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Abstract

In Computer Aided (Geometric) Design (CA(G)D) curves are usually represented
in a parameterized form. This way of expressing curves is practical as well as effi-
cient. It is independent of the choice of the coordinate system, it lends itself well to
geometric transformations, such as rotations, translations, and scaling, and the dif-
ferential geometric properties of a curve, as length and curvature, are invariant under
re-parameterization. The simplicity of this form is used for the design of geometric
models for object shapes in many applications including automotive, shipbuilding,
and aerospace industries, industrial and architectural design, and many more. In
addition, this representation allows to generate points on a curve in the direction of
increasing values of parameter. This property is also widely used to produce com-
puter animation. In this context, in this thesis, we study stop motion animation,
that is an animation technique that brings objects, such as puppets or clay models,
alive by photographing a series of positions and then playing them as a continuous
sequence. Originally, only the objects are moved in a stop-motion animation, be-
cause animating the camera is very complicated. Moreover, it is an impossible job
to move the camera frame by frame along a continuous curve to produce a smooth
movement. Because of these constraints, the camera was strongly fixed on the real
stage for a long time. But on the other hand, camera movements subject to the
influence of floor irregularities, human manipulations and mechanical imperfections
are mainly recognized as part of the aesthetic cinematographic specificity, and there-
fore desirable to a certain extent. So far, even traditional animation methods in 3D
software animation programs suffer from limitations in producing realistic camera
moves. Our objective is to create a new motion control system specifically designed
for stop motion that is able to simulate a realistic camera animation, be adapted to
stop motion stages in terms of size and weight as well as be accessible to any-sized
budget productions. In chapter 2, we describe the partial solutions proposed in
the literature and we use them with the aim to overcome the existing drawbacks
of the 3D animation software. We aim at simulating a 3D camera movement that
can integrate constraints and imperfections of real camera devices by using a haptic
interface. We focus on "Keyframing animation" and propose a system that sepa-
rates position and speed of the trajectory curve. Once elaborated, the keyframes,
recorded by a haptic interface, are exported, frame by frame, to the motion control
software, which allows to calibrate the motion control robot, to control the cam-
era settings and, finally, to execute the sequences. We describe the whole system
and explain in detail the mathematical processing to obtain different camera move-
ments by using a haptic interface for motion capture in chapter 3. In our system
we can control a rational parametric cubic Bézier curve and manage the speed of
our robot, by using the concept of the Ease Curve, which represents arc length
over time-frame. In this way, we can find a new parameterization for our rational
parametric cubic Bézier curve that is less noisy than the movement captured by the
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haptic system but still respects the original design intent. We thus can simulate
different behaviours of a real camera device to give stop motion animators total
artistic freedom. In the first step we project the motion capture sequence on the
rational parametric cubic Bézier curve to allow the robot to move along the given
trajectory. We know the length of the trajectory curve, by approximating the inte-
gral using a Gaussian quadrature. By using Newton’s method we determine curve
parameters to calculate the coordinates of the corresponding curve points. In the
second step we determine an "ideal" speed that maintains the haptic one. By using
the least squares method, we fit a quartic polynomial to the discrete data of the
Ease Curve that represents the "ideal" speed. Thus, we can calculate the ideal curve
parameterization. In the third step we calculate, by blending, different Ease Curves
between the "haptic" and the "ideal" one. Finally, we determine the corresponding
curve parameterizations. To get a smooth trajectory curve that takes into account
the constraints of a real camera move we create a new mathematical representation
of the camera’s trajectory based on the concept of Pythagorean-Hodograph (PH)
curves, described in chapter 4. This representation allows to determine the curve’s
arc-length in an analytical way as well as an exact rational parameterization of the
offset curves, and is usable in general curve design applications. Our new class of
curves is built-upon a five-dimensional mixed algebraic-trigonometric space and is
called "Algebraic-Trigonometric Pythagorean-Hodograph" or ATPH. It depends on
a parameter which can be used as shape parameter and reproduces arcs of arbitrary
length of planar trigonometric curves, as circles, cardioids, deltoids, limacons, lem-
niscates, piriforms. These properties help us to create a realistic camera movement.
To this end, in particular, we solve the first order Hermite interpolation problem and
construct spirals as G2 transition elements between a line segment and a circle, as
well as between a pair of external circles. Our system, specifically designed to help
animators realize a realistic camera movement for stop motion, will be a benefit for
all types of stop motion productions. With an optimized workflow, such a system
will significantly encourage creativity while respecting the handwork aesthetic of
stop motion, intensify cinematographic illusion by giving life to camera and allow
as much freedom for camera moves as on a real stage.



Résumé

En C(G)AO, Conception (Géométrique) Assistée par Ordinateur, les courbes sont
généralement représentées sous forme paramétrique. Cela permet une grande sim-
plicité de la modélisation de la forme de l’objet, qui est utilisée dans de nombreuses
applications, telles que l’automobile, la construction navale, l’aérospatiale et le de-
sign industriel et architectural. En outre, la possibilité de générer une séquence
ordonnée de points sur la courbe trouve aussi de nombreuses applications dans
l’animation 3D. Dans ce cadre, cette thèse propose l’étude de la stop motion, qui
est un type particulier d’animation, inventée dans les premiers temps de la nais-
sance du cinéma, qui permet de rendre "vivants" presque tous les objets, en donnant
l’impression qu’ils bougent par eux-mêmes. L’illusion du mouvement est obtenue
en manipulant ces objets dans une succession de poses figées, en photographiant
chacune de ces poses et en projetant le résultat comme une séquence continue.
Ce procédé long et complexe est encore plus périlleux lorsqu’il concerne un mou-
vement de caméra : toute erreur se traduit par une secousse de toute l’image
et un mouvement d’autant plus saccadé et gênant pour le spectateur. Par con-
séquent, sur un tournage en stop motion, la caméra est le plus souvent fermement
arrimée au sol. Cependant, l’importance des mouvements de caméra comme par-
tie de l’esthétique spécifiquement cinématographique a été maintes fois soulignée et
théorisée. L’objectif de la thèse est donc de proposer un système de contrôle de mou-
vement par ordinateur, capable de simuler un mouvement de caméra comme s’il avait
été réalisé par un appareil de prise de vue réel et pouvant être (re)produit facilement
car ne nécessitant qu’un outillage et des matériaux accessibles, pour un coût aussi
modeste que possible. L’étude bibliographique, décrite dans le chapitre 2, porte sur
l’utilisation des principaux logiciels d’animation et sur les détails théoriques et des
solutions existantes. Elle nous a permis de créer un moyen innovant et plus efficace
pour aider la génération d’animations en stop motion par le biais des dispositifs
haptiques et de mettre au point un système de montage nouveau et intuitif pour
l’animation d’une caméra par ordinateur. Nous proposons un système de création
d’animation par images clés qui sait dissocier le comportement spatial et temporel
d’un mouvement en deux courbes différentes. Les images clés, générées par un pé-
riphérique de motion capture (Novint Falcon), sont envoyées à un logiciel de gestion
de motion capture, de motion control et de prise de vue, puis à un robot qui exécute
la séquence vidéo. Les étapes de ce système et les détails du procédé mathématique
utilisé sont décrits dans le chapitre 3. Une courbe paramétrique Bézier rationnelle
cubique nous permet de contrôler la trajectoire du robot et les rotations de la caméra.
Elle est parametrisée à l’aide d’une Ease Curve, qui représente l’abscisse curviligne
sur le temps et qui permet de changer la vitesse de notre robot. Cela nous permet
d’éliminer le bruit dans la séquence capturée par le système haptique tout en gardant
le mouvement enregistré, et cela donne une plus grande liberté de choix artistique à
l’animateur/trice. La première étape consiste à projeter la séquence de points cap-
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turée par le système haptique sur la courbe paramétrique Bézier rationnelle cubique
pour permettre au robot de suivre la trajectoire initiale. À partir de la longueur de
la courbe, approximée par une quadrature de Gauss, nous trouvons les valeurs de
ses paramètres, en utilisant la méthode de Newton, pour déterminer les coordonnées
des points correspondants sur la courbe. La deuxième étape détermine une vitesse
"idéale" qui conserve l’évolution de la vitesse haptique. En utilisant la méthode des
moindres carrés, nous déterminons à partir des données discrètes de l’Ease Curve
un polynôme de degré quatre qui représente la vitesse "idéale". Nous pouvons ainsi
déterminer la paramétrisation idéale de la courbe. Dans la troisième étape, nous cal-
culons différentes Ease Curves entre l’"haptique" et l’"idéale", par une combinaison
barycentrique. Finalement, nous déterminons les paramétrisations "intermédiaires"
correspondantes. Afin d’imiter au mieux le comportement du matériel de prise de
vue cinématographique réel, nous avons développé, dans le chapitre 4, une nouvelle
représentation mathématique de la trajectoire de la caméra à partir des courbes
polynomiales paramétriques Pythagorean-Hodograph (PH), aussi utilisable dans des
applications de design de courbes. Cette représentation permet notamment de cal-
culer l’abscisse curviligne à l’aide de formules analytiques plutôt que numériques et
d’avoir une paramétrisation rationnelle exacte des courbes offset. Notre nouvelle
classe de courbes, construite sur un espace algébrique-trigonométrique est nommée
"Algebraic-Trigonometric Pythagorean-Hodograph" ou ATPH. Elle permet en outre
de modifier la forme de la courbe en utilisant un paramètre de forme et de reproduire
des arcs de courbes trigonométriques planes, tels que cercles, cardioïdes, deltoïdes,
limaçons, lemniscates, piriformes. Ces propriétés nous aident à modéliser le mou-
vement d’une caméra réelle. Pour cela, nous résolvons en particulier un problème
d’interpolation d’Hermite et nous construisons des courbes de transition entre une
droite et un cercle ou entre deux cercles externes possédant des raccords de continu-
ité G2. Ce système permettra d’une part de faciliter le travail de l’animateur/trice
et d’autre part ouvrira un champ de possibilités supplémentaires quant à l’ajout de
contraintes ciblées. Enfin, il aura des applications pratiques dans le domaine de la
prise de vue en stop motion.
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Chapter 1

Introduction

In Computer Aided (Geometric) Design (CA(G)D) curves are usually represented
in a parameterized form. In general, a parametric curve is a function of one inde-
pendent parameter, usually denoted by t, and it is commonly written as:

P (t) = (x(t), y(t)) for a ≤ t ≤ b, with a, b ∈ R.

In Figure 1.1 an example of a parametric curve. This way of expressing curves is

P(0) P(1)

Figure 1.1: Exemple of a parametric curve P(t) for 0 ≤ t ≤ 1.

practical as well as efficient. It is independent of the choice of the coordinate system,
it lends itself well to geometric transformations, such as rotations, translations and
scaling, and the differential geometric properties of a curve, as length and curvature,
are invariant under reparametrisation. The simplicity of this form is used for the
design of geometric models for object shapes in many applications including auto-
motive, shipbuilding, and aerospace industries, industrial and architectural design,
and many more. In addition, this representation allows to generate points on a
curve in the direction of increasing values of the parameter. This property is also
widely used to produce computer animation, as described in [Lasseter 1987].

In this thesis, in particular, we study stop motion animation, that is an an-
imation technique that brings objects, such as puppets or clay models, alive by
photographing a series of positions and then playing them as a continuous sequence,
as we can see in Figure 1.2. A detailed description of this animation technique is
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Figure 1.2: Sequence of photos to create a stop motion video.

presented in chapter 2. Originally, only the objects are moved in a stop-motion
animation, because animating the camera is very complicated. Moreover, it is an
impossible job to move the camera frame by frame along a continuous curve to pro-
duce a smooth movement. Because of these constraints, the camera was strongly
fixed on the real stage for a long time. On the contrary, on real stages camera move-
ments are mainly recognized as part of the aesthetic cinematographic specificity.
They are subject to the influence of floor irregularities, human manipulations and
mechanical imperfections and therefore desirable to a certain extent as these pro-
vide realism to the stop motion movies. So far, even traditional animation methods
in 3D software animation programs suffer from limitations in producing realistic
camera moves. Our objective is to create a new motion control system specifically
designed for stop motion that is able to simulate a realistic camera animation, be
adapted to stop motion stages in terms of size and weight as well as be accessi-
ble to any-sized budget productions. In chapter 3, we describe the 3D animation
theory (see, e.g., [Sharpe 1982], [Guenter 1990], [Hongling 2002], [Parent 2004] and
[Eberly 2008]) and the partial solutions proposed in the literature by [Snibbe 1995],
[Steketee 1985] and [Watt 1991]. We use them with the aim to overcome the exist-
ing drawbacks of the 3D animation software, as Maya (see, e.g., [Derakhshani 2009])
and 3D Studio Max (see, e.g., [Murdock 2001]). We aim at simulating a 3D camera
movement that looks as realistic as possible by integrating constraints and imperfec-
tions of real camera devices by using a haptic interface. We focus on "Keyframing
animation" (see, e.g., [Verth 2004], [Govil-Pai 2004] and [Kochanek 1984]) and pro-
pose a system that separates position and speed of the trajectory curve. Once
elaborated, the keyframes, recorded by a haptic interface, are exported, frame by
frame, to the motion control software, which allows to calibrate the motion control
robot, to control the camera settings and, finally, to execute the sequences. We de-
scribe the whole system and explain in detail the mathematical processing to obtain
different camera movements by using a haptic interface for motion capture in chap-
ter 4. In our system, that uses the graphical interface from [Fünfzig 2010], we can
control a rational parametric cubic Bézier curve and manage the speed of our robot,
by using the concept of the Ease Curve, which represents arc length over time-frame.
In this way, we can find a new parametrisation for our rational parametric cubic
Bézier curve that is less noisy than the movement captured by the haptic system but
still respects the original design intent. We thus can simulate different behaviours
of a real camera device to give stop motion animators total artistic freedom. In
the first step we project the motion capture sequence on the rational parametric
cubic Bézier curve to allow the robot to move along the given trajectory. We know
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the length of the trajectory curve, by approximating the integral using a Gaussian
quadrature (as described in [Saini 2010]). By using Newton’s method we determine
curve parameters to calculate the coordinates of the corresponding curve points. In
the second step we determine an "ideal" speed that maintains the haptic one. By
using the least squares method, we fit a quartic polynomial to the discrete data
of the Ease Curve that represents the "ideal" speed. Thus, we can calculate the
ideal curve parametrisation. In the third step we calculate, by blending, different
Ease Curves between the "haptic" and the "ideal" one. Finally, we determine the
corresponding curve parametrisations.

To get a smooth trajectory curve that takes into account the constraints of a
real camera move we create a new mathematical representation of the camera’s
trajectory. In chapter 5, we present a trigonometric analogue of the Pythagorean
Hodograph quintic, featured by the property of possessing exactly computable arc
length and offset curves. First, the novel class of Algebraic–Trigonometric PH curves
(called for short ATPH curves) is presented in a real representation. We construct C1

ATPH curves that interpolate given end points and associated end derivatives. Next,
we introduce, and we use hereinafter, a complex representation and we reformulate
the previous results in this concise notation. This allows us to thoroughly analyse
the obtained solutions of the Hermite interpolation problem. Then, we present G2-
continuous ATPH curves of monotone curvature joining basic elements such as line
segments and circles. In both application contexts we will show that the ATPH
interpolants compare favorably with their polynomial PH counterpart. In fact,
concerning the C1 Hermite interpolation problem, we will see that, although there
exist Hermite data such that all possible polynomial PH solutions manifest undesired
self-intersections, ATPH interpolants constructed from the same information turn
out to be free of loops if the free parameter α is suitably selected. Moreover, the
free parameter α can be also conveniently exploited either to improve the curvature
behavior of ATPH spirals joining G2-continuously a line and a circle or to adjust the
location of the second point of contact of the spiral as well as the curvature profile
and/or variation in the case of S-shaped spirals joining G2-continuously a pair of
external circles. We would like to use these properties to help create a realistic
camera movement.

In chapter 6 we conclude summarising and commenting our system and describ-
ing our work in progress. It is specifically designed to help animators realize a
realistic camera movement for stop motion and it will be a benefit for all types of
stop motion productions and 3D animations. With an optimized workflow, such
a system will significantly encourage creativity while respecting the handwork aes-
thetic of stop motion, intensify cinematographic illusion by giving life to camera and
allow as much freedom for camera moves as on a real stage.





Chapter 2

Stop motion

2.1 What is 3D animation?

Computer animation is the art of creating moving images via the use of comput-
ers. It is a subfield of computer graphics (it studies the manipulation of visual and
geometric information using mathematical and computational techniques) and ani-
mation (from Latin animatio, animation literally means "the act to bringing life").
In a 2D animation the objects and the images are in two dimensions, on the other
hand in a 3D animation there are 3D models and figures.
In both cases the cinematographic animation is based on the 20th century tradi-
tional animation techniques, called cel animation or hand-drawn animation. The
illusion of movement is created by displaying successively a sequence of slightly dif-
ferent draws to create smooth and continuous movements. Traditionally, animation
was created by drawing each individual image, or frame, in the animated sequence.
The lead animator creates the keys, or important frames, and a second animator
creates the in-between frames. For these reasons the first animator is called "key-
animator", the second one "tweener" and the name of this technique is keyframing
animation. By the beginning of 21th century the most basic computer animation
tools assist the process of traditional animation by automatically generating some
of the frames of animation and by using 3D graphics.

2.2 Stop motion: a state of the art

In 1896, one year after the official birth of Cinema, Eugène Promio in Vues de Venise
puts his camera on a boat making the first travelling of the cinema history. Since
W.D. Griffith, camera movements are not only used to follow the action on stage, but
they are also and mainly recognized as one of the expression of a cinematographic
specificity, a way to construct atmosphere, to play with space and much more. J.L.
Godard even certified that "the tracking shot is a moral issue". Camera moves have
greatly contributed to generating the personal style and aesthetics of directors such
as S. Spielberg, R. Polanski, R. Altman, A. Resnais, S. Kubrick, M. Scorsese, M.
Cimino, O.Welles or F.F Coppola, and some of these camera moves are now part of
the history of cinema like the opening shot of Touch of Evil (Orson Welles, 1958).
In 1897, two years after the official birth of Cinema, Georges Méliès did a short
advertising (its title has been lost) where some wooden toy letters move "magically"
to make the advertiser’s name [Harryhausen and Dalton 2008]. This short film is
known as the first stop motion animation movie, a special type of animation where
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an object (model, puppet, clay) is moved slightly between two frames: when all
photos are gathered to make a sequence, the illusion of movement is created. It’s a
(very) long and (very) tedious process. Since then, technicians and directors have
explored the creative possibilities of this technique, from Dziga Vertov’s Man with
a movie camera (1929), Merian C. Cooper and Ernest B. Schoedsack’s King Kong
(1933) (Figure 2.1(a)) to Nathan Juran’s The 7th voyage of Sinbad (1958) or Tim
Burton’s Corpse bride (2005) (Figure 2.1(b)).

Figure 2.1: Poster of King Kong (left) and Corpse bride (right).

Technical specificities

Stop-motion is an animation technique that brings objects, such as puppets or clay
models, alive by photographing a series of positions and then playing these as a
continuous sequence. In particular, if we also move the camera we obtain a stop-
motion camera animation. The camera shots are made frame by frame and the
camera is slightly moved between frames. Once they are assembled it produces an
illusion of movement. The main difficulty of this technique is that if an animator
does a mistake on set, it is not possible to go back and repeat elements of a movement
as it can never be recaptured exactly in the same way. Moreover, an animator can
produce 4 to 12 seconds of animation maximum per day. It is almost an impossible
job to move camera frame by frame along a continuous curve to produce a smooth
move. First, because stop motion frequently uses model sets, which means that the
camera movements must be scaled down. Second, because the slightest imprecision
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produces a shake in the final sequence (the intensity of which depends on the scale
factor). A mistake with the camera affects the whole image. Third, because unlike
on real stage, there is no way to make several shots and choose the best as the process
is too long, as we have seen before. For a long time, these technical constraints forced
directors to fix the camera on the stop motion stage, while directors on real stage
added an aesthetic value by using camera movements. To overcome this frustrating
status, stop motion animators first tried to find tricks that could give more freedom
to the camera: the first camera movement in stop motion was done with a dolly
that was moved on a tilted plane with a rope and a gear system (The Story of the
tortoise and the hare, Ray Harryhausen, 1952). More frequently, instead of moving
the camera, the animators move the set itself. The result is visually the same, but
the process is easier and safer than moving the camera. The whole train pursuit in
Wallace & Gromit - A grand day out (Nick Park, 1989) was completely made with
this trick: only the walls of the apartment were moved during the shot (so that the
camera also captured the motion blur), but onscreen it looks like if the two heroes
were moving quickly on their model train. If these tricks and tries have allowed
some more freedom on stage, they have important limits: they can work for one
axis of freedom (unusually two, like the travelling and panoramic move in The Secret
adventure of Thom Thumb, David Borthwick, 1993) but no more than two axes of
freedom as the process would become too complex and hazardous; they work well
with linear acceleration moves but are not precise enough to handle acceleration ease
in and out, or slow moves. To be able to obtain the same camera move freedom as on
a real stage, Henry Selick used for the first time a motion controlled camera for Tim
Burton’s The Nightmare before Christmas (1993), see Figure 2.2(a) for the poster.
The motion controlled camera can execute any movement on up to six axes, with a
great precision, and can repeat the movement at will as it is computer controlled.
Henry Selick used it again for James and the giant peach (1996) while Aardman’s
Production made experimentations with the same kind of device in Chicken Run
(Peter Lord & Nick Park, 2000), see the movie’s poster in Figure 2.2(b).

2.2.1 Camera movements in current stop motion productions

Since the 1993-2000 progressive appearance of motion control on stop motion sets,
the stop motion movies are divided in two categories: the ones made by major
production studios using motion controlled camera movements and all the others
using handmade camera movements. Advantages and disadvantages of the two ways
to animate a camera frame by frame can be sumarized as follows:

• "Handmade camera movement": moving the camera (or the model stage)
frame by frame has two important limits. First, the movement can only be
executed up to two axes of freedom, because for more than two axes the han-
dling becomes too complex. Second, despite noisy animation is part of the stop
motion aesthetic and should’nt be removed, its amplitude and characteristics
cannot be controlled with handmade animation and thus can be considered
as a drawback. The advantage is its cost. Ray Harryhausen is the first in the
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Figure 2.2: Poster of The Nightmare before Christmas (left) and Chicken Run
(right).

history of cinema to use this method, in The Story of the Turtoise and the
Hare (1952), but other movements can be found in Koyaanisqatsi (Godfrey
Reggio, 1982), The secret adventure of Tom Thumb (David Borthwick, 1993)
(Figure 2.3(a)) or MUTO (BLU, 2008).

• "Motion controlled camera movement": The main advantage is that any kind
of movement can be executed. Until recently, their limits were their cost and
size. Since a couple of years ago, new kinds of motion control devices are more
accessible, smaller and cheaper (Animoko and Dito Systems, for example).
Nevertheless, all existing motion control systems still have non-neglectable
limits regarding stop motion animation aesthetics and creativity: the camera
movements are too perfect as they are based on smooth mathematical curves,
none of the existing motion control systems belongs to the open source / open
hardware world and the cheaper systems offer only two axes of freedom for
rotation and one for translation. Many recent movies and advertising use such
systems, like Corpse Bride (Tim Burton & Mike Johnson, 2005), Wallace and
Gromit: A matter of loaf and death (Steve Box & Nick Park, 2008) ((Figure
2.3(b))) or Brother’s printers clips (2010).

In this context we cite "Stop-frame is like live music, played on traditional instru-
ments, compared to a studio recording using the finest instruments in the world, all
the latest technology and some electronic instruments. The latter is more polished,
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more perfect, bigger, better, showier - but maybe lacks humanity. Stopframe is much
less perfect, much less polished, unrepeatable, inaccurate - in a word, human.", Peter
Lord [Harryhausen 2008].

Figure 2.3: Poster of The secret adventure of Tom Thumb (left) and Wallace and
Gromit: A matter of loaf and death (right).

In both cases, the specific noise that real camera devices produce is missing,
and the result looks either too perfect for the stop motion aesthetic, or very shaky
in an unnatural manner. In fact, procedural noise generated by 3D software is far
from being able to simulate the specific noise made by a camera-on-the-shoulder
or a dolly for example. The main problem with motion control is that it is driven
by 3D curves that are too perfect to simulate a realistic camera device. The next
chapter shows how 3D software programs manage animation curves and underlines
their limits in the perspective of realistic camera animation. Our objective is to
create a realistic 3D camera animation and to reproduce this movement with a
motion control system by a stop motion animation technique. Then, we present
a new motion control system specifically designed for stop motion, that is able to
simulate a realistic camera animation in order to give stop motion animators total
freedom of camera movement that maintains the handwork visual aesthetics of stop
motion. In particular we are aiming at simulating a 3D camera movement that can
integrate constraints and imperfections (noise) of real camera devices by using a
haptic interface.





Chapter 3

Existing tools for camera
animation

In this chapter we present a state of the art for 3D animation of camera movements.
After describing the current practice in existing commercial software programs (sec-
tion 3.1) we detail the underlying theory and existing theoretical improvement pro-
posals (section 3.2).

3.1 Practice

The main 3D animation software programs are Maya (see, e.g., [Derakhshani 2009]),
3D Studio Max (see, e.g., [Murdock 2001]) Lightwave, Blender, Cinema4D, Softim-
age and Houdini. They have two main different tools to animate an object: Keyfram-
ing animation and Path constraints animation. We describe the two methods by
emphasizing the advantages and disadvantages of each.

3.1.1 Keyframing Animation

Keyframing Animation is based on the traditional animation technique, where the
user only sets the n important frames, called keyframes, and, using interpolation
techniques, the software program generates the r intermediate frames, called in-
betweens. An object in 3D space is represented with respect to time: the 3D position
pi of the object corresponds to the time ti for i = 1, . . . , r, with r ≥ n and keyframes
are associated with specific values of the time parameter t. The object’s trajectory
P(t) in 3D space is composed of its three coordinates x(t), y(t) and z(t), where all
these curves may be visualized in parallel by the animation software program. See
Figure 3.1 for an illustration of an object and its n = 3 keyframes at values of the
time parameter t1, t12 and t24 and its r = 24 positions in 3D space. Figure 3.2 shows
an editor visualizing the corresponding components x(t), y(t) and z(t). This editor,
which more generally allows to show different attributes of the curve, such as position
coordinates, colors, texture, rotation etc., is called "Curve Editor" in 3D Studio Max
and "Graph Editor" in Maya. The user Once n ≤ r keyframes, i.e., n locations in
time ti and corresponding space positions pi, have been specified by the user, the
software program determines a piecewise parameterized curve P(t) =

∪n−1
i=1 Pi(t)

composed of the curves Pi(t) interpolating the points pi and pi+1.
The role of the Curve/Graph Editor is twofold: it determines the space posi-

tion of the object, i.e., its space trajectory, as well as the way the object moves
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Figure 3.1: Representation of an object and its 3D trajectory in Maya.

Figure 3.2: Maya’s Graph Editor shows parameterized curves of the object’s position
attributes over time (x, y respectively z coordinate in red, green respectively blue).

along its space trajectory, i.e., its speed. Between two keyframes the interpolation
curve is automatically calculated together with its parameterization which in gen-
eral is not uniform. That means that for equally spaced parameter values ti the
corresponding space positions pi are in general not equally spaced on the space tra-
jectory. In order to achieve equal spacings on P(t) an animator modifies the curves
in the Curve/Graph Editor thus changing also the space trajectory. Summarizing,
"Keyframing Animation" has the following advantages(+) and disadvantages(-):

+ the local control of the space trajectory is very good and flexible;

+ the Curve/Graph Editor allows to control a large number of curve attributes,
including the addition of noise in order to produce a realistic movement;

- speed and position are dependent;

- there isn’t a global control of the curve, but only locally between any two
keyframes.

3.1.2 Path Constraint Animation

Another motion animation method, called Path Constraint Animation, allows to
move an object along a 3D curve as trajectory, called Path Constraint (Figure 3.3).
The curve that we have in the corresponding Curve/Graph Editor, which in this
case shows keyframes over time, explains how the object moves along it: by default
this curve, called Ease Curve, is linear and can not directly be modified (Figure
3.4(a)). But we can add another curve to it (Figure 3.4(b)), and the resulting mean
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curve allows to control and change the acceleration/deceleration. In Figure 3.5 we
can see different types of movements, such as a linear movement in Figure 3.5(a), an
accelerating movement (Ease In) in Figure 3.5(b) and a decelerating movement (Ease
Out) in Figure 3.5(c). Path Constraint Animation is very efficient to control the
speed, when we have a simple trajectory. But it is difficult to generate a complex
movement or to add noise to the space trajectory. Path Constraint Animation
separates the position curve from the speed curve but doesn’t allow to add new
constraints to the space trajectory. In fact we have more control over time than
space-position and we remark the following advantages(+) and disadvantages(-):

+ speed and position are independent;

+ there is a global control of the space trajectory;

- it’s impossible to add other constraints, such as noise, to the Path Constraint. It’s
only possible to achieve a curve trajectory as an average of constraints.

- there are less degrees of freedom for modifying the space trajectory than in the
keyframing animation method (e.g., the x, y, z coordinates can not be accessed
in the Curve/Graph Editor).

Figure 3.3: 3D Studio Max’s Path Constraint Animation interface.

(a) Default linear Ease Curve (can’t be modified)

(b) Secondary Ease Curve (can be modified)

Figure 3.4: 3D Studio Max’s Curve Editor for Path Constraint Animation.
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Figure 3.5: Ease Curve that defines how the object moves.

3.2 Theory

In order to overcome the disadvantages within the existing computer animation
software programs in this section we will review the partial solutions that have been
proposed in literature aiming at a complete separation of the space trajectory and
the speed curve of the object.

The most popular technique used in 3D computer animation is the keyframe
inbetweening technique, as described in section 3.1. In-betweens are calculated by
interpolation of a sequence of points. The type of interpolation used depends on
the final motion desired. In subsection 3.2.1 we describe some basic interpolation
methods and then in subsections 3.2.2 and 3.2.2 we explain how to use them to
define an animation, in reference to existing work in literature.

3.2.1 Techniques of interpolation

We have a sequence of n points pi with i = 1, . . . , n. We want to find a sequence
of n − 1 curves Pi(u) that interpolate the points pi and pi+1 for u ∈ [0, 1]. There
are many different interpolation methods, but the most used in animation are the
following (see, e.g., [Verth 2004] and [Govil-Pai 2004]):

• piecewise linear interpolation

Pi(u) =
[
u 1

]
·
[
−1 1

1 0

]
·
[

pi

pi+1

]
,

where the coincidence Pi(1) = Pi+1(0) guarantees C0 curve continuity;

• piecewise Hermite cubic curves

Pi(u) =
[
u3 u2 u 1

]
·

·


2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

 ·


pi

pi+1

p′
i

p′
i+1

 ,
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where Pi(1) = Pi+1(0) and P′
i(1) = P′

i+1(0) guarantee C1 curve continuity.
p′
i and p′

i+1 denote the first derivative data to be provided. In particular we
have a Catmull-Rom curve if tangents are calculated as

p′
i =

1

2
(pi+1 − pi−1),

p′
i+1 =

1

2
(pi+2 − pi),

see Figure 3.6, blue. We get a TCB curve, ([Kochanek 1984]), if tangents
depend on three parameters: tension τi which controls how sharply the curve
bends at a point pi, continuity ci which controls the continuity or discontinuity
at a point pi, and bias bi which controls the direction of the path at point pi.
The general form of these tangent vectors is

p′
i =

(1− τi)(1 + ci)(1 + bi)

2
· (pi − pi−1)+

+
(1− τi)(1− ci)(1− bi)

2
(pi+1 − pi),

p′
i+1 =

(1− τi+1)(1− ci+1)(1 + bi+1)

2
· (pi+1 − pi)+

+
(1− τi+1)(1 + ci+1)(1− bi+1)

2
(pi+2 − pi+1),

see Figure 3.6, black, where we assume an equal number of in-betweens within
each interval and we look only at the path of the motion. If the number of
in-betweens for adjacent intervals is not equal, we have different step sizes,
thus creating a discontinuity in the speed of motion. In order to maintain
the speed continuity it becomes necessary to weight the tangent vectors, see
[Kochanek 1984].

p
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Figure 3.6: From the sequence of 4 points pi−1 = (1, 1, 0), pi = (2, 3, 0), pi+1 =

(4, 2, 0), pi+2 = (6, 4, 0) we have represented the corresponding Catmull-Rom curve
and its tangent vectors in blue and the TCB curve, with τi = τi+1 = 0.5, ci = ci+1 =

1 and bi = bi+1 = 0.5, and its tangent vectors in black.
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3.2.2 Parametrisation

In computer animation object or virtual camera motion is usually defined by means
of a parametric space curve P(t), where t is the curve parameter. An object is moved
along the curve P(t) by advancing the parameter by a constant amount ∆t and by
calculating the coordinates of the corresponding curve points. Usually the uniform
displacement ∆t in the parameter domain does not correspond to uniform distances
on the curve. It is thus difficult to control the speed by which the object moves
along the curve. Only arc length parametrization guarantees uniform distances on
the curve P(t). The related arc length parameter is usually referred to by s and
the problem thus consists in relating the parameter t to the arc length parameter
s by a function s = A(t). The difficulty is that in general there is no analytic
expression for this function A and therefore we can’t calculate the inverse of the
arc length function, t = A−1(s). As a consequence, numerical techniques have been
proposed (see, e.g., [Sharpe 1982], [Guenter 1990], [Hongling 2002], [Parent 2004],
[Eberly 2008]) to compute t for each specified s. In accordance with the notation
introduced in subsection 3.2.1 we describe the proposed procedure for the segment
Pi(u) of the interpolation curve between the points pi and pi+1. The local parameter
u ∈ [0, 1] is related to the time t ∈ [ti, ti+1] by u = t−ti

ti+1−ti
. We consider the set

uj ∈ [0, 1] for j = 0, . . . ,m of monotonously increasing real parameter values, where
u0 = 0 and um = 1. For simplicity of notation in the following description we will
denote the curve piece Pi(u) by Q(u). We start calculating the length l of Q(u)

by approximating the following integral by a Gaussian quadrature or a Gaussian
adaptive method:

l =

∫ um

u0

∣∣∣∣∣∣∣∣dQdu
∣∣∣∣∣∣∣∣du =

∫ um

u0

√(
dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2

du.

We want to find the parameter values ũ0, ũ1, . . . , ũm corresponding to m+1 equally
spaced points on the curve Q(u) where the spacing is given by the arc length s =

l/m. We thus want to solve the following equation:

F (ũj) =

∫ ũj

ũj−1

∣∣∣∣∣∣∣∣dQdu
∣∣∣∣∣∣∣∣du− s = 0,

with j = 1, . . . ,m and ũ0 = u0. We can solve it by using Newton’s method:

ũkj = ũk−1
j −

F (ũk−1
j )

F ′(ũk−1
j )

, k = 1, 2, . . .

where F (ũk−1
j ) is approximated using standard numerical integrators and F ′(ũk−1

j )

is straightforward because we have a formula for Q(u) and we can compute dQ/du

from it. A reasonable choice for the initial iterate is

ũ0j = ũj−1 +
s

l
(um − u0)
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where s/l is the fraction of arc length at which the point should be located. When
F (ũkj ) is sufficiently near to zero or a maximum number k of iterates has been com-
puted, ũkj is accepted as ũj and the iteration is repeated for j = 1, . . . ,m. Finally,
the parametric curve is recalculated with the new parameter values ũj in terms of arc
length s. In Figure 3.7 we represent a piecewise curve with two different parametriza-
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(b) Equally spaced arc lengths parameter values

Figure 3.7: A parametric piecewise Catmull-Rom spline from a sequence of points
(red circles) parameterized by equally spaced initial parameter values uj (Figure
3.7(a)) and by equally spaced arc length parameter values ũj(Figure 3.7(b)).

tions (equally spaced initial parameter values uj (Figure 3.7(a)) and equally spaced
arc length parameter values ũj (Figure 3.7(b))) for the same sequence of points pi.
Please note that in this case equal spacing between every two consecutive points pi

and pi+1 is assured, but the spacings differ from one piece Pi(u) to another Pk(u)

(k ̸= i). Moreover, the arc length parametrization also permits to control the en-
tire interpolation curve. In fact, we can fix the length s and determine m = l/s
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equally spaced points on the entire curve P(t). See Figure 3.8 for an illustration. It
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Figure 3.8: The entire parametric Catmull-Rom spline from a sequence of points
(red circles) parameterized by equally spaced arc length parameters (blue points).

is now possible to control the speed at which the curve is traversed. The curve is
parameterized by arc length, i.e., a unit change in the parameter value results in a
unit change on the trajectory. In the next chapter, this procedure will be used to
reparameterize a rational parametric cubic Bézier curve under constraints given by
an Ease Curve. The curve s(t), that corresponds to Maya’s and 3D Studio Max’s
Ease Curve, controls only the speed along the space curve. Thus, to find the position
along the motion curve at a given time t, arc length s is determined from the Ease
curve and then s is moved along the Position Curve (Figure 3.9). On this basis,

Figure 3.9: The Motion Curve in the Curve/Graph Editor is the combination of the
Ease Curve and the Position Curve.

[Snibbe 1995] introduces "displacement functions" that allow to modify the space
trajectory as well as the Ease curve. A function G(t) ∈ [0, 1] is added to P(t) or
to s(t) over the interval [ti, ti+1] representing the desired change for the curve. See
Figure 3.10 for an illustration. We note that a change in P(t) changes the total arc
length. To maintain the same speed it is thus necessary to scale the curve s(t).



3.2. Theory 19

Figure 3.10: Snibbe’s displacement function method.

Kinetic control

To better integrate this theoretical part, we describe the work of [Steketee 1985].
These authors generalize the Ease Curve, which they call a "kinetic spline", to drive
any motion parameter, such as position, orientation, color and transparency (see
also [Watt 1991]). The method is called "double interpolant" because they create
the following two cubic interpolants:

1. Kinetic spline expresses the keyframing number as a function of time, i.e.,
relates keyframes to time. The n keyframe numbers k1, . . . , kn are interpolated
at assigned times t1, . . . , tn.

2. Position spline expresses the value of the motion variable as a function of the
keyframe number. The n motion parameters p1, . . . ,pn are interpolated at
key values k1, . . . , kn.

If the kinetic spline function is κ : t → κ(t) and the position spline function is
p : κ(t) → x, where x stands for attributes such as position coordinates, colors,
texture, rotation etc., the composition of the two interpolants creates the motion
function m : t → x, where:

(p ◦ κ)(t) = p(κ(t)) = m(t).

This function expresses the value of the motion parameter as a function of time.
This method is important because when modifying the timing of the keyframes, the
speed and acceleration of the motion are modified, without changing the positions
defined by the keyframes. The Motion Curve can be divided into two graphs, one
for the position and one for the time, so as to solve one of the problems of software
animation programs, that is the dependence between position and time. In Figure
3.11 the method is shown schematically. In particular if arc length s is used in-
stead of keyframes k, the Keyframing Animation, described in section 3.2.2, can be
interpreted as the just described "double interpolant" method.
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Figure 3.11: The Motion Curve is the combination of the Kinetic Curve and the
Position Curve.



Chapter 4

A new system for generating stop
motion camera movements

The analysis, in chapter 3, of the existing tools for camera animation allows us
to develop a new system that takes into account only the advantages of these two
methods. In particular, we create a new system based on the keyframing animation
technique aiming at a complete separation of the space trajectory and the speed
curve of the camera by using the arc-length parametrisation. In this chapter, after
a brief introduction on the haptic system in section 4.1, we present in section 4.2 a
new motion control system able to add constraints, by using a haptic interface, that
greatly contributes to producing imperfections and the behavior of a real camera
device. In section 4.4, we present an assessment of our system carried out with
a class of students of the "Arts plastiques et Création numérique" Master of the
University of Valenciennes. The first step of our system presented in subsection
4.2.1 has been published in [Saini 2011]. The description of the current prototype
of the final system is submitted for publication.

4.1 Introduction to an haptic system

Haptics is the science of applying touch (tactile) sensation and control to interaction
with computer applications. By using special input/output devices (joysticks, data
gloves, or other devices), users can receive feedback from computer applications in
the form of felt sensations in the hand or other parts of the body. In combination
with a visual display, haptics technology can be used to train people for tasks requir-
ing hand-eye coordination, such as surgery and space ship maneuvers. It can also
be used for games in which you feel as well as see your interactions with images. For
example, you might play tennis with another computer user somewhere else in the
world. Both of you can see the moving ball and, using the haptic device, position
and swing your tennis racket and feel the impact of the ball.

There are different haptic systems on the market. In this thesis we use one of
the devices from Novint Technologies: Novint Falcon, because it is very cheap and
versatile. The Novint Falcon (Figure 4.1(a)) was created primarily for the gaming
industry in 2007. In fact, the optional "pistol grip" attachment (Figure 4.1(b))
makes the Novint Falcon an excellent addition to any of the supported FPS (First
person Shooter) games, allowing gamers to immerse themselves even further into
the gaming experience.
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(a) Novint Falcon with standard grip (b) optional Pistol Grip

Figure 4.1: Novint Falcon and Pistol Grip.

The Novint Falcon is an interesting device used in many applications, as video
games, medical training, as well as computer animation. In particular, in our thesis
we use it to control the 3D camera movements for stop motion animation. The use
of this haptic system allows the animator to determine the camera and robot speed
along the trajectory.

4.2 Steps of the whole system

We describe, in this section, a new motion control system specifically designed for
stop motion that is able to simulate a realistic camera animation in order to give stop
motion animators total freedom of camera movement that maintains the handwork
visual aesthetics of stop motion. In particular we are aiming at simulating a 3D
camera movement that can integrate constraints and imperfections (noise) of real
camera devices by using a haptic interface, the Novint Falcon described in section
4.1. The whole system can be summarized in the following steps, as shown in
Figure 4.2, and detailed in the forthcoming subsections. We start to generate a
rational parametric cubic Bézier curve by drawing the four control points and its
corresponding weights. This represents the ideal camera trajectory. Once the curve
is constructed, we determine the camera speed along the curve by using the haptic
interface ("Motion capture device"). This peripheral allows us to feel the inertia of
the real camera devices. Thus, we integrate a real noise. It represents the human
manipulation imperfections. Moreover, the haptic interface feedback allows us to
stay near the curve, without exactly following it. In this way, we can integrate a
transversal noise corresponding to the spatial movement imperfections of the real
camera device. However, the mechanical constraints of the current robot version
don’t allow to work on the transversal noise reproduction yet. So we add only
the longitudinal noise. Next, we re-elaborate the recorded positions by the haptic
interface ("Camera movement management"). Once the speed is chosen, we export
the parametrisation points into a software that controls and calibrates the robot
and camera movement ("Motion control software"). The sequence can be executed
to create the video ("Motion control robot and digital camera").
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Figure 4.2: Motion control system diagram.
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4.2.1 Motion capture device

We use the haptic interface to obtain the movement of the camera. Haptic devices
are spatial input devices, which can themselves generate a force on the input point
(force feedback). In our system we can control a rational parametric cubic Bézier
curve, by using the graphical interface from [Fünfzig 2010]. The user can be guided
along the curve. Firstly, the interactor point x is moved to the nearest point p(tx)

on the curve. As common in haptics, a spring force in the direction p(tx) − x is
used to achieve this. Secondly, the user can move forward in time along the curve
(Figure 4.3). We add the possibility to determine the interactor position for every

Figure 4.3: Haptic input (grey) following a curve in the graphical interface.

∆t of time. In order to respect the standard frequency, at which an imaging device
produces unique consecutive images, we set ∆t = 0.04 seconds, to obtain 25 "frames
per second". By using the button in the back of the knob, we start recording the
interactor positions along the curve and then we move along the curve with the
interactor. When we release the button, we stop the recording and we obtain a
sequence of n positions pH

i , i = 0, . . . , n− 1, where H indicates the haptic system’s
positions. The sequence pH

i represents the curve’s parametrisation (Figure 4.4).

4.2.2 Camera movement management

The motion capture sequence pH
i is not exactly on the parametric cubic curve, as

we can see in Figure 4.5. Moreover the corresponding speed is too noisy to obtain
a realistic camera movement, as shown in Figure 4.13. We want the camera to
exactly follow the rational parametric cubic Bézier curve P(t), because our robot
is constrained to the given trajectory. For these reasons, to obtain a sequence of
points on the curve and to simulate different behaviours of a real camera device,
we have to elaborate the interactor positions pH

i . By a mathematical processing,
described in the next section, and a 3D animation software visualization, we obtain
the new positions of the virtual camera that we can export frame by frame to the
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Figure 4.4: Matlab’s visualisation of pH
i .
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Figure 4.5: A rational parametric cubic Bézier curve parameterized by using the
haptic system. In blue the interactor positions pH

i .

motion control system (Figure 4.17).

4.2.3 Motion control software

Using the imported data the motion control software allows to calibrate the motion
control robot, to control the camera settings and, finally, to execute the sequence, as
shown in Figure 4.7. It is based on an Arduino system (Figure 4.8), an open-source
platform that allows, by its microcontroller, to send electronic signals to the robot
and move it.
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Figure 4.6: "Intermediate" curve parametrisation corresponding to the Ease Curve
SB(f) in Figure 4.16.

4.2.4 Motion control robot and digital camera

A motion control robot, on which is positioned a camera and which is able to move
on one translation axis and two rotation axes, is used to record the video. It is
affordable for any-sized budget production, handles a 2Kg camera, and has at least
1/10th of a millimeter precision for positioning and 1/10th of a degree precision for
rotating. See Figure 4.9 for an illustration.

4.3 Mathematical processing

In this section we describe in detail the mathematical processing for managing the
camera movement summarized in subsection 4.2.2. In particular, in subsection 4.3.1,
we describe the robot’s trajectory and in subsection 4.3.2 the camera’s rotations.
To manage the speed of our robot, we use the concept of an Ease Curve, which
represents arc length over time-frame. In the first step (Projection: "haptic" curve
parametrisation) we project the motion capture sequence pH

i on the rational para-
metric cubic Bézier curve. In the second step (Fitting: "ideal" Ease Curve) we
determine an "ideal" speed that maintains the haptic speed, but is less noisy, and
on this basis we calculate the ideal curve parametrisation ("Ideal" curve parametri-
sation). In the fourth step (Blending: "intermediate" Ease Curves) we calculate dif-
ferent Ease Curves between the "haptic" and the "ideal" one. Finally, we determine
the corresponding curve parametrisations ("Intermediate" curve parametrisations).
Now, we describe in detail every step.

1. Projection: "haptic" curve parametrisation
The sequence of points pH

i (xi, yi) that we obtain from the haptic system is
not exactly on the rational parametric cubic Bézier curve P(t), as we can see
in Figure 4.10. To allow the robot to move along the given trajectory, we
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Figure 4.7: Robot and camera software interface.

have to project the sequence on the curve P(t), as shown in Figure 4.11. We
compute the length l of P(t), where t ∈ [0, 1], by approximating the integral
using a Gaussian quadrature or a Gaussian adaptive method, as described in
[Saini 2010]. We then calculate, for i = 1, . . . , n − 1, spHi = ||pH

i − pH
i−1||.

We need curve parameters t̃i ∈ [0, 1] with i = 0, . . . , n − 1 to calculate the
coordinates of the corresponding curve points p̃H

i . A reasonable choice for the
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Figure 4.8: Arduino Mega 2560.

Figure 4.9: Robot with 3 axes of freedom and its camera (Canon EOS 5D mark
ii).

initial parameter is t̃0 =
||pH

0 −P(0)||
l , because it represents the fraction of arc

length at which the first point should be located. We thus want to solve the
following equation:

F (t̃i) =

∫ t̃i

t̃i−1

∣∣∣∣∣∣∣∣dPdt
∣∣∣∣∣∣∣∣dt− spHi = 0,

with i = 1, . . . , n− 1. We can solve it by using Newton’s method :
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Figure 4.10: Visualization of the points pH
i (blue) and the rational parametric

cubic Bézier curve P(t) (green).
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Figure 4.11: Visualization of the points p̃H
i (red), the points pH

i (blue) and the
rational parametric cubic Bézier curve P(t) (green).

t̃ki = t̃k−1
i −

F (t̃k−1
i )

F ′(t̃k−1
i )

, k = 1, 2, . . .

where t̃0i = t̃i−1 +
spHi
l and F (t̃k−1

i ) is approximated using standard numerical
integrators and F ′(t̃k−1

i ) is straightforward because we have a formula for the
rational parametric cubic Bézier curve P(t) and we can compute dP/dt from it.
When F is sufficiently near zero or a maximum number k of iterates has been
computed, t̃ki is accepted as t̃i and the iteration is repeated for i = 1, . . . , n−1.
If the calculated t̃i > 1 we set t̃i = 1. Finally, the parametric curve P(t̃i) is
recalculated with the new parameter values t̃i, as represented in Figure 4.12.
This procedure is described in detail in section 3.2.2. This allowed us to
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Figure 4.12: Projection of the haptic positions pH
i on the curve P(t) resulting in

the red points p̃H
i .

publish the article [Saini 2010].

2. Fitting: "ideal" Ease Curve
In Figure 4.13 we visualize the Ease Curve SH(f), which represents arc length
s over time-frame f . We calculate

sHi =

{
sHi−1 + spHi , if xi > xi−1

sHi−1 − spHi , if xi < xi−1

with sH0 = 0 and xi the abscissa of pH
i with xi ̸= xi−1 ∀i. On the y−axis

we have the sHi = SH(fi) and on the x−axis equally spaced frame parameter
values fi with fi ∈ [0, 24].

By analyzing the Ease Curve, in Figure 4.13 we observe that the speed at
which the curve is traversed and thus the resulting movement obtained by
the haptic system is too noisy for our purpose. So, we want to find a new
parametrisation for our rational parametric cubic Bézier curve that is less noisy
but still respects the haptic movement. By using the least squares method we
fit a quartic polynomial to the discrete data of the Ease Curve SH(f), as
represented in Figure 4.14. Thus, we obtain an "ideal" speed SI(fi) = sIi .

3. "Ideal" curve parametrisation
By applying Newton’s method as described above and by replacing spHi by
spIi = |sIi − sIi−1| for i = 1, . . . , n − 1, we find the new sequence of parameter
values t̃Ii . Thus, we can calculate the corresponding points along the curve, to
obtain the "ideal" curve parametrisation P(t̃Ii ) (Figure 4.15). It respects the
haptic movement but eliminates the superfluous noise.

4. Blending: "intermediate" Ease Curves
We want to propose several parametrisations such that an animator can choose
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Figure 4.13: SH(f) Ease Curve of pH
i .
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Figure 4.14: Least squares Ease Curve SI(f) (black) of the discrete data of the
Ease Curve SH(f) (blue) of Figure 4.13.

the one that best fits his/her design intention. We thus determine an interme-
diate Ease Curve between the "ideal" SI(f) and the haptic one SH(f). We
define for i = 0, . . . , n− 1

λi := αi ·
(

di
||d||

)
(4.1)

where di = |sHi −sIi |, d = (d0, d1, d2, . . . , dn−1) and with αi ∈ [0, ||d||di
]. We then

can calculate an "intermediate" Ease Curve SB(f) such that sBi = SB(fi) by
blending:

sBi = (1− λi)s
H
i + λis

I
i .

If αi = 0 ∀i we have the "haptic" Ease Curve SH(f) and if αi =
||d||
di

∀i we
obtain the "ideal" one SI(f). The definition (4.1) assures that we respect the
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Figure 4.15: "Ideal" curve parametrisation corresponding to the Ease Curve SI(f)

of Figure 4.14.

haptic speed SH(f) because if sHi is close to sIi , the influence of sIi on sBi is
neglectable. The curve SI(f) modifies SH(f) only if sHi is far from sIi . In
figure 4.16 we can see the "intermediate" Ease Curve SB(f) with αi = 0.5 ∀i.

Figure 4.16: In magenta the "intermediate" Ease Curve SB(f) with αi = 0.5 ∀i
between the "haptic" Ease Curve SH(f) (blue) and the "ideal" Ease Curve SI(f)

(black).

5. "Intermediate" curve parametrisations
By applying Newton’s method to the "blended" Ease Curve SB(f) and by
using spBi = |sBi − sBi−1| for i = 1, . . . , n − 1, we find the new sequence of
parameter values t̃Bi . We can now calculate the corresponding points along
the curve, to obtain the "intermediate" curve parametrisation P(t̃Bi ), shown
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in Figure 4.17. It should be noted, that the use of the αi parameter also allows

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

y

Figure 4.17: "Intermediate" curve parametrisation corresponding to the Ease Curve
SB(f) in Figure 4.16.

to modify only a zone of the speed.

This processing, implemented in MatlabR⃝, allows a great flexibility in controlling
the speed along the curve, without modifying the space trajectory. Since our system
is able to move on one translation axis and two rotation axes, we need to control two
particular curves: a straight line and a semicircle and the corresponding procedure
is described in the following sections.

4.3.1 Translation

So far our robot is able to move along a straight line. We thus want to control this
linear translational robot movement.

To have an intuitive correspondence with the real robot trajectory, we set the
Bézier cubic curve control points as:

cp1 = (−3, 0), cp2 = (−1, 0), cp3 = (1, 0), cp4 = (3, 0)

and all the weights equal to 1, as shown in Figure 4.18. We record the haptic
positions pHt

i concerning the translation and we export them in MatlabR⃝. Now,
we follow the procedure described in the previous section to obtain different speed
choices for our robot movement. We import these new curve parametrisations (hap-
tic, ideal, intermediate) in an external script in 3D Studio Max. We visualize the
trajectory and we simulate the camera’s movement. An example of haptic curve and
its corresponding intermediate parametrisation with αi =

||d||
di

· 0.9 ∀i are visualized
in Figure 4.19.
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Figure 4.18: Robot trajectory in the graphical interface.

Figure 4.19: Projected haptic trajectory parametrisation p̃Ht
i and Intermediate

trajectory parametrisation p̃Bt
i with αi =

||d||
di

· 0.9 ∀i visualized in 3D Studio Max.

4.3.2 Rotation

The camera on our robot can move on two rotation axes. Thus, we want to control
the rotation in the yz−plane and in the xy−plane (Figure 4.20). For both planes,
the camera can rotate by an angle ω ∈ [0, π]. We represent and visualize this angle
by a semicircle (Figure 4.21). The conditions needed to reproduce a circle with a
rational parametric cubic Bézier curve are given in [Piegl 1995]. In particular, the
degree three case has the advantage that it can represent an arc of 180 degrees. We
set the Bézier cubic curve control points as:

cp1 = (1, 0), cp2 = (1, 2), cp3 = (−1, 2), cp4 = (−1, 0)
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Figure 4.20: Visualization of the camera rotation in the yz (vertical panoramic)
(blue arrow) and xy (horizontal panoramic) plane (red arrow).

Figure 4.21: Semicircle in the graphical interface.

and the weights as:

w1 = 1, w2 =
1

3
, w3 =

1

3
, w4 = 1.

The same procedure is applied to the two rotations. We determine two haptic
sequences of points p̃Hr1

i and p̃Hr2
i . We export them into Matlab to obtain our speed

elaboration. We visualize an example of the camera’s rotation in the yz−plane in
Figure 4.22 ("haptic", "ideal" and "intermediate" parametrisation).

4.4 System assessment

The evaluation of the system is very important to see if it does what it is supposed
to do and if it produces visually convincing camera movements, as well as to identify
problems and possible improvements. So, it is essential to get feedback from users
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Figure 4.22: Haptic (p̃Hr2
i ), ideal (p̃Ir2

i ) and intermediate (p̃Br2
i ) yz−rotation

parametrisation visualized in 3D Studio Max.

of the system.
As part of a project with the Art department of the University of Valenciennes, we
asked a class of 14 students of the "Arts plastiques et Création numérique" Mas-
ter to test our system. In particular they tested the different steps, from motion
capture through the haptic device to importing the data in the motion control soft-
ware. They didn’t directly move the robot and the camera, but they visualized
in 3D Studio Max the different movements ("haptic", "ideal" and "intermediate").
The recorded movements are currently used in the realisation of a stop motion video
clip. Before having the system tested, we gave a general presentation of the whole
system, to explain why we decided to create it and how it works. After that, every
student had the possibility to use the haptic interface to determine both the robot’s
translation and rotations and visualize his/her results in 3D Studio Max.
We gathered as much information as possible about the system by having them fill
out a questionnaire. We collected information about efficiency, ease of use, appropri-
ateness of the whole system for translation and rotation movements. In particular,
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four principal parts composed the questionnaire: "system’s presentation", "motion
capture movement (for translation and rotation)", "whole system" and "general
questions". In Figure 4.23 we summarize the results of the questionnaire. In the

Figure 4.23: A summary of the questionnaire filled out by a class of 14 students
of the "Arts plastiques et Création numérique" Master of the University of Valenci-
ennes.

first part we asked if the system presentation was clear and if they needed more
details. For all students the presentation was clear (for 7 students it was very clear
and for the others clear), even if mathematics is not their domain. They only re-
marked that it is necessary to say that translation and rotation are separated.
In the second part we asked if both motion capture trajectory and rotation are
intuitive (very intuitive, intuitive, moderately intuitive, not very intuitive, not in-
tuitive). For all students the robot’s translation is easy to do (for 3 students it
is very intuitive, for 8 students intuitive and for 3 students moderately intuitive).
They only suggested to improve the graphical interface visualization by adding a
camera icon or a hand drawing, to be more immersed in the system. Regarding
the camera rotations, they were found to be a bit less intuitive (for 8 students it is
moderately intuitive, for 4 students it is intuitive and for 2 students very intuitive).
The students’ feedback is that rotating camera movements are not so simple to ex-
ecute correctly. Anyway, the rotation in the yz−plane (up/down camera rotation)
is better than the rotation in the xy−plane (left/right camera rotation), because
they have the sensation of holding in their hands a camera tripod head rather than
the camera itself. As a consequence, the resulting movement is inverted, because
if you lift up the tripod, the "head" on which the camera is fixed goes down and
vice versa. Indeed, the mathematical processing, in both cases, is very appropriate
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(for 7 students the process is very efficient and for the others it is efficient). They
noticed that the resulting movements match the realistic haptic ones.
The third part is about the evaluation of the whole system. We asked if the system
is efficient and what are the weaknesses of the system and what they would like to
improve. The outcome of the evaluation shows that the whole system is efficient.
For 10 students it is efficient, for 2 moderately efficient and for the remaining 2 very
efficient. It works well and allows to easily reproduce realistic camera movements.
The result doesn’t look like a computer generated move, because the haptic device
allows to add noise in a natural manner. On the other hand, half of the students
performed the desired movement with some difficulties. The main reason for that
is that they lack practical experience with the haptic system. They said that with
more practice and several tests on the use of the haptic device, they would be able
to improve their results. The main technical and ergonomic problem is the scale
representation of the trajectory (the real is 6 meters and the virtual 6 centimeters).
Thus, controlling and managing the speed along the curve is complicated. They
suggested to amplify the translation length and the rotation radius. They remarked
that it’s not too much of a problem to control translation and rotation separately,
even though it is not very intuitive. They also noted that there are too many steps
before visualizing the movement in 3D Studio Max.
Another question was about the resulting movements from the mathematical pro-
cessing. They found this process efficient (for 7 students it is very efficient and for
the remaining 7 efficient). They remarked that the haptic movement needs to be
modified, but that the elaborated movements respect what they wanted to repre-
sent. In particular, they said that the most correct movement is the one created
with αi =

||d||
di

· 0.9 ∀i, that is a movement near to the ideal one, as shown in Figure
4.19. Finally, we asked what they liked or not of the whole system and to add some
remarks. Overall, all students found the new motion control system intuitive and
innovative. It allows to simulate a realistic camera movement as in the world of cin-
ematography and, with respect to existing 3D animation software (cf. section 3.1) it
provides the user in an intuitive way with the important features of position-speed
separation and addition of realistic noise. Moreover, it suits a wide range of users,
because it is simple to use and has an affordable price.



Chapter 5

A new class of curves:
Algebraic-Trigonometric
Pythagorean-Hodograph

The purpose of this chapter is to investigate on the existence of planar, algebraic–
trigonometric Pythagorean Hodograph curves defined over a mixed algebraic–
trigonometric space possessing a normalized B–basis. These curves are shown to
be the analogue of the polynomial Pythagorean–Hodograph (PH) quintics in the
considered non-polynomial space - due to the fact that they enjoy an analogous prop-
erty on the hodograph - and are thus called Algebraic-Trigonometric Pythagorean-
Hodograph (ATPH) curves.
Their planar polynomial counterpart was originally introduced by Farouki and
Sakkalis in 1990 in the article [Farouki 1990]. These curves, commonly called PH
curves since the Euclidean norm of their hodograph is also a polynomial, have the
useful properties of admitting a closed–form polynomial representation of their arc–
length as well as exact rational parameterization of their offset curves. Since their
introduction they have widely been investigated mainly for solving practical prob-
lems from applications that particularly benefit from the PH curves’ particular prop-
erties, such as CNC machining. Rational and spatial counterparts of polynomial PH
curves have as well been proposed, but we are not aware of any attempt of defining
Pythagorean Hodograph curves over a mixed algebraic–trigonometric space. This
kind of spaces, deeply investigated by J.M. Carnicer, E. Mainar, J.M. Peña and J.
Sánchez-Reyes [Mainar 2001, Carnicer 2004, Mainar 2007, Mainar 2010] in the last
decade, offer the advantage of providing an exact description of both linear segments
and circular arcs. This additional feature makes them even more attractive in appli-
cations like CNC machining since the path of the cutting tool is usually described in
terms of line segments and circular arcs. Moreover, these properties can help us to
get a smooth trajectory curve that takes into account the constraints of a real camera
move, as described in chapter 4. Thus, we believe the extension of the PH property
from parametric polynomial curves to parametric curves defined over a mixed linear–
trigonometric space, beneficial to the development of more and more advanced al-
gorithms for the guide of CNC milling machines and to help animators realize a
realistic camera movement. For this purpose, in this chapter we revisit several im-
portant publications such as [Farouki 1995, Moon 2001, Farouki 1997, Habib 2008],
dealing with the solution of different Hermite interpolation problems by polyno-
mial PH curves, and generalize them to our non-polynomial context. In particular,
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Pythagorean-Hodograph

while [Farouki 1995] and [Moon 2001] solve the C1 Hermite interpolation problem
by polynomial PH quintics and analyze the shape of the obtained four solutions,
[Farouki 1997] and [Habib 2008] consider the problem of joining basic elements such
as line segments and circles by G2–continuous polynomial PH quintics of monotone
curvature, also referred to as PH spirals. More precisely, the remainder of the chap-
ter is organized as follows.
In Section 5.1 we first recall general results on normalized B–bases of spaces of real
functions and then specialize them for some pure trigonometric and mixed algebraic–
trigonometric spaces. Section 5.2 considers generalized Bézier curves defined over
a five–dimensional algebraic–trigonometric space, shows their reproduction capa-
bilities of well–known trigonometric curves and proposes a fast subdivision–based
evaluation algorithm for them. Section 5.3 is dedicated to the real definition and
construction of algebraic–trigonometric PH curves generalizing the well-known poly-
nomial PH quintics. These curves have the property that the Euclidean norm of
their hodograph is a trigonometric function, their arc-length is a mixed algebraic–
trigonometric function and their unit tangent, unit normal as well as signed cur-
vature are described by rational trigonometric functions. Then, in Section 5.4 the
class of ATPH curves in the real representation is employed to solve the C1 Hermite
interpolation problem. To facilitate the solution of the above Hermite problems a
complex representation of the novel class of algebraic–trigonometric PH curves is
introduced in section 5.6, and a general constructive approach exploiting the key
properties in the new representation is proposed. For completeness, in section 5.7 we
reformulate the Hermite problem in this concise complex notation and the obtained
four solutions are analyzed and the best one is identified. Advantages of ATPH in-
terpolants over the classical polynomial PH solutions are highlighted with the help
of illustrative examples. Section 5.7 deals with the construction of ATPH curves
with monotone curvature, also called ATPH spirals, for joining G2-continuously a
line segment and a circle as well as two external circles. In both cases the obtained
solutions turn out to be more flexible than their polynomial PH counterparts, thanks
to the additional shape parameter offered by the ATPH representation. The work
presented in this chapter is submitted for publication.

5.1 Normalized B-bases for pure trigonometric and
mixed algebraic–trigonometric spaces

5.1.1 General results on normalized B-bases of spaces of real func-
tions

Let Φ(I) be a finite-dimensional vector space of real functions defined on I ⊆ R
and let {φ0, ..., φn} be a basis of Φ(I). Given a sequence of points pi, i = 0, ..., n,
we define a parametric curve over Φ as x(t) =

∑n
i=0 pi φi(t), t ∈ I, and we call the

polyline connecting p0, ...,pn the control polygon of x(t).

Definition 1. If the system of functions (φ0, ..., φn) satisfies the condition of par-
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tition of unity on I, that is
∑n

i=0 φi(t) = 1 for all t ∈ I, then (φ0, ..., φn) is termed
normalized on I.

If (φ0, ..., φn) is a normalized system of non-negative functions, then the curve
x(t) possesses the convex hull property and is affine invariant [Carnicer 1994]. These
geometric properties correspond to some properties concerning the collocation matri-
ces of the system of functions (φ0, ..., φn). Taking a system of functions (φ0, ..., φn)

defined on I ⊆ R, the collocation matrix of (φ0, ..., φn) at t0 < ... < tm in I is given
by

M

(
φ0, ..., φn

t0, ..., tm

)
:= (φj(ti))i=0,...,m; j=0,...,n.

Clearly (φ0, ..., φn) is a normalized system of non-negative functions if and only if
all its collocation matrices are stochastic (i.e. non-negative and such that the sum
of each row is 1).

Definition 2. If all the collocation matrices of the system (φ0, ..., φn) are totally
positive (which means that all their minors are non-negative), then (φ0, ..., φn) is
termed totally positive (TP).

If (φ0, ..., φn) is a normalized TP system (NTP system for short), then the curve
x(t) inherits many shape properties of the control polygon, such as the endpoint
interpolation property and the variation-diminishing property (see [Carnicer 1994]).
In [Carnicer 1994] it was also proved that a space Φ with a normalized TP basis
always has a unique normalized B-basis (B0, ..., Bn), which is the basis with optimal
shape-preserving properties. More precisely, we recall

Definition 3. A TP basis (B0, ..., Bn) of a space of functions Φ is called a B-basis
if any other TP basis (φ0, ..., φn) of Φ is of the form (φ0, ..., φn) = (B0, ..., Bn)K,
where the matrix K of change of basis is a non-singular TP matrix.

According to the results in [Carnicer 1994], a totally positive basis {φ0, ..., φn}
defined over an interval I is a B-basis if and only if the following condition holds:

inf

{
φi(t)

φj(t)
: t ∈ I, φj(t) ̸= 0

}
= 0 ∀i ̸= j.

For instance, for the space of polynomials of degree less than or equal to n on a
compact interval of the real line, the Bernstein basis is the normalized B-basis,
and, for the corresponding space of polynomial splines, the B-spline basis is the
normalized B-basis.

Let us proceed by recalling that a space of functions Φ defined on I is Cj(I) if
every φ ∈ Φ is j times continuously differentiable. This notion allows us to formulate
the following two definitions.

Definition 4. A space of functions Φ defined on I is termed an extended Chebyshev
space if it is an (n+1)-dimensional subspace of Cn(I) such that each of its non-zero
functions has at most n zeroes, counting multiplicities.
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Definition 5. A basis (φ0, ..., φn) of an (n + 1)-dimensional space Φ in Cn(I)

is termed canonical at t ∈ I if the Wronskian matrix W (φ0, ..., φn)(t) :=

(φ
(i)
j (t))0≤i,j≤n is lower triangular with non-zero diagonal entries.

The following result, proved in [Carnicer 2004], provides an equivalence between
the existence of a normalized B-basis for the extended Chebyshev space Φ and
the property of its space of derivatives Φ′ := {φ′ |φ ∈ Φ} of being an extended
Chebyshev space.

Proposition 1. Let Φ be an (n+1)-dimensional subspace of Cn(I) such that 1 ∈ Φ.
Then Φ is an extended Chebyshev space with a normalized B-basis on I if and only
if the space Φ′ is an extended Chebyshev space.

In the next subsection we use these notions to present normalized B-bases for
certain spaces of trigonometric and mixed algebraic–trigonometric functions.

5.1.2 Normalized B-bases of spaces of trigonometric and mixed
algebraic–trigonometric functions

Let t ∈ Iα with Iα = [0, α] and 0 < α < π. For an arbitrary m ∈ N we consider the
space of order m trigonometric polynomials

Ũ2m = ⟨1, {sin(ℓt), cos(ℓt)}mℓ=1⟩,

and we recall the formula proposed in [Sánchez-Reyes 1998] to define the normalized
B-basis for such a space. After introducing the change of variable

τ(t) :=
1

2
+

tan
(
t
2 − α

4

)
2 tan

(
α
4

) , τ ∈ [0, 1], t ∈ Iα,

and the 2m+ 1 Bernstein polynomials

b2mi (τ) =

(
2m

i

)
τ i(1− τ)2m−i, i = 0, ..., 2m,

we define the normalized B-basis for Ũ2m in terms of the Bernstein basis b2mi (τ) as

B̃2m
i (t) =

(
cos
(
t
2 − α

4

)
cos
(
α
4

) )2m

µi b
2m
i (τ), i = 0, ..., 2m,

where

µi ≡ µ2m−i :=

(
2m

i

)−1 (i/2)∑
r=0

(
m

i− r

) (
i− r

r

)(
2 cos

(α
2

))i−2r
, i = 0, ...,m,

and (i/2) := max{j ∈ Z : j ≤ i
2} denotes the highest integer value lower than

or equal to i/2. Note that, being 0 < α < π, then for any choice of α in that
range we have that µi are strictly positive values. Moreover, as pointed out in
[Sánchez-Reyes 1998], the basis functions B̃2m

i , i = 0, ..., 2m possess the following
properties:



5.1. Normalized B-bases for pure trigonometric and mixed
algebraic–trigonometric spaces 43

(i) Symmetry: B̃2m
i (t) = B̃2m

2m−i(α− t), t ∈ Iα ;

(ii) Positivity: B̃2m
i (t) ≥ 0, t ∈ Iα ;

(iii) Partition of unity:
∑2m

i=0 B̃2m
i (t) = 1, t ∈ Iα ;

(iv) Recursion: B̃2m
i = B̃2

0 B̃
2(m−1)
i + B̃2

1 B̃
2(m−1)
i−1 + B̃2

2 B̃
2(m−1)
i−2 , m ≥ 2 .
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Figure 5.1: Basis functions B̃2
i (t), i = 0, 1, 2 for t ∈ Iα and α = π

6 (a), α = π
3 (b),

α = 2
3π (c), α → π (d).

The functions B̃2m
i (t), i = 0, ..., 2m can be regarded as the true equivalent of the

Bernstein polynomials in Ũ2m, and they tend to the ordinary Bernstein polynomials
of degree 2m whenever α → 0. On the other hand, note that the parameter α,
if progressively increased in its range of definition, offers an interesting tension-like
effect (see Figure 5.1 (a),(b),(c)) and, when approaching π, only the first and the last
functions of the normalized B-basis B̃2m

i , i = 0, ..., 2m are non-vanishing. Therefore
the associated curve x(t) =

∑2m
i=0 piB̃

2m
i (t), t ∈ Iα degenerates to the segment

p0p2m. For instance, when α → π, the normalized B-basis B̃2
i , i = 0, 1, 2 assumes

the following form

lim
α→π

B̃2
0(t) =

1

2
(1 + cos(t)), lim

α→π
B̃2

1(t) = 0, lim
α→π

B̃2
2(t) =

1

2
(1− cos(t)).

This limit case is illustrated in Figure 5.1(d).
For later use we give the explicit expressions of the normalized B-bases for the

spaces Ũ2, Ũ4 and Ũ6, hereinafter denoted by {B̃2
i }i=0,1,2, {B̃4

i }i=0,··· ,4, {B̃6
i }i=0,··· ,6,

respectively:
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B̃2
0(t) = cos(α−t)−1

cos(α)−1 ,

B̃2
1(t) = cos(α)−cos(t)−cos(α−t)+1

cos(α)−1 ,

B̃2
2(t) = cos(t)−1

cos(α)−1 ,

B̃4
0(t) = (cos(α−t)−1)2

(cos(α)−1)2
,

B̃4
1(t) = 2(cos(α−t)−1)(cos(α)−cos(t)−cos(α−t)+1)

(cos(α)−1)2
,

B̃4
2(t) = 2(cos(α−t)−1)(cos(t)−1)+(cos(α)−cos(t)−cos(α−t)+1)2

(cos(α)−1)2
,

B̃4
3(t) = 2(cos(t)−1)(cos(α)−cos(t)−cos(α−t)+1)

(cos(α)−1)2
,

B̃4
4(t) = (cos(t)−1)2

(cos(α)−1)2
,

B̃6
0(t) = (cos(α−t)−1)3

(cos(α)−1)3
,

B̃6
1(t) = −48 cos(α/2) sin(t/2) sin(α/2−t/2)5

(cos(α)−1)3
,

B̃6
2(t) = 3 (2 cos(α)+3)(cos(t)−1)(cos(α−t)−1)2

(cos(α)−1)3
,

B̃6
3(t) = −32 sin(t/2)3 sin(α/2−t/2)3 cos(α/2)(cos(α)+4)

(cos(α)−1)3
,

B̃6
4(t) = 3 (2 cos(α)+3)(cos(t)−1)2(cos(α−t)−1)

(cos(α)−1)3
,

B̃6
5(t) = −48 cos(α/2) sin(t/2)5 sin(α/2−t/2)

(cos(α)−1)3
,

B̃6
6(t) = (cos(t)−1)3

(cos(α)−1)3
.

(5.1)

Moreover, we also recall that in [Mainar 2007] it is shown how to derive a de
Casteljau-like algorithm for the evaluation of trigonometric Bézier curves over the
space Ũ2, which can be developed as follows. After rewriting the basis {B̃2

i (t)}i=0,1,2,
t ∈ [0, α] in terms of the trigonometric function C(t) := cos(t)− 1, we obtain(
B̃2

0(t), B̃
2
1(t), B̃

2
2(t)

)
=

(
C(α− t)

C(α)
, 1− C(α− t)

C(α)
− C(t)

C(α)
,
C(t)

C(α)

)
, t ∈ [0, α].

Then let us observe that S(t) := sin(t), t ∈ [0, α], can be written in terms of the
basis functions B̃2

i , i = 0, 1, 2 on [0, α] as S(t) = β0B̃
2
0(t) + β1B̃

2
1(t) + β2B̃

2
2(t),

t ∈ [0, α] with β0 = 0, β1 = −C(α)
S(α) , β2 = S(α). Moreover, since the normalized

B-basis of Ũ2 on the intervals [0, t] and [t, α] can be written as(
B̃2

0(u), B̃
2
1(u), B̃

2
2(u)

)
=

(
C(t− u)

C(t)
, 1− C(t− u)

C(t)
− C(u)

C(t)
,
C(u)

C(t)

)
, u ∈ [0, t],

and(
B̃2

0(u), B̃
2
1(u), B̃

2
2(u)

)
=

(
C(α− u)

C(α− t)
, 1− C(α− u)

C(α− t)
− C(u− t)

C(α− t)
,
C(u− t)

C(α− t)

)
, u ∈ [t, α],

respectively, it follows that the function S(u), on the subintervals [0, t] and [t, α] can
be respectively written in terms of the basis functions B̃2

i , i = 0, 1, 2 as

S(u) =

{
ν0B̃

2
0(u) + ν1B̃

2
1(u) + ν2B̃

2
2(u), u ∈ [0, t],

η0B̃
2
0(u) + η1B̃

2
1(u) + η2B̃

2
2(u), u ∈ [t, α],
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with ν0 = 0, ν1 = −C(t)
S(t) , ν2 = S(t) and η0 = S(t), η1 = S(α) + S′(α) C(α−t)

S(α−t) , η2 =

S(α). Thus, given a trigonometric Bézier curve x(t) =
∑2

i=0 piB̃
2
i (t), t ∈ [0, α]

its evaluation at an arbitrary parameter value t∗ ∈ [0, α] provides the following
intermediate control points

p1
0 = (1− λ0

0(t
∗))p0

0 + λ0
0(t

∗)p0
1,

p1
1 = (1− λ0

1(t
∗))p0

1 + λ0
1(t

∗)p0
2, where p0

i = pi, i = 0, 1, 2

p2
0 = (1− λ1

0(t
∗))p1

0 + λ1
0(t

∗)p1
1,

(5.2)

and

λ0
0(t) = ν1−β0

β1−β0
= sin(α) (cos(t)−1)

sin(t) (cos(α)−1) ,

λ0
1(t) = η1−β1

β2−β1
= cos(t)−cos(α)+cos(α−t)−1

sin(α−t) sin(α) , such that x(t∗) = p2
0.

λ1
0(t) = η0−ν1

η1−ν1
= sin(α−t)(cos(t)−1)

sin(α)−sin(t)−sin(α−t) ,

In Figure 5.2 we illustrate an application example of the de Casteljau-like algorithm

 p
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1
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1
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Figure 5.2: Subdivision of a trigonometric Bézier curve in Ũ2 at the parameter
t∗ = π

5 ∈ Iα = [0, π2 ].

to subdivide the trigonometric Bézier curve x(t) at a given parameter t∗.

So far, we have focussed our attention on normalized B-bases of pure trigono-
metric spaces. We conclude this section by recalling some results from the ar-
ticles [Mainar 2001] and [Mainar 2010] about normalized B-bases of algebraic-
trigonometric spaces. In particular, in [Mainar 2001] a normalized B-basis of the
mixed linear-trigonometric functional space

U5 = {1, t, sin(t), cos(t), sin(2t), cos(2t)},
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hereinafter denoted by {B5
i (t)}i=0,...,5, is presented for t ∈ Iα and 0 < α < 2π.

Introducing the notations

c00 = 72αn1n2, c10 = −18s1n2(16s
4
1α− n0),

c01 = −72n1n2, c11 = 288s51n2,

c02 = 96c2n1n2, c12 = −24n2s1(16s
4
1c2 + s2n0),

c03 = −96s2n1n2, c13 = 24n2s1(16s
4
1s2 − c2n0),

c04 = −12c3n1n2, c14 = 6s1n2(s3n0 + 8s41c3),

c05 = 12s3n1n2, c15 = 6s1n2(c3n0 − 8s41s3),

c20 = 6n0(−3s2s1(c2 + 2) + α(5s1 + c1s3)), c30 = −3s1n0(n0 + 8c1n1),

c21 = −48s51n0, c31 = 48s51n0,

c22 = 24s22n0(2s1 − αc1), c32 = 24s1s2n0(s2 − α),

c23 = 12n0(c1 − c1c3 + s1s3 − α(2s1 + c1s3)), c33 = 4s1n0(n0 + 8c1n1),

c24 = 6n0(c2 − 1)(s1(5c2 + 3)− 4αc31), c34 = 12s21n0(2c1α− s1(c2 + 3)),

c25 = 6n0(c1(c2 − 1)(5c2 − 2) + αs1(c3 + 2c2)), c35 = −s1n0(n0 + 8c1n1),

c40 = 18s1n0n2, c50 = 0,

c41 = −288s51n2, c51 = 72n1n2,

c42 = 384s51n2, c52 = −96n1n2,

c43 = −24s1n0n2, c53 = 0,

c44 = −48s51n2, c54 = 12n1n2,

c45 = 6s1n0n2, c55 = 0,

where

s1 = sin(α2 ), c1 = cos(α2 ), s2 = sin(α), c2 = cos(α), s3 = sin(2α), c3 = cos(2α),

(5.3)
and

n0 = 6α− 8s2 + s3, n1 = c1(s2 − 3α) + 4s1, n2 = (2 + c2)α− 3s2, (5.4)

the normalized B-basis of U5 can be written using the explicit expressions

B5
i (t) =

1

12n0n1n2
(ci0+ci1t+ci2 sin(t)+ci3 cos(t)+ci4 sin(2t)+ci5 cos(2t)), i = 0, ..., 5.

(5.5)
As in the previous case, the parameter α plays a tension-like effect which is

illustrated in Figure 5.3 (a),(b),(c). Moreover, when α tends to 2π the normalized
B-basis in (5.5) assumes the following form

lim
α→2π

B5
0(t) =

1

12π
(12π − 6t+ 8 sin(t)− sin(2t)),

lim
α→2π

B5
1(t) = lim

α→2π
B5

2(t) = lim
α→2π

B5
3(t) = lim

α→2π
B5

4(t) = 0,

lim
α→2π

B5
5(t) =

1

12π
(6t− 8 sin(t) + sin(2t)).
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This limit case is illustrated in Figure 5.3(d).
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Figure 5.3: Basis functions B5
i (t), i = 0, ..., 5 for t ∈ Iα and α = π (a), α = 5

4π (b),
α = 3

2π (c), α → 2π (d).

In [Mainar 2001] it was also proven that the normalized B-basis {B5
i (t)}i=0,...,5

of the space U5 tends to the ordinary Bernstein polynomials of degree 5, as α ap-
proaches 0. We further observe that, if the free parameter α is restricted to the in-
terval (0, 23π), then the space U5 is an extended Chebyshev space (see [Mainar 2010])
and the normalized B-basis B5

i , i = 0, ..., 5 for such a space can be obtained using
an iterative integral procedure starting from the (not normalized) B-basis

B3
0(t) = sin(2α−2t)−2 sin(α−t)

sin(2α)−2 sin(α) ,

B3
1(t) = 2 sin(α−2t)−2 sin(α−t)−sin(2α−t)+sin(2α−2t)+3 sin(t)

sin(2α)−sin(3α)+sin(α) ,

B3
2(t) = sin(2t)+3 sin(α−t)−2 sin(α−2t)−sin(α+t)−2 sin(t)

sin(α)+sin(2α)−sin(3α) ,

B3
3(t) = sin(2t)−2 sin(t)

sin(2α)−2 sin(α) ,

(5.6)

for the extended Chebyshev space U3 := ⟨cos(t), sin(t), cos(2t), sin(2t)⟩ where t ∈
[0, α] and 0 < α < 2

3π. In fact, starting from the B-basis in (5.6), for all n ≥ 4 we
can define a normalized B-basis of order n+ 1 of the space Un := ⟨1, t, ..., tn−4, U3⟩
via the iterative integral construction

Bn
0 (t) := 1−

∫ t
0 δn−1

0 Bn−1
0 (s) ds,

Bn
i (t) :=

∫ t
0

(
δn−1
i−1 Bn−1

i−1 (s)− δn−1
i Bn−1

i (s)
)
ds, i = 1, · · · , n− 1,

Bn
n(t) :=

∫ t
0 δn−1

n−1 B
n−1
n−1(s) ds,

(5.7)
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where δn−1
i := 1/

∫ α
0 Bn−1

i (s) ds, i = 0, · · · , n− 1 (see [Mainar 2010]).
Thus, applying once the recursion (5.7) we can construct a normalized B-basis

of the space U4 = ⟨1, U3⟩ = Ũ4, which, being unique, coincides with the expression
for B̃4

i , i = 0, ..., 4 given in (5.1). Moreover, applying twice the recursion (5.7) we
can construct a normalized B-basis of the space U5 = ⟨1, t, U3⟩, which, being unique,
coincides with the expression given in (5.5).

5.2 AT-Bézier curves over the mixed algebraic-
trigonometric space U5

In the following we are particularly interested in the parametric curves defined
over the mixed algebraic-trigonometric space U5. We will refer to these curves
as algebraic-trigonometric Bézier curves or AT-Bézier curves. From the results in
[Mainar 2001] it is well known that, since the space U5 has a normalized B-basis,
then we can define parametric curves over U5 through a control polygon in a similar
way to our familiar polynomial Bézier case. More precisely, an AT-Bézier curve
defined over the space U5 can be described by the Bézier-like form

x(t) =
5∑

i=0

piB
5
i (t) , t ∈ [0, α], 0 < α < 2π, (5.8)

where B5
i , i = 0, · · · , 5 are the basis functions given in (5.5).
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Figure 5.4: Comparison of an ordinary degree 5 Bézier curve (green) and AT–Bézier
curves (red) for α = π

2 , π,
3
2π, 2π obtained from the same control polygon (blue).

These curves possess all the good properties of the polynomial Bézier curves such
as containment in the convex hull, affine invariance, variation diminishing property,
interpolation of end points and tangency to the control polygon at the end points.
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Furthermore they depend on the parameter α which can be used as shape param-
eter. Figure 5.4 shows the ordinary degree 5 Bézier curve compared to AT–Bézier
curves obtained for different values of α, starting from the same control polygon.
Another advantage of AT–Bézier curves lies in the fact that they are capa-
ble of reproducing arcs of arbitrary length (depending on the choice of α ∈
(0, 2π)) of planar trigonometric curves such as the ones displayed in Figure 5.5.
Taking into account that x(t) is expressed in terms of the normalized B-basis
B5

i (t), i = 0, ..., 5 whose basis functions are linear combinations of the functions
{1, t, sin(t), cos(t), sin(2t), cos(2t)} by which these classical trigonometric curves
are composed, the explicit formulae for abscissae and ordinatae of the control points
can be carried out by solving 6× 6 systems of linear equations.

Figure 5.5: Reproduction of arcs of different trigonometric curves by means of AT–
Bézier curves over U5 with α = 3

4π. From left to right, circle, cardioid, deltoid (top),
limacon, lemniscate, piriform (bottom).

In the absence of a de Casteljau-like algorithm for the evaluation of these
AT-Bézier curves, we propose a fast visualization algorithm for them via a non–
stationary subdivision scheme [Romani 2009]. To this end, following the reasoning
in [Mainar 2010], for t ∈ [0, α], 0 < α < 2

3π, we can construct a generalized (not
normalized) non-negative uniform B-spline basis for the space U3, which turns out
to be totally positive under the stronger requirement 0 < α < π

2 . More precisely, the
restriction of these generalized B-spline basis functions to the interval [0, α] yields
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the following four functions N3
i , i = 0, 1, 2, 3, having the expressions

N3
0 (t) =

sin(2t)−2 sin(t)
sin(2α)−2 sin(α) ,

N3
1 (t) =

4(cos(α)+2)

(
sin(2α+t)−sin(2α−t)−sin(α−t)− 1

2
(sin(α+2t)−sin(α−2t)−sin(2(α−t)))

)
2 sin(2α)+sin(3α)−7 sin(α) ,

N3
2 (t) =

4(cos(α)+2)

(
sin(3α−t)−sin(α+t)−sin(t)− 1

2
(sin(α−2t)−sin(2t)+sin(3α−2t))

)
2 sin(2α)+sin(3α)−7 sin(α) ,

N3
3 (t) =

sin(2(α−t))−2 sin(α−t)
sin(2α)−2 sin(α) .

Using the iterative procedure described in [Mainar 2010], for all n ≥ 4 we can
define a normalized, generalized uniform B-spline basis of order n + 1 of the space
Un := ⟨1, t, ..., tn−4, U3⟩. Then, extending the results in [Romani 2004] about the
matrix conversion between Bézier and B-spline polynomial representations, for U5 we
work out the 6× 6 matrix transforming the six functions N5

i , i = 0, . . . , 5 obtained
as restrictions of the normalized, generalized, uniform B-spline basis functions of
order 6 to the interval [0, α], into the six basis functions B5

i , i = 0, ..., 5 providing
the (Bézier-like) normalized B-basis of the same space on the interval [0, α]. This
matrix, denoted by M (5) has the following entries

M (5) =
1

D



0 m
(5)
1 m

(5)
6 m

(5)
10 m

(5)
6 m

(5)
1

0 m
(5)
2 m

(5)
7 m

(5)
10 m

(5)
5 0

0 m
(5)
3 m

(5)
8 m

(5)
9 m

(5)
4 0

0 m
(5)
4 m

(5)
9 m

(5)
8 m

(5)
3 0

0 m
(5)
5 m

(5)
10 m

(5)
7 m

(5)
2 0

m
(5)
1 m

(5)
6 m

(5)
10 m

(5)
6 m

(5)
1 0


with D = 384α c21 s

4
1,

m
(5)
1 = 6α− 8s2 + s3, m

(5)
2 = 2m

(5)
1 ,

m
(5)
3 = −12

(
(2α− s2)c2 + α− 2s2

)
, m

(5)
4 = 6

(
8(c2 + 1)(α− s2) + 2c3α− s3

)
,

m
(5)
5 = 2

(
8s2(1 + 4c41) + 6α(1− 8c41) + s3

)
, m

(5)
6 = −4

(
6c21(2c2 − 1)α− 7s2c

2
2 + s2c2

)
,

m
(5)
7 = 2m

(5)
6 −m

(5)
5 , m

(5)
8 = −12

(
(10c22 + 10c2 + 1)α− s2(11c2 + 6c22 + 4)

)
,

m
(5)
9 = D −m

(5)
3 −m

(5)
4 −m

(5)
8 , m

(5)
10 = D − 2(m

(5)
1 +m

(5)
6 ),

and s1, c1, s2, c2, s3, c3 as in (5.3). Since for all α ∈ (0, π2 ) the matrix M (5) is invert-
ible, we can compute its inverse which has the form

R(5) := (M (5))−1 =
1

m
(5)
1 ρ6



0 r
(5)
2 r

(5)
8 r

(5)
13 r

(5)
7 r

(5)
1

0 r
(5)
3 r

(5)
9 r

(5)
12 r

(5)
6 0

0 r
(5)
4 r

(5)
10 r

(5)
11 r

(5)
5 0

0 r
(5)
5 r

(5)
11 r

(5)
10 r

(5)
4 0

0 r
(5)
6 r

(5)
12 r

(5)
9 r

(5)
3 0

r
(5)
1 r

(5)
7 r

(5)
13 r

(5)
8 r

(5)
2 0


,
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where

r
(5)
1 = Dρ6,

r
(5)
4 = −m

(5)
1 ρ5,

r
(5)
3 = −m

(5)
1

(
ρ4 − (m

(5)
3 +m

(5)
8 )ρ1

)
D + r

(5)
4 ,

r
(5)
2 = −(ρ7 + (m

(5)
4 +m

(5)
8 )ρ3)D + r

(5)
4 ,

r
(5)
10 = m

(5)
1 (ρ5 + ρ2ρ1),

r
(5)
9 = m

(5)
1

(
ρ4 − (2m

(5)
1 −m

(5)
5 + 2m

(5)
6 )ρ1

)
D + r

(5)
10 ,

r
(5)
8 = (ρ7 + 2m

(5)
6 ρ3)D + r

(5)
10 ,

r
(5)
11 = −m

(5)
1 (2m

(5)
1 −m

(5)
5 )ρ1D + r

(5)
10 ,

r
(5)
12 = m

(5)
1 (ρ4 + (2m

(5)
6 −D)ρ1)D + r

(5)
10 ,

r
(5)
13 =

(
ρ7 − (2m

(5)
6 −D)ρ3

)
D + r

(5)
11 ,

r
(5)
5 = m

(5)
1 ρ6 − (r

(5)
4 + r

(5)
10 + r

(5)
11 ),

r
(5)
6 = m

(5)
1 ρ6 − (r

(5)
3 + r

(5)
9 + r

(5)
12 ),

r
(5)
7 = m

(5)
1 ρ6 − (r

(5)
2 + r

(5)
8 + r

(5)
13 + r

(5)
1 ),

and

ρ1 = (2m
(5)
1 +m

(5)
5 )− (m

(5)
3 +m

(5)
4 ),

ρ2 = (2m
(5)
1 −m

(5)
5 )(m

(5)
4 +m

(5)
8 )− 2m

(5)
6 (m

(5)
3 −m

(5)
4 ),

ρ3 = (m
(5)
6 −m

(5)
5 +m

(5)
1 )ρ1,

ρ4 = (2m
(5)
1 −m

(5)
3 )D − ρ2,

ρ5=(m
(5)
3 m

(5)
5 − 2m

(5)
1 m

(5)
4 )D + (m

(5)
3 +m

(5)
4 )ρ2,

ρ6=
(
(m

(5)
5 −m

(5)
4 )D + ρ2 − ρ4

)
ρ1,

ρ7=−(m
(5)
1 +m

(5)
6 )ρ4 + (m

(5)
1 D − ρ2)ρ1 − ρ5.

Taking into account that, for t ∈ [0, α] and 0 < α < π
2 ,

[B5
0 B5

1 B5
2 B5

3 B5
4 B5

5 ] = [N5
0 N5

1 N5
2 N5

3 N5
4 N5

5 ]R
(5),

the B–spline representation

x(t) =
5∑

i=0

qiN
5
i (t) , t ∈ [0, α],

of the curve (5.8) is thus obtained by [q0 q1 q2 q3 q4 q5]
T =

R(5) [p0 p1 p2 p3 p4 p5]
T . See Figure 5.6 for the illustration of both sets of control

points.

Figure 5.6: B-spline control points (black squares) and Bézier control points (blue
circles) for the AT-Bézier curve (red) defined on t ∈ [0, α] with α = π

5 .

This transformation allows us to apply the non-stationary approximating sub-
division scheme proposed in [Romani 2009, Section 4.2] to achieve a fast evalu-
ation algorithm of the algebraic-trigonometric Bézier curves over the space U5.
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In fact this approximating subdivision scheme reproducing functions in the space
{1, x, etx, e−tx, e2tx, e−2tx}, is a specific member of the family of approximating sub-
division schemes proposed in [Romani 2009, Section 2.2], which is shown to generate
in the limit exponential B-splines. Given an initial polygon q0

i := qi, i = 0, . . . , 5,
for all successive refinement levels k ≥ 0 the subdivision rules are given by

qk+1
2j = ak1 (qk

j−1 + qk
j+1) + ak3 qk

j ,

qk+1
2j+1 = ak0 (qk

j−1 + qk
j+2) + ak2 (qk

j + qk
j+1), (5.9)

with

ak0 =
1

16(vk)2(vk + 1)
, ak1 =

2vk + 1

8vk(vk + 1)
, ak2 =

8(vk)3 + 8(vk)2 − 1

16(vk)2(vk + 1)
, ak3 =

4(vk)2 + 2vk − 1

4vk(vk + 1)
,

and vk updated through vk =
√

1+vk−1

2 starting from the initial value v−1 = cos(α).
As shown in [Romani 2009], this non-stationary subdivision algorithm converges in
the limit to the AT–Bézier curve defined by the control polygon pi, i = 0, ..., 5 and
the angle α ∈

(
0, π2

)
(see Figure 5.7 for an application example of this evaluation

algorithm).

Figure 5.7: Left: initial B-spline control polygon (black) and corresponding Bézier
control polygon (blue). Middle: first two refinements of the B-spline control polygon.
Right: corresponding limit curve (red) for α = π

5 and k = 6.

Since the initial control polygon Q0 = {q0
j}j=0,...,N0−1 has N0 = 6 vertices, the

polygon Qk = {qk
j }j=0,...,Nk−1 obtained at step k through the refinement rules (5.9),

contains Nk = 2k + 5 vertices, of which 2k−1 + 3 are even and 2k−1 + 2 are odd.
The computational cost of computing a point of Qk from those of Qk−1 is equal to
2 multiplications and 2 additions for qk+1

2j and 2 multiplications and 3 additions for



5.3. Algebraic-Trigonometric Pythagorean Hodograph (ATPH) curves and
their properties: real representation 53

qk+1
2j+1. Moreover, we have 17 multiplications and 9 additions to calculate a0, a1, a2

and a3 (in fact we have 3 multiplications and 1 addition for a0, 4 multiplications
and 2 additions for a1, 5 multiplications and 3 additions for a2 and 5 multiplications
and 3 additions for a3). We take into account that to compute vk from vk−1 we
have 1 multiplication, 1 addition and 1 square root and we have 2 multiplications
to determine v2 and v3. By observing that the coefficients vk and aki don’t change
for every level k, we conclude that the number of operations required to compute all
the vertices of Qk applying the refinement rules (5.9) to the vertices of Q0 is equal
to
∑k

i=1 9 2
i−1 + 31 i+ 22 = 9(2k − 1) + k

2 (31k + 75).

5.3 Algebraic-Trigonometric Pythagorean Hodograph
(ATPH) curves and their properties: real represen-
tation

Exploiting the fact that if f ∈ Ũ2 then f2 ∈ Ũ4 and
∫

f2 ∈ U5, we now extend the
well–known definition of polynomial Pythagorean–Hodograph (PH) curves to the
algebraic-trigonometric case, replacing the space of quadratic polynomials ⟨1, t, t2⟩
by the space Ũ2 = ⟨1, sin(t), cos(t)⟩. Since f ∈ Ũ2 exists for α ∈ (0, π), the
construction of the new class of Pythagorean-Hodograph curves is restricted to t ∈
[0, α] with α ∈ (0, π).

Definition 6. Let u(t), v(t) and ζ(t) be non-zero real functions in the space Ũ2 such
that u(t) and v(t) are relatively prime (namely gcd(u(t), v(t)) = 1) and both non–
constant. Then, a planar parametric curve x(t) = (x(t), y(t)) whose first derivative
is of the form

x′(t) = ζ(t)
(
u2(t)− v2(t)

)
and y′(t) = 2ζ(t)u(t)v(t) (5.10)

is called Algebraic–Trigonometric PH curve or ATPH curve.

As in the case of polynomial PH curves, the curve’s parametric speed is given
by

σ(t) :=
√

(x′(t))2 + (y′(t))2 = ζ(t) (u2(t) + v2(t)) (5.11)

and its unit tangent, unit normal and (signed) curvature are given respectively by

t =
(u2 − v2, 2uv)

u2 + v2
, n =

(2uv, v2 − u2)

u2 + v2
, κ =

2(uv′ − u′v)

ζ(u2 + v2)2
, (5.12)

where, for conciseness, in (5.12) the parameter t is omitted.
In the following we will restrict our attention to the regular case ζ(t) = 1. By

integrating (5.10) for ζ(t) = 1 we obtain a parametric curve in the mixed algebraic–
trigonometric space U5 which is expressable in the basis (5.5) as formulated in the
following Proposition 2 which uses the notation
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a10 = n0−6n2, a20 = n2(c2+2), a21 = 3n2s2, a22 = 3n2(c2+1), a23 = n2(2c2+1),

(5.13)
where ni, si, ci from (5.3) and (5.4), and the new variables

u3 = u0 + u2 , v3 = v0 + v2, (5.14)

as well as the abbreviations:

γ±ij = uiuj ± vivj , δij = uivj + ujvi , i, j ∈ {0, 1, 2, 3}. (5.15)

Proposition 2. A planar, parametric curve over the mixed algebraic–trigonometric
space U5 expressed in terms of the normalized B-basis (5.5) as

x(t) =
5∑

i=0

piB
5
i (t), t ∈ [0, α], (5.16)

is a (non-cuspidal) Algebraic–Trigonometric PH curve in the sense of Definition 6
if and only if its control points can be expressed in the form

p1 = p0 +
n0

16s41
(γ−33, δ33) (5.17)

p2 = p1 +
a10
8s41

((γ−33, δ33) + tan

(
α

2

)
(γ−13, δ13)) (5.18)

p3 = p2 +
1

4s41
(a20(γ

−
00, δ00) + a21(γ

−
13, δ13) + a22(γ

−
02, δ02) +

4s41
1− c2

n2(γ
−
11, δ11)

+ a23(γ
−
22, δ22)) (5.19)

p4 = p3 +
a10
8s41

((γ−00, δ00) + (s2 + tan

(
α

2

)
)(γ−01, δ01) + (c2 + 1)(γ−02, δ02) +

+ (1− c2)(γ
−
11, δ11) +

s4
c1
(γ−12, δ12) + c2(γ

−
22, δ22)) (5.20)

p5 = p4 +
n0

16s41
((γ−00, δ00) + 2s2(γ

−
01, δ01) + 2c2(γ

−
02, δ02) + s22(γ

−
11, δ11) + s3(γ

−
12, δ12) +

+ c22(γ
−
22, δ22))

(5.21)

in terms of the real values (u0, u1, u2), (v0, v1, v2) and the abbreviations (5.3), (5.4),
(5.13), (5.14) and (5.15).

Proof. We define the following two functions in the space Ũ2:

u(t) = u0 + u1 sin(t) + u2 cos(t),

v(t) = v0 + v1 sin(t) + v2 cos(t), (5.22)

with t ∈ [0, α]. We substitue these functions into (5.10) and by integrating for
ζ(t) = 1 we obtain
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x(t) =
∫
x′(τ)dτ = k1 + ã0 + ã1t+ ã2 sin(t) + ã3 cos(t) + ã4 sin(2t) + ã0 cos(2t)

y(t) =
∫
y′(τ)dτ = k2 + b̃0 + b̃1t+ b̃2 sin(t) + b̃3 cos(t) + b̃4 sin(2t) + b̃0 cos(2t)

(5.23)
where

ã0 =
1
2(v1v2 − u1u2),

ã1 =
1
2(u

2
1 − v21 + u22 − v22) + u20 − v20,

ã2 = 2(u0u2 − v0v2),

ã3 = 2(v0v1 − u0u1),

ã4 =
1
4(u

2
2 − u21 + v21 − v22),

b̃0 = −1
2(u2v1 + u1v2),

b̃1 = 2u0v0 + u1v1 + u2v2,

b̃2 = 2(u0v2 + u2v0),

b̃3 = −2(u0v1 + u1v0),

b̃4 =
1
2(u2v2 − u1v1),

and k1 and k2 the integration constants. Expressing the basis functions of
the functional space U5 = {1, t, sin(t), cos(t), sin(2t), cos(2t)} in terms of the
normalized B-basis (5.5) and substituting these basis functions in (5.23) yields the
expressions (5.17) - (5.21), where p0 = (k1, k2)− (γ−01 + γ−13, δ01 + δ13).

By (5.10) we have
σ(t) = u2(t) + v2(t)

and thus the arc-length is calculated to be∫
σ(t)dt = −1

2γ
+
12 +

1
2

(
(2γ+00 + γ+11 + γ+22)t+ 4γ+02 sin(t)

− 4γ+01 cos(t) +
1
2(γ

+
22 − γ+11) sin(2t)− γ+12 cos(2t)

)
.

(5.24)

5.4 C1 Hermite interpolation problem: first approach

In this section we consider the following problem.

Problem 1. Given arbitrary control points p0 ̸= p1 and p4 ̸= p5 of an AT-Bézier
curve x(t) =

∑5
i=0 piB

5
i (t), t ∈ [0, α], defined over the space U5, we look for the

two remaining inner control points p2 and p3 such that all six are expressible in
the form given by equations (5.17)-(5.21) for some real values of (u0, u1, u2) and
(v0, v1, v2).

In order to solve Problem 1 we need the following Lemma, recalled from
[Farouki 1995].

Lemma 1. For all real values a and b, the real solutions to the equations

u2 − v2 = a and 2uv = b (5.25)

may be expressed in the form

(u, v) = ±(

√
1

2
(c+ a), sign(b)

√
1

2
(c− a)) , (5.26)

where c =
√
a2 + b2 and we take sign(b) = ±1 when b = 0.
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By defining ∆pi = (∆xi,∆yi) = pi+1−pi for i = 0, . . . , n−1 with (∆xi,∆yi) =

(xi+1−xi, yi+1−yi) and |∆pi| =
√

(∆xi)2 + (∆yi)2 for i = 0, . . . , n−1, the solutions
of Problem 1 are given by the following Proposition

Proposition 3. The solutions of the Hermite interpolation problem are given by
the following values for the coefficients (u0, u1, u2) and (v0, v1, v2):

(u1, v1) =
1

√
γ1

(
1

√
γ1

(s1(u3 g̃ + u4 f̃), s1(v3 g̃ + v4 f̃))±
√

1

2
(
√
c+ a, sign(b)

√
c− a))

(u2, v2) =
1

c2 − 1
(2

√
2s41
n0

(±
√

|∆p4|+∆x4 − (±
√

|∆p0|+∆x0), (5.27)

±sign(∆y4)
√

|∆p4| −∆x4 − (±sign(∆y0)
√

|∆p0| −∆x0))− (s2u1, s2v1))

(u0, v0) =
1

c2 − 1
(2

√
2s41
n0

(±c2
√

|∆p0|+∆x0 − (±
√

|∆p4|+∆x4),

±c2sign(∆y0)
√

|∆p0| −∆x0 − (±sign(∆y4)
√

|∆p4| −∆x4) + (s2u1, s2v1))

where the quantities f̃ , g̃, a, b, and c =
√
a2 + b2 are defined by

f̃ = 3c1α− 2s1c
2
1 − 4s1, g̃ = c1α− 4c31α+ 10s1c

2
1 − 4s1, (5.28)

a = 4s41((x4 − x1)− γ), b = 4s41((y4 − y1)− δ) (5.29)

with

γ =
d

16n2s41
(u23 − v23 + u24 − v24) + e

c2 − 1

8n2s41
(u3u4 − v3v4), (5.30)

δ =
d

2n2(c2 − 1)2
(u3v3 + u4v4) +

e

2n2(c2 − 1)
(u3v4 + v3u4), (5.31)

where
d = −9(c2 + 1)α2 + (c2 + 5)(6s2α+ (c2 − 1)(c2 + 5)),

e = (2c2 + 1)α2 − 6s2α+ (c2 − 1)(c2 − 7),

and

(u3, v3) = ±2

√
2s41
n0

(
√

|∆p0|+∆x0, sign(∆y0)
√
|∆p0| −∆x0), (5.32)

(u4, v4) = ±2

√
2s41
n0

(
√

|∆p4|+∆x4, sign(∆y4)
√
|∆p4| −∆x4). (5.33)
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Proof. Given arbitrary points p0 ̸= p1 and p4 ̸= p5, we can find the two additional
control points p2 and p3. To this end, we introduce the new variables

u4 = u3 + 2s1 (u1c1 − u2 s1) ,

v4 = v3 + 2s1 (v1c1 − v2 s1) , (5.34)

and then, the equations (5.21) become

p5 = p4 +
n0

16s41
(u24 − v24, 2u4 v4) . (5.35)

By applying Lemma 1 to the equations (5.17) and (5.35), we obtain the expressions
(5.32) and (5.33). By solving the four linear equations (5.14) and (5.34) for the
variables u0, u2, v0, v2 we obtain the solutions

u0 =
1

c2 − 1
(c2u3 − u4 + s2u1) (5.36)

u2 =
1

c2 − 1
(−u3 + u4 − s2u1) (5.37)

v0 =
1

c2 − 1
(c2v3 − v4 + s2v1) (5.38)

v2 =
1

c2 − 1
(−v3 + v4 − s2v1) (5.39)

which we insert in

p4 − p1 = (p4 − p3) + (p3 − p2) + (p2 − p1) . (5.40)

By introducing the variables

ũ1 =
√
γ1 u1 −

δ1√
γ1

,

ṽ1 =
√
γ1 v1 −

δ2√
γ1

, (5.41)

where

γ1 = −2 s21 (6s1c1 − 2c21α− α), (5.42)

δ1 = s1(u3 g̃ + u4 f̃) (5.43)

δ2 = s1(v3 g̃ + v4 f̃) (5.44)

with f̃ and g̃ from (5.28), the equation (5.40) becomes

p4 − p1 =
1

4s41
(ũ21 − ṽ21, 2 ũ1 ṽ1) + (γ, δ), (5.45)

where γ respectively δ from (5.30) respectively (5.31).
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By applying Lemma 1 to the equation (5.45), we obtain

(ũ1, ṽ1) = ±
√

1

2
(
√
c+ a, sign(b)

√
c− a) (5.46)

where the quantities a, b, and c =
√
a2 + b2 are defined by (5.29).

From (5.41) we have

u1 =
1

√
γ1

(
δ1√
γ1

+ ũ1), v1 =
1

√
γ1

(
δ2√
γ1

+ ṽ1).

in which we substitue (5.46) and we obtain the expressions for (u1, v1).
Into (5.36)-(5.39) we replace (5.32) and (5.33) and we find the expressions (5.27).

5.5 Algebraic-Trigonometric Pythagorean Hodograph
(ATPH) curves and their properties: complex rep-
resentation

By observing the control point expressions in Proposition 2, we note that we can
simplify their form. By introducing the complex notation u(t) = u(t)+ iv(t) we can
write (5.22) as

u(t) = u0 + u1 sin(t) + u2 cos(t) , (5.47)

where ui = ui + ivi with ui, vi ∈ R.
With this complex representation, Proposition 2 becomes:

Proposition 4. A planar, parametric curve over the mixed algebraic–trigonometric
space U5 expressed in terms of the normalized B-basis (5.5) as

x(t) =

5∑
i=0

piB
5
i (t), t ∈ [0, α], (5.48)

is a (non-cuspidal) Algebraic–Trigonometric PH curve in the sense of Definition 6
if and only if its control points can be expressed in the form

p1 = p0 +
n0

16s41
u2
3 (5.49)

p2 = p1 +
a10
8s41

(u2
3 + tan

(
α

2

)
u1u3) (5.50)

p3 = p2 +
1

4s41
(a20u

2
0 + a21u1u3 + a22u0u2 +

4s41
1− c2

n2u
2
1 + a23u

2
2) (5.51)

p4 = p3 +
a10
8s41

(u2
0 + (s2 + tan

(
α

2

)
)u0u1 + (c2 + 1)u0u2

+(1− c2)u
2
1 +

s4
c1
u1u2 + c2u

2
2) (5.52)

p5 = p4 +
n0

16s41
(u2

0 + 2s2u0u1 + 2c2u0u2 + s22u
2
1 + s3u1u2 + c22u

2
2)

(5.53)



5.5. Algebraic-Trigonometric Pythagorean Hodograph (ATPH) curves and
their properties: complex representation 59

in terms of the complex values u0,u1,u2 and u3 = u0 + u2 and the abbreviations
(5.13).

For solving the Hermite interpolation Problem 1 the complex values u0,u1,u2

have to be determined in order to obtain the control points in the form (5.49)-(5.53).
Thus, in order to rewrite Proposition 3 in this complex notation, we recall a

well-known result from the algebra of complex numbers, which directly follows from
De Moivre’s theorem; it is the complex equivalent of Lemma 1.

Lemma 2. Let a = a + ib = |a| exp(iω) = |a|(cos(ω) + i sin(ω)), ω = arg(a) ∈
[−π, π]. Then, the solution of the equation u2 = a over C is given by

u = ±|a|
1
2 exp

(
i
ω

2

)
= ±|a|

1
2

(
cos
(ω
2

)
+ i sin

(ω
2

))
.

As it is well-known, the two solutions of Lemma 2 are positioned on the circle of
radius |a|

1
2 . See Figure 5.8 for an illustration. By Lemma 2 we obtain the following

complex equivalent of Proposition 3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Im

R
e

u
+

u
−

|a|1/2

Figure 5.8: Visualization of the two solutions (u+ and u−) of the complex equation
u2 = 1 + i.

Proposition 5. The solutions of the Hermite interpolation Problem 1 are given by
the following values for the coefficients u0, u1, u2:

u1 =
1

√
γ1

u5 +
s1
γ1

(gu3 + fu4) ,

u0 =
1

c2 − 1
(c2u3 − u4 + s2u1) , (5.54)

u2 =
1

c2 − 1
(−u3 + u4 − s2u1) ,

where

uk = ±|bk|
1
2 exp(i

ωk

2
) = ±|bk|

1
2 (cos(

ωk

2
) + i sin(

ωk

2
)) , k = 3, 4, 5 (5.55)
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with

b3 =
16s41
n0

(p1−p0) , b4 =
16s41
n0

(p5−p4) , b5 = 4s41(p4−p1)−
d

4n2
(u2

3+u2
4)−

e(c2 − 1)

2n2
u3u4 ,

(5.56)
and ωk = arg(bk) .

This notation helps us to introduce a concise complex representation for ATPH
curves. We observe that we can write (5.47) as

w(t) = w0B̃
2
0(t) +w1B̃

2
1(t) +w2B̃

2
2(t) , (5.57)

where

w0 = u(0) = u0+u2 , w1 = u0+tan
(α
2

)
u1+u2 , w2 = u(α) = u0+u1 sin(α)+u2 cos(α) .

(5.58)
We thus write

x′(t) = x′(t) + iy′(t) = u2(t)− v2(t) + i2u(t)v(t) = w2(t) . (5.59)

We can thus reformulate Proposition 2 as follows

Proposition 6. A planar, parametric curve over the mixed algebraic–trigonometric
space U5 expressed in terms of the normalized B-basis (5.5) as

x(t) =

5∑
i=0

piB
5
i (t), t ∈ [0, α], (5.60)

is a (non-cuspidal) Algebraic–Trigonometric PH curve in the sense of Definition 6
if and only if its control points can be expressed in the form

p1 = p0 +
n0

16s41
w2

0, (5.61)

p2 = p1 +
n0 − 6n2

8s41
w0w1, (5.62)

p3 = p2 +
n2

4s41

(
(1 + c2)w

2
1 +w0w2

)
, (5.63)

p4 = p3 +
n0 − 6n2

8s41
w1w2, (5.64)

p5 = p4 +
n0

16s41
w2

2 . (5.65)

where w0,w1,w2 are complex values and s1, c2, n0, n2 denote the abbreviations in
(5.3)-(5.4).

Proof. We substitute the function (5.57) into (5.59) and by integrating we obtain

x(t) =

∫
x′(s) ds = k+a0+a1t+a2 sin(t)+a3 cos(t)+a4 sin(2t)+a0 cos(2t) (5.66)
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where

a0 = −1

2
u1u2 , a1 =

1

2
(u2

1+u2
2)+u2

0 , a2 = 2u0u2 , a3 = −2u0u1 , a4 =
1

4
(−u2

1+u2
2),

with

u0 = (1 + c2)w1 −w0 −w2 , u1 = s2(w0 −w1) , u2 = c2(w0 −w1) +w2 −w1

(5.67)
and k the integration constant. Expressing the basis functions of the functional
space U5 = {1, t, sin(t), cos(t), sin(2t), cos(2t)} in terms of the normalized B–basis
(5.5) and substituting these basis functions in (5.66) yields the expressions (5.61)-
(5.65), where p0 = k+ a0.

We can remark that with this complex representation we obtain a more concise
formulation of the control point expressions in (5.61)-(5.65). For this reason, in the
following we will exclusively use this complex notation to describe ATPH curves
properties and their applications. We first reformulate in the complex notation the
arc-length of an ATPH curve and its key properties.

By (5.11) we have

σ(t) :=
√

(x′(t))2 + (y′(t))2 = |w2(t)|

and thus γ+ij , with i, j ∈ {0, 1, 2} of the arc-length of an ATPH curve in (5.24) are
given by

γ+ij = Re

(
ui

uj

)
|uj |2, i, j ∈ {0, 1, 2}, (5.68)

with ui, i = 0, 1, 2 in (5.67).
We continue by showing that, like polynomial PH curves, ATPH curves ad-

mit not only an exact representation of the arc length, but also of their offset
curves. In the following, the offset curve of the ATPH curve x(t) =

∑5
i=0 piB

5
i (t),

t ∈ [0, α] at oriented distance d along the unit normal vector n(t) is denoted by
xd(t) and given by xd(t) = x(t) + dn(t), t ∈ [0, α]. The normal vector n has
a rational ATPH representation over the extended Chebyshev space U4 := Ũ4 =

⟨1, cos(t), sin(t), cos(2t), sin(2t)⟩ since

n(t) =
−iw2(t)

w(t)w(t)
,

where

w2(t) = w2
0B

4
0(t)+w0w1B

4
1(t)+

w0w2 + (1 + cos(α))w2
1

2 + cos(α)
B4

2(t)+w1w2B
4
3(t)+w2

2B
4
4(t),

(5.69)
and

w(t)w(t) = w0w0B
4
0(t) +

1
2(w0w1 +w1w0)B

4
1(t) +

w0w2+2(1+cos(α))w1w1+w2w0

2(2+cos(α)) B4
2(t)

+1
2(w1w2 +w2w1)B

4
3(t) +w2w2B

4
4(t) ,
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with B4
i (t) = B̃4

i (t), i = 0, . . . , 4 from (5.1). We thus obtain

n(t) =

4∑
i=0

υ̃ip̃iB
4
i (t)

4∑
j=0

υ̃j B
4
j (t)

, t ∈ [0, α],

where

υ̃0 = w0w0 = |w0|2, υ̃0p̃0 = −iw2
0,

υ̃1 = 1
2(w0w1 +w1w0), υ̃1p̃1 = −iw0w1,

υ̃2 = w0w2+2(1+cos(α))w1w1+w2w0

2(2+cos(α)) , υ̃2p̃2 = −i
w0w2+(1+cos(α))w2

1
2+cos(α) ,

υ̃3 = 1
2(w1w2 +w2w1), υ̃3p̃3 = −iw1w2,

υ̃4 = w2w2 = |w2|2, υ̃4p̃4 = −iw2
2.

Now, since x(t) =
∑5

i=0 piB
5
i (t), we can define the offset curve xd(t) as a rational

algebraic-trigonometric curve in terms of the normalized B-basis of the extended
Chebyshev space obtained from the multiplication of U4 and U5. Recall that being

Ũ2 = ⟨1, sin(t), cos(t)⟩, Ũ4 = ⟨1, sin(t), cos(t), sin(2t), cos(2t)⟩

and

Ũ8 = ⟨1, sin(t), cos(t), sin(2t), cos(2t), sin(3t), cos(3t) sin(4t), cos(4t)⟩,

then the following relationships are satisfied:

Ũ2 ∗ Ũ2 = Ũ4, Ũ4 ∗ Ũ4 = Ũ8.

Therefore, being U5 = ⟨1, t, sin(t), cos(t), sin(2t), cos(2t)⟩ we have

Û := Ũ4 ∗ U5 = ⟨Ũ8, t, t sin(t), t cos(t), t sin(2t), t cos(2t)⟩.

The offset curve xd(t) of the ATPH curve x(t) is thus a rational algebraic-
trigonometric curve of the form

xd(t) = x(t)+dn(t) =

5∑
i=0

piB
5
i (t)+ d

4∑
i=0

υ̃ip̃iB
4
i (t)

4∑
j=0

υ̃j B
4
j (t)

=

13∑
i=0

υ̂i p̂i B̂
13
i (t)

13∑
j=0

υ̂jB̂
13
j (t)

, t ∈ Iα,

where B̂13
i , i = 0, ..., 13 are the basis functions of the space Û . This normalized

B–basis of Û will be presented in a forthcoming article.
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5.6 C1 Hermite interpolation problem: reformulation
and analysis

By the notation of Proposition 6, for solving the Hermite interpolation Problem 1,
the complex values w0,w1,w2 have to be determined in order to obtain the control
points in the form (5.61)-(5.65).

Due to the following properties of AT-Bézier curves built-upon the normalized
B-basis B5

i , i = 0, · · · , 5,

x(0) = p0, x(α) = p5, x′(0) =
16s41
n0

(p1 − p0), x′(α) =
16s41
n0

(p5 − p4),

with s1 in (5.3) and n0 in (5.4), this problem can be obviously regarded as a C1

Hermite interpolation problem to prescribed end points p0, p5 and tangent vectors
at these end points. Hereinafter the tangent vectors at p0, p5 will be denoted by
d0,d2, respectively, since (as we will see later) they are directly related to the values
of w0,w2. In analogy to Propositions 3 and 5 we obtain the following simpler version.

Proposition 7. The solutions of the Hermite interpolation Problem 1 in terms of
the complex values w0,w1,w2 are given by

w0 = ±|d0|
1
2 exp

(
i
ω0

2

)
= ±|d0|

1
2

(
cos
(ω0

2

)
+ i sin

(ω0

2

))
,

w2 = ±|d2|
1
2 exp

(
i
ω2

2

)
= ±|d2|

1
2

(
cos
(ω2

2

)
+ i sin

(ω2

2

))
, (5.70)

w1 = ±|d1|
1
2

(
cos
(ω1

2

)
+ i sin

(ω1

2

))
− n0 − 6n2

4n2(1 + c2)
(w0 +w2),

where

d0 =
16s41
n0

(p1 − p0) ,

d2 =
16s41
n0

(p5 − p4) ,

d1 = 1
1+c2

(
4s41
n2

(p4 − p1) +
(n0−6n2)2

16n2
2(1+c2)

(w0 +w2)
2 −w0w2

)
,

ωk = arg(dk), k = 0, 1, 2 and s1, c2, n0, n2 are the abbreviations in (5.3)-(5.4).

Proof. For completeness we provide the proof which follows the same line of reason-
ing as the one of Proposition 3. By applying Lemma 2 to the equations (5.61) and
(5.65) we obtain the expressions of w0 and w2 in (5.70). Then, writing

p4 − p1 = (p4 − p3) + (p3 − p2) + (p2 − p1) ,

and substituting from (5.61)-(5.65) we obtain

8s41
n0 − 6n2

(p4 − p1) = w1w2 +
2n2

n0 − 6n2
((1 + c2)w

2
1 +w0w2) +w0w1. (5.71)
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By the change of variable

w̃1 = w1 +
n0 − 6n2

4n2(1 + c2)
(w0 +w2), (5.72)

equation (5.71) becomes

w̃2
1 =

4s41
n2(1 + c2)

(p4 − p1) +
(n0 − 6n2)

2

16n2
2(1 + c2)2

(w0 +w2)
2 − 1

1 + c2
w0w2. (5.73)

Applying Lemma 2 to (5.73) we find

w̃1 = ±|d1|
1
2 exp

(
i
ω1

2

)
= ±|d1|

1
2

(
cos
(ω1

2

)
+ i sin

(ω1

2

))
(5.74)

with

d1 =
4s41

n2(1 + c2)
(p4 − p1) +

(n0 − 6n2)
2

16n2
2(1 + c2)2

(w0 +w2)
2 − 1

1 + c2
w0w2.

Finally, by substituting (5.74) in (5.72) the expression of w1 in (5.70) is obtained.

Remark 1. In the expressions (5.70) we have three independent signs. Thus, we
can construct eight ATPH interpolants. We remark that if we take (-w0, -w1, -w2)
or (w0, w1, w2) we obtain the same interpolant. Moreover, we observe that in the
expressions (5.61) - (5.65) we have homogeneous quadratic forms in the coefficients
of w(t). We can thus fix the sign in any one of the three expressions (5.70) and
obtain only four distinct interpolants.

Remark 2. We further observe that the free parameter α acts as a shape parameter
for the ATPH interpolants. This can be clearly seen in Figure 5.9 where different
ATPH interpolants to the same end points and associated end derivatives (all cor-
responding to a positive choice of the signs of w2 and w1) are displayed together
with the standard polynomial PH quintic solving the same C1 Hermite problem. We
note that for increasing values of α the curves become longer and longer. This seems
to be in contradiction to the behaviour of the AT-Bézier curves which for α → 2π

become shorter and shorter. The reason for this fact simply lies in the dependency
on α of the control points of the ATPH curve according to equations (5.61)-(5.65).

Figure 5.10 shows the behavior of all four possible families of ATPH curves
interpolating given end points and end derivatives, for different choices of α ∈ (0, π).
We obtain the four families of ATPH interpolants from the sign choices ++, +−,
−+, −− in the expressions of w2 and w1. In the following we will always refer to
the four families of ATPH interpolants by pointing out these sign combinations.

We conclude by observing that the arc-length of the ATPH curve (corresponding
to the evaluation of the function in (5.24) between 0 and α) has the expression

Sα =
∫ α
0 σ(t)dt = 2γ01 + 1

2γ12 + (γ00 + 1
2(γ11 + γ22))α + 2γ02 sin(α)+

− 2γ01 cos(α) + 1
4(γ22 − γ11) sin(2α) − 1

2γ12 cos(2α)
(5.75)
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Figure 5.9: Comparison of ATPH interpolants (red curves) to given end points
p0 = 0, p5 = 1 and associated end derivatives d0 = d2 = −3+i3(4+

√
5)

11 (here plotted
with a scale factor of 1

5 to fit into the picture), obtained for a positive choice of w2 and
w1 (++) and increasing values of α ∈ (0, π) (respectively α = π

10 ,
π
4 ,

π
3 ,

2
5π,

2
3π),

with the (++) PH quintic interpolant (blue curve) solving the same C1 Hermite
interpolation problem.

with γij in (5.68), and thus turns out to be monotonically increasing for increasing
values of α, as clearly shown in Figure 5.11.

By observing numerous examples, all exhibiting the same qualitative behaviour
as the ones in Figures 5.9 and 5.10, we can conclude that the most interesting ATPH
interpolants for practical use are obtained for α ∈ (0, π2 ). Since, as already shown in
Section 5.2, the fast visualization algorithm of ATPH curves exists only for values of
α in the same range, hereinafter we will restrict our attention to the case α ∈ (0, π2 ).

5.6.1 How to identify the “best” ATPH Hermite interpolant

As in [Farouki 1995] we introduce the rotation index

R =
1

2π

∫ α

0
κ(t)|x′(t)|dt ,

and the absolute rotation index

Rabs =
1

2π

∫ α

0
|κ(t)||x′(t)|dt ,

as these are the quantities whose minimization allows us to identify the “best” ATPH
Hermite interpolant. Since κ(t) = Im(x̄′(t)x′′(t))

|x′(t)|3 we have κ(t)|x′(t)| = Im(x̄′(t)x′′(t))
|x′(t)|2 ,

and considering (5.59) we get κ(t)|x′(t)| = 2 Im
(
w′(t)
w(t)

)
. The rotation index and

the absolute rotation index can thus be rewritten in the equivalent form
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Figure 5.10: The four families of ATPH interpolants to given end points p0 = 0,
p5 = 1 and end derivatives d0 = 6a + i3a, d2 = 6a − i3a with a = 4+
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5

11 (here
plotted with a scale factor of 1

5 to fit into the picture), obtained for different values
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Figure 5.11: Behaviour of the arc-length of the ATPH curves in Figure 5.10 for
α ∈ (0, π).

R =
1

2πi

∫ α

0

w′(t)w̄(t)−w(t)w̄′(t)

w(t)w̄(t)
dt , Rabs =

1

2π

∫ α

0

|w′(t)w̄(t)−w(t)w̄′(t)|
w(t)w̄(t)

dt.

(5.76)
Recalling that w(t) = u(t)+iv(t), we can also rewrite (5.76) in the real formulation
as follows

R =
1

π

∫ α

0

(u(t)v′(t)− u′(t)v(t))

u(t)2 + v(t)2
dt , Rabs =

1

π

∫ α

0

|(u(t)v′(t)− u′(t)v(t))|
u(t)2 + v(t)2

dt.

Now, if we define z(t) := v(t)
u(t) ∈ R, we can apply [Farouki 1995, Lemma 3] thus

obtaining

RATPH = 1
π

(
arctan(z(α))− arctan(z(0))

)
− Iα

0 (z(t)),

RATPH
abs = 1

π

n−1∑
j=0

signIj (ξ(t))
(
arctan(z(tj+1))− arctan(z(tj))

)+ S(u(t)) ,

where

• Iα
0 (z(t)) is the Cauchy index of z(t);

• ξ(t) = u(t)v′(t)− u′(t)v(t);

• tj , j = 0, . . . , n are the zeros of ξ(t) in the interval [0, α] with t0 = 0 and
tn = α;

• signIj (ξ(t)) denotes the sign of ξ(t) on the interval Ij = [tj , tj+1], j = 0, . . . , n−
1;

• S(u(t)) is the number of zeros of u(t) in the interval [0, α].
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(b) p0 = 5i, p5 = −3− 4i, d0 = d2 = 25− 15i
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(c) p0 = −6− i, p5 = 1, d0 = 30 + 25i, d2 = 25− 30i

Figure 5.12: Comparison of the ATPH interpolant obtained for α = π
4 (red curve),

with the corresponding PH quintic interpolant (blue curve) and the unique cubic
interpolant (black curve) to the given end points p0,p5 and associated derivatives
d0,d2 (here plotted with a scale factor of 1

5 to fit into the picture).
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The examples in Figure 5.12 confirm how the “best” solution to the Hermite inter-
polation problem can be identified as the one with the smallest absolute rotation
index (see Table 5.1).

RATPH
abs (a) (b) (c)
(++) 0.8976 0.7280 0.3589
(+−) 1.1515 1 0.7542
(−+) 1.1515 1 1.25
(−−) 1.024 1.5566 1.75

Table 5.1: ATPH absolute rotation indices for the examples in Figure 5.12.

The purpose of Table 5.2 and Figure 5.13 is to show that ATPH interpolants com-
pare favorably with their polynomial counterpart represented by the well-known PH
quintics. In fact, for the chosen set of end points and associated end derivatives, we
can see that all the four possible PH curves exhibit undesired self-intersections, al-
though the standard cubic interpolant does not. On the other hand, with the (++)

ATPH interpolant obtained, for instance, with the choice α = π
5 , we can eliminate

this unwanted self-intersection as in the cubic curve case.

We conclude by observing that, for certain Hermite data, the concept of the “best”
interpolant as the interpolant with the smallest absolute rotation index is ambigu-
ous. An example of this phenomenon is represented in Figure 5.14 where we have
two ATPH curves (the ones having signs (+−) and (−+)) with the same smallest
absolute rotation index (see Table 5.3), none of them being optimal. In fact, the
most similar to the standard cubic interpolant is still the one having signs (++).
The criterion based on the absolute rotation index requires us to construct all four
interpolants, and then compare a quantitative shape measure. In practice, it is
preferable to have the ability to construct directly the best interpolant only, as the
one being free of loops. In the following we show that this construction is possible if
we restrict our attention to cases with “reasonable” Hermite data. Given arbitrary
end points p0 and p5, we can define “reasonable” Hermite data requiring the associ-
ated end derivatives, d0 and d2, to vary in a prescribed domain. In particular, the

RPH
abs RATPH

abs

(++) 1.395 0.7270
(+−) 1 1
(−+) 1 1
(−−) 1.5504 1.8959

Table 5.2: Comparison of PH absolute
rotation indices and ATPH absolute ro-
tation indices for the example in Figure
5.13.

RPH
abs RATPH

abs

(++) 1.1009 1.0831
(+−) 1 1
(−+) 1 1
(−−) 1.2266 1.2199

Table 5.3: Comparison of PH absolute
rotation indices and ATPH absolute ro-
tation indices for the example in Figure
5.14.
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Figure 5.13: The four ATPH interpolants (red curves) to the end points p0 = 0,
p5 = 1 and associated end derivatives d0 = d2 = 7.5 + i (here plotted with a scale
factor of 1

6 to fit into the picture), obtained for α = π
5 . The corresponding PH

quintic interpolant and the unique cubic interpolant to the same data are depicted
in blue and black, respectively.

domain for “reasonable” end-derivatives d0, d2 is defined as the open half-disk

Dα =

{
d ∈ C : Re(d(p5 − p0)) > 0 and |d| < 3

α
|p5 − p0|

}
with α ∈

(
0,

π

2

)
.

(5.77)
This choice of the domain Dα (see Figure 5.15 for an illustration) does not constitute
a limitation for the practical applications we have in mind. Moreover, for such
"reasonable" Hermite data, we can guarantee that the cubic interpolant always has
a well-behaved tangent variation, as shown in [Moon 2001, Proposition 1]. In the
following proposition we show that also the (++) ATPH interpolant enjoys this
property whenever d0, d2 are chosen in Dα.

Proposition 8. If the Hermite end derivatives d0 and d2 lie within the domain Dα,
the hodograph x′(t) of the (++) ATPH interpolant x(t) remains inside Dα for all
t ∈ [0, α] and α ∈ (0, π2 ).

Proof. Without loss of generality, we choose the end points p0 = 0 and p5 = 1. We
then recall that, for a general ATPH interpolant x(t), the hodograph is given by
(5.69), i.e.

x′(t) = w2(t) =
(
w0B

2
0(t) +w1B

2
1(t) +w2B

2
2(t)

)2
.
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Figure 5.14: The four ATPH interpolants (red curves) to the end points p0 = 0,
p5 = 1 and associated end derivatives d0 = d2 = −3 + i (here plotted with a scale
factor of 1

5 to fit into the picture), obtained for α = π
4 . The corresponding PH

quintic interpolant and the unique cubic interpolant to the same data are depicted
in blue and black, respectively.

If we consider the (++) ATPH interpolant from (5.70), due to the fact that x′(0) =

w2(0) = w2
0 = d0 and x′(α) = w2(α) = w2

2 = d2 with d0,d2 ∈ Dα, we have

w0 =
√
d0,

w2 =
√
d2,

w1 = |d1|
1
2 (cos(ω1

2 ) + i sin(ω1
2 ))− n0−6n2

4n2(1+c2)
(w0 +w2) = g(w0,w2),

(5.78)

where
√
di for i = 0, 2 denotes the principal value of the complex square root, i.e.,

with positive real part, and

d1 =
1

1 + c2

(
4s41
n2

(p4−p1)+
(n0 − 6n2)

2

16n2
2(1 + c2)

(w0+w2)
2−w0w2

)
with ω1 = arg(d1).

To show that x′(t) is contained within Dα for all t ∈ [0, α] and α ∈ (0, π2 ), we
can verify that for all t ∈ [0, α] w(t) lies within the open set

√
Dα =

{
z ∈ C : Re(z) > |Im(z)| and |z| <

√
3

α

}
, with α ∈

(
0,

π

2

)
.
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Figure 5.15: Visualization of the domain Dα from (5.77) for the fixed end points
p0 = 0, p5 = 1.

Following the proof in [Moon 2001, Proposition 2], we apply the de Casteljau-like
algorithm previously described in Subsection 5.1.2 for the evaluation of trigonomet-
ric Bézier curves over the space Ũ2, to split w(t) in correspondence of the parameter
t = α

2 . From equation (5.2) we get that the control points of the two subcurves
wl(t), wr(t) joining at such location are

wl(t) =
√

x′
l(t) = w0B̃

2
0(t) +m01B̃

2
1(t) +

1

2
(m01 +m12)B̃

2
2(t),

wr(t) =
√

x′
r(t) =

1

2
(m01 +m12)B̃

2
0(t) +m12B̃

2
1(t) +w2B̃

2
2(t),

where

m01 =
cos(α2 )w1 +w0

cos(α2 ) + 1
and m12 =

cos(α2 )w1 +w2

cos(α2 ) + 1
. (5.79)

By the convexity of
√
Dα and the convex hull property of the generalized Bézier

curves built-upon the normalized B-basis B̃2
i (t), i = 0, 1, 2, it suffices to show that

for arbitrary values of w0 and w2 in
√
Dα, m01 and m12 are also contained in√

Dα. To this purpose, we use the Minkowski geometric algebra of complex sets
[Farouki 2000b, Farouki 2000a] and a generalization of Minkowski sums and prod-
ucts by the concept of an implicitly-defined set [Farouki 2000a]

A⊙f B = {f(a,b) : a ∈ A,b ∈ B},

corresponding to a given bivariate function f(a,b). From (5.78) and (5.79) we
have that the Bézier coefficients m01 and m12 can be regarded as complex-valued
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functions of values w0, w2 chosen from
√
Dα, i.e.

m01 = f0(w0,w2) =
cos(α2 )g(w0,w2) +w0

cos(α2 ) + 1
, m12 = f1(w0,w2) =

cos(α2 )g(w0,w2) +w2

cos(α2 ) + 1
.

Therefore, the control points m01 and m12 lie in the region defined by√
Dα ⊙fi

√
Dα = {fi(z1, z2) : z1 ∈

√
Dα, z2 ∈

√
Dα} , i = 0, 1.

Although this implicitly-defined set does not allow a closed–form evaluation,
we can evaluate it numerically, thus obtaining

√
Dα ⊙fi

√
Dα ⊂

√
Dα, as shown

in Figure 5.16. As a consequence, w(t) is entirely contained within
√
Dα for all

α ∈ (0, π2 ), and thus the hodograph x′(t) = w2(t) of the ATPH (++) interpolant
x(t) lies within Dα for all the same choices of α, which concludes the proof.

By Proposition 8 we can thus select the (++) ATPH interpolant directly, without
explicitly constructing all four solutions and comparing them.
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Figure 5.16: Visualization of the hodograph control points m01 (green) and m12

(blue) in the domain
√
Dα for α = π

5 (a) and α = 2
5π (b).

5.7 Construction of ATPH spirals

In this section we define ATPH spirals as Algebraic-Trigonometric Pythagorean
Hodograph curves with monotone curvature, i.e., with no interior curvature ex-
trema. Spiral segments are widely used in several practical applications such as,
e.g., highway and railway design, or robot path planning. The control of the curva-
ture behavior is also desirable in many CAD and CAGD applications.
While quintic PH curves with monotone curvature can be also obtained
[Farouki 1997], the advantage of an ATPH spiral lies in the fact that it allows for
higher flexibility and better curvature variation. In the next sections we will describe
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a general construction of ATPH spirals to be used as G2 transition elements either
between a line and a circle that do not intersect or between a pair of external circles,
and we will highlight their advantages with respect to polynomial PH spirals.

5.7.1 ATPH spiral for designing a G2 transition between a line and
a circle

Let x(t) =
∑5

i=0 piB
5
i (t), t ∈ [0, α] be an ATPH curve with control points pi,

i = 0, ..., 5 as in (5.61)-(5.65), that satisfies the equation

x(t) = p0 +

∫ t

0
w2(s) ds,

where p0 is a complex arbitrary integration constant, and

w(t) = w0B̃
2
0(t) +w1B̃

2
1(t) +w2B̃

2
2(t),

with wj = uj+ivj = wje
iθj , j = 0, 1, 2. Given two vectors t0 and tα, in the following

we define an ATPH spiral x(t) such that

(a) x(0) = p0, t0 is the tangent at t = 0, κ(0) = 0;

(b) tα is the tangent at t = α, κ(α) = 1
R (R > 0), κ′(α) = 0;

(c) x(t) has monotonically increasing curvature, i.e., κ′(t) > 0 for all t ∈ [0, α].

Without loss of generality we assume p0 = 0. In this way x(0) = 0. Moreover, we
set t0 = 1 and tα = eiθ, with 0 < θ < π. Thus, being x′(t) = w2(t), from the
second condition in (a) we get x′(0) = w2

0 = w2
0 and from the first condition in (b)

we obtain x′(α) = w2
2 = w2

2e
iθ. From these two equations we immediately have

w0 = w0 ∈ R\{0} and w2 = w2e
i θ
2 , 0 < θ < π, w2 ∈ R\{0}. (5.80)

Now, recalling that the (signed) curvature of the ATPH curve has the expression

κ(t) = 2
Im
(
w(t)w′(t)

)
|w(t)|4

, (5.81)

and
w′(0) = cot

(α
2

)
(w1 −w0),

the value of κ(0) can be simply written in the form

κ(0) = 2 cot
(α
2

) Im(w1)

w3
0

.

By requiring κ(0) = 0 (third condition in (a)) we thus get Im(w1) = 0, i.e.,

w1 = w1 ∈ R\{0}. (5.82)
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On the other hand, for the endpoint t = α, being

w′(α) = cot
(α
2

)
(w2 −w1),

and substituting w1 = w1, from (5.81) we obtain

κ(α) = 2 cot
(α
2

) w1

w3
2

sin

(
θ

2

)
.

Therefore, requiring that κ(α) = 1
R , with R > 0, (second condition in (b)) we find

w1 =
w3
2 tan

(
α
2

)
2R sin

(
θ
2

) .
We now proceed by imposing the condition κ′(α) = 0 (the last of (b)). Since

κ′(t) = 2
Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
|w(t)|6

,

and
w′′(α) =

1

1− cos(α)

(
w0 − (1 + cos(α))w1 + cos(α)w2

)
,

then setting κ′(α) = 0 gives

Im
(
3(1 + cos(α)) |w2|2w1w2 + |w2|2w0w2 − 2(1 + cos(α))w2

1w
2
2

)
= 0,

and inserting the values of wj , j = 0, 1, 2, from (5.80), (5.82) the last equation
provides

w0 =
w3
2

(
2(1− cos(α))w2

2 cos
(
θ
2

)
− 3R sin(α) sin

(
θ
2

) )
2R2 sin2

(
θ
2

) .

Now, introducing the notation M =
w2

2
R , we can rewrite the expressions for the

coefficients wj , j = 0, 1, 2 in terms of the parameter M as follows:

w0 = w0 =
√
RM3 2(1−cos(α))M cos( θ

2)−3 sin(α) sin( θ
2)

2 sin2( θ
2)

,

w1 = w1 =
√
RM3 1−cos(α)

2 sin(α) sin( θ
2)
,

w2 =
√
RM

(
cos
(
θ
2

)
+ i sin

(
θ
2

) )
.

We now still have to satisfy the additional requirement κ′(t) > 0 for all t ∈ [0, α]

(condition (c)). This will provide a lower bound on the admissible values of w2.
Looking at the formula of κ′(t), it is evident that the problem reduces to study a
sufficient condition on w2 that guarantees

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
> 0 ∀t ∈ [0, α]. (5.83)
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Let us start by observing that we can write

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
=

M3R2

24s̃5s1c1

6∑
i=0

biB̃
6
i (t),

where

b0 = 12M2s21c1 (2Ms1c̃− 3s̃c1)
3 ,

b1 = 2M2s21 (2Ms1c̃− 3s̃c1)
2
(
16Mc̃s1c1 − s̃(24c21 + 1)

)
,

b2 =
4Ms1c1
4c21+1

(
56M4s41c̃

3 − 200M3s31c1s̃c̃
2 + 6M2s21c̃s̃

2(37c21 − 4c̃2 − 1)

+9Ms1c1s̃
3(8s21 − 8s̃2 + 1)− 54c21c̃s̃

4
)
,

b3 =
3Ms1s̃
3+2c21

(
56M3s31c̃

2 − 156M2c1s
2
1c̃s̃+Ms1s̃

2(108c21 − 24c̃2 − 1) + 36c1c̃s̃
3
)
,

b4 =
4c1s̃2

4c21+1

(
6M3s31c̃(4c̃

2 + 3)− 2M2s21c1s̃(42c̃
2 + 13) + 18Ms1(4c

2
1 − 1)s̃2c̃+ 21c1s̃

3
)
,

b5 = 2s̃3
(
2M2s21(6c̃

2 + 1)− 36Ms1c1s̃c̃+ 3(8c21 − 1)s̃2
)
,

b6 = 0,

with s̃ := sin
(
θ
2

)
, c̃ := cos

(
θ
2

)
and s1, c1 from (5.3).

Remark 3. Note that the Bézier coefficient b6 = 0 agrees with the requirement
κ′(α) = 0.

Thus, if we assume 0 < α < π/2 and 0 < θ < π, it turns out that any arbitrary
choice of w2 satisfying the inequality

w2 >

√
k∗R tan

(θ
2

)
,

with
k∗ =

5

2
cot
(α
2

)
− cot(α),

guarantees that all the coefficients bi, i = 0, ..., 5 are strictly positive and therefore
(5.83) is satisfied. As a consequence, for any arbitrary k > k∗ we can equivalently
set

w2 =

√
k R tan

(θ
2

)
,

and rewrite the coefficients wj , j = 0, 1, 2 in terms of the parameter k as follows:

w0 =

√
kR tan

(
θ
2

)
k
2

(
2(1− c2)k − 3s2

)
sec
(
θ
2

)
,

w1 =

√
kR tan

(
θ
2

)
k
2

s1
c1

sec
(
θ
2

)
,

w2 =

√
kR tan

(
θ
2

) (
cos
(
θ
2

)
+ i sin

(
θ
2

))
,

(5.84)

with si, ci, i = 1, 2 from (5.3).
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Thus, taking into account formulae (5.84), the displacement between the end
points of the ATPH spiral

p5−p0 =
1

16s41

(
n0w

2
0 + 4n2(1 + c2)w

2
1 + n0w

2
2 + 2(n0 − 6n2)w1(w0 +w2) + 4n2w0w2

)
,

can be expressed as

p5 − p0 =
kR tan

(
θ
2

)
16c1s41

(F + iG) ,

with

F = 1

4c1 cos2
(

θ
2

) [4n0s
2
1s

2
2k

4 + 2s2(c2 − 1)(6n2 + (3c2 + 2)n0)k
3

+ s22

(
3(3c21 − 1)n0 + 4

(
2 cos2

(
θ
2

)
+ 5
)
n2

)
k2

+ 2s2 cos
2
(
θ
2

)
(n0 − 6n2(c2 + 2))k + 4c21n0 cos

2
(
θ
2

)
cos(θ)

]
,

and

G = tan
(θ
2

) (
4c1n2(1− c2)k

2 + s1(n0 − 6n2(c2 + 2))k + 2c1n0 cos
2
(θ
2

))
.

L

R

C

θ
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Figure 5.17: Geometrical parameters of an ATPH spiral used as G2 connection
between a line L and a circle C.

Now, if we want to exploit the ATPH spiral satisfying the above conditions
(a),(b),(c) to connect G2 continuously a line L and a circle C that do not intersect,
without loss of generality we can assume L to be the x-axis with the transition
curve starting at p0 = x0 and take C of radius R and center c = l + ih with
h > R. Measuring the angular position θ on the circle in the anticlockwise sense
from a perpendicular dropped to L from c (see Figure 5.17), the transition curve is
identified by the requirement

Im(p5 − p0) = h−R cos(θ). (5.85)
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Using standard trigonometric relations, equation (5.85) leads to

Q(cos(θ)) := a2 cos
2(θ) + a1 cos(θ) + a0 = 0, (5.86)

where

a0 = 4Rc1n2(1− c2)k
3 +Rs1(n0 − 6n2(c2 + 2))k2 +Rc1n0k − 16c1s

4
1h,

a1 = 4Rc1n2(c2 − 1)k3 +Rs1(6n2(c2 + 2)− n0)k
2 + 16c1s

4
1(R− h),

a2 = −Rc1(kn0 − 16s41),
(5.87)

Since

Q(0) = a0 = Rk
(
4c1n2(1− c2)k

2 + s1(n0 − 6n2(c2 + 2))k + c1n0

)
− 16c1s

4
1h,

and
Q(1) = a2 + a1 + a0 = 32c1s

4
1(R− h),

being 0 < α < π/2 and 0 < θ < π, when h satisfies

R < h < A(k, α)R, (5.88)

with

A(k, α) = k
(4c1n2(1− c2)k

2 + s1(n0 − 6n2(c2 + 2))k + c1n0)

16c1s41
,

we have Q(0) > 0 and Q(1) < 0, so that the equation (5.86) has a unique root
satisfying cos(θ) ∈ (0, 1). Note that, when k = k∗

(
= 5

2 cot
(
α
2

)
− cot(α)

)
, then

A(k, α) > 1 ∀α ∈
(
0, π2

)
,

and A(k, α) is monotonically increasing for k > k∗ (see Figure 5.18). In this
way, for any value of α ∈ (0, π/2), we can make the upper bound on h as large as
we want by taking k sufficiently large. Remember also that, if we denote by k the
value such that A(k, α) = h

R , we need to certainly choose k > max(k∗, k) in order
to satisfy (5.88). See Figure 5.19 for an illustrative example of this situation. For
the sake of clarity, we conclude by summarizing the steps of the algorithm to draw
an ATPH spiral to connect G2 continuously a line L corresponding to the x-axis
and a circle C of radius R > 0 and center (l, h) with h > R.

Remark 4. Note that the requirement κ′(α) = 0 indeed implies a G3 contact of the
ATPH spiral with the circle C, while the contact with the line L is only G2.

Algorithm
Input : l, h > 0, R ∈ (0, h), α ∈ (0, π/2).

1. Choose k such that inequality (5.88) is satisfied;

2. Compute a0, a1, a2 in (5.87);
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Figure 5.18: Behavior of A(k, α) for α ∈ (0, π/2).
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Figure 5.19: Behaviour of A(k, α) for α = 2
5π and R = 2, h = 3 (left), R = 1, h = 3

(right).

3. Determine θ ∈ (0, π) by solving (5.86);

4. Work out the values of w0,w1,w2 given in (5.84);

5. Determine x0 by solving the equation Re(p5 − p0) = l +R sin(θ)− x0.
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Output : Control points p0 = x0, pi, i = 1, ..., 4, p5 = l + R sin(θ) + i(h −
R cos(θ)) of the ATPH spiral connecting L and C. As an application example of the
previously developed constructive strategy we consider the following choices: R = 2,
l = 4 and h = 3. In Figure 5.20 we display the obtained ATPH spiral for α = π

5 ,
α = π

3 and α = 2
5π when k = k∗, and in Figure 5.21 the corresponding quintic PH

spiral for which k satisfies R < h < 2k3−3k2+12k
60 R (see [Farouki 1997]).
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Figure 5.20: First column: ATPH spirals for α = π
5 , α = π

3 and α = 2
5π, where

k = k∗. Second column: corresponding curvature plots.

In Figure 5.26 we plot the behavior of κ′(t) for the ATPH spirals in Figure 5.20
and the quintic PH spiral in Figure 5.21. As we can see, for an ATPH spiral (black),
the maximum of the function κ′(t) is decreasing for increasing values of α, while
for a PH spiral (blue) it is obviously a fixed value. As a consequence ATPH spirals
compare favorably with their polynomial PH counterparts since the parameter α can
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Figure 5.21: Quintic PH spiral for k = 4 (left) and its curvature plot (right).

be suitably selected to control the curvature variation and ensure the best possible
behavior.
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Figure 5.22: Behavior of κ′(t) for the ATPH spirals in Figure 5.20 with α = π
5 ,

π
3 ,
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5π

(black) and for the quintic PH spiral in Figure 5.21 (blue).

Furthermore, by evaluating the arc length of the ATPH spiral over the interval
[0, α] from formula (5.75) with w0,w1,w2 in (5.84), we can obtain the length of the
ATPH spiral

Sα = R
8 k tan

(
θ
2

)( (
8αs22k

2 + 16s2(s
2
1 − 3αc21)k + α(72c41 + 1)− s2(c2 + 12s2)

) s21
c21

k2 sec2
(
θ
2

)
+4(8s21s2k

2 − 2s1s2(6c1 − s1)k + s2c2 + α)
)
,

with si, ci, i = 1, 2 from (5.3).

Observe that, for given R and θ, the last expression is positive and monotonically
increasing with k for k ≥ k∗; as a consequence, the length of the ATPH spiral
increases with k. It is clear that the parameter k can be selected such that the
total arc length Sα assumes a specified value. This requires to solve a polynomial
equation of degree 5. Although this is possible also in the polynomial case presented
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in [Farouki 1997], if using an ATPH spiral, once the value of k has been fixed, we
still have another free parameter α that can be used for other purposes.

5.7.2 S-shaped ATPH spiral for designing a G2 transition between
two circles

In this section we consider the problem of designing an S-shaped ATPH spiral to
join two given circles Ω0, Ω1 with centers C0, C1 and radii r0, r1, such that at both
points of contact G2 continuity is ensured. We denote by r the distance between
the centers of the two circles

r = |C1 −C0|, (5.89)

and we define r1 = r0
µ3 , where µ ≥ 1. Moreover, without loss of generality (after

suitable translation, rotation and reflection), for the starting point of the ATPH
curve we can assume p0 = 0, as well as the curvature at the starting point being 1

(i.e. r0 = 1), p1 lying on the positive x-axis (Re(p1) > 0), the larger circle having
the center C0 = i, and the end point p5 lying above the x-axis (Im(p5) > 0). We
then denote by θ and 2nθ the angles from p1 − p0 to p2 − p1 and from p1 − p0 to
p5−p4, respectively (see Figure 5.23). By construction, it turns out that θ and 2nθ

may vary at most between 0 and π
2 .

θ
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2nθ

r1

C1

C0

r0 = 1

p3

p4

p5

p0 = 0

Figure 5.23: Geometrical parameters of an S-shaped ATPH spiral used as G2 con-
nection between two external circles.

Summarizing, our goal is to define an S-shaped ATPH spiral that satisfies all
the following requirements:

(i) x(0) = p0 = 0

(ii) t0 = 1 is the tangent at t = 0 (i.e., x′(0) ∥ 1)

(iii) tα = e2inθ is the tangent at t = α (i.e., x′(α) ∥ (cos(2nθ) + i sin(2nθ)))

(iv) (p2 − p1) ∥ (cos(θ) + i sin(θ))
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(v) (κ(0), κ(α)) = (1,−µ3)

(vi) x(t) has monotonously decreasing curvature, i.e. κ′(t) < 0 for all t ∈ [0, α].

By Kneser’s theorem [Guggenheimer 1963], it follows that a single S-shaped
segment cannot have monotone curvature both in case of tangent and intersecting
circles, as well as when one is contained into the other. Thus, we can draw S-shaped
ATPH transitions satisfying the above requirements, only under the condition r0 +

r1 < r. As in the previous section, in order to determine the ATPH spiral solving the
above problem, we need to work out its complex coefficients wj , j = 0, 1, 2. First of
all, recalling that x′(t) = w2(t), from (ii) and (iii) we obtain respectively w0 = w0 ∈
R\{0} and w2 = w2 e

inθ, w2 ∈ R\{0}. Then, being p2 − p1 = n0−6n2

8s41
w0w1 with

w0 = w0, w1 = w1e
iθ1 and w0, w1 ∈ R\{0}, from (iv) we immediately get θ1 = θ.

Before imposing condition (v), we recall once again that the (signed) curvature of
the ATPH curve has the expression in (5.81). Thus, by requiring κ(0) = 1, we
obtain w1 =

w3
0

2 sin(θ) tan
(
α
2

)
and then w1 =

w3
0
2 tan

(
α
2

)
(cot(θ) + i). On the other

hand, for the endpoint t = α, condition κ(α) = −µ3 leads to w2 = w0
µ

3

√
sin((1−n)θ)

sin θ .
In conclusion, after introducing the notation

h = w2
0, ς =

cos(nθ)

µ

3

√
sin((1− n)θ)

sin θ
, (5.90)

we can rewrite the coefficients wj , j = 0, 1, 2 in terms of h and ς as follows:

w0 =
√
h

w1 =
√
h h

2 tan
(
α
2

)
cot(θ) + i

√
h h

2 tan
(
α
2

)
w2 =

√
h ς + i

√
h ς tan(nθ)

(5.91)

Thus, since h, n, µ, θ, α are free parameters, it turns out that there exists a whole
family of ATPH curves x(t) satisfying the conditions (i)-(v). From (5.61)-(5.65)
with p0 = 0 we obtain

p5 =
n0

16s41
(w2

0 +w2
2) +

n0 − 6n2

8s41
w1(w0 +w2) +

n2

4s41
((1 + c2)w

2
1 +w0w2),

where w0,w1,w2 are given by (5.91). Also taking into account that the coordinates
of the centers of the two circles are

C0 = p0 + r0 (0, 1) = (0, 1), C1 = p5 + r1 (sin(2nθ),− cos(2nθ)) =: (p, q),

having denoted by r the distance between C0 and C1, condition (5.89) determines
a polynomial equation f(h) = 0 given by f(h) = p2 + (q − 1)2 − r2, where
p = Ah3 +Bh2 + Ch+D, q = Eh3 + Fh2 +Gh+H, and

A = n2 tan2(α/2) (c2+1) (1−tan2(θ))
16s41 tan

2(θ)
,

B = tan(α/2)(n0−6n2)(1+ς(1−tan(nθ) tan(θ)))
16s41 tan(θ)

,

C = n0+4ςn2+ς2n0(1−tan2(nθ))
16s41

,

D = sin(2nθ)
µ3 ,

E = n2 tan2(α/2)(c2+1) cot(θ)
8s41

,

F = tan(α/2)(n0−6n2)(1+ς(1+tan(nθ) cot(θ)))
16s41

,

G = ς tan(nθ)(2n2+ςn0)
8s41

,

H = − cos(2nθ)
µ3 .
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with s1, c2, n0, n2 from (5.3), (5.4) and ς from (5.90). Therefore, fixing r, it
turns out that h is not at all a positive free parameter, but it needs to be
determined such that f(h) = 0. Let us start by observing that, if θ ∈ (0, π4 ]

and n ∈ (0, 12), then A,B,C,D,E, F,G > 0 and H < 0. Observe also that the
polynomial equation f(h) = 0 is of degree six and it can be conveniently rewritten
as
∑6

ℓ=0 gℓ(n, µ, θ, α)h
ℓ = 0 where the coefficients gℓ(n, µ, θ, α), ℓ = 0, ..., 6 have

expressions

g0(n, µ, θ, α) = D2 +H2 + 1− r2 − 2H,

g1(n, µ, θ, α) = 2(CD +GH −G),

g2(n, µ, θ, α) = C2 + 2BD +G2 + 2FH − 2F,

g3(n, µ, θ, α) = 2(AD +BC + EH + FG− E),

g4(n, µ, θ, α) = B2 + 2AC + F 2 + 2EG,

g5(n, µ, θ, α) = 2(AB + EF ),

g6(n, µ, θ, α) = A2 + E2.

Looking at the expressions of the coefficients gℓ, ℓ = 0, ..., 6 it trivially follows that
g6 > 0 and g0 < 0 (since r > r0 + r1). Moreover, from the previous observation
on the signs of A,B,C,D,E, F,G,H it turns out that g2 < 0 and g4, g5 > 0.
Therefore, independently of the sign of g1 and g3, using the Descartes rule of signs
and the intermediate value theorem, the existence of a positive solution of f(h) =
0 immediately follows, which guarantees the existence of the ATPH spiral. This
solution is certainly unique if we further assume µ ≥ 1.5 because in this case the
condition g1 < 0 is also satisfied.
Now we still need to satisfy the last requirement κ′(t) < 0 for all t ∈ [0, α] (condition
(vi)). This will provide stronger restrictions on the admissible values of the free
parameters. Looking at the formula of κ′(t), it is evident that the problem reduces
to study sufficient conditions on the free parameters that ensure

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
< 0 ∀t ∈ [0, α].

Let us start by observing that we can write

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
=

h2

4s21

6∑
i=0

biB̃
6
i (t)
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with

b0 = 2 cot(θ)(c2 − 1)h2 + 3s2h+ 2ς tan(nθ),

b1 = − 1
3c1

(
2s31

sin2(θ)
h3 + cot(θ)c1(c2 − 1)h2 + (5ς + ς tan(nθ) cot(θ)− 3)s1h− 8ςc1 tan(nθ)

)
,

b2 = − 1
3(2c2+3) cos(nθ) sin2(θ)

(
cos(nθ)s21s2h

3 + 2s21((1− 3ς) sin(θ(n− 2))− sin(θ(n+ 2))

+6ς sin(nθ))h2 + ςs1c1(3 cos(θ(n+ 2))− 10 cos(θ(n− 2))

+7 cos(nθ))h+ 2ς(6ς − 7) sin(nθ) sin2(θ)
)
,

b3 = − hs1
2c1(c2+4) cos2(nθ) sin3(θ)

(
s21 cos(nθ)(ς sin(θ(n− 1))− cos(nθ) sin(θ))h2

+3ςc1s1 cos(nθ)(cos(θ(n− 1))− cos(θ(n− 3)))h

+ς sin2(θ)((1 + 8ς) sin(θ)− 3 sin(θ(2n+ 1))

+2(3ς − 2) sin(θ(2n− 1)))
)
,

b4 = − 2ς
3(2c2+3) cos3(nθ) sin3(θ)

(
− c1s

3
1 sin(θ(n− 1)) cos2(nθ)h3

− s21
4 cos(nθ)((3 + 4ς) cos(θ(2n− 1)) + (3− 4ς) cos(θ(2n− 3))

−6 cos(θ(2n+ 1)) + 3(cos(3θ)− cos(θ)))h2

+ςs1c1 sin
2(θ) cos(nθ)(3 sin(θ(2n− 1)) + 10 sin(θ))h

+ς sin(nθ) sin3(θ)(7ς − 6 cos2(nθ))
)
,

b5 = − ς
6c1 cos3(nθ) sin3(θ)

(
− 4s31 sin(θ(n− 1)) cos2(nθ)h3 − ςs21c1 cos(nθ)(cos(θ(2n− 1))

− cos(θ(2n− 3)))h2 + ςs1 sin
2(θ)(2 sin(θ(n+ 1))

+(6ς − 5) sin(θ(n− 1))− 3 sin(θ(3n− 1)))h+ 16ς2c1 sin(nθ) sin
3(θ)

)
,

b6 = − ς2

cos3(nθ) sin3(θ)

(
s21 cos(nθ)(cos(θ(2n− 1))− cos(θ(2n− 3)))h2

−3ςs2 sin((1− n)θ) sin2(θ)h+ 2ς sin(nθ) sin3(θ)
)

and ς from (5.90). Thus, we need to determine under which conditions on
the free parameters θ, n, µ, the Bézier curve

∑6
i=0 biB̃

6
i (t) is strictly negative.

Under the assumption θ ∈ (0, π/4] and n ∈ (0, 1/2) it turns out that bi < 0 for
i = 0, 1, 2, 4, 5, 6, while the sign of b3 is not fixed. Anyway, assuming µ ∈ [1, 5],
it is easy to verify numerically that

∑6
i=0 biB̃

6
i (t) < 0 for all t ∈ [0, α] and α ∈ (0, π2 ).

As an application example of the constructive strategy of S-shaped ATPH
spirals we consider the following choices: r0 = 1, µ = 3

√
2, r1 = 1

2 , r = 2, n = 1
3 ,

θ = π
5 . In Figure 5.24, from top to bottom, we display the quintic PH spiral in

[Habib 2008] and the ATPH spirals with α = 7
24π and α = 5

12π, obtained from the
above data.

Note that, although the quintic PH curve in Figure 5.25 (left) has monotone
curvature, in general the S-shaped transition elements constructed in [Habib 2008]
do not guarantee the fulfillment of condition (vi). Moreover, from Figure 5.24 we
can see that the additional free parameter α included in the ATPH approach can
be used either to modify the location of the second point of contact of the spiral or
to adjust the curvature profile and/or curvature variation of the spiral (see Figure
5.26). Therefore ATPH spirals again compare favorably with their polynomial PH
counterpart.
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Figure 5.24: From top to bottom: S-shaped quintic PH spiral in [Habib 2008] (blue)
and S-shaped ATPH spirals with α = 7

24π and α = 5
12π (red).
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Figure 5.25: Control polygon for the S-shaped quintic PH spiral (left) and the S-
shaped ATPH spirals with α = 7

24π (center), α = 5
12π (right) displayed in Figure

5.24.
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Figure 5.26: Behavior of κ(t) (left) and κ′(t) (right) for the S-shaped spirals in
Figures 5.24-5.25. From top to bottom the plot of the functions concerning the
ATPH spiral with α = 5

12π, the quintic PH spiral in [Habib 2008] (blue) and the
ATPH spiral with α = 7

24π.





Chapter 6

Conclusions

The research of this thesis started with the study of the area of stop motion camera
animation. We outlined what is stop motion animation and what happens when
an animator also moves the camera. We observed that a limited amount and an
aesthetic quality of noise is desirable to a certain extent since it contributes to
realism and to the particular aesthetics of stop motion.

Next, we made a bibliographic research on the most important 3D animation
software programs that can control camera moves. We remarked that so far the
traditional animation methods in these programs suffer from limitations in produc-
ing realistic camera moves. We summarized the main advantages and disadvantages
of the software’s tools and the mathematical background of these techniques. We
described several interpolation techniques to fit a piecewise curve to a sequence
of given points (keyframes), depending on the final motion desired. In order to
overcome the major disadvantage (dependence of position and speed) of the most
popular animation technique, the "Keyframing Animation", several approaches aim
at reparameterising the curve by arc length and thus controlling the movement along
the curve by an Ease Curve.

The analysis of the advantages and disadvantages of the ways to animate a cam-
era frame by frame allowed us to define our objective. We want to create, by a
stop motion animation technique, a 3D animation that looks as realistic as possible.
We used the partial solutions proposed in the literature with the aim of overcoming
the existing drawbacks of 3D animation software and motion control systems. We
presented a new motion control system specifically designed for stop motion that is
able to simulate a realistic camera animation with a low budget in order to give stop
motion animators total freedom of camera movement that maintains the handwork
visual aesthetics of stop motion. In particular we aimed at simulating a 3D realistic
camera movement that can integrate constraints and imperfections (noise) of real
camera devices by using a haptic interface. We described the whole system, we ex-
plained in detail the mathematical processing to obtain different camera movements
by using a haptic interface for motion capture. We presented also an assessment of
our system carried out with a class of students of the "Art plastiques et Création
numérique" Master of the University of Valenciennes. These tests encouraged us to
improve our system and to present the future developments.

We observed that the animators need a smooth trajectory curve that takes
into account the constraints of a real camera move. Thus, we created a new class
of algebraic-trigonometric curves based on the concept of Pythagorean-Hodograph
(PH) curves. This representation allows to determine the curve’s arc-length in an
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analytical way as well as an exact rational parameterization of the offset curves, and
is usable in general curve design applications. Our new class of curves is built-upon
a five-dimensional mixed algebraic-trigonometric space and is called "Algebraic-
Trigonometric Pythagorean-Hodograph" or ATPH. It depends on a parameter which
can be used as shape parameter and reproduces arcs of arbitrary length of planar
trigonometric curves, as circles, cardioids, deltoids, limacons, lemniscates, piriforms.
These properties help us to create a realistic camera movement. To this end, in par-
ticular, we solved the first order Hermite interpolation problem and constructed
spirals as G2 transition elements between a line segment and a circle, as well as
between a pair of external circles.

We can conclude that our system, specifically designed to help animators realize
a realistic camera movement for stop motion, will be a benefit for all types of stop
motion productions and 3D animations. With an optimized workflow, such a system
will significantly encourage creativity while respecting the handwork aesthetic of
stop motion, intensify cinematographic illusion by giving life to camera and allow
as much freedom for camera moves as on a real stage.

For our future developments we would like to use this class of curves in our
motion control system and we would like to improve the latter by creating an open
source system in which a central part (Motion control software) synchronizes the
three stages of the process (Camera movement management, Motion capture device
and Motion control robot and digital camera).



Appendix A

The structure of the motion
control system

We present the technical details of the motion control system described in chapter 4.
The diagram in Figure A.1 summarizes the structure of the motion control system.

Haptic interface: 

Novint Falcon 

Matlab 

3D Studio Max 

Open source Motion 

control software: 

home made 

Motion control robot 

and digital camera 

A.4.1 

Professional Motion 

control software: 

Dragonframe 

A.5 

A.4.2 

A.3 

A.2 

A.1 

Figure A.1: The structure of the motion control system.

In the following sections, we describe, in detail, the steps of the motion control
system.
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A.1 Haptic interface: Novint Falcon

The first step involves the haptic system (Novint Falcon, http://www.novint.com/)
to create the animation, as explained in section 4.1. We use the Visual Studio’s
implementation from [Fünfzig 2010] for haptic interaction with a rational parametric
cubic Bézier curve. We added the possibility to record haptic positions for every ∆t

time by pressing the back button on the Novint Falcon (see Figure A.2).

Figure A.2: In the red circle the back button on the Novint Falcon to record robot’s
positions.

The Visual Studio’s code for this step is:

void HapticsLogic::getPosition(Point& point){

SYSTEMTIME a;

GetSystemTime(&a);

int b;

hdlToolButtons(&b);

point.x = m_positionApp[0];

point.y = m_positionApp[1];

struct tm* newtime;

time_t t = time(NULL);

tm *time;

time = localtime(&t);

//To start haptic positions recording

if(b==4){

if(var==1){

int sec1 =a.wSecond;

int mill_sec1 = a.wMilliseconds;

printf("Time stop = %i,%i \n",sec1,mill_sec1);

var=2;

FILE * pFileX;

pFileX = fopen ("tempoSTART.txt","w");

fprintf (pFileX, "%i, ",sec1);
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fclose (pFileX);

}

int sec = a.wMilliseconds;

if (i==1){

sec_prec=sec;

cout << "msec=" << sec_prec << endl;

i=2;

}

int sec_passed;

sec_passed = abs(sec-sec_prec);

if (sec_passed >=960){

sec_passed=41;

}

int delta_t;

delta_t = 40;

if(sec_passed>=delta_t && sec_passed<=45){

printf("delta_sec_passed = %i \n",sec_passed);

c=c+1;

point.x=((float)((int)(point.x*1000.0f)))/1000.0f;

point.y=((float)((int)(point.y*1000.0f)))/1000.0f;

printf("number of points = %i \n",c);

cout << "positions=" << point.x << ", " << point.y << endl;

i=1;

var=3;

}

}

}

We export these positions in Matlab’s files:

//File with the x coordinates

FILE * pFileX;

pFileX = fopen (".../haptic_x.m","w");

fprintf (pFileX, "x_t=[%f ",point.x);

fclose (pFileX);

//File with the y coordinates

FILE * pFileY;

pFileY = fopen (".../haptic_y.m","w");

fprintf (pFileY, "y_t=[%f ",point.y);

fclose (pFileY);
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A.2 Matlab

In the second step we use Matlab to elaborate the haptic system’s positions (see
Figure A.3) and to find new parametrization curves, as explained in chapter 4. We
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Figure A.3: Visualization of haptic system’s positions (light blue) on the robot
trajectory (green line).

summarize all the steps explained in section 4.3 by the Matlab code:

%Haptic system’s positions from Visual studio

haptic_x;

haptic_y;

plot(x_t(:),y_t(:),’c.’,’Markersize’,7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%1. Projection: "haptic" curve parametrisation

for i=1:length(x_t)-1

spH(i)=sqrt((x_t(i+1)-x_t(i))^2+(y_t(i+1)-y_t(i))^2);

end

for i=2:length(x_t)-1

sH(1)=0;

sH(i)=sH(i-1)+spH(i-1);

if sH(i)>L

sH(i)=L;

end

end
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sH(length(x_t))=L;

for i=2:length(sH)-1

y_e_haptic(i)=sH(i+1);

end

% Ease curve plot for the projection haptic positions

figure(2)

hold on

plot(x_e_haptic,y_e_haptic,’.-r’,’MarkerSize’,7,’LineWidth’,1)

% Parametrisation curve for the projection haptic positions

[t_param]=ease_param(sH,t,w,xv,yv,x_t,L);

[x_haptic, y_haptic]=bezier_rat(t_param,w,xv,yv);

figure(1)

hold on

plot(x_haptic,y_haptic,’.r’,’MarkerSize’,7);

axis equal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%2. Fitting: "ideal" Ease Curve

x_e_haptic=0:24/(length(spH)-1):24;

pcoeff=polyfit(x_e_haptic,y_e_haptic,4);

xp=0:0.1:24;

yp=polyval(pcoeff,xp);

x_e_ideal=0:24/(length(spH)):24;

y_e_ideal=polyval(pcoeff,x_e_ideal);

% Ease curve plot for the ideal positions

figure(2)

hold on

plot(x_e_ideal,y_e_ideal,’.-g’,’MarkerSize’,7,’LineWidth’,1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 3."Ideal" curve parametrisation

[t_param]=ease_param(y_e_ideal,t,w,xv,yv,x_t,L);

[x_ideal, y_ideal]=bezier_rat(t_param,w,xv,yv);
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% Parametrisation curve for the projection haptic positions

figure(1)

hold on

plot(x_medi,y_medi,’.k’,’MarkerSize’,7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%4. Blending: "intermediate" Ease Curves

for i=1:length(x_e_haptic)

d(i)=abs(y_e_haptic(i)-y_e_ideal(i));

end

for i=1:length(x_e_haptic)

lambda(i)=(d(i)/norm(d));

end

for i=1:length(x_e_haptic)

y_e_middle(i)=((1-lambda(i)) * y_e_haptic(i)+(lambda(i))*y_e_ideal(i));

% Ease curve plot for the intermediate positions

figure(2)

hold on

plot(x_e_haptic(i),y_e_middle(i),’.k’)

end

figure(2)

hold on

plot(x_e_haptic,y_e_middle,’-k’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%5."Intermediate" curve parametrisations

[t_param]=ease_param(y_e_middle,t,w,xv,yv,x_t,L);

[x_middle, y_middle]=bezier_rat(t_param,w,xv,yv);

figure(1)

hold on

plot(x_middle,y_middle,’.k’,’MarkerSize’,7);

We export these new positions in a 3D Studio Max’script as follows:

maxscript(x_haptic,y_haptic);

maxscript(x_ideal,y_ideal);

maxscript(x_middle,y_middle);
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//File with the x coordinates

FILE * pFileX;

pFileX = fopen (".../haptic_x.m","w");

fprintf (pFileX, "x_t=[%f ",point.x);

fclose (pFileX);

//File with the y coordinates

FILE * pFileY;

pFileY = fopen (".../haptic_y.m","w");

fprintf (pFileY, "y_t=[%f ",point.y);

fclose (pFileY);

A.3 3D Studio Max

In the third step we use 3D Studio Max to visualize (see Figure A.4) and to adjust
the robot and camera trajectories from Matlab’s data. In the following we present

Figure A.4: Visualization of camera’s trajectory from Matlab’s data.

the 3D Studio Max script to obtain the camera’s trajectory in Figure A.4:

px=#(-2.971, -2.81582, -2.65421, -2.48705, -2.31515, -2.13934, -1.96036, -1.77899,

-1.59591, -1.41183, -1.2274, -1.04323, -0.859931, -0.67806, -0.498155, -0.320721,

-0.146235, 0.024858, 0.192141, 0.355227, 0.51376, 0.667412, 0.815885, 0.958913,

1.09626, 1.22771, 1.35309, 1.47225, 1.58508, 1.69148, 1.79139, 1.88478, 1.97167,

2.05206, 2.12603, 2.19366, 2.25507, 2.31042, 2.35987, 2.40365, 2.44198, 2.47513,

2.50341, 2.52714, 2.54667, 2.5624, 2.57474, 2.58414, 2.59107, 2.59604, 2.59959,

2.60227, 2.6047, 2.60748, 2.61128, 2.61678, 2.6247, 2.63577, 2.65078, 2.67053,

2.69584, 2.72759, 2.76667, 2.81399)

py=#(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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pz=#(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

pathObj=$Camera001

for i = 1 to 64 do(

px[i]=px[i]*100

py[i]=py[i]*0

pz[i]=pz[i]*0

)

animate on

(

for t = 1 to 64 do at time t(

pathObj.position = [px[t],0,0]

)

)

Now, we re-scale (see Figure A.5) and re-time (see Figure A.6) data to adjust them
to the model stage and to the storyboard.

Figure A.5: 3D Studio max trajectory’s re-scaling.

When positions are arranged with our storyboard, we export the camera anima-
tion to the stop motion software, as shown in Figure A.7.
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Figure A.6: 3D Studio max trajectory’s Re-timing.

Figure A.7: Screen shot of 3D Studio Max to export the camera animation to the
stop motion software.

A.4 Motion control software

The 3D Studio Max data are elaborated with a software which include motion control
options. We can choose between a specific software we developped or Dragonframe
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software. Both are based on an Arduino system, as explained in section 4.2.3. This
choice allows us to diffuse our system to a largest audience. In subsections A.4.1
and A.4.2 we describe how, with one or the other, we can control and calibrate the
robot and the camera.

A.4.1 Open source Motion control software: home made

We describe the subsequent versions of our home made motion control software that
allows to import the 3D Studio Max’s data.

• Version 0.1

In Figure A.8 we can see a screen shot of the first version. It is a very simple
version related to the first prototype of our system. It can not control the
camera, but only the robot.

Figure A.8: Version 0.1 of the home made motion control software.

• Version 0.2

In Figure A.9 we can see a screen shot of the second version. We have three
motors that allow us to control robot translation and camera rotations.

Figure A.9: Version 0.2 of the home made motion control software.
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• Version 0.3

The version 0.3 is shown in Figure A.10. We can control three translation axes
and three rotation axes as well as the zoom and the focus of the camera. We
use a general electronic system, as shown is Figure A.11.

- Version 0.3.1
The current version is improved by the use of an Arduino system. The
stop motion system is calibrated (Figure A.12), camera and sequence
settings are adjusted (Figure A.13) and finally the shooting sequence is
launched (Figures A.14(a) and A.14(b)).

A.4.2 Professional Motion control software: Dragonframe

Our system addresses amateurs as well as professionals in this field. The first
category can’t afford a motion control software. For this reason, we created a
home made motion control software. On the other hand, for their productions
many professionals use the commercial software for stop motion, called Dragon-
frame (http://www.dragonframe.com/). It is a proprietary motion editor software
which is not based on common licences featuring numerous tools that help an an-
imator to capture frames and to produce a stop motion animation. Therefore, to
trade our system to professionals as well, it also allows to use the Dragonframe
software. In Figures A.15 and A.16 we can see two examples of the Dragonframe’s
motion control interface.

A.5 Motion control robot and digital camera

To execute the sequence we move the robot and the camera to take photos. We
detail now the mechanical and electronical system’s part. The construction of the
robot required different steps. We describe different versions of our robot from the
first until the last one and we present also our future developments.

• Version 0.1

The very first robot (see Figure A.17) was made with the pieces of a scanner.
The robot never worked well enough to make a video but its limits gave the
first practical basis for the conception of the next version.

• Version 0.2

The main purpose of the second version (see Figure A.18) was to find how
powerful the steppers motors must be to move a professional camera. Tests
showed that with an optimized gear train, the motors we found could move
more than 20 Kg. It could move only along one translation axis, without
controlling rotation axes. With this prototype, we realized the first complete
shooting test. This allowed us to approve our project.
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• Version 0.3

This is the first version with three degrees of freedom (see Figure A.19) and
allowing to move like a dolly. Much more elaborated, its precision is 0,225◦

for rotations and 0,1 mm for translation. It is the first prototype that moves
along rails, with a metal armature.

– Version 0.3.1
This version of the robot constitues an important evolution that replaces
the old electronic motor control with a full Arduino interface. It is the
first version to be fully based on Creative Commons Licenses, that is one
of several public copyright licenses that allow the distribution of copy-
righted works (http://creativecommons.fr/). We give people the right to
share, use, and even build upon our work. We can see a 3D version in
Figure A.20 and a real one in Figure A.21. With this version some tests
with the Paris-based stop motion production company Two Left Hands
(http://www.twolefthands.fr/) have been made. These tests allowed us
to improve the rotation axes precision.

– Version 0.3.2
We are working on this version. Its features are being listed, based on
the tests made with version 0.3.1. We added control focus and zoom
movements, but they are not combined with two rotation axes. Main
improvements will be: precision, degrees of freedom and position sensors.
It is extremely precise (1/8000◦ of degrees) to be able to make smooth
focus change even at macro distance.

A.5.1 Future developments: towards Version 0.3.3

The analysis in the previous section as well as a short positive test of the
system by the Paris-based stop motion production company Two Left Hands
(http://www.twolefthands.fr/) brings us to the conclusion that our system can be
proposed as a new method to help animators realize a realistic camera movement for
stop motion animation. For our future work we would like to improve the motion
capture rotation, e.g., by combining it with the translation movement, and we would
like to create an open source system in which a central part (Motion control soft-
ware) synchronizes the three stages of the process (Camera movement management,
Motion capture device and Motion control robot and digital camera), as summarized
in Figure A.22.
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Figure A.10: Screen shot of the interface (version 0.3) to import 3D Studio Max’s
data.
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Figure A.11: Screen shot of the interface (version 0.3) to calibrate the system.
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Figure A.12: Screen shot of the interface (version 0.3.1) to calibrate the system with
an Arduino interface.
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Figure A.13: Screen shot of the interface (version 0.3.1) to adjust camera and se-
quence settings.
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Figure A.14: Screen shot of the interface (version 0.3.1) to launch the shooting
sequence.
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Figure A.15: Screen shot of the Dragonframe interface for a 3D camera animation.

Figure A.16: Screen shot of the Dragonframe interface to import a camera animation
from Matlab’s data.

Figure A.17: Robot Version 0.1

(a) (b)

Figure A.18: Robot Version 0.2
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(a) (b)

Figure A.19: Robot Version 0.3 in 3D (Figure A.19(a)) and real (Figure A.19(b)).

Figure A.20: Robot 3D Version 0.2.1

(a) (b)

Figure A.21: Robot Version 0.2.1
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Figure A.22: Future Motion control system diagram.
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Abstract

In the first part, we present a new system that allows to create realistic camera
movements for a stop motion animation. The system improves traditional 3D
software animation programs (for example Maya and 3D Studio Max) for creating
stop motion camera movements by using an haptic interface. After describing the
whole system, we explain in detail the mathematical processing to obtain different
camera movements by using an haptic interface for motion capture. The recorded
haptic positions, once elaborated, are exported, frame by frame, to the motion
control software, which allows to calibrate the motion control robot, to control the
camera settings and, finally, to execute the sequences. A class of students of the
"Art plastiques et Création numérique" Master of the University of Valenciennes
evaluated the system.
In the second part, we define a new class of Pythagorean Hodograph curves built
upon a five dimensional mixed algebraic trigonometric space, and show their
fundamental properties and important advantages over their well known polyno-
mial counterpart. A complex representation for these curves is introduced and
constructive approaches are provided to solve the first order Hermite interpolation
problem.

Keywords: stop motion, motion control, 3D animation, camera movement,
realistic simulation, pythagorean hodograph, trigonometric functions, generalized
Bézier curves, Hermite interpolation, spirals.

Résumé

Dans la première partie de la thèse, nous présentons un nouveau système per-
mettant de produire des mouvements de caméra réalistes pour l’animation stop
motion. Le système permettra d’enrichir les logiciels d’animation 3D classiques
(comme par exemple Maya et 3D Studio Max) afin de leur faire contrôler des
mouvements de caméra pour la stop motion, grâce à l’utilisation d’une interface
haptique. Nous décrivons le fonctionnement global du système. La première étape
consiste à récupérer et enregistrer les données envoyées par le périphérique haptique
de motion capture. Dans la seconde étape, nous réélaborons ces données par un
procédé mathématique, puis les exportons vers un logiciel de 3D pour prévisualiser
les mouvements de la caméra. Finalement la séquence est exécutée avec un robot de
contrôle de mouvement et un appareil photo. Le système est évalué par un groupe
d’étudiants du Master "Art plastiques et Création numérique" de l’Université de
Valenciennes.
Dans la deuxième partie, nous définissons une nouvelle classe de courbes à partir
des courbes polynomiales paramétriques à hodographe pythagorien (PH) construite
sur un espace algébrique-trigonométrique. Nous montrons leurs propriétés fonda-
mentales et leurs avantages importants par rapport à leur équivalent polynomial,
grâce à l’utilisation d’un paramètre de forme. Nous introduisons une formulation
complexe et nous résolvons le problème d’interpolation de Hermite.

Mots clés : stop motion, mouvement de contrôle de caméra, animation 3D,
simulation réaliste, 3D hodographe pythagorien, fonctions trigonométriques,
courbes de Bézier généralisées, problème d’interpolation de Hermite, spirals.
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