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Résumé  

 

Mon projet de thèse a consisté en l’identification et la caractérisation moléculaire et immunologique de 

patients présentant une susceptibilité accrue aux infections fongiques par Candida sp. dans le syndrome 

Mendélien de candidose cutanéo-muqueuse chronique (CCMC). 

La CCMC est caractérisée par des infections persistantes ou récurrentes de la peau, des ongles et des 

muqueuses par les champignons Candida, principalement C. albicans. Elle est fréquemment associée à 

d’autres infections opportunistes dans certaines immunodéficiences primaires ou acquises, ou bien elle 

peut être associée à un tableau auto-immun. La CCMC peut finalement être isolée (CCMCi) sans autre 

tableau clinique sévère: la plupart des cas rapportés sont sporadiques, mais il existe également des cas 

familiaux avec une hérédité mendélienne autosomique principalement dominante (AD) ou plus rarement 

récessive (AR). 

Basés sur les données de la littérature, qui démontrent un rôle majeur de l’immunité dépendante des IL-

17s dans la résistance aux infections mucocutanées vis-à-vis de C. albicans et nos résultats récents, qui 

démontrent un défaut de cette immunité dans certaines immunodéficiences primaires associées à une 

CCMC [les syndromes AD-HIES  et AR APS-1, ainsi que chez les patients déficients en CARD9, nous 

avons émis l’hypothèse que parmi les patients atteints de CCMCi, certains pourraient présenter un défaut 

génétique affectant spécifiquement l’immunité IL-17-dépendante.  

Au début de ma thèse, j’ai participé à l’identification des deux premières étiologies génétiques de la 

CCMCi : le défaut autosomique récessif (AR) complet en IL-17RA et autosomique dominant (AD) en IL-

17F. Plus récemment, j’ai identifié la troisième et la plus fréquente étiologie génétique de la CCMC par 

l’identification de mutations gain de fonction dans le gène STAT1 suite à une approche explorant 

l’ensemble du génome (séquençage de l’ensemble des exons). Ces mutations engendrent une « hyper-

réponse » aux interférons de type I et II et à l’IL-27 qui inhibent la différentiation des lymphocytes T 

sécréteurs d’IL-17, impliqués dans l’immunité mucocutanée vis-à-vis de C. albicans chez l’homme. 

En conclusion, nous avons identifié, en 2011, des trois premières étiologies génétiques de la CCMCi, avec 

les défauts AR en IL-17RA, AD en IL-17F et des mutations gain-de-fonction de STAT1, toutes associées à 

un défaut de l’immunité dépendante de l’IL-17. Des mutations gain-de-fonction de STAT1 représentent à 

ce jour la cause génétique la plus fréquente de la CCMCi avec au total 94 patients rapportés dans la 

littérature depuis 2011. Nous avons ainsi démontré que la CCMCi est une immunodéficience primaire, 

associée à un défaut de l’immunité réalisée par les IL-17s. Ces travaux ont des implications majeures dans 

le domaine immunologique avec la description et la caractérisation des mécanismes biologiques impliqués 

dans l’immunité protectrice spécifique de C. albicans et une meilleure compréhension des mécanismes 

physiopathologiques associés à une susceptibilité accrue aux infections fongiques, dans des conditions 

naturelles d’infection ; et dans le domaine médical, avec la possibilité de diagnostics moléculaires, un 

conseil génétique en cas de diagnostic positif, une meilleure prise en charge des patients. 
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Summary  
 

My project consists in the molecular and immunological identification and characterization of patients 

with increased susceptibility to fungal infections with Candida sp. suffering from the Mendelian 

syndrome of chronic mucocutaneous candidiasis (CMC). 

CMC is characterized by persistent or recurrent infections of the skin, nails and mucosae by Candida 

fungi, especially C. albicans. CMC is frequently associated with other opportunistic infections in some 

acquired or primary immunodeficiencies, or can be associated with autoimmune disorders. Finally, CMC 

may be present as an isolated form (chronic mucocutaneous candidiasis disease or CMCD) without any 

other severe infectious or autoimmune clinical manifestation: most reported cases are sporadic, but there 

are also familial cases with autosomal dominant (AD) or recessive (AR) Mendelian inheritance. 

Based the literature, which demonstrated a major role of IL-17 cytokines in mucocutaneous immunity 

with C. albicans, and our recent results, which show an impairment of IL-17 immunity in some primary 

immunodeficiencies associated with CMC (AD-HIES syndrome, AR APS-1, and CARD9-deficient 

patients), we hypothesized that among CMCD patients, some might have a genetic defect affecting 

specifically the IL-17-dependent immunity. 

At the beginning of my PhD, I participated in the identification of the first two genetic etiologies of 

CMCD: complete AR IL-17RA and partial AD IL-17F deficiencies. More recently, I identified the third 

and most common genetic etiology of CMCD by identifying gain of function mutations in the STAT1 gene 

following an approach exploring the whole genome (sequencing of all exons). These mutations are 

responsible for a "hyper-response" to type I and II interferons and IL-27, which inhibit the differentiation 

of IL-17-producing T cells. Impaired IL-17 immunity results in reduced mucocutaneous defenses against 

C. albicans in humans.  

In conclusion, we have identified in 2011, the first three genetic etiologies of CMCD with AR IL-17RA 

and AD IL-17F deficiencies and gain-of-function STAT1 mutations, all associated with an impaired IL-17-

dependent immunity. Gain-of-function STAT1 mutations represent the most frequent genetic cause of 

CMCD with a total of 94 patients reported in the literature since 2011. We have shown that CMCD is a 

primary immunodeficiency associated with inborn errors of IL-17 immunity. This work has important 

implications in the field of immunology with the description and characterization of the biological 

mechanisms involved in protective immunity specific to C. albicans and a better understanding of the 

pathophysiological mechanisms associated with increased susceptibility to fungal infections in natural 

conditions of infection, and in the medical field, with the possibility of molecular diagnostics, genetic 

counseling for a positive diagnosis, and a better follow-up of the patients.  
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1. Introduction 

The presence of a pathogen in the environment is an indispensable but not always a sufficient factor for 

the development of an infectious disease. A complex interplay between environmental (microbial and 

non-microbial) and human (non-genetic and genetic) factors determines immunity to infection and the 

resulting clinical outcome of infection. Accumulating evidences suggest that human genetic factors play a 

particularly important role in immunodeficiencies and susceptibility to infectious diseases [1-3]. 

According to the dominant paradigm, genetic predisposition to infectious diseases segregates in either a 

Mendelian or polygenic pattern of inheritance [2]. Following a Mendelian predisposition model, as of 

November 2011, more than 180 molecularly defined syndromes associated with abnormal immune 

function have been identified in more than 200 primary immunodeficiency diseases (PIDs) and new 

entities are reported almost every month [4]. Typically, these disorders are individually rare and confer 

predisposition to multiple infectious diseases (one gene, multiple infections). They affect immune 

responses in various ways, typically, but not exclusively, involving hematopoietic cells such as 

neutropenia, a lack of B or T cells. It gradually became clear that not all PIDs confer predisposition to 

multiple infections, or even recurrent infections. An increasing number of disorders are known to confer 

Mendelian predisposition to a single type of infection (one gene, single infection) [5]. We focus on the 

genetic determinism of such infectious diseases, and test the hypothesis that severe infections arising in 

otherwise healthy children may result from Mendelian (monogenic) genetic errors. We adopted candidate 

gene and hypothesis generating approaches to reveal Mendelian genetic etiologies for a fungal infectious 

disease: chronic mucocutenous candidiasis (CMC). 
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2. Chronic mucocutaneous candidiasis (CMC) 

2.1 Epidemiological and clinical data 

Candidiasis is a fungal infection caused by Candida species and more commonly by Candida albicans [6]. 

C. albicans is a commensal organism of the mucous membranes of the oral cavity, gastrointestinal tract 

and vulvovaginal walls, and the prevalence of asymptomatic is approximately 50% in the general 

population. However, in some individuals (immunocompromised individuals, newborns, the elderly), C. 

albicans becomes a major opportunistic pathogen causing two diseases generally exclusive: invasive 

candidiasis (systemic candidiasis, which is often acute) or superficial candidiasis of the skin, nails and 

mucous membranes (mucocutaneous candidiasis, which is usually chronic, therefore it is called chronic 

mucocutaneous candidiasis or CMC) [7, 8]. Innate or acquired granulocyte defects are often responsible 

for systemic candidiasis, while innate or acquired T cell deficiencies are often responsible for 

mucocutaneous candidiasis [7-9]. My thesis focused on CMC. 

CMC is a clinically highly heterogeneous disease, mainly characterized by severe, chronic or recurrent 

infections of the skin, nails and mucosae by the yeast Candida, mainly C. albicans. [8, 10, 11]. This 

disease might be severely disabling in particular due to debilitating esophageal stricture with potential 

mal-digestion/-absorption. In addition, it can be life threatening as the chronic infections are associated 

with  the development of squamous cell carcinomas of the oral cavity or of the esophagus or with 

intracranial aneurysms [12-17]. A number of CMC patients also develop accompanying autoimmune 

disorders, mainly of the thyroid, suggestive of an underlying deregulation of the immune system.  

It has long been recognized that protection from mucocutaneous candidiasis relies on cell-mediated 

immunity [18, 19]. Indeed, severe oro-pharyngeal candidiasis was among the most common opportunistic 

infections in HIV-infected patients, and represented a marker of disease progression before the 

introduction of effective antiviral treatments [18, 20]. Patients with severe combined immunodeficiency 

(SCID) or combined immunodeficiency (CID) and impaired numbers and/or function of T lymphocytes, 
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often suffer from persistent mucocutaneous infections with C. albicans [4, 5, 21]. CMC is also common in 

patients receiving immunosuppressors, steroids or antibiotics [8]. However, CMC is one among many 

other opportunistic infections occurring in these individuals who are vulnerable to a large spectrum of 

pathogens. 

In contrast, CMC is one of the major infections found in autosomal dominant hyper-immunoglobulin E 

syndrome (AD-HIES). It is a complex PID characterized by high serum IgE levels, severe Staphyloccocus 

aureus pulmonary infections, recurrent staphylococcal skin abscesses and impaired inflammatory 

responses, referred to as cold abscesses, and skeletal abnormalities [22-24]. Classic AD-HIES is caused by 

dominant-negative mutations in STAT3 [25]. The transcription factor STAT3 (Signal Transducer and 

Activator of Transcription 3) is implicated in signaling pathway of a large number of cytokines, mainly 

those belonging to the gp130 family (IL-6, IL-11, OSM, LIF, CNTF, NNT-1, G-CSF, CT-1) and the IFN 

family (IL-10, IL-20, IL-22). It can also be activated by IFN-α/β, common gamma-chain family cytokines 

(IL-2, IL-7, IL-9, IL-15, IL-21), single chain family cytokine (GH) and receptor tyrosine kinases (EGF, 

PDGF, CSF-1, HGF) [25, 26]. An autosomal recessive (AR) form of susceptibility to CMC has been 

associated with a homozygous premature stop codon mutation in CARD9 found in a large consanguineous 

Iranian family. Patients of this family had recurrent superficial fungal infections with Candida sp. and 

dermatophytes, and/or invasive infection of the brain with Candida sp. [27]. The protein CARD9 is a key 

adapter in the signaling pathway of C-type lectin receptors (CLRs) such as Dectin-1, Dectin-2 and 

MINCLE [28-30], which are pattern recognition receptors (PRRs) critical for immune responses to fungi, 

including C. albicans [31-35]. 

CMC is one of the hallmarks of the autoimmune polyendocrine syndrome type 1 (APS-1), also known as 

autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome [36]. 

Autosomal recessive APS-1 (AR APS-1) is due to biallelic mutations in the autoimmune regulator (AIRE) 

gene which result in T cell self-tolerance impairment [37, 38]. Present in over 90% of APS-1 patients, 

CMC is usually the earliest and only infectious clinical manifestation, but the underlying 
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immunodeficiency remained puzzling for a long time [21, 24, 39-43]. CMC was also described in 

combination with thyroid disease, segregating as an AD trait [21, 42-46]. From now on, throughout the 

text, I will reference the CMC associated with these conditions (AD-HIES, AR APS-1, AD CMC with 

thyroiditis, or AR CARD9 deficiency) as syndromic CMC. 

Finally, CMC can exist as an isolated form (CMC disease or CMCD), arising in otherwise healthy 

individuals without any other overt infectious or autoimmune clinical manifestation [8, 10, 11, 21]. 

However, invasive candidiasis, dermatophytosis, bacterial infections of the lungs and skin (mainly by S. 

aureus) [47-49], or severe viral disease [50] have been reported in some patients [21]. In addition, an 

increasing number of  CMCD patients with autoimmune, especially thyroid, diseases are reported [21]. 

Finally, CMCD is associated with an increased risk of developing oral or esophageal squamous cell 

carcinoma and cerebral aneurysms, which origin remains unknown [21]. It is a rare disease, which most 

often appears in early childhood, with a prevalence estimated at 1 out of 100,000 individuals. 

The first CMCD cases were described during the 1960s, familial forms with mainly AD segregation, or 

more rarely AR inheritance in some consanguineous families, have been reported [8], suggesting a genetic 

predisposition to CMCD [21]. As many sporadic and familial cases have been described [21], it was 

suggested that CMCD could result from Mendelian genetic defects, at least for some patients [21]. Despite 

a large number of CMCD patients studied during the 1980s, no genetic etiology or robust immunological 

phenotype could be identified. Then, with the development of antifungal therapies, research on CMCD 

gradually declined. Recently, studies have strongly progressed in the identification and the 

characterization of genetic and physio-pathological mechanisms of CMC either syndromic or isolated. 
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2.2 Syndromic CMC: a role of IL-17 immunity? 

In recent years, the search for the genetic predisposition to CMC was boosted by the development of 

oropharyngeal candidiasis in mouse models [51], the characterization of  “Th17 cytokines” (IL-17A, IL-

17F and IL-22) [52, 53] and finally the characterization of the pathogenesis of primary 

immunodeficiencies associated with CMC [21, 23, 24, 41-43, 46, 54, 55]. 

2.2.1 IL-17 immunity 

 

IL-17 and Th17 CD4 T cells are believed to confer protection against fungal pathogens including C. 

albicans in mice [9, 42, 51] and humans [52, 56]. In addition, some studies in mice and humans have 

demonstrated that IL-17 and Th17 also play a protective role against intracellular bacteria like Listeria 

monocytogenes, Salmonella enterica, or Mycobacterium tuberculosis [57](Table 1).  
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Table 1: IL-17 immunity in immunity against bacterial, mycobacterial or fungal pathogens [50] 
 

Class Pathogen Protection Effects of IL-17  Host studied 

Bacteria Bacteroides fragilis No 
Contributes to intra-abdominal  

abscess formation 
Mice [58] 

 Bordetella pertussis Yes Required for vaccine-primed protection Mice [59] 

 Borrelia sp. No Contributes to the development of arthritis Mice [60] 

 
Citrobacter 

rodentium 
Yes Increases survival Mice [61] 

 Escherichia coli Yes Reduces bacterial burden Mice [62] 

 Helicobacter pylori No 
Associated with chronic  

gastric inflammation 
Human [63, 64] 

 
Klebsiella 

pneumoniae 
Yes 

Reduces bacterial burden, 

 increases survival 

Human [65], 

mice [66] 

 
Listeria 

monocytogenes 
Yes 

Reduces bacterial burden in liver, 

contributes to granuloma formation 
Mice [67, 68] 

 
Mycoplasma 

pneumoniae 
Yes 

Enhances the kinetics of  

bacterial clearance 
Mice [69] 

 
Porphyromonas 

gingivalis 
Yes 

Prevents periodontal 

 bone destruction 
Mice [70] 

 
Pseudomonas 

aeruginosa 
No 

Associated with pulmonary 

exacerbations in patients with  

cystic fibrosis 

Human [71], 

mice [72] 

 
Streptococcus 

pneumoniae 
Yes Prevents colonization Mice [73] 

 Salmonella enterica Yes Reduces bacterial burden Mice [74] 

Mycobacteria 
Mycobacterium 

tuberculosis 
Yes 

Enhances T helper type 1 memory 

response, reduces mycobacterial 

burden after vaccination 

Mice [75] 

 

M. bovis, bacille de 

Calmette–Guerin 

(BCG) 

Yes 

Contributes to acute neutrophil-

mediated inflammation and  

granuloma formation 

Mice [75] 

Fungi 
Aspergillus 

fumigatus 
No 

Increases fungal burden 

 (intranasal inoculation) 
Mice [76] 

 C. albicans Yes 

Reduces fungal burden, increases 

survival (intravenous inoculation or 

natural cutaneous infection) 

Mice [77], 

human [78] 

 C. albicans No 
Increases fungal burden  

(intragastric inoculation) 
Mice [76] 

 
Cryptococcus 

neoformans 
Yes 

Reduces fungal burden,  

increases survival 
Mice [79] 

 
Pneumocystis 

carinii 
Yes Reduces fungal burden Mice [80] 
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2.2.1.1 Pattern recognition receptor (PRR)-mediated fungal recognition 

C. albicans cell wall is a complex array of layered proteins and carbohydrates. Mannan and manoproteins 

compose the outer portion, and β-(1,3)-glucan and chitin moieties compose the inner layer. C. albicans is 

a dimorphic fungus switching between yeast and hyphal forms. Expression of cell wall proteins and 

carbohydrates is significantly altered during transition of these two forms. The innate immune system 

recognizes components of the C. albicans cell wall, distinguishes fungal forms and directs skewing of Th 

cell responses by pattern recognition receptors (PRRs). PRRs capable of recognizing fungal components 

are identified in several PRR families: Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and 

Complement receptor 3 (CR3) [81]. Of the TLRs, TLR2 and TLR4 are the major participants in C. 

albicans recognition. TLR2 binds to phospholipomannans and β-glucan (the major component of yeast 

zymosan) and acts in combination with Dectin-1 (a CLR receptor) to induce proinflammatory responses in 

a variety of Candida infection settings [82]. TLR4 recognizes C. albicans O-linked mannan and stimulates 

production of the inflammatory cytokine TNF-α in human mononuclear cells and murine macrophages 

[83]. CLRs appear to be more critical than TLRs in C. albicans recognition. Several extracellular and 

transmembrane CLRs, including the mannose receptor (MR), Dectin-1, Dectin-2, dendritic cell specific 

ICAM-3-grabbing non-integrin (DC-SIGN) and the collectins, are involved in antifungal immunity [84]. 

Although their roles need to be further elucidated, Dectin-1, dectin-2 and MINCLE are the best-

characterized CLRs with respect to Candida. Those receptors recognize different antigens presented 

dynamically by either the yeast or hyphal form. Dectin-1 recognizes the β-(1,3)-glucan, which is usually 

buried underneath a layer of cell wall proteins and mannan moieties, posing an issue of accessibility for 

innate immune cells. Nevertheless, β-glucan is exposed in bud scars that are revealed during the process of 

hyphal transition, which facilitates its recognition and may be the essential signal that alerts the host of a 

transition from fungal colonization to infection [28]. Dectin-2 recognizes N-linked mannan sugars, which 

are localized in the exterior layer of the yeast cell wall [29], and appears to be especially important in 

recognition of hyphae [30]. In addition to Dectins, MINCLE and the mannose receptor (MR) recognize 
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mannan carbohydrates from Candida. In human peripheral blood mononuclear cells (PBMCs), mannans 

were found to induce more IL-17 than other fungal components such as β-glucan and chitin [85]. 

Although in vivo studies have not yet fully clarified which CLR is more important, details of their 

respective signaling pathways are progressively elucidated. They appear to mediate signaling through the 

Syk kinase, the adaptors CARD9/Bcl-10/MALT1, and the NF-κB and Ras/Raf-1 pathways [86, 87]. 

Ultimately, it is likely that signaling through a multiplicity of PRRs that recognize different components 

of C. albicans is needed to develop an optimal immune response. This combined pathways trigger 

expression and secretion of IL-6, IL-23, and IL-1β, which together with TGF-β induce naïve T cell 

differentiation towards Th17 cells via the activation of the transcription factors STAT3 downstream of IL-

6 and IL-23 and ROR-γt [88]. 

2.2.1.2 Th17 differentiation  

The T helper cell (Th) paradigm, introduced by Mosmann and Coffman more than two decades ago, has 

been used to explain how different adaptive immune responses are elicited in the host organism for the 

purpose of eradicating infections with diverse microbial pathogens [89]. Th1 and Th2 cells described in 

the original studies, have now been joined by Th17 cells who produce high levels of IL-17A, IL-17F, and 

IL-22 [90-92]. Later on, some studies distinguished high IL-22-producing T cells from Th17 and named 

them Th22 [93, 94]. These cells are involved in clearance of extracellular bacteria and fungi, particularly 

at mucosal surfaces [61, 95, 96]. Another subset of CD4+ T cells, the regulatory T cells (Tregs), has also 

emerged suppressing effector T cell responses thereby preventing their potentially pathogenic effects [97]. 

The T helper cell differentiation program is largely controlled by cytokines produced in response to 

microbial products by innate immune cells. These include IL-12/IFN-γ for Th1 differentiation, IL-4 for 

Th2 differentiation and TGF-β to induce Tregs (iTregs). Th17 differentiation program is more complex, 

and there are some discrepancies between human and mouse Th17 cell differentiation. The first one is the 

role of TGF-β. Indeed, TGF-β has been shown to be essential for Th17 cell differentiation in mice. In 

human, it shows a dose-dependent effect: an inhibitory effect at high doses and an inducing effect at low 
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doses. However, the presence of TGF-β is necessary but not sufficient for Th17 cell differentiation 

initiation. This process requires at the same time the presence of IL-6 in mice and pro-inflammatory 

cytokines such as IL-1, and IL-21 in human. Then, IL-23 functions both in mice and human, at a late stage 

of Th17 cell differentiation, for their expansion and maintenance [98-100].  

The differentiation of each effector T cell subset requires the induction and/or function of a series of 

transcriptional regulators that interact with each other in complex networks and thus orchestrate the 

functional program of the cells [101]. Each T helper cell differentiation program is pivoted by their 

“master regulators”:  T-bet for Th1 cells, GATA3 for Th2 cells [102], Foxp3 for Tregs, and Retinoid-

related orphan receptor (ROR)-γt (ROR-γt for mice and its homologue RORC for human) for Th17 [103]. 

Th17 shares with iTreg cells an early common transcriptional programming which requires TGF-β. TGF-β 

signaling leads to an early transient co-expression of the lineage-defining transcription factors Foxp3 and 

ROR-γt. Foxp3 represses ROR-γt in a TGFβ dose dependent manner: high doses of TGF-β repressed 

ROR-γt via increased Foxp3 and drive iTreg differentiation, whereas low doses of TGF-β, in cooperation 

with Th17-promoting cytokines including IL-6, IL-21 and IL-23 that activate STAT3, override the Foxp3-

mediated repression of ROR-γt, and favor Th17 differentiation [100]. In contrast to Th1 and Th2 

differentiation, during late lineage specification, Th17 present an alternative developmental program than 

the one used during early differentiation. Functional maturation and maintenance of Th17 require 

exposure to IL-23, which receptor IL23R is expressed only in activated ROR-γt+ Th17 cells but not in 

naïve CD4 T cells. IL-23 is indispensable for maintaining and stabilizing the expression of Th17 cell 

signature genes including Ror-γt (mouse) or RORC (human), IL17, and IL23R, while repressing genes that 

destabilize Th17 cells such as IL2 and IL27R [99]. 

Since tissue damage can be impacted due to over-induction of inflammatory pathways by Th17 [92], their 

generation is strictly regulated. The earliest documented biological activity of IL-17 was its effects on 

synoviocytes from patients with rheumatoid arthritis [104]. IL-17 activity was immediately linked to 

inflammation by inducing the production of IL-6 and IL-8, as they lead to fever, acute phase responses 
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(caused by IL-6) and the accumulation of neutrophils in blood and tissue (caused by IL-8) [104]. IL-17 

activity also contributes to chronic inflammation [105]. For example, it causes matrix destruction by 

inhibiting matrix production of chondrocytes and osteoblasts. IL-17 and Th17 have been associated with 

an increasing number of chronic inflammatory diseases including rheumatoid arthritis, psoriasis and 

psoriatic arthritis, ankylosing spondylitis, Crohn’s disease, multiple sclerosis, vasculitis and 

atherosclerosis, lung disorders, asthma and chronic obstructive pulmonary disease and chronic obstructive 

pulmonary disease [106].   

As Th17 perform both protection and inflammatory effect, their generation is strictly regulated [90]. The 

negative regulatory mechanisms act at three levels: 1) STATs level:  reciprocal down-regulated STAT 

activation came from studies on genetically modified STAT-deficient cells [107]. The essential Th17 

transcription activator STAT3 has been shown to be inhibited by STAT1, STAT2, STAT4 and STAT6  

[107]; 2) cytokine level: signaling with the help of different STATs and other transcription factors, some 

cytokines inhibit Th17 development [108]. For example, IL-27, type I and II Interferons (IFN-α/β and 

IFN-γ respectively) tightly negatively regulate Th17 cell initiation and maintenance, as inferred from 

studies in mice [109-116] and humans [45, 117-121], mainly in a STAT1-dependant way. Th17 negative 

regulators also include IL-2 (via STAT-5) [122], IL-4 (via STAT6), IL-10 (via STAT3) and high dose 

TGF-β (via FOXP3) [100]; 3) Th cell level: Th1, Th2 and Treg show an antagonist effect intermediated by 

their respective signature cytokines mentioned earlier [108]. 

Different from Th1 and Th2, Th17 show a higher flexibility and heterogeneity concerning their initiation, 

maintenance and function. For example, Th17 differentiation could occur in the absence of TGF-β in mice, 

and only Th17 generated in this condition were shown to be pathogenic in an EAE model [123]. In some 

studies, Th17 proinflammatory effect could not be limited by blocking IL-17A or IL-17F [106]. These 

findings suggest that it may not be sufficient to define T-cell lineage based on a single cytokine and 

heterogeneity of effector T cells could be more complex than initially thought.  
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2.2.1.3 Th17-dependant skin and mucosal immunity to Candida  

To date, there are six IL-17 family members [IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (IL-25) and IL-

17F], and five receptors (IL-17RA, IL-17RB/IL-25R, IL-17RC, IL-17RD/SEF and IL-17RE) (Table 2) 

[124]. Interleukin-17A and IL-17F are the most extensively studied. IL-17A/F producing CD4 T cells 

(Th17) specific for C. albicans, express on their surface the CCR4 and CCR6 receptors, which target them 

mainly to the skin and mucous membranes [125]. Epithelial cells express both IL-17RA, IL-17RC, IL-22R 

and IL-10R2 and thus can responses to Th17 cytokines mainly IL-17A, IL-17F (IL-17A/IL-17A and IL-

17F/IL-17F homodimers or IL-17A/IL-17F heterodimers) and IL-22 [71, 96, 126]. Treatment of human 

bronchial lung epithelial (HBE) cells with IL-17 induces CXC chemokines such as IL-8 [71, 127], G-

CSF[71], and antimicrobial proteins such as human β-defensin 2 (HBD2) [128]. IL-17 cytokines have also 

been shown to be important in regulating Th2 [129] and IgA [130] responses in the mucosa. IL-22 can 

activate STAT3 [131] and synergizes with IL-17 to increases the expression of human antimicrobial genes 

such as HBD2. A unique activity of IL-22, not shared with IL-17, is to increase the clonogenic potential of 

epithelial cells and accelerate wound repair [96]. More directly, treatment of skin keratinocytes with Th17 

cytokines markedly increases anti-candidial activity in vitro, and this activity is lost when keratinocytes 

are tested in the presence of activated T cells from AD-HIES patients due to the absence of Th17 in these 

patients [132, 133]. Thus, Th17 cytokines are involved in mucocutaneous protection againt C. albicans 

(Figure 1) [56, 134-136]. Although Th17 have been suggested to be the main IL-17 cytokine producers, 

cellular sources of IL-17 include γδ T cells, innate NKT (iNKT) cells and innate lymphoid cells (iLCs) 

[137, 138]. Particularly in mucosal infections, the γδ T cells response can be the predominant source and 

their IL-17 production is critically regulated by both IL-23 and IL-1β [139, 140].   
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Table 2 IL-17 receptor and ligand families (adapted from [124]) 

Receptor complex Ligand(s) 

IL-17RA/RC IL-17A, IL-17F, IL-17A/F, viral IL-17a 

IL-17RA/RB IL-17E (a.k.a., IL-25) 

IL-17RD (SEF) Unknown 

IL-17RA/RD Unknown 

IL-17RE IL-17C 

Unknown IL-17D 

 

Figure 1: PRR and Th17-based immunity to Candida albicans (adapted from [88]) 

(A) PRRs including CLRs (Dectin-1, Dectin-2, MINCLE) and TLRs (TLR2, TLR4) respond to Candida 

PAMPs by inducing through Syk/CARD9/BcL10/MALT1 or MyD88, respectively, the NF-kB and 

MAPK pathways, leading to the secretion of pro-inflammatory cytokines such as IL-6, IL-23, and IL-1β. 

(B) These cytokines bind to their receptors expressed on T cells, thereby inducing the differentiation of 

naïve T cells toward IL-17 producing T cells, in particular via the transcription factor STAT3, activated by  

IL-6, IL-23 (and IL-21) that in turn induces ROR-γt (ROR-γt for mice, its homologue RORC for human), 

leading to the transcription and the secretion of the IL-17 cytokines. 

(C) IL-17A and IL-17F produced by Th17 cells bind to their receptors (IL-17RA/IL-17RC) expressed on 

various cells such as epithelial or mesenchymal cells to induce the expression of neutrophil attracting 

chemokines (IL-8, CXCL1, CXCL5) and activating/growth factors (G-CSF), as well as  antimicrobial 

peptides (AMPs) such as defensins and S100 proteins [88] 
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2.2.2 Impaired IL-17 immunity in syndromic CMC 

Considering that (i) IL-17 T cell plays an important role in immunity against C. albicans (based on studies 

in humans and mice), (ii) they are involved in the skin and mucous membranes protection,  (iii) IL-6, IL-

21, and IL-23 in particular, act via STAT3 to induce differentiation, proliferation and maintenance of IL-

17 T cells, de Beaucoudrey et al. evaluated the presence of these cells in STAT3
+/-

 patients with AD-HIES 

syndrome and syndromic CMC [23]. They have demonstrated in these patients, a significant decrease in 

the percentage of IL-17 T lymphocytes [55]. They have also observed a significant reduction in the 

proportion of these lymphocytes in patients deficient in IL-12p40 or IL-12Rβ1 with a complete lack of 

production or response to IL-12 and IL-23, respectively [55]. Although susceptible to mycobacterial 

infections or salmonella, approximately 25% of these patients develop moderate CMC [141]. These results 

therefore suggested that impaired IL-17 immunity could be at the origin of the syndromic CMC in these 

patients [21, 42, 43]. 

To further study the relation between impaired IL-17 immunity and CMC, our laboratory hypothesized 

that in APS-1 patient, CMC might result from autoimmunity against IL-17 cytokines. Indeed, these 

patients have numerous autoantibodies (auto-Abs), some directed against interferons IFN-α/-ω. However, 

these auto-Abs are probably not the cause of the associated CMC, as 65% of  patients with thymomas 

have anti-IFN autoantibodies at diagnosis, and rare cases develop CMC [142. In addition, no CMC was 

reported in patients with various forms of STAT1 and TYK2 deficiency (unpublished data) and impaired 

responses to type I IFNs, or in patients with various forms of NEMO, UNC-93B, and TLR3 deficiencies 

and impaired production of type I IFNs {Al-Owain, 2010 #207]. In our laboratory, Puel et al. investigated 

the presence of auto-Abs against the IL-17s. In fact, along with another team, they found high titers of 

neutralizing auto-Abs against IL-17A, IL-17F, and/or IL-22, probably at the origin of the CMC occurrence 

in these patients [39-41]. These studies have contributed to the identification and characterization of the 

pathological mechanisms likely responsible for the CMC observed in these three syndromes, strongly 

suggesting that IL-17 T cells play a major role in mucocutaneous immunity against C. albicans in humans. 
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3. Results: CMCD and specific genetic defects of IL-17 immunity 

3.1 Complete AR IL-17RA and partial AD IL-17F deficiency 

According to literature, earlier studies had demonstrated the importance of IL-17 responses in host defense 

against mucosal candidiasis, both in mouse and human studies [88] and our laboratory results showed low 

IL-17 T cell proportions in PIDs with syndromic CMC [21, 42, 43], including AD-HIES syndrome [55] 

and AR APS-1 [41], as well as CARD9 deficient patients [27]. We therefore hypothesized that among 

CMCD patients, some may have a genetic defect affecting specifically IL-17-dependent immunity [21, 42, 

43]. Puel et al. have undertaken the sequencing of candidate genes encoding IL-17s (including IL-17A, IL-

17F, IL-21, IL-22, and IL-26) and their receptors in a cohort of CMCD patients recruited over the last 

years. Thus, in a child with CMCD (and skin infections with S. aureus) from a consanguineous family of 

Moroccan origin, we identified the first complete AR IL-17RA deficiency. The patient is carrying a 

homozygous mutation causing a premature stop codon located in the extracellular domain of IL-17RA 

(Q284X). This mutation was not found in any of public databases (1000 genomes, NCBI, Ensembl), nor in 

our own database of exomes (sequencing of the entire coding regions of the genome) sequenced in the 

laboratory (> 1000 today), nor among the 1052 control individuals from the Human Genome Diversity 

Project (HGDP) panel/ Center for the Study of Human Polymorphism (CEPH) panel, nor in 100 

Moroccan controls sequenced, which excluded the variation being a polymorphism (i.e. frequent allele). I 

showed that this mutation abolished the expression of the IL-17RA protein at the surface of the patient’s 

cells (fibroblasts and PBMCs), as well as their response to the homo- or hetero-dimers of IL-17A and IL-

17F. Parents and siblings heterozygous for the mutation do not suffer from CMCD, demonstrating the 

recessive nature of the deficiency. Transfection of the patient’s fibroblasts with a plasmid encoding the 

wild-type (WT), but not the mutant (Q284X) IL17RA or an empty plasmid, restored IL-17RA expression 

and the response to IL-17 cytokines in terms of IL-6 and Gro-α production. Thus, AR complete IL-17RA 

deficiency results in an abolished response to IL-17 cytokines and CMCD. At the same time, in a 

multiplex family with 5 CMCD individuals among 3 generations, we have identified the first partial AD 



23 
 

IL-17F deficiency, caused by a heterozygous missense mutation (S65L) in IL-17F. Again, it was not 

found in any of public or laboratory databases or CEPH control individuals, excluding a polymorphism. 

This mutation, located in the binding domain of the IL-17F to its receptor, is strongly hypomorphic 

(almost total loss of function) and dominant because it impairs the functionality of homo- (IL-17F/IL-17F) 

and hetero- (IL-17A/IL-17F) dimers containing the mutated protein, by blocking the binding of these 

complexes to their receptors [Publication #1]. This study has validated our hypothesis. It led to the 

discovery of the first two genetic etiologies of CMCD, showing that it is indeed a primary 

immunodeficiency. It confirmed the major role of IL-17s in mucocutaneous immunity against C. albicans 

in humans. However, unlike the situation observed in mice, these cytokines seemed redundant in the 

protection against the most common pathogens, since none of the reported patients had developed any 

severe infectious diseases besides CMCD. However, it is absolutely necessary to identify other patients 

with these deficiencies to draw definitive conclusion. 

3.2 Heterozygous gain-of-function (GOF) STAT1 mutations 

3.2.1 Heterozygous STAT1 GOF mutations are a major genetic etiology of CMCD 

After the identification of the first two genetic etiologies of CMCD with AR IL-17RA and AD IL-17F 

deficiencies in one family each, using a candidate gene approach, mainly focusing on IL-17 immunity 

[Publication #1], we performed a “genome-wide” approach, by using whole-exome sequencing (WES), to 

identify novel morbid genes. We first performed WES for 6 CMCD patients. In order to analyze the WES 

data of the 6 CMCD patients, I first decided to focus on genes related to IL-17 immunity, as it is essential 

in mucocutaneous defense against Candida, even though the candidate gene strategy focused on IL-17 

immunity (sequencing of IL17A, IL17F, IL17RA IL17RC, IL22, IL22RA1, IL10RB,) we used, let us to 

identify only 1 patient with AR IL-17RA deficiency in one family and five patients with AD IL-17F 

deficiency in another family. This suggested either that the gene (or genes) involved in IL-17 immunity 

and mutated in the rest of the CMCD cohort was (or were) not included in the candidate gene 
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investigation; or that there was (or were) other pathogenesis mechanism(s) underlying CMC than impaired 

IL-17 immunity. Considering the first hypothesis probable, I focused on IL-17 immunity and enlarged the 

candidate gene list. I did this in three steps: 1) I chose all the genes found mutated in PIDs with syndromic 

or isolated CMC: STAT3, AIRE, CARD9, IL17F, IL17RA, IL12B, IL12RB1; 2) I also included essential 

genes involved in IL-17 immunity according to the literature, such as IL17A, RORC, SYK etc. The 

candidate genes chosen in these first two steps are named as “IL-17 immunity key genes”; 3) I then added 

20 interacting partners to each of these “IL-17 immunity key genes”. The choice of these partners was 

done based on an online program “STRING”, which collects known and predicted protein interactions 

including direct (physical) and indirect (functional) associations [143]. My idea was therefore to first 

check for these “IL-17 immunity key genes” in the 6 patients’ exome data; then to check their interacting 

partners, and if no mutation could be found in any patient for this gene-list, then to increase the “candidate 

network genes”.  I called this strategy “candidate network” (Figure n° 2). The strategy was therefore to 

combine the online gene network database (STRING) and the whole-exome sequencing data. Besides the 

“candidate network” strategy, I also performed studies by following “hypothesis-generating” strategy, 

which means trying to identify variations in one gene common in two or more patients without proposing 

pathogenesis hypothesis. Combining these different approaches, I identified in four out of the six patients, 

three different STAT1 heterozygous missense variations. STAT1 was the only “candidate network gene” 

which displayed variations in more than four patients. These variations were not reported in any public 

dababase (1,000-genome, National Center for Biotechnology Information NCBI, Ensembl, and dbSNP) or 

in our own database (250 exomes at that time), excluding the variations being polymorphisms but instead 

rare events (mutations).  We confirmed these mutations by Sanger sequencing and also excluded their 

presence in the 1,052 controls from 52 ethnic groups from the HGD/CEPH panels. Thus, these mutations 

were suggested to be probably CMCD-causing variants rather than irrelevant polymorphisms. 
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Figure 2 “Candidate gene network” strategy  

1) the “candidate key player genes” were chosen according to both experimental data from mouse 

infection models and epidemiological studies in humans concerning IL-17 immunity and/or CMC 

pathogenesis; 2) “candidate gene network” list covered not only “key player genes” but also their 

interacting partners with the help of protein network database STRING; 3) verification of variations of 

candidate genes in patients and elimination of polymorphism. If no “non-polymorphsim” variation is 

identified in patient(s), the “candidate gene network” list is enlarged by adding more “key players” 

partners; 4) bioinformatics prediction and in vitro functional test of variation(s)’ consequence. 

 

 

 



26 
 

3.2.2 Heterozygous STAT1 variations identified in CMCD patients are gain-of-function mutations 

We identified 139 CMCD patients from 74 families with 32 heterozygous missense mutations affecting 

the coiled-coil domain (CCD) (106 patients from 53 kindreds with 12 mutations) or the DNA binding 

domain (DBD) (33 patients from 21 kindreds with 20 mutations) of STAT1 (Figure 3) [Publication #3], 

when we submitted the publication #3. To date, there are in total 55 heterozygous missense STAT1 CMC 

mutations identified by us or other teams in 196 patients from 121 families (unpublished data).  Their 

clinical penetrance appeared to be complete, as all CMCD patients from the kindreds tested were 

heterozygous, whereas none of these mutations was found at the heterozygous state in any of the healthy 

relatives sequenced. The mutations were not found in any public or in-house databases.  

 

Figure 3 Heterozygous missense mutations affecting the CCD and DBD of STAT1 in kindreds with 

AD CMCD. The human STAT1 alpha isoform is shown, with its known pathogenic mutations. Coding 

exons are numbered with Roman numerals and delimited by a vertical bar. Regions corresponding to the 

coiled-coil domain (CCD), DNA-binding domain (DBD), linker domain (L), SH2 domain (SH2D), tail 

segment domain (TSD), and transactivator domain (TAD) are indicated, together with their amino-acid 

boundaries, and are delimited by bold lines. Tyr701 (pY) and Ser727 (pS) are indicated. Mutations in 

green are dominant and associated with partial STAT1 deficiency and Mendelian susceptibility to 

mycobacterial disease (MSMD). Mutations in brown are recessive and associated with complete STAT1 

deficiency and intracellular bacterial and viral disease. Mutations in blue are recessive and associated with 

partial STAT1 deficiency and intracellular bacterial and/or viral disease. Mutations in red are dominant, 

located in the region encoding the CCD and associated with a gain of function of STAT1 and CMCD. 

Mutations in violet are dominant, located in the region encoding the DBD and associated with gain of 

function of STAT1 and CMCD.. 
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The fact that heterozygous STAT1 mutations were identified in more than half of the CMCD patients from 

our cohort (almost 300 patients) and absent in healthy controls, already gave a strong argument for the 

causality of these STAT1 mutations in CMCD. However, the next question was what was the molecular 

impact of these STAT1 alleles and how could they lead to the CMCD clinical phenotype? 

Signal transducer and activator of transcription 1 (STAT1) belongs to a family of transcription factors 

comprising STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 exists as two 

isoforms: STAT1α (91kDa) and STAT1β (84kDa) resulting from alternative splicing of the transcript. 

Both isoforms contain an N-terminal domain, a coiled-coil domain (CCD), a DNA-binding domain (DBD), 

and a SH2 domain. Only the STAT1α isoform possesses a transactivation domain (TAD) including two 

phosphorylated sites: tyrosine 701 and serine 727. Phosphorylated tyrosine 701 is required for STAT1 

dimer formation and its transcription activity. STAT1 is an essential effector of IFNs including type I 

(IFN-α/β) and type II (IFN-γ), but also IFN-λ and IL-27. Following activation of the IFN-γ or IL-27 

receptor, STAT1 is phosphorylated on tyrosine 701 and forms a homodimer. In response to IFN-α/β, 

phosphorylated STAT1 forms a heterotrimer with phosphorylated STAT2 and p48/IRF-9. Activated 

STAT1 homodimers or heterotrimers translocate into the nucleus, where they bind to specific consensus 

sequences: the GAS (gamma interferon activated sequence) or the ISRE (interferon stimulated response 

element) sequences, respectively. STAT1 homodimers (GAF: gamma interferon activating factor) bind to 

GAS DNA sequences via their N-terminal domain and stimulate the transcription of genes mainly 

involved in antibacterial immunity. STAT1/STAT2/p48 heterotrimers (ISGF3 complex) induce the 

transcription of genes involved in antiviral immunity via their binding to ISRE DNA sequences. STAT1 is 

also activated in response to other cytokines, including IL-6, IL-21 and IL-23; and in response to growth 

factors including EGF and PDGF [144]. STAT1 knockout mice respond very poorly to IFN-α/β, IFN-γ 

and IL-27. These mice are susceptible to viruses, bacteria and parasites [46]. However, when they are 

challenged with C. albicans, their response is similar to that of wild-type mice [145].  
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In human, biallelic or monoallelic mutations in STAT1 had already been identified [46]. Human AR 

complete STAT1 deficiency leads to life-threatening intra-macrophagic bacterial and viral disease, and 

partial AR STAT1 deficiency presents a milder susceptibility to bacterial and viral diseases. AD STAT1 

deficiency results in a rare syndrome characterized by infections with weakly pathogenic/virulent 

mycobacteria (Mendelian susceptibility to mycobacterial disease: MSMD syndrome). None of these 

STAT1 deficient patients had to our knowledge a susceptibility to fungal infection. Therefore, we made 

the hypothesis that the STAT1 mutations identified in CMCD patients could be gain-of-function (GOF) 

instead of loss-of-function (LOF) as those previously identified, at least in response to IFNs and IL-27. To 

test this hypothesis, we functionally characterized the CMCD-causing STAT1 allele, R274Q, found in 

several kindreds. We compared it with a WT and an MSMD-causing LOF STAT1 allele (L706S). A 

higher STAT1 activity in response to IFNs and IL-27 was observed in STAT1-deficient U3C cells 

transfected with R274Q compared with WT or LOF alleles. Similarly, we also observed a higher STAT1 

activity in Epstein-Barr (EBV) - transformed B cells from a patient heterozygous for the STAT1 R274Q 

allele compared with those from controls or LOF patients. These experiments demonstrated the GOF and 

the dominant nature of the CMCD-causing STAT1 mutation [Publication #2].  

3.2.3 GOF STAT1 mutations lead to impaired IL-17 immunity in CMCD patients 

The susceptibility to intracellular bacterial and/or viral infections in STAT1 deficient patients is explained 

by impaired STAT1-dependent IFN immunity. In order to understand the pathological mechanism of 

STAT1 GOF mutations in CMCD we asked two questions: 1) whether IL-17 immunity was impaired in 

these CMCD patients with STAT1 GOF alleles similarly to patients with syndromic CMC; 2) if so, 

whether GOF STAT1 mutations were the cause of the impaired IL-17 immunity.  

Indeed, we highlighted an impaired development of IL-17-producing T cells, both ex vivo and after in 

vitro differentiation starting from CMCD patients’ bulk leukocytes (Figure 4) [Publication #2], We also 

demonstrated that CMCD patients heterozygous for STAT1 gain-of function alleles displayed poor IL-17-

producing T-cell development from naïve CD4+ T cells after in vitro differentiation [Publication #3], 
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Figure 4 The differentiation of naïve CD45RA
+
 CD4

+
 T cells into IL-17- producing T cells in vitro is 

impaired in patients with AD CMCD and STAT1 GOF mutations. (A-B) Proportion of IL-17A-

producing T cells (A) and IL-17A secretion (B), after 12 days of naïve CD4
+
 T cell differentiation in the 

presence of anti-CD3 and anti-CD28 antibodies, IL-1β and IL-23, as determined by flow cytometry and 

ELISA, respectively, after stimulation with PMA and ionomycin for 12 hours for flow cytometry analysis, 

and in the absence of stimulation (open symbols) or after 48 hours of stimulation (closed symbols) for 

ELISA analysis. Each symbol represents a value from a healthy control individual (black circles), a patient 

bearing a STAT1 gain-of-function (GOF) mutation affecting the CCD (red circles) or a patient bearing a 

STAT1 GOF mutation affecting the DBD (violet circles). Horizontal bars represent medians. The p-values 

for the nonparametric Wilcoxon tests are shown for comparisons of patients with STAT1 GOF mutations 

(STAT1 CCD: n = 11 and STAT1 DDB: n = 4) and controls (n = 37) (A) patients with STAT1 GOF 

mutations (STAT1 CCD: n = 9 and STAT1 DDB: n = 3) and controls (n = 13) (B). 

 

3.2.3.1 Hypothesis I: major STAT1 activators (IFNs and IL-27) have a stronger inhibitory effect on 

IL-17 T cell differentiation in CMCD patients. 

Both mouse [109-116] and human [45, 117-121] studies have shown that IFNs and IL-27 inhibit Th17 cell 

development in a STAT1 dependent manner in mice and humans. Thus, we hypothesized that CMCD in 

patients with GOF STAT1 mutations could result from stronger STAT1 dependent inhibitory effect, 

downstream of IFNs and IL-27, on IL-17 T cell differentiation. To test this hypothesis, I first investigated 

IL-17 T cell differentiation starting from naïve CD4 T cells as an in vitro model to investigate whether the 

CCD and DBD STAT1 mutations impaired the development of IL-17 T cells. A combination of TGF-β 
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and IL-6 had been shown to be essential for the initial differentiation of IL-17 T cells in mice [146, 147], 

but the key cytokines required in humans remained less clearly defined (Sallusto et al., 2012). Various 

combinations of cytokines had been used for the differentiation of human IL-17 T cells: (1) TGF-β and IL-

21; (2) IL-1β and IL-6; (3) IL-1β and IL-23 and (4) TGF-β and IL-23 [148-153]. I thus purified CD45RA
+
 

CD4
+
 T cells by magnetic beads and cultured them in the presence of coated antibody (Ab) against CD3 

and soluble Ab against CD28, together with individual cytokines or all possible combinations of TGF-β, 

IL-1β, IL-6, IL-21 and IL-23, in the presence of IL-2. I measured the proportion of IL-17A-expressing T 

cells and the secretion of IL-17A from days 5 to 12, by flow cytometry and ELISA, respectively. I 

obtained the most reproducible results within and between controls with a combination of IL-1β and IL-23 

for 12 days (data not shown). IL-6 was not retained, as it increased inter-individual variability. In these 

conditions, I showed that patients heterozygous for CCD or DBD STAT1 mutations had lower (p < 10
-3

) 

proportions of IL-17A T cells and secreted smaller amounts of IL-17A (p < 10
-2

) [Publication #3], 

Impaired IL-17 T-cell development in these patients was similar to that seen in patients with other 

conditions conferring CMC, including AD-HIES patients with heterozygous LOF STAT3 mutations and 

AR MSMD patients with biallelic IL12RB1 LOF mutations [Publication #3]. Collectively, these data 

demonstrate that the GOF STAT1 mutations caused CMCD by impairing IL-17 T-cell immunity. 

To further investigate the mechanisms by which CMCD-causing GOF STAT1 alleles prevent the 

development of IL-17 T cells, in the culture conditions defined above, I added a combination of 

suboptimal doses of Th17 cell differentiation inhibitors (IFN-α2a, IFN-β1a, IFN-γ and IL-27). I observed 

a large decrease in the proportion of IL-17A T cells and in the secretion of IL-17A, in both the healthy 

controls and the STAT1 patients tested [Publication #3]. The effect was statistically significant when 

measured both by flow cytometry and ELISA, for CMCD patients (p < 10
-3

), and for controls (p < 5 x 10
-3

 

and p < 10
-2

 respectively). Moreover, in these inhibitory conditions, the difference in terms of IL-17A T 

cell proportion and IL-17A production between controls and patients was more significant than in the 

absence of IFNs and IL-27 (p < 10
-3

) [Publication #3]. At higher concentrations of IFN and IL-27, a 
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stronger inhibition was observed in the cells of controls and patients, with similar levels of inhibition in 

both [Publication #3]. These data suggested that the poor development of IL-17 T cells in patients 

heterozygous for STAT1 alleles might result, at least in part, from enhanced IFN-α/β, IFN-γ and IL-27 

responses via STAT1. I tested this hypothesis, by treating the cells with a combination of neutralizing Abs 

against IFN-α/βR2, IFN-γ and IL-27. These Abs rescued the development of IL-17 T cells carrying GOF 

STAT1 mutations, whereas this effect was not detectable in healthy control IL-17 T cells [Publication #3]. 

Indeed, the effect of these Abs reached significance only in the patients’ cells (p < 10
-3

 by flow cytometry 

and p < 5. x 10
-4

 by ELISA). Moreover, in these conditions, the difference between the cells of the 

controls and those of the patients was abolished [Publication #3]. In these conditions, the proportion of 

CD4
+
 IFN-γ

+
 was slightly lower in the patients’ cells, whereas the amounts of IFN-γ and IL-27 secreted 

were similar for controls and patients [Publication #3]. Overall, these experiments established that the 

poor development of IL-17 T cells in CMCD patients carrying GOF mutations affecting the CCD or DBD 

of STAT1 involves STAT1-dependent inhibition via IFN-α/β, IFN-γ and/or IL-27. 

 

 

Figure 5: hypothesis I: major STAT1 activators (IFNs and IL-27) have a stronger inhibitory effect 

on IL-17 T cell differentiation in CMCD patients. Activating molecules, such as IL-23 and IL-21 

(acting mostly through STAT3, and to a lesser extent, STAT1), IL-6, IL-1β, and TGF-β ,and inhibiting 

molecules, such as IFN-α/β, IFN-γ, and IL-27 (acting mostly through STAT1 and, to a lesser extent, 

STAT3) are represented.  
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3.2.3.2 Hypothesis II: higher STAT1 activity impacts on STAT3 activity and impairs IL-17 T cell 

development in CMCD patients 

STAT1 and STAT3 have opposing roles in regulating survival/proliferation, inflammation [154]. They are 

both targets of cytokines and growth factors including types I Interferon and gp130 family cytokines such 

as IL-6. However, these mediators exert distinct and often opposing effects by activating STATs in 

specific patterns and duration. For example, IFN-α/β, IFN-γ and IL-27 predominantly active STAT1, in 

addition, activate STAT3, although to a lesser extent/more transiently. Cytokines such as IL-6, IL-21, IL-

22 and IL-23 predominantly activate STAT3 and to a lesser extent STAT1. STAT1 and STAT3 can 

heterodimerize and bind to similar cognate sites at least in vitro, though in vivo their heterodimer function 

is not yet clear. STAT1 and STAT3 activation are reciprocally regulated and perturbation in their balanced 

expression or phosphorylation levels may re-direct cytokine/growth factor signals. For example, in the 

absence of STAT3, IL-6 triggers cellular responses super-imposable to those elicited by IFN-γ, correlating 

with prolonged STAT1 activation, in murine embryonic fibroblasts [155]. STAT1:STAT3 cross-

regulation may act at different levels: 1) competition for common receptor docking sites. For example, in 

a study of alternative activation of STAT1 and STAT3 in response to interferon-gamma, the tyrosine 419 

of the IFN-γ receptor subunit 1 (IFNGR1) was required to activate both STATs, suggesting that STAT1 

and STAT3 could compete with each other for the same receptor phosphotyrosine motif [156]; 2) 

antagonist effect could be mediated by SOCS family. Distinct genes belonging to the SOCS family are 

induced as immediate early genes downstream of different STATs and are able to inhibit, by different 

mechanisms, STATs’ phosphorylation in a classical negative-feedback loop [157]. For example, STAT3 

activity can be prevented by SOCS1 which is induced in a STAT1-dependant way; 3) as there is a 

dynamic balance between STAT1/STAT1, STAT3/STAT3 homodimer and STAT1/STAT3 heterodimer 

formation, GOF STAT1 mutations could trigger a shift from STAT3/STAT3 homodimers to 

STAT3/STAT1 and STAT1/STAT1 hetero- and homodimer formation, causing impaired STAT3/STAT3 

homodimers’ transcription activity. Considering the fact that IL-17 T cell development involves the 
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formation of STAT3 homodimers, their perturbation could lead to a defect in this development. Therefore, 

GOF STAT1 mutations could impact on normal STAT3 activity, essential for Th17 development. However, 

in our study, STAT3 activation seems intact in terms of phosphorylation and homodimer formation in 

response to IL-6, IL-21 and IL-23. However, this hypothesis needs to be further investigated, as we have 

not yet studied the transcription of STAT3 target genes. In addition, STAT3 activity was only tested in 

patients’ EBV-B cells. As STAT3 has distinction function in different cell types, its activity should be 

tested in other cells. 

4. Conclusions 

In conclusion, the work done by the laboratory on the dissection of the pathological mechanisms of 

syndromic CMC in AD-HIES and AR APS-1, strongly suggested an important role of IL-17 immunity in 

mucocutaneous protection against the fungus C. albicans [21, 23, 41-43, 55]. Based on these previous 

studies, we identified the first three genetic etiologies of CMCD: AR IL-17RA and AD IL-17F 

deficiencies [158] and gain-of-function mutations of STAT1, all associated with an impairment of IL-17 

immunity [45, 46, 50] (Figure 6). Gain-of-function STAT1 mutations currently represent the most frequent 

genetic cause of CMCD with a total of 94 patients reported in the literature since 2011 [45, 46, 50]. We 

have demonstrated that CMCD is a primary immunodeficiency associated with an impaired IL-17 

immunity. Moreover, the fact that IL-17RA
-/-

 or IL-17F
+/-

 CMCD patients present increased susceptibility 

particularly to C. albicans and, to a lesser extent, to S. aureus cutaneous infections, but not to other 

pathogens demonstrated a major role of IL-17s in mucocutaneous Candidal and staphylococcal defense. In 

contrast to the results obtained in mice, IL-17s seem redundant for protection immunity against most other 

common pathogens. However more patients IL-17RA and IL-17 deficient are needed to be identified to 

draw definitive conclusions. 

These studies also highlighted that distinct alleles of the same gene (STAT1) are capable of generating a 

susceptibility to different pathogens:  complete or partial loss of function STAT1 mutations are associated 
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with a lack of response to IFNs (IFN-α/β, IFN-γ, IFN-λ) and IL-27 and are associated with an increased 

susceptibility to intracellular bacterial and/or viral infections. In contrast, gain-of-function mutations, 

associated with increased responses to IFNs (IFN-α/β, IFN-γ, IFN-λ) and IL-27 result in impaired 

production of IL-17s and an increased susceptibility to CMCD. Finally, the increased responses to IFN-

α/β could explain the thyroid autoimmune disease observed in some CMCD patients, such reactions are 

often reported as side effects of treatment with recombinant IFN-α or IFN-β [159, 160]. 

My work has contributed to validate the hypothesis that children with a susceptibility to a narrow 

spectrum of pathogen or even to a single pathogen may present a Mendelian genetic defect that 

specifically affects their immune response to certain infectious agents. It also allowed the inclusion of the 

susceptibility to localized and chronic C. albicans infection in the "unconventional" primary 

immunodeficiencies. It offered a better understanding of the role of IL-17s in mucocutaneous immunity 

against a common fungal disease (CMC), in natural conditions of infection in humans. Finally, these 

studies have important implications in the field of immunology with the description and characterization 

of the biological mechanisms involved in protective immunity specific for C. albicans and a better 

understanding of the pathophysiological mechanisms associated with increased susceptibility to fungal 

infections in Natura and in the medical field, with the possibility of molecular diagnostics, genetic 

counseling in case of positive diagnosis, better management care and prevention strategies in genetically 

predisposed individuals according to their defects. The identified immunological mechanisms can be 

targeted for the development of therapeutic and prophylactic treatments by restoring or strengthening 

impaired immunity (i.e. G-CSF for example). 

Although we have demonstrated higher STAT1 activity in response to IL-17 inhibitors in CMCD patients’ 

cells, and rescued at least partially impaired in vitro IL-17 producing T cells differentiation by blocking 

IL-17 inhibitors with neutralizing antibodies, the exact GOF STAT1 mutations impact on in vivo human 

IL-17 immunity mechanisms need to be further elucidated. We need to refine our in vitro IL-17 producing 

T cell differentiation from naïve CD4 T cells experiment protocol in order to reduce the high variability 
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within healthy controls or patients groups. At the same time, we should develop an in vitro test of Candida 

recognition by Antigen-presenting cell (APC) cell, and co-culture of APC and CD4 T cell at the presence 

of Candida to mimic in vivo Candida recognition and subsequent Th17 development. 

For approximately half of the patients enrolled, no genetic defect has been identified yet. Exome 

sequencing is being performed for them. For some of the patients, we have already tested the proportion of 

ex vivo IL-17 cells and we are testing other in vitro IL-17 T cell differentiation conditions. Different 

exome analysis strategy can be adapted according to the patients’ IL-17 T cell proportion profiles. 

Hypothesis-generating strategy will be more suitable for the patients without impaired IL-17 immunity. 

For the patients with already identified reduced proportion of IL-17 T cells, exome analysis should first 

focus on genes involved in IL-17 immunity. If, in co-culture in vitro experiments, we identify a defect in 

the recognition of C. albicans by APC cells from a CMCD patient, we will first check in this patient’s 

exome data the genes encoding PPR and their downstream signaling pathway partners. “Candidate gene 

network” strategy can be improved in several ways: 1) the choice of IL-17 immunity key players and their 

interaction partners can be done in a more unbiased way with the help of bioinformatics tools; 2) It is 

laborious to check for the genotype of candidate genes one by one in exome data. It will be much more 

efficient to do it with the help of computer programs. The two suggestions require a high bioinformatic 

skill. A closer collaboration is needed between biological and computer scientists. 
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Figure 6. Three genetic etiologies of CMCD all leads to an impaired IL-17 immunity  

CMCD-causing mutations in IL-17F (in blue) and IL-17RA (in red) impair IL-17 function and response, 

respectively. CMCD-causing STAT1 GOF mutations (also shown in blue) impair the development of IL-

17-producing T cells. GOF STAT1 mutations, associated with increased responses to IFNs (IFN-α/β, IFN-

γ) and IL-27, are associated with an impaired production of IL-17s and an increased susceptibility to 

CMCD. 
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Identification et caractérisation des bases génétiques moléculaires responsables de la 

prédisposition à la candidose cutanéo-muqueuse chronique chez l’homme 

 

I. Introduction 

L’exposition à un agent microbien est nécessaire pour le développement d’une maladie 

infectieuse mais n’est pas suffisante. Il est maintenant clairement établi que les facteurs 

génétiques de l’hôte jouent un rôle majeur dans sa susceptibilité à une maladie infectieuse [1, 2]. 

Dans certains cas, des défauts génétiques conférant une prédisposition Mendélienne à un nombre 

restreint, voire à un seul agent infectieux (1 gène, 1 infection) chez des individus par ailleurs 

sains ont été identifiés [3]. Dans ce contexte, je travaille sur le projet qui consiste en l’étude des 

bases génétiques et immunologiques de la susceptibilité accrue aux infections fongiques par le 

champignon Candida albicans dans le syndrome Mendélien de candidose cutanéo-muqueuse 

chronique isolée (CCMCi) « idiopathique ». 

 

II. La CCMC: un rôle de l’immunité dépendante de l’IL-17  

La CCMC est une maladie cliniquement complexe et hétérogène, principalement caractérisée par 

des infections sévères, persistantes ou récurrentes, souvent réfractaires aux traitements, de la peau, 

des ongles et des muqueuses par C. albicans [4-9].  C. albicans est un commensal des muqueuses 

dans la population générale. Cependant, des patients présentant une immunodéficience primaire 

(ex : des immunodéficiences sévères combinées) ou acquise (ex : syndrome d’immunodéficience  

acquise) avec des défauts du nombre des lymphocytes T souffrent fréquemment d’une CCMC [2, 

7, 10-14]. Cependant, chez tous ces individus, la CCMC est l’une parmi de nombreuses autres 

infections opportunistes auxquelles ces patients sont vulnérables. 

Au contraire, la CCMC est l’une des infections majeures dans le syndrome autosomique 

dominant hyper IgE (AD-HIES), causé par des mutations hétérozygotes de STAT3, un facteur de 

transcription situé en aval d’un nombre important de cytokines telles que l’IL-6, l’IL-21, l’IL-22, 

l’IL-23 et bien d’autres encore [15, 16]. La CCMC est également le phénotype infectieux majeur 

rapporté dans la seule famille publiée à ce jour avec un défaut complet autosomique récessif (AR) 

en CARD9, qui présente également d’autres infections fongiques telles qu’une dermatophytose et 

des infections invasives à C. albicans [17]. CARD9 une protéine adaptatrice impliquée dans la 

voie de signalisation de récepteurs (comme Dectin-1, Dectin-2, MINCLE, ou le Mannose 



Récepteur MR) capables de reconnaître des composants majeurs de la paroi cellulaire de certains 

champignons, notamment C. albicans [7-9, 18-22]. 

La CCMC est également fréquemment retrouvée dans certains tableaux auto-immuns avec des 

atteintes endocrinologiques, comme dans le syndrome AR APS-1 (autoimmune polyendocrine 

syndrome type 1, aussi appelé APECED) [23], dû à des mutations dans AIRE [24], qui code un 

facteur impliqué dans la tolérance des lymphocytes T [25]. La CCMC, présente chez plus de 90% 

des patients APS-1, est en général l’une des premières manifestations cliniques et représente le 

seul phénotype infectieux rapporté chez ces patients [7-9, 26-29] [Publication #2]. Dans la suite de 

cette synthèse, la CMCC associée à ces conditions (syndromes AD-HIES, AR APS-1 ou le déficit 

AR en CARD9) sera référencée comme CCMC syndromique. 

Enfin, la CCMC peut exister sous forme isolée (CCMCi) chez des individus par ailleurs sains, 

sans autre tableau clinique sévère associé, infectieux ou auto-immun [4-7]. Cependant, la CCMCi 

est associée à un risque accru de développer des carcinomes cellulaires squameux buccaux ou 

œsophagiens ou à des anévrismes cérébraux dont l’origine reste inconnue [7][Publication #2]. Il 

s’agit d’une maladie rare, qui apparaît le plus souvent tôt dans l’enfance et dont la prévalence est 

estimée à environ 1/100.000 individus. 

Les premiers cas de CCMCi ont été décrits au début des années 1960 et, dès le début des années 

1970, des formes familiales, avec une ségrégation principalement autosomique dominante (AD) 

ou plus rarement autosomique récessive (AR) ont été rapportées [4, 7]. Depuis, de nombreux cas 

sporadiques et familiaux ont été décrits [7], suggérant que la CCMCi pourrait résulter de défauts 

génétiques Mendéliens, au moins pour certains patients [7]. Cependant, aucune étiologie 

génétique et aucun phénotype immunologique robuste n’ont émergé, jusqu’à très récemment, 

grâce notamment à l’identification et la caractérisation des bases génétiques et des mécanismes 

physiopathologiques d’immunodéficiences primaires avec une CCMC syndromique [7-9, 27-33] 

[Publication #1, 2]. 

 

II.1 La CCMC syndromique : un rôle de l’immunité dépendante de l’IL-17 ? 

Au cours de ces dernières années, le développement de modèles murins de CMC (essentiellement 

au niveau oro-pharyngien) [34], la caractérisation du rôle des cytokines « IL-17s » (IL-17A, IL-

17F et IL-22) [35, 36] et enfin la caractérisation moléculaire d’immunodéficiences primaires avec 



une CCMC syndromique [7-9, 27-30, 33, 37][Publication #2] ont largement contribué à donner un 

nouvel essor à la recherche des bases génétiques de la prédisposition à la CCMCi. 

Considérant que (i) les lymphocytes T IL-17 jouent un rôle important dans l’immunité envers C. 

albicans (d’après des études réalisées chez l’homme et chez la souris), (ii) qu’ils sont impliqués 

dans la protection de la peau et des muqueuses, (iii) que l’IL-6, l’lL-21, et l’IL-23, en particulier, 

agissent via STAT3 pour induire la différentiation, la prolifération et la maintenance des 

lymphocytes T IL-17, des études réalisées chez des patients STAT3
+/-

 présentant le syndrome 

AD-HIES et une CCMC syndromique [30] ont mis en évidence une réduction très significative 

du pourcentage des lymphocytes T IL-17 chez ces patients [7-9, 33]. Une réduction significative 

de la proportion de ces lymphocytes T IL-17 a également été observée chez des patients 

déficients en IL-12p40 ou IL-12Rβ1 avec un défaut complet de production ou de réponse à l’IL-

12 et l’IL-23 [7-9, 33]. Environ 25% de ces patients développent une CCMC modérée [38, 39]. 

Enfin, une réduction de la proportion des lymphocytes T IL-17 chez les patients déficients en 

CARD9
-/-

 a également été rapportée [17]. Enfin, notre laboratoire a identifié la présence de titres 

élevés d’auto-anticorps IgG neutralisants dirigés contre l’IL-17Al’IL-17F et/ou l’IL-22, 

probablement à l’origine de la survenue de la CCMC chez les patients APS-1 [7-9, 26, 27, 32] 

[Publication #2]. Ces études ont donc contribué à l’identification et la caractérisation des 

mécanismes physiopathologiques probablement responsables de la CCMC observée dans ces 

syndromes, suggérant très fortement que l’immunité dépendante de l’IL-17 jouait un rôle majeur 

dans la défense mucocutanée vis-à-vis de C. albicans chez l’homme [7-9]. 

 

II.2 La CCMC isolée et les défauts génétiques spécifiques de l’immunité IL-17 

II.2.1 Défauts complet AR en IL-17RA et partiel AD en IL-17F 

Basés sur les données de la littérature et nos résultats récents, nous avons émis l’hypothèse que 

parmi les patients atteints de CCMCi, certains pourraient présenter un défaut génétique affectant 

spécifiquement l’immunité IL-17-dépendante [7-9]. Sur la cohorte recrutée, nous avons donc 

entrepris le séquençage des gènes candidats codant les IL-17s (notamment IL-17A, IL-17F, IL-21, 

IL-22, IL-26) et leurs récepteurs. Ainsi, chez un enfant présentant une CCMCi (avec des 

infections cutanées par S. aureus), issu d’une famille consanguine d’origine Marocaine, nous 

avons identifié le premier défaut complet AR en IL-17RA. Le patient est en effet porteur d’une 

mutation homozygote à l’origine d’un codon stop prématuré situé dans le domaine extracellulaire 



de l’IL-17RA (Q284X). Cette mutation abolit l’expression de la protéine à la surface des cellules 

du patient, ainsi que leur réponse aux homo- ou hétéro-dimères d’IL-17A et d’IL-17F. Les 

parents et les frères et soeurs, hétérozygotes pour la mutation, ne souffrent pas de CCMCi, 

démontrant le caractère récessif du défaut [7, 8][Publication #1]. Dans le même temps, dans une 

famille multiplexe avec 5 individus atteints de CCMCi sur 3 générations, nous avons identifié le 

premier défaut partiel AD en IL-17F, provoqué par une mutation hétérozygote faux-sens (S65L) 

dans l’IL17F. Cette mutation, située dans le domaine de liaison de l’IL-17F à son récepteur, est 

très hypomorphe (perte presque totale de la fonction) et dominante car elle détériore la fonction 

des homo-(IL-17F/IL-17F) et des hétéro-dimères (IL-17A/IL-17F) qui contiennent la protéine 

mutée, en bloquant la liaison de ces complexes à leurs récepteurs [7, 8]. Cette étude a donc validé 

notre hypothèse de travail. Elle a permis la découverte des deux premières étiologies génétiques 

de la CCMCi, démontrant ainsi qu’il s’agit en effet d’une immunodéficience primaire. Elle a 

confirmé le rôle majeur des IL-17s dans l’immunité mucocutanée vis-à-vis de C. albicans, et 

dans une moindre mesure vis-à-vis de S. aureus chez l’Homme. 

 

II.2.2 Mutations dominantes gain-de-fonction de STAT1 

En parallèle, nous avons utilisé une seconde approche, globale, génératrice d’hypothèses, par 

séquençage complet des régions codantes du génome par whole exome sequencing (WES) [40-

42]. Nous avons réalisé un premier WES sur 6 patients : un cas sporadique et 5 patients issus de 5 

familles multiplexes présentant une forme AD de CCMCi. Pour 4 d’entre eux, j’ai identifié des 

mutations hétérozygotes faux-sens situées dans le domaine coiled-coil (CCD) du facteur de 

transcription STAT1. Nous avons confirmé ces mutations par séquençage classique (méthode de 

Sanger) et avons séquencé cette région de STAT1 (exons 6 à 10) chez 106 autres patients, dont 57 

cas sporadiques et 49 issus de 22 familles multiplexes avec une AD CCMCi. Au total, nous avons 

identifié 12 mutations hétérozygotes dans le CCD de STAT1 chez 47 patients appartenant à 20 

familles [7, 8, 28, 31]. Aucune de ces mutations n’a été trouvée dans les banques publiques 

(NCBI, Ensembl, dbSNP, 1000 genomes). Elles étaient également absentes des 1052 contrôles du 

CEPH, suggérant qu’elles sont des allèles rares, à l’origine de la CCMCi plutôt que des 

polymorphismes non pertinents. La ségrégation intra-familiale est cohérente avec un trait AD et 

une pénétrance complète, car tous les patients testés sont porteurs de la mutation à l’état 

hétérozygote, alors que les parents, sains, sont porteurs à l’état homozygote de l’allèle sauvage. 



Cette découverte était particulièrement surprenante puisque des mutations mono- ou bi-alléliques 

de STAT1, nulles ou hypomorphes, avaient déjà été identifiées et démontrées comme conférant 

une susceptibilité accrue à des infections par des bactéries intracellulaires (en particulier des 

mycobactéries) et/ou des infections virales [28]. Ceci est expliqué par le fait que STAT1 est un 

facteur de transcription activé notamment par l’IFN-γ et l’IL-27 qui induisent la transcription de 

nombreux gènes impliqués dans l’immunité anti-mycobactérienne, et par les IFN-α/β et IFN-λ, 

qui induisent la transcription de gènes impliqués dans l’immunité anti-virale [28]. Par ailleurs, 

aucun de ces patients n’avait été rapporté, à notre connaissance, comme présentant une 

susceptibilité accrue à la CCMC. 

Nous avons résolu cette énigme en démontrant que les mutations de STAT1 responsables de la 

CCMCi, contrairement à celles identifiées précédemment, ne résultent pas en une perte de 

fonction mais au contraire en un gain de fonction de STAT1, qui se traduit par une 

phosphorylation accrue après activation par les IFNs ou l’IL-27, qui résulte d’un défaut de 

déphosphorylation de STAT1 dans le noya[Publication #2]. Nous avons ainsi montré que ces 

mutations engendrent un accroissement des réponses cellulaires STAT1-dépendantes aux 

cytokines telles que les IFN-γ, IFN-α/β, IFN-λ et l’IL-27, qui sont des répresseurs de la 

différentiation des lymphocytes T IL-17[7, 8, 27, 29]. En effet, j’ai mis en évidence des 

proportions significativement réduites de lymphocytes T producteurs d’IL-17s chez ces patients, 

rendant compte de la survenue de leur CCMCi [7, 8, 27, 29] [Publication #2,3]. Ce phénotype 

résulte de l’effet inhibiteur plus fort des STAT1-dépendantes Th17 répresseurs (IFN-γ, IFN-α/β, 

IFN-λ et l’IL-27) [Publication #3]. 

 

III. Conclusion 

En conclusion, les travaux réalisés sur la dissection des mécanismes physiopathologiques de la 

CCMC syndromique, dans les syndromes AD-HIES, AR APS-1 et le déficit en CARD9 ont 

fortement suggéré un rôle essentiel de l’immunité dépendante de l’IL-17 dans la protection 

cutanéo-muqueuse vis-à-vis du champignon C. albicans [27, 30, 32, 33]. Nous avons ainsi 

démontré que la CCMC isolée est une immunodéficience primaire, associée à un défaut de 

l’immunité réalisée par les IL-17s, avec l’identification, en 2011, des trois premières étiologies 

génétiques de la CCMCi, avec les défauts AR en IL-17RA, AD en IL-17F et des mutations gain-

de-fonction de STAT1 [7-9, 28, 31][Publication #1 , 2]. Des mutations gain-de-fonction de STAT1 



représentent à ce jour la cause génétique la plus fréquente de la CCMCi avec au total 94 patients 

rapportés dans la littérature depuis 2011 [7, 8, 28, 31, 42-45][Publication #2].  

Enfin, ces travaux ont des implications majeures dans le domaine immunologique avec la 

description et la caractérisation des mécanismes biologiques impliqués dans l’immunité 

protectrice spécifique de C. albicans et une meilleure compréhension des mécanismes 

physiopathologiques associés à une susceptibilité accrue aux infections fongiques, dans des 

conditions naturelles d’infection ; et dans le domaine médical, avec la possibilité de diagnostics 

moléculaires, un conseil génétique en cas de diagnostic positif, une meilleure prise en charge et 

des stratégies de prévention chez les individus génétiquement prédisposés en fonction de leur 

défaut. Les mécanismes immunologiques identifiés pourront être la cible privilégiée pour le 

développement de traitements thérapeutiques et prophylactiques visant à les restaurer ou les 

renforcer (i.e. G-CSF). 
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Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent
infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to
a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune
manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the
cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of
the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses
to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant
IL-17F–containing homo- and heterodimers displaying impaired, but not abolished, activity.
These experiments of nature indicate that human IL-17A and IL-17F are essential for
mucocutaneous immunity against C. albicans, but otherwise largely redundant.

Chronic mucocutaneous candidiasis (CMC)
is characterized by infections of the skin,
nails, and oral and genital mucosae with

Candida albicans, which is commensal in healthy
individuals (1). In patients with inherited or ac-
quired T cell immunodeficiencies, CMC is as-
sociated with various infectious diseases (1). In
patients with STAT3 deficiency and a lack of
interleukin-17A (IL-17A)– and IL-22–producing
T cells (2–5), CMC is associated with severe
cutaneous and pulmonary staphylococcal infec-
tions (1). In some patients with IL-12p40 or

interleukin-12 receptor b1 (IL-12Rb1) deficiency
and mycobacterial disease (2) and in a family
with caspase recruitment domain 9 (CARD9) de-
ficiency with systemic candidiasis and peripheral
dermatophytosis (6), CMC and low proportions of
IL-17A–producing T cells were also documented.
Finally, CMC is the only infection of patients with
autoimmune regulator (AIRE) deficiency, who
have neutralizing autoantibodies against IL-17A,
IL-17F, and/or IL-22 (7, 8). These data suggest
that human IL-17A, IL-17F, and/or IL-22 are in-
volved in mucocutaneous immunity to C. albicans

(1). CMC disease (CMCD), the molecular and
cellular basis of which is unknown, consists of
CMC in the absence of other overt infectious
or autoimmune signs (1). CMCD was initially
thought to be benign, until squamous cell carci-
noma (9) and cerebral aneurysms (10) were re-
ported. First described in 1967 in sporadic cases
(11), familial CMC segregating as autosomal dom-
inant (AD) (12) and autosomal recessive (AR)
traits (13) was soon reported. We thus searched for
the genetic basis of CMCD, testing the hypoth-
esis that CMCD may be caused by inborn errors
of IL-17A, IL-17F, or IL-22 immunity (1, 14).

Autosomal recessive IL-17RA deficiency. We
first investigated a French child born to first-
cousin parents of Moroccan descent (Fig. 1A)
[report S1 (15)]. He presented with C. albicans
dermatitis during the neonatal period and dis-
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played Staphylococcus aureus dermatitis at 5
months of age. Known causes of CMC were
excluded clinically and genetically, and the lack
of any phenotype other than CMC led to a di-
agnosis of AR CMCD. We sequenced the candi-
date genes encoding IL-22, IL-22RA1, IL-10RB,
IL-17A, IL-17F, IL-17RA, and IL-17RC (16–18).
IL-22 binds as a monomer to its receptor, com-
posed of IL-22RA1 and IL-10RB, whereas IL-17A
and IL-17F can form homo- or heterodimers
that signal via a receptor comprising IL-17RA
and IL-17RC chains. The child was found to be
homozygous for the c.850C>T nonsense muta-
tion (c.850C>T/c.850C>T), which replaces the
glutamine codon in position 284 with a stop co-
don (Q284X/Q284X) in the IL17RA gene (19)
(Fig. 1B). This premature stop codon is located in
the part of the gene encoding the extracellular
domain of IL-17RA, upstream from the trans-
membrane domain sequence (Fig. 1C). No mu-
tations were found elsewhere in IL17RA or in
any of the other six genes sequenced. The parents
and siblings of this child are healthy and het-
erozygous for the mutant allele, consistent with
AR inheritance for this trait. The mutant allele
was not found in 1065 healthy controls from 52
ethnic groups from the Centre d'Etude du Poly-
morphisme Humain–Human Genome Diversity
Cell Line Panel CEPH-HGDP, 100 French con-
trols, and 70 Moroccan controls of Berber descent,
which ruled out an irrelevant polymorphism and
suggested that the mutation may define a rare AR
CMCD-causing allele.

The IL-17RA protein was not detected on the
surface of fibroblasts, peripheral blood mono-
nuclear cells (PBMCs), or, more specifically, CD4+
T cells, CD8+ T cells, and monocytes from the
patient, as shown by flow cytometry with two spe-
cific antibodies against the extracellular domain
(Fig. 2A and fig. S1). The absence of IL-17RA
had no impact on the expression of IL-17RC,
which was normal on the patient’s monocytes
(the only leukocyte subset expressing IL-17RC
in controls) and fibroblasts (figs. S1 and S2).
Likewise, IL-22RA1 was normally expressed on
the patient’s fibroblasts (fig. S2). The patient also
had a normal proportion of circulating IL-17A–
and IL-22–producing T cells (fig. S3). We inves-
tigated whether the lack of IL-17RA expression
had any functional consequences for the response
to IL-17 cytokines, by testing the responses of the
patient’s fibroblasts to various concentrations of
recombinant IL-17A and IL-17F homodimers
and to IL-17A–IL-17F heterodimers (17, 18). Like
nuclear factor-kB essential modulator (NEMO)–
deficient fibroblasts, which have impaired NF-kB
activity, and unlike fibroblasts from a healthy
control, the patient’s fibroblasts did not respond
to any of the three IL-17 cytokines, in terms of
IL-6 and growth-regulated oncogene-a (GRO-a)
induction (20), as assessed by enzyme-linked
immunosorbent assay (ELISA) on supernatants
(Fig. 2, B and C). Moreover, the patient’s PBMCs
did not respond above baseline to IL-17A or
IL-17F for any of the cytokines tested (fig. S4A).

Transfection of the patient’s fibroblasts with
wild-type (WT) IL17RA, but not with a mock
vector, restored IL-17RA expression and the re-
sponse to IL-17 cytokines (Fig. 2, D to F). By
contrast, IL-6 production by NEMO-deficient
cells was not rescued by transfection with
IL17RA (fig. S4B). Thus, the patient with CMCD
that we studied displayed AR, complete IL-17RA
deficiency, and a lack of cellular responses to at
least three IL-17 cytokine dimers—IL-17A,
IL-17F, and IL-17A–IL-17F—in fibroblasts
and leukocytes.

Autosomal dominant IL-17F deficiency. We
then investigated a multiplex family from Argen-
tina, with AD inheritance of CMCD (Fig. 3A) [re-
port S2 (15)]. The IL22, IL22RA, IL10RB, IL17RA,
IL17RC, and IL17A genes contained no muta-
tions, but a heterozygous missense mutation was
found in the IL17F gene of the index case. This
mutation, c.284C>T, replaced the serine residue
in position 65 of the mature protein with a leucine
residue (S65L) (Fig. 3, B and C). The Ser65 res-
idue is conserved across mammalian species (fig.
S5). Moreover, the sequencing of 1074 control
individuals from the CEPH-HGD panel ruled out
the possibility that this mutation was an irrelevant
polymorphism. Computational analysis showed
that Ser65 lies in the cavity of the protein, which is
thought to be involved in cytokine-to-receptor
binding (Fig. 3C) (21). No other IL17F varia-
tions were found in the index case, including the
IL17F g.7488T>C (rs763780) polymorphism, in
which an arginine residue replaced a histidine in
position 161 of the protein (H161R), a mutation
previously thought to be loss-of-function (22). By
contrast, we found that the H161R allele encoded
an IL-17F protein able to stimulate murine lung
epithelial cells (MLEs) (fig. S6). Heterozygosity
for the S65L allele was found in all tested mem-

bers of the kindred with CMCD; we were unable
to genotype the fifth patient (III.1 in Fig. 3A), who
died at 6 years of age from complications of the
disease. The mutant allele was found in only two
apparently healthy family members, aged 9 months
(III.3 in Fig. 3A) and 21 years (II.8 in Fig. 3A),
which suggested incomplete clinical penetrance.
We did not detect IL-17F–expressing T cells in
controls by flow cytometry, but the patients tested
displayed normal proportions of IL-17A– and
IL-22–expressing T cells, and their PBMCs se-
creted normal amounts of cytokines, as measured
by Bioplex (fig. S7, A and B).

We investigated the possible deleterious ef-
fects of the S65L mutation by producing the
mutant IL-17F protein in human embryonic kid-
ney (HEK) 293 cells. The mutation did not seem
to affect production of the monomeric protein or
the formation of IL-17F homodimers (mutant-
mutant and wild-type–mutant) or heterodimers
with IL-17A (fig. S8). The mutant-containing di-
mers seemed to bind normally to homodimeric
IL-17 receptors (IL-17RA and IL-17RC), as shown
by surface plasmon resonance (table S1 and fig.
S9). However, the mutant proteins did not bind
IL-17RA on fibroblasts, as shown by flow cytom-
etry, with IL-17RA–deficient cells as controls
(confirming that their lack of IL-17RA expression
prevented cytokine binding) (figs. S10 and S11).
Accordingly, when control fibroblasts (Fig. 4, A
and B) and keratinocytes (fig. S12, A and B)
were stimulated with mutant S65L IL-17F ho-
modimers, they displayed much weaker IL-6
and GRO-a induction than observed with WT
IL-17F homodimers (IL-17WT), IL-17A homo-
dimers, or IL-17A–IL-17FWT heterodimers (20).
Moreover, control PBMCs showed impaired in-
duction of several cytokines when stimulated
with S65L IL-17F homodimers compared with

Fig. 1. A kindred with autosomal recessive IL-17RA deficiency.
(A) Pedigree of the family established by IL-17RA genotyping. The
proband is indicated by an arrow. E? indicates individuals whose
genetic status could not be evaluated. (B) IL17RA DNA sequence
electrophoregrams for a control and the patient. (C) Schematic diagram of the IL-17RA protein with the
signal sequence (SS), extracellular (EC), transmembrane (TM), intracellular (IC), and SEFIR (expression
similar to fibroblast growth factor–IL-17R) domains and the position within the extracellular domain
affected by the mutation.
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WT IL-17F homodimers (fig. S12C). These
data suggest that the IL17F S65L allele is se-
verely hypomorphic (Fig. 4, A and B, and fig.
S12, A and B). Furthermore, when the S65L
mutant IL-17F formed a heterodimer with either
IL-17FWT or IL-17A, the induction of IL-6 and
GRO-a was severely impaired in control fibro-
blasts (Fig. 4, A and B) and keratinocytes (fig.
S12, A and B), which indicated a dominant-
negative effect of this allele. Finally, as predicted
by the lack of binding of mutant cytokine di-
mers to their receptor (fig. S11), these dimers
did not compete with WT dimers (fig. S13, A to
D). Thus, the AD CMCD in this kindred results
from a hypomorphic, dominant-negative IL17F

allele, which impairs the receptor binding and
bioactivity of both IL-17F homodimers and IL-
17A–IL-17F heterodimers.

Concluding remarks. IL-17RA and IL-17F
deficiencies underlying mucocutaneous disease
caused by C. albicans and, to a lesser extent,
S. aureus are consistent with the mouse model
(23). IL-17RA– and IL-17RC–deficient mice
were more susceptible to oropharyngeal candi-
diasis (24, 25) and IL-17RA–deficient mice to
cutaneous staphylococcal disease (26). IL-17A–
deficient mice also display impaired clearance of
C. albicans skin infection (27). IL-17F–deficient
mice have not yet been tested, but IL-23–deficient
mice with impaired expression of IL-17A and

IL-17F are also vulnerable (27). IL-17A or IL-17F
alone are not required for peripheral immunity
to S. aureus, but mice deficient for both IL-17A
and IL-17F display an impaired peripheral im-
munity to S. aureus (28). Somewhat at odds with
our observations, IL-17A is also required for sys-
temic immunity to C. albicans (29) and S. aureus
(30). Moreover, mice with IL-17RA, IL-17RC,
IL-17A, or IL-17F deficiency are vulnerable to
multiple infections at various anatomical sites
(17, 23). Overall, our report indicates that hu-
man IL-17A and IL-17F are essential for pro-
tective immunity to C. albicans and, to a lesser
extent, S. aureus in the nails, skin, and oral and
genital mucosae, but otherwise redundant. We

C
el

l c
o

u
n

ts
 

100 101 102 103 104
0

60

100 101 102 103 104
0

60A Control Patient

100 101 102 103 104
0

80

100 101 102 103 104
0

80
Control Patient

Fibroblasts

Non adherent PBMCs

IL-17RA

D

100 101 102 103 104
0

100 101 102 103 10
0

IL-17RA

4

C
el

l c
o

u
n

ts
 

50 50
Empty vector IL-17RA WT 

0.05

0.10

0.15

0.20

0.25

0

IL
-6

 (
n

g
/m

l)

E

NS IL-17A/
IL-17A

IL-17F/
IL-17F

IL-17A/
IL-17F

Empty vector 
IL-17RA WT 

Transfected fibroblasts

0

0.20

0.40

0.60

0.80

G
R

O
-α

 (n
g

/m
l)

   
   

   

NS IL-17A/
IL-17A

IL-17F/
IL-17F

IL-17A/
IL-17F

Empty vector 
IL-17RA WT 

F

IL
-6

 (
n

g
/m

l)

NS IL-17A/
IL-17A

IL-17F/
IL-17F

IL-1βIL-17A/
IL-17F

B

NS IL-17A/
IL-17A

IL-17F/
IL-17F

IL-1βIL-17A/
IL-17F

C

G
R

O
-α

 (n
g

/m
l)

0

1.0

2.0

50.0

40.0

30.0

U
D

.

U
D

.

U
D

.

U
D

.

Control 
Patient 
NEMO-/- 

U
D

.

0

1.0

2.0

60.0

50.0

40.0

Control 
Patient 
NEMO-/- 

Fig. 2. Production and function of the mutant IL-17RA chain. (A) IL-17RA
expression in SV40-immortalized fibroblasts (top) and nonadherent PBMCs (bot-
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undetectable. (D) IL-17RA expression in SV40-immortalized fibroblasts from the
patient, transfected with the empty pORF9mcs plasmid (left) or the pORF9-hIL-
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cannot exclude the possibility that other infec-
tions may occur in patients with inborn errors of
IL-17 immunity. In any event, in natura, inborn
errors of IL-17 immunity clearly impair muco-

cutaneous immunity to C. albicans (14, 31). Pa-
tients receiving IL-17–blocking agents should be
carefully monitored, at least for mucocutaneous
infections (32).
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Fig. 3. A kindred with autosomal dominant IL-17F deficiency. (A) Family pedigree, with allele seg-
regation. The patients, shown in black, are all heterozygous for the mutation, as is II.8, who is
asymptomatic. The proband is indicated by an arrow. E? indicates individuals whose genetic status could
not be evaluated. III.3 is a 9-month-old baby, also heterozygous for the mutation and currently
asymptomatic. All other family members are healthy and WT for IL17F and are shown in white. (B)
Heterozygous c.284C>T mutation in the patients. IL17F DNA sequence electrophoregrams of a control
and the patient III.2. (C) Ribbon trace of the IL-17F dimer. Beta strands are labeled. Sulfur atoms are
shown in yellow. The position of the cavity that binds to the receptor is indicated by a black circle.
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type 1 (Atkinson et al., 2001). It is unclear whether CMCD, 
with these or other manifestations (Shama and Kirkpatrick, 
1980; Bentur et al., 1991; Germain et al., 1994), is immuno-
logically and genetically related to pure CMCD. Low propor-
tions of IL-17A–producing T cells have been documented in 
five patients with CMCD (Eyerich et al., 2008). Moreover, a 
candidate gene approach centered on IL-17 immunity re-
cently revealed the first genetic etiologies of pure CMCD. In 
a consanguineous family from Morocco, a child with CMCD 
was found to display AR complete IL-17RA deficiency (Puel 
et al., 2011). His leukocytes and fibroblasts did not respond  
to IL-17A or IL-17F homodimers, or to IL-17A/F hetero
dimers. Four patients from an Argentinean family were shown 
to harbor dominant-negative mutations in the IL17F gene 
(Puel et al., 2011). Mutated IL-17F–containing homodimers 
and heterodimers were produced in normal amounts but 
were not biologically active, as they were unable to bind to 
the IL-17 receptor. Morbid mutations in IL17RA and IL17F 
demonstrated that CMCD could be caused by inborn errors 
of IL-17 immunity. However, no genetic etiology has yet 
been identified for most patients with CMCD. We set out to 
identify new genetic etiologies of CMCD through a recently 
developed genome-wide approach based on whole-exome 
sequencing (Alcaïs et al., 2010; Bolze et al., 2010; Byun et al., 
2010; Ng et al., 2010).

RESULTS
We investigated one sporadic case and the probands from five 
multiplex kindreds with AD CMCD, by whole-exome se-
quencing. The annotated data were analyzed with sequence 
analysis software that had been developed in-house and made 
it possible to analyze and compare several exome sequences 
simultaneously. A hierarchy of candidate variations was gener-
ated by filtering out known polymorphisms reported in dbSNP 
and 1,000-genome databases. We also used our own database 
of 250 exomes to filter out unreported polymorphisms 
(Table S1). The only relevant gene displaying heterozygous 
variations in at least four of the six unrelated patients with AD 
CMCD was STAT1 (Fig. 1, A and B, Kindreds A, B, G, and L; 
Table I; and Table S2).  Three different STAT1 mutations 
were found in four patients; they were confirmed by Sanger 

Chronic mucocutaneous candidiasis (CMC) is characterized 
by persistent or recurrent disease of the nails, skin, oral, or 
genital mucosae caused by Candida albicans (Puel et al., 2010b). 
CMC may be caused by various inborn errors of immunity. 
CMC is one of a multitude of infectious diseases observed in 
patients with broad and profound T cell deficiencies. In con-
trast, patients with the autosomal dominant (AD) hyper IgE 
syndrome, caused by dominant-negative mutations of STAT3, 
are susceptible principally to CMC and staphylococcal dis-
eases of the lungs and skin (Minegishi, 2009). These patients 
have very low proportions of circulating IL-17A– and IL-22–
producing T cells, probably because of impaired responses to 
IL-6, IL-21, and/or IL-23 (de Beaucoudrey et al., 2008; Ma  
et al., 2008; Milner et al., 2008; Renner et al., 2008; Minegishi  
et al., 2009). Patients with autosomal recessive (AR) IL-12p40 
or IL-12R1 deficiency suffer from Mendelian susceptibility 
to mycobacterial disease (MSMD) and occasionally develop 
mild CMC (Filipe-Santos et al., 2006; de Beaucoudrey et al., 
2010). Some have low proportions of IL-17A– and IL-22–
producing T cells, presumably because of the abolition of 
IL-23 responses (de Beaucoudrey et al., 2008, 2010). The pro-
portion of IL-17A–producing T cells was also found to be low 
in a family with AR CARD9 deficiency, dermatophytosis, 
invasive candidiasis, and CMC (Glocker et al., 2009). Finally, 
CMC is the only infection in patients with autoimmune 
polyendocrinopathy syndrome type 1, who have high titers of 
neutralizing autoantibodies against IL-17A, IL-17F, and IL-22 
(Kisand et al., 2010; Puel et al., 2010a). Thus, regardless of the 
underlying illness, CMC pathogenesis apparently involves 
the impairment of IL-17A, IL-17F, and IL-22 immunity (Puel  
et al., 2010b).

The pathogenesis of CMC was eventually deciphered 
through investigations of patients with CMC disease (CMCD), 
in which CMC is isolated, with no other infectious or auto-
immune signs (Kirkpatrick, 2001; Puel et al., 2010b). The 
definition of CMCD is not absolute, as illustrated in some 
patients by cutaneous staphylococcal disease, which is milder 
than that in patients with AD hyper IgE syndrome (Herrod, 
1990), or by autoimmune features affecting the thyroid in 
particular, although fewer such features are observed than 
in patients with autoimmune polyendocrinopathy syndrome 

Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or 
autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germ-
line mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 
mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-
dependent cellular responses to IFN-. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular 
bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-/, IFN-, IFN-, and IL-27. In 
contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-
dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and 
IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated 
STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent  
IL-17 inhibitors IFN-/, IFN-, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 
inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function 
STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.
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dephosphorylation (Fig. 1 C; Chen et al., 1998; Zhong et al., 
2005; Mertens et al., 2006). In contrast, the other two morbid 
mutations (K201N and K211R) affect residues located on the 
other side of the coiled-coil domain (Fig. 1 C). Moreover, 
these two hypomorphic alleles were shown to be pathogenic 
not because they were missense, but because they promoted 
the splicing out of exon 8, resulting in AR partial STAT1 de-
ficiency, with the production of small amounts of intrinsically 
functional STAT1 molecules (Kong et al., 2010; Kristensen 
et al., 2011). These genetic data strongly suggest that hetero-
zygous missense mutations in the coiled-coil domain of STAT1 
may cause AD CMCD in a large fraction of patients. Never-
theless, the occurrence of other germline mutations in STAT1 
in patients without CMC and with an AD or AR predisposi-
tion to other infectious diseases raised questions about whether 
these mutations were really responsible for CMCD and the 
underlying mechanism of disease.

We functionally characterized the CMCD-causing STAT1 
allele R274Q, which was found in four kindreds (Fig. 1 B and 
Table I). We compared it with a WT and an MSMD-causing 
loss-of-function STAT1 allele (L706S; Dupuis et al., 2001). 
We transfected STAT1-deficient U3C fibrosarcoma cells with 
WT, R274Q, or L706S STAT1 alleles. Upon stimulation with 
IFN-, IFN-, or IL-27, cells transfected with the R274Q 
allele responded two to three times more strongly than those 
transfected with the WT allele, as shown by measurement of 
the induction of -activated sequence (GAS)–dependent re-
porter gene transcription activity, with mock- and L706S-
transfected cells serving as negative controls (Fig. 2 A and 
Fig. S1 A). All STAT1 alleles were expressed at an equal 
strength, as shown by Western blotting (WB; Fig. 2 B). Higher 
levels of STAT1 phosphorylation were observed for the 
R274Q allele than for the WT allele after stimulation with 
IFN-, IFN-, and IL-27, whereas STAT3 phosphorylation 
levels were similar for the two alleles (Fig. 2 B). In contrast, 
the induction of IFN-stimulated response element (ISRE)–
dependent transcription activity by IFN- was normal (Fig. S1, 
B and C). In the same experimental conditions, the other 10 
CMCD-associated STAT1 alleles tested were also gain-of-
function, unlike the K201N and K211R alleles (Fig. S1 D). 
Upon stimulation with IFN-, IFN-, or IL-27, an increase 
in GAS-binding activity was detected in cells transfected with 
the R274Q allele (Fig. S1 E). Accordingly, the transcription of 
the CXCL9 and CXCL10 target genes was enhanced (Fig. 2, 
C and D). Overall, these data indicate that at least 11 of the 
12 CMCD-linked STAT1 missense alleles are intrinsically 
gain-of-function.

The mechanism involved an increase in STAT1 tyrosine 
701 residue phosphorylation, as shown for R274Q by WB 
after stimulation with IFN-, IFN-, and IL-27 (Fig. 2 B). 
STAT1 was not constitutively activated, and STAT3 was nor-
mally activated in R274Q-transfected cells (Fig. 2 B and not 
depicted). Almost all the mutant STAT1 molecules, which 
were phosphorylated in response to IFN-, translocated to 
and accumulated in the nucleus, as shown by immunofluores-
cence (Fig. S1 F). WB showed R274Q STAT1 to be more 

sequencing and shown to be missense mutations. All these 
mutations affected the coiled-coil domain, which plays a key 
role in unphosphorylated STAT1 dimerization and STAT1 
nuclear dephosphorylation (Fig. 1, A and C; Chen et al., 1998; 
Levy and Darnell, 2002; Braunstein et al., 2003; Zhong et al., 
2005; Hoshino et al., 2006; Mertens et al., 2006). We therefore 
sequenced the corresponding coding region of STAT1 (exons 
6 to 10) in another 106 patients, including 57 with spo-
radic CMCD and 49 from 22 multiplex kindreds with AD 
CMCD. 29 patients from 16 kindreds were heterozygous for 
a STAT1 missense mutation (Fig. 1, A and B, Kindreds C-F, 
H-K, and M-T; Fig. 1 C; and Table I; Table S3). In total, 36 
patients from 20 kindreds were heterozygous for 1 of the 12 
missense mutations identified that affected the coiled-coil  
domain of STAT1. 11 other CMCD patients in these kindreds 
were not genotyped. The intrafamilial segregation of the mu-
tations was consistent with an AD trait, as all patients with 
CMCD from the kindreds tested were heterozygous, whereas 
none of these mutations was found in the heterozygous state 
in any of the healthy relatives tested (Fig. 1 B). Moreover, 
the STAT1 haplotypes for common SNPs indicated that the 
five recurrent mutations were caused by mutation hotspots 
rather than founder effects (unpublished data). Finally, the 
mutations were found to have occurred de novo in at least 
four kindreds, which is consistent with a high clinical pene-
trance of these alleles. The mutations were not found in the 
National Center for Biotechnology Information, Ensembl, 
and dbSNP databases. They were also absent from 1,052 con-
trols from 52 ethnic groups in the Centre d’Etude du Poly-
morphisme Humain and Human Genome Diversity panels, 
suggesting that they were rare, CMCD-inducing variants rather 
than irrelevant polymorphisms.

The 12 missense mutations were not conservative and 
were therefore predicted to affect protein structure and func-
tion. Moreover, most of the affected residues were found to 
have been conserved throughout evolution in the species in 
which STAT1 had been sequenced (Table S3). Accordingly, 
POLYphen II predicted that all but one of these mutations 
would be possibly or probably damaging (Adzhubei et al., 2010; 
Table S3). None of the previously described nine patients 
with AD STAT1 deficiency and MSMD was heterozygous 
for mutations affecting the coiled-coil domain (Fig. 1, A and C; 
Dupuis et al., 2001; Chapgier et al., 2006a; Averbuch et al., 
2011; unpublished data). However, three of the eight patients 
with AR STAT1 deficiency and susceptibility to intracellular 
bacterial and viral diseases, who, like their heterozygous rela-
tives, did not display CMC, carried mutations affecting the 
coiled-coil domain (Fig. 1, A and C; Chapgier et al., 2009; 
Chapgier et al., 2006b; Dupuis et al., 2003; Kong et al., 2010; 
Kristensen et al., 2011; Averbuch et al., 2011). These three pa-
tients from two kindreds carried the K201N or K211R mu-
tation (Kong et al., 2010; Kristensen et al., 2011). Nevertheless, 
the three-dimensional structure of phosphorylated STAT1 
molecules revealed that the 12 CMCD-linked missense mu-
tations affected a cluster of residues located in a specific pocket 
of the coiled-coil domain, near residues essential for STAT1 
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Figure 1.  Heterozygous missense mutations affecting the STAT1 coiled-coil domain in kindreds with AD CMCD. (A) The human STAT1  iso-
form is shown, with its known pathogenic mutations. Coding exons are numbered with roman numerals and delimited by a vertical bar. Regions corre-
sponding to the coiled-coil domain (CC), DNA-binding domain (DNA-B), linker domain (L), SH2 domain (SH2), tail segment domain (TS), and transactivator 
domain (TA) are indicated, together with their amino-acid boundaries, and are delimited by bold lines. Tyr701 (pY) and Ser727 (pS) are indicated. Muta-
tions in green are dominant and associated with partial STAT1 deficiency and MSMD. Mutations in brown are recessive and associated with complete 
STAT1 deficiency and intracellular bacterial and viral disease. Mutations in blue are recessive and associated with partial STAT1 deficiency and intracellular 
bacterial and/or viral disease. Mutations in red are dominant and associated with a gain-of-function of STAT1 and CMCD. (B) Pedigrees of 20 families 
with AD “gain-of-function” STAT1 mutations. Each kindred is designated by a letter (A to T), each generation is designated by a roman numeral (I-II-III-IV), 
and each individual is designated by an Arabic numeral (each individual studied is identified by a code of this type, organized from left to right). Black 
indicates CMCD patients. The probands are indicated by arrows. When tested, the genotype for STAT1 is indicated below each individual. (C) Three- 
dimensional structure of phosphorylated STAT1 in complex with DNA. Connolly surface representation, with the following amino acids highlighted: red, 
amino acids mutated in patients with CMCD; blue, amino acids located in the coiled-coil domain and mutated in patients with MSMD and viral diseases; 
yellow, amino acids identified in vitro as affecting the dephosphorylation process.
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Table I.  Summary of the clinical and genetic data for the patients

Patient Age at 
presentation 

Origin Clinical features of CMC Cause of death (age/yr) Autoimmunity Genotype

A-I-1 - France Nails Not related to the disease (old 
age)

None -

A-II-1 - France Nails Not related to the disease (old 
age)

None -

A-III-1 1 mo France Nails, oral cavity, oropharynx, 
genital mucosa

None WT/R274Q

A-III-3 - France Nails, oral cavity Not related to the disease (40) None -
A-III-4 - France Nails, oral cavity None -
A-IV-1 1 mo France Nails, oral cavity, oropharynx None WT/R274Q
B-II-1 - France - None -
B-III-2 3 yr France Skin, nails, oral cavity, oropharynx, 

genital mucosa
None WT/K286I

B-IV-1 5 yr France & 
Congo

Skin, nails, oral cavity, oropharynx None WT/K286I

B-IV-2 5 mo France & 
Congo

Skin, nails, oral cavity, oropharynx Cerebral aneurysm (8) None -

C-III-1 - Turkey Nails, oral cavity, genital mucosa Cerebral aneurysm (34) Thyroid 
autoimmunity

WT/R274Q

C-IV-1 - Turkey Nails, oral cavity None WT/R274Q
D-II-1 - France Nails, oral cavity, genital mucosa - -
D-III-2 7 yr France Skin, oral cavity, oropharynx None WT/M202V
D-IV-2 1 mo France Skin, nails, oropharynx Thyroid 

autoimmunity
WT/M202V

E-II-1 1 yr Germany Skin, oral cavity, oropharynx Squamous cell carcinoma (54) - -
E-III-2 1 yr Germany Nails, oral cavity, oropharynx, 

genital mucosa
Thyroid 

autoimmunity
WT/C174R

E-III-3 9 mo Germany Skin, nails, oral cavity, oropharynx, 
genital mucosa

Thyroid 
autoimmunity

WT/C174R

E-IV-1 18 mo Germany Skin, oral cavity, oropharynx, genital 
mucosa

None WT/C174R

E-IV-2 2 yr Germany Skin, oral cavity, oropharynx Thyroid 
autoimmunity

WT/C174R

E-IV-4 2 yr Germany Skin, oral cavity, oropharynx, genital 
mucosa

None WT/C174R

E-IV-5 1 yr Germany Skin, nails, oral cavity, oropharynx None WT/C174R
F-III-2 1 mo Argentina Nails, oral cavity, oropharynx, 

genital mucosa
- WT/R274W

F-IV-2 1 mo Argentina Skin, nails, oral cavity, oropharynx - WT/R274W
F-IV-3 6 mo Argentina Nails, oral cavity, genital mucosa - WT/R274W
G-II-1 3 mo Ukrainian Nails, skin, oral cavity, oropharynx, 

esophagus
None WT/D165G

H-I-2 1 yr Japan Skin, oropharynx, esophagus - WT/R274Q
H-II-2 5 yr Japan Oral cavity, oropharynx - WT/R274Q
I-II-3 9 mo Mexico Skin, nails, oral cavity, genital 

mucosa
None WT/T288A

J-I-2 - Switzerland Oral cavity, oropharynx None WT/T288A
J-II-2 3 mo Switzerland Oral cavity, oropharynx - WT/T288A
K-II-2 11 mo Switzerland Nails, oral cavity, oropharynx Thyroid 

autoimmunity
WT/Y170N

L-I-2 7 yr France Skin, nails, oropharynx, esophagus Thyroid 
autoimmunity

WT/R274Q

L-II-1 1 mo France Skin, nails, oropharynx, esophagus None WT/R274Q
M-II-2 6 mo Germany Skin, nails, oropharynx, genital 

mucosa
Thyroid 

autoimmunity
WT/D165H
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shift assay (EMSA; Fig. 3, A and C). In contrast, the DNA-
binding activity of ISGF-3 seemed to be normal in cells from 
the patient stimulated with IFN-/ (Fig. S3 A). These data 
strongly suggest that the heterozygous R274Q allele is domi-
nant for STAT1-dependent responses and gain-of-function for 
GAF-dependent cellular responses to key STAT1-activating 
cytokines, such as IFN-/, IFN-, and IL-27. The mutation 
may also affect IFN- responses.

We then tested cytokines that predominantly activate 
STAT3, rather than STAT1, such as IL-6, IL-21, IL-22, and 
IL-23 (Hunter, 2005; Kishimoto, 2005; Kastelein et al., 2007; 
Spolski and Leonard, 2008; Donnelly et al., 2010; Sabat, 2010; 
Ouyang et al., 2011). Peripheral T cell blasts from a patient 
displayed normal STAT3 activation in response to IL-23, as 
shown by WB (Fig. S3 B). No increase in STAT1 phosphory-
lation was detected in cells from a patient or controls upon 
IL-23 stimulation. Furthermore, fibroblasts from a patient 
displayed normal activation of STAT3 in response to IL-22 
(Fig. S3 C). In the same conditions, no STAT1 phosphorylation 
was detected in cells from the patient or controls (unpublished 
data). In contrast, the levels of STAT1 phosphorylation in re-
sponse to IL-6 and IL-21 were higher in the patient’s EBV-B 
cells than in cells from healthy controls and from a patient 
with MSMD heterozygous for the L706S allele, whereas 
STAT3 activation was normal as shown by WB (Fig. 3, F  
and H). Consistent with these findings, stronger GAS activity 
was observed in cells from the patient in response to IL-6 and 
IL-21 stimulation (Fig. 3, E and G). These data suggest that 
heterozygous missense mutations in the coiled-coil domain  
of STAT1 are dominant and gain-of-function for GAF- 
dependent cellular responses for cytokines that predominantly 
activate STAT3, such as IL-6 and IL-21. Overall, these data 
suggest that the STAT1 alleles are truly responsible for CMCD 
in these kindreds and raise questions about the immuno
logical basis of CMCD.

strongly phosphorylated than the WT protein in both cyto-
plasmic and nuclear extracts (Fig. S1 G). The mechanism  
underlying the gain of R274Q phosphorylation was explored 
with the tyrosine kinase inhibitor staurosporine and the 
phosphatase inhibitor pervanadate. The dephosphorylation of 
IFN-–activated R274Q STAT1 was impaired by stauro
sporine, but less than that of the known dephosphorylation 
mutant F77A (Fig. 2 E; Zhong et al., 2005). In contrast, per-
vanadate normalized the phosphorylation of R274Q to 
WT levels (Fig. 2 F). Another CMCD-linked mutation, 
D165G (Fig. 1, A–C), also resulted in impaired dephosphory-
lation that could be normalized by adding pervanadate (Fig. 2 F 
and Fig. S1 H). Thus, at least two CMCD-linked STAT1 mis-
sense alleles (R274Q and D165G) are gain-of-function 
caused by the impairment of nuclear dephosphorylation. 
These alleles may therefore enhance cellular responses to  
cytokines activating STAT1 predominantly and STAT3 to a 
lesser extent, such as IFN-/, IFN-, IFN-, and IL-27, and 
possibly also responses to cytokines activating STAT3 pre-
dominantly and STAT1 to a lesser extent, such as IL-6, IL-21, 
IL-22, and IL-23 (Fig. S2).

We investigated the dominance of the STAT1 alleles at the 
cellular level by testing EBV-B–transformed (EBV-B) cells and 
SV-40–transformed dermal fibroblasts from a CMCD patient 
heterozygous for the STAT1 R274Q allele. We observed en-
hanced IFN-/–, IFN-–, and IL-27–dependent STAT1 
phosphorylation in EBV-B cells from a patient heterozygous 
for the STAT1 R274Q allele, as shown by WB (Fig. 3, B  
and D). Phospho-STAT1 accumulated in the nucleus of 
R274Q heterozygous SV-40 fibroblasts upon IFN- stimulation, 
as well as in EBV-B cells (Fig. 3 I and Fig. S3 D). Moreover, the 
IFN-/–, IFN-–, and IL-27–induced DNA-binding activity 
of GAF was stronger in cells from the CMCD patient than in 
those from a healthy control or from a MSMD patient carrying 
the L706S mutant allele, as shown by electrophoretic mobility 

Table I.  Summary of the clinical and genetic data for the patients (Continued)

Patient Age at 
presentation 

Origin Clinical features of CMC Cause of death (age/yr) Autoimmunity Genotype

N-II-2 1 yr Germany Skin, nails, oropharynx Squamous cell carcinoma (54) None WT/R274W
O-II-1 18 mo Germany Oral cavity, oropharynx None WT/M202I
P-I-1 1 yr Israel Oropharynx, genital mucosa Not related to the disease (46) None -
P-II-1 <2 yr Israel Skin, nails, oropharynx None WT/A267V
P-II-2 <2 yr Israel Skin, nails, oropharynx None WT/A267V
Q-II-1 1 mo France Skin, oral cavity, oropharynx, genital 

mucosa
None WT/R274W

R-I-1 4 yr France Skin, nails, oropharynx Squamous cell carcinoma (55) None -
R-II-1 18 mo France Lips, oropharynx None WT/M202V
S-I-2 6 mo France Skin, oral cavity, oropharynx Systemic lupus 

erythematosus
WT/M202I

S-II-2 1 yr France Nails None -
S-II-3 1 mo France Skin, oropharynx None WT/M202I
T-II-3 1 yr Germany Skin, nails, oropharynx Squamous cell carcinoma (41) None WT/Q271P

None of the patients displays autoantibodies against IL-17A, IL-17F, and IL-22. -, unknown.
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Villarino et al., 2010). Moreover, mouse 
IFN- (Feng et al., 2008; Tanaka  
et al., 2008; Villarino et al., 2010) 
and human IFN-/ (Chen et al., 
2009; Ramgolam et al., 2009) have 
been shown to antagonize the devel-
opment of IL-17–producing T cells 
via STAT1. In addition, IL-6, IL-21, 
and IL-23 are prominent inducers of 
IL-17–producing T cells, via a mecha-
nism dependent on STAT3 and antag-
onized by STAT1 (Hirahara et al., 2010). 
Finally, we recently showed that in-
born errors of IL-17F or IL-17RA 
were genetic etiologies of CMCD 
(Puel et al., 2010b, 2011). We thus 
determined the proportion of IL-17A– 
and IL-22–producing T cells by flow 

cytometry in patients with heterozygous STAT1 mutations 
and AD CMCD. The 18 CMCD patients carrying gain-of-
function mutations in STAT1 that were tested had lower  
proportions of circulating IL-17A– and IL-22–producing  
T cells ex vivo than 28 healthy controls (P < 104) and six 
patients bearing loss-of-function STAT1 alleles (P < 2.103; 
Fig. 4, A and B; and Fig. S4 G). In contrast, they displayed 
normal proportions of IFN-–producing T cells (Fig. S4 F).  

IL-27 is a potent inhibitor of the development of IL-17–
producing T cells in mice (Batten et al., 2006; Stumhofer 
et al., 2006; Yoshimura et al., 2006; Amadi-Obi et al., 2007; 
Diveu et al., 2009; El-behi et al., 2009; Villarino et al., 
2010) and humans (Diveu et al., 2009; Liu and Rohowsky- 
Kochan, 2011), through a mechanism dependent on STAT1 
(Amadi-Obi et al., 2007; Batten et al., 2006; Diveu et al., 2009; 
Liu and Rohowsky-Kochan, 2011; Stumhofer et al., 2006; 

Figure 2.  The mutant R274Q STAT1 allele 
is gain-of-phosphorylation and gain-of-
function for GAF-dependent cellular  
responses. U3C cells were transfected with a 
mock vector, a WT, or two mutant alleles of 
STAT1 (R274Q and L706S). The response to  
IFN-, IL-27, and IFN- was then evaluated by 
determining luciferase activity of a reporter 
gene under the control of the GAS promoter 
(A), and by determining STAT1 and STAT3 phos-
phorylation by Western blot (B). Experiments 
were performed at least three times indepen-
dently. (C and D) Quantitative RT-PCR was used 
to measure the induction of CXCL9 (C) and 
CXCL10 (D) 2–8 h after stimulation with IFN-. 
Experiments were performed two times inde-
pendently. (E) The nuclear dephosphorylation 
of STAT1 was tested by WB in U3C cells trans-
fected with a mock vector, WT STAT1, the 
R274Q, or the F77A (a known loss-of-dephos-
phorylation mutant) STAT1 mutant alleles, and 
treated with IFN- with or without the tyrosine 
kinase inhibitor staurosporine for the indicated 
periods of time (in minutes). Three independent 
experiments were performed. (F) Western blot 
of U3C cells transfected with mock, WT, R274Q, 
D165G, and F77A alleles of STAT1, nontreated 
or treated with IFN- in the absence or pres-
ence of the phosphatase inhibitor pervanadate. 
Two independent experiments were performed. 
Error bars represent SD of one experiment done 
in triplicate (Fig. S1 D).
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T cells and the amounts of IL-17A, 
IL-17F, and IL-22 secreted were small-
est for the four patients with the most 
apparently severe clinical phenotype 
(Fig. 4, A–E and not depicted).

After the culture of PBMCs in 
vitro in the presence of various cyto-
kines, including IL-6, TGF-, IL-1, 
and IL-23, the proportion of IL-17A– 
and IL-22–producing T cell blasts re-
mained significantly lower (P < 104) 
in CMCD patients carrying STAT1 
mutations than in controls (Fig. S4, A 
and B; and not depicted). In contrast, 
the proportions of IL-17A– and IL-22–
producing T cell blasts were normal in 
patients with loss-of-function STAT1 

mutations (Fig. S4, A and B; and not depicted). The amounts 
of IL-17A, IL-17F, and IL-22 in the supernatant of T cell 
blasts stimulated with PMA and ionomycin after culture in 
vitro were also significantly lower in patients with STAT1 
mutations and CMCD (P < 4.104; Fig. S4, C–E; and not 
depicted). In contrast, patients with loss-of-function mutant 
STAT1 alleles displayed normal levels of cytokine secretion 
(Fig. S4, C–E; and not depicted). Finally, levels of IL-12p70 and 

Moreover, only very small amounts of IL-17A, IL-17F, and 
IL-22 were secreted by freshly prepared leukocytes after  
ex vivo stimulation with PMA and ionomycin (P < 8.103), 
as shown by ELISA (Fig. 4, C–E). In contrast, the amounts of 
secreted IL-17A, IL-17F, and IL-22 were normal in patients 
heterozygous or homozygous for loss-of-function or hypo
morphic STAT1 mutations (Fig. 4, C–E). Interestingly, in all 
assays, the proportions of IL-17A– and IL-22–producing  

Figure 3.  The mutant R274Q STAT1  
allele is dominant for GAF-dependent 
cellular responses at the cellular level. The 
responses of the patient’s EBV-B cells (R274Q/
WT) were evaluated independently at least 
twice, by EMSA, with a GAS probe (A, C, E,  
and G), and by Western blot (B, D, F, and H). 
This response was compared with that of one 
or two healthy controls (WT/WT1 and WT/
WT2), heterozygous cells with a WT and a 
loss-of-function STAT1 allele (STAT1+/), cells 
heterozygous for a dominant loss-of-function 
mutation of STAT1 (L706S/WT), cells with 
complete STAT1 deficiency (STAT1/), and 
cells from two patients heterozygous for 
dominant loss-of-function mutations of 
STAT3 (STAT3+/1 and STAT3+/2). Cells were 
left nonstimulated (NS) or stimulated, as indi-
cated, with IFN-, IFN-, IL-27, IL-6, and  
IL-21. pSTAT is an antibody specific for STAT 
with a phosphorylated tyrosine residue. (I) The 
nuclear and cytoplasmic fractions of EBV-B 
cells from a control (WT/WT), a CMCD patient 
(R274Q/WT), a heterozygous patient with a 
dominant loss-of-function mutation of STAT1 
(L706S/WT) and a patient with complete 
STAT1 deficiency (/) stimulated with IFN- 
and IFN- were tested for the presence of 
phosphorylated STAT1 and STAT1 by WB. Anti-
bodies directed against GAPDH and Lamin B1 
were used to normalize the amount of cyto-
plasmic and nuclear proteins, respectively. The 
experiment was performed twice.
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the gain-of-function, which manifests itself in terms of DNA-
binding activity, reporter gene induction, and target gene in-
duction, may not necessarily increase the transcription of all 
target genes, possibly even resulting in the repression of some 
genes. In addition, the various STAT1 mutations, although 
they all affect the coiled-coil domain and are probably all loss-
of-dephosphorylation and gain-of-function, may somewhat 
differ from each other in terms of their functional impact. 
The genome-wide impact of these mutations on the tran-
scriptome remains to be assessed in various cell types stimulated 
with a range of cytokines. In any case, the gain-of-function  
mutant STAT1 alleles were dominant for GAF activation in 
all cell types tested. They affected cellular responses to various 
cytokines, including IFN-/, IFN-, and IL-27, which pre-
dominantly activate STAT1 over STAT3, and IL-6 and IL-21, 
which predominantly activate STAT3 over STAT1. These 
mutations probably also strengthen cellular responses to 
IFN-. However, they do not seem to affect STAT1-containing 
ISGF-3 activation by IFN-/, at least in the conditions 
tested. Moreover, STAT3 activation by IL-6, IL-21, IL-22, and 
IL-23 is maintained, suggesting that STAT3 activation by  
IL-26 is also intact.

IL-12p40 production by whole blood stimulated with IFN- 
were higher in CMCD patients bearing gain-of-function 
STAT1 alleles than in patients bearing loss-of-function 
STAT1 alleles and healthy controls (Fig. 4 F and not depicted). 
Thus, patients with familial or sporadic AD CMCD hetero-
zygous for mutations affecting the coiled-coil domain of 
STAT1, including the dominant gain-of-function R274Q 
mutant allele, displayed lower levels of IL-17 cytokine pro-
duction by peripheral T cells, providing a molecular mecha-
nism for the disease.

DISCUSSION
We have shown that several germline missense mutations  
affecting the coiled-coil domain of STAT1 may cause spo-
radic and familial AD CMCD. The underlying mechanism 
involves a gain of STAT1 phosphorylation caused by the loss 
of nuclear dephosphorylation, resulting in a gain-of-function 
of GAF in response to various cytokines. Impaired dephos-
phorylation may not be the only mechanism influencing the 
impact of these mutations on the transcription of STAT1 target 
genes, as these mutations may also affect other processes, such 
as the dimerization of unphosphorylated STAT1. Moreover, 

Figure 4.  Impaired development and function of IL-17– and IL-22–producing T cells ex vivo in patients with AD CMCD and STAT1 muta-
tions. Each symbol represents a value from a healthy control individual (black circles), a patient bearing a STAT1 gain-of-function (GOF) allele (red upright 
triangles), or a patient bearing one or two STAT1 loss-of-function (LOF) alleles (black upside-down triangles). (A and B) Percentage of CD3+/IL-17A+ (A) 
and CD3+/IL-22+ (B) cells, as determined by flow cytometry, in nonadherent PBMCs activated by incubation for 12 h with PMA and ionomycin. (C–E) Secre
tion of IL-17F (C), IL-17A (D) and IL-22 (E) by whole blood cells, as determined by ELISA, in the absence of stimulation (open symbols) and after stimu
lation with PMA and ionomycin for 48 h (closed symbols). Horizontal bars represent medians. The p-values for the nonparametric Wilcoxon test, between 
patients with STAT1 GOF mutations (n = 18) and controls (n = 28) and patients with STAT1 LOF mutations (n = 6) are indicated. All differences between 
healthy controls and patients with STAT1 LOF alleles were not significant. (F) Secretion of IL-12p70 by whole blood cells, as determined by ELISA, in the 
absence of stimulation (open symbols), after stimulation with BCG (lightly colored symbols), or BCG + IFN- for 48 h (closed symbols). Horizontal bars 
represent medians. The p-values for differences between patients with STAT1 GOF mutations (n = 15) and controls (n = 23) and patients with STAT1 LOF 
mutations (n = 6) are indicated and were calculated in nonparametric Wilcoxon tests. All experiments were performed at least two times independently.
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suffer from mycobacterial disease caused by the impairment 
of IFN- immunity (Chapgier et al., 2006a; Dupuis et al., 
2001). Overall, mutations impairing STAT1 function confer AD 
or AR susceptibility to intracellular agents, through the im-
pairment of IFN-/ (viral diseases) and/or IFN- immu-
nity (mycobacterial diseases). In contrast, the gain-of-function 
STAT1 mutations reported here confer AD CMCD because 
of the enhancement of STAT1-mediated cellular responses 
to STAT1-dependent repressors and STAT3-dependent induc-
ers of IL-17–producing T cells. These studies neatly demonstrate 
that severe infectious diseases in otherwise healthy patients 
may be subject to genetic determinism (Casanova and Abel, 
2005, 2007; Alcaïs et al., 2009, 2010). They also highlight the 
profoundly different effects that germline mutations in the same 
human gene may have, resulting in different infectious dis-
eases through different molecular and cellular mechanisms.

MATERIALS AND METHODS
Massively parallel sequencing
DNA (3 µg) extracted from EBV-B cells from the patient was sheared with a 
S2 Ultrasonicator (Covaris). An adapter-ligated library was prepared with the 
Paired-End Genomic DNA Sample Prep kit (Illumina). The SureSelect  
Human All Exon kit (Agilent Technologies) was then used for exome capture. 
Single-end sequencing was performed on a Genome Analyzer IIx (Illumina), 
generating 72-base reads.

Sequence alignment, variant calling, and annotation
BWA aligner (Li and Durbin, 2009) was used to align the sequences obtained 
with the human genome reference sequence (hg18 build). Downstream pro-
cessing was performed with the Genome analysis toolkit (GATK; McKenna 
et al., 2010), SAMtools (Li et al., 2009), and Picard Tools (http://picard 
.sourceforge.net). Substitution calls were made with a GATK UnifiedGeno-
typer, whereas indel calls were made with a GATK IndelGenotyperV2. All calls 
with a read coverage ≤2x and a Phred-scaled SNP quality of ≤20 were filtered 
out. All the variants were annotated with annotation software that was developed 
in-house. The data were further analyzed with sequence analysis software that 
had been developed in-house (SQL database query–driven system).

Molecular genetics
EBV-B cells and the STAT1-deficient cell line U3C were cultured as previ-
ously described (Chapgier et al., 2006a). Primary fibroblasts were cultured in 
DME supplemented with 10% fetal calf serum. Cells were stimulated with 
the indicated doses (in IU/ml or ng/ml) of IFN- (Imukin; Boehringer  
Ingelheim), IFN-2b (IntronA; Schering-Plough), IL-27 (R&D Systems),  
IL-21 (R&D Systems), IL-22 (R&D Systems), IL-23 (R&D Systems), and 
IL-6 (R&D Systems). Genomic DNA and total RNA were extracted from 
cell lines and fresh blood cells, as previously described (Chapgier et al., 
2006a). Genomic DNA was amplified with specific primers encompassing 
exons 6–10 of STAT1 (available upon request), sequenced with the Big Dye 
Terminator cycle sequencing kit (Applied Biosystems), and analyzed on an 
ABI Prism 3730 (Applied Biosystems). We used the various alleles of STAT1 
in the pcDNA3 STAT1-V5 vector (Chapgier et al., 2006a; Kong et al., 2010). 
We generated the various STAT1 mutations by site-directed mutagenesis 
(QuikChange Site-Directed Mutagenesis kit; Stratagene) with the mis-
matched primers listed in Table S4. U3C cells were harvested by trypsin 
treatment 24 h before transfection and replated at a density of 2.5 × 105 
cells/ml in 6-well plates. Plasmid DNA (5 µg per plate) carrying the WT or 
all the various mutant STAT1 alleles was used for cell transfection with the 
Calcium Phosphate Transfection kit (Invitrogen).

Luciferase reporter assay
U3C cells were dispensed into 96-well plates (1 × 104/well) and trans-
fected with reporter plasmids (Cignal GAS and ISRE Reporter Assay kit;  

The mutant STAT1 alleles described herein enhance  
cellular responses to cytokines such as IFN-/, IFN-, and 
IL-27, which potently inhibit the development of IL-17–
producing T cells via STAT1 (Batten et al., 2006; Yoshimura  
et al., 2006; Stumhofer et al., 2006; Amadi-Obi et al., 2007; 
Feng et al., 2008; Kimura et al., 2008; Tanaka et al., 2008;  
Chen et al., 2009; Ramgolam et al., 2009; Crabé et al., 2009; 
Diveu et al., 2009; El-behi et al., 2009; Guzzo et al., 2010;  
Villarino et al., 2010; Liu and Rohowsky-Kochan, 2011). 
These mutant alleles also increase cellular responses to IL-6 
and IL-21, which normally induce IL-17–producing T cells 
via STAT3 rather than STAT1 (Hirahara et al., 2010). En-
hanced STAT1-dependent cellular responses to these two 
groups of cytokines probably impair the development of  
IL-17–producing T cells. It remains unclear whether this 
mechanism predominantly involves IL-17–inhibiting cytokines 
(IFN-/, IFN-, and IL-27), either individually or in combi-
nation. The available data from the mouse model suggest that 
IL-27 is the most potent of the three inhibitors. There is also 
evidence that these cytokines inhibit IL-17–producing T cell 
development in humans (Ramgolam et al., 2009; Liu and 
Rohowsky-Kochan, 2011). Enhanced STAT1 and GAF acti-
vation in response to the IL-17 inducers IL-6 and IL-21, and 
perhaps IL-23, may also play a key role in disease, by antago-
nizing STAT3 responses. The effect of the aryl hydrocarbon 
receptor on IL-17 T cell development might also be enhanced 
by gain-of-function STAT1 alleles (Kimura et al., 2008). 
Moreover, enhanced STAT1 activity downstream from IL-22 
and IL-26 in cells, not detected in our study, might also contrib-
ute to the CMCD phenotype. Finally, thyroid autoimmunity 
in eight patients and systemic lupus erythematosus in another 
patient in our series probably resulted from the enhancement 
of IFN-/ responses, as such autoimmunity is a frequent 
adverse effect of treatment with recombinant IFN- or IFN- 
(Oppenheim et al., 2004; Selmi et al., 2006). Importantly, 
no autoantibodies against IL-17A, IL-17F, or IL-22 were de-
tected in the patients’ serum (Table I and unpublished data).

Remarkably, germline mutations in human STAT1 un-
derlie susceptibility to three different types of infectious dis-
ease: mycobacterial diseases, viral diseases, and CMC. Patients 
bearing STAT1 mutations and displaying mycobacterial  
and/or viral disease do not suffer from CMC, and the patients 
with CMCD caused by other STAT1 alleles described here 
present no mycobacterial or viral disease. The pathogenic 
mechanisms involved are clearly different, with loss-of-function 
mutations in STAT1 underlying mycobacterial and viral dis-
eases (Dupuis et al., 2001, 2003; Chapgier et al., 2006b, 2009; 
Kong et al., 2010; Averbuch et al., 2011; Kristensen et al., 
2011). Human AR STAT1 deficiency impairs cellular re-
sponses to IFN-/, IFN-, IFN-, and IL-27 (Dupuis  
et al., 2003; Chapgier et al., 2006b, 2009; Kong et al., 2010;  
Kristensen et al., 2011). Viral diseases probably result from 
impaired IFN-/ and, perhaps, IFN- immunity, although 
impaired IFN- and IL-27 immunity may also contribute to 
the phenotype. Patients with AD MSMD, heterozygous for 
loss-of-function dominant-negative mutations of STAT1, 
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incubated for 30 min with 100 ng/ml IL-23. Activation was stopped by add-
ing 1X cold PBS, and cells were processed for immunoblot analysis.

Modeling
Images of the three-dimensional structure of STAT1 (Chen et al., 1998) were 
generated with the 2002 PyMOL Molecular Graphics System (DeLano Sci-
entific), using PDB accession no. 1BF5.

Whole-blood assay of the IL-12–IFN- circuit
Whole-blood assays were performed as previously described (Feinberg et al., 
2004). Heparin-treated blood samples from healthy controls and patients 
were stimulated in vitro with live Mycobacterium bovis BCG (Pasteur) alone or 
with IFN- (5,000 IU/ml; Boehringer Ingelheim). Supernatants were col-
lected after 48 h of stimulation, and ELISA were performed with specific 
antibodies directed against IL-12p40 or IL-12p70, using kits from R&D Sys-
tems according to the manufacturer’s instructions.

Production of IL-17A, IL-17F, and IL-22 by leukocytes
Cell activation. IL-17A– and IL-22–producing T cells were evaluated by 
intracellular staining or by ELISA, as previously described (de Beaucoudrey 
et al., 2008). In brief, PBMCs were purified by centrifugation on a gradient 
(Ficoll-Paque PLUS; GE Healthcare) and resuspended in RPMI supple-
mented with 10% FBS (RPMI/10% FBS; Invitrogen). Adherent monocytes 
were removed from the PBMC preparation by incubation for 2 h at 37°C, 
under an atmosphere containing 5% CO2.

For ex vivo evaluation of IL-17– and IL-22–producing T cells by flow 
cytometry, we resuspended 5 × 106 nonadherent cells in 5 ml RPMI/10% 
FBS in 25 cm2 flasks and stimulated them by incubation with 40 ng/ml PMA 
(Sigma-Aldrich) and 105 M ionomycin (Sigma-Aldrich) in the presence of 
a secretion inhibitor (1 µl/ml GolgiPlug; BD) for 12 h.

For evaluation of the IL-17– and IL-22–producing T cell blasts after in 
vitro differentiation, the nonadherent PBMCs were dispensed into 24-well 
plates at a density of 2.5 × 106 cells/ml in RPMI/10% FBS and activated 
with 2 µg/ml of an antibody directed against CD3 (Orthoclone OKT3; 
Janssen-Cilag) alone, or together with 5 ng/ml TGF-1 (240-B; R&D Sys-
tems), 20 ng/ml IL-23 (1290-IL; R&D Systems), 50 ng/ml IL-6 (206-IL; 
R&D Systems), 10 ng/ml IL-1 (201-LB; R&D Systems), or combinations 
of these four cytokines. After 3 d, the cells were restimulated in the same acti-
vation conditions, except that the anti-CD3 antibody was replaced with 
40 IU/ml IL-2 (Proleukin i.v.; Chiron). We added 1 ml of the appropriate 
medium, resuspended the cells by gentle pipetting, and then split the cell sus-
pension from each well into two. Flow cytometry was performed on one of 
the duplicated wells 2 d later, after stimulation by incubation for 12 h with 
40 ng/ml PMA and 105 M ionomycin in the presence of 1 µl/ml GolgiPlug. 
FACS analysis was performed as described in the following section. The 
other duplicated well was split into two, with one half left unstimulated and 
the other stimulated by incubation with 40 ng/ml PMA and 105 M iono-
mycin for another 2 d. Supernatants were collected after 48 h of incubation, 
for ELISA.

Flow cytometry. Cells were washed in cold PBS, and surface labeling was 
achieved by incubating the cells with PECy5-conjugated anti–human CD3 
antibody (BD) in PBS/2% FBS for 20 min on ice. Cells were then washed 
twice with 2% FBS in cold PBS, fixed by incubation with 100 µl of BD  
Cytofix for 30 min on ice, and washed twice with BD Cytoperm (Cytofix/
Cytoperm Plus, fixation/permeabilization kit; BD). Cells were then incu-
bated for 1 h on ice with Alexa Fluor 488–conjugated anti–human IL-17A 
(53–7179-42; eBioscience), PE-conjugated anti–human IL-22 (IC7821P; 
R&D Systems), or PE-conjugated anti–human IFN- (IC285P; R&D Sys-
tems) antibodies, washed twice with Cytoperm, and analyzed with a FACS-
Canto II system (BD).

ELISA. IL-17A, IL-17F, and IL-22 levels were determined by ELISA on the 
supernatants harvested after 48 h of whole-blood stimulation with 40 ng/ml 
PMA and 105 M ionomycin, or after in vitro PHA blast differentiation and 

SABiosciences) and plasmids carrying the various alleles of STAT1 or a 
mock vector, in the presence of Lipofectamine LTX (Invitrogen). 6 h after 
transfection, the cells were transferred back into medium containing 10% 
FBS and cultured for 24 h. The transfectants were then stimulated with 
IFN- (500 and 1,000 IU/ml), IL-27 (20 and 100 ng/ml), and IFN- 
(500, 1,000, and 5,000 IU/ml) for 16 h and subjected to luciferase assays 
with the Dual-Glo luciferase assay system (Promega). Experiments were per-
formed in triplicate and firefly luciferase activity was normalized with respect 
to Renilla luciferase activity. The data are expressed as fold induction with re-
spect to nonstimulated cells.

Immunoblot analysis and electrophoretic mobility shift assays
The following optimal stimulation conditions were used. EBV-B or U3C 
cells were stimulated by incubation for 20 min with 100 µg/ml IL-21 or 
25 ng of IL-22; 30 min with 103 or 105 IU/ml IFN- and IFN-; 15 min 
with 50 ng/ml IL-6; or 30 min with 50 or 100 ng/ml IL-27. WB was per-
formed as previously described (Dupuis et al., 2003). In brief, cell activation 
was blocked with cold 1X PBS, cells were lysed in 1% NP-40 lysis buffer, and 
the proteins were recovered and subjected to SDS-PAGE. We used antibodies 
directed against phosphorylated STAT1 (pY701; BD), STAT1 (C-24; Santa 
Cruz Biotechnology), V5 (Invitrogen), -tubulin (Santa Cruz Biotechnol-
ogy), phosphorylated STAT3 (Cell Signaling Technology), lamin B1 (Santa 
Cruz Biotechnology), GAPDH (Santa Cruz Biotechnology), and STAT3 
(Santa Cruz Biotechnology). EMSA was performed as previously described 
(Chapgier et al., 2006a). In brief, cell activation was blocked by incubation 
with cold 1X PBS, and the cells were gently lysed to remove cytoplasmic  
proteins while keeping the nucleus intact. We then added nuclear lysis 
buffer and recovered the nuclear proteins, which were subjected to nonde-
naturing electrophoresis with radiolabeled GAS (from the FCR1 promoter: 
5-ATGTATTTCCCAGAAA-3) and ISRE (from the ISG15 promoter:  
5-GATCGGGAAAGGGAAACCGAAACTGAA-3) probes.

Staurosporine and pervanadate treatment of cells
We assessed dephosphorylation by stimulating U3C transfectants with 105 IU/ml 
IFN-. The cells were then washed and incubated with 1 µM staurosporine  
in DME for 15, 30, or 60 min. The cells were then lysed with 1% NP-40 lysis 
buffer, and the proteins recovered were subjected to immunoblot analysis.

Pervanadate was prepared by mixing orthovanadate with H2O2 for 15 min 
at 22°C. U3C transfectants were treated with pervanadate (0.8 mM orthovana-
date and 0.2 mM H2O2) 5 min before stimulation. They were then stimulated 
with IFN- for 20 min. The stimulation was stopped by adding cold 1X PBS. 
The proteins were recovered and subjected to immunoblot analysis.

Extraction of nuclear and cytoplasmic proteins
U3C transfectants or EBV-B cells were stimulated with IFN- or IFN- for 
20 min and subjected to nuclear and cytoplasmic protein extraction with 
NE-PER Nuclear and Cytoplasmic Extraction Regents (Thermo Fisher 
Scientific) according to the manufacturer’s protocol.

Immunofluorescence staining
Immunofluorescence experiments were performed as previously described 
(Chapgier et al., 2006a). In brief, cells (transfected U3C or SV-40 fibroblasts) 
were stimulated for the times indicated with 10,000 IU/ml of IFN-. Cells were 
then washed with cold PBS and fixed with 4% PFA. The cells were washed and 
incubated with an antibody against STAT1, which was then detected by incuba-
tion with an Alexa Fluor 488–conjugated anti–mouse antibody.

T cell blast differentiation and stimulation
PBMCs were recovered by centrifuging blood samples on Ficoll gradients, as 
previously described (Chapgier et al., 2006a). They were then cultivated, at a 
density of 1 million cells per ml in RPMI supplemented with 10% fetal calf 
serum and stimulated with phytohemagglutinin (1 µg/ml) for 3 d. Cells were 
then recovered, centrifuged on a Ficoll gradient, cultivated (at a density of  
0.2 million cells/ml) to Panserin 401 supplemented with 10% FCS and  
glutamine 1X, and stimulated with 40 IU/ml IL-2 (Roche). Cells were then 
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Human STAT1 activating mutations impair IL-17 immunity  | Liu et al. S2

  Figure S1.  STAT1-CMCD mutants are gain-of-function allelles by loss of nuclear dephosphorylation. The response to various doses of IFN- � , IFN- �  or IL-

27 (A-C) was evaluated by determining luciferase activity of reporter genes under the control of the GAS promoter (A) and the ISRE promoter (B and C), in U3C cells 

transfected with a mock vector, a WT form, or the mutant forms (R274Q, D165G, K286I and L706S) of STAT1. Experiments were performed independently at least 

three times. (D) The response to IFN- � , IFN- � , and IL-27 was evaluated by determining luciferase activity of a reporter gene under the control of the GAS promoter 

in U3C cells transfected with a mock vector, a WT allele of  STAT1 , or 11 CMCD-causing  STAT1  alleles (D165G, D165H, Y170N, C174R, M202V, M202I, A267V, R274Q, 

R274W, K286I, and T288A), as well as the known K201N, K211R, and L706S  STAT1  alleles. The two horizontal lanes show the response of the WT  STAT1  allele to cyto-

kine stimulation. The experiment was performed twice. (E) GAF-DNA–binding activity in U3C cells transfected with mock, WT, R274Q, and L706S alleles of   STAT1  ; 

left unstimulated (NS); or stimulated with IFN- � , IFN- � , or IL-27; the results shown are representative of at least two independent experiments. (F) Immunofl uores-

cence of U3C cells transfected with WT, R274Q, and L706S alleles of  STAT1  without (NS) and with IFN- �  stimulation and stained with an antibody specifi c for STAT1. 

Bar, 50 μm. The pictures shown are representative of the cells observed. (G) The cytoplasmic (visualized by the GAPDH antibody) and nuclear (visualized by the Lamin 

B1 antibody) fractions of U3C cells transfected with mock, WT, R274Q, and L706S alleles of  STAT1 , with and without IFN- �  stimulation, were tested for the presence 

of total and phosphorylated STAT1 by WB. We loaded the equivalent of 25 μg of protein for the cytoplasmic fraction and 8 μg of protein for the nuclear fraction. The 

experiment was performed twice. (H) The nuclear dephosphorylation of STAT1 was assessed in U3C cells transfected with a mock vector, a WT  STAT1  allele, the 

D165G, and the F77A  STAT1  mutant alleles (the latter being known to impair STAT1 dephosphorylation) after treatment with IFN- �  and the tyrosine kinase inhibitor 

staurosporine for increasing periods of time (30, 60, 90, and 120 min); the results shown are representative of at least two independent experiments.   
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  Figure S2.   Schematic representation of the cytokines and transcription factors directing the development of naive CD4 T cells into IL-17–

producing T cells.  Activating molecules, such as IL-6, IL-1 � , IL-23, and IL-21 (acting mostly through STAT3, ROR � t, and, to a lesser extent, STAT1), TGF- � , 

and inhibiting molecules, such as IFN- � , IFN- � , IFN- � , and IL-27 (acting mostly through STAT1 and, to a lesser extent, STAT3) are represented.   

  Figure S3.  Normal response of CMCD patient cells to IFN- �  in terms of ISGF3 activation; to IFN- �   in terms of STA1 nuclear translocation; 

and to IL-23 and IL-22 in terms of pSTAT3. (A) The response of the (R274Q/WT) patient’s EBV-B cells was evaluated by EMSA with an ISRE probe and 

was compared to those of a healthy control (WT/WT), heterozygous cells with a WT and a loss-of-function allele (STAT1+/ � ), cells heterozygous for a dom-

inant loss-of-function mutation of  STAT1  (L706S/WT), and cells with complete STAT1 defi ciency (STAT1 � / � ). Cells were stimulated with various doses of 

IFN- �  (international unit/milliliter); the results shown are representative of at least two independent experiments. (B) The response to IL-23 of T cell blasts 

was evaluated in control (WT/WT), CMCD (R274Q/WT), MSMD (L706S/WT), IL12RB1-defi cient (IL12RB1 � / � ) and heterozygous STAT3 (STAT3+/ � ) cells by WB. 

The experiment was performed twice. (C) The response to IL-22 of primary fi broblasts was evaluated in three controls (WT/WT1, 2, and 3), CMCD (R274Q/

WT), MSMD (L706S/WT), STAT1-defi cient (STAT1 � / � ), heterozygous STAT3 (STAT3+/ � ), and IL10RB-defi cient (IL10RB � / � ) cells by WB; the results shown are 

representative of at least two independent experiments. (D) Immunofl uorescence for STAT1 of SV-40–transformed fi broblasts with and without IFN- �  

stimulation, for a control (WT/WT), a CMCD patient (R274Q/WT), an MSMD patient (L706S/WT), and a complete STAT1-defi cient patient (STAT1 � / � ). Bar, 50 

μm. The results shown are representative of at least two independent experiments   
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  Figure S4.   Impaired in vitro differentiation of IL-17– and IL-22–producing T cells in patients with AD CMCD and  STAT1  mutations.  Each 

symbol represents an individual control (black circles), a patient with a  STAT1  GOF mutation (red triangles), or a patient with one or two  STAT1  LOF muta-

tions (black upside-down triangles). The results shown are representative of at least two independent experiments. (A and B) IL-17 +  (A) and IL-22 +  (B) T 

cell blasts were expanded in vitro in presence of anti-CD3 antibody, IL-2, IL-1 � , and IL-6 for 5 d, followed by 12 h of stimulation with PMA and ionomy-

cin. C- E. Secretion of IL-17F (C), IL-17A (D), and IL-22 (E) by T cell blasts expanded in vitro in presence of anti-CD3 antibody, IL-2, IL-1 � , and IL-6 for 5 d, 

followed by 12 h of stimulation with PMA and ionomycin. Horizontal bars represent medians. The p-values for the nonparametric Wilcoxon test, between 

patients with  STAT1  GOF mutations ( n  = 18) and healthy controls ( n  = 28) and patients with  STAT1  LOF mutations ( n  = 6) are indicated. All differences 

between healthy controls and patients with  STAT1  LOF alleles were nonsignifi cant. (F) Percentage of CD3 + /IFN- �  +  cells, as determined by fl ow cytometry, 

in nonadherent PBMCs activated by incubation for 12 h with PMA and ionomycin. Horizontal bars represent medians. The p-values for differences be-

tween patients with  STAT1  GOF mutations ( n  = 18) and healthy controls ( n  = 28) and patients with  STAT1  LOF mutations ( n  = 6) were calculated in non-

parametric Wilcoxon tests and were nonsignifi cant. (G) Flow cytometry analysis of CD3 and IL-17A in nonadherent PBMCs activated with 

PMA-ionomycin, from a control (left), a STAT1 GOF patient (middle), and a STAT1 LOF patient (right). The percentage of CD3 + /IL17A +  cells is indicated in 

the top right corner of each dot plot.   

Table S1, which shows all novel coding heterozygous variants found by whole exome sequencing in six 

diff erent patients, is available as an excel fi le.

Table S2, which shows all novel coding heterozygous variants found by whole-exome sequencing within 

genes shared by more than one patient, is available as an excel fi le.
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Mutation Polyphen II 
score 

Damaging Conservation 

D165G 0.247 Possibly 
Poor (E, N, Y found at this position) 

D165H 0.469 Possibly 
Y170N 0.819 Possibly Poor (R, H, F found at this position) 
C174R 0.000 Benign Very Poor (R found in two fishes, plus H, F, I, E Y, N, M, K) 
M202V 0.794 Possibly 

High (V found in the fish) 
M202I 0.956 Probably 
A267V 0.998 Probably High (G and I found at this position) 
Q271P 0.932 Possibly High (F and L found at this position) 
R274W 

1.000 Probably Very High (no variation found at this position) 
R274Q 
K286I 0.961 Probably Very High (   no    variation found at this position) 
T288A 0.997 Probably High (S found at this position in the fish) 

Table S3. Conservation and predictions on the function of the mutant STAT1 alleles associated with CMCD

Summary of the Polyphen II score, possible functional consequences (possibly, probably damaging, or benign), 
and the conservation of the amino acid for the species sequenced for STAT1. 
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Mutation Primers (Forward+Reverse) 

D165G 5’-AGA GCC TGG AAG GTT TAC AAG ATG A-3’ 
5’-TCA TCT TGT AAA CCT TCC AGG CTC T-3’ 

D165H 5’-AAG AGC CTG GAA CAT TTA CAA GAT G-3’  
5’-CAT CTT GTA AAT GTT CCA GGC TCT T-3’ 

Y170N 5’-TTA CAA GAT GAA AAT GAC TTC AAA T-3’ 
5’-ATT TGA AGT CAT TTT CAT CTT GTA A-3’ 

C174R 5’-TAT GAC TTC AAA CGC AAA ACC TTG C-3’  
5’-GCA AGG TTT TGC GTT TGA AGT CAT A-3’ 

M202I 5’-ACT CAA GAA GAT ATA TTT AAT GCT T-3’  
5’-AAG CAT TAA ATA TAT CTT CTT GAG T-3’ 

M202V 5’-TTA CTC AAG AAG GTG TAT TTA ATG C-3’  
5’-GCA TTA AAT ACA CCT TCT TGA GTA A-3’ 

A267V 5’-TCA CTA TAG TTG TGG AGA GTC TGC A-3’  
5’-TGC AGA CTC TCC ACA ACT ATA GTG A-3’ 

R274Q 5’-TGC AGC AAG TTC AGC AGC AGC TTA A-3’ 
5’-TTA AGC TGC TGC TGA ACT TGC TGC A-3’ 

R274W 5’-CTG CAG CAA GTT TGG CAG CAG CTT A-3’ 
5’-TAA GCT GCT GCC AAA CTT GCT GCA G-3’ 

K286I 5’-AAT TGG AAC AGA TAT ACA CCT ACG A-3’  
5’-TCG TAG GTG TAT ATC TGT TCC AAT T-3’ 

T288A 5’-GAA CAG AAA TAC GCC TAC GAA CAT G-3’ 
5’-CAT GTT CGT AGG CGT ATT TCT GTT C-3’ 

K211R 5’-ACA ATA AGA GAA GGG AAG TAG TTC A-3’  
5’-TGA ACT ACT TCC CTT CTC TTA TTG T-3’ 

Table S4. Primers used for each STAT1 GOF mutation 
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Abstract 

Autosomal dominant (AD) chronic mucocutaneous candidiasis disease (CMCD) may be 

caused by heterozygous mutations affecting the coiled-coil domain (CCD) of human 

STAT1. These mutations are gain-of-function due to a loss of dephosphorylation, 

resulting in enhanced STAT1 activity in response to all cytokines tested. These mutations 

also impair the development of IL-17-producing T cells from bulk leukocytes, both ex 

vivo and in vitro, potentially accounting for AD CMCD. We report here a new set of AD 

CMCD-causing mutations affecting the DNA-binding domain (DBD) of STAT1 yet 

impairing the nuclear dephosphorylation of activated STAT1, resulting in a gain of 

function. We also found that CMCD patients heterozygous for CCD or DBD gain-of-

function STAT1 alleles displayed poor IL-17-producing T-cell development from naïve 

CD4+ T cells in vitro. Finally, we report that the STAT1-dependent cytokines IFN-α/β, 

IFN-γ and IL-27 further inhibit the development of IL-17 T cells from the naïve CD4 T 

cells of these CMCD patients, whereas antibodies against these cytokines can rescue the 

development of IL-17 T cells. In conclusion, gain-of-function mutations affecting the 

CCD and DBD of STAT1 cause AD CMCD by the same mechanism: impaired STAT1 

nuclear dephosphorylation, enhanced cellular responses to IFN-α/β, IFN-γ and IL-27, and 

the impaired development of IL-17 T cells. 



Introduction  

Chronic mucocutaneous candidiasis disease (CMCD) is typically defined as 

infections of the nails, skin, oral and genital mucosae with Candida albicans in patients 

with no other prominent clinical signs (Canales et al., 1969; Chilgren et al., 1967; 

Kirkpatrick, 2001; Leroy et al., 1989; Lilic, 2002; Wells et al., 1972; Williamson, 1969). 

This definition is not strict, as some CMCD patients display other infectious diseases, of 

a bacterial or fungal nature in particular, or autoimmune signs, such as hypothyroidism 

and even systemic lupus erythematosus. They may also present mucocutaneous 

carcinomas and cerebral aneurysms. The term CMCD is best used to refer to patients 

with CMC displaying none of the known primary immunodeficiency diseases (PIDs) 

associated with a predisposition to CMC, such as profound T-cell deficits (Puel et al., 

2012), autosomal recessive (AR) CARD9 deficiency (Glocker et al., 2009), autosomal 

dominant (AD) hyper IgE syndrome (AD-HIES) (Minegishi, 2009), AR autoimmune 

polyendocrinopathy syndrome type 1 (APS-1) (Kisand et al., 2011) and AR IL-12Rβ1 or 

IL-12p40 deficiency (de Beaucoudrey et al., 2010; Ouederni et al., in preparation; Prando 

et al., 2013). CMCD was first described clinically in 1969, but it was not until 2011 that 

the first genetic etiologies of CMCD were deciphered, with the identification of AR IL-

17RA and AD IL-17F deficiencies, in one family each (Puel et al., 2011). This candidate 

gene approach was based on the previous discovery of impaired IL-17 T-cell 

development in patients with AD HIES (de Beaucoudrey et al., 2008; Ma et al., 2008; 

Milner et al., 2008; Minegishi et al., 2009; Puel et al., 2010b; Renner et al., 2008) and 

high titers of circulating and neutralizing autoantibodies against IL-17 cytokines in 

patients with AR APS-1 (Kisand et al., 2010; Puel et al., 2010a; Puel et al., 2010b). 



Collectively, these data indicated that CMCD may result from inborn errors of IL-17 

immunity (Puel et al., 2010b). Going beyond these rare conditions, these data also 

suggested that CMC results from impaired IL-17 immunity in patients with various 

inherited or acquired conditions, such as AIDs patients and patients on 

immunosuppressive treatments (Puel et al., 2012; Puel et al., 2010b). 

Surprisingly, genome-wide approaches then led to the discovery of 14 

heterozygous mutations, all clustered in the region encoding the coiled-coil domain 

(CCD) of STAT1, in 78 patients from 33 kindreds with CMCD (Hori et al., 2012; Liu et 

al., 2011; Smeekens et al., 2011; Takezaki et al., 2012; Toth et al., 2012; van de 

Veerdonk et al., 2011; Wang et al., 2012; Romberg et al, 2013). Two heterozygous 

mutations affecting the DNA-binding domain (DBD) of STAT1 (T385M and E353K) 

have also been reported in three patients from three unrelated kindreds (Romberg et al., 

2013; Takezaki et al., 2012). Most of these CMCD-causing STAT1 mutations were 

shown to be gain-of-function (GOF) due to a loss of nuclear dephosphorylation (Liu et 

al., 2011; Takezaki et al., 2012). Consistent with these findings, cells heterozygous for 

these mutations displayed enhanced STAT1 activity in response to cytokines, including 

IFN-α/β, IFN-γ and IL-27, which activate predominantly STAT1 rather than STAT3, and 

in response to cytokines such as IL-6 and IL-21, which normally predominantly activate 

STAT3 rather than STAT1 (Liu et al., 2011). These patients also displayed poor IL-17 T-

cell development from bulk leukocytes both ex vivo and in vitro (Liu et al., 2011; 

Romberg et al., 2013; Smeekens et al., 2012; Takezaki et al., 2012; van de Veerdonk et 

al., 2011). This deficit could be accounted for by enhanced cellular responses to STAT1-

dependent repressors of IL-17-producing T cells, such as IFN-α/β IFN-γ and IL-27, as 



inferred from studies in mice (Batten et al., 2006; Diveu et al., 2009; El-behi et al., 2009; 

Feng et al., 2008; Hirahara et al., 2012; Stumhofer et al., 2006; Villarino et al., 2010; 

Yoshimura et al., 2006) and humans (Amadi-Obi et al., 2007; Chen et al., 2009; Crabe et 

al., 2009; Guzzo et al., 2010; Liu & Rohowsky-Kochan, 2011; Ramgolam et al., 2009). 

Alternatively, it may be due to the enhanced and potentially competing STAT1 responses 

observed after stimulation with STAT3-dependent inducers of IL-17, such as IL-6, IL-21 

and IL-23, in mice (Bettelli et al., 2006; Zhou et al., 2007) and humans (Kishimoto, 

2005; Sallusto et al., 2012). We report here the identification of 58 additional CMCD 

patients with GOF mutations affecting the CCD (28 patients from 20 kindreds) and DBD 

(30 patients from 18 kindreds) of STAT1. We also show that both CCD and DBD 

mutations inhibit the development of IL-17 T cells from naïve CD4+ T cells in vitro. 

Finally, we show that the mechanism underlying the poor development of IL-17 T cells, 

resulting in CMC, involves enhanced responses to IFN-α/β, IFN-γ and IL-27.  

 

Results 

We sequenced the complete coding exons and flanking intron regions of STAT1 in 

130 patients suffering from sporadic or familial CMCD. We found known heterozygous 

missense mutations affecting the CCD of STAT1 in 19 patients from 13 new families 

(Fig. 1, Table 1). We also identified seven other kindreds (nine patients), each with a 

previously unknown missense mutation affecting the CCD. Finally, we identified 

heterozygous missense mutations affecting the DBD of STAT1 — two (T385M, E353K) 

already reported (Takezaki et al., 2012; Romberg et al., 2013) and 10 previously 

unknown — in 30 patients from 18 families (Fig. 1, Table 1). The intrafamilial 



segregation of the mutations was consistent with an AD trait, and clinical penetrance 

appeared to be complete, as all patients with CMCD from the kindreds tested were 

heterozygous, whereas none of these mutations was found in the heterozygous state in 

any of the healthy relatives sequenced (Fig. 1A, 1B). The D171N (kindred A), A267V 

(kindreds B, D) D168A (kindred Q), N397D (kindred X), L351F (kindred AA) and 

T385M (kindred AB) mutations were found to have occurred de novo (a total of 7 

patients from 7 kindreds), consistent with the complete clinical penetrance of all known 

CMCD-associated STAT1 alleles. The mutations were not found in the NCBI, Ensembl 

and dbSNPs databases, or in our own in-house database of 700 exomes. They were also 

absent from the 1,052 controls from 52 ethnic groups in the Centre d’Etude du 

Polymorphisme Humain (CEPH) and Human Genome Diversity (HGD) panels (Cann et 

al., 2002; Jakobsson et al., 2008), suggesting that they were rare CMCD-causing variants 

rather than irrelevant polymorphisms. 

The 17 new mutations affecting the CCD and DBD and the T385M and E353K 

mutations already described by Takezaki et al. and Romberg et al, were non conservative 

and were therefore predicted to affect protein structure and function. Moreover, most of 

the affected residues have been conserved throughout evolution, in the species in which 

STAT1 has been sequenced. In addition, a new predictive tool, “Condel”, which combines 

predictions from SIFT, Polyphen 2 and Mutation Assessor (Adzhubei et al., 2010; Chen 

et al., 2010; Gonzalez-Perez & Lopez-Bigas, 2011; Kumar et al., 2009; Reva et al., 

2011), identified 14 mutations as damaging, one as possibly damaging (D168E) and only 

three as neutral (Y287H, P329L, N357D) (Table S1). These genetic data, combined with 

the previous identification in other patients with CMCD of 13 mutations affecting the 



CCD (Liu et al., 2011; Romberg et al., 2013) and two mutation affecting the DBD of 

STAT1 (Takezaki et al., 2012; Romberg et al., 2013), demonstrated experimentally to be 

GOF, and of one CCD mutation clinically associated with CMCD (I156T) (Romberg et 

al., 2013), suggest that the seven new mutations affecting the CCD and the 10 new 

mutations affecting the DBD may cause AD CMCD in these patients. However, the 

existence of loss-of-function (LOF) mutations underlying Mendelian susceptibility to 

mycobacterial disease (MSMD) in the close vicinity of the DBD mutations (Fig. 1A, 1C) 

(Averbuch et al., 2011; Chapgier et al., 2006) raises questions about the likelihood of 

these mutations being responsible for CMCD (i.e. whether they were GOF and, if so, by 

what mechanism). 

 We therefore carried out functional characterization for two CMCD-associated 

STAT1 alleles with mutations affecting the DBD (R321G and N355D) (Fig. 1; Table 1). 

We compared these alleles not only with a wild-type (WT) and a previously characterized 

GOF CCD mutant allele (R274Q), but also with the two LOF DBD alleles (E320Q and 

Q463H) (Fig. 1A, 1C) (Boisson-Dupuis et al., 2012; Chapgier et al., 2006). We 

transfected STAT1-deficient U3C fibrosarcoma cells with the various STAT1 alleles. On 

average, the responses to stimulation with IFN-γ, IFN-α or IL-27 in cells transfected with 

the CMCD-associated DBD and CCD alleles were three times stronger than those 

observed with the WT allele, as shown by measurement of the induction of gamma-

activated sequence (GAS)-dependent reporter gene transcription activity, with mock-, 

E320Q- and Q463H-transfected cells serving as negative controls (Fig. 2A, Fig. S1A, 

S1B). Western blotting (WB) showed STAT1 tyrosine 701 phosphorylation levels to be 

higher for the R321G and N355D alleles than for the WT allele after stimulation with IL-



27, IFN-γ, or IFN-α, whereas total STAT1 protein levels were similar in all cells tested, 

as were STAT3 protein and phosphorylation levels (Fig. 2B; Fig. S1C). Accordingly, we 

observed an increase in GAS-binding activity upon stimulation with IL-27, IFN-γ or IFN-

α in cells transfected with the R321G or N355D allele, as assessed by electrophoretic 

mobility shift assay (EMSA) (Fig. 2B, Fig. S1D). The transcription of the CXCL9 and 

CXCL10 target genes was also greatly enhanced by IFN-γ stimulation (Fig. 2C, 2D). 

Finally, higher levels of STAT1 phosphorylation and GAS-binding activity were also 

observed when U3C cells were transfected with six additional CMCD-associated STAT1 

DBD alleles (C324R, L351F, E353K, K388E, M390T, N397D) (Fig. S2E). Neither U3C 

cells transfected with the WT allele nor those transfected with any of the STAT1 mutant 

alleles responded to stimulation with high concentrations of IFN-λ in similar conditions 

(data not shown). 

We then compared baseline and IFN-dependent transcriptional activity in 

transfected U3C cells, for the 31 CMCD-associated STAT1 alleles. We used this in vitro 

system to assess the IFN-γ-dependent GAS transcriptional activity of all 31 the CMCD-

associated STAT1 alleles All CMCD-associated alleles were GOF in terms of GAF 

transcriptional activity, including the three predicted to be neutral by Condel (Y287H, 

P329L, N357D). Levels of activity were, on average, three times those with the WT 

allele, with the E320Q and Q463H alleles used as negative controls (Fig. S2A, S2B). The 

mutant alleles differed in their activity levels, which ranged from two to four times those 

for the WT allele. Moreover, the ranking of the mutations depended on the amount of 

IFN-γ used (10 or 1,000 IU/ml). We then assessed ISRE transcriptional activity in 

response to stimulation with various doses of IFN-α under the same conditions. We 



initially reported no clear GOF for the three CCD alleles tested in a previous study (Liu et 

al., 2011), but we detected a mean two-fold increase in activity in cells transfected with 

CMCD-associated STAT1 alleles under optimized conditions (See Materials and 

Methods) (Fig. S2C, S2D). In this assay, all but one of the CMCD-associated mutations 

(K388E being the exception), were GOF in terms of ISRE transcriptional activity. An 

increase in ISRE activity in response to IFN-α was observed in cells transfected with 

CMCD-associated alleles, using various reporter plasmids containing the ISRE sequence 

(data not shown). Thus, our results demonstrate that the 31 CMCD-associated STAT1 

alleles described in this manuscript are intrinsically GOF, at least for IFN-γ-dependent 

transcriptional activity, but also for IFN-α/β-dependent activity in all but one case. 

The DBD of STAT1 is known to be involved not only in the DNA-binding 

activity of STAT1, but also in the nuclear-cytoplasmic transport and nuclear 

dephosphorylation of STAT1 (Begitt et al., 2000; Chen et al., 1998; Fagerlund et al., 

2002; Haspel & Darnell, 1999; McBride et al., 2002; McBride et al., 2000; Melen et al., 

2001; Meyer et al., 2002). The CMCD-associated STAT1 CCD alleles have been shown 

to be GOF due to the impairment of STAT1 dephoshorylation in the nucleus (Liu et al., 

2011; Takezaki et al., 2012). We also documented an increase in Tyr 701 

phosphorylation in response to IL-27, IFN-α and IFN-γ, for CMCD-associated DBD 

STAT1 alleles, on western blots (Fig. 2B, Fig. S1C). We observed no constitutive STAT1 

Tyr701 phosphorylation in cells transfected with the CMCD-associated DBD or CCD 

alleles, in which STAT3 was normally activated (Fig. 2B, Fig. S1C, data not shown). The 

mechanism underlying the gain of phosphorylation was explored in cells transfected with 

the N355D allele and treated with the tyrosine kinase inhibitor staurosporine or the 



phosphatase inhibitor pervanadate. The dephosphorylation of IFN-γ- or IL-27-activated 

N355D STAT1 was impaired by staurosporine, to an extent similar to that for the known 

experimental dephosphorylation mutant Q340A (Mertens et al., 2006) (Fig. 2E, Fig. 

S2F). By contrast, pervanadate normalized the phosphorylation of N355D and other 

CMCD-associated STAT1 DBD-mutated proteins after stimulation with IFN-γ to WT 

levels (Fig. 2F, Fig. S2G). A known CMCD-causing CCD-mutated STAT1 allele, R274Q, 

was used as a control (Fig. 2F). Thus, the CMCD-associated STAT1 alleles with missense 

mutations affecting the DBD, like the CMCD-associated STAT1 CCD missense alleles, 

are GOF, due to the impairment of dephosphorylation. 

 We investigated the association of the heterozygous DBD STAT1 alleles with an 

AD cellular phenotype, by deriving EBV-transformed B cells (EBV-B cells) from a 

CMCD patient heterozygous for the N355D allele. IFN-γ-, IFN-α/β- and IL-27-

dependent STAT1 phosphorylation in EBV-B cells from this patient was stronger than 

that in EBV-B cells from a healthy control (WT/WT), two MSMD patients carrying 

heterozygous STAT1 LOF mutations affecting the DBD (Q463H/WT and E320Q/WT) 

and a patient with complete STAT1 deficiency (STAT1-/-), as shown by western blotting 

(Fig. 3A, 3B). Despite the higher levels of STAT1 phosphorylation in the cytoplasm, 

phosphorylation levels were consistently higher in the nucleus of the N355D/WT EBV-B 

cells than in the WT/WT control cells, following stimulation with IFN-γ or IFN-α (Fig. 

S3A). Moreover, we observed stronger GAF DNA-binding activity in response to 

stimulation with IFN-γ-, IFN-α/β- or IL-27 in N355D/WT EBV-B cells than in WT/WT 

and Q463H/WT and E320Q/WT EBV-B cells, as shown by EMSA (Fig. 3C, 3D). The 

response to IFN-λ was assessed by measuring the transcription of the target gene IFIT1 



(induction of interferon-induced protein with tetratricopeptide repeats 1), as previously 

described (Chapgier et al., 2009). EBV-B cells from CMCD patients with STAT1 

mutations displayed a high degree of variability in terms of IFIT1 mRNA induction, 

making it impossible to draw firm conclusions regarding the impact of the CMCD-

associated STAT1 alleles. Finally, despite the detection of a modest increase in ISRE 

transcriptional activity in U3C cells transfected with the CMCD-associated STAT1 alleles 

(Fig. S2C, S2D), the IFN-α/β-dependent DNA-binding activity of ISGF3 in EBV-B cells 

from the patient tested (N355D/WT) appeared to be normal (Fig. S3B). Nevertheless, 

these data suggest that the heterozygous N355D/WT GOF allele is associated with an AD 

phenotype of enhanced STAT1- and GAF-dependent cellular responses to key STAT1-

activating cytokines, such as IFN-α/β, IFN-γ and IL-27. 

We then investigated cytokines that predominantly activate STAT3, rather than 

STAT1, such as IL-6, IL-21 and IL-23 (Bettelli et al., 2006; Kishimoto, 2005; Spolski & 

Leonard, 2008). As previously observed in the cells of a CMCD patient heterozygous for 

a CCD mutation (R274Q/WT) (Liu et al., 2011), the levels of STAT1 phosphorylation in 

response to IL-6 and IL-21 were higher in the EBV-B cells of the patient heterozygous 

for the N355D allele than in those from a healthy control or from the two patients with 

MSMD due to mutations affecting the DBD, whereas STAT3 activation was normal, as 

shown by western blotting (Fig. 3E, 3F). Consistently, GAS activity in response to IL-6 

and IL-21 was stronger in cells from the N355D/WT CMCD patient (Fig. 3G, 3H), than 

in WT/WT cells or cells from negative controls (E320Q/WT, Q463H/WT, STAT1-/-), 

including cells heterozygous for LOF and dominant-negative mutations of STAT3 

(STAT3+/-). These data suggest that heterozygous missense mutations affecting the DBD 



of STAT1 are also GOF and confer an AD cellular phenotype of enhanced STAT1- and 

GAF-dependent cellular responses to cytokines predominantly activating STAT3, such as 

IL-6 and IL-21. We then investigated the response of the EBV-B cells to IL-23. No 

STAT1 phosphorylation was detected in controls or in CMCD patients and STAT3 

phosphorylation varied considerably between the various positive controls tested, making 

it impossible to draw any firm conclusions (Fig. S3C, data not shown).  

Having established that the newly discovered STAT1 alleles were intrinsically 

GOF and conferred an AD cellular phenotype of hyper-responsiveness to IFNs and IL-

27, we investigated the possible impairment of IL-17 T cell development in heterozygous 

patients. Indeed, we previously showed that patients with CMCD-causing STAT1 CCD-

mutated alleles displayed an impairment of IL-17-producing T-cell development from 

bulk leukocytes, as shown by in vitro and ex vivo studies comparing the cells of these 

patients with those from healthy controls or patients bearing mono- or bi-allelic LOF 

STAT1 alleles. We thus determined the proportion of IL-17A- and IL-22-producing T 

cells by flow cytometry, and assessed the production of these cytokines by ELISA, in 

new patients with heterozygous missense CDD and DBD CMCD-associated STAT1 

alleles. Nine CMCD patients described in a previous study (Liu et al., 2011) were tested 

again (Fig. 4). The seven CMCD patients with STAT1 DBD mutations and the 25 CMCD 

patients with STAT1 CCD mutations tested had significantly (p < 10-4) lower proportions 

of circulating IL-17A- and IL-22-producing T cells, as measured ex vivo, than 91 healthy 

controls tested in the same conditions (Figures 4A, 4B). Moreover, significantly (p < 10-

4) smaller amounts of IL-17A and IL-22 were secreted by freshly prepared leukocytes 

stimulated with PMA and ionomycin ex vivo, as shown by ELISA (Figures 4C and 4D). 



Similarly, as previously shown for CCD mutations, PBMCs from CMCD patients 

carrying GOF STAT1 DBD mutations (and GOF STAT1 CCD mutations) cultured in vitro 

for five days in the presence of IL-6, IL-1β, TGF-β and IL-23, presented significantly 

lower proportions of IL-17A– and IL-22–producing T cells than PBMCs from controls (p 

< 10-4) (Fig. S4A, S4B). Thus, CMCD patients heterozygous for GOF STAT1 DBD 

alleles, including the GOF N355D mutant allele, displayed lower levels of IL-17 and IL-

22 production by peripheral T cells, providing a common immunological basis of disease, 

regardless of the location of the GOF STAT1 mutations. 

We then investigated whether the STAT1 mutations affecting the CCD and DBD 

impaired the development of IL-17 T cells from naïve CD4+ T cells in vitro. A 

combination of TGF-β and IL-6 has been shown to be essential for the initial 

differentiation of IL-17 T cells in mice (Bettelli et al., 2006; Kimura & Kishimoto, 2010; 

Mangan et al., 2006; Melton et al., 2010; Zhou et al., 2007), but the key cytokines 

required in humans remain less clearly defined (Sallusto et al., 2012). Various 

combinations of cytokines have been used for the differentiation of human IL-17 T cells: 

(1) TGF-β and IL-21; (2) IL-1β and IL-6; (3) IL-1β and IL-23 and (4) TGF-β and IL-23 

(Acosta-Rodriguez et al., 2007; Cosmi et al., 2008; Korn et al., 2007; Santarlasci et al., 

2009; Valmori et al., 2010; Yang et al., 2008). We thus purified CD45RA+ CD4+ T cells 

and cultured them in plates coated with an antibody (Ab) against CD3 and containing a 

soluble Ab against CD28, together with individual cytokines or all possible combinations 

of TGF-β, IL-1β, IL-6, IL-21 and IL-23, in the presence of IL-2. The proportion of IL-

17A-expressing T cells and the secretion of IL-17A were measured from day 5 to 12 by 

flow cytometry and ELISA, respectively. We obtained the most reproducible results 



within and between controls with a combination of IL-1β and IL-23 for 12 days (data not 

shown). IL-6 was not retained, as it increased interindividual variability. In these 

conditions, patients heterozygous for CCD or DBD STAT1 mutations had lower (p < 10-3) 

proportions of IL-17A T cells and secreted smaller amounts of IL-17A (p < 10-2) (Fig. 

5A, 5B). Impaired IL-17 T-cell development in these patients was similar to that seen in 

patients with other conditions conferring CMC, including AD-HIES patients with 

heterozygous LOF STAT3 mutations and AR MSMD patients with biallelic LOF 

mutations of IL12RB1 (Fig. S4C). Collectively, these data therefore demonstrate that the 

GOF STAT1 mutations caused CMCD by impairing IL-17 T-cell immunity. 

Finally, we investigated the mechanisms by which CMCD-causing GOF STAT1 

alleles prevent the development of IL-17 T cells. In the culture conditions defined above, 

we added a combination of IFN-α2a, IFN-β1a, IFN-γ and IL-27, which inhibits the 

development of IL-17 T cells via STAT1 in mice (Batten et al., 2006; Diveu et al., 2009; 

El-behi et al., 2009; Feng et al., 2008; Hirahara et al., 2012; Stumhofer et al., 2006; 

Villarino et al., 2010; Yoshimura et al., 2006) and humans (Amadi-Obi et al., 2007; Chen 

et al., 2009; Crabe et al., 2009; Guzzo et al., 2010; Liu & Rohowsky-Kochan, 2011; 

Ramgolam et al., 2009). We observed a large decrease in the proportion of IL-17A T 

cells and in the secretion of IL-17A, in both the healthy controls and the STAT1 patients 

tested (Fig. 5C, 5D, left panel). The effect was statistically significant when measured 

both by flow cytometry and ELISA, for CMCD patients (p < 10-3), and for controls (p < 5 

x 10-3 and p < 10-2 respectively). Moreover, in these inhibitory conditions, the difference 

in terms of IL-17A T cell proportion and IL-17A production between controls and 

patients was much more significant than in the absence of IFNs and IL-27 (p < 10-3) (Fig. 



5C, 5D right panels). At higher concentrations of IFN and IL-27, stronger inhibition was 

observed in the cells of controls and patients, with similar levels of inhibition in both 

(Fig. S4D). These data suggested that the poor development of IL-17 T cells in patients 

heterozygous for STAT1 alleles might result, at least in part, from enhanced IFN-α/β, 

IFN-γ and IL-27 responses via STAT1. We tested this hypothesis, by treating the cells 

with a combination of neutralizing Abs against IFN-α/βR2, IFN-γ and IL-27. These Abs 

rescued the development of IL-17 T cells carrying GOF STAT1 mutations, whereas this 

effect was not detectable in healthy cells (Fig. 5E, 5F, right panel). Indeed, the effect of 

these Abs reached significance only in the patients’ cells (p < 10-3 by flow cytometry and 

p < 5. x 10-4 by ELISA). Moreover, in these conditions, the difference between the cells 

of the controls and those of the patients was abolished (Fig. 5E, 5F, left panel). In these 

conditions, the proportion of CD4+ IFN-γ+ was slightly lower in the patients’ cells, 

whereas the amounts of IFN-γ and IL-27 secreted were similar for controls and patients 

(Fig. S5). Overall, these experiments established that the poor development of IL-17 T 

cells in CMCD patients carrying GOF mutations affecting the CCD or DBD of STAT1 

involves STAT1-dependent inhibition via IFN-α/β, IFN-γ and/or IL-27. 

 

Discussion 

Our data identify STAT1 as the major CMCD-causing gene. We report 19 new 

patients carrying CCD mutations previously described in other unrelated patients, nine 

patients carrying previously unknown mutations affecting the CCD, and the identification 

of 12 mutations (including 10 previously unknown mutations) affecting the DBD in 30 

patients, bringing the number of known patients suffering from CMCD due to STAT1 



mutations to 139, only 18 months after this condition was first described (Hori et al., 

2012; Liu et al., 2011; Romberg et al., 2013; Smeekens et al., 2011; Takezaki et al., 

2012; Toth et al., 2012; van de Veerdonk et al., 2011; Wang et al., 2012). These patients 

originate from 74 kindreds and at least 23 countries. All 33 mutations are rare missense 

mutations. Paradoxically, there are now about five times more patients carrying known 

disease-causing GOF STAT1 mutations (139 patients) than LOF STAT1 mutations (24 

patients), despite the LOF mutations having been described 10 years earlier, in 2001 

(Boisson-Dupuis et al., 2012; Chapgier et al., 2006; Chapgier et al., 2009; Dupuis et al., 

2001; Hirata et al., in preparation; Kong et al., 2010; Kristensen et al., 2010; Sampaio et 

al., 2012; Tsumura et al., 2012; Vairo et al., 2011). Unlike the LOF mutations, up to 10 

STAT1 GOF mutations were recurrent (found in at least 2 families); M202V, M202I, 

A267V, R274W, R274Q, T288A, E353K, N357D, T385M, K388E (Hori et al., 2012; Liu 

et al., 2011; Romberg et al., 2013; Smeekens et al., 2011; Takezaki et al., 2012; Toth et 

al., 2012; van de Veerdonk et al., 2011; Wang et al., 2012) and at least 10 occurred de 

novo (three of which were recurrent): D165H, D168E, Y170N, D171N, A267V, R274W, 

R274Q, N397D, L351F, T385M (Liu et al., 2011; Takezaki et al., 2012; Wang et al., 

2012). There is therefore no founder effect, at odds with a previous suggestion (van de 

Veerdonk et al., 2011). Moreover, the clinical penetrance of these STAT1 alleles is 

complete. However, the clinical presentation seems to vary between patients. For 

example, we have recently documented recurrent herpes virus disease in two relatives 

(Toth et al., 2012), reminiscent of AD-HIES patients with heterozygous LOF STAT3 

mutations (Chandesris et al., 2012; Siegel et al., 2011). 	
  



About 24 to 30% of patients (33 of 139) and GOF STAT1 kindreds (21 of 74) 

have mutations affecting the DBD. The discovery of 12 GOF mutations affecting the 

DBD of STAT1 was surprising, because all of the first 13 GOF mutations described 

affected the CCD (Liu et al., 2011; Romberg et al., 2013; Takezaki et al., 2012). In total, 

20 GOF STAT1 CCD alleles have now been identified. This discovery was also surprising 

because heterozygous LOF DBD mutations underlying mycobacterial disease had already 

been found in close proximity to these mutations (Averbuch et al., 2011; Boisson-Dupuis 

et al., 2012; Chapgier et al., 2006). However, we demonstrate here that the CMCD-

causing mutations affecting the DBD behave like those affecting the CCD, as they are 

intrinsically GOF in terms of STAT1-dependent cellular responses to the cytokines 

activating predominantly STAT1 and those activating predominantly STAT3. They also 

confer an AD hyperresponsiveness to these cytokines in heterozygous cells. Finally, we 

demonstrated that patients with mutations affecting the DBD had impaired IL-17-

producing T-cell development, as previously reported for mutations affecting the CCD. 

Given the key role played by IL-17 immunity in the development of CMCD (Cypowyj et 

al., 2012; Puel et al., 2011; Puel et al., 2012; Puel et al., 2010b), the low levels of IL-17 

T cells generated probably accounts for the CMC in these patients. Overall, GOF alleles 

with mutations affecting the CCD and DBD seem to underlie biochemical, 

immunological and clinical phenocopies. The various alleles differ in their impact on 

STAT1 activity, but this impact does not seem to be correlated with the location of the 

mutations concerned in either of the domains. Perhaps more surprisingly, the variability 

in terms of biochemical STAT1 activity, at least for IFN-γ-dependent GAS-driven 

transcription, did not seem to be correlated with the IL-17 T-cell impairment documented 



ex vivo and in vitro (Fig. S6). Biochemical or immunological variability may nevertheless 

underlie variability in clinical presentation, whether for infectious diseases or 

autoimmunity. An international clinical survey is underway to tackle this question.	
  

Finally, we have unraveled a mechanism by which STAT1 alleles with mutations 

affecting the DBD and CCD impair IL-17 T-cell development. We showed that naïve 

CD4+ T cells from patients heterozygous for GOF STAT1 mutations, like cells from 

patients heterozygous for LOF STAT3 mutations, displayed impairment into IL-17 T cells 

in vitro. Cytokines such as IFN-α/β, IFN-γ, and IL-27 have been shown to inhibit the 

development of IL-17 T cells in a STAT1-dependent manner in mice (Batten et al., 2006; 

Diveu et al., 2009; El-behi et al., 2009; Feng et al., 2008; Stumhofer et al., 2006; 

Villarino et al., 2010; Yoshimura et al., 2006) and in healthy humans (Amadi-Obi et al., 

2007; Crabe et al., 2009; Guzzo et al., 2010; Hirahara et al., 2012; Liu & Rohowsky-

Kochan, 2011; Ramgolam et al., 2009). The mechanism underlying this inhibition 

remains to be deciphered. We showed that the poor development of IL-17 T cells in 

STAT1-mutated CMCD patients results from higher than normal levels of STAT1-

dependent stimulation by IFN-α/β, IFN-γ, and IL-27. Indeed, the IL-17 T cell phenotype 

was both aggravated by these cytokines and rescued by neutralizing Abs against them. 

The impact of both sets of experimental conditions was, indeed, much more pronounced 

in CMCD patients with STAT1 mutations than in healthy controls. The GOF STAT1 

alleles therefore impair IL-17 T cell development by amplifying a physiological 

inhibitory mechanism. Other hypotheses, such as competition between STAT1 and 

STAT3 upon stimulation with the STAT3-dependent cytokines required for the 

development of IL-17 T cells, such as IL-6, IL-21 and IL-23, are also possible. In any 



case, heterozygosity for GOF STAT1 alleles with mutations affecting the DBD and CCD 

domains of the protein results in enhanced T cell responses to IFN-α/β, IFN-γ and IL-27, 

impairing the development of IL-17 T cells and precipitating CMC in these patients.	
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Materials and Methods 

Molecular genetics  

Genomic DNA and total RNA were extracted from fresh blood cells and cell lines, 

respectively, as previously described (Chen et al., 2009). Genomic DNA was amplified 

and sequenced for all exons and the flanking intron regions of STAT1 by PCR. 

Amplicons were sequenced with the Big Dye Terminator cycle sequencing kit (Applied 

Biosystems, Foster City, CA) and analyzed with an ABI 3130 capillary sequencer 

(Applied Biosystems, Foster City, CA). PCR and sequencing primers are available on 

request. Quantitative PCR was performed on EBV-B cells for IFIT1 and GUS, as 

previously described (Chapgier et al., 2006). U3C transfectants were stimulated by 

incubation with 103 IU/ml IFN-γ for 2 or 8 hours and subjected to RNA extraction. The 

cDNA was synthesized directly with random primers, by reverse transcription. CXCL9 

and CXCL10 mRNA levels were assessed by quantitative PCR on cDNA, with TaqMan 

probes. The results were normalized with respect to the values obtained for the 

endogenous GUS cDNA. 

 

 

Cell culture, plasmids and reagents 

Epstein-Barr virus-immortalized B cells (EBV B cells) and the STAT1-deficient 

fibrosarcoma U3C cell line were cultured as previously described (Chapgier et al., 2009). 

IFN-γ (Imukin; Boehringer Ingelheim), IFN-α2b (IntronA; Schering-Plough), IL-27 

(R&D Systems), IFN-λ (R&D Systems), IL-21 (R&D Systems), IL-23 (R&D Systems) 



and IL-6 (R&D Systems) were used to stimulate cells at various concentrations and for 

various periods, as indicated. 

The wild-type and the various mutant STAT1 alleles, generated by site-directed 

mutagenesis (kit from Stratagene) with the ad hoc mismatched primers, were inserted 

into the pcDNA3-V5 expression vector (Chapgier et al., 2006; Kong et al., 2010). U3C 

cells were plated 12 hours before transfection, at a density of 2.5 × 105 cells/well in six-

well plates, and transfected with 5 µg per plate of the various STAT1 allele-encoding 

vectors, with the Calcium Phosphate Transfection Kit (Invitrogen).  

 

Luciferase reporter assay 

U3C cells were dispensed into 96-well plates (1×104/well) and transfected with 

reporter plasmids (CignalTM GAS and ISRE Reporter Assay Kit, SABiosciences, 

Maryland, USA; PathDetect ISRE cis Reporting System, Catalog #219092, Agilent 

Technologies) and 100 ng/well (instead of the 20 ng/well previously used for transfection 

to test ISRE activity; Chapgier et al., 2006)) of plasmids carrying the various STAT1 

alleles or an empty vector, in the presence of Lipofectamine LTX (Invitrogen). Six hours 

after transfection, we replaced the medium with DMEM containing 10% FBS. Twenty-

four hours after transfection, the transfectants were stimulated by incubation with IFN-γ 

(10 IU/ml or 1,000 IU/ml), IL-27 (100 ng/ml), IFN-λ1 (100 ng/ml) and IFN-α2b (5,000 

IU/ml) for 8 hours and subjected to luciferase assays with the Dual-Glo luciferase assay 

system (Promega). Experiments were performed in triplicate and firefly luciferase 

activity was normalized with respect to Renilla luciferase activity. The data are expressed 

as fold induction with respect to non stimulated cells or in relative luciferase units (RLU). 



 

Immunoblot analysis and electrophoretic mobility shift assays 

The following optimal stimulation conditions were used. U3C cells or EBV-B cells 

were stimulated by incubation for 20 min with 100 µg/ml IL-21, 30 min (15 min for U3C 

cells) with 103 or 105 IU/ml IFN-γ or IFN-α2b, 15 min with 50 ng/ml IL-6 or 30 min (15 

min for U3C cells) with 50 or 100 ng/ml IL-27. Western blotting was carried out as 

previously described (Liu et al., 2011). Briefly, cell activation was blocked with cold 1 x 

PBS, the cells were lysed in 1% NP-40 lysis buffer and the proteins were recovered and 

subjected to SDS-PAGE. We used antibodies directed against phosphorylated STAT1 

(pY701; BD), STAT1 (C-24; Santa Cruz), α-tubulin (Santa Cruz), phosphorylated 

STAT3 (Cell Signaling), lamin B1 (Santa Cruz), GAPDH (Santa Cruz) and STAT3 

(Santa Cruz). EMSA was carried out as previously described (Dupuis et al., 2003). 

Briefly, cell activation was blocked by incubation with cold 1 x PBS and the cells were 

gently lysed to remove cytoplasmic proteins without disrupting the nucleus. We then 

added nuclear lysis buffer and recovered the nuclear proteins, which were subjected to 

non denaturing electrophoresis with radiolabeled GAS (from the FCγR1 promoter: 5’-

atgtatttcccagaaa-3’) and ISRE (from the ISG15 promoter: 5’-

gatcgggaaagggaaaccgaaactgaa-3’) probes. U3C transfectants or EBV-B cells were 

stimulated with 105 IU/ml IFN-γ, 105 IU/ml IFN-α2b or 100 ng/ml IL-27 for 20 min (15 

min for U3C cells) and the nuclear proteins were then extracted, as described above.  

 

Staurosporine and pervanadate treatment of cells 



We assessed dephosphorylation by stimulating U3C transfectants with 105 IU/ml 

IFN-γ. The cells were then washed and incubated with 1 µM staurosporine in DMEM for 

15, 30 or 60 min. The cells were then lysed with 1% NP-40 lysis buffer, and the proteins 

recovered were subjected to immunoblot analysis. Pervanadate was prepared by mixing 

orthovanadate with H2O2 and incubating for 15 min at 22°C. U3C transfectants were 

treated with pervanadate (0.8 mM orthovanadate and 0.2 mM H2O2) five minutes before 

stimulation. They were then stimulated with IFN-γ for 15 min. The stimulation was 

stopped by adding cold 1 x PBS. The proteins were recovered and subjected to 

immunoblot analysis.  

 

Extraction of nuclear and cytoplasmic proteins 

U3C transfectants and EBV-B cells were stimulated with IFN-γ for 15 min and 20 

min, respectively, and subjected to nuclear and cytoplasmic protein extraction with NE-

PER Nuclear and Cytoplasmic Extraction Regents (Thermo Scientific), according to the 

manufacturer’s protocol.  

 

Modeling 

Images of the three-dimensional structure were generated from the coordinates of the 

homodimer STAT1 (PDB# 1BF5) (Chapgier et al., 2006) and displayed with PDB viewer 

(http://www.expasy.org/spdbv/) (Chen et al., 1998), using the PDB code 1BF5.  

 

Evaluation of IL-17A- and IL-22-producing T cells 



IL-17A- and IL-22-producing T cells were evaluated by intracellular staining or by 

ELISA, as previously described (Guex & Peitsch, 1997). Briefly, PBMCs were purified 

by centrifugation on a gradient (Ficoll-Paque PLUS; GE Healthcare) and resuspended in 

RPMI supplemented with 10% FBS (RPMI/10% FBS; Invitrogen). Adherent monocytes 

were removed from the PBMC preparation by incubation for 2 h at 37°C, under an 

atmosphere containing 5% CO2.  

 

Analysis of IL-17-producing T cells 

For the ex vivo evaluation of IL-17- and IL-22-producing T cells, 5 × 106 

nonadherent cells were resuspended in 5 ml RPMI/10% FBS in 25 cm2 flasks and 

stimulated by incubation with 40 ng/ml PMA (Sigma-Aldrich) and 10-5 M ionomycin 

(Sigma-Aldrich) in the presence of a secretion inhibitor (1 µl/ml Golgiplug; BD 

Biosciences), for 12 hours. Flow cytometry analysis was performed as described below. 

For in vitro evaluation of the IL-17– and IL-22–producing T cell blasts after 

differentiation, the nonadherent PBMCs were dispensed into 24-well plates at a density 

of 2.5 × 106 cells/ml in RPMI/10% FBS and activated with 2 µg/ml of an antibody 

directed against CD3 (Orthoclone OKT3; Janssen-Cilag) together with 5 ng/ml TGF-β1 

(240-B; R&D Systems), 20 ng/ml IL-23 (1290-IL; R&D Systems), 50 ng/ml IL-6 (206-

IL; R&D Systems), and 10 ng/ml IL-1β (201-LB; R&D Systems). After three days, the 

cells were transferred to a new plate and restimulated in the same activation conditions, 

except that the anti-CD3 antibody was replaced with 40 IU/ml IL-2 (Proleukin i.v.; 

Chiron). We added 1 ml of the appropriate medium, resuspended the cells by gentle 

pipetting, and then split the cell suspension from each well in two. Flow cytometry was 



performed on one of the duplicated wells two days later, after stimulation by incubation 

for 12 hours with 40 ng/ml PMA and 10−5 M ionomycin in the presence of 1 µl/ml 

GolgiPlug. Flow cytometry analysis was performed as described below. The contents of 

the other duplicate well were split in two, with one half left unstimulated and the other 

stimulated by incubation with 40 ng/ml PMA and 10−5 M ionomycin for another two 

days. Supernatants were collected after 48 h of incubation for ELISA.  

For the in vitro differentiation of IL-17-producing T cells from CD45RA+/CD4+ T 

cells in the presence or absence of a cocktail of type I and type II IFNs and IL-27 or a 

cocktail of neutralizing antibodies against IFNs and IL-27, CD45RA+ CD4+ T cells were 

isolated from nonadherent PBMCs by negative selection on MicroBeads (naïve CD4+ T-

cell isolation kit II, 130-094-131, Miltenyi Biotec). The percentage of CD45RA+ CD4+ 

cells was over 95%. These cells were cultured in 48-well plates (1 × 106 cells/ml) coated 

with anti-CD3 antibody (1 µg/ml, Orthoclone OKT3; Janssen-Cilag), in the presence of 

soluble anti-CD28 antibody (1 µg/ml, 16-0289-85, eBioscience), IL-23 (20 ng/ml, 1290-

IL; R&D Systems) and IL-1β (10 ng/ml, 201-LB; R&D Systems). After 2 days, cells 

were transferred to a new plate and restimulated with IL-2 (40 IU/ml, Proleukin i.v.; 

Chiron), together with IL-23 and IL-1β (20 ng/ml and 10 ng/ml, respectively), every 2 to 

3 days for 10 days. In addition, cells were cultured under these conditions in the presence 

or absence of a cocktail of IFN-α2a (10 IU/ml, 11100-1, PBL InterferonSource), IFN-β1a 

(10 IU/ml, 11410-2, PBL InterferonSource), IFN-γ (10 IU/ml, Imukin, Boehringer 

Ingelheim) and IL-27 (1 ng/ml, 14-8279, eBioscience) or a cocktail of anti-IFN-α/βR2 (1 

µg/ml, MAB1155, Chemicon), anti-IFN-γ (1 µg/ml, 16-7318-85, eBioscience) and anti-

IL27 (1 µg/ml, AF2526, R&D Systems) antibodies or a cocktail of isotype controls of 



these antibodies. With the exception of anti-CD3 and anti-CD28 antibodies, which were 

added only once, on day 0, all cytokines and antibodies were added to the culture 

medium every two or three days. After 12 days, cells were stimulated with by incubation 

with PMA (40 ng/ml, Sigma-Aldrich) and ionomycin (10−5 M, Sigma-Aldrich) for 48 h 

for ELISA, and for 12 h in the presence of GolgiPlug (1 µl/ml, BD) for flow cytometry 

analysis. 

 

Flow cytometry 

For flow cytometry analysis, cells were washed in cold PBS and surface-labeled by 

incubation with PECy5-conjugated anti-human CD3 antibody (BD Biosciences, 555334) 

in 2% FBS in PBS for 20 min on ice. Cells were then washed twice with 2% FBS in cold 

PBS, fixed by incubation with 100 µl of BD Cytofix for 30 min on ice and washed twice 

with BD Cytoperm (BD Cytofix/Cytoperm Plus, fixation/permeabilization kit, 555028, 

BD Biosciences). Cells were then incubated for 1 hour on ice with FITC-conjugated anti-

human IL-17A (130-094-520, Miltenyi Biotec), PE-conjugated anti-human IL-22 (R&D 

Systems, IC7821P) or PE-conjugated anti-human IFN-γ (Myltenyi, 130-097-940) 

antibodies, washed twice with BD Cytoperm and analyzed with a BD FACSCanto II 

system. 

 

ELISA 

IL-17A, IL-22, IL-27 and IFN-γ levels were determined by ELISA, on the 

supernatants harvested after 48 hours of stimulation of whole-blood or in vitro-

differentiated cells with 40 ng/ml PMA and 10-5 M ionomycin. We used anti-human IL-



17A, anti-human IL-22 and anti-human IL-27 Duoset kits (R&D Systems), and the anti-

human IFN-γ kit (Sanquin, M9333), according to the manufacturer’s instructions. 

 

Statistical analysis 

We assessed the differences between controls and CMCD patients bearing gain-of-

function STAT1 alleles under the various conditions, with the nonparametric Mann-

Whitney test. Differences within CMCD or control groups between two experimental 

conditions (e.g. in vitro IL-17 T cell differentiation in the presence or absence of a 

cocktail of inhibitors, or in vitro IL-17 T cell differentiation in the presence or absence of 

a cocktail of neutralizing antibodies) were evaluated by paired tests: the Wilcoxon 

matched-pairs signed rank test. For all analyses, p < 0.05 was considered statistically 

significant. 

 



Legends to figures 

Figure 1. Heterozygous missense mutations affecting the STAT1 DNA 

binding domain in kindreds with AD CMCD. A. The human STAT1 alpha isoform is 

shown, with its known pathogenic mutations. Coding exons are numbered with Roman 

numerals and delimited by a vertical bar. Regions corresponding to the coiled-coil 

domain (CCD), DNA-binding domain (DBD), linker domain (L), SH2 domain (SH2D), 

tail segment domain (TSD), and transactivator domain (TAD) are indicated, together with 

their amino-acid boundaries, and are delimited by bold lines. Tyr701 (pY) and Ser727 

(pS) are indicated. Mutations in green are dominant and associated with partial STAT1 

deficiency and Mendelian susceptibility to mycobacterial disease (MSMD). Mutations in 

brown are recessive and associated with complete STAT1 deficiency and intracellular 

bacterial and viral disease. Mutations in blue are recessive and associated with partial 

STAT1 deficiency and intracellular bacterial and/or viral disease. Mutations in red are 

dominant, located in the region encoding the CCD and associated with a gain of function 

of STAT1 and CMCD. Mutations in violet are dominant, located in the region encoding 

the DBD and associated with gain of function of STAT1 and CMCD. New mutations are 

shown in bold. * published in (Romberg et al. 2013) B. Pedigrees of 20 newly identified 

families with heterozygous gain-of-function STAT1 mutations affecting the CCD and of 

18 families with heterozygous gain-of-function STAT1 mutations affecting the DBD. 

Each kindred is designated by a letter (A to AL), each generation is designated by a 

roman numeral (I-II-III-IV), and each individual is designated by an Arabic numeral 

(each individual studied is identified by a code of this type, organized from left to right). 

Black indicates CMCD patients. The probands are indicated by an arrow. When tested, 



the genotype for STAT1 is indicated below the individual concerned. C. Localization of 

the residues affected by the missense mutations on the 3D structure of phosphorylated 

STAT1 in complex with DNA (1BF5). Cartoon backbone representation and Van der 

Waals representation for the following amino acids highlighted: in red and purple, amino 

acids located in the CCD and DBD, respectively, and mutated in patients with CMCD; in 

blue and green, amino acids mutated in patients with MSMD alone or associated with 

viral diseases and in brown, the DNA molecule.  

 

Figure 2. The mutant R321G and N355D STAT1 alleles are gain-of-

phosphorylation and gain-of-function for GAF (gamma activated factor)-dependent 

cellular responses. U3C cells were transfected with an empty vector (Mock), a wild-type 

(WT) allele, a CMCD-causing STAT1 allele with a mutation affecting the CCD (R274Q), 

two CMCD-causing STAT1 alleles with mutations affecting the DBD (N355D and 

R321G) and two MSMD-causing STAT1 alleles with mutations affecting the DBD 

(E320Q and Q463H). The responses to IFN-γ, IFN-α and IL-27 (A), and to IL-27 (B) 

were then evaluated by determining the luciferase activity generated from a reporter gene 

under the control of the GAS promoter (A), and by assessing STAT1 and STAT3 

phosphorylation by western blotting (WB) and DNA-binding activity by electrophoretic 

mobility shift assays (EMSA) with a GAS probe (B). Experiments were performed at 

least three times, independently. C and D. Reverse-transcription-quantitative PCR was 

used to measure the induction of CXCL9 (C) and CXCL10 (D) 2 and 8 hours after 

stimulation with IFN-γ. Experiments were performed at least three times, independently. 

E. The dephosphorylation of STAT1 was assessed by WB in U3C cells transfected with a 



mock vector, wild-type (WT) STAT1, the N355D or the Q340A (a known loss-of 

dephosphorylation mutant (Mertens et al, 2006)) STAT1 mutant alleles were cultured in 

the presence of the tyrosine kinase inhibitor staurosporine for the indicated periods (0 to 

60 min), after 15 min of IFN-γ stimulation. Three independent experiments were 

performed. F. WB of cytoplasmic and nuclear fractions of U3C cells transfected with a 

WT, R274Q or N355D allele of STAT1, and treated with IFN-γ with or without the 

phosphatase inhibitor pervanadate. Two independent experiments were performed.  

 

  Figure 3. The mutant N355D STAT1 allele is dominant for GAF (gamma-

interferon activated factor)-dependent cellular responses in EBV-B cells. EBV-B 

cells from a CMCD patient with a STAT1 mutation (N355D/WT), healthy controls 

(WT/WT), two MSMD patients (STAT1 E320Q/WT and Q463H/WT), a patient with 

complete STAT1 deficiency (STAT1-/-) and one AD-HIES patient (STAT3+/-) were 

stimulated with IFN-γ (A, C), IFN-α (A, C), IL-27 (B, D), IL-6 (E, F, G) or IL-21 (E, F, 

H). pSTAT1 and pSTAT3 levels were determined independently at least twice, by 

western blotting WB (A, B, E and F) with an antibody recognizing either the Tyr701-

phosphorylated STAT1 or the Tyr 705-phosphorylated STAT3. GAF DNA-binding 

activity upon stimulation was evaluated at least twice by EMSA with a GAS probe (C, D, 

G, H). 

 

Figure 4. Impaired development and function of IL-17- and IL-22-producing 

T cells ex vivo in patients with AD CMCD and STAT1 GOF mutations. Each symbol 

represents a value from a healthy control individual (black circles), a patient bearing a 



STAT1 gain-of-function (GOF) mutation affecting the CCD (red circle), a patient bearing 

a STAT1 GOF mutation affecting the DBD (violet circle). (A, B) Percentage of CD3+ IL-

17A+ (A) and CD3+ IL-22+ (B) cells, as determined by flow cytometry, in nonadherent 

PBMCs activated by incubation for 12 hours with PMA and ionomycin. (C, D) Secretion 

of IL-17A (C) and IL-22 (D) by whole blood cells, as determined by ELISA, in the 

absence of stimulation (open symbols) and after stimulation with PMA and ionomycin 

for 48 h (closed symbols). Healthy controls are shown in black, CMCD patients with 

mutations affecting the STAT1 CCD are represented in red and patients with mutations 

affecting the STAT1 DBD are shown in violet. Horizontal bars represent medians. The p 

values for nonparametric Wilcoxon tests comparing patients with STAT1 GOF mutations 

(n = 7 affecting the DBD, and n=25 affecting the CCD) and controls (n = 91) are 

indicated.  

 

 Figure 5. The differentiation of naïve CD45RA+ CD4+ T cells into IL-17-

producing T cells in vitro is impaired in patients with AD CMCD and STAT1 GOF 

mutations, due to enhanced STAT1 responses to IFNs and IL-27. (A-B) Proportion of 

IL-17A-producing T cells (A) and IL-17A secretion (B), after 12 days of naïve CD4 T 

cell differentiation in the presence of anti-CD3 and anti-CD28 antibodies, IL-1β and IL-

23, as determined by flow cytometry and ELISA, respectively, after stimulation with 

PMA and ionomycin for 12 hours for flow cytometry analysis, and in the absence of 

stimulation (open symbols) or after 48 hours of stimulation (closed symbols) for ELISA 

analysis. Each symbol represents a value from a healthy control individual (black circles), 

a patient bearing a STAT1 gain-of-function (GOF) mutation affecting the CCD (red 



circles) or a patient bearing a STAT1 GOF mutation affecting the DBD (violet circles). 

Horizontal bars represent medians. The p-values for the nonparametric Wilcoxon tests are 

shown for comparisons of patients with STAT1 GOF mutations (STAT1 CCD: n = 11 and 

STAT1 DDB: n = 4) and controls (n = 37) (A) patients with STAT1 GOF mutations 

(STAT1 CCD: n = 9 and STAT1 DDB: n = 3) and controls (n = 13) (B). (C-D) 

Development of IL-17-producing CD4 T cells (C) and IL-17A production (D) from naïve 

CD45RA+ CD4 T cells, after 12 days of differentiation under IL-17 T cell-inducing 

conditions, in the presence of a cocktail of IFNs and IL-27 (IFN-α2a:10 IU/ml, IFN-β1a: 

10 IU/ml, IFN-γ: 10 IU/ml and IL-27: 1 ng/ml), as determined by flow cytometry and 

ELISA. The left panel shows the impact of the cytokine cocktail on each individual, and 

the median values are shown on the right. Healthy controls are shown in black, CMCD 

patients with mutations affecting the STAT1 CCD are shown in red and patients with 

mutations affecting the STAT1 DBD are shown in violet. Horizontal bars represent the 

medians. The p values for nonparametric Wilcoxon tests comparing patients with STAT1 

GOF mutations (n = 3 affecting the DBD, and n = 12 affecting the CCD) and controls (n 

= 13) are indicated. (E-F) Development of IL-17-producing CD4 T cells (E) and IL-17A 

production (F) from naïve CD45RA+ CD4 T cells, after 12 days of differentiation under 

IL-17 T cell-inducing conditions, in the presence of a cocktail of neutralizing antibodies 

(Abs) against IFNs and IL-27 (anti-IFN-α/βR2: 1 µg/ml, anti-IFN-γ: 1 µg/ml and anti-

IL27: 1 µg/ml) or a cocktail of isotype control antibodies, as determined by flow 

cytometry and ELISA. The impact of the Abs cocktail on each individual is shown on left 

and the median values are shown on the right. Healthy controls are shown in black, 

CMCD patients with mutations affecting the STAT1 CCD are shown in red and patients 



with mutations affecting the STAT1 DBD are shown in violet. Horizontal bars represent 

medians. The p values for nonparametric Wilcoxon tests comparing patients with STAT1 

GOF mutations (n = 3 affecting the DBD, and n = 13 affecting the CCD) and controls (n 

= 11) are indicated. Differences within CMCD or control groups between two 

experimental conditions (e.g. in vitro IL-17 T cell differentiation in the presence or 

absence of a cocktail of inhibitors, or in vitro IL-17 T cell differentiation in the presence 

or absence of a cocktail of neutralizing antibodies) were evaluated by paired tests: the 

Wilcoxon matched-pairs signed rank test. 

 

Table 1: Summary of the clinical and genetic data for the patients 

Supplementary Figure 1: A-B. The response after 8 hours of stimulation with 

various doses of IL-27 (0.1, 0.2, 1, 2, 10, 20, 100 ng/ml) (A) or IFN-α (1, 5, 10, 50, 100, 

500, 1000 IU/ml) (B) was evaluated by determining the activity of the luciferase reporter 

genes under the control of the GAS promoter in U3C cells transfected with a mock 

vector, a wild-type (WT) STAT1 allele or the mutant STAT1 alleles (R274Q, N355D or 

M390T). The response to IFN-γ (105 IU/ml for 15 min) and IFN-α (105 IU/ml for 15 

min) (C-D) was evaluated by western blotting (C) and by EMSA (D) in U3C cells 

transfected with a mock vector, a wild-type (WT) STAT1 form, the mutant CMCD-

causing STAT1 alleles (R321G, N355D, R274Q), or the MSMD-causing STAT1 alleles 

(E320Q and Q463H). Experiments were performed at least three times, independently.  

Supplementary Figure 2: A-B. The response to IFN-γ (10 or 1000 IU/ml for 16 

hours) was evaluated by determining the luciferase activity (RLU, relative luciferase 

units) generated from a reporter gene under the control of the GAS promoter in U3C cells 



transfected with a mock vector, a WT allele of STAT1, 29 (A) and 2 (B) different CMCD-

causing mutant forms of STAT1 and the MSMD-causing mutant alleles, E320Q and 

Q463H (A) and Y701C (B). Experiments were performed in triplicate and at least three 

times, independently. C-D. The response to various doses of IFN-γ (100 and 1000 IU/ml 

for 8 hours) was evaluated by determining the luciferase activity (RLU) generated from 

reporter genes under the control of the ISRE promoter in U3C cells transfected with a 

mock vector, a wild-type (WT) form or 29 (C) and 2 (D) CMCD-causing mutant forms of 

STAT1 and the MSMD-causing mutant alleles, E320Q and Q463H (C) and Y701C (D). 

Experiments were performed at least three times, independently. E. GAF-DNA binding 

activity (top) and western blot (bottom) of U3C cells transfected with mock, WT, C324R, 

L351F, E353K, K388E, M390T, N397D DBD CMCD-causing STAT1 alleles and the 

Q463H MSMD-causing STAT1 allele, left unstimulated (NS) or stimulated with IFN-γ 

(105 IU/ml for 15 min); the results shown are representative of at least two independent 

experiments. PV, Pervanadate. F. The dephosphorylation of STAT1 was tested by 

western blotting in U3C cells transfected with a mock vector, the wild-type (WT) STAT1 

allele, the N355D CMCD-causing STAT1 allele or the known loss-of-dephosphorylation 

Q340A STAT1 mutant allele and cultured in the presence of the tyrosine kinase inhibitor 

staurosporine for the indicated time periods (0 to 60 min), after 15 min of IL-27 

stimulation. Three independent experiments were performed. G. GAF-DNA binding 

activity (top) and western blot (bottom) of U3C cells transfected with a WT, C324R, 

L351F, E353K, K388E, M390T, N397D or L706S allele of STAT1, and treated with IFN-

γ (105 IU/ml for 15 min), with or without the phosphatase inhibitor pervanadate (PV). 

Two independent experiments were performed. 



Supplementary Figure 3: A. The cytoplasmic and nuclear fractions of EBV-B 

cells from a control (WT/WT), a CMCD patient (N355D/WT), one heterozygous patient 

with a dominant loss-of-function mutation of STAT1 affecting the DBD (E320Q/WT), 

and a patient with complete STAT1 deficiency (STAT1-/-) stimulated with IFN-γ and 

IFN-α were tested for the presence of phosphorylated STAT1 and total STAT1 by 

western blotting. B. The response of the patient’s EBV-B cells (N355D/WT) was 

evaluated by EMSA with an ISRE probe and was compared with those of healthy 

controls (WT/WT), cells heterozygous for dominant loss-of-function mutations of STAT1 

(Q463H/WT and E320Q/WT) and cells with complete STAT1 deficiency (STAT1-/-). 

Cells were stimulated with various doses of IFN-α; the results shown are representative 

of at least two independent experiments. C. EBV-B cells from a CMCD patient with a 

STAT1 mutation (N355D/WT), two healthy controls (WT/WT1 and 2), two MSMD 

patients (STAT1 E320Q/WT and Q463H/WT), and one AD-HIES patient (STAT3+/-) 

were stimulated with IL-23. STAT3 and pSTAT3 levels were determined independently, 

at least twice, by WB. 

Supplementary Figure 4. Impaired development in vitro of IL-17-producing 

T cells from bulk PMBCs from healthy controls and CMCD patients with STAT1 

GOF mutations (A and B) Proportion of IL-17A producing CD3+ T cells (A) or IL-22 

producing CD3+ T cells (B) after 5 days of differentiation of nonadherent PBMCs in the 

presence of IL-1β, IL-6, TGF-β and IL-23, as determined by flow cytometry. Each 

symbol represents a value from a healthy control individual (black circles), a CMCD 

patient bearing a STAT1 GOF allele (affecting the CCD: red triangles, affecting the DBD: 

violet triangles). (C) Impaired in vitro development of IL-17-producing T cells from 



naïve CD45RA+ CD4+ T cells in patients with AD CMCD due to STAT1 GOF, with 

AD HIES and STAT3 deficiency or with AR MSMD and IL-12Rβ1deficiency. 

Proportion of IL-17A-producing T cells after 12 days of naïve CD45RA+ CD4 T cell 

differentiation in the presence of anti-CD3 and anti-CD28 antibodies, IL-1β, and IL-23, 

as determined by flow cytometry. Each symbol represents a value from an individual and 

horizontal bars represent medians. (D). The differentiation of naïve CD45RA+ CD4 T 

cells into IL-17-producing T cells in vitro is strongly inhibited by high doses of IFNs 

and IL-27 in cells from controls and from patients with a STAT1 GOF. Proportion of 

IL-17A-producing T cells, after 12 days of naïve CD4 T-cell differentiation in the 

presence of anti-CD3 and anti-CD28 antibodies, IL-1β and IL-23, as determined by flow 

cytometry, after stimulation with PMA and ionomycin for 12 h, in the presence or 

absence of a cocktail of low doses of IFNs (10 IU/ml) and IL-27 (1 ng/ml) or a cocktail 

of high doses of IFNs (100 IU/ml) and IL-27 (10 ng/ml). The mean values were obtained 

for four healthy controls (left black columns) and four STAT1 GOF patients (right red 

columns).  

Supplementary Figure 5. IFN-γ and IL-27 production after the 

differentiation of naïve CD45RA+ CD4 T cells into IL-17-producing T cells in vitro is 

similar in patients and controls. Proportion of IFN-γ-producing T cells (A) and 

secretion of IFN-γ (B) and IL-27 (C), after 12 days of naïve CD4 T-cell differentiation in 

the presence of anti-CD3 and anti-CD28 antibodies, IL-1β and IL-23, as determined by 

flow cytometry and ELISA, after stimulation with PMA and ionomycin for 12 hours for 

flow cytometry analysis, and in the absence of stimulation (open symbols) or after 48 

hours of stimulation (closed symbols) for ELISA analysis. Each symbol represents a 



value from a healthy control individual (black circles), a patient bearing a STAT1 gain-of-

function (GOF) mutation affecting the CCD (red circles) or a patient bearing a STAT1 

GOF mutation affecting the DBD (blue circles). Horizontal bars represent medians. The 

p-values are shown for nonparametric Wilcoxon tests comparing patients with STAT1 

GOF mutations (STAT1 CCD: n = 11 and STAT1 DDB: n = 4) and controls (n = 37) (A) 

patients with STAT1 GOF mutations (STAT1 CCD: n = 9 and STAT1 DDB: n = 3) and 

controls (n = 13) (B) patients with STAT1 GOF mutations (STAT1 CCD: n = 9 and STAT1 

DDB: n = 3) and controls (n = 11) (C). 

Supplementary Figure 6. Absence of correlation between STAT1 GOF 

mutations GAS-driven transcription and the impairment of IL-17 T–cell production 

ex vivo and in vitro. U3C cells were transfected with a wild-type (WT) or CMCD-

causing STAT1 allele. The responses to IFN-γ were evaluated by determining the 

luciferase activity generated by a reporter gene under the control of the GAS promoter (X 

axis), as a function of the proportion of IL-17A-producing T cells (A) or the amount of 

IL-17A produced (B) ex vivo in patients bearing the corresponding mutations (Y axis). 

GAS activity is expressed as a function of the proportion of IL-17A-producing T cells 

(C) or the amount of IL-17A produced (D) in the in vitro-differentiated naïve CD45RA+ 

CD4 T cells in patients bearing the corresponding mutations.  

 

Supplementary Table 1: Predictions concerning the function of the mutant 

STAT1 alleles associated with CMCD. Table summarizing, for the 19 mutations, the 

possible functional consequences (neutral, possibly deleterious or deleterious) as 



predicted by Condel, which summarizes SIFT, Polyphen II and Mutation Assessor 

predictions.  
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Table 1

Patient Age at 
presentation Origin Clinical features of CMC Cause of death (age) Autoimmunity Genotype

A-II-1 - Germany Skin, oral cavity, esophagus Lung abcess Thyroid -
A-III-1 <1 yr Germany Skin, nails, oral cavity, esophagus, 

oropharynx
None

D171N/WT

B-III-1 <1 yr USA Oral cavity, oesophagus - A267V/WT
C-III-6 Birth Italy Skin, oropharynx Hepatitis (6 yr) None -

C-III-7 2 yr Italy Skin, nails, oral cavity positive AAN Q167P/WT

D-III-1 18 mo Africa Nails, oral cavity None A267V/WT
E-III-1 1 yr France Skin, oral cavity, esophagus None R274Q/WT
F-III-1 7 yr Morocco Skin, nails, oral cavity None R274W/WT
G-III-1 20 yr France Skin, oral cavity None A267V/WT
H-I-1 10 yr France Oral cavity Accident (>40yr) None -
H-II-1 1 mo France Skin, nails, oral cavity Hepatitis R274W/WT
I-II-1 1 yr Turkey Oral cavity, nails None R274W/WT
J-II-1 12 mo France Skin, nails, oral cavity, genital 

mucosae
None

Y287H/WT

K-I-2 1 yr France Skin, nails, oral cavity, esophagus None R274Q/WT
K-II-1 2 mo France Skin, oral cavity, genital mucosae None R274Q/WT
L-II-1 Birth United States Skin, nails, oral cavity, esophagus None P293T/WT

M-I-2 9 mo United States Skin, nail, oral cavity, esophagus, 
genital

None
R274W/WT

M-II-1 3 yr United States Skin, nail, oral cavity, esophagus None R274W/WT

N-II-1 7 yr Tunisia Skin,, oral caity, esophagus None L163R/WT

O-II-1 11 mo Chili Skin, oral cavity None A267V/WT

O-I-2 2 yr Chili Skin, nails, oral cavity None -

P-II-1 3 yr Chili Skin, oral cavity, genital mucosae Thyroid, colitis R274Q/WT

Q-II-1 2 yr Morocco Skin, oral cavity, Genital mucosa Hepatitis D168E/WT

R-II-1 3 yr Germany Oral cavity, Nails, Skin, esophagus Subarachnoid hemorrage on 
aneurysm (25 yr) None R274W/WT

S-II-1 - Germany Skin,nails, oral cavity, oropharynx, None P293L/WT

T-I-2 childhood Germany Oral cavity, nails None R274Q/WT

T-II-1 11 yr Germany Oral cavity ?

T-II-2 10 yr Germany Oral cavity None R274Q/WT

U-II-2 64yr Germany Skin, oral cavity None C324R/WT

U-III-1 32yr Germany Skin, oral cavity None C324R/WT

V-I-1 France - - -

V-II-3 1 mo France Oral cavity, genital mucosae None N355D/WT

V-III-1 12 mo France Oral cavity, genital mucosae None -

V-III-2 1 mo France Oral cavity, genital mucosae None N355D/WT

W-II-1 4 mo Germany Oral cavity Thyroid K388E/WT

W-III-1 2 yr Germany Skin, oral cavity None K388E/WT

W-III-2 1 yr Germany Oral cavity None K388E/WT

X-III-3 1 mo Peru Skin, oral cavity None N397D/WT

Y-I-1 - France Oropharynx - E353K/WT

Y-II-1 3 yr France Skin, oral cavity - E353K/WT

Z-III-2 2 mo Hungary Skin, oral Cavity positive AAN R321G/WT

AA-III-1 18 mo France Oral cavity, nails, genital mucosae None L351F/WT

AB-II-1 3 mo France Oral cavity, nails,esophagus, genital 
mucosae Crohn's disease T385M/WT

AC-II-1 18 mo USA Skin, oral cavity None T385M/WT

AD-II-1 10 yr Germany Skin, oral cavity, nails None N357D/WT

AE-II-1 31yr Germany Skin, oral cavity, nails None N357D/WT

AF-II-1  3 mo France Skin, oral cavity, genital mucosae Photosensibility, positive AAN K388E/WT

AG-II-1 2 yr Japan Skin, oral cavity Complication following stem cell 
transplantation (30 yr) Thyroid M390T/WT

AH-I-1 <1 yr Thailand Oral cavity Histoplasma, cirrhosis on C 
hepatitis (>40yr) - K388E/WT

AH-II-1 10 mo Thailand Oral cavity None K388E/WT

AH-II-2 1 yr Thailand Oral cavity Thyroid K388E/WT

AI-II-1 5 yr Ukraine Oral cavity, skin, scalp, esophagus, 
genital mucosa, nails

Antiphospholipid antibodies, Anti-
DNA T385M/WT

AJ-II-1 3 yr Germany Skin, nails, oral cavity None P329L/WT

AK-I-2 - USA Skin, oral cavity Hepatitis (>40yr) Hepatitis -

AK-II-1 - USA Oral cavity, skin, scalp, esophagus, 
nails None R321S/WT

AK-II-2 - USA Skin, oral cavity Thyroid R321S/WT

AK-II-3 - USA Skin, oral cavity Diabetes mellitus R321S/WT

AL-I-2 France Oral cavity, esophagus None T385M/WT

None of the patients displays auto-antibodies against IL-17A, IL-17F and IL-22; .

- unknown
* Firinu D, Massidda O, Lorrai MM, Serusi L, Peralta M, Barca MP, Serra P, Manconi PE (2011) Successful treatment of chronic mucocutaneous candidiasis caused 
by azole-resistant Candida albicans with posaconazole. Clin Dev Immunol 2011: 283239
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Suppl. Table 1
cdna 

position codons
existing 

variation Location Allele Protein pos. AA change Sift PPH2 Mass Condel Condel lbl

1 876 cTg/cGg - 2:191864405 C 163 L/R 0 0.997 2.83 0.966 deleterious

2 888 cAa/cCa - 2:191864393 G 167 Q/P 0 1 2.87 1 deleterious

3 892 gaT/gaG - 2:191864389 C 168 D/E 0.11 0.958 1.985 0.412 possibly

4 899 Gac/Aac - 2:191864382 T 171 D/N 0.01 0.996 2.775 0.867 deleterious

5 1247 Tac/Cac - 2:191859872 G 287 Y/H 0 0.086 1.32 0.006 neutral

6 1265 Cct/Act - 2:191859854 T 293 P/T 0 0.994 2.765 0.952 deleterious

7 1266 cCt/cTt - 2:191859853 A 293 P/L 0.01 1 2.42 0.905 deleterious

8 1349 Aga/Gga - 2:191856030 C 321 R/G 0.01 1 2.65 0.905 deleterious

9 1351 agA/agT - 2:191856032 A 321 R/S 0.01 1 2.65 0.905 deleterious

10 1358 Tgc/Cgc - 2:191856021 G 324 C/R 0 1 2.43 1 deleterious

11 1374 cCt/cTt - 2:191856005 A 329 P/L 0.36 0.809 1.235 0.308 neutral

12 1441 ttG/ttT - 2:191854385 A 351 L/F 0.33 0.997 1.86 0.478 deleterious

13 1445 Gag/Aag - 2:191854381 T 353 E/K 0.05 0.998 1.355 0.82 deleterious

14 1451 Aat/Gat - 2:191854375 C 355 N/D 0.15 0.997 2.24 0.478 deleterious

15 1457 Aat/Gat - 2:191854369 C 357 N/D 0.03 0.266 1.895 0.04 neutral

16 1542 aCg/aTg - 2:191851647 A 385 T/M 0 1 2.815 1 deleterious

17 1550 Aaa/Gaa - 2:191851639 C 388 K/E 0 0.995 1.9 0.958 deleterious

18 1557 aTg/aCg - 2:191851632 G 390 M/T 0 0.74 2.69 0.771 deleterious

19 1577 Aat/Gat - 2:191851612 C 397 N/D 0.03 0.603 2.36 0.574 deleterious
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Abstract 

Dermatophytic disease is an invasive, sometimes life-threatening, fungal infection caused by 

dermatophytes with extensive cutaneous and subcutaneous tissue involvement. Dissemination 

to the lymph nodes is frequent, and the central nervous system is occasionally affected. This 

rare condition has mostly been reported in North African consanguineous multiplex families, 

strongly suggesting a Mendelian genetic etiology. Autosomal recessive CARD9 deficiency 

has been described in a multiplex consanguineous Iranian family, the affected members of 

which display mucocutaneous disease and life-threatening meningitis caused by Candida 

species and skin infections with dermatophytes. We investigated 13 patients with invasive 

dermatophytic disease from six unrelated Algerian and Moroccan families. Morbidity rates 

were high, with extensive erythemato-squamous, ulcerative and/or nodular lesions, organ 

involvement (bone or digestive tract) and lymph node dissemination despite the use of recent 

antifungal drugs. Four of the 13 patients died. No other severe infections were reported in the 

surviving patients, who were aged 40 to 75 years. We sequenced CARD9 in 10 of the 13 

patients. Eight Algerian patients from five unrelated families had a homozygous Q289X 

CARD9 allele, probably due to a founder effect. Two affected Moroccan siblings were 

homozygous for the R101C CARD9 allele. Both these alleles are rare variants that were not 

found in more than 3,500 healthy individuals tested, including 100 individuals of Northern 

African descent. The familial segregation of these alleles was consistent with autosomal 

recessive inheritance and complete clinical penetrance. Invasive dermatophytic disease may 

thus be caused by autosomal recessive CARD9 deficiency. Inborn errors of immunity should 

therefore be considered in otherwise healthy patients with unexplained severe fungal disease. 



3 

 

 Introduction 

Dermatophytic disease is a rare, invasive, sometimes life-threatening, fungal infection 

caused by dermatophytes (1). These filamentous fungi (mostly Trichophyton rubrum, but also 

T. mentagrophytes, T. interdigitale and T. violaceum) are ubiquitous and usually cause benign 

disease, in which the infection is limited to keratinized tissues, such as the nails, skin, groin, 

toes and hair, leading to onychomycosis, tinea corporis, cruris, pedis or capitis (2). Such 

superficial dermatophytic infections are frequent, onychomycosis having a prevalence of 

about 2.6 to 13% in North Africa and Europe (3). By contrast, dermatophytic disease is 

characterized by the invasion of deeper tissues (dermis, hypodermis), extensive skin, hair and 

nail involvement and visceral dissemination (lymph nodes, central nervous system), as first 

described by Hadida and Schousboe in 1959 (1). Forty-five cases have been reported to date 

in individuals from North Africa (Algeria, Morocco and Tunisia)  (1, 4-25). Twenty-four 

patients belonged to consanguineous families, including 5 sporadic cases and 19 familial 

cases from 8 multiplex families. The remaining 21 cases belonged to families not reported to 

be consanguineous, including 14 sporadic cases and 7 familial cases from 3 families. This is 

strongly suggesting that predisposition to dermatophytic disease is inherited as an autosomal 

recessive trait. In addition, nineteen sporadic non consanguineous cases have also been 

reported in England, Russia, Denmark, Mexico, Brazil, the United States, and Japan (8, 26-

34).  

 Interest in genetic susceptibility to fungal diseases in otherwise healthy patients has 

increased in recent years. Inborn errors of IL-17 immunity have been reported to underlie 

chronic mucocutaneous candidiasis (CMC) (35-38). Autoantibodies against IL-17 cytokines 

underlie CMC in autoimmune polyendocrinopathy syndrome type I (APS-I) (39, 40). 

Moreover, patients with the autosomal dominant (AD) hyper IgE syndrome due to 
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heterozygous mutations in STAT3 display impaired development of IL-17-producing T cells 

(41-45). Finally, loss-of-function mutations in IL17F and IL17RA (35), and gain-of-function 

mutations in STAT1 (36, 37) have all been associated with impaired IL-17-mediated 

immunity and CMC disease (46). Invasive fungal infections have long been known to affect 

some patients with primary immunodeficiencies (PIDs). Patients with chronic granulomatous 

disease (CGD) and an impaired oxidative burst (47) are susceptible to multiple bacterial and 

fungal infections, including invasive Aspergillus spp. infections in particular. Children with 

severe congenital neutropenia are prone to various invasive fungal diseases (48). Patients 

with IL-12Rβ1 or IFN-γR1 deficiencies or with X-linked hyper IgM are susceptible to 

disseminated infections with dimorphic fungi (47, 49-51). Patients with autosomal recessive 

(AR) CARD9 deficiency, reported to date in only one multiplex Iranian kindred, develop 

Candida spp. meningitis, in addition to CMC and cutaneous dermatophytosis (52). However, 

dermatophytic disease has not been reported in any of these disorders. We therefore used a 

candidate gene approach, including the sequencing of CARD9, to investigate 13 patients with 

dermatophytic disease from six individually consanguineous but unrelated kindreds from 

Algeria and Morocco. 
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Results 

Case summary 

 The characteristics of the patients with dermatophytic disease studied are reported in 

Table 2. Briefly, we report 13 patients: nine men and four women. The median age of the 

patients was 40 [28-75] years. Eleven of the patients were from Algeria and two were from 

Morocco. The first symptoms of dermatophytosis appeared during childhood or adolescence, 

at a median age of eight years [2-21]. Initial symptoms were mostly recurrent and severe 

tinea capitis was reported for 10 patients, tinea corporis for seven and onychomycosis for six 

patients. Skin lesions subsequently included extensive erythemato-squamous lesions, nodular 

subcutaneous or ulcerative fistulizing infiltrations. Seven patients had enlarged lymph nodes, 

one presented central nervous system involvement, and two had local infiltration of the bone 

or digestive tract, respectively. T. violaceum was the dermatophyte species most frequently 

isolated from lesions. It was recovered from six patients. The only associated infectious 

condition was mycologically confirmed thrush in four patients. These patients presented no 

other superficial or invasive Candida spp. infection. Four patients died from their disease at 

the ages of 28, 29, 37 and 39 years, due to disease progression or superinfection. 

Case reports  

We report 13 patients with dermatophytic disease (9 men and 4 women) from six 

unrelated kindreds. The six families originated from Morocco (1 family) and Algeria (5 

families) (Table 1) and the characteristics of the patients are reported in Table 2. 

Kindred A: Proband P1 (A.II.1, Figure 1) was born to consanguineous Algerian 

parents from Tlemcen and developed dermatophytic disease at the age of six years. Initial 

clinical presentation was as tinea corporis, tinea capitis and onychomycosis with 
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pachyonychia (Figure 2A, A-D) (4). Non insulin-dependent diabetes mellitus was diagnosed 

at the age of 50 years. At this age, blood counts revealed eosinophilia (counts of up to 

1700/mm3) and cultures of skin samples from multiple sites were positive for Trychophyton 

violaceum. When the patient was 52 years old, the erythematous lesions on the skin extended, 

with severe itching, and a large, soft, subcutaneous polylobate tumor (10 x 15 cm) appeared 

in the patient’s left armpit (Figure 2A, D). P1 also presented large axillary, submaxillary (4 

cm) and mesenteric lymphadenopathies. Histological examination of the axillary 

lymphadenopathy revealed the presence of hyphae within a necrotic granuloma. T (CD4+, 

CD8+), B and NK lymphocyte subsets were normal. Treatment with a combination of 

griseofulvin and econazole was not effective. P1 is now 75 years old and has been treated 

with itraconazole since June 2011, resulting in a decrease in the size of the lesions. No other 

severe infections were reported. 

One of the cousins of P1 (P2, A.III.6, Figure 1) (56, 57) also presented dermatophytic 

disease beginning with onychomycosis at the age of two years. He then developed recurrent 

tinea capitis and corporis and lymphadenopathy at the age of eight years and mycologically 

confirmed oral thrush at the age of nine years. At 25 years of age, P2 presented erythroderma, 

cutaneous nodules (several of which were ulcerated), alopecia and onychodystrophy. He also 

had iliac and inguinal, axillary and cervical fistulizing lymphadenopathies (Figure 2A, E). T. 

violaceum was isolated from skin and lymph nodes. Histological examination of skin samples 

revealed the presence of hyphae within a necrotizing granuloma. Eosinophilia (2700/mm3) 

was detected at the age of 25 years. P2 subsequently developed seizures, leading to the 

detection of three cerebral abscesses on CT scan (Figure 2A, F). Despite itraconazole 

treatment, the cerebral and skin lesions worsened and the patient died from septicemia at the 

age of 29 years (56, 57). No other severe infections were reported. 
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Two of the siblings of P2 suffered from dermatophytic infections. One brother 

(A.III.11, Figure 1) presented tinea capitis and onychomycosis with Trichopyton rubrum in 

childhood, before the age of 12 years, and a sister (A.III.7, Figure 1) had interdigital 

intertrigo and onychomycosis caused by T. rubrum at the age of 26 years. No follow-up data 

are available for these two siblings.  

Kindred B: Patient P3 (B.II.6, Figure 1) is a woman from a consanguineous Algerian 

family from Tlemcen. Her dermatophytic disease began with recurrent tinea capitis and 

extensive tinea corporis at the age of nine years (58). She was immunized with BCG with no 

adverse effects. Following a course of treatment with systemic corticosteroids at the age of 12 

years, she developed a severe skin infection with general thickening, lichenification, 

squamous areas, pruritus, multiple erythematous nodules, palmo-plantar keratotic lesions 

(Figure 2A, G), severe nail involvement with onychogryphosis, and squamous scalp. P3 also 

developed multiple lymphadenopathies with fistula formation (Figure 2A, H), worsening 

between the ages of 12 and 17 years. T. rubrum grew from cultures of skin, scalp, nails and 

lymph nodes taken from the patient at the age of 17 years. Histological examination of lymph 

nodes showed necrotizing granuloma with eosinophils and hyphae, stained with Positive Acid 

Schiff reagent, in giant multinucleate cells. T (CD4+, CD8+), B and NK lymphocyte subsets 

were normal. When the patient was 17 years old, treatment with griseofulvin at a dose of 1 

g/day was introduced. This treatment was continued for two years and resulted in a clear 

improvement. The treatment was then stopped, but dermatophytic disease relapsed. At the 

age of 35 years, P3 developed insulin-dependent diabetes mellitus. She is now 40 years old. 

Itraconazole treatment was initiated in June 2011 and again led to a reduction of the lesions 

and itching. No other severe infections were reported. Neither the patient’s parents nor her 

siblings has ever suffered from a dermatophytic infection.  
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Kindred C: The proband, P4 (C.II.1, Figure 1), is from a consanguineous Algerian 

family from Algiers.  His dermatophytic disease has been described elsewhere (7). He was 

immunized with BCG with no adverse effects. He began to suffer from recurrent tinea capitis 

(Figure 2A, I) and tinea corporis at the age of eight years. He then developed extensive foot 

and hand onychomycosis and glabrous skin lesions with lichenification (Figure 2A, I-L). He 

also had recurrent C. albicans thrush. T. violaceum was cultured from skin lesions after seven 

months of growth. IgE levels were high (1300 U/ml). Griseofulvin treatment was initiated 

when the patient was 17 years old and led to some improvement. However, chronic residual 

lesions remained and relapses occurred whenever the treatment was stopped. P4 is now 56 

years old, is still treated with griseofulvine and has residual skin lesions. No other severe 

infections were reported. 

His brother (P5, C.II.5, Figure 1) (59) first showed signs of the disease at the age of 

eight years, with extensive tinea capitis and onychomycosis. He then presented extensive 

keratotic and ichthyotic lesions, disseminated papular nodules alopecia, pachyonychia and 

onycholysis. Several subcutaneous abscesses and all peripheral enlarged lymph nodes 

fistulized. At the age of 15 years, P5 had an eosinophil count of 2600/mm3 and high IgE 

levels (1300 U/ml). T. violaceum was isolated from skin lesions (after five months of 

growth). P5 also had recurrent thrush caused by C. albicans. Griseofulvin treatment was 

initiated when the patient was 15 years old. No other severe infections were reported. Despite 

initial improvement, the patient’s disease worsened and he died from disseminated 

dermatophytic disease at 34 years of age (59).  

The sister of these two patients (P6, C.II.11, Figure 1) is currently 41 years old. At the 

age of eight years, she presented chronic onychomycosis of all nails due to T. violaceum. She 
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was treated with griseofulvin and presented no other infections. Neither the parents nor the 

other siblings had any dermatophytic infections. 

Kindred D: The proband, P7 (D.II.6, Figure 1), from a consanguineous Algerian 

family from Constantine, presented ulcerative and nodular lesions of the left thigh (Figure 

2A, M) and scalp (Figure 2A, N) at the age of 19 years. He had been immunized with BCG 

with no adverse effect. He developed recurrent tinea capitis, onychomycosis of the hands and 

feet and enlargement of the cervical lymph nodes, at the age of 39 years. Skin biopsy at the 

age of 20 years provided evidence of a hyperkeratotic epithelium with granuloma. 

Tuberculosis was initially suspected and the patient was given antimycobacterial therapy for 

nine months, without improvement. A second skin biopsy at the age of 40 years revealed the 

presence of hyphae within the granuloma. Skin scrapings also demonstrated the presence of 

hyphae. However, no dermatophytes could be grown from the lesions in culture. At the age of 

40 years, P7 was treated with griseofulvin and fluconazole, with temporary improvement, and 

relapse occurred when the antifungal drugs were withdrawn. The patient is now 43 years old, 

treated with griseofulvin and fluconazole and has residual, but stable skin lesions. No other 

severe infections were reported. 

His brother (P8, D.II.7, Figure 1), who is now 40 years old, has also had 

dermatophytic disease since the age of 21 years, with extensive ulcerating skin lesions on the 

face, scalp and perineum. He was immunized with BCG with no adverse effect. He was 

treated with griseofulvin between the ages of 21 and 27 years and then with fluconazole. The 

scalp and face lesions resolved and the perineal lesions improved. When fluconazole 

treatment was stopped, the perineal lesions enlarged to 20 centimeters in diameter and caused 

stenosis (Figure 2A, O). Surgery, with colostomy, was therefore required and terbinafine 

treatment was initiated in September 2010. P8 also developed extensive pityriasis versicolor, 
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onychomycosis and inguinal lymph node enlargement. Hyphae were found within necrotizing 

granulomas in skin lesions. A clear improvement was observed after one month of treatment 

with itraconazole and terbinafine (Figure 2A, P). No other severe infections were reported. 

The brother of P7 and P8 (P9, D.II.4, Figure 1) died from dermatophytic disease, with 

pseudotumoral and ulcerating lesions on his face, at the age of 28 years. Neither the parents 

of these patients nor the other siblings suffered from dermatophytic infection. 

Kindred E: The proband, P10 (E.II.7, Figure 1), from another unrelated 

consanguineous family from Tlemcen in Algeria, developed recurrent tinea in childhood and 

was subsequently diagnosed with dermatophytic disease. At the age of 27 years, he presented 

cutaneous erythemato-squamous warty lesions with onychomycosis and giant palmo-plantar 

horns (8 cm high) with onychogryphosis (60) (Figure 2A, Q-T). He had eosinophilia 

(550/mm3) at the age of 29 years. T. violaceum was isolated from the skin and nails. Skin 

biopsy showed acanthosis and hyperkeratosis of the epidermis. The stratum corneum and 

dermis were invaded by hyphae and lymphoid granulomas. The patient improved on 

griseofulvin, but a relapse occurred and he died from septicemia at the age of 39 years. No 

other severe infections were reported. 

 His sister (P11, E.II.10, Figure 1), who is currently 37 years old, has suffered from 

chronic onychomycosis since childhood. Neither their parents nor any other siblings have 

been reported to suffer from dermatophytic infection. 

Kindred F: The proband, P12 (F.II.6, Figure 1), was born in Belgium, but is from a 

consanguineous family originating from Tangier in Morocco. He presented recurrent thrush 

and tinea during childhood. At the age of 16 years, squamous hyperkeratosic skin lesions 

appeared on his left foot. These lesions worsened at the age of 35 years, with vegetative and 
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ulcerating lesions extending to both feet, calves and the left thigh (Figure 2A, U-V). Lesions 

were associated with left inguinal lymphadenopathy, squamous pigmented lesions of the 

groin and left foot onychomycosis. X rays suggested osteolysis of the left first and second 

toes and MRI revealed soft tissue infiltration (27 mm) (Figure 2B, W-Y). P12 had no other 

severe infection. Hypereosinophilia (up to 1500/mm3) was observed from the age of 35 years 

onwards and IgE levels were high, at up to 1741 kIU/ml. T (CD4+, CD8+), B and NK 

lymphocyte subsets were normal. A skin biopsy carried out when P12 was 35 years old 

showed a hyperplastic epidermis, with parakeratosis and some microabscesses. The dermis 

was infiltrated with a tuberculoid granuloma and numerous eosinophils. PAS staining 

revealed irregular hyphae, with some branching, in the granuloma (Figure 3). Skin culture 

and molecular analyses were positive for T. rubrum. The lesions improved but a relapse 

occurred despite the sequential administration of terbinafine, voriconazole, posaconazole, 

liposomal amphotericin B and combined treatment with terbinafine, voriconazole and 

interferon-γ. The second toe on the patient’s left foot required amputation. P12 is now 40 

years old and his disease has relapsed despite voriconazole treatment. No other severe 

infections were reported. 

The sister of P12 (P13, F.II.3) is 49 years old. She was born in Morocco and had 

recurrent severe tinea during childhood. As an adult, she has suffered from hand and foot 

onychomycosis. Neither the parents nor the other siblings have been reported to suffer from 

dermatophytic infections. 

Identification of homozygous nonsense or missense CARD9 mutations  

We investigated 10 of the 13 patients with dermatophytic disease, for whom genetic 

material was available, by a candidate gene approach. We first sequenced CARD9 by Sanger 

sequencing and found homozygous mutations in CARD9 in all 10 patients. The eight 
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Algerian patients had a homozygous c.C865T mutation in exon 6, resulting in a premature 

termination codon in position 289, Q289X (Figure 4), in the region encoding the coiled-coil 

domain of CARD9 (Figure 1B). The two patients from the Moroccan kindred had a 

homozygous CARD9 missense mutation, c.C301T, in exon 3, resulting in the replacement of 

the arginine residue in position 101 with a cysteine residue (R101C). This amino-acid 

substitution is located only a few amino acids after the end of the CARD domain (Figure 4). 

Finally, all healthy members of the six kindreds were found to be either homozygous for the 

wild-type allele or heterozygous for one of the two mutations. The segregation of the two 

mutations in six kindreds was consistent with an autosomal recessive (AR) CARD9 

deficiency with complete clinical penetrance. These two mutations in patients with 

dermatophytic disease are different from the Q295X mutation previously reported in an 

Iranian kindred with CARD9 deficiency (52). The missense and nonsense mutations reported 

here were not found in any of the various public databases searched (HGMD, Ensembl and 

1000 Genomes,) or in our in-house whole-exome sequencing database (> 1000 exomes). We 

also sequenced 1,052 controls from the CEPH-HGD panel, 33 controls from Algeria and 70 

controls from Morocco, in whom we found neither of the two variants, thus excluding the 

possibility that the Q289X and R101C variants are polymorphisms. Polyphen 2 (61) 

predicted the missense mutation to be probably damaging (with the highest possible score of 

1).  

Founder-effect analysis 

All eight Algerian patients harbored the same previously unknown homozygous 

premature termination codon (Q289X), suggesting a possible founder effect (53, 55, 62-64). 

An analysis of Affymetrix 250K Nsp Array data showed that patients carrying the Q289X 

variant had a common homozygous haplotype surrounding the CARD9 gene (Figure 5). The 
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largest common haplotype upstream from the mutation was identified in patients P3 and P1, 

and it encompassed 1.2 megabases (corresponding to 33 SNPs). The largest common 

haplotype downstream from the mutation was identified in patients P8 and P4, and it 

encompassed 1.6 megabases  (29 SNPs). The ESTIAGE method was used to estimate the age 

of the MRCA to 26 generations (95% confidence interval [CI]: 12-58 generations). Assuming 

a generation time of 25 years, the MRCA of the patients therefore lived about 650 years ago 

(95% CI: 300-1450 years).  
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Discussion  

We identify homozygous mutations of CARD9 as the first genetic etiology of 

dermatophytic disease, thus broadening the spectrum of invasive fungal infections associated 

with CARD9 deficiency. Following on from the Q295X nonsense mutation previously 

reported in a large multiplex consanguineous Iranian family (52), we identified two new 

CARD9 mutations, one of which was missense (R101C), the other being a nonsense mutation 

(Q289X). Patients homozygous for these deleterious alleles were found in three countries 

(Iran (52), Morocco, and Algeria) in which the frequency of parental consanguinity is high. 

The five Algerian families carried the same Q289X mutation due to a founder effect, with the 

most recent common ancestor living approximately 650 years ago. None of the heterozygous 

individuals in the kindreds studied had any symptoms, whereas all individuals homozygous 

for the mutated allele had symptoms, consistent with an AR mode of inheritance and complete 

clinical penetrance. Thus, 19 patients from 7 families in three countries, with three different 

alleles have now been identified. CARD9 deficiency is thus clearly not restricted to a single 

kindred, as initially hypothesized based on the rarity of the clinical presentation of the Iranian 

kindred (52). Indeed, we show that CARD9 deficiency is the main genetic etiology of 

dermatophytic disease. It is possible that CARD9 mutations will be identified in other patients 

with dermatophytic disease (1, 4-27, 29-34, 56-58, 60, 65, 66). 

The clinical signs of dermatophytic disease in the patients described here began in 

childhood, with recurrent and severe tinea and onycomycosis and worsened during 

adolescence, leading to invasive disease. Skin and lymph node biopsies provided evidence of 

hyphae consistent with dermatophyte infection, within epithelioid and giant cell granulomas, 

often associated with necrosis and eosinophil infiltration. These clinical signs are similar to 

those observed in tuberculosis, and the patients also presented fistulized lymph nodes and 



15 

 

subcutaneous abscesses. Survival was poor in the patients reported here, with four of the 13 

patients studied dying between the ages of 28 and 39 years due to visceral disease or 

superinfections. However, no other severe infections were reported, with no mycobacterial or 

Listeria infections in particular, by contrast to what has been reported for CARD9-deficient 

mice, which are susceptible to Mycobacterium tuberculosis, Candida sp. and Listeria 

monocytogenes (67-71). The patients with CARD9 mutations and dermatophytic disease 

reported here had clinical characteristics similar to those reported in previous studies (1, 4-27, 

29-34, 56-58, 60, 65, 66). Disease started in childhood (11 years in previous studies vs. 8 

years in our series) with severe and recurrent tinea capitis (51.7% vs. 77%) or tinea corporis 

(41% vs. 54%). The frequency of onychomycosis as a presenting symptom was higher in our 

study than in previous publications (46% vs. 7%) (72). Dissemination was frequent with 

lymph node (58% vs. 54% in our series) or central nervous system (9% vs. 8%) involvement 

(72). Bone involvement was less common with five cases reported altogether ((32, 33), this 

report). Histological findings are also similar, including the formation of tuberculoid 

granulomas containing hyphae. T. violaceum was the most prevalent species isolated, both in 

previous studies (29%) and in our series (75%). T. violaceum is also the species most 

frequently isolated from patients in North Africa (44% in Libya) (3). Two discrepancies 

between our findings for these patients and published results were identified: a higher 

frequency of thrush (31%, whereas no cases were reported among the other patients and a 

lower mortality (31% in our series vs. 44%), probably reflecting the use of new antifungal 

treatments, such as itraconazole and voriconazole in the most recently diagnosed patients.  

Nineteen patients homozygous for deleterious CARD9 alleles have now been reported 

and these patients present various fungal infections, including superficial and invasive fungal 

diseases. These findings highlight the essential role of CARD9 in the human immune 

responses controlling fungal infection. The molecular and cellular basis of fungal disease, 
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including dermatophytic disease in particular, remains unclear. A macrophage defect might 

account for the invasion of the dermis by dermatophytes in CARD9-deficient patients. 

CARD9 is an adaptor in the signaling pathway downstream from Dectin-1, Dectin-2, Mincle 

and, probably, other as yet unknown receptors involved in antifungal immunity (68-70, 73-

78). However, it remains unclear which receptors are actually involved in immunity to 

dermatophytes. The diverse clinical presentations of CARD9 deficiency, ranging from 

dermatophytosis to C. albicans meningitis, suggest that multiple molecular pathways in 

multiple cell types are controlled by CARD9. Patients with CARD9 deficiency have 

previously been reported to have low proportions of interleukin (IL)-17 T cells, possibly 

accounting for CMC (52). Additional studies are required to characterize the CARD9-

dependent pathways in both myeloid and lymphoid cells in humans, together with the other 

genes responsible for controlling host defense against Candida spp. and dermatophytes. 

Dermatophytic disease is associated with AR CARD9 mutations in all families tested to date.  
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 Methods 

Patients 

Thirteen patients with a history of dermatophytic disease were recruited from five 

hospitals (Mustapha Hospital, Algiers, Algeria; Tlemcen Hospital, Tlemcen, Algeria; Sidi 

Bel-Abbes Hospital, Sidi Bel-Abbes, Algeria; Necker-Enfants Malades, Paris, France and 

Erasme Hospital, Brussels, Belgium). Diagnosis was based on medical and family history, 

clinical signs, histopathology and mycology results. This study was conducted in accordance 

with the Helsinki Declaration. All patients provided written informed consent for 

participation in the study.  

Molecular genetics 

Genomic DNA was isolated from whole blood, by a phenol/chloroform extraction 

method, with an iPrep extraction kit (from Invitrogen) or with the Gentra Puregene Blood kit 

(Qiagen, UK). CARD9 was amplified with specific primers (PCR amplification conditions 

and primer sequences are available upon request). PCR products were analyzed by electro-

phoresis in 1% agarose gels, sequenced with the Big Dye Terminator cycle sequencing kit 

(Applied Biosystems, Foster City, CA), and analyzed on an ABI Prism 3700 (Applied Bio-

systems, Foster City, CA). 

Most recent common ancestor of Q289X carriers 

Founder-effect analysis was carried out on a subset of four available, apparently unrelated 

patients (two from Tlemcen (P1, P3), one from Algiers (P4), one from Constantine (P8)) 

bearing the same homozygous Q289X CARD9 mutation. Genotypes were obtained for > 

250,000 single-nucleotide polymorphisms (SNPs) on the Affymetrix GeneChip Human Map-

ping 250K Nsp Array. SNPs with a 100% call rate were scanned for continuous stretches of 
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homozygosity upstream and downstream from the CARD9 locus on chromosome 9q34. Pair-

wise comparisons within each mutation group revealed the limits of the longest shared haplo-

type and the positions of subsequent recombination break points. The likelihood-based ES-

TIAGE method was used to estimate the most recent common ancestor (MRCA) for each 

mutation from the observed shared haplotypes. Recombination rates and haplotype frequen-

cies were provided by the HapMap Project (53-55). 
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Figure 1A. Pedigrees of the 6 kindreds with 
dermatophytic disease. Each kindred is 
designated by a letter (A-F), each generation by 
a roman numeral and each individual by an 
Arabic numeral. Patients with dermatophytic
disease are shown in black. The probands are 
indicated by arrows. CARD9 genotype is 
indicated below each individual.
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Figure 1 B
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Figure 1B. CARD9 mutations. The human CARD9 isoform 1 is shown, with its known pathogenic mutation. Coding exons are 
numbered with roman numerals. The regions corresponding to the coiled coil domain (CC) and the CARD domain are indicated. 
Mutations associated with dermatophytic disease are indicated in red. 
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Figure 2A. Clinical features of patients. Clinical phenotype of patients: P1 (A-D), P2 (E-F), P3 (G-H), P4 (I-L), P7 (M,N), P8 
(O,P), P10 (Q-T), P12 (U,V)
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Figure 2B. Radiological features of patients. Foot MRI fat sat: hypertrophy of toe soft tissues from patient P12 (W, X, Y)



Figure 3
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Figure 3. Histology of skin biopsy specimen from patient P13. There is a massive epithelioid granuloma infiltrating the 
dermis, as shown by hematoxylin-eosin staining (A,B), whereas PAS staining reveals the presence of hyphae consistent 
with the presence of dermatophytes in its center (C,D)
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Figure 4: Identification of missense and nonsense mutations in CARD9. A. Sanger sequencing reads for a homozygous 
WT/WT healthy individual (top), for P13, with a homozygous missense mutation in exon 3 of CARD9 (c.C301T) resulting in the 
amino-acid substitution R101C/R101C (middle) and for the healthy individual F.II.1, with a heterozygous mutation WT/R101C 
(bottom). B. Sanger sequencing reads for a homozygous WT/WT healthy individual (top), for P10, with a homozygous nonsense 
mutation in exon 6 of CARD9 (c.C865T) leading to a premature stop codon Q289X/Q289X (middle), and for the healthy 
individual E.II.1, with a heterozygous mutation (WT/Q289X)
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Figure 5. Haplotype common to the 4 unrelated patients carrying the homozygous Q289X mutation of the CARD9 
gene.  An analysis of SNP Array 250K data showed that the patients carrying the Q289X mutation had a common haplotype
around the CARD9 locus.
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Patient Age at onset, y Age at last follow-up, y Sex Country of origin Organ involvement Fungus Status CARD9 mutation Ref 

P1, A-II1 6 75 M Algeria Skin, scalp, nails, LN T. violaceum Alive Q289X/Q289X (4) 

P2, A-III6 2 29 M Algeria Skin, scalp, nails, LN, brain T. violaceum Dead E? (9, 57) 

P3, B-II6 9 40 F Algeria Skin, scalp, nails, LN T. violaceum Alive Q289X/Q289X (58) 

P4, C-II1 8 56 M Algeria Skin, scalp, nails T. violaceum Alive Q289X/Q289X (8) 

P5, C-II5 8 37 M Algeria Skin, scalp, nails, LN  T. violaceum Dead E? (8, 59) 

P6, C-II11 8 ND F Algeria Nails T. violaceum Alive Q289X/Q289X  

P7, D-II6 19 43 M Algeria Skin, scalp, nails, LN Dermatophyte * Alive Q289X/Q289X  

P8, D-II7 21 40 M Algeria Skin, perineum, scalp Dermatophyte * Alive Q289X/Q289X  

P9, D-II4 NA 28 M Algeria Skin, scalp Dermatophyte * Dead E?  

P10, E-II7 NA 39 M Algeria Skin, scalp, LN T. violaceum Dead Q289X/Q289X (60) 

P11, E-II10 NA NA F Algeria Nails Dermatophyte * Alive Q289X/Q289X  

P12, F-II6 16 40 M Morocco Skin, bone,  LN, nails,  T. rubrum Alive R101C/R101C  

P13, F-II3 NA 49 F Morocco Scalp, nails Dermatophyte * Alive R101C/R101C  

Table 1. Description of the 13 patients with dermatophytic disease ; y: year, NA: not available, E?: no DNA available, LN: lymph nodes, 
*: hyphae on biopsies or scrapping 
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 N (%) 

Median age [years] 40 (range: 28-75) 

Male  9 (64) 

Country of origin  

    Morocco 2  

    Algeria 11  

Median age at first symptoms [years] 8 (range: 2-21) 

First symptoms  

    Severe or recurrent tinea capitis 10 

    Severe or recurrent tinea corporis 7 

    Onychomycosis 6 

Presentations in adulthood  

    Lymph node involvement 7 

    Central nervous system invasion 1 

    Local organ invasion (bone, digestive tract) 2 

Associated infection:  thrush 4 

Death 4 

Median age at death [years] 31.5 (range: 28-39) 

Dermatophyte identified  

    T. rubrum 2 

    T. violaceum 6 

Histology (n=9 )  

    Granuloma 7 

    Necrosis 5 

    Hyphae on biopsy 9 

High IgE levels 3/3 

Hypereosinophilia 6/6 

Lymphocyte subset  

    Normal CD4+ T lymphocyte susbset 3/3 

    Normal CD8+ T lymphocyte subset 3/3 

    Normal B lymphocyte subset 3/3 

    Normal NK lymphocyte subset 3/3 

Table 2. Characteristics of the 13 patients with dermatophytic disease 
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Résumé  

 

Mon projet de thèse a consisté en l’identification et la caractérisation moléculaire et immunologique de 

patients présentant une susceptibilité accrue aux infections fongiques par Candida sp. dans le syndrome 

Mendélien de candidose cutanéo-muqueuse chronique (CCMC). 

La CCMC est caractérisée par des infections persistantes ou récurrentes de la peau, des ongles et des 

muqueuses par les champignons Candida, principalement C. albicans. Elle est fréquemment associée à 

d’autres infections opportunistes dans certaines immunodéficiences primaires ou acquises, ou bien elle 

peut être associée à un tableau auto-immun. La CCMC peut finalement être isolée (CCMCi) sans autre 

tableau clinique sévère: la plupart des cas rapportés sont sporadiques, mais il existe également des cas 

familiaux avec une hérédité mendélienne autosomique principalement dominante (AD) ou plus rarement 

récessive (AR). 

Basés sur les données de la littérature, qui démontrent un rôle majeur de l’immunité dépendante des IL-

17s dans la résistance aux infections mucocutanées vis-à-vis de C. albicans et nos résultats récents, qui 

démontrent un défaut de cette immunité dans certaines immunodéficiences primaires associées à une 

CCMC [les syndromes AD-HIES  et AR APS-1, ainsi que chez les patients déficients en CARD9, nous 

avons émis l’hypothèse que parmi les patients atteints de CCMCi, certains pourraient présenter un défaut 

génétique affectant spécifiquement l’immunité IL-17-dépendante.  

Au début de ma thèse, j’ai participé à l’identification des deux premières étiologies génétiques de la 

CCMCi : le défaut autosomique récessif (AR) complet en IL-17RA et autosomique dominant (AD) en IL-

17F. Plus récemment, j’ai identifié la troisième et la plus fréquente étiologie génétique de la CCMC par 

l’identification de mutations gain de fonction dans le gène STAT1 suite à une approche explorant 

l’ensemble du génome (séquençage de l’ensemble des exons). Ces mutations engendrent une « hyper-

réponse » aux interférons de type I et II et à l’IL-27 qui inhibent la différentiation des lymphocytes T 

sécréteurs d’IL-17, impliqués dans l’immunité mucocutanée vis-à-vis de C. albicans chez l’homme. 

En conclusion, nous avons identifié, en 2011, des trois premières étiologies génétiques de la CCMCi, avec 

les défauts AR en IL-17RA, AD en IL-17F et des mutations gain-de-fonction de STAT1, toutes associées à 

un défaut de l’immunité dépendante de l’IL-17. Des mutations gain-de-fonction de STAT1 représentent à 

ce jour la cause génétique la plus fréquente de la CCMCi avec au total 94 patients rapportés dans la 

littérature depuis 2011. Nous avons ainsi démontré que la CCMCi est une immunodéficience primaire, 

associée à un défaut de l’immunité réalisée par les IL-17s. Ces travaux ont des implications majeures dans 

le domaine immunologique avec la description et la caractérisation des mécanismes biologiques impliqués 

dans l’immunité protectrice spécifique de C. albicans et une meilleure compréhension des mécanismes 

physiopathologiques associés à une susceptibilité accrue aux infections fongiques, dans des conditions 

naturelles d’infection ; et dans le domaine médical, avec la possibilité de diagnostics moléculaires, un 

conseil génétique en cas de diagnostic positif, une meilleure prise en charge des patients. 
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Summary  
 

My project consists in the molecular and immunological identification and characterization of patients 

with increased susceptibility to fungal infections with Candida sp. suffering from the Mendelian 

syndrome of chronic mucocutaneous candidiasis (CMC). 

CMC is characterized by persistent or recurrent infections of the skin, nails and mucosae by Candida 

fungi, especially C. albicans. CMC is frequently associated with other opportunistic infections in some 

acquired or primary immunodeficiencies, or can be associated with autoimmune disorders. Finally, CMC 

may be present as an isolated form (chronic mucocutaneous candidiasis disease or CMCD) without any 

other severe infectious or autoimmune clinical manifestation: most reported cases are sporadic, but there 

are also familial cases with autosomal dominant (AD) or recessive (AR) Mendelian inheritance. 

Based the literature, which demonstrated a major role of IL-17 cytokines in mucocutaneous immunity 

with C. albicans, and our recent results, which show an impairment of IL-17 immunity in some primary 

immunodeficiencies associated with CMC (AD-HIES syndrome, AR APS-1, and CARD9-deficient 

patients), we hypothesized that among CMCD patients, some might have a genetic defect affecting 

specifically the IL-17-dependent immunity. 

At the beginning of my PhD, I participated in the identification of the first two genetic etiologies of 

CMCD: complete AR IL-17RA and partial AD IL-17F deficiencies. More recently, I identified the third 

and most common genetic etiology of CMCD by identifying gain of function mutations in the STAT1 gene 

following an approach exploring the whole genome (sequencing of all exons). These mutations are 

responsible for a "hyper-response" to type I and II interferons and IL-27, which inhibit the differentiation 

of IL-17-producing T cells. Impaired IL-17 immunity results in reduced mucocutaneous defenses against 

C. albicans in humans.  

In conclusion, we have identified in 2011, the first three genetic etiologies of CMCD with AR IL-17RA 

and AD IL-17F deficiencies and gain-of-function STAT1 mutations, all associated with an impaired IL-17-

dependent immunity. Gain-of-function STAT1 mutations represent the most frequent genetic cause of 

CMCD with a total of 94 patients reported in the literature since 2011. We have shown that CMCD is a 

primary immunodeficiency associated with inborn errors of IL-17 immunity. This work has important 

implications in the field of immunology with the description and characterization of the biological 

mechanisms involved in protective immunity specific to C. albicans and a better understanding of the 

pathophysiological mechanisms associated with increased susceptibility to fungal infections in natural 

conditions of infection, and in the medical field, with the possibility of molecular diagnostics, genetic 

counseling for a positive diagnosis, and a better follow-up of the patients. 


