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Résumé

Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique à valeurs operateurs. La thèse est composée des trois parties.

Dans la première partie, on démontre la décomposition atomique des espaces de Hardy de martingales non commutatives. On identifie aussi les interpolés complexes et réels entre les versions conditionnelles des espaces de Hardy et BMO de martingales non commutatives.

La seconde partie est consacrée à l'étude des espaces de Hardy à valeurs opérateurs via la méthode d'ondellettes. Cette approche est similaire à celle du cas des martingales non commutatives. On démontre que ces espaces de Hardy sont équivalents à ceux étudiés par Tao Mei. Par conséquent, on donne une base explicite complétement inconditionnelle pour l'espace de Hardy H 1 (R), muni d'une structure d'espace d'opérateurs naturelle.

La troisième partie porte sur l'analyse harmonique sur le tore quantique. On établi les inégalités maximales pour diverses moyennes de sommation des séries de Fourier définies sur le tore quantique et obtient les théorèmes de convergence ponctuelle correspondant. En particulier, on obtient un analogue non commutative du théorème classique de Stein sur les moyennes de Bochner-Riesz. Ensuite, on démontre que les multiplicateurs de Fourier complètement bornés sur le tore quantique coïncident à ceux définis sur le tore classique. Finalement, on présente la théorie des espaces de Hardy et montre que ces espaces possèdent les propriétés des espaces de Hardy usuels. En particulier, on établit la dualité entre H 1 et BMO.

Introduction

L'espace de Hardy est un objet important de l'analyse classique et de la théorie des martingales, et il a beaucoup d'applications à d'autres domaines en mathématique. Si 1 < p < ∞, on a L p = H p avec normes équivalentes par la bornitude de la projection de Riesz. Mais dans le cas 0 < p ≤ 1, la caractérisation des espaces de Hardy est beaucoup plus compliquée. Coifman a d'abord introduit la notion d'atomes [START_REF] Coifman | A real variable characterization of H p[END_REF] dans l'analyse classique. Une question naturelle est comment on peux introduire l'espace de Hardy dans le cadre non commutatif. Notre recherche est basée sur le développment des probabilités quantiques et de l'analyse harmonique non commutative.

L'un des outils principaux dans ces domaines est la théorie des inégalitées de martingales non commutatives. Cette théorie avait déjà été introduite dans les années 70 [START_REF] Cuculescu | Martingales on von Neumann algebras[END_REF]. Son développement moderne a cependant commencé avec le papier fondateur de Pisier et Xu [START_REF] Pisier | Non-commutative martingale inequalities[END_REF], dans lequel les inégalités de Burkholder-Gundy et le théorème de dualité de Fefferman ont été étendus au cas non commutatif. Depuis, de nombreux résultats classiques ont été transférés avec succès dans le monde non commutatif. Nous renvoyons le lecteur à un livre récent de Xu [START_REF] Xu | Noncommutative L p -spaces and Martingale Inequalities[END_REF] pour une exposition mise à jour de la théorie des martingales non commutatives.

Parallèlement à la théorie des inégalités non commutatives, l'analyse harmonique non commutative a également fait de grands progrès grâce à des méthodes des espaces d'opérateurs et des inégalités de martingales non commutatives. Nous renvoyons le lecteur notamment au travail de Junge-Le Merdy-Xu [START_REF] Junge | H ∞ -functional caculus and square functions on noncommutative L p spaces[END_REF] sur les sémigroupes de diffusion non commutatifs, aux travaux de Blecher et Labuschagne [START_REF] Blecher | Characterizations of noncommutative H ∞[END_REF][START_REF] Blecher | Applications of the Fuglede-Kadison determinant: Szegö's theorem and outers for noncommutative H p[END_REF][START_REF] Blecher | A Beuring theorem for noncommutative L p[END_REF] et de Bekjian-Xu [START_REF] Bekjan | Riesz and Szegö type factorizations for noncommutative Hardy spaces[END_REF] sur les espaces de Hardy non commutatifs définis par des algèbres sous-diagonales, aux travaux de Mei [START_REF] Mei | Operator valued Hardy spaces[END_REF] et Chen [START_REF] Chen | Hardy spaces of operator-valued analytic functions[END_REF] sur les espaces de Hardy à valeurs opérateurs, aux travaux de Parcet [START_REF] Parcet | Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory[END_REF] et Mei-Parcet [START_REF] Mei | Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities[END_REF] sur la théorie des Caldéron -Zygmund et Littlewood-Paley non commutatives.

Cette thèse est constituée de trois chapitres. Le premier chapitre s'inscrit dans la théorie des martingales non commutatives. On y démontre la décomposition atomique des espaces de Hardy de martingales non commutatives. On identifie aussi les interpolés complexes et réels entre les versions conditionnelles des espaces de Hardy et BMO de martingales non commutatives. Le second chapitre est consacrée à l'étude des espaces de Hardy à valeurs opérateurs via la méthode d'ondellettes. Cette approche est similaire à celle du cas des martingales non commutatives. On démontre que ces espaces de Hardy sont équivalents à ceux étudiés par Tao Mei. Par conséquent, on donne une base explicite complétement inconditionnelle pour l'espace de Hardy H 1 (R), muni d'une structure d'espace d'opérateurs naturelle. Le dernier chapitre porte sur l'analyse harmonique sur le tore quantique. On établi les inégalités maximales pour diverses moyennes de sommation des séries de Fourier définies sur le tore quantique et obtient les théorèmes de convergence ponctuelle correspondant. En particulier, on obtient un analogue non commutative du théorème classique de Stein sur les moyennes de Bochner-Riesz. Ensuite, on démontre Introduction que les multiplicateurs de Fourier complètement bornés sur le tore quantique coïncident à ceux définis sur le tore classique. Finalement, on présente la théorie des espaces de Hardy et montre que ces espaces possèdent les propriétés des espaces de Hardy usuels. En particulier, on établit la dualité entre H 1 et BMO.

Avant que je présente les résultats principaux. Nous rappelous la définition des espaces L p non commutatifs. On désigne par M une algèbre de von Neumann munie d'une trace τ normale, fidèle et semifinie. Soient S + M = {x ∈ M + : τ (s(x)) < ∞}, où s(x) désigne le support de x. Soit S M l'espace vectoriel engendré par S + M . Soient 0 < p < ∞ et x ∈ S M . On définit x p = (τ (|x| p )) 1 p . On peut vérifier que • p est une (quasi) norme sur S M . L'espace L p (M) est le complété de (M, • p ). Par convention, on définit L ∞ (M) = M, muni de la norme d'opérateurs.

Chapitre 1

La décomposition atomique joue un rôle fondamental dans la théorie des martingales classiques et de l'analyse harmonique. Les atomes du cas des martingales sont habituellement définies par des temps d'arrêt. Nous rappelons la définition de ces atomes dans la théorie des martingales classiques. Soient (Ω, F, µ) un espace probabilisé. Soinet (F n ) n≥1 une filtration croissante de σ-sous-algèbres de F telle que F = σ ∪ n F n . On notera (E n ) n≥1 les espérances conditionnelles associées.

On dit qu'une fonction a ∈ L 2 est un atome s'il existes n ∈ N and A ∈ F n tels que (i) E n (a) = 0;

(ii) {a = 0} ⊂ A;

(iii) a 2 ≤ µ(A) -1/2 .

Ces atomes sont appelés atomes simples par Weisz [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF], et sont étudiés largement par lui (voir [START_REF] Weisz | Martingale Hardy Spaces for 0 < p ≤ 1[END_REF] et [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF]). On souligne que la décomposition atomique a d'abord été introduite par Coifman [START_REF] Coifman | A real variable characterization of H p[END_REF] en analyse harmonique. C'est Herz [START_REF] Herz | Bounded mean oscillation and regulated martingales[END_REF] qui a introduit la décomposition atomique dans le cas des martingales. Dans ce chapitre, on va présenter la version non commutative d'atomes et démontrer la décomposition atomique pour les espaces de Hardy de martingales non commutatives. Pour x ∈ L 1 (M), on notera, r(x) et l(x) le support de x à gauche et à droit respectivement. Rappelons que si x = u|x| est la décomposition polaire de x, alors r(x) = u * u et l(x) = uu * . r(x) (resp. l(x)) est aussi la plus petite projection e ∈ M telle que xe = x (resp. ex = x). Si x est auto-adjoint, alors r(x) = l(x). Soit x = (x n ) une martingale uon commutative relativement à (M n ) n≥1 . Définissons dx n = x n -x n-1 pour n ≥ 1 avec la convention x 0 = 0. La suite dx = (dx n ) est appelée la suite des différences de la martingale x. x est une martingale finie s'il existe N tels que dx n = 0 pour tout n ≥ N. Dans la suite, pour x ∈ L 1 (M), on notera x n = E n (x) pour tout n ≥ 1.

Nous rappelons la définition des fonctions carrées et des espaces de Hardy pour les martingales non commutatives. Suite à [START_REF] Pisier | Non-commutative martingale inequalities[END_REF], on introduit les versions de ligne et colonne des fonctions carrées d'une martingale finie x = (x n ): [START_REF] Pisier | Non-commutative martingale inequalities[END_REF]. Dans cet article-là Pisier et Xu ont montré les inégalités de Burkholder-Gundy non commutatives, qui implique H p (M) = L p (M) avec normes équivalentes pour tout 1 < p < ∞.

S c,n (x) = n k=1 |dx k | 2 1/2 , S c (x) = ∞ k=1 |dx k | 2 1/2 ; et S r,n (x) = n k=1 |dx * k | 2 1/2 , S r (x) = ∞ k=1 |dx * k | 2
On considère la version conditionnelle de H p introduite dans [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF]. Soit x = (x n ) n≥1 une martingale finie dans L 2 (M). On pose

s c,n (x) = n k=1 E k-1 |dx k | 2 1/2 , s c (x) = ∞ k=1 E k-1 |dx k | 2 1/2 ; et s r,n (x) = n k=1 E k-1 |dx * k | 2 1/2 , s r (x) = ∞ k=1 E k-1 |dx * k | 2 1/2 .
Ce sont les fonctions carrées conditionnelles de ligne et colonne, respectivement. Soit 0 < p < ∞. Définit h c p (M) (resp. h r p (M)) comme le complété de l'ensemble des martingales finies dans L ∞ (M) pour la (quasi) norme x h c p = s c (x) p (resp. x h r p = s r (x) p ). Pour p = ∞, nous définissons h c ∞ (M) (resp. h r ∞ (M)) comme l'espace de Banach constitué de martingales L ∞ (M)

x telles que k≥1 E k-1 |dx k | 2 (respectivement k≥1 E k-1 |dx * k | 2
) converge pour la topologie d'opérateur faible.

On a besoin aussi de l'espace p (L p (M)), l'espace de suites a = (a n ) n≥1 dans L p (M) telles que x hp = max x h d p , x h c p , x h r p . Les inégalités de Burkholder non commutatives démontrées dans [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] (iii) a 2 ≤ τ (e) -1/2 . En remplaçant (ii) par (ii) l(a) ≤ e, on obtient la notion d'un (1, 2) r -atome.

a p(Lp(M)) = n≥1 a n p p 1/p < ∞ si 0 < p < ∞, et a ∞(L∞(M)) = sup n a n ∞ < ∞ si p = ∞.
Ici, les (1, 2) c -atomes et (1, 2) r -atomes sont les analogues non commutatifs des (1, 2)atomes de martingales classiques, et sont démontrés d'être adaptés aux espaces de Hardy de colonne et ligne. De l'autre côté, à cause de la non-commutativité, certaines constructions basées sur les temps d'arrêt dans le cas classique ne sont pas valables dans le cadre non commutatif, notre approche à la décomposition atomique pour les espaces de Hardy conditionnelles de martingales non commutatives passe par la dualité h 1 -bmo. Rappelons que l'égalité de dualité (h 1 ) * = bmo a été établie indépendamment dans [START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF] et [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF]. Notre approche n'est malheureusement pas constructive. En résumé, on a le théorème suivant: Théorème 0.1.2. On a h 1 (M) = h at 1 (M) avec normes équivalentes. Plus précisement, si x ∈ h 1 (M)

1 √ 2 x h at 1 ≤ x h 1 ≤ x h at 1 .
Remarque 0.1.3. Dans un travail récent [START_REF] Hong | John-Nirenberg inequality and atomic decomposition for noncommutative martingales[END_REF], G. Hong and T. Mei étendent ce résultat et établissent la décomposition q-atomique, pour tout 1 < q ≤ ∞, en utilisaut leurs inégalité de John-Nirenberg pour les martingales non commutatives.

L'autre résultat principal de ce chapitre concerne l'interpolation des espaces de Hardy conditionnelles h p . L'idée principale de notre preuve est inspirée par une norme équivalente de h p , 0 < p ≤ 2 introduite par Herz [START_REF] Herz | H p -spaces of martingales, 0 < p ≤ 1[END_REF] dans le cas commutatif. On traduit cette quasi norme au cadre non commutatif afin d'obtenir une nouvelle caractérisation de h p , 0 < p ≤ 2, qui est plus pratique pour l'interpolation. On a le théorème d'interpolation suivant: 

Chapitre 2

Dans ce chapitre, on exploite les ondelettes de Meyer à l'étude des espaces de Hardy à valeurs opérateurs. Une base d'ondelettes de L 2 (R) est un système orthonormal complet (w I ) I∈D , où D désigne l'ensemble des intervalles dyadiques dans R, w est une fonction de Schwartz vérifiant les proprietés nécessaires dans la construction de Meryer [START_REF] Meyer | Wavelets and Operators[END_REF] L'analogie entre ondelettes et martingales dyadiques est bien connue. L'observation clef est le parallélisme suivant:

|I|=2 -n+1
f, w I w I ∼ df n , où df n désigne la n-ème différence de la martingale dyadique f . A l'aide de cette relation et l'orthogonalité de (w I ) I∈D , on peut utiliser la méthode de martingales non commutatives pour étudier l'analyse harmonique à valeurs opérateurs. Nous remarquons que Mei dans [START_REF] Mei | Operator valued Hardy spaces[END_REF] a établi la thèorie des espaces de Hardy à valeur opérateurs par la méthode de la théorie de Littlewood-Paley; mais notre approche semblerait plus simple que celle de Mei. Dans ce chapitre, pour simplifier les notations, on désigne N = L ∞ (R) ⊗M. Comme dans le cas classique, pour f ∈ S N , on définit les deux fonctions carrées de Littlewood-Paley comme suit 

S c (f )(x) = I∈D | f, w I | 2 |I| 1 I (x)
f Hp = inf{ g H c p + h H r p : f = g + h, g ∈ H c p , h ∈ H r p } Introduction Pour ϕ ∈ L ∞ (M; L c 2 (R, dx 1+x 2 )), on pose ϕ BMO c = sup J∈D 1 |J| I⊂J | ϕ, w I | 2 1 2 M (0.2.5) et ϕ BMO r = ϕ * BMO c (R,M) . Définissons BMO c (R, M) = {ϕ ∈ L ∞ (M; L c 2 (R, dx 1 + x 2 )) : ϕ BMO c < ∞} et BMO r (R, M) = {ϕ ∈ L ∞ (M; L r 2 (R, dx 1 + x 2 )) : ϕ BMO r < ∞}.
Ce sont des espaces de Banach modulo les fonctions constantes. On définit alors

BMO(R, M) = BMO c (R, M) ∩ BMO r (R, M).
Comme dans le cas de martingales [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], on peut aussi définir

L c p MO(R, M) pour tout 2 < p ≤ ∞. Pour ϕ ∈ L p (M; L c 2 (R, dx 1+x 2 )), pose ϕ L c p MO = ( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k 1 2 L p 2 (N ; ∞) (0.2.6) et ϕ L r p MO = ϕ * L c
p MO , où I x k est l'interval dyadique unique avec la longue 2 -k+1 qui contient x. On utilisera la convention adoptée dans [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] pour la norme de L p 2 (N ; ∞ ). Ainsi

( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k L p 2 (N ; ∞) = sup k + 1 |I x k | I⊂I x k | ϕ, w I | 2 L p 2 (N )
.

On féfinit 

L c p MO(R, M) = {ϕ ∈ L p (M; L c 2 (R, dx 1 + x 2 )) : ϕ L c p MO < ∞} et L r p MO(R, M) = {ϕ ∈ L p (M; L r 2 (R, dx 1 + x 2 )) : ϕ L c r MO < ∞}. Définissons L p MO(R, M) = L c p MO(R, M) ∩ L r p MO(R, M). Remarquons que L c ∞ MO(R, M) = BMO c (R
i Soit 1 ≤ q < p < ∞, on a [BMO(R, M), L q (N )] q p = L p (N ). (0.2.10) ii Soit 1 < q < p ≤ ∞, on a [H 1 (R, M), L p (N )] p q = L q (N ). (0.2.11) iii Soit 1 < p < ∞, on a [BMO(R, M), H 1 (R, M)] 1 p = L p (N ). (0.2.12) Soient H c p (R, M) et BM O c (R, M
) les espace de Hardy et BMO de [START_REF] Mei | Operator valued Hardy spaces[END_REF]. On a le résultat suivant. Cependant, peu est fait en ce qui concerne l'analyse. A notre connaissance, jusqu'à maintenant, seuls le théorème de convergence de moyenne de séries de Fourier quantiques par Introduction la sommation de Fejèr cubique a été démontré au niveau de C * -algèbre (cf. [START_REF] Weaver | Lipschitz algebras and derivations of von Neumann algebras[END_REF][START_REF] Weaver | Mathematical Quantization[END_REF]), et de l'autre côté, l'analogue du tore quantique des inégalités de Sobolev n'a été obtenu que dans le cas d'espace de Hilbert (cf. [START_REF] Spera | Sobolev theory for noncommutative tori[END_REF]). La raison peut être expliqué par de nombreues difficultés rencontrées en traitant les espaces L p non commutatifs. Par exemple, le moyen habituel de montrer les théorèmes de convergence ponctuelle est d'établir les inegalités maximales associées. Mais l'étude des inégalités maximales est une des parties les plus subtiles et difficiles dans l'analyse non commutative.

Ce chapitre est le premier d'un poject qui a pour but de développer analyse sur le tore quantique et plus généralement sur les produits croisés to dus des groupes moyennables. Notre but ici est d'étudier quelques aspects importants de l'annalyse harmonique sur T d θ . Les sujets auxquels nous nous sommes intéressés sont suivants: i) Convergence de séries de Fourier. On établit les inégalités maximales pour plusieurs moyennes de sommation de séries de Fourier définies sur le tore quantique et obtient aussi les théorèmes de convergence ponctuelle correspondan. En particulier, on démontre un analogue non commutatif du théorème classique de Stein sur les moyennes de Bochner-Riesz.

ii) Multipliacteurs de Fourier. On prouve que les multiplicateurs de Fourier complétements bornés sur le tore quantique sont exactement ceux sur le tore classique avec cb-normes équales.

iii) Espaces de Hardy et BMO. On présente la dualité entre H 1 et BMO, et la théorie de Littlewood-Paley associés au semigrupe de Poisson circulaire sur le tore quantique.

Notre stratégie pour résoudre ces problèmes est de les transférer aux analogues dans le cas à valeurs opérateurs sur le tore classique. Pour expliquer nos résultats principaux, on a besoin de quelques notations. Soient 1

≤ p ≤ ∞ et x ∈ L p (T d θ ).
x admet une série formelle de Fourier:

x

∼ m∈Z d x(m)U m , (0.3.2) où x(m) = τ (x(U m ) * ), m ∈ Z d , (0.3.3)
est appelé le m ère coefficient de Fourier de x. L'un des sujets principaux de l'analyse harmonique est d'étudier dans quel sens la série sur le côté droit de (0.3.1) converges vers x. Comme dans le cas classique, on considèreles trois types de moyennes de sommation:

1) La moyenne de Cesàro cubique

F N [x] = m∈Z d , |m|∞≤N 1 - |m 1 | N + 1 • • • 1 - |m d | N + 1 x(m)U m , N ≥ 0. (0.3.4)
2) La moyenne de Poisson cubique

P r [x] = m∈Z d x(m)r |m| 1 U m , 0 ≤ r < 1. (0.3.5)
3) La moyenne de Poisson circulaire

P r [x] = m∈Z d x(m)r |m| 2 U m , 0 ≤ r < 1. (0.3.6) 0.3. Chapitre 3 21 4) Soit Φ une fonction continue sur R d avec Φ(0) = 1. Définition Φ ε [x] = m∈Z d Φ(εm)x(m)U m , ε > 0.
On va toujour imposer la condition suivante sur Φ:

     Φ(s) = φ(s) avec R d ϕ(s)ds = 1; |Φ(s)| + |ϕ(s)| ≤ A(1 + |s|) -d-δ , ∀s ∈ R d , (0.3.7) pour certaines A, δ > 0 (cf. [83, p. 253]). Ici, |m| p = ( d j=1 |m j | p ) 1/p pour 1 ≤ p < ∞, et |m| ∞ = sup 1≤j≤d |m j |.
Ce qui suit est un de nos rèsultats principaux:

Théorème 0.3.1. (1) Soit x ∈ L 1 (T d θ ). Alors pour tout α > 0, il existe une projection e ∈ T d θ telle que sup N ≥0 eF N [x]e ∞ ≤ α et τ (e ⊥ ) ≤ C d x 1 α . (2) Soit 1 < p ≤ ∞. Alors sup N ≥0 + F N [x] p ≤ C d p 2 (p -1) 2 x p , ∀ x ∈ L p (T d θ ).
Les deux assertions sont encore vraie pour les trois autre moyens de sommation P r , P r et Φ ε . Dans le cas Φ ε , la constante C d dépend aussi des deux constantes dans (3.2.1).

Comme d'habitude, les inégalités maximales dans Théorème 0.3.1 devrait impliquer les théorèmes de convergence ponctuelle. En adaptant les arguments de M. Junge et Q. Xu [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], on obtient en effet le rèsultat suivant: --→ x signifie presque uniformément. Ces notions ont été introduites par Lance [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF] (voir aussi [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] pour les détails).

Théorème 0.3.2. Soit 1 ≤ p ≤ ∞ et x ∈ L p (T d θ ). Alors F N [x] b.a.u. ---→ x lorsque N → ∞. Pour 2 ≤ p ≤ ∞
On peut aussi considérer la moyenne de Cesàro circulaire:

F N [x] = m∈Z d , |m| 2 ≤N 1 - |m| 2 N + 1 x(m)U m , N ≥ 0. (0.3.8)
Cependant, les résultats précédents ne sont plus vrais pour F N même dans le cas classique [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]. En effet, on a besoin de considérer, à la place, la moyenne de Bochner-Riesz d'ordre α : [START_REF] Stein | Localization and summability of multiple Fourier series[END_REF] dans le cadre du tore quantique.

B α R [x] = |m| 2 ≤R 1 - |m| 2 Introduction Si α > (d -1)/
Théorème 0.3.3. Soit 1 < p < ∞ et α > (d -1)| 1 2 -1 p |. Alors (1) Pour tout x ∈ L p (T d θ ), sup + R>0 B α R [x] p ≤ C p x p .
(

) lim R→∞ B α R [x] = x dans L p (T d θ ). 2 
(

) Pour tout x ∈ L p (T d θ ), B α R [x] b.a.u ---→ x si R → ∞. 3 
Nous nous tournons vers le second thème de ce chapitre. On discute de multiplicateurs de Fourier complètement bornés sur le tore quantique. Notre motivation vient de la théorie des multiplicateurs de Fourier sur le tore classique [START_REF] Edwards | Littlewood-Paley and Multiplier Theory[END_REF][START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF].

On définit les multiplicateur de Fourier sur le tore quantique naturellement. Soit φ = (φ m ) m∈Z d . On définit T φ par

T φ x(m) = φ m x(m), ∀m ∈ Z d , pour tout x ∈ T d θ .
On dit que φ est un multiplicateur bornée dans L p (resp. c.b. L p multiplicateur) sur le tore quantique T d θ , si l'opérateur T φ extend à une application bornée (resp. c.b.) dans

L p (T d θ ). Soient M(L p (T d θ )) et M cb (L p (T d θ )
) l'ensemble des multiplicateurs bornés et complètement bornés dans L p , respectivement. On a le théorème suivant:

Théorème 0.3.4. Soit 1 < p ≤ ∞. Alors M cb (L p (T d θ )) = M cb (L p (L ∞ (T d ))) avec cb- normes équales.
Le troisième thème de ce chapitre traite la dualité entre H 1 et BMO, et la théorie de Littlewood-Paley associés au semigroupe de Poisson circulaire P r sur le tore quantique. Pour tout x ∈ T d θ , nous définissons

G c (x) = 1 0 d dr P r [x] 2 (1 -r)dr 1/2

Introduction

Hardy space is an important concept of classical analysis and martingale theory, and it has many applications to other mathematic field. When 1 < p < ∞, by the boundness of Riesz projection, we have L p = H p isometrically. But in the case of 0 < p ≤ 1, the characterization of H p spaces is much more complicated. To this end, Coifman first introduced the concept of atoms [START_REF] Coifman | A real variable characterization of H p[END_REF] in the classical analysis. Parallel to this, Herz [START_REF] Herz | Bounded mean oscillation and regulated martingales[END_REF] proved the atom decomposition of Hardy space of martingale. A natural question is how we can define Hardy spaces in various noncommutative setting.

This theory had been already initiated in the 1970's [START_REF] Cuculescu | Martingales on von Neumann algebras[END_REF]. Its modern period of development has begun with Pisier and Xu's seminal paper [START_REF] Pisier | Non-commutative martingale inequalities[END_REF] in which the authors established the noncommutative Burkholder-Gundy inequalities and Fefferman duality theorem between H 1 and BM O. Since then many classical results have been successfully transferred to the noncommutative world (see [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities II: Applications[END_REF], [START_REF] Mei | Operator valued Hardy spaces[END_REF]). We refer to a recent book by Xu [START_REF] Xu | Noncommutative L p -spaces and Martingale Inequalities[END_REF] for an up-to-date exposition of theory of noncommutative martingales.

With parallel to the theory of noncommutative inequalities, noncommutative harmonic analysis has also made great advances by using the method of operator space and noncommutative martingale inequality. We refer the reader notably to the recent works by Junge-Le Merdy-Xu [START_REF] Junge | H ∞ -functional caculus and square functions on noncommutative L p spaces[END_REF] on noncommutative diffusion semigroups, by Blecher and Labuschagne [START_REF] Blecher | Characterizations of noncommutative H ∞[END_REF][START_REF] Blecher | Applications of the Fuglede-Kadison determinant: Szegö's theorem and outers for noncommutative H p[END_REF][START_REF] Blecher | A Beuring theorem for noncommutative L p[END_REF] and Bekjan-Xu [START_REF] Bekjan | Riesz and Szegö type factorizations for noncommutative Hardy spaces[END_REF] on noncommutative Hardy spaces, by Mei [START_REF] Mei | Operator valued Hardy spaces[END_REF] and Chen [START_REF] Chen | Hardy spaces of operator-valued analytic functions[END_REF] on operator-valued Hardy spaces, and by Parcet [START_REF] Parcet | Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory[END_REF] and Mei-Parcet [START_REF] Mei | Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities[END_REF] on noncommutative Caldrón-Zygmund and Littlewood-Paley theories. This thesis consists of three chapters, which is based on the recent development of quantum probability and noncommutative harmonic analysis. The first chapter presents a joint work with T.Bekjan, Z.Chen, M.Perrin, entitled "Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales", which can be viewed as a part of noncommutative martingale theory. The content of the second chapter is devoted to the study on theory of vector-valued Hardy spaces. This chapter is a joint work with G.Hong entitled "Wavelet approach to operator-valued Hardy spaces". The last chapter is concerned with harmonic analysis on the quantum tori, which is a joint work with Z.Chen and Q.Xu entitled "Harmonic analysis on quantum tori".

Before we give the main results, we recall the definition of L p spaces. M will always denote a von Neumann algebra with a normal faithful normalized trace τ. Let S + M = {x ∈ M + : τ (s(x)) < ∞}, and S M is the linear expansion of S + M . Let 0 < p < ∞ and x ∈ S. Define x p = (τ (|x| p ))

1 p . We can prove that if p ≥ 1, • p is a norm, while p < 1, it is a p norm.

Introduction

Chapter 1

Atomic decomposition plays a fundamental role in the classical martingale theory and harmonic analysis. Atoms for martingales are usually defined in terms of stopping times. Let us recall this in classical martingale theory. Given a probability space (Ω, F, µ), let (F n ) n≥1 be an increasing filtration of σ-subalgebras of F such that F = σ ∪ n F n and let (E n ) n≥1 denote the corresponding family of conditional expectations. An F-measurable function a ∈ L 2 is said to be an atom if there exist n ∈ N and A ∈ F n such that

(i) E n (a) = 0; (ii) {a = 0} ⊂ A; (iii) a 2 ≤ µ(A) -1/2 .
Such atoms are called simple atoms by Weisz [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF] and are extensively studied by him (see [START_REF] Weisz | Martingale Hardy Spaces for 0 < p ≤ 1[END_REF] and [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF]). Let us point out that atomic decomposition was first introduced in harmonic analysis by Coifman [START_REF] Coifman | A real variable characterization of H p[END_REF]. It is Herz [START_REF] Herz | Bounded mean oscillation and regulated martingales[END_REF] who initiated atomic decomposition for martingale theory.

In this chapter, we will present the noncommutative version of atoms and prove that atomic decomposition for the Hardy spaces of noncommutative martingales is valid for these atoms. For x ∈ L p (M) we denote by r(x) and l(x) the right and left supports of x, respectively. Recall that if x = u|x| is the polar decomposition of x, then r(x) = u * u and l(x) = uu * . r(x) (resp. l(x)) is also the least projection e such that xe = x (resp. ex = x). If x is selfadjoint, r(x) = l(x). Let x = (x n ) be a noncommutative martingale with respect to (M n ) n≥1 . Define dx n = x n -x n-1 for n ≥ 1 with the usual convention that x 0 = 0. The sequence dx = (dx n ) is called the martingale difference sequence of x.

x is called a finite martingale if there exists N such that dx n = 0 for all n ≥ N. In the sequel, for any operator x ∈ L 1 (M) we denote x n = E n (x) for n ≥ 1.

Let us now recall the definitions of the square functions and Hardy spaces for noncommutative martingales. Following [START_REF] Pisier | Non-commutative martingale inequalities[END_REF], we introduce the column and row versions of square functions relative to a (finite) martingale x = (x n ):

S c,n (x) = n k=1 |dx k | 2 1/2 , S c (x) = ∞ k=1 |dx k | 2 1/2 ; and S r,n (x) = n k=1 |dx * k | 2 1/2 , S r (x) = ∞ k=1 |dx * k | 2 1/2 . Let 1 ≤ p < ∞. Define H c p (M) (resp. H r p (M))
as the completion of all finite L pmartingales under the norm x H c p = S c (x) p (resp. x H r p = S r (x) p ). The Hardy space of noncommutative martingales is defined as follows: if 1 ≤ p < 2,

H p (M) = H c p (M) + H r p (M)
equipped with the norm x Hp = inf y H c p + z H r p , where the infimum is taken over all y ∈ H c p (M) and z ∈ H r p (M) such that [START_REF] Pisier | Non-commutative martingale inequalities[END_REF]. In that paper Pisier and Xu prove the noncommutative Burkholder-Gundy inequalities which imply that H p (M) = L p (M) with equivalent norms for 1 < p < ∞.

x = y + z. For 2 ≤ p < ∞, H p (M) = H c p (M) ∩ H r p (M) 0.1. Chapter 1 equipped with the norm x Hp = max x H c p , x H r p . The reason that H p (M) is defined differently according to 1 ≤ p < 2 or 2 ≤ p ≤ ∞ is presented in
We now consider the conditioned version of H p developed in [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF]. Let x = (x n ) n≥1 be a finite martingale in L 2 (M). We set

s c,n (x) = n k=1 E k-1 |dx k | 2 1/2 , s c (x) = ∞ k=1 E k-1 |dx k | 2 1/2 ;
and

s r,n (x) = n k=1 E k-1 |dx * k | 2 1/2 , s r (x) = ∞ k=1 E k-1 |dx * k | 2 1/2 .
These will be called the column and row conditioned square functions, respectively. Let 0 < p < ∞. Define h c p (M) (resp. h r p (M)) as the completion of all finite L ∞ -martingales under the (quasi)norm

x h c p = s c (x) p (resp. x h r p = s r (x) p ). For p = ∞, we define h c ∞ (M) (resp. h r ∞ (M)) as the Banach space of the L ∞ (M)-martingales x such that k≥1 E k-1 |dx k | 2 (respectively k≥1 E k-1 |dx * k | 2
) converge for the weak operator topology. We also need p (L p (M)), the space of all sequences a = (a n ) n≥1 in L p (M) such that

a p(Lp(M)) = n≥1 a n p p 1/p < ∞ if 0 < p < ∞,
and a ∞(L∞(M)) = sup n a n ∞ if p = ∞.
Let h d p (M) be the subspace of p (L p (M)) consisting of all martingale difference sequences. We define the conditioned version of martingale Hardy spaces as follows: If 0 < p < 2,

h p (M) = h d p (M) + h c p (M) + h r p (M)
equipped with the (quasi)norm

x hp = inf w h d p + y h c p + z h r p ,
where the infimum is taken over all

w ∈ h d p (M), y ∈ h c p (M) and z ∈ h r p (M) such that x = w + y + z. For 2 ≤ p < ∞, h p (M) = h d p (M) ∩ h c p (M) ∩ h r p (M)
equipped with the norm

x hp = max x h d p , x h c p , x h r p .
The noncommutative Burkholder inequalities proved in [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] state that

h p (M) = L p (M) (0.1.1)
with equivalent norms for all 1 < p < ∞.

Due to the fact that there are two kinds of Hardy spaces, there correspond two kinds atoms.

Introduction Definition 0.1.1. a ∈ L 2 (M) is said to be a (1, 2) c -atom with respect to (M n ) n≥1 , if there exist n ≥ 1 and a projection e ∈ M n such that (i) E n (a) = 0; (ii) r(a) ≤ e; (iii) a 2 ≤ τ (e) -1/2 .
Replacing (ii) by (ii) l(a) ≤ e, we get the notion of a (1, 2) r -atom.

Here, (1, 2) c -atoms and (1, 2) r -atoms are noncommutative analogues of (1, 2)-atoms for classical martingales, which are proved to be suitable for the column (resp. row) Hardy spaces. On the other hand, due to the noncommutativity some basic constructions based on stopping times for classical martingales are not valid in the noncommutative setting, our approach to the atomic decomposition for the conditioned Hardy spaces of noncommutative martingales is via the h 1 -bmo duality. Recall that the duality equality (h 1 ) * = bmo was established independently by [START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF] and [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF]. However, this method does not give an explicit atomic decomposition. In summery, we get following theorem: Theorem 0.1.2. We have

h 1 (M) = h at 1 (M) with equivalent norms. More precisely, if x ∈ h 1 (M) 1 √ 2 x h at 1 ≤ x h 1 ≤ x h at 1 .
Remark 0.1.3. A recent work of G.Hong and T.Mei [START_REF] Hong | John-Nirenberg inequality and atomic decomposition for noncommutative martingales[END_REF] extend this 2-atom decomposition to the q-atom decomposition, 1 < q ≤ ∞, by using the John-Nirenberg inequality for noncommutative martingale.

The other main result of this chapter concerns the interpolation of the conditioned Hardy spaces h p . Such kind of interpolation results involving Hardy spaces of noncommutative martingales first appear in Musat's paper [START_REF] Musat | Interpolation between noncommutative BMO and noncommutative L pspaces[END_REF] for the spaces H p . We will present an extension of these results to the conditioned case.The main idea is inspired by an equivalent quasinorm for h p , 0 < p ≤ 2 introduced by Herz [START_REF] Herz | H p -spaces of martingales, 0 < p ≤ 1[END_REF] in the commutative case. We translate this quasinorm to the noncommutative setting to obtain a new characterization of h p , 0 < p ≤ 2, which is more convenient for interpolation. By this way we show following interpolation theorem: Theorem 0.1.4. Let 1 < p < ∞. Then, the following holds with equivalent norms

(bmo(M), h 1 (M)) 1 p = h p (M).

Chapter 2

In this chapter, we exploit Meyer's wavelet methods to the study of the operator-valued Hardy spaces. A wavelet basis of L 2 (R) is a complete orthonormal system (w I ) I∈D , where D denotes the collection of all dyadic intervals in R, w is a Schwartz function satisfying the properties needed for Meryer's construction in [START_REF] Meyer | Wavelets and Operators[END_REF], and

w I (x) . = 1 |I| 1 2 w x -c I |I| , 0.2. Chapter 2 29 
where c I is the center of I. The central facts that we will need about the wavelet basis are the orthogonality between different w I 's, w L 2 (R) = 1 and the regularity of w,

max(|w(x)|, |w (x)|) (1 + |x|) -m , ∀m ≥ 2.
The analogy between wavelets and dyadic martingales is well known. The key observation is the following parallelism:

|I|=2 -n+1 f, w I w I ∼ df n ,
where df n denotes n-th dyadic martingale difference of f . With this relationship and the orthogonality of the (w I ) I∈D , we can use the method of noncommutative martingale to the operator-valued harmonic analysis. Note that Mei has established the operator-valued Hardy spaces theory [START_REF] Mei | Operator valued Hardy spaces[END_REF], but our approach is much simpler than his. In this chapter, for simplicity, we denote L ∞ (R) ⊗M by N . As in the classical case, for f ∈ S N , we define the two Littlewood-Paley square functions as

S c (f )(x) = I∈D | f, w I | 2 |I| 1 I (x) 1 2 . (0.2.1) S r (f )(x) = I∈D | f * , w I | 2 |I| 1 I (x) 1 2 . (0.2.2) For 1 ≤ p < ∞, define f H c p = S c (f ) Lp(N ) , f H r p = S r (f ) Lp(N
) . These are norms, which can be seen easily from the space L p (N ; c 2 (D)). So we define the spaces H c p (R, M) (resp. H r p (R, M)) as the completion of (S N ,

• H c p (R,M) ) (resp. (S N , • H c p (R,M)
). Now, we define the operator-valued Hardy spaces as follows: for 1 ≤ p < 2,

H p (R, M) = H c p (R, M) + H r p (R, M) (0.2.3)
with the norm

f Hp = inf{ g H c p + h H r p : f = g + h, g ∈ H c p , h ∈ H r p } and for 2 ≤ p < ∞, H p (R, M) = H c p (R, M) ∩ H r p (R, M) (0.2.4)
with the norm defined as

f Hp = max{ f H c p , f H r p }. For ϕ ∈ L ∞ (M; L c 2 (R, dx 1+x 2 )), set ϕ BMO c = sup Introduction and BMO r (R, M) = {ϕ ∈ L ∞ (M; L r 2 (R, dx 1 + x 2 )) : ϕ BMO r < ∞}.
These are Banach spaces modulo constant functions. Now we define

BMO(R, M) = BMO c (R, M) ∩ BMO r (R, M).
As in the martingale case [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], we can also define L c p MO(R, M) for all 2 < p ≤ ∞.

For ϕ ∈ L p (M; L c 2 (R, dx 1+x 2 )), set ϕ L c p MO = ( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k 1 2 L p 2 (N ; ∞) (0.2.6) and ϕ L r p MO = ϕ * L c
p MO , where I x k denote the unique dyadic interval with length 2 -k+1 that containing x. We will use the convention adopted in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for the norm in L p 2 (N ; ∞ ). Thus

( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k L p 2 (N ; ∞) = sup k + 1 |I x k | I⊂I x k | ϕ, w I | 2 L p 2 (N )
.

Again, we can define

L c p MO(R, M) = {ϕ ∈ L p (M; L c 2 (R, dx 1 + x 2 )) : ϕ L c p MO < ∞} and L r p MO(R, M) = {ϕ ∈ L p (M; L r 2 (R, dx 1 + x 2 )) : ϕ L c r MO < ∞}. Define L p MO(R, M) = L c p MO(R, M) ∩ L r p MO(R, M). Note that L c ∞ MO(R, M) = BMO c (R, M
). Then we have following dual and interpolation theorem: Theorem 0.2.1. We have 

(H c 1 (R, M)) * = BMO c (R, M) (0.
(i) Let 1 ≤ q < p < ∞, we have [BMO(R, M), L q (N )] q p = L p (N ). (0.2.10) (ii) Let 1 < q < p ≤ ∞, we have [H 1 (R, M), L p (N )] p q = L q (N ). (0.2.11) (iii) Let 1 < p < ∞, we have [BMO(R, M), H 1 (R, M)] 1 p = L p (N ). (0.2.12)
We denote the column Hardy space H c p (R, M) and the bounded mean oscillation space BM O c (R, M) in [START_REF] Mei | Operator valued Hardy spaces[END_REF]. We have the following result. Theorem 0.2.5. We have

BMO c (R, M) = BM O c (R, M)
with equivalent norms. Similar results holds for the row spaces. Consequently, BMO(R, M) = BM O(R, M) with equivalent norms.

Chapter 3

Let d ≥ 2 and θ = (θ kj ) be a real skew-symmetric d × d-matrix. Recall that the ddimensional noncommutative torus A θ is the universal C * -algebra generated by d unitaries U 1 , . . . , U d satisfying the following commutation relation

U k U j = e 2πiθ kj U j U k , j, k = 1, . .

. , d.

There exists a faithful tracial state τ on A θ . Let T d θ be the von Neumann algebra in the GNS representation of τ . T d θ is called the quantum d-torus associated with θ. Note that if θ = 0, then A θ = C(T d ) and

T d θ = L ∞ (T d )
, where T d is the usual d-torus. So a quantum d-torus is a deformation of the usual d-torus. It is thus natural to expect that T d θ shares many properties with T d . This is indeed the case for differential geometry, as shown by the works of Connes and his collaborators. However, little is done regarding analysis. To our best knowledge, up to now, only the mean convergence theorem of quantum Fourier series by the square Fejér summation was proved at the C * -algebra level (cf. [START_REF] Weaver | Lipschitz algebras and derivations of von Neumann algebras[END_REF][START_REF] Weaver | Mathematical Quantization[END_REF]), and on the other hand, the quantum torus analogue of Sobolev inequalities was obtained only in the Hilbert space case, or equivalently L 2 space case (cf. [START_REF] Spera | Sobolev theory for noncommutative tori[END_REF]). The reason might be explained by numerous difficulties one may encounter when dealing with noncommutative L p -spaces. For instance, the usual way of proving pointwise convergence theorems is to pass through the corresponding maximal inequalities. But the study of maximal inequalities is one of the most subtle and difficult parts in noncommutative analysis.

This paper is the first one of a project that intends to develop analysis on quantum tori and more generally on twisted crossed products by amenable groups. Our aim here is to study some important aspects of harmonic analysis on T d θ . The subject that we address is three-fold: Introduction i) Convergence of Fourier series. We will establish the maximal inequalities for various means of Fourier series defined on quantum tori and obtain the corresponding pointwise convergence theorems. In particular, we will prove the noncommutative analogue of the classical Stein theorem on Bochner-Riesz means.

ii) Fourier multipliers. We will prove that L p (1 < p ≤ ∞) completely bounded Fourier multipliers on quantum tori coincide with those on classical tori with equivalent cbnorms.

iii) Hardy and BMO spaces. We will present the H 1 -BMO and Littlewood-Paley theories associated with the Poisson semigroup over quantum tori.

One of main strategies for approaching these problems is to transfer them into the corresponding ones in the case of operator-valued functions on the classical tori. To state our main results we need some notation. Let 1 ≤ p ≤ ∞ and x ∈ L p (T d θ ). Then x admits a formal Fourier series:

x

∼ m∈Z d x(m)U m , (0.3.1) where x(m) = τ (x(U m ) * ), m ∈ Z d , (0.3.2)
that is called the m-th Fourier coefficient of x. We remark that one of the main subjects of harmonic analysis on quantum tori, just as with L ∞ (T d ), is to study when and in what sense the series of the right hand side of (0.3.1) converges to x. As in the classical case, we will consider mainly three kinds of summation method:

1) The square Cesàro mean

F N [x] = m∈Z d , |m|∞≤N 1 - |m 1 | N + 1 • • • 1 - |m d | N + 1 x(m)U m , N ≥ 0. (0.3.3)
2) The square Poisson mean

P r [x] = m∈Z d x(m)r |m| 1 U m , 0 ≤ r < 1. (0.3.4)
3) The circular Poisson mean

P r [x] = m∈Z d x(m)r |m| 2 U m , 0 ≤ r < 1. (0.3.5) 4) Let Φ be a continuous function on R d with Φ(0) = 1. Define Φ ε [x] = m∈Z d Φ(εm)x(m)U m , ε > 0.
We will always impose the following condition to Φ:

     Φ(s) = φ(s) with R d ϕ(s)ds = 1; |Φ(s)| + |ϕ(s)| ≤ A(1 + |s|) -d-δ , ∀s ∈ R d , (0.3.6)
for some A, δ > 0 (cf. [83, p. 253]).

Chapter 3

Here, |m| p = ( d j=1 |m j | p ) 1/p for 1 ≤ p < ∞, and |m| ∞ = sup 1≤j≤d |m j |. The following is one of our main results:

Theorem 0.3.1. i) Let x ∈ L 1 (T d θ )
. Then for any α > 0 there exists a projection e ∈ T d θ such that

sup N ≥0 eF N [x]e ∞ ≤ α and τ (e ⊥ ) ≤ C d x 1 α . ii) Let 1 < p ≤ ∞. Then sup N ≥0 + F N [x] p ≤ C d p 2 (p -1) 2 x p , ∀ x ∈ L p (T d θ ).
Both statements hold for the three other summation methods P r , P r and Φ ε . In the case of Φ ε , the constant C d also depends on the two constants in (3.2.1).

As usual, the maximal inequalities in Theorem 0.3.1 should imply the corresponding pointwise convergence theorems. By adapting the arguments of M. Junge and Q. Xu [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], we indeed get the following result:

Theorem 0.3.2. Let 1 ≤ p ≤ ∞ and x ∈ L p (T d θ ). Then F N [x] b.a.u.
---→ x as N → ∞. Moreover, for 2 ≤ p ≤ ∞ the b.a.u. convergence can be strengthened to a.u. convergence.

Similar statements hold for the two Poisson means P r , P r as r → ∞ as well as for the mean Φ ε as ε → 0.

Here x n b.a.u ---→ x means that (x n ) bilaterally almost uniformly (b.a.u, in short) converges to x, while x n a.u --→ x means almost uniform (a.u) convergence, that were both introduced by Lance [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF] (see also [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for the details).

One may also consider the circular Cesàro mean:

F N [x] = m∈Z d , |m| 2 ≤N 1 - |m| 2 N + 1 x(m)U m , N ≥ 0. (0.3.7)
However, the preceding results fail to hold for F N even in the classical case [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]. Instead, one needs to consider the Bochner-Riesz mean of order α :

B α R [x] = |m| 2 ≤R 1 - |m| 2 2 R 2 α x(m)U m . (0.3.8)
If α > (d -1)/2, the kernel of the Bochner-Riesz mean in this case is an approximation identity, we can then get the corresponding results associated with the mean convergence, maximal inequalities and pointwise convergence. In fact, both part (3) in Theorems 0.3.1 and 0.3.2, and the corresponding results concerning the Bochner-Riesz mean with the order α being greater than (d -1)/2, will be proved all as a consequence of the more general case concerning an approximation identity determined by a continuous function Φ on R d with an additional condition on asymptotic behavior at infinite. For the case α ≤ (d -1)/2, we have the following theorem, which is the generalization of Stein's theorem [START_REF] Stein | Localization and summability of multiple Fourier series[END_REF] to the quantum tori.

Introduction (1) For any x ∈ L p (T d θ ), sup + R>0 B α R [x] p ≤ C p x p .
(

) lim R→∞ B α R [x] = x in L p (T d θ ). 2 
(

) For any x ∈ L p (T d θ ), B α R [x] b.a.u ---→ x as R → ∞. 3 
Now we turn to the second aspect of the theme in this chapter, discussing the completely bounded Fourier multipliers on the quantum tori. Our motivation arises from the classical Fourier multiplier theory on ordinary tori [START_REF] Edwards | Littlewood-Paley and Multiplier Theory[END_REF][START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF].

We may define the Fourier multipliers on the quantum torus in an ordinary way. Let φ = (φ m ) m∈Z d . We define T φ by ) denote the sets of all L p bounded and completely bounded multipliers respectively. We have the following theorem:

T φ x(m) = φ m x(m), ∀m ∈ Z d ,
Theorem 0.3.4. Let 1 < p ≤ ∞. Then M cb (L p (T d θ )) = M cb (L p (L ∞ (T d ))) with equivalent cb-norms.
The third topic of this chapter deals with the H 1 -BMO and Littlewood-Paley theories associated with the Poisson semigroup P r on the quantum tori. For any x ∈ T d θ define

G c (x) = 1 0 d dr P r [x] 2 (1 -r)dr 1/2

Introduction

Atomic decomposition plays a fundamental role in the classical martingale theory and harmonic analysis. Atoms for martingales are usually defined in terms of stopping times.

Unfortunately, the concept of stopping times is, up to now, not well-defined in the generic noncommutative setting (there are some works on this topic, see [START_REF] Attal | Quantum stopping times and quasi-left continuity[END_REF] and references therein). We note, however, that atoms can be defined without help of stopping times. Let us recall this in classical martingale theory. Given a probability space (Ω, F, µ), let (F n ) n≥1 be an increasing filtration of σ-subalgebras of F such that F = σ ∪ n F n and let (E n ) n≥1 denote the corresponding family of conditional expectations. An F-measurable function a ∈ L 2 is said to be an atom if there exist n ∈ N and A ∈ F n such that

(i) E n (a) = 0; (ii) {a = 0} ⊂ A; (iii) a 2 ≤ µ(A) -1/2 .
Such atoms are called simple atoms by Weisz [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF] and are extensively studied by him (see [START_REF] Weisz | Martingale Hardy Spaces for 0 < p ≤ 1[END_REF] and [START_REF] Weisz | Martingale Hardy Spaces and their Applications in Fourier Analysis[END_REF]). Let us point out that atomic decomposition was first introduced in harmonic analysis by Coifman [START_REF] Coifman | A real variable characterization of H p[END_REF]. It is Herz [START_REF] Herz | Bounded mean oscillation and regulated martingales[END_REF] who initiated atomic decomposition for martingale theory. Recall that we denote by H 1 (Ω) the space of martingales f with respect to (F n ) n≥1 such that the quadratic variation S(f

) = n |df n | 2 1/2
belongs to L 1 (Ω), and by h 1 (Ω) the space of martingales f such that the conditioned quadratic variation

s(f ) = n E n-1 |df n | 2 1/2 belongs to L 1 (Ω).
We say that a martingale f = (f n ) n≥1 is predictable in L 1 if there exists an adapted sequence (λ n ) n≥0 of non-decreasing, nonnegative functions such that |f n | ≤ λ n-1 for all n ≥ 1 and such that sup n λ n ∈ L 1 (Ω). We denote by P 1 (Ω) the space of all predictable martingales. In a disguised form in the proof of Theorem A ∞ in [START_REF] Herz | Bounded mean oscillation and regulated martingales[END_REF], Herz establishes an atomic description of P 1 (Ω). Since P 1 (Ω) = H 1 (Ω) for regular martingales, this gives an atomic decomposition of H 1 (Ω) in the regular case. Such a decomposition is still valid in the general case but for h 1 (Ω) instead of H 1 (Ω), as shown by Weisz [START_REF] Weisz | Martingale Hardy Spaces for 0 < p ≤ 1[END_REF].

Chapter 1. Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales

In this paper, we will present the noncommutative version of atoms and prove that atomic decomposition for the Hardy spaces of noncommutative martingales is valid for these atoms. Since there are two kinds of Hardy spaces, i.e., the column and row Hardy spaces in the noncommutative setting, we need to define the corresponding two type atoms. This is a main difference from the commutative case, but can be done by considering the right and left supports of martingales as being operators on Hilbert spaces. Roughly speaking, replacing the supports of atoms in the above (ii) by the right (resp. left) supports we obtain the concept of noncommutative right (resp. left) atoms, which are proved to be suitable for the column (resp. row) Hardy spaces. On the other hand, due to the noncommutativity some basic constructions based on stopping times for classical martingales are not valid in the noncommutative setting, our approach to the atomic decomposition for the conditioned Hardy spaces of noncommutative martingales is via the h 1 -bmo duality. Recall that the duality equality (h 1 ) * = bmo was established independently by [START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF] and [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF]. However, this method does not give an explicit atomic decomposition.

The other main result of this paper concerns the interpolation of the conditioned Hardy spaces h p . Such kind of interpolation results involving Hardy spaces of noncommutative martingales first appear in Musat's paper [START_REF] Musat | Interpolation between noncommutative BMO and noncommutative L pspaces[END_REF] for the spaces H p . We will present an extension of these results to the conditioned case. Note that our method is much simpler and more elementary than Musat's arguments. It seems that even in the commutative case, our method is simpler than all existing approaches to the interpolation of Hardy spaces of martingales. The main idea is inspired by an equivalent quasinorm for h p , 0 < p ≤ 2 introduced by Herz [START_REF] Herz | H p -spaces of martingales, 0 < p ≤ 1[END_REF] in the commutative case. We translate this quasinorm to the noncommutative setting to obtain a new characterization of h p , 0 < p ≤ 2, which is more convenient for interpolation. By this way we show that (bmo, h 1 ) 1/p = h p for any 1 < p < ∞.

The remainder of this paper is divided into four sections. In Section 1 we present some preliminaries and notation on the noncommutative L p -spaces and various Hardy spaces of noncommutative martingales. The atomic decomposition of the conditioned Hardy space h 1 (M) is presented in Section 2, from which we deduce the atomic decomposition of the Hardy space H 1 (M) by Davis' decomposition. In Section 3 we define an equivalent quasinorm for h p (M), 0 < p ≤ 2, and discuss the description of the dual space of h p (M), 0 < p ≤ 1. Finally, using the results of Section 3, the interpolation results between bmo and h 1 are proved in Section 4.

Any notation and terminology not otherwise explained, are as used in [START_REF] Takesaki | Theory of Operator Algebras I[END_REF] for theory of von Neumann algebras, and in [START_REF] Pisier | Noncommutative L p -spaces[END_REF] for noncommutative L p -spaces. Also, we refer to a recent book by Xu [START_REF] Xu | Noncommutative L p -spaces and Martingale Inequalities[END_REF] for an up-to-date exposition of theory of noncommutative martingales.

Preliminaries and notations

Throughout this paper, M will always denote a von Neumann algebra with a normal faithful normalized trace τ. For each 0 < p ≤ ∞, let L p (M, τ ) or simply L p (M) be the associated noncommutative L p -spaces. We refer to [START_REF] Pisier | Noncommutative L p -spaces[END_REF] for more details and historical references on these spaces.

For x ∈ L p (M) we denote by r(x) and l(x) the right and left supports of x, respectively. Recall that if x = u|x| is the polar decomposition of x, then r(x) = u * u and l(x) = uu * . r(x) (resp. l(x)) is also the least projection e such that xe = x (resp. ex

= x). If x is selfadjoint, r(x) = l(x).
Let us now recall the general setup for noncommutative martingales. In the sequel,

Preliminaries and notations

we always denote by (M n ) n≥1 an increasing sequence of von Neumann subalgebras of M such that the union of M n 's is w * -dense in M and E n the conditional expectation of M with respect to M n .

A sequence x = (x n ) in L 1 (M) is called a noncommutative martingale with respect to (M n ) n≥1 if E n (x n+1 ) = x n for every n ≥ 1.
If in addition, all x n 's are in L p (M) for some 1 ≤ p ≤ ∞, x is called an L p -martingale. In this case we set

x p = sup n≥1 x n p . If x p < ∞, then x is called a bounded L p -martingale. Let x = (x n ) be a noncommutative martingale with respect to (M n ) n≥1 . Define dx n = x n -x n-1 for n ≥ 1 with the usual convention that x 0 = 0. The sequence dx = (dx n ) is called the martingale difference sequence of x.
x is called a finite martingale if there exists N such that dx n = 0 for all n ≥ N. In the sequel, for any operator x ∈ L 1 (M) we denote

x n = E n (x) for n ≥ 1.
Let us now recall the definitions of the square functions and Hardy spaces for noncommutative martingales. Following [START_REF] Pisier | Non-commutative martingale inequalities[END_REF], we introduce the column and row versions of square functions relative to a (finite) martingale x = (x n ):

S c,n (x) = n k=1 |dx k | 2 1/2 , S c (x) = ∞ k=1 |dx k | 2 1/2 ; and S r,n (x) = n k=1 |dx * k | 2 1/2 , S r (x) = ∞ k=1 |dx * k | 2 1/2 . Let 1 ≤ p < ∞. Define H c p (M) (resp. H r p (M)
) as the completion of all finite L pmartingales under the norm x H c p = S c (x) p (resp. x H r p = S r (x) p ). The Hardy space of noncommutative martingales is defined as follows: if 1 ≤ p < 2,

H p (M) = H c p (M) + H r p (M)
equipped with the norm

x Hp = inf y H c p + z H r p , where the infimum is taken over all y ∈ H c p (M) and z ∈ H r p (M) such that x = y + z. For 2 ≤ p < ∞, H p (M) = H c p (M) ∩ H r p (M)
equipped with the norm [START_REF] Pisier | Non-commutative martingale inequalities[END_REF]. In that paper Pisier and Xu prove the noncommutative Burkholder-Gundy inequalities which imply that H p (M) = L p (M) with equivalent norms for 1 < p < ∞.

x Hp = max x H c p , x H r p . The reason that H p (M) is defined differently according to 1 ≤ p < 2 or 2 ≤ p ≤ ∞ is presented in
We now consider the conditioned version of H p developed in [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF]. Let x = (x n ) n≥1 be a finite martingale in L 2 (M). We set

s c,n (x) = n k=1 E k-1 |dx k | 2 1/2 , s c (x) = ∞ k=1 E k-1 |dx k | 2 1/2 ;
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s r,n (x) = n k=1 E k-1 |dx * k | 2 1/2 , s r (x) = ∞ k=1 E k-1 |dx * k | 2 1/2 .
These will be called the column and row conditioned square functions, respectively. Let 0 < p < ∞. Define h c p (M) (resp. h r p (M)) as the completion of all finite L ∞ -martingales under the (quasi) norm

x h c p = s c (x) p (resp. x h r p = s r (x) p ). For p = ∞, we define h c ∞ (M) (resp. h r ∞ (M)) as the Banach space of the L ∞ (M)-martingales x such that k≥1 E k-1 |dx k | 2 (respectively k≥1 E k-1 |dx * k | 2
) converge for the weak operator topology. We also need p (L p (M)), the space of all sequences a = (a n ) n≥1 in L p (M) such that

a p(Lp(M)) = n≥1 a n p p 1/p < ∞ if 0 < p < ∞,
and a ∞(L∞(M)) = sup n a n ∞ if p = ∞.
Let h d p (M) be the subspace of p (L p (M)) consisting of all martingale difference sequences. We define the conditioned version of martingale Hardy spaces as follows: If 0 < p < 2,

h p (M) = h d p (M) + h c p (M) + h r p (M)
equipped with the (quasi) norm

x hp = inf w h d p + y h c p + z h r p ,
where the infimum is taken over all w ∈ h d p (M), y ∈ h c p (M) and z ∈ h r p (M) such that

x = w + y + z. For 2 ≤ p < ∞, h p (M) = h d p (M) ∩ h c p (M) ∩ h r p (M)
equipped with the norm

x hp = max x h d p , x h c p , x h r p .
The noncommutative Burkholder inequalities proved in [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] state that

h p (M) = L p (M) (1.1.1)
with equivalent norms for all 1 < p < ∞.

In the sequel, (M n ) n≥1 will be a filtration of von Neumann subalgebras of M. All martingales will be with respect to this filtration.

Atomic decompositions

Let us now introduce the concept of noncommutative atoms.

Definition 1.2.1. a ∈ L 2 (M) is said to be a (1, 2) c -atom with respect to (M n ) n≥1 , if there exist n ≥ 1 and a projection e ∈ M n such that (i) E n (a) = 0; (ii) r(a) ≤ e; 1.2. Atomic decompositions (iii) a 2 ≤ τ (e) -1/2 .
Replacing (ii) by (ii) l(a) ≤ e, we get the notion of a (1, 2) r -atom.

Here, (1, 2) c -atoms and (1, 2) r -atoms are noncommutative analogues of (1, 2)-atoms for classical martingales. In a later remark we will discuss the noncommutative analogue of (p, 2)-atoms. These atoms satisfy the following useful estimates.

Proposition 1.2.2. If a is a (1, 2) c -atom then a H c 1 ≤ 1 and a h c 1 ≤ 1.
The similar inequalities hold for (1, 2) r -atoms.

Proof. Let e be a projection associated with a satisfying (i)

-(iii) of Definition 1.2.1. Let a k = E k (a). Observe that a k = 0 for k ≤ n, so da k = 0 for k ≤ n. For k ≥ n + 1 we have e|da k | 2 = [E k (ea * ) -E k-1 (ea * )]da k = |da k | 2 = da * k [E k (ae) -E k-1 (ae)] = |da k | 2 e.
This gives

e|da k | 2 = |da k | 2 = |da k | 2 e
for any k ≥ 1. Hence, we obtain

eS c (a) = S c (a) = S c (a)e.
Consequently, the noncommutative Hölder inequality implies

a H c 1 = τ [eS c (a)] ≤ S c (a) 2 e 2 = a 2 e 2 ≤ 1.
Since e ∈ M n , for k ≥ n + 1 we have

eE k-1 (|da k | 2 ) = E k-1 (e|da k | 2 ) = E k-1 (|da k | 2 ) = E k-1 (|da k | 2 e) = E k-1 (|da k | 2 )e.
Thus, we deduce

a h c 1 ≤ 1.
Now, atomic Hardy spaces are defined as follows.

Definition 1.2.3. We define h c,at 1 (M) as the Banach space of all x ∈ L 1 (M) which admit a decomposition

x = k λ k a k with for each k, a k a (1, 2) c -atom or an element in L 1 (M 1 ) of norm ≤ 1, and λ k ∈ C satisfying k |λ k | < ∞.
We equip this space with the norm

x h c,at 1 = inf k |λ k |,
where the infimum is taken over all decompositions of x described above. Similarly, we define h r,at 1 (M) and • h r,at 1 .
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It is easy to see that h c,at 1 (M) is a Banach space. By Proposition 1.2.2 we have the contractive inclusion h c,at 1 (M) ⊂ h c 1 (M). The following theorem shows that these two spaces coincide. That establishes the atomic decomposition of the conditioned Hardy space h c 1 (M). This is the main result of this section.

Theorem 1.2.4. We have

h c 1 (M) = h c,at 1 (M) with equivalent norms. More precisely, if x ∈ h c 1 (M) 1 √ 2 x h c,at 1 ≤ x h c 1 ≤ x h c,at 1 .
Similarly, h r 1 (M) = h r,at 1 (M) with the same equivalence constants.

We will show the remaining inclusion h c 1 (M) ⊂ h c,at 1 (M) by duality. Recall that the dual space of h c 1 (M) is the space bmo c (M) defined as follows (we refer to [START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF] and [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF] 

for details). Let bmo c (M) = x ∈ L 2 (M) : sup n≥1 E n |x -x n | 2 ∞ < ∞
and equip bmo c (M) with the norm

x bmo c = max E 1 (x) ∞ , sup n≥1 E n |x -x n | 2 1/2 ∞ .
This is a Banach space. Similarly, we define the row version bmo r (M). Since

x n = E n (x),
we have

E n |x -x n | 2 = E n |x| 2 -|x n | 2 ≤ E n |x| 2 .
Thus the contractivity of the conditional expectation yields

x bmo c ≤ x ∞ . (1.2.1)
We will describe the dual space of h c,at 1 (M) as a noncommutative Lipschitz space defined as follows. We set

Λ c (M) = x ∈ L 2 (M) : x Λ c < ∞ with x Λ c = max E 1 (x) ∞ , sup n≥1 sup e∈Pn τ (e) -1/2 τ e|x -x n | 2 1/2 ,
where P n denotes the lattice of projections of M n . Similarly, we define

Λ r (M) = x ∈ L 2 (M) : x * ∈ Λ c (M) equipped with the norm x Λ r = x * Λ c .
The relation between Lipschitz space and bmo space can be stated as follows.

Proposition 1.2.5. We have bmo c (M) = Λ c (M) and bmo r (M) = Λ r (M) isometrically.

Proof. Let x ∈ bmo c (M). It is obvious that by the noncommutative Hölder inequality we have, for all n ≥ 1,

sup e∈Pn τ (e) -1/2 τ e|x -x n | 2 1/2 ≤ E n |x -x n | 2 1/2 ∞ .
To prove the reverse inclusion, by duality we can write

E n |x -x n | 2 ∞ = sup y 1 ≤1, y∈L + 1 (Mn) τ (y|x -x n | 2 ) = sup e∈Pn τ (e) -1 τ (e|x -x n | 2 ),
where the last equality comes from the density of linear combinations of mutually disjoint projections in L 1 (M n ). Thus x Λ c = x bmo c , and the same holds for the row spaces.

We now turn to the duality between the conditioned atomic space h c,at 1 (M) and the Lipschitz space Λ c (M). Theorem 1.2.6. We have h c,at

1 (M) * = Λ c (M) isometrically. More precisely, (i) Every x ∈ Λ c (M) defines a continuous linear functional on h c,at 1 (M) by ϕ x (y) = τ (x * y), ∀y ∈ L 2 (M). (1.2.2) (ii) Conversely, each ϕ ∈ h c,at 1 (M) * is given as (1.2.2) by some x ∈ Λ c (M).
Similarly, h r,at 1 (M) * = Λ r (M) isometrically.

Remark 1.2.7. Remark that we have defined the duality bracket (1.2.2) for operators in L 2 (M). This is sufficient for L 2 (M) is dense in h c,at 1 (M). The latter density easily follows from the decomposition

L 2 (M) = L 0 2 (M)⊕L 2 (M 1 ), where L 0 2 (M) = {x ∈ L 2 (M) : E 1 (x) = 0}.
Proof of Theorem 1.2.6. We first show Λ c (M) ⊂ h c,at 1 (M) * . In fact we will not need this inclusion for the proof of Theorem 1.2.4, however we include the proof for the sake of completeness. Let x ∈ Λ c (M). For any (1, 2) c -atom a associated with a projection e satisfying (i) -(iii) of Definition 1.2.1, by the noncommutative Hölder inequality we have

τ (x * a) = τ ((x -x n ) * ae) ≤ e(x -x n ) * 2 a 2 ≤ τ (e) -1/2 τ (e|x -x n | 2 ) 1/2 ≤ x Λ c .
On the other hand, for any a ∈ L 1 (M 1 ) with a 1 ≤ 1 we have

|τ (x * a)| = |τ (E 1 (x) * a)| ≤ E 1 (x) ∞ a 1 ≤ x Λ c .
Thus, we deduce that τ (x * y) ≤ x Λ c y h c,at 1 for all y ∈ L 2 (M). Hence, ϕ x extends to a continuous functional on h c,at 1 (M) of norm less than or equal to x Λ c .
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Conversely, let ϕ ∈ h c,at 1 (M) * . As explained in the previous remark, L 2 (M) ⊂ h c,at 1 (M) so by the Riesz representation theorem there exists x ∈ L 2 (M) such that

ϕ(y) = τ (x * y), ∀y ∈ L 2 (M).
Fix n ≥ 1 and let e ∈ P n . We set

y e = (x -x n )e (x -x n )e 2 τ (e) 1/2 .
It is clear that y e is a (1, 2) c -atom with the associated projection e. Then

ϕ ≥ |ϕ(y e )| = |τ ((x -x n ) * y e )| = 1 τ (e) 1/2 τ (e|x -x n | 2 ) 1/2 .
On the other hand, let

y ∈ L 1 (M 1 ), y 1 ≤ 1 be such that E 1 (x) ∞ = |τ (x * y)|. Then E 1 (x) ∞ ≤ ϕ .
Combining these estimates we obtain x Λ c ≤ ϕ . This ends the proof of the duality (h c,at 1 (M)) * = Λ c (M). Passing to adjoints yields the duality (h r,at

1 (M)) * = Λ r (M). 2 
We can now prove the reverse inclusion of Theorem 1.2.4.

Proof of Theorem 1.2.4. By Proposition 1.2.2 we already know that

h c,at 1 (M) ⊂ h c 1 (M).
Combining Proposition 1.2.5 and Theorem 1.2.6 we obtain that (h c,at 1 (M)) * = bmo c (M) with equal norms. The duality between h c 1 (M) and bmo c (M) proved in [START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF] and [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF] then yields that (h c,at

1 (M)) * = (h c 1 (M)) * with the following equiv- alence constants 1 √ 2 ϕ x (h c 1 ) * ≤ x bmo c = ϕ x (h c,at 1 ) * ≤ ϕ x (h c 1 ) * .
This ends the proof of Theorem 1.2.4.

2
We can generalize this decomposition to the whole space h 1 (M). To this end we need the following definition. Definition 1.2.8. We set

h at 1 (M) = h d 1 (M) + h c,at 1 (M) + h r,at 1 (M),
equipped with the sum norm

x h at 1 = inf w h d 1 + y h c,at 1 + z h r,at 1
,

where the infimum is taken over all w ∈ h d 1 (M), y ∈ h c,at 1 (M), and z ∈ h r,at 1 (M) such that x = w + y + z.
Thus Theorem 1.2.4 clearly implies the following. Theorem 1.2.9. We have

h 1 (M) = h at 1 (M) with equivalent norms. More precisely, if x ∈ h 1 (M) 1 √ 2 x h at 1 ≤ x h 1 ≤ x h at 1 .
The noncommutative Davis' decomposition presented in [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF] state that H 1 (M) = h 1 (M). Thus Theorem 1.2.9 yields that H 1 (M) = h at 1 (M), which means that we can decompose any martingale in H 1 (M) in an atomic part and a diagonal part. This is the atomic decomposition for the Hardy space of noncommutative martingales. Remark 1.2.10. At the time of this writing, we do not know how to construct the above atomic decompositions explicitly. One encounters some substantial difficulties in trying to adapt the classical atomic constructions to the noncommutative setting. Problem 1.2.11. Find a constructive proof of Theorem 1.2.4 or Theorem 1.2.9.

To end this section we discuss the case of h p for 0 < p < 1. We define the noncommutative analogue of (p, 2)-atoms as follows.

Definition 1.2.12. Let 0 < p ≤ 1. a ∈ L 2 (M) is said to be a (p, 2) c -atom with respect to (M n ) n≥1 , if there exist n ≥ 1 and a projection e ∈ M n such that (i) E n (a) = 0; (ii) r(a) ≤ e; (iii) a 2 ≤ τ (e) 1/2-1/p .
Replacing (ii) by (ii) l(a) ≤ e, we get the notion of a (p, 2) r -atom.

We define h c,at p (M) and h r,at p (M) as in Definition 1.2.3. As for p = 1, we have h c,at p (M) ⊂ h c p (M) contractively. On the other hand, we can describe the dual space of h c,at p (M) as a Lipschitz space. For α ≥ 0, we set

Λ c α (M) = x ∈ L 2 (M) : x Λ c α < ∞ with x Λ c α = sup n≥1 sup e∈Pn τ (e) -1/2-α τ e|x -x n | 2 1/2 .
By a slight modification of the proof of Theorem 1.2.6 (by setting y e = (x-xn)e (x-xn)e 2 τ (e) 1/2-1/p ) we can show that (h c,at p (M)) * = Λ c α (M) for 0 < p ≤ 1, with α = 1/p -1. At the time of this writing we do not know if h c,at p (M) coincides with h c p (M). The problem of the atomic decomposition of h p (M) for 0 < p < 1 is entirely open, and is related to Problem 1.2.11. We record this problem explicitly here:

Problem 1.2.13. Does one have h c p (M) = h c,at p (M) for 0 < p < 1?
1.3 An equivalent quasinorm for h p , 0 < p ≤ 2

In the commutative case Herz described in [START_REF] Herz | H p -spaces of martingales, 0 < p ≤ 1[END_REF] an equivalent quasinorm for h p , 0 < p ≤ 2. This section is devoted to determining a noncommutative analogue of this. This characterization of h p will be useful in the sequel. Indeed, this will imply an interpolation result in the next section. To define equivalent quasinorms of • h c p and • h r p for 0 < p ≤ 2 we introduce the index class W which consists of sequences {w n } n∈N such that {w

2/p-1 n } n∈N is nondecreasing with each w n ∈ L + 1 (M n ) invertible with bounded inverse and w n 1 ≤ 1.
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For an L 2 -martingale x we set

N c p (x) = inf W τ n≥0 w 1-2/p n |dx n+1 | 2 1/2 and N r p (x) = inf W τ n≥0 w 1-2/p n |dx * n+1 | 2 1/2 .
We need the following well-known lemma, and include a proof for the convenience of the reader.

Lemma 1.3.1. Let f be a function in C 1 (R + ) and x, y ∈ M + . Then τ (f (x + y) -f (x)) = τ 1 0 f (x + ty)ydt .
Proof. We set ϕ(t) = τ (f (x + ty)), for t ∈ [0, 1]. Then ϕ (0) = τ (f (x)y). Indeed, the tracial property of τ implies this equality for f (t) = t n , n ∈ N . We can extend this result for all f polynomial by linearity, then for all f by approximation. A translation argument gives

ϕ (t) = τ (f (x + ty)y), ∀t ∈ [0, 1]. Writing ϕ(1) -ϕ(0) = 1 0 ϕ (t)dt we obtain the required result. Proposition 1.3.2. For 0 < p ≤ 2 and x ∈ L 2 (M) we have p 2 1/2 N c p (x) ≤ x h c p ≤ N c p (x). (1.3.1) 
A similar statement holds for h r p (M) and N r p .

Proof. Note that

N c p (x) = inf W τ n≥0 w 1-2/p n E n |dx n+1 | 2 1/2 = inf W τ n≥0 w 1-2/p n (s c,n+1 (x) 2 -s c,n (x) 2 ) 1/2 . Let x ∈ L 2 (M) with x h c p < 1.
By approximation we can assume that x ∈ L ∞ (M) and s c,n (x) is invertible with bounded inverse for every n ≥ 1. Then {s c,n+1 (x) p } ∈ W ; so

N c p (x) ≤ τ n≥0 s c,n+1 (x) p-2 (s c,n+1 (x) 2 -s c,n (x) 2 ) 1/2 . Applying Lemma 1.3.1 with f (t) = t p/2 , x + y = s c,n+1 (x) 2 and x = s c,n (x) 2 we obtain τ (s c,n+1 (x) p -s c,n (x) p ) = τ 1 0 p 2 s c,n (x) 2 + t(s c,n+1 (x) 2 -s c,n (x) 2 ) p 2 -1 s c,n+1 (x) 2 -s c,n (x) 2 dt ≥ p 2 τ (s c,n+1 (x) p-2 (s c,n+1 (x) 2 -s c,n (x) 2 )),
where we have used the fact that the operator function a → a p 2 -1 is nonincreasing for -1 < p 2 -1 ≤ 0. Taking the sum over n leads to

N c p (x) 2 ≤ 2 p τ (s c (x) p ) = 2 p . 1.3. An equivalent quasinorm for h p , 0 < p ≤ 2 47
We turn to the other estimate. Given {w n } ∈ W put

w 2/p-1 = lim n→+∞ w 2/p-1 n = sup n w 2/p-1 n .
It follows that {w

1-2/p n } decreases to w 1-2/p and τ n≥0 w 1-2/p n |dx n+1 | 2 ≥ τ w 1-2/p n≥0 E n |dx n+1 | 2 = τ w 1-2/p s c (x) 2 .
Since 1 p = 1 2 + 2-p 2p the Hölder inequality gives

s c (x) p = w 1/p-1/2 w 1/2-1/p s c (x) p ≤ w 1/p-1/2 2p/(2-p) w 1/2-1/p s c (x) 2 = τ (w) 1/p-1/2 τ (w 1-2/p s c (x) 2 ) 1/2 . Now τ (w) ≤ 1; so we have s c (x) p ≤ τ n≥0 w 1-2/p n |dx n+1 | 2 1/2 for all {w n } ∈ W . Thus the quasinorm N c p is equivalent to • h c p on L 2 (M). So h c p (M)
can also be defined as the completion of all finite L 2 -martingales with respect to N c p for 0 < p ≤ 2. This new characterization of h c p (M) yields the following description of its dual space.

Theorem 1.3.3. Let 0 < p ≤ 2 and 1 q = 1 -1 p . Then the dual space of h c p (M) coincide with the L 2 -martingales x for which M c q (x) = sup

W τ n≥0 w 1-2/q n |dx n+1 | 2 1/2 < ∞. More precisely, (i) Every L 2 -martingale x such that M c q (x) < ∞ defines a continuous linear functional on h c p (M) by φ x (y) = τ (yx * ) for y ∈ L 2 (M).
(ii) Conversely, any continuous linear functional φ on h c p (M) is given as above by some

x such that M c q (x) < ∞.
Similarly, the dual space of h r p (M) coincide with the L 2 -martingales x for which M r q (x) = M c q (x * ) < ∞.

Proof. Let x be such that M c q (x) < ∞. Then x defines a continuous linear functional on h c p (M) by φ x (y) = τ (yx * ) for y ∈ L 2 (M). To see this fix {w n } ∈ W . The Cauchy-Schwarz inequality gives

τ (yx * ) = n≥0 τ (dy n+1 w 1/2-1/p n )(dx n+1 w 1/2-1/q n ) * ≤ n≥0 τ (w 1-2/p n |dy n+1 | 2 ) 1/2 n≥0 τ (w 1-2/q n |dx n+1 | 2 ) 1/2 ≤ n≥0 τ (w 1-2/p n |dy n+1 | 2 ) 1/2 M c q (x).
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Taking the infimum over W we obtain τ (yx * ) ≤ N c p (y)M c q (x). Conversely, let φ be a continuous linear functional on h c p (M) of norm ≤ 1. As L 2 (M) ⊂ h c p (M), φ induces a continuous linear functional on L 2 (M). Thus there exists x ∈ L 2 (M) such that φ(y) = τ (yx * ) for y ∈ L 2 (M). By the density of L 2 (M) in h c p (M) we have

φ (h c p ) * = sup y∈L 2 (M), y h c p ≤1 |τ (yx * )| ≤ 1.
Thus by Proposition 1.3.2 we obtain sup

y∈L 2 (M),N c p (y)≤1 |τ (yx * )| ≤ 1. (1.3.2)
We want to show that M c q (x) < ∞. Fix {w n } ∈ W . Let y be the martingale defined by

dy n+1 = dx n+1 w 1-2/q n , ∀n ∈ N . By (1.3.2) we have τ (yx * ) = τ n≥0 w 1-2/q n |dx n+1 | 2 ≤ N c p (y) ≤ τ n≥0 w 1-2/q n |dx n+1 | 2 1/2 . Thus τ n≥0 w 1-2/q n |dx n+1 | 2 ≤ 1, ∀{w n } ∈ W.
Taking the supremum over W we obtain M c q (x) ≤ 1. Passing to adjoints yields the description of the continuous linear functionals on h r p (M).

Remark that for -∞ < 1/q ≤ 1/2, M c q and M r q define two norms. Let X c q (resp. X r q ) be the Banach space consisting of the L 2 -martingales x for which M c q (x) (resp. M r q (x)) is finite. Theorem 1.3.3 shows that (h c p (M)) * = X c q and (h r p (M)) * = X r q for 0 < p ≤ 2,

1 q = 1 -1 p . For -∞ < 1/q ≤ 1/2, note that M c
q (x) can be rewritten in the following form. Given

{w n } n≥0 ∈ W we put g n = (w 2/s n -w 2/s n-1 ) 1/2 , ∀n ≥ 1 where 1 s = 1 2 -1 q . It is clear that {g n } n≥1 ∈ G = {h n } n≥1 ; h n ∈ L s (M n ), τ n≥1 |h n | 2 s/2 ≤ 1 . Then M c q (x) = sup G τ n≥1 |g n | 2 E n |x -x n | 2 1/2 .
It is now easy to see that the dual form of Junge's noncommutative Doob maximal inequality ( [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF]) implies that for q ≥ 2, X c q = L c q mo(M) with equivalent norms, where L c q mo(M) is defined in [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF].

Similarly, we have X r q = L r q mo(M) with equivalent norms. Thus for 1 ≤ p ≤ 2, Theorem 1.3.3 gives another proof of the duality obtained in [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF] between h p (M) and L q mo(M) for 1 p + 1 q = 1. Note that this new proof is much simpler and yields a better constant for the upper estimate, that is p/2 instead of √ 2.

For 0 < p < 1, Theorem 1.3.3 leads to a first description of the dual space of h p (M). However, this description is not satisfactory. Following the classical case, we would like to describe this dual space as the Lipschitz space Λ c α (M) defined in the previous section as the dual space of h c,at p (M). Thus the description of the dual space of h p (M) for 0 < p < 1 is closely related to the atomic decomposition of h p (M).

Interpolation of h p spaces

It is a rather easy matter to identify interpolation spaces between commutative or noncommutative L p -spaces by real or complex method. However, we need more efforts to establish interpolation results between Hardy spaces of martingales (see [START_REF] Janson | Interpolation between H p -spaces:the complex method[END_REF], and also [START_REF] Xu | Some results related to interpolation on Hardy spaces of regular martingales[END_REF]). Musat ([50]) extended Janson and Jones' interpolation theorem for Hardy spaces of martingales to the noncommutative setting. She proved in particular that for 1 ≤ q < q θ < ∞

(BMO c (M), H c q (M)) q q θ = H c q θ (M). (1.4.1)
See also [START_REF] Junge | Non-commutative John-Nirenberg theorem[END_REF] for a different proof with better constants. This section is devoted to showing the analogue of (1.4.1) in the conditioned case. Our approach is simpler and more elementary than Musat's and also valid for her situation. We refer to [START_REF] Bergh | Interpolation Spaces. An introduction[END_REF] for details on interpolation. Recall that the noncommutative L p -spaces associated with a semifinite von Neumann algebra form interpolation scales with respect to the complex method and the real method. More precisely, for 0 < θ < 1, 1 ≤ p 0 < p 1 ≤ ∞ and 1 ≤ q 0 , q 1 , q ≤ ∞ we have

L p (M) = (L p 0 (M), L p 1 (M)) θ (with equal norms) (1.4.2)
and L p,q (M) = (L p 0 ,q 0 (M), L p 1 ,q 1 (M)) θ,q (with equivalent norms) (1.4.3)

where 1 p = 1-θ p 0 + θ p 1 , and where L p,q (M) denotes the noncommutative Lorentz space on (M, τ ).

We can now state the main result of this section which deals with complex interpolation between the column spaces bmo c (M) and h c 1 (M).

Theorem 1.4.1. Let 1 < p < ∞. Then, the following holds with equivalent norms

(bmo c (M), h c 1 (M)) 1 p = h c p (M). (1.4.4) Remark 1.4.2.
All spaces considered here are compatible in the sense that they can be embedded in the * -algebra of measurable operators with respect to (M⊗B( 2 (N 2 )), τ ⊗Tr).

Indeed, for each 1 ≤ p < ∞, h c p (M) can be identified with a subspace of L p (M⊗B( 2 (N 2 ))). Recall that h c p (M) is also defined as the closure in L cond p (M; c 2 ) of all finite martingale differences in M. Here L cond p (M; c 2 ) is the subspace of L p (M, c 2 (N 2
)) introduced by Junge [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF] consisting of all double indexed sequences (x nk ) such that x nk ∈ L p (M n ) for all k ∈ N . We refer to [START_REF] Pisier | Non-commutative martingale inequalities[END_REF] for details on the column and row spaces L p (M, c

2 ) and L p (M, r 2 ). Furthermore, by the Hölder inequality and duality, recalling that the trace is finite, we have, for 1 ≤ p < q < ∞, the continuous inclusions

L ∞ (M) ⊂ bmo c (M) ⊂ h c q (M) ⊂ h c p (M).
The first inclusion is proved by (1.2.1). The second one comes from the third one by duality. Indeed, it is proved in [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] that for 1 < p < ∞ and

1 p + 1 p = 1, we have (h c p (M)) * = h c p (M),
Chapter 1. Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales and, as already mentioned above, we have (h c 1 (M)) * = bmo c (M) (see [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF]). Note that L ∞ (M) is dense in all spaces above, except bmo c (M). This implies that bmo c (M) and h c q (M) are dense in h c p (M) for 1 ≤ p < q < ∞. We will need Wolff's interpolation theorem (see [START_REF] Wolff | A Note on Interpolation space[END_REF]). This result states that given Banach spaces E i (i = 1, 2, 3, 4) such that E 1 ∩ E 4 is dense in both E 2 and E 3 , and

E 2 = (E 1 , E 3 ) θ and E 3 = (E 2 , E 4 ) φ for some 0 < θ, φ < 1, then E 2 = (E 1 , E 4 ) ς and E 3 = (E 1 , E 4 ) ξ , (1.4.5)
where ς = θφ 1-θ+θφ and ξ = φ 1-θ+θφ . The main step of the proof of Theorem 1.4.1 is the following lemma which is based on the equivalent quasinorm N c p of • h c p described in the previous section.

Lemma 1.4.3. Let 1 < p < ∞ and 0 < θ < 1. Then, the following holds with equivalent norms

(h c 1 (M), h c p (M)) θ = h c q (M), (1.4.6 
)

where 1-θ 1 + θ p = 1 q . Proof. Step 1: We first prove (1.4.6) in the case 1 < q < p ≤ 2. As explained in Remark 1.4.2, h c p (M) can be identified with a subspace of L p (M⊗B( 2 (N 2 ))). Thus the interpolation between noncommutative L p -spaces in (1.4.2) gives the inclusion (h c 1 (M), h c p (M)) θ ⊂ h c q (M).
The reverse inclusion needs more efforts. This can be shown using the equivalent quasinorm N c p of • h c p defined previously. Let x be an L 2 -finite martingale such that x h c q < 1. By (1.3.1) we have

N c q (x) = inf W τ n w 1-2/q n |dx n+1 | 2 1/2 < 2 q 1/2 . Let {w n } ∈ W be such that τ n w 1-2/q n |dx n+1 | 2 < 2 q . (1.4.7)
For ε > 0 and z ∈ S we define

f ε (z) = exp(ε(z 2 -θ 2 )) n dx n+1 w 1 2 -1 q n w 1-z 1 + z p -1 2 n = exp(ε(z 2 -θ 2 )) n dx n+1 w 1-(1-1 p )z-1 q n .
Then f ε is continuous on S, analytic on S 0 and f ε (θ) = x. The term exp(ε(z 2 -θ 2 )) ensure that f ε (it) and f ε (1 + it) tend to 0 as t goes to infinity. A direct computation gives for all

t ∈ R τ n w -1 n |d(f ε ) n+1 (it)| 2 = exp(-2ε(t 2 + θ 2 ))τ n w 1-2/q n |dx n+1 | 2 .
By (1.4.7) and (1.3.1) we obtain

f ε (it) h c 1 ≤ exp(ε) 2 q 1/2 . 1.4. Interpolation of h p spaces 51 
Similarly,

f ε (1 + it) h c p ≤ exp(ε) 2 q 1/2 . Thus x = f ε (θ) ∈ (h c 1 (M), h c p (M)) θ and x (h c 1 (M),h c p (M)) θ ≤ exp(ε)
2 q 1/2

; whence

x (h c 1 (M),h c p (M)) θ ≤ 2 q 1/2 x h c q .
Step 2: To obtain the general case, we use Wolff's interpolation theorem mentioned above. Let us first recall that for 1 < v, s, q < ∞ and 0 < η < 1 such that 1 q = 1-η v + η s , we have with equivalent norms

(h c v (M), h c s (M)) η = h c q (M). (1.4.8)
Indeed, by Lemma 6.4 of [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF],

h c p (M) is one-complemented in L cond p (M; c 2 ), for 1 ≤ p < ∞. On the other hand, for 1 < p < ∞ the space L cond p (M; c 2 ) is complement- ed in L p (M; c 2 (N 2
)) via Stein's projection (Theorem 2.13 of [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF]), and the column space

L p (M; c 2 (N 2 )) is a one-complemented subspace of L p (M⊗B( 2 (N 2 ))
). Thus, we conclude from (1.4.2) that, by complementation, (1.4.8) holds.

We turn to the proof of (1.4.6).

Step 1 shows that (1.4.6) holds in the case 1 < p ≤ 2. Thus it remains to deal with the case 2 < p < ∞. We divide the proof in two cases. Case 1: 1 < q < 2 < p < ∞. Let q < s < 2. Note that 1 < q < s < p, so there exist 0 < θ < 1 and 0 < φ < 1 such that 1-θ 1 + θ s = 1 q and 1-φ q + φ p = 1 s . By (1.4.8) we have

h c s (M) = (h c q (M), h c p (M)) φ .
Furthermore, recall that 1 < q < s < 2, so Step 1 yields

h c q (M) = (h c 1 (M), h c s (M)) θ .
By Wolff's interpolation theorem (1.4.5), it follows that

h c q (M) = (h c 1 (M), h c p (M)) ς ,
where ς = θφ 1-θ+θφ . A simple computation shows that 1-ς 1 + ς p = 1 q . Case 2: 2 < q < p < ∞. By a similar argument, we easily deduce this case from the previous one and (1.4.8) using Wolff's theorem.

Note that in both cases, the density assumption of Wolff's theorem is ensured by Remark 1.4.2. Lemma 1.4.4. Let 1 < q < p < ∞. Then, the following holds with equivalent norms

(bmo c (M), h c q (M)) q p = h c p (M).
(1.4.9)

Proof. Applying the duality theorem 4.5.1 of [START_REF] Bergh | Interpolation Spaces. An introduction[END_REF] to (1.4.6) we obtain (1.4.9) in the case 1 < q < p < ∞ with θ = q p . Here we used the description of the dual space of h c p (M) for 1 ≤ p < ∞ mentioned in Remark 1.4.2.
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Proof of Theorem 1.4.1. We want to extend (1.4.9) to the case q = 1. To this aim we again use Wolff's interpolation theorem combined with the two previous lemmas. Let 1 < q < p < ∞. Then there exists 0 < φ < 1 such that 1-φ 1 + φ p = 1 q . We set θ = q p . Thus by Lemma 1.4.4 we have h c p (M) = (bmo c (M), h c q (M)) θ . Moreover we deduce from Lemma 1.4.3 that

h c q (M) = (h c 1 (M), h c p (M)) φ . So Wolff's result yields h c p (M) = (bmo c (M), h c 1 (M)) ς ,
where ς = θφ 1-θ+θφ . An easy computation gives ς = 1 p , and this ends the proof of (1.4.4) 2

The previous results concern the conditioned column Hardy space. We now consider the whole conditioned Hardy space, and get the analogue result.

Theorem 1.4.5. Let 1 < p < ∞. Then, the following holds with equivalent norms

(bmo(M), h 1 (M)) 1 p = h p (M).
The proof of Theorem 1.4.5 is similar to that of Theorem 1.4.1. Indeed, we need the analogue of Lemma 1.4.3 for h p (M), and the result will follow from the same arguments. By Wolff's result, it thus remains to show that (h

1 (M), h p (M)) θ = h q (M) for 1 < p ≤ 2, where 1-θ 1 + θ p = 1 q .
Recall that for 1 ≤ p ≤ 2 the space h p (M) is defined as a sum of three components h p (M) = h d p (M) + h c p (M) + h r p (M). We will consider each component, and then will sum the interpolation results. The following lemma describe the behaviour of complex interpolation with addition. Lemma 1.4.6. Let (A 0 , A 1 ) and (B 0 , B 1 ) be two compatible couples of Banach spaces. Then for 0 < θ < 1 we have

(A 0 , A 1 ) θ + (B 0 , B 1 ) θ ⊂ (A 0 + B 0 , A 1 + B 1 ) θ .
This result comes directly from the definition of complex interpolation.

Lemma 1.4.7. Let 1 ≤ p 0 < p 1 ≤ ∞, 0 < θ < 1. Then, the following holds with equivalent norms (h d p 0 (M), h d p 1 (M)) θ = h d p (M)
where

1 p = 1-θ p 0 + θ p 1 . Proof. Recall that h d p (M) consists of martingale difference sequences in p (L p (M)). So h d p (M) is 2-complemented in p (L p (M)) for 1 ≤ p ≤ ∞ via the projection P : p (L p (M)) -→ h d p (M) (a n ) n≥1 -→ (E n (a n ) -E n-1 (a n )) n≥1 .
The fact that p (L p (M)) form an interpolation scale with respect to the complex interpolation yields the required result. 

(M) ⊂ (h 1 (M), h p (M)) θ for 1 < p ≤ 2.
On the other hand, by (1.1.1) we have h p (M) = L p (M) for 1 < p < ∞ and (1.2.1) yields by duality the inclusion h 1 (M) ⊂ L 1 (M). Hence (1.4.2) gives the reverse inclusion (h 1 (M), h p (M)) θ ⊂ h q (M) for 1 < p < ∞. That establishs the analogue of Lemma 1.4.3 for h p (M), and Theorem 1.4.5 follows using duality and Wolff's interpolation theorem. 2

We now consider the real method of interpolation. We show that the main result of this section remains true for this method. For 1 < p < ∞ and 1 ≤ r ≤ ∞, similarly to the construction of the space L cond p (M; c

2 ) in Remark 1.4.2 we define the column and row subspaces of L p,r (M⊗B( 2 (N 2 ))), denoted by L cond p,r (M; c 2 ) and L cond p,r (M; r 2 ), respectively. Let h c p,r (M) be the space of martingales x such that dx ∈ L cond p,r (M; c 2 ). Theorem 1.4.8. Let 1 < p < ∞ and 1 ≤ r ≤ ∞. Then, the following holds with equivalent norms

(bmo c (M), h c 1 (M)) 1 p ,r = h c p,r (M). (1.4.10)
This result is a corollary of Theorem 1.4.1.

Proof. By a discussion similar to that at the beginning of Step 2 in the proof of Lemma 1.4.3, using (1.4.3) we can show that for 1

< v, s, q < ∞, 1 ≤ r ≤ ∞ and 0 < η < 1 such that 1 q = 1-η v + η s , we have with equivalent norms (h c v (M), h c s (M)) η,r = h c q,r (M). (1.4.11) 
We deduce (1.4.10) from (1.4.4) using the reiteration theorem on real and complex interpolations. Let 1 < p < ∞. Consider 1 < p 0 < p < p 1 < ∞. There exists 0 < η < 1 such that

1 p = 1 -η p 0 + η p 1 .
By Theorem 4.7.2 of [START_REF] Bergh | Interpolation Spaces. An introduction[END_REF] we obtain

(bmo c (M), h c 1 (M)) 1 p ,r = ((bmo c (M), h c 1 (M)) 1 p 0 , (bmo c (M), h c 1 (M)) 1 p 1
) η,r .

Then (1.4.4) yields

(bmo c (M), h c 1 (M)) 1 p ,r = (h c p 0 (M), h c p 1 (M)) η,r .
An application of (1.4.11) gives

(bmo c (M), h c 1 (M)) 1 p ,r = h c p,r (M).
This ends the proof of (1.4.10).

Remark 1.4.9. Musat's result is a corollary of Theorem 1.4.1. By Davis' decomposition proved in [START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF] we have

H c p (M) = h c p (M) + h d p (M) for 1 ≤ p < 2.
So we can show the analogue of (1.4.6) for 1 < p < 2 as follows, for 0 < θ < 1 and

1-θ 1 + θ p = 1 q H c q (M) = h c q (M) + h d q (M) = (h c 1 (M), h c p (M)) θ + (h d 1 (M), h d p (M)) θ by Lemmas 1.4.3 and 1.4.7 ⊂ (h c 1 (M) + h d 1 (M), h c p (M) + h d p (M)) θ by Lemma 1.4.6 = (H c 1 (M), H c p (M)) θ .
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On the other hand, recall that for 1 ≤ p < ∞, H c p (M) can be identified with the space of all L p -martingales x such that dx ∈ L p (M; c

2 ). Thus we can consider H c p (M) as a subspace of L p (M⊗B( 2 )) and the reverse inclusion follows. Then the same arguments, using duality and Wolff's theorem, yield Theorem 3.1 of [START_REF] Musat | Interpolation between noncommutative BMO and noncommutative L pspaces[END_REF]. Alternately, we can find Musat's result by defining an equivalent quasinorm for

• H c p (M) , 0 < p ≤ 2 similar to N c p , as follows Ñ c p (x) = inf W τ n w 1-2/p n |dx n | 2 1/2 ≈ x H c p (M) .
Then all the previous proofs can be adapted to obtain the analogue results for H c p (M).

Remark 1.4.10. Recall that we define

h c ∞ (M) (resp. h r ∞ (M)) as the Banach space of the L ∞ (M)-martingales x such that k≥1 E k-1 |dx k | 2 (respectively k≥1 E k-1 |dx * k | 2 ) converge for the weak operator topology. We set h ∞ (M) = h c ∞ (M) ∩ h r ∞ (M) ∩ h d ∞ (M).
At the time of this writing we do not know if the interpolation result (1.4.4) remains true if we replace bmo(M) by h ∞ (M).

Introduction

In this paper, we exploit Meyer's wavelet methods to the study of the operator-valued Hardy spaces. We are motivated by two rapidly developed fields. The firs one is the theory of noncommutative martingales inequalities. This theory had been already initiated in the 1970's. Its modern period of development has begun with Pisier and Xu's seminal paper [START_REF] Pisier | Non-commutative martingale inequalities[END_REF] in which the authors established the noncommutative Burkholder-Gundy inequalities and Fefferman duality theorem between H 1 and BM O. Since then many classical results have been successfully transferred to the noncommutative world (see [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities II: Applications[END_REF], [START_REF] Mei | Operator valued Hardy spaces[END_REF], [START_REF] Bekjan | Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales[END_REF]). In particular, motivated by [START_REF] Junge | H ∞ -functional caculus and square functions on noncommutative L p spaces[END_REF], Mei [START_REF] Mei | Operator valued Hardy spaces[END_REF] developed the theory of Hardy spaces on R n for operator-valued functions.

Our second motivation is the theory of wavelets founded by Meyer. It is nowadays well known that this theory is important for many domains, in particular in harmonic analysis. For instance, it provides powerful tools to the theory of Calderón-Zygmund singular integral operators. More recently, Meyer's wavelet methods were extended to study more sophistical subjects in harmonic analysis. For example, the authors of [START_REF] Ferguson | A characterization of product BMO by commutators[END_REF] exploited the properties of Meyer's wavelets to give a characterization of product BM O by commutators; [START_REF] Mucalu | Bi-parameter paraproducts[END_REF] deals with the estimates of bi-parameter paraproducts.

It is in this spirit that we wish to understand how useful wavelet methods are for noncommutative analysis. The most natural and possible way would be first to do this in the semi-commutative case. This is exactly the purpose of the present paper which could be viewed as the first attempt towards the development of wavelet techniques for noncommutative analysis.

A wavelet basis of L 2 (R) is a complete orthonormal system (w I ) I∈D , where D denotes the collection of all dyadic intervals in R, w is a Schwartz function satisfying the properties needed for Meryer's construction in [START_REF] Meyer | Wavelets and Operators[END_REF], and

w I (x) . = 1 |I| 1 2 w x -c I |I| ,
where c I is the center of I. The central facts that we will need about the wavelet basis are the orthogonality between different w I 's, w L 2 (R) = 1 and the regularity of w,

max(|w(x)|, |w (x)|) (1 + |x|) -m , ∀m ≥ 2.
Chapter 2. Wavelet approach to operator-valued Hardy spaces

The analogy between wavelets and dyadic martingales is well known. The key observation is the following parallelism:

|I|=2 -n+1 f, w I w I ∼ df n ,
where df n denotes n-th dyadic martingale difference of f . As dyadic martingales are much easier to handle, this parallelism explains why wavelet approach to many problems in harmonic analysis is usually simple and efficient. On the other hand, it also indicates that martingale methods may be used to deal with wavelets. With this in mind, we develop the operator-valued Hardy spaces based on the wavelet methods in the way which is well known in the noncommutative martingales case. Then we show that our Hardy and BMO spaces coincide with Mei's. In other words, we provide another approach, which is much simpler than Mei's original one, to recover all the results of [START_REF] Mei | Operator valued Hardy spaces[END_REF].

This paper is organized as follows. In section 1, we will give some preliminaries on noncommutative analysis, the definition of H p (R, M) with 1 ≤ p < ∞ and L q MO(R, M) with 2 < q ≤ ∞ in our setting. In section 2, we are concerned with three duality results. The most important one is the noncommutative analogue of the famous Fefferman duality theorem between H c 1 (R, M) and BMO c (R, M). The second one is the duality between H c p (R, M) and L c p MO(R, M) with 1 < p < 2, where we need the noncommutative Hardy-Littlewood maximal inequality, this is why we consider the case 1 < p < 2 independently. The last one is the duality between H c p (R, M) and H c p (R, M) with 1 < p < ∞. As a corollary of the last two results, we identify H c q (R, M) and L c q MO(R, M) with 2 < q < ∞. Section 3 deals with the interpolation of our Hardy spaces. In the last section, we show that our Hardy spaces coincide with those of [START_REF] Mei | Operator valued Hardy spaces[END_REF]. So, we can give an explicit completely unconditional basis for the space H 1 (R), when H 1 (R) is equipped with an appropriate operator space structure.

We end this introduction by the convention that throughout the paper the letter c will denote an absolute positive constant, which may vary from lines to lines, and c p a positive constant depending only on p.

Preliminaries

Operator-valued noncommutative L p -spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ and S + M be the set of all positive element x in M with τ (s(x)) < ∞, where s(x) is the smallest projection e such that exe = x. Let S M be the linear span of S + M . Then any x ∈ S M has finite trace, and S M is a w * -dense * -subalgebra of M.

Let 1 ≤ p < ∞. For any x ∈ S M , the operator |x| p belongs to

S + M (|x| = (x * x) 1 2
). We define

x p = τ (|x| p ) 1 p , ∀x ∈ S M .
One can check that • p is well defined and is a norm on S M . The completion of (S M , • p ) is denoted by L p (M) which is the usual noncommutative L p -space associated with (M, τ ).

For convenience, we usually set L ∞ (M) = M equipped with the operator norm • M . The elements of L p (M, τ ) can be described as closed densely defined operators on H (H being the Hilbert space on which M acts). We refer the reader to [START_REF] Pisier | Noncommutative L p -spaces[END_REF] for more information on noncommutative L p -spaces.

In this paper, we are concerned with three operator-valued noncommutative L p -spaces. The first one is the Hilbert-valued noncommutative space L p (M; H c ) (resp. L p (M; H r )),

Preliminaries

57

which is studied at length in [START_REF] Junge | H ∞ -functional caculus and square functions on noncommutative L p spaces[END_REF]. For this space, we need the following properties. In the sequel, p will always denote the conjugate index of p.

Lemma 2.1.1. Let 1 ≤ p < ∞. Then (L p (M; H c )) * = L p (M; H c ).
(2.1.1)

Thus, for f ∈ L p (M; H c ) and g ∈ L p (M; H c ), we have |τ ( f, g )| ≤ f Lp(M;H c ) g L p (M;H c ) ,
where , denotes the inner product of H.

Lemma 2.1.2. Let 1 ≤ p 0 < p < p 1 ≤ ∞, 0 < θ < 1, 1 p = 1-θ p 0 + θ p 1 . Then [L p 0 (M; H c ), L p 1 (M; H c )] θ = L p (M; H c ). ( 2 

.1.2)

A same equality holds for row spaces.

The second one is the ∞ -valued noncommutative space L p (M; ∞ ), which is studied by Pisier [START_REF] Pisier | Noncommutative vector valued L p spaces and completely p-summing maps[END_REF] for an injective M and Junge [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF] for a general M (see also [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF] and [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for more properties). About this one, we need the following property:

Lemma 2.1.3. Let 1 ≤ p < ∞. Then (L p (M; 1 )) * = L p (M; ∞ ). Thus, for x = (x n ) n ∈ L p (M; 1 ) and y = (y n ) n ∈ L p (M; ∞ ), we have n≥1 τ (x n y n ) ≤ x Lp(M; 1 ) y L p (M; ∞) .
(2.1.

3)

The third one is L p (M; c ∞ ) for 2 ≤ p ≤ ∞, which was introduced in [START_REF] Defant | Maximal theorems of Menchoff-Rademacher type in noncommutative L q -spaces[END_REF] and is related with the second one by

(x n ) n Lp(M; c ∞ ) = (|x n | 2 ) n L p 2 (M; ∞) .
And these are normed spaces by the following characterization

(x n ) n Lp(M; c ∞ ) = inf xn=yna (y n ) ∞(L∞(M)) a Lp(M) .
We need the interpolation results about these spaces (see [START_REF] Musat | Interpolation between noncommutative BMO and noncommutative L pspaces[END_REF]):

Lemma 2.1.4. Let 2 ≤ p 0 < p < p 1 ≤ ∞, 0 < θ < 1, 1 p = 1-θ p 0 + θ p 1 . Then [L p 0 (M; c ∞ ), L p 1 (M; c ∞ )] θ = L p (M; c ∞ ). (2.1.4)

Operator-valued Hardy spaces

In this paper, for simplicity, we denote L ∞ (R) ⊗M by N . As indicated in the introduction, one can observe that we have the following operator-valued Calderón identity

f (x) = I∈D f, w I w I (x), (2.1.5) 
which holds when f ∈ L 2 (N ). As in the classical case, for f ∈ S N , we define the two Littlewood-Paley square functions as

S c (f )(x) = I∈D | f, w I | 2 |I| 1 I (x) 1 2 . (2.1.6) S r (f )(x) = I∈D | f * , w I | 2 |I| 1 I (x) 1 2 . (2.1.7) For 1 ≤ p < ∞, define f H c p = S c (f ) Lp(N ) , f H r p = S r (f ) Lp(N ) .
These are norms, which can be seen easily from the space L p (N ; c 2 (D)). So we define the spaces

H c p (R, M) (resp. H r p (R, M)) as the completion of (S N , • H c p (R,M) ) (resp. (S N , • H c p (R,M)
). Now, we define the operator-valued Hardy spaces as follows:

for 1 ≤ p < 2, H p (R, M) = H c p (R, M) + H r p (R, M) (2.1.8)
with the norm

f Hp = inf{ g H c p + h H r p : f = g + h, g ∈ H c p , h ∈ H r p } and for 2 ≤ p < ∞, H p (R, M) = H c p (R, M) ∩ H r p (R, M) (2.1.9) 
with the norm defined as f Hp = max{ f H c p , f H r p }. We can identify H c p (R, M) as a subspace of L p (N ; c 2 (D)), which is related with the two maps below. Lemma 2.1.5. (i) The embedding map Φ is defined from

H c p (R, M) to L p (N ; c 2 (D)) by Φ(f ) = f, w I |I| 1 2 1 I I∈D . (2.1.10) (ii) The projection map Ψ is defined from L 2 (N ; c 2 (D)) to H c 2 (R, M) by Ψ((g I )) = I∈D g I |I| 1 2
1 I dy • w I .

(2.1.11)

Operator-valued BMO spaces

For ϕ ∈ L ∞ (M; L c 2 (R, dx 1+x 2 )), set ϕ BMO c = sup J∈D 1 |J| I⊂J | ϕ, w I | 2 1 2 M (2.1.12) and ϕ BMO r = ϕ * BMO c (R,M) . Define BMO c (R, M) = {ϕ ∈ L ∞ (M; L c 2 (R, dx 1 + x 2 )) : ϕ BMO c < ∞} 2.2. Duality 59 and BMO r (R, M) = {ϕ ∈ L ∞ (M; L r 2 (R, dx 1 + x 2 )) : ϕ BMO r < ∞}.
These are Banach spaces modulo constant functions. Now we define

BMO(R, M) = BMO c (R, M) ∩ BMO r (R, M).
As in the martingale case [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], we can also define L c p MO(R, M) for all 2 < p ≤ ∞.

For ϕ ∈ L p (M; L c 2 (R, dx 1+x 2 )), set ϕ L c p MO = ( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k L p 2 (N ; ∞) (2.1.13) and ϕ L r p MO = ϕ * L c
p MO , where I x k denote the unique dyadic interval with length 2 -k+1 that containing x. We will use the convention adopted in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for the norm in L p 2 (N ; ∞ ). Thus

( 1 |I x k | I⊂I x k | ϕ, w I | 2 ) k L p 2 (N ; ∞) = sup k + 1 |I x k | I⊂I x k | ϕ, w I | 2 L p 2 (N )
.

Again, we can define

L c p MO(R, M) = {ϕ ∈ L p (M; L c 2 (R, dx 1 + x 2 )) : ϕ L c p MO < ∞} and L r p MO(R, M) = {ϕ ∈ L p (M; L r 2 (R, dx 1 + x 2 )) : ϕ L c r MO < ∞}. Define L p MO(R, M) = L c p MO(R, M) ∩ L r p MO(R, M). Note that L c ∞ MO(R, M) = BMO c (R, M).
It easy to check all the spaces we defined here respect to the relevant norms are Banach spaces.

Duality

To prove the first two duality results in this section, we need the following noncommutative Doob inequality from [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF].

Let (E n ) n be the conditional expectation with respect to a filtration

(N n ) n of N . Lemma 2.2.1. Let 1 < p ≤ ∞ and f ∈ L p (N ). Then sup n + E n (f ) Lp(N ) ≤ c p f Lp(N ) . (2.2.1)
Theorem 2.2.2. We have

(H c 1 (R, M)) * = BMO c (R, M) (2.2.2)
with equivalent norms. That is, every ϕ ∈ BMO c (R, M) induces a continuous linear functional l ϕ on H c 1 (R, M) by

l ϕ (f ) = τ ϕ * f, ∀f ∈ S N . (2.2.3)
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Conversely, for every l ∈ (H c 1 (R, M)) * , there exits a ϕ ∈ BMO c (R, M) such that l = l ϕ . Moreover,

c -1 ϕ BMO c ≤ l ϕ (H c 1 ) * ≤ c ϕ BMO c
where c > 0 is a universal constant.

Similarly, the duality holds between H r 1 and BMO r , between H 1 and BMO with equivalent norms.

In order to adapt the arguments in the martingale case, we need to define the truncated square functions for n ∈ Z,

S c,n (f )(x) = n k=-∞ |I|=2 -k+1 | f, w I | 2 |I| 1 I (x) 1 2 .
Proof. Since S N is dense in H c 1 (R, M), by an approximation argument, we only need to prove the inequality

|l ϕ (f )| ≤ c ϕ BMO c f H c 1 for f ∈ S N . By approximation we may assume that S c,n (f )(x) is invertible in M for all x ∈ R and n ∈ Z. Then we have |l ϕ (f )| = |τ ϕ * f dx| = n τ |I|=2 -n+1 ϕ, w I * w I |I |=2 -n+1 f, w I w I dx = n τ |I|=2 -n+1 ϕ, w I * |I| 1 2 1 I |I |=2 -n+1 f, w I |I| 1 2 1 I dx ≤ n τ |I|=2 -n+1 f, w I |I| 1 2 1 I 2 S -1 c,n (f ) 1 2 • τ |I|=2 -n+1 ϕ, w I |I| 1 2 1 I 2 S c,n (f ) 1 2 ≤ n τ |I|=2 -n+1 | f, w I | 2 |I| 1 I S -1 c,n (f ) 1 2 • n τ |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I S c,n (f ) 1 2 = A • B.
In the above estimates, the first equality has used the orthogonality of the w I 's on different levels, the second the orthogonality of the w I 's on the same level and the disjoint of different dyadic I's on the same level; the first inequality has used the Hölder inequality in Lemma 2.1.1, and the second the Cauchy-Schwarz inequality and the disjointness of different I's on the same level.
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Now, let us estimate A:

A 2 = n τ (S 2 c,n (f ) -S 2 c,n-1 (f ))S -1 c,n (f ) = n τ (S c,n (f ) -S c,n-1 (f ))(1 + S c,n-1 (f )S -1 c,n (f )) ≤ n τ (S c,n (f ) -S c,n-1 (f )) 1 + S c,n-1 (f )S -1 c,n (f ) ∞ ≤ 2 n τ (S c,n (f ) -S c,n-1 (f )) = 2 f H c 1 .
For the first inequality, we has used the Hölder inequality and the positivity of S c,n (f ) -S c,n-1 (f ).

The second term is estimated as follows:

B 2 = k τ (S c,k (f ) -S c,k-1 (f )) n≥k |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I = k τ j (S c,k (f ) -S c,k-1 (f )) I j k n≥k |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I = k τ j I j k (S c,k (f ) -S c,k-1 (f )) 1 |I j k | I⊂I j k | ϕ, w I | 2 ≤ k j τ I j k (S c,k (f ) -S c,k-1 (f )) 1 |I j k | I⊂I j k | ϕ, w I | 2 ∞ ≤ ϕ 2 BMO c k j τ I j k (S c,k (f ) -S c,k-1 (f )) = ϕ 2 BMO c f H c 1
The fist equality has used the Fubini theorem, the second one the fact that S c,k-1 (f ) and S c,k (f ) are constant on the dyadic interval I j k = [j2 -k+1 , (j + 1)2 -k+1 ); the first inequality has used the Hölder inequality and the positivity of S c,n (f ) -S c,n-1 (f ). Now, let us begin to deal with another direction, i.e. suppose that l is a bounded linear functional on H c 1 (R, M), we want to find an operator-valued function ϕ in BMO c (R, M), such that l = l ϕ and l ϕ (f ) = τ ϕ * f for f ∈ S N . By the embedding operator Φ in (2.1.10) and by the Banach-Hahn theorem, l extends to a bounded continuous functional on L 1 (N ; c 2 (D)) of the same norm. Then by the results in Lemma 2.1.1 there exists g = (g I ) I∈D such that g L∞(N ; c 2 (D)) = l , and

l(f ) = τ I∈D g * I f, w I |I| 1 2 1 I , ∀f ∈ S N .
Now let ϕ = Ψ(g), where Ψ is defined as (2.1.11). The orthogonality of the w I 's yields

I⊂J | ϕ, w I | 2 M = I⊂J | g I |I| 1 2 1 I | 2 M ≤ I⊂J J |g I | 2 M ≤ |J| I⊂J |g I | 2 L∞(N ) ≤ |J| (g I ) I L∞(N ; c 2 (D)) ,
where the first inequality used the Kadison-Schwartz inequality. Also thanks to the orthogonality of the w I 's, we get

l(f ) = τ I∈D g * I f, w I |I| 1 2 1 I = τ ϕ * f
for all f ∈ S N . Therefore, we complete the proof about H c 1 (R, M) and BMO c (R, M). Passing to adjoint, we have the conclusion concerning H r 1 and BMO r . Finally, by the classical fact that the dual of a sum space is the intersection space, we obtain the duality between H 1 and BMO.

Theorem 2.2.3. Let 1 < p < 2. We have

(H c p (R, M)) * = L c p MO(R, M) (2.2.4) with equivalent norms. That is, every ϕ ∈ L c p MO(R, M) induces a continuous linear functional l ϕ on H c p (R, M) by l ϕ (f ) = τ ϕ * f, ∀f ∈ S N . (2.2.5)
Conversely, for every l ∈ (H c p (R, M)) * , there exists an operator-valued function ϕ ∈ L c p MO(R, M) such that l = l ϕ and

c -1 p ϕ L c p MO ≤ l ϕ (H c p ) * ≤ √ 2 ϕ L c p MO
Similarly, the duality holds between H r p and L r p , between H p and L p MO with equivalent norms.

We need the following lemma of [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF]. We write it down for convenience of the reader but without proof. Lemma 2.2.4. Let s, t be two real numbers such that s < t and 0 ≤ s ≤ 1 ≤ t ≤ 2. Let x, y be two positive operators such that x ≤ y and x t-s , y t-s ∈ L 1 (N ). Then τ y -s/2 (y t -x t )y -s/2 ≤ 2τ y -(s+1-t)/2 (y -x)y -(s+1-t)/2 .

Proof. We need only to prove the first assertion on H c p . Since S N is dense in H c p (R, M), by an approximation argument, we only need to prove the inequality

|l ϕ (f )| ≤ c ϕ L c p MO f H c p for f ∈ S N
. By approximation we may assume that S c,n (f )(x) is invertible in M for all x ∈ R and n ∈ Z. By the similar principle in the noncommutative martingale case as in 2.2. Duality 63 [START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF], we have

|l ϕ (f )| = |τ ϕ * f dx| = n τ |I|=2 -n+1 ϕ, w I * w I |I |=2 -n+1 f, w I w I dx = n τ |I|=2 -n+1 ϕ, w I * |I| 1 2 1 I |I |=2 -n+1 f, w I |I| 1 2 1 I dx ≤ n τ |I|=2 -n+1 f, w I |I| 1 2 1 I 2 S p-2 c,n (f ) 1 2 • τ |I|=2 -n+1 ϕ, w I |I| 1 2 1 I 2 S 2-p c,n (f ) 1 2 ≤ n τ |I|=2 -n+1 | f, w I | 2 |I| 1 I S p-2 c,n (f ) 1 2 • n τ |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I S 2-p c,n (f ) 1 2 = A • B.
Now we need the above lemma to estimate the first term. Take s = 2 -p and t = 2, the lemma yields

A 2 = n τ (S 2 c,n (f ) -S 2 c,n-1 (f ))S p-2 c,n (f ) = n τ S -(2-p)/2 c,n (f )(S 2 c,n (f ) -S 2 c,n-1 (f ))S -(2-p)/2 c,n (f ) ≤ 2 n τ S -(1-p)/2 c,n (f )(S c,n (f ) -S c,n-1 (f ))S -(1-p)/2 c,n (f ) = 2 n τ S c,n (f ) -S c,n-1 (f )S p-1 c,n (f ) ≤ 2 n τ S p c,n (f ) -S p c,n-1 (f ) = 2 f p H c p .
(2.2.6)

The last inequality used two elementary inequalities: 0 ≤ S c,n-1 (f ) ≤ S c,n (f ) implies

S p-1 c,n-1 (f ) ≤ S p-1 c,n (f ) for 0 < p -1 < 1; and τ (S p-1 c,n-1 (f )) ≤ τ (S 1 2 c,n-1 (f )S p-1 c,n (f )S 1 2 c,n-1 (f )).
The second term can be deduced from the nontrivial duality results in Lemma 2.1.3

Chapter 2. Wavelet approach to operator-valued Hardy spaces for 1 < p < ∞ as follows.

B 2 = k τ S 2-p c,k (f ) -S 2-p c,k-1 (f ) n≥k |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I = k τ j S 2-p c,k (f ) -S 2-p c,k-1 (f ) I j k n≥k |I|=2 -n+1 | ϕ, w I | 2 |I| 1 I = k τ j 1 I j k (x)S 2-p c,k (f )(x) -S 2-p c,k-1 (f )(x) 1 |I j k | I⊂I j k | ϕ, w I | 2 dx = k τ S 2-p c,k (f )(x) -S 2-p c,k-1 (f )(x) 1 |I x k | I⊂I x k | ϕ, w I | 2 dx ≤ k S 2-p c,k (f ) -S 2-p c,k-1 (f ) L (p /2) sup k 1 |I x k | I⊂I x k | ϕ, w I | 2 L p /2 = ϕ 2 L c p MO f 2-p H c p .
The fist equality has used the Fubini theorem, the second one the fact that S c,k-1 (f ) and S c,k (f ) are constant on the dyadic intervals with length 2 -k+1 .

For another direction, we can carry out the proof as that in the case p = 1. Suppose that l is a bounded linear functional on H c p (R, M). By the embedding operator Φ and by Hahn-Banach theorem, and the results in Lemma 2.1.1

we can find g = (g I ) I∈D such that g L p (N ; c 2 (D)) = l and

l(f ) = τ I∈D g * I f, w I |I| 1 2 1 I , ∀f ∈ S N .
Now let ϕ = Ψ(g) defined in (2.1.11), the orthogonality of the w I 's yields

sup n + 1 |I x n | I⊂I x n | ϕ, w I | 2 L q/2 (N ) = sup n + 1 |I x n | I⊂I x n | g I |I| 1 2 1 I | 2 L q/2 (N ) ≤ sup n + 1 |I x n | I⊂I x n I x n |g I | 2 L q/2 (N ) ≤ sup n + 1 |I x n | I x n I⊂I x n |g I | 2 L q/2 (N ) ≤ sup n + 1 |I x n | I x n I∈D |g I | 2 L q/2 (N ) ≤ c I∈D |g I | 2 L q/2 (N ) = c (g I ) I L q/2 (N ; c 2 (D))
, where for the first inequality we used the Kadison-Schwartz inequality, and the last inequality is (2.2.1). Also due to the orthogonality of the w I 's, we get

l(f ) = τ I∈D g * I f, w I |I| 1 2 1 I = τ ϕ * f,
for all f ∈ S N . Therefore, we complete the proof about H c p (R, M) and L c p MO(R, M).
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Instead of using the noncommutative Doob inequality, we will use the following noncommutative Stein inequality from [START_REF] Pisier | Non-commutative martingale inequalities[END_REF] to prove the duality between the spaces H c p , 1 < p < ∞.

Let (E n ) n be the conditional expectation with respect to a filtration (N n ) n of N .

Lemma 2.2.5. Let 1 < p < ∞ and a = (a n ) n ∈ L p (N ; c 2 ). Then there exists a constant depending only on p such that

n |E n a n | 2 1 2 Lp(N ) ≤ C p n |a n | 2 1 2 Lp(N )
.

(2.2.7) Theorem 2.2.6. For any 1 < p < ∞, we have

(H c p (R, M)) * = H c p (R, M), (2.2 

.8)

Proof. By a similar reason as in the corresponding part of the proof of Theorem 2.2.2, we can carry out the following calculation,

|l ϕ (f )| = |τ ϕ * f dx| = n τ |I|=2 -n+1 ϕ, w I * w I |I |=2 -n+1 f, w I w I dx = n τ |I|=2 -n+1 ϕ, w I * |I| 1 2 1 I f, w I |I| 1 2 1 I dx ≤ I∈D | f, w I | 2 |I| 1 I 1 2 Lp(R,M) • I∈D | ϕ, w I | 2 |I| 1 I 1 2
L p (R,M) . Now, we turn to the proof of the inverse direction. Take a bounded linear functional l ∈ (H c p (R, M)) * , by the embedding operator Φ and the Hahn-Banach extension theorem, l extends to a bounded linear functional on L p (N ; c

2 ) with the same norm. Thus by (2.1.1), there exists a sequence g = (g I ) I such that

g Lq(N ;l c 2 (D)) = l and l(f ) = τ I∈D g * p f, w I |I| 1 2 1 I , ∀f ∈ S N .
Now let ϕ = Ψ(g) where Ψ is defined in (2.1.11), then applying the Stein inequality (2.2.5) to the conditional expectation

E I (h) = J 1 |J| J h(y)dy • 1 J ,
where J is dyadic interval with the same length as I, we get

ϕ H c p (R,M) = I∈D | 1 |I| I g I dy • 1 I | 2 1 2 L p (N ) ≤ I∈D |E I (g I )| 2 1 2 L p (N ) ≤ c p I∈D |g I | 2 1 2 L p (N ) .
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l(f ) = τ I∈D g * I f, w I |I| 1 2 1 I = τ ϕ * f, for all f ∈ S N .
From the proof of the second part of Theorem 2.2. 

H c p (R, M) = L c p MO(R, M), ∀2 < p < ∞ with equivalent norms.
However, for the part L c p MO(R, M) ⊂ H c p (R, M), we can give another proof. The idea is essentially similar to that in [START_REF] Mei | Operator valued Hardy spaces[END_REF], the good news is that in our case, the argument seems very elegant. Now we give the detailed proof.

Proof. Our tent space is defined as

T c p = f = {f I } I ∈ L p (M; c 2 (D)) : τ I∈D f 2 I |I| 1 I p 2 < ∞ .
We claim that every ϕ ∈ L c p MO(R, M) induces a bounded linear functional on T c p , 

l ϕ (f ) = τ I∈D ϕ, w I * |I| 1 2 1 I f I |I| 1 
l ϕ (f ) = τ I∈D h * I f I |I| 1 2
1 I dx.

So we get ϕ, w

I |I| 1 2 1 I = h I , thus, ϕ H c p = I∈D ϕ, w I * |I| 1 2

Interpolation

This section is devoted to the interpolation of our wavelet Hardy spaces. The interpolation results below will be needed in the next section to compare our Hardy spaces with those of Mei.

Lemma 2.3.1. Let 1 < p 0 < p < p 1 < ∞, we have

[H c p 0 (R, M), H c p 1 (R, M)] θ = H c p (R, M) (2.3.1)
with equivalent norms, where θ satisfies

1 p = 1-θ p 0 + θ p 1 .
Proof. The embedding map Φ yields

[H c p 0 , H c p 1 ] θ ⊂ H c p .
On the other hand, it is the boundedness of the projection map Ψ from L p (N ; c 2 (D)) to H c p (R, M) stated in Corollary 2.2.7 that yields the inverse direction.

Theorem 2.3.2. Let 1 ≤ q < p < ∞, we have

[BMO c (R, M), H c q (R, M)] q p = H c p (R, M) (2.3.2)
with equivalent norms.

Proof. We will prove the theorem by a general strategy as appeared in [START_REF] Musat | Interpolation between noncommutative BMO and noncommutative L pspaces[END_REF].

Step 1: We prove the conclusion for 2 < q < p < ∞:

[BMO c (R, M), H c q (R, M)] q p = H c p (R, M). (2.3.3)
The identity can be seen easily from the following two inclusions. On one hand, the operator Φ which in (2.1.10), together with (2.1.2) yields

[H c 1 (R, M), H c q (R, M)] q p ⊂ H c p (R, M).
Then by duality and Corollary 2.2.8, we have

L c p MO(R, M) ⊂ [BMO c (R, M), L c q MO(R, M)] q p . ( 2 

.3.4)

On the other hand, the operator

T identifying L c p MO(R, M) as a subspace of L p (L ∞ (N ⊗B( 2 (D)); c ∞ ) defined by T (ϕ) = f, w I |I t k | -1 2 1 I⊂I t k (I) ⊗ e I,1 , (2.3.5)
together with Lemma 2.1.4 yields

[BMO c (R, M), L c q MO(R, M)] q p ⊂ L c p MO(R, M). (2.3.6)
Step 2: we prove the conclusion for 1 < q < p < ∞. This step can be divided into two substeps.

Substep 21: p > 2. Let p < s < ∞. By Step 1, we have

[BMO c (R, M), H c p (R, M)] p s = H c s (R, M).
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On the other hand, by Theorem 2.3.1, we have

[H c q , H c s ] θ = H c p ,
where(and in the rest of the paper) θ denote the interpolation parameter. Then Wolff's interpolation theorem yields the result. Substep 22: p ≤ 2. Let s > 2, then by Substep 21, we have

[BMO c (R, M), H c p (R, M)] p s = H c s (R, M).
Then together with Lemma 2.3.1, Wolff's interpolation theorem yields the result.

Step 3: we prove the conclusion for 1 = q < p < ∞. Take s > max(p, 2). By Step 2 and duality [8, Theorem 4.3.1], we get

[H c 1 , H c s ] θ = H c p .
Then together with Step 2, Wolff's interpolation yields the conclusion.

Remark 2.3.3. If one can directly prove Lemma 2.3.1 for p 0 = 1, we can prove the above theorem without the help of L c p MO(R, M) for 2 < p < ∞ as carried out in [START_REF] Bekjan | Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales[END_REF], where one needs an auxiliary space. Theorem 2.3.4. For 1 < p < ∞, we have

H p (R, M) = L p (N )

with equivalent norms.

Proof. There are several ways to prove this result. One can prove it by the strategy in [START_REF] Pisier | Non-commutative martingale inequalities[END_REF] together with Stein's inequality (2.2.5). Here, we just use the fact that L p (M) with 1 < p < ∞ is a UMD space and our (w I ) I is an complete orthonormal basis. So by Theorem 3.8 in [START_REF] Hytönen | Wavelet expansions for weighted vector-valued BMO functions[END_REF], we have

f Lp(N ) E I∈D ε I f, w I |I| 1 2 1 I p Lp(N ) 1 p .
Then we complete the proof for 2 ≤ p < ∞ by Khintchine's inequalities. Now, let us prove the case 1 < p < 2. Let f ∈ H p (R, M), then for any > 0, by the definition of H p (R, M), there exists a decomposition f = f c + f r such that

f c H c p (R,M) + f r H r p (R,M) ≤ f H c p (R,M) + .
Take any g ∈ L p (N ), by the results for p > 2, the operator valued Calderón identity (2.1.5) yields and f r H r p (R,M) ≤ (F r,I ) I Lp(N ; r 2 (D)) . So we have found the desired decomposition of f .

|τ gf * | = | I∈D τ g, w I |I| 1 2 1 I • f * , w I |I| 1 2 1 I | ≤ | I∈D τ g, w I |I| 1 2 1 I • f * c , w I |I| 1 2 1 I | + | I∈D τ g, w I |I| 1 2 1 I • f * r , w I |I| 1 2 1 I | ≤ S c (g) L p (N ) S c (f c ) Lp(N ) + |S r (g) L p (N ) S r (f r ) Lp(N )

Theorem 2.3.5. The following results hold with equivalent norms:

(i) Let 1 ≤ q < p < ∞, we have

[BMO(R, M), L q (N )] q p = L p (N ). (2.3.7) (ii) Let 1 < q < p ≤ ∞, we have [H 1 (R, M), L p (N )] p q = L q (N ). (2.3.8) (iii) Let 1 < p < ∞, we have [BMO(R, M), H 1 (R, M)] 1 p = L p (N ).
(2.3.9)

In order to prove this theorem, we need the following result from the theory of interpolation. We formulate it here without proof. Lemma 2.3.6. Let A 0 , B 0 , A 1 , B 1 be four Banach spaces satisfying the property needed of interpolation. Then

[A 0 + B 0 , A 1 + B 1 ] θ ⊃ [A 0 , A 1 ] θ + [B 0 , B 1 ] θ and [A 0 ∩ B 0 , A 1 ∩ B 1 ] θ ⊂ [A 0 , A 1 ] θ ∩ [B 0 , B 1 ] θ .
Proof. (i) We also exploit the similar but different strategy with that in the proof of Theorem 2.3.2.

Step 1: we prove the results for 2 ≤ q < p < ∞. By Theorem 2.3.4, Theorem 2.3.2 and the lemma, we have

[BMO(R, M), L q (N )] q p ⊂ L p (N ). The inverse direction follows from L ∞ (N ) ⊂ BMO(R, M), L p (N ) = [L ∞ (N ), L q (N )] q p ⊂ [BMO(R, M), L q (N )] q p
Step 2: we prove the results for 1 ≤ q < 2 ≤ p < ∞. By Step 1, we have

[BMO(R, M), L 2 (N )] 2 p = L p (N ).
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Together with L 2 (N ) = [L p (N ), L q (N )] θ ,
Wolff's interpolation yields the conclusion.

Step 3: we prove the results for 1 ≤ q < p < 2. By Step 2, we have

[BMO(R, M), L p (N )] p 2 = L 2 (N ).
Together with

L p (N ) = [L 2 (N ), L q (N )] θ ,
Wolff's interpolation yields the conclusion.

(ii) The results for 1 < q < p < ∞ can be immediately proved by duality and the partial results in (i). For p = ∞, take q < s < ∞, then by Wolff's argument, we get the conclusion.

(iii) First, we prove conclusion for p < 2. Then by (i) and (ii), we have

[BMO(R, M), L p (N )] p p = L p (N ) and [H 1 (R, M), L p (N )] p p = L p (N ).
Therefore, we end with Wolff's argument. Second, the proof for p > 2 is the same. At last, when p = 2, we can take s > 2, by the results for p = 2 and reiteration theorem in [8, Theorem 4.6.1], we get

L 2 = [L s , L s ] θ = [BMO(R, M), H 1 (R, M)] 1 s , BMO(R, M), H 1 (R, M)] 1 s ] θ = [BMO(R, M), H 1 (R, M)] θ .

Comparison with Mei's results

We denote the column Hardy space H c p (R, M) and the bounded mean oscillation space BM O c (R, M) in [START_REF] Mei | Operator valued Hardy spaces[END_REF]. We have the following result. The theorem can be easily seen from the corresponding BM O(R, H)-spaces. However, we can exploit the idea of [START_REF] Hytönen | Wavelet expansions for weighted vector-valued BMO functions[END_REF] to prove our BMO c (R, M) also coincide with that defined by the mean oscillation.

Proof. BMO c (R, M) ⊂ BM O c (R, M). Let ϕ ∈ BMO c (R, M).
As in [START_REF] Hytönen | Wavelet expansions for weighted vector-valued BMO functions[END_REF], fix a finite interval I ⊂ R, and consider the collections of dyadic intervals Let a J = ϕ, ω J , then we have a priori formal series

ϕ 1 (x) = J∈D 1 a J [ω J (x) -ω J (c I )], ϕ i (x) = J∈D i a J ω J (x), i = 2, 3,
where c I is the center of the interval I. Denote ϕ I = ϕ 1 + ϕ 2 + ϕ 3 , by a similar discussion in [START_REF] Hytönen | Wavelet expansions for weighted vector-valued BMO functions[END_REF], we only need to prove:

1 |I| I |ϕ I (x)| 2 dx M < ∞.
By scaling we can assume:

sup

I 1 |I| J⊂I |a J | 2 = 1.
Then we have the following obvious bound for individual terms a J ≤ |J| 1 2 . Estimates for ϕ 1 :

1 |I| I |ϕ 1 (x)| 2 dx ≤ 1 |I| ( J∈D 1 a J |ω J (x) -ω J (c I )|) 2 dx ≤ c 1 |I| I [ J∈D 1 |J| 1 2 |I||J| -3 2 (1 + dist(I, J) |J| ) -2 ] 2 dx = c[ ∞ j=0 |J|∈(2 j-1 ,2 j ]|I| |I||J| -1 (1 + dist(I, J) |J| ) -2 ] 2 < ∞.
Estimates for ϕ 2 :

1 |I| I |ϕ 2 (x)| 2 dx ≤ 1 |I| I D 2 a J ω J (x) 2 dx ≤ 1 |I| I ( D 2 a J |ω J (x)|) 2 dx ≤ c 1 |I| I [ D 2 |J| 1 2 |J| -1 2 ( dist(I, J) |J| ) -2 ] 2 dx = c[ ∞ j=1 |J|∈(2 -j-1 ,2 -j )|I|,dist(I,J)>2 -1 |I| ( dist(I, J) |J| ) -2 ] 2 < ∞.
Estimates for ϕ 3 :

1 |I| I |ϕ 3 (x)| 2 dx ≤ 1 |I| J∈D 3 |a J | 2 ≤ 1 |I| J⊂4I |a J | 2 < ∞
Hence we deduce that:

I |ϕ I (x)| 2 dx M ≤ c 3 i=1 I |ϕ i (x)| 2 dx M ≤ c|I| Now turn to the proof of inverse direction BM O c (R, M) ⊂ BMO c (R, M). Let ϕ ∈ BM O c (R, M).
The proof is very similar to that in Mei's work [START_REF] Mei | Operator valued Hardy spaces[END_REF]. For any dyadic interval

I ⊂ R, write ϕ = ϕ 1 + ϕ 2 + ϕ 3 , where ϕ 1 = (ϕ -ϕ 2I )χ 2I , ϕ 2 = (ϕ -ϕ 2I )χ 2I c , ϕ 3 = ϕ 2I .
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Thus J⊂I | ϕ, ω J | 2 ≤ 2( J⊂I | ϕ 1 , ω J | 2 + J⊂I | ϕ 2 , ω J | 2 )
Estimates for ϕ 1 : 

J⊂I | ϕ 1 , ω J | 2 ≤ |ϕ 1 (x)| 2 dx ≤ c 2I |ϕ -ϕ 2I | 2 ≤ c|I| Estimates for ϕ 2 : J⊂I | ϕ 2 , ω J | 2 = J⊂I | ∞ k=1 2 k+1 I/2 k I ϕ 2 ω J dx| 2 ≤ J⊂I ( ∞ k=1 1 2 2k 2 k+1 I/2 k I |ϕ 2 | 2 )( ∞ k=1 2 2k 2 k+1 I/2 k I |ω J | 2 ) ≤ c( ∞ k=1 1 2 2k 2 k+1 I |ϕ -ϕ 2I | 2 ) ( J⊂I ∞ k=1 2 2k 2 k+1 I/2 k I |ω J | 2 ) ≤ c|I| ϕ 2 BMOc ∞ j=0 2 j ∞ k=1 2 k+1 I/2 k I 2 2k |2 -j I| 3 |2 k I| 4 ≤ c|I| Therefore J⊂I | ϕ, ω J | 2 ≤ c|I|,
H c p (R, M) = H c p (R, M).
Similar equality hold for H r p and H r p , and H p and H p .

If M = C, H 1 (R, C
) is just the usual Hardy space H 1 (R) of R. H 1 (R) also has the following characterization:

H 1 (R) = {f ∈ L 1 (R) : H(f ) ∈ L 1 (R)},
where H is the Hilbert transform of R. For any f ∈ H 1 (R),

f H 1 (R) ≈ f L 1 (R) + H(f ) L 1 (R) .
Thus H 1 (R) can be viewed as a subspace of L 1 (R) ⊕ 1 L 1 (R). The latter direct sum has its natural operator structure as an L 1 space. This induce an operator space structure on H 1 (R). Although (w I ) I∈D is a unconditional basis of H 1 (R), Ricard [START_REF] Ricard | L'espace H 1 n'a pas de base complètement inconditionnelle[END_REF] (see also [START_REF] Ricard | Décomposition de H 1 , Multiplicateurs de Schur et Espaces d'Operateurs[END_REF]) proved that H 1 (R) does not have complete unconditional basis. However, in noncommutative analysis, one can introduce another natural operator space structure on H 1 (R) as follows:

S 1 (H 1 (R)) = H 1 (R, B( 2 ))
, where S 1 is the trace class on 2 . Then we have the following result. Note that Ricard [START_REF] Ricard | Décomposition de H 1 , Multiplicateurs de Schur et Espaces d'Operateurs[END_REF] obtained a similar result using Hilbert space techniques.

Corollary 2.4.3. The complete orthogonal systems (w I ) I∈D of L 2 (R) is a completely unconditional basis for H 1 (R) if we define the operator space structure imposed on H

1 (R) by S 1 (H 1 (R)) = H 1 (R, B( 2 )). Proof. Fix a finite subset I ⊂ D. Let T ε f . = I∈I ε I f, w I w I , where ε I = ±1. By the definition of H c 1 (R, M) (with M = B( 2 )
), the orthogonality of (w I ) I∈D yields immediately that

T ε f H c 1 = I∈I | f, w I | 2 |I| 1 I (x) 1 2 L 1 (N ) ≤ I∈D | f, w I | 2 |I| 1 I (x) 1 2 L 1 (N ) = f H c 1
Similarly, the above inequality hold for H r 1 (R, M). Now, let f ∈ H 1 (R, M), then for any > 0, there exists a decomposition f = g + h such that

g H c 1 (R,M) + h H r 1 (R,M) ≤ f H 1 (R,M) + . Therefore T ε f H 1 (R,M) ≤ T ε g H c 1 (R,M) + T ε h H c

Introduction

The subject of this paper follows the current line of investigation on noncommutative harmonic analysis. This topic has many interactions with other fields such as operator spaces, quantum probability, operator algebras, and of course, harmonic analysis. The aspect we are interested in is particularly related to the recent developments of noncommutative martingale/ergodic inequalities and Littlewood-Paley-Stein theory for quantum Markov semigroups. Motivated by operator spaces and by using tools from this theory, many classical martingale and ergodic inequalities have been successfully transferred to the noncommutative setting (see, for instance, [START_REF] Pisier | Non-commutative martingale inequalities[END_REF][START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF][START_REF] Junge | Noncommutative Burkholder/Rosenthal inequalities[END_REF][START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF][START_REF] Randrianantoanina | Noncommutative martingale transforms[END_REF][START_REF] Randrianantoanina | Conditional square functions for noncommutative martingales[END_REF][START_REF] Parcet | Gundy's decomposition for non-commutative martingales and applications[END_REF][START_REF] Bekjan | Noncommutative maximal ergodic theorems for positive contractions[END_REF][START_REF] Bekjan | Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales[END_REF][START_REF] Perrin | A noncommutative Davis' decomposition for martingales[END_REF]). These inequalities of quantum probabilistic nature have, in return, applications to operator space theory (cf., e.g. [START_REF] Pisier | Grothendieck's theorem for operator spaces[END_REF][START_REF] Junge | Embedding of the operator space OH and the logarithmic 'little Grothendieck inequality[END_REF][START_REF] Junge | Operator space embedding of Schatten p-classes into von Neumann algebra preduals[END_REF][START_REF] Junge | Mixed-norm inequalities and operator space L p embedding theory[END_REF][START_REF] Junge | Maurey's factorization theory for operator spaces[END_REF][START_REF] Xu | Operator space Grothendieck inequalities for noncommutative L p -spaces[END_REF][START_REF] Xu | Embedding of C q and R q into noncommutative L p -spaces, 1 ≤ p < q ≤ 2[END_REF]). Closely related to that, harmonic analysis on qua ntum semigroups has started to be developed in the last years. This first period of development of the noncommutative Littlewood-Paley-Stein theory deals with square function inequalities, H 1 -BMO duality and Riesz transforms (cf. [START_REF] Junge | H ∞ -functional caculus and square functions on noncommutative L p spaces[END_REF][START_REF] Mei | Operator valued Hardy spaces[END_REF][START_REF] Mei | Tent spaces associated with semigroups of operators[END_REF][START_REF] Junge | Noncommutative Riesz transforms -A probabilistic approach[END_REF][START_REF] Junge | BMO spaces associated with semigroups of operators[END_REF]). One can also include in this topic the very fresh promising direction of research on the Calderón-Zygmund singular integral operators in the noncommutative setting (cf. [START_REF] Parcet | Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory[END_REF][START_REF] Mei | Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities[END_REF][START_REF] Junge | Smooth Fourier multipliers on group von Neumann algebras[END_REF]). The concern of the present paper is directly linked to this last direction. Our objective is to develop harmonic analysis on quantum tori. Quantum or noncommutative tori are fundamental examples in operator algebras and probably the most accessible interesting class of objects of study in noncommutative geometry (cf. [START_REF] Connes | C * -algèbres et géométrie differentielle[END_REF][START_REF] Connes | Noncommutative Geometry[END_REF]). There exist extensive works on them (see, for instance, the survey paper by Rieffel [START_REF] Rieffel | Non-commutative tori-A case study of non-commutative differentiable manifolds[END_REF] for those before the 1990's). We refer to [START_REF] Connes | Modular curvature for noncommutative two-tori[END_REF][START_REF] Elliot | Morita equivalence of smooth noncommutative tori[END_REF][START_REF] Várilly | An Introduction to Noncommutative Geometry[END_REF] for some illustrations of more recent developments on this topic.

We now recall the definition of quantum tori. many properties with T d . This is indeed the case for differential geometry, as shown by the works of Connes and his collaborators. However, little is done regarding analysis. To our best knowledge, up to now, only the mean convergence theorem of quantum Fourier series by the square Fejér summation was proved at the C * -algebra level (cf. [START_REF] Weaver | Lipschitz algebras and derivations of von Neumann algebras[END_REF][START_REF] Weaver | Mathematical Quantization[END_REF]), and on the other hand, the quantum torus analogue of Sobolev inequalities was obtained only in the Hilbert, i.e., L 2 space case (cf. [START_REF] Spera | Sobolev theory for noncommutative tori[END_REF]). The reason of this lack of development of analysis might be explained by numerous di fficulties one may encounter when dealing with noncommutative L p -spaces, since these spaces come up unavoidably if one wishes to do analysis on quantum tori. For instance, the usual way of proving pointwise convergence theorems is to pass through the corresponding maximal inequalities. But the study of maximal inequalities is one of the most delicate and difficult parts in noncommutative analysis.

This paper is the first one of a long project that intends to develop analysis on quantum tori and more generally on twisted crossed products by amenable groups. Our aim here is to study some important aspects of harmonic analysis on T d θ . The subject that we address is three-fold: i) Convergence of Fourier series. We consider several summation methods on T d θ , including the square Fejér means, square and circular Poisson means, and Bochner-Riesz means. We first establish the maximal inequalities for them and then obtain the corresponding pointwise convergence theorems. This part heavily relies on the theory of noncommutative martingale and ergodic inequalities.

ii) Fourier multipliers. The right framework for our study of Fourier multipliers is operator space theory. We show that for 1 ≤ p ≤ ∞ the completely bounded L p Fourier multipliers on T d θ coincide with those on T d .

iii) Hardy and BMO spaces. Based on the recent development of the noncommutative Littlewood-Paley-Stein theory and the operator-valued harmonic analysis, we define Hardy and BMO spaces on T d θ via the circular Poisson semigroup. We show that the properties of Hardy spaces in the classical case remain true in the quantum setting. In particular, we get the H 1 -BMO duality theorem.

One main strategy for approaching these problems is to transfer them to the corresponding ones in the case of operator-valued functions on the classical tori, and then to use existing results in the latter case or adapt classical arguments. Due to the noncommutativity of operator product, substantial difficulties arise in our arguments, like usually in noncommutative analysis. One of the subtlest parts of our arguments is the proof of the weak type (1, 1) maximal inequalities for the square Fejér and Poisson means because of their multiple-parameter nature. This is the first time that noncommutative weak type (1, 1) maximal inequalities are considered for mappings of this nature. Another intricate part concerns the analogue for T d θ of the classical Stein theorem on Bochner-Riesz means. The proof of the corresponding maximal inequalities is quite technical too. Our study of Hardy spaces via the Littlewood-Paley theory necessitates a very careful analysis of various BMO-norms and square functions. The difficulty of this study is partly explained by the lack of an explicit handy formula of the circular Poisson kernel on T d for d ≥ 2.

We end this introduction with a brief description of the organization of the paper. In Section 3.1 we present some preliminaries and notation on quantum tori. This section also introduces our transference method. The simple section 3.2 defines the summation methods studied in the paper and deals with the mean convergence of quantum Fourier series by them. Section 4 is devoted to the maximal inequalities associated to these summation methods. Their proofs depend, via transference, on some general maximal inequalities for operator-valued functions on R d (or T d ) that are of interest for their own right. These maximal inequalities are then applied in Section 3.4 to obtain the corresponding pointwise convergence theorems. Section 3.5 deals with the Bochner-Riesz means. The main theorem there is the quantum analogue of Stein's classical theorem. The difficult part is the type (p, p) maximal inequality for these means. In Section 3.6 we discuss L p Fourier multipliers on T d θ . We show that a Fourier multiplier is completely bounded on the noncommutative L p -space associated to T d θ iff it is completely bounded on L p (T d ). In this case, the two completely bounded norms are equal. Finally, in Section 3.7, we present the Littlewood-Paley theory on T d θ and define the associated Hardy and BMO spaces using the circular Poisson semigroup, and show that they possess all expected properties of the usual Hardy spaces on R d . Our approach is to transfer this theory to the operator-valued case on T d and to use Mei's arguments in [START_REF] Mei | Operator valued Hardy spaces[END_REF] for the R d setting. Since the geometry of T d and the circular Poisson kernel are less handy than those of R d , we cannot directly apply Mei's results to our case. However, considering functions on T d as periodic functions on R d , we can still reduce most of our problems to the corresponding ones on periodic functions on R d , then adapt Mei's argument to the periodic case. A good part of this section is devoted to the study of several BMO-norms and square functions naturally appearing in this periodization procedure.

Preliminaries

Noncommutative L p spaces

Let M be a von Neumann algebra and M + its positive part. Recall that a trace on M is a map τ :

M + → [0, ∞] satisfying: i) τ (x + y) = τ (x) + τ (y) for arbitrary x, y ∈ M + ; ii) τ (λx) = λτ (x) for any λ ∈ [0, ∞) and x ∈ M + ; iii) τ (x * x) = τ (xx * ) for all x ∈ M.
τ is said to be normal if sup γ τ (x γ ) = τ (sup γ x γ ) for any bounded increasing net (x γ ) in M + , semifinite if for each x ∈ M + \{0} there is a nonzero y ∈ M + such that y ≤ x and τ (y) < ∞, and faithful if for each x ∈ M + \{0}, τ (x) > 0. A von Neumann algebra M is called semifinite if it admits a normal semifinite faithful trace τ. We refer to [START_REF] Takesaki | Theory of Operator Algebras I[END_REF] for theory of von Neumann algebras. Throughout this paper, M will always denote a semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ.

Denote by S + the set of all x ∈ M + such that τ (supp(x)) < ∞, where supp(x) is the support of x which is defined as the least projection e in M such that ex = x or equivalently xe = x. Let S be the linear span of S + . Then S is a * -subalgebra of M which is w * -dense in M. Moreover, for each 0 < p < ∞, x ∈ S implies |x| p ∈ S + (and so τ (|x| p ) < ∞), where |x| = (x * x) 1/2 is the modulus of x. Now, we define x p = [τ (|x| p )] 1/p for all x ∈ S. One can show that • p is a norm on S if 1 ≤ p < ∞, and a quasi-norm (more precisely, p-norm) if 0 < p < 1. The completion of (S, • p ) is denoted by L p (M, τ ) or simply by L p (M). This is the noncommutative L p -space associated with (M, τ ). The elements of L p (M) can be described by densely defined closed operators measurable with respect to (M, τ ), like in the commutative case. For convenience, we set L ∞ (M) = M equipped with the operator norm. The trace τ can be extended to a linear functional on S, still denoted by τ. Since |τ (x)| ≤ x 1 for all x ∈ S, τ further extends to a continuous functional on L 1 (M).

Let 0 < r, p, q ≤ ∞ be such that 1/r = 1/p + 1/q. If x ∈ L p (M), y ∈ L q (M) then xy ∈ L r (M) and the following Hölder inequality holds:

xy r ≤ x p y q .
In particular, if r = 1, |τ (xy)| ≤ xy 1 ≤ x p y q for arbitrary x ∈ L p (M) and y ∈ L q (M). This defines a natural duality between L p (M) and L q (M) : x, y = τ (xy). For any 1 ≤ p < ∞ we have L p (M) * = L q (M) isometrically. Thus, L 1 (M) is the predual M * of M, and L p (M) is reflexive for 1 < p < ∞. We refer to [START_REF] Pisier | Noncommutative L p -spaces[END_REF] for more information on noncommutative L p -spaces. 

Quantum tori

U k U j = e 2πiθ kj U j U k , j, k = 1, . . . , d.
(

We will use standard notation from multiple Fourier series.

Let U = (U 1 , • • • , U d ). For m = (m 1 , • • • , m d ) ∈ Z d we define U m = U m 1 1 • • • U m d d .
A polynomial in U is a finite sum

x = m∈Z d α m U m with α m ∈ C,
that is, α m = 0 for all but finite indices m ∈ Z d . The involution algebra P θ of such all polynomials is dense in A θ . For any polynomial x as above we define

τ (x) = α 0 ,
where 0 = (0, • • • , 0). Then, τ extends to a faithful tracial state on A θ . Let T d θ be the w * -closure of A θ in the GNS representation of τ . This is our d-dimensional quantum torus. The state τ extends to a normal faithful tracial state on T d θ that will be denoted again by τ . Recall that the von Neumann algebra

T d θ is hyperfinite. Since τ is a state, L q (T d θ ) ⊂ L p (T d θ ) for any 0 < p < q ≤ ∞. Any x ∈ L 1 (T d θ ) admits a formal Fourier series: x ∼ m∈Z d x(m)U m , where x(m) = τ ((U m ) * x), m ∈ Z d
are the Fourier coefficients of x. x is, of course, uniquely determined by its Fourier series.

Transference

We denote the usual d-torus by T d :

T d = (z 1 , . . . , z d ) : |z j | = 1, z j ∈ C, 1 ≤ j ≤ d .
T d is equipped with the usual topology and group law multiplication, that is,

z • w = (z 1 , . . . , z d ) • (w 1 , . . . , w d ) = (z 1 w 1 , . . . , z d w d ). For any m ∈ Z d and z = (z 1 , . . . , z d ) ∈ T d let z m = z m 1 1 • • • z m d d .
We will need the tensor von Neumann algebra

N θ = L ∞ (T d )⊗T d θ
, equipped with the tensor trace ν = dm ⊗ τ, where dm is normalized Haar measure on T d . Note that for every 0

< p < ∞, L p (N θ , ν) ∼ = L p (T d ; L p (T d θ )
). The space on the right hand side is the space of Bochner p-integrable functions from T d to L p (T d θ ). Accordingly, let C(T d ; A θ ) denote the C * -algebra of continuous functions from T d to A θ . For each z ∈ T d , define π z to be the isomorphism of T d θ determined by

π z (U m ) = z m U m = z m 1 1 • • • z m d d U m 1 1 • • • U m d d .
It is clear that π z is trace preserving, so extends to an isometry on L p (T d θ ) for every 0 < p < ∞. Thus we have

π z (x) p = x p , x ∈ L p (T d θ ), 0 < p ≤ ∞. Proposition 3.1.1. For any x ∈ L p (T d θ ) the function x : z → π z (x) is continuous from T d to L p (T d θ ) (with respect to the w * -topology for p = ∞). If x ∈ A θ , it is continuous from T d to A θ . Proof. Consider first the case 0 < p < ∞. Let x ∈ L p (T d θ ). Since P θ is dense in L p (T d θ )
, for arbitrary ε > 0 there is x 0 ∈ P θ such that x -x 0 p < ε. Clearly, π z (x 0 ) is a polynomial in U of the same degree as x 0 . Thus, z → π z (x 0 ) is continuous from T d into L p (T d θ ). We then deduce the desired continuity of x. The same argument works equally for A θ . The case of p = ∞ follows from that of p = 1 by duality.

The previous result in the case of p = ∞ implies, in particular, that the map x →

x establishes an isomorphism from T d θ into N θ . It is also clear that this isomorphism is trace preserving. Thus we get the following

Corollary 3.1.2. i) Let 0 < p ≤ ∞. If x ∈ L p (T d θ ), then x ∈ L p (N θ ) and x p = x p , that is, x → x is an isometric embedding from L p (T d θ ) into L p (N θ ). Moreover, this map is also an isomorphism from A θ into C(T d ; A θ ). ii) Let T d θ = {x : x ∈ T d θ }. Then T d θ is

a von Neumann subalgebra of N θ and the associated conditional expectation is given by

E(f )(z) = π z T d π w f (w) dm(w) , z ∈ T d , f ∈ N θ . Moreover, E extends to a contractive projection from L p (N θ ) onto L p ( T d θ ) for 1 ≤ p ≤ ∞. iii) L p (T d θ ) is isometric to L p ( T d θ ) for every 0 < p ≤ ∞.
Our transference method consists in the following procedure:

x ∈ L p (T d θ ) → x ∈ L p ( T d θ ) ⊂ L p (N θ ).
This allows us to work in L p (N θ ). Then, in order to return back to L p ( T d θ ) ∼ = L p (T d θ ), we apply the conditional expectation E to elements in L p (N θ ).

Mean Convergence

We begin with the mean convergence of Fourier series defined on quantum tori for an illustration of the transference method described in the previous section. This section also introduces the summation methods studied throughout the paper. They are the following:

• The square Fejér mean

F N [x] = m∈Z d ,|m|∞≤N 1 - |m 1 | N + 1 • • • 1 - |m d | N + 1 x(m)U m , N ≥ 0.
• The square Poisson mean

P r [x] = m∈Z d x(m)r |m| 1 U m , 0 ≤ r < 1.
• The circular Poisson mean

P r [x] = m∈Z d x(m)r |m| 2 U m , 0 ≤ r < 1. • Let Φ be a continuous function on R d with Φ(0) = 1. Define Φ ε [x] = m∈Z d Φ(εm)x(m)U m , ε > 0.
We will always impose the following condition to Φ:

     Φ(s) = φ(s) with R d ϕ(s)ds = 1; |Φ(s)| + |ϕ(s)| ≤ A(1 + |s|) -d-δ , ∀s ∈ R d , (3.2.1) 
for some A, δ > 0 (cf. [83, p. 253]). In the above, x ∈ L 1 (T d θ ) has its Fourier series expansion:

x ∼ m∈Z d x(m)U m , and for m ∈ Z d |m| p = ( d j=1 |m j | p ) 1/p
with the usual modification for p = ∞.

Mean Convergence
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The last summation method contains two special important examples of the function Φ. The first one is

Φ(s) = e -2π|s| and ϕ(s) = c d (1 + |s| 2 ) -(d+1)/2 , ∀s ∈ R d ,
where we have used the standard notation in harmonic analysis that |s| = |s| 2 denotes the Euclidean norm of R d . In this case,

Φ ε [x] = m∈Z d e -2π|m| 2 ε x(m)U m .

This is the circular Poisson

integral P r [x] of x with r = e -2πε .
The second example arises when α > (d -1)/2 in the following definition

Φ(s) = (1 -|s| 2 ) α if |s| < 1, 0 if |s| ≥ 1.
It is well known that

ϕ(s) = Φ(s) = Γ(α + 1)J d 2 +α (2π|s|) π α |s| d 2 +α , ∀ s ∈ R d \ {0},
where J λ is the Bessel function of order λ. In this case we obtain the Bochner-Riesz mean of order α on the quantum torus:

B α R [x] = |m| 2 ≤R 1 - |m| 2 2 R 2 α x(m)U m .
A fundamental problem is in which sense the above means of the operator x converge back to x. This problem is partly investigated in this section. Indeed, we have the following mean convergence theorem.

Proposition 3.2.1. Let 1 ≤ p < ∞ and x ∈ L p (T d θ ). Then F N [x] converges to x in L p (T d θ )
as N → ∞. The same convergence holds for P r [x], P r [x] as r → 1 and Φ ε [x] as ε → 0. Moreover, for p = ∞ these limits hold for any x ∈ A θ .

The proof can be done either by imitating the classical proofs (cf. [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]), or using the transference argument. The second method is more elegant and simpler. The corresponding results in L p (N θ ) are simple and well-known when one writes

L p (N θ ) = L p (T d ; L p (T d θ )
), which reduces the mean convergence in L p (T d θ ) to the corresponding one in the vectorvalued case on the usual torus T d .

As all these summation methods in the vector-valued case are given by approximation identities, it is better to state and prove first a general convergence theorem for convolution operators by an approximation identity in L p (T d ; X), where X is a Banach space. Here L p (T d ; X) denotes the L p -space of Bochner p-integrable functions from T d to X.

Let Λ be a directed set. An approximation identity on the multiplication group T d (as λ → λ 0 ) is a family of functions (ϕ λ ) λ∈Λ in L 1 (T d ) verifying the following three conditions:

i) T d ϕ λ (z)dm(z) = 1 for all λ ∈ Λ. ii) sup λ∈Λ ϕ λ 1 < ∞.
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T d \V |ϕ λ |dm(z) → 0 as λ → λ 0 .
Recall that for N ≥ 0 an integer, the square Fejér kernel on T d is

F N (z) = m∈Z d , |m|∞≤N 1 - |m 1 | N + 1 • • • 1 - |m d | N + 1 z m . (3.2.2)
For 0 ≤ r < 1, the square and circular Poisson kernels are respectively

P r (z) = m∈Z d r |m| 1 z m and P r (z) = m∈Z d r |m| 2 z m . (3.2.3)
It is well known that (F N ) N ≥1 , (P r ) 0≤r<1 and (P r ) 0≤r<1 are all approximation identities on T d . Also, if we write Φ ε (s) = Φ(εs), then

Φ ε = ϕ ε with ϕ ε (s) = 1 ε d ϕ s ε for s ∈ R d . Let K ε (s) = m∈Z d ϕ ε (s + m), s ∈ R d .
K ε is periodic, so can be viewed as a function on T d . Then by (3.2.1) it can be proved that (K ε ) ε>0 is an approximation identity on T d such that

(K ε * f )(z) = m∈Z d Φ(εm) f (m)z m , f ∼ m∈Z d f (m)z m (3.2.4)
(see the proof of Theorem VII.2.11 in [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]). Let X be a Banach space and let 1 ≤ p ≤ ∞. Suppose that (ϕ λ ) λ∈Λ is an approximation identity on T d . For any f ∈ L p (T d ; X) we define the convolution ϕ λ * f by

(ϕ λ * f )(z) = T d f (w)ϕ λ ( w • z)dm(w), ∀ z ∈ T d . Then for any f ∈ L p (T d ; X) we have ϕ λ * f ∈ L p (T d ; X) and ϕ λ * f p ≤ f p ϕ λ 1 .
The following vector-valued result is well-known. The proof in the scalar case (cf. e.g. [START_REF] Grafakos | Classical Fourier analysis, Second Edition[END_REF]Theorem 1.2.19]) is valid as well in the vector-valued setting without any change. C(T d ; X) denotes the space of continuous functions from T d to X, equipped with the uniform norm. Proposition 3.2.2. Let X be a Banach space and let 1 ≤ p < ∞. Let (ϕ λ ) λ∈Λ be an approximation identity on

T d . If f ∈ L p (T d ; X), then ϕ λ * f -f p → 0 as λ → λ 0 .
Moreover, when p = ∞ the above limit holds for any f ∈ C(T d ; X).

It is now clear that Proposition 3.2.1 immediately follows from Proposition 3.2.2 via the transference method.

Maximal inequalities

In this section, we present the maximal inequalities of the summation methods of Fourier series defined previously. These inequalities will be used for the pointwise convergence in the next section. We first recall the definition of the noncommutative maximal norm introduced by Pisier [START_REF] Pisier | Noncommutative vector valued L p spaces and completely p-summing maps[END_REF] and Junge [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF]. Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ. Let 1 ≤ p ≤ ∞. We define L p (M; ∞ ) to be the space of all sequences x = (x n ) n≥1 in L p (M) which admit a factorization of the following form: there exist a, b ∈ L 2p (M) and a bounded sequence y = (y n ) in L ∞ (M) such that

x n = ay n b, ∀ n ≥ 1. The norm of x in L p (M; ∞ ) is given by x Lp(M; ∞) = inf a 2p sup n≥1 y n ∞ b 2p ,
where the infimum runs over all factorizations of x as above.

We will follow the convention adopted in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] that x Lp(M; ∞) is denoted by sup + n x n p . We should warn the reader that sup + n x n p is just a notation since sup n x n does not make any sense in the noncommutative setting. We find, however, that sup + n x n p is more intuitive than x Lp(M; ∞) . The introduction of this notation is partly justified by the following remark. Remark 3.3.1. Let x = (x n ) be a sequence of selfadjoint operators in L p (M). Then x ∈ L p (M; ∞ ) iff there exists a positive element a ∈ L p (M) such that -a ≤ x n ≤ a for all n ≥ 1. In this case we have sup n≥1

+ x n p = inf a p : a ∈ L p (M), -a ≤ x n ≤ a, ∀ n ≥ 1 .
More generally, if Λ is any index set, we define L p (M; ∞ (Λ)) as the space of all x = (x λ ) λ∈Λ in L p (M) that can be factorized as

x λ = ay λ b with a, b ∈ L 2p (M), y λ ∈ L ∞ (M), sup λ y λ ∞ < ∞. The norm of L p (M; ∞ (Λ)) is defined by sup λ∈Λ + x λ p = inf x λ =ay λ b a 2p sup λ∈Λ y λ ∞ b 2p . It is shown in [45] that x ∈ L p (M; ∞ (Λ)) iff sup sup λ∈J + x λ p : J ⊂ Λ, J finite < ∞.
In this case, sup λ∈Λ + x λ p is equal to the above supremum. The following is the main theorem of this section.

Theorem 3.3.2. i) Let x ∈ L 1 (T d θ )
. Then for any α > 0 there exists a projection e ∈ T d θ such that

sup N ≥0 eF N [x]e ∞ ≤ α and τ (e ⊥ ) ≤ C d x 1 α .
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ii) Let 1 < p ≤ ∞. Then sup N ≥0 + F N [x] p ≤ C d p 2 (p -1) 2 x p , ∀ x ∈ L p (T d θ ).
Both statements hold for the three other summation methods P r , P r and Φ ε . In the case of Φ ε , the constant C d also depends on the two constants in (3.2.1).

In the terminology of [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], we can rephrase parts i) and ii) as that the map x → (F N [x]) N ≥0 is of weak type (1, 1) and of type (p, p), respectively. Before proceeding to the proof of the theorem, we point out that its part concerning the circular Poisson mean P r can be easily deduced from [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]. This is due to the fact that P r 0≤r<1 is a symmetric diffusion semigroup on T d θ . Let us show this latter statement. Define [START_REF] Connes | C * -algèbres et géométrie differentielle[END_REF]). These operators δ j commute with the involution of T d θ and play the role of the partial derivatives ∂ ∂x j on the classical d-torus. Let = d j=1 δ 2 j . Then is a negative operator on L 2 (T d θ ) and its spectrum consists of the numbers -4π 2 |m| 2 2 , m ∈ Z d . For any λ > 0, we have

δ j (U j ) = 2πiU j , δ j (U k ) = 0, k = j (cf.
(λ -) -1 ≤ sup z∈σ(-) 1 |λ + z| ≤ 1 λ .
Then by the Hille-Yosida theorem, is the infinitesimal generator of a semigroup of contractions on L 2 (T d θ ). Denote this semigroup by (T t ). Then T t = exp(t ). It is easy to check that (T t ) satisfies the following properties:

i) T t is a contraction on T d θ : T t x ∞ ≤ x ∞ for all x ∈ T d θ ;
ii) T t is positive:

T t x ≥ 0 if x ≥ 0; iii) τ • T t = τ : τ (T t x) = τ (x) for all x ∈ T d θ ; iv) T t is symmetric relative to τ : τ (T t (y) * x) = τ (y * T t (x)) for all x, y ∈ L 2 (T d θ ).
Then (T t ) extends to a semigroup of contractions on L p (T d θ ) for every 1 ≤ p ≤ ∞. This is the heat semigroup of T d θ . The circular Poisson means P r [x] is exactly the Poisson semigroup subordinated to T t , where r = e -2πt . Then by [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], we get the part of Theorem 3.3.2 concerning the circular Poisson means.

The previous argument does not apply to the three other means. However, we can get the type (p, p) inequality for F N and P r again from [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] but not with the right estimate on the constant C p . Indeed, the square Poisson mean P r is the restriction to the diagonal (r, ..., r) of the following multiple parameter semigroup P (r 1 ,...,r d ) :

P (r 1 ,...,r d ) [x] = m∈Z d x(m)r |m 1 | 1 • • • r |m d | d U m .
By iteration P (r 1 ,...,r d ) satisfies a maximal inequality on L p (T d θ ) with a relevant constant controlled by C d p 2d /(p -1) 2d . It then follows that the map x → (P r [x]) r is of type (p, p) with the same constant. Since each Fejér mean F N is majorized by P r for an appropriate r, we deduce that the same maximal inequality holds for F N . We cannot, unfortunately, prove the weak type (1, 1) maximal inequality for F N and P r in this way.

The rest of this section is essentially devoted to the proof of Theorem 3.3.2. We will use transference and require the following two theorems which are of interest for their own right. Recall that M denotes a von Neumann algebra with a normal semifinite faithful trace τ . L ∞ (R d )⊗M is equipped with the tensor trace ν = dx ⊗ τ , where dx is Lebesgue measure on R d . Theorem 3.3.3. Let ϕ be an integrable function on R d such that |ϕ| is radial and radially decreasing. Let

ϕ ε (s) = 1 ε d ϕ( s ε ) for s ∈ R d and ε > 0. i) Let f ∈ L 1 (R d ; L 1 (M)). Then for any α > 0 there exists a projection e ∈ L ∞ (R d )⊗M such that sup ε>0 e(ϕ ε * f )e ∞ ≤ α and ν(e ⊥ ) ≤ C d ϕ 1 f 1 α . ii) Let 1 < p ≤ ∞. Then sup ε>0 + ϕ ε * f p ≤ C d ϕ 1 p 2 (p -1) 2 f p , ∀ f ∈ L p (R d ; L p (M)). Proof. Let f ∈ L 1 (R d ; L 1 (M))
. Without loss of generality, we assume that f is positive. On the other hand, it is easy to reduce the problem to the case where ϕ is positive too. Indeed, decomposing ϕ into its real and imaginary parts, we need only to consider each part separately. Since f ≥ 0, we have

Re(ϕ ε ) * f ≤ |Re(ϕ ε )| * f ≤ |ϕ| ε * f.
This gives the announced reduction. Thus in the sequel we assume that ϕ ≥ 0. First take ϕ to be of the form ϕ = k α k 1l B k (a finite sum), where B k are balls of center 0 and α k ≥ 0. Then

ϕ ε * f (s) = k α k (1l B k ) ε * f (s) = k α k |B k |M εB k (f )(s), where M B (f )(s) = 1
|B| B f (s -t)dt for any ball B centered at 0. We now appeal to Mei's noncommutative Hardy-Littlewood maximal weak type (1,1) inequality [START_REF] Mei | Operator valued Hardy spaces[END_REF]: For any α > 0 there exists a projection e ∈ L ∞ (R d )⊗M such that

ν(e ⊥ ) ≤ C d f 1 α and eM B (f )e ∞ ≤ α, ∀ ball B centered at 0.
We then deduce that

e(ϕ ε * f )e ∞ ≤ C d k α k |B k |α = C d ϕ 1 α, ∀ ε > 0.
For a general positive ϕ, choose an increasing sequence (ϕ (n) ) of functions of the previous form such that ϕ (n) converges to ϕ pointwise. Then for any α > 0, there exists a projection

e n ∈ L ∞ (R d )⊗M such that ν(e ⊥ n ) f 1 α and e n (ϕ (n) ε * f )e n ∞ ≤ α, ∀ ε > 0.
Let a be a w * -accumulation point of e n . Note that

(ϕ (n) ε * f ) 1 2 e n -(ϕ ε * f ) 1 2 a = (ϕ (n) ε * f ) 1 2 -(ϕ ε * f ) 1 2 e n + (ϕ ε * f ) 1 
2 (e n -a).
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(n) ε * f ) 1 2 strongly converges to (ϕ ε * f ) 1 2 . Hence (ϕ (n) ε * f ) 1 2 e n weakly converges to (ϕ ε * f ) 1 2 a. Then we deduce ν(1 -a) f 1 α and (ϕ ε * f ) 1 2 a ∞ ≤ lim inf n (ϕ (n) ε * f ) 1 2 e n ∞ ≤ α 1 2
.

Let e = 1l Since eg(a) ∞ ≤ 2, we deduce that

e(ϕ ε * f )e ∞ ≤ 4 a(ϕ ε * f )a ∞ ≤ 4α.
Therefore the projection e satisfies:

ν(e ⊥ ) f 1 α and e(ϕ ε * f )e ∞ ≤ 4α, ∀ ε > 0.
Thus we get i).

Part ii) is proved by interpolation. It is clear that the map f → (ϕ ε * f ) ε>0 is of type (∞, ∞) with constant ϕ 1 . On the other hand, since we have assumed that ϕ ≥ 0, ϕ ε * f ≥ 0 for f ≥ 0. Thus by the interpolation theorem from [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], we deduce the desired (p, p) type maximal inequality, i.e., part ii).

The conclusion of the previous theorem also holds for another family of functions ϕ which satisfy an estimate of multiple-parameter nature. Proof. This proof is much more involved than the previous one. Again, we can assume that all functions ϕ k are positive. It suffices to show the weak type (1, 1) inequality. Fix

a positive f ∈ L 1 (R d ; L 1 (M)). Let I 0 = [-1, 1] and I k = {t ∈ R : 2 k-1 < |t| ≤ 2 k } for k = 1, 2, . . .. Also, let Ĩk = [-2 k , 2 k ]. Split R d into d! regions of the form |t j 1 | ≥ • • • ≥ |t j d |,
where {j 1 , . . . , j d } is a permutation of the set {1, . . . , d}. Then

ϕ ε * f (s) = {j 1 ,...,j d } |t j 1 |≥•••≥|t j d | ϕ(t)f (s -εt)dt.
By symmetry, it suffices to consider one of these regions, say the one where

|y 1 | ≥ • • • ≥ |y d |. Let F ε (s) = |t 1 |≥•••≥|t d | ϕ(t)f (s -εt)dt, s = (s 1 , ..., s d ) ∈ R d .
We must show that for any α > 0 there exists a projection e ∈ L ∞ (R d )⊗M such that ν(e ⊥ ) f 1 α and eF ε e ∞ ≤ α.

(3.3.1)
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Using the assumption on ϕ and by change of variables, we have

F ε (s) = ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 I k 1 I k 2 • • • I k d ϕ(t)f (s -εt)dt ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -k 1 (1+δ) • • • 2 -k d (1+δ) I k 1 I k 2 • • • I k d f (s -εt)dt ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -k 1 (1+δ) • • • 2 -k d (1+δ) Ĩk 1 Ĩk 2 • • • Ĩk d f (s -εt)dt ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -(k 1 +•••+k d )δ 1 | Ĩk 1 | d Ĩd k 1 f (s 1 -εt 1 , s 2 -2 k 2 -k 1 εt 2 , • • • , s d -2 k d -k 1 εt d )dt.
Given a function g ∈ L 1 (R d ; L 1 (M)) and a cube Q ⊂ R d centered at 0 and with sides parallel to the axes put

M Q (g)(s) = 1 |Q| Q g(s -t)dt, s ∈ R d .
Note that this average function appeared already in the proof of Theorem 3.3.3 but with balls instead of cubes. For any fixed k

= (k 1 , • • • , k d ) with k 1 ≥ k 2 ≥ • • • ≥ k d let f k (z 1 , z 2 , • • • , z d ) = f (z 1 , 2 k 2 -k 1 z 2 , • • • , 2 k d -k 1 z d ). Then 1 | Ĩk 1 | d Ĩd k 1 f (s 1 -εt 1 , s 2 -2 k 2 -k 1 εt 2 , • • • , s d -2 k d -k 1 εt d )dt = M ε Ĩd k 1 (f k )(s 1 , 2 k 1 -k 2 s 2 , • • • , 2 k 1 -k d s d ).
Thus

F ε (s) ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -(k 1 +•••+k d )δ M ε Ĩd k 1 (f k )(s 1 , 2 k 1 -k 2 s 2 , • • • , 2 k 1 -k d s d ). (3.3.2)
Now we use again Mei's noncommutative Hardy-Littlewood maximal weak type (1, 1) inequality which remains true with balls replaced by cubes. For any α k > 0, there exits a projection e k in L ∞ (R d )⊗M such that

ν(e ⊥ k ) ≤ C d f k 1 α k and e k M ε Ĩd k 1 (f k )e k ∞ ≤ α k , ∀ ε > 0. (3.3.3)
Let T be the mapping

(s 1 , s 2 , • • • , s d ) → (s 1 , 2 k 1 -k 2 s 2 , • • • , 2 k 1 -k d s d ).
T is a homeomorphism of R d , so induces an isomorphism of L ∞ (R d )⊗M, still denoted by T . Then for any g ∈ L ∞ (R d )⊗M, we have

τ (T (g)(s))ds = τ (g • T (s))ds = 2 k 2 -k 1 • • • 2 k d -k 1 τ (g(s))ds.
Let ẽk = T (e k ). Then ẽk is a projection and

ν(ẽ ⊥ k ) = 2 k 2 -k 1 • • • 2 k d -k 1 ν(e ⊥ k ). (3.3.4)
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On the other hand,

M ε Ĩd k 1 (f k )(s 1 , 2 k 1 -k 2 s 2 , • • • , 2 k 1 -k d s d ) = T M ε Ĩd k 1 (f k ) (s 1 , s 2 , • • • , s d )
and

T e k M ε Ĩd k 1 (f k )e k = ẽk M ε Ĩd k 1 (f k )(•, 2 k 1 -k 2 •, • • • , 2 k 1 -k d •)ẽ k .
Therefore, by (3.3.3) ẽk

M ε Ĩd k 1 (f k )(•, 2 k 1 -k 2 •, • • • , 2 k 1 -k d •)ẽ k ∞ = e k M ε Ĩd k 1 (f k )e k ∞ ≤ α k , ∀ ε > 0. (3.3.5) Let α > 0. For each k with k 1 ≥ k 2 ≥ • • • ≥ k d we choose α k = α 2 k 1 δ/(2d) 2 k 2 δ(1-1/(2d)) • • • 2 k d δ(1-1/(2d)) . Then 2 -(k 1 +•••+k d )δ α k = α 2 -k 1 δ/2 2 -n 2 /(2d) • • • 2 -n d /(2d) , (3.3.6)
where

n 2 = k 1 -k 2 , • • • , n d = k 1 -k d .
Note that all n j are nonnegative integers. Finally, let e = k ẽk . Then e is a projection in L ∞ (R d )⊗M, and by (3.3.4), (3.3.3), the definition of f k and the choice of α k , we have

ν(e ⊥ ) ≤ ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 ν(ẽ ⊥ k ) = ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 k 2 -k 1 • • • 2 k d -k 1 ν(e ⊥ k ) ≤ C d ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 k 2 -k 1 • • • 2 k d -k 1 f k 1 α k ≤ C d f 1 ∞ k 1 =0 ∞ k 2 =0 • • • ∞ k d =0 1 α k f 1 α .
On the other hand, for any ε > 0, by (3.3.2), (3.3.5) and (3.3.6)

eF ε e ∞ ≤ ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -(k 1 +•••+k d )δ ẽk M ε Ĩd k 1 (f k )(•, 2 k 1 -k 2 •, • • • , 2 k 1 -k d •)ẽ k ∞ ≤ ∞ k 1 =0 k 1 k 2 =0 • • • k d-1 k d =0 2 -(k 1 +•••+k d )δ α k ≤ α k 1 ≥0 n 2 ≥0 • • • n d ≥0 2 -k 1 δ/2 2 -n 2 /(2d) • • • 2 -n d /(2d) α.
Thus we get the desired estimate (3.3.1), so finish the proof of the theorem.

We also require the following lemma for the proof of Theorem 3.3.2.

Lemma 3.3.5. Let N be a w * -closed involutive subalgebra of M that is the image of a normal conditional expectation E. Let (x n ) be a sequence of positive operators in L 1 (N ).

Assume that for any α > 0 there exists a projection ẽ ∈ M such that

sup n ẽx n ẽ ∞ ≤ α and τ (ẽ ⊥ ) ≤ C α .
Then there exists a projection e ∈ N such that sup n ex n e ∞ ≤ 4α and τ (e ⊥ ) ≤ 2C α .

Proof. Let a = E(ẽ). Then a ∈ N and

ax 1/2 n ∞ = E(ẽx 1/2 n ) ∞ ≤ α 1/2 .
As in the proof of Theorem 3.3.3, we then see that e = 1l [1/2, 1] (a) is the desired projection in N .

Proof of Theorem 3.3.2. We will identify the d-torus T d with the cube 

I d = [0, 1] d ⊂ R d (with I = [0, 1]) via (e 2πis 1 , • • • , e 2πis d ) ↔ (s 1 , • • • , s d ). Accordingly, N θ = L ∞ (T d )⊗T d θ is viewed as a subalgebra of M θ = L ∞ (R d )
F N (s 1 , • • • , s d ) = G N (s 1 ) • • • G N (s d ),
where G N is the 1-dimensional Fejér kernel. It is a well-known elementary fact that

G N (s) ≤ π 2 2 N + 1 1 + (N + 1) 2 |s| 2 . Thus F N (s 1 , • • • , s d ) 1 ε d η( s 1 ε ) • • • η( s d ε ) = η ε (s 1 ) • • • η ε (s d ),
where η(s) = (1 + |s| 2 ) -1 and ε = (N + 1) -1 . Let x ∈ L 1 (T d θ ). Writing x as a linear combination of four positive elements, we can assume x ≥ 0. Using transference, we have that x ∈ L 1 ( T d θ ) ⊂ L 1 (N θ ) and

F N [x](s 1 , • • • , s d ) = F N * x(s 1 , • • • , s d ) = I d F N (s 1 -t 1 , • • • , s d -t d ) x(t 1 , • • • , t d )dt = R d F N (s 1 -t 1 , • • • , s d -t d )1l I d (t 1 , • • • , t d ) x(t 1 , • • • , t d )dt.
Therefore, we are in a situation of applying Theorem 3.3.4, so for any α > 0 there exists a projection ẽ ∈ M θ such that sup

N ẽ F N [x]ẽ) ∞ ≤ α and ν(ẽ ⊥ ) 1l I d x L 1 (M θ ) α = x 1 α .
Since x ≥ 0, F N [x] ≥ 0 for every N . Thus by Lemma 3.3.5, we get the desired weak type (1, 1) inequality for F N . Similarly, we show the type (p, p) inequality. The same argument works equally for the square Poisson means P r . It remains to show the part of the theorem concerning Φ ε (which contains the circular Poisson mean P r as a special case). We will use the convolution formula (3.2.4). Note that for maximal inequalities on Φ ε we do not need all conditions on Φ and ϕ in (3.2.1). What we really need here is the last growth assumption on ϕ there:

|ϕ(s)| ≤ A (1 + |s|) d+δ , s ∈ R d .
Then like in the proof of Theorem 3.3.3 we can assume that ϕ is nonnegative. In this case the kernel K ε is nonnegative too. Moreover, replacing ϕ by the function on the right hand side above, we can further suppose that ϕ satisfies the assumption of Theorem 3.3.3. Now let x ∈ L 1 (T d θ ). Without loss of generality, assume again x ≥ 0. By (3.2.4), for

s = (s 1 , • • • , s d ) ∈ I d we have Φ ε [x](s) = I d K ε (s -t) x(t)dt = m∈Z d I d ϕ ε (s -t + m) x(t)dt = I d ϕ ε (s -t) x(t)dt + m =0 I d ϕ ε (s -t + m) x(t)dt .
The first term on the right can be dealt with in the same way as before for F N :

I d ϕ ε (s -t) x(t)dt = R d ϕ ε (s -t)1l I d (t) x(t)dt.
Then by Theorem 3.3.3 for any α > 0 there exists a projection ẽ1 ∈ M θ such that ν(ẽ ⊥ 1 )

x 1 α and ẽ1

I d ϕ ε (• -t) x(t)dt ẽ1 ∞ ≤ α, ∀ ε > 0.
On the other hand, for s, t ∈ I d and m = 0 we have

ϕ ε (s -t + m) 1 ε d (1 + |m| ε ) -d-δ . Note that m =0 1 ε d (1 + |m| ε ) -d-δ ≈ 1 ε d 1≤|m|≤ε +ε δ ε<|m| 1 |m| d+δ 1.
Hence (recalling that x ≥ 0),

m =0 I d ϕ ε (s -t + m) x(t)dt m =0 1 ε d (1 + |m| ε ) -d-δ I d x(t)dt I d x(t)dt.
The last integral is an operator in L 1 ( T d θ ) and its L 1 -norm is less than or equal to that of x. Thus there exists a projection ẽ2 ∈ T d θ such that

ν(ẽ ⊥ 2 )
x 1 α and ẽ2

I d x(t)dt ẽ2 ∞ ≤ α.
Let ẽ = ẽ1 ∨ ẽ2 . Then ẽ is a projection in M θ , and combining the preceding two parts we get

ν(ẽ ⊥ ) x 1 α and ẽ Φ ε [x] ẽ ∞ ≤ α, ∀ ε > 0.
We then deduce the weak type (1, 1) inequality for Φ ε thanks to Lemma 3.3.5. The type (p, p) inequality is proved similarly. Therefore, the proof of Theorem 3.3.2 is complete. 2

Pointwise convergence

In this section we apply the maximal inequalities proved in the previous section to study the pointwise convergence of Fourier series on quantum tori. To this end we first need an appropriate analogue for the noncommutative setting of the usual almost everywhere convergence. This is the almost uniform convergence introduced by Lance [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF]. Let (x λ ) λ∈Λ be a family of elements in L p (M). Recall that (x λ ) λ∈Λ is said to converge almost uniformly to x, abbreviated as x λ a.u --→ x, if for every > 0 there exists a projection e ∈ M such that τ (1 -e) < and lim

λ (x λ -x)e ∞ = 0.
Also, (x λ ) λ∈Λ is said to converge bilaterally almost uniformly to x, abbreviated as x λ b.a.u ---→ x, if the limit above is replaced by lim λ e(x λ -x)e ∞ = 0.

In the commutative case, both convergences are equivalent to the usual almost everywhere convergence thanks to Egorov's theorem. However, they are different in the noncommutative setting. 

(e ⊥ m ) ≤ Cε -1 m τ (z 2 m ) ≤ Cε -1 m δ 2 m .
Since the map z → F N [z] is positive, by Kadison's Cauchy-Schwarz inequality [START_REF] Kadison | A generalized Schwarz inequality and algebraic invariants for operator algebras[END_REF], we have a.u.

F N [z m ] 2 ≤ F N [z 2 m ]. Thus F N [z m ]e m 2 ∞ ≤ e m F N [z 2 m ]e m ∞ ≤ ε m . ( 3 
--→ x. The proof of the corresponding statements for P r and P r is the same.

However, a minor extra argument is required for the mean Φ ε because the map z → Φ ε [z] is not positive in general. So we cannot apply directly Kadison's inequality to this map. But what is really missing is the one-sided weak type (1, 1) maximal inequality (3.4.1) for Φ ε instead of F N . In order to show this latter inequality, we can assume, as in the proof of Theorem 3.3.2, that ϕ is nonnegative. Then the kernel K ε in (3.2.4) is nonnegative too. Thus the map z → K ε * z is positive, so we can apply Kadison's inequality to this map. Then as before for F N , we get the desired inequality (3.4.1) with F N replaced by Φ ε , and then deduce that Φ ε [x] a.u.

--→ x as ε → 0. Therefore, the theorem is completely proved.

Bochner-Riesz means

As pointed out in section 3.2, when α > (d -1)/2, the function Φ and ϕ associated with the Bochner-Riesz mean satisfy (3.2.1). Therefore, by Proposition 3. ii) sup

R>0 + B α R [x] p x p for p > 1. iii) B α R [x] b.a.u ---→ x as R → ∞.
If α is below the critical index (d-1)/2, the above results usually fail even in the scalar case, see for example [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]VII.4]. However, we have the following theorem, i.e., Theorem 3.5.2, which is the noncommutative analogue of Stein's theorem [START_REF] Stein | Localization and summability of multiple Fourier series[END_REF] (see also [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]VII.5]). 

B α R [x] = x in L p (T d θ ). iii) B α R [x] b.a.u ---→ x as R → ∞.
Proof. The hard part of the theorem is the maximal inequality i). Assuming this part, it is easy to show the two others. Indeed, i) implies that for any R > 0

B α R [x] p ≤ sup r>0 + B α r [x] p x p , ∀ x ∈ L p (T d θ ).
Whence sup

R>0 B α R Lp→Lp < ∞.
Together with the density of polynomials in L p (T d θ ), this implies the mean convergence in ii). The pointwise convergence iii) can be proved as Theorem 3.4.1. The only thing to note is the fact that the type (p, p) maximal inequality in i) implies the corresponding weak type (p, p) inequality. The details are left to the reader. The remainder of this section is devoted to the proof of i). We will follow the patten set up by Stein in the classical setting. The proof is quite technical and complicated, but essentially everything is based on two main ideas: estimate maximal function and square function by duality and interpolation.

We will frequently use the duality between L p (T d θ ; 1 ) and L p (T d θ ; ∞ ) (p being the conjugate index of p). For the convenience of the reader we recall this duality. L p (T d θ ; 1 ) is defined to be the space of all sequences y = (y n ) in L p (T 

y L p (T d θ ; 1 ) = inf k,n≥1 u * kn u kn 1/2 p k,n≥1 v * kn v kn 1/2 p ,
where the infimum runs over all decompositions of y as above. It is easy to see that if

y n ≥ 0 for all n, then (y n ) ∈ L p (T d θ ; 1 ) iff n y n ∈ L p (T d θ )
. In this case, we have

y L p (T d θ ; 1 ) = n y n p . Let 1 ≤ p < ∞. Then the dual space of L p (T d θ ; 1 ) is L p (T d θ ; ∞ ). The duality bracket is given by x, y = n τ (x n y n ), x = (x n ) ∈ L p (T d θ ; ∞ ), y = (y n ) ∈ L p (T d θ ; 1 ).
We refer to [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF] and [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for more information.

For clarity we divide the proof of i) into three steps.
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Step

1. If α ∈ C and Re(α) > d-1 2 , then for 1 < p ≤ ∞, sup R>0 + B α R [x] p x p , ∀ x ∈ L p (T d θ ).
To this end, choose δ > 0 and β ∈ C such that Re(α) > δ > d-1 2 and α = δ + β. We have the following identity 

B α R = C β,δ R -2α R 0 (R 2 -t 2 ) β-1 t 2δ+1 B δ t dt, ( 3 
τ n B α Rn [x]y n = |C β,δ | n R -2α n Rn 0 (R 2 n -t 2 ) β-1 t 2δ+1 τ B δ t [x]y n dt ≤ |C β,δ | 1 0 |(1 -t 2 ) β-1 t 2δ+1 | τ n B δ tRn [x]y n dt ≤ |C β,δ | 1 0 |(1 -t 2 ) β-1 t 2δ+1 |dt sup + R>0 B δ R [x] p x p ,
where we have used Proposition 3.5.1 ii) in the last inequality and the fact that

1 0 |(1 -t 2 ) β-1 t 2δ+1 |dt = 1 0 (1 -t 2 ) Re(β)-1 t 2δ+1 dt < ∞
since Re(β) = Re(α) -δ > 0 and δ > 0. By duality we then deduce the desired maximal inequality.

Step 2. If α > 0, then sup

R>0 + B α R [x] 2 x 2 , ∀ x ∈ L 2 (T d θ ). (3.5.2)
We first consider the case of α > 1/2. Choose β > 1 such that α = β + δ with δ > -1/2. By (3.5.1)

B β+δ R = -C β,δ R -2(β+δ) R 0 t 0 B δ r dr (R 2 -t 2 ) β-1 t 2δ+1 dt = C β,δ 1 0 ϕ(t)M δ Rt dt,
where

M δ t = 1 t t 0 B δ r dr and ϕ(t) = 2(β -1)(1 -t 2 ) β-2 t 2δ+3 -(2δ + 1)(1 -t 2 ) β-1 t 2δ+1 .
Note that 1 0 |ϕ(t)|dt < ∞. We will use the following fact that for any (

x n ) ∈ L 2 (T d θ ; ∞ ) one has sup n + x n 2 ≈ sup n τ (x n y n ) : y n ∈ L + 2 (T d θ ), n y n 2 ≤ 1 
3.5. Bochner-Riesz means 95 with universal equivalence constants (see [START_REF] Junge | Doob's inequalities for noncommutative martingales[END_REF][START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]). In what follows, we fix x ∈ L 2 (T d θ ) and always assume that (R n ) is a sequence in (0, ∞) and (y n ) a sequence of positive elements in L 2 (T d θ ) with n y n 2 ≤ 1. Since

τ n B α Rn [x]y n = |C β,δ | τ n 1 0 ϕ(t)M δ Rnt (x)dt y n ≤ |C β,δ | 1 0 |ϕ(t)| τ n M δ Rnt (x)y n dt sup + R>0 M δ R (x) 2 1 0 |ϕ(t)|dt,
where we have used duality in the last inequality. We then deduce that sup

R>0 + B α R [x] 2 sup R>0 + M δ R (x) 2 .
Now we must show that sup

R>0 + M δ R (x) 2 x 2 if δ > -1/2. (3.5.3)
To this end, we again use duality. We have

τ n M δ Rn (x)y n ≤ τ n M δ+1 Rn (x)y n + τ n M δ+1 Rn (x) -M δ Rn (x) y n ≤ sup R>0 + M δ+1 R (x) 2 + τ n G δ Rn (x)y n , where G δ R (x) = M δ+1 R (x) -M δ R (x).
Using the following elementary inequality

|τ (ab)| 2 ≤ τ (|a|b)τ (|a * |b), ∀ a, b ∈ T d θ with b ≥ 0, we have τ n G δ Rn (x)y n 2 ≤ τ n G δ Rn (x) y n τ n G δ Rn (x) * y n . Note that G δ R (x) = 1 R R 0 B δ+1 r [x] -B δ r [x] dr ≤ R 0 B δ+1 r [x] -B δ r [x] 2 dr R 1/2 ≤ G δ (x),
where

G δ (x) = ∞ 0 B δ+1 r [x] -B δ r [x] 2 dr r 1/2 . It then follows that τ n G δ Rn (x) y n ≤ τ G δ (x) n y n ≤ G δ (x) 2 n y n 2 ≤ G δ (x) 2 .
Similarly,

τ n G δ Rn (x) * y n ≤ G δ * (x) 2 ,
where

G δ * (x) = ∞ 0 B δ+1 r [x] -B δ r [x] * 2 dr r 1/2
.
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Combining the preceding inequalities, we obtain sup

R>0 + M δ R (x) 2 ≤ sup R>0 + M δ+1 R (x) 2 + G δ (x) 1/2 2 G δ * (x) 1/2 2 .
We now claim that max

G δ (x) 2 , G δ * (x) 2 x 2 , if δ > -1/2.
Indeed, by Parseval's identity we have

G δ (x) 2 2 = ∞ 0 τ B δ+1 r [x] -B δ r [x] 2 dr r = ∞ 0 |m| 2 ≤R 1 - |m| 2 2 r 2 δ+1 -1 - |m| 2 2 r 2 δ 2 |x(m)| 2 dr r = m =0 |x(m)| 2 ∞ |m| 2 |m| 4 2 r 4 1 - |m| 2 2 r 2 δ dr r x 2 2 because the integral ∞ |m| 2 |m| 4 2 r 4 1 - |m| 2 2 r 2 δ dr r = ∞ 1 r -5 (1 -r -2 ) 2δ dr < ∞ if δ > -1/2.
In the same way, we have

G δ * (x) 2 x 2 .
Hence our claim is proved. Consequently,

sup R>0 + M δ R (x) 2 sup R>0 + M δ+1 R (x) 2 + x 2 .
Then by iteration, for any positive integer k we have sup

R>0 + M δ R (x) 2 sup R>0 + M δ+k R (x) 2 + x 2 .
Now, if we choose k such that δ + k > (d -1)/2, then using Step 1, we have sup

R>0 + M δ+k R [x] 2 ≤ sup R>0 + B δ+k R [x] 2 x 2 .
Therefore, we deduce (3.5.3), and hence (3.5.2) provided α > 1/2. We now deal with the general case of α > 0. Choose β > 1/2 and δ > -1/2 so that α = β + δ. Then by (3.5.1) However,

B β+δ R - C β,δ C β,δ+1 B β+δ+1 R = C β,δ R -2(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 B δ t dt -R -2 R 0 (R 2 -t 2 ) β-1 t 2(δ+1)+1 B δ+1 t dt = C β,δ R -2(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 (B δ t -B δ+1 t )dt + R 0 (R 2 -t 2 ) β-1 t 2δ+1 (1 -R -2 t 2 )B δ+1 t dt I R + II R .
|I R (x)| = |C β,δ |R -2(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 B δ+1 t [x] -B δ t [x] dt ≤ |C β,δ |R -2(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 2 dt 1/2 × R 1/2 R -1/2 R 0 B δ+1 t [x] -B δ t [x] 2 dt 1/2 G δ (x) because the integral R 1-4(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 2 dt = 1 0 |(1 -t 2 ) β-1 t 2δ+1 | 2 dt < ∞ when β > 1/2. Similarly, |I R (x) * | G δ * (x). Hence, we deduce sup R>0 + I R (x) 2 G δ (x) 1/2 2 G δ * (x) 1/2 2 x 2 .
Next, we estimate the second term II R . Since

II R = C β,δ R -2(β+δ) R 0 (R 2 -t 2 ) β-1 t 2δ+1 (1 -R -2 t 2 )B δ+1 t dt = C β,δ R -2(β+δ)-2 R 0 (R 2 -t 2 ) β t 2δ+1 B δ+1 t dt and β > 1/2, II R can be dealt with as B α R in the case of α > 1/2. So we conclude that sup R>0 + B R [x] 2 x 2 .
Therefore, we have finally arrived at sup

R>0 + B β+δ R (x) 2 ≤ |C β,δ | |C β,δ+1 | sup R>0 + B β+δ+1 R [x] 2 + sup R>0 + I R (x) 2 + sup R>0 + II R [x] 2 x 2 .
This completes the proof of Step 2.

Step 3. When p is near 1 or ∞, the announced result is in fact already contained in Step 1. Moreover, Step 2 gives the desired inequality in the special case of p = 2. The general case can be deduced from these special ones by applying Stein's complex interpolation. To this end, we need first a strengthening of (3.5.2) which allows the order α to be complex, that is, sup for some 0 < t < 1. Define

R>0 + B α R [x] 2 x 2 , α ∈ C, Re(α) > 0. ( 3 
f (z) = u|x| p(1-z) 2 + pz p 1 , z ∈ C,
where x = u|x| is the polar decomposition of x. On the other hand, by Proposition 2.5 of [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], there is a function g = (g n ) n continuous on the strip {z ∈ C : 0 ≤ Re(z) ≤ 1} and analytic in the interior such that g(t) = y and

sup s∈R max g(is) L 2 (T d θ ; 1 ) , g(1 + is) L p 1 (T d θ ; 1 ) < 1.
Fix a sequence (R n ) ⊂ (0, ∞) and δ > 0. We define

F (z) = exp δ(z 2 -t 2 ) n τ B (1-z)α 0 +zα 1 Rn [f (z)]g n (z) .
F is a function analytic in the open strip {z ∈ C : 0 < Re(z) < 1}. By (3.5.4), for any s ∈ R we have

|F (is)| ≤ exp -δ(s 2 + t 2 ) B α 0 +is(α 1 -α 0 ) Rn (f (is)) n L 2 (T d θ ; ∞) g(is) L 2 (T d θ ; 1 ) f (is) 2 1.

Similarly, by

Step 1 we have

|F (1 + is)| 1.
Therefore, by the maximum principle we get |F (t)| 1 i.e.,

τ n B α Rn [x]y n 1 if x Lp(N θ ) < 1.
Then by duality and homogeneity, we deduce that sup

R>0 + B α R [x] p x p , ∀ x ∈ L p (T d θ ).
The argument for the case of p > 2 is similar once we begin by setting p 1 = ∞. Thus the proof of Theorem 3.5.2 is complete. 

(α) > (d -1)| 1 2 -1 p |. Then sup R>0 + B α R [f ] p f p , ∀ f ∈ L p (T d ; L p (M)). Moreover, B α R [f ] converges b.a.u. to f as R → ∞. Here B α R [f ] = |m| 2 ≤R 1 - |m| 2 2 R 2 α f (m)z m for f ∈ L p (T d ; L p (M)) with Fourier series expansion f ∼ m∈Z d f (m)z m .

Fourier multipliers

It is our intention in this section to study Fourier multipliers in the quantum d-torus T d θ . We will compare (completely) bounded L p Fourier multipliers with those in the usual d-torus T d . The right framework for this investigation is the category of operator spaces.

We now recall some standard operator space notions and refer the reader to [START_REF] Effros | Operator Spaces[END_REF] and [START_REF] Pisier | Introduction to Operator Space Theory[END_REF] for more information. A (concrete) operator space is a closed subspace E of B(H) for some Hilbert space H. Then E inherits the matricial structure of B(H) via the embedding M n (E) ⊂ M n (B(H)). More precisely, let M n (E) denote the space of n × n matrices with entries in E, equipped with the norm induced by B( n 2 (H)). An abstract matricial norm characterization of operator spaces was given by Ruan. The morphisms in the category of operator spaces are completely bounded maps. Let H, K be two Hilbert spaces. Suppose that E ⊂ B(H) and F ⊂ B(K) are two operator spaces. A map u : E → F is called completely bounded (in short c.b.) if sup n id Mn ⊗ u Mn(E)→Mn(F ) < ∞, and the c.b. norm u cb is defined to be the above supremum. We denote by CB(E, F ) the space of all c.b. maps from E to F , equipped with the norm cb . This is a Banach space.

For an operator space E there exists a natural matricial structure on the Banach dual E * of E so that E * becomes an operator space too. The norm of M n (E * ) is that of CB(E, M n ) (M n = M n (C)). This is usually called the standard dual of E. We will simply say the dual of E since only standard duals are used in the sequel.

We will need the natural operator space structure on noncommutative L p -spaces introduced by Pisier. Let M be a (semifinite) von Neumann algebra on a Hilbert space H. Then the embedding M ⊂ B(H) gives to M an operator space structure. To equip L 1 (M) with an operator space structure, we view L 1 (M) as the predual of the opposite algebra M op instead of M itself. In this way, L 1 (M) becomes a subspace of the dual operator space of M op . This is the natural operator space structure of L 1 (M). Then for any 1 < p < ∞ the operator space structure of L p (M) is defined via the complex interpolation formula L p (M) = L ∞ (M), L 1 (M) 1/p . We refer the reader to [START_REF] Pisier | Noncommutative vector valued L p spaces and completely p-summing maps[END_REF][START_REF] Pisier | Introduction to Operator Space Theory[END_REF] for more details.

We will use the following fundamental property of c.b. maps between two noncommutative L p -spaces due to Pisier [START_REF] Pisier | Noncommutative vector valued L p spaces and completely p-summing maps[END_REF]. Let N be another (semifinite) von Nuemann algebra. Then a map u : 

L p (M) → L p (N ) is c.b. iff id Sp ⊗ u : L p (B( 2 )⊗M) → L p (B( 2 )⊗N ) is bounded. In this case, u cb = id Sp ⊗ u : L p (B( 2 )⊗M) → L p (B( 2 )⊗N ) .
xU n = k x(k)U k U n = k x(k)U k 1 1 • • • U k d d U n 1 1 • • • U n d d = k x(k)e in θk t U k+n ,
where n = (n 1 , . . . , n d ), k t is the transpose of k = (k 1 , . . . , k d ) and n θk t denotes the matrix product. Thus

[x] = x(m -n)e in θ(m-n) t m,n∈Z d .
(3.6.1)

If θ = 0, [x] is a Toeplitz matrix. In the general case, [x] is a twisted Toeplitz matrix.

For φ = (φ m ) m∈Z d ∈ ∞ (Z d ), we have

T φ x = φ m-n x(m -n)e in θ(m-n) t m,n∈Z d = M φ([x]), (3.6.2) 
where φmn = φ m-n . This is the link between the Fourier and Schur multipliers associated to φ. This link remains valid for operators x in B( 2 )⊗T d

Then using Neuwirth and Ricard's transference theorem [START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF], we deduce that T φ is c.b. on

L p (T d ), so M cb (L p (T d θ )) ⊂ M cb (L p (T d ))
contractively. However, for reason of completeness, we include a self-contained proof in the spirit of the proof of Proposition 3.6.2 by adapting Neuwirth and Ricard's argument to the present setting of twisted Toeplitz matrices. Moreover, this proof does not need the first part above. Let

Z N = {-N, . . . , -1, 0, 1, . . . , N } d ⊂ Z d . (Z N ) is a Følner sequence of Z d , that is, lim N →∞ |Z N (Z N + n)| |Z N | = 0, ∀n ∈ Z d .
Define two maps A N and B N as follows:

A N : T d θ → B( |Z N | 2 ) with x → P N ([x]),
where

P N : B( 2 (Z d )) → B( |Z N | 2 
) with (a mn ) → (a mn ) m,n∈Z N . And

B N : B( |Z N | 2 ) → T d θ with e mn → 1 |Z N | e -in θ(m-n) t U m-n .
Here B(

|Z N | 2 
) is endowed with the normalized trace. It is easy to check that both A N , B N are unital, completely positive and trace preserving. Consequently, A N extends to a complete contraction from L p (T d θ ) into L p (B(

|Z N | 2 
)), while B N a complete contraction from L p (B(

|Z N | 2 )) into L p (T d θ ). We now claim that lim N →∞ B N • A N (x) = x in L p (T d θ ) for any x ∈ L p (T d θ ). It suffices to consider a monomial x = U k . Then A N (U k ) = e in θ(m-n) t m,n∈Z N ,m-n=k , Problem 3.6.6. Let 2 < p ≤ ∞. Does one have M(L p (T d θ )) = M(L p (T d )) ?
We conjecture that the answer would be negative. Indeed, it is negative in the case of p = ∞ if one allows the number of generators to be infinite, as shown by the following remark that is communicated to us by Eric Ricard. Remark 3.6.7. Let θ = (θ kj ) be the infinite skew matrix such that θ kj = 1/2 for all k < j. Let T ∞ θ be the associated quantum torus. Now the generators of T ∞ θ is a sequence U = (U 1 , U 2 , • • • ) of anticommuting unitary operators:

U k U j = -U j U k , ∀ k = j.
Let φ be the indicator function of the subset Λ = {e k : k ≥ 1} of Z ∞ , where e k is the element of Z ∞ whose coordinates all vanish except the one on the k-th position which is equal to

1. Then φ ∈ M(L ∞ (T ∞ θ )) but φ ∈ M(L ∞ (T ∞ )). Let us check this remark. Let α = (α k ) ⊂ C be a finite sequence and set x = k α k U k .
Then by the anticommuting relation we have

x * x + xx * = 2 k |α k | 2 + j =k ᾱj α k (U * j U k + U k U * j ) = 2 k |α k | 2 . It then follows that x ∞ ≤ √ 2 α 2 .
On the other hand, it is clear that

x ∞ ≥ x 2 ≥ α 2 .
We then deduce that for any α

= (α k ) ⊂ C the series k α k U k converges in T ∞ θ iff α ∈ 2 . In this case, we have α 2 ≤ k α k U k ∞ ≤ √ 2 α 2 .
This clearly implies that φ is a bounded L ∞ multiplier on T ∞ θ . However, φ is not a bounded L ∞ multiplier on T ∞ . Otherwise, the closed subspace of L ∞ (T ∞ ) generated by the generators (z 1 , z 2 , • • • ) would be complemented in L ∞ (T ∞ ). But this subspace is isometric to 1 . It is well known that 1 cannot be isomorphic to a complemented subspace of an L ∞ -space. This contradiction yields that φ ∈ M(L ∞ (T ∞ )). This example also shows that M cb (L ∞ (T ∞ θ )) M(L ∞ (T ∞ θ )), in contrast with equality (3.6.3) in the commutative case.

We end this section by showing the equality M cb (L p (T d θ )) = M cb (L p (T d )) in Theorem 3.6.3 holds completely isometrically. To this end we first need to equip these spaces with an operator space structure. Recall that for two operator spaces E and F the space CB(E, F ) has a natural operator space structure by setting M n (CB(E, F )) = CB(E, M n (F )). Then M cb (L p (T Indeed, this is obvious for p = ∞. Then by duality, it is also true for p = 1. Finally, by interpolation, we deduce this equality for any 1 < p < ∞. Armed with this fact, we can modify the proof of Theorem 3.6.3 to get the announced assertion. The details are left to the reader.

Hardy spaces

There exist several ways to define Hardy spaces on quantum tori. The resulting spaces may be different. The approach that we adopt in this section is based on the Littlewood-Paley theory and real variable method in Fourier analysis. Chapter 3. Harmonic analysis on quantum tori

Let A be the negative generator of Q ε : Q ε = e -εA . Then

d dt Q ε-t [|Q ε+t [f ]| 2 ] =AQ ε-t [|Q ε+t [f ]| 2 ] -Q ε-t (AQ ε+t [f ] * )(Q ε+t [f ]) + (Q ε+t [f ] * )(AQ ε+t [f ]) .
For s > 0 let

F s (g) = -AQ s [|Q s [g]| 2 ] + Q s (AQ s [g] * )(Q s [g]) + (Q s [g] * )(AQ s [g]) .
Then for g = Q ε+t [f ] we have Elementary calculations lead to

Q ε [|Q ε [f ]| 2 ] -|Q 2ε [f ]| 2 = lim
d du F u (g) = A 2 Q u [|Q u [g]| 2 ] -Q u (A 2 Q u [g] * )(Q u [g]) + (Q u [g] * )(A 2 Q u [g]) -2Q u [|AQ u [g]| 2 ] = Q u A 2 |Q u [g]| 2 -(A 2 Q u [g] * )(Q u [g]) -(Q u [g] * )(A 2 Q u [g]) -2|AQ u [g]| 2 .
Note that

A = 2π √ -D ,
where D is the Laplacian of T d :

D = d k=1 ∂ 2 ∂z 2 k .
So A 2 = -4π 2 D and

A 2 |Q u [g]| 2 = (A 2 Q u [g] * )(Q u [g]) + (Q u [g] * )(A 2 Q u [g]) -8π 2 d k=1 ∂ ∂z k Q u [g] 2 .
Therefore,

d du F u (g) = -8π 2 d k=1 Q u ∂ ∂z k Q u [g] 2 -2Q u |AQ u [g]| 2 .
Recall that g = Q ε+t [f ]. By Kadison's Cauchy-Schwarz inequality and using the above equality twice, we obtain

- d du F u (g) ≤ Q ε 8π 2 d k=1 Q u ∂ ∂z k Q u [h] 2 + 2Q u |AQ u [h]| 2 ≤ -Q ε d du F u (h) ,
where h = Q t [f ]. Thus by (3.7.6),

F s (g) ≤ Q ε [F s (h)].
Hence by (3.7.5) and inverting the procedure leading to (3.7.5), we obtain

Q ε [|Q ε [f ]| 2 ] -|Q 2ε [f ]| 2 ≤ lim s→0 ε 0 Q 2ε-t [F s (h)]dt = - ε 0 ∂ ∂t Q 2ε-t [|Q t [f ]| 2 ]dt = Q 2ε [|f | 2 ] -Q ε [Q ε [f ]| 2 ].
This yields (3.7.4), and (3.7.3) too. Thus the lemma is proved. where ϕ ε is the Poisson kernel on R d :

ϕ ε (s) = c d ε (ε 2 + |s| 2 ) (d+1)/2 , s = (s 1 , • • • , s d ) ∈ R d .
In the sequel, we will always assume that z and s, r and ε are related as in (3.7.7). Let This notation is consistent with that introduced during the proof of Lemma 3.7.2 since 

Q ε (s) =
P r [f ](z) = Q ε [f ](s) = Q ε * f (s) = I d Q ε (s -t)f (t)dt. ( 3 
f Q = 1 |Q| Q f ds,
where |Q| denotes the volume of Q. Then we define BMO c (I d ; M) as the space of all f ∈ L 2 (I d ; L 2 (M)) such that sup

Q⊂I d cube 1 |Q| Q f -f Q 2 ds ∞ < ∞,
equipped with the norm

f BMO c = max f I d ∞ , sup Q⊂I d cube 1 |Q| Q f -f Q 2 ds 1/2 ∞ .
Here ∞ denotes, of course, the norm of M. 

Q ε |f -Q ε [f ](s)| 2 (s) ∞ ≈ sup Q⊂I d cube 1 |Q| Q f -f Q 2 dt ∞ .
(3.7.10)

Let Q be a cube of I d . Let s and ε be the center and half of the side length of Q, respectively. It is clear that

1 |Q| 1l Q (t) ≤ C d ϕ ε (s -t) ≤ C d Q ε (s -t). Thus 1 |Q| Q f (t) -Q ε [f ](s) 2 dt ≤ C d Q ε |f -Q ε [f ](s)| 2 (s).
Then

1 |Q| Q f -f Q 2 dt ≤ 4 1 |Q| Q f -Q ε [f ](s) 2 dt ≤ 4C d Q ε |f -Q ε [f ](s)| 2 (s).
This yields one inequality of (3.7.10).

To show the converse inequality fix s ∈ I d and ε > 0. Consider first the case ε ≥ 1/2. Then Q ε (t) ≈ 1 for any t ∈ I d . It follows that ϕ ε (t + m) ε ϕ ε (t) .

Q ε |f -Q ε [f ](s)| 2 (s) ≈ I d |f -Q ε [f ](s)| 2 I d |f | 2 . Whence Q ε |f -Q ε [f ](s)| 2 (s) ∞ I d |f | 2
Consequently,

Q ε |f -Q ε [f ](s)| 2 (s) I d ϕ ε (s -t)|f (t) -Q ε [f ](s)| 2 dt.
Let Q = {t ∈ I d : |t -s| ≤ ε} and Q k = {t ∈ I d : |t -s| ≤ 2 k+1 ε}. Then

I d ϕ ε (s -t)|f (t) -f Q | 2 dt = Q ϕ ε (s -t)|f (t) -f Q | 2 dt + k≥0 2 k ε<|t-s|≤2 k+1 ε ϕ ε (s -t)|f (t) -f Q | 2 dt 1 |Q| Q |f (t) -f Q | 2 + k≥0 1 2 k |Q k | Q k |f (t) -f Q | 2 dt.
The above sums on k are in fact finite sums. By triangle inequality (with

Q -1 = Q), 1 |Q k | Q k |f -f Q | 2 1/2 ∞ ≤ 1 |Q k | Q k |f -f Q k | 2 1/2 ∞ + k j=0 f Q j -f Q j-1 ∞ .
However,

f Q j -f Q j-1 2 ∞ ≤ 1 |Q j-1 | Q j-1 |f -f Q j | 2 ∞ ≤ 2 d 1 |Q j | Q j |f -f Q j | 2 ∞ ≤ 2 d f 2 BMO c (I d ;M) .
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Combining the preceding inequalities, we obtain

Q ε |f -f Q | 2 (s) ∞ k≥0 k + 1 2 k f 2 BMO c (I d ;M) f 2 BMO c (I d ;M) .
Finally,

Q ε |f -Q ε [f ](s)| 2 (s) 1/2 ∞ ≤ 2 Q ε |f -f Q | 2 (s) 1/2 ∞ f BMO c (I d ;M) .
This implies the missing inequality of (3.7.10). Recall that BMO c (R d ; M) is defined as the space of all locally square integrable functions ψ from R d to L 2 (M) such that

ψ BMO c = max ψ I d ∞ , sup Q⊂R d cube 1 |Q| Q ψ -ψ Q 2 ds 1/2 ∞ .
The following lemma shows that the map f → f establishes an isomorphic embedding of BMO c (T d ; M) into BMO c (R d ; M). 

1 |Q| Q f -fQ 2 ds ≤ 4 1 |Q| Q | f | 2 ds ≤ 2 d+2 |R| R | f | 2 ds = 2 d+2 I d | f | 2 ds.
Therefore, we get the desired equivalence.

we have

d dr P r [f ](z) = n∈Z d ,n =0 |n| 2 r |n| 2 -1 f (n)z n .
We then easily get the upper estimate of (3. Now it is easy to finish the proof of the lemma. Indeed, using the change of variables r = e -2πε , we get

G c,r 0 (f )(z) = 1 2π ε 0 0 d dε Q ε [f ](s) 2 e 2πε (1 -e -2πε )dε 1/2 ≈ ε 0 0 d dε Q ε [f ](s) 2 εdε 1/2 = G c,ε 0 [f ](s).
Together with the previous equivalences, this implies the desired assertion.

We will also need the Lusin area integral function. 

d dε Q ε [f ](t) 2 dtdε ε d-1 1/2 = Γ β (s) d dε ϕ ε [ f ](t) 2 dtdε ε d-1 1/2
= S β c ( f )(s).

(3.7.18)

The following is the analogue of Lemma 3.7.6 for the Lusin square functions. with equivalence constants depending only on d and α, β. Moreover, the norms above are independent of α and β up to equivalence.

Proof. This proof is similar to that of Lemma 3.7.6. For 0 < r 0 < 1 we introduce the truncated Stoltz domain: 

d dε ϕ ε [ f ](t) 2 dtdε ε d-1 1/2 .
Then by the reasoning in the proof of Lemma 3.7.6, we have S α c (f ) p ≈ S α c,r 0 (f ) p and a similar equivalence for S β c (f ). On the other hand, it is easy to see that for any α > 1 and 0 < r 0 < 1 there exist β 1 , β 2 > 0 and ε 1 , ε 2 > 0 such that under the change of variables r = e -2πε and w = e -2πit Γ β 1 ,ε 1 (s) ⊂ D α,r 0 (z) ⊂ Γ β 2 ,ε 2 (s), ∀ z = e -2πis ∈ T d .

Conversely, every truncated cone Γ β,ε 0 (s) is located between two truncated Stoltz domains. Then the argument at the end of the proof of Lemma 3.7.6 implies S β 1 c,ε 1 (f )(s) S α c,r 0 (f )(z) S β 2 c,ε 2 (f )(s); where the equivalence constants depend on d and β 1 , β 2 (cf. e.g., [START_REF] Coifman | Some new function sapces and their applications to harmonic analysis[END_REF]). Therefore, we deduce the first equivalence assertion of the lemma. The second part then follows too.

Now we can show that the results of [START_REF] Mei | Operator valued Hardy spaces[END_REF] remain valid for T d too. We state only those relevant to Theorem 3.7.1. In the following statement, the row and mixture Hardy/BMO spaces are defined in the usual way, and S c (f ) = S 2 c (f ), S c (f ) = S 1 c (f ). In other words, the integral is now taken on I d instead of R d . On the other hand, by Lemmas 3.7.3 and 3.7.5, the map f → f is an isomorphic embedding of BMO c (I d ; M) into BMO c (R d ; M). It is now easy to see that the proof of [START_REF] Mei | Operator valued Hardy spaces[END_REF]Theorem 2.4] is valid for periodic functions and integration on I d . Hence, we get the duality result in part i) and the equivalence for p = 1 in part ii). In the same way, we prove the periodic analogue

  Soit h d p (M) le sous espace de p (L p (M)) constitué de suites de différences des martingales. On définit la version conditionnelle des espaces de Hardy comme suit: Si 0 < p < 2,h p (M) = h d p (M) + h c p (M) + h r p (M),muni de la (quasi)normex hp = inf w h d p + y h c p + z h r p ,Introduction où l'infimum est pris sur tous les élémentsw ∈ h d p (M), y ∈ h c p (M) et z ∈ h r p (M) vérifiant x = w + y + z. Pour 2 ≤ p < ∞, h p (M) = h d p (M) ∩ h c p (M) ∩ h r p (M), muni de la norme

  affirment que h p (M) = L p (M) (0.1.1) avec normes équivalentes pour tout 1 < p < ∞. Puisqu'il y a deux fonctions carrées, il existe deux types d'atomes dans le cas non commutatif. Définition 0.1.1. On dit que a ∈ L 2 (M) est un (1, 2) c -atome associé à (M n ) n≥1 , s'il existe n ≥ 1 et une projection e ∈ M n tels que (i) E n (a) = 0; (ii) r(a) ≤ e;

Théorème 0. 1 . 4 .

 14 Soit 1 < p < ∞. Alors (bmo(M), h 1 (M)) 1 p = h p (M) avec normes équivalentes. 0.2. Chapitre 2

  où c I est le centre de I. Les faits importants dont on aura besoin sur la base d'ondelettes sont l'orthogonalité entre w I différen te, w L 2 (R) = 1 et la régularité de w,max(|w(x)|, |w (x)|) (1 + |x|) -m , ∀m ≥ 2.

Pour 1

 1 ≤ p < ∞, on considère f H c p = S c (f ) Lp(N ) , f H r p = S r (f ) Lp(N ) . Ce sont les normes. Donc on définit l'espaces H c p (R, M) (resp. H r p (R, M)) comme le complété de (S N , • H c p (R,M) ) (resp. (S N , • H c p (R,M)). Nous définissons maintenant l'espaces de Hardy à valeurs opérateurs comme suit: pour 1 ≤ p < 2,H p (R, M) = H c p (R, M) + H r p (R,M), (0.2.3) muni de la norme

Théorème 0. 2 . 5 .0.3 Chapitre 3

 253 On a BMO c (R, M) = BM O c (R, M) avec normes équivalents. Le résultat similaire est aussi vrai pour l'espace de ligne.Par conséquent, BMO(R, M) = BM O(R, M) avec norems équivalent. Soit d ≥ 2 et θ = (θ kj ) une matrice d×d skew-symétrique réelle. Rappelons que le tore non commutatif de dimension d est la C * -algèbre universelle, genérée par d vecteurs unitaires U 1 , . . . , U d vérifiant la relation de commutation suivante U k U j = e 2πiθ kj U j U k , j, k = 1, . . . , d. (0.3.1) Il exist une trace fidèle τ sur A θ . Soit T d θ l'algèbre de von Neumann obtenu par la représentation GNS de τ. On dit que T d θ est le d-tore quantique associé au θ. Remarquons que si θ = 0, alors A θ = C(T d ) et T d θ = L ∞ (T d ), où T d est le d-tore habituel. En conséquce, un d-tore quantique est une déformation de d-tore habituel, C'est donc nature d'espère que T d θ partage beaucoup de propriétés avec T d . Ce la se passe en effet dans le cas de la géométrie différentielle, comme montrés dans les travaux de Connes et ses collaborateurs.

  la b.a.u convergence précédente peut être renforcés par la a.u convergence. Le résultat similaire est encore vrai si on remplace F N par les trois autres moyennes de sommation P r , P r et Φ ε . Ici x n b.a.u ---→ x signifie que (x n ) converge à x bilatéralement presque uniformément (b.a.u, pour abbrévation) et x n a.u

2 1 I 2 1

 12 dx and l ϕ ≤ ϕ L c p MO(R,M) . The proof is just the copy of the proof of the first part in the last theorem. Now T c p is naturally embedded into L p (N ; c 2 (D)) by (f I ) I → ( f I |I| 1 I ) I . So by the Hahn-Banach extension theorem, l ϕ extends to an bounded linear functional on L p (N ; c 2 (D)) with the same norm. Then by the duality between (L p (N ; c 2 (D))) * = L p (N ; c 2 (D)). there exists a unique h = (h I ) I such that h Lp(N ; c 2 (D)) ≤ l ϕ and for f = (f I ) I ∈ T c p ,

2. 3 . Interpolation 69 ≤ 1 2 1

 36911 c p g L p ( f H c p (R,M) + ). Taking sup and let → 0, we get the required result. Finally, we prove the inverse inequality. Let f ∈ L p (N ), by duality, we can find two sequences of functions (F c,I ) I ∈ L p (N ; c 2 (D)) and (F r,I ) I ∈ L p (N ; r 2 (D)) such that F c,I + F r,I = f, w I |I| -I and (F c,I ) I Lp(N ; c 2 (D)) + (F r,I ) I Lp(N ; r 2 (D)) ≤ f Lp(N ) . Let f c = Ψ((F c,I ) I ) and f r = Ψ((F r,I ) I ), by identity (2.1.5), we have f = f c + f r . On the other hand, by the Stein inequality (2.2.5), we have f c H c p (R,M) ≤ (F c,I ) I Lp(N ; c 2 (D))

Theorem 2 . 4 . 1 .

 241 We haveBMO c (R, M) = BM O c (R, M)with equivalent norms. Similar results holds for the row spaces. Consequently, BMO(R, M) = BM O(R, M) with equivalent norms.

( 1 ) 71 ( 3 )

 1713 D 1 := {J ∈ D; 2|J| > |I|}' (2) D 2 := {J ∈ D; 2|J| ≤ |I|, 2J ∩ 2I = ∅}, 2.4. Comparison with Mei's results D 3 := {J ∈ D; 2|J| ≤ |I|, 2J ∩ 2I = ∅}.

  Let d ≥ 2 and θ = (θ kj ) be a real skewsymmetric d × d-matrix. The d-dimensional noncommutative torus A θ is the universal C *algebra generated by d unitary operators U 1 , . . . , U d satisfying the following commutation relation U k U j = e 2πiθ kj U j U k , j, k = 1, . . . , d. There exists a faithful tracial state τ on A θ . Let T d θ be the von Neumann algebra in the GNS representation of τ . T d θ is called the quantum d-torus associated with θ. Note that if θ = 0, then A θ = C(T d ) and T d θ = L ∞ (T d ), where T d is the usual d-torus. So a quantum d-torus is a deformation of the usual d-torus. It is thus natural to expect that T d θ shares

  Let d ≥ 2 and θ = (θ kj ) be a real skew symmetric d × d-matrix. The associated ddimensional noncommutative torus A θ is the universal C * -algebra generated by d unitary operators U 1 , . . . , U d satisfying the following commutation relation

[ 1 2 , 1 ]

 21 (a), the spectral projection of a corresponding to the interval [1 2 , 1]. Note that 1 -e = 1l [ 1 2 , 1] (1 -a). Then 1 2 (1 -e) ≤ 1 -a, which implies that 1 2 ν(1 -e) ≤ ν(1 -a). Moreover, letting g(r) = 1 r 1l [ 1 2 , 1] (r), r ∈ (0,1], we have e = eg(a)a and e(ϕ ε * f )e = eg(a)[a(ϕ ε * f )a]eg(a).

Theorem 3 . 3 . 4 .

 334 Let ϕ be an integrable function on R d that has the following decomposition:ϕ(s 1 , • • • , s d ) = ϕ 1 (s 1 ) • • • ϕ d (s d ), where each ϕ k satisfies |ϕ k (t)| ≤ A (1 + |t|) 1+δ , ∀t ∈ R,for some A, δ > 0. Then the conclusion of Theorem 3.3.3 remains true.

Theorem 3 . 4 . 1 .

 341 Let 1 ≤ p ≤ ∞ and x ∈ L p (T d θ ). Then F N [x] b.a.u.---→ x as N → ∞. Moreover, for 2 ≤ p ≤ ∞ the b.a.u. convergence can be strengthened to a.u. convergence.Similar statements hold for the two Poisson means P r , P r as r → ∞ as well as for the mean Φ ε as ε → 0.Proof. Let x ∈ L 1 (T d θ ) and > 0. Let (ε m ) and (δ m ) be two sequences of small positive numbers. Then for each m ≥ 1 choose y m ∈ A θ such that x-y m 1 ≤ δ m . Let z m = x-y m , so x = y m + z m . Applying Theorem 3.3.2 to each z m , we find a projection e m such that supN e m F N [z m ]e m ∞ ≤ ε m and τ (e ⊥ m ) ≤ C z m 1 ε -1 m ≤ Cδ m ε -1 m .The first inequality implies thate m z m e m ∞ ≤ ε m . Let e = m e m . Then τ (e ⊥ ) ≤ C m δ m ε -1 m <provided ε m and δ m are appropriately chosen. On the other hand,e(F N [x] -x)e ∞ ≤ e(F N [y m ] -y m )e ∞ + eF N [z m ]e ∞ + ez m e ∞ ≤ F N [y m ] -y m ∞ + 2ε m .By Proposition 3.2.1, limN →∞ F N [y m ] -y m ∞ = 0 for y m ∈ A θ . It then follows that lim sup N →∞ e(F N [x] -x)e ∞ ≤ 2ε m . Whence lim N →∞ e(F N [x] -x)e ∞ = 0. Therefore, F N [x]converges to x b.a.u. The b.a.u. convergence statements for the other summation methods are proved exactly in the same way. Let us turn to the a.u. convergence. Let x ∈ L 2 (T d θ ) and > 0. We can assume x selfadjoint. As in the preceding argument, let x = y m + z m with y m ∈ A θ and z m 2 ≤ δ m . Both y m and z m can be chosen selfadjoint. Now applying Theorem 3.3.2 to y 2 m , we find a projection e m such that sup N e m F N [z 2 m ]e m ∞ ≤ ε m and τ

.4. 1 )

 1 Let e = m e m . Then τ (e ⊥ ) ≤ for appropriate ε m and δ m and limN (F N [x]-x)e ∞ = 0. Therefore, F N [x]

2 . 1 , 3 . 5 . 1 .

 21351 Theorems 3.3.2 and 3.4.1, we get the followingProposition Let α > (d -1)/2 and x ∈ L p (T d θ ) with 1 ≤ p ≤ ∞. Then i) lim R→∞ B α R [x] = x in L p (T d θ )(relative to the w * -topology for p = ∞).

Theorem 3 . 5 . 2 .

 352 Let 1 < p < ∞ and α > (d -1)|

.5. 1 )

 1 where C β,δ = 2Γ(β + δ + 1)/[Γ(δ + 1)Γ(β)]. Let (R n ) be a sequence in (0, ∞) and (y n ) an element in the unit ball of L p (T d θ ; 1 ). Then, for any x ∈ L p (T d θ ) we have

3. 5 .I

 5 Bochner-Riesz means 97 We first estimate I R . By the argument already used above τ n Rn (x)y n 2 ≤ τ n |I Rn (x)|y n τ n |I Rn (x) * |y n .

Remark 3 . 5 . 3 .

 353 The previous proof gives a slightly more general result by allowing α to be complex. Namely, Theorem 3.5.2 remains true under the assumption that Re(α) > (d -1)| 1 2 -1 p | with α ∈ C and 1 < p < ∞. Remark 3.5.4. Let M be a semifinite von Neumann algebra. Then Theorem 3.5.2 admits the following analogue for the algebra T d ⊗M with the same proof: Let 1 < p ≤ ∞ and Re

0 θ 12 θ

 12 13 . . . θ 1d 0 0 θ 23 . . . θ 2d . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . θ d-1,d commutation relation (3.1.1), we have

Proposition 3 . 6 . 8 .

 368 d θ )) inherits the operator space structure of CB(L p (T d θ ), L p (T d θ )). Let TM cb (S p ( 2 (Z d ))) be the subspace of all c.b. Schur multipliers ψ on S p ( 2 (Z d )) which are of the Toeplitz form, i.e., ψ mn= φ m-n for some φ. TM cb (S p ( 2 (Z d ))) is also an operator space via TM cb (S p ( 2 (Z d ))) ⊂ CB(S p ( 2 (Z d )), S p ( 2 (Z d ))). Let 1 ≤ p ≤ ∞. Then M cb (L p (T d θ )) = M cb (L p (T d )) ∼ = TM cb (S p ( 2 (Z d )))completely isometrically, where the last identification is realized byφ ∈ M cb (L p (T d )) ↔ φ ∈ TM cb (S p ( 2 (Z d ))) with φmn = φ m-n .Chapter 3. Harmonic analysis on quantum tori Proof. We require the following elementary fact: Let M be a von Neumann algebra and u a unitary operator in M n (M). Then for any x ∈ M n (L p (M))uxu * Mn(Lp(M)) = x Mn(Lp(M)) .

  Hardy spaces are defined by square functions in terms of the circular Poisson semigroup P r . This allows us to use the recent developments of operator-valued harmonic analysis and noncommutative Littlewood-Paley-Stein theory. For any x ∈ T d θ define G c (x) =

s→0 ε 0 Q

 0 ε-t [F s (g)]dt. (3.7.5)It is easy to check that lim s→∞ F s (g) = 0 (one can use, for instance, (3.7.7) below). Then F s (g) = -

3. 7 .

 7 Hardy spaces 111 Although this is not really necessary, it is more convenient to work with the cube I d = [0, 1] d instead of T d . Another reason is that the case of I d is closer to that of R d . So we will identify T d with I d , as in the proof of Theorem 3.3.2. The addition in I d is modulo 1 coordinatewise, which corresponds to the multiplication in T d under the identification (e 2πis 1 , • • • , e 2πis d ) ↔ (s 1 , • • • , s d ). Accordingly, functions on T d and I d are identified too. Thus L p (T d ; L p (M)) = L p (I d ; L p (M)). We will use the following Poisson summation formula (see [83, Corollary VII.2.6]): P r (z) = m∈Z d ϕ ε (s + m) with z = (e 2πis 1 , • • • , e 2πis d ) and r = e -2πε , (3.7.7)

  m∈Z d ϕ ε (s + m), s ∈ I d .(3.7.8)

.7. 9 )

 9 An interval of I is either a subinterval of I or a union [b, 1] ∪ [0, a] with 0 < a < b < 1. The latter union is the interval [b -1, a] by the addition modulo 1 of I. So the intervals of I correspond exactly to the arcs of T. A cube of I d is a product of d intervals. For f ∈ L 1 (I d ; L 1 (M)) and a cube Q ⊂ I d let

Lemma 3 . 7 . 3 .

 373 BMO c (T d ; M) = BMO c (I d ; M) with equivalent norms. Proof. Fix f ∈ L 2 (T d ; L 2 (M)). Without loss of generality, assume that f (0) = f I d = 0. By Lemma 3.7.2 and (3.7.9), we need to show sup ε>0 sup s∈I d

∞ ≤ f 2

 2 BMO c (I d ;M) . Now assume ε < 1/2. By the proof of Theorem 3.3.2, for any t ∈ I d m =0

Remark 3 . 7 . 4 .

 374 The previous proof shows implicitly that the supremum on ε in (3.7.10) can be restricted to 0 < ε < 1. In fact, only small values of ε are important for this supremum. Accordingly, only values of r close to 1 matter in the two suprema in (3.7.1). This property can be also verified by the argument in the proof of Lemma 3.7.6 below.Functions on T d are 1-periodic functions on R d , or equivalently, functions on I d can be extended to 1-periodic functions to R d . For a function f on T d (or I d ) f will denote the corresponding 1-periodic function on R d . Then (3.7.8) implies that Q ε [f ] is equal to the Poisson integral of f on R d that will be denoted by ϕ ε [ f ]. Let us record this useful fact here for later reference:Q ε [f ] = ϕ ε [ f ] = ϕ ε * f on I d . (3.7.11) 

Lemma 3 . 7 . 5 .

 375 For any f ∈ BMO c (T d ; M) we have f BMO c (T d ;M) ≈ f BMO c (R d ;M) with equivalence constants depending only on d. Proof. Let f ∈ L 2 (T d ; L 2 (M)) with f I d = 0. By (3.7.10) and (3.7.11), we havef 2 BMO c (T d ;M) ≈ sup ε>0 sup s∈R d ϕ ε | f -ϕ ε [ f ](s)| 2 (s) ∞ .Then the proof of Lemma 3.7.3 shows that the right hand side above is equivalent to f 2 BMO c (R d ;M) . Alternately, one can directly prove that the supremum on the right hand side in(3.7.10) is equivalent to f 2 BMO c (R d ;M) Q be a cube in R d . If |Q| ≤ 1,then by the definition of cubes in I d and the periodicity of f , Q can be considered as a cube in I d . So assume |Q| > 1. Take another cube R such that Q ⊂ R, |R| ≤ 2 d |Q| and the side length of R is an integer k. Then R is a union of k d cubes of side length 1. Thus by the periodicity of f

1 r 0 |n| 2 r 2 ( 1 -r)dr 1 / 2 p+ 2 ,

 10221122 7.16). To show the lower one, for n ∈ Z d , n = 0 we have|n| 2 r |n| 2 -1 f (n)z n = T d d dr P r [f ](z • w)w -n dm(w).Let H = L 2 ((r 0 , r 1 ); (1 -r)dr). It is clear that for any z ∈ T d we haver |n| 2 -1 f (n)z n 2 (1 -r)dr 1/2 ≈ | f (n)|.Then by the triangle inequality in the columnL p -space L p (L ∞ (T d )⊗M; H c ), we deduce f (n) Lp(M) T d T d G c (f )(z • w) p Lp(M) dm(z) 1/p dm(w) = G c (f ) Lp(T d ;Lp(M)) .Thus the claim is proved. Using (3.7.16) twice, we getG c (f ) p ≤ G c,r 0 (f ) p sup n∈Z d ,n =0 f (n) p + G c,r 0 (f ) p G c,r 0 (f ) p .Similarly, we show that only small values of ε matter in (3.7.13) and (3.7.14). Namely for 0 < ε 0 < ∞ letting G c,ε 0 (f )(s) = s ∈ I d , we have G c (f ) p ≈ G c,ε 0 (f ) p .

  For α > 1 and z ∈ T d , let D α (z) be the Stoltz domain with vertex z and aperture α (recalling that |w| denotes the Euclidean norm):D α (z) = {w ∈ C d : |z -w| ≤ α(1 -|w|)}. For f ∈ L ∞ (T d )⊗M define S α c (f )(z) = Dα(z) d dr P r [f ](rw) 2 dm(w)dr (1 -r) d-1 1/2 , z ∈ T d , (3.7.17)where the integral is taken over D α (z) with respect to rw ∈ D α (z) with 0 ≤ r < 1 and w ∈ T d (recalling that dm is Haar measure of T d ).Chapter 3. Harmonic analysis on quantum toriLike for the g-function, we will transfer S α c (f ) to the usual area integral function onR d . For β > 0 and s ∈ R d let Γ β (s) = {(t, ε) ∈ R d × R + : |t -s| ≤ βε}.Let f ∈ L ∞ (I d )⊗M and f be its periodic extension to R d . DefineS β c (f )(s) = Γ β (s)

Lemma 3 . 7 . 7 .

 377 Let α > 1 and β > 0. Let f ∈ L ∞ (T d )⊗M. Then S α c (f ) Lp(T d ;Lp(M)) ≈ S β c (f ) Lp(I d ;Lp(M))

D

  α,r 0 (z) = {w ∈ C d : |z -w| ≤ α(1 -|w|), r 0 < |w| < 1}. Also for ε 0 > 0 set Γ β,ε 0 (s) = {(t, ε) ∈ R d × R + : |t -s| ≤ βε, ε < ε 0 }.The corresponding truncated square functions areS α c,r 0 (f )(z) = Dα,r 0 (z) d dr P r [f ](rw) 2 dm(w)dr (1 -r) d-1 0 (f )(s) = Γ β,ε 0 (s)

  1 (f ) Lp(I d ;Lp(M)) S α c,r 0 (f ) Lp(T d ;Lp(M)) S β 2 c,ε 2 (f ) Lp(I d ;Lp(M)) .However, standard arguments in harmonic analysis show thatS β 1 c (f ) Lp(I d ;Lp(M)) ≈ S β 2 c (f ) Lp(I d ;Lp(M)) ,

Theorem 3 . 7 . 8 .

 378 i) The dual space of H c 1 (T d ; M) coincides with BMO c (T d ; M) isomorphically with the natural duality bracket. The same assertion holds for the row and mixture spaces.ii) Let 1 ≤ p < ∞. Then for any f ∈ L ∞ (T d )⊗M G c (f ) p ≈ S c (f ) pwith relevant constants depending only on d. Consequently, the two square functions G c and S c define a same Hardy space.iii) Let 1 < p < ∞. Then H p (T d ; M) = L p (T d ; L p (M)) with equivalent norms. iv) Let 1 < p < ∞. Then (BMO c (T d ; M), H c 1 (T d ; M)) 1/p = H c p (T d ; M) = (BMO c (T d ; M), H c 1 (T d ; M)) 1/p,p . v) Let X 0 ∈ {BMO(T d ; M), L ∞ (T d ; L p (M))}, X 1 ∈ {H 1 (T d ; M), L 1 (T d ; M)}. Then for any 1 < p < ∞ (X 0 , X 1 ) 1/p = L p (T d ; M) = (X 0 , X 1 ) 1/p,p .Proof. By the identification T d ∼ = I d and Lemmas 3.7.3, 3.7.6 and 3.7.7, it suffices to prove this theorem with I d instead of T d . The geometry of I d is closer to that of R d . However, what makes our arguments parallel to those of[START_REF] Mei | Operator valued Hardy spaces[END_REF] is the use of periodic functions. This periodization puts the arguments of[START_REF] Mei | Operator valued Hardy spaces[END_REF] directly at our disposal. For any function f on I d with periodic extension f to R d , by (3.7.15) and (3.7.18), we haveG c (f ) = G c ( f ) and S c (f ) = S c ( f ) on I d .Note that the two square functions on the right are exactly those introduced in [52] by using the Poisson kernel on R d . The only difference compared with[START_REF] Mei | Operator valued Hardy spaces[END_REF] is that the L pnorm of these square functions are now taken in L p (I d ; L p (M)) instead of L p (R d ; L p (M)).

  Soit 1 ≤ p < ∞. Définissons H c p (M) (resp. H r p (M)) comme le complété de l'ensemble des martingales L p finies pour la norme x H c p = S c (x) p (resp. x H r p = S r (x) p ). Les espaces de Hardy de martingales non commutatives sont définis comme suit: Si 1 ≤ p < 2, La raison pour que H p (M) soit défini différemment selon 1 ≤ p < 2 ou 2 ≤ p ≤ ∞ est présentée dans

	0.1. Chapitre 1
	H p (M) = H c p (M) + H r p (M),
	muni de la norme
	x Hp = inf y H c p + z H r p ,
	où l'infimum est pris sur tous les opérateurs y ∈ H c p (M) et z ∈ H r p (M) vérifiant x = y + z.
	Pour 2 ≤ p < ∞,
	H p (M) = H c p (M) ∩ H r p (M),
	muni de la norme
	x Hp = max x H c p , x H r p .
	1/2
	.

  , M). Alors on a les thèorèmes de dualité et d'interpolation suivants:

	0.3. Chapitre 3	
	Théorème 0.2.2. Soit 1 < p < 2. On a	
	(H c p (R, M)) * = L c p MO(R, M)	(0.2.8)
	avec normes équivalentes.	
	De même, cette dualité est encore vraie entre H r p et L r p , entre H p et L p MO avec
	normes équivalentes.	
	Théorème 0.2.3. Pour tout 1 < p < ∞, on a	
	(H c p (R, M)) * = H c p (R, M).	(0.2.9)
	Théorème 0.2.4. Les résultats suivants sont vrais avec normes équivalent:	
	Théorème 0.2.1. On a	
	(H c	

1 (R, M)) * = BMO c (R, M) (0.

2.7) avec normes équivalentes. De même, cette dualité est encore vraie entre H r 1 et BMO r , entre H 1 et BMO avec normes équivalentes.

  2, le noyau de la moyenne de Bochner-Riesz dans ce cas-là est une identité d'approximation, on obtient alors les résultats de la convergence de moyenne, des inégalités maximales et de la convergence ponctuelles. En fait, les (3) dans les Théorèmes 0.3.1 et 0.3.2, et le résultat similaire pour la moyenne de Bochner-Riesz avec l'ordre α plus grande que (d -1)/2, seront démontrés comme une conséquence du cas général concernant une identité d'approximation déterminée par une fonction continue sur R d avec une condition supplémentaire sur le comportement asymptotique à l'infini.Pour le cas α ≤ (d -1)/2, on a le théorème suivant, qui est la généralisation du théorèmede Stein 

  1.4. Interpolation of h p spaces 53 Proof of Theorem 1.4.5 The row version of Lemma 1.4.3 holds true, as well, by considering the equivalent quasinorm N r p of • h r p . The diagonal version is ensured by Lemma 1.4.7. Thus Lemma 1.4.6 yields the nontrivial inclusion h q

  2, Theorem 2.2.3 and Theorem 2.2.6, we state the boundedness of Ψ as a corollary.

	Corollary 2.2.7. (i) Let 1 < p < ∞, Ψ is a projection map from L p (N ; c 2 (D)) onto H c p (R, M) if we identify the latter as a subspace of the former. (ii) Let 2 < p ≤ ∞, Ψ is also a bounded map from L p (N ; c 2 (D)) to L c p MO(R, M).
	Theorem 2.2.3 and Theorem 2.2.6 immediately imply the following corollary:
	Corollary 2.2.8. Let 2 < p < ∞. Then

  ⊗T d θ ; the associated conditional expectation is just the multiplication by the indication function 1l I d of I d . Thus T d θ becomes a subalgebra of M θ too. The corresponding conditional expectation is 1l I d •E, where E is the conditional expectation from N θ to T d θ given by Corollary 3.1.2. Now let us show the weak type (1, 1) inequality for the Fejér means. Recall that F N is the Fejér kernel on T d given by (3.2.2) and that

  .5.4) This can be reduced to the case of α > 0 by using the argument in Step 1. We omit the details.Let x ∈ L p (T d θ ) with x p < 1 and y = (y n ) be a finite sequence in L p (T d θ ) with y L p (T d θ ; 1 ) < 1. Assume first that p < 2. For any fixed α > (d -1)(1/p -1/2) we can always choose p 1 > 1, α 0 > 0 and α 1 > (d -1)/2 such that

	α = (1 -t)α 0 + tα 1 and	1 p	=	1 -t 2	+	t p 1

Theorem 0.3.3. Let 1 < p < ∞ and α > (d -1)| 1 2 -1 p |. Then
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Remerciements Chapter 3. Harmonic analysis on quantum tori

To prove the remaining parts of Theorem 3.7.1 we will use transference to reduce the problem to the corresponding one on N θ and then use Mei's results [START_REF] Mei | Operator valued Hardy spaces[END_REF]. An advantage of this proof is that it also provides an alternative (more elementary) approach to the two parts already considered in the previous paragraph. Recall that the framework of [START_REF] Mei | Operator valued Hardy spaces[END_REF] is the Euclidean space R d , and the Hardy spaces there are defined by using the Poisson semigroup on R d . The geometry of R d is simpler than T d . But what really renders matters more handy in R d is the explicit compact formula of the Poisson kernel (or its growth estimates). The situation for T d is harder. Although it is claimed in [START_REF] Mei | Operator valued Hardy spaces[END_REF] as remarks that all results there hold equally with essentially the same proofs in the d-torus setting, this claim is clearly true for T thanks to the explicit simple formula of the Poisson kernel of T. Howeve r, it would not be so transparent whenever d ≥ 2. As a byproduct of our proof below of Theorem 3.7.1, we remedy this situation, which constitutes another advantage of our approach via transference. Finally, it seems that even in the scalar case there does not exist published references on Hardy space theory on T d for d ≥ 2 via the Littlewood-Paley theory, although this theory is certainly known as folklore to many specialists. Our approach provides, in particular, a complete picture of the scalar-valued Hardy space theory on T d , exactly parallel to that on R d .

Convention.

For notational simplicity we will denote all circular Poisson semigroups considered in the sequel by (P r ) 0≤r<1 . Thus P r ⊗ id T d θ will be simply denoted by P r . This slight abuse of notation should not cause any confusion in concrete contexts. For instance, for

On the other hand, P r will also stands for the circular Poisson kernel on T d given by (3.2.3). Thus for f ∈ L 1 (N θ ) we have (recalling that dm denotes Haar measure on T d )

We will study several BMO norms as well as H c p norms. The notational system for these norms (or spaces) might look heavy; but everything should be clear in concrete contexts. We start our analysis with BMO spaces on T d with values in a von Neumann algebra M.

For simplicity we will assume that M is equipped with a normal faithful tracial state τ (M will be T d θ in the proof of Theorem 3.7.1) . We start with the BMO space. Let

equipped with the norm

Here the first L ∞ -norm is the one of M and the second that of L ∞ (T d )⊗M. We require the following lemma which characterizes BMO c (T d ; M) by the noncommutative analogue of the usual Garsia norm. This lemma is a special case of [START_REF] Junge | BMO spaces associated with semigroups of operators[END_REF]Theorem 2.9]. But we prefer to present the following elementary proof which was communicated to us by Tao Mei.

Lemma 3.7.2. For any

with universal equivalence constants.

Hardy spaces 109

Proof. First note that

The right hand side is exactly the analogue of the usual Garsia norm (cf. [25, Corollary VI.2.4]). For any fixed r and z we have

By Kadison's Cauchy-Schwarz inequality,

On the other hand, since P r is subordinated to the heat semigroup on T d , by the subordination formula, one has

. Alternatively, this inequality can be easily checked by (3.7.7) below. Then we deduce that sup

This is the upper estimate of (3.7.1). The converse inequality is harder. Fix f ∈ L 2 (T d ; L 2 (M)). By triangle inequality, we have

Assuming for the moment the following inequality

Combining the preceding inequalities, we then deduce that sup

Whence the lower estimate of (3.7.1) with 2 + √ 2 as constant. It remains to prove (3.7.3). To this end, it is more convenient to work with Q ε = P r for r = e -2πε . Then we must show

Let us write

Chapter 3. Harmonic analysis on quantum tori Now we turn to the discussion of Hardy spaces.

and

Here the first L p -norm is the one of L p (M) and the second that of L p (T d ; L p (M)). Completing L ∞ (T d )⊗M under the norm H c p , we get H c p (T d ; M). Like in the BMO case, we wish to reduce these Hardy spaces to those on

Let f be the periodic extension of f to R d . Let G c ( f ) be the g-function of f defined by the Poisson kernel ϕ ε :

Thanks to (3.7.11), we have

Here the first L p -norm is the one of L p (M) and the second that of L p (I d ; L p (M)). Define H c p (I d ; M) to be the completion of (L ∞ (I d )⊗M, H c p ). 

where the equivalence constants depend only on d and r 0 . To this end take any 0 ≤ r 0 < r 1 < 1 and let

Writing the Fourier series expansion of P r [f ]:

Hardy spaces

Chapter 3. Harmonic analysis on quantum tori of [START_REF] Mei | Operator valued Hardy spaces[END_REF]Theorem 4.4], which implies the remaining case of ii). The reduction to dyadic martingales of [START_REF] Mei | Operator valued Hardy spaces[END_REF] is clearly available in our present setting. The dyadic decomposition is now made in I d (or equivalently, T d ). In this way, we reduce parts iii)-v) to the martingale case as in [START_REF] Mei | Operator valued Hardy spaces[END_REF]. The verification of all details is, however, tedious and lengthy, so it is more reasonable to skip it here.

Remark 3.7.9. It is stated in the final remark of [52, Chapter 2] that the relevant constants in part i) above for R d are independent of d. This does not seem true. In fact, all constants appearing in Theorem 3.7.8 depend on d (and on p too), except those in part iii) since the semigroup argument described in the paragraph following Theorem 3.7.1 yields equivalence constants depending only on p. The same comment applies to Theorem 3.7.1 too. However, the constants there are independent of the given skew matrix θ.

Remark 3.7.10. The H 1 -BMO duality in Theorem 3.7.8 and Lemma 3.7.3 imply that H c 1 (T d ; M) admits an atomic decomposition like in the case of R d . We refer the interested reader to [START_REF] Mei | Operator valued Hardy spaces[END_REF] for more details.

Armed with Theorem 3.7.8 and transference, it is easy to prove Theorem 3.7.1. To this end we still require the following simple lemma.