Structure at 2.8 ?? resolution of F1-ATPase from bovine heart mitochondria, Nature, vol.370, issue.6491, pp.621-629, 1994. ,
DOI : 10.1038/370621a0
A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, vol.307, pp.223-230, 2005. ,
Aqueous Access Pathways in ATP Synthase Subunit a: REACTIVITY OF CYSTEINE SUBSTITUTED INTO TRANSMEMBRANE HELICES 1, 3, AND 5, Journal of Biological Chemistry, vol.282, issue.12, pp.9001-9008, 2007. ,
DOI : 10.1074/jbc.M610848200
A perspective of the binding change mechanism for ATP synthesis, FASEB J, vol.3, pp.2164-78, 1989. ,
Crystallography and NMR system: a new software suite for macromolecular structure determination, Acta Crystallography D, vol.54, pp.905-921, 1998. ,
Mechanism of the F1F0-type ATP synthase, a biological rotary motor, Trends in Biochemical Sciences, vol.27, issue.3, pp.154-60, 2002. ,
DOI : 10.1016/S0968-0004(01)02051-5
Genotypic analysis of genes associated with transmission and drug resistance in the Beijing lineage of Mycobacterium tuberculosis, Clin Microbiol Infect, vol.17, pp.1391-1397, 2010. ,
-ATP Synthase, Journal of Biological Chemistry, vol.285, issue.38, pp.29502-29512, 2010. ,
DOI : 10.1074/jbc.M110.124529
URL : https://hal.archives-ouvertes.fr/hal-00731822
Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis, Appl Microbiol, vol.20, pp.810-814, 1970. ,
A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910, Proteins: Structure, Function, and Bioinformatics, vol.11, issue.4, pp.971-80, 2007. ,
DOI : 10.1002/prot.21376
The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel, Journal of Bioenergetics and Biomembranes, vol.32, issue.5, pp.507-522, 2000. ,
DOI : 10.1023/A:1005621125812
The diarylquinoline TMC207 for multidrug-resistant tuberculosis, N Engl J Med, vol.360, pp.2397-405, 2009. ,
Catalytic and mechanical cycles in F-ATP synthases: Fourth in the Cycles Review Series, EMBO reports, vol.269, issue.3, pp.276-82, 2006. ,
DOI : 10.1021/bi026649t
: model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2158, 2004. ,
DOI : 10.1107/S0907444904019158
Comparative protein structure modeling using Modeller, Curr Protoc Bioinformatics Chapter, vol.5, issue.6, 2006. ,
Transposon Mutagenesis of Mycobacterium marinum Identifies a Locus Linking Pigmentation and Intracellular Survival, Infection and Immunity, vol.71, issue.2, pp.922-931, 2003. ,
DOI : 10.1128/IAI.71.2.922-929.2003
Diarylquinolines, synthesis pathways and quantitative structure???activity relationship studies leading to the discovery of TMC207, Future Medicinal Chemistry, vol.3, issue.11, pp.1345-60, 2011. ,
DOI : 10.4155/fmc.11.79
Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue, Antimicrob Agents Chemother, vol.53, pp.1290-1292, 2009. ,
In Vitro Antimycobacterial Spectrum of a Diarylquinoline ATP Synthase Inhibitor, Antimicrobial Agents and Chemotherapy, vol.51, issue.11, pp.4202-4206, 2007. ,
DOI : 10.1128/AAC.00181-07
Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor, Antimicrobial Agents and Chemotherapy, vol.54, issue.3, pp.1022-1030, 2010. ,
DOI : 10.1128/AAC.01611-09
The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10, Proceedings of the National Academy of Sciences, vol.98, issue.9, pp.4966-71, 2001. ,
DOI : 10.1073/pnas.081424898
Drug resistance in Mycobacterium tuberculosis, Curr Issues Mol Biol, vol.8, pp.97-111, 2006. ,
On the Structure of the Proton-Binding Site in the Fo Rotor of Chloroplast ATP Synthases, Journal of Molecular Biology, vol.395, issue.1, pp.20-27, 2010. ,
DOI : 10.1016/j.jmb.2009.10.059
Mefloquine and New Related Compounds Target the F0 Complex of the F0F1 H+-ATPase of Streptococcus pneumoniae, Antimicrobial Agents and Chemotherapy, vol.46, issue.6, pp.1680-1687, 2002. ,
DOI : 10.1128/AAC.46.6.1680-1687.2002
Complete Ion-Coordination Structure in the Rotor Ring of Na+-Dependent F-ATP Synthases, Journal of Molecular Biology, vol.391, issue.2, pp.498-507, 2009. ,
DOI : 10.1016/j.jmb.2009.05.082
Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus, Science, vol.308, issue.5722, pp.659-62, 2005. ,
DOI : 10.1126/science.1111199
Thermophilic ATP synthase has a decamer c-ring: Indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling, Proceedings of the National Academy of Sciences, vol.101, issue.33, pp.12159-64, 2004. ,
DOI : 10.1073/pnas.0403545101
Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, vol.4, issue.14, pp.1639-62, 1998. ,
DOI : 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Direct observation of the rotation of F1-ATPase, Nature, vol.386, issue.6622, pp.299-302, 1997. ,
DOI : 10.1038/386299a0
Genetic Basis for Natural and Acquired Resistance to the Diarylquinoline R207910 in Mycobacteria, Antimicrobial Agents and Chemotherapy, vol.50, issue.8, pp.2853-2859, 2006. ,
DOI : 10.1128/AAC.00244-06
Novel Class A ??-Lactamase Sed-1 from Citrobacter sedlakii: Genetic Diversity of ??-Lactamases within the Citrobacter Genus, Antimicrobial Agents and Chemotherapy, vol.45, issue.8, pp.2287-98, 2001. ,
DOI : 10.1128/AAC.45.8.2287-2298.2001
High-resolution structure of the rotor ring of a proton-dependent ATP synthase, Nature Structural & Molecular Biology, vol.426, issue.10, pp.1068-73, 2009. ,
DOI : 10.1107/S0907444904019158
A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring, PLoS Biology, vol.107, issue.8, p.1000443, 2010. ,
DOI : 10.1371/journal.pbio.1000443.s005
Aqueous Accessibility to the Transmembrane Regions of Subunit c of the Escherichia coli F1F0 ATP Synthase, Journal of Biological Chemistry, vol.284, issue.35, pp.23243-50, 2009. ,
DOI : 10.1074/jbc.M109.002501
Molecular Architecture of the Rotary Motor in ATP Synthase, Science, vol.286, issue.5445, pp.1700-1705, 1999. ,
DOI : 10.1126/science.286.5445.1700
Structure and Function of Subunit a of the ATP Synthase of Escherichia coli, Journal of Bioenergetics and Biomembranes, vol.278, issue.6, pp.445-454, 2005. ,
DOI : 10.1007/s10863-005-9488-6
Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase Unique rotary ATP synthase and its biological diversity Essentials for ATP synthesis by F1F0 ATP synthases, J Biol Chem Annu Rev Biophys Annu Rev Biochem, vol.284, issue.78, pp.18228-3543, 2008. ,
Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria, Proceedings of the National Academy of Sciences, vol.107, issue.39, pp.16823-16830, 2010. ,
DOI : 10.1073/pnas.1011099107
Drug-Susceptible Mycobacterium tuberculosis Beijing Genotype Does Not Develop Mutation-Conferred Resistance to Rifampin at an Elevated Rate, Journal of Clinical Microbiology, vol.41, issue.4, pp.1520-1524, 2003. ,
DOI : 10.1128/JCM.41.4.1520-1524.2003
ATP synthase-a marvellous rotary engine of the cell, Nature Reviews Molecular Cell Biology, vol.2, issue.9, pp.669-77, 2001. ,
DOI : 10.1038/35089509
Structure at 2.8 ?? resolution of F1-ATPase from bovine heart mitochondria, Nature, vol.370, issue.6491, pp.621-629, 1994. ,
DOI : 10.1038/370621a0
cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets, Biochemical Society Transactions, vol.35, issue.5, pp.1325-1333, 2007. ,
DOI : 10.1042/BST0351325
Codon usage in the Mycobacterium tuberculosis complex, Microbiology, vol.142, issue.4, pp.915-940, 1996. ,
DOI : 10.1099/00221287-142-4-915
A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis, Science, vol.307, issue.5707, pp.223-230, 2005. ,
DOI : 10.1126/science.1106753
Aqueous Access Pathways in ATP Synthase Subunit a: REACTIVITY OF CYSTEINE SUBSTITUTED INTO TRANSMEMBRANE HELICES 1, 3, AND 5, Journal of Biological Chemistry, vol.282, issue.12, pp.9001-9008, 2007. ,
DOI : 10.1074/jbc.M610848200
F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits, Nature Structural & Molecular Biology, vol.12, issue.9, pp.841-847, 2007. ,
DOI : 10.2142/biophysics.1.1
Computational analysis of membrane proteins: the largest class of drug targets, Drug Discovery Today, vol.14, issue.23-24, pp.23-24, 2009. ,
DOI : 10.1016/j.drudis.2009.08.006
A new weapon against TB?, Drug Discovery Today, vol.10, issue.4, pp.230-231, 2005. ,
DOI : 10.1016/S1359-6446(04)03344-6
Respiratory ATP synthesis: the new generation of mycobacterial drug targets?, FEMS Microbiology Letters, vol.308, issue.1, pp.1-7, 2010. ,
DOI : 10.1111/j.1574-6968.2010.01959.x
Novel Agents in the Management of Mycobacterium Tuberculosis Disease, Current Medicinal Chemistry, vol.14, issue.18, pp.2000-2008, 2007. ,
DOI : 10.2174/092986707781368496
serotype O9a:K30, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.3, pp.558-60, 2004. ,
DOI : 10.1107/S0907444903029494
Three-Dimensional Structure of the Intact Thermus thermophilus H+-ATPase/Synthase by Electron Microscopy, Structure, vol.12, issue.10, pp.1789-98, 2004. ,
DOI : 10.1016/j.str.2004.07.017
Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis, J Bacteriol, vol.180, issue.22, pp.5809-5823, 1998. ,
A perspective of the binding change mechanism for ATP synthesis, FASEB J, vol.3, issue.10, pp.2164-78, 1989. ,
The Envelope of Mycobacteria, Annual Review of Biochemistry, vol.64, issue.1, pp.29-63, 1995. ,
DOI : 10.1146/annurev.bi.64.070195.000333
Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-926, 1998. ,
DOI : 10.1107/S0907444998003254
Crystallography and NMR system: a new software suite for macromolecular structure determination, Acta Crystallography D, vol.54, pp.905-921, 1998. ,
The Mycobacterial Transcriptional Regulator whiB7 Gene Links Redox Homeostasis and Intrinsic Antibiotic Resistance, Journal of Biological Chemistry, vol.287, issue.1, 2011. ,
DOI : 10.1074/jbc.M111.302588
The structure of bovine F1-ATPase in complex with its regulatory protein IF1, Nature Structural Biology, vol.10, issue.9, pp.744-50, 2003. ,
DOI : 10.1038/nsb966
Mechanism of the F1F0-type ATP synthase, a biological rotary motor, Trends in Biochemical Sciences, vol.27, issue.3, pp.154-60, 2002. ,
DOI : 10.1016/S0968-0004(01)02051-5
Structure of the MscL Homolog from Mycobacterium tuberculosis: A Gated Mechanosensitive Ion Channel, Science, vol.282, issue.5397, pp.2220-2226, 1998. ,
DOI : 10.1126/science.282.5397.2220
Genotypic analysis of genes associated with transmission and drug resistance in the Beijing lineage of Mycobacterium tuberculosis, Clinical Microbiology and Infection, vol.17, issue.9, pp.1391-1397 ,
DOI : 10.1111/j.1469-0691.2010.03436.x
Genotypic analysis of genes associated with transmission and drug resistance in the Beijing lineage of Mycobacterium tuberculosis, Clinical Microbiology and Infection, vol.17, issue.9, pp.1391-1397, 2010. ,
DOI : 10.1111/j.1469-0691.2010.03436.x
Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation, Nature Structural & Molecular Biology, vol.23, issue.6, pp.701-708, 2011. ,
DOI : 10.1002/jcc.20084
MEDICINE: New TB Drug Promises Shorter, Simpler Treatment, Science, vol.306, issue.5703, p.1872, 2004. ,
DOI : 10.1126/science.306.5703.1872
Comparative and functional genomics of the Mycobacterium tuberculosis complex a, Microbiology, vol.148, issue.10, pp.2919-2947, 2002. ,
DOI : 10.1099/00221287-148-10-2919
MICROBIOLOGY: Enhanced: TB-A New Target, a New Drug, Science, vol.307, issue.5707, pp.214-219, 2005. ,
DOI : 10.1126/science.1108379
Towards new tuberculosis drugs, Biochemical Society Transactions, vol.35, issue.5, pp.1321-1325, 2007. ,
DOI : 10.1042/BST0351321
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.25, issue.6685, pp.537-581, 1998. ,
DOI : 10.1038/31159
Purification and Biochemical Characterization of the F1Fo-ATP Synthase from Thermoalkaliphilic Bacillus sp. Strain TA2.A1, Journal of Bacteriology, vol.185, issue.15, pp.4442-4451, 2003. ,
DOI : 10.1128/JB.185.15.4442-4449.2003
ATPases and synthases, FEBS Letters, vol.94, issue.2, pp.227-236, 1990. ,
DOI : 10.1016/0014-5793(90)80014-A
The capsule of Mycobacterium tuberculosis and its implications for pathogenicity, Tubercle and Lung Disease, vol.79, issue.3, pp.153-69, 1999. ,
DOI : 10.1054/tuld.1998.0200
-ATP Synthase, Journal of Biological Chemistry, vol.285, issue.38, pp.29502-29512, 2010. ,
DOI : 10.1074/jbc.M110.124529
URL : https://hal.archives-ouvertes.fr/hal-00731822
Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis, Appl Microbiol, vol.20, issue.5, pp.810-814, 1970. ,
A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910, Proteins: Structure, Function, and Bioinformatics, vol.11, issue.4, pp.971-80, 2007. ,
DOI : 10.1002/prot.21376
The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel, Journal of Bioenergetics and Biomembranes, vol.32, issue.5, pp.507-522, 2000. ,
DOI : 10.1023/A:1005621125812
Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence, Molecular Microbiology, vol.40, issue.1, pp.85-97, 2009. ,
DOI : 10.1111/j.1365-2958.2009.06625.x
The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis, New England Journal of Medicine, vol.360, issue.23, pp.2397-405, 2009. ,
DOI : 10.1056/NEJMoa0808427
Catalytic and mechanical cycles in F-ATP synthases: Fourth in the Cycles Review Series, EMBO reports, vol.269, issue.3, pp.276-82, 2006. ,
DOI : 10.1021/bi026649t
The b subunit of Escherichia coli ATP synthase, Journal of Bioenergetics and Biomembranes, vol.32, issue.4, pp.347-55, 2000. ,
DOI : 10.1023/A:1005571818730
: model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2158, 2004. ,
DOI : 10.1107/S0907444904019158
Standard Short-Course Chemotherapy for Drug-Resistant Tuberculosis, JAMA, vol.283, issue.19, pp.2537-2582, 2000. ,
DOI : 10.1001/jama.283.19.2537
Comparative protein structure modeling using Modeller, Curr Protoc Bioinformatics Chapter, vol.5, issue.6, 2006. ,
The Structure of a Mycobacterial Outer-Membrane Channel, Science, vol.303, issue.5661, pp.1189-92, 2004. ,
DOI : 10.1126/science.1094114
Biochemical and Molecular Characterization of a Na+-Translocating F1Fo-ATPase from the Thermoalkaliphilic Bacterium Clostridium paradoxum, Journal of Bacteriology, vol.188, issue.14, pp.5045-54, 2006. ,
DOI : 10.1128/JB.00128-06
Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram???negative bacterial pathogens?, Tuberculosis, vol.82, issue.2-3, pp.85-90, 2002. ,
DOI : 10.1054/tube.2002.0328
Resolving stepping rotation in Thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe, Nature Communications, vol.204, p.233, 2011. ,
DOI : 10.1038/nature02212
Disruption of adhC reveals a large duplication in the Mycobacterium smegmatis mc2155 genome, Microbiology, vol.147, issue.12, pp.3281-94, 2001. ,
DOI : 10.1099/00221287-147-12-3281
leading to venturicidin or ossamycin resistance, FEBS Letters, vol.263, issue.2, pp.333-339, 1989. ,
DOI : 10.1016/0014-5793(89)80653-2
Transposon Mutagenesis of Mycobacterium marinum Identifies a Locus Linking Pigmentation and Intracellular Survival, Infection and Immunity, vol.71, issue.2, pp.922-931, 2003. ,
DOI : 10.1128/IAI.71.2.922-929.2003
Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability, Microbiology, vol.156, issue.1, pp.81-88, 2010. ,
DOI : 10.1099/mic.0.033084-0
The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution, Nat Struct Biol, vol.7, issue.11, pp.1055-61, 2000. ,
Evolution of Drug Resistance in Mycobacterium tuberculosis: Clinical and Molecular Perspective, Antimicrobial Agents and Chemotherapy, vol.46, issue.2, pp.267-74, 2002. ,
DOI : 10.1128/AAC.46.2.267-274.2002
3D-Jury: a simple approach to improve protein structure predictions, Bioinformatics, vol.19, issue.8, pp.1015-1023, 2003. ,
DOI : 10.1093/bioinformatics/btg124
Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols, Proceedings of the National Academy of Sciences, vol.104, issue.34, pp.13632-13639, 2007. ,
DOI : 10.1073/pnas.0706290104
PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence, PLoS ONE, vol.393, issue.10, p.3496, 2008. ,
DOI : 10.1371/journal.pone.0003496.s004
The Structure of the Chloroplast F1-ATPase at 3.2 A Resolution, Journal of Biological Chemistry, vol.276, issue.2, pp.1345-52, 2001. ,
DOI : 10.1074/jbc.M008015200
Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria, Antimicrob Agents Chemother, vol.42, issue.8, pp.2084-2092, 1998. ,
Diarylquinolines, synthesis pathways and quantitative structure???activity relationship studies leading to the discovery of TMC207, Future Medicinal Chemistry, vol.3, issue.11, pp.1345-60, 2011. ,
DOI : 10.4155/fmc.11.79
Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis, PLoS Pathogens, vol.21, issue.1, p.5, 2005. ,
DOI : 10.1371/journal.ppat.0010005.st003
URL : https://hal.archives-ouvertes.fr/inserm-00080315
Selectivity of TMC207 towards Mycobacterial ATP Synthase Compared with That towards the Eukaryotic Homologue, Antimicrobial Agents and Chemotherapy, vol.53, issue.3, pp.1290-1292, 2009. ,
DOI : 10.1128/AAC.01393-08
ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction, FEMS Microbiology Letters, vol.313, issue.1, pp.68-74, 2010. ,
DOI : 10.1111/j.1574-6968.2010.02123.x
Probing the Interaction of the Diarylquinoline TMC207 with Its Target Mycobacterial ATP Synthase, PLoS ONE, vol.53, issue.8, p.23575, 2011. ,
DOI : 10.1371/journal.pone.0023575.g005
Laboratory Diagnosis of Mycobacterial Infections: New Tools and Lessons Learned, Clinical Infectious Diseases, vol.33, issue.6, pp.834-880, 2001. ,
DOI : 10.1086/322607
Sodium Ion Cycle in Bacterial Pathogens: Evidence from Cross-Genome Comparisons, Microbiology and Molecular Biology Reviews, vol.65, issue.3, pp.353-70, 2001. ,
DOI : 10.1128/MMBR.65.3.353-370.2001
The Conformation of the ??- and ??-Subunits within theEscherichia coli F1 ATPase, Journal of Biological Chemistry, vol.276, issue.50, pp.47227-47259, 2001. ,
DOI : 10.1074/jbc.M107536200
Improved purification for thermophilic F1F0 ATP synthase using n-dodecyl ??-d-maltoside, Archives of Biochemistry and Biophysics, vol.407, issue.1, pp.117-141, 2002. ,
DOI : 10.1016/S0003-9861(02)00469-1
Selective Extraction and Purification of a Mycobacterial Outer Membrane Protein, Analytical Biochemistry, vol.285, issue.1, pp.113-133, 2000. ,
DOI : 10.1006/abio.2000.4728
F1F0-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1797, issue.8, pp.1362-77, 2010. ,
DOI : 10.1016/j.bbabio.2010.02.028
Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei. I. Purification, homogeneity, and properties, J Biol Chem, vol.250, issue.16, pp.6541-6549, 1975. ,
Enhanced gene replacement in mycobacteria, Microbiology, vol.145, issue.3, pp.519-546, 1999. ,
DOI : 10.1099/13500872-145-3-519
In Vitro Antimycobacterial Spectrum of a Diarylquinoline ATP Synthase Inhibitor, Antimicrobial Agents and Chemotherapy, vol.51, issue.11, pp.4202-4206, 2007. ,
DOI : 10.1128/AAC.00181-07
Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor, Antimicrobial Agents and Chemotherapy, vol.54, issue.3, pp.1022-1030, 2010. ,
DOI : 10.1128/AAC.01611-09
Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections, Nature Reviews Microbiology, vol.20, issue.1, pp.62-75, 2011. ,
DOI : 10.1038/nrmicro2474
Synergistic Activity of R207910 Combined with Pyrazinamide against Murine Tuberculosis, Antimicrobial Agents and Chemotherapy, vol.51, issue.3, pp.1011-1016, 2007. ,
DOI : 10.1128/AAC.00898-06
Sterilizing Activity of R207910 (TMC207)-containing Regimens in the Murine Model of Tuberculosis, American Journal of Respiratory and Critical Care Medicine, vol.180, issue.6, pp.553-560, 2009. ,
DOI : 10.1164/rccm.200807-1152OC
Calcium and copper transport ATPases: analogies and diversities in transduction and signaling mechanisms, Journal of Cell Communication and Signaling, vol.279, issue.3, pp.227-264, 2011. ,
DOI : 10.1007/s12079-011-0136-0
Direct observation of stepped proteolipid ring rotation in E. coli FoF1-ATP synthase, The EMBO Journal, vol.263, issue.23, pp.3911-3934, 2010. ,
DOI : 10.1021/bi026649t
Multidrug resistant to extensively drug resistant tuberculosis: What is next?, Journal of Biosciences, vol.81, issue.74, pp.605-621, 2008. ,
DOI : 10.1007/s12038-008-0078-8
Antibiotic Treatment of Tuberculosis: Old Problems, New Solutions, Microbe Magazine, vol.3, issue.6, pp.285-292, 2008. ,
DOI : 10.1128/microbe.3.285.1
Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae., Antimicrobial Agents and Chemotherapy, vol.35, issue.9, pp.1937-1946, 1991. ,
DOI : 10.1128/AAC.35.9.1937
Mycobacterial cell wall: Structure and role in natural resistance to antibiotics, FEMS Microbiology Letters, vol.123, issue.1-2, pp.11-19, 1994. ,
DOI : 10.1111/j.1574-6968.1994.tb07194.x
Direct Visualization of KirBac3.1 Potassium Channel Gating by Atomic Force Microscopy, Journal of Molecular Biology, vol.374, issue.2, pp.500-505, 2007. ,
DOI : 10.1016/j.jmb.2007.09.043
Bactericidal Activities of R207910 and Other Newer Antimicrobial Agents against Mycobacterium leprae in Mice, Antimicrobial Agents and Chemotherapy, vol.50, issue.4, pp.1558-60, 2006. ,
DOI : 10.1128/AAC.50.4.1558-1560.2006
In Vitro and In Vivo Activities of Rifampin, Streptomycin, Amikacin, Moxifloxacin, R207910, Linezolid, and PA-824 against Mycobacterium ulcerans, Antimicrobial Agents and Chemotherapy, vol.50, issue.6, pp.1921-1927, 2006. ,
DOI : 10.1128/AAC.00052-06
The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10, Proceedings of the National Academy of Sciences, vol.98, issue.9, pp.4966-71, 2001. ,
DOI : 10.1073/pnas.081424898
leading to oligomycin resistance, FEBS Letters, vol.1, issue.1, pp.79-83, 1986. ,
DOI : 10.1016/0014-5793(86)80016-3
Drug resistance in Mycobacterium tuberculosis, Curr Issues Mol Biol, vol.8, issue.2, pp.97-111, 2006. ,
Torque generation and elastic power transmission in the rotary FOF1-ATPase, Nature, vol.10, issue.7245, pp.364-70, 2009. ,
DOI : 10.1038/nature08145
The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride, The EMBO Journal, vol.235, issue.14, pp.2734-2778, 2004. ,
DOI : 10.1038/35089509
Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains, Nature Protocols, vol.7, issue.8, pp.1093-102, 2009. ,
DOI : 10.1006/abio.1994.1112
maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Protein Science, vol.12, issue.8, pp.1668-74, 1999. ,
DOI : 10.1110/ps.8.8.1668
An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions, J Biol Chem, vol.252, issue.8, pp.2486-91, 1977. ,
Expression of membrane proteins from Mycobacterium tuberculosis in Escherichia coli as fusions with maltose binding protein, Protein Expression and Purification, vol.53, issue.1, pp.24-30, 2007. ,
DOI : 10.1016/j.pep.2006.11.022
Diarylquinolines target subunit c of mycobacterial ATP synthase, Nature Chemical Biology, vol.212, issue.6, pp.323-327, 2007. ,
DOI : 10.1128/JB.187.14.5023-5028.2005
Diarylquinolines Are Bactericidal for Dormant Mycobacteria as a Result of Disturbed ATP Homeostasis, Journal of Biological Chemistry, vol.283, issue.37, pp.25273-80, 2008. ,
DOI : 10.1074/jbc.M803899200
On the Structure of the Proton-Binding Site in the Fo Rotor of Chloroplast ATP Synthases, Journal of Molecular Biology, vol.395, issue.1, pp.20-27 ,
DOI : 10.1016/j.jmb.2009.10.059
On the Structure of the Proton-Binding Site in the Fo Rotor of Chloroplast ATP Synthases, Journal of Molecular Biology, vol.395, issue.1, pp.20-27, 2010. ,
DOI : 10.1016/j.jmb.2009.10.059
Main-chain Bond Lengths and Bond Angles in Protein Structures, Journal of Molecular Biology, vol.231, issue.4, pp.1049-67, 1993. ,
DOI : 10.1006/jmbi.1993.1351
Characterization of the major membrane protein of virulent Mycobacterium tuberculosis, Infect Immun, vol.60, issue.5, pp.2066-74, 1992. ,
Location of Persisting Mycobacteria in a Guinea Pig Model of Tuberculosis Revealed by R207910, Antimicrobial Agents and Chemotherapy, vol.51, issue.9, pp.3338-3383, 2007. ,
DOI : 10.1128/AAC.00276-07
On the Question of Hydronium Binding to ATP-Synthase Membrane Rotors, Biophysical Journal, vol.99, issue.7, pp.53-58, 2010. ,
DOI : 10.1016/j.bpj.2010.07.046
High-level expression of soluble subunit b of F1F0 ATP synthase in Escherichia coli cell-free system, Applied Microbiology and Biotechnology, vol.86, issue.3, pp.303-314, 2009. ,
DOI : 10.1007/s00253-009-2055-z
[Drug resistance in Mycobacterium tuberculosis: diagnostic methods], Ann Biol Clin (Paris), vol.58, issue.3, pp.291-298, 2000. ,
Impact of the Interaction of R207910 with Rifampin on the Treatment of Tuberculosis Studied in the Mouse Model, Antimicrobial Agents and Chemotherapy, vol.52, issue.10, pp.3568-72, 2008. ,
DOI : 10.1128/AAC.00566-08
ATP Synthase Inhibition of Mycobacterium avium Is Not Bactericidal, Antimicrobial Agents and Chemotherapy, vol.53, issue.11, pp.4927-4936, 2009. ,
DOI : 10.1128/AAC.00689-09
Combinations of R207910 with Drugs Used To Treat Multidrug-Resistant Tuberculosis Have the Potential To Shorten Treatment Duration, Antimicrobial Agents and Chemotherapy, vol.50, issue.11, pp.3543-3550, 2006. ,
DOI : 10.1128/AAC.00766-06
Detergent-induced solubilization of cytochrome c oxidase as detected in a novel reconstituted system, J Biol Chem, vol.259, issue.12, pp.7655-7663, 1984. ,
Membrane and membrane-associated proteins in Triton X-114 extracts ofMycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies, PROTEOMICS, vol.137, issue.9, pp.1859-70, 2008. ,
DOI : 10.1002/pmic.200700528
Xmipp: An Image Processing Package for Electron Microscopy, Journal of Structural Biology, vol.116, issue.1, pp.237-277, 1996. ,
DOI : 10.1006/jsbi.1996.0036
Les nouveaux antituberculeux, R??animation, vol.18, issue.4, 2009. ,
DOI : 10.1016/j.reaurg.2009.03.007
Mefloquine and New Related Compounds Target the F0 Complex of the F0F1 H+-ATPase of Streptococcus pneumoniae, Antimicrobial Agents and Chemotherapy, vol.46, issue.6, pp.1680-1687, 2002. ,
DOI : 10.1128/AAC.46.6.1680-1687.2002
Cell-Free Expression and Assembly of ATP Synthase, Journal of Molecular Biology, vol.413, issue.3, 2011. ,
DOI : 10.1016/j.jmb.2011.08.055
Structural Investigations of the Membrane-Embedded Rotor Ring of the F-ATPase from Clostridium paradoxum, Journal of Bacteriology, vol.188, issue.22, pp.7759-64, 2006. ,
DOI : 10.1128/JB.00934-06
Complete Ion-Coordination Structure in the Rotor Ring of Na+-Dependent F-ATP Synthases, Journal of Molecular Biology, vol.391, issue.2, pp.498-507, 2009. ,
DOI : 10.1016/j.jmb.2009.05.082
Evidence for Structural Integrity in the Undecameric c-Rings Isolated from Sodium ATP Synthases, Journal of Molecular Biology, vol.325, issue.2, pp.389-97, 2003. ,
DOI : 10.1016/S0022-2836(02)01204-4
A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential, Molecular Microbiology, vol.176, issue.5, pp.1181-92, 2007. ,
DOI : 10.1021/pr034116g
Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus, Science, vol.308, issue.5722, pp.659-62, 2005. ,
DOI : 10.1126/science.1111199
Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells., Journal of Bacteriology, vol.175, issue.18, pp.5899-906, 1993. ,
DOI : 10.1128/jb.175.18.5899-5906.1993
-ATPase are not influenced by crystallisation at high concentrations of nucleotide, FEBS Letters, vol.257, issue.1-2, pp.11-15, 2001. ,
DOI : 10.1016/S0014-5793(01)02302-X
URL : https://hal.archives-ouvertes.fr/hal-01214576
Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels, Journal of Molecular Biology, vol.260, issue.3, pp.289-98, 1996. ,
DOI : 10.1006/jmbi.1996.0399
Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism, Nature, vol.182, issue.4784, pp.144-152, 1961. ,
DOI : 10.1002/jez.1400510306
Thermophilic ATP synthase has a decamer c-ring: Indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling, Proceedings of the National Academy of Sciences, vol.101, issue.33, pp.12159-64, 2004. ,
DOI : 10.1073/pnas.0403545101
Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, vol.4, issue.14, pp.1639-62, 1998. ,
DOI : 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, vol.4, issue.14, pp.1639-1662, 1998. ,
DOI : 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Structural divergence of the rotary ATPases, Quarterly Reviews of Biophysics, vol.204, issue.03, pp.311-56, 2011. ,
DOI : 10.1038/nsmb.1761
Characterization of a porin from Mycobacterium smegmatis., Journal of Bacteriology, vol.179, issue.19, pp.6205-6212, 1997. ,
DOI : 10.1128/jb.179.19.6205-6207.1997
The past and present of sodium energetics: May the sodium-motive force be with you, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8, pp.985-92, 2008. ,
DOI : 10.1016/j.bbabio.2008.04.028
PCR-mediated gene replacement in Escherichia coli, Gene, vol.246, issue.1-2, pp.321-351, 2000. ,
DOI : 10.1016/S0378-1119(00)00071-8
The rotary mechanism of the ATP synthase, Archives of Biochemistry and Biophysics, vol.476, issue.1, pp.43-50, 2008. ,
DOI : 10.1016/j.abb.2008.05.004
The mechanism of rotating proton pumping ATPases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1797, issue.8, pp.1343-52, 2010. ,
DOI : 10.1016/j.bbabio.2010.02.014
Purification and properties of the F1F0 ATPase of Ilyobacter tartaricus, a sodium ion pump, J Bacteriol, vol.180, issue.13, pp.3312-3318, 1998. ,
Mycobacterial porins - new channel proteins in unique outer membranes, Molecular Microbiology, vol.254, issue.5, pp.1167-77, 2003. ,
DOI : 10.1046/j.1365-2958.2003.03662.x
Direct observation of the rotation of F1-ATPase, Nature, vol.386, issue.6622, pp.299-302, 1997. ,
DOI : 10.1038/386299a0
Isolation and characterization of a N,N???-dicyclohexylcarbodiimide-resistant mutant of Methanothermobacter thermautotrophicus with alterations to the ATP synthesis machinery, Folia Microbiologica, vol.269, issue.6, pp.483-489, 2009. ,
DOI : 10.1007/s12223-009-0068-8
Backbone structure of a small helical integral membrane protein: A unique structural characterization, Protein Science, vol.8, issue.1, pp.134-180, 2009. ,
DOI : 10.1002/pro.24
Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement, Microbiology, vol.146, issue.8, pp.1969-75, 2000. ,
DOI : 10.1099/00221287-146-8-1969
Genetic Basis for Natural and Acquired Resistance to the Diarylquinoline R207910 in Mycobacteria, Antimicrobial Agents and Chemotherapy, vol.50, issue.8, pp.2853-2859, 2006. ,
DOI : 10.1128/AAC.00244-06
Novel Class A ??-Lactamase Sed-1 from Citrobacter sedlakii: Genetic Diversity of ??-Lactamases within the Citrobacter Genus, Antimicrobial Agents and Chemotherapy, vol.45, issue.8, pp.2287-98, 2001. ,
DOI : 10.1128/AAC.45.8.2287-2298.2001
Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases, Nature Chemical Biology, vol.430, issue.12, pp.891-900, 2010. ,
DOI : 10.1038/nchembio.457
High-resolution structure of the rotor ring of a proton-dependent ATP synthase, Nature Structural & Molecular Biology, vol.426, issue.10, pp.1068-73, 2009. ,
DOI : 10.1107/S0907444904019158
The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory, EMBO reports, vol.167, issue.11, pp.1040-1044, 2005. ,
DOI : 10.1016/S0022-2836(02)00597-1
A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring, PLoS Biology, vol.107, issue.8, p.1000443 ,
DOI : 10.1371/journal.pbio.1000443.s005
A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring, PLoS Biology, vol.107, issue.8, p.1000443, 2010. ,
DOI : 10.1371/journal.pbio.1000443.s005
Health Impacts of Environmental Mycobacteria, Clinical Microbiology Reviews, vol.17, issue.1, pp.98-106, 2004. ,
DOI : 10.1128/CMR.17.1.98-106.2004
In Search of New Cures for Tuberculosis, Medicinal Chemistry, vol.3, issue.3, pp.301-317, 2007. ,
DOI : 10.2174/157340607780620626
Construction of a series of vectors for high throughput cloning and expression screening of membrane proteins from Mycobacterium tuberculosis, BMC Biotechnology, vol.8, issue.1, p.51, 2008. ,
DOI : 10.1186/1472-6750-8-51
The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.105, issue.33, pp.11945-50, 2008. ,
DOI : 10.1073/pnas.0711697105
Structural changes linked to proton translocation by subunit c of the ATP synthase, Nature, vol.402, issue.6759, pp.263-271, 1999. ,
The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin., Proceedings of the National Academy of Sciences, vol.92, issue.19, pp.92-8768, 1995. ,
DOI : 10.1073/pnas.92.19.8768
Structure of the gamma-epsilon complex of ATP synthase, Nat Struct Biol, vol.7, issue.11, pp.1051-1055, 2000. ,
Mycobacterium tuberculosis and the environment within the phagosome, Immunological Reviews, vol.84, issue.1, pp.37-54, 2007. ,
DOI : 10.1128/JB.184.14.4025-4032.2002
ATP Synthase from Saccharomyces cerevisiae: Location of Subunit h in the Peripheral Stalk Region, Journal of Molecular Biology, vol.345, issue.3, pp.513-533, 2005. ,
DOI : 10.1016/j.jmb.2004.10.060
Foamy macrophages and the progression of the human tuberculosis granuloma, Nature Immunology, vol.65, issue.9, pp.943-951, 2009. ,
DOI : 10.1038/ni.1758
Early Bactericidal Activity and Pharmacokinetics of the Diarylquinoline TMC207 in Treatment of Pulmonary Tuberculosis, Antimicrobial Agents and Chemotherapy, vol.52, issue.8, pp.2831-2836, 2008. ,
DOI : 10.1128/AAC.01204-07
Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993. ,
DOI : 10.1006/jmbi.1993.1626
Mechanical Rotation of the c Subunit Oligomer in ATP Synthase (F0F1): Direct Observation, Science, vol.286, issue.5445, pp.1722-1726, 1999. ,
DOI : 10.1126/science.286.5445.1722
Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins, PLoS Pathogens, vol.60, issue.3, p.1000794, 2010. ,
DOI : 10.1371/journal.ppat.1000794.s009
Life and death in the granuloma: immunopathology of tuberculosis, Immunology and Cell Biology, vol.173, issue.2, pp.103-114, 2007. ,
DOI : 10.1038/sj.icb.7100027
La cristallogenèse des macromolécules biologiques, 2001. ,
A Rotor-Stator Cross-link in the F1-ATPase Blocks the Rate-limiting Step of Rotational Catalysis, Journal of Biological Chemistry, vol.283, issue.38, pp.26228-26268, 2008. ,
DOI : 10.1074/jbc.M804858200
Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form, Analytical Biochemistry, vol.199, issue.2, pp.223-254, 1991. ,
DOI : 10.1016/0003-2697(91)90094-A
Image processing for electron microscopy single-particle analysis using XMIPP, Nature Protocols, vol.357, issue.6, pp.977-90, 2008. ,
DOI : 10.1038/nprot.2008.62
Mycobacterial taxonomy, European Journal of Clinical Microbiology & Infectious Diseases, vol.136, issue.11, pp.884-901, 1994. ,
DOI : 10.1007/BF02111489
The crystal structure of the nucleotide-free ??3??3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer, Structure, vol.5, issue.6, pp.825-861, 1997. ,
DOI : 10.1016/S0969-2126(97)00236-0
Domain compliance and elastic power transmission in rotary FOF1-ATPase, Proceedings of the National Academy of Sciences, vol.105, issue.46, pp.17760-17765, 2008. ,
DOI : 10.1073/pnas.0807683105
Crystal structures of fusion proteins with large-affinity tags, Protein Science, vol.125, issue.7, pp.1313-1335, 2003. ,
DOI : 10.1110/ps.0243403
XMIPP: a new generation of an open-source image processing package for electron microscopy, Journal of Structural Biology, vol.148, issue.2, pp.194-204, 2004. ,
DOI : 10.1016/j.jsb.2004.06.006
New Tuberculosis Therapeutics: A Growing Pipeline, The Journal of Infectious Diseases, vol.196, issue.s1, pp.28-34, 2007. ,
DOI : 10.1086/518663
ATP Synthase, Journal of Biological Chemistry, vol.283, issue.18, pp.12365-72, 2008. ,
DOI : 10.1074/jbc.M800901200
Aqueous Accessibility to the Transmembrane Regions of Subunit c of the Escherichia coli F1F0 ATP Synthase, Journal of Biological Chemistry, vol.284, issue.35, pp.23243-50, 2009. ,
DOI : 10.1074/jbc.M109.002501
Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase, Gene, vol.343, issue.1, pp.181-90, 2004. ,
DOI : 10.1016/j.gene.2004.08.028
Molecular Architecture of the Rotary Motor in ATP Synthase, Science, vol.286, issue.5445, pp.1700-1705, 1999. ,
DOI : 10.1126/science.286.5445.1700
The Structural Basis for Unidirectional Rotation of Thermoalkaliphilic F1-ATPase, Structure, vol.15, issue.8, pp.904-918, 2007. ,
DOI : 10.1016/j.str.2007.06.009
Targeted, PCR-based gene disruption in cyanobacteria: inactivation of the polyhydroxyalkanoic acid synthase genes in Synechocystis sp. PCC6803, Applied Microbiology and Biotechnology, vol.54, issue.5, pp.677-80, 2000. ,
DOI : 10.1007/s002530000450
A Functional His-Tagged c Subunit of the Escherichia coli F-Type ATPase/Synthase, Archives of Biochemistry and Biophysics, vol.387, issue.2, pp.180-187, 2001. ,
DOI : 10.1006/abbi.2000.2251
The new mycobacteria: an update, FEMS Immunology & Medical Microbiology, vol.48, issue.2, pp.159-78, 2006. ,
DOI : 10.1111/j.1574-695X.2006.00123.x
Mycobacterium elephantis: not an exceptional finding in clinical specimens, Eur J Clin Microbiol Infect Dis, vol.22, issue.7, pp.427-457, 2003. ,
The F1Fo-ATP Synthase of Mycobacterium smegmatis Is Essential for Growth, Journal of Bacteriology, vol.187, issue.14, pp.5023-5031, 2005. ,
DOI : 10.1128/JB.187.14.5023-5028.2005
Arrangement of rhodopsin transmembrane alpha-helices, Nature, vol.389, issue.6647, pp.203-209, 1997. ,
Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis, Bioorganic & Medicinal Chemistry, vol.17, issue.7, pp.2830-2871, 2009. ,
DOI : 10.1016/j.bmc.2009.02.026
Structure and Function of Subunit a of the ATP Synthase of Escherichia coli, Journal of Bioenergetics and Biomembranes, vol.278, issue.6, pp.445-454, 2005. ,
DOI : 10.1007/s10863-005-9488-6
Structure of the c14 Rotor Ring of the Proton Translocating Chloroplast ATP Synthase, Journal of Biological Chemistry, vol.284, issue.27, pp.18228-18263, 2009. ,
DOI : 10.1074/jbc.M109.006916
Unique Rotary ATP Synthase and Its Biological Diversity, Annual Review of Biophysics, vol.37, issue.1, pp.43-64, 2008. ,
DOI : 10.1146/annurev.biophys.37.032807.130018
ATP Synthases, Annual Review of Biochemistry, vol.78, issue.1, pp.649-72, 2009. ,
DOI : 10.1146/annurev.biochem.78.081307.104803
Three-dimensional Structure of A1A0 ATP Synthase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Electron Microscopy, Journal of Biological Chemistry, vol.284, issue.15, pp.10110-10119, 2009. ,
DOI : 10.1074/jbc.M808498200
Molecular Architecture of the Undecameric Rotor of a Bacterial Na+-ATP Synthase, Journal of Molecular Biology, vol.321, issue.2, pp.307-323, 2002. ,
DOI : 10.1016/S0022-2836(02)00597-1
PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae, Yeast, vol.11, issue.3, pp.259-65, 1996. ,
DOI : 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk, Proceedings of the National Academy of Sciences, vol.108, issue.10, pp.3924-3933 ,
DOI : 10.1073/pnas.1011581108
Ion Mobility Mass Spectrometry of Two Tetrameric Membrane Protein Complexes Reveals Compact Structures and Differences in Stability and Packing, Journal of the American Chemical Society, vol.132, issue.44, pp.15468-70, 2010. ,
DOI : 10.1021/ja104312e
Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria, Proceedings of the National Academy of Sciences, vol.107, issue.39, pp.16823-16830, 2010. ,
DOI : 10.1073/pnas.1011099107
Drug-Susceptible Mycobacterium tuberculosis Beijing Genotype Does Not Develop Mutation-Conferred Resistance to Rifampin at an Elevated Rate, Journal of Clinical Microbiology, vol.41, issue.4, pp.1520-1524, 2003. ,
DOI : 10.1128/JCM.41.4.1520-1524.2003
Solution structure of the N-terminal domain of the ?? subunit of the E. coli ATPsynthase, www.who.org World Health Organization Web Site, pp.198-201, 1997. ,
DOI : 10.1107/S0021889891004399
Structures of the thermophilic F1-ATPase ?? subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1, Proceedings of the National Academy of Sciences, vol.104, issue.27, pp.11233-11241, 2007. ,
DOI : 10.1073/pnas.0701045104
Structure of the Mycobacterium tuberculosis OmpATb protein: A model of an oligomeric channel in the mycobacterial cell wall, Proteins: Structure, Function, and Bioinformatics, vol.1778, issue.Web Server issu, pp.645-61, 2011. ,
DOI : 10.1002/prot.22912
Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase, Nature, vol.1231, issue.6831, pp.898-904, 2001. ,
DOI : 10.1038/35073513
Subunit Arrangement in V-ATPase from Thermus thermophilus, Journal of Biological Chemistry, vol.278, issue.43, pp.42686-91, 2003. ,
DOI : 10.1074/jbc.M305853200
ATP synthase--a marvellous rotary engine of the cell, Nature Reviews Molecular Cell Biology, vol.2, issue.9, pp.669-77, 2001. ,
DOI : 10.1038/35089509
Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid, Journal of Antimicrobial Chemotherapy, vol.52, issue.5, pp.790-795, 2003. ,
DOI : 10.1093/jac/dkg446
Mechanisms of Drug Resistance in Mycobacterium tuberculosis, Int J Tuberc Lung Dis, vol.13, issue.11, pp.1320-1350, 2009. ,
DOI : 10.1128/9781555817657.ch8
La tuberculose en ancienne ??gypte, Revue des Maladies Respiratoires, vol.24, issue.10, pp.1277-83, 2007. ,
DOI : 10.1016/S0761-8425(07)78506-6
Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State, Journal of Bacteriology, vol.190, issue.16, pp.5672-80, 2008. ,
DOI : 10.1128/JB.01919-07
URL : https://hal.archives-ouvertes.fr/hal-00356505