N
N

N

HAL

open science

Optimizing similarity queries in metric spaces meeting

user’s expectation

Monica Ribeiro Porto Ferreira Ribeiro Porto Ferreira

» To cite this version:

Monica Ribeiro Porto Ferreira Ribeiro Porto Ferreira. Optimizing similarity queries in metric spaces
meeting user’s expectation. Other [cs.OH]. Université de Bourgogne; Universidade de Sdo Paulo

(Brésil), 2012. English. NNT': 2012DIJOS040 . tel-00837734

HAL Id: tel-00837734
https://theses.hal.science/tel-00837734

Submitted on 24 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00837734
https://hal.archives-ouvertes.fr

Optimizing similarity queries in metric spaces
meeting user's expectation

Monica Ribeiro Porto Ferreira

SERVIGO DE POS-GRADUAGAO DO ICMC-USP
Data de Deposito: 21/11/2012

Assinatura:

Optimizing similarity queries in metric spaces meeting
user's expectation®

Monica Ribeiro Porto Ferreira

Advisors:Prof. Dr. Caetano Traina Jr.
Prof. Dr. Richard Chbeir

Doctoral dissertation submitted to tHastituto de
Ciéncias Matematicas e de Computacd@MC-USP,

in partial fulfillment of the requirements for tidegree

of the Doctorate Program in Computer Science and
Computational MathematicEINAL VERSION

USP — Sao Carlos
November 2012

! Financial supports: FAPESP (Process Number 2008MJ), CAPES (Process Number PDEE BEX 2451/09-3,
CNPq, FAPESP-Microsoft Research and CNRS.

Ficha catalografica preparada pela Secdo de Tratamento
da Informacao da Biblioteca Prof. Achille Bassi — ICMC/USP

Ferreira, Monica Ribeiro Porto
F3830 Optimizing similarity queries in metric sp aces meeting
user's expectation / Ménica Ribeiro Porto Ferreira ;
orientadores Caetano Traina Jr. e Richard Chbeir. — - Sao
Carlos, 2012.
124 p.

Tese (Doutorado Duplo - Programa de Pés-Graduag ao em
Ciéncias de Computagdo e Matematica Computacional e
Doctorat en Informatique) — Instituto de Ciéncias
Matematicas e de Computacéo, Universidade de Sao Pa ulo;
Université de Bourgogne ,2012.

1. Similarity queries. 2. Similarity algebra. 3 .
Similarity query optimization. 4. User's expectatio n. 5.
Metric spaces. |. Traina Jr., Caetano, orient. Il.

Chbeir, Richard, orient. Ill. Titulo.

SERVICO DE POS-GRADUACAO DO ICMC-USP

Data de Deposito: 21/11/2012

Assinatura:

Otimizagao de operagoes de busca por similaridade em
espacos métricos atendendo a expectativa do usuario®

Monica Ribeiro Porto Ferreira

Orientadores: Prof. Dr. Caetano Traina Jr.
Prof. Dr. Richard Chbeir

Tese apresentada ao Instituto de Ciéncias Mategsatic
e de Computacdo - ICMC-USP, como parte dos
requisitos para obtencdo do titulo de Doutor em
Ciéncias - Ciéncias de Computacdo e Matematica
ComputacionalVERSAO REVISADA.

USP — Sao Carlos
Novembro de 2012

! Apoio financeiro: FAPESP (Processo N° 2008/002)LGAPES (Processo N° PDEE BEX 2451/09-3), CNPq,
FAPESP-Microsoft Research e CNRS.

Ficha catalografica preparada pela Secdo de Tratamento

da Informacao da Biblioteca Prof. Achille Bassi — ICMC/USP

F3830

Ferreira, Monica Ribeiro Porto

Otimizacao de operagdes de busca por simil
espacos métricos atendendo a expectativa do usuario
Ménica Ribeiro Porto Ferreira ; orientadores Caetan
Traina Jr. e Richard Chbeir. — Sao Carlos, 2012.

124 p.

Tese (Doutorado Duplo - Programa de Pés-Graduag
Ciéncias de Computagdo e Matematica Computacional e

Doctorat en Informatique) — Instituto de Ciéncias
Matematicas e de Computacéo, Universidade de Sao Pa
Université de Bourgogne ,2012.

1. Consultas por similaridade. 2. Algebra por
similaridade. 3. Otimizacdo de consultas por
similaridade. 4. Expectativa do usuario. 5. Espagos
métricos. |. Traina Jr., Caetano, orient. Il. Chbei
Richard, orient. Ill. Titulo.

aridade em
/
o}

aoem

ulo;

Acknowledgments

I would like to thank my advisor and friend Prof. Dr. Caetano Traina Jr., who believed
in me from the beginning when invited me to do undergraduate research. He afforded me
opportunities and challenges, support and encouragement at all time, and mainly trust.
My thanks to my French advisor, Prof. Dr. Richard Chbeir, who also contributed to
guide my work.

My special thanks to my dear husband Leandro, for always being there, for sharing happy
moments and encouraging me to overcome difficult times, for his comprehension during
my absences in countless weekends and holidays that I had to work, for his sweet words
that make everything seems so much easier.

I would like to thank my parents, José Maria and Mayra, my grandmother Ladice and all
my family that is very large and I can not mention one by one, for their unconditional
love, support and encouragement dedicated throughout my life, for their comprehension
during my absences in holidays and family gatherings, for their hug and cheer all the time.
I also thank my brothers José Maria Jr. and José Guilherme, my sister-in-law Josélia, my
brother-in-law Rudinei, my nephews Joao Pedro and Diego, and my parents-in-law Maria
Helena and Celso for their attention, encouragement words and for always being around
when I needed. My sincere thanks to my sister-in-law Elaine for helping and teaching me
many things throughout my academic life.

My special thanks to my grandmother and heroine Carminda (in memoriam) and to
my aunt and godmother Dama (in memoriam) for their love and support, for their
life examples, for their unconditionally encouragement dedicated throughout my life, for
hugging and cheering me all the time.

My gratitude to Profa. Agma Traina at ICMC-USP for her time and effort on my
thesis, for her collaborative work, ideas, words of encouragement and for her affection
demonstrated always so kind. I also thanks Profa. Ires Dias for the collaborative work,
time and effort invested with the algebra. My grateful to Profa. Sandra de Amo and
Prof. Renato Fileto for their contribution to my work.

I dedicate my sincere thanks to my friends and colleagues of the GBdI-USP in Sao
Carlos-SP-Brazil, especially I am grateful to Prof. Junior, Robson, Carolina, Letricia,
Jaqueline, Willian, Lucio, Sérgio and Daniel C. for their important collaboration in the
lab and meetings. I also thanks my colleagues of the Le2i-uB in Dijon-France. 1 am
grateful to my friends Marcela Ribeiro, Luciana Romani, Fekade Getahum and Elie Raad
for their contributions to my work and for incentive words in moments of despair and
anguish.

My thanks to Laura, Glaucia, Ana Paula, Lhais and Carolina for helping me with
bureaucracies. 1 also thank the Instituto de Ciéncias Matemdticas e de Computagao
of USP in Sao Carlos-SP-Brazil and Université de Bourgogne in Dijon-France for their
academic structures that became possible the development of this cotutlle work.

Finally, I acknowledge the funding agencies FAPESP and CAPES for the financial
support during this doctorate. Additionally, I thanks the funding agencies CNPq and
FAPESP-Microsoft Research that also supported the research undergoing at the GBdI
laboratory, and CNRS that supported the research undergoing at the LE2I laboratory.

Abstract

The complexity of data stored in large databases has increased at very fast paces. Hence,
operations more elaborated than traditional queries are essential in order to extract
all required information from the database. Therefore, the interest of the database
community in similarity search has increased significantly. Two of the well-known types of
similarity search are the Range (R,) and the k-Nearest Neighbor (KNN,) queries, which,
as any of the traditional ones, can be sped up by indexing structures of the Database
Management System (DBMS). Another way of speeding up queries is to perform query
optimization. In this process, metrics about data are collected and employed to adjust
the parameters of the search algorithms in each query execution. However, although the
integration of similarity search into DBMS has begun to be deeply studied more recently,
the query optimization has been developed and employed just to answer traditional
queries.

The execution of similarity queries, even using efficient indexing structures, tends to
present higher computational cost than the execution of traditional ones. Two strategies
can be applied to speed up the execution of any query, and thus they are worth to employ
to answer also similarity queries. The first strategy is query rewriting based on algebraic
properties and cost functions. The second technique is when external query factors are
applied, such as employing the semantic expected by the user, to prune the answer space.
This thesis aims at contributing to the development of novel techniques to improve the
similarity-based query optimization processing, exploiting both algebraic properties and

semantic restrictions as query refinements.

Title: Optimizing similarity queries in metric spaces meeting user’s expectation.
Doctoral dissertation submitted to the Instituto de Ciéncias Matemdticas e de Com-
putacio — ICMC-USP, in partial fulfillment of the requirements for the degree of the
Doctorate Program in Computer Science and Computational Mathematics. FINAL
VERSION.

il

Resumo

A complexidade dos dados armazenados em grandes bases de dados tem aumentado
sempre, criando a necessidade de novas operacoes de consulta. Uma classe de operacgoes
de crescente interesse sao as consultas por similaridade, das quais as mais conhecidas sao
as consultas por abrangéncia (R;) e por k-vizinhos mais préximos (kNN,). Qualquer
consulta é agilizada pelas estruturas de indexacao dos Sistemas de Gerenciamento de
Bases de Dados (SGBDs). Outro modo de agilizar as operagoes de busca é a manutengao
de métricas sobre os dados, que sao utilizadas para ajustar parametros dos algoritmos de
busca em cada consulta, num processo conhecido como otimizacao de consultas. Como
as buscas por similaridade comecaram a ser estudadas seriamente para integracao em
SGBDs muito mais recentemente do que as buscas tradicionais, a otimizacao de consultas,
por enquanto, é um recurso que tem sido utilizado para responder apenas a consultas
tradicionais.

Mesmo utilizando as melhores estruturas existentes, a execucao de consultas por simila-
ridade tende a ser mais custosa do que as operacoes tradicionais. Assim, duas estratégias
podem ser utilizadas para agilizar a execucao de qualquer consulta e, assim, podem ser
empregadas também para responder as consultas por similaridade. A primeira estratégia
é a reescrita de consultas baseada em propriedades algébricas e em fungoes de custo. A
segunda técnica faz uso de fatores externos a consulta, tais como a semantica esperada
pelo usuario, para restringir o espago das respostas. Esta tese pretende contribuir para
o desenvolvimento de técnicas que melhorem o processo de otimizacao de consultas por
similaridade, explorando propriedades algébricas e restrigoes semanticas como refinamento

de consultas.

Titulo: Otimizacao de operagoes de busca por similaridade em espacos métricos aten-
dendo a expectativa do usudrio.

Tese apresentada ao Instituto de Ciéncias Matematicas e de Computacao - ICMC-USP,
como parte dos requisitos para obtencao do titulo de Doutor em Ciéncias - Ciéncias de
Computacio e Matemética Computacional. VERSAO REVISADA.

Résumé

La complexité des données contenues dans les grandes bases de données a augmenté
considérablement. Par conséquent, des opérations plus élaborées que les requétes
traditionnelles sont indispensable pour extraire toutes les informations requises de la base
de données. L’intérét de la communauté de base de données a particulierement augmenté
dans les recherches basées sur la similarité. Deux sortes de recherche de similarité bien
connues sont la requéte par intervalle (R,) et par k-plus proches voisins (kNN,). Ces deux
techniques, comme les requétes traditionnelles, peuvent étre accélérées par des structures
d’indexation des Systemes de Gestion de Base de Données (SGBDs). Une autre fagon
d’accélérer les requetes est d’exécuter le procédé d’optimisation des requétes. Dans ce
procédé les données métriques sont recueillies et utilisées afin d’ajuster les parametres des
algorithmes de recherche lors de chaque exécution de la requéte. Cependant, bien que
I'intégration de la recherche de similarités dans le SGBD ait commencé a étre étudiée en
profondeur récemment, le procédé d’optimisation des requétes a été développé et utilisé
pour répondre a des requétes traditionnelles.

L’exécution des requéetes de similarité a tendance a présenter un cout informatique
plus important que I'exécution des requétes traditionnelles et ce méme en utilisant des
structures d’indexation efficaces. Deux stratégies peuvent étre appliquées pour accélérer
I'execution de quelques requétes, et peuvent également étre employées pour répondre aux
requétes de similarité. La premiere stratégie est la réécriture de requétes basées sur les
propriétés algébriques et les fonctions de cout. La deuxieme stratégie est 'utilisation
des facteurs externes de la requéte, tels que la sémantique attendue par les usagers, pour
réduire le nombre des résultats potentiels. Cette these vise a contribuer au développement
des techniques afin d’améliorer le procédé d’optimisation des requétes de similarité, tout
en exploitant les propriétés algébriques et les restrictions sémantiques pour affiner les

requetes.

Sujet de These: Optimisation des requétes de similarité dans les espaces métriques
répondant aux besoins des usagers.

These présentée a 1'Instituto de Ciéncias Matemdticas e de Computagcao - ICMC-USP,
dans le cadre des exigences pour I'obtention du titre de Docteur en Informatique - Ciéncias
de Computacao e Matematica Computacional. VERSION FINALE.

vil

viil

Contents

List of Figures

List of Tables

List of Abbreviations and Acronyms
List of Symbols

1 Introduction

1.1 Motivation
1.2 Problem Definition
1.3 Work Goals
1.4 Main Contributions
1.5 Work Organization
2 Traditional Query Optimization Process

2.1 Imtroduction
2.2 Access Methods
2.3 The Relational Algebra
2.4 Query Optimization.

2.4.1 Query Rewriting

2.4.2 Cost and Condition Selectivity Model

2.5 Final Comments

3 Similarity Queries

3.1 Introduction
3.2 Metric Access Methods
3.3 Searching for Similarity
3.4 Similarity Algebra
3.5 Query Optimization.
3.6 Query Rewriting
3.7 Cost and Condition Selectivity Model
3.8 Users” Preferences
3.9 Data Mining oL
3.10 Final Comments

xi

xiii

4 A novel approach for Similarity Query Optimization Process in DBMSs 41

4.1 Introduction 41
4.2 Including similarity-based operators into the Relational Model 42
4.3 Canonical Plan Algorithm 43

1X

4.4 Query Optimization 47

4.5 Similarity Algebra for metric spaceso 49
4.5.1 Similarity Operations - Definitions 49

4.5.2 Properties of the Range Selection 51

4.5.3 Properties of the k-Nearest Neighbor Selection o7

4.6 Semantic Restrictionso 73
4.6.1 Preference Model Module 75

4.6.2 Data Mining Model Module 76

4.7 Final Comments 7

5 Similarity Retrieval Engine - Case Study 79
5.1 Introduction 79
5.2 The SIREN Query Optimizer 84
5.2.1 Experimental Evaluation, 86

5.3 The SIREN Preference Model, 90
5.3.1 Experimental Evaluation 92

5.4 The SIREN Data Mining Model, 96
5.4.1 Experimental Evaluation 0. 98

5.5 Final Comments 102

6 Conclusion 105
6.1 Final Considerations 105
6.2 Main Contributions 105
6.3 Future Works 108
6.3.1 Future Applied Research 108

6.3.2 Future Theoretical Research 109
Bibliography 111
A The CoPhIR Dataset 123

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1
5.2

5.3

5.4

9.9

2.6

List of Figures

Example of a (a) logical and a (b) physical query plans, represented as
query trees for Query Q1.o 14
Query optimizer architecture according to loannidis [1996] and Garcia-Molina

et al. [2000].o 15
Examples of similarity queries in bidimensional space with Euclidean dis-

tance Lo: (a) Range query — R,, and (b) k-nearest neighbor query — kNN,

with k =3 elements. o 23
Time line for the existing similarity algebra works, following the four ap-
proaches used in MIS. L 29
Time line for the existing query optimization works, following the four
approaches used in MIS. 31
Time line for the existing query rewriting works, following the four ap-
proaches used in MIS. 33
Time line for the existing cost and condition selectivity estimation works,
following the four approaches used in MIS. 36
A relation composed of both simple and complex attributes. 43
General form of an SQL-like query. 44
(a) A query expressed in the SIREN extension of SQL to support similarity,
and (b) the canonical query plan, represented as tree, for Query Q2. 46
Similarity query optimizer architecture. 48
Venn diagram representation of inclusion property of Equation 4.28. 67
Generic flowchart to prepare and execute similarity queries considering of
preference models. 76
Generic flowchart to prepare and execute similarity queries considering of
data mining models.o 7
SIREN,, architecture. 80
‘Similarity-first’, canonical, alternative plans and execution time of Query
Q3. . e 85
‘Similarity-first’ plan, canonical tree, alternative plans and execution time
of Query Q7. L 89
Processes to prepare and execute similarity queries considering of prefer-
ence models. 93
(a) Percentage of correct answer in the similarity-only and preference sim-
ilarity queries; (b) Precision vs. Percentage (%) Interesting Answers. . . . 95
Processes to prepare and execute similarity queries considering of data
mining models.o 98

x1

5.7

5.8

Data flow showing how the mining rules are enabled using the CREATE
MINING MODEL and SET MODIFICATION commands.
Results of 10NN over query enabling and disabling the use of a data mining
model. The training set example was obtained from the WondersWorld
relation with the attribute Training = ‘True’ and used to generate the

x1i

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
2.3
5.4
2.5

Summary of unary similarity operators. 51
Summary of algebraic properties to range similarity queries. 72
Summary of algebraic properties to kNN similarity queries. 73
Summary of algebraic equivalence properties to traditional queries invalid

to ENN similarity queries. L oo 74
Real dataset descriptions used in the experiments. 83
Canonical plan, represented as a table, of the Query Q3. 85
Performance of Queries Q4, Q5 and Q6 (total time in milliseconds). 88
Results from several range values - range queries (average) 101
Results from several k values - kNN queries (average) 102

xiil

Xiv

~_List of Abbreviations and Acronyms

AM Access Method.

bu-Tree Bottom-up index tree.

CM-tree Clustered Metric tree.

CoPhIR Content-based Photo Image Retrieval.

cp-rules Conditional Preference Rules.

CPU Central Processing Unit.

DBM-tree Density-Based Metric tree.

DBMS Database Management System.

DDSM Digital Database for Screening Mammography.
DMM Data Mining Model.

DF-tree Distance Fields tree.

EGNAT Evolutionary Geometric Near-neighbor Access tree.
EBNF Extended Backus-Naur Form.

EXIF Exchangeable Image File Format.

FQ-tree Fixed Queries tree.

GH-tree Generalized Hyperplane tree.

GIS Geographic Information System.
GNAT Geometric Near-Neighbor Access Tree.
I/0 Input/Output.

KDD Knowledge Discovery in Databases.
EFN, k-Farthest Neighbor Query.

ENN, k-Nearest Neighbor Query.

MAM Metric Access Method.

MIS Multimedia Information Systems.

MM-tree Memory-based Metric tree.
MPEG-7 Moving Picture Experts Group-7.

XV

MSA

Multi-Similarity Algebra.

MVP-tree Multi-Vantage-Point tree.

PM Preference Model.

PM-tree Pivoting M-tree.

RA Relational Algebra.

RDBMS Relational Database Management System.

R, Range Query.

Rq_l Reversed Range Query.

SA-tree Spatial Approximation tree.

SA Similarity Algebra.

SAMEY Similarity Algebra for Multimedia Extended with Weights.
SimDB Similarity-aware Database System.

SIREN Similarity Retrieval Engine.

SIREN,, Similarity Retrieval Engine with Query Optimizer.
SQL Structured Query Language.

TOR Total Order Relation.

VP-tree Vantage-Point tree.

XML Extensible Markup Language.

GBdI Grupo de Bases de Dados e Imagens.

ICMC Instituto de Ciéncias Matemdticas e de Computacao.
SGBD Sistema de Gerenciamento de Bases de Dados.
uB Unwversité de Bourgogne.

UFU Universidade Federal de Uberlandia.

USP Universidade de Sao Paulo.

Xvi

List of Symbols

AaAhaAm
AaAhaAm

a,b,ay

Dom*(A)
T

T,7T;
t={a,..
ti(Ap)

iy STy -+ Sp)

Traditional (or simple) data domain (dom(Ap)).

Traditional (or simple) attribute defined in a

traditional domain A, Ay, A, (A C A A, C Ay, A, CAL).
Constant in the domain of A or the value of another attribute
from the same domain A in the same tuple (ap € Ay, h € N¥).
Active domain of attribute A.

Data domain.

Relations or datasets (T,T; € T, i € N*).

Tuple.

The value of the i** tuple on simple attribute A, (i € N*).

The value of the i tuple on complex attribute S; (i € N*).

Traditional comparison operator (exact matching and relational).

Exact matching comparison operators.
Relational comparison operators.
Union operator.

Intersection operator.

Difference operator.

Projection operator.

Cross-product or Cartesian product operator.
Join operator.

f-join operator.

Selection operator.

Selection condition (i € N*).

Distance function or metric (d: S x S — R™).

Distance function or metric (d: S x S — R™, s;,s; €S, i,j € N*).

Metric space.

XVil

S,S;,S, Similarity (or complex) data domain (dom(S;)).
S, 55,5y Similarity (or complex) attribute defined in a
similarity domain S,S;,S, (S CS,5; CS;,5, CS,).

Dom*(S) Active domain of attribute S.

Si, S; Similarity (or complex) domain elements (s;,s; € S, i,j € N*).
Sq Query element (s, € S).

19 Similarity threshold.

0, Similarity operator.

o Similarity selection operator.

k Number of elements returned by the query (k € N*).
L, Minkowski distance function family.

Ly Manhattan distance function.

Lo Euclidean distance function.

r Preference Rule.

I={iy,....0,} Set of data items.

XY Itemset (X,Y € I).

froseoos frn Image features.

T —]y o s [lng — Uny] Image feature intervals.

Classpg,,...,Classg,, Image classes.

MAT feature Maximum number of features extracted from an image.
MAL lgss Maximum number of classes found in a relation.

Ri Relevant images.

Tsc Total number of images of the same class.

11 Total number of images.

Xvill

1

Introduction

1.1 Motivation

Database Management Systems (DBMSs) were developed to store and retrieve large
amounts of data, pursuing efficient query execution and guaranteeing exact answers.
The great majority of the current DBMSs are based on the relational technology for
data management, which has been developed since the 70’s [Codd, 1970]. Usually, these
systems support only scalar data domains, such as numbers, dates and short character
string. Notwithstanding, with the continuous evolution of the technology, it emerged
the need to store what is called complex data, such as multimedia (image, audio and
video), large texts, multi-dimensional arrays, time series and genomic sequences, and,
consequently, organizing them in databases has became an important research target.

When dealing with complex data, comparing elements based on exact matching (= and
#) is not a useful operation, because two exactly equal elements are rare in those domains.
Relational comparison, based on the Total Order Relation (TOR), usually expressed by
<, <, > and >, is also not generally applicable.

Often, the retrieval of elements from sets of complex data is based on similarity
comparisons, thus complex datasets can be represented in a metric space. Therefore,
metric space properties (instead of identity and TOR ones) are employed to build data
structures, which are used to speed up query execution. A metric space is a pair
M =< S,d >, where S defines the complex data domain and d is a distance function
d: S xS — R that satisfies the symmetry, the non-negativity and the triangular
inequality properties [Bozkaya and Ozsoyoglu, 1999]. A dataset S is in a metric space
when S C S.

2 1. Introduction

The distance function can be employed to quantify the similarity between two
elements, such that two elements are more similar as closer they are from each other,
in such a way that a distance equal to zero means that the two elements are the same.
Thus, a distance function allows the expression of queries based on predicates that comply
with the three properties of metric spaces. Vectorial spaces with any distance function L,
such as Euclidean (L) or Manhattan (L;) distances, are special cases of metric spaces.
Similarity operators can be applied to many complex data types, including spatial data,
as long as a distance function that respects the metric properties is properly defined. For
instance, Geographic Information Systems (GIS) adopt the Euclidean distance function,
so points can be queried by similarity, assuming that closer points are more similar.
In database applications, the distance function is usually considered as a “black box”,
commonly defined by the application domain specialist.

With the rising demand to support multimedia data in relational database manage-
ment systems (RDBMSs), similarity query operations have attracted increasing interest,
specially in applications that require to retrieve complex data by their content. Similarity
query operators recover elements that meet a similarity criteria, which are expressed with
reference to a data domain element s, € S, called the “query center”. The two most
common similarity queries are the range and the k-nearest neighbor queries [Chakrabarti
et al., 2004; Korn et al., 1996]. A Range query (R,) returns every database element that
differs from the query center by at most a given similarity threshold. An example of R,
in a genomic sequence database is: “Select the DNA sequences that differ from a given
sequence p for up to 5 nucleotides”. The k-Nearest Neighbor query (kNN,) returns the &
elements nearest to the query center. An example of ENN, query in a genomic sequence
database is: “Select the 3 proteins more similar to the given protein p”.

Index structures use the properties of the stored data domain to speed up data retrieval
in the RDBMS. Several access methods based on index structures have been developed
for traditional data, mostly dependent on the TOR property, such as the B-tree and
its variations [Zisman, 1993]. For complex data, existing access methods called Metric
Access Method (MAM) explore the distance function properties, specially the symmetry
and the triangular inequality ones. Examples of index structures able to index metric
data in DBMSs and answer similarity queries include the M-tree [Ciaccia et al., 1997],
the Slim-tree [Traina Jr. et al., 2002] and the OMNI family methods [Traina Jr. et al.,
2007].

Besides access methods based on index structures, the DBMS also use “Query
Optimization” techniques to speed up the retrieval operations. Those techniques are based
on the maintenance of measurements, the so called “statistics”, which are employed in two
situations: to estimate the execution cost of different but equivalent algebraic expressions
that answer the same query; and to adjust the index method parameters when they are

executed to index data or to answer a given query.

1.2 Problem Definition 3

Both the query optimization and the access methods based on index structures are
employed successfully by DBMSs handling scalar data. However, since similarity search
began to be studied more recently than traditional ones, there are fewer appropriate
techniques to optimize similarity queries. Moreover, there are few statistics available for
metric data that can be stored in a compact way and are generally effective to estimate
the cost of queries involving similarity-based predicates and/or MAM parametrization.

Several research works have analyzed how the meaning of “similarity” can be defined
in a flexible way, ideally considering also semantic restrictions, such as the identifiable
user’s interest when posing a query, or particular conditions that restricts the context
where each query should be executed or even particular knowledge about the data and it
distribution over the metric space. Thus, besides performing query optimization based on
algebraic properties of the query operators, it is conceivable to modify a query including
the representation of conditions that allow to speed up answer evaluation in situations
that are specific to the query environment.

Although some works employ useful parameters to estimate the selectivity of environ-
ment conditions and access cost, they always consider the complete database, without
taking advantage of significant “local” variations in the data distribution. As accessing
metric data tends to be much more expensive than accessing traditional ones, the
precise identification of parameters that affect the search in the similarity query region
becomes even more important. Moreover, these parameters must consider the DBMS
operational environment when a query is executed and the user’s interest when the query is
posed, allowing integrating new similarity-related query optimization techniques based on
algebraic properties into the existing RDBMS. This thesis aims at contributing to further
develop the techniques to improve the similarity-based query optimization processing,

exploiting both algebraic properties and semantic restrictions as query refinements.

1.2 Problem Definition

There are basically three main techniques to speed up the DBMS similarity query:
(i) metric access methods based on index structures;
(ii) query optimization; and

(iii) semantic restriction occurring in the search space based on local conditions, such as

users’ interests and stored data distribution at the query time.

An index structure can be developed independently of the system where it will be used.
Query optimization is a DBMS technique that aims at finding an adequate execution plan
among all the equivalent possibilities that bears the minimum cost. Semantic restrictions

are known properties existing among particular subsets of the data domain that either

4 1. Introduction

is effectively stored in the database or meets users’ interests. These restrictions embody
several assumptions that can be employed as conditions to filter out whole subspaces of
the data distribution and thus helps speeding up data retrieval. At least the following
three mechanisms and their supporting data structures are required to create a useful

operational environment for similarity query processing:

1. Query rewriting rules - it is a mechanism that rewrites query expressions into
equivalent expressions (or into expressions that can help finding the same answer)
but that can be executed in different amounts of time, which is based on rewriting
rules derived from the algebra. Every query can be expressed as a combination of
operators, and the relational algebra is used to identify equivalent expressions for

the same query.

2. Cost estimation - it is a mechanism to estimate the execution cost of each
alternative way to execute the query. It should be possible to estimate the cost
of each operation using each of the available access methods. The cost is evaluated
in terms of the execution total time, of the required memory space and of the
necessary number of disk accesses, but other factors such as data transmission cost
(for a distributed database) or the number of distance calculations (for similarity

queries) can be used too.

3. Selectivity estimation - it is a mechanism to estimate the selectivity of each
condition in selection and join operators. This mechanism is based on a model to
predict the resources that each alternative plan needs to evaluate the query, which
must require a low amount of memory to store the “statistics” over each attribute

involved in the predicates.

These three mechanisms must cooperate among themselves to choose the best access
methods, the operations and their best configurations to define what a good (ideally, the
best) plan to execute a query is. The alternative plans for each query are generated based
on query rewriting rules that rely on algebraic properties to guarantee the equivalence of
each generated plan. The cost estimation of each alternative plan is based on the cost
estimated for each of its composing algebraic operators. The statistics should be stored
in a compact way and must require both a small processing cost, in order to reduce the
overhead that they impose during the query processing, and a small amount of valuable
memory space to be stored. Moreover, the query structure representation must specify
every parameter required to execute the query. Thus, using these mechanisms enables the
definition of adequate ways to provide an proper environment to represent the state of

the database when the query is executed, the query context, and also the user’s interest.

1.3 Work Goals)

1.3

Work Goals

The work presented in this thesis was developed to create a conceptual foundation to

include similarity queries in the relational model, addressing the specification of the user’s

expectation in these queries. With this purpose, this thesis answers the following main

questions:

1.4

This

How to improve the efficiency and efficacy of similarity queries regarding users’

expectations?

How to improve the execution performance of queries involving similarity search

operators?

How to include similarity-based operators into relational model and how to optimize
them?

How to represent the user’s expectation tailored to similarity queries?

What are the properties of each similarity operator and the rules it meets? Can
this similarity operator be employed to optimize a query expression that mixes

similarity-based and any other identity- and TOR-based operators?

How to use the semantic restriction such as users’ interests and knowledge mined

from complex data to optimize similarity queries?

How to extend the traditional query optimization architecture to handle also

similarity-based operators, semantic restrictions and user’s interest requirements?

Main Contributions

thesis contributes to the research fields of databases, data mining and users’

preferences analysis. Its main contributions can be divided in two categories:

Theoretical:

e The inclusion of similarity operators in the relational model, defining the
Similarity Algebra to express similarity queries. This algebra is composed
of both equivalence and inclusion-based algebraic rules aiming at optimizing
unary similarity operators combined either with other similarity operators or

with the traditional ones;

e The adaptation of the RDBMS query rewriting techniques to manage similarity

predicates either alone or mixed with traditional ones;

6 1. Introduction

e A definition of a new technique based on semantic restrictions to identify
probable regions where the answers of a query should be found, pruning those

where answers cannot be found and thus improving query answering efficiency;

Applied techniques:

e The definition of an environment to represent conditions that may indicate
the context of a query, the content of a database in the query and the users’
preferences as well as a way to speed up query execution and to obtain answers
that best meet the user’s expectation at the same time, improving the query

efficacy;
e The extension of the SIREN (the Similarity Retrieval Engine) [Barioni et al.,

2006] to optimize similarity queries meeting user’s expectation;

e The extension of the SQL-based SIREN query language to manage users’
preferences and data mining processing expressed in a relational, SQL-like

language.

1.5 Work Organization

This monograph is organized as follows:

Chapter 1 - Introduction. This chapter describes the motivation, problem definition,
objectives and the main contributions of the work developed in this doctorate

program.

Chapter 2 - Traditional Query Optimization Process. That chapter presents the
main definitions and concepts of traditional queries and their query optimization

processes.

Chapter 3 - Similarity Queries. That chapter presents the basic concepts of similarity
queries, formalizing the main types of similarity operators (the so called range and
k-nearest neighbor queries), and the four approaches found in the literature to treat
similarity (the rank, fuzzy, exact and hybrid approaches). Forthwith, the similarity
algebra, the query optimization, the query rewriting and the cost and condition
selectivity estimation for these four approaches are presented. The concepts of

users’ preferences and data mining techniques used in this thesis are also presented.

Chapter 4 - A Novel Approach for Similarity Query Optimization Process
in DBMSs. That chapter presents the main concepts that allow the inclusion

of similarity-based operators into a RDBMS. The extension of traditional query

1.5 Work Organization 7

optimization architecture and similarity algebra are also described in that chapter.
Furthermore, semantic restrictions are included in query optimization process to

improve the performance of similarity query execution.

Chapter 5 - Similarity Retrieval Engine - Case Study. That chapter presents
techniques developed in this thesis in a specific similarity-enabled query interpreter
and executor called SIREN, which was extended to include a query optimizer based
on the rules developed to help the query rewriting. The SIREN query language
extended to handle users’ preferences and data mining is also presented. In addition,
we show experiments performed over real databases to evaluate every technique

developed throughout this thesis.

Chapter 6 - Conclusion. That chapter presents the final considerations, main contri-

butions and suggestions for future works.

Appendix A - The CoPhIR Dataset. That appendix describes the real database

employed to exemplify several of the concepts presented in this monograph.

1. Introduction

2

Traditional Query Optimization Process

2.1 Introduction

Database Management Systems (DBMSs) were developed to store and to retrieve large
amounts of data, guaranteeing exact answers and efficient query execution. As the great
majority of current DBMSs are based on the relational technology for data management,
which has been developed since the 70’s [Codd, 1970], the relational model was chose to
be the base of our research. In fact, the foundations of that model — namely, set theory
and predicate logic — are themselves the base of almost all the other developed since
them [Date, 2009]. From the beginning, these systems where conceived to support only
scalar data types, such as numerical and short character strings. Such data types rely
on two main comparison operator types: exact matching and relational. Exact matching
comparison operators (= and #) can be applied universally for any kind of data types,
since it is always possible to decide whether two elements are equal or not. The relational
comparison operators (<, <, > and >) need that the elements are represented in a data
domain that meets the Total Order Relation (TOR) property, which allows the comparison
of any pair of elements and decide which element precedes or succeeds the other in the
pair. The relational and exact matching operators are by far the most common operators
found in relational database management systems (RDBMSs). In this thesis, the operators
based on exact matching and relational comparisons are called “traditional operators”.
RDBMSs use the TOR property existing between elements of scalar data domains
to speed up the execution of queries. In this monograph, we use the term “retrieval
operator” or “algebraic operator” to refer to the building blocks of the query execution
algorithms over datasets or of the algebraic query representation respectively, whereas

we use the term “comparison operator” to refer to the operator that performs the

10 2. Traditional Query Optimization Process

comparison of a pair of elements of a given data domain that are used to implement /specify
the comparisons ‘inside’ a retrieval operator or algebraic operator. In a DBMS, queries
are expressed using predicates based on the comparison operators and are executed using
retrieval operators. Predicates specify how an algebraic operator sifts data to obtain the
results of the query execution. Both unary and binary operations may require conditions.

The unary operation based on comparisons is the selection operation, which is represented

as |0(agq) 1|, where A is an attribute of the relation T" defined over a scalar domain A,

0 is one of the valid comparison operators in the domain A of the attribute A, i.e. one
of the traditional operators, and ‘a’ is either a constant (or an expression that returns a
constant) taken in the domain of A or the value of another attribute from the same domain
A in the same tuple. Comparison operators are used also in binary retrieval operators,
such as the join operation. Unless otherwise stated, the query operators considered in
this monograph always refer to the selection operator.

Queries may be answered either evaluating every element in the dataset or not. Index
structures, which use properties from the data domain, can be employed to speed up
search queries in a DBMS. If there is no index structure, the sequential scan, whose
complexity for selection operators is linear regarding time, is the only way to answer a
query. Otherwise, if there is an index structure, the number of disk accesses during the
query processing can be minimized, resulting in better performance. The applicability
of traditional operators to select data allows the development of more efficient indexing
techniques.

This chapter presents an overview of the most common access methods used in
the RDBMS in Section 2.2. Section 2.3 presents some of the fundamental concepts of
the Relational Algebra. The query optimizer based on query rewriting is presented in

Section 2.4. The final considerations are presented in Section 2.5

2.2 Access Methods

An access method (AM) is based on a data structure that considers the properties of each
data domain to support efficient data access. This structure is the main technique used
to reduce the computational cost and to accelerate the search for data in DBMS. Among
the most important AM are the B-tree and its variations, and the hash tables [Zisman,
1993].

The B-tree and its BT-tree variant are the most common AM used in DBMS for being
suitable structures for large amounts of data and also for keeping their efficiency in data
stored in secondary memory (disk or flash memory) [Graefe, 2011]. B-trees are essentially
balanced and multilevel indexes, with graceful growth capabilities. Blocks with = keys

and x + 1 pointers, x € N*, are organized into a tree, whose sorted leaves point to data

2.3 The Relational Algebra 11

records. All blocks are from half to completely full anytime [Garcia-Molina et al., 2000;
Graefe, 2011].

A hash table is the AM used only in equality search, because it has a hash function
to map (ideally) uniform and randomly search-key values to buckets, without preserve
any ordering between indexed elements [Liu and Ozsu, 2009]. A hash function h maps
each value of the active domain of the attribute A (Dom*(A)) to one bucket. Buckets
store data into a memory blocks and possibly by one or more overflow blocks. Thus, the
hash table is kept mainly in secondary storage [Cormen et al., 2001; Garcia-Molina et al.,
2000].

2.3 The Relational Algebra

The Relational Algebra (RA), proposed by Codd in 1972 [Codd, 1972], is a collection of
operations over relations suitable for manipulating data in relational databases. Every
operator accepts one or two relations as arguments and returns one relation as the
result. This property facilitates expressing complex queries, composing operators using
the Boolean operators to create the relational algebra expressions, which can involve
as many comparison predicates as required [Ramakrishnan and Gehrke, 2003]. Some
operators of the relational algebra are: union (U), intersection (N), difference (—), selection
(o), projection (7r), cross-product or Cartesian-product (x) and join (x). The rename
‘pseudo-operator’ (p) is often employed too.

The selection and the projection operators, both unary operators, manipulate data
from a single relation. The selection operator chooses the tuples from the input relation
that meets a given selection condition, while the projection picks out some of the relation
attributes [Garcia-Molina et al., 2000].

Other operators manipulate data from two relations, and therefore are called binary
operators. The union, intersection, difference and cross-product are the standard set
operations available in relational algebra. The two relations participating in a union,
intersection or difference operations must be union-compatible, i.e., they must have the
same number of attributes and each pair of corresponding attributes must have the same
domain [Yu and Meng, 2002]. The join operator combines two relations on their common
attributes [Maier, 1983].

A relational query expresses “what” the user intends to retrieve, following the
relational expression paradigm. The query can be converted into a step-by-step procedure
following the imperative paradigm to compute the desired answer, based on the order in
which operators are applied in the query. However, usually there are several ways to
express the same relational query into a procedural representation, and each way can

lead to executions with distinct costs [Ramakrishnan and Gehrke, 2003]. Choosing the

12 2. Traditional Query Optimization Process

procedure that lead to the fastest, or at least one of the fastest, execution is the objective

of the query optimization techniques.

2.4 Query Optimization

The definitions and properties presented in this section, and in Subsections 2.4.1 and
2.4.2 are based on the works of Chaudhuri [1998]; Garcia-Molina et al. [2000]; Ioannidis
[1996]; Yu and Meng [2002] and Ramakrishnan and Gehrke [2003]. For illustration of the
concepts presented in this section and in Subsections 2.4.1 and 2.4.2, we use a subset of
the Content-based Photo Image Retrieval! (CoPhIR) database. A detailed description of
the dataset is presented in Appendix A. The relational schema used in the examples is
shown in Example 2.1. The primary key attributes are underlined. In this example, the
traditional attributes are colored in red, while the complex attributes are colored blue.
The existing RDBMSs usually do not support complex attribute. As we will use this same
relation scheme to illustrate our approach to include complex attributes and similarity
queries over them, we are showing the complete scheme from the beginning, but they will
be fully explained only in Chapter 4.
Example 2.1:

CoPhIRdb = {UserId, Photold, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate}

User queries written in Structured Query Language (SQL) are received by a RDBMS,
translated into relational algebra expressions and presented to the query optimizer, which
uses information about how the data are stored to generate efficient execution plans
to evaluate these queries. An execution plan is a tree with relational operators at the
intermediate nodes and relations at the leaf nodes, defining a sequence of steps for query
evaluation. Each step in the plan corresponds to one relational operation in the logical
query plan, and to one relational operation plus the access method to be used for the
operation evaluation in the physical query plan.

For example, suppose that a user wants to know other users that have photos of
beaches from the tropical climate. The user can write the SQL Query Q1, shown in
Example 2.2, and send it to a RDBMS.

Example 2.2:

Q1: “Select the users that have photos with tags ‘beach and sea’ and whose photos

were taken on tropical climate beaches”.

LCoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.

2.4 Query Optimization 13

SELECT DISTINCT Codbl.UserId
FROM CoPhIRdb Codbl,
(SELECT Codb.UserId, Codb.PhotolId
FROM CoPhIRdb Codb
WHERE UPPER(Codb.Tags) LIKE ‘%BEACHY,’
AND Codb.Lat BETWEEN -23.43 AND +23.43) Codb2
WHERE UPPER(Codbl.Tags) LIKE ‘%SEA%’
AND Codbl.UserId = Codb2.UserId
AND Codbl.PhotolId = Codb2.Photold

When the Query Q1 is received by a RDBMS, it is compiled, optimized and then
executed. After the Query Compiler finalizes its analysis, Query Q1 is parsed into an
expression tree following the relational algebra, which is the logical query plan (presented
in Figure 2.1(a)) represented in a ‘canonical’ format, and submitted to the Query
Optimizer. The Query Optimizer receives this ‘canonical plan’ as input. A logical query
plan uses algebraic operators to represent the query. Equivalent plans can be obtained
following equivalence rules that can be used to rewrite a plan in different but equivalent
ways.

Thereafter, the logical plan is converted into a physical query plan, which is a sequence
of operations that can be implemented by the query evaluation engine. A physical
query plan uses retrieval operators to represent the query. A physical query plan is
obtained exchanging each algebraic operator (or a sequence of algebraic operators) by a
retrieval operator that executes the intended action of the exchanged algebraic operator(s)
over a dataset stored in a RDBMS. The physical query plan also indicates the access
method that must be employed to access each relation involved in the query and selects
an execution alternative for each of the algebra operations exchanged from the logical
plan. Figure 2.1(b) shows the logical plan transformed into a physical plan that uses the
‘table-scan’ and the ‘nested-loop join’ physical operators. The table-scan reads the
entire relation corresponding to the FROM subquery and filters out the tuples according to
its selection conditions. Then, the result of this subquery is joined with selected tuples of
the inner relation by the join operator (right child), using the nested-loop join physical
operator.

For the same query, there are different equivalent execution plans that produce the
same result. However, different equivalent plans are usually evaluated with different
costs. The goal of the query optimization is to find an execution plan, among all possible
equivalent plans, that has the best performance, i.e., that can be evaluated with the

minimum cost, the so called ‘optimal plan’. Indeed, the time required to find “the best”

14 2. Traditional Query Optimization Process

plan is usually rather large, so real optimizers strive to find a “good enough” plan with

in an acceptable delay.

(a) A Logical Query Plan (b) A corresponding Physical Query Plan
4

[N (Codb1.UserId=Codb2.UserId) AND (Codbl.PhotoId=Codb2 ,Photold)] [X (Codb1.UserId=Codb2.UserId) AND (Codbi.PhotoId=Codb2.Photold) J

[G((UPPER(Codbi,Tags) LIKE “ASEA'/.’)] [0-((UPPER(Codb1.Tag5) LIKE "/.SEA’/.’)]
P (Codb\Codb2) Read copntrab coan1) P (Codb\Codb2) Read (copntrab codb1)
.

[G(Codb,Lat BETWEEN -23.43 AND +23.43)] [O-(Codb.l.at BETWEEN -23.43 AND +23.43)]

t t

[G(UPPER(CDdb.Tags) LIKE ‘%BEACHY’)] [U(UPPER (Codb.Tags) LIKE ‘%BEACHY’)]

Read (copnIrdb codb) Read (copnrab codn)

Table-scan

Figure 2.1: Example of a (a) logical and a (b) physical query plans, represented as query
trees for Query Q1.

The query optimization architecture adopted in this monograph is based on query
rewriting, as presented in Figure 2.2. This type of optimization is based on the fact that
several algebraic expressions have equivalent results, but each expression has a different
execution cost. The goal of this kind of query optimization is identifying an equivalent
algebraic expression that may be evaluated with low computational cost. According
to loannidis [1996] and Garcia-Molina et al. [2000], this kind of query optimizer can be
divided in two parts: the Logical Query Plan Generator and the Physical Query Plan
Generator.

The Logical Query Plan Generator is responsible for applying transformations to a
given query represented as an algebraic expression and for producing equivalent queries
intended to be executed in a more efficient way. For this intend, it uses the Algebraic Space
Enumerator and the Method-Structure Space modules. The Algebraic Space Enumerator
module determines the ordering of the necessary operators considered in each query.
The Method-Structure Space module selects the existing implementation choices for the
execution of each operator ordering specified by the Algebraic Space Enumerator. In
sum, the Logical Query Plan Generator receives the canonical plan as input and uses
the algebraic transformations generated by the Algebraic Space Enumerator module to
transform the logical query plan into a better one. Thereafter, the Method-Structure
Space module is used to lead the conversion of the logical query plan into an efficient
physical plan. The physical query plan fond to be the better one is the input to the
Physical Query Plan Generator.

The Physical Query Plan Generator pursues a search strategy exploring the space of
execution plans determined by the Algebraic Space Enumerator and the Method-Structure

Space modules for each query produced by the Logical Query Plan Generator. It

2.4 Query Optimization 15

Canonical Plan

4

Query Optimizer (using Query Rewriting)

Logical Query Plan Generator

<§> Method-Structure
Space

¥

Physical Query Plan Generator

Cost Model <:(> Size]:jDi.stribution
stimator

{4

Execution Plan

Algebraic Space
Enumerator

Figure 2.2: Query optimizer architecture according to Ioannidis [1996]
and Garcia-Molina et al. [2000].

compares plans based on each plan cost estimate generated by the Cost Model and the
Size-Distribution Estimator modules, selecting the cheapest one to be used to generate the
answer for the original query. The Cost Model module specifies the arithmetic formulas
employed to estimate the cost of the execution plan. The Size-Distribution Estimator
module estimates the sizes of the queries result (or of the subqueries) and the frequency
distributions of values assumed by the attribute (“statistics”), which are needed for the
Cost Model. Once the best plan is chosen, the ‘execution plan’ is submitted to the
execution by the Query Executer and the answer of the query is sent back to the user.
Optimizing a SQL query converted to a relational algebra expression involves two steps:
enumerating the alternative plans available to evaluate the expression, and estimating
the cost of each enumerated plan, choosing the plan with the least estimated cost. The
operation ordering has a significant impact on the cost of query execution. There are two
main techniques to determine the “best” ordering for query execution: the algebraic-based
optimization technique, which uses a set of heuristic rules to guide the transformation from
one execution plan to another; and the cost estimation-based optimization technique,
which estimates the cost of every possible execution plan for each query and chooses
the execution plan with the lowest estimated cost. Both techniques use a set of rules
that can transform an execution plan into another, represented as a relational algebra
expression. The algebraic-based optimization technique, or query rewriting, is described in
Subsection 2.4.1 and the cost estimation-based technique, or cost and condition selectivity

model, is described in Subsection 2.4.2.

16 2. Traditional Query Optimization Process

2.4.1 Query Rewriting

The basic idea of the algebra-based optimization technique is first to represent each
relational query as a relational algebra expression and then to transform it into an
equivalent but more efficient relational algebra expression. In the literature, there are
several algebraic laws that can transform a relational algebra expression into another
equivalent one. Two relational algebra expressions are said to be equivalent if they produce
the same result over any instance of the input relations. Hence, several equivalence
expressions allow modifying a relational algebra expression to obtain an expression with
a cheaper plan. The existence of equivalent expressions implies a choice of evaluation
strategies.

The algebraic laws most commonly used in query optimization are described below.
Let T,T; and T3 be three relations, then:

e Cascade of selections: let ¢; and ¢y be two selection conditions on 7}, then

O(c; and 02)T1 = (GclTl) N (Gcle) = GCl(GCQTl) = GCQ(GCITl) : (21)

e Commuting selection with join: if condition ¢ involves attributes of only 77, then:
Gc(Tl X Tg) = ((TCT1> X T2 , (22)

if ¢; only involves attributes from 7T} and condition ¢y only involves attributes from
T5, then:
O(¢; and 02)(T1 X Tg) = (UclTl) X (UCQTQ) . (23)

The commuting selection is also applied to the cross-product of relations 7T and T5.

e Associativity of #-join and natural join: the #-join and natural join operations can
not be mixed in the same rule, because they yield an incorrect result, that is,
T, ™ (Ty x T3) # (Th X T3) x T3. Nevertheless,

Cc2 C1

T1 ;é (T2 X Tg) = (Tl X TQ) Ez T3 s (24)

provided that c¢; involves only attributes from 77 and T,, and ¢y involves only

attributes from 75 and T5;

T1 X (T2 X Tg) = (Tl X TQ) X T3 . (25)

e Replacing x and o by x: if ¢ is a selection condition of the form |7Tj.a 6 T5.b

or the conjunction of terms following this same format, and it is preceded by a

2.4 Query Optimization 17

cross-product operation, then:

0Ty x Tp) = (T m Tp) . (2.6)

The transformation of equivalent relational algebra expressions is guided by heuristics

optimization laws. The following four rules are commonly used:

1. Perform selections as early as possible, because they often can substantially reduce
the size of the relations. As a result, if they are performed early, later operations

such as joins can be evaluated more efficiently, processing a reduced input.

2. Replace cross-products by joins whenever possible, because a cross-product is

typically much more expensive than a join.

3. If there are several joins, perform the most restrictive joins first. A join is more
restrictive than another if it yields a smaller result. Finding which join is the most

restrictive is based on selectivities and other statistical information.

4. Project out useless attributes early, so smaller input relations can be used in the

next operations.

Those heuristic optimization rules can be represented graphically using the concept of
a query tree. In the query tree, each input relation is the leaf node and each operation is
represented as an internal node. The operation in a higher node can be evaluated only if

all of its descendant operations have been evaluated.

2.4.2 Cost and Condition Selectivity Model

The objective of the cost estimation-based optimization techniques is to choose, among
all possible execution plans, the one that has the lowest estimated cost. The estimation of
the query evaluation cost in a RDBMS is the sum of two components: the cost to access
secondary memory (the input/output - [/O cost) and the computational cost (use of the
central processing unit - CPU). The I/O cost is derived by the data transfer between
the main memory and the secondary storage, which can be computed by the number of
page reads and writes. The CPU cost is determined by the execution of the operations
over data stored in main memory. For most database operations, including selection,
projection and join operations, the I/O cost is the dominant. Therefore, several access
methods, such as Bt-trees, are employed to reduce the 1/O cost.

This optimization technique works as follows: for each query, enumerate all possible
(or worth considering) execution plans; for each plan, estimate its cost; and choose
the one with the lowest estimated cost. If every execution plan cost can be estimated
accurately, then an optimal plan can be found. However, there are two difficulties to use

this technique:

18 2. Traditional Query Optimization Process

1. The number of possible execution plans is an exponential function of the number of

relations referenced in a query;

2. An accurate cost estimation for the execution plan may be difficult to obtain,

because it is necessary to correctly estimate the intermediate result sizes.

The first difficulty is tackled using heuristics to enumerate only a subset of all possible
execution plans, instead of all possible plans. On the other hand, the second difficulty
demands using information about the stored data, the so called “statistics”, to estimate
the selectivity and cost of the several conditions used in the query. The most studied
methods can be roughly classified into three categories, as follows: (1) histogram-based
methods, which use pre-stored detailed statistics about relations to estimate the sizes
of intermediate results; (2) sampling methods, which estimate the sizes of intermediate
results based on the information collected from a small fraction of current data stored
in the relations; and (3) parametric methods, which use analytical and/or statistical
techniques to estimate the size of intermediate results, making assumptions about the
distribution of data values (e.g. uniform distribution) and about the correlation between
the values of different attributes (e.g. independent attributes).

A fundamental property of a database system is that it maintains a description of
all the data that it contains. This information is stored in a collection of relations,
maintained by the system, called the ‘system catalog’. Statistics (cardinality, size, etc.)
about relations and indexes are stored in the system catalog and updated periodically. The
catalog also contains information about users, such as the accounting and authorization
information.

Information stored in the system catalog are used by the Query Optimizer to estimate
plan costs. At the beginning of the evaluation, the operands are the existing data
structures of known sizes, such as relations, available indexes and number of pages.
However, in later stages, as most operands have been results of preceding operations,
the cost model must estimate their sizes using information about the original data
structure and the selectivity of operations already performed on them [Jarke and Koch,
1984]. The selectivity corresponds to the expected fraction of tuples that will satisfy the
condition [Selinger et al., 1979]. The most selective operation is the one that retrieves the
fewest pages, and using it tends to minimize the data retrieval cost.

There are some techniques to estimate the result size of relational operations. For
example, in the selection operation, the key is to have an accurate estimation of the
selectivity. When the selection condition ¢ is of the form , the selectivity
depends largely on the distribution of the values of A in T, and sometimes from the
characteristics of the attribute A; when ¢ is a conjunction or disjunction of several simple
conditions, then the selectivity also depends on the dependencies among the involved

attributes.

2.5 Final Comments 19

2.5 Final Comments

This chapter presented an overview of the traditional query processing performed by the
relational database management systems. It was shown that every SQL query is received
by the DBMS, translated into a tree using relational algebra operators and presented to
the query optimizer as a logical query plan.

In the query optimizer, this tree is submitted to the Logical Query Plan Generator,
which produces several algebraic equivalent plans. The equivalent plans are analyzed
by the Physical Query Plan Generator, where their cost are evaluated and compared.
The goal is to identify an algebraic equivalent plan that may be evaluated with low
computational cost. The (ideally) best logical plan is transformed into a physical plan
exchanging the algebraic operators (or sequence of operators) by retrieval operators that
implements the corresponding functionality. The algebraic laws and heuristics presented
in Subsection 2.4.1, and the cost estimation techniques present in Subsection 2.4.2 are
used, respectively, to generate equivalent plans and to choose the better (cheaper) physical
plan to be executed.

The query optimization process for traditional data is well consolidated, although there
is not a research consensus on its modules and level details. However, to support complex
data in a RDBMS, the query optimizer should be able to rewrite similarity queries and
to estimate their cost. In Chapter 3 we present some related work on similarity query

optimization.

20

2. Traditional Query Optimization Process

3

Similarity Queries

3.1 Introduction

In contrast with the traditional queries, which use exact matching and relational operators
to manipulate scalar data in relational database management systems (RDBMSs),
similarity queries search for elements that are more “similar to” or “distinct from” a given
query element, following some similarity condition. In other words, similarity queries
compare every element of a set with a query element and select those that meet the
similarity criterion.

Similarity between two elements is defined based on a distance function d [Wang and
Shasha, 1990]. The distance function d calculates the distance between two elements and
returns a real non-negative value, which assesses the dissimilarity degree between them.
The distance function returns values near to zero for element pairs more similar, and
returns larger values when comparing two elements rather dissimilar [Braunmdiller et al.,
2000]. The distance function d , also called a metric, is the basis to create a metric space
M =< S,d >, where S denotes the universe of valid elements (i.e. the complex data
domain) and d is a function d : S x S — R™ that expresses the “distance” between two

elements of S. The metric d must satisfy the following properties [Lima, 1993]:
e Symmetry: d(s1,52) = d(S2,51);
e Non-negativity: 0 < d(sq,s9) < 00 if s1 # $3 and d(sq, s1) = 0;
e Triangular inequality: d(sy, s2) < d(s1,$3) + d(s3, $2), V 51, S92, 83 € S.

A metric dataset S € S is the set of elements from the domain S stored in a

database [Braunmiiller et al., 2000]. Similarity queries are the most important queries

21

22 3. Similarity Queries

to retrieve data from metric datasets. A similarity query should find efficient ways to
locate user-relevant information in a collection of elements whose similarity has been
quantified using a pairwise metric between element instances [Zezula et al., 2006]. The
basic similarity queries retrieve elements in a metric dataset that meet the similarity
predicate comparing a given element provided as a query parameter called “query center”
using the distance function of the corresponding metric space to evaluate the predicate.

The majority of the literature regarding search techniques in metric spaces focuses in
queries over a single metric dataset, without considering that the metric data is related to
other data that often are represented in scalar domains. In this monograph, we assume
that a metric dataset is the active domain Dom*(S) of an attribute S of a relation 7" in
a relational database, that is, we assume that the metric dataset S is the set of values
existing in attribute, which is indistinct from attribute S. Therefore, each element s; € S
is the value of attribute S in a tuple in relation 7', and in this way each element s; is
associated to the values of the other attributes of 7" in the same tuples. When the user
poses queries over T’ some of the predicates could be similarity ones over attribute 5,
whereas others can be identity or TOR-based over any attribute of T', and the query will
therefore be composed of identity, relational and similarity criteria.

Just like the traditional ones, the similarity-based criteria employ comparison op-
erators called similarity comparison operators or just similarity predicates. When
a relational selection operator employs a similarity comparison operator to filter the
input dataset, it is called a “similarity selection operator”. The similarity selection is
the fundamental similarity operator to perform queries over similarity datasets. The

syntax to express similarity selections follows the same format of the traditional ones:

Oc(56.sy) 1|, Wwhere o, represents a similarity selection, S is a metric attribute defined in

relation 7" whose values are taken from the metric domain S, 6. is a similarity operator
valid in the domain S of the attribute S and s, € S is a query element, which can be either
a constant (or an expression that returns a constant) or the value of another attribute in
the same tuple of the relation 7', which is also taken from the same domain S. In this
monograph, we always assume that every “complex” dataset is in a metric domain, thus
a complex attribute is also a metric attribute, and we use the words ”complex attribute”
and “metric attribute” interchangeably.

There are two similarity operators commonly employed: the range and the k-nearest

neighbor ones. They are defined as follows.

Range Query - R,: Given a query center s, € S and a similarity threshold &, the range
query returns all elements that differ from the query center s, at most the similarity
threshold. Figure 3.1(a) shows an example of a range query in a bi-dimensional
space with the Euclidean distance Ly and the threshold £ shown. The blue elements

(inside the circumference) belong to the answer dataset.

3.1 Introduction 23

k-Nearest Neighbor Query - kNN, : Given a query center s, € S and a similarity
threshold £ € N*, the k-nearest neighbor query returns the k£ elements nearest to
the query center s,. Figure 3.1(b) illustrates an example of a k-nearest neighbor
query in a bi-dimensional space with Euclidean distance Ly and £ = 3. The blue

elements connected to the query center s, belong to the answer dataset.

@
@
0% %o 000
@ o o @
L>c) 290 o
° o d% S
(b)

Figure 3.1: Examples of similarity queries in bidimensional space with Kuclidean
distance Lo: (a) Range query — R,, and (b) k-nearest neighbor query —
ENN,, with £ = 3 elements.

To evaluate a similarity query using a sequential scanning, every dataset element
must be compared to the query center. Index structures are employed to accelerate that
processing, pruning regions of the space where answers surely can not be found. Although
the sequential scan can always be used, even when there is no data index structure, this
strategy is not adequate for large datasets due to the high computational costs involved.
On the other hand, if there is a data index structure, the number of comparisons (number
of distance calculations) and the number of disk accesses during the query processing are
reduced, leading to a better performance. However, the index structures usually available
in the DBMS to execute queries using comparisons over scalar data can not be used
to retrieve complex data. Metric access methods (MAMs) are the most adequate index
structure for datasets represented just by the elements and by the distances between
them [Traina and Traina Jr., 2003]. An overview of MAMs is presented in Section 3.2.

Similarity queries are found and discussed in literature following four approaches: rank,
fuzzy, exact and hybrid, which are summarized in Section 3.3. Sections 3.4, 3.5, 3.6 and
3.7 present brief overviews, respectively, of the similarity algebra, the query optimization
process, the query rewriting techniques and the cost and selectivity estimation of query
condition, when querying complex data based on these four approaches. Sections 3.8 and
3.9 discuss techniques existing to process the user’s preference and to explore data mining
tasks over complex data, respectively. Finally, Section 3.10 presents some comments about

this chapter material.

24 3. Similarity Queries

3.2 Metric Access Methods

Metric access methods (MAMs) are based on index structures that organize the elements
in a stored dataset using only a distance function that satisfies the three properties of
distance functions, namely symmetry, non-negativity and triangular inequality. These
methods are of particular importance to index complex data, usually organizing them
as a tree, as the usual total ordering relationship among the elements does not apply.
The objective of a MAM is to minimize the number of comparisons (distance functions
calculations) and the number of disk accesses during the query processing [Traina and
Traina Jr., 2003].

There are several research works aiming at answering similarity queries efficiently. The
main MAMs found in the literature are briefly presented here. Detailed and comprehensive
surveys about MAMs can be found in Chavez et al. [2001], Hjaltason and Samet [2003]
and Zezula et al. [2006].

The paper of Burkhard and Keller [1973] is the landmark in development involving
data index in metric domains. It describes three techniques for recursive partitioning of a
metric space that allow the creation of MAMs, which are materialized as trees. The first
technique partitions a dataset by choosing a representative for subsets of elements that
are close to each other and grouping them based on their distances to the representative.
The second technique divides the original set into a fixed number of subsets and chooses
a representative to each subset. Each representative and the maximum distance from the
representative to some element are also maintained in the structure to improve similarity
queries. The third is similar to the second technique, with the additional requirement
that the maximum distance between any two elements in the same subset is not greater
than a given constant c¢. This constant can be distinct for each level of the structure and
its value guarantees that every element is in at least one of the subsets in that level. In
the three techniques, the representatives are used to prune elements and subtrees during
a query.

Following the techniques presented in Burkhard and Keller [1973], several MAMs
were proposed, such as: the Generalized Hyperplane tree (GH-tree) [Uhlmann, 1991], the
Ball Decomposition [Uhlmann, 1991], the Vantage-Point tree (VP-tree) [Yianilos, 1993],
the Fixed Queries tree (FQ-tree) [Baeza-Yates et al., 1994], the Geometric Near-Neighbor
Access Tree (GNAT) [Brin, 1995], the Multi-Vantage-Point tree (MVP-tree) [Bozkaya and
Ozsoyoglu, 1997, 1999], the Spatial Approximation tree (SA-tree) [Navarro, 1999, 2002]
and the bottom-up index tree (bu-tree) [Liu et al., 2006]. However, all of these MAMs are
considered static access methods, because they require to have the full dataset already
available during the index creation process, and they do not support further insertions

and deletions after the tree creation.

3.3 Searching for Similarity 25

The first dynamic MAM presented in the literature was the M-tree [Ciaccia et al.,
1997]. It is a height-balanced tree that stores the data in the leaf nodes. However, it often
produces trees where the nodes largely overlap each other in the same level, drastically
reducing the pruning ability of the query algorithms. The Slim-tree [Traina Jr. et al.,
2000b] is an evolution of the M-tree that presented the first technique able to measure
and reduce overlaps between subtrees that work in a metric space. Other examples of
dynamic MAM are the Omni-family [Santos Filho et al., 2001], the Distance Fields tree
(DF-tree) [Traina Jr. et al., 2002], the Density-balanced Metric tree (DBM-tree) [Vieira
et al., 2010, 2004], the Pivoting M-tree (PM-tree) [Skopal et al., 2004], the Evolutionary
Geometric Near-neighbor Access Tree (EGNAT) [Navarro and Paredes, 2011; Paredes
and Navarro, 2009; Paredes et al., 2006], the DBM*-tree [Ocsa and Cuadros-Vargas,
2007], the MM Metric tree (MM-tree) [Pola et al., 2007], the Clustered Metric tree
(CM-tree) [Aronovich and Spiegler, 2007] and the Onion-tree [Carélo et al., 2009, 2011].

3.3 Searching for Similarity

Usually, Multimedia Information Systems (MIS) treat similarity using four different
approaches: the rank, fuzzy, exact and hybrid approaches.

The rank approach is based on the establishing an ordering among the stored tuples
or elements. Ranking queries (or top-k queries) aim at providing only the top k results,
according to a user-specified ranking criterion. The answer of a top-k selection query is
an ordered set of tuples, where the ordering criterion is how well each tuple matches the
given query. It is true that this approach is consistent to the relational model and can be
applied to similarity queries considering the distance functions as the ranking criterion,
but it depends on the existence of a ranking criterion that is independent from the queries.
This requirement departs from the fact that the ranking criterion of a similarity query
depends on each query, that is, the ranking criterion varies with the query.

The fuzzy approach associates similarity to an uncertainty, or imprecision grade, to
every comparison evaluation between a pair of elements of the dataset, often providing
fuzzy logic-based methods to solve queries. The problem of this approach is that it
assumes that although complex data manipulation involves similarity evaluation, this does
not mean that the similarity evaluation is uncertain or imprecise (as only exact match
comparisons are useless in these domains). In fact, it is possible to execute similarity
queries resulting in either approximated or exact answers. The fuzzy approach aims at
obtaining results where there is not exact definition for how the intended results are
obtained but rather only a fuzzy definition exists about what is intended.

The hybrid approach mixes the rank and the fuzzy approaches. Therefore, the
resultant ordering of the elements depends of a final ranking condition, where each element

matches the fuzzy condition to a different degree. The problem of this approach is that it

26 3. Similarity Queries

assumes the global ranking criterion to evaluate fuzzy conditions, therefore it yet requires
a well-defined ranking criterion, but the results are harder to evaluate, as several sequences
must be compared and thus a sequence metric need also to be defined.

Finally, the exact approach evaluates each element according to how well it fits a
similarity criteria given for the query. The similarity varies for each query, because the
similarity is always evaluated regarding elements that are specified in the query, not
to a global ranking criterion, as in the rank approach. Although this approach is the
most expensive ones, it always retrieve the complete answer (considering the similarity
criterion), thus the correct answer is always obtained. As our goal aims at improving
the query answer, speeding up the exact approach may lead to a technique that both
provides good answers and do it in acceptable times. Thus, we target the exact approach
to develop the research presented in this monograph.

Works on similarity algebra, query optimization, query rewriting and cost and
condition selectivity model following these four approaches are presented in Sections 3.4,

3.5, 3.6 and 3.7, respectively.

3.4 Similarity Algebra

There are several extensions in the literature to the relational algebra aimed at including
similarity functionality in RDBMSs, each following varying perspectives. The first algebra
to consider this issue was the Multi-Similarity Algebra (MSA), presented in Adali et al.
[1998]. It has been designed to integrate multiple similarity measures coming from several
similarity assumptions, which use the notion of similarity ranking to return the search
elements, in a common framework. However, MSA is defined at a high abstraction
level and does not address the problem of an “operational” algebra usable for modeling,
optimizing and processing queries with similarity-based operations [Atnafu et al., 2004].
Therefore, it is not fully consistent with the relational model.

Following the same perspective, i.e. the rank approach, Adali et al. [2004] introduced
another algebra for querying ranked relations and proved various coherence preservation
properties for that algebra, which shows when different rank columns are guaranteed
to induce the same ordering among tuples in the answer, what can be advantageous to
produce approximate early returns.

In another paper, Li et al. [2005] extended the relational algebra into a “rank-relational
algebra”. It captures the ranking property introducing a rank operator and extending
other relational operators to support ranking as a first-class concept in the algebra.
According to the authors, the relations, operators and algebraic laws respect and take
advantage of the notion of ranking. Following the same approach, Adali et al. [2007] also
presented an algebra that treats ranks and the element ordering imposed by ranks as

first-class elements, but aims at supporting complex mining and data fusion tasks.

3.4 Similarity Algebra 27

Following the fuzzy approach, several fuzzy relational algebras have been proposed
in the literature. One of the firsts was the paper of Montesi and Trombetta [1999],
which extended the classical relational algebra including new operators (top and e-similar
operators) and user preferences (weights) to formulate queries that take into account the
similarity of elements represented in the fuzzy relational model.

The Similarity Algebra for Multimedia Extended with Weights (SAMEY) [Ciaccia
et al., 2000; Penzo, 2005] generalizes the relational algebra to allow the formulation of
similarity queries over multimedia databases, introducing two new operators, called cut
and top, that are useful for range and ENN queries, respectively. They work providing
a criteria that respectively limits the answer’s cardinality, and discards tuples whose
similarity degree is lower than a specified threshold. This algebra also incorporates weights
to assign relevance to the user preferences.

Picariello and Sapino [2002] developed a fuzzy model for image datasets, providing
an algebra for dealing with fuzziness at the attribute level of features extracted from the
images.

In another paper, Montesi et al. [2003] proposed a fuzzy-based algebra to represent
the imprecision related to several kinds of Web and multimedia data. The proposed fuzzy
algebra extends the classical relational algebra to be applicable to fuzzy relations using
the new operators top and cut. Both algebras allow taking into account user’s preferences
in the form of weights that can be attached to predicates and operators. This model
allows the representation of imprecision at the attribute as well as at the tuple level.

Schmitt and Schulz [2004] introduced the similarity calculus and a similarity algebra
(SA), bringing vagueness, weighting and user preferences to the traditional relational
calculus and algebra, respectively. The authors show also how to map similarity calculus
expressions into a corresponding similarity algebra ones, which is adequate for efficient
query processing.

For the hybrid approach, Belohlavek et al. [2007] presented an extension of relational
algebra by adding the concept of similarity to ranked tables, which essentially corresponds
to a kind of fuzzy sets. In that paper, the notion of rank is used to sort truth degrees
represented by a fuzzy logic [Belohlavek et al., 2011; Belohlavek and Vychodil, 2009, 2010].

In the case of the exact approach, Atnafu et al. [2001] defined a well-formalized multi-
media content-based algebra, useful for modeling, optimizing and processing of multimedia
queries. The authors also introduced a similarity-based algebra that formalizes the search
operations over images stored in multimedia database systems, defining new operators,
such as the “multimedia content-based join”, which can be used to perform operations
either isolated or together with other relational operators.

Silva et al. [2009] and Silva et al. [2010b] presented, respectively, multiple equivalence

rules just for both similarity aggregations and similarity join operators.

28 3. Similarity Queries

Traina Jr. et al. [2006] introduced a relational algebra extension considering complex
similarity queries composed of two or more similarity predicates combined through
Boolean operators. However, the rules derived are able only to handle queries centered at
the same query center (a single center), which is restrictive and does not cover all cases
occurring in RDBMSs. In this monograph, we take the algebra proposed by Traina Jr.
et al. [2006] as a start point and we generalize it to allow handling queries centered either
at the same or at distinct query centers. Also, we present the fundamental properties
that allow the integration of the unary similarity operators into the Relational Algebra,
handling similarity queries either alone or mixed with the traditional operators. These
properties are presented in Section 4.5.

Figure 3.2 presents the time line of the similarity algebra literature papers, following

the four approaches employed for similarity in MIS.

3.5 Query Optimization

Similarity query optimization began to receive more attention since the paper of Adali
et al. [1998] on the Multi-Similarity Algebra, which developed query optimization
techniques to reduce the cost of query processing, by pushing selections down and
reordering costly joins, following the rank approach. As the similarity operators are
among the most costly retrieval operations, pushing down the similarity selections
allows employing access methods designed to handle then independently of taking into
consideration the other operators, which also permits to reduce the search space at a
great extent. The authors provided a set of equivalence rules between expressions in
MSA, allowing rewrite queries represented using its operators.

The paper of Chang and Hwang [2002] treated the query optimization based on rank
using expensive predicates. Also, Chaudhuri et al. [2004] investigated how to optimize
the processing of top-k selections queries over multimedia repositories using a cost-based
approach. In its turn, Li et al. [2005] extended bottom-up query optimizers, such as the
System-R optimizer, incorporating ranking. The authors used algebraic laws based on a
rank-relational algebra to define equivalent plans in the search space handled by the query
optimizers. Finally, Schnaitter et al. [2009] introduced the DEEP estimation framework,
which enables a systematic estimation methodology that takes directly into account the
distribution of scores and values in the underlying data, to approximate the number of
input tuples that an operator must access following the physical plan using rank join
operators.

For the fuzzy approach, Montesi et al. [2003] presented a query optimizer that uses
the standard heuristic that guides RDBMSs to find equivalent queries that minimize the
cardinality of intermediate results, minimizing the number of I/O operations. The authors

used equivalence and containment rules to choose, among the equivalent query plans of a

29

yoeouiddy joex3 yoeoliddy Azzn4
yoeouddy pughH yoeoliddy suey
puabaT
aur swil
m 454 H L10C H 0L0¢ H 600¢ H 800¢ H 100¢ H 900¢ H G00¢ H ¥00¢ H €00¢ H 200¢ H 100¢C H 000¢ H 6661 H 8661
[saLon] : g
: - [epeuen] : [epecceq] | [ERsAUON]
(ePens] (e [errend [ewrr [erEn eep (eroRexd [erneun [epEn
19)us0 syBiap yum | sioyesado
siojesado slojesado Kionb 5 elpawninw | sjoseyep 6 6
ol uonebaibbe suoneas onb swes | eiqably suonejoy EaEn . eiqable papuaix3 Jejiwis eiqably
E:m.__,.:_m \o:m__E_m payuey |- sejeolpaid | |euonelss payuey s eEayy | ek paseq elpswninpy | -3 puedoy | Auejwis
10, e1G9BNy | 10 £109B1y -eigebly | Auenwis juey, - eigebly BeRE o -Ruejwis | oy eigebly |+ euqably -nInN
Joy e1996|y -kzzng Aenuis euohe|oy
[epeneroed] [oed] [epmuod
+53|qe} RS | e
payuel elpawiny
pue snjnojes
+ eigable 10} e1qably X
JUEIwIS
leuonelsy Ayeuis

3.5 Query Optimization

Time line for the existing similarity algebra works, following the four

approaches used in MIS.

Figure 3.2

30 3. Similarity Queries

SAMEY query, the one that minimizes the size of the intermediate results [Montesi et al.,
2003]. Another heuristic used by the same authors is to evaluate similarity predicates
over as few tuples as possible, because they consider those predicates as being very
costly [Ciaccia et al., 2001]. Herstel and Schmitt [2005] used the optimization technique
called “relation-collapse” to drastically reduce the number of scans required over the
base-relations, aiming at a more efficient query evaluation. The authors applied the SA
algebra [Schmitt and Schulz, 2004] to map a similarity calculus expression onto a similarity
algebra one, and used the semantic equivalence to transform a given similarity algebra
expression into another equivalent, aimed at reducing the computational effort. Semantic
equivalence in SA means achieving the same similarity values calculated.

Pursuing the exact approach, Ferreira et al. [2007] developed the query optimizer
based on the query rewriting technique to interpret, translate, select the best plan and
execute similarity queries over complex data indexed by a MAM. The authors proposed
two data structures — the parse tree and the attribute-conditions table structures — to
help processing similarity queries expressed in the similarity algebra. Both structures
are used as input to the query optimizer. In this monograph, we continue to develop
the query optimizer now with the objective to handle similarity queries following the
technique shown in Section 4.4. That is, our work advances the state of the art proposing
the syntax- and semantic-based query optimization process for similarity queries. Silva
et al. [2010a] presented a similarity-aware database system (SimDB), which supports
similarity operations as first-class physical database operators. The authors extended the
cost-based query optimization to handle also similarity operations, adding equivalence
rules for similarity group-by and similarity join operators.

Figure 3.3 presents the time line of the query optimization literature papers, following

the four approaches employed for similarity in MIS.

3.6 Query Rewriting

Characterizing similarity in relational algebra, involving one or more predicates, has been
evaluated by several authors. Most of the query optimization techniques involve treating
complex Boolean expression in RDBMSs. In general, the goal is to rewrite a query
generating an algebraically equivalent expression but that can be executed faster.
Similarity query rewriting techniques began to receive attention in Adali et al. [1998].
In that paper, the authors proved the equivalence and the containment relationships
between MSA expressions, developing query rewriting methods based on these results.
Chang and Hwang [2002] treated the query rewriting based on ranking using expensive
predicates. Li et al. [2005] defined a set of algebraic laws that allow rewriting top-k
queries to treat ranking as first-class operations. The authors argue that the algebraic

equivalences should produce not only a result that have the same elements, but also that

31

3.6 Query Rewriting

yoeouddy 10ex3 yoeoliddy Azzn4
yoeosddy pugAH yoeoiddy yuey

puaba

aur awil

(

[41014 H T10¢ H 0T0¢ H 600¢ H 800¢ H L00¢ H 900¢ H S00¢ H 7002 H €00¢ H 200¢ H T00C H 000¢ H 666T H 866T

[erens]

yoeolidde
paseq
1509 Buisn
uoneziwndo
Aiand

[fee EmeLLps]

slomauue.)
loyewnsa
deag

uoneziwndo
Kiand

[eReRe]

(Lov/asred)
Bunumai
Aiand

uoneziwndo
Aiand

[ewrl [eewypreyo] | [eRsaLoN] | [rPbue)]

Bupjues yoeoidde Aupeuipred | sajesipaid
+ ¥ WasAs paseq - sonsuUNaH | aAisuedx3y
1509 Buisn
uopeziwndo | uoeziwndo | uoreziwndo | uoneziwndo
Asnd Aand ISETile) Aiand

[eR@seH

anbiuyos)y
asde|j0d
-uone|ay,

uoneziwndo
£1and

[erE

elgably
Ayrejuis
-HNN

uoneziwndo
Aiand

Time line for the existing query optimization works, following the four

approaches used in MIS.

Figure 3.3

32 3. Similarity Queries

the elements must be serialized in same order, stating in a new freedom of commands to
specify results splitting and interleaving Rank splitting allows to break a scoring function
with several predicates into a series of rank operations, useful for processing the predicates
individually. Interleaving asserts that rank operations can swap its execution sequence
with other operators.

Ciaccia et al. [2000, 2001] presented equivalence and containment rules focusing on
both cut and top operators, and the effect of weighting on fuzzy approach, such as: (i) the
predicate with the highest weight could be “pushed down” and a cut operator could be
added to discard tuples; (ii) the distribution of predicates of a conjunctive formula over
the corresponding join operands; and (iii) the introduction of new cut operators over
the operands of a weighted join, with threshold values determined by the set of weights.
Montesi et al. [2003] presented the query rewriting process driven by Ciaccia et al. [2000]
rules holding for the SAMEY. Herstel and Schmitt [2005] adapted some optimization
rules known from the traditional database theory to rewrite the similarity algebra: (i) the
order of subsequent selection may be arbitrarily changed; (ii) the Cartesian product
and selection are commutative; and (iii) a selection with equality condition between two
attributes of different relations and a Cartesian product can be substituted by a join.

For exact approach, Traina Jr. et al. [2006] proposed a formalism to express similarity
queries in multimedia databases, promoting the support to rewrite these queries and
defining a set of algorithms able to answer them described by the combination of conjunc-
tions, disjunctions and negations of basic similarity predicates over the same query center.
Chalhoub et al. [2006] presented a visual shape-based query rewriting approach, used to
increase the relevance of the results. Silva et al. [2010a] presented a set of transformation
rules for similarity group-by and similarity join operators. The authors showed that these
transformation rules exploit: (i) specific properties of these operators; (ii) equivalence
rules between multiples similarity join operators and between similarity join and similarity
group-by operators; and (iii) Eager and Lazy aggregation transformations. Our work
complements the exact approach literature providing equivalence- and inclusion-based
rewriting properties and rules for unary similarity operators alone or mixed with other
similarity and non-similarity based operators. These rewriting properties and rules allow
handling queries centered either at the same or at distinct query centers.

Figure 3.4 presents the time line of the query rewriting literature papers, following the

four approaches employed for similarity in MIS.

3.7 Cost and Condition Selectivity Model

In the last years, few researches have explored query cost and conditions selectivity
estimation models for MAMs, regardless of the important role these models plays in

the query optimization processes.

33

yoeouddy 10ex3 yoeoliddy Azzn4
yoeosddy pugAH yoeoiddy yuey

puaba
aur awiL
m (41014 H TT0C H 0TO0C H 6002 H 800¢ H £00¢ H 900¢ H S00¢ H 002 H €00¢ H 200¢ H 1002 H 000C H 6661 H 8661
[epens] [leweeuel] —_— [rersauon [reecen)]]
lerr d [er
slojesado [(EI0ER] syBiapn yum [enbap) slojelado
uiof pue Aianb awes) | uonelado papuaixg sareoipaid dnaydoy elgably
Ag-dnoib Sse|2-1sll} elpawnnN m>_w:maxm_ JusWUIeU0d Aejuis
Auejwis se Bupjuey 10} e1gab)y : pue -INIA
10} S9Ny ws|jew.o Auewuis 2ousjeAinbg
Bunumay
Bunumay g Bunumay
Bunumay Bunumay £1and Bunumay A Bunumay A1and
Aand Aiand Aiand ISETle)
V “ [erpsRH
[eeeuel]
eigabre
paseq Aurejiwis
-adeys 0} A1oay ga
[ensiA [euonipen
Jo s9|ny
Bunumay
A1and Bunumay
£1and

3.7 Cost and Condition Selectivity Model

Time line for the existing query rewriting works, following the four ap-

proaches used in MIS.

Figure 3.4

34 3. Similarity Queries

Considering selectivity estimation models, Belussi and Faloutsos [1995] analyzed
spatial datasets using concepts from the fractal theory. Traina Jr. et al. [2000a] presented
the first selectivity condition estimation model for similarity queries in metric spaces, using
the Slim-tree. The main contribution of this work was the Distance Law, an empirical
power law that expresses the distance distribution function for real datasets. The exponent
in this law, called the distance exponent, is the key to solve the problem of selectivity
estimation on metric spaces.

The multi-dimensional selectivity estimation method for similarity queries in mul-
timedia databases using the fuzzy approach was presented in Lee et al. [2003]. The
discrete cosine transform estimates the selectivity of a similarity query, whose shape is a
hyper sphere, by constructing a set of hyper rectangles that are compactly contained in
the hypersphere. A histogram technique to approximate the density of multi-dimensional
datasets with real attributes using the local density of the data was presented in Gunopulos
et al. [2005]. A sampling-based cardinality estimation method for rank-aware operators
employed to estimate the output cardinality of the query plan was presented in Li et al.
[2005]. An approach based on clustering techniques was employed to approximate the
selectivity of multimedia range queries in Déller and Kosch [2005]. Data density functions
of relations approximated by cosine series and the usage of these approximations to
estimate selectivities of range queries were proposed in Yan et al. [2007]. Sampling
techniques for selectivity estimation of set similarity queries using traditional weighted
similarity measures and the design of selectivity estimators based on a priori constructed
samples were explored in Hadjieleftheriou et al. [2008].

The first cost model for metric trees was proposed by Ciaccia et al. [1997]. This model
considers the distance distribution between pair of elements as uniform and estimates the
number of disk accesses on the M-tree leaf nodes. A generic cost model to evaluate the
cost of query plans in MSA was provided in Adali et al. [1998]. A methodology to model
the cost to access the index structure for multi-dimensional data was presented in Béhm
[2000]. The cost estimation equations considering the fractal distribution of datasets,
which better approximates the behavior of real datasets was modeled in Traina Jr. et al.
[2000a]. Regarding the RankSQL framework, Li et al. [2005] indicated that rank-aware
operators are context-sensitive selective, and they reduce the cardinality of intermediate
results because the framework does not output all the tuples processed. All of these
operators depend on k, so they cannot be assumed to be independent from their locations
in the whole plan, as it is commonly assumed for selection and join selectivities. Thus,
the selectivity of rank-aware operators enables to reduce both the evaluation of predicates
that have various estimated costs and the cost of join operations. Also, ranking query
plans do not need to materialize a query, making the query plan ranking much more
efficient than the traditional ones, which can be prohibitively expensive. The work of

Baioco et al. [2007] presented a selectivity and cost model for similarity queries in the

3.8 Users’ Preferences 35

Slim-tree. A cost model to integrate multiple similarity-based image joins in a multimedia
database using the R-tree index family was presented in Kosch [2010].
Figure 3.5 presents the time line of the cost and condition selectivity estimation

literature papers, following the four approaches employed for similarity in MIS.

3.8 Users’ Preferences

The results of a query that do not match the user expectations are common situations
in multimedia systems, which frequently lead to a “closed-loop” interactive process,
where the user evaluation of an initial query result is fed back to the query engine
and then taken into account to compute a further (possibly) “better” result, and so
on [Ciaccia et al., 2000]. Users’ preferences can be represented in the query engine
following either the qualitative or the quantitative approaches [Stefanidis et al., 2011].
Preference query processing models are exploited through (i) expanding queries, and
rewriting them to incorporate preferences in a process called query personalization; or
(ii) employing preference operators to explicitly express them within queries [Stefanidis
et al., 2011].

In the quantitative formulation, the amount of interest is quantified to specify the
user preferences [Stefanidis et al., 2011]. This representation is useful to give the user
the possibility to assign different relevances to the results obtained by his/her queries.
Such “user preferences” can be expressed by weights, which adequate each answer to the
user’s expectations. Most of the studies in the literature considering users’ preferences in
similarity queries are based on fuzzy approaches, and weights are introduced to provide
additional flexibility to express the user requirement [Ciaccia et al., 2001]. Many of
these studies are based on the paper of Fagin and Wimmers [1997], and follow the
quantitative approach for preference formulation [Stefanidis et al., 2011]. For instance, the
SAMEY formulation considers the presence of weights in the similarity queries aiming at
expressing the user preferences [Montesi and Penzo, 2000]. Beecks et al. [2011] presented
the “unknown preference retrieval model”, which is a content-based multimedia retrieval
that is based on weighting the similarity measurement to retrieve all preferable element
with respect to any preference setting.

When pursuing the qualitative approach, the preferences between pairs of tuples are
directly expressed [Stefanidis et al., 2011]. This approach uses partial order subsets to
model the preference queries, exploiting the ‘ceteris paribus’ (all others being equal)
semantics to retrieve tuples. Following this approach, a set of conditional preference

rules (cp-rules) that retrieves tuples of a relation 7" is expressed as [Wilson, 2004]:

roAp=ap N NAp=a, > (A=a) > (A=ay) , (3.1)

3. Similarity Queries

36

yoeouddy 10ex3 yoeouddy Azzn4
yoeoiddy pugAH yoeolddy suey

pusba

aur awiL

m Z10¢ H T10C H 0T0¢C H 600¢ H 800¢ H L00¢ H 900¢ H S00¢ H ¥00¢ H €00¢ H 200¢ H 000¢ H 8661 H 1667 H S66T

[epUeAl (rePsondong)] [eeireuel] [epssed
[eeypsoy] - __mm_% i [ewas
g suonouny anbiuyoa) meysoueisiq| [PREV | [rREced] sjeserep
s9all-y Aisuap ereq weiboIsiH wJojsues) . leneds
S~ Buydures [Ty ISPON REIEel Aurejuns W souelsiq)
-Rurewis ’ Aunnoajes Ainnosjes : ’ [eoelS
[l cooeg] [eswerl I9PON 13PON BESIESS | BRETEES
BPON 1500 b__\,m_w%m__/_mw AuAnos|es funoajes | PPONISOD | [SPONISOD |9POW
. san-wiis Aureurpres [epurpd] Aianosjes)
sauanb paseq
Aurejus -Buydwes erep
[euoisuswip
I9PON [oapoN -InN
Aunnosies Ainnoajes
[rcooed] [e®RRd [REONIS0S)
. i [ep:reuel]
EENEIIS anbjuyoay
sauanb Buuaisn|d uonnqtisip
Auejuis [eoe.i4
I9PON
[9POIN 1500 ISTINEETELS ISPOIN 150D
[eer
BAII8|8S
BAIlISUsS
-X81U0D
I9PON 150D

Time line for the existing cost and condition selectivity estimation works,

following the four approaches used in MIS.

Figure 3.5

3.9 Data Mining 37

where {Ap, ..., An, A} is a set of attributes of the relation 7', and a; € dom(A). The
left side of rule r is called the antecedent and the right side is called the consequent
of r. A set of cp-rules determines the preference partial order set of all the tuples in
relation 7. The semantic of a cp-rule is described as: Let t; and ¢; be two tuples from
relation T'. Then ¢; is preferred to t; according to the cp-rule r if t;[A;] = t,[An] = an,
for h € {1,...,m}, t;[A] = ay and t; = [A] = ay. Tuples can be compared using the
transitivity property existing over the partial order set of cp-rules [de Amo and Ribeiro,
2009].

Analyzing its expressiveness power, the qualitative formulation of preferences is more
general than the quantitative one, since not all preference relations can be expressed

through degrees of interest in conditions [Stefanidis et al., 2011].

3.9 Data Mining

Data mining is the main task of a Knowledge Discovery in Database (KDD) process,
responsible for searching and extracting the knowledge in a large volume of data. In
this step, data mining tasks and algorithms are employed over data to extract hidden
patterns. Data mining tasks can be classified into two categories [Han and Kamber,
2006]: (i) Predictive, which refers to those that perform inference on the current data in
order to make predictions; and (ii) Descriptive, which refers to those that characterize the
general properties of the data. The main data mining tasks are: classification, clustering,
association rules discovery, and summarization. This monograph focuses on the data
mining association rules discovery task to support similarity retrieval over RDBMSs.
The association rules discovery task is the discovery of association rules that relate
values of attributes occurring with regularities at distinct regions of the data (such as at
distinct attributes of the relation or at distinct subsequences in ranked data) that occur
frequently in unexpected patterns in a set of data [Han and Kamber, 2006]. This task
has been extensively studied and applied to market basket analysis since its introduction
by Agrawal et al. [1993], a seminal work that introduced the discovery of association
relationship among sets of data items in tuples. It can be described as follows. Let
I = {i1,....i,} be a set of data items (stored as attribute values). A set X € I is called
an itemset. Let T be a relation with tuples ¢ involving elements that are subsets of I. An
association rule is an expression of the form X — Y| where X and Y are itemsets. The
variable X is called the body or antecedent of the rule. The variable Y is called the head
or consequent of the rule. The rule ‘support’ is the ratio between the number of tuples of
T containing itemset X UY and the total number of tuples of 7. The rule ‘confidence’ is
the percentile of the number of tuples containing X that also contain Y. The problem of

mining association rules, as it was firstly stated, consists of finding frequent occurrences

38 3. Similarity Queries

of tuples that satisfy the restrictions of minimum support sup,,;, and confidence con f,in
specified by the user.

Mining association rules from complex data is more complex than from the scalar
one. Although this monograph focuses on association rule mining algorithms that mine
complex data as image datasets, the same concepts can be employed to extract rules from
other complex data types [Jiang et al., 2008], whenever adequate feature extractors are
employed. This concept is exploited in Section 5.4 to integrate data mining algorithm in
RDBMSs.

Image mining algorithms extracts relevant features from the images, organizing them
into feature vectors [Ribeiro et al., 2008]. These vectors are employed in place of the
images to represent them as in the comparison operations, and therefore they are the key
information about the images that are handled in the association rule mining process.
The original Apriori [Agrawal and Srikant, 1994] algorithm is modified to allow mining
rules over the pre-processed data, restricting the body of a rule to be composed of feature
indexes and the corresponding intervals, and the head of the rule to be composed only of
an image class. Therefore, the format of an association rule that is the objective of the

image mining task is:
frilliy = ly)s ooy foullng — lny] = Classg,, ..., Classg,, (sup,conf) . (3.2)

The meaning of this rule (Equation 3.2) is: the images having the features f,,, ..., f..,
respectively in the closed intervals [l;, — l1,],...,[ln, — lny] tend to be in classes
Classg,,...,Classg,,, with support sup and confidence conf. The maximum number
of features max eqture in the body is the largest amount of features that can be extracted
by the corresponding extractor, such that 1 < n < maz feqture, and the maximum number
of classes maz.qss in the head is the number of classes found in the relation such that

1 <m < MaZclass-

3.10 Final Comments

With the advent of multimedia applications, similarity operators have evoked a large
attention, mainly to handle content-based retrieval of complex data. Multimedia
Information Systems usually treat similarity using four different approaches: rank, fuzzy,
hybrid and exact. In this chapter we discussed similarity queries, which have the objective
of searching the most similar elements to a given query center, and that follow a similarity
criterion. Among the several types of similarity queries, the most used are the range and
the k-nearest neighbor queries. We also presented an overview of similarity algebras
present in the literature, of the main query optimization techniques, query rewriting

techniques, and cost and condition selectivity estimation model that explore those four

3.10 Final Comments 39

approaches. The techniques employed to explore users’ preferences and data mining tasks
over complex data are also presented.

In this monograph, we adopt the exact approach, and the techniques that we developed
are based on the definitions and concepts of similarity queries presented in this chapter,

as we will present in Chapters 4 and 5.

40

3. Similarity Queries

4

A novel approach for Similarity Query

Optimization Process in DBMSs

4.1 Introduction

As the performance of similarity queries tends to be significantly more expensive than the
identity- and TOR-based queries over scalar data, improving their executions whenever
possible is always worth to exploit. To this intent, three mechanisms have been applied:
(i) Metric access methods based on index structures; (ii) Query optimization; and
(iii) Semantic restrictions over the search space based on local or transient conditions,
such as users’ interests at that query time . As mentioned earlier, a metric access method
organizes the set of stored elements in order to speed up similarity-based retrieval. Query
optimization finds the execution plan, among all the equivalent possibilities, that bears the
minimum cost. Semantic restrictions are used as conditions system-inserted in the query
aiming to filter out whole subspaces of the data distribution assuredly excluded by the
query semantic, thus speeding up the data retrieval. Semantic restrictions can also help to
improve the efficacy of a query, as it enables retrieving answers that more closely follow the
user’s expectation. Employing semantic restrictions enable developing a “query refinement
technique” that retrieves elements closer to the user’s expectation and excludes elements
that assuredly the user is not interested in. This chapter presents techniques developed in
this doctorate to integrate similarity queries into relational database management systems
(RDBMSs) employing these three mechanisms to improve both efficiency and efficacy of
similarity queries, helping to take into account the user’s expectations and enabling the

use of query refinement techniques.

41

42 4. A novel approach for Similarity Query Optimization Process in DBMSs

The structure of this chapter is as follows. Section 4.2 shows our proposal to include
a set of new algebraic operators to the relational model, to allow handling simple and
complex attributes and similarity queries in the same conceptual model. Section 4.3
presents an algorithm to generate the canonical plan that takes into account the new
algebraic operators to process similarity queries. Section 4.4 shows techniques developed
in this doctorate to integrate similarity queries together with the traditional query
processing, in a way that allows performing query optimization through query rewriting.
Section 4.5 presents the proposed Similarity Algebra. Section 4.6 shows how semantic
restrictions can be effectively used as filter in query refinement and Section 4.7 shows the

concluding remarks of this chapter.

4.2 Including similarity-based operators into the Rela-
tional Model

In order to allow managing complex data integrated with the scalar ones, we propose
including into the relational model new algebraic operators to perform similarity-based
operations in a way that complex and simple attributes in the tuples of a relation can
be queried by similarity, identity and by relational comparisons. Notice that the new
algebraic operators can be expressed in terms of the existing operators, but it is far more
convenient employing them than the basic algebraic operators. This is an important
consideration, as it allows that all the properties that meet by the existing operators
remain valid when the new operators are included, and we need just to define the
properties that involve the new ones. In this way, the relational algebra that governs
the set of operators extended by the new similarity-based algebraic operators is the
same original algebra (there is no extension to the algebra itself). However, to simplify
referring to the “relational algebra applied to the set of operators extended by the new
similarity-based algebraic operators” in this monograph, we call it simply the “extended
algebra”. In the same way, we call relations that include complex attributes as extended
relations, even though they follows the same properties and definitions of the traditional
ones. Here, the term ‘simple attribute’ refers to an attribute of a scalar data type that is
compared by the traditional relational or identity comparison operators, while the term
‘complex attribute’ refers to an attribute that can be compared by similarity, i.e., it is
drawn from a metric domain where a distance function was defined.

Let A, C Ay be a simple attribute in a domain A, that allows comparisons using
traditional operators; S; C S; be a complex attribute in a domain S; in a metric space that
allows comparisons using complex operators; and 7" be a relation with any number of both
simple and complex attributes. Thus, T = {Ay,...,A,,,S;,...,S,} is a relation schema

and a relation 7" whose schema T is a set of attribute roles T'= {A;,..., A, S1,..., 5},

4.3 Canonical Plan Algorithm 43

that is, the domain dom(A;) = Aj and the domain dom(S;) = S;. Considering that

T is also a set of tuples, each tuple t = (ay, .. ., Sp) € T has each value a,

oy ST,y - -
(1 < h < m) obtained in domain A; and each value s; (1 < j < p) obtained in the
domain S;. Notice that as attributes A, and S; are roles, it is possible that more than
one attribute obtain values in the same domain, that is, Ay, = Ay and S; = S;. In
this way, ¢;(S;) (1 < i < n) is the value of the i tuple on complex attribute S;, and
correspondingly t;(Ap) is the Ap-value of ¢;. Figure 4.1 illustrates a relation composed of

both simple and complex attributes.

22 gy
LTI A& T 4 T 5 T 5 Tl 5]
value;_A,; value;_Ay| ... |value;_A,,|value; Sy value; .S, value;_S,
valuey_A; value,_Ay] ... [valuey_A, [value,_S] value,_S’; value,_S,
value; A, value; ApD. . .[value; A, [value; S| value; 5; value; S,
b ZA”) tIS*j)

Figure 4.1: A relation composed of both simple and complex attributes.

To alleviate the notation of handling several attributes in a relation, whenever the
focus of the text is over only one attribute, this thesis uses just S and S to refer to a
complex attribute S; and its respective domain S;, and A and A to refer to a simple
attribute Ay and its respective domain Ay,.

Once the relational model had been settled, an extension of an SQL-like query language
can be used to write queries that mix traditional and similarity-based predicates. In this
thesis we use the extension already existing for the SIREN prototype [Barioni et al., 2009]
for a SQL extension able to represent similarity queries, which we present some details in

the next chapter.

4.3 Canonical Plan Algorithm

The syntax of the SQL-like query language to describe a similarity selection (an unary
operator), which can be combined or not with traditional predicates, follows the same
syntax as standard SQL. Queries are expressed with the “SELECT-FROM-WHERE” statement

that has the general form presented in Figure 4.2. The strings <table references>,

44 4. A novel approach for Similarity Query Optimization Process in DBMSs

<attribute_list;>, <attribute_lists> and <attribute_listsz> are defined in the same
way as in standard SQL, and <where_conditions> and <having conditions> can be a

Boolean combination of either traditional or similarity predicates.

SELECT <attribute_list;>
FROM <table_references>
WHERE <where_conditions>
GROUP BY <attribute_listy>

HAVING <having_conditions>
ORDER BY <attribute_listsz>

Figure 4.2: General form of an SQL-like query.

When similarity queries are received by a RDBMS, the query is compiled, optimized
and then executed. The query compiler makes the lexical, syntactic and semantic analysis.
Besides handling the special constructs involved in the similarity-related syntax, the
compilation process is virtually the same as before, since it is specific for the query
language. Because this monograph does not propose a specific extension to SQL-like
query language, we do not focus the description of the properties shown here on the
query compiler analysis. In fact, although those properties aim at being used to improve
query rewriting, they are generic to any query language supporting the involved algebraic
operators.

After the compilation process has been successfully executed, the canonical tree is
generated and sent as input to the query optimizer. The basic steps to translate a
query involving similarity-based constructs into an algebraic expression (that is, ignoring
special constructs like set-theoretical operators), and thus generating the canonical
tree that includes complex attributes and similarity-based operators, are presented in
Algorithm 4.1.

For illustration purposes, let us use again the CoPhIR! database presented in

Chapter 2 and Appendix A. This database has a relation whose schema is the following:

CoPhIRdb = {UserId, Photold, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate},

where UserId, PhotoId, Title, Description, Tags, Lat, Long and Country are
traditional attributes (colored in red), Image and Coordinate are complex attributes

(colored in blue) and {UserId, Photold} are the attributes that compose the primary

key. The Manhattan (L;) distance function is employed to calculate the similarity
between elements of the complex attribute Image, and the Euclidean (L) distance
function is employed to calculate the similarity between elements of the complex attribute

Coordinate.

LCoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.

4.3 Canonical Plan Algorithm 45

Algorithm 4.1 Generation of canonical plan.
Input: Compiled SQL-like query.
Output: Canonical plan.

1: Read <table_references>
1.1: if <table_references> = <table_name>, then convert ‘Read(relation) ‘

1.2: if <table_references> = <subquery>, the recall ‘Algorithm 4.1
2: Read <where_conditions>

2.1: if <t;(A;y) 6 constant>, then convert
2.2: if <t;(A;1) 0t;(Ay)> and i = j, then convert

(condition)

2.3: if <t;(Ay) 0t;(A1)> and @ # j, then convert |¢; X t

2.4: if <t;(S;) 0. constant>, then convert
2.5: if <t;(S1) 0. t;(S1)> and ¢ = j, then convert

(condition)

2.6: if <t;(51) 0. t;(S1)> and i # j, then convert |¢; X, t

: Where there are more than one table, then convert

: Read <attribute,1ist2>, convert ﬁ() — H{<att1ist1>U<attlist2>U<atr.cond2>}

w

>~

5: Read <having conditions>

5.1: if <t;(A;) 6 constant>, then convert
5.2: if <t;(S) 0. constant>, then convert

: Read <attribute_lists>, convert | Op(<attiists)

: Read <attribute_list;>, convert

[=2]

EN|

Suppose that a user wants to retrieve three photos of beaches that are the more similar
to the given photo and such that the retrieved photos were taken from tropical climate
beaches. That is:

Example 4.1:

Q2: “Select the 3 beach photos more similar to the one stored at
‘c:\MyBeachPhoto. jpg’, such that the photos were taken from tropical climate

beaches”.

Figure 4.3(a) expresses Query Q2 in an extension of the SQL query language employed
by the SIREN prototype, which is presented in Chapter 5.

The purpose of Algorithm 4.1 is to take the query expressed in SQL (or in our
case, in the SQL-like language of SIREN) and convert it to its canonical tree, which
is an operation-tree whose leaf nodes are the relation accessed by the query and
each interior node is an relational operator. Thus, Algorithm 4.1 reads the SQL
command for Query Q2 to first find <table references> (Step 1), creating the leaf

nodes. Since <table references> is a relation name, the FROM clause is converted

in just the leaf node ‘Read(c(,phmdb)‘ (Step 1.1). Following, the algorithm searches

for the WHERE clauses (Step 2). Considering the <where _conditions>, the algorithm
proceeds looking for traditional predicates (Steps 2.1 to 2.3), and then for similarity-based

46 4. A novel approach for Similarity Query Optimization Process in DBMSs

predicates (Steps 2.4 to 2.6). Then, the traditional condition is converted in one internal

node ‘ O (Lat BETWEEN -23.43 AND +23.43) ‘, and the similarity condition in another internal node

(Steps 2.1 and 2.4, respectively) that will be applied

Oklmageé(Ll, 3) ‘c:\MyBeachPhoto. jpg’)
over the result of the traditional one. Finally, the algorithm projects the list of attributes

in the SELECT clause (Step 7), generating . Figure 4.3(b) presents the canonical
plan obtained for the SQL command that represents Query Q2.

(a) SIREN SQL-like query language (b) Canonical Plan

SELECT Photold -
FROM CoPhIRdDb [O—(Image 6(L1, 3) ‘c:\MyBeachPhoto.jpg’)}
WHERE Image NEAR ‘c:\MyBeachPhoto.jpg’ T

STOP AFTER 3 [U(Lat BETWEEN -23.43 AND +23.43)]

AND Lat BETWEEN -23.43 AND +23.43

Figure 4.3: (a) A query expressed in the SIREN extension of SQL to support similarity,
and (b) the canonical query plan, represented as tree, for Query Q2.

To employ an index, a query plan must execute the selection predicate associated to
the physical operation that reads the table. When a similarity predicate is executed over
a temporary, intermediate result of a previous operation, the index structures cannot be
used. As the vast majority of published works on similarity queries focuses on index
structures, there is a well-accepted fact (as mentioned in Section 3.5) that the ANN
predicates should always be the first to be executed, preceding any other. The reasoning
is that similarity-based operators are the most time-consuming ones, so it makes sense to
improve its execution rather than improving the already faster identity and TOR-based
ones. However, due to the lack of the commutativity property among the kNN and the
other operators, as we will see following, if a k-nearest neighbor predicate is executed
first, there is a great probability that the answer comes with less than k& (or even with
no) elements. In fact, there is no established standard for the order which similarity
selections should be executed regarding the other selections. Thus, in this thesis, we prefer
to execute first the selections based on identity or TOR, aiming at returning £ elements
whenever possible, which seems to us to be usually closer to the user’s expectation. Thus,
Algorithm 4.1 always generates the canonical plan executing first the traditional predicates

and then the similarity ones.

4.4 Query Optimization 47

4.4 Query Optimization

The query optimization process is well understood for scalar data. However, to support
complex data in RDBMSs, the query optimizer must be able to rewrite the similarity
queries and to estimate their costs. Therefore, some modules of the traditional query
optimizer must be extended to allow handling the similarity operators. There are two
distinct kinds of extensions that should be made: syntax-based and semantic-based.
The syntax-based extension corresponds to identify the algebraic properties of the
similarity-based operators and its interaction with the other existing operators, as well as
the estimation of the corresponding execution costs.

The semantic-based extension corresponds to identify the “external” knowledge about
the stored data or about the user’s expectation regarding the data or about the expected
query answer, generally known as semantic restrictions, that can be used to improve the
execution performance and effectiveness of queries posed over complex data. Notice that
handling semantic-based knowledge can also be applied over scalar data, but the resulting
additional overhead has precluded its widespread use. As the processing of similarity
queries is generally more time-consuming than the processing of traditional ones, the
overhead of handling semantic knowledge is relatively reduced. Moreover, the semantic
associated to similarity has, in general, more impact over both the query processing time
and the query answer quality. Therefore, it turns out that taking into consideration the
semantic-based knowledge about the stored data and about the user’s expectation when
a query is posed is an important asset that can be used to improve the similarity query
optimization process. To handle the information about the users’ interests, a third module,
called the Semantic Restriction Plan Generator must be included together with the other
two existing modules of the traditional query optimizer. It interacts with the other two
modules, including/changing predicates that improve either the filtering predicates of the
query or the screening options available to access the required data.

Figure 4.4 presents the similarity query optimizer architecture to support similarity
predicates over complex data either alone or combined with traditional predicates, taking
into account the semantic restrictions. The blue rectangles in this figure highlight the
modules that were explored in this research. As mentioned in Chapter 2, the Logical Query
Plan Generator is based on equivalence properties to apply transformations to a logical
query plan and to produce other equivalent query plans that can, ideally, be executed
faster. The algebraic laws and heuristics that drive the Algebraic Space Enumerator
module are used to specify alternative query trees, trying to reduce the size of the space
to explore. Thus, to support the similarity algebra and integrate similarity operators with
the existing relational algebra, the algebraic laws and corresponding heuristics that apply
both to the similarity operators and to their integration with the traditional ones must

be included in the Algebraic Space Enumerator module. As the commutativity property

48 4. A novel approach for Similarity Query Optimization Process in DBMSs

Canonical Plan

L

Query Optimizer (using Query Rewriting)

Logical Query Plan Generator Semantic

Restriction
Algebraic Space Method-Structure
Enumerator Space

Plan Generator

Preference
Model
Physical Query Plan Generator %> @

Data Mining
Model

Cost Model W SIZG-DI.StI'IbutIOIl
Estimator

Execution Plan

N

Figure 4.4: Similarity query optimizer architecture.

does not apply to the kNN operator, only few properties based on query equivalence can
help in the query optimization process. Therefore, we identified a new set of properties,
based on query results continence, that can be employed to generate alternative plans,
with an additional bonus that they make it easier to explore semantic optimization too.
The similarity algebra proposed in this doctorate is presented in Section 4.5.

To convert the logical query plan into a physical plan, the Method-Structure Space
module must define the strategy that best executes both each operator and their
combination, taking into account the existing indexes, either based on the metric spaces
or on the traditional ones. The ordering of traditional and similarity operators specified
by the Algebraic Space Enumerator module determines whether each index can improve a
physical plan. Our work with real databases and applications using similarity queries has
shown that often it is required to execute first the traditional and then the similarity-based
operators. When this occurs, the similarity operators need to be executed without relying
on an index structure; i.e., the sequential scan method must be applied over the result
of the previous operators to perform the (usually costly) similarity-based operators. This
is a situation that should be prevented, as it means that a MAM will be used almost
exclusively when the similarity query is not combined to traditional predicates.

The usage of semantic restrictions to improve the execution performance of queries
posed over complex data becomes attractive, since similarity query execution costs tend

to be more expensive than traditional ones. Semantic restrictions are properties known

4.5 Similarity Algebra for metric spaces 49

to exist among each particular subset of the data domain that either is effectively stored
in the database, or meets users’ interests. They can be employed as conditions to filter
out whole subspaces of the data distribution and thus speed up data retrieval. To handle
semantic restrictions in DBMSs, the query optimizer architecture must be complemented
by the Semantic Restriction Plan Generator, which has two modules: (i) Preference Model
and (ii) Data Mining Model. The Preference Model module evaluates criteria that express
the knowledge over users’ interests to identify the regions where the answer should be
searched, pruning those answers that can not be found. Thus, this module is responsible
for the inclusion of users’ preferences in the query. The Data Mining Model module
mines knowledge from the complex data stored and retrieved by previous queries, using
the patterns found to detect correlations, clusters, etc. and to exploit them improving the
query plan. Thus, this module is responsible to include knowledge about the stored data
into the query. Techniques proposed in this doctorate to be employed in the Preference
Model and the Data Mining Model modules are described in Subsections 4.6.1 and 4.6.2,

respectively.

4.5 Similarity Algebra for metric spaces

The Similarity Algebra is an extension that we developed for the relational algebra
to couple similarity-based algebraic operators to the already existing identity- and
TOR-based operators. The fundamental properties defined by the Similarity Algebra
aim at integrating both unary similarity operators, range and k-nearest neighbor, into
the relational algebra. These properties allow handling queries including any number of
query centers, and are suitable to support both similarity-based and traditional operators
in the same query. The properties that we stated are the most flexible possible, as they
allow that both the query centers, the distance functions employed and the querying
attributes can be different at each predicate. Subsection 4.5.1 defines the similarity
operations. Subsection 4.5.2 presents the properties of the similarity range operator and

Subsection 4.5.3 defines the properties of the k-nearest neighbor operator.

4.5.1 Similarity Operations - Definitions

To begin our search for the properties involving the similarity selection, we indicate any
similarity selection as a new operator in the relational algebra using the symbol o, in place
of the traditional o. As we will see later, the similarity range selection shares the same
properties of the traditional selection, thus only the k-nearest neighbor selection effectively

requires a distinct symbol. However, we start using o, for both similarity selections.

Similarity selections follow the same syntax of the traditional ones: |0, (sg, s,) T'|, where

‘0.’ represents a similarity selection, S is the selection attribute chosen from the complex

50 4. A novel approach for Similarity Query Optimization Process in DBMSs

attributes of the relation 7', ‘6.’ is a similarity comparison operator valid in the domain S
of the attribute S, and ‘s, is the query center and is either a constant (or an expression
that returns a constant) taken in the domain S or the value of another attribute of T
having the same domain S occurring in the same tuple.

The similarity comparison operator 6. can be either the range or the k-nearest neighbor
operators (and their variations), as described following. Each similarity comparison
operator must define the distance function employed to measure the similarity among
any pair of elements of the respective domain and the similarity threshold employed to
decide whether each element meets the corresponding predicate.

The range predicate is represented as 0 (d, &), where d is the distance function and & is
the similarity threshold. A similarity range selection returns every tuple where the value
t(S) of the attribute S differs from the query center in at most the similarity threshold &
measured by the distance function d. Definition 4.1 shows the range selection definition.
The complementary operation of range query is called Reversed Range query (Rq_l).

Definition 4.1. Range query - R,: Let S be a complex attribute taking values in

the domain S over which the similarity condition is expressed, d be a distance function, &

A

be the similarity threshold and s, € S be the query center. Then the query 0'(5 6(d,€) 54) T

returns every tuple t; € T such that d (¢;(.S), s,) < £. That is,

6(5@(11,5) sq) T=A{tieT|d(5),s) <&} - (4.1)

The k-Nearest Neighbor predicate is represented as é(d, k), where d is the distance
function and k € N* is the similarity threshold. A k-Nearest Neighbor selection returns
the tuples where the value ¢(S) of the attribute S is one of the k elements most similar to
the query center based on the distance function d. Definition 4.2 presents the k-Nearest
Neighbor selection definition. The complementary operation of kNN, is the k-Farthest
Neighbor query (kFN,).

Definition 4.2. k-Nearest Neighbor query - kNN,: Let S be a complex attribute
taking values in the domain S over which the similarity condition is expressed, d be a
distance function, k& € N* be the similarity threshold and s, € S be the query center. The
query 6(3 B(d, k) s0) T returns the tuples {¢1,...,t} C T such that, for each i = 1,...)k
the value of the attribute S in the tuple t; — £;(S) — is one of the k elements in S nearest

to the query center s, based on the distance function d. That is,
Ssaann T= (L€ T|VEET T\ d(t(S).5) <d((S).5)} . (42)

where 7" =0, if i =1and 7" = {t1,...,t; 1}, if 1 <i < k.

4.5 Similarity Algebra for metric spaces 51

A more formal definition of kNN, is

6-(5' 6(d, k) sq) T= {th s 7tk}) (43)

where

th={t; e T|VteT, dt(S),sq) <d(t(S),s9)} ,
to :{tz el — {tl} | VtieTl — {tl}, d(tz(S),Sq) < d(t(S),Sq)} ,

tk :{tz el — {tl, ce 7tk—1} | VteT — {tl,tg, ce ,tk_l}, d(tl(S),sq) S d(t(S),Sq)} .

Equation 4.2 is commonly used in the database literature to explain kNN operator.
However, to prove the inclusion-based properties, it is convenient to express the kNN,
following algebraic rules, where the concept being defined cannot itself be employed in its
definitions. For this reason, Equation 4.3 presents the formal definition of kNN,. Table 4.1
summarizes the unary similarity operators, showing its notation in the similarity algebra

and the condition that a tuple should meet to belong to the query result.

H Query ‘ Notation ‘ Condition H
Range query R, O(50(d,) 5) 1 d(ti(S),sq) < ¢
Point, query S(somn) T A(E(S), 59) = 0
Reversed Range query R* (39 1(d,€) s,) T d(t;(S),s4) > &
k-Nearest Neighbor query | kNN, U(S (d, k) 54) T d(t:(S), sq) < d(t(S), sq)
k-Farthest Neighbor query | KFNg | 9(s4,.d, k) s,) T | d(ti(S),s,) > d(t(S), s,)

Table 4.1: Summary of unary similarity operators.

4.5.2 Properties of the Range Selection

This subsection presents algebraic equivalence-based properties and their proofs, which
are useful to rewrite expressions involving the range (é) operator. The same properties
can be used for the reversed range (A1) operator.

These properties show that the range selection shares same algebraic equivalences
as the traditional selections. Moreover, as we will show (Property R4.5), range and
traditional selections are commutative. Therefore, the query optimizer of a DBMS can

treat range selection using the same properties of the traditional ones.

Property R4.1 shows that the range selection operator meets the idempotent property.

52 4. A novel approach for Similarity Query Optimization Process in DBMSs

Property R4.1: Let T be a relation, S in 7' be a complex attribute taking values in
the domain S over which the similarity condition is expressed, 6 be the similarity range
operator, d be a distance function, { be the similarity threshold and s, € S be the query

center. Then, the range idempotent property is expressed as

6(5 0(d, €) sq) (6(5 0(d, €) sq) T) = 6(5 0(d, €) sq) T. (4.4)

Proof. Tts proof follows directly from the Definition 4.1. Thus, Definition 4.1 is used to
proof Property 4.1.

6(Sé(d,§)sq) (6(sé(d,g)sq) T> = 6(59615){t e T[d(ti(5),sq) <&}
={t: e {t: € T [d(t:(5), s)<€}|d(ti(s)a3q)§5}
={t: € T'[d(ti(5),54) <& N d(ti(5),54) <&}
= {t: € T | d(ti(5),5,) < }

~

= O(si,e)s,) T

Properties R4.2 and R4.3 consider conjunctive and disjunctive conditions of range
selection operators. For conjunctive conditions, Property R4.2 shows that it can be
rewritten into a cascade of individual ¢ operators or a sequence of intersection operators.

Property R4.2: Let T be a relation, S7, Sy € T' be complex attributes taken in the
same domain S over which the similarity condition is expressed, 6 be the similarity range
operator, di,d,; be distance functions, &, & be similarity thresholds and sg1,5.,0 € S be

query centers. Then,

A

6(51 0(d, €1) sq1) A (S2 0(da, &) s42) T = 6(31 0(d, €1) sq1) (G(Sz 0(da, €2) s2) T)

B (6(51 B(da, &1) sq1) T) n (6(52 0(ds, £2) sq2) T> : (4.5)

The proof of Property R4.2 uses the similarity range selection Definition 4.1.

4.5 Similarity Algebra for metric spaces 23

Proof.

6(51 6(dy, &1) Sq1) A (52 0(da, £2) 5q2) T
={t; € T|d(t;(S1),5q1) < & A d(ti(S2), sp2) < &}

={ta € T|d(t:i(S1),50) <&} N {ti € T d(ti(S2), 8¢2) < &a}
- (6—(51 é(dlvﬁl) Sql) T> m (6-(52 é(d27§2) 5q2) T)

On the other hand,

= {ta € T|d(ti(S1),50) <&} N {tio € T [d(ti(S2), 502) < &2}
= {ta € {tx € T [d(t:i(52), 842) < &2} [d(ti(51),51) < &1}

= 6(51 6(d1, €1) 5(11)(6(52 0(dz, £2) 842) T) :

m
A special case exists when s,; = s42, which meets the property following.
Property R4.2.1: Special case where s, = 542 = 5.
<G(S 0(d,€1) q) T) " (G(SW &) %) T) B
G(S 0(d, &) Sq) A (S 0(d, &2) Sq) T = 0(5 é(d, min(§1,§2)) Sq) b (4.6)

For disjunctive conditions, Property R4.3 presents that it can be rewritten into a
sequence of union operations, as follows.

Property R4.3: Let T be a relation, Sy, Sy in T" be complex attributes taking values
in the domain S over which the similarity condition is expressed, 0 be the similarity range
operator, d1,d, be distance functions, &, be similarity thresholds and s;,S.2 € S be

query centers. Thus,

A

G(sl 0(d1, &1) sq1) V (S2 0(da, &2) s42) T = (6(31 0(d1, &1) sq1) T> U <6(52 O(da, &) 5q2) T) . (47)

Proof. Property R4.3 can be proved using Definition 4.1.

6—(51 6(dy, 1) Sql) \ (52 0(da, £2) 3112) T
={t; € T|d(t:;(S1),5q1) < & V d(ti(S2), s2) < &}

={ti € T |d(t:i(S1),5q1) <&} U {tio € T | d(ti(S2), 742) < &o}

= (6’(51 6(d1, &) sql) T) U (6-(52 6(dz, £2) 5(12) T)

54 4. A novel approach for Similarity Query Optimization Process in DBMSs

]
It exists a special case of Property R4.3 when s, = 542, which is stated as follows.
Property R4.3.1: Special case where s, = 540 = 54.
(6(59@ &) s4) T) N <6(59(d7 &) s) T) B
O(sita.e)s)v (siae s) I = % (s0(amaxter,)) : o

Properties R4.4 and R4.5 explore the commutativity of the ¢ operator both with other
o0 operators and with the traditional operators. Property R4.4 shows that the R, selection
operator commutes with other ¢ operators.

Property R4.4: Let T be a relation, Sy, Sy € T be complex attributes taking values
in the domain S over which the similarity condition is expressed, 0 be the similarity range
operator, dy,dy be distance functions, £, & be similarity thresholds and sq1,540 € S be

query centers. Then,

6-(5'1 0(da, 1) Sql) (6—(52 0(dz, &2) qu) T> - 6-(52 0(dz, &2) qu) <6-(51 0(ds, &1) Sql) T)) (4’9)

Proof. This proof is obtained directly using Property R4.2 and Definition 4.1. m

Property R4.5 states that the range selection operation and traditional selection
operation commutes.

Property R4.5: Let T be a relation, S € T be a complex attribute taking values in
the domain S over which the similarity condition is expressed, 6 be the similarity range
operator, d be a distance function, £ be the similarity threshold and s, € S be the query
center. Let also A € T be a traditional attribute taking values in the domain A over which
the traditional condition is expressed, # be either a exact match or a relational comparison
operator, and a be either a constant (or an expression that returns a constant) taken in
a domain of A or the value of another attribute from the same domain of A in the same

tuple. Then,
8(sita.c)or) (010 T) = Sao0) (S(siaee) T) - (4.10)

4.5 Similarity Algebra for metric spaces 25

Proof. Definition 4.1 and definition of the traditional selection are employed to prove
Property R4.5.

O(si.e)sg) (O0@ T) = Oga.¢)) {ti € T [t:(A) 0 a}
—{ti € {t; € T|t:(A) 0a} | d(t:(S),s,) < €}
={t;eT|t;(A)0a N d(t;,(5),sq) <&}
={t;e{ti e T|d(t:(5),sq) <&} |ti(A)ba}

= 0(46a) (6(5 4(d, €) Sq) T)
O

Since ¢ is commutative with o, Properties R4.2 and R4.3 can also be employed
to handle these operations. Therefore, Properties R4.2 and R4.3 can be used with

expressions involving either the & operator only or ¢ and o operators.

The next set of properties involves traditional binary operators. These properties
allow pushing range selections through union (U), intersection (N), difference (—), cross
product (x) and join (X) operators.

Property R4.6 shows that ¢ is distributive over the set-theoretical binary operators U,
— and N. As it is required by the relational algebra, relations 77 and 75 must be union
compatible.

Property R4.6: Let 77 and 75 be two relations, S € T} and S € T5 be a complex
attribute occurring in both relations and taking values in the domain S over which the
similarity condition is expressed, 6 be the similarity range operator, d be a distance
function, £ be the similarity threshold and s, € S be the query center. Then,

Property R4.6.1: For union:

6(Sé(d7£) sq) (L U D) = (6(Sé(d7£) 5q) T1> U (6(Sé(d,§) 5q) T2> : (4.11)

Property R4.6.2: For difference:

O(site) (Tt = T2) = (6(Sé(d,£> sq) Tl) B (6(Sé(d,5> 5q) T2>
= (S(siwga) = 1o - (4.12)

56 4. A novel approach for Similarity Query Optimization Process in DBMSs

Property R4.6.3: For intersection:

O(sia6)5,) (11 N T2) = (6(Sé(d,5> 5a) Tl) : <6(Sé(d,£) 5a) TQ)
= <6(Sé(d,§) Sq) Tl) N T2

=70 (S(siae o T2) - (4.13)

Proof. The proof of Property R4.6.1 follows from the Definition 4.1. Thus:

fr(sé(d’ &)) (TYUTy) ={t; e ThUT, | d(t:(S),s,) <&}
={ti € Ty | (d(ti(s),5,) <} U{ti € To | d(t:(5),54) < &}
= (0(sowe o)) U (O(s000-))

The proof for Properties R4.6.2 and R4.6.3 is analogous. O]

Regarding the binary join (x) and cross product (x) operators, ¢ is distributive over
the relations that contain all the complex attribute mentioned in the similarity condition.
This is stated in Property R4.7.

Property R4.7: Let T} and T, be two relations, S € T} be a complex attribute
taking values in the domain S over which the similarity condition is expressed, f be the
similarity range operator, © is either the traditional x or the traditional x operators,
d be a distance function, { be the similarity threshold and s, € S be the query center.
Then:

6—(5’@((1,5) sq> <T1 @Tz) = <6—(Sé(d,§) sq> T1> 0T, . (414)

Proof. Let © be the x operator, S € T; and Definition 4.1, then:
O(siaes) (D1 X To) ={ti1;) € XD [d(t:i(S),s4) < &}
= {tz - T1 | d(tz(S),Sq) S f} X T2

= <6(Sé(d,§)sq) T1> X T2 .

Notice that the same proof can be applied if S € T5. The proof is analogous when © is
the x operator. O

When the range selection operator is employed in a conjunctive expression, such that

S1 is a complex attribute of relation 77 and S5 is a complex attribute of relation 75,

4.5 Similarity Algebra for metric spaces o7

Properties R4.2 and R4.7 can be used to prove that:

6‘(31 0(d, €) sq) A (52 0(d, €) sq) (T ©Ty) = (6‘(51 0(d, €) 54) T1> e (6(52 0(d,©) 54) Tg) , (4.15)

when O is either x or x. Therefore, the Equivalence 4.15 completes the Property R4.7.

4.5.3 Properties of the k-Nearest Neighbor Selection

This subsection presents algebraic equivalence-based properties and their proofs, which
are useful to rewrite expressions involving the k-nearest neighbor (0) operator. It also
presents properties derived from the inclusion of the result set of an expression in the
result set of another expression. The same properties can be employed for the k-farthest
neighbor (65) operator.

Based on query equivalence, the k-nearest neighbor selection operator has only three
algebraic properties, two special cases and the idempotent property. Moreover, a kNN
selection does not commute with any other selection operators, neither with other kNN
operators. The lack of the commutativity property has strong implications on the
optimization process, since this property is one of the most employed by the query
optimizer to reorder operators in query plans, and even for the definition of the SQL
syntax. Thus, to provide a robust set of properties to help the optimization of expressions
involving the KNN selection, we enriched the set of algebraic properties regarding the kNN

operator with the set of inclusion-based properties.

Equivalence-based Properties

Distinctly from the range selection operator, the k-nearest neighbor selector has only
three properties, two special cases and the idempotent properties based on expression

equivalence.

Property k4.1 shows that the kNN selection operation meets the idempotent property.

Property k4.1: Let T be a relation, S € T be a complex attribute taking values in
the domain S over which the similarity condition is expressed, 6 be the similarity kNN
operator, d be a distance function, k& € N* be the similarity threshold and s, € S be the
query center. Then, the kNN idempotent property is expressed as

O (5 6(d, k) 5q) (6(3 B(d, k) 54) T) = O (s, s) L - (4.16)

58 4. A novel approach for Similarity Query Optimization Process in DBMSs

Proof. Property k4.1 follows directly from Definition 4.2.

6(5 0(d, k) sq) (6(5 6(d, k) sq) T)
0(89 0 K) s){t eT|VteT —T,d(t(S),sq) <d(t(S),sq)}
={tie{t,eT|VteT-T,d(t;(S),s,) <
VteT—T,d(t(S),s

={t, eT|VteT-T,d(t;(S),s,) <d
VieT =T ,d(ti(S),s,) <d(t(S),s,)}

={t, eT|VteT-T,d(t(S),s,) <d
T

)

- 6(3 0(d, k) sq)

where 7" =0 fori =1 and 7" = {t1,...,t; 1} for 1 <i < k. O

Property k4.2 shows that conjunctions of 0 operators can be rewritten into a sequence
of intersection operations.

Property k4.2: Let T be a relation, S;, Sy € T' be complex attributes taking values
in the domain S over which the similarity condition is expressed, 8 be the similarity ANN
operator, dy, dy be distance functions, ki, ks € N* be similarity thresholds and s,1, s;2 € S

be query centers. Then,

G((sl 0(d1, k1) sq1)A(S2 6(dz, k2) sqz)) = (O (51 d(d, k1) sq1) T) n (cy(s2 0(da, k2) sq2) T) - (4.17)

Proof. Definition 4.2 is used to prove Property k4.2.

6((51 6(d1, k1) sq1) A (S2 b(da, ka) sqz)) T
—{t, € T|VteT — T, di(t:(S1), 5q1) < dr(£(S1), 1) A
ViteT — T, do(ti(Ss), sg2) < do(t(Sa), 542)}
—{t €T |VteT =T/, di(t:(S), sq1) < dr(t(S1), 50)} N
{tieT|VteT —T;, do(ti(S2), $q2) < da(t(S2), $¢2)}
= (U(sl B(d1, k1) sq1) T) N <U(52 B(da, k2) 5q2) T) ’

where T} = () for i = 1 and T} = {¢1,...,t;_1} for 1 <i < ky, whereas Ty =) for i = 1 or
Té:{tl,...,ti,l}for1<i§k2.]

A special case exists when s;; = 542, which is expressed as follows.

4.5 Similarity Algebra for metric spaces 29

Property k4.2.1: Special case where s, = 542 = 54

<G(S 6(d, k1) sq) T> N <G(S 0(d, k2) Sq) T) -

6((5 B(d, k1) sq) A (S 6(d, k) 54)) = 6(5 6(d, min(ky, k2)) sq) T (4.18)

Property k4.3 expresses that a disjunction of 6 operators can be rewritten into a
sequence of union operators.

Property k4.3: Let T be a relation, Si,5; € T be two complex attributes taking
values in the domain S over which the similarity condition is expressed, 6 be the similarity
kNN operator, dy, dy be distance functions over S, k1, ks € N* be similarity thresholds and

541,542 € S be query centers. Then,

G((Sl é(dl, k‘l) 8q1> \Y (SQ é(dz, k'Q) qu)) T - (G(Sl é(dl, k‘l) 5q1) T) U (0—<52 é(dZ, k‘2) 8q2> T>
(4.19)

Proof. By Definition 4.2, the Property k4.3 is proved.

0—((31 é(dh k1) Sql) \% (52 (d2, k2) 5q2)) r

[t € T|VteT — T, di(ts(S1),sq1) < di(t(Sy)
VtET — T do(ti(Sa), sg2) < da(t(S2)
—{ti e T|VteT T, di(ti(S1), 551) < di(£(S1), 51)} U
(i € T|VteT —T. do(ti(Se), s2) < da(t(Ss), 542)

- (6-(31 é(dl,kl) Sql) T) Y <6-(SQ é(d27k2) 8‘12> T) ’

where T] = () for i =1 and T} = {t1,...,t;_1} for 1 <i < ky, whereas Ty = () for i = 1 or
Té:{tl,...,ti_l}for1<z'§k:2. O

A special case of Property k4.3 exists when s;; = s42, which is expressed as follows.

Property k4.3.1: Special case where 541 = 540 = 5.

<6(s 0(d, k1) sq) T) U <6(S 6(d, k2) sq) T) -

é'r((s B(d, k1) 5q) v (S 6(d, k2) s4)) T = 5(59.(& (ks) Sq) T . (4.20)

The lack of the commutativity property of the kNN operator implies that each selection
must be executed separately and the intersection (in conjunctive conditions) or the union

(in disjunctive conditions) of their results must be employed to compute the final answer.

60 4. A novel approach for Similarity Query Optimization Process in DBMSs

As the intersection of two sets is commutative, the intersection of the results of two
kNN selections is commutative, even that the kNN predicates do not commute neither
in conjunctive nor in disjunctive conditions, as is shown in Property k4.4. That is, the
operator 0 is not commutative neither with other selection operators nor with itself. For
completeness reason, we express this fact in Property k4.4, as follows.

Property k4.4: Let T be a relation, 57,5 € T be two complex attributes of
taking values in the domain S over which the similarity condition is expressed, 6 be the
similarity kNN operator, d;, d> be distance functions, k1, ks € N* be similarity thresholds

and s41, 8.2 € S be query centers. Then, for conjunctive conditions

(6<51 é(dl,k‘l) Sq1> T) N (6<52 é(dg,k‘g) Sq2> T) = (6(52 é(dz,k‘g) Sq2) T) N (6(51 é(dl,k‘l) sq1> T))
(4.21)

and for disjunctive conditions

(6(51 0(d1, k1) sq1) T) U (6(52 0(dz, k2) sq2) T) - (6(52 0(dz, k2) s42) T) U (6(31 0(d1, k1) sq1) T)
(4.22)

The same property holds when the ANN operator 0 is combined (conjunctively or
disjunctively) either with the range operator “6 N /U 6”7 or with identity and relational
operators “6G N/ Uao”.

Proof. Property k4.4 can be proved using Definition 4.2.

(851 itk o) T) 0 (85,0100 20) T)
:{tz €T|\V/t€T Tll, dl(,(Sl),sql) Sdl(t
(

(€T |VteT — T, do(ti(Ss), 542) < dolt
—{teT|VteT — T, di (t:(S),s5) < di
VteT — T do(t; (S2).50) < ds (t(Ss),52)}

—{t e T|VteT —T% do (1 (S2) , 502) < o (
)

T
R

~
—~
R
~_ @~ e
V2]
<
[
~
>

Vt GT—TI/, 1(tz (Sl 7Sq1) d1 (t (Sl ,Sq1>}
:{tz eT | Vit el — TQI, dg(tl(32)7 ng) dg(t(Sg), Sq2)} N
{tz € T | \V/t € T — Tll, dl(tz(Sl), Sql) dl(t(Sl), Sq1>}

N—

(6(52 6(da, k2) sq2) T) n (6(51 0(d1, k1) sq1) T

where T{ = () for i = 1 and T} = {t1,...,t;_1} for 1 <i < ky, whereas Ty = () for i =1 or
TQ’:{tl,...,ti,l}f0r1<i§k:2.]

4.5 Similarity Algebra for metric spaces 61

The proof of the conjunctive conditions over the o and & operators is analogous.
The proof of the disjunctive conditions over the o, ¢ and ¢ operators is also realized in

analogous ways.

Inclusion-based Properties

Now we present properties based on the set-inclusion of the results of similarity selections
when executing a kNN operation in sequence either with other ANN operation or
with traditional and similarity operations. Although they do not preserve equivalence
among expressions, they can be employed by the optimizer to generate an alternative
expression that surely includes every element of the original one, thus guaranteeing no
false dismissals. If the alternative expression can be evaluated faster than the original
one and it significantly reduces the cardinality of the working set of results, the original
expression can thereafter be executed over that working set to filter out the false positives,
in a way that the overall processing can possibly be faster than processing the original
expression directly over the full dataset yet producing equivalent results.

Property k4.5 explains the relationship of conjunctions of 6 operators and the
composition of kNN selection operations. It states that the result of a kNN selection
executed over a conjunction of 0 operators is always included in the result of the
conjunction of kNN selection operations.

Property k4.5: Let T be a relation, 57,5, € T be two complex attributes taking
values in the domain S over which the similarity condition is expressed, 6 be the similarity
kNN operator, di,ds be distance functions, ki, k; € N* be similarity thresholds and
541,542 € S be query centers. Then,

O (8161, k1) 507) A (S 6z, k2) 543)) < O (51 0 k1) sy) <G(SQ 6i(da, k) sqy) T) - (423)

[\ J/
-~ v

i) (i)

Proof. Property k4.5 follows directly from Definition 4.2.

6'(52 é(dg,kg) Sq2) T = {tz eT ‘ VteT — T2/7d2 (tz(SQ), qu) S d2 (t(SQ), qu)} =D g T s

where Ty = () for i = 1 and Ty = {t1,...,t;_1} for 1 < i < ko.
Replacing in (7i), then:

<ZZ) =0 (Sl é(dl,kl)sql) D= {ti €D ’ VteD— T1/7d1 (ti(sl)vsth) <d (t(Sl)asfh)})

where 7] = () for i = 1 and T] = {t1,...,t;_1} for 1 < i < ky.

62 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D C T, and considering (ii):

(it) D{tie D|VteT —T7,dy (t;(S1), 5q,) < di1 (t(S1),54)}
={t, eT|VteT—T, dy(t;(Ss),54) <
ViteT —Ty,di(ti(S1),84) <
={t, €T |VteT —T,dy(t;(S1),54) < di (t(S1),Sq) N
VieT —Tydy(ti(S2),84) < da(t(S2), $40) }

((5'1 é(dl7 k1) sq1>/\(52 é(dg, ko) qu))T = ('l) ;

where T and T} are defined as above. Thus, (i) C (i), as required. O

Property k4.6 describes the relationship of compositions of ANN and traditional
selection operations. It assures that the result of a traditional selection performed over
a kNN selection is always included in the result of a kNN selection performed over a
traditional selection.

Property k4.6: Let T be a relation, S € T' be a complex attribute taking values in
the domain S over which the similarity condition is expressed, 0 be the similarity kNN
operator, d be a distance function, k& € N* be the similarity threshold and s, € S be the
query center. Let also A € T be a traditional attribute taking values in the domain A
over which the traditional condition is expressed, 6 be either a exact match or a relational
comparison operator, and a be either a constant (or an expression that returns a constant)
taken in a domain of A or be the value of another attribute from the same domain A in

the same tuple. Then,

0(A6a) (O(sd(d, k) sq) T) S O(sd(a k) sq) (00 T) - (4.24)

[J/ [J/
-~

(M) (i)

Proof. Property k4.6 is proved using the definitions of the traditional selection and the

similarity kNN operator, as follows.
ooyl = {tieT|ti(A)0a} =DCT
which replacing in (i7):
(17) = 6(S§(d,k)s) D={t; e D|Vte D-T,d(t(S),s,) <d(t(S),s,)} ,

where T" = for i =1, and T" = {t1,...,t;_1} for 1 <i < k.

4.5 Similarity Algebra for metric spaces 63

As D C T, then

(1i) D{t; e DVt eT =T ,d(t:(S),s,) < d(t(S),s)}
={t;eT|t;(A)0a ANVteT—T ,d(t:(S),s,) <d(t(S),s,)}
={t, eT|VteT-T,d(t;(S),s,) <d(t(S),s,) AN ti(A)ba}

— {tz < 6'(55((1’ k) Sq) T | tl<A) 0 CL}

= 0(a00) (6(Sé(d,k)sq) T) L ON

where 7" is defined as above, and (i) C (i), as required. O

Analogously, Property k4.7 correlates range and kNN selection operations. It expresses
that the result of the range selection executed over the result of a kNN selection is included
in the result of the kNN selection performed over the result of the range selection.

Property k4.7: Let T be a relation, S;, Sy € T' be complex attributes taking values
in the domain S over which the similarity condition is expressed, 8 be the similarity kNN
operator, 0 be the similarity range operator, di,ds be distance functions, k& € N* and
¢ be the similarity thresholds of the kNN operator and the similarity range operators

respectively and s,1, 5,2 € S be query centers. Then,

6(52 0(dz, €) 542) (6(51 bi(d1, k) 5q1) T) S O(syi(d, k) s) (6(52 0(da,€) 542) T) : (4.25)

J/ (& J/

i) (44)

\
9

—~

Proof. Property k4.7 is proved by Definition 4.1.
Oy o) T= {1 €T [da (1(82),5,) < €} =DCT .
Then,

(Zl) = 6‘(51 b(di, k) Sql) D= {tl eD | Vte D — T/,dl (ti(Sl),Sql) <d (t(Sl), Sql)} R

where T" = for i =1, and 7" = {ty,...,t;_1} for 1 <i < k.

64 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D C T, then

(ZZ) D {tz eD ’ VteTl — T/,dl (tz(Sl), Sql) < d1 (t(Sl),Sql)}
= {tz € T | dg (tz<82), ng) S g/\ Vt S T — T,, dl (tz<81), 8q1) S d1 (t(Sl), Sql)}
= {tz € T | \V/t € T — T/, d1 (tl(Sl), Sq1> S d1 (t(Sl), Sql) A dQ (tZ(SQ), ng) S 5}

- {ti € 6(51 0(di1, k) sq1) T | dy (ti(S2), 842) < f}
= 6(52 é(dz,f) Sq2) <G(Sl é(dl,k‘) sql) T) = (Z) Y

where 7" is as above. Then, the Equation 4.25 is true. O

The next properties involve the set theoretical binary operators union (U), difference
(—), intersection (N) and cross product (x), and also the relational operator join (x)
using the traditional identity and TOR-based predicates.

Property k4.8 describes the effect of applying the ENN selection over the traditional
union binary operator. The result of the executing a kNN selection over the union of
relations is included in the result of performing the union of the result of kNN selections
executed in both relations.

Property k4.8: Let T} and T5 be two relations, S € T} and S € Ty be a complex
attribute occurring in both relations and taking values in the domain S over which the
similarity condition is expressed, 6 be the similarity kNN operator, d be a distance

function, £ € N* be the similarity threshold and s, € S be the query center. Then,

O(sia,m s,) (11 U T2) (6(sé<d,kz>) Tl) U (6(Sé(d,k)) T2) : (4.26)

Proof. Equation 4.3 and the induction over k allow proving Property 4.8. Let us consider

¢ O-(S é(d, k) sq) (Tl U T2) = {tll’t,27 e 7t;§} P

¢ <G(s 0(d, k) sq) Tl) = {t1,,t1,, ..., 11, } and

o (B(sian) To) = (oot}

Let us first show that Property 4.8 holds when k£ = 1. In this case, t} € T} UT5 is such
that

d(t1(S),s,) = min{d (t(S), sy) ,t € Tt UTy}
< min{d(t(5),s,),t € T1} , and
d(t1(S),s,) <min{d (t(S),s,),t € To} .

4.5 Similarity Algebra for metric spaces 65

Therefore,

d (t1(9), sq) < min {min {d (¢(S), s,),t € T1},min {d (¢(5), s,) .t € Tr}}
:min{d(tll(s)’SQ>7d(t21(5)’8q)} .

As t) € {t1,,ts, }, we proved that Equation 4.26 holds when k = 1.
Now considering k = 2, we know that ¢, € T U T is such that

d (th(S),s,) = min{d (t(S), s,),t € Ty UTy, — {t}}}
< min{d (¢(5),s,) .t € Ty — {t1}} , and
d(th(S),s,) <min{d (t(S),s,),t € Ty — {t}}} .

Therefore,
d (t5(S), sq) < min{min{d (¢(S),s,),t € Ty — {t\}},min{d (¢(S), s,) ,t € To — {t1}}} .

As th € {t1,,ta, }, we have that d (t5(5),s,) < min{d (t1,(S5), s,) ,d (t2,(S), s,)} when
tll =11, = tg,. Thus, tl2 S {t117t12} U {tzl,tQQ}.
When t| =1, and #] # t5,, then

d (t5(5), 5q) < min{d (t1,(5), so) ,min{d ((5), s¢) ;t € To = {t1}}}

with 7 ¢ To. Thus d(t5(5),s,) < min{d (¢1,(5),s,).d (t2,(5),s¢)}, and, consequently,
th € {t1, tryta, } © {t1,,t1,} U {ta,, o, }.

Analogously, when t; = t5, and t; # t;,, we obtain t;, € {t1,,ts,,t2,} C {t1,,t1,} U
{ta,,t2,}. Therefore, Property 4.8 is valid for k = 2.

We complete the proof supposing that the result is valid for £ — 1. In this case, first
suppose that ¢, € T} U Ts. In such case

d (t,,(S), sq) =min{d (¢(S), s,) ,t € 1 UTo — {t|, th, ..., th_1}}
< min{min {d(t(S),Sq) e Ty —{t,t,,... ,t;c_l}} ,
min {d (t(S), sq) .t € To — {t},t5, ..., th_1}}} .
with {#},¢h, ...t} € {ti,,t1se- - t1,, U {ta,, b2y, ..., b2, }. Thus we need to show

that tj, € {t1,,...,t1,} U {t2,,..., 12, }, what can be done in the way following.

If {t1,to,. .. tim1} = {tiy,tiy, ooty) or {ti,to,.. tia} = {to,,toy, ... 1o, }
then, analogously to the cases above, we obtain

t, € {t1y, tiy, ooyt FU{tay, tay, ..o 2, } -

66 4. A novel approach for Similarity Query Optimization Process in DBMSs

Otherwise, using the induction hypothesis, and without loss of generality, we can

assume that exists an integer r, with 1 <r < k — 1, such that

t; =ty, ¢ Ty, for each i = 1,...,r and
t; =ty , ¢ T, foreachi=r+1,....k—1.

Then, T1 - {tll,...,t;cil} = T1 - {tll,...,tlT} and T2 — {tll,...,tgcil} = T2 -

{tay, o tag o,)
Therefore,

min {d (t(S), sq);t € Ty — {t},... . th_1 } } =min{d (¢(5),sq); t € Ty — {t1,, ..., 11, }}
= d(tlm-l(s)’SQ)

and

min{d(t(S),s,); t € To—{t},... t}_,}}
= min{d(t(S), sq); t € To — {ta,, ..., t2,_,_, }}
=d (t2k7r(s)7 S‘Z)

In this way, we have that d (¢(S), sq) < min {d (t1,,,(5),s,) ,d (t2,_,(S),s,) }, which
implies that

te € {tuys ot J Uty ooty Y Sty st F Uty)

concluding the proof. O]

The property of the relationship among kNN selection and traditional set difference
binary operator is presented in Property k4.9. It states that the result of the difference
between a kNN selection in the left relation and the right relation is included in the result
of the kNN executed over the difference of relations. Moreover, the result of the difference
between the ENN selection in the first relation and the second relation is included in the
result of the difference executed over the kNN selection operations in both relations.

Property k4.9: Let T} and T be two relations, S € T} and S € Ty be a complex
attribute occurring in both relations and taking values in the domain S over which the
similarity condition is expressed, 6 be the similarity kNN operator, d be a distance

function, k € N* be the similarity threshold and s, € S be the query center. Then,

(6‘(5@(d,k) sq) T1> — T2 - 6(S§(d,k;) Sq) (Tl — T2) ; (4'27)

(M) (i)

4.5 Similarity Algebra for metric spaces 67

and

(5(59@,@) Tl) -z C (6(Sé(d,k) 5) Tl) - <6(Sé(d,k)sq) Tz) : (4.28)

Proof. Definition 4.2 is used to prove Property k4.9 (Equation 4.27):
() = (S (st 1) = To = {ti €T |V E €Ty = T',d (1:(S), 5,) < A(K(S),5)} =T ,

where T" = for i =1, and T" = {ty,...,t; 1} for 1 <i < k.
As T1 - T2 g T17 then

() C{t; € Ty |Vt € (TL —To) — T',d(t:(S), 5,) < d(t(S), 5,)} — T
= {tl € (T1 - TQ) |Vt € (Tl - TQ) - T/,d(tl(S), Sq) S d(t(S),Sq)}

= (s b(d, k) sq) (Th = T3) = (i) ,
where T” is as above, completing the proof of Equation 4.27.
Now, using the Definition 4.2 and the fact that (6(5 (d, k) 5q) T2> C T5, the inclusion

in Equation 4.28 is directly proved by set theory, as presented by the Venn diagram shown
in Figure 4.5. [

Figure 4.5: Venn diagram representation of inclusion property of Equation 4.28.

Property k4.10 considers the relationship among a NN selection and the traditional
intersection binary operators. It states that the result of the intersection between a kNN
selection in the first relation and the second relation is included in the result of the
kNN executed over the intersection of both relations. Also, the result of the intersection
between a kNN selection on the left relation and the kNN selection on the right relation is
properly included in the result of the KNN executed over the intersection of both relations.

Property k4.10: Let T and 75 be two relations, S € T} and S € T, be a complex

attribute occurring in both relations and taking values in the domain S over which the

68 4. A novel approach for Similarity Query Optimization Process in DBMSs

similarity condition is expressed, 6 be the similarity ANN operator, d be a distance

function, £ € N* be the similarity threshold and s, € S be the query center. Then,

(6(55@1, k) sq) T1> N Ty C 6(55(%“ %) (T N Ty) ; (4.29)
and
(G(S 6(d, k) sq) T1> N <U(S (d, k) Sq) T2> C G(S (d, k) sq) (Tl N TQ) . (430)

Proof. By Definition 4.2, then
(i) = (c‘r(sm 50 T1> NTy={t, €T |VteT — T, d(t(S),s,) < dt(S),s)} N T |

where 7" =) for i = 1, and T" = {t1,...,t;_1} for 1 <i < k.
As T1 N T2 Q Tl, then

() C{tie TV |VteTiNTy —T',d(t(S), s,) < d(t(S), s,)} N T
— e NTy|Vte TLNTy — T, d (t:(S), s,) < d((S), s,)}

= G(siia, k) 5,) (Tr N T2) = (&)

where 7" is as above, which prove Equation 4.29.

Finally, Equation 4.30 is directly proved from the set theory properties, in the way

following. As (6(Sé(d,k)) T2> C 15, then (6(S§(d,k)) Tl) N (6(55(&@) Tg) C

((7(5 B(d, k) 5q) T1> NT5. Thus, we directly obtain Equation 4.30 from Equation 4.29. [

Property k4.11 states the relationship between a kNN selection and the traditional
cross product operator. The result of the kNN executed over the cross product of the
relations is included in the result of the cross product between the execution of a kNN
selection over one relation and the other relation.

Property k4.11: Let 77 and T, be two relations, S € T} be a complex attribute
taking values in the domain S over which the similarity condition is expressed, 6 be the
similarity kNN operator, d be a distance function, k € N* be the similarity threshold and
54 € S be the query center. Then,

6(Sé(d,k) Sq) (Tl X TQ) - (O-(Sﬁ(d,k:) Sq) Tl) X T . (431)

N

-~ -

(@) (i1)

4.5 Similarity Algebra for metric spaces 69

Proof. As S is a complex attribute in 77, we have that

(1) = 6(3 0(d, k) sq) (Th x 1)
={(ti,t;) € Th X To |V (t1,t2) € Ty x Ty — T',d (t:(S),59) < d(t1(S),5)} ,

where T" = () for either i = L or j =1, and T" = {(t1,,12,), ..., (t1,_,, t2,_,)} for 1 <i,j <
k.

As T is as a subset of 77 x T, we obtain

(1)) C{(tit)) €ETL x Ty |Vty € Ty — T',d (t:(S), 54) < d (11(S), 5,)}
— (€T |Vt €T — T, d(t(S), s,) < d(t:(S),)} x Ty

= (6(Sé(d,k) sq)T1> x Ty = (ii) ,
where T" is as above. O

A special case exists regarding the relationship of a NN selection in conjunctive
conditions and the traditional cross product binary operator. In this case, the result of a
conjunction of a kNN executed over the cross product of two relations is included in the
result of the cross product between the execution of a kNN selection being executed over
the left and again over right relation. This special case is presented in Property k4.11.1.

Property k4.11.1: Let T} and 75 be two relations, S; € T} and S, in T be complex
attributes taking values in the domain S over which the similarity condition is expressed,
6 be the similarity kNN operator, dy,ds be distance functions, ki, ks € N* be similarity
thresholds and s41, 542 € S be query centers. Then,

é.y(sl 6(dy, k1) sy)A(S2 8(da, k2) sq5) (Ty x Tz) © (6(31 6(da, k1) sq) Tl) X (6(52 6(da, k2) sq5) T2>
(4.32)

Proof. By Definition 4.2, we have that

(1) = 6(51 B(d1, k1) sq1) A(S2 6(da, k2) sqg)(TI x Tp)
= {(tl,tj) € Tl X T2 ‘ Y (tl,tg) € Tl X TQ — T/, d(ti<S),Sq1) < d(tl(S),Sql) VAN
d(t;(5), 5q2) < d(t2(5), 502)}

where 7" =0 fori =1or j =1, and 7" = {(t1,t1), (t1,t2), ..., (tiz1, tj_1) } for 1 < i < ky
and 1 < j < ks.

70 4. A novel approach for Similarity Query Optimization Process in DBMSs

As T} and 75 can naturally be identified as subsets of 177 x T5, we obtain

(

(

— e T |Vt €T — T, d(t(S),s) < d
{t; €To |Vt € Ty —T',d (;(S), s2) < d

(
(
- (6(51 é(dl,kl)sql)T1> X (6(52 6(dz, k2) sqg)T2) = (i) ,

where T” is as above, which proves Equation 4.32. O

Property k4.12 shows the relationship between kNN selection and the traditional join
operator. Hence, the result of the join executed between the kNN selection executed over
the first relation and the second relation is included in the result of the KNN executed
over the join of the relations.

Property k4.12: Let 77 and 15 be two relations, S € 7T; be a complex attribute
taking values in the domain S over which the similarity condition is expressed, 6 be the
similarity kNN operator, d be a distance function, k € N* be the similarity threshold and
54 € S be the query center. Thus,

<G(sé(d,k) Sq) Tl) X Ty C 6(S§(d,k) 5q) (Th » Ts) . (4.33)

[S/ J/
-~ -~

(@) (it)

Proof. By the definition of the join operator we have that:

A;0A; Ai0A;
Tl X TQ = {(tz,t]) € Tl X TQ ‘tl ETl/\tj ETQ/\tZ(Al)th(AJ)}

= {(tz,tj> €11 x 1y | tz(Az) QtJ(A])} =DCT, xT, .
Replacing in (77) and considering that S is a attribute in 77:
(17) = 6(59@ K sq)D = {(ti,t;) € D|V (t1,t2) € D —T",d (t:(S), sq) < d(t1(5), 84)} »

where T" = @ if i =1 or j = 1, and T" = {(t1,,t2,),..., (t1,_,, b2,)} if 1 <d,5 < k.

4.5 Similarity Algebra for metric spaces 71

As D C T x T5, then:

(i1) 2

(ti,tj> ebD ’ i (tl,tg) c T1 X T2 — T/,d<ti(5),8q) S d(tl(S),Sq)}

(ti,tj) € T1 X TQ | A (tl,tg) € T1 X T2 — T/,d(tZ(S), Sq) S d(tl(S), Sq) A
ti(Ai) 0¢;(A;)}

={t; €eTh|Vt1 €Ty =T ,d(t:(S),) < d(t1(S),s9)} X T

- (6(59@ k) sq) Tl) X Ty = (i) ,

{
{

where T” is as above, proving Equation 4.33. O]

A special case exists regarding the relationship of a kNN selection in a conjunctive
conditions and the traditional join binary operator. The result of performing the join
operation between the kNN selection executed over the left relation and the kNN selection
executed over the right relation is included in the result of the conjunction of the kNN
executed over the join result. This special case is presented in Property k4.12.1.

Property k4.12.1: Let 77 and 15 be two relations, S; € T7 and S, € T be complex
attributes taking values in the domain S over which the similarity condition is expressed, 6
be the similarity kNN operator, d;, dy be a distance function, k1, ko € N* be the similarity
threshold and s,1, S;2 € S be the query center. Then,

Ji

(S1 0(d1, k1) sql) T1> X <G(52 6(da, k2) 5‘12) Tz) - 0-(<Sl 0(d1, k1) 541>/\(SQ 6(da, k2) SQQ)) (Tl " T2)-

(4.34)

Proof. Using Join definition and replacing D = T} x T3 in (ii), we have:

(i) = G((Sl B(dr 1) 51)A(S2 0(da, k2) 502)) b

= {(tz,t]) eD | i (tl,tg) eD— T/7d(ti<5),5q1) < d(tl(S), Sq1> VAN

where T" = @ ifi=1or j = 1, and 7" = {(tl,t1>,(t1,t2),. Cey (tifl,tjfl)} ifl <1 S kl
and 1 < j < k.

72 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D C T x T5, then:
(ZZ) 2 {(tl,t]) eD | A (tl,tg) € T1 X TQ — T/,d(tl(S), Sq1
= {(t“tj) € T1 X T2 |V (tl,tg) € Tl X T2 — T/ d(tl<S),S) < d(tl(S), Sql) N
d(t;(5), s42) <

)y 8q1) < d(tl(S

= {t € T1 |Vt1 S T1 (tZ<S ,Sql ,Sq1>
{t; € T2 |Vip € T = T",d(t;(5), Sg2) < d(t2(5), sq2) }
= (G<Sl (d1 k1)) Tl) < (Sz (d2 kg) sq2) T2> = (Z))
where T” is as above. Therefore (i) C (i7), as required. O

Tables 4.2 and 4.3 summarize all the shown properties of the unary similarity
operators. Table 4.2 synthesizes the properties of the range similarity operator, while

Table 4.3 summarizes the properties of k-nearest neighbor operator.

H Properties of Similarity Range Query H
) T

R4.1 ((d,€) 5q) < (560(d,€) sq) T) = 6(Sé(d 5) 5q
a1)A(S2 6(d2, €2) sqg)T = 0(519 d1, 1) sq1) (52 0(da, £2) 5q2) T)

= (3510040 7)

R4.2.1 (50(d,61) 54) T)

N
6(sé(d, gl)sq) (59 (d, &) sq)
o

R4.2 (51 9(d1 £1) s

d2 £2) Sq2

N
<< m)T):
T—

6(50 d, min(¢1, €2)) s)T
R4.3 6(51 (a1, €1) 1)V (52 002, 2) 5,2) (0(d1, €1) sq1) T) U (0(52 é(dz,éz)sq2)T>
R4.3.1 (0(59(d 51)5(1)T> U cAT(S 6(d, fz)Sq>T -
G(Se(d €1) 5q)V(S0(d, &) s) (59 (d, max(é1, &2)) s)T

A

Sq
Rid 0 é(dl,sl)sql) (G B(da, &) sq2)) O (52 8(dz, &) s2) \ O (s é(dl,sl)sql)T>

R4.5 (se(dg (O(a0a)) O(a6a) (SG(d£)Sq)T
(

R4.6.1 6(5@((1, £ s) (T} UTQ) (504,€) 5,) 11) U <0'(sé(d, €) sq)T2>
RA4.6.2 6<Sé(d7§)sq) (T — Ty) = ((s i, g)sq)Tl - 6(Sé(d7$)sq>T2
= (650 T1> — T
RA.6.3 6(59(4,€)) T1 N1Ty) = (6 (50(d,) s) N <6(Sé(d, £) sq)T2>
= (6 S0(d,€) sq) > = T1 ﬁ (G(Sé(d,@ Sq)T2>
RA.7 6(59(d € 54) (1 0T) = 6(50(d £) 5q) 1) © 1o, where © = x or x

Table 4.2: Summary of algebraic properties to range similarity queries.

4.6 Semantic Restrictions 73

H

Properties of Similarity k-Nearest Neighbor Query

k.1 G(se) sq) (6(5 i(d, k) sq)T) G(s i(d, k) sq)T
kd.2 6(519 (d1, k1) 541) A (52 dQ,kg)sqz) = <(7(51 é(dl,kl)sql)T> A (6(52 é(dQ,kQ)s,ﬁ)T>
k.21 (G S (d, k1) sq)T O (s, kg)sq)T>
= 9(56(d, k1) sq)A(S (d, k2) sq) = G(Sé(d,min(kl,kg)) sq)T
k4.3 6(da, k1) Sql)V<S (dg,kg)sqz) = (6(51 é(dl,kl)sql)T U (6(52 é(dQ,kQ)s,ﬁ)T>
k3.1 (Sa(d k1) sq) O (s, kg)sq)T>
= 9(S6(d, k1) 5q) V(S 6(d, k2) s) = G(Sé(d,max(kl,kg)) sq)T
ka4 E f(da, k1) sql)T A 0—(52 é(dg,kz)SqQ)T = 6(52 é(dz,kQ)qu)T N é.f(sl é(dl,kl)sql)T
0(d, k1) sql)T U 6(52 é(dz,k‘g)sqz)T 6(52 é(dQ,kQ)sqz)T U 6(Sl é(dl,kl)sql)T
k-5 B(da, k1) sq)N (52 é(dg,kQ)SQQ)T < 6(51 B(di, k1) sq;) <6(s2 é(dg,k2)8q2)T>
k.6 G(A@a) (G(Sé(d, k) sq)T> S O(sd, 1) 5,) (0oaT)
kd.7 6(529 d2, €) 542) (6(51 fi(dr,) sql)T> < 6(51 i(d1, k) sq1) (6(52 0(ds,) sqg)T)
K45 S (sians) TUT) € (5(sian o) Y (B(sians))
ki EG(SQ s T1) = T € Ssiary o) (B — T2)
O(sid, k) sq)Tl -1 C (6(Sé(d,k))Tl) - (O(sd(d, k) s)T>
k.10 gc(se 0a)T1) VT2 € 80,1y 50) (T O T2)
O(sd(a sq)Tl < (56(d, k) sq T2> (sé(d, k) sq) (71 N T3)
k4.11 0(59 (T x Ty) C (0 S, k) 1) x T
kd.11.1 (310 (d1, k1) 5q,)A(S2 (da, k2) sq,) (71 x TZ) C <6(51 i(dy, k1) sq,) T1> X <6(SQ fi(da, k2) 55) T2>
12 (S(siaronTt) X T € 8(sian.) (Ti @ T2)
kd.12.1 (6(51 i(dy, k1) sq,) Tl) s (6(52 i(da, k2) 55) T2> < 6(51 B(dy, k1) sq,)A(S2 6(da, k2) 545 (71 x T)

Table 4.3: Summary of algebraic properties to kNN similarity queries.

Table 4.4 presents the equivalence properties valid over the traditional operators, but

that are not valid when it involves similarity kNN similarity ones. These invalid properties

for kNN similarity operators can be easily proved by contradiction, using counterexamples.

4.6 Semantic Restrictions

Semantic restrictions such as “external” knowledge about stored data or about the user’s

expectation regarding the data or the query answer are important factors that can help

improving the performance of query execution. Those factors are seldom employed to

optimize queries over scalar data, because it is very costly to process them. In fact,

74 4. A novel approach for Similarity Query Optimization Process in DBMSs

H Properties of Traditional Query H

T1 O(A1 01 a1) A (Az Bnan) 1 = (Y(A1 6ra1) (0430500 T)
T2 0(A 01 ar) (4200 02) 1) = O3 05 az) (041 0101))
T3 (A9a) T1UT2 ((Y Tl)U<O‘(A9a) Tg)
T4 0a9a) (Tt — To) = (0(apa) Th) — T2 (0a0a) T1) — (0(a04) I3)
T5 0(40a) (TlﬁTQ) (A0a) Tl) N Ty
=Ty N(0en Tp) = (U(Aea) T1) (0400 T2)
T6 O0(A6a) (Tl@Tg) (O0(A0a) Tl)@TQ @(O'(Aga) Tg),where@—x or X

T6.1 O(A; 61 a1)A(Az 02 as) (Tl © Tg) (O(A; 61 a1) Tl) C] (0'(A2 02 as) Tg), where © = X or X

Table 4.4: Summary of algebraic equivalence properties to traditional queries invalid to
ENN similarity queries.

the cost to handle semantic restrictions is often higher than the cost of just executing the
non-optimized query over scalar data, thus it makes no sense utilizing semantic restriction
just to optimize queries over scalar data. However, when handling complex data and
similarity queries, there are at least two factors that revert the weights of those costs.

Firstly, the similarity query execution requires inherently much more time than it is
required to process traditional operators, and the same occurs when handling complex
data. Therefore, the tradeoff between using or not semantic restrictions becomes more
favorable to using it when similarity operators are involved than when only traditional
ones are involved. In fact, when complex data must be searched by similarity, using
semantic restriction almost always leads to the best alternative to improve efficiency.
Therefore, using semantic restrictions becomes clearly more attractive even if only the
performance gains to improve the execution performance of queries posed over complex
data are considered. Moreover, using semantic restrictions about the data to identify
the regions of the data space where the answer should be searched, pruning those where
answers cannot be found is a good strategy to improve the performance of similarity
queries.

Secondly, it must be considered that searching for similarity often involves a certain
degree of variability between what is the expressed by the exact, formal expression of the
similarity (that is processed by the similarity query algorithms, extracted features and
distance functions) and what is expected by the user. Although that dichotomy between
the formal expression of a query and the user’s expectation can happen when processing
scalar data with identity- and TOR-based operators, it is clearly larger when processing
complex data with similarity-based operators. Therefore, taking into account semantic
restrictions about the user’s preference when answering a query often can improve not
only the query performance, but also (and more importantly) the query quality to fulfill
the user’s expectation and thus the query efficiency.

In summary, whenever a similarity query is posed, it is worth to the optimizer to take

into account the known semantic restrictions of the data and of the user’s expectation

4.6 Semantic Restrictions 75

to evaluate a query whenever any of them can be employed either to improve the query
quality (tailoring the execution to better meet the users’ expectations), or to improve
the query execution efficiency (using the restrictions as screening predicates to prune
part of the data that is known to have no interesting data). Semantic restrictions are
always translated into predicates, then they can be employed as filter in query refinement
techniques.

Subsection 4.6.1 explores the usage of the known users’ interests as semantic restric-
tions to optimize similarity queries. Subsection 4.6.2 investigates how to utilize the
knowledge about the stored complex data, which was retrieved and analyzed during the
execution of previous queries, using the mined pattern also as semantic restrictions to

rewrite further similarity queries.

4.6.1 Preference Model Module

The preferences of each user determine its choices. Hence, the knowledge of that
preferences should be obtained from the user creating a “user’s profile”, preferably
imposing little or no burden over the user, for example employing ‘relevance feedback’
techniques or other non-intrusive analysis performed by the system regarding the set of
queries and respective answers posed by the user. The Preference Model module proposed
in this monograph receives the gathered users’ interests and generates preference rules,
using a preference model such as one of those mentioned in Section 3.8, and correlates
the semantic information both from the user and from the complex data. Together with
similarity algebra, preference rules can be used to rewrite similarity queries, obtaining
results closer to the users’ expectations in a faster way.

Figure 4.6 shows the process of preparing and executing queries either using or
not the preference model in RDBMS. In the first step (Figure 4.6, Action Q)), users’
preferences are obtained from users’ profiles, for example. Then, the preference model
module generates preference rules, storing them in the database as part of the system
catalog. When the user searches for similarity without using the preference model
(Figure 4.6, Action (3)), the similarity database uses only the syntax-based optimization
to answer the query. Otherwise, when the preference model is used to evaluate a
query (Figure 4.6, Action @), the similarity database combines the syntax- and the
semantic-based techniques to rewrite queries.

For illustration purposes, let us use again the CoPhIR database. Suppose that the user
wants to find the 5 beach photos most similar to his photo, so that they were obtained in
the hottest seasons. If the user’s background knows how to qualify one season as hotter
than another, than his ‘hotness scale’ should be used to refine the query, bringing the

query answer closer to what the user expects. This is the way that we developed the

76 4. A novel approach for Similarity Query Optimization Process in DBMSs

| |
@ Users” @ Preference | (2) (Preference
Preferences Model Rules

@

Similarity
Database

@

@ ouery @ Similarity @> Answer without PM
Search @> Answer with PM

Figure 4.6: Generic flowchart to prepare and execute similarity queries considering of
preference models.

similarity queries to use preferences rules and similarity algebra to obtain results closer

to users’ expectations.

4.6.2 Data Mining Model Module

One way to integrate DBMS and data mining techniques is to incorporate mining tools
into the database engine. Accordingly, the Data Mining Model module tightly couples
data mining algorithms, thus allowing similarity queries to benefit from automatically
mined rules and improving both query quality and performance. The data mining model
module extracts knowledge from the stored complex data retrieved by previous queries,
generating mining rules. Combining the similarity algebra and the mining rules found,
similarity queries can be rewritten to make them more semantically adequate to meet the
users’ expectations.

Figure 4.7 shows the process of preparing and posing queries either using or not the
mined rules in RDBMS. In the first step (Figure 4.7, Action (D), the user sends stored
data to the data mining model module. Then, mining rules are mined and stored, together
with the other data, in the database (Figure 4.7, Action 2)). When the user searches for
similarity without using the data mining model (Figure 4.7, Action), the similarity
database uses only the syntax-based optimization to answer the query. Otherwise, when
the data mining model is used to evaluate a query (Figure 4.7, Action), the similarity
database combines the syntax- and the semantic-based techniques to rewrite queries.

Those ideas can be explained through an example. Let us use the CoPhIR database
again. Suppose that the user wants to find beach photos similar to his photo that are

like his photos from tropical climate beaches. If the user has a small collection of photos

4.7 Final Comments 77

| |
I

@® Store |J) Data Mining @ Mining

| Dam "I Model Rules

r
@

Similarity
Database

&

@

| - i
® ouery ® | similarity |3) Answerihout DI
Search @Answer with DMM

Figure 4.7: Generic flowchart to prepare and execute similarity queries considering of
data mining models.

“from tropical climate beaches”, he/she can use data mining techniques integrated with
similarity queries to express queries that employ the results of the mining algorithms.
After a data mining algorithm extracts rules that can express how to identify “photos
from tropical climate beaches”, the resulting rules are stored in the database, as part of
the system catalog. Thereafter, the mined rules can be automatically combined to the

user’s expressions through similarity algebra operators to evaluate the similarity queries.

4.7 Final Comments

In this chapter we presented the techniques developed in this doctorate program to
incorporate similarity queries into RDBMSs. First, similarity-based operators were
included into relational model, allowing the management of complex and scalar data
in an integrated way. We also presented an algorithm to generate the algebraic canonical
plan, which includes every basics steps to translate traditional and similarity queries into
an algebraic expression. We developed that algorithm in such a way that when k-nearest
neighbors predicates are involved, the answer includes as closer to k elements as possible,
ailming at pursuing to obtain the k elements that the user expects. Thereafter, the
canonical plan is sent to the query optimizer. The query optimizer was extend to handle
the syntax and the semantic of queries that include similarity operators. The syntax-based
extension proposed includes a large number of rules that govern the similarity-based
comparison operators and its integration with the existing identity and by relational
comparison ones. The proposed algebra provides a powerful and flexible basis to develop

semantic-based extensions that can both mine patterns and knowledge about the stored

78 4. A novel approach for Similarity Query Optimization Process in DBMSs

data and identify the user’s expectation about the query result content, taking them into
account to improve the efficiency and the efficacy of similarity queries processing.

In Chapter 5, we discuss how these techniques were included in the SIREN similarity
retrieval prototype that we are developing to include similarity queries in RDBMS taking

into account the semantic of the data and the user’s expectation.

5

Similarity Retrieval Engine - Case Study

5.1 Introduction

Originally proposed by Barioni et al. [2006], the Similarity Retrieval Engine (SIREN) is a
middleware between the application program and a traditional database management
system (DBMS) that allows the execution of similarity queries in structured query
language (SQL). In its initial version, SIREN was able to compile and directly execute
similarity queries over complex data stored in relational database management systems
(RDBMSs), without caring about similarity query optimization process. Currently,
SIREN is being extended with the techniques presented in Chapter 4, by adding the
query optimization process to optimize similarity queries, both based solely on the
algebraic properties of the similarity-based operators as well as meeting user’s expectation.
Figure 5.1 shows the current SIREN architecture, which we called SIREN,,. In this figure,
our extension is highlighted in blue.

SIREN language is based on a SQL extension that includes several new data types
corresponding to complex data, such as STILLIMAGE, AUDIO and PARTICULATE. It also
supports similarity predicates and special constructs to allow the definition of how
features are extracted from complex data, how to define distance functions and how both,
extracted features and distance functions are assigned to the complex attributes declared
as composing the relations.

A similarity-based predicate is expressed in the same way as the existing predicates

in the WHERE clause of the SELECT command, and it allows expressing all the elements of

a similarity selection operator of the format | oc (s . (4, 1im) s,) 1’| described in the previous

chapter. The basic syntax to express similarity predicates in the WHERE clause is the

following;:

79

80 5. Similarity Retrieval Engine - Case Study

. Standard SQL/
<y Extended SQL

Similarity Retrieval Engine

Hermes

Artemis

Query Optimizer

—

Query Query
Attributes and Rewriter Evaluator
C(c?rlxﬁ)rﬁfer Conditions #>
Table (ACT)

User Expectation Generator Plan

Parse

Tree

Preference Data Mining
Model <:>

Optimized
Tree

Relational DBMS

Application SIREN
Database | [Data Dictionary|

Figure 5.1: SIREN,, architecture.

Standard

Tree

Model

MAM

Arboretum

<attr> NEAR <value> [STOP AFTER <k>] [RANGE <&>] [USING <distf>],

where <attr> is the complex attribute (corresponding to S), <value> must be an element
of the corresponding complex domain (corresponding to s,), <k> and <€> are the similarity
threshold for k-nearest neighbors and range queries respectively (corresponding to lim),
and <distf> is the distance function. The reserved word NEAR specifies that this is a
similarity-based predicate (it corresponds to the generic similarity operator 6.), whereas
the reserved words STOP AFTER and RANGE specify the operator to be either a k-nearest
neighbors or a range one respectively, and corresponding to either the specific or
0 operators respectively. In SIREN, <k>, <&> and <distf> are optional, and if not
specified they are assumed to be 1, 1 and the single (or the one set as default) distance
function defined for the attribute <attr>. SIREN acts as a blade between the DBMS
and the application program. It intercepts and analyzes every query sent by the user
to the DBMS. In case that the command has neither similarity-related operations nor
references to complex data, the command is directly relayed to the DBMS, and thus
SIREN is transparent to traditional operations. On the other hand, if the query has
similarity-related constructions, then SIREN compiles, optimizes and executes it, sending

the answer back to the user.

5.1 Introduction 81

In this chapter, we use seven datasets obtained from real applications to illustrate the
application of the concepts and to report the result of the experiments that we performed
using the new version of SIREN that we extended. Table 5.1 summarizes datasets used

in the experiments of this thesis.

The DDSM_DS dataset

This is a set of 4,612 mammography images, obtained between 1993 and 1999 from the
Digital Database for Screening Mammography (DDSM) website! [Heath et al., 1998, 2000].
This dataset is composed of two relations: the first stores the images and metadata specific
of each image, such as the exam that includes the image; the second stores data related to

the exams, such as the data it was performed, etc. The schema of those relations follows.

Mammography = {CaseId, Report, View, ImgRoi}
Cases = {Id, DateOfStudy, DateOfDigitized, PatientAge, Density, Hospital}

The similarity between elements of the complex attribute ImgRoi is computed by the
pair Haralick [Haralick et al., 1973] feature extractor and the Manhattan (L;) distance

function.

The MammographyDS dataset

This is a set of 1,353 medical images obtained from the Clinical Hospital at Ribeirao
Preto of the Universidade de Sao Paulo. This dataset is composed of two relations: the
first called RCCMammography, which has 658 images from mammograms exams of right
breast with cranio-caudal view (CC), and the second called RMLOMammography that has
695 images from mammograms exams of right breast with medio-lateral oblique view
(MLO). The similarity between elements of the image complex attribute is computed by
the pair Texture [Felipe et al., 2003] feature extractor and the Manhattan (L;) distance

function.

The MedImageDS dataset

This dataset is composed of the relation MedImage, which has 5,180 computerized
tomographies (CT) images from three human body parts (abdomen, cranium and thorax),
obtained from the Clinical Hospital at Ribeirao Preto of the Universidade de Sao Paulo.
The pair metric histogram [Traina et al., 2003] feature extractor and the Manhattan
(L) distance function are used to compute the similarity between elements of the image

complex attribute.

'DDSM: Digital Database for Screening Mammography Homepage. Accessed in: May 15, 2011.
Available at: http://marathon.csee.usf.edu/Mammography/Database.html

82 5. Similarity Retrieval Engine - Case Study

The PeruDS dataset

This dataset is composed of the relation PeruDistrict that has 1,829 Peruvian districts
obtained from Peru Instituto Nacional de Estadistica e Informdtica (INEI). The complex
attribute Coordinate is obtained from the combination of two geographical points,
represented in the traditional attributes Lat (i.e. the Latitude) and Long (i.e. the
Longitude). For elements of complex attribute Coordinate, the Euclidean (L) distance
function is defined over their domain, so the similarity predicates can be answered over
it.

The CitiesUSDS dataset

This dataset is composed of the relation USCities that has 25,374 American cities and
their economic characteristics in Census 2000, obtained from U.S. Census Bureau website?.

The schema of this relation follows.

USCities = {CityCode, CityName, State, Employed, Unemployed, WorkedAtHome,
Retail, PerCapita, PctPovertyFam, ..., Lat, Long, Coordinate}

The complex attribute Coordinate is obtained from the combination of two geographical
points, represented in the traditional attributes Lat and Long. For elements of complex
attribute Coordinate, the Fuclidean (Ls) distance function is defined over their domain,
so the similarity predicates can be answered over it. In order to make easier to understand
the experimental evaluation presented in Subsection 5.2.1, we assume that there is a
function Coord(USCities.CityName), which returns the Coordinate of the city named

CityName.

The LungDS dataset

This dataset is composed of the relation LungExam that has 246 lung images collected in
108 distinct computed tomography exams from the Clinical Hospital at Ribeirao Preto
of the Universidade de Sao Paulo patients. The exams were separated according to their
description and each image were classified by a radiologist into six distinct class (Con-
solidation, Emphysema, Interlobular Septal Thickening, Honeycombing, Ground-glass
Opacity and Normal), in average 40 images per class, according to the radiological finding
contained in each image. The similarity between elements of the image complex attribute
is computed by the pair Texture [Felipe et al., 2003] feature extractor and the Manhattan

(Ly) distance function.

2U.S. Census Bureau Homepage. Accessed in: 2011 May 15. Available at: http://www.census.gov/

5.1 Introduction

83

Dataset
Name

Cardinality

Feature
Extractor

Distance
Function

Description

A set of mammography

images obtained between
1993 and 1999 from the
Digital Database for
Screening Mammography
(DDSM) website [Heath
et al., 1998, 2000].

A set of 658 images ob-
tained from mammograms
exams of right breast with
cranio-caudal view and 695
images obtained from mam-
mograms exams of right
breast with medio-lateral
oblique view.

A set of medical images ob-
tained from three human
Ly body parts (abdomen, cra-
nium and thorax) by com-
puterized tomographies.

A set of the Peruvian dis-
tricts.

A set of the American cities
and their economic charac-
teristics in Census 2000.

A set of lung images
collected in 108 distinct
computed tomography
exams and separated
according to their
description (Consolidation,
Emphysema, Ground-glass
Opacity, Interlobular Septal
Thickening, Honeycombing
and Normal).

A set of the fourteen won-
der worlds images extracted
from the Flickr website, to-
gether with their metadata
information.

DDSM_DS 4,612 | Haralick Ly

MammographyDS 1,353 | Texture Ly

Metric

MedI D .
edImageDs Histogram

5,180

PeruDS 1,829 | - Lo

CitiesUSDS 25,374 | — Lo

LungDS 246 | Texture L,

WWorldDS 1,798 | Texture Ly

Table 5.1: Real dataset descriptions used in the experiments.

The WWorldDS dataset

This dataset is composed of a relation WondersWorld, which has 1,798 images extracted

from the Flickr® website, together with their metadata information such as: tags, a short

3Flickr Homepage. Accessed in: 2012 August 14. Available at: http://www.flickr.com/

84 5. Similarity Retrieval Engine - Case Study

description, the city with the corresponding latitude and longitude. These images are
from the fourteen wonders, seven of the ancient and seven of the new world, plus the
complex of Giza pyramid, the nowadays remaining wonder from the ancient world. There
are 100 images from each of the fourteen distinct wonders and 100 more for the current
Giza pyramids, retrieved from Flickr, together with the descriptions that people in general
stores in that website. No structure or consistency are expected to exist in this tag system.

The schema of this relation is as follows.
WondersWorld = {ImageID, Tag, Description, ..., Training, Image}

The similarity between elements of the complex attribute Image is computed by the pair
Texture [Felipe et al., 2003] feature extractor and the Manhattan (L) distance function.
From 1,798 images, 1,500 had the attribute Training set to ‘False’. The remaining 298
are images from all of the fourteen wonders and the current Giza pyramids, all of them
have the attribute Training set to ‘True’, and correspond to examples of the kind of
images that the users expects to obtain from each wonder.

Section 5.2 describes the SIREN Query Optimizer. Section 5.3 presents the SIREN
Preference Model and Section 5.4 presents the SIREN Data Mining Model. Section 5.5

makes the final comments of this chapter.

5.2 The SIREN Query Optimizer

After the compilation process has been successfully executed, the canonical tree is
generated, using the Algorithm 4.1 presented in Section 4.3. For illustration, suppose that,
in a health-care information system and using the DDSM_DS dataset, a medical doctor wants
to search for mammographies similar to those of her actual patient whereas specifying
some special constraints, as presented in Query Q3.

Example 5.1:

Q3: “Select the 3 mammographies taken in 1993 that are the most similar to this one
from my current patient (Patient X), obtained from a patient that is less then 45 years
old and whose exam was taken in the Massachusetts General Hospital (MGH)”.

This query can be expressed in SQL as:

SELECT Cases.Id, Mammography.ImgRoi
FROM Mammography, Cases
WHERE Mammography.IdCases = Cases.Id
AND Cases.Date0OfStudy BETWEEN ‘01/01/1993° AND ‘31/12/1993°
AND Mammography.ImgRoi NEAR ImgRoi(PatientX) STOP AFTER 3
AND Cases.PatientAge < 45
AND Cases.Hospital = ‘MGH’

5.2 The SIREN Query Optimizer 85

(a) ‘Similarity-first” Plan (b) Canonical Tree (c) Alternative Plan 1 (d) Alternative Plan 2 (e) Alternative Plan 3

o o
o=
(=]

(s]

an) =N
]))

=)
(o) (o (o) (o

Read Cases ~Mammography Cases ~ Mammography Cases ~ Mammography Cases ~ Mammography

Read

Cases ~ Mammography

Alternative Plan - Properties:

Equation 2.2 and Property k4.12 and

None Property k4.12 Property ki.12 Equation 2.2 Equation 2.2
Number of expected (k) / returned results:
3/1 3/3 3/1 3/3 3/1

Query exccution time (ms):

126 116 200 117 136

Figure 5.2: ‘Similarity-first’, canonical, alternative plans and execution time of Query

Q3.

This query involves traditional identity (Hospital=‘MGH’), traditional total ordering
relationships (AGE > 45, BETWEEN), a kNN selection (ImgRoi NEAR s, STOP AFTER 3),

as well as a traditional join. Algebraically, it is represented as:

(o) Cases X
((DateUfStudy BETWEEN ‘01/01/1993° AND ¢31/12/1993’ /\PatientAge<45/\Hospital=‘MGH’))

(6(Ingoi f(Texture,3) Image(PatientX)) Mammography>
Executing the Algorithm 4.1 over Query Q3, the canonical tree obtained is presented

in Figure 5.2(b). Figure5.2(a) shows the well-accepted ‘similarity-first” plan, which first

executes kNN predicates and then the other ones. Table 5.2 illustrates the ‘similarity-first’

plan shown as a relation. It corresponds to the direct translation of the relational query

1 | Read | Mammography

2 | Read Cases

3 (o) 2 Date0fStudy BETWEEN ‘01/01/1993° AND ‘31/12/1993°
4 o 3 PatientAge < 45

5) o 4 Hospital=‘MGH’

6] o 1 ImgRoi NEAR ImgRoi(PatientX) STOP AFTER 3

7 X) 6 Mammography.IdCases = Cases.Id

8 ™ 7 Cases.Id, Mammography.ImgRoi

Table 5.2: Canonical plan, represented as a table, of the Query Q3.

into the corresponding algebra expression. It can be seen that the selection operators are

86 5. Similarity Retrieval Engine - Case Study

applied in the same sequence expressed in the query command, as soon as possible over
each relation.

In the sequence, the canonical tree is sent as input to the SIREN Query Optimizer.
The SIREN Query Optimizer processes the expression generating several alternatives
applying transformations based on the properties existing for traditional predicates and
on the properties of the Similarity Algebra presented in Section 4.5, which are embedded
in the Query Rewriter.

Considering Query Q3, Property k4.12 and Equation 2.2 can be used to rewrite the
canonical tree and to generate alternative plans as shown in Figures 5.2(c) to (e). To
alleviate drawing the alternative plans in the figure, and without loss of generality, we
show here the conjunction of only traditional selections transformed into a single selection.
The ‘Similarity-first’ Plan and the Alternatives 1 and 3 can return less than k& tuples, as
further filtering operations are applied over the first k tuples selected, which can prune
even more results. When the evaluation of the predicates of the other operations returns
at least k tuples, executing kNN as the last operation warrants that the asked amount k
of tuples is returned, as it occurs in the Canonical Tree and Alternative 2 that return the
same number k of tuples. Figure 5.2 also shows the minimum and maximum numbers
of results that each alternative plan can return, as well as the average wall clock time
required for SIREN to process Query Q3 over the DDSM_DS dataset with several query
centers. As the number £ = 3 employed in this example is very small, the performance
changes derived from each alternative plan are tiny. However, it nevertheless can be seen
that the Canonical Tree and Alternative Plan 2 have a gain of about 8% when compared
to the ‘Similarity-first’ Plan. It shows that using the inclusion properties to optimize
similarity queries, we can recover the desired number of answers without compromising
the required time processing.

The SIREN Query Optimizer can also use association rule mining and users’
preferences during the optimization process to identify semantic restrictions, and exploit
it as query refinements to improve query efficiency and efficacy. The optimization using

association rules is described in Section 5.4 and using users’ preferences in Section 5.3.

5.2.1 Experimental Evaluation

Aiming at further evaluating the concepts and the implemented tools related to Exam-

ple 5.1, the following two set of experimental evaluations were also performed.

Equivalence-based Properties

The first set of experiments was performed using only the equivalence-based properties
of the Similarity Algebra. Those properties were incorporated into a version of the SIREN
query optimizer called ‘SIREN,,” (SIREN + Optimization) in the experiments. The

5.2 The SIREN Query Optimizer 87

experiments analyze the performance of SIREN and SIREN,, to execute similarity queries.
Both versions of SIREN were implemented in C++4-. The experiments were executed on
an AMD Athlon XP 3000+ processor with 1024MB of main memory, under the Windows
XP operational system. The RDBMS employed was Oracle 9i. Every test was performed
using both sequential scan and a Slim-tree index. Four data sets were used to pose Queries

Q4, Q5 and Q6 to SIREN.

Query Q4 was performed in the MammographyDS dataset.

Q4: “Given a mammography exam with images of left and right breast from
cranio-caudal (RCC) and medio-lateral oblique (RMLO) views of a patient, show the
exams whose mammogram texture does not differ more than 10 units from those in the
original exam”.

Query Q4 involves a traditional join and a range selection and its
canonical algebraic expression obtained using Algorithm 4.1 is represented as
RCC w RMLO). Property R4.7 was employed to optimize the

)RC’C> x RMLO.

6(5 O(texture, 0.1) sq) (

query. Its optimized expression is (6(S f(texture, 0.1) s
y Ve q

Query Q5 was performed in the MedImageDS dataset.

Q5: “Given a head tomography exam of a patient showing a pathology, retrieve the
5 most similar exams not presenting a pathology, and whose texture does not differ more
than 5 units from those in the target exam”.

Query Q5 involves traditional selection, range selection and kNN selec-

tion. Applying Algorithm 4.1, the canonical algebraic expression is represented

as: O-(Sé(tezture,B)sq) (6-(Sé(temture,0.05)sq) (G(pathology:‘N’) (Med]mage))) Properties
R4.5 and k4.4 as well as their special cases should be used to optimize this

query. One algebraic plan of Query Q5 can be algebraically expressed as:

O (pathology=*N") 6(5 O(texture, 0.05) sq) <G(S b(texture, 5) sq> <Medlmage)>) :

Query Q6 was performed in the PeruDS dataset.

Q6: “Find the 15 districts nearest to ‘Arequipa’ that are not farther than 15 miles,
and where the population between 21 and 64 years old is greater than the over 65 year
old population”.

Query Q6 also involves traditional selection, range selection and kNN selec-
tion. Applying Algorithm 4.1, the canonical algebraic expression is expressed as:
6-(5' #(Buclidean, 15) s,) (6(5 O(Euclidean, 15) sq) (G(adultpop>oldp0p) (PeruD istm’cts))). Properties
R4.5 and k4.4 as well as their special cases should be used to optimize these

queries. One of the alternative plan of the Query Q6 can be expressed as:

O-(S 6(Euclidean, 15) sq) (G(adultpop > oldpop) (G(S 6(Euclidean, 15) sq) (PGT’UDZStT’LCtS)>) :

88 5. Similarity Retrieval Engine - Case Study

The experiments evaluated the execution time of these three queries, and the results
were compared for correctness. The queries were performed 30 times and the values shown
are the average of performing the same query varying the query center s,. Table 5.3
summarizes measurements executing the three queries using SIREN and SIREN,, both
using sequential scan and using the Slim-tree index structure.

As we can see in Table 5.3, the optimization process can make Query Q4 about 30%
faster both when a sequential scan or a Slim-tree index is employed. The gain obtained
with Query Q5 was about 65% using a Slim-tree index and 63% using sequential scan.

Query Q6 gain was about 64% using sequential scan and about 63% when using a Slim-tree

index.
SIREN SIREN,,
Sequential scan | Slim tree | Sequential scan | Slim tree
Q4 354.70 331.20 246.90 231.30
Q5 948.50 765.60 351.70 270.40
Q6 604.70 443.20 218.80 165.70

Table 5.3: Performance of Queries Q4, Q5 and Q6 (total time in milliseconds).

The experiments reported in Table 5.3 show that the performance gains obtained by
the optimization techniques are always greater than those obtained just using the metric
access method. Moreover, using both techniques, optimization + MAM always leads to

the better performance.

Inclusion-based Properties

The second set of experiments was performed using the equivalence- and
inclusion-based properties of the Similarity Algebra. SIREN was implemented in C++,
and the experiments were evaluated using an Intel Core 2 Quad 2.83GHz processor with
4GB of main memory, under the Windows XP operational system. SIREN was configured
to process the traditional part of the queries in Oracle 9i. These experiments apply
the ‘similarity-first’, canonical and the alternative plans to execute Query Q7, using the
CitiesUSDS dataset. Remember that the ‘similarity-first’ plan is the one in which the
kNN predicates should be the first to be executed.

Q7: “Find the 5 cities nearest to ‘New York city-NY’, whose distances from ‘Albany
city-NY’ are not farther than 210 km, considering the Euclidean distance Lo, having the
per capita income greater than 22,400 and the percentage of families in poverty level

smaller than or equal to 18.5”.

5.2 The SIREN Query Optimizer 89

Query Q7 involves traditional, similarity range and kNN selections. It can be expressed

as follows.

O (PerCapita>22400 A PctPovertyFam<18.5) (O—(Coordinate 6(Lo,1.9) Coord(Albany))

(GCoordinate é(L2,5) Coord(NeW YOI“k) USC’ltZGS)) .

Figure 5.3 presents the ‘similarity-first’, the canonical, which is the result of applying
the Algorithm 4.1 in the original query, and five alternative execution plans that result
from the query rewriting processing of Query Q7. This figure also shows the number of
expected (k) and returned results for each plan, and their evaluation time in milliseconds
(ms). The time reported corresponds to the average of execution of 10 queries like Q7 for

distinct query centers.

(a) ‘Similarity-first’ Plan (b) Canonical Tree (d) Alternative Plan 2 (e) Alternative Plan 3 (f) Alternative Plan 4 (g) Alternative Plan 5

- EafEnlen

USCities USCities USCities

BHHHE
e
B

ea
USCities USCities USCities USCities USCities
USCities
Alt tive Plan - Propert
Proporty R — —
None Property k4.6 and Property k.7 Property k4.7 and Property Ri Property R4.5 and Property ki.4
Property k1.6 Property k1.6
Property k4.7
Number of expected (k / returned results:

5/5 ‘ 5/3 ‘ 5/5 ‘ 5/1 ‘ 5/4 ‘ 5/1 ‘

’ 17 ‘ 117 ‘ 125 ‘ 141 ‘ 124 ‘ 125 ‘ 403 ‘

Figure 5.3: ‘Similarity-first’ plan, canonical tree, alternative plans and execution time

of Query Q7.

Let us compare the results and how the ‘similarity-first’ and the canonical plans
differ. For this query, the evaluation time of all alternative plans are greater than
the ‘similarity-first’ and canonical ones. As the optimization process goal is to identify
the algebraic expression that may be evaluated with the lowest computational cost, the
alternative plans are discarded by the query optimizer.

Although the evaluation times for the ‘similarity-first’ and for the Canonical plans
are the same, the ‘similarity-first’ plan can return less than k£ tuples, as further selection
operations are applied over the first k tuples selected, pruning more results. When the
evaluation of the predicates of the remaining selections after returns at least k tuples,
executing the kNN as the last operation (Canonical tree) warrants that the asked amount
k of tuples are returned. However, it is worth noticing that the same k tuples are always

returned by the ‘similarity-first’ plan. Starting with the ‘Similarity-first” Plan of Figure5.3,

90 5. Similarity Retrieval Engine - Case Study

the canonical plan can be generated by applying the commutative property between the
range and traditional operators, i.e., Property R4.5, and then, Property k4.6 and Property
k4.7, respectively.

5.3 The SIREN Preference Model

The SIREN Preference Model module is developed as a new SIREN functional component.
Users’ preferences are expressed to SIREN using a user’s profile. The Preference Model
module collects the users’ preferences and generates conditional preference rules (cp-rules),
analyzing the semantic information extracted by the preference rules processing and
comparing it to the complex data distributions, aiming at finding correlations that can
be useful both to speed up query processing and to improve the efficacy of the answer.
Together with the rules of the similarity algebra already embedded in the Query Rewriter,
these rules are used to rewrite the similarity queries aiming either at simplifying the query
execution, enabling to find faster answers, or to better follow the users’ expectations,
enabling to find better answers.

Following we present the syntax of the SQL extension that we developed to enable
expressing user’s preference in SIREN. In this section and the next one, we employ
the Extended Backus-Naur Form (EBNF) notation, a widely adopted notation for the
specification of program languages to present the syntax of the proposed extension.

A new preference model is defined by the CREATE PREFERENCE MODEL statement, as

follows.

<create_preference model_statement>::=
CREATE PREFERENCE MODEL <model_name>
FROM <relation_name>
AS <preference_list>
[‘[’<attribute_list>‘]’];

The new preference model is called <model_name>. It assigns the list of cp-rules
defined in <preference list> to the relation <relation name>. The <model name>
parameter must be unique. Each rule is declared following the IF <antecedent> THEN
<consequent> syntax. Multiple rules are assumed to compose a conjunction. Cp-rules can
be created with or without antecedents, which are terms in the form attribute = value
connected by the AND keyword. The consequents are always a preference relation between
the values of the given attribute. The optional parameter <attribute_list>, which is
represented between brackets, states that the attributes in the list are not involved in the
rule — every involved attributes must have the same value in both tuples compared.

A preference model is dropped by the DROP PREFERENCE MODEL statement, whose

syntax is as follows.

5.3 The SIREN Preference Model 91

<drop_preference model_statement>::=
DROP PREFERENCE MODEL <model_name>;

where <model_name> is the preference model to be dropped.

Having created a preference model, the set of cp-rules are validated and the preference
model becomes ready to be used. However, a Preference Model is attached to a relation
of the database schema, not to a specific user. Therefore, it is necessary that each user
explicitly chooses the preference model that his/her wants to attach to his/her personal
query environment.

The SET MODIFICATION statement controls what modifications are enabled in each

user query environment, as follows.

<set_modification_model_statement>::=
SET MODIFICATION [ADD | REMOVE | UPDATE]
[ALL | <model_name>];

This statement is used to enable or disable the specified preference model in the
user’s environment (using the ADD or REMOVE clauses), or to update existing preference
models (using the UPDATE clause). When SET MODIFICATION ADD <model name> is
posed, the current set of cp-rules from the <model _name> model is added to the users
environment. When SET MODIFICATION UPDATE <model_name> is posed, the preference
model associated to the <model name> model is re-evaluated (for example, due to changing
configurations in the profile). When SET MODIFICATION REMOVE <model name> is issued,
the current set of cp-rules from the <model name> model is removed from the user’s
environment. The ALL option is used to add, remove or update all preference model from
the user in the users environment.

Whenever there are preference models enabled in the users environment, all queries
issued by the user are rewritten following those models. Therefore, the SET MODIFICATION
command allows the user to control when queries should be modified, and which models
must be employed to modify each query. If the user adds a model in his/her environment
and other model was already added, the SIREN query rewriter asserts that both models
are consistent and uses them to rewrite queries as a conjunction; otherwise, only the last
added model is used to rewrite queries.

When there are SET MODIFICATION commands active, each similarity query posed is
automatically rewritten taking into account the rules enabled in the user’s environment.
The rewritten query is enabled adding the ACCORDING TO PREFERENCES clause after the
WHERE condition in the SELECT statement, as follows.

92 5. Similarity Retrieval Engine - Case Study

<according clause>::=
ACCORDING TO PREFERENCES ([n,] <model name_list>);

This clause allows performing an additional filtering over tuples returned after the
execution of the clauses FROM and WHERE. The remaining tuples are those satisfying all
the users’ preferences specified by the model names in <model _name_1ist>. The optional
parameter n, which is defined in the user’s profile, enables selecting the n most preferred
tuples, respecting the preference hierarchy. Therefore, it is possible to select complex
data with varying similarity degrees. The semantic of a kNN query using parameter n
corresponds to first select the k£ complex data most similar to the query element, and
thereafter, among them, select up to n most preferred tuples following the users profile
preference hierarchy.

Figure 5.4 summarizes the whole process of preparing and posing queries either using
or not using the preference rules, over a database. In the first step (Figure 5.4, Action D),
the user specifies its preferences in the user’s profile. The preference rules are generated
and stored in the database, as part of the system catalog. Notice that a preference model
is attached to the METRIC <metric_name> employed to search the database, thus it can be
applied to any attribute in any relation sharing the same domain and this the same rules.
When searching for similarity with preference model disabled (Figure 5.4, Action 2),
the “similarity search” engine uses only the multimedia database to answer the query;
otherwise, when the preference model is enabled (Figure 5.4, Action 3)), the “similarity
search” engine uses the rules together with the multimedia database to evaluate the

queries.

5.3.1 Experimental Evaluation

The SIREN prototype and its Preference Model module were implemented in C++, and
the experiments were evaluated using an Intel Core 2 Quad 2.83GHz processor with 4GB
of main memory, under the Windows XP operational system. The RDBMS used to
process the traditional part of the query was the PostgreSQL 8.4.

The experiments were performed using the LungDS dataset. It was employed two
user profiles, one more general and another more specific, and both are compared with
a plain similarity query, with no preferences attached. They were prepared to represent
the fact that lung-related diseases are strongly correlated to the seasons, thus a medical
doctor can prefer to analyze exams taken at some season over others. Moreover, it is
also known that “Consolidation” findings are more common at the driest seasons, thus

users’ preferences are driven by that knowledge. The more specific preference model

5.3 The SIREN Preference Model 93

[[
@ > User @ Rule
Profile l

y
v
Multimedia
Database
@ . @ ® Similarity %@ Answer without PM

1 Query Search]
@ Answer with PM
@ Enable
PM

Figure 5.4: Processes to prepare and execute similarity queries considering of preference
models.

is the LungPref, in which a radiologist’s profile is defined regarding lung sickness like

bronchiolitis and pneumonia, as follows.

CREATE PREFERENCE MODEL LungPref
FROM LungExams AS
IF class = ‘Consolidation’ THEN
season = ‘winter’ > season = ‘autumn’ [id, sex, age, date] AND
IF class = ‘Consolidation’ THEN
season = ‘autumn’ > season = ‘spring’ [id, sex, age, date] AND
IF class = ‘Consolidation’ THEN

season = ‘spring’ > season = ‘summer’ [id, sex, age, date];

Then, the LungPref preference model shows that the radiologist states when searching
for computed tomographies lung exams, if the image classification has the “Consolidation”
finding, then the user prefers images of the driest seasons. For example, the condi-
tion season = ‘winter’ > season = ‘autumn’ means that a tuple meeting condition
season = ‘winter’ is preferred over those meeting condition season = ‘autumn’. The
clause [id, sex, age, date] expresses that those four attributes are irrelevant for the
preference evaluation, so they are not involved in the tuple comparisons. The generic
preference model is called DrySeasonsPref, and in its definition the user just defines that
he/she prefers dry and cold weather, saying nothing about computed tomography findings

preference, as follows.

94 5. Similarity Retrieval Engine - Case Study

CREATE PREFERENCE MODEL DrySeasonsPref
FROM LungExams AS

season = ‘winter’ > season = ‘autumn’ [id, sex, age, date] AND
season = ‘autumn’ > season = ‘spring’ [id, sex, age, date] AND
season = ‘spring’ > season = ‘summer’ [id, sex, age, datel;

Suppose that a radiologist is searching for pulmonary diseases in an image, and asks
for similar previous cases images. Example 5.2 illustrates the corresponding similarity
query sent by the radiologist to SIREN in the LungDS dataset.

Example 5.2:

Q8: “Among the 10 images most similar to this lung computed tomography having
the word ‘Consolidation’ in its report, the radiologist prefers images obtained in the driest

seasons”.

SELECT id, age, Image
FROM LungExams
WHERE Image NEAR ‘C:\PatientExaml.jpg’ STOP AFTER 10;

However, just creating a preference model with the CREATE PREFERENCE MODEL
command does not enable SIREN to modify queries. Thus, to enable obtaining a
preference-improved answer, the user must first enable the query rewriting using the
SET MODIFICATION command, as follows.

SET MODIFICATION ADD LungPref;

Thus, when the user environment is enabled, SIREN automatically rewrites the query
adding ACCORDING TO PREFERENCE clause after the WHERE condition. In that case, SIREN
answers the query based on the preferences specified in the user’s profile, which processes
the LungPref preference model.

Query Q8 was posed to SIREN asking for £k = 50 elements for eighty-two distinct
query centers, covering 1/3 of the database. The same query set was posed with the
preference model disabled, and with the LungPref or the DrySeasonsPref preference
models enabled. Figure 5.5a presents the percentage of interesting answers obtained,
considering as interesting the images that have the same class of query center, both in the
similarity-only query answer and in the preference-enabled similarity query answers. In
the graphic, the percentage of interesting answer is the proportion of the relevant images
— Ri — obtained regarding the total number of images of the same class in the database
— T'sc (Equation 5.1). The precision is the proportion of relevant images — Ri — obtained
regarding the total number of images in the database — T (Equation 5.2).

Ri

Percentage Interesting Answers = Toc (5.1)
sc

5.3 The SIREN Preference Model 95

Ri
Precision = — 5.2
recision = (5.2)

100% —— 1.00 q

90% + ’//-7 0.90 q
80% + 0.80 q
70% + 0.70 q
60% + 0.60 q

50% + 0.50 q

Precision

40% + 0.40 q

30% 030 1
20% + / / 0.20 A
100 1 0.10

0.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Queries

0%

% Interesting Answers % Interesting Answers

‘—S\m\\amyonly -®-DrySeasonsPref —%-LungPref —SimilarityOnly -8~ DrySeasonsPref =% LungPref

(a) (b)

Figure 5.5: (a) Percentage of correct answer in the similarity-only and preference
similarity queries; (b) Precision vs. Percentage (%) Interesting Answers.

Analyzing the results obtained, processing the preferences improves the amount of
queries that return more interesting images. In fact, only 37% of the plain similarity
queries were able to retrieve 30% of the interesting answers, whereas 50% of the queries
meeting the DrySeasonsPref preference model and 77% of the queries using the LungPref
preference model retrieve at least 30% of the interesting answers. On the other hand,
Figure 5.5a shows that if the preference model is more generic, it is not able to
significantly improve the answers for large amounts of returned images. In fact, 90%
of the similarity-only queries and 100% of the LungPref preference model return up to
50% of the correct answers but DrySeasonsPref obtains only 61% of interesting answers.
This is due to the generic preferences find preferred images in classes much distinct from
the originally intended class.

Figure 5.5b shows the precision of the answers achieved for varying percentage of
interesting answers filtered by the preference evaluation, again considering similarity-only
queries and queries with LungPref or the DrySeasonsPref preference models enabled.
When no preference is enabled, the graphic corresponds to the Precision vs. Recall, where
the similarity criterion employed achieves precision from 80% to 60% for up to 50% of
recall (percentile of interesting answers). It must be remembered that this query searches
over the entire database. However, when preference models are enabled, the graphics
show that the amount of interesting answers for the same percentile of precision increases
considerably. In fact, for the more specific LungPref preference model, it achieves 100%
of precision for up to 30% of interesting answers. The less specific DrySeasonsPref
preference model also improves precision for most percentiles of interesting answers, but
it reveals an interesting behavior for the range from 10% to 50% of interesting answers: the
precision increases for increasingly interesting answers. This is due to the preference-based
part of the query answering process working over the intermediate results obtained by the

similarity-based part of the query answering process. Thus, as the amount of intermediate

96 5. Similarity Retrieval Engine - Case Study

results increases, the preference-based part is able to find better answers. However,
this effect does not continue indefinitely. As the similarity process continues to retrieve
progressively farther answers, they do not meet the preference anymore, and the benefit
obtained by any of them becomes negligible.

Another interesting behavior revealed when we analyze Figure 5.5b is that more
selective preference models are better to improve answers for low-cardinality answers.
In fact, the figure shows that, in the beginning, the more specific LungPref preference
model outperforms the DrySeasonsPref one. This effect remains whenever the database
has sufficient number of interesting answers to be retrieved. This is why the precision
of the more specific preference model drops before the more generic does: the amount of
images meeting the more specific preference model is smaller than the amount of images
that can meet the more generic one.

Those two behavior are highly related to the meaning that the users expect from the
answer, thus this is a good indication that the techniques we developed in fact are able to

explore the semantic of the user’s expectations to improve the similarity answers quality.

5.4 The SIREN Data Mining Model

The SIREN Data Mining Model module, which has the Apriori and the Omega [Ribeiro
et al., 2008] algorithms included as a coupled way, was also developed as a new functional
component of SIREN. It extracts knowledge from the database, and generates mining
rules, correlating semantic information from the textual description to the low-level
extracted features. Together with the similarity algebra existing in the Query Rewriting,
these mining rules are used to rewrite similarity queries, aiming at improving both the
efficiency and the efficacy of similarity query answering.

A data mining model provides the specification of particular data structures, which
are stored in the database catalog, generating constraints about the data sets associated
with these structures that can be employed during the query answer processing to find
physical access paths that speed up the process. A new data mining model is defined by
the CREATE DATA MINING MODEL statement, as follows.

<createmining model_statement>::=
CREATE MINING MODEL <model_name>
ON <relation name> (<attrib_name>)
[WHERE <predicate>]
[METRIC <metric_name>]
USING <datamining alg name>[(<parameter_list>)]

The CREATE MINING MODEL command creates a new data mining model called

<model name> over the complex or traditional attribute (<attrib_name>) of the relation

5.4 The SIREN Data Mining Model 97

(<relation name>), based on the data mining algorithm (<data mining alg name>). The
<model name> parameter must be unique. The optional clause WHERE <predicate> allows
defining that only the elements in the relation that meets the specified <predicate> are
employed to evaluate the mining algorithm. The optional clause METRIC specifies which
metric (<metric_name>) associated to the complex attribute will be used to create the data
mining model. Each data mining algorithm indicated in the <data mining alg name>
clause must be individually developed and integrated to the SIREN data mining
model module, in which including a new algorithm requires recompiling SIREN. The
parameters for the data mining algorithm are optional and depend on the particular
algorithm specified. All required parameters are included in the <parameter list> in
the <datamining alg name> clause. Whenever the <parameter_list> of an algorithm
is modified, a new data mining model can be created. In this way, it is possible to execute
the composition between different models.

The new version of SIREN that we implemented includes the Apriori and the Omega
algorithms. The syntax to employ both of them has a number of required and of optional
parameters, and all of them are specified together in the same statement. The syntax to
specify them in the CREATE MINING MODEL statement is described following.

<datamining alg name>::=
APRIORI (<attribute_class>, <nclass>, <sup>, <conf>

[, <minint>, <maxmrgint>, <maxkpatt>])

The required parameters are: the attribute employed to classify the images
(<attribute_class>), the number of classes (<nclass>), and the value of minimum sup-
port (sup) and minimum confidence (<conf>) for the association rule mining algorithm.
The optional parameters are those employed to tune the Omega algorithm: the minimal
interval size (<minint>), the maximum acceptable inconsistence to merge consecutive
intervals (<maxmrgint>), and the maximum acceptable inconsistence to retain an attribute
(<maxkpatt>).

An existing data mining model can be dropped with the DROP MINING MODEL

statement, whose syntax is:

<drop_mining model_statement>::=
DROP MINING MODEL <model_name>

where <model name> is the name of the data mining model to be dropped.

After a data mining is created, the parameters of the model are also specified and the
database is processed by the specified mining algorithm to generate the corresponding
rewriting rules, thus the data mining model becomes ready to be used. However,
it is necessary that the user explicitly assigns this new model to his/her own query

environment. As mentioned in Section 5.3, in order to control what data mining model is

98 5. Similarity Retrieval Engine - Case Study

available to change similarity queries, the SET MODIFICATION statement must be issued
and its syntax is the same presented in that section.

Figure 5.6 summarizes the whole process of preparing and posing queries, either using
or not using the mined rules, over a database already loaded with images. In the first step
(Figure 5.6, Action (D), the user sends interesting images to the Omega and the Apriori
algorithms. The association rules are mined and stored, together with the interesting
images, in the database. Notice that the interesting images must be previously stored in
the database, possibly together with other images, regardless of them being interesting
or not. The interesting images can be stored in the same relation or in any other relation
having the same attribute structure. After retrieved, the rules are also stored in the
database, as part of the system catalog. Notice that a data mining model is attached to
the METRIC <metric_name> employed to search the database, thus it can be applied to any
attribute in any relation sharing the same image domain and the same rules mined. When
searching for similarity with data mining model is disabled (Figure 5.6, Action @), the
“similarity search” engine uses only the image database to answer the query; otherwise,
when the data mining model is enabled (Figure 5.6, Action 3)), the “similarity search”

engine uses the rules together with the image database to evaluate the queries.

| |
I

@, Inlterestlng ur® » Omega @ Apriori @{Rule]
mages

y
@

A

Image
Database

®

@ > Query @® Similarity @Answerw'thom o
A T
Search @Answerwith DMM
® Enable
DMM

Figure 5.6: Processes to prepare and execute similarity queries considering of data
mining models.

5.4.1 Experimental Evaluation

SIREN and its data mining module are implemented in C++-, and the experiments were

evaluated using an Intel Core 2 Quad 2.83GHz processor with 4GB of main memory,

5.4 The SIREN Data Mining Model 99

under the Windows XP operational system. The RDBMS used to process the traditional
part of the query was Oracle 9i. The time spent to execute the queries and the quality of
the answer are used to evaluate the efficiency and efficacy of the technique.

The experiments were performed using the WWor1dDS dataset. Suppose that the user is
only interested in photos that share a specific characteristic, for which he/she has an initial
training subset already marked in the attribute Training (that is, Training = ‘True’).
Thus, the user must create a data mining model to evaluate its training subset. Assuming
that texture is adequate to discriminate among images that the user is interested in or

not, the following command can be issued.

CREATE MINING MODEL WondersWorldAssociationRulesModel
ON WondersWorld (Image) METRIC texture
WHERE Training = ‘True’
USING APRIORI (Tag, 15, 1, 100, 2, 0.1, 0.42);

This command creates a data mining model using the Apriori algorithm to extract
association rules from the Image attribute of the WondersWorld relation. The Apriori
algorithm processes only the subset of tuples from the relation where the attribute
Training has value ‘True’. Also, the Apriori algorithm is executed with a minimum of
1% as the threshold for support and 100% for confidence. The attribute used to classify
the WondersWorld relation is Tag, and this relation has 15 classes. The Omega algorithm
is executed using a minimal threshold for interval size of 2, a maximum threshold for
merging consecutive intervals of 0.1 and a maximum threshold for keeping an attribute of
0.42. Those threshold were defined following the Omega recommendations [Ribeiro et al.,
2008].

When the CREATE MINING MODEL command is issued, the 298 images that express the
users’ expectations (Training = ‘True’) are retrieved from the WondersWorld relation
and submitted to the Omega and the Apriori algorithms. These algorithms process the
images and generate the rules to be employed by the query rewriter module to process
further queries. A total of 1,799 rules were generated. The number of images submitted
for training should not be very large, as the Apriori and the Omega algorithms do not
scale well. Therefore, the suggestion is selecting from 20 to 200 images of each class as
an amount adequate to create the rules. The average time to create this data mining
model was 460 milliseconds. It is worth remembering that creating a data mining model
is performed only once, and further queries that use it are not affected by this number.
Thereafter, the rules generated by a data mining model can be applied over very large
image sets, so although using a small amount of training images, this technique is scalable
to very large datasets.

Just executing the CREATE MINING MODEL command does not enable SIREN to modify
the queries. The user must enable query rewriting using the SET MODIFICATION command.

100 5. Similarity Retrieval Engine - Case Study

Initially considering the data mining model-driven query rewriting disabled, it was
submitted several kNN, where £ is the number of images to be retrieved, which varies
from 1 to 20 for each query center. Also, ten queries with distinct query centers were
posed for each value of k. Following, it was submitted several R,, where the range radius
of images to be retrieved varies from 0.1 to 0.8 for each query center. Again, ten queries
with distinct query centers were posed for each value of the range radius.

Finally, the data mining model-driven query rewriting was enabled, issuing the SET

MODIFICATION command as follows, and the same sets of kNN, and R, were issued again.

SET MODIFICATION ADD WondersWorldAssociationRulesModel;

Figure 5.7 summarizes in a data flow how the two commands CREATE MINING MODEL
and SET MODIFICATION respectively prepare and enable the rules to be employed for query

rewriting.

CREATE MINING MODEL WondersWorldAssociationRulesModel
ON WondersWorld (Image)

METRIC texture

WHERE training = ‘True’

USING APRIORI (Tag, 15, 1, 100, 2, 0.1, 0.42);

WondersWorld

ID | Tag | TagName | Description | City | Country | Lat | Long | Training | Image
1 False
2 True
L —
L —

Training = ‘True’

Association Rules
70[836.1-877.6] 8[155.7-156.5] - Chichenltza (1.0, 100.0)
Apriori | 87[106.5-109.1] » ChristtheF (1.0, 100.0)
+

ID | Tag | Image | Texture

—
Omega
—
]
— =
(<)
-
=<
SET MODIFICATION '(,‘3‘) 8
ADD WondersWorldAssociationRulesModel L=
Q
(<)
=,
- USER -
MODIFICATION ENVIRONMENT
ModelName Status
ModelNamel False
WondersWorldAssociationRulesModel | False
ADD
ModelName Status
ModelNamel False
WondersWorldAssociationRulesModel | True

Figure 5.7: Data flow showing how the mining rules are enabled using the CREATE
MINING MODEL and SET MODIFICATION commands.

Table 5.4 shows the average values obtained for the R, and Table 5.5 presents the
average values obtained for the kNN,. Both tables show the average number of relevant
images obtained (‘Rel’), the average number of non-relevant images obtained (‘Non-Rel’)

and the average time (in milliseconds) to execute one corresponding query, varying values

5.4 The SIREN Data Mining Model 101

of range radius in the R,, and varying values of k in the ANN,. The same sets of
measurements were performed for both kinds of queries, enabling the query rewriting
using the rules mined by the data mining model (the values shown as “With DMM” in
both tables) and disabling them (the values shown as “Without DMM” in both tables).
“Without DMM?” corresponds to the plain execution of the traditional similarity query,
that is, without data mining model rule-based query rewriting.

Analyzing the R, results shown in Table 5.4, it can be seen that for the same range
radius with the query rewrite disabled, SIREN returns several images in which the user is
not interested in. For example, with a range radius & = 0.2 it retrieves only 3 interesting
images but 22 non-interesting; with a range radius £ = 0.8 all the 20 interesting images are
returned, but other 188 non-interesting images are retrieved together. When the query
rewrite is enabled, for the same range radius SIREN always returns just the interesting
images within the given distance. Table 5.4 also shows that the time required to execute
queries for both enabling or disabling the query rewriting does not change significantly.
This is due to the fact that the query processing in SIREN is always fast, and the

communication between SIREN and Oracle takes the most significant time.

Average Without DMM With DMM

Range || Rel \ Non-Rel \ Time (ms) || Rel \ Non-Rel \ Time (ms)
0.1 1 0 47 1 0 42
0.2 3 22 47 3 0 47
0.3 7 54 47 7 0 47
0.4 12 85 52 12 0 52
0.5 15 113 47 15 0 47
0.6 19 141 47 19 0 47
0.7 19 165 47 19 0 47
0.8 20 188 47 20 0 47

Table 5.4: Results from several range values - range queries (average)

Analyzing the NN, results shown in Table 5.5, it can be seen that, again, for the
same number of relevant images retrieved with the query rewrite disabled, SIREN also
returns several images that are not relevant to the user. It is important to remember
that kNN and traditional predicates are not commutative. Therefore, if the user asks
for a kKNN query with the option for query rewriting disabled, it will be returned k
images, although possibly not every image will be interesting, therefore the number of
interesting images returned is at most k, but it is often less than k relevant images. To
perform this experiment with the query rewritten disabled, we repeated the experiment
with higher values of £, until the desired number of interesting images was obtained.
Column “Non-Rel” from the “Without DMM” experiment reports the average number of

k required to obtain the corresponding number of interesting images.

102 5. Similarity Retrieval Engine - Case Study

Table 5.5 shows, for example, that to retrieve 2 interesting images, an average of 12
images including non-interesting ones should be asked for; that is, the kNN must be issued
asking for, at least, k = 12. To retrieve all the 20 interesting images, it should be asked for
an average of 215 images. When the query rewrite is enabled, only the required number
of images must be effectively asked, that is, k can be set exactly to the desired value. As

it occurs regarding range queries, the time to process both queries is equivalent.

Average Without DMM With DMM
kNN Rel | Non-Rel | Time (ms) || Rel | Non-Rel | Time (ms)
1 1 3 47 1 0 42
2 2 12 42 2 0 42
3 3 22 A7 3 0 A7
4 4 27 37 4 0 47
5 5 30 42 5 0 47
6 6 33 47 6 0 47
7 7 38 A7 7 0 47
8 8 46 A7 8 0 A7
9 9 o8 41 9 0 41
10 10 67 47 10 0 42
11 11 71 42 11 0 47
12 12 75 42 12 0 47
13 13 85 A7 13 0 47
14 14 98 47 14 0 42
15 15 108 36 15 0 47
16 16 118 42 16 0 47
17 17 123 47 17 0 47
18 18 127 42 18 0 A7
19 19 141 42 19 0 47
20 20 215 42 20 0 47

Table 5.5: Results from several k values - kNN queries (average)

Figure 5.8 shows an example of ten images that have the Training attribute set to
‘True’, that is, some of the images submitted to the association rule mining algorithms
Apriori and Omega. Also, this figure presents examples of the results obtained when a
ENN, is executed both with data mining model disabled and enabled, using & = 10 over
the full database regardless of the Training attribute setting.

5.5 Final Comments

This chapter presented the application of the techniques developed in this doctorate
program into the Similarity Retrieval Engine - SIREN. This case study showed that it
is feasible to integrate similarity-based operators with traditional ones, without causing

too much impact in neither the optimization process nor the query language structure,

5.5 Final Comments 103

whereas nonetheless providing a powerful and flexible basis to support similarity queries.
Moreover, semantic restrictions, which are not employed in the optimization process of the
scalar data because of their associated high processing costs, can be successfully employed
for the query optimization of complex data, improving both the efficiency and the efficacy

of similarity queries.

104 5. Similarity Retrieval Engine - Case Study

Training Set - Example

SELECT ID, Image
FROM WondersWorld
WHERE Image NEAR ‘C:\Chichenltzal2l.jpg’ STOP AFTE

Without DMM

Figure 5.8: Results of 10NN over query enabling and disabling the use of a data mining
model. The training set example was obtained from the WondersWorld
relation with the attribute Training = ‘True’ and used to generate the
rules.

6

Conclusion

6.1 Final Considerations

With the advent of applications that use complex data such as multimedia, spatial,
time series and genetic sequence, relational database management systems (RDBMSs)
are being increasingly requested to store and recover these data types. However, for
RDBMSs to efficiently retrieve complex data, it is of paramount importance that their
query optimizer provide support for queries based on similarity predicates, seamlessly
integrating them to the identity- and TOR-based predicates that the traditional query

optimizers were developed to handle. This work targets improving that support.

6.2 Main Contributions

This thesis contributes for the similarity query optimization process, exploiting algebraic
properties and semantic restrictions that can be successfully employed by the RDBMS
optimizer module to improve the efficiency and quality of the query answering execution.

Our first contribution was to define a model to include the similarity-based operators

into the relational model, in a way that both complex and simple attributes can be

queried by similarity, identity and relational comparisons. As our second contribution, the

canonical plan generation algorithm that translates SQL queries into algebraic expressions
was extended to also accept the similarity-based constructions, precisely defining the
canonical plan that is the input to the query optimizer.

Thereafter, the third contribution was to establish a complete set of algebraic rules

to handle queries that mix similarity and non-similarity based conditions. To this intent,

we defined two new algebraic operators based on the k-nearest neighbors and on the

105

106 6. Conclusion

similarity range queries, that are the similarity-based counterpart of the identity- and
TOR-based traditional selection operator. The equivalence properties of expressions that
employ the new operators were identified, taking into account the properties relating
only similarity-based operators or relating any composition of similarity, identity- and
TOR-based operators, including the selection, set-theoretical and cross product operators.
The identified equivalence properties revealed that there are too few rules that can be
employed for the query optimization process, thus severely restricting the opportunities
to achieve adequate optimized query access plans.

Therefore, our fourth contribution was to identify other, non-equivalence-based

properties, that could achieve that goal. The result was the inclusion-based properties.
They allow generating an alternative expression that, although not equivalent to the
intended one, is assured to include all of its elements. Thus, if the alternative expression
can be evaluated much faster than the intended one, it can be worth to use it followed by
a final filtering processing that drops its false positives, leading to an overall faster way
to obtain the correct answer. The relational algebra together with the equivalence and
inclusion-based properties of the algebraic operators defines what we called the “Similarity
Algebra”, which was published in Ferreira et al. [2009] and Ferreira et al. [2011].

Similarity is a concept that is highly related to the human perception of how to
compare things. Therefore, the human understanding of things stored as data elements
in the database, often referred as the “semantic information” related to the data, is an
important asset to be used to improve the quality of similarity queries. We assumed that
semantic information can be expressed as predicates, restricting the range of the values
that attributes of the stored elements can assume. As a consequence, identification of
users’ interests can be roughly expressed as restricting the ranges of selected attributes
from the elements in the query results, which ultimately mean that taking the user’s
interest into account to answer queries corresponds to create techniques to automatically
include the corresponding predicates as part of the queries issued by the user. Those
predicates involves similarity, identity- and TOR-based ones, thus our similarity algebra
becomes a powerful tool to aid in supporting semantic restrictions on similarity-based
retrieval to improve query quality.

Besides the user’s knowledge about the data and the related applications, there
is also patterns in the stored data that can be useful to be taken into account to
speed up query processing. Thus, pre-processing the data with data mining techniques
which retrieve useful patterns describing the data distribution that can be represented
as predicates of any kind (similarity, identity and TOR-based). Those predicates are
thereafter automatically included in the query plan, and they can also help speeding up
query processing, specially the queries that also use similarity based predicates, which

are clearly more time-consuming and thus more worth to handle by those techniques.

6.2 Main Contributions 107

Automatically including predicates to act as filters based both on users’ preferences and
on data distribution can help improving both the query quality and the query efficiency.

To evaluate our techniques, we started with an existing prototype of a RDBMS
extended to handle similarity query — the SIREN engine — modifying it to include
our proposed concepts and assumptions. The main modifications included: defining
new language clauses to express the new concepts, correspondingly extending the query
interpreter; extending the query optimizer to handle similarity queries based on syntax
and on semantic optimization; and implementing the required data retrieval algorithms
in the relational engine.

Our fifth contribution was to extend the query optimizer to handle the syntax-based

optimization extensions. It embodies the complete similarity algebra to rewrite similarity
predicates either alone or mixed with traditional ones. The similarity algebra enables the
query rewriter to generate multiple expressions of the same query, generating equivalent
or “inclusion-based plus pos-filtering” physical access plans. After generating several
alternative expressions, the query optimizer is able to estimate their costs and choose the
one with the lowest computational cost. The result is a new version of the Similarity
Retrieval Engine (SIREN,,) able to handle queries composed of any combination of
predicates that express identity, TOR or similarity queries, and using the similarity
algebra to optimize the execution.

Our sixth contribution was to explore the semantic of users’ interests associated to

similarity queries. To this intent, we used a version of the Postgres DBMS extended to
handle a preference model based on conditional preference rules (cp-rules), and extended
SIREN,, with a Preference Model module. The user can access this feature expressing
his/her interests using an SQL extended to handle cp-rules, whose interpreter is available
in the cp-Postgres extension, and that was further extended to allow tailoring cp-rules
to similarity search, whose interpreter was included in SIREN,,. This semantic-based
extension of SIREN,, applies the user’s interest expressed as cp-rules to improve the query
quality (tailoring the execution to better meet the users’ expectations). The technique
that allows employing user’s preferences to optimize similarity queries was published in
Ferreira et al. [2010a]. This work was developed in cooperation with the Universidade
Federal de Uberlindia (UFU).

Finally, our seventh contribution was to explore data distribution information about

hidden patterns in the data, using data mining techniques. To this intent, we extended
SIREN,,, with a Data Mining Module, which includes the Apriori and the Omega [Ribeiro
et al., 2008] algorithms working in a cooperative way. The user can access this feature
expressing his/her interests using an SQL extended to handle “Data Mining Models”, a
concept we developed to allow expressing data mining tasks that can be executed over the
data in a way similar to the index creation. The data gathered by a mining task is stored

in the database, and can be employed to speed up further queries over the mined data.

108 6. Conclusion

The data mining extension applies the rules that describes the mined rules as restrictions
over the data to evaluate the queries to improve the query execution efficiency (using the
restrictions as screening predicates to prune part of the data that is known to have no
interesting data). The technique that allows using association rules to optimize similarity

queries was published in Ferreira et al. [2010b].

6.3 Future Works

Including similarity queries as a new kind of predicate that can be seamlessly integrated
to all the existing resources the current Relational Database Management Systems is a
powerful tool that opens several possibilities of both theoretical, core database research
and applied research, besides the many application of its results to specific application
areas. Our work provides a solid theoretical foundation for this support, as it adds new
functionality to applications developed over the relational model, easing the representation
of similarity queries without in fact changing the model. Therefore, our results can be
applied to extend any tool that had been developed using the relational model and its
derivatives. However, although fundamental for supporting similarity queries with a solid
foundation over relational DBMS, that support requires further development to complete
its development, both in the theoretical and in the applied research point of view. We

highlight here some of them.

6.3.1 Future Applied Research

e Extension of the Similarity Algebra to handle binary similarity operators:
We provided a complete set of properties to support the similarity-based version of
the algebraic “select” operator o. However, predicates are employed also in the
traditional algebraic “join” operator of the relational algebra. The literature has
showing that there are at least three similarity join operators (similarity range join,
k-nearest neighbors join and k-closest neighbors join), whose properties was never
studied. Although a basic understanding of those join operators can be derived
throughout the properties we developed for similarity selection combined to the
cross product operator, specific properties for each of the three similarity joins are
yet to be studied.

e Extension of the Similarity Algebra to handle similarity-based
set-theoretical operators: A set is usually defined as a collection where each
element occurs just once. This concept embodies the idea that the representation
of two elements can be compared to determine its identity. If identity is exchanged
by similarity, a new concept should be created: the one that defines a collection

where each element is not similar to any other “given a similarity threshold”. This

6.3 Future Works 109

concept is very useful for many applications and also enables the development of
theoretical concepts that can aid in several areas. For example, it can be employed
to drop photos too much similar in a photo database, helping to reconcile data from
the same subject obtained from distinct sources, identify security issues in computer

systems, and so on.

e Extension of the Similarity Algebra to handle similarity-based aggregate
and grouping operators: The relational grouping is based on identifying groups of
tuples compared by identity of some of their attributes. Again, exchanging identity
by similarity enable the analysis of data regarding similarity. However, a precise
description of the similarity-based aggregate and grouping operators was only barely

done in the literature, and identifying their properties is yet to be studied.

e Extension of the Similarity Algebra to handle with diversity operators:
Several applications are finding that performing similarity retrieval over very large
databases retrieves too much elements that are too much similar to each other.
Therefore, a new requirement is emerging, mainly in web-based applications:
retrieving elements similar to the query center but diverse among themselves. The
new “similarity with diversity” operators that are being proposed follow the same
structure of the k-nearest neighbors and range query operators, but follow distinct
properties. Given the high relevance and interest of those operators, it is worth
to further study their properties and integrate them with our proposed similarity

algebra.

6.3.2 Future Theoretical Research

e Development of index structure to speed up the execution of similarity
combined to traditional operations in DBMS: Traditionally, indexes such as
B-tree and hash structures are employed to retrieve data based on identity and
on TOR comparisons, and more than one attribute can be indexed in the same
structure. Similarity comparisons can also employ metric structures, but most of
those structures can handle just one attribute at a time, and those that handle more
than one can compare them only regarding the same similarity predicate. Thus,
developing an index structure able to handle similarity and identity- or TOR-based
comparisons is a very useful tool to improve the efficiency of RDBMS executing

similarity queries.

e Development of selectivity and cost estimation techniques for similarity
predicates, considering local data parameters: The optimization process is
highly sensitive to the precision of the statistics employed to estimate the selectivity

if the predicates and the execution costs of the physical access methods. Traditional

110

6. Conclusion

data processing often rely on histograms describing the data distribution over the
attribute ranges, either based on the ordering of the attribute values or on the
spatial distribution of spatial data. However, metric data have very few works
studying this issue, and often only global metrics are collected. Thus, targeting
the development of a description model of the data distributed in a metric space
is an important endeavor. Using data mining tools to perform the retrieval of the
distribution description, as we did in this work, is a first approach, but it need to

be further studied so the results can be more broadly used to generic metric spaces.

Development of algorithms to handle similarity-based set-theoretical
operators: After a precise definition of what should be a “similarity-based set”,
index structures and algorithms to execute the similarity-based operations that are
guaranteed to not have similar elements in a given threshold can surely improve the
query efficiency and efficacy. Given that similarity-based sets are specially useful to
handle very large databases, the development of such algorithms spot as specially

interesting for similarity-based queries.

Bibliography

Adali, S., Bonatti, P. A., Sapino, M. L., and Subrahmanian, V. S. (1998). A
multi-similarity algebra. In ACM SIGMOD International Conference on Management
of Data, volume 1, pages 402-413, Seattle, Washington, USA. ACM Press.

Adali, S., Bufi, C., and Sapino, M. L. (2004). Ranked relations: Query languages and
query processing methods for multimedia. Multimedia Tools and Applications Journal
(MTAJ), 24(3):197-214.

Adali, S., Sapino, M. L., and Marshall, B. (2007). A rank algebra to support multimedia
mining applications. In International Workshop on Multimedia Data Mining (MDM),
pages 1-9, San Jose, CA, USA. ACM.

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between
sets of items in large databases. In Buneman, P. and Jajodia, S., editors, ACM
SIGMOD International Conference on Management of Data, volume 1, pages 207-216,
Washington, D.C. ACM Press.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In
International Conference on Very Large Databases (VLDB), Santiago de Chile, Chile.

Aronovich, L. and Spiegler, I. (2007). CM-tree: A dynamic clustered index for similarity
search in metric databases. Data & Knowledge Engineering (DKE), 63(3):919-946.

Atnafu, S., Brunie, L., and Kosch, H. (2001). Similarity-based algebra for multimedia
database systems. In Australasian Conference on Database Technologies (ACD), pages
115-122, Queensland, Australia. IEEE Computer Society.

Atnafu, S., Chbeir, R., Coquil, D., and Brunie, L. (2004). Integrating similarity-based
queries in image DBMSs. In ACM Symposium on Applied Computing (SAC), pages
735-739, Nicosia, Cyprus. ACM Press.

Baeza-Yates, R. A.,; Cunto, W., Manber, U., and Wu, S. (1994). Proximity matching
using fixed-queries trees. In Combinatorial Pattern Matching (CPM), volume 807 of
Lecture Notes in Computer Science, pages 198-212, Asilomar, CA. Springer Verlag.

111

112 BIBLIOGRAPHY

Baioco, G. B., Traina, A. J. M., and Traina Jr., C. (2007). MAMCost: Global and
local estimates leading to robust cost estimation of similarity queries. In International
Conference on Scientific and Statistical Database Management (SSDBM), page 6, Banft,
Canada. ACM Press.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina Jr., C. (2006). SIREN:
A similarity retrieval engine for complex data. In Dayal, U., Whang, K.-Y., Lomet,
D. B., Alonso, G., Lohman, G. M., Kersten, M. L., Cha, S. K., and Kim, Y.-K., editors,
Demo session of the International Conference on Very Large Data Bases (VLDB), pages
1155-1158, Seoul, South Korea. ACM Press.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina Jr., C. (2009). Seamlessly
integrating similarity queries in SQL. Software: Practice and FExperience (SPE),
39(4):355-384.

Beecks, C., Assent, 1., and Seidl, T. (2011). Content-based multimedia retrieval in the
presence of unknown user preferences. In International Conference on Advances in
Multimedia Modeling (MMM), volume 6523 of Lecture Notes in Computer Science,
pages 140-150, Taipei, Taiwan. Spring-Verlag.

Belohlavek, R., Opichal, S., and Vychodil, V. (2007). Relational algebra for ranked
tables with similatiries properties and implementation. In International Symposium on
Intelligent Data Analysis (IDA), volume 4723 of Lecture Notes in Computer Sciences,
pages 140-151, Ljubljana, Slovenia. Springer.

Belohlavek, R., Urbanova, L., and Vychodil, V. (2011). Similarity of query results in
similarity-based databases. In Yao, J., Ramanna, S., Wang, G., and Suraj, Z., editors,
International Conference on Rough Sets and Knowledge Technology (RSKT), volume
6954 of Lecture Notes in Computer Science, pages 258-267, Banff, Canada. Springer.

Belohlavek, R. and Vychodil, V. (2009). Logical foundations for similarity-based
databases. In Chen, L., Liu, C., Liu, Q., and Deng, K., editors, International
Conference on Database Systems for Advanced Applications - Workshops: MCIS
& WDPP (DASFAA Workshops), volume 5667 of LNCS, pages 137151, Brisbane,

Australia. Springer.

Belohlavek, R. and Vychodil, V. (2010). Query systems in similarity-based databases
- logical foundations, expressive power, and completeness. In ACM Symposium on

Applied Computing (SAC), pages 1648-1655, Sierre, Switzerland. ACM.

Belussi, A. and Faloutsos, C. (1995). Estimating the selectivity of spatial queries using
the correlation fractal dimension. In International Conference on Very Large Databases
(VLDB), pages 299-310, Zurich, Switzerland. Morgan Kaufmann.

BIBLIOGRAPHY 113

Bohm, C. (2000). A cost model for query processing in high dimensional data spaces.
ACM Transactions on Database Systems (TODS), 25(2):129 — 178.

Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., and Rabitti,
F. (2009). CoPhIR: a test collection for content-based image retrieval. Computing
Research Repository (CoRR), abs/0905.4627v2:1-15.

Bozkaya, T. and Ozsoyoglu, Z. M. (1997). Distance-based indexing for high-dimensional
metric spaces. In ACM SIGMOD International Conference on Management of Data,
pages 357-368, Tucson, AZ. ACM Press.

Bozkaya, T. and Ozsoyoglu, Z. M. (1999). Indexing large metric spaces for similarity
search queries. ACM Transactions on Database Systems (TODS), 24(3):361-404.

Braunmiiller, B., Ester, M., Kriegel, H.-P., and Sander, J. (2000). Efficiently supporting
multiple similarity queries for mining in metric databases. In IEEFE International
Conference on Data Engineering (ICDE), pages 256-267, San Diego, CA. IEEE
Computer Society.

Brin, S. (1995). Near neighbor search in large metric spaces. In International
Conference on Very Large Databases (VLDB), pages 574-584, Zurich, Switzerland.

Morgan Kaufmann.

Burkhard, W. A. and Keller, R. M. (1973). Some approaches to best-match file searching.
Communications of the ACM (CACM), 16(4):230-236.

Carélo, C. C. M., Pola, I. R. V., Ciferri, R. R., Traina, A. J. M., Traina Jr., C., and
de Aguiar Ciferri, C. D. (2009). The onion-tree: quick indexing of complex data in the

main memory. In Fast-Furopean Conference on Advances in Databases and Information
Systems (ADBIS), pages 235-252.

Carélo, C. C. M., Pola, I. R. V., Ciferri, R. R., Traina, A. J. M., Traina Jr., C., and
de Aguiar Ciferri, C. D. (2011). Slicing the metric space to provide quick indexing of
complex data in the main memory. Information Systems(1S), 36(1):79-98.

Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., and Porkaew, K. (2004).
Evaluating refined queries in top-k retrieval systems. IFEE Transactions on Knowledge
and Data Engineering (TKDE), 16(1):256-270.

Chalhoub, G., Chbeir, R., and Yétongnon, K. (2006). Flexible shape-based query
rewriting. In International Conference on Flexible Query Answering Systems (FQAS),
volume 4027 of Lecture Notes in Computer Science, pages 427-440, Milan, Italy.
Springer Berlin / Heidelberg,.

114 BIBLIOGRAPHY

Chang, K. C.-C. and Hwang, S.-w. (2002). Minimal probing: supporting expensive pred-
icates for top-k queries. In ACM SIGMOD International Conference on Management
of Data, pages 346-357, Madison, Wisconsin. ACM Press.

Chaudhuri, S. (1998). Data mining and database systems: Where is the intersection?
Data Engineering Bulletin, 21(1):4-8.

Chaudhuri, S., Gravano, L., and Marian, M. (2004). Optimizing top-k selection queries
over multimedia repositories. IEEFE Transactions on Knowledge and Data Engineering
(TKDE), 16(8):992-1009.

Chévez, E., Navarro, G., Baeza-Yates, R. A., and Marroquin, J. L. (2001). Searching in
metric spaces. ACM Computing Surveys (CSUR), 33(3):273-321.

Ciaccia, P., Montesi, D., Penzo, W., and Trombetta, A. (2000). Imprecision and user
preferences in multimedia queries: A generic algebraic approach. In International
Symposium on Foundations of Information and Knowledge Systems (FolKS), volume
1762 of Lecture Notes in Computer Science, pages 50-71, Burg (Spreewald), Germany.
Springer-Verlag.

Ciaccia, P., Montesi, D.; Penzo, W., and Trombetta, A. (2001). Fuzzy query language
for multimedia data. In Design and Management of Multimedia Information Systems:
Opportunities and Challenges, pages 201-213. Idea Group Publishing (IGI Publishing),
Hershey, PA, USA.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for
similarity search in metric spaces. In International Conference on Very Large Databases
(VLDB), pages 426-435, Athens, Greece. Morgan Kaufmann.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communi-
cations of the ACM (CACM), 13(6):377-387.

Codd, E. F. (1972). Relational completeness of data base sublanguages. Database Systems,
987(17041):65-98.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. The MIT Press, 2nd edition.

Date, C. J. (2009). SQL and Relational Theory - How to Write Accurate SQL Code.
O’Reilly Media.

de Amo, S. and Ribeiro, M. R. (2009). CPref-SQL: A query language supporting
conditional preferences. In ACM Symposium on Applied Computing (SAC), pages
1573-1577, Honolulu, Hawaii, USA. ACM Press.

BIBLIOGRAPHY 115

Déller, M. and Kosch, H. (2005). Approximating the selectivity of multimedia range
queries. In IEEE International Conference on Multimedia and Ezxpo (ICME), pages
382-385, Amsterdam, The Netherlands. IEEE Computer Society.

Fagin, R. and Wimmers, E. L. (1997). Incorporating user preferences in multimedia
queries. In International Conference Database Theory (ICDT), volume 1186 of Lecture
Notes in Computer Science, pages 247-261, Delphi, Greece. Springer.

Felipe, J. C., Traina, A. J. M., and Traina Jr., C. (2003). Retrieval by content of
medical images using texture for tissue identification. In 16th IEEE Symposium on
Computer-based Medical Systems, pages 175-180, New York. IEEE Computer Society.

Ferreira, M. R. P., Ponciano-Silva, M., Traina, A. J. M., Traina Jr., C., de Amo, S.,
Pereira, F. S. F., and Chbeir, R. (2010a). Integrating user preference to similarity
queries over medical images datasets. In Dillon, T., Rubin, D., Gallagher, W., Sidhu, A.,
and Tsymbal, A., editors, IEEFE International Symposium on Computer-Based Medical
Systems (CBMS), pages 486-491, Perth, Australia. IEEE Computer Society.

Ferreira, M. R. P., Ribeiro, M. X., Traina, A. J. M., Chbeir, R., and Traina Jr., C. (2010b).
Adding knowledge extracted by association rules into similarity queries. Journal of
Information and Data Management (JIDM), 1(3):391— 406.

Ferreira, M. R. P., Santos, L. F. D., Traina, A. J. M., Dias, 1., Chbeir, R., and Traina Jr.,
C. (2011). Algebraic properties to optimize kNN queries. Journal of Information and
Data Management (JIDM), 2(3):385-400.

Ferreira, M. R. P., Traina, A. J. M., Dias, I., Chbeir, R., and Traina Jr., C. (2009).
Identifying algebraic properties to support optimization of unary similarity queries.
In Arenas, M. and Bertossi, L., editors, Alberto Mendelzon International Workshop
on Foundations of Data Management (AMW), volume 450 of CEUR Workshop
Proceedings, pages 1-10, Arequipa, Peru. CEUR-WS.

Ferreira, M. R. P., Traina Jr., C., and Traina, A. J. M. (2007). An efficient framework
for similarity query optimization. In ACM International Symposium on Advances in
Geographic Information Systems (ACM GIS), pages 396-39, Seattle, Washington.

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2000). Database System Implementa-

tion. Prentice Hall, New Jersey.

Graefe, G. (2011). Modern B-tree techniques. Foundations and Trends in Databases
(FTDB), 3(4):203-402.

116 BIBLIOGRAPHY

Gunopulos, D.; Kollios, G., Tsotras, V. J., and Domeniconi, C. (2005). Selectivity
estimators for multidimensional range queries over real attributes. The International
Journal on Very Large Databases, 14(2):137 — 154.

Hadjieleftheriou, M., Yu, X., Koudas, N., and Srivastava, D. (2008). Hashed samples:
Selectivity estimators for set similarity selection queries. Proceedings of the VLDB
Endowment (PVLDB), 1(1):201-212.

Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques. The Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, San
Francisco, CA, USA, second edition edition.

Haralick, R. M., Shanmugam, K., and Dinstein, 1. (1973). Textural features for image
classification. TSMC, 3:610-621.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer-Jr., P., Moore, R., Chang, K., and
Munishkumaran, S. (1998). Current status of the digital database for screening
mammography. In International Workshop on Digital Mammography (IWDM), pages
457460, Nijmegen, Netherlands. Kluwer Academic Publishers.

Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer-Jr., P. (2000). The
digital database for screening mammography. In International Workshop on Digital
Mammography (IWDM), pages 212-218, Toronto, Canada. Medical Physics Publishing,.

Herstel, T. and Schmitt, I. (2005). Relation-collapse: An optimisation technique for the
similarity algebra SA. In Fast European Conference on Advances in Databases and
Information Systems (ADBIS), volume 3631 of Lecture Notes in Computer Science,
pages 29-42 Tallinn, Estonia. Spring-Verlag.

Hjaltason, G. R. and Samet, H. (2003). Index-driven similarity search in metric spaces.
ACM Transactions on Database Systems (TODS), 21(4):517 — 580.

loannidis, Y. E. (1996). Query optimization. ACM Computing Surveys (CSUR),
28(1):121-123.

Jarke, M. and Koch, J. (1984). Query optimization in database systems. ACM Computing
Surveys (CSUR), 16(2):111-152.

Jiang, B., Pei, J., Lin, X., Cheung, D. W., and Han, J. (2008). Mining preferences
from superior and inferior examples. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 390 — 398, Las Vegas, Nevada,
USA. ACM.

BIBLIOGRAPHY 117

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E. L., and Protopapas, Z. (1996). Fast
nearest neighbor search in medical image databases. In International Conference on
Very Large Databases (VLDB), pages 215-226, Bombay, India. Morgan Kaufmann.

Kosch, H. (2010). Optimizing similarity-based image joins in a multimedia database. In
International Workshop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval
(VLS-MCMR), pages 37-42, Firenze, Italy. ACM.

Lee, J.-H., Chun, S.-J., and Park, S. (2003). Selectivity estimation for optimizing
similarity query in multimedia databases. In International Conference on Intelligent
Data Engineering and Automated Learning (IDEAL), volume 2690 of Lecture Notes in
Computer Science, pages 638-644, Hong Kong, China. Springer.

Li, C., Chang, K. C.-C., Ilyas, I. F., and Song, S. (2005). RankSQL: query algebra and
optimization for relational top-k queries. In ACM SIGMOD International Conference
on Management of Data, pages 131-142, Baltimore, Maryland. ACM Press.

Lima, E. L. (1993). Espacos Métricos. Instituto de Matematica Pura e Aplicada.

Liu, B., Wang, Z., Yang, X., Wang, W., and Shi, B. (2006). A bottom-up distance-based
index tree for metric space. In Rough Sets and Knowledge Technology (RSKT),
volume 4062 of Lecture Notes in Computer Science, pages 442—449, Chongquing, China.
Springer.

Liu, L. and Ozsu, M. T., editors (2009). Encyclopedia of Database Systems. Springer.
Maier, D. (1983). The Theory of Relational Databases. Computer Society Press.

Manjunath, B. S., Salembier, P., and Sikora, T., editors (2002). Introduction to MPEG-7:
Multimedia Content Description Interface. Wiley, 1 edition.

Montesi, D. and Penzo, W. (2000). Taking care of vagueness and user preferences for
effective similarity queries on multimedia data. In [talian Symposium on Advanced
Database Systems (SEBD), pages 303 — 316, L’Aquila, Italy.

Montesi, D. and Trombetta, A. (1999). Similarity search through fuzzy relational
algebra. In International Workshop on Database € Ezpert Systems Applications (DEXA
Workshop), pages 235-239, Florence, Italy. IEEE Computer Society.

Montesi, D., Trombetta, A., and Dearnley, P. A. (2003). A similarity based relational
algebra for web and multimedia data. Information Processing & Management (IPM),
39(2):307-322.

118 BIBLIOGRAPHY

Navarro, G. (1999). Searching in metric spaces by spatial approximation. In String
Processing and Information Retrieval Symposium (SPIRE), pages 141-148, Cancun,
Mexico. IEEE Computer Society.

Navarro, G. (2002). Searching in metric spaces by spatial approximation. The

International Journal on Very Large Databases, 11(1):28-46.

Navarro, G. and Paredes, R. U. (2011). Fully dynamic metric access methods based on
hyperplane partitioning. Information Systems (1S), 36(4):734-747.

Ocsa, A. and Cuadros-Vargas, E. (2007). DBM*-tree: an efficient metric access method. In
ACM Southeast Regional Conference (ACMSE), pages 401-406, Winston-Salem, North
Carolina. ACM Press.

Paredes, R. U. and Navarro, G. (2009). EGNAT: A fully dynamic metric access method for
secondary memory. In International Workshop on Similarity Search and Applications

(SISAP), pages 57-64. IEEE.

Paredes, R. U., Navarro, G., Barrientos, R. J., and Marin, M. (2006). An index data
structure for searching in metric space databases. In International Conference on
Computational Science (ICCS), volume 3991 of Lecture Notes in Computer Science,
pages 611-617, UK. Springer.

Penzo, W. (2005). Rewriting rules to permeate complex similarity and fuzzy queries within
a relational database system. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 17(2):255-270.

Picariello, A. and Sapino, M. L. (2002). A fuzzy algebra for image data bases. In
International Workshop on Multimedia Information Systems (MIS), pages 86-95,
Tempe, Az, USA. Arizona State University.

Pola, I. R. V., Traina Jr., C., and Traina, A. J. M. (2007). The MM-tree: A memory-based
metric tree without overlap between nodes. In Fast-Furopean Conference on Advances
in Databases and Information Systems (ADBIS), volume 4690/2007 of Lecture Notes
in Computer Sciences, pages 157171, Varna, Bulgaria. Springer Verlag.

Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-Hill
Book Company, New York, NY, 3rd edition.

Ribeiro, M. X., Ferreira, M. R. P., Traina Jr., C., and Traina, A. J. M. (2008).
Data pre-processing: a new algorithm for feature selection and data discretization.
In International Conference on Soft Computing as Transdisciplinary Science and
Technology (CSTST), volume 1, pages 252-257, Cergy-Pontoise, France. ACM Press.

BIBLIOGRAPHY 119

Santos Filho, R. F., Traina, A. J. M., Traina Jr., C., and Faloutsos, C. (2001). Similarity
search without tears: The OMNI family of all-purpose access methods. In IFEFE
International Conference on Data Engineering (ICDE), pages 623-630, Heidelberg,
Germany. IEEE Computer Society.

Schmitt, I. and Schulz, N. (2004). Similarity relational calculus and its reduction to a
similarity algebra. In International Symposium on Foundations of Information and
Knowledge Systems (FolKS), volume 2942 of Lecture Notes in Computer Science, pages
252-272, Wilhelminenburg Castle, Austria. Spring-Verlag.

Schnaitter, K., Spiegel, J., and Polyzotis, N. (2009). Depth estimation for ranking query
optimization. The International Journal on Very Large Data Bases, 18(2):521-542.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.
(1979). Access path selection in a relational database management system. In ACM
SIGMOD International Conference on Management of Data, volume 1, pages 23-34,
Boston, Massachusetts. ACM Press.

Silva, Y. N., Aly, A. M., Aref, W. G., and Larson, P.-A. (2010a). SimDB: a
similarity-aware database system. In ACM SIGMOD International Conference on
Management of Data, pages 1243-1246, Indianapolis, Indiana, USA. ACM.

Silva, Y. N., Aref, W. G., and Ali, M. H. (2009). Similarity group-by. In International
Conference on Data Engineering (ICDE 2009), ICDE 2009, pages 904-915. IEEE.

Silva, Y. N., Aref, W. G., and Ali, M. H. (2010b). The similarity join database operator.
In Li, F., Moro, M. M., Ghandeharizadeh, S., Haritsa, J. R., Weikum, G., Carey, M. J.,
Casati, F., Chang, E. Y., Manolescu, I., Mehrotra, S., Dayal, U., and Tsotras, V. J.,
editors, International Conference on Data Engineering (ICDE), pages 892-903, Long
Beach, CA, USA. IEEE.

Skopal, T., Pokorny, J., and Snésel, V. (2004). PM-tree: Pivoting metric tree for similarity
search in multimedia databases. In East European Conference Advances in Databases

and Information Systems (ADBIS - Local Proceedings), pages 1-16, Budapest, Hungary.

Stefanidis, K., Koutrika, G., and Pitoura, E. (2011). A survey on representation,
composition and application of preferences in database systems. ACM Transactions
on Database Systems (TODS), 36(3):19:1-19:45.

Traina, A. J. M. and Traina Jr., C. (2003). Similarity search in multimedia databases.
In Handbook of Video Databases - Design and Applications, volume 1, pages 711-738.
CRC Press.

120 BIBLIOGRAPHY

Traina, A. J. M., Traina Jr., C., Bueno, J. M., Chino, F. J. T., and Marques, P. M. d. A.
(2003). Efficient content-based image retrieval through metric histograms. World Wide
Web Journal (WWW.J), 6(2):157-185.

Traina Jr., C., Santos Filho, R. F., Traina, A. J. M., Vieira, M. R., and Faloutsos, C.
(2007). The OMNI-family of all-purpose access methods: A simple and effective way

to make similarity search more efficient. The International Journal on Very Large
Databases (VLDB), 16(4):483-505.

Traina Jr., C., Traina, A. J. M., and Faloutsos, C. (2000a). Distance exponent: a new
concept for selectivity estimation in metric trees. In IEEFE International Conference on
Data Engineering (ICDE), page 195, San Diego - CA. IEEE CS Press.

Traina Jr., C., Traina, A. J. M., Faloutsos, C., and Seeger, B. (2002). Fast indexing and
visualization of metric datasets using slim-trees. IEEFE Transactions on Knowledge and
Data Engineering (TKDE), 14(2):244-260.

Traina Jr., C., Traina, A. J. M., Seeger, B., and Faloutsos, C. (2000b). Slim-trees:
High performance metric trees minimizing overlap between nodes. In International
Conference on Extending Database Technology (EDBT), volume 1777 of Lecture Notes

in Computer Science, pages 51-65, Konstanz, Germany. Springer Verlag.

Traina Jr., C., Traina, A. J. M., Vieira, M. R., Arantes, A. S., and Faloutsos, C. (2006).
Efficient processing of complex similarity queries in RDBMS through query rewriting. In
ACM International Conference on Information and Knowledge Management (CIKM),
pages 4-13, Arlington - VA, USA. ACM Press.

Uhlmann, J. K. (1991). Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters (IPL), 40(4):175-179.

Vieira, M. R., Traina Jr., C., Chino, F. J. T., and Traina, A. J. M. (2010). DBM-Tree: A
dynamic metric access method sensitive to local density data. Journal of Information
and Data Management (JIDM), 1(1):111-127.

Vieira, M. R., Traina Jr., C., Traina, A. J. M., and Chino, F. J. T. (2004). DBM-tree: A
dynamic metric access method sensitive to local density data. In Brazilian Symposium
on Databases (SBBD), volume 1, pages 33-47, Brasilia, DF. SBC.

Wang, J. T.-L. and Shasha, D. (1990). Query processing for distance metrics. In
International Conference on Very Large Databases (VLDB), pages 602—613, Brisbane,

Australia. Morgan Kaufmann.

BIBLIOGRAPHY 121

Wilson, N. (2004). Extending CP-nets with stronger conditional preference statements.
In National Conference on Artificial Intelligence (AAAI), pages 735-741, San Jose, CA,
USA. AAAT Press.

Yan, F., Hou, W.-C., Jiang, Z., Luo, C., and Zhu, Q. (2007). Selectivity estimation of
range queries based on data density approximation via cosine series. Data & Knowledge
Engineering (DKE), 63(3):855-878.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search
in general metric spaces. In Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms (SODA), pages 311-321, Austin, TX.

Yu, C. T. and Meng, W. (2002). Principles of Database Query Processing for Advanced
Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2006). Similarity Search: The Metric
Space Approach. Advances in Database Systems. Springer, NY, USA.

Zisman, A. (1993). A Arvore-B e uma fronteira de implementagao. Dissertacao de

mestrado, Universidade de Sao Paulo.

122 BIBLIOGRAPHY

APPENDIX

The CoPhIR Dataset

The Content-based Photo Image Retrieval'! (CoPhIR) dataset consists of digital images,
visual descriptors and related metadata extracted from around 106 millions images of
the Flickr® photo-sharing system [Bolettieri et al., 2009]. This collection stores the
metadata information, the features extracted using the Moving Picture Experts Group-7
(MPEG-7) [Manjunath et al., 2002] visual descriptors and the links to original images
in Flickr into extensible markup language (XML) files (one for each image). The five
MPEG-T7 visual descriptors used in CoPhIR are: Scalable Color, Color Structure, Color
Layout, Edge Histogram and Homogeneous Texture Descriptors. Each entry of the
metadata contains textual information of the photo (e.g. id, url, title, description, the
spatial location where the photo was taken), the author (e.g. name, location, upload
date), the user-provided tags, the comments of other users and all information stored in
the exchangeable image file format (EXIF) header of the image file.

For illustration purposes, we use in this thesis, as a running example, a subset of
CoPhIR database that mix traditional and complex attributes in the same relation. Thus,
the database schema used in this thesis is presented in Example A.1. In this example, the
traditional attributes are colored by red, while the complex attribute are colored blue.
The primary key attributes are underlined.

Example A.1:

CoPhIRdb = {UserId, Photold, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate}

Without loss of generality, we use the Manhattan (L;) distance function to compute

the similarity between elements of the complex attribute Image, because this function

LCoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.
2Flickr website. Available at: http://www.flickr.com. Accessed in: July 02, 2012.

123

124 A. The CoPhIR Dataset

is a metric and makes it intuitively easy to understand the examples presented in this
thesis. The features of Image complex attribute are extracted using the ‘Dominant Color
Descriptor’ of MPEG-7. In this way, the pair <Dominant Color Descriptor, L;> defines
the metric DominantColorL1.

Analogously, for elements of complex attribute Coordinate, the Euclidean (Ls) dis-
tance function is defined over their domain, so the similarity predicates can be answered
over it. The complex attribute Coordinate is obtained from the combination of two
geographical points, represented in the traditional attributes Lat (i.e. the Latitude) and
Long (i.e. the Longitude). In order to make easier to understand the examples, we assume
that there is a function Coord (CoPhIRdb.Country), which returns the Coordinate of the
country named Country.

Therefore, in Chapter 2, we exemplify the concepts using a subset of this database.
That is, we use only the traditional attributes, i.e. the red ones in Example A.1. On
the other hand, in Chapters 4, we demonstrate the concepts using the whole database

(traditional and complex attributes).

