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Résumé 

 

Les microvillosités du pôle apical des cellules intestinales, sont de fines expansions 

membranaires structurées par un réseau de filaments d’actine organisé par plusieurs protéines 

de liaison à l’actine. L’objectif de ce travail de thèse consiste à mieux comprendre comment 

ces protéines de liaison à l’actine régulent deux fonctions critiques de ces organelles : leur 

fonctionnalité et leur plasticité. 

  Nous nous sommes tout d’abord intéressés aux trois protéines de liaison à l’actine qui 

organisent le réseau de microfilaments soutenant les microvillosités : villine, espine et plastine 

1. Nous avons montré que ces protéines ne sont pas essentielles à la formation des 

microvillosités. En revanche, elles assurent l’agencement d’une fine architecture d’actine qui 

est requise pour la rétention à la membrane des microvillosités des protéines nécessaires pour 

la physiologie intestinale. 

 En plus de sa fonction structurale, la villine fragmente les filaments d’actine, 

suggérant un rôle central dans la dynamique du cytosquelette de la microvillosité. Celles-ci 

sont en effet sujettes à des réorganisations morphologiques majeures lors de stress intestinaux. 

Nous avons apporté les preuves définitives montrant que la villine joue un rôle critique au 

cours de la réparation tissulaire en participant au processus de migration cellulaire par 

l’initiation du désassemblage du pôle apical. Le pool d’actine microvillositaire est alors 

remobilisé pour assurer la formation de structures migratoires efficaces. 

Ces travaux de thèse documentent ainsi deux aspects importants de la biologie de la 

cellule épithéliale intestinale: l’établissement de la fonctionnalité du pôle apical et son 

remodelage dynamique permettant une réponse rapide à un stress. 
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Abstract 

 

Covering the apex of intestinal cells, microvilli are microscopic membrane protrusions 

structured by a network of actin filaments organized by actin binding proteins. The objective 

of my thesis consists on investigating how the microvillar actin binding proteins regulate two 

key features of these organelles: their functionality and plasticity.  

From a structural point of view, the actin filaments supporting microvilli are tightly 

packed together by three actin bundling proteins: villin, espin and plastin-1. Using a 

combined knockout approach, we demonstrate that these three proteins are dispensable to 

enable and maintain microvilli protrusions. They however confer the appropriate actin 

organization required for the apical retention of proteins essential for normal intestinal 

physiology. 

Besides its structural role, villin also nucleates, caps, and severs actin filaments in a 

calcium dependent manner, suggesting a central role in microvilli cytoskeleton dynamics. The 

brush border is indeed subject to major morphological remodeling upon various intestinal 

stresses (nutrition, pathogen infection, mechanical stress, injury....), which highlights the 

importance of such cell shape changes. We provide evidences that villin plays a critical role 

during tissue healing through the initiation of apex disassembly. Such cellular remodeling 

releases a pool of actin that is remobilized to build efficient migratory structures. 

Overall, this thesis work documents two important aspects of the epithelial cell 

biology of the intestine: how the functionality of the apical cellular domain is established and 

how it can be dynamically remodelled allowing the enterocytes to rapidly respond to a stress. 
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Foreword 

 

 This thesis manuscript describes the scientific works achieved during my four years of 

PhD that I conducted in the Institut Curie under the supervision of Sylvie Robine, in the 

Morphogenesis and Cell Signaling team led by Pr. Daniel Louvard. Since many years, our 

laboratory is interested in the biology of the intestine and more specifically has become specialized 

in a cellular domain found on the apex of intestinal cells: the brush border. The intestinal brush 

border is constituted by numerous microvilli, which are microscopic membrane protrusions 

supported by a network of actin filaments organized by several actin binding proteins. This 

structure maximizes the absorptive and digestive functions of the intestinal epithelium. The 

important contribution of Daniel Louvard and Sylvie Robine regarding the cell biology of the 

microvillus has set the basis for this study. Indeed, they were the first to report that each of the 

proteins organizing the microvillar actin filaments is not individually required to maintain 

microvilli. In addition, they could reveal an unexpected role for one of these proteins, villin, in cell 

reorganization elicited by various signals.  

 During my PhD, I explored how these actin binding proteins ensure two important 

characteristics of the epithelial cells: the establishment of the apical domain functionality and its 

dynamic remodeling, which allows the cells to rapidly respond to a stress. In particular, the analysis 

of the synergic contribution of these proteins revealed that their function is not to enable the 

microvillar protrusions, as often assumed, but to confer the appropriate actin organization for the 

apical retention of proteins essential to microvilli physiological functions. This study was already 

initated when I join the lab. In a second aspect, I pursued the investigations on the villin role in cell 

plasticity and could demonstrate unambiguously its central role during wound healing process in the 

intestine. More specifically, results obtained using a combination of cell culture and animal models 

show that villin actively participates in cell migration, a critical process during wound healing, 

through microvilli disassembly. Such cell reorganization releases an important pool of actin 

monomers that is remobilized to build efficient migratory structures. 

 In the introductory part, I will briefly depict the cytoskeletal elements which shape the 

cells. I will then focus on the establishment and maintenance of polarity in polarized epithelial cells 

such as the enterocytes. Polarity implies the generation of asymmetrical membrane domains of 

distinct morphological and functional characteristics. These aspects will hence be discussed before 
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giving a description of the model used in this study: the intestinal epithelium. I will particularly 

focus on the brush border that covers each intestinal cell.  

 The core of the manuscript is subdivided in two parts, each of them treating the different 

aspects that I developed during my PhD. 

 Finally in the appendix, I enclosed the reprints of the different scientific reports which 

resulted from this study. The main part of the work is represented by two articles, one of them 

already in press and the other one in the process of being published. I also had the opportunity to 

write a chapter focused on the structure and functionality of microvilli for the book “Cellular 

domains”. In addition, I could participate as a collaborator to a study demonstrating the importance 

of actin dynamics to ensure vesicle fission on highly tensed membrane such as found in the 

intestinal brush border. 
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Introduction 

In multicellular organisms, numerous vital functions are rationally compartmentalized in 

specialized units made up of specialized cells. Cell specialization enhances the efficiency of 

these biological functions and reduces global energy consumption. Cells achieve specialization 

by acquiring a differentiated state, which is defined by the establishment of adapted structures 

associated to the synthesis of suited proteins. In complex organisms such as mammals, 

specialized cells executing a common function are usually grouped together to form a tissue. 

Tissues can furthermore be assembled into an organ to perform more complex functions. Due to 

the broad variety of functions achieved by organs, specialized cells present an immense diversity 

of expression profiles and structural properties. Such differentiated state is beautifully 

exemplified in the cells that constitute the model we used in this study: the intestine, the organ 

dedicated to digestion and absorption. Before describing our working model, I will give a 

description of the cytoskeleton and define its role in the establishment of epithelial polarity. 

Epithelium and polarity are indeed two notions that characterize the intestinal tissue. 

 

A.  The cytoskeleton: the building block of cell specializations 

 

A fundamental aspect of differentiation resides in the design of specialized cellular domains 

within the cell. This compartmentalization into organelles segregates biochemical reactions and 

increases locally the concentration of molecules, thereby promoting cellular processes. Their 

efficiency can be further enhanced by a structural specialization of some organelles, such as 

those found on the apex of intestinal cells. Structural specializations are typically shaped by the 

cytoskeleton, which brings mechanical support to cellular components. The cytoskeleton consists 

on an organized and intricate network of cytoplasmic fibrilar proteins present in the cytoplasm. 

This key element of cell architecture is additionally critical to elaborate the proper intracellular 

organization. In eukaryotic cells, three main types of fibers compose the cytoskeleton: the actin 

filaments (or micro-filaments), the intermediate filaments and the microtubules. 
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Microtubules are long tube-like polymers made up of ubiquitous and conserved globular 

proteins: and  tubulin. These tubulin heterodimers assemble to form the protofilaments, the 

building block of the microtubules. Microtubules are polarized fibers; they present two distinct 

extremities, termed + and -, on which different subunits of the dimer are exposed. Elongation of 

microtubules essentially occurs at the + end (Figure 1). Even if exceptions do exist, 

microtubules typically arise from the microtubule-organizing center where they are nucleated. 

Among the diverse functions carried out by microtubules in the cell, they play major role in 

intracellular trafficking. Two 

families of specialized 

molecular motors moving 

vesicular cargoes along 

microtubules have been 

characterized: dyneins and 

kinesins which differ in their 

polarity of displacement. 

Indeed, dyneins move 

preferentially towards the + 

ends of microtubule whereas 

kinesins are - end directed 

motors. In addition to 

molecular motors, various 

proteins regulate microtubule 

assembly or disassembly, 

thereby conferring a 

dynamic property to this 

cytoskeletal element. 

Figure 1: The three cytoskeletal filamentous elements of the cell 

A. Immunostainings against the different fibers that constitute the cytoskeleton. Left micrograph: actin filaments 

(red) and microtubules (green); nuclei are shown in blue. Right image: Cytokeratins (blue) and thee nucleus specific 

intermediate filament protein Lamin A (green). Micrographs obtained from: 

http://www.bscb.org/softcell/images/mp_tripple.gif and http://www.piercenet.com/media/000022-ICC-cytokeratin-

DyLight-405-lamin-488.jpg. B. The highly conserved proteins tubulins and actin form two types of polarized 

filaments: microtubules and actin filaments. Intermediate filaments arise from multimerisation of intermediate 

filament monomers. Images obtained from Wikipedia. 
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In contrast to microtubules, intermediate filaments do not present any polarity and are 

composed by molecules encoded by a very diverse array of genes. This heterogeneity is mainly 

based on the high divergence of the N- and C- terminal domains. The central domain, more 

conserved among the intermediate filaments molecules, allows their dimerization (Figure 1). 

Assembly of these dimers creates stable and deformable fibers. The high number of different 

intermediate filaments molecules reflects their diverse intracellular functions and the different 

cell types from where they originate. For instance, lamins form a meshwork in the inner layer of 

nuclei. Keratins are found in epithelial cells whereas vimentin is characteristic of mesenchymal 

cells (Figure 1). The intermediate filaments do not seem to have any function in intracellular 

trafficking. Their primary role seems rather to confer mechanical resistance to the cell owing to 

their elastic properties. 

The last element that constitutes the cytoskeleton, the actin filaments, or microfilaments, 

shares two important characteristics with microtubules. Both of them are polarized fibers and 

made of polymers of globular proteins ubiquitous among different cell types (Figure 1). Actin 

filaments also play a major role in intracellular trafficking in concert with molecular motors: the 

myosins. 

 

Actin: a highly conserved protein. 

Actin filaments are constituted by monomers of actin – or G-actin -, a globular protein of 

around 42 kDa found in virtually all eukaryotic cells. Its considerable importance is illustrated by 

a highly conserved sequence among different species. Structurally, G-actin is composed of four 

domains that appear as two lobes organized around a central cleft. The cleft binds ATP or ADP 

and a divalent cation, calcium or magnesium, which results in ADP- and ATP-bound monomers 

of different conformations (Figure 2A). These actin monomers can assemble into filament 

composed of two intertwined helices. The actin filament – F-actin – exhibits a polar organization 

owing to the intrinsic horizontal asymmetry of globular actin. Their polarity can be revealed 

experimentally by the ability of the head domain – S1 - of myosin II to bind specifically 

microfilaments. When bound to an actin filament the S1 fragments, which appear as arrowheads 

at the ultra-structural level, uniformly point towards one extremity: the pointed end. The 

additional extremity is usually named the barbed end. Besides this discernible polar structure 

revealed by myosin S1 decoration, polarity is functional, as the two extremities present different 

biochemical properties (Figure 2) (Pollard and Borisy, 2003). 
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Generation of actin filaments. 

Actin monomers spontaneously assemble, or nucleate, into filaments in vitro upon addition 

of salts in the solution. The inherent instability of actin dimers and trimers makes however this 

process unfavorable, resulting in a latency period observed when measuring polymerization rate 

in vitro. Once this step is overcome, actin polymerizes rapidly until reaching a plateau 

corresponding to a rate limiting availability of G-actin. Concentration of actin monomers is thus 

a critical parameter influencing actin polymerization. 

Assembly of monomers into microfilaments obeys to a critical concentration, above which 

all G-actin will polymerize. For Mg-ATP-actin, the critical concentration is lower at the barbed 

end than at the pointed end, whereas they are identical for ADP bound actin (Figure 2B). Indeed, 

albeit dispensable for polymerization, Mg-ATP bound to the cleft stabilizes the molecule and 

favors its addition to an existing filament. Consequently, at steady state, addition of ATP linked 

monomers is favored at the barbed ends, or growing ends. Upon ATP-actin insertion into a 

filament, actin starts undergoing ATP hydrolysis. As mentioned earlier, ADP-actin monomers 

are less stabilized within the filament and thus progressively dissociate from the filament. 

Thereby, ATP hydrolysis appears to act as an internal clock that determines ageing of actin 

molecules within a filament by inducing dissociation of “aged” molecules. This intrinsic 

property of actin biochemistry gives rise to the treadmilling process, in which ATP-bound 

monomers addition at the barbed end is compensated by dissociation of ADP-bound monomers 

at the pointed ends. Nevertheless, F-actin treadmilling is a relatively slow process that cannot 

account for the explosive bursts of actin polymerization found in highly dynamic structures such  

 

 

 

 

 

 

 

Figure 2: Actin filament assembly 

A. Structural model of an actin monomer and an 

actin filament. The actin monomer is constituted by 

two lobes separated by the central cleft where a 

cation and ATP or ADP bind. Actin monomers 

assemble into polarized filaments. Note the intrinsic 

rotation due to the helical arrangement of the 

filament. Images are taken from Wikipedia. B. 

Characteristics of the dynamics of 

polymerization/depolymerization of an actin 

filament. The critical concentrations (Cc) from 

filament extremities for ATP bound actin differ at 

the barbed and pointed ends, giving rise to a slow 

treadmilling. ATP or ADP bound monomers are 

indicated with T or D, respectively. Modified from 

Pollard and Borisy, 2003.  
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as lamellipodia or filopodia of migrating cells. Likewise, the design of specialized cellular 

domains requires generation of elaborate actin networks. Therefore, cells express a cohort of 

actin binding proteins which exploit diverse aspects of actin biochemistry to control actin 

assembly and disassembly (Pollard and Borisy, 2003). 

 

Cells regulate the availabilities of actin monomers and filament growing ends to 

control the polymerization rate. 

The actin binding protein profilin catalyzes the ADP nucleotide exchange for ATP thus 

increasing the pool of monomers ready to polymerize. Following nucleotide exchange, profilin 

stays bound to actin monomer and does not impede its association to existing filaments. In 

contrast, thymosin B4 which also binds monomers, blocks their nucleation and association. Thus 

competition between these small actin sequestering proteins regulates the quantity of monomers 

available for polymerization (Figure 3) (Pollard and Borisy, 2003).  

Another level of regulation is provided by capping proteins which bind to barbed ends and 

terminate their growth (Figure 3). Capping prevents rapid depletion of available monomers that 

would occur in case of uncontrolled growth of barbed ends. Therefore, capping of growing 

filaments counterintuitively allows bursts of high actin polymerization. Indeed, the free actin 

monomers are directed to the few barbed ends that remain uncapped, in a “funneling” effect 

(Cooper and Schafer, 2000; Le Clainche and Carlier, 2008). 

Finally, proteins that accelerate actin disassembly from filaments to exceed the natural 

dissociation by ATP hydrolysis replenish the actin monomers pool. The most studied member is 

certainly cofilin, from the actin depolymerizing factor – ADF – family. ADF/cofilin is thought to 

promote monomer disassembly by two mechanisms. ADF/cofilin binds preferentially to ADP 

bound monomers and in vitro studies have shown that cofilin enhances monomers off rate – or 

dissociation – from pointed ends. ADF/cofilin also cuts – or severs – actin filaments, leading to 

their depolymerization in coordination with capping proteins which stop actin assembly. In fact, 

recent experimental data suggest that ADF/cofilin replenishes the monomer pool through 

severing rather than by facilitating dissociation (Figure 3) (Kiuchi et al., 2007). In contrast to 

ADF/cofilin, proteins from the gelsolin family harbor a capping activity in addition to their F-

actin severing property. These proteins are therefore sufficient to increase the quantity of 

monomeric actin available for polymerization without the support of additional capping proteins. 
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Facilitated initiation of new actin filaments. 

The initiation of new actin filaments is an unfavorable event. Nevertheless, a prompt 

generation of a large number of new filaments, required in many cellular processes, is achieved 

by several actin binding proteins that trigger nucleation of new filaments. So far two sub-classes 

of actin nucleators have been described. They are characterized by the architecture of the actin 

network which results from nuclation: branched or unbranched. 

Responsible for branched nucleation, the Arp2/3 complex binds to a pre-existing filament 

and initiates the formation of a newborn filament at a 70° angle from the mother filament. 

Arp2/3 mediated nucleation thus results in a dendritic array of actin filaments. Nucleation occurs 

as Arp2 and Arp3 subunits structurally resemble monomeric actin and mimic the first monomers 

of the filament. Originally in an inactive state, Arp2/3 is activated by upstream nucleating 

promoting factors. Depending on the biological process it is involved in, different factors 

activate Arp2/3. As an example, the Wiskott-Aldrich symptom protein – WASp – triggers 

Arp2/3 activation during cellular motility whereas the related protein WASH is rather involved 

during vesicular fission (Yarar et al., 1999; Derivery et al., 2009). This discrepancy illustrates the 

versatility and importance of the Arp2/3 complex to initiate two major cellular events. 

Figure 3: A cohort of actin binding proteins regulates actin dynamics and organization 

Actin depolymerization at the pointed end is favored by proteins of the ADF/cofilin family which 

sever filaments and/or favor disassembly. Actin assembly at the barbed end is regulated by profilin, 

thymosin B4 and capping proteins. Actin dynamics is additionally regulated by actin severing 

proteins which create barbed and pointed ends. The actin network can be subsequently structured and 

stabilized by actin cross-linking and bundling proteins. Adapted from Revenu et al., 2004. 
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Proteins of the formin family, which are characterized by the presence of a formin homology 

domain - FH -, rather induce the formation of linear unbranched filaments. In contrast to Arp2/3, 

they do not possess any actin-like domain. How formins mechanistically induce the formation of 

new actin filaments remains unclear, but in vitro studies suggest that they interact with and 

stabilize actin dimers and trimers through a dimerization via their FH domains (Zigmond et al., 

2003). Another intriguing property of formins is their ability to remain associated – or to 

undergo rapid cycles of association and dissociation – with the barbed end of the growing 

filament while promoting rapid monomer incorporation (Zigmond et al., 2003; Kozlov and 

Bershadsky, 2004). In other words, formins act as a processive elongator of actin filaments 

additionally to their nucleation property. Formins might be of high importance in cell processes 

based on the formation of long unbranched filaments. Besides formins, other nucleators of 

unbranched filaments, such as cordon-bleu or spire, exist but are recently identified and 

relatively less studied (Renault et al., 2008).  

 

B.  Elaboration of complex specialized domains 

 

As discussed earlier, the intracellular compartmentalization of different functionally 

specialized domains is crucial to maximize their efficiency. Many of these specialized structures 

are designed by networks of actin filaments, which exert mechanical force on the membrane. 

 

A few biophysical parameters on the actin cystoskeleton. 

Diverse cellular processes – e.g. motility, membrane deformation and scission - rely, for a 

large part, on the ability of actin cytoskeleton to generate mechanical forces coupled with a 

surface. Early experimental studies have proposed that mechanical forces generated by actin 

polymerization could account for the formation of the acrosomal process, a long linear cell 

extension emanating from spermatozoids of certain ectoderms during fertilization (Tilney et al., 

1973). The formal demonstration that actin polymerization alone could provide forces capable of 

triggering a cellular process came from the understanding of the actin-based propulsion of 

enteropathogens (Listeria monocytogenes and Shigella flexneri), and subsequent reconstitution 

of actin-based motility in a cell-free system (Theriot et al., 1992; Loisel et al., 1999).  
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An order of magnitude of the force yielded by actin polymerization can be estimated from 

measurements in vitro which indicate that the formin-induced insertion of one actin monomer at 

the barbed end produces a force around 1 pN (Kovar and Pollard, 2004; Berro et al., 2007). For 

actin filament polymerization to exert a force on a load, a mechanical coupling between these 

two parameters is required. From this statement, two important points can be raised: How can 

filament elongate if butting a surface? In addition, polymerizing filament would require to be 

anchored to a substratum; otherwise polymerization force would result in a pushing of the 

filament rearward. An elegant theoretical answer for these problems consists on the elastic 

Brownian ratchet model in which the actin filament, as well as the load, is considered to undergo 

constant oscillations due to thermal energy (Peskin et al., 1993; Mogilner and Oster, 1996). 

When filament intermittently bends, free space is made available for a monomer to insert thereby 

lengthening the filament. The restoring force of the filament then pushes the load forward, 

converting actin polymerization into net movement. However, actin polymerization alone is not 

sufficient to account for the diversity of actin-based cellular processes, each of them requiring 

different levels of stabilization and regulation. For instance, this is the case for membrane 

deformations which require very stiff counterpoises to overcome the high resistance of the 

membrane. Mechanical properties allow the cytoskeleton to generate scaffolds supporting 

specialized actin-based structures. Their analysis reveals two main types of actin organization. 

 

Dendritic arrays of actin filaments: the example of the lamellipodium. 

Lamellipodia at the front of migrating cells is the main illustration of a specialized domain 

based on an extensive branched organization. This structure consists on a large membrane 

extension driven by an intense actin polymerization (Figure 4) (Wang, 1985; Svitkina et al., 

1997). The lamellipodium plays major role in cell migration, even though its absence appears to 

be compensated by other migratory structures (Suraneni et al., 2012; Wu et al., 2012). Electron 

microcopy studies revealed the elaborate network of actin filaments, constituted by two areas 

showing different actin organizations. Close to the leading edge (1-3 µm), a preponderant 

intricate meshwork of short branched actin filaments generates a dendritic-like organization 

(Svitkina et al., 1997; Svitkina and Borisy, 1999). These filaments are of uniform polarity with 

barbed ends facing the migrating edge (Svitkina et al., 1997).The existence of branched actin 

filaments within lamellipodia has been subject to intense debates, but is now universally 

accepted (Small et al., 1994; Resch et al., 2002; Koestler et al., 2008; Urban et al., 2010; Vinzenz 
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et al., 2012). A few micrometers away from the leading edge, a less dense organization in long 

linear filaments predominates (Svitkina et al., 1997). Experiments revealed that the 

lamellipodium is indeed constituted by two distinct cytoskeletal networks differing in their 

dynamics: an actin network showing a rapid actin retrograde flow close to the membrane and a 

more stable network behind (Ponti et al., 2004). The dendritic organization that prevails in 

lamellipodia suggests that it arises from an Arp2/3-mediated actin nucleation. Accordingly, 

lamellipodial structure entirely depends on the presence of the nucleator Arp2/3 which initiates 

and maintains the structure in a branched organization (Suraneni et al., 2012; Vinzenz et al., 

2012; Wu et al., 2012). The meshwork of actin branches is furthermore stabilized by filamin 

which binds high angle orthogonal filaments (Flanagan et al., 2001; Stossel et al., 2001). Proteins 

from the tropomyosin family also indirectly stabilize actin filaments by preventing binding of 

several actin regulatory proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The different types of actin networks building specialized cellular domains 

Two types of actin architecture support specialized membrane domains: The bundled network (a: 

bristles, b: intestinal microvilli, and c: stereocilia) and branched network (e: lamellipodia). Filopodia 

(d) are supported by an actin bundle but seem to arise from a branched network. The main proteins 

organizing the actin networks are indicated in the red boxes. Bristles: A micrograph obtained by 

scanning electron microscopy and a phalloidin staining are shown. Intestinal microvilli: Micrographs 

from scanning and transmission electron microscopy. Stereocilia: A micrograph obtained by 

scanning electron microscopy and a phalloidin staining are shown. Filopodia and lamellipodia: 

micrographs from transmission electron microscopy are shown. Adapted from Revenu et al., 2004. 
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To explain lamellipodium generation and maintenance, a model proposed by Pollard and 

Borisy is shown in Figure 5. In this model, Arp2/3 activation close to the membrane nucleates 

branched filaments that push against the membrane. The dendritic network of actin filaments 

originates as a result of Arp2/3 mediated nucleation. Capping proteins stop barbed ends 

elongation and prevent uncontrolled growth. Replenishment of the pool of monomers in ensured 

by ATP hydrolysis altogether with ADF/cofilin which induces dissociation of “aged” monomers 

and/or severs filaments. The coordinated action of profilin and thymosin 4 furthermore 

regulates the rate of monomers ready to elongate uncapped barbed ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lamellipodium is certainly the most widely studied organelle showing a dendritic 

organization, which seems also to be found in the immunological synapse, a large structure 

between an antigen presenting cell and a T lymphocyte (Billadeau and Burkhardt, 2006). 

Figure 5: Model for nucleation and treadmilling at the lamellipodium 

1-6: Activation of Arp2/3 at the membrane leads to the generation of a dendritic network of actin filaments, which 

pushes the membrane and drives the membrane extension. 7: Capping proteins prevent the uncontrolled elongation 

of the filaments. 8-9: The rear of the network disassembles efficiently due to natural “ageing” of filaments and 

severing and/or facilitated depolymerization by ADF/cofilin. 10-11: Actin depolymerization releases numerous 

actin monomers. Profilin catalyzes ADP to ATP exchange thus regulating the pool of monomers ready to “feed” 

actin assembly. Adapted from Pollard and Borisy, 2003. 
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Networks of parallel filaments. 

At the leading edge of motile cells, a second motility organelle is often generated: the 

filopodium. Filopodia also extend from the growth cone of developing neurons. Filopodia are 

highly dynamic finger-like membrane protrusions of several micrometers long emerging from 

the lamellipodium sheet. They are thought to function as directional sensors but experimental 

proof is still lacking. These projections contain long linear filaments of uniform polarity; their 

growing ends oriented towards the structure tip (Figure 4) (Lewis and Bridgman, 1992; Svitkina 

et al., 1997). Since EM analyses showed that filopodia from motile cells systematically arise 

from the lamellipodial dendritic network, an attracting hypothesis concerning their initiation 

proposes that reorganization of the lamellipodial network allows the emergence of filopodia 

(Svitkina et al., 2003; Vignjevic et al., 2003). This possibility could be experimentally 

demonstrated in vitro: a reduction of capping proteins concentration leads to the formation of 

filopodia-like structures from a dendritic network (Vignjevic et al., 2003). Formins, in particular 

mDia2, localized at the filopodia tips may drive their initiation from the lamellipodia by 

protecting barbed ends from capping proteins and/or through nucleation and processive 

elongation (Zigmond et al., 2003; Yang et al., 2007). Also localized at the filopodia tips, proteins 

from the Ena/VASP might favor elongation owing to their ability to compete with capping 

proteins for barbed end binding (Bachmann et al., 1999). The importance of lamellipodia / 

filopodia interface highlights the possibility of intermediate state between purely dendritic and 

parallel filaments. Nevertheless, this model cannot be taken as a general rule for filopodial 

initiation. In this regard, fibroblasts devoid of Arp2/3, which cannot form a lamellipodium, 

present an increase in number of filopodia that seems to compensate for the loss of 

lamellipodium to ensure motility (Suraneni et al., 2012; Wu et al., 2012).  

In filopodia as well as other types of slender actin-based membrane protrusions, the long 

linear filaments of uniform polarity are tightly packed together by diverse actin bundling proteins 

which organize the filaments in a bundle. Biophysical studies have proposed that such bundled 

organization provides stiffness to the actin network to avoid its buckling due to the opposite 

membrane tension (Mogilner and Rubinstein, 2005; Atilgan et al., 2006; Claessens et al., 2006; 

Bathe et al., 2008). The actin bundling proteins are a subset of actin cross-linking proteins, which 

bind several filaments to create an undefined network. The actin-bundling proteins additionally 

organize filaments in a regular, tight, parallel array to form a bundle; the latter can only be 

demonstrated by electron microscopy. The ability to bundle can be conferred by the presence of 

two F-actin binding motifs or by dimerization of a protein containing a unique F-actin binding 
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region. Actin filaments within filopodia are bundled by the actin binding proteins fascin, and T-

plastin (Figure 4). Fascin depletion results in a dramatic decrease in the number of filopodia, 

highlighting the importance of the bundled organization to initiate and sustain membrane 

protrusions (Kureishy et al., 2002; Vignjevic et al., 2006). 

Another example of long membrane protrusion is the bristle from drosophila. Contrarily to 

the other membrane protrusion, each drosophila cell extends only one bristle. Bristles are long 

membrane deformations of around 400 µm and serve as sensory organelles (Figure 4). A bristle 

is composed by long 11 actin bundles that are constituted by overlapping short actin filaments 

packed by the actin bundling proteins forked and fascin (Tilney et al., 1995; Guild et al., 2003). 

Stereocilia are shorter apical membrane protrusions. Stereocilia, present on the apex of inner 

ear cells, allow mechanosensory transduction elicited by sound pressure. They display an 

organization that resembles a staircase of three rows (Figure 4) (Tilney et al., 1992). Each 

stereocilium of 1.5 – 5.5 µm long contains numerous actin filaments – until 900 – bundled by the 

actin bundling proteins T-plastin and espin (Tilney et al., 1988; Zheng et al., 2000). Their 

characteristic differential length renders stereocilia an excellent system to study the contribution 

of actin regulatory proteins to shape determination. In particular, several actin binding that 

regulate stereocilia length have been identified (Boëda et al., 2002; Belyantseva et al., 2005). 

They are differentially expressed between stereocilia rows but all localize to the stereocilia tips, 

illustrating the importance of this structure in morphogenesis of actin-based membrane 

protrusions. Nevertheless, a recent study following protein turnover in stereocilia revealed that 

these organelles might be much less dynamic than previously thought, as no actin treadmilling 

could be detected in the core of the protrusion (Zhang et al., 2012).  

Microvilli are another typical example of short membrane protrusions supported by a central 

core of actin filaments. These structures are present on the surface of most of the cells, 

irrespective of their origin. Nevertheless, they are generally relatively short (<500 nm) and 

highly unstable (Gorelik et al., 2003), thus preventing any specialization. The inherent dynamics 

of these short-lived membrane projections combined to their ability to generate structures of 

higher order, suggest that they act as “elementary blocks” to assemble highly specialized 

structures on the cell surface (Gorelik et al., 2003). Indeed, various stable specialized domains 

seems to initially form by the aggregation of tiny membrane protrusions resembling microvilli; 

this is the case for the inner ear stereocilia and the drosophila bristle (DeRosier and Tilney, 

2000). During the first stage of bristle formation, actin bundles are initiated from microvillus tip-
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like structures at the cell surface. Their subsequent aggregation and organization by the actin 

bundling proteins forked and fascin generate a mature bristle (Tilney et al., 1996, 1998). Early in 

development, the surface of inner ear cells is covered by microvilli (Tilney and DeRosier, 1986). 

The stereocilia develop by the elongation and lateral addition of actin bundles from this 

microvilli precursors (Tilney and DeRosier, 1986). On the intestinal epithelium these short-lived 

structures also aggregate into stable highly ordered structures (Figure 4). Thus, as proposed 

Tilney and DeRosier, microvilli might represent the “archetypal factory of F-actin bundles” 

(DeRosier and Tilney, 2000).  

 

C.  The epithelia: a polarized interface 

 

The cytoskeleton has a central role in a broad range of cellular processes, which allow the 

generation of elaborated structures like the one found in epithelial cells. Epithelia ensure 

protection and concomitantly perform numerous exchanges with the external milieu. 

Accordingly, epithelial cells are designed to efficiently accomplish these functions (Figure 6). 

Epithelial cells are polarized; they display two distinct membrane domains: the apical pole facing 

the lumen and the basolateral pole in contact with the neighboring cells and with the basal 

lamina. Each domain presents a proper protein and lipid composition. This property results in the 

formation of two functionally distinct membrane domains. For instance, on the absorptive 

intestinal cells, the apical pole is highly enriched in numerous digestive enzymes and peptides 

transporters, whereas their basolateral surface contains mainly canals to allow nutrients passage 

in the blood. Lipid composition also varies in epithelial cells, the epithelial pole being enriched 

in cholesterol and sphingolipids whereas the basolateral pole is rather composed of 

phosphatydilcholine (van Meer and Simons, 1988). In addition to the functional discrepancies 

between the membrane domains, polarity can also be structural as exemplified in the apical pole 

of absorptive epithelia covered with numerous microscopic membrane extensions: the microvilli. 

In vertebrates, the apical and basal poles are physically separated by a molecular complex: the 

tight junctions, or zonula occludens, a type of highly adhesive cell-cell junction essentially 

impermeable to fluid. In addition, these intimate cell-cell contacts link together the cytoskeleton 

of adjacent cells. Tight junctions thus guarantee the cohesion of the tissue, ensure the barrier 

function of tight epithelia and help to maintain cellular polarity. Located in a more basal manner, 

adherens junctions and desmosomes represent the anchoring junctional complexes. These types 
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of junctions are important for transmission of mechanical forces along the epithelium; they 

interconnect cytoskeletal elements of the neighboring cells. Indeed adherens junctions are 

tethered to apical cortical actin, a belt of actin filaments oriented in a parallel fashion to the 

apical pole. Desmosomes indirectly link together intermediate filaments from the neighboring 

cells (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polarized cells are endowed with the characteristics required to perform the epithelial 

functions; generation of an appropriate polarity is hence fundamental to epithelia. How polarity 

is established has fascinated numerous scientists since decades and is still not fully understood. It 

is however currently established that it requires the concerted action of the cytoskeleton, 

vesicular sorting, specific lipids synthesis, signaling molecules and polarity complexes. 

Figure 6: Intracellular organization of an epithelial cell 

A. Schematic illustration of the major characteristics of an epithelial cell with a focus on the apical pole. The 

cytoskeletal elements actin, microtubules and intermediate filaments are depicted in red, light blue and light 

green, respectively. Polarities of actin filaments and microtubules are indicated. Tight junctions (TJ) seal the 

epithelium. Note the transversal actin belt emanating from the adherens junctions (AJ). Intermediate filaments 

are linked to the desmosomes (D). Adapted from Ubelmann et al., 2011. B. Detailed organization of the 

elements of the junctional complexes. From top to bottom: tight junctions, adherens junctions and desmosomes 

are depicted. Adapted from Wikipedia (http://www.wikipedia.org). 

 

25



 

Organization of polarized trafficking in epithelia. 

Establishment of polarity results in an asymmetrical distribution of proteins and lipids on the 

apical and basolateral domains. This discrepancy is maintained by specific sorting of cargoes at 

the level of the Golgi apparatus or later on in post-Golgi endocytic compartments. How is 

polarized trafficking organized in epithelia? 

Polarized trafficking includes sorting of proteins towards the apical or the basolateral 

membranes via vesicular or tubular structures and their final insertion at the membrane of 

destination by vesicle fusion. Polarized trafficking has been conceptually divided in different 

routes. In the biosynthetic route, the newly synthesized proteins can be directly delivered to their 

final destination - apical or basolateral - by early sorting. Alternatively, certain proteins follow 

an indirect pathway, or transcytosis; in other words, they first reach the basolateral membrane 

and are subsequently re-addressed to the apical pole, with or without endocytic intermediate. 

Polarized trafficking also relies for an important part on endocytic routes which allow protein 

recycling and exchanges between apical and basal poles (Figure 7). 

  

Figure 7: Vesicular trafficking in 

epithelia 

Scheme depicting the main biosynthetic 

trafficking routes in epithelia. Post-Golgi 

vesicles are sorted and follow direct routes 

or transcystosis (red arrows). Vesicles 

movement is shown in blue arrows. 

Vesicles either reach directly their 

destination or traverse endocytic 

intermediates such as the common 

recycling endosome – CRE –. Some 

proteins are sorted apically accordingly to 

their lipid raft affinity. Fusion at the 

membrane usually involves SNAREs 

proteins. Adapted from Weisz and 

Rodriguez-Boulan, 2009. 
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The fate of delivery is governed by an important diversity of signals; I will try to summarize 

the most relevant for epithelial intestinal cells. The sorting machinery recognizes and interacts 

with these signals, which are generally harbored by the proteins. 

 

Basolateral and apical sorting signals. 

Glycosylation and GPI anchoring represent the two most well understood apical targeting 

determinants. The earliest identified apical sorting signal is certainly the addition of a 

glycosylphosphatidylinositol – GPI – lipid to a newly synthesized protein as a post-translational 

modification (Lisanti et al., 1989). Indeed, recombinant addition of a GPI anchor to a normally 

basolateral destined protein leads to its readdressing at the apical pole (Brown et al., 1989; 

Lisanti et al., 1989). Glycosylation also plays important role in polarized trafficking: on certain 

apical proteins, proper insertion of N- and O- glycans are essential for apical targeting 

(Scheiffele et al., 1995; Yeaman et al., 1997). Nevertheless N- and O- glycosylation of 

basolateral proteins is also relatively common, indicating that N- and O- linked glycans signals 

might be recessive relative to basolateral determinants (Rodriguez-Boulan et al., 2005). 

The proposal of the existence of lipid rafts represents an important breakthrough in the field 

of polarized trafficking, as they have been proposed to function as a major sorting platform for 

apical exocytosis (van Meer and Simons, 1988; Brown and Rose, 1992; Simons and Ikonen, 

1997). Albeit still controversial, the lipid raft hypothesis is strongly supported by a whole set of 

experimental data (Munro, 2003; Rodriguez-Boulan et al., 2005). Lipid rafts are membrane-

associated cholesterol- and sphyngomyelin- rich microdomains which are initially assembled in 

the Golgi complex. They are biochemically defined as membrane resistant to detergent 

extraction (Brown and Rose, 1992). The lipid raft hypothesis states that raft-dependent proteins 

are sorted apically due to their affinity for lipid microdomains generated at the Golgi complex. 

The lipid microdomains and their associated proteins are subsequently delivered to the apical 

surface through the apical transport machinery (Figure 7). The raft-proteins complex might be 

further stabilized by lectin proteins while reaching the apical membrane. In particular, galectin 4 

has a prominent role in the apical delivery of several raft associated glycoproteins, likely by its 

virtue to form stable lattices constituted of glycolipids and glycoproteins (Braccia et al., 2003; 

Stechly et al., 2009).  
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Critical role of the cytoskeleton and regulators of vesicular trafficking. 

Sorting and trafficking involve a coordinated action between the cytoskeleton and organizers 

of membrane trafficking. 

The integrity of microtubule and actin networks is of prime importance to direct intracellular 

trafficking. For instance, cargoes exit the trans-Golgi network as long tubular structures or 

vesicles, both of them moving along microtubules (Kreitzer et al., 2003; Polishchuk et al., 2004). 

Interfering with the microtubule molecular motors dyneins causes a failure for proteins to reach 

the apical pole (Tai et al., 1999; Noda et al., 2001). This result altogether with dynamic imaging 

of vesicular movement demonstrate that microtubules are used as tracks for protein delivery 

(Toomre et al., 1999; Kreitzer et al., 2000). In enterocytes, a selective chemical perturbation of 

microtubules abrogates apical delivery of membrane proteins. Interestingly, enterocyte apico-

basal polarity is also abolished following such treatment (Pavelka et al., 1983; Achler et al., 

1989). An intact microtubule network is thus required to establish and maintain the polarity 

itself; presumably through delivery of polarity determinants. The actin cytoskeleton is also 

critical at different steps of polarized trafficking. Perturbing actin cytoskeleton generally disrupts 

proper targeting of basolateral and apical proteins. Actin cytoskeleton reorganization at the Golgi 

membrane provides the force to allow the budding of vesicular structures (Almeida et al., 2011). 

F-actin is additionally used as tracks for myosin motors-based movement of vesicular structures 

as revealed by time-lapse imaging (Jacob et al., 2003). Since the participation of the actin 

cytoskeleton to apical trafficking in enterocyte is an important part of this study, this specific 

aspect will be further discussed later on. 

Vesicular trafficking is overall coordinated by a large family of small GTPases: the rab 

proteins. They are critical throughout the whole trafficking pathway, from vesicle budding, to 

vesicular movement and fusion at the membrane. For instance, rab6 mediates intra-Golgi 

trafficking (Olkkonen and Stenmark, 1997). Rab8 is another example of rab protein of high 

importance during polarized trafficking. Rab8 genetic ablation in mouse leads to a global 

impairment of apical trafficking in intestinal cells. Interestingly, this trafficking failure is 

coupled with a severe defect in apical membrane functional and structural specialization, 

providing an additional illustration of the tight interplay between membrane trafficking and 

polarization (Sato et al., 2007). The case of rab8 furthermore exemplifies the difficulty to define 

the functions of trafficking regulators among experimental models as it was previously shown to 

regulate basolateral trafficking in cultured cells from kidney epithelium (Huber et al., 1993). 
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Following intracellular movement, vesicles fuse at the membrane. An important mediator of this 

process is represented by the SNARE proteins. SNARE proteins are localized at the vesicle or at 

the target membrane, and accordingly named v-SNARE or t-SNARE. Interaction between v- and 

t-SNARE promotes the vesicle docking at the membrane (Figure 7). Specific t-SNAREs are 

localized at each poles, but both apical and basolateral vesicle fusions involve SNARE proteins 

(Nejsum and Nelson, 2009). 

 

D.  The intestine: a specialized organ 

 

Cellular specialization achieved by polarity is beautifully exemplified in the model we used 

in this study: the intestine, an organ dedicated to digestion and absorption. These two 

complementary processes ensure the nutritive function. Following ingestion of aliments, they are 

reduced – or digested - in simpler elements that can readily be assimilated by the organism after 

their absorption. Digestion of food is achieved by mechanical and enzymatic processes whereas 

absorption relies on cellular transport. In most of the animals, the nutritive function is performed 

in the digestive tract. In mammals, this tract extends from the stomach to the anus. The upper 

part of the tract is composed of the esophagus and the stomach. The lower part comprehends the 

small and large intestines. 

The stomach fulfills an important part of the digestion by mechanical and enzymatic actions. 

It mashes the masticated food and secretes abundant quantities of digestive enzymes. The 

digestive process is further pursued in the small intestine, organ constituted by highly specialized 

intestinal cells, which harbor and secrete digestive enzymes. The vast majority of intestinal cells 

is represented by the enterocytes, a cell type specialized in absorption. This cell type absorbs 

peptides, amino acids and nutrients either passively through diffusion or actively via the 

expression of channels and transporters. The last part of the lower digestive tract, the colon, 

allows water re-absorption. Since these tissues are continuously exposed to ingested food, they 

are often confronted to noxious agents. To avoid deleterious effects to the organism, intestinal 

cells display a high level of cellular plasticity. In this PhD work, we investigated two important 

aspects of the biology of the cells that constitutes the intestines: how their functionality is 

established and how they rapidly adapt in a stress context. 
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Histo-Anatomical considerations on the large and small intestines. 

As an epithelium, the intestinal mucosa separates the organism from the external milieu and 

ensures the integrity of the organism while performing numerous exchanges with the 

environment. The two latter processes are achieved by the formation of a virtually impermeable 

tissue and a spatial segregation of specific functions within the intestinal cell. These properties 

are characteristic from polarized epithelial cells. The intestine is constituted by a tubular 

structure covered by a simple polarized columnar mucosal epithelium organized around a lumen. 

The small intestine is sub-divided in three portions sharing relatively similar anatomical and 

gross functional properties: the duodenum, jejunum and ileum. Nevertheless, the protein 

composition slightly differs in these three parts, according to their respective specializations. 

Epithelial cells from the duodenum are particularly enriched in digestive enzymes. The jejunum 

is more specialized in absorption of luminal nutrients; jejunal cells express particularly high 

levels of transporters. Ileum preferentially absorbs vitamins and bile salts and accordingly ileal 

cells express high level of vitamins transporters. 

Histologically, the intestinal tissue, made up of epithelial cells, lays on top of a connective 

tissue, the lamina propria. An organization around multiple levels of folds is a histological 

feature characteristic of the intestinal epithelium. The tissue itself is arranged in large folds, 

which themselves are formed by numerous finger-like extensions of the mucosa called the villi. 

An obvious advantage conferred by this architecture is the maximization of the surface contact 

with the lumen, a particularity well adapted to the specialization of this organ (Figure 8). The 

epithelial tissue is constituted by several cell types which arise from the stem cells and 

differentiate. A cell compartmentation exists along the villi axis: the differentiated cells lining 

the villi are luminally exposed whereas the stem cells located at the inter-villi invaginations – the 

crypts - are relatively hidden and protected (Figure 8). On the other hand, the global 

organization of the colonic tissue is slightly different as no villi structure exists. Instead the 

tissue is shaped around larger folds. 

The intestinal mucosa is a highly dynamic tissue. Indeed the entire epithelium is renewed 

each three to five days due to the fast and continuous cycling of the stem cells which reside in 

the crypts. As a result, cells originating from the crypt continuously flow toward the villi. While 

reaching the crypt/villi frontier, cells engage their differentiation programs. Finally, 

differentiated cells undergo apoptosis when reaching the tips of the villi and are subsequently 

expelled in the lumen (Figure 8). 

30



 

 

The different cell types that constitute the intestinal epithelium 

Stem cells: The stem cells, “buried” deeply in the crypts and continuously dividing, ensure 

the rapid renewal of the epithelium. Their “stemness” property has been assessed by the capacity 

of their progeny to differentiate into the different cell types and by their ability to retain DNA 

labeling. Moreover, these stem cells are able to generate organoids in vitro that closely resemble 

the structure of the organ (Sato et al., 2009). Up to now, two populations of stem cells 

characterized by expression of signatures genes have been identified. The Lgr5 positive stem 

cells were originally identified by the group of Hans Clevers, and the Bmi1 positive cells in the 

laboratory of Mario Capecchi (Barker et al., 2007; Sangiorgi and Capecchi, 2008). Lgr5 and 

Bmi1 cells present different spatial distribution in the crypt: cells positive for Lgr5 lay at the 

base of the crypts and Bmi1 cells localize in a slightly upper position. A hierarchy between stem 

Figure 8: Organization of the intestinal epithelium 

Organization of the intestinal epithelium around the crypt-villus axis. Daughter cells arising from the stem cells 

migrate towards the villus and differentiate into five differentiated cell types belonging to the secretory and 

absorptive lineages: Paneth cells, enteroendocrine cells, goblet cells, tuft cells (not represented) and enterocytes. 

Adapted from Crosnier et al., 2006. 
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cells populations seems to exist, illustrated by the fact that Bmi1 positive cells might give rise to 

Lgr5 positive cells. The presence of two pools of potential stem cells could be of high 

importance to compensate the loss of one population in case of injury (Tian et al., 2011).  

The differentiated intestinal cell types: The immediate progeny of the stem cells, the transit-

amplifying cells, undergoes a limited round of divisions and, while migrating in the villus, 

differentiates in two lineages: absorptive and secretory. The lineages are constituted by five 

types of differentiated cell, identified so far. 

The secretory lineage comprises the Paneth cells, the enteroendocrine cells, the goblet cells 

and the recently characterized tuft cells (Figure 8). As the functions of these cells do not directly 

relate with this study, only a short description will be provided. The enteroendocrine cells locate 

in the intestinal villi and secrete various hormones which mostly regulate energy homeostasis. 

The Goblet cells are also present in villi and secrete mucus that covers the epithelium surface. 

Mucus provides a physical barrier, adding another level of protection against deleterious luminal 

agents. The tuft cells are under-represented in intestinal villi. Their exact functions remain less 

clear as they were recently characterized (Gerbe et al., 2011). They secrete opioids, synthesize 

prostaglandins and trefoil peptides. Interestingly, trefoil peptides have been shown to be essential 

for injury repair in the colon (Mashimo et al., 1996). In contrast, the Paneth cells reside in the 

crypts where they intercalate between stem cells. Functionally, they release several anti-

microbial compounds in the lumen. They also participate in generating the appropriate 

microenvironment – or niche – for stem cells: a set of secreted molecules that ensures stem cells 

homeostasis. 

Finally the absorptive lineage is represented by the enterocytes (Figure 8). Enterocytes are, 

by far, the most abundant cell type in the intestinal epithelium, representing more than 80% of 

the total cell population. The enterocyte is a polarized cell highly specialized in absorption, 

orienting its apical pole towards the lumen. On the apex, the functional specialization is provided 

by the membrane composition combined with a specific structural organization, which further 

enhances the efficiency of this epithelium. Indeed the enterocyte apex is covered by an organized 

array of regular microvilli increasing cell size by 30-40 fold: the brush border (Brown, 1962). 

Microvilli are highly enriched in numerous digestive enzymes, channels and peptide transporters 

promoting the absorptive capacity. In human, the brush border covering each intestinal 

enterocytes consists of around 1700 microvilli measuring 1-2 m in length and 0.1 m in 

diameter (Brown 1962). Each microvillus is supported by 20-30 uniformly polarized actin 
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filaments organized in a bundle by three actin bundling proteins: villin, espin and plastin-1 

(Figures 6 and 9) (Bretscher and Weber, 1979, 1980a; Tilney and Mooseker, 1971; Zheng et al., 

2000). Brush borders are also found in colonocytes and cells from the kidney proximal tubule. 

 

E.  How is the cytoskeleton structuring the brush border organized? 

 

Within microvilli. 

Actin represents the major element composing microvilli (Tilney and Mooseker, 1971). In 

most of the organisms, genome encodes for several actin isoforms, which present only slight 

variation in their amino acid sequences but, in some case, perform specific functions (Dugina et 

al., 2009; Perrin and Ervasti, 2010). In C. elegans, the actin isoform ACT5 specifically localizes 

to microvilli and is required for their biogenesis (MacQueen et al., 2005). The mammalian 

genome encodes three classes of actin isoforms: alpha, beta and gamma (Vandekerckhove and 

Weber, 1978). Two studies have documented the existence of an actin isoform specific to 

mammalian microvilli (Sawtell et al., 1988; Hartman et al., 1989); this isoform was however 

never characterized. In polarized cells in culture, gamma-actin localizes apically whereas beta-

actin distributes along the basolateral membrane (Dugina et al., 2009). Nevertheless, mice 

knocked-out for the gamma-actin gene display normal microvilli (Belyantseva et al., 2009). An 

eventual specific actin isoform building microvilli thus remains to be identified in mammalian.  

The exceptional homogeneity of microvilli implies the existence of numerous actin binding 

proteins that tightly control actin assembly and organization. Within microvilli, the actin 

filaments are organized in a bundle, a structure characteristic of finger-like membrane 

protrusions. In intestinal microvilli, three actin bundling proteins have been identified: villin, 

espin and plastin-1 (Figure 9) (Bartles, 2000). The generated bundle presents a helical 

arrangement (Ohta et al., 2012). The bundled organization is believed to provide the stiffness 

required to overcome the membrane resistance (Atilgan et al., 2006; Claessens et al., 2006). 

Another remarkable feature of the microvilli cytoskeleton is the presence of regular cross-

bridges made of myosin-1a and calmodulin, arranged in a spiral, linking the actin bundle to the 

plasma membrane along the protrusion (Mukherjee and Staehelin, 1971; Mooseker and Tilney, 

1975; Matsudaira and Burgess, 1979, 1982a; Howe and Mooseker, 1983; Conzelman and 

Mooseker, 1987). Myosin-1a-mediated membrane adhesions may avoid coalescence of adjacent 
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microvilli through generation of membrane tension (Nambiar et al., 2009). In addition, this plus 

end directed myosin motor may participate in the very late steps of apical trafficking in the 

microvilli (Tyska and Mooseker, 2004; Tyska et al., 2005). The actin binding protein ezrin may 

also provide adhesion of the actin bundle to the membrane by virtue of its ability to bind F-actin 

and plasma membrane (Algrain et al., 1993; Berryman et al., 1993). 

In the bundle, the actin filaments are uniformly polarized and present their barbed ends 

toward the distal part of the microvilli where they associate to the “tip complex”, a plaque that 

appears electron dense when visualized by electron microscopy (Mooseker et al., 1982). Such tip 

complex structures, where actin polymerization takes place, are widely distributed in actin based 

membrane protrusions – microvilli, filopodia, stereocilia, bristles - and likely have a key function 

in the shape regulation of these structures (Mooseker et al., 1982; Svitkina et al., 2003; Tilney et 

al., 2004; Lin et al., 2005). In particular, recent biophysical experiments propose a prominent 

role of this complex in converting filaments polymerization rate into efficient membrane 

deformation (Footer et al., 2007; Brangbour et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Description of the different molecular components involved in the shape regulation of intestinal 

microvilli (right) and stereocilia (left). 

A, B: General aspect of brush border domains made of (a) microvilli found on intestinal cells apices and (b) 

stereocilia found on inner ear cells apices. C: Different proteins organize the parallel actin bundles that support 

microvilli  and stereocilia structures. D: Highlight on the tips of microvilli structures where major 

regulation of actin polymerization is ensured by protein complexes identified in stereocilia. Such complexes 

remain to be found on intestinal microvilli.Adapted from Ubelmann et al., 2011 
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The terminal web. 

The actin bundle further extends in a sub-apical zone - the terminal web - where it is referred 

as the rootlet of the microvillus. The terminal web consists of a dense fibrilar meshwork of 

intermediate filaments and actomyosin filaments oriented perpendicularly to the actin bundles 

(Hirokawa and Heuser, 1981; Louvard et al., 1992). Likely due to its density, intracellular 

organelles are excluded from the terminal web (Overton and Shoup, 1964). The actin bundle 

within the terminal web is bound to tropomyosins, which span seven actin subunits and therefore 

stabilize the structure. Rootlets are furthermore interconnected by a network of thin fibrils that 

comprise two types of filaments. Proteins of the spectrin family, originally identified as 

TW260/240 in chicken and, later on, termed fodrin in mouse, constitute the most thinner fibrillar 

structures linking adjacent rootlets (Drenckhahn et al., 1980; Hirokawa et al., 1983a; Pearl et al., 

1984). Myosin II, which represents the second population of fibrils, is supposed to act as a long-

range cross-linker of rootlets (Drenckhahn et al., 1980; Hirokawa et al., 1982). Myosin II and 

actin filaments constitute a circumferential belt that crosses the terminal web and emanates from 

the adherens junctional complex (Figures 6 and 9) (Drenckhahn and Dermietzel, 1988). This 

actomyosin ring endows the enterocyte with a contractile ability. Contraction – experimentally 

induced by ATP addition, for instance - causes microvilli to vesiculate and spread apart; thus 

providing a first hint of the physical cohesion between microvilli and the terminal web 

(Mooseker, 1976; Hirokawa et al., 1983b). Located more basally, intermediate filaments 

attached to the desmosomes are mainly constituted by cytokeratins types 8, 19, and the gastro-

intestinal epithelium specific isoform 20 (Figures 6 and 9) (Moll et al., 1990; Quaroni et al., 

1991). Interestingly their relative abundance depends on the differentiation status of the 

enterocytes (Quaroni et al., 1991).  

The importance of the terminal web to shape the apical pole is highlighted by phenotypic 

observations resulting from diverse knockout approaches. Genetic loss of an intermediate 

filament protein – keratin 8 in mouse - or an IF organizer – IFO1 in Caenorhabditis elegans – 

result in a similar phenotype: shorter microvilli (Salas et al., 1997; Ameen et al., 2001; Carberry 

et al., 2012). These results show the implication of the intermediate filament network of the 

terminal web in the proper assembly of the apical pole. This implication is likely structural as 

loss of keratin filaments attachment to desmosome observed in desmoplakin knockout mice 

shortens microvilli as well (Sumigray and Lechler, 2012) This possibility is additionally 

supported by a physical interaction between plastin-1 and keratin 19 that could possibly provide 

an anchorage of the microvilli cytoskeleton into the terminal web. Consequently, plastin-1 
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genetic ablation results in a defective terminal web lacking its typical components (Grimm-

Günter et al., 2009). Moreover, microvilli in absence of plastin-1 are shorter (Grimm-Günter et 

al., 2009). Altogether these results bring to light the cohesion conferred to the apex by the 

interplay between the microvilli actin bundle and the underlying terminal web. This dense 

intertwining between the different cytoskeletal elements has been most impressively visualized 

by quick freeze deep etch electron microscopy (Hirokawa and Heuser, 1981; Hirokawa et al., 

1982).  

 

How to traffic into microvilli? 

Microvilli are structures of high hindrance and simultaneously highly enriched in specific 

proteins suited for their function. How the late steps of apical trafficking are organized in these 

crowded structures? 

En route to the microvilli, trafficking vesicles encounter a first obstacle represented by the 

dense meshwork of the terminal web. Ultra-structural observations of the terminal web revealed 

the presence of vesicular structures linked to the microvilli rootlets, leading to the proposition 

that they could serve as “tracks” for the final delivery of apical proteins (Hirokawa et al., 1983a; 

Pearl et al., 1984). Owing to its motor activity, a myosin could power the movement of vesicles 

towards the microvillus allowing vesicles fusion at the membrane (Apodaca, 2001; Tyska and 

Mooseker, 2004). This hypothesis is strengthened by mislocalization of several microvillar 

digestive enzymes observed in presence of a non-functional myosin-1a (Tyska and Mooseker, 

2004; Tyska et al., 2005). This myosin has also been detected on the outer membrane of the 

terminal web associated vesicles (Drenckhahn and Dermietzel, 1988; Fath and Burgess, 1993; 

Jacob et al., 2003). In addition, myosin-1a generates sufficient force to induce a plus end-

directed translation of apical membrane along the actin bundle (McConnell and Tyska, 2007). 

However, a rootlet-mediated delivery of apical vesicles has been questioned as in polarized 

human intestinal cells, a GFP-myosin-1a construct does not label any moving vesicle (Tyska and 

Mooseker, 2004). In addition, the rootlets are coated with tropomyosins (Bretscher and Weber, 

1978), which inhibit activity of myosin-1a (Fanning et al., 1994) and other class I myosins (Tang 

and Ostap, 2001). The presence of another motor: myosin VI could be detected in the terminal 

web (Heintzelman et al., 1994). Myosin VI, as a minus end directed motor, is rather involved in 

endocytosis events at the brush border, considering the microfilaments polarity (Ameen and 

Apodaca, 2007).  
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Alternatively, contraction of the actomyosin ring could power vesicle advance through the 

terminal web. In fact, this possibility has been proposed during the rapid microvilli insertion of 

the GLUT2 glucose transporter following glucose intake (Mace et al., 2007).  

The composition itself of intestinal microvilli, particularly enriched in lipid raft, facilitates 

the proper insertion of digestive enzymes, as a majority of them are raft associated and 

glycosylated (Danielsen, 1995). Following their insertion into microvilli, apical proteins are 

confronted to opposing flows: endocytosis and actin treadmilling. Constitutive endocytosis, even 

though at a mild rate, occurs in microvilli (Hansen et al., 2009). Nevertheless, digestive 

enzymes, as determined for sucrase-isomaltase and dipeptidyl peptidase-4, show very slow rate 

of endocytosis and are excluded from the constitutive basal endocytosis (Matter et al., 1990; 

Klumperman et al., 1991; Hansen et al., 2009). The constant actin retrograde flow, due to 

treadmilling, also impedes stability of proteins linked to the microvillar bundle. Therefore, stable 

molecular scaffolds should exist to increase microvilli residence time of apical proteins. Myosin-

1a has been proposed to stabilize lipid raft associated proteins in microvilli through its ability to 

link membrane to the cytoskeleton (Tyska and Mooseker, 2004; Tyska et al., 2005). A similar 

role has been described for the PDZ domain containing proteins NHERF1/2 that act as scaffolds 

to organize macromolecular complexes containing the exchanger Na+/H+ NHE3 to limit its 

lateral diffusion at the plasma membrane (Cha et al., 2004) despite their high dynamic state 

(Garbett and Bretscher, 2012). 

 

Brush border biogenesis during adult lifehood and development.  

Due to the dynamic nature of the intestine epithelium, enterocytes emerging from the crypts 

generate a brush border structure while differentiating. The non-differentiated crypt cells exhibit 

a poorly organized brush border containing short microvilli. As cells differentiate along the crypt 

villus axis, microvilli number and length increase to reach a normal mature brush border 

organization on fully differentiated cells (Fath et al., 1990). 

To better describe how the brush border is structured, it is interesting to refer to the 

biogenesis of the brush border during intestine development, which has been well documented 

on chicken embryo. In particular, the associated changes in morphology, protein expression and 

localization could be precisely determined. From day 5 to day 10, some irregularly shaped 

membrane protrusions containing a filamentous meshwork expand from the apical pole. Villin 
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apically concentrates around day 8, rapidly followed – one day later - by an increase in 

membrane projections number and homogeneity (Shibayama et al., 1987). Interestingly, the 

latter observation correlates with the progressive elaboration of an aligned organization of the 

microfilaments, while plastin concentrates at the apex. Complete alignment of the actin filaments 

within each microvillus is achieved at day 11 (Overton and Shoup, 1964). Nevertheless, the 

microvilli lack an overall organization in a brush border. At this stage the electron dense tip is 

distinguishable (Chambers and Grey, 1979). Prior to hatching, the brush border acquires its final 

organization characterized by a perfectly parallel array of microvilli. Then, microvilli undergo a 

process of lengthening that persists until one week post-hatching when microvilli reach their 

final length (Figure 10) (Stidwill and Burgess, 1986). Myosin-1a localizes apically during 

hatching concomitantly to a decrease in diameter of the actin bundle, likely indicating that the 

myosin cross-bridges are critical for proper actin bundle organization (Figure 10) (Overton and 

Shoup, 1964; Shibayama et al., 1987). This apical localization is also concomitant to the 

differentiation of the apical membrane, suggesting a possible role for this myosin in trafficking, 

as discussed earlier (Shibayama et al., 1987).  

Therefore, actin bundling proteins sequentially accumulate in the maturing microvilli 

(Figure 10): villin first localizes to the nascent poorly organized microvilli, followed by T-

plastin (Shibayama et al., 1987; Chafel et al., 1995). This transiently expressed isoform is 

replaced by the microvillar isoform plastin-1 few days later (Chafel et al., 1995). Espin 

concentrates apically later on during development, on a largely organized core bundle, and has 

been proposed to “lock” the actin organization (Bartles et al., 1998). 

 

Terminal web elaboration during development. 

The rootlets structures start to be detected by day 10 during chicken development. At day 

13, only short filaments made of spectrin and myosin II interconnecting the rootlets are observed 

in the terminal web region, whereas the meshwork of intermediate filaments appears well 

developed (Takemura et al., 1988). The network of inter-rootlets filaments evolves to become 

denser and reaches an almost mature organization by day 21. The last morphological event 

occurs at day 3 post-hatching and consists on the stratification of the different cytoskeletal 

networks. Then, the terminal web shows its mature organization: located more apically, the 

actomyosin belt links the adherens junctions, whereas, located below, the meshwork of 

intermediate filaments connects the desmosomes.  

38



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How microvilli are initiated? 

The extensive description of brush border morphogenesis is insufficient to identify which 

upstream signaling factors induce microvilli biogenesis. Few molecules controlling the very 

initial steps of microvilli biogenesis have been documented. The Lkb1 kinase – the mammalian 

homolog of the polarity regulator Par4 from Drosophila and C. elegans – seems to play a major 

role. Indeed, experimental Lkb1 activation results in brush border formation in a single epithelial 

cell from intestinal origin. Moreover apical and basolateral proteins are well localized in this 

single cell, indicating a full polarization, even in absence of cell-cell contact (Baas et al., 2004). 

This microvilli biogenesis has been linked to ezrin phosphorylation by a downstream effector of 

the Lkb1 pathway (ten Klooster et al., 2009). Indeed, in cell culture ezrin phosphorylation 

Figure 10: Brush border morphogenesis during embryo development 

A. Diagram recapitulating the apical localization of different microvillar proteins during the 

brush border development in chicken. B. Drawing depicting the structural changes 

associated with microvilli development. Adapted from Louvard et al., 1992. 
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induces formation of tufts of microvilli (Bretscher, 1989; Gautreau et al., 2000) whereas its 

inactivation leads to microvilli breakdown (Kondo 2000). In vivo, the situation is more 

complicated as absence of ezrin in the mouse severely affects shape of microvilli but does not 

abrogate their biogenesis (Saotome et al., 2004; Casaletto et al., 2011). 

 

How does actin initiate and shape microvilli?  

The actin machinery that initiates microvillus protrusion is still not completely elucidated. It 

is interesting to refer to an early work, which documents the different steps of microvilli re-

assembly following their disruption by hydrostatic pressure (Tilney and Cardell, 1970). After 

pressure relapse, Tilney and Cardell observed foci of electron dense material at the flattened 

apical surface. From these foci, nascent filaments arise correlating with extension of newly 

formed microvilli, thus strongly suggesting that these electron-dense structures nucleate actin 

filaments to control microvillus growth (Tilney and Cardell, 1970). This tip complex should play 

prominent role in microvilli shaping and initiation. Whereas the molecular composition of the tip 

complex has reached an advanced stage in stereocilia or filopodia, it remains quite obscure in 

microvilli. It is thus informative to compare experimental data obtained in these different 

systems (Figure 9). 

Actin polymerization is spatially restricted at the microvilli tips (Mooseker et al., 1982; 

Stidwill et al., 1984). This result has been confirmed by FRAP experiments showing that 

monomer addition occurs exclusively at the microvilli tips (Tyska and Mooseker, 2002) inducing 

a treadmilling process along the structure. Such actin cycling along the protrusion shaft is 

observed in microvilli (Tyska and Mooseker, 2002) and filopodia (Mallavarapu and Mitchison, 

1999) but remains controversial in sterocilia (Schneider et al., 2002; Zhang et al., 2012). In the 

case of microvilli, their length remains constant despite a continuous actin polymerization at the 

tip complex. This observation implies the existence of a precise equilibrium, arising from 

regulation between polymerization at the tip and depolymerization at the rootlets. The actin 

depolymerization rate is directly affected by the composition in actin bundling proteins, as over-

expression of espin results in a slower depolymerization rate of microvilli (Loomis et al., 2003; 

Lenz et al., 2010). The disassembly rate nevertheless appears not to be dynamically regulated. 

Indeed, in filopodia neuronal growth cone, the length of the membrane protrusions is dictated by 

the actin assembly rate, which varies accordingly to the filopodium extension and retraction 

whereas actin disassembly stays relatively constant (Mallavarapu and Mitchison, 1999). The rate 
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of actin polymerization reflects the concentration of free actin monomers available for 

polymerization (Pollard and Mooseker, 1981; Mooseker et al., 1982). In line with this idea, 

microvilli lengthening during development associates with a reversible increase in G-actin 

concentration that shifts back when elongation is complete (Stidwill and Burgess, 1986). The 

capping protein CapZ, present in the tip complex of microvilli caps growing ends and thus might 

be a critical regulator of actin monomer concentration (Figure 9) (Schafer et al., 1992). 

Antagonistic interplay between cappers and proteins from the Ena/VASP family may 

additionally finely tune microvilli length, as already described for filopodia (Bear et al., 2002; 

Schirenbeck et al., 2005). 

Owing to their staircase organization, stereocilia represent the perfect system to study how 

the cell counts and measures. In fact, several protein complexes regulating stereocilia length 

have been identified. They all reside in the electron dense tip (Figure 9). A tip concentration of 

the capping protein twinfilin-2 has been reported in the shorter row of stereocilia only (Peng et 

al., 2009). Interaction of twinfilin-2 with myosin IIIa is essential for its proper localization 

(Rzadzinska et al., 2009). A second complex composed of myosin XVa and whirlin has been 

detected on stereocilia tips, independently of their length (Rzadzinska et al., 2009). The function 

of this complex remains unclear, but lack of either one or the other component results in very 

short stereocilia without disturbing the staircase organization (Probst et al., 1998; Mburu et al., 

2003). In summary, the myosin XVa/whirlin complex promotes actin assembly, whereas 

myosinIIIa/twinfilin-2 inhibits it. The interplay between these determinants likely determines the 

length gradation of stereocilia organization. In microvilli, similar regulatory molecular 

complexes, if existing, remain to be identified. In filopodia a myosin motor also concentrates at 

the growing extremities: myosin X (Berg and Cheney, 2002). Its overexpression increases 

filopodia numbers and length (Berg and Cheney, 2002). Myosin X transports Mena/VASP, a 

protein from the Ena/VASP family, at the filopodia tips and in turn favors elongation (Tokuo and 

Ikebe, 2004). The examples of filopodia and stereocilia underline the importance of specific 

myosin motors to direct actin regulatory complexes at the tip. In microvilli, myosin VIIa and Vb 

display a distal localization (Heintzelman et al., 1994; Wolfrum et al., 1998). A class I myosin, 

myosin 1d was recently been shown to localize to the terminal web and to discrete punctae at the 

microvilli tips (Benesh et al., 2010). Their contribution during elongation has still to be explored 

in microvilli. 

A set of proteins from the eps8 family is also detected at the microvilli and filopodia tips 

(Croce et al., 2004; Zwaenepoel et al., 2012). Eps8 proteins cap and weakly bundle actin 
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filaments (Disanza et al., 2004, 2006; Hertzog et al., 2010). In C. elegans loss of eps8 results in 

longer microvilli, a result typical of loss of a capping protein (Croce et al., 2004). In the mouse, 

the situation becomes more complex as knocking out eps8 induces shorter microvilli (Tocchetti 

et al., 2010). This result might be explained by the existence in mammals of several eps8 

isoforms, which show distinct properties towards actin dynamics (Zwaenepoel et al., 2012). 

Indeed, in association with ezrin and depending of its isoform, eps8 proteins have been shown to 

finely tune microvilli length by distinct capping and weak bundling activities (Hertzog et al., 

2010; Zwaenepoel et al., 2012).  

The actin organization conferred by actin binding proteins also critically shapes membrane 

protrusions. As seen in the general introduction, actin filaments supporting membrane 

protrusions are indeed constantly associated with several actin bundling proteins. It is widely 

accepted that these structural proteins provide the stiffness required for the actin network to 

overcome membrane resistance thereby allowing extension and maintenance of a straight 

protrusion.  

 

  

42



 

 Objectives  

 

During the course of this study, I became interested in two complementary aspects of the 

role of the actin cytoskeleton supporting intestinal microvilli: the importance of the bundled 

architecture to microvillus biology and the events of microvillar actin reoganization that 

associate with cell migration. These two projects were unequally advanced when I joined the lab.  

In the first part of this PhD work, we wondered to which extent the actin bundling proteins 

contribute to microvilli morphogenesis and functionality. The role of the microvillar actin 

bundling proteins has been a long-standing question in our laboratory as well as in some others. 

Their function is thought to be only structural: to endow the actin filaments with an organization 

allowing the membrane to protrude. To answer this question, our laboratory used a general 

mouse knockout approach to generate mice lacking the three microvillar actin bundling proteins. 

Indeed, the question of a possible compensation came naturally as it was already known that 

none of these proteins is individually required to enable microvilli protrusions (Ferrary et al., 

1999; Grimm-Günter et al., 2009). At the time of my arrival, the mice were already obtained and 

the extensive electron microscopy analysis of the intestinal mucosa had already been 

accomplished. The investigations that I pursued on these animals allowed us to draw our major 

conclusions that are detailed in the next section. 

The second aspect, which was in fact initially the main project of my PhD, consisted of 

investigating microvilli reorganization during cell migration. It is assumed that microvilli 

disassemble at the onset of cell migration, even though dynamic data is lacking (Nusrat et al., 

1992; Albers et al., 1995). The aim was to obtain dynamic insights of this event to understand 

which mechanisms control it and to determine if it has any physiological relevance in the animal. 

Our working hypothesis postulates that villin severs microvillar F-actin leading to the collapse of 

the microvilli upon epithelial cell migration. This idea is not completely new as it has been 

suggested since several years in different reports (Glenney et al., 1981c; Nusrat et al., 1992; 

Albers et al., 1995; Ferrary et al., 1999), but has never been experimentally demonstrated. When 

I took charge of the project, the animal models were being generated at the transgenesis 

platform. These models allowed me to follow an in vivo approach that I could complement with 

cell culture experiments. 
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I/ An unexpected role for the actin architecture 

in retention of membrane proteins in microvilli 

 

A.  Actin bundling proteins and morphogenesis of actin-based protrusions 

 

The three actin bundling proteins of microvilli 

Microvilli concentrate three actin bundling proteins: villin is a 95 kDa actin binding protein 

mainly expressed in the absorptive cells of the intestine, colon and in the kidney proximal tubule 

(Bretscher and Weber, 1979, 1980b; Robine et al., 1985). In these polarized epithelia, villin 

localizes in the brush border (Bretscher and Weber, 1979; Matsudaira and Burgess, 1979) where 

it represents the most abundant microvillar protein, besides actin (Bretscher and Weber, 1979). 

Villin belongs to the gelsolin protein family and is organized around six repetitions of a 

conserved domain shared by all members of this family (Arpin et al., 1988). In addition, villin 

displays an extra carboxy terminal domain: the headpiece (Arpin et al., 1988). In vitro, villin 

bundles, caps, nucleates and severs actin filaments in a calcium dependent manner (Bretscher 

and Weber, 1980b; Glenney and Weber, 1981; Glenney et al., 1981a). Between the two first 

repetitions of the modulus, a calcium dependent actin binding domain has been identified (de 

Arruda et al., 1992). This site is responsible for villin-mediated actin severing (Matsudaira et al., 

1985; Janmey and Matsudaira, 1988). A second F-actin binding site in the headpiece endows it 

with bundling property (Glenney et al., 1981a). Bundling involves a conserved motif of 4 

charged amino acids – KKEK – crucial for actin binding and bundling (Friederich et al., 1992). 

Villin binding to F-actin seems to be governed by its phosphorylation status (Zhai et al., 2001, 

2002). A dimerization site, located near the amino terminal sequence, was recently reported to 

account for villin bundling activity (George et al., 2007). Nevertheless, a 3D structure model of 

villin bound to F-actin determined by electron microscopy tomography is incompatible with a 

dimerization of the protein (Hampton et al., 2008), suggesting that the reported villin 

dimerization is artefactual.  

Plastin-1, formerly I-fimbrin, is a 68 kDa actin bundling protein localized on microvilli, 

membrane ruffles and stereocilia (Matsudaira and Burgess, 1979; Bretscher and Weber, 1980a; 
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Bretscher, 1981). Three plastin isoforms exist and the isoform 1 has an expression pattern similar 

to villin (Lin et al., 1994). Plastin-1 belongs to the calponin homology (CH) domain family of 

actin binding proteins. Plastin-1 exhibits one N-terminal calcium binding domain and a repetition 

of two CH domains, each of them represents an F-actin binding domain (Revenu et al., 2004). 

Thus, plastin-1 is a monomeric actin bundling protein which organizes F-actin into tight bundles 

in a calcium dependent manner (Glenney et al., 1981b). 

Espin is the third identified microvillar actin bundling protein. In intestinal tissue, alternate 

splicing produces a smaller espin weighing around 30 kDa (Bartles et al., 1998). In microvilli, 

espin appears to be 10-20 fold less abundant than villin and plastin-1 (Bartles et al., 1998). Espin 

is additionally expressed in kidney proximal tubule and is the major actin bundling protein of 

stereocilia (Zheng et al., 2000). On the contrary to vilin and plastin-1, espin bundling property is 

insensitive to calcium concentration. By sequence comparison with long espin and deletion 

mutagenesis a minimal region of 116 amino acids appears to be sufficient to bundle actin. At 

least two actin binding domains are presumably present in this region as espin bundles actin in a 

monomeric state (Bartles et al., 1998). 

Due to their structural diversities, the different bundlers design F-actin networks of different 

mechanical properties (Claessens et al., 2006; Shin et al., 2009). For instance, espin produces 

identical bundles regardless of espin-actin ratio, thereby possibly facilitating reproducible 

mechanotransduction of sound along the stereocilium (Shin et al., 2009). In contrast, the 

structure of fascin-bundled networks is sensitive to the actin-fascin ratio, a property that could be 

particularly suited for the dynamic filopodia (Shin et al., 2009). Cooperation between actin 

bundling proteins is illustrated in the case of the bristles in which forked and fascin sequentially 

localize to drive the transition from a loosely to a highly organized actin network (Tilney et al., 

1995). Thus cooperation between the bundlers might finely tunes the actin network to generate a 

framework adapted to the specific functions of the different protrusions. 

 

Actin bundling proteins: essential players in protrusions morphogenesis? 

Considering their ubiquitous presence in actin-based protrusions and their accepted role in 

building actin frameworks, actin bundling proteins should play major role during protrusion 

morphogenesis. Accordingly, fascin depletion results in a drastic decrease of filopodia number 

and the remaining ones are short and bent, running nearly parallel to the membrane (Vignjevic et 
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al., 2006). Conversely, overexpression of fascin or transfection of a constitutively active mutant 

produces numerous long filopodia (Yamashiro et al., 1998). In Drosophila melanogaster, 

mutants lacking forked or fascin present severe defects of bristles morphogenesis (Tilney et al., 

1998). Jerker mice harbor a frameshift mutation in the espin C-terminal region that affects the 

stability of the protein leading to virtually espin null animals (Grüneberg et al., 1941; Zheng et 

al., 2000). In these mice, the absence of espin destabilizes sterocilia and ultimately causes their 

degeneration (Zheng et al., 2000).  

Concerning microvilli, espin transfection in the epithelial cell line LLC-PK1, from kidney 

proximal tubule origin, results in a dramatic lengthening of existing microvilli (Loomis et al., 

2003). Over-expression of T-plastin in the same cell line causes a mild increase in microvilli 

density and length (Arpin et al., 1994). The morphogenetic effect of intestinal isoform plastin-1 

has not been investigated yet. Villin role in microvilli morphogenesis could be analyzed by a 

knock down approach. A cDNA encoding a villin antisense RNA was used to obtain a selected 

clone from the colonic transformed cell line Caco-2 resulting in a major down-regulation of the 

protein. Following polarization, only few dispersed microvilli lacking an organized actin core 

could be detected, in contrast to the well-developed brush border of original Caco-2 cells (Costa 

de Beauregard et al., 1995). Microinjection of purified villin in fibloblastic NIH-3T3 cells 

inversely results in the growth of surface microvilli and redistribution of F-actin from the stress 

fibers towards the apical pole (Franck et al., 1990). Villin ectopic expression in the fibroblastic 

cell line CV1 induces similar results. Moreover, this morphogenetic effect requires the presence 

of the conserved KKEK motif, suggesting that the actin bundling property is critical for 

microvilli morphogenesis (Friederich et al., 1992). In addition, preventing actin polymerization 

by treatment with cytochalasin D reverts the microvilli induction by villin (Friederich et al., 

1993). From these different results actin bundling proteins contribution appears to be critical in 

the establishment of microvilli. This expectation is further reinforced by the sequential apical 

accumulation of the microvillar actin bundling proteins which correlates with precise 

morphological changes during development. To clarify the precise contributions in vivo of each 

actin bundling protein during apex morphological design, a set of single knockout mouse models 

was generated and characterized. 

In light of the particularly detailed results concerning villin function in cell culture and its 

early localization during brush border development, villin appears to be the principal candidate 

to regulate microvilli morphogenesis and biogenesis. To confirm villin role in vivo, two teams 

independently generated villin null (V
-/-

) mouse models. Surprisingly, these mice are perfectly 
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viable and fertile. Extensive characterization of their intestinal and colonic microvilli by electron 

microscopy does not reveal any defect neither in their morphology nor in their organization into 

a brush border (Figure 11) (Pinson et al., 1998; Ferrary et al., 1999). Only minor ultra-structural 

disorganization of the F-actin core is detected in transversal section of microvilli (Pinson et al., 

1998). Further physiological experiments indicate that lack of villin does not affect absorption of 

water, salts and glucose (Athman et al., 2002). In contrast to its proposed role in cell culture, 

villin is thus dispensable for proper microvilli morphogenesis and function in vivo.  

Jerker mice (E
-/-

) that harbor a spontaneous autosomal recessive mutation located on the 

espin C-terminal region present normal espin mRNA level, but do not accumulate espin proteins, 

neither long espin nor the microvillar small espin (Grüneberg et al., 1941; Zheng et al., 2000). 

These mice are deaf, hyperactive and move erratically as a result of inner ear stereocilia 

degeneration. In collaboration with J. Bartles, the group of Sylvie Robine carefully analyzed the 

ultrastructure of intestinal cells from espin null mice: in absence of espin, no morphological 

defect is detected in intestinal brush border (Figure 11). 

Finally, mice devoid of plastin-1 (P
-/-

) do not present any overt phenotype. Only minor ultra-

structural defects of the enterocyte apical pole is reported (Grimm-Günter et al., 2009). 

Microvilli size is slightly reduced when compared to wild type animals (Figure 11). On 

microvilli transversal sections, the actin filaments organization appears less precise. More 

strikingly, rootlet structures are lacking, correlating with more profound defects of the terminal 

web: myosin II, spectrin and tropomyosin are absent from the sub-apical structure, which is 

nonfunctional. Nevertheless, polarity is maintained and microvilli extend straight and organize 

into a regular brush border. 

 

 

 

Figure 11: Brush border morphology in absence of the major microvillar proteins  

Villin
-/-

 and espin
-/-

 microvilli do not present any morphological defect as compared to wild type microvilli.  

Plastin 1
-/-

 microvilli are shorter; note the absence of rootlets. Adapted from Ubelmann et al., 2011. 
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These results demonstrate that none of the actin bundling protein is individually required for 

microvilli biogenesis and brush border organization. To explain this lack of strong phenotype the 

loss of one bundler could be compensated by the other actin bundling proteins. Detailed analysis 

of the microvillar protein content of V
-/-

 and P
-/-

 mice could not reveal any change of expression 

level of the remaining actin bundling proteins (Ferrary et al., 1999; Grimm-Günter et al., 2009). 

It is nevertheless conceivable that their basal expression level is sufficient to rescue the loss of 

one bundler. To address this question, intercross of the different mouse models presented above 

were performed in order to characterize mice lacking the three microvillar actin bundling 

proteins. 

 

B.  Results 

 

Villin/espin/plastin-1 triple KO mice show growth defects. 

To investigate redundancy among the three actin-bundling proteins of enterocytic microvilli 

— villin, plastin-1 and espin — the corresponding single KO were crossed before I joined the lab 

(Ferrary et al., 1999; Zheng et al., 2000; Grimm-Günter et al., 2009) to obtain all four possible 

combinations: villin/espin, villin/plastin-1, and espin/plastin-1 double KO mice (VE
−/−

, VP
−/−

, 

and EP
−/−

 mice, respectively) and villin/espin/plastin-1 (VEP
−/−

) triple KO mice. All these mice 

are viable and fertile.  The double KO animals appear normal with the exception of mice lacking 

espin, which have behavioral defects, as described previously (Grüneberg et al., 1941). The 

VEP−/− mice demonstrated a smaller body size compared with wild-type (WT) animals (Figure 

12A). VEP−/− mice consistently showed a statistically significant growth delay during their first 

60 days of life for both males and females compared with their triple heterozygote (VEP
+/−

) half-

sibling and double KO VP
−/−

 controls. No significant difference in the growth of VEP
+/−

 and 

VP
−/−

 mice was found (Figure 12B). The growth delay of VEP
−/−

 mice became more pronounced 

at ∼20–25 days, which corresponds to the weaning period (Figure 12B). Thus VEP
−/−

 mice 

suffer from growth retardation for the duration of their first 60 days of growth.  
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Figure 12: The VEP
−/−

 mice have growth defects, but the morphology of their intestinal epithelium looks 

normal. 

A. Picture of a triple KO VEP
−/−

 animal next to a WT animal of the same age. B. Growth curves plotting the 

average weight of 35 triple heterozygotes (VEP
+/−

), 16 villin/plastin-1 double KO (VP
−/−

), and 35 triple KO 

(VEP
−/−

) mice according to their age. Males and females were analyzed separately. C and D. Histological 

sections of jejunum from WT and triple KO (VEP
−/−

) animals. C. H&E shows a hematoxilin and eosin staining 

(scale bar: 200 μm), phalloidin labels F-actin (scale bar: 100 μm). Immunostaining for ezrin, E-cadherin, and 

ZO-1 is shown. Scale bars: 100 μm; insets: 10 μm. D. The global cellular organization of the cytoskeletal 

elements is presented. Microtubules and F-actin are revealed by immunostaining against α-tubulin (α-Tub., 

green) and phalloidin labeling (Phal., red). Cytokeratins are labeled with a pancytokeratin antibody (green); dapi 

labels nuclei (blue). Scale bars: 10 μm. 
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The global organization of the enterocytes of VEP
−/−

 mice is preserved. 

A gross histological characterization of the mice was undertaken by Sylvie Robine and 

Céline Revenu. Despite displaying a growth retardation phenotype, the global crypt–villus 

organization of the intestinal epithelium of VEP
−/−

 mice does not show any overt defects, as was 

revealed by hematoxilin-eosin staining (Figure 12C). Intestinal sections from VEP
−/−

 mice 

demonstrated normal apical concentrations of ezrin and F-actin compared with WT sections 

(Figure 12C). The lateral and apical-lateral junctional markers E-cadherin and ZO-1 also 

retained their expected localizations in the VEP
−/−

 enterocytes. Therefore, even in the absence of 

all three actin-bundling proteins, the intestinal epithelial organization and polarity appeared 

normal at the tissue level. We then investigated the distribution of the main cytoskeletal elements 

at the cellular level (Figure 12D). In the VEP
−/−

 enterocytes, microtubules showed the classical, 

mainly apico-basal orientation, and keratin filaments presented a normal diffuse pattern with a 

slight concentration in the terminal web as in enterocytes from WT mice. At this cellular 

resolution, the strong brush border localization of actin filaments, although maintained, often 

appeared narrower in the VEP
−/−

 compared with the WT mice, suggesting an alteration at the 

level of the microvilli (Figure 12D). Therefore the growth delay present in VEP
−/−

 mice does not 

seem to be caused by abnormalities in intestinal morphology or global polarity of enterocytes.  

 

Intestinal microvilli form even in the absence of the three actin-bundling proteins. 

The results, analyses and conclusions presented in this paragraph and in the next one were, 

for the vast majority of them, already established at the time I joined the lab. My experimental 

and analytical contributions on these two sections were thus only minor.  

In light of the proposed role of actin-bundling proteins in the formation of membrane 

protrusions, in close collaboration with the electron microscopy service from the Institut Curie 

transmission electron microscopy (TEM) was used, to investigate the defects generated by the 

combined absence of two or three bundling proteins in intestinal microvilli morphogenesis. 

Unexpectedly, microvilli were present in all KO mice analyzed, even in the absence of the three 

bundlers (Figure 13, A and B). Although TEM confirmed the global preservation of the apico-

basal polarity of the enterocytes, with a well-defined brush border facing the lumen, the 

cytoplasm of the VEP
−/−

 cells demonstrated a higher concentration of vesicles, vacuoles, and 

tubular structures, especially in the apical area, compared with WT enterocytes. This was 
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quantified by evaluating the number of vesicular structures per square micrometer in the first 

apical micron of cytoplasm below the microvilli (1.74 ± 0.94, nWT = 5 cells; 7.63 ± 0.52, nVEP−/− 

= 6 cells; Mann-Whitney p < 0.01; Figure 13A). No defect in the brush border of the VE
−/−

 mice 

could be detected. The VP
−/−

, EP
−/−

, and VEP
−/−

 mice showed defects similar to those reported 

for the plastin-1 KO mice (P
−/−

) (Grimm-Günter et al., 2009), namely, very short or absent actin 

bundle rootlets and a strong reduction in the apical organelle free zone (Figure 13B).  

Although the bundlers appeared nonessential for the formation of microvilli per se, they did 

have an effect on microvillar length (Figure 13C). Compared with microvilli of WT animals, the 

microvilli of VP
−/−

 mice presented a reduction in length of ∼20%, similar to the P
−/−

 mice (1.03 

± 0.14 μm, nVP−/− = 14, and 1.01 ± 0.16 μm, nP
−/−

 = 194, compared with 1.25 ± 0.26 μm, nWT = 

86; t test p < 0.0001). The EP
−/−

 and the VEP
−/−

 mice showed a major decrease in length of 

around 40% of the length of WT microvilli (0.76 ± 0.15 μm, nEP−/− = 75, compared with WT, t 

test p < 0.0001; 0.72 ± 0.11 μm, nVEP−/− = 58, compared with WT, t test p < 0.0001). The VEP
−/−

 

and EP
−/−

 microvilli were thus very similar, with an average length of 724 and 763 nm, 

respectively, against 1253 nm for WT microvilli. Nevertheless, VEP
−/−

 microvilli appeared less 

homogeneous in length per cell and less straight compared with EP
−/−

 and a fortiori to WT 

microvilli (Figure 13, A and B). This was confirmed by the significantly increased coefficient of 

variation of the length of microvilli per cell in the VEP
−/−

 compared with WT cells (2.54 ± 

1.37%, nWT = 7 cells, and 10.85 ± 4.90%, nVEP−/− = 7 cells; Mann-Whitney p < 0.01). In 

conclusion, the absence of the three known actin-bundling proteins reduces microvillar length 

but does not prevent microvillar protrusion.  

 

Figure 13: Microvilli still form in the VEP
−/−

 mice 

A. Transmission electron micrographs of sections of jejunum from WT, EP
−/−

, and VEP
−/−

 presenting a general 

view of the enterocyte polarity. Arrows point at apical vesicles and vacuoles in the VEP
−/−

 sample. Scale bars: 2 

μm. B. Transmission electron micrographs of sections of jejunum from WT, the three double KO (VE
−/−

, VP
−/−

, 

EP
−/−

) and the triple KO (VEP
−/−

) mice illustrating the organization of the brush border. Scale bars: 500 nm.  

C. Histograms illustrating the average lengths of the intestinal microvilli depending on the genotype. Values are 

1.25 ± 0.26 μm, nWT = 86; 1.01 ± 0.16 μm, nP−/− = 194; 1.03 ± 0.14 μm, nVP−/− = 14; 0.76 ± 0.15 μm, nEP−/− = 75; 

0.72 ± 0.11 μm, nVEP−/− = 58. *** t test p < 0.001. 
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The organization of F-actin into a bundle is lost in VEP
−/−

 microvilli. 

We next addressed the precise organization of actin filaments, which were detected in 

microvilli after phalloidin staining (Figure 12D). The longitudinal striation due to the actin 

bundle was easily detectable by TEM in the double KO microvilli, whereas it was no longer 

distinguishable in the VEP
−/−

 microvilli (Figure 13B). TEM of transverse sections of WT 

microvilli demonstrated a sharp, electron-dense, dotted pattern that corresponded to transverse 

sections of individual actin filaments (Figure 14A, insets). This pattern was absent in VEP
−/−

 

samples, which displayed only a few, indistinct darker areas that likely correspond to actin 

filaments (Figure 14A). This prevented the quantification of the number of filaments in VEP
−/−

 

samples. Noticeably, although the reticular organization of microvilli was unaffected as 

measured by the angle between three adjacent microvilli (65.9 ± 9.7°, nWT = 115; 62.4 ± 9.4°, 

nVEP−/− = 151), the transverse area of microvilli was strongly decreased in VEP
−/−

 versus WT 

animals (5231.1 ± 836.7 nm
2
, nVEP−/− = 91, and 8909.5 ± 1097.9 nm

2
, nWT = 137; t test p < 

0.0001; Figure 14B). As the number of filaments in the bundle influences the diameter of a 

protrusion (Tilney and Tilney, 1988), this could indicate a reduced number of filaments in the 

VEP
−/−

 microvilli. In support of this hypothesis, western blotting revealed that the actin content 

of the purified brush borders was reduced in VEP
−/−

 mice compared with WT controls, whereas 

the actin content of enterocytes remained unmodified between WT and VEP
−/−

 total lysates 

(Figure 14C).  

To achieve better resolution of the actin filaments in microvilli, we performed TEM on 

isolated brush borders from WT and VEP
−/−

 mice. This technique eliminates most of the 

background generated by the cytoplasmic elements, while the brush border actin cytoskeleton 

and its associated plasma membrane are preserved. As demonstrated by phalloidin staining, 

VEP
−/−

 brush borders appeared thinner than WT brush borders and retained F-actin (Figure 14, 

D and E, insets). TEM revealed that longitudinal actin filaments were still present in VEP
−/−

 

microvilli. However, they lost the normal bundled structure present in the WT situation (compare 

Figure 14E with 14D): the number of filaments seemed to be reduced, and their spacing was 

highly irregular. In some areas, actin filaments appeared compacted and indistinguishable from 

each other, or even interrupted, which could be due to wavy filaments going out of the section. 

In other areas, the spacing between two filaments was enlarged compared with the WT bundle. 

This disorganization explains the lack of sharp actin dots in the transverse sections (Figure 

14A). On the contrary, actin filaments in WT microvilli showed the expected highly regular 

bundle pattern resembling striae (Figure 14D). The short or missing rootlets in VEP
−/−

 mice look 
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similar to those reported for P
−/−

 mice (Grimm-Günter et al., 2009). Actin-membrane bridges, 

known to be myosin-1a–based in WT animals, could still be detected in some VEP−/− samples 

(Figure 14, D and E, arrowheads). These bridges cannot be detected in all sectioned microvilli, 

even in WT mice; therefore their number and arrangement cannot be reliably evaluated. Taken 

together, these data indicate that although actin filaments are still present in VEP
−/−

 microvilli, 

they are sparse and no longer packed in parallel bundles.  
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The loss of the three bundlers appears not to be compensated. 

I took the project in charge  at this point, most of the results, analyses and conclusions 

presented above being already established. The three known actin bundling proteins of the 

microvilli thus seemed dispensable to maintain microvilli protrusions. In order to broaden this 

conclusion, I elected a proteomic approach to determine whether a fourth, unknown actin-

bundling protein or a protein compensating the absence of the three bundlers could account for 

the protrusion of microvilli in the VEP
−/−

 enterocytes. Alternatively, providing that no additional 

actin-bundling protein compensates for the triple KO, it would appear the bundled organization 

is not required for membrane protrusion. I performed mass spectrometric analysis of the total 

protein content of WT and VEP
−/−

 isolated brush borders. The list of actin-related proteins found 

in the analysis of WT brush borders is presented in Table 1 (see page 65). All the additional 

proteins found in the analysis of VEP
−/−

 brush borders are listed in Table 2 (see page 66). I 

furthermore performed various immunostainings and western blots to investigate the interesting 

hits. The potential actin cross-linkers harmonin and eps8 could be detected in WT and VEP
−/−

 

brush borders. However, only the short harmonin isoform, harmonin a, which lacks the actin 

cross-linking region (Verpy et al., 2000), but not the cross-linking isoform b (Boëda et al., 2002), 

could be detected in WT and VEP
−/−

 brush borders by western blot analysis using a pan-

harmonin antibody (Figure 15B). The capping protein eps8 has also been recently proposed to 

have cross-linking activity in vitro that is enhanced by binding to IRSp53 (Disanza et al., 2006; 

Hertzog et al., 2010). IRSp53 was absent from both WT and VEP
−/−

 brush borders, as it could 

neither be found it in the proteomic data nor be detected by western blotting (Figure 15A). 

Moreover, eps8 expression levels were unchanged between WT and VEP
−/−

 brush borders and, 

importantly, eps8 was strictly localized at the very tip, as expected, and did not extend along the 

shaft of the microvilli in the VEP
−/−

 samples (Figure 15A). Eps8 is thus not ectopically recruited 

and does not compensate for the loss of the actin-bundling proteins of VEP
−/−

 intestinal 

microvilli. No extra actin-bundling or cross-linking proteins could be detected in the VEP
−/−

 

Figure 14: The organization of the actin bundle is affected in the VEP
−/−

 microvilli 

A. Transmission electron micrographs of transversal sections of the microvilli of WT and VEP
−/−

 mice. Scale bars: 

200 nm; insets: 50 nm. B. Histograms depicting the average area of transversal sections of microvilli depending on 

the genotype: 5231.1 ± 836.7 nm
2
, nVEP−/− = 91 and 8909.5 ± 1097.9 nm

2
, nWT = 137. *** t test p < 0.001. C. 

Western blotting against actin on total lysates or lysates from isolated brush borders (loaded for equal total protein). 

D and E. Transmission electron micrographs of isolated brush borders from D. WT and E. VEP
−/−

 mice. Typical 

isolated brush borders are shown in insets (left: Nomarski; right, phalloidin staining). Arrowheads highlight actin-

membrane bridges. Scale bars: 200 nm. 
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brush borders compared with WT (Table 2, see page 66). Thus the formation of microvilli in 

VEP
−/−

 mice does not appear to be due to the compensatory recruitment of a fourth bundler but is 

more likely explained by the presence of the remaining actin-binding proteins normally present 

in microvilli.  

  

Figure 15: Distribution of potential actors of microvilli morphogenesis 

identified by proteomics analysis 

Immunostainings and western blots on WT, P
-/-

 and VEP
-/-

 samples.  

A. Eps8 localisation at the tips of microvilli analysed by immunostainings and 

counterstained for the microvillus protein ezrin (top). Scale bar 10 μm. Detection of 

Eps8 and IRSp53 by immunoblots performed on isolated brush border lysates loaded 

for equal protein content (bottom). For IRSp53, a lysate of caco-2 cells has been 

used as positive control (+). B. Immunoblots using a pan-harmonin antibody 

performed on isolated brush border lysates. The expected sizes of isoforms a and b 

are highlighted. 
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The EM analyses thus revealed a weaker phenotype than expected. In order to better 

describe the animal model we nevertheless decided to investigate the growth retardation reported 

as a physiological impact of the actin bundle organization was never described. As VEP
−/−

 mice 

have reduced microvillar transverse area and length, their intestine absorptive surface could be 

significantly compromised and have an impact on growth. On the basis of the measured length, 

area, and density of microvilli in WT, EP
−/−

, and VEP
−/−

 intestine, we calculated the respective 

brush border membrane surfaces per square micrometer of apical domain, approximating 

microvilli to cylinders (SWT = 24.8 ± 6.9 μm
2
, SEP−/− = 12.0 ± 2.5 μm

2
, SVEP−/− = 14.4 ± 2.8 μm

2
; 

maximal SDs were calculated according to the Gaussian error-propagation law). The brush 

border membrane surface was strongly reduced in VEP
−/−

 enterocytes compared with WT, but 

not EP
−/−

, enterocytes. As the EP
−/−

 and VEP
−/−

 absorptive surfaces are similar, the effect of 

smaller microvilli on the VEP
−/−

 growth retardation phenotype can be ruled out. The growth 

delay of VEP
−/−

 mice is thus not due to a reduction in the absorptive surface of the epithelium 

but could be linked to a defect in actin bundle organization.  

 

Digestive enzymes do not properly localize in the apical domain. 

One important step toward understanding the phenotype of the VEP
−/−

 mice is to define how 

the disorganization of the actin network accounts for growth retardation. Defects in the 

localization of the numerous digestive enzymes, transporters and canals expressed by the 

enterocytes could explain the growth defect. Trafficking toward the basolateral domain 

nevertheless did not appear to be affected, as illustrated by the basolateral localization of the 

Na
+
/K

+
-ATPase in VEP

−/−
 enterocytes (Figure 16B). I therefore analyzed the localization of 

digestive enzymes that are targeted to the apical surface of the enterocytes using a variety of 

apical trafficking routes. As the VEP
−/−

 mouse demonstrates the major terminal web defects 

previously reported in the plastin-1 KO (Grimm-Günter et al., 2009), and as we need to unravel 

the specificity of the VEP
−/−

 samples, both WT and P
−/−

 samples were used as routine controls in 

this study (Figure 18). The lipid raft–associated aminopeptidase N (APN) still localized properly 

in the VEP
−/−

 brush border (Figure 16A). Nevertheless, several enzymes presented an 

impressive sub-apical accumulation in the VEP
−/−

 enterocytes, with a reduced signal left in the 

microvilli (Figure 18A, stars and D). This was the case for raft-independent lactase phlorizin 

hydrolase (LPH), raft-associated sucrase-isomaltase (SI), and peptide transporter protein PepT1. 

Moreover, western blot analyses performed on lysates from purified brush borders showed that 
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the amount of these enzymes that still localized to the microvilli was reduced in the VEP
−/−

 

compared with the WT or P
−/−

 samples (Figure 18B), thus confirming the reduced level 

observed by immunostainings. These observations appeared to be specific to VEP
-/-

 mice as only 

minor LPH sub-apical accumulations could be seen in a few areas of the plastin-1 KO (Figure 

18A) and its combinations (Figure 17). Additionally, in the VP
−/−

 enterocytes, SI also appeared 

delocalized and PepT1 showed some slight sub-apical accumulation but much less strikingly 

than in the VEP
−/−

 samples (Figure 17).  

 

  Figure 16: Not all polarity markers are affected 

in VEP
-/-

 mice 

A. Western blots and immunostainings against the 

apical enzyme aminopeptidase N (APN, green) on 

WT, P
-/-

 and VEP
-/-

 samples. Dapi labels nuclei 

(blue). Immunoblots are performed on total and 

isolated brush border lysates. B. Immunostainings 

for the basolateral pump Na+/K+ 

ATPase. Scale bars 10 μm. 

EP-/- 

Figure 17: Apical enzyme localisation in EP
-/-

 and VP
-/-

 

enterocytes 

Immunostainings against the apical enzymes LPH, SI and 

PepT1 (green) on espin/plastin-1 (EP
-/-

) and villin/plastin-

1 (VP
-/-

) samples. Dapi (blue) labels nuclei. Scale bar 

10μm. 

VP-/- 
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The amount of dipeptidylpeptidase IV (DPPIV), an enzyme following a transcytotic 

pathway, was strongly reduced in the VEP
−/−

 microvilli, as demonstrated both by western 

blotting (Figure 18B) and immunostaining (Figure 18A, circle), but contrarily to LPH, SI and 

pepT1, DPPIV did not show the intense sub-apical accumulations reported above. Finally, the 

glycosylphosphatidylinositol-anchored intestinal alkaline phosphatase (IAP) presented both a 

very strong decrease in the VEP
−/−

 brush border, observed by western blotting and 

immunostaining, and a significant sub-apical accumulation (Figure 18, A, star and circle, and 

B). The sub-apical accumulations reported by immunofluorescence were in agreement with the 

high vesicular content of the VEP
−/−

 cytoplasm detected by TEM (Figure 13). In support of this 

idea, SI immunostainings on thinner sections (3µm) revealed the presence of vesicular structures 

(Figure 18D). Compared with the WT cell and brush border lysates, a reproducible shift in the 

size of the bands detected by western blotting occurred for LPH, SI, DPPIV, and APN in the P
−/−

 

and VEP
−/−

 samples (Figures 18A and 16A). This shift could be suppressed by treating the 

samples with glycosidases and therefore reflects a difference in the glycosylation pattern (not 

shown). This unexpected phenomenon is not responsible for the phenotype of the VEP
−/−

 mice, 

because it already occurs in the P
−/−

 samples and thus must be due solely to the loss of plastin-1.  

To obtain an insight into the intestinal physiology, I directly assess absorption in the VEP
−/−

 

mice by measuring the kinetics of glucose absorption of fasted WT, P
−/−

, and VEP
−/−

 mice 

following oral glucose load. The glucose absorptive capacity of VEP
−/−

 intestine was strongly 

and significantly reduced compared with both WT and P
−/−

 animals, as depicted by the 

measurements of glucose blood level plotted against time after gavage (Figure 18C). 

Interestingly, the blood glucose level in VEP
−/−

 mice was significantly reduced by 75% at 30 

min. Such an early time point directly represents an alteration of the glucose absorption capacity 

of the enterocytes, as the adaptive physiological response to high glycaemia has not occurred yet.  

The study of the triple KO enterocytes therefore reveals a major disruption in apical delivery 

and/or retention of enzymes at the apical membrane associated with malabsorption and 

subsequent growth delay that develops predominantly after weaning in the VEP
−/−

 mice. The 

slight apical localization defects observed in the VP
−/−

 samples are not sufficient to cause such a 

growth delay in these mice (Figure 12B).  

 

 

Figure 18: VEP
−/−

 mice show apical localization defects of major digestive and absorptive brush border 

components 

A. Histological sections of jejunum from WT, P
−/−

 and VEP
−/−

 animals immunostained for LPH, SI, PepT1, 

DPPIV, and IAP (green). DAPI (blue) labels nuclei. Scale bars: 10 μm. B. Western blots against LPH, SI, PepT1, 

DPPIV, and IAP were performed on total or isolated brush borders lysates (loaded for equal total protein). C. 

Blood glucose concentrations plotted over time during oral glucose tolerance test in mice fasted overnight (nVEP+/− 

= 3; nP−/− = 5; nVEP−/− = 3; Mann-Whitney: **, p < 0.01, *, p < 0.05). D. Thin histological sections (3µm) of 

jejunum from VEP-/- mice stained for SI observed by confocal microscopy (optical section: 0.5 µm). Bar: 10 µm. 
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Apical membrane retention is deficient and myosin-1a is mislocalized. 

To decipher the apical transport or anchorage mechanisms that are defective in the 

VEP
−/−

 mice, I chose several molecular players involved in apical targeting and delivery in 

enterocytes and analyzed their subcellular localization. The organization of the Golgi was not 

affected in the VEP
−/−

 enterocytes, as the Golgi marker giantin and the GTP-binding protein 

rab6, which is implicated in intra-Golgi transport, retained the localization observed in WT 

enterocytes (Figure 19A). The Golgi apparatus appeared morphologically unaltered, suggesting 
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that a later step in the apical transport could be defective. In enterocytes, cargoes are known to 

traverse rab11- and rab8-positive compartments en route to the apical pole. Although the sub-

nuclear localization of rab11 was not affected in the VEP
−/−

 animals (Figure 19A), rab8 sub-

apical concentration looked slightly decreased when observed by immunofluorescence (Figure 

19B). However, this reduced rab8 apical localization could not be confirmed by western blotting 

(Figure 19B). Whereas the apical delivery route did not appear affected, the early endosomal 

marker EEA1 interestingly exhibited an enlarged sub-apical localization in the VEP
−/−

 

enterocytes (Figure 20A), which strongly colocalized with the accumulation of apical markers, 

as shown for SI (Figure 20B). These results suggest that endocytosis, rather than apical delivery, 

is responsible for the mislocalization of apical enzymes and transporters in the VEP
−/−

 mice. Is 

endocytosis therefore enhanced in the absence of a proper actin bundle or are these apical 

components more prone to endocytosis? To discriminate between these two possibilities, I 

compared in vivo the kinetics of global endocytosis using the vital membrane stain FM dye as an 

endocytic probe perfused in the intestinal lumens of WT and VEP
−/−

 mice, an approach 

successfully used in the past (Hansen et al., 2009). A modification in the internalization of the 

dye in the KO enterocytes could not be detected at any of the time points analyzed from 5 to 90 

min (Figure 20C). The global endocytosis rate is therefore not increased in the VEP
−/−

 

enterocytes, and the accumulation of apical digestive components in EEA1-positive 

compartments is most likely due to their deficient stabilization at the apical membrane.  

Figure 19: Unaffected apical trafficking markers in VEP
-/-

 

mice 

A. Immunostainings for the Golgi marker giantin, for rab6, a 

GTPase involved in intracellular transport at the level of the 

Golgi and for rab11, a GTPase involved in apical recycling.  

B. Immunostainings and western blots against the GTPase rab8 

on WT, P
-/-

 and VEP
-/-

 samples. Western blots are performed on 

total and isolated brush border lysates. Dapi labels nuclei (blue). 

Scale bars 10 μm. 
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Figure 20: The apical domain retention machinery is affected in VEP
−/−

 mice 

A. Immunostaining against the early endosomal marker EEA1 in WT and VEP
−/−

 enterocytes. B. Colocalization 

(white) of EEA1 (green) with the subapical accumulations of the enzyme SI (red) by immunostaining. C. 

Unchanged global endocytosis rate analyzed by the internalization of the vital membrane dye FM4-64 (red), shown 

at 30- and 90-min time points. D. Western blots and immunostaining against myosin-1a on WT, P
−/−

, and VEP
−/−

 

samples. Western blot analysis was performed on total and isolated brush border lysates. DAPI labels nuclei (blue). 

Scale bars: 10 μm. E. Histograms depicting the relative changes of actin and myosin-1a protein content between P
−/−

 

or VEP
−/−

 and WT brush borders (P/WT and VEP/WT, respectively). Values are densitometric ratios of western 

blotting performed on brush border lysates (P/WT: 0.98 ± 0.37, nmyo1a = 3, and 0.75 ± 0.07, nactin = 5; VEP/WT: 0.23 

± 0.14, nmyo1a = 3, and 0.52 ± 0.10, nactin = 5). *Wilcoxon two-sample test p < 0.05. F. Western blotting performed 

on isolated brush border lysates against myosins-1c and -1d on WT, P
−/−

, and VEP
−/−

 samples showing that the 

decrease in myosin-1a is not accompanied by their compensatory recruitment to the brush borders. 
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The mechanisms allowing membrane retention of apical enzymes and transporters in 

enterocytes are widely unknown. To date, only the actin motor myosin-1a, a brush border 

myosin, has been implicated in the anchorage of some apical enzymes (Tyska and Mooseker, 

2004). Remarkably, whereas it is properly concentrated in the microvilli of WT and P
−/−

 

enterocytes, myosin-1a was substantially lost in VEP
−/−

 microvilli, as detected by western 

blotting on isolated brush border lysates and by immunofluorescence (Figure 20D). As the actin 

content was also diminished in VEP
−/−

 brush borders (Figure 14C), the reduction in myosin-1a 

could be due to the loss of the actin-bundling proteins or could solely reflects the lower actin 

content. Densitometric analysis of western blots allowed to quantify the relative changes in actin 

and myosin-1a content between WT and P
−/−

 or VEP
−/−

 brush borders (Figure 20E). The 

densitometric ratio of P
−/−

 over WT brush border samples was not significantly different between 

actin and myosin-1a (0.98 ± 0.37, nmyo1a = 3, and 0.75 ± 0.07, nactin = 5, p ≤ 0.8). In contrast, the 

densitometric ratio of VEP
−/−

 over WT brush border samples was significantly reduced for 

myosin-1a compared with actin (0.23 ± 0.14, nmyo1a = 3, and 0.52 ± 0.10, nactin = 5; Mann-

Whitney p < 0.05). This demonstrates that VEP
−/−

 brush borders lost approximately two times 

more myosin-1a than actin and that the decrease in myosin-1a was not merely due to a decrease 

in brush border actin. Although myosin-1a brush border level was strongly decreased, it was not 

completely absent. We could still detect some myosin-1a bridges by TEM (Figure 14E), and the 

myosin-1a–based extrusion of vesicular membranes (McConnell and Tyska, 2007) was still 

detected upon ATP-induced myosin activation on isolated VEP
−/−

 brush borders (Figure 21). 

The KO of myosin-1a in mouse enterocytes does not cause defects at the whole-animal level 

(Tyska et al., 2005). This lack of phenotype has been accounted for by the compensatory 

recruitment of at least two other myosins, myosin-1c and -1d, in the brush border (Tyska et al., 

2005; Benesh et al., 2010). I therefore used western blotting to analyze the brush border content 

of these class I myosins in our samples. The level of these two myosins did not increase between 

VEP
−/−

 and WT brush borders (Figure 20F). Neither of them became ectopically recruited to the 

microvilli in the absence of the three actin-bundling proteins, although myosin-1a was almost 

absent from VEP
−/−

 microvilli. Thus the absence of the three actin-bundling proteins is 

associated with defects in the brush border localization of at least one player in apical enzyme 

retention, myosin-1a. 

  

Figure 21: Vesicular membrane extrusion is 

preserved in brush borders of VEP
-/-

 mice 

DIC time-lapse series of WT and VEP
-/-

 isolated 

brush borders before (-3’) and after (0 to 10’) 

addition of 200μM ATP showing the apical 

shedding of vesicles in both conditions. Bar 5μm. 
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Identifier Description Matching 

peptides 

MW Cover  

age 

Bundling         

gi|85986577 Plastin 1 43 70,4 46,5 

gi|148667910 V illin 1 38 92,9 42,6 

gi|46877084 Espin isoform 6 5 28,1 28,9 

Cross linking      

gi|11230802 Actinin alpha 4 43 105 43,9 

gi|61097906 Actinin alpha 1 16 103,1 20,7 

gi|7304855 Actinin alpha 3 6 103 8,3 

gi|38257404 Filamin B 14 277,8 8,3 

gi|38257560 Filamin A 5 281,2 2,8 

Capping      

gi|2833214 Eps8, EGF receptor kinase substrate 8 14 91,7 26,1 

gi|83649737 Capping protein, muscle Z line, beta isoform a 7 31,3 26 

gi|6671672 Capping protein, muscle Z line, alpha 2 5 33 25,5 

gi|161086971 F actin capping protein alpha 1 subunit 5 33 25,5 

Nucleation      

gi|23956222 ARP3 actin related protein 3 homolog 7 47,4 18,4 

gi|148708705 Cordon bleu, isoform CRA_b 4 146 3,5 

gi|6681183 Diaphanous homolog 1 2 139,3 2,2 

Myosins      

gi|71151983 Myosin heavy chain 14, NMHC II C 151 228,6 54 

gi|124487037 Myosin IA 54 118,7 37,8 

gi|114326446 Myosin, heavy polypeptide 9, non muscle isoform 1 51 226,4 27,3 

gi|148694488 Myosin VI 26 146,3 22,9 

gi|148664634 Myosin VIIb,isoform CRA_b 22 241 11,8 

gi|118026911 Myosin ID 19 116,1 18,4 

gi|50510675 Myosin 11 isoform 18 228,3 9,1 

gi|123262062 Myosin XVB 13 258,7 7,5 

gi|17986258 Myosin light chain 6, smooth muscle and non muscle 12 16,9 57 

gi|13432181 Myosin Ib 8 128,5 7 

gi|148677575 Myosin Vb, isoform CRA_a 7 213,4 4 

gi|56205559 Myosin, heavy polypeptide 10, non muscle 6 232,5 2,5 

gi|15809016 Myosin regulatory light chain MRCL2 5 19,8 35,5 

gi|124494242 Myosin IC isoform a 5 119,9 6,2 

gi|125987842 Myosin XVIIIa 6 232,8 5,4 

gi|30410852 Myosin IE 5 126,8 5,3 

Others      

gi|40849928 Plectin 1 isoform 11 112 517,3 28 

gi|50881 Ezrin 17 69,3 30,9 

gi|149251314 Cingulin 16 149,5 20,8 

gi|41281802 Harmonin 10 102,3 15,1 

gi|122890249 Coronin, actin binding protein 2A 8 61,7 10,5 

gi|2851563 AΔseverin 8 80,3 21,1 

gi|11127935 Epithelial protein lost in neoplasm b, eplin 8 84,1 15,5 

gi|149751320 Similar to tropomyosin 3 isoform 1 5 29 18,1 

gi|11528490 Flightless I homolog 6 144,8 5,8 

gi|148669742 Adducin 3, isoform CRA_c 3 83,5 5,5 

 Dynamin 1 like, isoform CRA_c 3 83,3 3,9 

Table 1: Actin binding proteins identified in WT isolated brush borders 

Tables show identifier (NCBI protein accession number), description (NCBI protein definition), matching peptides 

(number of peptides identified per experiment), MW (molecular weight in Daltons), coverage (% of sequence coverage 

identified from MS/MS data) of the proteins identified by mass spectrometry. Showed is the best experiment. 
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Identifier Description Matching 
peptides 

MW Cover‐age 

Actin binding 

gi|5031569 ARP1 actin related protein 1 homolog A, centractin alpha 3 42,6 12,8 

Traffic 

gi|148704358 Adaptor protein complex AP 1, gamma 2 subunit, isoform 

CRA a 

6 91,9 9,2 

gi|48734610 Sec31a protein 6 98,2 9,5 

gi|67906177 Sec23A 6 86,2 11,1 

gi|148669551 Sec24 related gene family, member C, isoform CRA_a 4 118,6 4,7 

gi|149254026 Sec31 like 1 4 144,1 5,7 

gi|23956096 USO1 homolog, vesicle docking protein 3 107 3,4 

gi|55670639 Chain M, Ap1 Clathrin Adaptor Core 3 48,5 5,4 

Junction 

gi|148669535 V inculin, isoform CRA  b 5 123,9 5 

gi|156255171 Adducin 1 (alpha) isoform 1 4 80,6 7,6 

Others 

gi|144922656 Lethal giant larvae homolog 2 3 114,3 3,7 

gi|7106301 Microtubule associated protein, RP/EB family, member1 3 30 20,5 

 

 

C. Discussion 

 

The apico-basal polarity is preserved in absence of microvillar actin bundling proteins. 

The overall cellular organization of the enterocytes in VEP
-/-

 mice appears preserved as we 

can judge from our set of immunostainings. In particular, markers of specific compartments 

could not reveal any polarity defect in VEP
-/-

 mice. As expected, F-actin strongly concentrates in 

the brush border. The other elements of the cytoskeleton, cytokeratins and tubulin orientates 

fairly normally as in a polarized cell. The microvilli structural protein ezrin, which localizes at 

the apex, only present a slightly narrower distribution, suggestive of microvilli shortening. E-

cadherin delineates the basolateral cell boundaries and ZO-1 highlights the tight junctions, in an 

undistinguishable manner from WT mice. We conclude that enterocytes from VEP
-/-

 mice retain 

their well-defined apico-basal polarity. 

Table 2: Proteins identified in VEP
-/-

 but not in WT isolated brush borders 

Tables show identifier (NCBI protein accession number), description (NCBI protein definition), matching peptides 

(number of peptides identified per experiment), MW (molecular weight in Daltons), coverage (% of sequence coverage 

identified from MS/MS data) of the proteins identified by mass spectrometry. Showed is the best experiment. 
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How to build microvilli without actin bundling proteins? 

As discussed in the introduction, a whole set of experimental data supports the idea that 

actin bundling proteins are required to shape and maintain actin based membrane protrusions. 

Therefore it is surprising that mice devoid of the three microvillar actin bundling are still able to 

protrude and sustain microvilli. They only present a shorter size but organize in a regular brush 

border. 

In light of this unexpected result, we will attempt to reexamine the initial data presented in 

the introduction to determine if the role of actin bundling proteins could be re-envisaged. An 

important part of the original rationale is based on comparisons between results obtained in 

different systems related to microvilli. In Drosophila, lack of forked or fascin results in major 

morphological defects of the bristles (Tilney et al., 1995, 1998). Bristles are however structurally 

very different from microvilli. In the apical pole of a sensory cell, only one bristle elongates, in a 

curved manner, to reach a much longer length compared to microvilli. The actin organization 

within bristles additionally largely differs from the one of intestinal apical protrusions. Indeed, 

each bristle is supported by numerous actin bundles, which are constructed from overlapping 

modules of short filaments (Tilney et al., 1996). In the mouse stereocilia, absence of espin 

induces their degeneration (Zheng et al., 2000). In contrast to microvilli, stereocilia are 

constituted by numerous actin bundles (Tilney et al., 1980; Rzadzinska et al., 2004). Moreover, 

recent protein turnover analyses in stereocilia unexpectedly revealed that actin treadmilling does 

not occur in the shaft of the stereocilia (Zhang et al., 2012). The actin cytoskeleton of these 

structures appears to be much more stable than previously thought. The points raised above 

demonstrate important structural discrepancies between these actin-based protrusions and 

microvilli. Therefore, comparisons between actin organizations of microvilli, stereocilia or 

bristles might not be appropriate. The other classical example of actin-based protrusion is 

represented by filopodia, which are structurally closer to microvilli as a unique actin bundle 

supports the protrusion. They are nevertheless more dynamic than microvilli. Altough fascin 

depletion leads to a dramatic reduction of filopodia number and length (Vignjevic et al., 2006), 

fascin bundling activity might not be required for filopodia protrusion. Indeed, a recently 

characterized fascin mutant for its actin bundling property could fully rescue filopodia formation 

in absence of endogenous fascin (Zanet et al., 2012). Thus, F-actin organization by the main 

bundler appears dispensable for proper filopodia formation. We should however not elude the 

fact that T-plastin additionally bundles actin filaments within filopodia (Bretscher and Weber, 

1980a). 
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Several research teams specialized in biophysics have also questioned the pre-supposed role 

of actin bundlers. Theoretical studies have modeled that sole actin polymerization would produce 

the required force to overcome the membrane resistance to bending (Peskin et al., 1993; 

Mogilner and Rubinstein, 2005). The resistance force produced by membrane bending and 

tension is estimated as 10-20 pN for a cylinder of near microvilli size (Peskin et al., 1993). 

Formin-mediated actin polymerization of one filament generates a force in the range of 1 pN 

(Kovar and Pollard, 2004), thus the polymerization of 20-30 actin filaments, as observed in 

microvilli, is likely sufficient to overcome membrane resistance. Accordingly, in giant 

unilamellar vesicle containing actin monomers and no actin binding protein, induction of actin 

polymerization is sufficient to drive the formation of long slender membrane deformations 

resembling filopodia (Janmey et al., 1992; Miyata et al., 1999). As actin filaments are flexible, 

the force they generate after reaching a critical protrusion length is limited by their buckling that 

occurs in response to the membrane resilience force. This critical length is dependent on the 

number of filaments and on their rigidity, the latter being increased by their physical bundling 

(Mogilner and Rubinstein, 2005; Atilgan et al., 2006; Claessens et al., 2006; Bathe et al., 2008). 

In fact, for a membrane protrusion supported by 30 weakly bundled actin filaments, as found in 

microvilli, the critical length has been modeled to be near 0.4 µm (Mogilner and Rubinstein, 

2005). This value is actually close to the mean length of microvilli from mice lacking villin, 

espin and plastin-1. Therefore, extension of microvilli protrusions of minimal size might not 

require a bundled organization. 

 

Influence of actin bundling proteins on microvilli shape. 

Biophysical models, as mentioned above, show that physical bundling of actin filaments 

increases their resistance to buckling thereby allowing longer protrusions. Indeed, we show that 

the actin bundling proteins cooperatively participate in the process of microvilli lengthening in 

vivo. Loss of the sole plastin-1 decreases microvilli length in vivo (Grimm-Günter et al., 2009). 

In contrast to its reported role in LLC-PK1 cells (Loomis et al., 2003), we show that espin 

positively regulates microvillar length only in the absence of plastin-1. On the other hand, 

additional loss of villin in double (EP
-/-

) or single (E
-/-

 or P
-/-

) knockout mice has no effect. The 

three bundlers therefore do not contribute equally to microvillar morphogenesis. Actin bundling 

proteins, depending on their structures, organize actin filaments into bundles of different 

elasticity and geometry (Claessens et al., 2006; Bathe et al., 2008; Hampton et al., 2008). Thus, 
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we can speculate that each of the three microvillar actin bundling proteins does not endow the 

actin bundle with an equivalent geometry and stiffness. In support of this idea, plastin-1 

incubated with actin filaments generates actin bundles more compact and straight as compared to 

villin-induced bundles (Matsudaira et al., 1983). Structural models have indeed documented a 

higher filaments separation within villin-mediated bundles (Hampton et al., 2008). Interestingly, 

villin contribution to the bundle architecture seems to be minimal when plastin-1 is present 

(Hampton et al., 2008; Brown and McKnight, 2010). In addition, these two proteins do not 

compete for the same binding sites on F-actin (Hampton et al., 2008; Brown and McKnight, 

2010). The cooperative contribution of villin and espin to the bundle structure is not reported in 

the literature. Nevertheless, the actin bundling proteins do cooperatively contribute to the 

paracrystalline, bundled organization of filaments, as indicated by its loss in the VEP−/− mice 

compared with the single or the double knockouts.  

Since the actin bundling proteins are dispensable for microvilli extensions, which 

mechanisms could provide the actin network with the remaining organization observed in VEP
-/-

 

mice in order to maintain the protrusions? Within actin-based protrusions, it has been proposed 

that the tension arising from membrane deformation could participate in the parallel arrangement 

of actin filaments (Liu et al., 2008). The role of the tip complex might also be critical for the 

filaments arrangement. As discussed earlier, the molecular actors residing in the tip complex 

have been particularly well described in stereocilia and filopodia. In filopodia, which structurally 

resemble microvilli, Ena/VASP and the mDia2 formin cooperate to processively elongate actin 

filaments thereby participating in their organization in a parallel array (Tokuo and Ikebe, 2004; 

Pellegrin and Mellor, 2005). In agreement with this idea, we could detect the mDia1 formin in 

enriched brush border fraction. Unfortunately, lack of reliable antibody against this protein 

prevented us to determine its distribution. In intestinal microvilli, elucidation of the composition 

of the tip complex remains preliminary. The eps8 proteins have been shown to localize at the tip 

and to play major role in microvilli morphogenesis through their actin capping and weak 

bundling activities (Croce et al., 2004; Disanza et al., 2006; Hertzog et al., 2010; Tocchetti et al., 

2010; Zwaenepoel et al., 2012). Eps8 restricted tip localization, which is retained in VEP
-/-

 mice, 

make it a credible molecular bond between the polymerizing ends of actin filaments. Besides the 

tip complex, links between the membrane and the cytoskeleton is a characteristic of microvillar 

actin organization. The membrane-cytoskeleton linker myosin-1a, through its ability to generate 

membrane tension, would be important to avoid microvilli coalescence (Nambiar et al., 2009). 

Indeed, in absence of myosin-1a, murine intestinal microvilli exhibit important herniations 
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(Tyska et al., 2005). Although we observed a substantial loss of myosin-1a level in microvilli, 

the characteristic membrane-cytoskeleton crossbridges could still be identified by electron 

microscopy. Owing to their properties, the tip complex and the remaining myosin bridges linking 

actin filaments to the membrane might be sufficient to maintain the longitudinal filaments 

observed in VEP
−/− 

microvilli. 

In conclusion, we have shown that organization of the microvillar actin bundle by the actin 

bundling proteins is dispensable to allow the microvillus protrusion. Are these proteins 

completely dispensable or do they contribute to microvillus function through a previously 

unknown mechanism? 

 

Defective apical retention and increased internalization of membrane proteins? 

In contrast to single knockout animals, VEP
-/-

 mice suffer from growth retardation. The 

reduced bodyweight could be correlated with a severe glucose malabsorption. Could the reduced 

epithelium surface area caused by microvilli shortening account for the aforementioned defects? 

It is unlikely the case as, in the rat, removal of 45% of the intestine does not result in impaired 

growth (Menge and Robinson, 1978). More convincingly, the non-growth retarded EP
-/-

 mice 

develop microvilli of similar size as the growth retarded VEP
-/-

 mice. Thus, influence of the 

luminally exposed area can be ruled out to explain the overt phenotype of VEP
-/-

 mice. It is more 

likely due to defects in distribution of apical enzymes, and transporters which are required for 

the digestive and absorptive processes. Indeed, we could observe a reduction of apical signal 

intensity and strong sub-apical accumulations of the digestive enzymes lactase phlorizin 

hydrolases (LPH), sucrase-isomaltase (SI) and intestinal alkaline phosphatase (IAP). Similar 

defects are reported for the pepT1 peptides transporter. Finally, the amount of digestive enzyme 

dipeptydil peptidase IV (DPPIV) is reduced at the brush border. Trafficking is nevertheless not 

globally impaired as aminopeptidase N (ApN) and the Na/K ATPase reach normally the apical 

and basolateral membranes, respectively.  
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Which are the trafficking pathways associated with the delivery of these apical 

proteins? 

SI and LPH are directly addressed to the cell apex, whereas ApN and DPPIV follow a 

transcytotic pathway (Le Bivic et al., 1990; Matter et al., 1990). Sucrase-isomaltase, DPPIV, 

IAP, APN and pepT1 associate with lipid raft (Danielsen, 1995; Nguyen et al., 2007). In 

contrast, LPH apical delivery is dependent of a non-raft pathway which associates galectin-3 

(Danielsen, 1995; Delacour et al., 2006). Among these apical proteins IAP only is GPI anchored 

(Garcia 1993). The different proteins are highly N- and O- glycosylated; however only the apical 

delivery of SI and DPPIV requires their glycosylation (Alfalah et al., 1999, 2002; Naim et al., 

1999). The well-described LPH and SI apical trafficking routes present major differences in 

intestinal cells. After TGN exit, SI and LPH are segregated into two different vesicle populations 

(Jacob and Naim, 2001), likely reflecting their differential association with lipid rafts. En route 

to the apex, vesicles containing LPH or SI follow distinct cytoskeletal tracks: whereas an intact 

microtubule network is critical for SI and LPH apical delivery, a selective perturbation of the 

actin cytoskeleton by cytochalasin D impairs SI apical delivery only (Jacob et al., 2003). Time 

lapse imaging further reveals individual movement of SI associated vesicles along actin (Jacob et 

al., 2003). It is also worth to notice that myosin-1a is found associated to SI associated vesicles 

(Jacob et al., 2003). Among the aforementioned apical proteins, only APN distribution is 

unaltered in VEP
-/-

 mice. It is thus not possible to assign a general failure of a specific pathway 

that would explain the localization defects that we report. Instead, the mislocalization involves 

proteins, which present a wide variety of apical addressing pathways suggesting a broader defect. 

 

How to explain the localization defects? 

As seen in the introduction, microvilli rootlets have been proposed to serve as tracks for the 

late steps of apical cargoes delivery. Rootlets could not be observed in microvilli from VEP
-/-

 

mice. Loss of these structures is already observed in absence of plastin-1 (Grimm-Günter et al., 

2009), but in these mice apical enzymes are properly localized. This defect in the very apical 

cytoskeleton thus cannot account for apical proteins mislocalization in VEP
-/-

 animals.  

On their way to the apex, vesicles sequentially traverse diverse endosomal compartments. In 

particular, SI and LPH associated vesicles cross rab8 and rab11 positives endosomes. They 

however never cross compartments positive for the early endocytic marker EEA1 before docking 
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at the membrane (Cramm-Behrens et al., 2008). Thus, in intestinal cells, EEA1 primarily 

highlights early endosomes containing internalized molecules. Whereas rab4 and rab11 distribute 

normally in VEP
-/-

 mice, EEA1 aberrantly accumulates and co-localizes with SI in sub-apical 

compartments. This result strongly suggests that apical membrane proteins are internalized at 

high rate via the endocytic pathway. Digestive enzymes are normally highly stable at the apex, 

illustrated by a very low rate of basal endocytosis and recycling in the intestinal epithelium 

(Matter et al., 1990; Hansen et al., 2009). Would basal rate of endocytosis be increased in VEP
-/-

 

mice? Using vital membrane dye, we rule out this possibility. It is thus likely that defective 

retention at the membrane of apical proteins causes their high internalization.  

 

Actin cytoskeleton and stabilization of proteins at the membrane. 

In polarized cells, several examples of membrane stabilization by the actin cytoskeleton 

have been reported. At the basolateral pole, the adaptor protein ankyrin mediates attachment of 

Na/K ATPase to the spectrin-actin cytoskeleton ensuring stabilization of the pump in membrane 

sub-domains (Nelson and Veshnock, 1987; Morrow et al., 1989). At the cell apex, the 

scaffolding protein NHERF links membrane proteins with ezrin to provide an anchor in the actin 

cytoskeleton. In particular, this scaffold limits membrane diffusion of the Na/H exchanger (Cha 

et al., 2004), and enhances apical concentration of a spliced variant of the plasma membrane 

Ca
2+

 pump (Padányi et al., 2010). In an analog manner, by virtue of its ability to link the actin 

cytoskeleton to the plasma membrane, myosin-1a has been proposed to anchor SI molecules to 

the actin bundle thereby increasing their stability at the membrane. Interfering with myosin-1a 

indeed leads to a mislocalization of SI in cell culture and in the mouse (Tyska and Mooseker, 

2004; Tyska et al., 2005). Myosin-1a strong mislocalization in the absence of a structured actin 

network provides good evidence of the general mechanism at the origin of the retention defects. 

However myosin-1a knockout animals grow normally and IAP localizes normally, indicating a 

milder phenotype as compared to VEP
-/-

 mice (Tyska et al., 2005). This mild phenotype was 

explained by a compensatory recruitment of other class I myosins at the brush border, in 

particular the isoforms 1c and 1d (Tyska et al., 2005; Benesh et al., 2010). This ectopic 

recruitment, which occurs solely in complete absence of myosin 1a, could be associated to 

differential actin binding affinities and competition for actin binding sites (Tyska et al., 2005; 

Benesh et al., 2010). In VEP
-/-

 mice, similar ectopic recruitment is not observed. Thus the 

substantial loss of myosin-1a from brush border does not appear to be compensated. This 

72



 

discrepancy with myosin-1a 
-/-

 mice suggests that the abnormality that affects the recruitment of 

myosin-1a could be structural, residing in the disorganization of the actin network, and would 

hence also perturb the recruitment of any other possible compensatory class I myosins, causing 

the apical defects observed. 

 

Role of the microvillar actin core architecture in efficient recruitment of proteins. 

Compared with single and double KO microvilli, those of VEP−/− mice demonstrate an 

additional structural defect: the lack of detectable organization of actin filaments into a bundle. 

Could the actin architecture allow the selective binding of specific proteins? In the VEP
−/−

 

enterocytes, because myosin-1a is not efficiently recruited to the microvilli, myosins are of 

particular interest. Tropomyosins decorate certain portions of actin filaments and inhibit myosin 

activity (Fanning et al., 1994; Temm-Grove et al., 1998; Tang and Ostap, 2001; DesMarais et al., 

2002). More directly, different classes of unconventional myosins select specific actin filaments 

subpopulation and thereby display distinct spatial distribution in the cell (Brawley and Rock, 

2009). This has been linked in part to the inhibitory effect of some actin binding proteins (e.g. 

tropomyosins) and to the affinity of certain myosin isoforms for specific actin architecture 

(Brawley and Rock, 2009). In particular, the filopodium myosin X selects specifically bundled 

actin for processive movement (Nagy et al., 2008). Myosin X stepping pattern, which takes 

advantage of two close actin filaments, indeed appears particularly suited for movement on 

bundled actin (Ricca and Rock, 2010). The structure of the head and tail regions of myosin X 

likely governs this selectivity (Nagy and Rock, 2010). The authors of this study furthermore 

speculated that, due to the difficulty to predict such structures, other actin architecture-selective 

myosins are yet to be discovered. Another non-exclusive possible explanation could reside in the 

fact that the architecture and dynamics of the bundle regulate the differential concentration of 

actin-binding molecules in the bundle (Naoz et al., 2008). Indeed, the presence of actin bundling 

proteins strongly influences the stability of the actin proteins present in the bundle (Zigmond et 

al., 1992; Tilney et al., 2003; Prost et al., 2007). Loss of such bundle stabilization is therefore 

likely to modify the localization of myosins and other associated molecules (Naoz et al., 2008). 
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Figure 22: Structure of the myosin-1a / calmodulin cross-bridges. 

A. Diagram of brush border myosin (green) with its three associated calmodulin light chains (purple) bound to 

actin (orange surface). B. When viewed down the long axis, the cross-bridges radially extend out from each 

outer filament in the core bundle. C. and D. When viewed from the side one may appreciate the barber-pole like 

motif of the cross-bridges about the actin core bundle (depicted as orange molecular surfaces in C and as a 

transparent orange cylinder in D. Adapted from Brown and McKnight, 2010. 

 

Finally, the radial “barber pole” distribution of myosin-1a seems inherent to the microvillar 

bundle architecture. Indeed, in vitro addition of purified myosin-1a to actin bundles formed in 

presence of actin, villin, and plastin-1 results in a myosin-1a spiraling distribution comparable to 

that of lateral cross-bridges in vivo (Coluccio and Bretscher, 1989). Moreover, a 3D structural 

modeling of the microvillar cytoskeleton could strikingly reveal that the precise axial alignment 

of each microfilament together with their inherent helical arrangement lead to the regular 

exposition along the microvillus axis of spiraling myosin-1a binding sites towards the membrane 

(Brown and McKnight, 2010). Hindrance caused by the actin bundling proteins prevents myosin-

1a binding to all other positions (Figure 22) (Brown and McKnight, 2010). Thus, myosin-1a 

precise distribution along the microvillar axis relies on the precise paracrystalline hexagonal 

arrangement of actin filaments together with the sterical hindrance generated by the bundlers.  

In light of our results and these observations, we conclude that the function of actin-

bundling proteins is not to power the morphogenesis of microvilli per se but rather to grant the 

actin network a precise architecture that allows the selective recruitment of proteins implicated in 

apical retention.  
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D. Limits and perspectives 

 

The three actin bundling proteins are thus dispensable for the microvilli protrusions. 

However, we cannot totally exclude the possibility that a fourth, previously unidentified or 

unknown, actin bundling protein could provide the remaining organization found in the 

microvillar cores of VEP
-/-

 mice. In particular, shortly after finishing the reviewing process, actin 

bundling properties in histone H2A-H2B and eukaryotic elongation factor 1 alpha (eEF1A) were 

reported (Doyle et al., 2011). Interestingly, in our extensive proteomic study we could detect a 

significant amount of peptides belonging to these two proteins. Thus, the possibility of additional 

actin bundlers in microvilli remains an open question that will require further experimental work.  

Another intriguing outcome of this study consists of the proteomic identification of two 

nucleators of linear actin filaments in the brush border fraction: cordon-bleu and diaphanous 

homologue 1 (mDia1) (Table 1 page 65, Figure 23). To date, the nucleation process that 

initiates microvilli assembly is unknown. By immunohistochemistry I could notice that cordon-

bleu localized to the terminal web region and not to the tips of microvilli (Figure 23), indicating 

that this protein is unlikely to have a role in initiating the actin filaments that support the 

microvilli protrusion. The presence of the formin diaphanous homologue 1, mDia1, could be 

confirmed by western blotting (Figure 23), but the lack of antibodies suitable for 

immunofluorescence prevented from addressing its localization. Owing to its ability to nucleate 

and subsequently processively elongate actin filaments (Campellone and Welch, 2010), mDia1 

thus appears to be a good candidate to initiate microvillar actin filaments. Recently, the 

adenomatous polyposis coli protein – APC – has been demonstrated to display on its C-terminal 

domain a potent actin nucleation property, which interestingly synergizes with mDia1 (Okada et 

al., 2010; Breitsprecher et al., 2012). In mouse colonic epithelium and in cultivated polarized 

Figure 23: Identification of two actin nucleators 

in the brush border fraction 

Immunostainings and western blots on WT, P
-/-

 and 

VEP
-/-

 samples.  

Analysis of the nucleators of parallel actin 

networks detected by mass spectrometry in WT, P
-

/-
 and VEP

-/-
 enterocytes. Immunostainings for 

cordon-bleu (Cobl) counterstained with Eps8 to 

identify microvilli tips (top) show a terminal web 

localisation of the nucleator in all samples. Scale 

bar 10μm. Immunoblots against mDia1 performed 

on isolated brush border lysates loaded for equal 

protein content (bottom) confirming its presence in 

the brush borders of the 3 samples. 
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cells, APC seems to concentrate at the apex (Reinacher-Schick and Gumbiner, 2001; Rosin-

Arbesfeld et al., 2001; Hughes et al., 2002; Marshall et al., 2011), albeit conflicting results exist 

(Näthke et al., 1996; Brocardo et al., 2005). At this point, we should also mention that APC 

peptides could not be detected by mass spectrometry in our analysis. Thus, mDia1, possibly in 

synergy with APC – if both present in the tip complex – conceivably could be important players 

in microvilli biogenesis. 

The recent identification of a novel family of factors generating membrane curvature 

provided new insights on the initiation of membrane deformations: the Bin-amphiphysin-Rvs - 

BAR – proteins. The family has been divided in two subclasses depending on the orientation of 

the resulting curvature owing to their respective structural geometry, F-BAR proteins induce 

invagination of the membrane whereas I-BAR proteins generate membrane extrusions (Zhao et 

al., 2011). I-BAR proteins are thus particularly good candidates to initiate the early steps of 

deformation for the plasma membrane to protrude. I-BAR domains proteins are furthermore 

critical to organize scaffolds at the protrusions tips, allowing tight regulation of actin assembly 

(Ahmed et al., 2010). We could identify three I-BAR proteins from our mass spectrometry 

analyses performed on enriched brush border fraction: MIM, IRSp53 and IRTKS. Missing-in-

metastasis – MIM - is essential for epithelial integrity in the kidney (Saarikangas et al., 2011). 

Lack of MIM indeed induces profound defects in intercellular junctions. Brush border is 

however unaffected in the proximal tubule cells (Saarikangas et al., 2011). The insulin receptor 

tyrosine kinase substrate p53 - IRSp53 - has prominent role during filopodia formation 

(Krugmann et al., 2001). We could not confirm the expression of IRSp53 in the small intestine 

by western blot. On the other hand, IRSp53 is expressed in the colon and concentrates in the 

brush border. In collaboration with the laboratory of Giorgio Scita we could have access to 

tissues from IRSp53 null mice. A preliminary electron microscopy analysis of the colonic tissue 

in absence of IRSp53 did not reveal any obvious defect of the apical microvilli. Therefore, MIM 

and IRSp53 unlikely play prominent role in the initiation of intestinal microvilli. Finally, the 

IRSp53-like insulin receptor tyrosine kinase substrate - IRTKS - has been less extensively 

characterized in the literature (Millard et al., 2007). As Giorgio Scita gratefully provided us with 

antibodies against IRTKS, an initial expression and localization study is planned. 

Concerning the physiological defect, we were able to link the growth retardation phenotype 

to defective localization of various digestive and absorptive components and more directly to 

impaired glucose absorption. We could however not identify a defect in the distribution of a 

membrane bound glucose transporter.  
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Finally, we conclude our study proposing that in VEP
-/-

 mice, apical membrane hydrolases 

and transporters are internalized at higher rates via normal endocytic pathway. This still needs 

formal demonstration using, for instance, biotinylation of exposed protein to monitor their 

internalization. 
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II/ Villin and cell plasticity 

 

A.  Villin, a multifunctional actin-binding protein 

 

The second aim of this PhD work consists on investigating another important aspect of 

intestinal microvilli: their plasticity. Indeed, microvilli plasticity is associated with diverse stress 

contexts in the intestinal epithelium and likely depends on actin regulation by actin binding 

proteins. In contrast with the other actin bundling proteins, villin exhibits additional actin related 

properties: capping, nucleating and severing. In view of these unique properties, villin appears as 

a strong candidate to exert various regulatory functions within microvilli, besides a structural 

role. In vitro, villin preferentially bundles actin filaments at very low calcium concentration - 

below 10
-7 

M -, nucleates and caps filaments above 1 µM and finally acts as a F-actin severing 

protein when Ca
2+

 reaches 100 µM (Figure 24) (Bretscher and Weber, 1980b; Glenney et al., 

1980; Walsh et al., 1984). Maximal severing efficiency is achieved at 400 µM (Northrop et al., 

1986). In addition, phosphorylation on tyrosine residues changes villin conformation leading to 

inhibition of actin bundling and activation of its severing property at nanomolar Ca
2+

 

concentration (Zhai et al., 2001; Kumar and Khurana, 2004). Villin also binds to 

phosphatidylinositol 4,5-bisphosphate (PIP2) and this interaction favors actin bundling and 

inhibits the severing property (Kumar et al., 2004). Thus, various intracellular signals tightly 

regulate villin functions.  

 

 

 

 

 

 

 

Figure 24: Calcium concentration regulates 

villin activities 

Adapted from Ferrary et al., 1999. 
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The identification of the Ca
2+

 dependent actin severing property raised numerous 

interrogations concerning villin potential implication in microvilli cytoskeleton dynamics. In 

particular, villin has early been proposed to regulate microvilli assembly and disassembly 

(Glenney et al., 1981c). On demembranated microvilli cytoskeleton, rise in calcium 

concentration in the micromolar range results in the rapid collapse of the actin bundle (Glenney 

et al., 1980; Howe et al., 1980; Mooseker et al., 1980; Burgess and Prum, 1982). Villin was later 

on proposed to mediate this actin bundle breakdown by its actin severing activity (Matsudaira 

and Burgess, 1982b). The bundle loss leads to the destruction of the overall microvillus structure, 

which vesiculates (Burgess and Prum, 1982; Matsudaira and Burgess, 1982b). The presence in 

high amount of the calcium binding protein calmodulin, as part of the myosin-1a based cross 

bridges, was proposed to buffer free calcium ions within the microvilli thereby protecting the 

actin bundle from uncontrolled villin severing activity (Glenney et al., 1980; Glenney and 

Glenney, 1985). In response to Ca
2+

 signaling, villin might govern microvilli fate during 

physiological events. Indeed, although static in appearance, microvilli are highly dynamic 

structures, which rapidly retract, or even completely disassemble upon various intestinal stresses 

(nutrition, pathogen infection, mechanical stress....) (Tilney and Cardell, 1970; Rosenshine et al., 

1996; Ferrary et al., 1999). Such cell shape changes could be important to grant intestinal cells 

with a certain plasticity. For instance, it has been speculated that microvilli disassembly could 

allow shuttling of short actin filaments within the cell (Glenney et al., 1981c). 

 

Villin increases cellular dynamics. 

Extensive analysis of villin null mice provided the first evidences supporting a role for villin 

severing activity during microvilli shape changes. The absence of detectable brush border 

structural defect in these mice clearly indicates that loss of villin bundling activity in vivo is 

dispensable or at least compensated (Pinson et al., 1998; Ferrary et al., 1999). Is it the case for 

villin severing activity? In contrast to brush borders isolated from wild type mice which show 

rapid disruption upon addition of Ca
2+

, morphology of brush borders from villin null mice 

remain unchanged after Ca
2+

 stimulation (Ferrary et al., 1999). Our group hypothesized that 

villin severing property has a physiological relevance in the living animal. To investigate this 

possibility, different pharmaceutical and physiological strategies to increase Ca
2+

 concentration 

were used. In particular, treatment with the acetylcholine agonist carbachol causes a rapid rise in 

intracellular Ca
2+

 (Edelman et al., 1994) and results in villin tyrosine phosphorylation (Kumar 
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and Khurana, 2004). Carbachol basolateral infusion of isolated jejunal loops from anesthetized 

wild type mice leads to a substantial loss of brush border phalloidin labeling seen on histological 

sections, strongly suggesting microvilli disruption (Ferrary et al., 1999). Conversely, apical 

phalloidin labeling on sections from treated villin null mice remains unchanged. This result 

could be reproduced using other drugs rising Ca
2+

 concentration such as the Ca
2+

 ionophore 

A23187 or thapsigargin, a blocker of the endoplasmic reticulum Ca
2+

 ATPase (Ferrary et al., 

1999). Nutritional stresses, e.g. fasting/refeeding, similarly induce increase in intracellular Ca
2+

 

concentration presumably through the indirect action of catecholamines and digestive hormones 

(Ferrary et al., 1999). Accordingly, phalloidin staining on sections from fasted/refeeded villin 

null mice is unaffected whereas an important loss of the broad apical is observed on wild type 

mice (Ferrary et al., 1999). In conclusion, artificial or physiological rise in intracellular calcium 

possibly associated with villin phosphorylation induce microvillar F-actin severing resulting in 

major reorganization of the cell apices.  

To further describe the villin null mice phenotype in relation to intestinal stress, our 

laboratory investigated the contribution of this protein during an experimental colitis induced by 

dextran sodium sulfate (DSS), an abrasive agent. The severity of the ulceration was directly 

linked to the phenotype: villin null mice show a higher sensitivity to DSS treatment as compared 

to wild type animals. Their poor survival rate correlates with higher mucosal destruction 

suggesting that villin is involved in cell injury and/or in epithelial repair (Ferrary et al., 1999). In 

light of these results and knowing that orchestrated movement of cells plays major role during 

wound healing in tissues (King and Newmark, 2012), villin was hypothesized to be a major 

factor involved in cell reorganization associated with cell motility. This hypothesis was however 

put into question as a recent study reported an increase of apoptosis in DSS treated villin null 

mice leading to the proposal of an anti-apoptotic role for villin (Wang et al., 2008a). The 

experimental procedure that was applied in these two studies nevertheless precluded 

discriminating whether villin influences tissue injury, as proposed by Wang and colleagues or 

rather repair, as suggested by Ferrary and colleagues. 
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B. Villin and cellular motion 

 

Villin severing property enhances actin based motility. 

Although villin potential role in cell survival has to be taken in consideration, the results 

presented above suggest that villin plays a key function during cell reorganization and migration 

on account of its F-actin severing property. A common experimental setup to study the 

contributions of actin binding proteins on migration consists on reconstituted systems of actin-

based motility, which mostly recapitulate the in vivo machinery. These minimal systems are 

based on a core of proteins that ensure actin-based propulsion of enteropathogens, for example 

Shigella flexneri. During the infection process, S. flexneri subverts the host actin machinery to 

initiate its movement based on actin dynamics (Theriot et al., 1992). Indeed, the bacterium is 

propelled by an actin comet tail and propagates into adjacent enterocytes (Bernardini et al., 

1989). On the outer membrane of the bacterium, the bacterial protein IcsA, binds to and recruit 

the Arp2/3 activator N-WASP. Thus, S. flexneri exploits the host protein Arp2/3 to generate a 

network of short branched filaments that polymerize at the bacterium surface thus providing the 

force required for its motion (Egile et al., 1999; Gouin et al., 1999). Success in reconstituting 

actin based movement in vitro using beads and a minimal set of pure proteins (Arp2/3, an 

activator of Arp2/3, a capping protein, actin and ADF) has been a major breakthrough (Loisel et 

al., 1999; van der Gucht et al., 2005). Indeed, the mechanistic similarities in terms of nucleation, 

actin dynamics and motility between lamellipodia and actin comet tails have proven these 

systems to be valuable tools to explore actin based motility. In particular, this system has been 

used to determine the contribution to actin dynamics of diverse actin binding proteins, including 

villin (Revenu et al., 2007). This system is particularly relevant since in newborn villin null 

mice, S. flexneri entrance and propagation is strongly reduced as compared to wild type animals. 

As a result, wild type mice die rapidly whereas villin null mice resist the infection (Athman et 

al., 2005). Interestingly, villin is recruited at the comet tail and its absence reduces the velocity 

of the bacterium (Athman et al., 2005). These results suggest a positive role of villin in actin 

dynamics. Could villin sever actin filaments within the comet tails thereby increasing actin 

dynamics? 

To investigate the contribution of villin severing property, a loss of function approach was 

chosen. A set of mutations was designed resulting in a strong reduction of villin ability to sever 

F-actin. Most importantly, other actin related activities (i.e. capping, nucleating and bundling) 
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are preserved in the villin severing mutant, referred hereafter as villinΔsev. As a result, when 

expressed in cells, villinΔsev retains its morphogenetic effect; inducing a dense tuft of long 

microvilli on the dorsal cellular surface.  

Actin based movement of S. flexneri revealed that the severing mutant abolishes the gain of 

bacteria velocity provided by villin. Furthermore, when villin replaces the capper on a 

reconstituted in vitro actin based movement assay, the severing activity enhances the velocity of 

the bead and reduces the actin density on the comet tail. These results suggest that villin severs 

F-actin and subsequently caps the newly formed barbed ends, thereby increasing the actin 

monomers available for polymerization (Revenu et al., 2007). In agreement with this hypothesis, 

in vitro, villin caps barbed ends released by F-actin severing, a process that favors actin 

depolymerization (Northrop et al., 1986). Could it be conceivable to transpose these findings in a 

migrating cell? Prior to discuss this aspect we will briefly depict how cellular movement is 

achieved. 

 

How do cells generate movement?  

We will here focus on the classical migration on 2D substrate as a monolayer constitutes the 

intestinal epithelium. The cellular processes driving cell migration in response to external cues 

have been reasonably well described.  

The breakup of cellular symmetry and the subsequent generation of a front-rear polarity 

initiate the movement. At the cell front, the leading edge is characterized by the presence of a 

dynamic large membrane protrusion attached to the substrate: the lamellipodium. In the 

lamellipodium, the dynamics of the actin cytoskeleton, organized in a dendritic network, provide 

the mechanical force required to extend the cell front. This represents the first step of movement 

(Figure 25). Arp2/3-mediated nucleation of new actin filaments ensures the recurrent extensions 

of the lamellipodium. In fact, the overall migratory edge, often abusively termed lamellipodium, 

is divided into two regions presenting different actin organization and dynamics: the 

lamellipodium and lamellum. The more distal part of the leading edge, referred as the 

lamellipodium, is predominantly composed of a dense 2D meshwork of branched actin filaments 

and presents high retrograde flow (Svitkina et al., 1997; Svitkina and Borisy, 1999; Ponti et al., 

2004). Located a few micrometers backward, the lamellum is constituted by less organized actin 

filaments characterized by a slower actin retrograde flow (Svitkina et al., 1997; Svitkina and 

82



 

Borisy, 1999; Ponti et al., 2004). Lamellum features stronger and more mature adhesions (Geiger 

et al., 2009). As we largely discussed the lamellipodium structure in the introduction, we will not 

give further details on this aspect herein.  

 

 

 

 

 

 

 

 

 

 

 

 

The second step of cell movement requires the formation of adhesions to anchor the cell to 

the substratum. At the cell leading edge, the lamellum couples the actin network with strong 

adhesions to the substrate, on which the cell pulls to move forward, owing to myosin II 

contractility (Figure 25) (Ponti et al., 2004). As movement occurs, the cell rear retracts to avoid 

cell disruption due to membrane tension. If front adhesions are too weak, cell contraction will 

cause the lamellipodium to bend upwards, detaching the leading edge from the substrate surface. 

This results in ruffling and transient retraction of the lamellipodium. Globally, adhesions 

assemble at the front and disassemble at the rear of the cells (Vicente-Manzanares et al., 2005). 

The precise coordination between lamellipodium extension and adhesion dynamics altogether 

with cell contraction orchestrate cell movement (Figure 25).  

Figure 25: Cell migration is a stepwise process 

Intense actin polymerization ensures the lamellipodium extension. New adhesions 

are formed at the leading edge. In the second step, rear adhesions disassemble 

allowing the cell translocation by contraction. Adapted from Ridley et al., 2003.  
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Movement arises from cell shape changes dictated by cytoskeleton reorganization. 

The actin cytoskeleton reorganization plays central role in migration since this process relies 

on cell shape changes and formation of actin-based membrane protrusions. The extensive 

cytoskeleton remodeling is largely governed by the rho family of small GTPases, which includes 

rho, rac and cdc42 (Nobes and Hall, 1995; Hall, 1998). Schematically, rho regulates stress fibers 

and adhesion assembly, while rac regulates lamellipodia protrusions and cdc42 triggers filopodia 

(Nobes and Hall, 1995; Hall, 1998, 2005). Their concerted regulation of cytoskeleton dynamics 

induces cell movement. Epithelial cells, due to the intrinsic nature of epithelia, move in a 

collective fashion, retaining cell-cell adhesions with their neighbors (Fenteany et al., 2000). Rho 

GTPases central role in epithelial cells movement has been reasonably well documented. Indeed, 

in intestinal cells, the requirement of rac- and rho-mediated cytoskeletal changes to drive 

efficient migration has been nicely described (Santos et al., 1997; Fenteany et al., 2000; Cetin et 

al., 2004; Dise et al., 2008). Cdc42 has a critical role in the directional polarization of moving 

intestinal cells, in accordance to what has been reported in other cell types (Stowers et al., 1995; 

Koch et al., 2009). Nevertheless, only rac inhibition abolishes cell movement while rho and 

cdc42 are accessory (Fenteany et al., 2000). A common major downstream effector of rho and 

rac is the actin depolymerizing/severing protein cofilin, which is critical to elicit actin 

reorganization (Carlier et al., 1997; Lawler, 1999; Mouneimne et al., 2006; Hopkins et al., 2007). 

 

How to study intestinal cell migration in vitro? 

The difficulty to follow migration in vivo in a dynamic fashion in an unexposed organ such 

as the gut prevents detailed functional analysis. To overcome this limitation, a widely used 

technique is represented by the wound healing assay, which consists on scratching a monolayer 

of cultivated cells to mimic tissue injury. Interestingly, in such system cell proliferation plays 

little role in migration, the closure of wounds instead relies solely on migration (Farooqui and 

Fenteany, 2005; Poujade et al., 2007). Furthermore, characterization of the migration profile 

revealed that movement of the monolayer does not occur uniformly, but rather involves very 

active “leader” cells, which develop a large lamellipodium and precede a small cohort of cells, 

thus forming extrusions – or “fingers” - of cells breaking the regular border. In addition, “leader 

cells” present a highly remodeled shape (Poujade et al., 2007). The progression of the “fingers” 

is entirely dependent on the leader cells (Reffay et al., 2011). Nevertheless, cells behind the 

margin, even located far away, extend cryptic lamellipodia towards the wound edge below the 
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front cells (Farooqui and Fenteany, 2005). Moreover, rac inhibition in the first row of cells is not 

sufficient to abrogate cell movement (Fenteany et al., 2000). These results suggest an overall 

participation of the cells that constitute the monolayer to the wound closure process. Cell 

migration associates with major cell shape changes: cells in front extend lamellipodia while 

undergoing apical pole reorganization. In particular, several proteins that concentrate on the cell 

apex are delocalized as the cell migrates (Nusrat et al., 1992; Lotz et al., 2000; Hopkins et al., 

2007; Seltana et al., 2010; Chandhoke and Mooseker, 2012). Interestingly, a major disassembly 

of microvilli occurs on intestinal migrating cells, correlating with a substantial loss of apical F-

actin (Nusrat et al., 1992; Chandhoke and Mooseker, 2012). At the lamellipodium, villin and 

actin concentrate, an observation that suggests a possible role for villin in actin dynamics within 

these structures (Nusrat et al., 1992; Athman et al., 2003).  

 

Villin positively regulates cell migration in response to stimuli, in cell culture. 

The original finding of the increased sensitivity to intestinal injuries in villin null mice was 

particularly intriguing and led to further investigate villin potential implication in cell migration. 

In isolated murine enterocytes and in canine renal MDCK cells, villin increases migration 

efficiency in response to hepatocyte growth factor (HGF) (Athman et al., 2003). HGF, which 

binds to the c-Met receptor, was originally identified as scatter factor and reported to disrupt 

epithelial cell-cell interaction leading to individual cell scattering (Gherardi et al., 1989; Bottaro 

et al., 1991). c-Met activation leads to PLC hydrolysis of phosphoinositides, which ultimately 

raises intracellular Ca
2+

 (Mine et al., 1991; Gual et al., 2000). Interestingly, upon HGF 

stimulation villin expressing MDCK cells present a higher G/F actin ratio at the leading edge as 

compared to MDCK wild type cells (Athman et al., 2003). In contrast to HGF-induced cell 

migration, most of the epithelial cells, including the intestinal tissue, retain cell-cell contact when 

migrating. On this aspect, villin positive role in cell migration could be confirmed on more 

relevant wound healing assays induced by monolayer scratches (Tomar et al., 2004, 2006; Wang 

et al., 2007; Mathew et al., 2008).  

Regarding the biochemistry of signaling governing villin role in cell migration, an important 

contribution was provided by the laboratory of Seema Khurana leading to the following model 

presented in Figure 26: at steady state, villin would bind to the plasma membrane and 

preferentially bundle F-actin by virtue of its strong affinity for PIP2 (Kumar et al., 2004). Villin 

would furthermore sequester PIP2 from its natural ligand PLC1 as villin presents a higher 
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affinity for PIP2 than PLC1 (Kumar et al., 2004). In response to external stimuli (e.g. binding of 

HGF or EGF to their receptor) villin would be tyrosine phosphorylated, possibly by the c-Src 

kinase, favoring its actin severing property (Zhai et al., 2002; Tomar et al., 2004; Khurana and 

George, 2008; Mathew et al., 2008). Villin phosphorylation additionally reduces its affinity for 

PIP2 and triggers its association with the SH2 domain of PLC1 resulting in the catalytic 

activation of the phospholipase (Panebra et al., 2001; Kumar et al., 2004; Tomar et al., 2006; 

Wang et al., 2007). These biochemical properties would induce PLC1 competitive binding to 

PIP2 at the plasma membrane. Activated PLC1 catalyzes the formation of diacylglycerol (DAG) 

and inositol 1,4,5-trisphosphate (IP3) from PIP2, which results in calcium release from the 

endoplasmic reticulum thus further enhancing villin-mediated F-actin severing. Overall, F-actin 

severing close to the plasma membrane would generate an abundant supply of barbed ends 

thereby favoring the intense actin polymerization required for lamellipodium generation and 

ultimately cell migration. This spatial control of actin dynamics would allow the generation of 

motility organelles in the direction of the movement thus promoting a crucial property of cell 

migration: the ability of the cells to move in a directional fashion. Thus, if the aforementioned 

model is correct, one would expect that loss of villin would abrogate epithelial cell ability to 

move or at least severely impede directional migration. Experimental data argue against this 

proposal as villin depletion in the human colorectal Caco-2 and in the porcine proximal kidney 

LLC-PK1 cell lines results in modest decrease of migration efficiency (Wang et al., 2007; 

Mathew et al., 2008). Furthermore, villin depleted cells still extend lamellipodia and data 

showing directionality defects has never been reported. 

 

 

 

 

 

 

 

 

Figure 26: Model of villin regulation in actin remodeling at the membrane 

The left diagram focuses on the membrane of a resting cell. A pool of villin associates with PIP2 at the membrane. 

Following stimulation of membrane receptors (R) some villin molecules are tyrosine phosphorylated and associate 

with phospholipase C1 (PLC1), leading to its activation. Villin phosphorylation favors its severing activity. 

Activated PLC1 cleaves PIP2 into DAG and IP3, which in turn induces Ca
2+

 release from stores in the endoplasmic 

reticulum (ER). The increase in intracellular Ca
2+

 concentration additionally favors villin F-actin severing activity 

(right diagram. Adapted from Revenu et al., 2004. 
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Villin expression is mainly restricted to cells harboring a brush border (Robine et al., 1985). 

In addition, the vast majority of villin molecules are concentrated in the apical microvilli, which 

do not face the direction of the movement. Villin specific localization and its role in microvilli 

shape regulation associated with stress events raise the possibility of an additional function for 

villin at the apical pole during cell migration besides its hypothesized role in the cellular motility 

machinery. We propose that villin participates in the apical pole remodeling associated with cell 

migration. 

 

Epithelia in motion. 

If our hypothesis is correct, it implies that similar cell reorganization occur in the intestinal 

cells in movement. Migration in response to injury is fundamental to the intestinal epithelium. 

This tissue is indeed continuously subject to numerous restricted injuries induced by toxic 

luminal substances, inflammation, infections or oxidative stress, which overwhelm the barrier 

function (Blikslager et al., 2007; Sturm, 2008; Iizuka and Konno, 2011). Following injury, 

intestinal repair is ensured by a balance of migration and proliferation that takes place in a 

precise coordination of sequential event. Immediately after the injury, the whole villi structure 

contracts to limit exposure to noxious luminal content (Moore et al., 1989b; Grootjans et al., 

2011). Villi contraction appears to result from myosin II activation, by the myosin light chain 

kinase, in the muscle fibers of the basement membrane (Grootjans et al., 2011). Within minutes, 

the lesion-adjacent cells migrate to cover the denuded area in a process referred as restitution 

(Moore et al., 1989a; Albers et al., 1995, 1996). When the two sheets converge, the tight 

junctions reassemble to terminate epithelium resealing and to restore the protective barrier 

function of the organ (Gookin et al., 2003). At longer term, increased cell proliferation allows the 

regeneration of the tissue.  

How to study wound healing in the gut? Despite its difficult access, several in vivo 

approaches have been developed. The more classically used is based on the abrasive agent 

dextran sodium sulfate (DSS), which induces ample ulceration of the colonic mucosa mimicking 

colitis. Recently, an endoscopic system adapted to small animals has proven to be a valuable tool 

to study the biology of colon-healing. Indeed, this apparatus allows to generate tissular injuries 

in the colon using biopsy forceps and to dynamically monitor the healing process (Pickert et al., 

2009; Seno et al., 2009). In these models of injuries, the importance of lesions and the 

experimental time scale however restrain detailed analysis of the early cell restitution. Finally, 
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restricted injuries limited to a few cells at the villi tips, can be induced by luminal infusion of 

detergents or bile salts (Moore et al., 1989a; Masuda et al., 2003) allowing to study the cell 

restitution process. Since few functional data are available, our comprehension of this early event 

is limited. On the other hand, the morphological changes of the epithelium in restitution have 

been well documented. Indeed, within minutes injury-adjacent cells progressively lose their 

columnar phenotype and flatten (Moore et al., 1989a). This cell shape change strikingly 

correlates with deep structural alterations at the apex as shown by loss of several apical markers 

(Albers et al., 1995, 1996). In fact, these apical markers - F-actin, sucrase-isomaltase, villin - are 

specifically concentrated in microvilli; their exclusion from the apex suggests microvilli 

disassembly. Indeed, electron microscopy reveals an almost complete collapse of microvilli on 

migrating enterocytes (Albers et al., 1995; Masuda et al., 2003). These observations strikingly 

resemble the apical reorganization reported during cell migration in culture. Within a few hours 

the villi structures are completely recovered by intestinal cells (Moore et al., 1989a). As 

expected, the actin cytoskeleton plays major role during these processes. Indeed, on injured 

intestine treated with cytochalasin D, the migrating enterocytes do not present the 

aforementioned shape changes and the resealing of the epithelium is abolished (Albers et al., 

1996). In view of these observations, the terms of de-differentiation or epithelial-to-

mesenchymal transition (EMT) have been proposed to characterize this loss of defined apico-

basal polarity. The words differentiation and EMT often imply changes in genes expression. 

Considering the short time scale of these changes it is very likely that the cell to become motile 

rather re-distributes already synthesized cellular components instead of relying on de novo 

protein synthesis. In addition, due to their intrinsic nature, epithelial cells retain cell-cell 

adhesion while migrating, differing in that from a true EMT process. We would prefer to 

nomenclature this migrating process as an adoption of a motile phenotype.  

Movement of intestinal cells in response to a wound thus involves a major apex remodeling, 

which interestingly seems not to be specific to intestinal tissues. For instance, on their apical 

surface, respiratory, corneal and retinal pigment polarized epithelia display numerous short 

microvilli that are disassembled on cells migrating in response to injury (Haik and Zimny, 1977; 

Oganesian et al., 1997; Sacco et al., 2004). Since apical reorganization appears to be a hallmark 

of polarized epithelia in motion, it suggests that such cell reorganization promote migration. 

Molecules that execute apical pole remodeling thus likely play critical role in migration of 

polarized epithelial cells, which have to quickly evolve from an apico-basal to a front-rear 

polarity. Considering the different points raised above, we hypothesized that villin mediates 
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microvilli effacement thereby promoting migration. Although this idea was suggested in several 

studies in the past, the lack of functional tools precluded any formal demonstration. Taking 

advantage of the villin severing mutant previously described, we were able to directly address 

this issue, using cell culture and animal models. In the material and methods section, I will first 

briefly depict the procedures that were followed to complete the experimental work before 

describing the results that I obtained. 

 

C. Material and methods 

 

Mice generation  

The mice were generated by Speedy Mouse® Technology (Nucleis, France) to produce a 

single copy transgene insertion at the hprt locus. The villin sequences were cloned into the 

pCAGloxCATlox transgenesis vector under the ubiquitous cytomegalovirus immediate-early 

enhancer chicken β-actin hybrid (CAG) promoter (D. Vignjevic) (Figure 27). The transgene was 

then transferred by the Gateway technology into a destination vector pDEST-HPRT (Nucleis) 

carrying two homologous arms of the hprt gene. The vector was linearized using PvuI and 

electroporated into hprt-deficient BPES-embryonic stem (ES) cells by standard methods. The 

targeting construct contained the missing sequences in BPES-ES cells and two regions of 

homology of the hprt gene, which allowed insertion of the transgene at this locus. The targeted 

ES clones were efficiently selected, thanks to the restoration of the ability to grow in 

hypoxanthine-aminopterin-thymidine (HAT) medium through a correct homologous 

recombination. Genotyping of HAT-resistant ES clones was performed by PCR analysis of 

genomic DNA using a forward primer from the eCFP gene, 181CFP.F 5′-

CTCGTGACCACCTTCGGCT-3′ and a reverse primer from the poly(A) sequence, 

SV40polyA_45pb.m 5′-GTTTCAGGTTCAGGGGGAGG-3′. Samples were amplified for 30 

cycles, each consisting of denaturation at 94 °C for 40 s, annealing at 60 °C for 40 s, and 

elongation at 72 °C for 40 s. Targeted ES cells were injected into C57BL/6-derived blastocysts 

that were then transplanted into the uteri of recipient females. Resulting chimeric males were 

bred with C57BL/6 females. 
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Tamoxifen injection 

Plasmid recombination was induced by chronic tamoxifen injections. Briefly mice, 

including controls were injected were injected intraperitonally with tamoxifen (50 μg/g of animal 

body weight) for 2 consecutive days/week for a total of 4 weeks.  

 

Genotyping 

Mice genotypes were determined by PCR on genomic DNA extracted from mouse tail tips. 

Villin knockout was assessed using the following oligonucleotides: 5’ GGA AAC CCG ATA 

GTA TCC TG 3’ and 5’ GAC TAC ATA GCA GTC ACC ATC G 3 amplifying a fragment of 

the villin knockout allele’; 5’ CGA ATT CGC CAA TGA CAA GAC 3’ and 5’ GAC TAC ATA 

GCA GTC ACC ATC G 3 amplifying a fragment of villin wild type allele. A fragment of the 

mCherry-villin plasmid was amplified with : 5’ CCA GAC CGT TCA GCT GGA TAT TAC 

GGC CTT 3’ and 5’ CCT GAA TCG CCA GCG GCA TCA GCA 3’ Finally, pvillin-creERT2 

transgene was determined using the following oligonucleotides: 5’ CAA GCC TGG CTC GAC 

GGC C 3’ and 5’ CGC GAA CAT CTT CAG GTT CT 3’. 

 

Image analysis 

All images were processed and pseudocolored using ImageJ (National Institutes of Health). 

Measurements and analyses were performed using the same software. Images comparing 

different genotypes or experimental conditions were acquired and post-processed with identical 

parameters. 

 

Tissue cell lysis and western blotting 

The intestine of adult mice was isolated and divided into three parts of identical length 

corresponding to the duodenum, jejunum, and ileum. For particular experiments, the colon was 

isolated and divided in two parts of identical length corresponding to proximal and distal colon.  

Frozen jejunal or colonic tissues were homogenized with a Dounce homogenizer in a solution 

containing 50 mM Tris- HCl (pH 7.5), 150 mM NaCl, 20 mM MgCl2, 5 mM EDTA, 1% Triton 

X-100, 1% NP-40, 0.5% SDS, and protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). 
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Cells grown at confluence were lysed in the same lysis solution. Proteins were extracted after 

centrifugation at 15,000 × g for 10 min at 4°C. Thirty micrograms of total protein was used for 

electrophoresis on 7.5% SDS-polyacrylamide gels under reducing conditions, and transferred to 

a nitrocellulose membrane using standard procedures. Immunogens were visualized using the 

enhanced chemiluminescence method (Thermo Scientific, Lafayette, CO). Densitometry 

measurements were carried out using the software ImageJ and normalized to the loading 

controls. The antibodies used in this study are: anti-ezrin (from M. Arpin), anti-sucrase-

isomaltase (B. Nichols), anti-villin (from our laboratory), anti-tubulin (Santa-Cruz), anti-actin 

(Cell Signaling), anti-Ecadherin (BD Biosciences), anti-cleaved caspase 3 (Cell Signaling). 

 

Sampling and preparation of the tissues for histological analyses 

Short pieces of intestinal or colonic samples were washed with phosphate-buffered saline 

(PBS). To prepare tissue for paraffin sectioning, tissues were fixed in 4% paraformaldehyde 

(PFA) or in Carnoy solution (60% ethanol, 30% chloroform and 10% acetic acid), 2 h at room 

temperature or overnight at 4°C. The samples were then ethanol dehydrated and embedded in 

paraffin. For frozen sections, tissues were fixed for 2 h in PFA 4% and incubated overnight in a 

30% glucose solution diluted in PBS, or snap frozen in 2methylbutane precooled by liquid 

nitrogen. They were then embedded in optimal cutting temperature medium (OCT) and frozen at 

−80°C.  

 

Immunohistochemistry 

Histological sections of 5 or 8 μm were prepared from paraffin- or OCT-embedded tissues 

depending on the experiment. For paraffin sections, paraffin was removed by two 5 min washes 

in xylene. Sections were then hydrated with ethanol solutions of decreasing concentrations. 

Unmasking of the epitopes was performed by boiling for 20 min in Antigen Unmasking Solution 

(Vector Laboratories, Burlingame, CA). For frozen sections, OCT was removed by several PBS 

washes. OCT-embedded snap frozen tissues were post-fixed in 4% PFA for 20 min. Sections 

were incubated for 45 min at room temperature in blocking buffer (3% fetal calf serum [FCS] in 

PBS) and then overnight at 4°C with primary antibody (see above) diluted in 3% FCS or 

Phalloidin-Alexa488 (Invitrogen) diluted in PBS alone. After several washes, secondary 

fluorescent antibody was added for 90 min. Representative images from immunostainings were 
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acquired using an Apotome system with a 10× or 63× water Plan-Apochromat lens (Zeiss, Jena, 

Germany) or CM60 epifluorescence microscope (Leica) or an inverted confocal spinning disk 

microscope Eclipse Ti Roper/Nikon, all coupled to a Coolsnap HQ2 camera (Photometrics). 

 

In vivo experiments  

Experiments were carried out on sex-matched mice (for the transgenic mice) of similar age. 

For living animal experiments, anesthesias were performed by injection of a ketamine/xylazine 

mix (100 mg/ml each) diluted in 150 mM NaCl. Mice were killed at the end of experiments by 

cervical dislocation.  

 

Carbachol treatment 

After mouse anesthesia, a jejunum loop was in situ isolated, taking care not to injure the 

local vasculature. The loop was carefully placed in a Petri dish containing 10 μM carbachol 

(Sigma Chemical Co.) solution diluted in PBS plus Ca
2+

 (10 mM) for 20 min to achieve a 

basolateral infusion of the drug. After mouse sacrifice, small samples of treated tissue were 

washed and snap frozen in precooled 2methylbutane. Experiment was repeated at least in three 

different animals per genotype. For a more detailed protocol, see Ferrary et al., 1999. 

 

Procedure for biopsy induced injury and mouse endoscopy. 

A straight-type rigid miniature endoscope Coloview mouse endoscopic system (Karl-Storz) 

linked to an Archos 48 tablet (Archos) for video acquisition was used to visualize mouse colon. 

Images were extracted from acquired videos using VLC software (VideoLAN). After mouse 

anesthesia, the endoscope probe was introduced to the mid-descending colon. Then, a flexible 3-

French biopsy forceps was inserted and used to remove an area of the entire mucosa and 

submucosa avoiding penetration of the muscularis propria. Particular care was taken to generate 

lesions of comparable size. Tissue healing was then monitored by endoscopy at day 3 and 7 post-

injury. Tissue healing process was quantified by measuring the wounded area using ImageJ on 

extracted images. The images were very cautiously chosen to show similar viewpoints in term of 

endoscopy camera orientation and distance from the injury. For tissue analysis, injured area was 
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localized with the endoscopic probe on sacrificed mice. Corresponding colon segment was then 

sampled and processed for immunohistochemistry. The number of mice analyzed is described in 

the results. 

 

Bile salt induced injuries 

Following mouse anesthesia, a small incision was performed to allow access to the small 

intestine. Two knots were made using surgical suture thread to isolate a small intestinal segment. 

Particular caution was taken to avoid any damage to local vasculature. The intestinal loop was 

then filled with a sodium deoxycholate (DOC) solution diluted in PBS at 20mM and incubated at 

room temperature for 5min. After several washes with PBS, the segment was filled with 

Dulbecco’s modified eagle’s medium (DMEM) supplemented with 20% fetal bovine serum 

(FBS). Suture thread was then removed. Intestinal loop was carefully replaced inside the mouse 

and cell restitution was allowed for 30min. Treated tissue was then vigorously washed in PBS, 

fixed in Carboy solution and subsequently processed for immunohistochemistry. The number of 

mice analyzed is described in the results. 

 

Plasmids 

The mCherry-villin plasmids used in this study were described previously in Revenu et al, 

2007. Actin-EYFP plasmid was obtained from Clontech. PA-GFP-actin plasmid developed in the 

Lippincott-Schwartz laboratory was given by D. Vignjevic. For endogenous villin depletion, 

plKO vector (Addgene) was used. Short hairpin RNA (shRNA) sequences specific for 

endogenous porcine villin were cloned inside the multiple cloning site and verified by 

sequencing. Two different hairpin sequences were used: shRNA1: Forward oligonucleotide :5’ 

CCG GAA CCA GGC ACT GAA CTT TAT CCT CGA GGA TAA AGT TCA GTG CCT GGT 

TTT TTT G 3; reverse oligonucleotide: 5’ AAT TCA AAA AAA CCA GGG CAC TGA ACT 

TTA TCC TCG AGG ATA AAG TTC AGT GCC TGG TT 3’. shRNA2: Forward 

oligonucleotide: 5’ CCG GAA GCC AGC CAG GAT GAA ATC ACT CGA GTG ATT TCA 

TCC TGG CTG GCT TTT TTT G 3’; reverse oligonucleotide: 5’ AAT TCA AAA AAA GCC 

AGC CAG GAT GAA ATC ACT CGA GTG ATT TCA TCC TGG CTG CTT 3’. 
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Cell culture and transfection 

LLC-PK1 cells (CCL 101; American Type Culture Collection, Manassas, VA) were given 

by M. Arpin and grown in DMEM (Invitrogen) containing 10% fetal bovine serum. LLC-PK1 

cells were transiently transfected by electroporation. The stable LLC-PK1 cell line expressing 

actin-EYFP was obtained through a clonal approach using cloning rings after selection by G418 

(Invitrogen). This cell line was subsequently used to obtain cell lines depleted for endogenous 

villin and enriched in mCherry-villinWT or mCherry-villinsev expressing cells by 

fluorescence-activated cytometry cell sorting. Lentiviral particles were obtained by transfection 

of HEK293T cells with lentiviral vector in addition to pVSVG and pgag by Polyethylenimine 

(PEI) in a biosafety level 3 compliant laboratory. Medium containing viral particles was 

collected 48hrs post-transfection and filtrated using 0.44 µm sterile filters. One ml of medium 

containing viral particles was then added to 25*10
4  

LLC-PK1 cells seeded in 6 well plates. 

Following 24hrs of infection cells were vigorously washed and selected using Puromycin 

(Invitrogen). G418 was used at 500 µg/ml. Puromycin was used at 1µg/ml. 

 

Wound healing assays 

In all time lapse experiments further described cells were kept at 37° C and in a 5% C02 

atmosphere during acquisition. For quantification of cell migration, 36*10
5
 cells were seeded 

and grown at confluence overnight in Ibidi small culture inserts (Ibidi) placed on glass bottom 

dishes. Cells were serum starved for 90 min with DMEM/F12 (without phenol red) medium and 

culture inserts were removed to induce cell migration. Medium was then replaced by 

DMEM/F12 (without phenol red) supplemented with 20% FBS. Then, wound healing process 

was monitored by time lapse video microscopy using a 10x CFI PLAN objective of an Eclipse Ti 

inverted widefield microscope allowing multipositional acquisitions (Nikon) coupled to a 

Coolsnap HQ2 camera (Photometrics). Wounded area colonized by the monolayer was carefully 

quantified at the different time points using ImageJ. All quantifications were carried out on data 

obtained in a same experiment including the different experimental conditions to be compared. 

For wound healing monitored at high resolution, cells were seeded and grown at confluence 

(1*10
6
 cells) overnight in glass bottom dishes. Cells were serum starved with DMEM/F12 

medium. Wounds were induced by scratching the cell monolayer with a 0.6g needle. After 

washing with medium, medium was replaced by DMEM/F12 (without phenol red) supplemented 

with 20% FBS. Then, time lapse image acquisition was performed using the 60x/1,4 OIL N2 PL 
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APO VC objective of an inverted confocal spinning disk microscope Eclipse Ti Roper/Nikon 

coupled to a Coolsnap HQ2 camera. Stacks of were acquired with a Z interval of 0.6 um. All 

experiments aforedescribed were performed at least three times. 

 

Photo-activation experiments 

LLC-PK1 cells depleted for endogenous villin (shRNA2) were co-transfected with PAGFP-

actin and mCherry-VillinWT or mCherry-VillinΔsev plasmids. Following cells recovery, they 

were seeded at confluence (1*106 cells) in glass bottom dishes and grown overnight. Scratching 

assay was then performed as described earlier. Experiments were carried out using the 40x/1,3 

OIL DICII PL APO objective of an inverted Laser Scanning Confocal LSM710NLO (Carl 

Zeiss) coupled with a Mai Tai 2 photon laser (Newport). Using the ZEN software (Carl Zeiss) a 

small region in the dorsal face of the cell was selected. Caution was taken to select regions of 

similar size in the different cells analyzed. A single pulse of 2 photon laser at 810nm wavelength 

(2*405nm) was burst in the region of interest to photo-activate PAGFP. Time lapse acquisition 

was performed using confocal mode with stacks of 1 µm Z interval. Acquired images were 

identically post-processed and denoised using the Copernic Denoising software (J. Boulanger). 
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D.  Results 

Generation and characterization of mCherry-villin transgenic mouse models. 

To study at the cellular level the contribution of F-actin severing by villin during wound 

healing in vivo fluorescently tagged villin wild-type or mutated proteins was expressed  in mouse 

enterocytes. Inducible transgenesis targeting vectors containing floxed mCherry-villin wild type 

(mCherry-villinWT) or a previously described mCherry-villin selectively mutated for its F-actin 

severing property (mCherry-villinΔsev) (Revenu et al., 2007) under a CAG ubiquitous promoter 

were constructed by Céline Revenu before my arrival (Figure 27). Using Speedy Mouse® 

technology, mouse models carrying a single copy of the transgene inserted in the hprt locus were 

generated. By successive crosses with villin-creERT2 mice (el Marjou et al., 2004) in a villin 

null background, I generated mice carrying either villinWT and villin-creERT2 transgenes or 

villinΔsev and villin-creERT2 transgenes (referred to as tgvillinWT or tgvillinΔsev, 

respectively), allowing to study the function of villin and its severing mutant in absence of 

endogenous villin.  

  

Figure 27: Schematic representation of the transgenesis plasmids 

A. Schematic representation of the transgenesis plasmids. The mCherry-villin constructs are inserted into the 

multiple cloning site of the pCAGloxCATlox transgenesis plasmid driven by the CAG promoter (D. Vignjevic). 

Without recombination, the stop codon in the CAT sequence prevents transcription of the inserted constructs. B. 

Mice harboring the plasmids are crossed with mice expressing creERT2 under the villin promoter. Upon tamoxifen 

injection, recombination occurs in tissues where villin is expressed, leading to expression of the constructs. 
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The first important point consisted of describing these animal models. After tamoxifen 

induction, protein expressions were determined on protein extracts from jejunal and colonic 

tissues, revealing a single band of around 120 kDa in the total cell extracts, with comparable 

levels for both tgvillinWT and tgvillinΔsev mice (Figure 28A). This molecular weight 

corresponds to villin (92.5 kDa) fused to the mCherry protein (around 30 kDa). A slight decrease 

of villin amount when compared to endogenous villin expression could be noticed (Figure 27A). 

To evaluate the cellular distribution of both transgenic proteins, we analyzed the mCherry 

fluorescence on frozen histological sections that revealed a homogeneous signal along the villi 

axis in the small intestine and in the colonic tissues (Figure 28B). This distribution is similar to 

the distribution of endogenous villin (Figure 28B). At higher magnification, we observed a 

strong concentration of the mCherry-fused proteins at the apices of the enterocytes co-localizing 

with the intense apical F-actin brush border signal, as expected for villin (Figure 28C). The two 

mouse models thus recapitulate expression and localization of the endogenous protein. 

  

Figure 28: The transgenic mouse models recapitulate endogenous villin expression and distribution 

A. Western blot against villin and actin on total extract from jejunum or colon of wild type (WT), villin knockout 

expressing transgenic wild type villin (tgvillinWT) or villin knockout expressing transgenic severing mutant villin 

(tgvillinΔsev) mice. The shift in villin molecular weight is due to the mCherry tag. B. Histological paraffin 

sections from jejunum stained for villin (red). Histological frozen sections from jejunum showing villin-mCherry 

fluorescence (red). DAPI labels nuclei (blue). Scale bar: 100 µm. C. Higher magnification of histological frozen 

sections of jejunum stained for F-actin by phalloidin (green). mCherry-villin fluorescence is shown (red). DAPI 

labels nuclei (blue). Scale bar: 10 µm. 
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mCherry-villin proteins are functional and villin-mediated F-actin severing is required 

for microvilli disassembly in vivo. 

To assess in vivo the functionality of the transgenic proteins, basolateral infusion of 

carbachol was performed on isolated intestinal segments and F-actin distribution in enterocytes 

was analyzed on corresponding histological sections. This procedure increases intracellular 

calcium and induces the loss of the microvillar F-actin in a villin dependant manner (Ferrary et 

al., 1999). As previously described (Ferrary et al., 1999), the broad F-actin apical labeling of 

enterocytes was essentially lost on carbachol treated wild type animals, likely indicating a 

disruption of the brush border (Figure 29A and C). Accordingly, apical actin staining width was 

strongly reduced on treated animals (2.28 ± 0.08 µm versus 0.54 ± 0.07 µm, t-test p<0.001). The 

remaining apical F-actin staining corresponds to the terminal web and junctional actin belt 

region. In contrast, the broad apical F-actin labeling was preserved on treated villin knockout 

animals (2.34 ± 0.07 µm versus 2.20 ± 0.10 µm, t-test p>0.5) (Figure 29A and C). Importantly, 

carbachol exposure of tgvillinWT intestinal segments led to a striking reduction of the apical F-

actin width (2.10 ± 0.09 µm versus 0.68 ± 0.05 µm, t-test p<0.001), restoring the wild-type 

behavior (Figure 29B and C). Thus, mCherry-villinWT is functional in vivo and rescues the loss 

of endogenous villin. Conversely, carbachol-treated tgvillinΔsev mice did not present any 

alteration of apical phalloidin staining of enterocytes (2.08 ± 0.08 µm versus 1.92 ± 0.15 µm, t-

test p>0.5) (Figure 29B and C). These results therefore validate the functionality of the 

transgenes in the newly generated mouse models and demonstrate that in vivo, villin mediates 

carbachol induced microvillar F-actin disassembly through its severing property. 

 

Efficient wound healing in the mouse colon requires F-actin severing by villin.  

Villin has been proposed to be involved in cellular plasticity and survival following DSS 

induced lesions (Ferrary et al., 1999; Wang et al., 2008b). The high level of apoptosis in this 

system however hinders a precise analysis of epithelial restitution. To unambiguously clarify 

whether villin participates in gut wound healing beside an anti-apoptotic role, mechanical 

injuries were performed on the colonic mucosa in order to minimize potential biological side 

effects of DSS injuries. With the help of M. Chamaillard who owns such an apparatus, a biopsy 

forceps linked to an endoscopic system dedicated to small animal was used to create a discrete 

round-shaped millimeter-size injury in the distal part of the colon. This allows evaluation of the 

mucosal repair and its quantification by careful measurement of the injured area.  

98



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wild type mice consistently showed an important reduction of the ulcered area at day 3 (not 

shown). By day 7, the colon surface appeared regular, making the original lesion hardly 

distinguishable (Figure 30A). In contrast, colonic repair in villin null mice was slightly delayed 

at day 3 (not shown). More strikingly, the irregular and depressed appearance of the tissue 

indicated an incomplete repair at day 7 (Figure 30A). Quantifications confirmed a significantly 

slower reduction of the injured surface area as compared to wild type animals (69 ± 7 % versus 

55  ±  10 % at day 3, and 56 ± 9 % versus 18  ± 3 % at day 7; t-test p<0.01 at day 7) (Figure 

30B). Thus, in vivo, efficient colonic wound healing requires villin. 

  

Figure 29: Transgenic villin proteins are functional and villin severing activity is required for brush border 

dissasembly upon carbachol treatment in vivo 

A. and B. Histological frozen sections from untreated or carbachol treated (+carb) small intestines stained for F-

actin by phalloidin (green). DAPI labels nuclei (blue). White brackets highlight the width of the F-actin 

concentration at the apex of the enterocytes. Scale bar: 10 µm. A. Sections from WT or villin-/- mice. B. Sections 

from tgvillinWT or tgvillinΔsev mice. mCherry-villin fluorescence is shown (red). C. Histogram depicting the width 

of the apical F-actin concentration of WT, vil-/-, tgvillinWT or tgvillinΔsev mice untreated or treated with 

carbachol. Width values (in m) are: WT=2.28 ± 0.08; WT+carb=0.54 ± 0.07; villin-/-=2.35 ± 0.09; villin-/-+carb=2.20 

± 0,10; tgvillinWT= 2.10 ± 0,09; tgvillinWT+carb= 0.68 ± 0.05; tgvillinΔsev=2.08 ± 0.08; tgvillinΔsev+carb=1.92 ± 

0.15. Numbers of measurements are: WT untreated=15; WT+carb=15; villin-/- untreated=8; villin-/-+carb=16; 

tgvillinWT=11; tgvillinWT+carb=44; tgvillinΔsev=15; tgvillinΔsev+carb=45. *** t test p < 0.001. NS: non-significant p 

value>0.05. 
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Figure 30: Efficient colonic wound healing requires villin through its actin severing property 

A. and C. Serial endoscopic snapshots showing the site of biopsy-induced injury in mouse colon of the 

indicated genotypes at day 0 and 7 post-wounding. Images are representative of at least 4 animals per genotype. 

Dashed lines delineate the wounded area. B. and D. Plot of the average wounded area changes overtime for 

mice of the indicated genotype, normalized to the original lesion size at day 0. Values are for WT and villin-/-, 

respectively: day 3: 54 ± 10 % versus 69 ± 7 %; day 7: 17 ± 3 % versus 56 ± 9 %. Number of animals are: 

nWT=6; nvillin-/-=4. Values are for tgvillinWT and tgvillinΔsev, respectively: day 3: 57 ± 6 % versus 74 ± 8 %; 

day 7: 17 ± 8 % versus 62 ± 5. Number of animals are: ntgvillinWT=4; ntgvillinΔsev=5. ** t-test p < 0.01; ns: non-

significant p value>0.05. E. Hematoxylin-eosin staining of histological sections from the mucosal injured area at 

day 4 post-wounding in WT and villin-/- mice. Red asterisks highlight the injured area. Scale bar: 200 µm. F. 

Histological sections from WT and villin-/- mice, at day 4 post-injury, stained for cleaved caspase 3 (left panel, 

red) or ki67 (right panel, red) and E-cadherin (green). Dapi stains nuclei (blue). Red asterisks highlight the 

injured area. Scale bars: 100µm. 
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To better document the healing process, histological studies were carried out on colonic 

paraffin sections corresponding to the injuries previously identified by colonoscopy at day 4, 

when significant difference arises between wild type and villin null animals (Figure 30E). To 

exclude an implication of cell proliferation and apoptosis in the differences of tissue healing, 

these cellular processes were evaluated by immunostainings (Figure 30F). Co-stainings for E-

cadherin and the proliferative cell marker Ki67 did not reveal any major difference in terms of 

proliferation. Considering apoptosis, the number of cells co-labeled with E-cadherin and cleaved 

caspase 3 was not increased between wild type animals and the inefficiently repairing villin null 

mice. Thus, an eventual role of this protein in cell survival or proliferation can be excluded to 

explain the repair defect reported in absence of villin in this context. We next wondered whether 

the actin severing property is important to regulate colonic tissue healing. For this purpose injury 

repair in tgvillinΔsev and in tgvillinWT mice was compared. In tgvillinWT animals, most of the 

original wound was repaired by day 7 (Figure 30C), mimicking wild type mice. On the contrary, 

injuries induced on tgvillinΔsev mice failed to heal properly at day 3 and 7 (Figure 30C). We 

confirmed these observations by measuring the injured surface area over time of tgvillinΔsev 

versus tgvillinWT mice (74  ± 8 % versus 57  ± 6 % at day 3, and 62  ± 5 % versus 17 ± 7 % at 

day 7, t-test p<0.01 for day 7) (Figure 30D). Altogether, these results demonstrate in vivo the 

critical role of villin-mediated F-actin severing during colonic injury repair independently of its 

anti-apoptotic function. Given the known impact of villin in cell migration, we decided to look 

more in details at the migratory properties of the epithelial cells. 

 

  

Figure 31: Villin positively regulates cell migration through its actin severing property 

A. Western blot against villin and tubulin performed against LLCPK-1 cells infected with lentiviral particles of 

shRNA empty plasmid or containing shRNA sequences directed against porcine villin. Two different shRNA were 

used. Tubulin represents the loading controls. B. Left panel: Quantification of the colonized area by the LLCPK-1 

monolayer at 10h post wounding, normalized to 100 for the fastest cells. Values are: shRNA1: 72.6 ± 5.5 %; shRNA2: 

71 ± 5.6 %; t-test *** p value<0.001; ns non-significant p value>0.05 Right panel: Serial micrographs from 

transmission light microscopy time-lapses of wound healing assays on a monolayer of LLCPK-1 cells in the different 

conditions. Scale bar: 100 µm. C. Western blot against villin and actin performed on LLCPK-1 cells infected with 

lentiviral particles of shRNA empty plasmid or containing shRNA sequences directed against porcine villin and 

reexpressing wild type (villinWT) or severing mutant (villinΔsev) human villin. D. Left panel: Quantification of the 

colonized area by the LLCPK-1 monolayer at 10h post wounding, normalized to 100 for the fastest cells. Values are: 

shRNA2: 60 ± 3 %; villinΔsev: 71 ± 5 %. Right panel: Serial micrographs from transmission light microscopy time 

lapses of wound healing assays on a monolayer of LLCPK-1 cells in the different conditions. Scale bar: 100 µm. E. 

Relative number of lamellipodia formation per field over time in villinWT or villinΔsev expressing cells. Values are 

normalized to the number of lamellipodia at 20 min post-injury determined in villinWT expressing cells.  
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Villin severing activity is required for efficient wound healing of LLC-PK1 cells. 

To analyze at the cellular level the dynamics of the healing process, wound healing models 

in cell culture were chosen to overcome limitations intrinsic to in vivo systems. The cell culture 

model chosen should closely recapitulate the apico-basal polarization and differentiation of 

enterocytes in vivo. The non-transformed porcine epithelial LLC-PK1 cell line derived from 

kidney proximal tubule is classically used to study microvillus biology and expresses villin 

endogenously. A stable cell line expressing an actin-EYFP construct through a clonal approach 

was generated, resulting in a nearly 100 % homogeneity. Endogenous villin was afterward 

depleted in these cells by two different shRNA, resulting in a depletion of nearly 80 % with both 

shRNA on confluent cells (Figure 31A). One shRNA was randomly chosen to pursue the 

experiments and express the mCherry-villin constructs. Following transfection, mCherry-
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villinWT or mCherry-villinΔsev expressing cells were sorted by FACS. The FACS-sorted cells 

showed comparable expression levels as seen by western blot, which furthermore confirmed 

endogenous villin depletion (Figure 31C). The cellular distribution of the transfected proteins 

revealed an important co-localization of the mCherry-fused proteins and EYFP-actin in the 

apical microvilli of confluent unwounded LLC-PK1 sorted cells (Figure 32). In addition, 

expression of the two villin constructs resulted in a similar marked increase in microvilli size as 

compared to non-transfected cells depleted for endogenous villin (Figure 32). Thus and as 

previously reported (Revenu et al., 2007), the mCherry-villin proteins retain their correct sub-

cellular localization and their morphogenetic effect in LLCPK-1 cells.  

To evaluate the previously reported role of villin during cell migration and validate the cell 

culture system, small culture insert dedicated to 2D wound healing assays were used, allowing 

robust quantification in different experimental conditions. Time lapse multi-position microscopy 

revealed a modest but significant reduction of the relative area colonized by the monolayer of 

villin depleted LLC-PK1 cells at 10 h normalized to cells expressing the empty vector (72  ± 5 % 

and 71 ± 5 % for shRNA1 and shRNA2, respectively; t-test p<0.001 for each) indicating an 

inefficient migration in absence of villin (Figure 31B). Wild-type villin re-expression 

significantly enhanced normalized cell migration (100 ± 4.5 % versus 60 ± 3 %, for villin 

depleted cells re-expressing villin WT and villin depleted cells, respectively; t-test p<0.001), thus 

rescuing the depletion of endogenous villin (Figure 31D). In contrast, cells re-expressing villin 

severing mutant did not show any significant difference in their migratory property as compared 

to villin depleted cells (70 ± 5 % versus 60 ± 3 %; t-test p>0.05) (Figure 31D). These results 

confirm that villin improves the efficiency of in vitro wound closure and demonstrate that it is 

due to its F-actin severing property. 

  

Figure 32: VillinΔsev protein retains its microvillar distribution and its morphogenetic effect 

Total projections of Z stacks acquired by spinning disk microscopy. Micrographs represent overlays of EYFP-actin 

(green) and villinWT- or villinΔsev-mCherry (red). Note the presence of cells untransfected for villin. Scale bar: 10 

µm. 
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Villin severing activity is required for efficient microvilli disassembly upon cell 

migration. 

Epithelial cells are able to migrate in the absence of villin. Villin must then have a function 

specialized in cells developing microvilli. To get further insights, at the sub-cellular level, into 

villin regulation of cell reorganization during migration, the wound healing process was 

inspected by time lapse imaging using high resolution spinning disk confocal microscopy. Cell 

migration was induced by scratching assays on monolayers of the previously described sorted 

cells. As reported in the past, lamellipodia displayed a marked concentration of mCherry-villin, 

which overlapped with the narrow intense actin-EYFP signal (Athman et al., 2003). Villin 

devoid of its F-actin severing property also showed lamellipodial recruitment, thus providing 

another indication of its functionality. In cells re-expressing wild type mCherry-villin, an 

important apical pole remodeling was consistently observed, concomitantly to lamellipodium 

extension. Indeed, a rapid disassembly of EYFP-actin and mCherry-villinWT positive microvilli 

could be observed on the x,y plane of the migrating cells and confirmed on the x,z reconstruction 

(see arrows on Figure 33A and B; Movies S1 and S2). This type of image treatment 

furthermore allowed to quantify the relative apical fluorescence intensities during cell migration 

by selecting a region of interest corresponding to the very upper part of the cell on the x,z 

representations. Accordingly, a rapid conspicuous decrease of actin and villin apical fluorescence 

relative intensities could be reported (Figure 33C). In the presence of villin, microvilli are thus 

rapidly disassembled upon migration. In contrast, in most of migrating villinΔsev positive LLC-

PK1 cells, the apical microvilli appeared strikingly more stable, showing no apparent 

disassembly (see arrows on Figure 33A and B; Movies S3 and S4). Consequently, the decreases 

of apical relative fluorescence intensities were significantly impeded compared to the previous 

condition (Figure 33C). To confirm this phenotype, the presence or absence of apical microvilli, 

revealed by the mCherry-villin proteins, was quantified on cells fixed at 30 min post-wounding. 

On migrating cells characterized by the presence of a lamellipodium, careful examination of the 

presence of mCherry positive apical microvilli structures revealed that whereas a majority of 

migrating cells re-expressing wild type villin were devoid of microvilli, this number was 

significantly reduced when expressing villinΔsev (62.5 % vs. 43.4% for villinWT and villinΔsev, 

respectively; P<0.01) (Figure 33D). Altogether, these results clearly demonstrate that villin is 

required to efficiently sever microvillar actin filaments resulting in brush border disassembly at 

the onset of cell migration. 
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Figure 33: Microvilli disassemble upon cell migration via villin severing activity 

A. Migration of LLCPK-1 cells depleted for endogenous porcine villin (shRNA2) expressing EYFP-actin and 

mCherry- villinWT or villinΔsevvisualized by spinning disk time-lapse microscopy. EYFP and mCherry 

channels are shown. Images are maximal projections of the acquired Z stacks. Serial images are shown at 12min 

interval. Red asterisks highlight the migrating cells analyzed. Scale bar: 10 µm. B. Z reconstructions of the 

migrating cells highlighted in A at 0 min and 48 min. Overlays of EYFP-actin (green) and mCherry-villin (red) 

is shown. White arrows point at the dorsal face of the migrating cell. Scale bar: 10 µm. C. Plots depicting the 

villin and actin fluorescence intensities at the dorsal face of the cells transfected for mCherry- villinWT or 

villinΔsev overtime quantified from images acquired by spinning disk time-lapse microscopy. Number of cells 

analyzed: nvillinwt=10; nvillinΔsev=19. D. Histogram representing the penetrance of the phenotype illustrated by the 

presence or the absence of apical microvilli, positive for mCherry-villin, on migrating cells transfected for 

mCherry-villinWT or villinΔsev at 30 min post-injury on fixed cells. Values are:  62.5 ± 1.7 % and 43.4 ± 1.7 % 

for villinWT and villinΔsev, respectively. T-test *** p value < 0.001. Number of cells analyzed: nvillinwt =121; 

nvillinΔsev =95.  
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Microvillar actin is rapidly integrated at the lamellipodium upon migration. 

Since the enhancement of epithelial cell migration induced by villin severing activity 

correlates with the disassembly of apical microvilli, we hypothesized that the lack of apical pole 

disassembly could hinder the repolarization of the cells towards a migratory organization. In 

agreement with this idea, a precise quantification of the scratch wound assays demonstrated a 

significant decrease in the rate of lamellipodia formed in villinΔsev expressing cells compared to 

villinWT at the onset of migration (Figure 31E). Could the microvillar actin be required for this 

lamellipodia formation by being directly and rapidly engaged in migratory structures? 

 The intracellular dynamics of microvillar actin in migrating cells was followed using a 

photo-activable green fluorescent protein (PAGFP-actin) in confluent LLC-PK1 cells depleted 

for endogenous villin and expressing villinWT or villinΔsev. Actin molecules were specifically 

photo-activated locally at the apex of early-migrating LLC-PK1 cells (Figure 34A) following 

monolayer scratch. A rapid and consequent recruitment of PAGFP-actin could be observed at the 

lamellipodium of cells expressing wild type villin (Figure 34B; Movie S5). In contrast, the 

recruitment of photoactivated PAGFP molecules was lower in cells expressing villinΔsev 

(Figure 34B; Movie S5). Accordingly, quantifications of the ratio of photoactived actin 

molecules recruited at the lamellipodium revealed a prompt redistribution of microvillar actin 

towards the lamellipodium of cells expressing wild type villin whereas recruitment was 

significantly reduced in cells expressing villinΔsev (17 ± 7 % versus 4 ± 0.8 % at 6min post-

photoactivation; t-test p<0.05) (Figure 34C). To exclude a bias caused by an eventual difference 

in the actin exchange and/or assembly at the lamellipodium of cells expressing villinWT or 

villinΔsev, PAGFP-actin molecules were photo-activated in a region positioned slightly away 

from the lamellipodium leading edge, in the lamellum, and monitored integration at the 

lamellipodium. Importantly, quantifications could not reveal any influence of villin F-actin 

severing on the rate of lamellar actin integration at the lamellipodium (Figure 34D). Due to the 

fast actin treadmilling in microvilli (Tyska and Mooseker, 2002; Waharte et al., 2005), the 

PAGFP-actin is not expected to remain stable at the apex of the cells even in the absence of 

villin severing activity. A slight but not significant increase in PAGFP-actin stability was 

nevertheless detected in cells expressing vilinlΔsev (Figure 34E). These results thus show that 

actin molecules resulting from microvilli disassembly mediated by villin F-actin severing 

property are rapidly integrated at the nascent lamellipodium, without the lamellipodium actin 

polymerization rate to be modified. 
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Figure 34: Microvillar actin is rapidly integrated at the lamellipodium following microvillus disassembly 

A. Biphotonic laser photo-activation of PAGFP-actin at the apical face of a confluent monolayer of LLC-PK1 

cells depleted for endogenous villin and expressing villinWT-mCherry and PAGFP-actin. Left panel: Total 

projections of the Z stacks before and immediately after photo-activation. Right inset: Z reconstruction of the Z 

stacks before and immediately after photo-activation. Scale bar: 10 µm. B. Serial micrographs of total Z 

projections pseudo-colored with the fire lookup table. Biphotonic laser photo-activation at the dorsal face of an 

early migrating cell depleted for endogenous villin and expressing villinWT-mCherry (upper panel) and 

villinΔsev (lower panel). White arrows point at the lamellipodium edge. Scale bars: 10 µm. C. Plot of the 

proportion of apically photo-activated actin incorporated in the lamellipodia overtime. Number of cells 

analyzed: nvillinWT=10; nvillinΔsev=16. T-test NS: p value > 0.05; * p value < 0.01. D. Plot depicting the proportion 

of incorporation at the lamellipodia overtime of photo-activated actin slightly away from the lamellipodial edge. 

Number of cells analyzed: nvillinWT = 4; nvillinΔsev = 4. E. Plot depicting the relative photo-activated actin intensity 

at the apical face of the cells for cells expressing villinWT or villinΔsev. Number of cells analyzed: nvillinWT = 

10; nvillinΔsev = 16. 
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Villin is essential for microvilli disassembly upon cell migration in vivo. 

These results, obtained using a wound healing model in cell culture, provide dynamic 

description and quantification of the important apical domain remodeling induced by villin 

severing property at the onset of cell migration. To assess the relevance of this newly 

demonstrated function of villin in physiological situations, we wondered whether similar rapid 

cell reorganization occurs during intestinal wound healing in vivo. The extent of the biopsy 

induced injury (Figure 30) and the subsequent time scale of the healing process however 

prevented the use of this technique to evaluate such prompt cell response. A strategy inducing  

milder chemical lesions by the bile acid sodium deoxycholate was rather chosed (DOC), which 

produces sharp lesions of the epithelial cells on the upper part of the intestinal villi, as observed 

on histological paraffin sections of the injured tissue (Figure 35A, upper panels). E-cadherin 

immunostaining, which delineates basolateral boundaries of the cells, revealed that the 

enterocytes immediately adjacent to the wound conserved a columnar shape. They also retained 

the exclusion of E-cadherin from the apical domain, as expected for a polarized epithelium. 

Importantly, the digestive enzyme sucrase-isomaltase maintained a strict apical sub-cellular 

distribution on these cells. Thus apico-basal polarity is preserved on the enterocytes immediately 

following adjacent cell injury. No obvious difference could be detected after bile acid injuries on 

the epithelia of wild type and villin null mice (Figure 35A, upper panels). DOC was 

subsequently washed out to allow cell restitution to take place. After 30 minutes, dramatic cell 

reorganization of the wound adjacent enterocytes could be detected in wild type mice, revealing 

a progressive flattening of the epithelial cells as seen with the E-cadherin staining (Figure 35A, 

lower panels). E-cadherin was no longer excluded from the apex, suggesting an alteration of 

apicobasal polarity. Strikingly, on most of the wild type cells was noticed a complete loss of the 

apical localization of sucrase-isomaltase and ezrin, two microvilli markers, indicating 

microvillus disassembly (Figure 35A and B). These observations closely resemble the cell 

remodeling associated with cell migration in culture (Figure 33). In contrast, in villin null mice, 

most of the cells in contact with the injury conserved an intense SI and ezrin apical staining, thus 

indicating a strongly impaired efficiency of microvillus disassembly (Figure 35A and B). To 

exclude the possibility that the observed cell reorganizations are due to an eventual apoptotic 

program, cleaved caspase-3 staining revealed very few apoptotic enterocytes adjacent to the 

wound, independently of the two genotypes (Figure 35C and quantification in D). These results 

lead to the conclusion that villin is essential for the disassembly of microvilli and for apical 

domain remodeling elicited by wound healing in vivo. 
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Figure 35: Villin is essential for brush border disassembly upon cell migration in vivo. 

A. Histological paraffin sections of small intestine of wild type (WT) or villin null (villin-/-) mice luminally 

treated with sodium deoxycholate (DOC) just after washout (upper panel) or 30 min after washout (lower panel) 

stained for E-cadherin (Ecadh, red) and sucrase-isomaltase (SI, green). DAPI labels nuclei (blue). Vertical 

dashed lines highlight the injured area; basal dashed lines delineate the lamina propria; arrows indicate the 

injury-adjacent enterocytes. B. Histograms depicting the presence or the absence of apical staining of SI or ezrin 

quantified on histological paraffin sections of small intestine of WT or villin-/- treated with DOC, 30 min after 

washout. Values are: WT, 22 ± 1 % and villin-/-, 71 ± 3 % for apical SI. WT, 25 ± 1.6 % and villin-/-, 84 ± 4 % 

for apical ezrin. SI: nWT=84 cells analyzed from 8 animals; nvillin-/-=147 cells analyzed from 12 animals. Ezrin: 

nWT=45 cells analyzed from 6 animals; nvil-/-=26 cells analyzed from 3 animals. C. Histological paraffin sections 

of small intestine of WT or villin-/- mice luminally treated with DOC, 30min after washout, stained for E-

cadherin (green) and cleaved-capsase 3 (red). DAPI labels nuclei (blue). A positive control is shown in the inset, 

which represents an apoptotic enterocyte at a villus tip. Basal dashed lines delineate the lamina propria; arrows 

indicate the injury-adjacent enterocytes. D. Histogram of the ratio of enterocytes at the wound edge positive for 

cleaved caspase 3, quantified from histological paraffin sections of small intestine stained for cleaved caspase 3 

from WT or villin-/- mice treated with DOC, 30min after washout. Values are:  WT: 82 % and villin-/-: 80 % of 

non-apoptotic cells. 
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E.  Discussion 

 

In this study, we definitively demonstrate that villin directly participates in apical pole 

remodeling of migrating cells to promote wound healing. We show that villin severs F-actin 

within microvilli to initiate their disassembly thereby promoting cell migration. We moreover 

provide direct evidence that villin mediated F-actin severing enhances the rapid integration of 

this newly released actin pool at the lamellipodium, suggesting that apical domain disruption, 

illustrated by microvilli disassembly, releases substantial amount of cellular components that 

stimulate motility. Most importantly, we also demonstrate in vivo the physiological and 

biological relevance of these functions during injury healing in the gut, an organ subject to 

various lesions that can be deleterious in the absence of an efficient tissue repair process.  

 

Villin severing activity mediates rapid microvillus disassembly. 

Villin has been shown to promote epithelial cell migration in diverse cell lines (Athman et 

al., 2003; Tomar et al., 2004; Wang et al., 2007; Mathew et al., 2008). How could villin regulate 

cell motility? As discussed in the introduction, villin localizes to the lamellipodium and 

participates in the extension of the structure, presumably by enhancing actin dynamics as 

suggested by in vitro actin based motility assays (Athman et al., 2003; Revenu et al., 2012). 

Villin is thus likely involved directly in the motility machinery of epithelial cells. However, no 

reports have investigated, during cell migration, a possible function of this protein in microvilli, 

the specialized domain where it concentrates. We used LLC-PK1 cells, from porcine proximal 

kidney origin, which are epithelial cells closely resembling to intestinal cells and classically used 

to study the biology of the microvilli (Tyska and Mooseker, 2002; Loomis et al., 2006; 

Zwaenepoel et al., 2012). In agreement with our initial hypothesis, we could not only provide 

dynamic insights on the occurrence of a sudden microvilli disassembly that associates with 

migration but furthermore demonstrate that such apical pole remodeling is driven essentially by 

villin F-actin severing. However, in our experimental setup, expression of a villin severing 

mutant did not completely abolish microvilli disassembly on migrating cells. How to explain this 

relatively mild phenotype we report? First, to avoid a complete detachment of the monolayer 

following the scratch we used only partially differentiated confluent cells, which display not 

fully mature microvilli. These pre-mature microvilli could be less stable and more prone to 

110



 

disassembly, a possibility that could be supported by the description of increased actin turnover 

rates assessed in non-confluent LLC-PK1 cells (Tyska and Mooseker, 2002). Secondly, the 

mutations introduced in the villin cDNA result in a drastic reduction of its ability to sever F-actin 

but do not abrogate it (Revenu et al., 2007). Indeed, in vitro depolymerization assays indicate 

that Δsev mutations lead to a reduction of villin severing activity to 16% of its normal value 

(Revenu et al., 2007). Finally, actin severing and/or depolymerization by ADF/cofilin was 

proposed to account for the reported collapse of microvilli from kidney proximal tubule 

following ischemia/reperfusion in vivo (Schwartz et al., 1999; Ashworth et al., 2001). This type 

of injury appears to induce ADF activation and relocalization to the apical domain (Schwartz et 

al., 1999; Ashworth et al., 2001). Since LLC-PK1 cells used in this study are from renal origin, it 

is conceivable that villin and ADF/cofilin act in concert to mediate microvilli disassembly in 

these cells.  

Most importantly, we were able to confirm that similar apex remodeling occurs in vivo, 

following mild injury of the intestinal epithelium. These types of experimental injuries have been 

widely used to study the restitution process in the intestine (Moore et al., 1989a; Albers et al., 

1995, 1996; Masuda et al., 2003). On wild type enterocytes adjacent to the injury, we observed a 

striking loss of apical ezrin and sucrase-isomaltase (SI) stainings. As these two proteins illustrate 

microvilli structure and functionality, their loss likely reflects microvilli disassembly. In support 

of this possibility, loss of apical sucrase-isomaltase staining, following similar type of injuries, 

correlates with microvilli disruption as determined by electron microscopy (Albers et al., 1995). 

In contrast, we did not observe such cell reorganization in enterocytes from villin null mice: the 

apical pole of migrating enterocytes appears more stable and conserves strict apical distributions 

of ezrin and SI. Of notice, this in vivo phenotype caused by the loss of villin is highly penetrant. 

Altogether, these results strongly suggest that intestinal microvilli disassembly is induced mainly 

by villin, which severs microvillar actin filaments. We conclude that, in a migratory context in 

vivo, villin is a direct effector of enterocyte apical pole remodeling.  

 

Advantages of F-actin severing versus capping proteins in cytoskeleton remodeling. 

In a study depicting a structural model of the microvilli, it was suggested that, as a structural 

element of the actin core, villin cannot simultaneously bind membrane PIP2 and actin (Brown 

and McKnight, 2010). Therefore activation of the severing property by dynamic dissociation 

from PIP2 could not account for microvilli disassembly. It was instead proposed that reversible 
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interaction between villin and PIP2, sterically allowed at the microvillus tip only, could lead to 

filaments capping by villin, which, when considering the actin treadmilling rate, would 

progressively extinguish the microvillus within 20 minutes (Brown and McKnight, 2010). While 

filaments capping alone could possibly induce microvillus collapse, we clearly demonstrate the 

impact of villin severing property on this morphological process. In addition, the time scale of 

the abrupt microvilli destruction – typically occurring within 6-12 minutes - that we report would 

be incompatible with a progressive depolymerization of the bundle. Thus, villin severing activity 

within the microvillus shaft most likely constitutes the driving force for its rapid disassembly 

upon stress conditions. 

Proteins in charge of cytoskeleton reorganization are definitely not specific of microvilli. 

Among other examples, in the highly dynamic filopodia, cofilin efficiently severs F-actin and is 

dynamically targeted to the shaft during stalling and retraction of the protrusions, suggesting a 

key role in these processes (Breitsprecher et al., 2011). This result elegantly illustrates the 

advantage of molecules executing actin cytoskeleton breakup to allow rapid shape remodeling of 

organelles. 

 

Role of the apical pole remodeling induced by cell migration. 

As seen earlier, apex reorganization is not specific to migrating intestinal cells. It rather 

widely occurs in different organs and thus seems inherent to the migratory phenotype of 

epithelial polarized cells. Why would apical pole destruction be important for cell migration? To 

attempt to answer this question several biological and biophysical points can be raised.  

Precise regulation of plasma membrane tension is critical for efficient migration. Membrane 

in the front of motile cells is constantly pushed by the actin cytoskeleton resulting in increased 

membrane tension. In non-apico-basally polarized cells, tension is uniformly distributed along 

the membrane as local application of force generates membrane tension that rapidly propagates 

and equilibrates within milliseconds (Kozlov and Mogilner, 2007). Interestingly, artificially 

rising membrane tension by hyperosmotic swelling impairs lamellipodium efficiency (Raucher 

and Sheetz, 2000), presumably by affecting the rate of polymerization. Indeed, the molecular 

Brownian ratchet model stipulates that thermal fluctuations of the polymerizing actin filaments 

abutting a membrane surface allow insertion of actin monomers. Subsequent collision of the 

fluctuating filament with the membrane generates pushing force against the membrane. Thus, a 
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higher membrane tension would affect membrane pushing. Variation of membrane tension may 

also regulate endo- and exocytosis, two processes important for cell extension (Gauthier et al., 

2011). In the case of epithelial polarized cells, membrane tension is higher on the apical than on 

the basolateral pole (Dai and Sheetz, 1999). This discrepancy is due to the physical separation by 

tight junctions generating domains of distinct lipid composition and is likely additionally 

reinforced by the presence of numerous membrane protrusions: the microvilli (Nambiar et al., 

2009; Boulant et al., 2011). Their disassembly might thus alleviate membrane tension and 

thereby indirectly favor migration.  

Secondly, microvilli employ important quantities of diverse cellular components. For 

instance, owing to their number, apical microvilli occupy a large amount of plasma membrane. 

Rapid cell surface changes such as reported during lamellipodium extensions require net 

membrane addition at the leading edge as plasma membrane is basically inextensible (Morris and 

Homann, 2001). This aspect is reflecting the plasma membrane low tensile properties. We can 

speculate that microvilli disassembly releases important amount of plasma membrane, in a close 

manner to caveolae, which act as a membrane reservoir allowing rapid cell surface extension 

(Sinha et al., 2011).  

Analogously, microvilli concentrate high amount of actin. We calculated that apex 

concentrates more than 50% of the total phalloidin fluorescence signal in the mouse enterocyte. 

Thus, its disruption would release numerous free barbed ends that upon capping by villin would 

depolymerize into free G-actin (Northrop et al., 1986). In support of this idea, we could observe 

a prompt integration of microvilli-released actin at the lamellipodium on villin positive cells. 

Conversely, the recruitment is decreased on cells expressing villin severing mutant. Villin thus 

increases the release of microvillar actin and its insertion at the lamellipodium, a mechanism that 

likely favors lamellipodium efficiency and results in increased cell motility. Two published 

observations, which are based on the fact that cytoplasmic G-actin concentration largely 

determines the magnitude of the cell extension (Kiuchi et al., 2011), argue in favor of this 

possibility: (I) ADF/cofilin mediated F-actin severing has been proposed to indirectly increase 

lamellipodium efficiency by supplying an abundant pool of actin monomers (Kiuchi et al., 

2007). (II) Myosin II contributes to actin network disassembly at the rear of the cell thereby 

promoting a treadmilling-like process to sustain cell motility: F-actin is disassembled at the rear 

and reinserted at the polymerizing leading edge (Wilson et al., 2010). Interfering with this cell-

scale treadmilling impedes cell migration and thus highlights the importance of local F-actin 

network disassembly to sustain a spatially distinct actin polymerization (Wilson et al., 2010). In 
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complement of its structural role, villin may thus have a comparable function in the actin-rich 

apical microvilli. As a matter of comparison, ischemia/reperfusion in the kidney induces 

important cytoskeletal reorganization including microvilli collapse. Following microvilli 

disassembly, intense F-actin patches are detected within the cytoplasm of injured cells 

(Golenhofen et al., 1995). This observation fits well with our hypothesis concerning a 

remobilization of disassembled microvillar F-actin within the cell. 

How to envisage actin transport to the lamellipodium in the case of a migrating epithelial 

cell? Interestingly, such rapid long range transport of actin within a migrating cell has already 

been reported. Indeed, using photobleaching experiments Zicha and collaborators could 

document the delivery of actin from the rear of the cell to the protruding lamellipodium at speeds 

exceeding 5µm/s, a value compatible with the timescale of our observations (Zicha et al., 2003). 

This rate of motion implies active transport that may rely on an intracellular fluid flow involving 

myosin II (Keren et al., 2009) or myosin-1c (Fan et al., 2012). 

 

Villin severing property is responsible for efficient tissue healing. 

In light of the arguments raised above, it appears likely that villin-induced apical 

reorganization could promote cell migration. To investigate this possibility, we performed 

wound healing assays on monolayers of epithelial polarized LLC-PK1cells depleted for 

endogenous villin only or additionally re-expressing the villin severing mutant. In these cells, 

wound closure was affected as a result of inefficient migration. The latter result was expected as 

villin-severing activity has previously been shown to enhance actin-based motility (Revenu et 

al., 2007).  We could however notice that the impairment of microvillus disassembly in the 

presence of the villin severing mutant is associated with a reduction of the number of cells 

developing lamellipodia, that is to say of cells having efficiently repolarized into a migratory 

organization. This observation reinforces the hypothesis that apex disassembly provides cellular 

materials to stimulate migration, as discussed above. Enterocytes hence require microvillus F-

actin severing by villin to efficiently acquire a migratory phenotype. 

In the intestine, an organ highly subjected to lesions, villin function in cell migration might 

be important to restore tissue homeostasis following a lesion. This idea is actually reinforced by 

our results showing villin-mediated apex remodeling in vivo. As largely discussed previously, 

two studies have described a positive role for villin during mucosal injury in the mouse colon, 
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although divergent explanations were provided (Ferrary et al., 1999; Wang et al., 2008b). In fact, 

the experimental procedure that was applied precluded any conclusion on whether villin 

influences tissue injury or rather repair. To exclude similar types of biological outcome due to 

the method of injury we instead produced localized instantaneous mechanical lesions on the 

mouse colonic mucosa, using an endoscopic system (Pickert et al., 2009; Seno et al., 2009). We 

could then unequivocally demonstrate the critical role of villin during wound healing in the 

colon. Furthermore, we were able to determine that villin function in tissue healing largely 

depends on its severing property. Indeed, villin null and villinΔsev mice heal in an 

undistinguishable manner. 

Tissue repair in the colon and other organs involves a precise coordination between cell 

proliferation and cell migration (Sturm, 2008; Friedl and Gilmour, 2009; Seno et al., 2009; 

Normand et al., 2011). Importantly, a first set of immunostainings that we recently performed 

revealed no difference of epithelial cell proliferation associated with tissue healing in the 

presence or absence of villin. In view of the extent of overall tissue remodeling, cell survival 

additionally likely contributes to colon repair, even if not documented on mechanical injuries. 

Likewise, cell survival is unaffected by the loss of villin. Then, a possible contribution of these 

cellular processes is unlikely to explain our results.  

To better understand wound healing in the colon it is interesting to refer to the work of the 

group of Thaddeus Stappenbeck, which gives a detailed insight of the different cellular responses 

associated with tissue repair following mechanical injury (Seno et al., 2009). Within hours, fibrin 

and platelets are massively recruited to the wound bed presumably to allow clotting. By day 2, 

this cellular material is replaced by a monolayer of non-proliferative epithelial cells that cover 

the original wound. At the same timescale, a spatially defined increase in cell proliferation is 

detected in the wound adjacent crypts. The later phase involves important tissue remodeling and 

by day 6 the recovery of the injured area is nearly complete. The epithelial cells that early 

recover the wound bed by day 2 seem to arise from the adjacent crypts as determined by 

bromodeoxyuridine tracing. The tracing experiment further revealed a replacement within two 

days of these wound associated cells, demonstrating their rapid migration and turnover. 

Interestingly, these cells are characterized by a flattened morphology and an absence of apical 

villin staining, two observations that mostly resemble our description of migrating enterocytes in 

the small intestine. These observations additionally support the hypothesis that migratory defects 

caused by the absence of villin and its severing property are responsible of the inefficient colon 

tissue repair observed. 
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Which contribution for cell migration during wound healing in the gut? 

Responses of the gut epithelium to injury have been mostly characterized using 

experimental models of large (e.g. DSS or biopsy induced lesion) or more restricted (e.g. 

induced by bile salts or detergent) injury. An overall comprehensive unified model is however 

lacking. Indeed, very few studies are available on the contribution of cell migration in large 

wounds and conversely of cell proliferation in restricted injuries, probably attributable to the 

experimental limitations inherent to in vivo models. The accepted model stipulates that migration 

of wound-adjacent cells within minutes allows re-epithelialization, independently of cell 

proliferation. Then, in a timescale of hours to days, increase in cell proliferation restores the cell 

pool (Sturm, 2008). As suggested by this model and our results, villin null mice should show 

defects of re-epithelialization following DOC injuries. Nevertheless, the unequal extents of the 

DOC induced injuries prevented us to estimate tissue recovery. Mechanical injuries in the colon 

allow such quantifications but produce lesions of higher importance. Sole cell restitution is 

insufficient to account for resealing of such large injuries, which rather involve a more complex 

interplay of simultaneous proliferation and fast migration (Seno et al., 2009). Given the fact that 

cell proliferation seems unaffected by the loss of villin, cell migration appears as the good 

candidate to explain our results, as we discussed above. In addition, our results in cell culture, 

which morphologically correlate the restituting enterocytes in vivo, suggest that an impaired 

migration is the main cause of inefficient wound healing of large lesions in the colon of villin 

null or villinΔsev mice. We could however not formally demonstrate this assertion as monitoring 

cell migration, a highly dynamic process, requires sequential observations at a cellular level, an 

approach not yet available in the mouse gut.  

 

How could villin severing activity be regulated?  

Our results indicate that, during intestinal cell migration, villin severing property is spatially 

and temporally activated leading to microvillus disassembly. This conclusion obviously raises 

questions about the spatiotemporal regulation of villin severing property. As largely discussed in 

the introduction, variation in calcium concentration regulates villin functions. Villin severing 

activity is favored at high calcium concentration (in the range of 100 µM) (Kumar and Khurana, 

2004). On the other hand at low Ca
2+

, villin is believed to fold into a compact auto-inhibited 

configuration, which would place the tail domain close to the F-actin binding site responsible for 

severing and consequently would inhibit actin severing and favor actin bundling (Burtnick et al., 
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1997). Calcium binding would release this inhibition by a “hinge” mechanism (Choe et al., 

2002). Since villin structure has not been solved, these structural conformations are inferred from 

comparison with gelsolin, its closest homolog (Finidori et al., 1992). Within a cell, the 

intracellular calcium concentration is typically in the hundred nM range, but increases in 

response to various stimuli. In resting cells, villin severing activity thus would be unfavorable. 

Conversely, injury on an epithelial monolayer produces an immediate rise in calcium 

concentration in the wound-adjacent cells that subsequently propagates in the monolayer 

(Klepeis et al., 2001). However, information concerning the range of calcium concentration 

reached in these circumstances is missing.  

The high Ca
2+

 concentration required to activate villin severing property has been however 

considered as non-physiological (Kumar and Khurana, 2004). Nevertheless, several evidences 

document that calcium concentration can reach very high concentration locally – until several 

hundreds of µM -, in the so-called calcium microdomains (McCarron et al., 2006). These 

microdomains arise nearby specific channels that allow calcium influx through the membrane, in 

a process termed store-operated calcium entry (Parekh, 2008). Indeed, calcium depletion from 

the internal stores – e.g. the endoplasmic reticulum – induces calcium influx from the 

extracellular space through these store-operated channels (Targos et al., 2005). Members of the 

families of the L-type Ca2+ channels - CaV – and the transient receptor potential cation channel – 

TRPC - are among the best characterized store-operated channels (Targos et al., 2005; Parekh, 

2008). Interestingly, CaV1.3 localizes to the apical pole of enterocytes (Morgan et al., 2006) and 

several members of TRPC have been identified in cells from intestinal origin (Rao et al., 2006). 

Furthermore, TRPC mediated Ca
2+

 influx promotes intestinal cell migration in wound healing 

assay (Rao et al., 2010). This calcium influx might be triggered by an interaction between the 

small GTPase rac - fundamental to cell movement in intestine – and PLC1 leading to calcium 

store depletion (Rao et al., 2008). Overall, the store-operated calcium entry process fits 

particularly well with the current model of villin activation involving the PIP2 hydrolysis 

pathway, described in the introduction. In addition, a direct role of calcium storage by the 

microvilli has been proposed by Klaus Lange. ATP-actin monomers indeed bind Ca
2+

 with high 

affinity by their divalent cation site. When assembled in filaments, the rate constant decreases, 

making the exchange of the bound cation unfavorable. Thus high levels of Ca
2+

 might be 

released upon disassembly of microvillar F-actin (Lange and Brandt, 1996; Lange et al., 1997).  

Besides these considerations on local calcium signaling, phosphorylation of certain tyrosine 

residues inhibits actin bundling and activates villin severing properties, even in the absence of 
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high calcium concentration (Kumar and Khurana, 2004). Furthermore, various villin 

phosphorylation mutants revealed that villin regulation of cell motility seems to require its 

phosphorylation (Tomar et al., 2004). More specifically, ten phosphorylation sites have been 

identified on the villin sequence, four located near the N terminal domain and six towards the C-

terminal sequence (Tomar et al., 2004, 2006). Combinations of phosphorylation mutants 

obtained by site-directed mutagenesis allowed functional dissection of the respective 

contributions of the two regions. Phosphorylation of the N-terminal tyrosines is critical for villin 

proper localization in the cell and association with actin, whereas phosphorylation of the C-

terminal tyrosine residues regulates villin association with PLC (Tomar et al., 2004, 2006). 

Nevertheless, phosphorylation of the entire core is required to enhance cell migration (Tomar et 

al., 2006). Most of the data regarding the contribution of villin phosphorylation has been 

obtained using a villin construct mutated for the ten phosphorylation sites. This construct does 

not locate properly within the cell and consequently results obtained using this mutant should be 

taken with caution (Tomar et al., 2004).  

Overall, it is highly probable that coordination of calcium signaling and tyrosine 

phosphorylation enhances villin severing activity. Indeed, tyrosine phosphorylated villin 

interacts with and activates PLC1 leading to Ca
2+

 release from the endoplasmic reticulum 

(Athman et al., 2003; Wang et al., 2007). In turn, store operated calcium entry would provide the 

necessary Ca
2+

 influx to sustain villin severing. 

 

F.  How to envision the role of villin in epithelial cell migration? Limits and 

perspectives 

 

Considering that the vast majority of villin molecules concentrate in the apex at steady state, 

villin likely redistributes from the microvilli to the leading edge of lamellipodium from 

migrating cells. In this structure, villin might increase actin dynamics, likely through its severing 

activity. This process might favor lamellipodium extension (Athman et al., 2003). Alternatively 

villin may bundle actin in the lamellipodium to provide the necessary mechanical force, as 

proposed by George and colleagues (George et al., 2007). Our data showing similar migration 

efficiency on cells devoid of villin or re-expressing the severing mutant however argue against 

this latter possibility. Considering these previous results and our findings, villin might have a 
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dual role during epithelial cell migration: it could initiate apical microvilli disassembly thereby 

providing abundant free barbed ends and/or G-actin to stimulate motility and directly participates 

in lamellipodium extension. Our observation that lamellipodia formation rate is significantly 

impeded in absence of villin severing activity fits well with this proposal. Nevertheless, at this 

point, any definitive conclusion on this conceptual model linking villin contributions in the 

microvilli and in the lamellipodium would require a physical uncoupling between these two 

organelles.  
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III/ General conclusions 

 

Microvilli: stable structures arising from tight regulation of a dynamic system. 

The numerous microvilli that crowd the apices of intestinal cells perform the absorptive 

function of the intestine. To accomplish this vital function in a continuous fashion, microvilli are 

remarkably stable despite the highly dynamic nature inherent to actin-based protrusions. 

Microvilli are maintained in a dynamic equilibrium, which is thought to be ensured by a set of 

actin binding proteins that regulate actin assembly and its organization in a tightly packed 

bundle. In a first aspect of our work we could demonstrate that the primary function of the 

proteins organizing the actin filaments in a bundle - villin, espin and plastin-1 - is not to enable 

and sustain the membrane protrusion as previously assumed. Instead, they confer the specific 

actin architecture suited for the apical retention of membrane proteins essential for intestinal 

physiology. Our contribution is important in the sense that it represents a substantial change in 

the way we consider the function of these proteins. In addition, it is one of the few in vivo studies 

showing the intimate link between the actin architecture of the microvillus and its physiological 

functionality. Since the microvillus stability arises from the regulation of a dynamic system, 

slight changes in this equilibrium should allow rapid remodeling of the structure. Accordingly, 

we could bring into light the central role of villin in the fine tuning of this balance. Owing to its 

diverse actin related properties, villin would act as a functional switch dictating the microvillus 

fate in response to external stimuli. Although hypothesized by several previous studies, our work 

represents the first demonstration of such a role, illustrated in a pathological situation: the tissue 

injury. 

 

Potential model of microvilli disassembly. 

In light of our results, how can we integrate our conclusions to outline a putative updated 

model of the microvillus cytoskeleton? At steady state, microvilli proper shape and functionality 

would be controlled by the specific actin architecture. Microvilli would reach their maximal size 

owing to the dense bundled organization of actin filaments. The tightly controlled actin 
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treadmilling altogether with the bundled organization would ensure the shape of the structure 

(Figure 36A). In addition, this local actin architecture would provide the appropriate framework 

for the apical retention of membrane proteins in charge of digestion and absorption thus 

establishing the functionality of the microvillus. In this context, the presence of villin, which 

exhibits an actin severing property, in the bundle would put the system in a precarious 

equilibrium. Nevertheless, at steady state microvilli are highly stable: villin severing activity 

would be minimal likely by reasons of a villin non-phosphorylated state and to a low free Ca
2+

 

concentration ensured by the buffering action of calmodulin. In turn, upon intestinal stress, villin 

bundling activity would be inhibited and conversely the severing activity favored. Microvilli 

destruction would follow as a result of F-actin severing and free barbed ends capping by villin. 

Interestingly, the villin structure itself appears suited for this function: the 3D structure of villin 

bound to F-actin reveals the presence of multiple binding sites that only weakly interact with F-

actin thereby allowing rapid change of conformation of the protein (Hampton et al., 2008). 

Increase in free Ca
2+

 would eventually inhibit plastin-1 actin bundling property thus additionally 

facilitating the bundle collapse. Indeed F-actin depolymerization is hindered by actin bundling 

proteins, which have to dissociate to allow further depolymerization (Loomis et al., 2003; Prost 

et al., 2007; Lenz et al., 2010). The relative low abundance of espin likely indicates a sporadic 

distribution on the bundle. Espin would thus have only minor consequences on actin 

depolymerization induced by filaments severing and capping (Brown and McKnight, 2010). 

Furthermore, microvilli disassembly has an important consequence: the release in the cytoplasm 

of microvillar elements illustrated in our study by the remobilization of microvillar actin towards 

motility structures, in a migratory context (Figure 36B). In conclusion, the presence of three 

redundant actin bundling proteins are not required to enable and sustain the microvilli protrusion 

but participate in a critical manner in the establishment of microvillus functionality. At the same 

time the versatile villin embed the cytoskeleton with the machinery for rapid disassembly.  

 

Microvilli disassembly: a common response to intestinal stresses? 

Interestingly, microvilli collapse is not specific to migrating epithelial cells but is rather 

reported in a wide variety of stresses. For instance, mechanical pressure applied to the 

enterocytes, nutritional or calcium stresses, induce microvilli shortening or even complete 

disassembly (Tilney and Cardell, 1970; Ferrary et al., 1999). Similar observations are reported 

during various pathological situations, such as anoxia or ischemia (Yamamoto et al., 1980; Chen 

121



 

et al., 1994), or infection by enteropathogens or virii (Moon et al., 1983; Brunet et al., 2000b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Villin and apical pole remodeling. 

Microvilli disassembly following nutritional or calcium stresses indeed requires villin 

(Ferrary et al., 1999). We now demonstrate that their disassembly is induced by villin F-actin 

severing activity. Could we transpose this result to apex remodeling in other contexts? 

Figure 36: Model depicting an enterocyte adopting a motile 

phenotype 

A. At resting state, the actin bundling proteins cooperatively ensure 

correct microvilli morphology and actin organization. B. During wound 

healing, the enterocyte become motile and undergo cell shape changes. 

Villin drives the disassembly of microvillar F-actin. Released actin 

molecules are incorporated at the lamellipodium. Actin is shown in red.  

 

B. 
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Enterocyte infection by rotavirii and enteropathogenic E. coli (EPEC) leads to a severe 

microvilli disruption (Moon et al., 1983; Brunet et al., 2000b). Interestingly, the infection 

process is associated with an increase in Ca
2+

 concentration (Brunet et al., 2000a; Brown et al., 

2008), raising the possibility of an activation of the villin severing property. EPEC-induced 

microvilli effacement seems to involve unbinding of myosin-1a to actin (Iizumi et al., 2007). 

Myosin-1a has been proposed to buffer Ca
2+ 

in the microvilli via the bound calmodulins (Tyska 

et al., 2005; M. Mooseker, personal communication). It it thus conceivable that myosin-1a 

perturbation by EPEC indirectly leads to unregulated villin F-actin severing. The case of EPEC 

is particularly interesting as it additionally involves a dramatic apical actin cytoskeleton 

reorganization  leading to the formation of  a pedestal, on which the bacteria attach (Moon et al., 

1983). This pedestal concentrates high amount of actin, suggesting a remobilization of 

microvillar actin following brush border effacement, in a conceptually close manner to what we 

show during epithelial cell migration. 

Overall, this thesis documents the critical importance of regional actin architecture to ensure 

a proper biological function as exemplified in the intestinal microvilli. Simultaneously villin, one 

of the proteins in charge of the microvillar actin organization can induce local actin 

rearrangement leading to microvilli disassembly in stress contexts. Our experiments furthermore 

show for the first time that such microvilli reorganization seems to be of prime importance to 

sustain other cellular processes, documented in the case of a migrating cell. Even though 

regionally very restricted within the cell, villin-induced actin reorganization appears to have 

major consequences at the cell level, in agreement with systematic analysis documenting that 

very local actin dynamics can have cell scale morphological consequences and favor cell 

movement  (Lacayo et al., 2007). 
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A new role for the architecture of microvillar 
actin bundles in apical retention of membrane 
proteins
Céline Revenua,*,†, Florent Ubelmanna,*, Ilse Hurbaina,b, Fatima El-Marjoua, Florent Dinglic, 
Damarys Loewc, Delphine Delacourd, Jules Gilete, Edith Brot-Larochee, Francisco Riverof, 
Daniel Louvarda, and Sylvie Robinea

aUnité Mixte de Recherche 144, Centre National de la Recherche Scientifique, bCell and Tissue Imaging Facility-IbiSA, 
and cLaboratory of Proteomic Mass Spectrometry, Institut Curie, 75248 Paris, Cedex 05, France; dInstitut Jacques-
Monod, CNRS-UMR7592, Paris 7 University, 75013 Paris, France; eCentre de Recherche des Cordeliers, Université 
Pierre et Marie Curie, UMR S 872, 75006 Paris, France; fCentre for Cardiovascular and Metabolic Research, The Hull 
York Medical School, and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom

ABSTRACT Actin-bundling proteins are identified as key players in the morphogenesis of 
thin membrane protrusions. Until now, functional redundancy among the actin-bundling pro-
teins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in 
intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bun-
dling proteins suffer from growth delay but surprisingly still develop microvilli. However, the 
microvillar actin filaments are sparse and lack the characteristic organization of bundles. This 
correlates with a highly inefficient apical retention of enzymes and transporters that accumu-
late in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of 
membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a pre-
cise role for local actin filament architecture in the stabilization of apical cargoes into mi-
crovilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, 
as has been assumed, but to confer the appropriate actin organization for the apical retention 
of proteins essential for normal intestinal physiology.

INTRODUCTION
Epithelia constitute the interface between an organ or organism and 
its environment. This interface ensures a selective barrier that en-
ables protection from external aggressions while allowing necessary 
exchanges with the surroundings. Most epithelia are indeed special-
ized in the secretion and/or absorption of various molecules. This 
functional interface requires a tight sealing of epithelial cells with 
their neighbors and an asymmetrical subcellular organization be-
tween the external (apical) and internal (basal) domains of the epi-
thelial cell. The mechanisms responsible for this striking structural 
and functional separation between the apical and basal domains are 
beginning to be well understood. It is clear that complex sorting 
and cargo-trafficking machineries are essential for the establishment 
of epithelial cell polarity (Rodriguez-Boulan et al., 2005; Sato et al., 
2007; Weisz and Rodriguez-Boulan, 2009).

The absorptive cells of the intestine, termed enterocytes, repre-
sent the archetype of apico-basal polarity in epithelial cells. Tight 
and adherens junctions separate a basolateral domain from the 
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compensatory mechanisms through the analysis of double and tri-
ple KO of the three actin-bundling proteins of the intestinal brush 
border in mice. We demonstrate that the bundled architecture of 
actin filaments is not primarily necessary for microvilli morphogen-
esis but is essential for the proper recruitment of key players in the 
apical membrane anchorage of digestive and absorptive proteins.

RESULTS
Villin/espin/plastin-1 triple KO mice show growth defects
To investigate redundancy among the three actin-bundling proteins 
of enterocytic microvilli—villin, plastin-1 and espin—we crossed the 
corresponding single KO (Ferrary et al., 1999; Zheng et al., 2000; 
Grimm-Gunter et al., 2009) to obtain all four possible combinations: 
villin/espin, villin/plastin-1, and espin/plastin-1 double KO mice 
(VE−/−, VP−/−, and EP−/− mice, respectively) and villin/espin/plastin-1 
(VEP−/−) triple KO mice. All these mice are viable and fertile. The 
double KO animals appear normal with the exception of mice lack-
ing espin, which have behavioral defects, as described previously 
(Gruneberg et al., 1941). The VEP−/− mice demonstrated a smaller 
body size compared with wild-type (WT) animals (Figure 1A). VEP−/− 
mice consistently showed a statistically significant growth delay dur-
ing their first 60 d of life for both males and females compared with 
their triple heterozygote (VEP+/−) half-sibling and double KO VP−/− 
controls. No significant difference in the growth of VEP+/− and VP−/− 
mice was found (Figure 1B). The growth delay of VEP−/− mice be-
came more pronounced at ∼20–25 d, which corresponds to the 
weaning period (Figure 1B). Thus VEP−/− mice suffer from growth 
retardation for the duration of their first 60 d of growth.

The global organization of the enterocytes of VEP−/− mice 
is preserved
Despite displaying a growth retardation phenotype, the global 
crypt–villus organization of the intestinal epithelium of VEP−/− mice 
does not show any overt defects, as was revealed by hematoxilin-
eosin staining (Figure 1C). Intestinal sections from VEP−/− mice dem-
onstrated normal apical concentrations of ezrin and F-actin com-
pared with WT sections (Figure 1C). The lateral and apical-lateral 
junctional markers E-cadherin and ZO-1 also retained their expected 
localizations in the VEP−/− enterocytes. Therefore, even in the ab-
sence of all three actin-bundling proteins, the intestinal epithelial 
organization and polarity appeared normal at the tissue level. We 
then investigated the distribution of the main cytoskeletal elements 
at the cellular level (Figure 1D). In the VEP−/− enterocytes, microtu-
bules showed the classical, mainly apico-basal orientation, and kera-
tin filaments presented a normal diffuse pattern with a slight con-
centration in the terminal web as in enterocytes from WT mice. At 
this cellular resolution, the strong brush border localization of actin 
filaments, although maintained, often appeared narrower in the 
VEP−/− compared with the WT mice, suggesting an alteration at the 
level of the microvilli (Figure 1D). Therefore the growth delay pres-
ent in VEP−/− mice does not seem to be caused by abnormalities in 
intestinal morphology or global polarity of enterocytes.

Intestinal microvilli form even in the absence of the three 
actin-bundling proteins
Given the proposed role of actin-bundling proteins in the formation 
of membrane protrusions, we used transmission electron micros-
copy (TEM) to investigate the defects generated by the combined 
absence of two or three bundling proteins in intestinal microvilli 
morphogenesis. Unexpectedly, microvilli were present in all KO 
mice analyzed, even in the absence of the three bundlers (Figure 2, 
A and B). Although TEM confirmed the global preservation of the 

brush border, a highly differentiated apical pole structure composed 
of a dense array of finger-like protrusions: the microvilli. The brush 
border considerably increases apical cell surface area for the expo-
sure of membrane-bound hydrolases, which participate in the last 
step of extracellular digestion, and channels and transporters for 
nutrient uptake. Intestinal microvilli are supported by parallel arrays 
of actin filaments that create a paracrystalline arrangement: the ac-
tin bundle. Actin filaments are constantly polymerizing at the tip of 
each bundle, but the mechanism of nucleation of the actin network 
is still unknown. The actin network is linked to the plasma mem-
brane via myosin-1a bridges (Coluccio and Bretscher, 1989), whereas 
its rootlets expand into the cytoplasm and are connected to the 
actin and intermediate filaments of the terminal web (Hirokawa 
et al., 1982, 1983). The ERM protein ezrin participates in the organi-
zation of this terminal web region and in the proper shaping of mi-
crovilli (Saotome et al., 2004). A capping and cross-linking protein 
present at the plus end of the filaments, Eps8, has also been impli-
cated in the regulation of microvillar morphogenesis (Croce et al., 
2004). Three actin-bundling proteins, villin, plastin-1, and espin, are 
present in intestinal microvilli. Actin-bundling proteins represent a 
subset of actin cross-linking proteins, as they are able not only to 
bind several filaments to create an undefined network, but also to 
organize filaments in a regular, tight, parallel array to form a bundle; 
the latter can only be demonstrated by electron microscopy. We will 
therefore refer in this paper to actin-bundling proteins using this 
strict definition of proteins that build a paracrystalline bundle.

Stereocilia, bristles, and filopodia are, as microvilli, membrane 
protrusions supported by parallel bundles of actin filaments (re-
viewed in Revenu et al., 2004). These actin-based structures all con-
tain several actin-bundling proteins thought to be essential for the 
formation of the protrusions (Bartles, 2000). Indeed, the down-reg-
ulation of the bundler fascin induces a decrease of filopodia number 
and the remaining ones are short and bent, running nearly parallel 
to the membrane (Vignjevic et al., 2006). Conversely, fascin overex-
pression and constitutive activation produce numerous filopodia 
(Yamashiro et al., 1998; Vignjevic et al., 2006). In Drosophila melano-
gaster, forked or fascin mutants strongly affect bristle morphogen-
esis (Tilney et al., 1995, 1998). In the jerker mouse, the absence of 
espin destabilizes inner ear stereocilia, leading to their degenera-
tion (Zheng et al., 2000). Finally, in cells in culture, the ectopic ex-
pression of villin in a fibroblastic cell line induces the formation of 
microvillus-like protrusions (Friederich et al., 1989; Franck et al., 
1990), whereas its down-regulation disrupts brush border mainte-
nance in a polarized colonic cell line (Costa de Beauregard et al., 
1995). In light of these results, it was proposed that bundling pro-
teins confer requisite stiffness for the actin network to deform the 
membrane and extend a straight protrusive structure.

However, knockout (KO) of the gene encoding villin in mice did 
not lead to any detectable morphological defect in the enterocyte 
brush border (Pinson et al., 1998; Ferrary et al., 1999). Similarly, we 
were unable to observe an alteration of the organization of intestinal 
microvilli in jerker mice lacking espins (unpublished data). The loss 
of plastin-1 predominantly affects the organization of the terminal 
web, although a slight reduction in the length of microvilli was re-
ported (Grimm-Gunter et al., 2009). Thus none of the three actin-
bundling proteins is individually essential for the formation and 
maintenance of intestinal microvilli. Redundancy among the three 
actin-bundling proteins was proposed to account for the robustness 
of the system and therefore for the lack of phenotypes in all the 
single KO studied.

In the present study, we investigate the function of actin-bun-
dling proteins in intestinal microvilli by circumventing these possible 
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FIGURE 1: The VEP−/− mice have growth defects, but the morphology of their intestinal epithelium looks normal. 
(A) Picture of a triple KO VEP−/− animal next to a WT animal of the same age. (B) Growth curves plotting the average 
weight of 35 triple heterozygotes (VEP+/−), 16 villin/plastin-1 double KO (VP−/−), and 35 triple KO (VEP−/−) mice 
according to their age. Males and females were analyzed separately. (C and D) Histological sections of jejunum from WT 
and triple KO (VEP−/−) animals. (C) H&E shows a hematoxilin and eosin staining (scale bar: 200 μm), phalloidin labels 
F-actin (scale bar: 100 μm). Immunostaining for ezrin, E-cadherin, and ZO-1 is shown. Scale bars: 100 μm; insets: 10 μm. 
(D) The global cellular organization of the cytoskeletal elements is presented. Microtubules and F-actin are revealed by 
immunostaining against α-tubulin (α-Tub., green) and phalloidin labeling (Phal., red). Cytokeratins are labeled with a 
pancytokeratin antibody (green); 4′,6-diamidino-2-phenylindole (DAPI) labels nuclei (blue). Scale bars: 10 μm.
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FIGURE 2: Microvilli still form in the VEP−/− mice. (A) Transmission electron micrographs of sections of jejunum from 
WT, EP−/−, and VEP−/− presenting a general view of the enterocyte polarity. Arrows point at apical vesicles and vacuoles 
in the VEP−/− sample. Scale bars: 2 μm. (B) Transmission electron micrographs of sections of jejunum from WT, the three 
double KO (VE−/−, VP−/−, EP−/−) and the triple KO (VEP−/−) mice illustrating the organization of the brush border. Scale 
bars: 500 nm. (C) Histograms illustrating the average lengths of the intestinal microvilli depending on the genotype. 
Values are 1.25 ± 0.26 μm, nWT = 86; 1.01 ± 0.16 μm, nP−/− = 194; 1.03 ± 0.14 μm, nVP−/− = 14; 0.76 ± 0.15 μm, 
nEP−/− = 75; 0.72 ± 0.11 μm, nVEP−/− = 58. *** t test p < 0.001.

148



328 | C. Revenu et al. Molecular Biology of the Cell

along the shaft of the microvilli in the VEP−/− samples (Figure S1A). 
Eps8 is thus not ectopically recruited and does not compensate for 
the loss of the actin-bundling proteins in VEP−/− intestinal microvilli. 
Finally, two interesting nucleators of linear actin filaments were de-
tected in this proteomic study: cordon-bleu and diaphanous homo-
logue 1. Cordon-bleu localized to the terminal web region and not 
to the tips of microvilli, as demonstrated by immunofluorescence 
(Figure S1C), and is thus unlikely to have a role in microvilli protru-
sion. The presence of diaphanous homologue 1 was confirmed by 
Western blotting (Figure S1C), but the lack of antibodies suitable for 
immunofluorescence prevented us from addressing its localization. 
No extra actin-bundling or cross-linking proteins could be detected 
in the VEP−/− brush borders compared with WT (Table S2). Thus the 
formation of microvilli in VEP−/− mice does not appear to be due to 
the compensatory recruitment of a fourth bundler but is more likely 
explained by the presence of the remaining actin-binding proteins 
normally present in microvilli.

The organization of F-actin into a bundle is lost 
in VEP−/− microvilli
We next addressed the precise organization of actin filaments, which 
were detected in microvilli after phalloidin staining (Figure 1D). The 
longitudinal striation due to the actin bundle was easily detectable 
by TEM in the double KO microvilli, whereas it was no longer distin-
guishable in the VEP−/− microvilli (Figure 2B). TEM of transverse sec-
tions of WT microvilli demonstrated a sharp, electron-dense, dotted 
pattern that corresponded to transverse sections of individual actin 
filaments (Figure 3A, insets). This pattern was absent in VEP−/− sam-
ples, which displayed only a few, indistinct darker areas that likely 
correspond to actin filaments (Figure 3A). This prevented the quan-
tification of the number of filaments in VEP−/− samples. Noticeably, 
although the reticular organization of microvilli was unaffected as 
measured by the angle between three adjacent microvilli (65.9 ± 
9.7°, nWT = 115; 62.4 ± 9.4°, nVEP−/− = 151), the transverse area of 
microvilli was strongly decreased in VEP−/− versus WT animals 
(5231.1 ± 836.7 nm2, nVEP−/− = 91, and 8909.5 ± 1097.9 nm2, nWT = 
137; t test p < 0.0001; Figure 3B). As the number of filaments in the 
bundle influences the diameter of a protrusion (Tilney and Tilney, 
1988), this could indicate a reduced number of filaments in the 
VEP−/− microvilli. In support of this hypothesis, Western blotting re-
vealed that the actin content of the purified brush borders was re-
duced in VEP−/− mice compared with WT controls, whereas the actin 
content of enterocytes remained unmodified between WT and 
VEP−/− total lysates (Figure 3C).

To achieve better resolution of the actin filaments in microvilli, 
we performed TEM on isolated brush borders from WT and VEP−/− 
mice. This technique eliminates most of the background generated 
by the cytoplasmic elements, while the brush border actin cytoskel-
eton and its associated plasma membrane are preserved. As dem-
onstrated by phalloidin staining, VEP−/− brush borders appeared 
thinner than WT brush borders and retained F-actin (Figure 3, D and 
E, insets). TEM revealed that longitudinal actin filaments were still 
present in VEP−/− microvilli. However, they lost the normal bundled 
structure present in the WT situation (compare Figure 3E with 3D): 
the number of filaments seemed to be reduced, and their spacing 
was highly irregular. In some areas, actin filaments appeared com-
pacted and indistinguishable from each other, or even interrupted, 
which could be due to wavy filaments going out of the section. In 
other areas, the spacing between two filaments was enlarged com-
pared with the WT bundle. This disorganization explains the lack of 
sharp actin dots in the transverse sections (Figure 3A). On the con-
trary, actin filaments in WT microvilli showed the expected highly 

apico-basal polarity of the enterocytes, with a well-defined brush 
border facing the lumen, the cytoplasm of the VEP−/− cells demon-
strated a higher concentration of vesicles, vacuoles, and tubular 
structures, especially in the apical area, compared with WT entero-
cytes. This was quantified by evaluating the number of vesicular 
structures per square micrometer in the first apical micron of cyto-
plasm below the microvilli (1.74 ± 0.94, nWT = 5 cells; 7.63 ± 0.52, 
nVEP−/− = 6 cells; Mann-Whitney p < 0.01; Figure 2A). We could not 
detect any defect in the brush border of the VE−/− mice. The VP−/−, 
EP−/−, and VEP−/− mice showed defects similar to those reported for 
the plastin-1 KO mice (P−/−; Grimm-Gunter et al., 2009), namely, 
very short or absent actin bundle rootlets and a strong reduction in 
the apical organelle free zone (Figure 2B).

Although the bundlers appeared nonessential for the formation 
of microvilli per se, they did have an effect on microvillar length 
(Figure 2C). Compared with microvilli of WT animals, the microvilli of 
VP−/− mice presented a reduction in length of ∼20%, similar to the 
P−/− mice (1.03 ± 0.14 μm, nVP−/− = 14, and 1.01 ± 0.16 μm, nP−/− = 
194, compared with 1.25 ± 0.26 μm, nWT = 86; t test p < 0.0001). 
The EP−/− and the VEP−/− mice showed a major decrease in length 
of around 40% of the length of WT microvilli (0.76 ± 0.15 μm, nEP−/− 
= 75, compared with WT, t test p < 0.0001; 0.72 ± 0.11 μm, nVEP−/− 
= 58, compared with WT, t test p < 0.0001). The VEP−/− and EP−/− 
microvilli were thus very similar, with an average length of 724 and 
763 nm, respectively, against 1253 nm for WT microvilli. Neverthe-
less, VEP−/− microvilli appeared less homogeneous in length per cell 
and less straight compared with EP−/− and a fortiori to WT microvilli 
(Figure 2, A and B). This was confirmed by the significantly increased 
coefficient of variation of the length of microvilli per cell in the 
VEP−/− compared with WT cells (2.54 ± 1.37%, nWT = 7 cells, and 
10.85 ± 4.90%, nVEP−/− = 7 cells; Mann-Whitney p < 0.01). In conclu-
sion, the absence of the three known actin-bundling proteins re-
duces microvillar length but does not prevent microvillar protrusion. 
Providing that no additional actin-bundling protein compensates 
for the triple KO, it would appear that actin-bundling proteins are 
not required for membrane protrusion.

The loss of the three bundlers appears 
not to be compensated
To look for a fourth, unknown actin-bundling protein or for a protein 
compensating for the absence of the three bundlers that would ac-
count for the protrusion of microvilli in the VEP−/− enterocytes, we 
performed mass spectrometric analysis of the total protein content 
of WT and VEP−/− isolated brush borders. The list of actin-related 
proteins found in the analysis of WT brush borders is presented in 
Supplemental Table S1. All the additional proteins found in the anal-
ysis of VEP−/− brush borders are listed in Table S2, and the proteins 
missing in the VEP−/− compared with the WT brush borders are in 
Table S3. The potential cross-linkers harmonin and Eps8 could be 
detected in WT and VEP−/− brush borders. However, only the short 
harmonin isoform, harmonin a, which lacks the actin-bundling re-
gion (Verpy et al., 2000), but not the cross-linking isoform b (Boeda 
et al., 2002), could be detected in WT and VEP−/− brush borders by 
Western blot analysis using a pan-harmonin antibody (Supplemen-
tal Figure S1B). The capping protein Eps8 has also been recently 
proposed to have cross-linking activity in vitro that is enhanced by 
binding to IRSp53 (Disanza et al., 2006; Hertzog et al., 2010). IRSp53 
was absent from both WT and VEP−/− brush borders, as we could 
neither find it in the proteomic data nor detect it by Western blot-
ting (Figure S1A). Moreover, Eps8 expression levels were unchanged 
between WT and VEP−/− brush borders and, importantly, Eps8 was 
strictly localized at the very tip, as expected, and did not extend 
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FIGURE 3: The organization of the actin bundle is affected in the VEP−/− microvilli. (A) Transmission electron 
micrographs of transversal sections of the microvilli of WT and VEP−/− mice. Scale bars: 200 nm; insets: 50 nm. 
(B) Histograms depicting the average area of transversal sections of microvilli depending on the genotype: 5231.1 ± 
836.7 nm2, nVEP−/− = 91 and 8909.5 ± 1097.9 nm2, nWT = 137. *** t test p < 0.001. (C) Western blotting against actin on 
total lysates or lysates from isolated brush borders (loaded for equal total protein). (D and E) Transmission electron 
micrographs of isolated brush borders from (D) WT and (E) VEP−/− mice. Typical isolated brush borders are shown in 
insets (left: Nomarski; right, phalloidin staining). Arrowheads highlight actin-membrane bridges. Scale bars: 200 nm.
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decrease in the VEP−/− brush border, observed by Western blotting 
and immunostaining, and a significant subapical accumulation 
(Figure 4, A, star and circle, and B). The subapical accumulations 
reported by immunofluorescence were in agreement with the high 
vesicular content of the VEP−/− cytoplasm detected by TEM (Figure 
2). Compared with the WT cell and brush border lysates, a repro-
ducible shift in the size of the bands detected by Western blotting 
occurred for LPH, SI, DPPIV, and APN in the P−/− and VEP−/− samples 
(Figures 4A and S3A). This shift could be suppressed by treating the 
samples with glycosidases and therefore reflects a difference in the 
glycosylation pattern (Figure S5). This unexpected phenomenon is 
not responsible for the phenotype of the VEP−/− mice, because it 
already occurs in the P−/− samples and thus must be due solely to 
the depletion of plastin-1.

To directly assess an absorption defect in the VEP−/− mice, we 
measured the kinetics of glucose absorption of fasted WT, P−/−, and 
VEP−/− mice following oral glucose load. The glucose absorptive 
capacity of VEP−/− intestine was strongly and significantly reduced 
compared with both WT and P−/− animals, as depicted by the mea-
surements of glucose blood level plotted against time after gavage 
(Figure 4C). Interestingly, the blood glucose level in VEP−/− mice was 
significantly reduced by 75% at 30 min. Such an early time point 
directly represents an alteration of the glucose absorption capacity 
of the enterocytes, as the adaptive physiological response to high 
glycemia has not yet occurred.

The study of the triple KO enterocytes therefore reveals a major 
disruption in apical delivery and/or retention of enzymes at the api-
cal membrane associated with malabsorption and subsequent 
growth delay that develops predominantly after weaning in the 
VEP−/− mice. The slight apical localization defects observed in the 
VP−/− samples are not sufficient to cause such a growth delay in 
these mice (Figure 1B).

Apical membrane retention is deficient 
and myosin-1a is mislocalized
To decipher the apical transport or anchorage mechanisms that 
are defective in the VEP−/− mice, we analyzed the subcellular local-
ization of several players in apical targeting and delivery. The orga-
nization of the Golgi was not affected in the VEP−/− enterocytes, as 
the Golgi marker giantin and the GTP-binding protein Rab6, which 
is implicated in intra-Golgi transport, retained the localization ob-
served in WT enterocytes (Figure S4A). The Golgi apparatus ap-
peared morphologically unaltered, suggesting that a later step in 
the apical transport could be defective. Cargoes are known to go 
through Rab11- and Rab8-positive compartments en route to the 
apical pole. Although the subnuclear localization of Rab11 was not 
affected in the VEP−/− animals (Figure S4A), Rab8 subapical con-
centration looked slightly decreased when observed by immuno-
fluorescence (Figure S4B). However, this reduced Rab8 apical lo-
calization could not be confirmed by Western blotting (Figure 
S4B). Whereas the apical delivery route did not appear affected, 
the early endosomal marker EEA1 exhibited an enlarged subapical 
localization in the VEP−/− enterocytes (Figure 5A) and strongly co-
localized with the accumulation of apical markers, as shown for SI 
(Figure 5B). These results suggest that endocytosis, rather than 
apical delivery, is responsible for the mislocalization of apical en-
zymes and transporters in the VEP−/− mice. Is endocytosis there-
fore enhanced in the absence of a proper actin bundle or are these 
apical components more prone to endocytosis? To discriminate 
between these two possibilities, we compared in vivo the kinetics 
of global endocytosis using the vital membrane stain FM dye as an 
endocytic probe perfused in the intestinal lumens of WT and 

regular bundle pattern resembling striae (Figure 3D). The short or 
missing rootlets in VEP−/− mice look similar to those reported for 
P−/− mice (Grimm-Gunter et al., 2009). Actin-membrane bridges, 
known to be myosin-1a–based in WT animals, could still be de-
tected in some VEP−/− samples (Figure 3, D and E, arrowheads). 
These bridges cannot be detected in all sectioned microvilli, even in 
WT mice; therefore their number and arrangement cannot be reli-
ably evaluated. Taken together, these data indicate that although 
actin filaments are still present in VEP−/− microvilli, they are sparse 
and no longer packed in parallel bundles.

As VEP−/− mice have reduced microvillar transverse area and 
length, their intestine absorptive surface could be significantly com-
promised and have an impact on growth. On the basis of the mea-
sured length, area, and density of microvilli in WT, EP−/−, and VEP−/− 
intestine, we calculated the respective brush border membrane 
surfaces per square micrometer of apical domain, approximating 
microvilli to cylinders (SWT = 24.8 ± 6.9 μm2, SEP−/− = 12.0 ± 2.5 μm2, 
SVEP−/− = 14.4 ± 2.8 μm2; maximal SDs were calculated according to 
the Gaussian error-propagation law). The brush border membrane 
surface was strongly reduced in VEP−/− enterocytes compared with 
WT, but not EP−/−, enterocytes. As the EP−/− and VEP−/− absorptive 
surfaces are similar, the effect of smaller microvilli on the VEP−/− 
growth retardation phenotype can be ruled out. The growth delay 
of VEP−/− mice is thus not due to a reduction in the absorptive sur-
face of the epithelium but could be linked to a defect in actin bundle 
organization.

Digestive enzymes do not properly localize in the 
apical domain
One important step toward understanding the phenotype of the 
VEP−/− mice is to define how the disorganization of the actin net-
work accounts for growth retardation. Trafficking toward the baso-
lateral domain did not appear to be affected, as illustrated by the 
basolateral localization of the Na+/K+-ATPase in VEP−/− enterocytes 
(Figure S3B). We therefore analyzed the localization of digestive en-
zymes that are normally exposed at the apical surface of the entero-
cytes using a variety of apical trafficking routes. As the VEP−/− mouse 
demonstrates the major terminal web defects previously reported in 
the plastin-1 KO (Grimm-Gunter et al., 2009), and as we need to 
unravel the specificity of the VEP−/− samples, we used both WT and 
P−/− samples as controls in this study (Figure 4). The lipid raft–asso-
ciated aminopeptidase N (APN) still localized properly in the VEP−/− 
brush border (Figure S3A). Nevertheless, several enzymes presented 
an impressive subapical accumulation in the VEP−/− enterocytes, 
with partial localization in the microvilli (Figure 4A, stars). This was 
the case for raft-independent lactase phlorizin hydrolase (LPH), raft-
associated sucrase-isomaltase (SI), and peptide transporter protein 
PepT1. Moreover, Western blot analyses performed on lysates from 
purified brush borders showed that the amount of these enzymes 
that still localized to the microvilli was reduced in the VEP−/− com-
pared with the WT or P−/− samples (Figure 4B). To a much lesser 
extent, LPH could be seen accumulating subapically in some areas 
of the plastin-1 KO (Figure 4A) and its combinations (Figure S2). In 
the VP−/− enterocytes, SI also appeared delocalized and PepT1 
showed some slight subapical accumulation but much less strikingly 
than in the VEP−/− samples (Figure S2). The amount of dipeptidyl-
peptidase IV (DPPIV), an enzyme following a transcytotic pathway, 
was strongly reduced in the VEP−/− microvilli, as demonstrated both 
by Western blotting (Figure 4B) and immunostaining (Figure 4A, 
circle), but DPPIV did not show the intense subapical accumulations 
reported above. Finally, the glycosylphosphatidylinositol-anchored 
intestinal alkaline phosphatase (IAP) presented both a very strong 
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EEA1-positive compartments is most likely due to their deficient 
stabilization at the apical membrane.

The mechanisms allowing membrane retention of apical en-
zymes and transporters are widely unknown. To date, only the actin 
motor myosin-1a, a brush border myosin, has been implicated in the 

VEP−/− mice (Hansen et al., 2009). A modification in the internaliza-
tion of the dye in the KO enterocytes could not be detected at any 
of the time points analyzed from 5 to 90 min (Figure 5C). The 
global endocytosis rate is therefore not increased in the VEP−/− en-
terocytes, and the accumulation of apical digestive components in 

FIGURE 4: VEP−/− mice show apical localization defects of major digestive and absorptive brush border components. 
(A) Histological sections of jejunum from WT, P−/− and VEP−/− animals immunostained for LPH, SI, PepT1, DPPIV, and IAP 
(green). DAPI (blue) labels nuclei. Scale bars: 10 μm. (B) Western blots against LPH, SI, PepT1, DPPIV, and IAP were 
performed on total or isolated brush borders lysates (loaded for equal total protein). (C) Blood glucose concentrations 
plotted over time during oral glucose tolerance test in mice fasted overnight (nVEP+/− = 3; nP−/− = 5; nVEP−/− = 3; 
Mann-Whitney: **, p < 0.01, *, p < 0.05).
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microvilli, as detected by Western blotting on isolated brush border 
lysates and by immunofluorescence (Figure 5D). As the actin con-
tent was also diminished in VEP−/− brush borders (Figure 3C), we 

anchorage of some apical enzymes (Tyska and Mooseker, 2004). Re-
markably, whereas it is properly concentrated in the microvilli of WT 
and P−/− enterocytes, myosin-1a was substantially lost in VEP−/− 

FIGURE 5: The apical domain retention machinery is affected in VEP−/− mice. (A) Immunostaining against the early 
endosomal marker EEA1 in WT and VEP−/− enterocytes. (B) Colocalization (white) of EEA1 (green) with the subapical 
accumulations of the enzyme SI (red) by immunostaining. (C) Unchanged global endocytosis rate analyzed by the 
internalization of the vital membrane dye FM4-64 (red), shown at 30- and 90-min time points. (D) Western blots and 
immunostaining against myosin-1a on WT, P−/−, and VEP−/− samples. Western blot analysis was performed on total and 
isolated brush border lysates. DAPI labels nuclei (blue). Scale bars: 10 μm. (E) Histograms depicting the relative changes 
of actin and myosin-1a protein content between P−/− or VEP−/− and WT brush borders (P/WT and VEP/WT, respectively). 
Values are densitometric ratios of Western blotting performed on brush border lysates (P/WT: 0.98 ± 0.37, nmyo1a = 3, 
and 0.75 ± 0.07, nactin = 5; VEP/WT: 0.23 ± 0.14, nmyo1a = 3, and 0.52 ± 0.10, nactin = 5). *Wilcoxon two-sample test 
p < 0.05. (F) Western blotting performed on isolated brush border lysates against myosins-1c and -1d on WT, P−/−, and 
VEP−/− samples showing that the decrease in myosin-1a is not accompanied by their compensatory recruitment to the 
brush borders.
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operatively contribute to the paracrystalline, bundled organization 
of filaments that is lost in the VEP−/− mice compared with the single 
or double KO.

Although actin-bundling proteins are dispensable, many addi-
tional mechanisms can provide sufficient organization to the net-
work for membrane protrusion to occur. It has been proposed that 
the membrane itself participates in the organization of actin fila-
ments in parallel arrays within protrusions (Liu et al., 2008). In stereo-
cilia and filopodia, the role of actin-binding proteins in the tip com-
plex is well documented (Tokuo and Ikebe, 2004; Pellegrin and 
Mellor, 2005; Rzadzinska et al., 2009). Eps8 is localized at the tip of 
microvilli and participates in their morphogenesis (Croce et al., 
2004; Tocchetti et al., 2010). Eps8 cross-linking activity (Disanza 
et al., 2006; Hertzog et al., 2010) combined with its restricted local-
ization make it a credible molecular bond between the polymerizing 
ends of actin filaments. This tip connection and the remaining myo-
sin bridges linking actin filaments to the membrane may be suffi-
cient to maintain the longitudinal filaments observed in VEP−/− mi-
crovilli. Moreover, the nucleator mDia1 has been identified in our 
proteomic analysis. If present in the tip complex, this nucleator is 
likely to initiate and elongate unipolar arrays of actin filaments 
(Campellone and Welch, 2010), as formins do in filopodia (Mellor, 
2010). In future studies, it will be of interest to investigate the func-
tion of mDia1 in microvilli.

Defective apical retention and increased internalization 
of membrane proteins?
The malabsorption and growth retardation reported for the VEP−/− 
mice cannot be explained by microvillar shortening, because similar 
shortening and reduction of membrane surface are also present in 
non-growth-retarded EP−/− mice. It is more likely due to defective 
enterocyte absorption caused by the large defects in the apical lo-
calization of transporters and enzymes required for this process. We 
demonstrate that, although the endocytic rate is unmodified, these 
membrane proteins accumulate in EEA1-positive compartments. SI 
and LPH-associated vesicles traverse endosomal compartments en 
route to the apical pole, but they do not normally associate with 
EEA1 (Cramm-Behrens et al., 2008). Moreover, digestive enzymes 
are highly stable at the apex, presenting a very low basal rate of 
endocytosis and recycling (Matter et al., 1990; Hansen et al., 2009). 
Our results clearly argue in favor of a highly increased susceptibility 
to internalization via normal endocytic pathways in the VEP−/− ani-
mals. Interaction with the cytoskeleton is essential for membrane 
protein stabilization, but little is known about the molecular mecha-
nisms involved (Nelson and Veshnock, 1987; Tyska and Mooseker, 
2004). In enterocytes, myosin-1a has been implicated in the reten-
tion of SI within the brush border (Tyska and Mooseker, 2004; Tyska 
et al., 2005). Its strong mislocalization in this study, in the absence of 
a structured actin network, provides good evidence of the general 
mechanism at the origin of the retention defects, but myosin-1a is 
most probably not the only cytoskeletal linker affected—the others 
being still undiscovered.

In myosin-1a KO microvilli, enzymes appear to localize fairly nor-
mally, and no overt phenotype was detected (Tyska and Mooseker, 
2004; Tyska et al., 2005), most probably due to compensatory re-
cruitment of myosin-1c and -1d (Tyska et al., 2005; Benesh et al., 
2010). This recruitment solely in the absence of myosin-1a is due to 
differential actin-binding affinities and competition for actin-binding 
sites (Tyska et al., 2005; Benesh et al., 2010). Equivalent ectopic re-
distributions are not detected in the VEP−/− enterocytes, even if 
myosin-1a is substantially lost from the microvilli. This suggests that 
the abnormality that affects the recruitment of myosin-1a could be 

wondered whether the reduction in myosin-1a was directly due to 
the loss of the actin-bundling proteins or solely a reflection of the 
lower actin content. We quantified by densitometric analysis of 
Western blots the relative changes in actin and myosin-1a content 
between WT and P−/− or VEP−/− brush borders (Figure 5E). The 
densitometric ratio of P−/− over WT brush border samples was not 
significantly different between actin and myosin-1a (0.98 ± 0.37, 
nmyo1a = 3, and 0.75 ± 0.07, nactin = 5, p ≤ 0.8). In contrast, the den-
sitometric ratio of VEP−/− over WT brush border samples was signifi-
cantly reduced for myosin-1a compared with actin (0.23 ± 0.14, 
nmyo1a = 3, and 0.52 ± 0.10, nactin = 5; Mann-Whitney p < 0.05). This 
demonstrates that VEP−/− brush borders lost approximately two 
times more myosin-1a than actin and that the decrease in myosin-1a 
was not merely due to a decrease in brush border actin. Although 
myosin-1a brush border level was strongly decreased, it was not 
completely absent. We could still detect some myosin-1a bridges by 
TEM (Figure 3E), and the myosin-1a–based extrusion of vesicular 
membranes (McConnell and Tyska, 2007) was still detected upon 
ATP-induced myosin activation on isolated VEP−/− brush borders 
(Figure S6). The KO of myosin-1a in mouse enterocytes does not 
cause defects at the whole-animal level (Tyska et al., 2005). This lack 
of phenotype has been accounted for by the compensatory recruit-
ment of at least two other myosins, myosin-1c and -1d, in the brush 
border (Tyska et al., 2005; Benesh et al., 2010). We therefore used 
Western blotting to analyze the brush border content of these class 
I myosins in our samples. The level of these two myosins did not in-
crease between VEP−/− and WT brush borders (Figure 5F). Neither of 
them became ectopically recruited to the microvilli in the absence of 
the three actin-bundling proteins, although myosin-1a was almost 
absent from VEP−/− microvilli. Thus the absence of the three actin-
bundling proteins is associated with defects in the brush border lo-
calization of at least one player in apical enzyme retention, 
myosin-1a.

DISCUSSION
How to build microvilli without actin-bundling proteins?
As discussed in the Introduction, a number of experimental data 
strongly suggest a role for actin-bundling proteins in the formation 
of membrane protrusions. It is therefore surprising that mice devoid 
of actin bundlers still form microvilli. However, biophysical and 
modeling studies have questioned this presupposed requirement 
(Janmey et al., 1992; Miyata et al., 1999; Mogilner and Rubinstein, 
2005). Actin polymerization alone would be sufficient to produce a 
force that can overcome the resistance of the membrane to bend-
ing (Peskin et al., 1993; Mogilner and Rubinstein, 2005). Our results 
are in favor of such a dispensable role for actin-bundling proteins in 
microvilli protrusions in vivo. As actin filaments are flexible, the 
force they generate after reaching a critical protrusion length is lim-
ited by buckling that occurs in response to the membrane resilience 
force. This critical length is dependent on the number of filaments 
and on their rigidity, the latter being increased by their physical 
bundling (Mogilner and Rubinstein, 2005; Atilgan et al., 2006; 
Claessens et al., 2006; Bathe et al., 2008). In agreement with these 
biophysical models, we demonstrate that actin-bundling proteins 
do not act redundantly in the protrusion of microvilli but do regu-
late their length. A role for plastin-1 in microvillar lengthening has 
already been reported in vivo (Grimm-Gunter et al., 2009). In con-
trast to their reported roles in LLCPK-1 cells (Loomis et al., 2003), 
we show that espin plays a positive role in regulating microvillar 
length only in the absence of plastin-1, whereas villin clearly has no 
effect. The three bundlers are therefore not equivalent in their con-
tributions to microvillar morphogenesis. Nevertheless, they do co-
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We analyzed the growth time series by adjusting a mixed-effect 
model in order to assess the significance of the genotype effect. The 
fixed effects accounted for in the model are the genotype, the sex, 
and the time, while the litter is considered a random effect. For 
more details, see Supplemental Material.

Sampling and preparation of the tissues
The intestine of adult mice was isolated and divided into three 
parts of identical length corresponding to the duodenum, jeju-
num, and ileum. The intestinal tube was washed with phosphate-
buffered saline (PBS). To prepare tissue for paraffin sectioning, we 
fixed short pieces of jejunum in 4% paraformaldehyde (PFA), in 
Carnoy solution (60% ethanol, 30% chloroform, 10% acetic acid), 
or in 70% methanol for 2 h at room temperature or overnight at 
4°C. The samples were then ethanol- or methanol-dehydrated and 
embedded in paraffin. For cryosections, tissues were fixed for 2 h 
in PFA and incubated overnight in a 30% glucose solution. They 
were then embedded in optimal cutting temperature compound 
(OCT) and frozen at −80°C. For histological analysis, sections of 5 
μm were prepared from paraffin-embedded tissues and stained 
with hematoxylin eosin–safranin according to standard histological 
procedures.

Oral glucose tolerance test
Mice were fasted overnight and then received a glucose load of 
4 mg/kg. The blood glucose level was assessed at different time 
points using an ACCU-CHEK Compact Plus meter system (Roche, 
Basel, Switzerland). At least three animals per genotype were in-
cluded in the study.

Immunohistochemistry
Sections of 5 μm were prepared from paraffin- or OCT-embedded 
tissues depending on the antibody used. For paraffin sections, par-
affin was removed by two 5-min washes in xylene. Sections were 
then hydrated with ethanol solutions of decreasing concentrations. 
Unmasking of the epitopes was performed by boiling for 20 min in 
Antigen Unmasking Solution (Vector Laboratories, Burlingame, CA). 
Sections were incubated for 45 min at room temperature in blocking 
buffer (3% fetal calf serum [FCS] in PBS) and then overnight at 4°C 
with primary antibody (see Supplemental Material) diluted in 3% 
FCS. After several washes, secondary fluorescent antibody was 
added for 90 min. Representative images from immunostaining 
were acquired using an Apotome system with a 63× water Plan-
Apochromat lens (Zeiss, Jena, Germany). All images were further 
processed and pseudocolored using ImageJ (National Institutes of 
Health). All images comparing different genotypes were acquired 
and postprocessed with identical parameters. Colocalization analy-
ses were performed using the Colocalization Highlighter plug-in for 
ImageJ.

TEM
Small pieces of tissue (∼1–2 mm) were fixed for 2 h at room tem-
perature in 2.5% glutaraldehyde and 2% PFA in cacodylate buffer 
(80 mM cacodylate buffer, pH 7.2, 0.05% CaCl2). After being 
washed with cacodylate buffer, tissues were postfixed for 30 min at 
4°C with 1% OsO4 and 1.5% potassium ferrocyanide in 80. mM 
cacodylate buffer (pH 7.2), and then treated at room temperature 
for 1 h with 2% uranyl acetate in 40% ethanol. The samples were 
dehydrated in a series of graded ethanol solutions and then em-
bedded in Epon before ultrathin sectioning. The observations were 
made with a Philips CM120 electron microscope (FEI, Eindhoven, 
The Netherlands). Images were acquired with a KeenView camera, 

structural, residing in the disorganization of the actin network, and 
would hence also perturb the recruitment of any other possible 
compensatory class I myosin, causing the apical defects observed.

Actin bundle architecture is critical for the efficient 
recruitment of proteins
Compared with single and double KO microvilli, those of VEP−/− 
demonstrate an additional structural defect: the lack of organization 
of actin filaments into a bundle. The literature increasingly reports 
the importance of specific actin architecture for the selective bind-
ing of proteins (Temm-Grove et al., 1998; Tang and Ostap, 2001; 
DesMarais et al., 2002; Nagy et al., 2008; Nagy and Rock, 2010; 
Brawley and Rock, 2009). In the VEP−/− enterocytes, because myo-
sin-1 is not efficiently recruited to the microvilli, myosins are of par-
ticular interest. Different classes of unconventional myosins have 
been shown to select specific actin filament subpopulations in cells 
(Brawley and Rock, 2009). The filopodium myosin-X selects actin 
bundles for processive movement (Nagy et al., 2008; Nagy and 
Rock, 2010; Ricca and Rock, 2010). Moreover, the architecture and 
dynamics of the bundle regulate the differential concentration of 
actin-binding molecules in the bundle (Naoz et al., 2008). Loss of 
the stabilizing effect of actin-bundling proteins (Zigmond et al., 
1992; Tilney et al., 2003; Prost et al., 2007) is therefore likely to 
modify the localization of myosins and other associated molecules 
(Naoz et al., 2008). Finally, the radial “barber pole” distribution of 
myosin-1a along the microvillar axis relies on the precise paracrystal-
line hexagonal arrangement of actin filaments together with the 
sterical hindrance generated by the bundlers (Brown and McKnight, 
2010). Alterations to the concentration and localization of myosin-1a 
in the brush borders of VEP−/− mice most likely reflect the different 
architectural organization of the actin network. It is thus conceivable 
that myosin-1a, and other actin-binding proteins present in the 
brush border, do not efficiently bind or move along the unstructured 
VEP−/− actin network.

In conclusion, the function of actin-bundling proteins is not to 
power the morphogenesis of microvilli per se but to grant the actin 
network a precise architecture that allows the selective recruitment 
of proteins implicated in apical retention. This work highlights in 
vivo the importance of local cytoskeletal organization in the proper 
regulation of subcellular membrane specializations.

MATERIALS AND METHODS
KO mice
The double and triple KO mice used in this study were generated by 
successive crossing between the villin (Ferrary et al., 1999), espin 
(Zheng et al., 2000), and plastin-1 (Grimm-Gunter et al., 2009) KO, 
as described previously. The espin KO (jerker) mice, which carry a 
natural autosomal recessive mutation in the gene encoding the bun-
dlers of the espin family, were purchased from the Jackson Labora-
tory (Bar Harbor, ME). They were all genotyped by PCR. Animal ex-
periments were carried out under the authority of the Curie Institute 
veterinarian, under permission granted to the Robine laboratory 
(number 75-433, Préfecture de Police—Direction des Services Vété-
rinaires de Paris).

Growth curves
To analyze the growth of VEP−/− animals, mice born from crosses of 
VEP−/− males with VEP−/− females were compared with half-siblings 
born from the same males crossed with WT females. The double KO 
VP−/− litters were from intercrosses of double KO parents. The 
weights of 86 mice from 12 different litters with the three different 
genotypes were measured every 2 d during the first 60 d after birth. 
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Protein lysates were deglycosylated using the Protein Deglyco-
sylation Mix (New England BioLabs, Ipswich, MA). 

Densitometry measurements were carried out using the software 
ImageJ. The densitometric value of each band was corrected by 
subtracting the background value of the corresponding lane before 
applying the ratio calculations.

Global endocytosis assay
Intestinal segments from anesthetized mice were isolated using 
sewing cotton. A solution of the vital membrane stain FM4-64 FX 
(Invitrogen, Carlsbad, CA) diluted in PBS-MgCl2-CaCl2 at 100 μg/ml 
was injected into the isolated segments and incubated for different 
times at 37°C. The mice were then killed, and isolated segments 
were fixed and processed for cryosectioning. Endocytic activity was 
assessed by the internalization of labeled membranes observed by 
fluorescence microscopy.

and measurements were made with the iTEM software (Olympus 
Soft Imaging Solutions GMBH, Münster, Germany).

Brush border isolation
Intestines from two adult mice were collected, cut into three pieces, 
and soaked in ice cold saline (150 mM NaCl, 2 mM imidazole, 
pH 7.2). Segments were washed with saline and opened longitudi-
nally. They were then cut into pieces (∼2 cm) and stirred in a beaker 
containing 20 ml of ice cold sucrose dissociation solution buffer A 
(200 mM sucrose, 12 mM EDTA, 19 mM KH2PO4, 78 mM Na2HPO4) 
for 30 min in a cold room. The buffer A containing the enterocytes 
was centrifuged at 300 × g for 8 min. During this spin, another 20 ml 
of buffer A was poured into the beaker and stirred. This second 
20-ml cell collection was added to the cell pellets obtained from the 
first collection. The isolated enterocytes were washed three times in 
buffer A by centrifugation at 300 × g for 8 min. The cell pellet was 
then resuspended with 20 ml of homogenization buffer (10 mM 
imidazole, pH 7.2, 4 mM EDTA, 1 mM ethylene glycol tetraacetic 
acid [EGTA], 1 mM dithiothreitol [DTT], protease inhibitor cocktail 
[Sigma-Aldrich, St. Louis, MO], pH 7.2), poured into a blender, and 
homogenized with two 15-s bursts at high speed. The blender was 
rinsed once with 20 ml of buffer B (75 mM KCl, 5 mM MgCl2, 1 mM 
EGTA, 10 mM imidazole, pH 7.4, 1 mM DTT, and protease inhibitor 
cocktail). The homogenate was then centrifuged (1000 × g for 
8 min) to pellet the brush borders. The pellet containing isolated 
brush borders was washed four times by centrifugation in buffer B 
(1000 × g for 8 min).

For TEM, isolated brush borders were incubated in buffer B con-
taining 15 mM MgCl2. To let them adhere, they were incubated for 
1 h at 4°C on glass coverslips coated with polylysine. Coverslips 
were washed once before fixation in 0.1 M Na-phosphate buffer (pH 
7.0) containing 2% glutaraldehyde and 2 mg/ml tannic acid for 1 h 
at 4°C. After being washed in PBS, brush borders were postfixed in 
1% OsO4, in 0.1 M phosphate buffer at pH 6.0 for 45 min and then 
with 0.5% uranyl acetate for 2 h. The brush borders were dehydrated 
in a series of graded ethanol solutions and then embedded in Epon 
before ultrathin sectioning.

For one-dimensional analysis, brush border pellets were frozen in 
liquid nitrogen and kept at −80°C before being processed as de-
scribed in the following section. For Western blotting, the pellets 
were processed the same way as for tissue samples.

Tissue lysis and Western blotting
Frozen jejunal tissues were homogenized with a Dounce homoge-
nizer in a solution containing 50 mM Tris- HCl (pH 7.5), 150 mM 
NaCl, 20 mM MgCl2, 5 mM EDTA, 1% Triton X-100, 1% NP-40, 
0.5% SDS, and protease inhibitor cocktail (Sigma-Aldrich, St. Louis, 
MO). Proteins were extracted after centrifugation at 15,000 × g 
for 10 min at 4°C. Fifty micrograms of total protein was used for 
electrophoresis on 7.5% SDS-polyacrylamide gels under reduc-
ing conditions, and transferred to a nitrocellulose membrane 
using standard procedures. Immunogens were visualized using 
the enhanced chemiluminescence method (Thermo Scientific, 
Lafayette, CO). The primary antibodies used for immunoblots in 
these experiments were the same as those described for immu-
nohistochemistry, and were used at 1:1000. In addition, poly-
clonal rabbit β-actin (Cell Signaling Technology, Danvers, MA), 
monoclonal mDia1 (BD Biosciences, Franklin Lakes, NJ), poly-
clonal rabbit myosin-1c (from P. Gillespie), polyclonal rabbit 
anti–myosin-1d (from M. Bähler), and monoclonal IRSp53 (from 
G. Scita) antibodies were used, also at 1:1000. Harmonin iso-
forms were detected using a rabbit serum at 1:200 (from C. Petit). 
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During my PhD, I also had the opportunity to collaborate with the team of Tom Kirchhausen 

from Harvard. In this article, Boulant et al. investigate the role of actin dynamics during 

clathrin mediated endocytosis in epithelial cells. They started from the already known 

observation that actin assembly is required during clathrin coated pits assembly on the apex of 

epithelial cells whereas it is dispensable at the basolateral pole and in non-polarized cells. 

Since membrane tension is higher at the apex of epithelial cells, they reasoned that actin 

dynamics is required to overcome the membrane resistance in highly tensed cells to allow the 

vesicle budding. Accordingly, using various biophysical approaches and live imaging they 

demonstrate the importance of actin to achieve clathrin mediated endocytosis in a tensed 

environment. They additionally hypothesized that microvilli which crowd the apices of 

epithelial cells are responsible for this selective actin requirement, possibly by increasing the 

tensile properties of the apical membrane. To clarify these points, Steeve Boulant, first author 

of this study, contacted us seeking for advices and tools. We provided several reagents, 

molecular tools and cell lines that were used in this study. We moreover actively participate in 

the design of the experiments focused on microvilli. 
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L E T T ERS

Actin dynamics counteract membrane tension during
clathrin-mediated endocytosis
Steeve Boulant1,2,4, Comert Kural1,2,4, Jean-Christophe Zeeh1,2, Florent Ubelmann3 and Tomas Kirchhausen1,2,5

Clathrin-mediated endocytosis is independent of actin
dynamics in many circumstances but requires actin
polymerization in others. We show that membrane tension
determines the actin dependence of clathrin-coat assembly. As
found previously, clathrin assembly supports formation of
mature coated pits in the absence of actin polymerization on
both dorsal and ventral surfaces of non-polarized mammalian
cells, and also on basolateral surfaces of polarized cells. Actin
engagement is necessary, however, to complete membrane
deformation into a coated pit on apical surfaces of polarized
cells and, more generally, on the surface of any cell in which
the plasma membrane is under tension from osmotic swelling or
mechanical stretching. We use these observations to alter actin
dependence experimentally and show that resistance of the
membrane to propagation of the clathrin lattice determines the
distinction between ‘actin dependent and ‘actin independent’.
We also find that light-chain-bound Hip1R mediates actin
engagement. These data thus provide a unifying explanation for
the role of actin dynamics in coated-pit budding.

The coordinated action of a large number of structural and regulatory
proteins and lipids is required for the assembly–disassembly of a
clathrin-coated vesicle. Budding coated pits and other clathrin-coated
structures can be followed in living cells by labelling component
proteins with fluorescent markers1–7. Recent live-cell imaging studies
reveal unexpected modes of endocytic coat assembly, with distinct
kinetics, recruitment of associated proteins, requirements for the
participation of actin and its accessory proteins, and mechanisms of
membrane deformation7–13.
Electron microscopy of B-lymphoblastoid cells showed association

of actin microfilaments with clathrin-coated structures14, indicating
that actin may participate in coated-vesicle assembly by pulling the
membrane inward. In cultured mammalian cells, actin polymerization
is usually dispensable for coated-pit formation7,15, but in some

1Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. 2Immune Disease Institute and Program in Cellular and Molecular
Medicine at Children’s Hospital, Boston, Massachusetts 02115, USA. 3Laboratoire de Morphogénèse et Signalisation Cellulaires, Institut Curie Paris, Paris, Cedex 05,
France. 4These authors contributed equally to this work.
5Correspondence should be addressed to T.K. (e-mail: kirchhausen@crystal.harvard.edu)

Received 21 January 2011; accepted 27 June 2011; published online 14 August 2011; DOI: 10.1038/ncb2307

circumstances actin and a subset of regulators of short-branch actin
assembly, including Arp2/3 (actin-related protein-2/3), cortactin and
N-Wasp (also known as Wasl, Wiskott-Aldrich syndrome-like; refs 16–
19), are recruited to clathrin-containing structures at or near the time
of membrane scission. One such actin-dependent structure, termed a
coated plaque, assembles at adherent surfaces of cultured mammalian
cells11,20. Actin dynamics are essential for membrane invagination and
scission associated with coated-plaque uptake. Actin dynamics also
rescue the clathrin-mediated uptake of elongated (180 nm) vesicular
stomatitis virus particles6 (VSV), which block closure of the curved
pit, causing endocytosis to stall. Coordinated actin polymerization
and inward movement of the partially clathrin-coated virus narrows
the neck between the pit and the plasma membrane, leading to
dynamin-induced scission. Thus, actin assembly is a pathway required
under stringent conditions, rather than an essential process under
more permissive ones10. In contrast, clathrin-mediated internalization
is constitutively actin dependent in yeast cells9 where actin dynamics
are needed to counteract the inhibition of endocytosis induced by
elevated membrane tension21.
Inhibition of actin dynamics blocks endocytosis from the apical

but not the basolateral surface of polarized cells22–29. We sought an
explanation for this difference by combining live-cell, spinning-disc
confocal imaging with electron microscopy. We show in polarized
MDCK cells, that pharmacologically inhibiting actin dynamics or
disrupting the link between actin and clathrin (by blocking the
interaction between clathrin andHip1R,Huntingtin interacting protein
1 related; refs 11,30) selectively traps apical clathrin-coated pits at a late
stage of assembly. More generally, if we raise membrane tension and
inhibit actin dynamics, coated pits stall at a late stage of assembly in
BSC1 or MDCK cells. Local actin dynamics seem to prevent stalling by
imparting additional constriction force.
We compared the dynamics of endocytic clathrin adaptor protein

2 (AP-2)-coated structures at the apical and basolateral surfaces of
polarized MDCK cells1 (Fig. 1a). Most fluorescent AP-2 spots on the
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Figure 1 Formation of endocytic coated pits and vesicles at the apical
and basolateral surfaces of polarized MDCK cells. (a) Imaging procedures
used to visualize the dynamics of pit formation at the apical and basolateral
surfaces of polarized MDCK cells. Movies from the dome-like apical surface
are from 3D time series acquired at 2 s intervals from 3–5 serial optical
sections spaced by 0.5 µm and using 100ms exposures; 2D time series
were created from maximum-intensity z -projection sets. Movies from the
basolateral surface are 2D time series acquired at 2 s intervals from a single
optical section. (b) Snapshot from a maximum-intensity projection (left)
and representative kymograph (right) of coated-pit formation at the apical
and basolateral surfaces from the same polarized MDCK cell; AP-2 labelled
with σ2–eGFP; scale bars, 5 µm. (c) Average fluorescence intensity of
AP-2 structures forming at the apical and basolateral surfaces of polarized
MDCK cells (n = 3), normalized to the lifetime of each individual pit
analysed (percentage of lifetime). Each point represents average ± s.d.
(d) Scatter plot of individual lifetimes of coated structures from seven

polarized MDCK cells. Each data set represents average ±s.d. n is the
number of objects analysed. Statistical significances for lifetime differences
are shown. (e) Scatter plot of individual maximum fluorescence intensities
for coated structures. (f) Scatter plots of lifetimes for individual AP-2
spots at the apical and basolateral surfaces of polarized MDCK cells
stably expressing σ2–eGFP in the absence or presence of jasplakinolide
or latrunculin A. The upper and lower data sets are from distinct time
series of 10 and 2.5min in duration, respectively. Bottom, fraction of AP-2
objects with longer duration than the time series (percentage of arrested
pits). (g) Morphological analysis of clathrin-coated structures on the apical
surface of polarized MDCK cells treated with jasplakinolide, latrunculin A,
SecinH3 or secramine A. Representative electron microscopy images of
the most abundant clathrin-coated-pit profiles. Scale bars, 100nm. The
coated structures were classified as shallow, U-shaped or nearly-mature �-
and fully-mature O-shaped vesicles. (h) Relative frequency of profiles in
about 45 cells per condition.

basolateral surface belonged to a single class of diffraction-limited
objects, with the properties characteristic of canonical coated pits and
vesicles,∼100–200 nm in diameter1,5,7,11 (Fig. 1b,c and Supplementary

Movie S1). Their mean lifetime was 39± 13 s (Fig. 1d). The mean
lifetime of clathrin-coated pits on the apical surface of the same
polarized MDCK cells was significantly longer (55±18 s; P < 0.001;
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Fig. 1d and Supplementary Movie S1), although both had a similar
maximum fluorescence intensity (Fig. 1c,e) and hence reached a similar
final size1,11. Disturbance of actin assembly in polarized MDCK cells
with latrunculin or jaskplakinolide resulted in a marked increase
in the lifetime of apical pits. About 90% of the pits arrested and
remained for at least 10min (the upper limit of the time series), and
the remaining ∼10% had lifetimes significantly longer than at the
apical surface in non-treated cells (Fig. 1f and SupplementaryMovie S2)
and transferrin endocytosis ceased22,23,25 (Supplementary Figs S1a,b).
In contrast, basolateral pits from the same cells were unaffected by
jaskplakinolide and showed a small increase in lifetime (from 37 s
to 59 s) and in the fraction of arrested pits (from 0% to 4%) in
response to latrunculin (Fig. 1f and Supplementary Movie S2). The
dependence on actin dynamics required cell polarization. Incubation
with jaskplakinolide did not affect the formation and lifetime of dorsal
pits in non-polarizedMDCK cells (Supplementary Fig. S2).
We ruled out the possibility that cessation of coat growth at the

apical surface resulted from depletion of free cytosolic coat components
by transiently exposing the cells to 1-butanol, which induces coat
disassembly7. Incubation of jasplakinolide-treated polarized MDCK
cells for 3min with 1-butanol led to rapid disappearance (∼10 s)
of all AP-2 spots (Supplementary Fig. S3a, 1-butanol). Removal of
the 1-butanol with jasplakinolide still present led to synchronous
appearance of newly formed apical coated pits that again stalled at
late assembly (Supplementary Fig. S3a,b). The fluorescence intensity of
the long-lived apical pits in jaskplakinolide-treated cells was on average
10% less than themaximum intensity in untreated cells (Supplementary
Fig. S3b). As fluorescence intensity is proportional to coat size11, this
indicates that the long-lived pits may arrest at a late stage of coat
assembly, but before full completion. Electron microscopy of MDCK
cells treated with jasplakinolide or latrunculin showed a substantial
increase (from 10 to∼70%) in the fraction of coated pits at the apical
surface linked to the plasma membrane by wide necks (U-shaped),
representing incomplete coats arrested at a relatively late stage of
assembly (Fig. 1g,h). Narrower necks were less common, andwe saw no
long tubules decorated at their end by clathrin coats. Untreated control
cells showed the expected distribution of coated profiles (Fig. 1g,h).
Jaskplakinolide or latrunculin did not affect the distribution of
basolateral coated profiles (Fig. 1h). Dynamin associates with the neck
of a fully formed coated pit and promotes release of a coated vesicle1,4,31.
Dynamin does not associate with the wide neck of incomplete pits,
and indeed very few (∼5%) of the long-lived apical pits generated by
jasplakinolide treatment recruited a detectable amount of dynamin-2
(Supplementary Fig. S4a,b). The apical pits of untreated cells recruited
dynamin normally (∼30% of pits co-localize with the relatively
strong dynamin signal; Supplementary Fig. S4b). We conclude that
clathrin-coated pits assembling on the apical surface of polarized
MDCK cells require actin dynamics for closure but not for initiation,
whereas coat assembly on the basolateral surface is actin independent.
We next examined the differential effects at the two surfaces of

inhibiting the small GTPases Cdc42, Rac1 and Arf6 (regulators of
Arp2/3-mediated actin polymerization26,32) and of blocking clathrin
binding of Hip1R. Cdc42 inhibition did not arrest pit formation, had
only a small effect on the formation and lifetime of apical or basolateral
pits (Fig. 2a) and had no evident influence on the distribution of apical
coatmorphologies (Fig. 1h). Rac1 inhibition seemed to arrest apical-pit

assembly, as a large fraction of the pits (60%) were present throughout
the complete movie; it also retarded basolateral pit assembly by about
twofold, with a modest effect on completion and budding (15% arrest).
Arf6 has been linked to clathrin-based endocytosis inHeLa cells33 and at
the apical surface of polarized MDCK cells24. Arf6 inhibition similarly
arrested most of the apical pits (76%), but had no detectable effect on
basolateral coat dynamics. In all cases, the fluorescence intensity of the
arrested coated pits was equivalent to the maximum intensity of pits
imaged in untreated cells, indicating that the coats arrested at a late
stage of assembly. Consistent with this conclusion, we found by electron
microscopy an accumulation of U-shaped coats at the apical surfaces
of polarized MDCK cells following SecinH3 treatment (Fig. 1h). These
inhibitors had no effect on pit assembly in non-polarizedMDCKcells.
Hip1R interacts with F-actin, cortactin and clathrin light chains34–36

and connects the actin cytoskeleton with clathrin coats34. It is essential
for assembly of coated plaques11 and for endocytosis of VSV (ref. 6),
but not for completion of coated pits in non-polarized cells11. We
detected a role for Hip1R in apical-pit assembly by blocking the
association of Hip1R with clathrin—either by overexpression of a
dominant-negative form of clathrin light chain B (CLCb-EED/QQN),
which binds the clathrin heavy chain but does not recruitHip1R (refs 10,
11,30), or by depletion with short interfering RNA (siRNA) of both
forms of the clathrin light chain. CLCb-EED/QQN overexpression in
non-polarized cells does not inhibit clathrin-mediated endocytosis11,30;
it prevents formation of clathrin-coated plaques, but not of coated
pits11. Overexpression in polarized MDCK cells inhibited completion
of apical pits (60% arrest, as defined by pits with lifetimes longer than
the upper limit of the time series we recorded) but affected basolateral
pits in the same cells only modestly, increasing their lifetimes from
47 s to 86 s and generally permitting complete assembly (15% arrest;
Fig. 2b). Overexpression of wild-type LCb had no detectable effect
on pit dynamics11 (Fig. 2b), confirming that failure of the mutated
light chain to recruit Hip1R had produced the observed late-stage
arrest. siRNA-mediated knockdown of light chains led to late-stage
arrest of pits at the apical but not at the basolateral surface (Fig. 2b).
Results from Hip1R depletion were not interpretable because of the
massive upregulation of the number of actin filaments throughout the
cells17,35,37 (Supplementary Fig. S3c), the increase in the level of cytosolic
AP-2 and the general arrest of coated-pit formation at the apical and
basolateral surfaces of polarized MDCK cells (Supplementary Fig. S3d),
explaining the previously observed partial inhibition of transferrin
uptake35. Thus, under actin-independent conditions, inhibiting Hip1R
recruitment has no influence on clathrin-mediated endocytosis30 or
on coat assembly11. When actin dynamics are required to finish coat
assembly, however, blocking Hip1R recruitment has the same effect
(late-stage arrest) as blocking actin dynamics. As for Hip1R, the light
chains are dispensable for initiation and early growth of coats under
all conditions examined.
Apical surfaces of polarized epithelial cells have large numbers

of microvilli. Treatment of polarized MDCK cells with a short
hairpin RNA (shRNA) probe specific for ezrin, on which microvilli
depend, resulted in substantial loss of the protein and disappearance
of microvilli (Supplementary Fig. S5a). Following ezrin depletion,
actin was no longer required for apical-pit completion (Supple-
mentary Fig. S5b). Moreover, overexpression of villin-1–Cherry in
non-polarized BSC1 cells generated a large number of microvilli-like
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Figure 2 Disruption of apical coat formation by pharmacological interference
with the small GTPases Rac1 and Arf6 and interference with the function of
clathrin light chains. (a) Top, scatter plots of lifetimes for individual AP-2
spots. Polarized MDCK cells stably expressing σ2–eGFP were treated for
10min before imaging with secramine A, NSC-23766 or SecinH3, small
molecule inhibitors of Cdc42, Rac1 and Arf6, respectively. Each data set
represents average ±s.d. for objects whose duration was fully included in the
time series. n is the number of objects analysed. Statistical significances for

the differences in lifetimes are shown. Bottom, fraction of AP-2 objects with
longer duration than the time series. (b) Top, scatter plots of lifetimes for
individual AP-2 spots imaged at the apical and basolateral (Baso) surfaces of
polarized MDCK cells stably expressing σ2–eGFP and transiently expressing
wild-type or mutant clathrin light chain B fused to Cherry (left) or depleted
of both clathrin light chains by Clta and Cltb siRNA (right). Each data
set represents average ±s.d. n is the number of objects analysed. Bottom,
fraction of AP-2 objects with longer duration than the 160 s time series.

structures (Supplementary Fig. S5c) and caused actin-dependent
coated-pit maturation (Supplementary Fig. S5d). Thus, the actin
dependence of coat completion correlates with a property imparted
to the plasma membrane in response to the formation of microvilli or
microvillus-related structures.
Membrane tension in polarized cells is greater in apical than in

basolateral regions38. We investigated whether clathrin-coat assembly
might be sufficient to deform the underlying membrane completely
under conditions of low membrane tension, whereas an additional
activity associated with actin dynamics might be needed under
conditions of highmembrane tension. Increasingmembrane tension by
exposing cells to hypotonicmedium (Fig. 3) revealed strong correlation
between the severity of the hypotonic treatment and the appearance
of arrested pits in non-polarized cells treated with jaskplakinolide
(Fig. 3 and Supplementary Movie S3) and at the basolateral surface of
polarized MDCK cells treated first with jasplakinolide (not shown).

The actin requirement induced by hypotonic treatment was reversible
(data not shown). Electronmicroscopy of jaskplakinolide-treated BSC1
cells incubated with hypotonic medium confirmed that most apical
coated pits had U-shaped structures. The pits from these cells also failed
to accumulate dynamin (not shown). We also increased membrane
tension by laterally stretching cells growing on an elastic support. Pits
at the basolateral surface of control, unstretched MDCK cells had an
average lifetime of 43 s that was insensitive to jasplakinolide (Fig. 4b),
comparable to pits in MDCK cells grown on glass coverslips (Fig. 1d).
Linear stretching by 25% led to a small but statistically significant
increase in pit lifetime (from 43 s to 52 s) and pit arrest (from 4%
to 8%). Jaskplakinolide treatment of the stretched cells resulted in a
marked increase in pit lifetimes and percentage of arrested pits (from
8% to 60%; Fig. 4b). Thus, local actin dynamics must coordinate with
clathrin assembly to achieve complete vesiculation following increased
membrane tension.
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Figure 3 Actin dependence for endocytic coat formation in cells swelled
by hypo-osmotic treatment. Polarized MDCK or non-polarized BSC1 cells
incubated for 10min in serially diluted medium (from 100% to 50%) of
decreasing osmolarity, ranging from 311 to 174 mOsM, were analysed for
the effects of altering actin dynamics on the lifetimes of their AP-2-coated
structures. Each data set represents average ± s.d.; n is the number of
objects analysed. (a) Top, schematic representation of polarized MDCK
cells stably expressing σ2–eGFP exposed to hypo-osmotic medium. Middle,

scatter plots of lifetimes for individual basolateral AP-2 spots of cells
exposed for 10min to hypo-osmotic media in the absence and presence of
jasplakinolide (Jasp). Bottom, fraction of AP-2 objects with longer duration
than the time series. (b) Top, schematic representation of BSC1 cells stably
expressing σ2–eGFP exposed to hypo-osmotic medium. Middle, scatter plots
of lifetimes for individual ventral AP-2 spots of cells exposed for 10min to
hypo-osmotic media in the absence and presence of jasplakinolide. Bottom,
fraction of AP-2 objects with longer duration than the time series.

Thus, we show that interfering with actin dynamics induces arrest
of canonical coated-pit assembly under some circumstances, but
not under others. Indeed, actin activity is essential for efficient
completion of coated pits at the apical surfaces of polarized cells
in culture, but not at the basolateral surfaces of the same cells.
Coat assembly in various non-polarized cells does not ordinarily
depend on actin7,11,15. Furthermore, the actin dependence of coated-pit
assembly can be modulated experimentally by modifying membrane
tension: coat formation in a non-polarized cell can be rendered
actin dependent by exposure to hypotonic medium, by stretching the
substrate or by inducing the formation of microvillus-like structures;
coat formation at the apical surface of a polarized cell can be
rendered actin independent by shrinking its apical microvilli. In

addition, interfering with actin dynamics under conditions that
require actin activity causes coats to stall late in assembly. Most
AP-2 complexes are recruited during earlier stages11,20,39. Therefore,
we estimate (from the fluorescence intensity of tagged AP-2 and
from the appearance of the U-shaped pits that accumulate) that
the stalled coats are roughly two-thirds to three-quarters complete.
At this stage of completion, the ‘neck’ is probably not yet narrow
enough to allow dynamin recruitment, as the dynamin burst normally
associated with maturation of a coated pit into a coated vesicle was
not detected. Finally, we show that perturbing actin dynamics does not
directly affect coat initiation7. Thus, canonical coated pits differ in this
respect from coated plaques, which require actin dynamics for both
initiation and invagination11.
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Figure 4 Actin dependence of endocytic coat formation in mechanically
stretched cells. (a) Schematic representation of the device used to image
mechanically stretched, non-polarized MDCK cells. An optically clear,
stretchable silicon holder made of PDMS, about 50 µm thick, which could
make contact with the oil above a ×63 objective lens was placed at the
bottom of the stretching device. Cells were grown for 24h on the PDMS
surface pre-coated with fibronectin and then imaged by spinning-disc
confocal microscopy; the spherical-aberration-correction device was
essential for detecting the diffraction-limited coated structures containing
AP-2–eGFP. (b) Dynamics of coated pits before and after ∼25% linear
stretching. Top, scatter plots for lifetimes of individual AP-2 spots from the
ventral surface of cells subjected to controlled stretching in the presence or
absence of jasplakinolide. Each data set represents average±s.d. n is the
number of objects analysed. Bottom, fraction of AP-2 objects with longer
duration than the time series.

We investigated what determines actin engagement if coat assembly
stalls. In principle, there may be a ‘sensor’ of assembly arrest.
Alternatively, actin may be engaged constitutively, but with at
most a small contribution to observable coat dynamics except in
circumstances of elevated membrane tension. The distinction between
‘actin dependent’ and ‘actin independent’ would then be determined by
the threshold of membrane tension (or other resistance to propagation
of the coat lattice) at which the free energy of clathrin–clathrin
contacts can no longer overcome membrane resistance to generating
a constricted neck. Our experiments, in which we switch from actin
dependence to actin independence and vice versa, are consistent with
this threshold picture. Indeed, increased tension is a common feature
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Figure 5Model depicting the role of actin polymerization during the formation
of endocytic clathrin-coated pits. (a) Under non-stringent conditions and low
membrane tension, assembly of the clathrin coat is sufficient to deform the
membrane into a tightly constricted coated pit. (b) Under more stringent
conditions of high membrane tension, clathrin assembly is not sufficient
and membrane invagination stalls; actin polymerization then provides the
additional work needed to complete membrane bending. Hip1R links the
assembling clathrin coat to actin polymers, and if sufficient time is allowed,
then assembly of short-branched actin rescues the stalled coat. The two
main forces resisting membrane deformation are bending and tension. The
bending work per unit area depends inversely on the curvature and hence is
uniform for a spherical or nearly spherical vesicle. The work done against
a constant membrane tension depends on the net increase in membrane
area—that is, the area of the invaginated membrane minus the area of
the opening it covers. The plot represents the cumulative work required to
counteract membrane tension, and does not include the work required to
create the membrane vesicle. The cumulative work was calculated according
to W = πr 2T (1−cosα)2, where T is the membrane tension and α is the
angle (in radians) between the pole of the budding pit and the position at
which the curved pit intersects the plane of the plasma membrane (see
Methods). When the neck begins to constrict (α= π/2), the area of the
opening decreases and the net increase in area rises sharply. When the pit
is complete, α=π. (c) Hip1R links actin filaments with the clathrin coat by
interactions with F-actin and clathrin light chains. Branched actin filaments
grow towards the plasma membrane through new filament assembly at the
barb end of the stabilized actin filaments; this growth relies on Arp2/3
stimulation, mediated by cortactin and by small GTPases such as Arf6
and Rac1.

in which actin dynamics are required for coated-pit maturation beyond
the ‘U’ stage. One explanation for why coated-pit assembly may stall
at this point is embodied in Fig. 5. Under conditions of constant
membrane tension, the work needed to invaginate the first hemisphere
of a coated vesicle is substantially less than that needed to complete
the second hemisphere (see Methods). Extreme levels of tension will
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probably block invagination altogether; an intermediate level may stall
the process when the work needed to counteract the tension is greater
than incremental coat assembly can contribute.
Clathrin-mediated uptake in yeast cells depends constitutively on

actin dynamics. Initial steps in coat formation precede local actin
assembly, which is essential for invagination and inward movement9.
Increased turgor diminishes internalization21, in agreement with our
observations on membrane tension in mammalian cells. Exposure
to hyperosmotic medium, which reduces turgor to below-normal
levels, rescues internalization of a fluid phase marker, even when actin
dynamics are blocked21, but it is not clear whether the rescue involves
a clathrin-coated structure.
We have shown that actin polymerization takes over from clathrin

polymerization in driving membrane invagination, when the latter
process stalls. Actin is engaged at the coat by clathrin-light-chain-bound
Hip1R. We have not determined whether actin simply pushes the
plasma membrane away from the coat, or whether branching at Arp2/3
helps constrict the neck. Actin polymerization similarly takes over
when clathrin polymerization and assembly stalls because of steric
interference from cargo (for example, VSV; refs 6,10), and actin
alone drives the remaining membrane invagination and constriction.
Coated plaques are also examples of this phenomenon, in which
adhesion of cell-surface proteins to the substrate generates the
steric interference. �

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturecellbiology

Note: Supplementary Information is available on the Nature Cell Biology website

ACKNOWLEDGEMENTS
This work was supported by NIH grant National Institutes of Health GM 075252
(T.K.) and a Harvard Digestive Disease Consortium Feasibility Award (S.B.). We
express gratitude to E. Marino (supported by NIH grant U54 AI057159, New
England Regional Center of Excellence in Biodefense and Emerging Infectious
Diseases) for maintaining the imaging resource used in this study and to S.C.
Harrison for help with describing the force contributed by membrane tension
and for editorial assistance. We gratefully acknowledge M. Ericsson and I. Kim
for preparation of samples for electron microscopic analysis and members of
the Kirchhausen laboratory for thought-provoking discussions. We thank M.
Arpin (Centre National de la Recherche Scientifique (CNRS)/Morphogenèse et
Signalisation cellulaires, Paris, France) and C. Revenu (Centre National de la
Recherche Scientifique/Institut Curie, Paris, France) for the antibody specific for
villin-1. We also acknowledge S. Robine for important suggestions involving the
villin-1/villin-2 depletion experiments.

AUTHOR CONTRIBUTIONS
S.B., C.K. and T.K. designed experiments; S.B. and C.K. carried out experiments; S.B.
and C.K. analysed data; C.K. developed the analytical tools to analyse the 3D data.
F.U. provided expression vectors specific for the experiments with villin-1/villin-2,
contributed to the experimental design of the experiments involved in villin-1/villin-
2 depletion and created the LLCPK1 cell line. S.B. and T.K. wrote themanuscript. All
authors discussed the results and contributed to the final manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Published online at http://www.nature.com/naturecellbiology
Reprints and permissions information is available online at http://www.nature.com/
reprints

1. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-
coated pits. Cell 118, 591–605 (2004).

2. Conibear, E. Converging views of endocytosis in yeast and mammals. Curr. Opin.
Cell Biol. 22, 513–518 (2010).

3. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and
actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

4. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin
recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4,
691–698 (2002).

5. Boucrot, E., Saffarian, S., Zhang, R. & Kirchhausen, T. Roles of AP-2 in
clathrin-mediated endocytosis. PloS ONE 5, e10597 (2010).

6. Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan,
S. P. J. Vesicular stomatitis virus enters cells through vesicles incompletely
coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5,
e1000394 (2009).

7. Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of
lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 312,
4036–4048 (2006).

8. Perrais, D. & Merrifield, C. J. Dynamics of endocytic vesicle creation. Dev. Cell 9,
581–592 (2005).

9. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-
mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7, 404–414 (2006).

10. Cureton, D. K., Massol, R. H., Whelan, S. P. J. & Kirchhausen, T. The length
of vesicular stomatitis virus particles dictates a need for actin assembly during
clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127.

11. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic
clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

12. Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol.
19, 596–605 (2009).

13. Mettlen, M. et al. Endocytic accessory proteins are functionally distinguished by
their differential effects on the maturation of clathrin-coated pits. Mol. Biol. Cell
20, 3251–3260 (2009).

14. Salisbury, J. L., Condeelis, J. S. & Satir, P. Role of coated vesicles, microfilaments,
and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells.
J. Cell Biol. 87, 132–141 (1980).

15. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a
variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells.
Traffic 1, 161–171 (2000).

16. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit
invagination, cortactin recruitment, and membrane scission observed in live cells.
Cell 121, 593–606 (2005).

17. Le Clainche, C. et al. A Hip1R-cortactin complex negatively regulates actin assembly
associated with endocytosis. EMBO J. 26, 1199–1210 (2007).

18. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott
Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to
sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83,
13–18 (2004).

19. Benesch, S. et al. N-WASP deficiency impairs EGF internalization and actin assembly
at clathrin-coated pits. J. Cell Sci. 118, 3103–3115 (2005).

20. Saffarian, S. & Kirchhausen, T. Differential evanescence nanometry: live-cell
fluorescence measurements with 10-nm axial resolution on the plasma membrane.
Biophys. J. 94, 2333–2342 (2008).

21. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin
during yeast and mammalian endocytosis. Nature Cell Biol. 11, 1039–1042 (2009).

22. Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play
a critical role in endocytosis at the apical but not the basolateral surface of polarized
epithelial cells. J. Cell Biol. 120, 695–710 (1993).

23. Jackman, M. R., Shurety, W., Ellis, J. A. & Luzio, J. P. Inhibition of apical but not
basolateral endocytosis of ricin and folate in Caco-2 cells by cytochalasin D. J. Cell
Sci. 107, 2547–2556 (1994).

24. Altschuler, Y. et al. ADP-ribosylation factor 6 and endocytosis at the apical surface
of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7–12 (1999).

25. Shurety, W., Bright, N. A. & Luzio, J. P. The effects of cytochalasin D and phorbol
myristate acetate on the apical endocytosis of ricin in polarised Caco-2 cells.
J. Cell Sci. 109, 2927–2935 (1996).

26. Hyman, T., Shmuel, M. & Altschuler, Y. Actin is required for endocytosis at the apical
surface of Madin-Darby canine kidney cells where ARF6 and clathrin regulate the
actin cytoskeleton. Mol. Biol. Cell 17, 427–437 (2006).

27. Da Costa, S. R. et al. Impairing actin filament or syndapin functions promotes
accumulation of clathrin-coated vesicles at the apical plasma membrane of acinar
epithelial cells. Mol. Biol. Cell 14, 4397–4413 (2003).

28. Shmuel, M. et al. ARNO through its coiled-coil domain regulates endocytosis
at the apical surface of polarized epithelial cells. J. Biol. Chem. 281,
13300–13308 (2006).

29. Buss, F., Arden, S. D., Lindsay, M., Luzio, J. P. & Kendrick-Jones, J. Myosin
VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated
endocytosis. EMBO J. 20, 3676–3684 (2001).

30. Poupon, V. et al. Clathrin light chains function in mannose phosphate receptor
trafficking via regulation of actin assembly. Proc. Natl Acad. Sci. USA 105,
168–173 (2008).

31. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10,
839–850 (2006).

1130 NATURE CELL BIOLOGY VOLUME 13 | NUMBER 9 | SEPTEMBER 2011

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

167

http://www.nature.com/naturecellbiology/
http://www.nature.com/naturecellbiology
http://www.nature.com/reprints
http://www.nature.com/reprints


L E T T ERS

32. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links
Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

33. Paleotti, O. et al. The small G-protein ARF6GTP recruits the AP-2 adaptor complex
to membranes. J. Biol. Chem. 280, 21661–21666 (2005).

34. Chen, C.-Y. & Brodsky, F. M. Huntingtin-interacting protein 1 (Hip1) and Hip1-
related protein (Hip1R) bind the conserved sequence of clathrin light chains
and thereby influence clathrin assembly in vitro and actin distribution in vivo.
J. Biol. Chem. 280, 6109–6117 (2005).

35. Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with
clathrin during early stages of endocytosis and promotes clathrin assembly in vitro.
J. Cell Biol. 154, 1209–1223 (2001).

36. Wilbur, J. D. et al. Actin binding by Hip1 (huntingtin-interacting protein 1) and
Hip1R (Hip1-related protein) is regulated by clathrin light chain. J. Biol. Chem. 283,
32870–32879 (2008).

37. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable
association between the endocytic machinery and the actin assembly machinery.
Mol. Biol. Cell 15, 1666–1679 (2004).

38. Dai, J. & Sheetz, M. P. Membrane tether formation from blebbing cells. Biophys. J.
77, 3363–3370 (1999).

39. Fotin, A. et al. Structure determination of clathrin coats to subnanometer
resolution by single particle cryo-electron microscopy. J. Struct. Biol. 156,
453–460 (2006).

NATURE CELL BIOLOGY VOLUME 13 | NUMBER 9 | SEPTEMBER 2011 1131

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

168



METHODS DOI: 10.1038/ncb2307

METHODS
Reagents. Rabbit polyclonal antibodies against dynamin-2 (Hudy-1, Millipore;
1:1,000), villin (provided byM.Arpin; 1:2,000) and ezrin (Cell SignalingTechnology;
1:1,000), mouse monoclonal antibodies against ZO-1 (Invitrogen; 1:2,000) and
clathrin light chains (CON-1 generated from hybridoma cells; 1:500), and Alexa
Fluor 488, 546 or 647 secondary antibodies and Alexa 647 human-transferrin
(Molecular Probes/Invitrogen; 1:1,000) were used.

Jasplakinolide (Alexis Biochemical), latrunculin A, NSC-23766 (Rac1
inhibitor40), SecinH3 (inhibitor for cytohesins41, small guanine nucleotide exchange
factors (GEFs) for Arf factors including Arf6; Calbiochem) and secramine (inhibitor
of Cdc42; ref. 42) were used at 1 µM, 1 µM, 50 µM and 1 µM, respectively.

Cell culture and transfections. MDCK and BSC1 cells stably expressing σ2–eGFP
(the small subunit of AP-2 fused to enhanced green fluorescent protein, eGFP)
were grown in DMEM medium containing 10% FCS, penicillin and streptomycin.
The MDCK cells expressing σ2–eGFP were generated by transfection with Fugen
HD selected with G418. Plasmids encoding Cherry fused to wild-type and
mutant bovine clathrin light chain B (Cherry–LCb and Cherry–LCb-EED/QQN)
were made by exchange of eGFP with Cherry from eGFP–LCb and eGFP–LCb-
EED/QQN (P.McPherson). Transient expression of villin–Cherry, Cherry–LCb and
Cherry–LCb-EED/QQNwas carried out using TransIT-LT1 (Mirus Bio LL) and cells
were analysed 12–16 h after transfection unless otherwise indicated.

Gene silencing. Simultaneous depletion of clathrin light chains A and B was
achieved in MDCK cells stably expressing σ2–eGFP by siRNA-mediated gene
silencing as described previously11.

Depletion of villin-1 and ezrin was achieved by shRNA. siRNA se-
quences specific for villin-1 (5′-CCGGGCCAAGATGAAATTACAGCATCTCG-
AGATGCTGTAATTTCATCTTGGCTTTTTG-3′) and ezrin genes 5′-CCGGCCTG-
GAAATGTATGGAATCAACTCGAGTTGATTCCATACATTTCCAGGTTTTTG-
3′) were incorporated into the lentivirus vector pLKO.1 (Addgene). MDCK cells
(1× 106) stably expressing σ2–eGFP were transduced with 50–100 µl of thawed
supernatants, and cells containing integrated viral sequences were selected by serial
passage in medium containing 4 µgml−1 puromycin.

Osmotic swelling. MDCK or BSC1 cells kept at 37 ◦C and in the presence of
humidified 5% CO2 were exposed for 10min to diluted medium (311, 251, 220
and 174 mOsM) prepared by mixing 100, 80, 70 or 50% of phenol red-free DMEM
containing 10% FCS serum with 0, 20, 30 or 50% water containing 10% FCS
serum. Live-cell imaging time series were acquired immediately before and after
the hypo-osmotic treatment. In some experiments, jasplakinolide was added after
10min of exposure to the hypotonic medium; in other experiments, jasplakinolide
was included before and during the treatment with the hypotonic medium. Both
protocols elicited the same actin dependence on the dynamics of clathrin coat
formation. The actin dependence imparted by osmotic swelling of cells incubated
for 10min with 50% medium was fully lost on incubation for 10min with normal
medium.

Controlled stretching. To form the support chamber, first a thin sheet of
polydimethylsiloxane (PDMS; 50 µm in thickness; Specialty Silicone Products) was
placed on the bottom of a 35-mm-diameter glass Petri dish. An optically flat-ended
fused silica rod (Techspec, Edmund Optics) was placed on top of the PDMS sheet
and used to cast the lateral walls of the PDMS chamber. The chamber was made by
pouring PDMS (Sylgard 184 silicone elastomer kit; Ellsworth Adhesives) degassed
for about 20min until no more bubbles formed, and then cured for 2 h at 65 ◦C.
After extensive washes with water, the PDMS sheet was coated overnight at 4 ◦Cwith
50 µgml−1 fibronectin (dissolved in water) and then washed once more with PBS.
About 1×104 cells were plated for 16 h at 37 ◦C. The PDMS chamber with cells was
attached to a 37 ◦C pre-equilibrated stretching device equipped with a micrometre
screw and then mounted on the temperature-controlled stage of the microscope.
Imaging was done before and immediately after∼25%mechanical stretching along
one horizontal axis.

Immunofluorescence microscopy. Cells were fixed for 15min at room tempera-
ture with 4% w/v paraformaldehyde in PBS, followed by sequential incubation with
primary and secondary antibodies in PBS containing 0.05% w/v Triton X-100 and
2% FCS.

Electron microscopy. Electron microscopy was carried out as described
previously10.

Live-cell spinning-disc confocal imaging. About 1×105 BSC1 cells were plated
16 h before imaging on 25-mm-diameter glass No. 1.5 coverslips; a similar number

of MDCK cells were plated 1 day or 3 days (to allow for cell polarization)
before imaging. Imaging medium was phenol red-free DMEM with 10% FCS
and 20mM HEPES. For imaging, the coverslips were placed on a temperature-
controlled 5% CO2-humidified chamber (20/20 Technologies) mounted on the
stage of a Mariana imaging system (Intelligent Imaging Innovations) based on
an Axiovert 200M inverted microscope (Carl Zeiss), a CSU-X1 spinning-disc
confocal unit (Yokogawa Electric Corporation), a spherical-aberration-correction
device (SAC; Infinity Photo-Optical) and a ×63 objective lens (Plan-Apochromat,
NA 1.4, Carl Zeiss)10. The SAC resolved the severe spherical aberration especially
noticeable on the apical surface located 8–10 µm away from the coverslip
using SAC values of 1,100 and 850 for basolateral/bottom and apical surfaces
of cells on glass coverslips, and 0 for bottom (attached) surfaces of cells
on PDMS. Two-dimensional (2D) and 3D time series were obtained using
Slidebook 5 (3I).

Data acquisition, image processing and statistical analysis. 2D movies from
the attached surfaces (basolateral for polarized and ventral for non-polarized cells)
were obtained with 100ms exposures from a single optical plane. 3D movies from
the free surface (apical for polarized and dorsal for non-polarized) correspond to
z stacks of 3–5 consecutive optical planes spaced 0.5 µm acquired at a frequency of
0.5Hz per stack and 100 ms exposure; a 2D movie was then obtained by generating
for each time point a maximum-intensity z projection. The 3D movies had a
duration of 120–160 s, sufficient to fully track the few non-arrested AP-2 spots;
the remaining ones had lifetimes longer than 10min when stalled by the absence
of actin dynamics. Time series from the bottom surface were acquired from a
single optical plane because the intensity and lifetime data obtained from these 2D
movies were equivalent to data obtained from 3Dmovies, thusminimizing potential
photobleaching and phototoxicity effects.

AP-2 spots were identified and tracked using a MATLAB routine (Kural, C.,
Boulant, S. & Kirchhausen, T., manuscript in preparation) using three sequential
steps composed of 2D Gaussian and Laplacian filtering followed by a local maxima-
finding algorithm. The intensity profile as a function of timewas used to characterize
the dynamics of each of the AP-2 spots selected according to the following criteria:
fluorescent objects were diffraction limited; dynamic, non-arrested objects appeared
and disappeared within the time window of the time series with lifetimes of at least
20 s (thus, shorter-lived objects corresponding to abortive pits were not
included for analysis); arrested objects were those present throughout the
duration of the time series; the fluorescent objects did not collide with
each other.

Statistical tests. The statistical significance for the differences between the
lifetime or maximum fluorescence intensity of the data determined under specific
experimental conditions was established using a two-tailed Student t -test.

Estimate of the work required to deform a membrane vesicle under
conditions of membrane tension. We estimate the work done against tension
as the product of the tension and the net increase in membrane area required to
advance the bud to the point in question. During budding of the initial hemisphere,
the increase in membrane area in the pit is accompanied by a decrease in area in
the plane of the cell surface. However, when the membrane starts to constrict, both
areas increase together (Fig. 5). Measured membrane tensions for cells in culture
are in the range 10–50mNm−1. To generate a typical coated pit, which encloses
a vesicle of diameter ∼700Å in a shell of about 60–80 clathrin trimers (∼200
heavy chains), from a membrane under 30mNm−1 tension, the work needed to
form the first hemisphere is about 10−19 J or 60 kJmol−1 (15 kcalmol−1), whereas
the work needed to complete the second hemisphere is three times that value.
If 100 heavy chains contribute to the lattice surrounding the initial hemisphere,
the corresponding membrane deformation requires only about 0.6 kJmol−1 of
net free energy per heavy chain beyond the free energy needed to generate a
membrane-free clathrin lattice—that is, a contribution considerably less than kBT ,
where kB is Boltzmann’s constant and T is temperature. Note that the estimated
work required to bend a membrane into a hemisphere is roughly ten times this
amount, but still only the equivalent of 1–2 well-placed hydrogen bonds per heavy
chain and therefore easily within the free energy likely to come from assembly
of the clathrin lattice. If the tension rises 10-fold (from cytoskeletal stretching,
osmotic changes and so on), to levels comparable to the tension of cytoskeletally
constrained red blood cell membranes38,43, the work needed to overcome tension
becomes comparable to the bending work. Our observations indicate that in
the absence of actin dynamics this contribution is enough to stall invagination.
Addition of one actin monomer to a growing filament generates a force of about
10 pN (refs 44,45) and a displacement at the tip by about 3 nm, for example
about 3× 10−20 J or 18 kJmol−1. Thus, the addition of about 20 actin monomers
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to each of 5–10 filaments can do more than enough work, in concert with the
contribution from clathrin polymerization, to deform the second hemisphere and to
displace the invaginating membrane by about 60 nm—nearly a full vesicle diameter.
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