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Le renard se tut et regarda longuement le petit prince :
- S’il te plaı̂t... apprivoise-moi! dit-il.

- Je veux bien, répondit le petit prince,
mais je n’ai pas beaucoup de temps.

J’ai des amis à découvrir et beaucoup de choses à connaı̂tre.

- On ne connaı̂t que les choses que l’on apprivoise, dit le renard.
Les hommes n’ont plus le temps de rien connaı̂tre.

Ils achètent des choses toutes faites chez les marchands.
Mais comme il n’existe point de marchands d’amis,

les hommes n’ont plus d’amis.
Si tu veux un ami, apprivoise-moi !

- Que faut-il faire ? dit le petit prince.

- Il faut être très patient, répondit le renard.
Tu t’assoiras d’abord un peu loin de moi, comme ça, dans l’herbe.

Je te regarderai du coin de l’œil et tu ne diras rien.
Le langage est source de malentendus.

Mais, chaque jour, tu pourras t’asseoir un peu plus près ...

Antoine de Saint-Exupéry, Le petit prince

What the little prince knows about how to start writing a thesis manuscript ...
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Abstract

Brillouin scattering is a fundamental nonlinear opto-acoustic interaction present in opti-

cal fibers with important implications in fields ranging from modern telecommunication

networks to smart optical fiber sensors. This thesis is aimed at providing a comprehen-

sive theoretical and experimental investigation of both forward and backward Brillouin

scattering in next generation photonic crystal fibers in view of potential applications to

above mentioned fields. We show in particular that these micro-structured optical fibers

have the remarkable ability to either suppress or enhance photon-phonon interactions

compared to what is commonly observed in conventional fibers.

Firstly, this thesis provides a complete experimental characterization of several photonic

crystal fibers using a novel highly-resolved distributed sensing technique based on Brillouin

echoes. We perform distributed measurements that show both short-scale and long-scale

longitudinal fluctuations of the periodic wavelength-scale air-hole microstructure along

the fibers. Our mapping technique is very sensitive to structural irregularities and thus

interesting for fiber manufacturers to characterize and improve the fiber uniformity during

the drawing process. With this technique, we also report the first experimental observa-

tion of the acoustic decay time and the Brillouin linewidth broadening in both standard

and photonic crystal fibers. Furthermore, we experimentally demonstrate a simplified

architecture of our Brillouin echoes-based distributed optical fiber sensor with centimeter

spatial resolution. It is based on differential phase-shift keying technique using a single

Mach-Zehnder modulator to generate a pump pulse and a π-phase-shifted pulse with an

easy and accurate adjustment of delay. These sensing techniques are also applied to dis-

tributed strain measurement.

Another aspect of this thesis is the investigation of a novel method for suppressing stimu-

lated Brillouin scattering that is detrimental to optical fiber transmissions and fiber lasers.

We experimentally study several fibers and a demonstrate 4 dB increase of the Brillouin

threshold in a photonic crystal fiber by varying periodically the core diameter by only

7%. The efficiency of this passive technique is verified by use of our distributed sensing

technique where the oscillating Brillouin frequency shift is clearly observed.

Lastly, we present experimental and numerical results demonstrating the simultaneous
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frequency-selective excitation of several guided acoustic Brillouin modes in a photonic

crystal fiber with a multi-scale structure design. These guided acoustic modes are iden-

tified by using a full vector finite-element model to result from elastic radial vibrations

confined by the air-silica microstructure. We further show the strong impact of structural

irregularities of the fiber on the frequency and modal shape of these acoustic resonances.

Keywords : Nonlinear optics, stimulated Brillouin scattering, guided acoustic wave Bril-

louin scattering, photonic crystal fiber, Brillouin threshold, optical fiber sensors.
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Résumé

Le cadre général dans lequel s’insère ce travail de thèse est celui de l’étude de la diffusion

Brillouin dans une nouvelle génération de fibres optiques à cristaux photoniques (PCFs).

Ces fibres, qui présentent un arrangement périodique de micro-canaux d’air parallèles le

long de la fibre, possèdent en effet des propriétés optiques et acoustiques remarquables

et inédites par rapport aux fibres conventionnelles. De façon plus précise, nous montrons

dans ce travail, par le biais de simulations numériques et de données expérimentales, que

les fibres à cristaux photoniques offrent la possibilité de supprimer ou, à contrario, aug-

menter les interactions entre les photons et les phonons.

Dans une première partie, nous présentons une méthode de cartographie des fluctua-

tions longitudinales de la microstructure des fibres PCFs à l’aide d’un capteur distribué

basé sur une méthode innovante d’écho Brillouin. Cette méthode, très sensible et à haute

résolution, est directement intéressante pour caractériser et améliorer l’uniformité des

PCFs lors de leur fabrication et également pour la détection des différentes contraintes

de témperature et étirement induites le long des fibres. Sur le plan fondamental, notre

système de mesure distribuée à haute résolution nous a également permis d’observer, pour

la première fois à notre connaissance, le temps de vie des ondes acoustiques dans les fibres

à cristaux photoniques et les fibres standard. Par ailleurs, sur le plan technique, nous

avons développé une architecture simplifiée de capteur distribué combinant la technique

des échos Brillouin et celle de la modulation différentielle par déplacement de phase avec

un seul modulateur d’intensité. Nos résultats montrent une résolution centimétrique dans

la zone de soudure entre deux fibres optiques à l’aide d’une impulsion de phase de 500 ps.

Nous démontrons dans une deuxième partie la suppression directe et passive de la rétro-

diffusion Brillouin stimulée dans une fibre optique microstructurée en faisant varier pério-

diquement le diamètre de la microstructure. Une augmentation de 4 dB du seuil de puis-

sance Brillouin a été obtenue avec une variation de seulement 7% sur une période de 30m.

Ce résultat est très intéressant car la diffusion Brillouin est un facteur limitant dans les

systèmes de télécommunications par fibre optique et les laser à fibre.

La troisième et dernière partie est consacrée à l’étude numérique et expérimentale de la

diffusion Brillouin en avant dans les fibres à cristaux photoniques. En plus de la suppres-
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sion de la plupart des modes acoustiques transverses, nous montrons que cette diffusion

Brillouin est fortement augmentée pour certains modes acoustiques à haute fréquence

qui sont piégés au coeur de la microstructure. Nous avons également étudié une fibre à

structure multi-échelle qui révèle l’excitation sélective de plusieurs phonons acoustiques

à des fréquences allant jusqu’a 2GHz. Ces mesures ont étés confirmées par des simu-

lations numériques basées sur une méthode vectorielle aux éléments finis. L’impact des

irrégularitées de la microstructure a aussi été mise en évidence.

Mots clés : optique non linéaire, diffusion Brillouin, fibres optiques microstructurées,

seuil Brillouin, capteurs Brillouin distribués.
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all your helpful comments and corrections on my manuscript.

Next, I would like to thank my colleagues on the Brillouin-project: Dr. Michaël Delqué
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à Valérie, Belinda, Cindy, Brigitte et Joëlle pour tout votre aide, votre patience et votre

bonne humeur !

Very special thanks go to all the current and former PhD students (+Ludo) I met at

the institute. Without you, these three years would have been far away from what it was.

Thank you for every help, every discussion and every funny action. I think about (in a

random order):
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peau), Clément (j’ai l’impression que tu as toujours été chez nous, merci, tu es un en-
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Thank you also to all the other people of the optics department (le fameux Johan, le
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Introduction

In October 2009 the Nobel Prize in Physics was awarded to Willard Boyle, Georg Smith

and Charles Kao, pleasant news for a first-year Ph.D. student in fiber optics. Thanks to

Charles Kao who proposed in 1966 [1] optical fibers as a transmission medium for com-

munication technology, the high technology standard in ultra-broadband internet and

telecommunications today is possible. Optical fibers were then further extensively de-

veloped to reach a low loss level compatible with long-haul communications systems [2].

Thirty years later, a novel type of optical fibers, called photonic crystal fibers (PCFs),

has been proposed and demonstrated by P. St. J. Russell and co-workers [3, 4]. These

periodic wavelength-scale air-hole micro-structured optical fibers has opened the way for

new fundamental and applied achievements in nonlinear optics and acoustics.

An important physical effect combining optics and acoustics is Brillouin scattering which

was first theoretically predicted by Léon Brillouin in 1922 [5] in his famous publication

”Diffusion de la lumière et des rayons X par un corps transparent homogène”. Brillouin

scattering is an inelastic scattering that results from the interaction of optical waves with

acoustic phonons in contrast to Raman scattering [6] where the light is scattered by op-

tical phonons. Due to the guiding nature of the fiber, only two scattering directions are

possible: backward scattering that results from longitudinal acoustic waves and forward

scattering which relies on transverse acoustic modes. Forward Brillouin scattering or

guided acoustic wave Brillouin scattering (GAWBS) has first been investigated by Shelby

et al. [7]. In the backward direction, the scattered waves can reach high optical power

since the process gets exponentially amplified, i.e. stimulated, above a critical or thresh-

old power. In optical fibers, stimulated Brillouin scattering was first investigated in 1972

by Ippen and Stolen [8].

Stimulated Brillouin scattering (SBS) has recently been studied in photonic crystal fibers

because of their remarkable ability to guide both acoustic and optical modes within their

air-silica microstructure [9–12]. The first experiment of SBS in PCF was carried out at in

1999 [13] where a multi-peak backscattered Brillouin spectrum instead of a single narrow

peak in conventional fibers has been observed. GAWBS was experimentally investigated
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in PCF by Elser et al. and Beugnot et al. [14,15]. They both showed the performance of

PCFs to reduce noise induced by thermal vibrations with help of the micro-structure.

In addition, acoustic waves involved in SBS are sensitive to temperature and strain and

so the idea was soon arriving to use them for distributed sensing applications. The most

popular system is Brillouin optical time-domain analysis (BOTDA), and it has been pro-

posed for the first time in 1989 by Horiguchi et al. [16] in conventional fibers. Since

then, the spatial resolution of distributed sensors has continuously been increased, for

example by using new optical pulse formats [17–19]. PCFs have attracted some interest

for Brillouin sensors and only the dependency of temperature and strain on the Brillouin

frequency shift in a PCF has been measured in 2004 by Zou et al. [20] for the first time.

As far as Brillouin scattering is useful for sensing applications, the more it is detrimen-

tal for fiber-based optical transmissions and fiber lasers. As mentioned before, above

a threshold power the back-reflected power significantly increases which severely limits

the transmitted power through the fiber. For this purpose, PCFs attract much interest

because they can be used for Brillouin scattering suppression. A few techniques have

been proposed such as using a phononic bandgap nanostructure within the fiber core to

inhibit Brillouin acoustic modes [10] or through longitudinal variations of the structural

parameters to increase the Brillouin threshold [21].

The focus of this dissertation is to provide a comprehensive theoretical and experimental

investigation of both backward and forward Brillouin scattering in photonic crystal fibers

both for fundamental aspects and for applications to fiber optic technologies. We show in

general that these micro-structured optical fibers have the remarkable ability to harness

the photon-phonon interaction compared to what is commonly observed in conventional

fibers, leading to new characteristics for both forward and backward Brillouin scattering.

This dissertation is divided in five chapters. The first chapter is aimed at giving an

overview and understanding of optical fibers and their optical properties. A short histor-

ical overview is then given and general fiber parameters are defined both for conventional

and micro-structured optical fibers. The second part of this chapter deals with nonlinear

optical effects present in optical fibers.

The second chapter is devoted to light scattering and will be distinguished in linear and

nonlinear scattering, respectively, with a special attention to the general principle and

theory of both backward and forward Brillouin scattering. We also give an overview of

the state of current knowledge on these specific topics and we introduce distributed fiber

optic sensors based on Brillouin scattering.

We will provide a complete experimental characterization of Brillouin backscattering in
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various photonic crystal fibers in chapter 3. This encompasses Brillouin threshold and

gain spectrum measurements using the self-heterodyne measurement technique, as well as

distributed measurements based on different techniques. First the conventional Brillouin

optical time domain analysis (BOTDA) is described in detail. Further developments

providing much higher spatial resolution with the Brillouin echoes distributed sensing

(BEDS) technique are shown. Then we experimentally demonstrate a simplified archi-

tecture of our Brillouin echoes distributed sensor with centimeter spatial resolution. It is

based on differential phase-shift keying technique using a single Mach-Zehnder modulator

to generate a pump pulse and a π-phase-shifted pulse with an easy and accurate adjust-

ment of delay. These techniques help for a further investigation of the fine features of SBS

in PCFs. Using these techniques, we further perform distributed strain measurements in

both photonic crystal and conventional fibers. Moreover, we realize a longitudinal map-

ping of PCFs which reveals the impact of fiber inhomogeneities on Brillouin scattering by

comparing two fibers with nearly the same air-silica micro-structure but different draw-

ing processes. This technique is directly interesting for PCF manufacturers in order to

improve the regularity of fiber drawing. With the BEDS technique, we also report the

observation of the decay time of the acoustic waves in both standard and photonic crys-

tal fibers. Due to the high resolution, it was possible to reveal that the Brillouin signal

decays faster in PCF than in standard fibers. We provide a theoretical model based on

a multiple-Lorentzian fit of the corresponding Brillouin linewidth broadening observed in

PCF to explain the origin of the shorter acoustic decay time.

The fourth chapter of this thesis investigates a novel method for suppressing stimulated

Brillouin scattering that is detrimental to all-optical processing fiber technologies and fiber

lasers. First an overview about SBS suppressing methods will be given and a theoretical

approach to calculate the critical pump power for the Brillouin threshold is introduced.

We then experimentally study several fibers and demonstrate a 4 dB increase of the Bril-

louin threshold in a photonic crystal fiber by varying periodically the core diameter by

only 7%. The measured SBS threshold is compared to theory and to experimental values

in uniform photonic crystal fibers with nearly the same air-silica micro-structure. The

efficiency of this passive technique is verified by use of our distributed sensing technique

where the oscillating Brillouin frequency shift is clearly observed.

Forward Brillouin scattering in photonic crystal fibers is studied both theoretically and

experimentally in chapter 5. In addition to the suppression of most of the low-frequency

acoustic modes, we report in particular the simultaneous efficient frequency-selective ex-

citation of several guided acoustic Brillouin modes in a photonic crystal fiber with a

multi-scale, µm- and sub-µm-structure design. These guided acoustic modes have been

identified by using a full vector finite-element model to result from elastic radial vibrations

trapped by the air-silica microstructure. We further show the strong impact of structural

irregularities of the fiber on the frequency and modal shape of these acoustic resonances
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by comparison with a perfectly symmetric fiber structure. Finally the relationship be-

tween core diameter and acoustic resonance frequency is carefully examined.

All this work has been done in the framework of the European Programme INTERREG-

IVA, in particular the project ”CD-FOM - capteurs distribués à fibres optiques microstruc-

turées”, in collaboration with the Ecole Polytechnique Fédérale de Lausanne (EPFL),

the IRICICA institute at the University of Lille 1 and Photline Technologies. Its main

objective is the investigation and development of distributed photonic crystal fiber-based

sensors. Moreover, financial support from the COST 299 action permitted amongst others

a research stay at the EPFL in Lausanne and a spring school participation. Furthermore,

fiber samples have been provided by Draka and PERFOS.

Finally, the research in this dissertation has been presented at a number of national

and international conferences and has been subject to publications in several scientific

journals :

Journal publications:

B. Stiller, S. Foaleng-Mafang, J.-C. Beugnot, M.W. Lee, M. Delqué, A. Kudlinski, L.

Thévenaz, H. Maillotte, and T. Sylvestre, ”Photonic crystal fiber mapping using Bril-

louin echoes distributed sensing”, Optics Express, vol. 18, no. 19, 20136-20142 (2010)

B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude,

and T. Sylvestre, ”Frequency-selective excitation of guided acoustic modes in a photonic

crystal fiber”, Optics Express, vol. 19, no. 8, 7689-7694 (2011)

E. Carry, J.-C. Beugnot, B. Stiller, M. W. Lee, H. Maillotte, and T. Sylvestre, ”Temper-

ature Coefficient of High-Frequency Guided Acoustic Modes in Photonic Crystal Fiber”,

Applied Optics, vol. 50, no. 35, 6543-6547 (2011)

M. W. Lee, B. Stiller, J. Hauden, H. Maillotte, C. Roch, L. Thévenaz, and T. Sylvestre,

”Differential phase-shift keying technique-based Brillouin echo-distributed sensing”, IEEE

Photonics Technology Letters, vol. 24, no. 1, 79-81 (2012)

B. Stiller, A. Kudlinski, M. W. Lee, G. Bouwmans, M. Delqué, J.-C. Beugnot, H. Mail-

lotte, and T. Sylvestre, ”SBS mitigation in a microstructured optical fiber by periodically

varying the core diameter”, accepted for publication in IEEE Photonics Technology Let-

ters, 10.1109/LPT.2012.2186286
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Other publication:

B. Stiller, ”Son et lumière dans les fibres optiques microstructurées”, in Prix A’Doc 2011,

Presses universitaires de Franche Comté, 2011, Best Ph.D. Student Award.

International conferences:

B. Stiller, M. Delqué, M.W. Lee, S. Foaleng Mafang, J.C. Beugnot, A. Kudlinski, L.

Thevenaz, H. Maillotte, and T. Sylvestre, ”Effect of inhomogeneities on backward and

forward Brillouin scattering in photonic crystal fibers”, SPIE Photonics Europe, Bruxelles,

Belgium, 12-16 April 2010. Proceedings SPIE ”Photonic Crystal Fibers IV”, 771406, 1-

12 (2010).

J.-C. Beugnot, M. Delqué, B. Stiller, M. W. Lee, H. Maillotte, V. Laude, G. Mélin,

and T. Sylvestre, ”Guided Acoustic Wave Brillouin Scattering in a Nanostructure Core

Fiber”, OSA Nonlinear Photonics, Karlsruhe, Germany, 21-24 June 2010. Proceedings

OSA Nonlinear Photonics 2010, NMC3.

B. Stiller, J.-C. Beugnot, S. Foaleng Mafang, M. W. Lee, M. Delqué, A. Kudlinski, H.

Maillotte, V. Laude, L. Thévenaz, and T.Sylvestre, ”Observation of Brillouin Linewidth

Broadening and Decay Time in Photonic Crystal Fiber”, IEEE Photonics Summer Topi-

cals Meeting, Playa del Carmen, Mexico, 19-21 July 2010. Proceedings Photonics Society

Summer Topical Meeting Series, 2010 IEEE, 168-169 (2010).

J.-C. Beugnot, B. Stiller, S. Foaleng Mafang, M. W. Lee, M. Delqué, A. Kudlinski,

H. Maillotte, V. Laude, L. Thévenaz, and T. Sylvestre, ”Experimental Observation of

Brillouin Linewidth Broadening and Decay Time in Photonic Crystal Fiber”, European

Conference on Optical Communications ECOC, Turin, Italy, 19-23 Sept 2010.

B. Stiller, M. W. Lee, M. Delqué, G. Bouwmans, A. Kudlinski, J.C. Beugnot, H. Maillotte,

and T. Sylvestre, ”Suppression of SBS in a photonic crystal fiber with periodically-varied

core diameter”, Optical Fiber Communication Conference, Los Angeles, USA, 6-10 March

2011 Proceedings OFC 2011, OMO5.

H. Maillotte, J.C. Beugnot, B. Stiller, M. W. Lee, M. Delqué, S. Benchabane, V. Laude,

S. Foaleng Mafang, L. Thevenaz, G. Bouwmans, A. Kudlinski, G. Mélin, and T. Sylvestre,

”Opto-acoustic coupling and Brillouin phenomena in microstructure optical fibers” (in-

vited conference), International Conference on Micro/Nano Optical Engineering (ICOME

2011), Changchun, China, 12-16 June 2011
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2009.
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Thévenaz, H. Maillotte, and T. Sylvestre, ”Cartographie des fibres optiques microstruc-
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Chapter 1

Optical fibers and their

nonlinearities

The first chapter is aimed at providing a comprehensive overview of silica optical fibers

and their properties and nonlinear effects. In a first short paragraph the development of

optical fibers up to now is outlined. Then fiber parameters are defined for conventional

and photonic crystal fibers (PCFs) and the guidance mechanisms of hollow core and solid

core PCF are briefly explained. The second part of this chapter deals with nonlinear

optical effects.

1.1 Optical fibers

Optical fibers are nowadays widely used in manifold fields. The most known domain

is telecommunications where high transmission rates up 69.1Tb/s [1] (OFC 2010) and

101.7Tb/s [2] (OFC 2011) have recently been reached over several hundreds of kilometres.

Another industrial sector, where optical fibers play an important role, is civil engineering,

where they are used for several types of optical fibers sensors as point sensors, such as

interferometers, fiber gratings and distributed fiber sensors. A deeper insight into optical

fiber sensors will be given in chapters 2.4.3.3 and 3.2. Here, we start with a short retrospect

to the starting point of optical fibers.
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1.1.1 Short historical overview

It was in 1966 that Charles Kao proposed [3] optical fibers as a transmission medium for

communication technology. At that time optical fibers exceeded 1000 dB/km in terms of

optical losses [4] and were still far away from a high-data-rate transmission. With the

invention of the laser, reported in 1960 by Maiman [5] and the reduction of the fiber

losses to 20 dB/km at about 1µm [6] in 1970, optical fibers got also into the center

of interest of nonlinear optics community since now high optical intensity in a rather

small fiber core could be reached. In 1981 the use of single mode fibers (SMF) over

44 km was reported [7] and the fiber loss was reduced to 0.2 dB/km at 1.55µm [8]. At

around 1.55µm a loss minimum window in silica fibers is found. Therefore the standard

wavelength for telecommunication systems was chosen at that wavelength and most of

the devices for the experiments in this thesis are adapted to 1.55µm. Since then, many

different types of optical fibers have been developed, starting from the conventional step-

index-fiber: graded index fibers, dispersion shifted fibers (DSF), dispersion compensating

fibers (DCF), polarization maintaining fibers (PMF), highly nonlinear fibers (HNLF),

highly birefringent fibers (Hibi fiber), fibers with different dopant, polymer optical fibers

(POF) and more. An important new generation of fibers was developed in the 1990ies:

Photonic crystal fibers (PCFs) [9,10]. The cross-section of these fibers exhibit a periodic

microstructure consisting of air holes and solid material. Two types of PCFs can be

distinguished: hollow core PCFs and solid core PCFs. Hollow core PCFs are based on

photonic bandgap guiding which has been theoretically shown in [11] for air-silica fibers.

The other guidance form is modified internal total reflection for solid core PCFs [12] and

is basically the same as in conventional fibers because the mean refractive index around

the solid core is lower than in the fiber core. The first realisation of a PCF, a solid core

fiber, has been presented in 1996 [9] and is depicted in Fig.(1.1a) whereas the first hollow

core PCF has been drawn in 1999 [13] and can be found in Fig.(1.1b,c). Both fibers were

(a) (b) (c)

Figure 1.1: (a) SEM image of the first solid core PCF [9], (b,c) SEM images of the first

hollow core PCF [13].
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(a) (b)

(c) (d)

Figure 1.2: SEM images of (a) a birefringent PCF with two larger air holes (image realized

at the institut FEMTO-ST), (b) a chirped PCF which is a low dispersion PCF [30, 31],

(c,d) a suspended core fiber with 2.6µm core diameter.

drawn at the University of Bath. PCFs have several remarkable characteristics which

have been investigated in the subsequent two decades. Endlessly single mode guidance

in PCF has been discovered in 1997 [14] from 450 nm up to 1.55µm. Large effective

areas in PCF [15,16] can also be obtained by designing the air-hole structure. The group

velocity dispersion and higher order dispersion can be widely tunable [17, 18] and ultra

high nonlinear coefficients have been achieved [19]. They are advantageously used for

supercontinuum generation [20, 21] and have remarkable acoustic properties since the

periodic structure acts like an acoustic filter [22–25]. This is interesting for quantum

experiments because they allow for a measurement below the shot noise level [26]. Some

PCFs are depicted in Fig.(1.2): birefringent fibers (Fig.(1.2a)), multi-scale structures like

a chirped PCF (Fig.(1.2b)) and suspended core fibers (Fig.(1.2c,d)), used for example for

gas sensing [27]. They are not only realized in pure silica, but also in composition with

doping [28] or in completely other material like polymer fibers [29].
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(a) (b)

Fiber core

5-50 µm

Cladding

125 µm

Plastic jacket

250 µm

Figure 1.3: (a) Structure of a conventional step-index fiber, (b) fundamental optical mode

in a step-index fiber.

1.1.2 Fiber parameters

The underlying physics of conventional optical fibers is based on the well known internal

total reflection, where no light escape the fiber core below a certain critical angle θc =

cos−1(nclad/ncore) where nclad and ncore are the refractive indices of the fiber cladding and

core, respectively [12]. Fig.(1.3) shows a simplified view of a conventional step-index fiber

that consists of three main components :

• SiO2 fiber core (about 5-50µm diameter), doped with GeO2 to obtain a slightly

higher refractive index

• SiO2 fiber cladding (125µm diameter) with a lower refractive index as the fiber core

• Plastic protecting jacket to absorb light that is not properly guided in the fiber core

but mainly to protect the glass from mechanical strengths.

As previously shown, the configuration of a PCF is completely different. Here we find

two general types of compositions: an air-hole structure with a solid core (Fig.(1.1a))

and a hollow core (Fig.(1.1b)). Solid core fibers follow the same physics as step index

fibers since the refractive index around the fiber core is lower than in the fiber core itself.

As a consequence, doping the fiber core is no more needed which was the first idea of

Kaiser et al. in Ref. [32] for a single-material fiber which resulted later in the invention

of PCFs. The mechanism of the guiding in hollow core fibers, so-called photonic bandgap

guidance, is a bit harder to understand since the fiber core has a refractive index of n=1
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Figure 1.4: (a) Full 2-D optical bandgaps (shaded) of silica/air structure in Ref. [11], (b)

acoustic bandgap diagramm of a nanostructured fiber, shown in the inset from Ref. [24].

Λ

d
dc

125 µm

Figure 1.5: Cross-section of a PCF with hexagonal structure: dc is the core diameter , Λ

the pitch and d the air-hole diameter.

(air) which is lower than in the air-hole structure around the fiber core. Light propagation

in this kind of PCF is based on the coherent reflection of light in the micro structured

periodic cladding around the fiber core [12]. The air-hole structure gives rise to photonic

bandgaps, as shown in Fig.(1.4a). If light is injected on a mode which is forbidden in the

band diagram of the air-hole structure, the light is trapped in the fiber core and hence,

is guided in air. This is also valid for acoustic waves as can be seen in Fig.(1.4b) that

shows a phononic bandgap in a nano-structured PCF. In Fig.(1.5) we find the typical

structural parameters: the core diameter dc, the distance between two air holes centers

(the pitch) Λ and the hole diameter d. After this short explanation of the respective

guidance mechanism we define some important parameters for conventional fibers as well

as for PCF.
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1.1.2.1 Fiber loss

The most basic fiber parameter is the linear attenuation which is due to absorption abil-

ities of every material and linear Rayleigh scattering. In silica the linear loss developed

from 1000 dB/km [4] over a breakthrough in 1970 to 20 dB/km [6] to about 0.17 dB/km

nowadays [33]. For a fiber with length L the output power Pout versus the input one Pin

can be written as:

Pout = Pin exp(−αlinL) (1.1)

Here α is the absorption coefficient on a linear scale. However, in fiber optics the atten-

uation is often given in dB. The linear loss coefficient αdB in dB and on a linear scale is

related as [34]:

αdB = −10

L
log

(
Pout

Pin

)

= 4.343 αlin (1.2)

An effective length for fibers can be defined as follows [34]:

Leff =
(1− exp(−αlinL))

αlin
(1.3)

For nonlinear effects, the effective length is a more meaningful parameter as the linear

loss or the fiber length, because former are dependent of the intensity of the launched

optical wave. Concerning nonlinear effects, the fiber can be seen as a loss-less fiber with

length Leff instead of taking into account loss and real fiber length (Fig.(1.6)). For very

long fibers (αL < 10), the effective length tends to 1/αlin.

I  (z)
P

I  (z)
P

L L
eff

z z

Figure 1.6: Distributed pump power due to fiber loss in the fiber with its real length and

equivalent fictive loss-less fiber with effective length Leff [35].



1.1. Optical fibers 15

1.1.2.2 Effective mode area

The effective mode area (EMA) of fibers can be derived from the modal distribution

F (x, y) of the fundamental fiber mode and writes as [34]:

Aeff =

(∫ ∫∞

−∞
|F (x, y)|2 dxdy

)2

∫ ∫∞

−∞
|F (x, y)|4 dxdy

(1.4)

where F (x, y) is the transverse distribution of the optical mode, for SMF the fundamental

mode. The EMA of a fiber is important because nonlinear effects are rising with higher

intensity density. Since PCFs often have small fiber cores, their EMA is small as well and

nonlinear effects get more important. The other way around, large mode area fibers are

especially made to avoid high nonlinear effects such as Brillouin and Raman Scattering.

Later we will see that the EMA plays a role for the critical power for stimulated Brillouin

scattering.

1.1.2.3 Numerical aperture

The numerical aperture (NA) of a fiber is one of the parameters that are always provided

by fiber manufacturers because it is related to the maximum angle θairc under which light

can be injected into the fiber core [12]:

NA = sin(θairc ) =
√

n2
core − n2

clad = ncoresin(θc) (1.5)

The NA is normally measured at the output of the fiber and defined at 1% of the Gaussian

intensity profile. Since in a multimode fiber the higher modes are more diffracted at the
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Figure 1.7: (a) Coupling of light from the output of the fiber into free space with half-

divergence angle θ [36]; (b) Half-divergence angle of a PCF for different hole sizes [36].
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fiber output the Gaussian profile gets broader and the NA is higher. This factor is

important if working with free space optics and can be calculated for PCFs [37]:

NA ≈
(

1 +
πAeff

λ2

)−1/2

(1.6)

with Aeff the EMA and λ the wavelength of the incident light. This approximation

has been made for a Gaussian field of width ω since there is the standard approximate

expression tan θ = λ/πω for the half-divergence angle θ (Fig.(1.7a)) of the light diffracted

at the output of the fiber [37, 38]. In [36] we find a study of the NA in dependence of

the air filling fraction d/Λ (Fig.(1.7b)) where it can be seen that for larger air holes, the

numerical aperture rises independently from the core diameter which has been fixed in

this study.

1.1.2.4 Cutoff wavelength

For conventional fibers the following cutoff wavelength can be calculated to know above

which wavelength the fiber is a single mode fiber [34]:

λ =
2πa

V

√

n2
core − n2

clad (1.7)

where V=2.405 is the normalized frequency and the first zero of the Bessel function

J0 [12] and a the radius of the fiber core. This means that single mode propagation for

a short wavelength of 500 nm requires a small fiber core. Increasing then the launched

wavelength in such a small core fiber causes that the fundamental mode spreads further

into the cladding, which ends up in a high sensitivity to fiber bending [12].

As already mentioned, it has been shown in [14] that PCFs have a large range of single

mode guidance and can even be endlessly single mode. For PCFs, Eq.(1.7) has to be

Endlessly 

Single-mode

Single-mode

Multi-mode

(b)(a)

Figure 1.8: (a) Variation of Veff with Λ/λ for various air filling fractions d/Λ, dashed

line: V=2.405, cutoff value for a step-index fiber [14]; (b) Cutoff wavelength over air

filling fraction in which three different regimes are shown: single mode, multi mode and

endlessly single mode [37].
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modified because there is no refractive index nclad but rather an effective index nclad,eff for

the air hole cladding structure [14]:

λ =
2πaeff
Veff

√

n2
core − n2

clad,eff (1.8)

where aeff is the diameter of a circle that is embedded into the hexagonally symmetric

fiber core and Veff depends on the air filling fraction, as shown in Fig.(1.8a). For certain

values of d/Λ, Veff is always below the critical value V=2.405, which means that the fiber

is single-mode for all wavelengths. Another study has been done in Ref. [37] where the

same results has been obtained, presented in Fig.(1.8b). We obtain an endlessly single

mode fiber under a certain value of the air filling fraction d/Λ and the typical behaviour

of a cutoff wavelength above this value. An empirical formula for this cutoff wavelength

in function of d and Λ is given by [37]:

λ ≈ 1.34 Λ

(
d

Λ
− 0.45

)0.45

(1.9)

1.1.2.5 Birefringence

The so-called single-mode fibers guide actually two optical modes simultaneously. They

are orthogonally polarized and the two will propagate with the same velocity in perfectly

radial-symmetric fibers. In birefringent fibers, i.e. fibers that are not completely radial

symmetric, these two modes have a different phase and group velocity because the re-

fractive index is different for the different modes, propagating according to an x-axis and

orthogonal y-axis. The phase modal birefringence is given by:

Bm =
|βx − βy|

k0
= |nx − ny| = ∆n (1.10)

with βi the mode propagation constant, k0 the wave vector in vacuum and ni the refractive

index according to the axis. The group modal birefringence can then be written as:

∆N = ∆n− λ
d∆n

dλ
(1.11)

Conventional fibers are theoretically not birefringent but material and geometrical inho-

mogeneities can induce a low birefringence in the order of 10−6. As one may think that

PCFs with a hexagonal structure may be birefringent since they have not the same air-

material distribution in x- and y-axis, it should be emphasized here, that this is not the

case. As explained in [39] the hexagonal symmetry of a perfect micro structured fiber

leads to no birefringence. Nevertheless, PCFs are more sensitive to irregularities, since

small variations of the hole diameter lead to a different refractive index. Besides the draw-

ing process of PCFs is more complicated and induces more fiber irregularities [40,41]. On
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the other hand PCFs with asymmetrical air hole structure like two big air holes, as shown

in Fig.(1.2), can reach ultra-high birefringence up to 10−2, as presented in Refs. [42, 43].

1.1.2.6 Dispersion

Dispersion describes the effect that the refractive index n is dependent on the light fre-

quency. The parameter β(ω) is the mode propagation constant of the optical mode and

can be developed as follows by Taylor expansion:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) + 1/2β2(ω − ω0)

2 + ... (1.12)

with

βm =

(
dmβ

dωm

)

ω=ω0

(1.13)

m = 0...n and

β =
neffω

c
(1.14)

We can calculate β1 and β2:

β1 = 1/VG = nG/c = 1/c ·
(

neff + ω
dneff

dω

)

(1.15)

β2 = 1/c(2
dneff

dω
) + ω

dn2
eff

dω2
) (1.16)

where VG is the group velocity and nG the group refractive index. The group velocity

dispersion (GVD) can be derived:

D(λ) =
dβ1
dλ

= −2πc

λ2
β2 = −λ

c

d2neff

dλ2
(1.17)

given in ps · nm−1 · km−1. The zero-dispersion wave length (ZDW) is defined at D=0

and is important for pulse propagation and for nonlinear processes as for example those

that lead to supercontinuum generation. PCFs have the particularity that the ZDW can

be adjusted by the micro structure and even two or three dispersion wavelengths can be

obtained [44].

1.1.2.7 Fabrication and splicing

Micro structured optical fibers need a more specific drawing process than conventional

fibers because of their tiny air-hole micro-structure. Here, the procedure for the most

common PCFs with a hexagonal structure is shortly sketched in Fig.(1.9). In a first step
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10 mm

3 mm

25 mm
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2 mm

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 1.9: Example of a PCF drawing process for a PCF with hexagonal structure,

schemes courtesy of A. Kudlinski, Ircica Lille

.

capillary-shaped rods are drawn down to 2mm diameter. Then they are hexagonally ar-

ranged with a solid rod (solid core fiber) or also capillary rod (hollow core) in the middle

to build the fiber core (step 2). The third step is inserting this structure in a jacketing

tube which is the primary PCF preform, the stack (25mm diameter). This stack is then

drawn down to 3mm, to a so-called cane, in step 4. In a last step a second jacketing tube

surrounds the cane and will finally be drawn down to the PCF with a 125µm outer di-

ameter. During this last step the temperature, pressure and drawing velocity is precisely

controlled because it is crucial in order to obtain the same air hole size and a uniform

longitudinal structure. In paragraph 3.4 two PCFs with different drawing processes will

be compared with respect to their longitudinal uniformity. It is also possible to insert

purposely micro structure variations by sinusoidally changing the outer diameter. These

fibers are investigated in chapter 4 by different Brillouin scattering measurements.

Splicing PCF to conventional SMF has attracted much interest because the connection

between them is challenging. The different mode field diameter and the sensitive air hole

structure of the PCF need a specific splicing process. In our experiments two different

fiber splicers were used: arc fusing splicer (with Ericsson FSU 995 PM) and filament
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fusing splicer (Vytran FFS-2000). In general the two fiber ends that should be spliced

are cleaned and cleaved carefully, so that their end facet are perfectly plane. Then they

are aligned by help of high precision micro controllers. In case of arc fusing splicing an

electric spark is generated that rises the temperature up to the melting point of silica and

melts both fiber ends together. In contrast filament fusing uses a tungsten filament that

allows for a slower splicing and thus for a more homogeneous splicing point and lower

splicing losses. Moreover, the fiber is heated over a longer length of the fiber which can

be used for taper drawing. For a deeper insight and an overview about some interesting

papers about PCF splicing the reader is referred to Ref. [45] and for fusing splicing to

Ref. [46].

1.2 Nonlinear effects in optical fibers

In order to describe light propagating through a material, we have to consider how the

polarization (the dipole moment per unit volume) changes with an applied electric field.

The induced polarization P for a dielectric material, that is exposed to an electric field

E, can be written as [47]:

P = ε0 χE (1.18)

where χ is the susceptibility, dependant on the material. For intense electric fields, the

response of the material gets nonlinear which is expressed in the following extended form

where the susceptibility χ developed in higher orders:

P = ε0

(

χ(1) · E+ χ(2) : EE+ χ(3)...EEE+ ...

)

=

= P
(1)
L +P

(2)
NL +P

(3)
NL + ... (1.19)

where ε0 is the vacuum permittivity and χ(j) the j th order susceptibility.

1.2.1 Second-order susceptibility

The second-order susceptibility χ(2) is responsible for nonlinear effects like second har-

monic generation (SHG), sum-frequency generation (SFG), difference-frequency genera-

tion (DFG), optical parametric amplification (OPA), optical rectification and the Pockels

effect. But the second-order susceptibility has only an important contribution in crystals

with no inversion symmetry at a molecular level. A widely used material that is not

inversion symmetric is LiNbO3 because it exhibits one high nonlinear coefficient in the

susceptibility matrix χ(2). A lot of research has been made for example about photonic



1.2. Nonlinear effects in optical fibers 21

crystals and periodically poled LiNbO3, but also for applications like electro-optics modu-

lators it is an important material. Nevertheless, the second-order susceptibility disappears

in materials with inversion symmetry like silica which is mostly used for optical fibers.

Here, the most important nonlinear effects results from the third-order susceptibility χ(3).

1.2.2 Third-order susceptibility

From χ(3) the refractive index can be rewritten in dependence of the intensity I = |E|2 of
the optical field such as:

n(I) = n0 + n2 |E|2 (1.20)

where n0 is due to the linear susceptibility and n2 can be calculated as:

n2 =
3

8n
Re[χ3

xxxx]. (1.21)

The nonlinear attenuation is given by:

α2 =
3ω0

4nc
Im[χ3

xxxx]. (1.22)

The intensity-dependent refractive index is known as the optical Kerr-effect. In optical

fibers where the fiber core is doped with GeO2, n2 is about 2.6·10−20m2W−1 [34] and in

pure silica 2.2·10−20m2W−1 [48]. By help of the nonlinear refractive index, the nonlinear

coefficient is defined as:

γ =
2πn2

λAeff
(1.23)

given in W−1km−1, where Aeff is the EMA and λ the wavelength of the incident wave.

The nonlinear coefficient γ in silica is small compared to other nonlinear materials but

the fact that the light is confined in a small fiber core is responsible that γ still plays an

important role in silica fibers.

Some important nonlinear effects resulting from the third-order susceptibility χ(3) are:

third-harmonic generation (THG), four wave mixing (FWM), parametric amplification,

stimulated Raman scattering (SRS), cross-phase modulation (XPM), self-phase modula-

tion (SPM) and modulation instability (MI):

• SRS is an inelastic scattering effect and will be further explained in chapter 2.

• THG and FWM are considered as elastic phenomena where THG results in the

generation of one photon with angular frequency 3·ω out of three photons with

angular frequency ω. FWM results in the generation of two photons with angular

frequency ω3 and ω4 out of two photons ω1 and ω2 such as:

ω1 + ω2 = ω3 + ω4 (1.24)
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• SPM occurs when an optical wave experiences a self-induced phase shift due to the

optical Kerr-effect:

ΦSPM = (n0 + n2 |E|2)k0L (1.25)

where k0 is the wavevector and L the fiber length. SPM is the reason for soliton

generation and for spectral broadening of the Brillouin gain in optical fibers if the

pump pulse gets too short.

• XPM causes a phase shift to an optical wave with angular frequency ω1 by another

co-propagating wave with angular frequency ω2:

ΦXPM = n2k0L(|E1|2 + 2 |E2|2) (1.26)

or between two orthogonally polarized angular frequencies:

ΦXPM = n2k0L(|Ex|2 + 2/3 |Ey|2) (1.27)

• MI is the result from the interaction between nonlinearities and dispersion. It is

observed at high optical intensity as two broad side-bands symmetrical around the

pump wave and can be interpreted as a degenerated FWM process where energy is

transferred from the pump wave to both side-bands.

After this short overview about third-order nonlinear effects, an introduction into linear

and nonlinear, elastic and inelastic scattering with a focus on Brillouin scattering will be

given in the next chapter.



1.2. Bibliography 23

Bibliography

[1] A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida,

Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii,

“69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km

using PDM-16-QAM modulation and digital coherent detection”, in Optical Fiber

Communication Conference, OFC, 2010, PDPB7.

[2] D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, and T. Wang J. Hu, “101.7-

Tb/s (370x294-Gb/s) PDM-128QAM-OFDM transmission over 3x55-km SSMF us-

ing pilot-based phase noise mitigation”, in Optical Fiber Communication Conference,

OFC, 2011, PDPB5.

[3] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical

frequencies”, IEE Proceedings J Optoelectronics, vol. 133, no. 3, pp. 1151–1158,

1966.

[4] G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, inc, 2nd

edition, 1997.

[5] T. H. Maiman, “Stimulated optical radiation in ruby”, Nature, vol. 187, pp. 493–494,

1960.

[6] F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical

waveguides”, Applied Physics Letters, vol. 17, no. 10, pp. 423–425, 1970.

[7] J. I. Yamada, S. Machida, and T. Kimura, “2 Gbit/s optical transmission experiments

at 1.3 µm with 44 km single-mode fibre”, Electronics Letters, vol. 17, no. 13, pp. 479

– 480, 1981.

[8] T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode

fibre at 1.55 µm”, Electronics Letters, vol. 15, no. 4, pp. 106–108, 1979.

[9] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode

optical fiber with photonic crystal cladding”, Optics Letters, vol. 21, no. 19, pp.

1547–1549, 1996.

[10] P. St.J. Russell, “Photonic crystal fibers”, Science, vol. 299, pp. 358–362, 2003.

[11] T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full

2-d photonic bandgaps in silica/air structures”, Electronics Letters, vol. 31, no. 22,

pp. 1941–1943, 1995.

[12] L. Thévénaz, Ed., Advanced Fiber Optics, Concepts and Technology, EPFL Press,

2011.



24 1. Optical fibers and their nonlinearities

[13] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts,

and D. C. Allan, “Single-mode photonic band gap guidance of light in air”, Science,

vol. 285, no. 5433, pp. 1537–1539, 1999.

[14] T. A. Birks, J. C. Knight, and P. St. J. Russel, “Endlessly single-mode photonic

crystal fibers”, Optics Letters, vol. 22, no. 13, pp. 961–963, 1997.

[15] J. C. Knight, T. A. Birks, R. F. Cregan, P. St.J. Russell, and J-P. de Sandro, “Large

mode area photonic crystal fiber”, Electronics Letters, vol. 34, no. 13, pp. 1347–1348,

1998.

[16] W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. St. J. Russell,

“High power air-clad photonic crystal fiber laser”, Optics Express, vol. 11, no. 1, pp.

48–53, 2003.

[17] A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, “Designing the

properties of dispersion-flattened photonic crystal fibers”, Optics Express, vol. 9, no.

13, pp. 687–697, 2001.

[18] T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion com-

pensation using single-material fibers”, Journal of Lightwave Technology, vol. 11, no.

6, pp. 674–676, 1999.

[19] J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Heidepriem, S. Asimakis, R. C.

Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richard-

son, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 µm

pumped supercontinuum generation”, Journal of Lightwave Technology, vol. 24, no.

1, pp. 183–190, 2006.

[20] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta

air silica microstructure optical fibers”, Optics Letters, vol. 25, no. 11, pp. 796–798,

2000.

[21] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic

crystal fiber”, Physical Review Letters B, vol. 78, no. 4, pp. 1135–1184, 2006.

[22] M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode

solid core photonic crystal fiber”, Journal of Lightwave Technology, vol. 24, no. 2,

pp. 838–845, 2006.

[23] P. St. J. Russell, E. Martin, A. Diez, S. Guenneau, and A. B. Movchan, “Sonic

band gaps in PCF preforms: enhancing the interaction of sound and light”, Optics

Express, vol. 11, no. 20, pp. 2555, 2003.



1.2. Bibliography 25

[24] V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot,

J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in

photonic crystal fibers”, Physical Review B, vol. 71, no. 4, pp. 045107, 2005.

[25] J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic
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Chapter 2

Light Scattering

In any material, that is not completely homogeneous, light waves are scattered due to den-

sity fluctuations, impurities or thermal particles motion [1]. Different types of scattering

occur:

• Linear scattering, where the incident optical waves do not modify the optical prop-

erties of the material which is the case below a certain threshold for each type of

scattering. Linear scattering can be distinguished in elastic and inelastic scatter-

ing. Photons in an elastic scattering process keep their energy, hence no frequency

shift of the scattered photons is observed, which is the case for Rayleigh scatter-

ing. Inelastic scattering results from an energy exchange with the material and thus

leads to a frequency shift for the scattered optical wave, like spontaneous Raman

scattering and spontaneous Brillouin scattering.

• Nonlinear scattering modifies the optical medium by electrostriction in case of stim-

ulated Brillouin scattering (SBS) and initiation of molecular vibrational and rota-

tional states for stimulated Raman scattering (SRS).

In this chapter an overview about these light scattering types will be given with a special

emphasis on Brillouin scattering, both spontaneous and stimulated scattering.

2.1 Linear Scattering

The term linear scattering comes from the fact that the susceptibility of the material is

independent from the propagating electric field if the optical intensity remains under a
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Figure 2.1: Typical linear scattering spectrum with Stokes and Anti-Stokes components

of Raman, Brillouin and Rayleigh scattering.

certain limit. Then the polarization in Eq.(1.19) is only linearly dependent on the elec-

trical field. A typical optical spectrum of linearly scattered light is depicted in Fig.(2.1).

The scattered waves with a higher frequency compared to the pump frequency are called

Anti-Stokes components, the lower frequency waves are the Stokes components. The

Anti-Stokes components arise when the optical wave absorbs already existing phonons,

the Stokes-components originate from the optical wave dispensing energy on phonons.

The four different types of linear scattering can be distinguished by their frequency shift,

intensity and the form and full width at half maximum (FWHM) of the spectrum as it

will be explained in the next paragraphs.

2.1.1 Elastic Scattering: Spontaneous Rayleigh and Rayleigh-

wing scattering

Rayleigh scattering results from the interaction of light with non-propagating density

fluctuations and leads to spectral broadening (15MHz) without any frequency shift [2].

It has been observed in 1871 by Lord John William Strutt Rayleigh and is the origin for

the blue color of the sky. Light excites the dipole molecules which by themselves emit the

same wavelength where the deviation angle depends on the incident wavelength. Rayleigh

scattering is in addition to infra-red absorption responsible for linear loss in optical fibers.

Rayleigh-wing scattering originates from fluctuations in the orientation of anisotropic

molecules [2] and is spectrally broad with a FWHM of 150GHz because of the fast molec-

ular reorientation response.
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2.1.2 Inelastic Scattering: Spontaneous Raman and Brillouin

scattering

When light exchanges energy with the optical medium, as it is the case for inelastic

scattering, the frequency of the scattered photons changes. Here, the interaction with

optical and acoustic phonons is described: spontaneous Raman and Brillouin scattering.

2.1.2.1 Spontaneous Raman Scattering

Raman scattering is based on the interaction of optical waves with optical phonons. Spon-

taneous Raman scattering is weak, the scattering cross section per unit volume is only

10−6 cm−1 [2]. These high frequency phonons are present as vibrational modes in the

molecules of the medium. Thus, the frequency shift is as high as 13.2THz due to a re-

sponse time of 75 fs, hence a lot more shifted from the pump wave as Brillouin scattering.

The FWHM of spontaneous Raman scattering is about 40THz and the decay time of

the optical phonons is 150 fs. Spontaneous Raman scattering can be seen as a more local

effect due to its molecular origin whereas Brillouin scattering concerns larger areas of the

material, since it is due to acoustic waves in the material.

2.1.2.2 Spontaneous Brillouin scattering

Brillouin scattering originates from acoustic phonons in contrast to the optical phonons

that cause Raman scattering. Acoustic phonons are acoustic waves or elastic waves. At a

temperature T> 0K these acoustic vibrations are present everywhere in the optical fiber

and the phonon number is distributed following the Bose-Einstein distribution:

N =
1

exp
(
hf
kT

)
− 1

+
1

2
. (2.1)

where f is the frequency of the phonon, h is the Planck constant and k the Boltzmann

constant. These acoustic phonons can be expressed as a density variation [2]:

∆ρ =

(
∂ρ

∂p

)

s

∆p+

(
∂ρ

∂s

)

p

∆s (2.2)

where ρ is the density, p the pressure and s entropy. The first term is due to acoustic

waves (adiabatic density fluctuations) and is important for the description of Brillouin

scattering. The second term comes from isobaric density fluctuations and is responsible

for Rayleigh scattering. The change of the density in Eq.(2.2) involves a variation of the
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dielectric constant ε as:

∆ε =

(
∂ε

∂ρ

)

T

∆ρ+

(
∂ε

∂T

)

ρ

∆T (2.3)

with the temperature T. The second term can be neglected because the density variation

influences stronger than temperature variations [1]. Introducing the first term of Eq.(2.2),

which is crucial for Brillouin scattering, into Eq.(2.3) leads to:

∆ε =

(
∂ε

∂ρ

)

T

(
∂ρ

∂p

)

s

∆p =
γe
ρ0

(
∂ρ

∂p

)

s

∆p (2.4)

where the electrostrictive coefficient γe is defined as:

γe = ρ0

(
∂ε

∂ρ

)

T

. (2.5)

By help of Eq.(2.4) we can calculate an additional contribution Padd to the polarization

according to Eq.(1.18):

P = ε0χ · E+∆ε ·E = ε0χ · E+Padd (2.6)

with

Padd =
γe
ρ0

(
∂ρ

∂p

)

s

∆p · E =
γe
ρ0

∆ρ · E (2.7)

From an acoustic point of view the density fluctuations in Eq.(2.2) have to full-fill the

following wave equation for the acoustic propagation1 [2]:

∂2ρ

∂t2
− Γ′∇2∂ρ

∂t
− V 2

A∇2ρ = 0 (2.8)

with VA the acoustic velocity and Γ′ the damping parameter given by:

Γ′ =
1

ρ
[4/3ηs + ηb + κ/Cp(γ − 1)] . (2.9)

Here, ηs and ηs are the shear and the bulk viscosity, κ the thermal conductivity, γ the

adiabatic index and CP the compressibility for constant pressure.

For Eq.(2.8) a general solution can be found as [2, 4]:

∆ρ = 1/2Q(z, t) exp(i(Ωt− qr)) + c.c. (2.10)

In the same way the optical waves have to comply the optical wave equation [2]:

∂2

∂z2
E− 1

(c/n)2
∂2

∂t2
E =

1

ε0c2
∂2

∂t2
Padd (2.11)

1Derived from the Navier-Stokes equations for the case of a viscous and compressible fluid [3]
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where Padd can be found in Eq.(2.1.2.2). The optical wave equation has solutions of the

form

E = 1/2 A(z, t) exp(i(ωt− kr)) + c.c. (2.12)

well-known as electromagnetic waves.

Bringing acoustics and optics together, we can introduce Eqs.(2.10) and (2.1.2.2) into

Eq.(2.11) and obtain a description for Brillouin scattering [2, 5]:

∂2

∂z2
E− 1

(c/n)2
∂2

∂t2
E =

=
γe

4ε0c2
[
(ω + Ω)2Q(z, t)A(z, t) exp(i((Ω + ω)t− (q + k)r))

]
+

+
γe

4ε0c2
[
(ω − Ω)2Q(z, t)A(z, t) exp(i((Ω− ω)t− (q + k)r))

]
(2.13)

in which two spectral components, the Stokes component with frequency ω − Ω and

the Anti-Stokes component with frequency ω + Ω, can be identified. Fig.(2.2) shows

schematically the Stokes process for spontaneous Brillouin scattering with the different

wave vectors and pulsations. The energy and momentum conservation for the Stokes wave

are given by:

ωP = ωS + Ω (2.14a)

kP = kS + q (2.14b)

where ki, ωi (i = P, S) are the wave vectors and frequencies of the pump and Stokes wave

and q, Ω for the acoustic wave, respectively. The respective wavelengths are obtained by:

|kP| =
2 π n

λP
, |kS| =

2 π n

λS
, |q| = 2 π

λB
=

Ω

VA
(2.15)

As shown in Fig.(2.2) the conservation of momentum with angle θ between the pump

k  , ω
P P

k  , ω
S S

k  , ω
P P

k  , ω
S S

q, Ω

q, Ω

(a) (b)

Acoustic wave

Pump wave

Stokes wave

θ

Figure 2.2: Stokes process of spontaneous Brillouin scattering
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and the Stokes wave writes:

|q| = |kP| + |kS| − 2 |kP||kS| cos θ (2.16)

From Eq.(2.15) and Eq.(2.16) we can derive the relationship for the Brillouin frequency

shift:

Ω =
2 n VA
λP

sin(θ/2) (2.17)

Since in optical fibers there are only two possibilities, forward and backward, that the

scattered light is guided, one can see for the maximum of the backscattered Brillouin gain

spectrum (BGS) that the Brillouin frequency shift (BFS) νB is reached for θ = 180̊ :

νB =
2neffVL
λP

(2.18)

with VL the longitudinal acoustic velocity and neff the effective refractive index for the

optical wave. In silica fibers this frequency shift νB of the backscattered light is about

11GHz. For the Anti-Stokes component the same considerations can be made and we

obtain the same frequency shift νB but on the other side of the pump wave. Clearly

spoken, the Stokes wave has the frequency νP − νB and the Anti-Stokes wave νP + νB.

As mentioned, the density fluctuations in case of Brillouin scattering are moving, because

they are acoustic waves. From this point of view the Brillouin scattering process can also

be explained with the Doppler effect because the optical wave is reflected at a moving

grating, in one or the other direction in the fiber. Rayleigh scattering however results

from not moving density fluctuations and thus is not frequency shifted.

2.2 Nonlinear Scattering

In comparison to linear or spontaneous scattering, where light is deviated in the mate-

rial by existing density fluctuations or other inhomogeneities, nonlinear light scattering

modifies the optical properties of the material. We will first give a detailed description

of stimulated Brillouin scattering (SBS) and then a short insight into stimulated Raman

scattering.

2.2.1 Stimulated Brillouin scattering

As we have seen in the previous paragraph, spontaneous Brillouin scattering results from

the interaction between optical pump wave and acoustic phonons which number is deter-

mined by the Bose-Einstein-distribution in Eq.(2.1), thus originates from thermal back-

ground. A small fraction of the pump power is backscattered and shifted by the Bril-

louin frequency shift (BFS, Eq.(2.18)), to both sides to the pump wave, the Stokes and
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Anti-Stokes components. When the optical pump power increases the scattering process

becomes stimulated or nonlinear because the scattered optical waves generate additional

acoustic phonons. In silica fibers the physical mechanism that generates acoustic waves

out of optical intensity lattices is electrostriction which will be explained in the following

paragraph.

2.2.1.1 Electrostriction

Electrostriction is the physical phenomenon whereby materials as silica become com-

pressed under the effect of applied electric fields [2]. The origin for this effect is to

minimize the potential energy of the material by molecules moving to intense areas of the

optical field. The molecules ”escape from the dark” and the material density rises where

an intensity maximum of the optical field is. The force that attracts the molecules to high

optical intensities can be written as [2, 6]:

F = (p∇)E (2.19)

where p = αE is the dipole moment (α polarizability) and E the electric field. This can

be explained on the molecular level where a molecule develops a dipole moment p in the

presence of an electric field. The force in Eq.(2.19) attracts molecules to regions with

higher optical intensity and accordingly changes the density in this part of the material.

The difference in density induces a change for the dielectric constant:

∆ε =
∂ε

∂ρ
∆ρ (2.20)

with ρ the density of the material. The increase in potential energy that is added by the

polarization of the molecule can then be written as:

∆u = 1/2ε0 |E|2∆ε = 1/2ε0 |E|2
∂ε

∂ρ
∆ρ. (2.21)

According to the first law of thermodynamics, the change of energy has to be equal to

the work of compressing the material:

∆W = −pst
∆ρ

ρ0
(2.22)

where pst is the electrostrictive pressure resulting from the electrical field induce compres-

sion. From Eqs.(2.21) and (2.22) we can derive:

pst = −1/2ρ0ε0
∂ε

∂ρ
|E|2 = −1/2γeε0 |E|2 . (2.23)
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where the electrostrictive constant γe has already been defined in Eq.(2.5). Since the

change in density is ∆ρ = −ρCpst with C the compressibility, we find the change in

material density induced by an applied electric field of strength E [2]:

∆ρ = 1/2ε0ρCγeE
2. (2.24)

In these considerations E is a static field, which is not the case for the interferences of the

pump and Stokes waves in SBS. Here, E2 has to be replaced by the mean value of several

optical periods 〈E · E〉 because high frequencies do not contribute to the electrostrictive

pressure by reason of the slow molecule displacement compared to the optical wave. Thus,

only the minima and maxima of the electric field of the beating between pump and Stokes

wave play a role for electrostriction.

2.2.1.2 Classical Theory

Now that we know the physical background of electrostriction we can explain the mech-

anism of SBS in a figurative scheme, shown in Fig.(2.3). The pump wave is scattered by

thermally excited acoustic waves in the optical fiber because they present not only a mov-

ing density grating but also a refractive index grating. The pump wave and the scattered

Stokes wave interfere and create a beating with intensity minima and maxima of light.

By electrostriction the density in regions of high and low optical power will change and

constructs a moving density grating. With the altered density the refractive index in the

optical fiber varies via the electro-optic effect and this results in a moving refractive index

grating. The incident pump wave is now again scattered by the refractive index grating

and the process starts all over. This reinforces the Stokes wave and then consequently

the acoustic wave. Hence, the process can be seen as a feedback loop. As already men-

tioned, the frequency shift of the scattered wave can be understood as the results from the

Doppler-effect: the light is scattered at a moving grating and thus gets a frequency shift.

For the three participating waves the following three wave equations must be full-filled [2].

The acoustic wave equation for an acoustic wave ρ is similar to Eq.(2.8):

∂2ρ

∂t2
− Γ′∇2∂ρ

∂t
− V 2

A∇2ρ = ∇f (2.25)

but with an additional term for the electro-strictive force.

The optical wave equations for the pump wave EP and the Stokes wave ES:

∂2

∂z2
EP − n2

(c2
∂2

∂t2
EP =

1

ε0c2
∂2

∂t2
PNL

P (2.26a)

∂2

∂z2
ES − n2

(c2
∂2

∂t2
ES =

1

ε0c2
∂2

∂t2
PNL

S (2.26b)
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Figure 2.3: Stimulated Brillouin scattering process: a self-sustained loop with different

participating physical phenomena: electrostriction (optical intensity lattice to a density

wave), elasto-optic effect (density wave to a refractive index grating), diffraction (pump

wave is diffracted at the refractive index grating), interference (pump and Stokes wave

create an optical intensity pattern).

The solutions for these wave equations have the form:

ρ = Q · exp(iqz − iΩt) + c.c. (2.27)

for the density wave and

EP = AP · exp(ikPz− iωP t) + c.c. (2.28a)

ES = AS · exp(ikSz− iωSt) + c.c. (2.28b)

for the pump and the Stokes wave, respectively. Note that ωP = ωS +Ω and kP = kS + q

as mentioned in paragraph 2.1.2.2. Since we are in an optical fiber where only forward

an backward waves are guided we can write the different wave vectors as scalars.

In Eq.(2.25) an additional term ∇f for the electrostrictive force coming from the interfer-

ences between pump and Stokes waves is added. It can be expressed with help of Eq.(2.23)

and considering the form of the optical waves as:

∇f = ∇∇pst = ∇(−1/2γeε0〈E2〉) = γeε0(kP − kS)
2 [APA

?
P exp(i(kP − kS)z − iΩt) + c.c.]

(2.29)
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Substituting Eqs.(2.29) and (2.27) in (2.25) results in the following equation for the am-

plitude Q in Eq.(2.27), assuming that the acoustic amplitude varies slowly in space and

time which means amongst others that all the second derivations in time and space can

be neglected:

−2iΩ
∂Q

∂t
+
(
Ω2

B − Ω2 − iΩΓB

)
Q− 2iqV 2

A

∂Q

∂z
= ε0γeq

2APA
?
S. (2.30)

ΓB is the Brillouin linewidth and replaces: ΓB = q2Γ′.

The polarization in Eqs.(2.26) is nonlinear in contrast to spontaneous Brillouin scattering

because the polarisation depends on the optical intensity as implicitly claimed in para-

graph 2.2.1.1 about electrostriction. Thus, with Eq.(2.1.2.2) Padd = γe
ρ0

(
∂ρ
∂p

)

s
∆p · E, the

nonlinear polarisation terms in Eqs.(2.26) can be written as

PNL
P (z, t) = ε0γe/ρ0QAS (2.31a)

PNL
S (z, t) = ε0γe/ρ0QAP (2.31b)

where Q is the amplitude for the acoustic wave, the solution of Eq.(2.30):

Q(z, t) = ε0γeq
2 APA

?
S

Ω2
B − Ω2 − iΩΓB

. (2.32)

Here steady-state conditions are assumed (the time derivative term vanishes) and the

spatial derivation in Eq.(2.30) is neglected. Now we introduce the solutions Eq.(2.28)

and the polarisation Eq.(2.31) into the wave equations Eq.(2.26) and we obtain, with the

approximation of the slowly varying amplitude, the coupled equations:

∂AP

∂z
+

1

c/n

∂AP

∂t
=

iωγe
2ncρ0

QAS (2.33a)

−∂AS

∂z
+

1

c/n

∂AS

∂t
=

iωγe
2ncρ0

Q?AP (2.33b)

Here the approximation has been done that ω ≈ ωP ≈ ωS. If we use steady-state condi-

tions, the time derivations can be neglected. With Ii = 2nε0cAiA
?
i , i=P,S the following

differential equations for the intensities are then derived:

dIP
dz

= −gBIP IS − αIP (2.34a)

dIS
dz

= −gBIP IS + αIS (2.34b)

SBS is a gain process and the Brillouin gain spectrum (BGS) gB has a Lorentzian shape:

gB(Ω) = gB
(∆νB/2)

2

(ΩB − Ω)2 + (∆νB/2)2
(2.35)

with the Brillouin gain factor [7]:

gB =
4πn8p212

cλ2Pρ0νB∆νB
. (2.36)

The different parameters for gB0 can be found in table (2.1). In literature values ranging

from 1·1011mW−1 to 5·1011mW−1 [11–13] are reported.
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Table 2.1: Values to calculate the Brillouin gain gB
Refractive index silica n = 1.444 [8]

Elasto-optic constant SO2 p12 = 0.285 [9]

Density ρ0 = 2.21·103 kg/m2 [10]

Pump wave λP = 1.55 µm

Acoustic velocity νA = 5996 m/s [9]

FWHM ∆νB = 28MHz

2.2.1.3 Acoustic decay time

The Brillouin linewidth ΩB is given as angular frequency and is related as ΩB = 2π∆νB
to the measured frequency linewidth ∆νB in the experiment. The acoustic decay time is

inversely linear related to the Brillouin linewidth ∆νB [14–16]:

τA =
1

π∆νB
(2.37)

when referring to the amplitude of the acoustic wave, as the amplitude and not the

intensity of the acoustic wave enters Eq.(2.33). However, the decay time of the acoustic

phonon is half of τA because phonons are energy packages so related to the square of the

amplitude I = ‖Q‖2. Since it is an exponential decay and the quadrature is found in

the exponent, this leads to a phonon life time τPh = τA/2 [2]. Further discussions can be

found in [5]. In chapter 3.5, we will present measurements of the acoustic decay time τA
of the Brillouin Stokes wave which are in good agreement with Eq.(2.37).

2.2.1.4 Brillouin threshold

As we have now discussed spontaneous and stimulated Brillouin scattering, an interesting

parameter has to be introduced, the critical pump power for the Brillouin threshold. It

defines a kind of threshold between spontaneous and stimulated scattering, where the

power of the backscattered wave begins to grow exponentially and is no more weak.

Different definitions exist for the threshold, for example when the backscattered power

equals the pump power [16] or when the backscattered power is 1% of the pump power [17].

The threshold can then be derived from the previous equations for stimulated Brillouin

scattering as [7]:

Pcr =
C ·K · Aeff

gB · Leff

, (2.38)

where Aeff is the EMA, Leff the effective length, C a constant and gB the Brillouin gain.

K=3/2 is a factor that accounts for random polarization evolution in the fiber and C

depends amongst others on the fiber parameters, the Brillouin frequency shift (BFS), the
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Brillouin gain spectrum (BGS) and the definition of the Brillouin threshold [7]. C is often

given as 21, according to Smith et al. in 1972 [18] but this is an approximation which can

be derived more precisely as will be explained in chapter 4.

2.2.2 Stimulated Raman scattering

As mentioned in paragraph 2.1.2.1 spontaneous Raman scattering comes from the interac-

tion of optical waves with molecular vibrations of the medium. It is a weak process where

about 10−6 cm−1 of the pump power is converted to the scattered waves. If the pump

power is sufficiently high, the interference of the incident optical wave and the Stokes

wave is strong enough to stimulate the molecules to vibrate at the Raman frequency ΩR

and the scattering becomes a stimulated process. The pump and signal wave can be

expressed as [16]:

∂PP

∂z
= −ωP

ωS

gR
Aeff

PPPS − αPPP (2.39a)

∂PS

∂z
=

gR
Aeff

PPPS − αSPS (2.39b)

where Pi (i=S,P) is the power of the pump and Stokes waves, αi the absorption coefficients

and gR the Raman gain which is in the order of 1·10−13mW−1. A critical pump power,

a threshold, for SRS can be defined where the Stokes power generated from noise equals

the injected pump power [16]:

Pseuil
Raman =

16Aeff

gRLeff

(2.40)

The critical pump power for SRS is higher than for SBS. The factor 16 may eventually

have to be recalculated in the same way as the factor C in Eq.(2.38) for the Brillouin

threshold power since it originates from the same considerations in Smith et al. [18].

At the end of this paragraph about nonlinear light scattering a short comparison between

SRS and SBS is summarized in table (2.2).

Table 2.2: Comparison of stimulated Raman and Brillouin scattering [2, 19]

Raman Brillouin

Phonon type Optical phonon Acoustic phonon

Frequency shift 13.2THz (independent of λPump) 11GHz (dependent of λPump)

Damping time ≈ 75 fs ≈ 10 ns

Direction forward & backward only backward (phase matching)

Gain ∝ ρ
λPump

(ρ density) ∝ ρ2 (ρ density)

Gain (mW−1) 1·10−13 1-3·10−11
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2.3 Forward Brillouin Scattering

As explained in the previous paragraph Brillouin backscattering results from the interac-

tion of longitudinal acoustic waves and the optical wave. The frequency shift depends on

the angle between acoustic and pump wave and has been derived in Eq.(2.18). According

to this equation, in forward direction no frequency shift should be observed. But forward

Brillouin scattering, also called guided acoustic wave Brillouin scattering (GAWBS), is

caused by mostly transversal acoustic modes with a very small component in longitudinal

direction. The transverse acoustic modes induce a phase shift to the optical waves which

can be measured by an interferometer.

Two types of transverse acoustic modes are crucial for GAWBS: radial modes (Fig.(2.4a))

and torso-radial modes (Fig.(2.4b)). They are density waves that oscillate with a certain

frequency. They both cause a periodically in time changing effective refractive index in

the fiber core that can be written as:

∆neff = neff · cos(ωGAWBSt). (2.41)

Imaging the optical waves passing through a local transverse mode (Fig.(2.5)), it leads

to a phase shift on the optical wave because the effective refractive index changes as

for an acousto-optic modulator. It can be seen as a temporal grating, thus we will be

able to observe the vibration as a frequency peak in frequency domain (Fig.(2.5), f1 and

f2). Of course, these acoustic modes can be found all over the fiber because they orig-

inate from acoustic phonons, whose number is given by the Bose-Einstein distribution,

Eq.(2.1), comparable to what has been explained for spontaneous Brillouin scattering in

paragraph 2.1.2. It must be emphasized that forward Brillouin scattering is also sponta-

neous scattering caused by acoustic modes that are propagating in all directions in the

fiber. A stimulated process with a CW pump as for backward scattering can barely be

managed because of the very small wave-vector in longitudinal direction of the transverse

acoustic modes. Some experiments to stimulate GAWBS have, however, been performed

(a) (b)

Figure 2.4: Transverse acoustic modes in a glass rod: (a) Radial symmetric acoustic

modes R0m, torso-radial acoustic modes TR2m
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Figure 2.5: Description of forward Brillouin scattering. A pump wave at fp gets phase

shifts passing through transversal acoustic modes which is observed at the output of the

fiber in frequency regime

by Prof. Russell’s group by using train pulses to increase the optical intensity [20, 21].

Additionally to the phase modulation by both types of acoustic modes, torso-radial modes

change the polarization state of the optical wave as they break the radial symmetry of

the silica rod. These modes can be observed by choosing the polarization state before

injecting into the fiber and measuring in another polarization state at the output of the

fiber. The resulting frequency peaks are called depolarized GAWBS in contrast to polar-

ized GAWBS, caused by the polarization preserving radial modes.

Since forward Brillouin scattering is observable through phase modulation induced by

both types of transverse modes an interferometer setup must be employed to observe it.

This will be further explained in chapter 5. Visualizing GAWBS by an interferometer

reveals many frequency peaks up to 1GHz for an SMF, owing to the interaction of many

acoustic modes together with the optical mode. This phenomenon has been presented

for the first time by Shelby et al. [22]. Fig.(2.6) shows their results for polarized (a) and

depolarized (b) GAWBS where plenty of distinct frequency peaks up to 600MHz (a) and

800MHz (b) appear. The frequency values depend on the outer diameter of the cladding

dext and the ratio between the transverse and longitudinal acoustic velocity α = VL/VT.

For an SMF, that can be considered as a cylindrical glass rod from an acoustic view

point, the frequency values can theoretically be obtained by resolving the following two

equations:

For polarized GAWBS (R0m-modes):

(1− α2)J0(ym)− α2J2(ym) = 0 (2.42)

For depolarized GAWBS (TR2m-modes):

∣
∣
∣
∣

(3− y2m/2J2(αym) (6− y2m/2)J2(ym)− 3ymJ3(ym)

J2(αym)− αymJ3(αym (2− y2m/2)J2(ym) + ymJ3(ym)

∣
∣
∣
∣
= 0 (2.43)
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(a)

(b)

Figure 2.6: (a) Depolarized and (b) polarized GAWBS in an SMF, observed in Ref. [22].

with Jn(y), n=0,2 the nth Bessel functions, ym the solutions and α = VL/VT. These

equations are derived from the boundary conditions in a uniform long cylinder. A detailed

description can be found in Ref. [23].

For photonic crystal fibers (PCFs) the analysis is more complicated because of the air-hole

micro-structure. Thus, it will be resolved by numerical simulations based on the finite

element method (FEM) in chapter 5.

2.4 State of the art

The last paragraph of this chapter is dedicated to a short overview about some milestones

in research up to recent publications that deal with Brillouin scattering. The first part is

about investigations in stimulated Brillouin scattering in optical fibers from a general view

point. In the second part several papers about guided acoustic wave Brillouin scattering

will be presented with a special attention to PCFs. Finally we will have an insight into

the research of fiber sensors with a focus on distributed Brillouin sensors.

2.4.1 Stimulated Brillouin scattering

For the first time Léon Brillouin predicted in 1922 [24] theoretically the scattering of

X-rays and optical waves on thermally excited acoustic waves in crystals. He pointed out

that in contrast to Rayleigh-scattering the light-matter interaction induces a frequency



42 2. Light Scattering

shift to the scattered waves. Another type of inelastic light scattering was discovered

in 1928 by Raman and Krishnan [25]. Besides these investigations in India and France,

molecular scattering was also studied by Landsberg and Mandelshtam in Russia, Smekal

in Austria and Wood in the United States [1, 7]. But not until the achievement of the

laser in 1960 [26] these nonlinear phenomena became an important research field and led

later to many applications e.g. in telecommunication, spectroscopy and sensor systems

for temperature and strain.

The first experimental investigation of SBS in crystals of quartz and sapphire has been

realized in 1964 by Chiao et al. [27]. An accurate measurement with high resolution

interferometers has been made possible and provided further informations about the fre-

quency shift, the linewidth and intensity of the Brillouin gain spectrum. An early paper

by Tang et al. [28] shows a detailed analysis of the three coupled nonlinear wave equations

in order to describe the amplification of the coherent Stokes wave by SBS. Using Brillouin

scattering, acoustic properties as the sound velocity have been measured, e.g. in different

glasses in Ref. [29].

Stimulated Brillouin scattering was also studied in optical fibers, for the first time in

1972 by Ippen and Stolen [30]. In the same year Smith published a paper about stimu-

lated Brillouin and Raman scattering limitations in low-loss optical fibers. He considered

Brillouin scattering as detrimental for fiber-based optical communication and derived a

formula for the Brillouin threshold which has been widely used. Other important early

publications are about SBS in single mode fibers in 1983 (Cotter [13]) and spontaneous

Brillouin scattering for fiber characterization in 1986 (Tkach et al. [31]). Later Boyd et

al. [17] and Gaeta et al. [32] explained theoretically how SBS can be derived from thermal

acoustical noise and developed a theoretical model based on statistic properties of SBS.

In [17] another definition of the Brillouin threshold has been introduced (if the backscat-

tered power equals 1% of the input power) and in [32] we find descriptions about the

dynamics of the Brillouin gain spectrum, e.g. that the Lorentzian shape develops to a

Gaussian one with increasing input power. In 1997, Niklès et al. [33] provided a detailed

investigation of the Brillouin gain spectrum in SMF and its dependence of temperature

and strain. An overview about different measurement methods of the Brillouin gain spec-

trum will be given in paragraph 3.1.1.1. Other publications about the Brillouin gain

investigate spectra in the depleted pump regime [34], polarization dependency of Bril-

louin scattering [35–38] and linewidth broadening of the BGS [39,40]. Kovalev et al. [39]

claimed that the linewidth broadening is related to the numerical aperture of the fiber and

proposed an inhomogeneous model of SBS in Ref. [40]. They assumed that the optical

fiber guides a fan of different beam directions within the critical angle of the numerical

aperture that leads to inhomogeneous broadening of SBS. This paper, however, leads to

controversy because the SBS linewidth broadening can be interpreted by the standard

three-wave model without involving inhomogeneous broadening [41]. A new parameter
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for the Brillouin gain coefficient has been proposed in Ref. [11]. Instead of using gB they

introduce the parameter CB that is the value of C(ν) = g(ν)/Aao
eff at the maximum BFS,

νB, where A
ao
eff is the acousto-optic effective area. CB is directly measurable and makes a

better comparison of fibers with different EMAs. Other work about the magnitude of the

Brillouin gain coefficient can be found in [42–45]. On the one hand, Brillouin scattering

has led to an amount of interesting phenomena as slow and fast light [46, 47] and appli-

cations as Brillouin fiber lasers [48, 49] and Brillouin sensors (see paragraph 2.4.3.3). An

extensive overview about applications of Brillouin scattering is listed in [7]. On the other

hand it is detrimental for fiber communication systems and fiber lasers and thus many

different active and passive techniques have been developed to suppress it. An overview

about Brillouin suppression techniques can be found in chapter 4.

Since the discovery of PCFs [50, 51], SBS has also widely been studied in this new type

of fibers because the periodic air-hole micro-structure provides unexpected effects on the

acoustic modes and their small cores lead to high nonlinearity. The first work about SBS

in PCF has been carried out at the University of Southampton [52] where a multi-peak

backscattered Brillouin spectrum has been observed. Another publication of this group

has also shown a broadened BGS in comparison to standard DSF [53].

Later works reported on the influence of the microstructure on the effective refractive

index by cutting a PCF into 2m-long pieces [54] and its impact on the Brillouin thresh-

old [55]. In Refs. [56, 57] PCF with germanium-doped cores and their temperature coef-

ficients have been studied in order to perform simultaneous measurement of strain and

temperature. Later publications were dedicated to SBS in ultra-small core PCF. Dainese

et al. [58] investigated nano-structured PCF and revealed a clearly separated three-peak

spectrum with narrow FWHM which increases the Brillouin threshold fivefold. A higher

threshold, due to linewidth broadening, has also been reported in 2007 by our research

group [59]. A distributed Brillouin gain measurement was also performed that reveals

the influence of strain on the BGS. Two other articles by McElhenny et al. [60, 61] point

out the behaviour of Brillouin gain, shift and threshold for small core PCF from 1.7µm

to 8µm core diameter in relation to the polarization state. Another article about po-

larization dependency in highly birefringent microstructure fiber contains an interesting

experimental analysis about the distributed BFS with a dual-peaked spectrum [62]. In

our laboratory, as a part of this thesis, the influence of inhomogeneities in PCF has

been studied in [63, 64] with respect to Brillouin gain and threshold measurement and

a distributed characterization of the BGS. A further result of the distributed Brillouin

measurement has been obtained by extracting the phonon life time in PCF and comparing

it to the Brillouin gain linewidth [65, 66]. These publications will be discussed in detail

in paragraph 3.4 and 3.5.

More recently, two research groups have been interested by theoretical modeling of SBS.
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In Ref. [67] a detailed implementation of a 2-D finite-element method is proposed to

simulate Brillouin gain characteristics of PCF with different refractive index profiles and

material composition. Taking into account the effect of electrostriction, Carlson et al. [68]

presents a full vectorial numerical investigation of Brillouin gain and phonon decay rate.

The paper proposes random acoustically micro-structured PCF which results in Brillouin

suppression by 8 dB relative to that of homogeneous fused silica fibers.

By this wide variety of publications about SBS in PCF, the high interest in this re-

search field is represented. Nevertheless, forward scattering in PCF has attracted also

much attention as we will see in the next chapter.

2.4.2 Guided Acoustic Wave Brillouin Scattering

Guided acoustic wave Brillouin scattering (GAWBS) has been experimentally investigated

for the first time in Refs. [22,69]. In Fig.(2.6) the frequency peaks for polarized and depo-

larized GAWBS are shown that have been obtained up to 800MHz. These modes, weak

in comparison to SBS, can give us informations about the fiber structure because they

result from transverse acoustic modes. Articles about the influence of the design of single-

mode fibers on GAWBS [70, 71] have been published where they also test the possibility

of estimating the fiber core diameter with help of GAWBS [71]. Dynamics of GAWBS in

a Brillouin fiber ring laser has been studied [72], i.e. the coupling between longitudinal

and transverse modes. Forward Brillouin scattering in dual-mode single-core fibers was

shown in [73]. Besides, some work has been done on the dependency of dopant [74] where

different acoustic velocity have been measured and the influence of applied strain and

temperature [75]. These articles show a strong impact of the fiber microstructure, on

forward Brillouin scattering.

Indeed, in 2005, our research group demonstrated in Ref. [76] that a PCF can also

be a phononic crystal. The authors investigated theoretically phononic band-gaps in

a nanostructured cored PCF which should lead to SBS suppression. Therefore a mixed

microstructure-nanostructure PCF has been designed to guide the optical mode on the

one hand but on the other hand have a band-gap for SBS phonons. Experimentally, for-

ward Brillouin scattering in PCF has first been observed in Ref. [77]. Since several of

their experiments were working at the quantum noise limit, they were interested in these

new micro-structured fibers to dispose of the numerous acoustic modes up to 200MHz.

Indeed, they observed a tenfold noise reductions compared to a conventional optical fiber.

In our lab, Beugnot et al. [78] showed one year later that in PCFs a main mode, related

to the fiber core, is enhanced and the frequencies peaks in the lower frequency regime are

almost suppressed. They also proposed that the fiber core diameter and the frequency of
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the fundamental mode are related by the transverse acoustic velocity in silica.

In Ref. [79], another term for forward Brillouin scattering is proposed: Raman-like light

scattering because the frequencies of the peaks are independent from the pump wave-

length like for Raman-scattering and the acoustic phonons behave like optical ones, tightly

trapped in the small fiber core. Starting with this paper, a lot of publications followed

from Russell’s group. They reported about the excitation of GAWBS by electrostriction

using pulse trains [20, 80] and used this technique for the characterization of acoustic

resonances in fiber tapers [21]. They also found a relation between taper diameter and

frequency of the acoustic resonance but slightly different to Ref. [78]. This will be more

detailed in chapter 5.2. In Ref. [81] several PCFs with different air-filling fractions have

been investigated and two types of forward scattering are distinguished: intramodal (fre-

quency shifted within the same optical mode) and intermodal (frequency shifted and in

a different optical mode). Recently, Kang et al. [82] presented stimulated forward scat-

tering by launching the pump and stokes waves orthogonally in a birefringent PCF. They

called this effect forward stimulated inter-polarization scattering (SIPS) and it led to new

applications, e.g. a variable-optical attenuator [83] and a light-driven opto-acoustic isola-

tor [84].

Forward Brillouin scattering in a highly nonlinear fiber has also recently been investi-

gated [85]. Due to a large gain, frequencies up to 1GHz have been observed. The Anti-

Stokes side-bands are shown to be slightly asymmetric compared to the Stokes spectrum

as resulting from interferences with the optical Kerr-effect. It has also experimentally

been shown that the linewidth of the peaks increases linearly with the acoustic frequency.

In our lab as a part of this work, the effect of a PCF with multi-scale structure on the

forward Brillouin scattering spectrum has been presented in [86]. The strong relation be-

tween the different diameters in the micro structure and the GAWBS spectrum is pointed

out, experimentally and numerically, and the impact of transverse structural irregularities

is clearly shown. A full vector finite-element model reveals the elastic radial vibrations of

the real (based on the SEM-image) and the perfect micro-structure. More details will be

found in chapter 5.4.

2.4.3 Fiber Sensors

2.4.3.1 Overview

An optical fiber sensor reveals a measurand of interest in one (or more) properties of

an optical signal that is guided within an optical fiber [87]. The light guided by the

fiber is influenced by the measurand, such that the output-light exiting the optical fiber
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sensor can have different output-power, phase, polarization state or different spectral

components compared with the incoming-light [87]. Possible measurands are distances

and displacements (by reflection or interferometric method), mechanical strain (elasto-

optic effect), rotation (Sagnac effect), electric voltages and currents (electro-optic and

Faraday effect), temperature (thermo-optic effect, black body radiation, fluorescence) or

chemical properties (absorption, luminescence) [87]. The advantages of fiber sensors are

manifold: low-cost, low in weight, immune to electromagnetic interference, chemically

passive and capable of remote measurement [5]. Fiber sensors can be divided in two

categories [87]:

• intrinsic sensors (optical fiber contains the sensing element or is the sensing element)

and extrinsic sensors (optical fiber only transports the information from the sensing

element)

• point sensors (sense localized points along a fiber) and distributed sensors (deliver

a continuous sensor signal along the fiber)

Our field of interest focus on distributed Brillouin fiber sensing where the fiber itself is the

sensing element. Consequently, we can categorize them as intrinsic distributed sensors.

We will not further deepen the field of point sensors but provide a short overview about

the different distributed Brillouin fiber sensors.

2.4.3.2 Distributed fiber sensors

In distributed fiber sensors, information about the measurand is obtained at each point

of the fiber with a certain spatial resolution. The principle of distributed fiber sensors is

sending an optical pulse through the fiber, observing the backscattered light and measur-

ing the position in the fiber with the time-of-flight of the pulse. The spatial resolution is

given by the pulse width of the pump pulse.

Rayleigh scattering was first used for this purpose, which is known as Optical Time-

Domain Reflectometry (ODTR). It has been developed in 1976 by Barnoski et al. [88]

and is mainly used for detecting loss, splices and any other defaults in the fiber. The first

distributed sensor using inelastic scattering was developed in 1985 by Dakin et al. [89]

using Raman backscattered light. The Raman backscattered signal is lower than Rayleigh

backscattering but offers a higher sensitivity to temperature. The third category of dis-

tributed sensors is based on Brillouin scattering and can be divided into different evalua-

tion techniques: Time domain, frequency domain and correlation based.
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2.4.3.3 Distributed Brillouin sensing

Brillouin sensors exploit the sensitivity of the BFS to temperature and strain. Brillouin

sensing provides some advantages compared to other distributed techniques [90]. They

use low-loss and low cost single-mode optical fibers which offers a long distance range (up

to several tens of km) and compatibility with telecommunication components. Besides

they are frequency based (Raman sensors are intensity based) which makes them more

accurate since they do not suffer from sensitivity drifts and any fiber loss.

In the following the different techniques will shortly be explained. Further insights can

be found in some doctoral thesis [3, 5, 6, 91, 92] and review articles [90, 93, 94].

Brillouin optical time-domain reflectometry (BOTDR) Brillouin optical time-

domain reflectometry (BOTDR) is based on the OTDR technique but the Brillouin

backscattered signal is used instead of Rayleigh scattering. For the first time it has been

developed by Kurashima in 1992 [95]. The advantage of this system is that it requires

access to only one end of the fiber. Resolutions up to 1m over 10 km [96] and 2m over

30 km [97] were reached with this system.

Brillouin optical time-domain analysis (BOTDA) Brillouin optical time-domain

analysis (BOTDA) has been proposed for the first time in Ref. [35] with the purpose

to investigate local fiber attenuation. The working principle is based on a pump-probe

technique where an intense pump pulse is inserted to one end of the fiber and a CW-

probe wave to the other input. The signal wave is shifted by the BFS to the pump wave

frequency. The pump and the signal waves are counterpropagating, hence the gain expe-

rienced by the probe, while the pump pulse is propagating in the fiber, can be analyzed.

A detailed explanation will be given in chapter 3.2, here we focus on an short historical

overview and the state of the art of this technique.

The temperature and strain dependency of the BFS has been explored in [33, 35, 98] and

further development was carried out in [99–101]. Note that using Brillouin loss, hence the

Anti-Stokes component, led to a 32-km long sensor with 5m spatial resolution [100] and

using Brillouin gain to a 22-km sensing fiber with 10m resolution [99]. The authors claim

that pump depletion is the reason for this discrepancy whereas normally the Brillouin

effect should be symmetrical in Stokes and Anti-Stokes component. In [101] the BOTDA

setup has been improved by using only one laser source for both the pump and the probe

wave to reduce the effect of frequency drifts of two different lasers. A detailed insight is

given in Refs. [5, 6]. The BOTDA technique is limited to 1m spatial resolution [102] by

the long acoustic decay time (about 10 ns). Since Brillouin scattering is a polarization

sensitive process, the pump and the probe wave have to be aligned carefully [37]. But

the polarization dependency can also be advantageously employed for measuring local
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birefringence properties along the fiber [36]. In Ref. [103] a vector BOTDA has been

proposed which give access not only to the intensity of the Brillouin gain but also to its

phase distribution.

The BOTDA technique is a common monitoring system in civil engineering because of its

high performance in detecting temperature and strain. Therefore the data are explored

and the BFS is extracted for the whole fiber. To distinguish changes in temperature and

strain, two fibers are installed and one fiber is protected against strain by a loose tube and

thus senses only temperature. The system is commercialized for example by the company

Omnisens in Switzerland up to 30 km with less than 2m spatial resolution [104]. On a

research level the limit in length goes up to 100 km with distributed Raman amplification

and 2m spatial resolution [105,106] and reaches 120 km with 3m spatial resolution using

optical pulse coding technique [107].

Brillouin optical frequency-domain analysis (BOFDA) Brillouin optical frequency-

domain analysis (BOFDA) was firstly introduced by Garcus et al. [108, 109] and is de-

scribed in detail in Ref. [91]. Using BOTDA technique, the direct pulse response in

time-domain is obtained and analyzed. In a BOFDA system the frequency response of

the sensor system is achieved and the spatial resolved information about the BFS is ob-

tained by the inverse Fourier transformation. Two CW-lasers are inserted to different

ends of the fiber and in the end a complex transfer function is analyzed which relates

the amplitudes of the counter-propagating pump and signal waves. The signal wave is

down-shifted as for the BOTDA modulated by different frequencies. Since both the time

and frequency domain are intrinsically linked, they also have the same physical limitation,

1m spatial resolution [91]. A detailed explanation is carried out in Ref. [5]. Latest devel-

opments in BOFDA by enhancing the post-processing methods are proposed in Ref. [92]

and a detailed theoretical model for an intensity and phase modulated pump has been

developed in Ref. [110].

Brillouin optical correlation-domain analysis (BOCDA) The previously men-

tioned distributed sensor techniques have all the physical limit of 1m because of the

acoustic decay time (10 ns). In 2000, a new method was proposed to overcome this limit,

the Brillouin optical correlation-domain analysis (BOCDA) [111, 112]. Here, two syn-

chronous frequency modulated waves are injected into two different ends of the fiber and

the Brillouin scattering is generated locally along the fiber. Depending on the correla-

tion of the interacting waves, Brillouin scattering is very sensitive to polarization, phase

or frequency mismatch. The principle of BOCDA is based on the fact that the corre-

lation between the two waves are artificially low everywhere in the fiber, except for the

location where the Brillouin gain has to be measured [87]. Since a pump pulse is no

more needed, which limited the spatial resolution, the resolution can be enhanced up to



2.4. State of the art 49

1 cm [113]. Based on BOCDA, recently both the BOTDR and BOCDA have been com-

bined to BOCDR-system [114] where they have the advantage of a single-ended sensor, a

fast acquirement and a high spatial resolution of 40 cm.

Brillouin echo distributed sensing (BEDS) Another technique to overcome the

spatial resolution limit is realized in Brillouin echo distributed sensing (BEDS). The gen-

eral concept is based on the preceding existence of an acoustic wave in the fiber which

is established by a CW signal and CW pump wave. We find again the principal of two

CW light waves and thus the Brillouin gain spectrum is not broaden. The acoustic wave,

correspondingly the refractive index grating, is ”activated” before which gives a constant

background amplification on the signal wave [87].

Three different configurations of very short pump pulses have been proposed by several

working groups. A detailed description is given in chapter 3.2. First additional bright

pulses were sent through the fiber (Fig.(3.14a)) where a high resolution of 15 cm has

been shown in [115, 116]. The second type is a dark pulse, applied on the pump wave

(Fig.(3.14b)) which results in a ”negative” gain in Brillouin backscattering. With this

technique 2 cm spatial resolution has been achieved [117]. The third configuration uses

a short π-phase shift pulse instead of a dark pulse because it is supposed to yield an

even sharper contrast in the Brillouin loss process (Fig.(3.14c)). This leads to a twice

higher Brillouin response and hence is the most efficient concept [4]. The latter is called

Brillouin echoes distributed sensing [90, 118, 119]. The remarkable advantage of this new

distributed measurement technique is the high spatial resolution (up to 5 cm) with high

contrast while conserving a narrow Brillouin gain spectrum. This technique has been

developed at the EPFL [90, 118] and a deeper inside in theory and evolution of the ex-

periment can be found in Ref. [5]. Further work dealt with the influence of self-phase

modulation on Brillouin sensors [120]. We will use this technique for mapping PCFs in

terms of inhomogeneities due to the drawing process [63] (see chapter 3.4). With help of

this highly resolved system it was also possible to extract the acoustic decay time for the

first time in PCF [65, 66] (see chapter 3.5). We further demonstrate a simplified version

using DPSK-modulation in order to facilitate the pulse adjustment and decrease the linear

loss by replacing components [121, 122], which is explained in detail in chapter 3.2.3.

Brillouin dynamic grating distributed sensing (BDG-DS) A recent technique

uses the concept of Brillouin dynamic gratings [123]. The authors use polarization main-

taining fibers to insert a pump wave on one axis of the fiber where it generates an index

grating. The probe wave is frequency-shifted and injected to the other end of the fiber on

the other polarization axis. The frequency-shift is determined by the birefringence of the

polarization maintaining fiber. This technique offers a higher sensitivity to temperature

and the spatial resolution of a BOTDA system can be enhanced [90, 124]. The high-
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est resolution, 1 cm, for a time-domain Brillouin sensor has been obtained in [125, 126].

Another important advantage of this technique is the discrimination of strain and tem-

perature [127,128]. Measuring the two independent optical parameters birefringence and

BFS it is possible to evaluate the influence of temperature or strain because the respective

strain- and temperature-dependency of the birefringence and BFS have opposite signs.

2.4.3.4 Photonic crystal fibers for distributed Brillouin sensing

Photonic crystal fibers with their air-hole micro-structure provide new application fields

to fiber sensors. They are predestinated for gas and liquid sensing applications since the

air holes can be filled by different techniques [129–131]. PCFs are also used for sens-

ing based on fiber Bragg gratings [132, 133] and interferometric configurations [134–136].

More applications can be found in review articles [137, 138].

Due to their air-hole micro-structure the acoustic properties of PCF are quite different

in comparison to conventional SMF. Consequently, it suggests itself as interesting for

Brillouin sensors since it is based on acoustic waves. Nevertheless, in terms of Brillouin

distributed sensing PCFs have not yet been a lot investigated. In 2004, Zou et al. [57]

measured for the first time the temperature and strain coefficients in a PCF. Two peaks

in the SBS spectrum are found and supposed to vary differently with strain and temper-

ature [57,139,140]. The investigation was carried out with a 15 cm resolution distributed

Brillouin sensing system and they obtain a similar temperature but better strain accuracy

as for conventional fibers. This multi-peak Brillouin gain spectra have attracted more at-

tention in Ref. [141, 142]. The authors studied the pump wavelength and temperature

dependence of a dual-peaked Brillouin gain in a small-core PCF to find out a different

temperature dependence of both peaks. Indeed, slightly different slopes are observed for

both peaks, but the more interesting observation is that the height ratio of the two Bril-

louin peaks is almost linearly decreasing with increasing temperature. In 2009, Dong et

al. [143] used a polarization maintaining PCF for distributed temperature sensing based

on the birefringence effect as previously described in the paragraph about BDG-DS. The

polarization maintaining PCF provides a small core area, thus enhances nonlinear effects

and so reduces the needed power of pump and probe pulse for distributed Brillouin sens-

ing. The temperature and strain dependence of forward Brillouin scattering has been

measured in a conventional SMF in [75, 144]. In our group the temperature coefficient

of forward Brillouin scattering in a PCF has been investigated where most of the low-

frequency peaks are suppressed and a main acoustic mode is obtained at 1.15GHz [145].

Experimental results show a temperature coefficient of 106 kHz/̊ C for this acoustic reso-

nance frequency of 1.15 GHz. This temperature coefficient is more than 10 times larger

than that previously measured in conventional single-mode fibers in Ref. [75].
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H. Maillotte, V. Laude, L. Thévenaz, and T. Sylvestre, “Experimental observation

of Brillouin linewidth broadening and decay time in photonic crystal fiber”, in

European Conference on Optical Communications ECOC, September 21-25, Torino,

Italy, 2010, Tu.4.D.S.

[67] S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Gruner-Nielsen,

and S. Herstrom, “Modeling Brillouin gain spectrum of solid and microstructured

optical fibers using a finite element method”, Journal of Lightwave Technology, vol.

29, no. 1, pp. 22–30, 2011.

[68] C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full

vectorial analysis of Brillouin gain in random acoustically microstructured photonic

crystal fibers”, Phys. Rev. B, vol. 83, pp. 235110, 2011.

[69] R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Resolved forward Brillouin

scattering in optical fibers”, Physical Review Letters, vol. 54, no. 9, pp. 939–942,

1985.

[70] C. K. Jen, J.E.B. Oliveira, N. Goto, and K. Abe, “Role of guided acoustic wave

properties in single-mode optical fibre design”, Electronics Letters, vol. 24, no. 23,

pp. 1419–1420, 1988.

[71] M. Oshashi, N. Shibata, and K. Shiraki, “Fiber diameter estimation based on guided

acoustic wave Brillouin scaterring”, Electronics Letters, vol. 28, no. 10, pp. 900–901,

1992.

[72] E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a

stimulated brillouin fiber ring laser”, Optics Communications, vol. 125, pp. 327–330,

February 1997.

[73] P. St. J. Russell, D. Culverhouse, and F. Farahi, “Theory of forward stimulated

Brillouin scattering in dual-mode single-core fibers”, IEEE Journal of Quantum

Electronics, vol. 27, no. 3, pp. 836–842, 1991.



2.4. Bibliography 57

[74] K. Shiraki and M. Ohashi, “Sound velocity measurement based on guided acoustic-

wave brillouin scattering”, IEEE Photonics Technology Letters, vol. 4, no. 4, pp.

1177, 1992.

[75] Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies pro-

duced by depolarized guided acoustic-wave Brillouin scattering”, IEEE Photonics

Technology Letters, vol. 10, no. 12, pp. 1769–1771, 1998.

[76] V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot,

J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes

in photonic crystal fibers”, Physical Review B, vol. 71, no. 4, pp. 045107, 2005.

[77] D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, Ch. Marquardt, and

G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic

crystal fibers”, Physical Review Letters, vol. 97, pp. 133901, 2006.

[78] J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic
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[90] L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of

the art and perspectives”, Frontiers in Optoelectronics China, vol. 3, no. 1, pp.

13–21, 2010.

[91] K. Krebber, Ortsauflösende Lichtleitfaser-Sensorik für Temperatur und Dehnung

unter Nutzung der stimulierten Brillouin-Streuung basierend auf der Frequenzbere-

ichsanalyse, PhD thesis, Ruhr-Universität Bochum, 2001.
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[102] A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing

using stimulated Brillouin scattering : towards ultimate resolution.”, in Optical

Fiber Sensors (OFS), Williamsburg, Virginia, 1997.

[103] M. Dossou, D. Bacquet, and P. Szriftgiser, “Vector Brillouin optical time-domain

analyzer for high-order acoustic modes”, Optics Letters, vol. 35, no. 22, pp. 3850,

2010.

[104] Omnisens, http://www.omnisens.ch/.

[105] X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J.-D. Ania-Castanon,
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Chapter 3

Experimental investigation of

Brillouin backscattering in photonic

crystal fibers

The theory of Brillouin scattering has already been introduced in chapter 2 where we have

seen that two types of Brillouin scattering can be measured in different ways: forward and

backward scattering. Brillouin backscattering results from the interaction of optical waves

with longitudinal acoustic waves in contrast to forward Brillouin scattering which comes

from transverse acoustic modes. This chapter is dedicated to experiments of Brillouin

backscattering in photonic crystal fibers (PCFs). The results of integrated and distributed

measurements will be shown. Integrated measurement of Brillouin backscattering means

that the signal backscattered from the whole length of the fiber is recorded due to the use

of a CW-pump wave: we launch a CW-pump wave into the fiber and obtain the spectrum

of the Brillouin gain from the light backscattered in the whole fiber. Distributed mea-

surement, on the other hand, reveals the spectrum of the Brillouin gain for each section

of the fiber limited in spatial resolution. This requires a more complicated experimental

setup with pump and probe waves that travel counter-propagatively in the fiber.

This chapter begins with two paragraphs on the experimental setups for integrated and

distributed measurements as well as the setup to determine the critical pump power for

the Brillouin threshold. The term stimulated Brillouin scattering attracts attention be-

cause it is used in different ways. On the one hand stimulated means that the pump

stimulates Brillouin backscattering in a fibre and the Brillouin-backscattered power sig-

nificantly increases, which, per definition, is the case above the critical pump power. On

the other hand when the pump and probe waves counter-propagate in a fiber, Brillouin

scattering gets stimulated by both waves. This is the case for the distributed measure-

ments. Physically, it is the same process because for both cases. The backscattered or
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counter-propagation wave interferes with the pump wave and creates an acoustic grating

by electrostriction. Nevertheless, when we are talking about stimulated in this manuscript

we mean Brillouin backscattering from a CW-pump above the critical pump power.

Chapter 3.1 and 3.2 will present these two techniques. We were able to achieve some

interesting results, both for studies in fundamental physics and for applications such as

the monitoring of fiber homogeneity, that may be interesting for fiber manufacturers. In

chapter 3.3 we present the result of distributed measurements with strain applied to a

part of the fiber. Different fibers are measured and compared to results in literature. In

chapter 3.4 we show the impact of fiber inhomogeneities on Brillouin scattering. We will

compare two fibers with nearly the same air-hole micro-structure but fabricated by dif-

ferent drawing processes and fully characterize them in terms of Brillouin frequency shift

through the integrated and distributed measurements of Brillouin scattering. The last

paragraph 3.5 reports about the observation of the decay time of acoustic waves in PCFs

and conventional SMFs. With help of a high-resolved distributed measurement in PCFs

we show the possibility to measure the acoustic decay time of different fibres. We will see

in particular that the signal of Brillouin backscattering decays faster in a PCF than in a

conventional SMF. We also provide a theoretical model based on multiple Lorentzian fits

to explain the origin of the acoustic decay time.

3.1 Integrated measurement of Brillouin backscat-

tering

3.1.1 Brillouin gain spectrum

As already mentioned in chapter 2.1.2 the spectrum of Brillouin gain in an optical fiber

has a Lorentzian shape and is shifted by about 11GHz from the pump wave. This is quite

close to the pump wave and hence requires an accurate measurement. Different setups

have been developed for this purpose since the first measurement of Brillouin scattering

in optical fibers by Ippen and Stolen in 1972 [1].

3.1.1.1 Overview about Brillouin gain spectrum measurement methods

In Ref. [1] the authors proposed a method to analyse the backscattered wave and the

determination of the Brillouin frequency shift (BFS) of optical fiber using a Fabry-Perot

etalon. The advantage of their method is a simple setup but the spectral resolution was

not good enough to measure precisely the Brillouin linewidth. This was improved by
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Figure 3.1: Experimental setup for the self-heterodyne measurement of Brillouin gain

spectrum.

Gaeta and Boyd in 1991 [2] where they achieved a resolution of 0.6MHz and measured

the FWHM of Brillouin gain spectrum at different pump powers. They also demonstrated

that the Brillouin gain spectrum evolves from a Lorentzian shape to a Gaussian one and

narrows when increasing the pump power. Other methods are based on the pump-probe

configuration which is commonly used for distributed Brillouin sensors. Shibata et al. [3]

presented a setup where two optical waves, a pump and a probe wave, are launched in

a single optical fiber in the opposite direction, respectively. The probe wave is shifted

by the BFS of the fiber with respect to the pump wave and amplified along the fiber by

the Brillouin gain occured by the pump. The probe wave is scanned in frequency around

the BFS to obtain the Brillouin gain spectrum. This setup needs a high frequency sta-

bility of the two laser sources and allows a distributed measurement with high spectral

resolution when pulses are used. Niklès et al. [4] later improved the experiment by using

only one laser source. Although it is simplified the setup remains quite complicated to

implement compared to other methods. The distributed setups will be discussed further

in paragraph 3.2.

Another method to determine the BGS is the self-heterodyne technique, which was in-

troduced by Tkach et al. in 1986 [5]. This method is based on the beating of the pump

with the backscattered wave and the Brillouin gain sepctrum is measured by a fast photo-

detector and an RF spectrum analyser which offers very high spectral resolution compared

to an optical spectrum analyser (OSA). In this thesis we have used this method for inte-

grated Brillouin measurements and it will be explained in the next paragraph. A more

detailed overview about the different measurement techniques can be found in [6].

3.1.1.2 The self-heterodyne technique

The self-heterodyne configuration to measure the backscattered Brillouin spectrum [7,8]

is depicted in Fig.(3.1). We used a distributed feedback laser (DFB1) at 1550 nm with

1RIO 0194-1-34-1, linewidth 20 kHz at 1.55nm
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a linewidth of 30 kHz. The laser is set to a temperature of 27̊ C and the bias current

of 40mA. The laser emission is amplified by an erbium-doped fiber amplifier (EDFA,

Keopsys, 33 dBm) and injected into an isolator. The isolator avoids reflections to protect

the EDFA. Then a 5-nm bandpass filter is inserted to remove the amplified spontaneous

emission (ASE) coming from the EDFA to ensure accurate measurement. The light passes

through the optical circulator from port 1 to port 2. The light enters the PCF whose other

end is dipped in a viscous index adaptation liquid to prevent Fresnel reflections. The light

backscattered in the PCF passes through the circulator from port 2 to port 3. A 50:50-

coupler enables a heterodyne detection using the frequency beating between the Brillouin

signal backscattered from the PCFs and the original laser source. This setup allows a

very accurate measurement. The interference beating is acquired by a fast photodiode

(bandwidth ranging from 30 kHz - 12GHz) and visualised as Brillouin gain spectrum on

the RF spectrum analyser (Anritsu2).

3.1.1.3 Experimental results

We first studied a 260m - long all-silica single-mode fiber (SMF). The experimental result

of the Brillouin gain spectrum is shown in Fig.(3.2) where averaging with about 100

data rows and fitting with a Lorentzian shape has been used. First we can see that

the FWHM in Fig.(3.2 a) narrows with increasing pump power as it was reported in [3]

because the Brillouin gain rises exponentially for all frequencies. In the low-power range

we find a FWHM of about 30MHz which is in good accordance to the measured FWHM

in silica [9, 10]. In this region the data is noisy because the scattering process is not yet

stimulated but rather caused by thermal vibrations. The evolution of the spectrum can

be observed in Fig.(3.2 b-d) for 10 dBm, 20 dBm and 25 dBm pump powers, respectively.

In Fig.(3.2 b) we observe one main peak at 10.85GHz and a smaller second at 10.89GHz.

The power ratio between the two peaks will change with increasing pump power while the

data becomes less noisy and the Brillouin gain spectrum more stable. The first peak is the

acoustic mode due to the core of the SMF and the second peak is supposed to be a second

acoustic mode of the fiber cladding [11,12]. Since the optical wave is confined in the fiber

core, only the main peak can be stimulated at high pump powers. This is the reason for

which the second peak remains small compared to the mainpeak in Fig.(3.2 d). We now

compare these results for the conventional SMF to our various PCFs. The first PCF we

tested has a multiscale structure of which the cross section can be seen in the inset of

Fig.(3.3 b). This fiber has two zero-dispersion wavelengths, was drawn for supercontinuum

generation [13] and will receive more attention in chapter 5 for its acoustic behaviour. As

can be seen in Fig.(3.3 b), the Brillouin gain spectrum measured at a pump power of

12.1 dBm (8 dB below the Brillouin threshold of this fiber) has three peaks at 10.72GHz,

2Anritsu MS2667C Spectrum Analzer 9 kHz-30GHz
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Figure 3.2: (a) Brillouin linewidth (FWHM) versus pump power, Brillouin gain spectrum

(maximum: 10.85GHz) at (b) 10 dBm, (c) 20 dBm and (d) 25 dBm for a 260m-long SMF.

10.92GHz and 11.11GHz. The FWHM of the main peak at 10.72GHz evolves from

about 90MHz to 20MHz. The larger FWHM in low power range for PCFs in comparison

to conventional SMF is probably due to several interacting acoustic modes, which is in

good accordance to what has been observed in Refs. [7, 14]. This is also the case for the

other PCF, which has a hexagonal structure (inset of Fig.(3.4 b)). Its FWHM is about

80MHz for low pump power and narrows to 30MHz while increasing the pump. The

Brillouin gain spectrum is single-mode at 11.07GHz and has a slightly asymmetric bump

at the right side. Further integrated measurement of the Brillouin gain will be shown in

paragraph 3.4 and 4.3 and a multi-Lorentzian model for several acoustic modes in one

Brillouin spectrum will also be discussed in paragraph 3.5.

3.1.2 Critical pump power of the Brillouin threshold

In this paragraph we describe the measurement of the critical pump power for the Brillouin

threshold as introduced theoretically in paragraph 2.2.1.4. We use the definition that the
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Figure 3.3: (a) Brillouin linewidth (FWHM) versus pump power, (b) Brillouin gain spec-

trum (maximum: 10.72GHz) at 12.1 dBm, 8 dB below Brillouin threshold, for a 106m-long

multiscale PCF. The SEM image is shown in the inset.
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Figure 3.4: (a) Brillouin linewidth (FWHM) versus pump power, (b) Brillouin gain spec-

trum (maximum: 11.07GHz) at 15 dBm, 7 dB below Brillouin threshold, for a 380m-long

PCF with hexagonal structure. The SEM image is shown in the inset.

critical pump power is reached when the backscattered power is 1% of the pump power

[15] but there exists as well the definition that the Brillouin threshold is reached when the

backscattered power equals the injected power [16]. We decided to take the 1%-definition

because this is the range where Brillouin scattering does not saturate. The setup for

the measurement of the Brillouin threshold is schematically sketched in Fig.(3.5). It

is a simplified version of the self-heterodyne measurement setup. We just removed the

self-heterodyne detection and replaced it by a power meter at port 3 of the circulator.

For this measurement it is very important to avoid Fresnel reflections because they are

harmful in the low power range for stable measurements. To determine the critical power

of the Brillouin threshold of the fiber under test we measure three data-series: the input

power, the backscattered power and for reasons of completeness as well the transmitted
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Figure 3.5: Experimental setup for Brillouin threshold measurement.

power. The input power is measured at port 2 of the circulator directly before the pump

wave enters the fiber. After that we have to subtract the splicing loss of the fiber input.

The backscattered power is measured at port 3 and then the splice losses and circulator

linear loss between ports 2 and 3 are removed. The transmitted power is measured at the

other end of the fiber and this time we have to sum the splice loss at this fiber output

because we want to obtain the output power coming directly from the PCF. Thus it is

very important to know the splicing losses as exactly as possible which should precisely

be measured during the splicing process. With this setup we can also identify the linear

attenuation of optical fibers.

To determine the Brillouin threshold we plot the backscattered power in function of the

input power and look for the value of input power for which the backscattered power is

1% of the injected power using a polynomial fit. Figs.(3.6), (3.7) and (3.8) show three

examples of Brillouin threshold measurement which correspond to the same fibers as
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Figure 3.6: Brillouin threshold measurement for a 260m-long SMF, with application of

different strain (0mm, 32mm and 40mm over a 12m-section of the fiber).
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Figure 3.7: Brillouin threshold measurement for a 380m-long PCF, the three measure-

ments have been carried out without applying strain, one by inverting the fiber.

previously presented for the Brillouin gain measurement. The threshold for the 260m -

long SMF was determined for three cases: without applied strain, with an elongation of

32mm over 12m (corresponds to 2667µε) and 40mm over 12m (corresponds to 3333µε).

The strain slightly changes the Brillouin threshold from 27.53 dBm to 27.62 dBm and

27.74 dBm because the Brillouin frequency shift varies for this 12m-section of the fiber.

Nevertheless, the difference is tiny and within the uncertainty of the measurement which

can be estimated to about 1 dB, taking into account the error for the splicing loss, the

loss of the components and accuracy of the power meter. The Brillouin threshold

measurement of the 380m-long PCF without applying any strain shows this very clearly

because the three different measurements (two times in the same direction, one time

while inverting the fiber) vary from 20.8 dBm to 22.0 dBm and give a mean result of

21.3±0.5 dBm. Thus, the effect of the applied strain in Fig.(3.6) is within the measurement

uncertainty and can not provide a experimental investigation of the influence of applied

strain on the Brillouin threshold. The theoretical threshold of the 380m-long PCF is

calculated to 22.3 dBm by Eq.(2.38), taking into account the measurement of the Brillouin

gain.

In Fig.(3.8) the threshold for the third fiber is obtained as 19.9 dBm. As this PCF is

shorter (106m) than the previous PCF, one can think that the threshold must be higher

than in the 380m-long fiber according to Eq.(2.38), however the critical pump power is

lower. The reason is the diameter of the fiber core: 2.4µm for the multi-scale PCF and

5.7µm for the classical PCF. As the effective mode area for the multi-scale PCF is small,
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Figure 3.8: Brillouin threshold measurement for a 106m-long multiscale PCF.

the optical power density in the fiber core is high which increases the nonlinear scattering.

For the multi-scale PCF a theoretical threshold of 21.0 dBm has been calculated. Further

theoretical and experimental results will be discussed in chapter 4 for PCF with varying

micro-structure size.

3.2 Distributed measurement of Brillouin backscat-

tering

In addition to the self-heterodyne measurement of the Brillouin gain, the distributed

Brillouin scattering experiment allows for the observation of the Brillouin gain spectrum

throughout the fiber with a limited spatial resolution. In chapter 2.4 we have already

introduced different techniques for distributed Brillouin sensors, namely, the Brillouin

Optical Time Domain Analysis (BOTDA), Brillouin Echoes Distributed Sensing (BEDS)

and its latest development to Differential Phase Shift Keying - BEDS (DPSK-BEDS).

Thereafter, we provide a detailed description and comparison of these techniques.
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3.2.1 Brillouin Optical Time Domain Analysis - BOTDA

We will now go further into detail to describe the Brillouin optical time domain analysis

technique (BOTDA) which is a pump-probe technique, as mentioned in paragraph 3.1,

for mapping the Brillouin gain spectrum. The here described concept has been proposed

and demonstrated in 1996 by Niklès et al. [4]. Fig.(3.9) summarizes the working principle

of the BOTDA system. In general, we insert a pulsed pump to one end (A) of the fiber

and a CW-probe wave to the other input (B). The CW probe wave is frequency shifted

to the pump wave. The intense pump pulse generates backward Brillouin gain and if the

frequency shift between pump and probe is equal to the BFS, then the probe wave is

amplified by the pump pulse through Brillouin scattering. This can be observed from the

backscattered signal at input A. By a circulator we separate the backward travelling light

and achieve the signal by a photo diode and an oscilloscope. We will obtain an upward

signal on the oscilloscope due to Brillouin backscattering as long as the pump pulse is

propagating in the fiber and interacting with the CW probe wave. The time trace T

corresponds to the length L of the fiber by

T =
2neffL

c
(3.1)

with c the speed of light and neff the effective refractive index of the fiber which is about

1.444 [17]. Thus for a 100m long fiber we observe a signal during 1µs. The factor 2 is

due to the fact that the pump pulse propagates in the opposite direction of the probe.

The BFS is sensitive to temperature, strain, doping and structural irregularities in the

fiber. In Fig.(3.10) we see the effect of strain applied on a conventional 260m-long SMF.
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Figure 3.10: BOTDA measurement, times traces and BFS: (a-c) for a fiber with homoge-

neous BFS, (d-f) for a fiber with a frequency shift due to applied strain. (a,d) pump and

probe wave are injected in opposite direction into the fiber, (b,e) time trace on the oscil-

loscope, the time trace corresponds to the fiber length, when the pulse leaves the fiber,

the Brillouin gain decreases; in (e) the frequency shift can be seen by the sharp decrease

in Brillouin gain (arrow), (c,f): distributed BFS, nearly constant for (c) and frequency

shift in (f) where strain over a 12m-section has been applied.

In Fig.(3.10a-c) no strain is applied, in contrast to Fig.(3.10d-f) where a 12m-section of

the fiber is stretched. In the time trace at a probe frequency of 10.85GHz in Fig.(3.10e),

we clearly observe the decrease in Brillouin gain when the pump pulse travels through the

stretched 12m-section. Here the BFS is shifted to about 10.9GHz, thus the probe wave

(at 10.85GHz) is not amplified by the pump pulse. The BFS is depicted in Fig.(3.10c,f),

where the influence of strain in the 12m-section is obvious. After this general explanation

about the working principle of BOTDA technique we go further into detail with the

experimental setup which is schematically depicted in Fig.(3.11). The output of a DFB

laser3 at 1.55µm is amplified by an erbium doped fiber amplifier (EDFA4) and then split

into two arms by a 50:50 fiber coupler. One arm serves for the CW probe and the other

one for the pump. A LiNbO3 electro-optic intensity modulator (Photline technologies
5) on the arm of the probe wave, driven by a microwave generator6, creates two side-

bands, Stokes and Anti-Stokes, tuned by the BFS (≈ 11GHz) with respect to the carrier

3RIO 0194-1-34-1, linewidth 20 kHz at 1.55µm
4Keopsys 33dBm
5CDF-X-EP-1550, insertion loss: 5 dB at 1.55µm, electro-optic bandwidth 15GHz, extinction ratio

37 dB at 1550nm, Vπ ≈ 6V
6Hittite HMC-T2100, 10MHz-20GHz signal generator
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Figure 3.11: Experimental setup of BOTDA technique.

frequency. A DC bias is applied to the modulator to drive it in the minimum of its transfer

function. In this way the carrier wave is eliminated as 37 dB and the side-bands are the

strongest. After the intensity modulator the probe wave goes through an optical isolator

and is injected into the fiber under test. The isolator serves to stop the pump wave which

will be injected to the other input of the fiber. The other arm is connected to the opposite

end of the PCF through an optical circulator. The pump wave is modulated with a 5 kHz

repetition rate via another intensity modulator (Photline Technologies7) driven by a pulse

generator8. An intensity square pulse is applied on the pump with a duration varying from

10 ns to about 30 ns. The pump pulse is then amplified by another EDFA by about 10 dB.

The pulse duration for BOTDA measurement is limited to 10 ns from a physical point of

view because the acoustic wave decay time is about 10 ns and below this time no more

information about the BFS can be obtained. However, we will see in the next paragraph,

how to exceed this limit. As amplifier for the pump a 17 dBm - EDFA from Manlight9 was

used. The amplified pump pulse is then polarization scrambled so that the polarization

does not play any role in the distributed measurement because Brillouin scattering is a

7MXPE LN10, insertion loss: 4.5 dB at 1.55µm, electro-optic bandwidth 14.8GHz, extinction ratio

35 dB at 1550nm, 53 dB at 1535nm, Vπ=6.2V
8HP8131A-020
9Manlight 17dBm-EDFA, Packaging made by M.W.Lee
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polarization sensitive process [18] (see Fig.(3.12 a,b) which are explained later). It would

have been possible to use the scrambler on the probe wave as well but it turned out that

this induces much more instablity in the BOTDA measurement, probably due to the fact

that the probe wave is CW-light [9]. The scrambled and amplified pump pulse enters then

the fiber so that the reflected Stokes light interferes with the probe. A tunable fiber Bragg

grating (FBG, 10GHz - linewidth10) connected to a second optical circulator filters out the

Anti-Stokes-wave and residual pump light. The output CW probe is then detected by a

1.2GHz photodetector and monitored with a real-time oscilloscope11 (12GHz bandwidth)

while it is scanned around the BFS so that all BFS variations due to inhomogeneities and

strain can be readily detected. For the oscilloscope we chose a resolution that is adapted

to the physical resolution limit due to the pump pulse duration, which means about at

least 3 measurement points per resolution (e.g. for 10 ns pulse duration 3 points every

10 ns). Depending on the stability of the obtained signal, we used either 512 or 1024 data

series averaging. For the data acquisition most of the different devices are driven by a

Labview and Matlab program. Three data are then saved, namely, a frequency vector in

the range where the probe wave was swept, a time date on the oscilloscope and a matrix

of the monitored signal for each frequency point. Hereby, the matrix was normalized by

taking into account the DC of the signal (at 1/50 at the beginning of the time trace) and

by dividing the data by this DC rate.
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Figure 3.12: Mapping of 1.7km-long SMF with 2m spatial resolution and 1MHz frequency

resolution, (a) without polarization scrambler and (b) with polarization scrambler.
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Figure 3.13: (a) Distributed Brillouin gain of three concatenated fibers : a 260m SMF, a

100m PCF and a 5m SMF patch cord, (b) Distributed measurement of a 420m HNLF

at a BFS of 9.145GHz. (c) Analyzed data for the BFS in (b). The red and blue data

correspond were obtained by inverting the fiber. The spatial resolution is 2m and the

frequency resolution 1MHz.

3.2.1.1 Experimental results

Figs.(3.12 a,b) show a direct comparison of the BOTDA trace when the polarization scram-

bler is switched off and on. The measurement was carried out with 2m spatial resolution

and 1MHz frequency resolution. The mean Brillouin frequency shift is about 10.854GHz.

We clearly observe strong intensity fluctuations along the fiber which are due to birefrin-

gence [19]. The state of polarization of the probe and pump wave turns randomly and

as Brillouin scattering is a polarisation dependent process, their arbitrary variation of

polarisation results in intensity fluctuations. When their polarisations are matched, the

gain becomes maximal, but when they are orthogonaly polarised, the gain is minimal. In

the distributed BGS in Fig.(3.12 b), the frequency is shifted by about 4MHz for the last

200m of the fiber. This is due to partially higher strain induced by fiber coiling and the

same frequency shift has been observed by inverting the fiber. In Fig.(3.13 a) a series of

another SMF, a PCF and an SMF patch cord have been investigated. The SMF is 260m

long and its BFS is 10.85GHz. The PCF was drawn by the IRCICA institute in Lille and

will be studied in detail in paragraph 3.4 of this chapter. We observe the BFS at 11.08

GHz and more fluctuations in BFS as for the SMF which is not surprising because the

drawing process for PCFs is more challenging than for conventional SMF. The 5m patch

cord at the end is barely visible which is due to the relatively high loss of the pump in

the PCF. The BFS at about 10.85GHz is similar to that of the 260m SMF. A highly

nonlinear fiber (HNLF) with 400m length has been analyzed in Fig.(3.13 b,c). Since the

fiber core is highly doped with germanium the acoustic velocity and effective refractive

index changes which reduces the BFS to 9.145GHz. For this fiber we now have a look at

the analysis of the raw data.

In order to obtain the distributed BFS and the FWHM of the BGS the raw data have

10AOS Tunable Grating, 1545-1555nm
11Agilent infiniium DSA 91204A Digital Signal Analyzer 12GHz, 40GSa/s
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been analyzed by several operations. For each frequency the time trace from the oscil-

loscope is convolved with a square function. More precisely, each 10 measuring points

were convolved with a 10 points long square function to reduce the noise coming from

the oscilloscope and the photo diode. After that the Brillouin gain spectrum is fitted

for each point along the fiber. Using Lorentzian curve fit, we extract the BFS and the

FWHM. For a more precise analysis of the BFS it is possible to fit the data only around

its maximum with a polynomial fit. Therefore just the topmost data points are exploited.

A comparison of both fitting types will be later presented in Fig.(3.33). For the different

fitting curves the function nlinfit in Matlab has been used.

The result for the BFS of the HNLF is plotted in Fig.(3.13 c). A clear decline in the BFS

after 100m is observed, caused by coiling strain or microstructure inhomogeneities in this

part of the fiber. The red curve is the result for injecting the pump pulse into one end

of the fiber, the blue one presents the results by inverting the injection direction of the

fiber. In that manner, we can see that large peaks in BFS match each other. Hence it

confirms our BFS measurement. At the end we qualitatively observe the same tendency

but a quantitative difference in BFS. This may be due to pump depletion at the end of

the fiber.

3.2.2 Brillouin Echoes Distributed Sensing - BEDS

BEDS technique basically differs from a conventional BOTDA system. Indeed, precise

distributed measurements of Brillouin gain spectrum (BGS) can be made with enhanced

spatial resolution by applying a short π-phase shift in a CW pump wave instead of using

rectangular intensity pulses. Thanks to this phase shift, the spatial resolution down to

1 cm can be obtained in BEDS. In addition to the higher spatial resolution this configu-

ration offers the advantage to measure a gain spectrum unaltered by the pump spectrum

and experimentally observe the acoustic lifetime [20,21]. The basic idea comes from tech-

niques that are based upon the pre-established existence of an acoustical wave in the fiber

resulting from the interaction of a CW probe and a CW pump wave. Hence, a refrac-

tive index grating is propagating in the fiber, caused by electrostriction (chapter 2.2.1.1).

Since the acoustic field originates from two CW waves, the Brillouin gain spectrum is

not broadened. The acoustic wave, correspondingly the refractive index grating, is ”ac-

tivated” before which gives a constant background amplification on the probe wave [22].

Three different configurations using very short pump pulses have been developed by sev-

eral working groups [9]. The pulses (shorter than the acoustic decay time) have been

applied to the CW pump wave in order to obtain a temporal resolved response of the

Brillouin scattering. Since this change on the pump wave is very fast, the acoustic wave

is almost not affected during the pulse. First additional bright pulses are sent through

the fiber (Fig.(3.14 a)). This effects an additional amplification of the probe wave and
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can be seen as a Brillouin gain process, similar to BOTDA but with an additional con-

tinuous wave background. A high resolution of 15 cm has been shown in [23, 24]. The

second type is a dark pulse, applied on the pump wave, which means that the pump is

turned off for some nanoseconds (Fig.(3.14 b)). The result is a ”negative” gain in Brillouin

backscattering and corresponds to a Brillouin loss process. In fact it is the absence of the

Brillouin gain in comparison to the background amplification. Since the acoustic decay

time is about 10 nanoseconds the acoustic wave keeps vibrating during the dark pulse but

there is no more amplification of the probe wave. In this method 2 cm spatial resolution

sensing has been achieved using a dark pulse of 200 ps [25]. The third configuration uses a

short π-shift pulse instead of a dark pulse because it is supposed to yield an even sharper

contrast in the Brillouin loss process (Fig.(3.14 c)) by breaking the phase matching be-

tween the pump, the probe and the acoustic wave. This means that the π-phase shifted

pulse is reflected by the acoustic wave and interferes destructively with the CW-probe

wave. This third type of pulses leads to a twice higher Brillouin response and hence is

the most efficient concept. This technique is called Brillouin echoes distributed sensing

(BEDS) [26]. This name comes on the one hand from the formal analogy with the spin

echoes equation for nuclear magnetic resonance [9] and on the other hand from the fact

that the reflected π-phase pulse can be viewed as an ”echo” on the probe wave. The

remarkable advantages of this new distributed measurement technique are its high spatial
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Figure 3.14: Three different methods to make Brillouin echoes [9]: (a) bright pulse: a

continuous flow of pump light activates the acoustic wave, giving constant background

amplification on the probe. The additional pump light in the pulse is reflected and its

effect is observed as an additional amplification. (b) dark pulse: the pump is turned

off for a short period of time, so that no light is reflected and the constant background

amplification is stopped. (c) π phase-shift pulse: a π phase shift is applied to the pump for

a short time, so that the reflected light interferes destructively with the probe, equivalent

to a Brillouin loss process.
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Figure 3.15: Experimental setup of BEDS system: a phase modulator replaces the inten-

sity modulator on the pump wave. On the oscilloscope a downward signal is obtained.

resolution (up to 5 cm) and its large dynamics while conserving a narrow Brillouin gain

spectrum at the same time. This technique has been first developed at the EPFL Lau-

sanne [26, 27] and a detailed theory and evolution of the experiment can be found in [9].

The experimental setup is schematically shown in Fig.(3.15). Most of the devices have

already been explained in the previous paragraph but the main difference with respect to

BOTDA is that the intensity modulator is replaced by a phase modulator (provided by

Photline Technologies12) to generate very short π-phase shifts on the CW pump wave. A

short π-phase shift is applied on the CW pump wave for instance for a duration of 3 ns

which corresponds to 30 cm spatial resolution. The pulse length should be compromised

with the fiber attenuation. In fact, both the short phase pulse and the attenuation in-

duce low contrast in the time trace of Brillouin response at the oscilloscope. Therefore,

when the attenuation is high, the pulse needs to be lengthened in order to achieve proper

sensing. The reflected pump light interferes destructively with the probe as mentioned

before, so we obtain a downward time signal which corresponds to a Brillouin loss process

(Fig.(3.15)).

Two practical issues that occur with the BEDS technique has to be taken into account:

detrimental effects of the continuous activation of the acoustic wave and the so-called

12MPZ-LN-10, insertion loss: 2.9 dB at 1550nm, electro-optic bandwidth 15GHz, Vπ=5.9V
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Figure 3.16: Enhanced experimental setup of the BEDS system: an intensity modulator is

added before the phase modulator to remove the second echo and to avoid pump depletion.

second echo [9]. When the acoustic field is generated by two continuous waves the sensing

range and accuracy is limited by pump depletion and spontaneous Brillouin noise. Both

causes additional signal-beat noise at the detector and requires more averaging on the

oscilloscope. The so-called second echo emerges from the fact that the acoustic wave has

a finite lifetime of ten nanoseconds. Accordingly, the backscattered response of the BEDS

system is partially decaying during the phase pulse. This creates a second echo when

the pump is restored to its original state after the pulse. The lifetime of acoustic wave is

around 10 ns. This means that the acoustic wave exists for 10 ns and during this time the

CW pump wave can still interact with the acoustic wave. We will see in paragraph 3.5

that this effect allow to observe the acoustic decay time. To avoid these undesirable ef-

fects we can use a long intensity pulse instead of a continuous pump wave. First of all

this avoids pump depletion and improves the probe to noise ratio for the Brillouin re-

sponse. For this purpose a second intensity modulator is added to the experimental setup

(Fig.(3.16)) before the phase modulator. A pump intensity pulse of about 30-100 ns is

produced and the delay between the two modulators has to be adjusted in order to place

the phase pulse somewhere inside the intensity pulse. However, this does not yet help

to eliminate the second echo. In order to get rid of the second echo the pump must be

turned off immediately after the phase pulse so that no more light can be reflected after

the pulse end and no trailing light is present [26]. This is achieved by adjusting the delay
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Figure 3.17: Differential BEDS measurement of a 100m PCF. (a) gain traces to obtain

a high resolved Brillouin gain mapping without second echo, (b) Brillouin gain mapping,

(c) distributed Brillouin frequency shift (in both directions), (d) distributed FWHM of

the Brillouin gain. The spatial resolution is 30 cm and the frequency resolution is 1 MHz.

between the two pulses so that the π-phase pulse is generated at the end of the intensity

pulse. Then the interaction between the residual acoustic wave and the pump wave does

not occur any more.

3.2.2.1 Experimental results

To get better insight to this technique the BEDS traces of a 100m PCF is shown in

Fig.(3.17 a). The PCF has a hexagonal structure with core, hole diameter and pitch at

about 5.5 µm, 2.7 µm and 4.1 µm. This fiber will also be studied in paragraph 3.4 in

comparison to a second PCF with a similar structure. Here, the experimental approach

and the analysis of the data will be explained with help of this fiber. The setup to avoid

the second echo has been used. Thus, for each frequency shift on the probe wave two

time traces from the oscilloscope are saved: one with the long intensity pulse (here 20 ns)

without the phase shift (Fig.(3.17 a), blue trace) and one with the long intensity pulse

including the short phase shift (here 3 ns, Fig.(3.17 a), red trace). After that we calculate

the difference of both curves to obtain the highly resolved Brillouin response of the 3ns-

long phase pulse only. This is the reason for which this technique is also called differential



84
3. Experimental investigation of Brillouin backscattering in photonic

crystal fibers

Vπ Vπ

V

I

Vπ

O
p
ti

ca
l 

in
te

n
si

ty

t

t

Vπ Vπ

V

I

t

t

2 Vπ

(a) (b)

O
p
ti

ca
l 

in
te

n
si

ty

phase 0 phase 0 phase π

Im

Re

Im

Re

(i) (ii)

(iii) (iv)

(i) (ii)

(iii) (iv)
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BEDS. The color map of the BEDS results can be seen in Fig.(3.17 b). SMF patch cords

are clearly observed at each side of the PCF. In the middle (at 50m of the fiber) the BFS

slightly drops. This fiber has been coiled on two layers on the fiber spool and the BFS

in the middle of fiber comes from local strain at the point where the fiber changed from

one layer to another one. By using a Lorentzian fit, as explained in paragraph 3.2.2, it is

possible to retrieve the BFS and FWHM at each point of the fiber with a high resolution

of 30 cm which corresponds to the 3 ns phase pulse (Fig.(3.17 c,d)). Another possibility to

avoid the second echo is the deconvolution method where the data is inversely convolved

with the impulse response of the system [9]. The original Brillouin response is then

reconstructed numerically. Here we choose the experimental method because of several

advantages. The second echo is completely eliminated in comparison to the deconvolution

method where it is only strongly suppressed [9]. 5km-fiber sensing with a resolution of

5 cm can be achieved whereas the CW pump measurement is limited to 1 km due to

pump depletion [9]. The disadvantage of the experimental technique is the need of two

modulators (an intensity and a phase modulators) on the pump wave which means higher

loss (more than 5 dB), high cost of the system and a more complicated measurement.

Moreover, it is necessary to adjust accurately the π-phase pulse at the end of the intensity

pulse and to take two acquisitions for each frequency of the probe wave, one time with

the intensity pulse and a second time with both pulses. Then the difference between both

measured data has to be made to obtain the original highly resolved Brillouin response

without second echo. In the following paragraph, we will demonstrate how to implement

BEDS technique using a single modulator.
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3.2.3 Differential Phase Shift Keying based BEDS

As previously described the use of two modulators for the pump wave is needed for a dis-

tributed BEDS measurement while eliminating the second echo. Moreover, as the phase

pulse must be positioned at the end of the intensity pulse, it needs a sophisticate adjust-

ment of the delay between the pulses. In this chapter, we propose and demonstrate a new

concept to perform BEDS with only one modulator for the pump [28]. The optical π-phase

pulse is directly generated using a single intensity modulator based on differential phase-

shift keying (DPSK) technique instead of a phase modulator. A long positive electrical

pulse is followed by a short negative pulse and this positive-negative shape pulse is ap-

plied to the modulator to generate an optical π-phase shift at the end of the long intensity

pulse. This means that the long intensity pulse (30-100 ns) and the short π-phase pulses

are generated by the same intensity modulator, a phase modulator is needless. First the

principle of DPSK will be explained. DPSK technique is widely used in telecom industry

to transmit bit-sequence messages in form of π-phase shift using an intensity modulator,

i.e. Mach-Zehnder interferometer modulator (MZI). In the working principle of DPSK,

optical phase can be shifted by modulating an MZI with an amplitude of double half-wave

voltage (2 · Vπ). The transfer function of an MZI is shown in Fig.(3.18a(i)). When an

electrical pulse with amplitude Vπ, the bias, is applied on the MZI, as in Fig.(3.18a(iii)),

we get from a minimum to a maximum of the transfer function. This induces an intensity

pulse to the light wave, as in Fig.(3.18a(ii)). The same intensity pulse would be obtained

switching to the other maximum in the transfer function as depicted in Fig.(3.18b(ii)).

Nevertheless, there is a difference in optical phase as it can be seen in the constellation

diagram in Fig.(3.18a,b(iv)). Thus switching from −Vπ to Vπ induces a phase pulse al-

most without inducing any difference in optical intensity. But since the ”0” is crossed by

switching from −Vπ to Vπ, a short decay in intensity can be observe between the 0-phase

and π-phase intensity pulse. Also in our case, the MZI is driven at its minimum bias point

by a positive voltage 0 < V < Vπ and successively a negative voltage 0 > V > −Vπ, the
relative phase-shift between the optical fields at the two voltages is π, or vice-versa [29].

Therefore, when a negative pulse of Vπ (or a pulse of −Vπ) is applied to the modulator

just after a positive pulse of Vπ at the minimum bias point as illustrated in Fig.(3.19 a),

the output optical intensity remains unchanged whilst the phase of the optical field at

the negative pulse part is shifted by π with respect to the positive pulse part. In order to

generate such an electrical pulse, the positive and negative electrical pulses are separately

generated as shown in Fig.(3.19 b). Their peak-to-peak amplitude is 7.6V and applied

to the MZI used in the work (Photline MXPE series, Vπ = 6.2V, 20GHz bandwidth).

The pulse durations are set to 30 ns and 500 ps, respectively. In telecom, such pulses are

applied to a dual-drive MZI [30]. In our work, these long and short pulses are applied to

the DC and RF inputs of the MZI, respectively. An adaptation of 50Ω is made in the DC

port and it provides a sufficient bandwidth for the 30-ns pulse. As the pulses are in form
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Figure 3.19: (a) Schematic drawing of a positive/negative electrical pulse. (b) A upward

(blue trace) and a downward (red trace) electrical pulses are generated separately and

applied to the MZI. The durations of the long and short intensity pulses are 30 ns and

500 ps, respectively. (c) The intensity pulses at the MZI output. The phase is shifted by

π for 500 ps at the pulse end.

of intensity at the output of the MZI, the delay between the pulses is readily adjusted.

Fig.(3.19 c) exhibits two intensity pulses at the modulator output, which are generated by

the electrical pulses seen in Fig.(3.19 b). A 30-ns intensity pulse is followed by a 500-ps

intensity pulse with π-shifted phase. A short drop between the two pulses is seen due

to the fast transition from the positive pulse to the negative pulse. The 500-ps duration

of the short pulse defines a spatial resolution of 5 cm in our DPSK-based BEDS system.

This dual-phase state intensity pulse is then used as the pump wave in the experimental

setup shown in Fig.(3.20) schematically. The setup is nearly the same as BOTDA system

as described in paragraph 3.2.1 but different electrical pulses are applied to the MZI of

the pump. The CW emission of a distributed feedback (DFB) laser at 1550 nm is split

into the pump and probe arms by a 50:50 tap coupler. In the pump side, an RF bias-T is

used to combine the positive pulse and DC bias. The DC bias of an MZI (Photline MXPE

series) is adjusted to be at the minimum bias point. This creates the long intensity pulse.

The short phase pulse at the end of the intensity pulse is generated from the RF-input

of the MZI by the same pulse generator as explained before. In order to demonstrate

the performance of the concept developed in the work, a 2-m single-mode fiber (SMF)

was spliced with a 1-m fiber with a high numerical aperture (HNA). The splice point is

protected by a heat-shrinking fiber protective sleeve of 5 cm. For comparison, distributed

measurements of the splice segment have been done in two BEDS systems: conventional

BEDS system using a phase and an intensity modulators for pump and DPSK-BEDS sys-

tem using a single intensity modulator. Fig.(3.21 a) shows the distributed measurement

obtained in the conventional BEDS system via a π-phase shifted pulse with a pulse width

of 500 ps. It clearly reveals the splice segment of 5 cm between the fibers at a frequency

shift of 10.55GHz. The BFS of the HNA and SMF are 10.67GHz and 10.85GHz, respec-

tively. Fig.(3.21 b) displays the mapping using DPSK-BEDS developed in the work. It

also manifests clearly the 5-cm splice segment and the 10.55GHz frequency shift. There-

fore, it is evident that our system demonstrates performances as good as the standard
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Figure 3.21: Distributed measurements of HNA/SMF fibers showing a splice segment of

5 cm (a) in standard BEDS system using a phase modulator and (b) in our BEDS system

based on DPSK technique.

BEDS system. However, the contrast of the measurement in BEDS is slightly better than
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that in DPSK-BEDS. This is due to the peak-to-peak amplitude of 7.2V which is only

1.16 · Vπ in DPSK-BEDS where 2 · Vπ is needed for the best performance. On the other

hand, in BEDS a pulse amplitude of 5.1V is applied to the phase modulator of which

the Vπ is 5.9V. In this case, only Vπ is required for the best operation and the amplitude

meets almost this requirement (0.87 · Vπ).
We have also tested the DPSK-BEDS system with centimeter resolution for strain mon-

itoring which will be presented in chapter 3.3. We have successfully demonstrated a

new concept for BEDS with centimeter resolution based on differential phase-shift keying

technique. Our results clearly reveal the 5-cm splice segment between two fibers and its

Brillouin frequency shift with a spatial resolution of 5 cm. Our new concept enables dis-

tributed measurements with centimetre resolution by simply adding a negative pulse on

the pump in a BOTDA system. If a 100 ps-pulse generator and a fast photo-detector are

equipped in the setup, the resolution down to 1 cm can be made. Therefore it simplifies

conventional BEDS systems by using a single modulator for pump rather than two mod-

ulators, and improves the optical loss of the pump. It also allows an easy adjustment of

the delay between two pulses.

3.2.4 BOTDA using a QPSK modulator

DPSK-BEDS technique improves the BEDS-setup with respect to optical loss on the pump

wave and the adjustment of the delay between intensity and phase pulses. Let us now

have a look at the probe wave arm in the setup. Due to the intensity modulator, which

is driven by an RF signal generator at about 11GHz corresponding to the BFS of the

fiber, we obtain two sidebands at the output of the modulator: a down- and a up-shifted

component corresponding to the Stokes and anti-Stokes components for spontaneous Bril-

louin scattering. This does not mean that a stimulated anti-Stokes Brillouin process takes

place which is not physically correct. Only a Stokes process in stimulated Brillouin scat-

tering is possible which means that either the pump transfers energy to the down-shifted

optical wave or the up-shifted wave transfers energy to the pump wave. Both, Stokes and

anti-Stokes component (=down-shifted and up-shifted component), are launched into the

fiber and interact with the pump pulse. By help of the fiber Bragg grating we chose

either the Stokes or anti-Stokes component and filter out residual pump light. The Stokes

wave leads to an upward signal at the oscilloscope whilst the Anti-Stokes wave produces a

downward signal. The reason is that the anti-Stokes (up-shifted) wave transfers its energy

to the pump (Brillouin loss process), whereas the Stokes (down-shifted) wave receive en-

ergy from the pump pulse (Brillouin gain process). But the selection takes place after the

interaction of both waves in the fiber because Stokes or anti-Stokes component is filtered

out by the fiber Bragg grating.
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Figure 3.22: BOTDA setup using a QPSK modulator.

The early demonstrations were done with a single frequency using two distinct lasers [31,

32]. Since such configuration induces lots of noises due to the jittering of the two lasers and

is expensive, the configuration was modified exploiting an intensity modulator [4]. The

advantage of this configuration is that the jittering of the laser does not affect distributed

measurements. However, it needs a filter to suppress anti-Stokes signal for distributed

measurements. A technique to suppress Stokes or anti-Stokes component was proposed

using a single sideband modulator such as dual-drive modulator [33]. Dual-drive modula-

tor is Mach-Zehnder interferometer modulator with 2 RF ports for each interference arm.

By applying an RF signal to both ports with a phase shift of π/2 between the ports, a

single side-band can be obtained at the modulator output. This technique was adapted

to BOCDA [34] and BOTDA based on Brillouin dynamic grating [35]. In our work, we

have adapted the technique to our BOTDA system using an optical QPSK (Quadrature

Phase-Shift Keying) modulator (I & Q modulator). Such a modulator is also exploited in

BOCDA [36]. QPSK modulation is used to transmit twice more bit sequence messages

than conventional PSK. Optical QPSK modulators can perform such a modulation on

optical phase. In fact, it is an intensity modulator with two Mach-Zehnder interferom-

eters as shown in Fig.(3.22). A 11GHz RF signal is injected into two RF ports of the

modulator with a π/2-shifted phase. Three DC bias must be adjusted to obtain a single

side-band at the modulator output. The two DC bias for the two interferometers are

used to suppress the pump wave and the DC bias at the Y junction at the interferometer

outputs is used to unbalance the side bands. By adjusting the last DC bias, either Stokes
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Figure 3.23: Spectra of (a) the Stokes signal and (b) the anti-Stokes signal at the output

of the 50 km SMF at 10.94GHz.

or anti-Stokes signal can be chosen. The advantage of QPSK modulator compared to

dual-drive modulator lies on the high performance of carrier suppression as well as side-

mode suppression. The modulator used in the setup is provided by Photline Technologies

and has a carrier suppression of 55 dB with a side-mode suppression of 40 dB at 1535 nm.

Therefore, a centre-wavelength of 1535 nm is used in the setup shown in Fig.(3.22) for

the best performance of the modulator. As a single side band is used as the probe, no

additional filter is needed before the photo-detector. Although the QPSK modulator has

a high optical insertion loss, the distributed measurement signal has a higher contrast

than that using a conventional intensity modulator and a fiber Bragg grating. In fact, the

signal does not suffer from the optical loss due to the fiber Bragg grating. On the other

hand, problems with this technique are the complicated adjustment of three DC-bias and

the continuous DC-bias drift of the modulator. Hence, it has to be regulated for each

measurement.

3.2.4.1 Experimental results

In the following some results are shown. First, spectra of Stokes and anti-Stokes signals

have been observed at the output of the QPSK modulator. Fig.(3.23 a) shows a spectrum

of the Stokes signal. The QPSK modulator is tuned to generate the Stokes signal. It is

clearly seen that the modulator can suppress the carrier wave by 55 dB and its single side-

band suppression ratio is 40 dB at 10.94GHz from the pump frequency at 195211GHz

(1535 nm). These suppression ratios can ensure a good quality of BOTDA measurements

without a filter. A spectrum with the anti-Stokes signal is shown in Fig.(3.23 b). The

carrier is suppressed by 55 dB. However the single side-band suppression ratio is 32 dB

which is lower than that of the Stokes signal. Nevertheless this suppression ratio is enough

to perform a good quality of distributed measurement without filter. After the spectra

observation, we have performed a distributed measurement of an SMF with 50 km length

using the QPSK modulator as shown in Fig.(3.24). The loss of the SMF is 0.2 dB/km
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which is not as high as in a PCF but results in a significant loss for long lengths like 50 km.

We have measured distributed the Brillouin gain for the Stokes and anti-Stokes probes

with a 3m-spatial resolution and a 1MHz-frequency resolution. The distributed measure-

ments using the Stokes and the anti-Stokes probes are shown in Fig.(3.24 a) and (3.24 b),

respectively. By comparing the two figures, it is evident that the measurement with the

anti-Stokes probe shows a better quality than that with the Stokes probe. Fig.(3.24 b)

clearly reveals the 50 km length of the fiber despite of the fiber attenuation. The beginning

of the fiber is very similar in both cases. But the contrast at the end of the fiber is remark-

ably improved using the anti-Stokes signal. Fig.(3.25) shows Brillouin responses recorded
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Figure 3.24: Distributed measurements of a 50 km SMF using (a) the Stokes probe and

(b) the anti-Stokes probe generated by the QPSK modulator.

by the oscilloscope. The blue trace in Fig.(3.25 a) represents the Brillouin response with

the anti-Stokes (loss process), the red one is obtained by use of the Stokes component

(gain process). We can observe in the figure the linear loss along the SMF mainly due

to the fiber attenuation. In the beginning of the fiber, the gain amplitudes of the Stokes

and the anti-Stokes probes are similar. However, at the end of the fiber, the Brillouin

gain is merely noticeable for the Stokes wave whilst the gain for the anti-Stokes wave still

remains. The origin of this difference may be the pump depletion being higher in the

Stokes probe than that in the anti-Stokes probe. Since the anti-Stokes involves Brillouin

loss process, the energy of the anti-Stokes wave is transferred to the pump. Therefore it

would be expected that the pump bears low depletion thanks to the anti-Stokes wave.

Moreover, the Stokes signal is not present and the pump looses its energy mainly by fiber

attenuation (10 dB for 50 km), but not much by Brillouin gain. For the Stokes case, the

Stokes probe takes Brillouin gain continuously from the pump. This results in high pump

depletion. As the anti-Stokes signal is not present, the pump keeps loosing its energy

by the fiber attenuation and depletion. The measurements show a high performance of

our BOTDA setup using a QPSK modulator because commercial BOTDA sensors work

with a 30 km fiber length. We have made a comparison between BOTDA including the

QPSK modulator and the classical BOTDA with a filter. The 50 km distributed traces

are shown in Fig.(3.25 b) for the Stokes (red trace) and the anti-Stokes probe (blue trace).
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Figure 3.25: (a) Distributed measurements along the 50 km fiber using the Stokes probe

(red trace) and anti-Stokes probe (blue trace), (b) distributed measurements along the

50-km fiber using the classical BOTDA setup shown in Fig.(3.11). The double side-band

probe is filtered out to select the Stokes signal (red trace) or the anti-Stokes signal (blue

trace).

The anti-Stokes traces in Figs.(3.25 a,b) reveals no significant difference in terms of the

signal contrast. Besides, the Stokes trace in Fig.(3.25 b) also exhibits gain at the end of

the fiber. As both the Stokes and anti-Stokes probes are present in the classical BOTDA

system, the pump looses its energy by the Stokes and the anti-Stokes transfers some of its

energy to the pump. Therefore, the pump with the Stokes and anti-Stokes would suffer

less from depletion than that with the Stokes only in the QPSK BOTDA. The compar-

ison also manifests that anti-Stokes can enhance the sensing range compared to Stokes.

From the trace amplitudes, it also reveals that the signal amplitude is twice greater in

the QPSK BOTDA setup than that in the classical BOTDA setup. As such, a QPSK

modulator provides an improvement of signal-to-noise ratio on distributed measurements.

3.3 Distributed strain measurement

As mentioned in chapter 3.2, an application of Brillouin distributed measurement is tem-

perature and strain monitoring. In this paragraph the measurement of the strain coeffi-

cient will be shown.

For strain monitoring we have set up an elongation platform that can be controlled

with high precision (10µm) by Labview. Therefore we fixed the fiber with tape and

marked the point where the fiber has been fixed to be sure that the fiber is stretched

without slipping under the tape. First we measured the BFS depending on applied strain
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Figure 3.26: (a) Brillouin frequency shift versus fiber length and (c-e) Brillouin gain

mapping for three different elongations applied to a 5-cm fiber section. (b) BFS dependent

on applied strain

on 5 cm of an SMF. The measurement was obtained by the DPSK-BEDS technique with

a spatial resolution of 5 cm. The effect of an elongation of 0 - 80µm on the BFS can be

seen in Fig.(3.26) where (a) shows the analysis of the BFS for three different elongations,

(b) fitted data in order to estimate the strain coefficient and (c-e) the mapping of the

5 cm section for 20µm, 50µm and 80µm over 5 cm. Since 5 cm corresponds to the spatial

resolution of the system the graphs do not decline sharply at the end of the 5cm-section in

Fig.(3.26 a,c-e). Nevertheless, it confirms well the performance of the DPSK-BEDS sys-

tem. As the elongation length increases, the BFS increases from 10.847 GHz to 10.865 GHz

and 10.883 GHz. However, the figure reveals the elongation over more than 5 cm. We

speculate that the pure fiber may slightly slip inside the fiber coating by the strain. The

BFS is displaced by 18 MHz at 600 µε and 36 MHz at 1200 µε. It is seen from the

elongation measurements that the strain coefficient is obtained as 2.97MHz per 100µε,

in poor agreement with the value reported in literature which is 5.055MHz/100µε [37].

This is due to the very short length of 5 cm. For a more precise strain measurement we

also performed strain monitoring over 12.3m by comparing an SMF, a PCF and a highly

nonlinear fiber (HNLF).

For this measurement the standard BEDS setup has been used and a long stretch
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Figure 3.27: Experimental setup to stretch fibers (here 12.3m).
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Figure 3.28: Distributed strain measurement over 12.3m of the fiber. (a) BFS for a

260m SMF where the first 12.3m are frequency shifted, (b) Strain coefficients for an

SMF (260m), PCF (100m, 5.5µm fiber core diameter) and HNLF (490m).

bench was realized where 12.3m of the fiber were coiled up. In Fig.(3.27) the construc-

tion is visualized: two fiber coils are needed, one fixed on the movable elongation platform,

the second one fixed at 3m from the first one on the optical table. The second coil is not

tighten on the table but can turn so that the strain can be homogeneously distributed on

the 12.3m (about 4 x 3m) of the fibers. In Fig.(3.28) we see the 260m-long SMF where

12.3m were stretched by 7mm. The shift in BFS from 10.85GHz to about 10.90GHz can

clearly be observed. Figs.(3.29 a-c) show the mapping of a 260m-long SMF, a 100m-long

PCF (5.5µm fiber core) and a 490m-long HNLF with 28mm elongation over 12.3m. The

BFS is different for each fiber due to their different effective refractive indexes (SMF and

PCF) and also different acoustic velocity such as the HNLF because of its highly doped

GeO2 core. The spatial resolution is 30 cm and the frequency resolution is 1MHz. The

reason for the lower quality of the mapping Fig.(3.29 c) for the HNLF is probably the splic-
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Figure 3.29: Brillouin frequency shift versus the fiber length for three different elongations

applied to a 5-cm fiber section.

ing losses of the fiber or the pulses (intensity and phase pulse) are not adjusted accurately

enough. However, the data were all exploitable and we obtain the following strain coef-

ficients: 4.78MHz/100µε (SMF), 4.70MHz/100µε (PCF) and 3.69MHz/100µε (HNLF)

which is comparable to values obtained in SMF and PCF in literature [37,38]. The similar

value for the SMF and the PCF is not really astonishing because it depends mainly on

the material, in this case pure silica.

However, it could have been possible that the value for PCFs and SMFs are different

because of the air-hole micro-structure. Our recent results [39] for forward Brillouin scat-

tering have shown a higher temperature sensitivity for PCFs. The temperature coefficient

in the forward Brillouin scattering spectrum is about 10 times higher than for a SMF [39].

We can say that this is not the case for backward scattering. The micro-structure has

apparently no influence on the strain coefficient unlike the material or the doping level.

3.4 Effect of structural irregularities in photonic crys-

tal fibers

In this paragraph we investigate the effect of microstructure irregularities and applied

strain on backward Brillouin scattering by comparing two PCFs drawn with different pa-

rameters in order to minimize diameter and microstructure fluctuations. We fully char-

acterize two PCFs with the nearly same air-hole microstructure but drawn with different

parameters in order to minimize diameter fluctuations. The experiments are twofold:

we first perform a measurement of the Brillouin gain spectrum (BGS) and the critical

power for the Brillouin threshold and then a Brillouin-echoes distributed sensing (BEDS)

measurement with a high spatial resolution of 30 cm. These experiments have been per-

formed with the Group for Fiber optics at the EPFL in Lausanne within a research stay

supported by the COST 299 action. Our results show that these two fibers exhibit a

single peak in the gain spectrum like an SMF and that their critical powers of stimulated
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scattering are in good agreement with theory. The impact of structural irregularities and

strain on the BFS is also clearly evidenced. We observe in particular long- and short-scale

fluctuations in the BFS. Although short-scale longitudinal fluctuations were theoretically

studied in Ref. [40], it is the first time, to our knowledge, that the short-scale fluctuations

are observed in optical fibers using the BEDS technique. We further show that it is pos-

sible to extract the effective refractive index all along the fiber from the distributed BFS

measurements, which allows a quantitative estimation of fiber irregularities. With these

measurements we are able to draw conclusions about the fiber inhomogeneity induced

by the drawing process because the results reveal a clear-cut difference of longitudinal

homogeneity between the two fibers.

The Brillouin gain and Brillouin frequency shift (BFS) depend on the overlap of light and

acoustic waves in the fiber core and on the material. Temperature and strain influence the

velocity of the acoustic wave and thus the BFS. Since the acoustic modes are sensitive to

temperature and strain, Brillouin backscattering has widely been studied for distributed

sensing in single mode fibers (SMF) [4, 26] as well as in PCFs [41]. Due to their high

nonlinear efficiency, PCFs have received particular attention for temperature and strain

sensing. It has recently been reported that PCFs with small core exhibit in most cases a

multi-peak Brillouin spectrum due to the periodic air-hole microstructure [7,42,43]. This

aspect could be advantageously used for simultaneous strain and temperature distributed

measurements. However, when multi peaks overlap, the spectrum broadens and the data

analysis becomes more difficult. Another aspect that limits distributed measurements

is the inhomogeneity of opto-geometrical parameters along the fiber. This is even more

crucial in PCFs since their fabrication requires an accurate control of more parameters

than for SMF during the drawing process. Fiber manufacturers are interested in control-

ling the fiber homogeneity and are looking for an adequate method. This was one of the

motivations for the following experiments with two PCFs with different drawing processes

provided by IRCICA institute in Lille.

The two PCFs under test have a hexagonal holy structure and their cross-sections are

shown in the insets of Fig.(3.30). They originate from the same stack, but from different

intermediate canes. The cane used to manufacture fiber #1 was 3.8 mm in outer diam-

eter and drawn at a relatively high temperature (low tension). For fiber #2 the cane

was drawn with the same parameters, except for the temperature that was much lower

than for fiber #1, leading to a much higher tension during the drawing process. At this

stage, the outer diameter fluctuations of both canes were comparable, but the air holes

were slightly smaller in cane #1 than in cane #2. The canes were then inserted into

jacketing tubes, and drawn down into fibers. Both fibers were drawn with comparable

parameters, although a slightly higher pressure was used for fiber #1 to inflate air holes.

The outer diameter fluctuations measured during the drawing process were about 2% for

fiber #1 and less than 1% for fiber #2. Both of the fibers are designed to get a zero-

dispersion-wavelength around 1060 nm and have an attenuation of 5 dB/km (#1) and

8.6 dB/km (#2) at 1.55 µm. Their effective mode area (EMA) is about 15 µm2 (#1)
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and 16 µm2 (#2) at 1.55 µm found by calculation based on scanning electron microscopy

(SEM) images. The core, hole diameter, pitch, and length can be found in table (3.1).

Table 3.1: Details of PCF microstructure
#1 #2

Core diameter 5.5 µm 5.5 µm

Hole diameter 2.7 µm 2.3 µm

Pitch 4.1 µm 3.9 µm

Fiber length 100 m 400 m

Effective mode area 15 µm2 16 µm2
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Figure 3.30: (a) Brillouin gain spectrum for fiber #2 with increasing input power. Bril-

louin spectrum for an input pump power of 11 dBm, which is under the critical power, for

(b) fiber #1 and (c) fiber #2. The PCF cross-sections are shown in the insets. (d) Simu-

lated group velocity dispersion and nonlinear coefficient γ here for fiber #2 (comparable

to fiber #1). FWHM of the Brillouin gain depending on the input power (e) fiber #1 (f)

fiber #2.
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3.4.1 Brillouin gain spectrum

Before the distributed analysis of the BFS along the fibers we have first performed a direct

measurement of the gain spectrum and the critical power using the experimental setup

of the heterodyne measurement (Fig.(3.1)). Since in the latter case the scattered light

is affected by strain, differences of temperature and air-hole microstructure fluctuations

along the fiber, it is called integrated measurement. As an example, the Brillouin spectrum

dynamics in function of the pump power obtained from fiber #2 is shown in Fig.(3.30 a).

In Fig.(3.30 e,f) we can see the FWHM depending on the input power in dBm. As reported

in previous work [7], there is a plateau in the low power regime. In the stimulated regime

the Brillouin spectrum narrows as expected and tends to 10 MHz [44]. For spontaneous

scattering we assume the FWHM to be about 60 MHz for fiber #2 and 55 MHz for fiber #1

keeping in mind that the measurement is rather noisy in this part. In a SMF the FWHM

is about 27MHz which is lower as our measured ones [2, 45]. This Brillouin linewidth

broadening is due to fiber inhomogeneities and to the photonic crystal cladding that

allows the simultaneous generation of several longitudinal acoustic modes, as previously

demonstrated [7].

The FWHM in the spontaneous regime of Brillouin scattering is inversely proportional to

the acoustic decay time of the material according to Eq.(2.37). With a FWHM of 27 MHz

the natural phonon lifetime in silica is 11.7 ns which means that the amplitude of the

acoustic wave decreases to 1/e in this time. Our measurements of the FWHM reveal an

acoustic decay time of 5.3 ns for fiber #2 and 5.8 ns for fiber #1. Although our PCFs are

made of silica, their phonon lifetimes are lower than that in silica. The reason for a lower

value can be the interaction of several acoustic modes at the same time which causes a

faster damping than with a single acoustic wave, reducing the coherence of SBS process.

This will further be discussed in the next chapter.

To get better insight, Fig.(3.30 b,c) show the Brillouin spectra at 11 dBm which is below

the critical power of stimulated scattering. One can see that there exists a single peak

as in an SMF and an asymmetry in the spectra can be noticed, particularly for fiber #1.

This asymmetry suggests the presence of two or more acoustic modes with close Brillouin

frequency shift and thus overlapping gain spectra.

3.4.2 Critical power of stimulated Brillouin scattering

The critical power of the Brillouin threshold is also measured for the two fibers. The

estimated value for the critical power for homogeneous fibers is given by Eq.(2.38) and the

Brillouin gain can be determined by measuring the FWHM in the spontaneous Brillouin

regime according to Eq.(2.36). For fiber #1 the Brillouin gain is gB = 1.25 · 10−11 mW−1

and for fiber #2 we obtain gB = 1.15 · 10−11 mW−1. In literature a value of 1.685· 10−11
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m/W for gB in SMF can be found, as recently reported by Lanticq et al. [8]. The higher

gB for SMF compared to our measured one in PCFs is not contradictive with the higher

PCF nonlinear Kerr coefficient γ according to Eq.(1.23). Indeed gB does not benefit from

the smaller PCF effective mode area contrary to the nonlinear Kerr coefficient γ. To

get a deeper insight to the definition and the theoretical threshold the reader is refered

to chapter 4. With help of this theory the numerical factor C which depends amongst

others on fiber length, attenuation, BFS and the threshold definition can be calculated

as 14.4 for fiber #1 and 14.0 for fiber #2. With the measured and calculated values the

theoretical critical power can be estimated as 24.28 dBm for fiber #1 and 20.16 dBm for

fiber #2. The critical power for stimulated scattering is measured with the same setup as

for the Brillouin spectrum without the heterodyne detection (Fig.(3.5)). The results for

the backscattered and transmitted power depending on the input power for both fibers

are shown in Fig.(3.31). The experimental value of the critical power is obtained as

26.7 dBm for fiber #1 and 20.2 dBm for fiber #2 taking into account splicing losses of

about 1.5 dB. Comparing the theoretical values with the experimental ones we found them

in good agreement for both fibers. Assuming the fairly high birefringence in those fibers,

the factor 3/2 is probably too large, Fiber #1 being shorter. This may be a tentative

explanation of the discrepancy with Fiber #1. Another possible reason may be the higher

inhomogeneity of the fiber that will be shown in the next paragraph.
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Figure 3.32: Mapping of the Brillouin gain for (a) fiber #1 and (b) fiber #2. The Brillouin

gain spectrum at 50m of the fiber is shown in the insets.

3.4.3 Distributed Sensing using Brillouin Echoes

In order to study longitudinal fluctuations in PCF we performed a classical BEDS mea-

surement which has been carried out during a research stay at the EPFL in the fiber optics

group. Besides the integrated measurement of the Brillouin spectrum the distributed one

provides further informations concerning inhomogeneities and strain on the fiber. The

setup has been explained in paragraph 3.2.2. We use the enhanced BEDS setup to avoid

the second echo in Fig.(3.16). Taking into account the fiber losses a measurement with

30 cm spatial resolution and 2MHz frequency resolution was possible. Fig.(3.32) illus-

trates the result of the BEDS measurement for fiber #1 (a) and fiber #2 (b) while the

probe modulation frequency is swept around the BFS. The data were averaged and fitted

by using a convolution with a rectangle to reduce noise. Then the spectra were fitted at

each measuring point along the fiber to extract the BFS. The used fit for the FWHM is

a Lorentzian profile; for the BFS a parabolic fit was used to obtain a higher precision.

In order to highlight shortly the difference between the parabolic fit and the Lorentzian

fit, the analysis of the BFS of fiber #2 is presented in Fig.(3.33). The first image (a)

is the result of fitting the distributed BGS with a parabolic fit of only the top points

of the spectrum, the second one (b) with a Lorentzian fit of the whole data row. It

can be observed that the parabolic fit leads to a more precise and distinct distributed

BFS (Fig.(3.33 c)) than the Lorentzian fit. Here (Fig.(3.33 d)), the graph seems to be

smoothed along the fiber. The reason is clearly remarkable in the fit of the BGS because

the Lorentzian fit takes into account the whole measurement row whereas the parabolic fit

uses only the top points of the data. This means that the Lorentzian fit is also influenced

by asymmetry as it is the case here. The maximum of the Lorentzian curve is slightly
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Figure 3.33: Brillouin gain spectrum at 50m of fiber #2 with (a) parabolic fit and (b)

Lorentzian fit. The resulting distributed BFS is shown in (c) and (d), respectively.

shifted to the real maximum which can also be observed in the two insets of Fig.(3.33).

To find a more appropriate fitting curve for the whole measuring row we will use a multi-

Lorentzian model in paragraph 3.5.

Fig.(3.34) gets further insight into the longitudinal fluctuations of the BFS. As it can

be seen, the distributed BFS exhibit both long- and short scale longitudinal fluctuations

that are due to diameter fluctuations. Particularly for fiber #1 we can identify a long-

scale sinusoidal variation of about 8 MHz with a half-period of approximatively 50 m that

corresponds to the middle of the fiber. This BFS variation is due to the strain induced

by the fiber coiling as a half of the fiber length is coiled on the other half. This was easily

confirmed by inverting the PCF in the setup. On the other hand, the short-scale longi-

tudinal fluctuation (about 5±1 MHz every 2 m) seen in Fig.(3.34 a) indicates a random

geometric variation of the air-hole microstructure. Note that this cannot be attributed to

the influence of birefringence in the PCF since the variation on the refractive index can

be estimated to 7 · 10−4 using Eq. (2.18) which is well above the birefringence of the PCF

(estimated phase birefringence by simulation: ≈ 1.5 · 10−5, measured group birefringence:

≈ 5 ·10−6). Fig. 3.34(b) shows a 5 MHz shift in BFS for fiber #2 between 80 m and 180 m

which corresponds to one layer of the fiber coil. In this way we are able to detect the strain
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Figure 3.34: Brillouin frequency shift along (a) fiber #1 and (b) fiber #2 showing the

effect of inhomogeneities and strain. The insets show the Fourier transforms. Distributed

FWHM of the BGS for (c) fiber #1 and (d) fiber #2

applied to one layer. The short scale fluctuation is smaller (3±1 MHz, every 2-3 m of the

fiber) and can be attributed to geometrical fluctuations of the air-hole microstructure.

The mean power of the pump pulse in the distributed measurement for both fibers was

13 dBm. Taking into account the splicing losses the pump power is assumed to be well be-

low the Brillouin threshold. Comparing our previous measurements of the Brillouin gain

spectrum at this power level (about 11.5 dBm) and the spectrum of the distributed mea-

surement at 50 m we find a good agreement for fiber #1 (Fig.(3.30 b) and Fig.(3.32 a)).

Both spectra are asymmetric which may be explained by several frequency shifted acous-

tic modes. The peak frequency of the self-heterodyne Brillouin spectrum measurement

amounts to 11.078 GHz (mean value in the power range 5-28 dBm). The distributed

frequency along the fiber is 11.071±0.003 GHz. The same comparison for fiber #2 reveals

a discrepancy between the self-heterodyne and the distributed measurements (Fig.(3.30 c)

and Fig.(3.32 b)). The Brillouin gain spectrum in self-heterodyne measurement has a sin-

gle mode shape but a little bump on the right side can be seen. However the distributed

Brillouin spectrum in Fig.(3.32 b) appears more asymmetric than in the self-heterodyne

measurement. In the distributed measurement the BFS varies around 11.064±0.002 GHz.
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The self-heterodyne measurement reveals a mean BFS of 11.069 GHz over a power range

3-27 dBm.

The FWHM of the Brillouin gain spectrum has been extracted by help of a Lorentzian fit

(because it is not possible to extract the FWHM with the parabolic fit) and is depicted

in Fig.(3.34 c,d). For fiber #1 the distributed FWHM is about 52±2 MHz, compared

to 51.5 MHz at 11.5 dBm in the integrated measurement (Fig.(3.30)). The FWHM for

fiber #2 is 50±1 MHz (distributed) and 45.4 MHz (integrated). Hence the Brillouin gain

broadening for PCF in the spontaneous regime is also noticed in this experiment. Con-

cerning the inhomogeneity we can observe lower fluctuations for fiber #2. In this way the

distributed measurement shows the effect of the different drawing process, in terms of the

BFS and the FWHM of the Brillouin gain spectrum. Fluctuations in fiber #2 are clearly

less pronounced than in fiber #1, as expected. The increase in FWHM at the end of the

fiber may be due to pump depletion.

It is clear from Fig.(3.34 a,b) that the longitudinal fluctuations in BFS are less signifi-

cant for fiber #2 than fiber #1 as the drawing process was better controlled. This is

verified by studying the fast Fourier transform of the BFS trace shown in the insets of

Fig.(3.34 a,b). We notice that for fiber #1 the frequencies pedestal around the main peak

is wider than for fiber #2. In order to obtain an estimation of the diameter or microstruc-

ture fluctuations along the fibers, we have derived the distributed effective refractive index

neff from the distributed BFS as they are proportionately linked by Eq. (2.18) (VL and

λP are known).

In the following, we assume that the main contributions to these fluctuations are due

to homothetic variations of the microstructure, i.e. to fluctuations of the outer diameter

only. We neglect here possible longitudinal inhomogeneities of individual air holes or pitch,

as well as possible twists induced during the drawing process because of several reasons.

The variation of the effective refractive index can derive from different origins: applied

strain, temperature variation, longitudinal variations of the microstructure, individual air

holes inhomogeneities or variation of the pitch. We assume that the temperature does

not influence the experiment because of the short experiment duration. The impact of

strain is observed in long scale fluctuations which indicates the effect of the fiber coiling.

Moreover the variation of the pitch has an important impact on the effective refractive

index, which can be found in Ref. [46]. However several SEM-images at different sections

of the fibers show that there is no measurable variation of the pitch and singular air-

holes. From our numerical simulation using Comsol it is found that the variation of the

microstructure scale is the main cause of the variation of the effective refractive index.

So we decided to vary the scale of the microstructure since this seemed to be the most

general variation. To relate geometrical variations to neff the dependency of neff on the

microstructure scale has been computed by using the PCF cross-section of the two fibers
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Figure 3.35: Variation of the effective refractive index while tuning the scale of the SEM-

image

via Comsol software (Fig.(3.35)). A simulation based on the original image (correspond-

ing to 100% in Fig.(3.35)) yields a certain amount of neff (1.434 for #2 and 1.432 for #1).

By varying the scale of the original SEM-image different values of neff are obtained and

depicted in Fig.(3.35) for the two fibers.

We have computed the local derivation of the obtained relation between neff and

the geometrical scale around 100% as indicted by the tilt solid lines in Fig.(3.35). The

effective refractive index changes by 2.2 · 10−4 (#1) and 2.0 · 10−4 (#2) for 1%. This is

compared to the fluctuations of the effective refractive index in the fibers under test by

using Eq. (2.18). The variation of the short scale fluctuations (5±1 MHz for fiber #1

and 3±1 MHz for fiber #2) corresponds to 2.9±0.6% and 1.9±0.6% of scale or diameter

fluctuations, respectively. The large scale variation is 4.7% (8 MHz for #1) and 3.2%

(5 MHz for #2). This means that the maximum core diameter fluctuation is 5.5±0.3 µm

(fiber #1) and 5.5±0.2 µm (fiber #2). Since polarization and strain can influence the

variation of the effective refractive index the contribution of the structure size is expected

to be below these values. This estimation confirms the higher quality of the drawing

process obtained for fiber #2. Note that the fluctuations measured in the present work

are in good agreement with the specifications from state-of-the-art PCF manufacturers

[47], [48].

To conclude this paragraph, the homogeneity of these two photonic crystal fibers drawn

from the same preform but with a different drawing process has been investigated and
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the fluctuations were logically found less important in the case of a fiber fabricated with a

better process control. We have been able to identify and quantify both long- and short-

scale longitudinal fluctuations in the Brillouin frequency shift resulting from residual strain

due to fiber coiling and air-hole microstructure or diameter fluctuations, respectively. Our

results finally demonstrate the great potential of the Brillouin echoes distributed sensing

technique for small scale optical fiber characterization. Moreover, these results show the

need for characterization of structural irregularities in fibers before they can be used for

distributed sensing.

In the next chapter another performance of the BEDS technique will be presented. Due

to the high spatial resolution it is possible to estimate the acoustic decay time in fibers.

Besides a multi-Lorentzian model will be applied to get a better fitting of the row measured

data and to understand the asymmetry in Brillouin gain spectra.

3.5 Observation of the acoustic decay time

In this paragraph we report the observation of the acoustic decay time in both, PCF and

SMF, using the BEDS technique. As we have seen before, the BEDS technique basically

differs from BOTDA since the BEDS technique enhances the spatial resolution. Not only

a precise BGS distributed measurement can be performed but also a measurement of the

decay time of acoustic waves gets possible. The BEDS technique has to be used without

the second intensity modulator, as introduced in chapter 3.2.2, because this time we will

make use of the second echo [49] to obtain the Brillouin response and the decay of the

acoustic wave [20, 21].

To investigate the decay time of acoustic waves we used the distributed measurements that

have been carried out in the 100-m long PCF from the previous chapter, another 15m-long

PCF with multi-scale structure as well as in a short length of an SMF. Our results show

in particular an asymmetrically-broadened Brillouin gain spectrum all along the PCF due

to the presence of several acoustic modes. The Brillouin linewidth broadening for PCF

is interpreted in term of a multiple-Lorentzian model. The BEDS technique leads to the

observation of the apparent acoustic exponential decay time which agrees very well with

the Brillouin linewidth for both fibers. Unlike SMF, the decay time indicates that the

Brillouin linewidth of the PCF is not strictly related to the fundamental acoustic phonon

lifetime. For the sake of comparison, the results obtained in a 10m SMF are summarized

in Fig.(3.36 a,b,c)13. The mapping of the 10m-long SMF is shown in (a) where we observe

a homogeneous BFS and the slowly decaying Brillouin response at the end of the fiber.

The BGS at one position of the fiber can be fitted by a Lorentzian graph with FWHM

26MHz as presented in Fig.(3.36 b). Then we investigated the decay of the Brillouin sig-

13The measurement of the SMF is kindly provided by the group for Fiber optics at the EPFL
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Figure 3.36: Mapping of the BGS in a 10m-long SMF (a) and a 100m long PCF (d),

(b,e) Brillouin gain spectrum at a distance of 10m in SMF and 97m in PCF respectively.

Grey curves are four single Lorentzian fit of the gain spectrum. (c,f) Brillouin gain at the

peak frequency in the time domain at the end of the PCF and the SMF. The black curves

show exponential fit curves to estimate the acoustic decay time. In the insets of (c,f) the

decay time of the Brillouin response at the fiber end for different frequencies around BFS

is shown. The maximal decay time is found at the maximum of BFS spectrum.

nal at the fiber end for each frequency shift (inset of Fig.(3.36 c)) which was confirmed

by the same measurement at the fiber input. The maximal decay time is observed at the

maximum of the BGS. For this frequency shift we analyzed the time trace as presented

in Fig.(3.36 c). When the pulse leaves the fiber a linear decay can be observed first (to

get better insight this is presented in Fig.(3.38) in detail). Then the Brillouin response

decays exponentially as confirmed by the fitting curve. The resulting decay time of the

acoustic wave is 12.08 ns in good agreement with the Brillouin linewidth measurement of

Fig.(3.36 b) according to Eq.(2.37) and the value found in literature [10].

Now it is interesting to carry out the same measurement in PCF. The inset of Fig.(3.36 e)

shows the cross-section of the PCF under test. It consists of a standard triangular lat-

tice of air holes and its characteristics can be found in table (3.1). In Fig.(3.36 d) the

BEDS measurement that maps the Brillouin gain along the PCF as a function of fre-

quency and position is presented. It has been discussed in detail in the previous chapter.

Fig.(3.36 e) presents the BGS at a propagation distance of 97 m where one can clearly

observe an asymmetric and broadened Brillouin spectrum with a linewidth of 52MHz
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(FWHM) which is definitely larger than the Brillouin linewidth commonly observed in

SMF (about 26 MHz, see Fig.3.36(b) for comparison). These features are mainly due

to the air-hole periodic microstructure which alters the acoustic modal distribution and

leads to a strong coupling between the longitudinal and transverse acoustic modes. Note

that such novel characteristics are difficult to model numerically because each PCF ex-

hibits completely different BGS [7,42,50]. Nevertheless, by expanding the gain spectrum

as a superposition of multiple Lorentzian lines showing a linewidth identical to a SMF,

we found that the BGS can be made of four main incoherently-coupled acoustic modes

with slightly different central frequencies as show in Fig.(3.36 e). The fitting curves in

Fig.(3.36 e) are plotted in grey and the resulting BGS in black. The distributed frequency

of four Lorentzian shapes fitting the experimental Brillouin spectrum in PCF is shown

in Fig.(3.37 a). A variation in the air-hole microstructure induces an identical variation

for the estimated four frequencies fitting the Brillouin spectrum in PCF. Hence, the four

acoustic modes are influenced in the same manner along the fiber length. For comparison,

we also performed a fit with only two Lorentzian curves (Fig.(3.37 b)) but with variable

FWHM which can be found in Fig.(3.37 c,d). The BFS of the two Lorentzian fits are not

fluctuating in the same way. The higher Lorentzian fit even shows rather large fluctua-

tions compared to the lower one. For the FWHM it is the same case, the two graphs are

not comparable. This fact convinced us that the four Lorentzian model fits better for our

measurement. Moreover, from a physical point of view it is more persuasive that different

acoustic modes with the natural linewidth of pure silica (28MHz) are propagating in the

fiber than several modes with varying FWHM. The nature of these acoustic modes, e.g.

if they are longitudinal or hybrid modes, has still to be investigated by a well-founded

model, taking into account the effect of electrostriction.

Using the BEDS technique, we are also able to observe the slow exponential decay time

of the acoustic wave in a PCF which is directly scaled by the acoustic phonon lifetime.

Fig.(3.36 c) shows, similar to the SMF measurement, the decay time depending on the

frequency shift. The black line in Fig.(3.36 c) is an exponential fit on the decay of the

maximum BFS and we find a value tA of 7.6 ns in the PCF. Unlike SMF, the Brillouin

linewidth in PCF is not uniquely defined by the damping of the phonon wave. The

superposition of multiple acoustic modes actually modifies the measured acoustic lifetime

at the Brillouin resonance. The distribution of these acoustic modes is related to the

waveguide characteristics for the hyper sound propagation which is influenced by the air-

hole micro structure. The experimental value of 7.6 ns is confirmed by calculation (7.4 ns).

Therefore the four Lorentzian curves are composed to one spectrum and then the Fourier

transform leads to an exponential decay with constant τ = 7.4ns. This calculation leads

also to the theoretical graph in the inset of Fig.(3.36 c). A comparison to a second PCF

has been realized to confirm the result of the shorter acoustic decay time. This PCF has a

multi-scale microstructure with three different sizes of air holes (inset of Fig.(3.38 b)) and

was provided by Draka, Marcoussis. The first two inner rows with 800 nm holes are based
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zoom on the Brillouin gain at the peak frequency in the time domain at the end of the

PCF, (c) Brillouin gain at the peak frequency in the time domain. The black curves show

exponential fit curves to estimate the acoustic lifetime at both the input and output of

the fiber: 6.4 ns and 6.2 ns, (d) decay time of the Brillouin response at the fiber end for

different frequencies around BFS, (f) Brillouin gain spectrum.

on a triangular lattice and the fiber core measures 2.4µm. This fiber will be studied in

detail for it unique forward Brillouin scattering in chapter 5. In Fig.(3.38) we find the same

order of measurements as explained before: the fiber mapping, the BGS at one position in

the fiber, the decay time depending on the frequency shift and the measured decay time

for the maximum of the BGS. For this multi-scale fiber a damping time of 6.3 ns can be
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found which is as well significantly shorter than for SMF. Considering the broadened and

asymmetric spectrum of this fiber we find five Lorentzian graphs with 28MHz FWHM

that fit into the measured data. Hence, the fitting model has to be carefully chosen for

each PCF in order to find the number of Lorentzian fits and thus the acoustic modes.

This topic needs further investigation because it has to be understood how the different

incoherent acoustic modes interact with the optical mode. This also leads to the question

if the shorter decay time signifies that the acoustic wave resulting from different acoustic

modes is attenuated faster or if only the optical answer, the Brillouin response, decays

faster and this effect can be observed in our BEDS measurement. For this purpose a

distributed measurement of the phase should be carried out. Then the coherence of the

acoustic waves has to be verified and this can be introduced into the theoretical model.

Additionally an interesting theoretical approach for the full vectorial analysis of Brillouin

gain has been developed in [51], that can help to get better insight to understand the

shorter decay time of the Brillouin response in PCF.

3.6 Conclusion

In this chapter about Brillouin backscattering in photonic crystal fibers several topics have

been presented. First techniques of Brillouin gain, Brillouin threshold and distributed

Brillouin measurement have been explained in detail and results in different SMF and PCF

were analyzed and interpreted. The different distributed techniques have been presented:

Brillouin Optical Time Domain Analysis (BOTDA), Brillouin Echoes Distributed Sensing

(BEDS), Differential Phase Shift Keying - BEDS (DPSK-BEDS) and finally with the

use of a Single-Sideband-Modulator. The use of BEDS and DPSK-BEDS measurement

permitted the characterization of all in this manuscript used fibers with high spatial

resolution. A distributed strain measurement in SMF, HNLF and PCF was performed

and the results were compared. Another application of the BEDS-system is monitoring

fiber inhomogeneities in PCF. We identified and quantified both long- and short-scale

longitudinal fluctuations in the BFS resulting from residual strain due to fiber coiling and

air-hole microstructure or diameter fluctuations. The experimental results were confirmed

by simulation based on the SEM image of the fibers. From a fundamental view point it

was possible to observe Brillouin linewidth broadening in PCF and for the first time to

the best of our knowledge the indirect observation of the acoustic decay time in PCF and

SMF which turned out to be shorter in PCF than in conventional SMF.
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[15] R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin

scattering”, Physical Review A, vol. 42, no. 9, pp. 5514–5521, 1990.

[16] R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined

by stimulated Raman and Brillouin scattering”, Applied Optics, vol. 11, no. 11, pp.

2489–2494, 1972.

[17] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica”, J.

Opt. Soc. Am., vol. 55, no. 11, pp. 1205–1208, 1965.

[18] S. Foaleng Mafang, F. Rodriguez-Barrios, S. Martin-Lopez, M. Gonzalez-Herraez,
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Chapter 4

SBS mitigation in PCF with

periodically varying micro-structure

In recent years, there have been active efforts to suppress stimulated Brillouin scattering

(SBS) in optical fibers as it is detrimental to nonlinear optical processing fiber technologies

and high-power narrow-linewidth fiber lasers. In order to increase the Brillouin thresh-

old several passive and active methods have been demonstrated. Among active methods

phase-modulation with different profiles have been shown, for example pseudo-random or

duobinary phase pulse orders [1], which leads to spectral broadening of the pump wave. A

method called frequency dithering is also supposed to enlarge the Brillouin gain spectrum

by changing very fast the pump frequency [2]. A. Mussot et al. [3] proposed to use XPM

for the phase modulation of a CW pump avoiding the use of electro-optical modulators.

The advantage of active methods is the efficiency of Brillouin suppression but on the other

hand it modifies the coherence of the pump wave and leads to a spectral broadening. To

avoid changing the optical properties of the pump wave several passive methods have been

proposed. Recently it has been reported about reducing the opto-acoustic overlap [4,5] by

doping the fiber core or using multi-core fibers [6]. The use of hollow optical fiber helps

for controlling the Brillouin frequency shift (BFS) [7] and a special photonic-phononic

bandgap structure inhibits acoustic modes in the optical core [8]. SBS mitigation has

also been proposed using photonic crystal fibers (PCFs) due to their ability to reduce

the acousto-optic overlap or widen the Brillouin gain spectrum [9]. Nevertheless many

methods are based on varying the Brillouin frequency shift along the fiber. This can be

achieved by applying a strain or temperature distribution along the fiber length [10–12] as

well as continuously changing properties of the micro-structure like the core diameter [13]

or random distributed acoustic indices by varying parts of the air-hole-structure [9]. Shi-

raki et al. also studied the effect of longitudinal variation of the Brillouin frequency shift

(BFS) [14] which has more recently also suggested by Poletti et al. [15] to increase the
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SBS threshold through longitudinal variations of the structural parameters of a PCF.

In this chapter, PCFs with periodically-varied core diameter are studied experimentally

and theoretically in view of suppressing SBS. These fibers have been designed and fabri-

cated at the institute IRCICA, Université Lille 1. First an enhanced theoretical approach

to calculate the critical pump power for the Brillouin threshold is introduced, based on

Ref. [16]. In a theoretical parameter study the dependence on fiber length, linear loss,

EMA and other used variables for a uniform fiber are studied and later different BFS

variation profiles are investigated to increase the Brillouin threshold theoretically. In a

second part the fibers under test are presented and then investigated in chapter 4.3 in

terms of Brillouin gain, Brillouin threshold and distributed Brillouin measurement. By

varying sinusoidally 7-14% of the air-hole micro-structure over a period of 30 m, the

Brillouin frequency shift (BFS) changes significantly and the Brillouin gain spectrum

(BGS) broadens, which has been proposed in [13, 15]. This results in increasing the SBS

threshold, compared to uniform fibers with an invariant core. The properties of these core-

diameter varied PCFs are described and characterized by measuring the SBS threshold

and the BGS linewidth. We performed a distributed measurement of the oscillating BFS

using BEDS-technique and estimated the corresponding effective refractive index varia-

tions from scanning electron microscopy (SEM) images, which is in very good agreement

with outer diameter variations. The measured SBS threshold is compared to theoretical

and experimental results for uniform PCFs with the same air-hole structure but with no

periodical variation of the structure dimension.

4.1 Theoretical approach

As we have introduced in paragraph 2.2.1.4, a critical pump power for the Brillouin thresh-

old can be defined where the power of the backscattered wave begins to grow exponentially

and is no more only due to noise. The critical power PCr for the Brillouin threshold is

commonly defined as the input power where the power of the backscattered Stokes waves

equals a certain fraction µ of the input power [16]: PCr = Pin if

PStokes = µ · Pin. (4.1)

Different values for µ are used, for example µ=1 [17,18] and µ=0.01 [19,20]. Hereafter, we

will use µ=0.01. Per definition, for µ=1 the threshold is later reached and the backscat-

tered power is already significant. The critical power for the Brillouin threshold can

be solved by using the coupled differential equations, as derived in chapter 2.2.1, which

results in Eq.(2.38) that is repeated here for completeness:

Pcr =
C ·K · Aeff

gB · Leff
. (4.2)
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Aeff is the effective mode area (EMA), Leff the effective length, C a constant and gB the

Brillouin gain, which can be determined by measuring the full width at half maximum

(FWHM) in the spontaneous Brillouin regime and formula (2.36). K=3/2 is a factor that

accounts for random polarization evolution in the PCF. C can be derived by approximat-

ing the SBS gain with asymptotic expansions of the modified Bessel functions [16] and

depends amongst others on the fiber parameters, the BFS, the BGS and the 1% pump

power fraction. Within a certain fiber length limit (L ≈ 40 km, α ≈ 0.2 dB/km) the

numerical factor can be calculated as [16]:

C = ψ

(

1 +
3/2 · ln(ψ)
ψ − 3/2

)

, (4.3)

where

ψ = − ln

[
2
√
πγθ

µα
· exp−αL(1− exp−αL)

]

, (4.4)

with

θ =
kT∆νBc

2λPνB
(4.5)

and

γ =
gB

Aeff ·K . (4.6)

The Boltzmann constant k is 1.3806503 · 10−23 JK−1 and T is the temperature, thus

T=293.15K. For a silica PCF with a Brillouin linewidth ∆νB =54MHz, we have calcu-

lated gB = 1.30 · 10−11mW−1. With Leff = 244.2m, Aeff = 22.63µm2 and the other

values for the variable constants that are listed in table (4.1), we obtain C = 14.3, which

is different from the often used constant 21 as in [18]. This factor can be found in many

publications and was firstly derived by Smith in 1972 [17]. This approximative factor

considers high fiber loss (20 dB/km) and uses the definition µ=1. Calculating C with

L = 200m, α =20dB/km, Aeff = 50µm2, ∆νB =28MHz, νB =10.85GHz and µ=1 leads

to C = 21.2 which is close to 21. Other authors [20–22] also suggest smaller numerical

values, depending on the effective fiber length.

Eq.(4.2) for the Brillouin threshold is valid for uniform fibers having a constant BFS.

Taking into account the varying BFS, Eq.(4.2) must be modified. The term gBLeff in

Eq.(4.2) is then replaced by the following integral [14, 15]:

G(ν) =

∫ L

0

gB(ν, z) exp
−αz dz, (4.7)

where

gB(ν, z) = gB
(∆νB/2)

2

(ν − νB(z))2 + (∆νB/2)2
. (4.8)

If νB is constant along the fiber, we retrieve:

G(ν) = gBLeff (4.9)
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With varying BFS along the fiber the critical input power can be rewritten as:

Pcr =
C ·K · Aeff

G(νmax)
, (4.10)

where νmax is the maximum of the resulting along the fiber integrated Brillouin gain

spectrum.

From former equations we can clearly draw the conclusion, that the critical pump power

Pcr rises with a higher EMA Aeff , a broader BGS (because this results in a lower Brillouin

gain gB) and a shorter effective fiber length. Moreover a varying BFS leads to a higher

Brillouin threshold considering Eq.(4.7). A deeper insight about the dependence on the

different parameters will be studied in the next paragraph.

4.1.1 Variation of several fiber characteristics

In this paragraph the effect of several fiber characteristics on the numerical factor C and

the critical pump power Pcr is studied. The initial values are listed in table (4.1) and they

originate from a PCF (see table (4.3), fiber V3) that will be discussed later.

Table 4.1: Parameters used in Eq.(4.3) and (4.2)

Parameter Value

Temperature T 293.15K

Boltzmann constant k 1.3806503 ·10−23m2·kg
s2·K

Density ρ 2.21 ·103kg/m2

Acoustic velocity VA 5960 m/s

Electrostrictive constant p12 0.285

Pump wavelength λP 1.55µm

Birefringence factor K 3/2

BFS νB 11.0882GHz

FWHM of BGS ∆νB 54MHz

Eff. refr. index neff 1.444

EMA Aeff 22.63µm2

Fiber loss α 7.7 dB/km

Fiber length L 320m

Resulting Leff 244.5m

Using Eq.(4.3) and Eq.(2.38) Pcr and C are plotted in Fig.(4.1) for variable values

of the effective mode area Aeff , the Brillouin frequency shift BFS, the FWHM of the

Brillouin gain spectrum, the pump wavelength λP , the fiber length L , the fiber loss α,
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Figure 4.1: Critical pump power Pcr and Numerical factor C, versus (a,i) effective mode

area, (b,j) Brillouin frequency shift, (c,k) FWHM of the Brillouin gain, (d,l) pump wave-

length, (e,m) fiber length, (f,n) fiber loss, (g,o) effective length, (h,p) threshold definition.

the effective length Leff and the threshold definition µ. As mentioned in the previous

paragraph, Eq.(4.3) is valuable within a certain limit of the effective fiber length. As

it can be seen in Fig.(4.1 g,o), C and Pcr exhibit a change at about 5 km which can be

interpreted as a limit as the effective length tends to 1/αlin for long fiber lengths but the

values for Pcr are still physically reasonable. This is no more the case for the dependence

on the fiber length, seen in Fig.(4.1 e,m). Normally with increasing fiber length, the

Brillouin threshold has to decrease according to Eq.(4.2). However, we see that above

5 km the Brillouin threshold starts to rise again which is unphysical. This is due to the

estimation of the numerical factor Eq.(4.3). It must be noticed that the linear loss was

fixed at 7 dB/km for a PCF, which is rather high. Hence, the 5 km limit is not generally

valuable, especially not for SMF which have a linear attenuation of about 0.2 dB/km.
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From Fig.(4.1), we can see that the Brillouin threshold can be increased with a higher

pump wavelength and BFS. Besides it is well known, that the broadening of the BGS

leads to an increase in Brillouin threshold. The numerical factor does not depend on

the Brillouin linewidth. In this paragraph the material parameters of a fiber have been

changed theoretically but the BFS was kept constant along the fiber. Based on Eq.(4.7)

this will be the topic of the next paragraph.

4.1.2 Longitudinal variation of the Brillouin frequency shift

The previous numerical study has been carried out for uniform fibers. Now we fix the val-

ues as in table (4.1) and analyze the critical pump power for different distributions of the

BFS. The numerical factor C is not shown because it almost does not change dependant

on the different BFS profiles. Five BFS profiles have been tested: an linear increase of

the BFS and ramp, triangle, sine and square BFS distributions with variable periods and

amplitude of the BFS variation. The profiles of the BFS and the distributed BGS along

the fiber is depicted in Fig.(4.2) according to Ref. [14]. For the latter the attenuation

has been taken into account. First we set the period to 30m and have a look on the

amplitude of the periodic BFS variation (Fig.(4.3)). The amplitude is varied from 0 to

700MHz and a zoom on 0-100MHz is shown in Fig.(4.3 a). For high variation ampli-

tudes we observe a saturation for the square-distribution. The saturation begins where

both Lorentzian curves have less and less overlap, thus two times the Brillouin linewidth,

2 · 54MHz=108MHz. The other curves increase square-root-like and reache saturation

for higher values, for example the sinusoidal distribution upon 3GHz variation at about

33 dBm and the triangle and linear distribution upon 5GHz at about 40 dBm. The critical

pump power rises the most for the triangular and ramp distribution, thus for high BFS

variations, these shapes should be used. Since BFS variation are normally in shorter scale

we have to focus on the first picture, the zoom to 0-100MHz, Fig.(4.3 a). In this plot

we observe that the square shaped distribution has a higher influence on the increasing

Brillouin threshold at the same variation amplitude than the other distributions. But also

the sinusoidal one sets itself apart from the linear, ramp and triangle distribution. In the

low amplitude region, it seems to be crucial that the BFS changes abruptly and stays as

long as possible at the minimum and maximum of the BFS distribution as it is the case

for the squared distribution. The gradient of the increasing BFS does not play a decisive

role because the difference between the linear, the triangle and the ramp distribution is

very small. In a second step the amplitude of the periodic variation is fixed at 20MHz and

the period is varied from 0 to 100m (Fig.(4.4)). We observe again that the square-shaped

distribution has the most influence since we fixed the amplitude to 20MHz which is in

the low region of Fig.(4.3). The same observation as previously can be done for the other

distributions: the triangular, ramp and linear distribution have almost the same and less
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effect on the threshold increase as the sinusoidal one. But we focus on the dependency

of the variation period. Except for slight fluctuation that are more pronounced for larger

periods, no significant dependence of the variation period on the Brillouin threshold can

be found. The reason for the randomly varying values is probably the fact that in Eq.(4.3)

θ and γ depend on the BFS νB (Eq.(4.5) and Eq.(4.6)). This is taken into account in the

numerical calculation and C was obtained by taking the mean value. This may induce

numerical noise which is in a negligible order of magnitude.

To conclude it would be interesting to study PCFs with periodically varying micro struc-

ture with a sine or squared profile with an as high as possible variation amplitude. The

influence of the period on the threshold increase should not be that significant, it induces

more linear losses. In the following paragraphs, several fibers with a sine BFS distribution

will be investigated by Brillouin gain, threshold and distributed BGS measurement.

4.2 The micro-structured optical fibers under test

For the sake of comparison five different PCFs have been investigated. Two of them

have an uniform structure along the fiber, whereas the other three fibers are drawn by

inducing a periodical varying outer diameter which induces size variation of the micro-

structure. The uniform fibers are called U1 and U2, as indicated in table (4.2), and the

other three fibers with periodic variation of 7% and 14% are named with V1, V2 and

V3 respectively (table (4.3)). The difference in longitudinal size variation was induced
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during the fiber drawing process. The PCFs with the periodically varying micro-structure

have been drawn directly on a fiber tower by varying velocity and pressure during the

drawing process. Fig.(4.5 a) shows the evolution of their outer diameters as a function of

length, measured during the drawing stage. It closely follows a sine evolution over 320m

and 325m with a period of 30m and a modulation amplitude rate of 7% and 14%(outer

diameter variations from 116 to 125µm (V1 and V3) and 107 to 125µm (V2)). For the

uniform fibers U1 and U2 the outer diameter is constantly 125µm. Figs.(4.5 c-g) show

the scanning electron microscope (SEM) images of the input cross-section for the largest

outer diameter (125µm) for all fibers. They all exhibit nearly the same hexagonal air-hole

micro-structure and core diameters, varying from 5.6 to 6.4µm. For fiber V3 the holes of

the two first rows around the core have a diameter of 1.8µm which becomes smaller for

the outer rows due to deformations during the cane drawing process. The lattice pitch

Λ is nearly constant across the whole structure for all fibers and equal to 3.9µm(U2,

V1 and V2) 4.1µm (V3) and 4.4µm (U1). For the varying fibers drawing parameters

were adjusted so that outer diameter variations only modify the pitch Λ and keep the

d/Λ ratio approximately constant all along the fiber length. The linear attenuation is

different for each fibers which is due to fiber coiling and fluctuations during the drawing

process. The fiber loss at 1.55µm, estimated experimentally, varies from 7.7 dB/km (V3)

to 14.2 dB/km (U2). All other parameters of all PCFs under test can be taken from

tables (4.2) and (4.3).

Using the commercial finite element method solver COMSOL, we have calculated for one

fiber, fiber V3, based on the SEM image zero-dispersion wavelength (ZDW) variations

from 1.07µm to 1.095µm. The corresponding group-velocity dispersion (GVD) parameter

D at the operating wavelength of 1.55µm slightly shifts from 48.5 to 53.0 ps/nm/km,

which is reasonable for practical applications.
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Table 4.2: Fiber parameters for the uniform fibers
Parameter Fiber U1 Fiber U2

Length L 350m 314m

Linear fiber loss α (1.55µm) 14 dB/km 14.2 dB/km

Resulting Leff 207.6m 195.5m

Description uniform uniform

Core diameter 6.2µm 5.6µm

Pitch Λ 4.4µm 3.9µm

Hole diameter d/Λ 0.54 0.51

EMA Aeff 22.3µm2 19.7µm2

Table 4.3: Fiber parameters for the fibers with varying micro-structure size
Parameter Fiber V1 Fiber V2 Fiber V3

Length L 320m 325m 320m

Linear fiber loss α (1.55µm) 10.3 dB/km 9.3 dB/km 7.7 dB/km

Resulting Leff 223.4m 235.6m 244.5m

Description 7% variation 14% variation 7% variation

Core diameter 5.6µm 5.6µm 6.4µm

Pitch Λ 3.9µm 3.9µm 4.1µm

Hole diameter d/Λ 0.51 0.51 0.44

EMA Aeff 19.7µm2 19.7µm2 22.6µm2

4.3 Brillouin gain spectrum measurement

4.3.1 Self-heterodyne Brillouin measurement

First the measurement of the BGS has been performed to obtain the Brillouin linewidth

FWHM and the BFS. A standard heterodyne detection technique has been used where the

back-scattered Brillouin signal beats with the input one [23], as explained in chapter 3.1.1.

Figs.(4.6 a-l) show the FWHM of the BGS with variable input power and the BGS at

9 dBm, 12 dBm, and 15 dBm. The different input power values have been taken because

the spectrum was too noisy below these values. For fibers U2, V1, V2 and V3 the

FWHM in the lower regime (5 dBm) reaches an average of 58MHz, 58MHz, 60MHz

and 54MHz SBS linewidth. It might be surprising that the FWHM is about the same for

the longitudinally varied and uniform fibers but the Brillouin power rises significantly just

in the last 1/10 - part of the fiber length, as found in Ref. [24] (p.35). As the fibers under

test have a length of about 300m, the Brillouin spectrum is mostly influenced by the last

30m-part which represents only one variation period as the former is 30m. This might
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Figure 4.6: Brillouin gain spectrum (FWHM) with increasing input power for fibers (a)

U1 (c) U2 (e) V1 (g) V2 (i) V3 , Brillouin gain spectrum below the critical pump power

for fibers (b) U1 (d) U2 (f) V1 (h) V2 (j) V3

be the reason that the Brillouin spectrum is not broaden for the longitudinally varied

fibers in comparison to the uniform fibers. For fiber U1 the spectra were noisy in the low

power region (Fig.(4.6 c)), so that it was not possible to estimate properly the FWHM.

Nevertheless, we can assume that the FWHM is about 60MHz since the canes and the

drawing process were identical with those from fiber U2, V1 and V2. The difficulties in

measurement come probably from the splicing loss. As can be seen, the SBS linewidth

in the stimulated regime narrows to 10-20MHz near the threshold power. The FWHM

in the low power regime indicates a strong spectral broadening of the BGS compared to

the standard value for single-mode fiber (SMF) below threshold (FWHM ∆νB =29MHz,

measured in an SMF). This effect has already been reported in other PCFs as resulting

from the impact of air-hole micro-structure on the acoustic waves distribution [25]. It

leads to a significant reduction of the Brillouin gain and to the inhomogeneous spectral

broadening of the BGS.

Assuming the values for the FWHM∆νB, we can estimate gB by help of formula (2.36).

The results for the different fibers have been listed in table (4.4) and (4.5) and can be

used to calculate the theoretical threshold when we include the following distributed

measurements.
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Table 4.4: Measured Brillouin linewidth and calculated Brillouin gain gB for the uniform

fibers
Parameter Fiber U1 Fiber U2

Brillouin linewidth ∆νB (MHz) 60 58

Brillouin gain gB (mW−1) 1.17 · 10−11 1.22 · 10−11

Table 4.5: Measured Brillouin linewidth and calculated Brillouin gain gB for the fibers

with varying micro-structure size
Parameter Fiber V1 Fiber V2 Fiber V3

Brillouin linewidth ∆νB(MHz) 58 60 54

Brillouin gain gB (mW−1) 1.22 · 10−11 1.17 · 10−11 1.30 · 10−11

4.3.2 Distributed BEDS measurement

The Brillouin threshold depends on different BFS distributions due to core diameter and

effective refractive index variations as discussed in paragraph 4.1. In order to verify

this fact we have performed a distributed measurement of the BFS by use of the BEDS

technique that provides a high spatial resolution without spectral broadening. The exper-

imental setup is sketched in Fig.(3.16) and a detailed description can be found in chapter

2 and Ref. [26,27]. All measurements have been performed with a 3ns-long π-phase pulse

which results in 30 cm spatial resolution. The Brillouin gain is scanned by the intensity

modulator around the BFS with 1MHz resolution so that all variations can be detected

along the fiber. Fig.(4.7) shows the color plots of the fitted BEDS traces and the retrieved

BFS along the propagation distance for each fiber. The fluctuations in BFS of fiber U1

are confirmed by inverting the fiber, as obvious in Fig.(4.7 b). Fiber U2 exhibit a hot

spot caused by a failure which appears as a sharp intensity decrease at about 130m in

Fig.(4.7 c). It is not exactly in the middle of the fiber located, thus a different threshold

value for the different fiber inputs is expected. This will be verified in the next paragraph.

The periodic sinusoidal variations of the BFS can clearly be observed in Figs.(4.7 h,j,l).

The comparison with the outer diameter variations previously shown in Figs.(4.5 a,b) is

very good except in the beginning of fiber V3 where the first period cannot be observed.

A probable explanation is the simple fact that 320m of varied core diameter fiber were

taken at the starting point of the drawn fibers whereas V1 and V2 are parts of the fiber

middle where the sine variation is enough pronounced from the beginning on. In addition,

one can also see short-scale fluctuations of meter scale that can be attributed to structural

irregularities along the fiber. For fiber V1 and V2, where the inverted measurement has

been plotted in Figs.(4.7 h,j), the fluctuations are less sinusoidal but even rather square

shaped, especially for fiber V1. As investigated in the theoretical part (see paragraph 4.1),

this should lead to a higher Brillouin threshold since the square distribution is the most
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Figure 4.7: Color plot of the Brillouin gain spectrum along the fiber. The spatial resolution

is 30 cm and the frequency resolution is 1 MHz for fibers (a) U1 (c) U2 (e) V1 (g) V2 (i)

V3 ; retrieved Brillouin frequency shift variations along the fiber distance for fibers (b)

U1 (d) U2 (f) V1 (h) V2 (j) V3. Second measurement is obtained by inverting the fiber.
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effective distribution among the five tested ones. In addition to the periodic variations

and the BGS broadening, the short scale variations also impact on the Brillouin threshold.

For fiber V3 additional simulations based on the SEM image have been carried out. We

can calculate the corresponding effective refractive index variations using a FEM method

by scaling the fiber cross-section shown in Fig.(3.35) [28] as explained in paragraph 3.4.3.

For the maximal and minimal sizes (corresponding to 125 and 116µm in outer diameter)

of the air-hole micro-structure they reveal a difference of 0.0013 in the effective refractive

index. This value is consistent with the one retrieved from the distributed BFS measure-

ment that varies from 1.4337 to 1.4353, calculated using neff and Eq.2.18. This confirms

that our BEDS technique provide accurate measurement of the diameter or structural

variations PCFs.

4.3.3 Brillouin threshold

Considering all measured data it is possible to calculate the theoretical Brillouin threshold

power. Therefore we use the theory, presented in paragraph 4.1, where we need the

distributed BFS, the FWHM of the Brillouin gain, fiber loss and the EMA Aeff which is

all provided by previous experiments and the SEM image. The distributed BFS is directly

inserted into Eq.(4.7) instead of the theoretical (sine, square, etc. ) distribution as used

in the parameter study. The results are summarized in tables (4.6) and (4.7).

Table 4.6: Theoretical Brillouin threshold for the uniform fibers
Parameter Fiber U1 Fiber U2

Brillouin gain gB (mW−1) 1.17 · 10−11 1.22 · 10−11

Leff 207.6m 195.5m

EMA Aeff 22.3µm2 19.7µm2

C 15.1 15.1

Pcr (dBm) (theory) 23.1 22.7

Table 4.7: Theoretical Brillouin threshold for the size varying fibers
Parameter Fiber V1 Fiber V2 Fiber V3

Brillouin gain gB (mW−1) 1.22 · 10−11 1.17 · 10−11 1.30 · 10−11

Leff 223.4m 235.6m 244.5m

EMA Aeff 19.7µm2 19.7µm2 22.6µm2

C 14.6 14.5 14.3

Pcr (dBm) (theory) 22.1 22.3 21.9

We obtain a high threshold value for fiber U2 which is due to the high attenuation

caused by the hot spot at 130m of the fiber. The induced variation of 14% causes a
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slightly higher Pcr for fiber V2 in comparison to fiber V1. The small difference can also

be attributed to the longer effective length of fiber V2.

Fiber V3 shows a lower threshold than V1 although they have the same BFS distribution

and the same length. One reason is the shorter effective length based on the higher linear

fiber loss. Besides gB is slightly higher for V3 than for the other two varying fibers, which

depends mostly on the different FWHM of the BGS.

The experimental Brillouin threshold has been graphically solved for all fibers from
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Figure 4.8: Experimental measurements of the Brillouin backscattered and transmitted

powers through the periodically varying PCFs and the homogenous PCFs with similar

micro-structure but without varying structure size. The Brillouin thresholds of the five

PCFs are indicated by arrows for 1% fraction of the input power.
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Figs.(4.8) that show the transmitted and backscattered powers as a function of the input

power. The experimental setup has been already introduced in chapter 3.1.2 where we

used as a pump laser a 1550 nm DFB laser with a 45 kHz linewidth amplified by an EDFA.

We define here as mentioned before the Brillouin threshold as the input power whereby

the reflected power is 1% of the injected one. A polynomial fit of our experimental

measurements yields the Brillouin threshold power. The experimental values for the

Brillouin threshold can be found in table (4.8) and (4.9).

Table 4.8: Experimental Brillouin threshold for the uniform fibers
Parameter Fiber U1 Fiber U2

Pcr (dBm) (experiment) 22.7 21.2 / 24.3 (inverting fiber)

Table 4.9: Experimental Brillouin threshold for the size varying fibers
Parameter Fiber V1 Fiber V2 Fiber V3

Pcr (dBm) (experiment) 22.4 22.1 26.5

The measurement uncertainty for the SBS threshold is about ±0.5 dB taking into

account the uncertainty of the splicing loss and measurement accuracy. For fiber U1 the

experimental value is lower than exspected which is within the measurement uncertainty.

The threshold measurement of fiber U2 reveals clearly two different values when the

fiber is inverted. This has been predicted by help of the BEDS measurement where a

hot spot at 130m has been observed. For fiber U2, 130m fiber length contributes most

effectively to Brillouin backscattering, resulting in 24.3 dBm critical pump power. For the

other side, the ”effective” part of the fiber measures 184m which leads to a lower value:

21.2 dBm. These values are close to the theoretical ones. Theory and experiment for

fiber V1 fortunately agree very well which seem to confirm our theoretical approach. For

fiber V2 the threshold should be higher than for fiber V1 since the variation amplitude

is 14% compared to 7%, which is not the case. Firstly it should be mentioned that the

difference is still in the measurement uncertainty. Another argument is the higher effective

length for fiber V2 which decreases the critical power. It appears that the lower fiber loss

has a higher influence on the experiment than predicted by calculation. The measuring

data for fiber V3 reveal a still more unexpected value for the experimental critical pump

power that rises up to 26.5 dBm, as shown in Fig.(4.8). Since this does not match with

the theoretical value, wherefore some further theoretical investigations have been carried

out. In table (4.10) we can find theoretical results for 29MHz and 54MHz FWHM of

the BGS and for different BFS distributions: sinusoidal function with 30m period and

16MHz and 170MHz variation amplitude and the real BFS extracted from the BEDS

measurement. As it can be seen the experimental value (26.5 dBm) shows 7 dB increase

to a conventional silica fiber with 29MHz FWHM and uniform BFS. A periodical variation

of the BFS with 16MHz (difference of minimum to maximum BFS) reveal 0.6 dB threshold

elevation whereas a spectral broadening from 29MHz to 54MHz leads to 21.83 dBm, so a
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2.7 dB higher critical pump power. Correspondingly, the spectral broadening has a higher

influence on the threshold increase than the periodic BFS variation alone. But it should

be noticed that the varying BFS also influences the FWHM of the BGS because the

backscattered light is integrated along the fiber, according to Eq.(4.7). For the broader

spectrum with 54MHz FWHM the increase due to the periodic variation with 16MHz

is 0.2 dB, thus less than for the 29MHz broad spectrum. Calculating the threshold with

real data reveals 21.93 dBm. In order to reach the same result as for the experiment a

BFS variation with 170MHz is needed which is actually not the case for this fiber.

Table 4.10: Theoretical Brillouin threshold of fiber V3, for different parameters
FWHM ∆ν BFS Threshold Pcr

29MHz uniform 19.13 dBm

29MHz 16MHz variation 19.71 dBm

54MHz uniform 21.83 dBm

54MHz 16MHz variation 22.01 dBm

54MHz real BFS, BEDS measurement 21.93 dBm

54MHz 170MHz variation 26.5 dBm

The reason for the exceptionally high Brillouin threshold might be the different struc-

ture for this PCF since the hole diameter is not constant. Another explanation could

simply be a problem in terms of splicing losses but taking into account the way how

splicing loss is estimated this reason should be excluded. For each splice we connected

one fiber input and measured the power out coming from the PCF. Then the fiber was

spliced and the power leaving the fiber pigtail was measured. The only problem can be the

fluctuating power of the laser. Linear loss or a hot spot cannot be a potential explanation

because this would have been seen on the fiber mapping by help of BEDS technique as it

was observed for fiber U2 in Fig.(4.7 e).

From an experimental point of view we can compare V3 with the uniform fiber U1. U2

is less adequate for a comparison because U2 has the previously shown diffusion spot at

130m. One can see in Fig.(4.8 b) that the critical power for the Brillouin threshold (red

curve) is reached at 22.7 dBm which is almost 4 dB below the value for the periodically

varying PCF. Since the effective length of the uniform fiber is shorter than for the pe-

riodically varying PCF, the Brillouin threshold can be expected to be even lower than

22.7 dBm and the impact of the BFS variation higher than 4 dB. Thus the experimental

threshold increases by more than 4 dB by comparing the modulated and the uniform fiber.

Note that this increase can be seen as a higher limit since we assumed in our calculation

a uniform PCF without any structural irregularities that increase the Brillouin threshold.
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4.4 Conclusion

Photonic crystal fibers with a periodically-varying core diameter have been investigated

in order to mitigate the detrimental effect of stimulated Brillouin scattering. Only 7%

and 14% of outer variation enables an increase of the Brillouin threshold power up to 4 dB

compared to a homogeneous micro-structured optical fiber, which is a promising result

for further investigations with higher amplitude variations.

The theoretical model has been explained and the different fiber parameters have been

studied theoretically first to estimate the impact on the increase of the Brillouin threshold.

We focused especially on different Brillouin frequency shift distributions along the fiber

length. In the experimental part, five different uniform and structure varied photonic

crystal fibers have been presented and investigated in terms of Brillouin gain spectrum,

distributed Brillouin measurement and Brillouin threshold. The periodic oscillations of

the Brillouin frequency shift has been checked by an accurate distributed measurement

based on Brillouin echoes distributed sensing. The broadened Brillouin gain and the lon-

gitudinal variations in PCF lead to an increase in Brillouin threshold. Due to their ability

to design custom-fit micro-structures, adapted to the respective need, PCFs are ideal for

further studies on passive Brillouin mitigation. Additionally they can doped or taper can

be drawn to enhance the suppression effect.

To get further insight to this topic it may be interesting to study other Brillouin frequency

shift distribution as proposed theoretically in paragraph 4.1, especially a pure square

shaped BFS progression. Besides higher variation amplitudes should impact highly on

the Brillouin threshold. On the other hand this will induce more linear fiber loss. Nev-

ertheless, it should be clear after the last paragraph of this chapter that an experimental

comparison for different fibers is rather difficult because fiber length, loss, effective area,

micro-structure, etc. have an influence as well as the splicing loss contributes to different

experimental values. However, PCFs with varying BFS are expected to help for suppress-

ing Brillouin backscattering. This can also be combined with other active and passive

suppressing techniques.
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Chapter 5

Guided acoustic wave Brillouin

scattering

When a coherent optical wave propagates through an optical fiber, it suffers from phase

noise due to the interaction with transverse acoustic waves that modulate the refractive

index of the fiber. This effect, called guided acoustic wave Brillouin scattering (GAWBS)

or forward Brillouin scattering, has been known since 1985 and considered for many years

as detrimental to fiber-based standard and quantum communication systems [1]. In recent

years there has been a renewed interest in the effect of GAWBS in photonic crystal fibers

(PCFs) due to their remarkable ability to either suppress or enhance acoustic resonances,

with the aim of using PCFs for quantum optics or developing new efficient acousto-optic

devices [2–4]. Recent works have indeed shown that GAWBS in PCF is radically differ-

ent from GAWBS in conventional fibers and cannot only be considered as a noise source

any more. Instead, it leads to efficient phase modulation in the GHz range through the

generation of high-frequency transverse acoustic waves trapped by the air-hole microstruc-

ture [2,5–7]. It has also been reported that these ultra high-frequency acoustic resonances

can be coherently controlled in PCF using laser pulses [8] or be turned into highly non-

linear artificial Raman oscillators [9].

In this chapter, we investigate both theoretically and experimentally GAWBS in various

PCFs including modulated and multiscale structure. We report the generation of single

and multiple high-frequency guided acoustic modes up to 2GHz. Based on a full vector

finite-element model (FEM), we show that these guided acoustic modes result from elastic

radial vibrations selected by the wavelength-scale air-silica microstructure.

First the numerical calculation of GAWBS based on the FEM is derived from basic dif-

ferential equations and the used parameters are shown. The relationship between core

diameter and main GAWBS peak is examined numerically and analytically and the effect

of the air-filling fraction of the micro-structure is studied. Then the experimental setup is
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explained and measurements in different PCFs are analyzed and compared to simulations.

In the last part we investigate GAWBS in a PCF with a multi-scale structure design and

report the frequency-selective excitation of multiple high-frequency guided acoustic modes

up to 2GHz. We further show the strong impact of structural irregularities of the fiber on

these transverse acoustic modes by numerically studying a perfectly symmetric air-hole

structure designed from the real cross section of the PCF. Our results suggest that PCFs

can be advantageously used to enhance and control guided acousto-optic interactions at

ultra-high frequency by fiber design in view of potential applications for fiber-optic sensors

or efficient acousto-optic devices.

5.1 Theoretical model and numerical simulation

As mentioned in chapter 2.3, for a conventional SMF the theoretical GAWBS spectrum can

be calculated by solving Eq.(2.42) for the R0m-modes and Eq.(2.43) for the T2m-modes.

They are derived analytically for simple all-silica glass rods without micro structure. For

PCF with an air-silica micro-structure a numerical model is needed to include the real

structure of the fiber taking into account boundary conditions between air and silica. For

the acoustic modes we start with the equation for the conservation of momentum [10,11]:

ρ
∂2ui
∂t2

=
∂Tij
∂xj

+ Fi (5.1)

where ui, i = x, y, z are the position vectors, Fi external forces and Tij the strain tensor:

Tij =
∑

k,l

cijklSkl (5.2)

and the displacement:

Skl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)

. (5.3)

cijkl is the elastic coefficient matrix that depends on the material. For silica we will find

the coefficients in matrix 5.16. In order to solve Eq. 5.2 we use a test function vi (weak

formulation of FEM)1 and integrate:
∫

ρv?i
∂2ui
∂t2

dΩ =

∫

v?i
∂Tij
∂xj

dΩ (5.4)

which is by partial integration:
∫

ρv?i
∂2ui
∂t2

dΩ =

∫

dΣv?i Tij.~n
︸ ︷︷ ︸

Boundary condition : = 0

−
∫

dΩ
∂v?i
∂xj

Tij. (5.5)

1The complex conjugate v
?

i
has to be used because we have to define a finite element space, equipped

with a scalar product, before we can construct a variational formulation of a partial differential equation.
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This gives:
∫

ρv?i
∂2ui
∂t2

dΩ = −
∫

dΩ
∂v?i
∂xj

Tij (5.6)

Taking into account that ux, uy, uz, vi ∝ eikz we can calculate partially [11]:

∂v?i
∂xj

Tij =
∑

j

∂v?i
∂xj

∑

kl

cijklSkl =
∑

j

∂v?i
∂xj

∑

kl

cijkl
∂uk
∂xl

(5.7)

= −ikzv?i
∑

kl

cizkl
∂uk
∂xl

︸ ︷︷ ︸

j=z,l 6=z: the sign ”-” comes from ?

+
∑

j

∂v?i
∂xj

ikz
∑

k

cijkzuk

︸ ︷︷ ︸

j 6=z,l=z

−ikzv?i
∑

k

ikzcizkzuk

︸ ︷︷ ︸

j=z,l=z

+
∑

j

∂v?i
∂xj

∑

kl

cijkl
∂uk
∂xl

︸ ︷︷ ︸

j 6=z,l 6=z

(5.8)

and can rewrite Eq. 5.6 as:

0 = −
∫
dΩρv?i

∂2ui

∂t2
−

∫
dΩikzv

?
i

∑

kl cizkl
∂uk

∂xl
+
∫
dΩ

∑

j
∂v?i
∂xj
ikz

∑

k cijkzuk

−
∫
dΩikzv

?
i

∑

k ikzcizkzuk +
∫
dΩ

∑

j
∂v?i
∂xj

∑

kl cijkl
∂uk

∂xl
. (5.9)

This equation has to be solved in order to find all types of acoustic modes for any design of

microstructure. For this purpose we extract the micro-structure from a scanning electron

microscope (SEM) image. Then a mesh with a finite number of nodes and their connecting

segments is built as used in FEM and shown in Fig.(5.1 a), Fig.(5.2 c) and Fig.(5.16 e)

using Comsol software [12]. For the acoustic modes the PDE-mode solver fits the best to

analytical and experimental results. The following equation is solved in the PDE-mode:

ea
∂2u

∂t2
+ da

∂u

∂t
+∇. (−c∇u− αu+ γ) + β.∇u+ au = f (5.10)

In the Comsol [12] handbook the coefficients are described as follows: Mass term ea,

damping term da, diffusive flux c, conservative flux term α, conservative flux source γ,

convection term β, absorption term a and source term f .

Then we have to find the corresponding counterparts to Eq.(5.9), which we would like to

solve for the acoustic modes. Taking into account the different derivations, we can find

the following correspondents [11]:

ea = −ρ (5.11)

β.∇u = −ikz
∑

kl

cizkl
∂uk
∂xl

(5.12)

∇.(−αu) = ikz
∑

jk

∂v?i
∂xj

cijkzuk (5.13)

au = k2zv
?
i

∑

k

cizkzuk (5.14)
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∇.(−c∇u) =
∑

jkl

∂

∂xj
cijkl

∂uk
∂xl

(5.15)

and da, γ, f = 0. Let us now focus on the elastic coefficient matrix cijkl. In silica

the matrix is rather symmetric and most of the elements are zero. Actually, only three

different elements remain: c11, c12 and c44 and they are located as follows [13]:

c =












c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44












(5.16)

c11, c12 and c44 depend on the Lamé coefficients λ and µ as [13],

c11 = λ+ 2µ, c12 = λ, c44 = µ (5.17)

with

λ =
Eν

(1 + ν)(1− 2ν)
(5.18)

µ =
E

2(1 + ν)
(5.19)

and the Young’s Modulus E = 73.1 · 109Pa and Poisson’s coefficient ν = 0.17. The

density value ρ = 2203 kgm−3 is used. With these elements it is also possible to express

the longitudinal and transverse acoustic velocities as [13]:

VL =

√
c11
ρ

(5.20)

VT =

√
c44
ρ

(5.21)

The values for ea, da, c, α, γ, β, a and f have been integrated in the PDE-mode in

Comsol. Using Comsol, the solutions for the acoustic modes in form of ux, uy, uz and

their derivations, e.g. ∂ux/∂x, ∂ux/∂y, ∂uy/∂x, ∂uy/∂y, are obtained. To visualize them

it is either useful to plot the kinetic energy Ekin [13]:

Ekin =
1

2
ρω2(u2x + u2y), (5.22)

with ω the angular frequency of the acoustic mode and ρ the density, or the strain energy

density SED [13]:

Ws =
1

2

(
∂ux
∂x

Txx +
∂uy
∂y

Tyy + (
∂ux
∂y

+
∂uy
∂x

)Txy

)

, (5.23)
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where (u, v, w) and Tkl are the displacements and stresses of the FEM solution, respec-

tively.

As GAWBS is an acousto-optical interaction, we also need to solve the optical mode which

is calculated by Comsol software [12] by resolving Maxwell equations with the RF module.

As expected the light is guided in the fiber core which is presented in Fig.(5.1 d). The

refractive index of silica was obtained by the Sellmeier equation [14]:

n (λ) =

√

1 +
P1λ2

λ2 − P2
+

P3λ2

λ2 − P4
+

P5λ2

λ2 − P6
(5.24)

with λ in microns and

P1 = 0.6961663 (5.25a)

P2 = 0.06840432 (5.25b)

P3 = 0.4079426 (5.25c)

P4 = 0.11624142 (5.25d)

P5 = 0.8974794 (5.25e)

P6 = 9.8961612. (5.25f)

We now need a parameter that links the acoustic and optical modes to compute the

overlap of both modes. This is given by the elasto-optic coefficient [3]:

κ =

∫

σ

dxdyEiEjpijklSkl. (5.26)

In this expression, σ is the transverse section of the fiber, Ei and Ej are the pump

and scattered optical modes, respectively, pijkl is the strain-optical tensor, and Skl is the

displacement tensor. Because of symmetry reasons, in silica pijkl can be readily obtained

as only the elements p11 and p12 are non-zero:

p11 = 0.125, p12 = 0.27, p44 =
p11 − p12

2
= −0.0725 (5.27)

The elasto-optic coefficient is obtained by integrating the strain and optical energy directly

in Comsol as follows:

κ =
∑

surface

(p11
∂u

∂x
+ p12

∂v

∂y
)|Ex|2 + (p12

∂u

∂x
+ p11

∂v

∂y
)|Ey|2 + 2p44(

∂u

∂y
+
∂v

∂x
)|ExEy| (5.28)

κ2 is proportional to the scattering efficiency and thus models correctly the GAWBS

spectrum. To illustrate our theory, we tested a PCF with dc=2.7µm core diameter and

hexagonal structure. The results are presented in Fig.(5.1) and this fiber has been used

for investigating the temperature coefficient of GAWBS in PCF [15]. The SEM image is

depicted in Fig.(5.1 b) and the micro-structure was meshed as shown in Fig.(5.1 a). With
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Figure 5.1: PCF with core diameter dc=2.7µm, hole diameter d=2.55µm and pitch

Λ=2.9µm (d/Λ=0.88): (a) Micro-structure with mesh, (b) SEM image, (c) elasto-optic

coefficient, (d) optical mode, (e) kinetic energy Eq.(5.22) and (f) strain energy density

Eq.(5.23) of the acoustic mode of the main GAWBS peak.

help of Comsol and the RF-module, the optical mode has been calculated and it is confined

in the fiber core, as can be seen in Fig.(5.1 d). With the PDE-mode solver the acoustic

modes have also been calculated for this structure. Combining both, the elasto-optic

coefficient is achieved and plotted in Fig.(5.1 c). For the main peak, the acoustic mode

have been investigated in more detail and the kinetic energy (Fig.(5.1 e)) and strain energy

density (Fig.(5.1 f)) are visualized for this in the fiber core confined mode. The kinetic

energy (Fig.(5.1 e)) highlights the parts of the microstructure that are moving the most.

As shown in this figure the ring in red presents the parts where the structure is moving a lot

in comparison to the blue parts. It is a radial symmetric mode. The strain energy density

(Fig.(5.1 f)) shows the region where the micro structure is stressed the most. Since it is a

radial symmetric mode the center of the fiber is indeed under pressure because the region

around the fiber core is moving in radial direction. The strain energy density is also crucial

for the overlap with the optical mode. If there is a good overlap between the maximum

of the strain energy density and the optical mode, then forward scattering is efficient and

a high peak in the GAWBS spectrum will appear, such as in Fig.(5.1 c). Looking at this

figure, one can already imagine that forward Brillouin scattering behaves in a different

way in a PCF as in a conventional single-mode fiber (SMF). It is demonstrative that in
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a PCF a main peak appears whereas the low frequency modes are mostly suppressed.

Reasons for this behavior are manifold. The air-hole structure acts like a filter of acoustic

modes because the fiber core is acoustically isolated from the cladding around the air-hole

structure. Besides the optical mode is confined in a smaller effective area, which turns

the overlap more effective. The other acoustic modes around the fiber core are not crucial

for GAWBS because there is no overlap between optical and acoustic mode. This leads

to the efficient generation of a fundamental acoustic mode trapped in the PCF solid core.

Thus the fiber behaves like an efficient passive phase modulator. These findings will be

checked in paragraph 5.3 against experimental observation. In the next paragraph we will

first study the relationship between the frequency of the single peak, as observed in PCF,

as in Fig.(5.1 c), and the fiber geometry, especially the fiber core diameter.

5.2 Acoustic modes in homogeneous silica rods

In this paragraph the dependence between the frequency of the main peak and the di-

ameter of the fiber core in PCF is investigated in more detail. In several publications it

has been reported that the smaller the fiber core the higher the frequency of the acoustic

resonance frequency [7, 16, 17]. Ref. [18] introduced the formula

ν =
VT
D
, (5.29)

with VT=3740m s−1 and D the core diameter. This simple expression was confirmed by

measurement in several fibers. In [16] simulations for a taper with variable diameter have

been performed to show the dependency between frequency and taper thickness. We will

show and compare here some experimental results in various PCFs. Besides simulations of

acoustic modes in silica glass rods have been carried out to corroborate the experiments.

A study about the influence of the fiber hole over the pitch d/Λ on the frequency of

GAWBS helps us to understand better why experiments do not agree with Eq.(5.29) for

all PCFs. Finally the relation between frequency and core diameter is derived analytically

by resolving the Pochhammer-Cree-Equation [13].

Four PCFs with different EMA have been tested in terms of forward Brillouin scattering

and the results are shown in table (5.1). The core diameter has been extracted from

SEM-images and the mode diameter is taken from simulations of the EMA based on the

SEM-images. The measured GAWBS spectra can be found in [18] and the frequency of

the main peaks is listed in table (5.1). We clearly see that the frequency of the main peak

rises when the core diameter or the mode field diameter decreases. In order to find an

exact relation between the structure and the frequency the products ν·dEMA and ν·dSEM

were calculated. Taking into account VT=3740m s−1, it can be seen in table (5.1) that
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Table 5.1: Comparison of mode diameter, core diameter and main GAWBS peak frequency
EMA Aeff (µm2) 3.19 4.0 6.0 8.8

Mode diameter dEMA (µm) 2.02 2.26 2.77 3.34

Core diameter (SEM image) dSEM (µm) 2.09 2.43 3.22 3.94

Acoustic frequency (experiment) ν (MHz±10MHz) 1545 1281 1154 812

ν·dEMA (m s−1) 3121 2895 3196 2712

ν·dSEM (m s−1) 3229 3113 3716 3120

Eq.(5.29) is satisfied for the fiber with Aeff=6.0µm2 only. Nevertheless, the values for

the core diameters measured with help of the SEM image fit a bit better than the mode

diameter. For that reason a more rigorous numerical and analytical investigation seemed

to be appropriate and is presented in the following paragraphs.

5.2.1 Numerical model

First a numerical approach based on FEM with Comsol-software has been undertaken.

To this end, we use the acoustic model of paragraph 5.1 to simulate the fundamental R01-

mode and the first torsional T21-mode. For a rod diameter d=1µm the kinetic energy and

the strain energy density are shown in Fig.(5.2). For VT=3740m s−1 and VL=5996m s−1

the following dependencies have been found by varying the diameter of the silica rod:

ν =
3.82 · 103

D
, for R01-modes (5.30)

ν =
2.79 · 103

D
, for T21-modes (5.31)

in exact agreement with results of Ref. [16]. Additionally, the dependence of VT and VL on

the numerical factor in Eq.(5.30) for the fundamental mode has been studied to compare

silica to other materials. Let us call the numerical factor qR01 as proposed in Ref. [16].

The results are presented in Fig.(5.3 a,b). VT in Fig.(5.3 a) is fixed to 3740m s−1 whereas

VL varies from about 3750m s−1 to 7000m s−1. The fit reveals a square root shape and a

cut-off frequency at VT=VL.

The same results can be found in Fig.(5.3 b) where VL=5996m s−1 is fixed: the factor

qR01 turns to 0 if VT becomes equal to VL. Here, the fit shows a polynomial shape with

exponent 0.14. For the sake of completeness the dependence of the taper thickness on

qR01 has been shown for several values of VT and VL. The standard values are plotted in

green and the case VT=VL in red, respectively.
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(a) (b) (c)

(d) (e) (f) (g)

ν = 3.815043 GHz

ν = 2.7902106 GHz ν = 2.7902137 GHz

SED

SED SED

Ekin

Ekin Ekin

Figure 5.2: Simulation of acoustic modes in a silica rod with diameter d=1µm: (a,b)

fundamental mode R01-mode, (c) mesh of the silica rod, (d-g) torso-radial modes T21,

kinetic Energy Ekin Eq.(5.22) (red = large displacement, blue = low displacement) and

strain energy density SED Eq.(5.23) (red = large density, blue = low density).

5.2.2 Analytical model

Now it is interesting to find the same numerical factor qR01 by an analytical approach.

The starting point is the Pochhammer-Cree-Equation, written as [19]:

2p

a

(
q2 + k2

)
J1(pa)J1(qa)−

(
q2 − k2

)2
J0(pa)J1(qa)− 4k2pqJ1(pa)J0(qa) = 0 (5.32)

with p2 = ω2/V 2
L −k2 et q2 = ω2/V 2

T −k2, ω the angular frequency of the elastic mode, Ji,

i = 0.1 the i-th Bessel function, a the rod diameter, so a = D/2. Eq.(5.32) is a dispersion

equation derived from the potential for two independent displacement components ur and

uz [13]:

Ψ = AJ0(pr)e
i(ωt−kz) (5.33)

Φθ = −CJ1(qr)ei(ωt−kz) with Φr = Φz = 0 (5.34)

In Ref. [19] the same approach based on the solution of a boundary value problem has

been presented. Their considerations leads them to the following equation, written as the
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Figure 5.3: (a) Dependence of the numerical factor qR01 on the longitudinal acoustic ve-

locity VL, (b) dependence of the numerical factor qR01 on the transversal acoustic velocity

VT , dependence of the taper thickness on qR01 for (c) VT=3740m s−1 and VL=5996m s−1,

(d) several values of VL and (e) several values of VT . The standard values are plotted in

green and the case VT=VL in red, respectively

determinant of the following matrix:
∣
∣
∣
∣
∣
∣

ρ2 − 1− τ 2(x− 1) ρ2 − 1− τ 2(2x− 1) 2(ρ2 − 1)[Jp(ka)− p]− τ 2(2x− 1)

Jp(ha)− p− 1 Jp(ka)− p− 1 2ρ2 − 2[Jp(ka)− p]− τ 2(2x− 1)

Jp(ha)− p −(x− 1)[Jp(ka)− p] ρ2

∣
∣
∣
∣
∣
∣

= 0.

(5.35)

where

a = D/2

h2 =
ω2

V 2
L

− kz

k2 =
ω2

V 2
T

− kz

τ = kza = ωa/V

x = V 2/2V 2
T

Jp(y) = yJp−1(y)/Jp(y)

and p mode number (fundamental mode: p=0). Jp is the pth Bessel function. Resolving

this equation under the conditions p=0 (fundamental modes) and kz ≈ 0 (transverse
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acoustic modes2) leads to:

0 =
(
−2J0(ka)− τ 2(2x− 1)

)
· J0(ka) ·

(

−ω
2a2

2V 2
T

− J0(ha)

)

(5.36)

Previous equation has three possible solutions [11]:

−2J0(ka)− τ 2(2x− 1) = 0 (5.37a)

J0(ka) = 0 (5.37b)

−ω
2a2

2V 2
T

− J0(ha) = 0 (5.37c)

Let us focus on the last solution that can be rewritten as [11]:

−ω
2a2

2V 2
T

= J0(ha) (5.38a)

ω2a2

2V 2
T

= −haJ1(ha)
J0(ha)

(5.38b)

with

J1(x) = 1/4 ·
[

sin(x) +
√
2 sin(x/

√
2)
]

(5.39a)

J0(x) = 1/4 ·
[

1 + cos(x) + 2 cos(x/
√
2)
]

(5.39b)

Considering h2 = ω2

V 2

L

− k2z , ω = 2πν, kz = 0 and a=D/2, we can further provide:

2πνD
2
VL

2V 2
T

=
J1(

2πν
VL

· D
2
)

J0(
2πν
VL

· D
2
)

(5.40a)

πνD

VT
= 2 ·

J1(
πνD
VL

)

J0(
πνD
VL

)
· VT
VL
. (5.40b)

For VT=3740m s−1 and VL=5996m s−1 in silica equation (5.40) can be solved graphically

as shown in Fig.(5.4):

ν =
VT
D

· 3.205
π

=
3.82 · 103ms−1

D
(5.41)

which confirms the simulations in the previous chapter and in Ref. [16]. Additionally it

can be approximatively written:

ν =
VT
D

· 3.205
π

≈ VT
D
, (5.42)

which is the experimentally found Eq.(5.29) in Ref. [18]. Nevertheless, formula (5.29) is

not in full agreement with all results in table (5.1). The most evident reason is that fiber

2
kz=0 would mathematically lead to V = ∞ in previous equation (5.36), which is not physical.
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Figure 5.4: Graphical solution of Eq.(5.40).

cores of PCFs are not perfect glass rods. The optical and acoustic modes do not depend

only on the fiber core diameter but also on the other parts of the fiber structure, more

precisely on the air hole diameter and the pitch. In order to get more into detail into

this question it is interesting to study numerically the influence of d/Λ, with d the air

hole diameter and Λ the pitch, on the GAWBS spectrum which will lead us to the next

paragraph.

5.2.3 Effect of air-filling fraction on GAWBS

The effect of the air-filling fraction in birefringent silica-air PCFs has been studied in

Ref. [17]. They found that with increasing air-filling fraction the number of acoustic

modes originating from the cladding decreases and the efficiency of core-confined acoustic

mode rises. Besides they observed phononic band-gaps at higher air-filling fractions which

leads to additional peaks in the GAWBS spectrum.

In this paragraph, we study a sixfold symmetric non-birefringent PCF with perfect struc-

ture where the impact of d/Λ, with d the air hole diameter and Λ the pitch (the air-filling

fraction), on the GAWBS-spectrum has been investigated3. All over the study the core

diameter has been fixed to 4µm whereas the diameter of the air holes d and the pitch Λ

changed which leads to a varying d/Λ from d/Λ=0.2 to d/Λ=0.95. The air hole structure

for d/Λ=0.4, 0.6 and 0.9 are shown in Fig.(5.5 d). The optical and acoustic modes have

been modeled and some of the acoustic modes can also be found in Fig.(5.5 d). From the

3Simulations kindly provided by Dr. Michaël Delqué
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Figure 5.5: Elasto-optic coefficient for (a) d/Λ = 0.2, (b) evolution from d/Λ = 0.2 to

d/Λ = 0.95, (c) d/Λ = 0.95, (d) air hole structure for d/Λ=0.4, 0.6 and 0.9, the numbers

corresponds to the acoustic modes indicated in (b), shown is the kinetic energy Eq.(5.22)

(red = large displacement, blue = low displacement)

acoustic and optical modes the elasto-optical coefficient of Eq.(5.28) is calculated and the

overlap of both modes is visualized in Fig.(5.5 a,c) as a theoretical GAWBS-spectrum.

These two spectra were calculated for d/Λ=0.2 (Fig.(5.5 a)) and d/Λ=0.95 (Fig.(5.5 c)).

In the middle (Fig.(5.5 b)) the development of the elasto-optical coefficient from d/Λ=0.2

to d/Λ=0.95 is shown by demonstrating the intensity by the size of bubbles. The bigger

the circle, the higher the intensity at some point in the frequency range. For d/Λ=0.95

we can see a big bubble at about 900MHz on Fig.(5.5 b) which corresponds to the high

peak at 900MHz on Fig.(5.5 c). In Fig.(5.5 a) the peaks are all rather small wherefore

the bubbles for d/Λ=0.2 in Fig.(5.5 b) also have a small diameter. Some interesting ob-

servations can be made based on this diagram. As indicated by the colored lines several

intensity peaks are observed while increasing d/Λ. The frequency decreases with higher

d/Λ and the higher the frequency, the steeper is the gradient of the decrease which, for

instance, can be seen for the rows 1-4. Only the frequency of row 5 for the highest peak

seems to rise with increasing d/Λ. For small values of d/Λ the most efficient modes are

in the low frequency range up to 1GHz, similar to the GAWBS spectrum in an SMF.

Indeed, looking at the acoustic modes (Fig.(5.5 d)) that are corresponding to line 1 and 2,
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we observe similar modes as in a glass rod limited by the boundary, shown in Fig.(5.2 a).

The air hole structure below d/Λ=0.45 seems not to be pronounced enough to suppress

the acoustic modes of the fiber cladding. At d/Λ=0.45 a stronger peak appears and its

intensity rises until d/Λ=0.6, for which value the acoustic mode is depicted in Fig.(5.5 d).

The mode is mostly present in the fiber core and has a 2π/6-symmetry. The frequency

decreases with increasing d/Λ as mentioned before. At d/Λ=0.75 a second high frequency

peak comes along at about 1.2GHz. This acoustic mode, depicted at d/Λ=0.9, is more

circular as the previous one but still mostly concentrated in the fiber core. The acoustic

modes for higher values of d/Λ seem to act more like silica rods limited by the air-hole

structure than rods limited by the fiber boundary [11].

This study leads to the conclusion that the frequency of the main peaks in a GAWBS-

spectrum also depends on the air-hole-fraction d/Λ, not only on the core diameter as seen

in [17]. The higher d/Λ the more the fiber core acts like a small silica rod isolated from

the cladding. The acoustic modes are circular and appear at high frequency. The lower

d/Λ the more we observe peaks in the lower frequency range, the cladding modes, and

the structure acts like a big silica rod. In the middle range we observe sixfold symmetric

acoustic modes because of the hexagonal structure of the PCF. This gives us a wider

comprehension for the limits of Eq.(5.29).

5.3 Experimental investigation of forward Brillouin

scattering

5.3.1 Experimental setup

EDFA
DFB-Laser

1550 nm
Filter

Isolator

Polarizer

Photodiode

12 GHz
Spectrum

analyzer

50:50

Polarization controller

PCF under testA

B

Figure 5.6: Experimental setup for observing GAWBS.

Polarized and depolarized GAWBS in an optical fiber originates from radial and torso-

radial elastic modes and leads to phase modulation and the appearance of a set of new

frequencies in the wave spectrum [1]. As briefly explained in chapter 2.3 forward Bril-

louin scattering can be observed by measuring the depolarized acoustic modes varied
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Figure 5.7: Fiber loop mirror.

in another polarization as the pump wave or by measuring the phase modulation since

both R01 and Tr21 induce phase shifts on the pump wave. The setup to measure depo-

larized GAWBS contains a polarization controller with which the polarization is set. A

polarization analyzer is placed on the fiber output in order to obtain the spectrum in

another polarization state as injected into the fiber. This setup is not further presented

here. To detect the phase shift induced by polarized and depolarized GAWBS, we set up

the fiber loop mirror depicted in Fig.(5.6) [20, 21], which is a Sagnac interferometer. A

CW distributed-feedback (DFB) Erbium-doped fiber laser4 at 1550 nm is amplified by an

Erbium-doped fiber amplifier (EDFA). Amplified spontaneous emission (ASE) is removed

by use of a 5 nm bandpass filter because it prevents the measurement of GAWBS. The

output is then split into two counter-propagating beams and launched in the fiber loop

mirror via a 50/50 fiber coupler [21]. This loop mirror acts as a Sagnac-interferometer

such that the two counterpropagating waves interfere destructively at the 50/50 fiber

coupler and power is reflected to the port A. However, the two counterpropagating waves

suffer phase modulation due to GAWBS and this small signal is retrieved in port B. The

polarization controller and the polarizer are used to suppress the carrier wave as much

as possible at port B and to maximize the GAWBS signal in the RF spectrum. Finally

the GAWBS spectrum is recorded by using a fast photodiode (band width up to 12GHz)

followed by an RF spectrum analyzer (Anritsu5).

5.3.1.1 Fiber loop mirror

Let us now go further into detail to explain the operation mode of the fiber loop mirror [20–

22]. A directional coupler with a fixed ratio q : 1-q is used where the two outputs are

4RIO 0194-1-34-1, linewidth 20 kHz at 1.55nm
5Anritsu MS2667C Spectrum Analzer 9 kHz-30GHz
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connected (Fig.(5.7)). The electrical field Ein is injected in input A. It is imperative:

|Ein|2 = |E1|2 + |E2|2 + 2 Re(E1E
?
2 cos θ) (5.43)

where θ is the relative phase and E1, E2 are the coupling and the transmission fields.

Energy conservation:

|Ein|2 = |E1|2 + |E2|2 (5.44)

leads to cosθ = 0 between the coupling and the transmission fields. Energy conservation

in Eq.(5.44) also requires that the two mode fields, E1 and E2, are in quadrature, in other

words the modes are orthogonal or phase-shifted by π/2. For a complete mathematical

derivation of the π/2-shift the reader is referred to Ref. [23].

We can now calculate the transmitted electrical field at output B. The used variables are:

L the length of the fiber loop, α the fiber attenuation, β the propagation constant, ε the

coupler loss and q : 1-q the coupling ratio. Then the electrical field EB can be expressed

as follows [22]:

EB = Ein · (
[
q1/2(1− ε)1/2

]
·
[
q1/2(1− ε)1/2

]
e(−α+iβ)L+

+
[
(1− q)1/2(1− ε)1/2

]
e(−α+iβ)Le−iπ/2 ·

[
(1− q)1/2(1− ε)1/2

]
e−iπ/2) (5.45)

where Ein · q1/2 and Ein · (1− q)1/2 are propagating clockwise and counter-clockwise fields,

respectively. The phase quadrature is added by e−iπ/2.

The ratio EB/Ein reveals:
EB

Ein

= (2q − 1) · e(−α+iβ)L (5.46)

It is obvious that for q=0.5 no light is transmitted to output B. This is valid for perfect

fibers where no additional phase shifts are added while the light is propagating in the fiber

loop. This calculation is visualized in Fig.(5.8 a). The electrical field E1 does not cross

the fiber coupler and hence does not receive a phase shift whereas E2 crosses two times

the couplers and has a phase shift of π at the end. Thus, there is destructive interference

at output B. The same calculation can be made for input A:

EA = Ein · (
[
q1/2(1− ε)1/2

]
·
[
(1− q)1/2(1− ε)1/2

]
e(−α+iβ)Le−iπ/2+

+
[
q1/2(1− ε)1/2

]
e(−α+iβ)L ·

[
(1− q)1/2(1− ε)1/2

]
e−iπ/2) (5.47)

which leads to the ratio:

EA

Ein
= −2iq1/2(1− q)1/2(1− ε)e(−α+iβ)L (5.48)

For q=0.5 we see:

EA

Ein

= −i(1− ε)e(−α+iβ)L = −ei·π/2(1− ε)e(−α+iβ)L (5.49)
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Figure 5.9: Fiber loop mirror: the two counterpropagating waves suffer phase modulation

due to GAWBS and this small signal goes to the port B

and that the optical wave gets a π/2-shift at every reflexion. This is also depicted in

Fig.(5.8 b) where both electrical fields E1 and E2 crosses one time the coupler and get

one π/2-shift. Thus we find constructive interference at the input A. In other words, the

fiber loop acts as a perfect mirror.

This conclusion is of course valid when no phase modulation occurs along the way through

fiber loop. However, both fields, E1 and E2, suffer from GAWBS effect and phase noise.

Since the acoustic modes have a finite lifetime and both counter-propagating wave do not

get the same phase-shift all along the fiber, the destructive interference at output B is not

achieved anymore. Instead the small signal of GAWBS exists through output B and can

be measured by a photodiode and an electrical spectrum analyzer. In Fig.(5.9) this effect

is illustrated for E2 which gets an additional Φ-shift caused by a local acoustic mode.

It should just be emphasized on the fact that the two optical waves do not necessarily

receive the same phase shift which leads to a small non-destructive part at output B.
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Figure 5.10: Experimental results of GAWBSmeasurement. (a) GAWBS in a conventional

SMF, (b) GAWBS in a PCF with 5.5µm fiber core, (c) elasto-optic coefficient in the same

PCF, (d,e) strain energy density Eq.(5.23) for the acoustic mode at 772MHz and 771MHz

(red = large density, blue = low density)

5.3.2 Experimental Results

5.3.2.1 Conventional single-mode fiber versus photonic crystal fiber

Fig.(5.10) shows a comparison of forward Brillouin scattering in a conventional SMF and

a PCF with hexagonal structure. As introduced in paragraph 2.3, we retrieve again the

numerous frequency peaks of a conventional SMF in Fig.(5.10 a). It can be seen in that

the peaks are well distinct and narrow with a FWHM of about several MHz. Note that

they are not equidistant. In comparison, the GAWBS spectrum of a PCF is shown in

Fig.(5.10 b). This PCF has been presented in chapter 3.4 with a 5.5µm fiber core and

a hexagonal structure. As predicted by our acoustic model in the previous paragraph,

we mainly observe one main peak at 756MHz in the GAWBS spectrum which has been

measured for the first time in [2, 7]. The experiment in Fig.(5.10 b) in PCF has been

confirmed by simulation, depicted in Fig.(5.10 c) where we find a main mode at 772MHz.

The frequency difference can be explained by the uncertainty in structure size in the SEM-

image. Interested in the behaviour of the acoustic modes, we plotted the strain energy
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Figure 5.11: Experimental results of GAWBS measurement in PCF with 6.2µm fiber core

at two different pump wavelengths: (a) 1535µm and (b) 1550µm.

density in Fig.(5.10 d,e) for two different frequencies. As it can be seen, the acoustic mode

which is responsible for the highest GAWBS peak (772MHz) is confined in the fiber core

whereas the other ones (for example at 771MHz) are distributed around the core between

the air holes, even with very close frequencies.

Another PCF with 6.2µm core diameter (fiber TH in chapter 4) was investigated in

terms of GAWBS in Fig.(5.11 a,b). These two measurements have been performed for

two different pump wavelengths: 1550µm and 1535µm. The frequency of the main peak

do not change with the pump wavelength. The small difference of 736.2-736.8MHz can be

due to measurement uncertainty because we should always keep in mind that even if we

obtain quite clear results, we are still measuring phase noise. Consequently, this spectrum

clearly shows that the GAWBS frequency does not depend on the pump wavelength. This

is also the reason for which Dainese et al. [6] choose to call forward Brillouin scattering

Raman-like scattering because the Raman frequency shift does not depend on the pump

wavelength either.

5.3.2.2 Effect of longitudinal structural irregularities

Since forward Brillouin scattering is based on transverse modes which depend highly on

the fiber structure, GAWBS are very sensitive to fiber irregularities. In paragraph 3.4 two

PCFs have been presented that originate from the same stack but were drawn in different

drawing processes. This resulted in a higher homogeneity for fiber #2 (see table (3.1)).

The distributed measurement revealed clearly the difference between the two fibers but

also forward Brillouin scattering indicates a difference. As shown in Fig.(5.12) the main

peak is much narrower for fiber #2 (22MHz) compared to fiber #1 (60MHz). Since

the spectrum is averaged we see the instability of the GAWBS peak as a broadening in

frequency. Thus, GAWBS measurement can be used as one indicator for monitoring fiber

uniformity.
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Figure 5.12: Effect of fiber inhomogeneities on GAWBS measurement. Fiber #1 (a) and

fiber #2 (b) originate from the same stack but were drawn with different fiber drawing

processes. Fiber #2 shows less irregularities in distributed Brillouin measurement. See

chapter 3.4

5.3.2.3 PCF with varying microstructure

Another interesting observation can be made for the PCFs with varying core size which

have been investigated in chapter 4.2 for increasing the Brillouin threshold. In Fig.(5.13 a-

c) we see the serial of three fibers: a uniform PCF (called U2 in chapter 4.2), a PCF with

7%-varying structure size (V1) and 14%-varying structure size (V2). As it is obvious

in Fig.(5.13 a) the main peak is narrow and the lower frequency peaks are mostly sup-

pressed. For the 7%-varying structure the GAWBS peak splits into a two-maxima-peak

(Fig.(5.13 b)) and the lower frequency peaks get noisy. In the third case (Fig.(5.13 c))

with the result for the 14%-varying structure we finally observe that the distance of the

maxima are still larger as for (b) which is expected so because the variation of the struc-

ture size is higher. The frequency for the main peak is related to the fiber core diameter,

as discussed in paragraph 5.2 with Eq.(5.30) and Eq.(5.29). Thus the varying fiber core

diameter of V1 and V2 causes the spectral broadening. To verify this assumption, we have
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Figure 5.13: Experimental GAWBS spectrum for fibers with varying microstructure size:

(a) unifrom, (b) 7%variation, (c) 14%variation. See chapter 4.2



5.3. Experimental investigation of forward Brillouin scattering 157

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Frequency (GHz)

In
te

n
si

ty
 (

ar
b
.u

n
it

s)

FWHM ~20 MHz

FWHM ~30 MHz

FWHM ~70 MHz

0.85 0.9 0.95 1 1.05
1.431

1.432

1.433

1.434

1.435

Geometric variation of SEM image

n e
ff

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Elasto-optic cofficient, outer diameter 116 µm

Frequency (GHz)

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

Elasto-optic cofficient, outer diameter 125 µm

1

2
3

(a)

(d)

(c)

(b)

Peak 1: Δν=12 MHz

(164 MHz)

Peak 2: Δν=31 MHz

(394 MHz

Peak 3: Δν=59 MHz

(773 MHz)

30 µm

κ
² 

(a
rb

. 
u
n
it

s)
κ

² 
(a

rb
. 
u
n
it

s)

Figure 5.14: GAWBS measurement and simulation for a fiber with varying microstructure

size (7%variation, fiber V3, table (4.3): (a,b) Elasto-optic coefficient for minimal and

maximal outer diameter, (c) experimental GAWBS spectrum, (d) effective refractive index

while varying the microstructure size.

performed some numerical simulations. Fiber V3 with also 7%-varying structure (param-

eters see table (4.3) has been investigated and the peak broadening has been verified by

simulation. In Fig.(5.14 c) we first show the experimental results. Several peaks can be

observed and above 800MHz GAWBS are mostly suppressed. The multi-peak structure

can be due to the relatively big core diameter or to the fiber structure where the air

holes becomes smaller in the outer rows (SEM-image as inset in Fig.(5.14 a)). For some

peaks the FWHM has been measured as seen in Fig.(5.14 c): 20MHz at about 160MHz,

30MHz at about 500MHz and 70MHz at about 800MHz. To support the claim that

the broadening is due to the varying fiber structure the theoretical GAWBS spectrum

has been computed, once for the original SEM-image with 125µm outer diameter and

a second simulation for the by 7% smaller structure with 116µm outer diameter. The

results are depicted in Fig.(5.14 a,b). For three peaks the difference is noted down next

to the figures: 12MHz at 164MHz, 30MHz at 394MHz and 59MHz at 773MHz. They

correspond almost to the experimental values but are rather smaller. This is due to the

fact that the FWHM of GAWBS also depends on the life time of the acoustic modes which

leads to an additional broadening [8]. The higher the frequency of the GAWBS peak, the

broader its FWHM [24]. For completeness the effective refractive index of the optical

mode depending on the structure size is also shown in Fig.(5.14 d). It has been compared

to the distributed frequency shift in chapter 4.3 and was in very good accordance to the
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Figure 5.15: GAWBS in a hollow core fiber (dc=10µm): (a) up to 3GHz, (b) up to

15GHz.

experimental results.

5.3.2.4 GAWBS in hollow core fibers

In Ref. [25, 26], GAWBS in a hollow core fiber are presented. Light is here guided in

air by photonic band gap guiding [3, 27]. Zhong et al. [26] report on polarization noise

at sideband frequencies in the MHz range up to 35MHz and they identify by simulation

torsional-radial modes and acoustic modes trapped in the air-silica structure.

We also measured a 5m-long hollow core PCF since we wondered if the acousto-optic

interaction would be efficient enough in a hollow core PCF. Since the optical mode is

mainly propagating in air, where the acoustic modes do not exist, the GAWBS signal

should be much lower than in full-silica fibers. Besides the fiber is rather short, so we

did not expect high GAWBS peaks. We can also expect that the GAWBS frequency

must be very high due to the small silica bridges (about 400 nm) of the air-silica structure

around the air-core. Thus measurement up to 15GHz has been performed. The results

of the GAWBS measurement in the hollow core PCF are presented in Fig.(5.15). The

cross section is shown in the inset of Fig.(5.15 a) and the core diameter ia about 10µm.

We observe several peaks in the lower frequency region (Fig.(5.15 a)) up 600MHz. The

peaks are not very distinct and have a FWHM of about 50-100MHz. At about 2.2GHz in

Fig.(5.15 a) a cut-off frequency can be observed. For the frequency range up to 15GHz no

more peaks were observed. The question is weather the sensitivity of the setup was not

high enough to detect peaks at high frequencies. Moreover it would be interesting to know

if the observed peaks up to 600MHz are really classical GAWBS peaks, resulting from an

acousto-optical interaction, or another phenomena based on the light being reflected on

the vibrating structure or if it results from any measurement errors due to laser noise. A

numerical investigation including the calculation of the elasto-optic coefficient is needed

and is under investigation.
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5.4 Study of a multi-scale photonic crystal fiber

In this paragraph, we investigate GAWBS in a PCF with a multi-scale structure design

and report the frequency-selective excitation of multiple high-frequency guided acoustic

modes up to 2 GHz. The multi-scale fiber has been provided by Draka, Marcoussis. Based

on a full vector finite-element model (FEM), we show that these guided acoustic modes

result from elastic radial vibrations selected by the wavelength-scale air-silica microstruc-

ture. The elasto-optic coefficient is calculated and is found to be in good agreement with

the experimental GAWBS spectrum. We further show the strong impact of structural

irregularities of the fiber on these transverse acoustic modes by numerically studying a

perfectly symmetric air-hole structure designed from the real cross section of the PCF.

Our results suggest that PCFs can be advantageously used to enhance and control guided

acousto-optic interactions at ultra-high frequency by fiber design in view of potential

applications for fiber-optic sensors or efficient acousto-optic devices.

5.4.1 Experiments

The PCF under test, illustrated in Fig.(5.16 c), consists of a multiscale microstructure

with three different sizes of air holes and has a length of 106m. The first two inner

rows with 800 nm holes are based on a triangular lattice and define the fiber core and

the single-mode propagation at 1550 nm, as confirmed by numerical simulations shown in

Fig.(5.16 d). The two external rows consist of 12 larger elliptical holes and are intended to

isolate the fiber core from the cladding to lower the intrinsic confinement losses [28]. This

fiber actually exhibits two zero-dispersion wavelengths and a high nonlinear coefficient

(25W−1km−1) and has been used for supercontinuum generation [29]. Fig.(5.16 a) shows

the GAWBS spectrum. Several sideband frequency peaks are observed from 200MHz

to 2GHz and, in particular, three dominant acoustic modes at 410MHz, 915MHz and

1940MHz. Above 2GHz no other acoustic modes appear. This multi-frequency spectrum

is different from the single-mode spectrum previously observed in standard triangular-

lattice PCF [6, 7].

5.4.2 GAWBS model

To identify guided acoustic modes in the PCF, we have performed FEM-based numerical

simulations of the optical and acoustic modes using the COMSOL Multiphysics software

as explained in chapter 5.1. For this purpose, the PCF cross-section has been imported

from a SEM image and transformed to a finite element mesh. We have used the RF
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Figure 5.16: (a) Experimental RF spectrum showing the guided acoustic modes of the pho-

tonic crystal fiber shown in (c). (b) FEM-based numerical simulation of the elasto-optic

coefficient κ2 as a function of the acoustic frequency. (c) scanning electron microscope

(SEM) image of the PCF cross-section: core diameter 2.4µm, diameter of small holes

820 nm, diameter of middle holes 3.6µm, diameter of big holes 5.1µm. (d) extracted

boundaries of the micro-structure, (e) meshing the micro-structure, (f) fundamental op-

tical mode solved at 1550 nm using FEM simulation. Air-holes contour lines are depicted

in black.

module to solve the optical mode and PDE-mode for full-vector 3D acoustic modeling.

As acoustic constants, we used silica density ρ = 2203 kg.m−3, Young’s modulus EY =

73.1 109Pa, and Poisson ratio νP = 0.17. The optical refractive index of silica is n =

1.444. Single-mode optical propagation was found at 1550 nm, with an effective refractive

index neff(1550 nm) = 1.392. The fundamental optical mode is shown as a color plot in

Fig.(5.16 d). Both the optical and acoustic modal shapes are then combined to estimate

the elasto-optic diffraction coefficient κ that is written as [3] (see also chapter 5.1):

κ =

∫

σ

dxdyEiEjpijklSkl. (5.50)

In this expression, σ is the transverse section of the fiber, Ei and Ej are the pump

and scattered optical modes, respectively, pijkl is the strain-optical tensor, and Skl is the

acoustic displacement tensor. The Einstein summation convention on repeated indices is

employed. κ2 is proportional to the scattering efficiency and thus models the GAWBS

spectrum. The result is depicted in Fig.(5.16 b). Three main peaks are found, in good

agreement with Fig.(5.16 a), both with respect to modal frequencies and relative scattering

efficiencies. The small discrepancy of acoustic frequencies can be attributed to scaling

errors on the SEM image. In order to investigate more clearly the acoustic modes trapped

by the air-hole microstructure, we compute the strain energy density (SED) from Eq.(5.23)

and the kinetic energy density (Ekin) from Eq.(5.22)(see chapter 5.1). The SED and Ekin

of the three main acoustic modes are plotted in Figs.5.17(a-c) and (d-f), respectively. It is
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Figure 5.17: Numerical calculation (color plot) of the strain energy density distribution

(a-c) and the kinetic energy density (d-f) of the 439, 949 and 1934MHz acoustic modes.

clearly seen that the three acoustic modes are spatially confined within the first external

row of the fiber (the big core), the second internal row, and the fiber core (small core),

respectively. As GAWBS is the signature of the scattering of the incident optical mode

by acoustically-induced strain, the scattering efficiency κ is expected to be higher for a

strong overlap between the SED and the optical mode. This is clearly apparent for the

highest frequency mode at 1934MHz in Fig.(5.17 c). Note that the small peaks around

200MHz seen in both Figs.5.16 (a) and (b) were also analyzed and were attributed to the

modes confined to the second (outermost) external row. It is seen from Figs.5.17(a-f) that

both the SED and Ekin are not symmetrically distributed due to structural irregularities

of the PCF. To get further insight, we have performed numerical simulations for a model

PCF without any structural irregularity. For this purpose, we have designed a fiber

cross-section representing the same microstructure as in Fig.(5.16 c) but with defect-less

holes, pitches and angles. The resulting scattering efficiency is plotted in Fig.(5.18 a)

and is similar to that of Fig.(5.16 b). Of particular interest are the three main acoustic

resonance peaks now appearing at unique frequencies, whereas those computed for the real

structure degenerate in several peaks with close frequencies (see, e.g., the 950MHz peak

in Fig.(5.16 b) which is composed of five adjacent modes). The structural irregularities of

the fiber actually remove the degeneracy of acoustic modes and the multimodal nature

of the real structure originates from an energy splitting (or frequency splitting) of the

acoustic modes. In this way, we can interpret the spectral width of GAWBS peaks as

resulting not only from the acoustic lifetime (related to acoustic propagation losses) but

also from transverse structural irregularities of the fiber cross-section. The SED and

Ekin of the three main acoustic modes of the model PCF are shown in Fig.(5.19 a-c)
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Figure 5.18: Elasto-optic coefficient as a function of the acoustic frequency for the perfect

microstructure.

and (d-f), respectively. In contrast to Fig.(5.17), both energy density distributions are

now symmetric. This clearly demonstrates the strong impact of structural irregularities

of the PCF on guided acoustic modes and their frequencies. The SED in Fig.(5.19 a-

c) confirms the efficient overlap between the strain field and the optical mode. The

low-frequency mode in Fig.(5.19 a) can be understood as a circularly symmetric mode

of the big core, whereas the middle- and high-frequency modes in Fig.(5.19 b,c) can be

identified as 2π/6-symmetric modes limited to the second internal row and the optical

core, respectively. The fact that the structure in the middle is triangular enhances these

2π/6-symmetric modes contrary to the quasi-circular distribution of the first large holes

surrounding the big core (see chapter 5.2). In this way, the big core nearly behaves

like a silica rod. This can be quantitatively verified by the relation ν = cR01 · VT/D
which links the frequency ν of the fundamental elastic mode to the rod diameter D by a

constant cR01 · VT , where VT = 3740m s−1 is the transverse acoustic velocity and cR01 is a

factor which depends on the acoustic mode, in this case the fundamental R01-mode. The

product cR01 ·VT is equal to 3.82·103ms−1 (equivalent to the factor q in [16], see derivation

see chapter 5.2) and was obtained from simulation but also by solving the Pochhammer-

Chree relations [19] that depend on both the transverse acoustic velocity VT = 3740m s−1

and the longitudinal acoustic velocity VL = 5996m s−1. The latter analytic solution leads

to ν = cR01 ·VT/D ≈ 3.205/π ·VT/D = 3.82 ·103/D, in good agreement with the numerical

simulation. Consequently, the constant cR01·VT can be seen as an effective acoustic velocity

that depends on both the transverse and longitudinal acoustic velocities. For the radial

mode with the lowest frequency, at 410MHz, the rod diameter can be estimated from the

above expression to 8.7 µm, in excellent agreement with the diameter measured on the

SEM image. This suggests that the GAWBS spectrum can be used to provide an accurate

measurement of the dimensions of the PCF core. However, this conclusion is not valid

for the middle- and the high-frequency modes at 915MHz and 1940MHz, because these

exhibit 2π/6-symmetry and thus cannot be identified as fundamental rod modes.
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Figure 5.19: Numerical simulations (color plot) of a perfect PCF design without any

structural irregularity. (a-c) strain energy density distribution and (d-f) elastic energy

distribution of the 430, 974 and 1974MHz acoustic modes confined to the microstructure,

respectively

5.5 Conclusion

Guided acoustic wave Brillouin scattering has been investigated both theoretically and

experimentally. An acoustic model for the transverse acoustic modes is presented with its

application to numerical simulations with FEM in Comsol. With help of this model the

theoretical GAWBS spectrum for PCF based on SEM-images is extracted and compared

to experimental results. The experimental setup to measure forward Brillouin scattering

was shown and results for PCF with manifold microstructures are investigated. A special

photonic crystal fiber with a multiscale structure has been shown then which revealed

both experimentally and numerically that such air-silica microstructure supports the si-

multaneous frequency-selective excitation of several transverse guided acoustic modes with

frequencies up to 2 GHz. The continuous comparison between experimental and theo-

retical results provides us with a rather global understanding of GAWBS phenomena in

PCF. It is now quite clear how size, geometry and air-silica fraction in a PCF simul-

taneously participate in the composition of its GAWBS spectrum. This is not only of

high interest for PCF characterization but also for promising use to enhance and con-

trol guided acousto-optic applications at ultra-high frequencies for fiber-optic sensors [15]

or acousto-optic fiber devices. In addition, at low frequencies the acoustic modes being

almost suppressed, PCF can be employed for quantum optics experiments [2].



164 5. Guided acoustic wave Brillouin scattering

Bibliography

[1] R. M. Shelby, M.D. Levenson, and P.W. Bayer, “Guided acoustic-wave Brillouin

scattering”, Physical Review B, vol. 31, pp. 5244–5252, April 1985.

[2] D. Elser, U. L. Andersen, A. Korn, O. Glockl, S. Lorenz, Ch. Marquardt, and

G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic

crystal fibers”, Physical Review Letters, vol. 97, pp. 133901, 2006.

[3] V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot,

J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in

photonic crystal fibers”, Physical Review B, vol. 71, no. 4, pp. 045107, 2005.

[4] P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito,

V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided

acoustic phonons in nanostructured photonic crystal fibres”, Nature Physics, vol. 2,

no. 6, pp. 388–392, 2006.

[5] N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering

in holey fibers”, IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 412–414,

January 2006.

[6] P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude,

and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal

fiber”, Optics Express, vol. 14, no. 9, pp. 4141–4150, 2006.

[7] J-C Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Lande, “Guided acoustic
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Conclusion and perspectives

The aim of this thesis was to investigate Brillouin scattering in photonic crystal fibers

(PCFs) from fundamental viewpoint to applied aspects. We have concentrated on the two

aspects of this opto-acoustic interaction present in fiber optics, i.e., forward and backward

Brillouin scattering. We have shown in both cases that the periodic wavelength-scale air-

silica microstructure of photonic crystal fibers fundamentally changes the acoustic waves

spatial distribution, leading to new characteristics for Brillouin scattering. Our investiga-

tions ranged from the fundamentals such as the observations of Brillouin linewidth broad-

ening or of high-frequency guided acoustic modes trapped by the air-silica microstructure,

to more applied topics, as the Brillouin passive suppression and the development of dis-

tributed Brillouin sensors. In the following we will give a brief overview of the key results

for each of these topics treated in this thesis. Furthermore we will identify directions of

interests as well as open questions for future research efforts.

In chapter 3 we conducted many experiments to fully characterize backward stimulated

Brillouin scattering in various photonic crystal fibers and compared the observed be-

haviours to those occurring in conventional all-silica fibers. This encompassed Brillouin

gain spectrum and threshold measurements as well as distributed Brillouin frequency shift

measurements, respectively. For this purpose, we first introduced the Brillouin optical

time domain analysis (BOTDA) and then successfully demonstrated a new distributed dif-

ferential measurement technique using Brillouin echoes (BEDS) with π-phase-shift pulses.

It is based on differential phase-shift keying (DPSK) using a single Mach-Zehnder mod-

ulator to generate a pump pulse and a short π-phase-shifted pulse with an easy and

accurate adjustment of delay. With this simplified technique, we achieved centimeter

spatial resolution when measuring a splice segment between two different fibers while

reducing the optical loss for the pump pulse. A quadrature-phase shift keying (QPSK)

modulator for the Brillouin probe has also been investigated as a single-sideband modu-

lator in the BOTDA system and compared to the previous dual-sideband case. Further

improvements of our distributed Brillouin sensing systems will be considered to increase

the sensing range by using bidirectional erbium-doped fiber amplifiers as in fiber-based

communication systems.
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Using the BEDS technique, we further performed distributed mappings in photonic crystal

fibers that show both short-scale and long-scale longitudinal fluctuations of the periodic

wavelength-scale air-hole microstructure. Our technique is very sensitive to structural

irregularities and thus interesting for fiber manufacturers to characterize and improve the

fiber uniformity during the drawing process.

From a fundamental viewpoint, we also reported the observation of Brillouin linewidth

broadening and, for the first time to our knowledge, the acoustic decay time in photonic

crystal fibers. Interestingly, our measurements have revealed an unexpected faster decay

for photonic crystal fibers than in a standard single-mode fiber. A multi-Lorentzian shape

model of the Brillouin gain, assuming a rich acoustic mode distribution within the fiber

core, has been used to explain the linewidth broadening. This is an interesting topic

that should be deepened in theory and experiment. A further understanding of how the

different coherent or incoherent acoustic modes interact together and how this yields to

a shorter decay time in photonic crystal fibers should be pursued. A new theoretical

approach based on Laude et al. [1] and Carlson et al. [2] could be helpful for this purpose.

Another idea is to get access to the phase of the Brillouin gain spectrum that would help

for confirming our theoretical assumption of the linewidth broadening in photonic crystal

fiber.

In chapter 4, photonic crystal fibers with periodically-varied core diameter have been in-

vestigated both theoretically and experimentally. This work was motivated by application

to Brillouin suppression in fiber optic technologies. We experimentally tested several fibers

and demonstrated a 4 dB increase of the Brillouin threshold in a photonic crystal fiber

by varying periodically the core diameter by only 7%. The efficiency of this passive tech-

nique has been verified by comparing with a uniform PCF and by use of our distributed

sensing technique where the oscillating Brillouin frequency shift is clearly observed. Bril-

louin suppression was however not achieved for all modulated fibers due to different fiber

parameters, as splicing losses, linear loss, measurement uncertainties. Nevertheless, we

believe that such varying-core photonic crystal fibers may find potential applications in

all-optical processing and fiber lasers where Brillouin backscattering is detrimental. For

completeness, PCFs with higher amplitude variations and other variation profiles would

be interesting to investigate. Unexpected effects in modulation instability and soliton

propagation may also be observed by exploiting the periodically-varying zero-dispersion

wavelength of these fibers.

In the last chapter of this doctoral thesis we studied guided acoustic wave Brillouin scat-

tering (GAWBS) both numerically and experimentally in several photonic crystal fibers.

Of particular interest, we demonstrated the simultaneous frequency-selective excitation

of several guided transverse acoustic Brillouin modes up to 2GHz in a photonic crystal

fiber with a multi-scale structure design. These guided acoustic modes have been clearly

identified by using a full vector finite-element model as resulting from elastic radial vi-
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brations trapped by the air-silica microstructure. A clear formula of the relationship

between core diameter of glass rods and acoustic resonance frequencies was then derived.

We further showed the strong impact of structural irregularities of the fiber on the fre-

quency and modal shape of these acoustic resonances by numerical comparison with a

perfect symmetric fiber model. Our results suggest that PCFs can be advantageously

used to enhance and control guided opto-acoustic interactions at ultra-high frequency in

view of potential applications for fiber-optic sensors, acousto-optic devices and quantum

communication experiments. Further experimental studies can include a distributed mea-

surement of GAWBS in PCFs with help of the setup proposed by Kang et al. [3]. This

can be interesting for sensor applications since the GAWBS peaks are highly sensitive to

strain and temperature [4]. Another interesting study would be a GAWBS measurement

in an ultra-cold PCF. Would the main mode still be present or suppressed because the

acoustic phonon number is reduced? Moreover, the influence of GAWBS in a PCF-based

Brillouin fiber ring laser is another focus for further research on forward Brillouin scat-

tering.

Let us conclude this dissertation by saying that this work on the boundary of funda-

mental research and development has improved our understanding of Brillouin scattering

in photonic crystal fibers. These fibers will continue to attract much attention because of

their remarkable and unique acoustic properties that are essential for Brillouin scattering

and its application to fiber optic technologies and distributed sensors.
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Nomenclature

List of acronyms

BDG-DS Brillouin dynamic grating distributed sensing

BEDS Brillouin echoes distributed sensing

BFS Brillouin frequency shift

BGS Brillouin gain spectrum

BOCDA Brillouin optical correlation-domain analysis

BOFDA Brillouin optical frequency-domain analysis

BOTDA Brillouin optical time-domain analysis

BOTDR Brillouin optical time-domain reflectometry

CW continuous wave

DCF Dispersion compensation fiber

DFB Distributed feedback (laser)

DFG Difference frequency generation

DPSK Distributed phase shift keying

DSF Dispersion shifted fiber

EDFA Erbium doped fiber amplifier

EMA Effective modal area

FBG Fiber Bragg grating

FEM Finite elements method

FWHM Full width at half maximum

FWM Four wave mixing

GAWBS Guided acoustics wave Brillouin scattering

GVD Group velocity dispersion

HiBi fiber Highly birefringent fiber

HNA High numerical aperture
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HNLF Highly non-linear fiber

MI Modulation instability

MOF Micro-structured fiber

MZI Mach-Zehnder interferometer modulator

NA Numerical aperture

OFC Optical fiber communciation (conference)

OPA Optical parametric amplifier

OTDR Optical time-domain reflectometry

PCF Photonic crysal fiber

PD Photo diode

POF Polymer optical fiber

PMF Polarization maintaining fiber

RF Radio frequency

SBS Stimulated Brillouin scattering

SRS Stimulated Raman scattering

SED Strain energy density

SEM Scanning electron microscopy

SFG Sum frequency generation

SHG Second harmonic generation

SIPS Forward stimulated inter-polarization scattering

SPM Self phase modulation

THG Third harmonic generation

XPM Cross phase modulation

ZDW Zero dispersion wavelength
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List of often used symbols

Aeff Effective mode area

d Air hole diameter

dc Fiber core diameter

∆νB Linewidth of Brillouin gain spectrum

Ekin Kinetic energy

gB Brillouin gain

γe Electro-strictive constant

Ji Bessel-function of order i

κ Elasto-optic coefficient

Leff Effective length

λP Pump wavelength

Λ Pitch, distance between two air hole centers

n Refractive index

neff Effective refractive index

νB Brillouin frequency shift

Pcr Critical power for the Brillouin threshold

ρ Density

Skl Displacement

Tij Strain tensor

τ Acoustic decay time

VL Longitudinal acoustic velocity

VT Transverse acoustic velocity

Vπ Bias point in a modulator

WS Strain energy density



 



 



Abstract Brillouin scattering is a fundamental nonlinear opto-acoustic interaction present in optical fibers with

important implications in fields ranging from modern telecommunication networks to smart optical fiber sensors. This thesis

is aimed at providing a comprehensive theoretical and experimental investigation of both forward and backward Brillouin

scattering in next generation photonic crystal fibers in view of potential applications to above mentioned fields. We show

in particular that these micro-structured optical fibers have the remarkable ability to either suppress or enhance photon-

phonon interactions compared to what is commonly observed in conventional fibers. Firstly, this thesis provides a complete

experimental characterization of several photonic crystal fibers using a novel highly-resolved distributed sensing technique

based on Brillouin echoes. We perform distributed measurements that show both short-scale and long-scale longitudinal

fluctuations of the periodic wavelength-scale air-hole microstructure along the fibers. Our mapping technique is very sensi-

tive to structural irregularities and thus interesting for fiber manufacturers to characterize and improve the fiber uniformity

during the drawing process. With this technique, we also report the first experimental observation of the acoustic decay

time and the Brillouin linewidth broadening in both standard and photonic crystal fibers. Furthermore, we experimentally

demonstrate a simplified architecture of our Brillouin echoes-based distributed optical fiber sensor with centimeter spatial

resolution. It is based on differential phase-shift keying technique using a single Mach-Zehnder modulator to generate a

pump pulse and a π-phase-shifted pulse with an easy and accurate adjustment of delay. These sensing techniques are

also applied to distributed strain measurement. Another aspect of this thesis is the investigation of a novel method for

suppressing stimulated Brillouin scattering that is detrimental to optical fiber transmissions and fiber lasers. We experimen-

tally study several fibers and a demonstrate 4 dB increase of the Brillouin threshold in a photonic crystal fiber by varying

periodically the core diameter by only 7%. The efficiency of this passive technique is verified by use of our distributed

sensing technique where the oscillating Brillouin frequency shift is clearly observed. Lastly, we present experimental and

numerical results demonstrating the simultaneous frequency-selective excitation of several guided acoustic Brillouin modes

in a photonic crystal fiber with a multi-scale structure design. These guided acoustic modes are identified by using a

full vector finite-element model to result from elastic radial vibrations confined by the air-silica microstructure. We further

show the strong impact of structural irregularities of the fiber on the frequency and modal shape of these acoustic resonances.

Keywords : Nonlinear optics, stimulated Brillouin scattering, guided acoustic wave Brillouin scattering, photonic crystal

fiber, Brillouin threshold, optical fiber sensors.

Résumé Le cadre général dans lequel s’insère ce travail de thèse est celui de l’étude de la diffusion Brillouin dans une

nouvelle génération de fibres optiques à cristaux photoniques (PCFs). Ces fibres, qui présentent un arrangement périodique

de micro-canaux d’air parallèles le long de la fibre, possèdent en effet des propriétés optiques et acoustiques remarquables

et inédites par rapport aux fibres conventionnelles. De façon plus précise, nous montrons dans ce travail, par le biais de

simulations numériques et de données expérimentales, que les fibres à cristaux photoniques offrent la possibilité de supprimer

ou, à contrario, augmenter les interactions entre les photons et les phonons. Dans une première partie, nous présentons

une méthode de cartographie des fluctuations longitudinales de la microstructure des fibres PCFs à l’aide d’un capteur dis-

tribué basé sur une méthode innovante d’écho Brillouin. Cette méthode, très sensible et à haute résolution, est directement

intéressante pour caractériser et améliorer l’uniformité des PCFs lors de leur fabrication et également pour la détection des

différentes contraintes de témperature et étirement induites le long des fibres. Sur le plan fondamental, notre système de

mesure distribuée à haute résolution nous a également permis d’observer, pour la première fois à notre connaissance, le

temps de vie des ondes acoustiques dans les fibres à cristaux photoniques et les fibres standard. Par ailleurs, sur le plan

technique, nous avons développé une architecture simplifiée de capteur distribué combinant la technique des échos Brillouin

et celle de la modulation différentielle par déplacement de phase avec un seul modulateur d’intensité. Nos résultats montrent

une résolution centimétrique dans la zone de soudure entre deux fibres optiques à l’aide d’une impulsion de phase de 500 ps.

Nous démontrons dans une deuxième partie la suppression directe et passive de la rétro-diffusion Brillouin stimulée dans

une fibre optique microstructurée en faisant varier pério-diquement le diamètre de la microstructure. Une augmentation de

4 dB du seuil de puissance Brillouin a été obtenue avec une variation de seulement 7% sur une période de 30m. Ce résultat

est très intéressant car la diffusion Brillouin est un facteur limitant dans les systèmes de télécommunications par fibre

optique et les laser à fibre. La troisième et dernière partie est consacrée à l’étude numérique et expérimentale de la diffusion

Brillouin en avant dans les fibres à cristaux photoniques. En plus de la suppression de la plupart des modes acoustiques

transverses, nous montrons que cette diffusion Brillouin est fortement augmentée pour certains modes acoustiques à haute

fréquence qui sont piégés au coeur de la microstructure. Nous avons également étudié une fibre à structure multi-échelle qui

révèle l’excitation sélective de plusieurs phonons acoustiques à des fréquences allant jusqu’a 2GHz. Ces mesures ont étés

confirmées par des simulations numériques basées sur une méthode vectorielle aux éléments finis. L’impact des irrégularitées

de la microstructure a aussi été mise en évidence.

Mots clés : optique non linéaire, diffusion Brillouin, fibres optiques microstructurées, seuil Brillouin, capteurs Brillouin

distribués.


