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Introduction

Contexte

Le problème de la paramétrisation des structures complexes sur une surface donnée re-
monte à l’époque de Riemann. Ce dernier détermina de manière informelle le nombre
de paramètres nécessaire à la description des classes de surfaces de Riemann à biholo-
morphismes près. Teichmüller démontra, quatre-vingts ans plus tard, que ces paramètres
pouvaient être utilisés en tant que coordonnées sur une cellule, appelée espace de Teich-
müller, dont le quotient par une action naturelle du groupe d’homéotopie est l’espace des
modules de Riemann.

L’espace de Teichmüller, défini à partir des surfaces marquées, apparâıt implicite-
ment dans les travaux de Klein et Poincaré sur les groupes fuchsiens. Le théorème
d’uniformisation de Klein, Poincaré et Koebe fournit une bijection entre les classes d’iso-
morphisme de surfaces de Riemann homéomorphes à Sg et les classes d’isométrie de sur-
faces hyperboliques homéomorphes à Sg, où Sg est une surface compacte de genre g ≥ 2.

À l’aide de méthodes basées sur ce théorème, Fricke construit un système de coordonnées
sur l’espace de Teichmüller Tg de Sg et montre qu’il s’agit d’une cellule de dimension réelle
6g − 6.

Il existe d’autres paramétrisations de l’espace de Teichmüller et Thurston [32] dé-
montre, au milieu des années 80, que toute structure hyperbolique sur une surface pointée
peut être décrite par l’affectation d’un nombre réel strictement positif à chaque arête d’une
triangulation idéale de la surface (c’est-à-dire une décomposition de la surface en triangles
de sorte que les sommets de la triangulation sont exactement les pointes ; un exemple est
donné Chapitre 1, Figure 1.1). Ces paramètres de décalage encodent la façon de recoller
deux triangles idéaux de la triangulation. Les coordonnées de décalage ont été développées
par Bonahon [4] et Fock [13] qui montrent notamment comment exprimer différentes
structures sur l’espace de Teichmüller à l’aide de ces dernières. Les coordonnées dépendent
de la triangulation idéale, mais lorsqu’on change de triangulation par un mouvement
élémentaire, appelé flip, les coordonnées changent de façon bien contrôlée. Un théorème dû
indépendamment à Harer [17], Strebel et Penner [28] assure que toute triangulation idéale
peut être obtenue à partir d’une autre en appliquant une séquence de ces mouvements
qui satisfont trois types de relation (involution, commutation lointaine et l’importante
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vi Introduction

relation du pentagone). En particulier les coordonnées de Thurston-Bonahon-Fock-Penner
permettent d’encoder la structure de Poisson sur l’espace de Teichmüller de façon agréable
et les changements de coordonnées préservent cette structure.

Ces coordonnées se révèlent être particulièrement utiles au développement de la re-
cherche sur les espaces de Teichmüller et leurs analogues en rang supérieur :

1. La quantification des espaces de Teichmüller a été construite en déformant l’algèbre
engendrée par les coordoonnées de décalage dans la direction de la structure de
Poisson [6].

2. L’étude des espaces des modules des représentations du groupe fondamental d’une
surface dans d’autres groupes classiques comme SLn(R) a été développée par Fock
et Goncharov [12] qui ont défini des coordonnées sur ces espaces (judicieusement
décorés) et établi quelles étaient leurs transformations lorsqu’un flip était appliqué.
Cela leur a permis d’identifier combinatoirement une composante “positive” corres-
pondant à celle de Hitchin.

Le concept de supervariété, généralisant celui de variété classique en ajoutant des co-
ordonnées anticommutatives aux cartes locales, a été introduit par les physiciens étudiant
la supersymétrie. Il existe différentes façons de définir les supervariétés. Nous nous
intéressons dans notre étude à l’approche de DeWitt [10], appélée approche concrète par
Rogers [30, 31]. Grosso modo, dans l’approche de DeWitt, une supervariété est une
variété qui est localement isomorphe à un superespace noté Rn|m, dont les coordonnées
sont à valeurs dans une algèbre supercommutative, algèbre grassmannienne (cf. Defini-
tion 2.1.2). En particulier, cela conduit à la définition des super surfaces de Riemann,
qui sont fondamentales en théorie des cordes supersymétriques : elles sont les surfaces
d’univers de la théorie. Dans le formalisme de Poliakov de la théorie de cordes bosoniques
(cf. [29, 9]), le calcul de la fonction de partition d’une corde peut être effectué en intégrant
sur l’espace des modules de surfaces de Riemann. Dans le cas supersymétrique, cet espace
des modules devrait être remplacé par son superanalogue.

Une super surface de Riemann peut être vue comme une classe de conjugaison de mor-
phismes de son groupe fondamental dans un groupe de matrices, noté SpO(2|1), dont les
coefficients appartiennent à l’algèbre grassmannienne. Ce groupe se projette sur SL(2,R),
on peut par conséquent lui associer sa réduction représentée par une surface de Riemann
classique avec un relevé de l’holonomie de PSL(2,R) à SL(2,R) : une structure spin.
Le super espace de Teichmüller est une supervariété paramétrant les super surfaces de
Riemann ayant la même topologie. Cette théorie des super espaces de Teichmüller a été
développée dans le cas des surfaces fermées de genre g [9, 18]. Le besoin d’une structure
spin fait que le super espace de Teichmüller admette plusieurs composantes connexes.
Crane et Rabin [9] and Hodgkin [18] ont démontré que chaque composante était une
“super boule” de dimension (6g − 6|4g − 4).

Dans cette thèse, nous avons pour but de construire des coordonnées de décalage
pour les super surfaces de Riemann pointées munies d’une triangulation idéale ainsi que
de définir une super structure de Poisson sur cet espace à l’aide de ces coordonnées.
L’un des produits issu de ces constructions est la loi de transformation des coordonnées
lorsqu’on modifie la triangulation par un flip qui vérifie toutes les relations naturelles
que nous avons rappelées ci-dessus, notamment la relation de super pentagone. Une des
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nouveautés dans ce système de coordonnées est l’apparition de coordonnées “impaires”
associées à chaque triangle de triangulation, en plus des coordonnées “paires” associées à
chaque arête, déjà existantes.

Structure du travail et résultats

Le premier chapitre de cette thèse est consacré à des rappels sur les surfaces de Riemann
et les espaces de Teichmüller. On considère une surface S de type (g, k,m) c’est-à-dire
une surface de Riemann de genre g avec deux types de composantes de bord : un ensemble
de k composantes, appelées trous, et un ensemble de m composantes, appelées pointes.
Soient H le demi-plan de Poincaré et PSL(2,R) son groupe d’automorphismes. On définit
l’espace de Teichmüller de S comme l’espace des monomorphismes ρ du groupe fonda-
mental π1(S) dans PSL(2,R) tels que le quotient H/Im(ρ) est une surface du même type
que S, modulo l’action de PSL(2,R) par conjugaison : on demande que chaque pointe
(resp. trou) corresponde à un cusp parabolique (resp. hyperbolique). On rappelle la con-
struction de Fock des coordonnées de décalage pour les surfaces à trous. Ces coordonnées
dépendent du choix d’une triangulation idéale, ainsi un changement de triangulation con-
duit à un changement de coordonnées. Ainsi on rappelle ces transformations qui sont
données par une formule explicite (1.2).

Dans le Chapitre 2, on rappelle les définitions et les résultats concernant les super-
variétés nécessaires à notre étude. Il existe tout d’abord une super surface de Riemann
(cf. [15, 9]) généralisant le demi-plan supérieur H , noté HS (cf. [9]), et le superanalogue
du bord de H est noté P1|1. Ce super demi-plan supérieur admet un groupe de transfor-
mations (cf. [15, 9, 5]) qui est lui même une supervariété et généralise le groupe classique
PSL(2,R). Il est noté SpO(2|1) et il agit sur HS et P1|1 comme décrit en (2.3). De plus,
il se projette canoniquement sur SL(2,R) puis sur PSL(2,R) ; si Γ est un sous-groupe
de SpO(2|1), on note Γ] son image par la projection sur PSL(2,R). L’existence de ces
objets conduit à la définition du super espace de Teichmüller (la définition par groupe de
Bryant et Hodgkin [5]) : le super espace de Teichmüller d’une surface de type (g, k,m) est
l’ensemble des monomorphismes ψ : π1(S)→ SpO(2|1) tels que le quotient H/(ψ(π1(S)))]

est une surface de type (g, k,m) modulo l’action de SpO(2|1) par conjugaison.

Le super espace de Teichmüller d’une surface S admet plusieurs composantes connexes
indexées par l’ensemble des structures spin sur la surface. C’est pourquoi, nous rappelons
dans le Chapitre 3 la définition d’une structure spin sur S et différentes caractérisations.
Nous introduisons alors notre outil principal pour la construction des coordonnées sur le
super espace de Teichmüller : les orientations de Kasteleyn sur les graphes plongés dans
S. Un résultat de Cimasoni et Reshetikhin [7, 8] affirme que l’ensemble des structures
spin sur S est en bijection avec l’ensemble des classes d’équivalence d’orientations de
Kasteleyn, via une bijection dépendant d’une donnée combinatoire appelée configuration
de dimère. Une structure spin σ divise l’ensemble des pointes de S en celles de type
Neveu-Schwartz et celles de type Ramond. La composante connexe du super espace de
Teichmüller indexée par σ est de dimension (6g − 6 + 3k + 2m|4g − 4 + 2k + 2m− Rσ),
où Rσ est le nombre de pointes Ramond pour la structure spin σ.
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Le Chapitre 4 est le cœur de ce travail. Le but dans ce chapitre est de construire un
ensemble de coordonnées sur le super espace de Teichmüller comme suit.

Soit S une surface de type (g, k,m) et on note par p1, . . . , pk l’ensemble des trous et
par pk+1, . . . , pk+m l’ensemble des pointes.

Définition. Le super espace de Teichmüller de type X, noté ST , est l’ensemble des classes
d’équivalence de triplets (

ρ, {oi}i=1,...,k , {Fj}j=1,...,m

)
,

où ρ ∈ Hom (π1(S), SpO(2|1)) et (Imρ)] est fuchsien, oi est le choix d’une orientation du
trou pi et Fj est un ensemble π1(S)−équivariant de points fixes dans P1|1 de ρ(gmk+jg

−1)
pour tout g ∈ π(S) et mk+j est un lacet simple autour de la pointe pk+j et où l’on

définit deux triplets
(
ρ, {oi}i=1,...,k , {Fj}j=1,...,m

)
et
(
ρ′, {o′i}i=1,...,k ,

{
F ′j
}
j=1,...,m

)
comme

équivalents si et seulement si il existe B ∈ SpO(2|1) tel que

ρ′ = BρB−1, o′i = oi et F ′j = B · Fj.

Le choix de points fixes pour les pointes de type Ramond augmente la dimension du
super espace de Teichmüller d’un paramètre impair et chaque composante est isomorphe à
une “super boule” de dimension 6g−6+3k+2m|4g−4+2k+2m. Nous adoptons la même
approche que dans la cas classique afin d’associer des coordonnées à une triangulation
idéale mais nous devons gérer trois difficultés principales.

1. Nous devons encoder une structure spin combinatoirement : pour ce faire, nous
utilisons le résultat de Cimasoni et Reshetikhin sur les orientations de Kasteleyn.

2. Les coefficients des matrices que nous considérons appartiennent à une algèbre non
commutative : ceci fait que beaucoup d’attention doit être portée à l’exécution des
calculs.

3. De nouvelles coordonnées impaires, associées à chaque triangle, font leur apparition.

Fixons une triangulation idéale Λ de S. En associant, comme dans le cas classique,
une coordonnée paire xα (un superanalogue du birapport) à chaque arête α de Λ et
une coordonnée impaire ζi à chaque face Ti de Λ, nous construisons une super surface de
Riemann. Nous obtenons donc des coordonnées à valeurs dans RE(Λ)|T (Λ), où E(Λ) et T (Λ)
désignent respectivement l’ensemble des arêtes et des triangles de Λ. Nous démontrons le
résultat suivant :

Théorème (cf. Theorem 4.3.10). La collection {xα, ζi} fournit un système de coordonnées
sur le super espace de Teichmüller de type X de S, modulo l’action diagonale de Z2 par
multiplication des ζi par −1.

Dans le Chapitre 5 nous exposons certaines propriétés de nos coordonnées. Chaque
choix de triangulation idéale Λ conduit à un système de coordonnées différent. Nous
montrons alors comment ces coordonnées changent lorsqu’on modifie Λ par un flip. On
obtient alors des lois de transformation semblables à celles de la Figure 1(cf. Theorem 5.1)
qui se réduisent aux lois classiques décrites dans la Figure 1.6.

On démontre également que ces changements de coordonnées satisfont les relations
naturelles d’involution et une super version de la relation du pentagone (cf. Definition 5.2).
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ζ ξ
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√
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x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+xsuperflip−−−−−→

Figure 1

Théorème (cf. Theorem 5.3).

1. Le superflip est une involution

2. Le superflip satisfait la relation de super pentagone

Dans le Chapitre 6, nous construisons explicitement une structure de Poisson cano-
nique sur le super espace de Teichmüller de type X. On définit tout d’abord deux opéra-

teurs de dérivations
−→
∂
∂ζi

et
←−
∂
∂ζi

(cf. Definition 6.2.1). Nous démontrons le résultat suivant
en vérifiant que chaque flip induit une application super-Poisson.

Théorème (cf. Theorem 6.2.2). L’expression suivante définit une structure de super-
Poisson paire sur le super espace de Teichmüller de type X :

{, }ST =
∑

i,j∈E(Λ•)

εijxixj
∂

∂xi

∂

∂xj
− 1

2

∑
k∈F (Λ•)

←−
∂

∂ζk

−→
∂

∂ζk

Encore une fois, ce crochet de Poisson se réduit à celui donné dans le cas classique par
l’expression (6.1).

Conclusions

Les sujets abordés dans ce manuscrit s’intègrent naturellement dans une liste de problèmes
pertinents. Dans notre étude, nous construisons un système de coordonnées sur le super
espace de Teichmüller des super surface de Riemann de dimension (2|1). Une super
surface de Riemann de dimension (2|2) peut être vue comme une classe de conjugaison de
morphismes de groupe fondamental dans SpO(2|2). Une première étape dans une étude
plus approfondie des super espaces de Teichmüller serait la construction de coordonnées de
décalage sur le super espace de Teichmüller des super surfaces de Riemann de dimension
(2|2) et plus généralement (2|N).

Une autre direction de recherche pourrait être l’étude des super espaces de Teichmüller
de rang supérieur, c’est-à-dire des espaces de monomorphismes du groupe fondamental
d’une surface dans des super groupes qui se réduisent en des groupes de Lie classiques
comme SL(n,R) par exemple.

Nous aimerions aussi tirer profit du crochet de Poisson que nous avons construit. Il
serait sans doute d’une grande utilité de définir une quantification du super espace de
Teichmüller en calquant la construction de la quantification de l’espace de Teichmüller
classique. De plus notre crochet est pair et la construction d’un crochet de Poisson impair
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sur le super espace de Teichmüller, s’il existe, pourrait créer un intéressant lien avec le
formalisme de Batalin-Vilkovisky utilisé en théories de jauge.

Dans notre construction, nous établissons des formules explicites pour les changements
de coordonnées par application d’un flip. Ces changements pourraient être vus comme
une généralisation des mutations en théorie des variétés amassées et nous l’espérons con-
duiraient à une version super de ces objets.

Enfin, nous rappelons que notre approche des super espaces de Teichmüller est basée
sur la définition des supervariétés par DeWitt. Une autre définition des supervariétés,
dite algébro-géométrique, est basée sur la théorie des faisceaux : au lieu de déformer la
variété, on déforme son algèbre de fonctions. Il serait intéressant de traduire notre travail
en ces termes.



English introduction

Context

The problem of the parametrization of complex structures on a given surface dates back
to Riemann, who counted the number of parameters of classes of Riemann surfaces up to
biholomorphic equivalence. Eighty years later, Teichmüller showed that these parameters
may be used as real coordinates on a cell, called Teichmüller space whose quotient by a
natural action of the mapping class group is Riemann’s moduli space.

The Teichmüller space, defined in terms of marked surfaces, appeared implicitly in
the study of Fuchsian groups by Klein and Poincaré. The Uniformization theorem of
Riemann surfaces due to Klein, Poincaré and Koebe gives a bijective correspondence be-
tween isomorphism classes of Riemann surfaces homeomorphic to Sg and isometry classes
of hyperbolic surfaces homeomorphic to Sg, where Sg is a compact surface of genus g ≥ 2.
Using methods based on this theorem, Fricke constructed a system of coordinates on the
Teichmüller space Tg of Sg and showed that it is a cell of real dimension 6g − 6.

There exist other parametrizations of the Teichmüller space and Thurston [32], in the
middle of the eighties, showed that each hyperbolic structure on a punctured surface can
be described by associating a positive real number to each edge of an ideal triangulation
of the surface (i.e. a decomposition of the surface into triangles such that the vertices of
the triangulation are exactly the punctures; for an example see Chapter 1, Figure 1.1):
these shear parameters encode how to glue together two ideal triangles of the triangu-
lation. The shear coordinates have been developed independently by Bonahon [4] and
Fock [13] who showed how to express several structures on the Teichmüller space through
it. The coordinates depend on the ideal triangulation, but changing the triangulation by
an elementary move, called flip (cf. Figure 1.2), leads to a change of coordinates which
is well controlled. A theorem due independently to Harer [17], Strebel and Penner [28]
ensures that each ideal triangulation can be obtained from any other one by applying
sequences of these moves, and that these moves satisfy three kinds of relations (involu-
tion, distant commutation and most importantly the pentagon relation). In particular the
Thurston-Bonahon-Fock-Penner shear coordinates allow to encode the Poisson structure
of the Teichmüller space in a convenient way and the changes of coordinates preserve the
structure. The shear coordinates turned out to be particularly useful to further develop

xi
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the research on the Teichmüller space and its higher rank analogues:

1. The quantization of Teichmüller spaces was achieved by deforming the algebra gen-
erated by the coordinates in the direction of the Poisson structure [6].

2. The study of moduli spaces of representations of the fundamental group of the sur-
face in other classical groups as SLn(R) was developed by Fock and Goncharov [12]
who defined coordinates on these moduli spaces (suitably decorated) and estab-
lished how the coordinates change while applying a flip. This allowed them to
identify combinatorially a “positive” component which corresponds to Hitchin’s.

The concept of supermanifold, a generalization of the concept of classical manifold
by adding some anticommuting coordinates to the local charts, was introduced by the
physicists studying supersymmetry. There exist different ways to define supermanifolds.
We focus in our study on the DeWitt [10] approach, also called the concrete one by Rogers
[30, 31]. Roughly, in the DeWitt approach, a supermanifold is a manifold which is locally
modeled on a superspace denoted by Rm|n whose coordinates live in super commutative
algebras, called Grassmann algebras (cf. Definition 2.1.2). In particular, this leads to
the definition of super Riemann surfaces. In supersymmetric string theory, the super
Riemann surfaces are fundamental: they are the worldsheets of the theory. In Polyakov’s
formalism (cf. [29, 9]) of bosonic string theory, the computation of the partition function
of a string can be performed by integrating over the moduli space of Riemann surfaces.
In the supersymmetric approach to string theory, this moduli space should be replaced
by its super-analog.

A super Riemann surface can be seen as a conjugacy class of morphisms of its funda-
mental group in a group of matrices, with coefficients in the Grassmann algebra, denoted
by SpO(2|1). This group projects on SL(2,R) thus one can associate to each super Rie-
mann surface its reduction represented by a classical Riemann surface together with a lift
of the holonomy from PSL(2,R) to SL(2,R): a spin structure. The super Teichmüller
space is a super manifold parametrizing the super Riemann surfaces carrying the same
topology. This super-Teichmüller theory was developed in the case of closed surfaces of
genus g [9, 18]. Because of the necessity of a spin structure, the super Teichmüller space
admits several connected components. Crane and Rabin [9] and Hodgkin [18] showed that
each component is a “super ball” of dimension (6g − 6|4g − 4).

The goal of this thesis is to construct shear coordinates for punctured super Riemann
surfaces equipped with an ideal triangulation and define a super Poisson structure on
this space using these coordinates. One of the products of these constructions is the
computation of the coordinate changes associated to the flips which satisfy all the natural
relations, superanalogue of the above listed relations, notably the super pentagons. One
of the new features of these coordinates is that in addition to“even” coordinates, on each
edge of the triangulation, there are “odd” coordinates for each triangle.

Structure of the work and results

In the first chapter of this thesis, we recall some basic facts about Riemann surfaces and
the Teichmüller spaces. Let S be an oriented surface of type (g, k,m) i.e a Riemann
surface of genus g with two kinds of boundary components : a set of k components called
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holes and a set of m components called punctures. Let H be the Poincaré half plane
and PSL(2,R) its automorphism group. Define the Teichmüller space as the space of
monomorphisms ρ from the fundamental group π1(S) to PSL(2,R) such that the quo-
tient space H/ Im(ρ) is a surface of the same kind as S up to the action of PSL(2,R)
by conjugation: we ask that each punture (resp. hole) corresponds to a parabolic (resp.
hyperbolic) cusp. We recall Fock’s construction of the shear coordinates on a surface with
holes. These coordinates depend on the choice of an ideal triangulation, so a change of
triangulation leads to a change of coordinates. We also recall these transformations which
are given by the explicit formula (1.2).

In Chapter 2 we recall the definitions and the results about supermanifolds needed in
our study. There exists a canonical super-Riemann surface (cf. [15, 9]) generalizing the
upper half-plane H, denoted by HS (cf. [9]), and the super analog of the boundary of H
is denoted by P1|1. This super upper half-plane admits a group of transformations (cf.
[15, 9, 5]) which is itself a supermanifold and generalizes the classical group PSL(2,R).
It is denoted by SpO(2|1) and it acts on HS and P1|1 by the operation described in (2.3).
Moreover it projects canonically to SL(2,R) and then to PSL(2,R); if Γ is a subgroup
of SpO(2|1), one denotes by Γ] its image by the projection on PSL(2,R). The existence
of these objects leads to the definition of the super-Teichmüller space (the group defi-
nition by Bryant and Hodgkin [5]) : the super Teichmüller space of a surface of type
(g, k,m) is the set of monomorphisms ψ : π1(S)→ SpO(2|1) such that the quotient space
H/ (ψ(π1(S)))] is a surface of type (g, k,m) modulo the action of SpO(2|1) by conjugation.

The super-Teichmüller space of a surface S admits several connected components, in-
dexed by the set of spin structures on the surface. Therefore we recall in Chapter 3 the
definition of a spin structure on S and different characterizations of it. We then introduce
our key tool in the construction of coordinates on the super-Teichmüller space: Kasteleyn
orientations on graphs embedded in S. A result of Cimasoni and Reshetikhin [7, 8] states
that the set of spin structures on S is in bijection with the set of equivalence classes of
Kasteleyn orientations, via a bijection depending on a combinatorial datum called dimer
configuration. A spin structure σ divides the set of punctures on S into those of type
Neuveu-Schwarz and those of type Ramond. The component of the super-Teichmüller
space indexed by σ has dimension (6g − 6 + 3k + 2m|4g − 4 + 2k + 2m− Rσ) where Rσ

is the number of Ramond punctures for the spin structure σ.

Chapter 4 is the core of this work. The aim of this chapter is to construct a set of
coordinates on the super-Teichmüller X-space as follows.

Let S be a surface of type (g, k,m) and denote by p1, . . . , pk the set of holes and by
pk+1, . . . , pk+m the set of punctures.

Definition. The super-Teichmüller X−space, denoted by ST , is the set of equivalence
classes of triples (

ρ, {oi}i=1...k , {Fj}j=1..m

)
,

where ρ ∈ Hom (π1(S), SpO(2|1)) and (Imρ)] is a Fuchsian group, oi is the choice of
an orientation of the hole pi and Fj is a set π1(S)−equivariant fixed points in P1|1 of
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ρ(gmk+jg
−1) for all g ∈ π1(S) andmk+j is a simple loop surrounding the puncture pk+j and

where we say that two triples,
(
ρ, {oi}i=1...k , {Fj}j=1..m

)
and

(
ρ′, {o′i}i=1...k ,

{
F ′j
}
j=1..m

)
,

are equivalent if and only if there exists B ∈ SpO(2|1) such that

ρ′ = BρB−1, o′i = oi and F ′j = B · Fj.

The choice of fixed points of Ramond punctures increases the dimension of the Te-
ichmüller space by one odd parameter and each component is isomorphic to a “super ball”
of dimension 6g − 6 + 3k + 2m|4g − 4 + 2k + 2m. We follow the same approach as in the
classical case to associate coordinates to an ideal triangulation but we have to handle
three main difficulties.

1. We need to encode a spin structure combinatorially : to do so, we use Cimasoni and
Reshetikhin’s result about Kasteleyn orientations.

2. The coefficients of the matrices we are dealing with live in a non commutative
algebra : this causes that some more care has to be taken when computing.

3. New coordinates of odd type appear, associated to the triangles.

Fix an ideal triangulation Λ of S. By associating, as in the classical case, one even coor-
dinate xα (a super-analog of the cross-ratio) to each edge α of Λ and one odd coordinate
ζi to each face Ti of Λ, we construct a super-Riemann surface. Hence we get coordinates
which live in RE(Λ)|T (Λ), where E(Λ) and T (Λ) denote respectively the set of edges and
triangles of Λ. We prove the following:

Theorem (see Theorem 4.3.10). The collection of numbers {xα, ζi} provides a system of
coordinates on the super-Teichmüller X-space of S, up to the diagonal action of Z2 by
multiplication of the ζi by −1.

In Chapter 5 we give some properties of our coordinates. Each choice of an ideal
triangulation Λ of the surface leads to a different system of coordinates. We show how
these change when applying a flip on Λ. We get transformation laws as those in Figure 2
(cf. Theorem 5.1) which reduce to the classical ones described in Figure 1.6.

x1

x

x4 x3

x2

ζ ξ

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+xsuperflip−−−−−→

Figure 2

We also show that these coordinate changes satisfy the natural relations of involution
and a super version of the pentagon relation (cf. Definition 5.2) :

Theorem (see Theorem 5.3).

1. The superflip is an involution.



English introduction xv

2. The superflip satisfies the superpentagon relation.

In Chapter 6 we construct an explicit canonical Poisson structure on the super-

Teichmüller X-space. We first define two derivation operators

−→
∂

∂ζi
and

←−
∂

∂ζi
(cf. Defini-

tion 6.2.1). Then we prove the following by checking that each flip induces a super-Poisson
map.

Theorem (see Theorem 6.2.2). The following formula defines an even super Poisson
structure on the super Teichmüller X−space :

{, }ST =
∑

i,j∈E(Λ•)

εijxixj
∂

∂xi

∂

∂xj
− 1

2

∑
k∈F (Λ•)

←−
∂

∂ζk

−→
∂

∂ζk

and this Poisson bracket does not depend on the particular triangulation.

Once again this Poisson bracket reduces to the classical one given by the formula (6.1).

Conclusions

The topics we dealt with in the present work embed naturally in a list of natural and
relevant problems. In our study we construct a system of coordinates on the super Teich-
müller space of super Riemann surfaces of dimension (2|1). A super Riemann surface of
dimension (2|2) can be seen as a conjugacy class of morphisms of its fundamental group in
SpO(2|2) (cf.[24, 27]). A first step in further investigations would be the construction of
shear coordinates on the super Teichmüller space of super Riemann surfaces of dimension
(2|2) and more generally (2|N).

Another interesting direction of research could be the study of super Teichmüller spaces
of higher rank, i.e. spaces of monomorphisms of the fundamental group of a surface to
super groups which reduce to classical Lie groups, as SL(n,R) for example.

We also would like to make use of our Poisson bracket. It could be useful to define a
quantization of the super Teichmüller space following the construction of the quantization
of the Teichmüller space. Moreover our bracket is even and the construction of an odd
Poisson bracket on the super Teichmüller space, if it exists, could make an interesting link
with the Batalin-Vilkovisky formalism used in gauge theories.

In our construction, we establish explicit formulae for a change of coordinates by
applying a flip. These changes could be seen as a generalization of the mutations in the
theory of cluster varieties and hopefully lead to a super version of these objects.

Finally we recall that our approach to super Teichmüller spaces was based on DeWitt’s
supermanifold definition. Another definition of supermanifolds uses a sheaf theoretical
approach: instead deforming the manifold, one deforms its algebra of functions. It will
be interesting to translate our work in these terms.
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CHAPTER 1

Teichmüller spaces

1.1 The Teichmüller space of Riemann surfaces of

type (g, k,m)

Let S be a connected Hausdorff space with a collection {(Vj, zj)}j satisfying the three
following conditions :

1. Every Vj is an open subset of S, and the collection {Vj}j is a cover of S : S =
⋃
j Vj.

2. Every zj is a homeomorphism of Vj onto an open subset in the complex plane.

3. If Vj ∩ Vk 6= ∅, the transition mapping

zkj := zk ◦ z−1
j : zj(Vj ∩ Vk)→ zk(Vj ∩ Vk)

is a biholomorphism.

Definition 1.1.1. 1. The collection {(Vj, zj)}j is called a system of coordinate neigh-
borhoods on S. We say that this system defines a one-dimensional complex structure
on S.

2. A Riemann surface is a connected Hausdorff space with a one-dimensional complex
structure.

Local analysis on a Riemann surface S is reduced to analysis on domains in the complex
plane.

Definition 1.1.2. 1. A holomorphic function on a Riemann surface S is a function f
from S to C such that f ◦ z−1 is holomorphic on z(V ) for any coordinate neighbor-
hood (V, z) of S.

1



2 Chapter 1. Teichmüller spaces

2. A mapping f of S into a Riemann surface R such that w ◦ f ◦ z−1 is holomorphic
for all coordinate neighborhoods (V, z) of S and (W,w) of R with f(V ) ⊂ W is said
to be a holomorphic mapping.

3. A holomorphic mapping f : S → R such that the inverse mapping f−1 : R → S
exists and is holomorphic, is called a biholomorphic mapping.

Two Riemann surfaces S and R are biholomorphically equivalent if there exists a
biholomorphic mapping f : S → R. We say that S and R have the same complex
structure.

We now come to the definition of the Teichmüller space. Let S be a closed Riemann
surface of genus g ≥ 1. The surfaces we are dealing with are endowed with two sets of
points called holes and punctures. This distinction will become clear in what follows.
We assume that there are k holes and m punctures on S such that 6g − 6 + 3k + 2m is
positive. We consider triples (S, f, R) where R is a Riemann surface and f : S → R is an
orientation preserving diffeomorphism. Two triples (S, f1, R1) and (S, f2, R2) are said to
be equivalent if f2 ◦ f−1

1 is homotopic to the identity.

Definition 1.1.3. The set of all equivalence classes [S, f, R] of triples (S, f, R) is denoted
T (S) and is called the Teichmüller space based on S.

The Teichmüller space may be regarded as the space of complex structures on S mod-
ulo the diffeomorphisms isotopic to the identity. In dimension 2 one can easily establish
the equivalence of conformal and complex structures.

Hyperbolic structures and Fuchsian groups

Definition 1.1.4. A hyperbolic structure on S is a complete Riemannian metric of con-
stant Gauss curvature −1.

Let H = {z ∈ C|=(z) > 0} be the upper half-plane. The uniformization theorem of
Klein, Koebe and Poincaré states that every Riemann surface S of negative Euler charac-
teristic is biholomorphic to a certain quotient of the upper half-plane H by a well chosen
subgroup of its automorphisms. This theorem gives the equivalence between conformal
and hyperbolic structures.

Fuchsian groups. The group of automorphisms of H is the group PSL(2,R). There
are three kinds of elements in PSL(2,R) :

1. elliptic elements : they have exactly one fixed point in H ;

2. parabolic elements : they have exactly one fixed point on ∂H, the boundary of H ;

3. hyperbolic elements : they have exactly two fixed points on ∂H.

In what follows we will not deal with elliptic elements.

Definition 1.1.5. A Fuchsian group Γ is a discrete subgroup of PSL(2,R) having no
elliptic elements. It is called geometrically finite if there exists a convex fundamental
region for Γ with finitely many sides.
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In the next section we will look at homomorphisms from the fundamental group of
a surface of finite type into PSL(2,R) such that its image is a Fuchsian group. The so
obtained Fuchsian group will be finitely generated. We have the following theorem about
finitely generated Fuchsian groups.

Theorem 1.1.6. If Γ is a finitely generated Fuchsian group, it is geometrically finite.

For a proof of this statement we refer to [22].

The Teichmüller-Fricke space. We consider a Riemann surface S of genus g with two
sets of marked points. The first is the set of holes and the second the set of punctures.
Topologically a neighborhood of such a marked point is an annulus. As a complex surface
a neighborhood of a hole is isomorphic to an annulus and a neighborhood of a puncture
is isomorphic to a punctured disk. A surface of type (g, k,m) is a Riemann surface of
genus g with k holes and m punctures. We denote by Tg,k,m the set of monomorphisms
ψ : π1(S) → PSL(2,R) such that the quotient H/Imψ is a surface of type (g, k,m). The
group of automorphisms of H, PSL(2,R) acts on Tg,k,m by conjugation.

Definition 1.1.7. The space Tg,k,m defined as the quotient by this action Tg,k,m/PSL(2,R)
is called the Teichmüller space based on S.

Theorem 1.1.8. The Teichmüller space Tg,k,m is homeomorphic to R6g−6+3k+2m.

For a proof of the theorem in the case of closed surfaces we refer to [20, Chapter 2].
A constructive proof of this is given by Natanzon in [27, p. 28, Theorem 4.1].

1.2 Two extensions to open ciliated surfaces

The definition of the Teichmüller space of surfaces was extended by Fock [13] to surfaces
with boundary components with some marked points on it. We recall here some of these
results which are also exposed in [14].

1.2.1 Ciliated surfaces

Definition 1.2.1. • A ciliated surface is a compact oriented surface with boundary
and with a finite set of marked points on the boundary called cilia.

• A boundary component without cilia is either a hole or a puncture.

• A triangulation Λ of a ciliated surface is a decomposition of the surface with con-
tracted holes into triangles such that every vertex is either a cilium or a contracted
hole.

We will make the distinction between the edges of the triangulation belonging to
the boundary and the others. The edges of the first kind will be said to be external
and the edges of the second kind internal. We denote by T (Λ), E(Λ), E0(Λ), V (Λ) the
sets of triangles, edges, external edges and vertices of the triangulation, respectively. The
topology of a ciliated surface is determined by its genus g and a finite collection of integers
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P = (p1, . . . , ps), where s is the number of boundary components and pi is the number of
cilia on the i−th component. We denote by h the number of holes, by c the number of
cilia an by n the number of internal edges. Topology gives us the following relations :

1. ]V (Λ) = h+ c,

2. ]E0(Λ) = c,

3. ]E(Λ) = 6g − 6 + 3s+ 2c,

4. n = 6g − 6 + 3s+ c,

5. ]T (Λ) = 4g − 4 + 2s+ c.

The topology of the triangulation Λ encodes a skew-symmetric matrix of size ]E(Λ),
εαβ, where α, β ∈ E(Λ). Consider α, β ∈ E(Λ) and i ∈ T (Λ) and define 〈α, i, β〉 equals
1 (resp. −1) if α and β are sides of the triangle i and α is in the clockwise (resp.
counterclockwise) direction from β with respect to their common vertex. Otherwise it
equals zero. The matrix εαβ is then given by

εαβ =
∑
i∈T (Λ)

〈α, i, β〉 . (1.1)

Remark 1.2.2. The entries of the matrix εαβ have values in {0,±1± 2}.
Example 1.2.3. We consider the surface given by g = 1, P = (0). We have the trian-
gulation of the Figure 1.1. If we consider the ordered set {α, β, γ}, corresponding to the
edges of the triangulation we have for the matrix

ε =

 0 −2 2
2 0 −2
−2 2 0

 .

Figure 1.1: A triangulation of the torus with one contracted hole

An important result due independently to Strebel, Harer [17] and Penner [28] states
that any ideal triangulation can be obtained from another one by a sequence of moves
called flips or Whitehead moves (cf. Figure 1.2) and that there are three kinds of relations:

1. The square of a flip is the identity.

2. Flips in disjoint edges commute.

3. Five consecutive flips in edges having one common vertex is the identity (Pentagon
relation cf. Figure 1.3).
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Figure 1.2: A flip.

Figure 1.3: Pentagon relation

1.2.2 Teichmüller spaces of surfaces with holes.

The Teichmüller X−space

In this section we describe a first extension of the Teichmüller space to the case of open
surfaces. We focus on surfaces of genus g with s boundary components without cilia.

Definition 1.2.4. The Teichmüller X−space of a surface with holes S is the space of com-
plex structures on S with an orientation of all holes up to the diffeomorphisms homotopic
to the identity. We denote it by T X(S).

Remark 1.2.5. The Teichmüller X−space is a 2k-cover of the Teichmüller space, where
k denotes the number of holes.

If the surface has several boundary components ∂1, . . . , ∂l, l ≥ 1, with a non-empty
set of cilia Ci on ∂i, the definition is more or less the same but special attention has to
be payed to the treatment of these marked points (cf [14]).

We now recall the definition of the Thurston-Bonahon coordinates given by the assign-
ment of a positive real number to each internal edge of a triangulation Λ of the surface
S. This collection of numbers gives a parametrization of T X(S).

First of all we explain how one can lift the ideal triangulation of S to the upper half
plane. We here give the construction introduced by Fock in [13]. We first consider the case
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where all boundary components are holes. Draw a geodesic around each hole and cut out
the arising half cylinders : considering an hyperbolic element γ ∈ PSL(2,R), the quotient
H/ < γ > is a hyperbolic cylinder and the axis of γ corresponds to a single closed geodesic
on the cylinder. We get a surface with geodesic boundary. Cut the surface by the edges
of graph of Λ into hexagons. Then take an edge and two hexagons sharing this edge and
lift the resulting octagon to the upper half plane H. The octagon has four geodesic sides
corresponding to the holes. Continue this geodesics to the real axis. The orientations of
the holes now induce orientations of the geodesics. Using these orientations we choose one
of the two infinities of each geodesic (which correspond to the dot in Figure 1.4). These
points of RP 1 will be the vertices of the lift of our triangulation. If we have punctures
instead of some holes, some edges of the octagon shrink to a point and no orientation is
necessary.

• •• •

Figure 1.4: Lifting of the triangulation

Construction of coordinates After lifting Λ to the upper half plane, consider an edge
α together with two adjacent ideal triangles forming a quadrilateral. The cross-ratio x,
of the four vertices of this quadrilateral is invariant under the action of PSL(2,R). It is
convenient to suppose that the coordinates of the ends of the edge α are 0 and ∞ and
that the coordinate at the third vertex is −1 (cf Figure 1.5). Then the value of the fourth
coordinate will be x.

Theorem 1.2.6 (Fock [13]). The collection of positive numbers {xα}α∈E\E0(Λ) gives a
global parametrization of T X(S) and the orientation of a hole γ is given by the sign of∏
xα − 1, where the product is taken over all the edges α incident to γ.

To prove the theorem, Fock reconstructs a discrete monodromy group starting from
an ideal triangulation of a ciliated surface S with real positive numbers on the internal
edges.

Properties of the coordinates If we change the triangulation by a flip in the edge α,
the coordinates change following the rule given by :
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−1 0 x

∞

Figure 1.5: The cross-ratio

x′β′ =


x−1
α if β = α

xβ(1 + xα)ε
αβ

if εαβ ≥ 0

xβ (1 + (xα)−1)
εαβ

if εαβ ≤ 0

(1.2)

If all the edges of the quadrilateral concerned by the flip are different, the change of
coordinate can be summarized in Figure 1.6.

x1

x

x4 x3

x2 x1(1 + x)

x−1

x4(1 + x−1)−1 x3(1 + x)

x2(1 + x−1)−1

Figure 1.6
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CHAPTER 2

Supermanifolds

The concept of supermanifolds is a generalization of the concept of classical manifolds
including a notion of anticommuting coordinates. There exist different inequivalent ways
to define supermanifolds. Roughly, in the DeWitt approach, a supermanifold is a manifold
which is locally modeled on a superspace denoted by Rm|n defined in Section 2.1.2. In the
algebro-geometric approach, one extends the sheaf of functions on a manifold and not the
manifold itself. To study supermanifolds, one replaces the real or complex variables with
elements of a super commutative algebra. In this chapter we first recall all the notions
of superalgebra needed to define supermanifolds, and then we recall the approaches to
supermanifolds. All the ideas developed here can be found in [31, 10, 27].

2.1 Super algebras

2.1.1 Super vector spaces and super commutative algebras

The first concept introduced in the theory of super algebras is that of super vector space,
which is a Z2-graded vector space V = V0 ⊕ V1. The elements of V0 are said to be even
and those of V1 odd. The parity of an homogeneous element v ∈ Vi is defined to be |v| = i.

Definition 2.1.1. 1. Let A be an algebra over R or C. Then A is said to be a super
algebra if A is a super vector space A = A0 ⊕ A1 and the multiplication satisfies
AiAj ⊂ Ai+j, where i and j are taken modulo 2.

2. A super algebra A is said to be super commutative if, for all homogeneous elements
a and b of A, ab = (−1)|a||b|ba. In particular the square of an odd element is 0.

For us, the most important examples of super commutative algebras are those of
Grassmann algebras used in the definition of (concrete) supermanifolds.

Definition 2.1.2. 1. For each positive integer L, let GL(R) be the real Grassmann
algebra over L generators that is

GL(R) = 〈1, α1, . . . , αL|∀i, j, 1 ≤ i, j ≤ L, αi = 1.αi = αi.1, αiαj = −αjαi〉 .

9
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2. The real Grassmann algebra with infinitely many generators G(R) is defined in the
same way :

G(R) = 〈1, α1, α2, . . . |∀i, j, αi = 1αi = αi1, αiαj = −αjαi〉 .

For p ∈ N∗ ∪ {∞}, let Ip denote the set of all multi indices λ = λ1 . . . λk with
1 ≤ λ1 ≤ · · · ≤ λk ≤ p and including the empty index ∅. Set Ip,i, i = 0, 1 the set of
multi indices in Ip which contain a number of indices of parity i.

For L ∈ N∗ ∪ {∞}, the super commutative algebra GL(R) splits in

GL(R) = GL,0(R)⊕GL,1(R),

where, as a vector space,

GL,k(R) = 〈αi1 . . . αin|i = i1 . . . in ∈ML,k〉

Remark 2.1.3.

1. An element a ∈ G(K) is invertible if and only if a] 6= 0.

2. If an element a ∈ G(R) is such that a] > 0 then it admits a unique square root
√
a

determined by (
√
a)2 = a and (

√
a)] > 0.

2.1.2 Modules of super algebras and superspaces

In this section, the notion of super module over a super algebra is introduced and the
most important example of superspace for the construction of supermanifolds is given.
We first recall the definition of homomorphism of super algebras and then conclude by
the matrix representation of homomorphisms of free super modules.

Definition 2.1.4. 1. Let V and W be two super vector spaces. If f is a linear map
of V to W , then f is said to be a super vector space homomorphism.

2. A super vector space homomorphism f is said to be even (resp. odd) if for all v ∈ V ,
|f(v)| = |v| mod 2 (resp. |f(v)| = |v|+ 1) and the parity of f is denoted by |f |.

3. Let A and B be super algebras over R or C. Let f : A→ B be a super vector space
homomorphism of a given parity, then f is said to be a super algebra homomorphism
if

∀a1, a2 ∈ A, f(a1a2) = (−1)|f ||a1|f(a1)f(a2).

The definition of super modules is analogous to the definition of a classical module,
but a compatibility of the parities is required.

Definition 2.1.5. 1. Let V = V0 ⊕ V1 be a super vector space and A a super com-
mutative algebra. Then V is said to be a left super A-module if there exists a
map

A× V → V

(a, v) 7→ av
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such that

∀(a1, a2) ∈ A2,∀v ∈ V,
{

|a1v| = |a1|+ |v|
a1(a2v) = (a1a2)v

.

2. Assume that there exist n elements B1, . . . , Bn of V0 and m elements Bn+1, . . . , Bn+m

of V1 such that each element v ∈ V can be decomposed uniquely in

v =
n+m∑
i=1

aiBi,

for ai ∈ A. In this case V is said to be a free super A-module of dimension (n,m),
and the set {B1, . . . , Bn+m} is said to be a (n,m) super basis.

Remark 2.1.6. If v is even then it may be expressed as (a1, . . . , an+m) which is an element
of the superspace corresponding to A, An|m, defined as

An|m = (A0)n × (A1)m .

The superspace which plays a particular role in the concrete construction of superman-
ifolds is the (n|m)-dimensional superspace corresponding to GL(R), where L ∈ N∗∪{∞},
denoted by

Rn|m
L = (GL,0(R))n × (GL,1(R))m .

An element of Rn|m
L will be denoted by (x|ζ) = (x1, . . . , xn|ζ1, . . . , ζm).

Definition 2.1.7. Let A be a super commutative algebra and let V and W be two super
A-modules. Then a map f : V → W is said to be a homomorphism of super A-modules
if f is a super vector space homomorphism and

∀a ∈ A,∀v ∈ V, f(av) = (−1)|a||f |af(v).

Even homomorphisms of super A-modules (in terms of particular bases) can be rep-
resented by super matrices.

Definition 2.1.8. A (p, q)× (r, s) super matrix over a super commutative algebra A is a
(p+ q)× (r+ s) matrix M whose entries are elements of A, and which can be represented
by blocks

M =

r columns s columns( )
M0,0 M0,1 p lines

M1,0 M1,1 q lines

where the entries of Mi,j are elements of Ai+j.

The sum and the product of super matrices are defined in the same way as in the
classical case, but with the requirement that the resulting matrices always are super
matrices.
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2.2 Supersmooth functions on Rn|m

In this section we are interested in the particular case where the super commutative alge-
bra A is a Grassmann algebra. We focus more specifically to G(R) and its corresponding
superspace Rn|m. The most important topology on Rn|m (L is infinite) is the DeWitt
topology and it will now be defined. The super space Rn|m plays the role of Rn in the
definition of supermanifolds, we then need functions which play the role of C∞ functions.

2.2.1 The DeWitt topology

Let x be an element of GL(R) for L ∈ N∗∪{∞}. There is a unique algebra homomorphism
] : GL(R)→ R which sends 1 to 1 and for all i, αi to 0; the image ](x) = x] is called the

reduction of x. The map ] can be extended to Rn|m
L by

]n|m : Rn|m
L −→ Rn

(x1, . . . , xn|ζ1, . . . , ζm) 7−→ (x]1, . . . , x
]
n).

The image (x]1, . . . , x
]
n) of an element of Rn|m

L will be called its reduction.

Definition 2.2.1. A subset U ⊂ Rn|m is said to be open in the DeWitt topology if and

only if there exists an open subset V of Rn such that U =
(
]n|m

)−1
(V ).

Remark 2.2.2. The DeWitt topology is not Hausdorff.

2.2.2 Supersmooth functions on Rn|m

The Grassmann analytic continuation is the key in the definition of supersmooth functions.
For each positive integer L let pL : G(R) → GL(R) be the projection which sends the
generators αi of G(R) to 0 for i > L.

Definition 2.2.3. Let V ⊂ Rn be open and let f : V → G(R).

1. The function f is said to be of class C∞ if for each positive integer L the function
pL ◦ f : V → GL(R) is C∞. The set of these functions is denoted by C∞(V,G(R)).

2. If f belongs to C∞(V,G(R)) then define the function f̂ : (]n|0)−1(V )→ G(R) by

f̂(x) =
∞∑

i1=0,...,in=0

1

i1! . . . in!
∂i11 . . . ∂inn f(]n|m(x))s(x1)i1 . . . s(xn)in .

Definition 2.2.4. Let U ⊂ Rn|m be open. The function f : U → G(R) is said to be of
class G∞ if and only if there exists a collection {fλ|λ ∈ Im, fλ ∈ C∞(]n|m(U), G(R))} such
that

∀(x, ζ) ∈ U, f(x|ζ) =
∑
λ∈Im

f̂λ(x)ζλ.

The so obtained function on U is called the Grassmann analytic continuation of f .
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A more restricted class of supersmooth functions which makes the link between the
two approaches to supermanifolds can be defined.

Definition 2.2.5. Let U ⊂ Rn|m be open. The function f : U → G(R) is said to be of
class H∞ if and only if there exists a collection {fλ|λ ∈ Im, fλ ∈ C∞(]n|m(U),R)} such
that

∀(x, ζ) ∈ U, f(x|ζ) =
∑
λ∈Im

f̂λ(x)ζλ.

Remark 2.2.6. 1. The difference between the two definitions lies in the fact that in
the case of G∞-functions, the functions fλ take their values in G(R) and in the case
of H∞-functions, it is in R.

2. Any H∞-function is also a G∞-function, but the converse is not true.

2.3 The definition of DeWitt supermanifolds

The construction of DeWitt supermanifolds is analogous to the construction of manifolds.
The DeWitt supermanifolds are modeled on the superspace Rn|m and the transition func-
tions will be supersmooth functions of a given class K, where K = G∞ or H∞.

Definition 2.3.1. Let M be a set, and n and m two positive integers.

1. An (n|m) − K chart on M is a pair (V, ϕ), where V is a subset of M and ϕ is a
bijective map from V to U ⊂ Rn|m, U open for the DeWitt topology.

2. An (n|m)−K atlas on M is a collection of charts {(Vj, ϕj)|j ∈ J} such that

(a)
⋃
j∈J

Vj = M

(b) for i, j ∈ J such that Vi ∩ Vj 6= ∅,the sets ϕi(Vi ∩ Vj) and ϕj(Vi ∩ Vj) are open
and the map

ϕj ◦ ϕ−1
i : ϕi(Vi ∩ Vj)→ ϕj(Vi ∩ Vj)

is of class K.

3. An (n|m)−K DeWitt super-premanifold is a set M together with a maximal (n|m)−
K atlas on M .

Two standard examples will now be given.

Example 2.3.2. The superspace Rn|m can be endowed with the structure of G∞ or H∞

super-premanifold. Indeed (Rn|m, Id) is a (n|m) chart on Rn|m and {(Rn|m, Id)} is an
(n|m) atlas on M .

Example 2.3.3. In the same way if V is an open subset of R(n|m), then (V, ı) (where
ı : V ↪→ R(n|m) is the inclusion) is an (n|m) chart on V and {(V, ı)} is an (n|m) atlas on
V .
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2.3.1 The topology of a DeWitt super-premanifold

The structure of super-premanifold gives a natural way to define a topology on M . Indeed,
if M is a (n|m)−K DeWitt super-premanifold together with a maximal atlas {(Vj, ϕj)|j ∈
J}, let τDeWitt be the collection of subsets U ⊂M such that ∀j ∈ J, ϕj(U ∩ Vj) is open in
Rn|m. Then τDeWitt is a (non-Hausdorff) topology on M . This construction is analogous
to the construction in the case of classical manifolds.

2.3.2 The body of a DeWitt super-premanifold

A DeWitt super-premanifold has a naturally underlying classical topological space of
dimension n. We recall the construction due to DeWitt [10] and Batchelor [2] of this
space in the following theorem.

Theorem 2.3.4. Let M be a (n|m) − K DeWitt super-premanifold (with the DeWitt
topology). Let {(Vj, ϕj)|j ∈ J}. Then the following holds.

1. the relation ∼ generated on M by

(p ∼ q)⇔
(
∃j ∈ J | p, q ∈ Vj and ]n|m(ϕj(p)) = ]n|m(ϕj(q))

)
is an equivalence relation.

2. The space M ] = M/ ∼ is locally diffeomorphic to Rn, with atlas {(V ]
j , ϕ

]
j)|j ∈

J},where

V ]
j = {[p], p ∈ Vj}
ϕ]j : V ]

j → Rn

[p] 7→ ]n|m ◦ ϕj(p).

Definition 2.3.5. The space M/ ∼ is called the body of M and denoted M ]. The
canonical projection of M to M ] is denoted by ].

Definition 2.3.6. A DeWitt supermanifold is a super-premanifold M whose body M ] is
a classical manifold.

In what follows we only consider supermanifolds.

2.3.3 The algebro-geometric approach to supermanifolds

In the algebro-geometric approach it is not the manifold which is extended but a sheaf
of functions. Here we just recall the definition of supermanifold which was given by
Lĕıtes [23], and conclude by recalling the link between algebro-geometric and H∞-DeWitt
supermanifolds. We will say no more about this approach because, in what follows, we
are only interested in the concrete one. Our results are based on the theory developed in
Natanzon’s book [27] which uses the DeWitt approach to supermanifolds.

Definition 2.3.7. A smooth real algebro-geometric supermanifold of dimension (n|m)
is a pair (M,A) where M is a real n−dimensional manifold and A is a sheaf of super
commutative algebras over M such that



2.4. Further examples 15

1. there exists an open cover of M , {(Uj, ϕj)|j ∈ J} where

∀j ∈ J,A(Uj) ∼= C∞(Uj)⊗ Λ(Rm),

2. if N is the sheaf of nilpotents in A, then (M,A/N ) is isomorphic to (M, C∞).

The link between the two approaches

Rogers [31] showed the existence of a unique algebro-geometric supermanifold correspond-
ing to a given H∞ DeWitt supermanifold.

Theorem 2.3.8. Let M be an H∞ DeWitt supermanifold of dimension (n|m), and let A
be the sheaf of super algebras on M ] given by A(V ) = H∞(]−1(V )). Then

(
M ], A

)
is an

algebro-geometric supermanifold of dimension (n|m).

Conversely, starting with an algebro-geometric super manifold (X,A), one can con-
struct a DeWitt supermanifold M(X,A) such that M(X,A)] is X and the algebro-
geometric supermanifold corresponding to the sheaf of H∞ functions on M(X,A) is iso-
morphic to (X,A). Batchelor [3] shows that the so constructed correspondence between
the two approaches is bijective.

2.4 Further examples

2.4.1 Real super projective spaces

Let (Rn+1|m)∗ ⊂ Rn+1|m be the set (]n+1|m)−1 (Rn+1 − {0}). Two elements (x|ζ) and (x′|ζ ′)
of (Rn+1|m)∗ are said to be equivalent if there exists an invertible element ` ∈ G0(R) such
that

xi = `x′i i = 1, . . . , n+ 1

ζj = `ζ ′j j = 1, . . . ,m.

Let ∼ denote the equivalence relation defined above and let [(x, ζ)] denote the class of
(x, ζ). Then Pn|m = (Rn+1|m)∗/ ∼ can be endowed with a structure of DeWitt superman-
ifold by defining the following atlas. For all i = 1, . . . , n+ 1 let

Vi =
{

[(x|ζ)], (x|ζ) ∈ (Rn+1|m)∗, x]i 6= 0
}

ϕi : Vi → R(n|m)

[(x|ζ)] 7→
(
x1

xi
, . . . ,

x̂i
xi
, . . . ,

xn+1

xi

∣∣∣∣ζ1

xi
, . . . ,

ζm
xi

)
.
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2.4.2 The super upper half-plane

Before developing this example we just stress that all the definitions we recall about real
Grassmann algebras and real superspaces can be given in an analogous way in the complex
case. A complex DeWitt supermanifold will be modeled on Cn|m and the transition
functions will be superholomorphic.

Definition 2.4.1. Let U ⊂ Cn|m be open. The function f : U → G(C) is said to be
superholomorphic if and only if there exists a collection {fλ|λ ∈Mm} of functions taking
their values in G(C) and being holomorphic on ]n|m(U) such that

∀(z, ζ) ∈ U, f(z|ζ) =
∑
λ∈Mm

f̂λ(z)ζλ.

The so obtained function on U is called the Grassmann analytic continuation of f .

The space HS will play the role of the upper-half plane H. It is defined by

HS = {(z|ζ) ∈ C(1|1);=(z]) > 0},

where =(z]) denotes the imaginary part of z]. As in the classical case, there exists a
notion of boundary of HS which can be seen as the union of R1|1 and of points at infinity.

Definition 2.4.2. The boundary of HS is defined to be P1|1

As in the classical case, P1|1 admits a covering with two charts. We will often use the

following notation: given Z ∈ P1|1, choose a representative of Z in R2|1∗, say Ẑ =

 z1

z2

η


and set z = z1

z2
, ϕ = η

z2
. We then write Z as

(
z
ϕ

)
.

Notation. If a representative

 z1

z2

η

 of an element Z ∈ P1|1 is such that z2 is not invert-

ible, then Z lies in the second chart of P1|1. In the special case where the representative

has the form

 x
0
ζ

, Z will be denoted by

(
∞
ζ
x

)
.

2.4.3 The group SpO(2|1)(R)

Consider first a matrix with coefficient in G(K), M =

(
A B
C D

)
, represented by blocks,

where A and D are respectively of size 2× 2 and 1× 1 and have even entries, and, B and
C have odd ones. Such a matrix is said to be even.

Definition 2.4.3. The supertranspose (cf. [25]) of a matrix is given by(
A B
C D

)st

=

(
At Ct

−Bt Dt

)
.
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Definition 2.4.4. The superdeterminant or Berezinian (cf. [25]) of M is defined if and
only if M is square, A and D are invertible and we have

BerM = det(A−BD−1C) det(D)−1.

Definition and properties

Definition 2.4.5. The group SpO(2|1) is the group of all square even matrices B, with
Ber(B) = 1, which satisfy the relation

Bst

 0 1 0
−1 0 0
0 0 −1

B =

 0 1 0
−1 0 0
0 0 −1

 . (2.1)

An element B in SpO(2|1) is a matrix of the form B =

 a b γ
c d δ
α β e

, where



a, b, c, d, e ∈ G0(R),

α, β, γ, δ ∈ G1(R),

ad− bc− αβ = e2 + 2γδ = 1,

aδ − cγ − eα = bδ − dγ − eβ = 0,

Ber(B) = 1.

(2.2)

These relations are equivalent to (2.1). The group SpO(2|1) is the group of automorphism
of HS (cf. [5]).

One defines an epimorphism ] from SpO(2|1) to PSL(2,R) sending B =

 a b γ
c d δ
α β e


to ](B) = z 7→ B](z) = a]z+b]

c]z+d]
.

Definition 2.4.6. The homography ](B) is called the reduction of B.

The action of B =

 a b γ
c d δ
α β e

 on HS and on P1|1 is given by B · Z = Z ′, where :

z′ =
az + b+ γϕ

cz + d+ δϕ
, ϕ′ =

αz + β + eϕ

cz + d+ δϕ
. (2.3)

Lemma 2.4.7. 1. For any triple

(
z1

θ1

)
,

(
z2

θ2

)
,

(
z3

θ3

)
in P1|1 with distinct bodies,

there exists an element B ∈ PSL(2,R) such that

B ·
(
z1

θ1

)
=

(
∞
0

)
, B ·

(
z2

θ2

)
=

(
−1
θ

)
, B ·

(
z3

θ3

)
=

(
0
0

)
.
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2. The only automorphism (which is not the identity) preserving

(
∞
0

)
,

(
0
0

)
and

sending the points of the form

(
−1
θ

)
to the points of the same form, i.e.

(
−1
ζ

)
,

is the map represented by the matrix

 −1 0 0
0 −1 0
0 0 1

.

Proof. If

(
0
0

)
and

(
∞
0

)
are fixed points of B, with the notations introduced above

for the coefficients of B, we get b = c = 0 and α = β = 0, then it follows from the
equations defining B that γ = δ = 0, e2 = ad. The equation Ber(B) = 1 implies e = 1.
Then putting a = d−1 = m we get

z′ = m2z ζ ′ = mζ.

Choosing m2 = z−1 we get the proof of the second part of the lemma.

For the first part, just write the equations corresponding to B ·
(
z1

θ1

)
=

(
∞
0

)
and

B ·
(
z3

θ3

)
=

(
0
0

)
and consider a as a free parameter: it can be checked that all the

entries of B are uniquely determined.

Remark 2.4.8. Observe that SL2(R) can be embedded in SpO(2|1) in a canonical way:

SL2(R) −→ SpO(2|1)(
a b
c d

)
7−→

 a b 0
c d 0
0 0 1

 .

The super-Lie group SpO(2|1)

More structure can be given to SpO(2|1). Indeed, the space of super matrices has a
natural structure of DeWitt supermanifold of dimension given by the number of even and
odd entries. The equations (2.2) defining an element of SpO(2|1) are polynomial in the
entries of the matrix. Moreover the two group operations

SpO(2|1)× SpO(2|1)→ SpO(2|1) SpO(2|1)→ SpO(2|1)

(A,B) 7→ AB A 7→ A−1

are polynomial in the entries of the matrices. The group SpO(2|1) inherits in this way the
structure of super-Lie group (for a more general definition of super-Lie groups we refer
to [31, Chapter 9]). The entries of an element of SpO(2|1) are completely determined
by the choice of three free even parameters and two free odd parameters, so the group
SpO(2|1) is a DeWitt super-Lie group of dimension (3|2).
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p

b2
a2

b2a2b1a1b1a1

c1c1c2c2

Figure 2.1

2.5 The super-Teichmüller space

The aim of this section is to define the super-Teichmüller space following [27]. For this
one first introduces the analogs of Fuchsian groups which will be called super-Fuchsian
groups and then using super-Fuchsian models coordinates on the super-Teichmüller space
analogous to the Fricke coordinates are recalled.

2.5.1 Canonical system of generators of π1(S) and super-Fuchsian
models

Let S be a surface of type (g, k,m). We assume implicitly that we have fixed a based
point p for the fundamental group of S.

Definition 2.5.1. We say that a system of generators

{Ai, Bi(i = 1 . . . g), Ci(i = g + 1, . . . n)}

of π1(S) is standard if it is subject to only one relation given by

g∏
i=1

AiBiA
−1
i B−1

i

g+k+m∏
i=g+1

Ci = 1

and the generators Ai, Bi can be represented by simple closed curves in S and each
generator Ci can be represented by a simple closed curve surrounding a single hole or
a single puncture in S. Moreover, in a neighborhood of p, the positions of the curves
representing the generators are like in Figure 2.1.

Definition 2.5.2. A super-Fuchsian model for S is the image Γ of a monomorphism
ρ : π1(S)→ SpO(2|1) such that the reduction Γ] is a Fuchsian model for π1(S).
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2.5.2 Definition of the super-Teichmüller space

Consider a standard system of generators

{Ai, Bi(i = 1 . . . g), Ci(i = g + 1, . . . n)}

of π1(S). Under the isomorphism between π1(S) and a super-Fuchsian model Γ, denote by
αi and βi the elements of Γ associated to Ai and Bi, respectively for i = 1, . . . , g. A super-
Fuchsian model has now the ambiguity caused by inner automorphisms of PSL(2,R): for
each B ∈ SpO(2|1), the group Γ′ = BΓB−1 is still a Fuchsian model of S. Because of
Lemma 2.4.7(1) it is possible to impose the following normalization in order to assign
uniquely a super-Fuchsian group to S :

1. the element α1 has

(
0
0

)
and

(
∞
0

)
as fixed points,

2. the element of α2 has a fixed point with even part 1.

Now, as in the classical case, explicit super matrices in SpO(2|1) can be constructed
providing the super-Fuchsian model. This construction is done by Natanzon [27]. The
entries of those matrices define coordinates (the analogs of the Fricke coordinates) on the
super Teichmüller space which is defined as follows.

Definition 2.5.3. Denote by STg,k,m the set of monomorphisms ψ : π1(S) → PSL(2,R)

such that (ψ(π1(S)))] is a Fuchsian group. The group SpO(2|1) acts, as said before, on
STg,k,m. The super-Teichmüller space of S is defined as the quotient

STg,k,m = STg,k,m/ SpO(2|1).

Remark 2.5.4. The topology on the super-Teichmüller space is induced by the topology
on the space of super matrices : this topology is DeWitt.

One ambiguity given by Lemma 2.4.7(2) still remains. And we have the following
theorem proved by Natanzon [27] and Hodgkin [19].

Theorem 2.5.5. 1. The super-Teichmüller space STg,k,m is a supermanifold ŜTg,k,m
up to the diagonal action of Z2 on its odd part.

2. The space ŜTg,k,m has several connected component ŜT
σ

g,k,m indexed by the spin
structures on S.

3. For each spin structure σ, ŜT
σ

g,k,m is diffeomorphic to R6g−6+3k+2m|4g−g+2k+2m−m′σ ,
where m′σ is the number of Ramond punctures for σ.

A spin structure can be seen as a lifting of a Fuchsian group to a group of SL2(R).
Remark 2.4.8 throws light on the second point of Theorem 2.5.5. There are different ways
to characterize a spin structure on a surface. The aim of the next section is to recall the
characterizations needed for our study.
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Spin structures, quadratic forms and Kasteleyn orientations

We first recall the definition of spin structure, then we recall several characterizations
of spin structures and we conclude by giving a combinatorial description of them using
Kasteleyn orientations.

3.1 Spin structures and quadratic forms

Notation.

• We denote respectively H1 and H1 the two groups H1(S;Z2) and H1(S;Z2).

• The unit tangent bundle of S will be denoted by US and H̃1 and H̃1 are H1(US;Z2)
and H1(US;Z2) respectively.

• For α ∈ H1 and for a ∈ H1, the dual pairing is denoted by 〈α, a〉.

• We write the intersection form on H1 as a dot product.

Definition 3.1.1 (spin structure). A spin structure on S is a principal SO2-bundle P → S
together with a 2-fold covering map P → US which restricts to the canonical covering
map SO2 → SO2 on each fiber.

Definition 3.1.2 (quadratic form). We say that ω : H1 → Z2 is a quadratic form over
the intersection index if for all a and b in H1 we have ω(a+ b) = ω(a) + ω(b) + a · b. We
denote by Ω the set of quadratic forms over the intersection index on H1.

Proposition 3.1.3. The following propositions are equivalent.

1. A spin structure on S is a class σ ∈ H̃1 such that 〈σ, z〉 = 1, where z is the generator
of the homology of the fiber.

2. A spin structure on S is a quadratic form ω : H1 → Z2.

21
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3. If S is a hyperbolic surface, a spin structure on S is the choice of a lifting to SL(2,R)
of the holonomy of the hyperbolic structure.

The equivalence between Definiton 3.1.1 and the point (1) is given in [1, p. 55].
This characterization via cohomology classes is also the definition chosen by Milnor [26].
The equivalence between the propositions (1) and (2) has been shown by Johnson [21,
Theorem 3A]. He proves this statement in the case of a closed genus g surface, but actually
all his results and all the proofs extend to the case of surfaces of type (g, k,m) without
modification, the only difference being that the intersection form can be degenerate. A
proof of the equivalence between the last two points of Proposition 3.1.3 is given by
Natanzon [27, p.39, Theorem 7.2], who associates to each lift Γ∗ ⊂ SL(2,R) of a finitely
generated Fuchsian group Γ an explicit quadratic form ωΓ∗ : H1 → Z2.

Definition 3.1.4 (Ramond and Neveu-Schwarz points). Let ω be a quadratic function
on H1(S,Z2) and let c̃ be a simple closed curve surrounding a puncture p. Let c be the
homology class of c̃. We say that p is a Ramond point if ω(c) = 1 and a Neveu-Schwartz
point if ω(c) = 0.

3.2 Kasteleyn orientations, dimer configurations and

spin structures

We recall here the notion of Kasteleyn orientation on a graph. Following [7] and [8] we
recall how to construct an isomorphism between the set of equivalence classes of Kasteleyn
orientation and the set of Spin structures on S using dimer configurations.

Let S be a surface with holes and punctures p1, . . . pk+m. We also assume that S is
endowed with an orientation O. Let Λ be an ideal triangulation of S. Starting from S
we construct a bordered surface by cutting out for each pi an open neighborhood Di. We
get one boundary component for each vertex of Λ. We denote by Sb the bordered surface
obtained this way.

Definition 3.2.1. 1. A graph with boundary is a finite graph G with a set ∂G of one
valent vertices called boundary vertices.

2. A surface graph with boundary on Sb is a graph with boundary G embedded in Sb,
such that G ∩ ∂Sb = ∂G and the complement of G\∂G in Sb\∂Sb consists of open
2−cells. We denote by X the corresponding cellular decomposition of Sb.

Definition 3.2.2 (Kasteleyn orientation). A Kasteleyn orientation K on a surface graph
with boundary on Sb is an orientation of the edges of G ∪ ∂Sb such that for each face f of
X, we have

Card{e ⊂ ∂f,K|e = −Of
|e} = 1 mod 2,

where Of is the orientation induced by O on f .

Changing the orientations of a Kasteleyn orientation at all the edges sharing a same
vertex produces a new Kasteleyn orientation:
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Figure 3.1: A Kasteleyn orientation on the boundary of a face.

Definition 3.2.3 (equivalence of Kasteleyn orientations ). Two Kasteleyn orientations
are said to be equivalent if and only if they can be connected by a sequence of operations
consisting in changing the orientations of all the edges sharing a same vertex.

Let K be a Kasteleyn orientation on a surface graph G in Sb. Let C be an oriented
simple closed curve in G ∪ ∂Sb. We denote κK(C) the number of edges of G ∪ ∂Sb, such
that the orientation induced on it by C is opposed to K. We have the following result
due to D. Cimasoni and N. Reshetikhin ([8]) :

Proposition 3.2.4. Let G ⊂ Sb be a connected surface graph with boundary. Let C1, . . . , Cp
be the boundary components of Sb with induced orientations. Let ni ∈ {0, 1}, i ∈ {1, . . . , p}
then there exists a Kasteleyn orientation K on G such that 1 + κK(Ci) = ni mod 2 if and
only if n1 + · · ·+ np ≡ V mod 2, where V is the number of vertices of G.

Starting from (S,Λ), we now construct a surface graph with boundary on Sb. First
truncate the vertices of each triangle of Λ to obtain a hexagon.

••

•

→

Figure 3.2: From triangles to hexagons.

Definition 3.2.5 (long and short edges). The edges arising from the triangle are called
long edges. We denote by L(Λ) the set of all long edges. The other edges obtained by
truncation are said to be short. We denote the set of all short edges by S(Λ).

We now attach to each vertex of a long edge an edge with a one valent vertex on the
boundary of Sb and we denote by Ed(Λ) the set of all such edges (cf. Figure 3.3).

We denote by HΛ the obtained surface graph with boundary and we call it hexagonal-
isation associated to Λ.

We now give the relation between spin structures and Kasteleyn orientations. To do
this we recall the notion of dimer configuration.

Definition 3.2.6. A dimer configuration D on a surface graph with boundary is a
choice of edges of the underlying graph with boundary G, called dimers, such that
each vertex that is not a boundary vertex is adjacent to exactly one dimer.
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−→

Figure 3.3: Construction of the surface graph starting from hexagons (The dashed lines
represent the boundary components)

Remark 3.2.7. Let Λ be an ideal triangulation of S. Considering HΛ, there exists a

canonical dimer configuration D on HΛ given by D =
⋃

e∈Ed(Λ)

e.

Applying Theorem 1 of ([8]) to the case of HΛ, we get :

Theorem 3.2.8. Let D be the canonical dimer configuration on HΛ ⊂ Sb. Given a class
α ∈ H1(Sb,Z2), represent it by oriented simple closed curves C1, . . . , Cm in HΛ. If K is a
Kasteleyn orientation on HΛ then the function qKD : H1(Sb,Z2)→ Z2 given by

qKD (α) =
∑
i<j

(Ci · Cj) +
m∑
i=1

(1 + κK(Ci) + `D(Ci)) mod 2,

where lD(C) denotes the number of vertices in C whose adjacent dimer of D sticks out to
the left of C in Sb, is a well-defined quadratic form on H1(Sb,Z2).
Moreover there is an isomorphism of affine H1(Sb,Z2)-spaces from the set of equivalence
classes of Kasteleyn orientations on HΛ ⊂ Sb onto the set of spin structures on Sb.

It is more convenient to work with triangles, so we introduce a new notation. Consider
a hexagon F and a Kasteleyn orientation o on it. Each time the orientation of a small
edge of F is opposed to the orientation induced by O, the small edge is replaced by a
vertex with a dot (cf. Figure 3.4). This way we obtained a new graph on S called dotted
triangulation and we denote it by Λ•.

−→
•

Figure 3.4: From hexagons to dotted triangles.

Remark 3.2.9. Let α ∈ H1(S) be represented by a simple closed curve surrounding a
hole. Then, by Theorem 3.2.8, qKD = 0 if and only if there is an odd number of dots
surrounding the corresponding vertex of Λ•.
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The example of the one-punctured torus T1
1

The one-punctured torus T 1
1 admits four inequivalent spin structures. They can be en-

coded, as seen before, by four inequivalent dotted Kasteleyn orientations on an ideal
triangulation Λ and consider the set of standard generators a, b, c of π1(T1

1) as shown in
Figure 3.5.

•

•

• • •

•

a

b
c

(a)

a

b
c

(b)

a

b
c

(c)

a

b
c

(d)

Figure 3.5: The four dotted Kasteleyn orientations on T1
1

Let us compute the Cimasoni-Reshetikhin quadratic form in the four cases.

Case (a): q(a) = 0 q(b) = 0 q(c) = 0,
Case (b): q(a) = 0 q(b) = 1 q(c) = 0,
Case (c): q(a) = 1 q(b) = 1 q(c) = 0,
Case (d): q(a) = 1 q(b) = 0 q(c) = 0.

In the four cases we remark that the point c is a Neuveu-Schwarz point. This is always
true if the surface has only one puncture.
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CHAPTER 4

Construction of coordinates on the super-Teichmüller X−space

Let S be a surface of type (g, k,m) with k + m > 0. Let {p1, . . . , pk+m} denote the set
of punctures and holes. The aim of this section is to construct a set of coordinates on
the super-Teichmüller space of S also called the super-Teichmüller X-space of S, which
are the super-analogs of the shear coordinates. To this purpose we will need to encode
combinatorially the datum of a spin structure on a ideally triangulated surface: for this
we shall use Kasteleyin orientations.

4.1 Invariant and pseudo-invariant

In this section we recall the construction of two invariants following [24]. The first one is
an even invariant of four points in P1|1 having distinct reductions and the second one an
odd invariant for three points in P1|1 with distinct reductions up to the diagonal action
of SpO(2|1) on 4-uples and triples of points in P1|1.

Definition 4.1.1. 1. We define an n−gon as an n−uple (A1, . . . , An) of linearly or-
dered points in P1|1 such that ∀i 6= j, ]Ai 6= ]Aj.

2. An n−gon (A1, . . . , An) is said to be positive if the linear order agrees with the

orientation induced by the orientation of P1 = P1|1]. In what follows we assume
that all the considered n−gons are positive.

3. We say that two n−gons P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) are equivalent
under the action of SpO(2|1) if there exists a matrix B ∈ SpO(2|1) such that
∀i, BPi = Qi.

27
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4.1.1 The super cross-ratio, the even invariant

Consider A,A′ ∈ R2|1 and define the form 〈A,A′〉 = Ast

 0 1 0
−1 0 0
0 0 −1

A′. We have

〈A,A′〉 = −〈A′, A〉 and a straightforward computation shows that for B ∈ SpO(2|1),

〈BA,BA′〉 = 〈A,A′〉 .

Given four points (Z,Z ′,W,W ′) in P1|1 with distinct reductions (bodies), we define
the function

χ(Z,Z ′,W,W ′) = −〈W
′,W 〉 〈Z ′, Z〉

〈W ′, Z〉 〈Z ′,W 〉
,

Remark 4.1.2. The function χ is well defined: the denominator is non zero because the
points have distinct reductions.

The invariance of the form 〈, 〉 under the diagonal action of SpO(2|1) implies the
following:

Proposition 4.1.3. The function χ is invariant under the diagonal action of SpO(2|1)
on P1|1.

4.1.2 The odd pseudo-invariant

Considering Lemma 2.4.7 we obviously get:

Lemma 4.1.4. A triangle Z1, Z2, Z3 is equivalent to a triangle of the form((
∞
0

)
,

(
−1
ζ

)
,

(
0
0

))
,

where the odd number ±ζ depends only on the equivalence class of Z1, Z2, Z3.

This way Lemma 4.1.4 allows to define a numeric invariant under the action of
SpO(2|1) as

̂[Z1 : Z2 : Z3] = (±ζ) ∈ G1(R). (4.1)

This invariant is defined up to a sign and is called pseudo-invariant by Manin [24].

4.2 Refinement of the odd invariant

Using Kasteleyn orientations on triangles we now refine the odd invariant (4.1). Let
S1|1 := R2|1∗/G0(R)∗+. S1|1 is a two-fold cover of P1|1 and we denote by π the projection
π : S1|1 → P1|1.

Consider an ideal triangle T = (A1, A2, A3) in HS linearly ordered and such that this
order agrees with the orientation induced on T by the orientation of HS. Let o be a
Kasteleyn orientation on its edges.
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Definition 4.2.1. A lift of T is the choice of points Ãi ∈ S1|1 such that π(Ãi) = Ai,∀i.
Two lifts P̃ and P̃ ′ are “± equivalent” if there exists g ∈ SpO(2|1) such that

∀i, g(Ãi) = Ã′i or ∀i, g(Ãi) = −Ã′i.

We lift T to T̃ = (Ã, B̃, C̃) in the following way: lift A1 to Ã1 =

 a1

b1

ζ1

. If the

edge e = [A1, Ai] of T is oriented from A1 to Ai lift Ai to Ãi =

 ai
bi
ζi

 such that

sign

(
det

(
a]1 a]i
b]1 b]i

))
= −1.

Definition 4.2.2. 1. We say that two triples T1 and T2 of cyclically ordered points
(triangles) in S1|1 are ± equivalent if there exists B ∈ SpO(2|1) which sends T1 to
T2 or −T2.

2. The triangles T1 and T2 are said to be equivalent if there exists B ∈ SpO(2|1) which
sends T1 to T2. We denote this equivalence by ≈.

Proposition 4.2.3. Let T be an ideal triangle in HS with vertices A,B,C. The con-
struction above provides a bijection between the set of Kasteleyn orientations on T and
the set of ± equivalence classes of lifts of A,B,C.

We will prove later a more general result given by Proposition 4.3.4.

Lemma 4.2.4. Each triangle A,B,C with a Kasteleyn orientation o on its edges in S1|1

is equivalent to a triangle whose vertices are (possibly cyclically permuted) 1
0
0

 ,

 ±1
∓1
±ζ

 ,

 0
−1
0

 ,

where ±ζ is determined by o. We will denote the triangle A,B,C by [ABC].

Remark 4.2.5. In Lemma 4.2.4 we don’t claim that A 7→

 1
0
0

, B 7→

 ±1
∓1
±ζ

 and

C 7→

 0
−1
0

.

Proof. At least one edge of the triangle A,B,C, is oriented against the orientation in-
duced by the orientation on H. Assume that it is AC. Now using the Lemma 2.4.7 and

Proposition 4.2.3, we can send A and C respectively to

 1
0
0

 and

 0
−1
0

, now B is

sent to a point of the desired form, which is uniquely determined.
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Definition 4.2.6. Let [ABC] be a triangle in S1|1 equipped with a Kasteleyn orientation

o. We associate an odd number to ([ABC], o) given by ζ if [ABC] ≈

 1 1 0
0 −1 −1
0 ζ 0

 and

−ζ if [ABC] ≈

 1 −1 0
0 1 −1
0 −ζ 0

.

Definition 4.2.7. Using the bijection between Kasteleyn orientation and ± equivalence
classes of lifts, we can interpret the change of Kasteleyn orientation given by the inversion
of the orientations of all the edges sharing a same vertex v as a change of leaf in S1|1 (cf.
Figure 4.1), we will call this change the switch in v.

ζ −ζ!

Figure 4.1: Effects of a switch. S1 is seen as the double cover of P1 and so visualized as
a circle running twice around the unit circle.

Lemma 4.2.8. If we change the Kasteleyn orientation of a triangle by a switch its odd
invariant gets multiplied by −1.

Proof. Consider for example a triangle which is equivalent to

 −1 1 0
0 −1 −1
0 ζ 0

.

By the action of

 0 −1 0
1 1 −ζ
0 ζ 1

 ∈ SpO(2|1) we obtain

 0 1 1
−1 0 −1
0 0 −ζ

, which has by

definition invariant −ζ. All the possible cases can be treated in the same way.

Lemma 4.2.9. The following holds: 1 1 0
0 −1 −1
0 ζ 0

 ≈
 1 1 0

0 −1 −1
0 0 −ζ

 ≈
 1 1 0

0 −1 −1
−ζ 0 0

 .
Proof. The two equivalences are respectively obtained by multiplication of the first triple
by the matrices of SpO(2|1), 1 0 −ζ

0 1 0
0 ζ 1

 and

 1 0 0
0 1 −ζ
−ζ 0 1

 .
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4.3 The super-Teichmüller X-space of a surface

In this section we define the super-Teichmüller space of surfaces with holes or super-
Teichmüller X-space. We construct explicit coordinates on this space. These coordinates
are the super analogs of the shear coordinates on the Teichmüller space.

4.3.1 Definition

Let S be a surface of type (g, k,m) and denote by p1, . . . , pk the set of holes and by
pk+1, . . . , pk+m the set of punctures.

Definition 4.3.1. The super-Teichmüller X−space, denoted by ST , is the set of equiva-
lence classes of triples (

ρ, {oi}i=1...k , {Fj}j=1..m

)
,

where ρ ∈ Hom (π1(S), SpO(2|1)) and (Imρ)] is a Fuchsian group, oi is the choice of
an orientation of the hole pi and Fj is a set π1(S)−equivariant fixed points in P1|1 of
ρ(gmk+jg

−1) for all g ∈ π1(S) andmk+j is a simple loop surrounding the puncture pk+j and

where we say that two triples,
(
ρ, {oi}i=1...k , {Fj}j=1..m

)
and

(
ρ′, {o′i}i=1...k ,

{
F ′j
}
j=1..m

)
,

are equivalent if and only if there exists B ∈ SpO(2|1) such that

ρ′ = BρB−1, o′i = oi and F ′j = B · Fj.

This way ST is only a set, but as we will see it later, it can be endowed with a structure
of H∞ DeWitt supermanifold, by the constructions of charts on ST and transition maps
between them.

4.3.2 Lifting ideal triangulations

Let S be an ideal triangulated surface with punctures and oriented holes, p1, . . . , pk+m. Let
Λ be its triangulation. Let ρ : π1(S)→ Γ ⊂ SpO(2|1) be a super-Fuchsian representation
of π1(S). To lift the triangulation to HS, we use the underlying hyperbolic structure,
considering the morphism ρ] : π1(S) → Γ]. First lift the triangulation to H as explained
in Subsection 1.2.2. Now using this construction, we just choose points on P1|1 which
reduce to these on RP 1 and corresponding to fixed points of the elements of Γ associated
to the loops surrounding the punctures and the holes. We thus obtain a π1(S)−covariant
lift of Λ to HS denoted by Λ̃.

We now modify Λ and Λ̃ to obtain their hexagonalisations HΛ and H̃Λ. Each vertex v
of Λ leads to a boundary component with kv vertices on it where kv is the number of edges
containing v. Each vertex ṽ of Λ̃, representative of a vertex v of Λ leads to kv vertices of
H̃Λ. For the moment, by construction, these vertices are all the same point of P1|1.

Now fix a Kasteleyn orientation o on HΛ and pull it back to H̃Λ we get a π1(S)-
covariant Kasteleyn orientation on H̃Λ. Use o to lift the vertices in P1|1 to vertices in S1|1.
To do this we first explain how we deal with the vertices which are the same points in
P1|1.

Definition 4.3.2. A lift of H̃Λ is the choice of points Ãi ∈ S1|1 for each vertex Ai of such
H̃Λ that
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1. ∀i, π(Ãi) = Ai

2. if Ãk and Ãj are the ends of the same short edge we have π(Ãj) = π(Ãk) = Aj = Ak.

3. if Ak = B · Ai where B = ρ(γ) for some γ ∈ π1(S), Ãk = B · Ãi.
Two lifts H̃Λ and H̃ ′Λ are ± equivalent if there exists g ∈ SpO(2|1) such that

∀i, g(Ãi) = Ã′i or ∀i, g(Ãi) = −Ã′i.

Definition 4.3.3. 1. We define an n−gon as an n−uple (A1, . . . , An) of linearly or-
dered points in P1.

2. An n−gon (A1, . . . , An) is said to be positive if the linear order agrees with the
orientation induced by the orientation of P1. In what follows we assume that
all the considered n−gons are positive.

Proposition 4.3.4. Let S be a triangulated hyperbolic surface, let Λ be its triangulation
and let H̃Λ be a lift of HΛ in HS with vertices {A1, . . . }. There exists a bijection between
the set of Kasteleyn orientations on H̃Λ and the set of ± equivalence classes of lifts of
H̃Λ.

Proof. Using the definition of a lift we just have to prove the proposition for a fundamental
domain D in HS. We associate to each lift (up to equivalence) a Kasteleyn orientation o

by the following rule. Let Ãi :=

 ai
bi
ζi

 ∈ S1|1 be a given lift. Let ek,l := [Ak, Al] be a

long edge of HΛ and compute the determinant Dk,l of the matrix given by

(
a]k a]l
b]k b]l

)
.

We orient ek,l from Ãk to Ãl if Dk,l is negative and from Ãl to Ãk otherwise, for the short
edges the orientation coincides with O if and only if the two end points are the same.

Start from a vertex on a short edge of a hexagon F and follow its boundary according
to the orientation induced on it by the orientation on H, and assume first that, using the
positivity, its vertices are e1

1
ζ1

 ,

 e1

1
ζ1

 ,

 e2

1
ζ2

 ,

 e2

1
ζ2

 ,

 e3

1
ζ3

 ,

 e3

1
ζ3

 , with e]1 < e]2 < e]3 ∈ R.

The three determinants we are dealing with are e]1−e
]
2 < 0, e]2−e

]
3 < 0 and e3]−e]1 > 0.

Thus the above rule ensures that exactly one edge of F will be oriented against the
orientation of ∂F induced by the orientation of H. So it is a Kasteleyn orientation on F .
If we are not in the above situation, then we can reduce to it by applying switches on
some vertices. Indeed by a switch at one vertex of F lying on the other leaf of S1|1, we
change the sign of one of the determinants and the extremity of a vertex of a short edge.
Thus we have to change the orientation of two edges and that does not change the parity
of the number of edges oriented against the orientation induced by O. Finally we get
a Kasteleyn orientation on F . This holds on each face of D, thus we get a Kasteleyn
orientation on D.

Conversely starting from a hexagonalisation of S with triangulation Λ and a Kasteleyn
orientation o on HΛ we construct a lift of HΛ following the rule:
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1. fix a vertex Ai of HΛ and lift it in S1|1 to Ãi =

 ai
bi
ζi

.

2. given a lift Ãj =

 aj
bj
ζj

 of a point Aj and a point Ak on an long edge AjAk, choose

a lift Ãk of Ak by Ãk :=

 ak
bk
ζk

 in such a way that

sign

(
det

(
a]j a]k
b]j b]k

))
=

{
1 if Aj −← Ak

−1 if Aj →−Ak
.

3. for the short edges lift the two extremities in the same point of S1|1 if and only if
the orientation o coincides with the orientation induced by O.

By construction the two maps defined by these rules are inverses to each other.

4.3.3 Coordinates on the super-Teichmüller X-space

We are now going to assign to each edge of Λ an element of G0(R) and to each triangle
of Λ an element of G1(R). The collection of all these elements will be a parametrization
of the super-Teichmüller X-space of S.

First of all we give a definition of the odd invariant of a hexagon F following the
ideas given in Section 4.2. Consider a hexagon arising from a triangle like in Figure 3.2
with a Kasteleyn orientation on it. The orientation O induces an orientation on the
edges of F . We consider the triangle TF formed by the left endpoints of the small edges
(regardless of their Kasteleyn orientation). There is a unique orientation on the edges
of TF which, together with the initial Kasteleyn orientation on the hexagon produces a
Kasteleyn orientation on the new cellularization of the hexagon (see Figure 4.2).

Definition 4.3.5. The odd invariant of a hexagon F is defined to be the odd invariant
of the underlying triangle TF .

F

TF

Figure 4.2: A hexagon F and its underlying triangle TF .

Remark 4.3.6. The choice we made is arbitrary, we could have chosen the triangle in
F with vertices given by the right endpoints of the small edges and all the following
results would still hold (with some modifications on the signs of the odd parts). The only
important point is to choose left endpoints on all the triangles of Λ to form TF .
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We now consider the dotted triangulation Λ• of S obtained from Λ.

We recall that two Kasteleyn orientations on a graph are said to be equivalent if and
only if they can be connected by a sequence of operations consisting in changing the
orientations of all the edges sharing a same vertex. We recall also that changing the
orientations of all the edges sharing a same vertex is equivalent to a switch. We now
translate these operations in the notation of dotted triangulations.

Definition 4.3.7. Let T be an oriented dotted triangle and consider an angle containing
a dot •. Assuming that the edge e on the left of • (with respect to the orientation of T )
is not identified with an edge of a triangle T ′ different from T , we define the left push-out
of • to be the operation consisting in pushing the dot in the angle of T ′ adjacent to e and
on the same side of it and reversing the orientation of e: this corresponds to applying a
switch at the left extremity of the short edge of the hexagon associated to T encoded by
•. We define the right push-out of a dot in the same way. We summarize these operations
in Figure 4.3.

•

ζ
left push-out

•

−ζ

•

ζ
right push-out

•

ζ

Figure 4.3: Left and right push-outs.

Remark 4.3.8. Observe that the right push-outs do not affect the value of the odd
invariant of Tf because they correspond to switching one of the vertices of F which is not
in TF .

Lemma 4.3.9. Let F be a hexagon such that each of its edges is not identified with
another one. Let T be its underlying dotted triangle.

1. Applying left push-outs on each dot in T we obtain a new triangle Tl with a Kasteleyn
orientation on it.

2. If ζ is the odd invariant of F , we have ζ = (−1)Card{• in F}[Tl], where [Tl] is the odd
invariant of Tl defined in Section 4.2.

Proof.
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1. Assume first that the orientation on T is not a Kasteleyn orientation. This means
that there is an odd number of dots in T . Left push-outs correspond to changing
all the orientations of the edges of F sharing the left extremity of a short edge
which is oriented against O. So we change the orientation on an odd number of
long edges of F . The corresponding dotted triangle Tl does not contain dots and
the orientation on its edges is a Kasteleyn orientation. If the orientation on T
is a Kasteleyn orientation, there is an odd number of dots in T . Left push-outs
lead to the change of the orientations of an even number of long edges of F so the
corresponding dotted triangle Tl does not contain dots and the orientation on its
edges is a Kasteleyn orientation.

2. Applying a left push-out corresponds to applying a switch at one vertex of TF
(cf.Definition 4.3.5 and Figure 4.2).

Using the Kasteleyn orientation we lift the vertices of Λ̃ to S1|1 and we associate to
each edge an even number xi and to each oriented triangle an odd number ζj respectively
given by the super-cross-ratio and the odd invariant of the oriented triangle.

It is clear that the coordinates we obtain this way do not depend on the choice of
a representative of the triple given by a morphism from π1(S) to SpO(2|1), the fixed
points of the transformations representing the Ramond points and the fixed points of
the transformations representing the Neveu-Schwartz points up to the diagonal action of
SpO(2|1). We then show that given an hexagonalization of a surface equipped with a
Kasteleyn orientation K and a point in ST , we can define “coordinates” for it. We claim:

Theorem 4.3.10. The so obtained collection (x1, . . . , xn, ζ1, . . . , ζp) ∈
(
G0(R)∗+

)n×G1(R)p

provides a global parametrization of the connected component of the super-Teichmüller
X−space indexed by K up to the diagonal action on the odd part of Z2 by multiplication
by −1.

4.4 Proof of Theorem 4.3.10:

the reconstruction of the morphism.

The aim in this section is to prove Theorem 4.3.10 that is to reconstruct a conjugacy
class of a triple given by morphism from π1(S) to SpO(2|1), the fixed points of the trans-
formations representing the Ramond points and the fixed points of the transformations
representing the Neveu-Schwartz points starting from an ideal triangulation together with
a dotted Kasteleyn orientation, Λ• of an open surface with even positive numbers {xi}
assigned to the edges and odd numbers {ζj} assigned to the dotted triangles. Like in the
classical case, the orientation of a boundary component corresponding to a hole is given
by the sign of the real number

∏
x]i − 1. Using the Kasteleyn orientation and the coordi-

nates, after lifting the vertices of a triangle of the triangulation to

 1
0
0

 ,

 0
−1
0

 and

to a third point of even part −1, all the fixed points can be reconstructed in an unique
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way. To achieve the construction we consider a graph obtained from Λ• in the following
way (cf. Figure 4.4):

1. Let Λ∗• be the dual graph of H̃Λ.

2. Replace each three valent vertex of Λ∗• by a triangle.

3. Orient the edges corresponding to the triangles in the negative direction with respect
to the orientation induced by the triangle.

2. and 3.1.

Figure 4.4: Construction of the graph for computing the morphism

On the graph Λ∗• constructed above, there are two kinds of edges:

1. the edges belonging to a triangle, which are oriented,

2. the edges intersecting an edge of Λ•, which are not oriented.

We now associate to each edge of Λ∗• a matrix of SpO(2|1) which depends on the dotted
Kasteleyn orientation, in the following way:

1. consider a dotted triangle Tj of Λ•. Let ζj be the odd number associated to Tj. We
associate to each edge λ of Tj a number aλ ∈ {0, 1} encoding its orientation:

aλ =

{
0 if the orientation of λ agrees with the orientation induced by O

1 otherwise
.

To each vertex v of Tj we associate the number Av of dots at v (cf. Figure 4.5).

A

B

c

Ca

b

A = 1•

B = 0

c = 0

C = 0
a = 0

b = 0

Figure 4.5

2. to each oriented edge contained in Tj we associate a matrix

U(a,b,c,A,B,C)(ζj) =

 −1 0 0
0 −1 0
0 0 1

b+C 1 1 (−1)1+a+A+Cζj
−1 0 0

(−1)1+a+A+Cζj 0 1

 .
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B+(xi) B−(xi)

Figure 4.6

3. orient arbitrarily each non oriented edge e and associate a matrix

B±(xi) =

 0 ∓x 1
2 0

±x− 1
2 0 0

0 0 1


to the edge λi labeled by xi. The Kasteleyn orientation on e and λi (cf. Figure 4.6)
provides the sign ± (Note that B+(xi) = B−(xi)

−1).

4. Now for any oriented simple closed path in Λ∗• we can associate a matrix of SpO(2|1)
by multiplying on the left on the all the matrices met along it, taking

U(a,b,c,A,B,C)(ζj)
−1 =

 0 −1 0
1 1 (−1)a+A+Cζj
0 (−1)1+a+A+Cζj 1

 −1 0 0
0 −1 0
0 0 1

b+C

instead of U(a,b,c,A,B,C)(ζj) and B∓(xi) instead of B±(xi) each time the orientation
of the path disagrees with the orientation of the edge.

Lemma 4.4.1. Let p0 be a vertex of Λ∗•. For each loop ` based in p0 let ρ(l) be the matrix
of SpO(2|1) associated to ` by the construction of point (4) above. The application ρ
defines a homomorphism from π1(S, p0) to SpO(2|1).

Before proving this result we introduce

Definition 4.4.2. A hexagon whose vertices are lifts of the points(
∞
0

)
,

(
−1
θ

)
,

(
0
0

)

is said to be in canonical position if the right extremity of one of its small edges is

 1
0
0

.

A dotted triangle is said to be in canonical position if its underlying hexagon is.

Proof. We want to prove that taking a closed path corresponding to follow the three edges
of a triangle in Λ∗• , the product of the corresponding matrices is the identity.
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A
c

B

a
C

b

 1
0
0


(−1)A

 1
0
0



(−1)A+c

 1
−1
ν



(−1)A+B+c

 1
−1
ν



(−1)(b+C)

 0
1
0


(−1)b

 0
1
0



TF

Consider a dotted triangle in canonical position. We encode the orientation on its edges
by (a, b, c) and the number of dots in a vertex by (A,B,C) as in Figure 4.5. Looking at
the underlying hexagon we obtain the following.

If the odd number associated to the considered dotted triangle T is ζ, then it holds
that ν must be such that the odd invariant of the triangle (−1)A (−1)A+B+c 0

0 (−1)1+A+B+c (−1)b

0 (−1)A+B+cν 0


equals ζ. So we get

ζ = (−1)A(−1)A+B+c(−1)b+1ν = (−1)B+b+c+1ν

and it holds that the odd invariant of T is ζ if and only if ν = (−1)a+A+Cζ. The
matrix U acts by permuting cyclically in the counterclockwise direction the vertices of
the considered dotted triangle in canonical position and sends the triangle to a triangle
in canonical position, indeed we have :

U · (−1)b+C

 0
1
0

 =

 1
0
0


U · (−1)A+c

 1
−1
ν

 =

 0
ε
0


U ·

 1
0
0

 = ε′

 1
−1
κ


where ε, ε′ ∈ {−1, 1}. The uniqueness of the canonical position and Proposition 4.3.4
ensure that the matrix product obtained by following the three edges of a triangle in Λ∗•
is the identity. An example is given in Figure 4.7.
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 1
0
0



 1
0
0



 1
−1
ζ


 1
−1
ζ



 0
−1
0



 0
−1
0



 1
0
0



 1
0
0



 −1
1
−ζ


 −1

1
−ζ



 0
1
0



 0
1
0



 1
0
0



 1
0
0



 1
−1
−ζ


 1
−1
−ζ



 0
1
0



 0
1
0



U(0,1,0,0,0,0)(ζ)

U(0,0,1,0,0,0)(ζ)

U(1,0,0,0,0,0)(ζ)

Figure 4.7: An illustration of the actions of the matrices U(a,b,c)

Remark 4.4.3. Consider two adjacent hexagons: let us say that they are in canonical
position if the vertices on the right of the short edges of one of them are 1

0
0

 ,

 ±1
∓1
µ

 ,

 0
±1
0


and the vertices on the left of the short edges of the other are 1

0
0

 ,

 0
±1
0

 ,

 ±x 1
2

±x− 1
2

µ′

 ,

where µ is such that the invariant to the first hexagon is ζ. The transformation sending
the second hexagon to a hexagon of the first kind is given by the matrix B±(xi). An
example is given in Figure 4.8.
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B+(x)

 1
0
0



 1
0
0



 1
−1
ζ


 1
−1
ζ



 0
−1
0



 0
−1
0



 1
0
0



 1
0
0



 x
1
2

x
− 1

2

ζ

 x
1
2

x
− 1

2

ζ



 0
1
0



 0
1
0



Figure 4.8: An illustration of the action of the matrix B±

The image of ρ is a super-Fuchsian group because its reduction is a Fuchsian group.
We now have to check that the constructed fixed points are the fixed points of the trans-
formation associated to a loop surrounding a hole or a puncture. As we are reconstructing

an equivalence class, it is sufficient to prove the result for the point

(
∞
0

)
.

The transformation associated to the loop γ in Figure 4.9 is given by a product

M = B±(xk)U
−1(ζk) · · ·B±(x2)U−1(ζ2)B±(x1)U−1(ζ1). (4.2)

Multiplying each U−1(ζi) from the left by J =

 0 −1 0
1 0 0
0 0 1

 and each B±(xk) from

the right by J−1 does not change the product (4.2) and it becomes

M = H±(xk)F (ζk) · · ·H±(x2)F (ζ2)H±(x1)U−1(ζ1),

where 

H±(x) =

 ±x
1
2 0 0

0 ±x 1
2 0

0 0 1



F (ζ) is of the form

 1 1 ±ζ
0 1 0

0 ∓ζ 1


 −1 0 0

0 −1 0

0 0 1


ε

, ε ∈ {0, 1} .

Each of the matrices taking part in the product sends

 1
0
0

 to ±

 1
0
0

, so

(
∞
0

)
is the fixed point of the transformation associating to γ. That completes the proof of
Theorem 4.3.10.
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x3

x2

x1

xk x4

γ

•

ζ3

ζ2

ζ1

ζk

ζ4

Figure 4.9
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CHAPTER 5

Superflips and superpentagons

In this chapter we give explicit formulas for a change of (dotted) triangulation by a flip.
We then show that these coordinate changes are involutions and that they satisfy a super
version of the pentagon relation.

Theorem 5.1.

1. Let Q be a quadrilateral in Λ• containing no dots, we then have the following propo-
sitions.

(a) If the all edges of Q are distinct, for each flip of Λ producing a triangulation
Λ′ there exists a unique Kasteleyn orientation o′ on HΛ′ coinciding with the
orientation o of the edges of HΛ not involved in the flip. Taking into account
the orientations of the edges, there are four versions of a flip and their corre-
sponding coordinate changes are given by Figure 5.1.

(b) If two opposite edges are identified in Q, then the coordinates and their trans-
formation under a flip are of the form given in Figure 5.2.

2. Let Q be a quadrilateral in Λ• containing dots.

(a) If the all edges of Q are distinct, we reduce to Case (1a) by pushing out the
dots. Then apply the superflip and push in the dots : the coordinates and their
transformation under a flip are of the form given in Figure 5.3.

(b) If two opposite edges are identified in the triangulation, then the same opera-
tions as in Case (2a) lead to a change of coordinates of the form depicted in
Figure 5.4.

43
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x1

x

x4 x3

x2

ζ −ξ1)

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

− ζ
√
x+ξ√
1+x

ζ−ξ
√
x√

1+xsuperflip−−−−−→

x1

x

x4 x3

x2

−ζ −ξ2)

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+xsuperflip−−−−−→

x1

x

x4 x3

x2

−ζ ξ3)

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

− ζ
√
x+ξ√
1+x

ζ−ξ
√
x√

1+xsuperflip−−−−−→

x1

x

x4 x3

x2

ζ ξ4)

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+xsuperflip−−−−−→

Figure 5.1: Superflips

x1

x

x2 x3

x2

ζ −ξ

x1(1 + x+ ζξ
√
x)

x−1

x2(1 + x−1 + ζξ
√

(x−1))−2 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−2

− ζ
√
x+ξ√
1+x

ζ−ξ
√
x√

1+xsuperflip−−−−−→

Figure 5.2: Superflip in a quadrilateral with identified opposite edges.

Proof. (1a) We prove the result in the first case of Figure 5.1. Let [Z1, Z2, Z3, Z4] be a
quadrilateral in S1|1 equipped with the Kasteleyn orientation in the first picture of
Figure 5.1. Up to acting with an element B of SpO(2|1) we can assume that the
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x1

x

x4 x3

x2

−ζ −ξ

• x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

− ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+x

•
superflip−−−−−→

x1

x

x4 x3

x2

ζ −ξ

•

Left push-out

Case 1−−−−→
superflip

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

− ζ
√
x+ξ√
1+x

ζ−ξ
√
x√

1+x

•

Left push-in

Figure 5.3: Decomposition of a superflip using push-outs

x1

x

x4 x3

x2

−ζ −ξ

• x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−2 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−2

− ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+x

•
superflip−−−−−→

Figure 5.4: Superflip in a quadrilateral with identified opposite edges containing a dot.

vertices of the quadrilateral are the columns of the matrix

 1 1 0 −x
0 −1 −1 −1
0 ζ 0

√
xξ

 .

Let’s compute the odd invariants corresponding to the two oriented triangles in the
picture on the right of Figure 5.1.

For convenience, we first set y =
√

1+x
x

(
1 + 1

2
ζξ
√
x

1+x

)
. The triple

 1 0 −x
−1 −1 −1
ζ 0

√
xξ


is equivalent to the product:

 y−1 0 0
0 y 0
0 0 1

 1 1 −ζ
−1 0 0
−ζ 0 1

 1 0 −x
−1 −1 −1
ζ 0

√
xξ

 ,
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which is equal to 
0 −y−1 −

√
x
√

1 + x
(

1 + 1
2
ζξ
√
x

1+x

)
−y 0

√
x
√

1 + x
(

1 + 1
2
ζξ
√
x

1+x

)
0 0 ζx+ ξ

√
x

 .
Up to rescaling the columns respectively by y−1, y, 1√

x(1+x)

(
1− 1

2
ζξ
√
x

1+x

)
, the triangle

is equivalent to: 1 0 −x
−1 −1 −1
ζ 0

√
xξ

 ≈


0 −y−1 −
√
x
√

1 + x
(

1 + 1
2
ζξ
√
x

1+x

)
−y 0

√
x
√

1 + x
(

1 + 1
2
ζξ
√
x

1+x

)
0 0 ζx+ ξ

√
x


≈

 0 −1 −1
−1 0 1

0 0 ζ
√
x+ξ√
1+x

 .
The triple is then equivalent to the following one: −1 −1 0

1 0 0
0 0 1

 0 −1 −1
−1 0 1

0 0 ζ
√
x+ξ√
1+x

 =

 1 1 0
0 −1 −1

0 0 ζ
√
x+ξ√
1+x

 .
Thus by Lemma 4.2.9 the odd invariant [Z1, Z2, Z4] is − ζ

√
x+ξ√
1+x

.

The same kind of method leads us to the last invariant: 1 1 −x
0 −1 −1
0 ζ ξ

√
x

 ≈
 1√

1+x

√
1 + x 0

0 −
√

1 + x −
√

1 + x
0 ζ ξ

√
x

 ≈
 1 1 0

0 −1 −1

0 ζ√
1+x

ξ
√
x√

1+x


≈

 1 1 0
0 −1 −1

− ζ−ξ
√
x√

1+x
0 0

 .
Thus the odd invariant [Z2, Z3, Z4] is ζ−ξ

√
x√

1+x
.

We now compute how the even coordinates change. We first look at the diagonal of
the quadrilateral. We have

χ(Z2, Z3, Z4, Z1) = −〈Z1, Z4〉 〈Z3, Z2〉
〈Z1, Z2〉 〈Z3, Z4〉

=

(
−〈Z4, Z3〉 〈Z2, Z1〉
〈Z4, Z1〉 〈Z2, Z3〉

)−1

= (χ(Z1, Z2, Z3, Z4))−1

= x−1.
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Now consider the edge e = [Z1, Z2]. We assume that e is the diagonal of the quadri-
lateral Z1, Y, Z2, Z3, where Y ∈ P1|1. By definition we have x1 = χ(Z1, Y, Z2, Z3).
Let x′1 be the even number associated to the edge e after the flip given by Figure 5.1.
We get

x′1 =χ(Z1, Y, Z2, Z4)

=− 〈Z4, Z2〉 〈Y, Z1〉
〈Z4, Z1〉 〈Y, Z2〉

=− 〈Z3, Z2〉 〈Y, Z1〉
〈Z3, Z1〉 〈Y, Z2〉

〈Z3, Z1〉 〈Z4, Z2〉
〈Z3, Z2〉 〈Z4, Z1〉

=x1
1 · (1 + x+ ζξ

√
x)

1 · 1
.

The same kind of considerations provide the coordinates associated to each edge.

(1b) We now consider the opposite identified edges. Let us set Z∞ =

(
∞
0

)
, Z−1 =(

−1
−ζ

)
, Z0 =

(
0
0

)
, Zx =

(
x

−
√
xξ

)
. Let B ∈ Γ be such that [Z−1, Z0] and

[Z∞, Zx] are identified by B. The edge e = [Z∞, Zx] is the diagonal of the quadri-
lateral Z∞ = B.Z−1, Z0, Zx = B.Z0, B.Z∞. We have by definition

x2 = χ (Z∞, Z0, Zx, B.Z∞)

= −〈B.Z∞, Zx〉 〈Z0, Z∞〉
〈B.Z∞, Z∞〉 〈Z0, Zx〉

= − 〈B.Z∞, B.Z0〉 〈Z0, Z∞〉
〈B.Z∞, B.Z−1〉 〈Z0, Zx〉

.

Let x′2 be the even number associated to e after the flip of Figure 5.2. The edge e is
the diagonal of the quadrilateral with vertices Z∞ = B.Z−1, Z−1, Zx = B.Z0, B.Zx.
We get :

x′2 = χ (Z∞, Z−1, Zx, B.Zx)

= −〈B.Zx, Zx〉 〈Z−1, Z∞〉
〈B.Zx, Z∞〉 〈Z−1, Zx〉

= − 〈B.Zx, B.Z0〉 〈Z−1, Z∞〉
〈B.Zx, B.Z−1〉 〈Z−1, Zx〉

= x2
〈B.Zx, B.Z0〉 〈B.Z∞, B.Z−1〉
〈B.Zx, B.Z−1〉 〈B.Z∞, B.Z0〉

〈Z0, Zx〉 〈Z−1, Z∞〉
〈Z0, Z∞〉 〈Z−1, Zx〉

= x2

(
〈Z0, Zx〉 〈Z−1, Z∞〉
〈Z0, Z∞〉 〈Z−1, Zx〉

)2

(χ is SpO(2|1)−invariant)

= x2

(
1 + x−1 + ζξ

√
x−1
)−2

.
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Definition 5.2. Given a triple (S,Λ, o), a superpentagon relation is a sequence of five
superflips such that their composition is the identity and its projection to (S,Λ) (forgetting
o) is a standard pentagon relation (see Figure 5.8).

Theorem 5.3.

1. The superflip is an involution.

2. The superflip satisfies the superpentagon relation.

Proof. We prove the result for the first superflip in Figure 5.1. The other results can be
obtained by first pushing out the dots, then operating switches, applying that case and
finally switching back the lifts.

We have the sequence of moves given by Figure 5.5.

ζ −ξ flip−−→

ζ−ξ
√
x√

1+x

− ζ
√
x+ξ√
1+x

↓

−ξ′

ζ ′
flip←−−νµ

↑ changes of leaf

Figure 5.5: Decomposition of the effect of two successive flips in the same quadrilateral.

• Using Proposition 5.1 and Proposition 4.2.7 we have:

ζ ′ = −ζ
√
x+ ξ√
1 + x

,

ξ′ =
ζ − ξ

√
x√

1 + x
,

µ =
ζ ′ − ξ′

√
x−1

√
1 + x−1

= −ζ,

ν = −ζ
′
√
x−1 + ξ′√
1 + x−1

= ξ.

Then a last application of Proposition 4.2.7 by changing the point of leaf gives us
the desired result for the odd invariants.
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• For the even coordinates, it is sufficient to remark that (x−1)−1 = x and

−ζ
√
x+ ξ√
1 + x

ζ − ξ
√
x√

1 + x
= ζξ.

We now prove that the pentagon relation is satisfied. We prove the result for a
pentagon with distinct edges and without dots. We first decompose the superflip into
the two moves showed in Figure 5.6. We have the following relations:

ci

di

eiai

bi xi yi

superflip−−−−−−−−−→

e′i

a′i

b′ic′i

d′i

y′i

x′i

↓ changes of leaves

ei+1

ai+1

bi+1ci+1

di+1

yi+1

xi+1

−ξi

ηiζi −ξ′i
η′i

ζ ′i

−ξi+1

ηi+1

ζi+1

move

Figure 5.6

ai+1 = di,

bi+1 = ei,

ci+1 = ai (1 + xi + ζiξi
√
xi) ,

di+1 = bi

(
1 + xi

−1 + ζiξi
√
xi−1

)−1

,

ei+1 = ci (1 + xi + ζiξi
√
xi) ,

xi+1 = yi

(
1 + xi

−1 + ζiξi
√
xi−1

)−1

, (5.1)

yi+1 = x−1
i , (5.2)

ζi+1 = −(ηi), (5.3)

ξi+1 = −(ζi − ξi
√
xi)(1 + xi)

− 1
2 , (5.4)

ηi+1 = −(ζi
√
xi + ξi)(1 + xi)

− 1
2 . (5.5)

We will use that if α2 = 0 we have (1 + α)t = 1 + tα.

• We first prove that y5 = y0 and simultaneously x5 = x0. Using the relations and
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the fact above we get:

y5 = x−1
4 = y−1

3

(
1 + x−1

3 + ζ3ξ3

√
x−1

3

)
= x2

[
1 + y−1

2

(
1 + x−1

2 + ζ2ξ2

√
x−1

2

)
+ η2

(
ζ2

√
x−1

2 − ξ2

)√
y−1

2

)
= x1 (1 + y1 − η1ξ1

√
y1)

= y0.

Equation (5.2) gives x5 = x0.

• We now prove that a5 = a0, the same kind of considerations provide the result for
the other coordinates.

a5 = d4 = b3

(
1 + x−1

3 + ζ3ξ3

√
x−1

3

)
= e2

(
1 + y−1

2

(
1 + x−1

2 + ζ2ξ2

√
x−1

2

)
+

(
η2ζ2

√
x−1

2 − η2ξ2

)√
y−1

2

)−1

= c1 (1 + x1 + ζ1ξ1

√
x1)

[
1 + x1

{
1 + y−1

1

(
1 + x−1

1 + ζ1ξ1

√
x−1

1

)
− η1ξ1

√
y−1

1

}
+

{
ξ1η1

√
y−1

1 − ζ1ξ1

√
x1

}]−1

= c1

[
1 + y−1

1 + ξ1η1y
−1
1

]−1

= a0.

• We now prove that ζ5 = ζ0 and simultaneously η5 = η0. Using the relations and the
fact above we get:

ζ5 = −η4 = (ζ3

√
x3 + ξ3) (1 + x3)−

1
2

= −
[
1 + x2

(
1 + y2 + ζ2ξ2

√
x−1

2

)]− 1
2

[ζ2 − (ξ2 − η2
√
y2)
√
x2 ] .

We now want to express ζ0 with respect to ζ2. Therefore we have to reverse the
superflip. We now consider the moves in Figure 5.7.

We have the following relations:

xi−1 = y−1
i , (5.6)

yi−1 = xi (1 + yi + ξiηi
√
yi) , (5.7)

ηi−1 = ζi, (5.8)

ξi−1 = (−ξi + ηi
√
yi) (1 + yi)

− 1
2 , (5.9)

ζi−1 = (ξi
√
yi + ηi) (1 + yi)

− 1
2 . (5.10)
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ci

di

eiai

bi xi yi

superflip−−−−−−−−−→

a′i

b′i

c′id′i

e′i

y′i

x′i

↓ changes of leaves
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ζ ′i

−ξi−1ηi−1
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move

Figure 5.7

We get:

ζ0 = (ξ1
√
y1 + η1) (1 + y1)−

1
2

=
[
(−ξ2 + η2

√
y2) (1 + y2)−

1
2
√
y1 + ζ2

]
(1 + y1)−

1
2

= [1 + x2 (1 + y2 + ξ2η2
√
y2)]−

1
2 [ζ2 − (ξ2 − η2

√
y2)
√
x2] .

Expanding the expressions of ζ5 and ζ0 we obtained in function of ζ2 we remark that
the two expressions are of opposite signs. But all the vertices of the obtained pen-
tagons are on opposite leaves hence the equality. We summarize this in Figure 5.8.
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•
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Figure 5.8: The pentagon relation (The dots correspond to the points which are on the
other leaf)



CHAPTER 6

Poisson structures

6.1 Poisson manifolds and Poisson supermanifolds

6.1.1 Poisson manifolds

Definition 6.1.1. A Poisson bracket on a smooth manifold M is a bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M),

such that for all f, g and h in C∞(M) the three following properties are satisfied :

1. {f, g} = −{g, f} (skew-symmetry),

2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity),

3. {fg, h} = f {g, h}+ g {f, h} (Leibniz’s rule).

Definition 6.1.2. Let (M, {·, ·}M) and (N, {·, ·}N) be two Poisson manifolds and let
f : M → N be a smooth map. The map ψ is said to be a Poisson map if for all
f1, f2 ∈ C∞(N)

{f1, f2}N ◦ ψ = {f1 ◦ ψ, f2 ◦ ψ}M .

Definition 6.1.3. A Poisson-Lie group is a Lie group equipped with a Poisson bracket
for which the multiplication m : G×G→ G is a Poisson map.

6.1.2 Poisson supermanifolds

Definition 6.1.4. A Poisson superalgebra is a superalgebra A over R with a Poisson
superbracket [·, ·] : A× A→ A which satisfies :

1. [x, y] = −(−1)|x||y| [y, x] (super skew-symmetry),

2. [x, [y, z]] + (−1)|x|(|y|+|z|) [y, [z, x]] + (−1)(|z|(|x|+|y|) [z, [x, y]] = 0 (super Jacobi iden-
tity).
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3. [x, yz] = [x, y] z + (−1)|x||y|y [x, z] (super Leibniz’s rule).

Definition 6.1.5. A Poisson supermanifold is a K-supermanifold (K = G∞ or H∞)
such that the superalgebra of supersmooth functions over it is equipped with a Poisson
superbracket

In this chapter we give an explicit formula of a Poisson bracket {, }ST on the super-
Teichmüller X−space but first of all we recall the definition of such a bracket in the
classical case.

6.2 The Weil-Petersson Poisson structure on T X

There are two ways of defining the Weil-Petersson Poisson bracket on T X . Following [11],
one knows that the space of homomorphisms of the fundamental group of a surface S
into a reductive group G up to conjugation by G admits a canonical Poisson structure.
For G = PSL(2,R), T X can be mapped to this space and this map induces the Weil-
Petersson Poisson structure on T X . The other definition was given by Goldman [16] in
terms absolute values of traces of elements of PSL(2,R) corresponding to closed loops on
the surface S. He showed that the Poisson bracket between trace functions is a linear
combination of trace functions. Finally, an explicit formula of the Weil-Petersson bracket
{, }T X in the term of shear coordinates (cf. [14]) is given by

{, }T X =
∑

i,j∈E(Λ)

εijxixj
∂

∂xi

∂

∂xj
, (6.1)

where εij is given by Equation (1.1).
Although the coordinates on T X(S) correspond to a choice of a triangulation of S the

Poisson bracket {, }T X has the interesting property to be independent of this particular
triangulation. This can be checked by substitution of the change of coordinates rules (1.2)
in (6.1). We do not give the computation here since it will be done in the section about
the super-Poisson bracket on the super-Teichmüller X−space.

Definition 6.2.1. Consider the space of regular functions on ST . One defines two odd

derivations,

−→
∂

∂ζi
and

←−
∂

∂ζi
, which are operators acting respectively on the right and on the

left (see for example [10]).

1. The action on the coordinate functions is given by:

−→
∂ ζj
∂ζi

=

←−
∂ ζj
∂ζi

= δij and

−→
∂ xj
∂ζi

=

←−
∂ xj
∂ζi

= 0.

2. The action on a monomial ζ1 . . . ζi . . . ζk is given by:

−→
∂

∂ζi
(ζ1 . . . ζi . . . ζk) = (−1)i−1ζ1 . . . ζ̂i . . . ζk,

←−
∂

∂ζi
(ζ1 . . . ζi . . . ζk) = (−1)k−iζ1 . . . ζ̂i . . . ζk.
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Theorem 6.2.2. The following formula defines a super Poisson structure on the super
Teichmüller X−space :

{, }ST =
∑

i,j∈E(Λ•)

εijxixj
∂

∂xi

∂

∂xj
− 1

2

∑
k∈F (Λ•)

←−
∂

∂ζk

−→
∂

∂ζk
(6.2)

and this Poisson bracket does not depend on the particular triangulation.

Proof. Let f, g and h be three functions of given parity |f |, |g| and |h|.

1. The bracket {, }ST is super skew-symmetric :

{f, g}ST =
∑

i,j∈E(Λ•)

εijxixj
∂f

∂xi

∂g

∂xj
+

1

2

∑
k∈F (Λ•)

←−
∂ f

∂ζk

−→
∂ g

∂ζk

=
∑

i,j∈E(Λ•)

−εjixixj
∂f

∂xi

∂g

∂xj
+

1

2

∑
k∈F (Λ•)

(−1)|f |+1

−→
∂ f

∂ζk
(−1)|g|+1

←−
∂ g

∂ζk

=
∑

i,j∈E(Λ•)

−εjixjxi(−1)|f ||g|
∂g

∂xj

∂f

∂xi
+

1

2

∑
k∈F (Λ•)

(−1)|f |+|g|
−→
∂ f

∂ζk

←−
∂ g

∂ζk

= −(−1)|f ||g|
∑

i,j∈E(Λ•)

εjixjxi
∂g

∂xj

∂f

∂xi

+
1

2
(−1)|f |+|g|

∑
k∈F (Λ•)

(−1)(|f |+1)(|g|+1)

←−
∂ g

∂ζk

−→
∂ f

∂ζk

= −(−1)|f ||g| {g, f}ST .

2. The bracket {, }ST satisfies the super Leibniz’s rule :

{f, gh}ST =
∑

i,j∈E(Λ•)

εijxixj
∂f

∂xi

∂gh

∂xj
+

1

2

∑
k∈F (Λ•)

←−
∂ f

∂ζk

−→
∂ gh

∂ζk

=
∑

i,j∈E(Λ•)

εijxixj
∂f

∂xi

(
∂g

∂xj
h+ g

∂h

∂xj

)

+
1

2

∑
k∈F (Λ•)

←−
∂ f

∂ζk

(−→
∂ g

∂ζk
h+ (−1)|g|g

−→
∂ h

∂ζk

)

= {f, g}ST h+
∑

i,j∈E(Λ•)

εijxixj
∂f

∂xi
g
∂h

∂xj
+

1

2
(−1)|g|

∑
k∈F (Λ•)

←−
∂ f

∂ζk
g

−→
∂ h

∂ζk

= {f, g}ST h+ (−1)|f ||g|g
∑

i,j∈E(Λ•)

εijxixj
∂f

∂xi

∂h

∂xj

+
1

2
(−1)|g|(−1)|g|(|f |−1)g

∑
k∈F (Λ•)

←−
∂ f

∂ζk

−→
∂ h

∂ζk

= {f, g}ST h+ (−1)|f ||g|g {f, h}ST .
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3. The bracket {, }ST satisfies the super Jacobi identity :

• First of all it is sufficient to show that the identity is satisfied for monomials
in the element xi and ζk, because of the linearity of the bracket.

• Consider now four generators a, b, c, d ∈ {x1, . . . , xE, ζ1, . . . , ζT}, where E and
T are the numbers of edges and triangles in Λ• such that the super Jacoby
identity is satisfied for a, b, c and a, b, d. Using the super Leibniz’s rule and the
super skew-symmetry, a straightforward computation shows that the identity
is satisfied for a, b, cd. So it is sufficient to show that the identity is satisfied
for the coordinate functions.

• Assume that one of the functions is ζi, then all the terms of the left hand side
equal 0. So the identity is obviously satisfied. If all the functions are even
coordinate functions then the computations reduce to the classical one, so the
identity is satisfied.

We now check that the superflips and the switches are Poisson maps. The case of a
switch is obvious because the change of coordinates is given by a change of sign of some
odd coordinates. Consider now the following situation :

x1

x

x4 x3

x2

Λ•

ζ ξ

x1(1 + x+ ζξ
√
x)

x−1

x4(1 + x−1 + ζξ
√

(x−1))−1 x3(1 + x+ ζξ
√
x)

x2(1 + x−1 + ζξ
√
x−1)−1

Λ′•

ζ
√
x+ξ√
1+x

− ζ−ξ
√
x√

1+xsuperflip−−−−−→

We set :

x′1 =x1

(
1 + x+ ζξ

√
x
)

ζ ′ =− ζ − ξ
√
x√

1 + x

x′2 =x2

(
1 + x−1 + ζξ

√
x−1
)−1

ξ′ =
ζ
√
x+ ξ√
1 + x

x′3 =x3

(
1 + x+ ζξ

√
x
)

x′4 =x4

(
1 + x−1 + ζξ

√
x−1
)−1

x′ =x−1

and we consider the Poisson bracket

{, }′ST =
∑

i,j∈E(Λ′•)

(ε′)ijx′ix
′
j

∂

∂x′i

∂

∂x′j
+

1

2

∑
k∈F (Λ′•)

←−
∂

∂ζ ′k

−→
∂

∂ζ ′k
.
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We get on one side

{x′, x′1}
′
ST = −x′x′1, {x′, x′2}

′
ST = x′x′2, {x′, x′3}

′
ST = −x′x′3, {x′, x′4}

′
ST = x′x′4,

{x′1, x′2}
′
ST = −x′1x′2, {x′3, x′4}

′
ST = −x′3x′4,

{x′1, x′4}
′
ST = {x′1, x′3}

′
ST = {x′2, x′4}

′
ST = {x′2, x′3}

′
ST = 0,

{ζ ′, ζ ′}′ST = {ξ′, ξ′}′ST = 1
2
, {ζ ′, ξ′}′ST = 0,

{ζ ′, x′i}
′
ST = {ξ′, x′i}

′
ST = 0.

and on the other side :

{x′, x′1}ST = xx1
∂x′

∂x

∂x′1
∂x1

= xx1
−1

x2
(1 + x+ ζξ

√
x)

= −x−1x1(1 + x+ ζξ
√
x) = −x′x′1.

{x′, x′2}ST = −xx2
∂x′

∂x

∂x′2
∂x2

= −xx2
−1

x2

(
1 + x−1 + ζξ

√
x−1
)

= x−1x2

(
1 + x−1 + ζξ

√
x−1
)

= x′x′2.

{x′1, x′2}ST = −x1x
∂x′1
∂x1

∂x′2
∂x
− xx2

∂x′1
∂x

∂x′2
∂x2

= −x1x(1 + x+ ζξ
√
x)x2

1 + 1
2
ζξ
√
x

(1 + x+ ζξ
√
x)

2 − xx1x2

1 + 1
2
ζξ
√
x−1(

1 + x−1 + ζξ
√
x−1
)

= −x1x2

1 + 1
2
ζξ
√
x(

1 + x−1 + ζξ
√
x−1
) − xx1x2

1 + 1
2
ζξ
√
x−1(

1 + x−1 + ζξ
√
x−1
)

= −x1x2

(
1 + x−1 + ζξ

√
x−1
)−1 (

1 + x+ ζξ
√
x
)

= −x′1x′2.

The same kind of computations works for the others pairs
{
x′i, x

′
j

}
ST

and for the odd
functions we get :

{ζ ′, ζ ′}ST =
1

2

(
−1√
1 + x

)2

+
1

2

( √
x√

1 + x

)2

=
1

2
.

{ξ′, ξ′}ST =
1

2

( √
x√

1 + x

)2

+
1

2

(
1√

1 + x

)2

=
1

2
.

{ζ ′, ξ′}ST =
1

2

−1√
1 + x

√
x√

1 + x
+

1

2

√
x√

1 + x

1√
1 + x

= 0.
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And finally :

{ζ ′, x′}ST = 0

{x′1, ζ ′}ST = −x1x
∂x′1
∂x1

∂ζ ′

∂x
+

1

2

←−
∂ x′1
∂ζ

−→
∂ ζ ′

∂ζ
+

1

2

←−
∂ x′1
∂ξ

−→
∂ ζ ′

∂ξ

= −x1x
(
1 + x+ ζξ

√
x
) 1

2
ξ
√
x−1
√

1 + x+ (ζ − ξ
√
x)1

2

√
(1 + x)−1

1 + x

+
1

2

x1ξ
√
x√

1 + x
+

1

2

x1ζ
√
x
√
x√

1 + x

= −x1x
1

2
√

1 + x

(
ξ
√
x−1 + ζ

)
+
x1 (ξ
√
x+ ζx)

2
√

1 + x

= 0.

{x′2, ζ ′}ST = x2x
∂x′2
∂x2

∂ζ ′

∂x
+

1

2

←−
∂ x′2
∂ζ

−→
∂ ζ ′

∂ζ
+

1

2

←−
∂ x′2
∂ξ

−→
∂ ζ ′

∂ξ

= x2x
(

1 + x−1 + ζξ
√
x−1
)−1 1

2
ξ
√
x−1
√

1 + x+ (ζ − ξ
√
x)1

2

√
(1 + x)−1

1 + x

+
1

2
(1 + x−1)−2−x2ξ

√
x−1

√
1 + x

+
1

2
(1 + x−1)−2−x2ζ

√
x−1
√
x√

1 + x

= x2x(1 + x−1)−1

√
(1 + x)−1

2(1 + x)

(
ξ
√
x−1 + ζ

)
−
x2(1 + x−1)−2

(
ξ
√
x−1 + ζ

)
2
√

1 + x

= 0.
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