
HAL Id: tel-00837734
https://theses.hal.science/tel-00837734

Submitted on 24 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing similarity queries in metric spaces meeting
user’s expectation

Monica Ribeiro Porto Ferreira Ribeiro Porto Ferreira

To cite this version:
Monica Ribeiro Porto Ferreira Ribeiro Porto Ferreira. Optimizing similarity queries in metric spaces
meeting user’s expectation. Other [cs.OH]. Université de Bourgogne; Universidade de São Paulo
(Brésil), 2012. English. �NNT : 2012DIJOS040�. �tel-00837734�

https://theses.hal.science/tel-00837734
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimizing similarity queries in metric spaces 
meeting user's expectation  

 

 
 

Mônica Ribeiro Porto Ferreira 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 

 

 

 
 
 
 
 

 

 Optimizing similarity queries in metric spaces meeting 
user's expectation1

 

 
 

Mônica Ribeiro Porto Ferreira  

 
 
 

Advisors: Prof. Dr. Caetano Traina Jr. 
      Prof. Dr. Richard Chbeir  
 
 
 
 
 

Doctoral dissertation submitted to the Instituto de 
Ciências Matemáticas e de Computação - ICMC-USP, 
in partial fulfillment of the requirements for the degree 
of the Doctorate Program in Computer Science and 
Computational Mathematics. FINAL VERSION.  

 
 
 

 
 
 

USP – São Carlos 
November 2012 

 

                                                 
1 Financial supports: FAPESP (Process Number 2008/00210-7), CAPES (Process Number PDEE BEX 2451/09-3, 
CNPq, FAPESP-Microsoft Research and CNRS. 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 

 
Data de Depósito: 21/11/2012    
 
Assinatura:________________________



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Ficha catalográfica preparada pela Seção de Tratamento 
da Informação da Biblioteca Prof. Achille Bassi – ICMC/USP 

 

 
 
 Ferreira, Mônica Ribeiro Porto 
F383o    Optimizing similarity queries in metric sp aces meeting 

user's expectation / Mônica Ribeiro Porto Ferreira ; 
orientadores Caetano Traina Jr. e Richard Chbeir. – - São 
Carlos, 2012. 

             124 p. 
 
    Tese (Doutorado Duplo - Programa de Pós-Graduaç ão em 

Ciências de Computação e Matemática Computacional e  
Doctorat en Informatique ) – Instituto de Ciências 
Matemáticas e de Computação, Universidade de São Pa ulo; 
Université de Bourgogne , 2012. 

 
 
    1. Similarity queries. 2. Similarity algebra. 3 . 

Similarity query optimization. 4. User's expectatio n. 5. 
Metric spaces. I. Traina Jr., Caetano, orient. II. 
Chbeir, Richard, orient. III. Título.  



 
 
 

 

 

 
 
 
 
 

 

Otimização de operações de busca por similaridade em 
espaços métricos atendendo à expectativa do usuário1

 

 
 

Mônica Ribeiro Porto Ferreira  

 
 
 

Orientadores: Prof. Dr. Caetano Traina Jr. 
          Prof. Dr. Richard Chbeir  
 
 
 
 
 
 
 
 

Tese apresentada ao Instituto de Ciências Matemáticas 
e de Computação - ICMC-USP, como parte dos 
requisitos para obtenção do título de Doutor em 
Ciências - Ciências de Computação e Matemática 
Computacional. VERSÃO REVISADA. 

 
 
 

 
 
 

USP – São Carlos 
Novembro de 2012 

                                                 
1 Apoio financeiro: FAPESP (Processo Nº 2008/00210-7), CAPES (Processo Nº PDEE BEX 2451/09-3), CNPq, 
FAPESP-Microsoft Research e CNRS. 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 

 
Data de Depósito: 21/11/2012 
 
Assinatura:________________________



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Ficha catalográfica preparada pela Seção de Tratamento 
da Informação da Biblioteca Prof. Achille Bassi – ICMC/USP 

 

 
 
 Ferreira, Mônica Ribeiro Porto 
F383o    Otimização de operações de busca por simil aridade em 

espaços métricos atendendo à expectativa do usuário  / 
Mônica Ribeiro Porto Ferreira ; orientadores Caetan o 
Traina Jr. e Richard Chbeir. –- São Carlos, 2012. 

             124 p. 
 
    Tese (Doutorado Duplo - Programa de Pós-Graduaç ão em 

Ciências de Computação e Matemática Computacional e  
Doctorat en Informatique ) – Instituto de Ciências 
Matemáticas e de Computação, Universidade de São Pa ulo; 
Université de Bourgogne , 2012. 

 
 
    1. Consultas por similaridade. 2. Álgebra por 

similaridade. 3. Otimização de consultas por 
similaridade. 4. Expectativa do usuário. 5. Espaços  
métricos. I. Traina Jr., Caetano, orient. II. Chbei r, 
Richard, orient. III.  Título.  



Acknowledgments

I would like to thank my advisor and friend Prof. Dr. Caetano Traina Jr., who believed

in me from the beginning when invited me to do undergraduate research. He afforded me

opportunities and challenges, support and encouragement at all time, and mainly trust.

My thanks to my French advisor, Prof. Dr. Richard Chbeir, who also contributed to

guide my work.

My special thanks to my dear husband Leandro, for always being there, for sharing happy

moments and encouraging me to overcome difficult times, for his comprehension during

my absences in countless weekends and holidays that I had to work, for his sweet words

that make everything seems so much easier.

I would like to thank my parents, José Maria and Mayra, my grandmother Ladice and all

my family that is very large and I can not mention one by one, for their unconditional

love, support and encouragement dedicated throughout my life, for their comprehension

during my absences in holidays and family gatherings, for their hug and cheer all the time.

I also thank my brothers José Maria Jr. and José Guilherme, my sister-in-law Josélia, my

brother-in-law Rudinei, my nephews João Pedro and Diego, and my parents-in-law Maria

Helena and Celso for their attention, encouragement words and for always being around

when I needed. My sincere thanks to my sister-in-law Elaine for helping and teaching me

many things throughout my academic life.

My special thanks to my grandmother and heroine Carminda (in memoriam) and to

my aunt and godmother Dama (in memoriam) for their love and support, for their

life examples, for their unconditionally encouragement dedicated throughout my life, for

hugging and cheering me all the time.

My gratitude to Profa. Agma Traina at ICMC-USP for her time and effort on my

thesis, for her collaborative work, ideas, words of encouragement and for her affection

demonstrated always so kind. I also thanks Profa. Ires Dias for the collaborative work,

time and effort invested with the algebra. My grateful to Profa. Sandra de Amo and

Prof. Renato Fileto for their contribution to my work.

I dedicate my sincere thanks to my friends and colleagues of the GBdI-USP in São

Carlos-SP-Brazil, especially I am grateful to Prof. Junior, Robson, Carolina, Letŕıcia,

Jaqueline, Willian, Lucio, Sérgio and Daniel C. for their important collaboration in the

lab and meetings. I also thanks my colleagues of the Le2i-uB in Dijon-France. I am

grateful to my friends Marcela Ribeiro, Luciana Romani, Fekade Getahum and Elie Raad

for their contributions to my work and for incentive words in moments of despair and

anguish.

My thanks to Laura, Glaucia, Ana Paula, Lhais and Carolina for helping me with

bureaucracies. I also thank the Instituto de Ciências Matemáticas e de Computação

of USP in São Carlos-SP-Brazil and Université de Bourgogne in Dijon-France for their

academic structures that became possible the development of this cotutlle work.



Finally, I acknowledge the funding agencies FAPESP and CAPES for the financial

support during this doctorate. Additionally, I thanks the funding agencies CNPq and

FAPESP-Microsoft Research that also supported the research undergoing at the GBdI

laboratory, and CNRS that supported the research undergoing at the LE2I laboratory.



Abstract

The complexity of data stored in large databases has increased at very fast paces. Hence,

operations more elaborated than traditional queries are essential in order to extract

all required information from the database. Therefore, the interest of the database

community in similarity search has increased significantly. Two of the well-known types of

similarity search are the Range (Rq) and the k-Nearest Neighbor (kNNq) queries, which,

as any of the traditional ones, can be sped up by indexing structures of the Database

Management System (DBMS). Another way of speeding up queries is to perform query

optimization. In this process, metrics about data are collected and employed to adjust

the parameters of the search algorithms in each query execution. However, although the

integration of similarity search into DBMS has begun to be deeply studied more recently,

the query optimization has been developed and employed just to answer traditional

queries.

The execution of similarity queries, even using efficient indexing structures, tends to

present higher computational cost than the execution of traditional ones. Two strategies

can be applied to speed up the execution of any query, and thus they are worth to employ

to answer also similarity queries. The first strategy is query rewriting based on algebraic

properties and cost functions. The second technique is when external query factors are

applied, such as employing the semantic expected by the user, to prune the answer space.

This thesis aims at contributing to the development of novel techniques to improve the

similarity-based query optimization processing, exploiting both algebraic properties and

semantic restrictions as query refinements.

Title: Optimizing similarity queries in metric spaces meeting user’s expectation.
Doctoral dissertation submitted to the Instituto de Ciências Matemáticas e de Com-
putação – ICMC-USP, in partial fulfillment of the requirements for the degree of the
Doctorate Program in Computer Science and Computational Mathematics. FINAL
VERSION.

iii





Resumo

A complexidade dos dados armazenados em grandes bases de dados tem aumentado

sempre, criando a necessidade de novas operações de consulta. Uma classe de operações

de crescente interesse são as consultas por similaridade, das quais as mais conhecidas são

as consultas por abrangência (Rq) e por k-vizinhos mais próximos (kNNq). Qualquer

consulta é agilizada pelas estruturas de indexação dos Sistemas de Gerenciamento de

Bases de Dados (SGBDs). Outro modo de agilizar as operações de busca é a manutenção

de métricas sobre os dados, que são utilizadas para ajustar parâmetros dos algoritmos de

busca em cada consulta, num processo conhecido como otimização de consultas. Como

as buscas por similaridade começaram a ser estudadas seriamente para integração em

SGBDs muito mais recentemente do que as buscas tradicionais, a otimização de consultas,

por enquanto, é um recurso que tem sido utilizado para responder apenas a consultas

tradicionais.

Mesmo utilizando as melhores estruturas existentes, a execução de consultas por simila-

ridade tende a ser mais custosa do que as operações tradicionais. Assim, duas estratégias

podem ser utilizadas para agilizar a execução de qualquer consulta e, assim, podem ser

empregadas também para responder às consultas por similaridade. A primeira estratégia

é a reescrita de consultas baseada em propriedades algébricas e em funções de custo. A

segunda técnica faz uso de fatores externos à consulta, tais como a semântica esperada

pelo usuário, para restringir o espaço das respostas. Esta tese pretende contribuir para

o desenvolvimento de técnicas que melhorem o processo de otimização de consultas por

similaridade, explorando propriedades algébricas e restrições semânticas como refinamento

de consultas.

Titulo: Otimização de operações de busca por similaridade em espaços métricos aten-
dendo à expectativa do usuário.
Tese apresentada ao Instituto de Ciências Matemáticas e de Computação - ICMC-USP,
como parte dos requisitos para obtenção do t́ıtulo de Doutor em Ciências - Ciências de
Computação e Matemática Computacional. VERSÃO REVISADA.

v





Résumé

La complexité des données contenues dans les grandes bases de données a augmenté

considérablement. Par conséquent, des opérations plus élaborées que les requêtes

traditionnelles sont indispensable pour extraire toutes les informations requises de la base

de données. L’intérêt de la communauté de base de données a particulièrement augmenté

dans les recherches basées sur la similarité. Deux sortes de recherche de similarité bien

connues sont la requête par intervalle (Rq) et par k-plus proches voisins (kNNq). Ces deux

techniques, comme les requêtes traditionnelles, peuvent être accélérées par des structures

d’indexation des Systèmes de Gestion de Base de Données (SGBDs). Une autre façon

d’accélérer les requêtes est d’exécuter le procédé d’optimisation des requêtes. Dans ce

procédé les données métriques sont recueillies et utilisées afin d’ajuster les paramètres des

algorithmes de recherche lors de chaque exécution de la requête. Cependant, bien que

l’intégration de la recherche de similarités dans le SGBD ait commencé à être étudiée en

profondeur récemment, le procédé d’optimisation des requêtes a été développé et utilisé

pour répondre à des requêtes traditionnelles.

L’exécution des requêtes de similarité a tendance à présenter un coût informatique

plus important que l’exécution des requêtes traditionnelles et ce même en utilisant des

structures d’indexation efficaces. Deux stratégies peuvent être appliquées pour accélérer

l’execution de quelques requêtes, et peuvent également être employées pour répondre aux

requêtes de similarité. La première stratégie est la réécriture de requêtes basées sur les

propriétés algébriques et les fonctions de coût. La deuxième stratégie est l’utilisation

des facteurs externes de la requête, tels que la sémantique attendue par les usagers, pour

réduire le nombre des résultats potentiels. Cette thèse vise à contribuer au développement

des techniques afin d’améliorer le procédé d’optimisation des requêtes de similarité, tout

en exploitant les propriétés algébriques et les restrictions sémantiques pour affiner les

requêtes.

Sujet de These: Optimisation des requêtes de similarité dans les espaces métriques
répondant aux besoins des usagers.
Thèse présentée à l’Instituto de Ciências Matemáticas e de Computação - ICMC-USP,
dans le cadre des exigences pour l’obtention du titre de Docteur en Informatique - Ciências
de Computação e Matemática Computacional. VERSION FINALE.

vii



viii



Contents

List of Figures xi

List of Tables xiii

List of Abbreviations and Acronyms xv

List of Symbols xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Work Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Work Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Traditional Query Optimization Process 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Access Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Cost and Condition Selectivity Model . . . . . . . . . . . . . . . . . 17

2.5 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Similarity Queries 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Metric Access Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Searching for Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Similarity Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Cost and Condition Selectivity Model . . . . . . . . . . . . . . . . . . . . . 32
3.8 Users’ Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.10 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 A novel approach for Similarity Query Optimization Process in DBMSs 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Including similarity-based operators into the Relational Model . . . . . . . 42
4.3 Canonical Plan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



4.4 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Similarity Algebra for metric spaces . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Similarity Operations - Definitions . . . . . . . . . . . . . . . . . . 49
4.5.2 Properties of the Range Selection . . . . . . . . . . . . . . . . . . . 51
4.5.3 Properties of the k-Nearest Neighbor Selection . . . . . . . . . . . . 57

4.6 Semantic Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.1 Preference Model Module . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Data Mining Model Module . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Similarity Retrieval Engine - Case Study 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 The SIREN Query Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 The SIREN Preference Model . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 The SIREN Data Mining Model . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion 105
6.1 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Future Applied Research . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Future Theoretical Research . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

A The CoPhIR Dataset 123

x



List of Figures

2.1 Example of a (a) logical and a (b) physical query plans, represented as
query trees for Query Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Query optimizer architecture according to Ioannidis [1996] and Garcia-Molina
et al. [2000]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Examples of similarity queries in bidimensional space with Euclidean dis-
tance L2: (a) Range query – Rq, and (b) k-nearest neighbor query – kNNq,
with k = 3 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Time line for the existing similarity algebra works, following the four ap-
proaches used in MIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Time line for the existing query optimization works, following the four
approaches used in MIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Time line for the existing query rewriting works, following the four ap-
proaches used in MIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Time line for the existing cost and condition selectivity estimation works,
following the four approaches used in MIS. . . . . . . . . . . . . . . . . . . 36

4.1 A relation composed of both simple and complex attributes. . . . . . . . . 43
4.2 General form of an SQL-like query. . . . . . . . . . . . . . . . . . . . . . . 44
4.3 (a) A query expressed in the SIREN extension of SQL to support similarity,

and (b) the canonical query plan, represented as tree, for Query Q2. . . . . 46
4.4 Similarity query optimizer architecture. . . . . . . . . . . . . . . . . . . . . 48
4.5 Venn diagram representation of inclusion property of Equation 4.28. . . . . 67
4.6 Generic flowchart to prepare and execute similarity queries considering of

preference models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Generic flowchart to prepare and execute similarity queries considering of

data mining models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 SIRENop architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 ‘Similarity-first’, canonical, alternative plans and execution time of Query

Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 ‘Similarity-first’ plan, canonical tree, alternative plans and execution time

of Query Q7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Processes to prepare and execute similarity queries considering of prefer-

ence models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 (a) Percentage of correct answer in the similarity-only and preference sim-

ilarity queries; (b) Precision vs. Percentage (%) Interesting Answers. . . . 95
5.6 Processes to prepare and execute similarity queries considering of data

mining models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



5.7 Data flow showing how the mining rules are enabled using the CREATE

MINING MODEL and SET MODIFICATION commands. . . . . . . . . . . . . . 100
5.8 Results of 10NN over query enabling and disabling the use of a data mining

model. The training set example was obtained from the WondersWorld

relation with the attribute Training = ‘True’ and used to generate the
rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



List of Tables

4.1 Summary of unary similarity operators. . . . . . . . . . . . . . . . . . . . . 51
4.2 Summary of algebraic properties to range similarity queries. . . . . . . . . 72
4.3 Summary of algebraic properties to kNN similarity queries. . . . . . . . . . 73
4.4 Summary of algebraic equivalence properties to traditional queries invalid

to kNN similarity queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Real dataset descriptions used in the experiments. . . . . . . . . . . . . . . 83
5.2 Canonical plan, represented as a table, of the Query Q3. . . . . . . . . . . 85
5.3 Performance of Queries Q4, Q5 and Q6 (total time in milliseconds). . . . . 88
5.4 Results from several range values - range queries (average) . . . . . . . . . 101
5.5 Results from several k values - kNN queries (average) . . . . . . . . . . . . 102

xiii



xiv



List of Abbreviations and Acronyms

AM Access Method.

bu-Tree Bottom-up index tree.

CM-tree Clustered Metric tree.

CoPhIR Content-based Photo Image Retrieval.

cp-rules Conditional Preference Rules.

CPU Central Processing Unit.

DBM-tree Density-Based Metric tree.

DBMS Database Management System.

DDSM Digital Database for Screening Mammography.

DMM Data Mining Model.

DF-tree Distance Fields tree.

EGNAT Evolutionary Geometric Near-neighbor Access tree.

EBNF Extended Backus-Naur Form.

EXIF Exchangeable Image File Format.

FQ-tree Fixed Queries tree.

GH-tree Generalized Hyperplane tree.

GIS Geographic Information System.

GNAT Geometric Near-Neighbor Access Tree.

I/O Input/Output.

KDD Knowledge Discovery in Databases.

kFNq k-Farthest Neighbor Query.

kNNq k-Nearest Neighbor Query.

MAM Metric Access Method.

MIS Multimedia Information Systems.

MM-tree Memory-based Metric tree.

MPEG-7 Moving Picture Experts Group-7.

xv



MSA Multi-Similarity Algebra.

MVP-tree Multi-Vantage-Point tree.

PM Preference Model.

PM-tree Pivoting M-tree.

RA Relational Algebra.

RDBMS Relational Database Management System.

Rq Range Query.

R−1q Reversed Range Query.

SA-tree Spatial Approximation tree.

SA Similarity Algebra.

SAMEW Similarity Algebra for Multimedia Extended with Weights.

SimDB Similarity-aware Database System.

SIREN Similarity Retrieval Engine.

SIRENop Similarity Retrieval Engine with Query Optimizer.

SQL Structured Query Language.

TOR Total Order Relation.

VP-tree Vantage-Point tree.

XML Extensible Markup Language.

GBdI Grupo de Bases de Dados e Imagens.

ICMC Instituto de Ciências Matemáticas e de Computação.

SGBD Sistema de Gerenciamento de Bases de Dados.

uB Université de Bourgogne.

UFU Universidade Federal de Uberlândia.

USP Universidade de São Paulo.

xvi



List of Symbols

A,Ah,Am Traditional (or simple) data domain (dom(Ah)).

A,Ah, Am Traditional (or simple) attribute defined in a

traditional domain A,Ah,Am (A ⊂ A, Ah ⊂ Ah, Am ⊂ Am).

a, b, ah Constant in the domain of A or the value of another attribute

from the same domain A in the same tuple (ah ∈ Ah, h ∈ N∗).

Dom∗(A) Active domain of attribute A.

T Data domain.

T, Ti Relations or datasets (T, Ti ∈ T, i ∈ N∗).

t = 〈a1, . . . , am, s1, . . . , sp〉 Tuple.

ti(Ah) The value of the ith tuple on simple attribute Ah (i ∈ N∗).

ti(Sj) The value of the ith tuple on complex attribute Sj (i ∈ N∗).

θ Traditional comparison operator (exact matching and relational).

=, 6= Exact matching comparison operators.

<,≤, >,≥ Relational comparison operators.

∪ Union operator.

∩ Intersection operator.

− Difference operator.

π Projection operator.

× Cross-product or Cartesian product operator.

on Join operator.
c
on θ-join operator.

σ Selection operator.

c, ci Selection condition (i ∈ N∗).

d Distance function or metric (d : S× S→ R+).

d(si, sj) Distance function or metric (d : S× S→ R+, si, sj ∈ S, i, j ∈ N∗).

M =< S, d > Metric space.

xvii



S,Sj,Sp Similarity (or complex) data domain (dom(Sj)).

S, Sj, Sp Similarity (or complex) attribute defined in a

similarity domain S, Sj, Sp (S ⊂ S, Sj ⊂ Sj, Sp ⊂ Sp).

Dom∗(S) Active domain of attribute S.

si, sj Similarity (or complex) domain elements (si, sj ∈ S, i, j ∈ N∗).

sq Query element (sq ∈ S).

ξ Similarity threshold.

θc Similarity operator.

σc Similarity selection operator.

k Number of elements returned by the query (k ∈ N∗).

Lp Minkowski distance function family.

L1 Manhattan distance function.

L2 Euclidean distance function.

r Preference Rule.

I = {i1, . . . .in} Set of data items.

X, Y Itemset (X, Y ∈ I).

fr1 , . . . , frn Image features.

[l10 − l11 ], . . . , [ln0 − ln1 ] Image feature intervals.

ClassR1 , . . . , ClassRm Image classes.

maxfeature Maximum number of features extracted from an image.

maxclass Maximum number of classes found in a relation.

Ri Relevant images.

Tsc Total number of images of the same class.

Ti Total number of images.

xviii



Chapter

1

Introduction

1.1 Motivation

Database Management Systems (DBMSs) were developed to store and retrieve large

amounts of data, pursuing efficient query execution and guaranteeing exact answers.

The great majority of the current DBMSs are based on the relational technology for

data management, which has been developed since the 70’s [Codd, 1970]. Usually, these

systems support only scalar data domains, such as numbers, dates and short character

string. Notwithstanding, with the continuous evolution of the technology, it emerged

the need to store what is called complex data, such as multimedia (image, audio and

video), large texts, multi-dimensional arrays, time series and genomic sequences, and,

consequently, organizing them in databases has became an important research target.

When dealing with complex data, comparing elements based on exact matching (= and

6=) is not a useful operation, because two exactly equal elements are rare in those domains.

Relational comparison, based on the Total Order Relation (TOR), usually expressed by

<, ≤, > and ≥, is also not generally applicable.

Often, the retrieval of elements from sets of complex data is based on similarity

comparisons, thus complex datasets can be represented in a metric space. Therefore,

metric space properties (instead of identity and TOR ones) are employed to build data

structures, which are used to speed up query execution. A metric space is a pair

M =< S, d >, where S defines the complex data domain and d is a distance function

d : S × S → R+ that satisfies the symmetry, the non-negativity and the triangular

inequality properties [Bozkaya and Özsoyoglu, 1999]. A dataset S is in a metric space

when S ⊂ S.

1



2 1. Introduction

The distance function can be employed to quantify the similarity between two

elements, such that two elements are more similar as closer they are from each other,

in such a way that a distance equal to zero means that the two elements are the same.

Thus, a distance function allows the expression of queries based on predicates that comply

with the three properties of metric spaces. Vectorial spaces with any distance function Lp,

such as Euclidean (L2) or Manhattan (L1) distances, are special cases of metric spaces.

Similarity operators can be applied to many complex data types, including spatial data,

as long as a distance function that respects the metric properties is properly defined. For

instance, Geographic Information Systems (GIS) adopt the Euclidean distance function,

so points can be queried by similarity, assuming that closer points are more similar.

In database applications, the distance function is usually considered as a “black box”,

commonly defined by the application domain specialist.

With the rising demand to support multimedia data in relational database manage-

ment systems (RDBMSs), similarity query operations have attracted increasing interest,

specially in applications that require to retrieve complex data by their content. Similarity

query operators recover elements that meet a similarity criteria, which are expressed with

reference to a data domain element sq ∈ S, called the “query center”. The two most

common similarity queries are the range and the k-nearest neighbor queries [Chakrabarti

et al., 2004; Korn et al., 1996]. A Range query (Rq) returns every database element that

differs from the query center by at most a given similarity threshold. An example of Rq

in a genomic sequence database is: “Select the DNA sequences that differ from a given

sequence p for up to 5 nucleotides”. The k-Nearest Neighbor query (kNNq) returns the k

elements nearest to the query center. An example of kNNq query in a genomic sequence

database is: “Select the 3 proteins more similar to the given protein p”.

Index structures use the properties of the stored data domain to speed up data retrieval

in the RDBMS. Several access methods based on index structures have been developed

for traditional data, mostly dependent on the TOR property, such as the B-tree and

its variations [Zisman, 1993]. For complex data, existing access methods called Metric

Access Method (MAM) explore the distance function properties, specially the symmetry

and the triangular inequality ones. Examples of index structures able to index metric

data in DBMSs and answer similarity queries include the M-tree [Ciaccia et al., 1997],

the Slim-tree [Traina Jr. et al., 2002] and the OMNI family methods [Traina Jr. et al.,

2007].

Besides access methods based on index structures, the DBMS also use “Query

Optimization” techniques to speed up the retrieval operations. Those techniques are based

on the maintenance of measurements, the so called “statistics”, which are employed in two

situations: to estimate the execution cost of different but equivalent algebraic expressions

that answer the same query; and to adjust the index method parameters when they are

executed to index data or to answer a given query.



1.2 Problem Definition 3

Both the query optimization and the access methods based on index structures are

employed successfully by DBMSs handling scalar data. However, since similarity search

began to be studied more recently than traditional ones, there are fewer appropriate

techniques to optimize similarity queries. Moreover, there are few statistics available for

metric data that can be stored in a compact way and are generally effective to estimate

the cost of queries involving similarity-based predicates and/or MAM parametrization.

Several research works have analyzed how the meaning of “similarity” can be defined

in a flexible way, ideally considering also semantic restrictions, such as the identifiable

user’s interest when posing a query, or particular conditions that restricts the context

where each query should be executed or even particular knowledge about the data and it

distribution over the metric space. Thus, besides performing query optimization based on

algebraic properties of the query operators, it is conceivable to modify a query including

the representation of conditions that allow to speed up answer evaluation in situations

that are specific to the query environment.

Although some works employ useful parameters to estimate the selectivity of environ-

ment conditions and access cost, they always consider the complete database, without

taking advantage of significant “local” variations in the data distribution. As accessing

metric data tends to be much more expensive than accessing traditional ones, the

precise identification of parameters that affect the search in the similarity query region

becomes even more important. Moreover, these parameters must consider the DBMS

operational environment when a query is executed and the user’s interest when the query is

posed, allowing integrating new similarity-related query optimization techniques based on

algebraic properties into the existing RDBMS. This thesis aims at contributing to further

develop the techniques to improve the similarity-based query optimization processing,

exploiting both algebraic properties and semantic restrictions as query refinements.

1.2 Problem Definition

There are basically three main techniques to speed up the DBMS similarity query:

(i) metric access methods based on index structures;

(ii) query optimization; and

(iii) semantic restriction occurring in the search space based on local conditions, such as

users’ interests and stored data distribution at the query time.

An index structure can be developed independently of the system where it will be used.

Query optimization is a DBMS technique that aims at finding an adequate execution plan

among all the equivalent possibilities that bears the minimum cost. Semantic restrictions

are known properties existing among particular subsets of the data domain that either



4 1. Introduction

is effectively stored in the database or meets users’ interests. These restrictions embody

several assumptions that can be employed as conditions to filter out whole subspaces of

the data distribution and thus helps speeding up data retrieval. At least the following

three mechanisms and their supporting data structures are required to create a useful

operational environment for similarity query processing:

1. Query rewriting rules - it is a mechanism that rewrites query expressions into

equivalent expressions (or into expressions that can help finding the same answer)

but that can be executed in different amounts of time, which is based on rewriting

rules derived from the algebra. Every query can be expressed as a combination of

operators, and the relational algebra is used to identify equivalent expressions for

the same query.

2. Cost estimation - it is a mechanism to estimate the execution cost of each

alternative way to execute the query. It should be possible to estimate the cost

of each operation using each of the available access methods. The cost is evaluated

in terms of the execution total time, of the required memory space and of the

necessary number of disk accesses, but other factors such as data transmission cost

(for a distributed database) or the number of distance calculations (for similarity

queries) can be used too.

3. Selectivity estimation - it is a mechanism to estimate the selectivity of each

condition in selection and join operators. This mechanism is based on a model to

predict the resources that each alternative plan needs to evaluate the query, which

must require a low amount of memory to store the “statistics” over each attribute

involved in the predicates.

These three mechanisms must cooperate among themselves to choose the best access

methods, the operations and their best configurations to define what a good (ideally, the

best) plan to execute a query is. The alternative plans for each query are generated based

on query rewriting rules that rely on algebraic properties to guarantee the equivalence of

each generated plan. The cost estimation of each alternative plan is based on the cost

estimated for each of its composing algebraic operators. The statistics should be stored

in a compact way and must require both a small processing cost, in order to reduce the

overhead that they impose during the query processing, and a small amount of valuable

memory space to be stored. Moreover, the query structure representation must specify

every parameter required to execute the query. Thus, using these mechanisms enables the

definition of adequate ways to provide an proper environment to represent the state of

the database when the query is executed, the query context, and also the user’s interest.



1.3 Work Goals 5

1.3 Work Goals

The work presented in this thesis was developed to create a conceptual foundation to

include similarity queries in the relational model, addressing the specification of the user’s

expectation in these queries. With this purpose, this thesis answers the following main

questions:

• How to improve the efficiency and efficacy of similarity queries regarding users’

expectations?

• How to improve the execution performance of queries involving similarity search

operators?

• How to include similarity-based operators into relational model and how to optimize

them?

• How to represent the user’s expectation tailored to similarity queries?

• What are the properties of each similarity operator and the rules it meets? Can

this similarity operator be employed to optimize a query expression that mixes

similarity-based and any other identity- and TOR-based operators?

• How to use the semantic restriction such as users’ interests and knowledge mined

from complex data to optimize similarity queries?

• How to extend the traditional query optimization architecture to handle also

similarity-based operators, semantic restrictions and user’s interest requirements?

1.4 Main Contributions

This thesis contributes to the research fields of databases, data mining and users’

preferences analysis. Its main contributions can be divided in two categories:

Theoretical:

• The inclusion of similarity operators in the relational model, defining the

Similarity Algebra to express similarity queries. This algebra is composed

of both equivalence and inclusion-based algebraic rules aiming at optimizing

unary similarity operators combined either with other similarity operators or

with the traditional ones;

• The adaptation of the RDBMS query rewriting techniques to manage similarity

predicates either alone or mixed with traditional ones;



6 1. Introduction

• A definition of a new technique based on semantic restrictions to identify

probable regions where the answers of a query should be found, pruning those

where answers cannot be found and thus improving query answering efficiency;

Applied techniques:

• The definition of an environment to represent conditions that may indicate

the context of a query, the content of a database in the query and the users’

preferences as well as a way to speed up query execution and to obtain answers

that best meet the user’s expectation at the same time, improving the query

efficacy;

• The extension of the SIREN (the Similarity Retrieval Engine) [Barioni et al.,

2006] to optimize similarity queries meeting user’s expectation;

• The extension of the SQL-based SIREN query language to manage users’

preferences and data mining processing expressed in a relational, SQL-like

language.

1.5 Work Organization

This monograph is organized as follows:

Chapter 1 - Introduction. This chapter describes the motivation, problem definition,

objectives and the main contributions of the work developed in this doctorate

program.

Chapter 2 - Traditional Query Optimization Process. That chapter presents the

main definitions and concepts of traditional queries and their query optimization

processes.

Chapter 3 - Similarity Queries. That chapter presents the basic concepts of similarity

queries, formalizing the main types of similarity operators (the so called range and

k-nearest neighbor queries), and the four approaches found in the literature to treat

similarity (the rank, fuzzy, exact and hybrid approaches). Forthwith, the similarity

algebra, the query optimization, the query rewriting and the cost and condition

selectivity estimation for these four approaches are presented. The concepts of

users’ preferences and data mining techniques used in this thesis are also presented.

Chapter 4 - A Novel Approach for Similarity Query Optimization Process

in DBMSs. That chapter presents the main concepts that allow the inclusion

of similarity-based operators into a RDBMS. The extension of traditional query



1.5 Work Organization 7

optimization architecture and similarity algebra are also described in that chapter.

Furthermore, semantic restrictions are included in query optimization process to

improve the performance of similarity query execution.

Chapter 5 - Similarity Retrieval Engine - Case Study. That chapter presents

techniques developed in this thesis in a specific similarity-enabled query interpreter

and executor called SIREN, which was extended to include a query optimizer based

on the rules developed to help the query rewriting. The SIREN query language

extended to handle users’ preferences and data mining is also presented. In addition,

we show experiments performed over real databases to evaluate every technique

developed throughout this thesis.

Chapter 6 - Conclusion. That chapter presents the final considerations, main contri-

butions and suggestions for future works.

Appendix A - The CoPhIR Dataset. That appendix describes the real database

employed to exemplify several of the concepts presented in this monograph.



8 1. Introduction



Chapter

2

Traditional Query Optimization Process

2.1 Introduction

Database Management Systems (DBMSs) were developed to store and to retrieve large

amounts of data, guaranteeing exact answers and efficient query execution. As the great

majority of current DBMSs are based on the relational technology for data management,

which has been developed since the 70’s [Codd, 1970], the relational model was chose to

be the base of our research. In fact, the foundations of that model — namely, set theory

and predicate logic — are themselves the base of almost all the other developed since

them [Date, 2009]. From the beginning, these systems where conceived to support only

scalar data types, such as numerical and short character strings. Such data types rely

on two main comparison operator types: exact matching and relational. Exact matching

comparison operators (= and 6=) can be applied universally for any kind of data types,

since it is always possible to decide whether two elements are equal or not. The relational

comparison operators (<, ≤, > and ≥) need that the elements are represented in a data

domain that meets the Total Order Relation (TOR) property, which allows the comparison

of any pair of elements and decide which element precedes or succeeds the other in the

pair. The relational and exact matching operators are by far the most common operators

found in relational database management systems (RDBMSs). In this thesis, the operators

based on exact matching and relational comparisons are called “traditional operators”.

RDBMSs use the TOR property existing between elements of scalar data domains

to speed up the execution of queries. In this monograph, we use the term “retrieval

operator” or “algebraic operator” to refer to the building blocks of the query execution

algorithms over datasets or of the algebraic query representation respectively, whereas

we use the term “comparison operator” to refer to the operator that performs the

9



10 2. Traditional Query Optimization Process

comparison of a pair of elements of a given data domain that are used to implement/specify

the comparisons ‘inside’ a retrieval operator or algebraic operator. In a DBMS, queries

are expressed using predicates based on the comparison operators and are executed using

retrieval operators. Predicates specify how an algebraic operator sifts data to obtain the

results of the query execution. Both unary and binary operations may require conditions.

The unary operation based on comparisons is the selection operation, which is represented

as σ(A θ a) T , where A is an attribute of the relation T defined over a scalar domain A,

θ is one of the valid comparison operators in the domain A of the attribute A, i.e. one

of the traditional operators, and ‘a’ is either a constant (or an expression that returns a

constant) taken in the domain of A or the value of another attribute from the same domain

A in the same tuple. Comparison operators are used also in binary retrieval operators,

such as the join operation. Unless otherwise stated, the query operators considered in

this monograph always refer to the selection operator.

Queries may be answered either evaluating every element in the dataset or not. Index

structures, which use properties from the data domain, can be employed to speed up

search queries in a DBMS. If there is no index structure, the sequential scan, whose

complexity for selection operators is linear regarding time, is the only way to answer a

query. Otherwise, if there is an index structure, the number of disk accesses during the

query processing can be minimized, resulting in better performance. The applicability

of traditional operators to select data allows the development of more efficient indexing

techniques.

This chapter presents an overview of the most common access methods used in

the RDBMS in Section 2.2. Section 2.3 presents some of the fundamental concepts of

the Relational Algebra. The query optimizer based on query rewriting is presented in

Section 2.4. The final considerations are presented in Section 2.5

2.2 Access Methods

An access method (AM) is based on a data structure that considers the properties of each

data domain to support efficient data access. This structure is the main technique used

to reduce the computational cost and to accelerate the search for data in DBMS. Among

the most important AM are the B-tree and its variations, and the hash tables [Zisman,

1993].

The B-tree and its B+-tree variant are the most common AM used in DBMS for being

suitable structures for large amounts of data and also for keeping their efficiency in data

stored in secondary memory (disk or flash memory) [Graefe, 2011]. B-trees are essentially

balanced and multilevel indexes, with graceful growth capabilities. Blocks with x keys

and x + 1 pointers, x ∈ N∗, are organized into a tree, whose sorted leaves point to data



2.3 The Relational Algebra 11

records. All blocks are from half to completely full anytime [Garcia-Molina et al., 2000;

Graefe, 2011].

A hash table is the AM used only in equality search, because it has a hash function

to map (ideally) uniform and randomly search-key values to buckets, without preserve

any ordering between indexed elements [Liu and Özsu, 2009]. A hash function h maps

each value of the active domain of the attribute A (Dom∗(A)) to one bucket. Buckets

store data into a memory blocks and possibly by one or more overflow blocks. Thus, the

hash table is kept mainly in secondary storage [Cormen et al., 2001; Garcia-Molina et al.,

2000].

2.3 The Relational Algebra

The Relational Algebra (RA), proposed by Codd in 1972 [Codd, 1972], is a collection of

operations over relations suitable for manipulating data in relational databases. Every

operator accepts one or two relations as arguments and returns one relation as the

result. This property facilitates expressing complex queries, composing operators using

the Boolean operators to create the relational algebra expressions, which can involve

as many comparison predicates as required [Ramakrishnan and Gehrke, 2003]. Some

operators of the relational algebra are: union (∪), intersection (∩), difference (−), selection

(σ), projection (π), cross-product or Cartesian-product (×) and join (on). The rename

‘pseudo-operator’ (ρ) is often employed too.

The selection and the projection operators, both unary operators, manipulate data

from a single relation. The selection operator chooses the tuples from the input relation

that meets a given selection condition, while the projection picks out some of the relation

attributes [Garcia-Molina et al., 2000].

Other operators manipulate data from two relations, and therefore are called binary

operators. The union, intersection, difference and cross-product are the standard set

operations available in relational algebra. The two relations participating in a union,

intersection or difference operations must be union-compatible, i.e., they must have the

same number of attributes and each pair of corresponding attributes must have the same

domain [Yu and Meng, 2002]. The join operator combines two relations on their common

attributes [Maier, 1983].

A relational query expresses “what” the user intends to retrieve, following the

relational expression paradigm. The query can be converted into a step-by-step procedure

following the imperative paradigm to compute the desired answer, based on the order in

which operators are applied in the query. However, usually there are several ways to

express the same relational query into a procedural representation, and each way can

lead to executions with distinct costs [Ramakrishnan and Gehrke, 2003]. Choosing the



12 2. Traditional Query Optimization Process

procedure that lead to the fastest, or at least one of the fastest, execution is the objective

of the query optimization techniques.

2.4 Query Optimization

The definitions and properties presented in this section, and in Subsections 2.4.1 and

2.4.2 are based on the works of Chaudhuri [1998]; Garcia-Molina et al. [2000]; Ioannidis

[1996]; Yu and Meng [2002] and Ramakrishnan and Gehrke [2003]. For illustration of the

concepts presented in this section and in Subsections 2.4.1 and 2.4.2, we use a subset of

the Content-based Photo Image Retrieval1 (CoPhIR) database. A detailed description of

the dataset is presented in Appendix A. The relational schema used in the examples is

shown in Example 2.1. The primary key attributes are underlined. In this example, the

traditional attributes are colored in red, while the complex attributes are colored blue.

The existing RDBMSs usually do not support complex attribute. As we will use this same

relation scheme to illustrate our approach to include complex attributes and similarity

queries over them, we are showing the complete scheme from the beginning, but they will

be fully explained only in Chapter 4.

Example 2.1:

CoPhIRdb = {UserId, PhotoId, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate}

User queries written in Structured Query Language (SQL) are received by a RDBMS,

translated into relational algebra expressions and presented to the query optimizer, which

uses information about how the data are stored to generate efficient execution plans

to evaluate these queries. An execution plan is a tree with relational operators at the

intermediate nodes and relations at the leaf nodes, defining a sequence of steps for query

evaluation. Each step in the plan corresponds to one relational operation in the logical

query plan, and to one relational operation plus the access method to be used for the

operation evaluation in the physical query plan.

For example, suppose that a user wants to know other users that have photos of

beaches from the tropical climate. The user can write the SQL Query Q1, shown in

Example 2.2, and send it to a RDBMS.

Example 2.2:

Q1: “Select the users that have photos with tags ‘beach and sea’ and whose photos

were taken on tropical climate beaches”.

1CoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.



2.4 Query Optimization 13

SELECT DISTINCT Codb1.UserId

FROM CoPhIRdb Codb1,

(SELECT Codb.UserId, Codb.PhotoId

FROM CoPhIRdb Codb

WHERE UPPER(Codb.Tags) LIKE ‘%BEACH%’

AND Codb.Lat BETWEEN -23.43 AND +23.43) Codb2

WHERE UPPER(Codb1.Tags) LIKE ‘%SEA%’

AND Codb1.UserId = Codb2.UserId

AND Codb1.PhotoId = Codb2.PhotoId

When the Query Q1 is received by a RDBMS, it is compiled, optimized and then

executed. After the Query Compiler finalizes its analysis, Query Q1 is parsed into an

expression tree following the relational algebra, which is the logical query plan (presented

in Figure 2.1(a)) represented in a ‘canonical’ format, and submitted to the Query

Optimizer. The Query Optimizer receives this ‘canonical plan’ as input. A logical query

plan uses algebraic operators to represent the query. Equivalent plans can be obtained

following equivalence rules that can be used to rewrite a plan in different but equivalent

ways.

Thereafter, the logical plan is converted into a physical query plan, which is a sequence

of operations that can be implemented by the query evaluation engine. A physical

query plan uses retrieval operators to represent the query. A physical query plan is

obtained exchanging each algebraic operator (or a sequence of algebraic operators) by a

retrieval operator that executes the intended action of the exchanged algebraic operator(s)

over a dataset stored in a RDBMS. The physical query plan also indicates the access

method that must be employed to access each relation involved in the query and selects

an execution alternative for each of the algebra operations exchanged from the logical

plan. Figure 2.1(b) shows the logical plan transformed into a physical plan that uses the

‘table-scan’ and the ‘nested-loop join’ physical operators. The table-scan reads the

entire relation corresponding to the FROM subquery and filters out the tuples according to

its selection conditions. Then, the result of this subquery is joined with selected tuples of

the inner relation by the join operator (right child), using the nested-loop join physical

operator.

For the same query, there are different equivalent execution plans that produce the

same result. However, different equivalent plans are usually evaluated with different

costs. The goal of the query optimization is to find an execution plan, among all possible

equivalent plans, that has the best performance, i.e., that can be evaluated with the

minimum cost, the so called ‘optimal plan’. Indeed, the time required to find “the best”



14 2. Traditional Query Optimization Process

plan is usually rather large, so real optimizers strive to find a “good enough” plan with

in an acceptable delay.

(a) A Logical Query Plan

π{UserId}

on(Codb1.UserId=Codb2.UserId) AND (Codb1.PhotoId=Codb2.PhotoId)

σ((UPPER(Codb1.Tags) LIKE ‘%SEA%’)

ρ(Codb\Codb2) Read(CoPhIRdb Codb1)

π{UserId, PhotoId}

σ(Codb.Lat BETWEEN -23.43 AND +23.43)

σ(UPPER(Codb.Tags) LIKE ‘%BEACH%’)

Read(CoPhIRdb Codb)

(b) A corresponding Physical Query Plan

π{UserId}

on(Codb1.UserId=Codb2.UserId) AND (Codb1.PhotoId=Codb2.PhotoId)

σ((UPPER(Codb1.Tags) LIKE ‘%SEA%’)

ρ(Codb\Codb2) Read(CoPhIRdb Codb1)

π{UserId, PhotoId}

σ(Codb.Lat BETWEEN -23.43 AND +23.43)

σ(UPPER(Codb.Tags) LIKE ‘%BEACH%’)

Read(CoPhIRdb Codb)

Table-scan

Nested-loop join

Figure 2.1: Example of a (a) logical and a (b) physical query plans, represented as query
trees for Query Q1.

The query optimization architecture adopted in this monograph is based on query

rewriting, as presented in Figure 2.2. This type of optimization is based on the fact that

several algebraic expressions have equivalent results, but each expression has a different

execution cost. The goal of this kind of query optimization is identifying an equivalent

algebraic expression that may be evaluated with low computational cost. According

to Ioannidis [1996] and Garcia-Molina et al. [2000], this kind of query optimizer can be

divided in two parts: the Logical Query Plan Generator and the Physical Query Plan

Generator.

The Logical Query Plan Generator is responsible for applying transformations to a

given query represented as an algebraic expression and for producing equivalent queries

intended to be executed in a more efficient way. For this intend, it uses the Algebraic Space

Enumerator and the Method-Structure Space modules. The Algebraic Space Enumerator

module determines the ordering of the necessary operators considered in each query.

The Method-Structure Space module selects the existing implementation choices for the

execution of each operator ordering specified by the Algebraic Space Enumerator. In

sum, the Logical Query Plan Generator receives the canonical plan as input and uses

the algebraic transformations generated by the Algebraic Space Enumerator module to

transform the logical query plan into a better one. Thereafter, the Method-Structure

Space module is used to lead the conversion of the logical query plan into an efficient

physical plan. The physical query plan fond to be the better one is the input to the

Physical Query Plan Generator.

The Physical Query Plan Generator pursues a search strategy exploring the space of

execution plans determined by the Algebraic Space Enumerator and the Method-Structure

Space modules for each query produced by the Logical Query Plan Generator. It



2.4 Query Optimization 15

Canonical Plan

Query Optimizer (using Query Rewriting)

Logical Query Plan Generator

Algebraic Space
Enumerator

Method-Structure
Space

Physical Query Plan Generator

Cost Model
Size-Distribution

Estimator

Execution Plan

Figure 2.2: Query optimizer architecture according to Ioannidis [1996]
and Garcia-Molina et al. [2000].

compares plans based on each plan cost estimate generated by the Cost Model and the

Size-Distribution Estimator modules, selecting the cheapest one to be used to generate the

answer for the original query. The Cost Model module specifies the arithmetic formulas

employed to estimate the cost of the execution plan. The Size-Distribution Estimator

module estimates the sizes of the queries result (or of the subqueries) and the frequency

distributions of values assumed by the attribute (“statistics”), which are needed for the

Cost Model. Once the best plan is chosen, the ‘execution plan’ is submitted to the

execution by the Query Executer and the answer of the query is sent back to the user.

Optimizing a SQL query converted to a relational algebra expression involves two steps:

enumerating the alternative plans available to evaluate the expression, and estimating

the cost of each enumerated plan, choosing the plan with the least estimated cost. The

operation ordering has a significant impact on the cost of query execution. There are two

main techniques to determine the “best” ordering for query execution: the algebraic-based

optimization technique, which uses a set of heuristic rules to guide the transformation from

one execution plan to another; and the cost estimation-based optimization technique,

which estimates the cost of every possible execution plan for each query and chooses

the execution plan with the lowest estimated cost. Both techniques use a set of rules

that can transform an execution plan into another, represented as a relational algebra

expression. The algebraic-based optimization technique, or query rewriting, is described in

Subsection 2.4.1 and the cost estimation-based technique, or cost and condition selectivity

model, is described in Subsection 2.4.2.



16 2. Traditional Query Optimization Process

2.4.1 Query Rewriting

The basic idea of the algebra-based optimization technique is first to represent each

relational query as a relational algebra expression and then to transform it into an

equivalent but more efficient relational algebra expression. In the literature, there are

several algebraic laws that can transform a relational algebra expression into another

equivalent one. Two relational algebra expressions are said to be equivalent if they produce

the same result over any instance of the input relations. Hence, several equivalence

expressions allow modifying a relational algebra expression to obtain an expression with

a cheaper plan. The existence of equivalent expressions implies a choice of evaluation

strategies.

The algebraic laws most commonly used in query optimization are described below.

Let T1, T2 and T3 be three relations, then:

• Cascade of selections: let c1 and c2 be two selection conditions on T1, then

σ(c1 and c2)T1 = (σc1T1) ∩ (σc2T1) = σc1(σc2T1) = σc2(σc1T1) . (2.1)

• Commuting selection with join: if condition c involves attributes of only T1, then:

σc(T1 on T2) = (σcT1) on T2 , (2.2)

if c1 only involves attributes from T1 and condition c2 only involves attributes from

T2, then:

σ(c1 and c2)(T1 on T2) = (σc1T1) on (σc2T2) . (2.3)

The commuting selection is also applied to the cross-product of relations T1 and T2.

• Associativity of θ-join and natural join: the θ-join and natural join operations can

not be mixed in the same rule, because they yield an incorrect result, that is,

T1
c1
on (T2 on T3) 6= (T1

c1
on T2) on T3. Nevertheless,

T1
c1
on (T2

c2
on T3) = (T1

c1
on T2)

c2
on T3 , (2.4)

provided that c1 involves only attributes from T1 and T2, and c2 involves only

attributes from T2 and T3;

T1 on (T2 on T3) = (T1 on T2) on T3 . (2.5)

• Replacing × and σ by on: if c is a selection condition of the form T1.a θ T2.b

or the conjunction of terms following this same format, and it is preceded by a



2.4 Query Optimization 17

cross-product operation, then:

σc(T1 × T2) = (T1
c
on T2) . (2.6)

The transformation of equivalent relational algebra expressions is guided by heuristics

optimization laws. The following four rules are commonly used:

1. Perform selections as early as possible, because they often can substantially reduce

the size of the relations. As a result, if they are performed early, later operations

such as joins can be evaluated more efficiently, processing a reduced input.

2. Replace cross-products by joins whenever possible, because a cross-product is

typically much more expensive than a join.

3. If there are several joins, perform the most restrictive joins first. A join is more

restrictive than another if it yields a smaller result. Finding which join is the most

restrictive is based on selectivities and other statistical information.

4. Project out useless attributes early, so smaller input relations can be used in the

next operations.

Those heuristic optimization rules can be represented graphically using the concept of

a query tree. In the query tree, each input relation is the leaf node and each operation is

represented as an internal node. The operation in a higher node can be evaluated only if

all of its descendant operations have been evaluated.

2.4.2 Cost and Condition Selectivity Model

The objective of the cost estimation-based optimization techniques is to choose, among

all possible execution plans, the one that has the lowest estimated cost. The estimation of

the query evaluation cost in a RDBMS is the sum of two components: the cost to access

secondary memory (the input/output - I/O cost) and the computational cost (use of the

central processing unit - CPU). The I/O cost is derived by the data transfer between

the main memory and the secondary storage, which can be computed by the number of

page reads and writes. The CPU cost is determined by the execution of the operations

over data stored in main memory. For most database operations, including selection,

projection and join operations, the I/O cost is the dominant. Therefore, several access

methods, such as B+-trees, are employed to reduce the I/O cost.

This optimization technique works as follows: for each query, enumerate all possible

(or worth considering) execution plans; for each plan, estimate its cost; and choose

the one with the lowest estimated cost. If every execution plan cost can be estimated

accurately, then an optimal plan can be found. However, there are two difficulties to use

this technique:



18 2. Traditional Query Optimization Process

1. The number of possible execution plans is an exponential function of the number of

relations referenced in a query;

2. An accurate cost estimation for the execution plan may be difficult to obtain,

because it is necessary to correctly estimate the intermediate result sizes.

The first difficulty is tackled using heuristics to enumerate only a subset of all possible

execution plans, instead of all possible plans. On the other hand, the second difficulty

demands using information about the stored data, the so called “statistics”, to estimate

the selectivity and cost of the several conditions used in the query. The most studied

methods can be roughly classified into three categories, as follows: (1) histogram-based

methods, which use pre-stored detailed statistics about relations to estimate the sizes

of intermediate results; (2) sampling methods, which estimate the sizes of intermediate

results based on the information collected from a small fraction of current data stored

in the relations; and (3) parametric methods, which use analytical and/or statistical

techniques to estimate the size of intermediate results, making assumptions about the

distribution of data values (e.g. uniform distribution) and about the correlation between

the values of different attributes (e.g. independent attributes).

A fundamental property of a database system is that it maintains a description of

all the data that it contains. This information is stored in a collection of relations,

maintained by the system, called the ‘system catalog’. Statistics (cardinality, size, etc.)

about relations and indexes are stored in the system catalog and updated periodically. The

catalog also contains information about users, such as the accounting and authorization

information.

Information stored in the system catalog are used by the Query Optimizer to estimate

plan costs. At the beginning of the evaluation, the operands are the existing data

structures of known sizes, such as relations, available indexes and number of pages.

However, in later stages, as most operands have been results of preceding operations,

the cost model must estimate their sizes using information about the original data

structure and the selectivity of operations already performed on them [Jarke and Koch,

1984]. The selectivity corresponds to the expected fraction of tuples that will satisfy the

condition [Selinger et al., 1979]. The most selective operation is the one that retrieves the

fewest pages, and using it tends to minimize the data retrieval cost.

There are some techniques to estimate the result size of relational operations. For

example, in the selection operation, the key is to have an accurate estimation of the

selectivity. When the selection condition c is of the form c = A θ a , the selectivity

depends largely on the distribution of the values of A in T , and sometimes from the

characteristics of the attribute A; when c is a conjunction or disjunction of several simple

conditions, then the selectivity also depends on the dependencies among the involved

attributes.



2.5 Final Comments 19

2.5 Final Comments

This chapter presented an overview of the traditional query processing performed by the

relational database management systems. It was shown that every SQL query is received

by the DBMS, translated into a tree using relational algebra operators and presented to

the query optimizer as a logical query plan.

In the query optimizer, this tree is submitted to the Logical Query Plan Generator,

which produces several algebraic equivalent plans. The equivalent plans are analyzed

by the Physical Query Plan Generator, where their cost are evaluated and compared.

The goal is to identify an algebraic equivalent plan that may be evaluated with low

computational cost. The (ideally) best logical plan is transformed into a physical plan

exchanging the algebraic operators (or sequence of operators) by retrieval operators that

implements the corresponding functionality. The algebraic laws and heuristics presented

in Subsection 2.4.1, and the cost estimation techniques present in Subsection 2.4.2 are

used, respectively, to generate equivalent plans and to choose the better (cheaper) physical

plan to be executed.

The query optimization process for traditional data is well consolidated, although there

is not a research consensus on its modules and level details. However, to support complex

data in a RDBMS, the query optimizer should be able to rewrite similarity queries and

to estimate their cost. In Chapter 3 we present some related work on similarity query

optimization.



20 2. Traditional Query Optimization Process



Chapter

3

Similarity Queries

3.1 Introduction

In contrast with the traditional queries, which use exact matching and relational operators

to manipulate scalar data in relational database management systems (RDBMSs),

similarity queries search for elements that are more “similar to” or “distinct from” a given

query element, following some similarity condition. In other words, similarity queries

compare every element of a set with a query element and select those that meet the

similarity criterion.

Similarity between two elements is defined based on a distance function d [Wang and

Shasha, 1990]. The distance function d calculates the distance between two elements and

returns a real non-negative value, which assesses the dissimilarity degree between them.

The distance function returns values near to zero for element pairs more similar, and

returns larger values when comparing two elements rather dissimilar [Braunmüller et al.,

2000]. The distance function d , also called a metric, is the basis to create a metric space

M =< S, d >, where S denotes the universe of valid elements (i.e. the complex data

domain) and d is a function d : S × S → R+ that expresses the “distance” between two

elements of S. The metric d must satisfy the following properties [Lima, 1993]:

• Symmetry: d(s1, s2) = d(s2, s1);

• Non-negativity: 0 < d(s1, s2) <∞ if s1 6= s2 and d(s1, s1) = 0;

• Triangular inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2), ∀ s1, s2, s3 ∈ S.

A metric dataset S ∈ S is the set of elements from the domain S stored in a

database [Braunmüller et al., 2000]. Similarity queries are the most important queries

21



22 3. Similarity Queries

to retrieve data from metric datasets. A similarity query should find efficient ways to

locate user-relevant information in a collection of elements whose similarity has been

quantified using a pairwise metric between element instances [Zezula et al., 2006]. The

basic similarity queries retrieve elements in a metric dataset that meet the similarity

predicate comparing a given element provided as a query parameter called “query center”

using the distance function of the corresponding metric space to evaluate the predicate.

The majority of the literature regarding search techniques in metric spaces focuses in

queries over a single metric dataset, without considering that the metric data is related to

other data that often are represented in scalar domains. In this monograph, we assume

that a metric dataset is the active domain Dom∗(S) of an attribute S of a relation T in

a relational database, that is, we assume that the metric dataset S is the set of values

existing in attribute, which is indistinct from attribute S. Therefore, each element si ∈ S
is the value of attribute S in a tuple in relation T , and in this way each element si is

associated to the values of the other attributes of T in the same tuples. When the user

poses queries over T , some of the predicates could be similarity ones over attribute S,

whereas others can be identity or TOR-based over any attribute of T , and the query will

therefore be composed of identity, relational and similarity criteria.

Just like the traditional ones, the similarity-based criteria employ comparison op-

erators called similarity comparison operators or just similarity predicates. When

a relational selection operator employs a similarity comparison operator to filter the

input dataset, it is called a “similarity selection operator”. The similarity selection is

the fundamental similarity operator to perform queries over similarity datasets. The

syntax to express similarity selections follows the same format of the traditional ones:

σc (S θc sq) T , where σc represents a similarity selection, S is a metric attribute defined in

relation T whose values are taken from the metric domain S, θc is a similarity operator

valid in the domain S of the attribute S and sq ∈ S is a query element, which can be either

a constant (or an expression that returns a constant) or the value of another attribute in

the same tuple of the relation T , which is also taken from the same domain S. In this

monograph, we always assume that every “complex” dataset is in a metric domain, thus

a complex attribute is also a metric attribute, and we use the words ”complex attribute”

and “metric attribute” interchangeably.

There are two similarity operators commonly employed: the range and the k-nearest

neighbor ones. They are defined as follows.

Range Query - Rq: Given a query center sq ∈ S and a similarity threshold ξ, the range

query returns all elements that differ from the query center sq at most the similarity

threshold. Figure 3.1(a) shows an example of a range query in a bi-dimensional

space with the Euclidean distance L2 and the threshold ξ shown. The blue elements

(inside the circumference) belong to the answer dataset.



3.1 Introduction 23

k-Nearest Neighbor Query - kNNq: Given a query center sq ∈ S and a similarity

threshold k ∈ N∗, the k-nearest neighbor query returns the k elements nearest to

the query center sq. Figure 3.1(b) illustrates an example of a k-nearest neighbor

query in a bi-dimensional space with Euclidean distance L2 and k = 3. The blue

elements connected to the query center sq belong to the answer dataset.

sq sq

ξ

(a) (b)

Figure 3.1: Examples of similarity queries in bidimensional space with Euclidean
distance L2: (a) Range query – Rq, and (b) k-nearest neighbor query –
kNNq, with k = 3 elements.

To evaluate a similarity query using a sequential scanning, every dataset element

must be compared to the query center. Index structures are employed to accelerate that

processing, pruning regions of the space where answers surely can not be found. Although

the sequential scan can always be used, even when there is no data index structure, this

strategy is not adequate for large datasets due to the high computational costs involved.

On the other hand, if there is a data index structure, the number of comparisons (number

of distance calculations) and the number of disk accesses during the query processing are

reduced, leading to a better performance. However, the index structures usually available

in the DBMS to execute queries using comparisons over scalar data can not be used

to retrieve complex data. Metric access methods (MAMs) are the most adequate index

structure for datasets represented just by the elements and by the distances between

them [Traina and Traina Jr., 2003]. An overview of MAMs is presented in Section 3.2.

Similarity queries are found and discussed in literature following four approaches: rank,

fuzzy, exact and hybrid, which are summarized in Section 3.3. Sections 3.4, 3.5, 3.6 and

3.7 present brief overviews, respectively, of the similarity algebra, the query optimization

process, the query rewriting techniques and the cost and selectivity estimation of query

condition, when querying complex data based on these four approaches. Sections 3.8 and

3.9 discuss techniques existing to process the user’s preference and to explore data mining

tasks over complex data, respectively. Finally, Section 3.10 presents some comments about

this chapter material.



24 3. Similarity Queries

3.2 Metric Access Methods

Metric access methods (MAMs) are based on index structures that organize the elements

in a stored dataset using only a distance function that satisfies the three properties of

distance functions, namely symmetry, non-negativity and triangular inequality. These

methods are of particular importance to index complex data, usually organizing them

as a tree, as the usual total ordering relationship among the elements does not apply.

The objective of a MAM is to minimize the number of comparisons (distance functions

calculations) and the number of disk accesses during the query processing [Traina and

Traina Jr., 2003].

There are several research works aiming at answering similarity queries efficiently. The

main MAMs found in the literature are briefly presented here. Detailed and comprehensive

surveys about MAMs can be found in Chávez et al. [2001], Hjaltason and Samet [2003]

and Zezula et al. [2006].

The paper of Burkhard and Keller [1973] is the landmark in development involving

data index in metric domains. It describes three techniques for recursive partitioning of a

metric space that allow the creation of MAMs, which are materialized as trees. The first

technique partitions a dataset by choosing a representative for subsets of elements that

are close to each other and grouping them based on their distances to the representative.

The second technique divides the original set into a fixed number of subsets and chooses

a representative to each subset. Each representative and the maximum distance from the

representative to some element are also maintained in the structure to improve similarity

queries. The third is similar to the second technique, with the additional requirement

that the maximum distance between any two elements in the same subset is not greater

than a given constant c. This constant can be distinct for each level of the structure and

its value guarantees that every element is in at least one of the subsets in that level. In

the three techniques, the representatives are used to prune elements and subtrees during

a query.

Following the techniques presented in Burkhard and Keller [1973], several MAMs

were proposed, such as: the Generalized Hyperplane tree (GH-tree) [Uhlmann, 1991], the

Ball Decomposition [Uhlmann, 1991], the Vantage-Point tree (VP-tree) [Yianilos, 1993],

the Fixed Queries tree (FQ-tree) [Baeza-Yates et al., 1994], the Geometric Near-Neighbor

Access Tree (GNAT) [Brin, 1995], the Multi-Vantage-Point tree (MVP-tree) [Bozkaya and

Özsoyoglu, 1997, 1999], the Spatial Approximation tree (SA-tree) [Navarro, 1999, 2002]

and the bottom-up index tree (bu-tree) [Liu et al., 2006]. However, all of these MAMs are

considered static access methods, because they require to have the full dataset already

available during the index creation process, and they do not support further insertions

and deletions after the tree creation.



3.3 Searching for Similarity 25

The first dynamic MAM presented in the literature was the M-tree [Ciaccia et al.,

1997]. It is a height-balanced tree that stores the data in the leaf nodes. However, it often

produces trees where the nodes largely overlap each other in the same level, drastically

reducing the pruning ability of the query algorithms. The Slim-tree [Traina Jr. et al.,

2000b] is an evolution of the M-tree that presented the first technique able to measure

and reduce overlaps between subtrees that work in a metric space. Other examples of

dynamic MAM are the Omni-family [Santos Filho et al., 2001], the Distance Fields tree

(DF-tree) [Traina Jr. et al., 2002], the Density-balanced Metric tree (DBM-tree) [Vieira

et al., 2010, 2004], the Pivoting M-tree (PM-tree) [Skopal et al., 2004], the Evolutionary

Geometric Near-neighbor Access Tree (EGNAT) [Navarro and Paredes, 2011; Paredes

and Navarro, 2009; Paredes et al., 2006], the DBM∗-tree [Ocsa and Cuadros-Vargas,

2007], the MM Metric tree (MM-tree) [Pola et al., 2007], the Clustered Metric tree

(CM-tree) [Aronovich and Spiegler, 2007] and the Onion-tree [Carélo et al., 2009, 2011].

3.3 Searching for Similarity

Usually, Multimedia Information Systems (MIS) treat similarity using four different

approaches: the rank, fuzzy, exact and hybrid approaches.

The rank approach is based on the establishing an ordering among the stored tuples

or elements. Ranking queries (or top-k queries) aim at providing only the top k results,

according to a user-specified ranking criterion. The answer of a top-k selection query is

an ordered set of tuples, where the ordering criterion is how well each tuple matches the

given query. It is true that this approach is consistent to the relational model and can be

applied to similarity queries considering the distance functions as the ranking criterion,

but it depends on the existence of a ranking criterion that is independent from the queries.

This requirement departs from the fact that the ranking criterion of a similarity query

depends on each query, that is, the ranking criterion varies with the query.

The fuzzy approach associates similarity to an uncertainty, or imprecision grade, to

every comparison evaluation between a pair of elements of the dataset, often providing

fuzzy logic-based methods to solve queries. The problem of this approach is that it

assumes that although complex data manipulation involves similarity evaluation, this does

not mean that the similarity evaluation is uncertain or imprecise (as only exact match

comparisons are useless in these domains). In fact, it is possible to execute similarity

queries resulting in either approximated or exact answers. The fuzzy approach aims at

obtaining results where there is not exact definition for how the intended results are

obtained but rather only a fuzzy definition exists about what is intended.

The hybrid approach mixes the rank and the fuzzy approaches. Therefore, the

resultant ordering of the elements depends of a final ranking condition, where each element

matches the fuzzy condition to a different degree. The problem of this approach is that it



26 3. Similarity Queries

assumes the global ranking criterion to evaluate fuzzy conditions, therefore it yet requires

a well-defined ranking criterion, but the results are harder to evaluate, as several sequences

must be compared and thus a sequence metric need also to be defined.

Finally, the exact approach evaluates each element according to how well it fits a

similarity criteria given for the query. The similarity varies for each query, because the

similarity is always evaluated regarding elements that are specified in the query, not

to a global ranking criterion, as in the rank approach. Although this approach is the

most expensive ones, it always retrieve the complete answer (considering the similarity

criterion), thus the correct answer is always obtained. As our goal aims at improving

the query answer, speeding up the exact approach may lead to a technique that both

provides good answers and do it in acceptable times. Thus, we target the exact approach

to develop the research presented in this monograph.

Works on similarity algebra, query optimization, query rewriting and cost and

condition selectivity model following these four approaches are presented in Sections 3.4,

3.5, 3.6 and 3.7, respectively.

3.4 Similarity Algebra

There are several extensions in the literature to the relational algebra aimed at including

similarity functionality in RDBMSs, each following varying perspectives. The first algebra

to consider this issue was the Multi-Similarity Algebra (MSA), presented in Adali et al.

[1998]. It has been designed to integrate multiple similarity measures coming from several

similarity assumptions, which use the notion of similarity ranking to return the search

elements, in a common framework. However, MSA is defined at a high abstraction

level and does not address the problem of an “operational” algebra usable for modeling,

optimizing and processing queries with similarity-based operations [Atnafu et al., 2004].

Therefore, it is not fully consistent with the relational model.

Following the same perspective, i.e. the rank approach, Adali et al. [2004] introduced

another algebra for querying ranked relations and proved various coherence preservation

properties for that algebra, which shows when different rank columns are guaranteed

to induce the same ordering among tuples in the answer, what can be advantageous to

produce approximate early returns.

In another paper, Li et al. [2005] extended the relational algebra into a “rank-relational

algebra”. It captures the ranking property introducing a rank operator and extending

other relational operators to support ranking as a first-class concept in the algebra.

According to the authors, the relations, operators and algebraic laws respect and take

advantage of the notion of ranking. Following the same approach, Adali et al. [2007] also

presented an algebra that treats ranks and the element ordering imposed by ranks as

first-class elements, but aims at supporting complex mining and data fusion tasks.



3.4 Similarity Algebra 27

Following the fuzzy approach, several fuzzy relational algebras have been proposed

in the literature. One of the firsts was the paper of Montesi and Trombetta [1999],

which extended the classical relational algebra including new operators (top and ε-similar

operators) and user preferences (weights) to formulate queries that take into account the

similarity of elements represented in the fuzzy relational model.

The Similarity Algebra for Multimedia Extended with Weights (SAMEW ) [Ciaccia

et al., 2000; Penzo, 2005] generalizes the relational algebra to allow the formulation of

similarity queries over multimedia databases, introducing two new operators, called cut

and top, that are useful for range and kNN queries, respectively. They work providing

a criteria that respectively limits the answer’s cardinality, and discards tuples whose

similarity degree is lower than a specified threshold. This algebra also incorporates weights

to assign relevance to the user preferences.

Picariello and Sapino [2002] developed a fuzzy model for image datasets, providing

an algebra for dealing with fuzziness at the attribute level of features extracted from the

images.

In another paper, Montesi et al. [2003] proposed a fuzzy-based algebra to represent

the imprecision related to several kinds of Web and multimedia data. The proposed fuzzy

algebra extends the classical relational algebra to be applicable to fuzzy relations using

the new operators top and cut. Both algebras allow taking into account user’s preferences

in the form of weights that can be attached to predicates and operators. This model

allows the representation of imprecision at the attribute as well as at the tuple level.

Schmitt and Schulz [2004] introduced the similarity calculus and a similarity algebra

(SA), bringing vagueness, weighting and user preferences to the traditional relational

calculus and algebra, respectively. The authors show also how to map similarity calculus

expressions into a corresponding similarity algebra ones, which is adequate for efficient

query processing.

For the hybrid approach, Belohlavek et al. [2007] presented an extension of relational

algebra by adding the concept of similarity to ranked tables, which essentially corresponds

to a kind of fuzzy sets. In that paper, the notion of rank is used to sort truth degrees

represented by a fuzzy logic [Belohlavek et al., 2011; Belohlavek and Vychodil, 2009, 2010].

In the case of the exact approach, Atnafu et al. [2001] defined a well-formalized multi-

media content-based algebra, useful for modeling, optimizing and processing of multimedia

queries. The authors also introduced a similarity-based algebra that formalizes the search

operations over images stored in multimedia database systems, defining new operators,

such as the “multimedia content-based join”, which can be used to perform operations

either isolated or together with other relational operators.

Silva et al. [2009] and Silva et al. [2010b] presented, respectively, multiple equivalence

rules just for both similarity aggregations and similarity join operators.



28 3. Similarity Queries

Traina Jr. et al. [2006] introduced a relational algebra extension considering complex

similarity queries composed of two or more similarity predicates combined through

Boolean operators. However, the rules derived are able only to handle queries centered at

the same query center (a single center), which is restrictive and does not cover all cases

occurring in RDBMSs. In this monograph, we take the algebra proposed by Traina Jr.

et al. [2006] as a start point and we generalize it to allow handling queries centered either

at the same or at distinct query centers. Also, we present the fundamental properties

that allow the integration of the unary similarity operators into the Relational Algebra,

handling similarity queries either alone or mixed with the traditional operators. These

properties are presented in Section 4.5.

Figure 3.2 presents the time line of the similarity algebra literature papers, following

the four approaches employed for similarity in MIS.

3.5 Query Optimization

Similarity query optimization began to receive more attention since the paper of Adali

et al. [1998] on the Multi-Similarity Algebra, which developed query optimization

techniques to reduce the cost of query processing, by pushing selections down and

reordering costly joins, following the rank approach. As the similarity operators are

among the most costly retrieval operations, pushing down the similarity selections

allows employing access methods designed to handle then independently of taking into

consideration the other operators, which also permits to reduce the search space at a

great extent. The authors provided a set of equivalence rules between expressions in

MSA, allowing rewrite queries represented using its operators.

The paper of Chang and Hwang [2002] treated the query optimization based on rank

using expensive predicates. Also, Chaudhuri et al. [2004] investigated how to optimize

the processing of top-k selections queries over multimedia repositories using a cost-based

approach. In its turn, Li et al. [2005] extended bottom-up query optimizers, such as the

System-R optimizer, incorporating ranking. The authors used algebraic laws based on a

rank-relational algebra to define equivalent plans in the search space handled by the query

optimizers. Finally, Schnaitter et al. [2009] introduced the Deep estimation framework,

which enables a systematic estimation methodology that takes directly into account the

distribution of scores and values in the underlying data, to approximate the number of

input tuples that an operator must access following the physical plan using rank join

operators.

For the fuzzy approach, Montesi et al. [2003] presented a query optimizer that uses

the standard heuristic that guides RDBMSs to find equivalent queries that minimize the

cardinality of intermediate results, minimizing the number of I/O operations. The authors

used equivalence and containment rules to choose, among the equivalent query plans of a



3.5 Query Optimization 29

19
98

19
99

20
04

20
03

20
02

20
01

20
00

20
05

20
06

20
07

20
08

20
09

20
10

M
ul

ti-
S

im
ila

rit
y 

A
lg

eb
ra

[A
da

li e
t a

l.]

Al
ge

br
a 

-
R

an
ke

d
R

el
at

io
ns

 

[A
da

li e
t a

l.]

“R
an

k-
re

la
tio

na
l 

A
lg

eb
ra

” 

[Li
 et

 al
.]

A
lg

eb
ra

 -
R

an
ke

d 
re

la
tio

ns
 

[A
da

li e
t a

l.]

20
11

20
12

Ti
m

e 
Li

ne

R
el

at
io

na
l 

A
lg

eb
ra

 +
 

to
p 

an
d 
ϵ-

si
m

ila
r 

op
er

at
or

s

[M
on

tes
i e

t a
l.]

S
im

ila
rit

y 
A

lg
eb

ra
 fo

r 
M

ul
tim

ed
ia

 
E

xt
en

de
d 

w
ith

 W
ei

gh
ts

[C
iac

cia
 et

 al
.]

S
im

ila
rit

y 
A

lg
eb

ra
 fo

r 
M

ul
tim

ed
ia

 
E

xt
en

de
d 

w
ith

 W
ei

gh
ts

[P
en

zo
]

Fu
zz

y 
 

A
lg

eb
ra

 fo
r 

Im
ag

e 
da

ta
se

ts

[P
ica

rie
llo 

et 
al.

]

Fu
zz

y-
ba

se
d 

 
A

lg
eb

ra
 fo

r 
w

eb
 a

nd
 

m
ul

tim
ed

ia
 

da
ta

[M
on

tes
i e

t a
l.]

S
im

ila
rit

y 
ca

lc
ul

us
 a

nd
 

si
m

ila
rit

y 
al

ge
br

a

[S
ch

m
itt e

t a
l.]

R
el

at
io

na
l 

al
ge

br
a 

+ 
ra

nk
ed

 
ta

bl
es

 +
 

fu
zz

y 
se

ts
 

[B
elo

hla
ve

k e
t a

l.]

S
im

ila
rit

y-
ba

se
d 

al
ge

br
a

[A
tna

fu 
et 

al.
]

A
lg

eb
ra

 fo
r 

si
m

ila
rit

y 
ag

gr
eg

at
io

n 
op

er
at

or
s

[S
ilva

 et
 al

.]

A
lg

eb
ra

 fo
r 

si
m

ila
rit

y 
jo

in
 

op
er

at
or

s

[S
ilva

 et
 al

.]

A
lg

eb
ra

 fo
r 

si
m

ila
rit

y 
pr

ed
ic

at
es

 –
sa

m
e 

qu
er

y 
ce

nt
er

[Tr
ain

a e
t a

l.]

R
an

k 
A

pp
ro

ac
h

Fu
zz

y 
A

pp
ro

ac
h

H
yb

rid
 A

pp
ro

ac
h

Ex
ac

t A
pp

ro
ac

h

Le
ge

nd

Figure 3.2: Time line for the existing similarity algebra works, following the four
approaches used in MIS.



30 3. Similarity Queries

SAMEW query, the one that minimizes the size of the intermediate results [Montesi et al.,

2003]. Another heuristic used by the same authors is to evaluate similarity predicates

over as few tuples as possible, because they consider those predicates as being very

costly [Ciaccia et al., 2001]. Herstel and Schmitt [2005] used the optimization technique

called “relation-collapse” to drastically reduce the number of scans required over the

base-relations, aiming at a more efficient query evaluation. The authors applied the SA

algebra [Schmitt and Schulz, 2004] to map a similarity calculus expression onto a similarity

algebra one, and used the semantic equivalence to transform a given similarity algebra

expression into another equivalent, aimed at reducing the computational effort. Semantic

equivalence in SA means achieving the same similarity values calculated.

Pursuing the exact approach, Ferreira et al. [2007] developed the query optimizer

based on the query rewriting technique to interpret, translate, select the best plan and

execute similarity queries over complex data indexed by a MAM. The authors proposed

two data structures – the parse tree and the attribute-conditions table structures – to

help processing similarity queries expressed in the similarity algebra. Both structures

are used as input to the query optimizer. In this monograph, we continue to develop

the query optimizer now with the objective to handle similarity queries following the

technique shown in Section 4.4. That is, our work advances the state of the art proposing

the syntax- and semantic-based query optimization process for similarity queries. Silva

et al. [2010a] presented a similarity-aware database system (SimDB), which supports

similarity operations as first-class physical database operators. The authors extended the

cost-based query optimization to handle also similarity operations, adding equivalence

rules for similarity group-by and similarity join operators.

Figure 3.3 presents the time line of the query optimization literature papers, following

the four approaches employed for similarity in MIS.

3.6 Query Rewriting

Characterizing similarity in relational algebra, involving one or more predicates, has been

evaluated by several authors. Most of the query optimization techniques involve treating

complex Boolean expression in RDBMSs. In general, the goal is to rewrite a query

generating an algebraically equivalent expression but that can be executed faster.

Similarity query rewriting techniques began to receive attention in Adali et al. [1998].

In that paper, the authors proved the equivalence and the containment relationships

between MSA expressions, developing query rewriting methods based on these results.

Chang and Hwang [2002] treated the query rewriting based on ranking using expensive

predicates. Li et al. [2005] defined a set of algebraic laws that allow rewriting top-k

queries to treat ranking as first-class operations. The authors argue that the algebraic

equivalences should produce not only a result that have the same elements, but also that



3.6 Query Rewriting 31

19
98

19
99

20
04

20
03

20
02

20
01

20
00

20
05

20
06

20
07

20
08

20
09

20
10

Q
ue

ry
 

O
pt

im
iz

at
io

n

M
ul

ti-
S

im
ila

rit
y 

A
lg

eb
ra

[A
da

li e
t a

l.]

Q
ue

ry
 

O
pt

im
iz

at
io

n

E
xp

an
si

ve
 

pr
ed

ic
at

es

[C
ha

ng
 et

 al
.]

Q
ue

ry
 

O
pt

im
iz

at
io

n
us

in
g 

co
st

-
ba

se
d 

ap
pr

oa
ch

[C
ha

ud
hu

rie
t a

l.]

Q
ue

ry
 

O
pt

im
iz

at
io

n

S
ys

te
m

 R
 +

 
ra

nk
in

g

[Li
et 

al.
]

20
11

20
12

Ti
m

e 
Li

ne

Q
ue

ry
 

O
pt

im
iz

at
io

n

H
eu

ris
tic

s 
-

ca
rd

in
al

ity

[M
on

tes
i e

t a
l.]

Q
ue

ry
 

O
pt

im
iz

at
io

n

“R
el

at
io

n-
co

lla
ps

e”
 

te
ch

ni
qu

e

[H
ers

tel
 et

 al
.]

Q
ue

ry
 

O
pt

im
iz

at
io

n
us

in
g 

co
st

-
ba

se
d 

ap
pr

oa
ch

[S
ilva

 et
 al

.]

Q
ue

ry
 

O
pt

im
iz

at
io

n

Q
ue

ry
 

re
w

rit
in

g
(p

ar
se

/A
C

T)

[Fe
rre

ira
 et

 al
.]

R
an

k 
A

pp
ro

ac
h

Fu
zz

y 
A

pp
ro

ac
h

H
yb

rid
 A

pp
ro

ac
h

Ex
ac

t A
pp

ro
ac

h

Le
ge

nd

Q
ue

ry
 

O
pt

im
iz

at
io

n

D
ee

p 
es

tim
at

or
 

fra
m

ew
or

k

[S
ch

na
itte

re
t a

l.]

Figure 3.3: Time line for the existing query optimization works, following the four
approaches used in MIS.



32 3. Similarity Queries

the elements must be serialized in same order, stating in a new freedom of commands to

specify results splitting and interleaving Rank splitting allows to break a scoring function

with several predicates into a series of rank operations, useful for processing the predicates

individually. Interleaving asserts that rank operations can swap its execution sequence

with other operators.

Ciaccia et al. [2000, 2001] presented equivalence and containment rules focusing on

both cut and top operators, and the effect of weighting on fuzzy approach, such as: (i) the

predicate with the highest weight could be “pushed down” and a cut operator could be

added to discard tuples; (ii) the distribution of predicates of a conjunctive formula over

the corresponding join operands; and (iii) the introduction of new cut operators over

the operands of a weighted join, with threshold values determined by the set of weights.

Montesi et al. [2003] presented the query rewriting process driven by Ciaccia et al. [2000]

rules holding for the SAMEW . Herstel and Schmitt [2005] adapted some optimization

rules known from the traditional database theory to rewrite the similarity algebra: (i) the

order of subsequent selection may be arbitrarily changed; (ii) the Cartesian product

and selection are commutative; and (iii) a selection with equality condition between two

attributes of different relations and a Cartesian product can be substituted by a join.

For exact approach, Traina Jr. et al. [2006] proposed a formalism to express similarity

queries in multimedia databases, promoting the support to rewrite these queries and

defining a set of algorithms able to answer them described by the combination of conjunc-

tions, disjunctions and negations of basic similarity predicates over the same query center.

Chalhoub et al. [2006] presented a visual shape-based query rewriting approach, used to

increase the relevance of the results. Silva et al. [2010a] presented a set of transformation

rules for similarity group-by and similarity join operators. The authors showed that these

transformation rules exploit: (i) specific properties of these operators; (ii) equivalence

rules between multiples similarity join operators and between similarity join and similarity

group-by operators; and (iii) Eager and Lazy aggregation transformations. Our work

complements the exact approach literature providing equivalence- and inclusion-based

rewriting properties and rules for unary similarity operators alone or mixed with other

similarity and non-similarity based operators. These rewriting properties and rules allow

handling queries centered either at the same or at distinct query centers.

Figure 3.4 presents the time line of the query rewriting literature papers, following the

four approaches employed for similarity in MIS.

3.7 Cost and Condition Selectivity Model

In the last years, few researches have explored query cost and conditions selectivity

estimation models for MAMs, regardless of the important role these models plays in

the query optimization processes.



3.7 Cost and Condition Selectivity Model 33

19
98

19
99

20
04

20
03

20
02

20
01

20
00

20
05

20
06

20
07

20
08

20
09

20
10

Q
ue

ry
 

R
ew

rit
in

g

M
ul

ti-
S

im
ila

rit
y 

A
lg

eb
ra

[A
da

li e
t a

l.]

Q
ue

ry
 

R
ew

rit
in

g

E
xp

an
si

ve
 

pr
ed

ic
at

es

[C
ha

ng
 et

 al
.]

Q
ue

ry
 

R
ew

rit
in

g

R
an

ki
ng

 a
s 

fir
st

-c
la

ss
 

op
er

at
io

n

[Li
et 

al.
]

20
11

20
12

Ti
m

e 
Li

ne

Q
ue

ry
 

R
ew

rit
in

g

S
im

ila
rit

y 
A

lg
eb

ra
 fo

r 
M

ul
tim

ed
ia

 
E

xt
en

de
d 

w
ith

 W
ei

gh
ts

[M
on

tes
i e

t a
l.]

Q
ue

ry
 

R
ew

rit
in

g

R
ul

es
 o

f 
tra

di
tio

na
l 

D
B 

th
eo

ry
 to

 
si

m
ila

rit
y 

al
ge

br
a

[H
ers

tel
 et

 al
.]

Q
ue

ry
 

R
ew

rit
in

g

R
ul

es
 fo

r 
si

m
ila

rit
y 

gr
ou

p-
by

 
an

d 
jo

in
 

op
er

at
or

s

[S
ilva

 et
 al

.]

Q
ue

ry
 

R
ew

rit
in

g

Fo
rm

al
is

m
 

fo
r s

im
ila

rit
y 

qu
er

ie
s 

(s
am

e 
qu

er
y 

ce
nt

er
)

[Tr
ain

a e
t a

l.]

R
an

k 
A

pp
ro

ac
h

Fu
zz

y 
A

pp
ro

ac
h

H
yb

rid
 A

pp
ro

ac
h

Ex
ac

t A
pp

ro
ac

h

Le
ge

ndQ
ue

ry
 

R
ew

rit
in

g

E
qu

iv
al

en
ce

 
an

d 
co

nt
ai

nm
en

t 
to

p/
cu

p 
op

er
at

or
s

[C
iac

cia
 et

 al
.]

Q
ue

ry
 

R
ew

rit
in

g

V
is

ua
l 

sh
ap

e-
ba

se
d

[Tr
ain

a e
t a

l.]

Figure 3.4: Time line for the existing query rewriting works, following the four ap-
proaches used in MIS.



34 3. Similarity Queries

Considering selectivity estimation models, Belussi and Faloutsos [1995] analyzed

spatial datasets using concepts from the fractal theory. Traina Jr. et al. [2000a] presented

the first selectivity condition estimation model for similarity queries in metric spaces, using

the Slim-tree. The main contribution of this work was the Distance Law, an empirical

power law that expresses the distance distribution function for real datasets. The exponent

in this law, called the distance exponent, is the key to solve the problem of selectivity

estimation on metric spaces.

The multi-dimensional selectivity estimation method for similarity queries in mul-

timedia databases using the fuzzy approach was presented in Lee et al. [2003]. The

discrete cosine transform estimates the selectivity of a similarity query, whose shape is a

hyper sphere, by constructing a set of hyper rectangles that are compactly contained in

the hypersphere. A histogram technique to approximate the density of multi-dimensional

datasets with real attributes using the local density of the data was presented in Gunopulos

et al. [2005]. A sampling-based cardinality estimation method for rank-aware operators

employed to estimate the output cardinality of the query plan was presented in Li et al.

[2005]. An approach based on clustering techniques was employed to approximate the

selectivity of multimedia range queries in Döller and Kosch [2005]. Data density functions

of relations approximated by cosine series and the usage of these approximations to

estimate selectivities of range queries were proposed in Yan et al. [2007]. Sampling

techniques for selectivity estimation of set similarity queries using traditional weighted

similarity measures and the design of selectivity estimators based on a priori constructed

samples were explored in Hadjieleftheriou et al. [2008].

The first cost model for metric trees was proposed by Ciaccia et al. [1997]. This model

considers the distance distribution between pair of elements as uniform and estimates the

number of disk accesses on the M-tree leaf nodes. A generic cost model to evaluate the

cost of query plans in MSA was provided in Adali et al. [1998]. A methodology to model

the cost to access the index structure for multi-dimensional data was presented in Böhm

[2000]. The cost estimation equations considering the fractal distribution of datasets,

which better approximates the behavior of real datasets was modeled in Traina Jr. et al.

[2000a]. Regarding the RankSQL framework, Li et al. [2005] indicated that rank-aware

operators are context-sensitive selective, and they reduce the cardinality of intermediate

results because the framework does not output all the tuples processed. All of these

operators depend on k, so they cannot be assumed to be independent from their locations

in the whole plan, as it is commonly assumed for selection and join selectivities. Thus,

the selectivity of rank-aware operators enables to reduce both the evaluation of predicates

that have various estimated costs and the cost of join operations. Also, ranking query

plans do not need to materialize a query, making the query plan ranking much more

efficient than the traditional ones, which can be prohibitively expensive. The work of

Baioco et al. [2007] presented a selectivity and cost model for similarity queries in the



3.8 Users’ Preferences 35

Slim-tree. A cost model to integrate multiple similarity-based image joins in a multimedia

database using the R-tree index family was presented in Kosch [2010].

Figure 3.5 presents the time line of the cost and condition selectivity estimation

literature papers, following the four approaches employed for similarity in MIS.

3.8 Users’ Preferences

The results of a query that do not match the user expectations are common situations

in multimedia systems, which frequently lead to a “closed-loop” interactive process,

where the user evaluation of an initial query result is fed back to the query engine

and then taken into account to compute a further (possibly) “better” result, and so

on [Ciaccia et al., 2000]. Users’ preferences can be represented in the query engine

following either the qualitative or the quantitative approaches [Stefanidis et al., 2011].

Preference query processing models are exploited through (i) expanding queries, and

rewriting them to incorporate preferences in a process called query personalization; or

(ii) employing preference operators to explicitly express them within queries [Stefanidis

et al., 2011].

In the quantitative formulation, the amount of interest is quantified to specify the

user preferences [Stefanidis et al., 2011]. This representation is useful to give the user

the possibility to assign different relevances to the results obtained by his/her queries.

Such “user preferences” can be expressed by weights, which adequate each answer to the

user’s expectations. Most of the studies in the literature considering users’ preferences in

similarity queries are based on fuzzy approaches, and weights are introduced to provide

additional flexibility to express the user requirement [Ciaccia et al., 2001]. Many of

these studies are based on the paper of Fagin and Wimmers [1997], and follow the

quantitative approach for preference formulation [Stefanidis et al., 2011]. For instance, the

SAMEW formulation considers the presence of weights in the similarity queries aiming at

expressing the user preferences [Montesi and Penzo, 2000]. Beecks et al. [2011] presented

the “unknown preference retrieval model”, which is a content-based multimedia retrieval

that is based on weighting the similarity measurement to retrieve all preferable element

with respect to any preference setting.

When pursuing the qualitative approach, the preferences between pairs of tuples are

directly expressed [Stefanidis et al., 2011]. This approach uses partial order subsets to

model the preference queries, exploiting the ‘ceteris paribus’ (all others being equal)

semantics to retrieve tuples. Following this approach, a set of conditional preference

rules (cp-rules) that retrieves tuples of a relation T is expressed as [Wilson, 2004]:

r : Ah = ah ∧ · · · ∧ Am = am → (A = a1) > (A = a2) , (3.1)



36 3. Similarity Queries

19
95

19
97

20
04

20
03

20
02

20
00

19
98

20
05

20
06

20
07

20
08

20
09

20
10

S
el

ec
tiv

ity
 

M
od

el

Fr
ac

ta
l 

th
eo

ry

S
pa

tia
l 

da
ta

se
ts

[B
elu

ss
i e

t a
l.]

S
el

ec
tiv

ity
 

M
od

el

S
am

pl
in

g-
ba

se
d 

ca
rd

in
al

ity

[Li
et 

al.
]

C
os

t M
od

el

M
ul

ti-
S

im
ila

rit
y 

A
lg

eb
ra

[A
da

li e
t a

l.]

20
11

20
12

Ti
m

e 
Li

ne

C
os

t M
od

el

D
is

ta
nc

e 
di

st
rib

ut
io

n
M

-tr
ee

[C
iac

cia
 et

 al
.]

R
an

k 
A

pp
ro

ac
h

Fu
zz

y 
A

pp
ro

ac
h

H
yb

rid
 A

pp
ro

ac
h

Ex
ac

t A
pp

ro
ac

h

Le
ge

nd

S
el

ec
tiv

ity
 

M
od

el

D
is

cr
et

e 
co

si
ne

 
tra

ns
fo

rm

[Le
e e

t a
l.]

C
os

t M
od

el

S
im

ila
rit

y-
ba

se
d 

im
ag

e 
jo

in
s

R
-tr

ee
s

[K
os

ch
 et

 al
.]

S
el

ec
tiv

ity
 

M
od

el

S
im

ila
rit

y 
qu

er
ie

s

D
is

ta
nc

e 
la

w

[Tr
ain

a J
r. e

t a
l.]

S
el

ec
tiv

ity
 

M
od

el

H
is

to
gr

am
 

te
ch

ni
qu

e

[G
un

op
ulo

s e
t a

l.]

S
el

ec
tiv

ity
 

M
od

el

C
lu

st
er

in
g 

te
ch

ni
qu

e

[D
ölle

r e
t a

l.]

S
el

ec
tiv

ity
 

M
od

el

D
at

a 
de

ns
ity

 
fu

nc
tio

ns

[Y
an

et 
al.

]

S
el

ec
tiv

ity
 

M
od

el

S
am

pl
in

g 
si

m
ila

rit
y 

m
ea

su
re

s

[H
ad

jiel
eft

he
rio

u
et 

al.
]

C
os

t M
od

el

Fr
ac

ta
l 

di
st

rib
ut

io
n

[Tr
ain

a J
r. e

t a
l.]

C
os

t M
od

el

M
ul

ti-
di

m
en

si
on

al
 

da
ta

[B
öh

m
 et

 al
.]

C
os

t M
od

el

C
on

te
xt

-
se

ns
iti

ve
 

se
le

ct
iv

e

[Li
et 

al.
]

C
os

t M
od

el

S
im

ila
rit

y 
qu

er
ie

s 
S

lim
-tr

ee

[B
aio

co
 et

 al
.]

S
el

ec
tiv

ity
 

M
od

el

S
im

ila
rit

y 
qu

er
ie

s 
S

lim
-tr

ee

[B
aio

co
 et

 al
.]

Figure 3.5: Time line for the existing cost and condition selectivity estimation works,
following the four approaches used in MIS.



3.9 Data Mining 37

where {Ah, . . . , Am, A} is a set of attributes of the relation T , and ai ∈ dom(A). The

left side of rule r is called the antecedent and the right side is called the consequent

of r. A set of cp-rules determines the preference partial order set of all the tuples in

relation T . The semantic of a cp-rule is described as: Let ti and tl be two tuples from

relation T . Then ti is preferred to tl according to the cp-rule r if ti[Ah] = tl[Ah] = ah,

for h ∈ {1, . . . ,m}, ti[A] = a1 and tl = [A] = a2. Tuples can be compared using the

transitivity property existing over the partial order set of cp-rules [de Amo and Ribeiro,

2009].

Analyzing its expressiveness power, the qualitative formulation of preferences is more

general than the quantitative one, since not all preference relations can be expressed

through degrees of interest in conditions [Stefanidis et al., 2011].

3.9 Data Mining

Data mining is the main task of a Knowledge Discovery in Database (KDD) process,

responsible for searching and extracting the knowledge in a large volume of data. In

this step, data mining tasks and algorithms are employed over data to extract hidden

patterns. Data mining tasks can be classified into two categories [Han and Kamber,

2006]: (i) Predictive, which refers to those that perform inference on the current data in

order to make predictions; and (ii) Descriptive, which refers to those that characterize the

general properties of the data. The main data mining tasks are: classification, clustering,

association rules discovery, and summarization. This monograph focuses on the data

mining association rules discovery task to support similarity retrieval over RDBMSs.

The association rules discovery task is the discovery of association rules that relate

values of attributes occurring with regularities at distinct regions of the data (such as at

distinct attributes of the relation or at distinct subsequences in ranked data) that occur

frequently in unexpected patterns in a set of data [Han and Kamber, 2006]. This task

has been extensively studied and applied to market basket analysis since its introduction

by Agrawal et al. [1993], a seminal work that introduced the discovery of association

relationship among sets of data items in tuples. It can be described as follows. Let

I = {i1, . . . .in} be a set of data items (stored as attribute values). A set X ∈ I is called

an itemset. Let T be a relation with tuples t involving elements that are subsets of I. An

association rule is an expression of the form X → Y , where X and Y are itemsets. The

variable X is called the body or antecedent of the rule. The variable Y is called the head

or consequent of the rule. The rule ‘support’ is the ratio between the number of tuples of

T containing itemset X ∪ Y and the total number of tuples of T . The rule ‘confidence’ is

the percentile of the number of tuples containing X that also contain Y . The problem of

mining association rules, as it was firstly stated, consists of finding frequent occurrences



38 3. Similarity Queries

of tuples that satisfy the restrictions of minimum support supmin and confidence confmin

specified by the user.

Mining association rules from complex data is more complex than from the scalar

one. Although this monograph focuses on association rule mining algorithms that mine

complex data as image datasets, the same concepts can be employed to extract rules from

other complex data types [Jiang et al., 2008], whenever adequate feature extractors are

employed. This concept is exploited in Section 5.4 to integrate data mining algorithm in

RDBMSs.

Image mining algorithms extracts relevant features from the images, organizing them

into feature vectors [Ribeiro et al., 2008]. These vectors are employed in place of the

images to represent them as in the comparison operations, and therefore they are the key

information about the images that are handled in the association rule mining process.

The original Apriori [Agrawal and Srikant, 1994] algorithm is modified to allow mining

rules over the pre-processed data, restricting the body of a rule to be composed of feature

indexes and the corresponding intervals, and the head of the rule to be composed only of

an image class. Therefore, the format of an association rule that is the objective of the

image mining task is:

fr1 [l10 − l11 ], . . . , frn [ln0 − ln1 ]→ ClassR1 , . . . , ClassRm (sup, conf) . (3.2)

The meaning of this rule (Equation 3.2) is: the images having the features fr1 , . . . , frn ,

respectively in the closed intervals [l10 − l11 ], . . . , [ln0 − ln1 ] tend to be in classes

ClassR1 , . . . , ClassRm , with support sup and confidence conf . The maximum number

of features maxfeature in the body is the largest amount of features that can be extracted

by the corresponding extractor, such that 1 ≤ n ≤ maxfeature, and the maximum number

of classes maxclass in the head is the number of classes found in the relation such that

1 ≤ m ≤ maxclass.

3.10 Final Comments

With the advent of multimedia applications, similarity operators have evoked a large

attention, mainly to handle content-based retrieval of complex data. Multimedia

Information Systems usually treat similarity using four different approaches: rank, fuzzy,

hybrid and exact. In this chapter we discussed similarity queries, which have the objective

of searching the most similar elements to a given query center, and that follow a similarity

criterion. Among the several types of similarity queries, the most used are the range and

the k-nearest neighbor queries. We also presented an overview of similarity algebras

present in the literature, of the main query optimization techniques, query rewriting

techniques, and cost and condition selectivity estimation model that explore those four



3.10 Final Comments 39

approaches. The techniques employed to explore users’ preferences and data mining tasks

over complex data are also presented.

In this monograph, we adopt the exact approach, and the techniques that we developed

are based on the definitions and concepts of similarity queries presented in this chapter,

as we will present in Chapters 4 and 5.



40 3. Similarity Queries



Chapter

4

A novel approach for Similarity Query

Optimization Process in DBMSs

4.1 Introduction

As the performance of similarity queries tends to be significantly more expensive than the

identity- and TOR-based queries over scalar data, improving their executions whenever

possible is always worth to exploit. To this intent, three mechanisms have been applied:

(i) Metric access methods based on index structures; (ii) Query optimization; and

(iii) Semantic restrictions over the search space based on local or transient conditions,

such as users’ interests at that query time . As mentioned earlier, a metric access method

organizes the set of stored elements in order to speed up similarity-based retrieval. Query

optimization finds the execution plan, among all the equivalent possibilities, that bears the

minimum cost. Semantic restrictions are used as conditions system-inserted in the query

aiming to filter out whole subspaces of the data distribution assuredly excluded by the

query semantic, thus speeding up the data retrieval. Semantic restrictions can also help to

improve the efficacy of a query, as it enables retrieving answers that more closely follow the

user’s expectation. Employing semantic restrictions enable developing a “query refinement

technique” that retrieves elements closer to the user’s expectation and excludes elements

that assuredly the user is not interested in. This chapter presents techniques developed in

this doctorate to integrate similarity queries into relational database management systems

(RDBMSs) employing these three mechanisms to improve both efficiency and efficacy of

similarity queries, helping to take into account the user’s expectations and enabling the

use of query refinement techniques.

41



42 4. A novel approach for Similarity Query Optimization Process in DBMSs

The structure of this chapter is as follows. Section 4.2 shows our proposal to include

a set of new algebraic operators to the relational model, to allow handling simple and

complex attributes and similarity queries in the same conceptual model. Section 4.3

presents an algorithm to generate the canonical plan that takes into account the new

algebraic operators to process similarity queries. Section 4.4 shows techniques developed

in this doctorate to integrate similarity queries together with the traditional query

processing, in a way that allows performing query optimization through query rewriting.

Section 4.5 presents the proposed Similarity Algebra. Section 4.6 shows how semantic

restrictions can be effectively used as filter in query refinement and Section 4.7 shows the

concluding remarks of this chapter.

4.2 Including similarity-based operators into the Rela-

tional Model

In order to allow managing complex data integrated with the scalar ones, we propose

including into the relational model new algebraic operators to perform similarity-based

operations in a way that complex and simple attributes in the tuples of a relation can

be queried by similarity, identity and by relational comparisons. Notice that the new

algebraic operators can be expressed in terms of the existing operators, but it is far more

convenient employing them than the basic algebraic operators. This is an important

consideration, as it allows that all the properties that meet by the existing operators

remain valid when the new operators are included, and we need just to define the

properties that involve the new ones. In this way, the relational algebra that governs

the set of operators extended by the new similarity-based algebraic operators is the

same original algebra (there is no extension to the algebra itself). However, to simplify

referring to the “relational algebra applied to the set of operators extended by the new

similarity-based algebraic operators” in this monograph, we call it simply the “extended

algebra”. In the same way, we call relations that include complex attributes as extended

relations, even though they follows the same properties and definitions of the traditional

ones. Here, the term ‘simple attribute’ refers to an attribute of a scalar data type that is

compared by the traditional relational or identity comparison operators, while the term

‘complex attribute’ refers to an attribute that can be compared by similarity, i.e., it is

drawn from a metric domain where a distance function was defined.

Let Ah ⊂ Ah be a simple attribute in a domain Ah that allows comparisons using

traditional operators; Sj ⊂ Sj be a complex attribute in a domain Sj in a metric space that

allows comparisons using complex operators; and T be a relation with any number of both

simple and complex attributes. Thus, T = {A1, . . . ,Am,S1, . . . ,Sp} is a relation schema

and a relation T whose schema T is a set of attribute roles T = {A1, . . . , Am, S1, . . . , Sp},



4.3 Canonical Plan Algorithm 43

that is, the domain dom(Ah) = Ah and the domain dom(Sj) = Sj. Considering that

T is also a set of tuples, each tuple t = 〈a1, . . . , am, s1, . . . , sp〉 ∈ T has each value ah

(1 ≤ h ≤ m) obtained in domain Ah and each value sj (1 ≤ j ≤ p) obtained in the

domain Sj. Notice that as attributes Ah and Sj are roles, it is possible that more than

one attribute obtain values in the same domain, that is, Ah = Ah′ and Sj = Sj′ . In

this way, ti(Sj) (1 ≤ i ≤ n) is the value of the ith tuple on complex attribute Sj, and

correspondingly ti(Ah) is the Ah-value of ti. Figure 4.1 illustrates a relation composed of

both simple and complex attributes.

Simple Attribute
Am (1 ≤ h ≤ m)

A1

value1 A1
value2 A1

valuei A1

.

.

.

. . .

. . .

. . .

. . .

.

.

.

Ah

value1 Ah
value2 Ah

valuei Ah

.

.

.

ti(Ah)

. . .

. . .

. . .

. . .

.

.

.

Am

value1 Am
value2 Am

valuei Am

.

.

.

Complex Attributes
Sp (1 ≤ j ≤ p)

S1

value1 S1
value2 S1

valuei S1

.

.

.

. . .

. . .

. . .

. . .

.

.

.

Sj

value1 Sj
value2 Sj

valuei Sj

.

.

.

ti(Sj)

. . .

. . .

. . .

. . .

.

.

.

Sp

value1 Sp
value2 Sp

valuei Sp

.

.

.

Figure 4.1: A relation composed of both simple and complex attributes.

To alleviate the notation of handling several attributes in a relation, whenever the

focus of the text is over only one attribute, this thesis uses just S and S to refer to a

complex attribute Sj and its respective domain Sj, and A and A to refer to a simple

attribute Ah and its respective domain Ah.

Once the relational model had been settled, an extension of an SQL-like query language

can be used to write queries that mix traditional and similarity-based predicates. In this

thesis we use the extension already existing for the SIREN prototype [Barioni et al., 2009]

for a SQL extension able to represent similarity queries, which we present some details in

the next chapter.

4.3 Canonical Plan Algorithm

The syntax of the SQL-like query language to describe a similarity selection (an unary

operator), which can be combined or not with traditional predicates, follows the same

syntax as standard SQL. Queries are expressed with the “SELECT-FROM-WHERE” statement

that has the general form presented in Figure 4.2. The strings <table references>,



44 4. A novel approach for Similarity Query Optimization Process in DBMSs

<attribute list1>, <attribute list2> and <attribute list3> are defined in the same

way as in standard SQL, and <where conditions> and <having conditions> can be a

Boolean combination of either traditional or similarity predicates.

SELECT <attribute list1>

FROM <table references>

WHERE <where conditions>

GROUP BY <attribute list2>

HAVING <having conditions>

ORDER BY <attribute list3>

Figure 4.2: General form of an SQL-like query.

When similarity queries are received by a RDBMS, the query is compiled, optimized

and then executed. The query compiler makes the lexical, syntactic and semantic analysis.

Besides handling the special constructs involved in the similarity-related syntax, the

compilation process is virtually the same as before, since it is specific for the query

language. Because this monograph does not propose a specific extension to SQL-like

query language, we do not focus the description of the properties shown here on the

query compiler analysis. In fact, although those properties aim at being used to improve

query rewriting, they are generic to any query language supporting the involved algebraic

operators.

After the compilation process has been successfully executed, the canonical tree is

generated and sent as input to the query optimizer. The basic steps to translate a

query involving similarity-based constructs into an algebraic expression (that is, ignoring

special constructs like set-theoretical operators), and thus generating the canonical

tree that includes complex attributes and similarity-based operators, are presented in

Algorithm 4.1.

For illustration purposes, let us use again the CoPhIR1 database presented in

Chapter 2 and Appendix A. This database has a relation whose schema is the following:

CoPhIRdb = {UserId, PhotoId, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate},

where UserId, PhotoId, Title, Description, Tags, Lat, Long and Country are

traditional attributes (colored in red), Image and Coordinate are complex attributes

(colored in blue) and {UserId, PhotoId} are the attributes that compose the primary

key. The Manhattan (L1) distance function is employed to calculate the similarity

between elements of the complex attribute Image, and the Euclidean (L2) distance

function is employed to calculate the similarity between elements of the complex attribute

Coordinate.

1CoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.



4.3 Canonical Plan Algorithm 45

Algorithm 4.1 Generation of canonical plan.

Input: Compiled SQL-like query.
Output: Canonical plan.

1: Read <table references>

1.1: if <table references> = <table name>, then convert Read(relation)

1.2: if <table references> = <subquery>, the recall Algorithm 4.1
2: Read <where conditions>

2.1: if <ti(A1) θ constant>, then convert σ(condition)

2.2: if <ti(A1) θ tj(A1)> and i = j, then convert σ(condition)

2.3: if <ti(A1) θ tj(A1)> and i 6= j, then convert ti
(condition)

on tj
2.4: if <ti(S1) θc constant>, then convert σc (condition)
2.5: if <ti(S1) θc tj(S1)> and i = j, then convert σc (condition)

2.6: if <ti(S1) θc tj(S1)> and i 6= j, then convert ti
(condition)

onc tj

3: Where there are more than one table, then convert ti × tj

4: Read <attribute list2>, convert F ()→ Π{<attlist1>∪<attlist2>∪<atr.cond2>}
5: Read <having conditions>

5.1: if <ti(A1) θ constant>, then convert σ(condition)

5.2: if <ti(S1) θc constant>, then convert σc (condition)

6: Read <attribute list3>, convert Op(<attlist>)
7: Read <attribute list1>, convert π{<attlist>}

Suppose that a user wants to retrieve three photos of beaches that are the more similar

to the given photo and such that the retrieved photos were taken from tropical climate

beaches. That is:

Example 4.1:

Q2: “Select the 3 beach photos more similar to the one stored at

‘c:\MyBeachPhoto.jpg’, such that the photos were taken from tropical climate

beaches”.

Figure 4.3(a) expresses Query Q2 in an extension of the SQL query language employed

by the SIREN prototype, which is presented in Chapter 5.

The purpose of Algorithm 4.1 is to take the query expressed in SQL (or in our

case, in the SQL-like language of SIREN) and convert it to its canonical tree, which

is an operation-tree whose leaf nodes are the relation accessed by the query and

each interior node is an relational operator. Thus, Algorithm 4.1 reads the SQL

command for Query Q2 to first find <table references> (Step 1), creating the leaf

nodes. Since <table references> is a relation name, the FROM clause is converted

in just the leaf node Read(CoPhIRdb) (Step 1.1). Following, the algorithm searches

for the WHERE clauses (Step 2). Considering the <where conditions>, the algorithm

proceeds looking for traditional predicates (Steps 2.1 to 2.3), and then for similarity-based



46 4. A novel approach for Similarity Query Optimization Process in DBMSs

predicates (Steps 2.4 to 2.6). Then, the traditional condition is converted in one internal

node σ(Lat BETWEEN -23.43 AND +23.43) , and the similarity condition in another internal node

σ̈(Image θ̈(L1, 3) ‘c:\MyBeachPhoto.jpg’) (Steps 2.1 and 2.4, respectively) that will be applied

over the result of the traditional one. Finally, the algorithm projects the list of attributes

in the SELECT clause (Step 7), generating π{PhotoId} . Figure 4.3(b) presents the canonical

plan obtained for the SQL command that represents Query Q2.

(a) SIREN SQL-like query language

SELECT PhotoId

FROM CoPhIRdb
WHERE Image NEAR ‘c:\MyBeachPhoto.jpg’

STOP AFTER 3

AND Lat BETWEEN -23.43 AND +23.43

(b) Canonical Plan

π{PhotoId}

σ̈(Image θ̈(L1, 3) ‘c:\MyBeachPhoto.jpg’)

σ(Lat BETWEEN -23.43 AND +23.43)

Read(CoPhIRdb)

Figure 4.3: (a) A query expressed in the SIREN extension of SQL to support similarity,
and (b) the canonical query plan, represented as tree, for Query Q2.

To employ an index, a query plan must execute the selection predicate associated to

the physical operation that reads the table. When a similarity predicate is executed over

a temporary, intermediate result of a previous operation, the index structures cannot be

used. As the vast majority of published works on similarity queries focuses on index

structures, there is a well-accepted fact (as mentioned in Section 3.5) that the kNN

predicates should always be the first to be executed, preceding any other. The reasoning

is that similarity-based operators are the most time-consuming ones, so it makes sense to

improve its execution rather than improving the already faster identity and TOR-based

ones. However, due to the lack of the commutativity property among the kNN and the

other operators, as we will see following, if a k-nearest neighbor predicate is executed

first, there is a great probability that the answer comes with less than k (or even with

no) elements. In fact, there is no established standard for the order which similarity

selections should be executed regarding the other selections. Thus, in this thesis, we prefer

to execute first the selections based on identity or TOR, aiming at returning k elements

whenever possible, which seems to us to be usually closer to the user’s expectation. Thus,

Algorithm 4.1 always generates the canonical plan executing first the traditional predicates

and then the similarity ones.



4.4 Query Optimization 47

4.4 Query Optimization

The query optimization process is well understood for scalar data. However, to support

complex data in RDBMSs, the query optimizer must be able to rewrite the similarity

queries and to estimate their costs. Therefore, some modules of the traditional query

optimizer must be extended to allow handling the similarity operators. There are two

distinct kinds of extensions that should be made: syntax-based and semantic-based.

The syntax-based extension corresponds to identify the algebraic properties of the

similarity-based operators and its interaction with the other existing operators, as well as

the estimation of the corresponding execution costs.

The semantic-based extension corresponds to identify the “external” knowledge about

the stored data or about the user’s expectation regarding the data or about the expected

query answer, generally known as semantic restrictions, that can be used to improve the

execution performance and effectiveness of queries posed over complex data. Notice that

handling semantic-based knowledge can also be applied over scalar data, but the resulting

additional overhead has precluded its widespread use. As the processing of similarity

queries is generally more time-consuming than the processing of traditional ones, the

overhead of handling semantic knowledge is relatively reduced. Moreover, the semantic

associated to similarity has, in general, more impact over both the query processing time

and the query answer quality. Therefore, it turns out that taking into consideration the

semantic-based knowledge about the stored data and about the user’s expectation when

a query is posed is an important asset that can be used to improve the similarity query

optimization process. To handle the information about the users’ interests, a third module,

called the Semantic Restriction Plan Generator must be included together with the other

two existing modules of the traditional query optimizer. It interacts with the other two

modules, including/changing predicates that improve either the filtering predicates of the

query or the screening options available to access the required data.

Figure 4.4 presents the similarity query optimizer architecture to support similarity

predicates over complex data either alone or combined with traditional predicates, taking

into account the semantic restrictions. The blue rectangles in this figure highlight the

modules that were explored in this research. As mentioned in Chapter 2, the Logical Query

Plan Generator is based on equivalence properties to apply transformations to a logical

query plan and to produce other equivalent query plans that can, ideally, be executed

faster. The algebraic laws and heuristics that drive the Algebraic Space Enumerator

module are used to specify alternative query trees, trying to reduce the size of the space

to explore. Thus, to support the similarity algebra and integrate similarity operators with

the existing relational algebra, the algebraic laws and corresponding heuristics that apply

both to the similarity operators and to their integration with the traditional ones must

be included in the Algebraic Space Enumerator module. As the commutativity property



48 4. A novel approach for Similarity Query Optimization Process in DBMSs

Canonical Plan

Query Optimizer (using Query Rewriting)

Logical Query Plan Generator

Algebraic Space

Enumerator
Method-Structure

Space

Physical Query Plan Generator

Cost Model
Size-Distribution

Estimator

Semantic
Restriction

Plan Generator

Preference
Model

Data Mining

Model

Execution Plan

Figure 4.4: Similarity query optimizer architecture.

does not apply to the kNN operator, only few properties based on query equivalence can

help in the query optimization process. Therefore, we identified a new set of properties,

based on query results continence, that can be employed to generate alternative plans,

with an additional bonus that they make it easier to explore semantic optimization too.

The similarity algebra proposed in this doctorate is presented in Section 4.5.

To convert the logical query plan into a physical plan, the Method-Structure Space

module must define the strategy that best executes both each operator and their

combination, taking into account the existing indexes, either based on the metric spaces

or on the traditional ones. The ordering of traditional and similarity operators specified

by the Algebraic Space Enumerator module determines whether each index can improve a

physical plan. Our work with real databases and applications using similarity queries has

shown that often it is required to execute first the traditional and then the similarity-based

operators. When this occurs, the similarity operators need to be executed without relying

on an index structure; i.e., the sequential scan method must be applied over the result

of the previous operators to perform the (usually costly) similarity-based operators. This

is a situation that should be prevented, as it means that a MAM will be used almost

exclusively when the similarity query is not combined to traditional predicates.

The usage of semantic restrictions to improve the execution performance of queries

posed over complex data becomes attractive, since similarity query execution costs tend

to be more expensive than traditional ones. Semantic restrictions are properties known



4.5 Similarity Algebra for metric spaces 49

to exist among each particular subset of the data domain that either is effectively stored

in the database, or meets users’ interests. They can be employed as conditions to filter

out whole subspaces of the data distribution and thus speed up data retrieval. To handle

semantic restrictions in DBMSs, the query optimizer architecture must be complemented

by the Semantic Restriction Plan Generator, which has two modules: (i) Preference Model

and (ii) Data Mining Model. The Preference Model module evaluates criteria that express

the knowledge over users’ interests to identify the regions where the answer should be

searched, pruning those answers that can not be found. Thus, this module is responsible

for the inclusion of users’ preferences in the query. The Data Mining Model module

mines knowledge from the complex data stored and retrieved by previous queries, using

the patterns found to detect correlations, clusters, etc. and to exploit them improving the

query plan. Thus, this module is responsible to include knowledge about the stored data

into the query. Techniques proposed in this doctorate to be employed in the Preference

Model and the Data Mining Model modules are described in Subsections 4.6.1 and 4.6.2,

respectively.

4.5 Similarity Algebra for metric spaces

The Similarity Algebra is an extension that we developed for the relational algebra

to couple similarity-based algebraic operators to the already existing identity- and

TOR-based operators. The fundamental properties defined by the Similarity Algebra

aim at integrating both unary similarity operators, range and k-nearest neighbor, into

the relational algebra. These properties allow handling queries including any number of

query centers, and are suitable to support both similarity-based and traditional operators

in the same query. The properties that we stated are the most flexible possible, as they

allow that both the query centers, the distance functions employed and the querying

attributes can be different at each predicate. Subsection 4.5.1 defines the similarity

operations. Subsection 4.5.2 presents the properties of the similarity range operator and

Subsection 4.5.3 defines the properties of the k-nearest neighbor operator.

4.5.1 Similarity Operations - Definitions

To begin our search for the properties involving the similarity selection, we indicate any

similarity selection as a new operator in the relational algebra using the symbol σc in place

of the traditional σ. As we will see later, the similarity range selection shares the same

properties of the traditional selection, thus only the k-nearest neighbor selection effectively

requires a distinct symbol. However, we start using σc for both similarity selections.

Similarity selections follow the same syntax of the traditional ones: σc (S θc sq) T , where

‘σc’ represents a similarity selection, S is the selection attribute chosen from the complex



50 4. A novel approach for Similarity Query Optimization Process in DBMSs

attributes of the relation T , ‘θc’ is a similarity comparison operator valid in the domain S
of the attribute S, and ‘sq’ is the query center and is either a constant (or an expression

that returns a constant) taken in the domain S or the value of another attribute of T

having the same domain S occurring in the same tuple.

The similarity comparison operator θc can be either the range or the k-nearest neighbor

operators (and their variations), as described following. Each similarity comparison

operator must define the distance function employed to measure the similarity among

any pair of elements of the respective domain and the similarity threshold employed to

decide whether each element meets the corresponding predicate.

The range predicate is represented as θ̂ (d, ξ), where d is the distance function and ξ is

the similarity threshold. A similarity range selection returns every tuple where the value

t(S) of the attribute S differs from the query center in at most the similarity threshold ξ

measured by the distance function d. Definition 4.1 shows the range selection definition.

The complementary operation of range query is called Reversed Range query (R−1q ).

Definition 4.1. Range query - Rq: Let S be a complex attribute taking values in

the domain S over which the similarity condition is expressed, d be a distance function, ξ

be the similarity threshold and sq ∈ S be the query center. Then the query σ̂(S θ̂(d, ξ) sq) T

returns every tuple ti ∈ T such that d (ti(S), sq) ≤ ξ. That is,

σ̂(S θ̂(d, ξ) sq) T = {ti ∈ T | d (ti(S), sq) ≤ ξ} . (4.1)

The k-Nearest Neighbor predicate is represented as θ̈ (d, k), where d is the distance

function and k ∈ N∗ is the similarity threshold. A k-Nearest Neighbor selection returns

the tuples where the value t(S) of the attribute S is one of the k elements most similar to

the query center based on the distance function d. Definition 4.2 presents the k-Nearest

Neighbor selection definition. The complementary operation of kNNq is the k-Farthest

Neighbor query (kFNq).

Definition 4.2. k-Nearest Neighbor query - kNNq: Let S be a complex attribute

taking values in the domain S over which the similarity condition is expressed, d be a

distance function, k ∈ N∗ be the similarity threshold and sq ∈ S be the query center. The

query σ̈(S θ̈(d, k) sq) T returns the tuples {t1, . . . , tk} ⊂ T such that, for each i = 1, . . . , k

the value of the attribute S in the tuple ti – ti(S) – is one of the k elements in S nearest

to the query center sq based on the distance function d. That is,

σ̈(S θ̈(d, k) sq) T = {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)} , (4.2)

where T ′ = ∅, if i = 1 and T ′ = {t1, . . . , ti−1}, if 1 < i ≤ k.



4.5 Similarity Algebra for metric spaces 51

A more formal definition of kNNq is:

σ̈(S θ̈(d, k) sq) T = {t1, . . . , tk} , (4.3)

where

t1 ={ti ∈ T | ∀ t ∈ T, d (ti(S), sq) ≤ d (t(S), sq)} ,

t2 ={ti ∈ T − {t1} | ∀ t ∈ T − {t1}, d (ti(S), sq) ≤ d (t(S), sq)} ,
...

tk ={ti ∈ T − {t1, . . . , tk−1} | ∀ t ∈ T − {t1, t2, . . . , tk−1}, d (ti(S), sq) ≤ d (t(S), sq)} .

Equation 4.2 is commonly used in the database literature to explain kNN operator.

However, to prove the inclusion-based properties, it is convenient to express the kNNq

following algebraic rules, where the concept being defined cannot itself be employed in its

definitions. For this reason, Equation 4.3 presents the formal definition of kNNq. Table 4.1

summarizes the unary similarity operators, showing its notation in the similarity algebra

and the condition that a tuple should meet to belong to the query result.

Query Notation Condition

Range query Rq σ̂(S θ̂(d, ξ) sq) T d(ti(S), sq) ≤ ξ

Point query σ̂(S θ̂(d, 0) sq) T d(ti(S), sq) = 0

Reversed Range query R−1q σ̂(S θ̂−1(d, ξ) sq) T d(ti(S), sq) > ξ

k-Nearest Neighbor query kNNq σ̈(S θ̈(d, k) sq) T d(ti(S), sq) ≤ d(t(S), sq)

k-Farthest Neighbor query kFNq σ̈(S θ̈F (d, k) sq) T d(ti(S), sq) > d(t(S), sq)

Table 4.1: Summary of unary similarity operators.

4.5.2 Properties of the Range Selection

This subsection presents algebraic equivalence-based properties and their proofs, which

are useful to rewrite expressions involving the range (θ̂) operator. The same properties

can be used for the reversed range (θ̂−1) operator.

These properties show that the range selection shares same algebraic equivalences

as the traditional selections. Moreover, as we will show (Property R4.5), range and

traditional selections are commutative. Therefore, the query optimizer of a DBMS can

treat range selection using the same properties of the traditional ones.

Property R4.1 shows that the range selection operator meets the idempotent property.



52 4. A novel approach for Similarity Query Optimization Process in DBMSs

Property R4.1: Let T be a relation, S in T be a complex attribute taking values in

the domain S over which the similarity condition is expressed, θ̂ be the similarity range

operator, d be a distance function, ξ be the similarity threshold and sq ∈ S be the query

center. Then, the range idempotent property is expressed as

σ̂(S θ̂(d, ξ) sq)

(
σ̂(S θ̂(d, ξ) sq) T

)
= σ̂(S θ̂(d, ξ) sq) T . (4.4)

Proof. Its proof follows directly from the Definition 4.1. Thus, Definition 4.1 is used to

proof Property 4.1.

σ̂(S θ̂(d, ξ) sq)

(
σ̂(S θ̂(d, ξ) sq) T

)
= σ̂(S θ̂(d, ξ) sq){ti ∈ T | d(ti(S), sq) ≤ ξ}

= {ti ∈ {ti ∈ T | d(ti(S), sq) ≤ ξ} | d(ti(S), sq) ≤ ξ}

= {ti ∈ T | d(ti(S), sq) ≤ ξ ∧ d(ti(S), sq) ≤ ξ}

= {ti ∈ T | d(ti(S), sq) ≤ ξ}

= σ̂(S θ̂(d, ξ) sq) T .

Properties R4.2 and R4.3 consider conjunctive and disjunctive conditions of range

selection operators. For conjunctive conditions, Property R4.2 shows that it can be

rewritten into a cascade of individual σ̂ operators or a sequence of intersection operators.

Property R4.2: Let T be a relation, S1, S2 ∈ T be complex attributes taken in the

same domain S over which the similarity condition is expressed, θ̂ be the similarity range

operator, d1, d2 be distance functions, ξ1, ξ2 be similarity thresholds and sq1, sq2 ∈ S be

query centers. Then,

σ̂(S1 θ̂(d1, ξ1) sq1) ∧ (S2 θ̂(d2, ξ2) sq2) T = σ̂(S1 θ̂(d1, ξ1) sq1)

(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
=
(
σ̂(S1 θ̂(d1, ξ1) sq1) T

)
∩
(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
. (4.5)

The proof of Property R4.2 uses the similarity range selection Definition 4.1.



4.5 Similarity Algebra for metric spaces 53

Proof.

σ̂(S1 θ̂(d1, ξ1) sq1) ∧ (S2 θ̂(d2, ξ2) sq2) T

= {ti ∈ T | d(ti(S1), sq1) ≤ ξ1 ∧ d(ti(S2), sq2) ≤ ξ2}

= {ti1 ∈ T | d(ti(S1), sq1) ≤ ξ1} ∩ {ti2 ∈ T | d(ti(S2), sq2) ≤ ξ2}

=
(
σ̂(S1 θ̂(d1, ξ1) sq1)

T
)
∩
(
σ̂(S2 θ̂(d2, ξ2) sq2)

T
)
.

On the other hand,

= {ti1 ∈ T | d(ti(S1), sq1) ≤ ξ1} ∩ {ti2 ∈ T | d(ti(S2), sq2) ≤ ξ2}

= {ti1 ∈ {ti2 ∈ T | d(ti(S2), sq2) ≤ ξ2} | d(ti(S1), sq1) ≤ ξ1}

= σ̂(S1 θ̂(d1, ξ1) sq1)
(σ̂(S2 θ̂(d2, ξ2) sq2)

T ) .

A special case exists when sq1 = sq2, which meets the property following.

Property R4.2.1: Special case where sq1 = sq2 = sq.(
σ̂(S θ̂(d, ξ1) sq) T

)
∩
(
σ̂(S θ̂(d, ξ2) sq) T

)
=

σ̂(S θ̂(d, ξ1) sq) ∧ (S θ̂(d, ξ2) sq) T = σ̂(
S θ̂
(
d,min(ξ1, ξ2)

)
sq

) T . (4.6)

For disjunctive conditions, Property R4.3 presents that it can be rewritten into a

sequence of union operations, as follows.

Property R4.3: Let T be a relation, S1, S2 in T be complex attributes taking values

in the domain S over which the similarity condition is expressed, θ̂ be the similarity range

operator, d1, d2 be distance functions, ξ1, ξ2 be similarity thresholds and sq1, sq2 ∈ S be

query centers. Thus,

σ̂(S1 θ̂(d1, ξ1) sq1) ∨ (S2 θ̂(d2, ξ2) sq2) T =
(
σ̂(S1 θ̂(d1, ξ1) sq1) T

)
∪
(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
. (4.7)

Proof. Property R4.3 can be proved using Definition 4.1.

σ̂(S1 θ̂(d1, ξ1) sq1) ∨ (S2 θ̂(d2, ξ2) sq2) T

= {ti ∈ T | d(ti(S1), sq1) ≤ ξ1 ∨ d(ti(S2), sq2) ≤ ξ2}

= {ti1 ∈ T | d(ti(S1), sq1) ≤ ξ1} ∪ {ti2 ∈ T | d(ti(S2), xq2) ≤ ξ2}

=
(
σ̂(S1 θ̂(d1, ξ1) sq1) T

)
∪
(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
.



54 4. A novel approach for Similarity Query Optimization Process in DBMSs

It exists a special case of Property R4.3 when sq1 = sq2, which is stated as follows.

Property R4.3.1: Special case where sq1 = sq2 = sq.(
σ̂(S θ̂(d, ξ1) sq) T

)
∪
(
σ̂(S θ̂(d, ξ2) sq) T

)
=

σ̂(S θ̂(d, ξ1) sq) ∨ (S θ̂(d, ξ2) sq) T = σ̂(
S θ̂
(
d,max(ξ1, ξ2)

)
sq

) T . (4.8)

Properties R4.4 and R4.5 explore the commutativity of the σ̂ operator both with other

σ̂ operators and with the traditional operators. Property R4.4 shows that the Rq selection

operator commutes with other σ̂ operators.

Property R4.4: Let T be a relation, S1, S2 ∈ T be complex attributes taking values

in the domain S over which the similarity condition is expressed, θ̂ be the similarity range

operator, d1, d2 be distance functions, ξ1, ξ2 be similarity thresholds and sq1, sq2 ∈ S be

query centers. Then,

σ̂(S1 θ̂(d1, ξ1) sq1)

(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
= σ̂(S2 θ̂(d2, ξ2) sq2)

(
σ̂(S1 θ̂(d1, ξ1) sq1) T

)
. (4.9)

Proof. This proof is obtained directly using Property R4.2 and Definition 4.1.

Property R4.5 states that the range selection operation and traditional selection

operation commutes.

Property R4.5: Let T be a relation, S ∈ T be a complex attribute taking values in

the domain S over which the similarity condition is expressed, θ̂ be the similarity range

operator, d be a distance function, ξ be the similarity threshold and sq ∈ S be the query

center. Let also A ∈ T be a traditional attribute taking values in the domain A over which

the traditional condition is expressed, θ be either a exact match or a relational comparison

operator, and a be either a constant (or an expression that returns a constant) taken in

a domain of A or the value of another attribute from the same domain of A in the same

tuple. Then,

σ̂(S θ̂(d, ξ) sq)
(
σ(A θ a) T

)
= σ(A θ a)

(
σ̂(S θ̂(d, ξ) sq) T

)
. (4.10)



4.5 Similarity Algebra for metric spaces 55

Proof. Definition 4.1 and definition of the traditional selection are employed to prove

Property R4.5.

σ̂(S θ̂(d, ξ) sq)
(
σ(A θ a) T

)
= σ̂(S θ̂(d, ξ) sq){ti ∈ T | ti(A) θ a}

= {ti ∈ {ti ∈ T | ti(A) θ a} | d(ti(S), sq) ≤ ξ}

= {ti ∈ T | ti(A) θ a ∧ d(ti(S), sq) ≤ ξ}

= {ti ∈ {ti ∈ T | d(ti(S), sq) ≤ ξ} | ti(A) θ a}

= σ(A θ a)

(
σ̂(S θ̂(d, ξ) sq) T

)
.

Since σ̂ is commutative with σ, Properties R4.2 and R4.3 can also be employed

to handle these operations. Therefore, Properties R4.2 and R4.3 can be used with

expressions involving either the σ̂ operator only or σ̂ and σ operators.

The next set of properties involves traditional binary operators. These properties

allow pushing range selections through union (∪), intersection (∩), difference (−), cross

product (×) and join (on) operators.

Property R4.6 shows that σ̂ is distributive over the set-theoretical binary operators ∪,

− and ∩. As it is required by the relational algebra, relations T1 and T2 must be union

compatible.

Property R4.6: Let T1 and T2 be two relations, S ∈ T1 and S ∈ T2 be a complex

attribute occurring in both relations and taking values in the domain S over which the

similarity condition is expressed, θ̂ be the similarity range operator, d be a distance

function, ξ be the similarity threshold and sq ∈ S be the query center. Then,

Property R4.6.1: For union:

σ̂(S θ̂(d, ξ) sq) (T1 ∪ T2) =
(
σ̂(S θ̂(d, ξ) sq) T1

)
∪
(
σ̂(S θ̂(d, ξ) sq) T2

)
. (4.11)

Property R4.6.2: For difference:

σ̂(S θ̂(d, ξ) sq) (T1 − T2) =
(
σ̂(S θ̂(d, ξ) sq) T1

)
−
(
σ̂(S θ̂(d, ξ) sq) T2

)
=
(
σ̂(S θ̂(d, ξ) sq) T1

)
− T2 . (4.12)



56 4. A novel approach for Similarity Query Optimization Process in DBMSs

Property R4.6.3: For intersection:

σ̂(S θ̂(d, ξ) sq) (T1 ∩ T2) =
(
σ̂(S θ̂(d, ξ) sq) T1

)
∩
(
σ̂(S θ̂(d, ξ) sq) T2

)
=
(
σ̂(S θ̂(d, ξ) sq) T1

)
∩ T2

= T1 ∩
(
σ̂(S θ̂(d, ξ) sq) T2

)
. (4.13)

Proof. The proof of Property R4.6.1 follows from the Definition 4.1. Thus:

σ̂(S θ̂(d, ξ) sq) (T1 ∪ T2) = {ti ∈ T1 ∪ T2 | d(ti(S), sq) ≤ ξ}

= {ti ∈ T1 | (d(ti(s), sq) ≤ ξ)} ∪ {ti ∈ T2 | d(ti(S), sq) ≤ ξ}

=
(
σ̂(S θ̂(d, ξ) sq) T1

)
∪
(
σ̂(S θ̂(d, ξ) sq) T2

)
.

The proof for Properties R4.6.2 and R4.6.3 is analogous.

Regarding the binary join (on) and cross product (×) operators, σ̂ is distributive over

the relations that contain all the complex attribute mentioned in the similarity condition.

This is stated in Property R4.7.

Property R4.7: Let T1 and T2 be two relations, S ∈ T1 be a complex attribute

taking values in the domain S over which the similarity condition is expressed, θ̂ be the

similarity range operator, Θ is either the traditional on or the traditional × operators,

d be a distance function, ξ be the similarity threshold and sq ∈ S be the query center.

Then:

σ̂(S θ̂(d, ξ) sq) (T1 Θ T2) =
(
σ̂(S θ̂(d, ξ) sq) T1

)
Θ T2 . (4.14)

Proof. Let Θ be the × operator, S ∈ T1 and Definition 4.1, then:

σ̂(S θ̂(d, ξ) sq) (T1 × T2) = {(ti, tj) ∈ T1×T2 | d(ti(S), sq) ≤ ξ}

= {ti ∈ T1 | d(ti(S), sq) ≤ ξ} × T2

=
(
σ̂(S θ̂(d, ξ) sq) T1

)
× T2 .

Notice that the same proof can be applied if S ∈ T2. The proof is analogous when Θ is

the on operator.

When the range selection operator is employed in a conjunctive expression, such that

S1 is a complex attribute of relation T1 and S2 is a complex attribute of relation T2,



4.5 Similarity Algebra for metric spaces 57

Properties R4.2 and R4.7 can be used to prove that:

σ̂(S1 θ̂(d, ξ) sq) ∧ (S2 θ̂(d, ξ) sq) (T1 Θ T2) =
(
σ̂(S1 θ̂(d, ξ) sq) T1

)
Θ
(
σ̂(S2 θ̂(d, ξ) sq) T2

)
, (4.15)

when Θ is either × or on. Therefore, the Equivalence 4.15 completes the Property R4.7.

4.5.3 Properties of the k-Nearest Neighbor Selection

This subsection presents algebraic equivalence-based properties and their proofs, which

are useful to rewrite expressions involving the k-nearest neighbor (θ̈) operator. It also

presents properties derived from the inclusion of the result set of an expression in the

result set of another expression. The same properties can be employed for the k-farthest

neighbor (θ̈F ) operator.

Based on query equivalence, the k-nearest neighbor selection operator has only three

algebraic properties, two special cases and the idempotent property. Moreover, a kNN

selection does not commute with any other selection operators, neither with other kNN

operators. The lack of the commutativity property has strong implications on the

optimization process, since this property is one of the most employed by the query

optimizer to reorder operators in query plans, and even for the definition of the SQL

syntax. Thus, to provide a robust set of properties to help the optimization of expressions

involving the kNN selection, we enriched the set of algebraic properties regarding the kNN

operator with the set of inclusion-based properties.

Equivalence-based Properties

Distinctly from the range selection operator, the k-nearest neighbor selector has only

three properties, two special cases and the idempotent properties based on expression

equivalence.

Property k4.1 shows that the kNN selection operation meets the idempotent property.

Property k4.1: Let T be a relation, S ∈ T be a complex attribute taking values in

the domain S over which the similarity condition is expressed, θ̈ be the similarity kNN

operator, d be a distance function, k ∈ N∗ be the similarity threshold and sq ∈ S be the

query center. Then, the kNN idempotent property is expressed as

σ̈(S θ̈(d, k) sq)

(
σ̈(S θ̈(d, k) sq) T

)
= σ̈(S θ̈(d, k) sq) T . (4.16)



58 4. A novel approach for Similarity Query Optimization Process in DBMSs

Proof. Property k4.1 follows directly from Definition 4.2.

σ̈(S θ̈(d, k) sq)

(
σ̈(S θ̈(d, k) sq) T

)
= σ̈(S θ̈(d, k) sq){ti ∈ T | ∀ t ∈ T − T

′, d (ti(S), sq) ≤ d (t(S), sq)}

= {ti ∈ {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)} |

∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq) ∧

∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= σ̈(S θ̈(d, k) sq) T ,

where T ′ = 0 for i = 1 and T ′ = {t1, . . . , ti−1} for 1 < i ≤ k.

Property k4.2 shows that conjunctions of θ̈ operators can be rewritten into a sequence

of intersection operations.

Property k4.2: Let T be a relation, S1, S2 ∈ T be complex attributes taking values

in the domain S over which the similarity condition is expressed, θ̈ be the similarity kNN

operator, d1, d2 be distance functions, k1, k2 ∈ N∗ be similarity thresholds and sq1, sq2 ∈ S
be query centers. Then,

σ̈(
(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)

) T =
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
. (4.17)

Proof. Definition 4.2 is used to prove Property k4.2.

σ̈(
(S1 θ̈(d1, k1) sq1) ∧ (S2 θ̈(d2, k2) sq2)

) T
={ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1) ∧

∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)}

={ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1)} ∩

{ti ∈ T | ∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)}

=
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
,

where T ′1 = ∅ for i = 1 and T ′1 = {t1, . . . , ti−1} for 1 < i ≤ k1, whereas T ′2 = ∅ for i = 1 or

T ′2 = {t1, . . . , ti−1} for 1 < i ≤ k2.

A special case exists when sq1 = sq2, which is expressed as follows.



4.5 Similarity Algebra for metric spaces 59

Property k4.2.1: Special case where sq1 = sq2 = sq(
σ̈(S θ̈(d, k1) sq) T

)
∩
(
σ̈(S θ̈(d, k2) sq) T

)
=

σ̈(
(S θ̈(d, k1) sq) ∧ (S θ̈(d, k2) sq)

) T = σ̈(
S θ̈
(
d,min(k1, k2)

)
sq

) T . (4.18)

Property k4.3 expresses that a disjunction of θ̈ operators can be rewritten into a

sequence of union operators.

Property k4.3: Let T be a relation, S1, S2 ∈ T be two complex attributes taking

values in the domain S over which the similarity condition is expressed, θ̈ be the similarity

kNN operator, d1, d2 be distance functions over S, k1, k2 ∈ N∗ be similarity thresholds and

sq1, sq2 ∈ S be query centers. Then,

σ̈(
(S1 θ̈(d1, k1) sq1) ∨ (S2 θ̈(d2, k2) sq2)

) T =
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∪
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
.

(4.19)

Proof. By Definition 4.2, the Property k4.3 is proved.

σ̈(
(S1 θ̈(d1, k1) sq1) ∨ (S2 θ̈(d2, k2) sq2)

) T
={ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1) ∨

∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)}

={ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1)} ∪

{ti ∈ T | ∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)}

=
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∪
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
,

where T ′1 = ∅ for i = 1 and T ′1 = {t1, . . . , ti−1} for 1 < i ≤ k1, whereas T ′2 = ∅ for i = 1 or

T ′2 = {t1, . . . , ti−1} for 1 < i ≤ k2.

A special case of Property k4.3 exists when sq1 = sq2, which is expressed as follows.

Property k4.3.1: Special case where sq1 = sq2 = sq.(
σ̈(S θ̈(d, k1) sq) T

)
∪
(
σ̈(S θ̈(d, k2) sq) T

)
=

σ̈(
(S θ̈(d, k1) sq) ∨ (S θ̈(d, k2) sq)

) T = σ̈(
S θ̈
(
d,max(k1, k2)

)
sq

) T . (4.20)

The lack of the commutativity property of the kNN operator implies that each selection

must be executed separately and the intersection (in conjunctive conditions) or the union

(in disjunctive conditions) of their results must be employed to compute the final answer.



60 4. A novel approach for Similarity Query Optimization Process in DBMSs

As the intersection of two sets is commutative, the intersection of the results of two

kNN selections is commutative, even that the kNN predicates do not commute neither

in conjunctive nor in disjunctive conditions, as is shown in Property k4.4. That is, the

operator σ̈ is not commutative neither with other selection operators nor with itself. For

completeness reason, we express this fact in Property k4.4, as follows.

Property k4.4: Let T be a relation, S1, S2 ∈ T be two complex attributes of

taking values in the domain S over which the similarity condition is expressed, θ̈ be the

similarity kNN operator, d1, d2 be distance functions, k1, k2 ∈ N∗ be similarity thresholds

and sq1, sq2 ∈ S be query centers. Then, for conjunctive conditions(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
=
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
∩
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
;

(4.21)

and for disjunctive conditions(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∪
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
=
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
∪
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
.

(4.22)

The same property holds when the kNN operator θ̈ is combined (conjunctively or

disjunctively) either with the range operator “σ̈ ∩ / ∪ σ̂” or with identity and relational

operators “σ̈ ∩ / ∪ σ”.

Proof. Property k4.4 can be proved using Definition 4.2.(
σ̈(S1 θ̈(d1, k1) sq1) T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2) T

)
={ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1)} ∩

{ti ∈ T | ∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)}

={ti ∈ T | ∀ t ∈ T − T ′1, d1 (ti (S1) , sq1) ≤ d1 (t (S1) , sq1) ∧

∀ t ∈ T − T ′2, d2 (ti (S2) , sq2) ≤ d2 (t (S2) , sq2)}

={ti ∈ T | ∀ t ∈ T − T ′2, d2 (ti (S2) , sq2) ≤ d2 (t (S2) , sq2) ∧

∀ t ∈ T − T ′1, d1 (ti (S1) , sq1) ≤ d1 (t (S1) , sq1)}

={ti ∈ T | ∀ t ∈ T − T ′2, d2(ti(S2), sq2) ≤ d2(t(S2), sq2)} ∩

{ti ∈ T | ∀ t ∈ T − T ′1, d1(ti(S1), sq1) ≤ d1(t(S1), sq1)}(
σ̈(S2 θ̈(d2, k2) sq2) T

)
∩
(
σ̈(S1 θ̈(d1, k1) sq1) T

)
,

where T ′1 = ∅ for i = 1 and T ′1 = {t1, . . . , ti−1} for 1 < i ≤ k1, whereas T ′2 = ∅ for i = 1 or

T ′2 = {t1, . . . , ti−1} for 1 < i ≤ k2.



4.5 Similarity Algebra for metric spaces 61

The proof of the conjunctive conditions over the σ and σ̂ operators is analogous.

The proof of the disjunctive conditions over the σ, σ̂ and σ̈ operators is also realized in

analogous ways.

Inclusion-based Properties

Now we present properties based on the set-inclusion of the results of similarity selections

when executing a kNN operation in sequence either with other kNN operation or

with traditional and similarity operations. Although they do not preserve equivalence

among expressions, they can be employed by the optimizer to generate an alternative

expression that surely includes every element of the original one, thus guaranteeing no

false dismissals. If the alternative expression can be evaluated faster than the original

one and it significantly reduces the cardinality of the working set of results, the original

expression can thereafter be executed over that working set to filter out the false positives,

in a way that the overall processing can possibly be faster than processing the original

expression directly over the full dataset yet producing equivalent results.

Property k4.5 explains the relationship of conjunctions of θ̈ operators and the

composition of kNN selection operations. It states that the result of a kNN selection

executed over a conjunction of θ̈ operators is always included in the result of the

conjunction of kNN selection operations.

Property k4.5: Let T be a relation, S1, S2 ∈ T be two complex attributes taking

values in the domain S over which the similarity condition is expressed, θ̈ be the similarity

kNN operator, d1, d2 be distance functions, k1, k2 ∈ N∗ be similarity thresholds and

sq1, sq2 ∈ S be query centers. Then,

σ̈(
(S1 θ̈(d1, k1) sq1) ∧ (S2 θ̈(d2, k2) sq2)

) T︸ ︷︷ ︸
(i)

⊆ σ̈(S1 θ̈(d1, k1) sq1)

(
σ̈(S2 θ̈(d2, k2) sq2)

T
)

︸ ︷︷ ︸
(ii)

. (4.23)

Proof. Property k4.5 follows directly from Definition 4.2.

σ̈(S2 θ̈(d2, k2) sq2)
T = {ti ∈ T | ∀ t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2)} = D ⊆ T ,

where T ′2 = ∅ for i = 1 and T ′2 = {t1, . . . , ti−1} for 1 < i ≤ k2.

Replacing in (ii), then:

(ii) = σ̈(S1 θ̈(d1, k1) sq1)
D = {ti ∈ D | ∀ t ∈ D − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)} ,

where T ′1 = ∅ for i = 1 and T ′1 = {t1, . . . , ti−1} for 1 < i ≤ k1.



62 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D ⊆ T , and considering (ii):

(ii) ⊃ {ti ∈ D | ∀ t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}

= {ti ∈ T | ∀ t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2) ∧

∀ t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}

= {ti ∈ T | ∀ t ∈ T − T ′1, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1) ∧

∀ t ∈ T − T ′2, d2 (ti(S2), sq2) ≤ d2 (t(S2), sq2)}

= σ̈(
(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)

)T = (i) ,

where T ′1 and T ′2 are defined as above. Thus, (i) ⊆ (ii), as required.

Property k4.6 describes the relationship of compositions of kNN and traditional

selection operations. It assures that the result of a traditional selection performed over

a kNN selection is always included in the result of a kNN selection performed over a

traditional selection.

Property k4.6: Let T be a relation, S ∈ T be a complex attribute taking values in

the domain S over which the similarity condition is expressed, θ̈ be the similarity kNN

operator, d be a distance function, k ∈ N∗ be the similarity threshold and sq ∈ S be the

query center. Let also A ∈ T be a traditional attribute taking values in the domain A
over which the traditional condition is expressed, θ be either a exact match or a relational

comparison operator, and a be either a constant (or an expression that returns a constant)

taken in a domain of A or be the value of another attribute from the same domain A in

the same tuple. Then,

σ(A θ a)

(
σ̈(S θ̈(d, k) sq) T

)
︸ ︷︷ ︸

(i)

⊆ σ̈(S θ̈(d, k) sq)
(
σ(A θ a) T

)︸ ︷︷ ︸
(ii)

. (4.24)

Proof. Property k4.6 is proved using the definitions of the traditional selection and the

similarity kNN operator, as follows.

σ(A θ a) T = {ti ∈ T | ti(A) θ a} = D ⊆ T ,

which replacing in (ii):

(ii) = σ̈(S θ̈(d, k) sq) D = {ti ∈ D | ∀ t ∈ D − T ′, d (ti(S), sq) ≤ d (t(S), sq)} ,

where T ′ = ∅ for i = 1, and T ′ = {t1, . . . , ti−1} for 1 < i ≤ k.



4.5 Similarity Algebra for metric spaces 63

As D ⊆ T , then

(ii) ⊇ {ti ∈ D | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= {ti ∈ T | ti(A) θ a ∧ ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= {ti ∈ T | ∀ t ∈ T − T ′, d (ti(S), sq) ≤ d (t(S), sq) ∧ ti(A) θ a}

=
{
ti ∈ σ̈(S θ̈(d, k) sq) T | ti(A) θ a

}
= σ(A θ a)

(
σ̈(S θ̈(d, k) sq) T

)
= (i) ,

where T ′ is defined as above, and (i) ⊆ (ii), as required.

Analogously, Property k4.7 correlates range and kNN selection operations. It expresses

that the result of the range selection executed over the result of a kNN selection is included

in the result of the kNN selection performed over the result of the range selection.

Property k4.7: Let T be a relation, S1, S2 ∈ T be complex attributes taking values

in the domain S over which the similarity condition is expressed, θ̈ be the similarity kNN

operator, θ̂ be the similarity range operator, d1, d2 be distance functions, k ∈ N∗ and

ξ be the similarity thresholds of the kNN operator and the similarity range operators

respectively and sq1, sq2 ∈ S be query centers. Then,

σ̂(S2 θ̂(d2, ξ) sq2)

(
σ̈(S1 θ̈(d1, k) sq1) T

)
︸ ︷︷ ︸

(i)

⊆ σ̈(S1 θ̈(d1, k) sq1)

(
σ̂(S2 θ̂(d2, ξ) sq2) T

)
︸ ︷︷ ︸

(ii)

. (4.25)

Proof. Property k4.7 is proved by Definition 4.1.

σ̂(S2 θ̂(d2, ξ) sq2) T = {ti ∈ T | d2 (ti(S2), sq2) ≤ ξ} = D ⊆ T .

Then,

(ii) = σ̈(S1 θ̈(d1, k) sq1) D = {ti ∈ D | ∀ t ∈ D − T ′, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)} ,

where T ′ = ∅ for i = 1, and T ′ = {t1, . . . , ti−1} for 1 < i ≤ k.



64 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D ⊆ T , then

(ii) ⊇ {ti ∈ D | ∀ t ∈ T − T ′, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}

= {ti ∈ T | d2 (ti(S2), sq2) ≤ ξ ∧ ∀ t ∈ T − T ′, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1)}

= {ti ∈ T | ∀ t ∈ T − T ′, d1 (ti(S1), sq1) ≤ d1 (t(S1), sq1) ∧ d2 (ti(S2), sq2) ≤ ξ}

=
{
ti ∈ σ̈(S1 θ̈(d1, k) sq1) T | d2 (ti(S2), sq2) ≤ ξ

}
= σ̂(S2 θ̂(d2, ξ) sq2)

(
σ̈(S1 θ̈(d1, k) sq1) T

)
= (i) ,

where T ′ is as above. Then, the Equation 4.25 is true.

The next properties involve the set theoretical binary operators union (∪), difference

(−), intersection (∩) and cross product (×), and also the relational operator join (on)

using the traditional identity and TOR-based predicates.

Property k4.8 describes the effect of applying the kNN selection over the traditional

union binary operator. The result of the executing a kNN selection over the union of

relations is included in the result of performing the union of the result of kNN selections

executed in both relations.

Property k4.8: Let T1 and T2 be two relations, S ∈ T1 and S ∈ T2 be a complex

attribute occurring in both relations and taking values in the domain S over which the

similarity condition is expressed, θ̈ be the similarity kNN operator, d be a distance

function, k ∈ N∗ be the similarity threshold and sq ∈ S be the query center. Then,

σ̈(S θ̈(d, k) sq) (T1 ∪ T2) ⊆
(
σ̈(S θ̈(d, k) sq) T1

)
∪
(
σ̈(S θ̈(d, k) sq) T2

)
. (4.26)

Proof. Equation 4.3 and the induction over k allow proving Property 4.8. Let us consider

• σ̈(S θ̈(d, k) sq) (T1 ∪ T2) = {t′1, t′2, . . . , t′k} ,

•
(
σ̈(S θ̈(d, k) sq) T1

)
= {t11 , t12 , . . . , t1k} and

•
(
σ̈(S θ̈(d, k) sq) T2

)
= {t21 , t22 , . . . , t2k} .

Let us first show that Property 4.8 holds when k = 1. In this case, t′1 ∈ T1∪T2 is such

that

d (t′1(S), sq) = min {d (t(S), sq) , t ∈ T1 ∪ T2}

≤ min {d (t(S), sq) , t ∈ T1} , and

d (t′1(S), sq) ≤ min {d (t(S), sq) , t ∈ T2} .



4.5 Similarity Algebra for metric spaces 65

Therefore,

d (t′1(S), sq) ≤ min {min {d (t(S), sq) , t ∈ T1} ,min {d (t(S), sq) , t ∈ T2}}

= min {d (t11(S), sq) , d (t21(S), sq)} .

As t′1 ∈ {t11 , t21}, we proved that Equation 4.26 holds when k = 1.

Now considering k = 2, we know that t′2 ∈ T1 ∪ T2 is such that

d (t′2(S), sq) = min {d (t(S), sq) , t ∈ T1 ∪ T2 − {t′1}}

≤ min {d (t(S), sq) , t ∈ T1 − {t′1}} , and

d (t′2(S), sq) ≤ min {d (t(S), sq) , t ∈ T2 − {t′1}} .

Therefore,

d (t′2(S), sq) ≤ min {min {d (t(S), sq) , t ∈ T1 − {t′1}} ,min {d (t(S), sq) , t ∈ T2 − {t′1}}} .

As t′1 ∈ {t11 , t21}, we have that d (t′2(S), sq) ≤ min {d (t12(S), sq) , d (t22(S), sq)} when

t′1 = t11 = t21 . Thus, t′2 ∈ {t11 , t12} ∪ {t21 , t22}.
When t′1 = t11 and t′1 6= t21 , then

d (t′2(S), sq) ≤ min {d (t12(S), sq) ,min {d (t(S), sq) ; t ∈ T2 − {t′1}}} ,

with t′1 /∈ T2. Thus d (t′2(S), sq) ≤ min {d (t12(S), sq) , d (t21(S), sq)}, and, consequently,

t′2 ∈ {t11 , t12 , t21} ⊆ {t11 , t12} ∪ {t21 , t22}.
Analogously, when t1 = t21 and t1 6= t11 , we obtain t′2 ∈ {t11 , t21 , t22} ⊆ {t11 , t12} ∪

{t21 , t22}. Therefore, Property 4.8 is valid for k = 2.

We complete the proof supposing that the result is valid for k − 1. In this case, first

suppose that t′k ∈ T1 ∪ T2. In such case

d (t′k(S), sq) = min
{
d (t(S), sq) , t ∈ T1 ∪ T2 − {t′1, t′2, . . . , t′k−1}

}
≤min{min

{
d (t(S), sq) , t ∈ T1 − {t′1, t′2, . . . , t′k−1}

}
,

min
{
d (t(S), sq) , t ∈ T2 − {t′1, t′2, . . . , t′k−1}

}
} ,

with
{
t′1, t

′
2, . . . , t

′
k−1
}
⊆
{
t11 , t12 , . . . , t1k−1

}
∪
{
t21 , t22 , . . . , t2k−1

}
. Thus we need to show

that t′k ∈ {t11 , . . . , t1k} ∪ {t21 , . . . , t2k}, what can be done in the way following.

If {t1, t2, . . . , tk−1} =
{
t11 , t12 , . . . , t1k−1

}
or {t1, t2, . . . , tk−1} =

{
t21 , t22 , . . . , t2k−1

}
then, analogously to the cases above, we obtain

t′k ∈ {t11 , t12 , . . . , t1k} ∪ {t21 , t22 , . . . , t2k} .



66 4. A novel approach for Similarity Query Optimization Process in DBMSs

Otherwise, using the induction hypothesis, and without loss of generality, we can

assume that exists an integer r, with 1 ≤ r < k − 1, such that

t′i = t1i /∈ T2, for each i = 1, . . . , r and

t′i = t2(i−r)
/∈ T1, for each i = r + 1, . . . , k − 1.

Then, T1 −
{
t′1, . . . , t

′
k−1
}

= T1 − {t11 , . . . , t1r} and T2 −
{
t′1, . . . , t

′
k−1
}

= T2 −
{t21 , . . . , t2(k−1)−r

}.
Therefore,

min
{
d (t(S), sq) ; t ∈ T1 −

{
t′1, . . . , t

′
k−1
}}

= min {d (t(S), sq) ; t ∈ T1 − {t11 , . . . , t1r}}

= d
(
t1r+1(S), sq

)
and

min{d(t(S), sq); t ∈ T2−{t′1, . . . , t′k−1}}

= min{d(t(S), sq); t ∈ T2 − {t21 , . . . , t2(k−1)−r
}}

= d
(
t2k−r

(S), sq
)
.

In this way, we have that d (t′k(S), sq) ≤ min
{
d
(
t1r+1(S), sq

)
, d
(
t2k−r

(S), sq
)}

, which

implies that

t′k ∈ {t11 , . . . , t1r} ∪ {t21 , . . . , t2(k−1)−r
} ⊆ {t11 , . . . , t1k} ∪ {t21 , . . . , t2k} ,

concluding the proof.

The property of the relationship among kNN selection and traditional set difference

binary operator is presented in Property k4.9. It states that the result of the difference

between a kNN selection in the left relation and the right relation is included in the result

of the kNN executed over the difference of relations. Moreover, the result of the difference

between the kNN selection in the first relation and the second relation is included in the

result of the difference executed over the kNN selection operations in both relations.

Property k4.9: Let T1 and T2 be two relations, S ∈ T1 and S ∈ T2 be a complex

attribute occurring in both relations and taking values in the domain S over which the

similarity condition is expressed, θ̈ be the similarity kNN operator, d be a distance

function, k ∈ N∗ be the similarity threshold and sq ∈ S be the query center. Then,(
σ̈(S θ̈(d, k) sq) T1

)
− T2︸ ︷︷ ︸

(i)

⊆ σ̈(S θ̈(d, k) sq) (T1 − T2)︸ ︷︷ ︸
(ii)

; (4.27)



4.5 Similarity Algebra for metric spaces 67

and (
σ̈(S θ̈(d, k) sq) T1

)
− T2 ⊆

(
σ̈(S θ̈(d, k) sq) T1

)
−
(
σ̈(S θ̈(d, k) sq) T2

)
. (4.28)

Proof. Definition 4.2 is used to prove Property k4.9 (Equation 4.27):

(i) =
(
σ̈(S θ̈(d, k) sq) T1

)
− T2 = {ti ∈ T1 | ∀ t ∈ T1 − T ′, d (ti(S), sq) ≤ d (t(S), sq)} − T2 ,

where T ′ = ∅ for i = 1, and T ′ = {t1, . . . , ti−1} for 1 < i ≤ k.

As T1 − T2 ⊆ T1, then

(i) ⊆ {ti ∈ T1 | ∀ t ∈ (T1 − T2)− T ′, d (ti(S), sq) ≤ d (t(S), sq)} − T2
= {ti ∈ (T1 − T2) | ∀ t ∈ (T1 − T2)− T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= σ̈(S θ̈(d, k) sq) (T1 − T2) = (ii) ,

where T ′ is as above, completing the proof of Equation 4.27.

Now, using the Definition 4.2 and the fact that
(
σ̈(S θ̈(d, k) sq) T2

)
⊆ T2, the inclusion

in Equation 4.28 is directly proved by set theory, as presented by the Venn diagram shown

in Figure 4.5.

σ̈(T1)

T2

σ̈(T2)

Figure 4.5: Venn diagram representation of inclusion property of Equation 4.28.

Property k4.10 considers the relationship among a kNN selection and the traditional

intersection binary operators. It states that the result of the intersection between a kNN

selection in the first relation and the second relation is included in the result of the

kNN executed over the intersection of both relations. Also, the result of the intersection

between a kNN selection on the left relation and the kNN selection on the right relation is

properly included in the result of the kNN executed over the intersection of both relations.

Property k4.10: Let T1 and T2 be two relations, S ∈ T1 and S ∈ T2 be a complex

attribute occurring in both relations and taking values in the domain S over which the



68 4. A novel approach for Similarity Query Optimization Process in DBMSs

similarity condition is expressed, θ̈ be the similarity kNN operator, d be a distance

function, k ∈ N∗ be the similarity threshold and sq ∈ S be the query center. Then,(
σ̈(S θ̈(d, k) sq) T1

)
∩ T2︸ ︷︷ ︸

(i)

⊆ σ̈(S θ̈(d, k) sq) (T1 ∩ T2)︸ ︷︷ ︸
(ii)

; (4.29)

and (
σ̈(S θ̈(d, k) sq) T1

)
∩
(
σ̈(S θ̈(d, k) sq) T2

)
⊆ σ̈(S θ̈(d, k) sq) (T1 ∩ T2) . (4.30)

Proof. By Definition 4.2, then

(i) =
(
σ̈(S θ̈(d, k) sq) T1

)
∩ T2 = {ti ∈ T1 | ∀ t ∈ T1 − T ′, d (ti(S), sq) ≤ d (t(S), sq)} ∩ T2 ,

where T ′ = ∅ for i = 1, and T ′ = {t1, . . . , ti−1} for 1 < i ≤ k.

As T1 ∩ T2 ⊆ T1, then

(i) ⊆ {ti ∈ T1 | ∀ t ∈ T1 ∩ T2 − T ′, d (ti(S), sq) ≤ d (t(S), sq)} ∩ T2
= {ti ∈ T1 ∩ T2 | ∀ t ∈ T1 ∩ T2 − T ′, d (ti(S), sq) ≤ d (t(S), sq)}

= σ̈(S θ̈(d, k) sq) (T1 ∩ T2) = (ii) ,

where T ′ is as above, which prove Equation 4.29.

Finally, Equation 4.30 is directly proved from the set theory properties, in the way

following. As
(
σ̈(S θ̈(d, k) sq) T2

)
⊆ T2, then

(
σ̈(S θ̈(d, k) sq) T1

)
∩
(
σ̈(S θ̈(d, k) sq) T2

)
⊆(

σ̈(S θ̈(d, k) sq) T1

)
∩ T2. Thus, we directly obtain Equation 4.30 from Equation 4.29.

Property k4.11 states the relationship between a kNN selection and the traditional

cross product operator. The result of the kNN executed over the cross product of the

relations is included in the result of the cross product between the execution of a kNN

selection over one relation and the other relation.

Property k4.11: Let T1 and T2 be two relations, S ∈ T1 be a complex attribute

taking values in the domain S over which the similarity condition is expressed, θ̈ be the

similarity kNN operator, d be a distance function, k ∈ N∗ be the similarity threshold and

sq ∈ S be the query center. Then,

σ̈(S θ̈(d, k) sq) (T1 × T2)︸ ︷︷ ︸
(i)

⊆
(
σ̈(S θ̈(d, k) sq) T1

)
× T2︸ ︷︷ ︸

(ii)

. (4.31)



4.5 Similarity Algebra for metric spaces 69

Proof. As S is a complex attribute in T1, we have that

(i) = σ̈(S θ̈(d, k) sq) (T1 × T2)

= {(ti, tj) ∈ T1 × T2 | ∀ (t1, t2) ∈ T1 × T2 − T ′, d (ti(S), sq) ≤ d (t1(S), sq)} ,

where T ′ = ∅ for either i = 1 or j = 1, and T ′ = {(t11 , t21), . . . , (t1i−1
, t2j−1

)} for 1 < i, j ≤
k.

As T1 is as a subset of T1 × T2, we obtain

(i) ⊆ {(ti, tj) ∈ T1 × T2 | ∀ t1 ∈ T1 − T ′, d (ti(S), sq) ≤ d (t1(S), sq)}

= {ti ∈ T1 | ∀ t1 ∈ T1 − T ′, d (ti(S), sq) ≤ d (t1(S), sq)} × T2

=
(
σ̈(S θ̈(d, k) sq)T1

)
× T2 = (ii) ,

where T ′ is as above.

A special case exists regarding the relationship of a kNN selection in conjunctive

conditions and the traditional cross product binary operator. In this case, the result of a

conjunction of a kNN executed over the cross product of two relations is included in the

result of the cross product between the execution of a kNN selection being executed over

the left and again over right relation. This special case is presented in Property k4.11.1.

Property k4.11.1: Let T1 and T2 be two relations, S1 ∈ T1 and S2 in T2 be complex

attributes taking values in the domain S over which the similarity condition is expressed,

θ̈ be the similarity kNN operator, d1, d2 be distance functions, k1, k2 ∈ N∗ be similarity

thresholds and sq1, sq2 ∈ S be query centers. Then,

σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)
(T1 × T2) ⊆

(
σ̈(S1 θ̈(d1, k1) sq1)

T1

)
×
(
σ̈(S2 θ̈(d2, k2) sq2)

T2

)
.

(4.32)

Proof. By Definition 4.2, we have that

(i) = σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)(T1 × T2)

= {(ti, tj) ∈ T1 × T2 | ∀ (t1, t2) ∈ T1 × T2 − T ′, d (ti(S), sq1) ≤ d (t1(S), sq1)∧

d(tj(S), sq2) ≤ d(t2(S), sq2)} ,

where T ′ = ∅ for i = 1 or j = 1, and T ′ = {(t1, t1), (t1, t2), . . . , (ti−1, tj−1)} for 1 < i ≤ k1

and 1 < j ≤ k2.



70 4. A novel approach for Similarity Query Optimization Process in DBMSs

As T1 and T2 can naturally be identified as subsets of T1 × T2, we obtain

(i) ⊆ {(ti, tj) ∈ T1 × T2 | ∀ t1 ∈ T1 − T ′, d (ti(S), sq1) ≤ d (t1(S), sq1)∧

∀ t2 ∈ T2 − T ′, d (tj(S), sq2) ≤ d (t2(S), sq2)}

= {ti ∈ T1 | ∀ t1 ∈ T1 − T ′, d (ti(S), sq1) ≤ d (t1(S), sq1)}×

{tj ∈ T2 | ∀ t2 ∈ T2 − T ′, d (tj(S), sq2) ≤ d (t2(S), sq2)}

=
(
σ̈(S1 θ̈(d1, k1) sq1)T1

)
×
(
σ̈(S2 θ̈(d2, k2) sq2)T2

)
= (ii) ,

where T ′ is as above, which proves Equation 4.32.

Property k4.12 shows the relationship between kNN selection and the traditional join

operator. Hence, the result of the join executed between the kNN selection executed over

the first relation and the second relation is included in the result of the kNN executed

over the join of the relations.

Property k4.12: Let T1 and T2 be two relations, S ∈ T1 be a complex attribute

taking values in the domain S over which the similarity condition is expressed, θ̈ be the

similarity kNN operator, d be a distance function, k ∈ N∗ be the similarity threshold and

sq ∈ S be the query center. Thus,(
σ̈(S θ̈(d, k) sq) T1

)
on T2︸ ︷︷ ︸

(i)

⊆ σ̈(S θ̈(d, k) sq) (T1 on T2)︸ ︷︷ ︸
(ii)

. (4.33)

Proof. By the definition of the join operator we have that:

T1
AiθAj

on T2 =

{
(ti, tj) ∈ T1

AiθAj

on T2 | ti ∈ T1 ∧ tj ∈ T2 ∧ ti(Ai) θ tj(Aj)
}

= {(ti, tj) ∈ T1 × T2 | ti(Ai) θ tj(Aj)} = D ⊆ T1 × T2 .

Replacing in (ii) and considering that S is a attribute in T1:

(ii) = σ̈(S θ̈(d, k) sq)D = {(ti, tj) ∈ D | ∀ (t1, t2) ∈ D − T ′, d (ti(S), sq) ≤ d (t1(S), sq)} ,

where T ′ = ∅ if i = 1 or j = 1, and T ′ = {(t11 , t21), . . . , (t1i−1
, t2j−1

)} if 1 < i, j ≤ k.



4.5 Similarity Algebra for metric spaces 71

As D ⊆ T1 × T2, then:

(ii) ⊇ {(ti, tj) ∈ D | ∀ (t1, t2) ∈ T1 × T2 − T ′, d(ti(S), sq) ≤ d(t1(S), sq)}

= {(ti, tj) ∈ T1 × T2 | ∀ (t1, t2) ∈ T1 × T2 − T ′, d(ti(S), sq) ≤ d(t1(S), sq) ∧

ti(Ai) θ tj(Aj)}

= {ti ∈ T1 | ∀ t1 ∈ T1 − T ′, d(ti(S), sq) ≤ d(t1(S), sq)} on T2

=
(
σ̈(S θ̈(d, k) sq) T1

)
on T2 = (i) ,

where T ′ is as above, proving Equation 4.33.

A special case exists regarding the relationship of a kNN selection in a conjunctive

conditions and the traditional join binary operator. The result of performing the join

operation between the kNN selection executed over the left relation and the kNN selection

executed over the right relation is included in the result of the conjunction of the kNN

executed over the join result. This special case is presented in Property k4.12.1.

Property k4.12.1: Let T1 and T2 be two relations, S1 ∈ T1 and S2 ∈ T2 be complex

attributes taking values in the domain S over which the similarity condition is expressed, θ̈

be the similarity kNN operator, d1, d2 be a distance function, k1, k2 ∈ N∗ be the similarity

threshold and sq1, sq2 ∈ S be the query center. Then,(
σ̈(S1 θ̈(d1, k1) sq1)

T1

)
on
(
σ̈(S2 θ̈(d2, k2) sq2)

T2

)
⊆ σ̈(

(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)
) (T1 on T2) .

(4.34)

Proof. Using Join definition and replacing D = T1 on T2 in (ii), we have:

(ii) = σ̈(
(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)

)D
= {(ti, tj) ∈ D | ∀ (t1, t2) ∈ D − T ′, d(ti(S), sq1) ≤ d(t1(S), sq1) ∧

d(tj(S), sq2) ≤ d(t2(S), sq2)} ,

where T ′ = ∅ if i = 1 or j = 1, and T ′ = {(t1, t1), (t1, t2), . . . , (ti−1, tj−1)} if 1 < i ≤ k1

and 1 < j ≤ k2.



72 4. A novel approach for Similarity Query Optimization Process in DBMSs

As D ⊆ T1 × T2, then:

(ii) ⊇ {(ti, tj) ∈ D | ∀ (t1, t2) ∈ T1 × T2 − T ′, d(ti(S), sq1) ≤ d(t1(S), sq1) ∧

d(tj(S), sq2) ≤ d(t2(S), sq2)}

= {(ti, tj) ∈ T1 × T2 | ∀ (t1, t2) ∈ T1 × T2 − T ′, d(ti(S), sq1) ≤ d(t1(S), sq1) ∧

d(tj(S), sq2) ≤ d(t2(S), sq2) ∧ ti(Ai) θ tj(Aj)}

= {ti ∈ T1 | ∀ t1 ∈ T1 − T ′, d(ti(S), sq1) ≤ d(t1(S), sq1)} on

{tj ∈ T2 | ∀ t2 ∈ T2 − T ′, d(tj(S), sq2) ≤ d(t2(S), sq2)}

=
(
σ̈(S1 θ̈(d1, k1) sq1) T1

)
on
(
σ̈(S2 θ̈(d2, k2) sq2) T2

)
= (i) ,

where T ′ is as above. Therefore (i) ⊆ (ii), as required.

Tables 4.2 and 4.3 summarize all the shown properties of the unary similarity

operators. Table 4.2 synthesizes the properties of the range similarity operator, while

Table 4.3 summarizes the properties of k-nearest neighbor operator.

Properties of Similarity Range Query

R4.1 σ̂(S θ̂(d, ξ) sq)

(
σ̂(S θ̂(d, ξ) sq) T

)
= σ̂(S θ̂(d, ξ) sq) T

R4.2 σ̂(S1 θ̂(d1, ξ1) sq1)∧(S2 θ̂(d2, ξ2) sq2)T = σ̂(S1 θ̂(d1, ξ1) sq1)

(
σ̂(S2 θ̂(d2, ξ2) sq2) T

)
=
(
σ̂(S1 θ̂(d1, ξ1) sq1)T

)
∩
(
σ̂(S2 θ̂(d2, ξ2) sq2)T

)
R4.2.1

(
σ̂(S θ̂(d, ξ1) sq)T

)
∩
(
σ̂(S θ̂(d, ξ2) sq)T

)
=

σ̂(S θ̂(d, ξ1) sq)∧(S θ̂(d, ξ2) sq) T = σ̂(S θ̂(d,min(ξ1, ξ2)) sq)T

R4.3 σ̂(S1 θ̂(d1, ξ1) sq1)∨(S2 θ̂(d2, ξ2) sq2)T =
(
σ̂(S1 θ̂(d1, ξ1) sq1)T

)
∪
(
σ̂(S2 θ̂(d2, ξ2) sq2)T

)
R4.3.1

(
σ̂(S θ̂(d, ξ1) sq)T

)
∪
(
σ̂(S θ̂(d, ξ2) sq)T

)
=

σ̂(S θ̂(d, ξ1) sq)∨(S θ̂(d, ξ2) sq)T = σ̂(S θ̂(d,max(ξ1, ξ2)) sq)T

R4.4 σ̂(S1 θ̂(d1, ξ1) sq1)

(
σ̂(S2 θ̂(d2, ξ2) sq2)T

)
= σ̂(S2 θ̂(d2, ξ2) sq2)

(
σ̂(S1 θ̂(d1, ξ1) sq1)T

)
R4.5 σ̂(S θ̂(d, ξ) sq)

(
σ(A θ a)T

)
= σ(A θ a)

(
σ̂(S θ̂(d, ξ) sq)T

)
R4.6.1 σ̂(S θ̂(d, ξ) sq) (T1 ∪ T2) =

(
σ̂(S θ̂(d, ξ) sq)T1

)
∪
(
σ̂(S θ̂(d, ξ) sq)T2

)
R4.6.2 σ̂(S θ̂(d, ξ) sq) (T1 − T2) =

(
σ̂(S θ̂(d, ξ) sq)T1

)
−
(
σ̂(S θ̂(d, ξ) sq)T2

)
=
(
σ̂(S θ̂(d, ξ) sq)T1

)
− T2

R4.6.3 σ̂(S θ̂(d, ξ) sq) (T1 ∩ T2) =
(
σ̂(S θ̂(d, ξ) sq)T1

)
∩
(
σ̂(S θ̂(d, ξ) sq)T2

)
=
(
σ̂(S θ̂(d, ξ) sq)T1

)
∩ T2 = T1 ∩

(
σ̂(S θ̂(d, ξ) sq)T2

)
R4.7 σ̂(S θ̂(d, ξ) sq) (T1 Θ T2) =

(
σ̂(S θ̂(d, ξ) sq)T1

)
Θ T2, where Θ = × or on

Table 4.2: Summary of algebraic properties to range similarity queries.



4.6 Semantic Restrictions 73

Properties of Similarity k-Nearest Neighbor Query

k4.1 σ̈(S θ̈(d, k) sq)

(
σ̈(S θ̈(d, k) sq)T

)
= σ̈(S θ̈(d, k) sq)T

k4.2 σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)T =
(
σ̈(S1 θ̈(d1, k1) sq1)T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
k4.2.1

(
σ̈(S θ̈(d, k1) sq)T

)
∩
(
σ̈(S θ̈(d, k2) sq)T

)
= σ̈(S θ̈(d, k1) sq)∧(S θ̈(d, k2) sq)T = σ̈(S θ̈(d,min(k1, k2)) sq)T

k4.3 σ̈(S1 θ̈(d1, k1) sq1)∨(S2 θ̈(d2, k2) sq2)T =
(
σ̈(S1 θ̈(d1, k1) sq1)T

)
∪
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
k4.3.1

(
σ̈(S θ̈(d, k1) sq)T

)
∪
(
σ̈(S θ̈(d, k2) sq)T

)
= σ̈(S θ̈(d, k1) sq)∨(S θ̈(d, k2) sq)T = σ̈(S θ̈(d,max(k1, k2)) sq)T

k4.4

(
σ̈(S1 θ̈(d1, k1) sq1)T

)
∩
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
=
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
∩
(
σ̈(S1 θ̈(d1, k1) sq1)T

)(
σ̈(S1 θ̈(d1, k1) sq1)T

)
∪
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
=
(
σ̈(S2 θ̈(d2, k2) sq2)T

)
∪
(
σ̈(S1 θ̈(d1, k1) sq1)T

)
k4.5 σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)

T ⊆ σ̈(S1 θ̈(d1, k1) sq1)

(
σ̈(S2 θ̈(d2, k2) sq2)

T
)

k4.6 σ(A θ a)

(
σ̈(S θ̈(d, k) sq)T

)
⊆ σ̈(S θ̈(d, k) sq)

(
σ(A θ a)T

)
k4.7 σ̂(S2 θ̂(d2, ξ) sq2)

(
σ̈(S1 θ̈(d1, k) sq1)T

)
⊆ σ̈(S1 θ̈(d1, k) sq1)

(
σ̂(S2 θ̂(d2, ξ) sq2)T

)
k4.8 σ̈(S θ̈(d, k) sq) (T1 ∪ T2) ⊆

(
σ̈(S θ̈(d, k) sq)T1

)
∪
(
σ̈(S θ̈(d, k) sq)T2

)
k4.9

(
σ̈(S θ̈(d, k) sq)T1

)
− T2 ⊆ σ̈(S θ̈(d, k) sq) (T1 − T2)(

σ̈(S θ̈(d, k) sq)T1

)
− T2 ⊆

(
σ̈(S θ̈(d, k) sq)T1

)
−
(
σ̈(S θ̈(d, k) sq)T2

)
k4.10

(
σ̈(S θ̈(d, k) sq)T1

)
∩ T2 ⊆ σ̈(S θ̈(d, k) sq) (T1 ∩ T2)(

σ̈(S θ̈(d, k) sq)T1

)
∩
(
σ̈(S θ̈(d, k) sq) T2

)
⊆ σ̈(S θ̈(d, k) sq) (T1 ∩ T2)

k4.11 σ̈(S θ̈(d, k) sq) (T1 × T2) ⊆
(
σ̈(S θ̈(d, k) sq)T1

)
× T2

k4.11.1 σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)
(T1 × T2) ⊆

(
σ̈(S1 θ̈(d1, k1) sq1)

T1

)
×
(
σ̈(S2 θ̈(d2, k2) sq2)

T2

)
k4.12

(
σ̈(S θ̈(d, k) sq)T1

)
on T2 ⊆ σ̈(S θ̈(d, k) sq) (T1 on T2)

k4.12.1

(
σ̈(S1 θ̈(d1, k1) sq1)

T1

)
on
(
σ̈(S2 θ̈(d2, k2) sq2)

T2

)
⊆ σ̈(S1 θ̈(d1, k1) sq1)∧(S2 θ̈(d2, k2) sq2)

(T1 on T2)

Table 4.3: Summary of algebraic properties to kNN similarity queries.

Table 4.4 presents the equivalence properties valid over the traditional operators, but

that are not valid when it involves similarity kNN similarity ones. These invalid properties

for kNN similarity operators can be easily proved by contradiction, using counterexamples.

4.6 Semantic Restrictions

Semantic restrictions such as “external” knowledge about stored data or about the user’s

expectation regarding the data or the query answer are important factors that can help

improving the performance of query execution. Those factors are seldom employed to

optimize queries over scalar data, because it is very costly to process them. In fact,



74 4. A novel approach for Similarity Query Optimization Process in DBMSs

Properties of Traditional Query

T1 σ(A1 θ1 a1) ∧ (A2 θ2 a2) T = σ(A1 θ1 a1)

(
σ(A2 θ2 a2) T

)
T2 σ(A1 θ1 a1)

(
σ(A2 θ2 a2) T

)
= σ(A2 θ2 a2)

(
σ(A1 θ1 a1) T

)
T3 σ(A θ a) (T1 ∪ T2) =

(
σ(A θ a) T1

)
∪
(
σ(A θ a) T2

)
T4 σ(A θ a) (T1 − T2) =

(
σ(A θ a) T1

)
− T2 =

(
σ(A θ a) T1

)
−
(
σ(A θ a) T2

)
T5 σ(A θ a) (T1 ∩ T2) =

(
σ(A θ a) T1

)
∩ T2

= T1 ∩
(
σ(A θ a) T2

)
=
(
σ(A θ a) T1

)
∩
(
σ(A θ a) T2

)
T6 σ(A θ a) (T1 Θ T2) =

(
σ(A θ a) T1

)
Θ T2 = T1 Θ

(
σ(A θ a) T2

)
, where Θ = × or on

T6.1 σ(A1 θ1 a1)∧(A2 θ2 a2) (T1 Θ T2) =
(
σ(A1 θ1 a1) T1

)
Θ
(
σ(A2 θ2 a2) T2

)
, where Θ = × or on

Table 4.4: Summary of algebraic equivalence properties to traditional queries invalid to
kNN similarity queries.

the cost to handle semantic restrictions is often higher than the cost of just executing the

non-optimized query over scalar data, thus it makes no sense utilizing semantic restriction

just to optimize queries over scalar data. However, when handling complex data and

similarity queries, there are at least two factors that revert the weights of those costs.

Firstly, the similarity query execution requires inherently much more time than it is

required to process traditional operators, and the same occurs when handling complex

data. Therefore, the tradeoff between using or not semantic restrictions becomes more

favorable to using it when similarity operators are involved than when only traditional

ones are involved. In fact, when complex data must be searched by similarity, using

semantic restriction almost always leads to the best alternative to improve efficiency.

Therefore, using semantic restrictions becomes clearly more attractive even if only the

performance gains to improve the execution performance of queries posed over complex

data are considered. Moreover, using semantic restrictions about the data to identify

the regions of the data space where the answer should be searched, pruning those where

answers cannot be found is a good strategy to improve the performance of similarity

queries.

Secondly, it must be considered that searching for similarity often involves a certain

degree of variability between what is the expressed by the exact, formal expression of the

similarity (that is processed by the similarity query algorithms, extracted features and

distance functions) and what is expected by the user. Although that dichotomy between

the formal expression of a query and the user’s expectation can happen when processing

scalar data with identity- and TOR-based operators, it is clearly larger when processing

complex data with similarity-based operators. Therefore, taking into account semantic

restrictions about the user’s preference when answering a query often can improve not

only the query performance, but also (and more importantly) the query quality to fulfill

the user’s expectation and thus the query efficiency.

In summary, whenever a similarity query is posed, it is worth to the optimizer to take

into account the known semantic restrictions of the data and of the user’s expectation



4.6 Semantic Restrictions 75

to evaluate a query whenever any of them can be employed either to improve the query

quality (tailoring the execution to better meet the users’ expectations), or to improve

the query execution efficiency (using the restrictions as screening predicates to prune

part of the data that is known to have no interesting data). Semantic restrictions are

always translated into predicates, then they can be employed as filter in query refinement

techniques.

Subsection 4.6.1 explores the usage of the known users’ interests as semantic restric-

tions to optimize similarity queries. Subsection 4.6.2 investigates how to utilize the

knowledge about the stored complex data, which was retrieved and analyzed during the

execution of previous queries, using the mined pattern also as semantic restrictions to

rewrite further similarity queries.

4.6.1 Preference Model Module

The preferences of each user determine its choices. Hence, the knowledge of that

preferences should be obtained from the user creating a “user’s profile”, preferably

imposing little or no burden over the user, for example employing ‘relevance feedback’

techniques or other non-intrusive analysis performed by the system regarding the set of

queries and respective answers posed by the user. The Preference Model module proposed

in this monograph receives the gathered users’ interests and generates preference rules,

using a preference model such as one of those mentioned in Section 3.8, and correlates

the semantic information both from the user and from the complex data. Together with

similarity algebra, preference rules can be used to rewrite similarity queries, obtaining

results closer to the users’ expectations in a faster way.

Figure 4.6 shows the process of preparing and executing queries either using or

not the preference model in RDBMS. In the first step (Figure 4.6, Action 1©), users’

preferences are obtained from users’ profiles, for example. Then, the preference model

module generates preference rules, storing them in the database as part of the system

catalog. When the user searches for similarity without using the preference model

(Figure 4.6, Action 3©), the similarity database uses only the syntax-based optimization

to answer the query. Otherwise, when the preference model is used to evaluate a

query (Figure 4.6, Action 2©), the similarity database combines the syntax- and the

semantic-based techniques to rewrite queries.

For illustration purposes, let us use again the CoPhIR database. Suppose that the user

wants to find the 5 beach photos most similar to his photo, so that they were obtained in

the hottest seasons. If the user’s background knows how to qualify one season as hotter

than another, than his ‘hotness scale’ should be used to refine the query, bringing the

query answer closer to what the user expects. This is the way that we developed the



76 4. A novel approach for Similarity Query Optimization Process in DBMSs

Query

Similarity
Database

Similarity 
Search

Preference
Rules

Answer without PM

Answer with PM

3 3 3

3

1 1

2

2

Users’
Preferences

2

Preference
Model

2

Figure 4.6: Generic flowchart to prepare and execute similarity queries considering of
preference models.

similarity queries to use preferences rules and similarity algebra to obtain results closer

to users’ expectations.

4.6.2 Data Mining Model Module

One way to integrate DBMS and data mining techniques is to incorporate mining tools

into the database engine. Accordingly, the Data Mining Model module tightly couples

data mining algorithms, thus allowing similarity queries to benefit from automatically

mined rules and improving both query quality and performance. The data mining model

module extracts knowledge from the stored complex data retrieved by previous queries,

generating mining rules. Combining the similarity algebra and the mining rules found,

similarity queries can be rewritten to make them more semantically adequate to meet the

users’ expectations.

Figure 4.7 shows the process of preparing and posing queries either using or not the

mined rules in RDBMS. In the first step (Figure 4.7, Action 1©), the user sends stored

data to the data mining model module. Then, mining rules are mined and stored, together

with the other data, in the database (Figure 4.7, Action 2©). When the user searches for

similarity without using the data mining model (Figure 4.7, Action 3©), the similarity

database uses only the syntax-based optimization to answer the query. Otherwise, when

the data mining model is used to evaluate a query (Figure 4.7, Action 2©), the similarity

database combines the syntax- and the semantic-based techniques to rewrite queries.

Those ideas can be explained through an example. Let us use the CoPhIR database

again. Suppose that the user wants to find beach photos similar to his photo that are

like his photos from tropical climate beaches. If the user has a small collection of photos



4.7 Final Comments 77

Query

Similarity
Database

Data Mining 
Model

Similarity 
Search

Mining 
Rules

Answer without DMM

Answer with DMM
2

3 3

1 1 2

2

3 2

3

Stored
Data

Figure 4.7: Generic flowchart to prepare and execute similarity queries considering of
data mining models.

“from tropical climate beaches”, he/she can use data mining techniques integrated with

similarity queries to express queries that employ the results of the mining algorithms.

After a data mining algorithm extracts rules that can express how to identify “photos

from tropical climate beaches”, the resulting rules are stored in the database, as part of

the system catalog. Thereafter, the mined rules can be automatically combined to the

user’s expressions through similarity algebra operators to evaluate the similarity queries.

4.7 Final Comments

In this chapter we presented the techniques developed in this doctorate program to

incorporate similarity queries into RDBMSs. First, similarity-based operators were

included into relational model, allowing the management of complex and scalar data

in an integrated way. We also presented an algorithm to generate the algebraic canonical

plan, which includes every basics steps to translate traditional and similarity queries into

an algebraic expression. We developed that algorithm in such a way that when k-nearest

neighbors predicates are involved, the answer includes as closer to k elements as possible,

aiming at pursuing to obtain the k elements that the user expects. Thereafter, the

canonical plan is sent to the query optimizer. The query optimizer was extend to handle

the syntax and the semantic of queries that include similarity operators. The syntax-based

extension proposed includes a large number of rules that govern the similarity-based

comparison operators and its integration with the existing identity and by relational

comparison ones. The proposed algebra provides a powerful and flexible basis to develop

semantic-based extensions that can both mine patterns and knowledge about the stored



78 4. A novel approach for Similarity Query Optimization Process in DBMSs

data and identify the user’s expectation about the query result content, taking them into

account to improve the efficiency and the efficacy of similarity queries processing.

In Chapter 5, we discuss how these techniques were included in the SIREN similarity

retrieval prototype that we are developing to include similarity queries in RDBMS taking

into account the semantic of the data and the user’s expectation.



Chapter

5

Similarity Retrieval Engine - Case Study

5.1 Introduction

Originally proposed by Barioni et al. [2006], the Similarity Retrieval Engine (SIREN) is a

middleware between the application program and a traditional database management

system (DBMS) that allows the execution of similarity queries in structured query

language (SQL). In its initial version, SIREN was able to compile and directly execute

similarity queries over complex data stored in relational database management systems

(RDBMSs), without caring about similarity query optimization process. Currently,

SIREN is being extended with the techniques presented in Chapter 4, by adding the

query optimization process to optimize similarity queries, both based solely on the

algebraic properties of the similarity-based operators as well as meeting user’s expectation.

Figure 5.1 shows the current SIREN architecture, which we called SIRENop. In this figure,

our extension is highlighted in blue.

SIREN language is based on a SQL extension that includes several new data types

corresponding to complex data, such as STILLIMAGE, AUDIO and PARTICULATE. It also

supports similarity predicates and special constructs to allow the definition of how

features are extracted from complex data, how to define distance functions and how both,

extracted features and distance functions are assigned to the complex attributes declared

as composing the relations.

A similarity-based predicate is expressed in the same way as the existing predicates

in the WHERE clause of the SELECT command, and it allows expressing all the elements of

a similarity selection operator of the format σc (S θc(d, lim) sq) T described in the previous

chapter. The basic syntax to express similarity predicates in the WHERE clause is the

following:

79



80 5. Similarity Retrieval Engine - Case Study

Application Program

Standard SQL/
Extended SQL

Similarity Retrieval Engine

Query
Compiler

Standard
Tree

Canonical
Tree

Query Optimizer

Parse

Tree

Attributes and
Conditions

Table (ACT)

Query

Rewriter

Query

Evaluator

User Expectation Generator Plan

Preference
Model

Data Mining

Model

Optimized
Tree

Metric
Indexer

RDBMS

Relational DBMS

Application
Database

SIREN
Data Dictionary

Metric Access Method (MAM)

Metric Access Method
(MAM)

Arboretum

Hermes

Artemis

Figure 5.1: SIRENop architecture.

<attr> NEAR <value> [STOP AFTER <k>] [RANGE <ξ>] [USING <distf>],

where <attr> is the complex attribute (corresponding to S), <value> must be an element

of the corresponding complex domain (corresponding to sq), <k> and <ξ> are the similarity

threshold for k-nearest neighbors and range queries respectively (corresponding to lim),

and <distf> is the distance function. The reserved word NEAR specifies that this is a

similarity-based predicate (it corresponds to the generic similarity operator θc), whereas

the reserved words STOP AFTER and RANGE specify the operator to be either a k-nearest

neighbors or a range one respectively, and corresponding to either the specific θ̈ or

θ̂ operators respectively. In SIREN, <k>, <ξ> and <distf> are optional, and if not

specified they are assumed to be 1, 1 and the single (or the one set as default) distance

function defined for the attribute <attr>. SIREN acts as a blade between the DBMS

and the application program. It intercepts and analyzes every query sent by the user

to the DBMS. In case that the command has neither similarity-related operations nor

references to complex data, the command is directly relayed to the DBMS, and thus

SIREN is transparent to traditional operations. On the other hand, if the query has

similarity-related constructions, then SIREN compiles, optimizes and executes it, sending

the answer back to the user.



5.1 Introduction 81

In this chapter, we use seven datasets obtained from real applications to illustrate the

application of the concepts and to report the result of the experiments that we performed

using the new version of SIREN that we extended. Table 5.1 summarizes datasets used

in the experiments of this thesis.

The DDSM DS dataset

This is a set of 4,612 mammography images, obtained between 1993 and 1999 from the

Digital Database for Screening Mammography (DDSM) website1 [Heath et al., 1998, 2000].

This dataset is composed of two relations: the first stores the images and metadata specific

of each image, such as the exam that includes the image; the second stores data related to

the exams, such as the data it was performed, etc. The schema of those relations follows.

Mammography = {CaseId, Report, View, ImgRoi}
Cases = {Id, DateOfStudy, DateOfDigitized, PatientAge, Density, Hospital}

The similarity between elements of the complex attribute ImgRoi is computed by the

pair Haralick [Haralick et al., 1973] feature extractor and the Manhattan (L1) distance

function.

The MammographyDS dataset

This is a set of 1,353 medical images obtained from the Clinical Hospital at Ribeirão

Preto of the Universidade de São Paulo. This dataset is composed of two relations: the

first called RCCMammography, which has 658 images from mammograms exams of right

breast with cranio-caudal view (CC), and the second called RMLOMammography that has

695 images from mammograms exams of right breast with medio-lateral oblique view

(MLO). The similarity between elements of the image complex attribute is computed by

the pair Texture [Felipe et al., 2003] feature extractor and the Manhattan (L1) distance

function.

The MedImageDS dataset

This dataset is composed of the relation MedImage, which has 5,180 computerized

tomographies (CT) images from three human body parts (abdomen, cranium and thorax),

obtained from the Clinical Hospital at Ribeirão Preto of the Universidade de São Paulo.

The pair metric histogram [Traina et al., 2003] feature extractor and the Manhattan

(L1) distance function are used to compute the similarity between elements of the image

complex attribute.

1DDSM: Digital Database for Screening Mammography Homepage. Accessed in: May 15, 2011.
Available at: http://marathon.csee.usf.edu/Mammography/Database.html



82 5. Similarity Retrieval Engine - Case Study

The PeruDS dataset

This dataset is composed of the relation PeruDistrict that has 1,829 Peruvian districts

obtained from Peru Instituto Nacional de Estad́ıstica e Informática (INEI). The complex

attribute Coordinate is obtained from the combination of two geographical points,

represented in the traditional attributes Lat (i.e. the Latitude) and Long (i.e. the

Longitude). For elements of complex attribute Coordinate, the Euclidean (L2) distance

function is defined over their domain, so the similarity predicates can be answered over

it.

The CitiesUSDS dataset

This dataset is composed of the relation USCities that has 25,374 American cities and

their economic characteristics in Census 2000, obtained from U.S. Census Bureau website2.

The schema of this relation follows.

USCities = {CityCode, CityName, State, Employed, Unemployed, WorkedAtHome,

Retail, PerCapita, PctPovertyFam, . . ., Lat, Long, Coordinate}

The complex attribute Coordinate is obtained from the combination of two geographical

points, represented in the traditional attributes Lat and Long. For elements of complex

attribute Coordinate, the Euclidean (L2) distance function is defined over their domain,

so the similarity predicates can be answered over it. In order to make easier to understand

the experimental evaluation presented in Subsection 5.2.1, we assume that there is a

function Coord(USCities.CityName), which returns the Coordinate of the city named

CityName.

The LungDS dataset

This dataset is composed of the relation LungExam that has 246 lung images collected in

108 distinct computed tomography exams from the Clinical Hospital at Ribeirão Preto

of the Universidade de São Paulo patients. The exams were separated according to their

description and each image were classified by a radiologist into six distinct class (Con-

solidation, Emphysema, Interlobular Septal Thickening, Honeycombing, Ground-glass

Opacity and Normal), in average 40 images per class, according to the radiological finding

contained in each image. The similarity between elements of the image complex attribute

is computed by the pair Texture [Felipe et al., 2003] feature extractor and the Manhattan

(L1) distance function.

2U.S. Census Bureau Homepage. Accessed in: 2011 May 15. Available at: http://www.census.gov/



5.1 Introduction 83

Dataset Feature Distance
Name Cardinality Extractor Function Description

DDSM DS 4,612 Haralick L1

A set of mammography
images obtained between
1993 and 1999 from the
Digital Database for
Screening Mammography
(DDSM) website [Heath
et al., 1998, 2000].

MammographyDS 1,353 Texture L1

A set of 658 images ob-
tained from mammograms
exams of right breast with
cranio-caudal view and 695
images obtained from mam-
mograms exams of right
breast with medio-lateral
oblique view.

MedImageDS 5,180
Metric
Histogram

L1

A set of medical images ob-
tained from three human
body parts (abdomen, cra-
nium and thorax) by com-
puterized tomographies.

PeruDS 1,829 – L2
A set of the Peruvian dis-
tricts.

CitiesUSDS 25,374 – L2

A set of the American cities
and their economic charac-
teristics in Census 2000.

LungDS 246 Texture L1

A set of lung images
collected in 108 distinct
computed tomography
exams and separated
according to their
description (Consolidation,
Emphysema, Ground-glass
Opacity, Interlobular Septal
Thickening, Honeycombing
and Normal).

WWorldDS 1,798 Texture L1

A set of the fourteen won-
der worlds images extracted
from the Flickr website, to-
gether with their metadata
information.

Table 5.1: Real dataset descriptions used in the experiments.

The WWorldDS dataset

This dataset is composed of a relation WondersWorld, which has 1,798 images extracted

from the Flickr3 website, together with their metadata information such as: tags, a short

3Flickr Homepage. Accessed in: 2012 August 14. Available at: http://www.flickr.com/



84 5. Similarity Retrieval Engine - Case Study

description, the city with the corresponding latitude and longitude. These images are

from the fourteen wonders, seven of the ancient and seven of the new world, plus the

complex of Giza pyramid, the nowadays remaining wonder from the ancient world. There

are 100 images from each of the fourteen distinct wonders and 100 more for the current

Giza pyramids, retrieved from Flickr, together with the descriptions that people in general

stores in that website. No structure or consistency are expected to exist in this tag system.

The schema of this relation is as follows.

WondersWorld = {ImageID, Tag, Description, . . ., Training, Image}

The similarity between elements of the complex attribute Image is computed by the pair

Texture [Felipe et al., 2003] feature extractor and the Manhattan (L1) distance function.

From 1,798 images, 1,500 had the attribute Training set to ‘False’. The remaining 298

are images from all of the fourteen wonders and the current Giza pyramids, all of them

have the attribute Training set to ‘True’, and correspond to examples of the kind of

images that the users expects to obtain from each wonder.

Section 5.2 describes the SIREN Query Optimizer. Section 5.3 presents the SIREN

Preference Model and Section 5.4 presents the SIREN Data Mining Model. Section 5.5

makes the final comments of this chapter.

5.2 The SIREN Query Optimizer

After the compilation process has been successfully executed, the canonical tree is

generated, using the Algorithm 4.1 presented in Section 4.3. For illustration, suppose that,

in a health-care information system and using the DDSM DS dataset, a medical doctor wants

to search for mammographies similar to those of her actual patient whereas specifying

some special constraints, as presented in Query Q3.

Example 5.1:

Q3: “Select the 3 mammographies taken in 1993 that are the most similar to this one

from my current patient (Patient X), obtained from a patient that is less then 45 years

old and whose exam was taken in the Massachusetts General Hospital (MGH)”.

This query can be expressed in SQL as:

SELECT Cases.Id, Mammography.ImgRoi

FROM Mammography, Cases

WHERE Mammography.IdCases = Cases.Id

AND Cases.DateOfStudy BETWEEN ‘01/01/1993’ AND ‘31/12/1993’

AND Mammography.ImgRoi NEAR ImgRoi(PatientX) STOP AFTER 3

AND Cases.PatientAge < 45

AND Cases.Hospital = ‘MGH’



5.2 The SIREN Query Optimizer 85

(a) ‘Similarity-first’ Plan

π

on

σ

σ

σ σ̈

Read Read

Cases Mammography

(b) Canonical Tree

π

σ̈

on

σ

Read Read

Cases Mammography

(c) Alternative Plan 1

π

σ

σ̈

on

Read Read

Cases Mammography

(d) Alternative Plan 2

π

σ̈

σ

on

Read Read

Cases Mammography

(e) Alternative Plan 3

π

σ

on

σ̈

Read Read

Cases Mammography

Alternative Plan - Properties:

None Property k4.12
Equation 2.2 and
Property k4.12

Property k4.12 and
Equation 2.2

Equation 2.2

Number of expected (k) / returned results:

3/1 3/3 3/1 3/3 3/1

Query execution time (ms):

126 116 200 117 136

Figure 5.2: ‘Similarity-first’, canonical, alternative plans and execution time of Query
Q3.

This query involves traditional identity (Hospital=‘MGH’), traditional total ordering

relationships (AGE > 45, BETWEEN), a kNN selection (ImgRoi NEAR sq STOP AFTER 3),

as well as a traditional join. Algebraically, it is represented as:

σ(
(DateOfStudy BETWEEN ‘01/01/1993’ AND ‘31/12/1993’ ∧ PatientAge<45 ∧ Hospital=‘MGH’)

) Cases on(
σ̈(ImgRoi θ̈(Texture,3) Image(PatientX)) Mammography

)
.

Executing the Algorithm 4.1 over Query Q3, the canonical tree obtained is presented

in Figure 5.2(b). Figure5.2(a) shows the well-accepted ‘similarity-first’ plan, which first

executes kNN predicates and then the other ones. Table 5.2 illustrates the ‘similarity-first’

plan shown as a relation. It corresponds to the direct translation of the relational query

1 Read Mammography

2 Read Cases

3 σ 2 DateOfStudy BETWEEN ‘01/01/1993’ AND ‘31/12/1993’

4 σ 3 PatientAge < 45

5 σ 4 Hospital=‘MGH’

6 σ̈ 1 ImgRoi NEAR ImgRoi(PatientX) STOP AFTER 3

7 on 5 6 Mammography.IdCases = Cases.Id

8 π 7 Cases.Id, Mammography.ImgRoi

Table 5.2: Canonical plan, represented as a table, of the Query Q3.

into the corresponding algebra expression. It can be seen that the selection operators are



86 5. Similarity Retrieval Engine - Case Study

applied in the same sequence expressed in the query command, as soon as possible over

each relation.

In the sequence, the canonical tree is sent as input to the SIREN Query Optimizer.

The SIREN Query Optimizer processes the expression generating several alternatives

applying transformations based on the properties existing for traditional predicates and

on the properties of the Similarity Algebra presented in Section 4.5, which are embedded

in the Query Rewriter.

Considering Query Q3, Property k4.12 and Equation 2.2 can be used to rewrite the

canonical tree and to generate alternative plans as shown in Figures 5.2(c) to (e). To

alleviate drawing the alternative plans in the figure, and without loss of generality, we

show here the conjunction of only traditional selections transformed into a single selection.

The ‘Similarity-first’ Plan and the Alternatives 1 and 3 can return less than k tuples, as

further filtering operations are applied over the first k tuples selected, which can prune

even more results. When the evaluation of the predicates of the other operations returns

at least k tuples, executing kNN as the last operation warrants that the asked amount k

of tuples is returned, as it occurs in the Canonical Tree and Alternative 2 that return the

same number k of tuples. Figure 5.2 also shows the minimum and maximum numbers

of results that each alternative plan can return, as well as the average wall clock time

required for SIREN to process Query Q3 over the DDSM DS dataset with several query

centers. As the number k = 3 employed in this example is very small, the performance

changes derived from each alternative plan are tiny. However, it nevertheless can be seen

that the Canonical Tree and Alternative Plan 2 have a gain of about 8% when compared

to the ‘Similarity-first’ Plan. It shows that using the inclusion properties to optimize

similarity queries, we can recover the desired number of answers without compromising

the required time processing.

The SIREN Query Optimizer can also use association rule mining and users’

preferences during the optimization process to identify semantic restrictions, and exploit

it as query refinements to improve query efficiency and efficacy. The optimization using

association rules is described in Section 5.4 and using users’ preferences in Section 5.3.

5.2.1 Experimental Evaluation

Aiming at further evaluating the concepts and the implemented tools related to Exam-

ple 5.1, the following two set of experimental evaluations were also performed.

Equivalence-based Properties

The first set of experiments was performed using only the equivalence-based properties

of the Similarity Algebra. Those properties were incorporated into a version of the SIREN

query optimizer called ‘SIRENop’ (SIREN + Optimization) in the experiments. The



5.2 The SIREN Query Optimizer 87

experiments analyze the performance of SIREN and SIRENop to execute similarity queries.

Both versions of SIREN were implemented in C++. The experiments were executed on

an AMD Athlon XP 3000+ processor with 1024MB of main memory, under the Windows

XP operational system. The RDBMS employed was Oracle 9i. Every test was performed

using both sequential scan and a Slim-tree index. Four data sets were used to pose Queries

Q4, Q5 and Q6 to SIREN.

Query Q4 was performed in the MammographyDS dataset.

Q4: “Given a mammography exam with images of left and right breast from

cranio-caudal (RCC) and medio-lateral oblique (RMLO) views of a patient, show the

exams whose mammogram texture does not differ more than 10 units from those in the

original exam”.

Query Q4 involves a traditional join and a range selection and its

canonical algebraic expression obtained using Algorithm 4.1 is represented as

σ̂(S θ̂(texture, 0.1) sq) (RCC on RMLO). Property R4.7 was employed to optimize the

query. Its optimized expression is
(
σ̂(S θ̂(texture, 0.1) sq)RCC

)
on RMLO.

Query Q5 was performed in the MedImageDS dataset.

Q5: “Given a head tomography exam of a patient showing a pathology, retrieve the

5 most similar exams not presenting a pathology, and whose texture does not differ more

than 5 units from those in the target exam”.

Query Q5 involves traditional selection, range selection and kNN selec-

tion. Applying Algorithm 4.1, the canonical algebraic expression is represented

as: σ̈(S θ̈(texture, 5) sq)

(
σ̂(S θ̂(texture, 0.05) sq)

(
σ(pathology=‘N ′) (MedImage)

))
. Properties

R4.5 and k4.4 as well as their special cases should be used to optimize this

query. One algebraic plan of Query Q5 can be algebraically expressed as:

σ(pathology=‘N ′)

(
σ̂(S θ̂(texture, 0.05) sq)

(
σ̈(S θ̈(texture, 5) sq) (MedImage)

))
.

Query Q6 was performed in the PeruDS dataset.

Q6: “Find the 15 districts nearest to ‘Arequipa’ that are not farther than 15 miles,

and where the population between 21 and 64 years old is greater than the over 65 year

old population”.

Query Q6 also involves traditional selection, range selection and kNN selec-

tion. Applying Algorithm 4.1, the canonical algebraic expression is expressed as:

σ̈(S θ̈(Euclidean, 15) sq)

(
σ̂(S θ̂(Euclidean, 15) sq)

(
σ(adultpop > oldpop) (PeruDistricts)

))
. Properties

R4.5 and k4.4 as well as their special cases should be used to optimize these

queries. One of the alternative plan of the Query Q6 can be expressed as:

σ̂(S θ̂(Euclidean, 15) sq)

(
σ(adultpop > oldpop)

(
σ̈(S θ̈(Euclidean, 15) sq) (PeruDistricts)

))
.



88 5. Similarity Retrieval Engine - Case Study

The experiments evaluated the execution time of these three queries, and the results

were compared for correctness. The queries were performed 30 times and the values shown

are the average of performing the same query varying the query center sq. Table 5.3

summarizes measurements executing the three queries using SIREN and SIRENop both

using sequential scan and using the Slim-tree index structure.

As we can see in Table 5.3, the optimization process can make Query Q4 about 30%

faster both when a sequential scan or a Slim-tree index is employed. The gain obtained

with Query Q5 was about 65% using a Slim-tree index and 63% using sequential scan.

Query Q6 gain was about 64% using sequential scan and about 63% when using a Slim-tree

index.

SIREN SIRENop

Sequential scan Slim tree Sequential scan Slim tree
Q4 354.70 331.20 246.90 231.30
Q5 948.50 765.60 351.70 270.40
Q6 604.70 443.20 218.80 165.70

Table 5.3: Performance of Queries Q4, Q5 and Q6 (total time in milliseconds).

The experiments reported in Table 5.3 show that the performance gains obtained by

the optimization techniques are always greater than those obtained just using the metric

access method. Moreover, using both techniques, optimization + MAM always leads to

the better performance.

Inclusion-based Properties

The second set of experiments was performed using the equivalence- and

inclusion-based properties of the Similarity Algebra. SIREN was implemented in C++,

and the experiments were evaluated using an Intel Core 2 Quad 2.83GHz processor with

4GB of main memory, under the Windows XP operational system. SIREN was configured

to process the traditional part of the queries in Oracle 9i. These experiments apply

the ‘similarity-first’, canonical and the alternative plans to execute Query Q7, using the

CitiesUSDS dataset. Remember that the ‘similarity-first’ plan is the one in which the

kNN predicates should be the first to be executed.

Q7: “Find the 5 cities nearest to ‘New York city-NY’, whose distances from ‘Albany

city-NY’ are not farther than 210 km, considering the Euclidean distance L2, having the

per capita income greater than 22,400 and the percentage of families in poverty level

smaller than or equal to 18.5”.



5.2 The SIREN Query Optimizer 89

Query Q7 involves traditional, similarity range and kNN selections. It can be expressed

as follows.

σ(PerCapita>22400 ∧ PctPovertyFam≤18.5)(σ̂(Coordinate θ̂(L2, 1.9) Coord(Albany))

(σ̈Coordinate θ̈(L2,5) Coord(New York) USCities)) .

Figure 5.3 presents the ‘similarity-first’, the canonical, which is the result of applying

the Algorithm 4.1 in the original query, and five alternative execution plans that result

from the query rewriting processing of Query Q7. This figure also shows the number of

expected (k) and returned results for each plan, and their evaluation time in milliseconds

(ms). The time reported corresponds to the average of execution of 10 queries like Q7 for

distinct query centers.

(a) ‘Similarity-first’ Plan

π

σ

σ

σ̂

σ̈

Read

USCities

(b) Canonical Tree

π

σ̈

σ̂

σ

Read

USCities

(c) Alternative Plan 1

π

σ

σ̈

σ̂

Read

USCities

(d) Alternative Plan 2

π

σ̈

σ

σ̂

Read

USCities

(e) Alternative Plan 3

π

σ̂

σ

σ̈

Read

USCities

(f) Alternative Plan 4

π

σ̂

σ̈

σ

Read

USCities

(g) Alternative Plan 5

π

∩

σ σ̂ σ̈

Read Read Read

USCities USCities USCities

Alternative Plan - Properties:

None

Property R4.5,
Property k4.6 and
Property k4.7

Property k4.7
Property k4.7 and
Property k4.6

Property R4.5
Property R4.5 and
Property k4.6

Property k4.4

Number of expected (k / returned results:

5/1 5/5 5/3 5/5 5/1 5/4 5/1

Query execution time (ms):

117 117 125 141 124 125 403

Figure 5.3: ‘Similarity-first’ plan, canonical tree, alternative plans and execution time
of Query Q7.

Let us compare the results and how the ‘similarity-first’ and the canonical plans

differ. For this query, the evaluation time of all alternative plans are greater than

the ‘similarity-first’ and canonical ones. As the optimization process goal is to identify

the algebraic expression that may be evaluated with the lowest computational cost, the

alternative plans are discarded by the query optimizer.

Although the evaluation times for the ‘similarity-first’ and for the Canonical plans

are the same, the ‘similarity-first’ plan can return less than k tuples, as further selection

operations are applied over the first k tuples selected, pruning more results. When the

evaluation of the predicates of the remaining selections after returns at least k tuples,

executing the kNN as the last operation (Canonical tree) warrants that the asked amount

k of tuples are returned. However, it is worth noticing that the same k tuples are always

returned by the ‘similarity-first’ plan. Starting with the ‘Similarity-first’ Plan of Figure5.3,



90 5. Similarity Retrieval Engine - Case Study

the canonical plan can be generated by applying the commutative property between the

range and traditional operators, i.e., Property R4.5, and then, Property k4.6 and Property

k4.7, respectively.

5.3 The SIREN Preference Model

The SIREN Preference Model module is developed as a new SIREN functional component.

Users’ preferences are expressed to SIREN using a user’s profile. The Preference Model

module collects the users’ preferences and generates conditional preference rules (cp-rules),

analyzing the semantic information extracted by the preference rules processing and

comparing it to the complex data distributions, aiming at finding correlations that can

be useful both to speed up query processing and to improve the efficacy of the answer.

Together with the rules of the similarity algebra already embedded in the Query Rewriter,

these rules are used to rewrite the similarity queries aiming either at simplifying the query

execution, enabling to find faster answers, or to better follow the users’ expectations,

enabling to find better answers.

Following we present the syntax of the SQL extension that we developed to enable

expressing user’s preference in SIREN. In this section and the next one, we employ

the Extended Backus-Naur Form (EBNF) notation, a widely adopted notation for the

specification of program languages to present the syntax of the proposed extension.

A new preference model is defined by the CREATE PREFERENCE MODEL statement, as

follows.

<create preference model statement>::=

CREATE PREFERENCE MODEL <model name>

FROM <relation name>

AS <preference list>

[‘[’<attribute list>‘]’];

The new preference model is called <model name>. It assigns the list of cp-rules

defined in <preference list> to the relation <relation name>. The <model name>

parameter must be unique. Each rule is declared following the IF <antecedent> THEN

<consequent> syntax. Multiple rules are assumed to compose a conjunction. Cp-rules can

be created with or without antecedents, which are terms in the form attribute = value

connected by the AND keyword. The consequents are always a preference relation between

the values of the given attribute. The optional parameter <attribute list>, which is

represented between brackets, states that the attributes in the list are not involved in the

rule – every involved attributes must have the same value in both tuples compared.

A preference model is dropped by the DROP PREFERENCE MODEL statement, whose

syntax is as follows.



5.3 The SIREN Preference Model 91

<drop preference model statement>::=

DROP PREFERENCE MODEL <model name>;

where <model name> is the preference model to be dropped.

Having created a preference model, the set of cp-rules are validated and the preference

model becomes ready to be used. However, a Preference Model is attached to a relation

of the database schema, not to a specific user. Therefore, it is necessary that each user

explicitly chooses the preference model that his/her wants to attach to his/her personal

query environment.

The SET MODIFICATION statement controls what modifications are enabled in each

user query environment, as follows.

<set modification model statement>::=

SET MODIFICATION [ADD | REMOVE | UPDATE]

[ALL | <model name>];

This statement is used to enable or disable the specified preference model in the

user’s environment (using the ADD or REMOVE clauses), or to update existing preference

models (using the UPDATE clause). When SET MODIFICATION ADD <model name> is

posed, the current set of cp-rules from the <model name> model is added to the users

environment. When SET MODIFICATION UPDATE <model name> is posed, the preference

model associated to the <model name> model is re-evaluated (for example, due to changing

configurations in the profile). When SET MODIFICATION REMOVE <model name> is issued,

the current set of cp-rules from the <model name> model is removed from the user’s

environment. The ALL option is used to add, remove or update all preference model from

the user in the users environment.

Whenever there are preference models enabled in the users environment, all queries

issued by the user are rewritten following those models. Therefore, the SET MODIFICATION

command allows the user to control when queries should be modified, and which models

must be employed to modify each query. If the user adds a model in his/her environment

and other model was already added, the SIREN query rewriter asserts that both models

are consistent and uses them to rewrite queries as a conjunction; otherwise, only the last

added model is used to rewrite queries.

When there are SET MODIFICATION commands active, each similarity query posed is

automatically rewritten taking into account the rules enabled in the user’s environment.

The rewritten query is enabled adding the ACCORDING TO PREFERENCES clause after the

WHERE condition in the SELECT statement, as follows.



92 5. Similarity Retrieval Engine - Case Study

<according clause>::=

ACCORDING TO PREFERENCES ([n,] <model name list>);

This clause allows performing an additional filtering over tuples returned after the

execution of the clauses FROM and WHERE. The remaining tuples are those satisfying all

the users’ preferences specified by the model names in <model name list>. The optional

parameter n, which is defined in the user’s profile, enables selecting the n most preferred

tuples, respecting the preference hierarchy. Therefore, it is possible to select complex

data with varying similarity degrees. The semantic of a kNN query using parameter n

corresponds to first select the k complex data most similar to the query element, and

thereafter, among them, select up to n most preferred tuples following the users profile

preference hierarchy.

Figure 5.4 summarizes the whole process of preparing and posing queries either using

or not using the preference rules, over a database. In the first step (Figure 5.4, Action 1©),

the user specifies its preferences in the user’s profile. The preference rules are generated

and stored in the database, as part of the system catalog. Notice that a preference model

is attached to the METRIC <metric name> employed to search the database, thus it can be

applied to any attribute in any relation sharing the same domain and this the same rules.

When searching for similarity with preference model disabled (Figure 5.4, Action 2©),

the “similarity search” engine uses only the multimedia database to answer the query;

otherwise, when the preference model is enabled (Figure 5.4, Action 3©), the “similarity

search” engine uses the rules together with the multimedia database to evaluate the

queries.

5.3.1 Experimental Evaluation

The SIREN prototype and its Preference Model module were implemented in C++, and

the experiments were evaluated using an Intel Core 2 Quad 2.83GHz processor with 4GB

of main memory, under the Windows XP operational system. The RDBMS used to

process the traditional part of the query was the PostgreSQL 8.4.

The experiments were performed using the LungDS dataset. It was employed two

user profiles, one more general and another more specific, and both are compared with

a plain similarity query, with no preferences attached. They were prepared to represent

the fact that lung-related diseases are strongly correlated to the seasons, thus a medical

doctor can prefer to analyze exams taken at some season over others. Moreover, it is

also known that “Consolidation” findings are more common at the driest seasons, thus

users’ preferences are driven by that knowledge. The more specific preference model



5.3 The SIREN Preference Model 93

Query

Multimedia
Database

Similarity 
Search

Rule

Answer without PM

Answer with PM

3

3
3

2 2 2

2

1 1

1

3 3

3

Enable 
PM

User
Profile

Figure 5.4: Processes to prepare and execute similarity queries considering of preference
models.

is the LungPref, in which a radiologist’s profile is defined regarding lung sickness like

bronchiolitis and pneumonia, as follows.

CREATE PREFERENCE MODEL LungPref

FROM LungExams AS

IF class = ‘Consolidation’ THEN

season = ‘winter’ > season = ‘autumn’ [id, sex, age, date] AND

IF class = ‘Consolidation’ THEN

season = ‘autumn’ > season = ‘spring’ [id, sex, age, date] AND

IF class = ‘Consolidation’ THEN

season = ‘spring’ > season = ‘summer’ [id, sex, age, date];

Then, the LungPref preference model shows that the radiologist states when searching

for computed tomographies lung exams, if the image classification has the “Consolidation”

finding, then the user prefers images of the driest seasons. For example, the condi-

tion season = ‘winter’ > season = ‘autumn’ means that a tuple meeting condition

season = ‘winter’ is preferred over those meeting condition season = ‘autumn’. The

clause [id, sex, age, date] expresses that those four attributes are irrelevant for the

preference evaluation, so they are not involved in the tuple comparisons. The generic

preference model is called DrySeasonsPref, and in its definition the user just defines that

he/she prefers dry and cold weather, saying nothing about computed tomography findings

preference, as follows.



94 5. Similarity Retrieval Engine - Case Study

CREATE PREFERENCE MODEL DrySeasonsPref

FROM LungExams AS

season = ‘winter’ > season = ‘autumn’ [id, sex, age, date] AND

season = ‘autumn’ > season = ‘spring’ [id, sex, age, date] AND

season = ‘spring’ > season = ‘summer’ [id, sex, age, date];

Suppose that a radiologist is searching for pulmonary diseases in an image, and asks

for similar previous cases images. Example 5.2 illustrates the corresponding similarity

query sent by the radiologist to SIREN in the LungDS dataset.

Example 5.2:

Q8: “Among the 10 images most similar to this lung computed tomography having

the word ‘Consolidation’ in its report, the radiologist prefers images obtained in the driest

seasons”.

SELECT id, age, Image

FROM LungExams

WHERE Image NEAR ‘C:\PatientExam1.jpg’ STOP AFTER 10;

However, just creating a preference model with the CREATE PREFERENCE MODEL

command does not enable SIREN to modify queries. Thus, to enable obtaining a

preference-improved answer, the user must first enable the query rewriting using the

SET MODIFICATION command, as follows.

SET MODIFICATION ADD LungPref;

Thus, when the user environment is enabled, SIREN automatically rewrites the query

adding ACCORDING TO PREFERENCE clause after the WHERE condition. In that case, SIREN

answers the query based on the preferences specified in the user’s profile, which processes

the LungPref preference model.

Query Q8 was posed to SIREN asking for k = 50 elements for eighty-two distinct

query centers, covering 1/3 of the database. The same query set was posed with the

preference model disabled, and with the LungPref or the DrySeasonsPref preference

models enabled. Figure 5.5a presents the percentage of interesting answers obtained,

considering as interesting the images that have the same class of query center, both in the

similarity-only query answer and in the preference-enabled similarity query answers. In

the graphic, the percentage of interesting answer is the proportion of the relevant images

– Ri – obtained regarding the total number of images of the same class in the database

– Tsc (Equation 5.1). The precision is the proportion of relevant images – Ri – obtained

regarding the total number of images in the database – Ti (Equation 5.2).

Percentage Interesting Answers =
Ri

Tsc
(5.1)



5.3 The SIREN Preference Model 95

Precision =
Ri

T i
(5.2)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Interesting Answers

%
 Q

ue
rie

s

SimilarityOnly DrySeasonsPref LungPref

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Interesting Answers

Pr
ec

is
io

n

SimilarityOnly DrySeasonsPref LungPref

(b)

Figure 5.5: (a) Percentage of correct answer in the similarity-only and preference
similarity queries; (b) Precision vs. Percentage (%) Interesting Answers.

Analyzing the results obtained, processing the preferences improves the amount of

queries that return more interesting images. In fact, only 37% of the plain similarity

queries were able to retrieve 30% of the interesting answers, whereas 50% of the queries

meeting the DrySeasonsPref preference model and 77% of the queries using the LungPref

preference model retrieve at least 30% of the interesting answers. On the other hand,

Figure 5.5a shows that if the preference model is more generic, it is not able to

significantly improve the answers for large amounts of returned images. In fact, 90%

of the similarity-only queries and 100% of the LungPref preference model return up to

50% of the correct answers but DrySeasonsPref obtains only 61% of interesting answers.

This is due to the generic preferences find preferred images in classes much distinct from

the originally intended class.

Figure 5.5b shows the precision of the answers achieved for varying percentage of

interesting answers filtered by the preference evaluation, again considering similarity-only

queries and queries with LungPref or the DrySeasonsPref preference models enabled.

When no preference is enabled, the graphic corresponds to the Precision vs. Recall, where

the similarity criterion employed achieves precision from 80% to 60% for up to 50% of

recall (percentile of interesting answers). It must be remembered that this query searches

over the entire database. However, when preference models are enabled, the graphics

show that the amount of interesting answers for the same percentile of precision increases

considerably. In fact, for the more specific LungPref preference model, it achieves 100%

of precision for up to 30% of interesting answers. The less specific DrySeasonsPref

preference model also improves precision for most percentiles of interesting answers, but

it reveals an interesting behavior for the range from 10% to 50% of interesting answers: the

precision increases for increasingly interesting answers. This is due to the preference-based

part of the query answering process working over the intermediate results obtained by the

similarity-based part of the query answering process. Thus, as the amount of intermediate



96 5. Similarity Retrieval Engine - Case Study

results increases, the preference-based part is able to find better answers. However,

this effect does not continue indefinitely. As the similarity process continues to retrieve

progressively farther answers, they do not meet the preference anymore, and the benefit

obtained by any of them becomes negligible.

Another interesting behavior revealed when we analyze Figure 5.5b is that more

selective preference models are better to improve answers for low-cardinality answers.

In fact, the figure shows that, in the beginning, the more specific LungPref preference

model outperforms the DrySeasonsPref one. This effect remains whenever the database

has sufficient number of interesting answers to be retrieved. This is why the precision

of the more specific preference model drops before the more generic does: the amount of

images meeting the more specific preference model is smaller than the amount of images

that can meet the more generic one.

Those two behavior are highly related to the meaning that the users expect from the

answer, thus this is a good indication that the techniques we developed in fact are able to

explore the semantic of the user’s expectations to improve the similarity answers quality.

5.4 The SIREN Data Mining Model

The SIREN Data Mining Model module, which has the Apriori and the Omega [Ribeiro

et al., 2008] algorithms included as a coupled way, was also developed as a new functional

component of SIREN. It extracts knowledge from the database, and generates mining

rules, correlating semantic information from the textual description to the low-level

extracted features. Together with the similarity algebra existing in the Query Rewriting,

these mining rules are used to rewrite similarity queries, aiming at improving both the

efficiency and the efficacy of similarity query answering.

A data mining model provides the specification of particular data structures, which

are stored in the database catalog, generating constraints about the data sets associated

with these structures that can be employed during the query answer processing to find

physical access paths that speed up the process. A new data mining model is defined by

the CREATE DATA MINING MODEL statement, as follows.

<create mining model statement>::=

CREATE MINING MODEL <model name>

ON <relation name> (<attrib name>)

[WHERE <predicate>]

[METRIC <metric name>]

USING <data mining alg name>[(<parameter list>)]

The CREATE MINING MODEL command creates a new data mining model called

<model name> over the complex or traditional attribute (<attrib name>) of the relation



5.4 The SIREN Data Mining Model 97

(<relation name>), based on the data mining algorithm (<data mining alg name>). The

<model name> parameter must be unique. The optional clause WHERE <predicate> allows

defining that only the elements in the relation that meets the specified <predicate> are

employed to evaluate the mining algorithm. The optional clause METRIC specifies which

metric (<metric name>) associated to the complex attribute will be used to create the data

mining model. Each data mining algorithm indicated in the <data mining alg name>

clause must be individually developed and integrated to the SIREN data mining

model module, in which including a new algorithm requires recompiling SIREN. The

parameters for the data mining algorithm are optional and depend on the particular

algorithm specified. All required parameters are included in the <parameter list> in

the <data mining alg name> clause. Whenever the <parameter list> of an algorithm

is modified, a new data mining model can be created. In this way, it is possible to execute

the composition between different models.

The new version of SIREN that we implemented includes the Apriori and the Omega

algorithms. The syntax to employ both of them has a number of required and of optional

parameters, and all of them are specified together in the same statement. The syntax to

specify them in the CREATE MINING MODEL statement is described following.

<data mining alg name>::=

APRIORI (<attribute class>, <nclass>, <sup>, <conf>

[, <minint>, <maxmrgint>, <maxkpatt>])

The required parameters are: the attribute employed to classify the images

(<attribute class>), the number of classes (<nclass>), and the value of minimum sup-

port (sup) and minimum confidence (<conf>) for the association rule mining algorithm.

The optional parameters are those employed to tune the Omega algorithm: the minimal

interval size (<minint>), the maximum acceptable inconsistence to merge consecutive

intervals (<maxmrgint>), and the maximum acceptable inconsistence to retain an attribute

(<maxkpatt>).

An existing data mining model can be dropped with the DROP MINING MODEL

statement, whose syntax is:

<drop mining model statement>::=

DROP MINING MODEL <model name>

where <model name> is the name of the data mining model to be dropped.

After a data mining is created, the parameters of the model are also specified and the

database is processed by the specified mining algorithm to generate the corresponding

rewriting rules, thus the data mining model becomes ready to be used. However,

it is necessary that the user explicitly assigns this new model to his/her own query

environment. As mentioned in Section 5.3, in order to control what data mining model is



98 5. Similarity Retrieval Engine - Case Study

available to change similarity queries, the SET MODIFICATION statement must be issued

and its syntax is the same presented in that section.

Figure 5.6 summarizes the whole process of preparing and posing queries, either using

or not using the mined rules, over a database already loaded with images. In the first step

(Figure 5.6, Action 1©), the user sends interesting images to the Omega and the Apriori

algorithms. The association rules are mined and stored, together with the interesting

images, in the database. Notice that the interesting images must be previously stored in

the database, possibly together with other images, regardless of them being interesting

or not. The interesting images can be stored in the same relation or in any other relation

having the same attribute structure. After retrieved, the rules are also stored in the

database, as part of the system catalog. Notice that a data mining model is attached to

the METRIC <metric name> employed to search the database, thus it can be applied to any

attribute in any relation sharing the same image domain and the same rules mined. When

searching for similarity with data mining model is disabled (Figure 5.6, Action 2©), the

“similarity search” engine uses only the image database to answer the query; otherwise,

when the data mining model is enabled (Figure 5.6, Action 3©), the “similarity search”

engine uses the rules together with the image database to evaluate the queries.

Query

Image 
Database

Omega

Similarity 
Search

Apriori Rule

Answer without DMM

Answer with DMM

3

3
3

2 2 2

2

1 1 1 1

1

3 3

3

Enable 
DMM

Interesting 
Images

Figure 5.6: Processes to prepare and execute similarity queries considering of data
mining models.

5.4.1 Experimental Evaluation

SIREN and its data mining module are implemented in C++, and the experiments were

evaluated using an Intel Core 2 Quad 2.83GHz processor with 4GB of main memory,



5.4 The SIREN Data Mining Model 99

under the Windows XP operational system. The RDBMS used to process the traditional

part of the query was Oracle 9i. The time spent to execute the queries and the quality of

the answer are used to evaluate the efficiency and efficacy of the technique.

The experiments were performed using the WWorldDS dataset. Suppose that the user is

only interested in photos that share a specific characteristic, for which he/she has an initial

training subset already marked in the attribute Training (that is, Training = ‘True’).

Thus, the user must create a data mining model to evaluate its training subset. Assuming

that texture is adequate to discriminate among images that the user is interested in or

not, the following command can be issued.

CREATE MINING MODEL WondersWorldAssociationRulesModel

ON WondersWorld (Image) METRIC texture

WHERE Training = ‘True’

USING APRIORI (Tag, 15, 1, 100, 2, 0.1, 0.42);

This command creates a data mining model using the Apriori algorithm to extract

association rules from the Image attribute of the WondersWorld relation. The Apriori

algorithm processes only the subset of tuples from the relation where the attribute

Training has value ‘True’. Also, the Apriori algorithm is executed with a minimum of

1% as the threshold for support and 100% for confidence. The attribute used to classify

the WondersWorld relation is Tag, and this relation has 15 classes. The Omega algorithm

is executed using a minimal threshold for interval size of 2, a maximum threshold for

merging consecutive intervals of 0.1 and a maximum threshold for keeping an attribute of

0.42. Those threshold were defined following the Omega recommendations [Ribeiro et al.,

2008].

When the CREATE MINING MODEL command is issued, the 298 images that express the

users’ expectations (Training = ‘True’) are retrieved from the WondersWorld relation

and submitted to the Omega and the Apriori algorithms. These algorithms process the

images and generate the rules to be employed by the query rewriter module to process

further queries. A total of 1,799 rules were generated. The number of images submitted

for training should not be very large, as the Apriori and the Omega algorithms do not

scale well. Therefore, the suggestion is selecting from 20 to 200 images of each class as

an amount adequate to create the rules. The average time to create this data mining

model was 460 milliseconds. It is worth remembering that creating a data mining model

is performed only once, and further queries that use it are not affected by this number.

Thereafter, the rules generated by a data mining model can be applied over very large

image sets, so although using a small amount of training images, this technique is scalable

to very large datasets.

Just executing the CREATE MINING MODEL command does not enable SIREN to modify

the queries. The user must enable query rewriting using the SET MODIFICATION command.



100 5. Similarity Retrieval Engine - Case Study

Initially considering the data mining model-driven query rewriting disabled, it was

submitted several kNNq where k is the number of images to be retrieved, which varies

from 1 to 20 for each query center. Also, ten queries with distinct query centers were

posed for each value of k. Following, it was submitted several Rq, where the range radius

of images to be retrieved varies from 0.1 to 0.8 for each query center. Again, ten queries

with distinct query centers were posed for each value of the range radius.

Finally, the data mining model-driven query rewriting was enabled, issuing the SET

MODIFICATION command as follows, and the same sets of kNNq and Rq were issued again.

SET MODIFICATION ADD WondersWorldAssociationRulesModel;

Figure 5.7 summarizes in a data flow how the two commands CREATE MINING MODEL

and SET MODIFICATION respectively prepare and enable the rules to be employed for query

rewriting.

CREATE MINING MODEL WondersWorldAssociationRulesModel
ON WondersWorld (Image)
METRIC texture
WHERE training = ‘True’
USING APRIORI (Tag, 15, 1, 100, 2, 0.1, 0.42);

WondersWorld

ID

ID Tag TagName Description City Country Lat Long ImageTraining

True
False

...

Image Texture

1
2

...

Association Rules

Apriori 
+

Omega

Training = ‘True’

70[836.1-877.6] 8[155.7-156.5]  ChichenItza (1.0, 100.0)
87[106.5-109.1]  ChristtheRedeemer (1.0, 100.0)

...

2

SET MODIFICATION 
ADD WondersWorldAssociationRulesModel

ModelName Status

- USER -
MODIFICATION ENVIRONMENT

ADD

False
FalseWondersWorldAssociationRulesModel

ModelName1

... ...

S
E
T
 

M
O
D
I
F
I
C
A
T
I
O
N
 

A
D
D

...

ModelName Status
False
TrueWondersWorldAssociationRulesModel

ModelName1

... ...

Tag

Figure 5.7: Data flow showing how the mining rules are enabled using the CREATE

MINING MODEL and SET MODIFICATION commands.

Table 5.4 shows the average values obtained for the Rq and Table 5.5 presents the

average values obtained for the kNNq. Both tables show the average number of relevant

images obtained (‘Rel’), the average number of non-relevant images obtained (‘Non-Rel’)

and the average time (in milliseconds) to execute one corresponding query, varying values



5.4 The SIREN Data Mining Model 101

of range radius in the Rq, and varying values of k in the kNNq. The same sets of

measurements were performed for both kinds of queries, enabling the query rewriting

using the rules mined by the data mining model (the values shown as “With DMM” in

both tables) and disabling them (the values shown as “Without DMM” in both tables).

“Without DMM” corresponds to the plain execution of the traditional similarity query,

that is, without data mining model rule-based query rewriting.

Analyzing the Rq results shown in Table 5.4, it can be seen that for the same range

radius with the query rewrite disabled, SIREN returns several images in which the user is

not interested in. For example, with a range radius ξ = 0.2 it retrieves only 3 interesting

images but 22 non-interesting; with a range radius ξ = 0.8 all the 20 interesting images are

returned, but other 188 non-interesting images are retrieved together. When the query

rewrite is enabled, for the same range radius SIREN always returns just the interesting

images within the given distance. Table 5.4 also shows that the time required to execute

queries for both enabling or disabling the query rewriting does not change significantly.

This is due to the fact that the query processing in SIREN is always fast, and the

communication between SIREN and Oracle takes the most significant time.

Average Without DMM With DMM
Range Rel Non-Rel Time (ms) Rel Non-Rel Time (ms)

0.1 1 0 47 1 0 42
0.2 3 22 47 3 0 47
0.3 7 54 47 7 0 47
0.4 12 85 52 12 0 52
0.5 15 113 47 15 0 47
0.6 19 141 47 19 0 47
0.7 19 165 47 19 0 47
0.8 20 188 47 20 0 47

Table 5.4: Results from several range values - range queries (average)

Analyzing the kNNq results shown in Table 5.5, it can be seen that, again, for the

same number of relevant images retrieved with the query rewrite disabled, SIREN also

returns several images that are not relevant to the user. It is important to remember

that kNN and traditional predicates are not commutative. Therefore, if the user asks

for a kNN query with the option for query rewriting disabled, it will be returned k

images, although possibly not every image will be interesting, therefore the number of

interesting images returned is at most k, but it is often less than k relevant images. To

perform this experiment with the query rewritten disabled, we repeated the experiment

with higher values of k, until the desired number of interesting images was obtained.

Column “Non-Rel” from the “Without DMM” experiment reports the average number of

k required to obtain the corresponding number of interesting images.



102 5. Similarity Retrieval Engine - Case Study

Table 5.5 shows, for example, that to retrieve 2 interesting images, an average of 12

images including non-interesting ones should be asked for; that is, the kNN must be issued

asking for, at least, k = 12. To retrieve all the 20 interesting images, it should be asked for

an average of 215 images. When the query rewrite is enabled, only the required number

of images must be effectively asked, that is, k can be set exactly to the desired value. As

it occurs regarding range queries, the time to process both queries is equivalent.

Average Without DMM With DMM
kNN Rel Non-Rel Time (ms) Rel Non-Rel Time (ms)

1 1 3 47 1 0 42
2 2 12 42 2 0 42
3 3 22 47 3 0 47
4 4 27 37 4 0 47
5 5 30 42 5 0 47
6 6 33 47 6 0 47
7 7 38 47 7 0 47
8 8 46 47 8 0 47
9 9 58 41 9 0 41
10 10 67 47 10 0 42
11 11 71 42 11 0 47
12 12 75 42 12 0 47
13 13 85 47 13 0 47
14 14 98 47 14 0 42
15 15 108 36 15 0 47
16 16 118 42 16 0 47
17 17 123 47 17 0 47
18 18 127 42 18 0 47
19 19 141 42 19 0 47
20 20 215 42 20 0 47

Table 5.5: Results from several k values - kNN queries (average)

Figure 5.8 shows an example of ten images that have the Training attribute set to

‘True’, that is, some of the images submitted to the association rule mining algorithms

Apriori and Omega. Also, this figure presents examples of the results obtained when a

kNNq is executed both with data mining model disabled and enabled, using k = 10 over

the full database regardless of the Training attribute setting.

5.5 Final Comments

This chapter presented the application of the techniques developed in this doctorate

program into the Similarity Retrieval Engine - SIREN. This case study showed that it

is feasible to integrate similarity-based operators with traditional ones, without causing

too much impact in neither the optimization process nor the query language structure,



5.5 Final Comments 103

whereas nonetheless providing a powerful and flexible basis to support similarity queries.

Moreover, semantic restrictions, which are not employed in the optimization process of the

scalar data because of their associated high processing costs, can be successfully employed

for the query optimization of complex data, improving both the efficiency and the efficacy

of similarity queries.



104 5. Similarity Retrieval Engine - Case Study

Training Set - Example

Without DMM

With DMM

SELECT ID, Image
FROM WondersWorld
WHERE Image NEAR ‘C:\ChichenItza121.jpg’ STOP AFTER 10

Figure 5.8: Results of 10NN over query enabling and disabling the use of a data mining
model. The training set example was obtained from the WondersWorld

relation with the attribute Training = ‘True’ and used to generate the
rules.



Chapter

6

Conclusion

6.1 Final Considerations

With the advent of applications that use complex data such as multimedia, spatial,

time series and genetic sequence, relational database management systems (RDBMSs)

are being increasingly requested to store and recover these data types. However, for

RDBMSs to efficiently retrieve complex data, it is of paramount importance that their

query optimizer provide support for queries based on similarity predicates, seamlessly

integrating them to the identity- and TOR-based predicates that the traditional query

optimizers were developed to handle. This work targets improving that support.

6.2 Main Contributions

This thesis contributes for the similarity query optimization process, exploiting algebraic

properties and semantic restrictions that can be successfully employed by the RDBMS

optimizer module to improve the efficiency and quality of the query answering execution.

Our first contribution was to define a model to include the similarity-based operators

into the relational model, in a way that both complex and simple attributes can be

queried by similarity, identity and relational comparisons. As our second contribution, the

canonical plan generation algorithm that translates SQL queries into algebraic expressions

was extended to also accept the similarity-based constructions, precisely defining the

canonical plan that is the input to the query optimizer.

Thereafter, the third contribution was to establish a complete set of algebraic rules

to handle queries that mix similarity and non-similarity based conditions. To this intent,

we defined two new algebraic operators based on the k-nearest neighbors and on the

105



106 6. Conclusion

similarity range queries, that are the similarity-based counterpart of the identity- and

TOR-based traditional selection operator. The equivalence properties of expressions that

employ the new operators were identified, taking into account the properties relating

only similarity-based operators or relating any composition of similarity, identity- and

TOR-based operators, including the selection, set-theoretical and cross product operators.

The identified equivalence properties revealed that there are too few rules that can be

employed for the query optimization process, thus severely restricting the opportunities

to achieve adequate optimized query access plans.

Therefore, our fourth contribution was to identify other, non-equivalence-based

properties, that could achieve that goal. The result was the inclusion-based properties.

They allow generating an alternative expression that, although not equivalent to the

intended one, is assured to include all of its elements. Thus, if the alternative expression

can be evaluated much faster than the intended one, it can be worth to use it followed by

a final filtering processing that drops its false positives, leading to an overall faster way

to obtain the correct answer. The relational algebra together with the equivalence and

inclusion-based properties of the algebraic operators defines what we called the “Similarity

Algebra”, which was published in Ferreira et al. [2009] and Ferreira et al. [2011].

Similarity is a concept that is highly related to the human perception of how to

compare things. Therefore, the human understanding of things stored as data elements

in the database, often referred as the “semantic information” related to the data, is an

important asset to be used to improve the quality of similarity queries. We assumed that

semantic information can be expressed as predicates, restricting the range of the values

that attributes of the stored elements can assume. As a consequence, identification of

users’ interests can be roughly expressed as restricting the ranges of selected attributes

from the elements in the query results, which ultimately mean that taking the user’s

interest into account to answer queries corresponds to create techniques to automatically

include the corresponding predicates as part of the queries issued by the user. Those

predicates involves similarity, identity- and TOR-based ones, thus our similarity algebra

becomes a powerful tool to aid in supporting semantic restrictions on similarity-based

retrieval to improve query quality.

Besides the user’s knowledge about the data and the related applications, there

is also patterns in the stored data that can be useful to be taken into account to

speed up query processing. Thus, pre-processing the data with data mining techniques

which retrieve useful patterns describing the data distribution that can be represented

as predicates of any kind (similarity, identity and TOR-based). Those predicates are

thereafter automatically included in the query plan, and they can also help speeding up

query processing, specially the queries that also use similarity based predicates, which

are clearly more time-consuming and thus more worth to handle by those techniques.



6.2 Main Contributions 107

Automatically including predicates to act as filters based both on users’ preferences and

on data distribution can help improving both the query quality and the query efficiency.

To evaluate our techniques, we started with an existing prototype of a RDBMS

extended to handle similarity query — the SIREN engine — modifying it to include

our proposed concepts and assumptions. The main modifications included: defining

new language clauses to express the new concepts, correspondingly extending the query

interpreter; extending the query optimizer to handle similarity queries based on syntax

and on semantic optimization; and implementing the required data retrieval algorithms

in the relational engine.

Our fifth contribution was to extend the query optimizer to handle the syntax-based

optimization extensions. It embodies the complete similarity algebra to rewrite similarity

predicates either alone or mixed with traditional ones. The similarity algebra enables the

query rewriter to generate multiple expressions of the same query, generating equivalent

or “inclusion-based plus pos-filtering” physical access plans. After generating several

alternative expressions, the query optimizer is able to estimate their costs and choose the

one with the lowest computational cost. The result is a new version of the Similarity

Retrieval Engine (SIRENop) able to handle queries composed of any combination of

predicates that express identity, TOR or similarity queries, and using the similarity

algebra to optimize the execution.

Our sixth contribution was to explore the semantic of users’ interests associated to

similarity queries. To this intent, we used a version of the Postgres DBMS extended to

handle a preference model based on conditional preference rules (cp-rules), and extended

SIRENop with a Preference Model module. The user can access this feature expressing

his/her interests using an SQL extended to handle cp-rules, whose interpreter is available

in the cp-Postgres extension, and that was further extended to allow tailoring cp-rules

to similarity search, whose interpreter was included in SIRENop. This semantic-based

extension of SIRENop applies the user’s interest expressed as cp-rules to improve the query

quality (tailoring the execution to better meet the users’ expectations). The technique

that allows employing user’s preferences to optimize similarity queries was published in

Ferreira et al. [2010a]. This work was developed in cooperation with the Universidade

Federal de Uberlândia (UFU).

Finally, our seventh contribution was to explore data distribution information about

hidden patterns in the data, using data mining techniques. To this intent, we extended

SIRENop with a Data Mining Module, which includes the Apriori and the Omega [Ribeiro

et al., 2008] algorithms working in a cooperative way. The user can access this feature

expressing his/her interests using an SQL extended to handle “Data Mining Models”, a

concept we developed to allow expressing data mining tasks that can be executed over the

data in a way similar to the index creation. The data gathered by a mining task is stored

in the database, and can be employed to speed up further queries over the mined data.



108 6. Conclusion

The data mining extension applies the rules that describes the mined rules as restrictions

over the data to evaluate the queries to improve the query execution efficiency (using the

restrictions as screening predicates to prune part of the data that is known to have no

interesting data). The technique that allows using association rules to optimize similarity

queries was published in Ferreira et al. [2010b].

6.3 Future Works

Including similarity queries as a new kind of predicate that can be seamlessly integrated

to all the existing resources the current Relational Database Management Systems is a

powerful tool that opens several possibilities of both theoretical, core database research

and applied research, besides the many application of its results to specific application

areas. Our work provides a solid theoretical foundation for this support, as it adds new

functionality to applications developed over the relational model, easing the representation

of similarity queries without in fact changing the model. Therefore, our results can be

applied to extend any tool that had been developed using the relational model and its

derivatives. However, although fundamental for supporting similarity queries with a solid

foundation over relational DBMS, that support requires further development to complete

its development, both in the theoretical and in the applied research point of view. We

highlight here some of them.

6.3.1 Future Applied Research

• Extension of the Similarity Algebra to handle binary similarity operators:

We provided a complete set of properties to support the similarity-based version of

the algebraic “select” operator σ. However, predicates are employed also in the

traditional algebraic “join” operator of the relational algebra. The literature has

showing that there are at least three similarity join operators (similarity range join,

k-nearest neighbors join and k-closest neighbors join), whose properties was never

studied. Although a basic understanding of those join operators can be derived

throughout the properties we developed for similarity selection combined to the

cross product operator, specific properties for each of the three similarity joins are

yet to be studied.

• Extension of the Similarity Algebra to handle similarity-based

set-theoretical operators: A set is usually defined as a collection where each

element occurs just once. This concept embodies the idea that the representation

of two elements can be compared to determine its identity. If identity is exchanged

by similarity, a new concept should be created: the one that defines a collection

where each element is not similar to any other “given a similarity threshold”. This



6.3 Future Works 109

concept is very useful for many applications and also enables the development of

theoretical concepts that can aid in several areas. For example, it can be employed

to drop photos too much similar in a photo database, helping to reconcile data from

the same subject obtained from distinct sources, identify security issues in computer

systems, and so on.

• Extension of the Similarity Algebra to handle similarity-based aggregate

and grouping operators: The relational grouping is based on identifying groups of

tuples compared by identity of some of their attributes. Again, exchanging identity

by similarity enable the analysis of data regarding similarity. However, a precise

description of the similarity-based aggregate and grouping operators was only barely

done in the literature, and identifying their properties is yet to be studied.

• Extension of the Similarity Algebra to handle with diversity operators:

Several applications are finding that performing similarity retrieval over very large

databases retrieves too much elements that are too much similar to each other.

Therefore, a new requirement is emerging, mainly in web-based applications:

retrieving elements similar to the query center but diverse among themselves. The

new “similarity with diversity” operators that are being proposed follow the same

structure of the k-nearest neighbors and range query operators, but follow distinct

properties. Given the high relevance and interest of those operators, it is worth

to further study their properties and integrate them with our proposed similarity

algebra.

6.3.2 Future Theoretical Research

• Development of index structure to speed up the execution of similarity

combined to traditional operations in DBMS: Traditionally, indexes such as

B-tree and hash structures are employed to retrieve data based on identity and

on TOR comparisons, and more than one attribute can be indexed in the same

structure. Similarity comparisons can also employ metric structures, but most of

those structures can handle just one attribute at a time, and those that handle more

than one can compare them only regarding the same similarity predicate. Thus,

developing an index structure able to handle similarity and identity- or TOR-based

comparisons is a very useful tool to improve the efficiency of RDBMS executing

similarity queries.

• Development of selectivity and cost estimation techniques for similarity

predicates, considering local data parameters: The optimization process is

highly sensitive to the precision of the statistics employed to estimate the selectivity

if the predicates and the execution costs of the physical access methods. Traditional



110 6. Conclusion

data processing often rely on histograms describing the data distribution over the

attribute ranges, either based on the ordering of the attribute values or on the

spatial distribution of spatial data. However, metric data have very few works

studying this issue, and often only global metrics are collected. Thus, targeting

the development of a description model of the data distributed in a metric space

is an important endeavor. Using data mining tools to perform the retrieval of the

distribution description, as we did in this work, is a first approach, but it need to

be further studied so the results can be more broadly used to generic metric spaces.

• Development of algorithms to handle similarity-based set-theoretical

operators: After a precise definition of what should be a “similarity-based set”,

index structures and algorithms to execute the similarity-based operations that are

guaranteed to not have similar elements in a given threshold can surely improve the

query efficiency and efficacy. Given that similarity-based sets are specially useful to

handle very large databases, the development of such algorithms spot as specially

interesting for similarity-based queries.



Bibliography

Adali, S., Bonatti, P. A., Sapino, M. L., and Subrahmanian, V. S. (1998). A

multi-similarity algebra. In ACM SIGMOD International Conference on Management

of Data, volume 1, pages 402–413, Seattle, Washington, USA. ACM Press.

Adali, S., Bufi, C., and Sapino, M. L. (2004). Ranked relations: Query languages and

query processing methods for multimedia. Multimedia Tools and Applications Journal

(MTAJ), 24(3):197–214.

Adali, S., Sapino, M. L., and Marshall, B. (2007). A rank algebra to support multimedia

mining applications. In International Workshop on Multimedia Data Mining (MDM),

pages 1–9, San Jose, CA, USA. ACM.

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between

sets of items in large databases. In Buneman, P. and Jajodia, S., editors, ACM

SIGMOD International Conference on Management of Data, volume 1, pages 207–216,

Washington, D.C. ACM Press.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In

International Conference on Very Large Databases (VLDB), Santiago de Chile, Chile.

Aronovich, L. and Spiegler, I. (2007). CM-tree: A dynamic clustered index for similarity

search in metric databases. Data & Knowledge Engineering (DKE), 63(3):919–946.

Atnafu, S., Brunie, L., and Kosch, H. (2001). Similarity-based algebra for multimedia

database systems. In Australasian Conference on Database Technologies (ACD), pages

115–122, Queensland, Australia. IEEE Computer Society.

Atnafu, S., Chbeir, R., Coquil, D., and Brunie, L. (2004). Integrating similarity-based

queries in image DBMSs. In ACM Symposium on Applied Computing (SAC), pages

735–739, Nicosia, Cyprus. ACM Press.

Baeza-Yates, R. A., Cunto, W., Manber, U., and Wu, S. (1994). Proximity matching

using fixed-queries trees. In Combinatorial Pattern Matching (CPM), volume 807 of

Lecture Notes in Computer Science, pages 198–212, Asilomar, CA. Springer Verlag.

111



112 BIBLIOGRAPHY

Baioco, G. B., Traina, A. J. M., and Traina Jr., C. (2007). MAMCost: Global and

local estimates leading to robust cost estimation of similarity queries. In International

Conference on Scientific and Statistical Database Management (SSDBM), page 6, Banff,

Canada. ACM Press.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina Jr., C. (2006). SIREN:

A similarity retrieval engine for complex data. In Dayal, U., Whang, K.-Y., Lomet,

D. B., Alonso, G., Lohman, G. M., Kersten, M. L., Cha, S. K., and Kim, Y.-K., editors,

Demo session of the International Conference on Very Large Data Bases (VLDB), pages

1155–1158, Seoul, South Korea. ACM Press.

Barioni, M. C. N., Razente, H. L., Traina, A. J. M., and Traina Jr., C. (2009). Seamlessly

integrating similarity queries in SQL. Software: Practice and Experience (SPE),

39(4):355–384.

Beecks, C., Assent, I., and Seidl, T. (2011). Content-based multimedia retrieval in the

presence of unknown user preferences. In International Conference on Advances in

Multimedia Modeling (MMM), volume 6523 of Lecture Notes in Computer Science,

pages 140–150, Taipei, Taiwan. Spring-Verlag.

Belohlavek, R., Opichal, S., and Vychodil, V. (2007). Relational algebra for ranked

tables with similatiries properties and implementation. In International Symposium on

Intelligent Data Analysis (IDA), volume 4723 of Lecture Notes in Computer Sciences,

pages 140–151, Ljubljana, Slovenia. Springer.

Belohlavek, R., Urbanova, L., and Vychodil, V. (2011). Similarity of query results in

similarity-based databases. In Yao, J., Ramanna, S., Wang, G., and Suraj, Z., editors,

International Conference on Rough Sets and Knowledge Technology (RSKT), volume

6954 of Lecture Notes in Computer Science, pages 258–267, Banff, Canada. Springer.

Belohlavek, R. and Vychodil, V. (2009). Logical foundations for similarity-based

databases. In Chen, L., Liu, C., Liu, Q., and Deng, K., editors, International

Conference on Database Systems for Advanced Applications - Workshops: MCIS

& WDPP (DASFAA Workshops), volume 5667 of LNCS, pages 137–151, Brisbane,

Australia. Springer.

Belohlavek, R. and Vychodil, V. (2010). Query systems in similarity-based databases

- logical foundations, expressive power, and completeness. In ACM Symposium on

Applied Computing (SAC), pages 1648–1655, Sierre, Switzerland. ACM.

Belussi, A. and Faloutsos, C. (1995). Estimating the selectivity of spatial queries using

the correlation fractal dimension. In International Conference on Very Large Databases

(VLDB), pages 299–310, Zurich, Switzerland. Morgan Kaufmann.



BIBLIOGRAPHY 113

Böhm, C. (2000). A cost model for query processing in high dimensional data spaces.

ACM Transactions on Database Systems (TODS), 25(2):129 – 178.

Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., and Rabitti,

F. (2009). CoPhIR: a test collection for content-based image retrieval. Computing

Research Repository (CoRR), abs/0905.4627v2:1–15.

Bozkaya, T. and Özsoyoglu, Z. M. (1997). Distance-based indexing for high-dimensional

metric spaces. In ACM SIGMOD International Conference on Management of Data,

pages 357–368, Tucson, AZ. ACM Press.

Bozkaya, T. and Özsoyoglu, Z. M. (1999). Indexing large metric spaces for similarity

search queries. ACM Transactions on Database Systems (TODS), 24(3):361–404.

Braunmüller, B., Ester, M., Kriegel, H.-P., and Sander, J. (2000). Efficiently supporting

multiple similarity queries for mining in metric databases. In IEEE International

Conference on Data Engineering (ICDE), pages 256–267, San Diego, CA. IEEE

Computer Society.

Brin, S. (1995). Near neighbor search in large metric spaces. In International

Conference on Very Large Databases (VLDB), pages 574–584, Zurich, Switzerland.

Morgan Kaufmann.

Burkhard, W. A. and Keller, R. M. (1973). Some approaches to best-match file searching.

Communications of the ACM (CACM), 16(4):230–236.

Carélo, C. C. M., Pola, I. R. V., Ciferri, R. R., Traina, A. J. M., Traina Jr., C., and

de Aguiar Ciferri, C. D. (2009). The onion-tree: quick indexing of complex data in the

main memory. In East-European Conference on Advances in Databases and Information

Systems (ADBIS), pages 235–252.

Carélo, C. C. M., Pola, I. R. V., Ciferri, R. R., Traina, A. J. M., Traina Jr., C., and

de Aguiar Ciferri, C. D. (2011). Slicing the metric space to provide quick indexing of

complex data in the main memory. Information Systems(IS), 36(1):79–98.

Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., and Porkaew, K. (2004).

Evaluating refined queries in top-k retrieval systems. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 16(1):256–270.

Chalhoub, G., Chbeir, R., and Yétongnon, K. (2006). Flexible shape-based query

rewriting. In International Conference on Flexible Query Answering Systems (FQAS),

volume 4027 of Lecture Notes in Computer Science, pages 427–440, Milan, Italy.

Springer Berlin / Heidelberg.



114 BIBLIOGRAPHY

Chang, K. C.-C. and Hwang, S.-w. (2002). Minimal probing: supporting expensive pred-

icates for top-k queries. In ACM SIGMOD International Conference on Management

of Data, pages 346–357, Madison, Wisconsin. ACM Press.

Chaudhuri, S. (1998). Data mining and database systems: Where is the intersection?

Data Engineering Bulletin, 21(1):4–8.

Chaudhuri, S., Gravano, L., and Marian, M. (2004). Optimizing top-k selection queries

over multimedia repositories. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 16(8):992–1009.

Chávez, E., Navarro, G., Baeza-Yates, R. A., and Marroqúın, J. L. (2001). Searching in

metric spaces. ACM Computing Surveys (CSUR), 33(3):273–321.

Ciaccia, P., Montesi, D., Penzo, W., and Trombetta, A. (2000). Imprecision and user

preferences in multimedia queries: A generic algebraic approach. In International

Symposium on Foundations of Information and Knowledge Systems (FolKS), volume

1762 of Lecture Notes in Computer Science, pages 50–71, Burg (Spreewald), Germany.

Springer-Verlag.

Ciaccia, P., Montesi, D., Penzo, W., and Trombetta, A. (2001). Fuzzy query language

for multimedia data. In Design and Management of Multimedia Information Systems:

Opportunities and Challenges, pages 201–213. Idea Group Publishing (IGI Publishing),

Hershey, PA, USA.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for

similarity search in metric spaces. In International Conference on Very Large Databases

(VLDB), pages 426–435, Athens, Greece. Morgan Kaufmann.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communi-

cations of the ACM (CACM), 13(6):377–387.

Codd, E. F. (1972). Relational completeness of data base sublanguages. Database Systems,

987(17041):65–98.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to

Algorithms. The MIT Press, 2nd edition.

Date, C. J. (2009). SQL and Relational Theory - How to Write Accurate SQL Code.

O’Reilly Media.

de Amo, S. and Ribeiro, M. R. (2009). CPref-SQL: A query language supporting

conditional preferences. In ACM Symposium on Applied Computing (SAC), pages

1573–1577, Honolulu, Hawaii, USA. ACM Press.



BIBLIOGRAPHY 115

Döller, M. and Kosch, H. (2005). Approximating the selectivity of multimedia range

queries. In IEEE International Conference on Multimedia and Expo (ICME), pages

382–385, Amsterdam, The Netherlands. IEEE Computer Society.

Fagin, R. and Wimmers, E. L. (1997). Incorporating user preferences in multimedia

queries. In International Conference Database Theory (ICDT), volume 1186 of Lecture

Notes in Computer Science, pages 247–261, Delphi, Greece. Springer.

Felipe, J. C., Traina, A. J. M., and Traina Jr., C. (2003). Retrieval by content of

medical images using texture for tissue identification. In 16th IEEE Symposium on

Computer-based Medical Systems, pages 175–180, New York. IEEE Computer Society.

Ferreira, M. R. P., Ponciano-Silva, M., Traina, A. J. M., Traina Jr., C., de Amo, S.,

Pereira, F. S. F., and Chbeir, R. (2010a). Integrating user preference to similarity

queries over medical images datasets. In Dillon, T., Rubin, D., Gallagher, W., Sidhu, A.,

and Tsymbal, A., editors, IEEE International Symposium on Computer-Based Medical

Systems (CBMS), pages 486–491, Perth, Australia. IEEE Computer Society.

Ferreira, M. R. P., Ribeiro, M. X., Traina, A. J. M., Chbeir, R., and Traina Jr., C. (2010b).

Adding knowledge extracted by association rules into similarity queries. Journal of

Information and Data Management (JIDM), 1(3):391– 406.

Ferreira, M. R. P., Santos, L. F. D., Traina, A. J. M., Dias, I., Chbeir, R., and Traina Jr.,

C. (2011). Algebraic properties to optimize kNN queries. Journal of Information and

Data Management (JIDM), 2(3):385–400.

Ferreira, M. R. P., Traina, A. J. M., Dias, I., Chbeir, R., and Traina Jr., C. (2009).

Identifying algebraic properties to support optimization of unary similarity queries.

In Arenas, M. and Bertossi, L., editors, Alberto Mendelzon International Workshop

on Foundations of Data Management (AMW), volume 450 of CEUR Workshop

Proceedings, pages 1–10, Arequipa, Peru. CEUR-WS.

Ferreira, M. R. P., Traina Jr., C., and Traina, A. J. M. (2007). An efficient framework

for similarity query optimization. In ACM International Symposium on Advances in

Geographic Information Systems (ACM GIS), pages 396–39, Seattle, Washington.

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2000). Database System Implementa-

tion. Prentice Hall, New Jersey.

Graefe, G. (2011). Modern B-tree techniques. Foundations and Trends in Databases

(FTDB), 3(4):203–402.



116 BIBLIOGRAPHY

Gunopulos, D., Kollios, G., Tsotras, V. J., and Domeniconi, C. (2005). Selectivity

estimators for multidimensional range queries over real attributes. The International

Journal on Very Large Databases, 14(2):137 – 154.

Hadjieleftheriou, M., Yu, X., Koudas, N., and Srivastava, D. (2008). Hashed samples:

Selectivity estimators for set similarity selection queries. Proceedings of the VLDB

Endowment (PVLDB), 1(1):201–212.

Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques. The Morgan

Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, San

Francisco, CA, USA, second edition edition.

Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image

classification. TSMC, 3:610–621.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer-Jr., P., Moore, R., Chang, K., and

Munishkumaran, S. (1998). Current status of the digital database for screening

mammography. In International Workshop on Digital Mammography (IWDM), pages

457–460, Nijmegen, Netherlands. Kluwer Academic Publishers.

Heath, M., Bowyer, K., Kopans, D., Moore, R., and Kegelmeyer-Jr., P. (2000). The

digital database for screening mammography. In International Workshop on Digital

Mammography (IWDM), pages 212–218, Toronto, Canada. Medical Physics Publishing.

Herstel, T. and Schmitt, I. (2005). Relation-collapse: An optimisation technique for the

similarity algebra SA. In East European Conference on Advances in Databases and

Information Systems (ADBIS), volume 3631 of Lecture Notes in Computer Science,

pages 29–42, Tallinn, Estonia. Spring-Verlag.

Hjaltason, G. R. and Samet, H. (2003). Index-driven similarity search in metric spaces.

ACM Transactions on Database Systems (TODS), 21(4):517 – 580.

Ioannidis, Y. E. (1996). Query optimization. ACM Computing Surveys (CSUR),

28(1):121–123.

Jarke, M. and Koch, J. (1984). Query optimization in database systems. ACM Computing

Surveys (CSUR), 16(2):111–152.

Jiang, B., Pei, J., Lin, X., Cheung, D. W., and Han, J. (2008). Mining preferences

from superior and inferior examples. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), pages 390 – 398, Las Vegas, Nevada,

USA. ACM.



BIBLIOGRAPHY 117

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E. L., and Protopapas, Z. (1996). Fast

nearest neighbor search in medical image databases. In International Conference on

Very Large Databases (VLDB), pages 215–226, Bombay, India. Morgan Kaufmann.

Kosch, H. (2010). Optimizing similarity-based image joins in a multimedia database. In

International Workshop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval

(VLS-MCMR), pages 37–42, Firenze, Italy. ACM.

Lee, J.-H., Chun, S.-J., and Park, S. (2003). Selectivity estimation for optimizing

similarity query in multimedia databases. In International Conference on Intelligent

Data Engineering and Automated Learning (IDEAL), volume 2690 of Lecture Notes in

Computer Science, pages 638–644, Hong Kong, China. Springer.

Li, C., Chang, K. C.-C., Ilyas, I. F., and Song, S. (2005). RankSQL: query algebra and

optimization for relational top-k queries. In ACM SIGMOD International Conference

on Management of Data, pages 131–142, Baltimore, Maryland. ACM Press.

Lima, E. L. (1993). Espaços Métricos. Instituto de Matemática Pura e Aplicada.

Liu, B., Wang, Z., Yang, X., Wang, W., and Shi, B. (2006). A bottom-up distance-based

index tree for metric space. In Rough Sets and Knowledge Technology (RSKT),

volume 4062 of Lecture Notes in Computer Science, pages 442–449, Chongquing, China.

Springer.

Liu, L. and Özsu, M. T., editors (2009). Encyclopedia of Database Systems. Springer.

Maier, D. (1983). The Theory of Relational Databases. Computer Society Press.

Manjunath, B. S., Salembier, P., and Sikora, T., editors (2002). Introduction to MPEG-7:

Multimedia Content Description Interface. Wiley, 1 edition.

Montesi, D. and Penzo, W. (2000). Taking care of vagueness and user preferences for

effective similarity queries on multimedia data. In Italian Symposium on Advanced

Database Systems (SEBD), pages 303 – 316, L’Aquila, Italy.

Montesi, D. and Trombetta, A. (1999). Similarity search through fuzzy relational

algebra. In International Workshop on Database & Expert Systems Applications (DEXA

Workshop), pages 235–239, Florence, Italy. IEEE Computer Society.

Montesi, D., Trombetta, A., and Dearnley, P. A. (2003). A similarity based relational

algebra for web and multimedia data. Information Processing & Management (IPM),

39(2):307–322.



118 BIBLIOGRAPHY

Navarro, G. (1999). Searching in metric spaces by spatial approximation. In String

Processing and Information Retrieval Symposium (SPIRE), pages 141–148, Cancun,

Mexico. IEEE Computer Society.

Navarro, G. (2002). Searching in metric spaces by spatial approximation. The

International Journal on Very Large Databases, 11(1):28–46.

Navarro, G. and Paredes, R. U. (2011). Fully dynamic metric access methods based on

hyperplane partitioning. Information Systems (IS), 36(4):734–747.

Ocsa, A. and Cuadros-Vargas, E. (2007). DBM∗-tree: an efficient metric access method. In

ACM Southeast Regional Conference (ACMSE), pages 401–406, Winston-Salem, North

Carolina. ACM Press.

Paredes, R. U. and Navarro, G. (2009). EGNAT: A fully dynamic metric access method for

secondary memory. In International Workshop on Similarity Search and Applications

(SISAP), pages 57–64. IEEE.

Paredes, R. U., Navarro, G., Barrientos, R. J., and Maŕın, M. (2006). An index data

structure for searching in metric space databases. In International Conference on

Computational Science (ICCS), volume 3991 of Lecture Notes in Computer Science,

pages 611–617, UK. Springer.

Penzo, W. (2005). Rewriting rules to permeate complex similarity and fuzzy queries within

a relational database system. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 17(2):255–270.

Picariello, A. and Sapino, M. L. (2002). A fuzzy algebra for image data bases. In

International Workshop on Multimedia Information Systems (MIS), pages 86–95,

Tempe, Az, USA. Arizona State University.

Pola, I. R. V., Traina Jr., C., and Traina, A. J. M. (2007). The MM-tree: A memory-based

metric tree without overlap between nodes. In East-European Conference on Advances

in Databases and Information Systems (ADBIS), volume 4690/2007 of Lecture Notes

in Computer Sciences, pages 157–171, Varna, Bulgaria. Springer Verlag.

Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-Hill

Book Company, New York, NY, 3rd edition.

Ribeiro, M. X., Ferreira, M. R. P., Traina Jr., C., and Traina, A. J. M. (2008).

Data pre-processing: a new algorithm for feature selection and data discretization.

In International Conference on Soft Computing as Transdisciplinary Science and

Technology (CSTST), volume 1, pages 252–257, Cergy-Pontoise, France. ACM Press.



BIBLIOGRAPHY 119

Santos Filho, R. F., Traina, A. J. M., Traina Jr., C., and Faloutsos, C. (2001). Similarity

search without tears: The OMNI family of all-purpose access methods. In IEEE

International Conference on Data Engineering (ICDE), pages 623–630, Heidelberg,

Germany. IEEE Computer Society.

Schmitt, I. and Schulz, N. (2004). Similarity relational calculus and its reduction to a

similarity algebra. In International Symposium on Foundations of Information and

Knowledge Systems (FolKS), volume 2942 of Lecture Notes in Computer Science, pages

252–272, Wilhelminenburg Castle, Austria. Spring-Verlag.

Schnaitter, K., Spiegel, J., and Polyzotis, N. (2009). Depth estimation for ranking query

optimization. The International Journal on Very Large Data Bases, 18(2):521–542.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.

(1979). Access path selection in a relational database management system. In ACM

SIGMOD International Conference on Management of Data, volume 1, pages 23–34,

Boston, Massachusetts. ACM Press.

Silva, Y. N., Aly, A. M., Aref, W. G., and Larson, P.-A. (2010a). SimDB: a

similarity-aware database system. In ACM SIGMOD International Conference on

Management of Data, pages 1243–1246, Indianapolis, Indiana, USA. ACM.

Silva, Y. N., Aref, W. G., and Ali, M. H. (2009). Similarity group-by. In International

Conference on Data Engineering (ICDE 2009), ICDE 2009, pages 904–915. IEEE.

Silva, Y. N., Aref, W. G., and Ali, M. H. (2010b). The similarity join database operator.

In Li, F., Moro, M. M., Ghandeharizadeh, S., Haritsa, J. R., Weikum, G., Carey, M. J.,

Casati, F., Chang, E. Y., Manolescu, I., Mehrotra, S., Dayal, U., and Tsotras, V. J.,

editors, International Conference on Data Engineering (ICDE), pages 892–903, Long

Beach, CA, USA. IEEE.

Skopal, T., Pokorný, J., and Snásel, V. (2004). PM-tree: Pivoting metric tree for similarity

search in multimedia databases. In East European Conference Advances in Databases

and Information Systems (ADBIS - Local Proceedings), pages 1–16, Budapest, Hungary.

Stefanidis, K., Koutrika, G., and Pitoura, E. (2011). A survey on representation,

composition and application of preferences in database systems. ACM Transactions

on Database Systems (TODS), 36(3):19:1–19:45.

Traina, A. J. M. and Traina Jr., C. (2003). Similarity search in multimedia databases.

In Handbook of Video Databases - Design and Applications, volume 1, pages 711–738.

CRC Press.



120 BIBLIOGRAPHY

Traina, A. J. M., Traina Jr., C., Bueno, J. M., Chino, F. J. T., and Marques, P. M. d. A.

(2003). Efficient content-based image retrieval through metric histograms. World Wide

Web Journal (WWWJ), 6(2):157–185.

Traina Jr., C., Santos Filho, R. F., Traina, A. J. M., Vieira, M. R., and Faloutsos, C.

(2007). The OMNI-family of all-purpose access methods: A simple and effective way

to make similarity search more efficient. The International Journal on Very Large

Databases (VLDB), 16(4):483–505.

Traina Jr., C., Traina, A. J. M., and Faloutsos, C. (2000a). Distance exponent: a new

concept for selectivity estimation in metric trees. In IEEE International Conference on

Data Engineering (ICDE), page 195, San Diego - CA. IEEE CS Press.

Traina Jr., C., Traina, A. J. M., Faloutsos, C., and Seeger, B. (2002). Fast indexing and

visualization of metric datasets using slim-trees. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 14(2):244–260.

Traina Jr., C., Traina, A. J. M., Seeger, B., and Faloutsos, C. (2000b). Slim-trees:

High performance metric trees minimizing overlap between nodes. In International

Conference on Extending Database Technology (EDBT), volume 1777 of Lecture Notes

in Computer Science, pages 51–65, Konstanz, Germany. Springer Verlag.

Traina Jr., C., Traina, A. J. M., Vieira, M. R., Arantes, A. S., and Faloutsos, C. (2006).

Efficient processing of complex similarity queries in RDBMS through query rewriting. In

ACM International Conference on Information and Knowledge Management (CIKM),

pages 4–13, Arlington - VA, USA. ACM Press.

Uhlmann, J. K. (1991). Satisfying general proximity/similarity queries with metric trees.

Information Processing Letters (IPL), 40(4):175–179.

Vieira, M. R., Traina Jr., C., Chino, F. J. T., and Traina, A. J. M. (2010). DBM-Tree: A

dynamic metric access method sensitive to local density data. Journal of Information

and Data Management (JIDM), 1(1):111–127.

Vieira, M. R., Traina Jr., C., Traina, A. J. M., and Chino, F. J. T. (2004). DBM-tree: A

dynamic metric access method sensitive to local density data. In Brazilian Symposium

on Databases (SBBD), volume 1, pages 33–47, Braśılia, DF. SBC.

Wang, J. T.-L. and Shasha, D. (1990). Query processing for distance metrics. In

International Conference on Very Large Databases (VLDB), pages 602–613, Brisbane,

Australia. Morgan Kaufmann.



BIBLIOGRAPHY 121

Wilson, N. (2004). Extending CP-nets with stronger conditional preference statements.

In National Conference on Artificial Intelligence (AAAI), pages 735–741, San Jose, CA,

USA. AAAI Press.

Yan, F., Hou, W.-C., Jiang, Z., Luo, C., and Zhu, Q. (2007). Selectivity estimation of

range queries based on data density approximation via cosine series. Data & Knowledge

Engineering (DKE), 63(3):855–878.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search

in general metric spaces. In Annual ACM/SIGACT-SIAM Symposium on Discrete

Algorithms (SODA), pages 311–321, Austin, TX.

Yu, C. T. and Meng, W. (2002). Principles of Database Query Processing for Advanced

Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2006). Similarity Search: The Metric

Space Approach. Advances in Database Systems. Springer, NY, USA.

Zisman, A. (1993). A Árvore-B e uma fronteira de implementação. Dissertação de

mestrado, Universidade de São Paulo.



122 BIBLIOGRAPHY



Appendix

A

The CoPhIR Dataset

The Content-based Photo Image Retrieval1 (CoPhIR) dataset consists of digital images,

visual descriptors and related metadata extracted from around 106 millions images of

the Flickr2 photo-sharing system [Bolettieri et al., 2009]. This collection stores the

metadata information, the features extracted using the Moving Picture Experts Group-7

(MPEG-7) [Manjunath et al., 2002] visual descriptors and the links to original images

in Flickr into extensible markup language (XML) files (one for each image). The five

MPEG-7 visual descriptors used in CoPhIR are: Scalable Color, Color Structure, Color

Layout, Edge Histogram and Homogeneous Texture Descriptors. Each entry of the

metadata contains textual information of the photo (e.g. id, url, title, description, the

spatial location where the photo was taken), the author (e.g. name, location, upload

date), the user-provided tags, the comments of other users and all information stored in

the exchangeable image file format (EXIF) header of the image file.

For illustration purposes, we use in this thesis, as a running example, a subset of

CoPhIR database that mix traditional and complex attributes in the same relation. Thus,

the database schema used in this thesis is presented in Example A.1. In this example, the

traditional attributes are colored by red, while the complex attribute are colored blue.

The primary key attributes are underlined.

Example A.1:

CoPhIRdb = {UserId, PhotoId, Title, Description, Tags, Lat, Long, Country,

Image, Coordinate}

Without loss of generality, we use the Manhattan (L1) distance function to compute

the similarity between elements of the complex attribute Image, because this function

1CoPhIR website. Available at: http://cophir.isti.cnr.it/. Accessed in: July 02, 2012.
2Flickr website. Available at: http://www.flickr.com. Accessed in: July 02, 2012.

123



124 A. The CoPhIR Dataset

is a metric and makes it intuitively easy to understand the examples presented in this

thesis. The features of Image complex attribute are extracted using the ‘Dominant Color

Descriptor’ of MPEG-7. In this way, the pair <Dominant Color Descriptor, L1> defines

the metric DominantColorL1.

Analogously, for elements of complex attribute Coordinate, the Euclidean (L2) dis-

tance function is defined over their domain, so the similarity predicates can be answered

over it. The complex attribute Coordinate is obtained from the combination of two

geographical points, represented in the traditional attributes Lat (i.e. the Latitude) and

Long (i.e. the Longitude). In order to make easier to understand the examples, we assume

that there is a function Coord(CoPhIRdb.Country), which returns the Coordinate of the

country named Country.

Therefore, in Chapter 2, we exemplify the concepts using a subset of this database.

That is, we use only the traditional attributes, i.e. the red ones in Example A.1. On

the other hand, in Chapters 4, we demonstrate the concepts using the whole database

(traditional and complex attributes).


