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EXPÉRIMENTALE À LA
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Philippe MATHIEU Université de Lille 1 Examinateur
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1 Résumé des chapitres 17

1.1 Fondements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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ma famille, mes amis et colleagues. Aux membres du jury de thèse Cris Calude,
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Hervé Zwirn. Special thanks to à Cris Calude, Greg Chaitin and Stephen Wolfram
for their constant support and helpful advice. I would also like to thank Jean
Mosconi, Bernard François, Jacques Dubucs, Matthew Szudzik and Todd Rowland.
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tivó durante el desarrollo de esta bella aventura. A mis padres, mi familia, amigos
y colegas. A los miembros del jurado Cris Calude, Greg Chaitin, Serge Grigorieff,
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Brève introduction à la théorie
du calcul et à la théorie
algorithmique de l’information

Cette thèse est une contribution à la recherche des applications de la
théorie algorithmique de l’information. Il s’agit également d’utiliser l’aléatoire
comme concept de recherche pour appliquer la théorie de l’information au
monde réel et pour fournir des explications vraisemblables à des phénomènes
du monde physique.

Commençons par illustrer les motivations et les concepts de cette théorie
qui vont nous accompagner tout au long de cette thèse.

0.1 De la théorie classique des probabilités à

la théorie du calcul

Imaginons que nous nous trouvions face à une suite
010101010101010101010101010101. De prime abord, nous pouvons penser
que cette suite n’est pas aléatoire. Cependant, cette suite a la même proba-
bilité d’occurrence que n’importe quelle autre suite de la même longueur.
Le fait de douter de sa nature aléatoire n’est qu’un préjugé selon la théorie
classique des probabilités.

Sous une distribution uniforme, toutes les suites s à n chiffres (par
exemple pour des suites qui encodent les résultats d’un jeu de pile ou face
avec une pièce non truquée) :

000000000000000000000000000000
010101010101010101010101010101
110011001011010010110111100110
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ont toutes la même probabilité Pr(s) = 1/2n comme résultat de lancer
la pièce n fois (0 = pile, 1 = face). Par contre, si on obtient la première, on
supposera que la pièce était truquée de même si on tombe sur la deuxième,
tandis que si on tombe sur la troisième, cela semblera normal.

Malgré tout, notre intuition persiste à dire qu’une suite telle que 000000. . .
ou 111111. . . n’est pas aléatoire. La théorie algorithmique de l’information
donne une explication à cette intuition par le biais du concept de contenu
d’information. On voudrait formaliser l’idée qu’on n’attend pas de régularités
d’un processus dans une suite d’évènements résultant du hasard, et que
chaque suite est capable de contenir de l’information pour les différencier.

Les définitions que la théorie algorithmique de l’information fournit sont
des définitions de type négatif, c’est-à-dire qu’on donne une définition en
termes de calculabilité de l’objet non aléatoire, puis on définit un objet
aléatoire comme étant un objet qui ne possède pas cette propriété même
si on ne le montre pas.

La théorie de l’aléatoire algorithmique se base sur le modèle de calcul
de Turing. La thèse de Church-Turing, largement acceptée comme vraisem-
blable, affirme qu’est “calculable” ce qui est “calculable par une machine de
Turing” (ou tout autre modèle de calcul équivalent). On dit alors que les
fonctions qu’on peut calculer avec une machine de Turing ou avec un algo-
rithme sont les fonctions calculables (on dit aussi récursives). Les fonctions
usuelles (n → n2, n → nième nombre premier, etc.) sont calculables.

0.1.1 La machine de Turing

Le modèle de Turing[18] est un modèle abstrait d’ordinateur composé
d’un mécanisme de calcul et d’un ruban sur lequel la machine écrit et qu’elle
peut effacer en déplaçant une tête de lecture-écriture. Chaque machine de
Turing est associée à un programme qui détermine avec une précision absolue
les opérations qu’elle effectue. Alan Turing démontre qu’il existe un type de
machine de Turing (dite universelle) capable de simuler toute autre machine
de Turing.

Le problème de l’arrêt

On démontre qu’il existe des fonctions non calculables : la première
d’entre elles est la fonction qui, pour tout programme donné P, indique (a) si
le programme finit par s’arrêter ou (b) s’il continue indéfiniment à calculer.
Effectivement, Turing démontre que cette fonction n’est pas calculable, c’est
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ce qu’on nomme le problème de l’indécidabilité de l’arrêt. En d’autres termes,
il n’existe aucune machine de Turing qui sait déterminer si une autre ma-
chine va s’arrêter pour un programme avec une entrée quelconque. Beaucoup
d’autres problèmes sur les machines de Turing ne sont pas décidables.

La pertinence du langage binaire

Le langage binaire permet d’encoder des événements comme ceux du pile
ou face mais aussi toute autre série d’événements discrets par le biais d’une
transformation de base. Par exemple, si on étudie les sorties d’un dé qui peut
donner six résultats possibles, on peut les encoder chacun par un symbole
différent et les transformer en binaire.

0.1.2 Le problème du Castor affairé

On dénomme Castor affairé[?] à n états, la machine de Turing à n états
qui calcule le plus longtemps ou produit le plus de 1 sur le ruban avant de
s’arrêter. Le temps maximal se note S(n) et le nombre maximal de 1 sur
le ruban se note Σ(n). Le Castor affairé à 3 états calcule durant S(3) = 21
étapes, et donc, toute machine ayant trois états calcule moins de 22 étapes. Le
Castor affairé à 4 états calcule durant S(4) = 107 étapes. Le Castor affairé
à 5 étapes n’a pas encore été identifié avec certitude, mais on pense que
S(5) = 47 176 870. Les foncions n → S(n), n → Σ(n) sont non calculables (à
cause de l’indecidabilité de l’arrêt des machines de Turing).

0.1.3 Le contenu d’information d’un objet individuel

Grâce au modèle de calcul de Turing, on a un outil puissant pour for-
maliser le concept de complexité d’une suite par le biais de son contenu
d’information.

Pour être prudent et encadrer cette nouvelle théorie de contenu d’infor-
mation, il faut adopter le concept de calcul pour décrire un objet par un
“programme informatique” que produit l’objet (ou sa représentation).

La notion de calculabilité n’étant pas connue auparavant, il a été difficile
de donner un cadre stable à la définition algorithmique de l’aléatoire, mais
l’utilisation d’un modèle de calcul a donné lieu à plusieurs formalisations.

La solution au phénomène des sorties à pile ou face, dont nous avons
parlé dans la première section, a été proposée indépendamment, dans les
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années 60, par Solomonoff[17], Kolmogorov[10] et Chaitin[4] (ce deuxième
déjà à l’origine de la formalisation axiomatique du calcul des probabilités).
Si la suite de 000. . . (0 répété 1 million de fois) nous semble surprenante
comme produit du hasard, c’est parce qu’elle est très facile à décrire et non
pas difficile comme on l’attendrait pour une suite aléatoire.

0.1.4 L’aléatoire mathématique

Ce n’est qu’avec l’arrivée des travaux de Schnorr et Martin-Löf que la
définition de l’aléatoire mathématique prend sa forme actuelle par le biais du
concept de martingale[16] (stratégie de pari) et de test statistique effectif[13].
On peut classer les définitions en trois catégories : typicalité, imprédictibilité
et incompressibilité.

La notion de typicalité est basée sur la théorie de la mesure, elle for-
malise l’idée intuitive qu’une séquence binaire infinie satisfait toutes les pro-
priétés statistiques pouvant être testées de façon algorithmique. Une suite est
aléatoire au sens de Martin-Löf[13], si et seulement si, s a toutes les propriétés
communes à la plupart des séquences binaires.

La notion d’imprédictibilité exprime le fait qu’une séquence binaire est
aléatoire s’il n’existe aucune façon algorithmique d’en prédire ses bits. Une
suite est aléatoire au sens de Schnorr[16] si elle est imprévisible et donc
aucune stratégie de pari effective ne peut mener à un gain à long terme si
l’on parie sur les bits de la séquence. En d’autres mots, une séquence infinie
aléatoire doit être une séquence ne possédant aucune structure, régularité,
ou règle de prédiction identifiable.

D’autre part, la notion de compressibilité permet de définir la complexité
d’une suite infinie. Une séquence est aléatoire au sens de Chaitin-Levin[4, 11]
si tout segment initial de la séquence est incompressible. La section suivante
fournira plus de détails.

0.1.5 Convergence des définitions

Ces notions de l’aléatoire caractérisent aujourd’hui mathématiquement
ce qu’on entend par séquence aléatoire. Shnorr montre qu’une séquence est
non aléatoire s’il existe une stratégie calculable permettant de gagner de
l’argent sous certaines conditions. Une variante de la notion de prédictibilité
selon Shnorr[16] produit la même classe de suites aléatoires qu’au sens de
Martin-Löf et de Chaitin-Levin.
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Le fait que les notions se révèlent mathématiquement équivalentes[4,
16] alors qu’elles sont fondées sur des notions différentes et conçues
indépendamment les unes des autres, conduit à penser que ces définitions
réussissent à saisir de façon fondamentale le concept de l’aléatoire.

0.2 Complexité algorithmique

La définition de l’aléatoire donnée par la complexité algorithmique four-
nit des outils pratiques qui permettent son application aux suites finies, à
la différence des définitions abstraites et infinitaires de Martin-Löf[13] ou
Schnorr[16].

La complexité algorithmique, introduite indépendamment et presque
simultanément par Solomonoff, Kolmogorov, Chaitin et Levin, définit la
complexité d’une suite comme la taille du plus court programme qui la
génère. La complexité algorithmique d’une suite est alors comprise entre 0
et (à peu près) sa longueur. Plus formellement,

Définition 1 [10, 4, 17, 11] : La complexité algorithmique de s ∈ {0, 1}∗,
relativement à une machine de Turing universelle U, est définie par

CU(s) = min{|p| : U(p) = s}

où |p| désigne la longueur de p.

Donc, en utilisant la complexité algorithmique, on peut maintenant
déterminer que la suite :

00000000000000000000000000000000000000000000000000

a une complexité algorithmique plus faible que la suite :

11101001001101110101101001001100011010000001101000

La première peut être produite par un programme du type “imprime
50 zéros” qui est vraisemblablement plus court qu’un programme nécessaire
pour créer la deuxième suite.
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0.2.1 L’aléatoire algorithmique par incompressibilité

Définition 2. : Une suite binaire finie s est dite aléatoire si C(s) est proche
de la longueur originale de s, autrement dit si s n’est pas compressible. De
même, pour un type d’objet fini, on dit qu’un objet x est aléatoire si sa
représentation sous forme de suite binaire code(x) l’est (l’encodage étant fixé
à l’avance).

Parmi les propriétés des suites binaires, il y a notamment le fait que la
majorité des suites finies ont une complexité maximale (c’est-à-dire proche
de leur longueur). Par un argument combinatoire, une suite tirée au hasard a
toutes les chances d’avoir une complexité algorithmique maximale dès que n
est assez grand. Par exemple, parmi toutes les suites de 0 et de 1 de longueur
n, pour n fixé :

– moins d’une suite sur 1 024 a une complexité < n−10, c’est-à-dire peut
être comprimée de plus de 10 digits ;

– moins d’une suite sur un million a une complexité < n−20, c’est-à-dire
peut être comprimée de plus de 20 digits, etc.

L’une des propriétés les plus importantes de cette mesure (pour l’une ou
l’autre version) est qu’aucune des deux n’est calculable, c’est-à-dire, qu’il
n’existe pas d’algorithme pour calculer la complexité d’une suite quelconque,
car aucune procédure ne garantit de trouver le programme le plus court qui
l’engendre. Ceci fait douter de trouver des applications pratiques.

Des approximations à ce concept sont, cependant, envisageables. Une
façon de contourner le problème de calculabilité est de considérer des ap-
proximations calculables. La longueur de la plus courte “description” peut
être approchée par sa plus courte forme compressée, en utilisant un algo-
rithme de compression fixé qui repère des régularités.

Il n’y a pas, en général, de méthode effective pour trouver la meilleure
compression, mais toute compression possible donne une borne supérieure, et
donc la taille de la suite compressée est une approximation à sa complexité
algorithmique. Cette approche est utilisée pour des applications pratiques,
notamment par Cilibrasi et Vitányi[12] pour la classification de données.

0.2.2 Le théorème d’invariance

On peut se demander si la complexité algorithmique est stable lorsqu’on
change de langage de base, par exemple de machine universelle de Turing U.
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Est-ce qu’en changeant de langage (ou de machine universelle de Turing), on
ne change pas la complexité mesurée ?

La définition de la complexité de Kolmogorov n’est pas absolument
indépendante de la machine U, mais elle l’est à une constante prés.

Le théorème d’invariance donne sens à la définition de la complexité
algorithmique :

Théorème (invariance[17]) : Si L et M sont deux machines de Turing
universelles, et si on note CL(s) et CM(s) la complexité algorithmique quand
on utilise L ou M comme machine de référence, alors il existe une constante
c
L,M

telle que pour toute suite binaire finie s :

|CL(s)− CM(s)| < c
L,M

Ce théorème se demontre en utilisant la possibilité d’écrire en L un com-
pilateur pour M , et réciproquement.

0.2.3 Le choix de la machine universelle est important

Alors que la formalisation de la notion d’algorithme dans la théorie de la
calculabilité a permis de fixer le modèle de calcul sur lequel on peut définir
la complexité algorithmique d’une suite (avec une machine universelle de
Turing), sans la relativiser à aucun autre modèle de calcul (ce qui a permis
d’encadrer la notion de complexité), la dépendance du langage joue un rôle
important lorsqu’on veut évaluer la complexité d’une suite finie, comme le
théorème d’invariance le met en évidence.

Pour les suites courtes par exemple, parler de C(s) ne semble pas avoir
vraiment de sens, car la constante additive c est trop grande par rapport à la
taille des suites courtes. C’est cette constante (le résultat du changement de
cadre de référence) qui va être le sujet de réflexion des premiers chapitres de
cette thèse. On suggère une manière de contourner expérimentalement cette
difficulté par une méthode où la constante additive devient moins importante,
voire négligeable, particulierment pour les suites courtes. Au moyen d’un
calcul massif, nous produirons des distributions de fréquences pour évaluer
la probabilité algorithmique d’une suite et ensuite sa complexité. Le but :
fournir une méthode alternative aux algorithmes de compression tradition-
nellement utilisés (mais inutiles pour de suites courtes) et rendre plus stable
la définition de complexité algorithmique.
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Nous allons ainsi, montrer que de vraies applications de la théorie algo-
rithmique de l’information sont envisageables, de l’utilisation du concept de
probabilité d’arrêt Ω de Chaitin, en passant par la mesure de Levin, jus-
qu’à la profondeur logique de Bennett dont on parlera dans les prochaines
sections.

0.2.4 Resumé des propriétés de la complexité algorith-
mique

– La fonction s → C(s) n’est pas calculable. Aucun algorithme ne peut,
pour toute suite s dont on fournit les données, calculer en un temps
fini la valeur de C(s).

– En pratique, pour évaluer C(s), on utilise des compresseurs (sans
perte) : la taille du fichier comprimé de s par un algorithme de compres-
sion (sans perte) est alors une valeur approchée (une borne supérieure)
de C(s).

– La non-calculabilité de C(s) a pour conséquence qu’on ne peut jamais
être certain d’être proche de sa valeur (car, par exemple, une régularité
non vue par le compresseur utilisé peut être présente dans s).

– C(s) est robuste au sens où il existe une équivalence à une constante
près qui ne dépend pas de l’objet à mesurer, mais de la machine qu’on
utilise pour le mesurer. Cette propriété qui donne sens à la mesure est
aussi une contrainte pour évaluer vraiment (numériquement) la com-
plexité d’une suite, car cela dépend de la machine choisie, le théorème
d’invariance ne garantissant que la convergence asymptotique.

0.3 Probabilité algorithmique et distribution

universelle

0.3.1 Complexité “préfixe”

Étant donné que la complexité algorithmique n’est pas suffisante pour
définir rigoureusement certains concepts pour lesquels on parlera de choisir
des programmes au hasard, il faut introduire une variation de la complexité
algorithmique, il s’agit de la complexité dite “préfixe”.

Un code préfixe (aussi appelé comme code instantané) est un code ayant
la particularité de ne posséder aucun mot ayant pour préfixe un autre mot.
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En d’autres termes, aucun mot finissant un code préfixe ne peut se prolonger
pour donner un autre mot.

Cette propriété est souvent recherchée pour les codes à longueur variable,
par exemple une suite d’instructions de calcul (par exemple un programme),
afin de pouvoir les décoder lorsque plusieurs programmes sont concaténés les
uns aux autres. Un code préfixe est un code non ambigu. Par exemple, les
codes à taille fixe sont tous des codes préfixes. Tel est le cas des numéros de
téléphone.

Une mesure adéquate doit être fondée sur des programmes au-
todélimités[4, 11]. C’est-à-dire où il n’est pas possible de concaténer deux
programmes, ce qui rendrait inopérant toute tentative de définition d’une
mesure de probabilité, car tout programme qui commence avec un autre pro-
gramme finirait par contribuer un nombre infini de fois à la probabilité du
premier programme, ce qui rendrait la probabilité des programmes divergente
et la somme des probabilités de tous les programmes strictement supérieur
à 1. On s’arrange donc pour que chaque programme ne soit jamais le début
d’un autre (par exemple, si 0001110 est un programme alors 000111011 n’en
sera pas un). Un programme délimité est donc un programme qui ne peut
pas faire partie d’un autre, car il est limité, par exemple, par une instruction
qui signale la fin du programme. Dans plusieurs langages de programmation
on utilise des délimitateurs. Par exemple, on dénote la fin des instructions
par point-virgule, accolades ou le mot end.

Pour tirer un programme au hasard, on procède de la manière suivante :
on convient d’écrire les programmes en langage binaire et on oblige chaque
programme à posséder une suite unique pour délimiter la fin du programme.
Le tirage au hasard d’un programme consiste à choisir, par pile ou face avec
une pièce non truquée, des 0 et des 1 jusqu’à avoir un programme complet,
et ensuite à le faire fonctionner. Si la suite de tirages de 0 et de 1 ne donne
jamais un programme complet, on considère qu’il n’y a pas arrêt.

0.3.2 Le nombre Omega (Ω) de Chaitin

Une machine universelle, c’est-à-dire susceptible de représenter toute
fonction calculable, étant donnée, on numérote les programmes par ordre
de longueur, puis par ordre “alphabétique” (0 puis 1) à l’intérieur des pro-
grammes de même longueur. Soit p0, p1, . . . , pn, . . . une telle numérotation.

Chaque programme, une fois lancé, finit par s’arrêter ou, au contraire,
poursuit indéfiniment ses calculs (par exemple, parce qu’il boucle).
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La définition du nombre Ω de Chaitin fait intervenir le problème de
l’arrêt de la manière suivante.

Définition 3 [4] : Ω est la probabilité qu’un programme p tiré au hasard
s’arrête : Ω =

∑

p s’arrête 2
−|p|. avec p un programme autodélimité.

De la définition de Ω, on sait tirer toutes sortes d’informations et
démontrer ses propriétés (transcendant, équiréparti, etc.). Mais justement,
l’une de ces propriétés signifie qu’on ne pourra jamais connâıtre tous ses
bits, qui se comportent comme une suite de tirages aléatoires totalement
imprévisibles.

Parmi toutes les propriétés connues du nombre Ω de Chaitin, celles qui
nous intéressent dans ce travail sont :

– Le nombre Ω est non calculable, comme la complexité algorithmique,
car aucun algorithme ne peut égrainer les chiffres de Ω un par un (tou-
jours à cause du problème de l’arrêt).

– Le nombre Ω est aléatoire dans le sens suivant : le plus court programme
qui engendre ses n premiers bits possède environ n bits. Aucun des
nombres transcendants classiques ne possède cette propriété. D’ailleurs,
les constantes π et e sont facilement compressibles puisqu’on connâıt
des algorithmes qui en calculent tous les chiffres un par un.

– La connaissance de m bits de Ω permet de savoir pour tout programme
p dont la longueur est inférieure à m, s’il s’arrête ou non. La méthode
consiste à énumérer tous les programmes en les faisant fonctionner à
tour de rôle.

0.3.3 L’inférence algorithmique de Solomonoff et la
semi-mesure de Levin

Solomonoff[17] introduit un concept d’inférence algorithmique que
Levin[11] formalise avec la semi-mesure 1 qu’il développe mathématiquement
dans son concept de recherche universelle. La mesure m (qualifiée de distri-
bution universelle miraculeuse par Ming Li et Walter Kirchherr[9]) indique
que plus une suite s est simple, plus sa probabilité m(s) comme résultat d’un
calcul, est grand. Plus formellement :

1. semi indique que la mesure n’est qu’à moitié calculable. Autrement dit, on peut
seulement s’approcher dem(s), car on ne peut pas vraiment la calculer et donc la considérer
comme une mesure pleine.
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Définition 4 [11] m(s) =
∑

p s’arrête et produit la suite s 2
−|p| avec p un pro-

gramme autodélimité.

Plus une suite s est aléatoire, plus sa probabilité m(s) est petite.
m(s) est une distribution de fréquences qui donne la probabilité pour une
machine de Turing M de produire une séquence s avec un programme
aléatoire. Cette distribution est liée à la complexité algorithmique C(s), car
m(s) = 1/2C(s)+O(1)[11].

Cette approche formalise le principe connu du Rasoir d’Occam, couram-
ment interprété comme la recherche de l’explication la plus simple pour une
observation. Ici l’objet observé est la suite s, et sa plus simple “explication”
est le plus petit programme informatique qui produit s.

0.3.4 De la métaphore du singe dactylographe de Borel

au singe programmateur de Chaitin

Avec assez de temps, un singe qui tape (on suppose que chaque
événement est indépendant, c’est-à-dire que le singe tape vraiment de manière
désordonnée) indéfiniment sur une machine à écrire, dactylographiera n’im-
porte quel texte (par exemple le roman “Les Misérables”). La probabilité
d’obtenir Les Misérables serait donc 1/50n, avec n la taille de l’œuvre de
Victor Hugo et 50 le nombre de touches de la machine à écrire.

La probabilité m(s) de produire le roman des Misérables en remplaçant
la machine à écrire par un ordinateur est beaucoup plus forte (même si elle
reste toujours petite du fait de la longueur du texte), car la complexité C(s)
du texte est assez faible par rapport à une suite aléatoire de la même taille.

Autrement dit, le singe a beaucoup plus de chances de produire un roman
en tapant un programme sur le clavier d’un ordinateur que sur une machine à
écrire. Le singe, n’est qu’une source de programmes aléatoires. La métaphore,
formalisée par le concept de probabilité algorithmique (ou semi-mesure de
Levin), indique que si on tire des programmes au hasard, on verra que la
plupart de ces programmes ne produisent pas de séquences aléatoires mais
plutôt organisées.
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0.3.5 La profondeur logique de Bennett

Complexe peut signifier aléatoire ou fortement structuré, riche en informa-
tion. La complexité algorithmique, par exemple, classera les objets suivants
de moins à plus complexes :

– un cristal, objet répétitif.
– un ordinateur, un être vivant.
– un gaz, un nuage.

Pourtant, c’est sur la ligne 2 qu’on trouve les objets les plus organisés.
C’est la critique formulée par Ilya Prigogine[15] au sujet de la complexité
algorithmique comme mesure inadéquate de richesse en organisation.

Une tentative pour définir cette complexité organisée est la “profondeur
logique” de Charles Bennett[3].

Définition 5 [3] : La profondeur logique d’une suite s est définie par :

P (s) = temps de calcul du programme minimal de s.

Ce qui tient compte à la fois de la complexité algorithmique (la taille du
programme qui engendre s) et du nombre de pas du calcul que ce programme
prend pour engendrer s. La profondeur logique tente de mesurer le “contenu
en calcul” d’un objet fini.

Une série d’arguments variés montre qu’une forte profondeur logique est
la marque que contient un objet attestant qu’il est le résultat d’un long
processus d’élaboration. Le temps de fonctionnement du programme minimal
qui correspond à la complexité organisée d’une suite s’oppose à la complexité
aléatoire définie par la complexité algorithmique.

Pour en savoir plus

Pour ce qui est de la complexité algorithmique, les livres de référence sont
ceux de Calude[5] et de Li et Vitanyi[12]. Pour les liens entre calculabilité,
complexité et aléatoire, on peut consulter le livre de Nies[14], ainsi que ce-
lui de Downey et Hirschfeldt[8]. Signalons également les introductions à la
complexité algorithmique de Jean-Paul Delahaye[6, 7], la thèse de Laurent
Bienvenu[1] et son introduction historique[2], ainsi que le livre que j’ai
edité[19]. Évidemment, les œuvres séminales de Chaitin[4], Kolmogorov[10],
Levin[11], Solomonoff[17], Martin-Löf[13], Schnorr[16] et Bennett[3], restent
les textes fondateurs et les références les plus importantes de cette thèse.

14



Bibliographie
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Chapitre 1

Résumé des chapitres

La thèse est divisée en 3 grandes parties : fondements, applications et
réflexions. Chaque partie contient plusieurs articles publiés (plus de la moitié)
ou actuellement soumis à des revues à comité de lecture et presentés comme
chapitres dans cette thèse. La section 1.4 contient une liste chronologique et
les références exactes des papiers. Voici un résumé des parties et chapitres.

1.1 Fondements

1.1.1 Complexité de Kolmogorov-Chaitin des suites
courtes

Une caractéristique ennuyeuse de la complexité de Kolmogorov-Chaitin
(dénotée dans ce chapitre par K) est qu’elle n’est pas calculable, ce qui limite
son domaine d’application. Une autre critique concerne la dépendance de K
à un langage particulier ou une machine de Turing universelle particulière,
surtout pour les suites courtes (plus courtes que les longueurs typiques des
compilateurs des langages de programmation).

En pratique, on peut obtenir une approximation de K(s), grâce aux
méthodes de compression. Mais les performances de ces méthodes de com-
pression s’écroulent quand il s’agit des suites courtes. Pour les suites courtes,
approcher K(s) par des méthodes de compression ne fonctionne pas.

On présente dans ce chapitre une approche empirique permettant de sur-
monter ce problème. Nous allons proposer une méthode “naturelle” qui don-
nera une définition stable de la complexité de Kolmogorov-Chaitin K(s) via
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la mesure de probabilité algorithmique m(s). L’idée est de faire fonction-
ner une machine universelle en lui donnant des programmes au hasard pour
calculer expérimentalement la probabilité m(s) (la probabilité de produire
s), pour ensuite évaluer numériquement K(s). Cette méthode remplacera la
méthode des algorithmes de compression. La méthode consiste à : (a) faire
fonctionner des mécanismes de calcul (machines de Turing, automates cellu-
laires) de façon systématique pour produire des suites (b) observer quelles
sont les distributions de probabilités obtenues et puis (c) obtenir K(s) à
partir de m(s) au moyen du théorème de codage de Levin-Chaitin.

Les sorties des machines sont groupées par fréquence (sont regroupées et
comptées). La disposition des résultats, triés par fréquence, doit être analogue
à la distribution de probabilité algorithmique, une distribution empirique de
la semi-mesure de Levin m(s).

Conclusions du chapitre

Les expériences suggèrent qu’on peut donner une définition stable dem(s)
et donc donner du sens à K(s), en particulier pour les suites courtes. Nous
suggérons que cette méthode, basée sur de tels dispositifs de classements, est
une méthode efficace pour mesurer la complexité relative de suites courtes.

En réalisant ces expériences, impliquant plusieurs types de systèmes de
calcul, on trouve des corrélations entre les classements de fréquence de suites,
ce que nous interprétons comme une validation de la méthode proposée, qui
doit cependant être confirmée par des calculs complémentaires.

1.1.2 Évaluation numérique d’une distribution
expérimentale de Levin

Les définitions générales de K ne permettent pas de parler de la com-
plexité de courtes suites (ou alors d’une manière tellement imprécise que cela
n’a aucun intérêt). Divers chercheurs souhaiteraient utiliserK mais renoncent
à le faire :

– soit parce qu’ils pensent que c’est impossible (incalculabilité, etc.)
– soit parce qu’ils croient que ça ne marche que pour des suites longues
et que ce n’est pas cela dont ils ont besoin.

Court est relatif à la taille du compilateur (ou machine universelle choi-
sie). On peut considérer courte toute suite de moins de 15 ou 20 chiffres.
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De nombreux chercheurs utilisent d’autres mesures de “complexité”, sou-
vant mal justifiées, basées sur des évaluations combinatoires (nombre de
facteurs) ou de nature statistique (par ex. l’entropie de Shannon). Notre
méthode doit conduire à une définition stable de K(s) susceptible d’un usage
absolument général.

Pour calculer la complexité d’une suite quelconque, par exemple de 12
chiffres, nous produisons toutes les suites possibles de longueur 12 avec un
système de calcul fixé. Cela nous donne une distribution de fréquences à partir
de laquelle on classe la suite donnée et on calcule sa probabilité algorithmique,
puis sa complexité algorithmique par le biais du théorème de codage de Levin-
Chaitin.

Cette approche expérimentale impose aussi une limite, car évidemment
même quand la procédure marchera pour des séquences plus longues, il y aura
des restrictions imposées par les ressources de calcul de nos ordinateurs et le
temps que nous serons disposés à passer pour obtenir une approximation.

Comparer si 0100110 est plus ou moins complexe que 110101100 au moyen
d’algorithmes de compression ne marche pas bien. En effet, plus courte est
une suite, plus important en proportion est le rôle de la taille de la machine
universelle choisie (ou compilateur) pour la comprimer. En d’autres termes,
la dépendance de la complexité algorithmique par rapport à la machine uni-
verselle choisie est si importante que la définition courante de la complexité
algorithmique et son application pour les suites plus courtes n’a pas de sens.
Notre méthode évite cette difficulté.

On définit D(n) comme la fonction qui à tout s (suite finie de 0 et de
1) associe le quotient (nombre de fois qu’une machine de Turing de type
(n, 2) donne s) / nombre machines de Turing de type (n, 2). La fonction
n → D(n) est mathématiquement bien définie mais elle est non calculable
(pour en savoir plus allez au chapitre 2), comme beaucoup d’autre fonctions
en théorie de la calculabilité ; ce qui ne veut pas dire qu’on ne peut pas
calculer D(n) pour les petites valeurs de n.

Pour les petites valeurs de n, on peut savoir, pour toute machine, si elle
s’arrête ou pas en utilisant la solution du problème du Castor affairé associé.
C’est le cas si n =1, 2, 3, ou 4.

On calcule les distributions D(n) et on produit une distribution de
fréquence des suites binaires pour n = 1, 2, 3 et 4. À partir de la distribution
on calcule K(s) = −log2(D(s)) ce qui donne une évaluation de la complexité
algorithmique de la suite s. On calcule donc D(1), D(2), D(3) et D(4). Pour
n > 4 nous ne pourrons avoir pour l’instant que des approximations de D(n).
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La réalisation de ces calculs de D(n) pour les petites valeurs de n est
comparable au calcul des décimales de π au sens qu’on évalue des nombres
fixés pour toujours. C’est aussi un calcul lié à l’évaluation du nombre Ω de
Chaitin (voir [?]).

Pour D(3), il a fallu déjà prendre en compte 15 059 072 machines. Pour
D(4), le nombre de machines est si grand qu’on ne peut pas les générer
d’avance et les garder en mémoire, ni garder les résultats. Il faut calculer les
classements en mémoire et mettre en place des compteurs assez sophistiqués.

Les méthodes testées pour D(3) nous ont permis de calculer les
22 039 921 152 machines de Turing pour évaluer D(4). Notons que la com-
plexité de Kolmogorov pour suites courtes à partir de D(n) n’est pas un
nombre entier (comme lorsqu’on la définit comme la taille du plus court
programme) mais un nombre réel. C’est un fait un avantage puisque cela
permet d’avoir un classement plus fin avec moins d’ex aequo. La méthode
qu’on propose donne une version expérimentale de K.

Conclusions du chapitre

Nous proposons donc un moyen de calculer une “distribution univer-
selle” de Levin D(n). On calcule D(s) et donc K(s) à partir de la formule
K(s) = −log2(D(s)). Les résultats trouvés sont conformes à notre intuition
de ce qui est complexe et ce qui est simple. Nous esperons que les tables de
complexité que nous publions seront des références définitives, utiles à ceux
qui souhaitent disposer d’une “distribution empirique” bien fondée. Des cal-
culs complémentaires encore plus massifs compléteront ces tables et étendront
le champ d’applications possibles.

On étudie aussi les distributions générées par des automates cellulaires
et on calcule la corrélation avec la distribution produite par des machines de
Turing. Si plusieurs formalismes de calcul (automates cellulaires, machines de
Turing, systèmes de Post, etc.) donnent le même ordre (ou à peu près), c’est
sans doute qu’il y a une raison profonde à cela. Nos expériences suggèrent
qu’un ordre universel pourrait exister et donc une sorte de complexité de
Kolmogorov naturelle.

Ce travail ouvre la porte à de nouvelles applications de la complexité
algorithmique, car on dispose d’une mesure approchable en pratique, par
exemple pour faire de la compression de données.

20



1.2 Applications

1.2.1 Recherche des propriétés dynamiques des auto-

mates cellulaires et d’autres systèmes par des
techniques de compression

Une méthode pour étudier les propriétés qualitatives dynamiques des ma-
chines à calculer, fondée sur le la comparaison de leur complexité algorith-
mique, en utilisant un algorithme de compression sans perte générale, est
présentée. Il est montré que l’approche par la compression sur les automates
cellulaires les classe en groupes selon leur comportement heuristique. Ces
groupes montrent une correspondance avec les quatre principales classes de
comportement identifiées par Wolfram[9]. Un codage de conditions initiales
à base du code de Gray est aussi développé pour distinguer les conditions
initiales, en augmentant leur complexité graduellement. Une méthode fondée
sur une estimation d’un coefficient de détection des transitions de phase est
aussi présentée. Ces coefficients permettent de mesurer la résistance ou la sen-
sibilité d’un système à ses conditions initiales. Nous formulons une conjecture
quant à la capacité d’un système à parvenir à l’universalité de calcul, liée aux
valeurs de ce coefficient de transition de phase.

Conclusions du chapitre

On a pu clairement distinguer les différentes catégories de comportements
étudiées par Wolfram. En calculant les longueurs comprimées des sorties
des automates cellulaires, en utilisant un algorithme de compression général,
nous avons trouvé qu’on distingue nettement deux groupes principaux et,
regardant de plus près, deux autres groupes évidents entre les deux. Ce que
nous avons trouvé semble soutenir le principe de Wolfram d’équivalence de
calcul (ou PCE)[9].

On a également fourni un cadre de compression à base de transition de
phase et une méthode pour calculer un exposant capable d’identifier et de
mesurer l’importance d’autres propriétés dynamiques, telles que la sensibi-
lité aux conditions initiales, la présence de structures dans l’espace ou la
régularité dans le temps. Nous avons également formulé une conjecture en
ce qui concerne le lien possible entre le coefficient de transition et la capa-
cité d’un système à parvenir à l’universalité de calcul. Comme on peut le voir
d’après les expériences présentées dans ce document, l’approche par compres-
sion et les outils qui ont été proposés sont très efficaces pour le classement et
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la détection de plusieurs propriétés dynamiques des systèmes abstraits. En
outre, la méthode ne dépend pas du système étudié et peut s’appliquer à n’im-
porte quel système de calcul abstrait ou à des données provenant d’une source
quelconque. Il peut également être utilisé pour calculer les distributions a
priori et faire des prévisions concernant l’évolution future d’un système.

Ces idées constituent un cadre à base de compression pour enquêter sur les
propriétés dynamiques des automates cellulaires et d’autres systèmes, dont
nous sommes certains qu’il aura d’autres applications.

1.2.2 Classification d’images par complexité orga-

nisée : une application de la profondeur logique
de Bennett

Nombreuses sont les applications qui ont utilisé la complexité algorith-
mique pour classer des objets en utilisant des algorithmes de compression de
données (sans perte) :

– Arbres phylogénétiques à partir de séquences génétiques (Varré et
Delahaye[3]) ;

– Arbres représentant les parentés entre les langues indoeuropéennes en
partant des traductions de La Déclaration universelle des droits de
l’homme (Cilibrasi et Vitányi[2]) ;

– Comparaisons de textes littéraires (Cilibrasi et Vitányi[?]) ;
– Repérage de la fraude et du plagiat [1] ;
– Classification de morceaux de musique (Cilibrasi, Vitányi et de
Wolf[?]) ;

– Détection du “spam” (Richard et Doncescu[7]).

Une idée nouvelle est proposée ici fondée sur le concept de profondeur
logique[?] développé par Charles Bennett : évaluer et classer des images par
l’évaluation du temps de décompression des versions comprimées (sans perte)
des images.

La taille du fichier compressé est interprétée comme une valeur ap-
prochée de la complexité des données contenues dans le fichier brut. Le temps
nécessaire à la décompression du fichier est donc naturellement interprété
comme une valeur approchée de la profondeur logique de la donnée contenue
dans le fichier brut.

Contrairement à l’application de la notion de complexité algorithmique
par elle seule, l’ajout de la notion de profondeur logique a pour résultat une
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prise en compte de la richesse de leur organisation structurale ou complexité
organisée.

Sur une machine parfaite idéale qui ne ferait que de la décompression, on
pourrait effectuer cette mesure une seule fois. La répéter N fois donnerait N
fois le même résultat. Par contre, on lance un programme qui lance des pro-
grammes par l’intermédiaire d’un système d’exploitation, dans un environne-
ment contraint (par exemple Mac OS X). Ce programme est chargé d’ouvrir
un fichier, de décompresser son contenu et de l’enregistrer dans un fichier de
destination. Or, sur plusieurs essais, on ne mesure pas nécessairement tou-
jours la même valeur (temps d’exécution) et on est obligé de répéter plusieurs
fois cette mesure pour obtenir une moyenne.

Il a fallu donc décompresser chaque image plusieurs fois de suite et on
s’est arrangé pour que la plupart des programmes de l’ordinateur sur lequel
on fait les mesures soient arrêtés, par exemple les programmes du réseaux,
les programmes en mémoire, etc.

Du fait de ces phénomènes d’instabilité toujours présents dans les ordi-
nateurs modernes, quand on le fait cinq fois de suite par exemple pour cinq
images A, B, C, D et E, ça ne revient sans doute pas au même de considérer
les ordres :

– AAAAABBBBBCCCCCDDDDDEEEEE ou
– ABCDEABCDEABCDEABCDEABCDE (toujours le même ordre) ou
– ABCDEDEBCADBACEDABCEECDBA (en changeant l’ordre à chaque
fois)

L’expérimentation indique que la dernière méthode est la meilleure, car le
contexte de l’ordinateur change et qu’on a plus de chance que chaque image
se retrouve dans une série de contextes variés, et dans l’ensemble à peu près
identiques pour chaque image. La méthode des temps de décompression sur
une machine moderne est délicate à mettre en œuvre, mais il est certain
que, pour qu’elle marche un peu et qu’elle soit crédible, il fallait réussir à la
stabiliser comme on l’a fait.

Il se peut qu’en mesurant chaque temps de décompression pour la même
image on obtienne des temps de calcul bien stables, sauf dans certains cas.
Nous étudions dans ce chapitre ces techniques et nous donnons une réponse
à plusieurs questions méthodologiques, en particulier quant aux différences
en tant que mesures de complexité, entre la complexité algorithmique K et
la profondeur logique P .
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Conclusions du chapitre

Nous présentons une méthode pour estimer la complexité d’une image
basée sur le concept de profondeur logique.

On peut voir que :

– De K à P, les images d’êtres vivants, de microprocesseurs et de villes
avancent, ce qui est naturel car ce sont les objets possédant une com-
plexité d’organisation maximale.

– De K à P, les mécanismes et les produits manufacturés par l’homme,
comme une montre ou l’écriture avancent, ce qui encore est le résultat
attendu.

– De K à P, les images qui semblent les plus aléatoires reculent ainsi que
les plus simples : les courbes de Peano et les courbes symétriques. Une
fois encore, c’est ce que l’intuition faisait espérer.

Le fait que ces images “aléatoires” se retrouvent avec les images les plus
simples (cristal) est absolument parfait.

Les images de courbes de Peano sont considérées comme plus organisées.
Cela est assez satisfaisant : leur organisation n’est pas simple (ce n’est pas
une organisation répétitive). Les êtres vivants et les microprocesseurs sont
les mieux placés, ce qui est très satisfaisant, car ils sont certainement parmi
les objets les plus complexes. Les images inversées se placent toujours à côté
des images normales dans le cas de K et pas trop loin l’une de l’autre pour
P , ce qui est très bien.

Notons encore que le fait que les objets ayant un K très élevé (objects
aléatoires) se retrouvent avec les objets les plus simples (P très faible) dans
le classement donné par P est ce que nous attendions.

Il y a sans doute bien d’autres choses à dire mais tous les changements de
K à P confirment l’idée théorique de Bennett à la base de notre travail, et il
montre donc que le concept de profondeur logique est efficace. En résumé :

1. Le concept de profondeur logique peut être mis en œuvre par une
méthode faisable pour traiter de données réelles.

2. Des algorithmes de compression et une méthode spécifique ont été
décrits dans ce travail, et on a montré qu’ils fonctionnaient et étaient
utiles pour identifier et classer des images en fonction de leur complexité
d’organisation.

3. La procédure décrite ici constitue une méthode non supervisée
d’évaluation du contenu informationnel d’une image par la complexité
d’organisation.
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1.2.3 Le fossé de Sloane

L’encyclopédie des suites numériques (couramment abrégé OEIS) créée
par Neil J.A. Sloane (http ://www.research.att.com/∼njas/sequences/) est
une base de données de suites d’entiers. Elle est une référence dans le domaine
des suites d’entiers pour les mathématiciens professionnels et amateurs. Elle
recensait 158000 suites en mai 2009.

Nous nous intéresserons à la distribution du nombre d’occurrences N(n)
d’un entier n dans l’encyclopédie de Sloane. Considérons le nombre de pro-
priétés d’un entier, N(n), en le mesurant par le nombre de fois où n apparâıt
dans le fichier numérique de l’encyclopédie de Sloane. La valeur N(n) mesure
l’intérêt de n.

On obtient un nuage à l’allure régulière dans la représentation en échelle
logarithmique de N(n) en fonction de n. Le nuage est divisé en deux parties
séparées par une zone claire, comme si les nombres se séparaient naturelle-
ment en deux catégories. Ce fossé est une zone creuse inattendue repérée par
Philippe Guglielmetti 1.

Notre but est de décrire la forme du nuage, puis de formuler une hypothèse
explicative de cette forme. L’existence du fossé de Sloane est-elle naturelle,
ou demande-t-elle une explication spécifique ?

Conclusions du chapitre

Nous montrons que la complexité algorithmique est un outil qui donne
une indication sur l’allure que devrait présenter la courbe représentative de
N fondée sur une mesure d’importance “objective”. Si la forme générale du
nuage est prévisible, la présence du fossé de Sloane a, en revanche, bien plus
interpellé les observateurs. Ce fossé n’a pas, à notre connaissance, pu être
expliqué par des considérations uniquement numériques et indépendantes de
la nature humaine du travail mathématique. La complexité algorithmique
laisse en effet prévoir une certaine “continuité” de N , puisque la complexité
de n + 1 est toujours proche de celle de n. La discontinuité qui prend corps
dans le fossé de Sloane est donc difficilement attribuable à des propriétés
purement mathématiques indépendantes des contingences sociales. Comme
nous le montrons, elle s’explique très bien par le fonctionnement de la re-
cherche, qui entrâıne la surreprésentation de certains nombres de faible ou
moyenne complexité. Ainsi, le nuage de points représentant la fonction N

1. Sur son site http ://drgoulu.com/2009/04/18/nombres-mineralises/
Consulté le 3 août 2009.
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présente-t-il simultanément des caractéristiques que l’on peut comprendre
comme de nature mathématiques et humaines.

1.3 Réflexions

1.3.1 Sur la nature algorithmique du monde

Ce chapitre est consacré à une réflexion sur les connexions entre la théorie
et le monde physique. Nous prenons des sources d’information dans le monde
réel et les comparons avec ce qu’un monde algorithmique aurait produit. Si
le monde était composé uniquement à partir de règles déterministes, alors le
monde serait “algorithmique”.

Notre idée est que ce type d’hypothèses est testable par le biais de la
distribution universelle de Levin (ailleurs elle est appelée semi mesure de
Solomonoff-Levin). Notre travail a consisté à mener de tels tests qui, bien sûr,
ne peuvent pas être faciles et seront sujets à discussion, voire à contestation.
Il semble important qu’un dilemme de nature fondamentale (philosophique)
puisse donner lieu à ce que les physiciens appellent une expérience cruciale.
Comme bien sûr rien n’est parfaitement simple, nous ne pouvons pas être ab-
solument certain que nous détenons les clefs d’une expérience cruciale pour
identifier la nature profonde des mécanismes du monde physique (algorith-
miques ou non), mais notre piste est sérieuse, car basée sur des conséquences
de la théorie de l’information algorithmique, et en particulier sur la notion
de probabilité algorithmique.

Si on accepte que le monde suive des règles, jusqu’à quel point le monde
ressemble-t-il à un monde purement algorithmique ? Pour tenter de s’appro-
cher d’une formulation sérieuse de cette question, nous avons envisagé des
tests statistiques qui mettent en évidence une ressemblance, d’abord entre les
mondes algorithmiques possibles (un par modèle de calcul), puis par rapport
aux sources de données empiriques.

En d’autres termes, si on accepte que :

1. le monde est une sorte de grande machine à calculer (ou une famille de
machines à calculer, ou un réseau d’automates mais toujours Turing-
calculables) et que

2. les programmes des machines composant le monde sont choisis au ha-
sard
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alorsm(s) pourrait être la probabilité qu’en observant le monde au hasard
on tombe sur s.

Néanmoins, la nature de la distribution des sorties à partir de la fréquence
dans laquelle les suites sont produites fournit des informations sur le proces-
sus originel. Une distribution qui s’approche de ce qu’on attend par la mesure
de Levin suggère que le processus générateur mène des calculs qui ressemblent
à ceux qui pourraient être menés par des programmes sur une machine uni-
verselle de Turing (formalisme sur lequel la théorie de la complexité est fondée
et définie).

C’est la fréquence d’apparition de s, et donc la probabilité m(s), qui
détermine si l’origine des suites est générée par un programme de cal-
cul à l’origine, de la même façon que trouver une distribution gaussienne
suggérerait fortement que le processus d’origine a été le résultat d’un proces-
sus aléatoire au sens classique.

Toute l’expérimentation repose sur deux types de systèmes : d’une part
des automates abstraits, comme les machines de Turing, et les automates
cellulaires, qui sont eux-mêmes comparés l’un à l’autre (pour tester s’ils ar-
rivent, à peu près, à une même distribution), et d’autre part des sources de
données réelles contenant des informations venant du monde physique : des
images en noir et blanc, des séquences d’ADN et de données dans un disque
dur quelconque.

Dans tous les cas, on va représenter la taille de la suite à rechercher et
à comparer, à chaque étape. D’habitude, une suite est représentée par un
s ∈ {0, 1}∗. Dans le cas des automates abstraits, nous observons leur sortie
(suites binaires) après les avoir laissés tourner pendant un certain nombre
d’étapes. Dans le cas des données réelles, nous transformons leur contenu
en suites binaires. Et dans les deux cas, ces suites sont partitionnées selon
la longueur donnée, puis regroupées par fréquences. De tels regroupements
donnent une distribution expérimentale de Levin.

Conclusions du chapitre

Nous ne pouvons pas apporter une réponse définitive aux questions que
nous posons, mais notre méthode indique une piste pour explorer ce type de
questions, et cela est nouveau. Avant ces considérations sur le concept de pro-
babilité algorithmique, personne n’envisageait de méthode pour départager
les différentes hypothèses (ou formuler plus précisément des hypothèses
mixtes que nous n’excluons pas).
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Une hypothèse opposée à la nôtre serait celle d’un monde déterminé uni-
quement par le hasard. L’étude d’un tel monde montrerait une distribution
uniforme ou en tout cas très différente de celle que la mesure de Solomonoff-
Levin laisse attendre.

Nos résultats montrent qu’il existe une corrélation, en termes de
fréquences de séquences, dans les données en sortie pour plusieurs systèmes,
dont des systèmes abstraits comme les automates cellulaires et les machines
de Turing, ainsi que des prélèvements d’information du monde réel, tel que
les images et les fragments d’ADN humain. Nos résultats suggèrent donc
que, derrière tous ces systèmes, il pourrait avoir une distribution partagée en
accord avec ce que prédit la probabilité algorithmique.

1.3.2 Une approche algorithmique du comportement
des marchés financiers

Cette étude essaie d’appliquer aux recherches sur les variations des
marchés financiers des idées issues de la théorie algorithmique de l’infor-
mation, notamment des travaux de Levin, pour expliquer l’écart connu des
données du marché par rapport à la distribution théorique généralement.
Cela signifie donc que les variables ne sont pas indépendantes et donc
pas complètement aléatoires. Notre analyse va donc dans le sens des cri-
tiques adressées par Benoit Mandelbrot[6] aux instruments mathématiques
traditionnellement utilisés dans ce domaine. Cependant, l’approche est
complètement nouvelle et différente de celle de Mandelbrot.

Pour étudier le marché par le biais des suites binaires, on note :

– 1 pour une hausse et
– 0 pour une baisse.

En utilisant les distributions de fréquences de séries quotidiennes de prix
de clôture sur plusieurs marchés boursiers, nous cherchons à savoir si l’écart
prévisible par la probabilité algorithmique (une distribution de loi de puis-
sance) peut rendre compte des déviations attendues par la théorie aléatoire
des marchés (une distribution log-normale). Notre étude constitue un point
de départ pour de plus amples recherches sur les marchés en tant que systèmes
soumis à des règles, dotés d’une composante algorithmique, malgré leur ap-
parente nature aléatoire. L’utilisation de la théorie de la complexité algo-
rithmique fournit un ensemble de nouveaux outils d’investigation, pouvant
s’appliquer à l’étude du phénomène d’attribution de prix sur les marchés
financiers.
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En économie, la nature de la dynamique à laquelle sont soumises les
données est différente. Les structures sont rapidement effacées par l’activité
économique elle-même, au cours de la recherche d’un équilibre économique
(par exemple dans la Bourse).

En posant l’hypothèse algorithmique qu’il existe une composante basée
sur une règle, contrairement à un processus stochastique, dans les marchés,
on peut appliquer les outils de la théorie de l’information algorithmique, de la
même façon que la supposition de distributions aléatoires conduit à l’appli-
cation de la machinerie traditionnelle de la théorie classique des probabilités.

Si cette hypothèse se révélait vraie, la théorie dit que la distribution de
Solomonoff-Levin est l’indicateur optimal. Autrement dit, on pourrait lancer
un grand nombre de machines pour simuler le marché, et m , la probabilité
algorithmique basée sur la distribution universelle de Levin, fournirait cer-
taines indications sur la direction et la taille particulière d’un prix, basées
sur le fait que le marché possède un élément obéissant à une famille de règles.

Nous pensons que l’étude des distributions de fréquences et l’application
de probabilités algorithmiques pourraient constituer un outil pour estimer
et finir par comprendre le processus d’assimilation de l’information dans les
marchés, rendant possible la caractérisation du contenu informationnel des
prix.

Conclusions du chapitre

Les suites des changements des prix sont classées en fonction du nombre
de 1. C’est pour cela que la suite 0000 est en dernier. La raison en est sans
doute que les 1 et les 0 ne sont pas équidistribués. L’explication se trouve
dans l’asymétrie des marchés (les courbes n’ont pas la même allure quand
on inverse l’axe du temps) : ils montent plus lentement qu’ils ne descendent
(mais quand ils montent, ils montent moins que lorsqu’ils descendent et donc
ça se compense), ainsi il y a plus de 1 que de 0. A priori ici, cela n’a rien à
voir avec la complexité algorithmique.

La spéculation sur les cours boursiers a pour effet de supprimer les struc-
tures exploitables. Le déséquilibre en 1 et 0 n’est pas exploitable s’il est
compensé par des hausses plus faibles que les baisses. Il a donc fallu effacer
cette asymétrie.

Pour savoir si la complexité algorithmique a quelque chose à dire, il fallait
comparer un assez grand nombre de suites ayant le même nombre de 1 et
de même longueur : par exemple toutes les suites de longueur 10 et ayant
cinq 1. On verrait peut-être alors que les suites les plus simples (0000011111,
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0101010101, etc.) sont placées devant les plus complexes (01001110110). Ce
n’était pas du tout certain, mais ça a été le cas.

Les corrélations trouvées dans les expériences décrites suggèrent que la
distribution de Levin pourrait bien être un moyen de calculer et d’évaluer ce
segment de cet aspect algorithmique du marché.

1.3.3 Complexité algorithmique versus complexité de
temps de calcul : recherche dans l’espace des pe-
tites machines de Turing

Parmi les diverses mesures de complexité, il y a des mesures axées sur la
description minimale d’un programme et d’autres sur la quantification des
ressources (espace, temps, énergie) utilisées par un calcul.

Le but est de trouver des compromis entre la complexité algorithmique
et la complexité de temps de calcul par une exploration exhaustive et
systématique des fonctions calculées par l’ensemble des machines de Turing à
2 symboles avec 2, 3 et 4 états, en portant l’attention sur l’espace occupé sur
les rubans et les temps d’exécution des machines correspondant aux fonctions
calculées par ces machines lorsqu’elles ont accès à plus d’états.

Le problème de l’arrêt et d’autres contraintes importantes pour cette
approche expérimentale, y compris le problème d’extensionnalité (décider si
deux machines calculent la même fonction), ont été surmontés en prenant
une allure pragmatique. Par exemple, on considère que deux fonctions sont
la même fonction si pour 21 valeurs d’entrée écrites sur le ruban des deux
machines, on a sur les rubans le même contenu au moment de l’arrêt, et
on considère que deux machines calculent le même algorithme si les deux
machines calculent la même fonction et si elles le font en occupant le même
temps et espace du ruban.

Conclusions du chapitre

On a obtenu des évaluations exactes en ce qui concerne les temps de
calcul, dévoilant des proprietés du microcosme des petites machines de Turing
et fournissant des chiffres sur les fonctions qu’elles calculent. L’analyse des
données nous a fourni des fonctions dont les classes de temps de calcul ont
été comparées parmi les différents espaces des machines à différents nombres
d’états. Au début, l’intuition nous disait qu’une machine de Turing qui calcule
la même fonction avec plus d’états pourrait calculer la fonction en moins
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de temps. Par contre, on a trouvé que plus une machine a accés à plus
d’états, plus il est probable que la machine gaspille ces nouvelles ressources
disponibles. Ce phénomène a été trouvé à chaque fois qu’on passait de 2 à 3
états et de 3 à 4 états.

On a trouvé des cas où une fonction était parfois calculée plus vite sans
franchir une classe de complexité de temps. Des machines qui arrivaient à
calculer des fonctions, par exemple, deux fois plus vite mais dans ce que nous
considérions la même classe de temps (par ex. O(n2) et O(2n2) appartenant
toutes les deux à la classe de temps quadratique). Jamais aucune fonction
n’a été calculée plus vite qu’une machine qui calculait la même fonction avec
moins d’états ; plus vite signifierait, par exemple, une machine qui calcule une
fonction en temps O(n) qui est calculée en temps O(n2) par une machine à
moins d’états.

D’autres phénomènes intéressants tels que certaines transitions de phase
dans les courbes des temps d’arrêt des machines on été expliqués par une
étude sur la manière dont on encode les entrées sur les rubans et le fonc-
tionnement lui-même des machines. D’autres phénomènes et des machines
curieuses ont été aussi découverts, tel est le cas des machines qui calculent la
fonction identité dans un temps exponentiel, ce qui exemplifie l’une de nos
découvertes : une présence croissante de machines de plus en plus lentes qui
ne profitent pas des nouvelles ressources. La courbe de complexité algorith-
mique (nombre d’états) contre complexité de temps, confirme ce que nous
avons trouvé, notamment un décalage systématique des temps d’exécution
des machines qui calculent la même fonction, c’est-à-dire que la moyenne de
temps de calcul des machines devient de plus en plus longue, indiquant que
les machines tendent à occuper toutes les ressources à portée de main.

1.4 Résumé des principales contributions

Les principales contributions de cette thèse sont les suivantes :

– On a construit des distributions de fréquences à partir de plusieurs
modèles de calcul. Les classements de séquences dans ces distributions
expérimentales sont relativement stables et corrélés, ce qui suggère une
distribution naturelle, au moins sous certaines conditions (petite taille
des séquences). On a conclu qu’une distribution naturelle pourrait nous
permettre de réduire l’impact de la constante additive à laquelle la
mesure de complexité algorithmique est sujette.
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– On a construit des distributions de fréquences à partir de plusieurs
sources physiques du monde réel et on les a comparées avec celles obte-
nues à partir des modèles de calcul algorithmique. Les classements de
séquences dans ces distributions expérimentales ont été trouvés stables,
et là encore, corrélées. Le but a été de concevoir un test statistique va-
lide pour tester l’assertion que le monde est de nature algorithmique,
plutôt qu’aléatoire.

– On a réussi à classer de manière automatique, grâce à l’utilisation des
méthodes de compression et donc de l’approximation de leur complexité
algorithmique, plusieurs évolutions de systèmes abstraits de calcul, en
particulier des automates cellulaires. On a prouvé que cette classifica-
tion cöıncide avec la classification des quatre comportements identifiés
par Wolfram. On a défini un coefficient de transition qui mesure la sta-
bilité des systèmes aux conditions initiales et qui permet de mesurer
l’homogénéité d’un système par rapport au changement des entrées et
donc, d’une certaine façon, sa manière de transmettre l’information.
On en a tiré une conjecture intéressante qui fait un rapport entre la
magnitude du coefficient défini et la capacité d’un système de calcul à
se comporter de manière universelle, c’est-à-dire simuler n’importe quel
autre système.

– On a trouvé et mis en place une application concrète de la profondeur
logique de Bennett pour classer des images par leur complexité orga-
nisée. La méthode a réussi à classer les objets conformément à l’intui-
tion, en donnant les bases techniques pour appliquer les méthodes dans
d’autres contextes. On présente aussi les différences pratiques entre la
mesure de la complexité algorithmique pleine et la profondeur logique,
ce qui illustre leurs différents atouts. On envisage plusieurs applica-
tions dans plusieurs domaines, en particulier la biologie, pour détecter
automatiquement la complexité d’un objet à travers une image.

– On a étudié le rapport et les échanges entre différents types de res-
sources, en particulier ceux liés à la taille d’un programme (donc sa
complexité algorithmique) et le temps de calcul pris pour calculer
certaines fonctions mathématiques. On a trouvé des comportements
intéressants et on a étudié tout l’espace des petites machines de Turing,
ainsi que toutes les fonctions (et les temps de calcul) qu’elles calculent.

– On a exploré et ouvert un chemin pour chercher si l’écart par rapport
à la distribution d’une série équiprobable, prévisible par la probabi-
lité algorithmique, peut rendre compte des déviations des marchés fi-
nanciers par rapport à une distribution log-normale, connue pour ne
pas être suivie par les données des marchés. L’étude des distributions
de fréquences et l’application de probabilités algorithmiques peuvent
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constituer un outil pour estimer et aider à comprendre le processus
d’assimilation de l’information dans les marchés, rendant possible la
caractérisation du contenu informationnel des prix.

– On a calculé et fournit des tables de fréquences de suites binaires qui
donnent des évaluations numériques de la complexité algorithmique (et
de la profondeur logique de Bennett) en utilisant le problème du Cas-
tor affairé pour résoudre le problème de l’arrêt pour des machines de
Turing à 4 états. À travers m, la semi-mesure de Levin aussi appelée
distribution universelle, on a calculé numériquement la complexité al-
gorithmique de suites assez courtes.

– On a appliqué la théorie algorithmique de l’information pour montrer
que la décroissance de la courbe de la base de données d’entiers de
Sloane est le résultat d’un phénomène dû à la complexité algorithmique,
et on explique le nuage par un phénomène social qui favorise certaines
suites.

Les chapitres de cette thèse ont été publiés ou ont été soumis à des
revues à comités de lecture.

Voici la liste par ordre chronologique :

– J.-P. Delahaye et H. Zenil, “On the Kolmogorov-Chaitin complexity
for short sequences’, dans Randomness and Complexity : From Leibniz
to Chaitin, edité par Cristian S. Calude (University of Auckland, New
Zealand), World Scientific, 2007.

– H. Zenil, “Compression-based investigation of the dynamical proper-
ties of cellular automata and other systems,” publié par le journal of
Complex Systems, 14 : 2, 2010.

– J. Joosten, F. Soler et H. Zenil, “Program-size versus Time Complexity,
Slowdown and Speed-up phenomena in Small Turing Machines”, publié
dans proceedings 3rd. International workshop on Physics and Compu-
tation 2010, International Journal of Unconventional Computing, 2011.

– F. Soler-Toscano, J. Joosten et H. Zenil, “Complejidad descriptiva y
computacional en máquinas de Turing pequeñas” (traduction espagnole
de l’article précédent), Actas de las V Jornadas Ibéricas, Logica Uni-
versal e Unidade da Ciência, CFCUL, 2010.

– H. Zenil, J.-P. Delahaye et C. Gaucherel, “Information content charac-
terization and classification of images by physical complexity,” soumis
à Complexity, 2011.

– H. Zenil et J-P. Delahaye, On the Algorithmic Nature of the World’, in
Mark Burgin, Gordana Dodig-Crnkovic (eds), “Information and Com-
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putation,” World Scientific, 2011.
– H. Zenil et J.-P. Delahaye, “An algorithmic information-theoretic ap-
proach to the behaviour of financial markets,” themed issue on Nonli-
nearity, Complexity and Randomness, publié par Journal of Economic
Surveys, 2011.

– J-P. Delahaye et H. Zenil, “Numerical Evaluation of Algorithmic Com-
plexity for Short Strings : A Glance into the Innermost Structure of
Randomness”, soumis à Applied Mathematics and Computation .

– J.-P. Delahaye, N. Gauvrit et H. Zenil, “Sloane’s Gap : Do Mathema-
tical and Social Factors Explain the Distribution of Numbers in the
OEIS ?” soumis au Journal of Integer Sequences. Version frana̧ise pu-
bliée sous le titre “Le fossé de Sloane” publiée par Mathématiques et
Sciences Humaines - Mathematics and Social Sciences, 2011.

On a aussi présenté ce travail dans plusieurs congrès et ateliers.

Voici la liste du plus récent au plus ancien :

– Workshop Physics and Computation 2010. Luxor, Égypte, Septembre
2010.

– Workshop on Nonlinearity, Complexity and Randomness 2009,
Département d’économie de l’Université de Trento, Italie. Décembre
2009.

– Séminaire ECCO, Université Libre de Belgique. Bruxelles, Belgique,
Novembre 2009.

– Amphithéâtre Kurt Gödel, Université des Sciences et Technologies de
Lille, LIFL, France, Septembre 2008.

– Grande Salle, Séminaire Philmat, Institut d’Histoire et de Philosophie
des Sciences, IHPST, Paris 1, Paris, France. Décembre 2008.

– Summer School on Randomness, Math department, University of Flo-
rida, USA. May 2008.

– NKS Science Conference, University of Vermont, Burlington, USA.
July 2007.

Avertissement

Le fil directeur des chapitres de cette thèse de recherche est une ques-
tion fondatrice et pragmatique. Il s’agit d’une approche expérimentale de la
théorie algorithmique de la complexité, d’un côté pour approcher des valeurs
numériques, et ensuite donner des évaluations exactes pour un formalisme
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fixé. D’un autre côté, il s’agit d’une réflexion par rapport aux connexions
entre le monde physique (en particulier les processus et phénomènes natu-
rels et sociaux dont nous essayons de donner une explication théorique) et la
théorie algorithmique de l’information.

J’espère, à travers ces quelques pages, avoir donné envie au lecteur
de poursuivre la lecture du reste de la thèse, composée de chapitres
indépendants.
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Deuxième partie

Fondements

37





Chapitre 2

On the Kolmogorov-Chaitin
Complexity for Short
Sequences

Long abstract (with the very first ideas of this thesis) published
in J-P. Delahaye and H. Zenil, “On the Kolmogorov-Chaitin
Complexity for Short Sequences”, in C.S. Calude (ed.), Ran-
domness and Complexity: From Leibniz to Chaitin, World
Scientific, 2007.

Among the several new ideas and contributions made by Gregory Chaitin
to mathematics is his strong belief that mathematicians should transcend
the millenary theorem-proof paradigm in favor of a quasi-empirical method
based on current and unprecedented access to computational resources[3].
In accordance with that dictum, we present in this paper an experimental
approach for defining and measuring the Kolmogorov-Chaitin complexity, a
problem which is known to be quite challenging for short sequences–shorter
for example than typical compiler lengths.

The Kolmogorov-Chaitin complexity (or algorithmic complexity) of a
string s is defined as the length of its shortest description p on a univer-
sal Turing machine U , formally K(s) = min{lp| : U(p) = s}. The major
drawback of K, as measure, is its uncomputability. So in practical applica-
tions it must always be approximated by compression algorithms. A string
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is uncompressible if its shorter description is the original string itself. If a
string is uncompressible it is said that the string is random since no patterns
were found. Among the 2n different strings of length n, it is easy to deduce
by a combinatoric argument that one of them will be completely random
simply because there will be no enough shorter strings so most of them will
have a maximal K complexity. Therefore many of them will remain equal
or very close to their original size after the compression. Most of them will
be therefore random. An important property of K is that it is nearly inde-
pendent of the choice of U . However, when the strings are short in length,
the dependence of K on a particular universal Turing machine U is higher
producing arbitrary results. In this paper we will suggest an empirical ap-
proach to overcome this difficulty and to obtain a stable definition of the K
complexity for short sequences.

Using Turing’s model of universal computation, Ray Solomonoff[9, 10]
and Leonid Levin[7] developed a theory about a universal prior distribution
deeply related to the K complexity. This work was later known under sev-
eral titles: universal distribution, algorithmic probability, universal inference,
among others[6, 5]. This algorithmic probability is the probability m(s) that
a universal Turing machine U produces the string s when provided with an
arbitrary input tape. m(s) can be used as a universal sequence predictor
that outperforms (in a certain sense) all other predictors[5]. It is easy to
see that this distribution is strongly related to the K complexity and that
once m(s) is determined so is K(s) since the formula m(s) can be written in
terms of K as follows m(s) ≈ 1/2K(s). The distribution of m(s) predicts that
non-random looking strings will appear much more often as the result of a
uniform random process, which in our experiment is equivalent to running
all possible Turing machines and cellular automata of certain small classes
according to an acceptable enumeration. By these means, we claim that it
might be possible to overcome the problem of defining and measuring the
K complexity of short sequences. Our proposal consists of measuring the K
complexity by reconstructing it from scratch basically approximating the al-
gorithmic probability of strings to approximate the K complexity. Particular
simple strings are produced with higher probability (i.e. more often produced
by the process we will describe below) than particular complex strings, so
they have lower complexity.

Our experiment proceeded as follows: We took the Turing machine (TM)
and cellular automata enumerations defined by Stephen Wolfram[11]. We let
run (a) all 2-state, 2-symbol Turing machines, and (b) a statistical sample
of the 3-state, 2-symbol ones, both henceforth denoted as TM(2, 2) and
TM(3, 2).
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Then we examine the frequency distribution of these machines’ outputs
performing experiments modifying several parameters: the number of steps,
the length of strings, pseudo-random vs. regular inputs, and the sampling
sizes.

For (a) it turns out that there are 4096 different Turing machines accord-
ing to the formula (2sk)sk derived from the traditional 5− tuplet description
of a Turing machine: d(s{1,2}, k{1,2}) → (s{1,2}, k{1,2}, {1,−1}) where s{1,2}
are the two possible states, k{1,2} are the two possible symbols and the last
entry {1,-1} denotes the movement of the head either to the right or to the
left. From the same formula it follows that for (b) there are 2985984 so
we proceeded by statistical methods taking representative samples of size
5000, 10000, 20000 and 100000 Turing machines uniformly distributed over
TM(3, 2). We then let them run 30, 100 and 500 steps each and we pro-
ceeded to feed each one with (1) a (pseudo) random (one per TM) input and
(2) with a regular input.

We proceeded in the same fashion for all one dimensional binary cellular
automata (CA), those (1) which their rule depends only on the left and right
neighbors and those considering two left and one right neighbor, henceforth
denoted by CA(t, c) 1 where t and c are the neighbor cells in question, to
the left and to the right respectively. These CA were fed with a single 1
surrounded by 0s. There are 256 one dimensional nearest-neighbor cellular
automata or CA(1, 1), also called Elementary Cellular Automata[11]) and
65536 CA(2, 1).

To determine the output of the Turing machines we look at the string
consisting of all parts of the tape reached by the head. We then partition
the output in substrings of length k. For instance, if k = 3 and the Turing
machine head reached positions 1, 2, 3, 4 and 5 and the tape contains the
symbols {0,0,0,1,1} then we increment the counter of the substrings 000, 001,
011 by one each one. Similar for CA using the “light cone” of all positions
reachable from the initial 1 in the time run. Then we perform the above for
(1) each different TM and (2) each different CA, giving two distributions
over strings of a given length k.

We then looked at the frequency distribution of the outputs of both classes
TM and CA 2, (including ECA) performing experiments modifying several

1. A better notation is the 3−tuplet CA(t, c, j) with j indicating the number of symbols,
but because we are only considering 2−symbol cellular automata we can take it for granted
and avoid that complication.

2. Both enumeration schemes are implemented in Mathematica calling the functions
CelullarAutomaton and TuringMachine, the latter implemented in Mathematica ver. 6.0
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parameters: the number of steps, the length of strings, (pseudo) random vs.
regular inputs, and the sampling sizes.

An important result is that the frequency distribution was very stable
under the several variations described above allowing to define a natural
distribution m(s) particularly for the top it. We claim that the bottom
of the distribution, and therefore all of it, will tend to stabilize by taking
bigger samples. By analyzing the following diagram it can be deduced
that the output frequency distribution of each of the independent systems
of computation (TM and CA) follow an output frequency distribution.
We conjecture that these systems of computation and others of equivalent
computational power converge toward a single distribution when bigger
samples are taken by allowing a greater number of steps and/or bigger classes
containing more and increasingly sophisticated computational devices. Such
distributions should then match the value of m(s) and therefore K(s) by
means of the convergence of what we call their experimental counterparts
me(s) and Ke(s). If our method succeeds as we claim it could be possible to
give a stable definition of the K complexity for short sequences independent
of any constant.

By instance, the strings 0101 and 1010 were grouped in second place,
therefore they are the second most complex group after the group composed
by the strings of a sequence of zeros or ones but before all the other 2n strings.
And that is what one would expect since it has a very low K complexity as
prefix of a highly compressible string 0101 . . .. In favor of our claims about the
nature of these distributions as following m(s) and then approaching K(s),
notice that all strings were correctly grouped with their equivalent category of
complexity under the three possible operations/symmetries preserving their
K complexity, namely reversion (sy), complementation (co) and composition
of the two (syco). This also supports our claim that our procedure is working
correctly since it groups all strings by their complexity class. The fact that
the method groups all the strings by their complexity category allowed us to
apply a well-known lemma used in group theory to enumerate actual different
cases, which let us present a single representative string for each complexity
category. So instead of presenting a distribution with 1024 strings of length
10 it allows us to compress it to 272 strings.

We have also found that the frequency distribution from several real-world
data sources also approximates the same distribution, suggesting that they
probably come from the same kind of computation, supporting contemporary
claims about nature as performing computations[11, 8]. The paper available
online contains more detailed results for strings of length k = 4, 5, 6, 10 as well
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Figure 2.1: The above diagram shows the convergence of the frequency dis-
tributions of the outputs of TM and ECA for k = 4. Matching strings
are linked by a line. As one can observe, in spite of certain crossings, TM
and ECA are strongly correlated and both successfully group equivalent out-
put strings. By taking the six groups–marked with brackets–the distribution
frequencies only differ by one.
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as two metrics for measuring the convergence of TM(2, 2) and ECA(1, 1) and
the real-world data frequency distributions extracted from several sources 3.
A paper with mathematical formulations and further precise conjectures is
currently in preparation.
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Chapitre 3

A Glance into the Structure of
Algorithmic Randomness

From J.-P. Delahaye and H. Zenil, Numerical Evaluation of
Algorithmic Complexity for Short Strings: A Glance Into the
Innermost Structure of Randomness, 2011.

3.1 Introduction

We describe a method that combines several theoretical and experimental
results to numerically approximate the algorithmic (Kolmogorov-Chaitin)
complexity of all

∑8
n=1 2

n bit strings up to 8 bits long, and for some between
9 and 16 bits long. This is done by an exhaustive execution of all (4n +
2)2n deterministic 2-symbol Turing machines with up to n = 4 states for
which the halting times are known thanks to the Busy Beaver problem. An
output frequency distribution is then computed, from which the algorithmic
probability is calculated and the algorithmic complexity evaluated by way of
the (Levin-Chaitin) coding theorem.

The algorithmic complexity of a bit string is defined as the length of
the shortest binary computer program that prints out the string (hence also
called program-size complexity). However, no general, finite and determin-
istic procedure exists to calculate algorithmic complexity. For a given string
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there are infinite many programs producing it. The most common approach
to calculate the algorithmic complexity of a string is the use of compression
algorithms exploiting the regularities of the string and producing shorter
compressed versions. Compression algorithms have been used over the years,
with the Lempel-Ziv algorithm[12] being one of the most prominent exam-
ples. The result of a compressed version of a string is an upper bound of the
algorithmic complexity (denoted by C(s)) of the string s.

In practice, it is a known problem that one cannot compress short strings,
shorter, for example, than the length in bits of the compression program
which is added to the compressed version of s, making the result (the pro-
gram producing s) sensitive to the compressor choice and the parameters
involved. However, short strings are quite often the kind of data encoun-
tered in many practical settings. While compressors’ asymptotic behavior
guarantees the eventual convergence to C(s) thanks to the invariance theo-
rem (to be enunciated later), measurements differ considerably in the domain
of short strings. A few attempts to deal with this problem have been reported
before[22]. The conclusion is that estimators are always challenged by short
strings.

Attempts to compute the uncomputable are always challenging, see for
example [20, 1, 19] and more recently [7] and [8]. This often requires com-
bining theoretical and experimental results. In this paper we describe a
method to compute the algorithmic complexity (hereafter denoted by C(s))
of (short) bit strings by running a set of (relatively) large number of Tur-
ing machines for which the halting runtimes are known thanks to the Busy
Beaver problem[20]. The method describes a way to find the shortest pro-
gram given a standard formalism of Turing machines, executing all machines
from the shortest (in number of states) to a certain (small) size one by one
recording how many of them produce a string and then using a theoretical re-
sult linking this string frequency with the algorithmic complexity of a string
that we use to approximate C(s).

The approach we adopt here is different and independent of the machine
size (small machines are used only because they allow us to calculate all of
them up to a small size) and relies only on the concept of algorithmic proba-
bility. The exhaustive approach is in the lines of Wolfram’s paradigm[24] con-
sisting of exploring the space of simple programs by way of computer experi-
ments. The result is a novel approach that we put forward for numerically cal-
culate the complexity of short strings as an alternative to the indirect method
using compression algorithms. The procedure makes use of a combination
of results from related areas of computation, such as the concept of halt-
ing probability[3], the Busy Beaver problem[20], algorithmic probability[21],
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Levin’s semi-measure and Levin-Chaitin’s coding theorem[13].

This approach, never attempted before to the authors’ knowledge, con-
sists in the thorough execution of all 4-state, 2-symbol Turing machines (the
exact model is described in 3.3) which, upon halting, generate a set of out-
put strings from which a frequency distribution is calculated to obtain the
algorithmic probability of a string to be the result of a halting machine. The
algorithmic complexity of a string is then evaluated from the algorithmic
probability using Levin-Chaitin’s coding theorem.

The paper is structured as follows. In section 3.2 it is introduced the var-
ious theoretical concepts and experimental results utilized in the experiment,
providing essential definitions and referring the reader to the relevant papers
and textbooks. Section 3.3 introduces the definition of our empirical proba-
bility distribution D. In 5.3 we present the methodology for calculating D.
In 5.4 we calculate D and provide numerical values of the algorithmic com-
plexity for short strings (the probability distribution produced by all 4-state
2-symbol Turing machines) by way of the theory presented in 3.2, particu-
larly the Levin-Chaitin coding theorem. Finally, in 8.9 we summarize, discuss
possible applications, and suggest potential directions for further research.

3.2 Preliminaries

3.2.1 The Halting problem and Chaitin’s Ω

The Halting problem for Turing machines is the problem of deciding
whether an arbitrary Turing machine T eventually halts on an arbitrary
input s. One can ask whether there is a Turing machine U which, given
code(T ) and the input s, eventually stops and produces 1 if T (s) halts, and
0 if T (s) does not halt. Turing’s result[23] proves that there is no such U . A
Cantor diagonalization argument[23] shows that the set of all such functions
is not enumerable, whereas the set of all Turing machines is enumerable.
Therefore, there are functions that are noncomputable.

Halting computations can be recognized by simply running them for the
time they take to halt. The problem is to detect non-halting programs, about
which one cannot know if the program will run forever or will eventually halt.

An elegant and concise representation of the halting problem is Chaitin’s
irrational number Ω[3], defined as the halting probability of a universal
computer programmed by coin tossing. Formally,
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Definition 1. 0 < Ω =
∑

p halts 2
−|p| < 1 with |p| the size of p in bits.

Ω is the halting probability of a universal (prefix-free 1) Turing machine
running a random program 2. From now on only plain complexity will be
used in this paper, unless explicitly stated otherwise.

In contrast with the mathematical constant π, for which, given enough
time, one can in principle compute any number of digits of its binary ex-
pansion, for an Ω number one cannot compute more than a finite number of
digits. The numerical value of Ω = ΩU depends on the choice of universal
Turing machine U . There are, for example, Ω numbers for which no digit can
be computed[3]. For a Ω number it matters only whether a program halts or
not; the time at which a halting program stops and the output upon halting
is irrelevant.

A program that halts will eventually halt and its contribution to Ω can
be recorded. Knowing the first n bits of Ω allows to determine whether a
program of length ≤ n bits halts by simply running all programs in parallel
until the sum exceeds Ωn. All programs with length ≤ n not halting yet
will not halt. Using these results, Calude and Stay[6] have shown that most
programs either stop “quickly” or never halt because the halting runtime (and
therefore the length of the output upon halting) is ultimately bounded by its
program-size complexity. The results herein connect theory with experiments
by providing empirical values of halting times and string length frequencies.

3.2.2 Algorithmic (program-size) complexity

The algorithmic complexity CU(s) of a string s with respect to a
universal Turing machine U , measured in bits, is defined as the length
in bits of the shortest Turing machine U that produces the string s and
halts[21, 11, 13, 3]. Formally,

Definition 2. CU(s) = min{|p|, U(p) = s} where |p| is the length of p
measured in bits.

1. A set of programs A is prefix-free if there are no two programs p1 and p2 such that
p2 is a proper extension of p1. Kraft’s inequality[?] guarantees that for any prefix-free set
A,

∑

x∈A 2−|x| ≤ 1.
2. The differences and compatibilities between plain and prefix-free complexity are

studied in detail in basic texts such as [?, 16].
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This complexity measure clearly seems to depend on U , and one may
ask whether there exists a Turing machine which yields different values of
C(s). The answer is that there is no such Turing machine which can be used
to decide whether a short description of a string is the shortest (for formal
proofs see [?, 16]).

The ability of universal machines to efficiently simulate each other
implies a corresponding degree of robustness. The invariance theorem[21]
states that if CU(s) and CU ′(s) are the shortest programs generating s using
the universal Turing machines U and U ′ respectively, their difference will be
bounded by an additive constant independent of s. Formally:

Theorem (invariance[21]) 1. |CU(s)− CU ′(s)| ≤ c
U,U′

It is easy to see that the underlying concept is that, since both U and U ′

are universal Turing machines, one can always write a general translator (a
compiler) between U and U ′ such that one can run either Turing machine
and get one or another complexity value, simply adding the constant length
of the translator to the result.

Algorithmic complexity formalizes the concept of simplicity versus com-
plexity. It opposes what is simple to what is complex or random. Chaitin
proves, for example, that his Ω numbers are algorithmically random. Unlike
a simple string, a random one is hard to describe and only long programs, of
about the original string length, can produce it.

A major drawback of C as a function taking s to the length of the shortest
program producing s, is its non-computability proven by reduction to the
halting problem. In other words, there is no program which takes a string s
as input and produces the integer C(s) as output.

3.2.3 Algorithmic probability

Deeply connected to Chaitin’s halting probability Ω, is Solomonoff’s con-
cept of algorithmic probability, independently proposed and further formal-
ized by Levin’s[13] semi-measure herein denoted by m(s).

Unlike Chaitin’s Ω, it is not only whether a program halts or not that
matters for the concept of algorithmic probability; the output and halting
time of a halting Turing machine are also relevant in this case.

Levin’s semi-measure m(s) is the probability of producing a string s
with a random program p when running on a universal prefix-free Turing
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machine U . Formally,

Definition 3. m(s) =
∑

p:U(p)=s 2
−|p|

In other words, m(s) is the sum over all the programs for which the (prefix-
free) universal Turing machine U outputs the string s and halts, when pro-
vided with a sequence of fair coin flip inputs as a program p. Levins prob-
ability measure induces a distribution over programs producing s, assigning
to the shortest program the highest probability and smaller probabilities to
longer programs. m(s) indicates that a string s is likely to be produced by
the shortest program producing s.

m is related to algorithmic complexity in that m(s) is at least the
maximum term in the summation of programs given that the shortest
program has the greater weight in the addition. So by calculating m(s), one
can obtain C(s).

Theorem (coding theorem[5]) 2. − log2m(s) = C(s) + O(1)

The coding theorem states that the shortest description of a given bi-
nary string is the negative logarithm of its algorithmic probability up to an
additive constant.

Nevertheless, m(s) as a function of s is, like C(s) and Chaitin’s Ω, non-
computable due to the halting problem 3.

Levin’s semi-measurem(s) formalizes the concept of Occams razor, that
is, the principle that favors selecting the hypothesis (the generating program)
that makes the fewest assumptions (the shortest) when the set of competing
hypotheses (all programs producing the same output) are equal in all other
respects.

3.2.4 The Busy Beaver problem

Notation: We denote by (n,2) the class (or space) of all n-state 2-symbol
Turing machines (with the halting state not included among the n states).

3. An important property of m as semi-measure is that it dominates any other effective
semi-measure µ because there is a constant cµ such that, for all s m(s) ≥ cµµ(s). For this
reason m(s) is often called a universal distribution[10].
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Definition 4.[20] If σT is the number of 1s on the tape of a Turing machine
T upon halting, then:

∑
(n) = max {σT : T ∈ (n, 2) T (n) halts}.

Definition 5.[20] If tT is the number of steps that a machine T takes upon
halting, then S(n) = max {tT : T ∈ (n, 2) T (n) halts}.

∑
(n) and S(n) as defined in 4 and 5 are noncomputable by reduction to

the halting problem. Yet values are known for (n,2) with n ≤ 4. The solution
for (n,2) with n < 3 is trivial, the process leading to the solution in (3,2)
is discussed by Lin and Rado[17], and the process leading to the solution in
(4,2) is discussed in [1].

A program showing the evolution of all known Busy Beaver machines de-
veloped by one of this paper’s authors is available online[27]. The formalism
followed in this paper is exactly the same as the one originally described and
followed for the Busy Beaver problem as introduced by Rado[20] .

Solving the halting problem for small machines

The halting problem and the halting probability problem are closely re-
lated to the Busy Beaver problem in that a solution to any one of them would
yield a solution to each of the others.

It is easy to see that
∑

(1) = 1 and
∑

(2) = 4. Lin and Rado[17] proved
∑

(3) = 6 and [1]
∑

(4) = 13. The exact known values for S are S(1) = 1,
S(2) = 6, S(3) = 21, S(4) = 107. These Busy Beaver values are for 2-symbol
Turing machines.

3.3 The empirical distribution D

Definition 6. Consider a Turing machine with the binary alphabet
Σ = {0, 1} and n states {1, 2, . . . n} and an additional Halt state denoted by
0 (just as defined in Rado’s original Busy Beaver paper[20]).

The machine runs on a 2-way unbounded tape. At each step:

1. the machine’s current “state” (instruction); and

2. the tape symbol the machine’s head is scanning

define each of the following:
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1. a unique symbol to write (the machine can overwrite a 1 on a 0, a 0 on
a 1, a 1 on a 1, and a 0 on a 0);

2. a direction to move in: −1 (left), 1 (right) or 0 (none, when halting);
and

3. a state to transition into (may be the same as the one it was in).

The machine halts if and when it reaches the special halt state 0.

Since the domain of the program has size 2n and the target space has
size 4n + 2, we can easily count the number of Turing machines. There are
(4n + 2)2n Turing machines with n states and 2 symbols according to the
formalism described above.

No transition starting from the halting state exists, and the blank symbol
is one of the 2 symbols (0 or 1) in the first run, while the other is used in
the second run (in order to avoid any asymmetries due to the choice of a
single blank symbol). In other words, we run each machine twice, one with
0 as the blank symbol (the symbol with which the tape starts out and is
filled with), and an additional run with 1 as the blank symbol 4.

Definition 7. D(n) = the function that assigns to every finite bit string s
the quotient (number of times that a machine (n,2) produces s) / (number
of machines in (n,2)).

The output string is taken from the number of contiguous cells on the
tape the head of the halting n-state machine has gone through. A machine
produces a string upon halting.

Examples of D(n) for n = 1, n = 2:

D(1) = 0 → 0.5; 1 → 0.5
D(2) = 0 → 0.328; 1 → 0.328; 00 → .0834 . . .

D(n) is the probability distribution of the strings produced by all 2-
symbol halting Turing machines with n states. Tables 1, 2 and 3 in 5.4 show

4. Due to the symmetry of the computation, there is no real need to run each machine
twice; one can complete the string frequencies assuming that each string produced its
reversed and complemented version with the same frequency, and then group and divide
by symmetric groups. A more detailed explanation of how this is done is in [2].
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the full results for D(1), D(2) and D(3), and Table 4 the top ranking ofD(4).

Theorem 3. D(n) is not computable.

Proof (by contradiction to reduction to the busy beaver
problem) Suppose that n → D(n) is computable. Let n be a given integer.
Let D(n) be computed. By definition D(n) is the function that assigns to
every finite bit string s the quotient (number of times that a machine (n,2)
produces s upon halting) / (number of machines in (n,2)). To calculate D
we use the values of the Busy Beaver function S(n). Turing machines that
run more than S(n) steps will therefore never halt. Computing D(n) for any
n would therefore mean that the Busy Beaver functions S(n) and Σ(n) can
be known for any n providing a method to calculate Rado’s Busy Beaver
functions. Which is a contradiction with the non-computability of Rado’s
Busy Beaver functions.

Exact values can be, however, calculated for small Turing machines up
to n = 4 states thanks to the Busy Beaver values of S(n) for n < 5. For
example, for n = 4, S(4) = 107, so 107 is the maximum runtime we have to
run each machine in (4,2) in order to get the all the outputs.

For each Busy Beaver candidate with n > 4 states, a sample of Turing
machines running up to the candidate S(n) is possible. As for Rado’s Busy
Beaver functions

∑
(n) and S(n), D is also approachable from above. For

larger n sampling methods asymptotically converging to D(n) can be used
to approximate D(n). In 5.4 we provide exact values of D(n) for n < 5 for
which the Busy Beaver functions are known.

Another common property between D(n) and Rado’s Busy Beaver func-
tions is that D(4) is well-defined in the sense that the calculation of the digits
of D(n) are fully determined as is in the decimal expansion of the mathe-
matical constant π, but the calculation of D(n) rapidly becomes impractical
to determine for even a slightly larger number of states.

3.4 Methodology

The approach for evaluating the complexity C(s) of a string s presented
herein is limited by (1) the halting problem and (2) computing time con-
straints. Restriction (1) was overcome because the values of the Busy Beaver
problem provided the halting times for all (4,2) Turing machines that started
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with a blank tape. Restriction (2) represented a challenge in terms of com-
puting time and programming skills. It is also the same restriction that has
kept others from attempting to solve the Busy Beaver problem for a greater
number of states. Constraint (2) and the knowledge of the values of the
Busy Beaver function permitted us to systematically study machines up to
4 states. We were able to compute up to about 1.3775 × 109 machines per
day or 15 943 per second, taking us about 9 days 5 to run all (4,2) Turing
machines each up to the number of steps bounded by the Busy Beaver values.

Our quest is similar in several respects to the Busy Beaver problem or
the calculation of the digits of Chaitin’s Ω number. The main underlying
difficulty in analyzing thoroughly a given class of machines is their uncom-
putability. Just as it is done for solving small values of the Busy Beaver
problem, we rely on the experimental approach to analyze and describe a
computable fraction of the uncomputable. A similar quest for the calcu-
lation of the digits of a Chaitin’s Ω number was undertaken by Calude et
al.[7], but unlike Chaitin’s Ω, the calculation of D(n) does not depend on
the enumeration of Turing machines. In D(n), however, one obtains different
probabilities for the same string for each n, but the relative order seems to
be preserved. In fact, every (2, n) machine contributing to D(n) is included
in D(n+ 1) simply because every machine rule in (2, n) is in (2, n+ 1).

3.4.1 Numerical calculation of D

We consider the space (n,2) of Turing machines with 0 < n < 5. The
halting “history” and output probability followed by their respective run-
times, presented in Tables 1, 2 and 3, show the times at which the programs
in the domain of M halt, the frequency of the strings produced, and the time
at which they halted after writing down the output string on their tape.

We provide exact values for n = {2, 3, 4} in the Results 5.4. We derive
D(n) for n < 5 from counting the number of n-strings produced by all (n,2)
Turing machines upon halting. We define D to be an empirical universal
distribution in Levin’s sense, and calculate the algorithmic complexity C of
a string s in terms of D using the coding theorem, from which we won’t

5. Running on a single computer on a MacBook Intel Core Duo at 1.83Ghz, 2Gb.
of memory and a solid state hard drive, using the TuringMachine[] function available in
Mathematica 8 for n < 4 and a C++ program for n = 4. Since for n = 4 there were
2.56×108 machines involved, running on both 0 and 1 as blank, further optimizations were
required. The use of a bignum library and an actual enumeration of the machines rather
than producing the rules beforehand (which would have meant overloading the memory
even before the actual calculation) was necessary.
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escape to an additive constant introduced by the application of the coding
theorem, but the additive constant is common to all values and therefore
should not impact the relative order. One has to bear in mind, however, that
the tables in section 5.4 should be read as dependent of this last-step additive
constant because using the coding theorem as an approximation method fixes
a prefix-free UTM via that constant, but according to the choices we make
this seems to be the most natural way to do so as an alternative to other
indirect numerical methods.

We calculated the 72, 20 000, 15 059 072 and 22 039 921 152 two-way tape
Turing machines started with a tape filled with 0s and 1s for D(2), D(3) and
D(4) 6. The number of Turing machines to calculate grows exponentially
with the number of states. For D(5) there are 53 119 845 582 848 machines
to calculate, which makes the task as difficult as finding the Busy Beaver
values for

∑
(5) and S(5), Busy Beaver values which are currently unknown

but for which the best candidate may be S(5) = 47 176 870 which makes the
exploration of (5,2) quite a challenge.

Although several ideas exploiting symmetries to reduce the total number
of Turing machines have been proposed and used for finding Busy Beaver
candidates[1, 18, 9] in large spaces such as n ≥ 5, to preserve the struc-
ture of the data we couldn’t apply all of them. This is because, unlike the
Busy Beaver challenge, in which only the maximum values are important,
the construction of a probability distribution requires every output to be
equally considered. Some reduction techniques were, however, utilized, such
as running only one-direction rules with a tape only filled with 0s and then
completing the strings by reversion and complementation to avoid running
every machine a second time with a tape filled with 1s. For an explanation
of how we counted the number of symmetries to recuperate the outputs of
the machines that were skipped see [2].

6. We ran the experiment on several computers and cores in parallel, which allowed us
to shorten the time by about a fourth of that calculated in a single processor. The space
occupied by the machine outputs was 77.06 GB (of which only 38.53 GB was actually
necessary by taking advantage of machine rule symmetries that could be later compensated
without having to run them).
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3.5 Results

3.5.1 Algorithmic probability tables

D(1) is trivial. (1,2) Turing machines produce only two strings, with the
same number of machines producing each. The Busy Beaver values for n = 1
are

∑
(1) = 1 and S(1) = 1. That is, all machines that halt do so after 1

step, and print at most one symbol.

Table 3.1: Complete D(1) from 24 (1,2)-Turing machines that halt out of a
total of 64.

0 → 0.5
1 → 0.5

The Busy Beaver values for n = 2 are
∑

(1) = 4 and S(1) = 6. D(2)
is quite simple but starts to display some basic structure, such as a clear
correlation between string length and occurrence, following what may be an
exponential decrease:

P (|s| = 1) = 0.657
P (|s| = 2) = 0.333
P (|s| = 3) = 0.0065
P (|s| = 4) = 0.0026

Among the various facts one can draw from D(2), there are:

– The relative string order in D(1) is preserved in D(2).

– A fraction of 1/3 of the total machines halt while the remaining 2/3
do not. That is, 24 among 72 (running each machine twice with tape
filled with 1 and 0 as explained before).

– The longest string produced by D(2) is of length 4.

– D(2) does not produce all
∑4

1 2
n = 30 strings shorter than 5, only 22.

The missing strings are 0001, 0101 and 0011 never produced, hence
neither were their complements and reversions: 0111, 1000, 1110, 1010
and 1100.

Given the number of machines to run, D(3) constitutes the first non
trivial probability distribution to calculate. The Busy Beaver values for
n = 3 are

∑
(3) = 6 and S(3) = 14.
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Table 3.2: Complete D(2) (22 bit-strings) from 6 088 (2,2)-Turing machines
that halt out of 20 000. Each string is followed by its probability (from the
number of times produced), sorted from highest to lowest.

0 → .328 010 → .00065
1 → .328 101 → .00065
00 → .0834 111 → .00065
01 → .0834 0000 → .00032
10 → .0834 0010 → .00032
11 → .0834 0100 → .00032
001 → .00098 0110 → .00032
011 → .00098 1001 → .00032
100 → .00098 1011 → .00032
110 → .00098 1101 → .00032
000 → .00065 1111 → .00032

Among the various facts for D(3):

– There are 4 294 368 machines that halt among the 15 059 072 in (3,2).
That is a fraction of 0.2851.

– The longest string produced in (3,2) is of length 7.

– D(3) has not all
∑7

1 2
n = 254 strings shorter than 7 but 128 only, half

of all the possible strings up to that length.

– D(3) preserves the string order of D(2).

D(3) ratifies the tendency of classifying strings by length with exponen-
tially decreasing values. The distribution comes sorted by length blocks from
which one cannot easily say whether those at the bottom are more random-
looking than those in the middle, but one can definitely say that the ones at
the top, both for the entire distribution and by length block, are intuitively
the simplest. Both 0k and its reversed 1k for n ≤ 8 are always at the top of
each block, with 0 and 1 at the top of them all. There is a single exception
in which strings were not sorted by length, this is the string group 0101010
and 1010101 that are found four places further away from their length block,
which we take as a second indication of a complexity classification becoming
more visible since these 2 strings correspond to what one would intuitively
consider less random-looking because they are easily described as the repe-
tition of two bits.

D(4) with 22 039 921 152 machines to run was the first true challenge,
both in terms of programming specification and computational resources.
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Table 3.3: Complete D(3) (128 bit-strings) produced by all the 15 059 072
(3,2)-halting Turing machines.

0 → 0.250 11110 → 0.0000470 100101 → 1.43×10−6

1 → 0.250 00100 → 0.0000456 101001 → 1.43×10−6

00 → 0.101 11011 → 0.0000456 000011 → 9.313×10−7

01 → 0.101 01010 → 0.0000419 000110 → 9.313×10−7

10 → 0.101 10101 → 0.0000419 001100 → 9.313×10−7

11 → 0.101 01001 → 0.0000391 001101 → 9.313×10−7

000 → 0.0112 01101 → 0.0000391 001111 → 9.313×10−7

111 → 0.0112 10010 → 0.0000391 010001 → 9.313×10−7

001 → 0.0108 10110 → 0.0000391 010010 → 9.313×10−7

011 → 0.0108 01110 → 0.0000289 010011 → 9.313×10−7

100 → 0.0108 10001 → 0.0000289 011000 → 9.313×10−7

110 → 0.0108 00101 → 0.0000233 011101 → 9.313×10−7

010 → 0.00997 01011 → 0.0000233 011110 → 9.313×10−7

101 → 0.00997 10100 → 0.0000233 100001 → 9.313×10−7

0000 → 0.000968 11010 → 0.0000233 100010 → 9.313×10−7

1111 → 0.000968 00011 → 0.0000219 100111 → 9.313×10−7

0010 → 0.000699 00111 → 0.0000219 101100 → 9.313×10−7

0100 → 0.000699 11000 → 0.0000219 101101 → 9.313×10−7

1011 → 0.000699 11100 → 0.0000219 101110 → 9.313×10−7

1101 → 0.000699 000000 → 3.733×10−6 110000 → 9.313×10−7

0101 → 0.000651 111111 → 3.733×10−6 110010 → 9.313×10−7

1010 → 0.000651 000001 → 2.793×10−6 110011 → 9.313×10−7

0001 → 0.000527 011111 → 2.793×10−6 111001 → 9.313×10−7

0111 → 0.000527 100000 → 2.793×10−6 111100 → 9.313×10−7

1000 → 0.000527 111110 → 2.793×10−6 0101010 → 9.313×10−7

1110 → 0.000527 000100 → 2.333×10−6 1010101 → 9.313×10−7

0110 → 0.000510 001000 → 2.333×10−6 001110 → 4.663×10−7

1001 → 0.000510 110111 → 2.333×10−6 011100 → 4.663×10−7

0011 → 0.000321 111011 → 2.333×10−6 100011 → 4.663×10−7

1100 → 0.000321 000010 → 1.863×10−6 110001 → 4.663×10−7

00000 → 0.0000969 001001 → 1.863×10−6 0000010 → 4.663×10−7

11111 → 0.0000969 001010 → 1.863×10−6 0000110 → 4.663×10−7

00110 → 0.0000512 010000 → 1.863×10−6 0100000 → 4.663×10−7

01100 → 0.0000512 010100 → 1.863×10−6 0101110 → 4.663×10−7

10011 → 0.0000512 011011 → 1.863×10−6 0110000 → 4.663×10−7

11001 → 0.0000512 100100 → 1.863×10−6 0111010 → 4.663×10−7

00010 → 0.0000489 101011 → 1.863×10−6 1000101 → 4.663×10−7

01000 → 0.0000489 101111 → 1.863×10−6 1001111 → 4.663×10−7

10111 → 0.0000489 110101 → 1.863×10−6 1010001 → 4.663×10−7

11101 → 0.0000489 110110 → 1.863×10−6 1011111 → 4.663×10−7

00001 → 0.0000470 111101 → 1.863×10−6 1111001 → 4.663×10−7

01111 → 0.0000470 010110 → 1.43×10−6 1111101 → 4.663×10−7

10000 → 0.0000470 011010 → 1.43×10−6
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The Busy Beaver values for n = 4 are
∑

(3) = 13 and S(n) = 107.
Evidently every machine in (n,2) for n ≤ 4 is in (4,2) because a rule in (n,2)
with n ≤ 4 is a rule in (4,2) in which a part of it is never used and halts,
which is guaranteed to exist because the computation is exhaustive over (4,2).

Among the various facts from these results:

– There are 5 970 768 960 machines that halt among the 22 039 921 152 in
(4,2). That is a fraction of 0.27.

– A total number of 1824 strings were produced in (4,2).

– The longest string produced is of length 16 (only 8 among all the 216

possible were generated).

– The Busy Beaver machines (writing more 1s than any other and halt-
ing) found in (4,2) had very low probability among all the halting
machines: pr(11111111111101) = 2.01× 10−9. Because of the reverted
string (10111111111111), the total probability of finding a Busy Beaver
in (4,2) is therefore 4.02× 10−9 only (or twice that number if the com-
plemented string with the maximum number of 0s is taken).

– The longest strings in (4,2) were in the string group formed
by: 1101010 101010101, 1101010100010101, 1010101010101011 and
1010100010101011, each with 5.4447×10−10 probability, i.e. an even
smaller probability than for the Busy Beavers, and therefore the most
random in the classification.

– (4,2) produces all strings up to length 8, then the number of strings
larger than 8 decreases. The following are the number of strings by
length |{s : |s| = l}| generated and represented in D(4) from a total of
1 824 different strings. From i = 1, . . . , 15 the values l of |{s : |s| = n}|
are 2, 4, 8, 16, 32, 64, 128, 256, 486, 410, 252, 112, 46, 8, and 0, which
indicated all 2l strings where generated for n ≤ 8.

– While the probability of producing a string with an odd number of 1s is
the same than the probability of producing a string with an even num-
ber of 1s (and therefore the same for 0s), the probability of producing
a string of odd length is .559 and .441 for even length.

– As in D(3), where we report that one string group (0101010 and its
reversion), in D(4) 399 strings climbed to the top and were not sorted
among their length groups.

– In D(4) string length was no longer a determinant for string positions.
For example, between positions 780 and 790, string lengths are: 11, 10,
10, 11, 9, 10, 9, 9, 9, 10 and 9 bits.

– D(4) preserves the string order of D(3) except in 17 places out of 128
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Table 3.4: The top 129 strings from D(4) with highest probability from a
total of 1832 different produced strings.

0 → 0.205 01101 → 0.000145 110111 → 0.0000138
1 → 0.205 10010 → 0.000145 111011 → 0.0000138
00 → 0.102 10110 → 0.000145 001001 → 0.0000117
01 → 0.102 01010 → 0.000137 011011 → 0.0000117
10 → 0.102 10101 → 0.000137 100100 → 0.0000117
11 → 0.102 00110 → 0.000127 110110 → 0.0000117
000 → 0.0188 01100 → 0.000127 010001 → 0.0000109
111 → 0.0188 10011 → 0.000127 011101 → 0.0000109
001 → 0.0180 11001 → 0.000127 100010 → 0.0000109
011 → 0.0180 00101 → 0.000124 101110 → 0.0000109
100 → 0.0180 01011 → 0.000124 000011 → 0.0000108
110 → 0.0180 10100 → 0.000124 001111 → 0.0000108
010 → 0.0171 11010 → 0.000124 110000 → 0.0000108
101 → 0.0171 00011 → 0.000108 111100 → 0.0000108
0000 → 0.00250 00111 → 0.000108 000110 → 0.0000107
1111 → 0.00250 11000 → 0.000108 011000 → 0.0000107
0001 → 0.00193 11100 → 0.000108 100111 → 0.0000107
0111 → 0.00193 01110 → 0.0000928 111001 → 0.0000107
1000 → 0.00193 10001 → 0.0000928 001101 → 0.0000101
1110 → 0.00193 000000 → 0.0000351 010011 → 0.0000101
0101 → 0.00191 111111 → 0.0000351 101100 → 0.0000101
1010 → 0.00191 000001 → 0.0000195 110010 → 0.0000101
0010 → 0.00190 011111 → 0.0000195 001100 → 9.943×10−6

0100 → 0.00190 100000 → 0.0000195 110011 → 9.943×10−6

1011 → 0.00190 111110 → 0.0000195 011110 → 9.633×10−6

1101 → 0.00190 000010 → 0.0000184 100001 → 9.633×10−6

0110 → 0.00163 010000 → 0.0000184 011001 → 9.3×10−6

1001 → 0.00163 101111 → 0.0000184 100110 → 9.3×10−6

0011 → 0.00161 111101 → 0.0000184 000101 → 8.753×10−6

1100 → 0.00161 010010 → 0.0000160 010111 → 8.753×10−6

00000 → 0.000282 101101 → 0.0000160 101000 → 8.753×10−6

11111 → 0.000282 010101 → 0.0000150 111010 → 8.753×10−6

00001 → 0.000171 101010 → 0.0000150 001110 → 7.863×10−6

01111 → 0.000171 010110 → 0.0000142 011100 → 7.863×10−6

10000 → 0.000171 011010 → 0.0000142 100011 → 7.863×10−6

11110 → 0.000171 100101 → 0.0000142 110001 → 7.863×10−6

00010 → 0.000166 101001 → 0.0000142 001011 → 6.523×10−6

01000 → 0.000166 001010 → 0.0000141 110100 → 6.523×10−6

10111 → 0.000166 010100 → 0.0000141 000111 → 6.243×10−6

11101 → 0.000166 101011 → 0.0000141 111000 → 6.243×10−6

00100 → 0.000151 110101 → 0.0000141 0000000 → 3.723×10−6

11011 → 0.000151 000100 → 0.0000138 1111111 → 3.723×10−6

01001 → 0.000145 001000 → 0.0000138 0101010 → 2.393×10−6
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strings in D(3) ordered from highest to lowest string frequency. The
maximum rank distance among the farthest two differing elements in
D(3) andD(4) was 20, with an average of 11.23 among the 17 misplaced
cases and a standard deviation of about 5 places. The Spearman’s rank
correlation coefficient between the two rankings had a critical value of
0.98, meaning that the order of the 128 elements in D(3) compared to
their order in D(4) were in an interval confidence of high significance
with almost null probability to have produced by chance.

Table 3.5: Probabilities of finding n 1s (or 0s) in (4, 2).

number
n of 1s pr(n)

1 0.472
2 0.167
3 0.0279
4 0.00352
5 0.000407
6 0.0000508
7 6.5×10−6

8 1.31×10−6

9 2.25×10−7

10 3.62×10−8

11 1.61×10−8

12 1.00×10−8

13 4.02×10−9

Same length string distribution

The following are the top 10 string groups (i.e. with their reverted
and complemented counterparts) in D(4) appearing sooner than expected
and getting away from their length blocks. That is, their lengths were
greater than the next string in the classification order): 11111111, 11110111,
000000000, 111111111, 000010000, 111101111, 111111110, 010101010,
101010101, 000101010. This means these string groups had greater algo-
rithmic probability and therefore less algorithmic complexity than shorter
strings.

Table 8 displays some statistical information of the distribution. The
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Table 3.6: String groups formed by reversion and complementation followed
by the total machines producing them.

string group occurrences
0, 1 1224440064

01, 10 611436144
00, 11 611436144

001, 011, 100, 110 215534184
000, 111 112069020
010, 101 102247932

0001, 0111, 1000, 1110 23008080
0010, 0100, 1011, 1101 22675896

0000, 1111 14917104
0101, 1010 11425392
0110, 1001 9712752
0011, 1100 9628728

00001, 01111, 10000, 11110 2042268
00010, 01000, 10111, 11101 1984536
01001, 01101, 10010, 10110 1726704

00000, 11111 1683888
00110, 01100, 10011, 11001 1512888
00101, 01011, 10100, 11010 1478244
00011, 00111, 11000, 11100 1288908

00100, 11011 900768
01010, 10101 819924
01110, 10001 554304

000001, 011111, 100000, 111110 233064
000010, 010000, 101111, 111101 219552

000000, 111111 209436
010110, 011010, 100101, 101001 169896
001010, 010100, 101011, 110101 167964
000100, 001000, 110111, 111011 164520
001001, 011011, 100100, 110110 140280
010001, 011101, 100010, 101110 129972
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Table 3.7: The probability of producing a string of length l exponentially
decreases as l linearly increases. The slowdown in the rate of decrease for
string length l > 8 is due to the few longer strings produced in (4,2).

length n pr(n)
1 0.410
2 0.410
3 0.144
4 0.0306
5 0.00469
6 0.000818
7 0.000110
8 0.0000226
9 4.69×10−6

10 1.42×10−6

11 4.9×10−7

12 1.69×10−7

Figure 3.1: (4,2) frequency distribution by string length.
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Figure 3.2: Probability density function of bit strings of length l = 8 from
(4, 2). The histogram (left) shows the probabilities to fall within a particular
region. The cumulative version (right) shows how well the distribution fits
a Pareto distribution (dashed) with location parameter k = 10. The reader
may see but a single curve, that is because the lines overlap. D(4) (and the
sub-distributions it contains) is therefore log-normal.

distribution is skewed to the right, the mass of the distribution is therefore
concentrated on the left with a long right tail, as shown in Figure 2.

Table 3.8: Statistical values of the empirical distribution function D(4) for
strings of length l = 8.

value
mean 0.00391
median 0.00280
variance 0.0000136
kurtosis 23
skewness 3.6

3.5.2 Derivation and calculation of algorithmic com-
plexity

Algorithmic complexity values are calculated from the output probability
distribution D(4) through the application of the coding theorem.

The largest complexity value max {C(s) : s ∈ D(4)} = 29 bits. The out-
put strings (11111111111101 and 10111111111111) produced by the Busy
Beavers in (4,2) were close to the maximal complexity in this space for the
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Table 3.9: Top 180 strings from D(4) sorted from lowest to highest algorith-
mic complexity.

0→2.29 10110→12.76 100100→16.38 0100000→19.10
1→2.29 01010→12.83 110110→16.38 1011111→19.10
00→3.29 10101→12.83 010001→16.49 1111101→19.10
01→3.29 00110→12.95 011101→16.49 0000100→19.38
10→3.29 01100→12.95 100010→16.49 0010000→19.38
11→3.29 10011→12.95 101110→16.49 1101111→19.38
000→5.74 11001→12.95 000011→16.49 1111011→19.38
111→5.74 00101→12.98 001111→16.49 0001000→19.45
001→5.79 01011→12.98 110000→16.49 1110111→19.45
011→5.79 10100→12.98 111100→16.49 0000110→19.64
100→5.79 11010→12.98 000110→16.52 0110000→19.64
110→5.79 00011→13.18 011000→16.52 1001111→19.64
010→5.87 00111→13.18 100111→16.52 1111001→19.64
101→5.87 11000→13.18 111001→16.52 0101110→19.68
0000→8.64 11100→13.18 001101→16.59 0111010→19.68
1111→8.64 01110→13.39 010011→16.59 1000101→19.68
0001→9.02 10001→13.39 101100→16.59 1010001→19.68
0111→9.02 000000→14.80 110010→16.59 0010001→20.04
1000→9.02 111111→14.80 001100→16.62 0111011→20.04
1110→9.02 000001→15.64 110011→16.62 1000100→20.04
0101→9.03 011111→15.64 011110→16.66 1101110→20.04
1010→9.03 100000→15.64 100001→16.66 0001001→20.09
0010→9.04 111110→15.64 011001→16.76 0110111→20.09
0100→9.04 000010→15.73 100110→16.76 1001000→20.09
1011→9.04 010000→15.73 000101→16.80 1110110→20.09
1101→9.04 101111→15.73 010111→16.80 0010010→20.11
0110→9.26 111101→15.73 101000→16.80 0100100→20.11
1001→9.26 010010→15.93 111010→16.80 1011011→20.11
0011→9.28 101101→15.93 001110→16.96 1101101→20.11
1100→9.28 010101→16.02 011100→16.96 0010101→20.15

00000→11.79 101010→16.02 100011→16.96 0101011→20.15
11111→11.79 010110→16.10 110001→16.96 1010100→20.15
00001→12.51 011010→16.10 001011→17.23 1101010→20.15
01111→12.51 100101→16.10 110100→17.23 0100101→20.16
10000→12.51 101001→16.10 000111→17.29 0101101→20.16
11110→12.51 001010→16.12 111000→17.29 1010010→20.16
00010→12.55 010100→16.12 0000000→18.03 1011010→20.16
01000→12.55 101011→16.12 1111111→18.03 0001010→20.22
10111→12.55 110101→16.12 0101010→18.68 0101000→20.22
11101→12.55 000100→16.15 1010101→18.68 1010111→20.22
00100→12.69 001000→16.15 0000001→18.92 1110101→20.22
11011→12.69 110111→16.15 0111111→18.92 0100001→20.26
01001→12.76 111011→16.15 1000000→18.92 0111101→20.26
01101→12.76 001001→16.38 1111110→18.92 1000010→20.26
10010→12.76 011011→16.38 0000010→19.10 1011110→20.26
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number of printed 1s among all the produced strings, with a program-size
complexity of 28 bits.

Figure 3.3: (4,2) output log-frequency plot, ordered from most to less fre-
quent string, the slope is clearly exponential.

Same length string complexity

The classification table 10 allows to make a comparison of the structure
of the strings related to their calculated complexity among all the strings of
the same length extracted from D(4).

Halting summary

Figure 3.4: Graphs showing the halting probabilities among (n,2), n < 5.
The list plot on the left shows the decreasing probability of the number of
halting Turing machines while the paired bar chart on the right allows a
visual comparison between both halting and non-halting machines side by
side.
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Table 3.10: Classification–from less to more random–for 7-bit strings ex-
tracted from D(4).

0000000→18.03 1001000→20.09 0101001→20.42 0000111→20.99
1111111→18.03 1110110→20.09 0110101→20.42 0001111→20.99
0101010→18.68 0010010→20.11 1001010→20.42 1110000→20.99
1010101→18.68 0100100→20.11 1010110→20.42 1111000→20.99
0000001→18.92 1011011→20.11 0001100→20.48 0011110→21.00
0111111→18.92 1101101→20.11 0011000→20.48 0111100→21.00
1000000→18.92 0010101→20.15 1100111→20.48 1000011→21.00
1111110→18.92 0101011→20.15 1110011→20.48 1100001→21.00
0000010→19.10 1010100→20.15 0110110→20.55 0111110→21.03
0100000→19.10 1101010→20.15 1001001→20.55 1000001→21.03
1011111→19.10 0100101→20.16 0011010→20.63 0011001→21.06
1111101→19.10 0101101→20.16 0101100→20.63 0110011→21.06
0000100→19.38 1010010→20.16 1010011→20.63 1001100→21.06
0010000→19.38 1011010→20.16 1100101→20.63 1100110→21.06
1101111→19.38 0001010→20.22 0100010→20.68 0001110→21.08
1111011→19.38 0101000→20.22 1011101→20.68 0111000→21.08
0001000→19.45 1010111→20.22 0100110→20.77 1000111→21.08
1110111→19.45 1110101→20.22 0110010→20.77 1110001→21.08
0000110→19.64 0100001→20.26 1001101→20.77 0010011→21.10
0110000→19.64 0111101→20.26 1011001→20.77 0011011→21.10
1001111→19.64 1000010→20.26 0010110→20.81 1100100→21.10
1111001→19.64 1011110→20.26 0110100→20.81 1101100→21.10
0101110→19.68 0000101→20.29 1001011→20.81 0110001→21.13
0111010→19.68 0101111→20.29 1101001→20.81 0111001→21.13
1000101→19.68 1010000→20.29 0001101→20.87 1000110→21.13
1010001→19.68 1111010→20.29 0100111→20.87 1001110→21.13
0010001→20.04 0000011→20.38 1011000→20.87 0011100→21.19
0111011→20.04 0011111→20.38 1110010→20.87 1100011→21.19
1000100→20.04 1100000→20.38 0011101→20.93 0001011→21.57
1101110→20.04 1111100→20.38 0100011→20.93 0010111→21.57
0001001→20.09 0010100→20.39 1011100→20.93 1101000→21.57
0110111→20.09 1101011→20.39 1100010→20.93 1110100→21.57
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In summary, among the (running over a tape filled with 0 only): 12,
3 044, 2 147 184 and 2 985 384 480 Turing machines in (n,2), n < 5, there
were 36, 10 000, 7 529 536 and 11 019 960 576 that halted, that is slightly
decreasing fractions of 0.333..., 0.3044, 0.2851 and 0.2709 respectively.

Full results can be found online at http://www.mathrix.org/experimentalAIT/

3.5.3 Runtimes investigation

Runtimes much longer than the lengths of their respective halting pro-
grams are rare and the empirical distribution approaches the a priori com-
putable probability distribution on all possible runtimes predicted in [?]. As
reported in [?] “long” runtimes are effectively rare. The longer it takes to
halt, the less likely it is to stop.

Figure 3.5: Runtimes distribution in (4,2).

Among the various miscellaneous facts from these results:

– All 1-bit strings were produced at t = 1.

– 2-bit strings were produced at all 2 < t < 14 times.

– t = 3 was the time at which the first 2 bit strings of different lengths
were produced (n = 2 and n = 3).

– Strings produced before 8 steps account for 49% of the strings produced
by all (4,2) halting machines.

– There were 496 string groups produced by (4,2), that is strings that
are not symmetric under reversion or complementation.

– There is a relation between t and n; no n-bit string is produced before
t < n. This is obvious because a machine needs at least t steps to print
t symbols.

– At every time t there was at least one string of length n for 1 < n < t.
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Table 3.11: Probability that a n-bit string among all n < 10 bit strings is
produced at times t < 8.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
n=1 1.0 0 0 0 0 0 0 0
n=2 0 1.0 0.60 0.45 0.21 0.11 0.052 0.025
n=3 0 0 0.40 0.46 0.64 0.57 0.50 0.36
n=4 0 0 0 0.092 0.15 0.29 0.39 0.45
n=5 0 0 0 0 0 0.034 0.055 0.16
n=6 0 0 0 0 0 0 0 0.0098
n=7 0 0 0 0 0 0 0 0
n=8 0 0 0 0 0 0 0 0
n=9 0 0 0 0 0 0 0 0
n=10 0 0 0 0 0 0 0 0
Total 1 1 1 1 1 1 1 1

Table 3.12: Probability that a n-bit string with n < 10 is produced at time
t < 7.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 Total
n=1 0.20 0 0 0 0 0 0 0.20
n=2 0 0.14 0.046 0.016 0.0045 0.0012 0.00029 0.20
n=3 0 0 0.030 0.017 0.014 0.0063 0.0028 0.070
n=4 0 0 0 0.0034 0.0032 0.0031 0.0022 0.012
n=5 0 0 0 0 0 0.00037 0.00031 0.00069
n=6 0 0 0 0 0 0 0 0
n=7 0 0 0 0 0 0 0 0
n=8 0 0 0 0 0 0 0 0
n=9 0 0 0 0 0 0 0 0
n=10 0 0 0 0 0 0 0 0
Total 0.21 0.14 0.076 0.037 0.021 0.011 0.0057
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3.6 Discussion

Intuitively, one may be persuaded to assign a lower or higher algorithmic
complexity to some strings when looking at tables 9 and 10, because they
may seem simpler or more random than others of the same length. We think
that very short strings may appear to be more or less random but may be
as hard to produce as others of the same length, because Turing machines
producing them may require the same quantity of resources to print them
out and halt as they would with others of the same (very short) length.

For example, is 0101 more or less complex than 0011? Is 001 more or less
complex than 010? The string 010 may seem simpler than 001 to us because
we may picture it as part of a larger sequence of alternating bits, forgetting
that such is not the case and that 010 actually was the result of a machine
that produced it when entering into the halting state, using this extra state
to somehow delimit the length of the string. No satisfactory argument may
exist to say whether 010 is really more or less random than 001, other than
actually running the machines and looking at their objective ranking accord-
ing to the formalism and method described herein. The situation changes
for larger strings, when an alternating string may in effect strongly suggest
that it should be less random than other strings because a short description
is possible in terms of the simple alternation of bits. Some strings may also
assume their correct rank when the calculation is taken further, for example
if we were able to compute D(5).

On the other hand, it may seem odd that the program size complexity of
a string of length l is systematically larger than l when l can be produced
by a print function of length l+{the length of the print program}, and in-
deed one can interpret the results exactly in this way. The surplus can be
interpreted as a constant product of a print phenomenon which is particu-
larly significant for short strings. But since it is a constant, one can subtract
it from all the strings. For example, subtracting 1 from all values brings
the complexity results for the shortest strings to exactly their size, which
is what one would expect from the values for algorithmic complexity. On
the other hand, subtracting the constant preserves the relative order, even
if larger strings continue having algorithmic complexity values larger than
their lengths. What we provide herein, besides the numerical values, is a
hierarchical structure from which one can tell whether a string is of greater,
lesser or equal algorithmic complexity.

The print program assumes the implicit programming of the halting con-
figuration. In C language, for example, this is delimited by the semicolon.
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The fact then that a single bit string requires a 2 bit “program” may be inter-
preted as the additional information represented by the length of the string;
the fact that a string is of length n is not the result of an arbitrary deci-
sion but it is encoded in the producing machine. In other words, the string
not only carries the information of its n bits, but also of the delimitation
of its length. This is different to, for example, approaching the algorithmic
complexity by means of cellular automata–there being no encoded halting
state, one has to manually stop the computation upon producing a string of
a certain arbitrary length according to an arbitrary stopping time. This is a
research program that we have explored before[25] and that we may analyze
in further detail somewhere else.

It is important to point out that after the application of the coding the-
orem one often gets a non-integer value when calculating C(s) from m(s).
Even though when interpreted as the size in bits of the program produced
by a Turing machine it should be an integer value because the size of a pro-
gram can only be given in an integer number of bits. The non-integer values
are, however, useful to provide a finer structure providing information on the
exact places in which strings have been ranked.

An open question is how much of the relative string order (hence the rela-
tive algorithmic probability and the relative algorithmic complexity) of D(n)
will be preserved when calculating D(i) for larger Turing machine spaces such
that 0 < n < i. As reported here, D(n) preserves most of the string orders
of D(n − 1) for 1 < n < 5. While each space (n,2) contains all (n-1,2) ma-
chines, the exponential increase in number of machines when adding states
may easily produce strings such that the order of the previous distribution
is changed. What the results presented here show, however, is that each new
space of larger machines contributes in the same proportion to the number of
strings produced in the smaller spaces, in such a way that they preserve much
of the previous string order of the distributions of smaller spaces, as shown
by calculating the Spearman coefficient indicating a very strong ranking cor-
relation. In fact, some of the ranking variability between the distributions
of spaces of machines with different numbers of states occurred later in the
classification, likely due to the fact that the smaller spaces missed the pro-
duction of some strings. For example, the first rank difference between D(3)
and D(4) occurred in place 20, meaning that the string order in D(3) was
strictly preserved in D(4) up to the top 20 strings sorted from higher to lower
frequency. Moreover, one may ask whether the actual frequency values of the
strings converge.
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3.7 Concluding remarks

We have provided numerical tables with values of the algorithmic com-
plexity for short strings. On the one hand, the calculation of D(n) provides
an empirical and natural distribution that does not depend on an additive
constant and may be used in Bayesian contexts as a prior distribution. On
the other hand, it might turn out to have valuable applications, especially
because of the known issues explained in ?? related to the problem of ap-
proaching the complexity of short strings by means of compression algorithms
often failing for short strings. This direct approach by way of algorithmic
probability reduces the impact of the additive constant involved in the choice
of computing model (or programming language), shedding light on the be-
havior of small Turing machines and tangibly grasping the concept of the
algorithmic complexity of a string by exposing its structure on the basis of
a complexity ranking.

To our knowledge this is the first time that numerical values of algorith-
mic complexity are provided and tabulated. We wanted to provide a table of
values useful for several purposes, both to make conjectures about the con-
tinuation of the distribution–perhaps providing a statistical framework for
a statistical calculation of the algorithmic complexity for longer strings–as
well as to shed light on both the behavior of small Turing machines and the
use of empirical approaches for practical applications of algorithmic com-
plexity to the real-world. 7 The full tables are available online available at
http://www.mathrix.org/experimentalAIT/
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Chapitre 4

Compression-Based
Investigation of the Dynamical
Properties of Cellular
Automata and Other Systems

Published in H. Zenil, Compression-Based Investigation of the
Dynamical Properties of Cellular Automata and Other Systems,
Complex Systems, 19(1), pages 1-28, 2010.

4.1 Introduction

A method for studying the qualitative dynamical properties of abstract
computing machines based on the approximation of their program-size com-
plexity using a general lossless compression algorithm is presented. It is
shown that the compression-based approach classifies cellular automata into
clusters according to their heuristic behavior. These clusters show a cor-
respondence with Wolfram’s main classes of cellular automata behavior. A
Gray code-based numbering scheme is developed for distinguishing initial
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conditions. A compression-based method to estimate a characteristic expo-
nent for detecting phase transitions and measuring the resiliency or sensi-
tivity of a system to its initial conditions is also proposed. A conjecture
regarding the capability of a system to reach computational universality re-
lated to the values of this phase transition coefficient is formulated. These
ideas constitute a compression-based framework for investigating the dynam-
ical properties of cellular automata and other systems.

4.2 Preliminaries

Previous investigations of the dynamical properties of cellular automata
have involved compression in one form or another. In this paper, we take the
direct approach, experimentally studying the relationship between properties
of dynamics and their compression.

Cellular automata were first introduced by J. von Neumann [1] as a math-
ematical model for biological self-replication phenomena. They have since
played a basic role in understanding and explaining various complex physi-
cal, social, chemical, and biological phenomena. Using extensive computer
simulation S. Wolfram [2] classified cellular automata into four classes ac-
cording to the qualitative behavior of their evolution. This classification has
been further investigated and verified by G. Braga et al. [3], followed by
more detailed verifications and investigations of classes 1, 2, and 3 in [4, 5].

Other formal approaches to the problem of classifying cellular automata
have also been attempted, with some success. Of these, some are based on
the structure of attractors or other topological classifications [6, 7], others
use probabilistic approaches [8] or involve looking at whether a cellular au-
tomaton falls into some chaotic attractor or an undecidable class [9–11], while
yet others use the idea of approaching the algorithmic or program-size com-
plexity (K) of the rule table of a cellular automaton [12]. It has also been
shown that rules that in certain conditions belong to one class may belong to
another when starting from a different set up. This has been the case of rule
40, simple and therefore in class 1 when starting from a 0-finite configuration
but chaotic [13] when starting from certain random configurations.

Compression-based mathematical characterizations and techniques for
classifying and clustering have been suggested and successfully developed
in areas as diverse as languages, literature, genomics, music, and astron-
omy. A good introduction can be found in [14]. Compression is a powerful
tool for pattern recognition and has often been used for classification and
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clustering. Lempel–Ziv (LZ)-like data compressors have been proven to be
universally optimal and are therefore good candidates as approximators of
the program-size complexity of strings.

The program-size complexity [15] Ku(s) of a string s with respect to a
universal Turing machine U is defined as the binary length of the shortest
program p that produces as output the string s. Or, as a Mathematica
expression:

Ku(s) = {min(Length[p]), U(p) = s}

However, a drawback of K is that it is an uncomputable function. In gen-
eral, the only way to approach K is by compressibility methods. Essentially,
the program-size complexity of a string is the ultimate compressed version
of that string.

As an attempt to capture and systematically study the behavior of
abstract machines, our experimental approach consists of calculating the
program-size complexity of the output of the evolution of a cellular automa-
ton. This is done following methods of extended computation, enumerating,
and exhaustively running the systems as suggested in [2].

A cellular automaton is a collection of cells on a grid of specified shape
that evolves through a number of discrete time steps according to a set of
rules based on the states of neighboring cells. The rules are applied iteratively
for as many time steps as desired. The number of colors (or distinct states)
k of a cellular automaton is a non-negative integer. In addition to the grid
on which a cellular automaton lives and the colors its cells may assume,
the neighborhood over which cells affect one another must also be specified.
The simplest choice is a nearest-neighbor rule, in which only cells directly
adjacent to a given cell may be affected at each time step. The simplest type
of cellular automaton is then a binary, nearest-neighbor, one-dimensional
automaton (called elementary by Wolfram). There are 256 such automata,
each of which can be indexed by a unique binary number whose decimal
representation is known as the rule for the particular automaton.

Regardless of the apparent simplicity of their formal description, cellular
automata are capable of displaying a wide range of interesting and different
dynamical properties as thoroughly investigated by Wolfram in [2]. The
problem of classification is a central topic in cellular automata theory.

Wolfram identifies and classifies cellular automata (and other discrete
systems) as displaying these four different classes of behavior.

1. A fixed, homogeneous state is eventually reached (e.g., rules 0, 8, 136).
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2. A pattern consisting of separated periodic regions is produced (e.g.,
rules 4, 37, 56, 73).

3. A chaotic, aperiodic pattern is produced (e.g., rules 18, 45, 146).

4. Complex, localized structures are generated (e.g., rule 110).

4.3 Compression-based classification

The method consists of compressing the evolution of a cellular automaton
up to a certain number of steps. The Mathematica function Compress [16]
gives a compressed representation of an expression as a string. It uses a C
language implementation of a “deflate” compliant compressor and decom-
pressor available within the zlib package. The deflate lossless compression
algorithm, independent of CPU type, operating system, file system, and
character set compresses data using a combination of the LZ algorithm and
Huffman coding [17–19], with efficiency comparable to the best currently
available general-purpose compression methods as described in RFC 1951
[20] called the Lempel-Ziv-Welch (LZW) algorithm. The same algorithm is
the basis of the widely used gzip data compression software. Data compres-
sion is generally achieved through two steps:

– The matching and replacement of duplicate strings with pointers.
– Replacing symbols with new, weighted symbols based on frequency of
use.

4.3.1 Compression-based classification of elementary
cellular automata from simplest initial condi-

tions

The difference in length between the compressed and uncompressed forms
of the output of a cellular automaton is a good approximation of its program-
size complexity. In most cases, the length of the compressed form levels off,
indicating that the cellular automaton output is repetitive and can easily be
described. However, in cases like rules 30, 45, 110, or 73 the length of the
compressed form grows rapidly, corresponding to the apparent randomness
and lack of structure in the display.
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Classification parameters

There are two main parameters that play a role when classifying cellu-
lar automata: the initial configuration and the number of steps. Classifying
cellular automata can begin by starting all with a single black cell. Some of
them, such as rule 30, will immediately show their full richness in dynamical
terms, while others might produce very different behavior when starting with
another initial configuration. Both types might produce different classifica-
tions. We first explore the case of starting with a single black cell and then
proceed to consider the other case for detecting phase transitions.

An illustration of the evolution of rules 95, 82, 50, and 30 is shown in
Figure 1, together with the compressed and uncompressed lengths they pro-
duce, each starting from a single black cell moving through time (number of
steps).

As shown in Figure 1, the compressed lengths of simple cellular automata
do not approach the uncompressed lengths and stay flat or grow linearly,
while the length of the compressed form approaches the length of the un-
compressed form for rules such as 30.

Cellular automata can be classified by sorting their compressed lengths
as an approximation to their program-size complexity. In Figure 2, c is the
compressed length of the evolution of the cellular automaton up to the first
200 steps (although the pictures only show the first 60).

Early in 2007 I wrote a program using Mathematica to illustrate
the basic idea of the compressibility method for classifying cellular au-
tomata. The program (called a Demonstration) was submitted to the
Wolfram Demonstrations Project and published under the title “Cellu-
lar Automaton Compressibility” [21]. Later in 2007, inspired by this
Demonstration and under my mentorship, Joe Bolte from Wolfram Re-
search, Inc. developed a project under the title “Automatic Ranking
and Sorting of Cellular Automaton Complexity” at the NKS Sum-
mer School held at the University of Vermont (for more information see
http://www.wolframscience.com/summerschool/2007/participants/bolte.html).
In 2009, also under my mentorship, Chiara Basile from the University of
Bologna would further develop the project at the NKS Summer School held
at the ISTI-CNR in Pisa, Italy, under the title “Exploring CA Rule Spaces by
Means of Data Compression.” The project was enriched by Basile’s own prior
research, particularly on feeding the compression algorithm with sequences
following different directions (rows, columns, and space-filling curves), thus
helping speed up the pattern detection process (for more information see
http://www.wolframscience.com/summerschool/2009/participants/basile.html).
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Figure 4.1: Evolution of rules 95, 82, 50, and 30 together with the compressed
(dashed line) and uncompressed (solid line) lengths.
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Figure 4.2: Complete compression-based classification of the elementary cel-
lular automata (continues).

4.4 Compression-based clustering

4.4.1 2-clusters plot

By finding neighboring clusters of compressed lengths cellular automata
can be grouped by their program-size complexity. Treating pairs of elements
as being less similar when their distances are larger using an Euclidean dis-
tance function, a 2-clusters plot was able to separate cellular automata that
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Figure 4.3: (continued).

clearly fall into Wolfram’s classes 3 and 4 from the rest, dividing complex
and random-looking cellular automata from trivial and nested ones as shown
in Figures 3 through 5.
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Figure 4.4: (continued).

A second application of the clustering algorithm splits the original classes
3 and 4 into clusters linking automata by their qualitative properties as shown
in Figure 6.
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Figure 4.5: (continued).
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Figure 4.6: (continued).
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Figure 4.7: Partitioning elementary cellular automata into clusters by com-
pression length.

4.4.2 Compression-based classification of larger spaces
of cellular automata and other abstract machines

3-color nearest-neighbor cellular automata

By following the same technique, we were able to identify 3-color nearest-
neighbor cellular automata in classes 3 and 4 as shown in Figure 7.

2-state 3-color Turing machines

The exploration of Turing machines is considerably more difficult for three
main reasons.
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Figure 4.8: Elementary cellular automata clusters by compressibility.
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Figure 4.9: Elementary cellular automata classes 3 and 4.

1. The spaces of Turing machines for the shortest states and colors are
much larger than the shortest spaces of cellular automata.

2. Turing machines with nontrivial dynamical properties are very rare
compared to the size of the space defined by the number of states and
colors, and therefore larger samples are necessary.

3. Turing machines evolve much more slowly than cellular automata, so
longer runtimes are also necessary.
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Figure 4.10: (a) Breaking class 3 and 4 clusters. (b) Splitting classes 3 and
4 by nearest compression lengths.

3-color nearest-neighbor cellular automata compression-based search for class III and IV from a random sample
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Figure 4.11: 3-color nearest-neighbor cellular automata compression-based
search for classes 3 and 4 from a random sample.

The best compression-based results for identifying nontrivial Turing ma-
chines were obtained by applying the technique to the number of states a
Turing machine is able to reach after a certain number of steps rather than
to the output itself, unlike for cellular automata. The complexity of a Tur-
ing machine is deeply determined by the number of states the machine is

88



capable of reaching from an initial configuration, and by looking at its com-
plexity the technique distinguished the nontrivial machines from the most
trivial. Figure 8 shows a sample of Turing machines found by applying the
compression-based method.

4.5 Compression-based phase transition de-

tection

A phase transition can be defined as a discontinuous change in the dy-
namical behavior of a system when a parameter associated with the system,
such as its initial configuration, is varied.

It is conventional to distinguish two kinds of phase transitions, often
called first- and higher-order. As described in [2], one feature of first-order
transitions is that as soon as the transition is passed, the whole system
always switches completely from one state to the other. However, higher-
order transitions are gradual or recurrent. On one side of the transition a
system is typically completely ordered or disordered. But when the transition
is passed, the system does not change from then on to either one or another
state. Instead, its order increases or decreases more or less gradually or
recurrently as the parameter is varied. Typically the presence of order is
signaled by the breaking of some kind of symmetry; for example, two rules
explored in this section (rules 22 and 109) were found to be highly disturbed
with recurrent phase transitions due to a symmetry breaking when starting
with certain initial configurations.

4.5.1 Initial configuration numbering scheme

Ideally, one should feed a system with a natural sequence of initial config-
urations of gradually increasing complexity. Doing so assures that qualitative
changes in the evolution of the system are not attributable to discontinuities
in its set of initial conditions.

The reflected binary code, also known as the “Gros–Gray code” or sim-
ply the “Gray code” (after Louis Gros and Frank Gray), is a binary numeral
system where two successive values differ by only one bit. To explore the
qualitative behavior of a cellular automaton when starting from different
initial configurations, the optimal method is to follow a Gros–Gray encod-
ing enumeration in order to avoid any undesirable “jumps” attributable to
the system’s having been fed with discontinuous initial configurations. By
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Compression-based search for non-trivial 2-state 3-color Turing machines
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Figure 4.12: Compression-based search for nontrivial 2-state 3-color Turing
machines.

following the Gros–Gray code, an optimal numbering scheme was devised
so that two consecutive initial conditions differ only by the simplest change
(one bit).

GrosGrayCodeDerivate and GrosGrayCodeIntegrate implement the
methods described in [22].

GrosGrayCodeDerivate[n Integer]:=Prepend[Mod[#[[1]] + #[[2]], 2]&/@
Partition[#, 2, 1],#[[1]]]&@IntegerDigits[n, 2]

GrosGrayCodeIntegrate[l List]:=FromDigits[Mod[#, 2]&/@Accumulate[l], 2]

The function InitialConfiguration implements the optimal numbering
scheme of initial conditions for cellular automata based on the Gros–Gray
code, minimizing the Damerau–Levenshtein distance.

GrosGrayCodeIntegrate is the reverse function of

GrosGray
. . .CodeDerivate. It retrieves the element number of an element in

Gros–Gray’s code, that is, the composition of GrosGrayCodeDerivate and
GrosGrayCodeIntegrate is the identity function.

Table[GrosGrayCodeIntegrate[GrosGrayCodeDerivate[n]], {n, 0, 10}]

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The Damerau–Levenshtein distance between two vectors u and v gives the
number of one-element deletions, insertions, substitutions, and transpositions
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Figure 4.13: First 11 elements of the Gros–Gray code.

required to transform u into v. It can be verified that the distance between
any two adjacent elements in the Gros–Gray code is always 1.

DamerauLevenshteinDistance[#[[1]],#[[2]]]&/@
Partition[Table[GrosGrayCodeDerivate[n], {n, 0, 10}], 2, 1]

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

The simplest, not completely trivial, initial configuration of a cellular
automaton is the typical single black cell that can be denoted (as in Math-
ematica) by {{1}, 0}, meaning a single black cell (1) on a background of
whites (0). Preserving an “empty” background leaves the region that must
be varied consisting only of the nonwhite portion of the initial configura-
tion. However, when surrounded with zeroes, initial configurations may be
the same for cellular automata. For example, the initial configuration {0, 1,
0} is exactly the same as {1} because the cellular automaton background is
already filled with zeroes. Therefore, valid different initial configurations for
cellular automata should always be wrapped in 1s.

InitialCondition[n Integer]:=If[n===0, {Last[#]},#]&@
Append[GrosGrayCodeDerivate[n], 1]

InitialConditionNumber is the reverse function for retrieving the number
of an initial configuration given an initial configuration according to the
numbering scheme devised herein.

InitialConditionNumber[l List]:=
GrosGrayCodeIntegrate[Most[l]]

For example, the thirty-second initial condition is

Figure 4.14: InitialConditionNumber[InitialCondition[32]]
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32

An interesting example is the elementary cellular automaton rule 22,
which behaves as a fractal in Wolfram’s class 2 for some segment of initial
configurations, followed by phase transitions of more disordered evolutions
of the type of class 3.

4.5.2 Phase transitions

Two one-dimensional elementary cellular automata that show discrete
changes in behavior when the properties of their initial conditions are con-
tinuously changed are shown in Figures 11 and 12.

Data points are joined for clarity only. It can be seen that up to the
initial configuration number 20 there are clear spikes at initial configurations
8, 14, 17, and 20 indicating four abrupt phase transitions.

For clarity, the background of the evolution of rule 109 in Figure 12
was cleaned up. Clear phase transitions are detected at initial configuration
numbers 2, 3, 11, and 13, together with weaker behavior changes at initial
configuration numbers 15, 16, and 20 that only occur on one side of the
cellular automaton and therefore show spikes firing at half the length.

Comparison of the sequences of the compressed lengths of six different
elementary cellular automata following the initial configuration numbering
scheme up to the first 27 = 128 initial configurations up to 150 steps each is
shown in Figure 13.

The differences between the compressed versions provide information on
the changes in behavior up to a given number of steps of a system starting
from different initial conditions. The normalization divided by the number
of steps provides the necessary stability to keep the increase of complexity
on account of the increase of size due to longer runtimes out of the main
equation. In other words, the program-size complexity accumulated due to
longer runtimes is subtracted in time from the approximated program-size
complexity of the system itself.

The method given can also be used to precompute the initial configu-
rations of a cellular automaton space conducting the search for interesting
behaviors and speeding up the study of qualitative dynamical properties. For
example, interesting initial configurations to look at for rules 22 and 109 are
those detected in Figure 13 showing clear phase transitions.

One open question is whether there are first-order phase transitions (when
following a “natural” initial condition enumeration) in elementary cellular
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automata. Our method was only capable of detecting higher-order phase
transitions up to the steps and initial conditions explored herein.

Rule 22 evolution
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Figure 4.15: Rule 22 phase transition.

4.6 Compression-based numerical computa-

tion of a characteristic exponent

A fundamental property of chaotic behavior is the sensitivity to small
changes in the initial conditions. Lyapunov characteristic exponents quantify
this qualitative behavior by measuring the mean rate of divergence of initially
neighboring trajectories. A characteristic exponent as a measure usually has
the advantage of keeping systems with no significant phase transitions close
to a constant value, while those with significant phase transitions are dis-
tinguished by a linear growth that characterizes instability in the system.
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Rule 109 evolution
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Figure 4.16: Rule 109 phase transition.

Whether a system has a phase transition is an undecidable property of sys-
tems in general. However, the characteristic exponent is an effective method
of calculation, even with no prior knowledge of the generating function of the
system.

The technique described herein consists of comparing the mean of the di-
vergence in time of the compressed lengths of the output of a system running
over a sequence of small changes to the initial conditions over small intervals
of time. The procedure yields a sequence of values normalized by the run-
time and the derivative of the function that best fits the sequence. Just as
with Wolfram’s method described in [2] for the calculation of the Lyapunov
exponents of a cellular automaton, the divergence in time is measured by the
differences in space-time of the patterns produced by the system. But un-
like the calculation of Lyapunov exponents, this will be done by measuring
the distance between the compressed regions of the evolution of a cellular
automaton when starting from different initial configurations. After nor-
malization, we will be able to evaluate a stable characteristic exponent and
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Figure 4.17: Sequence of compressed lengths for six elementary cellular au-
tomata.

therefore characterize its degree of sensitivity.

We want to examine the relative behavior of region evolutions when start-
ing from adjacent initial configurations. Since the systems for which we are
introducing this method are discrete, the regular parameter separating the
initial conditions in a continuous system when calculating the Lyapunov ex-
ponent of a system can be replaced by the immediate successor of an initial
condition following an optimal enumeration like the one described in Section
4 based on the Gros–Gray code.

Let the characteristic exponent ctn be defined as the mean of the absolute
values of the differences of the compressed lengths of the outputs of the
system M running over the initial segment of initial conditions ij with j =
{1, . . . , n} following the numbering scheme devised earlier and running for t
steps, as follows:

95



ctn = |C(Mt(i1))−C(Mt(i2))|+···+|C(Mt(in−1))−C(Mt(in))|
t(n−1)

The division by t acts as a normalization parameter in order to keep the
runtime of the different values of ctn as independent as possible among the
systems. However, as already noted, normalization can also be achieved by
dividing by the “volume” of the region (the space-time diagram) generated
by a system (in the case of a one-dimensional cellular automaton the area,
i.e., the number of affected cells—usually the characteristic cone). The mean
of the absolute values can also be replaced by the maximum of the abso-
lute values in order to maximize the differences depending on the type of
dynamical features being intensified.

Let us define a phase transition sequence as the sequence of characteristic
exponents for a system M running for longer runtimes.

Sc f (Sc)
{3.0, 5.2, 7.5, 9.9, 12., 15., 17., 20., 22., 24., ...} 0.0916163+ 2.4603x
{2.6, 2.3, 3.6, 5.0, 6.7, 8.6, 9.6, 11., 12., 14., ...} −0.0956435+ 1.39588x
{1.5, 2.3, 3.2, 4.6, 5.8, 7.1, 8.7, 10., 11., 13., ...} −0.35579+ 1.28849x
{4.0, 6.3, 8.6, 11., 13., 15., 17., 20., 22., 24., ...} 1.48149+ 2.30786x
{2.5, 3.3, 4.4, 5.6, 6.6, 7.3, 7.5, 8.0, 8.7, 9.1, ...} 3.52132 + 0.492722x
{3.8, 4.3, 4.7, 5.0, 5.4, 5.6, 5.9, 6.4, 6.7, 7.2, ...} 3.86794 + 0.296409x
{2.4, 3.7, 4.6, 5.4, 5.7, 6.0, 6.2, 6.4, 6.6, 6.7, ...} 4.2508 + 0.184981x
{1.8, 1.8, 2.1, 2.8, 3.4, 3.8, 4.1, 4.4, 4.7, 4.8, ...} 1.83839 + 0.270672x
{1.9, 3.0, 2.8, 3.3, 3.7, 4.0, 4.4, 4.7, 4.9, 5.0, ...} 2.57937 + 0.207134x
{2.0, 3.1, 3.1, 3.7, 4.3, 4.6, 4.8, 5.1, 5.4, 5.4, ...} 2.89698 + 0.218607x

{0.61, 0.45, 0.38, 0.39, 0.28, 0.30, 0.24, 0.28, 0.35, 0.43, ...} 0.41144− 0.00298547x
{0.35, 0.31, 0.40, 0.42, 0.56, 0.62, 0.72, 0.90, 1.2, 1.4, ...} −0.751501+ 0.268561x
{0.48, 0.41, 0.29, 0.37, 0.42, 0.42, 0.47, 0.51, 0.52, 0.55, ...} 0.302027+ 0.0263495x

{0.087, 0.057, 0.038, 0.036, 0.027, 0.028, 0.024, 0.019, 0.017, 0.021, ...} 0.0527182− 0.0028416x

Table 1. Regression analysis.

The general rule for t = 200 and n = 40 is that if the characteristic
exponent ctn is greater than 1 for large enough values of n and t, then ctn has
a phase transition. Otherwise it does not. Table 1 shows the calculation of
the characteristic exponents of some elementary cellular automata.

4.6.1 Regression analysis

Let Sc = S (ctn) for a fixed n and t. The line that better fits the growth
of a sequence Sc can be found by calculating the linear combination that
minimizes the sum of the squares of the deviations of the elements. Let
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Figure 4.18: Regression analysis: fitting the point into a linear equation.

f (Sc) denote the line that fits the sequence Sc by finding the least-squares
as shown in Figure 15.

The derivatives of a phase transition function are therefore stable indi-
cators of the degree of the qualitative change in behavior of the systems.
The larger the derivative, the larger the significance. Let C denote the tran-
sition coefficient defined as C = f ′ (Sc). Table 2 illustrates the calculated
transition coefficients for a few elementary cellular automata rules.
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Figure 4.19: Phase characteristic exponent sequence s (ctn(M)).
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Interesting initial conditions

After calculating the transition coefficient, we can calculate the first 10
most interesting initial conditions for elementary cellular automata with tran-
sition coefficients greater than 1. Those listed in Table 3 were calculated up
to 600 steps in blocks of 50.

ECA Rule (r) C (ECAr)
22 2.5
151 2.3
109 1.4
73 1.3
133 0.49
183 0.30
54 0.27
110 0.27
97 0.22
41 0.21
147 0.18
45 0.026
1 −0.0028
30 −0.0030

Table 2. Phase transition coefficient.

ECA Rule Initial Configuration Number
151 {17, 18, 20, 22, 26, 34, 37, 41, 44, 46}
22 {8, 14, 17, 20, 23, 24, 26, 27, 28, 29}
73 {10, 12, 15, 16, 21, 24, 28, 30, 43, 45}
109 {2, 3, 11, 13, 20, 24, 26, 28, 32, 33}
133 {4, 6, 8, 10, 14, 16, 18, 19, 22, 25}
94 {10, 16, 20, 23, 24, 26, 28, 29, 30, 32}

Table 3. Elementary cellular automata that are the most
sensitive to initial configurations.

4.6.2 Phase transition classification

The coefficient C has positive values if the system is sensitive to the initial
configurations. The larger the positive values, the more sensitive the system
is to initial configurations. C has negative values or is close to 0 if it is
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highly homogeneous. Irregular behavior yields nonlinear growth, leading to
a positive exponent.

For elementary cellular automata, it was found that n = 40 and t = 200
were runtime values large enough to detect and distinguish cellular automata
having clear phase transitions. It is also the case that systems showing no
quick phase transition have an asymptotic probability 1 of having a transi-
tion at a later time. In other words, a system with a phase transition either
has the transition very early in time or is unlikely to ever have one later,
as can be theoretically predicted from an algorithmic theoretical argument.
(A phase transition is undecidable and can be seen as a reachability prob-
lem equivalent to the halting problem, hence a system powerful enough to
halt when reaching a phase transition, as calculated earlier, has an [effec-
tive] density zero[23].) The same transition coefficient can also be seen as
a homogeneity measure. At the right granular level, randomness shares in-
formational properties with trivial systems. Like a trivial system, a random
system is incapable of transmitting or carrying out information. The charac-
teristic exponent relates these two behaviors in an interesting way since the
granularity of a random system for a runtime large enough is close to the
dynamical state of being in a stable configuration according to this measure.
One can see that rule 110 is better classified, certainly because it has some
structure and is less homogeneous in time, unlike rule 30 and of course rule
1. Rule 30, like rule 1, changes its compressed output from one step to the
other at a lower rate or not at all. While the top of the classification and
the gap between them are more significant because they show a qualitative
change in their evolution, the bottom is classified by its lack of changes. In
other words, while rules like 22 and 151 exhibit more changes when starting
from different initial classifications, rules such as 30 and 1 always look alike.

The clusters formed (a different cluster per row) for a few selected cellular
automata rules starting from random initial conditions are shown in Figure
16.

The clusters shown in Figure 16 are clearly classifying this small selection
of cellular automata by the presence of phase transitions (sudden structures).
This is also a measure of homogeneity.

A measure of homogeneity for classifying elementary cellular automata
according to their transition coefficients can be calculated. The top 24 and
bottom 22 cellular automata up to 600 steps in blocks of 50 for the first 500
initial conditions followed by their transition coefficients sorted from larger
to smaller values are shown in Figures 17 and 18. The complete table of
transition coefficients is available at http://www.algorithmicnature.org.
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Found clusters using the phase transition coefficient over a sample of 14 ECA rules

rule 22 rule 151

rule 109 rule 73

rule 133 rule 183 rule 147

rule 41 rule 97 rule 54

rule 110 rule 45 rule 30 rule 1

Figure 4.20: Clusters found using the phase transition coefficient over a sam-
ple of 14 rules.

Since a random system would be expected to produce a homogeneous
stream with no distinguishable patterns as incapable of carrying or trans-
mitting any information, both the simplest and the random systems were
classified together at the end of the figure.

Conjecture relating universality and the phase transition coefficient

Based on this study, we conjecture that a system will be capable of uni-
versal computation if it has a large transition coefficient, at least larger than
zero, say. The inverse, however, should not hold, because having a large tran-
sition coefficient by no means implies that the system will behave with the
freedom required of a universal system if it is to emulate any possible com-
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Figure 4.21: Phase transition coefficient classification (bottom 22) of elemen-
tary cellular automata (picture displaying a random initial configuration).

Figure 4.22: Phase transition coefficient classification (bottom 20) of elemen-
tary cellular automata (picture displaying a random initial configuration).

putation (a case in point may be rule 22, which, despite having the largest
transition coefficient, may not be versatile enough for universal computation).
We base this conjecture on two facts:

The only known universal elementary cellular automata figure at the top
of this classification, and so do candidates such as rule 54 which figures right
next to rule 110.

Universality seems to imply that a system should be capable of being
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controlled by the inputs, which our classification suggests those at the bottom
are not, as all of them look the same no matter what the input, and may not
be capable of carrying information through the system toward the output.

The conjecture also seems to be in agreement with Wolfram’s claim that
rule 30 (as a class 3 elementary cellular automaton) may be, according to his
Principle of Computational Equivalence (PCE), computationally universal.
But it may turn out that it is too difficult (maybe impossible) to control in
order to perform a computation because it behaves too randomly.

It is worth mentioning that this method is capable of capturing many
of the subtle different behaviors a cellular automaton is capable of, which
are heuristically captured by Wolfram’s classes. The technique does not,
however, disprove Wolfram’s principle of irreducibility [2] because it is an a
posteriori method. In other words, it is only by running the system that the
method is capable of revealing the dynamical properties. This is no different
from a manual inspection in that regard. However, it is of value that the
method presented does identify a large range of qualitative properties without
user intervention that other techniques (a priori techniques), including several
analytical ones, generally seem to neglect.

4.7 Conclusion

We were able to clearly distinguish the different classes of behavior studied
by Wolfram. By calculating the compressed lengths of the output of cellular
automata using a general compression algorithm we found two clearly dis-
tinguishable main clusters and, upon closer inspection, two others with clear
gaps in between. That we found two main large clusters seems to support
Wolfram’s Principle of Computational Equivalence (PCE) [2], which suggests
that there is no essential distinction between the classes of systems showing
trivial and nested behavior and those showing random and complex behavior.
We have also provided a compression-based framework for phase transition
detection, and a method to calculate an exponent capable of identifying and
measuring the significance of other dynamical properties, such as sensitiv-
ity to initial conditions, presence of structures, and homogeneity in space
or regularity in time. We have also formulated a conjecture with regard to
a possible connection between its transition coefficient and the ability of a
system to reach computational universality. As can be seen from the experi-
ments presented in this paper, the compression-based approach and the tools
that have been proposed are highly effective for classifying, clustering, and
detecting several dynamical properties of abstract systems. Moreover, the
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method does not depend on the system and can be applied to any abstract
computing device or to data coming from any source whatsoever. It can also
be used to calculate prior distributions and make predictions regarding the
future evolution of a system.

Bibliography

[1] J. von Neumann, Theory of Self-Reproducing Automata, Urbana, IL:
University of Illinois Press, 1966.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[3] G. Braga, G. Cattaneo, P. Flocchini, and G. Mauri, “Complex Chaotic
Behavior of a Class of Subshift Cellular Automata,” Complex Systems,
7(4), 1993 pp. 269–296.

[4] G. Cattaneo and L. Margara, “Generalized Sub-Shifts in Elementary
Cellular Automata: The ‘Strange Case’ of Chaotic Rule 180,” Theoret-
ical Computer Science, 201(1–2), 1998 pp. 171–187.

[5] F. Ohi and Y. Takamatsu, “Time-Space Pattern and Periodic Property
of Elementary Cellular Automata—Sierpinski Gasket and Partially Sier-
pinski Gasket,” Japan Journal of Industrial and Applied Mathematics,
18(1), 2001 pp. 59–73.

[6] M. Hurley, “Attractors in Cellular Automata,” Ergodic Theory and
Dynamical Systems, 10(1), 1990 pp. 131–140.

[7] F. Blanchard, P. Kurka, and A. Maass, “Topological and Measure-
Theoretic Properties of One-Dimensional Cellular Automata,” Physica
D: Nonlinear Phenomena, 103(1–4), 1997 pp. 86–99.

[8] J. T. Baldwin and S. Shelah, “On the Classifiability of Cellular Au-
tomata,” Theoretical Computer Science, 230(1–2), 2000 pp. 117–129.

[9] G. Braga, G. Cattaneo, P. Flocchini, and C. Quaranta Vogliotti, “Pat-
tern Growth in Elementary Cellular Automata,” Theoretical Computer
Science, 145(1–2), 1995 pp. 1–26.

[10] K. Culik and S. Yu, “Undecidability of CA Classification Schemes,”
Complex Systems, 2(2) 1988 pp. 177–190.

[11] K. Sutner, “Cellular Automata and Intermediate Degrees,” Theoretical
Computer Science, 296(2), 2003 pp. 365–375.

[12] J.-C. Dubacq, B. Durand, and E. Formenti, “Kolmogorov Complexity
and Cellular Automata Classification,” Theoretical Computer Science,
259(1–2), 2001 pp. 271–285.

103



[13] F. Ohi, “Chaotic Properties of the Elementary Cellular Automaton Rule
40 in Wolfram’s Class I,” Complex Systems, 17(3), 2007 pp. 295–308.

[14] R. Cilibrasi and P. Vitanyi, “Clustering by Compression,” IEEE Trans-
actions on Information Theory, 51(4), 2005 pp. 1523–1545.

[15] G. J. Chaitin, Algorithmic Information Theory, 4th printing, Cam-
bridge: Cambridge University Press, 1992.

[16] “Compress” from Wolfram Mathematica Doc-
umentation Center—A Wolfram Web Resource.
http://reference.wolfram.com/mathematica/ref/Compress.html.

[17] J.-L. Gailly and M. Adler. “GZIP Documentation and Sources.” Avail-
able as gzip-*.tar. ftp://prep.ai.mit.edu/pub/gnu/gzip.

[18] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the Institute of Radio Engineers,
40(9), 1952 pp. 1098–1101.

[19] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Com-
pression,” IEEE Transactions on Information Theory, 23(3), 1977pp.
337–343.

[20] L. P. Deutsch. “DEFLATE Compressed Data Format Specification Ver-
sion 1.3.”(May 1996) http://www.rfc-editor.org/rfc/rfc1951.txt.

[21] H. Zenil. “Cellular Automaton Compressibility” from Wolfram Demon-
strations Project—A Wolfram Web Resource.
http://demonstrations.wolfram.com/CellularAutomatonCompressibility.

[22] J. P. Delahaye, “Voyageurs et baguenaudiers,” Pour La Science, 238,
1997 pp. 100–104.

[23] C. S. Calude and M. A. Stay, “Most Programs Stop Quickly or Never
Halt,” Advances in Applied Mathematics, 40(3), 2008 pp. 295–308.

104



Chapitre 5

Image Characterization and
Classification by Physical
Complexity

From H. Zenil, J-P Delahaye and C. Gaucherel, Image Charac-
terization and Classification by Physical Complexity.

5.1 Introduction

A method based on the theory of algorithmic information is presented,
particularly based on the concept of Bennett’s logical depth[1], to assess
and quantify the information content of an image, providing a means for
evaluating and classifying images by their organized complexity. Images have
a number of properties containing information in the form of pixels. As a
representation of an object, an image constitutes a description of the object
capturing some features.

Algorithmic information theory[15, 4] formalizes the concepts of simplic-
ity and randomness by means of information. Many applications of the the-
ory of algorithmic information have been developed to date, for example
[6, 12, 18, 19, 26, 27]. For a detailed survey see [17, 7]. None seems, however,
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to have exploited the concept of logical depth, which may provide another
useful complexity measure. Logical depth was originally identified with what
is usually believed to be the right measure for evaluating the complexity of
real-world objects such as living beings. Hence its alternative designation:
physical complexity (by Bennett himself). This is because the concept of log-
ical depth takes into account the plausible history of an object as an unfolding
phenomenon. It combines the concept of the shortest possible description of
an object with the time that it takes from the description to evolve to its cur-
rent state. Unlike the application of the concept of algorithmic complexity
by itself, the addition of logical depth results in a reasonable characterization
of the organizational (physical) complexity of an object, as will be elaborated
in the following sections.

The main hypothesis of this paper is that images can be used to determine
the physical complexity of an object (or a part of it)[11] at a specific scale
and level, or if preferred, to determine the complexity of the image containing
information about an object. And as such, they cannot all be presumed to
have the same history, but rather to span a wide and measurable spectrum
of evolutions leading to patterns with different complexities, ranging from
random-looking to highly organized. To test the applicability of the concept
of logical depth to a real-world problem, we first approximate the shortest
description of an image by way of current available lossless compression al-
gorithms, then the decompression times are estimated as an approximation
to the logical depth of the image. This allow us to assess a relative measure
and to produce a classification based in this measure.

The paper is organized as follows: In section 5.2 the theoretical back-
ground that will constitute the formal basis for the proposed method is in-
troduced. In Section 5.3 we describe the method and the battery of tests
to evaluate it. Finally, in section 5.4 we present the results followed by the
conclusions in 8.9.

5.2 Theoretical basis

5.2.1 Algorithmic complexity

The idea that information can be measured and described as a quantity
using bits as units was first introduced by Shannon[21]. In computer science,
objects can always be viewed as binary strings 1. Thus we will refer to objects

1. Strings of characters, just like computer programs can also always be translated,
with no loss of information, into bit strings.
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and strings interchangeably in this discussion.

The complexity of a string of bits can be defined in terms of algorithmic
complexity 2. This is, given a program producing a string s, a machine can run
the program and make a copy of s (in our case the image of the represented
object). The relationship between Shannon’s information theory and the
theory of algorithmic complexity is described in [13]. The information content
of a bit string can be defined as the length (in bits) of the smallest program
which produces the string s.

This enables us to define a measure of randomness if the shortest algo-
rithm able to generate s is not significantly shorter than s itself. In other
words, there is no more economical way of communicating the information
that it contains than by transmitting the string s in its entirety.

In algorithmic information theory a string is algorithmically random if it
is incompressible. The difference in length between a string and the shortest
algorithm able to generate it is the string’s degree of complexity. A string
of low complexity is highly compressible, as the information that it contains
can be encoded in an algorithm much shorter than the string itself, while a
string of high complexity is hard to compress because, in a fixed language,
its shortest possible description is itself.

A classic example is a string composed by an alternation of bits such
as (01)n that can be described by “n repetitions of 01”. This string ex-
ample can grow fast in length while the given description will only grow
by about log2(n). On the contrary, a random-looking string such as
011001011010110101 may not have a much shorter description than itself.

Algorithmic complexity is inversely related to the degree of regularity of
a string. Any patterns in a string constitute redundancy: they enable one
portion of the string to be recovered from another, allowing a more concise
description. This is what is exploited by many lossless image compression
algorithms, designed to find regularities in their bi-dimensional array.

The algorithmic complexity[15, 4, 16, 22] KU(s) of a binary string s with
respect to a universal Turing machine U is defined as the binary length of
the shortest program p of length |p| that produces s as output:

KU(s) = min{|p|, U(p) = s}

Due to the halting problem (the problem of deciding whether, given a
program and an input, the program will eventually halt when run with that

2. Also known under the names program-size complexity and Kolmogorov-Chaitin com-
plexity.
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input), a given program which computes only correct answers can compute
the exact algorithmic complexity of at most a finite set of strings. For further
details the reader can consult the classical textbooks in the field [3, 17]

Since K(s) is the length of the shortest compressed form of s, i.e. the best
possible compression (up to an additive constant), one can approximateK by
compression means, using current state lossless compression programs. The
better these programs compress, the better the approximations. The length
of the compressed string in bits together with the decompressor in bits is
an approximation of the shortest program generating the string. The length
of the binary compressed version of s is an upper bound of its algorithmic
complexity and therefore an approximation to K(s).

5.2.2 Bennett’s logical depth

Ameasure of the complexity of a string can be arrived at by combining the
notions of algorithmic information content and time complexity. According
to the concept of logical depth[1, 2], the complexity of a string is best defined
by the time that an unfolding process takes to reproduce the string from its
shortest description. The longer it takes the more complex. Hence complex
objects are those which can be seen as “containing internal evidence of a
nontrivial causal history.”

Unlike algorithmic complexity, which assigns a high complexity to both
random and highly organized objects placing them at the same level, logical
depth assigns a low complexity to both random and trivial objects, thus being
more in keeping with our intuitive sense of the complexity of physical objects
because trivial and random objects are intuitively easy to produce, have no
long history and unfold quickly. A clear, detailed explanation pointing out
the convenience of the concept of logical depth as a measure of organized
complexity as opposed to the usual plain algorithmic complexity is provided
in [9].

A typical example that illustrates the concept of logical depth and its
characterization as a measure of physical complexity is exemplified in se-
quence of fair coin tosses. Such a sequence would have high information con-
tent (algorithmic complexity) because the outcomes are random, but little
value (logical depth) because they are easily generated and carry no message,
no meaning. The string 1111. . . 1111 is also logically shallow. Its minimal
program, whilst very small, requires little time to evaluate. In contrast, the
binary representation of the number π is not shallow, because although it
is highly compressible (by any known formula producing π), the generating
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algorithms require computational time to produce a number of digits of its
expansion. A better example is Chaitin’s Ω number[4], which digits encode
the halting probability of a universal Turing machine, and which is known
to be very deep since no computable process can expand Ω but for a finite
number of digits[3, 10, 20].

Unlike in algorithmic complexity, in real-world computation physical re-
sources usually do matter. A computation is seen as inherently difficult if
computing it requires a large amount of time. In the real world, some objects
such as a gas filling a room or a perfect crystal are intuitively trivial because
they unfold in almost zero computing time, while others such as living beings
contain internal evidence of a nontrivial causal history.

Bennett provides a careful development[1] of the notion of logical depth
taking into account near-shortest programs as well as the shortest one, hence
the significance value, for a reasonably robust and machine-independent mea-
sure. For finite strings, one of Bennett’s formal approaches to the logical
depth of a string is defined as follows:

Let s be a string and d a significance parameter. A string’s depth at
significance d, is given by

Dd(s)=min{T (p) : (|p| − |p′| < d) ∧ (U(p) = s)}

the number of steps T (p) in the computation U(p) = s, with |p′| the length
of the shortest program for s, (therefore K(s)). In other words, Dd(s) is the
least time T required to compute s from a d-incompressible program p on a
Turing machine U .

Bennett’s each of his three chained definitions of logical depth provided
in [1] is closer to a definition in which near-shortest programs are taken into
consideration. This is because a few bits more may give much shorter decom-
pression time. The question of which precise definition to use is an aspect of
further investigation. The simplicity of Bennett’s first definition (the min-
imum computation time of some shortest program) is suitable to start our
investigation as a practical approximation to this measure, by means of de-
compression times of compression algorithms. With the use of real-world
compression algorithms, the decompression time of a compressed string is a
lower bound of logical depth because the compressed version is unlikely to
be the shortest (and, if so, there is no way to tell), the result may therefore
presumably be larger than the minimum program and therefore so the decom-
pression time. Hence the decompression time of the compressed version of a
string is a lower bound of Bennett’s of logical depth (from now on Bennett’s
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logical depth will be taken as it was given by Bennett in his definition 1 in pa-
per [1]). Because the behavior of approximating the algorithmic complexity
of a string with real-world compressors is asymptotic, that is, the better the
compression algorithm the closest to the algorithmic complexity value of the
string, using better compressors the decompression times also behave asymp-
totically semi-computing the logical depth from below. Bennett’s definition
also requires to pick the shortest among all programs producing a string,
since this is obviously not feasible one can either try with several decompres-
sors or try with the decompressor with better compression benchmarks and
forcing the best algorithm to do its best (in a finite and reasonable time).
From now on what we identified as the measure approximating the logical
depth of a string s will be denoted by D(s) with no need of a significance
parameter due to the fact that we use Bennett’s first simpler definition.

The concept of logical depth is an attempt to connect the description of
an object with the time that it might take to produce it. Bennett’s claim is
that it is this time connecting the current state of an object with its plausible
origin that is the appropriate measure of its complexity in physical terms.
Bennett’s main motivation was actually to provide a reasonable means of
measuring the physical complexity of real-world objects, since the notion of
logical depth stratifies them, placing those one would expect to be complex
above those that one would expect to be simpler (although random strings
are hardly compressible they can be quickly reproduced by a “print program”
containing only a verbatim description of the data). Logical depth does this
by taking into consideration the time that a process takes to produce the
current state of an object from its plausible origin.

Algorithmic complexity and logical depth are intimately related. The lat-
ter depends on the former because one has to first find the shortest programs
producing the string and then look for the one with shortest times, look-
ing for the shortest programs is equivalent to approximating the algorithmic
complexity of a string. While the compressed versions of a string are approx-
imations of the algorithmic complexity of the string, decompression times
are approximations of the logical depth of the string. These approximations
depend on the compression algorithm. For algorithmic complexity the choice
of universal Turing machine is bounded by an additive constant (invariance
theorem) while logical depth by a linear polynomial[1].
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5.3 Methodology

An image can be coded as a string s over a finite alphabet, say the
binary alphabet–a black and white image. We will denote by Kc and Dc

the approximations obtained by means of a compression algorithm c. When
the algorithmic complexity K(s) is approximated by a lossless compression
algorithm, this approximation corresponds to an upper-bound of K(s)[17].

There seems to have been no previous attempt to implement an appli-
cation of ideas based in Bennett’s logical depth to a real-world problem. In
order to assess the feasibility of an application of the concept to the prob-
lem of image characterization and classification by complexity we performed
a series of experiments of gradually increasing sophistication, starting from
fully controlled experiments and proceeding to the use of the best known
compression algorithms over a larger dataset.

The battery of tests consisted of a series of images devised to verify dif-
ferent aspects of the methodology and a more realistic dataset, indicating
whether the results were stable enough to yield the same values after each
experiment repetition and whether they were consistent with the theory and
consonant with the intuition of a complex vs. a simple object.

The first experiments consisted in controlling all the environmental pa-
rameters involved, from the data to the compression algorithm, in order to
test the first attempts to calculate decompression times. A test to measure
the correlation between image sizes (random vs. uniformly colored images)
and decompression times was carried out. The results are in section 5.4.1.

A second test in section 5.4.1 consisted of a series of images meant to
evaluate the change and magnitude of the decompression times when manip-
ulating the internal structure of an image. That is, it served to verify that
the decompression times decreased as expected when the content of a random
image was artificially manipulated to make it more simple. This consisted
of a set of images in which uniform structures consisting of large single-bit
strings of a fixed size were randomly inserted into the images containing
originally only pseudo-random generated pixels.

The framework consisted of using a toy compression program involving
an algorithm grouping runs of the same bit replaced by a couple of values:
the replaced bit followed by the number of times the bit was found. No
further allowances were made, either for dealing with special cases or for
detecting any other kinds of patterns. We wanted the algorithm and the data
to be as simple as possible to be fully controlled in every detail to better
understand the role of a structure of increasing size in the decompression
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time. It consisted of the series of computer-generated random images shown
in Figure 1.

Figure 5.1: Inserting increasingly larger (white) regular blocks into an image
containing originally randomly distributed black and white pixels.

This was a way of injecting structure into the images in order to study
the behavior of the compression algorithm and assure control of the variables
involved in order to better understand the next set of results.

A procedure described in 5.4.1 was devised to test the complementary case
of the previous test to verify that the decompression times increased when
the content of an image was artificially manipulated, transforming it from
a simple state (an all-white image) to a more complex state by generating
images with an increasing number of structures. A collection of one hundred
images with an increasing number of straight lines randomly depicted was
artificially generated (see Figure 2). The process led to interesting results
described in 5.4.1 showing the robustness of the method.

Figure 5.2: The number of lines grew as 2n2 with n the image number from
0 to 99. Depicting lines at this rate allowed us to start with a uniformly
colored white image and end up with the desired, nearly all-black uniformly
colored image in 100 steps.

Three more tests to calibrate the measure based on logical depth are
proposed in 5.4.2 with three different series of images. The first two series
of images were computer generated. The third one was a set of pictures of a
real-world object. The description of the 3 series follows:

1. A series of images consisting of random points converted to black and
white with a probability of a point’s existing at any given location
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having a certain value depending on a threshold. This can be seen
as variation in information content since the ratio of black and white
dots varies from high to low from image to image depending on the
threshold value.

2. Cellular automaton with elementary rule number 30 (in Wolfram’s
enumeration[25]), then another image with the same automaton su-
perposed upon itself (rotated 90◦) followed by the same automaton to
which was applied a function introducing random bits to 50 percent
of the image pixels. We expect a greater standard deviation for the
series of cellular automata because they come in pairs (meaning each
image comes with its inverse), and permutations should be common
and ought to be between these pairs because, intuitively, they should
have the same complexity. This guess will be statistically confirmed in
the results5.4 section.

3. A wall and the same wall but viewed from a closer vantage point.

The last test in 5.4.3 is the main result of the paper, showing the stability
of method and the classification result. The experiment was performed on
a dataset of randomly chosen pictures, 56 black-and-white pictures coming
from different sources and representing objects of all kinds 3. Some were pic-
tures of actual objects produced by nature and humans, such as car plans,
pictures of faces, handwriting, drawings, walls, insects, and so on. Others
were computer-generated, such as straight lines, Peano curves, fractals, cel-
lular automata, monochrome and pseudo-random generated images.

The selection of images in section 5.4.3 was made by hand bearing in
mind the objective of spanning a large variety of objects covering a range of
seemingly different complexities. We chose images of faces, people, engines
and electronic boards, images singled out for their high degree of complexity,
being each usually the result of a relatively long history, whether they were
human artifacts or long-lived natural entities. The image bearing the name
“table” is a table of numerical values, a computer spreadsheet, likely char-
acterized by a significant level of complexity. Images tagged “people” are
pictures of a group of people taken from a distance. The tag “inv” following
picture names indicates that they are the color inversions of other images in
the same dataset that we expected would be close in complexity, and they
are presented side-by-side with their non-inverted versions. “Writing” refers
to handwriting by a human being, which should also have a significant level
of complexity, a level of complexity approaching that of other handwritten

3. The images are available online under the paper title at
http://www.algorithmicnature.org
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pieces such as the image tagged “formulae” which depicts formulae rather
than words. “Watch” is the internal engine of a watch. “Cpu A” is a picture
of a microprocessor showing less detail than “cpu B”. “Escher” is a painting
of tiles by Escher. “Paper” is a corrugated sheet of paper. “Shadows B” are
the shadows produced by sea tides. “Symmetric B” is “shadows B” repeated
4 times. “Symmetric A” is “symmetric B” repeated 4 times. “Rectangle C” is
“rectangle B” repeated 4 times. Those images tagged “Peano curve” are the
space filling curves. “Periodic” and “Alternated” are of a similar type, and
we thought they would have low complexity, being simple images. “Ran-
dom” was a computer-generated image, technically pseudo-random. This
random-generated picture will illustrate the main known difference between
algorithmic complexity and logical depth. Namely, based on its algorithmic
(program-size) complexity the random image should be ranked at the top,
whereas its logical depth would place it at the bottom. All pictures were
randomly chosen from the web, transformed to B&W and reduced to 600 ×
600 pixels 4.

5.3.1 Towards the choice of lossless compression algo-
rithm

Deflate 5 is a compliant lossless compressor and decompressor available
within the zlib package. The Deflate compression compresses data using
a combination of the Lempel-Ziv coding algorithm[28] and the Huffman
coding[14]. It is one of the most widely-used compression encoding systems.

The Huffman coding assigns short codewords to those input blocks with
high probabilities and long codewords to those with low probabilities. In
other words, the compressor encodes more frequent sequences with a few
bytes and spends more bytes only on rare sequences.

The Lempel-Ziv coding algorithm builds a dictionary and encodes the
string by blocks using symbols in the dictionary. The Lempel-Ziv algorithm
leads to actual compression when the input data is sufficiently large and there
is sufficient redundancy (patterns) in the data[24]. Lempel-Ziv compression
algorithm provides upper bounds to K.

4. Unlike the printed version, if seen in electronic form the images can be zoomed
in, allowing better visualization. They are also available online under the paper title at
http://www.algorithmicnature.org

5. RFC1951: Deflate Compressed Data Format Specification version 1.3
http://www.w3.org/Graphics/PNG/RFC-1951.
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5.3.2 Compression method

Since digital images are just strings of values arranged in a special way,
one can use image compression techniques to approximate the algorithmic
complexity of an image. And through its image, the algorithmic complexity
of the object represented by the image (at the scale and level of detail of the
said image).

A representative sample of lossless image-compression algorithms (GIF,
TIFF and JPG 2000) was tested in order to compare the decompression
runtimes of the testing images. Although we experimented with these loss-
less compression algorithms, we ended up choosing PNG for several reasons,
including its stability and the flexibility afforded by the ability to use open-
source developed optimizers for further compression.

The Portable Network Graphics (PNG) is a bitmapped image format that
employs lossless data compression. It uses a 2-stage compression process, a
pre-compression or filtering, and Deflate. The filtering process is particularly
important in relating separate rows, since Deflate alone has no understanding
that an image is a bi-dimensional array, and instead just sees the image data
as a stream of bytes.

There are several types of filters embedded in image compression algo-
rithms which exploit regularities found in a stream of data based on the
corresponding byte of the pixel to the left, above, above and to the left, or
any combination thereof, and encode the difference between the predicted
value and the actual value.

Figure 5.3: Image pixel neighborhood. By applying different filters a lossless
image compression algorithm uses the data contained in the pixels x1, . . . , x8

to predict the value of another pixel x9 that may save space, allowing the
compression of the said image without losing any information. The number
of combination tested is finite and limited by the compression algorithm.
Yet one can optimize the search of a successful combination by setting the
compression algorithm to try harder and spend more time trying to better
compress the data.

Compression can be further improved by so-called PNG-optimizers using
more filter methods and several other lossless data compression algorithms.
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Among these optimizers are Pngcrush 6 and AdvanceCOMP 7, two of the
most popular open-source optimizers. They tried various compression meth-
ods and were able to reduce the PNG files by about 10 to 20% of their original
length. AdvanceCOMP recompresses PNG files (and other file formats) us-
ing the Deflate 7-Zip implementation. The 7-Zip Deflate encoder effectively
extends the scope of Deflate further by performing a much more detailed
search of compression possibilities at the expense of significant further pro-
cessor time spent searching, which for this experiment was not a matter of
concern. 7-Zip Deflate also uses the LZMA algorithm, an improved and opti-
mized version of the LZ77[28] compression algorithm. The LZMA 8 algorithm
divides the data into packets, each packet describing either a single byte or an
LZ77 sequence with its length and distance implicitly or explicitly encoded 9.

As a sort of verification, we ran a popular zip-based commercial compres-
sor, set to the maximum possible compression, over the already compressed
and optimized files. The zip-based archiver was unable to further compress
any of the files (they were actually always a little larger in size).

5.3.3 Using decompression times to estimate complex-
ity

Inflate is the decoding process that takes a Deflate bit stream for decom-
pression and correctly produces the original full-size data file. To decode an
LZW-compressed file, one needs to know the dictionary encoding the matched
strings in the original data to be reconstructed. The decoding algorithm for
LZ77 works by reading a value from the encoded input and outputting the
corresponding string from the shorter file description.

It is this decoding information that Inflate takes when importing a PNG
image for display, so the lengthier the directions for decoding the longer
the time it takes. We are interested in these compression/decompression
processes, particularly the compression size and the decompression time, as
an approximation of the algorithmic complexity and the logical depth of an
image.

6. Syntax example: pngcrush -reduce -brute -e “.compressed.png” /testimages/*.png.
More info: http://pmt.sourceforge.net/pngcrush/

7. Syntax example: e.g. advdef -z -4 *.png (’4’ indicating the so-
called “insane” compression according to the developers). More info:
http://advancemame.sourceforge.net/

8. More technical details are given inhttp://www.7-zip.org/7z.html.
9. A useful website showing a benchmark of compression algorithms is at url-

http://tukaani.org/lzma/benchmarks.html.
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The decompression directions for trivial or random-looking objects are
simple to follow, with the decompression process taking only a small amount
of time, simply because the compression algorithm either compresses very
well and the decompression is just straightforward (trivial case) or does not
compress at all (random case). Longer runtimes, however, are usually the
result of a process following a set of time-consuming decompression instruc-
tions, hence a complex process.

5.3.4 Timing method

The execution time was given by the Mathematica function Timing 10.
The function Timing evaluates an expression and returns a list of the time
used in seconds, together with the result obtained. The function includes
only CPU time spent in the Mathematica kernel.

The fact that several processes run concurrently in computing systems
as part of their normal operation is one of the greatest difficulties faced in
attempting to measure with accuracy the time that a decompression process
takes, even when it is isolated from all other computer processes. This in-
stability is due to the fact that the internal operation of the computer comes
in several layers,mostly at the operating system level. In order to avoid
measurement perturbations as much as possible, several stabilizing measures
were undertaken:

– Most computer batch processes and operating system services were
disabled, including services such as wireless and bluetooth and energy
saving features, such as the hard drive sleeping and display dimming
features 11.

– The microprocessor was warmed up before each experiment by running
an equivalent process (e.g. a mock experiment run) before running the
actual one in order to have the fan and everything else already working
at a high rate (like preheating an oven).

– The cache memory was cleared after each function call using the Math-
ematica function ClearSystemCache. No history was saved in RAM
memory.

10. Timed on two different computers for validation. On a MacBook Intel Core 2 Duo
2GHz, 2048MB DDR2 667Mhz with a solid-state drive (SSD) and on MacBook Pro Intel
Core 2 Duo 2.26Ghz, 4096MB DDR3 1067Mhz with a traditional hard disk drive (HDD),
both running Mac OS X Version 10.6.1 (Snow Leopard). The MacBook Pro was always
twice as fast on average.
11. To understand the number of layers of complexity involved in a modern computing

system see Tanenbaum’s book on operating systems[23].
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– A different order of images was used for each experiment run. The
result was averaged with at least 30 runs, each compressing the images
in a different random order. This helped to define a confidence level on
the basis of the standard deviation of the runs, when they are normally
distributed. A confidence level with which we were satisfied and at
which we arrived in a reasonable amount of time. Further runs showed
no further improvement. Measurements stabilization was reached after
about 20 to 30 runs.

The presence of some perturbations in the time measure values were un-
avoidable due to lack of complete control over all the computing system
parameters. As the following battery of tests will show, one can reduce and
statistically curtail the impact of this uncertainty to reasonable levels.

5.4 Results

5.4.1 Controlled experiments

Image size uncertainty variation

Figure 5.4: Decompression times and standard deviations for monochromatic
images increasing in size.

Figure 5.5: Decompression times and standard deviations for images with
(pseudo) random noise increasing in size.
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Figures 4 and 5 show that decompression times using the PNG algorithm
and the optimizers increase in linear fashion when image sizes increase lin-
early. The distributions of standard deviations in the same figures show no
particular tendency other than suggesting that the standard deviations are
likely due to random perturbations and not to a bias in the methodology.

A comparison with Figure 6 shows that standard deviations for images
containing random noise remained always low, while for uniformly colored
images standard deviations were significantly larger.
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Figure 5.6: For uniformly colored images standard deviations of decompres-
sion times were larger in average. For random images the standard deviations
were smaller and compact. The size of the image seemed to have no impact
in the behavior of the standard deviations for either case.

Figure 5.7: Histogram of the standard deviations for uniformly colored and
random images increasing in size.

Fully controlled test

For this test only, we used a toy compression algorithm designed to be
as simple as possible in order to estimate the uncertainty due to system
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perturbations. We devised a test in which we would have full control of the
data and the compression algorithm. By understanding the processes we
would be able to predict compression rates and decompression uncertainties
better, and quantify the uncertainty of the measurement of decompression
times in the general case (i.e. using other compression algorithms).

It was found that the algorithmic complexity approximation (the file size)
decreased linearly at a rate of 1990 bits per image, the same as the number of
regular inserted bits per image, taking about log2(2000) to encode the com-
pressed regular string, as theory (Shannon information) may have predicted.
One can also predict the decompression runtime by calculating the slope of
the decompression rate. Each insertion of 2000 regular bits into the random
image took 0.00356 seconds less each time, fitting the estimate computed by
the rate ratio.

The standard deviations behavior suggest that the more random an im-
age the less stable the decompression time and the more regular the more
stable. This may be explained by the number of operations that the toy com-
pression algorithm uses for encoding a regular string. In the extreme case of
a uniformly colored image, the code comes up with a single loop operation
to reproduce the image, taking only one unit of time. On the other hand,
when an image is random, wholly or partially, the number of operations is
larger because the algorithm finds small patterns everywhere, patterns that
have a timing cost per operation performed. Each loop operation using the
Table function inMathematica takes 0.000025 seconds on average, while each
iteration takes only about 0.00012 seconds on average, suggesting that it is
the number of operations that determines the runtime.

Figure 5.8: Using the toy compression algorithm, the larger the white region
in an image with random noise the shorter the decompression runtime and
the lower the standard deviations.

The standard deviation of the mean 0.0000728 is smaller than the average
of the standard deviations of each point, which is 0.000381. This shows that
runtime perturbations were not significant enough.
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Using the PNG compression algorithm

This time we proceeded to apply the PNG compressor algorithm together
with the optimizers (Pngcrush and AdvancedCOMP) to the same computer-
generated images with random noise used in the previous section, confident
that we understood the variables involved in the previous experiment, and
that everything seemed to be controlled.

Figure 5.9: Uniformly colored images case compression rate. As for the
controlled experiment with the toy compression algorithm using the PNG
compression algorithm, the compressed length of the images also decreased in
a predictable way as one would have expected for this controlled experiment.
And they did so at a rate of 310 bits per image.

Figure 9 shows that the PNG 12 compression algorithm followed the same
trend as the toy compression algorithm, namely the more uniformity in a
random image the greater the compression. PNG however achieved greater
compression ratios compared to the toy compression algorithm, for obvious
reasons.

In Figure 9 one can see that there are some minor bumps and hollows all
along. Their deviation does not seem however significant from a uniformly
distribution, as shown in Figure 10, suggesting bias toward no particular
direction. As was the case with the toy compression algorithm, by using
the PNG algorithm algorithmic complexity decreased as expected–upon the
insertion of uniform strings.

Increasing complexity test

The first thing worth noticing in Figure 11 (left) is that the standard
deviations remained the same on average, suggesting that they were not

12. with Pngcrush and AdvanceCOMP
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Figure 5.10: Anomalies found in the decompression times deviating from the
main slope seem to behave randomly, suggesting no methodological bias.

Figure 5.11: Random images produce smaller standard deviations (notice the
plot scale). But unlike the toy case, decompression times remained statisti-
cally the same despite an increase in image size.

Figure 5.12: Compressed path: Going from all white to all black by randomly
depicting black lines.

related to the image, but to external processes. The process of randomly
depicting lines seems to have a low maximum limit of complexity, which is
rapidly reached. Nevertheless, eight bins of images with significantly different
decompression time values, i.e. with non-overlapping standard deviations,
were identified. What Figure 12 suggests is that increasing the number of
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lines can only lead to a limited maximum degree of complexity bounded by
a convex curve. The eight significantly different images have been selected
according to jumps that were maximizing their differences: n = ∆D/σ with
∆ = max{D(Ii)|i ∈ {1, . . . , n}} − min{D(Ii)|i ∈ {1, . . . , n}}, with Ii each
image in the set, and D the logical depth.

For the discontinuity in the graph, one hypothesis is that the compression
algorithm reaches a threshold favoring some regularities over others, produc-
ing jumps in the decompression times. For a certain quantity of randomly
depicted lines, the limit remains stable for a while once reached, until the mo-
ment when the increasing number of lines depicted fill up the space and the
configuration reaches its lowest complexity by decompression time, when it
begins to approach a phase in which it resembles a uniformly colored image.

The decompression time depicted in Figure 12 turned out to be very
interesting suggesting what one might expect for this kind of experiment: A
path traced between two monochromatic (fully colored) images, an initial all-
white image succeeded by images of increasing complexity comprising random
lines, and ending at the horizontal departure line in a final monochromatic
almost all-black image, when the space becomes entirely filled with black
lines.

5.4.2 Calibration tests

The following are the classifications of series 1, 2 and 3 according to their
decompression runtimes as described in the methodology section 5.3.

Figure 5.13: Series 1 classification: Random points with different densities.

Figure 5.14: Series 2 classification: Cellular automata superpositions, rota-
tions and inversions.
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Figure 5.15: Series 3 classification: Zooming in a wall.

series number description Std. deviation
2 cellular automata 0.000556
3 wall zooming 0.00046
1 random points 0.000349

Table 5.1: Standard deviations per series sorted from greatest to lowest stan-
dard deviation.

– Series 1 classification (Figure 13): Images labeled 1 and 2 never came
last, while images 4 and 5 never came first. The first half of the images
remained the same run after run, while the second half also remained
stable, with some occasional permutations within the intermediate el-
ements of each half, but never with the extremes exchanging places.

– Series 2 classification (Figure 14): A cellular automaton superposed
upon itself rotated 90◦, with random bits inserted. The runs not only
mostly never changed, the procedure consistently sorted the images
into pairs, grouping images with similar characteristics (to which the
same function was applied). The classification seems consonant with
what one may see as the more random vs. less random. All of them
had low physical complexity in general, given their values, which is in
accordance with what is believed about the cellular automaton rule
30, i.e. that it is known to behave randomly[25], with some regular
structures on the left.

– Series 3 classification (Figure 15): A wall and the same wall but viewed
from a closer vantage point. It turned out to be highly stable after sev-
eral runs, sorting the series of images from the farthest to the closest
picture of the wall, suggesting that pictures taken from a greater dis-
tance captured more of the structure of the wall, while zooming in
without also increasing the resolution meant losing detail and struc-
ture. The closest picture always came last, while the farthest always
came first. There were only occasional permutations between those in
between.
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As was expected (see section 5.3), a greater standard deviation for the
series of cellular automata was found due to the image pairing. Each image
occurred in tandem with its inverse, but permutations were common–and
expected–between members of pairs, which intuition tells us ought to have
the same complexity. The expected permutations produced a larger standard
deviation.

5.4.3 Compression length ranking

The following experiments were carried out as described in section 5.3
using 56 black-and-white images spanning a range of different kind of objects
each seemingly having different complexity which we could intuitively gauge
more or less accurately 13. Each image has a very short description, followed
by the image itself and by the approximated values of Kc (Figure 16) and
Dc (Figure 17) for our general compression algorithm c.

The classification in Figure 16 presents the images ranked according to
their compressed lengths using the PNG image compression together with
the PNG optimizers. It goes from larger to smaller, and as can be seen, the
more random-looking or highly structured, the better classified, while trivial
images come last. One can verify that the procedure is invariant to simple
transformations, such as inversions and complementations, since images and
their symmetric versions are always next (or close) to each other, indicat-
ing that the compression algorithm behaves as one would expected (that is,
that inverting colors for example, has no impact in the resultant compressed
length). One would hardly say, however, that a random image is physically
complex (random processes, like a gas filling a room, unfold in almost zero
time and seem to require no great computational power), which is why plain
algorithmic complexity does not help to distinguish between complexity as-
sociated with randomness and complexity associated with highly structured
objects.

5.4.4 Decompression times ranking

The classification in Figure 17 goes from greater to smaller logical depth
based on the decompression runtimes. The number at the bottom is the
time in seconds that the PNG algorithm took to decompress the images
when applied to their compressed versions. Images we gauged to have the

13. The images are available online under the paper title at
http://www.algorithmicnature.org
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Figure 5.16: Ranking by compressed lengths: Kc(in) ≤ Kc(in+1) with Kc(i)
the approximation to the algorithmic complexity K(i) of the image i by
means of the PNG compression algorithm aided by Pngcrush and Advance-
COMP.

highest physical complexity come first. It is also worth mentioning that the
images and their inverted versions remained close to each other, meaning that
they were always in the same complexity group, which is also just what we
expected. This also indicates the soundness of the procedure, since images
and their inversions should be equal in complexity, and therefore equal in
complexity to the object as well, at a commensurate scale and level of detail.

Figure 18 shows some of the jumps seen before in the experiments in
section 5.4.1. We think they may be due to the behavior of the compression
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Figure 5.17: Ranking by decompression times: Dc(in) ≤ Dc(in+1) with Dc(i)
the approximation to the logical depth D(i) of the image with number i
according to the indexing from the previous classification for Kc, by means
of the PNG compression algorithm aided by Pngcrush and AdvanceCOMP.

algorithm. The compression algorithm applies several filters and it may favor
some regularities over others that are better (faster) decoded after certain
threshold producing these jumps.

Images were grouped in 8 significantly different groups (with different
decompression times and therefore seemingly different logical depth). For-
mally, x̄(gi) ± σ(gi) > x̄(gj) ± σ(gj) for any two different group indexes
i, j ∈ {A,B, . . . , H}.
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Figure 5.18: Mean and standard deviations of the decompression times of
the 56 images.

Figure 5.19: Rank comparison between Kc and Dc as functions of the chosen
images having significantly different Dc values.

The average difference between the largest and the smallest Kc value was
about 62090 bits, while the average difference between the largest and the
smallest Dc was 0.095 seconds. The largest calculated compressed image size
(image 1) was 159.8 times larger than the shortest compressed image size
(image 56). The largest evaluated decompression time (image 5) was 2.46
times larger than the shortest calculated decompression time (image 53).

No significant statistical correlation between Kc and Dc was found, indi-
cating that Kc and Dc are actually two different measures. Figure 19 and 20
illustrate the classification values from Kc to 8 significant different decom-
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Figure 5.20: K to D mapping by groups indicating the complexity group (by
logical depth) to which each image instance on the right belongs.

pression time (Dc) groups according to each of the two measures. The rank-
ing of images based on their decompression times correspond to the intuitive
ranking resulting from a visual inspection, with things like microprocessors,
human faces, cities, engines and fractals figuring at the top as the most com-
plex objects, as shown in Figure 21 (group A); and random-looking images,
which ranked high by algorithmic complexity, were ranked low (group G)
according to the logical depth expectation, classified next to trivial images
such as the uniformly colored (group H), indicating the characteristic feature
of the measure of logical depth. A gradation of different complexities can be
found in the groups between, gradually increasing in complexity from bottom
to top.
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Figure 5.21: Significant different groups by decreasing decompression time.

5.5 Conclusions and further work

Extensive experiments were conducted. Along the way we think we have
shown that:

1. Ideas in the spirit of Bennett’s logical depth can be implemented to
approach a real-world characterization and classification problem other
than using the concept of algorithmic complexity alone, distinguishing
only between random and trivial objects but not separating random
from structured objects.

2. After studying several cases and tested several compression algorithms,
the method described in this paper has shown to work and to be of
use for identifying and classifying images by their apparent physical
complexity.

3. The procedure described herein constitutes an unsupervised method for
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evaluating the information content of an image by physical complexity.

4. The method of decompression times yields a reasonable measure of
complexity that is different from the measure obtained by consider-
ing algorithmic complexity alone, while being in accordance with one’s
intuitive expectations of greater and lesser complexity.

Further to investigate is how to improve this procedure to accurately
follow Bennett’s stricter definitions of Logical Depth. For example, it could
be that by allowing a couple of bits more in the compressed versions of
the images one gets shorter decompression times, and we think experiments
in this regards are possible. To stay in the spirit of Bennett one may use
several compressors c1, . . . , cn on strings s1, . . . , sm and compute Dci(sj) for
all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then, an object sh is assumed to be more complex than an object sk if
Dci(xj) > Dci(xk) for all 1 ≤ i ≤ n and thus obtain a partial order from which
a total order could be obtained by calculating the (e.g. harmonic) average
of the decompression times.

Bibliography

[1] C.H. Bennett, Logical Depth and Physical Complexity in Rolf Herken
(ed) The Universal Turing Machine–a Half-Century Survey Oxford Uni-
versity Press 227-257, 1988.

[2] C.H. Bennett, How to define complexity in physics and why. In Com-
plexity, entropy and the physics of information, Zurek, W. H., Addison-
Wesley, Eds. SFI studies in the sciences of complexity, p 137-148, 1990.

[3] C.S. Calude, Information and Randomness: An Algorithmic Perspective
(Texts in Theoretical Computer Science. An EATCS Series) Springer,
2nd. edition, 2002.

[4] G.J. Chaitin A Theory of Program Size Formally Identical to Informa-
tion Theory, J. Assoc. Comput. Mach. 22, 329-340, 1975.

[5] G.J. Chaitin, Algorithmic information theory, IBM Journal of Research
and Development, v.21, No. 4, 350-359, 1977.

[6] X. Chen, B. Francia, M. Li, B. Mckinnon, A. Seker, Shared Information
and Program Plagiarism Detection IEEE Trans. Information Theory,
2004.
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Chapitre 6

Sloane’s Gap : Do
Mathematical and Social
Factors Explain the
Distribution of Numbers in the
OEIS ?

Forthcoming in N. Gauvrit, J-P. Delahaye and H. Zenil, Le
Fossé de Sloane, Mathématiques et Sciences Humaines - Math-
ematics and Social Sciences.

6.1 Introduction

The Sloane encyclopedia of integer sequences[10] 1 (OEIS) is a remark-
able database of sequences of integer numbers, carried out methodically and
with determination over forty years[3]. As for May 27, 2011, the OEIS con-
tained 189,701 integer sequences. Its compilation has involved hundreds of

1. The encyclopedia is available at: http://oeis.org/, last consulted 26 may, 2011.
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mathematicians, which confers it an air of homogeneity and apparently some
general mathematical objectivity–something we will discuss later on.

When plotting N(n) (the number of occurrences of an integer in the
OEIS) two main features are evident:
(a) Statistical regression shows that the points N(n) cluster around k/n1.33,
where k = 2.53× 108.
(b) Visual inspection of the graph shows that actually there are two distinct
sub-clusters (the upper one and the lower one) and there is a visible gap
between them. We introduce and explain the phenomenon of “Sloane’s gap.”

The paper and rationale of our explanation proceeds as follows:
We explain that (a) can be understood using algorithmic information theory.
If U is a universal Turing machine, and we denote m(x) the probability that
U produces a string x, then m(x) = k2−K(x)+O(1), for some constant k, where
K(x) is the length of the shortest description of x via U . m(.) is usually ref-
ered to as the Levin’s universal distribution or the Solomonoff-Levin measure
[7]. For a number n, viewed as a binary string via its binary representation,
K(n) ≤ log2 n + 2 log2 log2 n +O(1) and, for most n, K(n) ≥ log2 n. There-
fore for most n, m(n) lies between k/(n(log2 n)

2) and k/n. Thus, if we view
OEIS in some sense as a universal Turing machine, algorithmic probability
explains (a).

Fact (b), however, is not predicted by algorithmic complexity and is not
produced when a database is populated with automatically generated se-
quences. This gap is unexpected and requires an explanation. We speculate
that OEIS is biased towards social preferences of mathematicians and their
strong interest in certain sequences of integers (even numbers, primes, and
so on). We quantified such a bias and provided statistical facts about it.

6.2 Presentation of the database

The encyclopedia is represented as a catalogue of sequences of whole
numbers and not as a list of numbers. However, the underlying vision of the
work as well as its arrangement make it effectively a dictionary of numbers,
with the capacity to determine the particular properties of a given integer as
well as how many known properties a given integer possesses.

A common use of the Sloane encyclopedia is in determining the logic of
a sequence of integers. If, for example, you submit to it the sequence 3, 4, 6,
8, 12, 14, 18, 20..., you will instantly find that it has to do with the sequence
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of prime augmented numbers, as follows: 2+1, 3+1, 5+1, 7+1, 11+1, 13+1,
17+1, 19+1...

Even more interesting, perhaps, is the program’s capacity to query the
database about an isolated number. Let us take as an example the Hardy-
Ramanujan number, 1729 (the smallest integer being the sum of two cubes of
two different shapes). The program indicates that it knows of more than 350
sequences to which 1729 belongs. Each one identifies a property of 1729 that
it is possible to examine. The responses are classified in order of importance,
an order based on the citations of sequences in mathematical commentaries
and the encyclopedia’s own cross-references. Its foremost property is that
it is the third Carmichael number (number n not prime for which ∀a ∈ N

∗,
n|an − a)). Next in importance is that 1729 is the sixth pseudo prime in
base 2 (number n not prime such that n|2n−1 − 1). Its third property is
that it belongs among the terms of a simple generative series. The property
expounded by Ramanujan from his hospital bed appears as the fourth prin-
ciple. In reviewing the responses from the encyclopedia, one finds further
that:

– 1729 is the thirteenth number of the form n3 + 1;
– 1729 is the fourth “factorial sextuple”, that is to say, a product of
successive terms of the form 6n+ 1: 1729 = 1× 7× 13× 19;

– 1729 is the ninth number of the form n3 + (n + 1)3;
– 1729 is the sum of the factors of a perfect square (332);
– 1729 is a number whose digits, when added together yield its largest
factor (1 + 7 + 2 + 9 = 19 and 1729 = 7× 13× 19);

– 1729 is the product of 19 a prime number, multiplied by 91, its inverse;
– 1729 is the total number of ways to express 33 as the sum of 6 integers.

The sequence encyclopedia of Neil Sloane comprises more than 150 000
sequences. A partial version retaining only the most important sequences of
the database was published by Neil Sloane and Simon Plouffe[11] in 1995. It
records a selection of 5487 sequences[11] and echoes an earlier publication by
Sloane [9].

Approximately forty mathematicians constitute the “editorial commit-
tee” of the database, but any user may propose sequences. If approved, they
are added to the database according to criteria of mathematical interest.
Neil Sloane’s flexibility is apparent in the ease with which he adds new se-
quences as they are proposed. A degree of filtering is inevitable to maintain
the quality of the database. Further, there exist a large number of infinite
families of sequences (all the sequences of the form (kn), all the sequences of
the form (kn), etc.), of which it is understood that only the first numbers are
recorded in the encyclopedia. A program is also used in the event of a failure
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Figure 6.1: Number of occurrences of N(n) as a function of n per n ranging
from 1 to 10 000. Logarithmic scale in ordinate.

of a direct query which allows sequences of families that are not explicitly
recorded in the encyclopedia to be recognized.

Each sequence recorded in the database appears in the form of its first
terms. The size of first terms associated with each sequence is limited to
approximately 180 digits. As a result, even if the sequence is easy to calculate,
only its first terms will be expressed. Next to the first terms and extending
from the beginning of the sequence, the encyclopedia proposes all sorts of
other data about the sequence, e.g., the definitions of it and bibliographical
references.

Sloane’s integer encyclopedia is available in the form of a data file that
is easy to read, and that contains only the terms retained for each sequence.
One can download the data file free of charge and use it–with mathematical
software, for example–to study the expressed numbers and conduct statistical
research about the givens it contains.

One can, for example, ask the question: “Which numbers do not appear
in Sloane’s encyclopedia?” At the time of an initial calculation conducted in
August 2008 by Philippe Guglielmetti, the smallest absent number tracked
down was 8795, followed in order by 9935, 11147, 11446, 11612, 11630,...
When the same calculation was made again in February 2009, the encyclo-
pedia having been augmented by the addition of several hundreds of new
sequences, the series of absent numbers was found to comprise 11630, 12067,
12407, 12887, 13258...

The instability over time of the sequence of missing numbers in the OEIS
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suggests the need for a study of the distribution of numbers rather than of
their mere presence or absence. Let us consider the number of properties of
an integer, N(n), while measuring it by the number of times n appears in
the number file of the Sloane encyclopedia. The sequence N(n) is certainly
unstable over time, but it varies slowly, and certain ideas that one can derive
from the values of N(n) are nevertheless quite stable. The values of N(n) are
represented in Figure 1. In this logarithmic scale graph a cloud formation
with regular decline curve is shown.

Let us give a few examples: the value of N(1729) is 380 (February 2009),
which is fairly high for a number of this order of magnitude. For its pre-
decessor, one nevertheless calculates N(1728) = 622, which is better still.
The number 1728 would thus have been easier for Ramanujan! Conversely,
N(1730) = 106 and thus 1730 would have required a more elaborate answer
than 1729.

The sequence (N(n))n∈N∗ is generally characterized by a decreasing curve.
However, certain numbers n contradict this rule and possess more properties
than their predecessors: N(n) > N(n− 1).

We can designate such numbers as “interesting”. The first interesting
number according to this definition is 15, because N(15) = 34 183 and
N(14) = 32 487. Appearing next in order are 16, 23, 24, 27, 28, 29, 30,
35, 36, 40, 42, 45, 47, 48, 52, 53, etc.

We insist on the fact that, although unquestionably dependent on certain
individual decisions made by those who participate in building the sequence
database, the database is not in itself arbitrary. The number of contributors
is very large, and the idea that the database represents an objective view
(or at least an intersubjective view) of the numeric world could be defended
on the grounds that it comprises the independent view of each person who
contributes to it and reflects a stable mathematical (or cultural) reality.

Indirect support for the idea that the encyclopedia is not arbitrary, based
as it is on the cumulative work of the mathematical community, is the gen-
eral cloud-shaped formation of points determined by N(n), which aggregates
along a regular curve (see below).

Philippe Guglielmetti has observed that this cloud possesses a remarkable
characteristic 2: it is divided into two parts separated by a clear zone, as if the
numbers sorted themselves into two categories, the more interesting above
the clear zone, and the less interesting below the clear zone. We have given
the name “Sloane’s Gap” to the clear zone that divides in two the cloud

2. Personal communication with one of the authors, 16th of February, 2009.
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representing the graph of the function n 7−→ N(n). Our goal in this paper
is to describe the form of the cloud, and then to formulate an explanatory
hypothesis for it.

6.3 Description of the cloud

Having briefly described the general form of the cloud, we shall direct
ourselves more particularly to the gap, and we will investigate what charac-
terizes the points that are situated above it.

6.3.1 General shape

The number of occurrences N is close to a grossly decreasing convex
function of n, as one can see from Figure 1.

A logarithmic regression provides a more precise idea of the form of the
cloud for n varying from 1 to 10 000. In this interval, the coefficient of
determination of the logarithmic regression of ln (N (n)) in n is of r2 = .81,
and the equation of regression gives the estimation:

ln (N (n)) ≃ −1.33 ln(n) + 14.76

or

N̂ (n) =
k

n1.33
,

where k is a constant having the approximate value 2.57× 108, and N̂ is the
estimated value for N .

Thus the form of the function N is determined by the equation above.
Is the existence of Sloane’s gap natural then, or does it demand a specific
explanation? We note that to our knowledge, only one publication mentions
the existence of this split [4].

6.3.2 Defining the gap

In order to study the gap, the first step is to determine a criterion for
classification of the points. Given that the “gap” is not clearly visible for the
first values of n, we exclude from our study numbers less than 300.

One empirical method of determining the boundary of the gap is the
following: for the values ranging from 301 to 499, we use a straight line
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Figure 6.2: The curve represents the logarithmic regression of ln(N) as a
function of n for n varying from 1 to 10 000. The grey scale points are those
that are classified as being “above” the gap, while the others are classified
as being “below” it.

adjusted “by sight”, starting from the representation of ln(N) in functions of
n. For subsequent values, we take as limit value of n the 82nd percentile of
the interval [n− c, n+ c]. c is fixed at 100 up to n = 1000, then to 350. It is
clearly a matter of a purely empirical choice that does not require the force
of a demonstration. The result corresponds roughly to what we perceive as
the gap, with the understanding that a zone of uncertainty will always exist,
since the gap is not entirely devoid of points. Figure 2 shows the resulting
image.

6.3.3 Characteristics of numbers “above”

We will henceforth designate as A the set of abscissae of points classified
“above” the gap by the method that we have used. Of the numbers between
301 and 10 000, 18.2% are found in A– 1767 values.

In this section, we are looking for the properties of these numbers.
Philippe Guglielmetti has already remarked that the prime numbers and
the powers of two seem to situate themselves more frequently above the gap.
The idea is that certain classes of numbers that are particularly simple or of
particular interest to the mathematician are over-represented.
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Squares

83 square numbers are found between 301 and 10 000. Among these,
79 are located above the gap, and 4 below the gap, namely, numbers 361,
484, 529, and 676. Although they may not be elements of A, these num-
bers are close to the boundary. One can verify that they collectively realize
the local maximums for ln(N) in the set of numbers classified under the
cloud. One has, for example, N(361) = 1376, which is the local maximum of
{N (n) , n ∈ [325, 10 000] \A}. For each of these four numbers, Table 1 gives
the number of occurrences N in Sloane’s list, as well as the value limit that
they would have to attain to belong to A.

95.2% of squares are found in A, as opposed to 17.6% of non-squares.
The probability that a square number will be in A is thus 5.4 times greater
than that for the other numbers.

n N (n) value limit
361 1376 1481
484 976 1225
529 962 1065
676 706 855

Table 1–List of the square numbers n found between 301 and 10 000 not
belonging to A, together with their frequency of occurrence and the value of

N(n) needed for n to be classified in A.

Prime numbers

The interval under consideration contains 1167 prime numbers. Among
them, 3 are not in A: the numbers 947, 8963, and 9623. These three numbers
are very close to the boundary. 947 appears 583 times, while the limit of A
is 584. Numbers 8963 and 6923 appear 27 times each, and the common limit
is 28.

99.7% of prime numbers belong to A, and 92.9% of non-prime numbers
belong to the complement of A. The probability that a prime number will
belong to A is thus 14 times greater than the same probability for a non-prime
number.
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A multitude of factors

Another class of numbers that is seemingly over-represented in set A is
the set of integers that have “a multitude of factors”. This is based on the
observation that the probability of belonging to A increases with the number
of prime factors (counted with their multiples), as can be seen in Figure 3. To
refine this idea we have selected the numbers n of which the number of prime
factors (with their multiplicty) exceeds the 95th percentile, corresponding to
the interval [n− 100, n+ 100].

811 numbers meet this criterion. Of these, 39% are found in A, as opposed
to 16.3% for the other numbers. The probability that a number that has a
multitude of prime factors will belong to A is thus 2.4 times greater than
the same probability for a number that has a smaller number of factors.
Table 2 shows the composition of A as a function of the classes that we have
considered.
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Figure 6.3: For each number of prime factors (counted with their multiples)
one presents, the proportion of integers belonging to A is given. For the
interval determined above, all numbers with at least 10 factors are in A.

class number in A % of A % (cumulated)
primes 1164 65.9 65.9
squares 79 4.5 70.4

many factors 316 17.9 87.9

Table 2–For each class of numbers discussed above, they give the number of
occurrences in A, the corresponding percentage and the cumulative

percentage in A.

143



Other cases

The set A thus contains almost all prime numbers, 95% of squares, and
a significant percentage of numbers that have a multitude of factors and
all the numbers possessing at least ten prime factors (counted with their
multiplicity).

These different classes of numbers by themselves represent 87.9% of A.
Among the remaining numbers, some evince outstanding properties, for ex-
ample, linked to decimal notation, as in: 1111, 2222, 3333. . .. Others have
a simple form, such as 1023, 1025, 2047, 2049... that are written 2n + 1 or
2n − 1.

When these cases that for one reason or another possess an evident “sim-
plicity” are eliminated, there remains a proportion of less than 10% of num-
bers in A for which one cannot immediately discern any particular property.

6.4 Explanation of the cloud-shape formation

6.4.1 Overview of the theory of algorithmic complexity

Save in a few exceptional cases, for a number to possess a multitude
of properties implies that the said properties are simple, where simple is
taken to mean “what may be expressed in a few words”. Conversely, if a
number possesses a simple property, then it will possess many properties.
For example, if n is a multiple of 3, then n will be a even multiple of 3
or a odd multiple of 3. Being a “even multiple of 3” or “odd multiple of
3” is a little more complex than just being a “multiple of 3”, but it is still
simple enough, and one may further propose that many sequences in Sloane’s
database are actually sub-sequences of other, simpler ones. In specifying a
simple property, its definition becomes more complex (by generating a sub-
sequence of itself), but since there are many ways to specify a simple property,
any number that possesses a simple property necessarily possesses numerous
properties that are also simple.

The property of n corresponding to a high value of N(n) thus seems
related to the property of admitting a “simple” description. The value N(n)
appears in this context as an indirect measure of the simplicity of n, if one
designates as “simple” the numbers that have properties expressible in a few
words.
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Algorithmic complexity theory[6, 2, 7] assigns a specific mathematical
sense to the notion of simplicity, as the objects that “can be described with
a short definition”. Its modern formulation can be found in the work of Li
and Vitanyi[8], and Calude[1].

Briefly, this theory proposes to measure the complexity of a finite object in
binary code (for example, a number written in binary notation) by the length
of the shortest program that generates a representation of it. The reference
to a universal programming language (insofar as all computable functions can
possess a program) leads to a theorem of invariance that warrants a certain
independence of the programming language.

More precisely, if L1 and L2 are two universal languages, and if one notes
KL1 (resp. KL2) algorithmic complexity defined with reference to L1 (resp.
to L2), then there exists a constant c such that |KL1(s)−KL2(s)| < c for all
finite binary sequences s.

A theorem (see for example [theorem 4.3.3. page 253 in [8]]) links the
probability of obtaining an object s (by activating a certain type of universal
TM–called optimal–running on binary input where the bits are chosen uni-
formly random) and its complexity K(s). The rationale of this theorem is
that if a number has many properties then it also has a simple property.

The translation of this theorem for N(n) is that if one established a
universal language L, and established a complexity limit M (only admitting
descriptions of numbers capable of expression in fewer than M symbols), and
counted the number of descriptions of each integer, one would find that N(n)

M

(where M =
∑

i∈N N(i)) is approximately proportional to: 1
2K(n) :

N(n)

M
=

1

2K(n)+O(ln(ln(n)))
.

Given that K(n) is non computable because of the undecidability of the
halting problem and the role of the additive constants involved, a precise
calculation of the expected value of N(n) is impossible. By contrast, the
strong analogy between the theoretical situation envisaged by algorithmic
complexity and the situation one finds when one examines N(n) inferred from
Sloane’s database, leads one to think that N(n) should be asymptotically
dependent on 1

2K(n) . Certain properties of K(n) are obliquely independent of
the reference language chosen to define K. The most important of these are:

– K(n) < log2(n) + 2 log2(log2(n)) + c′ (c′ a constant)
– the proportion of n of a given length (when written in binary) for which
K(n) recedes from log2(n) decreases exponentially (precisely speaking,
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less than an integer among 2q of length k, has an algorithmic complexity
K(n) ≤ k − q).

In graphic terms, these properties indicate that the cloud of points ob-
tained from writing the following 1

2K(n) would be situated above a curve de-
fined by

f(n) ≈
h

2log2(n)
=

h

n

(h being a constant), and that all the points cluster on the curve, with the
density of the points deviating from the curve decreasing rapidly.

This is indeed the situation we observe in examining the curve giving
N(n). The theory of algorithmic information thus provides a good descrip-
tion of what is observable from the curve N(n). That justifies an a posteriori
recourse to the theoretical concepts of algorithmic complexity in order to
understand the form of the curve N(n). By contrast, nothing in the theory
leads one to expect a gap like the one actually observed. To the contrary,
continuity of form is expected from the fact that n + 1 is never much more
complex than n.

To summarize, ifN(n) represented an objective measure of the complexity
of numbers (the larger N(n) is, the simpler n ), these values would then
be comparable to those that yield 1

2K(n) . One should thus observe a rapid
decrease in size, and a clustering of values near the base against an oblique
curve, but one should not observe a gap, which presents itself here as an
anomaly.

To confirm the conclusion that the presence of the gap results from spe-
cial factors and render it more convincing, we have conducted a numerical
experiment.

We define random functions f in the following manner (thanks to the
algebraic system Mathematica):

1. Choose at random a number i between 1 and 5 (bearing in mind in the
selection the proportions of functions for which i = 1, i = 2, . . ., i = 5
among all those definable in this way).

2. If i = 1, f is defined by choosing uniformly at random a constant k ∈
{1, ..., 9}, a binary operator ϕ from among the following list: +, ×, and
subtraction sign, in a uniform manner, and a unary operand g that is
identity with probability .8, and the function squared with probability
.2 (to reproduce the proportions observed in Sloane’s database). One
therefore posits fi(n) = ϕ(g(n), k).
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Figure 6.4: Graph of N(n) obtained with random functions, similar to that
belonging to Sloane’s Database (Figure 1). Eight million values have been
generated.

3. If i ≥ 2, fi is defined by fi(n) = ϕ(g(fi−1(n)), k), where k is a random
integer found between 1 and 9, g and ϕ are selected as described in
the point 2 (above), and fi−1 is a random function selected in the same
manner as in 2.

For each function f that is generated in this way, one calculates f(n)
for n = 1,. . . , 20. These terms are regrouped and counted as for N(n). The
results appear in Figure 4. The result confirms what the relationship with
algorithmic complexity would lead us to expect. There is a decreasing oblique
curve with a mean near 0, with clustering of the points near the base, but
no gap.

6.4.2 The gap: A social effect?

This anomaly with respect to the theoretical implications and modeling
is undoubtedly a sign that what one sees in Sloane’s database is not a simple
objective measure of complexity (or of intrinsic mathematical interest), but
rather a trait of psychological or social origin that mars its pure expression.
That is the hypothesis that we propose here. Under all circumstances, a
purely mathematical vision based on algorithmic complexity would encounter
an obstacle here, and the social hypothesis is both simple and natural owing
to the fact that Sloane’s database, while it is entirely “objective”, is also a
social construct.
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Figure 6.5: The top figure above represents the local distribution of N ex-
pected without taking into account the social factor.

Figure 5 illustrates and specifies our hypothesis that the mathematical
community is particularly interested in certain numbers of moderate or weak
complexity (in the central zone or on the right side of the distribution), and
this interest creates a shift toward the right-hand side of one part of the
distribution (schematized here by the grey arrow). The new distribution
that develops out of it (represented in the bottom figure) presents a gap.

We suppose that the distribution anticipated by considerations of com-
plexity is deformed by the social effect concomitant with it: mathematicians
are more interested in certain numbers that are linked to selected properties
by the scientific community. This interest can have cultural reasons or math-
ematical reasons (as per results already obtained), but in either case it brings
with it an over-investment on the part of the mathematical community. The
numbers that receive this specific over-investment are not in general complex,
since interest is directed toward them because certain regularities have been
discovered in them. Rather, these numbers are situated near the pinnacle
of a theoretical asymmetrical distribution. Owing to the community’s over-
investment, they are found to have shifted towards the right-hand side of the
distribution, thus explaining Sloane’s gap.

It is, for example, what is generated by numbers of the form 2n + 1, all
in A, because arithmetical results can be obtained from this type of number
that are useful to prime numbers. Following some interesting preliminary
discoveries, scientific investment in this class of integers has become intense,
and they appear in numerous sequences. Certainly, 2n + 1 is objectively a
simple number, and thus it is normal that it falls above the gap. Nevertheless,
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the difference in complexity between 2n + 1 and 2n + 2 is weak. We suppose
that the observed difference also reflects a social dynamic which tends to
augment N(2n + 1) for reasons that complexity alone would not entirely
explain.

6.5 Conclusion

The cloud of points representing the function N presents a general form
evoking an underlying function characterized by rapid decrease and “cluster-
ing near the base” (local asymmetrical distribution). This form is explained,
at least qualitatively, by the theory of algorithmic information.

If the general cloud formation was anticipated, the presence of Sloane’s
gap has, by contrast, proved more challenging to its observers. This gap has
not, to our knowledge, been successfully explained on the basis of uniquely
numerical considerations that are independent of human nature as it impinges
on the work of mathematics. Algorithmic complexity anticipates a certain
“continuity” of N , since the complexity of n+ 1 is always close to that of n.
The discontinuity that is manifest in Sloane’s gap is thus difficult to attribute
to purely mathematical properties independent of social contingencies.

By contrast, as we have seen, it is explained very well by the conduct
of research that entails the over-representation of certain numbers of weak
or medium complexity. Thus the cloud of points representing the function
N shows features that can be understood as being the result of at the same
time human and purely mathematical factors.
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Chapitre 7

On the Algorithmic Nature of
the World

Published in H. Zenil and J-P. Delahaye, “On the Algorithmic

Nature of the World”, in G. Dodig-Crnkovic and M. Burgin
(eds), Information and Computation, World Scientific, 2010.

7.1 Introduction

We propose a test based on the theory of algorithmic complexity and an
experimental evaluation of Levin’s universal distribution to identify evidence
in support of or in contravention of the claim that the world is algorith-
mic in nature. To this end we have undertaken a statistical comparison of
the frequency distributions of data from physical sources on the one hand–
repositories of information such as images, data stored in a hard drive, com-
puter programs and DNA sequences–and the frequency distributions gener-
ated by purely algorithmic means on the other–by running abstract comput-
ing devices such as Turing machines, cellular automata and Post Tag systems.
Statistical correlations were found and their significance measured.

A statistical comparison has been undertaken of the frequency distribu-
tions of data stored in physical repositories on the one hand–DNA sequences,
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images, files in a hard drive–and of frequency distributions produced by
purely algorithmic means on the other–by running abstract computational
devices like Turing machines, cellular automata and Post Tag systems.

A standard statistical measure is adopted for this purpose. The Spearman
rank correlation coefficient quantifies the strength of the relationship between
two variables, without making any prior assumption as to the particular
nature of the relationship between them.

7.1.1 Levin’s universal distribution

Consider an unknown operation generating a binary string of length k
bits. If the method is uniformly random, the probability of finding a par-
ticular string s is exactly 2−k, the same as for any other string of length k.
However, data is usually produced not at random but by a process. There
is a measure which describes the expected output frequency distribution of
an abstract machine running a program. A process that produces a string s
with a program p when executed on a universal Turing machine T has prob-
ability m(s). As p is itself a binary string, m(s) can be defined as being the
probability that the output of a universal prefix Turing machine T is s when
provided with a sequence of fair coin flip inputs interpreted as a program.
Formally,

m(s) = ΣT (p)=s2
−|p| (7.1)

where the sum is over all halting programs p for which T outputs the string
s, with |p| the length of the program p. As T is a prefix universal Turing
machine, the set of valid programs forms a prefix-free set 1 and thus the sum
is bounded due to Kraft’s inequality. For technical details see [1, 9, 3].

Formulated by Leonid Levin[8], m has many remarkable properties[7].
It is closely related to the concept of algorithmic complexity[2] in that the
largest value of the sum of programs is dominated by the shortest one, so
one can actually write m(s) as follows:

m(s) = 2−K(s)+O(1) (7.2)

In a world of computable processes, m(s) establishes that simple patterns
which result from simple processes are likely, while complicated patterns

1. No element is a prefix of any other, a property necessary to keep 0 < m(s) < 1 for
all s and therefore a valid probability measure
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produced by complicated processes (long programs) are relatively unlikely.

It is worth noting that, unlike other probability measures, m is not only
a probability distribution establishing that there are some objects that have
a certain probability of occurring according to said distribution, it is also a
distribution specifying the order of the particular elements in terms of their
individual algorithmic complexity.

7.2 The null hypothesis

When looking at a large-enough set of data following a distribution, one
can in statistical terms safely assume that the source generating the data
is of the nature that the distribution suggests. Such is the case when a set
of data follows, for example, a Gaussian distribution, where depending on
certain statistical variables, one can say with a high degree of certitude that
the process generating the data is of a random nature.

When observing the world, the outcome of a physical phenomenon f can
be seen as the result of a natural process P . One may ask how the probability
distribution of a set of process of the type of P looks like.

If one would like to know whether the world is algorithmic in nature
one would need first to tell how an algorithmic world would look like. To
accomplish this, we’ve conceived and performed a series of experiments to
produce data by purely algorithmic means in order to compare sets of data
produced by several physical sources. At the right level a simplification of the
data sets into binary language seems always possible. Each observation can
measure one or more parameters (weight, location, etc.) of an enumeration
of independent distinguishable values, a discrete sequence of values 2.

If there is no bias in the sampling method or the generating process
itself and no information about the process is known, the principle of
indifference[14] 3 states that if there are n > 1 possibilities mutually ex-
clusive, collectively exhaustive and only distinguishable for their names then
each possibility should be assigned a probability equal to 1/n as the simplest
non-informative prior. The null hypothesis to test is that the frequency dis-
tributions studied herein from several different independent sources are closer

2. This might be seen as an oversimplification of the concept of a natural process and of
its outcome when seen as a binary sequence, but the performance of a physical experiment
always yields data written as a sequence of individual observations as a valid sample of
certain phenomena.

3. also known as principle of insufficient reason.
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to the experimental calculation of Levin’s universal distribution than to the
uniform (simplest non-informative prior) distribution. To this end average
output frequency distributions by running abstract computing devices such
as cellular automata, Post tag systems and Turing machines were produced
on the one hand, and by collecting data to build distributions of the same
type from the physical world on the other.

7.2.1 Frequency distributions

The distribution of a variable is a description of the relative number of
times each possible outcome occurs in a number of trials. One of the most
common probability distributions describing physical events is the normal
distribution, also known as the Gaussian or Bell curve distribution, with
values more likely to occur due to small random variations around a mean.

There is also a particular scientific interest in power-law distributions,
partly from the ease with which certain general classes of mechanisms gener-
ate them. The demonstration of a power-law relation in some data can point
to specific kinds of mechanisms that might underlie the natural phenomenon
in question, and can indicate a connection with other, seemingly unrelated
systems.

As explained however, when no information is available, the simplest
distribution one can assume is the uniform distribution, in which values are
equally likely to occur. In a macroscopic system at least, it must be assumed
that the physical laws which govern the system are not known well enough
to predict the outcome. If one does not have any reason to choose a specific
distribution and no prior information is available, the uniform distribution
is the one making no assumptions according to the principle of indifference.
This is supposed to be the distribution of a balanced coin, an unbiased die
or a casino roulette where the probability of an outcome ki is 1/n if ki can
take one of n possible different outcomes.

7.2.2 Computing abstract machines

An abstract machine consists of a definition in terms of input, output, and
the set of allowable operations used to turn the input into the output. They
are of course algorithmic by nature (or by definition). Three of the most
popular models of computation in the field of theoretical computer science
were resorted to produce data of a purely algorithmic nature: these were
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deterministic Turing machines (denoted by TM), one-dimensional cellular
automata (denoted by CA) and Post Tag systems (TS).

The Turing machine model represents the basic framework underlying
many concepts in computer science, including the definition of algorithmic
complexity cited above. The cellular automaton is a well-known model which,
together with the Post Tag system model, has been studied since the foun-
dation of the field of abstract computation by some of its first pioneers. All
three models are Turing-complete. The descriptions of the models follow
formalisms used in [15].

Deterministic Turing machines

The Turing machine description consists of a list of rules (a finite pro-
gram) capable of manipulating a linear list of cells, called the tape, using an
access pointer called the head. The finite program can be in any one of a
finite set of states Q numbered from 1 to n, with 1 the state at which the
machine starts its computation. Each tape cell can contain 0 or 1 (there is no
special blank symbol). Time is discrete and the steps are ordered from 0 to
t with 0 the time at which the machine starts its computation. At any given
time, the head is positioned over a particular cell and the finite program
starts in the state 1. At time 0 all cells contain the same symbol, either 0 or
1. A rule i can be written in a 5-tuple notation as follows {si, ki, s

′
i, k

′
i, di},

where si is the tape symbol the machine’s head is scanning at time t, ki the
machine’s current ’state’ (instruction) at time t, s′i a unique symbol to write
(the machine can overwrite a 1 on a 0, a 0 on a 1, a 1 on a 1, or a 0 on a 0) at
time t+1, k′

i a state to transition into (which may be the same as the one it
was already in) at time t+1, and di a direction to move in time t+1, either to
the right (R) cell or to the left (L) cell, after writing. Based on a set of rules
of this type, usually called a transition table, a Turing machine can perform
the following operations: 1. write an element from A = {0, 1}, 2. shift the
head one cell to the left or right, 3. change the state of the finite program
out of Q. When the machine is running it executes the above operations at
the rate of one operation per step. At a time t the Turing machine produces
an output described by the contiguous cells in the tape visited by the head.

Let T (0), T (1), . . . , T (n), . . . be a natural recursive enumeration of all 2-
symbol deterministic Turing machines. One can, for instance, begin enu-
merating by number of states, starting with all 2-state Turing machines,
then 3-state, and so on. Let n, t and k be three integers. Let s(T (n), t)
be the part of the contiguous tape cells that the head visited after t
steps. Let’s consider all the k-tuples, i.e. all the substrings of length k
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from s(T (n), t) = {s1, s2, . . . , su}, i.e. the following u − k + 1 k-tuples:
{(s1, . . . , sk), (s2, . . . , sk+1), . . . , (su−k+1, . . . , su)}.

Now let N be a fixed integer. Let’s consider the set of all the k-tuples
produced by the first N Turing machines according to a recursive enumer-
ation after running for t steps each. Let’s take the count of each k-tuple
produced.

From the count of all the k-tuples, listing all distinct strings together with
their frequencies of occurrence, one gets a probability distribution over the
finite set of strings in {0, 1}k.

For the Turing machines the experiments were carried out with 2-symbol
3-state Turing machines. There are (4n)2n possible different n-state 2-symbol
Turing machines according to the 5-tuple rule description cited above. There-
fore (4 × 3)(2×3) = 2985984 2-symbol 3-state Turing machines. A sample of
2000 2-symbol 3-state Turing machines was taken. Each Turing machine’s
runtime was set to t = 100 steps starting with a tape filled with 0s and
then once again with a tape filled with 1s in order to avoid any undesired
asymmetry due to a particular initial set up.

One-dimensional Cellular Automata

An analogous standard description of one-dimensional 2-color cellular au-
tomata was followed. A one-dimensional cellular automaton is a collection
of cells on a row that evolves through discrete time according to a set of
rules based on the states of neighboring cells that are applied in parallel to
each row over time. When the cellular automaton starts its computation, it
applies the rules at a first step t = 0. If m is an integer, a neighborhood of
m refers to the cells on both sides, together with the central cell, that the
rule takes into consideration at row t to determine the value of a cell at the
step t + 1. If m is a fraction of the form p/q, then p− 1 are the cells to the
left and q − 1 the cells to the right taken into consideration by the rules of
the cellular automaton.

For cellular automata, the experiments were carried out with 3/2-range
neighbor cellular automata starting from a single 1 on a background of 0s
and then again starting from a single 0 on a background of 1s to avoid any
undesired asymmetry from the initial set up. There are 22m+1 possible states
for the cells neighboring a given cell (m at each side plus the central cell), and
two possible outcomes for the new cell; there are therefore a total of 22

2m+1

one-dimensional m-neighbor 2-color cellular automata, hence 22
(2×3/2)+1

=
65536 cellular automata with rules taking two neighbors to the left and one
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to the right. A sample of 2000 3/2-range neighbor cellular automata was
taken.

As for Turing machines, let A(1), A(2), . . . , A(n), . . . be a natural recursive
enumeration of one dimensional 2-color cellular automata. For example, one
can start enumerating them by neighborhood starting from range 1 (nearest-
neighbor) to 3/2-neighbor, to 2-neighbor and so on, but this is not mandatory.

Let n, t and k be three integers. For each cellular automaton A(n), let
s(A(n), t) denote the output of the cellular automata defined as the contigu-
ous cells of the last row produced after t = 100 steps starting from a single
black or white cell as described above, up to the length that the scope of
the application of the rules starting from the initial configuration may have
reached (usually the last row of the characteristic cone produced by a cellu-
lar automaton). As was done for Turing machines, tuples of length k were
extracted from the output.

Post Tag Systems

A Tag system is a triplet (m,A, P ), where m is a positive integer, called
the deletion number. A is the alphabet of symbols (in this paper a binary
alphabet). Finite (possibly empty) strings can be made of the alphabet A.
A computation by a Tag system is a finite sequence of strings produced by
iterating a transformation, starting with an initially given initial string at
time t = 0. At each iteration m elements are removed from the beginning
of the sequence and a set of elements determined by the production rule P
is appended onto the end, based on the elements that were removed from
the beginning. Since there is no generalized standard enumeration of Tag
systems 4, a random set of rules was generated, each rule having equal prob-
ability. Rules are bound by the number of r elements (digits) on the left
and right hand blocks of the rule. There are a total of (kr + 1− 1)/(k − 1)k

n

possible rules if blocks up to length r can be added at each step. For r = 3,
there are 50625 different 2-symbol Tag systems with deletion number 2. In
this experiment, a sample of 2000 2-Tag systems (Tag systems with deletion
number 2) were used to generate the frequency distributions of Tag systems
to compare with.

An example of a rule is {0 → 10, 1 → 011, 00 → ǫ, 01 → 10, 10 → 11},
where no term on any side has more than 3 digits and there is no fixed
number of elements other than that imposed to avoid multiple assignations
of a string to several different, i.e. ambiguous, rules. The empty string ǫ can

4. To the authors’ knowledge.
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Figure 7.1: The output frequency distributions from running abstract com-
puting machines. The x-axis shows all the 2k tuples of length k sorted from
most to least frequent. The y-axis shows the frequency values (probability
between 0 and 1) of each tuple on the x-axis.

only occur among the right hand terms of the rules. The random generation
of a set of rules yields results equivalent to those obtained by following and
exhausting a natural recursive enumeration.

As an illustration 5, assume that the output of the first 4 Tur-
ing machines following an enumeration yields the output strings 01010,
11111, 11111 and 01 after running t = 100 steps. If k = 3,
the tuples of length 3 from the output of these Turing machines
are: ((010, 101, 010), (111, 111, 111), (111, 111, 111)); or grouped and sorted
from higher to lower frequency: (111, 010, 101) with frequency val-
ues 6, 2, and 1 respectively. The frequency distribution is therefore
((111, 2/3), (010, 2/9), (101, 1/9)), i.e. the string followed by the count di-
vided by the total. If the strings have the same frequency value they are
lexicographically sorted.

The output frequency distributions produced by abstract machines as de-
scribed above are evidently algorithmic by nature (or by definition), and they
will be used both to be compared one to each other, and to the distributions
extracted from the physical real world.

7.2.3 Physical sources

Samples from physical sources such as DNA sequences, random images
from the web and data stored in a hard drive were taken and transformed

5. For illustration only no actual enumeration was followed.
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into data of the same type (i.e. binary tuples) of the produced by the
abstract computing machines. We proceeded as follows: a representative
set of random images was taken from the web using the random image
function available online at the Wikipedia Creative Commons website at
http://commons.wikimedia.org/wiki/Special:Random/File (as of May, 2009),
none of them larger than 1500 linear pixels 6 to avoid any bias due to very
large images. All images were transformed using the Mathematica function
Binarize that converts multichannel and color images into black-and-white
images by replacing all values above a globally determined threshold. Then
all the k-tuples for each row of the image were taken and counted, just as if
they had been produced by the abstract machines from the previous section.

Another source of physical information for comparative purposes was a
random selection of human gene sequences of Deoxyribonucleic acid (or sim-
ply DNA). The DNA was extracted from a random sample of 100 different
genes (the actual selection is posted in the project website cited in section
8.9).

There are four possible encodings for translating a DNA sequence into
a binary string using a single bit for each letter: {G → 1, T → 1, C →
0, A → 0}, {G → 0, T → 1, C → 0, A → 1}, {G → 1, T → 0, C →
1, A → 0}, {G → 0, T → 0, C → 1, A → 1}.

To avoid any artificially induced asymmetries due to the choice of a par-
ticular encoding, all four encodings were applied to the same sample to build
a joint frequency distribution. All the k-tuples were counted and ranked
likewise.

There might be still some biases by sampling genes rather than sampling
DNA segments because genes might be seen as conceived by researchers to
focus on functional segments of the DNA. We’ve done however the same
experiments taking only a sample of a sample of genes, which is not a gene by
itself but a legitimate sample of the DNA, producing the same results (i.e. the
distributions remain stable). Yet, the finding of a higher algorithmicity when
taking gene samples as opposed to DNA general sampling might suggest that
effectively there is an embedded encoding for genes in the DNA as functional
subprograms in it, and not a mere research convenience.

A third source of information from the real world was a sample of data
contained in a hard drive. A list of all the files contained in the hard drive was
generated using a script, and a sample of 100 files was taken for comparison,
with none of the files being greater than 1 Mb in order to avoid any bias due

6. The sum of the width and height.
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to a very large file. The stream was likewise cut into k-tuples, counted and
ranked to produce the frequency distribution, as for DNA. The count of each
of the sources yielded a frequency distribution of k-tuples (the binary strings
of length k) to compare with.

One may think that data stored in a hard drive already has a strong
algorithmic component by the way that it has been produced (or stored in
a digital computer) and therefore it makes no or less sense to compare with
to any of the algorithmic or empirical distributions. It is true that the data
stored in a hard drive is in the middle of what we may consider the abstract
and the physical worlds, which makes it however interesting as an experiment
by its own from our point of view. But more important, data stored in a
hard drive is of very different nature, from text files subject to the rules of
language, to executable programs, to music and video, all together in a single
repository. Hence, it is not obvious at all why a frequency distribution from
such a rich source of different kind of data might end up resembling to other
distributions produced by other physical sources or by abstract machines.

7.2.4 Hypothesis testing

The frequency distributions generated by the different sources were sta-
tistically compared to look for any possible correlation. A correlation test
was carried out and its significance measured to validate either the null hy-
pothesis or the alternative (the latter being that the similarities are due to
chance).

Each frequency distribution is the result of the count of the number of
occurrences of the k-tuples from which the binary strings of length k were
extracted. Comparisons were made with k set from 4 to 7.

Spearman’s rank correlation coefficient

The Spearman rank correlation coefficient[13] is a non-parametric mea-
sure of correlation that makes no assumptions about the frequency distribu-
tion of the variables. Spearman’s rank correlation coefficient is equivalent to
the Pearson correlation on ranks. Spearman’s rank correlation coefficient is
usually denoted by the Greek letter ρ.

The Spearman rank correlation coefficient is calculated as follows:

ρ = 1− ((6
∑

d2i )/(n(n
2 − 1))) (7.3)

162



where di is the difference between each rank of corresponding values of x and
y, and n the number of pairs of values.

Spearman’s rank correlation coefficient can take real values from -1 to 1,
where -1 is a perfect negative (inverse) correlation, 0 is no correlation and 1
is a perfect positive correlation.

The approach to testing whether an observed ρ value is significantly dif-
ferent from zero, considering the number of elements, is to calculate the
probability that it would be greater than or equal to the observed ρ given
the null hypothesis using a permutation test[6] to ascertain that the obtained
value of ρ obtained is unlikely to occur by chance (the alternative hypothesis).
The common convention is that if the value of ρ is between 0.01 and 0.001
the correlation is strong enough, indicating that the probability of having
found the correlation is very unlikely to be a matter of chance, since it would
occur one time out of hundred (if closer to 0.01) or a thousand (if closer to
0.001), while if it is between 0.10 and 0.01 the correlation is said to be weak,
although yet quite unlikely to occur by chance, since it would occur one time
out of ten (if closer to 0.10) or a hundred (if closer to 0.01) 7. The lower the
significance level, the stronger the evidence in favor of the null hypothesis.
Tables 7.2.4, 7.2.4, 7.2.4 and 7.2.4 show the Spearman coefficients between
all the distributions for a given tuple length k.

When graphically compared, the actual frequency values of each tuple
among the 2k unveil a correlation in values along different distributions. The
x and y axes are in the same configuration as in the graph 8.3: The x-axis
plots the 2k tuples of length k but unlike the graph 8.3 they are lexicograph-
ically sorted (as the result of converting the binary string into a decimal
number). The table 7.2.4 shows this lexicographical order as an illustration
for k = 4. The y-axis plots the frequency value (probability between 0 and
1) for each tuple on the x-axis.

7.2.5 The problem of overfitting

When looking at a set of data following a distribution, one can safely
claim in statistical terms that the source generating the data is of the nature
that the distribution suggests. Such is the case when a set of data follows a
model, where depending on certain variables, one can say with some degree
of certitude that the process generating the data follows the model.

7. Useful tables with the calculation of levels of significance for different numbers of
ranked elements are available online (e.g. at http://www.york.ac.uk/depts/
maths/histstat/tables/spearman.ps as of May 2009).
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Cellular automata distribution Hard drive distribution
rank string (s) count

(pr(s))
1 1111 .35
2 0000 .34
3 1010 .033
4 0101 .032
5 0100 .026
6 0010 .026
7 0110 .025
8 1011 .024
9 1101 .023
10 1001 .023
11 0011 .017
12 0001 .017
13 1000 .017
14 1100 .016
15 0111 .016
16 1110 .017

rank string (s) count
(pr(s))

1 1111 .093
2 0000 .093
3 1110 .062
4 1000 .062
5 0111 .062
6 0001 .062
7 0100 .06
8 0010 .06
9 1101 .06
10 1011 .06
11 1100 .056
12 0011 .056
13 1001 .054
14 0110 .054
15 1010 .054
16 0101 .054

Table 7.1: Examples of frequency distributions of tuples of length k = 4,
one from random files contained in a hard drive and another produced by
running cellular automata. There are 24 = 16 tuples each followed by its
count (represented as a probability value between 0 and 1).

164



Figure 7.2: Frequency distributions of the tuples of length k from physical
sources: binarized random files contained in a hard drive (HD), binarized se-
quences of Deoxyribonucleic acid (DNA) and binarized random images from
the world wide web. The data points have been joined for clarity.
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Figure 7.3: Frequency distributions of the tuples of length k from abstract
computing machines: deterministic Turing machines (TM), one-dimensional
cellular automata (CA) and Post Tag systems (TS).
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Spearman coefficients for K = 4. Coefficients indicating a significant
correlation are indicated by † while correlations with higher significance are
indicated with ‡.

k = 4 HD ADN IMG TM CA TS
HD 1‡ 0.67‡ 0.4 0.29 0.5 0.27
DNA 0.67‡ 1‡ 0.026 0.07 0.39† 0.52†
IMG 0.4† 0.026 1‡ 0.31 0.044 0.24
TM 0.29 0.07 0.31 1‡ 0.37† 0.044
CA 0.5† 0.39† 0.044 0.37 1‡ 0.023
TS 0.27 0.52† 0.24 0.044 0.023 1‡

Spearman coefficients for K = 5.
k = 5 HD ADN IMG TM CA TS
HD 1‡ 0.62‡ 0.09 0.31† 0.4‡ 0.25†
ADN 0.62‡ 1‡ 0.30 0.11 0.39† 0.24†
IMG 0.09 0.30† 1‡ 0.32† 0.60‡ 0.10
TM 0.31† 0.11 0.32† 1‡ 0.24† 0.07
CA 0.4‡ 0.39† 0.24† 0.30† 1‡ 0.18
TS 0.25† 0.24† 0.10 0.18 0.021 1‡

However, a common problem is the problem of over fitting, that is, a
false model that may fit perfectly with an observed phenomenon 8. Levin’s
universal distribution, however, is optimal over all distributions[7], in the
sense that the algorithmic model is by itself the simplest possible model
fitting the data if produced by some algorithmic process. This is because m
is precisely the result of a distribution assuming the most simple model in
algorithmic complexity terms, in which the shortest programs produce the
elements leading the distribution. That doesn’t mean, however, that it must
necessarily be the right or the only possible model explaining the nature of the
data, but the model itself is ill suited to an excess of parameters argument.
A statistical comparison cannot actually be used to categorically prove or
disprove a difference or similarity, only to favor one hypothesis over another.

7.3 Possible applications

Common data compressors are of the entropy coding type. Two of the
most popular entropy coding schemes are the Huffman coding and the arith-

8. For example, Ptolemy’s solar system model.
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Spearman coefficients for K = 6.
k = 6 HD ADN IMG TM CA TS
HD 1‡ 0.58‡ 0 0.27† 0.07 0.033
DNA 0.58‡ 1‡ 0 0.12 0.14 0
IMG 0 0 1‡ 0.041 0.023 0.17†
TM 0.27† 0.12 0.041 1‡ 0 0
CA 0.07 0.14 0.023 0 1‡ 0.23†
TS 0.033 0 0.17† 0 0.23† 1‡

Spearman coefficients for K = 7.
k = 7 HD ADN IMG TM CA TS
HD 1‡ 0 0.091† 0.073 0 0.11†
DNA 0 1‡ 0.07 0.028 0.12 0.019
IMG 0.091† 0.07 1‡ 0.08† 0.15‡ 0
TM 0.073 0.028 0.08† 1‡ 0.03 0.039
CA 0 0.12 0.15‡ 0.03 1‡ 0
TS 0.11† 0.019 0 0.039 0 1‡

metic coding. Entropy coders encode a given set of symbols with the min-
imum number of bits required to represent them. These compression al-
gorithms assign a unique prefix code to each unique symbol that occurs in
the input, replacing each fixed-length input symbol by the corresponding
variable-length prefix codeword. The length of each codeword is approxi-
mately proportional to the negative logarithm of the probability. Therefore,
the most common symbols use the shortest codes.

Another popular compression technique based on the same principle is the
run-length encoding (RLE) 9, wherein large runs of consecutive identical data
values are replaced by a simple code with the data value and length of the
run. This is an example of lossless data compression. However, none of these
methods seem to follow any prior distribution 10, which means all of them
are a posteriori techniques that after analyzing a particular image set their
parameters to better compress it. A sort of prior compression distributions
may be found in the so-called dictionary coders, also sometimes known as
substitution coders, which operate by searching for matches between the text
to be compressed and a set of strings contained in a static data structure.

In practice however, it is usually assumed that compressing an image

9. Implementations in different programming languages of the run-length encoding are
available at http://rosettacode.org/wiki/Run-length encoding
10. The authors were unable to find any reference to a general prior image compression

distribution.
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llustration of the simple lexicographical order of the 24 tuples of length k = 4
as plotted in the x-axis.
x-axis order tuple x-axis order tuple

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

is image dependent, i.e. different from image to image. This is true when
prior knowledge of the image is available, or there is enough time to spend
in analyzing the file so that a different compression scheme can be set up
and used every time. Effectively, compressors achieve greater rates because
images have certain statistical properties which can be exploited. But what
the experiments carried out here suggest for example is that a general op-
timal compressor for images based on the frequency distribution for images
can be effectively devised and useful in cases when neither prior knowledge
nor enough time to analyze the file is available. The distributions found,
and tested to be stable could therefore be used for prior image compression
techniques. The same sort of applications for other data sets can also be
made, taking advantage of the kind of exhaustive calculations carried out in
our experiments.

The procedure also may suggest a measure of algorithmicity relative to
a model of computation: a system is more or less algorithmic in nature if
it is more or less closer to the average distribution of an abstract model of
computation. It has also been shown[4] that the calculation of these distri-
butions constitute an effective procedure for the numerical evaluation of the
algorithmic complexity of short strings, and a mean to provide stability to
the definition–independent of additive constants–of algorithmic complexity.

7.4 The meaning of algorithmic

It may be objected that we have been careless in our use of the term
algorithmic, not saying exactly what we mean by it. Nevertheless, algorithmic
means nothing other than what this paper has tried to convey by the stance
we have taken over the course of its arguments.
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Figure 7.4: Comparisons of all frequency distributions of tuples of length k,
from physical sources and from abstract computing machines.

In our context, Algorithmic is the adjective given to a set of processes or
rules capable of being effectively carried out by a computer in opposition to
a truly (indeterministic) random process (which is uncomputable). Classical
models of computation 11 capture what an algorithm is but this paper (or
what it implies) experimentally conveys the meaning of algorithmic both in
theory and in practice, attempting to align the two. On the one hand, we
had the theoretical basis of algorithmic probability. On the other hand we
had the empirical data. We had no way to compare one with the other be-
cause of the non-computability of Levin’s distribution (which would allow us
to evaluate the algorithmic probability of an event). We proceeded, however,
by constructing an experimental algorithmic distribution by running abstract
computing machines (hence a purely algorithmic distribution), which we then
compared to the distribution of empirical data, finding several kinds of cor-
relations with different degrees of significance. For us therefore, algorithmic
means the exponential accumulation of pattern producing rules and the iso-
lation of randomness producing rules. In other words, the accumulation of
simple rules.

Our definition of algorithmic is actually much stronger than the one di-

11. Albeit assuming the Church-Turing thesis.
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rectly opposing true randomness. Because in our context something is al-
gorithmic if it follows an algorithmic distribution (e.g. the experimental
distribution we calculated). One can therefore take this to be a measure of
algorithmicity : the degree to which a data set approaches an experimentally
produced algorithmic distribution (assumed to be Levin’s distribution). The
closer it is to an algorithmic distribution the more algorithmic.

So when we state that a process is algorithmic in nature, we mean that
it is composed by simple and deterministic rules, rules producing patterns,
as algorithmic probability theoretically predicts. We think this is true of the
market too, despite its particular dynamics, just as it is true of empirical
data from other very different sources in the physical world that we have
studied.

7.5 Conclusions

Our findings suggest that the information in the world might be the re-
sult of processes resembling processes carried out by computing machines.
That does not necessarily imply a trivial reduction more than talking about
algorithmic simple rules generating the data as opposed to random or truly
complicated ones. Therefore we think that these correlations are mainly due
to the following reason: that general physical processes are dominated by
algorithmic simple rules. For example, processes involved in the replication
and transmission of the DNA have been found[10] to be concatenation, union,
reverse, complement, annealing and melting, all they very simple in nature.
The same kind of simple rules may be the responsible of the rest of empir-
ical data in spite of looking complicated or random. As opposed to simple
rules one may think that nature might be performing processes represented
by complicated mathematical functions, such as partial differential equations
or all kind of sophisticated functions and possible algorithms. This suggests
that the DNA carries a strong algorithmic component indicating that it has
been developed as a result of algorithmic processes over the time, layer after
layer of accumulated simple rules applied over and over.

So, if the distribution of a data set approaches a distribution produced by
purely algorithmic machines rather than the uniform distribution, one may
be persuaded within some degree of certainty, that the source of the data is of
the same (algorithmic) nature just as one would accept a normal distribution
as the footprint of a generating process of some random nature. The sce-
nario described herein is the following: a collection of different distributions
produced by different data sets produced by unrelated sources share some
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properties captured in their frequency distributions, and a theory explaining
the data (its regularities) has been presented in this paper.

There has hitherto been no way to either verify or refute the information-
theoretic notion, beyond the metaphor, of whether the universe can be con-
ceived as either the output of some computer program or as some sort of vast
digital computation device as suggested by some authors[5, 12, 15, 11].

We think we’ve devised herein a valid statistical test independent of any
bias toward either possibility. Some indications of correlations have been
found having weak to strong significance. This is the case with distributions
from the chosen abstract devices, as well as with data from the chosen phys-
ical sources. Each by itself turned out to show several degrees of correlation.
While the correlation between the two sets was partial, each distribution was
correlated with at least one distribution produced by an abstract model of
computation. In other words, the physical world turned out to be statistically
similar in these terms to the simulated one.
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Chapitre 8

An Algorithmic
Information-theoretic
Approach to the Behavior of
Financial Markets

Forthcoming in H. Zenil and J-P. Delahaye, An Algorithmic
Information-theoretic Approach to the Behavior of Financial
Markets themed issue on “Nonlinearity, Complexity and Ran-
domness”, Journal of Economic Surveys, 2011.

8.1 Introduction

Using frequency distributions of daily closing price time series of several
financial market indexes, we investigate whether the bias away from an
equiprobable sequence distribution found in the data, predicted by algorith-
mic information theory, may account for some of the deviation of financial
markets from log-normal, and if so for how much of said deviation and
over what sequence lengths. We do so by comparing the distributions of
binary sequences from actual time series of financial markets and series
built up from purely algorithmic means. Our discussion is a starting point
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for a further investigation of the market as a rule-based system with an
algorithmic component, despite its apparent randomness, and the use of
the theory of algorithmic probability with new tools that can be applied to
the study of the market price phenomenon. The main discussion is cast in
terms of assumptions common to areas of economics in agreement with an
algorithmic view of the market.

8.2 Preliminaries

One of the main assumptions regarding price modeling for option pricing
is that stock prices in the market behave as stochastic processes, that is, that
price movements are log-normally distributed. Unlike classical probability,
algorithmic probability theory has the distinct advantage that it can be used
to calculate the likelihood of certain events occurring based on their informa-
tion content. We investigate whether the theory of algorithmic information
may account for some of the deviation from log-normal of the data of price
movements accumulating in a power-law distribution.

We think that the power-law distribution may be an indicator of an
information-content phenomenon underlying the market, and consequently
that departures from log-normality can, given the accumulation of simple
rule-based processes—-a manifestation of hidden structural complexity—-be
accounted for by Levin’s universal distribution, which is compatible with
the distribution of the empirical data. If this is true, algorithmic probabil-
ity could supply a powerful set of tools that can be applied to the study of
market behavior. Levin’s distribution reinforces what has been empirically
observed, viz. that some events are more likely than others, that events
are not independent of each other, and that their distribution depends on
their information content. Levin’s distribution is not a typical probability
distribution inasmuch as it has internal structure placing the elements ac-
cording to their structure specifying their exact place in the distribution,
unlike other typical probability distributions that may indicate where some
elements accumulate without specifying the particular elements themselves.

The methodological discipline of considering markets as algorithmic is one
facet of the algorithmic approach to economics laid out in [32]. The focus is
not exclusively on the institution of the market, but also on agents (of every
sort), and on the behavioral underpinnings of agents (rational or otherwise)
and markets (competitive or not, etc.).
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We will show that the algorithmic view of the market as an alternative
interpretation of the deviation from log-normal behavior of prices in finan-
cial markets is also compatible with some common assumptions in classical
models of market behavior, with the added advantage that it points to the
iteration of algorithmic processes as a possible cause of the discrepancies
between the data and stochastic models.

We think that the study of frequency distributions and the application of
algorithmic probability could constitute a tool for estimating and eventually
understanding the information assimilation process in the market, making it
possible to characterize the information content of prices.

The paper is organized as follows: In 8.3 a simplified overview of the
basics of the stochastic approach to the behavior of financial markets is in-
troduced, followed by a section discussing the apparent randomness of the
market. In section 8.5, the theoretic-algorithmic approach we are proposing
herein is presented, preceded by a short introduction to the theory of algo-
rithmic information, and followed by a description of the hypothesis testing
methodology 8.6.4. In 8.7.2, tables of frequency distributions of price direc-
tion sequences for five different stock markets are compared to equiprobable
(normal independent) sequences of length 3 and 4 to length 10 and to the out-
put frequency distributions produced by algorithmic means. The alternative
hypothesis, that is that the market has an algorithmic component and that
algorithmic probability may account for some of the deviation of price move-
ments from log-normality is tested, followed by a backtesting section 8.7.2
before introducing further considerations in 8.8 regarding common assump-
tions in economics. The paper ends with a short section that summarizes
conclusions and provides suggestions for further work in 8.9.

8.3 The traditional stochastic approach

When events are (random) independent of each other they accumulate in
a normal (Gaussian) distribution. Stock price movements are for the most
part considered to behave independently of each other. The random-walk
like evolution of the stock market has motivated the use of Brownian motion
for modeling price movements.

Brownian motion and financial modeling have been historically tied
together[7], ever since Bachelier[2] proposed to model the price St of an asset
on the Paris stock market in terms of a random process of Brownian motion
Wt applied to the original price S0. Thus St = S0 + σWt.
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Figure 8.1: In a normal distribution
any event is more or less like any
other.

Figure 8.2: Events in a long-
tailed (power-law) distribution indi-
cate that certain days are not like any
others.

The process S is sometimes called a log (or geometric) Brownian motion.
Data of price changes from the actual markets are actually too peaked to be
related to samples from normal populations. One can get a more convoluted
model based on this process introducing or restricting the amount of random-
ness in the model so that it can be adjusted to some extent to account for
some of the deviation of the empirical data to the supposedly log-normality.

A practical assumption in the study of financial markets is that the forces
behind the market have a strong stochastic nature (see Figure 1 of a nor-
mal distribution and how a simulated market data may be forced to fit it).
The idea stems from the main assumption that market fluctuations can be
described by classical probability theory. The multiplicative version of Bache-
lier’s model led to the commonly used Black-Scholes model, where the log-
price St follows a random walk St = S0exp[σt + σWt].

The kind of distribution in which price changes accumulate is a power-law
in which high-frequency events are followed by low-frequency events, with the
short and very quick transition between them characterised by asymptotic
behavior. Perturbations accumulate and are more frequent than if normally
distributed, as happens in the actual market, where price movements ac-
cumulate in long-tailed distributions. Such a distribution often points to
specific kinds of mechanisms, and can often indicate a deep connection with
other, seemingly unrelated systems.
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As found by Mandelbrot[24] in the
60’s; prices do not follow a normal
distribution; suggesting as it seems
to be the case that some unexpected
events happen more frequently than
predicted by the Brownian motion
model. On the right one walk was
generated by taking the central col-
umn of a rule 30 cellular automa-
ton (CA), another walk by using
the RandomInteger[] random number
function built in Mathematica. Only
one is an actual sequence of price
movements for 3 000 closing daily
prices of the Dow Jones Index (DJI).
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Figure 8.3: Simulated Brownian
walks using a CA, a RNG and only
one a true segment of daily closing
prices of the DJI.

8.4 Apparent randomness in financial mar-

kets

The most obvious feature of essentially all financial markets is the appar-
ent randomness with which prices tend to fluctuate. Nevertheless, the very
idea of chance in financial markets clashes with our intuitive sense of the
processes regulating the market. All processes involved seem deterministic.
Traders do not only follow hunches but act in accordance with specific rules,
and even when they do appear to act on intuition, their decisions are not ran-
dom but instead follow from the best of their knowledge of the internal and
external state of the market. For example, traders copy other traders, or take
the same decisions that have previously worked, sometimes reacting against
information and sometimes acting in accordance with it. Furthermore, nowa-
days a greater percentage of the trading volume is handled electronically, by
computing systems (conveniently called algorithmic trading) rather than by
humans. Computing systems are used for entering trading orders, for decid-
ing on aspects of an order such as the timing, price and quantity, all of which
cannot but be algorithmic by definition.

Algorithmic however, does not necessarily mean predictable. Several types
of irreducibility, from non-computability to intractability to unpredictability,
are entailed in most non-trivial questions about financial markets, as shown
with clear examples in [32] and [33].
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Wolfram’s proposal for modeling
market prices would have a sim-
ple program generate the randomness
that occurs intrinsically. A plausi-
ble, if simple and idealised behavior is
shown in the aggregate to produce in-
trinsically random behavior similar to
that seen in price changes. In Figure
4, one can see that even in some of the
simplest possible rule-based systems,
structures emerge from a random-
looking initial configuration with low
information content. Trends and cy-
cles are to be found amidst apparent
randomness.

Figure 8.4: Patterns out of noth-
ing: random walk by 1 000 data
points generated using the Mathe-
matica pseudo-random number gen-
erator based on a deterministic cellu-
lar automaton.

In [33] Wolfram asks whether the market generates its own randomness,
starting from deterministic and purely algorithmic rules. Wolfram points out
that the fact that apparent randomness seems to emerge even in very short
timescales suggests that the randomness (or a source of it) that one sees in
the market is likely to be the consequence of internal dynamics rather than of
external factors. In economists’ jargon, prices are determined by endogenous
effects peculiar to the inner workings of the markets themselves, rather than
(solely) by the exogenous effects of outside events.

Wolfram points out that pure speculation, where trading occurs without
the possibility of any significant external input, often leads to situations in
which prices tend to show more, rather than less, random-looking fluctua-
tions. He also suggests that there is no better way to find the causes of
this apparent randomness than by performing an almost step-by-step simu-
lation, with little chance of beating the time it takes for the phenomenon to
unfold—-the time scales of real world markets being simply too fast to beat.
It is important to note that the intrinsic generation of complexity proves the
stochastic notion to be a convenient assumption about the market, but not
an inherent or essential one.

Economists may argue that the question is irrelevant for practical pur-
poses. They are interested in decomposing time-series into a non-predictable
and a presumably predictable signal in which they have an interest, what is
traditionally called a trend. Whether one, both or none of the two signals
is deterministic may be considered irrelevant as long as there is a part that
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An example of a simple model of the
market as shown in [33], where each
cell of a cellular automaton corre-
sponds to an entity buying or selling
at each step. The behavior of a given
cell is determined by the behavior
of its two neighbors on the step be-
fore according to a rule. The plot on
the left gives as a rough analog of a
market price differences of the total
numbers of black and white cells at
successive steps. A rule like rule 90
is additive, hence reversible, which
means that it does not destroy any
information and has “memory” un-
like the random walk model. Yet,
due to its random looking behavior,
it is not trivial shortcut the compu-
tation or foresee any successive step.
There is some randomness in the ini-
tial condition of the cellular automa-
ton rule that comes from outside the
model, but the subsequent evolution
of the system is fully deterministic.
The way the series plot is calculated

is written in Mathematica as follows
Accumulate[Total/@(CA/.{0 → −1})]
with CA the output evolution of rule
90 after 100 steps.

Figure 8.5: On the top, the rule 90
instruction table. On the left the evo-
lution of rule 90 from a random init
condition for 100 steps. On the bot-
tom the total differences at every step
between black and white cells.
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is random-looking, hence most likely unpredictable and consequently worth
leaving out.

What Wolfram’s simplified model show, based on simple rules, is that
despite being so simple and completely deterministic, these models are capa-
ble of generating great complexity and exhibit (the lack of) patterns similar
to the apparent randomness found in the price movements phenomenon in
financial markets. Whether one can get the kind of crashes in which finan-
cial markets seem to cyclicly fall into depends on whether the generating
rule is capable of producing them from time to time. Economists dispute
whether crashes reflect the intrinsic instability of the market, or whether
they are triggered by external events. In a model in [19], for example, sud-
den large changes are internally generated suggesting large changes are more
predictable—both in magnitude and in direction as the result of various in-
teractions between agents. If Wolfram’s intrinsic randomness is what leads
the market one may think one could then easily predict its behavior if this
were the case, but as suggested by Wolfram’s Principle of Computational
Equivalence it is reasonable to expect that the overall collective behavior of
the market would look complicated to us, as if it were random, hence quite
difficult to predict despite being or having a large deterministic component.

Wolfram’s Principle of Computational Irreducibility[33] says that the only
way to determine the answer to a computationally irreducible question is to
perform the computation. According to Wolfram, it follows from his Prin-
ciple of Computational Equivalence (PCE) that “almost all processes that
are not obviously simple can be viewed as computations of equivalent sophis-
tication: when a system reaches a threshold of computational sophistication
often reached by non-trivial systems, the system will be computationally irre-
ducible.”

8.5 An information-theoretic approach

From the point of view of cryptanalysis, the algorithmic view based on
frequency analysis presented herein may be taken as a hacker approach to
the financial market. While the goal is clearly to find a sort of password
unveiling the rules governing the price changes, what we claim is that the
password may not be immune to a frequency analysis attack, because it is
not the result of a true random process but rather the consequence of the
application of a set of (mostly simple) rules. Yet that doesn’t mean one
can crack the market once and for all, since for our system to find the said
password it would have to outperform the unfolding processes affecting the
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market—which, as Wolfram’s PCE suggests, would require at least the same
computational sophistication as the market itself, with at least one variable
modeling the information being assimilated into prices by the market at any
given moment. In other words, the market password is partially safe not
because of the complexity of the password itself but because it reacts to the
cracking method.

Whichever kind of financial instrument one looks at, the sequences of
prices at successive times show some overall trends and varying amounts of
apparent randomness. However, despite the fact that there is no contingent
necessity of true randomness behind the market, it can certainly look that
way to anyone ignoring the generative processes, anyone unable to see what
other, non-random signals may be driving market movements.

von Mises’ approach to the definition of a random sequence, which seemed
at the time of its formulation to be quite problematic, contained some of the
basics of the modern approach adopted by Per Martin-Löf[26]. It is during
this time that the Keynesian[16] kind of induction may have been resorted
to as a starting point for Solomonoff’s seminal work[31] on algorithmic prob-
ability.

Martin-Löf gave the first suitable definition of a random sequence. In-
tuitively, an algorithmically random sequence (or random sequence) is an
infinite sequence of binary digits that appears random to any algorithm.
This contrasts with the idea of randomness in probability. In that theory, no
particular element of a sample space can be said to be random. Martin-Löf
randomness has since been shown to admit several equivalent characteriza-
tions in terms of compression, statistical tests, and gambling strategies.

The predictive aim of economics is actually profoundly related to the
concept of predicting and betting. Imagine a random walk that goes up,
down, left or right by one, with each step having the same probability. If the
expected time at which the walk ends is finite, predicting that the expected
stop position is equal to the initial position, it is called a martingale. This
is because the chances of going up, down, left or right, are the same, so that
one ends up close to one’s starting position, if not exactly at that position. In
economics, this can be translated into a trader’s experience. The conditional
expected assets of a trader are equal to his present assets if a sequence of
events is truly random.

Schnorr[30, 8] provided another equivalent definition in terms of martin-
gales. The martingale characterization of randomness says that no betting
strategy implementable by any computer (even in the weak sense of con-
structive strategies, which are not necessarily computable) can make money
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If market price differences accumu-
lated in a normal distribution, a
rounding would produce sequences of
0 differences only. The mean and the
standard deviation of the market dis-
tribution are used to create a nor-
mal distribution, which is then sub-
tracted from the market distribution.
Rounding by the normal distribution
cover, the elements in the tail are ex-
tracted as shown in Figure 6.

Figure 8.6: By extracting a normal
distribution from the market distri-
bution, the long-tail events are iso-
lated.

betting on a random sequence. In a true random memoryless market, no bet-
ting strategy can improve the expected winnings, nor can any option cover
the risks in the long term.

Over the last few decades, several systems have shifted towards ever
greater levels of complexity and information density. The result has been
a shift towards Paretian outcomes, particularly within any event that con-
tains a high percentage of informational content 1.

Departures from normality could be accounted for by the algorithmic
component acting in the market, as is consonant with some empirical obser-
vations and common assumptions in economics, such as rule-based markets
and agents.

8.5.1 Algorithmic complexity

At the core of algorithmic information theory (AIT) is the concept of
algorithmic complexity 2, a measure of the quantity of information contained
in a string of digits. The algorithmic complexity of a string[18, 5] is defined
as the length of the shortest algorithm that, when provided as input to a uni-
versal Turing machine or idealized simple computer, generates the string. A
string has maximal algorithmic complexity if the shortest algorithm able to
generate it is not significantly shorter than the string itself, perhaps allowing
for a fixed additive constant. The difference in length between a string and

1. For example, if one plots the frequency rank of words contained in a large corpus
of text data versus the number of occurrences or actual frequencies, Zipf showed that one
obtains a power-law distribution.

2. Also known as program-size complexity, or Kolmogorov complexity.
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the shortest algorithm able to generate it is the string’s degree of compress-
ibility. A string of low complexity is therefore highly compressible, as the
information that it contains can be encoded in an algorithm much shorter
than the string itself. By contrast, a string of maximal complexity is incom-
pressible. Such a string constitutes its own shortest description: there is no
more economical way of communicating the information that it contains than
by transmitting the string in its entirety. In algorithmic information theory
a string is algorithmically random if it is incompressible.

Algorithmic complexity is inversely related to the degree of regularity of
a string. Any pattern in a string constitutes redundancy: it enables one
portion of the string to be recovered from another, allowing a more concise
description. Therefore highly regular strings have low algorithmic complex-
ity, whereas strings that exhibit little or no pattern have high complexity.

The algorithmic complexity KU(s) of a string s with respect to a
universal Turing machine U is defined as the binary length of the shortest
program p that produces as output the string s.

KU(s) = min{|p|, U(p) = s)

Algorithmic complexity conveys the intuition that a random string should
be incompressible: no program shorter than the size of the string produces
the string.

Even though K is uncomputable as a function, meaning that there is
no effective procedure (algorithm) to calculate it, one can use the theory of
algorithmic probability to obtain exact evaluations of K(s) for strings s short
enough for which the halting problem can be solved for a finite number of
cases due the size (and simplicity) of the Turing machines involved.

8.5.2 Algorithmic probability

What traders often end up doing in turbulent price periods is to leave
aside the “any day is like any other normal day” rule, and fall back on their
intuition, which leads to their unwittingly following a model we believe to
be better fitted to reality and hence to be preferred at all times, not just in
times of turbulence.

Intuition is based on weighting past experience, with experience that is
closer in time being more relevant. This is very close to the concept of
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algorithmic probability and the way it has been used (and was originally
intended to be used[31]) in some academic circles as a theory of universal
inductive inference[14].

Algorithmic probability assigns to objects an a priori probability that is
in some sense universal[?]. This a priori distribution has theoretical appli-
cations in a number of areas, including inductive inference theory and the
time complexity analysis of algorithms. Its main drawback is that it is not
computable and thus can only be approximated in practice.

The concept of algorithmic probability was first developed by
Solomonof[31] and formalized by Levin[20]. Consider an unknown process
producing a binary string of length k bits. If the process is uniformly ran-
dom, the probability of producing a particular string s is exactly 2−k, the
same as for any other string of length k. Intuitively, however, one feels that
there should be a difference between a string that can be recognized and
distinguished, and the vast majority of strings that are indistinguishable to
us as regards whether the underlying process is truly random.

Assume one tosses a fair coin 20 three times and gets the following out-
comes:

00000000000000000000
01100101110101001011
11101001100100101101

the first outcome would be very unlikely because one would expect a pat-
ternless outcome from a fair coin toss, one that resembles the second and
third outcomes. In fact, it would be far more likely that a simple deter-
ministic algorithmic process has generated this string. The same could be
said for the market: one usually expects to see few if any patterns in its
main indicators, mostly for the reasons set forth in section 8.4. Algorithmic
complexity captures this expectation of patternlessness by defining what a
random-looking string looks like. On the other hand, algorithmic probability
predicts that random-looking outputs are the exception rather than the rule
when the generating process is algorithmic.

There is a measure which describes the expected output of an abstract
machine when running a random program. A process that produces a string
s with a program p when executed on a universal Turing machine U has
probability m(s). As p is itself a binary string, m(s) can be defined as being
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the probability that the output of a universal Turing machine 3 U is s when
provided with a sequence of fair coin flip inputs interpreted as a program.

m(s) = ΣU(p)=s2
−|p| = 2−K(s)+O(1)

i.e. the sum over all the programs p for which the universal Turing ma-
chine U outputs the string s and halts.

Levin’s universal distribution is so called because, despite being uncom-
putable, it has the remarkable property (proven by Leonid Levin himself)
that among all the lower semi-computable semi-measures, it dominates every
other 4. This makes Levin’s universal distribution the optimal prior distribu-
tion when no other information about the data is available, and the ultimate
optimal predictor (Solomonoff’s original motivation[31] was actually to cap-
ture the notion of learning by inference) when assuming the process to be
algorithmic (or more precisely, carried out by a universal Turing machine).
Hence the adjective “universal.”

The algorithmic probability of a string is uncomputable. One way to
calculate the algorithmic probability of a string is to calculate the universal
distribution by running a large set of abstract machines producing an output
distribution, as we did in [9].

8.6 The study of the real time series v. the

simulation of an algorithmic market

The aim of this work is to study of the direction and eventually the magni-
tude to time series of real financial markets. To that mean, we first develop a
codification procedure translating financial series into binary digit sequences.
Despite the convenience and simplicity of the procedure, the translation cap-
tures several important features of the actual behavior of prices in financial
markets. At the right level, a simplification of finite data into a binary
language is always possible. Each observation measuring one or more pa-
rameters (e.g. price, trade name, etc.) is an enumeration of independent

3. A universal Turing machine is an abstraction of a general-purpose computer. Essen-
tially, as proven by Alan Turing, a universal computer can simulate any other computer
on an arbitrary input by reading both the description of the computer to be simulated
and the input thereof from its own tape.

4. Since it is based on the Turing machine model, from which the adjective universal
derives, the claim depends on the Church-Turing thesis.
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distinguishable values, a sequence of discrete values translatable into binary
terms 5.

8.6.1 From AIT back to the behavior of financial mar-
kets

Different market theorists will have different ideas about the likely pat-
tern of 0’s and 1’s that can be expected from a sequence of price movements.
Random walk believers would favor random-looking sequences in principle.
Other analysts may be more inclined to believe that patterned-looking se-
quences can be spotted in the market, and may attempt to describe and
exploit these patterns, eventually deleting them.

In an early anticipation of an application of AIT to the financial market
[25], it was reported that the information content of price movements and
magnitudes seem to drastically vary when measured right before crashes
compared to periods where no financial turbulence is observed. As described
in [25], this means that sequences corresponding to critical periods show a
qualitative difference compared to the sequences corresponding to periods of
stability (hence prone to be modeled by the traditional stochastic models)
when the information content of the market is very low (and when looks
random as carrying no information). In [25], the concept of conditional
algorithmic complexity is used to measure these differences in the time series
of price movements in two different financial markets (NASDAQ and the
Mexican IPC), here we use a different algorithmic tool, that is the concept
of algorithmic probability.

We will analyze the complexity of a sequence s of encoded price move-
ments, as described in section 8.7.2. We will see whether this distribution
approaches one produced artificially—by means of algorithmic processes—in
order to conjecture the algorithmic forces at play in the market, rather than
simply assume a pervasive randomness. Exploitable or not, we think that
price movements may have an algorithmic component, even if some of this
complexity is disguised behind apparent randomness.

According to Levin’s distribution, in a world of computable processes,
patterns which result from simple processes are relatively likely, while pat-
terns that can only be produced by very complex processes are relatively

5. Seeing it as a binary sequence may seem an oversimplification of the concept of a
natural process and its outcome, but the performance of a physical experiment always
yields data written as a sequence of individual observations sampling certain phenomena.
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unlikely. Algorithmic probability would predict, for example, that consecu-
tive runs of the same magnitude, i.e. runs of pronounced falls and rises, and
runs of alternative regular magnitudes have greater probability than random-
looking changes. If one fails to discern the same simplicity in the market as is
to be observed in certain other real world data sources[34], it is likely due to
the dynamic of the stock market, where the exploitation of any regularity to
make a profit results in the deletion of that regularity. Yet these regularities
may drive the market and may be detected upon closer examination. For
example, according to the classical theory, based on the average movement
on a random walk, the probability of strong crashes is nil or very low. Yet
in actuality they occur in cycles over and over.

What is different in economics is the nature of the dynamics some of the
data is subject to, as discussed in section 8.4, which underscores the fact that
patterns are quickly erased by economic activity itself, in the search for an
economic equilibrium.

Assuming an algorithmic hypothesis, that is that there is a rule-based—as
opposed to a purely stochastic—component in the market, one could apply
the tools of the theory of algorithmic information, just as assuming random
distributions led to the application of the traditional machinery of probability
theory.

If this algorithmic hypothesis is true, the theory says that Levin’s dis-
tribution is the optimal predictor. In other words, one could run a large
number of machines to simulate the market, and m, the algorithmic proba-
bility based on Levin’s universal distribution would provide accurate insights
into the particular direction and magnitude of a price based on the fact that
the market has a rule-based element. The correlation found in the experi-
ments described in the next section 8.7.2 suggests that Levin’s distribution
may turn out to be a way to calculate and approximate this potentially
algorithmic component in the market.

8.6.2 Unveiling the machinery

When observing a certain phenomenon, its outcome f can be seen as the
result of a process P . One can then ask what the probability distribution
of P generating f looks like. A probability distribution of a process is a
description of the relative number of times each possible outcome occurs in
a number of trials.

In a world of computable processes, Levin’s semi-measure (a.k.a universal
distribution) establishes that patterns which result from simple processes
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It is not only in times of great volatil-
ity that one can see that markets are
correlated to each other. This cor-
relation means that, as may be ex-
pected, markets systematically react
to each other. One can determine the
information assimilation process time
by looking at the correlations of se-
quences of daily closing prices of dif-
ferent lengths for five of the largest
European and U.S. stock markets. It
is evident that they react neither im-
mediately nor after an interval of sev-
eral days. As suggested by the ta-
ble 8.7.1, over a period of 20 years,
from January 1990 to January 2010,
the average assimilation time is about
a week to a week and a half. For
one thing, the level of confidence of
the correlation confirms that even if
some events may be seen as randomly
produced, the reactions of the mar-
kets follow each other and hence are
neither independent of each other nor

completely random. The correlation
matrix 8.7.1 exhibits the Spearman
rank correlation coefficients, followed
by the number of elements compared
(number of sequence lengths found in
one or another market ), underlining
the significance of the correlation be-
tween them.

Figure 8.7: Series of daily closing
prices of five of the largest stock
markets from 01/01/2000 to Jan-
uary 01/01/2010. The best sequence
length correlation suggests that mar-
kets catch up with each other (as-
similate each others’ information) in
about 7 to 10 days on average.

(short programs) are likely, while patterns produced by complicated processes
(long programs) are relatively unlikely. Unlike other probability measures,
Levin’s semi-measure (denoted by m) is not only a probability distribution
establishing that there are some objects that have a certain probability of
occurring according to said distribution, it is also a distribution specifying
the order of the particular elements in terms of their individual information
content.

Figure 7 suggests that by looking at the behavior of one market, the be-
havior of the others may be predicted. But this cannot normally be managed
quickly enough for the information to be of any actual use (in fact the very
intention of succeeding in one market by using information from another may
be the cause rather than the consequence of the correlation).

In the context of economics, if we accept the algorithmic hypothesis (that
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price changes are algorithmic, not random), m would provide the algorithmic
probability of a certain price change happening, given the history of the price.
An anticipation of the use of this prior distribution as an inductive theory
in economics is to be found in [32]. But following that model would require
us to calculate the prior distribution m, which we know is uncomputable.
We proceed by approaching m experimentally in order to show what the
distribution of an algorithmic market would look like, and eventually use it
in an inductive framework.

Once m is approximated, it can be compared to the distribution of the
outcome in the real world (i.e. the empirical data on stock market price
movements). If the output of a process approaches a certain probability
distribution, one accepts, within a reasonable degree of statistical certainty,
that the generating process is of the nature suggested by the distribution. If
it is observed that an outcome s occurs with probability m(s), and the data
distribution approaches m, one would be persuaded, within the same degree
of certainty, to accept a uniform distribution as the footprint of a random
process (where events are independent of each other), i.e. that the source of
the data is suggested by the distribution m.

What Levin’s distribution implies is that most rules are simple because
they produce simple patterned strings, which algorithmically complex rules
are unlikely to do. A simple rule, in terms of algorithmic probability, is
the average kind of rule producing a highly frequent string, which according
to algorithmic probability has a low random complexity (or high organised
complexity), and therefore looks patterned. This is the opposite of what
a complex rule would be, when defined in the same terms—it produces a
pattern-less output, and is hence random-looking.

The outcomes of simple rules have short descriptions because they are
less algorithmically complex, means that in some sense simple and short
are connected, yet large rules may also be simple despite not being short
in relative terms. And the outcomes of the application of simple rules tend
to accumulate exponentially faster than the outcomes of complicated rules.
This causes some events to occur more often than others and therefore to be
dependent on each other. Those events happening more frequently will tend
to drastically outperform other events and will do so by quickly beginning to
follow the irregular pattern and doing so closely for a while.

The first task is therefore to produce a distribution by purely algorithmic
means using abstract computing machines 6—by running abstract computa-

6. One would actually need to think of one-way non-erasing Turing machines to produce
a suitable distribution analogous to what could be expected from a sequence of events that
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tional devices like Turing machines and cellular automata.

8.6.3 Binary encoding of the market direction of prices

Market variables have three main indicators. The first is whether there is
a significant price change (i.e. larger than, say, the random walk expectation),
the second is the direction of a price change (rising or falling), and thirdly,
there is its magnitude. We will focus our first attempt on the direction of
price changes, since this may be the most valuable of the three (after all
whether one is likely to make or lose money is the first concern, before one
ponders the magnitude of the possible gain or loss).

In order to verify that the market carries the algorithmic signal, the in-
formation content of the non-binary tuples can be collapsed to binary tuples.
One can encode the price change in a single bit by “normalizing” the string
values, with the values of the entries themselves losing direction and magni-
tude but capturing price changes.

Prices are subject to such strong forces (interests) in the market that
it would be naive to think that they could remain the same to any decimal
fraction of precision, even if they were meant to remain the same for a period
of time. In order to spot the algorithmic behavior one has to provide some
stability to the data by getting rid of precisely the kind of minor fluctuations
that a random walk may predict. If not, one notices strong biases disguising
the real patterns. For example, periods of price fluctuations would appear
less likely than they are in reality if one allows decimal fluctuations to count
as much as any other fluctuation 7.

This is because from one day to another the odds that prices will remain
exactly the same up to the highest precision is extremely unlikely, due to the
extreme forces and time exposure they are subject to. Even though it may
seem that at such a level of precision one or more decimal digits could rep-
resent a real price change, for most practical purposes there is no qualitative
change when prices close to the hundreds, if not actually in the hundreds, are
involved. Rounding the price changes to a decimal fraction provides some
stability, e.g. by improving the place of the 0n tuple towards the top, be-
cause as we will see, it turns out to be quite well placed at the top once the

have an unrewritable past and a unique direction (the future), but the final result shouldn’t
be that different according to the theory.

7. The same practise is common in time-series decomposition analysis, where the sole
focus of interest is the average movement, in order that trends, cycles or other potential
regularities may be discerned.
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decimal fluctuations have been gotten rid of. One can actually think of this
as using the Brownian motion expectation to get rid of meaningless changes.
In other words, the Brownian movement is stationary in our analysis, being
the predictable (easy) component of the minor fluctuations, while the actual
objects of study are the wilder dynamics of larger fluctuations. We have
changed the focus from what analysts are used to considering as the signal,
to noise, and recast what they consider noise as the algorithmic footprint in
empirical data.

Detecting rising v. falling

As might be expected given the apparent randomness of the market and
the dynamics to which it is subject, it would be quite difficult to discern clear
patterns of rises v. falls in market prices.

The asymmetry in the rising and falling ratio is explained by the pattern
deletion dynamic. While slight rises and falls have the same likelihood of
occurring, making us think they follow a kind of random walk bounded by the
average movement of Brownian motion, significant rises are quickly deleted by
people taking advantage of them, while strong drops quickly worsen because
of people trying to sell rather than buy at a bargain. This being so, one
expects to see longer sequences of drops than of rises, but actually one sees
the contrary, which suggests that periods of optimism are actually longer
than periods of pessimism, though periods of pessimism are stronger in terms
of price variation. In [25] it was reported that the information content of
price movements and magnitudes seem to drastically vary when measured
to intervals of high volatility (particularly right before crashes) compared to
periods where no financial turbulence is observed.

We construct a binary series associated to each real time series of financial
markets as follows. Let {pt} be the original time series of daily closing prices
of a financial market for a period of time t. Then each element bi ∈ {bn},
the time series of price differences, with n = t− 1, is calculated as follows:

bi =

{
1 pi+1 > pi
0 pi+1 ≤ pi

The frequency of binary tuples of short lengths will be compared to the
frequency of binary tuples of length the same length obtained by running ab-
stract machines (deterministic Turing machines and one-dimensional cellular
automata).
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8.6.4 Calculating the algorithmic time series

Constructing Levin’s distribution m from abstract machines is therefore
necessary in order to strengthen the algorithmic hypothesis. In order to make
a meaningful comparison with what can be observed in a purely rule-governed
market, we will construct from the ground up an experimental distribution
by running algorithmic machines (Turing machines and cellular automata).
An abstract machine consists of a definition in terms of input, output, and
the set of allowable operations used to turn the input into the output. They
are of course algorithmic by nature (or by definition).

The Turing machine model represents the basic framework underlying
many concepts in computer science, including the definition of algorithmic
complexity. In this paper we use the output frequency distribution produced
by running a finite, yet very large set of Turing machines with empty input as
a means to approximate m. There are 11 019 960 576 four-state two-symbol
Turing machines (for which the halting condition is known, thanks to the
Busy Beaver game). The conception of the experiment and further details
are provided in [9] and [34]. These Turing machines produced an output,
from which a frequency distribution of tuples was calculated and compared
to the actual time series from the market data produced by the stock markets
encoded as described in 8.6.3. A forthcoming paper provides more technical
details[10].

Also, a frequency distribution from a sample of 10 000 four-color totalis-
tic cellular automata was built from a total of 1 048 575 possible four-color
totalistic cellular automata, each rule starting from an random initial config-
uration of 10 to 20 black and white cells, and running for 100 steps (hence ar-
bitrarily halted). Four-color totalistic cellular automata produce four-symbol
sequences. However only the binary were taken into consideration, with the
purpose of building a binary frequency distribution. The choice of this cellu-
lar automata (CA) space was dictated by the fact that the smallest CA space
is too small, and the next smallest space too large to extract a significant
enough sample from it. Having chosen a sample of four-color totalistic CA,
the particular rules sample was randomly generated.

For all the experiments, stock market datasets (of daily closing prices)
used covered the same period of time: from January 1990 through January
2010. The stock market code names can be readily connected with their full
index names or symbols.

Spearman’s rank coefficient was the statistical measure of the correlation
between rankings of elements in the frequency distributions. As is known,
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if there are no repeated data values, a perfect Spearman correlation of +1
or −1 occurs when each of the variables is a perfect monotone function of
the other. While 1 indicates perfect correlation (i.e. in the exact order), −1
indicates perfect negative correlation (i.e. perfect inverse order).

8.7 Experiments and Results

It is known that for any finite series of a sequence of integer values, there
is a family of countable infinite computable functions that fit the sequence
over its length. Most of them will be terribly complicated, and any attempt
to find the simplest accounting for the sequence will face uncomputability.
Yet using the tools of algorithmic information theory, one can find the sim-
plest function for short sequences by deterministic means, testing a set of
increasingly complex functions starting from the simplest and proceeding
until the desired sequence assuring the simplest fit is arrived at. Even if
the likelihood of remaining close to the continuation of the series remains
low, one can recompute the sequence and find good approximations for short
periods of time.

The following experiment uses the concept of algorithmic complexity to
find the best fit in terms of the simplest model fitting the data, assuming the
source to be algorithmic (rule-based).

8.7.1 Rankings of price variations

In the attempt to capture the price change phenomenon in the stock
market, we have encoded price changes in binary strings. The following are
tables capturing the rise and fall of prices and their occurrence in a ranking
classification.

Carrying an algorithmic signal

Some regularities and symmetries in the sequence distribution of price
directions in the market may be accounted for by an algorithmic signal, but
they also follow from a normal distribution. For example, the symmetry
between the left and right sides of the Gaussian curve with zero skewness
means that reverted and inverted strings (i.e. consecutive runs of events of
prices going up or down) will show similar frequency values, which is also
in keeping with the intuitive expectation of the preservation of complexity
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invariant to certain basic transformations (a sequence of events 1111. . . are
equally likely to occur as 0000. . ., or 0101. . . and 1010. . .).

This means that one would expect n consecutive runs of rising prices to be
as likely as n consecutive runs of falling prices. Some symmetries, however,
are broken in particular scenarios. In the stock market for example, it is very
well known that sequences of drastic falls are common from time to time, but
never sequences of drastic price increases, certainly not increases of the same
magnitude as the worst price drops. And we witnessed such a phenomenon
in the distributions from the DJI. Some other symmetries may be accounted
for by business cycles engaged in the search for economic equilibrium.

Correlation matrix: market v. market

market v. market 4 5 6 7 8 9 10
CAC40 v. DAX 0.059|16 0.18|32 0.070|62 0.37|109 0.48|119 0.62|87 0.73|55
CAC40 v. DJIA 0.31|16 0.25|32 0.014|62 0.59|109 0.27|124 0.34|95 0.82|51

CAC40 v. FTSE350 0.16|16 −0.019|32 −0.18|63 0.15|108 0.59|114 0.72|94 0.73|62
CAC40 v. NASDAQ 0.30|16 0.43|32 0.056|63 0.16|111 0.36|119 0.32|88 0.69|49
CAC40 v. SP500 0.14|16 0.45|31 −0.085|56 −0.18|91 0.16|96 0.49|73 0.84|45
DAX v. DJIA 0.10|16 −0.14|32 0.13|62 0.37|110 0.56|129 0.84|86 0.82|58

DAX v. FTSE350 0.12|16 −0.029|32 0.12|63 0.0016|106 0.54|118 0.81|89 0.80|56
DAX v. NASDAQ 0.36|16 0.35|32 0.080|62 0.014|110 0.64|126 0.55|96 0.98|48
DAX v. SP500 0.38|16 0.062|31 −0.20|56 −0.11|88 0.11|94 0.43|76 0.63|49

DJIA v. FTSE350 0.35|16 −0.13|32 −0.022|63 0.29|107 0.57|129 0.76|99 0.86|56
DJIA v. NASDAQ −0.17|16 −0.13|32 0.0077|62 0.079|112 0.70|129 0.57|111 0.69|64
DJIA v. SP500 −0.038|16 0.32|31 −0.052|55 0.14|89 0.37|103 0.32|86 0.60|59

FTSE350 v. NASDAQ 0.36|16 0.38|32 −0.041|63 0.54|108 0.68|126 0.57|107 0.66|51
FTSE350 v. SP500 0.50|16 0.50|31 0.12|56 −0.11|92 0.25|101 0.26|96 0.29|66
NASDAQ v. SP500 0.70|16 0.42|31 0.20|56 0.024|91 0.41|111 0.23|102 0.42|61

Table 1. Stock market v. stock market.

With algorithmic probability in hand, one may predict that alternations
and consecutive events of the same type and magnitude are more likely,
because they may be algorithmically more simple. One may, for example,
expect to see symmetrical events occurring more often, with reversion and
complementation occurring together in groups (i.e. a string 10n occurring to-
gether with 0n1 and the like). In the long-term, business cycles and economic
equilibria may also be explained in information theoretic terms, because for
each run of events there are the two complexity-preserving symmetries, re-
version and complementation, that always follow their counterpart sequences
(the unreversed and complement of the complement), producing a cyclic type
of behavior.

The correlations shown in table 8.7.1 indicate what is already assumed in
looking for cycles and trends, viz. that these underlying cycles and trends in
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the markets are more prominent when deleting Brownian noise. As shown be-
low, this may be an indication that the tail of the distribution has a stronger
correlation than the elements covered by the normal curve, as could be in-
ferred from the definition of a random walk (that is, that random walks are
not correlated at all).

The entries in each comparison table consist of the Spearman coefficient
followed by the number of elements compared. Both determine the level of
confidence and are therefore essential for estimating the correlation. Rows
compare different stock markets over different sequence lengths of daily clos-
ing prices, represented by the columns. It is also worth noting when the
comparison tables, such as 8.7.1, have no negative correlations.

Rounded market v. rounded market

market v. market 4 5 6 7 8 9 10
CAC40 v. DAX 0.58|11 0.58|15 0.55|19 0.37|26 0.59|29 0.55|31 0.60|28
CAC40 v. DJIA 0.82|11 0.28|15 0.28|21 0.29|24 0.52|29 0.51|32 0.33|36

CAC40 v. FTSE350 0.89|11 0.089|15 0.41|20 0.17|22 0.59|30 0.28|28 0.30|34
CAC40 v. NASDAQ 0.69|11 0.27|14 0.28|18 0.44|23 0.30|30 0.17|34 0.61|30
CAC40 v. SP500 0.85|11 0.32|15 0.49|20 0.55|24 0.42|33 0.35|35 0.34|36
DAX v. DJIA 0.76|11 0.45|16 0.56|20 0.35|26 0.34|28 0.25|35 0.24|33

DAX v. FTSE350 0.61|11 0.30|16 0.58|19 0.14|25 0.30|29 0.34|30 0.21|31
DAX v. NASDAQ 0.40|11 0.27|16 0.36|18 0.75|25 0.28|29 0.28|35 0.50|33
DAX v. SP500 0.14|12 0.36|17 0.72|20 0.64|28 0.42|31 0.52|34 0.51|32

DJIA v. FTSE350 0.71|11 0.30|16 0.63|20 0.71|22 0.21|28 0.28|31 0.35|33
DJIA v. NASDAQ 0.58|11 0.52|15 0.33|19 0.58|23 0.46|29 0.49|37 0.51|35
DJIA v. SP500 0.70|11 0.20|16 0.45|21 0.29|26 0.35|32 0.37|36 0.55|36

FTSE350 v. NASDAQ 0.73|11 0.57|15 0.70|17 0.48|23 0.62|28 0.34|33 0.075|35
FTSE350 v. SP500 0.66|11 0.65|16 0.56|19 0.18|24 0.64|32 0.32|32 0.52|38
NASDAQ v. SP500 0.57|11 0.37|15 0.41|18 0.32|24 0.30|34 0.19|35 0.35|40

Table 2. In contrast, when the markets are compared to random price
movements, which accumulate in a normal curve, they exhibit no
correlation or only a very weak correlation, as shown in 8.7.1:

Market v. random

r. market v. random 4 5 6 7 8 9 10
DJIA v. random −0.050|16 0.080|31 −0.078|61 0.065|96 0.34|130 0.18|120 0.53|85
SP500 v. random 0.21|16 −0.066|30 0.045|54 −0.16|81 0.10|99 0.29|87 0.32|57

NASDAQ v. random 0.12|16 −0.095|31 0.11|60 0.14|99 0.041|122 0.29|106 0.57|68
FTSE350 v. random 0.16|16 −0.052|31 0.15|61 0.14|95 0.30|122 0.50|111 0.37|77
CAC40 v. random 0.32|16 −0.15|31 −0.13|60 0.16|99 0.19|119 0.45|109 0.36|78
DAX v. random 0.33|16 0.023|31 0.20|60 0.14|95 0.26|129 0.31|104 0.31|77

Table 3. When random price movements are compared to rounded prices of
the market (denoted by “r. market” to avoid accumulation in the normal
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curve) the correlation coefficient is too weak, possessing no significance at
all. This may indicate that it is the prices behaving and accumulating in

the normal curve that effectively lead the overall correlation.

Rounded market v. random

market v. random 4 5 6 7 8 9 10
DJIA v. random 0.21|12 −0.15|17 0.19|23 −0.033|28 −0.066|33 0.31|29 0.64|15
SP500 v. random −0.47|12 −0.098|17 −0.20|25 0.32|31 0.20|38 0.41|29 0.32|20

NASDAQ v. random −0.55|11 −0.13|16 −0.093|20 0.18|26 0.015|37 0.30|35 0.38|25
FTSE350 v. random −0.25|11 −0.24|16 −0.053|22 −0.050|24 −0.11|31 0.25|23 0.49|13
CAC40 v. random −0.12|11 −0.14|15 0.095|22 0.23|26 0.18|30 0.36|23 0.44|14
DAX v. random 0.15|12 −0.067|18 −0.12|24 0.029|31 0.31|32 0.27|27 0.59|15

Table 4. Comparison between the daily stock market sequences v. an
hypothesised log-normal accumulation of price directions.

Market v. Turing machines

market v. TM 5 6 7 8 9 10
DJIA v. TM 0.42|16 0.20|21 0.42|24 −0.021|35 −0.072|36 0.20|47
SP500 v. TM 0.48|18 0.30|24 −0.070|32 0.32|39 0.26|47 0.40|55

NASDAQ v. TM 0.67|17 0.058|25 0.021|32 0.26|42 0.076|49 0.17|57
FTSE350 v. TM 0.30|17 0.39|22 0.14|29 0.43|36 0.013|41 0.038|55
CAC40 v. TM 0.49|17 0.026|25 0.41|32 0.0056|38 0.22|47 0.082|56

Table 5. The comparison to TM revealed day lengths better correlated than
other, although

their significance remained weak and unstable, with a tendency, however, to
positive correlations.

Market v. cellular automata

market v. CA 4 5 6 7 8 9 10
DJIA v. CA −0.14|16 0.28|32 −0.084|63 −0.049|116 0.10|148 0.35|111 0.51|59
SP500 v. CA −0.16|16 0.094|32 0.0081|64 0.11|116 0.088|140 0.17|117 0.40|64

NASDAQ v. CA 0.065|16 0.25|32 0.19|63 0.098|116 0.095|148 0.065|131 0.36|65
FTSE350 v. CA −0.16|16 −0.15|32 0.12|64 −0.013|120 −0.0028|146 0.049|124 0.42|76
CAC40 v. CA −0.035|16 0.36|32 0.21|64 0.064|114 0.20|138 0.25|114 0.33|70

Table 6. When compared to the distribution from cellular automata, the
correlation was greater. Each column had pairs of score means: (-0.09, 16),
(0.17, 32), (0.09, 64), (0.042, 116), (0.096, 144), (0.18, 119), (0.41, 67) for 4
to 10 days, for which the last 2 (9 and 10 days long) have significant levels
of correlation according to their critical values and the number of elements

compared.
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8.7.2 Backtesting

Applying the same methodology over a period of a decade, from 1980 to
1990 (old market), to three major stock markets for which we had data for the
said period of time, similar correlations were found across the board, from
weak to moderately weak— though the trend was always toward positive
correlations.

Old market v. CA distribution

old market v. CA 4 5 6 7 8 9 10
DJIA v. CA 0.33|10 0.068|16 0.51|21 0.15|28 −0.13|31 0.12|32 0.25|29
SP500 v. CA 0.044|13 0.35|19 0.028|24 0.33|33 0.45|33 0.00022|30 0.37|34

NASDAQ v. CA 0.45|10 0.20|17 0.27|24 0.16|30 0.057|31 0.11|34 0.087|32

Table 7. Comparison matrix of frequency distributions of daily price
directions of three stock markets from 1980 to 1990.

The distributions indicate that price changes are unlikely to rise by more
than a few points for more than a few days, while greater losses usually occur
together and over longer periods. The most common sequences of changes
are alternations. It is worth noticing that sequences are grouped together
by reversion and complementation relative to their frequency, whereas tra-
ditional probability would have them occur in no particular order and with
roughly the same frequency values.

Tables 8 and 9 illustrate the kind of frequency distributions from the stock
markets (in this case for the DJI) over tuples of length 3 with which distribu-
tions from the market data were compared with and its statistical correlation
evaluated section between four other stock markets and over larger periods
of time up to 10 closing daily prices.

tuple prob.
000 0.139
001 0.130
111 0.129
011 0.129
100 0.129
110 0.123
101 0.110
010 0.110

Table 8. 3-tuples distribution from the DJI price difference time series for
the past 80 years. 1 means that a price rose, 0 that it fell or remained the
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same as described in the construction of the binary sequence bn as
described in 8.6.3 and partitioned in 3-tuples for this example. By rounding

to the nearest multiple of .4 (i.e. dismissing decimal fraction price
variations of this order) some more stable patterns start to emerge.

tuple prob.
000 0.00508
111 0.00508
001 0.00488
011 0.00488
100 0.00488
110 0.00468
010 0.00483
101 0.00463

Table 9. 3-tuples from the output distribution produced by running all
4-state

2-symbol Turing machines starting from an empty tape first on a
background of 0’s and then running it again on a background of 1s to avoid

asymmetries due to the machine formalism convention.

8.7.3 Algorithmic inference of rounded price direc-
tions

Once with the tuples distributions calculated and a correlation found,
one can apply Solomonoff’s[31] concept algorithmic inference. Let’s say that
by looking two days behind of daily closing prices one sees two consecutive
losses. The algorithmic inference will say that with probability 0.129 the third
day will be a loss again. In fact, as we now know, algorithmic probability
will suggest that with higher probability the next day will only repeat the
last values of any run of 1’s or 0’s and the empirical distribution from the
market will tell us that runs of 1s (gains) are more likely than consecutive
losses (before the rounding process deleting the smallest price movements)
without taking into account their magnitude (as empirically known, losses are
greater than gains, but gains are more sustainable), but runs of consecutive
0’s (losses) will be close or even more likely than consecutive losses after the
rounding process precisely because gains are smaller in magnitude.

To calculate the algorithmic probability of a price direction bi of the next
closing price by looking n consecutive daily rounded prices behind, is given
by:
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P (bi) = m(bi−n . . . bi)

i.e. the algorithmic probability of the string constituted by the n consecutive
price directions of the days before followed by the possible outcome to be
estimated, with m Levin’s semi-measure described in equation 8.7.3. It is
worth notice however that the inference power of this approach is limited by
the correlation found between the market’s long tails and the distributions
calculated by means of exhaustive computation. Tables with distributions
for several tuple lengths and probability values will be available in [10], so
that one can empirically calculate m by means of the results of exhaustive
computation.

For example, the algorithmic model predicts a greater incidence of simple
signatures as trends under the noise modeled by the Brownian motion model,
such as signatures 000. . . of price stability. It also predicts that random-
looking signatures of higher volatility will occur more if they are already
occurring, a signature in unstable times where the Brownian motion no longer
works in these kind of events outside the main Bell curve.

8.8 Further considerations

8.8.1 Rule-based agents

For sound reasons, economists are used to standardizing their discussions
by starting out from certain basic assumptions. One common assumption in
economics is that actors in the market are decision makers, often referred to
as rational agents. According to this view, rational agents make choices by
assessing possible outcomes and assigning a utility to each in order to make
a decision. In this rational choice model, all decisions are arrived at by a
rational process of weighing costs against benefits, and not randomly.

An agent in economics or a player in game theory is an actor capable
of decision making. The idea is that the agent initiates actions, given the
available information, and tries to maximize his or her chances of success
(traditionally their personal or collective utilities), whatever the ultimate
goal may be. The algorithm that each agent takes may be non-deterministic,
which means that the agent may make decisions based on probabilities, not
that at any stage of the process a necessarily truly random choice is made.
It actually doesn’t matter much whether their actions may be perceived as
mistaken, or their utility questioned. What is important is that agents follow
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rules, or if any chance is involved there is another large part in it not ran-
dom at all (specially when one takes into consideration the way algorithmic
trading is done). The operative assumption is that the individual has the
cognitive ability to weigh every choice he/she makes, as opposed to taking
decisions stochastically. This is particularly true when there is nothing else
but computers making the decisions.

This view, wherein each actor can be viewed as a kind of automaton
following his or her own particular rules, does not run counter to the stance
we adopt here, and it is in perfect agreement with the algorithmic approach
presented herein (and one can expect the market to get more algorithmic as
more automatization is involved). On the contrary, what we claim is that if
this assumption is made, then the machinery of the theory of computation can
be applied, particularly the theory of algorithmic information (AIT). Hence
market data can be said to fall within the scope of algorithmic probability.

Our approach is also compatible with the emergent field of behavioral
economics[4], provided the set of cognitive biases remain grounded in rules.
Rules followed by emotional (or non-rational) traders can be as simple as im-
itating behavior, repeating from past experience, acting out of fear, taking
advice from others or following certain strategy. All these are algorithmic in
nature in that they are rule based, despite their apparent idiosyncrasy (as-
suming there are no real clairvoyants with true metaphysical powers). Even
though they may look random, what we claim, on the basis of algorithmic
probability and Levin’s distribution, is that most of these behaviors follow
simple rules. It is the accumulation of simple rules rather than the excep-
tional complicated ones which actually generate trends.

If the market turns out to be based on simple rules and driven by its in-
trinsic complexity rather than by the action of truly random external events,
the choice or application of rational theory would be quite irrelevant. In
either case, our approach remains consistent and relevant. Both the rational
and, to a large extent, the behavioral agent assumptions imply that what we
are proposing here is that algorithmic complexity can be directly applied to
the field of market behavior, and that our model comes armed with a natural
toolkit for analyzing the market, viz. algorithmic probability.

8.8.2 The problem of over-fitting

When looking at a set of data following a distribution, one can claim, in
statistical terms, that the source generating the data is of the nature that
the distribution suggests. Such is the case when a set of data follows a
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model, where depending on certain variables, one can say with some degree
of certitude that the process generating the data follows the model.

It seems to be well-known and largely accepted among economists that
one can basically fit anything to anything else, and that this has shaped
most of the research in the field, producing a sophisticated toolkit dictating
how to achieve this fit as well as how much of a fit is necessary for particular
purposes, even though such a fit may have no relevance either to the data or to
particular forecasting needs, being merely designed to produce an instrument
with limited scope fulfilling a specific purpose.

However, a common problem is the problem of over-fitting, that is, a
false model that may fit perfectly with an observed phenomenon. A statisti-
cal comparison cannot actually be used to categorically prove or disprove a
difference or similarity, only to favour one hypothesis over another.

To mention one of the arbitrary parameters that we might have taken,
there is the chosen rounding. We found it interesting that the distributions
from the stock markets were sometimes unstable to the rounding process
of prices. Rounding to the closest .4 was the threshold found to allow the
distribution to stabilise. This instability may suggest that there are two
different kinds of forces acting, one producing very small and likely negligible
price movements (in agreement to the random walk expectation), and other
producing the kind of qualitative changes in the direction of prices that we
were interested in. In any case this simply results in the method only being
able to predict changes of the order of magnitude of the rounding proceeding
from the opposite direction, assuming that the data is not random, unlike
the stochastic models.

Algorithmic probability rests upon two main principles: the principle of
multiple explanations, which states that one should keep all hypotheses that
are consistent with the data, and a second principle known as Occam’s razor,
which states that when inferring causes, entities should not be multiplied
beyond necessity, or, alternatively, that among all hypotheses consistent with
the observations, the simplest should be favoured. As for the choice of an
a priori distribution over a hypothesis, this amounts to assigning simpler
hypotheses a higher probability and more complex ones a lower probability.
So this is where the concept of algorithmic complexity comes into play.

As proven by Levin and Solomonoff, the algorithmic probability measure
(the universal distribution) will outperform any other, unless other informa-
tion is available that helps to foresee the outcome, in which case an addi-
tional variable could be added to the model to account for this information.
But since we’ve been suggesting that information will propagate fast enough
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even though the market is not stochastic in nature, deleting the patterns and
making them unpredictable, any additional assumption only complicates the
model. In other words, Levin’s universal distribution is optimal over all non-
random distributions[21], in the sense that the algorithmic model is by itself
the simplest model fitting the data when this data is produced by a process
(as opposed to being randomly generated). The model is itself ill-suited to
an excess of parameters argument because it basically assumes only that the
market is governed by rules.

As proven by Solomonoff and Levin, any other model will simply overlook
some of the terms of the algorithmic probability sum. So rather than being
more precise, any other model will differ from algorithmic probability in that
it will necessarily end up overlooking part of the data. In other words, there
is no better model taking into account the data than algorithmic probability.
As Solomonoff has claimed, one can’t do any better. Algorithmic inference
is a time-limited optimisation problem, and algorithmic probability accounts
for it simply.

8.9 Conclusions and further work

When looking at a large-enough set of data following a distribution, one
can in statistical terms safely assume that the source generating the data
is of the nature that the distribution suggests. Such is the case when a set
of data follows a normal distribution, where depending on certain statistical
variables, one can, for example, say with a high degree of certitude that the
process generating the data is of a random nature. If there is an algorithmic
component in the empirical data of price movements in financial markets,
as might be suggested by the distribution of price movements, algorithmic
information theory may account for the deviation from log-normality as ar-
gued herein. In the words of Velupillai[32]—quoting Clower[6] talking about
Putnam’s approach to a theory of induction[28][27]—This may help ground
“economics as an inductive science” again.

One may well ask whether a theory which assumes that price movements
follow an algorithmic trend ought not to be tested in the field to see whether it
outperforms the current model. The truth is that the algorithmic hypothesis
would easily outperform the current model, because it would account for
recurrent periods of instability. The current theory, with its emphasis on
short term profits, is inclined to overlook these, for reasons that are probably
outside the scope of scientific inquiry. In our understanding, the profits
attributed to the standard current model are not really owed to the model as
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such, but rather to the mechanisms devised to control the risk-taking inspired
by the overconfidence that the model generates.

In a strict sense, this paper describes the ultimate possible numerical
simulation of the market when no further information about it is known (or
cannot be known in practise) assuming no other (neither efficient markets
nor general equilibrium) but actors following a set of rules and therefore to
behave algorithmically at least at some extent hence potentially modeled by
algorithmic probability.

The simulation may turn out to be of limited predictive value—for look-
ing no more than a few days ahead and modeling weak signals—due to the
deleting patterns phenomenon (i.e. the time during which the market assimi-
lates new information). More experiments remain to be done which carefully
encode and take into consideration other variables, such as the magnitude of
prices, for example, looking at consecutive runs of gains or loses.
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Chapitre 9

Program-size Versus Time
Complexity : Slowdown and
Speed-up Phenomena in the
Micro-cosmos of Small Turing
Machines

From J. Joosten, F. Soler-Toscano and H. Zenil, Program
size Versus Time Complexity: Slowdown and Speed-up Phe-
nomena in the Micro-cosmos of Small Turing Machines, 3rd.
International Workshop on Physics and Computation 2010
Conference Proceedings, pages 175-198. Also forthcoming in
the International Journal of Unconventional Computing.

9.1 Introduction

Among the several measures of computational complexity there are mea-
sures focusing on the minimal description of a program and others quantifying
the resources (space, time, energy) used by a computation. This paper is a
reflection of an ongoing project with the ultimate goal of contributing to the
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understanding of relationships between various measures of complexity by
means of computational experiments. In particular in the current paper we
did the following.

We focused on small Turing Machines and looked at the kind of functions
that are computable on them focussing on the runtimes. We then study how
allowing more computational resources in the form of Turing machine states
affect the runtimes of TMs computing these functions. We shall see that
in general and on average, more resources leads to slower computations. In
this introduction we shall briefly introduce the main concepts central to the
paper.

9.1.1 Two measures of complexity

The long run aim of the project focuses on the relationship between vari-
ous complexity measures, particularly descriptional and computational com-
plexity measures. In this subsection we shall briefly and informally introduce
them.

In the literature there are results known to theoretically link some com-
plexity notions. For example, in [6], runtime probabilities were estimated
based on Chaitin’s heuristic principle as formulated in [5]. Chaitin’s prin-
ciple is of descriptive theoretic nature and states that the theorems of a
finitely-specified theory cannot be significantly more complex than the theory
itself.

Bennett’s concept of logical depth combines the concept of time complex-
ity and program-size complexity [1, 2] by means of the time that a decompres-
sion algorithm takes to decompress an object from its shortest description.

Recent work by Neary and Woods [16] has shown that the simulation of
cyclic tag systems by cellular automata is effected with a polynomial slow-
down, setting a very low threshold of possible non-polynomial tradeoffs be-
tween program-size and computational time complexity.

Computational Complexity

Computational complexity [4, 11] analyzes the difficulty of computational
problems in terms of computational resources. The computational time com-
plexity of a problem is the number of steps that it takes to solve an instance
of the problem using the most efficient algorithm, as a function of the size of
the representation of this instance.
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As widely known, the main open problem with regard to this measure
of complexity is the question of whether problems that can be solved in
non-deterministic polynomial time can be solved in deterministic polynomial
time, aka the P versus NP problem. Since P is a subset of NP, the question is
whether NP is contained in P. If it is, the problem may be translated as, for
every Turing machine computing an NP function there is (possibly) another
Turing machine that does so in P time. In principle one may think that if in
a space of all Turing machines with a certain fixed size there is no such a P
time machine for the given function (and because a space of smaller Turing
machines is always contained in the larger) only by adding more resources
a more efficient algorithm, perhaps in P, might be found. We shall see that
adding more resources almost certainly yields to slow-down.

Descriptional Complexity

The algorithmic or program-size complexity [10, 5] of a binary string
is informally defined as the shortest program that can produce the string.
There is no algorithmic way of finding the shortest algorithm that outputs a
given string

More precisely, the complexity of a bit string s is the length of the string’s
shortest program in binary on a fixed universal Turing machine. A string is
said to be complex or random if its shortest description cannot be much more
shorter than the length of the string itself. And it is said to be simple if it
can be highly compressed. There are several related variants of algorithmic
complexity or algorithmic information.

In terms of Turing machines, if M is a Turing machine which on input i
outputs string s, then the concatenated string 〈M, i〉 is a description of s. The
size of a Turing machine in terms of the number of states (s) and colors (k)
(aka known as symbols) can be represented by the product s ·k. Since we are
fixing the number of colors to k = 2 in our study, we increase the number of
states s as a mean for increasing the program-size (descriptional) complexity
of the Turing machines in order to study any possible tradeoffs with any of
the other complexity measures in question, particularly computational (time)
complexity.

9.1.2 Turing machines

Throughout this project the computational model that we use will be that
of Turing machines. Turing machines are well-known models for universal
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computation. This means, that anything that can be computed at all, can
be computed on a Turing machine.

In its simplest form, a Turing machine consists of a two-way infinite tape
that is divided in adjacent cells. Each cell can be either blank or contain a
non-blank color (symbol). The Turing machine comes with a “head” that
can move over the cells of the tape. Moreover, the machine can be in various
states. At each step in time, the machine reads what color is under the head,
and then, depending on in what state it is writes a (possibly) new color in
the cell under the head, goes to a (possibly) new state and have the head
move either left or right. A specific Turing machine is completely determined
by its behavior at these time steps. One often speaks of a transition rule, or
a transition table. Figure 9.1 depicts graphically such a transition rule when
we only allow for 2 colors, black and white and where there are two states,
State 1 and State 2.

Figure 9.1: Transition table of a 2-color 2-state Turing machine with Rule
2506 according to Wolfram’s enumeration and Wolfram’s visual representa-
tion style [14]. [8].

For example, the head of this machine will only move to the right, write
a black color and go to State 2 whenever the machine was in State 2 and it
read a blank symbol.

We shall often refer to the collection of TMs with k colors and s states as
a TM space. From now on, we shall write (2,2) for the space of TMs with 2
states and 2 colors, and (3,2) for the space of TMs with 3 states and 2 colors,
etc.

9.1.3 Relating notions of complexity

We relate and explore throughout the experiment the connections be-
tween descriptional complexity and time computational complexity. One
way to increase the descriptional complexity of a Turing machine is enlarg-
ing its transition table description by adding a new state. So what we will
do is, look at time needed to perform certain computational tasks first with
only 2 states, and next with 3 and 4 states.
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Our current findings suggest that even if a more efficient Turing machine
algorithm solving a problem instance may exist, the probability of picking a
machine algorithm at random among the TMs that solve the problem in a
faster time has probability close to 0 because the number of slower Turing
machines computing a function outnumbers the number of possible Turing
machines speeding it up by a fast growing function.

9.1.4 Investigating the micro-cosmos of small Turing
machines

We know that small programs are capable of great complexity. For exam-
ple, computational universality occurs in cellular automata with just 2 colors
and nearest neighborhood (Rule 110, see [14, 3]) and also (weak) universality
in Turing machines with only 2 states and 3 colors [15].

For all practical purposes one is restricted to perform experiments with
small Turing machines (TMs) if one pursuits a thorough investigation of
complete spaces for a certain size. Yet the space of these machines is rich and
large enough to allow for interesting and insightful comparison, draw some
preliminary conclusions and shed light on the relations between measures of
complexity.

As mentioned before, in this paper, we look at TMs with 2 states and
2 colors and compare them to TMs more states. The main focus is on the
functions they compute and the runtimes for these functions However, along
our investigation we shall deviate from time to time from our main focus
and marvel at the rich structures present in what we like to refer to as the
micro-cosmos of small Turing machines. Like, what kind of, and how many
functions are computed in each space? What kind of runtimes and space-
usage do we typically see and how are they arranged over the TM space?
What are the sets that are definable using small Turing machines? How
many input values does one need to fully determine the function computed
by a TM? We find it amazing how rich the encountered structures are even
when we use so few resources.

9.1.5 Plan of the paper

After having introduced the main concepts of this paper and after having
set out the context in this section, the remainder of this paper is organized
as follows. In Section 9.2 we will in full detail describe the experiment,
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its methodology and the choices that were made leading us to the current
methodology. In Section 9.3 we present the structures that we found in (2,2).
The main focus is on runtimes but a lot of other rich structures are exposed
there. In Section 9.4 we do the same for the space (3,2). Section 9.5 deals
with (4,2) but does not disclose any additional structure of that space as we
did not exhaustively search this space. Rather we sampled from this space
looking for functions we selected from (3,2). In Section 9.6 we compare
the various TM spaces focussing on the runtimes of TMs that compute a
particular function.

9.2 Methodology and description of the ex-

periment

In this section we shall briefly restate the set-up of our experiment to
then fill out the details and motivate our choices. We try to be as detailed
as possible for a readable paper. For additional information, source code,
figures and obtained data can be requested from any of the authors.

9.2.1 Methodology in short

It is not hard to see that any computation in (2,2) is also present in (3,2).
At first, we look at TMs in (2,2) and compare them to TMs in (3,2). In
particular we shall study the functions they compute and the time they take
to compute in each space.

The way we proceeded is as follows. We ran all the TMs in (2,2) and
(3,2) for 1000 steps for the first 21 input values 0, 1, . . . , 20. If a TM does
not halt by 1000 steps we simply say that it diverges. We saw that certain
TMs defined a regular progression of runtimes that needed more than 1000
steps to complete the calculation for larger input values. For these regular
progressions we filled out the values manually as described in Subsection
9.2.7. Thus, we collect all the functions on the domain [0, 20] computed
in (2,2) and (3,2) and investigate and compare them in terms of run-time,
complexity and space-usage. We selected some interesting functions from
(2,2) and (3,2). For these functions we searched by sampling for TMs in
(4,2) that compute them so that we could include (4,2) in our comparison.

Clearly, at the outset of this project we needed to decide on at least the
following issues:
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1. How to represent numbers on a TM?

2. How to decide which function is computed by a particular TM.

3. Decide when a computation is considered finished.

The next subsections will fill out the details of the technical choices made
and provide motivations for these choices. Our set-up is reminiscent of and
motivated by a similar investigation in Wolfram’s book [14], Chapter 12,
Section 8.

9.2.2 Resources

There are (2sk)sk s-state k-color Turing machines. That means 4 096
in (2,2) and 2 985 984 TMs in (3,2). In short, the number of TMs grows
exponentially in the amount of resources. Thus, in representing our data and
conventions we should be as economical as possible in using our resources
so that exhaustive search in the smaller spaces still remains feasible. For
example, an additional halting state will immediately increase the search
space 1.

9.2.3 One-sided Turing Machines

In our experiment we have chosen to work with one-sided TMs. That is to
say, we work with TMs with a tape that is unlimited to the left but limited
to the right-hand side. One sided TMs are a common convention in the
literature just perhaps slightly less common than the two sided convention.
The following considerations led us to work with one-sided TMs.

- Efficient (that is, non-unary) number representations are place sensi-
tive. That is to say, the interpretation of a digit depends on the position
where the digit is in the number. Like in the decimal number 121, the
leftmost 1 corresponds to the centenaries, the 2 to the decades and the
rightmost 1 to the units. On a one-sided tape which is unlimited to
the left, but limited on the right, it is straight-forward how to inter-
pret a tape content that is almost everywhere zero. For example, the
tape . . . 00101 could be interpreted as a binary string giving rise to the
decimal number 5. For a two-sided infinite tape one can think of ways
to come to a number notation, but all seem rather arbitrary.

1. Although in this case not exponentially so, as halting states define no transitions.
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- With a one-sided tape there is no need for an extra halting state. We
say that a computation simply halts whenever the head “drops off” the
tape from the right hand side. That is, when the head is on the extremal
cell on the right hand side and receives the instruction to moves right.
A two-way unbounded tape would require an extra halting state which,
in the light of considerations in 9.2.2 is undesirable.

On the basis of these considerations, and the fact that some work has been
done before in the lines of this experiment [14] that also contributed to mo-
tivate our own investigation, we decided to fix the TM formalism and choose
the one-way tape model.

9.2.4 Unary input representation

Once we had chosen to work with TMs with a one-way infinite tape,
the next choice is how to represent the input values of the function. When
working with two colors, there are basically two choices to be made: unary
or binary. However, there is a very subtle point if the input is represented
in binary. If we choose for a binary representation of the input, the class of
functions that can be computed is rather unnatural and very limited.

The main reason is as follows. Suppose that a TM on input x performs
some computation. Then the TM will perform the very same computation
for any input that is the same as x on all the cells that were visited
by the computation. That is, the computation will be the same for an
infinitude of other inputs thus limiting the class of functions very severely.
On the basis of these considerations we decided to represent the input in
unary. Moreover, from a theoretical viewpoint it is desirable to have the
empty tape input different from the input zero, thus the final choice for
our input representation is to represent the number x by x+1 consecutive 1’s.

The way of representing the input in unary has two serious draw-backs:

1. The input is very homogeneous. Thus, it can be the case that TMs
that expose otherwise very rich and interesting behavior, do not do so
when the input consists of a consecutive block of 1’s.

2. The input is lengthy so that runtimes can grow seriously out of hand.
See also our remarks on the cleansing process below.

We mitigate these objections with the following considerations.
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1. Still interesting examples are found. And actually a simple informal ar-
gument using the Church-Turing thesis shows that universal functions
will live in a canonical way among the thus defined functions.

2. The second objection is more practical and more severe. However,
as the input representation is so homogeneous, often the runtime se-
quences exhibit so much regularity that missing values that are too
large can be guessed. We shall do so as described in Subsection 9.2.7.

9.2.5 Binary output convention

None of the considerations for the input conventions applies to the output
convention. Thus, it is wise to adhere to an output convention that reflects as
much information about the final tape-configuration as possible. Clearly, by
interpreting the output as a binary string, from the output value the output
tape configuration can be reconstructed. Hence, our outputs, if interpreted,
will be so as binary numbers.

Definition [Tape Identity] We say that a TM computes the tape identity
when the tape configuration at the end of a computation is identical to the
tape configuration at the start of the computation.

The output representation can be seen as a simple operation between
systems, taking one representation to another. The main issue is, how does
one keep the structure of a system when represented in another system, such
that, moreover, no additional essential complexity is introduced.

For the tape identity, for example, one may think of representations that,
when translated from one to another system, preserve the simplicity of the
function. However, a unary input convention and a binary output repre-
sentation immediately endows the tape identity with an exponential growth
rate. In principle this need not be a problem. However, computations that
are very close to the tape identity will give rise to number theoretic functions
that are seemingly very complex. However, as we shall see, in our current
set-up there will be few occasions where we actually do interpret the output
as a number other than for representational purposes. In most of the cases
the raw tape output will suffice.

9.2.6 The Halting Problem and Rice’s theorem

By the Halting Problem and Rice’s theorem we know that it is in gen-
eral undecidable to know wether a function is computed by a particular TM
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and whether two TMs define the same function. The latter is the problem of
extensionality (do two TMs define the same function?) known to be undecid-
able by Rice’s theorem. It can be the case that for TMs of the size considered
in this paper, universality is not yet attained 2, that the Halting Problem is
actually decidable in these small spaces and likewise for extensionallity.

As to the Halting Problem, we simply say that if a function does not
halt after 1000 steps, it diverges. Theory tells that the error thus obtained
actually drops exponentially with the size of the computation bound [6] and
we re-affirmed this in our experiments too as is shown in Figure 9.2. After
proceeding this way, we see that certain functions grow rather fast and very
regular up to a certain point where they start to diverge. These obviously
needed more than 1000 steps to terminate. We decided to complete these ob-
vious non-genuine divergers manually. This process is referred to as cleansing
and shall be addressed with more detail in the next subsection.

As to the problem of extensionality, we simply state that two TMs calcu-
late the same function when they compute (after cleansing) the same outputs
on the first 21 inputs 0 through 20 with a computation bound of 1000 steps.
We found some very interesting observations that support this approach: for
the (2,2) space the computable functions are completely determined by their
behavior on the first 3 input values 0,1,2. For the (3, 2) space the first 8
inputs were found to be sufficient to determine the function entirely.

9.2.7 Cleansing the data

As mentioned before, the Halting problem is undecidable so one will al-
ways err when mechanically setting a cut-off value for our computations.
The choice that we made in this paper was as follows. We put the cut-off
value at 1000. After doing so, we looked at the functions computed. For
those functions that saw an initial segment with a very regular progression
of runtimes, for example 16, 32, 64, 128, 256, 512, -1, -1, we decided to fill
out the the missing values in a mechanized way. It is clear that, although
better than just using a cut-off value, we will still not be getting all functions
like this. Moreover, there is a probability that errors are made while filling
out the missing values. However we deem the error not too significant, as we
have a uniform approach in this process of filling out, that is, we apply the

2. Recent work ([17]) has shown some small two-way infinite tape universal TMs. It
is known that there is no universal machine in the space of two-way unbounded tape
(2,2) Turing machines but there is known at least one weakly universal Turing machine
in (2,3)[14] and it may be (although unlikely) the case that a weakly universal Turing
machine in (3,2) exists.
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same process for all sequences, either in (2,2) or in (4,2) etc. Moreover, we
know from theory ([6]) that most TMs either halt quickly or never halt at
all and we affirmed this experimentally in this paper. Thus, whatever error
is committed, we know that the effect of it is eventually only marginally.
In this subsection we shall describe the way we mechanically filled out the
regular progressions that exceeded the computation bound.

We wrote a so-called predictor program that was fed incomplete se-
quences and was to fill out the missing values. The predictor program
is based on the function FindSequenceFunction 3 built-in to the com-
puter algebra system Mathematica. Basically, it is not essential that we
used FindSequenceFunction or any other intelligent tool for completing se-
quences as long as the cleansing method for all TM spaces is applied in the
same fashion. A thorough study of the cleansing process, its properties, ad-
equacy and limitations is presented in [19]. The predictor pseudo-code is as
follows:

1. Start with the finite sequence of integer values (with -1 values in the
places the machine didn’t halt for that input index).

2. Take the first n consecutive non-divergent (convergent) values, where
n ≥ 4 (if there is not at least a segment with 4 consecutive non divergent
values then it gives up).

3. Call FindSequenceFunction with the convergent segment and the first
divergent value.

4. Replace the first divergent value with the value calculated by evalu-
ating the function found by FindSequenceFunction for that sequence
position.

5. If there are no more -1 values stop otherwise trim the sequence to the
next divergent value and go to 1.

This is an example of a (partial) completion: Let’s assume one has a sequence
(2, 4, 8, 16, -1, 64, -1, 257, -1, -1) with 10 values. The predictor returns: (2,

3. FindSequenceFunction takes a finite sequence of integer values {a1, a2, . . .} and
retrieves a function that yields the sequence an. It works by finding solutions to difference
equations represented by the expression DifferenceRoot in Mathematica. By default,
DifferenceRoot uses early elements in the list to find candidate functions, then validates
the functions by looking at later elements. DifferenceRoot is generated by functions such
as Sum, RSolve and SeriesCoefficient, also defined in Mathematica. RSolve can solve
linear recurrence equations of any recurring order with constant coefficients. It can also
solve many linear equations (up to second recurring order) with non-constant coefficients,
as well as many nonlinear equations. For more information we refer to the extensive online
Mathematica documentation.
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4, 8, 16, 32, 64, 128, 257, -1, -1) because up to 257 the sequence seemed to be
2n but from 257 on it was no longer the case, and the predictor was unable
to find a sequence fitting the rest.

The prediction function was constrained by 1 second, meaning that the
process stops if, after a second of trying, no prediction is made, leaving
the non-convergent value untouched. This is an example of a completed
Turing machine output sequence. Given (3, 6, 9, 12, -1, 18, 21, -1, 27, -1,
33, -1) it is retrieved completed as (3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,
36). Notice how the divergent values denoted by −1 are replaced with values
completing the sequence with the predictor algorithm based inMathematica’s
FindSequenceFunction.

The prediction vs. the actual outcome

For a prediction to be called successful we require that the output, run-
time and space usage sequences coincide in every value with the step-by-step
computation (after verification). One among three outcomes are possible:

– Both the step-by-step computation and the sequences obtained with
FindSequenceFunction completion produce the same data, which
leads us to conclude that the prediction was accurate.

– The step-by-step computation produces a non-convergent value −1,
meaning that after the time bound the step-by-step computation didn’t
produce any new convergent value that wasn’t also produced by the
FindSequeceFunction (which means that either the value to be pro-
duced requires a larger time bound, or that the FindSequenceFunction
algorithm has failed, predicting a convergent value where it is actually
divergent).

– The step-by-step computation produced a value that the
FindSequenceFunction algorithm did not predict.

In the end, the predictor indicated what machines we had to run for
larger runtimes in order to complete the sequences up to a final time bound
of 200 000 steps for a subset of machines that couldnt be fully completed
with the predictor program. The number of incorrectly predicted (or left
incomplete) in (3,2) was 90 out of a total 3368 sequences completed with the
predictor program. In addition to these 45 cases of incorrect completions,
we found 108 cases where the actual computation produced new convergent
values that the predictor could not predict. The completion process led us
to only eight final non-completed cases, all with super fast growing values.

220



In (4,2) things werent too different. Among the 30 955 functions that
were sampled motivated by the functions computed in (3,2) that were found
to have also been computed in (4,2) (having in mind a comparison of time
complexity classes) only 71 cases could not be completed by the prediction
process, or were differently computed by the step-by-step computation. That
is only 0.00229 of the sequences, hence in both cases allowing us to make
accurate comparisons with low uncertainty in spite of the Halting Problem
and the problem of very large (although rare) halting times.

9.2.8 Running the experiment

To explore the different spaces of TMs we wrote a TM simulator in the
programming language C. We tested this C language simulator against the
TuringMachine function in Mathematica as it used the same encoding for
TMs. It was checked and found in concordance for the whole (2,2) space and
a sample of the (3,2) space.

We run the simulator in the cluster of the CICA (Centro de Informática
Cient́ıfica de Andalućıa 4). To explore the (2,2) space we used only one node
of the cluster and it took 25 minutes. The output was a file of 2 MB. For
(3,2) we used 25 nodes (50 microprocessors) and took a mean of three hours
in each node. All the output files together fill around 900 MB.

9.3 Investigating the space of 2-state, 2-color

Turing machines

In this section we shall have our first glimpse into the fascinating micro-
cosmos of small Turing machines. We shall see what kind of computational
behavior is found among the functions that live in (2,2) and reveal various
complexity-related properties of the (2,2) space.

Definition In our context and in the rest of this paper, an algorithm
computing a function is one particular set of 21 quadruples of the form

〈input value, output value, runtime, space usage〉

for each of the input values 0, 1, . . . , 20, where the output, runtime and space-
usage correspond to that particular input.

4. Andalusian Centre for Scientific Computing: http://www.cica.es/.
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In the cleansed data of (2,2) we found 74 functions and a total of 138
different algorithms computing them.

9.3.1 Determinant initial segments

An indication of the complexity of the (2,2) space is the number of inputs
needed to determine a function. In the case of (2,2) this number of inputs is
only 3. For the first input, the input 0, there are 11 different outputs. The
following list shows these different outputs (first value in each pair) and the
frequency they appear with (second value in each pair). Output -1 represents
the divergent one:

{{3, 13}, {2, 12}, {-1, 10}, {0, 10}, {1, 10}, {7, 6}, {6, 4},

{15, 4}, {4, 2}, {5, 2}, {31, 1}}

For two inputs there are 55 different combinations and for three we find
all the 74 functions. The first input is most significant; without it, the other
inputs only appear in 45 different combinations. This is because there are
many functions with different behavior for the first input than for the rest.

We find it interesting that only 3 values of a TM are needed to fully
determine its behavior in the full (2,2) space that consists of 4 096 different
TMs. Just as a matter of analogy we bring the C∞ functions to mind. These
infinitely often differentiable continuous functions are fully determined by
the outputs on a countable set of input values. It is an interesting question
how the minimal number of input values needed to determine a TM grows
relative to the total number of (2 ·s ·k)s·k many different TMs in (s, k) space,
or relative to the number of defined functions in that space.

9.3.2 Halting probability

In the cumulative version of Figure 9.2 we see that more than 63% of
executions stop after 50 steps, and little growth is obtained after more steps.
Considering that there is an amount of TMs that never halt, it is consistent
with the theoretical result in [6] that most TMs stop quickly or never halt.

Let us briefly comment on Figure 9.2. First of all, we stress that the
halting probability ranges over all pairs of TMs in (2,2) and all inputs between
0 and 20. Second, it is good to realize that the graph is some sort of best
fit and leaves out zero values in the following sense. It is easy to see that on
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Figure 9.2: Halting times in (2,2).

the one-sided TM halting can only occur after an odd number of steps. Thus
actually, the halting probability of every even number of steps is zero. This
is not so reflected in the graph because of a smooth-fit.

We find it interesting that Figure 9.2 shows features reminiscent of phase
transitions. Completely contrary to what we would have expected, these
“phase transitions” were even more pronounced in (3, 2) as one can see in
Figure 9.12.

9.3.3 Phase transitions in the halting probability dis-
tribution

Let consider Figure 9.2 again. Note that in this figure only pairs of TMs
and inputs are considered that halt in at most 100 steps. The probability
of stopping (a random TM in (2, 2) with a random input in 0 to 20) in at
most 100 steps is 0.666. The probability of stopping in any number of steps
is 0.667, so most TMs stop quickly of do not stop.

We clearly observe a phase transition phenomenon. To investigate the
cause of this, let us consider the set of runtimes and the number of their oc-
currences. Figure 9.3 shows at the left the 50 smallest runtimes and the num-
ber of occurrences in the space that we have explored. The phase-transition
is apparently caused because there are some blocks in the runtimes. To
study the cause of this phase-transition we should observe that the left di-
agram on Figure 9.3 represents the occurrences of runtimes for arbitrary
inputs from 0 to 20. The graph on the right of Figure 9.3 is clearer. Now,
lines correspond to different inputs from 0 to 20. The graph at the left can
be obtained from the right one by adding the occurrences corresponding to
points with the same runtime. The distribution that we observe here explains
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Figure 9.3: Occurrences of runtimes

the phase-transition effect. It’s very interesting that in all cases there is a
local maximum with around 300 occurrences and after this maximum, the
evolution is very similar. In order to explain this, we look at the following
list 5 that represents the 10 most frequent runtime sequences in (2, 2). Every
runtime sequence is preceded by the number of TMs computing it:

2048 {1, 1, . . . } 106 {-1, 3, 3, . . . } 20 {3, 7, 11, 15, . . . }
1265 {-1, -1, . . . } 76 {3, -1, -1, . . . } 20 {3, 5, 5, . . . }
264 {3, 5, 7, 9, . . . } 38 {5, 7, 9, 11, . . . }
112 {3, 3, . . . } 32 {5, 3, 3, . . . }

We observe that there are only 5 sequences computed more than 100
times. They represent 92.65% of the TMs in (2, 2). There is only one sequence
that is not constant nor divergent (recall that−1 represents divergences) with
264 occurrences: {3, 5, 7, 9, . . .}. That runtime sequence corresponds to TMs
that give a walk forth and back over the input tape to run of the tape and halt.
This is the most trivial linear sequence and explains the intermediate step
in the phase-transition effect. There is also another similar sequence with 38
occurrences {5, 7, 9, 11, . . .}. Moreover, observe that there is a sequence with
20 occurrences where subsequent runtimes differ by 4 steps. This sequence
{3, 7, 11, 15, . . .} contains alternating values of our original one {3, 5, 7, 9, . . .}
and it explains the zigzag observed in the left part of Figures 9.2 and 9.3.

Altogether, this analysis accounts for the observed phase transition. In
a sense, the analysis reduces the phase transition to the strong presence of
linear performers in Figure 9.18 together with the facts that on the one hand
there are few different kinds of linear performers and on the other hand that
each group of similar linear TMs is “spread out over the horizontal axis” in
Figure 9.2 as each input 0,. . . , 20 is taken into account.

5. The dots denote a linear progression (or constant which is a special case of linear).
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9.3.4 Runtimes

There is a total of 49 different sequences of runtimes in (2,2). This number
is 35 when we only consider total functions. Most of the runtimes grow linear
with the size of the input. A couple of them grow quadratically and just two
grow exponentially. The longest halting runtime occurs in TM numbers 378
and 1351, that run for 8 388 605 steps on the last input, that is on input 20.
Both TMs used only 21 cells 6 for their computation and outputted the value
2 097 151.

Rather than exposing lists of outputvalues we shall prefer to graphically
present our data. The sequence of output values is graphically represented
as follows. On the top line we depict the tape output on input zero (that is,
the input consisted of just one black cell). On the second line immediately
below the first one, we depict the tape output on input one (that is, the
input consisted of two black cells), etc. By doing so, we see that the function
computed by TM 378 is just the tape identity.

Let us focus on all the (2,2) TMs that compute that tape identity. We
will depict most of the important information in one overview diagram. This
diagram as shown in Figure 9.4 contains at the top a graphical representation
of the function computed as described above.

Below the representation of the function, there are six graphs. On each
horizontal axis of these graphs, the input is plotted. The τi is a diagram that
contains plots for all the runtimes of all the different algorithms computing
the function in question. Likewise, σi depicts all the space-usages occurring.
The <τ> and <σ> refer to the (arithmetical) average of time and space
usage. The subscript h in e.g. <τ>h indicates that the harmonic average is
calculated. As the harmonic average is only defined for non-zero numbers,
for technical reasons we depict the harmonic average of σi + 2 rather than
for σi.

Let us recall a definition of the harmonic mean. The harmonic mean of
n non-zero values x1, . . . , xn is defined as

<x>h :=
n

1
x1

+ . . .+ 1
xn

.

In our case, the harmonic mean of the runtimes can be interpreted as follows.
Each TM computes the same function. Thus, the total amount of information
in the end computed by each TM per input is the same although runtimes

6. It is an interesting question how many times each cell is visited. Is the distribution
uniform over the cells? Or centered around the borders?
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may be different. Hence the runtime of one particular TM on one particular
input can be interpreted as time/information. We now consider the following
situation:

Let the exhaustive list of TMs computing a particular function f be
{TM1, . . . , TMn with runtimes t1,
. . . , tn}. If we normalize the amount of information computed by f to 1, we
can interpret e.g. 1

tk
as the amount of information computed by TMk in one

time step. If we now let TM1 run for 1 time unit, next TM2 for 1 time unit
and finally TMn for 1 time unit, then the total amount of information of the
output computed is 1/t1 + ...+ 1/tn. Clearly,

n times
︷ ︸︸ ︷

1

<τ>h

+ . . .+
1

<τ>h

=

n times
︷ ︸︸ ︷
1
t1
+ . . .+ 1

tn

n
+ . . .

1
t1
+ . . .+ 1

tn

n
=

1

t1
+ . . .+

1

tn
.

Thus, we can see the harmonic average as the time by which the typical
amount of information is gathered on a random TM that computes f . Alter-
natively, the harmonic average <τ>h is such that 1

<τ>h
is the typical amount

of information computed in one time step on a random TM that computes
f .

9.3.5 Clustering in runtimes and space-usages

Observe the two graphics in Figure 9.5. The left one shows all the runtime
sequences in (2,2) and the right one the used-space sequences. Divergences
are represented by −1, so they explain the values below the horizontal axis.
We find some exponential runtimes and some quadratic ones, but most of
them remain linear. All space usages in (2,2) are linear.

An interesting feature of Figure 9.5 is the clustering. For example, we
see that the space usage comes in three different clusters. The clusters are
also present in the time graphs. Here the clusters are less prominent as
there are more runtimes and the clusters seem to overlap. It is tempting to
think of this clustering as rudimentary manifestations of the computational
complexity classes.

Another interesting phenomenon is observed in these graphics. It is that
of alternating divergence, detected in those cases where value −1 alternates
with the other outputs, spaces or runtimes. The phenomena of alternating
divergence is also manifest in the study of definable sets.
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The image provides the basic infor-
mation of the TM outputs depicted
by a diagram with each row the out-
put of each of the 21 inputs, fol-
lowed by the plot figures of the av-
erage resources taken to compute the
function, preceded by the time and
space plot for each of the algorithm
computing the function. For exam-
ple, this info box tells us that there
are 1 055 TMs computing the iden-
tity function, and that these TMs are
distributed over just 12 different algo-
rithms (i.e. TMs that take different
space/time resources). Notice that at
first glance at the runtimes τi, they
seem to follow just an exponential
sequence while space grows linearly.
However, from the other diagrams we

learn that actually most TMs run in
constant time and space. Note that
all TMs that run out of the tape in
the first step without changing the
cell value (the 25% of the total space)
compute this function.

Figure 9.4: Overview diagram of the tape identity.
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Figure 9.5: Runtime and space distribution in (2,2).

9.3.6 Definable sets

Like in classical recursion theory, we say that a set W is definable by
a (2,2) TM if there is some machine M such that W = WM where WM is
defined as usual as

WM := {x | M(x) ↓}.

In total, there are 8 definable sets in (2,2). Below follows an enumeration of
them.

{{}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20}, {0}, {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20},

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20}, {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, {0, 1}}

It is easy to see that the definable sets are closed under complements.

9.3.7 Clustering per function

We have seen that all runtime sequences in (2,2) come in clusters and
likewise for the space usage. It is an interesting observation that this cluster-
ing also occurs on the level of single functions. Some examples are reflected
in Figure 9.6.

9.3.8 Computational figures reflecting the number of

available resources

Certain functions clearly reflect the fact that there are only two available
states. This is particularly noticeable from the period of alternating converg-
ing and non-converging values and in the offset of the growth of the output,
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Figure 9.6: Clustering of runtimes and space-usage per function.

and in the alternation period of black and white cells. Some examples are
included in Figure 9.7.

9.3.9 Types of computations in (2,2)

Let us finish this analysis with some comments about the computations
that we can find in (2,2). Most of the TMs perform very simple computations.
Apart from the 50% that in every space finishes the computations in just one
step (those TMs that move to the right from the initial state), the general
pattern is to make just one round through the tape and back. It is the case
for TM number 2240 with the sequence of runtimes:

{5, 5, 9, 9, 13, 13, 17, 17, 21, 21, ..}

Figure 9.8 shows the sequences of tape configurations for inputs 0 to 5. Each
of these five diagrams should be interpreted as follows. The top line repre-
sents the tape input and each subsequent line below that represents the tape
configuration after one more step in the computation.

The walk around the tape can be more complicated. This is the case for
TM number 2205 with the runtime sequence:

{3, 7, 17, 27, 37, 47, 57, 67, 77, ...}
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Figure 9.7: Computational figures reflecting the number of available re-
sources.

Figure 9.8: Turing machine tape evolution for Rule 2240.

which has a greater runtime but it only uses that part of the tape that was
given as input, as we can see in the computations (Figure 9.9, left). TM 2205
is interesting in that it shows a clearly localized and propagating pattern that
contains the essential computation.

The case of TM 1351 is one of the few that escapes from this simple
behavior. As we saw, it has the highest runtimes in (2,2). Figure 9.9 (right)
shows its tape evolution. Note that it is computing the tape identity. Many
other TMs in (2,2) compute this function in linear or constant time. In this
case of TM 1351 the pattern is generated by a genuine recursive process thus
explaining the exponential runtime.

In (2,2) we also witnessed TMs performing iterative computations that
gave rise to mainly quadratic runtimes. An example of this is TM 1447,
whose computations for the first seven inputs are represented in Figure 9.10.

Let us briefly summarize the types of computations that we saw in (2,2).

– Constant time behavior like the head (almost) immediately dropping
off the tape;

– Linear behavior like running to the end of the tape and then back again
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Figure 9.9: Tape evolution for Rules 2205 (left) and 1351 (right).

Figure 9.10: Turing machine tape evolution for Rule 1447.

as Rule 2240;
– Iterative behavior like using each black cell to repeat a certain process
as in Rule 1447;

– Localized computation like in Rule 2205;
– Recursive computations like in Rule 1351.
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As most of the TMs in (2,2) compute their functions in the easiest possible
way (just one crossing of the tape), no significant speed-up can be expected.
Only slowdown is possible in most cases.

9.4 Investigating the space of 3-states, 2-

colors Turing machines

In the cleansed data of (3,2) we found 3886 functions and a total of 12824
different algorithms that computed them.

9.4.1 Determinant initial segments

As these machines are more complex than those of (2,2), more outputs
are needed to characterize a function. From 3 required in (2,2) we need now
8, see Figure 9.11.

Figure 9.11: Number of outputs required to characterize a function in (3,2).

9.4.2 Halting probability

Figure 9.12 shows the runtime probability distributions in (3,2). The
same behavior that we commented for (2,2) is also observed.

Note that the “phase transitions” in (3,2) are even more pronounced than
in (2,2). We can see these phase transitions as rudimentary manifestations of
computational complexity classes. Similar reasoning as in Subsection 9.3.3
can be applied for (3,2) to account for the phase transitions as we can see in
Figure 9.13.
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Figure 9.12: Runtime proprobability distributions in (3,2).

Figure 9.13: Occurrences of runtimes

9.4.3 Runtimes and space-usages

In (3,2) the number of different runtimes and space usage sequences is
the same: 3676. Plotting them all as we did for (2,2) would not be too
informative in this case. So, Figure 9.14 shows samples of 50 sequences of
space and runtime sequences. Divergent values are omitted as to avoid big
sweeps in the graphs caused by the alternating divergers. As in (2,2) we
observe the same phenomenon of clustering.

Figure 9.14: Sampling of 50 space (left) and runtime (right) sequences in
(3,2).
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9.4.4 Definable sets

Now we have found 100 definable sets. Recall that in (2,2) definable sets
were closed under taking complements. This does not happen in (3,2). There
are 46 definable sets, like

{{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, ...}

that coexist with their complements, but another 54, like

{{0, 3}, {1, 3}, {1, 4}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, ...}

are definable sets but their complements are not. We note that, although
there are more definable sets in (3,2) in an absolute sense, the number of
definable sets in (3,2) relative to the total amount of functions in (3,2) is
about four times smaller than in (2,2).

9.4.5 Clustering per function

In (3,2) the same phenomenon of the clustering of runtime and space
usage within a single function also happens. Moreover, as Figure 9.15 shows,

Figure 9.15: Clustering per function in (3,2).

exponential runtime sequences may occur in a (3,2) function (left) while
only linear behavior is present among the (2,2) computations of the function
(right).
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9.4.6 Exponential behavior in (3,2) computations

Recall that in (2,2) most convergent TMs complete their computations in
linear time. Now (3,2) presents more interesting exponential behavior, not
only in runtime but also in used space.

The max runtime in (3,2) is 894 481 409 steps found in the TMs number
599063 and 666364 (a pair of twin rules 7) at input 20. The values of this
function are double exponential. All of them are a power of 2 minus 2.

Figure 9.16 shows the tape evolution with inputs 0 and 1. The pattern
observed on the right repeats itself.

Figure 9.16: Tape evolution for Rule 599063.

9.5 The space (4,2)

An exhaustive search of this space fell out of the scope of the current
project. For the sake of our investigations we were merely interested in
finding functions in (4,2) that we were interested in. Thus, we sampled and
looked only for interesting functions that we selected from (2,2) and (3,2). In
searching the 4,2 space, we proceeded as follows. We selected 284 functions
in (3,2), 18 of them also in (2,2), that we hoped to find in (4,2) using a
sample of about 56x106 random TMs.

7. We call two rules in (3,2) twin rules whenever they are exactly the same after
switching the role of State 2 and State 3.
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Our search process consisted of generating random TMs and run them for
1000 steps, with inputs from 0 to 21. The output (with runtime and space
usage) was saved only for those TMs with a converging part that matches
some of the 284 selected functions.

We saved 32235683 TMs. From these, 28 032 552 were very simple TMs
that halt in just one step for every input, so we removed them. We worked
with 4 203 131 non-trivial TMs.

After cleansing there were 1549 functions computed by 49 674 algorithms.
From these functions, 22 are in (2,2) and 429 in (3,2). TMs computing all
the 284 functions of the sampling were found.

Throughout the remainder of the paper it is good to constantly have in
mind that the sampling in the (4,2) space is not at all representative.

9.6 Comparison between the TM spaces

The most prominent conclusion from this section is that when computing
a particular function, slow-down of a computation is more likely than speed-
up if the TMs have access to more resources to perform their computations.
Actually no essential speed-up was witnessed at all. We shall compare the
runtimes both numerically and asymptotically.

9.6.1 Runtimes comparison

In this section we compare the types of runtime progressions we encoun-
tered in our experiment. We use the big O notation to classify the different
types of runtimes. Again, it is good to bear in mind that our findings are
based on just 21 different inputs. However, the estimates of the asymptotic
behavior is based on the functions as found in the cleansing process and san-
ity checks on more inputs confirmed the correctness (plausibility) of those
functions.

Below, a table is presented that compares the runtime behavior between
functions that were present in (2,2), (3,2) and (4,2). The first column refers
to a canonical index for this list of functions that live in all of (2,2), (3,2)
and (4,2). The column under the heading (2,2) displays the distribution
of time complexity classes for the different algorithms in (2,2) computing
the particular function in that row and likewise for the columns (3,2) and
(4,2). Each time complexity class is followed by the number of occurrences
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# (3,2) (4,2)

1 O[n], 1265 O
[

n2
]

, 7 O
[

n3
]

, 1 O[n], 23739 O
[

n2
]

, 80 O
[

n3
]

, 6

2 O[n], 82 O
[

n2
]

, 1 O[n], 1319 O
[

n2
]

, 28

4 O[n], 133 O
[

n2
]

, 2 O[n], 2764 O
[

n2
]

, 72 O
[

n3
]

, 1

6
O[1], 23 O[n],34 O

[

n2
]

, 9

O
[

n3
]

, 15 O
[

n4
]

, 5 O[Exp], 15

O[1], 197 O[n],377 O
[

n2
]

, 101

O
[

n3
]

, 181 O
[

n4
]

, 59 O[Exp], 156

10 O[n], 54 O
[

n2
]

, 4 O[n], 502 O
[

n2
]

, 23 O[Exp], 4

12 O
[

n2
]

, 11 O
[

n2
]

, 110 O
[

n3
]

, 1 O[Exp], 3

13 O[n], 63 O
[

n2
]

, 7 O[Exp], 4
O[n], 544 O

[

n2
]

, 54 O
[

n3
]

, 16

O[Exp], 26

32 O
[

n2
]

, 12 O
[

n2
]

, 112 O
[

n3
]

, 3 O[Exp], 5

95
O[1], 8 O[n], 7 O

[

n3
]

, 1

O[Exp], 3

O[1], 49 O[n], 63 O
[

n2
]

, 15

O
[

n3
]

, 24 O
[

n4
]

, 4 O[Exp], 29

100 O[n], 9 O
[

n2
]

, 1 O[n],90 O
[

n2
]

, 4

112 O[n], 5 O
[

n2
]

, 1 O
[

n3
]

, 3 O[n], 41 O
[

n2
]

, 10 O
[

n3
]

, 12

135 O
[

n2
]

, 13 O
[

n2
]

, 107 O
[

n3
]

, 4 O[Exp], 1

138 O[n], 5 O
[

n2
]

, 3 O
[

n3
]

, 1 O[n], 34 O
[

n2
]

, 13 O
[

n3
]

, 10

292 O[n], 7 O
[

n2
]

, 1 O[n], 162 O
[

n2
]

, 5

350 O[n], 1 O
[

n2
]

, 1 O[n], 20 O
[

n2
]

, 1 O
[

n3
]

, 2

421 O
[

n2
]

, 11 O
[

n2
]

, 88 O
[

n3
]

, 1 O[Exp], 2

422 O
[

n2
]

, 2 O
[

n2
]

, 17

Figure 9.17: Comparison of the distributions of time classes of algorithms
computing a particular function for a sample of 17 functions computed both
in (3,2) and (4,2). The function number is an index from the list containing
all 429 functions considered by us, that were computed in both TM spaces.

among the algorithms in that TM space. The complexity classes are sorted
in increasing order. Note that we only display a selection of the functions,
but our selection is representative for the whole (2,2) space.

237



# (2,2) (3,2) (4,2)

1 O[1] : 46 O[n] : 46
O[1] : 1109 O[n] : 1429

O
[

n2
]

: 7 O
[

n3
]

: 1

O[1] : 19298 O[n] : 28269

O
[

n2
]

: 77 O
[

n3
]

: 6

2 O[1] : 5 O[n] : 5
O[1] : 73 O[n] : 64

O
[

n2
]

: 7 O[Exp] : 4

O[1] : 619 O[n] : 566

O
[

n2
]

: 53 O
[

n3
]

: 16

O[Exp] : 26

3 O[1] : 2 O[n] : 2
O[1] : 129 O[n] : 139

O
[

n2
]

: 2

O[1] : 2483 O[n] : 3122

O
[

n2
]

: 68 O
[

n3
]

: 1

4
O[1] : 16 O[n] : 5
O[Exp] : 3

O[1] : 124 O[n] : 34

O
[

n2
]

: 9 O
[

n3
]

: 15

O
[

n4
]

: 5 O[Exp] : 15

O[1] : 1211 O[n] : 434

O
[

n2
]

: 101 O
[

n3
]

: 181

O
[

n4
]

: 59 O[Exp] : 156

5 O[1] : 2 O[n] : 2 O[1] : 34 O[n] : 34
O[1] : 289 O[n] : 285

O
[

n2
]

: 8

6 O[1] : 3 O[n] : 3 O[1] : 68 O[n] : 74
O[1] : 576 O[n] : 668

O
[

n2
]

: 9 O
[

n3
]

: 3

7 O[1] : 10 O[1] : 54 O[n] : 8
O[1] : 368 O[n] : 94

O
[

n3
]

: 4 O[Exp] : 6

8 O[n] : 1 O
[

n2
]

: 1 O[n] : 13 O
[

n2
]

: 13
O[n] : 112 O

[

n2
]

: 107

O
[

n3
]

: 4 O[Exp] : 1

9 O[1] : 2 O[n] : 2
O[1] : 58 O[n] : 54

O
[

n2
]

: 4

O[1] : 503 O[n] : 528

O
[

n2
]

: 23 O[Exp] : 4

10 O[n] : 1 O
[

n2
]

: 1 O[n] : 11 O
[

n2
]

: 11
O[n] : 114 O

[

n2
]

: 110

O
[

n3
]

: 1 O[Exp] : 3

11 O[n] : 1 O
[

n2
]

: 1 O[n] : 11 O
[

n2
]

: 11
O[n] : 91 O

[

n2
]

: 88

O
[

n3
]

: 1 O[Exp] : 2

12 O[n] : 1 O
[

n2
]

: 1 O[n] : 12 O
[

n2
]

: 12
O[n] : 120 O

[

n2
]

: 112

O
[

n3
]

: 3 O[Exp] : 5

13 O[1] : 5 O[n] : 5 O[1] : 39 O[n] : 43
O[1] : 431 O[n] : 546

O
[

n2
]

: 1

14 O[1] : 4 O[n] : 4 O[1] : 14 O[n] : 14
O[1] : 119 O[n] : 121

O
[

n2
]

: 5 O
[

n3
]

: 1

15 O[1] : 2 O[1] : 11 O[n] : 1
O[1] : 69 O[n] : 15

O
[

n2
]

: 1 O[Exp] : 3

16 O[1] : 18
O[1] : 27 O[n] : 7

O
[

n3
]

: 1 O[Exp] : 3

O[1] : 233 O[n] : 63

O
[

n2
]

: 15 O
[

n3
]

: 24

O
[

n4
]

: 4 O[Exp] : 29

17 O[1] : 2 O[n] : 2 O[1] : 33 O[n] : 33
O[1] : 298 O[n] : 294

O
[

n2
]

: 2 O
[

n3
]

: 2

18 O[1] : 1 O[n] : 1 O[1] : 9 O[n] : 9 O[1] : 94 O[n] : 94

19 O[1] : 1 O[n] : 1
O[1] : 78 O[n] : 87

O
[

n2
]

: 1

O[1] : 1075 O[n] : 1591

O
[

n2
]

: 28

20 O[1] : 1 O[n] : 1 O[1] : 15 O[n] : 15
O[1] : 76 O[n] : 75

O
[

n2
]

: 1

21 O[1] : 1 O[n] : 1 O[1] : 21 O[n] : 21 O[1] : 171 O[n] : 173

22 O[1] : 1 O[n] : 1 O[1] : 14 O[n] : 14
O[1] : 203 O[n] : 203

O
[

n2
]

: 2 O[Exp] : 4

No essentially (different asymptotic behavior) faster runtime was found
in (3,2) compared to (2,2). Thus, no speed-up was found other than by
a linear factor as reported in Subsection (9.6.3). That is, no algorithm in
(3,2) computing a function in (2,2) was essentially faster than the fastest
algorithm computing the same function in (2,2). Amusing findings were
Turing machines both in (2,2) and (3,2) computing the tape identify function
in as much as exponential time. They are an example of machines spending
all resources to compute a simple function. Another example is the constant
function f(n) = 0 computed in O(n2), O(n3), O(n4) and even O(Exp).
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Figure 9.18: Time complexity distributions of (2,2) (left) and (3,2) (right).

In (2,2) however, there are very few non-linear time algorithms and func-
tions 8. However as we see from the similar table for (3,2) versus (4,2) in
Figure 9.17, also between these spaces there is no essential speed-up wit-
nessed. Again only speed-up by a linear factor can occur.

9.6.2 Distributions over the complexity classes

Figure 9.18 shows the distribution of the the TMs over the different
asymptotic complexity classes. On the level of this distribution we see that
the slow-down is manifested in a shift of the distribution to the right of the
spectrum.

We have far to few data to possibly speak of a prior in the distributions of
our TMs over these complexity classes. However, we do remark the following.
In the following table we see the fraction per complexity class of the non-
constant TMs for each space. Even though for (4,2) we do not at all work
with a representative sampling still there is some similarity in the fractions.
Most notably within one TM space, the ratio of one complexity class to
another is in the same order of magnitude as the same ratio in one of the
other spaces. Notwithstanding this being a far cry from a prior, we do find
it worth 9 while mentioning.

8. We call a function O(f) time, when its asymptotically fastest algorithm is O(f)
time.

9. Although we have very few data points we could still audaciously calculate the
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pr (2,2) (3,2) (4,2)
O(n) 0.941667 0.932911 0.925167
O(n2) 0.0333333 0.0346627 0.0462362
O(n3) 0 0.0160268 0.0137579
O(n4) 0 0.0022363 0.00309552

O(Exp) 0.025 0.0141633 0.0117433

9.6.3 Quantifying the linear speed-up factor

For obvious reasons all functions computed in (2,2) are computed in (3,2).
The most salient feature in the comparison of the (2,2) and (3,2) spaces is
the prominent slowdown indicated by both the arithmetic and the harmonic
averages. The space (3,2) spans a larger number of runtime classes. Figures
9.19 and 9.20 are examples of two functions computed in both spaces in a
side by side comparison with the information of the function computed in
(3,2) on the left side and the function computed by (2,2) on the right side. In
[9] a full overview of such side by side comparison is published. Notice that
the numbering scheme of the functions indicated by the letter f followed by a
number may not be the same because they occur in different order in each of
the (2,2) and (3,2) spaces but they are presented side by side for comparison
with the corresponding function number in each space.

One important calculation experimentally relating descriptional
(program-size) complexity and (time resources) computational complexity
is the comparison of maximum of the average runtimes on inputs 0,. . .,20,
and the estimation of the speed-ups and slowdowns factors found in (3,2)
with respect to (2,2).

It turns out that 19 functions out of the 74 computed in (2,2) and (3,2)
had at least one fastest computing algorithm in (3,2). That is a fraction of
0.256 of the 74 functions in (2,2). A further inspection reveals that among
the 3 414 algorithms in (3,2), computing one of the functions in (2,2), only
122 were faster. If we supposed that “chances” of speed-up versus slow-
down on the level of algorithms were fifty-fifty, then the probability that we
observed at most 122 instantiations of speed-up would be in the order of
10−108. Thus we can safely state that the phenomena of slow-down at the
level of algorithms is significant.

Pearson coefficient correlations between the classes that are inhabited within one of the
spaces. Among (2,2), (3,2) and (4,2) the Pearson coefficients are: 0.999737, 0.999897 and
0.999645.
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Figure 9.19: Side by side comparison of an example computation of a function
in (2,2) and (3,2) (the identity function).

Figure 9.20: Side by side comparison of the computation of a function in
(2,2) and (3,2).
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Figure 9.21: Distribution of speed-up probabilities per function. Interpreted
as the probability of picking an algorithm in (3,2) computing faster an func-
tion in (2,2).

Figure 9.22: Speed up significance: on the left average and on the right
maximum speed-ups.

Figure 9.23 shows the scarceness of the speed-up and the magnitudes
of such probabilities. Figures 9.22 quantify the linear factors of speed-up
showing the average and maximum. The typical average speed-up was 1.23
times faster for an algorithm found when there was a faster algorithm in (3,2)
computing a function in (2,2).

In contrast, slowdown was generalized, with no speed-up for 0.743 of the
functions. Slowdown was not only the rule but the significance of the slow-
down was much larger than the scarce speed-up phenomenon. The average
algorithm in (3,2) took 2 379.75 longer and the maximum slowdown was of
the order of 1.19837×106 times slower than the slowest algorithm computing
the same function in (2,2).

As mentioned before there is also no essential speed-up in the space (4,2)
compared to (3,2) and only linear speed-up was witnessed at times. But
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Figure 9.23: Distribution of average speed-up factors among all selected 429
functions computed in (3,2) and (4,2).

again, slow-down was the rule. Thus, (4,2) confirmed the trend between
(2,2) and (3,2), that is that linear speed up is scarce yet present, three func-
tions (0.0069) sampled from (3,2) had faster algorithms in (4,2) that in av-
erage took from 2.5 to 3 times less time to compute the same function, see
Figure 9.6.3.
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