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Introduction

In the early decade of this century, it is apparent that wireless communication technolo-
gies have an exponential growth. Various communication techniques have been employed
to serve various demands of high-speed wireless links such as higher data rate, increased
robustness, and greater user capacity. The next generation of wireless communications
is based on an all-IP switched network and can provide a peak data rate up to hundreds
of Mbits/s for high mobility, and to Gbits/s for low-mobility end-users. For instance,
the Wi-Fi standard (IEEE 802.11n) can provide a data rate up to 600 Mbps in physical
layer, and the Wi-Max standard (IEEE 802.16) can support a gross data rate up to 100

Mbps for mobile network.

One of the most well-known techniques for wireless communications is multiple-input
multiple-output orthogonal frequency division multiplexing (MIMO-OFDM). This tech-
nique not only offers diversity and capacity gains but also achieves higher spectral ef-
ficiency and higher link reliability in comparison with single antenna or single carrier
systems. The benefits of MIMO communication are generally ensured by both open-
loop and closed-loop MIMO techniques. The open-loop techniques, such as space time
coding (STC) and spatial multiplexing (SM), are used without the need for channel
state information (CSI) at the transmitter. In order to overcome the multipath effect
and improve the robustness of spatial multiplexing systems, linear precoding closed-loop
techniques can be used at the transmitter. The principle of the precoding techniques is
that, when the channel knowledge is available at the transmitter, the transmit signal is
pre-multiplied by a precoding matrix such that the inter-symbol interference (ISI) in the

receiver is greatly reduced.

The channel state information at the transmitter (CSIT) can be obtained through the

feedback links, but it is difficult to achieve perfect CSIT in a MIMO system with a rapidly
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changing channel. Therefore, the transmitters in many MIMO systems have no knowl-
edge about the current channel. This motivates the use of limited feedback precoding
methods such as channel quantization and codebook designs. The key of this method is
that the optimal precoding matrix is constrained to a number of distinct matrices, which
are referred to codebook entries, and known a priori to both the transmitter and receiver.
Many precoding codebooks can be proposed in order to optimizing different criteria of
the precoded system, and the receiver defines the optimal precoding matrix based on the
current channel conditions. Since the codebook is also known at the transmitter, the
receiver only needs to feedback a binary index of the optimal precoding matrix, rather
than the entire precoding matrix itself. The limited feedback precoding technique is
already used in Wi-Max standard (802.16e) with two codebooks: one with 8 entries and
the other with 64 entries. These codebooks correspond respectively to 3-bit and 6-bit

indices for each precoding matrix.

Considering the CSI from the receiver, antenna power allocation strategies can be per-
formed thanks to the joint optimization of linear precoder (at the transmitter) and
decoder (at the receiver) according to various criteria such as maximizing the output ca-
pacity, maximizing the received signal-to-noise ratio (SNR), minimizing the mean square
error (MSE), minimizing the bit error rate (BER), or maximizing the minimum singular
value of the channel matrix. These optimized precoding matrices are diagonal in the vir-
tual channel representation and belong to an important set of linear precoding techniques
named diagonal precoders. Another group of precoding techniques is obviously the non-
diagonal linear structure. One of the most efficient non-diagonal precoder is based on
the maximization of the minimum Euclidean distance (max-dy,i,) between two received
data vectors. The max-dn;, precoder offers a significant improvement in terms of BER
compared to other precoding strategies. Since the minimum distance based transceiver
needs a Maximum-Likelihood (ML) detector, the complexity of max-dy;, precoder is
fairly complicated. Furthermore, it is difficult to define the closed-form of the optimized
precoding matrix for large MIMO system with high-order modulations. In this thesis,

we will study the performances, and propose some extensions of the max-d,,;, solution.
Following this introduction, this document is organized as follows:

Chapter 1
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In this chapter, the propagation over wireless channels is firstly presented. The principles
and different types of diversity techniques are then investigated. A brief introduction of
the MIMO technologies with capacity and diversity gains are referred, and the space time
coding technique is described. Finally, the precoding system structure which consists of

an encoder, a precoder and a decoder is presented.
Chapter 2

A virtual transformation is used to diagonalize the channel matrix, and the principles of
some existing precoders are presented in the chapter. The performance of the max-dpi,
precoder in terms of minimum distance and bit-error-rate is also considered in comparison

with other precoders.
Chapter 3

The max-d,j, solution was only available in closed-form for two independent data-
streams with low-order modulations (BPSK and QPSK). That is due to the expression
of the distance dp,;, that depends on the number of data-streams, the channel character-
istics, and the modulation. Therefore, we present the optimized solution of the max-d i,
precoder for two 16-QAM symbols. This new strategy selects the best precoding matrix
among five different expressions which depend on the value of the channel angle v. In
order to reduce the complexity of the max-d,;, precoder, we propose a general expression
of minimum Euclidean distance based precoders for all rectangular QAM modulations.
For a two independent data-streams transmission, the precoding matrix is obtained by
optimizing the minimum distance on both virtual subchannels. Hence, the optimized
expressions can be reduced to two simple forms: the precoder F; pours power only on
the strongest virtual subchannel, and the precoder F3 uses both virtual subchannels to
transmit data symbols. These precoding matrices are designed to optimize the distance

dmin Wwhatever the dispersive characteristics of the channels are.
Chapter 4

This chapter proposes a heuristic solution which permits increasing the number of trans-
mit symbols. Firstly, a suboptimal solution, denoted as Equal-dyin (E-dpmin), is obtained
by decomposing the propagation channel into 2 x 2 eigen-channel matrices, and applying
the new max-dpyi, precoder for independent pairs of data-streams. It is noted that this

sub-optimal solution can only achieve an even number of data-streams. Therefore, we
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extend, herein, the design of max-d,,;;, precoders for a three parallel data-stream scheme.
Thanks to the three-dimensional scheme, an extension for an odd number of data-streams
is obtained by decomposing the virtual channel into (2 x 2) and (3 x 3) eigen-channel

matrices.
Chapter 5

Not only the minimum Euclidean distance but also the number of neighbors providing
it has an important role in reducing the error probability when a Maximum Likelihood
detection is considered at the receiver. Aiming at reducing the number of neighbors,
a new precoder in which the rotation parameter has no influence is proposed for two
independent datastreams transmitted. The expression of the new precoding strategy is
less complex and the space of solution is, therefore, smaller. In addition, we also propose
the general Neighbor-d i, precoder for three independent data-streams. The simulation
results confirm a significant bit-error-rate reduction for the new precoder in comparison

with other traditional precoding strategies.
Chapter 6

Still considering the maximization of the minimum Euclidean distance, we propose, in
this chapter, a new linear precoder obtained by observing the SNR-like precoding matrix.
An approximation of the minimum distance is derived, and its maximum value is obtained
by maximizing the minimum diagonal element of the SNR-like matrix. The precoding
matrix is first parameterized as the product of a diagonal power allocation matrix and
an input-shaping matrix acting on rotation and scaling of the input symbols on each
virtual subchannel. We demonstrate that the minimum diagonal entry of the SNR-like
matrix is obtained when the input-shaping matrix is a DFT-matrix. In comparison with
the traditional max-d,;, solution, the new precoder provides a slight improvement in
BER performance. But the major advantage of this design is that the solution can be

available for all rectangular QAM-modulations and for any number of datastreams.

The conclusions and perspectives are given individually at the end of this thesis.



Chapter 1

Wireless communication and MIMO

technology

The propagation over wireless channels is a complicated phenomenon characterized by
various effects such as path loss, shadowing, and multipath fading. One of the most well-
known techniques to combat the fading effects and exploit the multipath propagation in
wireless communications is diversity. This technique uses different mediums like different
time slots, different frequencies, different polarizations or different antennas to transmit

multiple versions of the same signal [1].

Among different types of diversity techniques, the spatial diversity, which uses multiple
transmit and receive antennas, not only increases efficiently the channel capacity and the
transmission data rate but also provides a higher spectral efficiency and a higher link
reliability in comparison with single antenna links. This technique is named as MIMO
(multiple input multiple output) and can be divided into three main categories: spatial
multiplexing (SM), diversity coding, and precoding. The diversity coding technique is
used when there is no channel state information at the transmitter (CSIT) while the
precoding technique exploits the CSIT by operating on the signal before transmission.
For different forms of partial CSIT, the precoding technique can be considered as a
multimode beamformer which splits the transmit signal into independent eigenbeams

and assigns the powers on each beam based on the channel knowledge.

In this chapter, the propagation over wireless channels is firstly presented. The principles

and different types of diversity techniques are then investigated. After that, a brief

5



Chapter 1. Wireless communication and MIMO technology 6

introduction of the MIMO technologies with the capacity and diversity gain is referred.
The space time coding technique is then described, and finally, the precoding system

structure that consists of an encoder, a precoder and a decoder, is presented.

1.1 Transmission channel

1.1.1 Path loss

In wireless channel, the transmit signals are attenuated because of the propagation. It
may be due to many effects, such as free-space loss, refraction, diffraction, reflection, and
absorption [2]. The loss in signal strength of an electromagnetic wave from a line-of-sight

path (LOS) through free space, known as free-space path loss (FSPL), is given by

k= (ﬁl)Q ) (47rcdf)2’ (L)

where A is the signal wavelength, d is the distance from the transmitter, f is the signal

frequency, and c is the speed of light in vacuum. The path loss is, in reality, influenced
by environment (urban or rural), the propagation medium, and the location of antennas.

The loss of transmit signals is, therefore, exponentially proportional to the distance d.
L=kd™, (1.2)

where k is a constant and the exponent n generally varies from 2 to 5. This relation is
often used in evaluating macrocellular systems. For microcells performances, the authors
in [3| present another expression of FSPL

.
L-d™ (1+i) , (1.3)
dy

where n1, ng are two separate constants and dp is a measured breakpoint. Table below

shows different values for nq, ny, and dp fitted to measurements in three different cities.

TABLE 1.1: Empirical power drop-off values

City ny ng dy
London  1.7-2.1 2-7 200-300
Melbourne 1.5-2.5 3-5 150
Orlando 1.3 3.5 90
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1.1.2 Fading

In wireless communications, fading is used to describe the deviation of the radio signal
over different periods of time. It is a phenomenon in wireless channel which is caused by
the interference of two or more transmit signals arriving to the receiver. A fading phe-
nomenon may be due to the multipath propagation or due to shadowing from obstacles.
The distinction between slow and fast fading is related to the coherence time T, of the
channel, which measures the period of time over which the fading process is correlated.
Slow fading occurs when the coherence time of the channel is large relative to the delay
constraint of the channel, while fast fading is opposite. In other words, the fading is said
to be slow if the symbol time duration 7Ty is smaller than the channel coherence time
T.; otherwise, it is considered to be fast. In general, the coherence time is related to the
channel Doppler spread by

Te~ — 1.4
- g (14)

where By is the Doppler spread (or Doppler shift).

Doppler effect

When the transmitter and receiver have a relative motion, the frequency of the signal at
the received size is changed relatively. This phenomenon is called as Doppler effect and
named after Austrian physicist Christian Doppler. The Doppler spread (or frequency
spread), noted as By, is the difference between the observed frequency and emitted

frequency and given by

By=Af= % (1.5)

where v is the velocity of the source relative to the receiver, and A is is the wavelength

of the transmitted wave.

Multipath propagation

Multipath is used to describe the phenomenon in which the radio signals reach the
received antenna by multiple paths. Causes of propagation path include the ground
wave, ionospheric refraction and refraction, reflection from water bodies and terrestrial

objects such as mountains and buildings. One should note that if frequency of signals
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exceeds to 30 MHz, the electrical wave passes through the ionospheric layer, and there

does not exist multipath from ionospheric refraction.The received signal is expressed by

N-1
r(t) = Z_% ans(t = 7) +n(t), (1.6)

where s(t) is the transmit signal, 7(t) is additive noise, IV is the total number of paths,
an, and 7, are the attenuation and the delay of each path, in respectively. The maximum
delay spread (or multipath time) is defined as the time delay existing between the first
and the last signal

Ty = max(7;) — min(7;). (1.7)
(2 (2
In addition, the coherence bandwidth B, is related to the multipath time by

B~ —. (1.8)

Frequency selectivity is also an important characteristic of fading channels. The fading
is said to be frequency nonselective or, equivalently, frequency flat if the transmitted

signal bandwidth B is much smaller than the channel coherence bandwidth B..

The probability distribution of the attenuation o depends on the nature of the radio
propagation environment. Therefore, there are different models describing the statistical
behavior of the multipath fading. The Rayleigh distribution is frequently used to model
multipath fading with no direct line-of-sight (LOS) path. In this case the probability
density function (PDF) of the channel fading amplitude is defined by [4]

plarg(@)) = 5 [0:27] (1.9)

_o
p(lal) = e
where €2 is mean-square error of «.

The Rice (Nakagami-n) Model is often used to model propagation paths consisting of one
strong direct LOS component and many random weaker components. Here the channel

fading amplitude follows the distribution [5]

p(arg(a)) = 5= [0;2n]

_ (K—l)a2
plal - 220 (<) (20v/E52)

(1.10)
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where K is Rician factor which is related to the Nakagami-n fading parameter n by

K =n?, and Io(x) is the zero-order modified Bessel function of the first kind.

1.2 Diversity technique

Diversity refers to a technique for improving the reliability of the transmit signal by using
different mediums like different time slots, different frequencies, different polarizations
or different antennas. Multiple versions of the same signal are transmitted over different
fading channels and, then, recombined at the receiver. This technique plays an important

role in combating the fading effect, and exploiting the multipath propagation.
The diversity gain G in decibels (dB) is given by

log P,
= llm —,
SNR-c0 log SNR

G (1.11)

where P, is the error probability of the received signal and SNR is the received Signal

to Noise Ratio.

1.2.1 Temporal diversity

When two or more copies of the same signal are transmitted at different time slots, it is
called temporal diversity. It is noted that the time interval between two time slots must
be higher or equal to the coherence time T, of the channel to assure independent fades
(see Fig. 1.1). The receiver will combine multiple versions of signal without interference

to estimate the information.

1.2.2 Frequency diversity

In this technique, multiple copies of the same signal are transmitted through different
carrier frequencies. These carrier frequencies should be separated by an interval larger
than the coherence bandwidth B, of the channel (see Fig. 1.1). Similarly to temporal
diversity, the receiver needs to tune to different carrier frequencies for signal reception

and, therefore, has no bandwidth efficiency.
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FIGURE 1.1: Principle of temporal diversity and frequency diversity

1.2.3 Spatial diversity

In this technique, the signal is transmitted over several different propagation paths.
For a wireless transmission, it can be achieved by using multiple transmitter antennas

(transmit diversity) and/or multiple receiving antennas (receive diversity).

e Receive diversity uses multiple antennas at the receive side. The received signals
from the different antennas are then combined at the receiver to exploit the diver-
sity gain. Receive diversity is characterized by the number of independent fading

channels, and its diversity gain is proportional to the number of receive antennas.

e Transmit diversity uses multiple antennas at the transmit side. Information is
processed at the transmitter and then spread across the multiple antennas for the
simultaneous transmission. Transmit diversity was firstly introduced in [6] and

becomes an active research area of space time coding techniques.

1.2.4 Antenna diversity

Antenna diversity is another technique using antennas for providing the diversity. There

are two main techniques of antenna diversity:

e Angular diversity uses directional antennas to achieve diversity. Different copies of
the same signal are received from different angles of the receive antenna. Unlike
spatial diversity, angular diversity does not need a minimum separation distance

between antennas. For this reason, angular diversity is helpful for small devices.
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e Polarization diversity uses the difference of the vertical and horizontal polarized
signals to achieve the diversity gain. In this technique, multiple versions of a
signal are received via antennas with different polarizations. Like angular diversity,
polarization diversity also does not require the minimum separation distance for

the antennas and then suitable for small device.

1.3 Multiple-Input Multiple-Output techniques

In wireless communication, multiple-input multiple-output (MIMO) is the use of multiple
antennas at both transmission and reception sides of a communication system. The idea
of using multiple transceivers and receivers was first proposed by Bell Labs [7], and, then,
has been worldwide utilized to adapt to various high-speed wireless transmissions. This
technique not only offers diversity and capacity gains but also achieves higher spectral
efficiency and higher link reliability in comparison with single antenna or single carrier
systems [8]. Because of these properties, MIMO becomes one of the most important
parts of modern wireless communication standards such as IEEE 802.11n (Wifi), 4G,

3GPP Long Term Evolution, WiMAX and HSPA+.

MIMO techniques can be divided into three main categories: spatial multiplexing (SM),

diversity coding, and precoding.

e Spatial multiplexing is the technique in which a high rate signal is split into multiple
independent data-streams and each stream is transmitted from a different transmit
antenna. These signals are distinguished by different spatial signatures, and a good
separability can be, therefore, assured. Spatial multiplexing offers a significant
improvement in channel capacity at higher signal-to-noise ratios (SNR), but it is
limited by the smaller number of transmitters or receivers [9]. This technique
can be used without transmit channel knowledge, and can also be employed for

simultaneous transmission to multiple receivers.

e Diversity Coding technique is used when there is no channel state information (CSI)
at the transmitter. In this method, the signal is emitted from each of the transmit
antennas using techniques called space-time coding. Diversity coding exploits the

diversity gain to achieve a higher reliability, high spectral efficiency in comparison
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with single antenna links. Space time codes can be split into two main types:

Space—time block codes (STBCs) and Space-time trellis codes (STTCs).

e Precoding is a processing technique that exploits the channel state information at
transmitter (CSIT) by operating on the signal before transmission. For different
forms of partial CSIT, a linear precoder can be considered as a multimode beam-
former which optimally matches the input signal on one side to the channel on
the other side. It splits the transmit signal into independent eigenbeams and as-
signs the powers on each beam based on the channel knowledge. Precoding design

depends on the types of CSIT and the performance criterion [10].

1.3.1 Basic system model

Let us consider a MIMO transmission with np transmit and np receive antennas. When
ny = 1, the MIMO channel reduces to a single-input multiple-output (SIMO) channel.
Similarly, when ngr = 1, the MIMO channel reduces to a multiple-input single-output
(MISO). When both np = 1 and ng = 1, the MIMO channel simplifies to a simple
scalar or single-input single-output (SISO) channel. The basic MIMO system model
is illustrated in Fig 1.2. At a certain time t, the received signal at antenna j can be

expressed as

nr
Yti = D, hiisti + Mg, (1.12)
i=1

where h;; is the channel gain of the path between the receive antenna j and the transmit
antenna 4, s;; is the complex transmit signal at antenna 4, and 7 ; is the noise term at

the receive antenna j. The MIMO channel can be similarly described as
y =Hs +n, (1.13)

wherey = [y+.1, Y12, .-, yt,nR]T is the receive vector, s = [s¢1, St.2, ..., st,nT]T is the transmit
vector, H is the channel matrix, and n is the noise vector. The channel matrix H

represents ngr x np paths between np transmitters and ng receivers and is defined by

hii - hing
H-= : : (1.14)

hnR,l hnRﬂT
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The elements of channel matrix are random and chosen based on different statistical
models like Rayleigh, Rice or Nakagami [5]. In the remainder of the study, we will
consider the Rayleigh model, e.g. the path gains are modeled by independent complex
Gaussian random variables. The noise is considered as an additive white Gaussian noise
(AWGN) and its elements 7, ; are independent from each other and have a complex

Gaussian distribution.
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FiGURE 1.2: MIMO model with ny transmit antennas and ng receive antennas

1.3.2 MIMO channel capacity

It has been shown in [9] that MIMO systems provide a significant improvement in terms
of capacity compared to SISO systems. The channel capacity is the maximum error-free
data rate that a channel can transmit. It was first derived by Claude Shannon [11] for a
SISO system

C =logy (1+SNR). (1.15)

In contrast to single antenna links, multiple antenna channels combat fading and cover

a spatial dimension. The capacity of a deterministic MIMO channel is given by [12]

SNR

nr

C=FE [log2 (det(InR + HH*))] , (1.16)

where E[z] denotes an expectation of random variable z, I,,, is the identity matrix of
size ngr, and H* is conjugate transpose of matrix H. At high SNR, the capacity of a

Rayleigh fading channel can be approximated as

SNR)

C ~ min(ny,ng)logy ( (1.17)
n
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It is observed that improvement of the MIMO channel capacity is proportional to the
value min(np,ng) in comparison with SISO systems. The figure 1.3 illustrates the

ergodic channel capacity as a function of average SNRs for Rayleigh fading channels.

Capicity in bit/s/Hz

0 2 4 6 8 10 12 14 16 18 20
SNRin dB

FI1GURE 1.3: The ergodic capacity of MIMO channels.

1.4 Space Time Coding

Space Time Coding technique is used when there is no channel state information (CSI) at
the transmitter. In general, space-time coding can be divided into two categories: space-
time trellis codes (STTC) and space-time block codes (STBC). The first STBC scheme
was proposed by Alamouti [13] with a full diversity and a full data rate transmission for
two transmit antennas. This scheme was, then, generalized to an arbitrary number of
transmit antennas by applying the orthogonal space-time codes [14, 15| and was named
as space-time block codes. However, for more than two transmit antennas, there does
not exist STBC with full diversity and full data rate. Therefore, many different code
design methods were proposed for providing either full diversity or full data rate at the

cost of a higher complexity, for example QOSTBC [16].
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FIGURE 1.4: Alamouti encoding scheme.

1.4.1 Alamouti Code

Alamouti code can be considered as the first space time code which provides full diversity
and full data rate for two transmit antennas. A block diagram of the Alamouti space-
time encoder is illustrated in Fig. 1.4. We denote s; et so as two transmit symbols

entering the space time encoder, the Alamouti code is defined by
Cq = (1.18)

In the first period, the symbols s; and so are transmitted simultaneously from two
antennas. In the second period, the symbol —s5 and s] are transmitted from antenna

one and antenna two, in respectively. One should note that the matrix Csg is orthogonal
CzCz* :(H81||2+”52H2)12, (119)

where I3 is a 2 x 2 identity matrix. This property implies that the receiver can detect
two symbols s; and so independently by a simple linear signal processing operation.The

received signals of the antenna j at two periods are denoted as 7']1- et rjz- and defined by

1
=hj1.51+hj2.52 +
F 1-51 ,2-52 77] (1.20)

j2- = —hj,1.82 + hj’g.sl + 77]'

where njl and n? are the additive white Gaussian noise at the receiver j. A maximum

likelihood (ML) detector is consider with two simple linear combinations of the received

signals

51 = Z {hjl i+ o (TZ) } Z ZR |7, Z”2 S1+ Z {hj,l Ty +hj’2'(77j2‘)*}
s (1.21)

nRr
82 = Z;{h;,?rj hja(r3)"} = Z Z [l + Z {hj2mj = hja-(n7)"}
e

i=17=1
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The ML decoder, then, finds the closest symbol §; and $o for two estimated symbols §;

and §; in the symbol constellation

51 = argmin d?(31, 51)

5165 (1.22)
5y = argmin d? (32, 52)

SQES

1.4.2 Orthogonal Space-Time Block Codes

The space time code proposed by Alamouti is only available for MIMO systems with two
transmit antennas. The author V.Tarokh presented in [14, 17| the orthogonal designs for
an arbitrary number of transmitters. The generated code is a matrix with two dimensions

of space and time, and satisfies the orthogonal property
= 2
CC* =) |si|*Lny. (1.23)
i=1

The " column of C corresponds to the symbols transmitted by the i antenna, while
the j*" row of C represents the symbols transmitted simultaneously at time j. It is noted
that the columns of the transmission matrix C are orthogonal to another. In other words,
the signal sequences from any two transmit antennas are orthogonal to each other. If the
space time code can transmit ng symbols in n, periods, the transmission rate of STBC
is defined by

Rl (1.24)

Mp

For example, the following code matrices obtain the transmission rate 1/2 and 3/4 for

the case of 3 transmit antennas. One should note that the OSTBC can not obtain a
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transmission rate equals to one for complex transmit signals.
S1 52 83
—52 S1  —84
-S3  S4 S1
—S4 —S83 59
01/2 = . . (125)
s 85 83
* * *
—S2 51 TS5
* * *
—S3 S84 51
* * *
54 —S83 89
S3
S S 5
1 2 V2
* s3
—g R 53
2 1

83 83 —81—51+52—82
V2 V2 2

EX _ 53 S2+85+51-5]
V2 V2 2

1.4.3 Quasi-Orthogonal Space-Time Block Codes

The OSTBC design obtains a full diversity gain, but it can not provide the full transmis-

sion rate in the case of more than two transmit antennas. To design a full-rate space time

codes, the author in [16] proposed a design which decodes independent pair of symbols.

This code is called Quasi Orthogonal Space-Time Block Codes (QSTBC) and based on

the full-diversity full-rate Alamouti schemes.

Let us consider the case of n, = n, = 4, the QOSTBC for four transmit antennas is then

defined by

Ca(s1,52)  Ca(ss,s4)
CJafar =
-Ca(s3,54)" Ca(s1,s2)"

S1
*

83

*

S1

*

(1.27)
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where Ca(s;,s;) is the Alamouti code for two symbols s; and s;. Let us denote v; as as

the ¥ column of the matrix Cy, far, We obtain
< V1, Ve >=< V1, V3 >=< Vg, Vy >=< v3,vy >=0 (1.28)

where < v;,v; > is the inner product of vectors v; and v;. For this reason, two pairs of
transmitted symbols (s1,s4) and (s2,s3) can be decoded independently at the receiver.

The encoding of QOSTBC is, then, similar to the encoding of orthogonal STBC.

1.4.4 Space Time Trellis Codes

The Space Time Trellis Codes (STTC) are first proposed by Tarokh et al. [16] and are
the extension of the classic trellis code presented in [18] for MIMO systems. This goal of
the STTC design is the achievement of full diversity and full transmission rate for any
number of transmit antennas. STTCs code combine the modulation and channel coding
to transmit information over multiple transmit antennas. The principle of STTCs are to
create the relationship between the transmit signals in n; antennas and in each packet

of symbols.

Let us consider, for example, the coding trellis of the full rate 2 bits/ channel uses
STTCs with two transmit antennas. Fig 1.5 illustrates the 4-states space time code
using 4-PSK modulation. STTCs code is represented by a trellis and pairs of symbols
that are transmitted from the two antennas for every paths in the trellis. The indices of

the symbols are used to present the transmitted symbols for each path (see Fig. 1.5).

1
0 00 01 02 03
0
2 1 10 11 12 13
3
2 20 21 22 23
Input: 0 1 2 3 2 2
Tx1: 0 0 1 2 3 2
Tx2: 0 1 2 3 2 2 3 30 31 32 33

FIGURE 1.5: Four state STTC with two transmit antennas, using 4-PSK modulation.
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1.5 Precoding technique

Precoding is a technique which exploits the channel state information at transmitter
(CSIT) by processing signal before transmission. A basic precoding system structure
which contains an encoder, a precoder and a decoder is shown in Fig 1.6. The encoder
intakes data bits and performs necessary coding for error correction, and then maps the
coded bits into vector symbols. The precoder processes these symbols before transmission
according to different forms of channel state information. At the receive side, a decoder

is considered to recover the bit streams.

Transmitter

sl e |

Precoder i Channel S
—+> Encoder F —> H —>@—> Decoder —>

N

FIGURE 1.6: Precoding system structure.

1.5.1 Encoding structure

An encoder often consists of a channel coding and interleaving block and a symbol-
mapping block. The encoding structure can be classified into two categories: spatial
multiplexing and space time coding which are based on the symbol mapping block. The
spatial multiplexing structure de-multiplexes the data bits to multiple independent bit
streams. These bit streams are then mapped into vector symbols and are directly op-
erated by a precoder, as shown in Fig 1.7. Since these streams are independent with

individual signal to noise ratio (SNR), per-stream rate adaptation can be used for trans-

mission.
| Symbol :
Input Channel < “1 Mapping
coding o 2
—_— P > E Output
Interleaving a S Symbol —
- Mapping

FIGURE 1.7: A multiplexing encoding structure.
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For space-time coding structure, the output bits of the channel coding and interleaving
block are directly mapped into symbols, and processed by a space-time encoder block
(see Section 1.4). The vector symbols are then pre-multiplied by a precoding matrix,

detailed in Fig 1.8.

Channel
Input : : Output
3 coding | Symbol | Space-Time 3
& “l Mapping Code
Interleaving

FIGURE 1.8: A space-time encoding structure.

1.5.2 Linear precoding structure

When the CSI is available at the transmitter, the precoder can optimize various criteria
such as, for example, maximizing the output capacity [12], maximizing the mutual infor-
mation [19], etc. However, it has also a general structure which is based on the singular
value decomposition (SVD)

F=UXV. (1.29)

In this structure, a linear precoder is considered as a combination of an input shaper and
a multimode beamformer. The orthogonal beam directions are the left singular matrix
U, where each column represents a beam direction (pattern). One should note that the
matrix U contains all eigenvectors of the matrix FF*, thus it is often referred to as
eigen-beamforming. The matrix ¥ controls the power allocation on each beam. These
powers correspond to the squared singular values of 2. The right singular matrix V
concerns with the rotation and scaling of the input symbols on each beam and hence is
referred to as the input shaping matrix. The linear precoding structure is illustrated in

Figure 1.9. To conserve the total transmit power, the precoder must satisfy the condition

trace(FF™) = Ej. (1.30)

where F is the average transmit power. In other words, the sum of power over all beams
must be a constant. The individual beam power is different to each other according to

the design criterion, the signal to noise ratio, and the CSIT.
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Y
Y

FIGURE 1.9: A linear precoding structure.

1.5.3 Receiver structure

Let us denote s as the symbol vectors entering the precoder F at the transmitter, the

received signal is then defined by

y =HFs+n, (1.31)

where 7 is a vector of additive white Gaussian noise. The received signal is then decoded
to obtain an estimate of the transmitted codeword s. There are many detection meth-
ods, depending on the performance of the system and the complexity of the detection.
We present herein three representative methods: zero forcing (ZF), linear MMSE, and

maximum-likelihood (ML).

Zero Forcing receiver

The zero-forcing receiver uses an inverse filter of the matrix HF to remove all of the
interferences from other symbols. In the case of full rank square matrix HF (e.g. ng =
ng), the inverse matrix (HF)™! exists and can be used to separate the received symbols.
When the number of transmit and receive antennas are not the same, the Moore—Penrose
pseudo-inverse (HF')* is proposed to achieve a zero-forcing equalizer [20]. The estimation

of the transmit symbols is then

= (HF)"y = s + (HF) ", (1.32)

where (HF)* denotes the pseudo-inverse matrix of HF, and is defined by (HF)* =
(F*H*HF)!F*H*. We observe that the symbols are separated from each other, and
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the power of the effective noise (HF)*n may be enhanced by the process of eliminating

the symbol interference.

Minimum Mean-Squared Error receiver

In contrast to the ZF receiver, a linear minimum mean square error (MMSE) receiver is
proposed to minimize the total effective noise. This receiver contains a weighting matrix

W which is designed according to
min £{[s - s[*} = min E{|(WHF -T)s + Wn|*}, (1.33)

where the expectation is taken over the input signal and noise distributions. For zero-

mean signals with covariance equal to one, the optimum MMSE receiver is given as

W = (F*H*HF +

nr — 1%+
I)""F'H 1.34

where nr is the number of transmit antennas, and SNR is the signal to noise ratio. Using
the MMSE criterion, the linear least-mean-squares estimation of transmitted symbols is
defined by

§=Wy. (1.35)

It is observed that when the ratio STlTji?{ approaches to zero at high SNR, the ZF and

MMSE receivers are equivalent.

Maximum Likelihood receiver

The Maximum Likelihood (ML) detection provides a best performance in terms of bit-
error-rate (BER) compared to other receivers. The estimation of the transmitted symbol
s is defined by
§ = argmin|y - HFs|? (1.36)
s

The ML requires the receiver to consider all possible codewords s before making the
decision and, therefore, can be computationally expensive. The complexity of the ML
detection is exponentially proportional to the number of transmit antennas (proportion

to M"T, where M is the size of the transmitted constellation). A new algorithm which
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attains ML performances with significantly reduced complexity is presented in [21]. This
scheme excludes unreliable candidate symbols in data streams and is based on the MMSE
criterion to reduce the ML complexity. In order to decrease the computational complex-
ity, the algorithm of sphere decoder can also be used to obtain an equivalent performance

[22], [23].

Sphere Decoding Technique

The principle of sphere decoding technique is based on a bounded distance search among
all possible points falling inside a sphere centered at the received point [24]. This concept
is illustrated in Fig. 1.10, in which the received signal vector and the possible codewords
are represented by a small and large circles, respectively. It is obvious that the overall
complexity of the sphere decoding technique is lower than that of the original maximum-

likelihood detection that implements a full search in all codewords space.
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F1GURE 1.10: Principle of sphere decoding technique.

The search region in codewords space, i.e. the number of codewords close to the received
signal, depends on the received signal-to-noise-ratio. Although worst case complexity is
exponential, the expected complexity of the sphere decoding algorithms is polynomial
[25, 26]. The fixed-complexity sphere decoder presented in [27] is one of the most promis-
ing approaches to not only enable quasi-ML decoding accuracy but also to reduce the
computational complexity. Another efficient closest point search algorithm, based on the

Schnorr—Euchner variation of the Pohst method, is also presented in [28].
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1.6 Conclusion

The primary purpose of this chapter is to review briefly the principal characteristics
of MIMO wireless communications. Firstly, we presented the propagation over wireless
channels and different types of diversity techniques. After that, a brief introduction of
some MIMO techniques is referred. These techniques can be divided into three main cat-
egories: spatial multiplexing, space-time coding, and precoding. The space-time coding
technique is available when there is no channel state information at the transmitter while
the precoding technique exploits the CSIT and processes signal before transmission. As
the channel knowledge at the transmitter offers a high improvement in MIMO perfor-
mance, the precoding technique becomes of great practical interest in wireless communi-
cations. In the rest of this thesis, we investigate the performance and some extensions of
the precoding technique based on the maximization of the minimum Euclidean distance

in the received constellation.



Chapter 2

MIMO linear precoding techniques

The previous chapter has introduced the basic MIMO system model expressed by a
random matrix which represents the channel gains of the paths between the np transmit
and ng receive antennas. There exist many methods to estimate MIMO channel at the
receiver |29, 30|, and we assume, in this thesis, that channel estimation provides a perfect
channel state information at the receiver (CSIR). Through a feedback channel, channel
state information is returned to the transmitter (CSIT), and a linear precoder can be
designed according to this channel knowledge. Precoding design depends not only on the
type of CSIT but also on the optimization criteria such as, for example, maximizing the
received signal-to-noise ratio (SNR) [31], minimizing the mean square error (MSE) [32],
or maximizing the minimum singular value of the channel matrix [33]. These solutions are
all based on the singular value decomposition (SVD), which decouples MIMO channels
into independent and parallel data-streams. Furthermore, they all perform a power
allocation strategy on the MIMO eigen-subchannels. In other words, the data-streams
at the transmitter are premultiplied by an eigen-diagonal precoding matrix. Hence, these
precoders belong to an important set of linear precoding techniques named as diagonal

precoders.

An alternative set of linear precoders is obviously the non-diagonal strategies. One of
the most well-known non-diagonal precoding structure was invented independently by
Tomlinson [34] and Harashima [35]. To optimize the Schur-convex functions of MSE
for all channel substreams, a specific precoding matrix, which also leads to the non-

diagonal structure, was proposed in [36]. Another non-diagonal precoder based on an

25
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interesting criterion: maximizing the minimum Euclidean distance (max-dp,) between
two received data vectors, was firstly presented in [37]. It will be shown, in this chapter,
that the precoder max-dni, proposes many interesting improvements compared to other
techniques. This precoder will be also investigated, in details, the performance in terms
of bit error rate. Its extensions for high-order modulations will be shown in chapter 3,

and for large MIMO systems in chapter 4.

2.1 Virtual transformation

l77
2 By F, s H o5 G, Gy >
Bracoder foor conf Decodsr

F1GURE 2.1: Virtual model of MIMO systems

Let us consider a MIMO channel with ng receive, np transmit antennas over which we
want to transmit b independent data streams. Suppose there are a precoding matrix F
at the transmitter and a decoding matrix G at the receiver, the basic system model can
be expressed as

y = GHFs + G, (2.1)

where H is the ng x ny channel matrix, F is the np x b precoding matrix, G is the bxng
decoding matrix, s is the b x 1 transmitted vector symbol, and n is the ny x 1 additive
noise vector. We should remark that b < rank(H) < min(np,ng), so ny and ng can be

larger than b. In the following sections, we assume

E[ss*] =1;,E[sn*] =0and E[nn*] = R,, (2.2)

where I is the identity matrix of size b x b and R,, is the noise covariance matrix. Let
us define E as the average transmit power. Thereafter, the precoding matrix F must
satisfy the power constraint

trace{FF*} = E;. (2.3)
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Step Method F; G; H,, R,
Noise . 1,
whitening R.=QAQ Fi=L,, Gi=Az2Q H, -GHF; | R, =1L,
Channel . B . - B
diagonalization H,,—AXB F,=B Go=A Hy, =% Ry, =Inp
Dimensionality For I Gs—(I, 0) H_sx R I
reduction 3=\ o 37\ v &b (R

TABLE 2.1: Steps to obtain the diagonal MIMO system in the case of CSIT

If the channel state information (CSI) is perfectly known at both the transmitter and
receiver, a diagonalized channel matrix and a whitened noise can be obtained. This
operation is decomposed in three steps and is denoted as virtual transformation. The
key of this method is illustrated in Fig. 2.1. Firstly, the precoding and decoding matrices
are decomposed as F = F,F; and G = G;G,. Then, the new decompositions of two

matrices F, and G, into the product of three matrices are considered.
F,U = F1F2F3 and GU = G1G2G3, (24)

where (F;, G;) perform the particular operations which are detailed in Tab. 2.1.

2.1.1 Noise whitening
Let us consider the eigenvalue decomposition of the noise covariance matrix
R, =E[nmm"] = QAQ", (2.5)

where Q is a unitary matrix and A is a diagonal matrix. The goal of this step is to
obtain the correlation matrix R,, = E[G1m*G1"] = G1QAQ*G1" equal to an identity

matrix. The matrix Gy is therefore defined by

Gy = A2Q. (2.6)

The intermediate channel of this operation is given by
H,, = GiHF, (2.7)

where F is considered as an identity matrix of size np.
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2.1.2 Channel diagonalization

The singular value decomposition (SVD) of the intermediate matrix H,, is used to di-

agonalize the channel. Indeed, we have

H, = ASB*, (2.8)

where A and B* are unitary matrices, and X is a diagonal matrix whose elements
represent the square roots of all eigenvalues of the matrix H,, H;, . One should note that
these eigenvalues are real positive numbers and sorted in decreasing order. The number

of non-null eigenvalues depends on the rank of the matrix H,,

k = rank(H,, ) < min(ng,ng). (2.9)

The diagonal matrix 3 can be then expressed by these non-null eigenvalues

3 0
5= (2.10)
00

where the matrix ¥j contains all of the non-null eigenvalues. To diagonalize the inter-

mediate channel matrix Hy,, the proposed solution is

F2=B and GQ:A*. (211)

The second intermediate channel matrix Hy, is then diagonal and defined by

H,, = GoH,,Fy= 3. (2.12)

In addition, the correlation matrix R, is given by

R,, = GoR,, G} = G2G5 =1, (2.13)

it is because Gy is a unitary matrix.
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2.1.3 Dimensionality reduction

The diagonal form of the matrix Hy, corresponds to the gains of each subchannels. It
is noted that these diagonal elements are sorted in decreasing order. The goal of this
operation is to obtain the dimension corresponding to the number of desired data-streams

b. The matrices F3 and G3 are then defined by

|
Fy=|"| and G;=(1, 0). (2.14)
0

These operations are only available if b < k, so we consider the channel matrix such that

b <k =min(np,ngr). The resulting matrix is given by
H, - GsH,,Fy = %, (2.15)

where X, represents the b largest singular values of H,,,. The correlation matrix of the

noise is also identity but the dimension is different

R,, = L. (2.16)

v

2.1.4 Virtual channel representaion

The received signal in (2.1) is now re-expressed as
y-= GdeFdS + Gd”?va (217)

where H, = G,HF,, is the b x b eigen-channel matrix, 1, = G,n is the b x 1 virtual noise
vector. Thanks to virtual transformation, the eigen-channel matrix H, is diagonal and
defined by

H, = diag(o1, ...,0p), (2.18)

where o; stands for every subchannel gain and is sorted by decreasing order. One should
note that the virtual precoding matrix F, is orthonormal (e.g. FF, =1I), and the power

constraint is then given by

trace{FF"*} = trace{F F} = E. (2.19)
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The basic and the equivalent diagonal transmission systems are shown by the block
diagram in Fig. 2.2. In these models, the input bit streams are firstly modulated to
symbol streams are then passed through a linear precoder. The linear precoding matrix
F add redundancy to the input symbol streams to improve the system performance. The
output of the precoder is then sent to the channel H with the additive gaussian noise 7.
The decoding matrix G is used to remove any redundancy that has been introduced by
the precoder. For the diagonal transmission model, the decoding matrix G4 will have
no influence on the performance and is consequently assumed to be an identity matrix

if a maximum likelihood (ML) detection is considered at the receiver.

NP
\)/<\v/
t I LN ’ ‘\\ l 7
S | Coding > RS GO I = d(?er::ir;r:neg; Yy
™| Modtat F| - ~ovg o |G & >
odulation . SN g e Demodulation
/:// \\:\
’, W
7 N
_________ Y
> jtw LTHR => (a)
o Ty
Y1
> )
02 /)71}2
o Yo Channel A~
S oding |3 > decoding S
Modulation : : Demodulation
Op /)7’1)17
Yb
= -> )

FIGURE 2.2: Block diagram of a MIMO system: basic model (a), diagonal transmission
model (b).

The virtual precoding matrix F is used to optimize the criteria such as maximizing the
output capacity [12], maximizing the received signal-to-noise ratio (SNR) [31], minimiz-
ing the mean square error (MSE) [32|, maximizing the minimum singular value of the
channel matrix [33]. These precoders belong to the diagonal group. In other words, the
precoding matrix Fg is diagonal and leads to power allocation on b parallel independent

data streams.

In the next sections, we present some of the traditional precoders and concentrate on
a non-diagonal precoder which optimizes the minimum Euclidean distance between the

received signals.
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2.2 Existing precoders

Due to the form of the precoder F, the precoding technique can be classified into two
categories: diagonal and non-diagonal schemes. A precoder is called as diagonal if and
only if the precoding and decoding matrices (Fg, Gg) in (2.17) are diagonal. When
the receiver is based on a maximum likelihood detection, the decoding matrix G4 has
no influence on the performance and only the precoding matrix Fy = diag(f1, f2, .-, f5)
is considered in the optimization. The general principle of the diagonal precoder is
illustrated in the Fig 2.3. The problem becomes finding the power distribution expressed
by the coefficients ff to optimize a particular criterion. We present, herein, some diagonal
precoders such as Beamforming, Water-Filling, Minimum Mean Square Error (MMSE),
Quality of Service (QoS), and Equal Error (EE).

___________________________________
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FIGURE 2.3: Diagonal precoding schema using maximum likelihood detection (ML) at
the receiver.

2.2.1 Beamforming or max-SNR precoder

As its name implies, this precoder maximizes the signal to noise ratio (SNR) at the
transmitter, and uses only the strongest virtual subchannel corresponding to the SNR
o2 38, 39]. It concentrates all of the transmit power on the most favorable direction
represented by the singular vector associated with the maximum eigenvalue [31]. The

expression of the received signal, in virtual representation, is then

y =V Esois+1, (2.20)
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where s is the transmit signal, n is the additive white Gaussian noise of the channel.
We see that the structure of this precoder is rather simple. However, only one symbol is
transmitted in each time slot, and, therefore, the data rate is limited by the modulation

used at the transmitter.

2.2.2 Water-Filling precoder

The goal of this precoder is maximizing the capacity of the MIMO system. By using
(1.16), the capacity of a virtual channel can be simplified by

b b
C =Y logy(1+ ffo}), with Y f=E;. (2.21)
=1 =1

The optimized solution is given by

\I’WF - L if \I’WF > L
£2 = o} o with i=1,..,b (2.22)
0 others

where the threshold Wwr depends on the virtual channel and is defined by

E,+ b
bwr B

=
P

1
Twp = — (2.23)
0;

Il
=

where bwr is the number of the subchannels used by the water-filling precoder. The

algorithm to determine the number of virtual channels bwr is illustrated in Fig. 2.4.

2.2.3 Minimum Mean Square Error precoder

The minimum mean square error (MMSE) precoder is proposed to minimize the total
effective noise where the optimized equation is given by

b
auin B(ly = sI*] = min Y F g fisi + gin =il (2.24)

d>d 51

where the decoding matrix is defined by G, = diag(g1,92,..-,95). The power constraint

is expressed by
b

> 1} =Es. (2.25)

i=1
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A 4
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FIGURE 2.4: Algorithm of Water-Filling precoder.
As for the Water-Filling case, the optimized solution of MMSE precoder is defined by

1 1 : 1
1 (Wyse - L) if Upgse > -
2 7 (aise - ) MEE T ol ithi=1,..,b (2.26)

0 others

where byisg is the number of virtual subchannels such that Uygg > 1/0y, for i = 1,...;b.

The threshold Wysg is given by

Es + yMsE buse 1
v = ith — 2.27
MSE briSE 1 w1 TMSE ; a? ( )
i=1 Oi

The MMSE and Water-Filling precoders have the same algorithm to determine the num-

ber of active virtual subchannels (as shown in Fig. 2.4). Both precoders remove some



Chapter 2. MIMO linear precoding techniques 34

subchannels and pour power on the others to optimize different criteria. The number
of used subchannels depends on the characteristics of the channel and the optimized

criterion.

2.2.4 Quality of Service precoder

The principle of this precoder is based on the different demands of Signal to Noise Ratio
on each subchannel [32]. For example, a data-streams represents the video while another
transfers the speech. The data-rate of the first channel is obviously higher than the
second. Consequently, the first one needs a higher SNR, than the second one. Indeed,
the SNR of each subchannel is noted by

fPo? = wiffo} withi=1,...b (2.28)

where w; represents the SNR of the subchannel ¢ compared to the subchannel b. The
gains of the subchannels are ordered and the first one corresponds to the most important
signal to noise ratio, e.g. wy > wg >--- > 1. The coefficients of this precoder is then given
by

9 E,

fi =wi—— (2.29)
Wy,
2=
k=1

Unlike the WF and MMSE precoders, the QoS solution always uses a same number of

virtual subchannels for all of the signal to noise ratios.

2.2.5 Equal Error precoder

This precoder is a special case of the QoS scheme when the SNR coefficients w; are all
equal. It is also the solution which maximizes a lower bound of the minimum Euclidean

distance. The diagonal entries of this precoder are defined by

re—te (2.30)

b
2y L

2
k=10
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In the precoder, the average error rate of each subchannel is identical and the number of
used subchannels is constant. By maximizing the minimum eigenvalues Apin (SNR(F, G)),
it optimizes a lower bound of the minimum distance between two received symbols for

an ML detection [33].

2.2.6 Minimum BER diagonal precoder

The authors in [40] proposed a diagonal precoder in order to minimize the criteria: Bit
Error Rate. For a square M-QAM constellation and white Gaussian noise with variance

one, the probability of error on the subchannel ¢ of the virtual channel H,, is defined by

|41]
P, ; = aprerfe (\/BMffa?) , (2.31)
where ayy = log i (1 - \/M)’ and By = m Using Lagrange multiplier u, the opti-

mization criterion is given by

_ TMZI); erfec (\/m) +M(Zb;f2 —Es). (2.32)

By canceling the partial derivative 2 57 f , we obtain

1 204a B2
2 MPM
S = Wi . 2.33
fz 2,8M0'Z2 0 ( [ 2,052 ) ( )
where Wy stands for Lambert’s W function of index 0 [42]. The function Wy(z) is
an increasing function, and is positive for > 0. Hence, when p? increases, the fl-2
decrease. Therefore, the value of u? can be easily determined by using the transmit
power constraint. It is noted that the function Wy(x) can be approximated by Wy(x) »

log(z) —log(log(x)), and the optimized solution is then defined by

a;i(1 -2 Ap) + Ai Y ag
2k Qg

f?=

, (2.34)

= QU?Q?WB?”, and A; = a; (log(b;) —log(log(b;))).One should note that

1
where a; = Frra? Vi = —ie
7

the approximated solution is not available for the low SNRs. It is because that the value

log(b;) can be negative and the term A;, then, can not be determined.
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2.2.7 X- and Y-codes precoder

In order to improve the low diversity order, the authors in [43| have proposed X- and
Y-Codes to pair subchannels having different diversity orders. The idea is that the
information bits are first mapped to the information symbol vector u = (w1, ...,up)" € Cp,
and then mapped to the coded symbols z = (21,...,2,)7 € Cp using a b x b matrix F,
ie., z = F.u+ug, where ug € G is a displacement vector used to reduce the average
transmitted power. By using a channel diagonalization, the signal at the receiver is
defined by [44]

y=H,F.u+n (2.35)

where F. is fully characterized by the list of pairings and the 2 x 2 encoder matrices for
each pair. The information symbols the k-th pair u;;, and w;; are jointly coded using a
real 2 x 2 matrix Ay = {ax;;},%,j € [1,2]. Each A} is a submatrix of the code matrix
Fc={fi;}, ie,

finyin = @10 i g = Qk1,2

(2.36)
Fiin = ak21 Fjggi = ar22
In the case of b = 6, for example, the X-Code structure is given by
ai,1,1 a1,1,2
a21,1 a2,1,2
a1,1,1 a1,1,2
F.= (2.37)
ai,1,1 a1,1,2
a2,1,1 a2,1,2
ai1,1 ai1,1,2
and the Y-Code structure is given by
ai,1,1 a1,1,2
a2,1,1 a2,1,2
a1,1,1 @1,1,2
F.= (2.38)
ai,1,1
a2,1,1

a1,1,1
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Let us define uy = [u;,,u;,]*. Due to the transmit power constraint, and uniform
transmit power allocation between b/2 pairs, the encoder matrices Ay must satisfy the
condition

2F,
E[|Ayu, +u}|?] = b k=1,2,...,b/2. (2.39)

For X-Codes, the encoder matrices are 2 x 2 real orthogonal matrices parameterized by
a single angle, and are given by
cos B, sindy

A= (2.40)
—sin 6}, cos by,

For Y-Codes, the encoder matrices are considered by the form

ar 2a
Ap=| " (2.41)
2y, 0

The optimized design of X,Y-Code/Precoders are respectively detailed in [44]. It can be
demonstrated that these designs achieve high rate and high diversity at low complexity

by paring the virtual subchannels into the SVD precoding.

2.2.8 Tomlinson-Harashima precoder

In this section, we explore a different precoding technique for MIMO spatial systems.
The structure of these precoders are no longer diagonal. A MIMO transceiver using the
Tomlinson-Harashima precoder (THP) is shown in Fig. 2.5. Here, H is a ng xny channel

matrix, and F is a linear precoder. The received signal y is then defined by

y =HFs+n, (2.42)

where s is transmitted vectors, and 7 is nr x 1 additive Gaussian noise vector. At the
receiver, a Decision Feedback Equalizer (DFE) is considered. The DFE equalizer consists
of a feedforward part G and a feedback part B. The feedforward matrix G whitens noise
and guarantees causality. Therefore, the decision feedback is ensured by restricting B
to be lower triangular. The feedback matrix cancels the interference caused by already

detected symbols.
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FIGURE 2.5: Block diagram of linear precoder and matrix DFE.

Let us denote § as the signal vector after the decision device, the input § to the decision
block is given by § = GHFs — Bs + G7. Under the assumption of correct past decisions,
i.e. s=s, we have

$ = (GHF - B)s + Gn). (2.43)

The feedback section of the DFE can separate the signal by the feedback matrix B =
GHF - 1. This is DFE decision subject to a zero-forcing (ZF) constraint [45, 46]. An
optimal linear transceiver of this design was presented in [47|. It is shown that the
generalized triangular decomposition (GTD) offers an optimal family of solutions, and
DFE transceiver using the geometric mean decomposition (GMD) is another member of

the optimal family.

Other designs for DFE based schemes use a minimum mean square error (MMSE) cri-
terion at the receiver |48, 49|. Defining the error signal e = s — §, the mean square error

matrix can be written as

E{ee’} = CC* - CF*H'G* - GHFC* + GHFF*H'G" + GR, G", (2.44)

where C = I+ B is a unit diagonal lower triangular matrix, and R,, is the covariance
matrix of the Gaussian noise 7. The object becomes to design G, C, and F for different
criteria, subject to the power constraint. The authors in [50| propose a broad range of
design criteria which can be expressed as Schur-convex or Schur-concave functions of the

MSE, and provide optimal transceivers designs for these two classes.
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2.3 Minimum Euclidean distance based precoder

This precoder is based on the maximization of the minimum Euclidean distance (max-dyiy )
between signal points at the receiver side. The criterion provides a significant enhance-
ment in terms of bit-error rate, especially when an ML receiver is used [51]. However,
the optimization of max-dy, precoder is difficult for two reasons. Firstly, the space of
solution is large and exponentially proportional to the number of data-streams b. Sec-
ondly, the exact expression of max-dp,;, precoder depends on many parameters such as
the modulation used at the transmitter, and the characteristic of the virtual channel H,,.
For this reason, the optimized solution is limited for a small number of data streams

(b =2) and for low-order QAM modulations [37].

In this section, we present the simple solution of d;, criterion for two data-streams and
QPSK modulation. After that, its performance will be shown in comparison with other

traditional precoders.

2.3.1 Minimum Euclidean distance

When a symmetric constellation is considered at the transmitter, the minimum Fuclidean
distance between two symbols at the receiver is defined by

2. = min |H,Fi(sp-s)|% (2.45)

min
Sk ,S1€S,SL#S]

where x5 and x; are two transmit signals, and S is the set of all these possible transmit
vectors. Let us define x a difference vector as x = s —s;, with s, # s;. Because there
exist many collinear difference vectors, we introduce the reduced set X of S which does
not contain the redundant difference vectors. The dpyi, criterion is now expressed as

2, = min [H,Fgx| 2. (2.46)
xeX

min
X

This criterion is particularly well adapted for the ML receiver because the symbol error

probability depends on the Euclidean distance between received vectors [52], [53]. Then,
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the precoding matrix Fy is obtained by maximizing the minimum Euclidean distance

F; . =argmax duyin, (2.47)

Fy

min

under the power constraint trace{F F}} = F.

2.3.2 Parameterized form for 2-D virtual subchannels

The optimization for 2-D virtual subchannels is obtained by the change of variables for

two eigenvalues of the channel. These two new variables are defined by

01 = pcos~y p=+\/0}+03
<~

(2.48)
o9 = psiny 7 = arctan ¢t
where p and  represent the channel gain and channel angle, respectively. The virtual

channel is then given by

o1 0 cos 0
59 Al P Rt (2.49)

0 o2 0 sinvy

Note that o1 > 02 > 0, so we have 0 < v < 7/4. By using a singular value decomposition, it
can be demonstrated that max-d,,;, precoding structure can be expressed by the product

of the power allocation, the rotation and scaling matrices [37]

cos 0 cosf sinf)f1 0O
F,=vVE, 4 , (2.50)

0 siny ) \-sinf cosf)\0 e

where v is linked to the power allocation on the eigen-subchannels, and 6§ and ¢ corre-
spond to scaling and rotation of the received constellation. If 8 and ¢ are both equal to

zero, the matrix Fy is diagonal and leads to the power allocation case.

2.3.3 Optimal solution for QPSK modulation

For a QPSK modulation with b = 2 data-streams, the transmitted symbols belong to the
set

S:{i(ui),

1 ~ 1 ~ 1 .
7 —(1—@),—2(—1+2),—(—1—z)}. (2.51)

V2 V2 V2
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It was shown in [37] that the optimal solution is rather simple with only two precoder

expressions

o if0<y<

/3+V3  [3-\/3 i~
e’12
Fy=F, =/E; 6 6 (2.52)
0 0

o if yp<y<m/4
E.[cosv O 1 ¢'7
Fg=Focta = — o (253)
2\ 0 siny)\-167

1) = arctan @
anvy

where
_ 3v3-2v6+2v/2-3 _ 0
Yo = arctan y /—3\/5—2\/6+1 ~ 17,28

The parameter 9 is linked to the power allocation on each sub-channel, and the constant
threshold -y allows the precoder to use one or two sub-channels. The value of v is
obtained when considering that the two precoders give the same minimum FEuclidean

distance dpin. This one depends on p and v and is expressed as

\/Esp,/l—%cos'y if0<y <y (2.54)

e (4-2/2) cos2 ysin? y
Esp 1+(2-2v/2) cos2 v

dmin =

ifyg<y<m/4

Received constellation

One should note that F,, pours power only on the first virtual subchannel, while Fg.q
transmits symbols on both subchannels. The received constellation of the precoders F,,
is illustrated in Fig. 2.6. This constellation looks like a rotation of 16-QAM modulation.
The solution provides a slightly improvement in terms of dpi, compared to the beam-
forming design that uses a 16-QAM modulation. However, the average number of nearest
neighbors provided by max-dp;, precoder is higher that that by max-SNR (detailed in

the next chapter).

The received constellation found by the precoder F,., is illustrated for both virtual
subchannels in Fig. 2.7 and 2.8. It is observed that whenever two received vectors are
close on one virtual subchannels (e.g., the points 3 and 10 in the first subchannel) they

are distant on the second one.
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FIGURE 2.6: Received constellation on the first subchannel for the precoder F,,.

The complexity of ML detection

The max-d,;, precoder optimizes the minimum Euclidean distance between two pairs of
symbols at the reception when considering a maximum-likelihood (ML) detection. One
should note that the decoding matrix G4 has no effect on the ML detection, and then can
be assumed to be an indentity matrix. For a MIMO system using M-QAM modulation,
the number of ML tests for max-d,,;, solution is M? instead of 2M for diagonal precoders

or the Alamouti code.

2.4 Comparison of linear precoders

2.4.1 Comparison of minimum Euclidean distance

Firstly, we indicate the improvement of the new precoder in terms of minimum Euclidean
distance. Fig. 2.9 illustrates the normalized distance for each precoders in the case of
QPSK modulation. It is observed that the difference between the max-d,i, precoder
remains constant for small channel angle v. For MMSE and Waterfilling case, if the

average transmit power is not large enough, these precoders allocate power on only the
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FIGURE 2.9: Normalized minimum Euclidean distance for QPSK modulation.

first virtual subchannel (in other words, the minimum distance is equal to zero). The
max-Amin precoder is better than the MMSE and Waterfilling solution in terms of dpin

but is still outperformed by the max-di, precoder.
Let us define the different ratio of dpyi, by

_ duin(precoder)

dmin -

(2.55)

dmin (maX _dmin)

This ratio corresponds to the minimum distance gain of a precoder compared to the
max-dmi, solution. Since the max-d,;, precoder provides the optimal minimum distance,
for the precoders max-SNR, MMSE,

we have Ry . < 1. Fig 2.10 shows the Ry

min min

and max-Api,. In addition, the probability density functions of the angles v are also
illustrated for the systems (2,2), (4,2) and (6,2). A discontinuity can be observed at the

channel angle v =~ ~ 17.28°.

If the channel angle  is less than the threshold g, the minimum distance of max-SNR
and max-dmi, precoder are very near: Rg_ . =~ 0.97. The ratios of dpi, for MMSE and
max-Amin precoders vanish for v = 0, and increase when the channel angle raises. If
v > 70, the max-dp, precoder augments its minimum distance in opposite to the max-

SNR design, and the ratio R4_. (max-SNR) is, then, decreased. The others ratios of din

min
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FIGURE 2.10: Comparison of the minimum Euclidean distance.

for MMSE and max-Anj, continue increasing and become higher than that of max-SNR

design when the channel angle grows near /4.

It is clear that the improvement in terms of dy;, comes from both precoding matrices
F,, and F,.,. However, the distribution of these precoders depends on the channel char-
acteristics (the angle 7p) and the number of antennas used at the transmitter and the
receiver. It can be observed, in Fig. 2.10, that the less dispersive the virtual subchannels
are (more antennas are used, for example), the less we need the precoder F,,, and the
enhancement of d,j, is therefore more significant in comparison with the max-SNR solu-
tion. Thanks to the dp,;, enhancement, we can expect a large performance improvement

in terms of BER compared to the diagonal precoders.

2.4.2 Bit-Error-Rate performance

We consider a MIMO system using QPSK modulation with ny = 3 transmit and ng = 2
receive antennas over which we want to transmit b = 2 independent datastreams. Fig 2.11
plots the BER performance for QPSK modulation. These results clearly demonstrate
that the max-dy;, criterion is particularly suited for BER minimization when an ML
detection is considered at the transmitter. The performance of diagonal solutions, such

as max-Apin, MMSE and Waterfilling, is really outperformed by the max-d,;, precoder.
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FiGURE 2.11: Uncoded BER performance for QPSK modulation.

Furthermore, we can observe a performance improvement of about 1dB, in comparison
with max-SNR at BER is equal to 1073. This gain can be explained by the selection of

Foctq to transmit signal when there is a small dispersion of the subchannels SNRs.

2.5 Conclusion

Through a feedback link, the channel state information is available at the transmitter
and linear precoders can be designed to optimize various criteria such as maximizing
the received signal-to-noise ratio (SNR), minimizing the mean square error (MSE), or
maximizing the minimum singular value of the channel matrix. Those solutions lead
to power allocation with diagonal solutions based on the singular value decomposition
(SVD). In the first section of this chapter, we introduced the virtual channel transfor-
mation, which decouples MIMO channels into independent and parallel data-streams.
Thanks to this transformation, we presented in the next section the diagonal precoders:
Beamforming, Water-Filling, Minimum Mean Square Error (MMSE), Quality of Service
(QoS), and Equal Error (EE). A MIMO transceiver using the Tomlinson-Harashima pre-
coder (THP) is also shown in the chapter. This precoder belongs to an alternative set

of linear precoders: the non-diagonal precoding schemes. We, then, proposed a different



Chapter 2. MIMO linear precoding techniques 47

non-diagonal precoder, named as X- and Y-Codes, for MIMO systems with a pair num-
ber of subchannels. In this thesis, the non-diagonal linear precoder which maximizes the
minimum Euclidean distance between two received data vectors is studied. We presented,
herein, the simple solution of dy;, criterion for two data-streams and QPSK modulation.
The simulation results show that the max-dpyi, precoder provides a large performance

improvement in terms of BER compared to diagonal precoders.



Chapter 3

Extension of max-d,,;, precoder for

high-order QAM modulations

Various criteria can be used for designing a precoding matrix. An efficient non-diagonal
precoder, which minimizes the upper bound of pairwise error probability (PEP) when
using arbitrary STBC over correlated Ricean fading channels, is illustrated in [54]. As
presented in the chapter 2, the non-diagonal max-d,;, precoder obtains a large perfor-
mance improvement in terms of BER compared to diagonal precoders. Unfortunately, the
max-dpi, solution is only available for two independent data-streams with a low-order
QAM modulation (BPSK and QPSK). That is due to the expression of the distance
dmin that depends on the number of data-streams, the channel characteristics, and the

modulation.

In this chapter, we firstly present the optimized solution of the max-dy,;, precoder for
two 16-QAM symbols. This new strategy selects the best precoding matrix among five
different expressions, depending on the value of the channel angle . In order to reduce
the complexity of the max-dy;, precoder, we propose a general expression of minimum
Euclidean distance based precoders for all rectangular QAM modulations. For a two
independent data-streams transmission, the precoding matrix is obtained by optimizing
the minimum distance on both virtual subchannels. Hence, the optimized expressions
can be reduced into two simple forms: the precoder F; pours power only on the strongest
virtual subchannel, and the precoder Fo uses both virtual subchannels to transmit data

symbols. These precoding matrices are designed to optimize the distance dp,;, whatever

48
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the dispersive characteristics of the channels are. The expression of F; depends on the
order of the rectangular QAM modulation, while that of F5 does not change for all QAM

modulations.

Assuming that the channel state information is available at the transmitter, a MIMO
system with np transmit, ngr receive antennas and b independent data-streams over

Rayleigh fading channel can be modeled as
y = HdeS+77U7 (31)

where H, = G, HF, is the bx b virtual channel matrix, n, = G,V is the bx 1 transformed

additive Gaussian noise vector.

As presented in Chapter 2, the virtual channel matrix for two independent data-streams
can be parameterized as
o1 0 cosy 0

H, = =p , (3.2)
0 o2 0 sinvy

where p = \/a% + ag is the channel gain, and v = arctan g—f is the channel angle (0 <~ <
mw/4). Due to the symmetries of rectangular QAM modulation, the precoding matrix Fy

can be represented as

Cos 0 cosf sinf {1 O
VN R , (3.3)

0 sinty ] \-sinf cosf)\0 e

with 0 <9, p < 7/2 and 0 < 0 < /4. The parameter ¢ controls the power allocation while

0 and ¢ correspond to scaling and rotation of the received constellation, respectively.

3.1 Optimized max-d,;, precoder for 16-QAM modulation

In the case of a 16-QAM modulation, the symbols belong to the following set

Si6-0inr = {%(ﬂ i), ¢L1_0(¢1 £3i), %(is i), V%(ﬂ; . 32')} o (34)
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A numerical search on 1, 6 et ¢ to maximize the Euclidean distance for every angle
leads to five different expressions. If v stays under g, then only the best subchannel is
used as in the max-SNR strategy and the precoder will be denoted F,;. On the other
hand, if v; < v < v;41, the precoder leads to a 256-points constellation on both receivers,

and it will be denoted as Fr, , i = 1---4, respectively.

3.1.1 Expression of the max-d,,;, precoder

Precoder F,,

For every v < 9, the numerical maximization of dp,iy gives an angle 1 = 0, meaning that
only the best virtual subchannel is used (i.e. the first one, since o1 > 03). A received

constellation on this subchannel is represented on Fig. 3.1 (for ¢y = 0 and arbitrary

0 and ). It is observed that there are 256 points corresponding to the 256 received

symbols. One should note that the distance dumi, is optimized when nearest neighbors
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FIGURE 3.1: The received constellation on the first virtual subchannel for ¢ = 0.

have the same distance. We observe, in Fig. 3.1, that the optimized solution is obtained

when di216 = di6,29 = d2g,12. In other words, the different distances provided by three
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corresponding vector below are equal

.fl = — s i‘g = — and i‘3 = — . (3.5)

1
V10| -6+ 2i

The corresponding distances lead to the system

3 = % x (4 -4cos?0)

2

d?@ = 55T x (=32 cos? 0 — 24 cos §. sin . cos ¢ + 36) (3.6)

cos? vy

d%g = 5~ X (-8 cosf.sinf.sinp — 36 cos? 0 + 40 — 24 cos §.sin f. cos @)

whose resolution gives

_ 1 o
p = arctan Vi 7.3693 (37)

6 = arctan(2sin ) ~ 14.3877°

The received constellation then looks like a 256-QAM constellation rotated by 7.3693°.
This solution is close to the max-SNR strategy, but leads to a little higher dpyi,. It is

observed that the optimization of duy, is obtained by the difference vector —(0 2)T.

V10

Therefore, the minimum distance provided by the precoder F, is given by

da = Egp?—————cos®~. 3.8
F'rl Sp 5(11+3\/§) ’Y ( )

Precoder Fr,

A numerical approach shows that, for every vy < v < 71, the angles 8 and ¢ are fixed.
Furthermore, the angle v that controls the power allocation over the two virtual sub-
channels, depends on the channel angle 4. The minimum Euclidean distance of Frp, is
obtained when 6 = 45° and ¢ = 45°. Then, the max-dpi, precoder can be expressed as a
function of 1

VE; [cosy 0 V2 1+i

Fy, -
o2 0 sing)\-vB14d

(3.9)
When 7 is explored from 0° to 45°, the value of v that maximizes the minimum distance

is obtained with the two difference vectors

. 1 2 1 [4+4d

Tay = ——= and Iy, = \/—1_0 ]

(3.10)
V10| 2 4 9;
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If we denote dj, and dél as the normalized minimum distance linked respectively to the
difference vectors Z,, and Zp,, the optimum precoder is obtained when these distances

are equal

dgl =6 +4v/2 + 12 cos? y cos? 1 — 6 cos? 1h — 6 cos? vy — 4v/2 cos? i) — 4v/2 cos? v
d% =34 + 24V/2 - 68 cos? 7y cos? 1) — 34 cos? 1h — 34 cos? v — 24\/2 cos? ¢ — 247/2 cos? v
1

By considering dg, = dj , we get ¢ as a function of

52 -7

Y = arctan . (3.11)
tan-y
The corresponding distance provided by Fr, is
20 - 14v/2 in?
% = B’ V2 ST (3.12)

5 tanZy + (5v/2-7)%
Precoder Fr,

For « such that v; < vy < 79, it is observed that the angles 6 and ¢ are fixed, and ¥
depends on vy for the precoder maximizing the minimum distance. Furthermore, the
numerical research shows that the distance dy,, is obtained when 6 = 45°. Then, the

precoder Frp, can be expressed as a function of ¢ and ¢

By, = B[ Y onvleserisne)) (3.13)

-siny  siney(cosp +isinp)

When the channel angle « varies, the difference vectors that provide the minimum dis-

tance are

2 ) 1 (2+2i 1 [ 2+4i

1 y
V10| 9 ’

Tpy = —— , and T,

V10| 2 V10|49

Lay =

Let us denote dg,, dBQ and dg, as the Euclidean distance corresponding to Z,,,Zp, and

Zc,, respectively, the optimized precoder is obtained when dj, = d52 =dg,



Chapter 3. Ezxtension for high-order QAM modulations 53

d§3 =1/10 x (8 cos® v cos? 1h + (1 — cos® y — cos? 1) x (4+4coscp))
dlg)g =1/10 x (12COS2"}/COS2¢ + (1 -cos?y —cos?1p) x (6 +4cosy +4sincp))
dgs =1/10 x (40C082’7C0821/) + (1 - cos?y - cos? 1)) x (20 + 16 cos  + 12singp))

Solving the equations dj, = d52 =dg,, we get

@ = arctan%

_ a—a. cos? y (314)
Y = arccos 5ot o7
where o =1+ \/%. The distance dpin provided by Fr, is then
%2: Eyp? 8 5 @ —acos?y (3.15)

10 6+/34 €08 70( —2cos?7y’
Precoder Fr,

For « such that v9 < v < 3, a numerical approach shows that the minimum distance is

provided by four difference vectors

= — ,jj = — ’:E = — = —
“ /10 9 s VvV10\ -9 “ V10 —24+9; Vv10\_4

The corresponding Euclidean distances of these vectors are

dgg =1/10 x [4NT cos? 0 + 4 cos? y cos? 1/1]
d% =1/10 x [4NT(1 +5in 26 cos @) + 8 cos? y cos? 1/}] (3.16)
3
d?s =1/10 x [4NT(1 +25in 26 cos ¢ + 3 cos? @) + 20 cos? vy cos? w]
dfz =1/10x [4NT(1 + 5in 26 cos ¢ + cos? § + sin 20 sin @) + 12 cos? y cos? w]
3
where N =1 — cos? 1) — cos? . By considering d;, = d53 =dy, = djgv we obtain
Y= arctan%
1 10
¢ = 5 arctan g (3.17)
10/+/14-1

1) = arctan —————
tanvyy/10/v/14+1
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By substituting the values of the angles ¢, # and v into the expression of max-dpyin

precoder, we have

B 5 2N cos? 0 + 2 cos? 1) cos?
=FEqp .

d7, = (3.18)

Precoder Fr,

Like the precoder Fr,, the minimum distance of this precoder is obtained when 6 = 459,

¢ =45 and 1 depends on the channel angle 7.

VE; [cosy 0O V2 1+i

Fy, -
o2 0 sing)\-v214i

(3.19)

Normalized Euclidean distance

i i i

) i i i i i
0 5 10 15 20 25 30 35 40 45

Angle vy in degrees

FI1GURE 3.2: Euclidean distance with ¢ = 45° and 6 = 45° for some difference vectors
with respect to v in degrees for channel angle v = 30°.

Fig 3.2 illustrates the Euclidean distance for each difference vector with respect to v for
a given channel in the interval from 73 to 45" (i.e. v = 30°). It is observed that the value
of 1) that maximizes the distance dy,;;, is given at the intersection of the two curves which

corresponds to
1 (0 1 2

v v

Tay = —— , Ty, = ——
VAT P BERVAT) RO WDY
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If we denote d;, et dE4 as the Euclidean distance corresponding to the vectors z,, et Zy,,

respectively, the optimal precoder is obtained when dj, = dlv)4

d§4 =1/10 x ((6 + 4v/2) Ny + 12 cos® y cos? 1)) (3.20)
d% =1/10 x (2Np + 4 cos® y cos? 1))
4
where Np =1 - cos? ) — cos?~. By considering ds, = d54, we get 1 with respect to «

V2-1
tany

1 = arctan (3.21)

The precoder Fr, is then computed by substituting + into (3.19), which finally gives the

optimal dp,i, ruled only on the channel angle

Ep? 4sin”y - 2tan?
d2T4=5—p(251n27+ sy otan v (3.22)
10 tanZy + 3 - 21/2

3.1.2 Received constellation of the max-d,,;, precoder

Fig 3.4 illustrates the received constellation provided by the precoder F,;. Only the
first virtual receiver is considered because the second one is not used. It is observed
that the constellation looks like a 7.37° rotation of 256-QAM modulation. The minimum
distance provided by this precoder is therefore close to the max-SNR design using 256-

QAM modulation, but it provides a slight improvement in dpin-

On the other hand, the received constellations of the precoders Fr, (i = 1---4), are avail-
able on both subchannels. Fig 3.3 shows the constellation obtained by Fr,. It is noted
that two received vectors, which are close on one virtual subchannel, are distant on the

other subchannel.

3.1.3 Evolution of the minimum Euclidean distance

Fig 3.5 shows the distance dmin provided by the precoders F,, and Fr, (i = 1---4). The
optimal distances are only governed by the channel angle . To choose between F,, and
Fr,, and get the corresponding threshold we have to look values such that these distances

are equal.



Chapter 3. Ezxtension for high-order QAM modulations

56

(b) second virtual subchannel

FIGURE 3.3: Received constellation for the precoder Fr,



Chapter 3. Ezxtension for high-order QAM modulations 57

_4b

-8+

FIGURE 3.4: The received constellation obtained by the precoder F,,
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FIGURE 3.5: Evolution of dyi, with respect to v for a 16-QAM modulation

For example, let us solve the equation d,, = dr, to obtain ~yy. The corresponding distances

are given by

2 _ 2 2 2
dTl - Esp 5(11+3v/3) cos=y (3 23)
d2 = F.p220-14V2 sin? y '

T sP 5 tan2 y+(5v/2-7)2
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By considering d,1 = dr,, we obtain

Yo = aurctaun\/1 iw](\)% (5v/2-7)2 ~ 5.128°, (3.24)
where My = 107 \/5)1(1“3 75 The other thresholds ~; are obtained by using the same
process

~v1 ~ 5.26°
Yo & 8.40° (3.25)
~v3 ~ 15.38°

3.1.4 Performance of the max-d,,;, precoder for 16-QAM modulation

Minimum Euclidean distances for minimum distance based precoder in comparison with
diagonal precoders are shown in Fig. 3.6 in the case of a 16-QAM modulation. The
black curve represents the upper bound of max-d,,;, precoder depending on the value of

7. It means that its expression is selected among F,, and Fp, (i =1---4).

0.6
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FI1GURE 3.6: Comparison in terms of the minimum Euclidean distance.

For = < 9, the performances of max-dy,;y and beamforming are very close with the same
difference. The light advantage of the proposed precoder is due to the rotation of 7.36°

in the 256-QAM constellation. These precoders are both different to zero when the value
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FI1GURE 3.7: Comparison the performance in terms of BER for 16-QAM modulation.

of the channel angle v is small. When + increases, the max-Ani, solution is better than
MMSE, WF, QoS 3dB, and WF solutions in terms of dyi,, but it is really outperformed

by the max-d,;, precoder.

Due to the considerable improvement of dpn, a significant increase of BER is expected
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in comparison with diagonal precoders. Fig. 3.7 represents the BER performance with
respect to the SNR for a MIMO system using a 16-QAM modulation. For MIMO(2,2)
system, we observed that the proposed precoder provides a gain of 3 dB compared to
beamforming design for a BER = 1072. Tt clearly confirms the max-dy,;, interest when an
ML receiver is used. This gain will even be higher if the number of antennas increases. For
MIMO(4,2) system, the max-d;, precoder provides a gain of about 6 dB in comparison

with beamforming at BER = 1073,

3.2 General expression of max-d.;, precoder for high-order

QAM modulations

The max-dpi, solution is only available for two independent data-streams with a low-
order QAM modulation. That is due to the expression of the distance d,;, that depends
on the number of data-streams, the channel characteristics, and the modulation. The
authors in [55] presented a design of a max-dp;, precoder which allows transmitting
more than two independent data-streams, and increasing the 4-QAM alphabet to 16-
QAM or 64-QAM modulations. However, this precoding technique is only suitable to
quasi-stationary MIMO channels where a suboptimal solution is proposed by considering

a block-Toeplitz form.

We present, herein, an idea not only to reduce the complexity of the max-d,;, precoder
but also to provide a significant enhancement of the minimum distance with respect to
existing precoding strategies for all rectangular QAM modulations. For a two indepen-
dent data-streams transmission, the MIMO channel is diagonalized by using a virtual
transformation and the precoding matrix is obtained by optimizing the minimum dis-
tance on both virtual subchannels. Then, the optimized expressions can be reduced to
two simple forms: the precoder F; pours power only on the strongest virtual subchan-
nel, and the precoder F5 uses both virtual subchannels to transmit data symbols. These
precoding matrices are designed to optimize the distance d,;, whatever the dispersive

characteristics of the channels are.
For a rectangular 4*-QAM modulation, the transmitted symbols belong to the set

1
S = a+bi;a-bi;—-a+bi;—-a-bi 3.26
\/M{ ¥ (3.26)
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where M = 2(4F - 1) and a,be (1,3,...,2" - 1).

3.2.1 Precoder F;

When the max-dpi, precoder pours power only on the first virtual subchannel, it means

that the angles 1) = 0. The precoding matrix in (3.3) is, then, simplified as

cos B sin 6 ¥
Fi=\VE; . (3.27)
0 0

Fig 3.8 illustrates the received constellation on the first virtual subchannel provided by
a form of the precoder F;. We observe that it can be divided into four regions with
four corner points named as A,B,C, and D. When the angles 6 and ¢ in (3.27) vary,
these four regions are scaled and rotated, respectively. The distance dp,, is optimized
such that the nearest neighbors have the same distance. In other words, the triangle
(C,D,E) which is created by three transmitted vectors (ies, =NANT = (Lot NeNiyT

VM’ M VM’ M

, where N = 2F — 1, is equilateral. The corresponding difference

and (ﬁv N+E/NM—2)1‘)T

vectors are defined by

The corresponding normalized distances (d2 / (Es,oQ%)), are then given by

c@l = cos? ysin? @
J%Q = cos? y[cos? 6 — 2 cos . sin§.N cos ¢ + N2 sin? 0]

d?, = cos? y[cos?f —2cos.sinf.(N cos  +sin @) + (N? + 1) sin? 0]

Z3

By considering a?il = c@,z = 6@3, we get

1
2N+V3 (3.28)

0, = arctan(2sinpp, ).

@p, = arctan
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The minimum Euclidean distance obtained by the precoder F; is then

d% _EPQi cos?
1_ S

I 3.29
M N2 +/3N +2 ( )

For the beamforming precoder which has the same bit rate, i.e. M’ = %(42’C - 1), the

distance dpiy is given by

4 4 cos?~y
2 2 2 _ 2
dpyun = Esp”——cos”™y = Egp VNI oN T3 (3.30)

It is observed that the precoder F; provides a slight improvement in terms of dpyi, in
comparison with the beamforming design. The normalized distance of the new precoder

is plotted in the Fig. 3.10 and its performance will be discussed in Section 3.3.

imaginary part

real part

FIGURE 3.8: Received constellation of the precoder F;.

3.2.2 Precoder F,

We presented, in the previous section, the optimized max-d,;, solution for a 16-QAM
modulation. It has many expressions, and each expression corresponds to different in-
terval of the channel angle . Let us consider the last expression, i.e., the precoder Fr,.

The optimized expression is obtained with 6 = 7/4, ¢ = 7/4, and 1 depending on ~y. This
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precoder is denoted as Fg, and is expressed as

VE, [ cos 0 \/5 1+
Fo=—-— v . (3.31)

2 0 sing)\-v/21+i

The optimized d,;, of the precoder Fy is always provided by the two difference vectors

The corresponding normalized distances are defined by

CP —%cos ~ cos 1/1+ sin? v sin? ¢
gz 2- f \/'

cos? y cos? 1 + 222 gin? 4 sin? ¢

By solving equation cp = dfw we obtain
V2-1

Y, = arctan .
tany

(3.32)

It can be realized that the form of F5 is rather simple. Therefore, for small dispersive
channels, only precoding matrix Fy in (3.31) is used to transmit signals on both virtual

subchannels. The minimum distance obtained by Fs is

2 4 (2 - /2) cos? ysin?y
M 1+(2-2/2)cos?y

2
dp, = Esp (3.33)
Firstly, we demonstrate that the precoder F5 optimizes the distance dy,;, when there is no
dispersion between both virtual subchannels. Indeed, the minimum Euclidean distance

of Fy at the channel angle v = 7/4 is given by

FEB!

&, =E PIi1 = Eyp* /M. (3.34)

Proposition 3.1. When the channel angle v = w/4, the mazimum value of dwyin is given

by \/Esp?/M, and obtained if and only if 1» = 7/4 or 0 = w/4.
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Proof: see Appendix A.
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FIGURE 3.9: Received constellation of the precoder Fs.

The normalized distance din/\/4Esp?/M of precoder Fs is shown on the Fig. 3.10. It

is observed that the maximum value of dp, occurs when v = ypax = 32.7°. The exact
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value of ynax can be determined by using the calculus below

0 5 0?
ad}:b = 0, and Wd};b < 0. (335)

By solving the equation of the first derivative and verifying the second derivative test,

we obtain

1 1
cos? Ymax = $7 OT Ymax = arccos % . (3.36)

The minimum Euclidean distance at ypyax is then

, 4 V21
M 2

4
d? = Esp2M sin? Ymax = Fsp

F2|'Y=’Ymax (337)

Proposition 3.2. For every channel angle v > Ymax, the distance dpyin obtained by a

precoding matriz Fy cannot exceed the distance dp, in (5.33).

Proof: see Appendix B.

In other words, the optimized minimum distance, for every channel angle v > Ymax, is
only provided by the precoder Fy. Furthermore, the distance defined in (3.37) is the
maximum value that a linear precoder can obtain (see Appendix C). These properties
reaffirm that the proposed precoding matrix Fs is suitable to optimize the distance dpin

on both virtual subchannels, especially when the channels SNRs are small dispersive.

The received constellation of the precoder Fo is shown in the Fig. 3.9. It is observed
that the received symbols on both virtual subchannels are arranged on concentric circles.
The arrangement of received vectors on both subchannels are quite similar. One should
note that any two received vectors, which are close on one subchannel, are distant on

the other subchannel.

3.2.3 Channel threshold ~,

Fig. 3.10 illustrates the normalized distance dpi, obtained by two new precoding matrix
F, and F,. It is observed that the optimal distance is only governed by the channel
angle v. The precoder F1 is just available for small v, while precoder F3 is valid for high

value of the channel angle.
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FIGURE 3.10: Normalized minimum Euclidean distance.

For a given modulation, by considering d%l = d%z in (3.29) and (3.33), we obtain the

value of channel optimal threshold 7, such that

V2-1
V2N2 + 6N +v2-1

tan® g = (3.38)

When v < 7, the precoder F; is used and the signal is transmitted over the strongest
virtual subchannel. On the contrary, when v > g, the precoder Fs is chosen and both
virtual subchannels are used to transmit signal. It is obvious that the higher order of the
modulation (N increases), the less we use the precoder Fi, in other words, the smaller
Yo is (eg: 7o ~ 17.28° for QPSK, 7 ~ 8.09° for 16-QAM, and vy ~ 3.95° for 64-QAM

modulation).

3.3 Performance for high-order QAM modulations

3.3.1 Comparison of minimum Euclidean distance

Firstly, we indicate the improvement of our new precoder in terms of minimum Euclidean

distance. For diagonal precoders, the minimum Euclidean distance between two transmit
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vectors s and r can be simplified as

2. = min, HHUFd(s—r)||2
s,reS,s
- 2
—SrrensuslﬂE E Nif?|si =7l (3.39)

Sb]T, r= [Tl,TQ,..,Tb]T, F,= diag(fb..,fb), and A1 > Ao > .. )\ are

where s = [s1, $2, ..,
the ordered eigenvalues of HH”. It is obvious that the minimum Euclidean distance is
obtained when the vectors s and r are different from only one symbol. The minimum

Euclidean distance of diagonal precoders is then defined by

2
dpin = Es min mln Nif?si =il
s,reS,s#ri=1..
= F, min \; min |s; — r;|?
i=1..b f sreSs¢r| ' Z|
=48y F mlir}) >\z'f¢ (3.40)
=1..

where 48 = 4/M = 6/(4" — 1) is the minimum Euclidean distance squared of the con-

stellation for a rectangular 4¥-QAM modulation.

Precoder Minimum squared distance dmln
4
Beamforming pQM% (see Eq. (3.30))
max-Amin E, p2 i cos? 0% sin? 0%
MMSE Eyp? 4 ﬂ
B M21 + tan -y
Water-filling E,p* i sin? 5
4 cos?~y
Egp?———— if v <o
2
max-dmin M N?+/38N +22 )
5 4 (2-1/2)cos? ysin?
P — other
M 1+ (2-2V2)cos?y

TABLE 3.1: Comparison of the minimum Euclidean distances.

Thanks to the equation (3.40), the minimum distance corresponding to each precoder
can now be determined. Tab. 3.1 shows the distance d,;, obtained by diagonal precoders
in comparison with our max-dp,;, precoder. The normalized distances dyin/\/4Esp?/M
for each precoder in the case of 64-QAM modulation are illustrated in Fig. 3.11. We
note that, for diagonal precoders (eg. WaterFiling [12], MMSE [32], max-Amin [33]), the
average transmit power is chosen large enough such that the power is allocated on both

virtual subchannels. It is observed that when v < 7, the max-dpi, precoder performs
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a slight enhancement compared to beamforming designs. This improvement remains in
constant for every channel angle v and and reduces for higher-order modulations. The
performance of the max-An;, solution is better than the Water-filling and MMSE ones,

but it is really outperformed by the proposed precoder.

0.6 T T
« max—dmin
—p— MMSE
05H —— Waterfiling XY
' & max—?»min
Beamforming
0.4 .
I
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©
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Channel angle yin degrees

F1GURE 3.11: Normalized minimum Euclidean distance for 64-QAM.

3.3.2 Diversity order of max-d,,;, precoder

This section demonstrates that our new precoder obtains the diversity order ny x ng
with the rectangular 4°*-QAM modulation. For a Rayleigh fading channel, we consider
the approximation of error probability associated with constellations at the minimum

distance dyi, multiplied by the number of neighbors at this distance [56]

Ny . d?.
P, n “min orfe —= 1, (3.41)
2 AN,

where Ny . is the average number of all nearest neighbors by each vector symbol, and

Ny is the variance of the white gaussian noise v.

The expressions of dyi, obtained by F; and Fo allow us to regulate the minimum distance
with two bounds depending only on \;. Firstly, we recognized that the minimum distance

of max-dpi, precoder is bounded below by that of F. By considering the following
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inequality, we can find the upper bound of the minimum distance

(2 - /2) cos® ysin? vy < cos?~y
1+(2-2v2)cos2y ~ 2

(3.42)

Therefore, the minimum distance obtained by the max-d;, precoder satisfies the condi-

tion below
4 cos®~y 2
By —————— <d2;, < Eyp®— cos® 3.43
sP MN2+\/§N+2 min spP MCOS 7, ( )
and for \; = p? cos® v
B < d2, (max-dimin) < Eséal, (3.44)

where & = and & = % By using, then, the condition of the largest

4
M(N2+/3N+2)’
eigenvalue [57] in function of |H||?

H 2
Lol <A < |H|? (3.45)
m
where m = min(np,ng), we have
E&|H|?
S&T < d2 i (max-dmin) < Es&|H|? (3.46)

The error probability in (3.41) is now bounded by

Ndmin (Es€2 ||HH2
—_— erfc —_—

Ny, E.& | H|
< Py < N oy Ec1[HI
2 4Ny

2 4m Ny

One should note that erfc(x) ~ e for > 1, so the inequality above can be rewritten

as
_ Bs&o|H|? Ny . _BEsg|u)?
e 4Nq S Pe S min e 4mNg

2 2

dmin

The average error probability can now be determined by using the Rayleigh characteristic
of the transmit channel H, i.e: E[e‘gC”HHQ] = (1+x) """k, The upper and lower bounds

are then

Ny (SNR.@)—”T”R _ Ny (SNR.gl)‘”T”R
min SP@ S 1M1n
2 4 2\ 4mN,
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It is obvious that the error probability is bounded by two terms which vary as the
exponential function of SNR™T "%, Consequently, the proposed precoder obtains a full

diversity order, i.e., nynpg.

3.3.3 Distribution of the channel angle and max-d,,;, precoder

When the channel varies, the max-d,i, precoder uses F; or F5 to optimize the minimum
Euclidean distance. Hence, the dp,;, enhancement depends on the channel angle ~. The
authors in [58] provided the joint probability distribution of two nonzero eigenvalues of

the matrix W = HH*

1 _
fi?x\z()‘l’h) T (A1 A2)" e ()‘IMQ)()\l - /\2)2

s!(ns+1)!

where n, = |np—ng|. By applying the change of variables \; = p? cos?y and Ay = p? sin? ,

the joint probability distribution of the channel gain p and channel angle v are given by

D (p,) = 17, (0% cos?, p* sin® ) 3| (3.47)
with the Jacobian of the transformation is defined by

|J| = 4p% sin y cos y(cos? y + sin® v) = 2p° sin 2

The joint distribution in (3.47) can be now simplified as

—2ng+1 5
)2ns+1p7+4n5 e—p

(2) _ 2 .
fp,’y (p,7) = el (e + 1! cos” 27y(sin 2y

One should note that

oo 1 e k!

rk;:f 210 g :—f thetdt =T(k+1)=

(k)= ) e dp=5 | te (k+1) =3

The probability distribution of the channel angle 7 is then obtained by

F2(p) = fo "D (p,7) dp

27 (20, +3)! : 2+l
= Tl Dl cos” 27y(sin2y) (3.48)
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Figure 3.12 illustrates the distribution of the channel angle v with different values of ns.
It is observed that the curve moves to the right when the number of antennas increases.
In other words, the more antennas we use, the less we need the precoder F;. The
distribution of the expression F; for QPSK, 16-QAM and 64-QAM are illustrated in the
Tab. 4.2. It can be seen that the precoder F; is also used less for higher orders of the

rectangular modulation. This property can be explained by the change of the channel

threshold ~p in (3.38).

o 5 10 15 20 25 30 35 40 45
Channel angle yin degrees

FIGURE 3.12: Probability density functions of the angles ~.

Expressions | MIMO (2,2) | MIMO (3,2) | MIMO (4,2)
QPSK 44.166 % 17.202 % 6.352 %
16-QAM 11.424 % 1.102 % 0.099 %
64-QAM 2.821 % 0.066 % ~ 0%

TABLE 3.2: Percentage of use F; for uncorrelated Rayleigh fading channels.

3.3.4 Bit-Error-Rate performance

This section illustrates the BER improvement of the new max-dy;, precoder in com-
parison with other traditional precoding strategies. Let us consider a MIMO system
with np = 3 transmit and nr = 2 receive antennas. In this system, the symbols are
separated into 2 independent data-streams. The channel matrix H is i.i.d zero-mean

complex Gaussian, while v is zero-mean additive white Gaussian noise.
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MIMO(2,2) system using 64—QAM modulation, Rayleigh fading channel
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F1cURE 3.13: Comparison the performance in terms of BER for 64-QAM modulation.

Given the enhancement of the minimum Euclidean distance, we can expect a gain of
our max-dp,i, precoder in terms of BER compared to diagonal precoding strategies. Fig.
3.13 illustrates the BER performance with respect to SNR for a 64-QAM modulation.

It is obvious that the max-dmi, precoder obtains a large BER improvement compared to
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diagonal precoders. This result clearly demonstrates that our new precoder is particular
suited for reducing BER when an ML detection rule is considered at the receiver. When
the virtual channels are less dispersive (more antennas are used, for example), the BER
enhancement is more significant. A gain of about 8 dB can be observed at BER = 1073

for MIMO(3,2) in comparison with 6 dB gain of SNR for MIMO(2,2).

3.4 Conclusion

We firstly introduced, in this chapter, the optimized solution of the max-dy;, precoder for
two 16-QAM symbols. This optimal precoder selects the best precoding matrix among
five different expressions. In order to reduce the complexity of the max-duni, precoder
for high-order QAM modulations, a general expression of the minimum Euclidean dis-
tance based precoder is also presented. For two independent data-streams, the proposed
max-dmin precoder has two expressions: F; pours power only on the first virtual sub-
channel, and Fs uses both virtual subchannels. It is demonstrated that our general form

obtains the optimized minimum distance for small and large dispersive channels.

As presented in the simulation results, the new precoder offers a significant improvement
on BER performance in comparison with traditional precoding strategies such as beam-
forming, water-filling, minimizing the mean square error, and max-Api,. Furthermore,
the distribution of both precoding matrices depends on the channel characteristics and
the number of antennas used at the transmitter and receiver. The more dispersive the
virtual subchannels are (more antennas are used, for example), the less we need the

precoder Fi.



Appendices of chapter 3

A Proof of Proposition 3.1

Let us consider two difference vectors below

We assume that there exist a precoding matrix Fy such that the minimum FEuclidean
distance is larger or equal to \/Esp?/M. At that time, two corresponding normalized

distances must satisfy the condition

d? = Lcos?epcos? O + % sin1psin? 6 >

= s

-2
Jg = %c082w81n20+%sin2¢008292

One should note that d2 + dz = %0052 U+ %sin2 Y= %, so the distance d? and d% can not
both greater than }L. The minimum Euclidean distance dyin, therefore, can not be larger
than \/Esp?/M. By considering CZ?I =d? = zlu it can be concluded that the optimized d i,
can be obtained with 8 = 45° or 1 = 45°.

B Proof of Proposition 3.2

Let us consider two more difference vectors
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where corresponding normalized distances are given by

d2 = cos? y cos? 1 cos? 0 + sin? y sin? 1 sin? @
czg = cos? 7y cos? 1 sin? 6 + sin® v sin? 1) cos? @ (3.49)
d? = cos? v cos? 1h(1 - 2sin f cos § cos @) + sin? ysin? (1 + 2sin f cos  cos @) '

c =

d?l = cos? ycos? (1 - 2sinf cos O sin ) + sin? ysin? (1 + 2sin 6 cos O sin )

We assume that there exist a precoding matrix F; at a channel angle v > v, such
that the minimum Euclidean distance is greater or equal to dp,. In other words, four
corresponding distances d2, Ji, d? and cifl are all greater or equal to the normalized

distance J%Q. We have

d2 + di = cos® vy cos® 1 + sin® ysin® ¢ (3.50)

Firstly, we demonstrate that

cos®~y cos® 1 > sin® ysin? 1) (3.51)

Indeed, it is obvious that d2 +d3 > 2.&%2 >1/2, for v > 4y,. Therefore, if tan?+ > 1/tan®~

and v < /4 (i.e. cos?v >sin?~), we can obtain the contradiction below

&z +a_ll2) < cos®ysin? vy +sin® v cos? y < 1/2

Furthermore, dg can be rewritten as
d? = (cos® y cos? 1p — sin? ysin? 1)) sin? @ + sin? y sin®

Since d? > CZ%Q, we get

(cos? vy cos® ¢ — sin? ysin® 1) sin? 0 > d%Q — sin? vy sin? ¢
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Please note that cos®~ cos? 1) —sin?ysin?1) > 0 (3.51) and sinf cos @ > sin? 0, so we have

cos? y cos? 1) — sin® ysin® ¢) sin 0 cos 0 > d, — sin®ysin® ¢ 3.52
2 Y

In addition, the difference vectors which are provided by . and %, depend on the rotation

angle ¢:
e For ¢ < /4, or cosp >1//2
The normalized distance d2 can be now represented as

c =

d? [COS2 7y cos? 1 + sin? 7 sin? w]

- [C082 ~ cos? 1 — sin? v sin? d)] 2sin @ cos cos ¢

From (3.52), we have

di < [cos2 ~ cos® 1 + sin” 7 sin? w] - \/5((?%2 —sin® ysin? )

<cos®ycos® P + (V2 + 1)sin2’ysin21/1—\/§.d%~2 (3.53)

One should note that

cos? y cos? 1)y + sin? ysin? ¥y = 2.67%2

cos? ycosZ g + (v/2 + 1) sin® ysin? oo = (V2 + 1).&%2

V2-1

tan-y

where 5 = arctan is the power allocation parameter of the precoding matrix Fs.

Moreover, it is obvious that
(V2 +1)sin®y > cos? y > sin®

for all value of ~ in the range of 7/4 >~ > ~,,. For this reason, we obtain

i) if >

cos? ¥ cos? 1 + sin? 0% sin? ¢ < 2.6?%2
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i) if 1 < o
cos®ycos® ¢ + (V2 + 1) sin? ysin? ¢ < (V2 + 1).d7,

From (3.50), (3.53), and the above property, it can be concluded that the distances d2,

d?, and d? can not be all greater than the normalized distance @2.
e For /2> p >[4, or sing > 1/3/2

Hence, the normalized distance dﬁ which is defined by

di = [0082 7y cos? 1 + sin? y sin? 1/1]

- [0052 7 cos? 1 — sin? y sin? 1/)] 2sinf cos B sin

can be superior limited by

d? < cos?ycos? i + (V2 +1) sin® ysin® ¢ — \/56?%2 (3.54)

By using the same method as the case ¢ < m/4, we can concluded that Jé, Ji, and cffl

can not be all greater than CZ%Z.

C Maximum value of the distance d,;,

We consider two more difference vectors

The corresponding normalized distances are given by

d? = cos® v cos? 1) (cos? § + 2sin? § — 2P sin A cos )
+sin? ysin? ¢ (sin? 0 + 2 cos? @ + 2® sin H cos )

d?

= cos? v cos? (2 cos? f + sin? § — 2® sin  cos 6)

+sin? vy sin?¢(2sin? 0 + cos? @ + 2P sin 6 cos A)
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where ® = sin ¢ + cos . If we assume that there exist a precoding matrix F; such that
the minimum Euclidean distance is greater or equal to d,,,, it means that cf?l, ng, 023, cffl,

d?, and (Z? are all greater or equal to (v/2-1)/V/2.

Like Appendix 3.2, we can demonstrate that v satisfies the inequality (3.51) and the
optimized minimum Euclidean distance in d2, JZ,..., CZ?C is obtained by sinf cos@ = sin? @

(0 =7/4). The normalized distances above can be now simplified as

d? = cos® ycos? (1 - cos @) +sin? ysin? (1 + cos
¢ ¥ 12

d? = cos® v cos® (1 - sin ) + sin? ysin? ¢ (1 + sin )

d? = CZ?C = cos? 7y cos? (3/2 — cos p — sin )

+sin? ysin? ¢)(3/2 + cos ¢ + sin )

In the end of this appendix, we show that d, d?l and d? can not be all greater than

(V2-1)/V2.
e For ¢ < /4, we have d? < d3

By using the same method as the Appendix 3.2, we find that the optimized dpi, of two

distances d? and d? is obtained when d? = d? or

2sinp-1 1
tan? op = —t

3.55
2sing + 1 tan? vy ( )

By substituting v,y into the d?, we get

d? =0 (2sing +1)(1-cosg) + ¥(2sinp - 1)(1 + cos p)
1 1
—= )

=2W¥(2sinp —cosp) <2W(2 -—
(2sing ®) (ﬂ 7

sin® ysin?v¢ _ cos? ycos? 1
2sinp—-1 ~  2sinp+1

where U = . The optimized dp;y is, therefore, provided by ¢ = 7/4

and 1opt = 2. In other words, the maximum value of the distance dyiy, is ds,, .

e For ¢ > m/4, we can implement a similar way by considering the optimal parameter

2cosp-1 1

ban® Yhopt = (3.56)

2cos + 1tan?~y



Chapter 4

Extension of max-d,,;, precoder for

large MIMO systems

In the previous chapter, we presented a non-diagonal linear precoder which maximizes
the minimum Euclidean distance (max-dpyi,) for rectangular QAM modulations. This
max-dmin precoder obtains a large performance improvement in terms of BER compared
to diagonal precoders. However, the max-d,,;, solution is only available for two indepen-
dent data-streams. That is due to the expression of the distance dyin that depends on

the number of data-streams, the channel characteristics, and the modulation.

This chapter proposes a heuristic solution which permits increasing the number of trans-
mit symbols. Firstly, by decomposing the propagation channel into 2 x 2 eigen-channel
matrices, and applying the new max-dyi, precoder (presented in Chapter 3) for inde-
pendent pairs of data-streams, a suboptimal solution for large MIMO systems can be
obtained [59]. The precoder is denoted as Equal-dpin (E-dpmin ), and is presented in section
4.1. One should note that this sub-optimal solution can only achieve an even number of
data-streams. Therefore, we extend, in section 4.2, the design of max-dyi, precoders for
a three parallel data-stream schemes. Thanks to the three-dimensional (3-D) scheme,
an extension for an odd number of data-streams is obtained by decomposing the virtual
channel into (2 x 2) and (3 x 3) eigen-channel matrices. The simulation results with
perfect and imperfect CSI estimation confirm a significant improvement in terms of BER

for the proposed solution.

79
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4.1 Cross-form precoding matrix for large MIMO systems

4.1.1 Principle of E-d,,;, precoder

Let us consider a large MIMO system over which an even number of datastreams (b >
4) are transmitted. As known, by using the virtual transformation, the input-output
relation can be expressed as

y = HyFgs + 1y, (4.1)

where H, = G,HF, is the bx b virtual channel matrix, 7, = G,v is the b x 1 transformed
additive Gaussian noise vector. The eigen-channel matrix is diagonal and denoted as

H, = diag{o1,09,,0p}.

As presented in chapter 3, for a M-QAM (M = 4"‘) modulation with b = 2 data-streams,

the optimal precoding matrix has two expressions

o if0<y<

cos 0 sin 6, 1
F,=F,=\VE; (4.2)
0 0

_ 1
where (1 = arctan 2@ 1)iv3

01 = arctan(2sin ¢1).
o ifyp<y<m/4
VE, [cosa 0 V2 1+i

F,=F,= (4.3)
2 0 singo)\-V/21+i

- V2-1
where 19 = arctan tans -

The value of the optimal channel threshold - is defined by

V2-1
V2N2 + /6N +/2-1"

tan® g = (4.4)

where N =2k -1,

In the case of large MIMO channels (b > 2), we can extend this solution by decomposing

the (bxb) eigen-channel matrix into 2x2 eigen-channel matrices and optimize the distance
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dmin for each pair of data-streams. The extension is denoted as E-dpi,, and consists of

four main steps [59]:

1. Obtain the virtual diagonal matrix Hy by using a virtual transformation.

2. Associate b/2 couples of singular values following the combination (o1, 03), (02,05-1),

<.+, (Ob2;0pj241) to obtain b/2 2-D virtual sub-systems.

3. Apply the optimal 2D max-dyi, solution on each subsystem with the power con-

straint equals to 1.

4. Allocate the power of each subsystem by the coefficient T; such that

b2 |

-1
T%:ES (5122@) fori=1,...,0/2 (4.5)
k=1 %

where §; is the minimum Euclidean distance of the subsystem #i given in the step 3.

i Tl 01 v, i R
S1 1 N p S1
i Op v ML N
Sp : Fdl >< ’ Yp_ | detecion 1 Sb
——> > — o ——

i Tz i V; i N
Si o \/3"\' i S
i Ob—it+1 Vb ML b
Sb—i-il:-l Fd’i R X P detecion . i Sp—i+1
: N i
subsystem#2 - - -
i Tb/2 Ob/2 771)5/2 i N
/2, > ) >\’}7/ > | ; 5p/2
i Op/24+1 v ML N
Sb/2—|-:rl de/2 X /2 detecion i 86/2—1—1
> > — ——>

_________________________________________________________

subsystem #b/2

FIGURE 4.1: System model E-dyi, solution.
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On this scheme, the precoding matrix F; in (4.1) is expressed as

1Y SRR
Yo f? 1o f$

Yo f12 Ty f (4.6)
v 02 (b2) '
b/2f3 v/24
1o f? Ty f?
SR SR

" g
fSZ) ZEz)
for the eigen-channel matrix H,, = diag{o;,0p—i+1}, with i = 1,---,b/2. The precoder Fy

where the sub-precoder Fy = is the 2-D max-dp,i, solution (presented in 4.2)

can also be expressed as

Fy = diag {01 f{Y, o Ty f72 ypn f0D 11 10
+antidiag {T1 £+ Yoy 52, Toya f2, o 01 £V (47)

This expression is the association of a diagonal precoder and a new anti-diagonal form
in order to enhance the performance of the system (i.e. improve the dp;, criterion).
Fig. 4.1 illustrates the synoptic of E-dpyi, solution with b/2 subsystem. At the receiver,
several ML detections are used to optimize the minimum distance for b/2 pairs of datas-
treams. The number of distances to be compared is therefore equal to b/2 x M? for a
M-QAM modulation. In comparison with diagonal precoders, where the complexity of
this quantizer is bM, the complexity of the proposed precoder is higher, but it is really

less than the general non-diagonal solution (i.e. M? for full ML detections).

4.1.2 Performance for large MIMO systems

In this section, we compare the performance of the proposed precoder with other sophis-

ticated transceivers such as the linear precoder using Decision Feedback Equalization
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(DFE) transceiver [60], the linear transceiver with bit allocation [61], the vector pertur-
bation precoding scheme [62], and the minimum BER block design for ZF equalization

[63].

MIMO system (4,4) using 16—-QAM modulation, Rayleigh fading channel
T

BER

10

o max-A, .
—b— MBitRate
10~°}| —¥— Vector Perturbation

—»— DFE
zpMBER: L=2
—#— proposed method

10_ Il Il Il
-2 0 2 4 6 8 10 12

SNR in dB

FIGURE 4.2: BER performance for large MIMO systems.

Since the extension for large MIMO channel is obtained by decomposing the channel
into 2 x 2 eigen-channel matrices and optimize the distance dpyi, for each pair of data-
streams, %M 2 ML tests are implemented to optimize the minimum distances of b/2 sub-
systems. In comparison with the sophisticated transceivers above, the ML complexity
of our proposed precoder is higher (i.e. gM 2 compared to bM). However, the extension
of the 2D-max-d i, precoder exhibits a higher diversity order than the other precoding
strategies. Fig. 4.2 illustrates the BER performance for MIMO (4,4) systems using 16-
QAM modulation. The comparison of our proposed precoder and other schemes shows
that the BER performance is significantly enhanced at high SNR. A gain of about 4 dB

is observed at high SNR in comparison with other precoding schemes.

Then, we consider the impact of imperfect CSI estimation on the BER improvement of
max-dmin precoder. Fig. 4.3 illustrates the BER performance with respect to SNR in
the case of perfect CSI and imperfect CSI estimation. The estimated channel matrix of
imperfect CSI system can be modeled as Hqs; = H + He,., where He,., represents the
channel estimation error. The optimal training signals for the MIMO-OFDM channel

estimation can be found in [64]. In this simulation, we assume that the entries of He,,
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MIMO system (4,4) using 16—-QAM modulation, Rayleigh fading channel
T

Uncoded BER

4

1074 perfect max—?»min

—»— perfect DFE
> max—dmin: cerr=0.50

10°H —= max-d . :c  =0.40

max-d . :c_ =0.3c
min err

—a— perfect max—d__

10 Il Il Il Il
0 2 4 6 8 10 12 14

SNR in dB

FI1GURE 4.3: BER performance for perfect CSI and imperfect CSI estimations.

are complex Gaussian i.i.d random with mean zero and variance o = 0.50, Oepr = 0.40,
and o = 0.30, where o is the variance of the complex Gaussian entries of H. It is
observed that the BER performance of the max-dmin precoder decreases at high SNR,
but the BER improvement of our new precoder remains significant in comparison with

other precoders.

4.2 Three-Dimensional max-d,,;, precoder

We propose, in this section, a new design of max-dy;, precoders for a three parallel
data-stream scheme. This precoder is the optimal solution of the three-dimensional dpin
scheme presented in [65]. The proposed precoder not only allocates power on the three
subchannels but also optimizes the minimum Euclidean distance between symbol points
at the receiver. Therefore, when a maximum likelihood (ML) detection is considered at
the receiver [51], the performance of the MIMO system in terms of BER is significantly
enhanced. For large MIMO systems with odd number of data-streams, we can extend
the new 3-D max-dyi, solution by decomposing the (bxb) eigen-channel matrix into 2x 2
and 3 x 3 eigen-channel matrices, and optimize the minimum Fuclidean distance for each

sub-systems.
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4.2.1 Parameterized form of the three-dimensional max-d,;, precoder

In the case of three independent datastreams, the virtual channel matrix can be param-

eterized as

€Os Y1 0 0
H,=p| 0 sinycosys 0 ; (4.8)
0 0 sin yp sinys

where p, v1 and 7o represent respectively the channel gain and the channel angles. As
the diagonal elements of H, are sorted in decreasing order, we have 0 < v9 < w/4 and

cos yg < cotanyg.

Our objective is to find the precoding matrix Fy in 4.1 satisfying the power constraint
trace{F4F} = E5. By using a singular value decomposition (SVD), we can reduce the

complexity of the precoding matrix Fgy. This matrix is then represented as

F,= ASB*, (4.9)

where A and B* are 3 x 3 unitary matrices, and ¥ is a 3 x 3 diagonal matrix with real

positive values in decreasing order. It is noted that

trace{F,F} = trace{XX"} = F. (4.10)

Hence, the power constraint across all transmit antennas can be replaced by the following

decomposition of the diagonal matrix 3

cos 1 0 0
YX=\Es| 0 sintycosis 0 . (4.11)
0 0 sin ¢ sin Y9

In order to simplify the constrained optimization problem, we consider a lower bound on

the minimum Euclidean distance presented in [33]

A2 2 Amin(SNR(Fg))  min (x5 —x;)|? (4.12)
k

min =
T, T €S, T #T]

where A\pin(SNR(Fy)) is the minimum eigenvalue of the SNR-like matrix given by
SNR(Fg) = H,F,F:H,,
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It is obvious that the higher the minimum eigenvalue of SN R(F), the greater the min-
imum Euclidean distance. Therefore, we can reduce the complexity of the optimization

problem by maximizing the smallest eigenvalue of SNR(F,).

The unitary matrix B has no effect on the eigenvalue of SNR(F;). In other words, the

singular values of the global channel H,F; are not dependent on matrix B.

Proposition 4.1. The optimized singular values of the matriz H,Fy4 are given by A =13.

Proof: see Appendix A.

By proposing only a diagonal matrix 3 to maximize the minimum singular value of H,F,
we could find the max —Ap;i, solution presented in [33]. In this paper, the criterion that
optimizes the minimum Euclidean distance is concerned. Therefore, not only the matrix

Y but also the matrix B* are considered to maximize dpiy.

The 3 x 3 unitary matrix B* can be parameterized as [66]

B* = B3ByB, (4.13)

ePr 0 0 10 0
with Bg=| 0 ¢ 0 |,By=]0e¥2 0
0 0 P 0 0 ei¥s

C1 S1C2 5152
and By = | s1c3 —c1cacs — €1 5953 —c1 593 + €¥1cass
$183 —C1C283 + €P1 8903 —C18983 — €91 ¢cacs
where ¢; = cosf; and s; =sin6; for i =1,..,3 with 0<6; <7/2, 0< §; and ¢; < 27.
Proposition 4.2. The matriz Bg has no influence on dyin and the range of the angles

in By and By, can be bounded by 0 < 61,03 <m/2, 0< 6y <m/4 and 0 < @1, 92,03 <.

Proof: see Appendix B.

Consequently, the parameterized form of the three-dimensional max-dpi, precoder can
be simplified as
F,;=XByB,. (4.14)

Our objective becomes searching for the different angles 1;, 8; and ¢; to maximize the

minimum Euclidean distance. As in the two-dimensional case, the angles ; control the
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power allocation on virtual subchannels, while 8; and ¢; correspond to the scaling and

the rotation of the received constellation, respectively.

The main difference between our precoder and diagonal precoders is the dependence of
the optimized solution on the constellation of transmitted signals. It is observed that the
more symbols the constellation has, the more complex the expression of the precoder is.
In fact, the max-dpyi, precoder transforms a M-QAM transmitted signal into M® symbols
on each subchannel. Therefore, it is difficult to determine which distances are minimum
and how to optimize these distances. In the next sections, we point out the max-dyin

solutions for three dimensional MIMO spatial multiplexing systems.

4.2.2 Optimal max-d,;, precoder for a BPSK modulation

If a BPSK modulation is considered at the transmitter, the symbols on each data stream
belong to the set {1,-1}. Let us define x as the difference between the possible transmit-
ted vectors, i.e., X = x; —x; with x; # x;. Then, the difference vectors are combinations of
three elements in the set {0,2,-2}. In the case of b = 3 data streams, the set of difference
vectors denoted as X gpgx has 3"~ 1 = 80 elements. By eliminating the collinear vectors,

we can reduce XBPSK to only 13 elements.

A numerical search on precoder angles which maximize the minimum Euclidean distance
for all channel angles y; and 2, shows that the max-d,i, precoder has two main different
expressions. The first one uses only the strongest virtual subchannel, and it will be
denoted as Fp.,. The other precoder allows power allocation on all subchannels, and it
will be denoted as Fy.,. Appendix 4.3 demonstrates that the third virtual subchannel is
not used for BPSK modulation, but all antennas are used physically at both the transmit

and receive sides.

Precoder Fy,

Only the first virtual subchannel is used for this precoder, meaning that the matrix
¥ = diag(1,0,0). Then, the angles 63 and ¢ have no influence on the matrix precoder
Fy., and can be assumed to be 0. A numerical maximization of the Euclidean distance

shows that 05 = w/4. The exact values of the other angles 62, w9 and ¢3 are shown in
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our works [65]. By replacing the values into the expression (4.14), the precoder Fy., is

then simplified as
\/g eiﬂ'/2 ei7r/6

Fiy, = 0 0 0 (4.15)
1 \/g .
0 O 0
1
05} B 1
[ [
5 [ [
o e Al = [
g \ | w |
0
= | Iz I g
g \ B .
E | |
~0.5} e ___ 6
= . . . . .
-1.5 -1 -0.5 0 0.5 1 15
real part

FIGURE 4.4: Received constellation for the precoder Fy.,.

A received constellation obtained by the optimal precoder Fy., is represented on Fig.
4.4. In the figure, the points denoted from 1 to 8 correspond to the 8 possible received
symbols. We observe that the optimized dp,i, is obtained when point 7 is the center of

the rectangular created by the points (2,4,6,8). The minimum distance is defined by

4
dgq = EE’sp2 cos® (4.16)

Precoder Fy,

If the difference between the first and second virtual subchannels is small, the precoder
Fy., is considered at the transmitter. In Appendix C, we demonstrate that the optimized
dmin 1s obtained for the angle 99 = 0. In other words, only two virtual subchannels are
used for the precoder. Fig. 4.5 illustrates the received constellations on the two subchan-
nels with the points numbered from 1 to 8 like the case of precoder Fy.,. One should
note that the received vectors on the second virtual subchannel stay on the horizontal
axes. This remark can be explained by the symmetric properties of difference vectors,

the form of Fy.,, and the rotation angles such that o = m — ¢3.
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FIGURE 4.5: Received constellation for the precoder Fy.,.

We can also find, in Appendix C, the analytical angles for precoder Fy.,. The angle 1,

depends on the channel angles, while the others are constants:

2 2
1)1 = arctan/ cotan” 1/ cos” 2 Rﬂﬂ/ il
mar (4.17)

01 ~ 55.838%, 05 = 45°,03 ~ 31.3067, 1 = 90°, 3 ~ 47.266°

where Ry,q, is the maximum value of Ry = W1/¥y and defined in Appendix C. The
optimal dp,in for the precoder Fy., is therefore expressed as a function of the channel

parameters
Rmaz +1

_— 4.18
Rinas + 02|03 ( )

4
= LB ety

where 01/09 = cotan~y;/cos~ys corresponds to a ratio between the first and the second

virtual subchannels.

Range of definition for precoders Fy., and Fy,

Range of definition for Fp., and F., is obtained by comparing two quantities dgq and

d2

beo?

defined respectively in (4.16) and (4.18). It is noted that both distances are only
governed by the channel angles v; and 9. Fig. 4.6 illustrates the normalized Euclidean
distances dpyin with respect to channel parameters (in degrees) for Fy., and Fy., pre-

coders. We see that the distance dj., depends on ~y; only, while dy., depends on both

2

channel angles v1 and 2. By considering dj

be defined by

= dgcz, the threshold for the precoder can

2R 0z + 5

; (4.19)

2, 2
oyfos =

Consequently, the ratio between the first and the second virtual subchannels determines

the optimal precoder: Fy., for o1/09 > \/(2Rmaz +5)/3 ~ 2.79 and Fy,, for o1/09 < 2.79.
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FIGURE 4.6: Range of definition for precoders Fy., and Fy,.

4.2.3 Optimal max-d,,;, precoder for a QPSK modulation

The transmitted symbols belong to S = % {1+4,1-4,-1+4,-1 -1} for a QPSK mod-
ulation. By eliminating the collinear vectors, the set of difference vectors, denoted as
XQPSK, has up to 151 elements. Therefore, the expression of max-dyi, precoder for a
QPSK modulation is more complex than for the case of BPSK. The expressions of this
precoder can be classified into three categories which enable power on one, two and three

virtual subchannels, in respectively.

Precoder F,

The received constellation on the first virtual subchannel of Fy., is shown in Fig. 4.7.
It is observed that the constellation looks like a rotation of the 64-QAM modulation.
Because the second and the third virtual subchannels are not available, the angles ¢
and A3 have no influence on the performance of d;, and are consequently assumed to

be zero. It was shown in [65] that the other angles of Fy., are constant and defined by

V5(V/3

_ 3+1) _ 1
01 = arctan — 05 = arctan 3 (4.20)
@2 = p3 =7[12
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The minimum distance obtained by F., is then

1

d’. =2E.p?cos® vy ————
T INE

qci

(4.21)

‘
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FIGURE 4.7: Received constellation for the precoder F,.

Precoder F,., and precoder F.,

These precoders enable power on two and three virtual subchannels, respectively. The
complexity of the dpi, optimization problem is exponentially proportional to the order
of the modulation and to the number of the virtual subchannels used for transmitting

signal.

Proposition 4.3. When channel varies from (y1,72) to (71,75), the Euclidean distances
provided by any two difference vectors can be kept equal by changing only the angles 11,
Yo but retaining values of the angles 0; and p; (i =1..3).

Proof: see Appendix D.

One should note that the optimized d, is always provided by a limited number of
difference vectors. By equalizing the Euclidean distances created by these vectors, we
can obtain the exact expressions of the max-dyi, precoder. Thanks to the Proposition
4.3, it can be concluded that the precoders F., and Fy., are provided by different sets

of the constant angles 6; and ; (i.e. the matrix B* is not changed).
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FIGURE 4.8: Received constellation for the fourth expression of the precoder F,.

a) Expressions of Fg.,: A numerical search, which maximizes the minimum Euclidean

distance, shows that the precoder F., can have four different expressions. The received
constellation of the fourth form is illustrated on the Fig. 4.8. We observe that whenever
two received vectors are close on one virtual subchannel, they are distant on the other.
The optimized solution is obtained when the minimum FEuclidean distance is provided

by several difference vectors. By solving the system of trigonometric equations, the
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analytical values of all angles in the max-dp,, precoder are determined (see Appendix
D). These optimized angles are described in the Tab. 4.1. It is noted that ; and ¢;
are constant while ¢); varies and is defined by using standard sets (7;,)7). Because the
precoder Fg., uses only two first virtual subchannels, the angle 1) then has no impact

on the performance and can be assumed to be 0. The optimized angle v for a channel

(71,72) is given by

tan? % cos? ;3
1 = atan 271—272 tan? 5 (4.22)
tan“y; cos®ys

where 17 is the optimized angle for the standard channel (v{,73).

b) Expressions of F.,: The analytical values of all angles in F, are solved by using the

process presented in Appendix D. There are three exact expressions of the precoder F,
(see in Tab. 4.1). Like the case of Fg,, the optimized angles 6; and ¢; (i = 1..3) are

constant, while the optimized angles 1)1 and 19 for a channel (v1,72) are defined by

CQ Cl
= ata —F—, 1 = ata 4.23
v2 " \V tan2 s v1 n\/tan2 1 cos2 o cos2 1y (423)

where C; = tan®v{ cos? 75 cos? 5 tan? 15, and Cy = tan®v5 tan? 13 with (15,95) are the

optimized angles for the standard channel (v§,73).

Fyc, 01 [ 03 »1 P2 ®3 (i) = 1

(a) |44.49197 | 30.59366 | 39.65316 0 161.56505 0 (15,15) — 38.52143

(b) |32.34322|37.85164 | 56.71270 180 0 45 (20,20) — 39.79551

(c) |62.52239|22.59606 | 66.97236 | 85.31834 | 21.52669 | 118.15496 (30,15) — 35.82249

(d) |37.42924 22.5 38.45324 180 90 135 (40,10) — 39.90584
Fges 01 6o 03 ©1 P2 3 ('YiSv'YS) - (d)fﬂﬂi)

(a) |42.33339 45 50.63553 90 155.25922 | 24.74077 | (25,40) — (50.50301, 42.03657)
(b) |52.86439 | 40.77576 | 53.32112 | 115.27892 | 145.43734 | 72.71867 | (40,30) — (46.29106, 39.24208)
(C) 52.01812 45 90 0 45 135 (45,45) — (38.45504, 33.51067)

TABLE 4.1: Optimized angles in degree for the precoders Fy., and F .,

4.2.4 Range of definition for precoders F,,, F,, and F .,

Our objective is to select among the eight expressions of F ., , Fy., and Fy., the precoder
which provides the highest minimum Euclidean distance. By substituting the angles in

Tab. 4.1 into (4.14), the duyi, distances obtained by these precoders are determined.
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Please note that the minimum distances for the precoder Fy., and F., are always pro-
vided by the difference vector [0,0,v/2]7, and, therefore, defined by

oy = [H,EByB, x [0,0,v2]")]°. (4.24)

min

Fig. 4.9 plots the range of definition for the eight expressions of our max-dpyi, precoder
as a function of the channel angles v and 72 in degrees. It is observed that the precoder
F ., is available for a small channel angle v (e.g., less than 7/18) and the distance dgq
depends only on 1. For F,, the first expression is available for all values of the channel
angle 2. The others expressions of Fy., are presented for small values of 2, while three
expressions of the precoder Fy., are available for higher v2. However, the minimum

Euclidean distances obtained by F., and F4., both depend on the two channel angles.

451

35
30

25-
Fqcl

20

Y, in degrees

0 5 10 15 20 25 30 35 40 45 50
v in degrees

FIGURE 4.9: Range of definition for QPSK modulation.

4.2.5 Simulation results

Comparison of the minimum Euclidean distance

The normalized minimum FEuclidean distance for max-dy,;, and diagonal precoders in
the case of BPSK and QPSK modulations are plotted in Fig. 4.10 and Fig. 4.11,

respectively. For diagonal precoders, the average transmit power Ej is chosen large
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enough such that the precoders always allocate power on all eigen-subchannels (i.e. the

minimum Euclidean distance is greater than 0).

In the case of BPSK modulation, three diagonal precoders are compared with our pre-
coder: max-Amin [33], MMSE [32] and WaterFilling [12]. It is observed that the Fy.,
solution is better than the diagonal precoders in terms of dpi, for most of different chan-
nel angles. When the three eigen-subchannels are close (01 ~ o9 ~ 03), the diagonal

precoders are better than Fy., but are really outperformed by the max-dmi, precoder.
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FIGURE 4.10: Normalized Euclidean distance dp,;, for BPSK.

To examine the performance of the minimum Euclidean distance for QPSK modulation,
we consider, for example, a specific channel in which the SNRs of the second and third

virtual subchannels are equal (i.e. p2 = p3 or 72 = 7/4). The normalized minimum

2

Euclidean distances (i.e. d>. /Fs/p*) for the proposed precoder and several diagonal
precoders are plotted in Fig. 4.11. The optimized distance of our max-d,,;, precoder is
then provided by Fgc,, Fye,(a), Fgey(a) and Fye,(c). It is observed that the precoder
F,., has a small improvement in terms of dyi, compared with the beamforming 64-QAM
precoder. This gain remains constant for every channel and comes from the rotation of
the 64-QAM constellation. One should note that both precoders are much larger than
zero for small channel angles ;. When ~; increases, the minimum Euclidean distance of

max-Amin, MMSE and WF are better than that of beamforming but can not be compared
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FIGURE 4.11: Normalized Euclidean distance d,;, for QPSK modulation with v = 45°.

to our max-dy,in precoder. Due to the raise of the minimum Euclidean distance, the
proposed precoder, therefore, is expected to provide a large improvement in terms of

BER compared to diagonal precoders.

BER performance of the precoder max-di,

A MIMO-OFDM system with ny = 3 transmit antennas and ng = 3 receive antennas is
considered in this section, meaning that we can send b = 3 independent data streams. The
transmission channel is a Rayleigh fading channel and the noise vector elements are zero-
mean complex Gaussian. For each SNR, 60 000 random complex Gaussian matrices H
are generated and the precoder is optimized for each of them. Four diagonal precoders
are selected to compare with our max-dp,i, precoder: WaterFilling [12|, Beamforming

[31], MMSE [32] and max-Amin [33].

Fig. 4.12 and Fig. 4.13 illustrate the BER performance with respect to the SNR for
BPSK and QPSK modulations, respectively. In the case of a BPSK modulation, the
precoder max-dp,i, obtains a large performance improvement in terms of BER in com-
parison with diagonal precoders. A gain of about 2.5 dB can be observed in comparison

with the precoder Fy., (see Fig. 4.12).
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For QPSK modulation, the BER enhancement is more significant when using the pre-
coder max-dy,j, in comparison with diagonal precoders. We observe that the precoder
max-Amin 18 better than MMSE and WaterFilling in terms of BER. Because the max-SNR
precoder uses only the strongest virtual-subchannel, it has to transmit 4 = 64 informa-
tion bits on the eigenmode. Furthermore, the max-SNR solution is the diagonal precoder
that has the best performance of BER. However, the precoder is really outperformed by

our new precoder max-dyip.

MIMO-OFDM system (3,3) using BPSK, 128 subcarriers, Rayleigh fading channel, perfect CSI
T T

o 10 E
i}
0
107 ;
w— max-d .
Fbc
10°H 1 3
max xmin
—6— MMSE
Waterfilling
-6
10 Il Il Il Il Il
0 1 2 3 4 5 6 7 8

SNR in dB

FI1GURE 4.12: Comparison of precoders in terms of BER for BPSK modulation with a
MIMO (3,3) uncorrelated Rayleigh fading channel.

Distribution of the channel angles and precoders

When the channel varies, the max-dpi, precoder uses different expressions to optimize
the minimum Euclidean distance. For this reason, the d,;, improvement depends on
the channel characteristics. In other words, the BER enhancement depends on the
channel angles 71 and 75. Fig. 4.14 plots the probability density function (pdf) of v
and o for MIMO (3,3) and MIMO (4,3) systems with uncorrelated Rayleigh fading
channels. We observe that the pdf of small 1, e.g., less than 7/18, is very small (Pr[y; <
/18] amrrmo(3,3) = 0.03%). As a consequence, the precoders which direct power only

to the most favored virtual-subchannel is not often used to optimize the channel (e.g.,



Chapter 4. Ezxtension for large MIMO channels 98

MIMO-OFDM system (3,3) using QPSK, 128 subcarriers, Rayleigh fading channel, perfect CSI
T

T
* max—drnin
max lmin
—6— Waterfilling

MMSE
—4A— Max-SNR 64-QAM

BER

14
SNR in dB

FIGURE 4.13: Comparison of precoders in terms of BER for QPSK modulation with a
MIMO (3,3) uncorrelated Rayleigh fading channel.

Pr[Fy = Fye,lopsk(s,3) = 0.03%). The distributions of all max-diin expressions for

QPSK modulations are illustrated in the Tab. 4.2.

0.08 , \ :
—o- PDF of 2 for MIMO (3,3)
_ _ _PDF of y, for MIMO (3:3)

007H o PDF ofy, for MIMO (4,3) T
____ PDF of y, for MIMO (4.3)
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FIGURE 4.14: Probability density functions of the angles v and 5 for a MIMO system
with uncorrelated Rayleigh fading channel (estimation with 10 random matrices).

The distributions of the max-dn;, expressions for BPSK and QPSK modulations are
illustrated in the Tab. 4.2. For BPSK modulation, it can be seen that the expression
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Fyc, is used more often than Fy., (Pr[Fy = Fi, |ppsi(s,3) = 6%). Furthermore, the
probability depends on the number of antennas in use. The more antennas we use, the
less we need Fy.,. In the case of QPSK modulation, we observe that the expressions
Fyc., Fye,(a) and Fy,(a) are available in a very small probability, especially Fg.,. The
precoder Fy., uses only the strongest virtual subchannel to transform the signals, like the
beamforming precoder. Therefore, we can see, in the Fig. 4.13, a large improvement in
terms of BER for the precoder max-dyi, in comparison with 64-QAM beamforming.
Moreover, the improvement is more significant if the number of transmit or receive

antennas increases.

Expressions | No | MIMO (3,3) | MIMO (4,3)
Foo, 6.23 % L4 %
Fic, 93.77 % 98.59 %
F,., 0.03 % =~ 0%
F,., @) | 044% 0.03 %

b) | 17.03 % 5.85 %
(© | 3199 % 19.39 %
(d) | 28.44 % 23.71 %
F,. @) | 0.35% 0.27 %
b) | 11.39 % 27.39 %
(© | 10.33% 23.36 %

TABLE 4.2: Percentage of use for precoder max-dy;, with uncorrelated Rayleigh
fadding channels.

MIMO-OFDM system using QPSK, 128 subcarriers, Rayleigh fading channel, perfect CSI
T

T T T T T
— o — max-d

(3,3)
—e— max—dmin(4,3)
— 4 — max Amin(S,G)

max Amin(4,3)

— A — Max-SNR 64-QAM (3,3)
—&A— Max-SNR 64-QAM (4,3)||

=

min

TR

BER

FIGURE 4.15: BER simulation of the precoder max-d,,;, compared to the max-Ain
and max-SNR with MIMO uncorrelated Rayleigh fading channels.
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To demonstrate the influence of the channel characteristics, in general, and the number
of antennas, in particular, on the BER performance, the MIMO (3,3) and MIMO (4,3)
systems are considered in simulation. Fig. 4.15 illustrates the BER performances of
three precoders: max-dpi,, max-Ann and beamforming. It clearly shows a large BER
enhancement of the max-dy,i, precoder compared to the beamforming strategy - a gain
about 7 dB at BER equal to 107°. This gain is more significant if the number of transmit

or receive antennas increases - about 8 dB at BER equal to 1076 for MIMO (4,3) system.

BER performance for imperfect CSI estimation

MIMO (4,3) system using QPSK, Rayleigh fading channel

—— max—dmin, imperfect CSI
1-0 - max—dmin, perfect CSI

—— beamforming, imperfect CSI
— ¥ — beamforming, perfect CSI

BER

SNR in dB

FIGURE 4.16: Comparison of precoders in terms of BER for perfect CSI and imperfect
CSI estimation.

Let us consider the impact of imperfect CSI estimation at the transmitter on the BER
enhancement of max-d,;, precoder. Fig. 4.16 illustrates the BER performance with
respect to SNR in the case of perfect CSI and imperfect CSI estimation. The estimated
channel matrix of imperfect CSI system can be modeled as Hest = H+ He,., where He,.r
represents the channel estimation error. The training signals for the MIMO-OFDM
channel estimation can be found in [64]. In this simulation, we assume that the entries
of Heg are complex Gaussian i.i.d random with mean zero and variance o2, = 0.2502,

where o2 is the variance of the complex Gaussian entries of H. It is observed that

the BER performance of the max-dny;, precoder decreases at high SNR, but the BER
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improvement of our new precoder remains significant (gain about 6 dB at 107 BER in

comparison with 64-QAM beamforming precoder).

4.3 Extension of max-d,,; precoder for large MIMO system

with an odd number of datastreams

4.3.1 General form of 3-D max-d,,;, precoder for QAM modulations

In the case of the rectangular 4*-QAM modulation, the transmitted symbols belong to
the set
1

S=——{a+bi;a-bi;-a+bi;-a-bi} (4.25)
Vv Bk

where B = 2(4" - 1) and a,be (1,3,...,2" - 1).

. LU . . k-_ . 1 o .
We first note that if T X s a difference vector of 4*-QAM modulation, then —mx is
also a difference vector of 4¥-QAM (with k&’ > k). Furthermore, the minimum distance
is always provided by a limited number of different vectors. Therefore, the max-dpmin
precoder, which enables power on all three virtual subchannels, can provide the minimum

Euclidean distance for not only QPSK but also all rectangular QAM modulations.

The number of optimal expressions for 3-D max-dpi, precoder will increase when a high-
order QAM modulation is considered at the transmitter. In Fig. 4.11, we observe that
the less dispersive the channel is, the more we use the precoder F.,(c). For this reason,
we can simplify the form of the max-dyin precoder by choosing Fy.,(c) to optimize the
distance dpi, for all rectangular QAM-modulations, especially when the channel is small

dispersive. This precoder is, then, re-named as F. and defined by

cos 0 0 cos b1 Si&gl Si\r;gl 10 0
Free=VEs| 0 sinty cost 0 0 % % 0 % 0 | (4.26)
0 0 siny sino | | sin 61 % %291 00 %
V517 V2

where 6; = %arctan(—ll), 19 = arctan

and 1)1 = arctan .
V2tanys ' 1/] V' 5+V/17 tan 1 cosy2 cos 2

The minimum FEuclidean distance obtained by F .. is then

4 4 sin? ; sin?

2 2 1 72

=—F . 4.27
Free 7 By, ) tan? y2 + (5 +/17) tan? y; sin? 45 + 5 - /17 (4.27)
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Proposition 4.4. When there is no dispersion of the subchannel SNRs, i.e. Hy = %13,

the distance dmin provided by F .. is optimized for every rectangular QAM modulation.

Proof: see Appendix F.

It is observed that if the power is enabled almost only on the strongest virtual subchannel
(71 = 0), the minimum Euclidean distance provided by F,e. approaches to zero (see Fig.
4.11). We propose, herein, another precoder which optimizes the minimum distance for
dispersive channels. Let us denote the precoder as Fg,,. When the channel is large dis-
persive, a numerical research shows that the optimized dy.i, is provided by five difference

vectors:

f1=—=|0|d2=—=|-1].83=—==0|.5a=—| 0 [3=—"| 1
v Br V/Br
0 N -1 -1 N

where N = 28—1. This precoder pours power only on the first virtual subchannel, in other
words, the angle ¥; = 0. The rotation angle ¢ and the scaling angles 3, then, have no

influence on the performance and are consequently assumed to be zero. By considering

: : : 2 _ g2 _ g2 _ 32 _ g2 :
the corresponding distances of these vector, L.e. di =di =d; =d; =dg_, we obtain
cos 61 sin 61 cos Oy €*? sin Oy sin O €'
anr =V Es 0 0 0 (428)

0 0 0

where 6 = atan\/(N2 +2N +2)(N2+ Nv/3+1), 6, = atan 1+, and ¢ = atan —

2N+V/3'
The minimum Euclidean distance obtained by Fg,, is defined by
2 4 2 cos” B!
dp, =—FE (4.29)

Br P 1+ (N2+2N +2)(N2+NV3+1)

It can be observed that this distance is different from zero when there is a large dispersion
of the subchannel SNRs. Consequently, we can use two simple precoders Fie. and Fg,,

to optimize the minimum Euclidean distance for all rectangular QAM modulations.
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4.3.2 Extension of 3-D max-d,,;, precoder for large MIMO systems

The authors in [59] presented an extension of max-dyi, precoder for large MIMO sys-
tems, over which an even number of data-streams is transmitted. The main idea of this
extension is to decompose the virtual channel matrix into (2 x 2) eigen-channel matrices
and apply the 2-D max-d,i, precoder for each pair of data-streams. We propose, herein,
an extension for the odd number of data-streams (b > 5) by decomposing the virtual
channel into (2 x 2) and (3 x 3) eigen-channel matrices. On each subsystem #i, an opti-
mal 2-D or 3-D max-dpi, precoder Fdi is applied. The power is, then, allocated to each

subsystem under the power constraint
np,
> 1?=E;. (4.30)
i=1

where ny represents the number of virtual subsystems.

Let us define §; as the minimum distance provided by Fdi, ile. 6; = dmin(f‘di) with
|F4, |2 = 1. The optimized solution for power allocation consists in equalizing the mini-
mum distance, i.e. dyin = Y;6; for all subsystem #i. The power allocation is then defined

by

-1
ny 1
Tz? = F, (522 Z ?) for Vi=1,..,my (4.31)

The minimum distance depends on the inverse of the minimum squared distance of each

subsystem and defined by
-1
2 252 S
dpin = 15 62 = E;s (Z (5_2) (4.32)

Our objective becomes to find the combination of the subchannel SNRs to maximize the
global minimum distance in (4.32). The optimization for b > 5 is rather complex, because
it depends on the channel characteristics and the modulation used at the transmitter.
One should note that when the virtual subchannels are small dispersive (more antennas
are used for example), the minimum distance provided by 2-D max-dy,i, precoder is
higher than that by 3-D max-d,i,. Therefore, we present herein a sub-optimal solution
for an odd number of data-streams, in which a 3-D max-dp,, subsystem is having priority.

This solution is split into four steps
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1. Obtain the virtual diagonal matrix H, by using a virtual transformation.

2. Associate the 2b + 1 singular values by the following combination (p1, pp+1, P25+1),
(p2,p28), (p3,p26-1)5 =5 (Pb, pp+2) to obtain a 3-D virtual subsystem and (b-1)

2-D virtual subsystems.

3. Apply the optimal 3-D max-dy,in and 2-D max-d,;, precoder on each subsystem

under a unity power-constraint.

4. Allocate the power to each subsystem #i by computing the coefficient YT; such that

-1
T? = B, (53 i 5—12) Vi=1.b
J=1%j
It is observed that, at the receiver side, b ML detectors are considered to optimize the
minimum distances for (b— 1) pairs of datastreams and a group of three datastreams.
Therefore, we need (b—1)M?+ M3 ML tests for a M-QAM rectangular modulation. The
complexity of our proposed precoder is, then, given by (M +b-1)M?. In comparison with
diagonal precoders, where the complexity of this quantizer is (2b+ 1) M, the complexity

of our proposed precoder is higher, but its performance is significantly improved.

4.3.3 BER performance for large MIMO systems

A numerical survey with 60000 uncorrelated Rayleigh fading channels using QPSK and
16-QAM modulations, confirms the BER enhancement of the sub-optimal solution for
large MIMO systems. For MIMO(5,5) system using QPSK, more than 65% of optimal
combinations corresponds to our solution. In the case of MIMO(6,5) with 16-QAM
modulation, this proportion is even higher with about 78% of optimal combinations.
The BER performance of the proposed precoder in comparison with those of another
combination and diagonal precoders is shown in Fig. 4.17. It is clear that our new

precoder obtains a significant improvement in terms of BER compared to other precoders.

4.4 Conclusion

We presented, in this chapter, a general parameterized form of the linear precoder that

maximizes the minimum Euclidean distance between two received symbols. According to
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MIMO(86,5) system using QPSK, Rayleigh fading channel
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FIGURE 4.17: Comparison of precoders in terms of BER for MIMO(5,5) system.

this form, the optimal solution of the three-dimensional max-dy,;, criterion is proposed
for all rectangular QAM modulations. The 3-D max-dyi, precoder shows a significant
improvement in BER performance compared to other precoding strategies such as beam-
forming, water-filling and minimizing the mean square error. The BER improvement of
the proposed precoder depends on the channel characteristics. When the virtual sub-
channels are small dispersive (more antennas are used, for example), the improvement is

more significant.

By using the new precoder, a suboptimal solution for large MIMO systems, which trans-
mit not only an even but also an odd number of data-streams, is proposed. It can be
demonstrated that, for a given number of data-streams, this extension exhibits a higher
diversity order compared to diagonal solutions. Furthermore, the robustness of our pro-
posed precoder is also confirmed when an imperfect CSI estimation is considered at the

transmitter.



Appendices of chapter 4

A Proof of Proposition 4.1

The SNR-like matrix of the precoder F,; can be simplified as

SNR(F,) = H,F,F:H, - H,AX(B*B)S*A*H, - H AXZ*A*H,,.

It is obvious that the unitary matrix B has no effect on the eigenvalue of SNR(F).
In other words, the singular values of the global channel H,F; are not dependent on
matrix B. Let us denote the singular values (SVs) of H,AX as \x. One should note
that the SVs are real, positive and sorted in decreasing order. Therefore, our objective
is to find the matrix A that maximizes the singular value A3. The unitary matrix A has

the general form like (4.13) and can be defined by
A=AALA, (4.33)

em 0 0 10 0
with Ai=] 0 e (0 |, Aa=]|0e"2 0
0 0 e 0 0 e*s

C1 S1C2 5152
and A, =| s1c3 —cicacs — €1 5953 —c159c3 + €1 ey 83

8183 —C1C283 + €1 s9c3 —¢18983 — €""legcs
where ¢; = cos; and s; =sinq; for i = 1..3 with 0 < a; < /2 and 0 < n;, k; < 27.

106
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One should be reminded that the sum of the SVs square does not depend on A; and As.

Indeed, we can write!:

M +A3+ A3 = [HoA1ALAZS | = |[ATH,ALZAS | = [H AL 5. (4.34)

Let us denote 7' as the sum of the SVs square. By substituting the angles 1;, 6;, and ¢;
into H,,, A, and X, we obtain:

T = 01¢2 cos® Yy + o155 sin? . M (4.35)
+ O'QS%C% cos? Y1+ UQC%C% sin? 1. M + O'QS% sin? P1.IN
+ 035%53 cos? P + 030%3% sin? P1.M + O‘36§ sin? P1.N

7295 cosky.c sin® P1.sin(2a). sin(2as). cos(21)2)

For every A1 and Az, the maximum value of A3 is obtained if the sum of SVs square is
maximum. We first demonstrate that the maximum value of T is found when ¢; = 1.

Indeed, we can rewrite the sum of SVs square as

T = (0955 + 03¢3) sin? Y1 N + ¢ (01 — 0963 — 0353 ) (cos” 1 — M sin’ ¢y )

7293 cosky e sin® 1 sin(2ag) sin(2ag) cos(2)2).

One should be noted that

cos? 1 > sin? . cos® 1o = sin? 1. cos? wg.(cg + s%)
> sin? 1. (cos? ahg.c2 + sin® g.52) = sin? 9. M
01> 09 = Ug(cg + s%) > Ug.cg + 03.5%

sin(2as), sin(2a3), cos(2y2) > 0

Therefore, the upper bound of T can be defined by

T < (o983 +03¢3) sin® 1 N + (01 - 09 63 — 03 53) (cos” o1 = M sin® ¢hy)

+ % sin® ¢ sin(2as) sin(2as) cos(2t).

!The squared Frobenius norm of a matrix M is given by |M| & = trace(MM*).
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The equality sign happens if and only if cosk; =1 and ¢;=1. By replacing cos k1 and c;

into (4.35), we can rewrite the expression of T" as

02— 03 . .
Tinax = 01 €0s> 11 + % sin ;. sin(2as).P

+ azcg sin? P1.M + O'gsg sin? 1.

+ 0353 sin? P1.M + Ugcg sin? UP1.IN

M+ N

= oq cos? Py + (o2 + 03). sin? iy

+ 22278 in2 g [(M ~ N) cos(2as) + Psin(2as)]

with P = sin(2a2) cos(2¢2). We should note that M — N = cos(2az2) cos(2¢3) and

M + N =1. Hence, the sum of the SVs square can be rewritten as
+ —
Tinax = 01 cOS% )y + % sin? ¢ + % sin? ¢y cos(212) cos(2ag — 2ai3)
it is obvious that the maximum value of T is obtained if cos(2ae —2a3) = 1 or ag = as.
By substituting values of a; and k1 into (4.33), we get A, = diag(1,-1,-1).

Finally, if we choose A; =13 and As = diag(1,-1,-1), we can conclude that the highest

singular values of H,F,; are obtained when A is an identity matrix.

B Proof of Proposition 4.2

Let us define a difference vector as x = x;, — x; with x; # x;. In this Appendix, we
first demonstrate that the matrix Bg has no influence on the the minimum Euclidean
distance, after that we reduce the range of the angles 6; and ;. Indeed, the the Euclidean

distance provided by a difference vector x is given by
dx = |H, EB*x| = |[H,XBgByB, x| = |[BsgH,XByB x| = |[H,XB¢B,x|.

the equality is verified thanks to the diagonality and the unitarity of the matrix Bg.
Therefore, it can be concluded that Bg has no influence on the minimum Euclidean

distance.



Chapter 4. Ezxtension for large MIMO channels 109

For symmetric constellations (e.g., centered square constellations), if X = [x1, 29, 23]7 is

a difference vector, we have the following properties:

i) x¢ = [z}, x5, 25] is a difference vector

ii) %% = 1%is a difference vector

[$1)$27_$3 (4 36)
iii) %% =[xy, —x2, 23]Tis a difference vector

iv) X¢ = [x1, 23, 22] is a difference vector

Basing on the property i), we can reduce the search range by 0 < 1 < m. Indeed, if we

replace @1 with —¢1, the difference vector distance becomes?

dg = [HyXEBg(0;, —01) By (02, 03) X[ = |(HyXBg(0;, —¢1) By (02, 03) X)°||

= |[H,XBg(6;, 01) By (—p2, —p3) X°|

it is obvious that it is useless to test —p1 if ¢ was already tested.

For the angles s and (3, we can also limit the search to 0 < 9, @3 < 7 by applying the

remark below

dx = [HyEBg By (2, 03) X[ = [HyEBg By (02 + m, 03) X2 = |H By By (02, 3 + ) X

From properties i) and i), it is clear that it is useless to test ¢ + 7 when ¢ (with &k =
2,3) was already tested. Finally, the search domain of 85 can be limited to 0 < 05 < 7/4.

Indeed, if 65 is replaced with /2 — 02, we have

|Bg(61,7/2 = 02,03, 01) By (02, 93) X|| = [Bg(61, 02,03, 01+ ) Bu(ps, 02) x| (4.37)

By replacing (4.37) into the difference vector distance in (4.36) and applying the property

iv), we can conclude that the influence of the angles can be studied only 0 < 05 < /4.

2The conjugate and non-transposed matrix of M is denoted by (M)®
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C Exact values of the F;., angles

A numerical search which maximizes dpin for precoder Fy., shows that 0y = w/4. By
analyzing the local maximum of dp,, we realize that the optimal solution is always
obtained from the three difference vectors &; = [0,0,2]%, a5 = [0,2,0]7 and a3 = [2,0,0]7.
The angle ¢ is therefore equal to 7/2 to satisfy the condition d?u = d?lQ. Then, the

normalized distances of the difference vectors a1, ado and as are defined by

d?ls = 2(Uy cos? By + Uy cos? B3 sin? O + U3 sin? f3sin? 6;)

d?“ = déz = Uy sin? 0 + Wy (sin? O3 + cos? O3 cos? 01 ) + W3 (cos? O + sin? O3 cos? 6 )

where

U, = 2cos? Y1 cos? U
Uy = 2sin? 41 cos? 72 sin? ¢y cos? i (4.38)
U5 = 2gin? Y1 sin? Y2 sin® U sin® o
d?
One should note that dél + % =Wy + Uy + U3, so the normalized distance di, can be

expressed as a function of the channel angles, 1 and

doin = d3, = dgg = g (Vg + Wy + U3) (4.39)
Beside the three difference vectors a; as and ag, the minimum distance d,j, is optimized
such that three more vectors below have the same distances: a4 = [2,2,0]7, a5 = [2,0,-2]"
and &g = [2,2,-2]7. We remark that the degree of freedom is greater than the number of
the equations (7 compared with 5). Furthermore, the channel angles in (4.38) are ruled
by cos? Y > sin® Y1 cos? Yo > sin® Y1 sin? v2, so the optimal dpi, in (4.39) is obtained if
12 = 0 and ¢ minimum such that the system of equations d?ll = d?u = d?ig = d?u = d§5 = d?lﬁ

has a root.

The normalized distance dpi, for the precoder Fy., can be now rewritten as

min

2
a2, = 3 (U] + Ty) (4.40)

U, = 2cos? Y1 cos? 1
where W1 and Wy are simplified as
U, = 2sin? Y1 cos? Y2 sin? (U



Chapter 4. Ezxtension for large MIMO channels 111

By solving d§4 = d§5 and comparing with the numerical search, we obtain @y =7 — 3. In
order to simplify the optimization problem, we substitute @9 into the equation d§3 = d?LG

to get the expression of 3

R12 +1- 3SiIl2 93

tan(2ps) = " 3cos b cos O sin f5 (4.41)
where Ryo = Uy /Us = a%/a%. cotan? 1.
A similar way is proposed for the equation dil = d§3 = d?hl and we get
3Ri9cos? 01 +3sin?6;.cos? 03 = Ry + 1 (4.42)
cos 3. tan 0y + ! Rip +1 (4.43)

cos 3. tan(267) B V2(2R15 - 1)

Therefore, the problem becomes finding the minimum value of ; such that there is
existence of root for the system of nonlinear equations created by (4.41), (4.42) and
(4.43). Please note that the smaller 11, the bigger the value of Rjs. Furthermore, a

numerical experiment confirms that the maximum value of R12 is determined at

Runaz = 9.2426 (4.44)

By substituting (4.44) into the system of equations (4.41), (4.42) and (4.43), we obtain
01 ~ 55.8380°, 03 ~ 31.3064° and 3 ~ 47.2667°.

D Proof of Proposition 4.3

Let us denote a1, as, as two difference vectors which have the same Euclidean distances.

The two corresponding Euclidean distances are defined by

dgl = cos? 1 cos? Py f1(0;, i) +sin? y; cos® 4o sin? 4y cos? Yo g1 (05, ©:)
+sin? y; sin® 4o sin? by sin® ¥ hy (05, ©;)

d3, = cos® y1 cos® Y1 fo(i, i) +sin® 1 cos® vy sin® by cos® P ga (i, i)

+sin? vy sin® 4y sin? 1y sin? ¥ ho (s, ©;)
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where f(60;,0i), g(0i,p:) and h(6;,p;) are functions of six variables, 6; and ;. It is
observed that dﬁl and d§2 have the same factors of +; and ;. For this reason, when
channels angles vary from (v1,72) to (v1,74), we can keep two distances equal by changing

only the angles ¢; and 2. Indeed, we define ] and 1} satisfying

cos? " cos? (04 sin? 7 cos? 5 sin? (04 cos? (8 sin? v sin? 5 sin? ] sin? P k:

cos?yy cos2;  sin?Ayp cos2 vy sin® ¥y cos2 ey sin? 4y sin? o sin? ¢y sin? 1y
where k is a constant. The Euclidean distances of the two vectors then become

A3 =kx 2,

dd, =k x d3,

Because dgu = di, we can conclude that dg,l = dgg and the angles ¢] and v can be

rewritten as

tan? tan?~; cos? cos?
) = atan 5 ’Y? x tan? 1), and 1] = atan 5 ’Y} 5 ’Y? x 5 w? x tan? 1)y
tan® vy, tan®y; cos®y,  cos*

(4.45)

E Expressions of the precoder F,, & F.,

In the case of QPSK modulation, it is observed that there are more than eleven difference
vectors which reach the minimum Euclidean distance. One should note that the degrees
of freedom for all expression do not exceed the number of equations created by the
difference vectors. Consequently, it is possible to define the analytical values of all angles

by solving the system of trigonometric equations.

When the eigen-channels are close (01 ~ 03 ~ 03), for example, a numerical search shows
that the optimized solution for the precoder is obtained with 6o = /4, 63 = 7/2, 1 = 0,
w2 = m[4 and @3 = 3w/4. This is the third expression of Fy., which is illustrated in
the table below. To define the analytical values of other angles, we consider the four
difference vectors following &; = [0,0,v/2]7, a; = [v/2,0,0]7, a3 = [0,v/2,iv/2]7 and
a4 = [V/2,0,v/2 +iv/2]7. Figure below plots the normalized Euclidean distance of the
four difference vectors with respect to the angle 6, for a given channel (v;,72)=(7/4,7/4).

The values of other angles that maximize the minimum Euclidean distance such that
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the four curves, respectively, converge at one point. By substituting the angles of the
precoder into the expression of the precoding matrix Fg;, the normalized distances can

be simplified as

dgl = dy.sin? 0 + Dy + P3. cos? 6y

de = 23;.cos? 0y + 2P5. sin® 6,

dg, = 49,

d§4 =2 [<I>1(cos 0 - sin€1)2 + ®y + P3(sin by — cos 91)2]
=2 [dg11 + d§2/2 —2sin6;.cos b (P — <I>3)]

P, = cos? Y. cos? P
where { @5 = sin? ;. cos? ¥y sin? 1. cos? ¥y

P53 = sin? V1. sin? Y. sin? 1. sin? 9

By solving dgl = d§2 = d§3 = d§4, it is possible to obtain the angles

01 = § arctan(—4) ~ 52.01812°
V517

= arctan
w2 ﬂtan Y2

11 = arctan V2
V 5+ 17 tan y1 cosyz cos g

for (y1,72) = (7/4,7/4), the optimized angles (¢1,12) ~ (38.45504°,33.51067°).
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Figure: Euclidean distance with 05 = 45°, 03 = 90°, o1 = 0°, o = 45° and @3 = 135° with

respect to 67 at the channel angles (7y1,72) = (45°,45).
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The other expression can be determined by using a same process: solve the systems of

trigonometric equations created by numbers of non-colinear difference vectors.

Expressions | No | Number of vectors
Fqu (a) 11
(b) 11
(c) 13
(d) 13
Fo, (a) 15
(b) 15
(c) 15

Table: Number of non-colinear difference vectors used to solve

the expressions of precoder max-dyiy,.

F Proof of Proposition 4.4

When there is no dispersion of the subchannel SNRs, the minimum Euclidean distance

obtained by F, .. equals %Esp2 /Br. We assume that there exists a precoder Fy such that

the minimum Euclidean distance is larger than d,;, obtained by F .. Let us consider
. o2 T 5 _ 2 T o= 2

three difference vectors &, = \/m(l,0,0) , Ty m(O,l,O) , and %, \/E(O,O,l

Then, the corresponding normalized distances have to satisfy the conditions below

).

2 _ 47 202 2.2 21,2
dg = 3(07b) +03b3; +03b3;) >

di = %(0%5%2 + 03[’32 + Ugbgz) > (4.46)

Ol Ol Ol

9 _ 4. 202 . 2.2 . 2.9
dy, = 3(07bi3 +03b33 + 03b33) >

where ¥ = diag{o1,092,03}, and B* = (b;;). It is noted that B* is a unitary matrix:

B*B =13, or Z?:l b?j =1, for all 4 =1---3. Then, we have

4 4
dy, +ds, +ds_ = g(of +03+03) = 3 (4.47)
From (4.46) and (4.47), it can be concluded that three normalized distances can not be

all greater than 4/9. In other words, the distance dyi, provided by Fie. is optimized.



Chapter 5

Reducing the number of neighbors

for max-d,,;; precoder

As presented in the previous chapters, a non-diagonal precoder, which is based on the
maximization of the minimum Euclidean distance between two received symbols, achieves
a significant bit-error-rate (BER) improvement in comparison with diagonal precoders,
especially when an ML detection is considered at the receiver. In the chapter, we propose
a new version of maximum dp, based precoder. This precoding strategy considers
not only the minimum Euclidean distance but also the number of neighbors providing
it. The number of neighbors is statistically more important due to the maximization
of the minimum distance. Aiming at reducing this number of neighbors, the rotation
parameters of the new precoder are assumed to be zero. The expression of this precoding

strategy is then less complex and the space of solution is smaller.

This chapter is organized as follows. Section 5.1 introduces the impact of the minimum
Euclidean distance on the BER performance, and the principle of the new precoding
strategy. The parameterization of the Neighbor-d,i, precoder is described in Section
5.2. In Section 5.3, the optimization of the dy;, criterion which reduces the number of
neighbors for two datastreams is detailed. We propose, in Section 5.4, the Neighbor-
dmin precoding matrices for three-dimensional virtual systems using rectangular QAM-

modulations. Finally, the conclusions are given in Section 5.6.

115
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5.1 Error probability of the linear precoding strategy

Let us define a vector x = H,Fys, and denote by A;; the event that |y — x;| < [y — x|
when the symbol s; was sent at the transmitter. If the event A;; happens, there will be
error detections. The received constellation is decoded correctly if |y —x;| < |y — x|

with Vj # ¢ when s; was sent. Then the average error probability can be defined by

My
_ i > P s sent} = — Z Prob{U A) (5.1)
s i=1 S =1

]#z

where M, is the number of all possible transmitted vectors s. The average error proba-

bility can be approximated by

1 Mg Mg

Z > Prob{A;;} (5.2)

Sz 1j=1
J#i

where

Prob{Ay;} = Prob{y - ;[ < |y - x;[ | s; sent}
= Prob{|x; + v, — x| < |x; + v — x4}

= Prob{|vy — (x; = x3)|| < |vo}

Let us define d;; = |x; — x;| and n, the projection of vector v, onto the vector (x; —x;),
we have
Prob{|vy - (xj - x;)| < |vu]} = Prob{n, > 7}

) ela )

Q ( v
where Iy is the variance of the white Gaussian noise v, and Jij is the normalized distance

of vector (x; —x;).

Therefore, the error probability can be simplified as

7229

SZ 15=1
J#

) ( N ﬁ) o3



Chapter 5. Reducing the number of neighbors 117

According to (5.3), we can appreciate the impact of the Euclidean distances on the BER
performance of a MIMO system. Let us first consider the simplest case: there are only

two Euclidean distances.

Lemma 5.1. For every d, < dg < dy < ds, we can find the value of R high enough

satisfying the condition

Q(da-R) + Q(ds.R) > Q(ds.R) + Q(dy-R) (5.4)

Proof: see Appendix A.

It is obvious that we can improve the BER performance by increasing the minimum Eu-
clidean distance of the received constellation. One should note that Q(dg.R) > Q(dy.R),

so Vd, such that d, < d, <ds, we can obtain

Q(ds.R) + Q(ds.R) > 2.Q(dy.R) (5.5)

This is an actual evidence that the optimized detection, in reality, is obtained when the

minimum distance is reached by many Euclidean distances.

Lemma 5.2. With two arrays d., and dg, which are sorted by increasing order, if do, <

dg, and k > 2, we can find the value of R high enough such that

1

k k
ZQ(da,R) > ZQ(dﬂzR) (56)
i=1 i=1

Proof: see Appendix B.

From the form of error probability in (5.3) and the remark in the Lemma 5.2, it can
be concluded that the minimum FEuclidean distance has a very important role in the
BER improvement of the precoding strategies system. We can predict that the opti-
mized precoder can be obtained when the minimum Euclidean distance on the received

constellation is provided by many difference vectors.

Let us note N; is the number of distances Jij such that Jij = dmin Where the minimum

Euclidean distance dy,;, is defined by

d2 = min HHde(Sk - SZ)H2 (57)

min
Sk,SZGS,Sk¢Sl
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A numerical search over Fy, which maximizes the minimum Euclidean distance obtained
by many difference vectors, shows that the values of other Euclidean distances are much
higher than the minimum distance when dp, is optimized. In that case, the other
distances have no much impact on the bit-error-rate performance. The error probability
in (5.3) can be then simplified as

e 255 V)

~Ng Q(f&“& \/E) (5.8)

where Ng_. = MLS Zf\f i N;. It is observed that to improve the BER performance of the
precoding strategies system, we have to not only maximize the minimum Euclidean
distance but also minimize the number of neighbors providing it. The new precoding

strategy is, therefore, called as Neighbor-d,i, precoder.

5.2 Parameterization of the Neighbor-d,;, precoding matrix

Our objective is to parameterize the precoding matrix F4 which satisfies the power con-
straint. By using a singular value decomposition (SVD), the matrix F4 can be factorized
as

F,= AXB*, (5.9)

where A and B* are b x b unitary matrices, and X is a b x b diagonal matrix with
nonnegative real numbers on the diagonal. ¥ can be regarded as a scaling matrix,

whereas A and B* can be viewed as rotation matrices.

It is noted that the form of the precoding matrix F; depends on the channel character-
istics. The authors in [67] showed that we can find a precoder Fy; which do not contain

the rotation matrix A such that performance function is not changed.

Proposition 5.3. If A is assumed to be an identity matrixz, the Euclidean distances
provided by two any difference vectors are kept equal by changing only the scaling matrix

3 and retaining the rotation matriz B*.

Proof: see Appendix C.
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The numerical approach shows that the optimized constellation at the receiver is always
obtained when some difference vectors provide the minimum Euclidean distances. Ac-
cording to the proposition above, we can conclude that not only the complexity of the
optimization but also the number of precoding expressions is reduced if the matrix A
has no influence on the precoding matrix. The parameterized form of the Neighbor-dpi,
precoder is then

F;=XB". (5.10)
The power constraint can be rewritten as

trace{F F} = trace{XX"} = F. (5.11)

This power constraint is then replaced by the following decomposition

Y =/ E, diag{cos 1, sin 11 cos s, .., sin 1)y sin g sinihp_1 }. (5.12)

Theorem: Any matrix B*, which belongs to the b-dimensional unitary matrix group
U(b), can be factorized into an ordered product of 2b— 1 matrices of the following form

[68]

* b— b— b—

B* =D 052 pi2. . 0l D, OyD,, (5.13)
where Dy is a diagonal matrix of the form Dy, = diag{e®, ..., e} with ¢; € [0,27],i =
1,...,b arbitrary phases, ’D,’fﬁk is the same diagonal matrix with first b — k£ entries equal
to unity, i.e. Df_k = diag{lb_k,ei“",l, e ,ew;c}.

The orthogonal matrices Oy, (OF ) is a product of b—1 (b-k — 1) matrices of the form
O = JLQ J273 e Jb—2,b—1 Jb—l,b (5.14)
where J; ;41 are b x b rotation matrices given by

L1 O 0 0
0 cos#; sinf; 0

Ji,i+1 = s (5.15)
0 -sinf; cosf; 0

0 0 0 Tpiq
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where I; is an identity matrix of size i.

Remark 5.4. The angles that parameterize Oy are denoted as 01, ..., 60, 1, then the angles
of (9;71 are 0y, ..., 09,3, etc. and the last angle entering (’)S_l will be 0y(-1)/2. The matrix

(’)f_k has the same structure as O

I, O
ok, =" , (5.16)
0 Opi

It is realized that if all the phases entering B* are zero, i.e. ¢; =0, i =1,...,b(b+
1)/2, the received constellation will have less distances providing the minimum distance.
The property is explained by the non-rotated received constellation when a rectangular
Quadrature Amplitude Modulation is used at the transmitter. Therefore, the unitary

matrix B* can be parameterized as

B =052053 ... 0L, 0. (5.17)

Thanks to this representation, we are now able to find (b - 1) angles v; and b(b—-1)/2

angles #; which give the optimal precoder according to the minimum distance criterion.

5.3 Expression of Neighbor-d,,;, precoder for 2 sub-streams

To illustrate the method of optimization, let us consider a simple case: b=2. By using a
singular value decomposition, the authors in [37] and [69] simplified the virtual channel

and precoding matrices as

o1 0 cosy 0
90 AR P Rt (5.18)
0 o2 0 sinvy

where p = \/a% + a% and v = arctang—f are the channel gain and channel angle, respec-

tively.
costy 0 cosf sinf |1 0

Fy=\/E, (5.19)

0 siny ) \-sinf cosf]\0 e

with 0 < 0 < 7/4 and 0 < ¥, < 7/2. The parameter ¢ controls the power allocation

on the virtual subchannels, 8 and ¢ correspond to scaling and rotation of the received
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constellation, respectively. When 6 and ¢ are equal to 0, the precoding matrix is diagonal

and equivalent to the power allocation strategies.

We present, herein, an original idea not only considering dpi, and Ny . | simultaneously,

but also reducing the complexity of the solution. It is realized that if the coefficients of
the precoding matrix F p do not depend on the rotation parameter (¢ = 0 or ¢ = 7/2), the
received constellation will have less distances which can reach the minimum Euclidean
distance. The property could be explained by the non-rotated received constellation (or

perpendicular rotated constellation) when a Quadrature Amplitude Modulation (QAM)

is used at the transmitter.

For this reason, we propose a new precoding strategy in which we assume that the
rotation parameter has no employ (¢ = 0 or ¢ = 7/2). By using the parameterized form
of the precoder in (5.19), we are now looking for the angles 1) and 6 which optimize
the dpin criterion for each channel angle v. A numerical approach for MIMO system
using BPSK and QPSK modulation, which is considered in the following of this section,

confirms a bit-error-rate improvement of our new precoder.

5.3.1 For BPSK modulation

It is observed that the difference vector as given by the difference between the two
transmitted vectors (8 = s, —s; with s # ;) is a vector created by the elements of the
set {0,2,-2}. A numerical search over ¢ and 6 which optimize the minimum Euclidean
distance for two independent datastreams shows that the Neighbor-d.;, precoder has
the same form as the max-dyi, precoder presented in [37]

12
P22 (5.20)

2100

One should note that the Neighbor-dyi, solution pours power only on the strongest

virtual sub-channels. The minimum Euclidean distance is then defined by

d%psy = 4Ep? cos? (5.21)
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5.3.2 For QPSK modulation

The transmitted symbols belong to the following set S = % {1+4,1-4,-1+14,-1-73}.
For QPSK modulation with two datastreams, the set of all difference vectors denoted
as éQ psk contains 16 x 15 = 240 elements. By eliminating the collinear vectors, we can

reduce the size of SQPSK to 14 elements.

A numerical search over ¢ and 6 which optimize the minimum Euclidean distance for
each channel angle, shows that our precoder has two different expressions. The first
one, denoted as Fg,, pours power only on the strongest virtual subchannel. The other,

obviously, uses all two virtual subchannels to transmit symbols, and is denoted as F,...

The first expression

The power is concentrated only on the first virtual subchannel and the rotation parameter

 is not considered at the precoder. The form of the precoder Fg,, can be expressed as

E, (21
Four =1/ — (5.22)

5100

The optimized dpi, is provided by the difference vector %[0 2]7, and defined by

2
A = ZEyp*cos® vy (5.23)

snr 5

The received constellation obtained by Fg,, looks like the 16-QAM constellation. Hence,

the average number of neighbors providing dyiy is given by Ng . = 1—16 (4x2+8x3+4x4) = 3.

This value is less than the number of the minimum Euclidean distances obtained by the

on = 75(4x2+4x3+4x4+4x5) =3.5). However, the

precoder F,; presented in [37] (Ng
distances dpyin provided by two precoders remain very close. This explains why the new
precoder has a slight improvement of BER in comparison with the max-dni, precoder

(see section 5.4.4).
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The second expression

The difference between two virtual subchannels is smaller than the case of Fy,,.. A
numerical search shows that the optimized solution is found when the angle 6 = 45° is
fixed and % depends on the channel angle v. Indeed, the optimization is obtained by
three difference vectors s; = %[0 217, 8y = %[QO]T and 83 = %[Q—Q]T. The three

corresponding normalized distances can be expressed as

c@l = A.sin? 6 + B.cos? 0

@2 = A.cos? 6 + B.sin? 0

d2. = A.(cos® —sinf)? + B.(cosf + sin h)?
&3

where A = 4cos?ycos?1 and B = 4sin®ysin?¢. By considering CZ% = (@2 = CZQQES in the
interval value of # and ), we obtain
0=m/4
(5.24)

1
=ar n
w arcta, \/§.tan'y

By substituting (5.31) into (5.19), the precoder F,.. is given by

E, [ cos 0 11
Frec=\/— v (5.25)

2\ 0 siny/\-11

The minimum Euclidean distance provided by F,.. is then

£ I p2 4sin?~

= 5.26
ree =T ZtanZy + 1 (5.26)

Fig. 5.1 illustrates the received constellation of the precoder for QPSK modulation. It is

observed that the average number of dyi, is defined by Ny . = 1—16(4 x4+8x5+4x6) =5.

min

In comparison with the precoder in [37] where Ny . = 1—16(8 x5+8x9) =7, our new

min

precoder has a good improvement.
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FIGURE 5.1: Received constellation of the precoder F,... for QPSK.
The threshold 7y

To choose between Fy,,, and F,.., we have to compare the error probabilities in (5.3)
which are obtained by both precoders. It is observed that when the channel angle v varies
from 0 to /2, the ratios of other distances to the distance dp,, are fixed. Furthermore, we
realize that the minimum Euclidean distance dgp, and d,. in (5.23, 5.26) is proportional
to Es. For this reason, the threshold ~q is not constant and depends on the signal-to-noise
ratio \/m. The angle g increases to . if the average transmit power F, augments.
The critical angle . is given by

2 =2

snr rec

5 © "3tanq,+ 1

< 7. = arctany/1/7 ~ 20.7048° (5.27)

5.3.3 General expression for high-order QAM modulations
In the case of a 4*-QAM modulation, the transmit symbols belong to the set
S=vBu{a+bi;a-bi;-a+bi;-a->bi} (5.28)

where [y = and a,be (1,3,...,2F - 1).

_3
2(4F-1) >
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The expressions of the Neighbor-d,,;, precoder for two data streams can be classified
into two types: the first one allocates power only on the highest virtual channel, and the
other uses two virtual subchannels to transmit signals. These precoders are denoted as

F, and F9, in respectively.

Expression of the precoder F;

The first general expression is defined by
[ E, [2"1
Fi=\/—- : (5.29)
4k 1+ 1 00

A numerical research shows that the distance dpi, provided by F;i is obtained by two

difference vectors /Bas[02]7, and given by

dF, = E,p* By cos® . (5.30)

4k +1
The constellation at the reception obtained by Fy is similar to that of a M?-QAM mod-
ulation. As shown in the previous section, the proposed precoder gets fewer neighbor
points, which have the same minimum distance, than those of the optimal max-dpi,

precoder [37].

Expression of the precoder Fy

For every rectangular QAM modulation, a numerical approach shows that the optimal
solution is obtained by the three difference vectors: §; = %[O 21T, 8, = %[2 0]7, and
S3 = %[2—2]? Three corresponding distances are defined by

chh = Asin?6 + B cos®6
@2 = A cos’6 + B sin%

d%. = A(cos® —sinf)? + B (cos + sin §)?
3

T
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where A = 4cos?ycos?t and B = 4sin?ysin?+). By considering Jg%cl = CEQ = dg%cs, we

obtain
0=m/4
(5.31)

1
= atan —=———
w \/§.tan'y

The second general expression Fy is given by

E. [ cos 0 11
Fo=4\/— v (5.32)
2\ 0 siny)\-11

where 1) = atan 7 1an'y' The minimum distance provided by F5 is then
42, = 4E,p*3 2sin’ y (5.33)
Fy = 55sP M3tan2fy+1' '

The constellation obtained at the receiver by precoding matrix Fy is shown in Fig. 5.9.
It should be noted that two received vectors, which are close on one subchannel , can be

distant on the second one (for example: points A and B).

Virtual subchannel 1 Virtual subchannel 2

0.5
P R I L I . S

o5l ¥ K x ¥ *  x % * ook X% % ko % %
E L T T T T 5 * 0% %k ok k¥
o o
2 >
8 0of x x % Ag * % % S Of*x * ok x X X *
=) =)
] ] B
S * %k Kk ok k% € N
05 % % % % * o * % %k x % x %
* % % % * % % S x % % % % %
] -0.5
-1 -0.5 0 0.5 1 -0.5 0 0.5
real part real part

FIGURE 5.2: Received constellation provided by the precoder Fs.

The threshold 7

Fig 5.3 illustrates the evolution of the normalized minimum distance with respect to the
channel angle v for two general expressions of the Neighbor-d,,i, precoder. The precoder
F; provides the optimized distance dpy, for small values of +, while the precoder Fq

is valid for large values of . In order to choose between F; and Fs, and obtain the
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corresponding threshold, we have to find vy such that d%l = d% in (5.30) and (5.33). The
threshold 7y is then defined by

cos? 0 _ 2sin? Yo
4k +1  3tan?yp+1

< v = atan (5.34)

2.4k — 1

% Precodér F2
—+ F, forQPSK
s F for 16-QAM
05H —o—F, for 64—QAM k

0.3 - : i

Normalized minimum distance

0.1 F:

G Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45

Channel yin degrees

FI1GURE 5.3: Normalized minimum distance for the precoder Neighbor-d,;p.

5.3.4 Performance of Neighbor-d,,;, precoder

For QPSK modulation

Fig. 5.4 shows the normalized minimum Euclidean distance dpi, of the new precoder
Neighbor-d,i, and other precoders in the case of QPSK modulation. The average trans-
mit power Eg for diagonal precoders is choosen large enough such that the power is
always allocated on both virtual subchannels. It is observed that the Neighbor-dy,i, so-
lution is better than WaterFiling [12], max-Amin [33] and MMSE |32] precoders in terms
of dmin. The new precoder has a small difference of dyi, in comparison with max-dmin
precoder [37]. Furthermore, the difference remains constant for a small channel angle

(v <17.28%).
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FIGURE 5.4: Normalized minimum Euclidean distance for QPSK.

According to the improvement of not only the minimum Euclidean distance (except for
max-dpin, of course) but also the average number of dy,in, an increase of BER performance
for Neighbor-dp,i, precoder is expected for QPSK modulation. We consider herein a
MIMO-OFDM system with ny = 3 transmit and ngr = 2 receive antennas. The channel

matrix H is complex Gaussian and the noise element are additive white Gaussian.

Firstly, we compare the BER performances obtained by the new precoder Neighbor-dyi,
and the max-dp;, solution. Fig. 5.5 shows a BER improvement of the precoder Fg,, and
F.cc in comparison with F,.; and F,., for small and large channel angle -, respectively.
We observe a large BER improvement of the precoder F,.. compared to F,.,, and
a slight superiority of Fy,, in comparison with F,1, although both new precoders are
inferior in terms of dpi,. This result clearly demonstrates that the number of minimum
Euclidean distances has an important role in reducing the error probability when an ML

detection is considered at the receiver.

The BER performance in comparison with other precoders for QPSK modulation is
illustrated in Fig. 5.6. As expected, the Neighbor-dui, precoder provides a significant
improvement in term of BER compared to diagonal precoders. Furthermore, it has a
slight improvement in comparison with max-dy;, precoder. This can be explained by
the distribution of the channel angles 7: the MIMO system (3,2) uses more often the

precoder Fg,, than F,....
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FIGURE 5.5: BER comparison of max-d,;, and Neighbor-d.,;, precoders.
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FIGURE 5.6: Uncoded BER performance for QPSK modulation.

For high-order QAM modulations

Fig. 5.7 shows the normalized minimum distance of the new precoder Neighbor-d i,
precoder and others precoder in the case of 16-QAM modulation. The average power
transmission Fg for diagonal precoder is chosen large enough such that the power is
poured on all virtual subchannels. We observe that the minimum Euclidean distance

provided by the Neighbor-d,,;, is greater than that of other literature precoders, for
example Waterfilling, MMSE, and max-Amin-
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FIGURE 5.7: Comparaison dp,;, pour MAQ-16.

In addition, a large performance improvement in terms of BER is confirmed by the Fig
5.8, which represents the BER as a function of SNR for a MIMO system using 16-QAM
modulation, ny = 3 transmitter, ng = 2 receiver through a channel Rayleigh fading. The
precoder Neighbor-dy,i, provides a gain of about 6 dB for a BER = 107 in comparison

with diagonal precoders.

—a— Neighbor—dmin
2 —p— EQMM
10 —— Waterfilling E
o max—kmin

107
o
|
oM

107

107°

107°

0 2 4 6 8 10 12 14
SNR in dB

FIGURE 5.8: Comparaison des précodeurs pour MIMO(3,2).
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5.4 Neighbor-d,,;, precoder for three parallel datastreams

Thanks to the representation of B* in (5.17), we can find (b—1) angles ¢; and b(b-1)/2
angles #; which optimize the minimum distance criterion. When b increases, not only the
number of parameters but also the received constellation size augments dramatically. In
the previous section, we present the optimal solution for only small b virtual channels (b =
2). We point out herein the Neighbor-dy,i, precoder for three-dimensional virtual systems
using rectangular QAM-modulations. As presented in section 5.2, a three-dimensional

virtual channel can be parameterized as

€os Y1 0 0
H,=p| 0 sinvy cosye 0 ; (5.35)
0 0 sin~y sin-y

where p, v1 and 7o stand respectively for the channel gain and channel angles. It is
noted that the diagonal elements of H, are sorted in decreasing order, so 0 < v, < 7/4

and cosya < cotan-y;.

The unitary matrix B* in (5.17) can be now simplified as

c1 S51C2 5152
*
B" =] -s1c3 cicac3 — s9s53 c1S9c3 + cas3 | (5.36)

§183 —C1C283 — S2C3 —C1582S83 + C2C3

where ¢; = cosf; and s; =sinf; for i = 1,..,3. The angle 6; corresponds to the scaling of
the received constellation while the parameter 1; of 3 controls the power allocation on

each virtual subchannel.

For a rectangular 4*-QAM modulation, the transmitted symbols belong to the complex

set

1
S = a+bi;a-bi;-a+bi;-a-bi}, 5.37
vl } (57

where M:§(4k—1) and a,be (1,3,...,2F - 1).

The expression of the precoding matrix which optimizes d,;, for three independent data-
streams can be classified into three types which enable power on one, two, or three virtual

subchannels.
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5.4.1 Precoder F;

The precoder is available for high dispersive channels, and can be seen as a max-SNR
design that pours power only on the strongest virtual subchannel. In fact, this pre-

coder transforms the rectangular 4*-QAM signals on three virtual subchannels into a

rectangular 4%*-QAM on the first subchannel. The optimized precoding matrix is given
by
4k 2k 1
Es
Fi=4\/— ) 5.38
1=/ | 000 (5.38)
000

where M; = 16" + 45 + 1. The optimized duin is provided by the difference vector

%M [002]7, and defined by

4
d%‘1 = M—MESPQ cos? 1. (5.39)

Although the distance is inferior to the minimum distance obtained by SNR-like max-dpin

precoder [65], it has less neighbors providing the distance dp;p.

5.4.2 Precoder F,

The optimized precoder which enables power on first and second virtual subchannels
(12 = 0) may have many expressions. To simplify the form of Fy, we present, herein, the
most important expression of F'5. The expression is available when there is a large disper-
sion between the two first subchannels and the third subchannel. For rectangular QAM
modulations, a numerical approach shows that the minimum distance is provided by
five difference vectors: xj = \/LM[O,Q,O]T, Xo = \/LM[O,2(/<:—1),—2]T, X3 = \/LM[O,Qk,—Q]T,

%y = %M[2,_2(M2-k:+1), 2(k-1)]7, and x5 = ﬁ[z,aMg,Qk]T, where My = 2F — 1.

Let us note d?ci as the corresponding distance of X; with ¢ = 1,..,5. By solving the system
. 2 2 2 2 2 . Tt
of equations dg =dg, = dg“cg =dg, = dis, we obtain all constant angles of the matrix B
(confirmed by Proposition 1). The optimized angles (in radians) of B* are described in
Tab. 5.1, while the angle 1)1 which depends on the channel angles v; and 9 is defined

by
tan(v1(x/4,0))

(5.40)
tany; cosys

V1)(1,72) = atan
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Modulation 91 92 93 w1|(ﬂ/470)
4-QAM 0.5083 | 0.1753 | 0.9951 | 0.5066
16-QAM | 0.6155 | 0.7854 | 0.3876 | 0.7227
64-QAM | 0.5538 | 1.0216 | 0.2229 | 0.8433

256-QAM | 0.6690 | 1.2490 | 0.0977 | 0.6331

TABLE 5.1: Optimized angles for the precoder F,

The minimum distance is provided by the difference vector L[0 20]%, and given by

VM

2E,p?
da, = s 5.41
B = (0My + 4 k)’ (541)

where x depends on ; and 72 and is defined in (5.55).

5.4.3 Precoder F;

The Neighbor-d,,;, precoder which pours power on all subchannels also has many ex-
pressions. Each expression is available for different variations of the transmit channel.
We present, herein, a general precoding matrix for all rectangular QAM-modulations.
For every precoder has the form like (5.10), this precoder provides the highest minimum

distance when the channel is small dispersive. The matrix B* is then defined by

1 1 1
" 1
B -5 8 3] (5.42)
1 -1-v3 -1+V3
2 2

By equalizing three difference distances provided by x; = \/LM [0,2,0]7, x5 = \/LM [0,0,2]7,
and X3 = \/LM[O7 2,-2]7, we obtain
_ 1
19 = atan tans (5.43)
i1 = atan L

2 tan 1 cosy2 cos 2

The distance dp;, obtained by F3 is then

9 8F,p? cos? 41 sin? 1 cos? vo sin? o
F3

= 5.44
4sin? 1 cos? v sin? 4y + cos? 1 sin? yo + cos2 4 cos? v, ( )
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Fig. 5.9 plots the received constellation provided by the precoder F3 in the case of
4-QAM. One should note that whenever two received vectors are close on one virtual

subchannel, they are distant on the others (e.g. A and B).

First virtual subchannel
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FIGURE 5.9: Received constellations provided by precoder F3 for QPSK modulation.

5.4.4 Simulation results

Range of definition

To improve the BER performance of a MIMO system, we can choose from the three
precoding matrices above the precoder which provides the highest minimum Euclidean
distance. For a given modulation order, by comparing the three minimum distances in

(5.39), (5.41), and (5.44), we obtain the range of definition for each precoder.

The range of definition for QPSK is shown in Fig. 5.10. It is observed that when
the modulation order increases, the normalized minimum distances (dmin/\/4FEsp?/ M)

provided by F; and Fy are decreased. In other words, two precoder F; and Fo are less
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used for higher order modulations (the range of definition changes following the arrows

in Fig. 5.10).

45

351
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20

Channel angle Y, in degree
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0 5 10 15 20 25 35 40 45 50
Channel angle 7 in degree

FIGURE 5.10: Range of definition for the three precoders F1, F5, and F3 using a QPSK
modulation. The arrows represent the evolution of the borders when the modulation
order increases.

Performance of Neighbor-d,,;;, precoder

Thanks to the rectangular constellation (see Fig. 5.9), our new precoder not only op-
timizes the minimum Euclidean distance but also has less neighbors which provide the
distance dpi,. The normalized minimum distance of the Neighbor-dy,i, and other pre-
coders are illustrated in Fig. 5.11. For diagonal precoders, the transmit power is large
enough to be allocated on all virtual subchannels. It is observed that the minimum
distance provided by the Neighbor-dy,i, precoder is better than those of WaterFilling,
max-Amin [33] and MMSE [32]. Furthermore, unlike diagonal precoders, the minimum
distance of Neighbor-d,;;, precoder is much superior to zero if the virtual channels are
large dispersive. When the channels are small dispersive, the minimum distance provided
by max-Apin is better than MMSE and Waterfilling but is really outperformed by our

new precoder.

Let us consider a MIMO-OFDM system with ny = 4 transmit antennas and ng = 3

receive antennas. The transmit channel is Rayleigh fading and the noise is additive
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FIGURE 5.11: Normalized minimum distance for QPSK.

white Gaussian. Due to the improvement of the minimum distance and the number of
neighbors providing dpin, a large enhancement of BER performance is expected. Fig.
5.12 illustrates the BER performance with respect to SNR for QPSK modulation. It is
obvious that the Neighbor-dpi, precoder has a significant BER enhancement compared
to diagonal precoders. A gain of about 5 dB is observed (at high SNR) in comparison
with the beamforming design. Furthermore, we also observe a slight BER improvement
of the Neighbor-d,;;, precoder compared to the optimal max-d;, precoder. This can
be explained in the way that the number of neighbors is really important due to the

maximization the error probability.

5.5 Neighbor-d,;, precoder for large MIMO systems

5.5.1 Principles

As presented in Chapter 4, we can extend a sub-optimal solution of Neighbor-d,;, pre-
coder for large MIMO systems with an odd or even number of data-streams. This solution

is split into four steps

1. Obtain the virtual diagonal matrix H, by using a virtual transformation.
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MIMO(4,3) system using QPSK modulation, Rayleigh fading channel
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FIGURE 5.12: Uncoded BER for MIMO(4,3) system using QPSK modulation.

2. Associate the 2b singular values by the following combination (o1, 09,), (02, 09-1),
wsy (Ob, 0p11), Or 2b+1 singular values by the following combination (p1, pp+1, P2b+1),

(p2,P2), (P35 P26-1), =, (Pbs Po+2) to obtain b virtual subsystems.

3. Apply the 3-D Neighbor-dpi, or 2-D Neighbor-dmi, precoders on each subsystem

under a unity power-constraint.

4. Allocate the power to each subsystem #i by computing the coefficient T; such that

7=1

-1
b1
T§=p0(5326—2) Vi=1.b
j

where 9; is the minimum Euclidean distance of the subsystem #i given in the step 3.

5.5.2 Simulation results

In the section, we compare the BER performance of the Neighbor-d,i, precoder with
other sophisticated transceivers such as beamforming (max-SNR), waterfilling (WF),
minimum mean square error (MMSE), or maximization of the minimum eigenvalue
(max-Apin). For each SNR, a numerical survey with 30000 uncorrelated Rayleigh fading
channels H is implemented. We consider a MIMO system with ny = 6 transmit and

ng = b receive antennas over which we send b = 5 independent QPSK datastreams. The
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BER performance with respect to SNR of the proposed precoder in comparison with
other precoders is shown in Fig. 5.13. It is clear that our new precoder obtains a signifi-
cant improvement in terms of BER compared to other precoders. In comparison with the
max-dp, design, although the Neighbor-d,,;;, precoder has a simpler form, it provides a
same BER performance due to the reduction of the neighbors providing the minimum

distance.

MIMO(6,5) system using QPSK modulation, Rayleigh fading channel
T

Uncoded BER
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SNRin dB

FI1GURE 5.13: Uncoded BER for large MIMO system using QPSK modulation.

5.6 Conclusion

In the first part of this section, we investigated the impact of the minimum Euclidean
distance on the performance of bit-error-rate when an ML detection is considered at
receive side. It is realized that the number neighbors providing d,;, has an important
role in reducing the error probability. Therefore, a new precoder for MIMO transmission,
which is based on the maximization of d;, associated with the minimization of the

neighbors providing it, has been introduced.

In the new precoding strategy, the rotation parameter ¢ is not considered. Hence, the
degree of freedom in precoding matrix F; is decreased and the space of the solution is

smaller. Not only reducing the complexity, the Neighbor-d,i, precoder presents also a
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significant improvement of BER compared to diagonal precoders such as MMSE, Water-
filing and max-Api,. In comparison with max-dy;, precoder, the new precoder provides
a slight improvement. The BER enhancement depends on channel characteristics and is

more significant if the virtual subchannels are far from dispersive.



Appendices of chapter 5

A  Proof of Lemma 5.1

For all dg < dy, it is obvious that we can find a high value of R > 0 such that

>0 (5.45)
with dg > d, and ds > d,. The inequality (5.45) can be rewritten as

dﬁ —da 2 2 2
10gm > _(dX - dB)R /2
o B da | (@2-a2) R

ds —d,

= R(dg—do) . 5 R(ds - dy).e %N (5.46)

Using the monotonic decreasing property of the function e~/ 2 we obtain
dg-R o ~ )
fda.R ey > (dg. R - do.R).e~ (P12 (5.47)
ds.R
(ds.R - dy.R).e” (1?12 5 fd 5R e 712 gy (5.48)
-

From (5.46), (5.47), and (5.48) we have
[dB.Re_z2/2da:> fds'Re_x2/2d$
do-R dy.R

& Q(da.R) - Q(ds.R) > Q(dy-R) - Q(ds.R)
< Q(dy.R) + Q(ds.R) > Q(dﬁ.R) + Q(dX.R)

140
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B Proof of Lemma 5.2

The mathematical induction can be used to prove this lemma. Omne should note that
Q(x) is a monotonic decreasing function. First we show that our statement holds for

k = 2. Indeed, there are two cases:

1. da, <dpg,: it is obvious that Q(dqa,.R) > Q(ds,.R) and Q(da,.R) > Q(dg,.R) with

VYR >0, so we have
Q(da,-R) + Q(dw,.R) > Q(ds,.R) + Q(dg,.R)
2. dqa, > dg,: obviously, this is the case of the Lemma 5.1.

Thus it has been shown that the lemma holds for k& = 2. We assume that our statement
is true for k. It must then be shown that our statement is true for £ + 1. Let us define
dy, = %(ala1 +dg,), and d, = %(da1 +dpg,). It is clear that dn, < dy, <d,, so we can find

value Ry such that VR > Ry

Q(da,-R) + Q(dw,.R) > Q(dy,.R) + Q(d+,.R) (5.49)

Since d,, < dg, <dg,, so we get

Qdyy-R) > Q(dgy-R) (5.50)

Furthermore, we have d,, < dg,. According to the statement in the case of k, there exist

values Ry which satisfy VR > Ry

k+1 k+1
Q(dy,-R) + ) Q(da;-R) > Q(dg,-R) + }, Q(ds,.R) (5.51)
i=3 =3
From (5.49), (5.50) and (5.51), it can be concluded that VR > max(R1, Ry), we have

k+1 k+1

; Q(do,-R) > ; Q(dg, .R)
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C Proof of Proposition 5.3

Let us denote a1, as, as two difference vectors which have the same Euclidean distances.

These Euclidean distances are given by

d,pm, = [FLZBE [

: , (5.52)
02, 5y, = |H,EBa|

One should note that 3 is a diagonal matrix with real nonnegative elements, i.e. ¥ =
diag(¢1, ..., ¢»). When the channel varies from H, = diag(oy, ..., 0p) to H, = diag(a1,...,0p),
the two distances above can be kept equal by changing only the values of ¢;, i = 1,..,b.

Indeed, we define the diagonal matrix 3 with real nonnegative elements such that
$iGi = K §io, (5.53)
where £ is a constant. By substituting ¢; into the power constraint in (5.12), we get

i$?=ﬁ2§:¢?(?)2=ﬁ75 (5.54)

FEs
K=4| ——5—. 5.55
\| T 2025 (5:55)

The Euclidean distance provided by a; is then

or

2 _ T SR (2
déﬂﬂv = |H,XBa, ||
= |« H,XBa; |
_ .22
=K d51|Hv'
Similarly, we get
2 _ .22
dg, i, = daym, -
: 2 _ 2 2 _ 2 . .
Since d51|Hv = déz\Hv’ we have dél\ﬂu déz\ﬂu' Consequently, two any difference distances

can be kept equal by changing only the matrix 3.



Chapter 6

(Generalized precoding designs using

Discrete Fourier Transform matrix

The optimal solution of max-dp,;, precoder is proposed in [37, 69] for two transmit datas-
treams and for 4-QAM and 16-QAM modulations. By decomposing the channel into 2x2
eigen-channel matrices and optimizing the distance dp,i, for each sub-system, the authors
in [59] proposed a sub-optimal precoder for large MIMO channels. However this solution
is only available for low-order QAM modulations. It is because the optimized solution
depends on many parameters such as the symbol alphabet, the detection rule, or the
characteristics of the virtual channel. Another sub-optimal design of the max-dy;, pre-
coder, which allows transmitting more than two independent datastreams and increasing
the order of the modulations, is presented in [55]. But the precoding scheme considers
only a block-Toeplitz form of the channel matrix and, therefore, is only suitable for

quasi-stationary MIMO channels.

The problem of high-order QAM modulations and the number of datastreams is settled
in this chapter. We present herein a simple form of the minimum Euclidean distance
based precoder. The precoding matrix is then factorized as the product of a diagonal
power allocation matrix and an input-shaping matrix. In order to minimize the minimum
distance, the input-shaping matrix is chosen to be a Discrete Fourier Transform (DFT)
matrix, and only the power allocation matrix depends on the channel characteristics.
The expression of the precoding matrix is therefore less complex with only b variables

corresponding to the b diagonal entries of the power allocation matrix. A numerical

143
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approach shows which difference vectors provide the minimum distances, and then we
can obtain the optimized precoding matrix by equalizing these distances. For any number

of available datastreams, we will present a general form of the precoding matrix.

The chapter is organized as follows. A new parameterized form of the precoding matrix
is described in section 6.1. Section 6.2 is devoted to the description of the new precoder
which is based on the observation of the SNR-like matrix. In section 6.3, we propose
general extensions of the precoder for large MIMO channels and rectangular QAM mod-
ulations. Finally, the simulation results in comparison with other traditional precoders

are presented in section 6.4. The conclusion is given in section 6.5.

6.1 Parameterization of the precoding matrix

We now intend to design a precoder to minimize the probability of error subject to the
constraint of transmission powers. This design is difficult because it is rarely solvable in
closed form: the solution depends on the symbol alphabet and the detection rule. The

average error probability can be approximated by [70]

1 Mg Mg

X;JZIQ( N \/f) (6.1)

where Ny is the variance of the white Gaussian noise 7,, and Jij is the normalized
Euclidean distance between two vector s; and s;. Let us note N; the number of distances
(fij such that ciij = dmin, Where dpi, denotes the minimum Euclidean distance and is
defined by

d2. = min |H,F4(sk - SZ)HQ.

min
Sk,SlES,Sk¢Sl

The probability of error in (6.1) can be now simplified as

w3 2N o < V)

~Ng Q(z‘i‘/ni ﬁ) (6.2)

where Mj is the number of all possible transmitted vectors s, and Ny ZMS N;.

min

It is observed that when an ML detection is considered at the receiver, a key to reduce



Chapter 6. Generalized precoding designs using DFT matriz 145

the probability of error is maximizing the minimum Euclidean distance between received

symbols. We can now formulate the design problem as follows

2

argmaxds i,

Fy
subject to:  trace{F,F} = E;. (6.3)

In general, by using a singular value decomposition (SVD), a linear precoder can be
considered as a combination of an input shaper and a multimode beamformer with per-
beam power allocation [10]

F,= AXB*, (6.4)

where A and B* are b x b unitary matrices, and X is a diagonal matrix. The orthogonal
beam directions are the left singular matrix A, of which each column represents a beam
direction (pattern). It is noted that the matrix A contains all eigenvectors of the matrix
FqF), thus it is often referred to as eigen-beamforming. The matrix 3 controls the
power allocation on each beam. These powers correspond to the squared singular values
of 2. The right singular matrix B* concerns with the rotation and scaling of the input

symbols on each beam and hence is referred to as the input-shaping matrix.

Let us define x a difference vector as X = s —s;, with s; # s;, and the set which contains
all possible difference vectors as X. The optimized criterion is then
a2

min

- min [FL,F [
xeX

=min x*F;H H,F;x
xeX

=min X’ BE"A"RyAYB"x, (6.5)
xeX

where Ry denotes the channel covariance matrix, i.e. Ry = H;H, = diag(p1,..., pp)-

One should note that Ry is a diagonal matrix because the virtual channel H, is already

diagonalized.

Lemma 6.1. Without loss of optimality, the left singular matriz A of the optimal pre-

coder Fy can always be chosen to coincide with an identity matriz.
Proof: We first consider the eigen-decomposition of the matrix

S*A'RpAY = QAQ”, (6.6)
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where Q is an orthonormal matrix and A is a diagonal matrix. The minimum distance
in (6.5) can be now rewritten as
d2;, = min x**BQAQ*B*x. (6.7)
xeX
Let us denote A\, as the diagonal elements of the matrix A. Note that the number of
non-null diagonal elements of A is less than the number of datastreams b. Therefore,
it is always possible to find a diagonal matrix of the form 3 = diag(y/31, ...,/0%) that

satisfies

S*RyS = A, (6.8)

where the diagonal elements of ¥ are defined by &) = A\x/px. The distance diin in (6.7)
can be now simplified to
d2;, = min X*BQE"RyEQ B %

min
xeX
- min x*BEX"RyIB*x, (6.9)
xeX
with B is defined by B = BQ. By comparing (6.5) and (6.9), we can conclude that there
exists a precoding matrix Fq = £B* such that its minimum Euclidean distance is the

same with the one provided by F.

From the result in Lemma 1, it follows that the max-dpyi, precoder can be parameterized

as

F,=XB", (6.10)

where B* is a b x b unitary matrix, and ¥ = diag(\/01,...,./0p) is a b x b diagonal
matrix with nonnegative real numbers on the diagonal. The power constraint can be

then rewritten as

trace{FF} = trace{XX"} = E;. (6.11)
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6.2 Design of the precoding matrix

6.2.1 Principle of the approach

Design optimizing the minimum FEuclidean distance is difficult to deal with because of
two reasons. Firstly, the space of solution is large and exponentially proportional to the
number of datastreams b. Secondly, the exact expression of max-dy;, precoder depends
on many parameters such as the symbol alphabet or the characteristic of the virtual
channel. Here, we propose a design that can come close to the desired goal. Based on

(6.3), the formulation of the problem can be rewritten as

max min di = x*F;H H,F%. (6.12)

Fo xeX

Let us define a SNR-like matrix of Fy as SNR(F4) = F;H;H,F;. Instead of optimizing
(6.12), we can obtain a suboptimal but more general solution by realizing some properties
of SNR(F,;). The authors in [33] proposed a suboptimal precoder which is based on the
observation of the minimum eigenvalue of SNR(F ). We present, herein, another sub-
optimal solution that considers the minimum diagonal element of the SNR-like matrix.

Let us denote the diagonal elements of SNR(Fy) as 0, we have

b
di = X*SNR(Fa)% = Y. 6;27 + O(2i2) ) w2 » (6.13)
=1

with % = [z1,..,23]7. For a random difference vector X, we can assume that the function
O(wiz;) has little influence on the minimum distance in comparison with the sum of

(519512 The design problem can be, therefore, simplified by

b
max min 522 6.14
Fo xeX ; o ( )

The criterion on the right-hand side of (6.14) has a lower bound

b b
min > 6;a7 > Smin Min Y a7 = Smin min X, (6.15)
xeX =1 xeX 4=1 xeX

where 0p,in denotes the minimum diagonal element of SNR(Fy). It is observed that max-

imizing the minimum diagonal element 0,in (SNR(F4)) will possibly force the minimum
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distance to higher value. Therefore, we can solve the problem in (6.12) by first dealing
with dpmin (SNR(F4)) and then maximizing its value. By substituting (6.10) into the form
of SNR(F,), we obtain

SNR(F,) = BS*HH,SB* = BYB*, (6.16)

where Y = diag(pi01, ..., pp0p) = diag(Aq, ..., \p) is a diagonal matrix with non-negative
real numbers on the diagonal. For any given Y, an optimal choice for B is one that
maximizes the minimum diagonal element of SNR(F4). Such B is provided by the

following lemma.

Lemma 6.2. Given a bxb diagonal matriz X whose diagonal elements are non-negative

and a unitary matriz B of size b, then we have the following properties

_ trace(Y)

in [ BYB*];; 1
g, min (BB = = (o1
it) The optimized value in (6.17) is provided by a normalized DF T-matriz
1 1 1 1
1 w w? w1
. 1

1 b1 2(6-1) ... ,(b-1)(b-1)

o
bth —%‘ )

where w s a primitive root of unity, i.e. w=e

Proof: Firstly, we prove that the right-hand side of (6.17) is the upper-bound for the
left-hand side. Then, we show that the DFT-matrix Dy provides this upper bound.

i) Since B is a unitary matrix and Y is a diagonal matrix, we have

b
> 8; = trace(BYB”*) = trace(Y). (6.19)
i=1

Furthermore, since diagonal elements of Y are non-negative, the diagonal elements

of BYB* are non-negative, too. Given the set of b non-negative numbers {ai}i-’:l



Chapter 6. Generalized precoding designs using DFT matriz 149

that sum to M, the minimum number is obviously less than M/b. The left-hand

side of (6.17) is, therefore, upper-bounded by

PR _ trace(T)

min [BTB*]“ < = (6.20)
i ' b b
ii) Let us define f; ; is the (4,7) element of the matrix B*, we have
: 2
(BB )= 31601 (6.21)

If B* is chosen to be a DFT-matrix, i.e. the magnitude of each element of the
DFT-matrix Dy is equal to |3; j|* = 1/b, we obtain that
b1 trace(Y)

[BYB*];;=> \j—=———=, (6.22)

=1 b

forall 1<i<b.

Now, from the parameterized form of the precoder, we have to search the matrix X in
order to optimize the minimum distance. A numerical approach shows that the minimum
Euclidean distances on the received constellation are always provided by some difference

vectors.

Proposition 6.3. With the precoding matriz given by (6.10), two any Fuclidean dis-
tances can be kept equal by changing only the power allocation matrix 3 but retaining the

input-shaping matriz B*.

Proof: We assume that, for H, = diag(~/p1, ..., /) and 3 = diag(~/671, ..., /35, two

difference vectors X1, X9 have the same Euclidean distances

2 . = |H,ZBx|?
*alf, (6.23)
d? . =|H,XBxy|?

When the channel varies from H, to H, = diag(\/p1;---»+/Pb), let us define a diagonal

matrix ¥ with real nonnegative elements such that

aip; = K0P, (6.24)
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where k is a constant. By substituting &; into the power constraint in (6.11), we obtain

b b A
trace{ZX*} = Yo = KZ@(&) - E, (6.25)
i=1 i=1 Pi

or

E
P B (6.26)

S Gipilpi

The Euclidean distance provided by x; is then

2,1, = [HEBx |

X

= |VrRH, 2B |?

Similarly, we get
d§2|Hv = K’/d%

XQ‘I:I»U.

Since d? = d? we obtain d>2“c1\Hv = d2 Consequently, two any difference

il\I:IU )22|I:Iv7 x2|Hv.

distances can be kept equal by changing only the power allocation matrix 3.

6.2.2 Design model

Lemma 2 provides an interesting key to design a new linear precoder. The precoding
matrix Fy is then factorized as the product of the power allocation matrix X and the
scaling matrix B*. As its name implies, the matrix 3 determines how many virtual
channels are used to transmit signal and controls the power allocation on each beam. The
maximum number of activated virtual channels is upper-bounded by the rank of matrix
H. We assume that the signal is transmitted on k subchannels, with k& < b = rank(H).
The matrix B* is then chosen to be a normalized DFT-matrix of size k. According to
the proposition 1, the diagonal matrix 3 depends on the channel characteristics, and
has k positive real elements on the diagonal (1 < k < b). Therefore, we have b different
expressions of Fy corresponding to b precoders which pour powers on 1, 2,.., and b virtual

subchannels, respectively.
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The precoding system structure, which contains an input-shaping matrix and a power
allocation matrix, is shown in the Fig. 6.1. Due to different forms of CSIT, the precoder
first decides the number of virtual subchannels used for transmission, and then maps the
data-bits into k symbols. The method used for selecting the modulation will be discussed
in section 6.3.2. After that these symbols are pre-processed by a DFT block of size k. At
the end of the precoder, the transmit signal is directly operated by a power distribution

block, i.e. multiplied to a diagonal matrix X.

Precoder H Mo
v

_________________________________

: 1! 11 1
! | : 1 : :
: s1 I § ¥ § ¥ % :
1 | | [
' > ! N :. ,
i Decide LV = VR Ty
S I number | 2 ! I ¥ : é
| | ofvirtual > —.—)(%)—L,_)(, gé)_,_)é_,.l >
e ' Dk | | E o i : i det'\éltls_ion >
1 & . : | ! | ! :
| e | CVae b Ve T
i | modulation| g , ! | ! | |
| —> ' : !
| I I 11! 1
T ——————— e
CSIT VE = ... = oy =0

FIGURE 6.1: Design model of the precoding matrix

The determination of the power allocation matrix 3 depends on the symbol alphabet
or the modulation used at the transmitter. Our objective is to determine the matrix 3
that maximizes the minimum distance for all possible transmit vectors. In next section,
we propose the optimized solution for one of the most common schemes: rectangular

Quadrature Amplitude Modulation (QAM).

6.3 Optimized precoder for rectangular QAM modulations

For a rectangular 4™-QAM modulation, the transmit symbols belong to the set

1
S = a+bi;a-bi;-a+bi;-a-bi}, 6.27
A ) (0:27

where M = 2(4™-1) and a,be {1,3,...,2™ - 1}.
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Our main purpose is to derive a matrix ¥ subject to the power constraint (6.11) in order
to optimize the minimum distance. The number of non-null diagonal elements in (6.11)
presents the number of virtual-subchannels used for transmission. Let us denote the
precoder which enables powers on k subchannels as Fy with k =1,---,b. These precoders

are presented as follows.

6.3.1 Expressions of the precoder

According to (6.24) and (6.26), the diagonal entries of the optimization matrix 3 are
given by

FE
———dip; (6.28)
Z§:1 ¢jp;t

;=

where ¢; denotes the power coefficient of the 4% virtual subchannel. It is obvious that
the diagonal elements of ¥ are linearly proportional with ¢;. A numerical approach is
implemented in order to find which difference vectors provide the minimum distance. By
equalizing the difference distances obtained by these vectors, we can derive the power
coefficient ¢; of the optimization problem. The normalized coefficients ¢; are described

in Tab. 6.1.

Expression 01 o2 ¢3 | P4 | Pk
)7 1
>, 3 1
P 6+2V3 | 2+V3 | 1
DIV 9 5 1 1

TABLE 6.1: Optimized coefficients of the power allocation matrix 3.

Precoder F;

This precoder is actually the max-SNR design which pours power on only the strongest
virtual subchannel, i.e. ¥ = diag{\/Es,0,-+,0}. In order to retain the data-rate, the
precoder F can use a higher-order QAM modulation. In other words, it can transforms
4™m-QAM signals on b virtual subchannels into a rectangular 4°™-QAM signal on the
first subchannel (detailed in section 6.3.2). The minimum distance provided by F; is
defined by

4
dy, = T 1 (6.29)
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Precoder F,

This precoder is the second expression of the N-d,;, precoder which is presented in our

previous work [70]. A numerical search shows that the optimized solution is obtained by
: < 1 T Y 1 T . .

two difference vectors X = \/_M[O 21", and xg = \/_M[Q -2]". By equalizing two normalized

distances J% = d2_, we obtain
1 €2

cos 0 11
O RS R , (6.30)
2\ 0 sing/\-11

where 1 = atan(y/p1/3p2). The distance dyi, provided by Fs is

4 2p1p2
d3 = —p,2rrz 6.31
F2 " M7 01+ 3ps (6.31)

The received constellation provided by the precoder Fg is shown in Fig. 6.2. One should
note that whenever two received vectors are close on one virtual subchannel, they are
distant on the other (e.g. points A and B). Furthermore, it is observed that the average
number of neighbors providing dpin of Fa is less than that of the max-dpi, precoder
presented in [37]. The property confirms an improvement of BER performance for our

proposed precoder.

Subchannel 1 Subchannel 2
1 T T T T
0.5F 1
osl * * * * * * % * * * * * * *
0.4}
06F o % % % % % %] 03l ¥ * x x x x x|
047 1 0al ]
© * * * * * * * = * * * * * * *
0.2 B ] L
g 0. g 0.1
=) A >
8 0 * * * g ¥ * * 8 0 * * * * * * *
5 5
£ -0.2 g-01r g
= * * * * * * * = * * * * * * *
—0.4} | -0.2¢
ol * * * * * * * 031 % * * * * * *
08 -0.4r A
- ook kXX kX * * * * * * *
-0.5r 1
1 . . . . . .
-1 -0.5 0 0.5 1 -0.5 0 0.5
real part real part

FIGURE 6.2: Received constellation for the precoder Fs.
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Precoder F;

This precoder pours power on three virtual subchannels, and has the input-shaping

matrix B* which is defined by
1 1 1

B =—|1 1\2/31 —1+5/§i ] (6.32)
1 -14v/34 -1-V34
2 2

A numerical approach shows that the optimized solution is obtained by three difference

vectors
%1 = =[0,0,2]"
X2 = 7=[0,2,-2]"
;mi%pﬁmmﬁ

By equalizing three difference distances provided by these vectors, we obtain

_2+V/3
02/03 - P2/P3 (633)
_ 6+2\/§
o1foy = 5
The distance dp,;, obtained by F3 is then
4 (3+V/3)p1paps

dg, = —E

. (6.34)
M7 pipa+(2+/3)pips + (6 +2v/3) paps

Fig. 6.3 plots the received constellation provided by the precoder F3 in the case of 4-
QAM. Like the case of the precoder Fo, two received vectors processed by F3 are close

on one virtual subchannel but can be distant on the others (for example points B and

Q).
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FIGURE 6.3: Received constellations provided by precoder Fj.
Precoder Fy
The input-shaping matrix B* of the precoder Fy is defined by
1111
L, 1|1-i-14
B =- (6.35)
21111 -1
14-1-

A numerical search shows that

vectors
= ﬁ[o 0,0,2]7
Xg = ﬁ[o 0,2,-2]"
X3 = ﬁ[o 2,-2-2i, 2|7
Xy = \/LM[Q -2,2,-2]7

the minimum distance is provided by four difference
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By equalizing their difference distances, we obtain

03/0q = 93}94
0’2/0'4 = PQ?M (636)
o1/04 = p1?p4
The distance dpi, obtained by Fy is given by
4 4
dy, = —FE (6.37)

M 9/p1+5/pa+1/p3+1/ps”

The general case F

Let us denote X1, Xo, -+, X as k difference vectors providing the minimum distance. The

distance dg, is given by

dy, =% BYB*x;

k
= 2 )\j|ui(j)|2 (6.38)
j=1
where Y = ¥*H;H, X = diag(Ay, ..., A\x ), and vector u; is given by

w; = B*%; = [ui1), i), wigry ] - (6.39)
By equalizing k difference distances, we have (k — 1) equations below

k k
Aj (lur PP = lwsh?) = 20 Ajvi =0, (6.40)
j=1 j=1

where v; ; = |u1(j)|2 - |ui(j)|2 with i = 2,---, k. For a 4™-QAM modulation, it is noted
that the difference vector % is often defined by %1 = [0,-,0,2]", i.e. |uy;)[* = 4 with

j=1--k. The power constrain in (6.11) can be now rewritten as

k
2. Ailpi =05 = Es. (6.41)
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Let us define A = [Ay,-+, \]7, and vy ; = 1/p; with j = 1,--- k, we have

V1,1 V12 ULk | [ A E;
Vg1 V99 U A 0
2,1 U2,2 = U 2| _ (6.42)
Vi1 Vk,2 Uik ) \ Mk 0
or
Vi=e (6.43)

In conclusion, the power coefficients ¢; are proportional to the entries of the vector A
which can be defined by A = V~'e. The condition of the existence of the vector X is
that the matrix V is invertible. When %; = [0,---,0,2]% is one of the difference vectors

providing the minimum distance, the distance dp, is then defined by

k
dp, =4\ (6.44)

6.3.2 Range of definition

To improve the BER performance of a MIMO system, we choose from these precoding
matrices above the precoder that provides the highest minimum Fuclidean distance. One
should note that the data-rate of a precoder F; is different to each other’s. For example,
if we both use 4-QAM modulation for the precoders F; and Fs9, the bit-rate of Fy is
twice as that of F1. Therefore, we have to consider the data-rate of the b precoders when

comparing their distances dpin. The error probability in (6.2) can be re-expressed as

Jmin B 1
P.~Nyg  Q|—— x1/SNR— ) (6.45)
min 2 fs 10g2 M

where M is the number of alternative modulation symbols, B is the bandwidth, and

fs is the symbol rate. For a given modulation order, by comparing the right-hand side
of (6.45) corresponding to b precoders, we can obtain the range of definition for each

precoding scheme.

Another simple method to retain the data-rate is using different modulation for each
precoder. Lets us come back to the example of the precoders F; and Fs. If the 4-

QAM modulation is used for the precoder Fs, it means that two 2-bits symbols are
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transferred on two subchannels. Instead of transmitting like this, we can transfer one
4-bits symbols (16-QAM) on the first virtual subchannels. Then, two minimum distances
that correspond to F; using 16-QAM and Fy using 4-QAM are compared in order to

determine the range of definition for two precoders F; and Fs.

d%l - %Espl

2 _ 2p1p2
sz =2F, P

(6.46)

In other words, if d%l > d%Q or p1/p2 > 7: the precoder Fy is chosen, and for p1/ps < T:

the precoder Fj is selected. Other precoders can be implemented in a similar way.

6.4 Simulation results

6.4.1 Comparison of minimum Euclidean distance

In this section, we indicate the improvement of the proposed precoder in terms of the
minimum Euclidean distance compared to diagonal precoders. Indeed, the minimum

Euclidean distance provided by a diagonal precoder is

d? min |H, Fq(s-1)|?

min
s,reS s#r

b
min Y p; f{]si — il (6.47)

s,reS s#r 3

where s = [s1,59,..,5,]7, r = [r1,79,..,75]7, and Fq = diag(f1,.., f»). One should note
that the minimum FEuclidean distance is obtained when the two vectors s and r are

different from only a symbol. The minimum Euclidean distance of F; is then given by

2 _ : : 2 2
dipin = _min min p; fi’|s; - 7
s,reS,s#ri=1..b

: 2 : 2
=min p; f7 min |s; -1
izl..bplfl s,reS,s¢r| ! l|

4
=7 min p; [} (6.48)
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It is noted that the diagonal entries of H, = diag(\/p1, ..., /pp) are sorted in decreasing
order, i.e. p1 > pa > -+ > pp. By comparing the right-hand side of (6.48), the mini-
mum distances corresponding to some traditional precoders, for example: beamforming,
max-Amin [33], WaterFiling [12], and MMSE [32], are determined. Tab. 6.2 illutrates
the distance d,i, obtained by these diagonal precoders in comparison with our proposed

precoder, where (z)* €' max(z,0).

The normalized minimum distances for b = 2 virtual subchannels and 4-QAM modulation
are illustrated in Fig. 6.4. It is observed that our precoder provides a large improvement
in terms of dpyin compared to the diagonal precoders. In comparison with the max-dpin
precoder presented in 37|, the proposed precoder has a small difference in the minimum
distance. However, its average number of neighbors providing dy,i, is less than that of
the max-dpyi, precoder [70]. According to the improvement of the minimum distance and
the number of neighbors Ng_. , an improvement of BER performance is expected for the

new precoder.

Precoder Minimum Euclidean distance dfnin
4
Beamforming MESpl
+
4 ( E+Xb 1/p;
Water-filli — — ==
ater-filling 7 (pb b
Es+3% 1/p; "
MMSE 4 ( pbsbLfl/’oj _ 1)
M\
\ 4 B,
max- min I
A M 22:1 1/p;
@ESPI for F
Our proposed 9
scheme —FE PP for Fy

M p1+3p2

TABLE 6.2: Comparison of the minimum Euclidean distances.

6.4.2 Bit-Error-Rate performance

In this section, the BER performance of the proposed precoder is illustrated in com-
parison with other traditional precoding strategies. The proposed precoder obtains a
significant improvement of BER performance in comparison with the diagonal precoders:
WaterFiling, MMSE, and max-Apin. A gain about 6 dB can be observed at high SNR.

Furthermore, as discussed above, our precoder has the number of neighbors providing
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FIGURE 6.4: Normalized minimum Euclidean distance for two datastreams and 4-QAM
modulation, with the channel angle v = atan+/p2/p1.
dmin less than that of the optimal solution max-dp;, in [37], although it has a small
difference in terms of dpyiy. Therefore, the new precoder provides a slight BER improve-
ment compared to the max-dpy, solution. The BER performance with respect to SNR

for two transmit datastreams and 4-QAM modulation is plotted in Fig. 6.5.
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FIGURE 6.5: Uncoded BER performance for b = 2 datastreams.

The optimal solution for max-dy,, precoder is presented in [37, 69], but it is only available
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for two transmit datastreams with 4-QAM and 16-QAM modulations. By decomposing
the channel into 2 x 2 eigen-channel matrices and optimize the distance dp;, for each pair
of datastreams, the authors in [59] proposed a sub-optimal precoder for large MIMO
channels. This extension is split into four steps: virtual diagonalization of the channel,
combination in pairs of sub-channels, application of the optimal 2D max-dyin solution,
and power allocation on each sub-system. However, this solution is also suitable for low-
order QAM modulations. A main advantage of our new precoder is that the solution is

available for all rectangular QAM-modulations and for any number of datastreams.

For large MIMO simulations, we consider a system with np = 5 transmit and ng = 4
receive antennas. The bit-streams are separated into b = 4 independent virtual subchan-
nels, and the channel matrix H is i.i.d zero-mean complex Gaussian. For each SNR, the
precoders are optimized for about 30,000 random matrices H. It is observed in Fig. 6.6
that the BER performance of the max-An,;, solution is better than those of MMSE and
WaterFiling. Therefore, the max-Anin precoder is chosen to compare with our proposed
precoder. Beside that some sophisticated transceivers such as: the Schur-convex ARITH-
BER design [71], the linear precoder using Decision Feedback Equalization (DFE) [50],
and the linear transceiver with bit allocation |72] are also mentioned in the comparison
with our precoder. The comparison of the proposed precoder and other schemes for b = 4
transmit datastreams shows that the performance is significantly enhanced in terms of
BER. We observe that the new precoder also presents a significant improvement of BER
compared to the DFE, the Schur-convex ARITH-BER, and the maximum bit-rate solu-
tions, especially when the SNR is high. The new precoder was found to be better than
E-dyin schemes and this is due to the fact that not only the minimum distance but also

the number of neighbors providing dni, is taken into consideration.

We also consider, in this section, the impact of imperfect CSI estimation on the BER
performance of the proposed precoder. Fig. 6.7 illustrates the BER performance with
respect to SNR in the case of perfect CSI and imperfect CSI estimation. The estimated
channel matrix of imperfect CSI system can be modeled as Hest = H + Heyy, where Hey,
represents the channel estimation error. The optimal training signals for the MIMO-
OFDM channel estimation can be found in [64]. In this simulation, we assume that
the entries of Hg. are complex Gaussian i.i.d random with mean zero and variance
Oerr = 0.3 0, where o is the variance of the complex Gaussian entries of H. It is observed

that the BER performance of our precoder decreases at high SNR, but it still remains
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Uncoded BER

FIGURE 6.6: Comparison of BER performance for large MIMO(5,4) systems.
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better than the other precoding strategies. Furthermore, the BER reduction obtained

by the proposed precoder is much better than for the case of full CSI in comparison with

the E-dpyi, solution: a gain of 2 dB can be observed at SNR = 107°.
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6.5 Conclusion

The optimized design of this new linear precoder was obtained by observing the SNR-like
matrix of the precoding matrix. An approximation of the minimum distance was derived,
and its maximum value was obtained by maximizing the minimum diagonal element of
the SNR-like matrix. We then showed that the maximum value of minimum diagonal
elements can be attained by a specific set of precoders. The precoding matrix is then
parameterized as the product of a diagonal power allocation matrix and an input-shaping
matrix. The input-shaping matrix concerns with the rotation and scaling of the input
symbols on each virtual subchannel. One should note that it is a unitary matrix, and
the minimum diagonal entry of the SNR-like matrix is obtained from a special choice
of this unitary matrix. The input-shaping matrix is chosen to be a DFT-matrix, and
the optimization becomes determining the power allocation matrix . As its name
implies, the matrix 3 decides how many subchannels are used by the precoder for data
transmission. For each number of available datastreams, we propose a general expression

of the precoder.

We have also provided performance comparisons to demonstrate that the proposed pre-
coder obtains a significant improvement in terms of BER compared to other designs.
The improvement may be more than several dB at reasonable BER levels. In compar-
ison with the optimal max-d,;, solution, our proposed precoder also provides a slight
improvement in BER performance. Another advantage of our design is that the solution
can be available for all rectangular QAM-modulations and for any number of datas-
treams. It is because the precoder has a simpler analytic form, and the space of the

solutions is smaller than the full design of minimum distance based precoders.



Conclusion and perspectives

The use of multiple transmit and receive antennas, popularly known as multiple-input
multiple-output (MIMO) system, is an emerging cost-effective technique that offers
higher data rate, increases the robustness and user capacity for wireless communications.
Through a feedback link, the channel state information is available at the transmitter,
and a linear precoding technique can be used to improve the performance of MIMO
systems. In this thesis the precoder which maximizes the minimum Euclidean distance
(dmin) between two received symbols is derived. We have studied the performance in
terms of dyin and bit-error-rate for different channel configurations and proposed some

non-optimal extensions for the max-dy,;n based precoder.

After a brief introduction about MIMO systems, the principles and different techniques
which permit to exploit the spatial diversity at the transmitter and the receiver are pre-
sented. These techniques can be divided into two categories depending on the possibility
for the transmitter to know the propagation channel. Diversity Coding technique is used
when there is no channel state information (CSI) at the transmitter. In this method, the
signal is emitted from each of the transmit antennas using techniques called space-time
coding. The inconvenient of space time codes is the appearance of the transmission rate

1/2<R <1 (only the Alamouti code for two transmit antennas provides R = 1).

On the other hand, precoding is a processing technique that exploits CSI at transmitter
by operating on the signal before transmission. This design depends not only on the type
of CSIT but also on the optimization criteria. By using a singular value decomposition
to decouple a MIMO channel into independent and parallel data-streams, an important
family of precoding, denoted as diagonal precoders, performs a power allocation strategy
on these MIMO eigen-subchannels. There exist lots of diagonal precoding structures

such as Beamforming, Water-Filling, Minimum Mean Square Error , Quality of Service,
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and Equal Error. The alternative set of linear precoders is obviously the non-diagonal
schemes. It is shown that the precoder which maximizes the minimum FEuclidean distance
provides a significant BER reduction in comparison with diagonal precoders. Unfortu-
nately, this solution is only available for two independent data-streams with a low-order
QAM modulation. That is due to the expression of the minimum distance that depends
on the number of data-streams, the channel characteristics, and the modulation used at

the transmitter.

We firstly presented an extension of the max-dp,;, precoder for high order QAM modula-
tions. The optimal solution for 16-QAM modulation has five different expressions, which
vary depending on the channel angle . In order to reduce the complexity of this pre-
coder, we proposed a general expression of minimum Euclidean distance based precoders
for all rectangular QAM modulations. For a two independent data-streams transmission,
the precoding matrix is obtained by optimizing the minimum distance on both virtual
subchannels. Hence, the optimized expressions can be simplified by two forms: the pre-
coder F1 pours power only on the first virtual subchannel, and the precoder F5 uses both
virtual subchannels to transmit data symbols. These precoding matrices are designed
to optimize the distance d,;, whatever the dispersive characteristics of the channels are.
The expression of F'; depends on the order of the rectangular QAM modulation, while
that of Fo does not change for all of the modulations. The two general forms obtain the

optimized minimum distance for small and large dispersive channels.

By decomposing the propagation channel into 2 x 2 eigen-channel matrices, and applying
the new max-dnin precoder for independent pairs of data-streams, a suboptimal solution,
denoted as Equal-dyyi, (E-dmin ), was proposed for large MIMO systems. This sub-optimal
solution can only achieve an even number of data-streams. Therefore, we extended a new
design of max-dni, precoders for a three parallel data-stream scheme. Thanks to this
3-D max-dpin precoder, an extension for an odd number of data-streams is obtained
by decomposing the virtual channel into (2 x 2) and (3 x 3) eigen-channel matrices.
For a given number of data-streams, this extension exhibits a higher diversity order in
comparison with diagonal precoder. In addition, the robustness of the proposed precoder

is also better when an imperfect CSI estimation is considered at the transmitter.

One should note that not only the minimum FEuclidean distance but also the number

of neighbors providing it has an important role in reducing the error probability when
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a ML detection is used at the receiver. In order to reduce the number of neighbors,
a new precoder in which the rotation parameter has no influence was proposed. The
expression of the new precoding strategy is, therefore, less complex and the space of
solution is smaller. The simulation results for two and three independent data-streams
confirm a slight bit-error-rate improvement of the new precoder in comparison with the
optimal max-dpyi, solution. Furthermore, an extension for large MIMO systems can also
be obtained by decomposing the virtual channel into (2 x 2) or (3 x 3) eigen-channel

matrices.

Still observing the SNR-like precoding matrix, an approximation of the minimum dis-
tance was derived by maximizing the minimum diagonal element of the SNR-like matrix.
The precoding matrix is then parameterized as the product of a power allocation matrix
and an input-shaping matrix acting on rotation and scaling of the input symbols. It was
demonstrated that the minimum diagonal entry of the SNR-like matrix is obtained when
the input-shaping matrix is a Discrete Fourier Transform matrix. The power allocation
matrix is diagonal and depends on the channel characteristics. In comparison with the
traditional max-dpi, solution, the new precoder provides a slight improvement in BER
performance. But the major advantage of this design is that the solution can be available

for all rectangular QAM-modulations and for any number of datastreams.

Several future works can be considered to enhance our proposed precoders. They can be

divided into three parts.

We proposed a precoding strategy for the MIMO transmission that increases the mini-
mum Euclidean distance between the received signals, and compared the uncoded BER
performances of proposed precoder with several solutions. We can expect that the pro-
posed precoding will outperform other solutions in terms of capacity (due to larger dpin)
but it is depends also on the mapping. Such an observation is presented in [73], and called
as symbol mapping diversity. The mapping design depends on the targeted spectral ef-
ficiency, and the de-mapping can be used to improve our coded modulations capacities
[74]. Therefore, we can think on the association of the minimum distance based precoder
and the mapping diversity design. Some simulation results confirm that this idea is really

promising.

Although the performance in terms of BER of our proposed precoder is better than other

sophisticated transceivers, its ML complexity is really outperformed by the diagonal
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precoders. In order to reduce the complexity of the ML detection, we can use a sphere
decoder (SD) at the receiver. For the sphere-decoding algorithm, the authors in [25, 75|
presented a closed form expression for the expected complexity. They demonstrated that,
for a wide range of SNRs, this expected complexity is polynomial, and often roughly
cubic. One of the most promising approaches of SD algorithm is the fixed-complexity
sphere-decoding scheme (FSD). The new scheme of FSD can be found in the paper
[27]. It is shown that the new scheme, named as real-valued fixed-complexity sphere
decoder (RFSD), not only maintains quasi-ML decoding accuracy but also is less complex
than FSD. We can also consider another algorithm, which excludes unreliable candidate
symbols in data streams and is based on the MMSE criterion to reduce significantly the

ML complexity [21].

The third part deals with the channel state information at the transmitter, in particular
with the feedback of the knowledge of the channel. It would be interesting to combine
our proposed precoder with several methods of estimation. One should note that we can
not obtain the perfect CSI at the transmitter due to the estimation error of the channel.
In addition, the data rate of feedback link to the transmitter is limited, and, therefore,
it is difficult to recreate the form of CSI. Our objective becomes to take the rotation
and permutation invariance properties into the definition of distortion function, quantify
the information returned, and design a new codebook associated with the minimum
Euclidean distance criterion. Several designs of limited feedback communication can be
found in |76, 77]. Our proposed solutions can work properly with the precoding codebook,

and can obtain excellent performance under spatial multiplexing environments.
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