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Abstract

Agent-based modeling (ABM) is widely used to study economic systems under
a complex paradigm framework. Within this research stream, �nancial mar-
kets have received a lot of interest from academics and practitioners these last
years, notably in o�ering an alternative to mathematical �nance and �nancial
econometrics. The traditional approach to analyzing such systems uses ana-
lytical models. The latter make simplifying assumptions, for example about
perfect rationality homogeneity of market participants. These limitations mo-
tivate the use of alternative tools. Thus, disciplines such as Computational
Economics and Computational Finance have gained attention and earned their
place in the scienti�c arena.

In this thesis we present an arti�cial stock market, called ATOM, and
contribute to the understanding of some important issues regarding the con-
struction of an abstract model of stock markets as well as a series of technical
issues. In ATOM, we model a wide variety of trading strategies and mar-
ket rules, that allows us to reexamine several traditional questions in �nance
within a totally di�erent framework.

Firstly, we investigate di�erent conditions under which the statistical prop-
erties of an arti�cial stock market resemble those of real �nancial markets. To
the best of our knowledge, this research is the �rst to clearly reproduce set of
price dynamics at di�erent granularities (intraday and extraday over several
simulated years). We argue that generating realistic �nancial dynamics that
reproduce quantitative �nancial distribution is out-of-reach within the pure
zero-intelligent traders framework.

Secondly, we increase agents' intelligence to address the problem of portfo-
lio optimization at the level of individual strategies. We show that the higher
relative risk aversion helps the agents earn higher Sharpe ratio and �nal wealth
in the long-range. We also investigate the relation between rebalancing fre-
quency and portfolio performance in low- and high-volatility market regimes
with di�erent transaction costs.

Thirdly, we renew the analysis of classical questions in �nance, namely,
the relative performance of various investment strategies. For that purpose we
compare rational mean-variance portfolio optimization versus "naive diversi�-
cation". We test the investors' performance, each of them following a speci�c
strategy, scrutinizing their behavior in ecological competitions where popu-
lations of arti�cial investors coevolve. Some investment strategies, followed
by arti�cial traders, are based on di�erent variations of canonical modern
Markowitz portfolio theory, others on the "Naive" diversi�cation principles,
and others on combinations of sophisticated rational and naive strategies.

Finally, we develop a new method for the determination of the upper-
bound in terms of maximum pro�t for any investment strategy applied in a
given time window. We �rst describe this problem using a linear programming
framework. Thereafter, we propose to embed this question in a graph theory
framework as an optimal path problem in an oriented, weighted, bipartite
network or in a weighted directed acyclic graph.



Résumé

La modélisation multi-agent est à l'heure actuelle largement utilisée pour
étudier les systèmes économiques complexes. Au sein de ce courant de
recherche, les marchés �nanciers ont été étudiés avec intérêt ces dernières
années aussi bien par les universitaires que les professionnels, principalement
en apportant une alternative aux approches classiques: mathématique �nan-
cière et économétrie. La méthode traditionnelle pour analyser un tel sys-
tème se base sur l'utilisation de modèles analytiques. Cette dernière part
d'hypothèses simpli�ées du type comportement rationnel des traders ou ho-
mogénéité des investisseurs. Ces hypothèses peuvent maintenant être appro-
fondies, ce quimotive l'intérêt pour des solutions alternatives. Ainsi, des dis-
ciplines telles que l'économie computationnelle et la �nance computationnelle
ont attiré l'attention des chercheurs et acquis leur légitimité auprès du milieu
scienti�que.

Les économistes constatent aujourd'hui une réelle mutation dans la simu-
lation, passant des théories néo-classiques basées sur la résolution d'équations
à des modèles alternatifs, approchant la �nance par l'expérience, les facteurs
comportementaux, ou le calcul. Les hypothèses traditionnelles néo-classiques
sont basées sur des investisseurs rationnels et sur des marchés e�cients in-
troduites par Fama (1965), Fama et Blume (1966), Fama (1970). Fama a
notamment démontré que si un marché est peuplé de nombreux investisseurs
rationnels alors les investissements seront au juste prix et re�èteront les in-
formations disponibles. Une hypothèse-clef de ce travail réside dans le fait
que l'information est à la disposition de tous les acteurs du marché. Dans les
modèles traditionnels, les investisseurs sont rationnels et font usage e�cace-
ment des informations; leurs prises de décision sont basées sur des fonctions
d'utilité avec espérances, calculées via des procédures statistiques optimales.
Ainsi, un tel investisseur représentatif détient toutes les connaissances les plus
exactes et les exploite au maximum. Ces hypothèses ont inspiré des milliers
d'études visant à déterminer si des marchés spéci�ques sont �e�cients� et si les
acteurs du marché sont parfaitement rationnels. Pompian (2006) soutient que
les économistes apprécient utiliser le concept d'acteurs boursiers rationnels,
puisque cela leur permet aisément de réaliser une analyse économique et de
présenter des résultats de façon élégante.

La théorie traditionnelle se fonde sur la rationalité, qui est un des postu-
lats majeurs de l'Hypothèse d'E�cience des Marchés �nanciers (HEM). Selon
le courant traditionnel, les investisseurs sont tous e�caces, et par conséquent,
quand une nouvelle information devient disponible, ils ont la capacité cognitive



de l'interpréter correctement et d'y réagir avec justesse. Cependant, quelques-
uns considèrent que ces théories classiques ne correspondent pas à la réalité.
Certains chercheurs argumentent sur le fait que les investisseurs ne sont pas
vraiment homogènes et pleinement informés. Ainsi, un large nombre d'écarts
par rapport à cette rationalité espérée a été reconnu dans la littérature. Par
exemple, des investisseurs irrationnels créent des écarts dans le prix des actifs
par rapport à la valeur fondamentale, et les investisseurs rationnels devraient
être capables de corriger ces mauvaises évaluations des prix à travers un pro-
cessus d'arbitrage. Néanmoins, les stratégies d'arbitrage dans de véritables
marchés �nanciers peuvent entraîner des coûts, des risques, ou des contraintes
diverses, si bien que l'ine�cience peut persister pendant une longue période de
temps (Barberis et Thaler, 2003). La �nance comportementale soutient que
les traders sont hétérogènes et ont une rationalité limitée. La psychologie de
l'investisseur y joue un rôle clé. Par exemple, un investisseur imparfaitement
rationnel n'a pas une aversion uniforme au risque. Dans certaines circon-
stances, il peut vouloir rechercher volontairement davantage de risque. La
littérature identi�e plusieurs caractéristiques du trading psychologique tels
que la rétroaction positive ou momentum trading, l'extrapolation de la ten-
dance, noise trading, l'excès de con�ance, la réaction excessive, la stratégie
contradictoire (Cutler, Poterba et Summers, 1989; DeLong, Shleifer, Summers
et Waldmann, 1990; Shleifer 2000; Barberis et Thaler, 2003).

Les discussions sur les hypothèses irréalistes utilisées par la recherche
classique, telles que la capacité cognitive parfaite d'un investisseur rationnel
amènent au souhait d'individualiser les décisions et donc, d'utiliser l'outil
informatique pour étudier plus �nement ces problèmes de �nance. Il est
aujourd'hui possible d'utiliser di�érentes techniques et outils comme la vie
arti�cielle, l'informatique moléculaire, l'intelligence collaborative, les réseaux
de neurones, la modélisation par agents, ou autres domaines de l'intelligence
arti�cielle. L'approche multi-agents, et, subsidiairement, la microsimulation,
se placent dans le cadre de la �nance quantitative et mettent l'accent sur
le besoin de représenter les traders non pas en tant que groupes, mais en
tant qu'agents individuels hétérogènes. Ces approches visent à modéliser les
marchés �nanciers dans un système évolutif concurrentieldans lequel les agents
autonomes interagissent et développent des dynamiques d'apprentissage. Les
applications de la modélisation multi-agents permettent le développement de
meilleures explications des faits économiques observés. Les modèles multi-
agents o�rent ainsi l'opportunité de réaliser des expériences donnant la possi-
bilité de produire un nombre important de simulations à partir d'un point de
départ. Ils o�rent aussi la possibilité d'incorporer des aspects comportemen-



taux du trading pour par exemple étudier les di�érents types de comporte-
ments possibles, leur in�uence sur les dynamiques de marché, les conséquences
sur la mécanique des prix ou l'in�uence de la microstructure du marché sur
les propriétés statistiques de rendement.

Dans cette thèse, nous présentons un marché �nancier arti�ciel développé
à Lille1, nommé ATOM, o�rant une grande souplesse dans l'individualisation
des procédures, aussi bien au niveau de la microstructure qu'au niveau des
comportements. Celui-ci contribue à la compréhension de certaines prob-
lématiques importantes concernant la construction d'un modèle abstrait de
marchés boursiers ainsi que d'une série de questions techniques. Dans ATOM,
il est possible de modéliser une large variété de stratégies de trading et de règles
du marché, ce qui permet alors de réexaminer �nement di�érentes questions
traditionnelles en �nance.

C'est le cas notamment des faits stylisés, les propriétés statistiques des
dynamiques de prix, partagées par tous les titres quel que soit le marché où
ils sont échangés. Ces faits stylisés sont généralement formulés en termes de
propriétés qualitatives des rendements des titres et ne peuvent pas être assez
précisément expliqués par des modèles analytiques. Aucune théorie n'explique
de manière satisfaisante l'origine de ces phénomènes: il existe seulement des
modèles capables de les reproduire ou de les identi�er. Les principaux faits
stylisés sont les suivants: l'absence d'autocorrélations sur les rendements sauf
sur de très petites échelles intra-journalières, la distribution non-gaussienne
mais leptokurtique des rendements des prix, la tendance vers la normalité avec
une échelle de temps croissante, le clustering de volatilités des rendements, la
corrélation entre volume et volatilité (Levy, Levy et Solomon 2000; Cont,
2001).

Savoir identi�er l'origine de ces propriétés statistiques est donc un enjeu
majeur, tant pour les théoriciens que pour les praticiens. L'étude des faits
stylisés peut permettre l'élaboration de modèles mathématiques plus �ables
sur la �uctuation des cours de prix, ce qui pourrait permettre de maximiser
l'espérance des gains à long terme d'un portefeuille d'actions, et donc con-
tribuer à une meilleure gestion de portefeuille.

L'existence de faits stylisés remet d'ailleurs en cause certaines théories fon-
datrices de la �nance moderne. Par exemple, le fait que les valeurs absolues
des rendements soient auto-corrélées remet en cause la théorie de la stochas-
ticité des prix développée par Osborne (1959) et Samuelson (1965). Cette
théorie proclame que si l'on considère un intervalle de temps large, les cours
produits pendant ce temps par le marché sont indépendamment et identique-
ment distribués et que leurs distributions limites convergent vers celle d'une



variable aléatoire gaussienne ce qui implique que les cours de bourse suiv-
ent une marche aléatoire. Mais s'il existe des régularités dans les séries de
prix (comme le montre l'analyse empirique), il est théoriquement possible de
pouvoir obtenir des performances supérieures à la moyenne sans tenir compte
de la valeur fondamentale d'un titre, sous réserve que les coûts de transac-
tion n'annulent pas ce pro�t. Les marchés ne seraient donc pas totalement
e�cients.

Nous proposons dans cette thèse un modèle de marché adapté à la simula-
tion des dynamiques de prix à l'intérieur d'une journée de cotation. Ce modèle
est basé sur un carnet d'ordres à travers lequel les agents échangent des ac-
tions de manière asynchrone. Nous montrons que, sans émettre d'hypothèses
particulières sur le comportement des agents, ce modèle exhibe de nombreuses
propriétés statistiques qualitatives des marchés réels, mais par contre il génère
des propriétés quantitatives éloignées de celles observées sur les marchés réels.
Notre approche multi-agents essaye de mettre en lumière cette question en
interrogeant les e�ets des comportements des investisseurs sur le prix des
marchés. ATOM, par sa puissance et sa souplesse, nous autorise à anal-
yser di�érentes dynamiques de prix émergents de di�érentes calibrations de
microstructure du marché à l'aide de plusieurs comportements d'agents dif-
férents. Nous proposons ici une calibration minimale permettant de faire
apparaitre les faits stylisés qualitatifs et quantitatifs. Cette calibration se
base sur le �ux des ordres de marché réel et le prix �xé: la distribution de
prix, l'écart de prix des ordres envoyés par des acheteurs et des vendeurs, la
distribution de volume des ordres et la part des ordres de type market, limit,
cancel.

A l'aide du même outil, nous avons exploré les questions de la Théorie
Moderne du Portefeuille (TMP). Nous contribuons à ces progrès à travers
deux axes de recherche: i) nous proposons un modèle multi-agent capable
d'aborder les questions d'optimisation du portefeuille ii) nous véri�ons que
les résultats théoriques sont con�rmés dans le cadre des agents hétérogènes
avec un mode de raisonnement dégradé. Nous abordons également des ques-
tions di�cilement résolvables par l'analyse théorique ou empirique comme par
exemple l'identi�cation de la stratégie dominante.

Notre recherche se concentre ensuite sur la rationalité dans le corpus de
la théorie moderne du portefeuille. Dans ce cadre, l'hypothèse de rational-
ité des investisseurs signi�e que ceux-ci reçoivent et interprètent correctement
toutes les informations pertinentes et qu'ils les utilisent pour faire les meilleurs
choix. Les violations de cette hypothèse sont assez communes et découlent
des éléments comportementaux. Elles donnent lieu à la rationalité limitée



et à de l'hétérogénéité dans la modélisation de la prise de décision des in-
vestisseurs. Souvent, les investisseurs, ayant des connaissances limitées sur les
rendements espérés et les covariances ont tendance à tout simplement partager
leur richesse uniformément sur l'univers des investissements, par exemple en
répartissant des montants égaux aux N actifs �nanciers disponibles sur le
marché. Par ailleurs, une étude récente menée par DeMiguel, Garlappi et
Uppal (2009) montre qu'une telle stratégie naïve peut surpasser les modèles
les plus complexes. Cela soulève donc clairement le débat de l'utilité pra-
tique des modèles sophistiqués théoriques et d'étudier �nement les travaux
de chercheurs comme Kritzman, Page et Turkington (2010) ou Tu et Zhou
(2011) qui proposent une série d'études empiriques en matière de défense de
l'optimisation.

A notre avis, le principal problème avec toutes ces études précédentes
réside dans leurs méthodologies de backtesting. Cette approche permet
d'évaluer une stratégie d'investissement avec les données historiques, comme
si leur mise en øeuvre n'aurait pas modi�é ces prix. Cette hypothèse est en
contraste avec l'analyse de Levy, Levy et Solomon (1995), Hommes (2006) qui
montrent clairement que les prix peuvent bien être in�uencés par plusieurs
paramètres (stratégies d'investissement, les compétences cognitives des in-
vestisseurs ou la microstructure du marché) qui sont négligés dans le cadre de
la technique de backtesting. En outre, les coûts de transaction de pondération
du portefeuille ne sont pas inclus dans les résultats. A l'aide de notre ap-
proche à base d'agents, nous testons la performance des investisseurs en scru-
tant leurs comportements dans les compétitions écologiques où les populations
des investisseurs arti�ciels co-évoluent. Certaines stratégies d'investissement
sont basées sur di�érentes variantes de la théorie moderne du portefeuille
de Markowitz, d'autres sur les principes de diversi�cation naïve, et d'autres
encore sur des combinaisons de stratégies sophistiquées rationnels et naïves
proposées dans Tu et al. (2011). Par ailleurs, nous réalisons un examen de
l'in�uence de la fréquence de trading et de l'attitude des investisseurs à l'égard
des risques sur la performance du portefeuille.

Dans ce travail nous abordons la question du rapport entre les préférences
des agents au risque et leurs performances. Nous comparons la performance
relative des stratégies d'investissement en fonction de leurs préférences pour
le risque en utilisant une forme de compétition écologique entre les agents.

L'autre facteur important qui in�ue sur la performance est la fréquence de
réajustement du portefeuille. En raison des coûts de transaction, un ajuste-
ment fréquent réduit la performance du portefeuille. Une faible fréquence
d'ajustement cache un risque de ne pas réagir à temps aux changements im-



portants du marché. Une fréquence optimale permet non seulement de con-
trôler le risque, mais aussi d'améliorer le rendement du portefeuille. Nous
proposons ici un modèle multi-agent permettant de mettre en évidence une
fréquence d'ajustement optimale dans des conditions de marché di�érentes en
présence de coûts de transaction.

La question de la performance en �nance de marché est une question
complexe qui encadre une série de questions méthodologiques. La démarche
d'évaluation ex-post ne considère que les résultats statistiques d'une stratégie
d'investissement au �l du temps, une fois les mouvements de prix parfaitement
connus. Cette approche est largement utilisée dans la gestion des portefeuilles.
La méthode dite de backtesting consiste à utiliser une stratégie sur la base des
données historiques pour voir/étudier/simuler ce qu'aurait donnée une telle
stratégie. Les résultats ne signi�ent pas que n'importe qui aurait pu attein-
dre les résultats indiqués. Fondamentalement, ces méthodes de backtesting
sont utilisées pour tester la validité d'une stratégie spéci�que sur une base
théorique. La performance est généralement évaluée à l'aide d'une comparai-
son relative entre les fonds, car il est impossible de savoir ce qu'aurait été le
meilleur comportement pendant la période pertinente. Nous proposons donc
une nouvelle méthode pour la construction d'une stratégie capable d'apporter
le gain maximum. Nous décrivons d'abord ce problème en utilisant un cadre
de programmation linéaire. Ensuite, nous proposons d'intégrer cette question
dans le cadre de la théorie des graphes en codant ce problème sous forme d'une
recherche de de chemin optimal dans un graphe acyclique, orienté et pondéré.
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Financial economists are in the midst of a debate about a paradigm shift,

from the neoclassical equation-based one to alternative paradigms, such as

the experimental, the behavioral, or the computational.

Many standard economic models are based on rational investors and on market

e�ciency assumptions. The E�cient Market Hypothesis (EMH) is introduced

by Fama (1965). Fama demonstrates that if a securities market is populated

by many well-informed rational investors, investments will be appropriately

priced and will re�ect all available information. A key assumption is that

the information is publicly available to all market participants. In traditional

models, rational investors make e�cient use of this information; their deci-

sion making is based on utility functions with beliefs, calculated via optimal

statistical procedures. Thus, such representative investor holds correct beliefs

and is an expected utility maximizer. These assumptions inspire thousands

of studies attempting to determine whether speci�c markets are in fact "e�-

cient" and market participants are perfectly rational. Pompian (2006) argues

that economists like to use the concept of perfect rational market participants,

as it allows to make economic analysis relatively simple and to present results

in more elegant way.

Rationality of market participants is one of the major assumptions be-

hind the EMH. According to traditional stream investors are all rational, and
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therefore, when new information becomes available, they all come to the same

conclusion on what the fair price should be to re�ect new information.

However, Levy, Levy and Solomon (2000), Farmer (2002), Hommes (2006)

claim that several assumptions made by theories do not correspond to reality.

Some question whether investors are homogeneous and fully informed. How

does the market e�ciency emerge through the interaction of investors? Thus,

a large number of possible deviations from rationality is recognized in the lit-

erature. For example, irrational investors create deviation in asset prices from

fundamental value, and rational investors should be able to correct this mis-

pricing through the process of arbitrage. Nevertheless, arbitrage strategies in

real �nancial markets can involve cost, risk, or various constraints, so that the

ine�ciencies may persist for a long period of time Barberis and Thaler (2003).

Behavioral �nance claims that traders are heterogeneous and bounded ratio-

nal. Investor psychology plays a key role in behavioral �nance. For example,

imperfectly rational investors are not uniformly averse to risk. In some cir-

cumstances, they act as risk seekers. The literature identi�es several features

of psychology-based trading such as positive feedback or momentum trading,

trend extrapolation, noise trading, overcon�dence, overreaction, optimistic or

pessimistic traders, overshooting, contrarian strategies (Cutler, Poterba and

Summers, 1989; DeLong, Shleifer, Summers and Waldmann, 1990; Shleifer,

2000; Barberis and Thaler, 2003).

The desire to build �nancial theories based on more realistic assumptions lead

to the application of computational approaches1, that allow traders' hetero-

geneity, bounded-rationality and market non-equilibrium dynamics, to �nan-

cial problems. New so-called computational paradigm bridges the gap between

a human and computer systems. These disciplines use di�erent computational

techniques, such as arti�cial life, fuzzy logic, molecular computing, collabora-

tive intelligence, neural networks, instant-based techniques, agent-based mod-

1It gives rise to new research �eld, Computational Finance
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eling Chen, Wang and Kuo (2007), Llacay and Pe�er (2010) and other areas

of arti�cial intelligence to solve complex �nancial problems.

Agent-based Computational Economics (ACE) Tefatsion and Judd (2006),

and, alternatively, Microscopic Simulation (MS) Levy et al. (2000) as the

branches of Computational Finance emphasize the need to represent traders

as heterogeneous individuals. These approaches attempt to model �nancial

markets as evolving systems of competing, autonomous interacting agents

and emphasize their learning dynamics. Agent-Based Modeling (ABM) ap-

plications are focused on the development of better explanations of observed

economic facts. Agent-based models o�er the opportunity to perform exper-

iments which would not be possible in any other way since they provide the

possibility to produce a large number of simulations from the same starting

point. Agent-based models also o�er the possibility to incorporate behavioral

aspects of trading and to learn the behavioral e�ects on market dynamics.

These models are usually built for the purpose of studying agent's behav-

ior, price discovery mechanism, the in�uence of market microstructure on

statistical properties of returns. Agent-based approach is strongly related

to behavioral �nance since the agents are bounded rational and can follow

simple rules of thumb. This is a key characteristic of any behavioral model,

and agent-based models have this characteristic. It is important to note that

agent-based technologies are well suited for testing behavioral theories. The

connections between agent-based approaches and behavioral approaches will

probably become more intertwined as both �elds progress.

Background

This section is devoted to the de�nition of the following terms that are actively

used for this research: microscopic simulations, agent-based modeling, multi-

agent systems, arti�cial stock markets. We discuss what they actually cover
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and propose a brief overview of the central ideas behind these wordings.

Microsimulation (MS)is a category of computerized analytical tools that

perform highly detailed analysis of system dynamics. This approach has been

developed in the physical sciences as a tool for studying complex systems with

many elements, which are generally intractable by analytical methods. The

idea of microsimulations is to study complex systems by representing each of

the microscopic elements individually and by simulating the behavior of the

entire system, keeping track of all the individual elements and their interac-

tions over time. With MS, complex dynamics are studied from the bottom-up.

MS models are free of some modeling constrains and they allow to explore the

e�ect of various parameters on the system. Agent-based simulations apply

exactly the same paradigm as microsimulations.

Agent-based models contain multiple interacting agents within an environ-

ment (that may be a topological one or simply a framework allowing them to

interact, like a market). An agent is a microscopic element of the model. A

representation of an agent varies from a simple equation to complex software

components with human-like arti�cial-intelligence, or even humans. An agent

is capable of showing some degree of autonomy, communication with other

agents, goal-directed learning, and adaptation to environmental changes.

Agent-based models in �nance often refer to Arti�cial Stock Markets

(ASM). Arti�cial stock markets (or stock market simulations) represent a

program or application geared at reproducing or duplicating some or all the

features characterizing a real stock market (price formation mechanism, rep-

resentation of market participants). The key property is that in ASM prices

emerge internally as a result of trading interactions of market participants,

i.e., the agents themselves.

Contrary to neoclassical models using a representative agent, agent-based

arti�cial stock markets normally encompass a large variety of agents. There-

fore, arti�cial stock markets are viewed as multi-agent systems. These models
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allow for heterogeneous agents (with di�erent attitudes towards risk, and dif-

ferent expectations about the future evolution of prices) to interact. Such

heterogeneity can produce di�erent aggregate behaviors for the system. It

can result in equilibria, it can produce patterns and cycles, or bubble and

crashes as well. As such, macro-level phenomena emerge from the micro-level,

e.g. the interaction among agents. All technical issues of agent-based arti�cial

market modeling are introduced in details in chapter 2.

The number of authors in mainstream �nance applying microscopic sim-

ulations in their studies has signi�cantly increased during the last decades.

One of the earliest and prominent use of agent-based arti�cial stock markets

is introduced by Kim and Markowitz (1989). Kim and Markowitz (1989) were

interested in explaining the sudden crash of the U.S. stock market on Octo-

ber, 17th, 1987, when the stock market crashed for more than 20%. Since this

market event could not be explained by the emergence of signi�cant infor-

mation, hedging strategies and portfolio insurance have been blamed as the

main factors at play. Kim and Markowitz decided to test the destabilizing

potential of computer-based dynamic hedging strategies, such as portfolio in-

surance, via Monte Carlo simulations in a particular arti�cial �nancial market

(Markowitz, 1988). Namely, Kim and Markowitz tried to simulate a market

populated by traders holding strategies found in real-life markets, and there-

fore, gave quite a detailed description of the real activity at the microscopic

level.

This work has in�uenced scientists (Arthur, Holland, LeBaron, Palmer and

Tyaler, 1997b; LeBaron, 2001a, 2006; Jacobs, Levy and Markowitz, 2004) use

agent-based simulations so to include in their works more realistic assump-

tions. As a result, agent-based models became more complex, integrating

more sophisticated behaviors, more complex information structures and net-

works in order to enrich arti�cial markets ontologies regarding their real life

counterpart.
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Research Objectives

Agent-based models can highlight the key role of several elements impacting

market dynamics that are most di�cult to incorporate in traditional models.

However, this research does not claim that the representative agent approach,

nor the analytical models are useless. In contrast, we use such models as the

foundation on which multi-agent models are developed. We examine classi-

cal questions in �nance within totally di�erent frameworks. The main point

of this thesis is to show that agent-based modeling is a good complement

to traditional approaches developed in �nance (for example econometric or

statistical models).

We focus in this thesis on various market dynamics, decision-making pro-

cesses of agent and the performance of their strategies in arti�cial stock mar-

kets. This approach delivers new and rich �nancial models, notably by intro-

ducing properties that would make analytical models intractable (or hardly

tractable; e.g. a mix of agent heterogeneity, bounded rationality).

An arti�cial market can help in understanding the conditions under which

the traditional �nance approach remains valid, notably when additional com-

plications such as bounded rationality and heterogeneous preferences are in-

cluded in the landscape. What happens when the majority of investors are

rational, but a minority of them make decisions rather randomly? Do the

results of analytical models still hold? All these questions are addressed in

this thesis.

First, we propose a discussion on how agent-based models have overcome

some of the limitations of market microstructure and statistical models (Chap-

ter 1). Based on the literature survey and the presentation of the di�erent

questions investigated with existing platforms, we compose our own arti�cial

market framework, ATOM. The latter allows us to achieve the development of

a new market model, and to investigate dynamics arising from di�erent cali-
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brations. We study the design of agent's minimal intelligence that is necessary

to generate adequate �nancial stylized facts (Chapter 3). For that purpose,

we propose a very simple model of trading only depending on very limited

set of factors. As such, this model establishes the (absence of) relationship

between agents' behavior and stylized facts (at a quantitative granularity).

We then make this model more constrained by gradually including additional

sophisticated mechanisms to make appear quantitative stylized facts.

Using the same kind of tools, we explore (relatively) classical questions in

Modern Portfolio Theory (MPT). The latter, introduced decades ago, form the

basis for most investment models, even if they constantly evolve to incorporate

new advances, notably in portfolio optimization. We try to contribute to

these advances along two lines: i) we develop an agent-based model geared

at tackling portfolio optimization questions ii) we check whether theoretical

results are con�rmed in the framework of heterogeneous, bounded-rational,

evolving agents; we also investigate the questions that are di�cult to tackle

through direct theoretical or empirical analysis, e.g. identifying of dominant

strategy.

Next, this research focuses on rationality in the corpus of modern portfolio

theory. Investor's rationality means that they receive and interpret all rele-

vant information correctly and use them to make optimal choices. Notably,

rational investors use unbiased expectations in forming and selecting mean-

variance e�cient portfolios. Violations of this assumption are quite common

and stem from behavioral characteristics. It gives rise to bounded rationality

and heterogeneity in modeling investors' decision making processes. Often-

times, investors, having limited knowledge about expected returns and co-

variances tend to simply share their endowments evenly over the investment

universe, e.g. allocate equal amounts to the n available �nancial assets. More-

over, a recent study by DeMiguel, Garlappi and Uppal (2009) shows that such

a naive strategy can outperform more complex models. This raises the debate
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on whether the sophisticated theoretical models are valuable in practice, and

if they are of any use for practical portfolio construction as well. However,

the debate is still open, and researchers like Kritzman, Page and Turkington

(2010) or Tu and Zhou (2011) propose series of empirical studies in defense of

optimization.

We use agent-based tools to shed some light on this debate. In our opin-

ion, the main problem with all these studies, is the unrealistic "atomistic"

assumption that underlies the backtesting methodology. Said simply, this as-

sumption allows to gauge an investment strategy with historical data as if its

true implementation would have not modi�ed these prices. These assumptions

are in sharp contrast to analysis of Levy, Levy and Solomon (1995), Hommes

(2006) who clearly show that prices may well be in�uenced by several pa-

rameters (investment strategies, the cognitive skills of investors or the market

microstructure itself) that are neglected in the backtesting approach. More-

over, transaction costs incurred by portfolio rebalancing are traditionally not

included in the performance results but reported separately. We rely on eco-

logical competition, where populations of arti�cial investors co-evolve, to test

the strategies' performance. Some investment strategies are based on di�er-

ent variations of canonical modern Markowitz portfolio theory, others on the

Naive diversi�cation principles, and others on combinations of sophisticated

rational and naive strategies proposed in Tu and Zhou (2011). Furthermore, a

closer re-examination of the rebalancing e�ects and investor's attitude toward

risk on portfolio performance is needed so to identify clearly what matters the

most.

We address the question whether investors' survivability in a long run de-

pends on their risk preferences. Agent-based tools help us take into account all

these assumptions and to shed some new light on the relationship between the

investors' individual risk preferences and their portfolios' �nal performance.

Computational simulation tools allow us to demonstrate not only a single
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value of measures of portfolio performance, but also to trace their evolution

in the long-run. We compare the relative performance of investment strategies

di�er in their risk preferences using Ecological Competition.

The other important factor a�ecting strategy performance is rebalancing fre-

quency. While a high rebalancing frequency reduces the portfolio performance

due to transaction costs, a low rebalancing frequency hides a risk not to react

in time to important market changes. Optimal rebalancing frequency helps

not only to control the risk, but also to enhance the portfolio return. We

construct the agent-based model to study an optimal portfolio rebalancing

frequency in di�erent market conditions in the presence of transaction costs.

Performance gauging in �nance is a complex issue which unfolds a series

of methodological questions. The ex-post evaluation approach considers only

the statistical results of a given investment strategy over time, once price

dynamics are perfectly known. This approach is widely used in professional

asset management. For instance, backtesting involves using a strategy with

historical data to determine how trading rules would have performed in the

past. The results do not mean that anyone could have achieved the shown

results. Basically, backtesting is used to test the validity of speci�c strategy

on a theoretical basis. If the results were valid over long time frames, then

they may work as well in the future.

Performance is usually evaluated using a relative comparison among funds,

as it is impossible to know what would have been the best behavior during the

relevant period, or how the best output compares with the performance upper

bound. We develop a new method for the determination of the upper-bound in

terms of maximum pro�t for any investment strategy applied in a given time

window. We �rst describe this problem using a linear programming frame-

work. Next, we propose to embed this question in a graph theory framework

as an optimal path problem in an oriented, weighted, bipartite network or in

a weighted directed acyclic graph.
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The main goal of this research is to understand how the stock market

operates and behaves, how to invest in the stock market, and to determine

the best techniques to use in order to maximize earnings.

Organization of the thesis

The work presented in this thesis does not easily �t into a single research

area. It addresses concerns in �nance extensively using computer science tools.

Being an inter-disciplinary research area, computational �nance involves hard

work by its very nature. This is because on the one hand researchers must gain

su�cient knowledge in computing to know what their potential and limitations

are. On the other hand, they also have to know enough about �nance to know

where computing techniques can be applied. This thesis is organized into two

parts, and includes �ve chapters in total that cover a variety of �nancial topics

investigated by computational tools.

Part I � Context and State of the art

The �rst part of this thesis introduces the context and the related litera-

ture, methodology and approaches used for this research, the important issues

of �nancial market that we address in this thesis. This part is intended for

those who are interested in modeling and application of agent-based arti�cial

stock market architecture.

Chapter 1 is devoted to the introduction of agent-based approach as a

�bottom-up� representation of stock markets. This introduction provides the

why, what, and whence: some motivation for the uses of agent-based tools for

�nancial market questions; an overview of the di�erent problems in �nance and

methods for meeting them; and an indication of how the approach of multi-

agent arti�cial markets �ts into survey methods and into the general quest

for scienti�c knowledge. We review the main advantages of this approach and

compare it to the neoclassical framework. Obviously, this chapter also covers
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some weaknesses of the agent-based research framework. Chapter 1 deals with

fundamentals, while Chapter 2 with techniques.

In Chapter 2 we review the literature on Arti�cial Stock Markets, what

we consider to be the state-of-the-art in the development of agent-based mod-

els, but rather from the point of view of computer scientists. We introduce

the important questions of market modeling and technical design in software

engineering terms. We answer some questions of system calibration and vali-

dation. Later, we introduce ATOM, the agent-based computational platform,

constructed to perform the experiments proposed afterwards. We detail the

potential of our system for modeling a wide variety of trading strategies and

market rules, which are crucial for research questions on �nancial stock mar-

ket.

Part II � Results and Research Contributions

In this part of the thesis we report our results and contributions in the

investigation of important issues for �nancial markets. This part contains �ve

essays that address di�erent problems in �nance, from statistical properties

of �nancial time series to relative performance of investment strategies, but

these works all share the agent-based modeling research approach. Each es-

say is related to a paper that has been published (or will appear) in referred

proceedings and collections, and that has been publicly presented at interna-

tional workshops and conferences in economics and �nance. The current state

of work is summarized in table 1.

Chapter 3 presents our contributions in the understanding of qualitative

and quantitative statistical properties of asset returns, also known as "styl-

ized facts". We propose a minimal agent's intelligence calibration in order to

generate realistic market dynamics.

Chapter 4 puts forward the investigation of a portfolio diversi�cation prob-

lem within an agent-based computational �nance framework. The discussion

begins from the mathematical basis of the mean-variance optimization model.
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Important facilities of ATOM, previously described in Chapter 4, are explored

to implement this classical model within the agent-based framework. We

model the agents that maximize their expected utility functions, however,

there exists some degree of irrationality. For instance, the investor may devi-

ate to some extent from the optimal rules, or he has limited memory capacities.

We also introduce in our model the heterogeneity in expectations, risk prefer-

ences, holding periods. All these changes taken separately or simultaneously

are impossible to solve analytically, but they can be integrated into agent-

based models. We implement the extensive experiment based on the ATOM

platform to shed some new light on the relationship between the investors'

individual preferences, such as risk aversion and rebalancing frequency, and

their portfolios �nal performance.

In this chapter we also renew the analysis of the relative performance

of investment strategies, rational mean-variance portfolio optimization versus

naive diversi�cation. We show that the best possible strategy over the long

run relies on a mix of Mean-Variance sophisticated optimization and a Naive

diversi�cation. These results reinforce the practical interests of the Markowitz

framework.

Chapter 5 puts forward a new method for the determination of the upper-

bound in terms of maximum pro�t for any investment strategy applied in

a given time window. We show that, even in the "ex-post" framework, it

is extremely complex to establish this upper bound when transaction costs

are implemented. We �rst describe this problem using a linear program-

ming framework. Next, we propose to embed this question in a graph theory

framework and show that the determination of the best investment behavior

is equivalent to the identi�cation of an optimal path in an oriented, weighted,

bipartite network or in a weighted directed acyclic graph. We illustrate this

method using various real world data and make a new point on the notion of

absolute optimal behavior in the �nancial world.
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Finally, we summarize the major results and contributions of this work

and give an outlook on future directions of research. Additionally, we describe

some promising areas of research along the line of our arti�cial stock market.
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This chapter focuses on agent-based modeling, a computational intensive

method for developing and exploring new kinds of economic and �nance mod-

els. The discussion begins with the representation of �nancial stock market

as the complex evolving system. Then, we introduce an agent-based modeling

approach to study complex systems. This chapter also covers the on-going

debates and criticisms of agent-based markets. We also suggest some research

directions, where agent-based models can be a useful complement to main-

stream approaches.
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Chapter 1. From Traditional to Agent-based Modeling �

Justi�cation

1.1 Financial Stock Market as Complex Evolv-

ing System

�I think the next century will be the century of complexity�

Stephen Hawking (Complexity digest 2001/10, 5 March 2001)

This section is devoted to investigating stock markets as complex systems.

There is no single precise de�nition of complex systems. Most authors, how-

ever, agree on the essential properties a system has to possess to be called

complex. According to Weaver (1948), Simon (1962) the key features of com-

plex system typically include the following aspects: i) the system is composed

of interacting agents ii) their emergent behavior does not result from the

existence of a central controller iii) the system's properties emerge from the

interaction of its components iv) the system may show unpredictable behavior

or lead to uncontrolled explosion (e.g. earthquake or stock market crashes)

v) small change in the causes implies dramatic e�ects. Generally speaking,

a complex system of connected agents exhibits an emergent global dynamic,

resulting from the interactions between the agents.

Complex systems usually refer to those in the natural sciences, however,

Rosser (2004), Arthur (2006) argue that economy can also be viewed as a

complex evolving system. Particularly, �nancial markets exhibit properties

that characterize complex systems. Traders (banks, brokers, mutual funds,

individual investors) and assets (equities, bonds, futures, options, swaps, etc.)

can be regarded as the interacting agents, the price and volume market dy-

namics are emergent phenomena. Thus, �nancial market might be understood

much better as complex adaptive system than optimizing rational entity. The

complexity of �nancial stock market also comes from the personal exchanges

where perhaps there are few agents, but they are bounded rational, adaptive,

purposeful, and strategic; additionally, they learn from other agents behavior.
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Pellizzari (2005) identi�es di�erent levels of complexities in the stock mar-

ket Molecular, Organizational and Environmental. The �rst refers to the com-

plexity of agents: their decision making rules, evolutionary rules, memory

span, optimizing and predictive capabilities.

Organizational complexity refers to agents interactions and their organiza-

tion in groups. Some agents are insensitive to the action of others, the other

ones are completely in�uenced by decisions made by their neighbors. In this

case, it might be reasonable to create groups, to share knowledge, information

and strategies.

Environmental complexity describes the market organization, a policy-

making issue. Bottazzi, Dosi and Rebesco (2005) show the important impact

of market organization on return distribution. Such e�ect can be explained

by environmental and molecular level features.

According to McCauley (2004) the complexity of �nancial stock markets

is hidden in the �missing theory of the expected return�. The author states

that it is an easy task to describe return dynamics by stochastic equation,

but there is a big chance that this model is wrong empirically because such

models cannot re�ect the common sentiment of market participants which can

be a�ected by political announcements and economical changes. The other

part of complexity of �nancial markets is the un�xed empirical distribution.

This distribution is in�uenced by agents' collective behavior. This sort of

change cannot be anticipated or described by a simple stochastic theory.

Complex systems can be modeled using a pure mathematical approach.

This is for example the case with the Lotka-Volterra prey-predator system

(Lotka, 1910; Goel, Maitra and Montroll, 1971). However, the models should

be as simple as possible for tractability reason. Thus, some of the system

properties should be ignored, and only the relevant features that play an

essential role in the emerging phenomena explanation, should be retained.

With this simpli�cation, a model is a simpli�ed mathematical representation
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of a system. Another di�culty of equation-based representation of complex

systems is that most equations cannot be solved analytically.

Agent-based modeling (ABM) is a good alternative to equation-based mod-

els for studying complex systems, including �nancial stock markets. Érdi

(2008) emphasizes that even if there exists mathematical tools to model

and simulate spatiotemporal phenomena, agent-based computational mod-

eling proposes a completely di�erent philosophy and practice compared to

equation-based modeling.

Axelrod and Tesfatsion (2005) describes simulation, and ABM in particu-

lar, as a third way of doing science, in addition to deduction and induction.

Deduction is used to derive theorems from assumptions. Induction is used to

�nd patterns are empirical data. The simulation also starts with assumptions,

but does not prove the theorems with generality; at the same time simulation

generates data suitable for analysis by induction. The simulation allows inves-

tigation of economical processes under controlled computational experiments

and Axelrod and Tesfatsion (2005) points out four speci�c goals pursued by

ABM:

1. Agent-based models can provide empirical understanding of macroscopic

features nature without top-down control.

2. Agent-based models can provide normative investigation, testing the

qualities of di�erent designs, looking for one that gives desirable system

performance.

3. Agent-based models can provide heuristic investigation of market phe-

nomena, understanding of economic system behaviors under alterna-

tively speci�ed initial conditions. ABM sheds some new light on causal

mechanisms in social systems.

4. Agent-based modeling can help researchers to get advance in method-
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ological issues, as it provides the methods and tools needed to undertake

the rigorous study of social systems through controlled computational

experiments. This axis covers the necessity in testing of experimentally-

generated theories against real-world data.

1.1.1 Weaknesses of standard approaches: how ABM

can help?

Agent-based approach is an answer to highly centralized, top-down, deduc-

tive approach that is characteristics of mainstream, neoclassic economic the-

ory. Most of the time, the neoclassic approach favors models where agents do

not vary much in their strategies, beliefs or goals, and where a great e�ort

is devoted to analytic solutions. By contrast, agent-based modeling considers

decentralized, dynamic environments with populations of evolving, heteroge-

neous, bounded rational agents who interact with one another.

Moreover, assumptions made for reasons of tractability in theoretical mod-

els may miss many interesting phenomena. The ignored factor may have an

important impact on investigated question. Computational modeling allows

more complex and realistic assumptions (see table 1.1). Levy et al. (1995) il-

lustrate with Sharpe-Lintner Capital Asset Pricing Model (CAPM) (Treynor,

1962) some unrealistic assumptions made for model tractability in order to

obtain analytic results. The CAPM deals with rational investors with homo-

geneous expectations regarding future distribution of returns, they maximize

expected utility and have the same holding period. Taxes and transaction

costs are not incorporated in this model. Many of the assumptions made in

the CAPM, as well as in most other models in �nance, have been actively

criticized. For instance, the assumption of no taxes and no transaction costs

does not correspond to real market conditions. It is also clear that, in con-

trast to the homogeneous expectation assumption, investors di�er in their
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expectations, holding periods, decision-making processes, and so on. Stigler

(1966) argues that a model with unrealistic assumptions is better than no

model at all, and one should not reject a model unless a better one is found.

According to Friedman (1953b) the model quality is measured by its explana-

tory power, and not by its assumptions. Nevertheless, Levy et al. (1995)

report that several empirical tests, as well as several anomalies of �nancial

stock market, contradict the theoretical results. In agent-based models the

unrealistic assumptions can be relaxed one by one by one, this expands the

realm of investigations. Epstein and Axtell (1996), Epstein (1999) introduce

the key features of agent-based models allowing to relax some assumptions of

theoretical models.

� Heterogeneity. Agents are not regarded as homogeneous pool of repre-

sentative agents, every individual is explicitly represented.

� Autonomy. There is no central or �top-down� control that de�nes agents

behavior. There exists the strong relation between agents' individual

behavior and emergent macro phenomena.

� Explicit space. Agents act on the common environment under common

restrictions and rules.

� Local interactions. Agents are able to interact, communicate, and form

the groups with others.

� Bounded rationality. Agents have neither complete information nor in-

�nite computational capacity. Agents are not absolute optimizers and

they use local information.

� Non-equilibrium dynamics. ABM describes models' behavior without

assumption about existence of equilibrium. ABM provides not only the

information about the existence of equilibrium, but they also allow to

access the entire solution trajectories, or how equilibrium was reached.
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Neoclassical economics ABM
Fully-informed Limited access to information
Market participant are rational Participant has bounded rationality
Participant interact only Participant interact directly
indirectly through markets with one another
Focus on equilibrium outcomes Focus on dynamics

The ability to learn about one's environ-
ment from
gathered information, past experiences,
social mimicry...

Table 1.1: The comparison of mainstream (neoclassical economical theory)
and ABM approaches

Some comparison of agent-based models and equation-based or neoclassical

models is summarized in the table 1.1 and is detailed in the next subsections.

1.1.1.1 Rationality

Jevons (1871), Menger (1871), Walras (1874) de�ne economics as a problem of

allocation of resources between competing forces. Regularities in economies

derived from the uniform, simultaneous behavior of individuals optimizing

their gains. Such individual, named Homo economicus, can be viewed as

mathematically represented absolutely rational economic actor. From a neo-

classical point of view, an individual tries to maximize his economic well-being

and minimizing economic costs, selecting strategies maximizing the utility.

Most criticisms of the �Homo economicus� are based on three underlying

assumptions: 1) Perfect Rationality. Rationality is not always the �rst driver

of human decision making. As many psychologists believe, the human intellect

is subservient to human emotions. 2) Perfect Self-Interest. This assumption

is strongly connected with the previous one. Sometimes people is subject of

impulses and emotions, hence they perform volunteering, helping the needy,

even if it contradicts the wealth maximization objectives. However that might

well �t with utility function integrating this altruistic dimension. Agents are
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then no longer sel�sh as they are usually described. 3) Perfect Information.

In the world of investment, there is nearly an in�nite amount to know and

learn, and even the most successful investors do not master all disciplines. Si-

mon (1957), Kahneman and Tversky (1973), Tversky and Kahneman (1974)

emphasize that the individuals are limited in their knowledge about their en-

vironment and in their computational abilities. They face costs to obtain

sophisticated information that can be processed for rational decision making.

Consequently, it is reasonable to describe the market participants as bounded

rational, instead of perfectly rational entities with fully optimal decision rules.

Bounded rational traders have been introduced to replace the standard ex-

pected utility theory and to represent human economic decision making in a

more realistic manner. Bounded rationality assumes that individual is ratio-

nal, but limited by general knowledge and cognitive capacity.

In contrast, Friedman (1953a) is one of the strongest defenders of the ra-

tional agent approach. He argues that non-rational agents will not survive in

evolutionary competition and will therefore run out of the market. Alchian

(1950) assumes that biological evolution and natural selection driven by real-

ized pro�ts may eliminate non-rational participants and leads to the situation

where rational, pro�t maximizing �rms dominate, and if price contain any

predictable components the remaining rational investors will reduce this to

zero.

The debates in �nance about market e�ciency and rationality are still

unresolved. Hommes (2006) states that the perfect knowledge about the en-

vironment in a heterogeneous world implies that a rational agent has to know

the beliefs of all other, non-rational agents. This assumption is highly unreal-

istic (Hommes, 2001). A bounded rational agent forms expectations based on

available information and adapts them to new emergent information. Rational

expectations hypothesis states that expectational model adopted by all par-

ticipants leads to behaviors that produce patterns close to the expected ones.
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It means that the expectational model produces the outputs consistent with

the expectations. But the forecasts that are on average consistent with the

outcome they predict do not exist and cannot be statistically deduced. This

statement can be illustrated with the El Farol bar problem (Arthur, 1994b,a).
The El Farol bar problem

100 people should decide whether to go to a bar (El Farol bar) or to stay home.

If person predicts that there will be more than 60 people in the bar, she will stay

home; otherwise she will go there. All agents use the same rational expectations

common rules that use available history to produce some prediction. If this weekend

the rules predict the attendance higher than 60, everybody will stay home and will

negate that forecasts. If rules predict the attendance lower than 60, everybody will

show up the bar, and one more time will negate such rules. There is a self reference

in such game. In the real world market, this game can be transformed into investor

behavior. If there exists the rumors that the price will rise by 2%, it will attract the

potential buyers, as a result the price will go down and expectations will fall away. In

this case the theory of rational expectations fails. To resolve the anomaly, we should

allow agents to start with a variety of rules and expectations, thus some of agents

are no longer rational. Perfect rationality is related to heterogeneity issue. The

problem of decision making of one single agent can be solved analytically. The same

is true if all agents are identical, but when many heterogeneous agents are competing,

the decision making process cannot be fully rational due to the complexity of this

problem.

1.1.1.2 Heterogeneity and Investors Interactions

In neoclassical economics, market participants are independent decision mak-

ers, driven by observed prices and fundamental information. This assumption

might appear unrealistic because market traders are not solely in�uenced by

these factors. For instance, the intensive research around market volatility

shows that high market volatility does not correspond to the period of high
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changes in fundamental information and vice versa (Frankel and Froot, 1986;

Cutler et al., 1989). These empirical observations have played an impor-

tant role in the increasing popularity of bounded rational, heterogeneous and

interacting agents explanations of asset price movements. This means that

agents are also in�uenced by other market participants. The statement is

supported by Schelling (1978), who studies the variety of social phenomena,

where the individual decision was determined by the behavior of the others

in the group. The author reports that there exists a macrobehavior emerging

from the micromotivations of individuals in the group. One of the mecha-

nisms of decision-makers is based on the mimicking others behavior �go with

winner�. Hence, agents suppose to show some level of intelligence, ability to

learn and adapt to environmental changes, to have decision making rules, be

able to adjust these rules as a result of interaction and communication with

others.

The con�rmation of heterogeneity on the stock market can be found in

empirical research of Vissing-Jorgensen (2003). The author reports that there

exists heterogeneity in forecasting future asset prices on the stock market:

50% of individual investors consider the stock market to be overvalued, 25%

believe that it is fairly valued, about 15% are unsure, and less than 10%

believe that it is undervalued.

Milgrom and Stokey (1982), Fudenberg and Tirole (1991) reinforce the

necessity of heterogeneous expectations, di�erent opinion and trading rules

on the market by introducing the no trade theorems. But the development of

analytical models with heterogeneous agents is quite di�cult1, while agent-

based models are more suitable for this purpose, as they easily incorporate

a large number of interacting individuals with di�erent rules, access to infor-

mation and sources of information. Their choices are not deterministic and

1For example, Jouini and Napp (2012) conciliate heterogeneous agents level and repre-
sentative agent in the corpus of mainstream �nance.
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predictable. Thus, agent-based modeling propose the powerful tool to test al-

ternative models of decision-making which are more in line with the empirical

record.

1.1.1.3 Equilibrium

According to Arthur (2006) agent-based computational tools allow to study

wider questions compared with standard neoclassical economics methods. For

instance, how the economy behaves out of equilibrium or how equilibrium is

formed. Rational expectations economics focus on what forecasts are con-

sistent with the outputs created by these expectations. Partial-equilibrium

economics focuses on what local behaviors would produce larger patterns that

would support those local behaviors. A behavior creates patterns and pattern

in turn in�uences behavior. Neoclassical economics tends to describe the pat-

terns in equation form. Consideration of economic patterns out of equilibrium

introduces algorithmic updating and heterogeneity of agents.

In many stochastic, dynamic models, it is possible to characterize the

equilibria and stability asymptotically, but little can be said about their out-

of-equilibrium behavior. It is important to understand the behavior of out-

of-equilibria system since such system may evolve a very long time to reach

the asymptotic equilibrium (Axtell, 1999). ABM provides not only the in-

formation about the existence of equilibria, but they also allow to access the

entire solution trajectories, or how equilibrium was reached. Epstein (2006a)

a�rms that the purpose of ABM is to provide new evidence on equilibriums

and when they exist to generate them, without assuming the existence of these

equilibriums.

Moreover, the participant should update their expectations in out-of-

equilibrium system that can provoke the expectation changes among other

agents. As the results we observe the cascades of changes in the system that
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shows as low and high volatility market regimes. This phenomenon shows up

in real market price series, but not in equilibrium models.

Market crashes is a good example when equilibrium models, which assume

that all forces in the market balance, are ill-suited, and agent-based models

can help gain deeper understanding of this phenomenon.

1.1.1.4 Model simplicity

The modeling of a system consists in the description of its elements, their

behavior under di�erent settings and conditions. The �rst goal of modeling

is to shed some light on the impact of di�erent factors on the behavior of the

system. The second goal is to predict the behavior of system under di�erent

conditions. Mandelbrot (2006) suggests that the choice and implementation

of modeling methodology (linear regression, arti�cial neural networks, etc.)

can play an important role in the quality of the �nal model.

The modeling in the mainstream framework mandates that solutions of

problems be based on theoretically defendable foundations with strong math-

ematical proofs that imply the series of underlying unrealistic assumptions.

Assumptions made for reasons of tractability may miss many interesting phe-

nomena. Epstein (2006b) says that any agent-based computational model can

be expressed as an explicit set of mathematical formulas or recursive func-

tions. Many agent-based models have been �mathematized�, for example as

stochastic dynamical system (Dorofeenko and Shorish, 2002). But even those

formulas exist, they are intractable. Hence, the important question which of

approaches equation-based or agent-based is most illuminating. So the opin-

ion that agent-based modeling is just simulations for which no equation exist,

is actually incorrect. The advantage of agent-based models is that they can

be ran thousand times with di�erent parameter values and easily produce the

targeted outputs, while it is di�cult to do in equation-based models.
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1.1.1.5 Controlled replications

In econometrics framework each empirical observation contains some propor-

tion of variation due to some proportion of noise assigned to chance or imper-

fect observations. In contrast, in agent-based framework researchers have per-

fect control over stochastic sources of variation. Thus, they have the capability

to produce the e�ects of stochastic variation and simulate exact replicates of

empirical samples. Gode and Sunder (1993) argue that agent-based modeling

permits greater control over the preferences and information-processing capa-

bilities. It is possible to specify a multi-agent complex adaptive system that

generates the empirical phenomenon. These phenomena that emerge from

simulations should be the result of multi-agent interactions and adaptation,

and not the results of complex assumptions about individual behavior and/or

the presence of �too many� free parameters. Thus, the ability to generate

a particular empirical phenomenon facilitates understanding of the empirical

phenomenon.

1.1.1.6 A mix of approaches

Agent-based modeling that generates a large variety of simulation outputs

can be used in conjunction with econometric and statistic tools, which can be

useful for risk analysis. Hence, these two streams can be mixed. Computation

does not replace theory, but it allows to develop a theory.

Wooldridge (2002) reports the factors indicating the appropriateness of

agent-based models. When the considered system is open, highly dynamic,

uncertain, or complex, a model of �exible autonomous actors is often the only

solution. In some systems, the distribution of data or control, the centralized

solution is di�cult or even impossible.
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1.1.2 Critics of Agent-Based Modeling

Many economists recognize the problems of classical methods in �nance, but at

the same time they have serious doubts about taking agent-based approaches

to address the fundamental issues. The criticisms of computational approaches

in �nance are summarized in (Tefatsion and Judd, 2006). Next subsections

introduce the critics of ABM in �nance and some possible methods to avoid

these limitations.

1.1.2.1 Examples Vs. Theorems

One of the �rst criticism of computational methods applied to �nancial prob-

lems is that they produce only examples, while mainstream methods produce

theorems. One single example shows only one element in an in�nite set of

possible outputs, but one single example cannot shed light in explanation of

parameters importance in the model. Each run of simulations is a su�ciency

theorem, but a single run does not provide any information on the robustness

of such theorems. In mathematical economics the model sensitivity can be

realized via inspection, simple di�erentiation, the implicit function theorem.

The only way to deal with this problem in agent-based computing is through

multiple runs of simulation with di�erent initial conditions and parameters

(Axtell, 1999). Hence, a few thousand well chosen examples generated in

agent-based framework can be more convincing.

If a theorem is proved in a mathematical framework under the assumption

that all agents have the same cognitive abilities or memory span, one can

simply introduce the agent population in an agent-based model with some

distribution of initial parameters, run the simulation and check whether the

simulation still holds. If it does not, then the agent-based model represents

a counter-example to the generalization of the theorem with respect to the

assumption about agents heterogeneity.
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1.1.2.2 Errors of Computations Vs. Errors of Speci�cation

Critics point out that numerical results have errors. But these errors can be

anticipated by the application of sophisticated algorithms and powerful hard-

ware. Careful simulation methods can reduce simulation error by increasing

the sample size and by exploiting variance reduction methods. More gen-

erally, careful numerical work can reduce numerical errors. The problem of

numerical errors in agent-based computational models are no more di�cult to

handle (and more often much easier) than the analogous numerical problems

that arise in maximum likelihood estimation and other econometric methods.

Researchers face a trade-o� between the numerical errors in computational

work and the speci�cation errors of analytically tractable models. Therefore,

it is often argued that it is better to �nd a solution with some inaccuracy of

correctly de�ned question, than to �nd exact solution to the wrongly de�ned

question.

1.1.2.3 Parameters settings

A problem with computational economics and bounded rationality is that

it leaves many degrees of freedom. Agent-based model should allow agents

to evolve, to act and to interact with others overall experiment time without

intervention from the modeler. The modeler cannot intervene to adjust system

evolution. All initial speci�cations should be completely prede�ned, small

changes in these speci�cations can signi�cantly a�ect the output. The model

should have the right parameters for the simulation to make sense. Therefore,

sometimes it is di�cult to justify the value taken for some parameters.

Another drawback of multi-agent models is that the decision making rules

of the agents do not contain semantic speci�cations, modeler rather adapt

ad-hoc functions of the decision making process without underlying cognitive

processes (Grothmann, 2002). However, these limitations can be removed by
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using feedforward neural networks (Beltratti, Margarita and Terna, 1996) or

recurrent neural networks (Yang, 1999).

1.1.2.4 Agent-based models are hard sell

Axelrod (2006) describes his collaboration with Bill Hamilton on agent-based

models in biological systems and how their paper �had a hard time getting

published�. He indicates that the absence of standards for testing the robust-

ness of an agent-based model can make agent-based modeling a hard sell. It

is di�cult to validate outputs of agent-based models against empirical data.

While ABM is useful in producing aggregate-level patterns from individual-

level rules, the main issue in �nancial markets in the agent-based framework is

calibration and validation: how can one evaluate the quality of a model from

an econometric point of view. In many situations the �tness function of data

�t cannot be practically formulated mathematically. Thus, simulations, due

to the lack of rigorousness, are still not regarded as a science by many scien-

tists. Robert Axelrod suggests that agent-based community should converge

on standard tools for research, on a set of fundamental concepts and results.

Without support from theory, the contribution of agent-based modeling can

be rather limited. Hence, it is important to consolidate the ABM study with

theoretical fundamentals. There exit actually some research tools, like game

theory or econophysics, able to bridge a gap between theory and simulations.

Ashburn, Bonabeau and Ecemis (2004) argue that in order to overcome

the problem of agent-based model validation, one can allow more subjective

factors to guide the search for �good� models, by enabling ABM users to

integrate �nancial economics expertise into their models. Such techniques,

used in other �elds (such as in the geosciences Boschetti and Moresi (2001)),

rely on directed search evolutionary algorithm which requires human input to

evaluate the �tness of how well the model reproduces the data qualitative and



1.2. Survey of agent-based modeling research contributions 19

uses common evolutionary operators to breed the individual-level rules that

produce macro level patterns.

1.2 Survey of agent-based modeling research

contributions

This section discusses simple models from an alternative approach in which

�nancial markets are viewed as complex evolutionary systems, it also surveys

the main areas in which agent-based models have been used. A range of im-

portant economical topics relevant to agent-based modeling is considered by

Axelrod and Tesfatsion (2005): price distributions (Bak, Chen, Scheinkman

and Woodford, 1993), price equilibrium in decentralized markets (Albin and

Foley, 1990; Epstein and Axtell, 1996), trade networks (Tesfatsion, 1995; Ep-

stein and Axtell, 1996), excess volatility in returns to capital (Bullard and

Du�y, 1998), organizational behaviors (Prietula, Carley and Gasser, 1998),

stock market price time series (Arthur et al., 1997b), shape of the distribution

of assets return (Cont, Potters and Bouchaud, 1997; Mantegna, 1991), higher-

order statistical properties (Arnéodo, Muzy and Sornette, 1998; Cizeau, Liu,

Meyer, Peng and Stanley, 1997). We compare the classical econometric ap-

proaches and agent-based modeling applied to �nancial issues in detail. First,

we review the literature on stylized facts explanations. Second, we brie�y

describe the research on the agent-based explanation of market anomalies.

Finally, we present the mainstream models of investment decision making,

especially, the series of unrealistic assumptions is stressed. We contrast these

models with computational models that help researchers overcome the draw-

backs of traditional models.
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1.2.1 Stock Market Volatility

Volatility is one of the most important characteristics of �nancial stock mar-

ket. It is also an important parameter for portfolio optimization, asset pricing

and risk management. Risk is the key problem in �nance. Even if there exists

di�erent measure of risk, the de�nition of risk as the variance of logarith-

mic price series is still more popular. Nevertheless, volatility is not an easily

observable parameter, and should be evaluated using di�erent approaches pre-

sented in �nancial literature. Financial literature de�nes a series of stylized

facts characterizing volatility.

The result of more than half a century of empirical studies on �nancial

time series indicates the fact that all these series have common properties

from a statistical point of view. Such statistical properties are known as

stylized facts and have been reported for several types of �nancial data and

for di�erent types of �nancial markets (Cont, 2001).

There are several approaches to study and understand market dynam-

ics and price series properties. Theoretical studies try to �nd explanations

through analytically tractable models. Empirical studies analyze historical

data. Experimental studies focus on analyzing trading behavior and its con-

sequences on the market dynamics. Experimental studies are usually related

to behavioral �nance. We focus on the power of agent-based models to repro-

duce stylized facts. Important observed stylized facts in �nancial time series

are as follows:

� Excess volatility. The fact that large (positive or negative) returns occur

cannot always be explained by the arrival of new information on the

market.

� No autocorrelation in raw asset returns

� Volatility clustering (slow decay of autocorrelations of squared returns
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and absolute returns). This fact is often interpreted as a sign of long-

range dependence

� Fat tails in the returns distribution. The distributions are approximately

bell-shaped but assign more than normal probability with more peaked

center (excess kurtosis) and at the extremes (heavy tails).

� Volume/volatility correlation: trading volume is correlated with all mea-

sures of volatility.

One of the main stylized facts observed in many �nancial time series is

so called, "volatility clustering", where periods of high volatility are followed

periods of low volatility, and so on. Mandelbrot (1963) was one of the �rst to

observe this phenomenon. Applied researchers in �nance use Autoregressive

Conditional Heteroskedasticity (ARCH) models and its various extensions as

an econometric tool, actively used to describe volatility clustering introduced

by Engle (1982).

εt denotes the discrete time stochastic process εt = ztσt, where E(zt) = 0,

var(zt) = 1. In most applications εt corresponds to the innovation in the mean

for some other stochastic process yt = g(xt−1; b) + εt and g(xt−1; b) denotes a

function of xt−1 and the parameter vector b, with xt−1 information set at the

moment t−1. Engle (1982) suggests to express σ2
t as a linear function of past

squared values of the process,

σ2
t = ω +

q
∑

i=1

αiε
2
t−1 (1.1)

The equation 1.1 expresses ARCH(q) model, the �rst attempt to cap-

ture volatility clustering (Bollerslev, Chou and Kroner, 1992). An alterna-

tive and more �exible structure is provided by Bollerslev (1986) with the



22
Chapter 1. From Traditional to Agent-based Modeling �

Justi�cation

GARCH(p, q).

σ2
t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

i=1

βiσ
2
t−1 (1.2)

It is necessary to note that the small numbers of parameters needed in these

models seem su�cient to capture the variance dynamics over very long sample

periods. For that reason, GARCH(1, 1), GARCH(1, 2) or GARCH(2, 1) are

typically used. In the GARCH(1,1) model the squared volatility depends on

last periods volatility.

It is also widely recognized that the return distributions tend to have fatter

tails that the normal distribution (Mandelbrot, 1963). The unconditional

distribution for εt in the GARCH(p, q) have fatter tails than the normal

distribution for many �nancial time series.

Stock returns tend to exhibit nonnormal unconditional sampling distribu-

tions, if one considers their skewness and excess kurtosis (Fama, 1965). The

conditional normality assumption in ARCH generates some degree of uncondi-

tional excess kurtosis, but typically less than adequate to fully account for the

fat-tailed properties of the data. Attempts to model the excess conditional

kurtosis in stock return indices include the estimates of EGARCH model

with a generalized exponential distribution Nelson (1989, 1991). Skewness

and kurtosis are important in characterizing the conditional density function

of returns.

The �exibility of ARCH-GARCH models allow them to succeed in styl-

ized facts replications. Nevertheless, there are still problems concerning these

models. Empirical studies highlight the presence of fat tails and remaining

asymmetry in the normalized residuals. Moreover, empirical results also show

that variance measured by GARCH models is so large that it can induce explo-

sive conditional variance. To capture this important characteristic Engle and

Bollerslev (1986) introduce the Integrated Generalized Autoregressive Condi-

tional Heteroskedasticity model (IGARCH) that tries to specify the second
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moment of a time series.

In addition, the time-varying investors behavior may cause the structure

of volatility. One of the critics of GARCH models is its impossibility to take

into account structural changes or in�exibility of these models (see Lamoureux

and Lastrapes (1990)). There are several attempts to overcome these critics.

Some attempts to improve GARCH models are inspired by heterogeneous

agents literature. For example, Frijns, Lehnert and Zwinkles (2008) present

the time variation in the coe�cients of standard GARCH(1, 1) modeling with

switching mechanism, often used in the agent-based modeling, where agents

maximize a certain objective function and switch between di�erent trading

rules to achieve this (Brock and Hommes, 1998; Franke and Westerho�, 2009).

Such improved models can better capture the kurtosis and skewness observed

in stock returns.

While GARCH models can mimic volatility clustering market properties,

they provide only theoretical explanation of such phenomenon. Cutler et al.

(1989) have shown that a substantial fraction of stock market �uctuations

cannot be explained by macroeconomic news and a large part of price series

properties are not due to major economic news or other events. Thus, a ratio-

nal representative agent model has di�culty in explaining volatility clustering.

Therefore, multi-agent arti�cial stock markets, allowing agent's heterogeneity,

bounded rationality, and realistic microstructure, are actively applied to deal

with these phenomena.

Next subsection discusses possible mechanisms proposed in the literature

as the possible sources of volatility clustering:

1. Heterogeneous arrival rates of information (Andersen and Bollerslev,

1997b)

2. Evolutionary models. The Santa Fe market model replicates qualita-

tively some of the stylized facts (LeBaron, Arthur and Parlmer, 1999).
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3. Behavioral switching. Lux (2000) constructs the behavioral switching

model between fundamentalist and chartist. This model makes arising

of the fat-tails and volatility clustering. Kirman and Teyssiere (2002)

propose that the proportion of fundamentalist in the market follows a

Markov chain. This modi�ed model performs autocorrelation patterns

in absolute returns.

An agent-based approach to stylized facts explanation

There is already a large literature on heterogeneous agent models replicating

many of the important stylized facts of �nancial time series on short time

scales, such as fat tails or volatility clustering (Brock and LeBaron, 1996;

Arthur, Durlauf and Lane, 1997a; LeBaron et al., 1999; Cont and Bouchaud,

2000; Farmer, 2002; Kirman and Teyssiere, 2002; Ladley and Schenk-Hoppe,

2009; Veryzhenko, Brandouy and Mathieu, 2010). Heterogeneity in agent's

time scale has been regarded as a possible origin for various stylized facts

in Guillaume, Dacorogna, Davé, Muller, Olsen and Pictet (1997), Andersen

and Bollerslev (1997a). LeBaron (2001c) reports that the heterogeneity in

horizons may lead to volume-volatility relationships similar to those of real

market. The recent survey by Lux (2009) contains an extensive survey of

behavioral interacting agent models mimicking the stylized facts of asset re-

turns, in particular heavy tails of high-frequency data with convergence to

the Normal distribution occurring only at relatively low frequencies. Such

models with interacting agents appear to be quite robust generators of the

stylized fact. Lux (2009) argues that this power of agent-based models to ex-

plain previously unexplained characteristics of �nancial market provides some

credibility to this new approach. We provide a detailed description of the Lux

model, as it has been successful in explaining of the series of stylized facts

described in the previous subsection.
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Lux model

Lux (2000) describes �nancial a market with a �xed number of fundamentalist

and chartists. Fundamentalists' trading is based on fundamental (true) value.

They buy (sell) when the current market price is below (above) the funda-

mental value. Chartists or technical traders pursue a combination of imitative

and trend following strategy. The author presents a possible explanation for

volatility clustering in multi-agent framework using a switching principle in

strategy choice.

The model contains three key elements: i) switching between pessimistic

and optimistic chartists ii) switching between fundamentalists and chartists

iii) a price adjustment process based upon aggregate excess demand.

i) The total number of traders is N = Nc + Nf , where Nc � number of

chartists, Nf � number of fundamentalists. There exists an intergroup

separation of chartists: pessimistic and optimistic. Chartists can switch

from the pessimistic to the optimistic type. Agents are allowed to switch

between a chartist and a fundamentalist strategy after pro�ts comparing;

in addition, they can switch from pessimistic to optimistic strategy and

vice versa. Interpersonal communications are also allowed.

The chartists calculate the opinion index, representing the average opin-

ion among non-fundamentalists, as φ = No−Np

Nc
, where No is number of

optimistic and Np is the number of pessimistic chartists. This opinion

index φ and price trend P ′ = dP
dt

de�ne the probability of switching from

the optimist to the pessimist depends on opinion index φ and price trend

P ′ = dP
dt
. The probability of switching from pessimistic to optimistic is

de�ned as follows pp→o = ν1
Nc

N
e−U1 , and from optimistic to pessimistic

respectively, po→p = ν1
Nc

N
eU1 , where ν1 is the switching frequency, Nc

N
is

the part of chartist in the total population of agents, U1 = α1φ+ α2
P ′

ν1
,

α1 is the sensitivity parameter to the opinion index, α2 � sensitivity to
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price changes.

ii) Switching between the chartist and the fundamentalist is driven by price

changes and current strategy pro�tability
(y+ dP

dt
)

P−r
where y are constant

nominal dividends of the asset, r denotes return from other investments.

Fundamentalists believe that price will revert back around the funda-

mental value f , hence they buy (sell) when current market price lower

(higher) the fundamental value. Hence fundamentalists' pro�t can be

calculated as s|P−f

P
|, where s is discounted factor, which re�ects that

the excess pro�ts are realized only when current price reverts back to

its' fundamental value.

po→f = ν2
No

N
eU2,1 pf→o = ν2

Nf

N
e−U2,1

pp→f = ν2
Np

N
eU2,2 pf→p = ν2

Nf

N
e−U2,2

U2,1 = α3(
y+P ′

ν2

P
−R− s|P−f

P
|) U2,2 = α3(R−

y+P ′

ν2

P
− s|P−f

P
|)

α3 is the sensitivity of traders to di�erences in pro�ts, ν2 �

chartist/fundamentalist switching frequency, Nf

N
is the part of funda-

mentalist in the total population and the probability for a fundamental-

ist to meet a chartist.

iii) Price changes are controlled by a market maker according to the aggre-

gate excess demand of chartists and fundamentalists.

A chartist buys (sells) a �xed amount qc of assets per period. Excess

demand of chartist is EDc = (No − Np)qc = φNcqc ≡ φNc

N
Tc and Tc ≡

Nqc, where Tc � maximum trading volume of chartists.

Fundamentalists buy (sell) when P < f (P > f), their excess demand

is EDf = Nfγ(f − P ) = (1 − Nc

N
)Nγ(f − P ) = (1 − Nc

N
)Tf (f − P ),

Tf ≡ Nγ, where γ > 0 measures the reaction speed of fundamental-

ists to price deviation from fundamental value, Tf � trading volume of
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fundamentalists.

Market makers estimate the price according to aggregate excess demand

by dP
dt

= β[EDc +EDf ] = β[φNc

N
Tc +(1− Nc

N
)Tf (f −P )], where β is the

speed of adjustments.

There are also some noise traders or liquidity traders in the market with

the noise term µ ∼ N(1, σµ). The probabilities of increasing (p↑P ) or

decreasing (p↓P ) are de�ned by

p↑P = min(max(0, β(ED + µ)), 1)

p↓P = min(−min(0, β(ED + µ)), 1)

This model is visualized in �gure 1.1.
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Figure 1.1: Lux-Marchesi model
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To summarize, Lux's model generates all of the mentioned stylized facts

of �nancial markets endogenously through the interaction of the agents. The

author argues that the source of volatility clustering and leptokurtotic return

distributions is the switching between chartist and fundamentalist strategies.

Statistical investigation of the simulated time series showed that the main

stylized facts can be found in the arti�cial market modeled by Lux (2000).

Other insights into the phenomena of stock returns are given by other

agent-based model of Cont (2007). The author argues that many agent-based

models are too complex to establish a simple relationship between the model's

parameters and observed stylized facts. He questions whether all the ingre-

dients of the model are indeed required for explaining empirical observations.

Therefore, Cont (2007) proposes a simple enough agent-based model capable

of generating time series returns with properties close to real data, so the

origin of volatility clustering can be traced back to agents behavior. We now

discuss a simple model (Cont, 2007) reproducing several stylized empirical

facts, where the origin of volatility clustering can be explained by threshold

response of investors to news arrivals.

Cont model

Cont (2007) proposes a model, able to explain some statistical properties of

�nancial time series. N agents trade one single asset whose current price is

denoted by Pt. Trading takes place at discrete periods t = 1, 2...n, where

these periods are interpreted as trading days. In each period, agents have the

possibility to buy or sell the asset, ϕt is the demand of the agent.

ϕ(x) =



















0 stay unchanged

1 buy

−1 sell
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At each time period, agents receive a common signal of public information

εt ∼ N(0, D2). Each agent i compares this signal to her threshold θit and

generates an order ϕ(x) according to following rules:

ϕ(x) =



















0 if εt > θit

1 if εt < θit

−1 if |εt| ≤ θit

where θit is considered as the individual agent's subjective view on volatility

(θit = |rt−1|). Excess demand is given by Zt =
∑N

i=1 ϕ
i
t. It produces a change

in the price rt = ln St

St−1
= g

(

Zt

N

)

, where g is the price impact function. λ is

the market depth g′(0) = 1
λ
. Any agent i has a probability s of updating her

threshold θit. q � the fraction of agents updating their views at any period.

θit =







|rt| if ui
t < s

θit−1 if ui
t > s

where ui
t is the uniformly distributed variable in [0, 1], that determines whether

agent i updates her threshold or not.

Compared to Lux (2000) model, in Cont (2007) model there is no ex-

ogenous fundamental value; fundamentalists and chartists are not considered

in these simulations; additionally, the communications and interactions be-

tween agents are not allowed. The same public information is available to

all agents, but they process this information in di�erent ways, this provides

the heterogeneity of the model. This simple model with very few parame-

ters generates a time series of returns with properties similar to empirically

observed properties of asset returns. The simulation results perform excess
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volatility, leptokurtic distribution of returns with heavy tails, excess kurto-

sis ≃ 7, positive autocorrelation function of absolute returns. Cont (2007)

argues that investor inertia provides an explanation of switching mechanism

proposed in the econometrics literature as an origin of volatility clustering. In

case of low volatility, agents become more sensitive to new arrivals, thus, gen-

erating higher excess demand and thus, increasing the amplitude of returns,

as a result, increasing the volatility. Contrarily, in case of the high volatility

agents become less reactive to news arrival, and such increasing agents' inertia

provokes the decreasing of return volatility.

In this section we demonstrate that agent-based models, relying on be-

havioral aspects, can provide a useful complement to econometric analysis.

Stylized facts, viewed as puzzles within the standard equilibrium modeling,

emerge quite naturally in agent-based models. The behavior of heterogeneous

agents, interaction and switching between them may lie at the heart of stylized

facts explanation.

1.2.2 Market Anomalies

In this subsection we introduce a contribution of agent-based modeling on

technical anomalies explanation. One of the market phenomenon is the prof-

itability of technical trading that reveals inconsistencies with respect to the

e�cient market hypothesis. This is technical anomalies. Common techni-

cal analysis strategies are based on the relevant strength of the trend and

moving averages. As technical trading techniques are mechanical, whether

they can generate signi�cant pro�t has been a long-debated issue since Fama

and Blume (1966). Recent empirical studies �nd more and more supporting

evidences for the pro�tability of technical analysis, including, among others,

Sweeney (1986), Sweeney (1988), Brock, J.Lakonishok and LeBaron (1992),

Blume, D.Easley and O'Hara (1994). These results suggest that technical
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analysis is popular because it can "beat the market". Others argue that prices

adjust rapidly in response to new stock market information and that technical

analysis techniques are not likely to provide any advantage to investors who

use them.

A wide variety of theoretical and empirical models have been developed

to explain why technical trading is widespread in �nancial markets. Agent-

based models provide new explanations of observed market anomalies and

deeper insights into the dynamic of real-world �nancial markets. Joshi and

Bedau (2000) propose an agent-based arti�cial model of a stock market to

explore an explanation of this phenomenon. Agent expectations do not follow

the �xed rules such as rational expectation rule. They choose the expecta-

tions among the evolving set of expectation rules to be the most successful

predictors of recent stock-price changes. The authors use Santa Fe Arti�cial

Stock Market LeBaron et al. (1999) to show that if the market is populated by

fundamentalist agents, some individual using technical analysis for price pre-

diction can take some advantages. As far as the majority of agents undertakes

the technical trading rules (because the singular agent's decision is mirrored

by other traders), the prediction becomes less accurate due to additional noise

in the market provoked by technical traders. It drives the market to a sym-

metric Nash equilibrium in which the average �nal wealth of the agents in the

market is lower than in the market in which only fundamentalists are trading.

Obviously, it makes technical analysis not pro�table anymore.

Chen and Yeh (2001a) study an arti�cial stock market with an evolv-

ing agent population. Agents use the learning mechanism, so-called business

school, based on genetic programming. The authors show that the price se-

ries follows a random walk process in the long run. This �nding is rather a

con�rmation of market e�ciency (Fama and Blume, 1966). Additionally, the

authors �nd that some agents can outperform the market in the short-term

time scale, which is the evidence of short-term market anomalies.
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1.2.3 Investment Decision Making

This subsection examines and confronts traditional models with agent-based

modeling in investment topics. We present a brief review of mathematical

basis as well as limits of classical models in investment decision making. The

portfolio optimization theory provides a way to measure investor's preferences

for risk they are willing to undertake in the hope of attaining greater wealth.

Utility functions give a way to measure such wealth-risk relationships. The

utility theory lies at the heart of Modern Portfolio Theory (MPT). Thus, we

begin the discussion by Expected Utility Theory (EUT) von Neuman and

Morgenstern (1947) overview. While utility functions are too simple to be

directly relevant for real-life applications, they create the foundation for the

development of the more complex theories. We introduce here Mean-Variance

Portfolio Theory (Markowitz, 1952), Capital Asset Pricing Model (Sharpe,

1964), and Arbitrage Pricing Theory (Ross, 1976).

Expected Utility Theory (EUT). The modern economic theory of de-

cision making under uncertainty is based on the expected utility framework

developed by von Neuman and Morgenstern (1947). The authors provide

a rational foundation for decision-making under risk according to expected

utility properties. This theory was further developed by Samuelson (1950),

Marschak (1950), Herstein and Milhor (1953) and others. Utility refers to the

consumer's satisfaction from the consumption of goods and services. Utility

can be applied to wealth as well as goods and services. Marginal utility func-

tion, decreasing with wealth, is actively used. This function re�ects the fact

that the every individual bene�ts from an additional unit of wealth, but the

utility of this gain is less for someone who already has large wealth. Thus, it is

common to maximize the expected utility of wealth rather than the expected

wealth. Economic and �nancial literature introduce quadratic, logarithmic,
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power, and negative exponential utility.

The expected utility assumption for modeling choice under risk and un-

certainty has been discussed and disputed in (Allais, 1953; Ellsberg, 1961). It

gave rise to alternative theories of investment decision making: weighted ex-

pected utility (Allais, 1979), rank-dependent expected utility Quiggin (1982),

the cumulative prospect theory (Tversky and Kahneman, 1992), non-linear

expected utility (Machina, 1982), regret theory (Loomes and Sugden, 1982),

non-additive expected utility (Schmeidler, 1989), and state-dependent prefer-

ences (Karni, 1985).

Microscopic simulations (MS) (Levy et al., 1995, 2000), alternatively

agent-based modeling (ABM) (Tefatsion and Judd, 2006), provide the pos-

sibility to implement any form of utility functions. But the traditional utility

function framework can be improved by heterogeneous risk preferences or be-

liefs about expected values.

Mean-Variance Portfolio Optimization Theory. The mean-variance

formulation proposed by Markowitz (1952),Markowitz (1959) relies on Ex-

pected Utility Theory and provides a fundamental basis for portfolio selection.

Signi�cant visibility this theory gets after papers of Tobin (1958), Sharpe

(1963), Sharpe (1964), Lintner (1965), and its analytic solution by Merton

(1972). The fundamental lesson of the Markowitz analysis is to show that

investors must care not only of the realized return, but also of the risk of their

positions. Markowitz proposes to measure the risk of return by its standard

deviation. Denote by ̟ the vector of weights of the n risky assets, R the

vector of returns, Rf � the risk-free rate of return. The percentage of wealth

invested inn this riskless asset is w0. The optimization program is:

min ̟′V ̟ (1.3)

̟′R + (1−̟′e)Rf = E(RP ) (1.4)
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The budget constraint is:

̟′e+̟0 = 1⇐⇒ ̟0 = 1−̟′e

where the variance-covariance matrix V is invertible.

There exist following assumptions in Markowitz Portfolio Theory:

� An investor seeks to maximize his �nal expected utility of wealth

� A single-period investment horizon

� An investor is risk-averse

� The investor chooses optimal portfolio on the basis of means and vari-

ance of assets

� Market are perfect: there are no transaction costs or taxes

� The model does not suit speculative traders

� Expected returns, variances, and covariances are known for all assets.

Investors know the future values of these parameters

� Investors create optimal portfolios by relying solely on expected returns,

variances, and covariances. No other distributional parameter is used.

The interesting insights provided by Markowitz (1952) arise from the inter-

play between the mathematics of return and risk. These simple and intuitive

issues are at the heart of modern portfolio theory. Nevertheless, the large

proportion of investment is not allocated on the basis of mean-variance op-

timization. What is the problem with "pure application" of mean-variance

optimization, and what it makes it di�cult to apply in practice?

The �rst complication is perhaps obvious. It is hard to quantify expected

returns and covariances. These parameters can be estimated using historical
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data, analytic models, analysts' forecasts, or other methods. When historical

data is used to estimate model parameters, there are at least two main areas

of concern: estimation errors and nonstationarity of the model parameters.

When security prices are determined within an e�cient market structure,

a probability distribution can be used to describe them. Normal probability

distribution is assumed as an appropriate description of the return function.

If returns are normally, identically and independently distributed (niid), with

a constant population mean µ and variance σ2, then estimates of the mean

and standard deviation are given by

R =

∑n

i=1 Ri

n

σ̂ =

√

∑n

i=1(Ri −R)2

n− 1

For example, using monthly returns data, we might �nd that R = 1% and

σ̂ = 4%. It can be shown that the standard deviation of the estimate of R is

stdv(R) = σ√
n
. Suppose we wanted to obtain an estimate of the population

mean return of 1% that was accurate to ±0.1% with given σ = 4%. This

would require n = 42

0.12
= 1600 monthly observations, that is, 133 years of

monthly data. Obviously, that 60 monthly observations (5 years) will be

very poor. The standard deviation (for normally distributed returns) of σ̂ is

given by stdv(σ̂) =
√
2σ2

√
n−1

. We use the same 5 years sample (n = 60 monthly

observations) of data to estimate σ̂ = 4%. Using the above equation, we get

stdv(σ̂) =
√
242√
60−1

= 0.38%. That is why, accuracy of σ̂ = 4% is relatively good

at 0.38%. Hence, estimation of variance (covariance) using historical data is

subject to much less error than estimates of the expected return. The problem

with mean-variance approach aggravates, because the optimization algorithm

is simply too sensitive to an inaccuracy of return estimation. Chan, LeBaron,

Lo and Poggio (1999), Ledoit and Wolf (2004) propose methods that focus on



36
Chapter 1. From Traditional to Agent-based Modeling �

Justi�cation

reducing the error in estimating the covariance matrix.

Beside estimation error, change in model parameters over time is another

problem that estimation models face. On the one hand, when estimating the

parameters from a long return series, the returns of an asset recorded several

decades ago do not provide real insight into today's return properties. In other

words, a long estimation window increases the possibility of nonstationarity in

the parameters. On the other hand, only very recent historical data increase

estimation error, because estimates of the unknown parameters will di�er from

their true values. Broadie (1993) proposes a trade-o� between estimation error

and stationarity when choosing the length of the estimation error.

The other drawback of modern portfolio theory is that this model deals

with risk as measured by the variance-covariance matrix and not other forms

of risk (political risk, business risk). It is the single factor risky model. This

makes the theory inappropriate for use with multi-factor risk models. Fur-

thermore, the variance is a squared term, thus it treats any deviation above

the mean return as being as risky as any deviation below the mean return.

The �nal issue, which makes application of modern portfolio theory di�-

cult, is that it is not easy to treat analytically. Implicitly assumed in MPT

is that individuals act in an objective almost mechanical fashion in making

decisions. Market participants are completely rational in use unbiased ex-

pectations in forming and then selecting mean-variance portfolios. However,

investors often exhibit behavioral traits such as limited knowledge, bounded

rationality, bounded self-control, and bounded self-interest. Rather than base

investment decisions on sound mean-variance analysis, individuals use heuris-

tic rules (rules of thumb). This process of making decisions with a combination

of mean-variance analysis and heuristics is called bounded rationality. Such

combination is easily realized in multi agent-based models. This is exactly

the focus of this research. Using an arti�cial market can help us understand

whether traditional �nance approaches are still successful in a completely dif-
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ferent framework of bounded rational and heterogeneous agents.

Capital Asset Pricing Model (CAPM). The Capital Asset Pricing

Model2 of Sharpe (Sharpe, 1964) implies that all investors should hold a

broadly diversi�ed market portfolio, combined with risk free asset accord-

ing to their risk preferences. If there exists a risk-free asset with return Rf ,

any e�cient portfolio P is a combination of the risk-free asset and the mar-

ket portfolio M , that corresponds to the point of tangency between the two

e�cient frontiers (with and without the risk-free asset).

RP = xRf + (1− x)RM ⇐⇒ RP −Rf = (1− x)(RM −Rf )

The choice of x depends on the risk aversion. The portfolio variance is σP =

(1− x)σM , consequently

RP = Rf + σP

RM −Rf

σM

σP = [x2 + σ2
i + (1− x)2σ2

M + 2x(1− x)σiM ]
1

2

Ri −Rf = βi(RM −Rf ) with βi =
σiM

σ2
M

where β represents the systematic risk which is due to exposition to the mar-

ket variations. CAPM demonstrates that the prices of assets are such that the

market portfolio is made up of all assets in proportion to their market capi-

talization. CAPM highlights the relationship between the excess mean return

and the exposure coe�cient beta. Additionally, at equilibrium the market

portfolio is optimal.

The fact that CAPM relies to variance as the risk measure provokes the ac-

tive discussion and gives rise to models in which exposure to more than a single

market risk factor determines expected returns. Merton (1973), Long (1974)

2relies on Expected Utility Theory
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introduce models where investors should not simply hold a broad market in-

dex and cash, but should also invest in hedge portfolios for other economically

relevant risks, like interest rate changes and commodity price in�ation.

According to Roll (1977) it is very di�cult to determine the true market

portfolio, because market portfolio should contain all risky assets, even those

that are not traded. Using a portfolio, which is not the true market portfolio,

may lead to estimation errors in the betas. Roll demonstrates that even if two

potential proxies for M are correlated greater than 0.9, the beta estimates

obtained using each may be very di�erent. This suggests that the empirical

implications of the model are very sensitive to the choice of proxy.

According to Levy et al. (2000), there are several unrealistic assumptions

made in CAPM framework:

� All investors are risk averse expected utility maximizers

� There is no transaction costs nor taxes

� Investors are rational (they try to maximize their expected utility) and

they are e�cient (they know how to reach the goals)

� Investors never make errors and choose their portfolios from the e�cient

set on the capital line.

� Homogeneous beliefs about expected values are required

� Investors have the same holding period

Under these assumptions all investors hold the portfolios with an identical

structure, a fraction of initial wealth is invested in the risk-free asset the rest

in the tangency portfolio T called market portfolio. Because all investors

acquire shares in the same risky tangency portfolio, and make no other risky

investments, all existing risky assets must belong to T . All agents would be

willing to buy or sell the same positions, thus, there would be no trade. Since
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all investors hold all risky assets in the same proportion this implies that

short sales cannot exist in equilibrium. Otherwise, an investor could make

arbitrarily large pro�ts by short selling large quantities of the more expensive

of the securities and buying the cheaper in equivalent amounts. Such an

arbitrage would have zero cost and be riskless.

What e�ects will have the relaxation of one of these assumptions? How

are equilibrium asset prices determined when the majority of investors are in-

deed e�cient and rational, but a minority of them are irrational or ine�cient?

To address these issues in mainstream framework, Cvitanic, Jouini, Mala-

mud and Napp (2011) introduce an equilibrium model where investors have

three possible sources of heterogeneity. They may di�er in their beliefs, their

degrees of risk aversion, and their time preference rate. The aim of this work

is to study the impact of heterogeneity on the equilibrium properties. The

authors analyze agent interactions and heterogeneity impact at the individual

(individual portfolio holdings and risk sharing rules) and aggregate levels (the

market price of risk, the risk free rate, the bond prices, the stock price and

volatility). Cvitanic et al. (2011) conclude that i) for very high level of ag-

gregate endowment, the equilibrium Arrow-Debreu price is determined by the

agent with the highest individual market price of risk ii) if there is heterogene-

ity in beliefs (risk aversion levels) only, the equilibrium Arrow-Debreu price

for very low levels of aggregate consumption is given by the Arrow-Debreu

price of the most pessimistic (most risk averse agent) iii) the agent with the

lowest survival index3 survives and dominates the market asymptotically.

However, agent-based modeling is more appropriate for relaxation of ho-

mogeneity and perfect rationality assumptions, it is a good complement

3The survival index of agent i is de�ned by ki ≡ ρi+γi

(

µ− σ2

2

)

+ 1
2δ

2
i , where ρi, γi, δi,

µ, and σ respectively denote the individual level of time preference, risk aversion, optimism
and the drift and volatility of aggregate endowment.
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to theoretical models. ABM provides a deeper understanding of the im-

pact of the agent heterogeneity on market equilibrium (the Arrow-Debreu

prices). Whereas theoretical models describe price dynamics and uncertainty

by stochastic processes, in ABM framework price dynamic is a direct result

of agents interactions. Levy et al. (2000) test the e�ect of heterogeneous ex-

pectations on equilibrium prices, and the e�ect of the number of assets held

in the portfolio on the CAPM's results. This experiment is considered below

in this section.

Arbitrage Pricing Models. In the context of general equilibrium theory

considered in the previous models, there exist several hypothesis. The �rst

one is the rationality hypothesis leading to the speci�cation of maximization

problems under constraints. The other hypothesis relies on equilibrium price

formation, meaning that demands equal o�ers in all markets under consid-

eration. In equilibrium framework, there can be no arbitrage opportunities,

in other words, there is no possibility to earn abnormal pro�ts risklessly at

zero cost. An arbitrage opportunity indeed implies that at least one agent can

reach a higher level of utility without violating his budget constraint. The Ar-

bitrage Pricing Theory (APT)(Ross, 1976) relaxes some of strong assumptions

of the CAPM. The beauty of the APT is that it does not require any assump-

tion about utility theory or that the mean and variance of a portfolio are

the only two elements in the investor's objective function (Cuthbertson and

Nitzsche, 2004). It does not assume normality of returns and supposes only

that investors are risk-averse, without specifying a particular utility function.

More precisely, the APT abandons the analytically powerful, but empirically

complicated assumption on returns distribution. It replaces this assumption

with the hypothesis that there exists a set of factors determining asset returns.

Thus, the main building block of the APT is a factor model, also known as a
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return-generating process:

Ri,t = E[Ri] +
K
∑

k=1

bi,kFk,t + εi,t

where bi,k denotes the sensitivity of asset i to factor k, Fk,t denotes the return

of factor k with E[Fk,t] = 0, and εi,t denotes the residual return of asset i.

The APT model assumes:

� The markets are perfectly e�cient

� The factor model is the same for all investors

� The number n of assets is assumed to be very large

Arbitrage conditions lead to the existence of factor risk premia λk such that

E[Ri] − Rf =
∑K

k=1 λkbi,k APT allows for several risk factors to determine

assets expected returns. Denote δk, the expected return of a portfolio with a

sensitivity to factor k equal to 1, and null sensitivity to other factors. Then:

λk = δk −Rf and E[Ri]−Rf =
K
∑

k=1

(δk −Rf )bi,k

where bi,k =
Cov(Ri,δk)
V ar(δk)

are the sensitivities to the factor loadings. The simplest

one-factor market model, usually labeled the Market Model, equals to the

CAPM. If it were empirically veri�ed that a single factor model is su�cient,

the CAPM would be the undisputed end point of asset pricing. But it is quite

unlikely at an empirical level.

It is clear that the APT overcomes some weaknesses of the CAPM, never-

theless to derive Ross's APT one needs to assume a speci�c return generating

process but it does not provide any information about how to select the factors

for return generating process, no transactions costs, unlimited short sales are

allowed, a borrowing interest rate is equal to the lending rate. A relaxation
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of each of these unrealistic assumptions may either change the model results

only slightly or change them very drastically. It is di�cult to �gure out ana-

lytically the e�ect of the relaxation of each of these assumptions on the model

equilibrium results.

Heterogeneous expectations in equilibrium theory. All models re-

viewed above ignore many important options and consider only ideal vari-

ants. For instance, they assume that all traders are rational, they always

make the most optimal choice in a given situation. The mechanism of trading

(order execution, price formation, clearing mechanism) is ignored. Thus in

theoretical market models equilibrium, reached when demands equal o�ers,

is central. The currently observed asset prices are equilibrium ones. There

is no attempt, however, to compute asset demand and o�ers functions ex-

plicitly. Theoretical models also rely on market e�ciency. Proponents of

e�ciency claim that in �nancial markets it is not possible to earn abnormal

pro�ts (other than by chance) by exploring some set of information. The

majority of standard models focus on risk management and portfolio opti-

mization for individual investors. They are not interested in the e�ects of a

large number of investors on the market overall when they use similar risk

management methods. Many researchers question however, whether markets

operate as described by modern �nance theory. A number of approaches have

been proposed to test this issue. These approaches include empirical studies,

experimental economics, the market microstructure approach, micro simula-

tions or agent-based modeling. For example, Kahneman, Solvic and Tversky

(1982), Kahneman and Tversky (2000) argue that even if a majority of the

models created in traditional �nance contains the assumption about the con-

stant degree of risk, people change their risk preferences according to current

circumstances, hence decision making rules vary depending on conditions. To

incorporate this fact in the modeling, Takahashi and Terano (2004) introduces
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the agent-based model, where agents' decision making rules are a�ected by

trading circumstances, and the degree of risk aversion varies depending on the

amount of assets held.

One of the earliest analysis that confront classical models of investment

decision making with (micro-)simulations approach can be found in Levy et al.

(2000). In order to achieve analytic results, it is necessary to assume a decision

framework and to make many speci�c assumptions, some of which are very

unrealistic. What will be the e�ect if one of these assumptions is relaxed? It

is possible that even a small deviation from the assumptions may completely

reverse the theoretical results.

There is no analytic tools to measure the e�ect of deviation from expected

utility theory assumption. There exist some attempts to explain the e�ect

of assumption relaxation, for example, Lintner (1965) relaxes the homogene-

ity of expectations assumption, but results become di�cult tractable . Levy

(1978), Merton (1987), Markowitz (1990), and Sharpe (1991) relax the perfect

market assumption. If some of the unrealistic assumptions are relaxed, the

analytical results become complicated. Levy et al. (2000) conclude that the

more the model is relaxed, the less the results are tractable. Since it is di�cult

to investigate analytically the e�ects of deviation from some assumptions in

theoretical models, Levy et al. use microscopic simulation (MS) methodology

to run such investigations. In MS models heterogeneous expectations, di�er-

ent holding periods can be introduced. With MS one can model investors as

bounded rational entities, who maximize some expected utility but who also

make some errors. For instance, they act on wrong signals, incorrect informa-

tion, or use technical signals that are not related to fundamental information,

they consider changes in wealth rather than the total wealth. Investment de-

cision process can have two regimes: i) all investors maximize utility function

and act exactly as implied by expected utility theory ii) all investors buy and

sell randomly ignoring assets fundamental values. Bounded-rationality is be-
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tween these two extremes scenarios, it best describes how individuals act on

stock markets.

Levy et al. (2000) investigate the application of MS to price determination

in the heterogeneous CAPM model. The authors assume that all investors

agree on the estimation of correlation matrix V but disagree on R. The kth

investor's estimate of the mean return of the ith asset is Rik = Ri(1 + εik),

where εik ∼ N(0, σ) is a disagreement (heterogeneity) factor, which provides

the model heterogeneity. E(εik = 0), implying that on average the market is

in agreement with the CAPM parameters. Thus, the investment proportions

in the ith stock varies across investors, xik is the proportion of the wealth of

agent k invested in stock i. Then, the clearing process is de�ned by the ex-

pression P ∗
i0 =

∑K

k=1
Wkxik

Ni
, where Ni the number of outstanding shares of the

ithe �rm, Wk the wealth of the kth investor, K the number of investors. Levy

et al. using microsimulation model show that lower expected return stocks

tend to be overpriced in the heterogeneous expectations, and higher expected

return stocks tend to be underpriced with the small heterogeneity factor. The

explanation of this e�ect is due to the nonlinear e�ect of the heterogeneity

factor εik on wealth invested in risky assets. But the magnitude of this e�ect

decreases as the number of assets in the market grows. The authors also con-

clude that a large number of asset or investors increases the robustness of the

CAPM vis-á-vis the relaxation of the homogeneous-expectations assumption.

Thus, the heterogeneous beliefs are not crucial to CAPM results.

In the CAPM framework theoretically each investor holds all available

risky assets, while in practice investors commonly hold a relatively small num-

ber of assets in their portfolios. How does the relaxation of this assumption

a�ect the results? Levy (1978), Merton (1987), and Sharpe (1991) analyze

this question theoretically. The equilibrium model in which investors hold lim-

ited number of assets is called General CAPM (GCAPM). Levy et al. (2000)

examine this model in MS framework, they compare the classic CAPM and
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GCAPM. They assume that agent k keeps in his portfolio nk number of as-

sets, where n is the total number of available assets. The investor constructs

the e�cient set of nk stocks with a given risk free interest rate rf . Thus, the

investor should test all n!
(n−nk)!nk!

portfolios. Levy et al. consider two cases

of asset selection: i) each asset has an equal chance to be included in each

portfolio ii) some stocks have a lower chance to be selected, they are known in

�nancial literature as small stocks. All investors share the same beliefs about

expected values of stocks. As the CAPM and GCAPM market portfolio di�er,

beta is also not the same in these two equilibrium frameworks. The authors

examine the small �rm or neglected stock e�ect on equilibrium prices and the

risk-return relationship.

The authors report a higher intercept that the riskless interest rate, which

conforms with empirical data. They get a strong small �rm e�ect.

1.3 Conclusion

The point of this chapter was to present the main principles of ABM and the

relationship of the ABM methodology to more standard economic modeling.

We have stressed that �nancial markets, as complex systems, are particularly

well suited for agent-based explorations. Following the critiques of theoretical

models, we have reviewed a large variety of articles reporting a power of

agent-based methods to revive the theory. There is a long list of features

that traditional approaches are not able to match. ABM proves an intriguing

possibility for solving some of these puzzles. Then, we have focused on research

directions, where ABM is regarded as a promising research tool. However, the

list of topics, viewed in this thesis, is far from being exhaustive; such choice

of covered topics has been made according to relevance to this research.
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2.1 State-of-the-art

In this chapter we give an overview of recent developments in agent-based

arti�cial stock markets. The organization of this chapter is as follows: �rst,

we introduce issues faced by modelers when designing an agent-based arti�cial

stock markets. We provide an overview of design issues using the framework

proposed in LeBaron (2001a), Martinez-Jaramillo (2007). The main design

issues identi�ed in LeBaron (2001a) are:

� Market Mechanism & Time Scheduling

� Traded Assets

� Agents & Learning

� Calibration and Validation

The next subsection describes existing platforms based on the same axes

as those proposed in (LeBaron, 2001a). Then, we introduce our software

platform ArTi�cial Open Market (ATOM) under the axes described above

that allows us to show the common and outstanding features of our arti�cial

market.

2.1.1 Market Mechanism & Time Scheduling

Martinez-Jaramillo (2007) indicates three ways to design market a environ-

ment. A �rst solution consists in creating a simple price response to the

excess demand with a simple clearing mechanism (market impact function
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as response to the observed market excess), like in the models of Cont and

Bouchaud (2000), Chen and Yeh (2001b), Farmer (2002), Martinez-Jaramillo

(2007). The market price level is adjusted as a response to the observed

market imbalance between supply and demand.

pt+1 − pt = α(Dt − St) (2.1)

where Dt and St are the demand and supply of the agents at time t, α � a

positive constant, pt � the actual market price level, and pt+1 − pt � the price

adjustment. Farmer and Joshi (2000) proposes a price response on demand

function of the form pt+1 = pt +
1
λ

∑N

i=1 di, where di is the number of shares

bought by agent i, and λ is a constant.

The advantage of a market impact function is that it is computationally

fast and it gives reasonable results. But this function is very sensitive to

the value of the parameter α. Another disadvantage of this price formation

mechanism is that the market is assumed to be symmetric.

The second solution consists in creating a simple market clearing mecha-

nism (analytically or computationally) where local equilibrium price can eas-

ily be found Levy et al. (1995), Arthur et al. (1997b). The calculation of the

temporary equilibrium price is either performed analytically, or in case of a

complex nonlinear demand function, computationally (LeBaron, 2001a).

The third solution consists in explicitly implementing an auction mecha-

nism that allows to issue real market orders, like in the models of Marchesi,

Cincotti, Focardi and Roberto (2000), Maslov (2000), Yang (2002), Jacobs

et al. (2004), Gordillo, Pardo-Guerra and Stephens (2004), Ponta, Raberto

and Cincotti (2011). One of the most common example within this category

of price formation mechanisms is a double-auction market. Agents may ei-

ther submit bids or ask for the traded asset to the market. For example,

Chakrabarti and Roll (1999), Chakrabarti (2000) applies the double-auction
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concept to arti�cial inter-bank foreign exchange market. The current best bid-

ask spread and transaction prices are known to all market participants. The

result is the convergence to the competitive equilibrium price and quantity.

According to execution systems the market can be divided between quote

and order driven. On quote-driven markets, the market makers post quotes

(prices and volumes at which they are willing to conduct a transaction) and

the investors may decide to accept those quotes. By posting those quotes,

market makers provide liquidity to the market by allowing investors to exe-

cute transactions. For example, in Farmer (2002), the market maker trades

based on his positions, all orders are market orders, and price is centrally

set according to an automated mechanism. In Chan and Shelton (2001) the

positions of the market maker in�uence his decision as well. In Lux (2000)

the market maker determines changes in price by reacting on imbalances be-

tween demand and supply. Other examples of quote-driven markets can be

found in Daniels, Farmer, Iori and Smith (2003), Darley and Outkin (2007),

Boer-Sorban (2008).

On order-driven markets buyers and sellers directly trade together. Order

driven markets often take the form of an auction. Trading orders are sent to

a central order book, where they are matched. Most of real markets do not

rely on a single execution system, but they combine quote and order driven

markets. For example, the NASDAQ Stock Market is a quote-driven market,

but sometimes traders can can trade directly. Such mixed executions systems

is introduced in Boer-Sorban (2008).

According to time the market models can be divided between discrete and

continuous. In discrete models, time advances in discrete increments, while in

continuous models the system changes continuously over time.

Most agent-based arti�cial stock markets are organized as discrete-time

(or call) models (Brock and Hommes, 1997; Raberto, Cincotti, Focardi and

Marchesi, 2001; Challet, Marsili and Zhang, 2005). The discrete-time market
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has a discrete time grid with t = 1, ..., T time rounds. At each round an agent

is asked to submit his orders. The speci�c characteristics of the simulation

models determine how the players take turns and how they arrive at the

decisions. In other words, a modeler can coordinate the actions of traders,

parameterising waiting time for trade actions. In most platforms this round

is considered to be a day, or even one year. So, at the beginning of each

period t, new information arrives to the market. The agents process the

information and convert this into trading decisions. At the end of trading

period t, agents simultaneously submit their orders to the market maker.

Before the next time period begins, the market maker computes the market

price. The synchronous, discrete representation of time is suitable for the

models containing just simple clearing rules for price formation, when all

agents are inactive until the equilibrium price is determined. Levy et al. (2000)

use a discrete synchronous model for their microscopic simulations model. In

each period, a market equilibrium price is computed from the demand and

supply curves of all investors.

However, most modern �nancial markets operate continuously. Contin-

uous trading is introduced in several arti�cial market models of Shatner,

Mushnik and Solomon (2000), Farmer, Patelli and Zovko (2005), Boer-Sorban

(2008). In such models, agents issue the orders at any moment, producing an

order �ow, that result in new trades and a market price is continuously up-

dated.

Boer, Kayamak and Spiering (2007) study a market dynamics with prices

set by a learning market-maker. The authors report that the results are

signi�cantly in�uenced by the choice of model updating dynamics, discrete

or continuous. They conclude that the continuous nature of trading should

be explicitly introduced in the arti�cial stock market models for reproducing

realistic price dynamics.

Two di�erent trading schemes must also be distinguished: synchronous and
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asynchronous (Farmer, 2002; LeBaron, 2001a). In synchronous time models,

the time increases with a �xed increment like minute, day or month. In

asynchronous models, time step advances by irregular increments, to the next

scheduled event (Jacobs et al., 2004). In synchronous dynamic model, traders

are centrally selected for acting at speci�c moment. While, in asynchronous

trading scheme investors may leave the market, or �nd a counterpart for

transaction in any moment. The agent decide not only the price and volume

of orders, but also exact timing. For instance, in the model of Shatner et al.

(2000), a trader is �sleeping� between the events that make him to wake up.

The trader de�nes the nature of such events: he can ask to be waken up after

K time steps since he placed the last order, or after new information arrival, or

after price changes by 5%. Once awake, the trader decides whether he wishes

to change his positions.

Generally speaking, continuous asynchronous model, allowing action at

any time by any participant, represents the markets in a more realistic way,

than discrete synchronous model, which typically has to make special as-

sumptions about the e�ect of everyone acting at the same time at assumed

discrete times. The examples of synchronous trading are introduced in Levy

et al. (1995), Arthur et al. (1997b), Zimmermann, Neuneier and Grothmann

(2001), Farmer (2002), Markose, Tsang and Martinez-Jaramillo (2003), while,

asynchronous trading is implemented in Shatner et al. (2000), Jacobs et al.

(2004), Raberto and Cincotti (2005), Jacobs, Levy and Markowitz (2010)

2.1.2 Assets

There exists a large number of di�erent �nancial securities traded in the money

market and capital market. Examples of money market securities are treasury

bills (T-bills), commercial papers, and Eurodollars. Capital market instru-

ments may be subdivided into two categories, debt (Treasury Notes, Bonds,
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Federal Agency Securities, and bonds) and equity. The �st category is referred

to as the Fixed Income Market. Currencies are regarded as capital market

instruments traded on foreign exchange market (FX-market). Derivative in-

struments are �nancial securities whose price is derived from the price of an

underlying �nancial asset.

Agent-based models may incorporate all types of �nancial instruments.

However, the majority of agent-based models is limited to simple �nancial

securities, for instance, one risk-free asset (bond or cash) and several risky

stocks. We are unaware of arti�cial stock markets allowing to trade deriva-

tives. In the model of LeBaron (2001c) the agents allocate their wealth among

a risk free asset and a risky security (equity). The risk free asset pays a �xed

interest r. Equity pays a dividend at each time step, that follows a random

walk:

log(dt+1) = log(dt) + εt (2.2)

where εt is normally distributed. The presence of a dividend can provide a

benchmark for actual share price by allowing to calculate rational expectations

price.

Gordillo et al. (2004) uses a single risky asset and a risk free asset (cash). In

the model of Cincotti, Ponta and Raberto (2005) there are 100 di�erent stocks,

each related to a particular �rm, in total there are 10 sectors each constituted

by 10 �rms. Initially, all agents have an equal number of stocks 1000 and

10 millions EU of cash. In Loistl and Vetter (2000), Loistl, Schossmann and

Vetter (2001), Loistl and Veverka (2004) the number of assets is limited to 50

units.

2.1.3 Agents

The aim of this section is to give an overview of economic agents and some

issues associated with their development. One of the most important design
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issues is the modeling of agents. This issue covers heterogeneity, decision

making, utility function, and learning of agent(Grothmann, 2002).

Since there is no universally accepted de�nition of the term "agent", we

propose a de�nition by Wooldridge and Jennings (1995) as "computer system

that is situated in some environment, and that is capable of autonomous in this

environment in order to meet its design objectives". The agent also has a set

of actions, with which he a�ects the environment. Wooldridge and Jennings

(1995) also provides a mathematical formalization of the agent. Assume that

the agent's environment can be characterized as a set of environment states

S = {s1, s2, ...} that the agent can in�uence only partially. The in�uence of

agents is a set A = {a1, a2, ...} through which agent can a�ect the environment

action : S −→ A

Wooldridge and Jennings (1995) provides the important notions related to

agent that we can interpret in the �nancial market context: The �rst one is

autonomy, it means that an agent is not a passive subject to a global, external

�ow of control in its actions. An agent has his own objectives, abilities to

accept information, then to analyze it and based on these results to make

decisions about further actions. The second one is situatedness, it means

that the agents act in a particular environment. In our case, the market is

the environment, where the agents perform their trading. This environment

presents set of constraints, rules, regulations. Finally, proactivity means that

the agents act in order to achieve their objectives or goals.

To summarize, an agent uses a set of rules for making decisions to achieve

his trading goals. This set of rules can be regarded as a trading strategy. Gen-

erally, the trading strategy styles vary from zero-intelligent agents to complex

evolving strategies using neural networks, genetic algorithms and genetic pro-

gramming.
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Decision making rules. The principal role of agents in the stock market

is to analyze information and to use own decision making rules to convert

this knowledge into buy and sell actions. Agents collect information and act

fairly sensibly on the basis of that information. Their choices may not be the

entirely deterministic and predictable. Hence, the most typical classi�cation

of agents is based on their input information. Generally, we distinguish i)

random, ii) technical and iii) fundamental traders.

Random traders ignore any information and send orders randomly. Gode

and Sunder (1993) initially introduced this kind of trader and labeled them

"Zero intelligence trader" (ZIT). Gode and Sundders use these agents to in-

vestigate the source of rapid convergence to competitive equilibrium in double

auction markets. They argue that this equilibrium is due to the double auc-

tion rules alone. The authors report that zero-intelligence agents, under a

simple constraint not to make unpro�table trades, produce the price paths

close to those produced by a human subject. The prices remain close to

the competitive equilibrium price, the volatility declines. At the same time,

unconstrained zero-intelligent agents produce extremely volatile prices, and

there is no evidence of convergence to the competitive equilibrium.

The model of Gode and Sunder (1993) provoked an active reaction and

their original work has been extended by other authors to investigate re-

lated market mechanism questions. Thus, the ZIT methodology is actively

applied to explain economic phenomena in various environments. For exam-

ple, Bolleslev and Domowitz (1993) employs the ZIT to analyze the e�ect of

varying or restricting the size of the order book.

Cli� and Bruten (1997a), Cli� and Bruten (1997b) examine the sensi-

tivity of Gode and Sunder's �ndings to the elasticity of supply and demand.

They propose an alternative algorithm, which they call "zero-intelligence plus"

(ZIP). ZIP agents aim for a particular pro�t margin on each unit bought or

sold, and this pro�t margin dictates the bid or ask they submit.
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Jamal and Sunder (2001) examine the case of markets with imperfect

information and uncertainty of state using three variants of the ZIT. The ZIT

has also been employed in analyzing bubbles and crashes in asset markets.

Wu and Bhattacharyya (2003) introduce speculators into standard double-

auction markets. They �nd that ZIP traders can no longer guarantee market

e�ciency when there is a large number of speculators comparing to normal

traders.

Strategies that rely on historical price series as the main source of infor-

mation are called technical trading rules. This is the most common type of

trading strategy in some markets like the foreign exchange markets (Neely,

1997; Neely, Weller and Dittmar, 1997). Technical traders use charts and

graphs to make decisions, in other words, they analyze price movements and

chart patterns from the past to draw conclusions about future buying and

selling. Technical analysts focus on generating trading signals that provide

a higher investment return. A large variety of trading rules are proposed

by the tenants of technical analysis: �lter rules, moving average, support-

and-resistance, channel break-outs, on-balance volume averages, momentum

strategies, head-and-shoulders, broadening tops and bottoms, triangle, rect-

angle, and double tops and bottoms. By using charts and graphs to determine

whether or not to be in or out of the market at any given time, agents are

actually practicing market timing.

This type of trading strategy is largely represented in the arti�cial stock

markets, like in Shatner et al. (2000), Daniels, Farmer, Iori and Smith (2002),

Daniels et al. (2003), Boer-Sorban (2008), Brandouy and Mathieu (2007),

Veryzhenko et al. (2010). These agents use N last prices to extrapolate the

next market dynamics, e.g. future price Ppredicted. Then, they compare the

current market price Pcurrent with the predicted one Ppredicted. If the Pcurrent >

Ppredicted, the agent sells stocks. If Pcurrent < Ppredicted, the agent buys stocks.

The main advantage of these simple trading rules is a clear tractability of
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results produced by such behaviors.

Fundamental traders are driven by the "true" value of assets. The true

value is estimated based on fundamental information like �nancial reports, in-

formation about the management of the company, earning per share, revenue,

cash �ow, earning announcements, dividends, analyst upgrades. This informa-

tion allows to identify returns, hence the fundamental value when discounted

rates are available. So it is an important task to model the fundamental value

in agent-based models. Once this value has been obtained, the investor is able

to compare the "true" value with the current security price. If the latter is

higher its true value, the fundamental traders sell the stocks, and vice versa.

Some examples of fundamental information de�nitions in agent-based

models of �nancial stock market can be found in Glosten and Milgrom (1985),

Palmer, Arthur, Holland and LeBaron (1998), Shatner et al. (2000), LeBaron

(2001a).

In Santa Fe stock market (Palmer et al., 1998), the risky stock pays a

stochastic dividends that follows the autoregressive AR(1) process:

dt = d̂+ o(dt−1 − d̂) + µt (2.3)

where d̂ = 10, p = 0.10 and µt ∼ N(0, σ2
µ).

In the Baron's Model (LeBaron, 2001a,c,b) the dividends follow a random

walk

log(dt+1) = log(dt) + εt (2.4)

where dt and εt are normally distributed.

The model of Glosten and Milgrom (1985) introduces the traded asset with

true value toward which the trading price converges. The fundamental value

of the stock evolves according to a jump process

Vt = Vt−1 +△ (2.5)
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where △ ∼ N(0, σ).

The fundamental value can reach its low V with a probability σ or its

high level V with a probability 1− σ. Additionally, authors introduce noisily

informed traders that observe a slightly modi�ed fundamental value Wt =

Vt + ε, where ε ∼ N(0, σ2
W ). Noisily informed traders buy if the fundamental

value is higher than the market maker's ask price (Wt > Pa), they sell if the

observed fundamental value is below the bid price (Wt < Pb). They do not

issue the order in case if Pb ≤ Wt ≤ Pa.

Objective functions. Concerning the objective function, there are two

ways to design this important element of decision making. As mentioned

in Grothmann (2002), it can be designed implicitly or explicitly. In case of

an implicit objective function, the decision making process incorporates indi-

rectly the agents' objectives. For example, pro�t maximization agents take

advantages of the price �uctuations in order to maximize their gains. Such

type of a function is introduced in Farmer (2002).

An other example of pro�t maximizers is given in Zimmermann et al.

(2001). r̂t+1 = E[lnpt+1

pt
] denotes the expected price shifts with t = 1, ..., T .

The objective pro�t maximization function of agent is described as follow:

1

t

T
∑

t=1

r̂t+1a
i
t 7−→ maxait

(2.6)

where ait is the trading decision of agent i at the moment of time t. If the price

is declining r̂t+1 < 0, the agent sells the stocks. On the other hand, the agent

keeps long positions (buy assets) if he predicts a price increasing r̂t+1 > 0.

Kaizoji (2000) introduces an interesting approach to maximize the pro�ts.

The agent tries to predict the trading decisions of a majority of market partic-

ipants. This approach is motivated by the idea that the price is signi�cantly

in�uenced by majority. If a majority of agents sells stocks the price declines.
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If the majority buys, the price increases. So some agents can make extra pro�t

by anticipating the behavior of the crowd.

The explicit representation of objective function is the utility maximization

function.

Utility function. Utility refers to the consumers' satisfaction from the con-

sumption of goods and services. Utility can be applied to wealth as well as

goods and services. The marginal utility function is actively used in the liter-

ature. This function re�ects the fact that the every individual bene�ts from

an additional unit of wealth, but the utility of this gain is less for someone

who already has large wealth. Thus, it is common to maximize the utility

of wealth rather than the expected wealth. The utility function provides a

relative measure of investor's preferences for wealth and the amount of risk

they are willing to undertake in order to maximize their wealth. There are

di�erent types of investors: risk averters, risk lovers or risk neutral that di�er

by the shape of their utility functions.

Usually, in agent-based models, the utility function is expressed in terms

of wealth or risk management. One of the most frequent utility functions is

the Constant Absolute Risk Aversion (CARA) function

U(Wt+1) = −e
−AWt+1 (2.7)

where A is the absolute risk-aversion degree and Wt+1 is the agent's expected

wealth level for the next period. CARA is used in the models of Arthur et al.

(1997a), Palmer et al. (1998), Yang (1999), Chen and Yeh (2001b), Hommes

(2001), Yang (2002). In the Santa Fe stock market agents use a classi�er

system to make predictions on the �rst and second moments of stock returns.
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Agents maximize their utility function with respect to their budget constraint:

Wi,t+1 = xi,t(pt+1 + dt+1) + (1 + rf )(Wi,t − ptxi,t) (2.8)

where xi,t is the number of risky assets held by agent i in t, dt+1 is the dividend

attributed to risky assets, and rf is a risk free interest rate.

Thus, the objective of the agent is to maximize the expected utility

E(Ui(Wi,t+1)):

E(Ui(Wi,t+1)) = E(−e−AWi,t+1 |ui,t) (2.9)

Given a set of external in�uences ui,t the agent's conditional utility expectation

E(Ui(Wi,t+1)) depends on his future wealthWi,t+1. One of the most important

design issues of the CARA utility function concept is the construction of the

price and dividend expectations E(pt+1 + dt+1). Several solutions exist for

doing so, for instance, Yang (1999) use recurrent neural networks for this

task.

There is a large variety of agents-based models implementing the utility

maximization trading rules (Levy et al., 1995; Arifovic, 1996; LeBaron, 2001c;

Chiarella and He, 2001). For example, Levy et al. (1995) introduce logarithmic

utility function in their Levy Levy Solomon Model, this function is expressed

as follows U(W ) = ln(W ).

In the Baron's Model (LeBaron, 2001c) agents use Constant Relative Risk

Aversion (CRRA) utility function to maximize their wealth at each time step.

CRRA is expressed as follows U(W ) = W 1−γ

1−γ
, where γ > 0, γ 6= 1.

In the Business school agent-based multi-asset model (Chen and Yeh,

2001b; Chen, Yen and Liao, 2002) agents use Quadratic utility U(Wt+1 =

Wt+1 −
b
2
W 2

t+1) for their decision making.

Mean-variance portfolio optimization rules are implemented in the models

of Chen et al. (2002) Cincotti et al. (2005).
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2.1.4 Learning

Learning is an important element of the design of an arti�cial �nancial mar-

ket. Agents should be able to update their trading strategies in response to

changing market conditions. Brenner (2006) provides an explicit overview

of the learning techniques used in economic models. He proposes to clas-

sify the learning models according to their origin: psychology-based models,

rationality-based models, adaptive models, belief learning models, and models

inspired by arti�cial intelligence and biology. The second classi�cation relies

on the main economic �elds in which the models are applied. Bayesian learning

and least-squares learning is used in macro-economic; reinforcement learning,

�ctitious play and direction theory are applied in experimental economics;

evolutionary programming and genetic programming are frequently used in

agent-based computational economics. Arti�cial Intelligence techniques are

the main tool to design agent's learning: the examples including genetic algo-

rithm are implemented in the agent-based models of Palmer, Arthur, Holland,

LeBaron and Tayler (1994), Arifovic (2001), LeBaron (2001c); learning classi-

�er systems in Arthur et al. (1997a), LeBaron et al. (1999), Schulenburg and

Ross (2002); arti�cial neural networks in Yang (2002), Zimmermann et al.

(2001); genetic programming in Chen and Yeh (2001a), Chen and Yen (2002),

Edmonds (1999), Martinez-Jaramillo (2007); reinforcement learning Chan and

Shelton (2001).

In this thesis we propose an overview of genetic algorithms principles (Hol-

land, 1975), as they are regarded as a key component in many agent-based

�nancial market for modeling of learning and adaptation (Palmer et al., 1994;

Arifovic, 2001; LeBaron, 2001c). While there is a large variation in the speci�c

details of genetic algorithms, there are some general principles and procedures

that are regarded as relatively standard:

� The objective function of genetic algorithm should be speci�ed. The
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parameter that is going to maximize (or minimize) the objective should

also be indicated.

� The vector of parameters, representing candidate solutions are encoded

as string of �nite length.

� The performance of each string in the population is evaluated using the

objective criterion � the string's �tness.

� A new generation ofN strings is determined using operations that mimic

natural selection that occurs in biological processes.

For instance in the Santa Fe model (Arthur et al., 1997b; LeBaron et al.,

1999) agents predict the future return and dividend of the traded asset. The

sets of trading rules evolves on the basis of genetic algorithms. The GA is

invoked everyK period for each agent and replaces the 20 worst rules of the set

of 100. GA uses the genetic operators of mutation and crossovers to generate

new rules that allow to adapt the set of strategies to the changing market

conditions. Mutation is an important part of any evolutionary algorithm,

which helps maintain a diverse population. It could be interpreted as learning

by experiment. The performance of the rules is used as a �tness criteria. Thus,

ine�cient trading rules are replaced by the best ones. Initially, the agents are

limited in their rationality and their knowledge about the market. During

the trading, the agents learn and thus, become reasonable experts in their

domains. The probability of GA activation by each agent is an important

parameter that determines the "speed of learning" of the agents.

2.1.5 Interactions

The next key aspect of agent-based models are the agent interactions that are

at the heart of the explanation of many statistical properties of stock markets.

There are two important points of interaction in the �nancial market:
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� Who is interacting with whom: market-market, agent-market, agent-

agent, agent-external world, etc.

� What is the result of the interactions: monetary payo�s, the commodity,

money, etc. For example, agent A interacts with agent B, provides

information to agent C and pays money to agent B.

Many existing empirical studies put forward the market-market relation.

For instance, there exist long-run linkages and co-movements between the

markets, such as Canadian, Mexican and United States. But usually this

type of interaction is ignored in agent-based models.

Market organization is an important factor a�ecting the strategies of par-

ticipants and their pro�tability that is agent-market interaction. Often, the

outcome of a strategy is not uniquely associated with any particular feature

of the model or behavior, it's up to a set of market rules and market partic-

ipants. An example of such relation is the in�uence of tick size on strategies

pro�tability.

This sort of in�uence �ts Interaction Movement Computation MIC∗ model

(Gouachin, Michel and Guiraud, 2004). This model is actively used for multi-

agent systems engineering. In this model the environment de�nes a set of

actions for autonomous agents to achieve their goals. The environment plays

a fundamental role in order to guarantee the autonomy property of agents.

The agents interact with one another in order to achieve either a common or

an individual objective. Moreover, existing models of advance traders inter-

actions �t well the MIC∗ architecture.

The simplest agent-agent interactions can be "communication" through

the environment, via market microstructure. In such interactions, agents have

a di�erent access to external information and a di�erent interpretation of it.

They estimate their own positions, make decisions about perspective bid-ask

prices, and do not share the trading strategy. To demonstrate the interactions
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through order book, we consider the following simple example: agent i sends

bid order βi or ask orders αi, with bid-ask spread αi−βi. A trade is concluded

between agent i and agent j, if βi > αj. In such a way, the traders' decisions

are in�uenced by decisions of other market participants.

To keep simulations fairness and to avoid the biases in the internal information

access, agents should be simultaneously informed about changes in the order

book. All orders, as in�uences, are collected in the order book, once, all

agents have sent their orders, the price is �xed as a reaction. This model �ts

the In�uence Reaction Model for Simulation (IRM4S) concept (Ferber and

Muller, 1996; Michel, 2007). Trading strategies in�uence general system state

(price formation) through "collection of in�uences" (order book), at the same

time, they use current environment information (historical price) for further

decisions. In other words, the agents can also interact through the common

variable of the past price history, but they are not directly a�ected by the

actions of others.

More complex communication model is introduced by Bouchaud and Potter

(2000). Agents have three choices of market actions: buy, sell, or remain

positions. Traders can form coalitions with others who share some choices

of actions. N agents are assumed to be located at the vertexes of a random

graph, and agent i is linked to agent j with a probability pij. A coalition is

simply the set of connected agents (a cluster) with a given action△Θ. Agents

in a cluster share the same actions and do not trade among themselves.

In the MIC∗ model (Gouachin et al., 2004) two agents are regarded as

interacting when the perceptions of an agent are in�uenced by the emissions of

another. This type of interaction is realized in the adaptive population model

of Lux and Marchsi (1999), where the agents are divided into two groups:

fundamentalists and noise (chartist) traders. Noise traders are divided into

an optimistic and a pessimistic group. The important feature of this model

is possibility to switch strategy between optimistic and pessimistic patterns,
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moreover between the noise and the fundamentalist agents groups, based on

the pro�t di�erence in such groups.

Generally speaking, cross-group movements change the traders group's

proportion, hence change the market state that is in�uenced also by individ-

uals' behavior (market price dynamic depends on agents' strategies).

In�uence-opinion formation model of Kirman (1993) represents the direct

interaction scheme. The agent may hold one of two views. In each time step,

the two agents may randomly meet, and there is a �xed probability that one

agent may convince the other agent to follow his opinion. In addition, there

is also a small probability that an agent changes his opinion independently.

Applied to a �nancial market setting, one may observe such interaction be-

tween technical traders and fundamentalist. Note, that agents may change

rules due to direct interactions with other agents, but switching probabilities

are independent of the performance of the rules.

2.1.6 Calibration and validation

While agent-based models are able to represent the market structure and

trading rules in a very realistic manner and are capable to reproduce many

real market patterns, most models may be not easily calibrated to real-world

data.

Uncalibrated models may be used to investigate the periods of high and

low volatility, or agents learning and adaptation over time. Even if each

of these scenarios is designed to represent real world situations, it does not

rely on real data for calibrating the arrival rate of new information, the real

proportion between fundamentalists and chartists on the real market, the

assets held by each trader. The calibration of model parameters is one way

to connect arti�cial market model to the real world (LeBaron, 2001a). A

wide discussion on calibration is presented in Windrum, Fagiolo and Modeta
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(2007). The approach of incorporating parameters borrowed from real or

experimental market to calibrate a model can be found in Zimmermann et al.

(2001), Boswijk, Hommes and Manzan (2003).

In calibrating the parameters and behaviors in the simulations, Darley

and Outkin (2007) identify two interrelated areas: 1) calibrating to the real-

world trading volume distribution, and 2) calibrating behaviors, especially,

market makers behaviors. Darley and Outkin (2007) use a Nasdaq Inc. data

set for calibrations to identify an interval of the trading day and associate it

with an interval in the simulation, the total traded volumes in real market and

arti�cial market is statistically similar. Then, they create dealers and investors

orders with di�erent size that approximately reproduce the distribution of

traded volumes observed in the real world. Next, the authors use data mining

techniques to calibrate the agents' behavior. With the information provided

by time series data of real market transactions, the strategies are calibrated

to generate the price paths that are the most consistent with the real world

Nasdaq market.

Calibration consists in setting parameters to help the model best �t em-

pirical data, while validation consists in verifying the hypothesis about the

ability of the model to �t real data. Validation is needed to select the model

which best �ts real market data or data properties. An agent-based model is

validated if the generated data and the real data belong to the same distribu-

tion. Calibration methodologies are necessary and crucial in validation.

2.2 An overview of existing platforms

In this subsection we introduce two "classical" the most cited and the most

used arti�cial stock markets, the Santa Fe Arti�cial Stock Market and the

Genoa Arti�cial Stock Market. Then, we overview recently developed plat-

forms, Agent-Based Simulation of Trading Roles in an Asynchronous Contin-
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uous Trading Environment (ABSTRACTE) and the NASDAQ Market Sim-

ulator. In these platforms the developers made design choices close to those

in ATOM. The out�ow of each subsection is as follows: �rst, we describe the

choice of market mechanism and traded assets made in the systems; second,

di�erent types of agents and their learning capabilities; third, the technical

features including programming languages and libraries used for platform de-

velopment; �nally, we review the research contributions in �nance made using

concerned platforms.

2.2.1 Santa Fe Arti�cial Stock Market (SF-ASM)

The Santa Fe Arti�cial Stock Market is a well known agent-based system. It

is cited in many articles Arthur et al. (1997b), LeBaron et al. (1999), Palmer

et al. (1994), LeBaron (2002), Ehrentreich (2002), Ehrentreich (2006). The

Santa Fe market was not the �rst. There were several early simulations that

tried to answer some concrete questions. Cohen, Maier, Schwartz and Whit-

comb (1983) investigate the impact of randomly behaving agents on various

market structures, Kim and Markowitz (1989) look at the interactions of spe-

ci�c trading strategies.

It was originally designed to investigate the dynamics of a market in which

bounded rational agents form endogenous expectations by means of inductive

reasoning (Arthur, 1994c). It helps study the emergence of trading patterns

as agents learn over time.

Market mechanism. Double-auction mechanism. Market makers an-

nounce the price to all the traders.

Agents. There are N traders in the market, fundamentalists and technical

traders using moving average trading signals. Agents take their decisions

synchronously and send the orders with direction ai,t (buy ai,t = 1 or sell ai,t =
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−1), and the market maker calculates the imbalance between demand and

supply (It =
∑

i ai,t). The price of orders is computed as pt+1 = pt(1+ β× It)

Traders use constant absolute risk-aversion expected utility function

CARA U(Wt+1 = −e−λWt+1), where λ is their degree in risk-aversion, and

Wt+1 is an agent's expected wealth level for the next time period. Agents use

a classi�er system to make predictions on the �rst and second moments for

stock returns. Agents maximize their utility function with respect to their

budget constraint:

Wi,t+1 = xi,t(pt+1 + dt+1) + (1 + rf )(Wi,t − ptxi,t) (2.10)

Traders are homogeneous with respect to utility function and risk aversion,

they are heterogeneous with respect to expectations about future price and

dividends. The agents buy/sell stocks and receive interest/dividends on their

investments.

SF-ASM allows the interactions between heterogeneous agents as described

in Lux and Marchsi (1999)

Assets. There are only two assets. First, there is a risk free bond with a

constant interest rate r = 0.10. The second asset is the risky stock , paying

a stochastic dividend that follows the autoregressive AR(1) process : dt =

d+ p(dt−1− d) +µt, where d = 10, p = 0.95, µt ∼ N(0, σ2
µ). The fundamental

share value is unknown to the traders. It depends on the price, the dividends

and the risk-free interest rate. There are no complex instruments, such as

options.

Learning. SF-ASM uses a generic algorithm (GA) to modify the trading

rules. Each trader i = 1, · · · , N updates his set of forecasting rules with

probability P in each period t using generic algorithm (GA). The updating of
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forecasting rule sets happens in di�erent time periods for di�erent traders. P

is an important parameter determining the speed of learning. For each agent,

GA is invoked every K period and replaces S worst rules of the rule set.

Technical features. The SF-ASM market was programmed in the C pro-

gramming language under UNIX, later it was modi�ed to objective-c. One

important feature of the empirical results presented in LeBaron et al. (1999) is

that they use a cross section of 25 di�erent market runs. The second key result

is that these features are very sensitive to the learning speeds of agents, or

the frequency with which they run the generic algorithm. The platform pro-

grammed based on the Santa Fe Arti�cial Stock Market and its modi�cation

were introduced in the papers of LeBaron (2002), Johnson (2002), who discuss

platform design issues. A current objective-C version using the Swarm package

is currently hosted by Paul Johnson at http://ArtStkMkt.sourceforge.net.

It was also reprogrammed using Java and RePast library.

Research questions. SF-ASM is a relatively simple platform actively used

to address several important and controversial questions in �nancial eco-

nomics. SF-ASM is used to examine whether the introduction of trader learn-

ing helps explain empirical observations. Depending on the generic algorithm

invocation interval, LeBaron et al. (1999) report two di�erent regimes: 1)

the so-called rational expectations regime emerges when agents have a slow

learning rate 2) the so-called rich psychological or complex regime arises when

agents have a fast exploration rate. When the agents frequently update their

rules the market is more likely to generate the patterns common to actual

�nancial time series. When the agents update their rules more slowly the

market is very close to what would be predicted in the homogeneous ratio-

nal expectations equilibrium. The price series exhibit bubbles and crashes,

fat tails in return distribution, trading volume exhibits GARCH-behavior and

http://ArtStkMkt.sourceforge.net
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is auto-correlated. Trading volume is also strongly persistent and correlated

with price volatility. The authors report that the emergence of these statistical

properties is due to the interactions between many heterogeneous agents.

2.2.2 Genoa Arti�cial Stock Market (GASM)

The Genoa is the arti�cial �nancial stock market presented by Marchesi et al.

(2000), Raberto et al. (2001), Cincotti et al. (2005). The Genoa platform

contains several modules: i) assets ii) trading iii) clusters iv) simulation part

implements market organization with trading rules, agents who follow these

rules. The authors claim that this platform has been developed not as a stand-

alone optimization application for present model, but as an evolving system

able to be continuously modi�ed and updated. For instance, the platform can

be extended to an unlimited number of di�erent kinds of securities, it can be

used as an engine for a trading game and, moreover, for implementing real

online trading.

Market mechanism. The trading mechanism of the GASM is based on

a realistic double-auction order matching mechanism. The clearing price is

de�ned as the crossing of demand and supply functions.

Assets. Initially this platform has been introduced as a mono-asset market

in Marchesi et al. (2000), but it has been recently updated to a multi-asset

system by Ponta et al. (2011).

Agents. Each agent is an autonomous entity that uses a speci�c number

of assets and cash, which are speci�ed as the initial parameters. There is a

variety of trading strategies: random trading, fundamental analysis, technical

analysis, mean-variance portfolio optimization, and mean-reversion traders.



2.2. An overview of existing platforms 71

� Random Traders (R) have zero intelligence and simply issue random

orders. They issue a buy or a sell limit order with equal probability.

The order size is computed at random with a uniform probability, but

there are budget constraints, meaning that the issued sell order depends

on available cash and stocks.

� Fundamentalist traders (F) believe that each asset has a fundamental

price Pf related to external factors.

� Momentum Traders (M) follow the past price trends. They buy (sell)

when the price goes up (down).

� Contrarian Traders (C) are trend followers too, but they speculate, if

the stock price is rising, it will stop rising soon and fall, so it is better

to sell near the maximum, and vice versa. Contrarian Traders compute

the order size in the same way as Random Traders.

Learning. The Genoa platform uses a generic algorithm (GA) to modify

the trading rules.

Technical features. The system is developed using the Smalltalk language.

Research questions. The Genoa arti�cial stock market has been employed

to investigate asset price dynamics from a microscopic perspective. Within a

multi-asset arti�cial stock market, zero-intelligence traders generate realistic

price series (see �gure 2.1) with returns exhibiting volatility clustering, fat

tails and reversion to the mean. The authors report that only the restriction

on agents' allocation strategies produce such realistic stylized facts. They

also analyze the impact of stock option trading on the market of the under-

lying security, and the in�uence of hedging strategies on the long-run wealth

distribution of traders and on price volatility.
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Figure 2.1: Prices and Returns in simulations without dividends paying with
ZIT.

The question of the long-run wealth distribution of agents with di�erent

trading strategies is studied using the Genoa Arti�cial Stock Market (Raberto,

Cincotti, Focardi and Marchesi, 2003). The results show that a trading strat-

egy cannot be judged solely on the basis of the strategy itself. Its success

depends also on market conditions. The authors conclude that in an arti�cial

market with �nite resources, the average price level and the trends are de�ned

by the amount of available cash that is injected in the market. Di�erent pop-

ulations of traders with simple but �xed trading strategies cannot coexist in

the long run. One population prevails and the others progressively lose weight

and disappear.

Mannaro, Marchesi and Setzu (2008) use the Genoa framework to assess

the impact of a Tobin-like transaction taxes on market volatility and trading

mechanism. For this research they introduce several types of traders: ZIT,

fundamentalist ans two kinds of chartists. The authors report that the price

volatility increases consistently with the tax rate, but only when the chartist
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traders are present in the market.

2.2.3 Agent-Based Simulation of Trading Roles in an

Asynchronous Continuous Trading Environment

(ABSTRACTE)

ABSTRACTE is a modular agent-based trading environment introduced and

described by Boer-Sorban (2008). This is a modular tool for representing and

studying several types of markets and trading strategies. The main purpose

of ABSTRACTE developers is the understanding and explanation of mar-

ket dynamics. ABSTRACTE is based on JADE (Java Agent DEvelopment

Framework). JADE agents communicate through asynchronous message pass-

ing. The agents use Agent Communication Language (ACL) format to write

their messages.

The framework consists of three main components. The market place mod-

els the institutional structure behind price formation. This component inte-

grates �nancial traders (market makers and brokers). Their role is determined

by the market rules of speci�c markets. Investors are not an internal part of

a market organization. They observe markets, make trading decisions, and

send their orders to �nancial traders. The information source component is

designed to generate news related to the stock traded on the market, such as

dividends or fundamental value. The information source component generates

news about a stock. Based on this information, the investors send their orders

to brokers or market makers on the marketplace. The process of order exe-

cuting depends on the speci�c execution system and on the strategy applied

by �nancial traders. The �gure 2.2 introduces the structure of the system.

Market mechanism. Primarily, the authors focus on continuous quote-

driven system, where bid and ask quotes are placed by market makers. Later,
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Figure 2.2: The components of the ABSTRACTE framework

the auction-based execution mechanism has been also incorporated into the

environment.

Continuous and call trading sessions are implemented within the platform.

It is up to the user to decide with which form to experiment. In continuous

trading sessions, the orders are executed as far as there is a possibility of

matching. If call sessions are used, the orders are placed only at designated

times. Traders are noti�ed whenever a call session opens or closes.

Limit and market orders can be placed within this framework. Orders are

described by a stock name, size, side, quoted price and timestamp.

Assets. Like the majority of arti�cial stock markets ABSTRACTE develop-

ers focus on experiments where one risky stock is traded Boer-Sorban (2008).

Cash is regarded as a risk free instrument.

Agents. The ABSTRACTE incorporates three types of market participants.

Market makers execute the orders of other market participants. They are

responsible for providing market liquidity, perceiving the environment, deter-

mining bid and ask quotes, receiving orders and their executing.

Brokers are primarily entitled to execute orders on behalf of investors.

Theoretically a broker has three ways to carry out a trading instruction: a)
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match orders internally: if there are other earlier received orders in the order

book of the broker that clears at a price close to the current market price; b)

try to negotiate with other brokers within the market maker's quoted spread.

c) submit the order to a third party (such as a market maker or a central

matching system) for execution.

There are two classes of investors in the system. Trader agents represent

the market participants, who hold a list of stocks and trade them on the mar-

ket. Manager agents control the market by keeping track of the time, creating

and managing a given list of traders, getting information, and di�using news.

In the ABSTRACTE framework traders are not centrally selected for their

tradings, but are individual autonomous elements. They decide when to place

an order. Autonomy results from the chosen agent-based implementation.

Moreover, agents can carry out di�erent tasks at the same moment.

Technical features. ABSTRACTE is built using the Java Agent DEvelop-

ment Framework (JADE) environment.

Research questions. Boer et al. (2007) study the behavior of a learn-

ing market maker in a market with information asymmetries, and observe

the di�erences caused by market dynamics (discrete and continuous). They

show that the market price is signi�cantly in�uenced by the choice of market

dynamic. The authors report that the main di�erence in the outcomes of

the discrete-time and continuous-time simulation is the �uctuation of bid-ask

quotes, and consequently prices. Prices tend to �uctuate more often and with

larger amplitude in continuous, asynchronous setting. The magnitude of the

�uctuations tends to increase with the increasing number of investors. Boer

et al. explain this phenomenon by the interaction of agents, who act all at

the same time, and market maker, who overreact to changes in order queues.
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2.2.4 NASDAQ Market Simulator

The NASDAQ Market Simulator (Darley and Outkin, 2007) is an agent-based

model that has been initially developed to explore the e�ects of the changes

in market microstructure or market rules on the behavior of participants such

as market makers and traders in the Nasdaq market.

At the highest level, the simulator consists of four types of objects: Price,

Dealers, Investors, and Market.

Market mechanism. This platform mimics the architecture of the NAS-

DAQ real market.

Assets. A single risky security is traded. The "true" value of the stock

follows a stochastic dynamics.

Agents. The players in the market, Dealers and Investors, are represented

as "agents" in the Nasdaq market simulator. Each investor has access to the

current "true" value of the underlying security adjusted by an "error", that

depends on the individual agent's "informedness". Investors decide whether

to purchase or to sell stocks by comparing their current price with the "true"

value. Dealers, on the other hand, do not have any prior information about

the "true" value. They post their current bid and ask prices on the public

board. If a dealer's current prices are below (above) the investor's perception

of the value, then the Investor will buy (sell) a pre-determined number of

shares of the security.

Several Dealer strategies have been implemented in the Nasdaq market

simulator:

� A Basic Dealer maintains his quotes until he receives a certain number of

trades on the buy (or sell) side, and then adjusts the quote appropriately.
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� A Price Volume Dealer tries to deduce from the market data the current

demand and supply schedules and thus decides whether the current price

is above or below of the "true" value.

� A Volume Dealer looks at the past discounted volume only, without

explicitly taking the price into account. If the Volume Dealer observes

more buys in the past, he concludes that the price is probably above the

"true" value. Thus, he increases the ask price.

� A Parasitic Dealer waits until a su�ciently narrow spread with su�cient

volume appears on the board to be able to realize a transaction without

price discovery.

� A Matching Dealer learns the connections between observations and

actions which are pro�table.

� A Classi�er Dealer is similar to a Matching Dealer, except that he learns

over patterns of observations.

� A Dynamic System Dealer uses a discrete dynamical system to set his

bid-ask spread and mean price.

Technical features. Nasdaq simulator is developed using the Java pro-

gramming language. There are tree main classes: the Market class, the Dealer

class, and the Investor class. Both Dealers and Investors have strategy func-

tions that determine their trading desires. Investors decide whether to buy or

sell the security, while the dealer decides what bids and asks to post on the

Market's Quote Montage.

Research questions. One of the questions investigated using NASDAQ

Market Simulator is the e�ect of decimalization and reduction of tick size on

price discovery, market volatility, and behavior of market participants Darley
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and Outkin (2007). Decimalization means a change to expressing prices in a

decimal system, rather than in dollars and fractions of dollars. The authors

conclude that the decimalization may have a signi�cant negative impact on

price discovery in the presence of parasitic strategies. A parasitic strategy is

de�ned as a strategy which attempts to make a pro�t without contributing

to the process of price discovery, or as a strategy that is to take advantage of

other players' actions.

2.3 ArTi�cial Open Market (ATOM)

We have presented in the section 2.1 an extensive overview of the existing

methodology to design an agent-based models of �nancial stock markets. A

series of existing arti�cial stock market platforms has also been introduced.

Their entities' organization, agents' strategies and price setting mechanisms

have been detailed. As concluded, there is a vast number of markets. Most of

present arti�cial market platforms su�er from a lack of �exibility and must be

viewed as software rather than as Application Programming Interface (API).

They are oriented for speci�c problem solving, but cannot be used to explore

a wide range of �nancial issues due to some structural choices made by the

developer during the coding phase. These observations have motivated the

development of a new agent-based arti�cial trading environment in order to

overcome some limits of other platforms and to provide a new research tool.

ATOM is a robust and reliable platform, on which researchers can run the

thousands of sophisticated evolving agents (Mathieu and Brandouy, 2012).

It has been developed at Lille 1 University1 . This software architecture is

currently realized based on an architecture which is close to the Euronext-

NYSE Stock Exchange, described in the Backgrounds Section. We with start

the description by giving the architecture features.

1http://atom.univ-lille1.fr

http://atom.univ-lille1.fr
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Execution system ATOM implements both quote-driven and order-driven

systems. In the quote-driven framework, bid and ask quotes are placed by

market makers. The investors decide whether to accept or to refuse those

o�ers and demands.

In the order-driven framework, an order book is the core of the application.

Incoming orders are gathered and trades are cleared whenever there exist the

conditions for price setting. Orders are sorted according to price-time priority.

In an order-driven market the price is set as the result of matching the orders

of buyers and sellers.

In ATOM, there is also a possibility to implement several order books,

each for speci�c stock, agents send their orders to the market, that forwards

these orders to concerned order books. As far as a price is set, it is sent to

the market and becomes a public information. As a result, agents will react

to such market changes, which creates feedback loops in the system.

Discrete and continuous time trading regimes In ATOM, one has a

possibility to switch between discrete and continuous trading regimes. Dis-

crete time trading (or call session) means that agents should act at the moment

of time t before any action can be performed at t + 1. In a call session all

traders trade at the same time when the market is called. This regime is real-

ized with controlled scheduling that implies the consequent action collection

and their execution.

If a continuous trading session is applied, orders can be continuously placed by

investors, and trades are arranged whenever possible. Trading is continuous

in the sense that traders may continuously attempt to arrange trades. Con-

tinuous trading is provided in ATOM by controlled scheduling with multiple

processes.

Many continuous order-driven exchanges open their trading session with

call market auctions and then switch over to continuous trading. The number
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of call auctions and the time interval between two call-auctions can be easily

speci�ed in the ATOM framework. Such parameterization is at the heart of

day time-frame realization in arti�cial stock markets.

Intraday and extraday time grain The choice of the time step of the

model is an important design question. Contrary to most existing arti�cial

markets that consider one trading round as one day or one year time period

(Jacobs et al., 2004; Martinez-Jaramillo, 2007), ATOM reproduces intraday

(with openning, continuous trading and closing process) as well as extraday

trading. Many continuous order-driven exchanges open their trading sessions

with discrete market auctions or pre-opening session and then switch over

to continuous trading. During the pre-opening session orders are sent to the

central order book without any transaction taking place. It allows to deter-

mine the opening price and to provide initial market liquidity. One trading

round corresponds to one intraday trading tick. We provide this market func-

tionality in ATOM, the number of ticks of discrete and continuous trading is

con�guration parameter.

Orders In ATOM, most of NYSE-Euronext orders are allowed: limit, mar-

ket, cancel or update orders, as well as sophisticated combinations such as

stop-limit orders or limit orders with "iceberg" execution (see table 2.1).2

Orders always specify which instrument to trade, how much to trade, and

whether to buy or sell. Additionally, each order has a validity duration. The

order is active in the order book until it has generated a trade, or it has been

canceled by an agent or automatically due to the validity duration. Each order

has a time-stamp and a unique number providing the possibility to monitor

the order state. Order execution depends on the execution mechanism applied.

2See NYSE-Euronext rule-book, at http://www.euronext.com.

http://www.euronext.com
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Order Types Pre-Opening Continuous Trading Closing Price Required
Limit Yes Yes Yes Yes
Market Yes Yes No No
Iceberg Yes Yes Yes Yes

Stop Limit Yes Yes No Yes
Stop Loss Yes Yes No Yes

Table 2.1: Orders and trading scheduling implemented in ATOM

Multi-asset market Most arti�cial markets deal with one single asset.

This choice is made for software solution simplicity. At the same time this

choice excludes the possibility of portfolio optimization and risk management

question of research conducted based on such market. Today, there are only

a few arti�cial stock markets presenting multi-asset order book (Chen et al.,

2002; Jacobs et al., 2004; Ponta et al., 2011). ATOM is one of them. It allows

to simulate more advanced agents' behavior with risk-return management and

wealth optimization utility functions (for example, see section 2.3.2). Cash

supply expresses an asset with the risk free rate. The information, return and

risk of the risky assets can be regularly generated on the market and is publicly

available information. Moreover, agents have di�erent memory span length,

they can store their own relevant information and can elaborate various kinds

of strategies based on these data.

Endogenous and exogenous sources of information Usually, the arti-

�cial agents aim to maximize their wealth by investing in di�erent assets. To

make pro�table decisions they rely on di�erent information for their decision

making process. We propose di�erent sources of information. First, we can

impose to agent an exogenous information, such as dividend distributions or

moments of return distribution. Second, the agents can use the past price

history (endogenous information) to estimate an 'endogenous' (ex-post) rate

of return and volatility of securities or to predict future trends and turning

points in stock prices. These options can help understand the origin of the
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price �uctuations exogenous or endogenous (i.e. reaction to external events

or caused by the trading activity itself).

Unrestricted trading volume Other unrealistic assumption made in some

arti�cial markets is the restriction to "one share per trade". This is a common

simpli�cation in order to reduce the implementation time, but a questionable

one. Volume plays an important role in �nancial market stylized facts emer-

gence. Unrestricted trading volume is also essential for portfolio diversi�cation

questions. In ATOM, traders decide not only the trading direction (buy or

sell) and price, but also volume. This functionality allows the ATOM users

to investigate volume-volatility relation.

Replay-engine All information about trading (identi�cation of stock, iden-

ti�cation of agents, �xed price, etc.) on the real stock market or on the arti-

�cial stock market is usually logged in the special log-�le. ATOM takes less

than few seconds to replay an entire day of trading from such log-�le, that con-

tains 400,000 activities. This tool is extremely important for policy-oriented

experiments focusing on the technical features of the market microstructure

(tick size, price setting protocol) and its in�uence on the price dynamic. It

also allows the perfect reproductibility of any experiment run on ATOM which

is a major advantage for both scienti�c and technical research.

We can, for example, use the trading data from a given day or week, replay

them in the arti�cial market framework, and then answer questions about how

the market would have behaved during that time period "if" the tick size or

"if" transaction costs had been di�erent. This ability also allows to re-produce

real-world order �ow.

Flexibility One of the critics of ABM is that the modeler can not intervene

to adjust system evolution. All initial speci�cations should be completely pre-
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de�ned. To overcome this weakness the platform should be �exible and should

easily incorporate the evolving parameters settings. For example, it has been

shown that as far as agents easier undertake a risk. Thus the system should

allow to update the risk aversion parameter of agents in accordance with their

available wealth (Iglesias, Goncalves, Abramson and J.L.Vega, 2004). ATOM

introduces the possibility to have evolving agent populations. ATOM is able

to remove or introduce agents into the market during the simulations. More-

over one can easily control the proportion of sent orders. For instance, we can

generate or not the market or stop-limit orders.

Transaction costs For the sake of simplicity, the majority of multi-agent

models does not incorporate transaction costs. However, the latter are es-

sential for several questions in �nance, such as portfolio rebalancing, because

pro�t maximizing agent will trade only if the expected return of the transac-

tion is higher than the expenses generated by their orders for example. We

implement transaction costs in our platform.

2.3.1 Technical design issues

Even if the objective of this work is to concentrate on the �nancial applications

more than on implementation details, we still illustrate some technical solu-

tions for architecture development. This section is intended for those who are

interested in the software development of agent-based arti�cial stock markets.

The ATOM platform o�ers the implementation of multi-agent systems ab-

stract design issues. For instance, agent autonomy and its behavior mean that

each agent asses his position and makes decisions individually. Price history

and orders sets are emergent phenomenon of market activities. Extremely fast

simulations are realized based on distributed simulations with many comput-

ers interacting through a network as well as local-host. Possibility to design

experiments mixing human being and arti�cial traders are implemented in our
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platform.

2.3.1.1 Modular organization

From the very beginning, this API was designed having in mind the desired

properties of "scalability". That implies the possibility to easily modify the

system in order to incorporate some new features and functionalities. Hence

during the development of an arti�cial stock market many MAS design princi-

ples are employed. For example, "modularity" and "encapsulation", suggest-

ing the division of the system into di�erent sub-organizations.

There are di�erent attempts to organize arti�cial stock markets (modular

organization). For example, LeBaron (2001c) propose following components

of the system: Agents, Rules, and Securities. Separate binary modules of

Autonomous engine (platform core), Simulation User Interface, and Agents

are implemented in Muchnik and Solomon (2006); Boer-Sorban (2008)

organizes her platform using Traded instruments � Market participants

�Market microstructure parts.

The choice of the ATOM organisation is results from the intention to

introduce fairly tractable markets, to be close to the NYSE-Euronext stock

exchange organization and to ground modelling on MAS design main concepts.

Thus, the ATOM architecture can be viewed as a system with interacting

components: i) Market is de�ned in terms of microstructure ii) Agents, and

their behaviors, and iii) Bank re�ects intermediaries and monetary �nancial

institutions iv) the Arti�cial Economic World provides economical indicators.

We link each system entity with the sets of Responsibilities in order to cover

all functionality and complexity of real world market.

The Market is the main class that incorporates and maintains all agents

and order books. "Market" is responsible for the generation of market scenar-
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ios. It presents the set of constraints, rules, regulations, leading participants

to activities. Moreover it generates the �les that gather the simulation out-

puts. The content of these �les is easily parametrized. One can include the

information about sent orders (order book Id, agent's identi�cation, direc-

tion (Bid/Ask), volume and price), the information about �xed prices (order

book Id, price, volume, direction, Id of counterparts), the information about

agents (unique identi�cation, available cash, the number of hold assets with

its' current price), and the information of trading sessions (opening, continu-

ous trading or closing) as well the price of opening and closing.

Agents may play roles of either buyer or seller, on both roles with dif-

ferent trading objectives. Agents directly initiate transactions. An agent is

represented as an object with either private or public attributes.

The Bank component represents all intermediaries; it maintains informa-

tion exchange between buyers and sellers. At the same time, Bank can be

considered as a special type of buyer or seller, that has unlimited wealth,

hence take active part in stock trading. We propose to consider Bank as a

trading and intermediary agent.

Arti�cial Economic World provides external information about respective

corporate developments, dividends and coupons, tax policies modi�cation and

so on. This information may in�uence agent's decisions. The arti�cial market

architecture (system elements and interaction between them) is presented in

�gure 2.3.

We now turn to a technical question, which is crucial in ABM development:

how time is handled in our platform.

2.3.1.2 Time handling and scheduling system

A crucial question for the design of distributed systems is the way one deals

with time. There are two aspects for this problem: the modeling choice (se-
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Figure 2.3: Market organizations and interactions

quential vs. parallel evaluation of agents) and the architecture choice (single

stream or multiple streams processes). In ATOM, the scheduling system is

parametric, thus one can choose between four possible con�gurations (see �g-

ure 2.4). In each case, one can also decide if order issuing will be balanced

among agents or not. These possibilities give the researcher a real power for

answering a wide range of problems through an appropriate design for his

experiments.

The main di�erence between the sequential and the parallel simulation

principle consists in how the tick time is managed.

In MAS philosophy, one considers that time changes along environments

changes:

� In the sequential mechanism, the tick time changes after each order sent

by an agent. This means that an agent is always able to see other agents'

decisions before making his own decision.
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Figure 2.4: Modelling and architecture choices in time handling problem

� In the parallel mechanism, the tick time changes after one decision round

processed over all agents. It is a way to simulate parallelism between

agents. This is the principle followed by the Conway's game of Life

(Garder, 1970).

However choosing one of these arrangements is just a modeling choice.

Any of them can be obtained in a single stream architecture as well as in a

multiple stream architecture.

In a single stream architecture, one needs a speci�c software engineering

pattern to code the parallelism. The easiest way is to let the Market collect

all the orders before their execution. ATOM uses a "equitable round table"

for acting to ensure fairness among agents.

It is a way to simulate simultaneity in agents' decisions. If one needs to

ensure fairness among agents, ATOM uses a loop to give the talk to all agents

� "equitable round table". An agent is allowed to act only once in each talk

round. Of course, if one wants to depart from this fairness, it is su�cient to



88 Chapter 2. Agent-based arti�cial stock market

pick randomly an agent and to o�er him the possibility to decide again.

One feature of real stock market is that at each time step there is only

a small fraction of the market population which is involved in trading. The

assumption that all investors trade at each time step is unrealistic due to high

transaction costs. Even professional fund managers realize only few trades

per day in order to get closer to target portfolio weights. So it is important to

control trading frequency of agents. Note that in ATOM an agent can decline

the possibility to issue a new order, hence, even if we have a single stream, we

can easily simulate di�erent talking frequencies.

A possibility to express an intention does not necessarily imply that a

new order is issued. Since agents are autonomous, they can evaluate their

positions every round, modify trading rules according to new market condi-

tions. Developing an agent that sends twice less orders than the others can

be made by programming his behavior such as he will decline word on odd

turns (keep unchanged position), while others accept to talk each time they

have the possibility to do so.

The main advantage of the single stream architecture is that the designer

can reproduce perfectly all the experiments. He keeps control on agent's talk.

We consider that it is the best way to build and test experiments.

In a multiple stream architecture, parallelism is obvious, but the designer

does not have control over the talking order of agents. This order is de�ned

by the Operating System, and of course, it can produce biases in simulations.

Nevertheless, one particularity of this approach is that the time is given in

seconds � real time. It is also easy to express the di�erent trading frequencies

for di�erent agents, similarly with what is described above. If there is no

synchronization mechanism between the streams, the simulation is unfair, an

agent can talk twice more than another one. In a fair simulation, one just

has to put a synchronization pattern like a "Cyclic Barrier" to grant this

property. This architecture is preferable if one wants to include humans in
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the loop. This statement is detailed in the subsection 2.3.2.1

As ATOM is a multi-asset arti�cial market platform, we have implemented

a "one order for one book" rule: during a talk round, agents are just allowed

to send at most one single order to a given order book (i.e. one order at most

per stock) within the same "round table discussion". This principle helps keep

fairness in agents actions. However, note that agents have the possibility to

send several orders within the same "round table discussion" to several order

books: this ability is simply constrained by the "one order for one book" rule.

If the ASM is settled such as it runs a multi-stock experiment, an agent can

therefore rebalance his portfolio using one order per category of stocks he

holds. The proper system scheduler provides this possibility.

It is necessary to stress again that ATOM can govern all combinations

between sequential and parallel mechanisms, equity or unfairness in agents'

actions, one stream or multiple streams processes. The combination of single

stream, parallel mechanism, equity in actions is used for most of the exper-

iments concerning �nancial problems. Parallel mechanism, multiple streams

processes are used to allow the human investor to trade in equitable conditions

with arti�cial agents within the platform.

2.3.2 Agents

In this subsection we consider the trading strategies implemented in ATOM. In

ATOM, there exists a large variety of agents' trading strategies, from Zero In-

telligence Traders (ZIT), whose behavior is merely based on stochastic choices,

to complex Sophisticated Intelligence Traders (SIT) with memory, information

analysis, and expectations.

In ATOM, arti�cial traders are characterized by their a) available set of

actions (buy, sell, or remain positions) and possibility to switch between these

activities (from buyer to seller) b) decision making rules: the simplest example
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of decision making is when buyers cannot buy if he does not have enough cash

for transaction c) scheduling of actions: how often an agent is able to send

orders in response to market request, some agent participate one time per

week, while others trade every minute d) information consideration: agent

requires speci�c information from the market or external world, he can also

share the information with others e) possibility to describe current state of

each trader: number of held assets, available cash, or budget constrains. In

such a way, each agent is represented by it's own object with di�erent number

of stocks, memory span, risk preferences, trading frequency, utility, target

weights. The platform allows an implementation homogeneous as well as

heterogeneous population depending on the purposes of research.

Zero Intelligence Traders (ZIT). This behavior is merely based on

stochastic choices: there are equal possibilities to send ask or bid order, ZITs

do not observe and do not ask any information to set up prices and quantities,

that are random variable. Concerning scheduling, such traders respond to

every market request. This kind of behavior has been popularized in economics

by Gode and Sunder (1993). The discussion introduced in section 2.1.3 shows

that despite their extreme simplicity, ZIT agents are widely used because

more sophisticated forms of rationality appear to be useless to explain the

emergence of the main �nancial stylized facts at the intraday level. The

possible calibrations and applications of ZITs in ATOM are introduced in

section 3.

Technical Traders. Technical analysis is an important tool for decision

making in investment. Technical traders is a trend followers making deci-

sions depending on the trend of past prices. In the literature this type of

traders is usually referred as noise or chartist traders (Brianzoni, Mammana

and E.Michetti, 2010; Ponta et al., 2011; Brianzoni, 2012). As shown in sec-

tion 2.1.3, these agents try to identify patterns in past prices (using charts or

statistical signals) that could be used to predict future prices and henceforth
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send appropriate orders. One can �nd an example of such behavior in Arthur

(1994c). From a software engineering perspective, these agents need to have

some feedback from the market and some kind of learning process as well

(reinforcement learning for large sets of rules is generally used). At the same

time, technical traders ignore the actual nature of the company, currency or

commodity. This leads to some complex algorithmic issues. For example, if

one considers a population of a few thousand Technical Traders, it is highly

desirable to avoid that each agent computes the same indicators, or simply

stores the whole price series.

In ATOM, the agents are given the possibility to use Moving Aver-

age Crossovers, Exponential Moving Average (EMA), Momentum, Relative

Strength Index (RSI) and Period techniques to identify when the market is

overbought or oversold, and to generate Ask and Bid orders.

Sophisticated Intelligence Traders (SIT). Cognitive Agents generally

have a full arti�cial intelligence, such as memory, information analysis pro-

cesses, expectations, strategies and learning capacities. For example, an agent

buying at a speci�c price and sending immediately a "stop order" to short her

position if the price drops under θ% times the current price, will fall in this

category. Agents using strategic order splitting (see for example Tkatch and

Alam (2009)) or exploiting sophisticated strategies (for instance, Brandouy,

Mathieu and Veryzhenko (2009)) can also be considered as Cognitive Agents.

The other example of agents belonging to this group is the traders that allo-

cate their funds across di�erent risky assets and riskless assets according to

their risk preferences. These agents at each time step confront two decisions:

how much of their wealth to invest and how mush to save in cash. Usually,

they are guided by their utility functions.

ATOM contains agents characterized by di�erent utility functions (all

mentioned in the section 2.1.3): Constant Relative Risk Aversion (CRRA),

Constant Absolute Risk Aversion (CARA), Logarithmic Utility Function,
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Quadratic Utility Function.

We have also implemented the agents that try to minimize risk for a given

target return following the mean-variance optimization rules introduced by

Markowitz (1952). This type of agents is called mean-variance traders (or

optimizers). The features of this trading strategy and its implementation for

portfolio optimization issues investigation is described in detail in the section

4.1.

2.3.2.1 Human in the loop

Nowadays, software agents are commonly used to replace human traders in

making decision and taking action in the electronic trading. Thus, advanced

software platforms should combine arti�cial agents and human. ATOM can

include human-beings in the simulation loop. This is an important feature that

is seldom o�ered in multi-agent arti�cial stock markets, if simply possible with

respect to the algorithmic choices made in other platforms. A human agent is

an interface allowing for human-machine interaction. Through this interface

one can create and send orders. Notice that human agents do not have any

arti�cial intelligence: they just embed human intelligence in a formalism that

is accepted by the system.

To allow the introduction of humans in the loop, ATOM has been designed

to deal with communications over the network. Human agents can be run

on di�erent machines and the system allows client-server con�gurations. This

approach is particularly fruitful for a pedagogic use of the platform during

�nance class for example. In this latter case, several students have their own

trading interface on their computers. In other terms, each of them runs a

human agent linked to the ATOM server through the network. However, the

presence of human agents does not alter the way the scheduler operates.

Two kinds of human agents can co-exist in ATOM: Modal Human Agents
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(MHA) and Non Modal Human agent (NMH). MHA can stop the scheduling

system. As long as a human-entity does not express her intentions (to issue

a new order or to stay unchanged), the simulation is temporary frozen. In a

classroom, this aspect is particularly important and leaves time for students

to estimate current position and to make decision.

NMH cannot freeze the simulation, which means that human agents com-

pete in real time with arti�cial traders. Even if human agents can have a

hard time in this situation, it remains realistic in a �nancial world where

algorithmic trading is more and more frequent.

2.3.3 Validation tests

As mentioned previously, every arti�cial stock market should succeed in pro-

cessing a given order �ow collected from a real-world stock market at a speci�c

date. The conclusion about system validity is made by comparing prices de-

livered by the real stock market and prices generated by arti�cial one using

the same set of orders. It should also generate relevant "stylized facts" with

regard to their real-world counterpart: these stylized facts are statistical char-

acteristics of �nancial time series that prove to be systematically observed in

various contexts (di�erent assets, periods of time, countries).

This section presents how ATOM ful�lls these requirements. Moreover,

we also introduce here a series of performance tests.

ATOM reality-check

In this section, we report a series of tests conducted to check whether ATOM

can generate �nancial dynamics in line with those of the Euronext-NYSE

stock-exchange or not. The �rst series of test is devoted to the ability of

ATOM to generate unbiased prices when it deals with a real-world order-�ow.

We check whether the agents are able to re-processes real orders submitted to
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the market on a given day with the prices similar to those of real market. Fig-

ure 2.5 illustrates such an experiment with a set of 83616 real-world orders of

the French blue-chip France Telecom (FTE) submitted to the NYSE-Euronext

market on June 26th 2008 between H9.02'.14�.813� ' and H17.24'.59�.917� '.

Figure 2.5(a) presents the price series produced with ATOM and the real-

order �ow while Figure 2.5(b) presents the corresponding exchanged volumes.

In each of these �gures, two set of data are plotted. The upper set corre-

sponds to the series generated by ATOM in processing the real-world order

�ow. The bottom part displays those actually observed on NYSE-Euronext

market. One clearly sees that the replay-engine included in our arti�cial plat-

form can process the real-world order �ow in the same way it is treated by the

NYSE-Euronext engine. Handling time in simulations is particularly complex

and may lead to unsolvable dilemma. We cannot guarantee an exact matching

of waiting times but rather a coherent distribution of these values delivered

by the simulator engine with regard to the observed waiting times.

Notice that ATOM performs rather decently in satisfying the �rst reality

check procedure.

Stylized facts

The second test focuses on ATOM's ability to generate realistic arti�cial prices

when populated by arti�cial agents. We run a series of simulations to verify

if ATOM can generate major stylized facts that are usually reported in the

literature (Cont, 2001). In this subsection, we report only the classical depar-

ture from Normality of asset returns at the intraday level (Figures 2.6(a) and

2.6(b)). Real data are those used previously for the reality check, arti�cial

data is generated using a population of ZITs. ATOM produces qualitative and

quantitative stylized facts in line with real market data, that is quite di�cult

task for most of arti�cial market platforms (Veryzhenko et al., 2010). Even if
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Figure 2.5: Results of the "Reality Check" procedure. The population of arti�-

cial "hollow" agents treats a set of 83616 real-world orders of the French blue-chip

France Telecom (FTE) submitted to the NYSE-Euronext market on June 26th 2008

between H9.02'.14�.813� ' and H17.24'.59�.917� '
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Figure 2.6: Stylized facts, ATOM vs. Euronext-NYSE. ATOM returns are
generated by Zero Intelligence Traders (ZIT) (see subsection 2.3.2). Real data
correspond to France Telecom (FTE) prices settled to the NYSE-Euronext on
June 26th 2008)

some arti�cial markets are able to reproduce the main stylized facts such as

the non Gaussian return distribution or volatility clustering, the corresponding

quantitative characteristics (basic statistics) do not �t real ones. ATOM can

be easily calibrated to match speci�c quantitative market features (moments).

This calibration facility is described in detail in the paper Veryzhenko et al.

(2010). Additionally, section 4.1 puts forward ATOM's ability to perform

realistic price dynamics in the multi-asset framework.

Performance test

We run several experiments to demonstrate running time for realistic price

series generation and existing order-�ow execution.

To demonstrate the ATOM price setting ability, we use a group of heteroge-

neous agents. The population consists of Zero Intelligence Traders (ZIT) and

Technical Simple Moving Average Traders (in equal proportions), described

in section 2.3.2. The number of set prices is 105 (on the Euronext Stock
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Exchange the number of �xed prices for di�erent stocks varies from 1000 to

5000 per day). The number of agents varies from 10 to 105. The results are

reported in �gure 2.7(a). It takes about 12 minutes to run 105 agents for price

setting.

To test the running time of the replaying engine, we use real market order

�ow. The same population of agents is used to read all variety of orders

(limit, market, stop-limit, iceberg, etc.) and send them to the order book. It

is up to the market to set prices in a proper way (according to a price setting

protocol). The number of orders varies from 100 to 105. It takes 2 minutes to

replay 105 orders (see �gure 2.7(b)).

2.4 Conclusion

This chapter has given an overview of the current state of research in agent-

based computational �nance along with some ideas concerning the design and

construction of working simulations. We have stressed that the development

of arti�cial stock market platforms puts forward a series of complex issues in

terms of computer science. Probably, the most important question is the de-

sign of the economic environment itself. What type of market microstructure,

quote-driven or order-driven, will be implemented? What types of securities

will be traded? Will there be some kind of fundamental value? How infor-

mation will be presented and how the agents process it? This chapter has

provided some answers to these questions. We have started with some in-

sight concerning the construction and design of trading environment (market

mechanisms, number of assets, types of trading securities, types of orders,

trading sessions etc). We have also focused on modeling of traders' behav-

ior. The aspects that di�erentiate investors are: investment objectives, invest-

ment constraints, attitude to risk, investment strategy, portfolio maintenance,

trading frequency, and memory span. We have introduced some existing plat-
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forms. It has been impractical to mention all or even most existing models,

we have focused on the pioneering and the most successful e�orts to design

and develop arti�cial stock markets. Finally, we have introduced the ATOM

platform, designed to deal with market dynamics and agents' decision making

in an absolutely di�erent way, compared to equilibrium representative agent

models. This arti�cial stock market generates the necessary and reasonably

realistic market dynamics that allow us to use it as a testbed for evaluating

of trading strategies in the next chapter.
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In this chapter we investigate the question of the sophisticated level of

agents' behavior and intelligence to obtain with realistic market microstruc-

ture both qualitative and quantitative stylized facts. We show that qualitative

stylized-facts can be generated with ZIT, but they are without any quantita-

tive predictive power. In this chapter we report that at coarse grain, in most

of the cases, such qualitative stylized facts hide unrealistic price dynamics at

the intraday level and ill-calibrated return processes as well. Generating �real-

istic� �nancial dynamics that reproduce quantitatively �nancial distributions

is out-of-reach within the pure ZIT framework.
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In addition we show that even with highly constrained ZIT agents, one

cannot reproduce real time series. Except in a few cases, none of the �rst

order moments of ZITs versus real data will be equal. We therefore claim

that stylized facts produced by means of ZIT agents are useless for �nancial

engineering.

Our results lie in the strand of literature of ZIT, which we review in

section 3.1. We are interested not only in coarse grain, qualitative empirical

regularities, but also in the actual ability of ZIT at generating quantitatively

acceptable stylized facts. For that purpose, we produce several families of ZIT

agents (introduced in section 3.2) similar to those found in the literature, but

calibrated using real market data. Section 3.3 puts forwards an introductory

case study, presents the core results and proposes a sensitivity analysis of the

latter.

3.1 Literature survey

Stylized facts are di�cult to explain by the mainstream theory and the e�ort

in empirical research to describe data lacks of a convenient theoretical foun-

dation of these facts. However, an alternative approach has emerged from

econophysics which described the same �nancial facts as scaling laws. Indeed,

this approach considers that physical systems which consist of a large number

of interacting particles obey universal scaling laws that are independent of

the microscopic details and that economics could be considered in the same

way as Amaral, Cizeau, Gopikrishnan, Liu, Meyer, Pend and Stanley (1999).

The approach seems to imply that the rational individual choice seems not

important in explaining facts. But, as Lux (2009) points out, it might be

the heterogeneity of market participants together with a few basic principles

of interactions which may exert a dominating in�uence on the macroscopic
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market behavior in more or less the same way in di�erent institutional set-

tings. Indeed a large literature has emerged which aims at discerning among

two major explanations: market micro-structure and agents' behavior and

heterogeneity.

Papers in favor of the explanation by the microstructure initiate with

the research on Zero Intelligent Traders (here-after ZIT) of Gode and Sunder

(1993) who show that traders acting randomly but within a budget constraint

act comparably well in terms of convergence to equilibrium price and e�ciency

as compared to human subjects in experimental economics (see Smith (1962)).

Dave Cli� (1997) show that for special demand or supply function this may not

be the case and a slightly more complex behavioral assumption is required to

achieve equilibrium in continuous double auction markets. Ladley and Schenk-

Hoppe (2009) in a similar framework as Gode and Sunder's one, but with a

constant �ux of traders entering the market, reproduce price movements and

show that aspects of the order book such as size of spreads and conditional

probabilities of order submissions can be obtained by the interplay of ZITs

and the book. The observed frequency of the di�erent order types submitted

seems however related to strategic behavior based on the observed book state.

Maslov (2000) introduces a model where traders randomly choose to trade

either at the market price or by placing a limit order. Maslov shows that fat

tails, long range correlation in the volatility and non-trivial Hurst exponents

arise in such framework. One paper by Farmer et al. (2005) shows that a

simple ZIT model working as a continuous double auction with both market

and limit orders predicts well bid-ask spreads, price di�usion rates and market

impact function related to the supply and demand of 11 stocks in the Lon-

don Stock Exchange. Their conclusion is that the price formation mechanism

strongly constrains the market, playing a more important role than strategic

behavior. They adjust their model to real data by making simple assump-

tions about order placement, canceling process of limit orders and ticks (price
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increments). These quantities are estimated on a daily basis from the real

stocks and serve to make predictions. Nevertheless, their framework exhibits

odd assumptions such as an order issuing based on log prices rather than raw

prices and various Poisson laws.

Other studies have shown that stylized facts can be reproduced by the

behavioral assumptions of agents and heterogeneity of behavior. Most of

these models (LeBaron et al., 1999; Hommes, 2006; Lux, 2009) suggest that

the aggregation of simple interactions at the micro level leads to complex non

linear behavior at the macro level. Typically, the heterogeneity of behavior

is due to di�erent types of rationality (informational and computational) and

heterogeneity in preferences as well.

The experimental economics literature also tackles some issues concerning

stylized facts. Early experiments have already shown how easily it is to re-

produce bubbles in double auction markets (Smith, Suchanek and Williams,

1988). Bubbles are resilient to market conditions such as short selling , mar-

gin buying opportunities, limit price-change rules, informed insider trading

(King, Smith, Williams and Bening, 1993).

Plott and Sunder (1982) are the �rst to report some stylized facts within

the lab without however providing any explanation about it. They show excess

kurtosis and lack of autocorrelation of returns in prices. Kirchler M. (2007)

presents an explanation based on asymmetric information between traders in

a double auction markets. Typically they introduce a market characterized by

heterogeneous traders concerning information. They show that the heteroge-

neous fundamental information is the source of fat tails and absolute returns

whereas higher noise trading (trading not based on fundamentals) does not

explain absolute returns.

To the best of our knowledge, only one paper (Liu, Gregor and Yang,

2008) tries to reconcile two streams of literature by suggesting that di�erent

elements can be at the heart of stylized facts emergence in di�erent time hori-
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zons. Liu et al. (2008) show that a market microstructure and zero intelligent

agents are responsible for reproducing leptokurtosis and heavy-tailed distri-

butions, autocorrelation and excess volatility for intradays data. However,the

microstructure is only responsible for excess volatility in daily returns. There-

fore, behavioral assumptions are required to explain other facts.

3.2 Simulation methodology

In this section we introduce four di�erent types of ZITs. For the sake of

possible replication of the results presented in this research, the pseudo-code

describing each agent is available in Appendix A.2.

3.2.1 Calibration elements: agent's behavior

The most basic ZITs we use (called hereafter �Unconstrained ZIT�) are di-

rectly inspired by the work of Maslov (2000). From this starting point, we

progressively add constraints to their allowed behavior in accordance with the

real market data with the aim of reproducing quantitatively some stylized

facts. Notice that we denote, in the following developments, by capital letters

all real market data (P, V,R, for example resp prices, volumes and returns)

and by small letters all simulated data.

Except when a cancel instruction is issued, the trading activity consists in

sending to the market an order made of a direction, a price limit (except when

this order is a market order), and a quantity. The common characteristics for

all of our ZITs, whatever their level of constraints, are as follows:

� The proportion between di�erent order types is 80% of limit orders,

15% of market orders and 5% of cancel orders which re�ects realistic

characteristics of real markets. These �gures were obtained from a data

set of real order �ows gathering around 36000 observations of intraday
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trading (courtesy of Calyon SA, here-after �CDS�, for Calyon Data Set).

They may vary from a given stock to another and across categories of

investors (Foucault, 1999; Handa and Schwartz, 2006). Furthermore,

this proportion is modi�ed in the sensitivity analysis (see page 127).

� Each agent can submit both orders, Buy and Sell.

� Buy and Sell orders arise with equal probability (p = 0.5).

� A single asset is traded.

� Budget constraints are implemented: agents cannot make a trade that

yields a negative pro�t, i.e., buyers cannot buy at a price higher than

their reservation value and sellers cannot sell for a price below their

marginal cost.

� Within each ZIT family, we de�ne two subcategories of agents with

respect to the real market average volume observed for a given stock.

�Big �shes� draw volumes between the mean and the maximum real

volume , while �Small �shes�, draw this value between the minimum

and the mean real volume. The reason for this choice is that it may

generate a realistic picture of contemporary markets, where, in a typical

experiment, the ratio of big to small �shes is 1 over 5. This proportion

is also obtained from the �CDS�.

Note that all the parameters chosen for the initial settings of the simula-

tions are calculated based on real market data. These parameters are inferred

for each stock on each day.

In our simulations, we denominate ZIT arti�cial agents that mostly use

random number generators to determine prices and volumes in their orders.

These agents are more or less sophisticated but none of them use arti�cial
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intelligence methods such as classi�ers or learning mechanisms to adapt their

behavior and/or to evolve. We thus do not claim to investigate all possible

extensions of ZITs but a series of models that are common in the literature.

� Unconstrained ZIT (UZIT ) with two types of price-generating processes:

� Uniform price distribution (UZITU , see algorithm 7, page 244):

pt is drawn from a Uniform distribution in [Pmin, Pmax] where, for

a reminder of the convention, Pmin and Pmax are the minimum,

respectively maximum price observed on the real market. These

values are determined at the beginning of trading day.

� Normal price distribution (UZITN , see algorithm 8, page 245): pt

is drawn from a Normal N(Pmean, Psd).

� Statistically calibrated ZIT (SZIT , see algorithm 9, page 245) are kind

of bounded UZITU , meaning that i) they still perform a random draw

from a Uniform distribution ii) the price range is limited by [Pmin, Pmax]

and iii) the range of admissible price is di�erent between Sellers and

Buyers, since we took for Sellers a simulated range for ask prices amin

and amax and for bid prices bmin and bmax. These simulated boundaries

are obtained from the �CDS� as mentioned previously. To go into the

details, we �rst separate Bids and Asks and then �nd for each of these

subsets the minimum and the maximum values observed on a given day.

Similarly, the same procedure was applied to volume data.

� Trend calibrated agents (TZIT , see algorithm 10, 246) are SZIT with

the following additional feature: when they issue a new order, they pick

a price that is formed using two additional parameters γt and δ. γt is

geared at reproducing the tendency of a given series. δt generates some

additional randomness. More precisely, TZIT agents are modeled in

the following way:
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� We divide the day into n sub-intervals. The number n in�uences

the accuracy of results. The larger the number of sub-intervals the

greater the �tting accuracy of simulations.

� We compute min and max prices within each sub-intervals

� We choose the time period t (by �xing the parameter θ) and apply

equations (3.1) to (3.4) to estimate prices.

We next consider the following example: on a given period, one observes

for a given stock a slow decay from a maximum to a minimum price.

This slow decay can be described using equations (3.1) to (3.4).

γ0 = 0 (3.1)

γt = γt−1 + (1/θ) with t ∈ [0, θ] (3.2)

δt ∼ logN(0, 1) (3.3)

Pt = Pmax + (Pmin − Pmax)× γt × δt (3.4)

Note that in equation 3.2, γt is an increasing step function from zero

to one with step size equal to θ. θ allows to track the underlying trend

with a certain level of accuracy. The bigger θ, the more accurate this

�tting.

Thus, the behavior of these agents necessitates to specify within a given

day n sub-periods and, for each of these sub periods, the maximum and

the minimum price. The precision in this procedure can be tuned so

as to track more or less closely the underlying dynamics. n = 50 is

the value arbitrarily chosen for the experiments. Note that equation 3.4

implies that the �rst price set by this category of agents is close to Pmax,

for this example of a slow decay in prices.

Based on these information, agents can track the global price tendency
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Figure 3.1: Example of calibration procedure, Renault SA. SPn: Subperiod
�n�

so as to algorithmically grasp the underlying dynamics (see Figure 3.1).

So to speak, we endow TZITs with limited foreseeing capabilities in the

very short run.

� Inspired by the procedure introduced by Farmer et al. (2005), the fourth

category of ZIT agents is characterized by their relative aggressiveness

(AZIT , see algorithm 11, 247):

� Patient agents (AZITP ): send limit buy orders with prices drawn

from a uniform distribution between zero and amin and limit sell

orders from bmax to ∞. amin and bmax are inferred as described for

SZIT . These agents are parameterized in such a way that they

cannot trade one with other. Note that in Farmer et al. (2005)

log prices and not prices where drawn from a Uniform distribution.

Trades cannot occur within this population. The quantity is deter-

mined randomly using a uniform distribution between two integers
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min(V ) and max(V ).

� Impatient ZIT (AZITI): send market orders using the same distri-

bution for quantities as Patient ZIT.

There are 85% of AZITP and 15% of AZITI in a typical simulation, these

�gures corresponding roughly to the proportion of market vs. limit orders in

real markets. The quantity posted by AZITP is twice the quantity posted by

AZITI .

3.3 Empirical design and results

We introduce a case study to illustrate the main concepts and statistics used

in the empirical part of this research and then generalize our results.

3.3.1 An introductory case study

In this section, we focus on a single stock (Renault SA) for a single day (August

1, 2002) and compare simulated vs. real data in terms of price dynamics and

stylized facts. It is clear that the return series coming from Renault S.A.

prices is not normal. Moreover, it exhibits fat tails and the autocorrelation in

absolute returns decays slowly in log-log scale (see Figures 3.2(a) to 3.2(d)).

To assess the Volume-Volatility relationship we use the following, simpli�ed

framework:

1. We �rst slice the series in non overlapping time windows containing 300

observations. Depending upon the length of the series under investiga-

tion, the number of time windows may vary slightly.

2. We calculate for each of these slices and each arti�cial series produced

by the agents, two indicators: the mean volume over this period (mvt)

and the standard deviation of these returns (sdt).
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Figure 3.2: Renault SA intraday returns, departure from Normality. Intraday
data on August 1, 2002
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(a) Fat Tails (Normalized Returns)
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Figure 3.3: Qualitative Stylized facts, Uncalibrated ATOM ZIT (UZITU).
ATOM generated intraday returns with calibration to Renault SA on August
1, 2002. Experiment settings: Pmin = 45.2, Pmax = 47.83, Vmin = 1, Vmax =
8075
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Figure 3.4: Intraday volume�volatility relationship

3. We then estimate a linear model:

sd′t ∼ α + φ̂mv′t (3.5)

We use the value of φ̂ for comparing the volume volatility relationship

between simulated and real data. In doing so, and for the sake of sim-

plicity, we explicitly exclude from the analysis the value of the constant

α (said in di�erent terms, we consider this constant as similar for both

models).

This process is used in this article whenever the volume-volatility relationship

is investigated. For example, this relationship for Renault is presented in

Figure 3.4(a). The value of the regression slope is 1.3086E-6. The same Figure,

(see Figures 3.4(b)) is also produced using Unconstrained ZITU agents.

In Table 3.1 we report a series of univariate statistics illustrating some of

the stylized facts analyzed in this research.

Even if several stylized facts are reproduced by UZITU , TZIT or even
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simulation

Real UZITU UZITN SZITU TZIT AZIT

nobs(1) 2214 2302 2273 2222 2219 2005
Minimum(2) -0.0085 -0.0211 -0.0156 -0.0232 -0.0151 -0.0900
Maximum(3) 0.0170 0.0233 0.0153 0.0279 0.0157 0.0900
Mean(4) -1.30E-05 6.00E-06 -2.00E-06 -8.00E-06 -1.40E-05 -2.64E-04
Stdev(5) 0.0011 0.0035 0.0036 0.0050 0.0019 0.0163
Skewness(6) 1.5192 0.1071 -0.0216 0.1130 0.1471 0.2351
Kurtosis(7) 33.1606 10.0905 3.6706 5.2325 12.1035 9.8945

Table 3.1: Descriptive statistics. (1): number of observations; 2214 means for
example 2214 returns for the given trading day. (2),(3) ,(4) ,(5) ,(6) ,(7): minimum,
maximum, and moments for observed returns.

AZIT , one should also consider the underlying price dynamics from which

these statistics are computed. In Figure 3.5, we report the prices coming from

the real market (Sub�gure 3.5(a)) and for the �ve families of ZIT (Sub�gure

3.5(b) to 3.5(f)). It is clear that most of the ZIT families, beyond their

apparent ability to generate congruent stylized facts, have a hard time at

producing �realistic� price dynamics. The only �possible� exception, even if

this can be discussed, is the TZIT example that produces a price dynamics

that looks like, at coarse grain, the real one.

In summary, we point out two shortcomings in the use of ZIT for �nancial

markets simulations: i) The adequacy of stylized facts generated by ZIT with

regard to the quantitative values of observed stylized facts coming from real

data is questionable. ii) The underlying price motion remains most of the

time totally unrealistic from a qualitative point o view.

In the following section, we present a procedure enabling us to make a

comparison between a set of 37 real data and di�erent simulations from the

�ve ZIT families described section 3.2.1.
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(a) Renault S.A., real
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(b) UZITU
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(c) UZITN
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(d) SZIT
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(e) TZIT
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(f) AZIT

Figure 3.5: Intraday price dynamics, real vs simulated. ATOM generated
intraday returns with calibration to Renault SA on August 1, 2002. Ex-
periment settings: Pmin = 45.2, Pmax = 47.83, Vmin = 1, Vmax = 8075,
Pmean = 46.88915, Psd = 0.6015639, amin = 45.2, amax = 50, bmin = 30.3,
bmax = 47.83, the number of prices is 2215, the number of sliced windows is
50.
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simulation

3.3.2 Beyond the case study: �zero is not enough�

Our data consists in intraday prices collected from the Paris Euronext Stock

Exchange covering 37 stocks in August 2002 (22 trading days). These stocks

are components of the CAC 40 index and are therefore amongst the most

traded within the French market. In table 3.2 we show a summary of the

data including information regarding the trading activity (number of trades

per stock family and exchanged volumes).

For each day and each of the i = 37 stocks in the sample we produce a

set of 5 simulations with the 4 di�erent ZIT families (2 uncalibrated ZITS,

statistically calibrated, Trend ZITs, Agressive ZITs) described in section 3.2.1.

Notice again that ZIT agents are calibrated using real values calculated from

the sample.

For each simulation, we produce one concatenated return series based on

the 22 simulated days. To avoid closing-to-opening jumps due to overnight

information accumulation, we exclude returns that can be computed using

closing prices at date t and opening prices at date t + 1. In other terms,

the 22 days for each stock are summarized in j = 1 long time series. Note

that the same concatenation procedure is run over the real dataset. We thus

have k = 6 subsets, 1 from real data, 5 from simulated ones. The dataset is

therefore equivalent to a i = 37× j = 1× k = 6 tensor.

For each of these simulations, we estimate, over the 37 observations, the

distribution for the following statistics calculated on returns:

1. Mean

2. Standard deviation

3. Skewness

4. Kurtosis



3.3. Empirical design and results 119

Prices Volume
Name Mean SD Min Max Mean SD Min Max

Accor 1587 447 938 2345 525 144 357 889
Air France-KLM 822 269 416 1426 332 101 182 623
Air Liquide 2279 736 1161 3685 150 29 112 251
Alcatel 6294 2178 3252 10488 1616 349 1059 2678
Axa 6440 1806 3394 9596 1583 231 1182 2107
BNP 4236 1041 2277 6387 848 122 639 1205
Bouygues 1411 368 728 1962 671 468 357 2719
Cap Gémini 1801 414 1087 3041 508 99 355 687
Carrefour 3782 1119 1849 5912 634 150 455 1090
Credit Agricole 2187 607 1108 3523 1116 1960 390 9828
Danone 2236 549 1208 3274 266 40 208 358
Dexia 1212 410 599 2290 1465 289 931 2009
EADS 1579 379 1165 2459 1051 284 722 1898
Essilor Int. 450 135 189 761 485 205 246 1052
France Télécom 7044 2271 3442 12554 1034 180 699 1524
L'Oréal 3068 814 1800 5628 437 83 288 602
Lafarge 1674 468 883 2388 397 347 221 1924
Lagardère Groupe 1024 231 578 1506 439 285 260 1671
LVMH 2706 852 1620 4942 572 254 392 1622
Michelin 1030 263 567 1666 555 522 284 2822
Pernod Ricard 498 167 260 885 333 258 136 1425
Peugeot S.A. 1712 497 1093 2921 605 381 338 2240
PPR 2518 1001 1180 6246 290 125 184 758
Publicis Groupe SA 770 215 464 1188 772 260 449 1639
Renault 1785 283 1408 2299 534 145 356 1084
Saint Gobain 3166 1089 1679 5363 720 166 477 1138
Sano� Synthé labo 3023 771 1941 4718 594 101 434 760
Schneider 1361 438 597 2297 482 88 327 663
Société Générale 3342 922 1633 5311 560 115 417 795
STMicroelectronics 4160 1058 2060 6404 1185 161 861 1533
Suez Lyonnaise 4139 1165 1857 6051 812 77 635 993
Thomson CSF 730 180 362 1154 461 457 263 2488
Total 5269 1321 2613 7667 535 164 391 1230
Unibail-Rodamco 251 102 63 444 234 78 83 421
Veolia Environnement 1930 925 937 4355 898 262 510 1400
Vinci 1150 287 513 1605 309 88 198 482
Vivendi Universal 9400 5956 3755 23318 1220 269 803 2012

Table 3.2: Data: Univariate Statistics Summary
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5. ρ1 and ρ2, the �rst two values for autocorrelation coe�cients computed

using raw returns

6. The slope of the decay function for autocorrelation coe�cients calculated

over absolute returns.

7. The value of φ̂ (see equation 3.5) indicating the direction and the

strength of the volume volatility relationship.

We then run two series of non-parametric tests using one simulation and

real data as a benchmark to: i) test equality in population distribution (two-

sample KS test). For two distributions D1 and D2, the null is that D1 and D2

come from the same distribution. ii) test equality in means (Fligner-Policello

test, which is the equivalent to the Mann-Whitney test but without assuming

equality in variance, and paired Wilcoxon test). For two distributions D1 and

D2, the null is that D1 and D2 have the same mean value.

These tests are geared at appreciating whether the quantitative stylized

facts are reproduced or not by means of ZITs.

For illustration purposes, a limited example of the distribution over the 37

samples of each characteristic value for stylized facts calculated on TZIT is

plotted against the corresponding values calculated with real data in Figure

3.6.

We �rst report a series of non-parametric tests geared at examining

whether the whole distribution of each stylized fact (summed-up with a single

parameter) is similar to the distribution of the corresponding stylized facts

calculated from the real world distributions.

Results of the Kolmogorov-Smirnov test of equality in distribution is pre-

sented in Table 3.3. The results are rather unambiguous: except for the

single case of the distribution of mean returns generated by Trend Calibrated

ZIT (TZIT ) (see �gure 3.6(a)) and for the volume/volatility relationship for
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Figure 3.6: Stylized facts distributions for TZIT , real (solid lines) vs simu-
lated (dash lines). The distribution is based on 37 statistics of ATOM sim-
ulated series (generated with 4 families of ZITs) and intraday concatenated
data of 37 real stocks.



122
Chapter 3. Minimal market calibration for realistic market

simulation

UZITU and UZITN , the two-sample Kolmogorov-Smirno� test can be rejected

with high levels of con�dence. The interpretation is straightforward: neither

higher moments nor autocorrelation-based stylized facts can be matched by

any of our ZIT families. However, unconstrained ZITs, probably due to their

high level of freedom, generate a realistic relationship between the average

volume traded and the resulting average volatility observed within the same

time window. One can also notice that when ZITs are more and more con-

strained, this stylized fact, if still noticeable, does no longer �t the values of

our benchmark.

If we restrict our attention on �rst order moments, and check equality of

means for these moments between simulated and real data by the use of a

Fligner-Policello test (see Fligner and Policello (1981)), we get the following

results (see table 3.4).

Here again, the tests reject the ability of our ZIT families at reproducing

quantitative stylized facts. The only cases where these tests cannot be rejected

are those of UZITU , UZITN , SZIT for the skewness distribution and for the

value of the volume/volatility relationship, and TZIT for the mean. Said

di�erently, the �rst three categories of agents might do a relative good job

at generating realistic third-order moments for the return distribution and,

as mentioned previously, in delivering a realistic volume/volatility interplay.

However, in these tables only the mean of each parameter distribution is

tested against its real-world counterpart. If the test cannot be rejected the

only think we can conclude is that the central values of the distribution are

not so di�erent. In our opinion, this is a necessary but not su�cient condition

to accept a family of Agents. For example, if one considers the distribution

of the Skewness for UZITU against the real series, the equality of the means

cannot be rejected (see Table 3.4 and 3.5) although it is clear that the whole

distribution is di�erent (see �gure 3.7).

Rejection for TZIT may be more surprising since they were constrained
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Figure 3.7: Distribution of Skewness for UZITU �dash line� vs. Real World
series �solid line�

to generate more realistic price dynamics, nevertheless, they were not able

to reproduce �rst orders moments beyond the mean. Even if skewness is

an important feature of �nancial distributions (notably important for asset

managers), given the overall negative conclusions drawn on other moments

and correlations of the distributions, this is a rather weak result.

If we go further in the analysis with a paired Wilcoxon rank test, TZIT is

now rejected while none of the skewness-related tests are rejected at the 5%

threshold.
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Mean SD Skewness Kurtosis ρ1 ρ2 Slope φ̂
UZIT a

U D 0.4865 0.9189 0.4324 0.4865 0.9459 1.0000 1.0000 0.2162
p.value 0.0002 0.0000 0.0017 0.0002 0.0000 0.0000 0.0000 0.3565

UZIT b
N D 0.5676 0.6757 0.3784 0.4595 0.9459 1.0000 1.0000 0.1892

p.value 0.0000 0.0000 0.0094 0.0007 0.0000 0.0000 0.0000 0.5279

SZIT c D 0.4324 0.9459 0.3243 0.5135 0.9189 1.0000 0.9730 0.2973
p.value 0.0017 0.0000 0.0402 0.0001 0.0000 0.0000 0.0000 0.0757

TZIT d D 0.1892 0.6486 0.3784 0.4324 0.8919 0.9189 0.7838 0.3514
p.value 0.5279 0.0000 0.0094 0.0017 0.0000 0.0000 0.0000 0.0201

AZIT e D 0.9459 0.3514 0.5676 0.9189 0.7027 0.7027 0.3243 0.6757
p.value 0.0000 0.0201 0.0000 0.0000 0.0000 0.0000 0.0402 0.0000

Table 3.3: Two-Sample Kolmogorov Smirnov Tests. Signi�cant at the p < 0.05 level. ATOM generated intraday returns
with calibration to Renault SA on August 1, 2002. Experiment settings: a basic design of UZITU , Pmin = 45.2, Pmax =
47.83, Vmin = 1, Vmax = 8075. b basic design of UZITN , Pmean = 46.88915, Psd = 0.6015639, Vmin = 1, Vmax = 8075. c

basic design of SZIT , amax = 50, bmin = 30.3, bmax = 47.83. d basic design of TZIT , the number of sliced windows is
50. e basic design of impatient agents AZITI , order volume is 250; basic design of patient agents AZITP , order volume is
500. The number of impatient agents is 30, the number of patient agents is 170. The number of prices is 2215.
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Mean SD Skewness Kurtosis ρ1 ρ2 Slope φ̂
UZITU Mean 1.276E-7 0.0035 -0.0001 17.7071 -0.3015 -0.0781 -0.0035 4.288E-6

U* -5.6787 -40.3570 1.5459 3.6420 25.6899 −∞ ∞ -0.3682
p.value 0.0000 0.0000 0.1221 0.0003 0.0000 0.0000 0.0000 0.7127

UZITN Mean 1.754E-7 0.0022 -0.0119 19.6185 -0.3001 -0.0746 -0.0035 1.912E-6
U* -5.9756 -8.9075 1.6285 3.0100 25.4974 −∞ ∞ -0.9570
p.value 0.0000 0.0000 0.1034 0.0026 0.0000 0.0000 0.0000 0.3385

SZIT Mean -1.395E-6 0.0040 -7.5817 2221.9776 -0.2809 -0.0800 -0.0033 5.725E-6
U* -4.2283 -39.8479 0.9062 3.6821 12.4847 −∞ 17.5064 0.0049
p.value 0.0000 0.0000 0.3648 0.0002 0.0000 0.0000 0.0000 0.9960

TZIT Mean -1.747E-6 0.0008 -0.1787 40.6920 -0.1526 -0.1349 -0.0030 2.781E-6
U* -0.9957 7.3446 3.3761 -3.8624 -16.1067 -32.4546 8.1609 2.3564
p.value 0.3194 0.0000 0.0007 0.0001 0.0000 0.0000 0.0000 0.0184

AZIT Mean -4.035E-5 0.0010 -16.9185 2739.8962 -0.1996 -0.1997 -0.0017 6.623E-7
U* 155.6127 2.4828 4.3272 -20.2753 -2.6619 -2.6619 -2.4313 -8.8679
p.value 0.0000 0.0130 0.0000 0.0000 0.0078 0.0078 0.0150 0.0000

Real Mean -2.656E-6 0.0012 0.1441 25.8839 -0.2137 -0.2137 -0.0018 2.816E-6

Table 3.4: Fligner Policello Test. Signi�cant at the p < 0.05 level. ATOM generated intraday returns with calibration
to Renault SA on August 1, 2002. Experiment settings: a basic design of UZITU , Pmin = 45.2, Pmax = 47.83, Vmin = 1,
Vmax = 8075. b basic design of UZITN , Pmean = 46.88915, Psd = 0.6015639, Vmin = 1, Vmax = 8075. c basic design of
SZIT , amax = 50, bmin = 30.3, bmax = 47.83. d basic design of TZIT , the number of sliced windows is 50. e basic design
of impatient agents AZITI , order volume is 250; basic design of patient agents AZITP , order volume is 500. The number
of impatient agents is 30, the number of patient agents is 170. The number of prices is 2215.
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Mean SD Skewness Kurtosis ρ1 ρ2 Slope φ̂

UZITU Mean 1.276E-7 0.0035 -0.0001 17.7071 -0.3015 -0.0781 -0.0035 4.288E-6
W 69.0000 5.0000 458.0000 576.0000 702.0000 0.0000 703.0000 720.000

p.value 0.0000 0.0000 0.1105 0.0004 0.0000 0.0000 0.0000 0.7068

UZITN Mean 1.754E-7 0.0022 -0.0119 19.6185 -0.3001 -0.0746 -0.0035 1.913E-6
W 76.0000 44.0000 468.0000 536.0000 702.0000 0.0000 703.0000 774.0000

p.value 0.0000 0.0000 0.0800 0.0046 0.0000 0.0000 0.0000 0.338

SZIT Mean -1.395E-6 0.0040 -7.5817 2221.9776 -0.2809 -0.0800 -0.0033 5.726E-6
W 115.0000 4.0000 449.0000 584.0000 665.0000 0.0000 702.0000 684.0000

p.value 0.0002 0.0000 0.1448 0.0003 0.0000 0.0000 0.0000 1

TZIT Mean -1.747E-6 0.0008 -0.1787 40.6920 -0.1526 -0.1349 -0.0030 2.781E-6
W 154.0000 677.0000 532.0000 98.0000 12.0000 0.0000 679.0000 473.0000

p.value 0.0023 0.0000 0.0056 0.0001 0.0000 0.0000 0.0000 0.0219

AZIT Mean -4.035E-5 0.0010 -16.9185 2739.8962 -0.1996 -0.1997 -0.0017 6.623E-7
W 703.0000 516.0000 616.0000 1.0000 183.0000 184.0000 239.0000 1191.0000

p.value 0.0000 0.0121 0.0000 0.0000 0.0101 0.0106 0.0913 0.0000

Real Mean -2.656E-6 0.0012 0.1441 25.8839 -0.2137 -0.2137 -0.0018 2.816E-6

Table 3.5: Paired Wilcoxon Tests. Signi�cant at the p < 0.05 level. ATOM generated intraday returns with calibration
to Renault SA on August 1, 2002. Experiment settings: a basic design of UZITU , Pmin = 45.2, Pmax = 47.83, Vmin = 1,
Vmax = 8075. b basic design of UZITN , Pmean = 46.88915, Psd = 0.6015639, Vmin = 1, Vmax = 8075. c basic design of
SZIT , amax = 50, bmin = 30.3, bmax = 47.83. d basic design of TZIT , the number of sliced windows is 50. e basic design
of impatient agents AZITI , order volume is 250; basic design of patient agents AZITP , order volume 500. The number of
impatient agents is 30, the number of patient agents is 170. The number of prices is 2215.
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3.3.3 Sensitivity analysis: the importance of model pa-

rameters

A variety of factors may have an e�ect on the results presented above. This

section is dedicated to a discussion on two factors that may a�ect notably our

results: i) the impact of the proportion of �Big �shes� vs. �Small �shes� and

ii) the role of the ratio �Limit� to �Market� orders. To address these points,

we �rst vary only one of these parameters while the other stays constant. We

then report the impact of these variations on the market.

Note that TZIT are not signi�cantly in�uenced by the variation in the

proportions of the two factors, but rather by the price trend itself. Among the

two remaining families, SZIT is the more driven by the dynamics of order

�ows, and thus is the best potential candidate for an e�cient calibration

through both factors. We have chosen to restrict the presentation of the

sensitivity analysis to the latter and to the AZIT inspired by the Farmer

model (Farmer et al., 2005). For the latter, we vary the proportion of

�patient� vs. �impatient� agents in the population.

In table 3.6, we report the correlations between the model parameters and

the statistical properties tracked throughout this essay.

i) Big �shes / Small �shes : The results in table 3.6 clearly show that

except for the mean, which is insensitive to the modi�cation of the model

parameters, all other stylized facts do react in some way to the latter. Even if

the correlation coe�cients may be relatively small (ranging from -0.5781 for

the Kurtosis to 0.5876 for the �slope�), all of them are signi�cant at the 1%

level. However, if volatility tends to increase with this ratio (the correlation

coe�cient being equal to 0.5744), kurtosis tends to decrease (coef = -0.5781).

Big �shes, due to the large trading volume they can generate, provide a siz-
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Statistics Big/Small �shes Limit/Market Impatient Patient
proportiona proportionb Agents Agents

Mean corr. 0.3216 0.1408 -0.1551 0.1848
p− value 0.1250 0.2414 0.2493 0.1942

SD corr. 0.5744 -0.9759 0.2259 -0.6677
p− value 0.000 0.000 0.0911 0.000

Skewness corr. -0.05648 0.1688 0.0990 -0.0597
p− value 0.000 0.1593 0.4637 0.000

Kurtosis corr. -0.5781 -0.1872 -0.5669 0.2283
p− value 0.000 0.1179 0.000 0.1070

ρ1 corr. 0.4663 -0.7495 0.6469 -0.7771
p− value 0.000 0.000 0.000 0.000

ρ2 corr. 0.1470 0.0580 -0.7164 0.6859
p− value 0.000 0.000 0.000 0.000

Slope corr. 0.5876 -0.5572 0.0339 -0.2688
p− value 0.000 0.000 0.8021 0.0564

φ̂ corr. -0.3429 0.0571 0.0084 -0.3503
p− value 0.000 0.6358 0.9502 0.0117

Table 3.6: Linear correlation coe�cient of model parameters and stylized
facts. 100 replications for each parameter set have been conducted. Each
value is an averaged result. a Experiment settings: basic design of SZIT .
The number of Small Fishes is �xed as 200, while the number of Big Fishes
varies from 0 to 200. b Experiment settings: basic design of SZIT . The
proportion of Cancel orders is �xed, ∆C = 5. The proportion of Limit orders
∆L varies from 60 to 95 percent, and proportion of Market orders is de�ned
according to formula ∆M = 100−∆L−∆C . Signi�cant at the p < 0.05 level.
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zling amount of liquidity that directly bene�ts to Small �shes. In other words,

Big �shes �feed� Small �shes. Thus, Small �shes can easily buy or sell stocks

with a price close to the current market price, until a big order is completely

executed. When the number of Big �shes signi�cantly increases, these big

players loose their role of liquidity providers, as they trade more frequently

within their own group.

Increasing the proportion of Big �shes has also a positive e�ect on the slope

of the decay function for autocorrelation coe�cients calculated over absolute

returns (correlation coe�cient equals 0.5876). This result may suggest that

the more �Big �shes� in the market, the more likely the emergence of volatility

clusters.

In summary the fact that we observe signi�cant correlations in that case in-

dicates that �nding the appropriate proportion of Big �shes vs. Small �shes

might be a route to quantitatively �t stylized facts observed on real markets

using ZITs. However, we were unable in our simulations to �nd that �ideal

mix� which would have led to the perfect emergence of the whole set of stud-

ied stylized facts. In fact it seems a rather impossible task to �t most of the

stylized fact by varying only one parameter. Moreover, the point is not to

�nd the proportion which would �t theses stylized facts but rather to show

that within a reasonable range corresponding to what is commonly observed

on the market, this is not the case.

ii) Limit / Market orders : From the same table 3.6, one can notice that

the proportion of �limit� to �market� orders has a signi�cant e�ect on most

of the studied stylized facts except the Skewness, the Kurtosis and the vol-

ume/volatility relationship.

Concerning the Standard deviation (SD), the correlation coe�cient is close to

-1. This result was expected: on the one hand, traders supply liquidity by

posting limit orders and, on the other hand, demand liquidity by submitting
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market orders that yield immediate partial or full execution. Thus, a large

proportion of limit orders provides an important liquidity on both sides of the

order book (Bids and Asks). On the contrary, a market order is immediately

executed against order(s) standing in the limit order book: it moves the mar-

ket by walking up or down the limit order book. Clearly, the proportion of

Limit/Market orders has a signi�cant impact on market volatility. A higher

proportion of limit orders stabilizes the market by decreasing the standard

deviation (correlation coe�cient = -0.9759).

The negative coe�cient for ρ1 (-0.7495) suggests that the more Limit orders,

the lower the auto-correlation of raw returns: this is a well-known fact related

to the Bid-Ask bounce.

To summarize, some important stylized facts (Skewness, Kurtosis and vol-

ume/volatility relationship) seem to be insensitive to the modi�cations of the

ratio Limit to Market orders. This indicates that �tting with accuracy real-

world stylized facts is probably out of reach using this ratio alone.

iii) Patient/Impatient agents One can observe that increasing the num-

ber of these two categories of agents has a similar impact on various stylized

facts as the variation of the proportion between Limit and Market orders

does (see table 3.6). This result was expected since �patient� agents provide

liquidity while �impatient� agents demand liquidity.

We now explore the sensitivity of the studied stylized facts to a modi�-

cation of both parameters simultaneously using a regression approach. The

results are reported in Table 3.7. In this table, we report, for each depen-

dent variable (a stylized facts parameter), the estimate of the ordinary least

squares (OLS) parameter for our two independent variables (proportion of Big

vs. Small �shes and proportion of Limit vs. Market orders). A panel data

compiling the outcomes of the 1000 replications of our analysis was collected.
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We then run multiple linear regressions on the parameter values to observe

their impact on empirical market outcomes. The general form of the model

is:

SF ∼ α + β1BvS + β2LvM (3.6)

In equation 3.6, SF is one of the stylized facts we study in this article, BvS

is the proportion of Big vs. Small �shes and LvM the proportion of Limit

vs. Market orders.

One �rst observes that all the values for β1 and β2 have non-zero values

(at the 1% level). A second observation is that all R2 coe�cients have decent

levels, ranging from 0.137 to 0.931. These results indicate that the levels of

each stylized facts can be explained to some extent by a combination of the

two ratios.

Unfortunately, the use of such relations to calibrate one ZIT model to the

real-world stylized facts appears rather complicated: for example in model 2

(SD), the e�ects of β1 and β2 are similar whereas they are opposite for model

4 (Kurtosis). In other terms, �ne tuning SD may result in an incorrect level

of Kurtosis. The same problem can be identi�ed comparing models 5 and 6

(ρi).

However, all these models make the assumption of multiple linear relations be-

tween independent and dependent variables although non-linearities between

the latter may exist.

In summary, here again we conclude to the high level of complexity for �tting

real-world stylized facts only using the two ratios BvS and LvM within a ZIT

population.

A �rst conclusion can be drawn from this sensitivity analysis : simulations

using ZIT should probably use the two leverages of the size of the traders and

the type of orders to calibrate the level of volatility. However, the relation-
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Model Statistics α β1 β2 R2

1 Mean 1.859E − 4 1.573E − 8 −2.137E − 6 0.301
< 2E − 16 < 2E − 16 < 2E − 16

2 SD 0.231 −2.300E − 5 −0.0025 0.931
< 2E − 16 < 2E − 16 < 2E − 16

3 Skewness 2.3831 0.0006 −0.0252 0.642
< 2E − 16 < 2E − 16 < 2E − 16

4 Kurtosis 5.7459 0.0143 −0.0469 0.137
3.09E − 11 < 2E − 16 1.59E − 5

5 ρ1 −0.2864 −0.0002 0.0015 0.324
< 2E − 16 < 2E − 16 < 2E − 16

6 ρ2 −0.0951 0.0002 −0.0011 0.259
< 2E − 16 < 2E − 16 < 2E − 16

7 Slope 1.542E − 4 −4.750E − 6 −6.467E − 6 0.247
0.4180 < 2E − 16 0.0074

8 φ̂ 2.558E − 2 −1.130E − 5 −2.542E − 4 0.266
< 2E − 16 1.86E − 11 < 2E − 16

Table 3.7: Regression results for e�ects of model parameters on stylized facts.
aSigni�cant at the p < 0.05 level. 1000 runs. A = 500 � total number of agents
in population, ABig ∼ D(0, 500) � proportion of Big �shes, ASmall = A−ABig

proportion of Small �shes. The proportion of Cancel orders is �xed, ∆C = 5.
The proportion of Limit orders ∆L ∼ D(60, 95), and proportion of Market
orders is de�ned according to formula ∆M = 100 −∆L −∆C . Signi�cant at
the p < 0.05 level.

ship within the higher moments set seems to rely on a more subtle interplay:

increasing the volatility may well decrease the kurtosis of the series, and al-

ter in a rather complicated way the Skewness and other stylized facts. Said

di�erently, generating �calibrated� stylized facts all together using ZITs seems

hard to realize, if simply possible.

3.4 Conclusion

In the current work, we used a methodology based on arti�cial stock markets.

Typically, we ran experiments on an agent-based platform which microstruc-
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ture is close to the Paris NYSE-Euronext stock exchange to simulate the price

distribution of 37 stocks with the use of Zero Intelligence Traders (ZIT). Five

families of agents deriving from the ZIT de�nition were considered and all were

calibrated with the use of 37 real stocks data listed on the CAC 40 index. No-

tably, agents' choices were constrained by volume and prices exchanged on

the real market, and we tested for di�erent parametrizations either related

to existing procedures in the literature or by increasingly constraining agents

with respect to parameters of the real stocks.

The overall conclusion of this research is that none of the ZIT families can

really be considered as a candidate to duplicate quantitative stylized facts.

Furthermore, in most of the case (without calibration, TZIT for example)

price dynamics are completely unrealistic. This implies that these results

discard the use of such agents in quantitative �nance.

So to speak, ZITs help in understanding at coarse grain what drives the

main stylized facts in actual price dynamics and can explain patterns in or-

ders submissions (notably in high frequency trading schemes). They also

qualitatively highlight that beyond �behaviors�, market microstructure does

matter. However, they are poor candidates for examining the dynamics of the

price time series. The amount of information on data necessary to reproduce

stylized facts (as for example with TZITs) seem outrageous and probably a

better avenue will be to explore behavioral issues. Thus we need more sophis-

ticated behaviors for arti�cial agents and/or strong calibrations processes as,

for example, by Johnson system (see Johnson (1949)), that could lead to good

replication of real data and predictive power of simulations. This is a neces-

sary step if one wants to use agent-based simulations in quantitative �nance.
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Despite the common understanding that the market is populated by

traders with di�erent tastes, skills, and beliefs, most asset pricing models

are based on the so called �representative agent� models (see section 1.2.3

for details). Multi-agent simulations of �nancial markets frequently address

investment problems by describing markets as complex systems of bounded

rational and heterogeneous agents (Hommes, 2006; LeBaron, 2006; Tefatsion

and Judd, 2006). This approach seeks to improve the traditional framework

by introducing more �exible, robust, and realistic assumptions and to pro-

vide more powerful and sophisticated analysis tools for investment decision

making.

The contributions of agent-based models can be divided into two partially

overlapping classes (Anufriev, Bottazzi and Pancotto, 2006). The �rst class

contains models where results come from a strict analytical investigation, like

in Chiarella and He (2001), or Chiarella and He (2002). The second class con-

sists of models based on the presentation and discussion of extensive computer

simulations, such as in Lux and Marchsi (1999), Farmer and Joshi (2000), and

Bottazzi et al. (2005). The research results presented in this chapter belong

rather to the second class of research contributions.

In this chapter we describe the implementation of mean-variance model
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within agent-based framework. That allows us to introduce the heterogeneity

of the traders and to study their relative performance. In this work we use

dollar wealth and the Sharpe ratio as portfolio performance measures. De-

spite di�erent opinions about good sides and drawbacks of the Sharpe ratio,

it appears to be a standard measure for evaluating portfolio performance. We

also use the Sharpe ratio as a performance measure for better comparability

of results with previous research.

This thesis sheds some new light on the question: whether mean-variance op-

timization can be outperformed by simpler allocation strategies. Furthermore,

we examine what factors in the optimization are prominent for portfolio per-

formance. The study takes into account transaction costs incurred by portfolio

rebalancing. The results indicate that it is possible to achieve notably higher

wealth and the Sharpe ratio with portfolio optimization rules than by using a

naive strategy. Moreover, we �nd that the risk aversion as well as rebalancing

frequency (or tolerance to deviation from target weights) signi�cantly a�ect

portfolio performance.

The natural question is whether this heterogeneous population evolves

into homogeneous one, or whether one strategy dominates the market. To

answer these questions, we use computational simulation techniques allowing

the evolution of populations and their performance indicators. We compare

the relative performance of investment strategies using an ecological compe-

tition (Lotka, 1925; Volterra, 1926) where populations of arti�cial investors

co-evolve. This research methodology is widely used to understand nonlinear

dynamical systems in which two or more species or agents interact through

competition for resources.

This chapter is organized as follows. We �rst describe in section 4.1 the

implementation of mean-variance model in the ATOM framework. In sec-

tion 4.2, we propose a new analysis of the relative performance of investment

strategies, rational mean-variance portfolio optimization versus naive diversi-
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�cation. Section 4.3 investigates the e�ect of risk preferences on the survival

of agents in a long run. Section 4.4 presents how the rebalancing frequency af-

fects both the �nal wealth and the Sharpe ratio in the presence of transaction

costs.

4.1 Implementation of Mean Variance Opti-

mization Model using ATOM

The mathematical basis of mean-variance optimization is detailed in the ap-

pendix A.3. As it is shown in the appendix A.3, the solution of mean variance

optimization problem can be derived analytically. The result depends on the

agent's expectations about the mean and the variance of the returns for the

next period, and individual agent's risk preferences. In this section, we show

how theoretical mean-variance optimization model can be implemented in the

arti�cial stock market framework.

4.1.1 Simulation Model

We consider a securities market populated by a �nite number of traders with

heterogeneous preferences, indexed by i ∈ 1, 2, ...I. Time is discrete and in-

dexed by t = 0, 1, 2, .... There is also a �nite number of assets j ∈ 1, 2, ...J .

Traders come to the market with an initial amount of assets: trader i holds

the following combination of assets (qi,1, qi,2, ...qi,J), i = 1...I.

We denote investor i′s wealth at time t by W i
t :

W i
t =

∑

j=1,J

pj,t · q
i
j,t + C i

t (4.1)

In equation 4.1, pj,t is the current market price of asset j at time t, and

qij,t is the quantity of assets j held by trader i at dime t, C i
t is an available
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cash holding by agent i at t.

Agents, called mean-variance optimizer (or trader), endowed with this

strategy try to minimize risk for a given target return following the mean

(µ) � variance (σ2) optimization rules.

min
1

2
σ2
p = min̟̟

TV ̟ (4.2)

µp = ̟Tµ (4.3)
n

∑

i=1

̟i = 1, ̟ = (̟1, ̟2, . . . , ̟n) (4.4)

where n � number of assets, µp � expected return of the portfolio, σp � standard

deviation of the portfolio, V � correlation matrix, ̟ � target weights de�ned

according to Markowitz rules. This program can deliver solutions outside the

range [0, 1] for the portfolio weights, which means that shorting is allowed.

This problem can be reformulated since each agent maximizes the mean-

variance utility of the next period total return

U(̟) = µp −
1

2
Aσ2

p = ̟Tµ−
1

2
A̟TV ̟ (4.5)

An important parameter in this process is the investor's risk aversion A. Note,

that in ATOM there exists also risk free asset yielding a zero percent interest

rate, actively bought by conservative agents.

Agent i computes the optimal allocation of wealth of the risky assets̟i,∗
t =

(̟1,∗
1,t , ̟

i,∗
2,t, ̟

i,∗
j,t ). This allocation is a re�ect of the risk preferences or the rate

of risk aversion of an agent. Based on this information, a mean-variance

trader calculates a desired quantity of stock j required to adjust its portfolio
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to the �ideal� one.

qi,∗j,t =
̟i,∗

j,t ·W
i
t

pj,t
(4.6)

Thus, to get as close as possible to the target weights de�ning his �optimal

portfolio�, a trader i issues at date t �buy� or �sell� orders following these

rules: if the di�erence between the desired amount of stocks qi,∗j,t and the

amount qij,t−1 of stocks he actually hold is negative, he has to issue a sell order

(�ask�). Conversely, if this di�erence is positive, he has to issue a buy order

(�bid�). If there is no di�erence, the agent let his position unchanged. These

rules are described in Algorithm 1. Transaction costs are incurred in the

if qi,∗j,t − qij,t−1 > 0 then

Send a Bid order

else if qi,∗j,t − qij,t−1 < 0 then

Send a Ask order

else
Remain unchanged

Algorithm 1: Decision making process. qi,∗j,t � desired amount of asset j
at the moment of time t held by agent i, qij,t−1 � real amount of stock j
held by agent i at the moment of time t− 1

purchase and sale of each security. The costs are proportional to the value of

each transaction vj,t = c×pj,t×|q
i
j,t−q

i
j,t−1|, where pj,t denotes the price of the

jth security at time t; qij,t−1 is the current number of stocks j held by agent

j and the date t − 1; qij,t is the desired number of stocks j de�ned according

by optimization rules by agent i at the period t; c are the transaction costs

of buying of selling. The total costs of portfolio rebalancing consisting m

security are T (v1, . . . , vm) =
∑m

j=0 vj,t, j = 1, . . . ,m ≤ J .

Another important question is how the limit price is determined. We

propose the procedure inspired by price setting principle described in Jacobs
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et al. (2004).

1. Bid price

PBidt = PBidt−1 + βt (4.7)

where PBidt−1 is the best bid price in the order book in t − 1; βt is a

random value in the range [1; 10]: it means that best bid price at the

moment t will be increased by value from 1 to 10 cents. PBid0 is equal

to the previous day closing price.

2. Ask price

PAskt = PAskt−1 + αt (4.8)

where PAskt−1 is the best ask price in the order book in t − 1; αt is a

random value with the range [1; 10]: it means that best ask price at the

time t will be decreased by value from 1 to 10 cents. PAsk0 is previous

day closing price.

In the condition of double auction market, a pro�t-oriented buyer sets up the

price lower his limit price because there would be a seller willing to accept this

low bid price. Similarly, a seller sets a price higher his limit price, expecting

that there would be a bidder ready to accept a high ask price. In condition of

competitive market, the price comes closer to the market equilibrium price.

As long as the buyer can undercut a competitor and still make a pro�t, he

will add some insigni�cant amount to the last best bid price, similarly, seller

will decrease the last best ask price by insigni�cant value, if it does not exceed

his limit price.

These trading rules lead to bid-ask spread. Moreover, if a trade is not

executed, the bids will tend upwards, and the asks will tend downwards until

a trade occurs. Such situations will arise in sharp increasing or decreasing

price dynamics. If there are some groups of agents with the same preferences,

they will issue orders to buy or sell the same assets. If these participants want
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to purchase a particular asset, they will send the bid orders one by one with

slightly increasing price. That will move price upwards. This is exactly the

case in the simulation of Jacobs et al. (2010). For this reason, they propose

an �anchoring rule�, limiting the emergence of such side e�ect trends. These

rules become e�ective when the security's price deviates too far from its recent

level. Jacobs et al. (2010) provide the possibility for users to set up the �recent�

value and the measure of maximum deviation from the recent level. For ask

orders, the anchoring rule limits the minimum price according to the following

formula PO,min = PR − cPL, where PR is a recent price, c is the user-speci�ed

parameter, and PL is the average recent price or the standard deviation of

recent prices (as de�ned by the user).

Inspired by the anchoring rules de�ned by Jacobs et al. (2010) and observ-

ing the same phenomena in our early experiments, we introduce the anchoring

rules in our simulation in the following way (see algorithm 2).

if PBidt−Pinit

Pinit
> Λ then

PBidt = PBidt × (1−∆)

else if PAskt−Pinit

Pinit
< −Λ then

PAskt = PAskt × (1 + ∆)

end

Algorithm 2: Anchoring rule of price adjustment. At the beginning of
each day we set up the initial price Pinit, equals to the previous day
closing price. Λ is the possible "deviation" of the current price from the
initial one. ∆ is an adjustment parameter, ∆ > Λ, ∆.

After a series of simulations, we have observed that if all the market partic-

ipants are heterogeneous, then the market is active and stable. However, the

results change dramatically if agents are homogeneous. Mean-variance opti-

mizers are heterogeneous with respect to several characteristics (or attributes).

The �rst one is the coe�cient of risk aversion A. It determines agents' at-
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titude toward risk. Agents with A = 0 are risk lovers or aggressive traders

while agents with A ≥ 1 are absolute risk averters (or conservative traders).

The literature provides a large range for risk aversion parameter estimation.

For example, the lowest risk aversion measure producing a pro�t is found in

Mankiw, Rotemberg and Summers (1985) and is equal to A = 0.3. Hansen

and Singleton (1982) de�ne the possible ranges of risk aversion as 0.3502 and

0.9903. Gordon, Oaradis and Rorke (1972) use a risk aversion value between

0.6 and 1.4. Chen et al. (2007) de�ne risk aversion in the range [0.5, 5] with

CRRA utility. Levy et al. (1995) investigate two groups of agents with risk

aversion measures equal to 0.5 and 3.5 (in a CRRA framework). Risk aversion

is equal to 18 in Obstfeld (1994), 30 � in Kandel and Stambaugh (1991). Kall-

berg and Ziemba (1983) de�ne the ranges for the risk aversion parameter for

a quadratic utility function as 0→∞. In this research, we consider the range

[0.1, 10] as representative of the di�erent levels mentioned in the literature.

The second component of agents heterogeneity that maintains market liq-

uidity and long-therm trading, is trading (or rebalancing) frequency Θ for

di�erent investors, said di�erently: agents rebalance their portfolios every Θ

rounds. This condition helps to avoid empty order books, which could result

from all orders cancellation by all agents at the same time. As noted in several

articles (Shatner et al., 2000; Hommes, 2006), the heterogeneity of time scale

for agents actions is the important feature for emergence of stylized facts.

The next parameter of heterogeneity is a source of information about future

asset returns and correlations. In ATOM there are two possibilities to get this

information. The �rst one is to distribute exogenous information over agents.

This option is important for initialization of simulations. The other way is

to allow traders to calculate assets properties individually based on historical

closing prices. At the end of the day (or trading period) t, investor i observes

the time series (history) of assets Sj
t−1 ≡ {P

j
n}

t−1
n=s, where s < t − 1, P j

n is

the closing price of stock j at day n. Based on this information, the agent



144
Chapter 4. ABM: Portfolio Performance Gauging and Attitude

Towards Risk Revisited

recalculates the expected return and the correlation matrix of assets that are

necessary for the weights calculation procedure. The length of historical data

set |(t−1)−s| used for statistical calculation is an individual agent parameter.

4.1.2 Basic example of trading

To demonstrate the application of previously described rules we propose to

consider following basic example.

1. Assets properties

Weekly data

E(R) =











A0 0.0001818194

A1 0.001121336

A2 0.0002112892











σ =











A0 0.01565114

A1 0.03523479

A2 0.02448014











Corr =

















A0 A1 A2

A0 1.00000000 0.1473994 −0.02493462

A1 0.14739937 1.0000000 0.14394131

A2 −0.02493462 0.1439413 1.00000000

















P =





A0 A1 A2

53 33 30





The data for agents parametrization is described in the table 4.1

Name Markowitz0 Markowitz1 Markowitz2 Markowitz3

Assets quantity (44; 62; 68) (74; 92; 61) (96; 46; 17) (58; 90; 74)

Risk aversion 7.8 4.3 1.4 1

Initial cash 0 0 0 0

Frequency 1 1 1 1

Optimal weights





0.596087
0.159774
0.244139









0.540475
0.239173
0.220352









0.442361
0.379257
0.178384









0.131488
0.823101
0.045411





Table 4.1: Agents Initialization

The degree of risk aversion is de�ned in the interval [0, 10]. The agent

Markowitz3 has a risk aversion equal to 1 and is thus a risk lover. He
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has an intention to invest a relatively large part of his wealth (0.8231009)

into high-risk Asset1. While, the agent Markowitz0 is risk reverter, his

degree of risk aversion is 7.8. This agent avoids risk and invests less into

high-risk Asset1.

2. Trading.

First of all, agents estimate the quantities for their optimal portfolios

according to equation 4.6. The ATOM scheduler randomly chooses an

agent to act. Since simulations are asynchronous, the agent should take

into account any price changes at any moment and the action of other

traders during their decision making.

The total wealth and the optimal allocation of the agent, named

Markowitz0, can be calculated in the following way:

W 0
0 = 44× 53 + 62× 33 + 68× 30 + 0 = 6418

q00,0 =
0.5960871×6484

53
= 73

q01,0 =
0.1597735×6484

33
= 31

q02,0 =
0.24413943×6484

30
= 53

Since Markowitz0 initially has 44 units of Asset0 and the optimal quan-

tity is 73, he should buy 29 units of Assets0, sell 31 units of Assets1

and 15 of Assets2.

We repeat the same procedure for other traders. The total wealth and

the optimal asset allocations of the agent Markowitz3 are as follows:

W 3
0 = 58× 53 + 90× 33 + 74× 30 + 0 = 8264

q30,0 =
0.13148814×8264

53
= 21

q31,0 =
0.8231009×8264

33
= 206

q32,0 =
0.04541096×8264

30
= 13
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Since Markowitz3 initially holds 58 units of Asset0, 90 units of Asset1,

and 74 units of Asset2, he should sell 37 units of Asset0 and 61 units of

Asset2, and buy 116 of Asset1.

As simulations are continuous, prices change in any moment, even if

not all agents have sent their orders during the current �round�. This

is inspired from the functionality of real markets, where the environ-

ment can change while participants make decisions. This is why agent

Markowitz1 should take into account the new prices of Asset0 and

Asset1, that stem from the orders issued by Markowitz0, Markowitz3

(see tables 4.2, 4.3). The total wealth and the optimal asset allocations

of agent Markowitz1 are as follows:

W 1
0 = 74× 53.4 + 92× 32.6 + 61× 30 + 0 = 7159.1

q10,0 =
0.540475×7159.1

53.4
= 72

q11,0 =
0.23917317×7159.1

32.6
= 53

q12,0 =
0.22035183×7159.1

30
= 53

From these equations and initial information in table 4.1, we conclude

that Markowitz1 should sell 2 units of Asset0, 39 units of Asset1, and

8 units of Asset2.

Markowitz2 calculates his current wealth and optimal asset allocations,

taking into consideration price changes resulting from orders issued by

Markowitz0, Markowitz1, Markowitz3:

W 2
0 = 96× 53.4 + 46× 32.6 + 17× 30 + 0 = 7136

q20,0 =
0.64913344×7136

53.4
= 87

q21,0 =
0.0840371×7136

32.6
= 18

q22,0 =
0.26682946×7136

30
= 64
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Markowitz1 should sell 9 units of Asset0 and 28 of Asset2, and buy 47

units of Asset1.

The prices of the orders are de�ned according to the formulas 4.7 and 4.8.

For the moment, all order books are empty, and an initial set of prices

should be used for initializing the process. In this example, βt ∼ U(0, 10)

and αt ∼ U(0, 10): the agents can modify the current price from 0 to 10

cents. There are two realized trades concerning Asset0 and Asset1 (see

tables 4.2, 4.3) resulting from the �rst round of trading.

Direction Quantity Price Agent ref. Fixed price Fixed quantity
B 29 53.4 Markowitz0 . . . . . .
A 37 53.0 Markowitz3 . . . . . .

. . . . . . . . . . . . 53.4 29
A 8 53.0 Markowitz3 . . . . . .
A 2 52.7 Markowitz1 . . . . . .
A 9 53.0 Markowitz2 . . . . . .
B 6 53.6 Markowitz0 . . . . . .

. . . . . . . . . . . . 53.0 6
B 3 53.2 Markowitz3 . . . . . .

. . . . . . . . . . . . 52.7 2

. . . . . . . . . . . . 53.0 1
B 4 53.9 Markowitz1 . . . . . .

. . . . . . . . . . . . 53.0 4
A 9 52.8 Markowitz2 . . . . . .

Table 4.2: Asset0

The second round runs with updated prices; moreover, the agents should

either update or remove their orders pending in the order books. For

this reason, the agents recalculate their wealth, and �gure out how close

they are to the targets.

The agent Markowitz0 is quite close to his target weights, however, he

should make some adjustments:

W 0
1 = 73× 53.4 + 31× 32.6 + 68× 30 + 0 = 6948.8



148
Chapter 4. ABM: Portfolio Performance Gauging and Attitude

Towards Risk Revisited

Direction Quantity Price Agent ref. Fixed price Fixed quantity
A 31 32.6 Markowitz0 . . . . . .
B 116 32.6 Markowitz3 . . . . . .

. . . . . . . . . . . . 32.6 31
B 85 32.6 Markowitz3 . . . . . .
A 39 33.0 Markowitz1 . . . . . .
B 47 32.9 Markowitz2 . . . . . .
B 3 33.1 Markowitz0 . . . . . .

. . . . . . . . . . . . 33.0 3
A 36 33.0 Markowitz1 . . . . . .
B 61 33.2 Markowitz3 . . . . . .

. . . . . . . . . . . . 33.0 36
B 25 33.2 Markowitz3 . . . . . .
B 19 33.5 Markowitz1 . . . . . .
A 28 32.9 Markowitz2 . . . . . .

. . . . . . . . . . . . 33.5 19

. . . . . . . . . . . . 33.2 9
B 16 33.2 Markowitz3 . . . . . .

Table 4.3: Asset1

q00,1 =
0.5960871×6948.8

53.4
= 78

q01,1 =
0.1597735×6948.8

32.6
= 34

q02,1 =
0.24413943×6948.8

30
= 57

During the second round, Markowitz0 should try to buy 6 units of

Asset0 and 3 units of Asset1, sell 9 units of Asset2.

The current portfolio of Markowitz3 is far from optimal weights.

W 3
1 = 21× 53.0 + 121× 33.0 + 71× 30.6 + 0 = 7278.6

q30,1 =
0.13148814×7278.6

53.0
= 18

q31,1 =
0.8231009×7278.6

33.0
= 182

q32,1 =
0.04541096×7278.6

30.6
= 11

Markowitz3 will buy 3 units of Asset0 and 61 units of Asset1, sell 60

units of Asset2
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Direction Quantity Price Agent ref. Fixed price Fixed quantity
A 61 29.5 Markowitz0 . . . . . .
A 15 29.1 Markowitz3 . . . . . .
A 8 30.2 Markowitz1 . . . . . .
A 28 30.6 Markowitz2 . . . . . .
B 9 30.5 Markowitz0 . . . . . .

. . . . . . . . . . . . 30.6 9
A 19 30.6 Markowitz2 . . . . . .
A 60 30.3 Markowitz3 . . . . . .
A 6 29.8 Markowitz1 . . . . . .
B 45 30.4 Markowitz2 . . . . . .

. . . . . . . . . . . . 29.8 6

. . . . . . . . . . . . 30.3 39
A 21 30.3 Markowitz3 . . . . . .

Table 4.4: Asset2

Markowitz1 recalculates his optimal allocations since the prices have

been changed.

W 1
1 = 74× 53.0 + 56× 33 + 61× 30.6 + 0 = 7636.6

q10,1 =
0.540475×7636.6

53.0
= 78

q11,1 =
0.23917317×7636.6

33
= 55

q12,1 =
0.22035183×7636.6

30.6
= 55

Markowitz1 should buy 4 units of Asset0 and 19 of Asset1, sell 6 units

of Asset2.

Markowitz2 updates his positions in the following way:

W 2
1 = 87× 53.0 + 46× 33.0 + 17× 30.6 + 477 = 7126.2

q20,1 =
0.64913344×7126.2

53.0
= 87

q21,1 =
0.0840371×7126.2

33.0
= 18

q22,1 =
0.26682946×7126.2

30.6
= 62

Markowitz1 should sell 9 units of Asset0 and 28 of Asset1, buy 45 units

of Asset2.
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The agents will repeat the same procedures over next trading rounds, un-

til all of them get their target portfolio weights and all traders are satis�ed.

Hence, we can assume that after several trading rounds all traders will be

satis�ed, thus there will be no trade any more. To avoid such unrealistic situ-

ation, one should introduce heterogeneous agents' populations with di�erent

beliefs, risk aversion degrees, rebalancing frequencies, trading strategies, and

so on.

4.1.3 Model validation

In this subsection we test the ability of mean-variance traders, introduced in

section 4.1.1, to maintain a long-run trading on the system, and to repro-

duce main stylized facts observed in real �nancial time series in intraday as

well as in extraday time-frame. For this purpose, we investigate the pres-

ence of known stylized facts of �nancial time series, i.e., volatility clustering

and fat tails in the distribution of returns. We run the experiments within

the three-asset limited framework. The following simulation assumptions are

considered. Hundred traders populate the market. At the beginning of the

simulations the agents get the information about expected returns, variances

and correlation matrices of stocks. Based on this information, agents calcu-

late the target weights and try to keep their portfolios closer to these target

weights over the next 200 days, that is regarded as trading period. After this

period of trading, the agents use recently generated prices to estimate the

information concerning the traded stocks. For sake of simplicity, we assume

that the information concerning the underlying probability distribution of se-

curities prices as well as current securities prices is perfect information that is

available continuously and costlessly to all investors.

One �simulation day� contains 50 rounds of preopening session, 1000

rounds of continuous trading, and 50 rounds of the closing session. Such time
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organization helps us control the rebalancing frequency of agents. Each agent

is attributed by parameter, trading frequency, θ ∼ U(1, 10000). It means that

there are some agents trading every day, while others reoptimize their port-

folios every 10 days. The agents are also heterogeneous with respect to their

attitude toward risk. The degree of risk aversion is uniformly distributed in

[0.1, 10]. 50 agents out of 100 are allowed to hold short position.

We reproduce the years of trading on the �ne grain level through intraday

trading. This feature provides us with an outstanding possibility to investi-

gate the stylized facts that require di�erent time granularity. For example,

aggregational gaussianity is observed when one increases the time scale △t

over which returns are calculated Cont (2001).

Figure 4.1 displays the intraday price series. We quantitatively (table 4.5)

and qualitatively (�gure 4.2(b) and 4.2(c)) show the nongaussian behavior in

intraday returns. Figure 4.2(b) puts forward the deviation from normality,

especially sharp peaked distribution (for comparison, the solid line represents

the distribution of standard normal distribution); �gure 4.2(c) clearly exhibits

fat tails. Kurtosis and skewness displayed in table 4.5 con�rm the deviation

from normality, as all kurtosis are far from their Gaussian values and positive

skewness exhibits gain/loss asymmetry in return distributions.

In �gures 4.2(d) and 4.2(e), we present the autocorrelation C(τ) of the

raw returns and the absolute returns at di�erent time lags τ . While the

autocorrelation of raw returns exhibits rapid decay, the autocorrelation of the

absolute value of returns shows the presence of long-range correlations with

a very slow exponential decay. We can conclude that the simulated time

series exhibit the well known stylized fact of volatility clustering observed in

real-world markets.

Next, our research is conducted to examine the ability of mean-variance

arti�cial investors to generate the prices with realistic statistics in accordance

with theoretical and empirical researches on statistical return properties in
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(d) Asset 1: Returns
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(f) Asset 2: Returns

Figure 4.1: Intraday price dynamics. Prices are generated by 100 mean-
variance optimizers, heterogeneous with respect to their beliefs, risk aversion
A ∼ U(0.1, 10), trading frequency θ ∼ U(1, 10000).
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Figure 4.2: Stylized facts for intraday prices. Prices are generated by 100
mean-variance optimizers, heterogeneous with respect to their beliefs, risk
aversion A ∼ U(0.1, 10), trading frequency θ ∼ U(1, 10000).
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Statistics Asset0 Asset1 Asset2
Minimum -0.03008936 -0.1920777 -0.0800427
Maximum 0.03008936 0.282567 0.08701138
Mean 4.182412e-05 -0.000438054 0.0001725323
Variance 0.0001120417 0.003788261 0.0004502855
Stdev 0.01058498 0.06154885 0.02121993
Skewness 0.07756422 0.07483113 0.1398351
Kurtosis 17.802075 11.49896 15.49548
ρ1 -0.0780217 -0.1637344 -0.1571716
ρ2 -0.07361454 -0.1166177 -0.1195904
Slope -0.0008539391 -0.001849647 -0.001875495

Table 4.5: Basic Statistics for indraday returns. Prices are generated by 100
mean-variance optimizers, heterogeneous with respect to their beliefs, risk
aversion A ∼ U(0.1, 10), trading frequency θ ∼ U(1, 10000).

extraday time frame.

Extraday trading

On the real market, investors characterized by mean-variance optimization

rules, limit their tradings only to a few orders per day. They use daily, weekly

or even annual returns data to estimate the volatility and correlations of

assets. In this subsection we examine the ability of mean-variance optimizers

to generate extraday price dynamics in line with real market. For this

purpose we extend previously described example to thousand of days. The

price series as well as long-returns are shown in �gure 4.3.

We now test how the population of arti�cial traders is able to reproduce

the price dynamic with statistical properties close to the real one at a daily

horizon. First, we analyze the qualitative stylized facts. In Figures 4.4(i) and

4.4(j) we compare the autocorrelation functions of the absolute returns, these

results show the presence of long-range nonlinear correlations. The autocorre-

lation of raw returns decays immediatly 4.4(g) and 4.4(h). The computational

experiments performed for this work show a number of important results.
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Figures 4.2(b) and 4.4(d) exhibit aggregational Gaussianity: as we increase

the time scale over which returns are calculated from intraday to daily, the

returns distribution is approximately Gaussian, the shape of distribution

is not the same. Figure 4.4(i) puts forward a positive autocorrelation of

absolute returns over several days. From these results we can conclude that

the returns of extraday price series exhibit the main features of real market:

fat tail, zero autocorrelation or raw returns, slow decay of the autocorrelation

of the absolute values.

Finally, we run a series of extensive simulations to check whether the arti�-

cial mean-variance agents generate prices in accordance to their �expectations�.

In this work, this ability is called �predictive power�. In other words, we re-

port that the mean-variance optimizers are able in some degree to generate

the price series with moments in line with those imposed to them for opti-

mization at the beginning of simulations. This test is detailed in Appendix

A.4.

In summary we can say that the arti�cial agents are able to perform realis-

tic price dynamics with quantitative and qualitative stylized facts at intraday

as well as daily horizons in line with those from real stock markets.

Next sections are devoted to study the relative performance of portfolio

optimization strategies and factors a�ecting them in the arti�cial stock market

framework.
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(f) Asset 2: Returns

Figure 4.3: Extraday price dynamics. Prices are generated by 100 mean-
variance optimizers, heterogeneous with respect to their beliefs, risk aversion
A ∼ U(0.1, 10), trading frequency θ ∼ U(1, 10000).
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Figure 4.4: Comparison of Stylized facts for Extraday Price Series (1000 days).
Prices are generated by 100 mean-variance optimizers, heterogeneous with
respect to their beliefs, risk aversion A ∼ U(0.1, 10), trading frequency θ ∼
U(1, 10000).
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4.2 Optimal Portfolio Diversi�cation? A multi-

agent ecological competition analysis

4.2.1 Introduction

In this section, we renew the analysis of a classical question in �nance,

namely, the relative performance of investment strategies. We try to �g-

ure out whether a rational mean-variance portfolio optimization can be

outperformed by naive diversi�cation. This research is motivated by the

contradictory and controversial �ndings of DeMiguel et al. (2009), Kritzman

et al. (2010), and Tu and Zhou (2011) who did the same kind of research

but within the traditional �nance philosophy (no agents, no co-evolution,

no complexity, no heterogeneity). DeMiguel et al. (2009) compare several

investment strategies using a backtesting methodology. They evaluate the

sample-based mean-variance strategy and its extensions designed to reduce

estimation errors. The authors conclude that non of these strategies is

consistently better than the naive diversi�cation rule in terms of the Sharpe

ratio. This result can be explained by the errors in estimating means and

covariances.

Kritzman et al. (2010), as practitioners, argue that by relying on longer-term

samples for estimating expected returns, optimized portfolios outperform

equally weighted portfolios out of sample. Kritzman et al. estimate expected

volatility and correlations, using the monthly 5-, 10-, and 20-year data,

while DeMiguel et al. (2009) state that for a portfolio with 50 assets,

the estimation window should be more than 6000 months. However, the

minimal-variance portfolio generates superior out-of-sample performance

compared with equally weighted portfolio in the simulations conducted by

Kritzman et al. (2010). The authors suggest that investors should not rely

solely on naive extrapolations of long historical samples. Instead, investors
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may bene�t by adjusting optimization inputs on subsamples of high-volatility

and low-volatility regimes in accordance with their expectations.

Tu and Zhou (2011), extending the backtesting methodology of DeMiguel

et al. (2009), suggest that a combination of the 1/N strategy with the

sophisticated diversi�cation can each of its constituents taken separately.

This result is proposed in an empirical framework which is extremely similar

to the one of De Miguel and al.

Understanding the characteristics of winning and losing market strategies

is an important question for investors and regulators. But in our opinion, the

main problem with the researches mentioned above is the unrealistic "atom-

istic" assumption that underlies the backtesting methodology. Said simply,

this assumption allows to gauge an investment strategy with historical data

as if its true implementation would have not modi�ed these prices. This as-

sumption is in sharp contrast with analyses of Levy et al. (1995), Hommes

(2006) who clearly show that prices may well be in�uenced by several pa-

rameters (investment strategies, the cognitive skills of investors or the mar-

ket microstructure itself) that are neglected in the backtesting approach. It

seems obvious that di�erent investors are characterized by di�erent invest-

ing behaviors that are, at least partially, responsible for the time evolution

of market prices. We argue in this research that a convincing answer to the

question "among this set of investment strategies, which one outperforms the

others?", overcoming the previously mentioned limitations, can be delivered

by a multi-agent system allowing to implement ecological competitions among

these strategies. We show, among others, that the best possible strategy over

the long run relies on a mix of mean-variance sophisticated optimization and

a naive diversi�cation. This result reinforces the practical interests of the

Markowitz framework that is strongly discussed in DeMiguel et al. (2009) for

example.
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4.2.2 Agents behavior

One of the advantages of ABM is that the agents are autonomous. In a math-

ematical model, all market participants are de�ned as equal-power rational

entities facing homogeneous constraints. Agent actions are predetermined by

strict equations describing their reaction in response to particular market con-

ditions. ABM allows to overcome the limitations imposed homogeneity. In

this research, we design 8 agent populations, each of them following a generic

strategy. These strategies are presented in subsection 4.2.2.1.

4.2.2.1 Trading strategies

We start by introducing how a portfolio of assets is modelled and what kind

of decision agents must make in a simulation. The purpose of each strategy is

to allow agents to manage a diversi�ed portfolio of �nancial assets over time

in di�erent ways.

A portfolio is de�ned as a vector of weights over the investment universe.

This vector is denoted ̟xx, xx allowing to identify the generic strategy deter-

mining this vector. Depending upon the strategy de�nition or the empirical

design, these weights can be negative or not. If this is the case, one will refer

to this situation as "shorting allowed", which means that agents are allowed

to sell borrowed assets and they will repurchase them later on.

Each time a new portfolio is computed, the current weight vector ̟xx
t is com-

pared to the previous one ̟xx
t−1 to adjust the number of stocks to hold. This

adjustment take into account the weight vectors and the corresponding assets

current prices. As a result agents decide to buy or to sell certain assets they

hold to reach their new (weight vector) target (see algorithm 1). These de-

cisions must be practically implemented, that means "translated into buy or

sell orders", with quantities and prices in accordance to the target. One must

remember that each strategy implies di�erent parameters that may have dif-



4.2. Optimal Portfolio Diversi�cation? A multi-agent ecological
competition analysis 161

ferent values within the same agent population; thus each agent has his own

weight vector holding during a simulation.

This process being the same whatever the behavior, we can now describe

at �ne grain the 8 generic strategies (see Table 4.6).

Name Short
Name

Basic de�nition & particularities

Naive N Equal weights, no sophisticated behav-
ior

Mean Variance 1 MLong Markowitz optimization, long positions
only

Mean Variance 2 MShort Same as MLong, shorting allowed
Market Portfolio Holders MP Weights according to assets capitalisa-

tion on the market
Bayesian Traders 1 BLong Based on Markowitz, estimation of mo-

ments co-moments of asset returns im-
proved, long positions only

Bayesian Traders 2 BShort Same as BLong, shorting allowed
Strategy Combinators 1 CLong Mix of N and MLong
Strategy Combinators 2 CShort Mix of N and MShort

Table 4.6: Strategies description

Population 1: Naive diversi�cation investors The agents endowed

with the naive strategy (N) ignore all information about risk and return of

assets. Naive investor i allocates his funds equally among the J risky assets in

equal proportions ̟i,N
j,t = 1

N
∀j =

−−→
1, J the weights of wealth allocated to stock

j of agent i at the moment of time t. In contrasts to sophisticated rules that

are usually asymptotically unbiased but have a large (variance) estimation

error in small samples, the 1/N rule is biased, but has zero estimation error.

Populations 2 and 3: Mean-variance optimizers Agents endowed with

this strategy de�ne optimal allocation weights ̟M = (̟1, ̟2, . . . , ̟J) by ap-

plying the mean (µ) variance (σ2 ) optimization rules (Section 4.1). This op-

timization problem provides the solutions outside the range [0, 1], that allows
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shorting. From its de�nition, we create two agents population, one allowed to

use short selling (MShort), the other not allowed to do so (long only, MLong)

Population 4: Market portfolio holders Market portfolio (MP) holder

is the type of agent with a portfolio consisting of all the assets in the market

with weights proportional to asset capitalization (Treynor, 1962). In a more

realistic context, if an investor has no special insight about expectation returns

and volatility of individual stocks he is supposed to hold the market portfolio

(portfolio of all available stocks).

̟i,MP
j,t =

Pj,t ×Qj,t
∑J

n=0 [Pn,t ×Qn,t]
(4.9)

Pj,t price of asset j at moment t, Qj,t number of asset j traded on the market

at the moment t, Ct total market capitalization.

Population 5 and 6: Bayesian traders Agents within this population

have a behavior that extends the Markowitz rules. The Markowitz approach

has been criticized due to measurement errors in the estimation of assets

moments and co-moments. To overcome these problems authors like Klein and

Bawa (1976) or Brown (1979) propose to improve the co-moments estimation

by using a factor equal to 1+ 1
M

that reduces the estimation error and leads to

more reliable investment weights. Moments and co-moments being estimated

following this rule, agents the same rules as Markowitz agents to determine

the target weights.

From this logic we de�ne two di�erent populations, one in which short

selling is allowed, Bayesian Short Selling (BShort) and one in which it is

forbidden, Bayesian Long Only strategies (BLong).

Population 7 and 8: Strategy combinators The last population has

the ability to combine the naive 1/N strategy with the sophisticated mean-
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variance optimization strategy. It has been studied by some authors who

thought it could improve the overall performance of investors (Brown, 1976).

Mathematically the combination of two strategies can be described as follows:

̟i,C
j,t = (1− δ)̟i,N

j,t + δ̟i,M
j,t δ = ϕ1

ϕ1+ϕ2

ϕ2 =
1
A2

[

(T−2)(T−J−2)
(T−J−1)(T−J−4)

]

(4.10)

where ̟i,C
j,t � weights de�ned by strategies combination, ̟i,N

j,t are the weights

de�ned according to the naive diversi�cation rule, ̟i,M
j,t are the weights de�ned

according to the Markowitz rule, δ is the combination parameter 0 ≤ δ ≤ 1, J

is the number of assets, and T is the memory span or the length of available

historical data. "Markowitz Shorting allowed" and "Markowitz Long-only"

are used for combinations, hence Combination Short (CShort) and Combina-

tion Long (CLong) populations are studied in this research.

4.2.3 Simulation settings

We compare the relative performance of investment strategies using Ecological

Competition (EC) (Lotka, 1925; Volterra, 1926), where agents change their

strategies between the trading periods using their historical performances.

This research approach is widely used to understand nonlinear dynamical sys-

tems in which two or more species or agents interact through competition for

resources. Stock market can be regarded as an environment where agents com-

pete for the value of traded stocks. Traders occur losses and change strategies

that performed well during the last round. The agents populations compete

each against the others in order to get higher wealth or the Sharpe ratio.

This approach not only allows us to track a particular performance measure,

but also to follow its evolution in the long-run. Additionally, ecological com-
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petitions show the e�ects of each strategy on the others. For instance, one

population of agents can take advantage from the presence of the others.

Initially, we populate the ATOM environment with our 8 populations of

agents. The size of each of these populations xk for k =
−→
1, 8 is the same

∀k. The total number of agents is X =
∑8

k=1 xk. Populations are updated

every simulation round according to their performance xk = X Pk

PT
, where Pk

the performance of population k and PT the overall performance of the whole

soup of populations. The performance can be measured as i) the total wealth

(cash + market capitalization of the stocks of all the agents in each population)

or ii) the average Sharpe ratio (Sharpe, 1966) of the population, during the

previous round. A population is said to be extinct if xk = X Pk

PT
< 1

Each strategy is encoded in an initial population of NNN agents. These

populations are mixed and compete in the same market, trading the same

stocks. Prices are the direct result of the �ow of orders sent by the agents to

the central order books ruling the arti�cial stock exchange. A time step in our

ecological competitions is made of several rounds, each of them encompassing

1000 trading days.

Simulation settings We study the 8 populations of agents presented in

table 4.6. Each population of agents starts with 100 agents, that have costless

access to all information concerning the underlying probability distribution of

security prices as well as current security prices. The agents are homogeneous

with respect to their initial budget (they enter the market with 50 units of

each type of stocks and 1000$ in cash). Contrary to DeMiguel et al. (2009)

and Tu and Zhou (2011) who set the risk aversion parameter to 1 or 3 for

Markowitz strategies and its extensions, risk aversion in our simulations is

uniformly drawn between [0.5,5] A ∼ U(0.5, 5) in order to test a larger variety

of behaviors, from risk averse agents to risk takers. The agents trade 30 dif-

ferent stock classes (like the 40 di�erent families of stocks listed in the CAC40
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index). Such relatively large number of stocks allows us to have signi�cant dif-

ference in portfolio composition of heterogeneous mean-variance agents. For

the �rst trading period, we provide to agents an initial information about as-

sets, then they rely on historical price series generated by the trading activity

itself. Contrary to DeMiguel et al. (2009), that use monthly return data, we

deal with signi�cantly more information-rich daily data. Each dataset con-

sists of 500 observations. Monthly data would require an investment period

of nearly 40 years to include as many observations as are presented here in

the daily return data.

4.2.4 Results and Discussions

We present here the results of two di�erent ecological competitions. In the

�rst one, the reproduction rate of each population is linked to dollar earnings

(see subsection 4.2.4.1) while in the second one, it is a function of the Sharpe

ratio (see subsection 4.2.4.2).

4.2.4.1 Ecological competition 1: wealth

The simulations results (�gure 4.5(a)) show that all the constrained (long-

only) strategies (MLong, BLong, CLong), the naive (N) and the market

portfolio strategies (MP ) quickly disappear from the market at the end of

50 rounds. According to Levy and Ritov (2011), a possible explanation of

this phenomenon could be linked to the large positions (positive or negative)

implied by short selling, when it is allowed : the long-only strategies have

zero-positions (̟i,∗
j,t = 0) in about 50% of the traded assets. Thus, the agents

with long-only strategies trade only half of the investment set to maintain

their target weights. At the same time, agents with short-selling strategies

trade the whole set of assets and increase their wealth more e�ciently.

In addition, we observe that the population CShort are better than their
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individual component rules (MShort and N) which is clearly in line with the

results of Tu and Zhou (2011).

We also investigate a possible e�ect of the initial size of the population

in its survival time. We therefore changed population initial distributions

dynamically (∼ U(20, 200)) so to get a majority of certain types of agent in

the whole population soup at the beginning of each experiment. Our results

indicate that even if the initial proportion of naive agents (≈ 200 individuals)

is much bigger than the proportion of others (100 individuals), they cannot

survive much longer in the ecological competitions where wealth rules the

reproduction rate.

To explain these results we should rely on experiment initial settings.

The population of mean-variance traders is heterogeneous with respect to

their risk preferences, that de�ne the composition of their optimal portfolios.

Kallberg and Ziemba (1983) provide guidance regarding the signi�cance of

the changes in risk aversion for optimal portfolio composition. Thus, mean-

variance traders have di�erent preferences for di�erent stocks. On the other

hand, the population of naive agents (as well as market portfolio holders)

is completely homogeneous. All investors from this group invest the same

amount of wealth in the same assets ̟0,N
j,t = ̟1,N

j,t = · · · = ̟I,N
j,t . No trade

can occur within this group. The trading success of naive strategies directly

depends on the desire to trade of agents characterized by rational diversi�ca-

tion rules.

Suppose that, on a particular day, naive investors try to reoptimize their

portfolios. For this purpose, they all should buy security A, sell security

B, and buy security C. At various times during the day, the investors from

population xk would try to purchase the desired numbers of shares A and send

bid orders. Once the supply o�ered on the order book related to stock A is

used up (because there is no the same number of traders willing to sell stock

A), a naive strategy will raise the current bid a bit, and the next a bit more,
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the next a bit more, increasing bid-ask spread. It makes the buyers to accept

a price proposed by sellers and to conclude the unpro�table transactions.

4.2.4.2 Ecological competition 2: Sharpe ratio

We measure the Sharpe ratio in order to estimate the agents ability to hedge

the portfolio risk with many assets. Figure 4.5(b) reports the average evolution

of agent proportions based on this indicator. Note that the Sharpe ratio is

not consistent measure if the mean return of portfolio has a negative value. In

this case high standard deviation improves the Sharpe ratio, which is exactly

the opposite of what the investor prefer. In our simulations, as far as an

agent gets negative return of his portfolio, he is regarded as �ran out� of

the market. The evolution of the population is guaranteed by the holders of

portfolio with positive return. The unconstrained strategies outperform the

constrained ones. These results con�rm those of Levy and Ritov (2011), who

stress the importance of short selling in markets with many assets. At the

same time, our results are not congruent with those of DeMiguel et al. (2009)

who report that the Sharpe ratio of sample-based mean-variance strategy is

much lower than that of naive strategy. There are several issues that explain

such discrepancy of the results. One reason is that DeMiguel et al. (2009) use

diversi�ed portfolios with low volatility in their numerical simulations while

our simulations rely on individual assets with more volatility. The other reason

is that mean-variance traders in our model use more information-rich daily

return data. The �nal issue that plays a key role in explaining of simulation

results is �predictive power� of mean-variance traders (see section A.4 for

technical details). As the agents introduced in the current model are price

takers, they are able to produce price dynamics with realized statistics close

the expected statistics imposed at the beginning of simulations. It increases

their estimation accuracy, and makes their portfolios more stable.
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In addition to the Sharpe ratio, we also report the portfolios turnover.

This indicator provides evidence about the portfolio �stability�. The total

portfolio turnover is calculated as follows:

ϑi =
T
∑

t=1

j=J
∑

j=1

|̟i,∗
j,t −̟i,∗

j,t−1| , ∀i = 1, I (4.11)

where ̟i,∗
j,t−1 is agent i's portfolio weight in asset j at time t − 1 (or target

weight); ̟i,∗
j,t is the portfolio weight before rebalancing at time t; T is the

number trading days in the investment period (one year); J denotes the total

number of stocks.

Table 4.7 reports the average Sharpe ratio and the average portfolio

turnover; it allows to have a deeper understanding about the e�ects of transac-

tion costs on portfolio performance. The highest portfolio turnover, the high-

est reallocation volume and as a consequence, the highest transaction costs.

The reason why naive strategies perform poorly is visible in the turnover

amount. The portfolio turnover of agents characterized by following a naive

diversi�cation strategy is two times larger compared with those of rational

portfolio optimizers. Naive diversi�cation strategies appear to produce more

unstable portfolio weights, requiring larger trading volume when rebalancing,

as a results, naive agents incur more transaction costs.

To sum up, we report that classical mean-variance optimization rules still

outperform the naive rules in arti�cial market framework where the price dy-

namics is a direct result of agents' trades. Our �ndings are consistent with

those of Tu and Zhou (2011) and Levy and Ritov (2011). The performance of

unrestricted portfolio strategies outperforms the long-only and naive strategies

in both ecological competitions where the Sharpe ratio or the earnings rule

the reproduction rate of the populations. The reason behind this performance
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Figure 4.5: Ecological competition.
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Strategy Avg. Sharpe Ratioa Avg. Portfolio Turnover
N 0.690896 7.022831
MP 0.241616 6.275086
MLong 0.957809 4.361393
MShort 0.909716 4.326295
BLong 1.062356 4.361645
BShort 0.954551 4.347188
CLong 0.95105 4.384113
CShort 0.892726 4.321861

Table 4.7: Table represents the average Sharpe ratios and average turnover
amounts (calculated according to equation 4.11) of 8 trading strategies, held
by 100 agents each over 250 days (≃ 1 year trading), 3 assets. a the average
Sharpe ratio is calculated as follows = 1

I
× 1

T

∑T

t=1

∑I

i=1 Sharpe
i,∗
t The highest

Sharpe ratio and the highest turnover are in bold.

can be at least partly attributed to the �predictive power� of mean-variance

agents, their heterogeneity with respect to risk aversion, and higher stabil-

ity of their portfolios, resulting in less trading costs. These results suggest

that with appropriate combinations of degree of risk aversion and rebalanc-

ing frequency, an investor can signi�cantly improve his portfolio performance.

We search for optimal degree of risk aversion (section 4.2) and reoptimization

policy (section 4.4) that maximize investment earnings. Our analysis also re-

ports that even though the ex-ante parameters estimation of moments and

co-moments involves estimation errors due to the small size of sample, the

combination of mean-variance sophisticated rules and naive rules can improve

the performance of their individual counterparts.
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4.3 Risk Aversion Impact on Investment Strat-

egy Performance

4.3.1 Introduction

The degree of risk aversion determines portfolio holdings and subsequently

the distribution of wealth. In �nancial markets there is a trade-o� between

the risk involved and the expected returns. Risky �nancial securities should

generate, in equilibrium, a return higher than the one of the safer investments

such as Treasury Bills (Mehra and Prescott, 1985). For example, the CAPM

(Sharpe, 1964) assumes a linear risk-return relationship µP,t = rf + βPσi,t,

where µP is a portfolio expected return, rf the risk-free rate, βP the portfolio

beta and σi,t the market risk premium. Risk preferences of investors have a

direct impact on their investment decisions. A risk-averter (or conservative)

investor tends to hold more Treasury Bills than a risk-lover (or aggressive)

investor who will tend to invest in riskier stocks with higher expected return.

Thus, risk aversion a�ects the portfolio composition of investors and therefore

the distribution of future wealth. In other words, each trader invests his

capital in a portfolio re�ecting his risk-aversion.

In this section we address the question whether investors' survivability

depends on their risk preference. This work is motivated by empirical stud-

ies focusing on the relation between risk aversion and wealth dynamics (see

for example, Levy (2005)). Several agent-based simulations researches have

also investigated this question. In fact, some simulation-based works lean to-

wards a framework where investor optimal decisions depend on their wealth,

which is in line with the assumption of CRRA utility function (Levy et al.,

1995, 2000). Chiarella and He (2001) investigate the characteristics of as-

set prices and wealth dynamics arising from the interaction of heterogeneous

agents with CRRA utility. Levy et al. (1995) study the e�ect of heterogene-
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ity of preferences, expectations and strategies on wealth and price dynamics

with CRRA and logarithmic utility functions using a microscopic simulation

approach. Chen and Huang (2004b), Chen and Huang (2004a), Chen et al.

(2007) investigate relative risk aversion (later RRA) relation to wealth dy-

namics (CRRA utility function) and relationship between RRA and survival

dynamics (CRRA, CARA, Logarithmic, CAPM). They �nd that only the

CRRA investors with the RRA coe�cient close to one can survive in the

long-run time framework.

4.3.2 Simulation settings

We consider a securities market populated by a �nite number of mean-variance

traders with heterogeneous preferences, indexed by i ∈ 1, 2, ...I (I = 1000).

These agents have an open access to information concerning the underlying

probability distribution of security prices. This population heterogeneous only

with respect to the degree of risk aversion, which is uniformly distributed in

[0.1, 10]. They enter the market with 50 units of each class of assets and

$1000 in cash. These agents rely on the same estimation window length for

estimating the covariance matrix and returns and use the same rebalancing

frequencies.

As the mean-variance traders send only a few orders daily to rebalance

their portfolios, we implement a special type of agents, which provide liquidity:

the liquidity providers. These agents do not seek to increase their wealth

or decrease their portfolio risk, they trade rather randomly. These traders

allocate in the risky assets a random fraction of wealth (uniform distribution).
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̟i
j,t ∼ U(x|0, 100) ∀j =

−−→
1, J (4.12)

̟i
j,t =

̟i
j,t

∑J

n=1 ̟
i
n,t

∀j =
−−→
1, J (4.13)

J
∑

n=1

̟i
n,t = 1 (4.14)

The equations 4.12�4.13 guarantee a random distribution of weights in

[0,1], with a total sum equal to 1. Thus, we do not allow the liquidity providers

to have short positions or an aggregate negative wealth. The desired quantity

of stocks is then calculated based on the formula (4.6).

As liquidity providers do not seek to optimize their positions in the market,

we do not compare their performance with the other agents' results.

In addition, Milgrom and Stokey (1982) or Fudenberg and Tirole (1991)

stress the necessity of heterogeneous expectations, di�erent opinions and trad-

ing rules in the market. As mentioned in several publications Shatner et al.

(2000), Hommes (2006), heterogeneity of time scale for the agents' actions is

an important feature to obtain realistic price dynamics. We thus introduce

di�erent trading frequency Θ ∼ U(x|10, 1000) for di�erent investors; said dif-

ferently, agents rebalance their portfolio every Θ rounds. This condition helps

avoid an empty order book, which could result from a general cancellation of

orders by all the agents at the same time.

Results and Discussions First of all, we estimate the performance of trad-

ing strategies based on the end-of-the-period values like in most models deal-

ing with similar research question. Then, we put the agents in a competitive

market such that the populations of investors co-evolve: agents change their

strategy between the trading periods based on their historical performance.

Finally, we compare the results.
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We run 1500 days of trading (which corresponds to 6-year or 15 trading

periods, 100 days each). For the �rst trading period (100 days) we provide the

initial statistics for the traded assets to the mean-variance traders. During the

next periods, agents calculate assets statistics themselves, based on the gen-

erated price series. The traders do not change their risk preferences and their

trading strategies between periods (in an ecological competition framework

this constraint will be relaxed). We run 100 simulations with di�erent initial

asset statistics. We also test short-selling and long-only cases. We begin by

discussing the 3-asset case.

Figure 4.6(a) we depict the relationship between agents' risk preferences

and their wealth distribution. On the horizontal axis we set out the di�erent

initial parameters � risk aversion between 0.1 and 10, with 0.1 as an increment

in log-scale. The vertical axis shows the �nal wealth corresponding to these

di�erent initial parameters. A great di�erence between the wealth distribution

and its linear regression �tting (a gray solid line) indicates that the wealth

increases sharply for agents with risk aversion from 0.1 to 3.5. Thereafter, it

increases smoothly. This behavior can be explained by the composition of the

optimal portfolio. Kallberg and Ziemba (1983) provide guidance regarding the

signi�cance of the changes in risk aversion for optimal portfolio composition.

Agents with A > 4 are very risk averse and prefer portfolios with low variance.

If the degree of risk aversion A is superior of 4, the portfolio composition does

not vary even for large changes in A. Range 2 ≤ A ≤ 4 yields moderately

risky portfolios with a modest degree of change in the optimal portfolio with

changes in parameter A. The range 0 ≤ A ≤ 2 yields risky portfolios and

there are dramatic changes in the target weights for even small changes in A.

We also investigate risk-adjusted reward to the volatility of individual port-

folios, also known as the Sharpe ratio. Observing the Sharpe ratio dynamic

over di�erent risk aversion frameworks (see �gure 4.6(b)), we get similar re-

sults as Chen et al. (2007). Even if high-risk-averse agents choose assets with
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Figure 4.6: 3-asset long-only case. Each point is the averaged value of 100
simulations. X axis is in log-scale
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low risk and low return, they earn a higher the Sharpe ratio and a higher

�nal wealth. This e�ect can be explained by the mathematical properties of

the e�cient frontier. The �rst derivative of portfolio return µp with respect

to portfolio risk σp indicates that large values of A (the minimal variance

portfolio) correspond to a big slope on the e�cient frontier. Hence, conserva-

tive investors get signi�cant increase in portfolio returns by bearing a small

amount of extra risk. The slope becomes smaller when A decreases. The

second derivative of µp with respect to σp is negative, which means that the

e�cient frontier is concave. For large values of A, the second derivative has

a large negative magnitude, so the slope is sharply decreasing. With A → 0

the slope decreases much more slowly. Contrary to Chen and Huang (2004b)

and Chen et al. (2007), in our simulations, less risk-averse agents (A < 1)

do not run out of the market, even if, on average, they obtain a lower gain

than risk averters (A > 1). If the number of assets remains relatively small

and short selling is allowed, the Sharpe ratio distribution in relation to risk

aversion is close to that received with long-only constraint. Thus, the 3-asset

short-selling case is not considered in current work.

We continue to increase the number of trading assets. We now consider a

20-asset long-only case. The simulation results are presented in �gures 4.7(a)

and 4.7(b). Wealth has not such a sharp increase as in the 3-asset case (the

linear regression coe�cient now equals 0.02977): it rather increases smoothly

with the increasing risk aversion. This behavior can be explained by the

fact that the portfolio composition is a�ected di�erently by the changes in

A for di�erent number of asset classes that constitute the optimal portfolio

Kallberg and Ziemba (1983). The Sharpe ratio has an increasing dynamics

when risk aversion increases, but the di�erence between the maximum and

the minimum values is relatively small (1.644210 − 1.502465 = 0.141745).

Thus, we can conclude that risk aversion has a relatively small e�ect on the

variations of the Sharpe ratio.
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Figure 4.7: 20-asset long-only case. Each point is the averaged value of 100
simulations. X axis is in log-scale
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aversions. Regression coe�cient= 0.17709

Figure 4.8: 20-asset short-selling case. Each point is the average value of 100
simulations. X axis is in log-scale
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As soon as short-selling is allowed, one part of the risk taking agents runs

out of the market, while other agents with the same risk preferences A < 1

obtain a much higher wealth than in the constrained-portfolio case. Thus,

there are two possibilities for the risk taking agents: either they lose their

initial endowment, or they increase their wealth by a factor much higher than

the one of risk-averters. The conservative agents (risk-averters). On the one

hand have a moderate wealth increase factor, on the other hand, they have

few chances to lose their initial wealth (see �gure 4.8(a)).

Figure 4.8(b) as well as the regression coe�cient (0.17709) show that,

contrary to the constrained portfolio situation, risk aversion has a signi�cant

e�ect on the Sharpe ratio when short selling is allowed. Even if the Sharpe

ratio distribution exhibits a higher variance when the risk aversion increases,

conservative agents tend to considerably improve their the Sharpe ratio. We

can conclude that in the unconstrained portfolio framework it is better to be

risk averse and to invest in risk-free assets.

4.3.3 Ecological Competition Analysis of Strategy Per-

formance

Next, we compare the relative performance of investment strategies using

ecological competition. Initially, we consider an environment with N = 5

families of traders1 with populations xi i =
−−→
1, N in equal proportions (200

agents each) who interact through trading to obtain the highest possible wealth.

The only di�erence in population strategies is the risk preferences. 2×(i−1) <

Ai ≤ 2× i is the risk aversion measure for the population xi, i =
−→
1, 5.

The total number of agents is thus equal to 1000 and remains constant over

the simulations.

The strategy proportions of each family within this population are updated

1Liquidity providers are not included in competitions
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every n step corresponding to a "simulation generation" according to their

wealth (xi = X Wi

WT
, where Wi is the wealth earned by agent population i,

WT is the total wealth). One generation of competition corresponds to 100

trading days.

A family of agents is said to be run-out of the market if xi = X Wi

WT
< 1.

An analogous allocation principle is used with the Sharpe ratio instead of the

wealth criterion for the second set of simulations.

Ecological Competition Analysis: Short Selling Allowed

Figures 4.9(b) and 4.9(a) con�rm the results highlighted only with the end-

of-period results (see �gures 4.8(a) and 4.8(b)). When short selling is allowed,

the risk lovers compete with other agents in terms of wealth but quickly run

out-of the market in the competitions where the Sharpe ratio is used as a

performance measure.

Ecological Competition Analysis: Long-only

In the case of long-only constrained portfolios, the �gure 4.10(a) shows that

the highest (as well as the lowest) risk aversion values do not guarantee the

highest earnings. Risk lovers (0 < A ≤ 2) as well as absolute risk averters

(8 < A ≤ 10) run quickly out-of the competition (in ≈ 100 rounds). Only

the traders with a moderate level of risk aversion 4 < A < 6 survive in the

long run (> 500 rounds).

In the competition based on risk adjusted returns, the conservative traders

slightly outperform the aggressive ones (�gure 4.10(b)). These results are con-

sistent with those previously presented in �gure 4.7(b). A similar conclusion

emerges: risk aversion does not have a signi�cant impact on the Sharpe ratio

improvement.
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Figure 4.9: Ecological competitions: 20 assets, short-selling allowed. Strate-
gies are grouped by two for the sake of results tractability
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grouped by two for the sake of results' tractability



4.3. Risk Aversion Impact on Investment Strategy Performance183

If the market is populated by agents with constrained portfolios and agents

with unconstrained portfolios, traders using short-selling easily win the com-

petition for wealth. A possible explanation for these phenomena is that the

portfolio performance is improved because traders sell the assets that outper-

form (�sell overprices assets�) and buys the assets that underperform during

the trading period (�buy underpriced assets�). According to Levy and Ritov

(2011) the long-only strategies have zero-positions (αi,∗
j,t = 0) in about 50% of

the traded assets. Thus, the agents with long-only strategies rebalance only

half of their investment set to maintain their target weights. At the same

time, the agents with short-selling strategies trade the whole set of assets,

and increase their wealth more e�ciently.

4.3.4 Results and Discussions

The computational experiments performed in this research show a number of

important results. First, we show that the degree of risk aversion signi�cantly

a�ects the survivability of agents and their portfolio performance. However,

we cannot identify a unique and absolute �winner of game�. We also high-

light that the agents' pro�ts depend on market conditions and other market

participants as well.

By overcoming models based on �xed proportions of agents, we conclude

that the �nal wealth as well as agents' risk adjusted return not only depend

on their accuracy to predict expected returns and covariances of assets, but

also on their risk preferences.

Our model based on ecological competition characterizes the evolution of

agent populations when traders switch from the old strategy to a new one

(by adjusting their risk preferences) according to its performance in the past.

The main assumption is that all agents belonging to a group share the same

risk preferences (risk aversion range [Amin, Amax]), but are allowed to change
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groups between the trading periods. In such a way, the fraction of agents

using the same strategy characterizes its success in the past.

We report that when random traders and unconstrained mean-variance

traders populate the market, risk lovers (A < 2) outperform others when

wealth is used as the basis for ruling reproduction within the agent population.

However, they quickly run out of the market in the competitions based on the

Sharpe ratio. In that last case, only conservative traders survive in the long

run.

Furthermore, when short selling is forbidden (long-only case), the highest,

as well as the lowest risk aversion rates do not guarantee the highest earnings.

Aggressive (A < 2) and strongly conservative (A > 8) traders run quickly out

of the competition for wealth. Conservative traders beat aggressive traders in

the competition for a higher the Sharpe ratio of the portfolio.
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4.4 Reabalancing Frequency Impact on Invest-

ment Strategy Performance

A high rebalancing frequency reduces the portfolio performance due to trans-

action costs, whereas a low rebalancing frequency hides a risk not to react

in time to important market changes. Optimal rebalancing frequency helps

not only to control the risk, but also to enhance the portfolio return. In

the absence of transaction costs and when risky asset prices follow geometric

Brownian motions, the optimal investment policy is to constantly trade in

order to keep a constant dollar amount in each risky asset (Merton, 1971). In

the presence of transaction costs, trading continuously incurs in�nite trans-

action costs. There exists a series of works modeling an optimal tradeo� be-

tween rebalancing bene�ts and rebalancing costs. Akian, Menaldi and Sulem

(2004) consider an optimal investment problem with proportional transaction

costs and use numerical simulations to compute the no-transaction region.

Liu (2004) solve numerically the problem of the optimal transaction policy

when the risky asset returns are uncorrelated. The author shows that the

optimal investment policy in each risky asset is to keep the dollar amount

invested in the asset between two constant levels. Once the amount reaches

one of these bounds, the investor trades to the corresponding optimal targets.

Walter, Ayres, Chen, Schouwennars and Albota (2006) propose the dynamic

programming-based approach to construct a policy to trade only when the

costs of rebalancing is less than the cost of doing nothing.

There are two common methods for portfolio rebalancing: periodic (cal-

endar) (Donohue and Yip, 2003) and tolerance bands (Masters, 2003). The

calendar based approach is actively criticized in literature Walter et al. (2006).

This method relies on the fact that, on average, the portfolio becomes less and

less optimal, but it does not take into account the real portfolio and market

state. For this reason, in this research we consider only tolerance band (or
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drift-based) rebalancing method.

Our �rst contribution in this section is to derive the rebalancing policy

using agent-based simulations. An agent rebalances his portfolio in order

to maintain a long-term goal for asset allocation. The choice of rebalancing

frequency is an essential for reaching long-term objectives. Transaction costs

as well as taxes make frequent rebalancing highly unattractive. At the same

time, without rebalancing, the portfolio becomes less diversi�ed and is subject

to greater volatility.

4.4.1 Tolerance band rebalancing

When the market is stable, the portfolio is reasonably close to its target allo-

cations, hence, an investor can rebalance his portfolio only when the current

weights run far from the targets. But how far is too far? To determine when

rebalancing is e�cient, we should compare the bene�ts from rebalancing and

rebalancing costs. Moreover, the costs of rebalancing are increasing as the

drift out of target weights increasing. There are two main bene�ts of rebal-

ancing: performance improvement and risk control. Portfolio performance is

improved because the trader sells the assets that outperform (overpriced) and

buys the assets that underperform over current trading period (underpriced).

Tolerance band rebalancing is the method to trade only when the weight of

an asset class drifts outside the tolerance ranges. It can be more e�ective than

calendar-based rebalancing (rebalancing quarterly or annually) (Overway and

John, 2006). The optimal transaction policy is to trade only when the current

weights are far from the targets. Hence, the optimal way is to rebalance only

when the current portfolio weights run out the tolerance ranges. Portfolio

return tends to increase as tolerance is widened, but once it reaches the certain

limits return declines. We try to �nd an optimal tolerance range of deviation

around the target weights.
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There exit two types of tolerance ranges:

1. Absolute range is the �xed band for all assets. A commonly used range

is ±5%, that is the reasonable band.

2. Relative range is the relative band around each of target weights.

Tables 4.8 and 4.9 demonstrate the possible bands in case of absolute and

relative tolerance ranges. Algorithm 3 and Algorithm 4 aim at clarifying the

di�erence between absolute and relative range rebalancing.

Target weight min weight max weight
30 20 40
20 10 30
50 40 60

Table 4.8: 10% absolute tolerance range

for j = 1 to J do

αi
j,t =

∑

j=1,J pj,tq
i
j,t+Ci

t

pj,tq
i
j,t

if αi
j,t − αi

j,0 > T i then
Rebalance all portfolio

end

end

Algorithm 3: Absolute tolerance band. αi
j,0 target weight of wealth

hold by agent i invested in the stock j. αi
j,t current weight of wealth

hold by agent i invested in the stock j at the moment t. T i tolerance
band for weights deviation of agent i

Target weight min weight max weight
30 27 33
20 18 22
50 45 55

Table 4.9: 10% relative tolerance range
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for j = 1 to J do

αt =
∑

j=1,J pj,tq
i
j,t+Ci

t

pj,tq
i
j,t

if
αi
t−αi

j,0

αi
j,0

> T i then

Rebalance all portfolio
end

end

Algorithm 4: Relative tolerance band. αi
j,0 target weight of wealth hold

by agent i invested in the stock j. αi
j,t current weight of wealth hold by

agent i invested in the stock j at the moment t. T i tolerance band for
weights deviation of agent i

Additionally, several research studies indicate that it is not cost-e�ective

to return a portfolio completely the way back to its initial allocations. The

best way to minimize transaction costs is to do halfway back to initial weights.

Masters (2003) �nds the optimal tradeo� between the geometrically (quadrati-

cally) increasing bene�t of rebalancing and the linearly increasing transaction

costs. Masters (2003) argues that it is optimal to rebalance back only to

halfway between the target weight and boundary limit. It has been shown

that this strategy reduces transaction costs by approximately 50%.

Stewart (2005) empirically shows that it is better to take the portfolio

back to the target weights, but it is more pro�table to take it beyond the

targets weights. The results of the period he examines and the assets he

considers show the bene�t to overweight the assets that had underperformed

and underweight assets that had outperformed.

In the current work we test both methods of rebalancing complete way

back and halfway back to the target weights; absolute and relative bands of

deviation from targets (see �gure 4.11).



4.4. Reabalancing Frequency Impact on Investment Strategy
Performance 189

Figure 4.11: Scenarios of simulations

4.4.2 Simulation settings

We introduce 1000 mean-variance traders holding tree-asset portfolios.

Each of them has tolerance for deviation from the target allocation T ∈

{0%, 1%, 2%, ..., 100%}. Whenever a weight of an asset class drifts outside

its tolerance for deviation range, a portfolio is rebalanced.

The mean-variance agents are homogeneous with respect to their degree of

risk aversion A, that equal to 3. This choice is made based on the simulations

described in section 4.3. The degree of risk aversion 3 corresponds to the

moderate level of risk preferences. This parameter is constant during the

simulations.

We specify two market regimes: low volatility and high volatility (see table

4.10). Decreasing of tick size results in narrower bid-ask spreads. This directly

a�ects market liquidity and volatility. When the tick size is made narrower

and possible increments are �ner, then potential price changes may be smaller,

thereby resulting in less variable price changes. Hence, to increase market

volatility, we increase a tick size. In periods of high volatility transaction

costs are higher than those of the low volatility regime. We consider 0.1 %
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Low volatility
µ σ2 skew. kurt.

S1 0.0015 0.0181 0.1524 5.7657
S2 0.0026 0.0418 -0.0209 4.1524
S3 0.0009 0.0264 -0.4681 3.4666

High volatility
µ σ2 skew. kurt.

S1 0.0021 0.12257 0.02051 3.8434
S2 0.0014 0.08399 -0.2971 2.5589
S3 0.0012 0.06221 -0.0946 2.6621

Table 4.10: Statistical properties of each asset class. Volatility regimes are
parametrized by tick size.

transaction costs in low volatility regime, and 2% for high volatility regime.

Transaction costs are not included in the budget constraints. The capital C is

used for both purposes to buy the securities and to pay the transaction costs.

Thus, agents can run out of market (get negative total wealth).

Finally, as in section 4.1, we introduce the liquidity providers that behave

rather randomly and simplify price settings.

4.4.3 Results and Discussions

The averaged results of 100 runs of each scenario are summarized in table

4.11. In the low-volatility regime, the agents characterized by 0 < T ≤ 20

absolute range and halfway rebalancing rules, slightly outperform the others.

The wealth distribution of these agents exhibits high kurtosis (≈ 18) and high

skewness (1.004011), indicating that majority of agents get average wealth,

while the minority tend to outperform this average level. We can conclude

that the absolute drift range (0 < T ≤ 20) and halfway-back rebalancing rules

is an optimal tradeo� between rebalancing costs and rebalancing bene�ts.

Moreover, the distribution of wealth in �gure 4.12 reports that even though

5% tolerance band is actively used by market practitioners, in low-volatility
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conditions, they can tolerate until 20% deviation from the targets without

signi�cant losses.
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Figure 4.12: Wealth distribution. 0.1% transaction costs, low-volatility
regime, absolute tolerance band, halfway back rebalancing

In high-volatility regime, a frequent rebalancing or a large tolerance band is

not an optimal solution for gain maximization or even for risk adjusted return

improvement. A portfolio held by agents with low tolerance for deviation from

targets is a subject to high transaction costs (see �gure 4.13).

The portfolio of agent with high tolerance for deviations is the subject to

high risk (see �gure 4.14). The agent with low tolerance for deviation reduces

his portfolio risk by frequent rebalancing. However, he incurs wealth losses

due to the high transaction costs (2%). The results in the table 4.11 basically

point out that the halfway back rebalancing helps improve the Sharpe ratio

but it has a rather small impact on wealth increase.

The �ndings in this section basically point out the optimal rebalancing

policy in low- and high-volatility market in the presence of transaction costs.

Our simulations results con�rm the suggestions of Masters (2003) that the ab-
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Figure 4.13: Wealth distribution. 2% transaction costs, high volatility regime,
absolute tolerance band, complete rebalancing
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Figure 4.14: the Sharpe ratio distribution. 2% transaction costs, high volatil-
ity regime, absolute tolerance band, complete rebalancing
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solute drift range (0 < T ≤ 20) and the halfway back rebalancing is a tradeo�

between small repeated tradings and large costs for high volume rebalanc-

ing of largely declining portfolio from its targets in low volatility conditions.

However, the same rules have rather negative e�ect in high volatility regime.

The agents with low tolerance for deviations from targets loose easily their

initial wealth, even if they improve the Sharpe ratio of portfolio. These ob-

servations suggest a higher �exibility in investment strategies: to rebalance

less frequently, but look more frequently at price dynamics to �nd the best

rebalancing opportunities.
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Complete Halfway
0 < T ≤ 20 20 < T ≤ 40 T > 40 0 < T ≤ 20 20 < T ≤ 40 T > 40

min 4480.55 1451.53 1383.35 11055.09 4732.24 3746.65

A
b
so
lu
te

L
ow

max 91831.1 4974.11 5010.28 53248.75 50417.45 25106.58

mean. 9142.87 4138.10 4081.17 22291.08 16578.84 7349.90

skew. 4.03639 -1.36271 -1.2016 1.004011 1.362383 1.671348

kurt. 14.7653 0.32726 -0.43695 18.86696 9.86747 2.662102

Sharpe 1.3000625 1.3109093 1.3171058 1.431137 1.424201 1.408475

min 4181.64 4736.14 3935.22 9638.94 9633.82 1761.14

R
el
a
ti
v
e

max 5105.05 5245.77 5185.38 31773.78 31493.45 32387.11

mean. 5060.69 5082.15 5029.46 21949.21 21918.38 11958.63

skew. 4.70747 -1.509016 -3.369181 -0.5582034 -0.5535263 0.9118452

kurt. 21.5114 2.521223 12.12310 -1.354962 -1.366551 -0.7340671

Sharpe 1.1779515 1.1853119 1.1845493 0.9884437 0.986747 0.954649

min 593.24 5201.98 5861.35 1223.87 2007.83 4579.79

A
bs
ol
ut
e

H
ig
h

max 8161.01 8453.41 11321.10 2137.45 5831.42 6740.29

mean. 6391.73 6576.76 7453.12 1380.12 4901.85 5702.5

skew. -2.350237 0.6809661 1.105914 1.886898 -1.246212 -0.3178618

kurt. 5.466913 -0.3249746 -0.2448154 1.691031 -0.3578788 -0.7341588

Sharpe 0.2989989 0.2006190 -0.01141703 0.2618616 0.2808233 0.1582175

min 963.35 5804.17 6369.36 936.38 928.06 937.75

R
el
at
iv
emax 6586.71 7081.81 7028.13 1453.61 1446.12 5731.11

mean. 4773.17 6457.12 6581.23 1134.12 1136.81 2680.99

skew. -0.871587 -0.1288835 1.209252 0.6130973 0.5794839 0.4508615

kurt. -1.055114 -0.4300516 0.02682 -1.517962 -1.559853 -1.554189

Sharpe 0.05324615 0.05304157 0.05468743 0.5380607 0.5378979 0.4924253

min � minimum value, max � maximum value, mean � mean value, kurt. � kurtosis, skew. � skewness, Sharpe �
the average Sharpe ratio

Table 4.11: Statistics of wealth distribution for di�erent tolerance bands

4.5 Conclusion

In this section we have introduced the mean-variance model within the arti-

�cial stock market framework. One of the critics of agent-based models is its

calibration and validation. For this reason, we have focused on these di�cult

issues. We have examined the ability of arti�cial agents to produce realistic

market dynamics in di�erent market conditions and time horizons. The re-
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sults have pointed out statistical properties of the multi-asset arti�cial market

similar to those of real market.

Next, we have applied this model to answer some important questions of

portfolio optimization. The major bene�t of our approach is its �exibility

compared with backtesting, actively used in �nancial studies. Indeed, the

ABM approach allows (i) any number of traders on the market (ii) combi-

nation of large variety of strategies (iii) any number of risky assets. This

�exibility provides a distinct advantage over alternative approaches to the

portfolio optimization problems.

Contrary to research works claiming the uselessness of the Markowitz the-

ory, we have reported that this classical rule still outperforms the naive rules

in the arti�cial market framework where the price is a direct result of in-

vestors' trade and transaction costs are incurred whenever security is traded.

Our result has shown that naively diversi�ed portfolios are sub-optimal. This

conclusion has stressed the importance of transaction costs and individual

preferences in portfolio optimization model and has motivated the studies in-

troduced in section 4.3 and 4.4. Special attention has been paid to the e�ects

of degree of risk aversion and rebalancing frequency on portfolio performance

in the presence of transaction costs.

The importance of attitude toward risk of agents was evident in the results.

However, extensive simulation results could not provide us the best behavior in

all market conditions. Likewise, the simulation results have indicated that the

rebalancing frequency is an important factor a�ecting portfolio performance.

However, we could not identify a unique winner of game. This speaks for the

importance of market conditions and other market participants on strategy

performance. Thereby, for thorough evaluation a strategy needs to be tested

in di�erent circumstances: during periods of high and low volatility, in the

presence of other heterogeneous traders. We have shown that the ATOM

platform perfectly suits for this sort of experiment.
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Several intriguing topics for future research arise from the results. For ex-

ample, we can establish the relationship between the length of the estimation

window (memory span) and portfolio performance. Consequently, it could be

interesting to investigate an optimal combination of all parameters: memory

span, rebalancing frequency, and risk aversion. Furthermore, the sensitivity

analysis of parameter changes could be examined in more detail when various

market conditions prevail.
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Strategy pro�tability analysis is an important question in �nance. For

instance, there is a long debate about pro�tability of technical trading tech-

niques since Fama and Blume (1966). Recent empirical studies (Brock et al.,

1992; Blume et al., 1994) report evidence for the pro�tability of technical anal-

ysis, that is able to "beat the market". It is conceivable that, by repeatedly

examining di�erent trading rules using the same data set, some rules would

appear to be pro�table, yet such pro�tability may simply be due to luck. This

concern is shared by academic and market professionals (Bass, 1999; LeBaron

et al., 1999). In order to clarify the debate, White (2000) proposes a formal

test, White's Reality Check, on whether there exists a superior model (rule) in

a "universe" of models (rules). White's Reality Check requires constructing a

"full" universe of trading rules.

In this chapter we estimate the complexity of constructing a "full" universe

of strategies. We also introduce a new method for the determination of the

upper-bound in terms of maximum pro�t for any investment strategy applied

in a given time window [0, T ]. This upper bound is characterized once all the

prices are known at time T and therefore stands for an �ex-post� maximum

e�ciency to any investment strategy determined during the relevant time

interval. This approach, later called S∗, allows gauging in absolute terms

behaviors de�ned with atomic �buy� and �sell� actions and can be extended

to more complex strategies. We show that, even in the �ex-post� framework,

it is extremely complex to establish this upper bound when transaction costs

are implemented.

This approach is also useful in agent-based framework. S∗−determination

approach can provide the information concerning allocative e�ciency observed

in arti�cial market. Following Smith (1962), one can de�ne allocative e�-
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ciency of markets as the total pro�t actually earned by all agents divided

by the maximum total pro�t that could have been earned by all the traders

(total surplus extracted). S∗ can be a measure of allocation performance of

individual traders, as the pro�t actually earned by the agent divided by the

maximum pro�t that he could earn.

Sections 5.1 and 5.2 describe the context of this problem, provide simple

illustration, and introduce some important terminology used later. We �rst

describe this problem using a linear programming framework in section 5.3.

Thereafter, we propose to embed this question in a graph theory framework

and show that the determination of the best investment behavior is equivalent

to the identi�cation of an optimal path in an oriented, weighted, bipartite

network or in a weighted directed acyclic graph in section 5.3.4. Section 5.5

illustrates this method using various real world data and makes a new point

on the notion of absolute optimal behavior in the �nancial world.

5.1 Introduction

Performance gauging in Finance is a complicated issue that generates a se-

ries of methodological questions (Sharpe, 1991; Elton, Gruber and Blake,

1996; Malkiel, 2004). In assessing the performance of a sequence of invest-

ment/divestment actions relating to a �nancial asset over time (for example

a particular tracker fund), two frameworks can be considered.

The �rst option is to adopt an ex-ante evaluation point of view, answering the

following question: �Were the choices of the investor, given his knowledge of

the future at that time, optimal or not when they were realized?�. This point of

view acknowledges that investment occurs in a stochastic context and that a

poor ex-post result does not necessarily indicate that bad decisions were made

ex-ante, or during the decision process. Notice that this ex-ante performance

assessment requires an awareness of the investor's conception of the future at
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each stage in the process, and is therefore di�cult to achieve in practice.

The second option is to adopt an ex-post evaluation approach, which con-

siders only the statistical result of a given investment strategy over time, once

price dynamics are perfectly known. This approach is widely used in profes-

sional asset management. For example, the performance of various investment

styles is gauged using this technique. Financial journals use this ex-post ap-

proach to create yearly rankings and to report on the performance of asset

managers and funds. In the latter case, performance is evaluated using a rel-

ative comparison among funds, as it is impossible to know what would have

been the best behavior during the relevant period, or how the best output

compares with the performance upper bound.

This paper can provide, in the ex-post framework previously described,

the upper bound to any investment strategy in a given time window, for the

trading of a single �nancial asset. We do not address strategic/tactical allo-

cation or the operational process that allows fund managers to identify states

in the market where buying or selling is particularly appropriate (for example

in exploiting results delivered by neural network forecasting). Neither do we

propose a method that ranks various strategies in terms of risk-return per-

formance (although our approach might be extended to this bicriteria frame-

work). Instead, we o�er a computational characterization of the pro�ts upper

bound that might have been reached, by chance or skill, in trading a single

�nancial asset during a given time-window.

Computing this limit allows the determination of an ex-post optimal strat-

egy S∗ that actually delivers the upper bound. We call this problem the

S ∗−determination, and show that it is far from trivial, despite its similarity

to many popular models that have frequently proved completely ine�cient.

Our new method delivers an absolute performance indicator geared towards

the ex-post evaluation of a wide range of trading strategies.

This upper bound can be characterized using a linear programming frame-
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work and solved with a simplex approach or with dynamic programming for-

malism. Nevertheless, if these methods are theoretically correct, they su�er

from severe limitations in terms of computability (in the worst case, the under-

lying algorithm being non-polynomial for the simplex). We therefore propose

to embed this question in a graph theory framework and to show that deter-

mining the best investment behavior is equivalent to identifying an optimal

path in an oriented, weighted, bipartite network. We illustrate these results

with real data as well as simulated algorithmic trading methods.

5.2 Elements of the game, formalizations and

examples

5.2.1 Elements of the game

Consider the situation in which one investor has realized a sequence of invest-

ments/divestments for a given �nancial asset (a stock, an index or a portfolio)

during a given time window [t = 0, t = n]. At time t = n, his actions (for

example Buy, Sell) and the prices at which they were undertaken (that is,

the historical price series −→p = {pt|t ∈ [0, n]}) are perfectly known. We do

not focus on �how� the investor behavior has been formed (for example, this

investor should have generated trading rules with genetic programming), or

on the relevant information that are needed to do so. We rather focus on the

decisions it delivered as data and that lead to a speci�c pro�t (or loss) at time

t = n.

This investor has the opportunity to assess his performance with respect to

the best possible behavior in this time window. This assessment can be made

checking whether or not his behavior matches the absolutely optimal set of

actions that could have had realized. Notice this optimal set can theoretically

be computed at time t = n since all the prices are known.
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This comparison requires some hypotheses to be respected. The following

�rules of the game� present these hypotheses and describe a formal frame-

work in which the actual set of undertaken, compared actions can be matched

against any other set of trades pertaining to the same conditions, and specif-

ically, to the absolutely optimal set of actions.

Market liquidity: Let's assume that the prices in [t = 0, t = n], n ∈ N

are those at which this investor has had the opportunity to rebalance his

portfolio. We posit a price-taker framework, i.e.. The agent's decisions cannot

a�ect these prices; su�cient liquidity at these prices is assumed.

The �all or nothing� general constraint: We now de�ne a set of �rules�

for this investor, in other words, a series of constraints on his behavior. These

simpli�cations are useful in allowing rigorous comparisons between sets of ac-

tions (strategies) undertaken during a given period. In this article, these rules

de�ne an �all or nothing� behavior: whether the investor is totally invested in

the risky asset or has realized all his wealth in cash:

• At the initialization stage (i.e. at t = 0), the initial wealth W0 of the

investor is composed of a certain amount of cash (C0) and no stock

(A0 = 0): W0 = A0 +C0. At date t = 1 (the beginning of the game) we

posit C1 to be equal to the �rst price of the considered time series.

• The investor must decide for each t ∈ (1, n) one speci�c action with re-

gard to the composition of his portfolio: Buy, Sell or Remain unchanged

(respectively coded B, S and U). In other terms, the investor has to com-

pose a �sentence� of size n using characters in B,S,U. The interpretation

of each of these actions is as follows:

� Buy: One can write B if and only if Wt−1 = Ct−1. If B is written at

date t; all the investor's cash is converted into assets (delivering a

B
S
U
B,S,U
B
B
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new quantity for At 6= 0), assuming transaction costs at a c% rate,

At =
Wt−1

pt × (1 + c)

Additionally, the �rst character in any sentence must be a B.

� Sell: if and only if At−1 6= 0, the investor can write S and convert

his position into cash. Considering an identical rate of transaction

costs c,

Ct = At−1 × (pt × (1− c))

� Remain Unchanged: Whatever the nature of Wt−1 (cash or assets),

he can also decide to write U and let his position remain unchanged

at date t: Wt = Wt−1.

• This �sentence� is one investment strategy Si over
−→p chosen in a set of

strategies {S}. Notice, that in this framework Card{S} = 2n.

Note that these �rules of the game� can be used by the investor without

knowing the future prices (he performs ex-ante decisions by de�nition) and

will deliver di�erent results: each instance of Si can be gauged in terms of

relative performance with respect to any other strategy Sj,j 6=i (and recipro-

cally). Among these strategies, the best possible one in terms of maximum

pro�t, denoted by S∗, can be determined ex-post the realization of the price

sequence (when t = n). Consequently, the objective function is:

S∗ → max(Wt+n −Wt) (5.1)

Thus, it can be generated by an investor acting in the �ex-ante� framework

by chance or skill (the latter alternative is not discussed here). In any case, S∗

is the upper bound in terms of absolute performance in {S} and therefore a

much more interesting parameter for gauging any strategy Si. As we will show

B
S
U
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later, the best strategy is relatively easy to identify when transaction costs

are not implemented. When transaction costs alter pro�ts, this identi�cation

is far more complex.

5.2.2 Basic illustration

Let's consider the following (arbitrarily chosen) price series (see Table 5.1 and

Figure 5.1):

t 1 2 3 4 5 6 7 8 9 10 11 12
pt 100 120 90 160 126 150 140 160 110 170 168 180

Table 5.1: Basic Arti�cial Time Series
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Figure 5.1: Basic arti�cial time series & some strategies

This example illustrates simply that, when transaction costs are minor (or

absent), the best strategy consists in accumulating all positive spreads (i.e.

positive slopes) observed in Figure 5.1. This strategy is denoted S1∗ in Table

5.2 (see also Figure 5.1). When transaction costs are implemented, the same

strategy becomes far less interesting (see S3, Table 5.2). Some trades are

simply not pro�table in the context of high transaction costs. The optimal

strategy when such costs are supported is S2∗ (see the same Figure and Table).

It does not consist of realizing all pro�table trades as soon as they are observed
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in the price sequence (for example �Buy� in position 9 and �Sell� in position

10). It is clearly di�erent from the situation in which there are no transaction

costs, and does not match trivial formulations such as the following, which

would lead to S5 in Table 5.2:

�capture the biggest spread in the price sequence (thus, here �Buy at time

3� and �Sell at time 12�), then eliminate all impossibilities in further trades

implied by the rules of the game (thus, it remains one potential trade between

time 1 and 2 ...), and repeat this loop until all net positive trades are realized

( trade between times 1 and 2 would not be realized here because it is not

pro�table with 10% TC)�.

t 1 2 3 4 5 6 7 8 9 10 11 12 W12 −
W1

pt 100 120 90 160 126 150 140 160 110 170 168 180

T
C
=
0.
0 S1∗ B S B S B S B S B S B S 480.61

S4 U U B S B U U S B U U S 369.41

T
C
=
0.
1 S2∗ U U B S B U U S B U U S 202.33

S3 B S B S B S B S B S B S 144.17
S5 U U B U U U U U U U U S 163.64

Table 5.2: Some Strategies among all 212 potential sentences

Note that S2, which is similar to S3∗ in a transaction-cost free framework,

is not as interesting as S1∗. An easy way to solve this problem when trans-

action costs are implemented is to generate all possible sentences and to use

these to compute the net earning and identify S∗. This set is of �nite size 2n

and thus exponential. As we will now show, there are at least two ways to

improve e�ciently the computation of the optimal strategy S∗, whatever the

level of transaction costs. One is based on a simplex method, another relies

on locating an optimal path in an oriented bipartite network.
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5.3 Mathematical models: linear programming

method and search in graphs

In this section, we show that the identi�cation of S∗ can be described as

a linear programming problem with a classical simplex solution. Unfortu-

nately, this approach is relatively ine�cient since the simplex algorithm is

non-polynomial in the worst case (i.e.; one may lack the necessary computing

resources to obtain a result immediately, as soon as the size of −→p becomes

important. We also present a solution that uses the Bellman (1957) dynamic

programming approach.

5.3.1 Initial simpli�cation

Before formal results are presented, we introduce the two theorems neces-

sary for solving the problem. These preliminary elements aim to simplify the

solution we propose.

First simpli�cation: �ltering the price sequence.

Let's consider the price vector −→p consisting of three consecutive prices pt,

pt+1, pt+2 and the function

R(x, y) = y(1− c)− x(1 + c) (5.2)

In equation 5.2, the R(x, y), function computes the net earnings of

successive buy and sell actions with c% transaction costs. In this equation, x

denotes the price at which one buys and y the price at which one sells. By

de�nition, y appears later in the time sequence than x. We show that S∗ in
−→p , as de�ned on page 202, can be identi�ed in a subset of −→p denoted

−→
fp,

consisting of the extreme points in the price sequence (peaks and troughs) and
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ignoring any intermediary points (here, pt+1). We assume pt+2 ≥ pt+1 ≥ pt.

Therefore R(pt, pt+2) > R(pt, pt+1) and R(pt, pt+2) > R(pt+1, pt+2). In this

latter case, pt+2 is a peak while pt is a trough.

Theorem 1 Ignoring intermediary points: Identifying S∗, pt+1 can be ig-

nored.

Proof 1 Reductio ad absurdum / proof by contradiction:

If it were not the case, since buying and selling on the same date is not allowed:

R(pt+1, pt+2) > R(pt, pt+2)

Therefore: pt+2(1− c)− pt+1(1 + c) > pt+2(1− c)− pt(1 + c)

Which can be simpli�ed: −pt+1 > −pt

Thus, pt+1 < pt since, by de�nition pt+1 > pt

Q.E.A

Note that an analogous demonstration can be made in the case where

pt+2 ≤ pt+1 ≤ pt. As a consequence, if pt+1 is an intermediary point, as

revealed previously; it is unnecessary to identify S∗. In other words, if one

considers a complete price sequence −→p , only peaks and troughs should be

used to identify S∗ (that is,
−→
fp).

Lemma 1 No inclusion of losses: To identify S∗, one can ignore all situa-

tions in which R(x, y) < 0.

In other words, no trade with negative net earnings can be included in the

best strategy, which also excludes situations in which the so-called �buy and

hold� strategy is unpro�table.
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Determining two subsets of prices for potential �buy� and �sell�

actions.

From Theorem 1 we know that it is necessary and su�cient for determining

S∗ to focus on extreme points in the price sequence. We now show that
−→
fp can itself be divided into two separate sub-vectors of peaks and troughs

corresponding to two independent potential buy and sell positions in −→p (resp.

denoted
−−→
fpB and

−−→
fpS).

Let's consider four consecutive prices pt, pt+1, pt+2, pt+3 such as pt+1 > pt,

pt+3 > pt+2 and pt+2 < pt+1. In the latter case, we do not consider a situation

in which pt+2 > pt+1, as it is equivalent to the initial simpli�cation case

discussed previously.

Theorem 2 To identify S∗, none of the
−−→
fpB can be associated with a decision

S and none of the
−−→
fpS can be associated with a decision B .

Proof 2 (i) Since pt+1 > pt ⇒ R(pt, pt+3) > R(pt+1, pt+3). Then pt ← B ≻

pt+1 ← B with �←� denoting �can be associated with a decision ...� and �≻�

the preference operator.

(ii) Similarly, since pt+2 < pt+1 ⇒ R(pt+2, pt+3) > R(pt+1, pt+3). Then pt+2 ←

B ≻ pt+1 ← B

From Lemma 1 we know that the situation in which pt+3 < pt can be omitted.

Therefore, from (i), (ii) and Lemma 1:

�whether pt ← B and pt+1 ← U from (ii); thus pt+2 ← {U } and pt+3 ←

{U or S }

� or pt ← U and pt+1 ← U ; thus pt+2 ← {U or B } and pt+3 ← {U or S }

(pt, pt+2)← {U or B };
−−→
fpB = {pt, pt+2}

(pt+1, pt+3)← {U or S };
−−→
fpS = {pt+1, pt+3}

Q.E.D

S
B
B
B
B
B
B
U
U
U
S
U
U
U
B
U
S
U
B
U
S
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This theorem does not state where to buy or to sell in the subsets
−−→
fpB

and
−−→
fpS to identify S∗. It uniquely states that it is not worth buying in any

element of
−−→
fpB or selling in any element of

−−→
fpS.

5.3.2 A linear programming method for the identi�ca-

tion of S∗

A �rst way to solve the S∗ determination problem is to use a linear pro-

gramming method. The basic idea here is to maximize an objective function

subject to a set of constraints formalizing the rules in which this problem is

embedded. We now expose how this program should be written.

Let a(i, j) denote the potential bene�t one can obtain if pi ∈
−−→
fpB and

pj ∈
−−→
fpS. Notice a(i, j) is computed using equation 5.2. To be more explicit:

a(i, j) = pj(1− c)− pi(1 + c), with pi ∈
−−→
fpB and pj ∈

−−→
fpS (5.3)

Let x(i, j) be a dummy variable coding 0 or 1 that will be used to ignore (resp.

to identify) transitions between any two prices pi and pj. If pi ← U or pj ← U

then x(i, j) = 0, else x(i, j) = 1. The S∗ strategy consists in increasing an

initial wealth Wt to obtain the maximum terminal wealth Wt+n in selecting an

optimal set of trading actions at pi and pj. Using the notations de�ned above,

the identi�cation of S∗ can be done solving the following linear problem:

max
∑

(i,j)∈−−→fpB∪−−→fpS

a(i, j)x(i, j) (5.4)

U
U
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(s.t.)

∑

(i,j)∈S∗

x(i, j) ≤ n (5.5)

∑

(i,j)∈
−−→
fpB∪

−−→
fpS

x(j, i) + x(i, j) ≤ 1, ∀i ∈
−−→
fpB (5.6)

∑

i,k∈fpB

x(i, k) +
∑

j,k∈fpS

x(j, k) = 0 (5.7)

∑

i>j

x(i, j) +
∑

j>i

x(j, i) = 0, ∀i ∈
−−→
fpB , j ∈

−−→
fpS (5.8)

0 ≤ x(i, j) ≤ 1, ∀i ∈
−−→
fpB , j ∈

−−→
fpS (5.9)

Literally, the objective function (5.4) states one seeks to maximize the

total bene�ts in trading (that is, to identify S∗). Note that the program in

Equation 5.4 to Equation 5.9 is equivalent to Equation 5.1.

Constraint (5.5) implies that S∗ cannot be composed of more than n prices

(if the graph has n nodes) while constraint (5.6) requires that the number of

matching edges incident to vertex i not exceed one.

Constraint (5.7) guarantees the absence of any connection inside buy and sell

subsets.

Constraint (5.8) does not allow backwards in the price series with respect to

their sequential ordering.

Constraint (5.9) requires that x(i, j) = 1 if a trade occurs between position

i and j in
−→
fp , otherwise, x(i, j) = 0 (This constraint requires that each edge

(i, j) not be used in the matching more that once). This latter constraint

means that the problem can be solved by simplex method.

However, it is virtually impossible to explicitly enumerate all these constraints

when
−→
fp is of moderate size. It is also recognized that the simplex algorithm

is exponential even if it can be solved for certain cases in polynomial time.
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Provided the problem does not involve integers,1 an underlying matrix of

dimension (m,n) (where n is number of variables and m, the number of con-

straints) will lead to an exponential computational time O(nm) which means

that any computation of such an algorithm for large price sequences will have

a signi�cant computing elapsed time.

5.3.3 An alternative dynamic programming method

The S ∗ −determination problem can also be described in the terms of the

Bellman (1957) equation.

We �rst need to de�ne an objective utility function, which, in the present

case, is simply the investor's �nal wealth maximization: Wn = Qn×pn+Cn →

max. Let's consider that at moment k − 1 we are in the state xk−1, then

following control:

uk =































buy







complete

partial
k = 1, 3, · · ·n− 1,

sell







complete

partial
k = 2, 4, · · ·n

leads the system to state xk = fk(xk−1, uk) and future controls

uk+1, uk+2, ..., un should be de�ned with respect to the optimality in the state

xk. The di�culty of this problem is that we do not try to maximize the value
∑n

i=1 fi(xi−1, ui), but are rather interested in the maximization of the �nal

wealth. Therefore we can rewrite the problem as a recursive de�nition of the

value function:

Wn = Qn × pn + Cn → max (5.10)

1In this last case, the problem is clearly NP-Hard, see for example Garey and Johnson
(1979)
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Wk = Qk × pk + Ck (5.11)

Ck =































Qk−1 � pk complete if k = 2, 4, · · ·n,

ℜ � pk partial if k = 2, 4, · · ·n,

0 complete if k = 3, 5, · · ·n− 1,

Ck−1 −ℜ � pk partial if k = 3, 5, · · ·n− 1.

(5.12)

Qk =































0 complete if k = 2, 4, · · ·n,

Qk−1 −ℜ partial if k = 2, 4, · · ·n,
Ck−1

pk
complete if k = 3, 5, · · ·n− 1,

ℜ partial if k = 3, 5, · · ·n− 1.

(5.13)

C1 = 0 (5.14)

Q1 = X (5.15)

ℜ < X (5.16)

k = 2, · · ·n (5.17)

This problem can be solved with backward induction method with running

time O(n3) which is an improvement with respect to the simplex method but

remains more complex than the S∗ algorithm described further.

We now propose to develop an alternative approach for this problem al-

lowing an e�cient solution. We tackled the S∗ determination problem as the

identi�cation of an optimal path in an oriented bipartite network.
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5.3.4 Embedding the identi�cation of S∗ in a graph

structure

Let each price in
−→
fp be depicted as a vertex in a network. The cardinality of

this subset is equal to k. Each vertex is indexed with an integer with respect

to its place in the price series. We show now how to construct a bipartite,

oriented and weighted network N
(

E,
−−→
fpB,

−−→
fpS

)

connecting points in
−−→
fpB and

−−→
fpS.

De�nition: Let ℵX represent the subset of vertices succeeding vertex X.

The network N is de�ned by the successors of each vertex.

Graph construction: The initial situation from which we start is: ∀X ∈
−→
fp,ℵX = ∅. From this situation, two di�erent kind of edges can be built:

• Trading edge (TEi,j): for any two vertices i ∈
−−→
fpB and j ∈

−−→
fpS, vertex

j ∈ ℵi if and only if:

1. j > i (to ensure temporal consistency)

2. c being the rate of transaction costs,

Ri,j = pj(1− c)− pi(1 + c) ≥ 0 (5.18)

• Forward edge (FEm,n): for any two vertices m ∈
−−→
fpS and n ∈

−−→
fpB,

n ∈ ℵm if and only if:

1. n > m (which ensure temporal consistency)

2. ℵn 6= ∅

Notice we impose a time consistency rule, similar to equations 5.7 and 5.8,

to avoid backward connections in this bipartite oriented graph. This means
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that a starting vertex pt+k cannot be connected to an ending vertex pt+l with

k ≥ l.

The rule presented in equation 5.18 obviously determines a pro�t as in equa-

tion 5.2. For any two vertices, these pro�ts can be analyzed as weights for the

corresponding edges of N .

Consequently, we receive a balanced quasi-bipartite, weighted and directed

network. We propose to interpret weights computed with 5.18 as distances

between two vertices.

In the construction of N , one can see that the number of edges depends

upon the level of transaction costs c:

• The greater c makes the network N sparser and the solution of the

problem easier.

• When c  0, the number of edges increases and makes the network

dense. For a speci�c threshold, θ, N is a complete antisymmetric net-

work (with respect to the time consistency rule). θ can be computed

linearly; for any two consecutive prices in fp, pi ∈
−−→
fpB and pj ∈

−−→
fpS:

θ = min(pj − pi)/(pj + pi), ∀(i, j) (5.19)

In the example provided in section 5.2.2 (see table 5.1), this threshold

is 3%.

Proposition 1 If c < θ, then the S ∗ −determination problem is the maxi-

mum number of edges appearing in the path.

When c < θ, N is completely antisymmetric. In this situation, we can

derive Theorem 3.

Theorem 3 If c < θ and any 4 consecutive prices pt, pt+1, pt+2, pt+3 in a

�ltered price series such as
−→
fp (see section 5.3.1) with R(t, t+1) > 0, R(t, t+
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3) > 0, R(t+ 2, t+ 3) > 0 then:

R(t, t+ 1) +R(t+ 2, t+ 3) > R(t, t+ 3)

Proof 3 We make the di�erence between R(t, t + 1) + R(t + 2, t + 3) and

R(t, t+ 3) to show that this di�erence is positive.

−pt(1 + c) + pt+1(1− c)− pt+2(1 + c) + pt+3(1− c) + pt(1 + c)− pt+3(1− c) =

pt+1(1− c)− pt+2(1 + c) =

(pt+1 − pt+2)− c(pt−1 + pt+2)

From that point it is clear that if: c = pt+2−pt+1

pt+2+pt+1
⇒ pt+1(1−c)−pt+2(1+c) = 0

and if c < pt+2−pt+1

pt+2+pt+1
or c < θ, ⇒ pt+1(1 − c) − pt+2(1 + c) > 0, thus R(t, t +

1) +R(t+ 2, t+ 3) > R(t, t+ 3)

Q.E.D

Thus, if c < θ, computing the longest path taking into account the pro�ts

made at each Trading Edge is similar to computing the longest path in terms

of number of edges appearing in the path: ∀c < θ, S∗ =
∑k−1

i=1 TEi,j=(i+1). In

other terms, when c < θ, it is proved that S∗ is the path connecting all the

edges as they appear in sequential order (see �gure 5.2(a)). S∗ connect all

the vertices.

!"

!"#$

!"#%

!"#&

!"#'

!"#(

(a) Complete Bipartite Network

!"

!"#$

!"#%

!"#&

!"#'

!"#(

(b) Incomplete Bipartite Network

Figure 5.2: Di�erent paths related to di�erent levels of c regarding Θ

When c > θ, this result cannot be established and the longest path taking

into account the pro�ts made at each Trading Edge is not similar to computing

the longest path in terms of the number of edges on it. For example, in Figure

5.2(b), we posit c such as R(t+ 2, t+ 3) < 0; one cannot follow a path in the
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Figure 5.3: Evolution of complexity and computing time

price series connecting all vertices; several potential and interesting paths can

be discovered (see Figure 5.2(b)) and therefore must be compared to determine

S∗. One way to tackle this problem might be to compute all possible paths,

thus delivering an exponential algorithm.

Notice (i) that the maximum complexity of the task appears when c = θ+ε

and decreases gradually beyond this threshold (see Figure 5.3); (ii) a numerical

illustration of the graph construction is provided in Annex 1.

We now show how to solve this computational problem using algorithms

to determine S∗ in this graph formalism.

5.4 The S ∗ −determination algorithms

In order to make this paper self-contained, we present two di�erent algorith-

mic solutions for the S ∗ −determination problem. The �rst derives from a

technique demonstrated by Floyd (1969); the other is an algorithm for search-

ing of the longest paths in a directed acyclic graph (DAG). We have chosen to

emphasize the �rst algorithm, as it is very e�cient, simply programmed, and

widely used (Papadimitriou and Steigleitz, 1998). Although the Floyd algo-

rithm is outperformed by the DAG longest path algorithm in running time,

its pedagogical bene�ts outweigh its drawbacks. The other advantage of the

DAG longest path algorithm is that it takes into account the number of both
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vertices and edges as parameters for characterizing algorithmic complexity.

This assumption is very important as the number of edges may vary greatly

with changes of transaction costs, making the graph dense (c  0) or sparse

(c 1).

5.4.1 Floyd algorithm approach

In the Floyd algorithm for the shortest-path problem, most steps consist of

pairwise comparisons and additions of integers. When the Floyd algorithm

is performed with a maximization instead of a minimization procedure, it

produces themaximum longest path that corresponds, in our formalism, to S∗.

However, we must consider that the absence of an edge between two vertices

must be interpreted as a length −∞, whereas in the shortest-path problem

this absence is interpreted as a length of +∞. To simplify the algorithm,

we can convert a multisource problem into a single-source problem by adding

zero-weight edges between the �rst vertex from subset
−−→
fpB and other elements

in this subset. This convention is needed to �nd the longest path, not between

every pair of vertices in the graph, but between the �rst vertex in
−−→
fpB and

every other vertex. The other modi�cation introduced is the prohibition of

backward loops in the network (see Annex 1 for a numerical illustration). The

pseudo-code of the S ∗ −determination algorithm is presented in Algorithm

5.

for k = 1 to n do
for j = k to n do

path[0][j] = max(path[0][j], path[0][k] + path[k][j])
end

end

Algorithm 5: S∗−determination algorithm: Floyd algorithm approach

The complexity of the S ∗−determination with modi�ed Floyd algorithm

must now be established. The longest path from vertex 1 to every other
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vertex is searched. During the �rst iteration one must go over n− 1 vertices.

Hence, n−1 additions and n−1 minimizations have to be processed; the �rst

iteration consists of 2(n− 1) operations. Similarly, it is possible to show that

the second iteration consists of 2(n− 2) operations, the third 2(n− 3), and so

on. The following formula de�nes the total number of operations carried out

by the S ∗ −determination algorithm:

i=n
∑

i=1

2(n− i) = n(n− 1) (5.20)

Thus the S ∗ −determination algorithm based on Floyd has a O(n2) run-

ning time and belongs to the PSPACE group (algorithms necessitating a

memory of polynomial space). Note that the complexity of the classical formu-

lation of the Floyd algorithm for the shortest-path problem comprises O(n3)

arithmetic operations. As there is no reverse in the graph studied in this re-

search, the main loop of the Floyd can be ignored, decreasing complexity to

a level of O(n2).

We can build other longest-path algorithms able to take into account the

sort of constraints presented by the solutions proposed by Dantzig (1966) and

Shier (1973). The �rst solution resembles Floyd (1969), although the order

in which the calculations are performed is di�erent. The second algorithm,

known as the double-sweep algorithm, �nds the k shortest path lengths be-

tween a speci�ed vertex and all other vertices in the graph and can be applied

to our problem. The longest path in a directed acyclic network can be easily

found using a suitable modi�cation of the Dijkstra shortest-path algorithm

(Dijkstra, 1959).
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5.4.2 DAG longest path algorithm

In this subsection, we consider S ∗ −determination as a longest-paths prob-

lem in a directed weighted acyclic graph (DAG) G = (V,E), V = fpB ∪ fpS.

We then apply the linear-time DAG longest path algorithm (Sedgewick and

Wayne, 2011) to solve this problem. The �rst task is to con�rm that a given

DAG has no directed cycles. A depth-�rst search can be used to formally

analyze cycle existence. If a directed graph has a cycle, then a back edge will

always be encountered in any depth-�rst search of the graph. Since the consid-

ered graph has no back edges, cycles are excluded by the graph construction

assumptions.

The key element for e�ective solution of the longest-paths problem in DAG

is topological ordering, which allows us compute the longest path for each

vertex without having to revisit any decisions. We pass just once over the

vertices in topologically sorted order. As we process each vertex, we relax

each edge that leaves the vertex. By relaxing the edges of a weighted DAG

G = (V,E), according to a topological ordering of its vertices, we can compute

the longest paths from a single source in O(|V | + |E|) time (Sedgewick and

Wayne, 2011).

In line with the assumptions described, we also consider the single source

longest path problem. We add a dummy source vertex s plus a dummy sink

vertex t, such that for all i ∈
−−→
fpB, (s, i) ∈ E and the weight R(s, i) is zero;

and for all j ∈
−−→
fpS, (j, t) ∈ E, R(j, t) = 0. Hence, the S ∗ −determination

problem can be de�ned as longest path from s to t in G(V,E). Vertices

must be numbered in such a way that an edge (i, j) is always directed from

a vertex numbered i to a higher numbered vertex j. The source s is then

numbered 0 and the sink t numbered n+ 1. Vertex j is associated with l(j),

the longest path from 0 to j, where l(j) = maxi:(i,j)∈E[l(i) + R(i, j)]. Vertex

j + 1 can be labeled using the same equation, and so on until the �nal vertex
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n + 1 is labeled with l(n + 1). Initially l(0) is set to zero. The label l(n + 1)

represents the length of the longest path from 0 to n + 1. The algorithm 6

shows the pseudocode of this algorithm. This method requires the vertices to

be processed in topological order. Thus, any topological ordering algorithm

can be adapted to solve the longest path problem in DAGs.

// topologically sort the vertices of G

l[s] = 0
forall the j ∈ V \ {s} do

l[j] = −∞
end

foreach i ∈ V \ {s} do
// in topological order

foreach j : (i, j) ∈ E do
if l[i] +R(i, j) > l[j] then

// relax each outgoing edge from i
l[j] = l[i] +R(i, j)

end

end

end

Algorithm 6: S ∗ −determination algorithm: DAG longest path.

The running time of this algorithm is easy to analyze. Assuming that

the DAG is represented using an adjacency list, we can process each vertex

in constant time, with an additional time proportional to the number of its

outgoing edges. The topological ordering of the vertices in G can be carried

out in O(|V |+ |E|) time. Thus, the entire algorithm runs in O(|V |+ |E|) time.

DAG longest path algorithm is faster than Dijkstra algorithm by a factor

proportional to the cost of priority-queue operations in Dijkstra algorithm

(Sedgewick and Wayne, 2011).
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5.4.3 Extension of the S ∗ −determination problem

Risk-free rate

Let's now consider a (more realistic) situation where the investor retains cash

because the potential buy positions all lead to negative or zero pro�ts. This

investor is o�ered an opportunity to invest his cash in a risk-free asset (such

as short-term US Treasury Bills) delivering interests at the rate r between t

and t+ 1. When Remain Unchanged is chosen after a Sell action, for a given

timeframe ranging between t and t+ k, his wealth increases according to the

following formula:

△W = Wt+k −Wt = Wt(1 + r)k −Wt (5.21)

This new cash reinvestment rule substantially modi�es the graph construction.

Graph modi�cations First of all, edge selection should be adapted; ac-

cording to Lemma 1, all situations where R(x, y) < 0 are ignored. But when

the risk-free rate is available, the condition of Lemma 1 is no longer relevant.

Each trade must provide higher pro�ts in relation to the one-step, risk-free

interest r. Consequently, only situations with

y(1− c)− x(1 + c)

x(1 + c)
> r (5.22)

are accepted. In this formula, x denotes the price at which one buys and y �

the price at which one sells. After such modi�cations, the S ∗−determination

approach provides the same kind of information as in its initial formulation

(without a risk-free rate): when to enter the market and when to leave it.

According to this new reinvestment rule, the forward edges (de�ned above),

leading from
−−→
fpS to

−−→
fpB, will no longer be zero-weighted. Weights for such

edges must be calculated according to the formula 5.21.
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Short selling

The S ∗ −determination problem can be also extended to short selling by

modifying the graph structure. Since in our framework price series are per-

fectly known, one can identify future decreases in the price of the �nancial

asset, and beyond selling the current asset holdings, one can additionally sell

Bt assets that may be borrowed from a third party (i.e. short selling). When

the price drops, the investor should repurchase Bt assets to settle short po-

sitions in the market, but at a lower price. The lender can thus recover his

initial holdings.

In the graph theory terminology, short selling and borrowing mean that

negative-weight edges are allowed in the graph. Since the graph construc-

tion rules exclude any cycle, the DAG algorithm can easily �nd the path

delivering the maximum pro�ts while containing negative-weight edges.

To tackle this particular case, we �rst modify the "elements of the game" (see

section 5.2). The investor must decide for each t ∈ (1, n) one speci�c action

with respect to the current composition of his portfolio. The investor sells all

his shares At−1 bought in t − 1, converting his position into cash. Addition-

ally, he sells Bt borrowed shares. His total cash and wealth ain t is de�ned as

follows:

Ct =(At−1 +Bt)× pt × (1− c)

At =− Bt

Wt =Ct + At × pt
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If the investor decides to buy at date t + 1, he converts all cash into assets.

The trader returns the borrowed stocks to the lender.

At+1 =
Ct

pt+1 × (1 + c)
− Bt

Ct+1 =0

Wt+1 =Ct+1 + At+1 × pt+1

Additionally, we have to modify the graph construction rules. The weight

for a trading edge between two vertices i ∈
−→
fpB and j ∈

−→
fpS is de�ned as

follows :

Ri,j = pj(1− (1 + β)c)− pi(1 + c) (5.23)

In equation 5.23, j > i, and β = Bt

At
is the fraction of short selling in the

total volume. For simplicity sake, we assume that this parameter is constant.

The forward edges, connecting
−−→
fpS to

−−→
fpB, are no longer zero-weighted. The

weight of the forward edge from vertex j ∈
−→
fpS to i ∈

−→
fpB (i > j), is a positive

value Rj,i = |pi(1 + (1 + β)c)− pj(1− (1 + β)c)|

Short selling incurs some costs, such as a fee for borrowing and repayment

of any dividends that may be obtained from the borrowed assets. Thus, the

pro�ts from transaction Rj,i must be corrected by the amount of these costs.

5.5 Numerical Illustrations

A simple example

We consider again the basic price series

{100, 120, 90, 160, 126, 150, 140, 160, 110, 170, 168, 180} and c = 10% transac-

tion costs (see Table 204). In order to construct the bipartite graph, we �rst

slice −→p in two subsets
−−→
fpB and

−−→
fpS as explained in section 5.3.1 (see also
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Table 5.3).

−−→
fpB

{

1 3 5 7 9 11
100 90 126 140 110 168

}

−−→
fpS

{

2 4 6 8 10 12
120 160 150 160 170 180

}

Table 5.3: Initial price series sliced in two subsets

We compute the incidence matrix of N with the rules presented above (see

page 213 and Table 5.4). The absence of trading edge between two vertices,

due to the violation of the constraint expressed in equation 5.18 is interpreted

as a weight (or length) of size −∞. In this matrix, the absence of a transition

edge due to the backward interdiction rule is also denoted −∞. Transition

edges between
−−→
fpS and

−−→
fpB systematically receive a weight of 0. The graphical

representation of N
(

E,
−−→
fpB,

−−→
fpS

)

is presented in Figure 5.4.

Plain bold arrows, S∗ = {UUBSBUUSBUUS} with c = 0.1

!"" !#$%"& !'" !!" !$(

!#" !)"!$"& !$" !*" !("

Figure 5.4: Bipartite Network from the incidence matrix B

As mentioned above, the S ∗ −determination problem can be formulated
in graph theory framework. The special distinguishing feature of this graph
is that its nodes can be linearized as shown in Figure 5.5. We can �nd the
longest path from s to t, that represents the optimal solution, by comparing
the paths (algorithm 6):
l(s) = 0

l(100) = −∞
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100 120 90 160 126 150 140 160 110 170 168 180
100 −∞−∞ 0 34 0 25 0 34 0 43 0 52
120 −∞−∞ 0 −∞ 0 −∞ 0 −∞ 0 −∞ 0 −∞
90 −∞−∞−∞ 45 0 36 0 45 0 54 0 63
160 −∞−∞−∞−∞ 0 −∞ 0 −∞ 0 −∞ 0 −∞
126 −∞−∞−∞−∞−∞−∞ 0 5.4 0 14.4 0 23.4
150 −∞−∞−∞−∞−∞−∞ 0 −∞ 0 −∞ 0 −∞
140 −∞−∞−∞−∞−∞−∞ 0 −∞ 0 −∞ 0 8
160 −∞−∞−∞−∞−∞−∞−∞−∞ 0 −∞ 0 −∞
110 −∞−∞−∞−∞−∞−∞−∞−∞−∞ 32 0 41
170 −∞−∞−∞−∞−∞−∞−∞−∞−∞−∞ 0 −∞
168 −∞−∞−∞−∞−∞−∞−∞−∞−∞−∞−∞−∞
180 −∞−∞−∞−∞−∞−∞−∞−∞−∞−∞−∞−∞

Table 5.4: Modi�ed Incidence Matrix of N for the S ∗ −determination with
Floyd modi�ed algorithm

l(100) = max {l(100), R(s, 100)} = max {−∞, 0} = 0

l(120) = −∞
l(90) = −∞
l(90) = max {l(90), R(s, 90)} = max {−∞, 0} = 0

l(160) = −∞
l(160) = max {l(160), l(100) +R(100, 160), l(90) +R(90, 160)} = max {−∞, 34, 45} = 45

l(126) = −∞
l(126) = max {l(126), R(s, 126), l(160) +R(160, 126)} = {−∞, 0, 45} = 45

.................................................................................

l(t) = −∞
l(t) = max {l(t), l(160) +R(160, t), l(150) +R(150, t), l(160) +R(160, t), l(170) +R(170, t), l(180) +R(180, t)} =

max {−∞, 45, 36, 50.4, 82.4, 91.4} = 91.4

Real-data Example

We now propose one application of the S ∗ −determination method with a

real-world �nancial series consisting in the daily Dow-Jones index. This index

is observed each day at the closing of the New-York Stock Exchange (NYSE)

from Dec., 2nd, 1980 to Feb. 20th 2009 (i.e. 7156 observations). The unpre-

dictability of future price changes, one of the cornerstones of modern �nance,

can be observed from the high randomness of �nancial returns. No one can

seriously defend the idea that one particular economic agent could be able to

predict with accuracy the next 7156 closing prices of the Dow-Jones Index by

Dec., 2nd, 1980. Notice that even if it were possible (which is most improba-

ble), taking advantage of this knowledge under the constraints enumerated in
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Sell

Buy

t

180

S

100 120 90 160 126 150 140 160 110 170 168

Positive Weight

Zero Weight

Figure 5.5: A DAG and its topological ordering. Dummy source s and dummy
sink t are separated in order to distinguish them.

section 5.2 would also be extremely di�cult if not simply possible without us-

ing the S ∗−determination algorithm. Any additional element of uncertainty

(unpredictable prices for example) simply increases this initial complexity.

Nevertheless, any strategy where a Dow-Jones Index tracker would be

traded in this time window could be matched against the optimal set of actions

that can be identi�ed with the S ∗ −determination method.

With approaches based on Floyd algorithm (subsection 5.4.1) or DAG-

longest past algorithm (subsection 5.4.2), we determine the best behavior

with transaction costs c respectively at 0% and 5%. The maximum wealth one

should obtain in these two cases is bigger than 1.10E+015 in the �rst case and

bigger than 1.83E+010 in the second case. These �gures seem extraordinarily
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Figure 5.6: Dow Jones Index and its counterpart returns

high: one must keep in mind they are simply impossible to obtain because of

the global unpredictability of the market dynamics at date t with regards to

the available information at this date. In �gure 5.7 we present the evolution

of an investor's wealth that would have found (by chance or skills) the S∗ set

of actions in both contexts.

Nevertheless, on shorter horizons, some agents claim they have skills to

predict future prices with some accuracy or at least detect speci�c dates where

it is worth entering the market or shorting their positions. For example, tech-

nical traders claim they can detect signals in past prices (based on patterns)

associated with potential market reversals. If the perceived signals indicate at

date t a further increase in stock prices, these investors will try to buy stocks

immediately until they receive a new signal, in date t + T , associated with a

next decrease in prices. Then technical traders will short their positions to
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Figure 5.7: S∗ with resp. c = 0% and c = 0.5% and Dow-Jones Index (y axis
in log scale)

avoid losses.

Among others, one popular model for technical traders consists in comparing

two moving averages based on past prices. The moving average with i lags

MMi is equal to (1/i)
∑

i(p(t−i+1)). One is computed over a long range period

L, the other on a short time window s. If MMs crosses MML from the top to

the bottom, technical traders would predict a further decrease in stock prices

and try to sell immediately their holdings. On the contrary, if these moving

average cross from the bottom to the top, the signal will be interpreted as

�buy� signal.

In Figures 5.8 we generated such signals using the same data as previously;

we also computed portfolios managed with respect to the signals. For this

purpose the arti�cial investor is endowed with an amount of cash equal to the

Dow-Jones index value at date 1 (974.40). Notice that the �moving averages�

strategies provide an example of the �rules of the game� presented in section

5.2. Concerning the signals sub-�gures, we only present a limited time window

for graphical clarity reasons. The portfolio sub�gures report the evolution of

an investor's wealth using these signals in context of 0% transaction costs.

In Figure 5.8(a), MMs is based on 10 days while MML is based on 90 days.
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With these values we can generate 135 signals in the complete time window,

which delivers the portfolio evolution. In Figure 5.8(c), these moving averages

are respectively based on 5 and 20 trading days which delivers 469 signals.

Notice none of these strategies is interesting in any manner

One can easily rank these strategies in term of overall pro�tability:

MM10 v.s. MM90 seems to perform better thanMM5 v.s. MM20 in this price

sample since the �rst one bears an overall pro�tability of +299% (terminal

value of the portfolio = 3886.36) against +70% for the second (terminal value:

1657.18). In any case, one can also measure how far these two strategies are

from the optimum S∗. In other terms, whatever the relative performance of

any trading strategy, S∗ can be used to gauge its absolute performance. In

our example, both MM10 v.s. MM90 and MM5 v.s. MM20 were poor per-

forming strategies. A simple Buy and Hold behavior �buying� the market at

date 1 and selling it at date 7156 performs far better than these two moving

average techniques. Nevertheless, one can suppose some automatic trading

strategies could outperform this B&H strategy, especially in the context of

high frequency data.

In a similar manner, an important literature dealing with the forecasting of

future market trends (for example with Neural Networks, see Motiwalla and

Wahab (2000), Chen, Leung and Daouk (2003), Chen and Leung (2004), or

with Support Vector Machines, see Huang, Nakamori and Wang (2005)) is

geared at delivering investment tools that can directly be assessed adopting

the same steps.

Resolving the S ∗−determination problem does not give insights on the kind

of signals one should feed automatic trading systems with, nor indicate a plau-

sible behavior for any real-world investor. It simply establishes a boundary

that was, to the best of our knowledge, largely unknown, and proposes a ref-

erence in terms of maximum-pro�t trajectory against which any population

of investment trajectories can be gauged.
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5.6 Conclusion

This chapter o�ers a rather di�erent approach compared to the others. While

a large part of this thesis is devoted to the application of agent-based ap-

proaches for investigating classical �nancial questions, this chapter o�ers an

algorithmic approach for determining the upper bound for the pro�ts of any

investment strategy. Knowing this upper bound may be used to gauge the

absolute performance of an arti�cial agent within a population, not only to

verify if it outperforms the others but also to evaluate how far it is from the

optimum. We thus propose a method for determining the ex-post optimal

strategy S∗ that actually delivers the ex-post evaluation of a wide range of

trading strategies. We have embedded this question in a graph theory frame-

work and proposed the linear-time solution.





General Conclusion

This chapter brings the thesis to a conclusion. We begin by summarizing the

key points of this work, what guided us in the direction and what can be

learned from our models and experiments. We then review our contributions,

academic achievements, and future work.

In this thesis, various �nancial issues have been studied using compu-

tational approaches. Unlike traditional methods in economic modeling, the

approaches applied in this thesis do not rely on the assumptions on agents'

rationality and homogeneity. Traditionally, economic models are mostly of a

static nature and have a strong focus on deriving equilibrium. Such models

are solved analytically. Relaxing of these assumptions provides a new way

in which economic reality is modeled. In models of bounded rationality, dy-

namic elements play a much more prominent role and such models do not put

particular emphasis on equilibrium. These models are analyzed via extensive

computational simulations. Initially, these models were built for the purpose

of studying agent's behavior, price discovery mechanisms, the in�uence of

market microstructure on price dynamics, or the understanding of the nature

of stylized facts.

To explain the general interest in using agent-based simulations for �-

nancial research questions, we have devoted Chapter 1 to discussing some

alternative methodologies that can be used for studying �nancial topics. By

confronting di�erent approaches, we focused attention on the advantages of

agent-based models in �nance, and we also pointed out some weaknesses of

this approach.

Our results fall into a number of di�erent areas. First, in order to con-

tribute to the recent advances in the �eld of computational �nance, we have

developed an agent-based arti�cial stock market, ATOM, implementing a re-
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alistic double auction mechanism. This model has been introduced in Chapter

2. Special attention was paid to the design of the market architecture and

to model validation. This research has pursued multiple aims and objectives

for arti�cial stock market application: �rstly, to verify di�erent behaviors and

the environment's calibration ability to recover qualitatively and quantita-

tively the main stylized facts exhibited by real markets; secondly, to implement

classical model of mean-variance portfolio optimization and to investigate how

individual investors allocate their portfolios under heterogeneous preferences.

Chapter 3 studied market dynamics as emergent properties of individ-

ual agent tradings. An agent-based approach provided more �exibility than

standard analytical models. By �exibility we refer here to the possibility to

gradually include parameters (or calibration settings) the e�ect of which we

have studied. Further, the computational aspect of the approach enabled us

to observe explicitly the e�ect of the agents' decision on prices. We have pro-

gressively modi�ed agents' behavior and observed the appearance of stylized

facts close to the real ones. Since the behavior of the agents is completely un-

der our control, such model helps us relate experiment parameters to observed

phenomena. Hence the contribution of Chapter 3 consists of pointing out the

importance of proportion between limit, market and cancel orders, as well as

order volume via Big Fishes/Small Fishes proportion on the appearance of

realistic quantitative and qualitative stylized facts.

We next explored the topics of modern portfolio theory. For this pur-

pose we have implemented heterogeneous arti�cial agents characterized by

mean-variance optimization rules. We have established the relationship be-

tween investors' individual preferences (risk aversion, rebalancing frequency,

optimization methods) and their performance in a long run. The agent's het-

erogeneity helps us identify a dominant strategy.

We have carried out a study of relative performance of di�erent invest-

ment strategies, from naive diversi�cation to some extensions of mean-variance
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portfolio optimization designed to reduce estimation errors. Our �ndings were

consistent with those of Tu and Zhou (2011) and Levy and Ritov (2011). The

performance of unrestricted portfolio strategies outperforms the long-only and

naive strategies with respect to the Sharpe ratio and wealth. Thus, our re-

sult has showed that naively diversi�ed portfolios are sub-optimal.The reason

behind this performance can be at least partly attributed to the �predictive

power� of mean-variance agents and higher stability of their portfolios, result-

ing in less trading costs. Our analysis has also suggested that even though the

ex-ante parameter estimation of moments and co-moments involves estima-

tion errors due to the small size of sample, the combination of mean-variance

sophisticated rules and naive rules can improve the performance of their indi-

vidual counterparts.

We have also conducted the extensive simulations to �nd out the impor-

tance of individual agents' preferences for degree of risk aversion and rebal-

ancing frequency on their performance. We have shown the strong correlation

between risk aversion degree and survivability in a long run. Our extensive

simulations demonstrated that in case of allowed short selling, the risk lovers

compete others on the wealth basis, on the other hand, they quickly run out of

the market in the competitions based on the Sharpe ratio. In case of long-only

constrained portfolio, the highest as well as lower risk aversion do not guar-

antee the highest earning. Aggressive and strongly conservative traders drive

quickly out of competition for wealth. However, conservative traders beat the

aggressive traders in the competition for risk adjusted return of portfolios.

The extensive simulations have basically pointed out the optimal type of port-

folio rebalancing in low- and high-volatility market. Our simulation results

con�rm the suggestions of Masters (2003) that the halfway back rebalancing

is the compromise between small repeated tradings and large costs for high

volume rebalancing of largely declining portfolio from its targets.

The conducted experiments have suggested that despite the critique mean-
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variance optimization has received, it still is an attractive choice over a simple

allocation strategy. However, the varying traders behaviors and market con-

ditions imply that a universal model or an optimal combination of parameters

that perform the best in all situations might not exist.

Finally, in Chapter 5 we proposed a new algorithm to construct a unique

absolute optimal strategy, moreover we used this technique to estimate tech-

nical trading rules performance in the experimental parts. We introduced a

new method for the determination of the upper-bound in terms of maximum

pro�t for any investment strategy applied in a given time window. We �rst

described this problem using a linear programming framework. Thereafter,

we proposed to embed this question in a graph theory framework as an opti-

mal path problem in an oriented, weighted, bipartite network or in a weighted

directed acyclic graph.

In this thesis we have con�rmed the added value of agent-based arti�cial

market models in studying the �nancial topics. The usefulness of agent-based

simulations stems from their ability to integrate the evolving heterogeneous

population of bounded rational agents, to relate individual traders strate-

gies with aggregate market dynamics. In such a way price �xing depends

directly on trading strategies of market participants, at the same time, agents

can change their behavior according to market conditions. We showed that

agent-based research methodology should be seen as a complementary to other

approaches, such as experiments and empirical research, for studying portfolio

optimization or market microstructure topics.

Future Work

There are several directions for agent-based computational model application.

First, data simulated in agent-based arti�cial stock market can be a good sup-

plementary to real data, when there is no enough empirical results or statistics,
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for instance, about investors individual preferences or hedge-funds managers'

strategies. In order to get this information, researchers usually rely mostly

on experiments, and there are many studies in which subjects participated in

various investment tasks. One of the common critiques of these experimental

studies is that they are often conducted only with student participants, rather

than actual traders and investors. In contrast, to laboratory experiments with

humans, in pure computational experiments, the simulated behavior of arti�-

cial traders is completely observable. The reasoning behind decision making,

the relation between cause and e�ect is easily tractable. Agent-based arti�-

cial stock markets can facilitate the understanding of the relationship between

individual investor strategy and aggregated market phenomena, by allowing

the modeler to specify the investor behavior, to implement di�erent market

microstructure, and to analyze the resulting asset prices. In such a way, the

arti�cial stock market can help investigate the scenarios for which empirical

data do not exist, or are di�cult to obtain.

The other important and often not easily obtained data are an order �ow

of intraday trading. When the bids and asks are available. Some traders

make their pro�ts by buying and selling within the same day. That is intra-

day trading. When the bids and asks are available, they should help improve

forecasting accuracy and to make intraday trading more pro�table. Data

about orders �ow provide the analysis with information that the available

prices alone do not. For example, the analysis of millions of tick-by-tick data

points uncovered dynamics of price, volume, volatility, order book dynamics

(Mantegna and Stanley, 1999; Bouchaud and Potter, 2000; Dacorogna, Gen-

cay, Muller, Olsen and Pictet, 2001). Agent-based arti�cial stock markets give

insight into such topics, by providing the order �ows from di�erent scenarios.

Another �eld that could bene�t greatly from using advanced computa-

tional agent-based modeling is the study of Market Microstructure. Some-

times it is desirable to compare di�erent trading mechanisms, for example,
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it is interesting to compare price formation of the continuous double auction

with Walrasian equilibrium price �xing. The role played by the market mak-

ers or specialists in price formation can be also investigated using agent-based

modeling.

In such a way, there are some possible extensions of our work: scenario

investigation, risk analysis, macroscopic phenomena explanation.

We actually have several projects in progress. First, we extended the

results in Chapter 3 to minimal market calibrations for realistic extraday price

dynamics. The simulated time series that are results of agents trading and

not returns from a given distribution, are a good supplement for real market

data for model risk analysis Hena� and Martini (2011).

The other challenging direction for our future research is inspired from

Mathieu and Brandouy (2011), investigating an optimal order �ow between

brokers and clients or order cost of execution. Brokers hold a central position

where they have the possibility to in�uence price dynamics in ordering the

�ow of orders received from their clients. They can arrange the pending orders

from their client in order to realize maximum bene�ts for themselves. Thus,

the possible scenarios of orders posting and their a�ection of price should be

tested before sending the orders to the markets. This problem can be solved

only using an agent-based decision support systems.

As it has been shown, the di�erent types of price �xing mechanisms, a

large variety of learning mechanisms and agents' strategies, possible to be

implemented, suggest a rich �eld of research using arti�cial stock markets.

The number of research opportunities to explore is countless.
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A.1 NYSE Euronext Stock Exchange Overview

Below is a brief overview of the NYSE Euronext microstructure that aims

to provide a description of the market features that we implement in our

platform. For a more comprehensive overview, one can refer to the o�cial

website http://www.euronext.com, which provides a signi�cant amount of

information on the recent changes.

In 2000, the Amsterdam, Brussels and Paris exchanges (later Portuguese

Stock Exchange as well) become Euronext, the �rst pan-European stock ex-

change. The main characteristic of Euronext is to be a pure electronic order-

driven trading system. The �order driven� speci�cation means that traders

send their orders directly to an order book. A single order book for each

security or �nancial product is introduced in Euronext for greater trans-

parency and liquidity. All products are traded electronically on the NSC

system adopted by all of the Euronext members. Transactions are cleared

through LCH.Clearnet 1 , acting as the central counterparts and thus guar-

anteeing payment and delivery for all market transactions.

Traders send instructions (orders) to exchanges that arrange their trades.

Orders explain how agents want their trades to be arranged. There are di�er-

ent types of orders introduced on the NYSE Euronext stock exchange. Traders

choose orders that have properties that allow them to reach trading targets.

Limit orders indicate the price that an investor wants to pay or receive for

buying or selling shares. The trade will not take place until the limit price is

reached. The limit order is considered as conditional because it is executed

only if the limit price or a better price can be obtained. A buy limit order

indicates that a stock can be purchased only at a speci�c price or lower. A sell

limit order authorizes the stock to be sold at a speci�c price or higher. The

1The world's leading independent clearing house based in Europe that serves major
international exchanges and platforms

http://www.euronext.com
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danger of a limit order is that there is no guarantee that the order will ever be

executed. The set of unexecuted limit orders held by the system constitutes

the book. Limit orders can be canceled or modi�ed at any time � hence, the

book is dynamic.

Market orders are executed at the best available price on the market. A

market order simply means buying or selling at the current market price.

Market orders have priority on the trading �oor and thus ensure maximum

immediacy.

Security markets are sometimes characterized by their liquidity. In a liquid

market, a small shift in demand or supply does not result in a large price

change. On the Euronext stock exchange, limit orders are regarded as a

source of liquidity in the market as they provide the necessary pools of supply

and demand. Market orders consume the liquidity, because they get executed

when they arrive.

Stop Orders. A stop order is considered conditional because it speci�es

that a trade will not be executed until the market moves to a designated

price. At that time, the order becomes a market order.

Hidden or iceberg orders are limit orders specifying a disclosed quantity

which refers to the number of shares the trader wishes to be displayed on the

market screens. The di�erence between the disclosed quantity and the total

order size represents the hidden part of the order. If the displayed quantity is

executed, it is refreshed from the reserve quantity. The procedure mimics a

human trader who might execute a large order by splitting it up into smaller

quantities.

The order of execution is determined by two factors:

� A limit buy order is sorted before all others with lower limits and a limit

sale order is sorted before all others with higher limits. This procedure

determines the best bid and best ask prices. Traders cannot accept bids
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or asks at any inferior price. Buyers can accept only the lowest priced

asks and sellers can accept only the highest priced bids.

� Orders of the same kind and at the same limit are �lled in the same

order as they were entered into the order book.

Trading takes place in several stages:

� Pre-opening from 7:15 a.m. to 9:00 a.m.: orders are sent to the central

order book without any transaction taking place.

� Opening at 9:00 a.m.: on the basis of all orders recorded in the book,

the central computer automatically calculates the opening price or call

auction price that allows to match the largest number of bids and asks.

Orders that are not compatible with opening price remain in the book,

pending for a possible future matching against new opposite orders.

� Continuous trading from 9:10 a.m. to 5:25 p.m.: the arrival of a new

order immediately triggers one or several transactions if the central or-

der book contains an order or several orders at the opposite side at a

compatible price. If there are no such orders, the incoming order is

recorded, remaining on the order book at the speci�ed limit.

� Pre-closing from 5:25 p.m to 5:30 p.m.: as with the pre-opening, orders

are entered without any transactions taking place.

� Closing call auction at 5:30 p.m.: all remaining orders are compared and

trades executed where possible.

� Last, trading from 5:30 p.m. to 5:40 p.m.: trading members may enter

orders at the closing price, which is the price set at the closing call

auction except in exceptional cases.
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For a normal double-auction market, the best (highest) bid price is always

less than the best (lowest) ask price. The di�erence between the two is called

the spread of the market.
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A.2 Minimal intelligence calibration. Algo-

rithms

Data: Pmin, Pmax; Vmin, Vmax

Result: Order
/* initialisation */

Λ ∼ D(0, 1)
/* equal possibilities to buy or sell */

if Λ > 0.5 then
Direction = ”Ask”

else
Direction = ”Bid”

end
/* price and quantity definition */

P ∼ D(Pmin, Pmax)
Q ∼ D(Vmin, Vmax)

return (Direction, P,Q)

Algorithm 7: Uniform price distribution UZITU
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Data: Pmean, Psd; Vmin, Vmax

Result: Order
/* initialisation */

Λ = D(0, 1)
/* equal possibilities to buy or sell */

if Λ > 0.5 then
Direction = ”Ask”

else
Direction = ”Bid”

end
/* price and quantity definition */

P ∼ N(Pmean, Psd)
Q ∼ D(Vmin, Vmax)

return (Direction, P,Q)

Algorithm 8: Normal price distribution UZITN

Data: amin = Pmin, amax, bmin, bmax = Pmax; Vmin, Vmax

Result: Order
/* initialisation */

Λ ∼ D(0, 1)
/* equal possibilities to buy or sell */

if Λ > 0.5 then
Direction = ”Ask”
P ∼ D(amin, amax)

else
Direction = ”Bid”
P ∼ D(bmin, bmax)

end
/* quantity definition */

Q ∼ D(Vmin, Vmax)

return (Direction, P,Q)

Algorithm 9: Statistically calibrated SZITU
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Data: {P k
min, P

k
max}

N
k=0; Vmin, Vmax; Nfix is number of total �xed

prices, N is number of foreseen frames, N < Nfix

Result: Order
△ = [Pmax−Pmin]N

Nfix

Φ[0] = 0

∀t ∈ [1;
Nfix

N
]

Λ ∼ U(0, 1)
/* equal possibilities to buy or sell */

if Λ > 0.5 then
Direction = ”Ask”

else
Direction = ”Bid”

end
/* price and quantity definition */

δt ∼ logN(0, 1)
γt = Φ[t− 1] +△
Pt = P k

min + (P k
max − P k

min)× γt × δt
Qt ∼ U(Vmin, Vmax)
Φ[t] = γt

return (Direction, Pt, Qt)

Algorithm 10: Trend calibrated agent TZITN
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Data: Agent indicator = {Patient, Impatient}; amin, amax, bmin, bmax;
Vmin, Vmax

Result: Order
/* initialisation */

Λ ∼ D(0, 1)
if Patient then

if Λ > 0.5 then
Direction = ”Ask”
log(P ) ∼ D(bmax,∞)

else
Direction = ”Bid”
log(P ) ∼ D(0, amin)

end
Q ∼ D(Vmin, Vmax)
return (Limit,Direction, P,Q)

else if Impatient then
if Λ > 0.5 then

Direction = ”Ask”
else

Direction = ”Bid”
end
Q ∼ D(Vmin, Vmax)

return (Marekt,Direction,Q)
end

Algorithm 11: Patient and Impatient Agressive calibrated agent AZIT



248 Appendix A. Appendix

A.3 Mathematics of the mean-variance model

The goal of portfolio analysis is �nding the e�cient set of portfolios in the

mean-variance framework with minimal variance and some constraints on

portfolio weights and desired return. The mathematics of mean-variance prob-

lem is the trade o� between desired return and level of risk reached using prob-

ability theory and optimization theory. Let consider application of di�erent

utility functions in the single-period mean-variance optimisation framework.

Let de�ne α is the part of initial wealth W0 invested in the single risky asset

with expected return R, other part 1−α is invested in the risk-free asset with

return r. The expected wealth is W1 = (αW0)(1 + R) + [(1 − α)W0](1 + r).

In such way we can de�ne the return and variance of such portfolio: Rp =

W1−W0

W0
= α(R− r) + r, σp = ασR. The investor tries to maximise

ERp −
c

2
σ2
p

α
−→ max

, where c is a measure of risk aversion. Hence utility function is:

f(α) = α(R− r) + r − c
2
α2σ2

R

f ′(α) = R− r − cασ2
R = 0

α∗ = R−r
cσ2

R

where α∗ is the optimal part invested to the risky asset. The absolute amount

invested in the risky asset is A0 = α∗W0.

A0

W0

=
R− r

cσ2
R

absolute amount is proportional to initial wealth A0 ∼ W0, and inversely

related to the risk aversion coe�cient A0 ∼ c and to volatility of risky asset

A0 ∼ σ2
R

If an investor maximises expected utility of end-of-period portfolio wealth,
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then it can be shown that this is equivalent to maximising a function of

expected portfolio returns and portfolio variance providing: a) either utility

is quadratic or b) portfolio returns are normally distributed.

If initial wealth is W0, Rp is portfolio return, R is the return of risky asset,

r risk-free return, then the end-of-period wealth and utility are

W = W0(1 +Rp)

W = αW0(1 +R) + [(1− α)W0](1 + r)

U(W ) = U [W0(1 +Rp)]

Expanding U(Rp) in a Taylor series around the mean of Rp(= µp) gives

U(Rp) = U(µp) + (Rp−µp)U
′(µp) +

(Rp − µp)
2

2
U ′′(µp) +

(Rp − µp)
3

6
U ′′′(µp)...

since E(Rp − µp) = 0 and E(Rp − µp)
2 = σ2

p

E[U(Rp)] = U(µp) +
1

2
σ2
pU

′′(µp) + ...

If utility is quadratic, then higher-order terms other than U ′′ are zero. If

return are normally distributed, then E[(Rp − µp)
n] = 0 for n odd, and

E[(Rp − µp)
n] for n is a function only of the variance σ2

p. Hence for cases

(a) and (b), E[U(Rp)] is a function of onlly the mean µp and the variance

σ2
p. These results will help us to show that indi�erence curves in (µp, σp) are

convex. The de�nition of optimal weights (with short selling) is a standard

quadratic programming problem with an analytic solution. If we want to

solve the portfolio allocation problem with constraints (wi > 0), then, there

is no analytic solution and a numerical optimisation routine is needed. In this

section mean-variance model is de�ned in the terms of nonlinear optimisation

problem. Let

I is number of assets
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̟i is proportion of portfolio invested in assets i, 1 ≤ i ≤ I

̟ is column vector of proportions wi

Ri expected return of asset i, 1 ≤ i ≤ I

R is column vector of expected returns αR, R = [R1, ...RI ]
T

σi is standard deviation of the return of asset i

ρij is correlation coe�cient of the returns of assets i and j

pij is covariance of asset i with j, 1 ≤ i ≤ I and 1 ≤ j ≤ I, pii = σ2
i ,

pij = ρijσiσj for i 6= j

V = I × I is matrix of covariances pi,j

RP is expected return of portfolio

σP is standard deviation of portfolio

A denotes coe�cient of relative risk aversion The problem is to maximize

f(w):

f(̟) = RP −
1

2
Aσ2

P

= ̟TR−
1

2
A̟TV ̟

=
I

∑

i=1

̟iRi −
1

2
A

I
∑

i=1

I
∑

j=1

wiwjpij

subject to the constraint:
I

∑

i=1

̟i = 1

To deal with the such constraint, we use Lagrange multiplier λ and new ob-
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jective function f̂

f̂(w, λ) = f(̟) + λ(1−
I

∑

i=1

̟i)

= wTx−
1

2
A̟TV ̟ + λ(1−

I
∑

i=1

̟i)

=
I

∑

i=1

̟iRi

1

2
A

I
∑

i=1

n
∑

j=1

̟i̟jpij + λ(1−
I

∑

i=1

̟i)

To solve such problem, we should take the n + 1 partial derivatives of f̂ and

send them equal to 0.

∂f̂

∂̟i

= Ri − A
I

∑

j=1

pij̟j − λ = 0 (A.1)

∀1 ≤ i ≤ n (A.2)

∂f̂

∂λ
= 1−

I
∑

i=1

̟i = 0 (A.3)

Rewrite these equations as:

I
∑

j=1

pij̟j −
λ

A
=

αi

A
(A.4)

∀1 ≤ i ≤ I (A.5)

I
∑

i=1

̟i = 1 (A.6)

This system of equations we can solve using linear algebra. De�ne vectors
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and matrices as follows:

V̂ =























ρ11 . . . ρ1n 1

. . . . . . . . . . . .

. . . . . . . . . . . .

ρn1 . . . ρnn 1

1 . . . 1 0























ˆ̟ =























̟1

. . .

. . .

̟n

λ/A























x̂ =























R1

. . .

. . .

RI

0























ŷ =























0

. . .

. . .

0

1























We can rewrite equations A.3 in the terms of matrices.

V̂ ˆ̟ =
1

A
x̂+ ŷ

We assume for the moment that the matrix V̂ is non-singular and hence has

an inverse. In this case the solution of this problem is:

ˆ̟ =
1

A
V̂ −1x̂+ V̂ −1ŷ (A.7)

For an in�nitely risk-averse investor A = ∞, the solution becomes simply

̟i = V̂ij ŷi, for all 1 ≤ j ≤ n.

Lagrange multiplier deals with only the budget constraint which says that

the sum of the asset proportion must equal 1, hence all all values for the asset

proportions are permitted, even those outside the range [0, 1], that allows the

short-selling. In case of no short sales the optimisation problem is exactly

the same but with an additional constraint ̟i ≥ 0(i = 1, 2 . . . I), in this

case we should also introduce additional Kuhn-Tucker conditions. In the next
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subsection we work out all the mathematical details of constraint problem

with the Lagrange multiplier approach to deal with that constraint.

One riskless asset Denote by Rf the risk free return. Rf < Rmin, where

Rmin is the return of portfolio with minimal variance of risky assets. That is

natural since the risky portfolio has a positive risk associated with it while

the riskless asset does not. The proportion of wealth invested in riskfree asset

is ̟0.

̟0 = 1−̟

where w is the vector of weights of risky assets in optimal portfolio. Then,

the portfolio return and variance are de�ned as follow:

αP = ̟α + (1−̟)Rf (A.8)

σP = ̟σ (A.9)

By de�nition, a risk-free asset has standard deviation of 0, a variance of 0

and covariance of 0 with all other assets, hence it does not contribute to the

portfolio general risk. Correlation matrix should be enhanced by column and

low of 0.

Therefore, the new optimization program is:

f(̟) = RP −
1

2
Aσ2

P = (A.10)

= ̟α + (1−̟)Rf −
1

2
A̟2σ2 (A.11)

using the same notions as de�ned above ˆ̟ = 1
A
ĉ+V̂ −1ŷ. Let put d̂ = V̂ −1ŷ
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V̂ d̂ =





























0 0 . . . 0 1

0 ρ22 . . . ρ2n 1

. . . . . . . . . . . .

. . . . . . . . . . . .

0 ρn2 . . . ρnn 1

1 1 . . . 1 0

























































d1

d2

. . .

. . .

dn

dn+1





























=





























0

0

. . .

. . .

0

1





























= ŷ

The solution of optimal weights: ̟1 =
1
A
V −1x1 +1 for risk free asset, and

̟i =
1
A
V −1xi (2 ≤ i ≤ I) for risky assets.

The e�cient frontier is a straight line that contains the risk-free asset and

the optimal risky portfolio.
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A.4 Predictive power of mean-variance traders

In this section we test the ability of arti�cial mean-variance traders to gen-

erate stock returns in accordance with the expected moments they receive at

the beginning of a simulation. In this experiment, the agents follow the trad-

ing rules described in section 4.1.1. We use di�erent combinations of stocks

listed on the CAC40 index form January 2005 to July 2008, for model cali-

bration. To simple demonstrate the test, we relay on daily data of 3 stocks

from January 3, 2005 to July 30, 2008 (900 observations per stock), as this

result is typical output of test. The whole series is divided in 3 sub-sets of 300

daily observations. For each of these subsets, we calculate R̄n, σ2
n and Corrn,

n =
−→
1, 3. We use these statistics as proxies for the assets expected moments.

The agents trade over 300 days using these proxies. Then this information

is updated every 300 days (a new set of expected moments is used). Hence

we propose a sliding-window adaptation scheme to approximate the bench-

mark dynamics in arti�cial stock market. In other words, throughout the

investment period, the agents rebalance their portfolios at speci�c intervals

to update old portfolio weights to new ones calculated from data in the new

estimation window.

We run 1000 times the process described above to check if the arti�cial

agents generate prices in accordance to their �expectations�. Figure A.2 com-

pares the distribution of statistics generated using the 1000 runs and the

benchmark price series (in that case, we only use the "Carrefour" stock �

ticker, CA.PA is time series from January 3, 2005 to July 30, 2008). Figures

A.2(b) and A.2(d) succeed in reproducing the second (standard deviation)

and fourth (kurtosis) statistical moments. However, they produce mean val-

ues higher than imposed values of real time series (see A.2(a)). The third

moments (skewness), on average, are also higher than those of real price se-

ries.
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(b) One of the possible outputs generated by ATOM with real data initialisation

Figure A.1: Real CAC40 stocks Vs. ATOM simulated series over 900 days.
The exogenous information is imposed every 250 days. A sliding-window
adaptation scheme to approximate the original dynamics is used. Prices are
generated by 1000 mean-variance optimizers, heterogeneous with respect to
their risk aversion A ∼ U(0.1, 10), and trading frequency θ ∼ U(1, 10000)
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Next, we measure similarity between distributions of generated and bench-

mark price series. A measure of similarity between P (X) andQ(X) is provided

by the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951), which

is de�ned as:

D(Q|P ) = EQ

(

ln

(

dQ

dP

))

=EP

(

dQ

dP
ln

(

dQ

dP

))

where X is a vector of random variables generated by the stochastic processes,

P (X) and Q(X) are probability distributions. This divergence is expressed

non-parametrically, making no assumptions, and directly from the samples,

without explicit estimation of the underlying probability density functions.

Using this approach, we can identify the list of series that are within certain

"distance" of the benchmark series. According to KL-divergence measure

(k = 40, θ = 0.01), we select 360 ATOM generated price series out of 1000

with CA.PA daily data as a benchmark. We repeat the same procedure with

BNP.PA and AC.PA as benchmark, and select respectively 308 and 432 ATOM

generated price series.
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Figure A.2: Histogram exhibits the distribution of 1000 statistics generated
by arti�cial mena-variance traders, the red line corresponds to the moment of
CA.PA from January 3, 2005 to July 30, 2008.
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Abstract

The aim of this thesis is to contribute to the understanding of market dynamics and the decision making

of investors by extending an agent-based computational approach. Agent-based modeling (ABM) studies

stock market as complex evolving system by representing each of the microscopic elements individually and

by simulating the behavior of the entire system, keeping track of all the individual elements. We, �rst, ex-

plore the framework of zero-intelligence traders (ZITs), that puts forward the role of market microstructure,

for understanding at coarse grain what drives the main qualitative and quantitative stylized facts in price

dynamics and patterns in order submissions. The results of extensive simulations indicate that realistic

price dynamics are out-of-reach within the pure ZIT's framework, only the elements of strategic behavior

and strong calibration improve this situation.

Next, this research focuses on the questions on rationality in the corpus of modern portfolio theory. Sci-

entists still debate about ability of naive strategies to outperform the more complex models. The current

research sheds new light on the topic. We test the investors' performance, each of them following a speci�c

strategy, scrutinizing their behavior in ecological competitions. Some investment strategies considered in

this thesis are based on di�erent extensions of canonical modern Markowitz portfolio theory, others on the

naive diversi�cation principles, and others on combinations of sophisticated rational and naive strategies.

Furthermore, we perform closer examination of the e�ects of rebalancing frequency and investor's attitude

toward risk on portfolio performance in order to identify clearly what matters the most.

Finally, we explorer the computational tools for algorithmic determination of an absolute performance mea-

sure geared towards the ex-post evaluation of a wide range of trading strategies of investors (agents in our

case).

Experimental results con�rm a real added value of agent-based arti�cial market models for studying var-

ious �nancial topics. Notably, ABM allows to go beyond traditional approaches which may su�er from

implementation drawbacks or absence of tractable result in some cases.

Résumé

Cette thèse apporte une contribution à la compréhension des dynamiques de marché et à la prise de décision

des traders à l'aide d'une plateforme de simulation de marchés multi-agents. La modélisation multi-agents

permet notamment d'étudier le système boursier comme un système complexe évolutif dans lequel chaque

trader arti�ciel possède son propre comportement et qui, par ses prises de décision, in�uence l'ensemble

des autres acteurs du système. Dans une première partie, nous mettons en évidence à l'aide de �traders à

intelligence zéro� (ZIT), le rôle de la microstructure pour comprendre la nature des principaux faits stylisés

de l'évolution des prix. Les résultats issus de nombreuses simulations, indiquent que l'usage des ZIT n'est

pas su�sant pour reproduire de façon convaincante les évolutions de prix réels, car ceux-ci doivent être

appréhendés à la fois de manière qualitative mais aussi quantitative. Nous montrons que seuls des éléments

de stratégies de trading et une forte calibration peuvent améliorer cette réplication par simulation, suggérant

que les aspects comportementaux importent tout autant que les aspects microstructurels.

Dans une seconde partie, nous concentrons notre recherche sur la problématique de la rationalité dans

le corpus de la théorie moderne du portefeuille. Le marché arti�ciel nous permet de tester si des straté-

gies naïves peuvent surpasser, en terme de performance, des modèles plus complexes. Diverses stratégies

d'investissement sont implémentées dans le système arti�ciel et mises en interaction a�n d'observer leur

survie dans des compétitions écologiques basées sur leurs performances relatives. Certaines de ces straté-

gies d'investissements sont fondées sur des variations du modèle canonique de la théorie de portefeuilles de

Markowitz, d'autres suivent des principes de diversi�cation naïfs, d'autres encore obéissent à des combi-

naisons de stratégies rationnelles sophistiquées et de stratégies naïves.

En�n, de manière à mieux saisir les facteurs qui in�uent sur la performance du portefeuille, nous

montrons les e�ets de la fréquence de pondération et des préférences pour le risque des investisseurs sur

l'issue de ces compétitions.

Pour �nir, a�n de fournir une mesure de performance absolue orientée vers l'évaluation ex-post d'un

large éventail de stratégies de trading des investisseurs (agents dans notre cas) nous proposons un nouvel

algorithme de complexité polynomiale permettant de déterminer la borne supérieure absolue des pro�ts

atteignables pour n'importe quelle stratégie sur une période de temps donnée. Cet algorithme met en

contact deux champs a priori éloignés: la théorie des graphes d'une part et la �nance computationnelle

d'autre part.
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