de l'angle φ j le long du ot de l'équation (1.4.5). (Une armation analogue est vraie pour l'angle généralisé γ j .) Comme l'équation de Szegö, toutes les équations dans la hiérarchie de Szegö sont complètement intégrables et admettent une paire de Lax (H u , B u,n ). Ceci nous permet de calculer retrouver {J 2n , φ j } et {J 2n , γ j }. • χ est surjective, et est donc un diéomorphisme. On a déjà démontré que χ

  Pour calculer les deux derniers crochets de Poisson, on procède de façon similaire en calculant {A, C}, où A = (T u, u) et C = (T u, g). Ce choix est diérent de celui réalisé dans le cas de T parce que les angles généralisés sont choisis d'une manière diérente qui fait intervenir l'opérateur de shift innitésimal T .Remarquons que dans le cas de T, les coordonnées action-angle ont été prolongées pour des fonctions qui ne sont pas nécessairement rationnelles. Comme les inclusions de Sobolev ne sont pas compactes sur R, et comme on ne sait pas caractériser les conditionsu 0 ∈ H s + (R), s > 1/2 et xu 0 (x) ∈ L ∞ (R), dans l'hypothèse du Théorème 1.4.4, uniquement en termes de données spectrales, on n'a pas pu étendre le Théorème 1.4.7 au cas des fonctions qui ne sont pas rationnelles.

1.5 Résultats concernant les perturbations de l'équation de Szegö

Dans le Chapitre 5 on s'intéresse à l'équation des ondes non linéaire

  est une constante absolue et C * est une constante qui dépend seulement de la norme H

	Plus précisément, soient 0 < ε W 0 ∈ H s + (R) une fonction rationnelle non générique telle que H W 0 ait une seule 1, s > 1 2 et δ > 0 susamment petit. Soit
	valeur propre double. Notons v(t) la solution de l'équation (NLW) sur R de donnée
	initiale εW 0 . Alors, pour 1 2ε 2 log( 1 ε δ )
	1/2 + (R) de W 0 .
	L'intérêt du Théorème 1.5.1 est de fournir des résultats pour l'équation (NLW) à
	partir des résultats que l'on connait pour l'équation de Szegö. On a mis en évidence
	dans le Théorème 1.4.6, des solutions de l'équation de Szegö non génériques pour
	lesquelles les normes de Sobolev croissent vers l'inni en temps. Dans le corollaire
	suivant, on montre qu'un phénomène d'ination des normes de Sobolev est aussi
	valable pour les solutions de (NLW) avec les même données initiales non génériques.
	Corollary 1.5.2 ([78]). L'équation (NLW) sur R admet des solutions pour lesquelles
	il existe une augmentation des normes de Sobolev H s (R) avec s > 1 2 , de ε au moment 4s-2
	initial à ε log( 1 ε δ )	4s-1 à un moment ultérieur.

  est une constante absolue.

	La remarque qui s'impose est qu'il serait souhaitable d'obtenir une approximation
	de la solution de (NLW) pour un temps plus long. Malheureusement, la preuve du
	Théorème 1.5.3 ne nous permet pas d'avoir un temps plus long, même si l'on admettait
	une erreur d'approximation un peu plus grande.
	Dans la preuve du Théorème 1.5.3, on applique la méthode de la moyennisa-
	tion à l'ordre deux, introduite par Temam et Wirosoetisno dans [86]. Elle consiste à
	considérer l'ansatz suivant de moyennisation :

  Une autre question ouverte concerne les solitons de l'équation de Szegö sur R.

	Comme on l'a vu, les solitons sont orbitalement stables. La question qui se pose est
	de savoir s'ils sont asymptotiquement stables ou, dans le cas contraire, de déterminer
	le comportement à l'inni d'une solution qui, au moment initial, est très proche d'un
	soliton.
	Dans le Théorème 1.4.4, on trouve une formule générale pour la solution de l'équa-
	tion de Szegö lorsque la donnée initiale satisfait la condition xu 0 (x) ∈ L ∞ (R). Cepen-
	dant, la formule est très compliquée lorsque la donnée initiale n'est pas une fonction
	rationnelle, et l'on aimerait savoir si elle ne peut pas être mise sous une forme plus
	explicite et plus facile à manipuler.
	On rappelle que, dans le Théorème 1.4.7, l'on a introduit des coordonnées action-
	angle généralisées seulement pour des fonctions rationnelles génériques. Une question
	naturelle est de savoir s'il serait possible d'introduire des coordonnées action-angle
	généralisées sur un ouvert et de développer une théorie KAM. Les dicultés à surmon-
	ter sont liées à l'absence d'un théorème de compacité de type Rellich pour le cas de la
	droite réelle et au fait que l'on ne sait pas caractériser la condition xu 0 (x) ∈ L ∞ (R)
	exclusivement en termes de données spectrales.
	On a mis en évidence dans le Théorème 1.4.6 un exemple de solution de l'équation
	de Szegö sur R pour laquelle les grandes normes de Sobolev croissent vers l'inni en
	temps. Cette solution correspond à une donnée initiale rationnelle non générique au
	sens où l'opérateur de Hankel qui lui est associé possède une valeur propre double.
	Une telle solution est donc non générique à l'intérieur des solutions rationnelles. On
	se demande si, quand on regarde toutes les solutions, et pas seulement celles qui sont
	rationnelles, le phénomène de croissance des normes de Sobolev n'est pas, en fait, un
	phénomène générique. De tels résultats ont été obtenus par Hani dans sa thèse [45]
	pour certains équations de Schrödinger non linéaires et il serait intéressant de savoir
	1 4 w H 1/2 si la démonstration s'adapte au cas de l'équation de Szegö. Un résultat encore plus si w est orthogonal à M . + (R) intéressant serait de classier toutes les solutions de l'équation de Szegö en spéciant
	celles qui se décomposent en solitons à l'inni et celles dont les normes de Sobolev
	1.6 Problèmes ouverts croissent vers l'inni en temps.
	En ce qui concerne l'équation des ondes non linéaire (NLW), la plus brulante ques-
	La principale motivation de l'introduction de l'équation de Szegö a été l'étude de tion est sans doute de savoir si elle admet des solutions dont les normes de Sobolev
	croissent vers l'inni. On a déjà observé dans le Corollaire 1.5.2 une augmentation de l'équation de Schrödinger non linéaire cubique sur le groupe de Heisenberg, ou plus 4s-2
	généralement sur des variétés sous-riemanniennes. On a observé dans ce contexte un la norme de Sobolev H s de ε à ε log( 1 4s-1 , mais l'on ne sait pas si la norme peut ε δ ) manque de dispersion et la nécessité d'étudier l'interaction entre la non linéarité cu-croitre au moins plus qu'une constante xée. Pour avoir un tel résultat, il faudrait bique et le projecteur pseudodiérentiel Π + . C'est ce que nous a conduit à l'équation de Szegö. Le principal problème ouvert est alors d'utiliser les résultats que l'on a attendre un temps de l'ordre O( 1 ε 2+β ) avec β > 0, et tous les résultats d'approxima-
	pour l'équation de Szegö pour obtenir de nouvelles informations concernant l'équa-tion que l'on a, pour le moment, sont pour un temps
	tion de Schrödinger sur le groupe de Heisenberg. Le problème le plus important est de
	prouver que cette équation est globalement bien posée. Des méthodes de compacité
	permettent de prouver l'existence de la solution, mais on ne sait pas si elle est unique.

  Notons que T b est C-linéaire et borné. De plus, T b est auto-adjoint si et seulement si b est à valeurs réelles. 2.1.5 Un théorème de type Kronecker pour les opérateurs de Hankel de rang ni sur L 2

+ (R)

Comme on l'a déjà vu, les opérateurs de Hankel sur l'espace de Hardy L 2 + (R) sont compacts. Les opérateurs de rang ni sont denses dans la classe des opérateurs compacts. On veut déterminer la condition à imposer sur le symbole u pour que H u soit de rang ni. On a le théorème suivant, dit de type Kronecker parce que son analogue dans le cas de L 2 + (T) a été démontré par Kronecker en 1881. Theorem 2.1.7 (Théorème de type Kronecker). Un opérateur de Hankel H u est de rang ni N si et seulement si u est une fonction rationnelle qui appartient à l'ensemble M(N ) déni par :

  une mesure purement ponctuelle} H ac :={ψ ∈ H| µ ψ est absolument continue par rapport à la mesure de Lebesgue} H sing :={ψ ∈ H| µ ψ est singulière par rapport à la mesure de Lebesgue} On a alors le théorème suivant. Theorem 2.2.4. L'espace de Hilbert H se décompose en une somme directe de la

	forme suivante :
	H = H

pp ⊕ H ac ⊕ H sing , chacun de ces sous-espaces étant invariant par rapport à A. De plus, A |Hpp possède un ensemble complet de vecteurs propres, A |Hac a exclusivement des mesures spectrales absolument continues et A |H sing a exclusivement des mesures spectrales singulières.

  on montre que W est une bonne approximation pour u. Cependant, on ne sait pas prouver directement ce résultat. On considère d'abord la solution approchée u app (t) = W (t) + εF osc (W (t), t),

où F osc (h, t) := t 0 f osc (h, s)ds pour tout h ∈ H 1 2

  On introduit maintenant quelques notations. On décompose une fonction 2π-périodique a(t) en une partie résonante et une partie oscillatoire de la manière

	où	a res =	1 2π	0	2π	a(τ )dτ
	est la moyenne de la fonction a(t). La partie oscillatoire est alors
		a osc (t) =			a(k)e itk .
				k =0	
	On note aussi	a posc (t) =	k =0	a(k)	e itk ik

suivante : a(t) = a res + a osc (t), l'unique primitive de a osc (t) dont la moyenne est nulle. Avec ces notations, on a donc :

  1 , this follows easily from the Kronecker theorem and the fact that the operator A u has discrete spectrum. On R, however, it turns out that A u has continuous spectrum. Therefore, we use scattering theory to study the spectral properties of A u in detail in Section 3. More precisely, we show that the generalized wave operators Ω

± (D, A u ), rigorously dened by (3.3.1) below, exist and are complete. As a result, we obtain that

H ac (A u ) ⊂ Ker H u ,

where H ac (A u ) is the absolutely continuous subspace of A u . The subspace Ker H u plays an important role in our analysis. More precisely, it turns out to be invariant under multiplication by e iαx , for all α ≥ 0. Therefore, applying a theorem by Lax (Proposition 3.4.4 below) on invariant subspaces, it results that Ker H u = φL 2 + , where φ is an inner function in the sense of Beurling-Lax, i.e. a bounded holomorphic function on C + such that |φ(x)| = 1 for all x ∈ R. Using the Lax pair structure and the identity (3.1.10), we show that φ satises the following simple equation :

  ByLemma 3.3.8, (3.3.3), and (3.3.4), we have for all f ∈ H ac (A u )

  Inner functions have a canonical factorization, which is analogous to the canonical factorization of inner functions on the unit disk, see[START_REF] Rudin | Real and Complex Analysis[END_REF] Theorem 17.15],[START_REF] Nikolskii | Operators, Functions and Systems : An Easy Reading[END_REF] Theorem 6.4.4]. More precisely, every inner function F can be written as the product

  Let h ∈ L 2 + regular. Then φh ∈ Ker H u 0 and by equation (3.4.7) we have

	Let us now prove that	k c = 0.

  .4.9) Since xψ ∈ Ran H u and A u (Ran H u ) ⊂ Ran H u by Lemma 3.3.7, we have A u (xψ) ∈ Ran H u ⊂ L 2 (R).The constant in equation(3.4.9) is zero because all the other terms are in L 2 (R). Then we have

  and A and B have no common factors.

	Note that M(N ) is a 4N -dimensional real manifold, M(N ) ⊂ H s + (R) for all s ≥ 0,

and that

∞

N =1 M(N ) is dense in L 2

+ [69, Lemma 6.2.1]. Moreover, they remain invariant under the ow.

  ∈ M j . Finally, we determine c k j (t) for k ∈ M j using Lemma 4.2.10 :
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	for all k /						
	d dt	c k j (t) =	d dt	(S(t)e j , e k ) = (P u 0	d dt	S(t)e j , e k ) =	λ 2 j 4π	(e

j , ẽ)(ẽ, e k ) + (ẽ, e j )(e k , ẽ)

  We obtain S

* (t) and S * λ (t) : S * (t) = U * (t)T * U (t), S * λ (t) = U * (t)T * λ U (t). Proposition 4.3.4. The closure of the operator -iS * is the innitesimal generator of the semi-group S * λ . Moreover, Ran(H u 0 ) is a core for the innitesimal generator of the semi-group S * λ . Démonstration. If h = H u f ∈ Ran(H u ), then we have

  Conjugating with U (t), we obtain that the restriction of the innitesimal generator of S * λ to Ran(H u 0 ) is -iS * . Moreover, by conjugating T * λ H u = H u T λ with U (t), we obtain S * λ H u = H u S λ . of Theorem 4.1.9. According to Proposition 4.3.1, we have that u(t) ∈ H s and xu(t, x) ∈ L ∞ (R) for all t ∈ R. Then, by Lemma 4.3.2, we obtain that

	This yields
	S * λ (Ran(H u 0 )) ⊂ Ran(H u 0 ).

By Theorem X.49, vol. II in

[START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]

, we have that Ran(H u 0 ) is a core of the innitesimal generator of S * λ . Then, the innitesimal generator of S * λ is the closure -iA of -iS * .

Proof

  a ji (t) are linear combinations of e ±i t

		2 (λ 2 j -λ 2 i ) with constant coecients, there
	exists M > 0 such that	
		|a ji (t)| ≤ M,
		7, we have
	S(t)e j =	λ 2 j ν 2

j 2π

t + (S(0)e j , e j ) e j + N i=1,i =j a ji (t)e i .

Since

  2 and t → ±∞.Proof of Corollary 4.1.12. Notice that the Sobolev norms of solitons are constant in time. Then, the solution in Theorem 4.1.11, having a non-generic initial data u 0 ∈ M(2) such that H u 0 has a double eigenvalue, provides an example of a solution whose H s -norms, with s > 1/2 growu(t) H s ≥ C|t| 2s-1 if s > 1/2and |t| is big enough. This does not contradict the complete integrability of the Szegö equation, since the conservation laws J 2n = (u, H 2n-2

	and the above lemma to obtain
	1/2 + -norm, as
	it was noticed in Remark 4.1.4.

u (u)) can all be controlled by the H

  2.1 in the next section, for xed ξ, the set {φ(ξ, η, ζ) = 0} ⊂ R 2 has non-zero Lebesgue measure, and thus it makes sense to integrate on this set. More precisely, {φ(ξ, η, ζ) = 0} is the set of (η, ζ) ∈ R 2 such that ζ, η -ξ, η -ζ have the same sign as ξ, or ζ = ξ, or η -ζ = ξ.

	Plugging the decomposition (5.2.4) into the equation (5.2.3), we obtain

  W denotes the solution of the renormalization group equation(5.1.11). In what follows, we estimate each of the terms I,II,III in the H s -norm, s > 1/2. Using the denition of u app (5.2.9), and the estimates in Lemma 5.2.2, it follows that
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	(5.2.11), we have that	
	t		t
	w(t) =ε 2	f (u(s), s) -f (u app (s), s) ds -	R ε (W (s), s)ds
	0		0
	t			t
	=ε 2	f (u(s), s) -f (u app (s), s) ds -ε 2	f (W (s), s) -f (u app (s), s) ds
	0			0
		t	
	-ε 4	D W F osc (W (s), s) • f res (W (s))ds = I + II + III.
		0	
	5.2.4 Proof of Theorem 5.1.3	
	Proof of Theorem 5.1.3. Let v be the solution of equation (5.1.7). With the change
	of variables u(t) = 1 ε e i|D|t v(t), we have that u satises the equation (5.1.10). By the
	Duhamel formula, it follows that	
		t	
		u(t) = W 0 + ε 2	f (u(s), s)ds,	(5.2.13)
		0	
	Set w(t) := u(t) -u app (t), where u app is dened by (5.2.9). By equations (5.2.13) and

Here

  = 1 ε e i|D|t v(t) and W = 1 ε W, we obtain that v(t) -e -i|D|t W(t) H s (R) ≤ C * ε 2-C 0 δ ,Proof of Corollary 5.1.6. Let W be the solution of the equation
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	Recalling that u(t) (5.2.16)
	for 0 ≤ t ≤ 1 ε 2 log( 1 ε δ )	1-2α	.
	5.2.5 Proof of Corollary 5.1.6
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	Secondly, we have

  The proof follows the same lines as that of Lemma 5.3.3.

	1 ε δ )		
	Proof of Theorem 5.1.7. By Lemma 5.4.2, we have that the solution of the averaged
	equation (5.4.8) is W(t) = Y(t). By hypothesis, we have that the solution of equation α (5.4.13) satises U (t) H s (T) ≤ C log( 1 ε δ ) Then, by Lemma 5.4.3, it follows that
	W (t) H s (T) = Y (t) H s (T) ≤ C log( 1 ε δ )	α	. Using the estimates of Lemma 5.4.4, it
	follows from equation (5.4.7), that		

α

, then their H s (T)-norms are all bounded by log(

1 ε δ ) 9α .

Démonstration.

  ).T b is C-linear and bounded. Moreover, T b is self-adjoint if and only if b is real-valued.In what follows we consider the perturbed Szegö equation with a small Toeplitz

potential i∂ t u = Π(|u| 2 u) + εT b u.

(6.1.4) This is no longer a completely integrable equation. It is still globally well posed in H 1 2

  ∂ x w + Y 2 w + iY 3 w + Y 4 ∂ x (xw) ηdx + 2 -Y 1 ∂ x w + Y 2 w + iY 3 w + Y 4 ∂ x (xw) ∂ x (xη)dx ≤C Y w L 2 ∂ x η L 2 + η L 2 + x∂ x η L 2 + ∂ 2 x (xη) L 2 + x∂ 2 x (xη) L 2 ≤C Y w L 2 . using the Sobolev embedding H 1 2 (R) ⊂ L p (R) for all 2 ≤ p < ∞, we have P 1 (iN w) = ω(iN w, η) -2ω(iN w, ∂ x (xη)) ≤ |w| 2 wηdx+ |w| 2 |η| 2 dx + 2 wRe(η w)ηdx + 2 |w| 2 w∂ x (xη)dx + |w| 2 η∂ x (xη)dx + 2 wRe(η w)∂ x (xη)dx ≤C( w 2 L 2 + w 3 L 2 ) ≤ C w L 4 ( w L 4 + w 2 L 8 ) ≤ w 2

			1 we have		
	P 1 (Y w) ≤	Y wη + 2	Y w∂ x (xη)	
	= -Y 1 ≤ Y w∂ x ηdx + 2	wηdx +	xw∂ x ηdx + 2	w∂ 2 x (xη)dx
		+ 4	w∂ x (xη)dx + 2	xw∂ 2 x (xη)dx
	By H	1 2 +	( w	H	+ 1 2	+ 1).

  Then, integrating by parts we haveω(Π(if η), Y • η) = ω(if η, a 1 e 1 • η + a 2 e 2 • η + a 3 e 3 • η + a 4 e 4 • η) = Im -a 1 if η∂ x ηdx + a 2 if η ηdx + a 3 if η(-i)ηdx + a 4 if η∂ x (xη)dx = -a 1 2 f ∂ x (|η| 2 )dx + a 2 f |η| 2 dx + a 4 Re f (x)η(x) η(x) + x∂ x η(x) dx = a 1 2 f |η| 2 dx + (a 2 + a 4 ) f |η| 2 dx -a 4 2 xf (x) + f (x) |η(x)| 2 dx

			=	a 1 2	f |η| 2 dx + (a 2 +	a 4 2	) f |η| 2 dx -	a 4 2	f (x)x|η(x)| 2 dx.
	=	a 1 2	f |η| 2 dx + (a 2 +	a 4 2	) f |η| 2 dx -	a 4 2	f (x)x|η(x)| 2 dx.

Using the formula for (ω| M ) η we have

ω 2 π f (x)x|η(x)| 2 dx e 1 • η -1 π f (x)|η(x)| 2 dx e 2 • η + 1 π f (x)|η(x)| 2 dx + f (x)x|η(x)| 2 dx e 3 • η + 2 π f (x)|η(x)| 2 dx e 4 • η, Y • η

  49, Lemma 2.2].Coerciveness of the linearized operator L6.5 Coerciveness of the linearized operator LIn this section we prove that the linearized operator L, dened by equation (6.1.14), is coercive in directions which are symplectically orthogonal to the manifold of solitons M . Lemma 6.5.1. For all f ∈ Ker(H η 2 ) ∩ H

				1
				2 + , we have that
			L(f ), f ≥	1 4	f 2 H + 1 2	.
	Démonstration. Since η(x) = 1 x+i	, we have that Ker(H η 2 ) = x-i x+i	2	L 2 + . Let
	f ∈ Ker(H η 2 ) ∩ H + , f = x-i 1 2 x+i	2	h, where h ∈ H	1 2

  we integrate by parts apply the Cauchy-Schwarz inequality for each term. We obtain|I| ≤ c X w L 2 ≤ c(ε w 2 L 2 + w 3

	Re ā1	i 2	∂ x we 1 • ηdx = Re ā1	i 2	w∂ 2 x ηdx
			H	1 2 +	+ w 4 H	1 2 +

and

  ii) = 2Re -a 1 |η| 2 w∂ x wdx + a 2 |η| 2 |w| 2 dx -a 3 i |η| 2 |w| 2 dx + a 4 |η| 2 |w| 2 dx + a 4 |η| 2 xw∂ x wdx = -a 1 |η| 2 ∂ x (|w| 2 )dx + 2(a 2 + a 4 ) |η| 2 |w| 2 dx + a 4 |η| 2 x∂ x (|w| 2 )dx ∂ x (w 2 )dx + a 2 η 2 w 2 dx -a 3 i η 2 w 2 dx + a 4 η 2 w 2 dx + a 4 2 η 2 x∂ x (w 2 )dx Re -a 1 w∂ x wdx + a 2 |w| 2 dx -a 3 i |w| 2 dx (|w| 2 )dx + (a 2 + a 4 ) |w| 2 dx +

	and							
	(iv) = -	1 4						
			+ a 4 |w| 2 dx +	a 4 2	xw∂ x wdx
	= -	1 4	-	a 1 2	∂ x a 4 2	x∂ x (|w| 2 )dx
	= -	1 4	(a 2 +	a 4 2	) |w| 2 dx ≤ c X w 2 L 2 .
	Then							
	(i) = Re -a 1 + a 4 i 2 2 i	|∂ x w| 2 + a 2 ∂ x wwdx + a 4 i 2 H 1 2 + ≤ c(ε w 3 2 i H ∂ x wwdx + x|∂ x w| 2 dx a 3 4 1 2 + + w 4 H 1 2 + + w 5 ∂ x (|w| 2 )dx 1 2 H +
		= -	a 2 + a 4 2		1 i	∂ x wwdx = -	a 2 + a 4 2	0	∞	ξ| ŵ(ξ)| 2 dξ
		= -	a 2 + a 4 2	w 2 Ḣ1/2 +	≤ X w 2 H + 1 2	,
	by the Hölder inequality we have
	≤ c X w 2 L 2			
	similarly							
	(iii) = Re -η 2 ≤ c X w 2 a 1 2 L 2 ,

(Hence |III| ≤ c X w 2

,

  (|w| 2 )dx -BRe i|∂ x w| 2 dx -C 2 CHAPITRE 6. SOLITON INTERACTION WITH SMALL TOEPLITZ POTENTIAL FOR THE SZEGÖ EQUATION ON R 215 For (ii) we only analyze the terms containing ∂ x w. By the equations (6.4.5), we obtain -4BRe |η| 2 w∂ x wdx + 4CRe |η| 2 xw∂ x wdx= -2B |η| 2 ∂ x (|w| 2 )dx + 2C |η| 2 x∂ x (|w| 2 )dx = 2B ∂ x (|η| 2 )|w| 2 dx -2C ∂ x (|η| 2 x)|w| 2 dx ≤ cε w 2 L 2 .and similarly we obtain the same bound for (iii). Computing the last term, we obtain that (iv)=0. Hence

	Thus								
							(ii) ≤ cε(1 +	1 µ 1/2 ) w 2 L 2
							|IV| ≤ cε(1 +	1 µ 1/2 ) w 2 H + 1 2
	we have								
	(i) = -	1 4	εb(a +	x µ	)∂ x Re	i∂ x wwdx
		+	A + B 4	∂ x (|w| 2 )dx + CRe i∂ x wwdx
	=	ε 4µ	b (a +	x µ	)|w| 2 dx -	C 2	w 2 Ḣ 1 2 +	≤	cε µ 1/2 b L 2 w 2 L 4 + cε w 2 Ḣ 1 2 +
	≤cε 1 +	1 µ 1/2 w 2 H + 1 2		

1 2 (R) ⊂ L p (R), 2 ≤ p < ∞,

.

  Since we work with the real scalar product, it follows immediately that V=0. For VI again we only analyze the terms containing ∂ x w. The important step is to group together wη + wη ∈ R.-α 2 µ 2 i 2 ∂ x w, i(|w| 2 w + 2|w| 2 η + w 2 η) = -α 2 µ 2 1 4 |w| 2 ∂ x (|w| 2 ))dx + 1 2 Re |w| 2 ∂ x wηdx -1 2 |w| 2 2Re(η∂ x w + w∂ x η)dx = α 2 µ 2 Re |w| 2 w∂ x ηdx ≤ cα 2 µ 2 w 3For the other terms it is enough to apply the Cauchy-Schwarz and Sobolev inequalities. Using Lemma 6.4.6 we obtain |VI| ≤ cα 2 µ 2 ( w 3

							Re	|w| 2 ∂ x wηdx +	1 2
	= -α 2 µ 2 1 8	∂ x (|w| 4 )dx +	1 2	Re	|w| 2 ∂ x wηdx +	1 2	∂ x (|w| 2 )2Re(wη)dx
	= -α 2 µ 2 1 2						
							+ H 1 2	.
			H	1 2 +	+ w 4 H + 1 2	) ≤ cα 2 0 µ 0 µ( w 3 H	1 2 +	+ w 4 H	1 2 +

Re

∂ x ww(wη + wη)dx

.

  1 with the coerciveness properties of the linearized operator L, to obtain an estimate for w Suppose the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as in Lemma 6.4.1,u(t) = g(t) • (η + w(t)) on a time interval [t 1 , t 2 ] and µ 0 2 ≤ µ(t) ≤ µ 0 2 . Let 0 < ε 1 and 0 < δ < 1 2 . If |t 2 -t 1 | ≤ 1where c 0 > 2 is a constant depending only on α 0 and µ 0 .Démonstration. Integrating from t 1 to t 2 the estimate in Lemma 6.6.1, we have thatLw(t 2 ), w(t 2 ) ≤ Lw(t 1 ), w(t 1 ) + c(t 2 -t 1 )ε w L ∞ ([t 1 ,t 2 ],HTogether with the coerciveness of the linearized operator L in Proposition 6.5.3, this Since c(t 2 -t 1 )ε = cε 1 2 +δ < 1 8 we can pass the term c(t 2 -t 1 )ε w 2

	H H + 1 2 1 2 + hand-side of the inequality and with the estimates in the hypothesis we obtain to the left .
	Proposition 6.6.2. ε 1 8 w 2 L ∞ ([t 1 ,t 2 ],H 1 2 + ) ≤ 4 w(t 1 ) 2 + H 1 2 + 3cε 1+δ .	1 2 -δ and
								w	L ∞ ([t 1 ,t 2 ],H	1 2 + )	≤ ε	1 2 ,
	then							
					w	L ∞ ([t 1 ,t 2 ],H	1 2 + )	≤ c 0 w(t 1 )	H	+ 1 2	+ c 0 ε	1+δ 2 ,
									1 2 + )
									1 2 + )	1 2 + )
									1 2 + )	1 + ) 2	.
	On the other hand, we have		
	Lw(t 1 ), w(t 1 ) =	1 2					
								2 dx +	1 4	|w(t 1 )| 2 dx
		≤	1 2	w(t 1 ) 2 H + 1 2	+ 2 η 2 L ∞ w(t 1 ) 2 L 2 + η 2 L ∞ w(t 1 ) 2 L 2 +	1 4	w(t 1 ) 2 L 2
		≤4 w(t 1 ) 2 H + 1 2	.	
	yields							
	1 4	w 2 L ∞ ([t 1 ,t 2 ],H + ) 1 2	≤4 w(t 1 ) 2 H + 1 2	+ c(t 2 -t 1 )ε w	L ∞ ([t 1 ,t 2 ],H	1 2 + )
					+ c(t 2 -t 1 )ε w 2 L ∞ ([t 1 ,t 2 ],H	1 2 + )	+ c(t 2 -t 1 ) w 3 L ∞ ([t 1 ,t 2 ],H	1 2 + )
									1 2 + )

+ c(t 2 -t 1 )ε w 2 L ∞ ([t 1 ,t 2 ],H + c(t 2 -t 1 ) w 3 L ∞ ([t 1 ,t 2 ],H + c(t 2 -t 1 ) w 4 L ∞ ([t 1 ,t 2 ],H + (t 2 -t 1 ) w 5 L ∞ ([t 1 ,t 2 ],H Re 1 i ∂ x w(t 1 )w(t 1 )dx -2 |η| 2 |w(t 1 )| 2 dx -Re η 2 w(t 1 ) + c(t 2 -t 1 ) w 5 L ∞ ([t 1 ,t 2 ],H

  L ∞ ([0,t],H 1/2 + ) ≤ ε inf g∈Σ u(t) -g(t) • η L ∞ ([0,t],H 1/2 + ) ≤ ε 1 2< γ 0 for all 0 < t < T , it follows by Lemma 6.4.1 that the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as u(t) = g(t) • (η + w(t)) for all 0 < t < T , and moreoverw(t) L ∞ ([0,t],H 1/2 + ) ≤ ε 1 2. We apply the Proposition 6.6.2 successively on the intervals ]. For t in the interval [0, 1

	[0, 1 ε 1 2 -δ ], [ 1 ε 1 2 -δ , 2 ε 1 2 -δ ],..., [ k-1 ε 1 2 -δ , k ε 1 2 -δ ε	1 2 -δ ], we obtain
			w(t)	H	1 2 +	≤ c 0 w(0)	+ H 1 2	+ c 0 ε	1+δ 2 .
	Using this information for t = 1 ε 1 2 -δ	, we obtain for t ∈ [ 1 ε 1 2 -δ , 2 ε 1 2 -δ ] that
			w(t)	H	1 2 +	≤ c 2 0 w(0)	+ H 1 2	+ c 0 (1 + c 0 )ε	1+δ 2 .
	Ultimately, we have that for all t ∈ [0, k ε 1 2 -δ ]
	w(t)	H	1 2 +				
								1 2 + )	≤ε -δ 6 w(0)	+ H 1 2	+ ε	1 2 + δ 3	(6.6.1)
	and						
								µ 0 2	≤µ(t) ≤	3µ 0 2	.
	Démonstration. We use a bootstrap argument. Set
								1 2 ,	µ 0 2	≤ µ(t) ≤	3µ 0 2	.	(6.6.2)
	We intend to show that T ≥ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ). Suppose by contradiction that
					T <	δ 6 ln c 0	•	ε	1 1 2 -δ ln(	1 ε	).

.1.7) at time t can be parameterized as in Lemma 6.4.1, u(t) = g(t)(η + w(t)). Moreover, we have

w L ∞ ([0,t],H T := sup t > 0 inf g∈Σ u(t) -g • η Since

  Integrating, we obtain the desired estimate for |φ-φ|. Similarly we obtain the estimate for |a -ā|. Suppose ε is small enough such that ε ρ ln( 1 ε ) 2 ≤ 1. Then we have that |φ -φ| ≤ c0 δε 2δ ln( 1 ε ) 2 ≤ cε 2δ-ρ .

	Let 0 < ρ 1. If 2δ -ρ ≥ 1 2 + δ 3 , which is equivalent to δ ≥ 3 10 + 3 5 ρ > 3 10 that |φ -φ| ≤ ε 1 2 + δ 3 . This together with the approximations for a, α, µ in equations , then one can easily see
	(6.1.10) yields								
										+ H 1 2	≤ cε	1 2 + δ 3 .
	Thus, if δ ≥ 3 10 + 3 5 ρ > 3 10	, we have that
	equivalent to									H	+ 1 2	≤ cε	1 2 + δ 3 ,	which is
							k =	δ 6 ln c 0	ln(	1 ε	).
	Then,								
	w	L ∞ ([0, k ε 1 2 -δ	],H	1 2 + )	≤ ε -δ 6 w(0)	+ H 1 2	+ 2ε	1 2 + δ 3 ≤ 3ε	1 2 + δ 3 .
	Therefore, we have for 0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ) that
					w(t)	L ∞ ([0,t],H	1 2 + )	≤ 3ε	1 2 + δ 3 ,	(6.6.3)
	and by Lemma 6.4.12 it follows that	
					X ≤ cε 1+ 2δ 3 .
	By the denition of X (6.4.2), it follows that
							μ µ	+ 2C ≤ cε 1+ 2δ 3 .
	Thus	μ µ	≤ -	2ε π		b (a +	x µ	)|η(x)| 2 dx µ	+ cε 1+ 2δ 3 .

α(t)e iφ(t) µ(t)η(µ(t)(x -a(t))) -ᾱ(t)e i φ(t) μ(t)η(μ(t)(x -ā(t))) u(t) -ᾱ(t)e i φ(t) μ(t)η(μ(t)(x -ā(t))) for times 0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ).

1.4.6 -Coordonnées action-angle généralisées pour l'équation de Szegö restreinte à des variétés de dimension nie M(N )

1.5.3 -Interaction des solitons avec un potentiel Toeplitz petit pour l'équation de Szegö sur R

Comme on l'a déjà dit, le point de départ est le développement naïf de la solution :u(t) = u (0) (t) + εu (1) (t) + ε2 u (2) (t) + . . .En faisant un développement limité de f (u, t) autour de u (0) , on obtient :f (u, t) = f (u (0) , t) + f (u (0) , t)(u(t) -u (0) (t)) + . . . = f (u (0) , t) + εf (u (0) , t)u[START_REF] Abakumov | The inverse spectral problem for Hankel operators of nite rank[END_REF] (t) + . . . 2.5.2 -Méthode du groupe de renormalisation

1

+ (R)) be such that W = εW is the solution of the Szegö equation(5.1.8) with initial data W 0 = εW 0 . Then, we have that

Remerciements

Spectral properties of the operator A u for a soliton u

Taking the orthogonal complement of both sides, this yields RanH 2 u = RanH u .

If RanH u is nite dimensional, so is RanH 2 u , since RanH 

Consequently, if RanH u is nite dimensional, then A u (Ran H u ) ⊂ Ran H u .

Démonstration. The commutativity relation (3.3.3) is a consequence of identity (3.1.10). The second statement then follows by Lemma 3.3.6, Ran H 2 u = Ran H u .

It is a classical fact that if A and B are two self-adjoint operators on a Hilbert space H such that AB = BA, then B H ac (A) ⊂ H ac (A). For the sake of completeness, we prove it here in the case of the operators A u and H 2 u . Lemma 3.3.8. H 2 u H ac (A u ) ⊂ H ac (A u ).

Démonstration. As we see below, the inclusion follows if we prove that µ H 2 u φ µ φ for all φ ∈ L 2 + , where the measures above are the spectral measures with respect to the operator A u , corresponding respectively to H 2 u φ and φ.

Let E ⊂ R be a measurable set and f = 1 1 1 E . Then, by (3.3.3) and the Cauchy-Schwarz inequality we have

Therefore, µ H 2 u φ µ φ .

Let us denote by m the Lebesgue measure on R. If φ ∈ H ac (A u ), then µ φ m and thus µ H 2 u φ m. Hence, H 2 u H ac (A u ) ⊂ H ac (A u ).

Proposition 3.3.9. If u is a traveling wave, then H ac (A u ) ⊂ Ker H u .

Proposition 4.1.5. The manifolds M(N ) are invariant under the ow of the Szegö equation.

In order to prove this statement, we recall a Kronecker-type theorem.

Proposition 4.1.6 (Theorem 2.1 in [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]). Let u ∈ H

+ . Then u ∈ M(N ) if and only if rk(H u ) = N . Moreover, if u = A B ∈ M(N ), where A and B are relatively prime, B(0) = 1, B(x) = (x -p 1 ) m 1 . . . (x -p k ) m k , m 1 + . . . m k = N , and Im(p j ) < 0 for all j = 1, 2, . . . , k then, we have that Ran(H u ) = span C 1 (x -p j ) l j , j = 1, 2, . . . , k and l j = 1, 2, . . . , m j . Proof of Proposition 4.1.5. By equation (4.1.6) and Proposition 4.1.6, we have that if u 0 ∈ M(N ), then rk(H u(t) ) = rk(H u 0 ) = N . Thus the corresponding solution u(t) ∈ M(N ) for all t ∈ R.

As a corollary of the Kronecker-type theorem [75, Remark 2.2], we also have that if u ∈ M(N ) then u ∈ Ran(H u ), i.e. there exists a unique element g ∈ Ran(H u ) such that u = H u (g). An important property of Hankel operators, that will be a key point in this paper, is their characterization using the shift operators Tλ : L 2 + → L 2 + , λ > 0, Tλ f (x) = e iλx f (x).

More precisely, the bounded operator H :

+ is a Hankel operator if and only if 1.11) for all λ > 0, [69, p. 273]. The adjoint T * λ : L 2 + → L 2 + , dened by

is very inconvenient to use. Then, for rational functions u, we dene the innitesimal shift operator T : Ran(H u ) → Ran(H u ), 

The rst formula now follows using equation (4.2.1). Secondly, using equations (4.2.3), (4.2.11) twice, (4.2.12), and (4.2.1), we have

Lemma 4.2.10. For all h ∈ Ran(H u 0 ), we have

Démonstration. Using equation (4.1.5), we have that 

In order to compute g (t), we will dierentiate the equality u = H u g. We obtain :

-iT

Then, H u (g + iΠ(|u| 2 (g -1))) = 0 and thus by (4.2.3) we have 

Therefore we obtain

To conclude, we only need to rewrite the two parenthesis so that they do not depend on U . By equation (4.1.6), the denitions of g, ẽ, and equation (4.1.3), we have :

In order to express S without using U (t), we also need to determine the adjoint S * of the operator S and prove the commutation relation S * H u 0 = H u 0 S. We rst determine T * . 

Lemma 4.2.12. 

for all h ∈ Ran(H u 0 ). Applying this to h = e j we have 

→ R admit the Hamiltonian vector elds X F , X G , then we dene the Poisson bracket of F and G by :

A consequence of the Lax pair is the existence of an innite sequence of conservation laws as we noticed in Corollary 4.1.3.

We now introduce the Szegö hierarchy, i.e. the evolution equations associated to the Hamiltonian vector elds of J 2n for all n ∈ N * , and prove that each of these equations possesses a Lax pair. We will need the following lemma : As a consequence, the following identity holds : 

The Hamiltonian vector eld associated to J 2n (u) is where Démonstration. The proof follows using the above lemma and similar computations as in the proof of Theorem 8.1 in [START_REF] Gérard | The cubic Szegö equation[END_REF]. Denote

x n J 2n+2 (u).

A computation shows that

Identifying the coecients of x n , we obtain the desired formula for X J 2n (u). For the second part of the proposition, we use

Generalized action-angle coordinates for all h 1 , h 2 ∈ L 2 + , we have that

where C u = Gu+Du

2

. Identifying once more the coecients of x n and using the fact that H u is a skew-symmetric operator, we obtain the formula for H X J 2n (u).

As in [START_REF] Gérard | The cubic Szegö equation[END_REF], the following result holds : Theorem 4.6.3. For every u 0 ∈ H s + , s > 1, there exists a unique solution u ∈ C(R, H s + ) of the Cauchy problem

Moreover, u satises

and {J 2n , J 2k } = 0, In what follows we compute g (t) and the commutator [T, B u,n ] and use this result to determine the evolution of the angles and generalized angles along the ow of X J 2n . Lemma 4.6.4. Let u ∈ C(R, H s + ), s > 1 be a solution of (4.6.6) and for all t ∈ R let g(t) ∈ Ran(H u(t) ) be such that H u(t) g(t) = u(t). Then

(4.6.9)

Moreover,

Démonstration. In order to compute g (t), we dierentiate with respect to time the equality H u (g) = u : 

Using the fact that H u is a skew-symmetric operator and is onto on its range, we obtain (4.6.9).

Since the product of two rational functions has Λ equal to zero, we notice that

A similar computation yields the second equation in the statement.

Proposition 4.6.5. If u 0 ∈ H s + , s > 1 and u 0 ∈ M(N ) gen , then the solution u(t) of the equation (4.6.6) is contained in the toroidal cylinder T C(u 0 ) dened by (4.1.17), for all t ∈ R. Moreover, the angles φ j and the generalized angles γ j evolve along the ow of this equation as follows :

Démonstration. Since the evolution equation (4.6.6) admits the Lax pair (4.6.7), the classical theory yields that if u(t) is a solution of (4.6.6), then

145 for all j ∈ {1, 2, . . . , N }. 

Let us now prove that

In particular, it follows that it suces to prove that

As a consequence, we have that J 2n (u p ) → J 2n (u) as p → ∞. Indeed, we write

For the rst term we notice that

For the second term we have that
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Generalized action-angle coordinates

For the other terms, in the case when j is even, we use the self-adjointness of the operator H 2 u . We then obtain :

and the rst factor tends to zero since

For the case when j is odd, we use equation (4.1.3) and then proceed similarly.

Generalized action-angle coordinates 4.6.4 χ is a symplectic transformation

We proved so far that χ is a dieomorphism and we computed the Poisson brackets between actions and (generalized) angles. In order to prove that χ is symplectic, we only need to prove that the Poisson brackets involving only angles and generalized angles, {φ j , φ k }, {γ j , φ k }, and {γ j , γ k }, are zero.

We rst remark that the Jacobi identity yield that {φ j , φ k }, {γ j , φ k }, and {γ j , γ k } are only functions of λ 2 and λ 2 ν 2 for = 1, 2, . . . , N . Indeed, for the rst one we take f = λ 2 and then f =

which gives by (4.6.12), (4.6.13), that

Dene now J 1 (u) = (u, g) and J 3 (u) = (H 2 u u, g). We will compute {J 1 , J 3 } to prove that {φ j , φ k } = 0. We have that

Therefore, the vector elds corresponding to the real and imaginary part of J 1 are : 

Using equations (4.1.10) and (4.6.1), we have

Thus, we obtain {J 1 , J 3 } = 0. On the other hand, we have

Since {φ j , φ k } only depends on λ 2 and λ 2 ν 2 , = 1, 2, . . . , N , we have that the coecient of e -2i(φ j +φ k ) in the above expression is

Comparing the two expressions for {J 1 , J 3 }, we have that {J 1 , J 3 } is a trigonometric polynomial which is equal to zero. Therefore all its coecients are zero, which triggers, by taking the real part, that {φ j , φ k } = 0.

In order to compute {γ j , γ k } and {2φ j , γ k } we denote A := (T u, u), C := (T u, g) and compute {A, C} in two dierent ways. First, we use Chapitre 5 First and second order approximations for a nonlinear wave equation Ce chapitre est la reprise d'un article en préparation.

Introduction

One of the most important properties in the study of the nonlinear Schrödinger equations (NLS) is dispersion. It is often exhibited in the form of the Strichartz estimates of the corresponding linear ow. In case of the cubic NLS :

Burq, Gérard, and Tzvetkov [START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF] observed that the dispersive properties are strongly inuenced by the geometry of the underlying manifold M . Taking this idea further, Gérard and Grellier [START_REF] Gérard | The cubic Szegö equation[END_REF] remarked that dispersion disappears completely when M is a sub-Riemannian manifold or when the Laplacian is replaced by the Grushin operator.

In those cases, by conveniently decomposing the function u, we obtain that at least in the radial case, the Schrödinger equation is equivalent to the following system of transport equations :

where Π m are pseudo-dierential orthogonal projectors. Therefore, studying the Schrödinger equation in a non-dispersive situation comes down to studying a system of the above type.

The heuristic idea that motivated our result on R and the previous result on T in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] is the following. Consider the (NLW) equation with an initial condition v 0 such that v 0 = εu 0 , where u 0 ∈ H 1/2 + . Since we have conservation of the momentum and of the energy, it follows that 2E(v(t)) -M (v(t)) = 2E(v 0 ) -D(v 0 ). This yields :

is only ε-small. It seems thus that the dynamics of (NLW) is dominated by v + (t).

We omit then all the terms containing v -in the nonlinearity of the rst equation in (5.1.3), since they are supposed to be small. We obtain that u(t, x) = v + (t, x + t)

almost satises the Szegö equation

Hence, it is natural to expect that the Szegö equation provides us with an approximation of the (NLW) equation with a small initial condition supported on positive frequencies.

In the case of R, the conservation of energy and momentum still gives v -(t) Ḣ1/2 (R) = O(ε 2 ), while we have that v(t) H 1/2 (R) = O(ε) for all t ∈ R. However, we have no other information on the L 2 -norm of v -(t). This suggests that the low frequencies cause some new diculty in proving that v -is small, and thus in proving that the ow of (NLW) can be approximated by that of the Szegö equation.

A version of the approximation result for the (NLW) equation on T in [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF] is the following theorem.

Theorem 5.1.2 (Gérard-Grellier [START_REF] Gérard | Eective integrable dynamics for some nonlinear wave equation[END_REF]). Let 0 < ε 1, 0 ≤ α ≤ 1/2, and δ > 0 suciently small. Let s > 1 2 and W 0 ∈ H s (T). Let v(t) be the solution of the (NLW) equation on 

(5.1.6)

-Main results

155 with the same initial data. Suppose that W(t)

, we have

where C 0 > 0 is an absolute constant.

In the second half of this paper we improve the above result on T. We nd a second order approximate solution, given by an equation which is more complex than the Szegö equation, but which provides a smaller error of order ε 5 instead of ε 3 , in the approximation. For this purpose, we use the averaging method introduced by Temam and Wirosoetisno in [START_REF] Temam | Averaging of dierential equations generating oscillations and an application to control, Special issue dedicated to the memory of Jacques-Louis Lions[END_REF].

In what follows we state and briey comment the main results of the paper.

Main results

First, in the case of R, we consider an initial condition for (NLW) which is supported on positive frequencies only, is of order O(ε), and such that the corresponding solution of the Szegö equation is bounded for all times by Cε log(

Then the solution of the (NLW) equation with this initial condition stays ε 2 -close to the solution of the Szegö equation with the same initial condition,

(5.1.7)

Denote by W ∈ C(R, H s + (R)) the solution of the Szegö equation on R

with the same initial data. Assume that there exist 0 ≤ α ≤ 1 2 and δ > 0 small enough such that W(t)

, we have that

Denote by F osc (h, t) the unique function of mean zero in t such that

, we have

where C 0 > 0 is an absolute constant.

The above result cannot be directly extended to the case of R. The main reason is that in equation (5.1.9) we see appear the operator 1 D Π -. In the case of T, we have that 1 D Π -e ikx = 1 k 1 1 1 k≤-1 and thus there is no problem related to small divisors. However, in the case of R, if we pass into the Fourier space, we have 1 ξ 1 1 1 ξ<0 and when ξ approaches zero, this gives a singularity. A way to get around this singularity would be to consider instead of resonances, i.e. frequencies for which a certain phase is null φ = 0, almost resonances |φ| ≤ γ, for an optimal γ > 0. However, it seems that this would complicate signicantly the dynamics (5.1.9).

In order to prove Theorem 5.1.7, we use an averaging method introduced by Temam and Wirosoetisnoin in [START_REF] Temam | Averaging of dierential equations generating oscillations and an application to control, Special issue dedicated to the memory of Jacques-Louis Lions[END_REF].

We briey describe in what follows the renormalization method, the averaging method, the concept of resonance, and their usage in the literature.

5.1.2

The renormalization group method, the averaging method, and the concept of resonance

The renormalization group (RG) method was introduced by Chen, Goldfend, and Oono [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF][START_REF] Chen | Renormalization group and singular perturbations : multiple scales, boundary layers, and reductive perturbation theory[END_REF] in the context of theoretical physics, as a unied tool for asymptotic analysis. Its origin goes back to perturbative quantum eld theory.

The method is most often used to nd a long-time approximate solution to a perturbed equation. The main advantage of the RG method is that it provides an algorithm that can be easily applied to many equations. The starting point is a naive perturbation expansion, so that one does not need to guess or to make ad hoc assumptions about the structure of the perturbation series. Then, the divergent terms in the expansion(unbounded in time), are removed by renormalization. This leads to introducing the renormalization group equation. The solution of the RG equation is the main part of an approximate solution.

The eectiveness of the RG method was illustrated in a variety of examples of ordinary dierential equations traditionally analyzed using disparate methods, 5.1.2 -The renormalization group method, the averaging method, and the concept of resonance 159 including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, and the method of averaging.

The method was justied mathematically for a large class of ODEs in [START_REF] Ziane | On a certain renormalization group method[END_REF][START_REF] Ville | Analysis of a renormalization group method and normal form theory for perturbed ordinary dierential equations[END_REF]. It was also rigorously applied to some PDEs on bounded intervals, namely the Navier-Stokes equations [START_REF] Moise | Renormalization group method. Applications to Navier-Stokes equation[END_REF], a slightly compressible uid equation and the Swift-Hohenberg equation [START_REF] Moise | Renormalization Group Method. Applications to Partial Differential Equations[END_REF], and the primitive equations of the atmosphere and the ocean [START_REF] Petcu | Renormalization group method applied to the primitive equations[END_REF]. In [START_REF] Abou | On the renormalization group approach to perturbation theory for PDEs[END_REF] it was applied to the quadratic nonlinear Schrödinger equation on

The idea behind the RG method is that the dynamics of an equation is dominated by its resonant part. This idea is also developed in [START_REF] Grébert | Resonant dynamics for the quintic nonlinear Schrödinger equation[END_REF] where Grébert and Thomann study the resonant dynamics of the quintic non-linear Schrödinger equation on T.

It is used also by Colliander, Keel, Stalani, Takaoka, and Tao in [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF] to prove the existence of solutions for the cubic non-linear Schrödinger equation on T 2 with arbitrarily large high Sobolev norms. One reduces in that context to a resonant equation for which one proves growth of high Sobolev norms, and then shows that this resonant equation provides a good approximation for the initial one.

The averaging method we use in this paper was introduced by Temam and

Wirosoetisno in [START_REF] Temam | Averaging of dierential equations generating oscillations and an application to control, Special issue dedicated to the memory of Jacques-Louis Lions[END_REF] in the context of a class of dierential equations. At rst order it is related to the RG method, while at higher orders it is related to the asymptotic expansions of Bogolyubov and Mitropol'skii [START_REF] Bogolyubov | skii Asymptotic Methods in the Theory of Nonlinear Oscillations[END_REF].

The RG method can also be applied at higher orders, as it was done for ODEs in [START_REF] Ville | Analysis of a renormalization group method and normal form theory for perturbed ordinary dierential equations[END_REF]. In the case of the (NLW) equation on T, we could prove that at second order the RG equation is exactly the averaged equation (5.1.9) in Theorem 5.1.7. However, the computations one needs to do when applying the RG method at second order are much more tedious than when applying the averaging method. Another reason why we preferred to present the averaging method for the second order approximation, is that this method does not only give the eective dynamics (5.1.9), but also gives an algorithm of how to build an approximate solution and how to estimate the error, which is not at all clear when one applies the RG method at higher orders.

Both the RG and the averaging methods are based on the concept of decomposing the nonlinearity into its resonant and non-resonant parts. Such a decomposition was very eective in proving global existence of small solutions of dispersive equations and scattering. This was done in several works of Germain, Masmoudi, and Shatah First order approximation for the (NLW) equation on R

Then, u app satises the equation

(5.2.10)

By the Duhamel formula, we obtain that

where

Estimates for the oscillatory part of the nonlinearity in the case of

H s (T)) ≤ R and thus AW ∈ B(R). The fact that A is a contraction follows similarly. Therefore, there exists a unique solution of equation (5.4.8) in B(R). 

coincides with the solution of the following Cauchy problem :

on its maximal interval of existence.

Démonstration. First we make the observation that we can easily prove local wellposedness of equation (5.4.12) 

, following the lines of the proof of Lemma 5.4.1. Notice that Y ∈ L 2 + (T). Therefore Y -(t) = 0, for all t in the maximal interval of existence of Y.

In the following we prove that the only terms that do not contain W -and thus, contain only W + in {f (W, t)

). Since all the other terms contain at least one factor W -, it results that the Y(t) = Y + (t) is also solution for equation (5.4.8). By Lemma 5.4.1, we have uniqueness of the solution of equation (5.4.8). Thus, Y is the unique solution of equation (5.4.8).

It is thus sucient to determine the terms of {f (W, t) • F osc (W, t)} res which do not contain W -. Let us consider the rst term of the Fourier coecient in equation (5.4.10) :

The rst condition we have for the above sum is that |j| -|n| + |p| -|q| = 0. As we noticed in Lemma 5.3.1, it follows that j, n, p, q cannot be simultaneously nonpositive or non-negative, j = n, and j = q. Since in the above expression we have the factor Ŵ(n) Ŵ(q) Ŵ(p), it follows that if we only want to have W + , then the only possibility is p, n, q ≥ 0 and j < 0. In particular, this also satises j = n and j = q.
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The corresponding Sobolev spaces H s + (R), s ≥ 0 are dened by :

The Szegö projector Π is the projector on the non-negative frequencies, Π :

For u ∈ L 2 + (R), we consider the Szëgo equation on the real line :

This equation is globally well-posed in H

+ (R). Let D ⊂ L 2 + (R) be a dense subset of L 2 + (R). We say that a function F : D → R admits a Hamiltonian vector eld X F :

for all u, h ∈ D. The function

Thus the Szegö equation is a Hamiltonian evolution. The most remarkable property of this equation is the fact that it is completely integrable in the sense that it posses a Lax pair structure [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]. The Lax pair is given in terms of Hankel and Toeplitz operators.

In [START_REF] Pocovnicu | Traveling waves for the cubic Szegö equation on the real line[END_REF]Theorem 2] it was proved that all the initial data of solitons for the Szegö equation on R are of the form

where η(x) := 1 x+i , α 0 , µ 0 ∈ (0, ∞), and φ 0 , a 0 ∈ R, and that the corresponding solution is

where φ(t) = -

We show that the solution of the perturbed Szegö equation (6.1.4) with initial data u 0 = e iφ 0 α 0 µ 0 η(µ 0 (x -a 0 )) preserves the form u = e iφ αµη(µ(x -a)) over a large interval of time, and the time dependent parameters a, α, φ, µ evolve according to the eective dynamics, up to small corrections. More precisely, the main result of the paper is the following theorem. 

If u is a solution of the perturbed Szegö equation with a small Toeplitz potential i∂ t u = Π(|u| 2 u) + εT b u u(0, x) = α 0 e iφ 0 µ 0 η(µ 0 (x -a 0 )), (6.1.7) where a 0 , φ 0 ∈ R and α 0 , µ 0 ∈ (0, ∞), then

, where c 0 is a constant depending only on α 0 and µ 0 , and a, α, φ, µ satisfy

Then, we determine the ow of this vector eld, called the eective dynamics. In the case of the Szegö equation with a small Toeplitz potential the eective dynamics are given in the system (6.1.9). We then decompose the ow of the perturbed Szegö equation (6.1.4) into a part belonging to the manifold M and a part which is symplectically orthogonal to M . We show that the part of the solution which is orthogonal to M is small. Thus, the ow of (6.1.4) is close to M . Then, the heuristics pointed out by Holmer and Zworski suggest that the ow is close to the ow of

the eective dynamics. This can be rigorously proved and yields the approximation (6.1.11).

In proving that the part of the ow which is orthogonal to M is small we consider the Lyapunov functional and use the coerciveness of the linearized operator.

First we consider the functional E :

The Lyapunov functional is dened by

and the linearized operator L :

In [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF], Holmer and Zworski consider the case of the nonlinear cubic Schrödinger equation with a Dirac potential, that can be generalized to the case of a multiplicative linear potential. The maximal time for which the approximation holds is of order

Thus, the result we obtain for the Szegö equation with a Toeplitz potential (the natural extension of the multiplicative potential) is close to [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF]. However, working with the Lyapunov functional as it was done in [START_REF] Holmer | Slow soliton interaction with delta impurities[END_REF] does not give the desired result in the case of the Szegö equation, since we no longer have a Galilean invariance.

Consequently, we use the linearized operator, as it was done by the above cited authors in [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF], in the case of a slowly varying potential.

Then, the components of the vector eld X f are

This allows us to determine the Hamiltonian ow associated to X f , u = X f (u), which is given by ( ȧ, α, φ, μ) = (X 1 , X 2 , X 3 , X 4 ).

Let us now compute H b | M and nd its Hamiltonian vector eld.

As above, we determine the components of the Hamiltonian vector eld associated to f = H b | M , and obtain that the ow of H b | M is given by

Reparametrized evolution

Thus, the orthogonal decomposition (6.4.1), with w(t) = g(t) -1 • u(t) -η, holds as long as u(t) is close enough to M = G • η.

In order to nd the equation that w satises, we need the following lemmas : Lemma 6.4.2. If t → g(t) = (a(t), α(t), φ(t), µ(t)) is a C 1 function and

where Y (t) = ȧ(t)µ(t)e 1 + α(t) α(t) e 2 + φ(t)e 3 + μ(t) µ(t) e 4 .

Démonstration.

=i φe iφ αµu(µ(x -a)) + e iφ αµu(µ(x -a)) + e iφ α μu(µ(x -a))

We also need Lemma 2.1 from [START_REF] Holmer | Soliton interaction with slowly varying potentials[END_REF], that we restate in the context of our problem.

Lemma 6.4.3. Suppose that g : H

+ is a dieomorphism such that g * ω = ρ(g)ω, where ρ(g) ∈ C ∞ (H

+ .

In the next proposition we determine the equation satised by w.

Proposition 6.4.4. If the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as in Lemma 6.4.1, u(t) = g(t) • (η + w(t)), for all t in an interval (t 1 , t 2 ), then w satises the following equation : 

Démonstration. Denote ũ = w + η = g -1 u. Then, by Lemma 6.4.2, we have that

Then, Lemma 6.4.3 yields

and therefore,

+ , R) and suppose df (ρ 0 ) = 0. Then the Hessian of f at ρ 0 is well dened f (ρ 0 ) :

+ . We identify T ρ 0 H 1 2

+ and T * ρ 0 H 1 2

+ using the inner product and we dene the Hamiltonian map F :

+ be a nite-dimensional symplectic submanifold of H

If ρ 0 ∈ N and df (ρ 0 ) = 0, then the Hamiltonian map satises

Lemma 6.4.12. If the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as in Lemma 6.4.1, u(t) = g(t) • (η + w(t)), for all t in an interval (t 1 , t 2 ), w(t) L 2 is small enough, and µ 0 2 ≤ µ(t) ≤ 3µ 0 2 , then the vector X dened by

where the expressions of A, B, C can be found in equation (6.4.2), satises the inequality

).

Remark 6.4.13. Lemma 6.4.12 yields that if w H 1/2 + is small, then X is also small. On the other hand, we noticed in Remark 6.4.5 that X measures how far a, α, φ, µ are from the eective dynamics (6.1.9). Thus, the Lemma 6.4.12 shows that if one can prove that w, the part of the ow which is orthogonal to the manifold of solitons, is small, then a, α, φ, µ are perturbations of the eective dynamics.

Démonstration. Note rst that P (Y • η) = Y , for all Y ∈ g.

Since ω(w, Y •η) = 0, for all Y ∈ g, it follows that P w = 0 and P ∂ t w = ∂ t P w = 0.

Then, by Proposition 6.4.4 and Lemma 6.4.9, we have 0 = -X -P (Xw) + α 2 µ 2 P (iLw) -α 2 µ 2 P (iN w) ( w

+ 1).

We prove that P (-iLw) = 0. For E dened by equation (6.1.12), we have that X E is tangent to M , which corresponds to the fact that if the initial data is in M , then the ow of H 0 stays in M . Then,

+ .

Then, by Lemma 6.4.11, we have that the Hamiltonian map of E, -iL, satises

Then, since w is orthogonal to T η M = g • η and T |η| 2 , H η 2 are symmetric with respect to the real scalar product, we obtain that ω

For the last term, we rst notice that we have

Using the expression of P we found in the proof of Lemma 6.4.7, we obtain that

By Lemma 6.4.6 we have that α 2 µ ≤ α 2 0 µ 0 , and thus we have

If w L 2 is small enough so that c w L 2 < 1, then we write

To conclude, we use the fact that µ(t) ≤ 3µ 0 2 .

Moreover, if u ∈ M(N ), u(z) = A(z) B(z) , where B(z) = J j=1 (z -p j ) m j , with J j=1 m j = N and Imp j < 0 for all j = 1, 2, ..., J, then the range of H u is given by

.

Démonstration. By the Kronecker-type theorem, we have that the range Ran H η 2 is generated by all the fractions having as a numerator a complex number and as a denominator a factor of η 2 . More precisely,

On the other hand, we have that ω(w, X • η) = 0 for all X ∈ g, which is equivalent to 0 = ω(w, e j • η) = Im we j • ηdx = Re wie j • ηdx = w, ie j • η , for j = 1, 2, 3, 4. Thus w belongs to the orthogonal of Ran(H η 2 ) with respect to the real scalar product. Since H η 2 is C-antilinear, w belongs also to the orthogonal with respect to the Hermitian inner product in L 2 , which is Ker(H η 2 ). Hence w ∈ Ker(H η 2 ) ∩ H 1 2 + . By Lemma 6.5.1, the conclusion then follows.

Main estimates

In this section we estimate w, the part of the ow which is symplectically orthogonal to the manifold of solitons, and prove that it is small. Lemma 6.6.1. If the solution of the perturbed Szegö equation (6.1.7) can be reparametrized as in Lemma 6.4.1, u(t) = g(t) • (η + w(t)) on a time interval (t 1 , t 2 ), µ 0 2 ≤ µ(t) ≤ µ 0 2 , and w(t) is small enough in the H , where c is a constant depending on α 0 and µ 0 .

Integrating from 0 to t, where 0 ≤ t ≤ δ 6 ln c 0 • 1 ε 1 2 -δ ln( 1 ε ), and using the change of variables y = a + x µ , we obtain that ln µ(t)

).

Since around zero we have the Taylor expansion ln(1 + x) = x + O(x 2 ), it follows that

).

Hence, we obtain |µ(t) -µ 0 | ≤ c0 δε where c0 is a constant depending on α 0 , µ 0 . Thus,

).

(6.6.4) Equations (6.6.3) and (6.6.4) show that the conditions in the denition of T (6.6.2) hold with better bounds, i.e. 3ε ). Since w(t) and µ(t) are continuous with respect to time, it follows that there exists t 0 > 0 such that the conditions in the denition of T with exactly the same bounds as in that denition hold for times 0 ≤ t ≤ δ 6 ln c 0 • 1 Therefore, the conclusion of the proposition follows.

6.7 Proof of Theorem 6.1.1

In this section we prove that Theorem 6.1.1 follows from Proposition 6.6.3.

Proof of Theorem 6.1.1. First we notice that u(0) = g(0) • η, where g(0) = (a 0 , α 0 , φ 0 , µ 0 ). Proceeding as we did for µ(t) and possibly making the constant c0 larger, we obtain that |α(t) -α 0 | ≤ c0 δε We thus proved that for the above range of time, µ(t) and α(t) stay close to µ 0 and α 0 respectively. The denition of X (6.4.2) and the estimate (6.7.1) then yield that a, α, φ, µ satisfy the perturbed eective dynamics (6.1.8) in the statement of Theorem 6.1.1. By Lemma 6.4.6 we have that w 2 L 2 = π α 2 0 µ 0 α 2 µ -1 . Then, the equations satised by ᾱ and μ yield ∂ t (ᾱ 2 μ) = 0, and thus we obtain that α 2 µ = α 2 0 µ 0 + cε 1+ 2δ 3 , ᾱ2 μ = α 2 0 µ 0 .