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Abstract

As transistors size and power limitations stroke computer industry, hardware
parallelism arose as the solution, bringing old “forgotten” problems back into
equation to solve the existing limitations of current parallel technologies. Com-
pilers regain focus by being the most relevant “puzzle piece” in the quest for
the expected computer performance improvements predicted by Moore’s law —
no longer possible without parallelism. Parallel research is mainly focused in ei-
ther the language or architectural aspects, not really giving the needed attention
to compiler problems, being the reason for the weak compiler support by many
parallel languages or architectures, not allowing to exploit performance to the
best.

This thesis addresses these problems by presenting: Erbium, a low level streaming
data-flow language supporting multiple producer and consumer task communica-
tion; a very efficient runtime implementation for x86 architectures also addressing
other types of architectures; a compiler integration of the language as an inter-
mediate representation in GCC; a study of the language primitives dependencies,
allowing compilers to further optimise the Erbium code not only through specific
parallel optimisations but also through traditional compiler optimisations, such
as partial redundancy elimination and dead code elimination.



Résumé

Frappée par les rendements décroissants de la performance séquentielle et les limi-
tations thermiques, l’industrie des microprocesseurs s’est tournée résolument vers
les multiprocesseurs sur puce. Ce mouvement a ramené des problèmes anciens et
difficiles sous les feu de l’actualité du développement logiciel. Les compilateurs
sont l’une des pièces maitresses du puzzle permettant de poursuivre la traduc-
tion de la loi de Moore en gains de performances effectifs, gains inaccessibles
sans exploiter le parallélisme de threads. Pourtant, la recherche sur les systèmes
parallèles s’est concentrée sur les aspects langage et architecture, et le potentiel
reste énorme en termes de compilation de programmes parallèles, d’optimisation
et d’adaptation de programmes parallèles pour exploiter efficacement le matériel.

Cette thèse relève ces défis en présentant Erbium, un langage de bas niveau
fondé sur le traitement de flots de données, et mettant en œuvre des communi-
cations multi-producteur multi-consommateur; un exécutif parallèle très efficace
pour les architectures x86 et des variantes pour d’autres types d’architectures;
un schéma d’intégration du langage dans un compilateur illustré en tant que
représentation intermédiaire dans GCC; une étude des primitives du langage et
de leurs dépendances permettant aux compilateurs d’optimiser des programmes
Erbium à l’aide de transformations spécifiques aux programmes parallèles, et
également à travers des formes généralisées d’optimisations classiques, telles que
l’élimination de redondances partielles et l’élimination de code mort.
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Chapter 1

Introduction - Problem Statement

During many years, the semi-conductor industry took advantage of the exponential increase
in transistor density and of the decrease of their cost, latency and power consumption, to
add functionalities and performance-enhancing features to the newer generation of processors.
These advances, together with further increases in clock speeds, provided the industry with
enough technological innovation to justify consumers recycling old machine and buy faster
new ones.

Soon enough technological progress started to reach physical limitations, where feature
improvements and size reduction no longer translated into higher clock-speeds and where
power consumption hits thermal dissipation and battery life limits. As a reaction, the indus-
try focused its attention on parallel chip-multiprocessor architectures, also known as multicore
processors, in an attempt to take advantage of Moore’s law and get performance at lower
clock speeds and in a more power efficient manner. Moreover, in order to package the mul-
tiple processors in single chip, it was necessary to simplify the individual core complexity,
allowing the full processors to maintain its price and total number of transistors. This new
design decision puts an end to the legacy application yearly free performance improvements,
forcing application engineers to redesign (parallelization, locality optimization) older codes,
exploiting the computational power of the new generation of parallel processor architectures.

1.1 Computer system abstractions

Computer systems can be understood as a combination of abstraction layers composing what
we know as a computer system. Each abstraction lowers the complexity involved in the
system programmability, being also responsible for the differentiation of what is known as
software and hardware.

Computer architectures, often seen as the most fundamental computer component, is also
an abstraction, hiding its logic circuitry through its instruction set architecture. The assembly
language is its immediate connecting abstraction, mapping the sequence of operations into
sequences of bits representing the executing instructions.

Throughout the years, computers were further abstracted with the introduction of oper-
ating systems and higher level programming languages.

1



1. INTRODUCTION - PROBLEM STATEMENT

1.1.1 Architectures

Long before plain consumers first heard of parallelism they were already executing there
own sequential applications in parallel. Processors circuitry by design parallelizes operations
at its operands bit-level. Bit-level parallelism is the effect of such low-level circuit design
parallelization.

Apart from the bit-level parallelism, sequential processors also implement instruction level
parallelism (ILP). ILP comes from the partitioning of an instruction execution into several
independent pipeline stages. Examples of such processors are the IBM 7094 with only 2
stages and the more recent and complex Pentium 4 with 32 stages, yet still both executing a
single thread at a time.

Other type of sequential executing architectures, also with parallelism, are the superscalar
processors, having both a long instruction pipeline and multiple functional units. Multiple
instructions are decoded simultaneously and depending on availability of functional units,
the instructions are executed simultaneously. One of the main difficulties with superscalar
machines is within the design of the instruction dispatcher, which must validate for instruction
dependencies and resources availability.

The limitations on superscalar architectures gave birth to Very Long Instruction Word
(VLIW) architectures. VLIW enforces static computed ILP during compilation, simplifying
the architecture and its penalty for hardware instruction scheduling.

The more recent generation of architectures, such as latest Intel architectures are com-
posed of multiple similar cores sharing memory through its cache hierarchy of memories.
IBM’s Cell Broadband Engine [42] has a more heterogeneous approach being composed of a
PowerPC microarchitecture connected with 8 simplified accelerator processors, each with its
independent memory space.

Memory

One of the key components of any architecture is its memory model and its implemen-
tation. Depending on the envisioned architecture properties, either or both of the memory
models are used:

• Shared memory model refers to the connection of independent processors to the same
memory space, sharing data. This memory model typically involves higher latency and
bandwidth between the processors and memory. The processors implement caches to
hide its latency and bandwidth limitations.

• Distributed memory refers to the systems with more then one memory space. A
single memory space can be associated with one or more processors or cores and only
these can access it. In a distributed memory system, the application should explicitly
perform any needed memory transfer.

Later generation of architectures, more precisely heterogeneous architectures, have a
mixed implementation of both models and are typically composed of one or more general
purposes Core CPUs, using traditional shared memory and several accelerators each contain-
ing an independent and private memory space (distributed memories). An example of such
an architecture is the previously mentioned IBM Cell BE processor.

2



1.1 Computer system abstractions
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Figure 1.1: Memory model abstract diagrams: Shared memory (left) vs. Distributed memory
(right).
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Figure 1.2: Examples of memory to CPU connectivities.

Memory connectivity

General purpose computers have more then one controller chip integrating and connecting
facilities both for CPUs and memory, namely NorthBridge and SouthBridge, controlling
other external protocols, as Figure 1.2 (left) exemplifies. In this most simple example, CPUs
connect via a bus to NorthBridge chip. The NorthBridge contains a memory controller,
logically connecting with the available RAM modules. Different types of RAM need different
type of memory controllers. Memory controllers have a great impact in memory latency times
and bandwidth.

Apart from communicating with RAM, North-Bridge also connects to a South-Bridge
chip, which provides connectivity to other types of buses and eventually other devices. All
the data communicating between CPUs as well as any RAM access from South-Bridge devices
must travel through North-Bridge.

In Figure 1.2 (middle) design, the NorthBridge no longer contains integrated memory
controllers, but instead connects to independent parallel memory controllers with independent
memory buses and therefore greater communication bandwidth.

The design in Figure 1.2 (right) also increases bandwidth, but this time NorthBridge
was removed from the system and each CPU includes its own memory controller connecting
directly their own respective module. With this technology, memory accesses avoid the cost of
communicating through NorthBridge and execute much faster. Although, as memory in this
systems is not uniform (at the CPU context), whenever a CPU needs some memory region
controlled by other CPU, performance is degraded by each of the memory controllers the
data has to travel through. CPU performance is not impacted by memory accesses between
CPUs as it is asynchronous from the code execution.

3
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Figure 1.4: Cache diagram in a multiprocessor shared memory
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Caches, Coherency

No matter how close memory modules or controllers are from the actual CPU, load
and store instructions (memory accesses) take many more clock cycles than simple register
operating instructions. Moreover, there are a broad variety of memory types, ranging from
very cheap and slow (typical PC memory RAM modules), to expensive but fast internal
to CPU circuitry, representing the processor registers. Therefore most traditional general
purpose architectures contain several layers of memories, which minimize access times for
most recent accessed memory addresses, namely caches. Caches are smaller, faster and closer
to CPU memories used to hide the latency and bandwidth memory accesses overheads, by
replicating latest used memory addresses data. Caches are organized into hierarchies of
memories, each having different sizes and speeds. The closer those memories are from the
CPU, the faster and smaller they get. Figure 1.3 presents an overview of the cache hierarchy
of a most common single core general purpose processor. Figure 1.4 is a similar overview of
the cache hierarchy however in a shared memory multi-core and multi-processor system.

When a CPU decodes an instruction that needs to perform a memory load, it checks
the content of the cache for a possible availability (cache-hit) within its closer memory (L1
cache). If the needed memory region is not available (cache-miss) it verifies in the higher
level cache memories and eventually copy the address from main memory into cache.

The caches are partitioned in blocks of memory (cache-lines) where a specific memory
region is always associated to the same cache-line. The selection of cache-line is computed
based on a subset of the memory address. When a used cache-line requires to store a different
memory-region, the current content of the cache-line is copied (evicted) to an higher-level
cache memory, which eventually, when cache storage capacity per cache-line is fully taken, is
copied back to memory. To reduce the number of evictions by conflicting cache-line memory
addresses, caches are defined as set-associative. This allows the same cache-line address to
store more then one simultaneous cache-line and still hide memory latency when accessing
disjoint memory regions that would compete for the same cache-line. When the CPU needs
to write some memory region, by default it will only change the content of the respective
cache-line as well as mark the content of this cache-line as dirty. Marking a cache-line as
dirty allows to reduce the number of copies back to memory by identifying which cache-lines
were ever modified.

4



1.1 Computer system abstractions

Single processor architectures clearly benefit with caches, considering that both latency
and bandwidth are improved significantly by moving data closer to the CPU, reducing the
expensive RAM communications. On the other hand, in multi-core architectures it is not as
easy to understand how caches can be managed coherently and with minimal overhead. As it
is too expensive to share a cache between independent cores (at least at its lowest level), every
CPU core has a private L1 cache. Such cache privatization introduces coherency problems.
MESI (Modified, Exclusive, Shared, Invalid) coherency protocol approaches this problem by
marking each cache-line with one of the 4 MESI states. Depending on the actual cache-line
and on pending operations for the cache-line, the MESI protocol enforces an action on the
actual cache-line data and eventual state change to all of the core private caches. Although
the coherency algorithms execute asynchronously to the processor execution, through its
independent hardware logic, multiple concurrent accesses to same memory addresses result
in significant processor slowdowns resulting from the data unavailability.

Consistency

As architectures were accelerated through the increasing clock speeds and memory were
still bounded to same access times, caches improved performance through parallelization, par-
titioning its memory into independent and simultaneously accessible banks. The partitioning
improves cache access times, but unfortunately also produces unpredictability in memory
operation ordering in the parallelized cache banks. This unpredictability contributes to defi-
nition of the architecture consistency model.

Sequential consistency is the most restrictive form of memory consistency enforcing that
all memory operations are visible by all the CPU’s in a single global ordering. Unfortunately
sequential consistency is not very effective due to its global order enforcement, limiting the
system ability to exploit parallel memory operations. Instead, architectures have evolved into
more flexible memory consistency models. Such models are considered weak since sequential
operation ordering is not guaranteed in at least one of the consistency rules. Table 1.1
lists these rules and provides an overview of the consistency rules for several well known
architectures.

Weakly consistent architectures enforce sequential consistency through the usage of mem-
ory barriers primitive instructions. Memory barriers wait for the completion of a specific type
of memory operation before further thread execution.

As visible through Table 1.1, there are many distinct memory consistency models. How-
ever, as mentioned by McKenney [53], there are ground rules that all the weak consistent
architectures respect:

• Each CPU always perceives its own memory operations as occurring as in the program
code ordering.

• Store operations are only reordered with load operations if those only access a different
location than the stored one.

• Simple aligned loads and stores are atomic. Small size loads or stores are not interrupt-
ible and always execute completelly. As an example, 64 bit aligned loads or stores are
atomic in 64 bit architectures but not in 32 bit ones.

Memory consistency is a very important property of the architecture, considering processor
concurrency and synchronization algorithms. Depending on the architecture consistency
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Loads reordered after Loads X X X X X X X
Loads reordered after Stores X X X X X X X
Stores reordered after Stores X X X X X X X X
Stores reordered after Loads X X X X X X X X X X X X
Atomic reordered with Loads X X X X X
Atomic reordered with Stores X X X X X X
Dependent Loads reordered X
Incoherent Instruction cache pipeline X X X X X X X X X X

Table 1.1: Memory consistency weaknesses of several widely known computer architectures.
Architectures marked with Xare weaken in the respective row property. Inspired by [53].

model, synchronization algorithms can be tuned to reduce overheads and achieve better
performance.

Direct Memory Access (DMA)

Distributed memory architectures might not rely on caches but rather on very fast and
small local to processor memories, as is the case of IBM’s Cell Processor [42] SPU elements.
Its cores have no abstraction to a global memory. Instead, data transfers are explicitly
requested by the running application which is responsible to guarantee data availability in
all of the executing processors local memories. These processors do not have caches as their
memories are smaller and embedded into the CPU. Figure 1.5 presents how the Cell processor
subsystems and cores are internconnected.

Such architectural design makes its cores less convenient for general purpose usage due
to the lack of code portability and extreme steep learning programming curves. As there
is no abstraction to a global shared memory, there is no need for coherency checks and its
hardware complexity is simplified, leading to faster data transfers and a more power efficient
architecture.

1.1.2 Languages

Programming languages are abstractions to all of the difficulties involved within program-
ming computers. During many years computer engineers argued about the interest of higher
abstraction programming languages when comparing with the closer to hardware assembly
languages. Today, almost no application is developed in assembly language thanks to the
great improvements introduced by higher level programming languages and optimizing com-
pilers. Unfortunately such improvements are still not reachable to parallel applications and
languages.

Many programming languages, extensions and application programming interfaces (APIs)
have been designed in an attempt to address parallelism difficulties and tuning nuances. Such
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Figure 1.5: Cell interconnect diagram presenting the interconnection between all the processor
subsystems and cores.

1 for (i = 1; i < N; i++) {

2 A = V[i] * C1;

3 B = V[i] * C2;

4 C[i] = A +B;

5 }

1 for (i = 1; i < N; i++) {

2 C[i] = A[i] * B[i];

3 }

1 for (i = 1; i < N; i++) {

2 B[i] = A[i] * C1;

3 for (i = 1; i < N; i++) {

4 C[i] = B[i] * C2;

5 }

Figure 1.6: Sequential code containing task (left), data (middle) and pipeline (right) parallelism

designs, similarly to what already happened within sequential languages, vary in abstraction
granularity, going from hard to code but very expressive languages to the very easy although
very limited ones. The more expressive and closer to hardware a language is, the greater is
its learning curve and the less portable the language might be. On the other hand, simpler
languages limit the programmer to specific types of applications, reducing the number of pos-
sibly supported applications. Nevertheless, such languages tend to evolve around constraints
that allow the language to be statically predictable and easy to optimize.

Parallelism

Common parallel languages use higher level abstractions representing the following forms
of parallelism:

• Task parallelism refers to parallelism that occurs from two totally independent branches
on the original application.

• Data parallelism refers to parallelism that occurs within the same computation but
where different computational data ranges have no dependencies.

• Pipeline parallelism occurs when a computation can be partitioned into several unidi-
rectional dependent execution blocks.

Figure 1.6 presents three code examples, each containing a different type of parallelism
form. The left example is a task parallel application. The statements computing A and B
have no dependences and can be computed in parallel. On the other hand, the statement in
Line 4 needs the result of both statements, requiring some form of synchronization in order
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to guarantee the execution of previous parallel statements. Such type of parallelism is usually
associated with barrier synchronization primitives.

Figure 1.6 (middle) is an example of data parallelism. Statements inside the loop are
independent between loop iterations, i.e., computation of C[i] can be executed for all i values
concurrently. Moreover, data parallelism earns its name from the independence of its input
and output data.

Figure 1.6 (right) is an example of pipeline parallelism. Pipeline parallelism is a restricted
form of task parallelism, in which statements are not task parallel because the result (output)
of one of the task is the input of the next. Each of the parallel tasks performs a stage of
the algorithm and provides the data for the next task to proceed. An example of pipeline
parallelism is the instruction level parallelism (ILP) commonly implemented in hardware.

In all forms of parallelism, concurrent tasks eventually require to synchronize in order to
announce work completion. The most common three forms of synchronizations are:

• Mutual exclusion, commonly known as Mutex, allows an application to serialize access
to resources.

• Event synchronization allows a thread or group of threads to wait for a concurrent
thread signal.

• Barriers allow a group of threads to synchronize at specific program points. These are
used in algorithms that need to proceed in phases, such as task parallelism.

Many kinds of parallel languages were created in an attempt to harness as many target
architectures and parallelism forms. However, such languages tend to focus in specific fields
of applicability, as is the case of streaming for video processing (stream related) applications
and transactional memory for financial and database related applications. It is unlikely that
any future general purpose higher level language would be able to create better optimized
code than any of the field specific programming languages.

1.1.3 Operating Systems - Execution Models

Apart from the architecture instruction sets and its properties, computer systems are com-
posed of yet another abstraction layer. Such layer is typically defined by an operating system
and device drivers, abstracting applications from complexities such as process execution, mul-
titasking, resources and devices management. More relevant to parallelism are its abstraction
to threads and interprocess communication.

As referred by Tanenbaum in [79], threads are like operating system processes, although
sharing the same memory and program address space. In other words, a process is composed
of one or more threads, sharing the same address space, global variables, IO and more. Each
thread is given by the operating system a different program counter and stack space.

A single core processor, when executing a multi-threaded application, appears to execute
its threads simultaneously. It only happens because the threads are constantly in execu-
tion switching, creating the illusion of a simultaneous execution. Context switching implies
the operating system to backup the registers and current program counter and restore the
registers from the planned to execute thread, just before jumping into the switched thread
program counter. Context switch is controlled by the operating system scheduling algorithm.
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1.2 Streaming

Threading systems are typically classified as:

• User Space, when implemented through a user level space. Threads of this type have
significant performance benefits when comparing to alternatives. However, they are
still bounded to a single hardware thread, disabling concurrent execution. Moreover,
thread context switches always occur explicitly through runtime system calls, possibly
leading to deadlocks if any of the threads requires to perform operating system blocking
calls, such as waiting for IO.

• Kernel Space threads, as the name suggests, are controlled by the operating system ker-
nel, allowing full use of the machine processing power by supporting executing threads
concurrently. The kernel performs thread context switches automatically based on pro-
cess scheduling policies.

In order to take full advantage of user level threads and still use full hardware resources,
hybrid implementations using both kernel and user level threads are commonly used. Kernel
level threads are created to exploit all of the concurrent processor cores. Each kernel thread
executes an instance of the user level threading library. The application instantiates parallel
code in the available and distributed user-level threading libraries.

The kernel level thread schedulers perform scheduling based on either blocking kernel
level calls or through some time allocation algorithms, sometimes based on priority rules, in
order to better load balance the threads execution. Such scheduling algorithms are optimized
to execute blocking threads, such as, threads waiting for resources such as input operations
(keyboard events, etc.) or exceptions. However, if a thread requires to wait based on a
shared memory variable event from a counter part thread, none of the available blocking
system calls is sufficiently fast when comparing to actual busy waiting (thread spinning).
Moreover, in busy wait scenarios and when the number of threads surpasses the number of
available hardware threads (CPU cores), process schedulers too oftenly wake threads not
ready for execution, producing expensive context switch overheads without the application
progress.

User level threads provide a better control of thread scheduling, i.e., as its implementation
is at user level space, precise runtime implementation can redefine the scheduling policies
based on the known constructs of the runtime environment. However, an user level threading
system implies complexities such as its explicit context switch or its inability to perform
context switches when calling operating system blocking functions.

1.2 Streaming

As mentioned through the chapter, current generation of architectures are increasingly be-
coming less complex and more parallel. Its simplification translates in an increasing neces-
sary effort from the language and compiler developers, to create newly optimizations and
abstractions to achieve performance through parallelism, exploiting these new generation of
architectures.

The streaming programming concept not only surpasses the boundaries of any particular
language but also crosses the boundaries of distinct abstract models of computation, as
described by Stephens [77] in its study on the rule of streaming in programing languages.
The streaming languages/applications are defined as graphs, where nodes are the concurrent
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tasks and edges are the FIFO channels connecting different tasks. The different streaming
models differ in several key properties impacting both execution model, channels and the
static predictability of the model.

The most known models of computation are Kahn Process Networks (KPN) and Static
Data-flow (SDF). A Kahn process network (KPN) [44] is defined based on the composition
of several communication tasks. Tasks communicate through unbounded FIFO channels,
where only read operations of the channels are blocking, forcing tasks to wait when no data
is available, much like a pop queue operation. Write operations do not block considering its
unbounded FIFO channels. As tasks have no way to peek channels and possibly change its
control-flow based on the upcoming data, KPN tasks have the properties of pure functions,
where its output is only a consequence of its input values or in other words deterministic.
Moreover, as tasks are deterministic so is a network of tasks. However, as the rate of com-
munication is defined by the amount of push or pop operations, the model is vulnerable to
deadlocks, in case of cyclic networks.

In SDF, tasks are defined with static consumption and production rates. Moreover,
task execution can be defined based on static scheduling deduced by its task graph and
static defined rates. SDF is well known for its static verifiability and optimize-ability [50].
Buffer allocation and process scheduling can be determined at compilation time between other
optimizations, such as process fusion, allowing a better and greater control on application
load balancing. Cyclo-static data-flow (CSDF) [16] extends SDF by supporting tasks with
cyclic static rates.

Streaming applications provide programmers with sufficient tools to express all presented
types of parallelism, i.e., task, data and pipeline parallelism. Furthermore, streaming lan-
guages through its abstractions allow to identify the parallel computation regions and its
dependencies, typically expressed as a graph. SDF or CSDF computational model languages
are statically predictable allowing the compiler to schedule concurrent tasks by fusing (com-
bining multiple dependent pipeline tasks) or task blocking (coarsening a task data commu-
nication granularity). Static scheduling results in an adjustment of the initial partitioning of
the application to the actual target architecture resources, threading system and schedulers.

Moreover, streaming also exposes channel properties such as the size of the communicated
data and the rate of communication, exposing also the necessary information to further opti-
mize memory to the slowest type of architecture instructions, i.e., memory loads and stores.
This allows to predict, identify, and adjust the rate of communication and channels (buffers)
size, adjusting applications to the architecture cache levels, cache-line and memory sizes.
Its predictability provides languages with the means to improve data locality, anticipating
memory copies through cache pre-fetching, hiding memory latency and reducing the cache
misses when accessing the channels data. These cache based optimizations are also available
and required in distributed memory architectures where data transfers are explicit, forcefully
enforcing the languages to explicitly expose data communications. Such is the case of any
streaming language.

Streaming languages support code portability by exposing compilers to the basic paral-
lelism concepts, enabling both shared and distributed memory architectures support. More-
over and assuming the existence of sufficient optimizations, exploiting architecture memory
model and static scheduling, one can take portability to yet another level and claim that
streaming languages provide performance portability, assuming that compilers could inter-
pret streaming languages and perfectly adapt code to the target system.
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Figure 1.7: Computer systems abstractions and adaptors.

1.3 Computer System Adaptors

Computer systems are composed of several abstraction layers, each elevating its accessibility
by hiding many of the complexities inherent to the lowest level abstraction (the architecture,
in the context of this document). The chapter so far presented languages, operating systems
and architectures as the abstraction layers. Each of these layers, when further analyzed and
decomposed, might be more than just an abstraction. As an example, operating systems are
indeed abstraction, but when further analyzed, one could detect that it is also an adaptor.
The same operating system, creating the same abstractions, is many times implemented for
different target architectures, being the code differences for the different targets, the adap-
tation part of the operating system. Moreover, an adaptor is a portability layer connecting
the different system abstractions. The language and architecture layers can be understood
as pure abstractions considering its highest and lowest positions in the hierarchy1. Every
layer between the languages and architectures abstractions has at least some adaptability
functionality and any change in the existing abstraction implies changes to the adaptation
layers.

Adaptors are the components combining and adapting different abstraction levels. The
abstractions are the running entities of a system, on the other hand, adaptors are only
used through system preparation (compilation) and do not actively participate in the system
execution environment. Compilers are an example of a pure adaptor entity. Other differences
between an abstraction and an adaptor is its runtime system participation.

Figure 1.7 is a diagram differentiating the adaptor layers from the abstraction ones. Both
types of components separate hardware from the highly abstracted world of software.

1.3.1 Compilation

For many years, compilers have been designed focusing its support on the still existing sequen-
tial programmable general purpose architectures. Biggest examples are the GNU Compiler
Collection (GCC) [32] and LLVM [2], containing several intermediate representations and
data structures spread through hundreds of optimizations phases.

High-level parallel languages cannot be optimized by this generation of compilers. To
support such languages, its designers tend to create source-to-source transformers, translating
languages high-level semantics into C code together with the language associated runtime
library primitive calls. Such code is then compiled resorting to advanced production compilers
(aka. mainstream compilers). Source-to-source compilers in most cases translate original
language semantics into runtime libraries designed specifically for the language. The libraries

1In the context of this document, languages and architectures are not further decomposed and so can be
understood purely as abstractions.
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define the basic components of the language, highly optimized to explore the properties of
target operating system and architecture.

However, because libraries are defined externally to the application compilation flow and
due to its synchronization primitives implementation (containing volatile variables, low level
synchronization primitives, barriers or mutexes), all of the language associated runtime calls
are considered as possibly containing side effects. Side effects code by default disables code
motion related optimizations of non pure code, i.e., disables the most relevant mainstream
compiler optimizations, such as any loop optimizations (vectorization, loop invariant code
motion) and partial redundancy elimination.

Source-to-source compilers, apart from implementing the language specific parallel opti-
mizations, attempts to hide these code motion limitations by reimplementing most of the
same optimizations already existing in sequential compilers. This approach reduces any se-
quential “high-tech” fully capable compiler into very basic translator. An exception to such
design is the GCC’s OpenMP [17] implementation, where its code lowering occurs in the
front-end compilation stages. Unfortunately, its design suffers from the same weaknesses as
source-to-source compilers, considering as its conversion occurs too early in compilation flow,
creating similar external runtime library calls as source-to-source transformers and disabling
many of the common existing compiler optimizations.

Without taking any merit from all of the high level languages, nor from the current gen-
eration of compilers, neither of these fields alone will, by themselves, be capable to solve the
existing portability problems. For example, the problems introduced by the big distance and
abstraction differences between existing high-level languages and architectures. To minimize
the penalty for such gap, compilers must be able to lower higher level languages into closer to
hardware representations, capable to cooperate with existing optimizations and further opti-
mize parallelism and sequential code. Concurrency, synchronization and data communication
are as important to parallel compilation, as functions, control-flow and data-dependencies are
to sequential programs compilation. Without such properties integrated in a single compiler,
it is impossible to perform the required analysis to optimize parallelism and the sequential
code altogether.

Compilers must understand and unify both higher and lower level computer system ab-
stractions, in order to adapt software to the hardware (architecture) properties and require-
ments.

1.3.2 Runtime and Operating Systems

Existing compilers are far from optimally supporting all the variations in computer architec-
ture and micro-architecture. They typically make little use of the number of cores, processor
interconnect differences, memory bandwidths and cache level sizes, not speaking about de-
tails of the micro-architecture. This diversity, through small variations in computer architec-
ture properties, would turn targeted static compiler optimizations obsolete within matter of
months. In other words, compilers cannot address such small architecture variations. To some
extent, runtime libraries and operating systems can compensate and act as the adaptation
layer, performing the small adjustments compilers should and cannot.

Albeit compilers cannot be held responsible for all degrees of application tuning, they can
still gather precise application tuning information and provide it to target runtime system and
operating system. This information is both directly collected from the high-level languages
and as a result of compiler static analysis.
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The architectures define the instruction set and lower level properties of a system and
the operating systems define yet another abstraction layer. Depending on the actual device
type the abstraction level can vary. For example, mobile devices by default contain very
restricted characteristics regarding power consumption, when comparing with traditional
desktop machines, and so its operating system should be rather simplified and contain fewer
abstractions than a desktop environment.

For the particular case of parallelism, the relevant operating system abstractions are the
threading model, thread scheduler and atomic operations. Depending on the actual available
abstractions, the application programmer should take in consideration the target device and
not only its architecture.

Runtime libraries, as previously mentioned, both abstract and adapt the compiler genera-
ted code to the target system. In case of streaming languages, runtime libraries might contain
abstractions to buffer manipulation, task instantiation and synchronization. Moreover, run-
times also act as the portability layer (adaptor) for particular compiler code transformations.
An example for such a runtime is libgomp which is the target runtime library for GCC
OpenMP implementation.

Runtime systems often act as dynamic optimizers, adjusting system parameters based
on static or dynamic system profiles. In some cases, runtimes, also based on profiling, can
perform just-in-time (JIT) compilation, optimizing overall execution time. An example of
such a framework is OpenCL (Open Computing Language) [4], which includes a JIT compiler
to specialize compiling code for particular target during execution.

1.4 Wrap-Up

The large variety of parallel architectures and languages, together with all the inherent com-
plexities introduced by parallelism, turns parallelizing compilation into one of the greatest
enigmas for several generations of compiler engineers.

As time passes, more and more transistors are synthesizeable in a single chip. The higher
the number of transistors per chip, the more architectures must be simplified in order to
respect the power ranges for such miniaturized devices, forcing evolution to occur through
parallelization and the replication of these cores. Multi-core architectures by themselves do
not produce any performance boosts, as previous processor generations did and as consumers
were used to. To get performance improvements from legacy applications, the compilers
should evolve compensating for the now simplified and parallelized architectures.

Current generation of mainstream compilers are able to detect certain types of parallelism
based on loop analysis, such as vectorization. However, in case of explicit parallelization
either performed by programmers or source-to-source transformations, current generation
of mainstream compilers are unable to interpret code as parallel, forcefully disabling any
interfering optimizations.

Most well knowns programming languages (such as C), compilable through mainstream
compilers, assume a single instruction stream and a monolithic memory, making these not
very good candidates to express parallel execution models. On the other hand, newer parallel
languages capture the (in)dependence and locality properties of an application, but are tightly
coupled with there own compilers, hardly capable to exploit all of the available variety of
parallel architectures.

Parallel stream and data-flow programming makes applications task-level and data-flow
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explicit, exposing its pipeline, data and task parallelism while guaranteeing functional de-
terminism. Unfortunately, such languages tend to be implemented through source-to-source
compilers, helped with specific runtime library, performing the adaptation to the target sys-
tem, but obfuscating mainstream compilers and disabling many of its optimizations. Both
source-to-source and runtime libraries are tightly designed for specific target systems and
high-level languages.

Mainstream compilers, although converting general purpose languages, must also under-
stand the source-to-source lowered parallel code, allowing both parallel and sequential code
optimizations. Moreover, as traditional optimizations transform the code, also the paral-
lel code should be adapted and optimized by mainstream compilers. As an example, lets
consider a source-to-source compiler performing a load balanced static scheduling based on
the expected execution times of the compiling individual tasks. If any of these concurrent
tasks is further optimized by the mainstream compiler, for example through vectorization,
the predicted scheduling is no longer balanced and a new task scheduling must be done. The
mainstream compilers must either be able to interact with the source-to-source compilers,
identifying the right optimizations to apply, or be able to perform both parallel and sequential
code optimizations.

Mainstream compilers contain several intermediate representations capable to represent
sequential code semantics. Such representation by itself is not sufficient as it interprets the
source-to-source generated primitive calls as external to the compiler knowledge and not as
well known parallel primitives they might be. The streaming languages are between the best
candidates for such an intermediate representation. Although, one must identify the right
abstraction / expressiveness level. Too much abstraction leads to a less expressive language,
reducing the variety of representable higher level languages. On the other hand, a too low-
level abstraction will make code too expressive and impossible to analyze or optimize.

Together with the intermediate representation a new runtime library must be defined,
expressing the intermediate language constructs and primitives, also acting as a second level
adaptation layer for the language, guaranteeing the portability of the language in the similar
target systems. Similar architectures with different cache level sizes can still share the same
runtime implementation although using a different configuration. On the other hand, if the
architectures have different memory model (shared or distributed memory), each must have
its own different implementation. In any case, the compiler generated code for both these
memory models is very similar.

The high-level languages should then be lowered into this intermediate representation ei-
ther through their private source-to-source compiler, possibly performing a few optimizations
before code generation, or inside the mainstream compiler at one of the lowering phases. Ei-
ther way, any possible information collected during the conversion is stored in an independent
data structure, defined to support decision by the intermediate language optimizations. Such
is the case because the language certainly loses information during code lowering, consider-
ing the intermediate language is more expressive (lower level) than the original compiling
language.

Well known mainstream compiler optimizations, such as dead code elimination and partial
redundancy elimination, must be redesigned to provide further improvements in both the
sequential and parallel code. Parallel optimizations, such as static scheduling, blocking, task
fusion, among others, can also be implemented using such intermediate language, making use
of collected information during the lowering phases.

14



1.5 Contributions

1.5 Contributions

This thesis makes several contributions associated with streaming languages, parallel compi-
lation, optimizations and streaming runtime implementations. The contributions are:

1. Erbium: a close to hardware and expressive streaming language, supporting multiple
producers and multiple consumers communicating through a shared data structure
abstraction.

2. A lightweight shared-memory runtime, with lock-free algorithms, supporting the dy-
namic construction and evolution of a graph of dependent, persistent processes. It im-
plements all the language data structures and primitives. We also compare the design
of this runtime library with alternative approaches, considering the target operating
system and architecture properties.

3. An integration of the Erbium streaming language as an intermediate representation for
mainstream compilers. It provides higher-level languages with a compilation middle-
layer capable of avoiding semantical obfuscation induced by calls to runtime support
library functions. A general purpose data structure collects the original language high-
level properties during the front-end language lowering, using it later for compilation-
time optimizations.

4. A study of the static analyzes available at the level of Erbium, much relevant for the
design of task-level optimizations of a concurrent language and to the extension of ex-
isting compiler optimizations — such as dead-code elimination and partial redundancy
elimination — to support parallel constructs. In particular, static analysis of Erbium
allows to remove redundant synchronizations for general data-flow concurrency.

1.6 Thesis Outline

This chapter guided the reader through the parallelism-related abstractions, ruling the current
generation of multiprocessors and presenting streaming computational models as a possible
approach to bridge the software and hardware “worlds”.

Chapter 2 introduces Erbium, a programmable, low-level streaming language, usable as
an intermediate representation for compilers and the development of data-flow and streaming
applications.

Chapter 3 presents a very efficient runtime implementation for Erbium, implementing
the language primitives exploiting the x86 memory model and important microarchitecture
properties of its memory hierarchy. This chapter also discusses alternative implementations
for weak memory consistency models, as well as distributed memory architectures.

Chapter 4 presents an integration of Erbium as an intermediate representation within the
GNU Compiler Collection (GCC).

Chapter 5 presents a possible compiler conversion from a streaming extension to OpenMP
(Streaming OpenMP) into Erbium.

Chapter 6 is an overview of several compiler optimizations based on static analyzes of
Erbium code, possibly supplemented by inter-procedural and inter-task properties whose
static analysis is described in Chapter 4.

15



1. INTRODUCTION - PROBLEM STATEMENT

16



Chapter 2

Language

High-level parallel languages are highly abstracted from the hardware complexities, allowing
programmers with enough tools to capture the application (in)dependence and locality prop-
erties. Compilers, on the other hand, are responsible for lowering these abstract languages
to specific target architectures with well-orchestrated threads and

Streaming and data-flow semantics make task-level data-flow explicit, capable to expose
pipeline, data and task parallelism while guaranteeing functional determinism.

Current generation of mainstream compilers, although not capable to express parallelism,
have hundreds of very well orchestrated analysis and optimization stages.

In order to adapt data-flow programs, compilers must contain an intermediate repre-
sentation, capable to express all of data-flow semantics and properties. Such intermediate
representation would create an integration between legacy compiler optimizations, as well as
provide enough analysis to perform parallel static optimizations and runtime instrumentation.

The Erbium language is defined not only to be such low-level streaming data-flow language
intermediate representation, but also a low-level language for efficiency programmers. Its goal
is to provide enough expressiveness to represent high-level languages semantics, preserving its
compatibility with existing compiler representations, not obfuscating existing optimizations,
but keeping the higher level language properties and rich abstracted information. Moreover,
the Erbium language must provide traditional compilers with the ability to represent and
optimize streaming data-flow languages.

Thanks to its streaming semantics it features a unique combination of productivity and
performance properties, more precisely its determinism, expressiveness, modularity, statically
adaptability and lightweight implementability.

Determinism

Erbium semantics derive from Kahn Process Networks (KPNs) [44]. KPNs are canonical
concurrent extensions of (sequential) recursive functions preserving determinism (a.k.a. time
independence) and functional composition. Functions in a KPN operate on infinite data
streams and follow the Kahn principle: in denotational semantics, they must be continuous
over the Scott topology induced by the prefix ordering of streams [44, 51]. Operational
semantics of KPNs states that processes communicate through lossless FIFO channels with
blocking reads and non-blocking writes. Although Erbium derives from KPN, preserving its
determinism, its semantics are not bounded to the same operational implementation.
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2. LANGUAGE

Expressiveness

Parallelism is often implicit in high-level data-flow languages [11, 46]. As an intermediate
representation, Erbium defines explicit parallel constructs and primitives.

Erbium supports dynamic creation and termination of processes, favoring persistent, long-
running processes communicating through point-to-point data streams.

Traditional streaming communications involve push() and pop() primitives over FIFO
channels. Erbium’s data structure for communication is much richer, providing random-
access peek (read) and poke (write) operations, decoupled from the actual synchronization.
Its decoupled synchronization allows to make dynamic adjustments to communication gran-
ularity, while preserving the process modularity.

Erbium’s abstracting data structure is called an event record. It unifies streams and
futures [38] and generalizes them to support multiple producers and multiple consumers.

Moreover, Erbium is able to hand-over, i.e., transfer consumption and production respon-
sibilities between processes, dynamically redesigning the application process graph.

Compiler front-end or source-to-source compilers are responsible for the high-level lan-
guages conversion to Erbium.

Modularity

With the performance and power efficiency improvements from later architectures, the
complexity of recent applications has also increased. applications are no longer the effort
of a single individual but the collaborative work of big software development teams. Pro-
gramming work-splitting implies languages to provide enough abstraction and development
independence, i.e., modularity. In other words, language and compilation modularity is es-
sential for the success of current generation languages.

When considering a language as an intermediate representation, functional independence
or modularity is also essential. Traditional compilers through most of the compilation flow
optimize code on a per function basis. Without modularity, compiler analysis would be too
complex and optimizations nearly impossible.

An Erbium program is built of a sequential main thread dynamically instantiating con-
current processes 1. Not only the main thread can instantiate processes but also any other
function or process.

Since Erbium provides explicit means to manage resources (e.g., communication buffers),
it puts a specific challenge on the ability to compose processes in a modular fashion. To
this end, Erbium introduces a low-level mechanism for modular back-pressure supporting
arbitrary broadcast and work-sharing scenarios.

Static adaptation

High-level languages are too abstracted from hardware properties not exposing many
possible code optimizations. Binary code, on the other hand, cannot offer the required level
of static adaptation. Erbium defines the intermediate representation as the portability layer
between higher-level languages, target runtime systems and architectures. As an intermediate
language, Erbium supports code specialization, static analysis and optimizations.

1Processes are not the traditional Linux processes but rather concurrent Erbium threads.
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The compiler selects the most relevant hardware operations and inlines Erbium’s split-
phase communication primitives. It adapts the grain of concurrency through task-level and
loop transformations.

The Erbium runtime may be transparently specialized for different memory models.
Chapter 3 presents several of these runtime specializations, mostly focusing in a shared,
global address space whose caches are kept coherent in hardware. The chapter also presents
an efficient distributed memory approach for an Erbium runtime. In addition, Erbium may
transparently exploit any hardware acceleration for faster context switch [8, 48, 75], synchro-
nization and communication [35, 60].

Lightweight, efficient implementation

Erbium aims to be closest to the hardware while preserving portability and determinism.
Any overhead intrinsic to its design and any implementation overhead hits scalability and
performance. Such overheads cannot be recovered by a programmer who operates at this or
higher levels of abstraction.

Thanks to its data-flow semantics, it is possible to implement the primitives of the Erbium
runtime only relying on non-blocking synchronizations. Leveraging Erbium’s native support
for multiple producers and multiple consumers, broadcast and work-sharing patterns are
implemented very efficiently, avoiding unnecessary copy in (collective) scatter and gather
operations.

The split-phase communication approach hides latency without thread scheduling or
switching overhead and relies entirely on existing hardware such as prefetching or DMA.

2.1 Related Work

Concurrency models have been designed for maximal expressiveness and generality [41, 55],
with language counterparts such as Occam [22]. Asynchronous versions have been proposed
to simplify the implementation on distributed platforms and increase performance [29], with
language counterparts such as JoCaml [49]. Compared to these very expressive concurrency
models, Erbium builds on the Kahn principle (data flow), which is sufficient to expose scal-
able parallelism in a wide spectrum of applications; it also offers determinism and liveness
guarantees that evade the more expressive models.

Our work is strongly influenced by the compilation of data-flow and streaming languages,
including I-Structures [11], SISAL [46], Lustre [37], Lucid Synchrone [20], Jade [73] and
StreamIt [81]. These languages share a common interest in determinism (time-independence)
and abstraction. They also involve advanced compilation techniques, including static analysis
to map declarative concurrent semantics to effective parallelism, task-level optimizations and
static scheduling. Erbium is an ideal representation to implement platform-specific optimiza-
tions for such languages.

The work of Haid et al. [36] shares many design goals with Erbium. It aims for the scalable
and efficient execution of Kahn process networks on multicore processors. Its sliding window
design matches the layout of records in Erbium. But it does not come with an associated
compiler intermediate representation, and it does not deal with modular composition and
dynamic process creation. Furthermore, although it advocates for streaming communications,
it still relies on dynamic scheduling for event-driven synchronization. Most encouraging
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to us, Haid et al. demonstrate that data-driven scheduling and streaming communications
can coexist: it indicates that our approach is complementary to the large body of work in
lightweight runtimes.

2.2 Semantics

The Erbium language with its very low-level (close to hardware) semantics and its interme-
diate representation defines a portability layer for high-level streaming data-flow languages,
providing compilers with static adaptability and expressiveness not available at binary code
level. The Erbium expressiveness comes from its decoupled representation, i.e., the language
constructs partitioning into the three most basic parallelism components (thread creation,
synchronization and data communication).

Thread creation is abstracted by the notion of processes. Processes are slightly more
restricted then traditional threads, allowing compilers to have more opportunities to statically
analyze Erbium applications.

Synchronization and communication are performed based on the notion of events and
its totally ordered sets called event records. Records abstract and unify the notion of streams
and futures [38], combining synchronization and data accesses into a single concurrent entity.
The event is the abstraction for a single data element associated with a unique identifier.
Views are the process interface to records, being the processes abstraction to synchronization
and data communication.

The views are thread locally stored data structures (defined within the process code)
and connect processes with the multi-thread shared event record data structure. The view
data structure also provides a set of thread-safe primitives hiding the synchronization and
data communication complexities, associated with the concurrent accesses to a shared data
structure such as event records. The primitives notify/query the event record, updating
the local process view data structure state. The view thread local definition minimizes
communication cost, by keeping a local status over global process progress, resulting in light-
weight synchronizations.

The view and record data structures also make the Erbium language more modular. By
separating the definition of shared data structure event record from process definitions, using
the view data structure, programmers can independently design processes not taking into
consideration how the process is used, i.e., its final application integration.

Views not only provide the means to synchronize and communicate data, but also to verify
for resources availability through explicit request/release resource primitives. Such explicit
resource management can be initially understood as spurious, considering that a reverse
stream (back connection) allows to implement such verification without an implicit language
support. However, the non explicit approach not only would break modularity, but would
also lower the language semantical abstractions, converting resource usage prediction (buffer-
sizing) into an inter-process analysis instead of only a single process analysis, i.e. resource
management analysis would imply to analyze the connections and code of the respective
processes.

2.2.1 Processes

Processes are the Erbium language abstraction to long-running and persistent concurrent
function definitions. Although defined as long-running code entities, processes implementa-
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tions are not tight to a particular scheduling model. The process instance threads can have
either a user-level or kernel-level policy scheduling. Compiler transformations would be re-
sponsible to perform the necessary code adaptation to the target threading and scheduling
library.

Processes are both defined and instantiated as traditional C function calls. Although
defined as a traditional function, the processes cannot be executed as such. Processes can
only be instantiated, i.e., executed in an independent and concurrent manner (in a thread).

The processes instantiation is dynamic and hierarchical, i.e., processes can instantiate
other processes or even replicate themselves. The processes dynamic runtime properties
supports greater application expressiveness and modular functional independence.

In Erbium, processes are the abstraction to threads, having no implicit dependencies
with any other application code. Any required dependencies must be expressed through the
synchronization/communication primitives. On the other hand, the main application thread
waits for the termination of all instantiated processes right before the application termi-
nation. Although processes can be instantiated hierarchically, processes do not terminate
hierarchically. Only the main thread implicitly waits for the process termination. Processes
cannot tell if any of the other processes have terminated unless explicitly coded through the
data-communication data structures (record and view data structures).

2.2.2 Record and View

Process synchronization and communication is abstracted in Erbium through the concepts
of event record and event view.

The record can be understood as a shared and unbounded buffer of events. An event is
an abstraction to a single data communication entity (token), indexed with a constant and
unique integer identifier (index ). Each index is associated to a unique record buffer position
providing an indexed access to all of the record events.

Erbium records have shared buffer semantics where both producer and consumer can
directly1 access the record events. However, this semantics do not limit Erbium to sup-
port shared memory architectures, but rather abstract its data communication as occurring
through a shared structure.

With its shared memory semantics and its decoupled synchronization and communica-
tion, Erbium supports peek and poke (read and write) data access patterns, allowing both
consumers and producers to address record elements memory directly. Moreover, it sup-
ports multiple producer and multiple consumer patterns, not affecting process expressiveness
and providing applications with the means to easily define broadcast, splitters and mergers
communication patterns, without replicating its communication channels.

Although records are shared data structures and Erbium has shared data communication
semantics, the record accesses are abstracted through the view data structure. Processes
requiring access to a specific record must define a view and explicitly connect it to the record
as a reader or writer.

A view can be understood as an events record sliding window, limiting the events safely
accessible by its defining process (Figure 2.1). The view sliding window boundaries are
manipulated by the process through a pair of view associated primitive functions, explained
in Section 2.2.3. Views are defined with a constant horizon. The horizon should be defined

1Accesses to the record always occur through the view abstraction data structure.
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reader viewwriter view

evj evj+1 evi-1 evievj-4 evj+3 evi+3 evi+4record

index = j index = i+3

horizon = 4 horizon = 4

Figure 2.1: Record and view abstraction diagram. Views are sliding window over the record
events. Events within the window are accessible by its defining process. Synchronization primi-
tives move the sliding window and change access permissions to the record events.

has the minimum number of events required by its defining process algorithm (the number of
simultaneously required record events). The horizon also limits the view sliding window from
increasing above the horizon value, or in other words, it is the view sliding window maximum
size.

Although not deeply studied thought this thesis, record resources size prediction (aka.
buffer size prediction), can benefit from the process spread view horizons to define a mini-
mum buffer size for the events record data structure. Optimal buffer-sizing not only avoids
possible deterministic deadlocks (based on the lack of resources) but also produces better
code execution times, hiding memory latency through double buffering.

2.2.3 Process synchronization and data communication

The Erbium synchronization and data communication primitives have decoupled implemen-
tations. Accessing events data does not implicitly performs a synchronization. The syn-
chronization primitives however must be placed before and after events accesses. Doing so
guarantees a correct and deterministic access to the record events data. This decoupled ap-
proach provides advanced programmers and compiler code generators with the tools to do
granularity adjustments through loop optimizations, minimizing expensive overhead synchro-
nization calls and adjusting code to the target architecture specifics such as its cache memory
sizes.

The synchronization primitives define the events that are deterministically accessible
thought the view and, depending on the type of view, “enforce” a specific type of allowed
events access.

Synchronization and event state mutation

Erbium synchronization can also be interpreted as the management for the record events.
Each event, through its “life”, traverses five distinctive states — Not allocated, Writable,
Ready, Readable and No longer used) — each classifying the type of access permitted by its
connected views or processes.

The event state changes develop from the usage of the four Erbium synchronization
primitives (update, release, stall and commit) contributing to a specific change in the events
state and consequently to inter-process synchronization. Primitives are called in the process
code, each call specifying in its arguments both a view and an event index. The view and
the index arguments, through its connectivity, specify which record and which set of events
are affected and should suffer a state change. Every event with an index smaller than the
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Figure 2.2: Events life cycle state diagram.
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readable 
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Figure 2.3: Local view visibility of events based on synchronization primitive calls in a reader
(left) and writer (right) view example. The diagram shows the different event states in the
horizontal dashed line regions and its relation with the synchronization calls below. Dark grey
events are writable by writer view, light-grey are the read-only through the reader view and
mid-grey events are ready events that are still not accessible.

provided index argument is affected, unless it has already been affected in a previous primitive
execution.

Figure 2.2 layouts the five different states of an event life cycle and the primitives respon-
sible for each state change. Moreover, the different primitives are only executed in specific
process contexts. Stall and commit are called only using writer views (producer processes),
while update and release are called through reader views (consumer processes). Every allo-
cated event traverses all the five states and each state transfer only occurs with a specific
primitive call type. Please realize the existing dependencies1 between those state changes and
consequently between the different primitive calls. Dashed lines divide the events between
producer, consumer and shared memory spaces contexts.

Respecting such dependencies is fundamental to guarantee Erbium applications deter-
minism. Also, all the synchronization primitives are dependent, based on the events state
diagram, not all of these dependencies must be enforced through runtime support. Stall and
commit, as well as update and release are always executed within the same process context
and so sequentially executed. Static validation for such dependencies is a plus and, although
not studied in the context of this thesis, can be deduced based on the analysis explained
through Chapter 6.

Figure 2.3 is a birds eye of the record events buffer, showing the record events, its state,
two views (reader and writer) and the primitive calls, enforcing the presented events states.

1 These dependencies are later used in Chapter 6 in the context of the Erbium intermediate representation
analysis and optimizations.
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viewviewviewview

evj-3 evj evj+3 evj+6 evj+9

update (v, j+3)

stall (v, j+3)writer view

reader view update (v, j+6)

stall (v, j+6)

update (v, j+9)

stall (v, j+9)

record

update (v, j)

stall (v, j)

Figure 2.4: Local effects of stall and update primitives. stall(v, j) and update(v, j) define the
view position and visibility of its record events. A call to update or stall moves the view up to
the event with index j. Events out of the view boundaries are inaccessible by its owning process.

Each of the squares if the diagram represents a single event tagged with its index identifier.
The queue of events represents the record data structure. Each of the views is associated
(defined) to a specific process not represented in the diagram, being the views of either a
reader or a writer of the record. Events inside of the view sliding window (round cornered
boxes) are accessible by the respective view associated process. The primitive calls specify
the presented sliding window bounds and define which events are deterministically available
to each view and associated process.

View sliding window manipulation

In order to better understand data accessibility it is important to understand the impact
synchronization primitives have on the view visibility over its record events. Depending on
the usage of the synchronization primitives, each process controls which events are determin-
istically accessible within the view sliding window.

A stall(v, j) or update(v, j) primitive call represents a requests from the calling process to
expand the view sliding window visibility, such that record events up to the index j become
accessible. As these primitives extend the visibility of the view, it is possible that the primitive
blocks the process execution when no events are available, i.e., the requested events are not in
ready state, in the case of the update primitive, or if no free resources available, for the stall
one. In other words, update and stall control the head of the view sliding window and has
they request for newly events to become available such primitives might have to block. When
blocked, lower level inter-process synchronizations verify for any concurrent record commit
or release, unblocking and expanding the view sliding window in case enough events become
available. When unblocked, the process is guaranteed a deterministic access to the primitive
associated events, writing or reading its data as presented in Figure 2.3. Figure 2.4 shows
the impact of stall and update on the view visibility over its connected record, when different
“flavors” of calls are executed. Please notice the semantical similarities of update and stall
primitives.

Contrarily to stall and update, commit and release collapse the view sliding window size.
By calling commit or release, the process is specifying it no longer requires to access any
events below the argument provided index. When executed, the calls notify the record that
the affected events are no longer accessed by the associated process and the events are updated
with the respective state change.
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Figure 2.5: Local view effects of commit and release primitives. These primitives signal the
record dependent views to proceed. This signal occurs after reducing the internal access privilege
to the respective events (the sliding window lowest bounds). After executing the specific commit
or release primitives (on top), the view sliding window is shrunk and the event to the left of the
dashed line becomes unaccessible.

Figure 2.5 is a diagram of a view to which several commits or releases are executed for
a single previous stall or update call, respectively. One can realize that both commit and
release control the tail (lowest bounds) of the view sliding window.

View events data access

Erbium borrows data access syntax from widely known C arrays (however using double
square brackets). Any view is usable if as it was an array, accessing the events in its connected
record. For example v[[i]] is a direct access to the event data in the record connected by v
and identified with the monotonic index i. Compared to arrays, which expect the usage of an
index within the array bounds, views expect an event index (monotonic unbounded index).

As previously mentioned, each record contains a buffer of events. This buffer is not strictly
defined by the Erbium language, as different architectures might require different buffer
implementations. Instead, buffers are implemented at the language runtime support level.
Independently of buffer implementation, the Erbium code has portability as a guarantee. This
is the case since event accesses are expanded by any Erbium supporting compiler, reducing
the overhead of these accesses to its minimum. There is a wide range of possible record
event buffer implementations, such as circular buffers or dynamic growing buffers, possibly
implemented through traditional arrays or indexed linked lists. Through Chapter 3, further
detail is given regarding possible buffer implementations and its minimal requirements for
Erbium’s integration.

Moreover, in a distributed memory architecture, it is not possible to have a single shared
buffer but instead many distributed ones. Albeit that, Erbium applications are implemented
assuming a single shared buffer and as long as event dependencies are respected, the compiler
lowering and runtime implementation must guarantee a valid and deterministic result.

As data accessibility is decoupled from synchronization, it is entirely the responsibility of
the programmer or compiler to introduce the necessary synchronization calls in order to pre-
serve data accessibility determinism. Static compiler analysis or debugging runtime libraries
can also be implemented to detect possible incorrect and non deterministic Erbium applica-
tions. The possible Erbium static analysis and optimizations are discussed in Chapter 6.

The inter memory space data transfers can also be requested explicitly. This is done
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Figure 2.6: Synchronization scenarios between commit and update.

through the transfer primitive. The primitive allows the programmer to anticipate which
events are necessary for the upcoming process iterations, performing the requested operations
and moving data from the different processes memory spaces. Each process independently
calls transfer primitives, notifying the record of the precise events the process produces and
consumes. Once the events are committed or released, an asynchronously transfer call is
immediately scheduled. This approaches boosts performance by hiding memory latency,
improving the data locality by anticipating future process data dependencies.

This primitive has a polymorphic implementation allowing the request of all the events
up to a specific index or a range of events (pair of indexes).

• transfer (view, i) - initiates as soon as possible an asynchronous transfer of the events
up to the event with index i to the local memory (local cache) of the processor executing
the process associated with view.

• transfer (view, li, ui) - initiates a similar transfer but only transferring the events
between the provided index boundaries. This version allows to reduce the transfer cost
in cases where only a subset of the events is required.

Moreover, this primitive is implemented through Erbium runtime support and is defined
based on architecture memory model and the available asynchronous memory transfer in-
structions. Details on implementation for both shared and distributed memory architectures
are presented in Chapter 3. As this primitive is redundant in shared memory architectures,
considering the existing memory transfer abstraction (caches), most of the examples available
in this document do not make use of the transfer primitive.

Synchronization example

Consider a simple producer and consumer application containing processes P (producer)
and C (consumer). During its instantiation both are provided with a record r in its arguments
and each connects its own private view (vw for P and vr for C) to r.

After several iterations of both processes execution, the record and views get to a point
similar to the one presented in Figure 2.6. The multiple paths presented in the diagram result
from both processes concurrent execution. Nevertheless and independently of the path, the
outcome of the execution is the same or determinate.
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Figure 2.7: Events life cycle state diagram on a multiple producer multiple consumer record.

As presented in the diagram, each of the process has an induction variable (i and j) and at
the top-left diagram i = j+2. At this point, as we have only two concurrent processes, either
P is the faster and the commit primitive is executed first, or C is and update is executed.
In case C is faster, the does not returns and it blocks, waiting for the dependent commit to
occur. Once the commit is executed the update returns and the consumer process proceeds
its execution. Once P executes the commit and it is perceived by C, the update unblocks
and C can continue its execution. Please notice, at the upper-right case, that both the reader
and writer view sliding windows are overlapped in the case where the update should block.
If the update primitive did not block, it would result in a non deterministic access to all the
overlapping events.

At any time, events present in a view sliding window can be written or read by the view
owing process (thread). The synchronization primitives guarantee deterministic access, dis-
allowing events from simultaneously being read and written from different processes. Please
notice that once an event changes state such event can never rollback to its previous state
(Figure 2.2).

2.2.4 Multiple producer and multiple consumer

Although the previous details focused attention to a single producer and consumer design,
Erbium supports multiple producer and multiple consumer communication and synchroniza-
tion patterns. This section focuses attention on the language design concerns for multiple
producer and consumer applications, part from a deeper discussion of the event dependencies
while preserving the language determinism for such types of communication.

Figure 2.7 layouts a similar event state diagram as presented in Figure 2.2. As the
previous figure focused in a single producer and consumer example, not all the dependencies
were exposed. This new diagram is split in five different contexts referring to two producers,
two consumers and the respective connected record shared memory space. Considering the
Erbium shared semantics, each producer and consumer is able to access exactly the same
events. Without extra logic, determinism would be in jeopardy in multiple producers or
consumer applications.

What should happen when only a single connected view commits?

As synchronization does not necessarily involve writing the event value, it is mandatory
that all the producers or consumers commit or release before the event can be considered ready
or no longer necessary, respectively. Moreover, although an event can be shared within multi-
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ple processes, in the context of a view, only itself is accessing such events. In a global context,
the record knows all the connected views and which events are possibly being accessed. The
record waits for every connected processes to access and dismiss any event, through commit
and release, before any further progress is observed by dependent operations, more precisely
by update and stall primitives.

The diagram in Figure 2.7 enforces commit or release dependency by including an “AND”
within the transactions from the multiple concurrent “writable” or “readable” states into the
record context “ready” or “no longer used” states.

If all the events are shared by concurrent processes, what is the consequence of accessing the
same event?

All the record events are shared between the connected writer or reader view types,
i.e., such events can be written or read by multiple processes. Read accesses do not impose a
problem, considering that most architectures perfectly support concurrent multiple reads. On
the other hand, if multiple processes write to the same event, either the event data becomes
a mix of both writes in case of more complex data structures or only one of the writes would
be effective. Moreover, the result of multiple writes to the same event has an unpredictable
outcome, or in other words, a non deterministic result.

Erbium language advocates for disjoint multiple producers, meaning that each of the
producers, when instantiated, is provided with enough information to decide which events it
should be writing to.

The transfer primitive is an essential part of multiple producers and consumers, specially
when considering distributed memory model architectures. Such is the case because in these
architectures the record of events (buffer) is distributed through the memory spaces local
to the processes. The transfer primitive usage allows to unify the many distributed buffers,
providing the necessary information to combine all the distributed buffer into a single uni-
fied one. This topic is further studied and explained in the distributed memory section of
Chapter 3.

How does multiple producer and/or consumer records impact views/processes?

Semantically, multiple producer and consumer records have no significant impact on how
views and processes are defined. Moreover, from the process code perspective it is impossible
to predict the number of record connecting views.

In multiple producer and consumer records where each of the processes accesses only a
subset of the events, all the non required events should be, as soon as possible either released
or committed. This strategy guarantees a faster progress for its dependent processes, by
anticipating event state progress for all of the process non dependent events.

As an example, consider two producer processes, each writing in groups of 10 events.
If the processes only commit by the index of its last produced event, the consumer data
availability is decided by the rate of the earliest producer process index. On the other hand,
if each process commits until its next required event, record progress is perceived earlier,
resulting in much faster synchronizations. Figure 2.8 presents possible execution traces of
the two presented scenarios. The version on the left delays the promotion of events into
“Ready” state since the process is only committing by the event it last accessed (wrote).
The right version anticipates commits of undesired events, avoiding global record progress to
occur at the rate of the smallest event index. The reader views or consumer processes must
do the same, although in this case using release primitive.
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P1 P2 Ready

v1[[1..10]] = · · · v1[[11..15]] = · · · < 0
commit(v1, 10) v1[[16..20]] = · · · < 0
v1[[21..30]] = · · · commit(v2, 20) < 10
commit(v1, 30) v1[[31..40]] = · · · < 20
v1[[41..50]] = · · · commit(v2, 40) < 30

P1 P2 Ready

v1[[1..10]] = · · · commit(v2, 10) < 0
commit(v1, 20) v2[[11..20]] = · · · < 10
v1[[21..30]] = · · · commit(v2, 20) < 20
commit(v1, 40) v2[[31..40]] = · · · < 30
v1[[41..50]] = · · · commit(v2, 40) < 40

Figure 2.8: Traces of two possible implementations executions of multi-producer processes. Un-
optimized version (left) delays the promotion of the events into “Ready” state. The optimized
version (right) anticipates the commit of the events not accessed by the process. Two left-most
columns are the executed operations for P1 and P2. The right-most column is the index of the
latest record ready event.

In a multiple producer and consumer record,this is the case because events are only
considered “Ready” or “No longer used” if all of its writer and reader views have committed
or released, respectively. Like previously mentioned, update and stall are the primitives
blocking and waiting for such conditions. If for some reason, one of the processes participating
in a multi producer or consumer record do not commit or release, the application progress
is at risk, resulting in deadlock.

Code complexity of both single and multiple producer and consumer records is discussed
in Chapter 3, together with its implementation details.

2.2.5 Initialization and termination

Initialization and termination are common sources of complexity and deadlocks in concurrent
applications. Erbium is no exception and precise attention to details is necessary, in order to
overcome these complexities.

Erbium’s process initialization and termination are dynamic and explicit. Initialization
occurs through process instantiation, while termination occurs only as a consequence of pro-
cess function termination. Both initialization and termination are explicit and on the demand
of the application programmer or compiler code generator.

Before any process is instantiated, the communication necessary records must be allo-
cated. Records should be provided as arguments during process instantiation. The process
code explicitly allocates views, later connected to the records that are provided as arguments.
Once connected, processes use the view to call synchronization primitives and access events.

Although by the current explanation initialization seems straightforward, there are a few
omitted details complicating this pattern, more precisely, multiple producer or consumer
communication.

How does the record knows how many views must be connected, before it notifies any reader
view for ready events?

Previous explanations only consider single producer and consumer records. In order
to maintain Erbium determinism, it is necessary that a record knows the initial expected
number of connecting views and waits for such number of connections, before any progress is
announced to reader views. For example, while not all of the writer views are connected and
have committed, no progress can be predictable by the reader views. Similarly the same has
to occur with reader views. While not all consumers are connected, no release primitive call
should change the state of the events and no events are recycled (stall is eventually blocked).
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Let’s assume two producer processes similar to the ones presented in Figure 2.8. In this
case, assuming P1 is executed in a much slower CPU and that P2 is able to connect and
commit before P1 is still being instantiated, it would be possible that a consumer could
connect and update before P1 is able to even connect. As process P2 does not write at the
indexes in the range 1..10, the events would be uninitialized.

In order to avoid such non-deterministic cases, it is necessary to tell the record the number
of views planning to connect. Erbium language defines a primitive to specify this initial
number of reader and writer views. Unless at least that specified amount of views is connected,
the record progress is halted.

View allocation and initialization is non blocking. If for some reason, for example ar-
chitecture properties, initialization must wait for all of the record connecting views, such
wait should only occur at update or stall primitives. Update and stall should be the only
two blocking primitives in Erbium. In a shared memory implementation (as presented in
Chapter 3), once a producer process has its views connected to the respective records, the
process can immediately start executing and writing events, even if the record is still waiting
for other connections. On the other hand, consumers depend on the connection and commit
of all the record expected writer views.

Moreover, update primitive blocks while not all of its record writer views have connected
and committed. Similarly, stall blocks if no sufficient resources are available. However, after
initialization, the resources are always available and producers should never be blocked during
initialization.

What about termination, how do consumers detect termination?

After processes have no more work to do (events to produce), they should declare their
intention to free their defined views, disconnecting them from the record. Once all writer
views get disconnected from a record, it is classified and flagged as zombie. Zombie records
do not allow further view connections, i.e., no more events are ever committed to zombie
records.

Once update is called on a zombified record, the update return value allows to identify
if the view connected record is a zombie, providing the process with enough information to
gracefully free its views and terminate. Once the last view connected to a record (reader
view) is disconnected (freed), the record data structure is deallocated. Moreover, a zombified
record cannot be “brought back to life”, i.e., it no longer can be connected by new writer
views. “Resurrecting” a record would result in non deterministic semantics.

2.2.6 Process hand-over

The Erbium applications not only can benefit from dynamic process creation, but as well
from dynamic communication network adaptation. These applications involve not only the
process dynamic creation and termination but also to transfer process responsibilities, i.e.,
the views of the upcoming process instances must be able to take the place of the terminating
ones, or as we call it to hand-over.

Erbium semantics supports such kind of dynamic communications. Any process hand-
over involves disconnecting (freeing) at least one view from the record and allows some other
process (view) to connect in its place and to continue its work.

In single producer single consumer examples, such problem might seem trivial and requires
no extra complexity, mostly because one can assume that if any of its views stops committing

30



2.2 Semantics

or releasing, the dependent process execution is halted, leaving no chance for data changes to
occur until the substituting view is reconnected. However, in a multiple producer or consumer
application, if a process is disconnected, the Erbium semantics guarantee the substituting
view is able to continue the work of the previously disconnected one without any lost events.
In other words, the newly connected view should have the same events in its sliding window
as the disconnected view had.

However, not always such hand-over constraints are necessary, more precisely if the process
does not need to continue the previous process work but rather only access the record content
from that point on. Such processes by definition have a non deterministic initialization,
considering its inability to block the record progress, i.e., the initial view sliding windows
cannot be guaranteed to contain any precise range of events.

Considering both scenarios, two types of view connections are supported:

• Registered connected views are identifiable by the creation of a view connection id.
Such id will allow other processes and views to connect as the substitutes of a previous
connected one. View termination in such cases specifies if the view identifier should
“die” with the disconnection or if other process is supposed to reconnect using this
particular view identifier,

• Non-registered connected views, although having deterministic properties while con-
nected, do not support process hand-overs. When disconnected from the record, no
information of its state is preserved.

Considering the newly registered view connections, it is necessary to disambiguate process
hand-over view disconnections from termination related ones. To express the two possible
scenarios, two “flavors” of view disconnection must be supported:

• disconnecting the view while keeping the view connection id, not allowing the record
to become “zombified” and permitting other processes to reconnect using this same
connection id,

• disconnecting the view and deleting the connection id, resulting in the last connection
using that same identifier, later resulting in the record termination (zombification).

As hand-over decision occurs at view disconnection, it is the responsibility of the process
to determine if a particular view is either being disconnected for a process hand-over or
permanently terminated. Moreover, when freeing a view, a process decides if any future
processes will attempt to connect to the record using the same view connection identifier.
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main

A

B0 B1 C0 C1

wait processes
to terminate

1 int main() {

2 run A(...);

3 }

4 process A (...) {

5 for(int i = 0; i < 2; i++) {

6 run B(...);

7 run C(...);

8 }

9 }

10 process B (...) {

11 ...

12 }

13 process C (...) {

14 ...

15 }

Figure 2.9: Process creation example. The diagram on the left shows with dashed lines the
different process instantiations coded in the example on the right. The presented hierarchy only
represents the process instantiations and its dynamic behaviour and not any type of hierarchical
dependency existing between the process instance creator and the instance.

2.3 Syntax

Like previously mentioned, Erbium processes are defined like traditional C functions without
a return type. However, process functions are prefixed with the process keyword guaranteeing
that compilers can distinguish and validate its usage. Please remember that process functions
cannot be called as traditional functions, but only instantiated (executed) concurrently.

• process name (type 1 param 1, . . . ) { . . . code . . . }

Like any other regular function, processes can be defined containing any type and number
of parameters, including variable number of parameters.

Process instantiation is also very similar to traditional C function calls, although prefixed
with the keyword run.

• run name (arg 1, . . . );

During compilation, the necessary validations are executed, guaranteeing the instantiated
functions are in fact processes, i.e., functions prefixed by the process keyword. The compiler
transformation lowers the presented syntax into a target architecture specific runtime support
library, later presented in Chapter 3. One such transformation is, for example, to convert both
process definitions and instantiations into single parameter function. The transformation
performs marshaling of all the process parameters into a single data structure. Typical
thread support libraries, such as the POSIX threads API, by default enforce single argument
thread functions.

Figure 2.9 code example illustrates how to define and instantiate processes right next to
the graphical representation of the coded instantiations. In this example, three hypothetical
processes (A, B, C) are defined. Process A is instantiated by the main function, while B and
C are instantiated twice from the process A. Once the process A creates all the instances
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1 process Producer(record int r)

2 {

3 view int view;

4 init view(view, WRITER, 1);

5 connect registered(view, r);

6 // STALL -> WRITE EVENTS -> COMMIT

7 free view(v);

8 }

9
10 process Consumer(record int r)

11 {

12 view int view;

13 init view(view, READER, 1);

14 connect registered(view, r);

15 // UPDATE -> READ EVENTS -> RELEASE

16 free view(v);

17 }

18 int main() {

19 record int rec;

20
21 add_registered_views(rec, 1, 1);

22
23 run Producer(rec);

24 run Consumer(rec);

25
26 return 0;

27 }

Figure 2.10: Record and process views initialization and termination.

of B and C, it will immediately terminate. Like explained before, processes do not contain
any explicit dependencies. On the other hand, the application main function contains a
list of all the instantiated processes and before terminating, the main threads waits for all
process instances to terminate. Moreover, Erbium applications only terminate once all the
instantiated processes have terminated.

Inter-process dependencies are always defined through records.

Records

Before the application instantiates any inter-process dependent processes, it must allocate
and initialize the required records.

• record T r, defines a new record r whose events store data elements of type T.

The type of the record (T ) must be any valid C language type. V oid typed records,
or records that would not transfer any data are not valid. The reasons for such design are
related with Erbium primitive relation dependencies and its optimizations, as explained in
Chapter 6.

The record data structure initialization and buffer allocation are implicit to the record
definition and converted to the target runtime support library during compilation. The record
buffers are lowered during compilation and depend on a final buffer implementation for the
specific architecture/application.

After its definition, the record should be set with its initial number of registered consumers
and producers.

• add registered views(record, nr readers, nr writers) sets the number of ex-
pected registered reader (nr readers) and writer (nr writers) views.

Views

Views are always defined and initialized inside of processes, being always associated to
that process and can never be transfer, i.e., must always be used in the context of its defining
process. Moreover, record accesses are always abstracted by the view data structure.
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• view T v defines a view v capable to connect to records of the same type (record T).

Before any process is able to communicate, it must first initialize its defined views and
connect them to their respective records.

• init view(view, type, horizon) specifies the view type and horizon size, later used
by compilers in static analysis and compiler optimizations.

• connect(view, record) connects view as a reader or writer (type provided at view
initialization) to the provided record.

In order to perform a registered connection, the record is first queried for a view connection
identifier through:

• view id get new view id(record, access type) which provides a view connection
identifier for the record.

Once the view id is obtained:

• view id connect registered(view, record, view id) connects view to the record,
registering it with the provided view id (view connection identifier) and returning the
connection identifier (view id). If the connection identifier parameter is omitted, a new
view connection identifier is created and returned from the function. The new identifier
is obtained through an implicit call to get new view id.

After the connection, the view is initialized and prepared to for regular usage by its
defining process. Once a process has finished using a view, it should call:

• free view(view, id terminate) disconnecting view from its previous connected record.
If id terminate is true its associated view connecting identifier should be removed, in
which case no other view (process) can connect to the record using the same identifier,
i.e., perform the hand-over of the disconnected view. Once disconnected, views cannot
be re-connected to any record.

A process may request any of its views for deallocation through free view primitive. This
primitive enforces no future view usages and is both used for view and record termination or
even to initiate an hand-over. In case of a hand-over, it is guaranteed that the reconnecting
view maintains the current sliding window bounds as previously disconnected view. The
parameter id terminate specifies if the view connection is permanently disconnecting or the
free view is part of an hand-over.

When all the writer view connection identifiers are removed from the record, it is consid-
ered as terminating, cascading termination to all the consumer processes. Once terminating,
the record rejects any future writer view connections.

Figure 2.10 is a code example for the process instantiation and record / view initialization
and termination, exemplifying all of the previous mentioned Erbium language constructs.

Process synchronization

As explained in this chapter, data communication and process synchronization are explicit
and exposed by the view data structure, its synchonization primitives and the events accesses.

The following synchronization primitives are available in Erbium:

• int update(view T v, int i) waits for all the events with index smaller than i from
the view v connected record. Its return value is always i unless all the writer views have
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requested to terminate, in which case the record is zombified, i.e., will never contain
an event with the index i. In this case, the update primitive returns the biggest event
index available (“in ready state”) accessible by the view v.

• void stall(view T v, int i) has similar semantics to update but is only used within
producer processes checking for resource availability. Unlike update, stall does not
return any value.

The commit and release primitives allow the process to announce which events are no
longer written or read, respectively.

• void commit(view T v, int i) tells its view that the events up until index i are no
longer modified (written) by the calling process (the view defining process). Moreover,
this primitive signals the record reader views (consumer processes) of the availability
of the now committed events. Processes should never access the committed events,
because doing so breaks the application determinism. If this process requires to read
past committed events, it must explicitly define a new reader view, connecting it to the
same record.

• void release(view T v, int i) is symmetrical to commit but instead allows a consumer
process to specify that the events with index smaller than i are no longer used by the
view and its resources can be reallocated to bigger index events.

Figure 2.11 is an example of a producer consumer application only showing the synchro-
nization related code. The diagram on the right is the expected control-flow graph from each
of the processes (full lines) and the synchronization primitives dependencies (dashed lines).

These primitives apart from synchronizing concurrent processes also manipulate the views
sliding window allowing processes to deterministically access the record shared events data.

Record events access

In Erbium only the events within the owned view sliding-window are accessible to pro-
cesses.

T& View::operator [[]] (const uint index) is a pseudo definition of the events ac-
cessor for a view with definition view T v. This definition allows right hand side usage (read)
as well as left hand side usage (write). Read or write usage of this operator is dependent on
the access type of the view. Writer views can write or read from any of the events already
stalled and not yet committed. On the other hand, reader views can only read events that
have been updated and not yet released.

Notice the following examples:

• v[[i]] = var; assigns the value of variable var to the event accessible through view
v with index i,

• var = v[[i]]; assigns the content of the event v[[i]] to the variable var.

The usage of this operator is guaranteed as valid, as long as the events accessed are within
the view (v) sliding window.
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1 process Producer (record int r) {

2 view int v;

3 init view(v, WRITER, 1);

4 connect registered(v, r);

5
6 for(int i = 0; i < 2; i++) {

7 stall (v, i +1);

8 ... algorithm events access ...

9 commit (v, i +1);

10 }

11 ... termination ...

12 }

13
14 process Consumer (record int r) {

15 view int v;

16 init view(v, READER, 1);

17 connect registered(v, r);

18 int i = 0;

19
20 while(update (v, i +1) &=& i +1)

21 {

22 ... algorithm events access ...

23 release(v, i +1);

24 i++;

25 }

26 }

stall
(waits)

commit update
(waits)

releaseProducer (w
riter view

)
C

onsum
er (reader view

)

start

end start

end

Figure 2.11: Producer-consumer synchronization code example and communication diagram.
The code represents a producer process performing ten loop iterations. At each iteration it
requests a new event (stall), performs its computation, and commits by the same index (the same
event). The consumer iterates within a while loop, waiting for newly events (update). Once the
producer stops committing, update stops returning bigger indexes and the while loop terminates.
At each iteration, the release is called, releasing previous required events and notifying any
blocked producer stall call. The diagram is a simplified control flow graph of the example on the
left. Solid lines are control flow dependencies while dashed lines are the dependencies enforced
by the Erbium synchronization primitives (stall, commit, update and release).

A view provides an abstraction for accessing events in a record buffer. This abstraction
does not enforce any type of buffer implementation as long as it is possible to match an
Erbium monotonic index to a buffer element (memory position).

2.4 Use cases

The previous section presented the Erbium language syntax, together with some small code
examples of the language constructs and primitives. This section presents more advance Er-
biums use cases, demonstrating the language properties and expressiveness, briefly comparing
with other higher level streaming languages.

The entry point “Hello World” Erbium application is a single producer and consumer
process communication, as presented in Figure 2.12. Both the producer and consumer pro-
cesses communicate through a record of int typed events, defined externally to this example,
similar to what was previously presented in Figure 2.10.
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1 process Producer(record int r)

2 {

3 view int v;

4 init view(v, WRITER, 1);

5 connect registered(v, r);

6
7 for(int i = 1; i <= 1000; i++)

8 {

9 stall(v, i);

10 v[[i]] = i;

11 commit(v, i);

12 }

13
14 free view(v);

15 }

16 process Consumer(record int r)

17 {

18 view int v;

19 init view(v, READER, 1);

20 connect registered(v, r);

21
22 int i = 1;

23 while(update(v, i) == i)

24 {

25 printf("Hello World: %d\n", v[[i]]);

26 release(v, i);

27 i++;

28 }

29 free view(v);

30 }

Figure 2.12: Simplest producer consumer example.

Each process defines its own view for int events (lines 3 and 18). Once defined, each of
the views is initialized, specifying both a type (reader or writer) and its horizon size. As soon
as a view is initialized it is ready to connect to the respective record.

The producer process iterates 1000 times and, at each loop iteration the value of the
induction variable i is assigned to the event with index i (Line 10). The stall primitive call
guarantees that the event with index i is available and ready to be written, while commit
specifies that the event is no longer accessed by the process, informing the record that the
process no longer writes this event. The record data structure, as it is defined as connected
by a single producer, immediately notifies any of its reader views.

Consumer process waits for the availability of events, through the update primitive. Once
update returns, the event with index i is read and used in printf to display a “Hello World”
message, followed by the data associated with the event i (Line 25). The release primitive
dismisses the event with index i as it is never read by the process again.

Consumer process termination is controlled by the return value of update. While update
returns the value provided in its index argument, the process must not terminate and iterates
once more (Line 23). If update returns a different value, it means that the record is zombified
and no new events are produced for the record.

Before terminating, both processes free their defined views through the free view primi-
tive.

2.4.1 Communication grain and peek and poke

Synchronizations primitives involve thread communication, which is an expensive operation
independently of the language, runtime implementation or target architecture.

One possible optimization to such application, considering that the application synchro-
nizes at each iteration, is to increase data communication grain size. Increasing grain size
makes processes to consume and produce more data per process synchronization. Doing
so, consumer processes have an increased start-up delay, since its first synchronization only
unblocks when its producer has at least produced as many elements as the grain size. On
the contrary, having such fine grain synchronizations increases the amount of cache incoher-
ences, resulting in extra overhead, considering that both processes are constantly accessing
the events associated with the same cache line. The benefits of grain control are mostly
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dependent on the target architecture and the record events buffer implementation.

Many languages define synchronization granularity level based on the communicated data
type [67, 81]. Erbium can do the same by defining a record typed with an array of int instead
of a single int. However, such approach implies that neighbour connecting processes are also
defined using the same data type. Moreover, such language design is not modular, as it
implies transforming all but the connecting processes in order to change the communication
granularity.

In Erbium, as synchronization is independent from data communication, it is possible
to reduce the number of synchronizations, calling synchronization primitives less often, i.e.,
instead of calling the primitives for each successive index, one calls the primitive only every
grain size iterations and with index increments of the same size. Such approach to com-
munication grain size adjustment does not enforce any refactoring of the communicating
processes and still benefits from the same cache and performance improvements as the other
approaches.

1 process Producer(record int r)

2 {

3 view int v;

4 init view(v, WRITE, g);

5 connect registered(v, r);

6
7 for(int i = 1; i <= 1000; i += g)

8 {

9 stall(v, i +g - 1);

10 for(j = i; j < i+g; j++)

11 v[[j]] = j;

12 commit(v, i +g - 1);

13 }

14
15 free view(v);

16 }

1 process Producer(record int[g] r)

2 {

3 view int[g] v;

4 init view(v, WRITE, 1);

5 connect registered(v, r);

6
7 int k = 1;

8 for(int i = 1; i <= 1000; i += g)

9 {

10 stall(v, k);

11 for(j = 0; j < g; j++)

12 v[[k]][j] = i +j;

13 commit(v, k);

14 k++;

15 }

16 free view(v);

17 }

Figure 2.13: Synchronization granularity control of Erbium processes. Both processes are a
transformation to the producer process presented in Figure 2.12, where grain communication size
is adjusted to g elements. The code in Figure 2.12 is only equivalent if 1000 is a multiple of g.

Figure 2.13 are the two possible examples to control synchronization granularity. Both
process transformations have the same benefits and drawbacks, i.e. produce the same over-
head with respect to synchronization and data communication, and delay the communica-
tion start by grain size elements. However, the process transformation on the right breaks
modularity considering the different types for its input events, forcing a refactoring to its
communicating processes.

Languages like StreamIt do not need such flexibility. Its goal is to abstract the programmer
from this complexities and to perform the granularity control through process fusion and
blocking, adjusting granularity at compilation time as shown by Gordon et al. [34]. As
Erbium is designed to be used as an intermediate language, it must have such expressiveness
and close to hardware semantics in order to allow further optimizations, as ones existing in
the StreamIt compiler.

Events peek and poke (direct access to events data) semantics together with its decou-
pled data communication and synchronization provide Erbium with sufficient expressiveness
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1 process Averager(record float r_in, record float r_out, int size)

2 {

3 view float vr;

4 view float vw;

5 int i = 0, j = 0;

6
7 init view(vr, READER, size);

8 init view(vw, WRITER, 1);

9
10 connect registered(vr, r_in);

11 connect registered(vw, r_out);

12
13 while((update(vr, i +size)) != i +size)

14 {

15 float total = 0.0;

16
17 stall(vw, j +1);

18
19 for(int k = 1; k <= size; k++)

20 total += vr[[i +k]];

21 vw[[j +1]] = total / size;

22
23 release(vr, i+1);

24 commit(vw, j+1);

25 i++; j++;

26 }

27
28 free view(vr);

29 free view(vw);

30 }

Figure 2.14: Averager process — it takes the last size float elements from the input record
(r in) and computes the elements the average, writing its result to an event of its writer view
(vr) previously connected to the record (r out). It repeats the process for every new event in the
input record.

to perform common streaming parallel optimizations. One example is process blocking (com-
munication grain size adjustments) which Erbium is able to do without the need for multi-
process transformations, achieving the same benefits only resorting to loop optimizations.
However, these transformations should be validated through inter-process analysis. Chap-
ter 6 further details these Erbium code analysis and the possible Erbium code optimizations.

2.4.2 Producer consumer pattern

Not all processes are either only consumers or producers. In fact, the majority of processes
are consumers and producers, computing data based on its neighbour connecting processes.

Erbium with its expressiveness and modularity allows programmers to develop process
libraries to simplify common tasks. Figure 2.14 is an example of such a process. It computes
the average of the last size floats, reading values from its input record (r in) and writing the
result to r out.

Notice the possible process re-usability, even when the programmer has no initial infor-
mation of the internal process implementation. Without any knowledge of the process code,
any programmer could simply use it for its own application, just like any traditional function
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1 process Fibonacci(record int r, int n)

2 {

3 view float v;

4 int i = 0;

5
6 init view(vr, READER, 2);

7 init view(vw, WRITER, 1);

8
9 connect(vr, r);

10 connect registered(vw, r);

11
12 // Initialize

13 stall(vw, 1);

14 vw[[1]] = 0;

15 commit(vw, 1);

16 stall(vw, 2);

17 vw[[2]] = 1;

18 commit(vw, 2);

19 i = 3;

20
21 while(i <= n)

22 {

23 stall(vw, i);

24 update(vr, i-1);

25
26 vw[[i]] = vr[[i-1]] +vr[[i-2]];

27
28 commit(vw, i);

29 release(vr, i-2);

30 i++;

31 }

32
33 free view(vr);

34 free view(vw);

35 }

Figure 2.15: Fibonacci number generator.

could.
Moreover, process modularity persists even when considering compilation, i.e., Erbium

processes can be compiled individually and later used. However, in such cases, the com-
piler cannot specialize the process code, for example doing grain size adjustments, for the
particular compiling application, but rather create multiple versions for the same process
code. Erbium processes are compiled as traditional functions inheriting all of its compilation
benefits and limitations. Although Erbium language was defined as an intermediate repre-
sentation application, modularity is one of its very important properties and should not be
neglected. Moreover, Erbium dynamic semantics allows its processes to configure views based
on provided parameters. For example, the example in Figure 2.14 sets its reader view horizon
size as the process size parameter.

2.4.3 Peek previous produced events

Many applications require processes not only to be simple consumer producers but also to
access their previous produced elements, i.e. current computing data is dependent on the
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past produced data. This type of parallel dependencies are very common in signal processing
applications. A very well known example is H264 decoder and encoder, where previous
encoded or decoded video frames and macro-blocks (square pixel regions) are dependent
on the previous decoded/encoded frames and neighbour macro-blocks, as parallelized and
explained by Azevedo et al. [14].

The code in Figure 2.15 is a fibonacci number generator. As anyone knows fibonacci ,
is a recursive function where:

fib(n) =

{
n : n ≤ 1
fib(n− 2) + fib(n− 1) : n > 1

The process generates and commits the fibonacci sequence, stopping once the fibonacci for
its parameter n is reached. In such example, the process creates both a reader and writer
views for the same record. The reader view is connected as non-registered. This is possible
because the process is also a registered producer of the record. Code execution ordering
guarantees that the reader view is connected before the process commits any data, enforcing
a deterministic initialization of the reader view. Moreover, during record initialization the
reader view connection is not taken in consideration in add registed views. This property
provides any application programmer with the ability to abstract itself from the internals of
the process code, focusing attention in the composition of the process instances in the final
application process graph.

Notice how the process performs initialization of the record for the first two fibonacci
numbers from line 12 to 16.

The process continues until it reaches the computation of fibonacci of n. At each iteration
the process updates and stalls for each view. As the process is also the producer for vr, update
does not need to verify its termination, as it is guaranteed that the data should be available.
Moreover, update will never block, however it depends on the actual runtime implementation.

In a shared memory model, one can assume that the update primitive usage is redundant,
as both views should be using the same shared buffer. Nevertheless, such scenario cannot
be guaranteed in a distributed memory architecture. In any case, if the compiler can detect
that both views connect to the same record, further optimizations can be done in order to
remove the redundant update.

Notice that although update is redundant in a shared memory architectures, the release
primitive is not. In the possible scenario where the consumers execute faster then the fibonacci
process, it is possible that the events in the fibonacci process are used after all the consumers
released them. This is not a problem if the fibonacci process is the single producer for the
record r, however, if there is another process stalling on the record r then it is possible that
the record events are recycled before the fibonacci process has completed its access to it.
In order to guarantee that those events are not recycled while they are still needed, it is
necessary to create an extra reader view connection to the record and perform a release once
those events are no longer necessary, as presented in the fibonacci example.

2.4.4 Broadcast pattern

As previously mentioned, the Erbium event records support multiple connections from both
writer and reader views. Record data structures have shared buffer semantics, i.e., indepen-
dently of its target architecture and its memory model, records are shared entities. Runtime
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Figure 2.16: Data duplication vs. data broadcast connectivity diagrams, represented through
Erbium connectivity graphs. In the Erbium connectivity graphs, rounded side rectangles rep-
resent Erbium processes and rounded edged rectangles are the views defined by the touching
process rectangles. Diamond shapes are records and their edges represent writer or reader view
connections.

support and compiler transformations guarantee the correct integration with different targets
architecture properties.

The Erbium language and its multiple consumer and producer properties allow many
concurrent processes to access, in a local fashion (views), shared centralized data within record
events. Such properties, similarly, allow data distribution (broadcasts) through consumer
processes without any expensive data replication. In distributed memory architectures, data
is forcefully moved to the processor local memory, making broadcasts “more expensive”1.

Figure 2.16 presents the duplication (left) and broadcasts (right) patterns represented as
Erbium’s network connectivity graphs. These type of graphs are widely used throughout the
document, to graphically represent Erbium applications.

The left hand-side graph represents the common single producer and consumer commu-
nication approach, used by many high-level parallel streaming languages. A special process
is responsible of replicating data elements from the input buffer into the many output ones.
As one might expect, such approach to data-replication is both performance and memory
expensive considering the required copies and memory space.

For data broadcasting, Erbium advocates programmers or code generators to use the
record shared semantics. Multiple reader views should connect directly to the record, instead
of being previously distributed through independent records. Erbium connections do not
necessarily imply any type of data distribution through the connecting consumers. All the
events available in the record are accessible by all consumers. It is the process task to decide
which events are important or not for the particular usage interest.

Moreover, the same process can be instantiated multiple times, also connecting to the same
record. However, unless the process instance is created with different arguments, resulting in
different output data, instance replication should be avoided. One possibility, as an example,

1 As shared memory architectures implicitly do such copies through caches, distributed memory imple-
mentations only appear inefficient but in fact can perform even better then counterpart, depending on the
actual application.
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is to connect multiple times the previous presented Averager process to the same record,
while using different size arguments.

The fmradio from GNU radio package, further analyzed and benchmarked in Chapter 3,
uses broadcast patterns, exploiting the application parallelism, while minimizing memory
footprint and synchronization overheads.

2.4.5 Splitters and Mergers

1 process splitter rr (record TYPE r, nr outs, ...)
2 {
3 view TYPE vr;
4 view TYPE vw[nr outs]; // Dynamically allocated
5 int c = 0;
6 int size [nr outs ];
7
8 va start (ap, nr outs);
9 for (int k = 0; ( size [k] = va arg(ap, int)) > 0; k++)

10 {
11 init view (vw[k], WRITER, size);
12 connect(vw[k], va arg(ap, record TYPE);
13 }
14
15 init view (vr, READER, size);
16 connect registered(vr, r );
17
18 int i = 0, j [nr outs] = { 0, 0, ... };
19 while(update(vr, i + size [c ]) != i + size [c ])
20 {
21 stall(vw[c], j [c] + size [c ]);
22
23 for(int k = 1; k <= size[c]; k++) // Loop copying
24 vw[c][[j [c] +k]] = vr[[i +k]];
25
26 commit(vw[c], j [c] + size [c ]);
27 release(vr, i + size [c ]);
28
29 i += size[c]; // Increment local indexes
30 j [c] += size[c];
31
32 c++;
33 if (c == nr outs)
34 c = 0;
35 }
36
37 for(int k = 0; k < nr outs; k++)
38 free view(vr[k ]);
39 free view(vw);
40 }

1 process merger rr(record TYPE r, int size, nr ins, ...)
2 {
3 int i ;
4 view TYPE vr;
5 view TYPE vw[nr ins]; // Dynamically allocated
6 int c = 0;
7 int size [ nr ins ];
8
9 va start (ap, nr ins );

10 for (int k = 0; ( size [k] = va arg(ap, int)) > 0; k++)
11 {
12 init view (vr[k ], READER, size);
13 connect(vr[k], va arg(ap, record TYPE);
14 }
15
16 init view (vw, WRITER, size);
17 connect registered(vw, r);
18
19 i = 0; j [ nr ins ] = { 0, 0, ... };
20 while(update(vr[c], j + size [c ]) != j + size [c ])
21 {
22 stall(vw, i + size [c ]);
23
24 for(int k = 1; k <= size[c]; k++)
25 vw[[i +k]] = vr[c][[j +k]];
26
27 commit(vw, i + size [c ]);
28 release(vr[c ], j + size [c ]);
29
30 i += size[c];
31 j [c] += size[c];
32
33 c++;
34 if (c == nr ins)
35 c = 0;
36 }
37
38 for(int k = 0; k < nr ins; k++)
39 free view(vw[k]);
40 free view(vr);
41 }

Figure 2.17: Round-robin splitter (left) and merger (right) processes.

Many high-level languages like StreamIt provide data split and merging constructs to
distribute data through parallel tasks, converted later to intermediate tasks performing
data splitting and merging. As mentioned in the previous broadcast use case, using ex-
tra tasks/processes for splitting and merging is not the best when considering Erbium. In
any case, Erbium expressiveness is not restricted to any specific implementation.

The code in Figure 2.17 present round-robin data partitioning splitter and merger pro-
cesses. Data distribution is defined based on the provided arguments (variable number of
arguments). The nr outs and nr ins parameters define the number of actual records in
which either the splitter or the merger will distribute or combine data. The remaining pa-
rameters are pairs of both the size of events, each of the records should contribute for the
actual split or merge, as well as the record in which those events are written or read, respec-
tively. The statement run splitter rr(in, 2, out1, 5, out2, 10) splits the content of
the record in through the 2 (second argument) records out1 and out2, copying the content
of the first 5 events to out1 and the next 10 events to out2, repeating its execution until the
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1 process Averager(record float r in, record float r out,
2 int average size ,
3 int payload size , int offset , int size )
4 {
5 view float vr;
6 view float vw;
7 int i = 0;
8
9 init view (vr, READER, av size);

10 init view (vw, WRITER, 1);
11
12 connect registered(vr, r in );
13 connect registered(vw, r out);
14
15 int first index = offset ;
16 int last index = first index + size ;
17 i = first index ;
18 release(vr, i );
19 commit(vw, i);
20
21 while((update(vr, i + av size )) != i + av size )
22 {
23 float total = 0.0;
24
25 stall(vw, i + 1);
26
27 for(int j = 1; j <= av size; j++)
28 total += vr[[i +j]];
29 vw[[i +1]] = total / av size ;
30
31 release(vr, i+1);
32 commit(vw, i+1);
33 i++;
34
35 if ( i == last index)
36 {
37 first index += payload size;
38 last index = first index + size ;
39 i = first index ;
40 release(vr, i );
41 commit(vw, i);
42 }
43 }
44
45 free view(vr);
46 free view(vw);
47 }

Figure 2.18: Three possible split and merge scenarios for the same set of processes instances
(left side) and an Averager process code with embedded split and merge logic (right side).

record in terminates. The left most graph in Figure 2.18 is an example connectivity graph
for split and merge processes.

Erbium does not advocates/needs splitter or merger processes. Such approach not only
requires an extra thread and more resources to allocate the needed extra records. Although
providing Erbium with a modular approach to data splitting and merging, it also limits
Erbium processes expressiveness. For example, using the splitter process, worker processes
are limited to access to the splitter predetermined data. Splitter (and merger) processes imply
fully data parallel workers, i.e., workers must only depend on subsets of the input and no
events can be shared between the different worker processes. For example, data parallelizing
the previous presented Averager process (Figure 2.14) is not possible using the presented
splitter and merger.

Data distribution can be done within the target process code by providing the process
instance with enough information to consume and produce only a subset of the events. In most
cases, converting processes into data parallel versions only requires a small code adaptation.
Figure 2.18 presents a data parallel Averager implementation, as well as the Erbium possible
data partitioning schemes (three connectivity graphs).

The presented Averager algorithm contains three new parameters allowing to define which
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range of the input events is consumed and produced by a particular process instantiation. The
majority of the process code is left untouched, only requiring the inclusion of an index shifting
to the instance relevant indexes at each iteration (Lines 15-17 and 37-39). Moreover, each
time a shift of the indexes is computed, the non-relevant events are released and committed,
in conformity with what was previously said in the example of Figure 2.8.

None of the graphically presented approaches is preferable over the other. Each one has
its own benefits.

(a) The splitter and merger independent process implementation allows for a more modu-
lar implementation, allowing programmers to compose applications with producer and
consumer processes,

(b) Embedding the process split and merge functionality in first and last processes of the data
partitioning provides the flexibility of explicit preform data splitting and merging. In any
case, such approach reduces modularity considering the required process specialization.
Nevertheless, none of the processes used between the splitter and merger processes needs
to be changed. Performance improves thanks to the reduced number of process instances
required,

(c) The last approach takes full use of multiple producer consumer records, reducing the
number of records from the previous presented approaches. The Averager code, as
presented in the figure, is implemented in this way.

Like previously said, none of the presented approaches is preferable over the other. This
is the case because, in order to decide for a particular approach, it is necessary to also define
an application, memory model, thread scheduling policies and even to analyze the runtime
support implementation. More importantly, Erbium supports the expressiveness to exploit
all three work splitting (data distribution) approaches (left side of Figure 2.18), eventually
supporting a greater number of high-level languages through its intermediate representation.

2.4.6 Process hand-over

Many applications might require Erbium to have a more adaptive behaviour with respect to
external or even internal process factors. Examples are event driven algorithms that require
to adapt or change behaviour during execution. One can claim, correctly, that a single process
could implement all of the possible cases and change state in order to adapt. However, if the
adaptation involves disconnecting part of the process network while still sharing the same
data input record, such extreme reconfiguration would be impossible.

Process hand-over enables such dynamic network adaptability by allowing processes to
disconnect and give the opportunity to other processes to connect in their place.

Figure 2.19 is a simple example of a process hand-over. Both processes apart from the
usual record parameters also include two view connection identifiers view id, obtained exter-
nally to the process using the primitive get new view id, as previously explained.

At every process iteration both processes verify if the process should perform an hand-over
based on the output of the function should switch algorithm. This function takes its decision
solely based on the current process state, i.e., its own reader view events data, meaning the
process code should never access global variables or other process external data structures.

When a process requires to hand-over, it frees its views specifying a process hand-over is
about to occur (second argument of free view ). Before terminating, the process creates an
instance of the substituting process.
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1 process Algorithm1(record Data r1, view id id r1,
2 record Data r2, view id id r2)
3 {
4 view int vr;
5 view int vw;
6 init view (vr, READER, 1);
7 init view (vw, WRITER, 1);
8
9 connect registered(vr, r1, id r1 );

10 connect registered(vw, r2, id r2 );
11
12 int i = view tail(v) + 1;
13 while(update(vr, i) == i)
14 {
15 hand over = should switch algorithm(vr);
16 if (hand over)
17 break;
18
19 stall(vw, i)
20
21 ... /∗ algorithm 1 ∗/
22
23 commit(vw, i);
24 release(vr, i );
25 i++;
26 }
27
28 free view(vr, !hand over);
29 free view(vw, !hand over);
30
31 if (hand over)
32 run Algorithm2(r, id r1, rw, id r2 );
33 }

1 process Algorithm2(record Data r1, view id id r1
2 record Data r2, view id id r2)
3 {
4 view int vr, vw;
5 init view (vr, READER, 1);
6 init view (vw, WRITER, 1);
7
8 connect registered(vr, r1, id r1 );
9 connect registered(vw, r2, id r2 );

10
11 int i = view tail(v) + 1;
12 while(update(vr, i) == i)
13 {
14 hand over = should switch algorithm(vr);
15 if (hand over)
16 break;
17
18 stall(vw, i)
19
20 ... /∗ algorithm 2 ∗/
21
22 commit(vw, i);
23 release(vr, i );
24 i++;
25 }
26
27 free view(vr, !hand over);
28 free view(vw, !hand over);
29
30 if (hand over)
31 run Algorithm1(r, id r1, rw, id r2 );
32 }

Figure 2.19: Simple example of process hand-over. view tail is a pseudo function to retrieve
the index left by the disconnecting process.

Hand-over process instantiation should only occur once the view connection identifiers are
already freed from views, otherwise both processes will access the record events concurrently,
resulting in a non deterministic data store in the shared record events.

Complex hand-over

Like mentioned before, with process hand-over, it is possible to dynamically redesign
the network of processes. Performing an hand-over of such level implies to guarantee that
every process in the network deterministically connects and disconnects from the application
process network. It is not the job of the language to guarantee the determinism in this case,
but rather the programmer responsibility, respecting the language rules.

In a multi-process hand-over, one must perform the hand-over of the graph boundary
processes, implying the synchronization between the head and tail process of the substituting
network.

Figure 2.20 is a graphical representation of an hypothetical network of processes. The
figure is split in the intermediate stages of a process network hand-over. The numbered edges
represent the order of the required operations occurring during the hand-over. The left most
diagram is the initial state of the network. The dashed rectangles represent the boundaries
of the substituting network of processes.

In this example the process A is responsible to detect when an hand-over is requested.
When it happens, the process commits any remaining events that should be computed within
the existing network of processes. Once no more data need to be produced, A commits a
message to the record shared with C (rs) announcing an upcoming hand-over (1). At this
point, A frees any reader view for an hand-over, keeping the connection identifier open and
frees its writer view permanently (2).

The process A instantiates all the processes of the substituting network (3), creating
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Figure 2.20: Complex hand-over of a network of processes.

all the required internal records and composing the network by providing those records as
arguments of the implied processes instantiations.

As a last step, A commits again to the record shared with C, this time providing references
to the new records created during the new network instantiation (4), followed by the freeing
of the respective view (rs).

At this point, the process W from the new network takes the place of A in the applica-
tion and performs the connection to the view identifier freed by A (5). At this point any
record data available in the top most record is consumed by process W and the new network
immediately starts its work. This implementation allows a continuous application progress
by quickly initiating the new network of processes.

As the process A writer views are freed permanently, zombification is propagated through
its network stream of processes. Once zombification reaches the process C (7), as the process
has no more data to consume, it verifies if the record rs contains any “announcement”,
meaning an hand-over (8). If this is the case it should also contain an extra commit with the
new records created through the network instantiation at step 3.

At this point and depending on the actual announce at record rs the writer views are
freed to hand-over, The process C instantiates the tail process missing of the new network.
It does it, providing the new process with both the view connection identifier (of the previous
freed writer views) and the previous reference record (provided by process A in step 4)

After instantiation, the process W connects to all the necessary records, more precisely
at rs′ which is substituting the previous rs record (10) and connecting to the network output
record using the view identifier (11).

After instantiating process W , the process C terminates and the network hand-over has
completed.

Such complex process hand-overs are not intended to be coded by hand, but instead to
be generated when compiling more abstracted and simplified high-level languages.

2.4.7 Data locality/pre-fetching

The Erbium language also supports data locality optimizing primitives. This is the case of
the transfer primitive allowing processes to anticipate which events are soon read or written
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1 process Producer(record int r)

2 {

3 view int v;

4 init view(v, WRITER, 1024);

5 connect registered(v, r);

6
7 for(int i = 1; i <= N; i += 128)

8 {

9 transfer(v, i+127)

10 stall(v, i+127);

11 /* Produce events v[[i..i+127]] */

12 commit(v, i+127);

13 }

14
15 free view(v);

16 }

16 process Consumer(record int r)

17 {

18 view int v;

19 init view(v, READER, 1024);

20 connect registered(v, r);

21
22 int i = 0;

23 transfer(v, 1024)

24 while(update(v, i+128) == i+128)

25 {

26 /* Consume events v[[i+1..i+128]] */

27 release(v, i+128);

28 transfer(v, 1024 +i +128)

29 i += 128;

30 }

31 free view(v);

32 }

Figure 2.21: Transfer primitive example.

by the process.

Both runtime and compilers should use this primitive as a hint to temporal and spatial
locality of the communicating data. The primitive is independent of the architecture memory
type, being it either a cache pre-fetch in case of a shared memory architecture or an explicit
asynchronous memory transfer call in distributed memory architectures.

This primitive does not immediately triggers a transfer operation. Instead, and depending
on the target architecture and runtime implementation, it would store the ranges of events
provided in its arguments, which would later be used by the synchronization primitives calls
(update and commit) to initiate the data transfer. Moreover, no transfer primitive by itself is
responsible for any explicit data transfer, but only the combination of the transfer primitive
and the synchronization primitive calls. As an example, if a producer commits for a range
already already expected by a consumer transfer call, the data transfer is initiated at the
commit primitive call. Although the transfer primitive is executed before the commit, in the
consumer process, the transfer only initiates when the events are committed. Nevertheless,
the transfer decision is tightly related to the target architecture and runtime implementation.
As an example, in distributed memory architectures, the transfer can only occur when both
producer and consumer are ready. The producer must have committed the data, but also
the consumer must have sufficient resources in its local memory to accommodate the transfer
waiting events.

Figure 2.21 is an example of a producer consumer application using transfer primitives
to anticipate data communication between processes memory regions.

On the producer side, transfer primitives are executed at any point before the commit
primitive. As there is only a single producer, transfer is used for all the events committed.

The consumer side example is more interesting considering transfer always requests to
fill the view sliding window.

In a multiple producer and consumer example, the transfer primitive has a much greater
interest and impact. In distributed memory architectures, the transfer primitive also allows
to disambiguate which producers are responsible for the respective event index ranges, being
a requirement to Erbium’s determinism. Without the transfer primitive it would be impos-
sible to merge the multiple buffers associated with the concurrent producers. Moreover, the
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transfer primitive allows to directly communicate data between the producer and consumer
processes without ever merging all the distributed buffers into a centralized one, reducing the
necessary number of copies and its expensive star communication pattern.

The Chapter 3 further analyzes the transfer primitive implementation for both shared
and distributed memory architectures.

2.5 Summary

High level languages and architectures obey very different design goals and constraints. Com-
pilers bridge the gap between these abstractions, by adapting and optimizing languages into
closer-to-hardware representations. This is well understood for sequential languages. But
parallel languages are yet to find a core support from compilers, mainly because no represen-
tation has sufficed to all the variety of architectures and parallel languages. Streaming and
data-flow languages expose parallelism by partitioning the application into concurrent tasks
connected through dependent data or data streams. We focus on this very expressive form
of parallelism because of its intrinsic semantical properties (determinism in particular), and
because it exposes more static properties for compilers to transform the code and adapt it to
the parallel target.

This chapter presented Erbium, a streaming language capable of representing higher level
streaming languages as an intermediate representation or being used as a performance lan-
guage for efficiency programmers. We detailed the semantics and syntax of its main data
structures (records and views), and explain some particular use cases for the language, such
as data peek and poke with decoupled synchronization, multiple producer and consumer
record accesses, data broadcasting, work-splitting and process hand-over in an attempt to
demonstrate all of the Erbium language properties and features.

Chapter 3 further details the language, by explaining a x86 shared memory implementa-
tion of the language data structures and primitives exploiting the architectures properties.
It compares with other types of implementations and presents a possible distributed memory
implementation. Later chapters explain how to embed Erbium as a compiler intermediate
representation, how to lower higher level languages into the intermediate representation and
how to optimize it.

49



2. LANGUAGE

50



Chapter 3

Runtime

Different processors with the same instruction set architecture can contain many subtleties
generating very distinctive execution times from the same executing binary. Compilers must
be precisely configured for each precise machine, sometimes involving specific optimization
passes or pass selection. On multiprocessor architectures, these subtleties include the number
of available cores, the structure of the cache hierarchy, the nature of the interconnect and
the coherence algorithms. Such variations involve precise customization of both compilers
and runtime libraries. In addition, the runtime libraries themselves should be specifically
compiled for the target micro-architectures and interconnect.

The first Erbium implementation relied solely on a runtime library and macro expansions.
This implementation turned out to be too slow, considering how high-level such library and
set of macros were. To obtain an efficient implementation, it quickly appeared that only
part of the language should have been implemented through the runtime library, where most
commonly used language constructs were directly expanded by the compiler. The most ob-
vious case was the translation of view/record accesses into low-level buffer/memory accesses:
function calls, the monotonic indexing buffer addressing and control flow overheads must be
systematically eliminated considering the number of times such abstractions are used. On
the other hand, synchronization constructs cannot be lowered and optimized by the com-
piler as easily as memory accesses. While optimizations for buffer accesses are relatively
portable and result in compact code, at least for shared memory architectures, this is not
the case with Erbium synchronization. Synchronization is dependent on many details of
the target architecture, memory model and/or communication API. As a result, optimized
synchronization code can be quite large and complex. Hence the need for runtime support
for synchronization in general. Moreover, synchronization, record and view allocation, ini-
tialization, termination and process instantiation are implemented within a Erbium runtime
library, abstracting compilers from the complexity of such operations.

This chapter describes the runtime library for Erbium, called libEr, and its implemen-
tation. The described implementation supports shared memory x86 instruction set archi-
tectures. Its memory consistency model allows for a busy-waiting, lock-free implementation
not relying on memory fences or atomic operations. Such implementation makes more effi-
cient in applications where the number of processes is less than or equal to the number of
CPUs, considering the lack of a good legacy scheduling policy for such type of concurrent
applications.

In addition to the busy-waiting solution, this chapter also describes alternative designs

51



3. RUNTIME

int index
int record_index
Record T *record
enum VType type
View *next

View
Buffer *buffer
int upper_index
int lower_index
LinkedList readers
LinkedList writers

Record
void *buffer
int elem_size
int nr_elems

Buffer

Figure 3.1: Simplified libEr record and view data structures.

supporting lazy-waiting and user-level threading, providing support for more power-efficient
systems. These designs also consider bigger, over partitioned, and load unbalanced parallel
applications, as well as alternative operation environments, including Non-Uniform Memory
Access (NUMA) architectures.

Fastflow is closely related to the libEr [9]. It is a C++ programming pattern for streaming
applications dedicated to shared-memory platforms. Its lock-free, fence-free synchronization
layer has comparable performance to our single-producer single-consumer record. It supports
multi-producer multi-consumer communication at the expense of an additional arbitration
thread and memory copying. Because index-range negotiation is exposed to the compiler
in the intermediate representation, our runtime achieves lock-free, fence-free multi-producer
multi-consumer communication without these overheads.

The chapter ends with the concept design of a distributed memory implementation, to
illustrate the portability potential of Erbium, and how Erbium and libEr is able to support
explicit communications in particular.

3.1 libEr implementation

libEr is the actual implementation of Erbium runtime system, implementing Erbium sup-
port for process creation, synchronization and its data structures (record, view and buffers)
allocation, initialization and termination. The presented version of libEr supports the com-
monly known X86 instruction set architectures, exploiting its shared memory model, its cache
coherence and memory consistency models, minimizing synchronization cost and primitives
overhead.

Similarly to the language definition, the runtime library also defines record and view data
structures. These data structures are not directly associated with any specific event type, as
presented in the previous chapter record and view definitions. Instead the record is connected
to a buffer data structure that is allocated using the type declared in the language record
and view definitions.

Figure 3.1 diagram shows the content of both the record and view data structures. Each
record is associated with a buffer data structure, responsible to store all of the record events
data. The buffer is composed of a non-typed memory region, size information of the original
type and buffer capacity.

The record data structure includes two lists, used to keep track of all the connected views
for reader or writer views. One of the lists stores pointers to the writer views while the other
pointers to reader views. In the diagram, the lists are represented as “LinkedList”, which
is just an abstraction to all the necessary pointers to the view data structure necessary in
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upper index = MIN {i : ∀view ∈ record.writers , i = view.index }
lower index = MIN {i : ∀view ∈ record.readers , i = view.index }

Figure 3.2: Record upper/lower delimiters and its computation.

an efficient linked list implementation, more precisely pointers to the first and last linked list
view elements.

Upper and lower indexes are the attributes used within the execution of the update and
stall primitives, respectively. The upper index separates the events (buffer positions) still
being written by any of the connected views from the already committed and ready events.
The lower index on the other side is the index separating events still being accessed (read)
by any view, from the no longer necessary and released events. Please refer to Chapter 2 to
remember event states and Erbium synchronization.

The view data structure in its simplest form defines only an index and a pointer to the
record it is connecting to. Its index attribute is incremented by commit or release primitive,
depending if the view is a writer or a reader, respectively. In any case, its value should be the
maximum index ever provided through these primitives. In other words, the index attribute
is the event index marking the tail of the view sliding window.

Within its simplest form view data structure is inefficient and is not recommended. Two
more attributes are necessary for the data structure. The type attribute classifies the view as
either a reader or writer. This attribute avoids the record to always traverse the two linked
lists in order to identify the view type. The record index attribute is a “caching” attribute,
meaning that, during the synchronization update or stall calls, the value from upper or lower
indexes is copied to record index attribute, reducing the number of accesses to the shared
record data structure and eventually reducing synchronization overhead of future similar
synchronization primitive calls.

Index based synchronization

Process synchronization occurs as an interaction between the views and the record data
structures using the view synchronization primitives. Progress is acknowledged to the runtime
system through commit and release primitives, where the local view index attribute is written,
changing the tail of the view sliding window, specifying the highest no longer accessed index
position (Algorithms 1 and 2).

The update and stall primitives block process execution while not enough record events
are in “ready” or in “no longer needed” state, respectively.

The ready or no longer needed events state boundaries are flagged by upper or lower in-
dexes, also known as record indexes. The upper index is computed based on the arithmetical
minimum of the index of all the record connected writer views. Lower index is computed
similarly to upper index but instead based on the index of the reader views. Please consider
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Figure 3.3: Minimalist update and commit primitives implementation state diagrams.

Figure 3.2 that outlines a diagram showing a record and its respective record indexes. Below
are the upper and lower indexes calculation equations based on the connected views.

All the connected writer views have an index above its record upper index. Reader views
always contain an index between the lower and upper index.

The stall or update primitive calls block execution if the requested index, provided as ar-
gument, is bigger than lower or upper index, respectively. Primitive semantics were explained
in Chapter 2.

Figure 3.3 shows a shared memory implementation, as a state diagram, of both commit
and update primitives. The commit primitive writes its local view index attribute if i is
bigger than the current view index, validating for the monotonicity of the view index. The
update on the other hand verifies if record index (its local cached upper index attribute) of
the view is bigger than its argument i in which case it returns i immediately. Otherwise,
it checks if upper index is different from record index in which case it copies its value to
record index view attribute and rechecks the initial condition. If the condition is still false
and the upper index is equal to record index, the record upper index attribute is computed
as expressed in Figure 3.2 (also known as minimum computation), copying its result to the
record index view attribute. Once a minimum is computed, it loops again and verifies if
the unblocking condition has succeeded. If after the upper index minimum computation the
condition is still false, it verifies if the producer processes have been terminated, in which
case it should return the value from upper index. Within the following loop iterations,
before the minimum computation execution, the process will “sleep”1 in which case the
thread scheduler might context switch current thread in an attempt to execute other waiting
processes (Algorithm 3). Termination detection (record zombification) is explained later in
the chapter.

1The sleep operation used in both update and stall is implemented using an x86 assembly instruction that
performs a micro second sleep. The sleep results in a thread context switch in case there are other threads
waiting to execute. This sleep is non blocking, i.e., no thread needs to wake it.
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Algorithm 1 Writer view commit

1: function commit(view,index )
2: if view.index < index then
3: view.index ← index
4: end if
5: end function

Algorithm 2 Reader view release

1: function release(view,index )
2: if view.index < index then
3: view.index ← index
4: end if
5: end function

The stall and release have similar interaction with record and view data structures. How-
ever, stall predicts if it should block by comparing argument index i against the lower index
record attribute. Stall does not return any value and does not check for record termination.

Contrarily to update/commit, stall/release have semantical differences with respected to
their index arguments. The stall index refers future newly available events while in release
such index refers to no longer needed ones. In other words, the release of an event with index
i does not synchronize with a stall executed for the same index i, but for the index i+ size,
being size the number of events capable to be stored in the record. It is clear that such
indexes, although related must be shifted before being compared. The shift is the number of
events capable to be stored in the record (record.buffer.nr elems ), i.e., the record buffer size.
Instead of performing such shift at every call to stall primitive, the shift occurs each time
record index is assigned (lines 8 and 10 of Algorithm 4). This shifting and the termination
are the only implementation differences between update and stall primitives.

As a reminder from previous chapter, stall unblocks whenever enough events have been
released by the consumer processes, or in other words when the record buffer contains enough
capacity to allocate the newly requested events through stall.

Algorithm 3 Update

1: function update(view, index )
2: iteration ← 1
3: while view.record index < index do
4: if iteration > 1 then
5: if is record zombie (view.record ) then
6: return view.record index
7: end if
8: sleep ()
9: end if

10: if view.record.upper index ≥ index then
11: view.record index ← view.record.upper index
12: else
13: view.record index ← compute min (view.record, Writers )
14: end if
15: iteration ← iteration + 1
16: end while
17: return index
18: end function
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Algorithm 4 Stall

1: function stall(view, index )
2: iteration ← 1
3: while view.record index < index do
4: if iteration > 1 then
5: sleep ()
6: end if
7: if view.record.lower index + view.record.buffer.nr elems ≥ index then
8: view.record index ← view.record.lower index + view.record.buffer.nr elems
9: else

10: view.record index ← compute min (view.record, Readers )
11: +view.record.buffer.nr elems
12: end if
13: iteration ← iteration + 1
14: end while
15: return index
16: end function

Record indexes computation

Consider a consumer example performing an update. The consumer itself does not know
how many reader or writer views the record is connected by. It performs update to request
the events up to a specific index. Update as seen in Algorithm 3 starts by verifying if its local
record index attribute (cached upper index) is bigger than the requested argument index
(Line 3). When it fails a minimum computation of all the writing views executes, calculating
a new upper index attribute value (Line 13).

The minimum computation takes the view arguments (record and type) and decides which
of the view linked lists and record indexes it should compute the minimum for. Computing
the minimum occurs through a linked list traversal comparing the index of all its views.
Algorithm 5 presents the minimum computation for both the record indexes, depending on
the type parameter.

Algorithm 5 Minimum record view index computation, used in stall and update

1: function compute min(record, type )
2: if type = Writers then
3: list ← record.writers
4: index ptr ← &record.upper index
5: else
6: list ← record.readers
7: index ptr ← &record.lower index
8: end if
9: tmp ←∞

10: for view ∈ list do
11: tmp ← MIN (tmp, view.index )
12: end for
13: ∗index ptr ← tmp
14: Return tmp
15: end function

Considering Erbium’s multiple producer and consumer support, it can occur that dif-
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ferent stall and update calls are executed simultaneously resulting in concurrent minimum
computations. The concurrent executions of minimum computation are acceptable and valid
for the presented implementation, as is explained later in the chapter.

Events data access

Erbium’s events data is stored in previous presented buffer data structure. Erbium does
not enforce any particular buffer implementation. However, compatible buffers must effi-
ciently perform the following operations:

• provide a non conflicting memory position for each of the record events based on its
monotonic index,

• know and provide its current maximum capacity,

• when resizable, the buffer should provide index based function implementations to
request more resources as well as free no longer needed resources.

The presented libEr implementation uses an unmanaged1constant sized circular buffer.
Each buffer position is associated with a particular single event through its “life cycle”. Once
an event is recycled, the specific buffer position is reused for a new event. Monotonic index
events data position is computed using modulo (% ) operator with the buffer size.

view [[i]]⇒ buffer [ i % buffer size ]

This operation eliminates buffer overflows by reassigning same positions to indexes bigger
than the actual buffer size.

The stall primitive blocks process execution as a consequence of resources unavailability.
In other words, no free buffer positions are available. In order for the stall primitive to
identify available resources, the buffer should, as said before, be able to provide its current
capacity, meaning, the maximum number of elements storable in the buffer. In case of a
dynamic buffer implementation, before the capacity is queried, the buffer resources request
function is called passing the stall index value as argument. If not enough buffer positions
are allocated, such call can allocate more memory before, allowing the buffer to have enough
resources for the current stall call.

Algorithm 4 (line 8) accesses the buffer capacity to detect if enough resources are available
for current stall call.

Figure 3.1 shows a simplified buffer data structure. Considering its constant allocation
size, and its typeless memory allocation, this data structure does not require any runtime im-
plementation apart from its data structure allocation. Other types of buffer implementations
might require functions to dynamically determine buffer capacity and perhaps perform buffer
accesses. Runtime computed buffer accesses are not recommended considering the frequent
execution for such operations.

The Erbium language and its runtime library do not support any buffers accesses abstrac-
tion. Compilers should perform its lowering directly to the specific operations depending on
the type of the buffer implementation. Consider the following lowering operation (⇒) per-
formed by our current compiler implementation, where view[[i]] is a request to access data

1No verification is done to control usage of the buffer. Erbium synchronization when used appropriately
will avoid buffer overflows or reading non written elements.
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at index i from view and buffer is the view related buffer data structure, more precisely,
buffer ← view.record.buffer as can be perceived from previous presented Figure 3.1.

view [[i]]⇒ ∗(buffer.data + (buffer.elem size × (i % buffer.nr elems )))

This code generation, apart from the final buffer index position computation (based on
modulo operation) is very similar to what a mainstream compiler generates for an array
access. Benefits of such lowering are later explained through Chapter 4.

This specific implementation does not imply dynamic buffer allocation or deallocation. If
a precise buffer implementation requires to know which events indexes (monotonic buffer in-
dexes) are being synchronized, in order to allocate or deallocate buffer elements, this must be
implemented inside the stall implementation (for allocation) and release (for deallocation).

3.1.1 Implementation discussion

libEr exploits X86 architecture properties to the maximum. One example is its synchroniza-
tion primitives, performing its tasks through shared memory variables (indexes).

How is this possible? Why does it work?

Like previous mentioned Erbium language synchronization is based on monotonic in-
dex variables. Each independent process contains its private index (in a view), to which
it announces progress by incrementing this index through the usage of commit or release
primitives. Write access to this index variables is only performed through the usage of those
primitives and only from the owning process (thread), leaving no chance for concurrent racing
writes.

Update and Stall primitives using the record data structure traverse all the views, read-
ing the current perceived view index and computing the minimum index. Such minimum
computation allows to identify current progress of all combined reader or writer views in the
system.

Although different view indexes are not written atomically, being so perceived at different
times through the system cores, such inconsistency is not problematic considering the indexes
are monotonic, and impacting all of the previous index value events.

Nevertheless, monotonicity of the indexes does not guarantee execution ordering. Further-
more, one of the most relevant x86 properties is its memory consistency model, more precisely
total store ordering (TSO) [43, 61, 74]. TSO guarantees that all stores are perceived in the
same order as the operations are executed by the particular cores, i.e. two store operations
executed by a single core are never perceived out of order. Moreover, load operations always
read the values of the latest stored operations.

Although TSO is irrelevant, in respect to the internal implementation of synchronizations,
it is essential when considering other memory operations that depend on the synchroniza-
tions. Like so, TSO consistency model certifies that any memory operation, in the record
buffers is perceived in any other CPU before, for example, the respective commit is perceived,
guaranteeing the monotonicity of the record and view index values.

Non-TSO architectures require memory barriers at commit and release guaranteeing
buffer writes are perceived through all the system cores before the commit or release. Some
architectures might include some less expensive memory consistency operations guaranteeing
TSO.
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What about index operations. Shouldn’t those be atomic?

Although a view is only accessed by its defining/owning process, and only either commit
or release write into the view index, it is possible that the view index variable is incorrectly
perceived.

Let’s assume that we typed all the indexes in libEr as 64-bit integers. Compiling libEr
code on a 32-bit architecture, the compiler will turn any single index write into at least two
write instructions, one writing the most significant bits and the other the less significant ones.

Such implementation introduces a coherence problem considering the apparent short pe-
riod which the index is invalidated. Since this write operation is performed without enforcing
atomicity, any of the executing CPUs can eventually read an invalid index value. Moreover,
the apparent short period can be “amplified” if we consider that the process thread can be
switched (stalled) in between the execution of these two instructions.

To guarantee atomicity of every index writes, one can perform write operations using
atomic operations. Nevertheless, such operations introduce extra overhead when comparing
with non protected memory stores.

The approach used in the libEr implementation is to type all indexes variables with a single
instruction load and store capable type (32-bit integer in the previous example). Moreover,
the compiler code generation should guarantee to always generate a single instruction from
all its index operations.

As cache coherence algorithms execute at the instruction level, a single instruction oper-
ation is never half-perceived by other thread, and no threading system can context switch at
the middle of an executing instruction.

Considering that all the index variables in the runtime are precisely typed to allow sin-
gle instruction write, the index values are never perceived as invalid by concurrent threads
(CPUs).

What about record upper and lower indexes?

Record upper and lower indexes also have the same behaviour. Nevertheless, in the pre-
sented implementation, those indexes are written by multiple threads concurrently. Such
concurrent writes are acceptable considering that all the writes are the result of the same
computation (minimum computation), even when perceiving different values. Which means
that all the writes are the result of the same traversal. If the results are different in two
concurrent executions, the result is simply a coherence delay and eventually every concur-
rent thread returns the same result. Furthermore, minimum computation results are always
monotonic in the context of a single core, as are all its record connected view indexes. In
other words, in the context of a single running process, record monotonicity is never broken.

What happens when processes/threads perceive outdated view indexes values during minimum
computation?

When the update or stall primitives are executed, unless the current upper or lower
indexes, respectively, are big enough, all the view indexes are traversed and an arithmetical
minimum is computed (minimum computation). If any of the views indexes are not updated
for the specific thread CPU local cache, a different minimum is computed based on the
current visible index. As there is a single writer to each of the views indexes and thanks to
its monotonicity, the perceived values are also visible as monotonic. If a new minimum is high
enough to satisfy the update or stall condition, nothing is done and the process execution
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proceeds, otherwise the primitive loops until a high enough minimum is reached as previous
explained.

What about concurrent executions of compute min. Can those be a problem?

Concurrent computation of minimum can represent a problem considering that slower
processes might in fact break monotonicity of the upper and lower record indexes, by writing
over a higher record index value. In any case, breaking monotonicity is not a problem
as long as any of the connected processes is able to correct the index, either by detection
and avoidance or by repeating its computation. As the current implementation spinlocks
executing compute min until the primitive condition is satisfied, such problem never arises.

More lazy implementations require mutual exclusivity during compute min execution, as
well as signaling mechanisms waking up any lazy (waiting) processes.

3.1.2 Process instantiation and termination

The process creation is implemented in libEr using existing support thread libraries. Thread-
ing libraries are tightly related with target operating system and greatly depend on machine
architecture properties and extensions.

Runtime support for Erbium processes creation and termination is defined as an abstrac-
tion layer for code generation. This abstraction allows compilers to easily support Erbium
processes without directly lower code to the many variety of threading libraries available.
Compilers supporting Erbium intermediate representation can then lower process instantia-
tion to its runtime implementation rather then to the architecture or operating system target
threading library. As the Erbium processes are persistent (long-lived threads), such abstrac-
tion overhead is negligible when compared with the overall application execution time.

Processes are defined similarly to regular functions and process instantiation is syntacti-
cally very similar to function calls. Unfortunately, at its runtime implementation, processes
cannot be defined and instantiated as in the language definition. Code transformations are
necessary through compilation to adapt initial definitions into its runtime support. Process
code transformations are presented later in Chapter 4.

The process creation and instantiation at the runtime implementation is organized in
four different steps: argument data structure definition, process instance creation, instance
arguments initialization and process instantiation. Furthermore, any application instantiating
Erbium’s processes should wait for the termination of all instantiated and running processes,
before its termination.

Erbium process runtime implementation does not differ from the most common threading
systems available. As most thread creation runtime libraries, process functions should be
defined having a single argument function, being executed based on a threading library defined
function (pthread create in POSIX) to which the process function is passed as argument.
Erbium process creation is abstracted further by introducing a process instance data structure
that contains the argument data, the process function pointer and any other process instance
options relevant to the process creation. In any case, the limitations introduced by the
Erbium runtime are eased by the process instance data structure, merging all the required
information in a single entity.

The helper function alloc process instance simplifies the process instance creation by
allocating the instance data structure, storing a pointer to the process definition and allocat-
ing memory for the process arguments, or any other necessary data related to the threading
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system.

Apart from the most relevant Erbium related features, the instance data structure also
provides support for threading system properties. For example, within POSIX threads, it is
vital to keep a reference to a pthread t data structure. Moreover, Erbium data structures
can store optimizing attributes, such as process core pinning, scheduling policies, or any other
target threading system configurable parameters. The libER implementation makes no effort
to detect better scheduling or any other threading system properties for individual processes
and uses the best known global options for the system. In order to achieve portability, the
most common threading properties can be abstracted by the runtime. In target systems
where such properties do not make sense, such implementations could be defined as empty.

Once a process instance is created, the memory region for the arguments is filled with
relevant data. A common case is to cast the allocated memory into a specific data structure
defined for the process arguments, facilitating arguments data access. The process code casts
its argument (defined as void ∗) to the particular arguments data structure.

Once the process instance arguments and threading properties are set, one can execute
the process by calling the runtime function run process instance which, in a POSIX imple-
mentation, uses pthread create both with the callback and parameters memory reference.
To keep track of all the executing processes, the executed processes instances are stored in a
linked list, used by the wait process instances end function during application termination,
guaranteeing no process (thread) is alive at the main application exit.

In a POSIX implementation wait process instances is a traversal through all the process
instances, executing pthread join with each of the thread instances, waiting for each thread
(process) to terminate. Once unblocked from each pthread join call, the process instance,
and its arguments memory reference are deallocated.

Figure 3.4 is an example of the necessary steps to perform a runtime process creation and
to guarantee all processes termination.

1 void A(struct A_param *data) {

2 /* ... */

3 }

4
5 ProcessInstance instance =

6 alloc_process_instance(&A, sizeof(struct A_param));

7 struct A_param *param = instance->arguments;

8 param->rec = REC;

9 param->value = 1;

10 run(instance);

11 /* ... */

12 wait_for_instance_list_end();

13 return 0;

Figure 3.4: Process creation example runtime code.

LibER implements process instantiation using POSIX pthreads, making it available with
all its supporting operating systems and target architectures. Depending on the actual thread-
ing library or even hardware support threading library, the complexity of the implementation
might vary. Nevertheless, the Erbium runtime process creation abstraction should allow full
support to any kernel-level threading system. User-level threads require much more com-
plex transformations from the compiler perspective and, although very relevant and studied,
user-level thread were not implemented.
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Figure 3.5: Simplified state diagram of a simple producer and consumer application initialization
and termination interactions.

3.1.3 Record and Views

To allow a quick initialization and process execution start, records and views must be initialize
as efficiently and independently as possible. Although synchronization calls are currently
defined with no atomic instruction and fully lock-free, special care is necessary while designing
initialization and termination. Without it, it is possible to very easily invalidate record
data structures during initialization or termination, possibly breaking any of the properties
supporting libEr atomic operations and memory barriers free implementation. This section
details records and views initialization and termination in the perspective of Erbium’s runtime
support and its nuances.

Figure 3.5 is a outline diagram demonstrating a producer and consumer record and views
initialization and termination. It is composed of a main (left column) function that defines a
record instantiates two processes: a producer (middle column) and a consumer (right column).
Function entry and exit points are represented with rounded shapes and the different relevant
function stages are the squared boxes. Strong vertical lines represent the sequential function
flow. Process initialization and termination is represented with the strong dashed lines. Small
dashed lines represent data structures (record and view) creation actions.

In this example the application main (left column) starts by allocating a record data
structure capable to store size elements of type int. The remaining of the main function
refers to process execution as explained in the previous section.
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Right after process execution, each process creates its own private view using alloc view .
It involves defining both a type for the view elements (first argument) and the view horizon
(second argument). The producer process connects to the record, provided as parameter,
using connect registered runtime call. This call implies to assign the record to the view data
structure and add a reference of this view within the record writers list. This list allows
processes to perform the minimum index computation for all the writer and reader views,
as mentioned in the previous section. Similarly to the producer process, the consumer also
connects to the record, but this time, adding instead its view reference to the list of readers.
In the diagram, the record list is marked by a line with a filled diamond (�) meaning the
record contains references to views. This list of views is previously mentioned in the context
of the minimum computation and its implementation is further explained through the section.

At this point, both processes have connected views. View and record communication
is represented through its connecting arrows. Strong arrows represent commit and update
synchronization interaction as well as the data communication associated with this primi-
tives. Dashed arrows refer to back-pressure, more precisely release and stall synchronization
primitives.

Once the producer stops producing elements and wishes to terminate, it should call
free view, specifying it no longer uses the view. In this example, the process does not
perform any hand-over and terminates specifying no other process substitutes this connec-
tion. Since the record is created for a single registered writer view and having no other
connected writer views, the reader view is notified of its termination once it reaches the in-
dex the writer view has last committed. The update primitive returns a index lower than
requested, detecting the record termination (zombification) by calling compute min.

Considering the record has no writer views connected, it is assumed as terminating and
eventually the consumer process view realizes it exiting its working loop.

Similarly to the producer, the consumer calls free view, verifying if anyone is still con-
suming from the record and performing the deallocation of all the record previously connected
views, as well as the record data structure.

Record and view allocation

Chapter 2 defined both records and views as special language types, giving the misspercep-
tion that both definitions are statically allocated. Counter intuitive to what was previously
presented, at runtime support, both record and view data structures are defined and allocated
dynamically through private constructor functions.

Record allocation is performed using alloc record providing the size for each event data
element (stored in its buffer) and the number of events initially allocated (size of the buffer).
Buffer sizes should be either statically predefined by the programmer or predetermined during
compilation based on compiler analysis, taking in consideration all of its connecting views
horizon. The record allocation starts by allocating a buffer (with the size provided as argu-
ment) and initializing its upper and lower indexes to 0.

Furthermore, the lists of connected views (readers and writers) are also initialized in
alloc record. The linked-list implementation should mimic a traditional linked list allowing
minimum computation to traverse all its view elements.

Views are created using alloc view and are passed with a buffer type size, the horizon,
required for either static or dynamic buffer size calculation, and a type, specifying the type
(reader or writer) for the particular view. Although the alloc view prototype is consistent
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with the language definition, not all its parameters are used in libEr. The view data structure
as presented does not store the buffer type size and the record buffer size is not dynamically
verified against the horizon size provided. Still, in a distributed memory architecture, buffer
type size and horizon arguments can be used to simplify the process local buffer allocation,
allowing compilers to statically decide on the local buffer sizes without resorting to run-
time communication with the record data structure. Both the index and record index view
attributes are initialized to 0 during alloc view.

Algorithm 6 contains the definition for both alloc record and alloc view as defined in
libEr.

Algorithm 6 Record and view allocation

1: function alloc record(buffer type size, buffer size)
2: r ← new Record
3: r .buffer ← new char [buffer size ∗ buffer type size ]
4: r.upper index ← 0
5: r.lower index ← buffer size
6: r.readers ← new ViewList
7: r.writers ← new ViewList
8: return r
9: end function

10: function alloc view(buffer type size, horizon, type )
11: view ← new View
12: view.index ← 0
13: view.record index ← 0
14: view.type ← type
15: return view
16: end function

View connectivity to the record

As explained in Chapter 2, Erbium supports two types of view connectivity, more pre-
cisely registered and non registered. Each is implemented resorting to two distinct functions,
connect registered for registered connections and connect for non-registered connection.

As previous mentioned, all the connected views are associated with the record through
the insertion in the two distinctive readers and writers lists. Lower and upper record indexes
are computed based on the traversal of both the lists computing the minimum index from all
the connected views.

Connecting and disconnecting views in libEr is analogous to insert or remove view in-
stances from those linked lists.

Considering connections occur concurrently, special care is required not to invalidate the
linked lists. Concurrent manipulation of linked lists is a well known and studied problem as
presented in [28, 54, 82] where lock free implementations of linked lists are presented, also
explaining how and where atomic operations required.

In order to keep synchronization cost to a minimum the view connections cannot imply
any extra complexity for the minimum computation algorithm. Although newly inserted
elements in the list are eventually perceived by the minimum computation algorithm, list
elements removal requires special care considering the linked list element can still be accessed
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by a concurrent process. Luckily enough, linked list traversal is not affected by this operation
as long as the view data structure is not immediately deallocated once removed. Moreover, the
removed view element should keep its original forward linked list connectivity (next pointer),
guaranteeing a correct minimum computation for the concurrent processes. In more detail
when a view is removed from the list, it should keep pointing to the same next linked list
element. Cleaning such forward pointer could possibly compute a higher incorrect minimum
index value, considering its pointed next views would now be ignored.

In order to simplify complexity of the presented connectivity algorithms, the linked lists
are manipulated resorting to the following concurrent safe linked-list functions:

• insertV iew(list, view) inserts a view at the end of the linked list,

• substituteV iew(list, view old, view new) substitutes the view old in the list by the
view new content. view old is not directly deallocated and the next pointer is left
pointing to the same node.

• deleteV iew(list, view) deletes the view argument from the list.

Apart from this mutation operation, the following search operation is also used:

• findNext < TY PE > (list) is a polymorphic definition that per execution returns a
non repeatable element of < TY PE > type from list, or NULL if there is no new fake
views returned.

During initialization, a record should specify the amount of initial registered views con-
necting to the specific record. In libEr, similarly to the language definition, the function
call add registered views allows to define it, taking both the number of expected registered
reader and writer view connections. The libEr creates a fake view per number of requested
registered views and inserts those views into the respective reader or writer list.

Algorithm 7 Add registered views to the record

1: function add registered views(record, nr readers, nr writers )
2: for i ← 0..nr readers do
3: insertView (record.readers, new FakeView (record, Reader ))
4: end for
5: for i ← 0..nr writers do
6: insertView (record.writers, new FakeView (record, Writer ))
7: end for
8: end function

Algorithm 7 shows the pseudo-code for add registered views. The newFakeV iew func-
tion is the constructor for a new clear view that is never used by any process. Its purpose
is only to enforce all the consumer processes to block in update primitive call while not all
of the fake views are substituted by real views, i.e., all the expected views have connected.
The fake view index is instantiated with the content of upper index or lower index record
attributes depending if the view is of type Writer or Reader, respectively.

Once the record has specified the number of registered views, it is ready to accept con-
nections. Registered connections involve requesting the record for a private view connection
identifier. It is done using get new view id, returning a single view connection identifier,
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Algorithm 8 Get a non used view connection identifier

1: function get new view id(record, type )
2: list ← getListforType (record, type )
3: fake ← findNextFakeView (list )
4: if fake = NULL then
5: return NULL
6: else
7: return &fake
8: end if
9: end function

later used by the process. In libEr, a view connection identifier is defined as a pointer to a
linked list view node.

Algorithm 8 presents a simplified implementation for the get new view id function, re-
turning the address of the next FakeV iew for the respectively typed record list. In order
to guarantee the non repeated return of the same fake view, the access to the list through
findNextFakeView , must execute atomically with respect to any other view mutation opera-
tions. Once no more fake views are available in the list, the function returns null.

The function getListForType(record, type) is an helper function returning either the
readers or writers list from the record, depending if the type argument is either Reader or
Writer, respectively.

The function connect registered, as explained in Chapter 2, connects a view to a specific
record within a view connection identifier. In libEr, the view record pointer and its indexes
are set by copying the previous view info (indexes), connected to the same view connection
identifier associated view (initially a fake view) into the new connecting view. Once its
attributes are set, the view is inserted in the respective record list, substituting one of the
fake views. Algorithm 9 presents the prototype implementation of the connect registered
function.

Algorithm 9 Connect a new registered view or reconnect view to existing id

1: function connect registered(view, record, id ← NULL )
2: list ← getListforType (record, view.type )
3: if id = NULL then
4: id ← get new view id (record, type )
5: end if
6: if id = NULL then
7: return NULL
8: end if
9: view old ← (view ) ∗ id

10: view.record ← record
11: view.index ← view old.index
12: view.record index ← view old.record index
13: substituteView (list, view old, view )
14: return id
15: end function

Comparing with registered connections, non registered connections do not get initialized
with the indexes of any previous connected view but rather the current indexes from the
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record. The view is added at the end of the list and no view connection identifier is created.
Algorithm 10 presents the algorithm for the “connect” function.

Algorithm 10 Connect a non registered view

1: function connect(view, record )
2: list ← getListforType (record, type )
3: view.record ← record
4: if type = Writer then
5: view.index ← record.upper index
6: else
7: view.index ← record.lower index
8: end if
9: view.record index ← view.index

10: insertView (list, view )
11: end function

Once connected, views are ready for the processes manipulation, calling record synchro-
nization primitives (manipulating the view sliding window limits), and eventually access data
from the visible record events.

Termination and view hand-over

Record termination is the result of the disconnection of all the reader and writer views.
All views are explicitly disconnected and terminated using the free view function, called when
the process no longer requires to access the view.

free view expects a view argument and a boolean, specifying if the process is either
permanently disconnecting the view or if it is performing a view hand-over.

Algorithm 11 Free view algorithm

1: function free view(view, terminate )
2: if terminate is true then
3: list ← ListForType (view.record, view.type )
4: list.atomic remove (view ) . Remove view element from list.
5: else
6: Nop () . Do nothing. Some other process will substitute this view in the list
7: end if
8: end function

When free view is executed with terminate = false , the view is expected to be part of
a process hand-over. In libEr implementation, the view is left untouched by free view . If
terminate = true , free view will, atomically to other mutating list operations, remove the
view data structure from its respective view list.

Apart from this termination scenario, processes might want to hand-over its view connec-
tion identifier to a different process, allowing some other view (process) to continue its work
consuming or producing elements. In such cases, the process should free the view, but this
time the view identifier is kept alive. In case of a process hand-over, the freed view is not
removed from the connected views lists, enforcing process synchronization (minimum com-
putation) to take its index into consideration. Once the hand-over process is instantiated,
it should connect the new view using the same view identifier, substituting the freed view
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in the synchronization. The connection is created using connect registered , occurring in the
same way as the previous explained fake view substitution.

Process hand-over implies view connection identifiers are unique and never reused. In
this implementation, view connection identifiers are defined as pointers to views, which the
programmer has no control over re-usability, i.e., memory allocation is maintained by the
operating system. In any case, is is sufficient that the uniqueness holds between connection
hand-overs.

Record zombification

Once all the writer views of a record get permanently disconnected (freed), the reader
views should notify that no new indexes are available. When it happens, the record is
considered a zombie, and future calls to update, when requesting an higher index value, return
the maximum available record upper index. Once update returns an insufficient index, the
consumer processes must finalyze any remaining work using the still available events data
(up to the record upper index attribute) and possibly free the respective reader view.

In libEr, zombie records are detected by the absence of writer processes in its linked-list.
Once the list gets empty, the record is marked as zombie and no future writer views are
allowed to connect.

Algorithm 12 presents the zombification function for libEr. Notice that is record zombie
was previously used in Algorithm 3.

Algorithm 12 Verify if record is zombie

1: function is record zombie(record )
2: return record.writers == ∅
3: end function

Record and view deallocation

The process synchronization in libEr occurs concurrently to the record and view initial-
ization and termination. On the other hand, connecting or disconnecting views to the same
record (writers or readers list) requires a special care, thanks to the linked list data structure
properties and restrictions.

Moreover, as the process synchronization occurs independently from the list manipula-
tions, views cannot be immediately deallocated after the linked list removal. It can occur
that a concurrent process is traversing the respective linked list having already reached the
element for removal. If the view is as well deallocated, such pointer would become invalid
and, when accessed, it could possibly access invalid data or even an out of bounds memory
position, resulting in a segmentation fault. Moreover, if the minimum computation reaches
an already removed view, the linked list traversal must not terminate in this view node, but
rather proceed as it would if the view was not removed.

A simple and efficient solution to these problems is to postpone the view deallocation and
to allow the freed view to follow up to previous next list element (in minimum computation
list traversal). In other words, when the view is removed from the list of views, the attribute
next is not cleared. Removed views are added to a deallocation list. During idle CPU times,
views can be removed and deallocated from this list, if there index attribute is smaller than
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the current record lower index minus the buffer capacity, in case of reader views:

view.index < view.record.lower index − view.record.buffer.nr elems

For writer views the same condition also is valid, however using the upper index instead
of lower index. During a record dealocation, if any disconnected views are still in memory,
such views can be immediatelly deallocated.

The record deallocation executes once the last of its connected views is freed.

3.2 Wrap around indexes

Current generation of architectures support very big integer operations, even if composed by
smaller sized operations. Such operation composition is performed by compilers generating
extra instructions to address the complexity of the operation, in such cases this big integer
variable type cannot be used as an Erbium index. Even if the architecture does support big
single clock-cycle integer writes, the executing application could require to be active for days
or even years, eventually overflowing the index variable. An example of such devices could
be routers or television set top boxes.

As indexes in Erbium are assumed as monotonic, overflowing indexes should be taken
into consideration when designing the runtime support for the language. Throughout lan-
guage design, it was clear that such scenario would need a solution that did not degrade the
synchronization overhead.

Index overflow is not taken into consideration in current implementation and invalidates
libEr synchronization runtime implementation. For example, lets assume a single producer/-
consumer example where the producer commits by an overflown index value. The consumer
while still working with a non overflowed index expects a much bigger index from the mini-
mum computation. Nevertheless, the minimum computation returns a too small value, not
sufficient to validate the update condition, forcing the consumer process to deadlock, eventu-
ally deadlocking all the dependent processes and application.

In this scenario, it is clear that the current solution does not provide correct results and
both the synchronization function primitives (stall and update) and minimum computation
must be aware of wraparounds (overflows) and must return a revised minimum index of all
the views.

The presented solution to this issue involves changing both the minimum computation
(upper and lower indexes) as well as the update and stall functions. The new algorithms are
presented in Algorithms 13 and 14.

Back in Algorithm 3, the update blocks the process execution using a while loop, verifying
if the view index attribute is greater or equal to the current cached record index (the condition
is negated in the algorithm because it is used in a while loop). This condition, is one of the
problems associated with overflown indexes.

One possible approach, valid for overflows, is to check if both the index variables have
the same sign1 (the same most significant bit), in which case the comparison in update and
stall is always valid. By dividing index ranges in two distinct (positive and negative)
regions, we also introduce undefined conditional regions. From previous understanding, we
cannot compare those values using less than or greater than operators. As those values are

1This section refers to sign as the most significant bit of any integer type. Please notice that variable type
signing is irrelevant runtime execution of the presented algorithms.
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in different regions it is certain both will contain different values, i.e., one is bigger than the
other.

In an overflow, such detection can be performed based on the assumption that both values
should be near a sign transition (either 0 or at an overflow value). The monotonically smaller
index when added by 1/4 of the index type range should overflow or cross by 0. Using this
technique it is possible to detect which of the indexes has a lower value, without relying on
any of the standard, non working, greater than or less than operators.

More precisely, when comparing different sign indexes:

view.record index > index⇐⇒ sign(index+ (1/4× range)) = sign(view.record index)

Commit and release should also take into consideration overflown indexes, more precisely
since its current implementation compares indexes with forbidden operators (less and greater
than). The comparison is used to verify if the latest index is bigger than previous committed
index, enforcing monotonicity of the view index. Such condition is not mandatory as the
process code should perform commit and release with monotonic indexes, guaranteeing the
view monotonicity.

Algorithm 13 Update and release with indexes wraparound

1: function update(view, index )
2: iteration ← 1
3: while (asSameSign(view.record index, index) && view.record index < index ) ||
4: (!asSameSign(view.record index, index) &&
5: sign(view.record index ) = sign(index + (INDEX RANGE /4))) do
6: if iteration > 1 then
7: if view.record.writer = ∅ then
8: return view.record.upper index
9: end if

10: sleep ()
11: end if
12: view.record index ← compute min (view.record, Writers )
13: iteration ← iteration + 1
14: end while
15: return index
16: end function

Although update and stall are now validated for wrap-around indexes, the minimum com-
putation is also comparing indexes without validating its comparison. In order for it to take
overflows in consideration, the minimum computation should also use the sign of the indexes
when computing the minimum. To fix for wrap around indexes, the minimum computation
implementation should have two different computation states. One state computes the min-
imum of the positive indexes and the other computes the minimum of the negative indexes.
The state transaction occurs when the current state contains no valid indexes, or in other
words, no index is within the state index ranges (positive or negative value). Right after
a state transaction, the list of views should be traversed once more to compute the mini-
mum for such indexes state. Algorithm 14 presents the wraparound minimum computation
implementation.
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Algorithm 14 Minimum computation with indexes wraparound

1: function compute minimum(record, type )
2: counter ← 0
3: min ←∞
4: list ← ListForType (record, type )
5: state ← StateForType (record, type )
6: for view ∈ list do
7: if (*state = 0 && view.index ≥ 0) || (*state = 1 && view.index < 0) then
8: min ← MIN (min, view.index )
9: counter + +

10: end if
11: end for
12: if counter = 0 then
13: swap (state )
14: goto line 6
15: end if
16: return min
17: end function

Wraparound safe processes

Code generators or/and programmers must take index overflows into consideration in or-
der to generate wraparound safe processes. Please consider the code example in Figure 3.6.
The example on the left suffers from the same problems as the update and stall implemen-
tations presented earlier, more precisely on the comparison with the return from update to
identify record termination.

1 while(1)

2 {

3 ret = update(v, i +10)

4 if(ret < i +10)

5 break; // terminate

6 ...

7 }

1 while(1)

2 {

3 ret = update(v, i +10)

4 if(ret != i +10)

5 break; // terminate

6 ...

7 }

Figure 3.6: Code examples between a non safe (left) and safe (right) wrap-around process.

By comparing two indexes with less than (<) operator, one is assuming that the application
will never overflow its indexes. Similarly to update and stall primitives such comparison with
overflown values might result in hard to detect deterministic deadlocks. To avoid such caveats
as a first rule, processes should only compare indexes using equality or inequality operators
(==, !=). Considering a compiler implementation of Erbium language, the compiler should
guarantee the correct convertion of any index comparison, possibly using specific runtime
calls, validating at an wrap-around safe level the result of such comparisons.

Apart from problems within indexes comparisons, it might occur that some buffer im-
plementations also do not support index overflows. Please consider the presented circu-
lar buffer libEr implementation where the index buffer position is computed based of the
modulo of its size. When an overflow occurs, the result of the modulo computation is
not guaranteed to provide a continuous position in the buffer. Let’s assume an index type
range of [0, 232[, which means that when such monotonic index reaches 232 in reality it
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becomes 0. In order for the buffer index computation to be correct and provide continu-
ous buffer positions, both the buffer index computation for 0 and 232 should be the same
(0 % buffer size = 232 % buffer size ). As an example, if the buffer size is 10, the index
computation for 0 and 232 give different results (0 % 10 = 0 and 232 % 10 = 6). A simple
solution to the existing buffer implementation is to always create buffers of size powers of
2. Index overflows always occur at powers of 2, forcing buffer index computation to always
return consequent buffer positions when overflown.

3.3 Supporting other runtime environments

Presented libEr implementation exploits x86 properties, reducing synchronization overhead
up to its minimum. Unfortunately, it is restricted to x86 architectures and is power inefficient
and non-optimal, in unbalanced or over partitioned applications. By creating libEr without
any atomic operations, we also restricted such version from being lazy in respect to its
synchronization primitives implementation.

Nevertheless, there are many non explored implementation options, each with its benefits.
For example, increasing application performance, supporting a different target architecture
or reducing execution cost.

Apart from obvious reasons such as architecture memory model, which has a direct im-
pact on the Erbium runtime implementation, there are also many not so noticeable target
architecture properties that may enforce different implementations. An example of such
properties are, for example, differences in the memory consistency model, cache coherence
or even in the instruction set architecture implying a different strategy when implementing
the runtime support. Moreover, it can also occur that the target operating system does not
support previously used libraries.

The presented implementation of the libEr uses the POSIX threading library for the
thread creation and exploited the current generation X86 architecture properties avoiding the
usage of lower level synchronization primitives. Apart from the memory fences and atomic
instructions free implementation, libEr was also implemented with more lazy synchroniza-
tion using POSIX library mutual exclusion primitives and lower level Futex [27] primitives.
Nevertheless, neither Futexes or POSIX runtime library are available to all operating systems.

Not only compatibility should be taken in consideration. Any runtime implementation
must be able to efficiently execute its target applications. Depending on the application
parallelism level, data communication and its granularity, different applications can have very
distinctive execution times. Moreover, performance must not be the only decision factor. A
single application code can be optimal in all respects with a specific runtime implementation,
but be a total disaster when using a different implementation. Applications, runtime supports
and target architectures are entangled and can never be considered optimal unless analyzed
as a whole.

The current section presents several of the possible implementation details taking in con-
sideration all the previous mentioned criteria.

3.3.1 Threading systems

The libEr process creation is implemented using the Linux kernel-level threading system,
more precisely using the POSIX library.
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Although not implemented, the Erbium language is compatible with user-level threading.
Extra compilation code transformations are needed, adapting process code to the target user-
level threading library requirements. Examples of such adaptations are to explicitly backup
process state in case of any user-level context switch.

User-level threads provide a runtime control over scheduling, allowing the runtime support
to explicitly decide when the processes “yield” each thread, i.e., decide when to perform a
context switch. As a streaming language, Erbium’s inter-process dependencies are very clearly
defined. Once locked, their threads do not get unblocked just by retrying but only if some
other process thread commits or releases events. The kernel-level thread scheduler assumes a
fair distribution of clock cycles between all the threads and does not take into consideration
any possible thread dependencies, as is the case of Erbium’s processes.

To minimize the execution time, CPU cores must never be idle or spend cycles, as long
as there is no other process with a higher probability to work.

User-level threads allow better control process execution switch and keep executing the
same process while it has work. Such approach reduces the number of context switches,
considering no other process will “steal” clock cycles. Moreover, this implementation is
also good in respect to cache effects, minimizing cache misses. By better controlling thread
context-switches, allowing processes to execute for longer periods, it improves data-locality
and allows processes to hide memory transfers through cache pre-fetching.

Mostly beneficial cases for user-level threads are the applications which cannot be parti-
tioned and balanced for the exact number of hardware-threads available in the system. As
user-level threads require a user-level scheduling approach, such scheduler, instead of blindly
executing one of the process (or the oldest sleeping), could also verify for an executing con-
dition (update and stall conditions) and perhaps even execute the minimum computation for
the implied list of views. By doing so, it would reduce the chance for bad context switches,
where the process cannot execute and immediately initiates another context switch.

3.3.2 Synchronization

The presented libEr implementation is the simplification result of a previous multi-architecture
shared memory lazy implementation. In this section, a possible reverse path is taken, briefly
explaining the differences to the current presented libEr implementation, together with the
difficulties associated with such a lazy implementation.

Busy waiting and deadlock freeness

In libEr, concurrent calls of the update or stall primitives create concurrent conflicting
calls to minimum computation, generating execution races as they write the record shared
indexes. The main concern with this approach is the fact that “losing” the race is in fact
“winning”, i.e., the slowest process is the one writing its computation for the last time. Most
likely the minimum computed index is also smaller than the previous written index, and
although it does not invalidate the index value, it breaks monotonicity of the index variable.

Breaking monotonicity of the record upper and lower indexes is not a problem when the
runtime system is able to detect and recalculate it. Without the detection and recalculation,
the system is vulnerable to deadlocks, considering the index gets smaller (not monotonic),
possibly not high enough to satisfy the respective primitive call to unblock.

The libEr implementation solves this problem by implementing a busy waiting strategy
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which, together with the POSIX kernel-level threading, enforces an eventual context switch
to any previously blocked thread (process) where a new minimum computation is executed.
Using user-level threads, such solution can also be made valid. One might consider that
such concurrent minimum computation execution is impossible in user-level threads. How-
ever, please remember user-level threads are executed “inside” concurrent kernel-level threads
(user-level threading space). Whenever distinct processes connecting to the same record data
structure are scheduled in different user-level threading, concurrent execution of minimum
computation is possible.

Although correct, busy waiting solution is not power efficient, considering:

• it loops continuously through all of the processes trying to identify which of the processes
requires to execute,

• each individual kernel-level thread performs its own minimum computation, possibly
invalidating record indexes monotonicity.

Implementing a more lazy synchronization approach implies to mitigate concurrent min-
imum computation executions.

Minimize concurrent writes to shared indexes

Algorithm 15 presents a solution by allowing only the first of concurrent computations to
write over the respective index. Such implementation is based on a atomic compare and swap
operation. Before the function starts traversing all the views searching for a minimum
index, it stores the value currently set in the record index. This value is later used in
compare and swap, which only substitutes the content of the index (1st. arg.) by the new
index (3rd. arg.) if its current value is identical to the previous copied index (2nd. arg.).

Algorithm 15 Minimum record view index computation with compare and swap

1: function compute min(record, type )
2: if type = Writers then
3: list ← record.writers
4: index ptr ← &record.upper index
5: else
6: list ← record.readers
7: index ptr ← &record.lower index
8: end if
9: tmp ←∞

10: previous index ← ∗index ptr
11: for view ∈ list do
12: tmp ← MIN (tmp, view.index )
13: end for
14: compare and swap (index ptr, previous index, tmp )
15: Returntmp
16: end function

This algorithm can result in the following scenarios:

• If some other process is performing a re-computation, and the index is eventually
changed by the first succeeding one, the second one will not write in the respective
record index, making its re-computation appear as invalid to the system.
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• If for example the re-computation of the first execution brings no change to the record
index value, but a further one does, then the value computed by the new call is accepted
and updated.

This approach guarantees concurrent minimum computations are not taken into consid-
eration, enforcing at all times the monotonicity of the involved index values. Without it, too
many cache inconsistencies and invalidations occur forcing cache coherence algorithm to be
triggered very often, slowing down the system performance [26].

Mutual exclusive minimum computation

Allowing an atomic instruction free implementation and concurrent minimum computa-
tion is useless and resource expensive. Whenever a process is computing an eventual invalid
or not used computation, all the computation resources are wasted while it could be used
executing relevant process code. In any case, guaranteeing mutual exclusivity of the min-
imum computation might in some cases be even worse. Such cost greatly depends on the
running application, target architecture and operating system. Examples are the synchro-
nization architecture instructions available, memory consistency and cache coherency models
or the number of concurrent processes connected to a single record (multiple producers or
consumers). Also, the more concurrent records are, the greater is the chance for concurrent
minimum computations to occur and slowdown the execution.

In cases where it makes sense, an obvious solution is to only allow a single process
to recompute the minimum simultaneously. Such behaviour can be implemented using
pthread mutex trylock or for a possible faster solution using a shared boolean variable and
an atomic compare and swap.

Processes not computing the minimum would sleep for a while, giving other waiting
processes a chance to execute.

Algorithm 16 prototypes a mutual exclusive minimum computation call implemented in
the update primitive.

Lazy waiting

Even after minimum computation mutual exclusivity, processes are still frequently awak-
ened, verifying if update and stall should unblock. This verification might not seem expensive
but, when considering the cost of thread context switching together with the possible high
number of concurrent processes and insufficient number of cores, such overhead is “over-
whelming”.

In this case, instead of sleeping (context switch), each process can wait for a wake signal,
announcing a possible unblocking opportunity. Waiting threads are flagged by the operating
system thread scheduler, and so are scheduled for execution until the respective signalling
data structure has received a wake signal.

Algorithm 16 is a non detailed prototype implementation of both commit and the non
wrap-around update version using lazy waiting. In this algorithm, more precisely on update,
instead of the sleep call producing an eventual thread context switch, the thread executes a
wait on its record defined signal attribute. The signal primitives used in the algorithm are
defined based on the Futex system calls synchronization primitives. Nevertheless, such prim-
itives could be easily adapted to any signal capable synchronization library. Signal update
is initialized during record allocation, accordingly to the actual signal implementation. Stall
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and release suffers similar implementation changes as presented in the update and commit
algorithms.

Both single wake as broadcast wake are waking primitives, taking a reference from the
signal description variable and triggering either the wake of a single or all of the waking
processes, respectively.

The wait primitive takes two parameters, more precisely the same signal descriptor and
the signal message id. The signal message id allows the wait primitive to identify if any wake
has been executed after the provided message id was collected. In the algorithm, the message
id is collected at Line 10. The wait primitive, at Line 8, enforces that any wake message
occurring after this line is taken into consideration in the waiting primitive. Furthermore,
if any other process performs a wake on this same signal, such wake will be taken into
consideration and the wait primitive call will not block.

Let us suppose that while executing update and when trying to execute compute min,
some other process is already executing it, forcing trylock to reject its attempt to execute.
Meanwhile, the other thread compute min terminates and updates upper index. While the
process reaches the condition to wait, it should be able to verify if any other process has
terminated a minimum computation. Right after terminating the minimum computation,
the process executes a signal wake. This signal wake, as executed in between the condition
check and the actual wait primitive, must ensure that the next upcoming wait is ignored. Once
this wait is ignored, the update call re-iterates and verifies the newly minimum computation
against its argument index.

The commit implementation is very similar to the already existing one but this time a
single wake signal is generated after the view private index is changed. Such call wakes only
a single process waiting for the same signal. This process most likely succeeds at trylock
check and computes the respective record index.

Once the minimum computation concludes, it generates a broadcast message waking all
the remaining processes.

Index based lazy waiting

Although lazy, the previous implementation does not independently wakes individual
processes but rather wakes all the record connected ones. Independently of the computed
minimum value, every consumer is wakened, forcing possible context switches that would
verify for the update or stall unblocking condition and go back to wait state, i.e., computed
minimum is not high enough for the required operation index argument. A precise imple-
mentation would only wake processes waiting for an index below the returned minimum.
However, verifying for such cases would be very inefficient.

A possible half-way approach is to create a pool of signals and associate each signal with
ranges of indexes. The blocked processes will select the right signal to wait depending on
their update or stall index argument. Commit and release trigger a wake to a single process
of each of the signals, of the respective index range. The woken process, after executing the
minimum computation, broadcasts a wake messages to all processes waiting for this same
signal, as well as all smaller index ranges signals.

This lazy implementation is similar to the previous presented one, although there is more
than one signal per record index and for that matter the respective signal element in the
array should be computed based on the index position.

This solution uses the same signal implementation as before, although requiring an extra
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Algorithm 16 Update and commit primitives using lazy waiting

3.3 Supporting other runtime environments

Algorithm 16 Update and commit primitives with using lazy waiting

1: function update(view, index )
2: iteration  1
3: while view.record index < index do
4: if iteration > 1 then
5: if is record zombie (view.record ) then
6: return view.record index
7: end if
8: wait (view.record.signal update, signal id )
9: end if

10: signal id  ⇤view.record.update signal
11: if view.record.upper index � index then
12: view.record index  view.record.upper index
13: else
14: if (trylock (view.record.mutex update ) == 0) then
15: view.record index  compute min (view.record, Writers )
16: broadcast wake (view.record.signal update )
17: end if
18: end if
19: iteration  iteration + 1
20: end while
21: return index
22: end function

23: function commit(view,index )
24: if view.index < index then
25: view.index  index
26: single wake (view.record.signal update )
27: end if
28: end function

77

mutual exclusive

Algorithm 17 Mutual exclusive minimum computation update section with index lazy wait-
ing

1: if (trylock (view.record.mutex update ) = 0) then
2: init signal index ← signal for (view.record.signal update )
3: view.record index ← compute min (view.record, Writers )
4: final signal index ← signal for (view.record.signal update )
5: for i ∈ {init signal index , · · · ,final signal index } do
6: broadcast wake (record.update signals [i])
7: end for
8: end if
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computation for the right index to wait or wake up, depending on the target index value.
Moreover, the broadcast messages are now executed for all the signals associated with the
index between the previous computed minimum index and the newly computed one.

Algorithm 17 presents the mutual exclusive minimum computation call differences from
the previous lazy version, implementing index based lazy synchronization.

Although signal waiting avoids context switching to not yet available processes, signals
also introduce significant overhead. As example, in futexes both wait and wake primitives
are implemented as system calls. System calls have an initial call overhead associated with
the operating system switch into kernel-mode.

In current implementation, each commit and release call performs a wake, regardless of
the existence of waiting processes. This problem is dependent on the actual implementation of
the signals. The futex implementation implies a per call overhead considering its system call
based implementation. The pthreads conditional waits, on the other hand, provide the means
to identify when some other thread is already waiting, resulting in minimal wake overheads
considering its user-level definition. Nevertheless, pthreads conditional wait implies the usage
of mutexes, resulting in an extra overhead.

3.3.3 Data communication

Shared memory architectures, although having a single common memory space abstracting
the programmer from the data communication, have an independent memory space (cache) for
each of its parallel cores. Each private cache is updated, respecting the architecture coherence
and consistency protocols. Data communication through cache coherency is a consequence
of the simultaneous data accesses by more then one of the processor cores, possibly resulting
in data inconsistencies between the different private memory (cache) copies. Like any other
memory operation, such transfer operations (resulting from coherence protocol) take many
clock cycles when comparing with L1 cache and register copies. Although such operations
execute asynchronously, processors can only use such advantage when future memory uses
are anticipated.

Like in distributed memory architectures, shared memory architectures can also bene-
fit from explicit communication primitives. In X86, the PREFETCH instruction initiates
an asynchronous transfer for a particular memory region, if that region is not available or
invalidated at the core private cache.

Erbium allows to specify which memory regions will be required for future process it-
erations, more precisely with the use of the transfer primitive, as explained in Chapter 2.
Although not previously mentioned, the libEr implementation includes this primitive, an-
ticipating future memory usage and initiating asynchronous copies to the local CPU cache.
Prefetch execution occurs immediately after the minimum computation, even if the process is
still executing previous indexed computations. The prefetch must take into consideration the
layout of the architecture caches, allowing to better define the best amount of data elements
to prefetch.

Depending on the actual application, it is possible that not all of the record events are
used by all the record consumers, making the prefetch of all those non needed memory regions
resources wasteful. The transfer primitive, by allowing to specify the precise required events
allows to minimize such cost. Using the transfer primitive, only the indexes in its argument
range are prefetched, anticipating the data necessary for the next process iteration, reducing
cache misses and hiding memory latency.
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Process pinning

Each time a thread is scheduled for execution, it might not be scheduled to execute in
the same processor core and may thus be away from its previously used cache. When such
migration occurs, it implies that all the necessary memory is transferred back to the new
executing core low-level cache. Most applications, if well tuned or optimized, should at least
make full use of the first level cache per process scheduling.

To minimize such costs, Erbium processors can be pinned to a specific cores. Nevertheless,
pinning implies an initial knowledge of the available number of target hardware threads, apart
from a good knowledge on how the application should be scheduled in order to maximize the
processor usage. A bad initial pinning results in reduced CPU usage, traducing in slowdowns
when comparing to dynamic partitioning [34].

3.3.4 Targeting applications and systems

No single runtime implementation is optimal for every application, operating system or ar-
chitecture. Depending on the target system goals, the type of the application and the archi-
tecture properties, the runtime requires precise tuning. Moreover, there are many important
details that must be taken in consideration when optimizing both application and runtime
library support.

The libEr runtime support offers good performance when there is a good understanding
of the application and the complexity of each of its processes, requiring well partitioned
and balanced applications. When the number of processes matches the number of hardware
threads, the processes almost never require to context switch. For a load-balanced application,
synchronization most likely never needs to block.

If an application is not load balanced, too many cycles are spent spinning and verifying
stall and update unblocking conditions, making such implementation not very power efficient.

In an application with more parallel processes than hardware threads, all the context
switching and cache effects spend too many clock cycles. On the other hand, without as many
processes, the full processing power is not used leading both to a non-optimal execution and
power inefficiency.

Without a doubt, well partitioned, balanced and statically scheduled applications are the
best option to achieve both a fast and power efficient execution [34]. Nevertheless, it is not
always possible to produce such applications, or doing so would take too much man power.
In such cases, reducing synchronization cost by introducing a lazy synchronization is the
best option, forcing processes to wait, not allowing kernel schedulers to optimistically switch
threads to such processes. Such an approach introduces extra overhead due to its required
atomic and mutual exclusion operations. On the other hand, when comparing with the many
worthless context switches of a busy-waiting implementation, such overhead is minimal.

User-level threading is another option, where context switches only occur when a process
can no longer execute. Moreover, process scheduling is the result of the implicit context
switch of a blocked process. Moreover, user-level scheduling can verify for executability of
the process by, before hand, verifying for the update or stall primitive checks. Whenever
a process starts to execute, it will immediate skip any verification and starts executing the
next iterations. User-level thread solutions have the overhead of an extra scheduler algorithm,
deciding which process should execute next.
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3.4 Experiments

Experiments are based on the busy-waiting presented version of libEr without wrap-around
support, targeting a 4-socket Intel hexa-core Xeon E7450 (Dunnington), with 24 cores at
2.4 GHz, a 4-socket AMD quad-core Opteron 8380 (Shanghai) with 16 cores at 2.5 GHz, both
with 64 GB of memory, and an Intel quad-core Core 2 Q9550 at 2.83GHz. These targets are
respectively called Xeon, Opteron and Core 2 in the following.
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Figure 3.7: Burst size impact on Opteron.

One of the experimental studies is a synthetic benchmark called exploration, with mul-
tiple producers broadcasting data to multiple consumers. Each process implements a simple
loop enclosing a pair of synchronization primitives updating, stalling, committing and releas-
ing a burst of k indexes at every iteration. The workload for each index amounts to a single
integer load (consumer side) or store (producer side) only.

Erbium ports of one classical signal-processing kernel and three full applications: fft from
the StreamIt benchmarks [80], fmradio from the GNU radio package and also available in the
StreamIt benchmarks, a 802.11a code from Nokia [58], and jpeg, a JPEG decoder rewritten
in Erbium from a YAPI implementation of Philips Research [78]. They are representative
of data crunching tasks running on both general-purpose and embedded platforms. These
applications are complex enough to illustrate the expressiveness of Erbium, yet simpler than
complete frameworks like H.264 video that would require adaptive scheduling schemes not yet
implemented in Erbium [14]. In addition, 802.11a involves input-dependent mode changes
that do not fit the expressiveness constraints of StreamIt, jpeg has variable computation
load per macro-block and both jpeg and fft feature very fine grain tasks.
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Figure 3.8: Performance of fft on Xeon (24 cores). Single settings (top) and best settings per
data point (bottom).

3.4.1 Synthetic Benchmark

The synchronization overhead for the exploration benchmark is shown in Figure 3.7. Four
configurations per target were tested: 1 producer and 1 consumer, and 1 producer and 4
consumers, 4 producers and 1 consumer, 2 producers and 2 consumers. All views of pro-
ducer(s)/consumer(s) are connected to the same record structure with an horizon of 224
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Figure 3.9: Performance of fft on Opteron (16 cores). Single settings (top) and best settings
per data point (bottom).

elements. Each execution processes and communicates 226 indexes. Threads are pinned such
that producer(s) are all mapped to different cores of the same chip, and all consumer are
mapped to different cores on a different chip.

False sharing induces severe overheads for tiny bursts and is the cause of the wide perfor-
mance instabilities. The burst size remains an important factor passed the cache line size, but
synchronization overhead becomes negligible for bursts of 1024 indexes or more. In addition,
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the scatter and gather performance is also excellent: small bursts remain profitable even for
complex configurations with multiple producers and consumers. This validates the choice of
an expressive concurrent data structure: performance is excellent on a simple pipeline, while
offering maximal flexibility to support combinations of pipeline- and data-parallel computa-
tions in a high-level language.

The single-producer single-consumer configuration reaches a maximum of 103M index
computations per second on Xeon: on average 23.3 cycles per index, an order of magnitude
shorter than the cache line transfer across x86 chips. This paradox is easily explained by
the large-enough horizon, update and stall almost never result in a blocking synchronization,
and by our cache-conscious algorithm amortizing cache line transfers over a large number of
calls to the synchronization primitives.

3.4.2 Real Applications
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Figure 3.10: Performance of fft on Core 2

tially as a fine-grain KPN, required systematic conversion of the synchronization and
communication methods.

On fmradio, exploiting task and pipeline parallelism is easy but shows limited scal-
ability (6 concurrent processes). Exploiting data parallelism is not trivial and involves
an interesting transformation. The original code uses a circular window using mod-
ulo arithmetic and holding the results of previous filtering iterations and it can be
replaced by a record, removing spurious memory-based dependences. Furthermore, the
work must be distributed over independent workers then merged into a single output
stream; to eliminate data copying overhead, the implementation leverages decoupled
data access and synchronization, and the extended Kahn semantics where multiple
workers deterministically produce data in exclusive index ranges.

Figure 3.11 illustrates the concurrency exposed in fmradio. On the left, 4 pro-
cesses called FFD (Float input, Float output and Double taps) account for most of the
computation load. Two of them operate at twice the sampling rate of the two others,
involving twice the number of “taps” and twice as many computations. This suggests
to balance the load by creating twice as many instances for the heavier ones. The
right side of the figure details the data-parallelization of an FFD process, sharing the
work into two instances. Figure 3.12 summarizes the speedups achieved with GCC 4.3
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Figures 3.8, 3.9 and 3.10 compare the performances of various parallel versions of the
FFT kernel while considering multiple vector sizes. The baseline is an optimized sequential
FFT implementation used as a baseline for the StreamIt benchmark suite. The first two
bars are two parallel versions using Erbium, the next two bars are OpenMP versions, the
last bar is a Cilk version. Combined pipeline and data-parallelism achieve the best speedups,
compared to pure data-parallelism (both with Erbium). The size of the machines and the
associated cost of inter-processor communication sets the break-even point around vectors of
256 single-precision floating point values.

FFT does not naturally expose much task parallelism because of the dependence patterns
in the butterfly stages, yet pipelining computations across different stages remain possible,
and favors local cache-to-cache communications over external memory accesses, explaining
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the performance improvement of the combined version. On Xeon and Opteron, exploit-
ing this pipeline parallelism allows to reduce contention, even if at the expense of some
data-parallelism. To better analyze the intrinsic synchronization performance of Erbium,
Figure 3.10 shows the performance results on the smaller single-node Core 2 platform. As
the possible concurrency is reduced, the data-parallel versions stand more of a chance, with
a shared L3 cache and L2 shared among each two cores. However, even in this unfavorable
setting, the addition of pipelining gives enough edge to our combined data- and pipeline-
parallelism approach, which outperforms the task-parallel and data-parallel implementations
in OpenMP, as well as a Cilk implementation [30].
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Figure 3.11: Informal data flow of fmradio.
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Figure 3.12: Informal data flow
of 802.11a.

Platform Seq. -O3 -O2 -O3 -O3 vs. -O2

Xeon (24) 1.14 10.1 12.6 1.25
Opteron (16) 1.52 9.51 14.6 1.54

Figure 3.13: Speedups results for
fmradio.

Platform Task-Level Data-Parallel Combined

Xeon (24) 1.85 1.84 6.67
Opteron (16) 2.73 2.81 7.45

Figure 3.14: Speedups results for
802.11a.

Now considering the three full applications, fmradio and 802.11a did not require any
radical design changes to achieve scalable performance, while jpeg, written initially as a
fine-grain KPN, required systematic conversion of the synchronization and communication
methods.

On fmradio, exploiting task and pipeline parallelism is easy but shows limited scalability
(6 concurrent processes). Exploiting data parallelism is not trivial and involves an interest-
ing transformation. The original code uses a circular window using modulo arithmetic and
holding the results of previous filtering iterations. It can be replaced by a record, remov-
ing spurious memory-based dependences. Furthermore, the work must be distributed over
independent workers then merged into a single output stream. To eliminate data copying
overhead, the implementation leverages decoupled data access and synchronization, and the
extended Kahn semantics where multiple workers deterministically produce data in exclusive
index ranges.
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Figure 3.11 illustrates the concurrency exposed in fmradio. On the left, 6 processes called
FFD (Float input, Float output and Double taps) account for most of the computation load.
Two of them operate at twice the sampling rate of the two others, involving twice the number
of “taps” and twice as many computations. This suggests to balance the load by creating twice
as many instances for the heavier ones. The figure dashed box details the data-parallelization
of an FFD process, sharing the work into two instances. Figure 3.13 summarizes the speedups
achieved with GCC 4.3 and different optimization options. The baseline is the sequential
(original) version compiled with -O2 (no vectorization, less optimizations); it runs in 13.65 s
on Xeon. These results confirm the scalability of Erbium on a real application. They also
confirm its compiler-friendliness, GCC’s automatic vectorizer being capable of aggressive loop
restructuring in presence of concurrency primitives and view accesses.

Figure 3.12 illustrates the concurrency exposed in 802.11a. The data-flow graph is more
unbalanced than fmradio and it is not fork-join. Both frequency sync and fine time sync

processes are stateful, i.e., they need to be decoupled from the rest of the pipeline to enable
data-parallelization [60]. Figure 3.13 displays speedup results. The Combined column shows
the benefit of exploiting both task-level and data parallelism. Strict data parallelization even
degrades performance on Xeon due to work-sharing overheads.
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Figure 3.15: Performance of jpeg on Opteron.

On jpeg, the systematic decomposition of the application exposes 23 computational tasks,
communicating by exchanging burst of pixels (or coefficients, depending on the filter/stage).
In the uncompressed data stream, 64 pixels/coefficients correspond to 1 macro block. The ob-
jective of this experiment is to demonstrate the benefits of Erbium on a real application with
extremely fine grain tasks. Most of the fine-grain tasks can be further data-parallelized, but
we restrict ourselves to a task-parallel version for the purpose of this experiment. Figure 3.15

85



3. RUNTIME

shows the results on Opteron, running the decoder once on a 4288×2848 image. The vertical
axis is execution time in milliseconds, the horizontal axis is the burst size in pixels. For
single-core execution, the performance plateau is achieved for bursts of 128 pixels, or 2 macro
blocks. For a 16-core execution, the performance plateau is achieved for bursts of 512 pixels,
or 8 macro blocks. Comparing the best 16-core and single-core versions, we achieve a 4.85×
speedup on Opteron. Most important, the break-even point (defined as the burst size where
16-core performance outperforms the best single-core performance) is 1 macro block only.
These numbers confirm that Erbium succeeds in exploiting fine-grain thread-parallelism on
real applications, although better results could be achieved combining task-level and data par-
allelism. This is encouraging about the scalability on future manycore architectures, where
data parallelism alone does not scale.

The tradeoff between task, pipeline and data-level parallelism depends on the target
architecture, and is becoming one of the key challenges when adapting a computational
application to a new platform. Our results show that Erbium is an ideal tool to explore
this tradeoff. Overall, Erbium leverages much more flexible, scalable and efficient forms of
parallelism than restricted models.

3.4.3 Comparison with Lightweight Scheduling
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Figure 3.16: Streaming processes vs. short-lived tasks

processes are an essential abstraction for scalable concurrency.

These numbers also explain the poor performance of the Cilk FFT implementation.
Data-parallelism dominates the scalability of the FFT, and Cilk incurs a noticeable
scheduling and synchronization overhead for data-parallel execution. Erbium avoids
this overhead by running data-parallel tasks fully independently, and implementing
synchronizations across butterfly stages at a much lower cost.

We also The study also compared Erbium with StarSs, in its SMPSs flavor [42].
StarSs is perfectly suited to express our data-flow applications. However, its current
execution model relies on lightweight scheduling. Our experiments with fmradio show
that StarSs achieves 3.88⇥ speedup on Xeon and 2.97⇥ on Opteron, 3 to 4 times less
than Erbium.

Short-lived atomic tasks may be better supported with dedicated hardware [38].
This is also the case for streaming communications, as illustrated by the TTL approach
[32]. Of course, lightweight threading techniques are still required for load balancing and
to increase the reactivity of passive synchronizations (blocking update()/stall()).
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Figure 3.16: Streaming processes vs. short-lived tasks.

Erbium differs from the common parallel runtimes where concurrency is expressed at
the level of atomic, short running tasks. Figure 3.16 compares the execution time of the
exploration synthetic benchmark with a Cilk implementation spawning short-lived user-
level tasks [30]. We consider the Core 2 target, and Cilk is run with the --nproc 4 option to
generate parallel code, and with the --nproc 1 option to specialize the code for sequential
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execution. The baseline sequential execution takes almost 7s for the finest synchronization
grain, and 5s for larger ones. The parallel Cilk version with the finest synchronization takes
221.4s and the corresponding Erbium version takes 107.7s. The performance gap widens
significantly for intermediate bursts sizes, and reaches almost 5× when the Erbium version
reaches its performance plateau. But the most important figure in practice is that the Erbium
version breaks even for grain size 80× smaller than Cilk. It demonstrates that communications
among long-lived processes are an essential abstraction for scalable concurrency.

These numbers also explain the poor performance of the Cilk FFT implementation. Data-
parallelism dominates the scalability of the FFT, and Cilk incurs a noticeable scheduling and
synchronization overhead for data-parallel execution. Erbium avoids this overhead by running
data-parallel tasks fully independently, and implementing synchronizations across butterfly
stages at a much lower cost.

Erbium is also compared with StarSs, in its SMPSs flavor [52]. StarSs is perfectly suited to
express our data-flow applications. However, its current execution model relies on lightweight
scheduling. Our experiments with fmradio show that StarSs achieves 3.88× speedup on Xeon
and 2.97× on Opteron, 3 to 4 times less than Erbium.

Short-lived atomic tasks may be better supported with dedicated hardware [48]. This
is also the case for streaming communications, as illustrated by the TTL approach [40]. Of
course, lightweight threading techniques are still required for load balancing and to increase
the reactivity of passive synchronizations (blocking update/stall).

3.5 Distributed memory implementation

When comparing with shared memory architectures, distributed memory architectures are
harder to support targets. Distributed memory architecture imply significant modifications
to existing implementation. Example of such modifications are to adapt the synchronization
primitives, but as well to deal with explicit communication and user-level scheduling, which
are in many cases requirements for this type of architecture.

In the context of this thesis, we developed a simple prototype implementation for the IBM
Cell Broadband Engine [42]. Such implementation did not focus its effort on performance but
rather on exploring Erbium’s support for distributed memory systems. This section does not
explains this precise implementation. However, the ideas about to be presented are clearly
an evolution of that implementation and the result of a greater understanding of the Erbium
language semantics and primitives. Cell, apart from being distributed, is an heterogeneous
architecture, making compiler code generation even harder.

There is a very large range of distributed memory machines with very different range of
properties and very big distinctions regarding programmability and operation performance.
Such architectures most recently have hardware extensions to data communication. As an
example, the IBM Cell supports both asynchronous direct memory access and point-to-point
message passing in hardware (aka. mailboxes in Cell). Apart from hardware implementations,
there are several runtime libraries supporting similar operations, abstracting the programmer
from the complexity of such operations. An example is MPI-2 API implementing send
and receive operations based on point-to-point communication. In comparison with Cell
mailboxes, MPI-2 has very similar semantics, however it is not limited to single sized 32 bit
messages.

Point-to-point messages can be understood as very small one-to-one FIFO buffers con-
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necting distinct CPUs/cores. The send primitive inserts a message in the buffer while the
receive primitive collects messages. Each core when calling receive, checks for new elements
in its respective buffer. Depending on the implementation, both send and receive block when
the buffers are full or empty, respectively. Many architectures or message passing libraries
allow receive to have either a pooling or interruptible implementation. In a pooling imple-
mentation, the application should periodically checks for incoming messages. Interruptible
version allows a process to provide a callback function which is executed each time a new
message arrives.

Cell implements point-to-point message passing in hardware making it much more efficient
when comparing to software solutions such as MPI [3].

Direct memory access (DMA) is another way to transfer data between cores, being most
efficient when transferring bigger memory regions. In most cases any CPU in the system
can schedule a transfer between any memory region. DMA operations occur asynchronously
to every CPU execution and, apart from the requesting CPU, no one else is notified of the
operation or even is able to detect pending or terminated operations from or to its local
memory. Depending on the DMA engine available, DMA transfers can be possibly executed
out-of-order, even when scheduled from the same processor. DMA operations in the Cell
architecture can be performed between both “Power Processor Element” (PPE) and the
“Synergistic Processing Elements” (SPE), as well as between any two SPEs. As the execution
order is not guaranteed, DMA operations cannot be used for inter-processor synchronization.
Nevertheless, thanks to its high efficiency when transferring big blocks of memory, it is an
excellent candidate to perform buffer data copies.

3.5.1 Shared vs. distributed memory models

The X86 libEr implementation makes extreme use of architecture abstractions, exploiting
memory and cache properties, such as cache coherence and memory consistency models,
minimizing its synchronization and data communication overheads. As such abstractions are
not available in distributed memory architectures, implementations have to use explicit low
level synchronization calls (synchronous messages) and data transfers.

In a Erbium implementation for distributed memory architecture, record events data must
be stored next to the view data structure within the local memory region assigned to each
core. Each process contains its private view buffers and data communication occurs explicitly
through data transfers between producer and consumer processes.

Each data transfer is a consequence of both transfer and the synchronization (update
and commit) primitive calls. The minimum computation is done by either an independent
management thread or by one of process threads connected to the record. A management
thread has direct access to the record data structure and to a set of replicas of all the views
connected to the record. The original view data structures are allocated in the process local
memory region. Using the replicas, the management thread is able to decide on lower and
upper record indexes, for the now “virtual record buffer”1, and to perform asynchronous data
transfers between the existing view buffers without directly communicating with the original
view data structures, allocated in the process local memory region.

1Called virtual considering the language semantics. Although the language presents it as allocated next
to the record data structure, in a distributed memory implementation, such buffer might not exist but instead
be distributed through all of the process local memories.
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Figure 3.17: Distributed memory model implementation overview.

Figure 3.17 are two possible scenarios of the distribution of all the previously mentioned
data structures in a 2 producers and 2 consumers communication example. Dotted lines
represent the boundaries of each of the memory regions where processes are instantiated.

In Figure 3.17(a), the record is allocated in an independent memory region and is used by
a single dedicated management thread that does its computation based on the view replicas
(PView) directly connected to it. Each of the processes, through its private views, sends a
message to the management thread, updating the indexes of the view replicas connected to the
record. The management thread, using the view replicas, performs a minimum computation
exactly like the shared memory version, but before any message is sent to the dependent
processes, the respective data transfers are asynchronously scheduled up to that minimum.
As soon as the referred transfers have concluded, the view replicas indexes are updated, and
a message is sent to update the process local views.

Figure 3.17(b) is similar to the previous diagram but this time the record data structure
is allocated next to one of the processes. With this design, there is no need for an inde-
pendent management thread. The management is performed by one of the process threads,
which performs the minimum computation right after any of its calls to a commit or release
primitive. In such cases, the minimum computation is dependent on the individual progress
of the processes and if we assume all the record processes are load-balanced, such minimum
computation does unbalance them.

With all the variety of distributed memory architectures, it is impossible to present a
single implementation that will suffice to all possible variations.

3.5.2 Process synchronization

Distributed memory architectures synchronization involves the negotiation of different mem-
ory regions processes. Point-to-point communication must be used to synchronize view repli-
cas with the original views, distributed through the different memory regions.

Figure 3.18 shows a sequence diagram of the existing interaction between a producer and
a consumer processes in a distributed memory environment. Both the producer and consumer
communicate with a record management thread through point-to-point messaging.

In the example, the producer process has already written data in its private local view
buffer. During commit, its local view index is updated and a message is sent to the record
management thread. The management thread when checking for new messages realizes the
producer did commit and upgrades its referred view replica with the message passed index.

After checking for messages and upgrading view replicas, the management thread can
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Figure 3.18: Synchronization related communication.

calculate both lower and upper record indexes (minimum computation) computing the bounds
of the “virtual shared buffer”. This computation is equal to the shared memory version and
allows the record manager to identify which events can be removed from producer buffers
and which events became available and are transferable to consumers. The necessary data
transfers are now done through asynchronous DMAs as is explained in the next section.

When DMAs conclude, the record management upgrades the replicas indexes, as well as
send back a message to both producers and consumers specifying the new view indexes, used
to unblock both stall and update calls, respectively.

Although not represented in the diagram, release has a similar implementation as commit
and forces DMA transfers not to be initiated if not enough space is available in the consumer
view local buffer.

3.5.3 Data communication

As explained in Chapter 2, synchronization in Erbium is the engine for deterministic data
communication, which, although expensive, can be minimized in most cases, by explicitly
tuning its granularity with respect to data communication. Furthermore, data communication
is predicted based on the index based synchronization, allowing anticipation of data transfers
ahead of its usage.

Multiple buffering techniques together with prediction of data usage and a well load
balanced application allow the runtime support to hide memory latency reducing execution
time. Mostly in multiple producers or multiple consumer examples, either by requirement or
to achieve optimal results, processes might benefit from partial data copies using the transfer
primitive.

Although the transfer primitive has no relation to the language determinism in shared
memory, it is crucial in distributed memory architectures. While producers directly write
into a shared buffer in a shared memory implementation, in distributed memory multiple
producers will write into private independent buffers and only later each of these private
buffers are merged. In order to merge both the local view buffers into a unified ,“virtual”
or not, record buffer, it is essential to identify the relevant indexes from each of the record
producers. Consumer processes also benefit from transfer primitive, more precisely in work-
splitting processes.
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The combination of both producers and consumer transfer calls allows to identify the
table of data transfers required for the application progress.

In this distributed memory approach, the transfer primitive sends a point-to-point mes-
sage to the record management thread. Once identified, such message should be stored within
the respective view replica. Data sent by transfer stored in writer replicas (aka. producer
transfers) announce a range of elements which will become available through that view, while
reader replica transfers (aka. consumer transfers) define the elements that will be used
through that view.

Data communications (DMAs) occur right after all the producer processes have com-
mitted. The record management thread collects all the commit and release messages and
computes the lower and upper indexes. By traversing all the producer and consumer transfer
call logs and intersecting their provided argument ranges, it is possible to identify the neces-
sary DMA transfers and the origin and destination for such transfer. Apart from intersecting
producer and consumer transfer primitive calls, it is necessary to take synchronization into
consideration in order to avoid such DMAs to overlap consumer buffer positions still in use.
Furthermore, the DMAs should also be taken in consideration by synchronization primi-
tives to, for example, allow producer buffers re-usability once all the necessary DMAs have
concluded.

Each DMA transfer is associated with the pair of the PViews (origin and destination view
replicas). The record management thread, while frequently iterating on all views, verifies if
any of its executed DMAs has terminated, in which case, the view replicas are updated
with the minimum that generated such DMA transfer and a message is dispatched to the
associated view processes, as briefly explained in Figure 3.18.

Algorithm 18 details data communication presented in previous paragraphs, as two pseudo
code functions previously used in Figure 3.18. The function perform transfers traverses both
the producer and consumer transfers , correlating them and initiating the necessary DMA
copies. The check terminated dmas function verifies, per view, if all the previous scheduled
DMAs have terminated, updating the view replicas, and messaging the respective process
views.

In more detail, perform transfers correlates the producer related transfers to the consumer
ones, by intersecting the ranges of both the transfer calls (Lines 2 and 3). Moreover, only the
events with index below the current reader view latest release or record upper index should
be considered for DMA (Line 5). If from the above verifications there is any event data that
should be copied, a DMA transfer is executed and the id of such execution is stored within
both the origin and destination view replicas, associated with the current record upper index
(Line 8).

The function check terminated dmas traverses all the view replicas looking for termi-
nated DMA transfers, using the previously stored DMA ids (Line 19). Once the DMAs are
executed, the consumer transfer ranges are updated by removing the finished DMA transfer
ranges from the list of pending transfers (Line 10).

Figure 3.19 is an example record and view replicas state and the execution outcome of
function perform transfers .

The presented design abstracts the need for a record buffer, allowing a direct DMA transfer
from the producers to the consumers memory space directly. Nevertheless, it is necessary
to perform a pre-negotiation of all the scheduled DMA transfers. In this prototype, the
negotiation occurs by correlating all the transfer primitive calls, previously executed by
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Algorithm 18 DMA transfers based on transfer primitive calls and minimum index inte-
gration

1: function perform transfers(record )
2: for wt ∈ record.writers.mapToTransfers () do
3: for rt ∈ record.readers.mapToTransfers () do
4: max index ← MIN (record.upper index, rt.pview.index )
5: index set ← wt ∩ rt ∩ {0.. max index }
6: if set 6= ∅ then
7: dma id ← DMA (wt.view, rt.view, index set )
8: wt.pview.hash dmas [record.upper index ].push (dma id ) . Register DMA
9: rt.pview.hash dmas [record.upper index ].push (dma id )

10: rt ← rt − (index set )
11: end if
12: end for
13: end for
14: remove all wts below (record.lower index ) . Remove no longer used writer transfers
15: end function

16: function check terminated dmas(record )
17: for pview ∈ record.writers ∪ record.readers do
18: for min index ∈ pview.hash dmas.keys ().order () do
19: if ∀ dma ids ∈ pview.hash dmas [min index ] : dma ids have terminated then
20: pview.record index ← min index
21: send message (pview.processor, min index )
22: end if
23: end for
24: end for
25: end function
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Figure 3.19: Diagram representing the view buffer DMA transfers based on Algorithm 18.
Dashed arrows represent the point-to-point communication by each of the concurrent processes.
Wide arrows represent DMA transfers. The table underneath is a graphical representation of
the perform transfers algorithm, presenting both producer and consumer transfer ranges and
its outcome DMA data transfer. The two left columns represent the traversal through all the
producer and consumer transfers . The last column is the result of the correlation between the
producer and consumer transfer primitives.

connecting views, enforcing that all these messages are collected by the record view replicas.

Collecting transfer primitive “meta-data” might not always be possible or efficient. An
other possible solution is to permit the record data structure to contain its own private buffer
or even mark one of the view buffers as the master one. In this case, instead of collecting the
transfer “meta-data” within the view replicas, the processes directly schedule DMA transfers
after each commit. Symmetrically to commit, update also initiates a transfer from the master
buffer into its local view buffer, as soon as it receives a new minimum message (Figure 3.18).

In an application with many producers and consumers, concentrating so many DMA trans-
fers into a single memory region can saturate its core local memory bandwidth, producing
severe slowdowns when comparing to “meta-data” storing and processing cost.

As mentioned before, there are hundreds of properties distinguishing each distributed
memory machine, making it impossible to produce a single optimum implementation, or
to cover all the possible implementations. This design is a prototype implementation close
enough to the latest generation of distributed memory architectures properties. The presented
approach was not implemented and is not intended as a contribution to distributed memory
runtime support research topics. Presented work is a speculative Erbium implementation to
distributed memory architectures. Efficient Erbium runtime solutions for distributed memory
are open for improvements and future research.
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3.6 Summary

This chapter presented libEr, a x86 busy-waiting version of the Erbium runtime support
library. The goal was to generate the synchronization primitives with the lowest possible
overhead, regardless of scheduling algorithms or scheduling policies. The x86 architecture
with its TSO memory consistency model allowed us to design an implementation free of
memory barriers or atomic operations.

Lazy implementations1were also discussed, not necessarily providing an implementation
but rather a detailed description of its primitives/data-structures implications. When com-
paring with busy-waiting, we made suggestions regarding user-level threading and scheduling
approaches.

The last section of the chapter presented a possible implementation of an Erbium run-
time support for distributed memory architectures, explaining the main differences between
shared memory and distributed memory architectures, and the necessary data structures
and algorithmic changes to adapt the shared memory implementation to distributed memory
architectures.

During the chapter, a short but precise set of experiments are presented, benchmarking
and comparing libEr with other language runtimes and language-specific properties, such
as short living vs long living processes. We evaluate both a synthetic benchmark and real
applications, not only proving the efficiency of libEr but also Erbium’s ability to support a
variety of streaming real world applications.

The next chapters further detail the integration of the Erbium language as a compiler
intermediate representation, avoiding obfuscating its optimizations. We also show Erbium’s
suitability to implement parallelism, enhancing optimizations for Erbium and we extend the
original compiler optimizations, further improving its primitives.

1Lazy implementation refers to any implementation relying solely in resourceless waiting primitives. In
other words, blocking operations do not contain active loops as a way to block further execution, eventually
spending CPU execution time.
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Chapter 4

Compiler Design

Compilers are considered by many the most fundamental software components developed to
date. Nowadays, every programmer relies on,at least one compiler framework in its work-flow
on a daily basis and, as hardware complexity increases, one cannot predict that such scenario
will ever change. Most advanced compilers tend to be extremely complex and frightening.
Nevertheless, such complexity is the outcome of decades of very careful design evolution,
while preserving its generated code credibility and correctness.

As the number of parallel architectures increases, so do the attempts to create multi-
purpose higher level languages. Historically, many high-level languages avoid mainstream
compiler integration by being implementing their own source-to-source compilers1. Such
compilers convert higher level parallel languages into a known sequential language, combined
with some external runtime library calls, later compiled by a mainstream sequential compiler.

Such approach allows the language designer to quickly create a compiler for its language,
without having to deal with the complexity of modifying a mainstream compiler. Moreover,
such compilers exploit the language and target architecture properties in order to optimize
its generated code. However, source-to-source compilers also introduce code complexity,
tending to generate obfuscated code and eventually disable many of mainstream compiler
optimizations.

In order to minimize its penalty, source-to-source compilers tend to duplicate the most
fundamental code analysis and sequential optimizations already available in the mainstream
compilers, as an attempt to improve the quality of its generated code.

The Erbium language provides the means to express stream-like parallelism and its in-
tegration within mainstream compiler without obfuscating existing compiler optimizations.
When correctly integrated, Erbium applications are able to execute traditional optimizations
as the sequential counter part application would, as well as to perform some finer local to
process parallel optimizations, possibly enabling other sequential and parallel optimizations.

Most higher-level parallel streaming languages use abstractions such as graphs2 in order
to represent and combine data-communication and synchronization. Such languages, while
limiting the language semantics, provide very good initial parallel code information such as
process dependencies. An example is StreamIT (SDF programming model), well-known for
its static scheduling and optimizations, as exploited by Gordon et al. [34]. When compared

1Source-to-source compiler is a type of compiler that takes the source code of a programming language as
its input and outputs the source code into another programming language.

2Task graphs are many time expressed as pragmas [17], or even XML files
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Figure 4.1: Three most common parallel language compilation schemes.

to Erbium, such languages have more limited and simpler semantics, as illustrated by their
static task activations and task graphs. Moreover, parallelism properties are deeply integrated
in the language semantics. For example, languages combining synchronization and data
communication, are not able to easily adjust their synchronization granularity.

Higher level languages provide easier means to obtain a clearer static information of the
different process dependencies and relations. On the other hand, the Erbium language has
different independent primitives to deal with communication, synchronization and process
creation, making it a very expressive low level language. Such expressiveness comes with
the cost of unpredictability, making it very hard to deduce process communications and its
properties.

As an example, in the specific case of a fusion of two processes, it is necessary to predict
the number of activations of each of the fusing processes to decide on the transformation
validity. This information is not easily obtainable from the Erbium representation, a price
to pay for its expressiveness. However, languages based on SDF and CSDF computational
model provide sufficient information allowing to easily it, either at its front-end lowering to
Erbium.

Erbium high expressiveness and its close to hardware semantics, allow the compilers to
represent parallelism, while maintaining the sequential language properties and preserving
the original mainstream compiler sequential optimizations. Moreover, Erbium allows lower
level properties such as synchronization granularity or data-communication to be further
optimized.

4.1 Current generation parallel compilers

Most higher level parallel languages lack a good compilation environment, capable of both
exploiting its language properties and supporting traditional optimizations.

Mainstream compilers focus on optimizing sequential code, containing no or very few
optimizations for parallel code. At best, they try to leverage the weak memory models of the
source language, as demonstrated by Boehm and Adve in [18], while preserving sequential
code optimizations in the presence of shared memory multi-threading.

Figure 4.1 presents some of the typical strategies used for parallel compilation approaches.

The left-hand side diagram, presents a source-to-source compiler that is responsible to
optimize and translate the parallel language constructs into some well-know sequential lan-
guage, usually C, patched with function calls to the language runtime support library. An
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example of a source-to-source compiled language is StreamIt.

The second diagram (middle) goes a little deeper and implements the exact same trans-
lation inside a mainstream compiler. However, such translation occurs very early in the
compilation flow, introducing similar runtime calls, resulting in the exact same drawbacks as
previous approach. This is the case of the OpenMP language extension in GCC.

The last approach (right-hand side) is used by high-level synthesis tools (e.g. Catapult C,
Synopsys-Synfora, Bluespec, etc.) where a totally new compiler is defined from the ground-
up taking into consideration the language properties. This approach has not been as popular
for parallel programming. Although optimal, such approach implies very high development
efforts considering how complex developing a compiler can be. Moreover, such compilers tend
to be very restrictive for the specific language as well as target architectures.

Source-to-source compilers require typically the use of an external runtime library,
implementing all the language primitives not available within the target language. When
presented with external runtime library function calls, mainstream compilers are not able to
access those external function definitions and so are unable to optimize such calls or any of
its surrounding code.

Inlining such library calls within the generated code produces very little performance
improvement. Although all of the runtime library code is available, it is very likely that
the inlined code will contain very low level synchronization function calls, such as atomic
operations or volatile shared variables, creating similar side effects as the external library
function calls.

In order to achieve performance, source-to-source compilers tend to replicate most of the
mainstream compiler sequential optimizations obtaining reasonable performance improve-
ments from its generated code.

4.1.1 Redesigning mainstream compilers

Mainstream compilers must be able to represent parallelism in thier intermediate represen-
tations. Such intermediate representation should be designed to express the properties of a
wide range of languages, while preserving well defined semantics and dependencies for all the
language primitives. Moreover, mainstream compiler implementations must be aware of such
parallel primitives and not only be able to optimize those, but also its surrounding code.

Higher level parallel languages must generate code using the newly defined compiler primi-
tives. Any possible higher-level optimizations should be executed before code lowering. Code
generation can occur either internally in the mainstream compiler or through an external
source-to-source compiler, performing optimizations and outputting intermediate language
compatible code. Figure 4.2 presents these two possible compilation scenarios.

By supporting higher language properties, mainstream compilers are able to perform a
better task preserving the original language semantics while optimizing its code. Nevertheless,
higher level languages should be able to lower to the newly intermediate language, abandoning
its runtime library support and adopting the intermediate language runtime support (libEr
for example). Erbium is such intermediate language.

Erbium language primitives provide deterministic parallel synchronization and data com-
munication. Moreover, the primitives have very clean dependencies, allowing its integration
in mainstream compilers while preserving legacy optimizations compatibility and usability.
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Figure 4.2: Possible compilation schemes using a parallel intermediate representation.

4.2 Mainstream compilers - GCC

Compilers are one of the most comple software achievements since the beginning of computing
era. One example is GCC containing hundreds of thousands lines of code and which has
evolved into a software “dragon” as compilers are typically represented [7].

This frightening effect of GCC tends to repel developers and companies from its adoption.
The LLVM compiler infrastructure is the most recent GCC competitor, clearly winning with
respect to code complexity and learning curve. Although, GCC is still a clear winner in re-
spect to number of supported languages and targets, along with generated code performance.

GCC is separated in three independent compilation stages:

• front-end, where all the parsing is performed besides the lowering of the code to its
intermediate representation (GIMPLE),

• middle-end, where most of the code analysis and optimizations occur, involves code
conversions between several representation forms, as well as the definition of call and
control-flow graph data structures,

• back-end, converting previous representation closer to assembly level, yet possible to
be optimized.

Figure 4.3 represents a global view of the GCC compilation flow, detailing more into the
structure that composes the compilation environment. The middle-end stage is further split
into inter-procedural analysis (IPA) and optimizations passes.

These collections are composed of many passes sequentially executed through the compi-
lation flow. The pass execution ordering defines the compilation flow, as well as the available
data structures and representations available at a specific compilation stage.

IPA passes are executed once per compiler execution. Examples are OpenMP pragma
lowering, call-graph and static single assignment (SSA) generation passes.

As specified in Figure 4.3, passes like vectorization, partial redundancy and dead-code
elimination are defined as optimization passes. Optimization passes are executed multiple
times per compilation and at least once per compiling function. Each pass, apart from its
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Figure 4.3: GCC internal structure, separated into its three compiling phases, intermediate
representations and the most relevant optimizations.

own code, that performs its predefined task, is associated with:

• a gate function checks if the pass should execute. It is used to check for compilation ge-
nerated properties or even, the most common case, if the pass was selected for execution
through compilation arguments,

• provide and destroy properties, defining whenever some intermediate representation or
data structures are created or destroyed by the pass. For example, control-flow graphs,
call graph, or the SSA form,

• todo lists, providing the means to enforce code executions before and after the pass
execution, generally used as a preparation for the pass or reconstruction of broken data-
strucures. An example is requesting for recomputing the SSA form or even recompute
the control-flow-graph, after code transformations.

Passes can also be structured hierarchically where execution of the child pass requires the
previous execution of the parent. An example of such pass hierarchy is the auto parallelization
passes (vectorizer), where the parent pass identifies and prepares the vectorizable loops, and
the child passes perform the actual code transformation.

The GCC middle-end intermediate representation (named GIMPLE) is a three-address
representation [7] where all the control statements are converted into conditional branches
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(if statements and gotos) commonly known as spaghetti code [7]. After the lowering stage
execution, all of the middle-end passes read and generate GIMPLE code. In the front-end,
GIMPLE is generated either directly after code parsing (in case of C and C++ source-code) or
through a more abstract higher level GENERIC language, later also converted to GIMPLE.

During IPA passes, GIMPLE is converted into SSA form which is preserved almost until
the end of the middle-end stage.

The call graph is a directed graph representing all the compilation unit function calls.
Nodes represent function definitions and edges represent function calls. Each node contains
a direct reference to the GIMPLE node representing its function definition. Edges contain
a reference to the precise statement that generated the edge and connects both the nodes
from the respective caller (function containing the call statement) and callee (function being
called).

The call-graph data structure is generated right after the front-end execution and is the
main driver for the remaining compilation stages. For example, it is the data structure used
by the pass manager to determine the order in which every function should be compiled.

Throughout the compilation, each pass can access this data structure to collect caller
and callee information, in addition to store any meta information generated and used by
later executing passes. Examples are the profiling passes, collecting expected number of
executions of each function and boolean flags marking the existence of valid control-flow and
alias analysis data structures. Many optimizing passes access such information in order to
decide to apply a particular optimization. One clear example is the function inlining pass
which uses, in its decision heuristic, the execution counter collected during the profiling pass
to decide the set of function calls to inline.

The control-flow graph (CFG) for a specific function is generated during the lowering
stage and is widely used through all the compiler passes. A control-flow graph is composed
of basic block nodes, which are regions of code containing no control flow statements such as
jumps or jump targets (labels). Each basic block contains a list of statements whose first one
should be a label statement and the last one a jump statement. The CFG edges represent
basic blocks connections based on the control-flow of the compiling function, more precisely
on the last statement of the source basic block.

Apart from control-flow information, the CFG edges also store detailed information such
as distinguishing conditional jumps (false or true jump edges), fall-through jumps (no con-
ditional) or even edges resulting from exception handling jumps. Like the call-graph data
structure, profiling information is stored within the nodes of the CFG. Later during compi-
lation, the CFG is extended with loop nest (loop tree) information, which is the underlying
data structure used by scalar evolution analysis and loop optimization passes, such as vec-
torization. Scalar evolution analysis were studied and implemented in GCC by Pop and
published by Pop et al. in [70, 71]. Scalar evolution analysis are used later in Chapter 6 in
the context of Erbium optimizations.

GIMPLE SSA

The SSA form [24] is also a three address code (GIMPLE) representation, although, as
the name suggests, each variable is assigned only once. For every variable assignment, a new
variable is created with same name postfixed and a unique version number. Every following
variable access is substituted by the new defined version.
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and could not be moved. As soon as we attribute the function as pure the compiler
could tell that the function was only a consequence of its parameters. Moreover, that
its result would be always consistent with respect with its passed argument.

In the initial code, the purefunc is used inside of the loop and as the consecutive
calls to this function will result in the same returned value, such function is considered
as a loop invariant and is hoisted outside of the loop. As the loop gets simplified,
vectorization pass detects that such loop could be optimized through code vectorization.
Although the pure attribute only enabled purefunc to be hoisted from the loop, other
optimizations could be applied thanks to this simple optimization, greatly improving
code e�ciency.

Erbium builtins, more precisely the synchronization ones, cannot be set as pure
or const, as its execution has indeed side e↵ects. More precisely on the record and
view data-structure, but more importantly in the record bu↵er. As the record bu↵er
are abstracted as regular array accesses, bu↵er accesses could eventually be optimized,
breaking the existent dependencies between the bu↵er and the synchronization primi-
tives. Nevertheless, apart from this well identified data-structures, such functions can
be assumed as not containing any side e↵ects.

GIMPLE (SSA)

SSA is as well a three address code (GIMPLE) representation, although as the name
suggest each variable is assigned only once (in a single statement). For every variable
assignment a new variable is created with same name postfixed with a unique version
number. Every following variable access is substituted by the new defined version.

SSA form simplifies def-use chains (data structure that maps each variable usage
to its related definitions), considering that now every usage as only a single definition,
and consequentially simplifying dataflow analysis and optimization algorithms.

Moreover, simply converting converting Gimple to SSA form will immediately per-
form live range splitting optimization, distinguishing unrelated re-usages of the same
variable. A simple example is the re-usage of the same variable as di↵erent unrelated
loop counters, clearly mitigating any relation between the usages in the di↵erent loops
and possibly later allow the promotion of such variables into a registers.

Nevertheless, not always it is possible to predict the exact assignment expression
for a specific SSA variable. For example, when multiple definitions of a single variable
can reach a single accessing statement, or in more detail when two control-flow paths
merge together while both paths define the same variable.

1 int i = 0

2 while(i < 100) {

3 do_something()

4 i += 1;

5 }

Figure 5.6: BLA BLA

TODO: Refer pure function example in previous boldmarker
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1 BEGIN:

2 i = 0

3 LOOP:

4 if(i >= 100)

5 goto END;

6 LOOP_BODY:

7 do_something();

8 i = i + 1;

9 goto LOOP_END;

10 LOOP_END:

Figure 5.6: BLA BLA

Alias analysis provide compilers with the means to disambiguate possible alias vari-
ables. In other words, understand when two pointers could possible point to the same
memory region creating hidden side e↵ects to one another.

Alias analysis is a technique in compiler theory, used to determine if a storage
location may be accessed in more than one way. Two pointers are said to be aliased if
they point to the same location.

The most simple form of aliasing occurs through immediate assignment of two
pointer variables, although such is not the only possibility. One example is a function
call to which the program passes as argument a pointer. Unless the compiler can
precisely analyse the function code, such function could possibly create a copy of the
pointer and eventually later manipulate its data in undetermined ways. In such cases,
the analysed pointer is unpredictable and is considered as “escaped”, or in other words,
impossible to analyse.

When a variable (or an object) is allocated in a subroutine, a pointer to the vari-
able can escape to other threads of execution, or to calling subroutines. If a subroutine
allocates an object and returns a pointer to it, the object can be accessed from unde-
termined places in the program the pointer has “escaped”. Pointers can also escape
if they are stored in global variables or other data structures that, in turn, escape the
current procedure.

In order to help alias analysis to collect a more precise alias information, the most
common and well known standard functions have specific analysis imprementation
rather then escaping the analysis of any of its pointer parameters. Some examples of
such functions are standard string operations and allocation functions such as stdcpy
and malloc. Lets consider the following malloc and strcpy statements:

ptr = malloc(SIZE)

This statement allocates SIZE new bytes in heap memory region. As one knows,
no malloc function at priory should share the memory region with any other code that
eventually would manipulate the allocated memory. Nevertheless, with common alias
analysis such pointer is immediatelly from this first statement (its allocation) considered
escaped.

strcpy(str2, str1)
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1 BEGIN:

2 i.1 = 0

3 LOOP:

4 i.2 = phi < i.1, i.3 >

5 if(i.2 >= 100)

6 goto END;

7 LOOP_BODY:

8 do_something();

9 i.3 = i.2 + 1;

10 goto LOOP_END;

11 LOOP_END:

Figure 5.6: BLA BLA

Alias analysis provide compilers with the means to disambiguate possible alias vari-
ables. In other words, understand when two pointers could possible point to the same
memory region creating hidden side e↵ects to one another.

Alias analysis is a technique in compiler theory, used to determine if a storage
location may be accessed in more than one way. Two pointers are said to be aliased if
they point to the same location.

The most simple form of aliasing occurs through immediate assignment of two
pointer variables, although such is not the only possibility. One example is a function
call to which the program passes as argument a pointer. Unless the compiler can
precisely analyse the function code, such function could possibly create a copy of the
pointer and eventually later manipulate its data in undetermined ways. In such cases,
the analysed pointer is unpredictable and is considered as “escaped”, or in other words,
impossible to analyse.

When a variable (or an object) is allocated in a subroutine, a pointer to the vari-
able can escape to other threads of execution, or to calling subroutines. If a subroutine
allocates an object and returns a pointer to it, the object can be accessed from unde-
termined places in the program the pointer has “escaped”. Pointers can also escape
if they are stored in global variables or other data structures that, in turn, escape the
current procedure.

In order to help alias analysis to collect a more precise alias information, the most
common and well known standard functions have specific analysis imprementation
rather then escaping the analysis of any of its pointer parameters. Some examples of
such functions are standard string operations and allocation functions such as stdcpy
and malloc. Lets consider the following malloc and strcpy statements:

ptr = malloc(SIZE)

This statement allocates SIZE new bytes in heap memory region. As one knows,
no malloc function at priory should share the memory region with any other code that
eventually would manipulate the allocated memory. Nevertheless, with common alias
analysis such pointer is immediatelly from this first statement (its allocation) considered
escaped.
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Figure 4.4: Simple GIMPLE and SSA loop conversion.

Nevertheless, it is not always possible to predict the exact assignment expression for a
specific SSA variable, for example when multiple definitions of a single variable can reach
a single usage statement or, in more detail, when two control-flow paths merge together
while both paths define the same variable. In this case, SSA conversion introduces a new
variable definition, a φ-function holding the different sources to be merged as arguments.
This abstraction provides the necessary means to disambiguate different reaching definitions.

Figure 4.4, shows a simple loop code extraction containing the original code (left), the
GIMPLE representation generated from the original code (middle), and its SSA form version
(right). Notice the φ (phi) function assigned to i.2 specifying the possibility of its value to
become either i.1 or i.3.

By creating new variables for each variable assignment, the SSA form eliminates code code
dependences and simplifies use-def chains (the data structure that maps each variable usage
to its related definition) by reducing its complexity and generation cost, considering that
now every variable usage has a single definition. The SSA form by default also performs live
range splitting, or in other words, distinguish and split unrelated uses of the same variable.
A simple example is the split of a variable that in used as induction variable in two unrelated
loops. After live range splitting, such variable has a greater chance to get promoted into a
register.

Apart from this simple optimization, SSA form is, by far, the most relevant representation
in mainstream compilers and simplifies optimizations such as:

• constant propagation,

• sparse conditional constant propagation,

• dead code elimination,

• global value numbering,

• partial redundancy elimination,

• strength reduction,

• register allocation.

Near the end of middle-end compilation phase, SSA form is converted back into non-SSA
GIMPLE. At the last stage of the middle-end, the GIMPLE representation is converted into
the Register Transfer Language (RTL), a representation closer to assembly language used for
optimizations such as instruction selection and register allocation.
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Alias analysis

Alias analysis provide compilers with the means to disambiguate possible alias variables.
In other words, it gives a men to understand when two pointers could possibly point to the
same memory region. When two variables point to the same memory region, such variables
can create side effects to one another, making value prediction harder, obfuscating compiler
analysis and optimizations.

The most simple form of aliasing occurs through immediate assignment of two pointer
variables, although this is not the only case. One example is a function call to which the
program passes a pointer argument. Unless the compiler can precisely analyze the function
code, such function could possibly create a copy of the pointer and eventually later manipulate
its data in undetermined ways. In such cases, the analyzed pointer is unpredictable and is
considered as “escaped”, or in other words, impossible to analyze. Pointers can also be
considered to escape, if they are stored as global or stored in other already escaped data
structures.

In order to help alias analysis to collect a more precise alias information, the most common
and well-known functions have precise alias analysis implementation, rather than escaping
any of its pointer arguments. Examples of such functions are standard string operations and
allocation functions such as strcpy and malloc. Let us use the following malloc and strcpy
statements as examples:

ptr = malloc(SIZE) strcpy(str2, str1)

Malloc allocates SIZE new bytes in heap memory region. As anyone knows, no malloc
function, a priory, shares the memory region with any other code that eventually would
manipulate the allocated memory. Nevertheless, without a precise alias analysis, the returned
pointer from malloc is immediately considered escaped.

Strcpy would as well escape both pointers provided as arguments.

GCC solves such alias inconsistencies by supporting “set constraints” which are “a way
of modeling program analysis problems that involve sets”1[39, 62]. It consist of a constraint
language to describe operations and the impact of such operations on related statement
variables. By applying a set of rules to the constraint sets, it is possible to derive all the
possible facts from the variable, resulting in points-to sets for all the involved variables.

Both malloc and strcpy are defined within GCC as builtin functions. Moreover, each
of those builtins is specifically defined with its set of constraints, allowing alias analysis to
better understand what happens to its pointer argument variables. More precisely it specifies
that none of the functions lets its arguments escape and in case of strcpy that the memory
pointed by its second argument is copied into the first argument memory.

Set to constraints are further detailed later in the chapter in the context of the de-
obfuscation of Erbium primitives.

Built-in functions

In order to better support common operating system functions, GCC provides the means
to define prototype function definitions, named built-in functions.

1Taken from GCC’s code comments
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Three different types of builtin functions can be defined in GCC:

• Functions external to compilation-unit whose behaviour is well understood and that
the compiler optimizations take into consideration and perform at its best. Examples
of such builtins are stdlib, string, libmath functions.

• Functions implemented through special architecture instructions. Examples are the
atomic operations available in X86 architectures.

• Function calls introduced through code generation. Although such functions do not
exist in the original code, GCC validates their existence and in the end links them to
the specific target library. This is the case of the GCC support for OpenMP which
from the OpenMP pragmas, generates libgomp function calls (defined as builtins).

Each builtin is defined using some macro pseudo language and, among other things, is
able to specify the function name, type of arguments and a set of attributes.

Attributes allow to specify with more detail other properties of a specific function or
function call, allowing the compiler to better decide how to apply optimizations, minimizing
the cost of those builtin calls and surrounding code. Attributes resemble regular function call
attributes, available through the attribute keyword in many compilers.

Apart from the decision based on attributes, some optimizations rely on the builtin node
itself to identify the specific call and make a better job. One example is given by the previous
malloc and strcpy functions, where alias analysis directly identifies these builtins.

Many builtins are directly converted within the compiling application, avoiding the func-
tion call overhead and even sometimes completely replaced by compile time computations,
removing completely its cost. Examples are the pure mathematical functions (such as cosine).
When present in the code with constant arguments, its result is computed at compile time
and directly converted by the compiler to its known result (for example, cos(90) is converted
to 0 and the original call is removed).

Builtin attributes

In order to allow optimizations similar to the previous cos example, it is necessary to
precisely type each individual builtin with its most optimistic, yet correct, attribute.

Setting the builtin attributes allows to specify some properties of the specific builtin
function, minimizing optimization penalty for such call. The most relevant and common
function attributes are:

• pure, specifying that the function has no hidden side effects1, except from its return
value which is computed based only on arguments and/or global variables,

• const, is just like a pure function, although the return value of such function is only a
consequence of its arguments and never of any global memory variables,

• hot, informs the compiler that the function is a hot spot of the program, hints for
inlining and code locality optimizations.

1 A function or expression is considering as having side effects if modifies some program state or has an
observable interaction with external functions. Moreover, with side effects an application depends on the
execution ordering of its side effect statements.
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the return value, multiple similar calls to the function can be substituted by a single execution
into a temporary variable (later in final binary it can possibly be a single register).

1 int *matrix_op(int *A, int *B, int factor)

2 {

3 int i = 0

4 int *C = new C[MATRIX_SIZE];

5 int tmp = pure_func(factor);

6 vector int v_tmp = {tmp, tmp, ...}

7 (i; i < MATRIX_SIZE; i+= VECTOR_SIZE {

8 vector int v_tmp1 = vector_+ (A[i], B[i]);

9 vector C[i] = vector_* (v_tmp1, v_tmp);

10 }

11 C;

12 }

Figure 4.5: BLA BLA

Figure 4.6 demonstrates the relevance of correctly attributed functions. As one can realize,
pure func can be considered as a loop invariant call, if it is assumed that such function has
no state, or in other words its return value is only dependent on its provided argument.
Such functions should be defined as pure. The function pure func without its attribute
pure would be considered as containing side e↵ects, and so the compiler could not consider
it as a loop invariant. As soon as the function is attributed as pure the compiler could
predict that the function call is a loop invariant and consequently hoist it. After this loop
simplification, vectorization pass detects the opportunity and vectorizes the loop. Although
the pure attribute only enabled pure func to be hoisted from the loop, other optimizations
could be applied thanks to this simple optimization, greatly improving code e�ciency.

4.2.1 Optimizations

GCC in its current state contains hundreds of passes and each of those either performs analysis
or contributes to code optimizations. Examples of optimizations are dead-code elimination,
partial redundancy elimination, vectorization and the more recent polyhedral optimizations
implemented through Graphite representation [71].

Partial redundancy elimination (PRE)

Partial redundancy elimination (PRE) addresses, apart from PRE optimization itself,

5.2 Mainstream compilers - GCC

Setting the builtin attributes allows to specify some properties of the specific builtin
function minimizing optimization penalty for such call. The most relevant and common
function attributes are:

• pure, specifying that the function has no hidden side e↵ects except from its return
value which is computed based only on passed arguments and or global variables.

• const, is just like a pure function, although such function return value is only a
consequence of its arguments and never from global memory variables.

• Which other

Pure or const attributed functions are subject to optimizations such as common
subexpression elimination, or loop optimizations. As an example, as this functions
only impact the return value, multiple similar calls to the function can be substituted
by a single execution into a temporary variable (later in final binary it can possibly be
a single register).

TODO: Add 2 examples showing both optimizations in pure and non pure functions

TODO: Make reference of this in SSA form multiple definitions

1 extern int pure_func(int n) __attribute__((pure));

2

3 int *matrix_op(int *A, int *B, int factor)

4 {

5 int i = 0

6 int *C = new C[MATRIX_SIZE];

7 for(i; i < MATRIX_SIZE; i++) {

8 C[i] = pure_func(factor) * (A[i] + B[i]);

9 }

10 return C;

11 }

Figure 5.4: Process creation example runtime code

Erbium builtins, more precisely the synchronization ones, cannot be set as pure
or const, as its execution has indeed side e↵ects. More precisely on the record and
view data-structure, but more importantly in the record bu↵er. As the record bu↵er
are abstracted as regular array accesses, bu↵er accesses could eventually be optimized,
breaking the existent dependencies between the bu↵er and the synchronization primi-
tives. Nevertheless, apart from this well identified data-structures, such functions can
be assumed as not containing any side e↵ects.

GIMPLE (SSA)

SSA is as well a three address code (GIMPLE) representation, although as the name
suggest each variable is assigned only once (in a single statement). For every variable
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Setting the builtin attributes allows to specify some properties of the specific builtin
function minimizing optimization penalty for such call. The most relevant and common
function attributes are:

• pure, specifying that the function has no hidden side e↵ects except from its return
value which is computed based only on passed arguments and or global variables.

• const, is just like a pure function, although such function return value is only a
consequence of its arguments and never from global memory variables.

• Which other

Pure or const attributed functions are subject to optimizations such as common
subexpression elimination, or loop optimizations. As an example, as this functions
only impact the return value, multiple similar calls to the function can be substituted
by a single execution into a temporary variable (later in final binary it can possibly be
a single register).

TODO: Add 2 examples showing both optimizations in pure and non pure functions

TODO: Make reference of this in SSA form multiple definitions

1 int *matrix_op(int *A, int *B, int factor)

2 {

3 int i = 0

4 int *C = new C[MATRIX_SIZE];

5 int tmp = pure_func(factor)

6 vector int v_tmp = {tmp, tmp, ...}

7 for(i; i < MATRIX_SIZE; i+= VECTOR_SIZE {

8 vector int v_tmp1 = vector_+ (A[i], B[i]);

9 vector C[i] = vector_* (v_tmp1, v_tmp);

10 }

11 return C;

12 }

Figure 5.4: BLA BLA
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Setting the builtin attributes allows to specify some properties of the specific builtin
function minimizing optimization penalty for such call. The most relevant and common
function attributes are:

• pure, specifying that the function has no hidden side e↵ects except from its return
value which is computed based only on passed arguments and or global variables.

• const, is just like a pure function, although such function return value is only a
consequence of its arguments and never from global memory variables.

• Which other

Pure or const attributed functions are subject to optimizations such as common
subexpression elimination, or loop optimizations. As an example, as this functions
only impact the return value, multiple similar calls to the function can be substituted
by a single execution into a temporary variable (later in final binary it can possibly be
a single register).

TODO: Add 2 examples showing both optimizations in pure and non pure functions

TODO: Make reference of this in SSA form multiple definitions

1 extern int pure_func(int n) __attribute__((pure));

2

3 int *matrix_op(int *A, int *B, int factor)

4 {

5 int i = 0

6 int *C = new C[MATRIX_SIZE];

7 for(i; i < MATRIX_SIZE; i++) {

8 C[i] = pure_func(factor) * (A[i] + B[i]);

9 }

10 return C;

11 }

Figure 5.4: Process creation example runtime code

Erbium builtins, more precisely the synchronization ones, cannot be set as pure
or const, as its execution has indeed side e↵ects. More precisely on the record and
view data-structure, but more importantly in the record bu↵er. As the record bu↵er
are abstracted as regular array accesses, bu↵er accesses could eventually be optimized,
breaking the existent dependencies between the bu↵er and the synchronization primi-
tives. Nevertheless, apart from this well identified data-structures, such functions can
be assumed as not containing any side e↵ects.

GIMPLE (SSA)

SSA is as well a three address code (GIMPLE) representation, although as the name
suggest each variable is assigned only once (in a single statement). For every variable
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1 int *matrix_op(int *A, int *B, int factor)

2 {

3 int i = 0

4 int *C = new C[MATRIX_SIZE];

5 int tmp = pure_func(factor)

6 vector int v_tmp = {tmp, tmp, ...}

7 for(i; i < 1024; i+= VECTOR_SIZE {

8 vector int v_tmp1 = vector_+ (A[i], B[i]);

9 vector C[i] = vector_* (v_tmp1, v_tmp);

10 }

11 return C;

12 }

Figure 5.5: BLA BLA

assignment a new variable is created with same name postfixed with a unique version
number. Every following variable access is substituted by the new defined version.

This single definition simplifies the def-use chains (data structure that maps each
variable use to its possible definitions) creation, and eventually simplifying dataflow
analysis and optimization algorithms.

Moreover, simply converting converting Gimple to SSA form will immediately opti-
mize code by distinguishing unrelated re-usages of the same variable. A simple example
is the re-usage of the same variable as di↵erent unrelated loop counters, clearly miti-
gating any relation between the usages in the di↵erent loops and possibly later allow
the promotion of such variables into a registers.

Nevertheless, not always it is possible to predict the exact assignment expression
for a specific SSA variable. For example, when multiple definitions of a single variable
can reach a single accessing statement, or in more detail when two control-flow paths
merge together while both paths define the same variable.

TODO: Refer pure function example in previous boldmarker

In this cases SSA convertion introduces a new variable definition assigned with a �-
function, containing the di↵erent merging definitions as arguments, which will provide
the necessary means to disambiguate between the di↵erend reaching definitions.

One of the latest compilation GCC passes, converts back SSA form into the the
minimum number of independent definitions.

Alias analysis

Alias analysis provide compilers with the means to disambiguate possible alias vari-
ables. In other words, understand when two pointers could possible point to the same
memory region creating hidden side e↵ects to one another.

Alias analysis is a technique in compiler theory, used to determine if a storage
location may be accessed in more than one way. Two pointers are said to be aliased if
they point to the same location.

The most simple form of aliasing occurs through immediate assignment of two
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Figure 5.5: Impact of pure function attributing on compilation.

Figure 5.5 demonstrates the relevance of correctly attributing functions. The func-
tion purefunc without its attribute pure would be considered as containing side e↵ects,
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Figure 4.6: Pseudo code for the compilation impact of a pure function attribute.
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Setting the builtin attributes allows to specify some properties of the specific builtin
function minimizing optimization penalty for such call. The most relevant and common
function attributes are:

• pure, specifying that the function has no hidden side e↵ects except from its return
value which is computed based only on passed arguments and or global variables.

• const, is just like a pure function, although such function return value is only a
consequence of its arguments and never from global memory variables.

• Which other

Pure or const attributed functions are subject to optimizations such as common
subexpression elimination, or loop optimizations. As an example, as this functions
only impact the return value, multiple similar calls to the function can be substituted
by a single execution into a temporary variable (later in final binary it can possibly be
a single register).

TODO: Add 2 examples showing both optimizations in pure and non pure functions

TODO: Make reference of this in SSA form multiple definitions

1 extern int pure_func(int n) __attribute__((pure));

2

3 int *matrix_op(int *A, int *B, int factor)

4 {

5 int i = 0

6 int *C = new C[MATRIX_SIZE];

7 for(i; i < MATRIX_SIZE; i++) {

8 C[i] = pure_func(factor) * (A[i] + B[i]);

9 }

10 return C;

11 }

Figure 5.4: Process creation example runtime code

Erbium builtins, more precisely the synchronization ones, cannot be set as pure
or const, as its execution has indeed side e↵ects. More precisely on the record and
view data-structure, but more importantly in the record bu↵er. As the record bu↵er
are abstracted as regular array accesses, bu↵er accesses could eventually be optimized,
breaking the existent dependencies between the bu↵er and the synchronization primi-
tives. Nevertheless, apart from this well identified data-structures, such functions can
be assumed as not containing any side e↵ects.

GIMPLE (SSA)

SSA is as well a three address code (GIMPLE) representation, although as the name
suggest each variable is assigned only once (in a single statement). For every variable
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Figure 4.5: Pseudo code demonstrating the compiler impact of a pure function attribute.

Pure or const attributed functions are subject to optimizations such as common subex-
pression elimination, or loop optimizations. As an example, as such a function only impacts
the return value, multiple similar calls to the function can be substituted by a single execution
into a temporary variable (later in final binary it can possibly be a single register).

Figure 4.5 demonstrates the relevance of correctly attributed functions. As one can realize,
pure func can be considered as a loop invariant call, if it is assumed that such function has
no state, or in other words its return value is only dependent on its provided argument.
Such functions should be defined as pure. The function pure func without its attribute pure
would be considered as containing side effects, thus the compiler could not consider it as
loop invariant. As soon as the function is attributed as pure, the compiler could predict that
the function call is a loop invariant and consequently hoist it. After this loop simplification,
the vectorization pass detects the opportunity and vectorizes the loop. Although the pure
attribute only enabled pure func to be hoisted from the loop, other optimizations could be
applied thanks to this simple optimization, greatly improving code efficiency.

4.2.1 Optimizations

GCC in its current state contains hundreds of passes and each of those either performs analysis
or contributes to code optimizations. Examples of optimizations are dead-code elimination,
partial redundancy elimination, vectorization and the more recent polyhedral optimizations
implemented through the Graphite representation [72].

Partial redundancy elimination (PRE)

Partial redundancy elimination (PRE) addresses, apart from PRE optimization itself,
multiple types of code motion, such as loop invariant code motion (hoisting / scalar promo-
tion) and global common subexpression elimination.

PRE works through iterative data analysis predicting where expressions are computed
and anticipating new locations where such expressions can be moved, in order to reduce the
total number of similar computations executed.

Such analysis implies the computation of availability and anticipability sets, defining
where expressions are available (up-safe) or anticipable (down-safe) for all basic blocks of
the compiled functions. In a very safe implementation, only operations both anticipable and
available at the same program point would be moved. Most compilers PRE heuristics are
more flexible and verify for some more special cases where code motion is also possible.

Many times, both availability and anticipability sets are “contaminated” with statements
that the compiler predicts as containing side effects, such as operating system locking system
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calls, alias escaped memory pointer dependencies or even global variable accesses. Statements
with side effects limit the PRE analysis, reducing code motion opportunities.

GCC defines side effect free functions by setting the function attributes as pure or const.
In other words, any function call not marked as pure or const is assumed as containing side
effects, and contaminates availability and anticipability sets, disabling code motion across it.

PRE is further studied in Chapter 6 where it is extended to support Erbium intermediate
representation synchronization and communication primitives.

Dead-code Elimination (DCE)

As mentioned before, compilers are implemented in a non destructive manner where each
optimization executes only if specific conditions are verified. Moreover, many optimizations
are inter-dependent, i.e., are only executed after a successful execution of a predecessor op-
timization. Dead-code elimination is one of such optimizations. Many programmers judge
dead-code elimination as the worthless optimization, when considering their own proficient
programming skills. However, DCE is one of the most important optimizations within any
mainstream compilation framework due to the compiler optimizations themselves. For exam-
ple, SSA code conversion creates many temporary redundant variables, later removed by
DCE.

As dead-code has no semantical meaning, keeping it can be considered as very costly with
respect to its uselessness. Without a dedicated DCE pass, optimizations require to explicitly
perform dead-code elimination, simplifying its code analysis.

Vectorization

The vectorization pass in GCC, although highly sophisticated, is applied like a pattern
matching algorithm over loops and their data dependencies. Very precise code patterns are
necessary in order for vectorization to execute.

A single statement inside a loop can make the difference between a vectorized loop or
an aborted transformation. Most of the times, vectorization is unable to execute considering
the existence of side effects expressions or functions within the attempted vectorizing loop.
Moreover, in order to execute vectorization, it is necessary to move loop invariant expressions
or remove the dead-code out of the loop.

The Vectorizer pass is an example of the benefits of under-evaluated optimizations such
as DCE, as well as the importance of optimizations interoperability.

Compiler optimizations have very sensible constraints. Whenever the compiler cannot
assure a correct code transformation out of some code analysis, such optimization are, by
default, ignored and not executed. Such approach to compilation makes sure that the seman-
tics of the compiled application has not changed. A small code detail can make the difference
between an optimized and an unoptimized application. Optimization decision heuristic al-
gorithms are one of the biggest challenges to any compiler developer. Moreover, such a
complexity is the main reason for the huge repositories of test cases always accompanying
mainstream compilers.

Some optimizations are simply impossible to apply considering the lack of details either
from the application semantics, or even from its programmer.

Nevertheless, it is not always the programmer fault, but rather the inability to represent
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and eventually code adaptation.

Unfortunately call graphs do not support thread instantiation thanks to the variety
and conplexity involved in thread creation libraries but, mostly because there is no
standard abstraction to such feature .

Unlick a regular function call, process instantiation involves calling an external
runtime threading system function to which the compiler has no knowledge and cannot
predict behaviour. Such functions are interpreted by the compiler as black-boxes to
which nothing can be predicted. The lack of information about the external runtime
library makes impossible for the compiler to represent in its internal data-structure.

5. COMPILER DESIGN

h!tb
1 void *process_code(void *data) {

2 ...

3 }

4 void main()

5 {

6 pthread_t thread;

7 /* ... */

8 regular_func();

9 pthread_create(&thread, NULL,

10 &process_code, some_data);

11 /* ... */

12 return 0;

13 }

h!tb
1

2 void *__builtin_er_alloc_process_instance (void *process, int arg_struct_size);

3 void __builtin_er_run (void * process_instance);

4 void *__builtin_er_wait_for_processes_end(void);

5

6 void *__builtin_er_alloc_record (int elem_size, int buffer_size_in_elems);

7 void *__builtin_er_alloc_view (int elem_size, int horizon, char view_type);

8 void __builtin_er_add_registered_views (void *record, int nr_readers, int nr_writers);

9 void *__builtin_er_get_new_view_id (void *view, char view_type);

10 void *__builtin_er_connect_registered (void *view, void *record, void *view_id);

11 void __builtin_er_connect (void *view, void *record);

12 void __builtin_er_free_view (void *view);

13

14 void *__builtin_er_occ (void *view, int index);

and eventually code adaptation.

Unfortunately call graphs do not support thread instantiation thanks to the variety
and conplexity involved in thread creation libraries but, mostly because there is no
standard abstraction to such feature .

Unlick a regular function call, process instantiation involves calling an external
runtime threading system function to which the compiler as no knowledge and cannot
predict behaviour. Such functions are interpreted by the compiler as black-boxes to
which nothing can be predicted. The lack of information about the external runtime
library makes impossible for the compiler to represent in its internal data-structure.

TODO: Add figure with both code and a graph Figure ?? is a example thread
creation code using the well known POSIX runtime library, as well as the example call
graph generated for such code. Considering the lack of information the instantiated
processes are presented has not connected with the main application code. For the
compiler, those functions are only alive and not considered dead-code since a pointer
to the functions is passed to pthread create. Although correct such representation can
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Figure 5.6: Thread creation example using pthread create POSIX function, together with
its respective generated callgraph. Solid lines are edges in the call graph. Fine dashed lines
are the connection between call graph and code statements. Dashed connection between
pthread create and process code node is non existent since pthread create is external to
compilation unit and the compiler has no information regarding what it does with its first
parameter (process code function pointer).

TODO: Add figure with both code and a graph Figure ?? is a example thread
creation code using the well known POSIX runtime library, as well as the example call
graph generated for such code. Considering the lack of information the instantiated

1
2 void ∗ builtin er alloc process instance (void ∗process, int arg struct size );
3 void builtin er run (void ∗ process instance );
4 void ∗ builtin er wait for processes end (void);
5
6 void ∗ builtin er alloc record ( int elem size , int bu↵er size in elems );
7 void ∗ builtin er alloc view (int elem size , int horizon, char view type);
8 void builtin er add registered views (void ∗record, int nr readers , int nr writers );
9 void ∗ builtin er get new view id (void ∗view, char view type);

10 void ∗ builtin er connect registered (void ∗view, void ∗record, void ∗view id);
11 void builtin er connect (void ∗view, void ∗record);
12 void builtin er free view (void ∗view);
13
14 void ∗ builtin er occ (void ∗view, int index);
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Figure 4.6: Process instantiation buitins.

the code meaning. An example are source-to-source compilers of higher level parallel lan-
guages when they are not able to expose the language primitives semantical meaning to the
mainstream compilers. As such primitives do not have extreme properties as pure or const
functions, but rather much finer ones, those are impossible to express in current generation
of mainstream compilers.

Applications developed in parallel languages and converted into runtime libraries tend to
be not as optimizable as the sequential counter part applications. This is the case because of
the complexity introduced by the function calls (primitives) and data structures defined by
the language runtime support.

Consider compiling libEr code without any integration of the Erbium language within
the compiler. Every synchronization or memory operation is represented as a function call.
In the best case, the library is compiled simultaneously with the application, providing the
compiler with much clearer information of what are in fact these functions. However, as the
calls are within different threads and sharing pointers (record data structures), the compiler,
similar to any other library calls, is not able to predict any behaviour from the primitive
function calls and assume them as containing side effects.

The next section details Erbium as a GCC intermediate representation and how such
restrictions can be hidden by exploiting its primitives properties and by adjusting them to
analysis and optimizations already available in GCC.

4.3 Erbium in GCC

GCC is one of the most complex compiler frameworks. Modifying GIMPLE middle-end re-
presentation to support Erbium primitives would imply many other modifications through
affected optimization and analysis passes. Moreover, this approach would make the imple-
mentation of Erbium nearly impossible in due time.

Luckily, the Erbium language can be defined as an extension to C, its primitives can easily
be expressed with the existing GIMPLE representation. Moreover, as shown in the runtime
chapter, the Erbium primitives can be represented as regular function calls, making builtins
the best candidates to represent them. Builtins require no modification to GCC’s original
GIMPLE intermediate representation and passes. The language extensions such as OpenMP
[6, 17] and transactional memory [15] support have similar integrations.

The integration of Erbium language in GCC implied extending the front-end phase, sim-
plifying process definition and process instantiation. From several tried alternatives, the best
and less obtrusive approach was to define a new function attribute, flagging functions as
processes.

void process (void *rec) attribute ((process)) { ... }
Any call to a attributed process function is converted to a process instantiation.

For Erbium middle-end and runtime support compatibility reasons, process definitions
and all its calls (process instantiations) are transformed during GIMPLE lowering pass. It
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1
2 void *__builtin_er_alloc_process_instance (void *process, int arg_struct_size);

3 void __builtin_er_run (void * process_instance);

4 void *__builtin_er_wait_for_processes_end(void);

5
6 void *__builtin_er_alloc_record (int elem_size, int buffer_size_in_elems);

7 void *__builtin_er_alloc_view (int elem_size, int horizon, char view_type);

8 void __builtin_er_add_registered_views (void *record, int nr_readers, int nr_writers);

9 void *__builtin_er_get_new_view_id (void *view, char view_type);

10 void *__builtin_er_connect_registered (void *view, void *record, void *view_id);

11 void __builtin_er_connect (void *view, void *record);

12 void __builtin_er_free_view (void *view);

13
14 void __builtin_er_update (void *view, int index);

15 void __builtin_er_commit (void *view, int index);

16 void __builtin_er_stall (void *view, int index);

17 void __builtin_er_release (void *view, int index);

18
19 void *__builtin_er_occ (void *view, int index);

with the programmer knowledge on pthread create function that graph is incomplete.

In Erbium process instantiation is abstracted by run and allocprocessinstance
builtins (presented in Figure 5.6, similar to what was explained in Erbium runtime
support chapter. Process functions are defined as regular function calls.

Using those builtins it is possible to collect instantiation information and define
process instances in existent call graph data-structure, very similarly to what already
occurs in call-graph creation. find reference

Process Network Graph (PNG) data-structure is an extension to the call graph
data-structure permitting to attach to newly created process instances some more rel-
evant information regarding synchronization and communication between processes.
PNG information can either be provided by the higher level language expansion phase,
through annotated code (in case of an external source-to-source compiler) or even be
reversed from alias information.

In comparison, reversing PNG should be very inneficient in comparison with the
alternatives and should be only considered as a last resource.

Althogh, very relevant in the context of parallel optimizations and validation of
such optimizations, PNG creation is not further detailed through the document and is
assumed as existent in order to explain ambitioned optimizations for Erbium language.
Although PNG creation is not detailed its structure is defined and explained through
chapters ?? and 7 together with its possible use cases.

Synchronization

More on builtins

Synchronization in Erbium IR is as well implemented through builtins. Imple-
mented builtins are presented in Figure 5.8.

Record and view data-structures are defined has non typed memory pointers (void⇤).
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Figure 4.7: GCC Erbium synchronization builtins.
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and eventually code adaptation.

Unfortunately call graphs do not support thread instantiation thanks to the variety
and conplexity involved in thread creation libraries but, mostly because there is no
standard abstraction to such feature .

Unlick a regular function call, process instantiation involves calling an external
runtime threading system function to which the compiler has no knowledge and cannot
predict behaviour. Such functions are interpreted by the compiler as black-boxes to
which nothing can be predicted. The lack of information about the external runtime
library makes impossible for the compiler to represent in its internal data-structure.
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h!tb
1 void *process_code(void *data) {

2 ...

3 }

4 void main()

5 {

6 pthread_t thread;

7 /* ... */

8 regular_func();

9 pthread_create(&thread, NULL,

10 &process_code, some_data);

11 /* ... */

12 return 0;

13 }

h!tb
1

2 void *__builtin_er_alloc_process_instance (void *process, int arg_struct_size);

3 void __builtin_er_run (void * process_instance);

4 void *__builtin_er_wait_for_processes_end(void);

5

6 void *__builtin_er_alloc_record (int elem_size, int buffer_size_in_elems);

7 void *__builtin_er_alloc_view (int elem_size, int horizon, char view_type);

8 void __builtin_er_add_registered_views (void *record, int nr_readers, int nr_writers);

9 void *__builtin_er_get_new_view_id (void *view, char view_type);

10 void *__builtin_er_connect_registered (void *view, void *record, void *view_id);

11 void __builtin_er_connect (void *view, void *record);

12 void __builtin_er_free_view (void *view);

13

14 void *__builtin_er_occ (void *view, int index);

and eventually code adaptation.

Unfortunately call graphs do not support thread instantiation thanks to the variety
and conplexity involved in thread creation libraries but, mostly because there is no
standard abstraction to such feature .

Unlick a regular function call, process instantiation involves calling an external
runtime threading system function to which the compiler as no knowledge and cannot
predict behaviour. Such functions are interpreted by the compiler as black-boxes to
which nothing can be predicted. The lack of information about the external runtime
library makes impossible for the compiler to represent in its internal data-structure.

TODO: Add figure with both code and a graph Figure ?? is a example thread
creation code using the well known POSIX runtime library, as well as the example call
graph generated for such code. Considering the lack of information the instantiated
processes are presented has not connected with the main application code. For the
compiler, those functions are only alive and not considered dead-code since a pointer
to the functions is passed to pthread create. Although correct such representation can
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Figure 5.6: Thread creation example using pthread create POSIX function, together with
its respective generated callgraph. Solid lines are edges in the call graph. Fine dashed lines
are the connection between call graph and code statements. Dashed connection between
pthread create and process code node is non existent since pthread create is external to
compilation unit and the compiler has no information regarding what it does with its first
parameter (process code function pointer).

TODO: Add figure with both code and a graph Figure ?? is a example thread
creation code using the well known POSIX runtime library, as well as the example call
graph generated for such code. Considering the lack of information the instantiated

1
2 void ∗ builtin er alloc process instance (void ∗process, int arg struct size );
3 void builtin er run (void ∗ process instance );
4 void ∗ builtin er wait for processes end (void);
5
6 void ∗ builtin er alloc record ( int elem size , int bu↵er size in elems );
7 void ∗ builtin er alloc view (int elem size , int horizon, char view type);
8 void builtin er add registered views (void ∗record, int nr readers , int nr writers );
9 void ∗ builtin er get new view id (void ∗view, char view type);

10 void ∗ builtin er connect registered (void ∗view, void ∗record, void ∗view id);
11 void builtin er connect (void ∗view, void ∗record);
12 void builtin er free view (void ∗view);
13
14 void ∗ builtin er occ (void ∗view, int index);
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Figure 4.8: GCC Erbium record and view initialization and termination builtins.

involves merging all of its parameters into a single data structure collecting the process
function parameters into a single memory entity. Moreover, all the process instantiations are
converted into calls to specific process instance creation and execution builtins. Figure 4.6
presents such builtins having the same prototype definition as its runtime support presented
in Chapter 3.

Figure 4.13 and 4.14 are code examples of the before and after GIMPLE lowering pass.

Synchronization primitives are also implemented through builtin functions (Figure 4.7)
similarly to how synchronization primitives are defined in Chapter 3.

Within the compiler representation, both record and view data structures are defined
as non typed memory pointers (void∗). In reality, there is no real benefit in defining such
data structures precisely, considering its content is only accessed by the runtime support
library. No application is assumed to access the data structures directly. Doing so would
violate Erbium code portability, considering that view and record data structures, as well
as primitives implementations, are defined for particular target architectures or operating
system. Moreover, the view and record data structures can have different content for various
implementations.

Record and view initialization and termination primitives are presented in Figure 4.8.

Data communication buffer accesses are abstracted using the builtin function:
builtin er occ(void *view, int index)

This builtin replaces the events access as presented in Chapter 2 using the view with dou-
ble square brackets (view[[index]]). This builtin is lowered during compilation into memory
accesses (array semantics) where such operations can be further optimized as regular array
accesses, in synergy with their surrounding sequential code. Through the compiler execution,
the monotonic indexes, used to access the buffer positions, are replaced by modulo operations
computing the exact buffer position in memory.
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4.3.1 De-obfuscation of Erbium builtins

Although builtins are a easy way to integrating Erbium primitives, builtins are not suffi-
cient by themselves to guarantee the usefulness of the Erbium intermediate representation.
Without further integration, builtins are like extern function calls and the most pessimistic
assumptions are taken, considering the lack of information. The simplistic implementation
results in code obfuscation, creating similar problems to code optimizations as any source-
to-source compiler generated code would to a traditional mainstream compiler.

In order to allow builtins not to obfuscate code, it is necessary either to lower the builtins
at a soon enough compilation stage, or to extend the compiler analysis with precise builtin
properties.

Synchronization primitives

Erbium builtins impact many of the existing sequential optimizations. This happens since
the compiler makes no assumptions about any prototyped, yet non implemented function
(functions implemented outside of the compilation scope, for example runtime library function
calls). Non implemented functions are assumed as containing side effects, contaminating or
disabling many compiler analysis and optimization transformations.

For example, the compiler cannot predict if this function performs a long jump, has
exception handling, or also privately performs some sort of global state change. For this
reason, there are very few types of expressions that can be moved across function calls.

In order to avoid code contamination through the Erbium primitives, it is necessary to
define such builtins precisely with respect to their internal behaviour.

OpenMP and Trasactional Memory (TM) [15] macros are converted to builtins, as Erbium
primitives are. Like so, their builtins also contain side effects. Nevertheless, their lowered
builtin functions have too complex semantics, which obfuscate their surrounded code from
many of the traditional optimizations, as is shown by Pop et al. [65].

Furthermore, as those builtins are not further detailed through the compiler implementa-
tion, they get considered as containing side effects. In any case and considering the semantics
of OpenMP and TM primitives, such behaviour might be necessary and intended, to guaran-
tee compilation correctness.

As explained in Chapter 2, Erbium primitives have very simple properties, and contain no
dependencies with respect to the sequential code, apart from statements accessing buffers. In
other words, Erbium synchronization primitives are only intended to protect buffers content
and not any traditional statements, as for example a mutex would. Moreover, apart from
buffer accesses, every other operations should be movable across a synchronization builtin.

These properties allow Erbium, contrarily to OpenMP and TM, to better define its primi-
tive function “effects”, allowing existing optimizations to execute without code obfuscation
from the Erbium primitives.

Remove side effects from builtins

In order to define synchronization builtins without side effects, it is necessary to inform
the compiler that none of the synchronization builtins has side effects, i.e., the builtin will
not contain any strange behaviour, such that switching the order of operations would change
the semantics of the application. Such type of side effects can be expected on mutex lock
and unlock builtins. Indeed, those primitives are intended to guarantee multiple exclusivity
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of their protected code, thus such code cannot move across either lock or unlock builtins.
Nevertheless, in case of Erbium builtins, even if its runtime uses mutexes, as long as its
correctly implemented, the Erbium builtins can be interpreted as not containing such type
of side effects.

The standard way to define side effects free function is through the attribute pure or
const. Nevertheless, Erbium synchronizations cannot be defined as such considering that not
all the primitives return values and their arguments content does change during the primitive
execution. For example, performing an update changes the view sliding window, which can
be understood as a change in the view buffer content. Moreover, the only side effect of update
is to change the content of its views buffer.

Furthermore, both const and pure attributes expect the function to return a value, its
only effect being this returned value. Without a return value, all calls to such functions
would be detected as dead-code, considering that no effects were expected to occur to the
passed arguments. Thus, pure and const attributes cannot be used in the context of Erbium
primitives.

In order to flag the Erbium builtin calls as side effect free, a new precise attribute type is
defined, specifying that the builtin has no global application side effects.

Alias analysis and code motion

Alias analysis has a big influence in code motion decision. Without going in greater
implementation detail for code motion passes such as PRE, the rule of thumb is that only
non-dependent expressions or statements should be reordered. If a statement uses pointer
arithmetics, it is harder to predict its dependencies. Moreover, it is necessary for alias
analysis to disambiguate possible aliasing variables, and to guarantee that those pointers
cannot possibly be pointing to a dependent reference.

When statements are function calls and such functions expect pointers in their arguments,
alias analysis should traverse such function code in order to identify what are the references
created by the function. External function definitions do not provide compilers with sufficient
information to disambiguate pointer aliasing. Moreover, the worst case scenario is considered
and all the pointer arguments are considered referenced as escaped, meaning that those
pointers aliasing is impossible to predict (they might alias with anything).

The Erbium primitives and more precisely its synchronization builtins expect a view
pointer as their first parameter. As any other builtin, no real definition of the function exists
at compilation time.

In GCC, alias analysis is computed with the already referred “set constraints”, which
defines the rules for pointer aliasing and allows alias analysis to infer points-to information
for every pointer variable. The builtins implementation allows to have precisely defined set
constraints such that their pointer arguments are not considered as escaped as traditional
functions would be.

Precise implementations for specific builtins are already done for GCC builtins, such as
malloc and memcpy, avoiding the returned memory from malloc and both pointers provided
to memcpy from being classified as escaped. The malloc set constraints define that its
returned pointer is a newly memory position on heap address space while memcpy with both
its pointer arguments define that both the passed pointers are neither escaped nor related
though this call.

The Erbium primitives have similar implementation, more precisely both record and view
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Expansion

5.3 Erbium in GCC

to verify if a statement is using or clobbering a specific memory variable.

Once again, GCC allows builtins to have precise implementations to verify such
cases.w Without such implementation the builtin is assumed as using or clobbering
every pointer and only very clear cases where such is not possible are optimized.

An example implementation can be memcpy builtin. GCC can identify if any
pointer is actually used or clobbered by this builtin. Without such type of analy-
sis possibly aliasing pointers would be clearly. Memcpy copies memory from second
argument into first argument.

Lets consider a pointer p. p is used by a memcpy(a, b) if its second argument b may
alias p. Similarly p would be clobbered by the same memcpy if a may alias p.

In case of Erbium, all of the builtins containing view or record pointers should have
such specialization. The most interesting case is though update and stall where bu↵ers
should be considered as clobbered, when such operation is performed.

Nevertheless in order to verify such clobbering it is necessary to dereferencing view
in order to collect the bu↵er pointer. In order to facilitate such operation, all of the
bu↵er related builtins are expanded with an extra pointer argument for the bu↵er. This
way implementation of usage and clobbering information is simplified. Moreover such
expansion has no code penalties considering the extra builtin call is pure.

Firgure ??, as an example of the expansion.

1 __builtin_er_update(view, i);

1 void *buf = __builtin_er_view_get_buffer(view);

2 __builtin_er_update(view, i, buf);

Extra

Any code motion that perhaps can be dependent on a pointer value must be com-
pared with

Any two statements accessing pointers, before any code motion is performed, one of
the statments crossing the program point of the other, those pointers must be verified
as not aliasing. If such pointers

Alias analysis and side e↵ects

All the Erbium builtins receive as first argument a view data-structure pointer.
Any prototyped but not defined function that accepts pointers as arguments Such
pointer could, internally to the function code, be assigned to any other pointer or even
be updated. Considering such scenarios, we can assume that simply passing a pointer
variable into a function call implies assuming that such function can contain side e↵ects.

Alias analysis, tries to identify which pointers actually point to the same memory
and, whenever possible, predict that a function does “leak” any of the pointer argu-
ments.
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Figure 4.9: Conversion of update primitive, introducing a buffer pointer reference.

allocation should be associated through their returned pointer with a heap allocation and all
the other primitives should avoid escaping any of their view and record arguments. Moreover,
having specific sets constraints for the Erbium primitives minimizes the compiler pessimism
regarding pointer aliasing, by statically defining the pointer aliasing occurring internally in
those external functions.

Used or clobbered pointer by builtins

The alias analysis in GCC provides one step further analysis thorough an alias-oracle,
serving as an abstraction to perform queries using the points-to information collected by
alias analysis. One of these possible queries is to verify if a statement is using or writing
(clobbering) a specific memory reference.

Once again, GCC allows builtins to go one step further regarding its builtin primitives
specialization. Without such specialization, the builtin is assumed as using or clobbering
every pointer variable and only very clear cases where this is not possible are optimized, i.e.,
the cases where pointer aliasing is impossible.

An implementation example is memcpy builtin. GCC can also identify if any pointer
is either used and/or clobbered by a specific call. Without such type of analysis, possibly
aliasing pointers would be always treated as being used and clobbered by every non defined
function. As one should know, memcpy transfers n bytes (third argument) from the region
pointed by its second argument into the region of the second argument. Consider a pointer
v and the following statement memcpy(d, s). If its second argument s is a reference or alias
to v, the content pointed by v is used by the call. Similarly, v is clobbered by memcpy
if d references v. Moreover, in cases where v can potentially be a reference to any of its
arguments, it should be considered as such with respect to its optimizations (code motion for
example).

In the particular case of Erbium, all the builtins containing view or record pointers should
have such specialization. The most interesting case is the update and stall primitives where
buffers should be considered as changing their content with these calls, i.e., the buffer memory
is clobbered by these primitive calls.

Nevertheless, in order to verify such clobbering, it is necessary to dereference the view in
order to collect the buffer pointer. To facilitate such operation, all the buffer related builtins
are converted with an extra pointer argument for the buffer, simplifying its implementation.
Moreover, this simplification has no code penalties considering the extra builtin call is defined
as pure (See Figure 4.9).

Table 4.1 sum-ups all of the alias analysis specializations required for the Erbium builtins
relevant for synchronization. For each of the relevant Erbium builtins, the table presents
how alias analysis should take into consideration each builtin. More precisely, it gives the set
constraints rules (Alias column) and the usage or clobbering for each individual argument.
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Builtin Alias Uses Clobbers

void *er alloc view(...)
LHS → HEAP - LHS

void *er alloc record(...)

er connect(*view, *record) - record view
er connect registered(*view, *record, *vid) - record, vid view

er free view(*view) - view view

er update(*view, index, *buffer) - view buffer
v = er occ(*view, index, *buffer) - view, buffer -
er release(*view, index, *buffer) - view buffer

er stall(*view, index, *buffer) - view, buffer -
er occ(*view, index, *buffer) = v - view buffer
er commit(*view, index, *buffer) - view, buffer -

void *malloc(size) LHS → HEAP - LHS
void *memcpy(*dest, *orig, size) LHS → dest orig dest

Table 4.1: Aliasing, usage and clobbering information for Erbium builtins. The malloc and
memcpy builtins are also included as reference for the existing implementation.
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Any prototyped but not defined function that accepts pointers as arguments Such
pointer could, internally to the function code, be assigned to any other pointer or even
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and, whenever possible, predict that a function does “leak” any of the pointer argu-
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pointer could, internally to the function code, be assigned to any other pointer or even
be updated. Considering such scenarios, we can assume that simply passing a pointer
variable into a function call implies assuming that such function can contain side e↵ects.

Alias analysis, tries to identify which pointers actually point to the same memory
and, whenever possible, predict that a function does “leak” any of the pointer argu-
ments.

113

Figure 5.9: Expansion of occ primitive into more general primitives and bu↵er access.

Builtin Alias Uses Clobbers

void *er alloc view()
LHS ! HEAP - LHS

void *er alloc view()

er connect(*view, *record) - record view
er connect registered(*view, *record, *vid) - record, vid view

er free view(*view) - view view

er update(*view, index, *bu↵er)
- - bu↵er

er stall(*view, index, *bu↵er)

er release(*view, index, *bu↵er)
- bu↵er -

er commit(*view, index, *bu↵er)

er occ(*view, index, *bu↵er) -
bu↵er bu↵er

(if view is reader) (if view is writer)

void *malloc(size) LHS ! HEAP - LHS
void *memcpy(*dest, *orig, size) LHS ! dest orig dest

Table 5.1: Aliasing, usage and clobbering information for each independent Erbium
builtin. Malloc and memcpy are also included as reference for the existent implemen-
tation.

5.3.2 OCC expansion

As previously mentioned, bu↵er accesses are initially represented by a builtin builtin er occ
(or occurrence) function, abstracting a view and a index into an actual bu↵er memory
position.

Very soon in a specific compilation stage such builtin is expanded into a regular array
access using other builtin functions as getters for the bu↵er memory origin, bu↵er size,
and element size for the particular view used in the expansed occ. The prototypes for
the builtins used by the expansion are presented in Figure 7.8.

h!tb

1

2 void * __builtin_er_view_get_buffer(void *view);

3 int __builtin_er_view_get_elem_size(void *view);

4 int __builtin_er_view_get_buf_elem_size(void *view);

5

6 bla

Figure 5.10: Builtins used for bu↵er access.
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Figure 4.10: Builtins used in the occ primitive conversion.

This set of rules specifies how the Erbium primitives are (un)related to non Erbium code1,
allowing other pointer expressions to be moved across Erbium primitives when not aliasing
with the buffer pointers. Moreover, setting the clobbering or uses for each primitive will allow
to also reorder Erbium primitives without having to take in consideration its index argument.
For example reordering similar primitive call types when not followed by other primitives,
such as occ operations.

4.3.2 OCC expansion

As previously mentioned, buffer accesses are initially represented by a builtin builtin er occ
(or occurrence) function, abstracting a view and an monotonic index from the final buffer
memory positioning.

Soon enough in the compilation flow, occ builtins are lowered into array-like buffer accesses
using other builtin functions as getters for the buffer pointer, buffer size, and element size for
the particular view. The prototypes for the builtins used in the conversion are presented in
Figure 4.10.

Figure 4.11 is the lowering of the higher level abstraction builtin er occ function, into
the more general buffer memory builtin functions and later array-like buffer access using
modulo operation to obtain the buffer memory position for its monotonic index (i).

1Although the Erbium synchronization has no direct relation with non Erbium code, it is possible to
enforce a dependence through an event access (an occ). This is the case if the occ is not dead-code which
can be enforced by, for example, reading or writing the occ from a volatile variable, or using it as part of the
process control flow decision.
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builtin to collect the bu↵er pointer by providing a view pointer.
void * builtin er view get buffer(void *view)

Similar builtins to collect the view / record event element size as well as bu↵er size
in events.

int builtin er view get elem size(void *view) int builtin er view get buf elem size(void

*view)

TODO: Example of the expansion of OCC into get bu↵er and modulo operations

1 v = *(int *) __builtin_er_occ(view, i);

1 void *buf = __builtin_er_view_get_buffer(view);

2 int buf_size = __builtin_er_view_get_buf_elem_size(view);

3 int elem_size = __builtin_er_view_get_elem_size(view);

4 v = *((int *) buf + ((i % buf_size) * elem_size));

1 void *buf = __builtin_er_view_get_buffer(view);

2 int buf_size = __builtin_er_view_get_buf_elem_size(view);

3 int elem_size = __builtin_er_view_get_elem_size(view);

4 v = *((int *) buf + ((i & (buf_size - 1)) * erbium_view));

5.4 Process Network Graph

removed calls by a single pointer variable. Nevertheless, in order for such otimization
to occur we must make sure that all the other primitives are integrated within the
compiler and do not obfuscate optimizations such as these. Chapter 7 studies in more
detail such optimizations and exact requirements in order to exploit the existent GCC
optmizations in attempt to optimize Erbium parallel applications.

TODO: Example of the expansion of OCC into get bu↵er and modulo operations

1 v = *(int *) erbium_occ(view, i);

1 void *buf = erbium_view_get_buffer(view);

2 int buf_size = erbium_view_buffer_size(view);

3 int elem_size = erbium_view_elem_size(view);

4 v = *((int *) buf + ((i % buf_size) * erbium_view));

1 void *buf = erbium_view_get_buffer(view);

2 int buf_size = erbium_view_buffer_size(view);

3 int elem_size = erbium_view_elem_size(view);

4 v = *((int *) buf + ((i & (buf_size - 1)) * erbium_view));

Modulo simplification

Apart from the expansion into arrays, previous presented optimization also intro-
duces a modulo operation in order to predict the bu↵er position for the monotonic
index. Modulo operation is too expensive to be executed as often. In order to remove
such operation Erbium advocates for the use of bu↵er sizes with size of powers of two
(s(1..1)), in which case the modulo operation can be substituted by a simple mask
with (buffer size� 1).

Explain how the expansion of the bu↵er accesses is done. For each view a bu↵er
pointer is created, reducing the overhead of continuously access the bu↵er through the
view and record data-structures.

- Bu↵er sizing multiple of 2 . . . is a requirement for index wrap-around explained in
runtime chapter.

Maybe not here - simplification of synchronization primitives (PNG related)

5.4 Process Network Graph

Call graph data-structure is a fully directed graph of all the calling relationships existing
in a compiling application. Each function is represented by a single node in the graph
and every function call within the function is represented by an edge connecting to
other node.

GCC supports full usage of such graph through out the compilation, allowing not
only very easily identify all of the calls existent in a specific function but as well identify
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5.4 Process Network Graph

Call graph data-structure is a fully directed graph of all the calling relationships existing
in a compiling application. Each function is represented by a single node in the graph
and every function call within the function is represented by an edge connecting to
other node.
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Expansion

Figure 5.6: Expansion of occ primitive into more general primitives and bu↵er access.

Apart from the expansion into arrays, previous presented optimization also intro-
duces a modulo operation in order to predict the bu↵er position for the monotonic
index. Modulo operation is too expensive to be executed as often. In order to remove
such operation Erbium advocates for the use of bu↵er sizes with size of powers of two
(s(1..1)), in which case the modulo operation can be substituted by a simple mask
with (buffer size � 1). Modulo simplification should already be present somewhere
else.

Explain how the expansion of the bu↵er accesses is done. For each view a bu↵er
pointer is created, reducing the overhead of continuously access the bu↵er through the
view and record data-structures.

- Bu↵er sizing multiple of 2 . . . is a requirement for index wrap-around explained in
runtime chapter.

Maybe not here - simplification of synchronization primitives (PNG related)
As one might expect such builtin as is will degrade performance as well as disable

any of the surrounding code of being optimized. Nevertheless, as such bu↵er is only
dependent on the actual provided view, we can assume such funtion can be treated as
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removed calls by a single pointer variable. Nevertheless, in order for such otimization
to occur we must make sure that all the other primitives are integrated within the
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Call graph data-structure is a fully directed graph of all the calling relationships existing
in a compiling application. Each function is represented by a single node in the graph
and every function call within the function is represented by an edge connecting to
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Figure 5.6: Expansion of occ primitive into more general primitives and bu↵er access.

Apart from the expansion into arrays, previous presented optimization also intro-
duces a modulo operation in order to predict the bu↵er position for the monotonic
index. Modulo operation is too expensive to be executed as often. In order to remove
such operation Erbium advocates for the use of bu↵er sizes with size of powers of two
(s(1..1)), in which case the modulo operation can be substituted by a simple mask
with (buffer size � 1). Modulo simplification should already be present somewhere
else.

Explain how the expansion of the bu↵er accesses is done. For each view a bu↵er
pointer is created, reducing the overhead of continuously access the bu↵er through the
view and record data-structures.

- Bu↵er sizing multiple of 2 . . . is a requirement for index wrap-around explained in
runtime chapter.

Maybe not here - simplification of synchronization primitives (PNG related)
As one might expect such builtin as is will degrade performance as well as disable

any of the surrounding code of being optimized. Nevertheless, as such bu↵er is only
dependent on the actual provided view, we can assume such funtion can be treated as
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Figure 4.11: Expansion of occ primitive into more general primitives and array like buffer
accesses.

This lowering creates 3 new variables containing a pointer to the buffer, the buffer capacity
in number of elements and the buffer element size. One might consider this approach too
expensive considering the increase in number of variables and operations, nevertheless the
compiler will do its work by removing redundant calls to those builtins as well as repeated
variables.

As previously explained, such builtins degrade performance by disabling optimization such
as code motion of itself or any of its surrounding code. However, as a view is only clobbered
by the connect and free primitives and the view pointer is kept constant between these
two calls, the resulted buffer position, size and horizon should only change when executing
either of these primitives. Moreover, we can define the three new builtin functions as const,
providing the compiler with the ability to hoist any of these builtin calls as long as the view
pointer value is kept constant. Loop invariant code motion, available through PRE in GCC, is
the optimization that detects the redundancy and removes the multiple builtin calls, hoisting
such calls immediately after the view to records connection and removing all the redundant
calls created through the lowering of the occ builtin.

Although the conversion optimizes code, it also introduces an expensive modulo opera-
tion in order to predict the buffer position for its monotonic index. Moreover such modulo
executes, at least, once per converted monotonic index. To remove such operation, Erbium
advocates the use of buffers with powers of two size, where modulo is substitutable by a
binary and (&) with (buffer size − 2).

index % size = index & (size− 1) if size = 2n : n ∈ N0

Index overflow, also known as wrap-around indexes and explained in Section 3.2, also
enforces buffer sizes to be defined with powers of two.

4.3.3 Call-graph extension - Process Network Graph

The call graph data structure, as previously explained, is a fully directed graph represent-
ing functions (nodes) and calls (edges) for the entire compilation unit. GCC supports full
usage of such graph data structure through all middle-end optimizations, allowing a quick
identification of callees and callers for any function. However, call-graph support is limited
to traditional function calls.

Unlike regular function calls, process or thread instantiation involves calling an external
runtime threading system function, with unpredictable behaviour for current generation of
compilers. Moreover, threading functions are interpreted by compilers as black boxes where
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h!tb
1 void *process_code(void *data) {

2 ...

3 }

4 void main()

5 {

6 pthread_t thread;

7 /* ... */

8 regular_func();

9 pthread_create(&thread, NULL,

10 &process_code, some_data);

11 /* ... */

12 return 0;

13 }

h!tb
1

2 void *__builtin_er_alloc_process_instance (void *process, int arg_struct_size);

3 void __builtin_er_run (void * process_instance);

4 void *__builtin_er_wait_for_processes_end(void);

5

6 void *__builtin_er_alloc_record (int elem_size, int buffer_size_in_elems);

7 void *__builtin_er_alloc_view (int elem_size, int horizon, char view_type);

8 void __builtin_er_add_registered_views (void *record, int nr_readers, int nr_writers);

9 void *__builtin_er_get_new_view_id (void *view, char view_type);

10 void *__builtin_er_connect_registered (void *view, void *record, void *view_id);

11 void __builtin_er_connect (void *view, void *record);

12 void __builtin_er_free_view (void *view);

13

14 void *__builtin_er_occ (void *view, int index);

and eventually code adaptation.

Unfortunately call graphs do not support thread instantiation thanks to the variety
and conplexity involved in thread creation libraries but, mostly because there is no
standard abstraction to such feature .

Unlick a regular function call, process instantiation involves calling an external
runtime threading system function to which the compiler as no knowledge and cannot
predict behaviour. Such functions are interpreted by the compiler as black-boxes to
which nothing can be predicted. The lack of information about the external runtime
library makes impossible for the compiler to represent in its internal data-structure.

TODO: Add figure with both code and a graph Figure ?? is a example thread
creation code using the well known POSIX runtime library, as well as the example call
graph generated for such code. Considering the lack of information the instantiated
processes are presented has not connected with the main application code. For the
compiler, those functions are only alive and not considered dead-code since a pointer
to the functions is passed to pthread create. Although correct such representation can
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main

regular_func

process_code

pthread_create
(external)

Figure 4.12: Thread creation example using pthread create POSIX function, together with its
respective generated callgraph. Solid lines are edges in the call graph. Fine dashed lines are the
connection between call graph and code statements. Dashed connection between pthread create
and process code node is non existing since pthread create is external to compilation unit and
the compiler has no information regarding what it does with its first parameter (process code
function pointer).

5. COMPILER DESIGN

h!tb
1 void A(void *rec, int int_param) __attribute__((process)) {

2 ...

3 }

4 int main() {

5 void *rec = ...

6 A(rec, 10);

7 ...

8 return 0;

9 }

10
11
12
13
14
15 struct A_args {

16 void *rec;

17 int int_param;

18 };

19 void A(struct A_args *data) {

20 void *rec = data->rec;

21 int int_param = data->int_param;

22 ...

23 }

24
25 void main() {

26 void *rec = ...

27 void *A_instance = er_alloc_process_instance(A, sizeof(struct A_args));

28 struct A_args *args = *( (struct A_args *) A_instance);

29 args->rec = rec;

30 args->int_param = 10;

31 er_run(A_instance)

32 ...

33 er_wait_for_processes_end();

34 return 0;

35 }
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Figure 4.13: Front-end parsable process code example.

no assumptions are made. The lack of information for these external runtime libraries makes
it impossible for any compiler to represent threads in its intermediate representation.

Figure 4.12 is a thread creation code using the well-known POSIX runtime library and
the resulting call-graph. Considering the lack of information, the instantiated function
(process code) is presented has unconnected from the main application code. When com-
pared with the programmer knowledge on pthread create function, the generated graph seems
incomplete. For the compiler, functions like process code are alive (and not identified as
dead-code), considering the pointer provided as argument in pthread create call.

In Erbium, process instantiation is abstracted by er run and er alloc process instance
builtins (presented in Figure 4.6), defined in the same way as in Chapter 3.

Using process creation and instantiation builtins, it is possible to define process instances
in the existing call graph data structure. The call graph construction can be performed very
similarly, and much alike, to what is presented in the inter-procedural data-flow analysis
section of [7]

Figures 4.13 and 4.14 are code examples of front-end and middle-end representations and
their associated call-graphs, extended with the connection (edge) created during the conver-
sion of call-graph and builtin calls. However, such a call-graph extension, with respect to
traditional optimizations, has no usability, since the newly inserted edges cannot be followed
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h!tb
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26 void *rec = ...

27 void *A_instance = er_alloc_process_instance(A, sizeof(struct A_args));

28 struct A_args *args = *( (struct A_args *) A_instance);
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30 args->int_param = 10;

31 er_run(A_instance)

32 ...

33 er_wait_for_processes_end();

34 return 0;

35 }
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Figure 4.14: Middle-end Erbium converted code from Figure 4.13.

by traditional optimizations. Nevertheless, it is important in the context of new parallel op-
timizations such as static scheduling, process fusion or any other optimization that requires
a clearer understanding of process instantiation.

Such data structure is the foundation of the more expressive Process Network Graph
(PNG) concept data structure, advocated and required by the optimizations explained in
Chapter 6.

4.4 Process Network Graph concept data structure

Higher level languages provide programmers with simplified abstractions to parallelism pro-
blems such as thread creation, process data communication and synchronization. Although
they increase programmers productivity, high-level languages abstractions also significantly
reduce their expressiveness, especially when compared with the target architecture properties.

Their abstraction level also make them statically predictable. This is the case of the
SDF and CSDF computational model languages. On the other hand, a more expressive
language such as Erbium, is hardly predictable and very hard to analyze. Each of these
expressiveness/abstraction levels is important for its own purposes; the higher-level to analyze
and optimize inter-process communications and global application behaviour, the lower-level
to tune the process code and synchronizations granularity in a finer way.

However, while transforming the process code, the compiler must be able to validate
the transformations through inter-process analysis. This is the main purpose of the Process
Network Graph data structure, i.e., to act as an interface between the previous performed
higher-level inter-process analysis and the lower-level process optimizations.

The Process Network Graph (PNG) data structure is an extension of the call graph data
structure allowing to associate information to both processes and process connection/commu-
nication edges. Moreover, apart from collecting process instantiations, the PNG does provide
information regarding processes data communication. If two processes communicate, that
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connection should be represented as an edge between those two processes nodes and both
the GIMPLE nodes representing views and records are bidirectionally bounded to the PNG
edges.

The PNG information should be collected during the compiler lowering of high-level lan-
guages. Recovering the PNG from Erbium code alone, although not impossible, is mainly
limited by the amount of dynamic behaviour exposed by the initial high-level language. More-
over, reversing the PNG information would require expensive analysis, mainly matching the
views/processes to communicating records and process instance callers to process instances.
In a high-level language, in the worst case, this problem is as difficult as in Erbium, and
for many known languages, such as SDF and CSDF language such information is statically
provided.

This thesis advocates for the creation of the PNG information at an early compilation
stage, if possible during the lowering of the higher-level language source-code into the Erbium
IR.

Although, important for the validation of Erbium optimizations, a clear definition of the
PNG data structure is beyond the scope of this thesis and although further mentioned within
the document, a precise implementation will not be presented. Throughout Chapters 5 and 6,
opportunities to collect and use the PNG data structure information are presented and briefly
discussed.

The PNG data collection and integration within compiler frameworks is left open for
future research.

4.5 Summary

This chapter first presented traditional compilation approaches to parallel languages, typi-
cally using higher-level source-to-source transformers adapting their abstracted semantics to
lower level sequential languages, using runtime support to implement the original language
behaviour, and developed the reasons why such approaches are limitative and obtrusive to
mainstream compiler optimizations, and further improvement of parallel code.

A brief detail of the GCC compiler internals was presented together with an extension of
GCC, integrating Erbium primitives as de-obfuscated builtins, exploiting GCC’s alias analysis
through “set constrains” and “use and clobbers” builtin specialization, allowing traditional
optimizations to further optimize Erbium codes.

The problems associated with compilers and its ability to the represent higher-evel seman-
tics was presented at the end of the chapter where Process Network Graphs were introduced
as a potential data structure unifying both parallel higher-level semantical properties and
lower-level Erbium IR expressiveness.

Chapter 5 will now present Streaming OpenMP (a high-level parallel streaming language)
and its lowering into Erbium, exposing a few of its streaming properties typically collected
in the PNG data structure.

Chapter 6 will use of both the PNG and Erbium builtin primitives to further optimize
the application parallelism as well as the low-level synchronization primitives, which were,
up to now, impossible to analyze and optimize.
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Chapter 5

OMP Compilation to Erbium

High-level languages abstract programmers from many of the complexity of close to hardware
parallel programming. The abstractions arise from the hidden lower level semantics involved
in the language constructs. Compiler optimizing these languages implies exposing all of
the hidden properties (parallelism, synchronization and data communication) in its lowest
level form, through a compiler intermediate representation. This is the goal of Erbium’s
intermediate representation (IR). The code (IR) can then be optimized by exploiting the
target architecture properties. Optimizations occur through static analysis, not only using the
Erbium intermediate representation but also using the collected information from the initial
higher level language abstractions. For example, to adjust the communication granularity
based on the available memory local to the process and the synchronization cost, or even
fusing tasks, adapting the application parallelism to actual hardware resources.

Extensions of OpenMP have been proposed to support pipeline parallelism and streaming
applications [19, 52, 64, 68, 76]. These are promising tradeoffs between declarative abstrac-
tions and explicit, target-specific parallelization. However, they suffer from expressiveness
limitations. For example, the presented GNU FMRadio application in Section 3.4 has been ini-
tially parallelized with such approaches, but data parallelism could not easily be expressed.
Pop et al. report speedups saturating around 3× on 4-core to 16-core x86-64 platforms [68].
A new proposal for a streaming extension of OpenMP has benefited from our experience with
Erbium [66].

This chapter presents Streaming OpenMP (SOMP) language as a high-level language
representable in Erbium intermediate representation. Moreover, the high expressiveness of
the Erbium IR enables semantical improvements to the SOMP language.

The chapter also details how a language like SOMP is converted to the Erbium IR, briefly
explaining the necessary compiler lowering steps, such as conversions between tasks into
Erbium processes, and the decoupling of data-communication from synchronization (through
the creation of records and views), initially represented (in SOMP) as streams. The conversion
section presented in this chapter is the outcome of the development effort done.

5.1 Streaming OpenMP

Streaming OpenMP, as the name suggests, is an extension of the OpenMP parallel language.
OpenMP [17] is a pragma-based parallel extension of C, C++ and Fortran languages.

Streaming OpenMP extends traditional OpenMP by defining data-flow semantics through
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a set of pragma clauses (input and output) only available when used in a task pragma.
Using input or output clause enforces OpenMP tasks to behave in a streaming fashion and
communicate through streams.

SOMP, by the time of the developments presented in this thesis, had very limited seman-
tics and properties. Unlike Erbium, its semantics supported only push and pop operations,
executed once per task activation and output or input clause, associated with the particular
task pragma.

1 main() {

2 int i, a;

3 #pragma parallel private(a, i)

4 #pragma single

5 for(i = 0; i < 100; i++)

6 {

7 {

8 #pragma task firstprivate(i) output(a)

9 {

10 a = f(i);

11 }

12 #pragma task input (a)

13 {

14 g(a);

15 }

16 }

17 }

18 }

main task1 task2

fir
st
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ou
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)
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pu
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)

activations

stream stream

1 stream int s_i, s_a;

2
3 void taskA() {

4 int a;

5 int i = pop(s_i)

6 a = f(i);

7 push(s_a, a);

8 }

9 void taskB() {

10 int a = pop(s_a)

11 g(a);

12 }

13
14 main() {

15 int i, a;

16 for(i = 0; i < 100; i++)

17 {

18 // #pragma task firstprivate(i) output(a)

19 push(s_i, i);

20 libomp_act(taskA);

21 // #pragma task input (a)

22 libomp_act(taskB);

23 }

24 }

Figure 5.1: Simple Streaming OpenMP example.

The code in Figure 5.1 is a simplified producer consumer example using SOMP pragmas
executing f.g(i) for i ∈ 0, 1, ...99, together with a pseudo translation. Both f and g, when
compiled with SOMP support, are pipelined and variables a and i are converted to streams.
In the example, one can notice the use of the parallel OpenMP pragma followed by a single
pragma. This approach is just a libgomp work-around, instantiating the multiple threads
used for the task executing. It creates multiple threads but also enforces the main thread to
execute in just one of the created threads.

Within traditional OpenMP, #pragma task defines a task region (function) later executed
in parallel. When control-flow reaches this pragma, it requests the task execution (scheduling)
within any of the available threads created in omp parallel.

Tasks containing input or output clauses, like in the example, are interpreted as streaming
tasks. Input and output require one or more variable parameters. These variables define which
values are communicated as streams. During compilation the variables are substituted by
libgomp FIFO buffers, accessed by push and pop operations.

Task activations occur in similar manner as previous standard OpenMP tasks, neverthe-
less, these tasks are bounded to data availability in the streams used in their input clauses.
The resulting lowered pop operation blocks task execution as long as no data is available at
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the respective stream.

The firstprivate clause, when used within a streaming task, is lowered to an input stream-
ing buffer, just like the input clause. In comparison with input, firstprivate is not expected
to have other streaming task as its stream producer, but instead the data production occurs
next to the task pragma, i.e. the pushed stream value is the result of the task parent region
and its control-flow. For example, in Figure 5.1, the firstprivate(i) clause is produced in the
context of the single pragma, right where the task pragma is defined. When such pragma
is visited, within the outer region control-flow, a new value is pushed into the respective
streaming buffer, just before the task is activated (Line 19 in the example conversion in
Figure 5.1).

GCC implementation

GCC has one of the oldest implementations of the OpenMP API and is the chosen frame-
work for the Streaming OpenMP conversion.

The Streaming OpenMP conversion is done in two distinct compilation phases, more
precisely, the lowering and expansion phases.

The lowering phase is responsible from converting the high-level constructs within the
abstract syntax tree into GCC GIMPLE form1. It is also responsible for converting prag-
mas into specific OpenMP related data structures, organizing the pragmas related code into
regions, defining the code scopes associated to the pragmas. At the lowering phase, the ab-
stract syntax tree within GCC still has many of the richness of C language including scopes
(opening and closing brackets) and pragma information. This compilation phase collects all
the necessary information from the pragmas into omp region data structure elements and
”lowers” the abstract syntax tree into GIMPLE form.

In GIMPLE form, all of the structural information is lost and converted into conditional
gotos. The omp region data structure stores the hierarchical information available within
the lowered OpenMP code. This data structure is created hierarchically based on OpenMP
pragmas. As all the OpenMP regions are single entry and single exit code, omp region data
structures keeps track of the referring code by keeping pointers to entry and exit basic blocks,
as well as other important basic blocks used for initialization and termination.

The expansion phase takes all the generated regions collected during lowering phase and
splits the code regions through different functional units. Within this functional splitting it
also generates the glue code necessary for initialization, termination and, in case of Streaming
OpenMP, inter-task communication.

The conversion of streaming tasks implies identifying pairs of input and output clauses,
analyzing how tasks communicate and eventually perform the necessary transformations.
In case of an input(a) clause, it implies to add code to the beginning of the task and to
assign a with the content returned by pop(stream a). The clause output(a) implies a similar
transformation, but, this time, at the end of the task code and with push(stream a, a),
pushing the new value of a into the stream. Stream variables are defined and allocated
externally to the tasks code (beginning of main function). However, during the expansion
phase, these variables are also defined as private for the newly task created function. Please
refer to Figure 5.1 as a code example of the initial SOMP conversion.

1High-level constructs are any control-flow rich language constructs. Examples of such constructs are the
for and while keywords. The GIMPLE form is limited to conditional gotos.
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W1 (before)

W1 (after)

Task Work Task Work Task Work

s1 (copy)

Figure 5.2: Semantics of the new input output clause with respect to window content. The
diagram presents three task activations where the sliding window is defined with a size of 8
elements (int W1[8]) and burst of 3. (clause example: input(s1 << W1[3])).

5.2 Streaming OpenMP improvements

Although consistent and safe, Streaming OpenMP is too restrictive and lacks much of Er-
bium’s expressiveness, for example, dynamic production and consumption rates (burst),
buffer peek and poke semantics, and the overhead improvements of lightweight persistent
tasks.

In an attempt to express features similar to Erbium’s, the semantics of input and output
were extended, based on the work of Pop and Cohen [66]. With this extension, tasks are no
longer restricted to push and pop properties.

#pragma omp task input(s1 >> W1[n]) output(s2 << W2[m])

The previous pragma defines sliding-windows W1 and W2 for the streams s1 and s2,
respectively. The s1 and s2 streams are defined as regular C variables, but have similar
semantics to the earlier presented clause syntax, previously converted into streams. Both
W1 and W2 are defined as arrays of the same type as variables s1 and s2, respectively. The
>> and << operators are used as syntactic sugar, representing the direction of the copy
operation also enforced by the input or output clauses, allowing to interchange the order of
the window and stream operands. For example, s1 >> W1[n] is the same as W1[n] << s1.

The dynamic rate of consumption or production is defined based on the evolution of
the variables n and m, which are provided during task instantiation and remain private
to the task in all subsequent task activations. The previous design, through the use of
push and pop operations, enforced a static and constant (rate of 1 element) production and
consumption rates (burst). This new pragma syntax enables the task code to control its own
rate dynamically, based on a task-private burst variable.

Apart from the extensions to the input and output clauses, code generation was also
enhanced to express data parallelism. This is possible considering that Erbium’s persistent
processes do not depend on explicit activations. Nevertheless, Streaming OpenMP does not
include any data distribution / work splitting abstractions and explicit processes must be
defined to perform such data split and merges.

Figure 5.2 is a graphical representation for the window W1 evolution, from the previous
pragma example, where the content of the stream s1 is the fibonacci sequence. The window
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W1 is defined as an array of eight elements, and such array represents the visible elements or
the sliding window associated to the respective stream. At the first activation, the content
of W1, as it is used in an input clause, is loaded with data from the stream s1. At this point
the task code accesses W1 as any traditional array. Once the task code terminates, burst
number of elements (n in the pragma example) are discarded from W1 and the remaining
elements are shifted. At the next task activation the empty windows elements are loaded
with new stream (s1) data.

The output clause has a symmetrical behaviour. The window at first activation contains
uninitialized elements which are assigned during task execution. At each activation, burst
elements (m) are pushed into the stream and the remaining window array elements are shifted.
The next task activation is able to access any data which was not pushed and the last burst
elements of the window are once again uninitialized. As the size of the sliding window is
constant, the shifted number of elements is easily computable by subtracting the burst for
the particular task activation.

Although semantically improved, this version of Streaming OpenMP is not intended as
bullet proof, but rather as an example extension, exploiting the Erbium IR expressiveness
and presenting a possible language conversion. Moreover, this document is not advocating
for such a language improvement on SOMP. SOMP has recently involved into a more mature
specification, using an extended/specific Erbium runtime implementation as its conversion
target [66].

Through OpenMP lowering and expansion phases all of the static analyzable information
from Streaming OpenMP is collected into the previously mentioned Process Network Graph
(PNG) data structure.

Exploiting data-parallelism

Although the presented extensions to SOMP do not provide any precise abstraction to
data parallelism (data splitting), these extensions provide sufficient expressiveness to exploit
it.

Figure 5.3 presents both a splitter and merger process, possibly used to distribute data
between statically instantiated identical processes or, in other words, data-parallelize the
application. The previous SOMP implementation is also able to produce similar data paral-
lelism, however resorting to the less intuitive stream data type manipulations, not allowing
any adjusting of the data splitting, i.e., load balance data distribution.

5.3 Conversion into Erbium

The conversion to the Erbium IR allowed Streaming OpenMP further semantical extend-
ability. As these extensions are defined taking in consideration the Erbium language, its
constructs closely resemble the Erbium’s ones and properties. Moreover, the SOMP streams
are converted to records and the windows are converted to views. View horizon is defined
based on the window size while the burst value is used to set how many events are released
or committed per process iteration (previous task activation).
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splitter
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W3

W2 s2

s3

...

...

merger

W1
W3

W2

s5

s4

s1 s6data parallelism boundaries

1 int s1, s2, s3;
2 int W1[2], W2[1], W3[1];
3 ...
4 // Splitter
5 #pragma task input(s1 >> W1[2]) \
6 output(s2 << W2[1], s3 << W3[1])
7 {
8 W2[0] = W1[0];
9 W3[0] = W1[1];

10 }

1 int s4, s5, s6;
2 int W4[1], W5[1], W6[2];
3 ...
4 // Merger
5 #pragma task input(s4 >> W4[1], s5 >> W5[1]) \
6 output(s6 << W6[2])
7 {
8 W6[0] = W4[0];
9 W6[1] = W5[0];

10 }

Figure 5.3: SOMP splitter and merger tasks.

5.3.1 SOMP task to Erbium process

Although having streaming semantics, SOMP tasks are not persistently attached into a
thread, but instead continuously re-scheduled once an activation is necessary. Erbium pro-
cesses, on the other have persistent semantics, and are defined as persistent, only terminating
once no more work is required, i.e., no more data is available for consumption or can be
produced. Considering its streaming semantics, SOMP tasks are convertible into Erbium
processes, as termination can be detected through streams.

In the presented version, and as a simplification, tasks are defined in a static manner and
only a single process is defined per task pragma declaration, independently of the surrounding
code. Although currently defined as static, there is no real constraint from Erbium to express
more dynamic semantics. This version is easily extensible to a less restrictive abstraction,
allowing parent pragmas to impact the meaning of the task pragma. For example, a task
pragma when inside a pragma parallel region could imply that more then one instance of the
same task would be instantiated. Nevertheless, to make use of such multiple instances the
language would also have to address data distribution, i.e., to explicitly define how data is
partitioned through the now fully parallel tasks.

In the context of this document such data parallelism would increase the translation
complexity above the chapter intentions and for that reason the semantics of SOMP has
been simplified.

Like previous mentioned in Chapter 4, high-level languages contain high-level semantical
constructs, simplifying code behaviour prediction and static compiler analysis. In SOMP, the
pragmas allow the compiler to collect rich information behavioral information to construct
the PNG data structure. Examples of such information is the existence of a full application
graph containing all the connected process instances. Moreover, its constant horizon sizes
are easily recovered and eventually used to compute large enough buffer sizes, as well as
collect burst sizes for each of the independent SOMP tasks, in case bursts are constant and
considering the latest syntax of the SOMP clauses.

Figure 5.4 is an conversion example of a simple producer consumer application. Like
mentioned, any previous stream variable is converted into a record and processes get instan-
tiated once per streaming task pragma in the code. The presented conversion makes use of
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1 main() {
2 int i , a;
3 for(i = 0; i < 100; i++)
4 {
5 #pragma task firstprivate(i) output(a)
6 {
7 a = f(i );
8 }
9 #pragma task input(a)

10 {
11 g(a);
12 }
13 }
14 return 0;
15 }

1 main() {
2 int i , a;
3 record int r i ;
4 record int r a;
5
6 void ∗png context = png new context();
7
8 add registered views(r i , png nr readers( r i ), png nr writers( r i ));
9 add registered views(r a, png nr readers(r a ), png nr writers(r a ));

10
11 for(i = 0; i < 100; i++)
12 {
13 // firstprivate ( i) expansion code
14 if (!png running(png context, &A))
15 run A(r i, r a );
16
17 if (!png running(png context, &B))
18 run B(r a);
19 }
20 wait for instance list end ();
21 }

Figure 5.4: Conversion of a SOMP main function; original code (left) and Erbium version
(right).

PNG related prototype functions, abstracting the code from the PNG collected information.
These functions are not part of the converted code but rather a simplification of the necessary
variables and condition checks required by the conversion.

These functions are:

• png nr readers and png nr writers is a counter for the number of inputs and outputs
clauses used for a specific variable, now represented as a record. The number of writers
should always be 1 for this particular implementation as multiple writers for the same
stream are no supported.

• png new context serves as a marker for a OpenMP region entry.

• png running returns true if a particular process is already instantiated for the particular
context (OpenMP region). In this version, process instantiation is protected using a
single boolean variable, initialized to false, next to the png new context builtin. Once
the process is instantiated, such a variable is set to true, avoiding further process
instantiations.

As the process instantiation condition is only true for the first loop iteration, the generated
condition is most likely considered as loop invariant and the compiler, through its normal
work-flow, hoists the process instantiation out of the loop. Nevertheless, considering its
statically-predictable process instantiation, one can deduce that code generation directly
performs the process instantiation at the beginning of the main function.

5.3.2 Task to process

The translation of the main transforms all streams into records and performs any of the
necessary process instantiations. The expansion phase traverses all the input and output
clauses, creating a view for each of the clauses. The views are initialized and connected
to the respective communicating records. Please refer to the previous example, where the
record is already initialized and expects the precise amount of registered reader and writer
view connections.

Let us consider the particular case of an input clause. As mentioned before, a window
in SOMP semantics is similar to an array with fix amount of elements, and at each task
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activation the array is loaded with stream data. In the Erbium case, this behaviour is
replicated with the update primitive. Updating by the same index as the size of the window,
the same amount of events (data elements) become accessible in the view sliding window,
i.e., the number of events accessible is defined based on the view horizon size, which must be
equal or higher to the window array size.

After task code execution, n number of elements are discarded from the window array,
where n is the burst size. A process executes a release with burst number of events to do the
same.

For the output clause, the beginning of a task activation involves executing the stall
primitive, guaranteeing that sufficiently many (equal to the window size) events are accessible
for writing. At the end of each task activation, the process commits, “writing” the committed
events as available for consumption.

As primitives work with monotonic indexes, proceeding next iterations have to increment
the primitives call indexes by the burst size. The burst variable can directly be manipulated
by the task code, allowing the task to individually modify the production and consumption
burst sizes. The burst used variables are converted as traditional OpenMP private clause
variables.

Figure 5.5 an example of the translation of a task into an Erbium process where the
explained translation steps are presented. The task code is omitted in the example and only
the relevant translation parts are presented.

1 int i , a;
2 int W1[W1 SIZE];
3 int W2[W2 SIZE]
4 // ...
5 #pragma task input(i >> W1[n]) \
6 output(a << W2[m])
7 {
8 // ... task code ...
9 }

1 process task1(record int r i , int n, record int r a, int m)
2 {
3 // Define views and index induction variables for each input and
4 // output clause in task pragma
5 view int v i ;
6 view int v a;
7 int i i = 0;
8 int i a = 0;
9 bool terminate = false;

10
11 // Initialize all views
12 init view (v i , READER, W1 SIZE);
13 init view (v a, WRITER, W2 SIZE);
14
15 // Connect views to records in arguments
16 connect registered(v i, r i );
17 connect registered(v a, r a );
18
19 // Loop
20 while(true) {
21 // Update on all reader views
22 terminate |= (update(v i, i i +W1 SIZE) != (i i +W1 SIZE));
23
24 // Break if any of the updates did not return expected index
25 if (terminate == true)
26 break;
27
28 // Stall all writer views
29 stall(v a, i a +W2 SIZE);
30
31 // Do task work by substituting original variable with view
32 // accesses .
33 // ... task code ...
34
35 // Release and commit views
36 release(v i , i i +n);
37 commit(v a, i a +m);
38
39 // Increment induction variables
40 i i += n;
41 i a += m;
42 }
43
44 free view(v i );
45 free view(v a);
46 }

Figure 5.5: Example conversion of a producer consumer SOMP task (left) to Erbium IR (right).
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5.3.3 Termination

SOMP task termination occurs through the absence of activations from its parent thread
acting as a scheduler. As SOMP tasks are converted to persistent processes, such behaviour
is not implicitly available or possible. One could create a record per task that could act as the
task activator, allowing the main thread to similarly request task activations (by committing
to the record). However, such approach would enforce too much overhead, considering the
extra record and synchronization between the main thread and the record process.

Erbium processes are activated through data availability within its reader views. More-
over, we can assume that the firstprivate clause represents the task activator. By providing
an external to the processes stream writer, such as the loop counter i in the example of
Figure 5.4, the exact same behaviour as previous SOMP implementation is obtained, i.e., the
process iterates as often as the previous tasks, keeping the exact same behaviour/state as the
initial task activation scheme. The consequent (directly connected) processes (any process
without the firstprivate clause) are activated, not through an implicit task activation but, as
soon as the process notices new data is available through its reader views (update primitive).
A task activation is a single execution of the OpenMP task pragma region, and happens when
the application control-flow reaches the entrance of the specific task pragma region.

Every SOMP converted process, as in Figure 5.5, contains a boolean variable initialized to
false. This variable allows the detection of an input clause data termination and consequent
process termination.

The task termination detection is based on the termination detection of any of the process
reader views. As soon as any of the process views have returned a non consistent value, i.e.,
the result of update is different from its index parameter (Line 24), the process breaks from
the infinite loop (line 27), freeing all its views and returning from the process code.

5.3.4 Task code adaptation

SOMP tasks directly operate the window or stream variables as an abstraction to parallel
data streamization. In previous presented conversion neither the stream or window variables
values are initialized at each process iteration. Initializing those values implies the extra
overhead of setting them, copying from the view buffer at each iteration. In the case of
a stream variable, as it is is defined as a simple variable access, such redundancy is easily
detectable by the compiler and eventually removed through copy propagation. Nevertheless,
in the case of windows, as windows are defined as arrays, this optimization is unlikely to
occur, considering the possible dynamic behaviour of its accesses (dynamic index values).

Minimising the data access cost, implies that during the expansion phase we traverse
through all the task statements, substituting any window and stream variable references by
a direct access to the view events data (using an occ primitive call). As occ (defined as a
builtin function) returns the memory address of a particular event data, a new temporary
pointer variable is inserted before any original code access to a window or stream.

Once all the windows and stream accesses are substituted by occ calls, the expansion
phase into Erbium processes terminates.

Figure 5.6 is a stream and window variable conversion example, more precisely, the con-
version of b and W1[j] to occ primitive calls.
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1 #pragma task input(a >> W1[1]) \
2 output(b) \
3 private(j)
4 {
5 float t = 0;
6 for(j = 0 ; j < size; j++)
7 t += W1[j];
8 b = t / size ;
9 }

1 process task1(record int r a, record int r b, int size )
2 {
3 view float v a, v b; // Views
4 int vi a , vi b ; // Index variable
5 // Init views and connect
6 while(1) {
7 // Stall and Update
8
9 float t = 0;

10 for(j = 0 ; j < size; j++)
11 {
12 float ∗tmp1 = occ(v a, vi a +1 + j );
13 t += ∗tmp1;
14 }
15 float ∗tmp2 = occ(v b, vi b +1 + 0);
16 ∗tmp2 = t / size;
17
18 // Commit and Release
19 va i += 1; va b += 1;
20 }
21 // Free Views
22 }

Figure 5.6: Task code substitution of all window and stream variables by occ Erbium’s primitive
calls.

5.4 Summary

We presented Streaming OpenMP as an illustration of the conversion of a data-flow stream-
ing language to the Erbium intermediate representation. Its high-level semantics provides
compilers with rich properties with respect to the applications behaviour and their data flow.
Moreover and considering Erbium’s expressiveness, Streaming OpenMP was enhanced with
dynamic communication bursts and the multiple producers and consumers communication.

The conversion process was explained through the partitioning of its different components,
such as the task pragma translation into process instantiation, SOMP short life tasks into
Erbium persistent processes and the internal conversion of SOMP stream and windows into
direct view events accesses (occ builtins).

Chapter 6 is now the continuation of Chapter 4 (where Erbium is integrated into the GCC
internals), presenting several optimizations to the Erbium IR. The collected PNG information,
extracted during the high-level language lowering, is exploited in the next chapter to validate
code transformations and allowing further code optimizations.
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Optimizations

The Erbium intermediate representation, as explained in Chapter 4, brings no support for
parallel optimizations. Instead, it presents a non obfuscating integration of the Erbium
primitives in GCC, allowing traditional optimizations to optimize not related to or dependent
on Erbium. Nothing was presented with respect to the primitives optimizations.

Also in Chapter 4, the Process Network Graph (PNG) was presented as a complement
to the low-level Erbium semantics, where the PNG collects additional information available
from the static analysis of higher-level languages. For this reason, many of the Erbium-level
transformations presented in this chapter are dependent on the PNG data structure.

High-level languages vs. Erbium

Figure 6.1 is an application graph example, containing processes, views and record entities
and its connectivity. This graph can be extracted from Erbium code analysis, but as expres-
sive as the Erbium language is, with its dynamic properties, it can occur that such analysis
is impossible, for example, in scenarios where any of its entities (process, views and records)
cannot be statically related to its initialization statement. Such complex applications can
be originated from higher level languages in which such dynamic behaviour is clearly defined
and can be statically predicted without relying on complex code analysis. This information
must be recovered earlier during the language lowering phase and provided to the compiler,
either through code annotations, in case of source-to-source code transformation, or directly
collected in the front-end code conversion. The PNG is the compiler data structure that
collects this high-level language information.

Static Data-Flow (SDF) languages are an example of such information loss through Er-
bium translation. Once converted, information is hidden within all the Erbium semantical
expressiveness. The PNG provides an extra manner to collect the original language con-
structors information, providing hints of the initial intended application behaviour without
requiring a full reverse engineering of the Erbium primitives. As presented later, many inter-
process optimizations are currently only possible if the higher level languages provide enough
data through the PNG.

127



6. OPTIMIZATIONS

A Bw r Dw r Ew r

wr

process
writer view
reader view
record

w
r

Cw r

w r

Figure 6.1: Erbium’s application diagram.

6.1 Erbium language component dependencies

Compilation implies a progressively lowering of the application language into the target ar-
chitecture assembly code. The lowering occurs in distinct phases, each further reducing
original abstractions available in the initial language. Through its progress, the compiler si-
multaneously gains and loses its ability to perform certain analysis and optimizations by the
succeeding lower-level representations, hiding the initial language semantics in the low-level
intermediate ones.

With the introduction of Erbium as an intermediate representation, compilers are yet
exposed to several other layers of abstraction, this time related to the required Erbium
lowering, more precisely, the conversions presented in Chapter 4 referring to processes and
run keywords (attributes) and occ operations.

Erbium IR can be classified with three distinctive abstraction levels:

• Highest level (coarsest grain) refers to inter process synchronization and communication
in the perspective of a full application. This level of abstraction contains information
of the specific records that produce a connection, buffer locations, sizes, as well as the
connection graph.

• A finer level including all the builtin synchronizations, the view connection and dis-
connection calls, embedded in the general control-flow of a process code. Such level
includes all the intra-process optimizations, such as code motion or the elimination of
spurious synchronization calls, for example, when multiple same type synchronization
primitives are executed without a counter part primitive (multiple updates without a
release in between). Many times, in order to validate possible inter-process optimiza-
tions, it is necessary to access boundary level information (the PNG data structure)
verifying optimizations local to the process against the global application semantics.

• The finest level refers to process code optimizations, such as promotion to registers or
the vectorization of view events accesses (occ operations) or non Erbium dependent
code.

Figure 6.2 presents a diagram presenting the three abstraction levels. The left size diagram
is the representation of the higher abstraction level, containing information of the application
different process instances and their relations. Each diagram component is linked to the
precise builtin call related to the instance. The information available at this abstraction level
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occ (vw, k)

stall (vw, k) commit (vw, k)

Sequential Code

occ (vr2, j)

update (vr2, j)

release (vr2, j)

vr2_get_data:
update(vr2, j)
d2 = occ(vr2, j)
release(vr2, j)
j++;

loop_entry:
tmp = update(vr1, i)
if(tmp != i)
  goto end

compute:
d1 = occ(vr1, i)
release(vr1, i)
i++;
out_d = compute(d1, d2))
stall(vw, k)
occ(vw, k) = out_d
commit(vw, k)
goto entry

/* entry */
/* alloc and connect */

/* end */

if(i > N)
  goto vr2_get_data
else
  goto compute

Figure 6.2: Three levels of abstraction within Erbium applications. The two right side diagrams
refer to the process B (left diagram) in the more detailed abstraction levels.

defines what the PNG data structure represents. Properties such as the rate of communication
and buffer sizes for the channels, although also available in the PNG, are not presented in
the figure.

Data communication and synchronization information is not easily obtainable through
reverse engineering of the Erbium code. As higher level languages are less expressive than
Erbium, the PNG information can more easily be collected during the language conversion.
The SDF computational model languages are one example of the languages where the rate of
communication between the processes is statically provided, allowing to much easily deduce
application behaviour and, for that matter, allows compilers to validate and optimize inter-
process communications.

The second level of abstraction (middle diagram in Figure 6.2) contains the synchroniza-
tion details for each precise process. At this abstraction level, compilers perform analysis over
Erbium synchronizations and occ builtins still using monotonic indexes, allowing for example
to identify builtin calls motion opportunities and redundancies. In order to clearly analyze
the synchronization builtin dependencies, this level should rely on previous level information
guaranteeing the correctness for its own code transformations.

The last abstraction level is the code composing the process function. At this compilation
stage, occ builtins have been converted into memory operations, losing its monotonic index
into buffer memory positions, using the modulo operations with the buffer sizes, as explained
in Chapter 4. In any case, thanks to the changes to alias analysis presented in Chapter 4,
the remaining Erbium builtins do not obfuscate traditional compiler optimizations and allow
non data-dependent operations to move across builtins, apart from the redundancy detection
of buffer accesses previously converted from the occ primitive calls.

Alias analysis, by itself, does not provide sufficient meaning to the Erbium builtins for
the compilers to be able to optimize synchronizations and application sequential code. For
compilers to perform code transformations, the language dependencies and the set of trans-
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formation heuristics must be precisely defined such that the compilers can understand the
relation between the Erbium primitives and the impact of any of its code transformations.
Erbium code dependencies are also studied in the three distinct levels, more precisely the
inter-process, synchronization/data communication and code optimization level.

The inter-process dependencies are mainly relevant for application wide optimizations
such as process fusion, record merging and static scheduling. The synchronization level
is used for process specific optimizations such as synchronization and data-communication
code motion, spurious/redundant synchronization elimination and blocking — although still
using inter-process dependencies to validate the correctness of the possible optimizations, i.e.,
taking into consideration global integration of the process before applying any transformation.
The last level refers to the traditional non Erbium code or, in other words, the existing
compiler optimizations. The Erbium data communication (buffer accesses) benefits from
this level through traditional partial redundancy elimination, dead-code elimination, or even
register promotion of intermediate uses of buffers. Vectorization can also significantly improve
the sequential process code.

6.1.1 Inter-process dependencies

Erbium processes by itself are independent from each other. Process instantiation does not
imply any dependency. Inter-process dependencies are defined through the usage of record
and view data structures.

Erbium abstractions do not provide the necessary predictability to collect the required in-
formation and statically deduce inter-process dependencies. Although possible, inter-process
dependencies analysis are out of the scope of this thesis studies. Moreover and in case such
dependencies are available by the higher level language, this thesis advocates the use of such
information as a way to collect and to create the PNG data structure.

Process instantiation

The Erbium language supports dynamic process instantiation. Processes are instantiated
through the Erbium builtin run, allowing to embed process instantiations in complicated
control-flow, or even inside other Erbium processes. This dynamic behaviour makes it very
hard or even impossible to predict application behaviour. Nevertheless, we believe such
analysis can be performed as long as not very “deep” dynamic semantics are used, such as
random decision.

A process instantiation graph can be constructed, much like the call-graph is created, as
mentioned in Chapter 4. In any case, context sensitive information, such as the multiple
instantiations created by loop iterations on a single run call, is not represented in such a
graph. To collect context sensitive information, the compiler should rely on the high-level
language semantics to recover the contextual information.

A process (P ) defines an algorithm bounded by the Erbium rules, communicating through
records which are provided as arguments in the process instantiation. A single process can
be instantiated multiple times.

Each run P (args) call executed in the application control-flow creates a new process
instance (IPn ) of the process (P ), being n a sequential number identifying all of the process
P instances.
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IPn = (P, {arg n
0 , arg n

1 , · · · , arg n
m}) (6.1)

Also an instance IPn owns a set of inherited views vIn0 , · · · , vInq , as defined in the process code
(P ).

Process instance dependencies

It is also important to understand the relation between different processes and their
instances, for example, to understand the relation between processes, both at the highest
abstraction level (analysing the connection between records and views) and at the finer ab-
straction level (analysing the channel (buffer) sizes and rates of communication).

Each connection or instance, through analysis, is associated with a set of properties sup-
porting decision for inter-process optimizations, or even validating intra-process optimizations
against invalid or deadlocking transformations.

If a process instance IP1
1 owns a writer view (vI1

0 ) and in P1 code, v0 connects as a writer
view to one of its arguments, the record r (also identified as arg I1

0 ), one can say that vI1
0

connects to r (vI1
0 → r). Similarly, other process instance with reader view (vI2

0 ) connects
to the same record (r → vI2

0 ). The view is placed on the right hand side of the arrow
distinguishing between reader or writer connections.

A process instance is connected to all its defining (owning) views based on its primitive
code usage and view type. Moreover and considering the association, both instances and
processes can be transitively connected, i.e., connected through the record. For example, two
process instances (Ia, Ib) are said connected if each contains a view connected to the same
record, such that one is a writer and the other is a reader, or in other words, both instances
own distinct transitively connected views.

IP1
a

+−→ IP2
b if ∃m,n ∈ N0 : vIam

+−→ vIbn

Moreover, any two processes have a connecting path if there is a chance there are
processes instances that connect to the same records, i.e., there is at least one instance of
each process with transitively connected views.

P1
+−→ P2 if ∃a, b ∈ N0 : IP1

a
+−→ IP2

b

Understanding the inter-process relationship is important to the inter-process compiler
optimizations. Process fusion is such an optimization as explained later in the chapter. More-
over, such relations are similarly important for intra-process optimizations. For example, to
perform process blocking (increase process burst by aggregation of multiple process itera-
tions), it is necessary to identify connecting processes, as well as other connecting properties
such as its buffer sizes and rates of communication.

In a multiple producer and consumer record application, the multiple producers or con-
sumers are also dependent on each other. This type of dependency does not imply a data
communication but rather the execution pace of each of the dependent processes. If any of
these process instances stop consuming or producing, the dependent processes can starve con-
sidering its existing progress dependency. Such type of dependency is important to consider
for example load balancing and statically scheduling optimizations.
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Relevant inter-process communication properties

Apart from process (task) graph connectivity and instantiation relations, every connected
process has less noticeable yet very important properties.

The buffer size is one such property. Each record is associated with a record buffer and
for the Erbium IR perspective it is considered as shared by all the views. That is not always
the case, depending on the target architecture and runtime implementation, nevertheless
in the compiler contexts, the final result is negligible considering the runtime is the entity
implementing such abstraction.

The buffer size prediction is important to validate process optimizations. Moreover, buffer
size adjustment/computation is relevant for the final performance of the application, with
respect to memory sizes, memory latency, cache and cache-line sizes (local private memories
in case of distributed memories).

The burst (or rate) is the number of indexes updated and or committed without the exis-
tence of the stall and release back-pressure primitives. In other words, it is the number of
newly indexes available through process iteration if we consider a single synchronization pri-
mitive call per process loop. The burst was previously explained in the context of Streaming
OpenMP language in Chapter 5.

The slack is the maximum index distance between the same process update and commit
primitives, such that, independently of the process execution the update primitive does not
deadlock. The index difference between commit and update is only relevant if there is exist
an dependence between the commit view and the update one, i.e. there is an extenal to the
process dependency, i.e. a self dependency. A process instance is self dependent if it exists
a transitive connection path from any of its process writer views to any of its reader views,
i.e., the process is in a loop when analysing the connection graph. Slack value is not unique
through all the cycle path processes but instead specifically computed for the specific process
and all its pairs of reader and writer views in the loop. Stall and release primitives have the
same type of inter-process dependencies and must also respect the slack distance.

Any self dependency process instance path contains at least one process instance that
introduces a consumption delay. A process contains a consumption delay if it commits any
data before it tries to consume. The delay defines an initial slack value. The delay distance is
not a language property but rather an application algorithm requirement. For instance, h264
decoder implies a self dependence by decoding each macro-block based on the neighbour
previously decoded macro-block. In this case, there is a consumption delay between the
decoding writer view and the previous decoded frames consumer views. It is undesirable that
one of the processes involved in the decoding tries to update for more then one macro-block,
since it would result in a deadlock.

Another property contributing to the slack is the burst of all the reader and writer views
involved in the cycle path. Depending on the burst rates of each independent process in
the cycle path, the slack value can simply be increased or decreased, or in more complicated
cases even become of polynomial form, relative to the primitives index. This is the case when
the consumption and production rates differ between process iterations, as a result of code
control-flow.

In the context of this thesis, we assume that the slack is computable and always constant.
Slack computation relates to deadlock detection algorithms widely studied in the context of
SDF models of computation, simplified by its constant burst defined for each task. Slack
computation should be a job for such an algorithm, executed during the Erbium’s higher
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1 process A (...) {
2 ...
3 while(true)
4 {
5 stall(vw1, i)
6 if ( i > 5)
7 {
8 update(vr1, i − 5);
9 // do something

10 release(vr1, i − 5);
11 }
12 else
13 {
14 // do something
15 }
16 commit(vw1, i);
17 i++;
18 }
19 ...
20 }

1 process B (...) {
2 int i = 0;
3 ...
4 while(true)
5 {
6 update(vr2, i +2)
7 stall(vw2, i +1)
8
9 // do something

10
11 commit(vw2, i +1)
12 release(vw2, i +1)
13 i++;
14 }
15 ...
16 } B

vw2

vr2

A
vw1

vr1

X
vr3

vw3

Figure 6.3: Small code example of a possibly self dependent process.

abstraction layer (high-level language analysis) and exposed to lower-level Erbium IR through
the PNG data structure.

Later in the chapter, we will present how the slack is used to detect invalid process
transformations and avoid deadlocks.

Figure 6.3 is a small code example where three processes are connected in a communication
cycle. Non-cycle connections are not present in the example diagram. Both A and B are
presented with code.

A programmer is requested to optimize by hand the code of the unknown process (X).
As she increased the burst for both the writer and reader views, reducing the amount of
synchronization, she realized the application started to deadlock. This is the case because
she increased consumption burst above the allowed slack for the cycle transitive connection

(vw3
+−→ vr3). As the process is integrated in a communication cycle, the programmer must

analyze the code of the other processes involved in the cycle, identifying the slack for its
process (minimum allowed distance between its update and commit primitives).

To compute the slack for a specific transitive connection path, it is necessary to traverse
all the processes in the path, analyzing on a per process iteration the existing differences
between consumption and production, i.e., the index differences between update and commit
primitives.

By traversing all the processes in the path vw3
+−→ vr3, we first visit the process A. This

process introduces a delay between production and consumption. By analyzing the code, it
is possible to identify that update and commit are always separated by a distance of 5. In
the iteration where the process commits the event 6 the process has updated the index 1.
Moreover the slack imposed by process A is 5 (6− 1).

In the process B, on the other hand, for each iteration, it updates by i+ 2 while commit
does it for i+ 1, moreover process B reduces the slack by 1 event (i+ 1− (i+ 2) = −1).

The final slack for vw3
+−→ vr3 is of 4 (5 + (−1)).

The programmer now knows how to protect his application from deadlocks. The process
(X) should never update an index bigger than 4 events of its last commit, otherwise this
process instance deadlocks at update call.
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occ (v1, i2)update (v1, i1) release (v1, i3)

occ (v2, j2)stall (v2, j1) commit (v2, j3)

horizon(v1) = max(i1 - i3)

horizon(v2) = max(j1 - j3)

Remaining Code

reader view layer

writer view layer

Figure 6.4: Builtin dependencies diagram.

The above properties are part of deeper high-level language analysis and neither reversing
or optimizing its value is part of this thesis contributions, or was further studied.

6.1.2 Data communication and synchronization dependencies internal to
process

As previous explained Erbium primitives have more refined dependencies then builtins by
themselves can represent. Unlike other compiler builtins, Erbium builtins are implemented
as side effects free with respect to all non Erbium specific code, as presented in Chapter 4.

Erbium synchronization builtins and view data accesses depend on each other only if their
index arguments are associated. More precisely, not every view data access is dependent on
all Erbium synchronization primitives and vice versa, but on their respective view calls and
only if their monotonic indexes are within the same ranges (inside the view sliding window),
respecting the view horizon.

In order to guarantee deterministic results from Erbium occ operations, it is necessary for
the respective dependent synchronizations to occur before (in case of stall and update) and
after (for commit and release) the occ primitives.

Erbium primitives definitions have no direct dependency to non Erbium code. Primitives
only impact the view sliding window, i.e. the view visibility of the record buffers data. The
relation between Erbium and the remaining code always occurs in the form of a occ operation
writing or reading from the accessible view sliding window events. Such access to the view
buffers and the buffer dependence to the primitives creates a chain of dependencies between
the non Erbium code, buffers and its synchronization primitives.

Figure 6.4 presents a diagram for such dependencies. Solid lines represent all the depen-
dencies associated with data communication through Erbium buffers. Dashed lines are the
remaining existing dependencies between the different primitives, not necessarily protecting
any data communication but instead guaranteeing correctness of the record resources avail-
ability. In any case, not respecting this dependencies breaks application determinism or even
produces deadlocks depending on the runtime implementation.

As previously mentioned, the occ operation enforces a data dependence between non
Erbium code and Erbium data communication and synchronization primitives, either by
reading or writing to the view connected record buffer.

The figure graphically demonstrates the actual dependencies from Erbium primitives, as
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well as how the Erbium synchronization code relates to the remaining of the code through
data dependencies. Nevertheless, not always these dependencies exist for any two primitives,
for example, not always an occ is dependent on its last predecessor update, but only if such
primitives relate through their index argument.

Through this document, Erbium dependencies are presented using the delta (δ) character,
as commonly used in data dependency equations in the literature. Erbium synchronizations
do not represent any variable value dependency, but rather more subtle properties based on
the actual operation and its index argument.

Any two Erbium operations are dependent (a δ b) if and only if a precedes b in control-flow
(a ≺ b) and the operation performed by a is necessary before b to preserve the semantical
meaning of b. Such dependencies rules do not in any way guarantee that the application is
deterministic, but instead that the application semantics does not change. If the application
is non deterministic from the start, it is maintained as initially designed.

The Erbium primitives semantics are directly associated with the primitives index argu-
ment value. For example, an update primitive call is only needed (or dependent) for any
occ (view event data access) if and only if the occ index argument is within the range of the
events visible in the view sliding window expanded by the update, or in other words:

update(v, iu) δ occ(v, io) if 0 ≤ iu − io < horizon(v)

This equation represents the only possible relation between any similar view update and occ
operation.

As update is a dependency source of occ based on its index argument, release is depen-
dency sink for occ operations. Every occ is a dependency source to release if the release
index argument is at least the occ index, or in other words:

occ(v, io) δ release(v, ir) if io ≤ ir
Stall and commit have symmetrical dependencies to update and release with respect to

occs.

stall(v, is) δ occ(v, io) if 0 ≤ is − io < horizon(v)

occ(v, io) δ commit(v, ic) if io ≤ ic

Occ-to-Occ dependencies

Occ operations have no direct relation or dependency between one another. More precisely
reader view occs are totally unrelated to one another as well as well as writer view occs.
Nevertheless two occ operations are dependent if the process code enforces it through data
dependencies.

occ(vr, i1) δ occ(vw, i2) if a← occ(vr, i1) ∧ occ(vw, i2)← b ∧ a δ b

Preserving view horizon size

Although the presented equations represent the existing dependencies between data buffer
accesses and the respective synchronization primitives, there are less obvious dependencies
that should also be preserved to maintain determinism and avoid deadlocking code generation.
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init_view(vr, 1)
...
update(vr, i)
occ(v2, j) = occ(v1, i)
release(vr, i)
update(vr, i+1)
...

init_view(vr, 1)
...
update(vr, i)
update(vr, i+1)
occ(v2, j) = occ(v1, i)
release(vr, i)
update(vr, i+1)
...

Figure 6.5: Code transformation ignoring initial specified horizon size.

To guarantee a minimum valid record buffer size, compilers rely on view horizons to
define big enough buffers, accommodating all the algorithmic needs for the record connected
processes (views). Moreover, compilers should guarantee that the sliding window size never
exceeds the horizon size, i.e. the index difference of consecutive release and update primitive
calls should never exceed the view horizon size.

The following two dependency equations guarantee it never occurs.

release(v, ir) δ update(v, iu) if 0 < iu − ir ≤ horizon(v)

commit(v, ic) δ stall(v, is) if 0 < is − ic ≤ horizon(v)

These equations represent the back edges between release and update, as well as commit
and stall presented in Figure 6.4. These dependencies at first sight might seem counter in-
tuitive considering the previous presented meaning of horizon. Instead, such dependencies
exploit the fact that in order for the sliding window not to exceed the view horizon, the de-
pendency sink (updates) must always have an index between the dependency source (release)
current index (ir) and within the range of horizon (ir + horizon). An update out of these
ranges is either irrelevant or too big for the expected view horizon size.

Figure 6.5 is a code transformation example not taking in consideration the previous
specified dependencies and resulting in an invalid view initialization. As determinism is
dependent on correct initialization of its views, such transformation is invalid. This is the
case because the view is initialized with view horizon equal to 1. As an example, considering
the insufficient horizon size after the transformation, record buffers can be allocated with
insufficient size for this particular process. Partial redundancy elimination optimization,
as later explained in the chapter, performs such code transformations, guaranteeing code
correctness through the usage of these dependency equations.

Process self dependencies

Some processes might contain dependencies that by process code analysis are unpre-
dictable, requiring a full application graph or higher abstraction level (PNG data structure)
analysis in order to further analyze the process dependencies. Examples are processes con-
taining a reader view transitively connected to at least one of its writer views.

Such scenarios are problematic considering that wider analysis are necessary in order
to guarantee the operations non dependency. Without such analysis, one could incorrectly
assume that unrelated view operations are independent and incorrectly optimize them. Nev-
ertheless, such equations do not take in consideration any possible dependencies external to
process code.

Figure 6.6 shows two application graphs with self dependent process instances and invalid
transformation examples, ignoring such dependencies. Using only the previous presented
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...
update(vr, i)
occ(v2, j) = occ(v1, i)
commit(vw, j)
update(vr, i+1)
...

...
update(vr, i)
update(vr, i+1)
occ(v2, j) = occ(v1, i)
commit(vw, j)
update(vr, i+1)
...

...
update(vr, i)
update(vr, i+1)
occ(v2, j) = occ(v1, i)
commit(vw, j)
...

process view record

c vw

vr

c pp vr

c p

c vw

Figure 6.6: Possibly invalid code transformation relying only on the previously defined de-
pendencies, as well as, two application graphs that can generate such type of dependency. The
double-lined boxes represent the processes possibly containing the code in the invalid transfor-
mations above.

dependences, one might immediately consider to anticipate the latest update and possibly
later remove one of the update operations thanks to the introduced redundancy. However,
at a global application scope, such commit might be affecting data of a dependent record
required by a succeeding update operation. Anticipating such update creates a deadlock
since the dependent commit would not be executed before the update, making the update to
block.

commit(v1, ic) δ update(v2, iu) if v1
+−→ v2 ∧ ic − iu ≤ slack (v1

+−→ v2)

release(v1, ir) δ stall(v2, ir) if v1
+−→ v2 ∧ ir − is ≤ slack (v1

+−→ v2)

Moreover, not always a commit is dependent on a successor update, but only in cases where
there is some dependency between its writer and reader views. In such cases, deeper analysis
are required in order to further understand the dependency. Furthermore, those two opera-
tions are only dependent if there indexes, in the worst case, can generate a deadlock, i.e., are
dependent.

To really determine it, it is necessary to compute the slack for such transitive connection
(mentioned earlier in the chapter) and to verify if the difference between commit and update
indexes (index ic−iu) is smaller or equal to the slack for the transitive connection dependency

(slack(v1
+−→ v2)).

Primitives ordering and dependencies

Erbium primitives dependencies, as presented, are not only related to the primitives index
provided in its argument but as well to the executing ordering of the dependent primitives.
Let us consider a more relaxed dependency type or index dependency (δi) where only the
primitive argument is verified.

Any two operations do not necessarily get dependent based on their execution proximity
or ordering. Nevertheless, primitives ordering is a requirement for Erbium applications de-
terminism. Moreover, determinism is a property of the ordering of two dependent primitives.
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Consider update (v, i) δi occ (v, j), by being dependent it means that 0 ≤ i − j <
horizon(v). If update is a predecessor of occ then it is guaranteed that such index dependency
(deltai) is also a dependency (δ) guaranteeing a deterministic use of occ operation. On
the other hand, if update is not a predecessor, then in order to guarantee determinism of
this particular occ, it is necessary that some other update, let us say update(v, k), has a
dependency to the occ call and covers all the remaining control-flow paths to which the
previous primitive did not.

occ(v, j) is deterministic if, for all possible execution paths it exists a primitive a such
that a δ occ (v, j), which by the dependencies presented can only be an update or a stall.

It is in the interest of Erbium IR to maintain determinism through its compilation flow.
Nevertheless, its representation should never try to fix non deterministic applications. For
that same reason, index dependencies do not take in consideration the primitives execution
order. Let us consider an opposite example where update is a successor of occ primitive
and the occ does not have deterministic semantics. In such a case, the compiler can trigger
a warning to the user, signaling a non recommended usage of the primitives, however the
application primitive ordering should never be interchanged in this case.

Determinism is maintained by guaranteeing that from the many dependency equations,
say a δ b, a is always executed before b. Not being so does not make these two primitives
non dependent, but only dependent in a less expected manner (in a non determinate one),
or only with an index dependency. The other dependency equations not involving the occ
operation also require to occur in the same ordering, nevertheless such dependencies do not
directly impact the occ determinism but rather violate the horizon size and other inter-process
dependencies, possibly resulting in non deterministic executions in any case.

Swapping rules - control-flow and dependencies

The occ operations can now be classified as either being deterministic or non determin-
istic and their behaviour is solely the result of being dependent or only index dependent to
the synchronization primitives. Any possible code transformation should never change the
meaning of a specific occ, albeit non deterministic occs have no predictable outcome. In any
case, an application programmer could be doing it on purpose.

Many times, it is possible to interchange two dependent operations, without affecting the
application semantics or behaviour of the particular primitive. Interchanging two dependent
primitives is possible if a similar type primitive is executed is a predecessor of the dependency
sink. For example, let us consider three primitives a, b, c such that a δ c and b δ c, if a is a
predecessor of b, then the primitives in the dependency b δ c can be interchanged without
affecting the semantics of the primitive c.

The update and release primitives impact the positioning of the view sliding window and
the data availability to its associated process. Once a particular type of dependent primitive
is executed, the remaining dependent primitives have no semantical meaning. The following
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diagram presents several examples of valid and invalid occ primitive swap operations.

6.1 Erbium language component dependencies
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From it one can infer the following possible operation swap rules. The left one
refers to postpone an occ after an update. As update, in a single view context, will
never depend on an occ (update 6 � occ), such interchange is always valid. The right
size refers to the reverse swap which is only possible if its exists another update op-
eration such that its index is bigger then the occ index position (9 update(v, j) 2
dominators of update(v, iu) : j � io).
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Control-flow dependencies of synchronizations

As explained builtins relate to OCC based on its index argument or as explained
in chapter 3 specific event . Although very clear in a language perspective, not
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The left most example are the swap between two dependent primitives to which the occ
does not depend on any other primitive. In such cases and while preserving the behaviour of
the occ both swaps are invalid, considering the swap will convert either a deterministic occ
into a non one. Nevertheless, in cases where the compiler must enforce determinate behaviour
the boxed operations can be considered as valid, since it converts non deterministic occs into
deterministic.

The remain examples are related to swapping of relations when a predecessor primitive
is also dependent in the occ, in such cases reordering of the primitives is possible without
changing the behaviour of the application.

Stall and commit primitives have the same swapping properties as update and release.
In fact, any of the presented Erbium dependencies have such properties and do apply to such
rules.

Most code motion in current generation compilers occurs in few optimizations such as
constant propagation, loop invariant code motion many times implemented through partial
redundancy elimination (PRE) pass. Primitives swapping does not occur through actual
swapping but rather through primitive insertion and redundancy detection, as PRE does it.
A PRE implementation to Erbium primitives is later presented in the chapter.

6.1.3 Non Erbium code dependencies

As explained in Chapter 4, during compilation flow occ builtin calls are expanded to direct
memory bu↵ers accesses, hiding the overhead of calling a function to obtain a particular event
index memory pointer. Moreover, all the synchronization builtin calls for a particular view
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The left most swap examples are between two dependent primitives where the occ has no
dependency to a second primitive. In such a case and while preserving the behaviour of the
occ both swaps are invalid, considering the swap will convert either a deterministic occ into a
non deterministic one. Nevertheless, in cases where the compiler must enforce a deterministic
behaviour the boxed examples are valid, since it makes the occs deterministic.

The remaining examples are related to the swapping of relations when a predecessor
primitive is also dependent on the occ, in such a case reordering the primitives is possible
without changing the behaviour of the application. Any other Erbium primitive dependencies
must also respect to these same swapping rules.

Most code motion transformations, in current generation compilers, occurs in few opti-
mizations such as constant propagation and loop invariant code motion, many times imple-
mented together in the partial redundancy elimination (PRE) optimization. Code motion of
Erbium primitives does not occur through primitive swapping, as presented in this section,
but rather with the insertion and redundancy detection of primitives, as PRE optimization
does. A PRE extension to Erbium primitives is presented later in the chapter.

6.1.3 Non Erbium code dependencies

As explained in Chapter 4, during compilation flow the occ builtin calls are converted to
direct memory buffer accesses, hiding the overhead of calling a function to retrieve the event
index memory pointer. Moreover, all the synchronization builtin calls are patched with a
new argument (the buffer pointer), making any synchronization call directly dependent to
the full buffer memory. From this point on, the previous data dependencies no longer relate
to occ primitives but rather to full buffers. This disables any future analysis based on view
sliding windows or Erbium indexes.

A non Erbium code is not directly dependent on any synchronization primitive. However,
previous converted occs, now buffer accesses, are still related through its memory accesses.
Since buffers are dependent on the synchronization primitives, this chain of dependencies
guarantees that synchronizations are still protecting the buffer accesses, as well as other
buffer dependent non Erbium code.

The finer dependency level is the less expressive in respective to the possible parallel
optimizations, although perhaps it is the most important, considering the number of already
existing optimizations in current generation of mainstream compilers.
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At this level, buffer accesses get the chance to be further optimized together with all the
non Erbium related code. Examples of such buffer related optimizations are: reducing the
actual number of buffer accesses through register promotion, converting any intermediate
buffer accesses into registers, or even vectorize the process loops if the process burst (data-
sample) is big enough. Such optimizations occur through traditional optimizations, possible
considering that the occ primitive is converted into direct buffer accesses, similar to array
accesses. At this abstraction level, PRE no longer moves synchronization primitives with
respect to buffer accesses, since the monotonic indexes are lost during the conversion of occ.

Furthermore, builtin helper functions for collecting the buffer memory have attribute
const in order to minimize penalty of using such builtin operations. If that was not the case,
every previous converted occ builtin would be surrounded with side-effect builtins (the buffer
getter calls) which would obfuscate many optimizations on the memory accesses and its sur-
rounding sequential code. These const builtin calls are hoisted out of the main computational
loop and moved next to the view connection builtin call, where buffers are “defined”. Please
remember the previous presented conversion of occ builtin primitive, explained at Section
(4.3.2), and demonstrated at Figure 4.11.

6.1.4 Summary of dependencies

update(v, iu) δ occ(v, io) if 0 ≤ iu − io < horizon(v)

occ(v, io) δ release(v, ir) if io ≤ ir

stall(v, is) δ occ(v, io) if 0 ≤ is − io < horizon(v)

occ(v, io) δ commit(v, ic) if io ≤ ic

occ(vr, i1) δ occ(vw, i2) if a← occ(vr, i1) ∧ occ(vw, i2)← b ∧ a δ b

release(v, ir) δ update(v, iu) if 0 < iu − ir ≤ horizon(v)

commit(v, ic) δ stall(v, is) if 0 < is − ic ≤ horizon(v)

commit(v1, ic) δ update(v2, iu) if v1
+−→ v2 ∧ ic − iu ≤ slack (v1

+−→ v2)

release(v1, ir) δ stall(v2, ir) if v1
+−→ v2 ∧ ir − is ≤ slack (v1

+−→ v2)

6.2 Erbium compiler flow

The three explained abstraction levels define the three distinct levels of expressiveness of the
Erbium language, each capable to perform different types of analysis and optimizations.

The highest level of abstraction presents to compilers the opportunity to optimize the ap-
plication at an inter-process level, mostly using the provided high-level languages properties,
collected through the language front-end lowering or source-to-source compiler. The collected
information is not stored in the Erbium primitives, but rather in the PNG data structure
which depends on the original language properties.
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Figure 6.7: Erbium’s abstraction levels integration in compilation flow, associated with its level
optimizations.

This level of abstraction is available during the first passes of the compiler execution.
In GCC it is during inter procedural analysis (IPA) passes, where function replication or
IPA related optimizations are easily applied. Inter-process optimizations, although not only
possible at this abstraction level, are highly recommended if no particular analysis of the
process code are necessary, i.e., in case higher level language properties provide sufficient data
for a correct decision. This is the case of SDF computational model languages, computing
process fusion and blocking.

The following abstraction level refers to synchronization primitives optimizations. At this
level, synchronizations and data communication (occ) primitives are still in builtin form and
use monotonic indexes to refer to record events. Thanks to the dependencies presented in
Section 6.1.2 and summarized in Section 6.1.4, it is possible to infer possible code motions
by extending existing compiler optimizations such as partial redundancy elimination and
dead-code elimination. Synchronization and data-communication code motion and dead-
code elimination are important considering that both the high-level language code lowering
and previous optimizations might introduce spurious or synchronization calls not optimally
placed. This level of abstraction uses occ builtins to compare the primitives monotonic indexes
and provides PRE pass with enough information to perform its analysis.

The lowest abstraction level is justified by the lowering of the occ primitives to direct
array like buffer operations. At this level it is possible to detect and remove repeated buffer
accesses, to promote the intermediate buffer accesses by registers, and still to perform any of
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the general compiler optimizations as would occur in a sequential version of the same code, i.e.
if no synchronization primitives were present. Although no new optimizations are presented
at this level, this level provides to Erbium its most important optimizations considering the
amount of traditional optimizations already available in mainstream compilers such as GCC.

Figure 6.7 is a GCC’s compiler-flow diagram, presenting the positioning of the three
abstraction levels, associated conversions and optimizations.

6.3 Example optimizations

The Erbium language has very low level parallel constructors, decoupling process creation,
synchronization and data communication. Decoupled constructs make it extremely hard to
analyze and eventually transform considering the uncorrelated communication and synchro-
nization primitives. Nevertheless, such properties also allow finer optimizations that would
not be possible with higher level constructs, fitting better the target architecture properties.

This section presents several Erbium related optimizations, which, although possible to
implement in Erbium, were not further studied and are open for future research.

6.3.1 Process blocking

High-level programming languages hide parallel programming complexities though a set of
constructs that implicitly expose parallelism and data communication. These languages pro-
grams have more general implementations, abstracting the programmers from all the complex-
ities of the target architectures. These abstractions are then optimized during compilation,
when further details on the target architecture are known.

Optimizations such as process blocking (not to be mistaken with thread blocking) are
responsible for such adjustments and more precisely to adjust data communication and syn-
chronization granularity to the target architecture memory size (caches or private memories),
memory latency and synchronization overhead. In many cases, process blocking also enables
loop vectorization, which greatly increases the process performance.

In the high-level optimizations perspective, blocking implies changing the process con-
sumption and production burst typically associated with the language task definition. In
Erbium and in the perspective of the process code, such optimizations resemble loop level
optimizations such as loop tiling.

Figure 6.8 is a transformation example much similar to what an Erbium optimization
could do to perform process blocking. In this optimization, we replicated the main loop of
the process code and tiled the loop of one of the copies, creating an inner loop which iterates
BLOCKING FACTOR times. Executing the original or tiled loop version depends on the
availability of sufficient data in the record, guaranteed by the builtin view enquire.

As one can see, synchronization calls remain inside the loop. Current transformation
already improves data locality, however as the synchronizations are repeatedly called for
every loop iteration, synchronization overhead does not change. To reduce their overhead,
synchronization calls must be hoisted outside of the new loop. Moreover and as blocking
depends on the increase and validation of the new horizon sizes, the synchronization primitives
hoist is left to the extended PRE optimization pass (later explained), which with the increased
view horizon size, is able to hoist the synchronization primitives out of the newly generated
loop.
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6.3 Example optimizations
6.3 Example optimizations

1 Averager(record float r in,
2 record float r out, int size )
3 {
4 view float vr;
5 view float vw;
6 int i = 0;
7
8 (vr, READER, size);
9 (vw, WRITER, 1);

10
11 (vr, r in );
12 (vw, r out);
13
14 while(true)
15 {
16 terminate = (( (vr, i + size )) != i + size );
17 if (terminate)
18 break;
19 (vw, i+1);
20
21 float total = 0.0;
22 for(int j = 1; j <= size; j++)
23 total += vr[[i +j]];
24 vw[[i+1]] = total / size;
25
26 (vr, i+1);
27 (vw, i+1);
28 i++;
29 }
30
31 (vr);
32 (vw);
33 }

1 Averager(record float r in,
2 record float r out, int size )
3 {
4 view float vr;
5 view float vw;
6 int i = 0;
7
8 (vr, READER, size +(BLOCKING FACTOR � 1));
9 (vw, WRITER, 1 +(BLOCKING FACTOR � 1));

10
11 (vr, r in );
12 (vw, r out);
13
14 while(true)
15 {
16 if ( i + size +BLOCKING FACTOR <= view enquire(vr))
17 {
18 for(k = 0; k < BLOCKING FACTOR; k++)
19 {
20 (vr, i + size );
21 (vw, i + 1);
22 float total = 0.0;
23 for(int j = 1; j <= size; j++)
24 total += vr[[i +j]];
25 vw[[i]] = total / size ;
26 (vr, i+1);
27 (vw, i+1);
28 i++;
29 }
30 }
31 else
32 {
33 bool terminate = ( (vr, i + size ) != i + size );
34 if (terminate)
35 break;
36
37 (vw, i + 1);
38 float total = 0.0;
39 for(int j = 1; j <= size; j++)
40 total += vr[[i +j]];
41 vw[[i+1]] = total / size;
42 (vr, i+1);
43 (vw, i+1);
44 i++;
45 }
46 }
47
48 (vr);
49 (vw);
50 }

Figure 6.8: Blocking optimization applied to Averager process.

synchronized at next loop iteration. This type of existing code analysis and transformations
is one of the benefits of using such a high-ranked mainstream compiler such as GCC.

Many times blocking is associated with code vectorization. As multiple data elements are
combined in a single synchronization, it might become possible to vectorize the data-elements
computation, reducing the execution time significantly.

Moreover, as process blocking implies an increase in the view horizon sizes, the compiler
must verify this transformation in a global application scope against possible deadlocks. The
verification is based on the PNG collected view burst, slack and bu↵er sizes information.

The code duplication is necessary to preserve original process behaviour (non tiled code),
preserving the original behaviour in case no su�cient data is available to consume, as probably
is the case on termination where no new data is certainly not committed (after the records
get zombified).

Blocking optimization support implies the implementation a new builtin primitive which al-
lows to peek the latest events committed or released by the respective view record (view enquire ).
Such type of primitive, although not presented and recommended, as a general language primi-
tive considering its extra expressiveness, possibly leading to non-determinate applications, can
be safely inserted by compilers, considering it is never used to increase the application seman-
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Figure 6.8: Blocking optimization applied to Averager process.

Figure 6.9 presents the full blocking code transformation after the synchronization hoist
performed by PRE, considering the increased horizon size. In the example both versions of
the loops are fused using a new temporary variable tmp, defining the amount of data elements
synchronized at next loop iteration. This type of existing code analysis and transformations
is one of the benefits of using such a high-ranked mainstream compiler such as GCC.

Many times blocking is associated with code vectorization. As multiple data elements are
combined in a single synchronization, it might become possible to vectorize the data-elements
computation, reducing the execution time significantly.

Moreover, as process blocking implies an increase in the view horizon sizes, the compiler
must verify this transformation in a global application scope against possible deadlocks. The
verification is based on the PNG collected view burst, slack and buffer sizes information.

The code duplication is necessary to preserve original process behaviour (non tiled code),
preserving the original behaviour in case no sufficient data is available to consume, as probably
is the case on termination where no new data is certainly not committed (after the records
get zombified).

The blocking optimization support implies the implementation of a new builtin primitive
which allows to peek the latest events committed or released by the respective view record
(view enquire ). Such type of primitive, although not presented and recommended as a general
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1 process Averager(record float r in,
2 record float r out, int size )
3 {
4 view float vr;
5 view float vw;
6 int i = 0, tmp;
7
8 init view (vr, READER, size +(BLOCKING FACTOR − 1));
9 init view (vw, WRITER, 1 +(BLOCKING FACTOR − 1));

10
11 connect registered(vr, r in );
12 connect registered(vw, r out);
13
14 while(true)
15 {
16 if ( i + size +BLOCKING FACTOR <= view enquire(vr))
17 tmp = BLOCKING FACTOR;
18 else
19 tmp = 1;
20
21 bool terminate = update(vr, i +tmp +size) != i +tmp +size;
22 if (terminate)
23 break;
24
25 stall(vw, i +tmp);
26 for(k = 0; k < tmp; k++)
27 {
28 float total = 0.0;
29 for(int j = 1; j <= size; j++)
30 total += vr[[i +k +j]];
31 vw[[i +k]] = total / size ;
32 i++;
33 }
34 release(vr, i +tmp);
35 commit(vw, i +tmp);
36 }
37
38 free view(vr);
39 free view(vw);
40 }

Figure 6.9: Process blocking after partial redundancy elimination.

language primitive considering its extra expressiveness, possibly leading to non-determinate
applications, can be safely inserted by compilers, considering it is never used to increase the
application semantics but only as an optimization primitive. Moreover, the blocked opti-
mized processes are only specializations of the original code, preserving the process original
determinism.

6.3.2 Fusion

Highly partitioned parallel applications tend to waste too much time switching between paral-
lel threads. In applications where the number of process instances is higher then the available
parallel processors, coarsening parallelism, by fusing multiple processes, significantly reduces
the number of thread switches.

However, the process fusion requires to verify and match the production and consumption
rate of the fusing process. For example, in order to fuse two processes it is necessary that
both processes are directly connected and have multiple production and consumption rates.
When the rates do not match the processes can possibly be adapted using the previously
explained blocking transformations, balancing the processes burst rates.

Process fusion, like blocking, implies the identification of the task single entry single exit
(SESE) code region. Languages based on SDF and CSDF are composed of SESE tasks,
simplifying process fusion code generation.
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B

r1

A

B

r1,r2

1 int s1, r1
2 float r2;
3 #pragma task input(s1) \
4 output(r1, r2)
5 {
6 r1 = f(s1);
7 r2 = g(s1);
8 }
9 #pragma task input(r1, r2) \

10 output(s2)
11 {
12 s2 = h(r1, r2);
13 }

1 typedef struct r1r2 {
2 int r1;
3 float r2;
4 }
5 int s1, s2;
6 struct r1r2 struct r1r2;
7
8 #pragma task input(s1) \
9 output(r1, r2)

10 {
11 r1r2.r1 = f(s1);
12 r1r2.r2 = g(s1);
13 }
14 #pragma task input(r1, r2) \
15 output(s2)
16 {
17 s2 = h(r1r2.r1, r1r2.r2);
18 }

Figure 6.10: SOMP record fusion example done with SOMP code.

6.3.3 Record fusion

The code conversion of high-level languages into Erbium might generate suboptimal code,
creating too many records for the existing data communications. For example, in Chapter 5,
the presented code conversion created a single record for each stream variable, resulting in
the creation of multiple records in cases where more then one stream variable were used in
the connection of the same tasks. Moreover, after performing record fusion, it is also easier
to detect and perform the previously presented transformation, record fusion.

If a process A connects, as writer, to record r1 and r2, and process B connects as reader
to both these records and no other processes connect to these records, it could be possible to
replace those records by a single record whose type is a data structure containing both the
record types.

More generally, if a set of records are always accessed simultaneously with the same type
of connection and at the same rate (inside each process), those records can be merged and
replaced by a single one. Multiple views connecting to the previous record are substituted
by a single view.

In order to decide on the merge of a set of records, it is sufficient that:

• if a process connects to one of the records in the set, it should also connect to the
remaining of the records,

• all the process connections should be of the same type (reader or writer),

• for every individual process, the index of the different associated view synchronization
calls should be the same,

• similar synchronization calls should happen in same control-flow points.

Once all these conditions are valid, the set of records can be combined in a single one by:

• combining all the different record types into a single data structure,

• per process, merging all the views and synchronization calls,

• traversing all previous view occ primitives substituting by the newly view, adding the
respective data structure offset.

As one can imagine, validating for record fusion relying on Erbium code analysis is very
hard and sometimes even impossible. However, if we consider the available information
provided by high-level languages, such analysis are unnecessary. Figure 6.10 presents the
record fusion for original (left) and transformed (right) SOMP code examples. The Erbium
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Figure 6.11: Back-pressure elimination transformation example.

transformation should perform the same as the difference between both these SOMP code
examples after its conversion.

The record fusion improves application performance through the elimination of redundant
synchronizations (reducing the number of views in the process) and improves data locality
associated to the merge of the record types into a data structure.

6.3.4 Back-pressure elimination

Other form of synchronization redundancy can also be detected in back pressure primitives
in cyclic process communications. Figure 6.11 is a graphical representation of such transfor-
mation.

The Erbium back pressure synchronization introduces as much overhead as data related
synchronization primitives. Albeit delaying resources freeing, back-pressure elimination re-
duces synchronization overhead in half,

To get perform improvements the application requires large enough record buffers — big
enough to allow a full communication cycle before buffer saturation. Moreover, the processes
require to increase the horizon size, making sure sufficient space is available in their records,
i.e., as processes will not contain calls to the stall primitive, the resources availability should
be verified through update, checking for the commit of the last process in the cycle (its cycle
predecessor).

Such optimization is highly useful for distribute memory architectures, such as the Cell
BE and its SPUs, where processors are interconnected in a multichannel ring. The unidirec-
tional traffic significantly reduces the number of conflicting communications and so, its DMA
transfer overhead and the overall application execution time.

Non cyclic applications can also take advantage of this transformation by introducing a
“fake” back connection (record), creating and closing the “fake” cycle.

6.3.5 Static primitive specialization

Chapter 3 presented a runtime implementation of the Erbium primitives supporting multiple
producers and consumers.
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Many applications do not make use of the multiple record connectivity. Nevertheless,
runtime implementations contemplate many of the complexities introduced by multiple record
connectivity. Please refer to Figures 2.2 and 2.7, presented in Chapter 2, for a comparison of
the dependencies associated with single vs. multiple connectivity records, providing a glimpse
of the increased complexity.

In cases where static prediction is possible, and once it is detected that a specific record is
never connected by more than one reader and writer view, the involved processes can instead
call specific versions of the synchronization primitives, not performing all the checks and
computations required by multiple producer and consumer synchronizations. The minimum
computation required for multiple producers and consumers implies very often traversals to
the list of views. Moreover, if the minimum computation is not necessary, the record does not
requires to implement a list of views, with all of its concurrency protections, but instead a
pair of views, without any protections, since it is guaranteed that only a single thread writes
to the record.

6.3.6 Redundant synchronization calls

The implementation of Erbium synchronizations is expensive, depending on the target archi-
tecture and its runtime library support.

Like dead-code elimination, redundancy detection can, at first sight, seem irrelevant con-
sidering that no programmer or language conversion should generate redundant code. Nev-
ertheless, optimizations very often introduce redundancies. A simple example of these re-
dundancies are the consecutive calls to the same synchronization primitive, such as update.
Multiple similar and consecutive synchronization primitives for the same view can always be
substituted by a single one with the maximum index for all the calls index arguments.

In this chapter, we will present an extension to partial redundancy elimination (PRE)
where synchronizations are, in some particular cases, possibly moved and eliminated, remov-
ing any redundant or spurious synchronization calls by relying on the dependencies graphically
presented in Figure 6.4 and summarized in Section 6.1.4.

Similarly to PRE, dead-code elimination can also predict when synchronizations are not
needed. In Erbium this is the case if a particular range of events is never used or does not
contribute to the application output, i.e., if the data read from the view buffer is never used,
or never displayed. In these cases, the occs are flagged as dead code and the synchronization
primitives, when only guaranteeing the determinism of the occs are also considered as dead
code.

6.3.7 Optimum synchronization placement

Having PRE to perform code motion does not necessarily mean an improved placement of
synchronization primitives. PRE requires a set of heuristics specifically design for Erbium
synchronization primitives. For example, the update primitive should be executed as late as
possible. Let us consider an update being called before some independent slow function call.
By preserving the call ordering update call has far more probability to block than if both
calls get reordered.

However, let us assume update is inside a loop and, based on the view horizon size, it
could cover several executions of this loop (like what would occur with the process blocking
optimization). Should the update call be hoisted before the loop? Doing so enforces process
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synchronization to happen before the slow function executes. Not always it is easy to deduce
which transformations should be done or not. Many times, code simplification or redundancy
removals do not translate in speedups. The commit and release primitives, contrarily to
update and stall, while respecting its dependencies, should execute as soon as possible, as
they do not block and announce the record progress.

As mentioned in the two previous examples, it is not always easy to predict a best place-
ment for the synchronization primitives. These transformations must be supported by cost
prediction algorithms, deciding between the different transformation opportunities.

PRE as later presented in the chapter does not tries to optimize code placement, but
instead present how PRE is extended to support the Erbium primitive calls, performing code
motion and redundancy detection. Later research work is needed to define and implement
the heuristics to optimize the Erbium primitives placement.

6.4 Synchronization PRE

Although Erbium intermediate representation as presented in Chapter 4 does not break tra-
ditional PRE, by itself the intermediate representation does not support any code motion of
Erbium primitives, i.e., does not allow PRE to improve Erbium code. Erbium code motion
requires PRE code analysis and transformation heuristics to support its builtins, more pre-
cisely its primitive relations based on its monotonic indexes, as expressed in the dependency
equations summarized in Section 6.1.4.

The PRE code analysis implies the creation of availability and anticipability sets. For PRE
pass, availability sets represent the statements forward movable in the control-flow, computed
for each program point. The anticipability represents the statements movable backwards in
the control-flow at given program-point. The PRE heuristics traverse both the sets and,
per program-point, validate all the possible code insertions, inserting new statements which
make previous original statements redundant and eventually removes them. The insertion
and deletion of statements is an iterative process, where previous PRE transformations reveal
new redundant statements.

Extending PRE implies extending the availability and anticipability sets taking into con-
sideration the Erbium primitives semantics.

Availability is the set of all expressions available at a given program point. A given
expression (a + b) is available at a program point or statement s if, on every path from the
beginning of the control-flow graph to s, the expression (a + b) is computed at least once
and none of the variables used in the expression (a and b) has been redefined since the latest
computed expression.

Anticipability is the set of all expression anticipable at a given program point. Similar
to the previous example, an expression (a + b) is anticipable at a given program point s if,
every path from s to the end of the control-flow graph, (a+ b) is computed and none of the
variables a and b is changed before the first computation of (a+ b).

A different definition of availability and anticipability is decomposed in in and out sets,
representing availability or anticipability as widely explained in compilation literature [10].
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Availability Anticipability
Statement s gen[s] kill[s] gen[s] kill[s]

t← b⊕ c {b⊕ c} − kill[s] expressions with t {b, c} − kill[s] {t}
t←M [b] {M [b]} − kill[s] expressions with t {b} − kill[s] {t}
M [a]← b {} expr. of form M [x] {b} {}
if a > b goto . . . {} {} {a, b} {}
gotoL {} {} {} {}
L : {} {} {} {}
f(a1, . . . , an) {} expr. of form M [x] {a1, . . . , an} {}
t← f(a1, . . . , an) {} expressions with t, {a1, . . . , an} − kill[s] {t}

and expr. of form M [x]

Table 6.1: Gen and kill sets for sequential languages such as C.

Availability and anticipability is computed iteratively with the following two equations:

Availability

in[n] =
⋂

p∈Pred(n)

out[p]

out[n] = gen[n] ∪ (in[n]− kill[n])

(6.2)

Anticipability

in[n] = gen[n] ∪ (out[n]− kill[n])

out[n] =
⋂

p∈Succ(n)
in[p] (6.3)

As one might realize, such equations operate recursively, computing in and out of the
successor statement in case of anticipability, or the predecessor if availability. In always
refers to the immediate predecessor and out to the immediate successor program points1.
Availability is computed based on a forward control-flow order statements traversal while
anticipability is computed in a backwards order.

The previous definitions use the still undefined gen[n] and kill[n] sets, representing the
newly generated expressions and the killed or invalidated expressions for the specific state-
ment n. Common sequential languages operations define gen and kill sets based on the rules
of Table 6.1 as presented by Appel [10] in pages 390-391.

GCC’s PRE, or more precisely GVNPRE [83, 84], is an integration of Global Value
Numbering and PRE optimizations, allowing to exploit both GVN and PRE optimizations
simultaneously, while exploiting GCC’s SSA GIMPLE intermediate representation. Previous
most relevant contributions to PRE are Lazy Code Motion (LCM) introduced by Knoop et
al. [47] and SSA-PRE by Kennedy et al. [45]. LCM is expression-based and thus lexical.
On the other hand SSA-PRE, although the basis of GVNPRE, requires to change SSA form
introducing a new type of node (Φ, not the same as the SSA φ node). GVNPRE does not
suffer from the same caveat and is designed not to change original SSA form.

GVNPRE represents availability and anticipability sets using bitmap data structures.
Each bitmap position (a bit) specifies the existence of a particular value in the available or
anticipable set. The bitmap related value positioning is defined through the value numbering

1Program-points always refer to a code placement between existing statements.
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assigned during the availability computation traversal. Value numbering identifies similar
value expressions with the same number identifier. The bitmap data structure simplifies
unions, intersections and subtractions set computations, required by the availability and
anticipability equations previously given (Equations 6.2 and 6.3).

6.4.1 Erbium’s availability and anticipability

Availability and anticipability sets define which operations are downwards or upwards safely
movable without affecting program semantics. Gen and kill sets, depending on their actual
usage, are more primitive operations by specifying for a single statement which values (ex-
pressions, function calls or variables) can be generated or destroyed (killed) in the availability
or anticipability sets.

In the Erbium primitives case, the dependency equations already define the Erbium prim-
itives expectations. Moreover, gen and kill sets, for both availability and anticipability, can
be defined using these dependencies:

For S being the set of all possible Erbium primitive calls.

Availability
gen[s] = {n ∈ S : s δ n}
kill[s] = {n ∈ S : n δ s} (6.4)

Anticipability
gen[s] = {n ∈ S : n δ s}
kill[s] = {n ∈ S : s δ n} (6.5)

Notice that the definitions for gen and kill equations are reversed when used either for
availability or anticipability computation.

Consider the statement occ(v, i), used in the context of a reader view, as an example for
the computation of both gen and kill sets. The gen and kill are defined based on the universe
of all the dependents for the particular statement s.

The occ primitive, in the context of a reader view, is associated with two other primitives,
through the following dependencies, presented in Section 6.1.2 and the diagram presented in
Figure 6.4:

update(v, iu) δ occ(v, io) if 0 ≤ iu − io < horizon(v) (6.6)

occ(v, io) δ release(v, ir) if io ≤ ir (6.7)
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In the context of availability both gen and kill are computed through the expansion of
the presented definitions.

gen[occ(v, i)] = {n ∈ S : occ(v, i) δ n}
= {release(v, j) : i ≤ j} (by 6.7)

= {release(v, j) : j ≥ i}

kill[occ(v, i)] = {n ∈ S : n δ occ(v, i)}
= {update(v, j) : 0 ≤ j − i < hor(v)} (by 6.6)

= {update(v, j) : 0 ≤ j − i ∧ j − i < hor(v)}
= {update(v, j) : i ≤ j ∧ j < i+ hor(v)}
= {update(v, j) : i ≤ j < i+ hor(v)}

By expanding each of the definitions through the various Erbium primitives, one can infer
the gen and kill sets as presented in Table 6.2 for availability and Table 6.3 for anticipability.

In any case, not all of the presented dependency equations are used as gen definitions,
more precisely the dependencies commit δ update and release δ stall which are inter-process
dependencies. This is the case, because these dependencies are only necessary to guarantee
deadlock free code motions in respect to the cyclic dependencies between processes, and not
to anticipate new redundancies based on inter-process information, i.e., based on some other
processes code.

The dependencies presented in Figure 6.4 define the chain of dependencies for the intra-
process primitives, based on the view sliding window size (horizon). By analyzing the syn-
chronization dependencies inside the process (intra-process), one can expect a maximum
usage of the view horizon, i.e., PRE maximizes the number of events per synchronization
primitive execution, as is further demonstrated. However, as these dependencies do not take
into consideration process communication, it is necessary to limit the code motion possibly
by the intra-process dependencies alone. For that matter, the kill definition should take
into consideration the process inter-process dependencies (dependencies between processes)
and disable any possibly invalid code motion, and more precisely avoid any PRE introduced
deadlocks.

Tables 6.2 and 6.3 take inter-process dependencies in consideration only for the kill defi-
nition columns — more precisely, commit δ update and release δ stall.

release(v, ir) δ update(v, iu) if 0 < iu − ir ≤ horizon(v) (6.8)

commit(v1, ic) δ update(v2, iu) if v1
+−→ v2 ∧ ic − iu ≤ slack (v1

+−→ v2) (6.9)
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Statement s gen[s] kill[s]

u : update(v, iu) {occ(v, j) : iu − hor(v) < j ≤ iu} {release(v, k) : iu − hor(v) ≤ k < iu}∪
{c : commit(v1, l) : l ≤ iu + slack (v1

+−→ v)}
release(v, ir) {update(v, j) : ir < j ≤ ir + hor(v)} {occ(v, k) : k ≤ ir}

occ(v, io)
read {release(v, j) : j ≥ io} {update(v, k) : io ≤ k < io + hor(v)}
write {commit(v, j) : j ≥ io} {stall(v, k) : io ≤ k < io + hor(v)}

s : stall(v, is) {occ(v, j) : is − hor(v) < j ≤ is} {commit(v, k) : is − hor(v) ≤ k < is}∪
{c : release(v1, l) : l ≤ is + slack (v1

+−→ v)}
commit(v, ic) {update(v, j) : ic < j ≤ ic + hor(v)} {occ(v, k) : k ≤ ic}

connect(v, r)
{update(v, i) : 0 < i < enquire(r) + hor(v))}

Any primitives using v{stall(v, i) : 0 < i < enquire(r) + hor(v))}
free(v) {} Any primitives using v

Table 6.2: Gen and kill sets for Erbium primitives availability, generated thanks to Equa-
tions 6.4.

The following example expansion refers to the availability kill definition for commit(v, i)
taking in consideration the previous presented inter-process dependencies copied to Equa-
tions 6.8 and 6.9:

kill[update(v, i)] = {n ∈ S : n δ update(v, i)}
= {release(v, j) ∈ S : 0 < i− j ≤ horizon(v)} (by 6.8)

∪ {commit(v1, k) ∈ S : v1
+−→ v ∧ k − i ≤ slack (v1

+−→ v)} (by 6.9)

= {release(v, j) ∈ S : 0 < i− j ∧ i− j ≤ horizon(v)}
∪ {commit(v1, k) ∈ S : v1

+−→ v ∧ k ≤ i+ slack (v1
+−→ v)}

= {release(v, j) ∈ S : j < i ∧ i− horizon(v) ≤ j}
∪ {commit(v1, k) ∈ S : v1

+−→ v ∧ k ≤ i+ slack (v1
+−→ v)}

= {release(v, j) ∈ S : i− horizon(v) ≤ j < i}
∪ {commit(v1, k) ∈ S : v1

+−→ v ∧ k ≤ i+ slack (v1
+−→ v)}

The anticipability gen and kill definitions are expanded in the same manner.

Bitmap data structure extension

As presented in Tables 6.2 and 6.3 a single Erbium builtin statement generates and kills
multiple primitives expressed by a range based on the statement index argument and view
horizon. Expressing ranges is impossible using bitmaps, considering the infinite number of
required bits to represent all the distinct primitive calls and its monotonic indexes arguments.
Moreover, it would be meaningless since similar (same type and same view) primitives would
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Statement s gen[s] kill[s]

update(v, iu) {v, iu, release(v, j)) : iu − h(v) ≤ j < iu} {occ(v, k) : iu − h(v) < k ≤ iu}

r : release(v, ir) {v, ir, occ(v, j) : j ≤ ir} {update(v, k) : ir < k ≤ ir + h(v)}
{s : stall(v1, l) : l ≥ ir − slack (v

+−→ v1)}

occ(v, io)
read {v, io, update(v, j) : io ≤ j < io + h(v)} {release(v, k) : k ≥ io}
write {v, io, stall(v, io) : io ≤ j < io + h(v)} {commit(v, k) : k ≥ io}

stall(v, is) {v, is, commit(v, j)) : is − h(v) ≤ j < is} {occ(v, k) : kis − h(v) < k ≤ is}

c : commit(v, ic) {v, ic, occ(v, j) : j ≤ ic} {update(v, k) : ic < k ≤ ic + h(v)}
{u : update(v1, l) : l ≥ ic − slack (v

+−→ v1)}

connect(v, r) {v, r} Any primitives using v

free(v)
{v, release(v, j) : 0 < j <∞}

Any primitives using v{v, commit(v, j) : 0 < j <∞}

Table 6.3: Gen and kill sets for Erbium primitives anticipability, generated thanks to Equa-
tions 6.5.

be classified as different, i.e., every primitive would be different independently of its type and
arguments.

To express the Erbium primitives in sets, it is necessary to adopt a more hybrid approach
where the Erbium primitives are both classified and associated with a bitmap position and
a range of index events. Each different type of operation (update, release, etc.) and the call
first argument (the view) must be identified with a unique value number. Alias analysis has
an important responsibility in the value numbering, considering that multiple pointers to the
same view must be assigned the same value. The value numbering does the initial distinction
of the possible redundant primitives, providing to similar Erbium operations the same value
identifier, used later as the bitmap position.

Erbium primitives with same value number are not necessarily redundant, as is the case
with traditional expressions. Redundancy of Erbium primitives is detected based on not only
the primitive type (primitive call and view argument) but also based in its index argument,
as previously expressed in the dependency equations. Considering the semantical differences
between traditional expression redundancies and Erbium’s, by itself the bitmap data structure
is not sufficient to represent the extended sets. Moreover, in case of an Erbium primitive,
each bitmap position is also associated with a tuple of index expressions, representing the
range of available or anticipable primitive calls. Ranges are written with the expressions
representing the limits presented in Tables 6.2 and 6.3 for both gen and kill sets depending
on the primitive type, later combined in availability and anticipability computation. By still
using a bitmap value for every combination of view and primitive type, lookup access times
to both availability and anticipability are improved in cases where the primitive type is not
present in the availability or anticipability sets.

Ranges

The usage of this new data structure to represent availability and anticipability is re-
stricted to its capability to support the operations presented at availability (6.2) and an-
ticipability (6.3) equations, more precisely: union, intersection and subtraction operations.
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Such operations must be implemented in the same manner as traditional union, intersection
and subtraction of set operations, although operating in a tuple of expressions representing
a range.

By analyzing the range operations meaning, one can correctly presume a pair of tuples
is not sufficient to cover the possible domain for the required operations. As an example,
when two ranges A and B are disjoint A ∪ B cannot always be expressed with a single
range. Similarly subtracting two ranges (A−B) might also produce the same effect if A has
different bounds and contains B. Nevertheless, as such ranges are only used in the context
of Erbium primitive indexes, disjoint ranges are only the result of non dependent primitives.
Moreover, when any of these operations produces more then one range, the result is always
the continuous range with the highest values.

Index comparison

Availability and anticipability sets computation require the compiler to compare index ar-
guments from the Erbium primitive calls, i.e., the gen and kill generated ranges are combined
through union, intersection and subtraction operations, iteratively defining the availability
and anticipability sets.

GCC allows to statically compare variables through scalar evolution analysis. In many
cases, it is impossible to predict the evolution of such expressions considering that vari-
ables can be unpredictable thanks to complex code control-flow. In such cases, computing
availability and anticipability for a specific Erbium primitive is impossible. However, for
the many times, the index arguments are based on induction variables in organized loop
hierarchies where scalar evolution analysis is available. For example, consider the operation
({update(v,A)} − {update(v,B)}), as it could happen in the availability computation (see
Equation 6.2), and assuming the ranges A and B are incomparable, the operation result
should be pessimistic, assuming A ⊆ B and returning an empty set. In other words, when
the comparison is not possible, the compiler should always act pessimistically and assume for
the always correct case.

The scalar evolution analysis exploits SSA form and provides compiler optimizations
with the ability to query the variable evolution in the context of precise program points.
The outcome of scalar evolution is a polynomial representation for the variable evolution,
where each variable is associated to number of iterations of each loop. This representation is
named chains of recurrences (CHREC) [69, 70]. The chain of recurrences is the representation
expressing the evolution of induction variables through loops. It is composed of an initial
value, the operation occurring in every loop iteration and the loop stride. As the name
suggests, several of these representations can be chained for multiple loop hierarchies.

A simple approach to index variable comparison is to independently compare the chain
or recurrences components. If two chain of recurrences for the same program point contain
the same operation and stride elements, both variables can be easily compared if their initial
value is constant. If the initial values are other CHREC expressions, meaning the variable is
defined outside another loop and, for that matter, it is related to at least another loop, the
comparison should continue iteratively until the constant value is reached. When two CHREC
representations have different operation or stride, those must be considered as incomparable.
There should certainly be other more precise ways to compare CHREC expressions.
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{ v, r }
{ 3[-1,0] }
{ 1[1,2] }
{ 2[0,1] }
{ 3[0,1] }
{ 1[2,3] }
{ 2[0,2] }
{ 3[0,∞] }

{calls on v}
{ 2[1,1] }
{ 3[1,∞] }
{ 1[2,3] }
{ 2[1,2] }
{ 3[2,∞] }
{ 1[3,4] }

{calls on v}

gen[s] kill[s] { v, r }
{ 1[1,2], 2ø     , 3ø }
{ 1[1,2], 2[0,1], 3ø }
{ 1ø     , 2[0,1], 3[0,1] }
{ 1[2,3], 2ø     , 3[0,1] }
{ 1[2,3], 2[0,2], 3[0,1] }
{ 2[0,2], 3[0,∞] }
{ 3[0,∞] }
ø

{ 1[1,2] }
{ 2[1,1] }
{ 3[1,∞] }
{ 1[2,3] }
{ 2[1,2] }
{ 3[2,∞] }
{ 1[3,4] }

ø

connect(v, r);
update(v,1);
a = occ(v,1);
release(v, 1);
update(v, 2);
b = occ(v, 2);
release(v, 2);
free(v);

4
1
2
3
1
2
3
5

s gen[s] kill[s]VN
{ v, r }
{ v, 1[1,2] }
{ v, 1[1,2], 2[1,1] }
{ v, 1ø     , 2[1,1], 3[1,∞], a }
{ v, 1[2,3], 2ø,      3[1,∞], a }
{ v, 1[2,3], 2[1,2], 3[2,∞], a }
{ v, 1ø     , 2[1,2], 3[2,∞], a, b }
{ v, 1[3,4], 2ø,      3[2,∞], a, b }
ø

ø
{ 3[-1, 0] }
{ 1[1,2] }
{ 2[0,1] }
{ 3[0, 1] }
{ 1[2,3] }
{ 2[0,2] }

{v}

Availability Anticipability

Figure 6.12: Availability and anticipability computation for a simple and constant index process.
In this example the view horizon is 2 (not defined in the code) however the initial burst is 1.

connect(v, r);
update(v, 1);
occ(v,1);
release(v, 1);
update(v, 2);
occ(v, 2);
release(v,2);
free(v);

4
1
2
3
1
2
3
5

s VN Avail ∩ Antic Allowed code insertions

update(v, [1,2])
update(v, [1,2]); occ(v, [1,1])
                          occ(v, [1,1]); release(v, [1,1]);
update(v, [2,3]);                      release(v, [1,1]);
update(v, [2,3]); occ(v, [1,2]);
                          occ(v, [1,2]); release(v, [2,∞]); 
                                               release(v, [2,∞]);

{ v, r }
{ 1[1,2] }
{ 1[1,2], 2[1,1] }
{            2[1,1], 3[1,1] }
{ 1[2,3],            3[1,1] }
{ 1[2,3], 2[1,2] }
{            2[1,2], 3[2,∞] }
{                       3[2,∞] }
ø

Figure 6.13: Intersection of availability and anticipability from the Figure 6.12. Allows to
identify the semantically safe primitives at each program point. In this particular case it allows
to predict that the second update can be safely anticipated thanks to the view horizon size of 2.

6.4.2 Availability and Anticipability computation example

Figure 6.12 is a example of gen and kill sets for a very simple single basic block application.
The application is presented in the left-most column. The less relevant yet necessary state-
ments such as record/view allocation and initialization are omitted from the code example
considering its smaller interest in the availability and anticipability computation. Moreover,
please take into consideration that the view horizon for v for this particular example is 2
(view init is one of the omitted primitives).

Much like what happens currently in GCC, each primitive call is assigned with an unique
value number (VN) for each primitive type and view argument tuple. The sets are defined
with the notation V N [begin, end], being begin and end the limit expressions for the range
data structures. In the example, all primitives use constant index values, simplifying the
resulting range limits and making them constants.

Gen and kill sets are merely the application of the rules presented in Tables 6.2 and 6.3.
The right-most columns for each section are the availability and anticipability computations
for the specific program point, as specified in the Equations 6.2 and 6.3. Availability is
calculated based on a forward traverse of the statements, while anticipability is a reverse
traversal, i.e., from the last statement to the first one.

As previously mentioned, the most simple code motion or redundancy insertion verifica-
tion is to compute the intersection of both availability and anticipability sets. Any statement
present in an availability and anticipability intersection can safely be inserted in that particu-
lar program point, probably generating redundancies and eventually allowing PRE to remove
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the now redundant primitives. Figure 6.13 is the example of the intersection of availability
and anticipability sets presented in Figure 6.12 together with the resulting primitive calls
safely movable to the respective program point.

This example illustrates the previously presented equations. To be notice from the re-
sulted availability and anticipability sets is the fact that update(v, 2) is anticipable and avail-
able at the beginning of the application. This occurs since the horizon size is bigger than what
the application initially exploited, i.e., the application through all its updates and releases
only exploits the view sliding window up to a size of 1 event. As the horizon is defined with
a size of 2, the initial code is suboptimal considering its frequent synchronization primitive
calls and burst size of 1. Nevertheless, availability and anticipability analysis allow to predict
update(v, 2) as movable next to the existing update(v, 1), allowing to reduce the number of
synchronization calls and increasing burst size to the view horizon maximum of 2 record
events, using the full view sliding window. The heuristics to detect and remove primitive
redundant calls are executed after these PRE insertions.

PRE of synchronization primitives is mostly important to reduce the number of synchro-
nizations per process iteration. Process blocking, as previously presented, expected such type
of optimization considering its limited ability to perform Erbium primitives code motions. In
the previously presented example, in Figure 6.8, blocking did not perform any code motion
of the synchronization primitives, instead it copied the process code inside of a newly defined
loop, iterating BLOCKING FACTOR times. Such approach allowed blocking code trans-
formations without primitives internal process analysis. As mentioned during the blocking
optimization section, in order to take advantage of blocking it is necessary to reduce the
number of synchronization calls, hoisting synchronization calls out of the process blocking
created loop. This synchronization primitives hoisting is possible since the blocking opti-
mization validates for the global inter-process validity (against deadlocks) and increases the
involved views horizon sizes. With the increased view horizon size, PRE should be able to
detect the synchronization redundancy and hoist the synchronization primitives out of the
loop.

6.5 Erbium redundancies

Partial redundancy elimination pass starts by computing both availability and anticipability
sets. By traversing the sets, the pass identifies possible code insertions introducing redun-
dancies. The insertions also convert any partial redundant expression into fully redundant
ones. Fully redundant statements are then removed.

But how are Erbium statements redundant to each other?

An Erbium primitive is redundant with respect to another if all the dependencies of the
first are also dependent or “covered” by the second. Taking in consideration such notion, and
for Sp being the set of all Erbium primitives in the process p, a statement redundancy can
be verified through the following two equations:

a is redundant if ∀c ∈ Sp : a δ c⇒ ∃b ∈ Sp : b δ c ∧ b ∈ doms(a) (6.10)

a is redundant if ∀c ∈ Sp : a δ c⇒ ∀path ∈ paths(a, c), ∃e ∈ path : e δ c (6.11)
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Although correct, this definition implies too many verifications, making it unrealistic for a
compiler implementation. The equations verify for the two possible redundancy scenarios.
Equation (6.10) finds a substituting primitive in a dominator of a. Dominator verification is
already a simplification to finding a redundancy in all paths reaching a. Equation (6.11) refers
to finding substituting primitives in all the possible paths from a to any of its dependents.

These equations are not intended to detect occ redundancies considering all the other non
Erbium code data dependencies associated with the occ primitive. Its redundancy is detected
by traditional PRE once the occ primitive gets converted into direct buffer memory accesses,
as mentioned before.

Considering the precise Erbium synchronization semantics and what the dependencies re-
ally verify by, i.e., the relation of the primitives based on the interactions with the view sliding
window, it should be possible to simplify these equations using PRE analysis (the availability
and anticipability sets). Taking in consideration only the synchronization primitives (update,
release, stall and commit) a primitive is redundant if there is other similar primitive call with
a bigger or equal index in a protective place towards all dependents control-flow placement.

6.5.1 PRE redundancy detection

Availability and anticipability sets provide precise expectations for the type of primitives
possibly insertable at all program points. An update, for example, generates (gen) the ex-
pectation of find or even to move a set of occ primitives in a forward execution flow. If
an availability set includes a range of occ primitives, it is forcefully either generated from a
stall or update primitive depending on the view type. This approach is usable to identify
the same type of redundant primitives as in Equation 6.10. Considering how availability is
computed, such optimization is more precise then the previous presented dominator simpli-
fication. Moreover, using the PRE availability set, it is possible to compute such type of
redundancy, based on:

a is redundant if max(avail gen[a]) ∈ avail in[a] (6.12)

For the particular case of an update primitive, if its availability set at entry point (avail in)
contains the maximum index occ generated by this particular call, then it is obvious that
either an equal or bigger index update is executed in a dominator or in all the possible paths
to this program point. This verification guarantees the redundancy of the update call.

The Equation 6.11, although not defined using dominators, is symmetric to the redun-
dancy detection in Equation 6.12. The existing PRE analysis already provide a symmetrical
definition of availability, more precisely the anticipability.

The following equation formalizes this redundancy detection case using anticipability.

a is redundant if max(antic gen[a]) ∈ antic out[a] (6.13)

Figure 6.14 presents three distinct cases where anticipability is used for the release prim-
itives redundancy detection. Rounded corner boxes are basic blocks. Dashed rectangles are
the anticipability either at the beginning or end of the basic block, also known as in and
out anticipability respectively, as defined in Equation 6.3. The striked primitives are the
ones identified as redundant. The primitives responsible for the redundancy are marked with
underline.

In the left most example, the release primitive in the uppermost basic block is identified
as redundant considering that all its successor basic blocks contain higher index releases.
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...
release(v, 10)

...

...
release(v, 12)

…

…
release(v, 14)

...

…
update(v, 20)

release(v, [10,19])

b: occ(v, [1,14])a: occ(v, [1,12])

a ∩ b = occ(v, [1, 12])

...
release(v, 10)

...

...
release(v, 12)

…

…
update(v, 20)

d: release(v, [10,19])

c: occ(v, [1,12])

c ∩ d = ø

...
release(v, 10)

...

...
release(v, 12)

…

…
release(v, 14)
update(v, 20)

e: occ(v,[1,14])

e ∩ f = occ(v, [1, 14])

f: occ(v, [1,14])

occ(v, [1,14])

back_avail_out back_avail_inLegend:

Figure 6.14: Redundancy detection for release primitives.

As anticipability is computed using an intersection of the successor sets of the basic blocks,
only if all these successors contain a release in its reverse control-flow path, the respective
program point would not contain a range of occs in the set. Moreover, and as defined in the
redundancy equation, the primitive is only redundant if its maximum antic gen primitive
index is in its out anticipability set. As the intersection of all the successors contain occ(v, 10)
(the maximum index for antic gen[release(v, 10)]), the primitive is marked as redundant.

In the next example, none of the release primitives is redundant. This is the case since
there is one path for both the release primitives to one of its dependency sinks (update(v, 20))
without reaching another release primitive with a higher index. This approach detects this
non redundant case flawlessly.

In the last example, as the bottom most basic block contains a release primitive before
the update, both the releases in the remaining basic-blocks are identified as redundant.

6.5.2 Previous PRE example redundancy elimination follow-up

Figure 6.15 is the follow up of the availability and anticipability sets creation example in
Figure 6.12. PRE is an iterative transformation where succeeding code transformations reveal
further possible improvements to code. This particular example requires three iterations to
conclude.

The first iteration is the insertion of the statement s2 right after the view connectivity.
The availability and anticipability sets, validating for this first iteration, are presented in
Figure 6.12.

The second iteration is the removal of the now obvious redundant update primitive calls
(statements s3 and s6). The redundancy detection is based on Equation 6.12. As the inserted
statement s2 adds to the availability set an occ in the range [1, 2], and as s3 and s6 have
no effect on the availability set, such primitives are classified as redundant. In other words,
these primitive calls make no change to the view sliding window and for that matter are
redundant.

The third and last iteration is the removal of the intermediate release primitive. The
release primitive redundancy is not detected at the same iteration as the updates. This is
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{ v, r }
{ 3[0,1] }
{ 1[1,2] }
{ 2[0,1] }
{ 1[2,3] }
{ 2[0,2] }
{ 3[0,∞] }

{calls on v}
{ 2[1,2] }
{ 3[1,∞] }
{ 1[2,3] }
{ 3[2,∞] }
{ 1[3,4] }

{calls on v}

{ v, r }
{ 1[1,2], 2ø     , 3[1,1] }
{ 1[1,2], 2[0,2], 3ø }
{ 1ø     , 2[0,2], 3[1,1] }
{ 1[2,3], 2[0,2], 3[1,1] }
{ 2[0,2], 3[0,∞] }
{ 3[0,∞] }
ø

{ 1[1,2] }
{ 2[1,2] }
{ 3[1,∞] }
{ 1[2,3] }
{ 3[2,∞] }
{ 1[3,4] }

ø

s1: connect(v, r);
s2: update(v, 2);
s4: a = occ(v, 1);
s5: release(v, 1);
s7: b = occ(v, 2);
s8: release(v, 2);
s9: free(v);

4
1
2
3
2
3
5

{ v, r }
{ v, 1[1,2] }
{ v, 1[1,2], 2[1,2] }
{ v, 1ø     , 2[1,2], 3[1,∞], a }
{ v, 1[2,3], 2[2,2], 3[1,∞], a }
{ v, 1ø     , 2[1,2], 3[2,∞], a, b }
{ v, 1[3,4], 2ø,      3[2,∞], a, b }
ø

ø
{ 3[0, 1] }
{ 1[1,2] }
{ 2[0,1] }
{ 1[2,3] }
{ 2[0,2] }

{v}

{ v, r }
{ 3[0,1] }
{ 1[1,2] }
{ 1[2,3] }
{ 2[0,2] }
{ 3[0,∞] }

{calls on v}
{ 2[1,2] }
{ 3[1,∞] }
{ 3[2,∞] }
{ 1[3,4] }

{calls on v}

{ v, r }
{ 1[1,3], 2ø     , 3[1,1] }
{ 1[1,3], 2[0,2], 3ø }
{ 1[2,3], 2[0,2], 3[1,1] }
{ 2[0,2], 3[0,∞] }
{ 3[0,∞] }
ø

{ 1[1,2] }
{ 2[1,2] }
{ 3[1,∞] }
{ 3[2,∞] }
{ 1[3,4] }

ø

s1: connect(v, r);
s2: update(v, 2);
s4: a = occ(v, 1);
s7: b = occ(v, 2);
s8: release(v, 2);
s9: free(v);

4
1
2
2
3
5

{ v, r }
{ v, 1[1,2] }
{ v, 1[1,2], 2[1,2] }
{ v, 1ø     , 2[1,2], 3[1,∞], a }
{ v, 1ø     , 2[1,2], 3[1,∞], a, b }
{ v, 1[3,4], 2ø,      3[2,∞], a, b }
ø

ø
{ 3[0, 1] }
{ 1[1,2] }
{ 1[2,3] }
{ 2[0,2] }

{v}

{ v, r }
{ 3[0,1] }
{ 3[-1,0] }
{ 1[1,2] }
{ 2[0,1] }
{ 3[0,1] }
{ 1[2,3] }
{ 2[0,2] }
{ 3[0,∞] }

{calls on v}
{ 2[1,2] }
{ 2[1,1] }
{ 3[1,∞] }
{ 1[2,3] }
{ 2[1,2] }
{ 3[2,∞] }
{ 1[3,4] }

{calls on v}

gen[s] kill[s]
{ v, r }
{ 1[1,2], 2ø     , 3[0,1] }
{ 1[1,2], 2ø     , 3ø }
{ 1[1,2], 2[0,1], 3ø }
{ 1ø     , 2[0,1], 3[0,1] }
{ 1[2,3], 2ø     , 3[0,1] }
{ 1[2,3], 2[0,2], 3[0,1] }
{ 2[0,2], 3[0,∞] }
{ 3[0,∞] }
ø

{ 1[1,2] }
{ 2[1,2] }
{ 2[1,1] }
{ 3[1,∞] }
{ 1[2,3] }
{ 2[1,2] }
{ 3[2,∞] }
{ 1[3,4] }

ø

s1: connect(v, r);
s2: update(v, 2);
s3: update(v, 1);
s4: a = occ(v, 1);
s5: release(v, 1);
s6: update(v, 2);
s7: b = occ(v, 2);
s8: release(v, 2);
s9: free(v);

4
1
1
2
3
1
2
3
5

s gen[s] kill[s]VN
{ v, r }
{ v, 1[1,2] }
{ v, 1[1,2], 2[1,2] }
{ v, 1[1,2], 2[1,2] }
{ v, 1ø     , 2[1,2], 3[1,∞], a }
{ v, 1[2,3], 2[2,2], 3[1,∞], a }
{ v, 1[2,3], 2[1,2], 3[2,∞], a }
{ v, 1ø     , 2[1,2], 3[2,∞], a, b }
{ v, 1[3,4], 2ø,      3[2,∞], a, b }
ø

ø
{ 3[0, 1] }
{ 3[-1, 0] }
{ 1[1,2] }
{ 2[0,1] }
{ 3[0, 1] }
{ 1[2,3] }
{ 2[0,2] }

{v}
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Figure 6.15: PRE redundancy detection example.

the case because of the impact the redundant update primitives have on the anticipability
set. Once s6 is removed, the redundancy of s5 is easily detected through Equation 6.13.

6.5.3 Incomparable index synchronization reductions

Redundancy detection as presented until now is limited by the possibility to compare the
index of the possible redundant primitives. However, there are particular scenarios where
such comparison is not necessary, depending on the control-flow relation of the primitives.

More precisely, instead of removing one of the primitives, we can merge both by, at run-
time, compute the maximum of both primitives index arguments. This approach is possible
if there is no sliding window conflicting primitive call in the control-flow path between the
two merged primitives. In the merge of two update primitives, we must guarantee that no
affecting release primitive can execute between the two update calls. Moreover and consid-
ering inter-process dependencies, it must also verify that no dependent commit is present.
Please notice that the merge is only necessary when the primitives are incomparable.

Merging primitives, although not detecting any redundancy, significantly reduces execu-
tion time by the overhead of one synchronization primitive.

6.5.4 Dead-code elimination

Dead code elimination (DCE) like redundancy detection can also be computed based on PRE
analysis availability and anticipability sets. In the particular case of DCE, a primitive should
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be considered dead code if it is not anticipable.
Let us consider a = occ(v, i) primitive. If a is never used, it is detected through traditional

DCE and removed, also removing the occ call statement. Before occ primitive is removed,
this same primitive would anticipate that an update primitive would be available before this
call. As the occ is no longer in the code, the update is no longer anticipable.

Existing primitives to which the primitive is neither available or anticipable are considered
as dead code and can be removed.

6.6 Summary and next steps

In this chapter we shown how the Erbium intermediate representation can be used to optimize
parallel streaming applications.

We first presented a study on the Erbium language component dependencies. This study
permitted us to identify three different IR abstraction layers, each having its benefits, better
matching the optimizations (code transformations) also presented in the chapter. The code
conversions presented in Chapter 4 are responsible for the conversion between the different
abstractions.

The inter-process and intra-process Erbium primitive relations are studied and represented
as a collection of dependency equations. These equations define the interactions between the
different primitives, used to extend partial redundancy detection and elimination to streaming
data-flow programs. The effectiveness of our Erbium-level PRE depends on the availability
of closed forms for scalar induction variables (scalar evolution analysis) for the primitives
indexes. We only consider a few cases of index comparisons. But we believe that interesting
redundancies, and other optimizations can be modeled by extending our approach beyond
these few cases.

Taking advantage of the different abstraction layers, we also studied the adaptation of
important task-level optimizations such as blocking and task fusion. These optimizations are
further improved by PRE, reducing number of synchronizations and improving locality.

Although the Erbium IR was implemented in GCC, the more advanced optimizations
studied in this chapter remain essentially theoretical, mostly because of the complexity of the
full infrastructure, involving the PNG, interprocedural induction variables, and reengineering
of a number of analyzes and optimizations in the compiler’s middle-end.
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Chapter 7

Conclusion

This thesis guides the reader through the key streaming parallelism components, more pre-
cisely a language definition, compilation approach and execution environment.

Chapter 1 introduces the thesis and states its main research problems, in considering the
very large variety of languages, architectures and operating systems. It also shows how each
of these computing abstractions increases the compilers and runtime libraries complexity,
and how both of these are responsible for adapting parallel application written in high-
level parallel languages to the target architectures and operating systems. The variety is
the result of the many types different architecture and operating systems properties — for
example, the architecture memory model with its consistency and coherency models or the
operating system with its supporting threading interfaces and scheduling policies. In the
chapter we conclude that streaming languages are among the best candidates to expose
parallelism and data access patterns suitable for a big variety of architectures, having a much
higher portability level considering its ability to capture applications (in)dependence and
locality.

In Chapter 2, we present Erbium — the main “ingredient” in this thesis dissertation
— a decoupled and expressive streaming language, also used as a compiler intermediate
representation. The Erbium’s language close to hardware semantics allows it to represent
a large variety of high-level streaming languages, supporting decoupled communication and
synchronizations, data peek and poke operations, broadcasting, work-splitting and process
hand-overing. As a KPN extension, the language maintains its applicational determinism and
modularity. Contrarily to KPN, it provides further modularity through its ability to perform
data communication granularity adjustments resorting to process code loop transformations.

Supporting the Erbium language, Chapter 3 presents a low overhead x86 runtime library
(libEr), designed with busy-waiting synchronizations. We explain the main concurrency is-
sues arising with the implementation of Erbium runtime primitives, relating with the target
architecture memory model. The presented implementation takes advantage of the x86 archi-
tecture total store ordering (TSO) memory consistency model, allowing the implementation
of libEr not to rely on any memory barriers or atomic operations.

The same chapter also presents the libEr portability penalties associated with other
weaker consistency memory model architectures — the introduction of memory barriers or
atomic operations. We present the differences required by more lazy runtime implementa-
tions, most important for power efficiency as is the case in many general purpose embedded
devices, such as smartphones or tablet devices. Busy-waiting is mainly useful for well bal-
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anced applications and in target platforms where a subset of the system processors usage is
saturated. This scenario relates to embedded system, targeted for specific applications — for
example, digital signal processing (DSP) applications. Simultaneously we present the pos-
sibility to execute Erbium processes in user-level threads, explaining its scheduling benefits
when comparing with kernel-level threads and the Linux scheduling policies.

The chapter also presents a set of precise experiments proofing the performance of our
initial implementation best assumptions. Erbium’s long running processes have very small
overheads when comparing with the continuous task calling approach. We also compared the
data communication granularity adjustments through synthetic benchmarks where we could
identify that different architectures yield best performance at precisely tuned granularity
parameters. Moreover, Erbium’s merits are evaluated with the implementation of real world
applications, exploiting all the available task and data-parallelism, and also out-performing
other parallel languages, achieving 14.6× speedup in the GNU FMRadio application and
7.45× in a prototype 802.11a Wifi application from Nokia (results obtained in the AMD
Opteron 16 core machine).

Chapter 4 presented a brief introduction to the software architecture of GCC, outlining its
data structures and intermediate representations. It also shows how the Erbium intermediate
representation is integrated in GCC, making use to GIMPLE original representation through
the construction of the Erbium primitives as GCC builtins. Although builtins are about
as verbose as the direct library calls introduced by any source-to-source compilation, the
precise definition of these builtins and the pointer-specific attributes avoid the obfuscation
of the Erbium semantics. For example, Erbium primitives can so be moved in respect to
the non Erbium dependent code just like any surrounding pure function cans. Apart from
Erbium’s integration in a production compiler, the chapter also introduced an associated
data structure, named Process Network Graph, exposing Erbium to the high-level semantical
information available at the original language.

In Chapter 5 we present the lowering of a Streaming extension of OpenMP into Erbium.
The high-level semantics of the language allows the lowering phase to collect static information
enabling optimizations such as blocking, process fusion, record fusion and static scheduling,
as presented in Chapter 6. These rich language properties are provided to compilers through
the Process Network Graph.

Streaming OpenMP lowering involves converting short-living tasks into persistent pro-
cesses, a redesign of process instantiation (converting explicit task instantiation into process
execution based on data availability), the decoupling of synchronization and communication,
and the conversion of stream/window variables into Erbium’s event accesses (occ operations).

Chapter 6 formalizes the dependencies between synchronization and data communication
primitives, also addressing inter-process synchronization and communication dependencies.
The study of inter-process dependencies allows us to identify three distinct abstraction lev-
els associated with different families of optimizations — inter-process analysis optimizations,
synchronization-related optimizations, and the traditional optimizations for the sequential
code and Erbium data communication/access primitives. The chapter presents examples of
optimizations/transformations implementable using Erbium IR and considering that suffi-
cient Process Network Graph information is available.

The chapter also presents an extension to the partial redundancy elimination (PRE) pass
in GCC, enabling Erbium primitives code motion and redundancy optimizations. This ex-
tension is possible thanks to the dependencies study, clean set of primitives and the Erbium’s
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very close to hardware semantics. Through the extension of availability and anticipabil-
ity sets, as presented in the chapter, we prove that Erbium’s code motion and redundancy
detection is merely a specialization of mainstream PRE optimizations. In any case, PRE is
limited by the possibility to compare the Erbium primitives monotone index arguments using
induction variable evolution prediction.

7.1 Future work

The presented ideas and implementations are not yet at a stable level and much must be done
before such improvements can be merged into a mainstream compiler distribution. Moreover,
many of the less detailed topics in the document, such as PNG and example optimizations
require much deeper studies.

Many of the presented optimizations tightly depend on the availability of specific PNG
collected information. This is not an Erbium limitation but rather a consequence of its
high expressiveness and low-level semantics, where optimization improvements such as the
presented partial redundancy elimination are possible.

PNG data structure must be tightly related with the Erbium intermediate representation.
Transformations to the intermediate representation weaken this relation to the point where
PNG can become meaningless for existing Erbium code. For this reason, it is necessary to
also perform future studies of the impact Erbium IR transformations have to the PNG data
structure.

The presented partial redundancy elimination improvements depend on the comparison
of the Erbium primitive index arguments. The presented solution is limited to the availability
of scalar evolution for the particular variables. Scalar evolution for this purpose works only
with simple predictable loop iterations, supporting only simple Erbium code motions. Our
belief is that there exist other less restrictive ways to perform this verifications not relying
on induction variable analysis.

By contributing to languages, runtimes, compilation and optimizations, this thesis left
many open research axis.

On the language perspective it would be interesting to continue the validation study for
the language support for more dynamic load balancing scenarios. For example, to distribute
work between similar consumer worker processes solely by there availability.

The runtime subject requires further work in the validation of the presented distributed
memory design and extra experiments for different thread systems and scheduling policies.

The compilation/optimizations subject has open for research topics, such as: exploring
new possible parallel optimizations and heuristics; the partial redundancy elimination exten-
sion requirement in a less intrusive manner, predicting availability or anticipability set for
Erbium primitives — based on more efficient ways to compare index arguments; and a PNG
data structure definition and stronger correlation to the Erbium intermediate representation.

7.2 Perspectives

The gap between languages and architectures computer abstractions is enormous, each having
there distinctive and independent set of problems. This is the reason why most research in this
topics happens independently, targeting only a specific type of language or architecture. This
is one of the reasons for the long list of source-to-source compiled high-level parallel languages
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and the long list of designed architectures that never had a reliable compiler support, being
only used for research purposes.

This differentiation of both these research fields exists thanks to the complexity of the
intermediate layers, more precisely the complexity of mainstream compilers, making most
architecture and language designers to escape complex compiler implementations. In our
perspective, compilers can no longer be threated as the “black sheep” of these research fields
and an extra effort must be done to recover the pace against the latest years improvements
from architectures and parallel languages.

Compiler development is a very frustrating and challenging job. Its development occurs
in very small incremental stages, guaranteeing newly transformations do not impact code
correctness and performance for any variety of applications. This thesis presented a new
language, runtime library, compiler modifications and optimization improvements, providing
a portability layer to streaming data-flow languages. The defined Erbium components (lan-
guage, intermediate representation and runtime library) are the missing abstractions filling
the gap between parallel streaming languages and target architectures. The compiler job is
to transform and optimize the code within these abstractions.

The presented evolutions in this thesis are a first step towards the unification of main-
stream compilers, streaming parallel languages and its optimizations. However, not all of the
presented work has an actual implementation or is easily achievable.

We believe that future compilers not only should try to detect code parallelism but also
support explicit parallelism, targeting code generation to specific and well tunned target
architecture specific runtime library implementations, while still being able to use high-level
language properties to perform optimizations, as well as more general parallel and sequential
optimizations. For that matter compilers should be capable to express (represent) the explicit
parallelism from a vast number of high-level languages.

With the introduction of Erbium and its distinctive components, we not only can improve
the compilation environment for streaming data-flow languages but also significantly reduce
the existing distance between these programming languages and hardware, possibly leading
to a more portable support for streaming data-flow languages.
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Based Programming With StarSs. International Journal of High Performance Comput-
ing Applications, 23(3):284–299, August 2009. doi: 10.1177/1094342009106195. 117

[65] Antoniu Pop and Albert Cohen. Preserving high-level semantics of parallel programming
annotations through the compilation flow of optimizing compilers. In Proceedings of the
15th Workshop on Compilers for Parallel Computers (CPC’10), Vienna, Autriche, 2010.
Centre de recherche en informatique - CRI , ALCHEMY - INRIA Saclay - Ile de France.
108

[66] Antoniu Pop and Albert Cohen. A Stream-Comptuting Extension to OpenMP. In
Proceedings of the 6th International Conference on High Performance and Embedded
Architectures and Compilers (HiPEAC’11), pages 5–14, New York, NY, January 2011.
117, 120, 121

[67] Antoniu Pop, Sebastian Pop, Harsha Jagasia, Jan Sjödin, and Paul H. J. Kelly. Improv-
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Master’s thesis, Université Louis Pasteur, Strasbourg, July 2003. 154

[70] Sebastian Pop, Philippe Clauss, Albert Cohen, Vincent Loechner, and Georges-André
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