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Summary

Voltage Sensitive Dye (VSD) imaging is a new and powerful multi-channel record-

ing tool that provides the optimal spatial and temporal resolution range to date

for investigating mesoscopic dynamics of neural population activity. However, ex-

tracting the neural-related response despite the weak signal-to-noise ratio of the

fluorescence measurements remains a major issue. Conventional denoising strate-

gies such as blank subtraction entail averaging of multiple trials and neglect the

importance of the non-repetitive response components present in each trial of the

evoked and spontaneous activity. Moreover, this method relies heavily on the hy-

pothesis that the artefact-related components are always synchronized, which may

not always be the case.

Another complexity for interpretation of the signal recorded by VSD imaging is the

multi-channel nature of the data. VSD imaging provides simultaneous recording of

thousands of different channels, each of them recording from several hundred mi-

crometer squares of cortical sheet. Understanding how different modules of cortex

interact requires development of adequate methods that provide analysis of complex

spatio-temporal patterns of activity rather than individual pixels.

The work presented in this thesis consists of a statistical source separation analysis

of VSD imaging recordings in order to 1) separate the neural-related signal from the

artefacts, and 2) investigate the dynamics of the spatio-temporal patterns of activity

created by populations of cells that share common statistics. For this purpose, we

performed VSD imaging of areas 17 and 18 in the anaesthetized and paralyzed

cat. Full field sinusoidal luminance grating stimulations whose orientation was

chosen among 4 or 6 cardinal values were presented moving each at two opposite

directions. The choice of these stimuli is justified by the fact that the functional

architecture of the visual cortex is well established on the basis of independent

measures, such as electrophysiological recordings.

For the denoising aspect, we developed a hybrid approach that benefits from the

advantages of both model-based and data-driven strategies for source separation.

As a first step, we adapted to our data the general linear model (GLM) regressor
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basis which was developed by Reynaud et al. (2010) in order to denoise awake

monkey recordings. As a second step, model-based GLM denoising was followed by

data-driven temporal principal components analysis (PCA). This two-step approach

was more efficient than blank subtraction (BS) to remove artefacts on single trials.

Once the recordings were denoised, we analyzed the artefact-free signal by using

PCA which could successfully decompose the neural-related signal into functional

groups of populations, revealing the single-trial feature-selective assembly dynam-

ics corresponding to each grating orientation. The principal component with highest

energy corresponded to the global activation process of the cortical network inde-

pendently of the orientation content of the stimulus. Orientation selectivity was re-

vealed in the latter two components: all the possible orientations were represented

respectively on a ring on the two orientation-selective principal components.

This representation led us to investigate dynamics of orientation selectivity in a

state space of reduced dimensionality (3D). The main results show that:

1. Trajectories in the principal component space converged rapidly to the attrac-

tor state defined by the orientation and stayed around the attractor until the

offset of the stimulation;

2. Single trials of evoked responses to drifting gratings stayed in the vicinity of

the mean trajectory corresponding to the stimulus orientation during visual

response plateau, and the clusters of time points grouped by orientation re-

mained separable;

3. The orientation selectivity was detectable right at the onset of the transient

visual response;

4. Trajectories triggered by the onset of the visual response exhibited a higher

selectivity to orientation than triggered from the offset;

5. Horizontal orientation was more separable than the other orientations, sup-

porting the existence of an “oblique or anisotropy effect” previously observed

in behavioral and electrophysiological studies;

6. Two opposite directions corresponding to the same orientation projected to

nearby but still differentiable points on the orientation-selective ring. Indepen-

dent component analysis (ICA) could distinguish different directions, showing

that higher order statistics are needed in order to discriminate populations

responding to different directions.

We also adapted our source separation method to analyze VSD imaging data for a

larger spectrum of stimuli used to investigate input statistics dependence of trial-

to-trial variability of visually evoked responses. These stimuli were previously used
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in the lab combined with intracellular recordings. For each cell recorded intracellu-

larly, a prototypical set of four types of stimuli of increasing complexity was used:

drifting grating, grating and natural image animated by a modeled eye-movement

sequence and dense binary white noise. A stimulus-locked frequency-time wavelet

analysis showed that noise and temporal reliability of neural activity depend on vi-

sual input statistics (Baudot et al., submitted; Frégnac et al., 2005; Marre et al.,

2009; El Boustani et al., 2009). Natural scene animation evoked temporally pre-

cise sparse spike response and large and highly reproducible irregular fluctuations

in the sub-threshold membrane potential, while classical simple stimuli such as

drifting gratings evoke highly variable responses. In order to adapt this protocol to

VSD imaging, longer recording times are required to obtain an adequate temporal

frequency resolution. During longer recording epochs (>1 sec), however, the intrin-

sic signal contaminates the fluorescence signal. We modified our GLM regression

basis in order to include signals that are involved in longer response time scales.

We could obtain a clear denoising that should permit more sophisticated analysis

of single-trial responses to non-classical stimulation with longer recording times.

In summary, we developed an analysis method for VSD imaging that separates the

neural response from the artefacts on single trials, and extracts the spatio-temporal

patterns of activity that are related to functionally differentiable populations. Our

method relies on the hypothesis that the artefactual and neuronal sources that con-

tribute to VSD imaging recordings are linearly separable by their common statistics.

Our denoising method permits to perform single trial analysis, for instance to study

trial-to-trial variability of signal-to-noise ratio in neuronal population activity. Fur-

thermore, neuronal populations themselves are also separable by their stimulus

preference and response dynamics. We could separate neural populations that

show different response profiles to orientation and/or to direction of the drifting

grating stimuli by using PCA and ICA. The compression and projection of V1 maps

in response to drifting gratings on three spatiotemporally structured components

allowed us to investigate cortical state dynamics and demonstrate the separation of

state trajectories as a function of orientation. The sensitivity of our method appears

much higher than that gained with conventional analysis of time courses of indi-

vidual pixels. Our results indicate that neuronal coding of orientation preference

at the population level rather than individual channels is more efficient. We hope

in the future to provide a measurement framework to quantify and interpret the

responses to more naturalistic stimuli.
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Résumé

L’imagerie par colorants sensibles au potentiel (VSD) est une technique d’enregistrement

multi-canal récente. Son principal avantage est de combiner une forte résolution

spatiale à une forte résolution temporelle ce qui en fait un outil optimal pour l’étude

de la dynamique de l’activité de populations neuronales à l’échelle mésoscopique.

Toutefois, l’extraction de la réponse neuronale reste un problème majeur dû au

faible rapport signal sur bruit des mesures de fluorescence. Les stratégies tradi-

tionnelles de débruitage telle que la soustraction du blanc repose sur le moyennage

de plusieurs enregistrements VSD en réponse aux mêmes conditions de stimula-

tion visuelle et négligent l’importance des composantes de réponse non répétées

présentes dans chaque essai de l’activité évoquée et spontanée. En outre, cette

méthode repose en grande partie sur l’hypothèse que les composantes artefactuelles

sont toujours synchronisées, ce qui n’est pas toujours le cas.

Une autre difficulté pour interpréter le signal enregistré par l’imagerie VSD provient

de la nature multi-canale des données. L’imagerie VSD permet d’enregistrer simul-

tanément de plusieurs milliers de canaux différents, chacun d’entre eux reflétant

l’activité neuronale de plusieurs centaines de micromètres carrés de surface corti-

cale. Afin de comprendre comment les différents modules du cortex interagissent,

il est nécessaire de développer des méthodes adéquates permettant l’analyse des

motifs spatio-temporels complexes plutôt que des pixels individuels.

Le travail présenté dans cette thèse consiste en une analyse statistique de sépa-

ration des sources des enregistrements d’imagerie VSD afin de 1) séparer le signal

neuronal des artefacts, et 2) d’étudier la dynamique des motifs spatio-temporels de

l’activité créés par les populations de cellules qui partagent des statistiques com-

munes. À cette fin, nous avons effectué des enregistrements en imagerie VSD des

zones 17 et 18 du cortex du chat anesthésié et paralysé. Des réseaux sinusoïdaux

de luminance en mouvement et en plein champ dont l’orientation a été choisie

parmi les 4 ou 6 valeurs cardinales ont été présentés dans les deux directions. Le

choix de ces stimuli est justifié par le fait que l’architecture fonctionnelle du cor-

tex visuel est bien établie sur la base de mesures indépendantes, telles que des

enregistrements électrophysiologiques.
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Pour le débruitage, nous avons développé une approche hybride exploitant à la fois

la nature des données et un modèle numérique des sources des enregistrements.

Dans un premier temps, nous avons adapté un modèle linéaire général (GLM) à nos

données qui a été initialement développé par Reynaud et al. (2010) pour débruiter

des enregistrements chez le singe éveillé. Le débruitage GLM a par la suite été com-

plété par une analyse en composantes principales (PCA) dans le domaine temporel.

Cette approche en deux étapes est plus efficace que la soustraction du blanc (BS)

pour enlever des artefacts sur les essais unitaires.

Une fois les enregistrements débruités, nous avons analysé le signal sans arte-

fact à l’aide de la PCA afin de décomposer le signal neuronal provenant de dif-

férents groupes de neurones fonctionnels, révélant ainsi la dynamique spécifique

à chaque essai pour chaque orientation des réseaux sinusoïdaux de luminance en

mouvement. La composante principale avec l’énergie la plus élevée correspondait à

l’activation globale du réseau cortical indépendamment de l’orientation des stimuli.

La sélectivité à l’orientation a été révélée dans les deux composantes suivantes :

les attracteurs correspondants à toutes les orientations possibles ont été représen-

tés respectivement sur un anneau défini par les deux axes respectifs de ces deux

composantes.

Cette représentation nous a permis d’étudier la dynamique de la sélectivité à l’orientation

dans un espace d’état réduit en trois dimensions. Les principaux résultats mon-

trent que:

1. Les trajectoires dans l’espace des composantes principales convergent rapide-

ment vers un état attracteur défini par l’orientation de la stimulation et restent

autour de cet attracteur jusqu’à la fin de la stimulation;

2. Les réponses évoquées par chacun des essais unitaires résident au voisinage

de la trajectoire moyenne correspondant à l’orientation de la stimulation pen-

dant le plateau de la réponse visuelle, et les points temporels sont groupés par

orientation restent séparables;

3. La sélectivité à l’orientation est détectable dès le début de la réponse visuelle

transitoire;

4. Les trajectoires déclenchées par l’apparition de la réponse visuelle montrent

une plus forte sélectivité à l’orientation par rapport aux trajectoires de retour;

5. L’orientation horizontale est davantage séparable que les autres orientations,

ce qui soutient l’existence d’un ńăeffet de l’oblique ou d’anisotropieăż déjà

observé dans des études comportementales et électrophysiologiques;



ix

6. Deux directions opposées correspondant à la même orientation projettent à

proximité mais restent toujours distinguables sur l’anneau de sélectivité à

l’orientation. L’analyse en composantes indépendantes (ICA) a permis de dis-

tinguer les deux directions différentes, montrant que des statistiques d’ordre

supérieur sont nécessaires afin de discriminer les populations qui préfèrent

des directions différentes.

Nous avons également adapté notre méthode de séparation des sources pour l’analyse

de données d’imagerie VSD sur un plus large spectre de stimuli afin d’étudier la

dépendance des statistiques d’entrée sur la variabilité des réponses évoquées pour

chaque essai unitaire. Ces stimuli ont été utilisés précédemment dans le cadre

d’enregistrements intracellulaires dans le laboratoire. Pour chaque cellule enreg-

istrée au niveau intracellulaire, un ensemble de quatre types de stimuli de com-

plexité croissante a été utilisé : un stimulus contrôle dont la luminance est uni-

forme (‘blank’), des réseaux de luminance sinusoïdaux en mouvement, une image

naturelle dont l’animation reflète les mouvements oculaires naturels du chat pen-

dant l’exploration et un bruit blanc dense binaire. Une analyse fréquence-temps

en ondelettes clampées aux stimulations visuelles a montré que le bruit et la fia-

bilité temporelle de l’activité neuronale dépend des statistiques de l’entrée visuelle

(Baudot et al, soumis;. Frégnac et al, 2005;. Marre et al, 2009;. El Boustani et

al. , 2009). L’image naturelle animée par des mouvements oculaires modélisés a

quant à elle évoqué des réponses précises avec peu de potentiels d’action associé à

de larges fluctuations irrégulières du potentiel membranaire sous-liminaire haute-

ment reproductibles. Au contraire, les stimuli classiques plus simples tels que les

réseaux de luminance sinusoïdaux en mouvement ont provoqué des réponses très

variables. Afin d’adapter ce protocole d’imagerie VSD, des durées d’enregistrement

plus longues ont été nécessaires pour obtenir une résolution de fréquence tem-

porelle adéquate. Pour ces enregistrements plus longs (> 1 s), le signal intrinsèque

à la réponse contamine le signal de fluorescence. Nous avons modifié notre base

de régression GLM afin d’inclure des signaux qui sont impliqués dans des échelles

de temps plus longues qui sont adaptées à ces réponses. Nous avons obtenu un

débruitage clair qui devrait permettre une analyse plus sophistiquée des réponses

aux stimulations unitaires non-classiques avec des durées d’enregistrement plus

longues.

En résumé, nous avons développé une méthode d’analyse pour l’imagerie VSD qui

sépare la réponse neuronale à partir des artefacts sur les essais simples, et ex-

trait les motifs spatio-temporels de l’activité qui sont fonctionnellement liés à des

populations différentiables. Notre méthode repose sur l’hypothèse que les sources

artefactuelles et neuronales qui contribuent aux enregistrements d’imagerie VSD

sont linéairement séparables par leurs statistiques communes. Notre méthode de
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débruitage permet d’effectuer des analyses sur des essais unitaires, par exemple

pour étudier la variabilité intrinsèque de chaque réponse de la population neu-

ronale enregistrée pour une même stimulation. En outre, les populations neu-

ronales sont aussi séparées selon leur préférence aux stimuli et la dynamique de

leur réponse. Nous avons pu séparer des populations de neurones qui montrent

différents profils de réponse à l’orientation et / ou à la direction des réseaux de lu-

minance sinusoïdaux en mouvement à l’aide de la PCA et de l’ICA. La compression

et la projection des cartes V1 en réponse aux réseaux de luminance sinusoïdaux

en mouvement sur trois axes de composantes principales nous a permis d’étudier

la dynamique des états corticaux et démontrer la séparabilité des trajectoires d’état

en fonction de l’orientation. La sensibilité de notre méthode semble beaucoup plus

élevée que celle obtenue avec l’analyse classique des réponses temporelles des pix-

els individuels. Nos résultats indiquent que le codage neuronal de préférence à

l’orientation au niveau de la population plutôt que des canaux individuels est plus

efficace. Nous espérons à l’avenir fournir un cadre de mesure pour la quantification

et l’interprétation des réponses aux stimuli plus naturels.
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Brain is the most complex structure known to us, consisting of up to 100 billion of

neurons, each neuron making up to 104 connections, and each of them firing one

to several hundred times per second. In the need of extracting useful information

from the unpredictable and unstable environment, nervous systems have evolved

to feature both hierarchical and parallel structures and developed efficient coding

strategies. Information is processed in parallel structures each responsible of a

particular task. Meanwhile, each structure is organized in several levels of organi-

zation, each modulated both by the feed-forward emergent properties of the inferior

level, and the top down immergent influence of the higher level.

The visual system is intensively studied in both experimental and modeling aspects,

as a result of its importance for human perception. Importance of vision in percep-

tion hints that the most complex circuitry in the brain is the visual system. Even

though our knowledge about its functioning is considerably widened, the most im-

portant and basic questions are not clearly answered yet: How do the neurons and

hence different structures in the brain coordinate in response to the visual input?

How does the brain encode the information coming from the dynamic environment?

Efficient interpretation of the dynamic sensory input is crucial for survival of the an-

imal in its natural environment. Anatomical organization of the cortex has evolved

in order to successfully process signals coming from external world, and to inter-

pret the incoming signal in an appropriate context. The perceptive task is shared

among different structures in different levels of organization, which are combined

at the end to obtain an adequate interpretation of the whole.

Mammalian Brain as a Complex Adaptive System

A complex system is a collection of a number of building blocks interacting nonlin-

early and giving rise to properties as a whole that are not evident from the prop-

erties of the individual parts. Some basic characteristics of complex systems are

summarized in Figure 1. Complex systems emerge from self-organization of the co-

ordinative behavior of simple units in order to maintain energy optimization. Even

though the building blocks seem to be fairly simple, nonlinear interactions between

them may change the state of the whole. Smooth changes of the parameters that

define the interaction between single units may change the behavior of the whole in

a drastic way.

The brain is a “complex temporally and spatially multiscale structure that gives rise

to elaborate molecular, cellular, and neuronal phenomena that together form the

physical and biological basis of cognition” (Bassett and Gazzaniga, 2011). As any

complex system, the nervous system is organized at several levels of organization,
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Figure 1 – Characteristics of adaptive complex systems. Dynamically interacting “sim-
ple” systems self-organize and give rise to a number of scales which then form the
complex system. This organization evolves in time, resulting in different behaviors as a
whole. Image created by Marshall Clemens.

which are “separable conceptually but not detachable physically” (Churchland and

Sejnowski, 1988). Still, the brain is much more “complex” than any other classically

studied “complex system”. This complexity is a result of the vast number of different

levels of organization, and the very rich nature of the emergent and immergent

properties. Our limited knowledge about each level obstructs the “simplification”

of building blocks, which is necessary in order to study the brain with the tools

provided by the complex systems literature.

Brain is also an adaptive system. One of the biggest difficulties for brain func-

tioning arises from the unpredictability of the nature. Brains have to retrieve the

information collected from the dynamic and often “noisy” environment, in the sense

that the information is not always present the same way in the same context. This

requires the brain to act by adapting the organism to the new state of the environ-

ment. Structure of the brain is plastic, hence not only the behavior, but also the

material adapts to the environment in order to increase efficiency. Therefore, every

brain has its own structure, as a function of both its own properties and the natural



7

environment in which the structure is shaped (Koch and Laurent, 1999).

The levels of organization in the brain include molecules, synapses, single neurons,

columns, hypercolumns, maps, cortical areas, sensory systems, and finally, the

whole central nervous system (see Figure 1.1, which will be explained more in de-

tails in Section 1). Organization at each level emerges from the interactions between

the micro-level “agents” of the inferior level. Once the structure is stable, the whole

is insensitive to the individual activities of the members of the inferior level (Wolf

and Geisel, 2003).

Figure 2 – Archimboldo’s painting of Rudolf II represented as Vertumnus, the Roman
god of the seasons. When the painting is seen from a short distance, the image is a
collection of fruits, vegetables and flowers. If the painting is seen from a longer distance,
the image of a person appears as a result of the good continuation of the forms of the
individual parts.

The concept of “Perception” can be thought as an emergent property arising from

the central nervous system, even though there is no physical layer corresponding

to this level of organization. Self-organization at the perceptual level is revealed by

the Gestalt psychology. Gestalt principles indicate that the sole interpretation of

individual parts is not enough to explain the whole. In this sense, if the individual

parts are not linked by the Gestalt laws, there is no information provided by a single

part that would change the interpretation of the whole. The works of the medieval

artist Archimboldo are good examples. For instance in the painting presented in

Figure 2, Emperor Rudolf II is presented as the Roman god of seasons. The image is
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a collection of fruits, vegetables and flowers; which form the portrait of the emperor

as a result of the Gestalt law of good continuation of the forms. In mental disorders

such as schizophrenia or visual agnosia, this nice organization may be deteriorated,

resulting in the loss of the concept of the whole, and a perception that is affected

by the inner abnormal activity of the brain (hallucinations).

Perception emerges as the neuronal circuits are shaped by the information received

from the natural environment. The organization schemes that will be explained

in the following chapters are dependent on the initial training of the genetically-

predefined neuronal networks. For example, development of the cortical maps can

be explained by a self-organizing neural network trained by retinal waves and the

natural environment (Mikkulainen, 2005), and animals that grow up in a different

natural environment show biases in cortical map development (Tanaka et al., 2006).

As functionality of each brain is shaped by its own experience in the natural envi-

ronment, individual experiences can be subjective. Different emergent properties of

each individual brain may hence lead to the philosophical notion of qualia, i.e. how

a certain mental state is felt or perceived by an individual. Mainzer (2007) argued

that the qualia emerge by the interaction of the individual with the environment,

and that this interaction can be explained by the nonlinear dynamics of complex

systems. Understanding the limits of variability in how the brain respond to a par-

ticular stimulation may help us to understand the objective limits of qualia, and

study of the dynamics of the brain activity involving a single experience may give a

quantitative measure of a certain quale.

In summary, a complex systems approach to study the brain would be useful to

understand how individual units at a certain level (for example ion channels, single

cells or columns) interact in order to give rise to the properties observed at the

higher level. An illustration of levels of organization (or levels of abstraction) in the

visual system is shown in Figure 3. Mesoscale level can be further divided into local

and global population levels. Each level has a particular connectivity and coding

strategy in order to solve a certain goal that would link the levels.

The work presented in this thesis is focused on population level processing in pri-

mary visual cortex: We investigate how small groups of neurons coordinate in order

to perform a common task that would give rise to global activity patterns. Un-

derstanding of a particular level requires an intuition of what is done in inferior

and superior levels. In our case, inferior level corresponds to the cellular level:

each neuron has a way of handling the incoming information. Superior level can

be considered as the system level: we are studying the primary visual cortex (V1)

which has a particular task of local information extraction, but which acts also as

a read-out buffer of the whole visual system (Lee and Mumford, 2003). We will
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Figure 3 – Levels of organization in the visual system, and their potential links. The
region indicated by the red frame is the scale of interest of this thesis. Modified from
DiCarlo et al. (2012).

first explain the basic properties of neurons that involve microscopic scale activ-

ity in the brain. Then, we will introduce the macroscopic scale organization of the

visual system, which corresponds to the regions and pathways. For each region,

we will explain the region-specific characteristics of the microscopic organization

which corresponds to the individual neurons. Finally, we will elaborate the meso-
scopic scale organization which emerges from the interactions between individual

neurons, corresponding to the population level. Before explaining the anatomy and

physiology of the visual system, it is convenient to remind available tools which

help us investigate the neuronal activity in different levels of organization.
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Chapter 1

Measures of neuronal activity at
different scales

Our knowledge of the function of the brain has evolved very fast since the first ob-

servations of Santiago Ramón y Cajal, Camillo Golgi and Heinrich Wilhelm Gottfried

von Waldeyer-Hart at the end of the 19th century about the existence, structure and

connectivity of neurons. Early studies were mostly based on anatomical investiga-

tions of the neuronal tissue. The beginning of recordings with electrodes made a

revolutionary contribution to the field, permitting to study real-time electrical activi-

ties of the neurons. Since several decades, multichannel recordings and techniques

that provide recording of the brain at various scales were developed. Combination

of all these tools now will hopefully let us investigate the brain activity in all the

aspects. In this chapter, we will briefly explain techniques used in neuroscience to

study the function of the brain at different scales.

Neuronal tissues can be studied in-vitro, or in-vivo. In-vitro studies often involve

working on slices of brain and are useful to determine the individual properties of

isolated neurons independent of the interactions with other brain regions. However,

in most cases, slicing procedures destroy most of the axons and dendritic trees,

isolating the individual cell from the local network but it is still possible to study

physical properties of the cellular membrane by injecting ionic solutions.

In order to understand the function of the living tissue in its context, network

interactions need to be taken into account. If we want to study how the local and

global activities interact together, in-vivo studies are more suitable. In-vivo studies

involve working on intact animal, taken into account ethical considerations which

may involve working with anesthetizers.

These two approaches combined may allow one to understand how brain tissue

function at different scales and bridge together multiple levels of organization. The-

11
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oretical, computational, or hardware models of the neuronal systems permit deeper

but more speculative investigations of the neuronal theories without the complica-

tions of working with the living tissue. Modeling is especially useful for investigating

parameter scales not reachable with in-vitro or in-vivo studies, or to bridge various

studies performed at different scales. It is generally fruitful to combine analytical

and computational tools with classical in-vitro and in-vivo studies in order to verify

the consequences and limits of experimental findings.

Levels of organization in the nervous system and the spatio-temporal limits of the

most well-known tools available in neuroscience are shown in Figure 1.1. The clas-

sification of levels is based on the spatial scale. However, it should be noted that

in the lower levels dynamics are faster than in the higher levels. It is important to

choose an appropriate method that provides information about the level of organi-

zation of interest.

Figure 1.1 – Levels of organization in the brain, and available methods to investigate the
dynamics at each level. Adapted from Churchland and Sejnowski (1988) and Grinvald
and Hildesheim (2004).

1.1 Electrophysiology

Most of our knowledge today about the brain is based on electrophysiological stud-

ies. Depending on the type of recording, electrophysiological studies provide in-

formation about the electrical activity in a certain level using electrodes. More
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conventional techniques involve single unit recordings. For intracellular studies,

recordings are done with different types of electrodes. Micropipette electrodes in

patch clamp provide recording of single or multiple channels, and sharp electrodes

provide a measure of the voltage or current across the membrane. With these

techniques, it is possible to record action potentials created by the neuron in a mil-

lisecond range. These recordings provide also the measures of the fluctuations of

the sub-threshold membrane potential that reflects more mesoscopic interactions

in the local network.

Transmembrane currents can also be observed on the extracellular medium. Single

unit activities revealed as action potentials and local field potentials (LFP) created

by multiple neurons in a small volume can be recorded with microelectrodes placed

in the extracellular space. LFP is a measure of the potential between two nearby but

sufficiently apart electrodes, which gives information about the local current flow in

the extracellular medium. Any activity of any excitable tissue around the recording

site contributes to the LFP signal. The raw signal obtained by the recording elec-

trode is low-pass filtered around a cut-off about 200 Hz for analysis. This process

eliminates any fast events such as action potentials, and consequently the resulting

signal reflects a more mesoscopic activity rather than fast individual activation of

nearby neurons.

Even though the extracellular field provides a pooling of the activation of multiple

neurons in the area, biases in sampling may arise from a number of reasons such as

the geometry of the neurons, distance of a neuron from the electrode, and packing

density (Buzsáki et al., 2012). Moreover, the reference electrode should be placed

nearby in the brain, and this area often has very similar properties as the recording

region. It is very difficult to choose a reference region that does not have any

dominant local activity. Therefore, placement of the reference electrode introduces

a second bias in LFP measurements.

In the last decades, development of multielectrode arrays provided means to record

activity from a grid of multiple channels simultaneously. These improvements

opened the way to study spatial arrangement of the cortical tissue at a mesoscopic

scale. Multichannel recordings provide means to record spatiotemporal patterns

of activity in the brain by sampling from multiple sites. Advances in recording

and computation devices opens the way to record the data simultaneously from a

high number of channels, however analysis of the large datasets provided by mul-

tichannel recordings require development of appropriate algorithms that optimize

computation. This is a common problem with neuroimaging techniques which may

also be considered as multichannel recordings.

Strong extracellular potentials originate mostly from correlated activity of the neu-



14 CHAPTER 1. MEASURES OF NEURONAL ACTIVITY

rons, as any uncorrelated activity will result in a flat profile. Correlated activity on

an even more global scale can be observed with electrocorticography, which corre-

sponds to the recording of the electrical activity using subdural surface electrodes.

On the most global end of electrophysiology, we find electroencephalography (EEG).

This is the oldest and the only noninvasive electrophysiological technique, which

involves recording the activity filtered by the skull using scalp electrodes. Modern

EEG caps provide up to 256 channels of recording.

1.2 Neuroimaging

Alternative methods to electrophysiology involve indirect measures of the neuronal

activity. In the last decades, development of various neuroimaging techniques pro-

vided noninvasive measures of the brain activity. Especially fMRI become very pop-

ular as a result of the high-resolution non-invasive dynamic measurements pro-

vided by the method. fMRI is a special case of magnetic resonance imaging. It

benefits the different relaxation times of magnetization between oxygenated and

non-oxygenated tissue. As the neural populations get activated, local blood vol-

ume, oxyhemoglobin and deoxyhemoglobin concentrations change, giving rise to

the blood oxygen level dependent (BOLD) signal. Time scales of activation and

dynamics of the BOLD signal is relatively very slow with respect to the electrical

activity. The time constant of the hemodynamic transfer function is in the order

of a few seconds while electrophysiological activity may occur at a range of mil-

liseconds. BOLD signal reflects the metabolic changes that result from oxygenation

and energy consumption of the tissue, therefore not only neurons but also glial

cells and neurovascular coupling contribute to this signal (Logothetis and Wandell,

2004). fMRI method provides a three dimensional recording of the brain activity

with high spatial resolution and sampling. High spatial resolution up to tens of mi-

crometers may be obtained using stronger magnetic field (>7 Tesla) using external

contrast agents and smaller scanners, while human recordings can be done up to

a millimeter range using 3-4 Tesla magnetic field.

Other indirect measures of the macroscale brain activity are positron emission to-

mography (PET), Magnetoencephalography (MEG) and 2-deoxy-D-glucose (2-DG)

method. PET was the most popular tool before the invention of the fMRI and is

still used in neuroimaging. It involves usage of radioactive tracers which either

stay in blood vessels or bind to receptors. These tracers emit gamma rays which

are then detected by the PET scanner, reflecting the dynamics of the binding sites.

MEG provides measure of the magnetic field created by the brain activity at high

temporal but low spatial resolution. 2-DG method provides a metabolic measure of
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active brain areas. Using 2DG marking, it is then possible to perform post-mortem

visualization of active brain areas, networks or single cells. This method has been

very useful in order to image the functional architecture of the cortex before optical

imaging methods were developed. However, real-time observation of the dynamics

is not possible with this technique. 2-DG can also be used as a tracer for in-vivo

functional near infrared imaging, similar to the radioactive agents used in PET scan.

1.3 Optical Imaging

As we see in Figure 1.1, optical imaging covers the widest spatial and temporal

bandwidth for recording the brain activity. In reality, spatio-temporal resolution

that is available while doing optical imaging is not limited by the nature of the

interactions that are reflected by optical imaging, but the recording devices often

limit the resolution of the recordings to a certain degree.

Optical imaging is less invasive than the other electrophysiological tools available

in the micro and mesoscales. Recordings can be repeated over years on the same

animal. The method also provides the possibility to work on behaving animals.

Optical imaging can be divided into two subcategories: intrinsic and extrinsic imag-

ing. Intrinsic imaging involves recording of the metabolic changes of the tissue

only by optical techniques. In extrinsic imaging, contrast agents that are sensi-

tive to a particular change in the neuronal activity are used. Voltage Sensitive Dye

(VSD) imaging falls into the extrinsic imaging category. Optical imaging is also a

neuroimaging tool, and VSD imaging can be considered as both neuroimaging and

electrophysiological recording technique. Good reviews of the optical imaging tech-

nique are available (see Grinvald et al. (1999) for a general overview, Grinvald and

Hildesheim (2004) and Chemla and Chavane (2010b) for VSD imaging). Here we

will briefly introduce the basic principles of optical imaging, but the nature of the

VSD signal and the important bibliography will be further detailed in the text.

Intrinsic imaging is a measure of metabolic changes due to neuronal activity. The

underlying mechanism in intrinsic imaging is the BOLD signal, as it is for fMRI.

When light is shed on the brain, these metabolic changes result in scattering and

absorption of the light reflected by the tissue.

Optical signal observed by intrinsic imaging follows the BOLD signal activation

range. Following the sensory stimulation, deoxyhemoglobin concentration increases

in active regions as a result of initial oxygen consumption, resulting in darkening of

the cortex. This signal is equivalent to the “initial dip” observed in the fMRI record-

ings. Following this signal, delayed blood supply arrives in the tissue, decreasing he
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deoxyhemoglobin concentration and increasing oxyhemoglobin concentration. On a

more precise time resolution, highly localized oxygen delivery to the active neuronal

tissue occurs 200-400 ms after stimulus onset. This oxygen delivery is followed by

the increase in blood volume 300-400 ms later, and finally oxyhemoglobin concen-

tration starts to increase after 1000 ms (Frostig et al., 1990). The last contribution

to the intrinsic signal is the light scattering that arises from the ion and water

movement, volume changes of extracellular space, capillary expansion and neuro-

transmitter release (Grinvald et al., 1999).

A B C

Figure 1.2 – Time courses of intrinsic signal compared to oxyhemoglobin and deoxyhe-
moglobin concentrations. A: Time course of the global intrinsic signal on awake (solid
line) and anesthetized (dashed line) monkey B: Oxyhemoglobin concentration and C:
Deoxyhemoglobin concentration on awake monkey (solid lines) and anesthetized cat
(dashed lines). Modified from Shtoyerman et al. (2000).

The relationship between the intrinsic signal and hemodynamic changes can be

measured by image spectroscopy (Malonek and Grinvald, 1996; Vanzetta and Grin-

vald, 1999; Shtoyerman et al., 2000). This method is based on the differences

of reflection resulting from the amount of absorption by capillaries, small arteri-

oles, and venules at different wavelengths. Time courses of the intrinsic signal and

oxyhemoglobin and deoxyhemoglobin concentrations observed by Shtoyerman and

colleagues are shown in Figure 1.2. Following these observations, Vanzetta and

Grinvald (1999) measured the oxygenation level in the tissue directly by phospho-

rescence and showed that the global intrinsic signal can be predicted by a linear

combination of the oxyhemoglobin and deoxyhemoglobin concentrations (Vanzetta

and Grinvald, 1999).

VSD imaging provides a more direct and temporally precise measurement of the

neuronal activity. Voltage sensitive dyes are molecules that bind to the external

surface of membranes of neurons. The dye’s sensitivity to voltage changes can be

explained by a direct electro-chromic effect or the motion of the dye molecule in

and out of the membrane. These effects reflect the changing electric field across

the membrane and result in an increase of fluorescence. The blue dye (RH 1691,

Optical Imaging, Rehovoth, Israel) filters out most of the hemodynamic artefacts



1.3. OPTICAL IMAGING 17

because of the wavelength of light that is recorded (Shoham et al., 1999). Fluores-

cence is captured by exciting the tissue on the peak of the optimum wavelength

for the dye (~630nm), and then by filtering the emitted light above the peak of the

optimum response range (~665nm). For intrinsic imaging, the cortex is illuminated

at 605nm wavelength light and no other filter is used. The use of the second filter

in VSD imaging is one of the major differences between VSD imaging and intrinsic

imaging: in VSD imaging, only the fluorescent light is recorded while in intrinsic

imaging the reflected light is recorded at all wavelengths. This provides filtering of

an important amount of blood flow related artefacts.

Dyes provide information about the local change of the membrane potential. Flu-

orescence that is reflected by the dye can be captured over different levels of or-

ganization with a good choice of recording equipment. Therefore, the resolution

indicated in Figure 1.1 represents the limitation of the dye technology only, but the

recording limitations should also be taken into account.

In order to record population activity from V1, the dye which is diluted in an appro-

priate solvent is applied on the cortical surface in a glass-covered chamber mounted

on the skull opened over the areas to be recorded, and washed out after 2-3 hours

of staining. This provides the dye to penetrate the cortical surface. In rodents, it is

possible to stain the cortex without removing the dura (Lippert et al., 2007).

Due to the limit of penetration in the six layered cortex and filtering out of the signal

coming from the deep layers, VSD signal reflects mostly the activity from layer II/III

(Ferezou et al., 2006). However, dendritic trees of the neurons in different layers

spread over other layers. A recent modeling study suggested that the 45% of the

VSD signal originates from layer II/III activity, 20% from layer IV and 35% from

layer V (Chemla and Chavane, 2010a).

Population recordings pool activity of tens of neurons under a single pixel. This

single pixel reflects the activation of all the dye molecules under the recorded area

(plus the light scattering from the nearby neurons) in a millisecond resolution. As

the action potentials are very fast events that move very locally on the axon, and

as the dendritic surface is very large compared to axonal surface, action potentials

are filtered out in VSD recordings and the origin of the signal is mostly dendritic

(Ferezou et al., 2006). Nevertheless, Chemla and Chavane (2010a) estimated the

contribution of the pure spiking activity on the axons in VSD signal to be around

14%.

In contrast to multielectrode arrays, VSD imaging at population level provides pool-

ing of multiple neurons under a pixel. Extracellular electrodes are sensitive to

single unit activities over a region, but the recordings are biased as a result of the

geometry and electrode placement (see the previous section). Instead, VSD imaging
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provides a more even pooling of all the excitable membrane surfaces under a pixel,

which reflects direct intracellular membrane potential including the fine structure

of the dendrites and axons. Chemla and Chavane (2010a) estimated the different

contributions to this signal. They showed that the VSD imaging reflects mostly the

dendritic signals (77%) of excitatory neurons (83%). Glial cells also contribute to

the signal. However,e glial cells have very slow activation dynamics; hence their

contribution is not present during the first seconds of recording.

As a result of this rich pooling, synchronous activity of nearby neurons is essential

in order to obtain a high quality recording. As we will see in the following chapters,

modular organization of the cortex provides packing of functionally similar neurons

in nearby regions. This is the crucial mechanism that makes VSD imaging possi-

ble in the population level. One other consequence of the pooling of all excitable

membranes under a pixel is the over-representation of dendritic activities over the

activities going on the somata and the axons. This is a result of the greater volume

of dendrites compared to somata and axons in the cortex, especially on the layers

2/3 where horizontal connections between cells are prominent.

Even though the same cameras are often used for VSD imaging and intrinsic imag-

ing, lower temporal resolution of intrinsic imaging permits sacrificing the temporal

resolution for higher spatial resolution. Lower temporal resolution is also a factor

that increases the signal-to-noise ratio in intrinsic imaging. As we go to higher

temporal resolutions, the number of photons detected per frame will decrease, in-

creasing the shot noise detected by the camera.

VSD imaging provides the optimal spatial and temporal resolution range to date

for investigating mesoscopic dynamics of neural population activity. Extracellular

recordings via multichannel arrays and two-photon imaging of calcium signal are

the other techniques that offer comparable resolution. Multielectrode arrays pro-

vide fast and direct recording of electrical activity in the brain, however the spatial

sampling is low compared to VSD imaging. Moreover, multielectrode arrays record

the activity on the extracellular media, and adequate methods are needed in order

to extract single cell responses. The advantage over VSD imaging is the temporal

resolution and the possibility to record supra-threshold activity.

Calcium imaging is another method that is comparable to the VSD imaging spec-

trum. This method measures the calcium in the cells by using chemical or genet-

ically encoded indicators, which bind to calcium ions. When this binding occurs,

a fluorescence change which permits visualization of intracellular calcium concen-

tration takes place. When combined with 2-photon microscopy, calcium imaging

provides very good spatial resolution that make observation of single cell activity

possible. However, calcium dynamics are relatively slow with respect to membrane
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potential measures. Calcium signal is also biased towards supra-threshold activity

(Peterka et al., 2011).

Berger et al. (2007) performed simultaneous recording of VSD and calcium imaging

in order to quantify the differences between the measures provided by these meth-

ods. They showed that calcium signal is slower than membrane potential revealed

by VSD to return to baseline, and calcium signal filters fast fluctuations of the

membrane potential. Moreover, the VSD signal spread more than the calcium sig-

nal, which is expected from the differences between subthreshold and suprathresh-

old activities revealed by VSD and calcium imaging respectively. It should be noted

that as it is the case for VSD imaging, calcium signal itself offers a high resolu-

tion measure (it occupies the lower two-thirds of the optical imaging resolution in

Figure1.1 (Grinvald, 2005)), but the main restriction is the recording and staining

technology.

Overall, VSD imaging overcomes the low temporal dynamics of intrinsic and cal-

cium imaging, while providing a much higher spatial sampling than multielectrode

arrays. Moreover, subthreshold potential recorded by VSD imaging reflects local

neuronal interactions avoiding the bias of individual cell spiking, which provides a

better measure of mesoscopic activity in the brain.
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Chapter 2

Visual Cortical Network:
Functional Organization of the
Visual Cortex

2.1 Neuron as a Basic Processing Unit

The fundamental cornerstone of information processing in the brain is a neuron.

Each neuron in the cortex makes connections with a number of cells (several thou-

sands in case of pyramidal neurons) via synapses. Neurons make usually more

than one synapse and many of them make and receive hundreds or thousands of

synapses. Dendritic trees can differ in the degree of convergence of the signals that

they receive: all or many of the synapses on a dendritic tree can come from different

neurons, or from only a few.

Neurons are excitable cells which communicate via electrical signals created by the

potential difference between the intracellular and extracellular media. When mem-

brane potential of a neuron exceeds a certain threshold, it fires action potentials

which provide digital information transfer between neurons. This is done by the

neurotransmitter release in the synaptic cleft by the presynaptic neuron, which will

be detected by the postsynaptic neuron.

Firing of action potentials is not the only way that neurons communicate. Fluctua-

tions of the membrane potentials are also important for modulation of the informa-

tion transfer, even if the action potential threshold may not have been exceeded. A

recent study showed that the ephaptic coupling between adjacent nerve fibers also

alters network activity, showing that the synaptic coupling is not the only commu-

nication channel between neurons (Fröhlich and McCormick, 2010).
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Neurons that modulate the neuronal activity by diminishing the membrane poten-

tial of the post-synaptic neuron rather than transmitting the discharge are called

inhibitory neurons. The ratio of inhibitory to excitatory neurons in the brain is 1/4;

a ratio that is conserved across species and cortical regions.

Neurons in the visual system extract local information by processing the informa-

tion that falls into their receptive fields (RF). Part of the visual scene falling on the

RF of a cell may evoke ON or OFF response. RFs constitute of subregions that code

for ON and OFF responses. A visual response is called ON when a stimulus with

a positive local luminance is present on the field. A stimulus on the OFF region

creates a response after a positive luminance stimulus disappears from the region,

or when a negative luminance stimulus appears.

As we go higher in the cortical hierarchy, RFs of neurons become larger and selec-

tive to more complex structures. On the lowest end of this hierarchy, in retina and

Lateral Geniculate Nucleus (LGN) neurons possess concentric on center-off sur-

round or off center-on surround RFs. We will explain RF properties in each area in

details in the following of the text.

2.2 Overview of the Visual System

Vision is amongst the most complex tasks that we humans are capable to perform,

involving almost one-fourth of the whole brain. Even though vision is the one which

is the most studied among all brain functions, our knowledge about the functioning

of visual processing is still limited.

Vision in humans employs a highly connected network of a high number of brain

regions. Nevertheless, there are very primitive animals with much smaller brains

consisting of much less neurons that are capable of detecting light and extracting

relevant information from the light. As we go lower in the evolutionary tree, number

of specified cortical regions decrease, giving more elaborate functions to earlier vi-

sual structures. Therefore, studies done on different species should be considered

in the framework of the species-specific visual system organization. The study pre-

sented in this thesis is based on cat, a species which possesses a highly developed

visual system that has been studied extensively in the past and now.

In cat brain, there are 22 regions that are involved in visual processing. 17 of these

regions are classically visual and 5 of them are limbic structures. This 22 node

graph includes 224 connections, of which 168 are reciprocal (Scannell et al., 1995)

(see Figure 2.1A). Extrinsic connections from a single area constitutes only for a

small portion of synapses of their target area. More precisely, the strongest single
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cortico-cortical connection contributes only 15% of extrinsic input and the strongest

single thalamo-cortical input contributes only 20% of total extrinsic input (Scannell

and Young, 2002). This indicates that the rest of the synaptic connections are

maintained by the input from other cortical areas, and by the parallel connections

within the area.

Information flow for visual processing is mostly based on the studies on primates.

Here we will explain the pathways based on primate studies, and we will give the

cat homologue of the corresponding areas where available.

Major visual areas and their role in perception are shown in Figure 2.1B. The sen-

sory information flow in this complex hierarchy is hypothetically considered in

two parallel streams: Dorsal (or where) pathway, and Ventral (or what) pathway

(Mishkin et al., 1983). The distinction between these two pathways starts early in

the retina, with the parasol ganglion cells that give rise to the magnocellular stream

in LGN, and the midget cells that converge to the parvocellular stream of the LGN

(reviewed by Nassi and Callaway (2009)). Two streams project to different layers of

V1 and then to different subregions of V2. After V2 and V3, those pathways project

to distinct cortical areas.

Although the two visual streams are considered to be completely independent, in

fact they are strongly connected. The high connectivity between different areas

shown in Figure 2.1A reveals that the information flow is not only hierarchical:

Feedback and parallel connections are also very important in visual processing.

This means that even though every neuron in each region is responsible of a partic-

ular task, each of them receive information from other regions that are responsible

of processing other types of information. Neurons also communicate with the other

neurons in the same area that are processing other specific aspects of the visual

stimulus. Moreover, it is difficult to determine a strict hierarchy in such a densely

connected network. Hilgetag et al. (1996) used connectivity algorithms and showed

that there is no optimal hierarchy between the brain regions.

The RF of the neurons in each structure gets bigger as we go higher in the hier-

archy. This indicates that emergent feed-forward activity helps shaping the global

response, and immergent feedback activity provides the modulation of the local

response by more global features. Likewise, in higher areas, neurons become se-

lective to more complex structures while early areas extract information about the

local structure of the visual input (for a review, see Van Essen and Gallant (1994)).

Hierarchies and parallelism in the visual system may vary from species to species.

In cat, areas 17 and 18 are parallel while in primates they are hierarchical.

Now we will present briefly the role of visual areas in vision, going from low to high

order structures in the hierarchy.
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Figure 2.1 – Connectivity of the visual system. A: Hierarchy of the anatomical con-
nectivity of the cat visual system (reprinted from Scannell et al. (1995)). B: Hierarchy
of the functional connectivity of the macaque visual system and processing streams
(reprinted from Van Essen and Gallant (1994)).

2.2.1 Early Visual System

The Retina

The information flow through the brain for visual processing is initiated when the

light hits the photoreceptors in the retina. When a photon excites a photorecep-

tor, the membrane potential of the cell changes and triggers the depolarization in

ganglion cells that will be transmitted through the visual system.

Retina is considered to maintain light adaptation and lateral inhibition in addition

to the primary light detection task. Atick and Redlich (1992) suggested that the

retina performs a “whitening” of the visual scene by removing the redundancies in

order to optimize the channel capacity of the optic nerve.

Retina is a complex neural circuitry which consists of about 80 different cell types,

partitioned over three functional layers. Even though the tasks maintained by the

retina seems to be simple, necessity of such a complex circuitry is still not clearly
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understood. Gollisch and Meister (2010) argued that many visual tasks such as

motion discrimination and extrapolation, and saccadic suppression start in the

retina, even for higher mammals. Understanding the functional properties of retinal

cells will surely shed light to the future of the vision research.

The cells that do the essential and final processing in the retina and send the output

to the LGN are the ganglion cells. They have concentric center-surround ON-OFF

RFs (Kuffler, 1953), with an increasing size from fovea to the periphery, smaller than

a degree in average. On the other hand, the density of cells in the fovea is higher

than in the periphery, providing a much denser overlap of RFs. This controversy

of RF size and cell density indicates that in the fovea more detailed features of the

visual field are extracted in cellular level with a higher sampling at the population

level.

Two main types of ganglion cells are present in the retina: center-ON surround-

OFF and center-OFF surround-ON. In reality, there are much more ganglion cell

types that we will not elaborate here (in monkey, there are 17 ganglion cell types

discovered so far (Field and Chichilnisky, 2007)). Ganglion cell RFs are assumed

to be circular. Nevertheless, Hammond (1974) showed that in cat retina, ganglion

cell RFs tend to have slightly elliptic shape with an average ratio of 1.23 of major

to minor axis, and that more than half of all the RFs they analyzed were oriented

within 20° of horizontal orientation.

Neurons in the retina (and in other areas of the brain as well) are organized in a

way that when one gets activated, it suppresses the activity of nearby neurons. This

property helps sharpening the response of the neuron by increasing local contrast.

This property partially rises from the ON-OFF receptive fields. Pioneered by Hartline

in his Nobel-Prize winning study, discovery of lateral inhibition could later explain

very important features of the brain activity such as map development that will be

explained later in this text.

Anatomical separation of ventral and dorsal processing streams starts with gan-

glion cell type differentiation. Retinal ganglion cells are classified as Parasol (a)

cells, Midget (b) cells, and bistrafied (g) cells based on their morphology (Polyak,

1941). These calls are also referred to as Y, X and W based on the functional dif-

ferences. We will retain the second notation, as it also corresponds the naming of

corresponding pathways initiated by the cells in the retina.

X cells have small cell bodies, small dendritic trees and narrow RFs (0.2° to 1°).

They exhibit color-opponent contrast sensitivity, low luminance contrast and tem-

poral frequency selectivity. Y cells have large dendritic trees and large RFs (0.5° to

2.5°), and they prefer stimuli with high luminance contrast, low spatial frequency,

high temporal frequency. They do not respond to color contrast. W cells are more
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heterogeneous and less common, and differently than the two main cell types, they

project to superior colliculus (SC) along with the LGN.

The axons of the retinal ganglion cells bundle together and provide the transmission

of sensory information from retina to the thalamus via the optic tract.

The Thalamus

The retinal signal coming from the optic tract has three main targets: SC, the

pretectum, and the LGN. Among these, the relay structure to the visual cortex is

the LGN.

LGN is a six layered structure in cats and primates, with a distinction of magnocel-

lular, parvocellular and koniocellular regions that are targeted by X, Y, and W cells

respectively. Hence, the functional distinction that originates from different cell

types in the retina is preserved in the LGN to be later projected to distinct layers of

V1 (see Chapter 2.5 for more details). Each layer in LGN receives afferents coding

only for either ipsilateral or contralateral visual field. No binocular information is

extracted by neurons of the LGN.

Ganglion cells in the retina and relay cells in the LGN are often considered to be the

preprocessing subunits of the visual system. Cells in the early visual system are

considered to possess RFs that detect and enhance local contrast of the image of

the external world. The circular shape and ON-OFF structure of receptive fields in

the retina are also common in LGN cells. One different RF property of LGN neurons

is the lagged response: X and Y cells that respond to a stimulus with a lag are called

lagged cells. X and Y cells that respond with a normal temporal profile are called

non-lagged cells.

X pathway projects to area 17, Y pathway projects to areas 17 and 18, and W

pathway projects to areas 17, 18 and 19 in the cat. LGN receives a strong cortical

feedback that shapes continuously the thalamic responses.

2.2.2 The Primary Visual Cortex

The earliest visual cortical area is the primary visual cortex. This area is often

considered as the local feature extractor, with a very well defined representation

of the visual space. It occupies the largest cortical surface among all visual areas

even in primates, and performs an important part of the perceptive task. V1 is

reciprocally connected with LGN, and receives feedback from most of the higher

order areas. Lee and Mumford (2003) suggested that the main role of V1 in visual

processing is to act as a geometric “buffer” to transmit the best guesses from the
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higher areas to LGN, in order to modify the local computations in the most plausible

global context.

In cat, areas 17 and 18 are accepted as primary visual cortices as both areas re-

ceive and process the information coming from the LGN in parallel (Payne and

Peters, 2002)1. Still, they process different information: Area 17 is more selective

to low temporal and high spatial frequency, while area 18 is more selective to high

temporal and low spatial frequency stimulation. Even though these are parallel

structures, RFs in area 18 are bigger than those in area 17, which may point out

also a hierarchical order. Difference of hierarchy in two species may be a result

of the evolutionary principles that shaped the brains: primates need to process

fine details of the visual world, while cats need to discriminate the fine details of

movement such as binocular vision for a good estimation of distance and acute

detection of speed in order to chase preys, which would require accurate cortical

mechanism in addition to the classically accepted subcortical mechanisms. Indeed,

cats can discriminate speed of a moving object better than primates (Geisler and

Albrecht, 1997). Another possibility is that the cat visual cortex can be thought as

an intermediary step in separation of V2 from V1.

The functionally distinct input which is preserved in the LGN with the magno-

cellular and parvocellular pathways projects to distinct non-overlapping areas in

different layers of the primary visual cortex. Inputs from magnocellular and parvo-

cellular pathway are integrated for the first time in the pyramidal cells that span all

the layers of the primary visual cortex (Payne and Peters, 2002). Similarly, signals

from both eyes are also integrated in the V1 for the first time.

V1 neurons have elongated RFs, which gives rise to the orientation selectivity (Hubel

and Wiesel, 1959). Orientation selectivity is the most striking property of the neu-

rons in the primary visual cortex. Visual cortical neurons are also known to be

selective to other visual features such as direction of motion, spatial frequency,

temporal frequency and color. A single neuron is not selective only to one feature,

but to a number of features (Leventhal et al., 1995).

Hubel and Wiesel (1959; 1962) were the first to describe the RF properties of cortical

neurons. They classified the neurons they observed as “simple” or “complex” with

respect to the response characteristics.

Simple cells possess distinct excitatory and inhibitory subdivisions (ON and OFF

regions respectively) that exhibit an antagonism and linear summation in space

and time within those two parts. With this linear summation, responses to static

1It should be noted that area 19 also receives direct input from the LGN, via the W pathway.
However, the number of neurons in this pathway is very small and this connection is very weak
(Payne and Peters, 2002).
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or moving stimuli are predictable. Simple cells receive push-pull inhibition, which

implies that the OFF regions receive inhibition from the on response, and vice versa.

70% of the neurons in area 17 are simple cells.

Other cells that have more intricate and nonlinear properties are called complex

cells. Complex cells are considered to perform a summation of the output of simple

cells with similar tuning properties on different positions and phases, resulting in

a nonlinear spatial summation of the local contrast.

Hubel and Wiesel suggested that the LGN afferents contact simple cells. Outputs of

single cells are then integrated by complex cells. Later, Tanaka (1983) showed that

both simple and complex cells receive LGN input with a bias from X and Y pathways.

His observations indicate that functional discrimination of V1 connectivity may be

more complex than thought.

Figure 2.2 – Modulation of the RF size of a neuron in V1 by feed-forward input from
LGN, short range or long range lateral connections in V1, and the feedback from the
higher cortical areas. White square in the center stands for the RF center and the gray
area is the surround of V1 neurons. Response of a cell as a function of contrast and
stimulus size is shown in the inset on the right. Adapted from Angelucci and Bressloff
(2006).

Anatomically, LGN afferents which exhibit strong surround suppression (Jones

et al., 2000) project to a region that is comparable to the minimum discharge re-
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ceptive field (mRF) of the V1 cells. This corresponds to the classically accepted RF

size of V1 neurons. In reality, RF size of a neuron is modulated by a set of inter-

actions between the feed-forward input from LGN, short range or long range lateral

connections in V1, and the feedback from the higher cortical areas (Angelucci and

Bressloff, 2006). Therefore, the non-classical RF size gives information about how

big is the area that a cell sees in the whole network. Figure 2.2 demonstrates

the relationship between the RF size and the network connectivity. It should be

noted that this Figure summarizes the surround modulation in primates, and the

receptive field sizes given in the inset are bigger in cat. Moreover, surround sup-

pression in cat is weaker than in monkey (Jones et al., 2001). mRF is the region

in which the high contrast small stimulation with optimal selectivity for the cell

evokes spikes. Projection size of the LGN afferents taken into account the surround

matches the high contrast summation receptive field (hsRF) size in primates (An-

gelucci and Sainsbury, 2006). In this region, high contrast gratings at the same

orientation as in the center facilitate the response of the cell. Besides, the low-

summation RF size is proportionate to the monosynaptic spread of neuronal activity

inside V1 and the feed-back size from higher visual areas (Angelucci et al., 2002).

Gratings presented in this region facilitate or suppress the response of the cell at

the center depending on the contrast. The region surrounding the lsRF is called the

far surround, which is modulated by feedback connections. Gratings presented in

the far surround usually suppress the response of the cell at the center. Facilita-

tion or suppression as a function of the contrast is shown in Figure 2.2 inset on the

right.

Most of the cells in V1 are subject to center-surround modulation. The nature of

the surround modulation depends on multiple features such as contrast, level of

anesthetizer, cortical adaptation, position of the cell in the network, type of the sur-

round stimulation, and the species (for a review, see Seriès et al. (2003); Angelucci

and Bressloff (2006)). Center-surround modulation of the cells can explain psy-

chophysical observations such as emergence of Gestalt laws in visual perception

(reviewed by Seriès et al. (2003)). Subthreshold activity that extends to a larger

region than the spiking activity in the superficial layers of V1 is an important factor

that modulates the firing and subthreshold activity of a cell, extending the network

influence further than the firing-dependent RF definitions (Bringuier et al., 1999).

Receptive fields of V1 neurons and their role in contextual integration is illustrated

in Figure 2.3 (image from Dakin and Frith (2005)). Co-alignment of similar receptive

fields facilitate contextual grouping of features with similar orientation, which gives

rise to the good continuation law of Gestalt. Nature of the horizontal connectivity

that gives rise to contextual modulation will be discussed in details in Chapter

2.3.3.
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Orientation selectivity is one of the most important characteristics for V1 neurons.

As the LGN neurons do not share the same profile, the question of how the orien-

tation selectivity occurs in V1 has been a debate. Thalamic input and the center-

surround modulation are the two major contributors to the orientation selectivity

in the visual cortex.

Originally, Hubel and Wiesel (1962) suggested that the orientation selectivity emerges

from solely the thalamic input to simple cells in layer IV. They argued that the ON-

center of the cortical RFs arise from the specificity of the spatial arrangement of the

ON-centers of the RFs of the neurons in LGN, and the OFF-center RFs to be derived

from the spatial arrangement of the OFF-center RFs of LGN neurons. This model

explains the development of orientation selectivity by a purely feed-forward way.

However, this model cannot explain the center-surround modulation and contrast

invariance of orientation selectivity. Contrast invariance of orientation tuning prob-

lem can be solved by considering the push-pull model. Following the stimulus pre-

sentation, thalamic input initiates the push to the ON field, which is then enhanced

by intra-cortical excitation. This excitation is then followed by the pull created by

the intra-cortical inhibition, which suppresses the response. Troyer et al. (1998)

predicted that in order to obtain contrast invariant tuning, neurons should receive

anti-phase inhibition stronger than the feed-forward input. Hirsch et al. (1998) and

Borg-Graham et al. (1998) showed that the neurons receive cortical OFF inhibition

on the ON subfields and strong ON inhibition on the ON subfields. Monier et al.

(2003) showed that the conductances are also tuned to the orientation of the input,

which can be accepted as a direct proof of intra-cortical contribution to orientation

tuning.

The “ring model” (Ben-Yishai et al., 1995) aims to explain emergence of orientation

maps by network connectivity. In this model, connection weights vary as a func-

tion of distance and orientation selectivity between pre-synaptic and post-synaptic

cells. Nearby cells make excitatory connections while distant neurons make in-

hibitory connections. The model can explain emergence of orientation selectivity

and contrast invariance of orientation tuning. If only inhibitory connections are

considered in the model, contrast invariance cannot be explained. Ring model

claims that there is a symmetry breaking and line attractor dynamics. Line at-

tractor dynamics indicate reduction of dimension, collapsing the cortical response

into the two-dimensional ring attractor.

Primary visual cortex is an exhaustively studied area in the brain, and yet our

knowledge about its functioning is still limited. Olshausen and Field (2005) stated

that even though long years of neuroscientific research could explain a considerable

amount of the functioning of V1, our knowledge is biased because of experimental

and theoretical restrictions. Taken into account the variance explained by the the-
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Figure 2.3 – Receptive fields in V1 and their role in contextual grouping. Small recep-
tive fields permit extraction of local information in the local scene. Contextual grouping
arises from the local processing in V1 that provides either facilitation (+) or suppres-
sion (-) that permits to extract coherent information. Global grouping is considered to
be achieved in higher areas, but the mechanisms are still not well known. Reprinted
from Dakin and Frith (2005).

ory and the proportion of the cells studied, they concluded that 85% of V1 function

is not understood. They suggested that development of multichannel recordings

and more ecologically relevant protocols may help to extend our knowledge about

primary visual cortex, and to explain how this region responds in a naturalistic

context.

2.2.3 Higher Visual Areas

V1 projects to a number of higher cortical areas that process more global features

of visual scenes. A good review of the processing streams in visual system is written

by Van Essen and Gallant (1994). Areas involved in the what and where pathways

in cat are shown in Figure 2.4. In cat, area 17 accepted to be primarily involved

with the ’what’ pathway, while area 18 is more involved in ’where’ pathway.

V1 first projects to V2 and V3 (area 19) which are considered to be the “association

cortices”. These regions are also called extrastriate cortex because of the lack of

the myelin stripes in V1 that originates from thalamic input. V2 is thought to be

responsible for contour completion, as the cells in V2 prefer angles between lines
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Figure 2.4 – Connectivity of the pathways in the cat visual cortex. Reprinted from
Huang et al. (2007).

rather than local orientations. After this step, the two pathways project to different

cortical regions.

Dorsal pathway continues with the projections to MT/V5 (Area 21), which extract

information about the global direction of movements, as in case of plaid motion

(Movshon et al., 1985). In cat, homologue of MT is the posteromedial lateral supra-

sylvian area (PMLS). The information about the direction of global motion is then

segregated into the two subregions of the MT that are responsible to distinguish

whether the movement is related to navigation in the environment or to eye move-

ments. These regions then project to MSTd and MST`. After that, connections are

made with the Posterior Parietal (PP) cortex which combines the input from different

sensory, limbic and motor output areas.

Ventral pathway continues with V4 (area 20), a region that is responsible for iden-

tification of more complex non-Cartesian shapes. The ventral pathway includes

two substreams that follow blob-dominated or interblob-dominated regions. This

information is further sent to IT that recognizes even more complex 3D shapes like

faces, or any useful shape information that was learned by the animal (Gross et al.,

1972). The cat homologue of IT is the postero-temporal visual cortex (PTV).

Feedback to V1

V1 activity is continuously shaped by the feedback from higher areas. In rat vi-

sual cortex, 97-98% of the postsynaptic cells of the feedback connections to V1

are excitatory neurons (Johnson and Burkhalter, 1996). Feedback from V2 and

V3 are patchy except in layer 1A (Angelucci and Bressloff, 2006). This patchiness
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corresponds to a functionally-selective feedback depending thanks to the modular

architecture of the cortex (see the following Chapter).

Feedback from higher areas modulates V1 neurons by controlling their response

gain. Inactivation of higher areas results in decrease of the response amplitude,

and tuning width (Wang et al., 2000; Galuske et al., 2002; Wang et al., 2010).

However, at least a small number of neurons in V1 have different RF properties

under inactivation of higher areas. Huang et al. (2007) showed that cooling down

of PTV cortex results in modification of response magnitude (mostly reduction) and

receptive field properties of neurons in V1. Their results indicate that the function

of V1 cannot be studied completely independent of higher visual areas. Another

consequence of this relationship is the difficulty of studying a region with system

identification methods using unnatural stimuli. In a context outside natural statis-

tics, even if the individual cells in a particular region in the brain are tuned to the

particular local structure of the stimulus, if the stimulus does not have a natural

structure there would be no top-down information telling the cells what they should

see, which may diminish the efficiency of coding.

2.3 Mesoscale Organization at the Population Level in V1

In the previous chapters, we presented the functional properties of individual neu-

rons and the gross structure of the visual system. Here we will focus on the con-

nectivity of the neurons that gives rise to the patterns of activity produced at the

mesoscopic level, which then will be transmitted to the higher order structures in

the macroscopic hierarchy.

2.3.1 Columnar organization of the cortex

Modularity is a property of network connectivity that favors strong connections

among small groups of agents that are specialized to perform a common task. Cell

populations in the brain exhibit a modular organization that favors tight connec-

tions between a small group of neurons that process similar information. Bullinaria

(2007) has shown that the modular structure in neural networks provide more effi-

cient processing than non-modular architectures for multiple discrimination task,

given that the connection length is limited. Another advantageous implication of

the modular organization in a hierarchical network would be the generation of the

output “patterns” of activity that will be detected by the higher-order structure in

the hierarchy.
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The modular structure in the brain was first pointed out by Lorente de No (1938),

introducing the idea that the cortex is built of small cylinders of vertical chains of

neurons. He proposed that these cylindrical units constitute elementary units of

operation in the cortex. This idea was then developed by Mountcastle (1957), who

introduced the concept of minicolumn.

Minicolumns are accepted to be the smallest anatomical populations in the cortex

consisting of cells that share a common function. After the first observations in the

somatosensory cortex, minicolumns were reported in diverse areas of the cortex,

with a highly similar structure and connectivity despite the variety of the tasks that

are done in different cortical regions. Nevertheless, a certain level of heterogeneity

is also present (Buxhoeveden and Casanova, 2002; DeFelipe et al., 2002). Micro-

columns are considered to be related to the migration of neurons through radial

glial fibers into radial columns during development (Rakic, 1988). A minicolumn

consists of about 150 neurons that receive same input and have similar RFs, cov-

ering about 40 mm of cortical sheet in monkey and about 56 mm in cat (Mountcastle,

1997).

Following the studies of Mountcastle, Hubel and Wiesel showed that columnar orga-

nization exists also in primary visual cortex. They recorded the activity of neurons

by a tangential penetration and showed that RF properties are continuous and sys-

tematic changes of orientation and ocular selectivity are observed as the electrode

advanced (Hubel and Wiesel, 1977, 1963). In these preliminary studies, they re-

ported 12 orientation column sites over a 180° complete cycle. However, in their

future work they observed orientation columns to be quantal, without physical bor-

ders.

Cortical columns further give rise to macrocolumns that contain 60 to 80 mini-

columns that are connected via very short range horizontal connections (Mountcas-

tle, 1997). In the visual cortex, notion of a macrocolumn is ambiguous, as anatom-

ically functional organization is rather continuous than discrete. A more widely

used term is hypercolumn, a term originally used by Hubel and Wiesel (1977). A

hypercolumn is a local patch that contains a set of all necessary units that code for

a maximum number of features on a specific retinotopic region. Hubel and Wiesel

argued that 2 mm x 2 mm patch of cortical surface is necessary and sufficient to

analyze all the features of a small region of the visual field (following studies re-

tained 1mm2 surface as hypercolumn size). If we consider the network influence

on functional integration performed by a single vertical column, we arrive to the

definition of a metacolumn, which should be considered as a complete functional

entity (Frégnac et al., 2006)

The notion of hypercolumns as primary processing units in the population layer
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was suggested by Hubel and Wiesel with the ice-cube model of cortical organization

(Hubel and Wiesel, 1962, 1968). Hypercolumn hypothesis was the first attempt to

explain how different features in the primary visual cortex are interconnected.

Although earlier recordings reported that neurons that exhibit same RF properties

are sharply clustered on radial columns of the cortex, latter studies found that RF

properties are rather continuous than sharp distinct patches (Albus, 1975; DeAn-

gelis et al., 1999, reviewed by Horton and Adams, 2005). DeAngelis et al. (1999)

recorded nearby pairs of neurons by a single electrode, and showed that nearby

neurons in the visual cortex do not always share exactly same RF properties. They

showed that some response properties such as orientation selectivity and retino-

topy are well clustered, while others such as spatial phase preference are not. These

findings call the existence of the anatomical substrate for functional columns in the

visual cortex into question. This view may be true and the cortical column concept

can be thought as an abstract notion that provides a passage from the cellular level

to cortical maps, rather than having an anatomical identity. In this manuscript,

the term “column” will be used as an abstract functional unit, and should not be

considered as an anatomically distinct structure in the visual cortex.

2.3.2 Connectivity inside a column: Spanning the layers of the cortex

Historically, the laminar structure of the neocortex is subdivided into six layers.

These layers were originally defined with respect to the axon packing density of the

laminar sections of the cortex. As more advanced methods became available in the

last decades, this classification has slightly changed. In the visual cortex, layer IV

is divided into three sublayers as IVA, IVB and IVC which is further divided into two

as IVCa and IVCb in primates, and layers II and III are often considered together.

Roughly speaking, laminar organization of the cortex can be considered in three

gross subdivisions: Input level (Layer IV), feedback and motor output level (layers

V and VI), and association level (layers I, II and III, and to a lesser extent layer VI in

the cat) (Figure 2.5A). Association level corresponds also to the feed-forward output

level: The information processed here is sent to the layer IV of the next higher order

area in the hierarchy and the same laminar organization is applied.

It should be noted that the six-layered structure of the cortex is not universal. Fine

structure of the connectivity between layers may differ among cortical areas and

species. Moreover, some simpler animals may perform cortical tasks similar to that

of highly developed animals with less layers. For instance, turtle visual cortex has

only three layers and despite that cortical activity codes for some basic features

of visual stimulation such as position and speed. Furthermore, number of cells

and cell subtypes in a column may also differ among species (DeFelipe et al., 2002;
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Buxhoeveden and Casanova, 2002), pointing out that columns differ in organization

in order to meet the functional requirements of the system that they belong to. The

difference in innervations of areas 17 and 18 in cat is a good example (Figure2.5B).

Even though both areas receive thalamic input and hence considered as primary

visual cortices, there are important differences of input types and the way they are

processed. Area 18 does not receive any X input (or a little (LeVay and Voigt, 1990));

therefore this region does not respond to high spatial frequency and low temporal

frequency visual stimuli. This property is employed to distinguish the two cortical

areas in imaging experiments.

Thalamic input arrives mostly in the layer IVC, and partially in the layer VIA of

the primary visual cortex. First projection from here is made to layer IVB and to

layer III by the stellate cells. Simple cells are most often found in layer IV and

VI, in accordance with Hubel and Wiesel’s hypothesis that the first target of the

thalamic input to cortex is simple cells. After the thalamic projection arrives at the

spiny stellate cells, synapses made with the dendrites of the pyramidal cells provide

spanning all the length of the column.

A B

Figure 2.5 – Laminar organization of the cortex. A: Some basic properties of columns
and their laminar organization (reprinted from Calvin (1996)). B: Innervations in areas
17 and 18 of cat cortex (reprinted from Payne and Peters, 2002).

The utmost important task in the visual cortex is performed on layers II/III: Cells

in these layers permit the extraction of spatially coherent information among differ-

ent columns via horizontal connections. Unlike other layers, cells in layer II/III are

strongly connected with the cells of other columns with similar preferences. This

connectivity provides an important support to the modular architecture of the cor-

tex. The work presented in this thesis conducted on recordings in the superficial

layers of the cortex, therefore layer II/III is of importance for us.

The information processed by layer II/III is then sent to higher cortical areas. Layer
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II/III cells also send their output to the layers V and VI. Layer VI sends the feedback

to the thalamus, and layer V projects to deep brain structures, mostly related to the

motor output.

2.3.3 Connectivity between columns: Horizontal connections

Neurons in layer II/III have very large dendritic trees, extending over several hyper-

columns. Spatial profile of the functional connectivity of a neuron is often described

as a “Mexican hat”: Nearby neurons (in a diameter of a size of a column) receive

a strong excitation, medium distance neurons receive inhibition, farther neurons

up to a certain distance receive excitation. This type of connectivity gives raise to

emergence of the very particular organization of the cortical maps, and also to the

emergence of the RF properties of the neurons (Mikkulainen, 2005).

Another important consequence of the lateral excitation is the association of the

local information with the global activity. While the first models of visual cortex re-

stricted the visual activity to point-to-point mapping regions of the visual field to the

visual cortex, it was shown that visual stimulation triggers a spread of activity on

the cortex that travels 0.05-0.5 meters per second. (Grinvald et al., 1994; Bringuier

et al., 1999; Benucci et al., 2007, see Muller and Destexhe (2012) for a review). This

phenomenon is partly related to the horizontal connections in layer II/III that are

made by pyramidal and spiny stellate cells in order to integrate information over

several millimeter squares of cortical sheet.

Horizontal long-range connections in the cat visual areas 17 and 18 are patchy:

they tend to link neurons in the columns with similar functional properties. Pi-

oneering studies showed that lateral connections are strongest between the cells

with co-axially aligned RFs (Gilbert and Wiesel, 1989; Bosking et al., 1997; Schmidt

et al., 1997). Horizontal connections tend also to link either blob-to-blob regions,

or interblob-to-interblob regions in primate cortex (Yabuta and Callaway, 1998;

Yoshioka et al., 1996). On the other hand, Kisvarday et al. (1997) showed that

the connections are not systematically orientation-specific although iso-orientation

connections are the most common. While middle range connections (1 to 3 mm) pre-

fer similar functional properties, long range connections (>3mm) and short range

connections (<1mm) innervate regions that have much diverse functionalities. All

these evidences show that there is a functional relationship between the cells that

are interconnected via horizontal connections, and a certain degree of anisotropy

is kept in order to explore all possible interpretations of the local input in a global

context (Douglas and Martin, 2004).

The preferential linkage of the functionally similar neurons in the cortex can explain

a number of phenomena. First, emergence of cortical maps may be related to the
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preferential functional attachment (Mikkulainen, 2005). Second, implementation

of Gestalt laws in the visual cortex is possibly partially modulated by horizontal

connections. Finally, visual illusions such as filling-in and apparent motion can be

explained by sequential activation of functionally connected regions (Jancke et al.,

2004).

Preferential attachment results in global clustering of neurons with same RF prop-

erties. These global clusters can be observed by recording population responses to

a set of possible arrangements of a RF property, while fixing the other properties to

one common value. This would provide observation of “cortical map” organization

of a receptive field property.

2.3.4 Cortical Maps

A more global way to see the clustering of neurons that have similar RF properties

is to look at how these regions are organized on the cortical sheet. Nearby neurons

of the sensory and motor cortices express a continuity of RF properties, giving rise

to the spatial functional maps in the cortex.

Visual system is one of the most striking examples to functional organization of

nearby neurons, by virtue of the number of different features provided by single

neurons. DeAngelis et al. (1999) quantified the similarities among the RF proper-

ties of nearby simple cells in the area 17 of cat. Orientation selectivity was followed

by RF width, spatial frequency, peak response latency, response duration and tem-

poral frequency respectively by means of clustering. They could not find an obvious

clustering for spatial and temporal phase and direction selectivity. Development

of optical imaging methods provided a better visualization of the spatial continuity

of RF properties at population level (Blasdel and Salama, 1986; Bonhoeffer et al.,

1995), proving or disproving map properties discovered by other electrophysiologi-

cal recordings.

Each separable RF property exhibits a spatially periodic organization which defines

a cortical map, with a periodicity of 0.5 to 1 mm. These maps are superimposed on

the cortical sheet and they provide uniform coverage (Swindale et al., 2000). Uni-

form coverage suggests minimization of the cortical surface that is needed to repre-

sent a maximum of features. Cat and primate cortices contain maps for retinotopy,

ocular dominance, orientation, direction of motion, and spatial frequency prefer-

ence. Primate cortex contains a color selectivity map in addition to these others.

Other maps that have not been discovered yet may also exist. Swindale (2000) sug-

gested the number of cortical maps to be six or seven (upper limit of nine or ten) in

order to optimize uniform coverage. For a recent review about the functional maps

and related models, see Issa et al. (2008).
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Retinotopy

Most universal feature of the functional organization of the cortex is the orderly

topographical organization of the projection of the external world on the cortical

surface. In case of vision, this property is called retinotopy: left visual hemi-field

projects to the right hemisphere, and right visual hemi-field to the left hemisphere,

where the visual field is mapped in a continuous way with a logarithmic scaling

(Schwartz, 1977; Tusa et al., 1978). This means that the foveal region is represented

in a larger cortical area than the periphery, with a smooth spatial displacement.

Figure 2.6 – Retinotopy in macaque visual cortex revealed by 2-DG method. Figure
from Tootell et al. (1988b)

One of the very striking examples of the retinotopy is shown in Figure 2.6 (Tootell

et al., 1988b). Tootel and colleagues showed the anesthetized monkey the pattern

on Figure 2.6A after the 2-DG injection, while one eye is closed. The active regions

on the flattened cortex marked with 2-DG are shown in Figure 2.6B. These results

confirm logarithmic mapping and foveal magnification in retinotopic arrangement.

Retinotopic organization implies that nearby regions in the visual field are repre-

sented nearby in the retina, LGN and in the cortex. Hence, connections from retina

to LGN to cortex are also topographically organized. Mapping is organized as par-

tially shifted overlaps and there is no strict point-to-point mapping, which may also

be considered partially as a result of receptive field scatter at cellular level (Albus,

1975). While retinotopic map is rather regular in area 17 of the cat cortex (Tusa

et al., 1978), asymmetries start to occur in areas 18 and 19 (Tusa et al., 1979).

Higher order areas also exhibit retinotopic organization, but as a result of increas-

ing RF sizes, these maps are much less precise (Tusa and Palmer, 1980).

The inverse problem of receptive field of neurons would be to determine the patch of

cortex that respond to a point stimulus, which is referred to as the cortical spread
function. Grinvald et al. (1994) addressed this problem using VSD imaging, and
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showed that this area is small first, but it grows rapidly much larger than what is

predicted from the receptive field sizes of individual neurons. The size of the spread

they observed was consistent with the size of long range horizontal connections.

Orientation Map

The most striking RF property of neurons in the primary visual cortex is orientation

selectivity. When Hubel and Wiesel observed that neurons in the primary visual

cortex exhibit a preference to a particular orientation of elongated bars, they also

reported that this property is continuous in space (Hubel and Wiesel, 1977). This

hypothesis is later confirmed with intrinsic imaging, revealing also the patterns of

orientation preference in the primary visual cortex (Blasdel, 1992b).

In most of the higher mammal species, neurons with similar orientation preference

are clustered together and form orientation columns which are further organized in

a crystal-like orientation maps in the primary visual cortex. An example from area

18 obtained by intrinsic imaging by Bonhoeffer and Grinvald (1993) is shown in Fig-

ure 2.7. Orientation columns are continuous in orientation and together they form

“linear zones”, which are segregated by discontinuity regions. Discontinuity zones

occur either as one dimensional “fractures” if the discontinuity is smaller than 90°,

or as zero-dimensional singularities called “pinwheels” if the discontinuity is greater

than 90° (Bonhoeffer and Grinvald, 1991; Blasdel, 1992b). Orientation domains ro-

tate around pinwheels and make a full 180° turn that provide uniform coverage of

orientation selectivity around the pinwheel. Recently, fine detailed clustering of this

organization is shown using 2-photon calcium imaging (Ohki et al., 2005). The au-

thors showed that the neurons that are selective to different orientations are clearly

segregated even at the very center of the pinwheels.

Relationship between the tuning profile of a neuron and its localization on the ori-

entation map has been a debate. Earlier studies reported that the neurons that are

located on the center of pinwheels are as selective to orientation as the cells found

in the iso-orientation domains at least by means of spiking activity (Maldonado

et al., 1997), but they are more broadly tuned than the neurons in iso-orientation

domains by means of membrane potential (Schummers et al., 2002, 2007). Ohki

et al., 2006 showed the precise organization of the orientation selectivity of neu-

rons around pinwheels using calcium imaging. They showed that the tuning width

of neurons at the pinwheel centers was slightly larger than in iso-orientation do-

mains. Nauhaus et al. (2008) used combined multielectrode recordings and VSD

imaging to test whether there is a relationship between the map location and ori-

entation selectivity. They showed that the orientation tuning is sharper in the iso-

orientation domains. They showed that the tuning width is correlated with the local
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Figure 2.7 – Orientation map of cat area 18. Histograms depict the tuning curves of
the points indicated on the map. Black square is an example of pinwheel, red a linear
zone, and blue a fracture. Adapted from Bonhoeffer and Grinvald (1993).

homogeneity of orientation selectivity, which explains why the neurons in cat cor-

tex are more sharply tuned than in monkey cortex, in which orientation domains

are smaller. They argued that because of the same reason orientation tuning is

broader in rodents where there is no orientation map; hence the map is completely

inhomogeneous. The contradictions in the literature may be a result of the diffi-

culties of detecting the electrode placement on the orientation map, and the low

resolution of orientation sampling in imaging, as pointed out in the latter paper.

It should be noted that the differences in tuning width reported in Nauhaus et al.

(2008) are present but even at pinwheel centers tuning width is not that large in cat

(~25° around pinwheels, 10° around iso-orientation centers). This may be another

reason for different interpretations.

While the existence of orientation and direction selective neurons in the primary

visual cortex is confirmed for most of the mammals (primates, canines, rodents

and birds), spatial smooth gradient of orientation preference in the laminar plane

of the cortex is not a universal property.

There are some differences between the areas 17 and 18 of the cat cortex in terms

of orientation-selective organization. The pinwheel density in area 17 is almost 1.7-
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fold higher than in area 18 (Bonhoeffer et al., 1995). Average orientation domain

width and RF size in area 18 is larger than in area 17 (Issa et al., 2008). Moreover,

in area 18, linear zones of orientation selectivity are also observed embedded in

the radial organization domains around pinwheels (Shmuel and Grinvald, 2000).

Higher density of pinwheels in area 17 may be a result of all these evidences. Lin-

ear zones are common at the border between areas 17 and 18 (Bonhoeffer et al.,

1995). These linear zones tend to be aligned perpendicular to the area 17/18 border

(Swindale, 1996).

Direction Map

Existence of a clustering of the direction preference in the primary visual cortex

has been more controversial than the existence of other receptive field properties.

Earlier studies have reported that the direction selective cells are not clustered in

the cortex (Bonhoeffer et al., 1995; DeAngelis et al., 1999). Proceeding studies

could succeed to show that a weak clustering of direction selectivity exists in the

primary visual cortex (Swindale et al., 1987; Shmuel and Grinvald, 1996; Weliky

et al., 1996).

In the direction map, regions that are selective to two opposite directions are sep-

arated by sharp direction fractures (Figure 2.8). These fractures pass through the

peak of the iso-orientation domain selective to the orientation orthogonal to the di-

rection of movement, and tend to terminate next to the orientation singularities.

An important level of separation of counter-selective regions was observed near the

direction fractures: Ohki et al. (2005) observed that in cat area 18, direction selec-

tivity boundaries are as sharp as one or two cells apart.

The fact that only one fourth of neurons in macaque V1 is selective to direction of

motion may be a reason for why direction selectivity clustering is not easy to detect.

Another reason is the analysis method that is used to generate direction maps:

Vector summation method may lead to erroneous results where the selectivity is

poor (Swindale et al., 2003). Gaussian fitting gives more accurate maps of direction

selectivity. However, one has to use a good sampling of the orientation domain,

which is mandatory for a good fitting of the tuning curve.

Direction selectivity in V1 neurons are accepted to arise from the organization of the

input from lagged and non-lagged cells of the LGN. Galuske et al. (2002) showed

that inactivation of higher areas that are involved in motion-processing abolished

the structure of the direction maps. Their result indicate that the clustering of di-

rection selectivity, and possibly the mechanism of direction selectivity of individual

neurons are mostly shaped from feed-back from higher areas.
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Figure 2.8 – Organization of direction selectivity on an iso-orientation domain.
Reprinted from Shmuel and Grinvald (1996).

Ocular Dominance Map

One of the first observations about clustering of the functional domains in the vi-

sual cortex was the discovery of ocular dominance columns. Existence of ocular

selectivity was first observed by Hubel and Wiesel along with orientation selectivity

(Hubel and Wiesel, 1959). They showed that while most of the cells are binocular,

most of the cells preferred stimulus from one eye to the other. Furthermore, in layer

IV they found cells that respond only to one eye. Later on, Hubel and Wiesel (1969)

showed that ocular dominance has columnar organization in the visual cortex by

recording cells with perpendicular penetration to the surface. The columnar orga-

nization of ocular dominance selectivity was further supported by 2-DG recordings

(Tootell et al., 1988a) and intrinsic imaging (Ts’o et al., 1990).

Similar to orientation maps, ocular dominance columns are also not present in

all species. Moreover, species-specific anomalies may also exist, as in the case of

squirrel monkey (Adams and Horton, 2003), which is an animal that may or may

not have ocular dominance columns. In monkey cortex, ocular dominance patterns

are very regular elongated stripes which sometimes branch or terminate, similar

to the patterns on the skin of a zebra. In cat, ocular dominance patterns are less

regular. Comparison of an example from macaque and cat brains is shown in Figure

2.9.

Clustering of ocular dominance in the layer II/III was reported to be three-fold

weaker than clustering of orientation-selective domains (Bonhoeffer et al., 1995).

This may be a result of the ocular dominance columns to be stronger in layer IV.
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Figure 2.9 – Ocular dominance columns in monkey and cat. F stands for the fovea, OD
the optic disc, MS the monocular segment, V the vertical midline and H the horizontal
meridian. Figure from Swindale (1996).

Spatial Frequency Map

Spatial frequency preference is clustered on the cortical surface (Shoham et al.,

1997; Everson et al., 1998; Issa et al., 2000; Tootell et al., 1981), even though

the clustering is weaker than orientation selectivity or ocular dominance. Spatial

frequency domains are also organized continuously on the cortical surface. Some

studies suggest that spatial frequency domains are organized around pinwheel cen-

ters, even though there is no circular organization as in orientation domains (Ever-

son et al., 1998). Some other studies claim that these findings occur when thinking

spatial frequency maps combined with orientation selectivity (Issa et al., 2000). Ev-

erson et al. (1998) noted that even if the spatial frequency selective regions are
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organized around pinwheels, extreme frequencies represent a smaller region on the

cortex, therefore spatial frequency domains cannot be explained by a circular con-

tinuity as it is the case for orientation domains.

CO Blobs

Cells that contain high concentration of the Cytochrome oxidase (CO) enzyme are

clustered in the visual cortex. These regions are shown to be mostly sensitive to

color in primates, as they receive mostly parvocellular input. CO blobs also exist

on other species such as owl monkey and cat, which have a weak color vision.

Relationship and dependency between visual cortical maps

Although cortical maps provide information about how the cortical sheet is orga-

nized in order to represent a single feature, how these different features commu-

nicate in order to represent more complex stimuli that involve multiple features is

still not clear.

One of the firstly studied subjects concerning interdependence of maps is the cor-

relation with retinotopy and orientation maps. Durbin and Mitchison (1990) used

dimensionality reduction model to show that the receptive field shifts should be

inversely correlated with orientation singularities. However, Das and Gilbert (1997)

observed by combined multielectrode recordings with intrinsic imaging that the re-

ceptive fields of neurons show local shifts near pinwheels, indicating a modification

of the retinotopic map around orientation inhomogeneities in cat. Following stud-

ies on cat visual cortex (Buzás et al., 2003) and ferret visual cortex (Bosking et al.,

2002) showed that the local variability in receptive field positions is not significant

at the population level.

Another related topic is the spread of local oriented stimulus in the cortex. Fol-

lowing the visiotopic organization of the visual system, and the local and patchy

connections that are made by single cells, nearby cells as well as some other cells

with similar receptive field properties in the near periphery are strongly connected.

Therefore, each local population of neurons integrates information from populations

of neurons over several millimeters wide cortical area. As an analogy to the RF prop-

erty of single cells, at the population level, it is more appropriate to talk about the

cortical response field i.e. the cortical surface whose spatio-temporal pattern of ac-

tivation is influenced by a particular stimulus (Grinvald et al., 1994; Sharon et al.,

2007). Cortical spread explains how the local information spreads in the cortex in

order to provide a global interpretation. Using VSD imaging, Sharon et al. (2007)

showed that a 4° oriented stimulus at eccentricity of [4°, -2°] evoked response on a
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~16 mm2 region on area 18 with a high plateau of ~9 mm2. Orientation-selective

domains to the grating peaked at the top of this plateau.

Benucci et al. (2007) showed that it is possible to predict the responses to local

oriented stimulus by pointwise multiplication of the two maps, indicating the in-

dependence of the maps. More recently, Chavane et al. (2011) showed by using a

smaller stimulus that the orientation selectivity of the lateral spread decreases ex-

ponentially with distance. Using a small size stimulus, they avoided evoking more

cooperative spiking responses which may enhance orientation selectivity of the pe-

riphery, restricting the lateral spread only to the subthreshold activity. The size

and the orientation selectivity of the lateral spread were in coherence with lateral

connectivity (see Chapter 2.3.3).

Some structural properties are known about the interdependence of the maps in

the visual cortex. For example, pinwheels and fractures tend to be located in the

middle of the ocular dominance columns, as well as the CO blobs while only half

of all pinwheels are associated with CO blob locations. CO blob locations coin-

cide also with low frequency selective regions of the spatial frequency maps, while

intermediate selectivity regions mostly avoid them. Moreover, pinwheels that are

not placed at the same location as CO blobs coincide with high spatial frequency

selective regions (Bonhoeffer et al., 1995; Issa et al., 2000). Another relationship

between the cortical maps is that the borders of ocular dominance columns and

borders of iso-orientation domains intersect at right angles (Hübener et al., 1997;

Obermayer and Blasdel, 1993), as suggested earlier by Hubel and Wiesel (1974).

Despite big efforts, no systematic spatial relationship that is coherent among species

has been found. Moreover, results obtained by different teams are very controver-

sial, especially when species-specific differences are considered (for a review, see

Horton and Adams (2005)). One common conclusion to retain is that the right an-

gle intersection provides the optimum coverage (Hübener et al., 1997; Obermayer

and Blasdel, 1993; Hubel and Wiesel, 1974). Another common property seems to

be that the singularities of one map are found on the isotropic regions of another

map. Moreover, although different maps are responsible for processing of differ-

ent features of images, the maps are dependent themselves on each other. Basole

et al. (2003) showed that short orientation bars that move in a direction not orthog-

onal to the orientation of the bar evoked responses on orientation domains that

are selective to another orientation than the orientation of the bar. Their results

indicate that the maps are dependent on other maps in the cortex, indicating that

the local columns are functionally undetachable. Mante and Carandini (2005) sug-

gested that this kind of complex interactions may be explained by considering RFs

as filters in frequency space selective for multiple features. Their integration at the

population level defines a volume visibility. Protocols that are expected to reveal
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Figure 2.10 – Relationship between the cortical maps for orientation selectivity, spatial
frequency selectivity and ocular dominance. A: Iso-orientation domains and ocular
dominance regions. Gray regions represent dominance for contra-lateral eye. B: Close-
up view of a region around pinwheel shown in A, showing the tendency for right angle
intersections between two maps. C: Spatial frequency and orientation maps. Gray
regions preferred low spatial frequencies. D: Ocular dominance and spatial frequency
domains. Adapted from Hübener et al. (1997).

independent features of processing in V1 should be carefully selected in order to

avoid the interdependencies of the stimulation itself.

The first explanation of how different features of visual processing are organized on

the cortex was the ice-cube model. Discovery of spatial frequency selectivity maps

motivated the scientists to modify the original ice-cube model by introducing an

organization principle that considers the orientation and spatial frequency selec-

tivity to be organized around a pair of pinwheels. In this direction, Bressloff and

Cowan (2002a) suggested the spherical model of a cortical column. In this model,

they added an additional dimension to the ring model in order to include spatial

frequency preference. However, how new maps can be added to this model is not

clear, as we do not have enough information about the interdependence of cortical

maps.
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Emergence of Cortical Maps as a Problem of Pattern Formation

The reason why the cortical maps exist and why they are dependent on each other

is still an important debate. Plausible explanations include wiring length mini-

mization (Chklovskii and Koulakov (2000)), dimensionality reduction (Durbin and

Mitchison, 1990), and uniform coverage (Swindale et al., 2000). In fact, even salt

and pepper organization may provide effective coding in certain cases where only a

small number of neurons are involved in coding, thus neural wiring length is not a

concern. However it should be noted that this is the case for less complex coding

schemes, such as in rat visual cortex. Koulakov and Chklovskii (2001) compared

salt-and pepper organization, linear zones and pinwheels and showed that each of

these regimes can be efficient given some functional properties. Why a particular

strategy is implemented in a certain animal brain can be understood by connectivity

restrictions. On the other hand, self-organizing maps are capable of generating cor-

tical maps when trained by retinal waves and natural images (Mikkulainen, 2005;

Bednar, 2012), showing that natural environment and initial training plays an im-

portant role shaping the connectivity.

Ocular dominance like patterns can emerge from an homogeneous initial state, as a

result of the competition between the inputs from each eye (Swindale, 1980; Miller

et al., 1989). As the neurons that fire to the same stimuli tend to be closer for wiring

length minimization, functional domains cluster together. The patterns created

by this model is analogous to the Turing instability, a phenomenon that occurs

in reaction-diffusion systems where there is a competition between excitatory and

inhibitory mechanisms. Stripe-like patterns occur in reaction-diffusion systems in

presence of lateral inhibition, as it is the case in the binocular input to visual cortex.



Chapter 3

Dynamics of Visual Cortical
Activity

Functional classification of the individual parts of the visual cortical network is im-

portant in order to understand the role of each cell, population, or cortical area

in information processing. In the recent years with the development of large scale

recording tools such as functional magnetic resonance imaging (fMRI) and magne-

toencephalography (MEG), neuroscience research is oriented towards this kind of

system identification approach. The hard-wiring that leads to parcellation of func-

tionally distinct brain regions is possibly defined by genetics (Rakic, 1988); even

though during development several factors may alter this genetically pre-defined

wiring. As we go lower in the organization, connections between the subunits be-

come much more plastic, and system identification may not be valid anymore except

for very short time scales. For example, sensory neurons adapt their response prop-

erties to the statistics of the external stimulation (Attneave, 1954; Barlow, 1961;

Simoncelli and Olshausen, 2001; Schwartz and Simoncelli, 2001; Fournier et al.,

2011). As a result of this adaptation, a cell that is identified to have a certain

property may show a completely different behavior under different conditions.

System identification approach has often been preferred, partly because of the claim

of considering the brain as a Turing machine. However, there are major differ-

ences between computers and brains. First of all, computer architectures such as

the von Neumann model claim a distinction between processing, memory, and in-

put/output streams. This is not the case in real neuronal networks (Koch and Lau-

rent, 1999), in which neurons have the capacity to both process the information,

and keep traces of each processed event in the structure of the network. Remem-

bering the past events is done by adjustment of the synaptic weights and rewiring

of the network. This process may even permit the usage of a neuron outside of its

49
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putative role in the network, and may even cause suppression or recreation of new

units.

Moreover, the notion of hardware and software becomes undetachable in the con-

text of neural processing, and the “brain software” is highly dependent on the “brain

hardware”, which makes the brain architecture different than Turing machines (Pe-

titot, 2003). This flexibility of hardware gives way to phenomena such as plasticity

and learning, which lets animals adapt to their environment and survive.

In this sense, neural computations are highly time and context dependent. Neurons

are often responsible of multiple tasks rather than doing an originally coded one

single facet (Leventhal et al., 1995). The amount of active synaptic inputs to a

neuron is estimated to be only 5-10% of all synaptic inputs (Shadlen and Newsome,

1998; Scannell and Young, 2002). Understanding the role of neurons in different

contexts is crucial in order to better understand the neural code.

Dynamic aspect of neural activity is important for various tasks that are important

for the survival of the animal such as decision making, perceptual binding, multi-

modal integration, and selective attention. How different areas of the brain, neural

populations or single neurons that are responsible for distinct tasks communicate

dynamically between them is a big question that has to be answered in order to

understand how perception emerges. Here we will primarily focus on the problem

of visual perception.

3.1 Coding strategies

3.1.1 Temporal vs. rate coding

Interpretation of the activity of a single cell in the context of the whole craves a

plausible coding strategy. Two of the most popular hypothesis for neural coding

are temporal coding and rate coding. Temporal coding indicates that the precise

timing of action potentials codes for stimulus information. Rate coding indicates

that frequency of firing of a cell rather than the precision of spike timing carries the

necessary information to code a stimulus.

Relevance of the single neuron activity requires reliability as well as precision. Both

of these aspects are considered to lack in temporal occurrence of action potentials

of a single neuron, hence temporal coding is often presumed to be a bad strategy.

Measures of discharge rate and total number of spikes are rather stable compared

to temporal occurrence (Barlow, 1972). Shadlen and Newsome (1998) argued that

rate coding should be considered as the main coding strategy in the cortex because

of the low reliability of the temporal code. However, it should be noted that a



3.1. CODING STRATEGIES 51

considerable amount of variability of discharge rates is also reported (Dean, 1981;

Vogels et al., 1989). On the other hand, higher order moments of the temporal

responses are as precise as a few milliseconds (reviewed in Abeles (1991)), and

under naturalistic wide field stimulation neural activity is highly reliable (Baudot

et al., submitted; Haider et al., 2010). Usually either of these two coding strategies

is retained, but probably both are used in neuronal coding.

3.1.2 Coding by synchrony

Synchronous neural activity is found in many regions of the brain, at multiple tem-

poral and spatial scales. According to Usrey and Reid (1999), synchrony in the brain

could arise from three reasons: anatomical divergence, stimulus dependence, and

emergent oscillatory activity. Synchrony by anatomical divergence results from the

common input that cells receive and the strong hard-wiring between the neurons

as explained in the previous chapter. This type of synchrony occurs in millisecond

time scale, and mostly during the early processing. Stimulus-dependent synchrony

does not necessarily result from anatomical connectivity: neurons may respond in

a time-locked fashion even though they are not connected depending on the fea-

tures of the stimuli. However, it should be noted that in V1, neurons that share

common functionality are often connected. Emergent synchrony arises from the

network activity as a whole, involving ensembles of neurons firing together.

One popular theory related to the role of synchronous activity in perception is the

binding problem (reviewed by Gray (1999)). This hypothesis claims that the multiple

brain regions, each responsible of detecting a particular independent feature, com-

municate between each other by synchrony and give rise to the perception of the

object that arises from combination of each of these features. The idea is initially

suggested theoretically (Milner, 1974; Grossberg, 1976; Von Der Malsburg, 1981)

and the first experimental evidence was provided by Mioche and Singer (1989). The

authors discovered that spatially segregated neurons were synchronized around

40 Hz in response to drifting gratings. Wolf Singer’s team leaded the binding by

synchrony hypothesis, suggesting that the Gestalt rules arise from synchronous

representation of the parts (Gray et al., 1989; Gray and Singer, 1989) giving rise to

the perception of the whole. It should be noted that these experiments were con-

ducted on anesthetized preparations. Synchronous activity of functionally related

neurons in anesthetized preparations may sign the “tendency” of functionally cor-

related neurons to synchronize (Kelso, 1995), probably arising from the first group

of synchrony (anatomical divergence) suggested by Usrey and Reid (1999), rather

than the second class of synchrony (stimulus dependence) which would confirm

the binding hypothesis. If we think the brain as a dynamical system consisting
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of neurons acting as coupled oscillators, the information coming from the sensory

organs will be coupled to this oscillatory activity, resulting in a loss of the incoming

information. This is indeed the case with the neurons in IT region which is a rela-

tively high level structure in the brain, that do not show any or but a little response

to sensory stimulation while the EEG is in a high voltage, slow and synchronous

state (Gross et al., 1972). Some strategies for decorrelation of synchronous activity

may be implemented in the brain in order to control the balance between the in-

coming sensory information and the internal percept that is created from the recent

activity. This dilemma will be explained in more details further in this text.

3.1.3 Propagation in a cascade

A classical view to consider the perception to arise from coherent activity of a group

of cells instead of a single cell goes as back as to Hebb (1949). He showed that

slow processes that introduce “learning” by reinforcing the strength of connections

among simultaneously active neurons are as important as short events for percep-

tion. This idea was further evolved to the synfire chains (Abeles, 1982). A synfire

chain is a group of cells that fire in response to a particular stimulation trigger-

ing an activation of another group of neurons and so on in a chain of feed-forward

and recurrent excitations, either in a synchronous or asynchronous mode. Abeles

(1982) argued that the only stable mode of transmission is the synchronous mode.

Later on, Izhikevich (2006) showed that time-locked but not synchronous firing

may also reproduce interesting regimes such as gamma rhythms and conversion

of firing rates to spike-timings. He called this principle as polychronization. Cor-

related activity in synfire chains depends on the distance between neurons, and

may emerge independent of firing rate modulation (Vaadia et al., 1995), implying

temporal coding strategy.

Dynamics of feed-forward activation of groups of cells in chain depend on the bal-

ance between excitation and inhibition. If the inhibition is dominant over excitation,

the depolarization will spread a little or will not spread at all. If the excitation is

dominant over inhibition, the activity will spread along all over the network. In be-

tween these two regimes, there is a critical point which is achieved by a particular

balance between inhibition and excitation. In this critical regime, the depolariza-

tion can spread in cascades of bursts, activating a part of the network at once. This

theory, introduced by Beggs and Plenz (2003) is referred to as neuronal avalanches,

because of the similarities of the avalanches observed in critical sandpile models

(Bak et al., 1987). Beggs and Plenz (2003) showed that the size of the bursts acti-

vated by a local discharge on slice preparations follow a 1/f distribution, which is

often observed in complex systems that operate in a self-organized critical state.
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3.1.4 Sparse coding

Since birth, animals observe the natural environment which is often locally contin-

uous, exhibiting 1/f distribution in space and time (Ruderman and Bialek, 1994).

The neural circuitry that is predefined by genetics is shaped by these particular

statistics after exposure to external input. Photoreceptors in the retina provide very

precise high-pass filtered extraction of a “pixel by pixel” information with highly

overlapping, less than 1° receptive fields. In order to extract relevant information

from this highly complex detection, it is possible that the brain performs some

“compression”, maximizing the information content of the incoming visual signal

by using strategies such as redundancy reduction (Attneave, 1954; Barlow, 1961),

noise filtering and generalization (Atick, 1992).

We, humans, are able to distinguish differences between very similar objects and

notions. We can consider the language to reflect the notions that we are able to

distinguish. In this case, the English language containing a quarter of millions

of words may give an idea about the number of notions available for an English-

speaking person. The words in a dictionary of course include synonyms, and an

individual may not know all the words in a language. Even so, dictionaries lack

the proper names that correspond to an individual object that a person can rec-

ognize (“my grandmother”, ”your pencil”, ”my neighbor’s yellow Volkswagen car”

etc.) which compensates for the lack of knowledge of certain notions, and may even

surpass the number of distinct notions in a dictionary. Taking into account the

number of each individual object, the number of distinct notions for an individual

increases drastically.

If the number of notions that we are able to distinguish is so vast, how does the

brain code for each object? Hierarchical organization of the visual system favors

interpretation of more specific objects as we go further in the hierarchy. If we

go on the top on the hierarchy, are there neurons that respond to only a specific

object? This problem is referred to as the grandmother cell paradigm. The idea

was used first by Jerry Lettvin around 1969 to question whether there are neurons

in the cortex that are active only when a grandmother, or any specific subject is

present in the sensory scene (Barlow, 1995; Gross, 2002). If this is true, removal

of these cells from the cortical network would remove this notion from the brain,

as pointed out in Lettwin’s original short story (available as appendix in Barlow

(1995)). Considering that the number of neurons in the brain would be too small

compared to the number of “percepts” invalidates this possibility, as pointed out by

the yellow Volkswagen cells hypothesis by Harris (1980).

Despite all these persuading counter-theories, a remarkable degree of sparsity is

shown to exist in the human brain. Barlow (1972) first pointed out that the neu-



54 CHAPTER 3. DYNAMICS OF VISUAL CORTICAL ACTIVITY

rons that are placed in higher areas in the hierarchy are much less active than the

neurons in early stages. He argued that neural networks of a higher order struc-

tures attempt to form more specific representations. A recent study has shown the

existence of cells that respond to the images or notions related to a particular per-

son (for instance, the actress Jennifer Aniston) in the human medial temporal lobe

(Quiroga et al., 2005), stating out that neuronal representations may be extremely

sparse.

Sparse coding is shown to be an efficient strategy for pattern learning and memory

storage, making the structure of the natural sensory input explicit, producing a

low-dimensional manifold in the high-dimensional data space, and for energy ef-

ficiency (reviewed by Olshausen and Field (2004)). Sparseness is maintained by

decorrelation of neuron pairs by an interplay between feed-forward excitation and

surround suppression (Vinje and Gallant, 2000).

Field (1994) suggested that visual coding is optimal if natural scenes are repre-

sented by sparse coding in the brain. He explained the natural scenes to lie on a

state space: Every statistical regularity would define the location and the shape of

the particular image in that state space. He was the first one to notice that sta-

tistical measures such as principal components analysis (PCA) gives Fourier-like

components of the data, similar to the receptive fields of the simple cells in primary

visual cortex. He also pointed out that PCA is not enough itself for encoding. He

argued that the features of natural images should be coded by kurtosis, which is a

measure of sparseness.

Later on, independent components analysis (ICA) came on the scene (Comon, 1994).

This method is indeed based on separation of components based on their kurtosis.

Bell and Sejnowski (1997) showed that ICA on natural images can calculate the edge

filters of the natural scenes. van Hateren and van der Schaaf (1998) compared the

RF properties of simple cells in macaque visual cortex to independent component

filters of natural images. They compared spatial frequency bandwidth, orientation

tuning bandwidth, aspect ratio and length of the RFs to those of independent com-

ponents, and observed that those properties match well. ICA on natural movies

revealed similar results (van Hateren and Ruderman, 1998). An example of inde-

pendent component activation in time is shown in Figure 3.1. The major difference

between static images and natural movies was that natural images had a higher

proportion of low spatial frequency filters. This result comes from the difficulty

to track fast moving high spatial frequencies. These results are in coherence with

optical imaging recordings that show that only low spatial frequency domains be-

ing activated by quickly moving stimuli, while both high and low spatial frequency

domains get activated in response to slowly moving stimuli (Zhang et al., 2007).
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Figure 3.1 – Independent components (IC) of natural movies and corresponding filters
(ICF) in time (from van Hateren and Ruderman, 1998).

3.1.5 Dynamics of inhibition and excitation in shaping neuronal re-
sponses

Neuronal dynamics are born out of a rich interplay between the activation of the

ion channels. We can simplify this complex picture by considering two groups that

summarize these interactions: inhibition and excitation. Control of the balance

between inhibition and excitation maintains the dynamics of connectivity creating

sub-networks and provides a fine tuning of this balance by timing of the inhibition

and excitation, which provides sparse coding.

Main computations in the visual cortex are classically explained by the anatomical

convergence of the feed-forward excitatory inputs (Hubel and Wiesel, 1962). How-

ever, cortical inhibition plays an important role in various tasks, including shaping

of the orientation and direction selective tuning (Sillito, 1979; Monier et al., 2003)

and spike timing (Harsch and Robinson, 2000; Bacci and Huguenard, 2006). Fast

feed-forward excitation followed by cortical inhibition can also explain a number

of observed phenomena such as reduction of trial-to-trial variability (Monier et al.,

2003), sparse and precise coding and propagation of synchronous cortical activity

(Litvak et al., 2003; Kremkow et al., 2010), and thalamic bursting that occurs dur-

ing naturalistic stimulation (Wang et al., 2007). Diversity of interneuron types on

the cortex is possibly pointing importance of inhibition and the variety of different

task in which they are involved (Gupta et al., 2000; Monyer and Markram, 2004).
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3.1.6 Dynamics of orientation tuning

On a theoretical point of view, feed-forward models predict that the orientation se-

lectivity remains constant during visual response (Hubel and Wiesel, 1962; Troyer

et al., 1998) while models with dominant intracortical activity predicts sharpening

of orientation tuning (McLaughlin et al., 2000). Imaging studies showed that orien-

tation tuning of small populations of neurons does not change with the duration of

stimulation (Sharon and Grinvald, 2002; Benucci et al., 2007).

Sharon and Grinvald (2002) used VSD imaging to investigate the dynamics of ori-

entation tuning at the population level. They showed that the tuning width remains

constant during 300 ms of visual response to square-wave oriented gratings. The

first response they observed was brightening of the signal across all the recorded

area at 36 ms after stimulus onset. Right after this first response, orientation-

selective response started and reached its maximum reproducibility at 46ms. Ori-

entation selectivity peaked at 55 ms, and started to decrease for about 20 ms, and

started to increase again. They called this temporary suppression “deceleration-

acceleration” (DA) notch. The authors also showed that the selectivity reaches its

peak at the same time as the first peak of orientation selectivity around the notch,

and decreases to one third of its value around 100 ms. DA notch is possibly is

a landmark of dynamics of inhibition and excitation (Borg-Graham et al., 1998).

Chemla and Chavane (2010a) suggested that the DA notch is the residual of a

phasic response to stimulus onset hidden under horizontal convergence of input

coming from neighboring columns. It should be noted that the notch is not ob-

served all the time, and it is often absent in awake animals. In response to natural

movies, only deceleration is observed (Onat et al., 2011a).

3.2 Operating Regimes of the Visual Cortex

3.2.1 Variability of Neuronal Responses

As pointed out in Section 3.1, noise is encountered in every level of organization of

the brain, revealed by any method, explained by any strategy. The spiking activity

of a neuron in response to a visual stimulation is reported to exhibit high tem-

poral trial-to-trial variability (Attneave, 1954; Barlow, 1961) in-vivo, corresponding

to a Poisson or supra-Poisson behavior (Schiller et al., 1976; Heggelund and Al-

bus, 1978; Vogels et al., 1989; Dean, 1981). Membrane potential fluctuations are

also highly variable, following a Gaussian distribution (or bimodal distribution in

case of up-and-down states). There are several reasons behind the variable ac-

tivity observed in neural recordings. First of all, any system operating at more
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than absolute zero temperature has noisy behavior. Thermal noise will be more

effective on nanoscale activity at single ion channel level, resulting in random trial-

to-trial fluctuations of ion channel functioning. Second important reason occurs at

the microscopic scale: As a neuron integrates relevant information from hundreds

or thousands of synapses, stochasticity among different synapses will be reflected

in the neuron’s output. Since the spiking activity is considerably reliable in-vitro
(Mainen and Sejnowski, 1995), the high variability observed in in-vivo recordings is

considered to be a result of the network activity. Third reason for observation of

high variability is the technical methods used for recording neurons. Any invasive

method that is used for recording neuronal activity, especially electrophysiological

techniques, involves alteration of the physical structure of the neuron. This would

lead the decrease in quality of the preparation over time, modifying the activity of

the neuron. Fourth reason is the choice of measure used in assessing variabil-

ity. Simple statistical measures such as standard deviation may not reveal the real

structure of the variability. For example, a drift in the recording would lead to a

high standard deviation while the important structure may be encoded in a different

frequency range.

The possibility of a putative role of the noise led to different hypothesis about the

neural code. At first, high variability was considered to be a limiting factor for

sensitivity and information transfer efficiency of sensory neurons (Tolhurst et al.,

1983; Heggelund and Albus, 1978). Later on, theoretical models showed that this

is not the case and new theories were more focused on the advantages of noise for

information transfer (Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Litvak

et al., 2003). Various explanations include predictive feedback from higher areas

(Ringach, 2009), maximization of information transfer via stochastic resonance ei-

ther by the strength (Wiesenfeld and Moss, 1995) or statistics of the noise compo-

nent (Rudolph and Destexhe, 2001), and exploration of the phase space in decision

making. Moreover, Marre et al. (2009) used the frozen paradigm to show that the

ongoing activity should be considered as a result of information propagation in the

network.

Considering the hierarchical structure of the cortex, uncontrolled noise may be am-

plified at each step of processing, resulting in a completely stochastic behavior of

the global activity at the end. Hopefully, this is not the case in the cortical hier-

archy. Shadlen and Newsome (1998) showed that the balance between excitation

and inhibition in an integrate-and-fire neuron network model maintains the level

of noise to stay at the same level in different layers of a feed-forward architecture.

In contrast, Kara et al. (2000) showed that in anesthetized cats, level of noise in-

creases from retina to LGN to cortex, nevertheless the maximum level is much less

than what is thought before. What is to retain from these studies is that noise may
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either stay at the same level at all layers of hierarchy, or may increase slightly from

one layer to the other. But in any case, noise level never exceeds a certain value

(certainly accepted as the level of the noise in a Poisson process).

Kara et al. (2000) explained the increase of response variability in the hierarchy by

decreasing fire rates and decreasing absolute and relative refractory periods. Few

other studies along with Kara et al. (2000) argue that the visual neurons are more

reliable than previously thought. Gur et al. (1997) reported that variability of visual

cortical neurons are much lower in alert monkeys during fixation. They argued that

the high response variability observed in in-vivo awake recordings are dramatically

reduced when influence of the eye movements are minimized. In a more recent

study, the same team showed that the responses are as reliable as inputs from the

retina and the thalamus when only responses during fixational eye movements are

considered (Gur and Snodderly, 2006).

Previous results in our laboratory, with intracellular recordings and stimulus-locked

frequency- time wavelet analysis, showed that noise and temporal reliability in neu-

ral activity depend on the visual input statistics context (Baudot et al., submitted;

Frégnac et al., 2005; El Boustani et al., 2009). Natural scene animation was shown

to evoke temporally precise sparse spike response and large and highly reproducible

irregular fluctuations in the sub-threshold membrane potential, while drifting grat-

ing responses were highly unreliable for frequency bands other than the frequency

of the stimulus. Spatial structure of natural scenes and the temporal dynamics

of natural eye-movements increase the signal-to-noise ratio by a nonlinear ampli-

fication of the signal combined with a reduction of the sub-threshold noise. It is

expected that large and reproducible fluctuations in the membrane potential of a

single cell for a large frequency range during natural stimulation will be the reflect

of distributed and precise stimulus-driven correlations in the cortical network ac-

tivity. Any unrealistic stimulation would create a stochasticity at the network level,

resulting in a highly variable response.

An interesting approach about the noise in the brain is the free energy principle

(Friston et al., 2006). The idea comes from the tendency to disorder of the parts

of a complex system in order to minimize the entropy of the states. Free energy is

the unexpected happening of the joint occurrence of sensory input and its causes.

Brain constantly tries to predict the incoming input and needs to minimize the pre-

diction error. The information content that is received from the external world is

therefore complemented with internal fluctuations in order to maintain a thermo-

dynamic equilibrium in the brain. As a result, natural image responses, which is

rich in information content pushes the neuron to completely focus on the incoming

sensory input. When the incoming signal carries poor information (as in case of

drifting grating stimuli), brain creates internal dynamics in order to provide more
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information to neurons. This theory also explains why rich dynamics are observed

during spontaneous activity. A recent work showed that stimulus and error coding

coexist in the brain, providing evidence for the free-energy model (Eriksson et al.,

2012).

Variability of neuronal responses may also be an important factor for evolution

(Mainzer, 2007; Fontanini and Katz, 2008). Evolvability of a system requires explo-

ration of different possibilities to solve a problem. Trials and failures, or success,

would lead the system to keep or change a certain strategy that is previously im-

plemented. If the neurons always do the same task, other possibilities could not be

observed and the system cannot evolve.

3.2.2 Structure and Role of the “Cortical Noise”

A number of studies report that the “neuronal noise” may have a common structure

among different neurons in the same network (Lee et al., 1998; Shadlen et al., 1996;

Zohary et al., 1994). Correlation of the noise between two neurons depends on

similarity of the receptive field properties (for instance, direction selectivity (Zohary

et al., 1994)) and distance between neurons (Lampl et al., 1999). On the other hand,

even though synaptic noise is often bad for reliability, noise correlations between

excitatory and inhibitory conductances may sharpen the stimulus-specific tuning,

hence increase response fidelity (Cafaro and Rieke, 2010; Salinas and Sejnowski,

2000).

Shared noise that decreases as a function of spatial distance or receptive field sim-

ilarities was the first evidence that the noise in the brain might have a spatial

structure (Zohary et al. (1994); Shadlen et al. (1996); Lee et al. (1998); Lampl et al.

(1999)). Spatio-temporal profile of the ongoing activity was examined by Arieli and

colleagues (Arieli et al., 1995, 1996)) by performing VSD imaging and microelectrode

array recordings on cat visual cortex. They claimed that the neuronal response is a

sum of a reproducible spatio-temporal component that adds up to another spatio-

temporal pattern of activity that presumably reflects the initial state of the cortex.

These results that were discovered using population recordings were further con-

firmed by intracellular recordings of membrane potential and spiking activities of

adjacent cells (Azouz and Gray, 1999).

It should be noted that, as for the variability of single cells explained above, most of

the work that found high noise correlation between nearby neurons are performed

on anesthetized preparations. Studies on awake animals showed that these corre-

lations seem to be strongly state dependent (Poulet and Petersen, 2008; Ecker et al.,

2010; Civillico and Contreras, 2012). Moreover, spontaneous and evoked activities
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may have different spatio-temporal structures during different brain states (Brunel,

2000; Vogels et al., 2005; Fontanini and Katz, 2008).

How the correlation between neurons is measured is of extreme importance. Esti-

mation of the correlation coefficient from finite data may result in erroneously high

values (Ecker et al., 2010). Moreover, indirect measures of the neuronal activity

(such as calcium or VSD Imaging), or of metabolic measures (such as fMRI) include

other signal sources that may not be related to neuronal activity at all. Presence of

such artefacts may increase the level of observed correlation.

Spontaneous activity: is it simply the “ongoing noise”? Brain generates spon-

taneous electrical activity even in absence of any external stimulation. This activity

is referred to as the “spontaneous activity”, and whether this phenomenon is related

to the ongoing noise that is present in evoked recordings or not is still ambiguous.

In this text, we will use the term “spontaneous activity” to define brain activity in

absence of external stimulation, and “ongoing activity” to refer to the stochastic

component in the evoked signals.

Neural circuits are active even before the exposure to external stimuli. During de-

velopment, retina, LGN and cortex are highly active, producing waves, spindles

and slow wave oscillations respectively. This spontaneous activity during devel-

opment plays a crucial role for the refinement of the neuronal connections before

sensory experience (reviewed by McCormick (1999) and Sur and Leamey (2001)).

For example, retinal activity during development is necessary for the development

of layers and ocular dominance in the primary visual cortex (Shatz and Stryker,

1988; Stryker and Harris, 1986). These studies show the importance of internal

fluctuations in shaping the network. While neuronal activity is shaped by internal

sources during development, incoming stimulation from the external world becomes

more important in shaping the structure and therefore the neuronal activity after

development.

Spatio-temporal activity patterns observed in the spontaneous activity are reported

to show signs of the evoked activity. The most striking example of spatially or-

ganized spontaneous activity is the appearance of orientation selective patterns

during blank response in VSD imaging of the primary visual cortex (Kenet et al.,

2003). This was also observed in multielectrode recordings by the same lab (Arieli

et al., 1995). Han et al. (2008) showed that freshly experienced evoked states are

replayed by the following spontaneous activity. The authors showed that the repet-

itive presentation of the stimulus response patterns persisted for several minutes

of spontaneous activity. They argued that this effect may contribute to the short-

term memory and learning. Berkes et al. (2011) showed that correlations between
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spontaneous and evoked states increase with age and that they become more cor-

related with natural scene responses than synthetic stimuli. This evidence shows

that not only in short-term activity, but also in large time scales, spontaneous ac-

tivity is shaped by the percepts of the natural environment. This is probably due

to the rewiring of the cortical networks by adaptation of the neuronal activity to

the statistics of the natural environment. Indeed, Marre et al. (2009) showed in

a modeling study that reliable spiking and subthreshold activities are obtained if

the statistics of the external drive matches to those seen in the spontaneous activ-

ity. Moreover, in rat auditory and somatosensory cortex, patterns observed during

spontaneous activity was shown to include an ensemble of possible evoked patterns

both in anesthetized and awake animals, probably reflecting a vocabulary of events

(Luczak et al., 2009). The authors emphasized that the stimuli they used are never

experienced by the animal before; therefore the similarities between the evoked and

spontaneous activities may result from cortical circuitry constraints, and not the

replay of the previously learned patterns. Even so, this does not change the fact

that the animals were previously exposed to other stimuli that are not ’completely’

different than those used in the experiment. The stimuli used in the experiments

were pure tones and natural sounds, and the recordings were performed on single

cells. We can think this problem in the sparse coding context, indicating that the

neurons in the brain provide optimal coding when they code sparse representations

of the natural stimuli (Field, 1994). Therefore, even if a particular stimulus is never

heard, the cortical vocabulary that is learned by exposure to other natural stimuli

provides means to encode other stimuli.

We previously recalled the notion of Turing instability to explain cortical map for-

mation. Turing instability can also reveal the appearance of orientation selective

patterns during the spontaneous activity (Bressloff and Cowan, 2002b). Turing

instabilities occur in media with competing activation and inhibition processes.

Lengyel and Epstein (1991) showed that the inhibitory medium plays an important

role in shaping the pattern formation for Turing structures in reaction-diffusion

systems. Certain anesthetizers, including pentothal which is used by Kenet et al.

(2003) and pentobarbital which is used in Han et al. (2008) act directly on inhibitory

sites and enhance inhibition. Moreover, Mennerick et al. (2010) argued that voltage

sensitive dyes modulate GABAA receptor function. Particularly, The blue voltage

sensitive dye RH 1691 acts similarly like benzodiapezine, enhancing GABAA acti-

vation. It should also be noted that, recordings presented by Kenet et al. (2003)

are performed with long exposure times (30s), which may aggravate this effect, and

may damage the cortex by phototoxicity. Therefore, these studies may not reflect

the operating regime of the cortex, but may explain how the network would behave

in case of an extreme regime dominated by inhibition. Enhanced inhibition may re-
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strict the spontaneous activity to the strongest connections rather than the others,

which correspond to the orientation-selective connections in V1. Another critic to

the approach of Kenet and colleagues is made by Goldberg et al. (2004). The au-

thors showed that the self-organized feature map approach detects the dimensions

in the data with maximum variance even when this variance is small compared to

the overall variance.

3.3 Attractor States and Transient States

Efficiency in neural coding requires two competitive tasks: First, changes in the

external world should be successfully detected and transmitted. This would force

the brain to favor the external stimulation. Second, brain should construe this in-

formation in a more global context which is shaped by the present and recent past

of the global network activity. This second requires the incoming information to

be shaped by the internal activity in the brain. These two principles are accepted

to underlie the brain functioning, which involves conservation of global coherence

(functional integration) while maintaining regionally specific dynamics (functional

segregation). Interplay between those two principles is reflected in the complex-

ity measures, which evaluate the statistical independence between neuronal sub-

groups (Tononi et al., 1994; Friston et al., 1995). Results on brain networks and

nonlinear systems with same connectivity profiles as the brain shows that high

complexity measures are achieved when the interplay between local computation

(segregation) and global activity (integration) are maximized.

In order to achieve this optimal interplay, it is possible that the brain circuits are

continuously modified by favoring or penalizing connections with respect to the

computational needs. Fine tuning of the connections would yield to emergence of

patterns of connectivity, or motifs that reflect an instantaneous organization in the

brain. Sporns and Kötter (2004) showed that the functional motif number and

diversity in the real brain networks is very high compared to random networks,

while the structural motif number stays comparably low. They interpreted the high

number of functional motifs as maximizing the repertoire of functional circuits,

and the low number of structural motifs as efficient assembly and encoding. Their

results show that anatomical organization provide very limited information about

how the brain networks organize in response to a naturalistic stimulation.

It is useful to borrow notions from dynamical systems theory in order to study how

the brain activity is organized in temporal domain. A dynamical system is in an

attractor state when the pattern of activity does not change in time under same

conditions. When the patterns of activity change from one attractor to the other,
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the system is in a transient state. When the attractor is continuous and is not only

a simple point, movement of the system from one part of the attractor to another

part may create an illusion that the attractor is changing. In this case, the system

is in a metastable state. Metastable regimes in the brain are defined as a collection

of simple attractors that are connected via an embedding on a more complex mani-

fold. When the system is in an attractor state on this complex manifold, it will stay

at a certain attractor point until the connection to another state is found by the

trajectory. In these systems, noise is enough to switch the system from one state

to the other (Kelso, 2012). Hence, stable states of a metastable system are also its

transient states. Friston (1997) defined this kind of attractors as complex attractors
and showed that this type of dynamics occur when the connectivity among simu-

lated neural populations is sparse. Rabinovich et al. (2008) stated that the transient

cognition would require metastable states, in which the reproducible transients are

represented by a stable heteroclinic channel that consists of saddle points and un-

stable separatrices. This would result in a winnerless competition and robustness,

and reproducibility may be achieved with this kind of metastability.

Models of neural systems such as Hopfield nets, integrate and fire models etc.

study how the interactions between spiking neurons lead the system to an attractor

state, which codes for a particular feature. This type of models may be more useful

in order to study tasks that involve global dynamics such as short-term memory

and decision making. Brody et al. (2003) argued that persistent activity can be a

substrate for working memory. The authors reasoned that the persistent activity

is coded as attractor states, and for this purpose the states should be persistent

against distractors and noise at least over a period. This helps the short term

memory to be encoded in the network state. However, recognition of new patterns

is done in much more fast time scales and hence metastability may be difficult to be

studied by these conventional methods. Maass et al. (2002) argued that liquid state
machines are more appropriate for coding transient dynamics. They suggested that

a readout neuron can extract salient features from the hundreds or thousands of

inputs that it receives without needing to converge to an attractor state.

This paradigm also puts into question the experimental procedures that are used

for system identification. Classically used stimulation profiles (such as drifting grat-

ings for the primary visual cortex) are useful to identify single cell response profiles

under a very restricted global context. This kind of stimulation profiles drive the

cortical populations to converge to an attractor state. However, this kind of visual

scenes are not common, and even impossible if we take into account eye move-

ments. Taken into account that the time constants of neurons are about tens of

milliseconds, rapidly changing visual scenes may not have enough time to drive the

network to an attractor state. In contrast, natural stimulation is shown to drive
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the network dynamics to rapidly changing spatio-temporal activity patterns in vari-

ous systems. Theoretical explanations start as early as the notion of synfire chains

(Abeles, 1982), which is also confirmed experimentally (Vaadia et al., 1995). These

studies showed that neurons can rapidly form functional groups in order to perform

a common task, and that these patterns change systematically following behavioral

events. Sequences of patterns that are activated following of a stimulus is found

to be reliable even though exact timing of the temporal activity is not precise in

the olfactory antennal lobe of locust (Wehr and Laurent, 1996) and in the gustatory

system of the rat (Jones et al., 2007). These results indicate that population coding

by rapidly changing spatio-temporal activity patterns which would correspond to a

succession of states (or the transient) provide more efficient coding than single unit

coding.

Multichannel recording tools provide means to record temporal activity over multi-

ple recording channels in which spatio-temporal neuronal activity can be studied.

Dimensionality reduction methods such as PCA provide not only the spatial activ-

ity patterns, but also would show how these patterns are activated in time. This

approach is used in various studies in order to investigate how neuronal activities

are coded by different patterns in time (Stopfer et al., 2003; Mazor and Laurent,

2005; Briggman et al., 2005; Broome et al., 2006; Yu et al., 2009, review of tech-

niques and results in Briggman and Abarbanel, 2006; Churchland et al., 2007).

Using these methods it was shown that population responses discriminate distinct

stimuli (Mazor and Laurent (2005)) or decisions (Briggman et al. (2005)) earlier than

single neurons, during the transient response. These evidences show that neuronal

populations are very efficient for discrimination during even very early responses.

Another related concept is how the patterns of activity or motifs that are evoked

by external stimulation in the brain are related to the patterns that are observed

during spontaneous activity. Goldberg et al. (2004) studied this question in a the-

oretical aspect and showed on a model that according to the relationship between

the gain of cortical interactions (l) and the ratio of the mean of the LGN input to

its standard deviation (T/sv), three regimes of spontaneous activity are possible:

Homogeneous, marginal and instable. In the homogeneous state, spontaneous ac-

tivity can be explained by a single state, in which the fluctuations of distant pixels

will be uncorrelated. This would be the case if both l and T/sv are low, or when

T/sv is dominant over l. Instable state is obtained when l is larger than 2. In this

regime, the network is dominated by an uncontrolled excitation and diverges. In the

marginal regime, spontaneous activity wanders on a continuous multidimensional

attractor manifold. They reported that considering a high dimensional encoder that

takes into account multiple visual features, same regimes are obtained given that

preferred orientations are represented uniformly on the cortex. Nonuniform dis-
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Figure 3.2 – Evoked and spontaneous maps on the continuous ring attractor of ori-
entation selectivity. In the evoked state, firing rate of each column on a ring has a
hill-shape, centered on the preferred orientation. Spontaneous maps reside in a N-
dimensional space, two of which represent the evoked state dimensions that include
the orientation-selective circle. In the multiple state scenario, spontaneous activity (red
line) projects mostly onto the evoked maps (red dashed line). In the single state sce-
nario, spontaneous activity (blue) will have a small projection onto the evoked state
dimensions (blue dashed line). Adapted from Goldberg et al. (2004)

tribution of preferred orientations resulted in a collapse of the ring attractor to a

small number of possible states. They concluded that only possible scenarios that

are consistent with the empirical time scales of the fluctuations and the normal

distribution of the similarity index between spontaneous and evoked states are the

single state scenario, and the multiple feature scenario encoding at least ten differ-

ent features, given that the preferred orientation is uniform on the cortex.

In conclusion, not only structure and connectivity of single units, but also the dy-

namic interplay between them is important for neuronal coding. Study of the visual

cortical network as a complex dynamical system would help us better understand

how single neurons get involved in coding by populations. In this sense, an impor-

tant point to understand is the state space of visual dynamics, and the trajectories

that are followed in this space under different stimulus conditions.
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Chapter 4

Analysis Approach: Composition
of VSD Imaging Recordings and
the Source Separation Problem

As we pointed out in Chapter 1, the main drawback of VSD imaging is the weak

signal-to-noise ratio. The neural re-emitted fluorescence signal related to the evoked

neural activity constitutes indeed only about 0.1% of the total signal recorded by the

camera. This signal reflects a mixture of instrumental and physiological artefacts,

neural signal and background noise. Moreover, stimulus-induced neural-related

activity contains evoked deterministic response and neuronal noise. In order to

perform a single-trial analysis on the data, it is necessary to extract the neural-

related signal by using a proper method. In this Chapter, we will explain various

sources in VSD Imaging recordings, and we will present the strategies to extract the

neural-related components in this rich mixture.

4.1 Composition of VSD Imaging Recordings

Baseline fluorescence and bleaching Bleaching and baseline fluorescence are

the strongest artefacts that are observed in VSD Imaging. Light exposure dimin-

ishes the fluorescence of dye molecules by damaging their chemical structure, re-

sulting in a decrease in light intensity following light exposure. This phenomenon is

observed as a decay in the amplitude of the fluorescence, which is referred to as the

bleaching effect. Although most of the studies retained single-exponential model

for bleaching, we observed a double-exponential phenomenon. Double-exponential

nature of bleaching is common in fluorescence recordings (Eggeling et al., 1998;

67
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Gavrilyuk et al., 2007). This decay adds up to the baseline fluorescence that re-

flects the initial state of the cortex as well as a DC value for staining. Baseline

fluorescence is highly variable among trials.

Blood supply The strongest biological noise source is the blood supply. Blood

pulsation not only introduces a physical warping to the cortical tissue, but also

supports the metabolic changes related to the neural activity. Biological artefacts

that are related to the blood supply can be categorized as direct and indirect arte-

facts. Direct artefacts consist of the image of the vasculature and the physical

warping. Using conventional methods, image of this kind of vasculature can be

efficiently removed by first frame analysis. However, image of the vasculature may

change after almost one second of stimulation as a result of metabolic blood vol-

ume change. Indirect vasculature artefacts are related to the neural activity. These

include all the metabolic changes resulting from blood flow in response to neuronal

activity. Vasculature patterns are closely correlated in space with the functional

organization of the cortex (Zheng et al., 1991; Wang and Roe, 2011). In this case,

nonlinearities may occur and spatial profile may change as a result of blood volume

alteration. Moreover, frequency of the heart beat cannot be controlled externally;

therefore the rate may vary over time. For the same reason, irregularities from one

beat to the other may occur.

Intrinsic signal Although intrinsic signal can be investigated under indirect blood-

flow related artefacts, it is more convenient to consider this signal separately as it is

well studied by the intrinsic optical imaging community in order to understand the

nature of the intrinsic signal. Additionally, oxygenation-related intrinsic change oc-

curs at the neuronal sites rather than blood vessels, which distinguishes this signal

from other blood flow-related artefacts.

Neural stimulation induces activity-dependent changes related to the oxygenation

and blood volume change in the brain, as explained in details in Chapter 1.3. This

intrinsic change is also observed within the illumination range of VSD Imaging,

therefore it contaminates the fluorescent signal. Oxygenation change of the tis-

sue is reported to be a linear combination of oxyhemoglobin and deoxyhemoglobin

concentrations, which can be modeled as ∆[O2] ∝ ∆[Oxy]−∆[Deoxy][Oxy]0/[Deoxy]0

(Vanzetta and Grinvald, 1999).

It should be noted that the intrinsic signal recorded by VSD imaging is not the same

as the one of intrinsic optical imaging, because of the different wavelengths of the

light that is used in two techniques.
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Respiration Air pumping from the lungs to the rest of the body results in a very

slow (~0.4 Hz) physical warping. In our case, this mechanism is controlled ex-

ternally by a pump, therefore this artefact is synchronized among trials and it is

not difficult to remove it by conventional methods. This signal is often discarded

from the analysis because it is slow enough to be discarded in short timescales of

acquisition (~1 sec); but in any case it is present as well for short recordings.

Neural-related activity VSD Imaging records the fluorescent signal emitted as a

reflection of the instantaneous membrane potential by the activation of dye molecules

that bind to the external surface of cell membranes. The amplitude of the fluores-

cent signal is considered to be linearly correlated with the membrane potential and

the total stained membrane area under a pixel (Grinvald and Hildesheim, 2004).

Visual full-field drifting grating stimulation evokes an increase in fluorescent signal

on the cortical surface and has proportional amplitude with respect to the orienta-

tion (and direction) selectivity of the imaged column (Shoham et al., 1999). Although

the deterministic sensory-evoked response can be easily observed this way, there is

a high trial-to-trial variability of the membrane potential response that should also

be taken into account.

Other sources We also observed a lateral warping of variable frequency and am-

plitude among periods of oscillation at higher harmonics of the heartbeat rate. The

warping was strongly synchronized with the acquisition. This component was very

strong in amplitude, and was also present in BS-cleaned responses. This signal is

possibly related to the arterial pulse wave that results from the opening/closing of

the arterial valves, revealed in higher harmonics of the heartbeat frequency. It often

had slightly variable amplitude and frequency per each peak, which makes it very

difficult to be removed by any method cited in this study.

Illumination noise at 10Hz with 5 harmonics reported by Reynaud et al. (2010)

was not very strong (almost and often absent) in our recordings. One important

instrumental noise source was 50Hz line noise, which cannot be controlled and

synchronized among trials.

Some recordings were contaminated by a patterned camera noise, organized as 3

square groups of 16 pixels each with altered fluorescence (one very high, one very

low, one flat). These patterns occurred randomly on different places for different

frames, and were not predictable. This artefact is related to the design of the acqui-

sition system that sends the packets by groups of adjacent pixels. Square patterns

were observed previously by the imaging community (Reidl et al. (2007), Isabelle

Ferezou, personal communication).
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Shot noise related to the stochastic fluctuations of light also contaminates the

recordings. It is impossible to remove shot noise with any statistical method, as

it is of non-deterministic nature. Furthermore, this noise source is indistinguish-

able from the neuronal noise; therefore it is more convenient to leave it in the signal

than removing.

4.2 Denoising strategies

VSD imaging measures the neural activity by means of fluorescent light, and most

of the time desired signal is highly contaminated by artefacts. A common way to

isolate the signal from the artefacts is to perform repeated recordings of the same

protocol in order to calculate average signal in response to stimulus. A ‘blank’ re-

sponse to uniform luminance screen is recorded as a control, and this signal is

subtracted or divided from the stimulus-induced evoked response. More sophisti-

cated approaches have been also developed for denoising VSD imaging recordings.

In the following of the text, we will explain the classical methods and statistics-

based alternatives for denoising.

4.2.1 Conventional Methods for Denoising VSD Imaging Data

Conventional methods for denoising of VSD recordings involve utilization of the

average of blank response trials as a control. This signal is subtracted from the

trials of the evoked response in order to remove repetitive artefacts. This method is

referred to as blank subtraction.

Blank subtraction is often done after first frame analysis, which consists of divid-

ing each frame of a trial by the mean of the first frames. This procedure permits

removal of supposedly-constant spatial structures such as baseline fluorescence

and vasculature image. This method assumes that the first frames reflect mostly

the baseline fluorescence, and neural-related fluctuations are either negligible or

that evoked activity sums up to the spontaneous activity (Arieli et al., 1996) which

permits extraction of evoked reproducible signal independent of spontaneous fluc-

tuations in the neuronal network.

Other well-known methods include blank subtraction with linear detrending that

permits removal of low-frequency trends in blank-subtracted signal (Chakraborty

et al., 2007; Chen et al., 2008) and removal of bleaching by exponential fit followed

by removal of heart-triggered average (Lippert et al., 2007).

For all these methods, recording multiple trials of the responses to same stimulus in

order to calculate the ensemble average is necessary. Although the methods based



4.2. DENOISING STRATEGIES 71

on using average blank as a control are useful to determine the evoked reproducible

part of the signal, an important non-deterministic part of the dynamics is neglected

by this approach. First of all, blank response includes not only artefacts but also

the spontaneous activity which may have a spatio-temporal structure (Kenet et al.,

2003). Even after averaging of multiple trials of blank recording and filtering high

frequency components, some patterns may still be present in the resulting blank

condition. Second, during the control condition, artefacts are supposed to be syn-

chronized among trials of evoked and blank responses. Even though this holds for

some artificially-controlled components (such as respiration, illumination), it is not

always possible to control non-reproducible components such as 50Hz line noise.

Heartbeat rate may also vary in time, resulting in a phase shift in heart beat artefact

towards the end of the trials. Moreover, this approach discards the event-related

modulation of single-trial activity which may result in trial-specific evoked activ-

ity, possibly involving nonlinear interactions between ongoing and evoked states

(Truccolo et al., 2002). Development of methods that permit single-trial analysis

is necessary in order to investigate real-time dynamics of VSD signal. In order to

develop adequate methods for denoising, one possibility is to consider the nature of

each source contributing to the final mixture, and the relationship between these

sources. Now we will explain the statistical measures that take into account these

points.

4.2.2 Statistical Methods for Source Separation

A better approach for denoising would be to investigate the nature of each signal

source and the correlations among sources, then to use an adaptive strategy for

each trial to remove unwanted contributions to the signal. Estimating the nature

of these sources in the imaging signal is crucial in order to better understand the

observed VSD imaging data, and to extract the signal of interest.

Separating multiple signal sources from a mixture is a common problem in digital

signal processing. A good illustration of the source separation problem is the cock-
tail party problem (Figure 4.1): The problem consists of extracting voices of n people

talking in a cocktail party, recorded by a number of microphones. Sources are sup-

posed to be mixed by a procedure that will be recovered by using the assumption

about the mixing procedure and resulting mixtures, with or without any knowledge

about the nature of the sources.

Linear source separation methods assume that the observed signal is a linear mix-

ture of a number of sources, and that these sources are mixed in a way to permit

separation by using a linear technique. In case of neuroimaging, mixture of the

sources can be formulated as
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Figure 4.1 – Cocktail Party illustration

S(x, y, t) =
∑
n

λnan(t)Mn(x, y)

where an(t) stands for the temporal activation of the spatial map denoted by Mn(x, y),

and λn is the total energy of this combination. The aim of source separation is to

find each of these components, or to provide a separation of meaningful compo-

nents. In the cocktail party analogy, an(t) would be the speech of a person, and

Mn(x, y) would be the location of each microphone.

The way how this source separation can be done raised a big debate in the neu-

roimaging community (Friston, 1998; Stone, 2002). The most common methods can

be investigated under two groups: model-based and data-driven methods. Model-

based methods are based on fitting the observed data to a set of source vectors that

are defined a priori. Data-driven methods take into account the correlation or de-

pendence of signal sources on each other, without any prior knowledge concerning

the nature of the signal sources. Both methodologies have advantages and disad-

vantages, and the choice of appropriate method depends on the nature of the data

to be analyzed.

Advantages and disadvantages of these two strategies are shown in Table 4.2.1. We

can see in this table that the advantages of one approach are often disadvantages

of the other. The most important factor for choosing an appropriate method is

the availability of prior knowledge about the nature of sources. If the nature of

the signal sources is well known, model-based methods do good job. If no prior

knowledge is available, data-driven methods should be used instead. Data-driven

methods are based on weak models of the data, implying only constraints about

the nature of dependence between sources rather than their exact form, as it is the
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case for model-based methods.

Model-based methods are appropriate as long as the contributing signal sources are

well known from the beginning and the dependence between sources is rather am-

biguous. On the other hand, unpredicted sources may be extracted more efficiently

by data-driven methods. One consequence of the data-driven approach is the dif-

ficulty to interpret meaning of the extracted signal sources: It may be difficult to

evaluate the underlying mechanism of a resulting component from ICA or PCA if we

cannot make any interpretation about the nature of the component. On the other

hand, model-based methods restrict the signal strongly to the predefined source

set, while the same problem arises for data-driven methods about the hypothesis

underlying the relationship between sources.

Model-Based Methods Data-Driven Methods

Pros -Good if the nature of the signals sources

are known

-No prior knowledge is needed regarding
the nature of the sources

-Takes into account spatial correlations

Cons

-Restricted to user-defined model signals
-Signals are difficult to be specified a

priori explicitly

-Same model may not hold for all pixels

for the basic models

-Strong dependence on method
requirements

-Difficult to evaluate meaningfulness and
statistical significance of resulting

sources
-Results may not be repeatable among

trials, subjects, and tasks

-No assumption is made about the nature

of extracted components

Examples General Linear Model (GLM)
Principal Component Analysis (PCA)

Independent Component Analysis (ICA)

Table 4.2.1 – Comparison of model-based vs. data-driven source separation strategies.

Another important issue concerning the model-based techniques is the domain of

interest for signal separation. Spatio-temporal nature of the signal gives the op-

portunity to think of the separation problem either in temporal or spatial domains.

Model-based techniques generally investigate the problem in temporal domain, as it

may be difficult to make assumptions about the spatial structure of the recordings

that differ among individuals. Data-driven methodologies provide the opportunity

to search either spatial or temporal sources of the signal. Another difficulty while

using model-based techniques is to predict the activity that may have different la-

tency for different pixels.

Most of this source separation discussion is conducted by the fMRI community.

As it is for fMRI, denoising and neural population discrimination can be both con-

sidered as source separation problems for VSD imaging. Now we will explain in
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details the most well-known techniques for both approaches, and their application

to multichannel data.

Data-Driven Source Separation

Data-driven methods assume that artefacts and evoked signal are statistically un-

correlated or independent. Data-driven methods aim to separate different sources

of signal with respect to their statistical distributions. This approach is also referred

to as blind source separation as the separation is done only by observing the output

without any knowledge about the nature of the sources. Consequently, data-driven

methods do not explicitly define the nature of signal sources. An additional method

is often needed in order to detect whether a resulting source is related to the neural

activity or not.

The most well-known methods that use a data-driven strategy are PCA and ICA.

Principal Component Analysis PCA is the most primitive approach among data-

driven methods. It provides an orthogonal transformation of the data in which the

basis vectors are separated with respect to their variance, and ordered with respect

to their energy. Eigenvalue decomposition of the covariance matrix and singular

value decomposition (SVD) algorithms are the most common strategies to perform

PCA. These two methods are very similar. We will explain the covariance method as

the relationship with statistics is clearer.

PCA by covariance method involves finding eigenvectors of the covariance matrix.

In other words, decomposition is based on finding orthogonal axes that maximize

the covariance among signal sources. Principal components are the projections of

the raw data on the eigenvectors of the covariance matrix.

PCA is based on the second order moment about the mean, which is proportionate

to the variance. This fact implies that the method relies on the hypothesis that the

signal sources are linearly uncorrelated.

Although it is tempting to do PCA on the domain that consist of smaller dimen-

sionality, orthogonality assumptions may not hold for both domains. One common

approach is the snapshot method (Sirovich, 1987). This method suggests that the

eigenvector decomposition of the covariance matrix of the large dimension (in our

case, pixels) is the same as those for the smaller dimension (in our case, frames).

This method provides a proof for the interdependence between the eigenvectors of

the two dimensions, but discards the fact that the data has to be centered before

this application. In other words, when PCA is done on the temporal domain, tempo-

ral activation of each pixel has zero mean. When PCA is done on space, each frame
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would have zero mean. Zero mean for one dimension does not apply for zero mean

for the other. Although temporal and spatial PCA give similar results, they may not

give exactly the same values. It is more convenient to consider the signal sources to

have temporal profile in VSD imaging data. In this case, mixing procedure is done

by each pixel (like the microphones in Figure 4.1). Therefore, it is more convenient

to consider PCA in temporal domain.

PCA-based methods are reported to be successful for extracting the signal of inter-

est for intrinsic imaging (Everson et al., 1997; Gabbay et al., 2000; Stetter et al.,

2000; Sirovich and Kaplan, 2002; Sornborger et al., 2003), fMRI (Mitra and Pesaran,

1999), and VSD imaging (Prechtl et al., 1997). The latter was done by applying PCA

in the frequency domain, in order to extract waves of activity in turtle visual cortex

rather than removal of artefacts.

PCA-based methods often use a supplementary method in order to discriminate the

desired signal from the unwanted components. The methods previously used in

the literature include indicator function (Everson et al., 1997), truncated difference

(Gabbay et al., 2000) and periodic stacking (Mitra and Pesaran, 1999; Sornborger

et al., 2003). Fekete et al. (2009) used spatial PCA on VSD imaging data and used

the first components as vascular pattern templates. They removed the vascular-

related patterns from the recordings by performing a local similarity minimization

on each frame. Another variant of PCA is the generalized indicator functions, which

is developed by Yokoo et al. (2001) in order to analyze intrinsic imaging signals.

PCA-based analysis methods cited above are mostly aimed for searching spatial

activity patterns rather than the temporal dynamics of the cortical activity. This

is partially a result of the temporal frequency limitation of intrinsic imaging and

fMRI recordings. One exception is Prechtl et al. (1997) where the authors searched

spatial patterns that are activated by different frequency bands and reconstructed

waves of activity in VSD imaging recordings on turtle visual cortex. On the other

hand, when used for separation of independent or uncorrelated neuronal popu-

lations rather than the denoising aspect, PCA and other blind source separation

methods provided good separation of neural populations that have different tem-

poral dynamics in electrophysiological recordings (Stopfer et al., 2003; Mazor and

Laurent, 2005; Briggman et al., 2005; Yu et al., 2009). These studies are often

performed on multielectrode recording data which provide good temporal resolu-

tion but lack spatial resolution (except Briggman and Abarbanel (2006), where the

authors used VSD imaging to evaluate both temporal and spatial profiles of neu-

ronal activity). Moreover, in most of the studies in the literature, recordings are

done on cortical areas which lack spatial organization of receptive field properties.

VSD imaging provides a compromise between high temporal and spatial resolutions

in which we can investigate both spatial and temporal aspects of the neuronal re-
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sponse in the visual cortex of cat. Recently, Onat et al. (2011b) used PCA on the

stable region of the average response to a single drifting grating (400 ms following

stimulus onset). The authors showed that the direction of motion of the grating is

separable with PCA. Their results show that other interesting features of VSD data

rather than the common activation of the orientation-selective regions in response

to drifting gratings may be extracted using PCA.

PCA provides an orthogonal basis in which the variance among signal sources are

maximized. This implies that PCA finds signals that are uncorrelated. Uncorrelat-

edness states that the covariance between observations of two variables is zero. In

case of zero-mean vectors, this implies orthogonality. However, uncorrelatedness

does not imply independence. For example, consider X to be a continuous ran-

dom variable uniformly distributed on [−1, 1], and Y = X2. Observations of X and

Y will be uncorrelated even though we can determine the values of one with only

the knowledge of the other. Therefore, uncorrelatedness criterion is not enough in

order to determine signal sources that do not depend on each other.

Independent Component Analysis Two random variables are statistically inde-

pendent if the knowledge of one does not imply any information about the other.

A number of different algorithms have been developed in order to provide separa-

tion of signal sources depending on independence (see Comon (1994) for a review).

The most well-known algorithms applied to neuroscience are Infomax (Bell and Se-

jnowski, 1995), and FastICA (Hyvarinen, 1999). Infomax is based on maximization

of the information flow in a network of nonlinear units. FastICA is based on max-

imization of negentropy of sources estimated by kurtosis, which is proportionate

to the 4th order moment around the mean. Although two algorithms are different,

they are both based on higher order moments. One advantage of the FastICA is

that it can very rapidly converge to a solution.

Usually, FastICA is applied to data already whitened by PCA. On the orthogonal low-

dimensional space defined by PCA, the algorithm searches the axes that maximize

kurtosis. This leads to finding sparse representations of the data. The main idea

comes from the central limit theorem which indicates that the distribution of sum

of independent random variables tends toward a Gaussian distribution. Therefore,

maximizing the non-Gaussianity of the source vectors at each step by using kurto-

sis or any other method permits detection of independent sources that contribute

to the signal. Main hypothesis of ICA is that sources are statistically independent

and non-Gaussian.

ICA is widely used in EEG, fMRI and other neuroimaging tools in order to remove the

artefacts and for finding the patterns of neural activity (McKeown et al., 1998; Jung
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et al., 2001; Makeig et al., 2004). Some attempts have been done also for using ICA

on optical imaging data. Reidl et al. (2007) showed that spatial PCA of VSD imaging

recordings on olfactory bulb and somatosensory cortex of mice as well as on the

visual cortex of monkey could not successfully remove artefacts from the neural

activity, while spatial ICA following PCA could achieve this goal. It should be noted

that the results of ICA on monkey cortex reported in this paper seem to contain a

mixture of artefacts and noise, hence it is useful to exploit this method to have a

rough idea about the sources, but the separation by ICA is not ideal for removing

all the noise from the signal. Brown et al. (2001) used temporal ICA to separate

independently active neural populations in sea slug revealed by optical imaging.

Maeda et al. (2001) used temporal ICA to separate noise from signal obtained by

VSD imaging of the auditory cortex of Guinea pig. These two works seem to provide

good separation, however it should be noted that the biological artefacts such as

heartbeat are much less strong in smaller animals.

Another method for blind source separation is extended spatial decorrelation, which

relies on only second order statistics (Schießl et al., 2000). The authors showed that

this method outperforms PCA and ICA on intrinsic imaging data.

Model-Based Source Separation

Model-based methods require all the possible signal sources to be determined a

priori. Then, these signals form a regressor base in which the raw data will be

projected. Most well-known example is the GLM.

General Linear Model The main assumption of GLM is that the observed signal

is a linear mixture of all the source signals. In the most basic form of the model,

all pixels are considered individually. Raw signal S(t) is considered to be a linear

combination of different signal sources, and the noise:

S(t) =
∑
n

λnan(t) + r(t)

For the denoising aspect, it is convenient to divide these signal sources into two

groups as signals and artefacts. To solve the linear decomposition problem, all pos-

sible signal sources are included in an appropriate base of regressors, and their en-

ergies are estimated by finding the Moore-Penrose pseudo-inverse by least-squares

fitting of the regressor basis on the original data. The only constraint on the regres-

sor basis is to have full rank. Orthogonality as in PCA, or independence as in ICA

among the vectors of the regressor basis are not necessary.
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Model-based methods are based on fitting the data onto a regressor basis in order to

find the contribution of each possible signal source to the observed signal. GLM is

a model-based method and is the conventional technique for fMRI analysis (Friston,

1998; Woolrich et al., 2004). The original model which had been developed for fMRI

was used for denoising of synoptopHfluorin imaging (Bathellier et al., 2007) and

VSD imaging (Reynaud et al., 2010).

Reynaud et al. (2010) were the first to develop a model-based denoising approach

for VSD imaging data. In order to perform the GLM, the authors inquired nature of

all the sources that contribute to the VSD imaging recordings on awake monkeys.

First, they performed synthetic experiments on a piece of paper. This permitted

them to characterize the noise related to camera and dye bleaching. They observed

an illumination noise at five harmonics of 10Hz and they declared the dye bleaching

to follow a single-exponential decay. Second, they determined the physiological

sources by calculating the power spectrum density (PSD) of blank recordings. They

observed an additional peak that corresponded to the heartbeat frequency in the

PSD of the blank compared to the synthetic experiments. Third, they modeled the

evoked response to rise after stimulus onset with a variable delay and slope, stay on

a plateau during stimulus, and decay with a variable delay and slope after stimulus

offset. They performed PCA on a set of possible evoked responses with variable

slopes and delays, and retained less than 10 of the first principal components to

include in the regressor basis. The set of regressors they used, and resulting GLM

fitting is shown in Figure 4.2.

The GLM approach developed by Reynaud et al. (2010) provides a good denoising

of VSD imaging data, with a clear view of the nature of sources contributing to the

signal. In the work presented in this thesis, we first developed a modified version of

their GLM regressor basis. The reason behind this choice is simply because regres-

sor basis for GLM would not be the same for different experimental preparations.

We work on recordings performed on anesthetized cats, which makes synchroniza-

tion of physiological artefacts easier compared to awake monkey preparations. This

provided us the possibility to check the performance of GLM by evaluating the syn-

chrony of artefactual components. We divided the resulting sources into two groups

as neural-related and artefact-related components. We applied PCA on these two

groups in order to evaluate the success of GLM denoising. This step permitted us to

detect the amount of contamination in these two groups by evaluating the amount

of synchrony between the average blank and evoked activities for each component.

Combining the GLM method with PCA also overcomes the problems of working with

only one approach alone. Once we denoised the data, we applied PCA and ICA in

order to separate uncorrelated or independent neural populations. In the following

chapters, we will present the results of this approach.



4.2. DENOISING STRATEGIES 79

Figure 4.2 – GLM regressor base (A) and resulting reconstruction on monkey VSD
imaging data (C). B depicts the retained signal sources. Reproduced from Reynaud
et al. (2010).
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Chapter 5

Experimental Setup and Data
Analysis

In order to study mesoscopic dynamics in primary visual cortex of the cat, we per-

formed VSD imaging on cortical areas 17 and 18.

CMOS MiCAM
CAMERA

100x100 Spatial
10KHz Temporal

Resolution

Figure 5.1 – Experimental setup (modified from Shoham et al. (1999)).

The main components of the experimental setup are shown in Figure 5.1. More

details about the setup can be found in Shoham et al. (1999). Acquisition, visual

stimulation and preliminary online analysis is controlled by the Elphy software (on

the central computer) by communicating with the acquisition program provided by
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the Imager system (Figure 5.1, on the left).

We used a CMOS MiCAM camera which provides 100x100 pixel resolution and up

to 10 KHz temporal resolution. We recorded at 200 Hz temporal resolution in order

to obtain a better sampling of the emitted photons. One pixel in our recordings

corresponded to ~60x60 mm of cortical sheet.

5.1 Animal Preparation

We performed VSD imaging on 6 adult cats. For each animal, data was recorded

on only one hemisphere. On one animal, two different recordings from the same

hemisphere is analyzed. Three of the recordings included both areas 17 and 18.

If this was the case, regions of interest that contain only one of areas 17 and 18

are analyzed separately. All the other recordings included only area 18. With the

separation of the two visual areas, we analyzed 10 cortices in total.

Animals were initially anesthetized with intravenous alfaxolone (10mg/Kg). Follow-

ing tracheotomy, animals were artificially respirated and anesthetized with 1-1.5%

(0.6-1% during recording) isofluorane gas added to the 1:1 N2O and O2 mixture.

Minimum alveolar concentration (MAC) is kept above 1%. Animals were head fixed

on the anti-vibration table. The skull was opened above areas 17 and 18 (size of

the craniotomy was ~1.5 cm in diameter), and the dura was resected. Paralysis was

maintained by pancuronium bromide (0.4 mg/kg per hour, intravenous) adminis-

tered starting <3 h before imaging in order to abolish eye movements. Accommo-

dation and pupil contraction were blocked by atropine and neosynephrine. Three-

millimeter artificial pupils were used and appropriate corrective optical lenses were

added if it was necessary. The position of the area centralis of each eye was pro-

jected on the screen with light source before and after imaging. Respiration was

controlled by an external pump. Electrocardiogram, expired CO2, and body tem-

perature were continuously monitored during the experiment. Image acquisition

was synchronized with electrocardiogram (ECG) and respiration signals in order to

provide synchronization of these oscillatory artefacts.

In order to apply the dye on the cortex, a stainless-steel chamber was mounted on

the skull over an area which included areas 17 and 18 of both hemispheres. The

cortex was stained for 2.5-3 h with the oxonol dye RH- 1691, and unbound dye was

washed out after staining. Afterwards, the chamber was filled with CSF-saline or

silicone oil and closed.
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5.2 Visual Stimulation

In order to map orientation response on the cortex, we used full-field drifting grating

stimulation. The protocol included 8 or 12 directions of gratings, spanning all the

orientation domain. Each grating moved in two opposite directions orthogonal to

the orientation of the grating. Stimuli consisted of 100% contrast gratings of 0.2-0.6

cycles/degree drifting at 2-6 Hz temporal frequency. Stimuli were pseudo-randomly

interleaved with recording epochs in which the screen was blank. Stimulus was

presented for 300-500 ms, and the recording duration for one trial was 1280 ms

long. Stimulus is presented full-field on a 22’ CRT monitor at a 150 Hz refresh rate.

The monitor is placed 57cm away from the eyes of the animal.

We also used a second protocol which included non-classical visual stimuli. This

protocol was previously developed and used in our lab in order to evaluate stimu-

lus dependency of trial-to-trial variability in intracellular recordings from area 17

(Baudot et al., submitted). Stimuli used in the protocol are shown in Figure 5.2.

The protocol consists of a set of stimuli with increasing complexity: drifting grat-

ing, grating animated by a trajectory simulating the dynamics of eye movements,

natural image animated with the same trajectory, and binary dense noise. In order

to adapt this protocol to VSD imaging, longer recording times are required to ob-

tain an adequate temporal frequency resolution. In this protocol, we recorded the

VSD response in 5120 ms long trials, in which the stimulus was presented for 4

sec. Long stimulus times (>800ms) evoke also the intrinsic response on the cortex

which contaminates the fluorescent signal. This required modification of the GLM

basis, which will be explained in Chapter 8.1.

5.3 Data Analysis

Offline analysis is performed on a Intel quad-core computer (2 GHz each core) with

8 GB of memory.

GLM is performed on raw signals without first frame normalization by using Elphy

software. PCA and ICA were performed by Matlab software (Mathworks, Natick, MA,

USA) by using Parallel Computing Toolbox and a modified version of the FastICA

toolbox for Matlab developed at the Helsinki University of Technology1. PCA for

separation of neuronal response patterns is performed prior to normalization of

trials with respect to the mean of the first frames of all trials. This approach will be

explained later in details.
1available at http://research.ics.aalto.fi/ica/fastica/index.shtml
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Figure 5.2 – Stimulus set used for long recordings. Spatio-temporal frequency spec-
trum of each stimulus is shown in the lower row. Modified from Baudot et al. (submit-
ted).

5.4 Stimulus locked time-frequency analysis

Stimulus locked time-frequency analysis is adapted from a previous intracellular

study from our lab (Baudot et al., submitted).

VSD imaging signals at each pixel were convolved for each trial with an array of

complex-valued normalized Gabor functions ranging from 1 to 75 Hz (1 Hz steps):

ψf (τ) = (a/
√
f) ∗ exp(−2πifτ) ∗ exp(− τ

2

σ2
)

where a is a constant such that the energy of the wavelet is equal to 1.

To improve the readability of the time-frequency representation, the Gabor de-

composition presented here is largely oversampled: the Gabor filter bank is non-

orthogonal, with wavelet frequencies ranging from 1 to 75 Hz (with 1 Hz incremental

steps), and a temporal sampling period of 1 ms. To achieve a fine temporal resolu-

tion, the normalized Gabor function had a Gaussian window variance equal to two

Gabor periods (σ ∗ φ = 2). The convolution of a signal X(t) with this wavelet function

is of the formă:

S(t, f) =

ˆ
X(t− τ) ∗ ψf (τ)dτ

This decomposition allows the extraction of several time-frequency dependent mea-

sures: signal power, noise power, signal-to-noise ratio power (SNR). It can be viewed
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as an extension of the signal and noise estimation proposed by Croner et al. (1993)

to the time-frequency domain. We define Si(t, f) as the complex result, at time t
and frequency f of the convolution between the wavelet and the response for trial

i. The signal power Sest of the stimulus-locked waveforms is then measured as the

squared modulus of the (across-trial) average vector of the wavelet transform in the

complex domain:

Sest(t, f) = |〈Si(t, f)〉i|

where angular brackets indicate the average across all trials and straight brackets

indicate the modulus. The noise power N(t, f) is measured as the average distance

between the individual trial vectors and the average vector of the wavelet transform

in the complex domain:

N(t, f) = 〈|Si(t, f)− 〈Si(t, f)〉i|〉i

The signal to noise ratio is measured as:

SNR(t, f) =
|〈Si(t, f)〉i|

〈|Si(t, f)− 〈Si(t, f)〉i|〉i
= Sest(t, f)/N(t, f)

Signal, noise, and SNR power spectra are obtained by averaging the squared func-

tions over time:

FSNR(f) =

ˆ tend

tstart

(SNR(t, f))2/(tend − tstart)dt

FSignal(f) =

ˆ tend

tstart

(Sest(t, f))2/(tend − tstart)dt

FNoise(f) =

ˆ tend

tstart

(N(t, f))2/(tend − tstart)dt
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Chapter 6

Source Separation for Denoising
of VSD Imaging Data

6.1 Introduction

In Chapter 4, we explained sources that contribute to VSD imaging recordings, and

we introduced the application of statistical linear source separation methods to

analysis of multichannel neuronal recordings, including VSD imaging. Now we will

explain a new strategy for denoising VSD imaging data, applied to our particular

case of imaging of areas 17 and 18 of anesthetized and paralyzed cat cortex in

response to full-field drifting grating stimulation. Our method involves a two-step

hybrid denoising, which benefits the advantages of both data-driven and model-

based approaches.

Application of statistical source separation methods is rather new for the VSD imag-

ing community. Few methods that are available use either only model-based or only

data-driven approaches. Development of hybrid methods that combine both model-

based and data-driven approaches would be useful in order to profit the advantages

of both methodologies. Some methods that combine those two approaches are in-

deed reported to be more efficient on other types of neuroimaging data (McKeown,

2000; Calhoun et al., 2005; Hu et al., 2005 for fMRI, Zheng et al., 2001 for intrin-

sic imaging). However, these methods generally favor one approach more than the

other, and the assumptions are optimized for the recording technique of interest.

VSD imaging provides recording of much faster events than intrinsic imaging and

fMRI, therefore noise sources as well as neural-related signal sources occur at a

different time scale. This requires development of methods which are more adapted

to VSD imaging.

In order to clean VSD imaging data from the artefacts, we developed a two-step
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Figure 6.1 – Hybrid multi-step source separation. Black blocks represent the ideal
neural response, and red blocks represent the ideal artefacts.

hybrid method which involves a preliminary analysis by GLM that provides a sepa-

ration of the sources into two groups with respect to their relationship with neural

fluorescence response, and then profits PCA on these two groups in order to check

if there were any signals that GLM hypothesis was not able to detect. Our strategy

is summarized in Figure 6.1. We consider the raw data to be a mixture of neural-

related signal (black boxes), and artefacts (red). In the first step, we analyzed each

trial of the raw data by GLM individually. Regressor base and corresponding re-

gression on the data are separated into two groups, in accordance with the depen-

dence of the regressors on the evoked response. Residual is added to the neural

response-related group, in order to preserve intrinsic neuronal noise. At the end

of the first step analysis by GLM, most of the artefacts can be detected, but there

may be still some contamination in both signal-related and artefact-related groups.

The main problem for the contamination of the artefacts group by the neuronal-

related signal is the oscillatory artefacts that cannot be phase-fixed to the source of

the artefact. Considering the rich nature of the neuronal activity spectrum, some

neuronal-related signals of an artefact-related signal frequency may converge to the

artefact group. On the other hand, as explained in Chapter 4, it is not possible to
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explicitly model all the signal sources. Therefore, residual of the model which is

added to the neural-related signals may also include some artefact-related sources.

Adding a second step of analysis that uses a different approach would provide a

better separation. After the separation of neural-related and artefact-related com-

ponents, both groups are analyzed by PCA separately. Artefacts that are fixed with

respect to the main artefact source (baseline fluorescence, bleaching, 50 Hz noise)

are excluded from the rest of the analysis right after the first step. In the second

step, all trials of all stimulation conditions and mean responses for each stimu-

lus are concatenated. Applying PCA on this concatenation favors the extraction

of the components that are common in all evoked and blank conditions, which

would stand for the artefacts. In order to distinguish signal from the artefacts, we

de-concatenated the principal components and calculated the correlation between

blank and evoked signals for a given principal component. This two-step denoising

provided better source separation than GLM and PCA methods alone.

At the first step that involves GLM, we used a modified version of the approach

developed by Reynaud et al. (2010). This approach was developed in order to clean

VSD imaging data recorded on primary visual cortex of awake monkey, where blank

subtraction fails because of the difficulties to synchronize physiological artefacts

and other trial-to-trial dependent factors that are related to awake animal prepa-

rations. In our anesthetized and paralyzed cat preparation, blank subtraction pro-

vided fairly good information about the strong artefacts. Our advantage is the arti-

ficial control of respiration, and synchronization of the acquisition and respiration

with respect to the first cycle of the heartbeat. It should be noted this advantage of

blank subtraction is only valid for averaged data. Blank subtraction is not enough

for single trial analysis even in our case in which artefacts are much more pre-

dictable than in awake monkey recordings. We utilized average blank recordings as

a control in order to check if the artefacts detected by GLM are well synchronized

with blank recordings or not.

Moreover, Reynaud et al. (2010) used a regressor basis that would be suitable to an-

alyze both full-field and local stimulation responses. Small stimuli like in their case

are expected to evoke a response that peaks on the retinotopic center, which will

spread on the rest of V1 (Grinvald et al., 1994; Sharon et al., 2007; Chavane et al.,

2011). This would cause the pixels outside the retinotopic center to respond with a

latency. In our case, full-field drifting grating stimulation evoked an activation that

has almost the same latency and shape for each pixel. This permits us to use a

more restricted regressor basis for signal responses. We also included components

that correspond to the DA notch, which is a signal component that is not observed

in awake animal recordings. This version of GLM provided an acceptable denoising

of VSD recordings on anesthetized and paralyzed cat.
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Nevertheless, even if the regressor base is chosen very carefully, there may be some

neural-related signal that converges to artefact regressors, and vice versa. In order

to check for this contamination, we applied PCA on two groups of regressors used

for GLM, which standed for the neural-related signals and artefacts. We used a

similar approach to periodic stacking (Mitra and Pesaran, 1999), with a difference

that we conducted the analysis in the temporal domain and not in the frequency do-

main as suggested in the original version of the periodic stacking method. Stacking

is done by concatenating different trials of different response conditions periodically

as if it was a continuous recording of a periodic response. As we did not perform

frequency-based analysis, the order of stacking was not important.

Once principal components of the two groups were obtained, for each component

we calculated the uncentered Pearson correlation coefficient between the average

principal component segment for each direction of evoked response and the average

principal component segment corresponding to the blank response. This provided

detection of artefacts, which are supposed to be synchronized between blank and

evoked conditions. If the correlation for a principal component was above a certain

threshold, this component was considered to be an artefact.

Our method is based on several assumptions. First, we assume that artefacts

and neural-related fluorescent signal result from uncorrelated physical processes,

which is true up to a certain point, which indicates that the relationship between

signals and artefacts is linear. Second, we consider the signal sources in the tem-

poral domain. Mixing procedure is performed by each pixel. Third, we assume that

artefacts have same spatial profile on the cortex for evoked and blank recordings.

This provides the detection of an artefact by the second step of denoising.

First, we will present the denoising achieved by blank subtraction and division,

then we will present the results of our method in details.

6.2 Results

6.2.1 Blank Subtraction and Division on VSD Imaging Data

VSD Imaging data is usually analyzed prior to normalization with respect to base-

line fluorescence and blank response. This is done first by dividing or subtracting

each trial by the baseline fluorescence obtained by taking the mean of several points

before stimulation. This method is referred to as the first frame analysis. Then, the

‘blank’ control sequence which consists of the response to uniform screen is sub-

tracted from (blank subtraction, BS) or divided by (blank division, BD) each trial
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of evoked activity in order to separate the evoked signal from the rest of the arte-

facts. This signal is often studied by taking the average response of a number of

blank trials. Fluorescent signal is proportional to the stained membrane area un-

der a pixel (Grinvald and Hildesheim, 2004); therefore normalization by division is

mostly preferred to subtraction.

An example of blank subtraction and division in one of our recordings is presented

in Figure 6.2. A raw data frame is shown in A. DC fluorescence is the dominant

component. We restricted the analysis to the area surrounded by black. Temporal

responses are shown in B. Black traces represent the responses on the pixel shown

as a dot in A, which is placed in the middle of an iso-orientation domain that prefers

horizontal stimulation. Red traces on raw recordings are the temporally smoothed

average responses over 10 trials of blank response that are used for blank subtrac-

tion/division on the same pixel. Dashed lines represent onset and offset of visual

stimulation, and the gray shade show the region in which we calculated the mean

of all frames for spatial maps.

Although there is no difference at the temporal scale between BS and BD (Figure

6.2B), relative fluorescence between pixels was different as a result of the difference

in baseline fluorescence resulted from uneven staining. The choice of subtraction or

division is not important in the temporal domain, as the signals obtained by these

two methods are proportional. In space, BD permits to amplify the fluorescence

of pixels in the periphery by dividing the response with a several times lower value

compared to the pixels on the center. However, fluorescence-independent noise and

artefacts are also amplified (Figure 6.2C). For these reasons, we consider baseline

fluorescence and the other artefacts to be additive with the signal. This assumption

justifies the relevance of linear source separation methods used in our work. It

should be noted that fluorescent signal may not be additive with baseline fluores-

cence, but our concern is to extract the rest from the neural-related signal. Hence,

this problem is not important at this step.

The conventional first frame analysis suggests estimating the baseline fluorescence

by calculating the mean over several frames before stimulation. However, impos-

ing a strong hypothesis on the first frames may result in erroneous normalization,

especially in case of blank division which radicalizes the contribution of baseline

fluorescence. One of the future aims of our work was to evaluate temporal evolution

of the variability, which would be affected by an erroneous normalization. Instead

of normalizing each trial individually, we normalized the temporal response at each

pixel with respect to the mean of all trials of all time points before stimulus on-

set. Removing a common mean from every trial permits keeping the neural-related

variability of the single-trial activity of responses recorded in the first frames.
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Figure 6.2 – Conventional denoising strategies for VSD Imaging. A: An example raw
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before and after blank subtraction and first frame analysis. On the bottom, single trial
response after blank subtraction on one pixel indicated in A (black) and on average of
all trials on the same pixel (red). Superposition of all trials (black), their mean (red) ±
their standard deviation (gray) is shown below. C: Mean spatial response on the evoked
plateau from 150 ms after stimulus onset to 50 ms after stimulus offset, indicated with
cursors in B.
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Although BS and BD methods successfully remove most of the artefacts, this ap-

proach has restricted application. Synchronization of physiological parameters

such as heart beat and respiration is useful up to a point, but problems may occur

after a few cycles. Heartbeat frequency cannot be controlled externally and con-

sequently heartbeat intervals may slightly vary if the recording time corresponds

to more than several heartbeat periods. Moreover, artefacts that are not repetitive

cannot be removed with these methods. Another problem is that these methods do

not take into account the inter-trial variability of the ongoing and evoked activities.

6.2.2 Source Separation on Raw Data for Denoising

Statistical methods for source separation are shown to denoise successfully the

multichannel neuronal data (see Chapter 4). Using a statistical approach for de-

noising VSD imaging data would provide avoiding the problems encountered with

conventional methods. First thing to do before applying a statistical method is to

choose whether a model-based or data-driven approach should be used.

There are several advantages of using a model-based approach rather than a data-

driven strategy for denoising VSD imaging data recorded on anesthetized animal.

Most important signal sources such as heartbeat and respiration are monitored and

synchronized during data acquisition. This makes it easier to estimate a realistic

basis for source regressors. Eye fixation provides a repetitive acquisition on the

same region with the same fixation and same stimulus onset and offset for all trials.

Moreover, working on an anesthetized preparation provides elimination of intrinsic

controls on visual perception such as attention. On the other hand, spatial profile

of contributions of the signal sources is not taken into account with this approach,

and unexpected sources are challenging to be estimated. These weak points should

be kept in mind while applying a model-based approach.

First step of our denoising strategy consists of defining all possible signal sources

that contribute to the recordings, and then to use GLM in order to find the con-

tribution of each component to the raw data. Nature of signal sources and GLM

procedure applied to VSD Imaging are explained in details in Chapter 4. Here we

will explain the modifications that we made on the regressor basis proposed by

Reynaud et al. (2010), in order to adapt their model to fit to our data.

The analysis is restricted to a region of interest (ROI) that is defined by highly fluo-

rescent areas, centered on the areas 18 and/or 17. ROI included 2756±739 pixels

that are highly fluorescent (pixels that contain min. >60% of maximum fluores-

cence) on about 2-3 mm to 3-6 mm of cortical sheet.

Reynaud et al. (2010) reported an oscillation related to the illumination noise that
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occurs at harmonics of 10 Hz on phantom recordings. In our data, these oscillations

were only visible after averaging of all the pixels and trials, and they were not

detectable in the PSD of raw recordings on the cortex (data not shown). For this

reason, we did not include harmonics of 10 Hz in the GLM regressor base. We

only included a 50 Hz oscillation phase-fixed to the region outside the ROI in order

to model the line noise which was the only instrumental noise that we observed.

Absence of the harmonics of 10 Hz signal in our data may be due to the use of a

CMOS camera instead of a CCD camera.

While bleaching component in stained phantom experiment on a piece of white

paper could be fitted to a single exponential, in none of our experiments on cat

cortex we could obtain a good fit by using only one exponential. Dye bleaching was

better modeled with a double-exponential fit on the cortex. The model for two-step

bleaching is:

B(t) = a1 + a2(1− exp
−t
τ1 ) + a3(1− exp

−t
τ2 )

Relaxation times t1 and t2 are estimated by fitting the mean of all pixels on the

ROI for average of all smoothed blank trials. a1, a2 and a3 are estimated by least-

squares fitting. For 7 of the recordings, t1 estimated as 127±24 ms, t2 as 614±72

ms and t1/t2 ratio was 4.94±0.7. For two other recordings, t1 was at a nearby

range (140±19 ms) while t2 was almost one order of magnitude higher. In any case,

double exponential fitting was significantly better than single exponential fitting.

In cases where t2 was very high, we clamped t1 and t2 to the average obtained

from other data. This gave an appropriate fitting with the same r2 value as double-

exponential fitting without clamping. We simply supposed baseline fluorescence to

be additive to the rest of the regressors in order to provide better comparison to

BS. We supposed all the fluorescence-related signals to be fixed. In this case, no

contamination is expected with the neural-related signal, hence we did not include

any of them in ArtefactGLM.

Frequency variations of the heartbeat are not very important for the first few cycles

of heart activity, for this reason using a simple sine wave is enough (Reynaud et al.,

2010). We modeled the heart-beat induced artefact as an oscillatory component

with the frequency of the heartbeat calculated individually for each trial. Three

harmonics of the heartbeat modeled as a sum of sine and cosine waves in order to

detect the phase (Reynaud et al., 2010):

Sf (t) = a1 sin(2πft) + a2 cos(2πft)



6.2. RESULTS 99

X+ResidualGLM Model: β

GLM Basis

Neural Response Related Signal
Onset DA Notch
Offset DA Notch

Artefacts

GLM Decomposition
Neural Response Related Signal

Residual

Neural Response + Residual

2 Exponentials for Bleaching
Baseline Fluorescence

Heartbeat and its harmonics
Line noise

4450

4550

4500

Raw Data

-1

-1

0

Blank
Full Field

Drifting Grating

0

1

0

1

15

-10

0

-10

0

15

0

-10

15

-10

0

15
1 sec

GLM
BS

GLM-BS

20

0

-10

20

0

-10

A.

B.

C.
Mean of 10 trials 1 trial

Mean
1 Trial

Mean
1 Trial

Mean
1 Trial

Mean
1 Trial

Mean
1 Trial

Figure 6.3 – Basis functions for the GLM, and resulting source separation. A: Neural
response related basis functions are the global response that increases with response
onset and decreases with response offset exponentially, the onset DA notch, and the
offset DA notch. Fluorescence-related artefacts are baseline fluorescence, and bleach-
ing which is modeled as two exponentials. Artefacts with free phase (red) are modeled
as one sine and one cosine wave of the fundamental frequency of the oscillation, and
their harmonics if present. These artefacts included the heartbeat related warping. B:
Corresponding signal components revealed by GLM for blank and drifting grating re-
sponses. C: Blank subtracted temporal response compared to GLM on the same pixel.
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This procedure is useful in order to detect the phase at each pixel, but it would

remove all the signals around this frequency band including also neuronal-related

signals. This was the main source of contamination between signals and artefacts.

We observed a strong oscillatory signal (12 Hz in average) at higher harmonics of

the heartbeat frequency, with a spatial profile that looks like the heartbeat artefact.

However, amplitude and frequency changed slightly from one period of oscillation

to other, especially during neural response, making it impossible to be removed by

GLM. This artefact was not always at the same frequency band or at same order of

harmonics for all data. When we did not introduce this signal in the GLM basis,

2nd step of denoising by PCA could successfully remove this artefact as we will

explain later. This signal is possibly related to the arterial pulse wave that results

from the opening/closing of the arterial valves, revealed in the higher harmonics

of the heartbeat frequency (Emilie Macé, personal communication). Opening and

closing of valves introduce strong mechanical vibration to the surrounding tissue,

which is captured by the camera.

50 Hz oscillation is introduced to the regressor base with the phase calculated by

fast Fourier transform outside the ROI. This provides removal of only a particular

phase of 50 Hz while avoiding removal of a possible gamma-range activity that may

occur at this band. We considered this artefact to be fixed at the first step, and

excluded its contribution right after GLM.

We modeled the stimulus-evoked neural signal as a component that increases

rapidly after stimulus onset, and after following a plateau, fading out again grad-

ually. Stimulus-dependent rise and decay of the response is modeled as an expo-

nential change.

The model for the signal was:

Vc(t) = Vin(t) exp(
ton + δon − t

τon
), tε[1, toff + δoff − 1)

Vc(t) = Vin(t) exp(
toff + δoff − t

τoff
), tε[toff + δoff , end]

Vin(t) is a step function with 1 between toff+doff until the final point and 0 elsewhere.

Model parameters were chosen by fitting the model to the blank-subtracted average

response (don = 55.6±19.5 ms, doff = 17.1±5.2 ms, ton = 33.1±10.6 ms, toff = 41.3±8.4

ms). DA notch (Sharon and Grinvald, 2002) was included if it was present in the

beginning and at the end of neural response estimated by blank subtraction (in 5

out of 8 areas that were analyzed). The model for the notch was:
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Vnotchon(t) = exp((
ton + tnotchpeakon − t

σnotchpeakon
)2)

Vnotchoff (t) = exp((
ton + tnotchpeakoff − t

σnotchpeakoff
)2)

Notch parameters were obtained by fitting the signal together with the Vc(t) (tnotchpeakon =

69± 3.2 ms, tnotchpeakoff = 73± 11.6 ms, σnotchpeakon = 17± 2.4 ms, σnotchpeakoff = 16± 1.2

ms). To sum up, our final vector base contained 1 or 3 components for neural sig-

nal, 2 exponential components for bleaching, 3 harmonics for heartbeat-induced

artefact at the corresponding frequency for each trial, 50 Hz mains noise with fixed

phase, and one unit vector for the baseline fluorescence. Neural response related

signal is included in the regressor basis only for evoked responses, thus the blank

response is modeled only by artefacts. Finally, contribution of each of these sources

was estimated by applying a least-squares fitting to the regressor basis and to the

raw data for each trial. Signal sources and resulting source separation are shown

in Figure 6.3. Trials shown in this figure for blank and evoked responses are from

the same trial stack (less than 8 acquisitions between). Even though the artefacts

(red) are close for the trials of blank and evoked responses, there is still some dif-

ference. Similarly, mean of the artefacts for both blank and evoked states cannot

capture all the artefact-related components observed in one trial.

GLM-cleaned signal is compared to the signal obtained by the classical method of

blank subtraction in Figure 6.3C. Black trace stands for the GLM-cleaned trial,

red for the BS-cleaned trial, and blue for the difference between these two traces.

The main differences between the BS-cleaned and GLM-cleaned responses are the

heartbeat-related signal which varies from one trial to another, line noise which is

not synchronized among trials, and the drift in the response.

Even though GLM seems to separate correctly the neural response from the arte-

facts, the hypothesis behind the distinction of neural signal and artefacts may be

misguiding. First of all, defining a particular frequency band as artefact may re-

move a part of neural signal, as the neural responses can be expressed in various

frequency bands. Second, we may not know all signal sources from the beginning.

Finally, defining a rigid shape for deterministic sensory-evoked response may not

capture the response at one trial because of trial-by-trial variations of the evoked

activity. Defining multiple components for neural response in order to get all the

possible shapes is risky as the artefacts may converge to the irrelevant neural-

response related components.
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Figure 6.5 – Same as 6.4, for another data that consists of 6 orientation conditions.

In order to make sure that the neural response and artefacts are well separated, we

applied a second step for better separation. In this second step, we used a data-

driven approach to avoid the problems that arise from the original hypothesis for
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data composition claimed by the model-based approach. This additional approach

would take into account the correlation between the statistical distributions of the

signal sources instead of their temporal activation profile.

Sources that are extracted by GLM are grouped into two sets that consist of the arte-

facts (ArtefactGLM) and the sum of sensory-evoked reproducible signal and residual

(SignalGLM+r) in order to take into account the neural variability, as suggested by

Reynaud et al. (2010). For the next step, only artefacts with free phase are kept

in ArtefactGLM. In our case, this corresponds to only the heartbeat-related signals.

Once all the trials are analyzed with GLM, PCA was applied to concatenation of all

trials and average response to all directions of drifting grating and the blank stim-

ulus on both SignalGLM+r and ArtefactGLM sets, by calculating the eigenvectors of

the covariance matrix. Concatenation of all evoked and blank responses provides

a compromise between ‘blank’ and ‘cocktail blank’ control statements, taking into

account correlations both with blank condition and among all stimulus conditions.

We used temporal PCA instead of spatial PCA, not only because of the lower dimen-

sionality of our concatenated data in space rather than in time, but also to keep the

coherence of the hypothesis that each signal source has a temporal structure and

that the mixtures are made by different recording channels, which are the pixels in

case of VSD imaging. As PCA will extract groups of pixels that express the same

temporal structure, spatial aspect is also taken into account.

PCA on ArtefactGLM and on SignalGLM+r revealed that GLM was not able to separate

completely the neural response from artefacts. Two different examples are shown

in Figure 6.4 and 6.5. Resulting eigenvectors are re-organized as spatial maps, and

principle components which are temporal activation profiles are de-concatenated in

order to distinguish the temporal structure corresponding to a stimulation that a

trial is responding to. For each stimulation condition, average principal component

segment is calculated among the trial segments. Uncentered Pearson correlation

coefficient is calculated between the average segments of blank and each direction

of movement of drifting grating. If average correlation coefficient was higher than

0.5, this principal component is considered as an artefact. For the examples shown

in Figure 6.4 and Figure 6.5, all the components marked as red in the eigenvalues

and principal component numbers are marked as artefacts. ECG traces are also

shown in the Figures in order to provide a comparison to the artefacts. Note that for

the example given in Figure 6.5, heartbeat is faster and more irregular than in the

example in Figure 6.4. As a result of the irregularity in the heartbeat trace, higher

harmonics of the heartbeat related artefacts become completely desynchronized,

resulting in a flat profile at the end of the mean PC segments.

After the blank correlation, all the components that exhibit high correlation with

blank are removed from SignalGLM+r and added to ArtefactGLM to obtain ArtefactGLM-PCA
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and vice versa for the non-correlated components. PCA residual (after the first 200

principal components) of SignalGLM+r set is kept with the reconstruction of com-

ponents that were not correlated with blank, and the sum of these two groups is

labeled as SignalGLM-PCA. Residual of PCA on ArtefactGLM is added to the blank-

correlated components, and the resulting sum is labeled as ArtefactGLM-PCA.

This second step of denoising provided an acceptable separation of the signal of

interest from the artefacts. For the example data shown in Figure 6.4, the first

seven components for artefact set expressed a strong correlation between the blank

and evoked responses. Average segments for the next 10-20 components were un-

correlated between blank and evoked responses. Doubling of the same orientation

in the Figure is because of two different directions of drifting grating. Moreover,

average segments for these principal components exhibited orientation selective

structure: if the segment corresponding to a particular orientation had a positive

sign, segment corresponding to the opposite orientation was negative. This is re-

vealed in the anti-correlation between pairs of orthogonal orientations. For all the

components that were marked to be neural-related (except the first global activa-

tion component), correlation coefficient for at least one orthogonal orientation pair

was negative (data not shown). 12th principal component on Figure 6.4B is shown

as an example for this observation. These neural-related components seem to be

related to the response onset-offset variations that were not included in our re-

gressor basis for GLM. The number of neural-related components was fairly high,

but it should be noted that the total energy of all the stimulus-related components

was only 9.5±4.2% of the total energy of the ArtefactGLM. First 200 components in

ArtefactGLM included 91.1±2.3% of all the variance.

On the other hand, PCA on SignalGLM+r revealed that there are also some artefacts

in neural related-response revealed by GLM. Only few components were marked

as artefacts and represented 1.5±0.6% of total energy of SignalGLM+r. First 200

components reflected 42±10.4% of all the variance in SignalGLM+r.

This two-step denoising provided better separation by isolating the neural-related

signal from the unwanted sources. Resulting clean signal and artefacts for the

examples in Figures 6.4 and 6.5 are shown in Figures 6.6 and 6.7 respectively.

Only one direction of each orientation and blank temporal responses are shown.
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Resulting artefacts were synchronized for different trials and stimulations, but still

there is a trial-to-trial variability, showing why blank subtraction could not remove

all these artefacts. The main components that could not be removed by BS are re-

vealed to be the 50 Hz noise as a result of the non-reproducible nature of the signal,

and the heart beat because of the variations of the heart beat frequency. Result-

ing artefact-free neural signals exhibited high variability; nevertheless selectivity

of each pixel could be calculated on average response using the vector averaging

method for orientation maps in order to find out the orientation selectivity of one

pixel.

6.2.3 Variations of the Denoising Model

PCA after other preprocessing steps than GLM

We applied PCA on raw, bleaching-removed and blank-subtracted data in order

to show that using a sophisticated denoising method such as GLM as a first step

is necessary. All of these analyses are applied prior to baseline normalization ex-

plained above. We also analyzed the same data with ICA but ICA was not successful

in any of the cases (data not shown). This is probably a result of the trial-to-trial

variability of artefacts, which results in extraction of single-trial components by

ICA.

PCA on raw data could not distinguish evoked neural response neither on concate-

nation of all trials (Figure 6.8), nor on single trial responses (data not shown but

the problem is the same as for concatenation). The main problem was the bleach-

ing being strongly correlated to the baseline neural activity, showing that bleaching

and baseline fluorescence are not statistically independent from the neural signal.

This is probably due to better diffusion on the cortex rather than on other tissue

such as blood vessels. Focusing the camera on the region of interest on which neu-

ral response can be better visualized may also have an effect on this correlation.

The 3D form of the cortex on the ROI is elevated on the center of the gyrus that

contains areas 17 and 18; hence the periphery is more distant to the camera than

the center. Consequently, the camera is not parallel to the cortex around the sulci.

This would result in the loss of some light on the periphery, reflecting the incom-

ing light outside of the focus of the camera. This could be a reason why we see

more fluorescence and neural response on the center of the ROI rather than in the

periphery.

In order to separate the fluorescence-related artefacts from the rest to avoid con-
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tamination of neural-related response, we tried to apply PCA on bleaching-removed

signals (Figure 6.9). PCA after removal of bleaching by a double exponential fit could

not distinguish the heartbeat and pulsation artefacts from the neural response.

We also tried to apply PCA after BS in order to check if same kind of contamination

as after GLM occurs for blank subtraction too (Figure 6.10). Resulting components

included the 12 Hz signal. This means that this signal could not be removed by BS

method. Moreover, there were drifts that change from one trial to other for most

of the components. It was not obvious to mark all the components as signal or

artefact, as the resulting components that were not observed by PCA after GLM

(for example, components 3 and 4 in Figure 6.10) did not show any clear stimulus

dependence.
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Introducing the 12 Hz Signal in the Regressor Basis for GLM

Introducing the 12 Hz oscillation to the regressor basis was not enough to detect

this source completely as artefact (Figure 6.11). In this case, PCA after GLM re-

sulted in a component with the frequency of this signal on both SignalGLM and

ArtefactGLM groups. This was the reason why we excluded this signal from the

regressor basis.

6.3 Discussion

VSD imaging recordings are high-dimensional and noisy. In this work, we intro-

duced a hybrid source separation method for denoising single trials of VSD imaging
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data. This method involves performing PCA and ICA after GLM denoising; making

use of both data-driven and model based approaches at the end.

When faced the source separation problem, one is exposed to numerous problems

about the identification of sources contributing to the observed signal: What is the

relationship between the sources? If there is a relationship, what is the nature of

the dependence? Do we have prior information about the nature of the sources?

How are the different sources “mixed” by different recording channels? Responses

to these questions lie behind a good choice for source separation strategy. In our

case, GLM, which is a model-based method, was more successful in identification

of signal sources on the raw data than data-driven PCA. Yet this approach was not

enough to separate the signal of interest from the rest. Combination of this method

with the PCA as a second step provided better results for source separation.
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Figure 6.11 – GLM with 12 Hz signal.

Success and failure of different strategies may give information about the nature of

signal sources. Data-driven strategies, which are also referred to as Blind Source

Separation methods, namely PCA in our case was not sufficient to distinguish the

neural signal from the noise, despite that some were reported to work for VSD

Imaging on other animal models, or on data recorded by using different techniques.

Identification of the pulsation signal was also a problem with GLM and this signal

seems to be related to neural signal as well as the heartbeat artefact, because when

a similar frequency signal was included in the GLM basis as artefact, second step

PCA on SignalGLM+r gave a strong principle component (most of the cases 2nd in

the order) of this frequency band, which was suppressed during visual response.

Pulsation signal fall into the same frequency band as alpha waves that decrease

with an “active” brain state, which may involve in a possible mixing of the neural

signal with the pulsation artefact in this type of preparation.

On the raw data, only the first component that standed for the fluorescence-related

artefacts plus the neuronal nonselective response standed alone for more than 99%

of the variance. This was a result of the fluorescence-related artefacts being much
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stronger than the other components. In other cases that do not include these arte-

facts, number of significant components revealed by PCA was always very high. In

order to keep ~90% of the variance of the bleaching-removed data, retaining thou-

sands of components were needed. This was one of the limiting factors for using

ICA directly to denoise the raw data, as ICA (at least in case of FastICA algorithm

that we used) needs reduction of dimensionality before applying the ICA proce-

dure. One reason for high dimensionality was the presence of non-deterministic

but spatially coherent camera noise, which shows up as checkerboard patterns as

indicated before.

Another reason for why data-driven approaches were unable to distinguish the neu-

ral signal from artefacts in VSD Imaging as good as in fMRI may be that in fMRI

recordings there are regions that are explicitly dominant of noise and absent of

neural-related signal, like ventricles and large blood vessels (Calhoun et al., 2003).

In contrast, in optical imaging most of the region of interest includes both neural

and artefactual signals, therefore signal and artefacts are ‘mixed’ in a similar way

on each pixel, which leads to grouping of these signals under the same source.

Although it is tempting to do PCA on the domain that consist of smaller dimen-

sionality, orthogonality assumptions may not hold for both spatial and temporal

domains. We preferred to use temporal PCA as it is more coherent to consider sig-

nal sources to have a predictable structure in time rather than in space, as the

artefacts are of oscillatory nature, and the neural response is expressed by the se-

lectivity of cell populations that respond with a similar temporal structure. In our

case, it is also advantageous to perform the analysis in the temporal rather than

spatial domain, as the concatenation of all trials of all stimulus conditions results

in a higher number of frames than the number of pixels.

In GLM we only introduced less than 10 components, but number of significant

components revealed by PCA was always higher. This indicates that the decompo-

sition made by GLM is very rough and does not take into account the rich nature

of the VSD Imaging data. Nevertheless, GLM provided better separation than the

other methods, because it provides removal of the most important artefact sources

which are predictable up to a certain degree.

In GLM we used a different strategy to model the neural-related signal than the

previously suggested GLM strategy (Reynaud et al., 2010). Using PCA to detect the

latency and slope of the evoked response as they did results in Fourier-like decom-

position of transient responses. If the number of components to define the signal is

taken to be the maximum (this number was 64 in our case), we observed that GLM

overfits the residual, resulting in a very flat residual on the transient responses

(data not shown). Even when we took less than 10 components to model the signal,
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some of the artefacts (especially heartbeat) converged to these signal components,

and second-step PCA could not distinguish this contamination as good as it does

for the method that we used. We preferred restricting the onset and the slope of the

transient responses rather than letting it flexible. Flexibility of the neural response

transient parameters was important for Reynaud et al. (2010) as they developed this

method in order to analyze local stimulus responses that trigger traveling waves on

the cortex. As we analyzed only full field drifting responses, this point was not as

important for us. Our second step of denoising that involves PCA could success-

fully detect the variability of the transient responses. Another difference in our

study compared to Reynaud et al. (2010) is that we did not aim to obtain a white

residual. First of all, all the stimulus dependent response cannot be modeled ex-

plicitly with model-based methods. For example, retinotopic response to drifting

gratings that occur as waves on the cortex (Onat et al., 2011b) are not taken into

account in the model suggested by Reynaud et al. (2010). There may be other as-

pects of the evoked activity that are not known to date. Creating a regressor basis

in order to obtain a white residual may result in convergence of this kind of evoked

responses to irrelevant regressors. In fact, this kind of contamination would occur

in any case, as it is impossible to predict all the components perfectly. This is why

we opted to perform a second step of analysis that involves data-driven separation

rather than using a purely model-based approach. Here we show that this second

step of denoising is useful in order to detect unwanted contaminations that are

resulted because of the insufficient conception of the regressor basis.

In order to detect contaminations in the signals and artefacts detected by GLM, we

used the criterion of synchronization between blank and evoked response projection

segments for the same component. In our case this was enough because even

though the artefacts were not completely synchronized for single trials, comparison

of average of blank to average of evoked conditions provided a fairly good synchrony

of artefacts. Most of the variability of the artefacts come from the change of the rate

of heartbeat during the experiment. This change was rather smooth than big shifts.

We record stacks of randomized stimulus conditions, each containing one trial per

each stimulus condition. Therefore, average of stimulus conditions contains trials

with close heartbeat rates. This provides the averages to be synchronized. Other

criteria such as coherence or cross-spectrum with the ECG signal and/or other

measures of artefacts may be used in order to detect the artefactual components

revealed by PCA for awake animal preparations, or in any case where the synchrony

may not be achieved.

Our method provides a good denoising of single trials by using both model-based

and data-driven approaches. Development of a recurrent method could provide an

even better approach for denoising.



Chapter 7

Source Separation for
Dimensionality Reduction of
Neuronal Activity

Multichannel recordings provide observation of dynamics at multiple neuronal sites

simultaneously. The number of pixels provided by the cameras used in optical

imaging is very high. In our case, the camera recorded from 10000 pixels, and the

region of interest was one-fourth to one-third of the recorded area. As a result,

recorded signal is very high dimensional and it is difficult to analyze each channel

individually.

A more convenient way to study this complex data would be to analyze patterns

of activity instead of analyzing the channels one by one. In primary visual cortex,

visual stimulation evokes responses in different neural populations which are clus-

tered with respect to their preference for a particular stimulus feature, as explained

in Chapter 2.3. The modular organization of the visual cortex indicates a spatial

aspect of population coding. Identification of the stimulus-selective clusters and

investigating their response dynamics would help us to understand how different

populations cooperate in order to code for different features of the visual scenes.

Statistical source separation methods are useful for extracting these patterns, as

explained in Chapter 3.3.

After denoising our data with the GLM-PCA method explained in the previous Chap-

ter, we applied PCA and ICA to the denoised drifting grating responses in order to

extract spatio-temporal dynamics of neuronal activity in response to oriented dy-

namic stimulation.

115
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7.1 PCA on Denoised Recordings

In order to apply PCA on denoised recordings, we concatenated all trials in response

to all stimulation conditions, as well as the trials of responses to blank screen. Con-

catenation procedure is the same as in the PCA step of the GLM-PCA denoising.

Concatenation of all stimulus responses would permit searching for components as

a function of stimulus condition. In order to favor the stimulus-evoked determin-

istic response more than the single-trial responses, means of all trials of drifting

grating responses as well as the mean of blank response are concatenated with the

trials.

7.1.1 Stimulus selective and nonselective components revealed by PCA

PCA on drifting grating responses revealed three major components that were present

in on all of the 10 cortices that we analyzed. Two examples are shown in Figures

7.1 and 7.2. The first example is for the analysis of the data obtained in response

to the 4 orientation protocol, while second is obtained by the 6 orientation protocol.

These two data are obtained on two different animals.

Resulting eigenvalues are shown in log-log scale in A. First four components with

highest energy are shown in B. Projections of the trials on the spatially re-arranged

eigenvectors (de-concatenated principal components) are shown on the left, and the

stimulus-defined averages of these trials are shown at the right of the eigenvectors.

First component corresponded to the activation of the cortex in response to visual

stimulation, regardless of the orientation of the drifting grating. This component

was not uniform on the cortex: The amplitude of the component was stronger on

the center of the recorded area than in periphery, with the same spatial profile as

the “first frame”, or the baseline fluorescence component revealed by GLM. This

shows that the overall amplitude of the neural activity is dependent on the fluo-

rescent marking. The energy of this component reflected 26.8±8.7% of the overall

variability.
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Figure 7.1 – PCA on concatenation of all trials after the GLM-PCA denoising for 4 ori-
entation protocol. A: Eigenvalues. B: First four eigenvectors (arranged as spatial maps)
and principal components (de-concatenated and superposed). Color code is given on
the wheel above. C: Contour maps on 2nd and 3rd eigenvector maps and superposition
of contour maps on the vectorial orientation map.
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Figure 7.2 – Same as Figure 7.1 for 6 the orientation protocol.

Next components included two components which defined the orientation-selective

eigenspace. All the evoked states in response to drifting gratings are found on a

ring defined by two eigenvectors, in coherence with previous theoretical and intrin-
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sic imaging studies (Ben-Yishai et al., 1995; Everson et al., 1998; Sirovich et al.,

1996; Sornborger et al., 2005). One of the two orientation-selective components

revealed the regions that are selective to horizontal versus vertical drifting gratings.

In the eigenvector that represented the spatial profile of this component, the regions

that are activated for horizontal drifting grating were of opposite sign for vertical,

and vice versa. Second orientation-selective component had the same profile as

the previous one, for 45° versus 135° drifting grating responses. Superposition

of the eigenvector contour maps on the orientation map reveal that the stimulus-

selective regions of the first component corresponded well to the regions that prefer

horizontal versus vertical orientation (red vs. green), and for the second compo-

nent corresponded to the regions that are selective to 45° versus 135° (Figures 7.1

and 7.2). We will refer to the component that separates horizontal-selective vs.

vertical-selective regions as the cardinal component, and the other as the oblique

component, but it should be noted that the real attractors are slightly shifted with

respect to the principal component axes.

In 6 out of 10 maps, cardinal component had more energy than the oblique com-

ponent. In only one map, oblique component had more energy than the cardinal

component. On two other data, there were more than two components that coded

for orientation and on one data, separation was more likely to separate 30°/120°

and 75°/165° axis. Overall, the cardinal component expressed 0.28±0.04% of over-

all variance, while the oblique component expressed 0.24±0.04% of the total energy.

Given that the evoked responses were present in less than half the total recording

session, and that the variance in the blank response is also included in this energy,

the variance expressed by the orientation-selective component in VSD recordings

is in fact bigger than that. It should be noted that all the orientations evoke ei-

ther positive or negative response on both orientation-selective components, even

though the amplitude of projection was lower on one component than the other.

Positive or negative response that is revealed on the orientation-selective compo-

nents are added to the first component, which has a higher energy than the others,

and therefore the overall observed neural response is always positive.

The example shown in Figure 7.2 included an additional component that expressed

higher energy than the orientation-selective components. A possible explanation

for this component may be the retinotopic response to drifting gratings that has

been reported recently using similar analysis procedures (Onat et al., 2011b). The

component that we see in Figure 7.2 had a stronger amplitude for horizontal drift-

ing grating, with a phase shift for the two different directions of movement of the

grating. The spatial representation of the eigenvector was indeed aligned with

the retinotopic alignment of the horizontal grating. This kind of components was

present in 6 of the 10 cortices, but most of the time they were very weak and the
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energy was shared among multiple components.

Projection of the denoised data on the first nonselective and the next two orientation-

selective components provided reduction of dimensionality to three dimensions that

provide a visualization of the spatio-temporal dynamics of orientation selectivity. We

will not consider the retinotopic components when reducing the dimensionality for

analyzing orientation selectivity, but they will be taken into account for calculating

the independent components later.

This 3-dimensional representation revealed a plane on which the visual response as

a function of the orientation follows a slightly distorted circular shape. The attractor

states were lined up on a ring, which may stand for a continuous ring attractor. This

ring on the orientation-selective plane got activated by the nonselective component,

which corresponded to the first principal component.

Evolution of trajectories

Time after
stim. onset
30 ms 60 ms 115 ms 180 ms 585 ms 710 ms

Time after
stim. offset

85 ms 210 ms

7

0

-2
200 ms

Temporal response on ROI

Figure 7.3 – Evolution of trajectories on 3D principal component space, for the data
shown in Figure 7.1. Light and dark colors represent two directions of the same orien-
tation.
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Figure 7.4 – Same as Figure 7.3 for the 6 orientation protocol example.

7.1.2 Dynamics of Orientation Selectivity on a 3-Dimensional Princi-
pal Component Space

3-Dimensional PC projection revealed several points about the dynamics of orien-

tation selectivity that were not evident to see by conventional methods (Figures 7.3

and 7.4). Following the stimulus onset, cortical response converged rapidly to an

attractor point on this ring, depending on the orientation of the stimulus. Separa-

tion of the orientation-selective states started 57±4 ms after stimulus onset, which

corresponded to 12±4 ms after response onset. Orientation selectivity reached its

maximum in the middle of the transient response at 80±18 ms after stimulus onset

and started to decline slightly afterwards, while the response on the nonselective

axis peaked around 118±37 ms after stimulus onset. These results indicate that

discrimination of the stimulus orientation starts right at the beginning of the visual

response, and the most efficient orientation discrimination is reached much before

reaching the peak of the temporal signal. Even though there was a certain amount

of variability for each trial, trials stayed in the vicinity of the attractor during visual

response (Figures 7.5 and 7.6).
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PC segments of all trials
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Figure 7.5 – Trajectories followed by all trials on the 3D eigenspace.
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Figure 7.6 – Same as 7.5, for the 6 orientation protocol example.
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The path that the trajectories followed on this space showed a hysteresis for the

onset and the offset transients. While the onset trajectory was highly orientation-

specific, offset trajectory followed a path that is closer to the no-stimulus attractor

(the point of origin).

7.1.3 Anisotropies of the ring attractor

The first sign of anisotropy of the orientation preference revealed by PCA was the

cardinal component having higher energy than the oblique component on 6 versus

1 cortical areas that included only 2 orientation-selective components. Other than

that, when we aligned the two orientation-selective components to have horizontal-

selective attractor to lie at 0° on the ring, we observed that the stimulus-selective

response has a particular organization on the orientation-selective domain (Figure

7.7). The dots in the Figure represent the mean of all the time points that fall on the

attractors for all data with successful separation for 4-orientation protocol (5 out of

7 data). The standard deviation on the two principal component axes is represented

by the cross around the points. Orientation-selective attractors (on the left of each

subfigure) are calculated by taking the mean of the attractors for two directions of

movement (on the right).

The angle separating the attractor from the nearby attractors seem to be the high-

est for the horizontal-selective attractor. Moreover, distance of 0° attractor to the

origin seem to be bigger than for the other attractors. This would probably indicate

a stronger separability for the horizontally-oriented visual features than the other

orientations, which may stand for an over-representation of the horizontal orienta-

tion selectivity in visual cortex, which is known as the oblique effect (Appelle, 1972;

Li et al., 2003). However, while this effect could clearly be seen on the data with

smaller standard deviation, the difference was not so clear when the standard de-

viation was high. More data and more sophisticated tools are needed in order to

prove clearly the existence of this effect.

7.1.4 Orientation preference on the ring attractor compared to the
orientation map

In order to verify if the ring on the two-dimensional orientation-selective eigenspace

represents the continuity of all possible orientations, we calculated the linear com-

bination of the two components with coordinates that correspond to 24 points on a

circle centered at the origin. Then, we defined a mask with this linear combination,

by setting the minimum amplitude of the pixels to 0 and the maximum to 1, and

we multiplied this mask point by point with the orientation map.
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C. Projection on the orientation-selective components
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and the oblique component
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Figure 7.7 – Superposition of the mean of the normal principal component projections
on the response plateau. Minimum of all the axis is -4 and maximum is 4. A, B,
C correspond to the 2-dimensional projection of the data on principal components 1-
2, 1-3, 2-3 respectively. D represents the same projection as in C, except that the
horizontal-selective attractors (or the first direction of the horizontal orientation in case
of direction-selective attractors) are aligned on the abscissa.

The resulting orientation maps masked by each of the 24 samples on the ring are

shown in Figure 7.8A. The masking of the orientation map shows that the positive

regions on the linear combination of the two eigenvectors on the ring corresponded

well to the regions that prefer the orientation defined on the ring, which results in

dominance of the regions that have an orientation preference represented by the

color code of the ring (the same color code as the orientation phase map). Defining

an alternative tuning curve for each pixel by sampling the circle on the orientation-

selective principle components gives an orientation map (Figure 7.8C) which repre-

sents the same angular preference as in the orientation map calculated by the vec-

torial summation method on denoised data (Figure 7.8B). This alternative method

for calculating the orientation map provides a smoother orientation map than Gaus-

sian fit on individual pixels, as the ring attractor provides a higher sampling of the

orientation domain than the actual number of orientations used in the protocol (24

compared to 4 points in case of the example in Figure 7.8). It should be noted that

the anisotropies of the ring are not taken into account with this method. Moreover,

even though the angular preference is preserved, the changes in selectivity between

the pinwheels and iso-orientation domains was less smooth than it is observed on
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C. Gaussian fit on the ring

A. Regions on the orientation map
that correspond to the points on the ring

B. Orientation map

by vector summation by Gaussian fit

Figure 7.8 – Orientation map calculated on the ring defined by the two orientation-
selective components. A: Orientation map multiplied point by point by the linear com-
bination of two components with coordinates at equidistant angles on the ring. B. Ori-
entation maps calculated by vector summation and Gaussian fit on the tuning curve.
C: Orientation map calculated by a Gaussian fit on the artificially generated orientation
maps represented in A.

the vectorial summation orientation map. This approach is not enough to replace

the conventional methods for calculating the orientation maps. Nevertheless, cal-

culating the orientation map from the principal components may help to find the

orientation map on the regions that get activated locally, such as the orientation

maps of areas 17 and 18 separately as we will see in the following section.

7.1.5 Detection of the Area 17/18 Border by PCA

When the analyzed regions contained both areas 17 and 18, PCA gave 4 orientation-

selective components instead of 2, which represent two pairs of components, each

coding for either area 17 or area 18 (Figure 7.9). This was the case for data from

two animals. In the example shown in the Figure, separation of the two areas was
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not clearly visible from the temporal activation profile of the pixels in the ROIs (A

and B). When PCA is applied to this data, we could distinguish the border between

the two cortical areas. The intersection of the two maps represents possibly the

transition region. As it was suggested by Bonhoeffer et al. (1995), iso-orientation

domains revealed by PCA were more similar to the ’linear zones’ than circular blobs,

and as it was suggested by Swindale (1996), these linear zones lied perpendicular to

the area 17/18 border. Unfortunately, we did not perform another recording with

a spatial frequency that would provide separation of the two cortical areas on this

data.

As we observed this separation in the PCA, we re-analyzed this data by separating

the two cortical areas. This provided a better separation, which provided compo-

nents that were more similar to the examples presented previously.

PC 2

-1

0

5 PC 4

PC 3

PC 5

Principal Components

Orientation maps
calculated on

2 PC ring

Figure 7.9 – Area 17/18 border detected by PCA. A: Orientation map and the two
regions of interest for area 17(blue) and 18(red). B: Mean temporal response of all the
pixels in the ROIs in A. C: Resulting principal components. D: Orientation maps for
each PC couple shown in C, calculated by the method represented in Figure 7.8.

7.2 ICA on Denoised Recordings

The decomposition criterion in PCA is orthogonality of the sources, which is revealed

by the eigenvectors of the covariance matrix of the data. However, this criterion may

not be enough and it may even be restrictive. In our case, PCA could distinguish

activity patterns that code for different orientations but it failed to separate different

directions of movement of the same orientation. Nevertheless, with a careful look

we can see that the direction-selective attractors do not project on the exact same

location (see the direction-selective attractors in Figure 7.7). Direction-selective

attractors were placed at very close regions in the principle component space, but

no orthogonal axis could be assigned for coding of direction of movement.
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Figure 7.10 – ICA for 4 orientation 8 direction protocol on the data whitened by PCA
as shown in Figure 7.1.

ICA provides a more sophisticated decomposition than PCA by taking into account

the higher order statistics, as explained in details in Chapter 4.2.2. The FastICA

algorithm (Hyvarinen, 1999) allows separation of non-Gaussian sources by taking

into account the negentropy estimated by kurtosis, which is proportional to the

fourth moment about the mean. Resulting independent components do not have to

be orthogonal. Here, we show that ICA can discriminate direction-selective temporal

activity patterns.

ICA is calculated on the first 200 principal components obtained by PCA on de-

noised data as explained previously. FastICA algorithm is used with symmetric

approach and tanh nonlinearity.

For the example with 4-orientation protocol shown in the previous figures, ICA re-

vealed 8 direction selective components, each reflecting a weak orientation-dependent

response (Figure 7.1). ICA was successful in 4 of 10 data for separating different

directions of at least one orientation. On 3 out of 10 data, ICA separated individ-

ual orientations, and on the others ICA resulted in only camera pattern noise. The

cases where ICA failed to discriminate direction-selective populations were mostly

the data contaminated strongly by camera pattern noise.
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7.3 Discussion

After denoising the data with our hybrid GLM-PCA method, we analyzed the artefact-

free signal by PCA, and later by ICA in order to find statistically uncorrelated and in-

dependent neuronal response patterns. PCA revealed orientation selective patterns,

while ICA could separate populations that responded to directions of movement of

drifting gratings. We showed that the two opposite directions of drifting grating of

the same orientation were placed on nearby but yet distinguishable two points in

a two-dimensional eigenspace. Each evoked trajectory converged rapidly after the

response onset to an attractor point that coded for the orientation of stimulus in

this space.

First principal component that we observed stood for the visual response which is

not selective to the orientation of the drifting grating. Sharon et al. (2007) reported

that a local oriented visual stimulation evokes a plateau of activity which is largely

independent of stimulus orientation. We show that this plateau adds up linearly

to the orientation-selective response pattern. This kind of first principal compo-

nent that does not discriminate stimulus-specific information was also reported in

an electrophysiological study of prefrontal cortex of monkeys during frequency dis-

crimination task (Machens et al., 2010). In V1, both simple and complex cells elicit

membrane potential depolarization in response to nonselective orientation (Caran-

dini and Ferster, 2000; Gillespie et al., 2001). Moreover, it is known since the

earliest intrinsic imaging studies that any stimulus evokes a metabolic response in

a way that is not stimulus-specific in the visual cortex (Blasdel and Salama, 1986;

Blasdel, 1992a). Under these evidences, this signal may be at least partially of cor-

tical origin. It is possible that this signal originates from decoupling of soma and

dendrites due to shunting inhibition. Another possible candidate is the activation

of the inhibitory neurons. Taken into account the smaller number of inhibitory cells

with respect to excitatory cells, the latter argument cannot explain the high energy

of the nonselective component. Taking into account the spatial profile of the signal,

one may conclude that this nonselective profile of the evoked activity is amplified

by the baseline fluorescence.

Sornborger et al. (2005) reported that the average response among drifting gratings

contains 100 times the power (10 times the signal amplitude) of the differential

response in intrinsic imaging, which we confirm to be at the same level on VSD

imaging data in response to full-field drifting grating stimulation. This is the reason

why differential imaging is preferred by optical imaging community if only spatial

attributes of the evoked activity are investigated. On the other hand, if anisotropies

of the ring attractor exist, differential imaging strategy may be misleading as or-

thogonal orientations may not be exactly 180° apart on the ring.
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We show that when the orientation-selective response and the nonselective re-

sponse are considered separately, orientation-selective pattern emerges more rapidly

than the nonselective component. Early peak of orientation selectivity followed by

a decline was reported earlier by Sharon and Grinvald (2002). Our results confirm

their observations which were obtained by the analysis of the shape of the tun-

ing curve on regions that prefer a particular orientation. As Sharon and Grinvald

(2002) claimed, decline of orientation selectivity indicates intracortical modification

of orientation tuning. Analysis of the dynamics of stimulus-selective and nonselec-

tive components may provide information about how different mechanisms involve

in tuning of visual cortical responses.

We observed the DA notch to be present both on orientation selective and nons-

elective components. This signal probably represents the cortical response to the

flash of the visual stimulation, while the slower global activation corresponds to the

response to the drifting of the grating.

Fast dynamics of the stimulus-selective response components was comparable to

the observations of Mazor and Laurent (2005) about the fast odor discrimination

by locust antennal lobe projection neurons during transient states and the study of

Briggman et al. (2005) on faster decision making of neuronal populations than sin-

gle cells in leech nervous system, in the sense that population responses discrim-

inated different orientations during the early transient responses. These results

indicate that the transient response is more efficient than stationary fixed point re-

sponse in terms of coding, and given that the two previous study and our work are

performed on different systems, this effect may be universal for neuronal coding.

On the other hand, attractor states that are observed after tens of milliseconds

of visual stimulation onset would help maintaining the persistent activity in the

cortex during stimulus response (Brody et al., 2003). We observed that attractor

state dynamics are achieved in response to drifting gratings about 80 ms following

stimulus onset. This type of attractor state coding would provide investigation of

stimulus after-effects in future studies using appropriate protocols.

Following the stimulus offset, trajectories followed a path which was less orientation-

selective than the onset trajectory. This is probably a consequence of the de-

crease in orientation selectivity during visual responses. Following a less stimulus-

selective trajectory at the response offset may be a strategy to converge more easily

towards a new attractor state in case of incoming stimulus.

A recent study by Onat et al. (2011b) showed that PCA could separate the orientation-

selective component from the retinotopic response to the drifting grating. In our

data, 6 out of 10 recordings seemed to include this kind of components. The main

reason for why this component was not present for all of the data and for all stimu-
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lus conditions is possibly the difference between the analysis design between their

approach and our approach. Our analysis is aimed to separate orientation-selective

response patterns among a complete set of orientations, and to investigate their

transient and fixed response dynamics. Onat et al. (2011b) excluded the transient

response (first 400 ms of the visual response) from their analysis, which eliminates

the strong change in the amplitude of the fluorescent signal due to the onset of the

visual response. The authors pointed out that inclusion of the transients in their

analysis reduced the sensitivity of the method to the oscillatory response that oc-

curred lately in the signal. This late part of the signal was not present in our data

as we restricted the stimulus duration to only 500 ms. Moreover, the authors noted

that they could not observe these components in all the cases neither: it was possi-

ble to extract this signal only when the VSD signal was very clean. Given all these

differences in the protocol design between the two studies, our method is expected

to be less sensitive to the retinotopic waves which explains why we did not always

observe this component.

PCA on denoised data revealed a first component that stood for the nonselective

component of the evoked activity, and following components coded for orienta-

tion selectivity. This means that the nonselective activity is uncorrelated with the

orientation-selective activity. On the other hand, ICA resulted in components that

were selective for direction of the stimulus, which resulted in individual components

corresponding to each direction of movement of each orientation. Even though all

directions could not be extracted for all data, there was no nonselective component

revealed by ICA: this component was shared between each direction-selective com-

ponent. Therefore, independent components represented a mixture of both nons-

elective and selective parts, and probably some other components (such as retino-

topic responses to gratings) as there were no other components with a particular

spatial profile. This means that the nonselective activity may be uncorrelated with

the stimulus-selective response, but these two are not statistically independent.

The failure of PCA for discriminating direction-selective attractors indicate that di-

rection selectivity is not orthogonal to the orientation selectivity as suggested before

(Goldberg et al., 2004). However, it should be noted that in our protocol direction

of movement was dependent on orientation. More appropriate protocols may be

needed to evaluate the dependence between orientation and direction selectivity.

When the checkerboard-pattern camera noise was very strong in the recordings,

ICA after our GLM-PCA denoising gave components that reveal this camera noise,

instead of direction selective components. ICA is known to be sensitive to outliers,

therefore this approach should be carefully used in this case.

Our blind source separation analysis for discrimination of functional neural popu-
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lations on denoised data shows that statistics shared by neuronal sub-populations

can be revealed by source separation on VSD imaging data. Since PCA was shown

to separate efficiently the orientation preference domains, we conclude that orienta-

tion selectivity coding can be retrieved from the sole study of variance of responses.

Since ICA, which is based on 4th order moment about the mean, revealed direction

selectivity preference, we conclude that higher order statistics in the VSD Imaging

signal are necessary to extract computations in the visual cortex linking motion

and orientation. We speculate that the discrimination of the orientation-selective

and direction-selective patterns by using 2nd order and 4th order statistics respec-

tively may also be one of the strategies how the discrimination of the motion and

form is implemented in the visual system: Higher order areas may extract statis-

tics of their interest from the populations that they see in the lower area in the

hierarchy. In our case, we may speculate that the 4th order statistics would be

transmitted to the motion pathway while 2nd order statistics would be extracted by

the form pathway.



Chapter 8

Analysis of VSD Imaging
Recordings in Response to
Stimuli with Different Statistics

In this chapter, we will briefly introduce possible strategies for analysis of VSD

imaging data in response to longer and more complicated visual stimulation proto-

cols, and we will present some preliminary results.

8.1 Denoising of Long Recordings

Recording of long exposure and stimulation durations implicate more complicated

source components in the recordings. We extended our denoising strategy in order

to analyze long recordings (longer than 2 seconds; in our case 5120 ms of recording

and 4 s of visual stimulation). At this temporal range, intrinsic signal arises as

a result of the metabolic changes of the neural tissue, respiration artefact starts

to be significant, and heartbeat synchronization is lost. A long recording example

and resulting GLM source separation is shown in Figure 8.1. This recording is

performed on the same cortex as the example shown in Figure 6.3.

As the heartbeat frequency may change over the recording, it is not reliable to use

simple sine waves in the GLM regressor base for the heartbeat-induced artefact

model in long recordings. Instead, we developed a heart-triggered average method

to be used in GLM. After removing the bleaching by using a double-exponential fit,

mean heartbeat window among all trials is calculated for each pixel by averaging

windows of blank activity centered on each heartbeat; and this window is filtered

above 30 Hz. This set of heartbeat windows is then analyzed by PCA.

133
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Figure 8.1 – Problems encountered while separating the sources involving long record-
ings, and additional GLM regressors developed to remedy this problem. A: Temporal
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the corresponding regressors are modeled. C: Source separation by GLM. Resulting
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spond to the mean spatial response on the short and long temporal windows specified
on the temporal response window.
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Decomposition of heartbeat windows on all the pixels with PCA revealed compo-

nents that are relevant with Fourier decomposition; reflecting the phase and har-

monics of the heartbeat. Resulting components were closer to the blood pressure

signals than simple sine waves (Figure 8.1B). To reconstruct the heartbeat induced

artefact, only the components that reflect up to 3rd harmonics of the heartbeat (6-8

components) were included in the reconstruction. For each of these components a

heartbeat trace was constructed by centering the average window on each heart-

beat of the recording of interest. On the overlapping windows, the mean of the tails

of the two windows is taken into account.

Respiration artefact starts to be significant for recordings longer than two seconds.

We introduced 2 harmonics of respiration in the GLM base for long recordings.

We modeled the neural-response related signal the same way as for short record-

ings. We included the notch components only for drifting gratings, as we did not

observe the notch signal for natural image and dense noise responses.

Another modification to the model is to take into account the slow intrinsic signal,

which we modeled with 2 components, reflecting the oxyhemoglobin and deoxyhe-

moglobin change Vanzetta and Grinvald (1999):

− a4 exp(
(tonset + peak1 − t)2

σ12
) (8.1.1)

and

a5 exp(
(tonset + peak2 − t)2

σ22
) (8.1.2)

where peak1 = 2000ms is the peak of deoxyhemoglobin, peak2 = 4500ms is the peak

of oxyhemoglobin concentration. These values are estimated from the blank sub-

tracted response. σ1 is estimated to be 120 and σ2to be 370 from the intrinsic

change observed on the average drifting grating response. Resulting regressor vec-

tors are shown in Figure 8.1B.

Resulting GLM source separation compared to BS on one pixel is shown in Fig-

ure 8.1D. Mean maps on short and long segments obtained after GLM denoising

were similar, while BS cleaned response vanished in time and space. These results

suggest that GLM could successfully remove the intrinsic response.
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Results of GLM denoising on all trials of responses to natural image animated with

artificial eye movements, horizontal drifting grating, dense noise and blank are

shown in Figure 8.2. Extracted artefacts and resulting neural-related signals for

each trial are shown in A. Here we see that the GLM could successfully extract most

of the artefacts, with some exaggeration of the respiration artefact for the natural

image responses and one out-of-phase artefact extraction for dense noise. Never-

theless, the temporal profile of the responses was free of the intrinsic responses.

Examples of the mean spatial profile of 10 frames triggered at four time points of

the recording are shown in B. We see that the spatial profile of the drifting grating

response stays stable while natural image response is more global on the cortex

and visits different spatial regions. Dense noise evoked very weak response on all

over the cortex. Temporal response shown below the maps represents the mean of

all trials in the ROI that includes all the pixels analyzed by GLM.

8.2 Variability of Neural Population Activity in Response
to Different Stimulus Statistics

Stimulus-dependency of the trial-to-trial variability of VSD imaging signal is evalu-

ated by applying a stimulus-locked frequency-time wavelet analysis similar to the

one practiced on intracellular recordings (Baudot et al., submitted).

The time-frequency wavelet analysis developed by Baudot et al. (submitted) provides

both the reliability of the rate code which is mostly revealed in the low frequency

bands, and of the spike timing code which is revealed in high frequencies. This

analysis, when applied to VSD imaging recordings, gives a 4-dimensional represen-

tation of the trial-to-trial variability (as a function of time, frequency, 2-dimensional

pixel space), allowing us to study the response reliability as a function of network

structure for different time and frequency ranges. As a result of the nature of VSD

recordings, only low frequency components were observed on our data.

The advantage of VSD imaging is multichannel recording of population dynam-

ics. This permits us to record responses to a visual stimulation simultaneously

on multiple channels, providing means to investigate spatial aspect of trial-to-trial

variability. In order to check for time-frequency signal to noise ratio of population

responses as a function of orientation selectivity, we divided the pixels in five groups
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as a function of their localization in pinwheel or orientation center. 4 orientation

domains are considered (0°, 45°, 90° and 135°).
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Figure 8.3 – Stimulus dependency of trial-to-trial variability on five functional popula-
tion groups revealed by stimulus-locked wavelet analysis.

Preliminary results show that the SNR increases with ecological relevance of stim-

ulus statistics, in coherence with the previous studies from our lab (Baudot et al.,

submitted; Frégnac et al., 2005; Marre et al., 2009; El Boustani et al., 2009). Signal-

to-Noise Ratio was higher for natural image responses, creating an almost homoge-

neous response on each orientation-selective group. Drifting gratings evoked strong

SNR on the pixels that prefer the orientation of the grating, with a decreasing SNR

as a function of orientation preference on the rest of the map. Peak of the SNR

was at the onset and offset of evoked responses. Dense noise resulted in lower SNR

than natural image and drifting grating responses in low frequencies.

8.3 PCA on Natural Image Response

We applied PCA on the concatenation of 20 trials of natural image responses in

order to extract uncorrelated spatiotemporal patterns that are involved in coding of

natural images.
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As it was the case for drifting gratings, the first component corresponded to the

global activation of the cortex. This principal component corresponded to the main

fluctuations of the membrane potential observed on all the cortex. Unlike drifting

gratings, natural image responses could be separated into a number of local patches

(for example, components 11 and 12 in Figure 8.4). As a result of these functional

components, dimensionality of the signal was very high.
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Figure 8.4 – PCA on concatenation of trials of natural image responses.

8.4 Discussion

Long recordings are much more complex than the short ones, partially as a result

of some possible nonlinear interactions that occur in this time scale. Blood volume
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change is difficult to be estimated a priori; therefore this metabolic change is not

included in the model. Horizontal stripes on the GLM response map in Figure 8.1D

are aligned with blood vessels, showing that the model could not completely sepa-

rate the vessels from the neural response. In addition to these problems, second

step PCA with blank correlation for artefact detection would not work in this case

because the intrinsic response related signal is not present in the blank response.

More sophisticated tools are needed to compare membrane potential related signal,

intrinsic signal, and artefacts.

Another problem for GLM on long recordings is the neural response being more

complex than short duration simple stimulus. Especially in case of natural images,

modeling the neural response as a simple step function underestimates the contri-

bution of the fluctuations created by the changes in the subthreshold membrane

potential to the signal. Estimation of source vectors by analysis of local luminance

and contrast of the visual stimulus can be useful for a more realistic modeling of the

neuronal responses. Another possibility may be to use response signals deduced

from LFP recordings with appropriate methods.

Stimulus locked time-frequency analysis revealed that the signal to noise ratio of

neuronal responses increases with stimulus complexity, in coherence with earlier

intracellular studies (Baudot et al., submitted) . In addition, we could study the sig-

nal to noise ratio as a function of orientation preference. We observed that animated

natural image stimulation evoked high SNR on all the map including pinwheels,

while horizontal drifting grating evoked maximum SNR on regions that prefer hor-

izontal orientation and minimum on vertical-selective regions and pinwheels. In

any case, SNR of natural image response was higher than SNR of drifting grating

response on all regions. These results show that on low frequencies trial-to-trial

variability in population responses share the same stimulus dependent profiles as

intracellular recordings.

PCA on denoised natural image responses revealed that the dimensionality of this

signal is much higher than the short drifting grating responses, as it was suggested

by Onat et al. (2011a). On the other hand, contrary to the observations of Onat et al.

(2011a), we observed the excitation levels in response to animated natural images

to be higher than drifting grating responses. This is probably a consequence of the

differences between the natural images sequences that are used in the studies. We

used a single image animated with artificial eye movements with 1/f statistics both

in space and time, while they used natural images recorded by a camera that is

head-fixed to the freely moving cats in the forest. This type of stimulation discards

the importance of the eye movements, resulting in a relatively static recording of

the environment. Moreover, with a closer look to their Figure 2 we can see that

the natural image response starts to be as strong as the drifting grating response
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when low spatial frequency features appear and move in the visual scene. Another

important reason may be that in our case natural image animation evoked activity

on a wide region on the cortex, while drifting gratings only activate the regions that

are selective to the presented stimulation.
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In this thesis, we claimed that statistical source separation methods can be applied

to VSD imaging data both for denoising of recordings from unwanted sources, and

for extraction of functional patterns of activity. We investigated application of data-

driven and model-based strategies to VSD imaging data. We developed a hybrid de-

noising method that could successfully clean the neural-related response from the

artefacts better than only a data-driven or model-based method alone. Following

the hybrid denoising, we performed data-driven source separation analysis which

revealed that the neuronal populations in response to full field drifting gratings are

statistically separable as a function of their stimulus preference. We then intro-

duced a strategy to denoise longer recordings which involve intrinsic response and

more complicated heartbeat dynamics. This denoising strategy let us analyze data

obtained by the protocol that involves 4 second long responses to animated natu-

ral images, drifting gratings, dense noise and blank. Preliminary analysis showed

that the trial-to-trial variability as a function of stimulus complexity is comparable

to the results obtained in in-vivo intracellular recordings in low frequencies, while

high frequency reliability is lost in VSD recordings. Reliability of the drifting grat-

ings depended on the orientation preference of the pixels, resulting in a higher SNR

on the regions that prefer the presented stimulus. PCA on natural images resulted

in higher dimensionality and weaker space-time separability than drifting gratings.

These results provide information about certain limits of linear source separation

on VSD recordings.

Comparison of denoising methods

As we indicated in Chapter 6, appropriateness of a certain source separation strat-

egy depends strictly on the nature of the signal of interest and the prior knowledge

about the signal sources.

We observed that data-driven denoising with PCA and ICA on raw data could not

distinguish evoked neural response from the artefacts. The main problem was the

bleaching being strongly correlated to the nonselective neuronal activity. PCA after

removal of bleaching by a double exponential fit could not distinguish the heartbeat

and heart pulsation noise from the neuronal response. In any case, number of sig-

nificant components was always very high, which makes it impossible to decrease

the dimensionality of the responses, which is a necessary step to perform ICA.

A reason why ICA on VSD recordings does not work as good as it does on fMRI

recordings is the simultaneous presence of signals and artefacts at the same regions

VSD recordings, in contrast to fMRI recordings. Another major problem for PCA

and ICA was the bleaching having a very dominant contribution to the observed
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mixture. As a result of this, PCA would first extract the bleaching component and

then search for other orthogonal vectors that may not explicitly represent neuronal

response.

Another reason for why PCA and ICA does not provide good source separation may

be that the signal sources are not really statistically independent, as the microvas-

culature is spatially organized to support neurons, and dye diffusion is correlated

with the areas that include neural cells. Indeed, the heart pulsation signal which

occurs at higher harmonics of the heartbeat frequency could not be separated from

the neuronal response completely. Hence, this signal does not seem to be inde-

pendent or uncorrelated of the neuronal response in the sense that is taken into

account by blind source separation.

PCA orders the principal components with respect to their energy. Often, first com-

ponents represent most of the variance expressed in the data; therefore it is conve-

nient to discard components which have lower energy. This provides a compression

of the data by decreasing the dimensionality to the number of first significant com-

ponents. When we consider the total energy expressed in the recordings, PCA on

VSD imaging data both for denoising and population analysis aspects resulted in a

very high number of components. The first cut-off for the eigenvalues was observed

just after the orientation selective and retinotopic components (3-5 components).

These components corresponded to less than 30% of the total variance. For the

following components, even though a spatio-temporal structure remained in the

principal components, there was no obvious cut-off. Nevertheless, even though the

energy decreased very slowly, we observed that the spatial and temporal structure

starts to be meaningless after a few hundred components. This rich nature of the

signal is partially a result of the complexity of the neuronal responses. It is also a

consequence of the noisy nature of the VSD imaging signal.

GLM provided better means for signal denoising than PCA and ICA on our data.

While doing VSD imaging on anesthetized and paralyzed cat, prior information

about the most important artefacts such as heart beat and bleaching can be ob-

tained by additional measures. This facilitates the application of GLM on VSD data.

Even though GLM was successful up to a point, there were still some components

that could not be clearly distinguished. To remedy this problem, we developed a

method that benefits the advantages of both method-based and data-driven strate-

gies. Addition of a second step of denoising that uses a data-driven approach pro-

vided an acceptable denoising by extracting the stimulus dependent response from

the rest of the sources. We are also currently collaborating with Hugo Raguet and

Gabriel Peyré for development of a more flexible GLM algorithm that would also take

into account spatial correlations between sources.
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Hybrid model for denoising of VSD Imaging data

The first aim of our work was to develop an appropriate denoising approach that

would permit single-trial analysis. We tried both data-driven (PCA and ICA) and

model-based (GLM) approaches. GLM provided a successful denoising at the first

step, but it could not separate fully the neural-related signal from the artefacts.

Having prior information about the nature of the most of the artefacts permitted

us to define an appropriate regressor base. However, it is not easy to predict the

exact profile of the neural response in time. This was the limiting factor for the

GLM method. Nevertheless, we were able to detect the components that could not

be extracted by GLM by applying PCA on all dataset in order to detect common

spatiotemporal patterns among all trials of all stimulation and no-stimulation con-

ditions. This provided a compromise between using blank or cocktail-blank control

conditions. While comparison of the activity to blank condition would reveal any

neural ’responsibility’, comparison to cocktail blank would reveal rather ’selectivity’

of the neural responses. Indeed, PCA could reveal one major component that reveals

responsive but not selective neural activity pattern, while the following components

were stimulus selective.

Data-driven and model-based approaches are based on different and complemen-

tary hypothesis about the nature of the mixture that is measured by the observer.

Hybrid models are shown to be more successful than using only one approach alone

in fMRI and intrinsic imaging recordings (McKeown, 2000; Zheng et al., 2001; Cal-

houn et al., 2005; Hu et al., 2005). By combining carefully these two approaches,

one can avoid the disadvantages of claiming strong hypothesis about the nature of

individual sources or their mixtures.

Doing PCA and ICA after GLM denoising can be considered as a hybrid method, as

we use both data-driven and model-based approaches at the end. By using both

methods, we minimize disadvantages of using either only data-driven or model-

based methods. Furthermore, even if GLM provides better decomposition, the fact

that in GLM we only introduce less than 20 components, number of significant

components revealed by PCA was always higher and therefore the decomposition

made by GLM is very rough and does not take into account the rich nature of the

VSD Imaging data.

Development of source separation strategies are heavily influenced by the way the

brain solves the cocktail party problem. Development of ICA was initiated by the

discussion about how the simple cells code sparse representations of the world

(Barlow, 1995). Researchers then searched for algorithms that would separate

sparse representations observed in a mixture. Indeed, ICA algorithms that use

higher order statistics are accepted to solve the cocktail party problem efficiently
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(Comon, 1994; Bell and Sejnowski, 1997, 1995). A recent fMRI study showed

that the brain solves the source separation problem by using both data-driven and

model-based approaches in parallel in decision making (Daw et al., 2011). Under-

standing these mechanisms and development of parallel hybrid models with knowl-

edge from neuroscience could provide a more realistic approach for source separa-

tion. Reciprocally, development of hybrid methods inspired by the brain would be

useful in increasing the efficiency of the biologically inspired artificial systems for

solving pattern recognition and decision making problems.

Dynamics of stimulus-driven responses in V1 in a low di-
mensional space

There are several advantages of using source separation methods that provide di-

mensionality reduction of visual cortical dynamics revealed by VSD imaging.

First of all, VSD imaging provides simultaneous recording of thousands of neurons

on the superficial layers of the cortex, providing good means for investigating the

cooperative behavior arising from the lateral connectivity linking neural popula-

tions. Thanks to the modular organization of the primary visual cortex, neurons

that share common statistics are clustered together on the cortical sheet. This or-

ganization provides emergence of smooth spatial representations, which can then

be extracted by source separation.

Our second advantage was the use of drifting grating protocol which evoked differ-

ent profiles of selectivity by providing a complete basis of neural response patterns.

Classification of neuronal populations by this method would permit studying more

complicated neural dynamics such as natural image responses, waves of activity

evoked by spatially localized visual stimulations as well as the spontaneous activ-

ity.

PCA on denoised recordings revealed spatio-temporal dynamics of orientation selec-

tive stimulus-driven responses. Extraction of spatio-temporal patterns that corre-

spond to each orientation indicates space-time separability of orientation selective

responses.

In response to drifting gratings, neural populations converged to corresponding at-

tractor states right after the response offset. This indicates that even though the

VSD responses of single pixels have very slow dynamics, stimulus-selective popu-

lation responses are indeed very fast and efficient. PCA could separate the non-

selective activity from the stimulus-selective activity, and permitted to investigate

the dynamics of each component one by one. Our results indicate that global pop-
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ulation dynamics are more informative about the neuronal dynamics observed on

small populations.

Future directions

Previous studies suggested different interplay between stimulus-selective and non-

selective components as a function of stimulus size (Sharon and Grinvald, 2002;

Sharon et al., 2007; Chavane et al., 2011). Application of our method to data ob-

tained with different sizes of oriented stimulus can help better understanding of the

dynamics of orientation selectivity as a function of stimulus size.

It would be interesting to investigate how the cortical network will be activated if

the starting point of the response would be different than the point of no-stimulus

origin. Attractor-state coding would reveal this kind of activity which may reflect

adaptation or stimulus aftereffects. Design of adequate stimulus protocols would

permit using this type of analysis in order to investigate these phenomena. This

kind of protocols would also reveal whether the ring attractor of orientation selec-

tivity is continuous or not.

A common belief in visual neuroscience is that the evoked activity sums up linearly

with the preceding spontaneous activity (Arieli et al., 1996; Azouz and Gray, 1999).

Studies that evaluated this correlation usually take the response onset as the ref-

erence point for preceding spontaneous activity. Here we showed that in response

to drifting gratings, evoked patterns were stimulus selective right at the beginning

of the response. Our results indicate that the high correlation observed in the pre-

vious studies may be due to a misjudgment of the response onset as a result of the

slow amplitude of transient responses. Moreover, Arieli and colleagues conducted

their experiments on animals that are deeply anesthetized by pentothal. This anes-

thetizer is from barbiturate family, which is known for enhancement of inhibition.

This may result in a strong transient inhibition right before the excitation, which

could evoke a spatio-temporal pattern of inhibitory activity in the cortex. Another

important point is the sensitivity of the recordings to artefacts. Presence of an arte-

fact may be considered by mistake as the ongoing activity, which would result in

a high correlation of the ongoing and evoked activities. Arieli and colleagues used

the red dye which is much more sensitive to heartbeat related artefacts. Our de-

noising method provides a better cleaning of the data from the unwanted signal

contributions; therefore we expect to obtain more coherent results.

We provided an attractor-state coding scheme for orientation and direction selec-

tivity, which are the most prominent features of V1. We showed that direction-

selective responses are not separable with PCA, even though different clusters can
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be observed for the two directions. Introducing the higher order moments in the

analysis by ICA could solve this problem. This is probably a consequence of the or-

thogonality restriction in PCA. Protocols that permit mapping of direction-selective

populations on the cortex independently of orientation selectivity, such as moving

dots or motion clouds, could provide independent analysis of direction and orienta-

tion selectivity in V1.

Another possibility to investigate stimulus-dependent features would be to search

for common components for other combinations. We searched the components

that would code for orientation and direction selectivity by searching the common

spatiotemporal patterns in response to a full set of stimulus orientations and di-

rections. Onat et al. (2011b) performed PCA on only one stimulus condition, and

succeeded to extract retinotopic-related responses to drifting grating, and corre-

sponding orientation-selective responses. Using a single stimulus condition would

provide a more detailed decomposition of components that correspond to a stimu-

lus. On the other hand, searching common components in response to a complete

set of stimulus helps us to understand how the cortex is organized in order to code

for a stimulus feature. It is also possible to compare the cortical organization cor-

responding to different receptive field properties, as Everson et al. (1998) did for

orientation selectivity compared to spatial frequency organization in space. One

step further may be to combine all these conditions, and perform PCA on a dataset

that contains responses to stimuli that favor multiple receptive field properties.

This kind of approach could also reveal the interplay between different selectivity

map structures in the cortex.

Finally, projection of non-classical stimulus responses on the ring attractor may

help better understanding of how orientation selectivity is involved in neural coding

under more complex stimulus scenarios, including natural image responses. Pro-

jection of the blank response on the orientation-selective ring attractor would also

provide quantification of the occurrence of orientation-selective patterns in sponta-

neous activity (Kenet et al., 2003; Goldberg et al., 2004).
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512–518.

Gross, C., Rocha-Miranda, C., Bender, D., 1972. Visual properties of neurons in

inferotemporal cortex of the macaque. Journal of Neurophysiology 35 (1), 96–111.

Grossberg, S., 1976. Adaptive pattern classification and universal recoding: Ii. feed-

back, expectation, olfaction, illusions. Biological cybernetics 23 (4), 187–202.

Gupta, A., Wang, Y., Markram, H., 2000. Organizing principles for a diversity of

gabaergic interneurons and synapses in the neocortex. Science 287 (5451), 273–

278.

Gur, M., Beylin, A., Snodderly, D., 1997. Response variability of neurons in primary

visual cortex (v1) of alert monkeys. The Journal of neuroscience 17 (8), 2914–

2920.

Gur, M., Snodderly, D., 2006. High response reliability of neurons in primary visual

cortex (v1) of alert, trained monkeys. Cerebral Cortex 16 (6), 888–895.

Haider, B., Krause, M., Duque, A., Yu, Y., Touryan, J., Mazer, J., McCormick, D.,

2010. Synaptic and network mechanisms of sparse and reliable visual cortical

activity during nonclassical receptive field stimulation. Neuron 65 (1), 107–121.

Hammond, P., 1974. Cat retinal ganglion cells: size and shape of receptive field

centres. The Journal of Physiology 242 (1), 99.

Han, F., Caporale, N., Dan, Y., 2008. Reverberation of recent visual experience in

spontaneous cortical waves. Neuron 60 (2), 321–327.

Harris, C., 1980. Insight or out of sight? two examples of perceptual plasticity in

the human adult. Visual coding and adaptability, 95–149.

Harsch, A., Robinson, H., 2000. Postsynaptic variability of firing in rat cortical

neurons: the roles of input synchronization and synaptic nmda receptor conduc-

tance. The Journal of Neuroscience 20 (16), 6181–6192.

Hebb, D., 1949. The organization of behavior: A neuropsychological approach.

NewYork: John Wiley & Sons. Hinton, GE (1989). Deterministic Boltzmann learn-

ing performs steepest descent in weightspace. Neural Computation 1, 143–150.



BIBLIOGRAPHY 163

Heggelund, P., Albus, K., 1978. Response variability and orientation discrimination

of single cells in striate cortex of cat. Experimental Brain Research 32 (2), 197–

211.

Hilgetag, C., O’Neill, M., Young, M., Van Essen, D., Felleman, D., 1996. Indeter-

minate organization of the visual systemon hierarchies: Response to hilgetag et

al. rejoinder: Further commentary: Determinate or indeterminate organization.

Science 271 (5250), 776–776.

Hirsch, J., Alonso, J., Reid, R., Martinez, L., 1998. Synaptic integration in striate

cortical simple cells. The Journal of neuroscience 18 (22), 9517–9528.

Horton, J., Adams, D., 2005. The cortical column: a structure without a function.

Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1456),

837–862.

Hu, D., Yan, L., Liu, Y., Zhou, Z., Friston, K., Tan, C., Wu, D., 2005. Unified spm-ica

for fmri analysis. Neuroimage 25 (3), 746–755.

Huang, J., Wang, C., Dreher, B., 2007. The effects of reversible inactivation of

postero-temporal visual cortex on neuronal activities in cat’s area 17. Brain re-

search 1138, 111–128.

Hubel, D., Wiesel, T., 1959. Receptive fields of single neurones in the cat’s striate

cortex. The Journal of physiology 148 (3), 574–591.

Hubel, D., Wiesel, T., 1962. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of physiology 160 (1), 106–154.

Hubel, D., Wiesel, T., 1963. Shape and arrangement of columns in cat’s striate

cortex. The Journal of physiology 165 (3), 559–568.

Hubel, D., Wiesel, T., 1968. Receptive fields and functional architecture of monkey

striate cortex. The Journal of physiology 195 (1), 215–243.

Hubel, D., Wiesel, T., 1969. Anatomical demonstration of columns in the monkey

striate cortex. Nature 221 (5182), 747.

Hubel, D., Wiesel, T., 1974. Sequence regularity and geometry of orientation

columns in the monkey striate cortex. The Journal of comparative neurology

158 (3), 267–293.

Hubel, D., Wiesel, T., 1977. Ferrier lecture: Functional architecture of macaque

monkey visual cortex. Proceedings of the Royal Society of London. Series B, Bio-

logical Sciences, 1–59.



164 BIBLIOGRAPHY

Hübener, M., Shoham, D., Grinvald, A., Bonhoeffer, T., 1997. Spatial relation-

ships among three columnar systems in cat area 17. The journal of neuroscience

17 (23), 9270–9284.

Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent com-

ponent analysis. Neural Networks, IEEE Transactions on 10 (3), 626–634.

Issa, N., Rosenberg, A., Husson, T., 2008. Models and measurements of functional

maps in v1. Journal of neurophysiology 99 (6), 2745–2754.

Issa, N., Trepel, C., Stryker, M., 2000. Spatial frequency maps in cat visual cortex.

The Journal of Neuroscience 20 (22), 8504–8514.

Izhikevich, E., 2006. Polychronization: Computation with spikes. Neural computa-

tion 18 (2), 245–282.

Jancke, D., Chavane, F., Naaman, S., Grinvald, A., 2004. Imaging cortical corre-

lates of illusion in early visual cortex. Nature 428 (6981), 423–426.

Johnson, R., Burkhalter, A., 1996. Microcircuitry of forward and feedback con-

nections within rat visual cortex. The Journal of comparative neurology 368 (3),

383–398.

Jones, H., Andolina, I., Oakely, N., Murphy, P., Sillito, A., 2000. Spatial summa-

tion in lateral geniculate nucleus and visual cortex. Experimental Brain Research

135 (2), 279–284.

Jones, H., Grieve, K., Wang, W., Sillito, A., 2001. Surround suppression in primate

v1. Journal of Neurophysiology 86 (4), 2011–2028.

Jones, L., Fontanini, A., Sadacca, B., Miller, P., Katz, D., 2007. Natural stimuli

evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of

the National Academy of Sciences 104 (47), 18772.

Jung, T., Makeig, S., McKeown, M., Bell, A., Lee, T., Sejnowski, T., 2001. Imaging

brain dynamics using independent component analysis. Proceedings of the IEEE

89 (7), 1107–1122.

Kara, P., Reinagel, P., Reid, R., 2000. Low response variability in simultaneously

recorded retinal, thalamic, and cortical neurons. Neuron 27 (3), 635–646.

Kelso, J., 1995. Dynamic patterns: The self-organization of brain and behavior. The

MIT Press.

Kelso, J., 2012. Multistability and metastability: understanding dynamic coordi-

nation in the brain. Philosophical Transactions of the Royal Society B: Biological

Sciences 367 (1591), 906–918.



BIBLIOGRAPHY 165

Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A., 2003. Spontaneously

emerging cortical representations of visual attributes. Nature 425 (6961), 954–

956.

Kisvarday, Z., Toth, E., Rausch, M., Eysel, U., 1997. Orientation-specific relation-

ship between populations of excitatory and inhibitory lateral connections in the

visual cortex of the cat. Cerebral Cortex 7 (7), 605–618.

Koch, C., Laurent, G., 1999. Complexity and the nervous system. Science

284 (5411), 96–98.

Koulakov, A., Chklovskii, D., 2001. Orientation preference patterns in mammalian

visual cortex:: A wire length minimization approach. Neuron 29 (2), 519–527.

Kremkow, J., Perrinet, L., Masson, G., Aertsen, A., 2010. Functional consequences

of correlated excitatory and inhibitory conductances in cortical networks. Journal

of computational neuroscience 28 (3), 579–594.

Kuffler, S., 1953. Discharge patterns and functional organization of mammalian

retina. J Neurophysiol 16 (1), 37–68.

Lampl, I., Reichova, I., Ferster, D., 1999. Synchronous membrane potential fluctu-

ations in neurons of the cat visual cortex. Neuron 22 (2), 361–374.

Lee, D., Port, N., Kruse, W., Georgopoulos, A., 1998. Variability and correlated noise

in the discharge of neurons in motor and parietal areas of the primate cortex. The

Journal of neuroscience 18 (3), 1161–1170.

Lee, T., Mumford, D., 2003. Hierarchical bayesian inference in the visual cortex.

JOSA A 20 (7), 1434–1448.

Lengyel, I., Epstein, I., 1991. Modeling of turing structures in the chlorite-iodide-

malonic acid-starch reaction system. Science 251 (4994), 650–652.

LeVay, S., Voigt, T., 1990. Retrograde transneuronal transport of wheat-germ ag-

glutinin to the retina from visual cortex in the cat. Experimental Brain Research

82 (1), 67–76.

Leventhal, A., Thompson, K., Liu, D., Zhou, Y., Ault, S., 1995. Concomitant sensi-

tivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey

striate cortex. The Journal of neuroscience 15 (3), 1808–1818.

Li, B., Peterson, M., Freeman, R., 2003. Oblique effect: A neural basis in the visual

cortex. Journal of Neurophysiology 90 (1), 204–217.



166 BIBLIOGRAPHY

Lippert, M., Takagaki, K., Xu, W., Huang, X., Wu, J., 2007. Methods for voltage-

sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. Jour-

nal of neurophysiology 98 (1), 502–512.

Litvak, V., Sompolinsky, H., Segev, I., Abeles, M., 2003. On the transmission of

rate code in long feedforward networks with excitatory–inhibitory balance. The

Journal of neuroscience 23 (7), 3006–3015.

Logothetis, N., Wandell, B., 2004. Interpreting the bold signal. Annu. Rev. Physiol.

66, 735–769.

Lorente de No, R., 1938. Architectonics and structure of the cerebral cortex. In:

Fulton, J. (Ed.), Physiology of the nervous system. Oxford University Press, pp.

291–330.

Luczak, A., Barthó, P., Harris, K., 2009. Spontaneous events outline the realm of

possible sensory responses in neocortical populations. Neuron 62 (3), 413–425.

Maass, W., Natschläger, T., Markram, H., 2002. Real-time computing without stable

states: A new framework for neural computation based on perturbations. Neural

computation 14 (11), 2531–2560.

Machens, C., Romo, R., Brody, C., 2010. Functional, but not anatomical, separa-

tion of ’what’ and ’when’ in prefrontal cortex. The Journal of Neuroscience 30 (1),

350–360.

Maeda, S., Inagaki, S., Kawaguchi, H., Song, W., 2001. Separation of signal and

noise from in vivo optical recording in guinea pigs using independent component

analysis. Neuroscience letters 302 (2-3), 137–140.

Mainen, Z., Sejnowski, T., 1995. Reliability of spike timing in neocortical neurons.

Science 268 (5216), 1503–1506.

Mainzer, K., 2007. The emergence of mind and brain: an evolutionary, computa-

tional, and philosophical approach. Progress in brain research 168, 115–132.

Makeig, S., Debener, S., Onton, J., Delorme, A., 2004. Mining event-related brain

dynamics. Trends in cognitive sciences 8 (5), 204–210.

Maldonado, P., Gödecke, I., Gray, C., Bonhoeffer, T., 1997. Orientation selectivity

in pinwheel centers in cat striate cortex. Science 276 (5318), 1551.

Malonek, D., Grinvald, A., 1996. Interactions between electrical activity and cortical

microcirculation revealed by imaging spectroscopy: implications for functional

brain mapping. Science 272 (5261), 551–554.



BIBLIOGRAPHY 167

Mante, V., Carandini, M., 2005. Mapping of stimulus energy in primary visual cor-

tex. Journal of neurophysiology 94 (1), 788–798.

Marre, O., Yger, P., Davison, A., Frégnac, Y., 2009. Reliable recall of sponta-

neous activity patterns in cortical networks. The Journal of Neuroscience 29 (46),

14596–14606.

Mazor, O., Laurent, G., 2005. Transient dynamics versus fixed points in odor rep-

resentations by locust antennal lobe projection neurons. Neuron 48 (4), 661–673.

McCormick, D., 1999. Spontaneous activity: Signal or noise? Science 285 (5427),

541–543.

McKeown, M., 2000. Detection of consistently task-related activations in fmri data

with hybrid independent component analysis. NeuroImage 11 (1), 24–35.

McKeown, M., Makeig, S., Brown, G., Jung, T., Kindermann, S., Bell, A., Sejnowski,

T., 1998. Analysis of fmri data by blind separation into independent spatial com-

ponents. Human Brain Mapping 6, 160–188.

McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D., 2000. A neuronal network

model of macaque primary visual cortex (v1): Orientation selectivity and dynamics

in the input layer 4cα. Proceedings of the National Academy of Sciences 97 (14),

8087.

Mennerick, S., Chisari, M., Shu, H., Taylor, A., Vasek, M., Eisenman, L., Zorumski,

C., 2010. Diverse voltage-sensitive dyes modulate gabaareceptor function. The

Journal of Neuroscience 30 (8), 2871–2879.

Mikkulainen, R., 2005. Computational maps in the visual cortex. Springer Verlag.

Miller, K., Keller, J., Stryker, M., 1989. Ocular dominance column development:

Analysis and simulation. Science 245 (4918), 605–615.

Milner, P., 1974. A model for visual shape recognition. Psychological Review 81 (6),

521.

Mioche, L., Singer, W., 1989. Chronic recordings from single sites of kitten stri-

ate cortex during experience-dependent modifications of receptive-field proper-

ties. Journal of neurophysiology 62 (1), 185–197.

Mishkin, M., Ungerleider, L., Macko, K., 1983. Object vision and spatial vision: Two

cortical pathways. Trends in neurosciences 6, 414–417.

Mitra, P., Pesaran, B., 1999. Analysis of dynamic brain imaging data. Biophysical

journal 76 (2), 691–708.



168 BIBLIOGRAPHY

Monier, C., Chavane, F., Baudot, P., Graham, L., Frégnac, Y., 2003. Orientation

and direction selectivity of synaptic inputs in visual cortical neurons:: A diversity

of combinations produces spike tuning. Neuron 37 (4), 663–680.

Monyer, H., Markram, H., 2004. < i> interneuron diversity series</i>: Molecular

and genetic tools to study gabaergic interneuron diversity and function. Trends

in neurosciences 27 (2), 90–97.

Mountcastle, V., 1957. Modality and topographic properties of single neurons of

cat’s somatic sensory cortex. j. Neurophysiol 20 (4), 408–434.

Mountcastle, V., 1997. The columnar organization of the neocortex. Brain 120 (4),

701–722.

Movshon, J., Adelson, E., Gizzi, M., Newsome, W., 1985. The analysis of moving

visual patterns. Pattern recognition mechanisms 54, 117–151.

Muller, L., Destexhe, A., 2012. Propagating waves in thalamus, cortex and the

thalamocortical system: experiments and models. Journal of Physiology-Paris.

Nassi, J., Callaway, E., 2009. Parallel processing strategies of the primate visual

system. Nature Reviews Neuroscience 10 (5), 360–372.

Nauhaus, I., Benucci, A., Carandini, M., Ringach, D., 2008. Neuronal selectivity

and local map structure in visual cortex. Neuron 57 (5), 673–679.

Obermayer, K., Blasdel, G., 1993. Geometry of orientation and ocular dominance

columns in monkey striate cortex. The Journal of neuroscience 13 (10), 4114–

4129.

Ohki, K., Chung, S., Ch’ng, Y., Kara, P., Reid, R., 2005. Functional imaging with

cellular resolution reveals precise micro-architecture in visual cortex. Nature

433 (7026), 597–603.

Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., Reid, R., 2006.

Highly ordered arrangement of single neurons in orientation pinwheels. Nature

442 (7105), 925–928.

Olshausen, B., Field, D., 2004. Sparse coding of sensory inputs. Current opinion

in neurobiology 14 (4), 481–487.

Olshausen, B., Field, D., 2005. How close are we to understanding v1? Neural

computation 17 (8), 1665–1699.

Onat, S., K

"onig, P., Jancke, D., 2011a. Natural scene evoked population dynamics across



BIBLIOGRAPHY 169

cat primary visual cortex captured with voltage-sensitive dye imaging. Cerebral

Cortex.

Onat, S., Nortmann, N., Rekauzke, S., Konig, P., Jancke, D., 2011b. Independent

encoding of grating motion across stationary feature maps in primary visual cor-

tex visualized with voltage-sensitive dye imaging. Neuroimage.

Payne, B., Peters, A., 2002. The concept of cat primary visual cortex. In: Payne, B.,

Peters, A. (Eds.), The cat primary visual cortex. Academic Press, pp. 1–108.

Peterka, D., Takahashi, H., Yuste, R., 2011. Imaging voltage in neurons. Neuron

69 (1), 9–21.

Petitot, J., 2003. The neurogeometry of pinwheels as a sub-riemannian contact

structure. Journal of Physiology-Paris 97 (2-3), 265–309.

Polyak, S., 1941. The retina: the anatomy and the histology of the retina in man,

ape, and monkey, including the consideration of visual functions, the history of

physiological optics, and the histological laboratory technique.

Poulet, J., Petersen, C., 2008. Internal brain state regulates membrane potential

synchrony in barrel cortex of behaving mice. Nature 454 (7206), 881–885.

Prechtl, J., Cohen, L., Pesaran, B., Mitra, P., Kleinfeld, D., 1997. Visual stimuli

induce waves of electrical activity in turtle cortex. Proceedings of the National

Academy of Sciences 94 (14), 7621.

Quiroga, R., Reddy, L., Kreiman, G., Koch, C., Fried, I., 2005. Invariant visual

representation by single neurons in the human brain. Nature 435 (7045), 1102–

1107.

Rabinovich, M., Huerta, R., Varona, P., Afraimovich, V., 2008. Transient cognitive

dynamics, metastability, and decision making. PLoS computational biology 4 (5),

e1000072.

Rakic, P., 1988. Specification of cerebral cortical areas. Science 241 (4862), 170–

176.

Reidl, J., Starke, J., Omer, D., Grinvald, A., Spors, H., 2007. Independent com-

ponent analysis of high-resolution imaging data identifies distinct functional do-

mains. Neuroimage 34 (1), 94–108.

Reynaud, A., Takerkart, S., Masson, G., Chavane, F., 2010. Linear model decom-

position for voltage-sensitive dye imaging signals: Application in awake behaving

monkey. Neuroimage.



170 BIBLIOGRAPHY

Ringach, D., 2009. Spontaneous and driven cortical activity: implications for com-

putation. Current opinion in neurobiology 19 (4), 439–444.

Ruderman, D., Bialek, W., 1994. Statistics of natural images: Scaling in the woods.

Physical Review Letters 73 (6), 814–817.

Rudolph, M., Destexhe, A., 2001. Do neocortical pyramidal neurons display

stochastic resonance? Journal of Computational Neuroscience 11, 19–42,

10.1023/A:1011200713411.

URL http://dx.doi.org/10.1023/A:1011200713411

Salinas, E., Sejnowski, T., 2000. Impact of correlated synaptic input on output

firing rate and variability in simple neuronal models. The Journal of Neuroscience

20 (16), 6193–6209.

Scannell, J., Blakemore, C., Young, M., 1995. Analysis of connectivity in the cat

cerebral cortex. The Journal of Neuroscience 15 (2), 1463–1483.

Scannell, J., Young, M., 2002. Primary visual cortex within the cortico-

corticothalamic network. In: Payne, B., Peters, A. (Eds.), The cat primary visual

cortex. Academic Press, pp. 609–654.

Schießl, I., Stetter, M., Mayhew, J., McLoughlin, N., Lund, J., Obermayer, K., 2000.

Blind signal separation from optical imaging recordings with extended spatial

decorrelation. Biomedical Engineering, IEEE Transactions on 47 (5), 573–577.

Schiller, P., Finlay, B., Volman, S., 1976. Short-term response variability of monkey

striate neurons. Brain Research 105 (2), 347–349.

Schmidt, K., Goebel, R., Löwel, S., Singer, W., 1997. The perceptual grouping crite-

rion of colinearity is reflected by anisotropies of connections in the primary visual

cortex. European Journal of Neuroscience 9 (5), 1083–1089.

Schummers, J., Cronin, B., Wimmer, K., Stimberg, M., Martin, R., Obermayer, K.,

Koerding, K., Sur, M., 2007. Dynamics of orientation tuning in cat v1 neurons

depend on location within layers and orientation maps. Frontiers in neuroscience

1 (1), 145.

Schummers, J., Mariño, J., Sur, M., 2002. Synaptic integration by v1 neurons

depends on location within the orientation map. Neuron 36 (5), 969–978.

Schwartz, E., 1977. Spatial mapping in the primate sensory projection: analytic

structure and relevance to perception. Biological cybernetics 25 (4), 181–194.

Schwartz, O., Simoncelli, E., 2001. Natural signal statistics and sensory gain con-

trol. Nature neuroscience 4 (8), 819–825.

http://dx.doi.org/10.1023/A:1011200713411


BIBLIOGRAPHY 171

Seriès, P., Lorenceau, J., Frégnac, Y., 2003. The ’silent’ surround of v1 receptive

fields: theory and experiments. Journal of physiology-Paris 97 (4-6), 453–474.

Shadlen, M., Britten, K., Newsome, W., Movshon, J., 1996. A computational analy-

sis of the relationship between neuronal and behavioral responses to visual mo-

tion. The Journal of neuroscience 16 (4), 1486–1510.

Shadlen, M., Newsome, W., 1998. The variable discharge of cortical neurons: im-

plications for connectivity, computation, and information coding. The Journal of

Neuroscience 18 (10), 3870–3896.

Sharon, D., Grinvald, A., 2002. Dynamics and constancy in cortical spatiotemporal

patterns of orientation processing. Science 295 (5554), 512–515.

Sharon, D., Jancke, D., Chavane, F., Na’aman, S., Grinvald, A., 2007. Cortical

response field dynamics in cat visual cortex. Cerebral Cortex 17 (12), 2866–2877.

Shatz, C., Stryker, M., 1988. Prenatal tetrodotoxin infusion blocks segregation of

retinogeniculate afferents. Science 242 (4875), 87–89.

Shmuel, A., Grinvald, A., 1996. Functional organization for direction of motion and

its relationship to orientation maps in cat area 18. The Journal of Neuroscience

16 (21), 6945–6964.

Shmuel, A., Grinvald, A., 2000. Coexistence of linear zones and pinwheels within

orientation maps in cat visual cortex. Proceedings of the National Academy of

Sciences 97 (10), 5568.

Shoham, D., Glaser, D., Arieli, A., Kenet, T., Wijnbergen, C., Toledo, Y., Hildesheim,

R., Grinvald, A., 1999. Imaging cortical dynamics at high spatial and temporal

resolution with novel blue voltage-sensitive dyes. Neuron 24 (4), 791–802.

Shoham, D., Hübener, M., Schulze, S., Grinvald, A., Bonhoeffer, T., 1997. Spatio–

temporal frequency domains and their relation to cytochrome oxidase staining in

cat visual cortex. Nature 385 (6616), 529–533.

Shtoyerman, E., Arieli, A., Slovin, H., Vanzetta, I., Grinvald, A., 2000. Long-term op-

tical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal

and stability of cortical maps in v1 of behaving monkeys. The Journal of Neuro-

science 20 (21), 8111–8121.

Sillito, A., 1979. Inhibitory mechanisms influencing complex cell orientation se-

lectivity and their modification at high resting discharge levels. The Journal of

physiology 289 (1), 33–53.



172 BIBLIOGRAPHY

Simoncelli, E., Olshausen, B., 2001. Natural image statistics and neural represen-

tation. Annual review of neuroscience 24 (1), 1193–1216.

Sirovich, L., 1987. Turbulence and the dynamics of coherent structures. part i:

Coherent structures. Quarterly of applied mathematics 45 (3), 561–571.

Sirovich, L., Everson, R., Kaplan, E., Knight, B., O’Brien, E., Orbach, D., 1996.

Modeling the functional organization of the visual cortex. Physica D: Nonlinear

Phenomena 96 (1-4), 355–366.

Sirovich, L., Kaplan, E., 2002. Analysis methods for optical imaging. In: in: Frostig,

RD (Ed.), In Vivo Optical Imaging of Brain Function, CRC Press, Boca Raton, FL.

Citeseer.

Sornborger, A., Sailstad, C., Kaplan, E., Sirovich, L., 2003. Spatiotemporal analysis

of optical imaging data. Neuroimage 18 (3), 610–621.

Sornborger, A., Yokoo, T., Delorme, A., Sailstad, C., Sirovich, L., 2005. Extraction of

the average and differential dynamical response in stimulus-locked experimental

data. Journal of neuroscience methods 141 (2), 223–229.

Sporns, O., Kötter, R., 2004. Motifs in brain networks. PLoS Biology 2 (11), e369.

Stetter, M., Schiessl, I., Otto, T., Sengpiel, F., Hübener, M., Bonhoeffer, T., Ober-

mayer, K., 2000. Principal component analysis and blind separation of sources

for optical imaging of intrinsic signals. NeuroImage 11 (5), 482–490.

Stone, J., 2002. Independent component analysis: an introduction. Trends in cog-

nitive sciences 6 (2), 59–64.

Stopfer, M., Jayaraman, V., Laurent, G., 2003. Intensity versus identity coding in

an olfactory system. Neuron 39 (6), 991–1004.

Stryker, M., Harris, W., 1986. Binocular impulse blockade prevents the formation

of ocular dominance columns in cat visual cortex. The Journal of neuroscience

6 (8), 2117–2133.

Sur, M., Leamey, C., 2001. Development and plasticity of cortical areas and net-

works. Nature Reviews Neuroscience 2 (4), 251–262.

Swindale, N., 1980. A model for the formation of ocular dominance stripes. Pro-

ceedings of the Royal Society of London. Series B. Biological Sciences 208 (1171),

243–264.

Swindale, N., 1996. The development of topography in the visual cortex: a review of

models. Network: Computation in neural systems 7 (2), 161–247.



BIBLIOGRAPHY 173

Swindale, N., 2000. How many maps are there in visual cortex? Cerebral cortex

10 (7), 633–643.

Swindale, N., Matsubara, J., Cynader, M., 1987. Surface organization of orientation

and direction selectivity in cat area 18. The Journal of neuroscience 7 (5), 1414–

1427.

Swindale, N., Shoham, D., Grinvald, A., Bonhoeffer, T., Hubener, M., 2000. Visual

cortex maps are optimized for uniform coverage. nature neuroscience 3, 822–826.

Swindale, N. V., Grinvald, A., Shmuel, A., 2003. The spatial pattern of response

magnitude and selectivity for orientation and direction in cat visual cortex. Cere-

bral Cortex 13 (3), 225–238.

URL http://cercor.oxfordjournals.org/content/13/3/225.abstract

Tanaka, K., 1983. Cross-correlation analysis of geniculostriate neuronal relation-

ships in cats. Journal of Neurophysiology 49, 1303–1316.

Tanaka, S., Ribot, J., Imamura, K., Tani, T., 2006. Orientation-restricted continu-

ous visual exposure induces marked reorganization of orientation maps in early

life. Neuroimage 30 (2), 462–477.

Tolhurst, D., Movshon, J., Dean, A., 1983. The statistical reliability of signals in

single neurons in cat and monkey visual cortex. Vision research 23 (8), 775–785.

Tononi, G., Sporns, O., Edelman, G., 1994. A measure for brain complexity: relat-

ing functional segregation and integration in the nervous system. Proceedings of

the National Academy of Sciences 91 (11), 5033.

Tootell, R., Hamilton, S., Silverman, M., Switkes, E., 1988a. Functional anatomy of

macaque striate cortex. i. ocular dominance. The Journal of Neuroscience 8 (5),

1500–1530.

Tootell, R., Silverman, M., De Valois, R., 1981. Spatial frequency columns in pri-

mary visual cortex. Science 214 (4522), 813–815.

Tootell, R., Switkes, E., Silverman, M., Hamilton, S., 1988b. Functional anatomy of

macaque striate cortex. ii. retinotopic organization. The Journal of Neuroscience

8 (5), 1531–1568.

Troyer, T., Krukowski, A., Priebe, N., Miller, K., 1998. Contrast-invariant orientation

tuning in cat visual cortex: thalamocortical input tuning and correlation-based

intracortical connectivity. The Journal of Neuroscience 18 (15), 5908–5927.

http://cercor.oxfordjournals.org/content/13/3/225.abstract


174 BIBLIOGRAPHY

Truccolo, W., Ding, M., Knuth, K., Nakamura, R., Bressler, S., 2002. Trial-to-trial

variability of cortical evoked responses: implications for the analysis of functional

connectivity. Clinical Neurophysiology 113 (2), 206–226.

Ts’o, D., Frostig, R., Lieke, E., Grinvald, A., 1990. Functional organization

of primate visual cortex revealed by high resolution optical imaging. Science

249 (4967), 417–420.

Tusa, R., Palmer, L., 1980. Retinotopic organization of areas 20 and 21 in the cat.

The Journal of comparative neurology 193 (1), 147–164.

Tusa, R., Palmer, L., Rosenquist, A., 1978. The retinotopic organization of area 17

(striate cortex) in the cat. The Journal of comparative neurology 177 (2), 213–235.

Tusa, R., Rosenquist, A., Palmer, L., 1979. Retinotopic organization of areas 18 and

19 in the cat. The Journal of comparative neurology 185 (4), 657–678.

Usrey, W., Reid, R., 1999. Synchronous activity in the visual system. Annual Review

of Physiology 61 (1), 435–456.

Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen,

A., 1995. Dynamics of neuronal interactions in monkey cortex in relation to be-

havioural events. Nature 373 (6514), 515–518.

Van Essen, D., Gallant, J., 1994. Neural mechanisms of form and motion process-

ing in the primate visual system. NEURON-CAMBRIDGE MA- 13, 1–1.

van Hateren, J., Ruderman, D., 1998. Independent component analysis of natural

image sequences yields spatio-temporal filters similar to simple cells in primary

visual cortex. Proceedings of the Royal Society of London. Series B: Biological

Sciences 265 (1412), 2315–2320.

van Hateren, J., van der Schaaf, A., 1998. Independent component filters of natural

images compared with simple cells in primary visual cortex. Proceedings of the

Royal Society of London. Series B: Biological Sciences 265 (1394), 359–366.

Vanzetta, I., Grinvald, A., 1999. Increased cortical oxidative metabolism due to sen-

sory stimulation: implications for functional brain imaging. Science 286 (5444),

1555.

Vinje, W., Gallant, J., 2000. Sparse coding and decorrelation in primary visual

cortex during natural vision. Science 287 (5456), 1273–1276.

Vogels, R., Spileers, W., Orban, G., 1989. The response variability of striate cortical

neurons in the behaving monkey. Experimental Brain Research 77 (2), 432–436.



BIBLIOGRAPHY 175

Vogels, T., Rajan, K., Abbott, L., 2005. Neural network dynamics. Annu. Rev. Neu-

rosci. 28, 357–376.

Von Der Malsburg, C., 1981. The correlation theory of brain function. Internal Re-

port 81-2Reprinted in Models of Neural Networks II, edited by E. Domany, J.L.

van Hemmen, and K. Schulten (Springer, Berlin, 1994) Ch. 2, pp.95–119.

Wang, C., Huang, J., Bardy, C., FitzGibbon, T., Dreher, B., 2010. Influence of

’feedback’ signals on spatial integration in receptive fields of cat area 17 neurons.

Brain research 1328, 34–48.

Wang, C., Waleszczyk, W., Burke, W., Dreher, B., 2000. Modulatory influence of

feedback projections from area 21a on neuronal activities in striate cortex of the

cat. Cerebral Cortex 10 (12), 1217–1232.

Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F., Hirsch, J.,

2007. Feedforward excitation and inhibition evoke dual modes of firing in the

cat’s visual thalamus during naturalistic viewing. Neuron 55 (3), 465–478.

Wang, Z., Roe, A., 2011. Columnar specificity of microvascular oxygenation and

blood flow response in primary visual cortex: evaluation by local field potential

and spiking activity. Journal of Cerebral Blood Flow & Metabolism.

Wehr, M., Laurent, G., 1996. Odour encoding by temporal sequences of firing in

oscillating neural assemblies. Nature 384 (6605), 162–166.

Weliky, M., Bosking, W., Fitzpatrick, D., 1996. A systematic map of direction pref-

erence in primary visual cortex. Nature 379, 725–728.

Wiesenfeld, K., Moss, F., 1995. Stochastic resonance and the benefits of noise: from

ice ages to crayfish and squids. Nature 373 (6509), 33–36.

Wolf, F., Geisel, T., 2003. Universality in visual cortical pattern formation. Journal

of Physiology-Paris 97 (2-3), 253–264.

Woolrich, M., Behrens, T., Smith, S., 2004. Constrained linear basis sets for hrf

modelling using variational bayes. NeuroImage 21 (4), 1748–1761.

Yabuta, N., Callaway, E., 1998. Cytochrome-oxidase blobs and intrinsic horizontal

connections of layer 2/3 pyramidal neurons in primate v1. Visual neuroscience

15 (6), 1007–1027.

Yokoo, T., Knight, B., Sirovich, L., 2001. An optimization approach to signal extrac-

tion from noisy multivariate data. Neuroimage 14 (6), 1309–1326.



176 BIBLIOGRAPHY

Yoshioka, T., Blasdel, G., Levitt, J., Lund, J., 1996. Relation between patterns of

intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive

regions in macaque monkey striate cortex. Cerebral Cortex 6 (2), 297–310.

Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., Sahani, M., 2009.

Gaussian-process factor analysis for low-dimensional single-trial analysis of neu-

ral population activity. Journal of neurophysiology 102 (1), 614–635.

Zhang, J., Rosenberg, A., Mallik, A., Husson, T., Issa, N., 2007. The representation

of complex images in spatial frequency domains of primary visual cortex. The

Journal of Neuroscience 27 (35), 9310–9318.

Zheng, D., LaMantia, A., Purves, D., 1991. Specialized vascularization of the pri-

mate visual cortex. The Journal of neuroscience 11 (8), 2622–2629.

Zheng, Y., Johnston, D., Berwick, J., Mayhew, J., 2001. Signal source separation

in the analysis of neural activity in brain. NeuroImage 13 (3), 447–458.

Zohary, E., Shadlen, M., Newsome, W., 1994. Correlated neuronal discharge rate

and its implications for psychophysical performance. Nature 370 (6485), 140–

143.


	I Introduction
	Measures of neuronal activity
	Electrophysiology
	Neuroimaging
	Optical Imaging

	Functional Organization of the Visual Cortex
	Neuron as a Basic Processing Unit 
	Overview of the Visual System
	Early Visual System
	The Retina
	The Thalamus

	The Primary Visual Cortex
	Higher Visual Areas 
	Feedback to V1


	Mesoscale Organization at the Population Level in V1
	Columnar organization of the cortex
	Connectivity inside a column: Spanning the layers of the cortex
	Connectivity between columns: Horizontal connections
	Cortical Maps
	Retinotopy
	Orientation Map
	Direction Map
	Ocular Dominance Map
	Spatial Frequency Map
	CO Blobs
	Relationship and dependency between visual cortical maps
	Emergence of Cortical Maps as a Problem of Pattern Formation



	Dynamics of Visual Cortical Activity
	Coding strategies
	Temporal vs. rate coding 
	Coding by synchrony
	Propagation in a cascade
	Sparse coding
	Dynamics of inhibition and excitation in shaping neuronal responses
	Dynamics of orientation tuning

	Operating Regimes of the Visual Cortex
	Variability of Neuronal Responses
	Structure and Role of the ``Cortical Noise''
	Spontaneous activity: is it simply the ``ongoing noise''?


	Attractor States and Transient States

	Analysis Approach for VSD Imaging
	Composition of VSD Imaging Recordings 
	Denoising strategies
	Conventional Methods for Denoising VSD Imaging Data
	Statistical Methods for Source Separation
	Data-Driven Source Separation
	Principal Component Analysis
	Independent Component Analysis 

	Model-Based Source Separation
	General Linear Model





	II Methodology
	Experimental Setup and Data Analysis
	Animal Preparation 
	Visual Stimulation
	Data Analysis 
	Stimulus locked time-frequency analysis


	III Results
	Source Separation for Denoising of VSD Imaging Data
	Introduction
	Results
	Blank Subtraction and Division on VSD Imaging Data
	Source Separation on Raw Data for Denoising
	

	Variations of the Denoising Model
	PCA after other preprocessing steps than GLM
	Introducing the 12 Hz Signal in the Regressor Basis for GLM


	Discussion

	Source Separation for Dimensionality Reduction
	PCA on Denoised Recordings
	Stimulus selective and nonselective components revealed by PCA
	Dynamics of Orientation Selectivity on a 3-Dimensional Principal Component Space
	Anisotropies of the ring attractor
	Orientation preference on the ring attractor compared to the orientation map
	Detection of the Area 17/18 Border by PCA

	ICA on Denoised Recordings
	Discussion

	VSD Imaging in Response to Stimuli with Different Statistics
	Denoising of Long Recordings 
	Variability of Neural Population Activity
	PCA on Natural Image Response
	Discussion


	IV Conclusion

