E. Armelloni, A. Farina, and A. Bellini, “Non-linear convolution: A new approach for the auralization of distorting systems, Proc. AES 110th Conv, 2001.

B. A. Auld, “Acoustic fields and waves in solids,” A `iley-Interscience publication, p.414, 1973.

N. Aurelle, D. Guyomar, C. Richard, P. Gonnard, and L. Eyraud, Nonlinear behavior of an ultrasonic transducer, Ultrasonics, vol.34, issue.2-5, pp.187-191, 1996.
DOI : 10.1016/0041-624X(95)00077-G

Y. Bac13a-]-baccouche, M. Bentahar, R. El-guerjouma, C. Mechri, and M. H. Ben-ghozlen, “Hysteretic non linearity analysis in damaged composite plates using guided waves, pp.256-261, 2013.

Y. Baccouche, M. Bentahar, R. El-guerjouma, C. Mechri, and M. H. Ben-ghozlen, “Caractérisation non-linéaire par onde de flexion de l’endommagement des composites à matrice métallique

J. L. Batoz and G. Et-dhatt, “Modélisation des structures par éléments finis, 1990.

A. Bazergui, T. Bui-quoc, G. Mcintyre, and C. Laberge, Résistance des matériaux, édition corrigée, 1999.

M. Bentahar, H. Aqra, R. Guerjouma, M. Griffa, and M. Scalerandi, Hysteretic elasticity in damaged concrete: Quantitative analysis of slow and fast dynamics, Physical Review B, vol.73, issue.1, 2006.
DOI : 10.1103/PhysRevB.73.014116

URL : https://hal.archives-ouvertes.fr/hal-00079364

M. Bentahar and R. Guerjouma, Monitoring progressive damage in polymer-based composite using nonlinear dynamics and acoustic emission, The Journal of the Acoustical Society of America, vol.125, issue.1, pp.39-44, 2009.
DOI : 10.1121/1.2993755

F. Bibliographie-[-ben08a-]-benmeddour, S. Grondel, J. Assaad, and E. Moulin, Study of the fundamental Lamb modes interaction with asymmetrical discontinuities, NDT & E International, vol.41, issue.5, pp.330-340, 2008.
DOI : 10.1016/j.ndteint.2008.01.004

F. Benmeddour, S. Grondel, J. Assaad, and E. Moulin, Study of the fundamental Lamb modes interaction with symmetrical notches, NDT & E International, vol.41, issue.1, pp.1-1, 2008.
DOI : 10.1016/j.ndteint.2007.07.001

URL : https://hal.archives-ouvertes.fr/hal-00360324

K. Brugger, Thermodynamic Definition of Higher Order Elastic Coefficients, Physical Review, vol.133, issue.6A, pp.1611-1612, 1964.
DOI : 10.1103/PhysRev.133.A1611

K. R. Mccall and R. A. Guyer, Equation of state and wave propagation in hysteretic nonlinear elastic materials, Journal of Geophysical Research: Solid Earth, vol.36, issue.B12, pp.23887-23897, 1994.
DOI : 10.1029/94JB01941

J. Cantrell and . Yost, Acoustic harmonic generation from fatigue-induced dislocation dipoles, Philosophical Magazine A, vol.36, issue.2, pp.315-341, 1996.
DOI : 10.1063/1.328443

L. Clézio and E. , “ Diffraction des ondes de Lamb par des fissures verticales, Thèse de doctorat, p.2472, 2001.

J. D. Destefani, “ Introduction to Titanium and Titanium Alloys, ” Metals Handbook, pp.586-591, 2000.

P. Delsanto and M. Scalerandi, Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials, Physical Review B, vol.68, issue.6, pp.64107-064116, 2003.
DOI : 10.1103/PhysRevB.68.064107

L. Duquenne, “Développement d’une méthode d’estimation de la génération transitoire d’ondes deLamb : Application à la modélisation d’un système de contrôle santé intégré, pp.3-32, 2003.

P. J. Forsyth, “Fatigue damage and crack growth in aluminium alloys , ”Acta Metallurgica, pp.703-715, 1963.

D. C. Gazis and R. D. Mindlin, Extensional Vibrations and Waves in a Circular Disk and a Semi-Infinite Plate, Journal of Applied Mechanics, vol.27, issue.3, pp.41-547, 1960.
DOI : 10.1115/1.3644037

D. Gay, V. Giurgiutiu, J. Bao, and Z. , Matériaux composites, “Active Sensoràve Propagation Health Monitoring of Beam and Plate Structures,” Proceedings of the SPIE’s 8th International Symposium on Smart Structures and Materials, pp.4-8, 1991.

D. J. Gorman and T. , Free Vibration Analysis of Beams and Shafts, John Wiley&Sons, “Propriétés acoustiques non linéaires classiques et non classiques : Applications au contrôle de santé des matériaux de l’industrie aéronautique Thèse doctorat, 1975.

V. Gusev and V. And-aleshin, Strain wave evolution equation for nonlinear propagation in materials with mesoscopic mechanical elements, The Journal of the Acoustical Society of America, vol.112, issue.6, pp.2666-2679, 2002.
DOI : 10.1121/1.1517252

R. A. Guyer and R. Mccall, Hysteresis, “Discrete Memory and nonlinear wave propagation in rock:A new paradigm,” Physical review letters, pp.3491-3494, 1995.

R. A. Guyer, J. , and P. A. , Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials, Physics Today, vol.52, issue.4, pp.30-36, 1999.
DOI : 10.1063/1.882648

R. A. Guyer, J. Tencate, and P. Johnson, Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials, Physical Review Letters, vol.82, issue.16, pp.3280-3283, 1999.
DOI : 10.1103/PhysRevLett.82.3280

F. Gruttman, R. Sauer, and W. Wagner, Shear stresses in prismatic beams with arbitrary cross-sections, International Journal for Numerical Methods in Engineering, vol.24, issue.7, pp.865-889, 1999.
DOI : 10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO;2-3

T. Hayashi and S. Endoh, Calculation and visualization of Lamb wave motion, Ultrasonics, vol.38, issue.1-8, pp.770-773, 2000.
DOI : 10.1016/S0041-624X(99)00225-5

P. A. Johnson, B. Zinszner, and P. N. Rasolofosaon, Resonance and elastic nonlinear phenomena in rock, Journal of Geophysical Research: Solid Earth, vol.307, issue.B5, pp.11-14, 1996.
DOI : 10.1029/96JB00647

P. A. Johnson, B. Zinszner, P. Rasolofosaon, F. Cohen-tenoudji, and K. E. Van-den-abeele, Dynamic measurements of the nonlinear elastic parameter ?? in rock under varying conditions, Journal of Geophysical Research: Solid Earth, vol.102, issue.B6, pp.1-12, 2004.
DOI : 10.1029/2001JB000368

P. A. Johnson, B. Zinszner, P. Rasolofosaon, F. Cohen-tenoudji, and K. E. Van-den-abeele, Dynamic measurements of the nonlinear elastic parameter ?? in rock under varying conditions, Journal of Geophysical Research: Solid Earth, vol.102, issue.B6, pp.124-130
DOI : 10.1029/2001JB000368

P. A. Johnson and A. Sutin, Slow dynamics and anomalous nonlinear fast dynamics in diverse solids, The Journal of the Acoustical Society of America, vol.117, issue.1, pp.124-130, 2005.
DOI : 10.1121/1.1823351

T. Kaneko, On Timoshenko's correction for shear in vibrating beams, Journal of Physics D: Applied Physics, vol.8, issue.16, pp.1927-1936, 1975.
DOI : 10.1088/0022-3727/8/16/003

M. Koshiba, S. Karakida, and M. Suzuki, Finite-Element Analysis of Lamb Wave Scattering in an Elastic Plate Waveguide, IEEE Transactions on Sonics and Ultrasonics, vol.31, issue.1, pp.31-49, 1984.
DOI : 10.1109/T-SU.1984.31456

H. Lamb, On the Flexure of an Elastic Plate, Proceedings of the London Mathematical Society, pp.70-90, 1889.
DOI : 10.1112/plms/s1-21.1.70

S. Lampman, “`rought titanium and Titanium Alloys, pp.592-633, 1990.

H. Lamb, On Waves in an Elastic Plate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.93, issue.648, pp.114-128, 1917.
DOI : 10.1098/rspa.1917.0008

B. C. Lee03a-]-lee and . Staszewski, J. “Modelling of Lamb waves for damage detection in metallic structures: Part II. `ave interactions with damage, Smart Materials and Structures, pp.815-824, 2003.

B. C. Lee03b-]-lee and `. J. Staszewski, “Modelling of Lamb waves for damage detection in metallic structures: Part I,” `ave propagation Smart Materials and Structures, pp.804-814, 2003.

B. C. Lee, M. Palacz, M. Krawczuk, . Ostachowicz, and . J. Et-staszewski, Wave propagation in a sensor/actuator diffusion bond model, Journal of Sound and Vibration, vol.276, issue.3-5, pp.671-687, 2004.
DOI : 10.1016/j.jsv.2003.08.035

Y. Liand and R. B. Thompson, Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes, J. Acoust. Soc. Am, vol.87, pp.1911-1931, 1990.

J. Limido, “Etude de l’effet de l’usinage grande vitesse sur la tenue en fatigue de pièces aéronautiques, Thèse doctorat, 2008.

M. Loudini, D. Boukhetala, M. Tadjine, and M. A. Boumehdi, “Application of Timoshenko Beam Theory for Deriving Motion Equationsof a Lightweight Elastic Link Robot Manipulator Issue (II), ”ICGST-ARAS Journal, vol.5, 2006.

. Mason and L. Hermann, “Elastic shear analysis of general prismatic beams, Journal of the Engineering Mechanics Division, vol.91, pp.965-982, 1968.

J. D. Mayergoyz, “Hysteresis models from the mathematical and control theoy points of view,”Journal Of Applied Physics, 1985.

E. Moreno, P. Acevedo, and M. Castillo, Pulse propagation in plate elements, European Journal of Mechanics - A/Solids, vol.22, issue.2, pp.283-294, 2003.
DOI : 10.1016/S0997-7538(03)00014-7

E. Moulin, N. Bourasseau, J. Assaad, and C. Delebarre, Directivity of integrated piezoelectric Lamb wave sources, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), pp.1081-1084, 2001.
DOI : 10.1109/ULTSYM.2001.991907

URL : https://hal.archives-ouvertes.fr/hal-00152941

A. Moussatov, B. Castagniede, and V. Gusev, Frequency up-conversion and frequency down-conversion of acoustic waves in damaged materials, Physics Letters A, vol.301, issue.3-4, pp.281-90, 2002.
DOI : 10.1016/S0375-9601(02)00974-X

F. D. Murnaghan, Finite Deformations of an Elastic Solid, American Journal of Mathematics, vol.59, issue.2, 1951.
DOI : 10.2307/2371405

A. N. Nayfeh and D. E. Chimenti, Free Wave Propagation in Plates of General Anisotropic Media, Journal of Applied Mechanics, vol.56, issue.4, pp.881-886, 1989.
DOI : 10.1115/1.3176186

A. Novak, “ Identification of NonlinearSystems in Acoustics, 2008.

A. Novak, L. Simon, F. Kadlec, and P. Lotton, Nonlinear System Identification Using Exponential Swept-Sine Signal, IEEE Transactions on Instrumentation and Measurement, vol.59, issue.8, pp.2220-2229, 2010.
DOI : 10.1109/TIM.2009.2031836

A. Novak, M. Bentahar, V. Tournat, R. Guerjouma, and L. Simon, Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis, NDT & E International, vol.45, issue.1, pp.1-8
DOI : 10.1016/j.ndteint.2011.09.006

L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, “Nonlinear and parametric phenomena in dispersive acoustic systems ,”Acustica, pp.298-306, 1978.

C. Paget, “ Contribution au contrôle actif de santé de structures composites aéronautiques par transducteurs piézoélectriques insérés, Thèse de doctorat, pp.1-17, 2001.

D. Pasqualini, K. Heitmann, J. A. Tencate, S. Habib, D. Higdon et al., Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: Low-strain regime, Journal of Geophysical Research, vol.102, issue.B6, 2007.
DOI : 10.1029/2006JB004264

C. Payan, “ Caractérisation non destructive du béton: Etude du potentiel de l’acoustique non linéaire, Thèse doctorat, 2007.

. D. Pilkey, Analysis and Design of Elastic Beams: Computational Methods, Applied Mechanics Reviews, vol.56, issue.3, 2002.
DOI : 10.1115/1.1566398

F. Preisach, Uber die magnetische Nacwirkung, Z. Phys, vol.94, issue.277, 1935.

T. A. Read, The Internal Friction of Single Metal Crystals, Physical Review, vol.58, issue.4, pp.371-380, 1940.
DOI : 10.1103/PhysRev.58.371

S. Scalerandi, M. Agostini, V. Delsanto, P. P. Van-den-abeele, K. E. et al., Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids, The Journal of the Acoustical Society of America, vol.113, issue.6, pp.3049-3059, 2000.
DOI : 10.1121/1.1570440

M. Scalerandi, M. Nobili, M. Griffa, A. S. Gliozzi, and F. Bosia, “Preisach-mayergoyz approach to fatigue-inducedirreversibility, ” Physical Review B, vol.73, issue.1, 2006.
DOI : 10.1103/physrevb.73.092103

U. Schramm, L. Kitis, . Kang, and . Et-pilkey, “On the shear deformation coefficient in beam theory,” Finite Elements in Analysis and Design, pp.141-162, 1994.

J. `. Sherwood, Propagation in an Infinite Elastic Plate, The Journal of the Acoustical Society of America, vol.30, issue.10, pp.979-984, 1958.
DOI : 10.1121/1.1909424

N. G. Stephen, The second spectrum of Timoshenko beam theory???Further assessment, Journal of Sound and Vibration, vol.292, issue.1-2, pp.372-389, 2006.
DOI : 10.1016/j.jsv.2005.08.003

L. Sun, S. Kulkarni, J. Achenbach, and S. Krishnaswamy, Technique to minimize couplant-effect in acoustic nonlinearity measurements, The Journal of the Acoustical Society of America, vol.120, issue.5, pp.2500-2505, 2006.
DOI : 10.1121/1.2354023

K. Surana, Isoparametric elemetns for cross-sepctional properties and stress analysis of beams, International Journal for Numerical Methods in Engineering, vol.94, issue.4, pp.475-497, 1979.
DOI : 10.1002/nme.1620140402

J. Tencate and T. Shankland, Slow dynamics in the nonlinear elastic response of Berea sandstone, Geophysical Research Letters, vol.99, issue.21, pp.3019-3022, 1996.
DOI : 10.1029/96GL02884

J. A. Tencate, D. Pasqualini, S. Habib, K. Heitmann, D. Higdon et al., Nonlinear and Nonequilibrium Dynamics in Geomaterials, Physical Review Letters, vol.93, issue.6, p.65501, 2004.
DOI : 10.1103/PhysRevLett.93.065501

W. T. Thomson and M. D. Dahleh, Theory of Vibration with Applications, 1998.
DOI : 10.1007/978-1-4899-6872-2

S. Timoshenko, “On the correction of transverse shear deformation of the differential equations for transverse vibrations of prismatic bars,” Philosophical Magazine, pp.6-744, 1921.

S. Timoshenko, “On on the transverse vibrations of bars of uniform cross-section,” Philosophical Magazine, pp.6-125, 1922.

L. P. Tran-huu-hue, F. Levassort, N. Felix, D. Damjanovic, W. Wolny et al., Comparison of several methods to characterise the high frequency behaviour of piezoelectric ceramics for transducer applications, Ultrasonics, vol.38, issue.1-8, pp.219-223, 2000.
DOI : 10.1016/S0041-624X(99)00059-1

F. Vander-meulen, J. Fortineau, T. Goursolle, and L. Haumesser, “Experimental study of the non linearity from ultrasonic transducers, Proceedings of IEEE International Ultrasonics Symposium, pp.1786-1789, 2006.

S. Vanaverbeke and K. Van-den-abeele, Two-dimensional modeling of wave propagation in materials with hysteretic nonlinearity, The Journal of the Acoustical Society of America, vol.122, issue.1, pp.58-72, 2007.
DOI : 10.1121/1.2739803

C. N. Xu, M. Akiyama, and K. Nonaka, “Electrical power generation characteristics of PZT piezoelectric ceramics, IEEE . Trans. Ultrason. Ferroelect. Freq. Contr, vol.4, pp.1065-1070, 1998.

L. K. Zarembo and V. A. Krasilxnikov, NONLINEAR PHENOMENA IN THE PROPAGATION OF ELASTIC WAVES IN SOLIDS, Soviet Physics Uspekhi, vol.13, issue.6, p.778, 1971.
DOI : 10.1070/PU1971v013n06ABEH004281

V. Zaitsev, V. Gusev, and B. Castagnede, “Thermoelastic Mechanism for Logarithmic Slow Dynamics and Memory inElasticàve Interactions with Individual Cracks,” Physical Review Letters, pp.75501-075504, 2003.

V. Zaitsev, V. Nazarov, V. Tournat, V. Gusev, and B. Castagniede, “Luxembourg–Gorky effect in a granular medium : probing perturbations of the material state via cross-modulation of elastic waves”, pp.607-620