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Introduction

This manuscript constitutes a synthesis document of my research in preparation for my
habilitation degree in Mathematics.

Since September 2011, I am an assistant professor (a long-term nine year position
called “agrégé-préparateur”) in the department of Mathematics of École Normale Supérieure
(ENS) de Cachan, Brittany extension. I am member of the IPSO team of INRIA Rennes
headed by Philippe Chartier, which belongs to the numerical analysis group of the Institut
de recherche mathématique de Rennes (IRMAR) headed by Florian Méhats.

I obtained my Ph.D. in 2008 in both the University of Geneva and the University of
Rennes 1, in the frame of a double doctorate program (“cotutelle internationale”), under
the joint direction of Ernst Hairer (Geneva) and Philippe Chartier (IPSO, Rennes). Right
after my Ph.D. on geometric numerical integration of differential equations, I decided to
discover new research topics on multiscale problems. I initiated a fruitful collaboration as
a post-doc with Assyr Abdulle and his group (with Yun Bai and Martin Huber) at École
Polytechnique Fédérale de Lausanne, Chair of Computational and Applied Mathematics,
first on multiscale finite element methods for homogenization in PDEs, and second on
geometric and multiscale time integrators for stochastic problems (together also with David
Cohen, Umeå University, and Konstantinos Zygalakis, Southampton University). In the
last years, a growing interest of the IPSO team in multiscale and oscillatory PDEs and
S(P)DEs has also independently arisen, and it was naturally that I joint back the IPSO
team and initiated new collaborations (also with Ander Murua and Joseba Makazaga, San
Sebastian).

My research focuses on the numerical analysis of geometric and multiscale integrators
for deterministic or stochastic differential equations. Numerous physical (or chemical)
phenomena can be modeled by differential equations which possess a particular geometric
or multiscale structure (e.g. Hamiltonian structures, Poisson structures, first integrals,
multiscale structure in time or in space, highly oscillatory systems), but their complexity
is often so huge that a satisfactory solution is out of reach using only general purpose
numerical integrators, e.g. a high-order explicit Runge-Kutta method in time or a standard
finite element method with a very fine mesh in space. The aim is thus to identify the
relevant geometric or multiscale properties of such problems, and try to take advantage
of them to design and study new efficient and reliable integrators that reproduce the
qualitative behaviour of the exact solution of the considered models.

This documents is organized into three chapters, each of them corresponding to a
research orientation in the geometric and multiscale integration of differential equations.
Each chapter starts with a short review of background material to make the manuscript
reasonably self-contained and the strong relations and unity between them is stressed all
along. Perspectives including ongoing and future work conclude each chapter.

The first chapter is devoted to the theme of geometric numerical integration of differ-
ential equations which was at the core of my Ph.D. work and has links with a priori distant



2 Introduction

fields of Mathematics (Combinatorial algebra and renormalization in Quantum field the-
ory). Inspired by recent advances in the theory of modified differential equations, a main
result of my Ph.D. was a general framework for the construction of high-order geometric
integrators for deterministic ODEs, and a spectacular application of this theory is the de-
sign of the first high-order geometric integrator for the free rigid body motion (and which
is not derived using a standard composition technique). This approach is generalized to
stochastic differential equations (SDEs) and is illustrated with the constructions of new
methods of weak order two, in particular, implicit integrators that exactly conserve all
quadratic first integrals of a stochastic dynamical system, and also (semi-)implicit inte-
grators well suited for stiff (mean-square stable) stochastic problems, which is the target
of the second chapter. A recent work based on the geometric idea of composition meth-
ods concludes this first chapter. Although composition methods are originally designed
for non-stiff problems, we introduce a new class multi-revolution composition methods for
highly oscillatory problems in time, with applications including the long time integration
of the nonlinear Schrödinger equation. These integrators can be cast in the multiscale
framework of micro-macro integrator (here in time), in the spirit of the homogenization
methods for multiscale (in space) PDEs discussed in the third chapter. This also illustrate
well the complementarity of the research topics addressed in this thesis.

The second chapter focuses on the construction of weak high-order integrators for stiff
(mean-square stable) SDEs in general dimensions with a general non-commutative noise.
Similarly to the deterministic case, it is in general difficult to construct integrators that are
both accurate and with favorable stability properties to avoid severe time step restrictions
in the integration of stiff SDEs, due to the variety of the scales involved. By stabilizing an
efficient derivative-free version of the standard Milstein-Talay method of weak second order,
we introduce a Runge-Kutta type integrator that has simultaneously weak second order of
accuracy and the mean-square A-stability property. This integrator is semi-implicit: it is
implicit with respect to the deterministic part, but explicit with respect to the stochastic
part. We next introduce a family of explicit stabilized integrators with weak order two
with extended mean-square stability domains, which are of great interest for large systems
SDEs (arising e.g. from an SPDEs spatial discretization). These integrators of weak order
two are to the best of our knowledge the first of their kind with such favorable mean-
square stability properties. These ideas inspired the construction of a new “swiss-knife”
integrator that permits to integrate stiff diffusion-advection-reaction problems with (or
without) stochastic noise in various regimes of stiffness and Peclet numbers with all the
advantages of explicit stabilized integrators.

The third chapter concerns the construction and analysis of multiscale integrators for
homogenization in PDEs. We focus on the so-called finite element Heterogeneous Multiscale
method (FE-HMM) which relies on the approach of multi-grid methods by coupling finite
element methods at the microscopic and macroscopic scales. This method permits to dras-
tically reduce the number of degrees of freedom compared to standard finite element meth-
ods. We present an a priori error analysis with optimal convergence rates in the H1 and L2

norms for two classes of problems with quite a different nature but a certain unified frame-
work of their analysis: first multiscale linear parabolic problems with a time-dependent
tensor, and second quasilinear elliptic problems of nonmonotone type. The coupling of the
FE-HMM for parabolic problems with time-integrators with favourable stability properties
is addressed (implicit and explicit stabilized integrators, as studied in Chapter 2 in the
context of stochastic problems), with an analysis of the fully discrete time–micro–macro
discretizations, while the analysis of the nonlinear FE-HMM for nonmonotone elliptic prob-
lems is the first analysis proposed in the literature that is valid in dimension three of space.



Introduction (French)

Ce document constitue une synthèse de mes travaux de recherche en vue d’obtenir l’habi-
litation à diriger des recherches en mathématiques.

Je suis, depuis septembre 2011, agrégé-préparateur dans le département de mathé-
matiques de l’École Normale Supérieure (ENS) de Cachan, antenne de Bretagne. Je suis
membre de l’équipe IPSO de l’INRIA Rennes, dirigée par Philippe Chartier, et apparte-
nant à l’équipe d’analyse numérique de l’Institut de recherche en mathématiques de Rennes
(IRMAR), dirigée par Florian Méhats.

J’ai obtenu mon doctorat de mathématiques en 2008 dans le cadre d’une thèse en
cotutelle internationale entre l’Université de Genève et l’Université de Rennes 1, sous la
direction conjointe de Ernst Hairer (Genève) et Philippe Chartier (IPSO, Rennes). Après
ma thèse sur l’intégration numérique géométrique des équations différentielles ordinaires
(EDO) et partielles (EDP), j’ai décidé de découvrir de nouvelles thématiques sur les pro-
blèmes multi-échelles en temps et espace.

J’ai initié une collaboration fructueuse en tant que post-doc avec Assyr Abdulle et
son groupe (notamment Yun Bai et Martin Huber) à l’École Polytechnique Fédérale de
Lausanne, Chaire d’analyse numérique, d’une part sur les méthodes multi-échelles de type
éléments finis pour l’homogénéisation dans les EDP, et d’autre part sur les intégrateurs géo-
métriques et multi-échelles en temps pour les équations différentielles stochastiques (EDS)
(avec également David Cohen, Université de Umeå, et Konstantinos Zygalakis, Université
de Southampton). Ces dernières années un intérêt croissant de l’équipe IPSO pour les
problèmes multi-échelles d’EDO et d’EDP hautement oscillantes (et stochastiques) a éga-
lement émergé, et c’est naturellement que j’ai réintégré l’équipe IPSO et initié de nouvelles
collaborations (également avec Ander Murua et Joseba Makazaga, San Sebastian).

Ma recherche porte sur l’analyse numérique des intégrateurs géométriques et multi-
échelles pour les équations différentielles déterministes ou stochastiques. De nombreux phé-
nomènes physiques (ou chimiques) peuvent être modélisés par des équations différentielles
qui possèdent une structure géométrique ou multi-échelles particulière (par exemple, les
structures hamiltoniennes, les structures de Poisson, les intégrales premières, des struc-
tures multi-échelles en temps ou en espace, des systèmes hautement oscillatoires), mais
leur complexité est souvent telle qu’une solution satisfaisante est hors de portée en utili-
sant seulement des intégrateurs numériques standards à usage général, par exemple, une
méthode de Runge-Kutta explicite d’ordre élevé en temps ou une méthode d’éléments finis
standard avec un maillage fin en espace. L’objectif est donc d’identifier les propriétés géo-
métriques ou multi-échelles pertinentes de ces problèmes, et d’essayer d’en tirer avantage
pour concevoir et étudier de nouveaux intégrateurs efficaces et fiables, qui reproduisent
fidèlement le comportement qualitatif de la solution exacte des modèles considérés.

Cette thèse est organisée en trois chapitres, chacun correspondant à une thématique
de recherche pour l’intégration géométrique et multi-échelles des équations différentielles.
Chaque chapitre débute par un bref rappel des outils nécessaires et les liens entre ces
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différents thèmes sont soulignés. De brèves perspectives sur les travaux en cours et à venir
concluent chaque chapitre.

Le premier chapitre est consacré à l’intégration numérique géométrique des équations
différentielles, le sujet au cœur de mon travail de doctorat, et qui possède des liens avec
d’autres champs des mathématiques a priori éloignés (algèbre combinatoire et renormali-
sation en théorie quantique des champs). Inspiré par les progrès récents dans la théorie des
équations différentielles modifiées, une contribution importante de mes travaux de docto-
rat est une méthodologie pour la construction d’intégrateurs géométriques d’ordre élevé de
convergence pour les EDO déterministes, et une application exemplaire de cette théorie est
la construction du premier intégrateur géométrique d’ordre élevé pour la dynamique d’un
corps rigide libre (non obtenue par la technique standard des méthodes de compositions).
Cette approche est généralisée aux équations différentielles stochastiques (EDS) et est
illustrée par la construction de nouvelles méthodes d’ordre faible deux, en particulier, des
intégrateurs implicites qui conservent exactement toutes les intégrales premières quadra-
tiques d’un système stochastique, et aussi des intégrateurs (semi)-implicites bien adaptés
aux problèmes stochastiques raides (en sens des moyennes quadratiques), thème objet du
second chapitre. Un travail récent basé sur l’idée géométrique des méthodes de composition
conclut ce chapitre. Bien que les méthodes de composition sont à l’origine conçues pour les
problèmes non raides, nous introduisons une nouvelle classe de méthodes de composition
multi-révolutions pour les problèmes hautement oscillatoires en temps, avec application
notamment à l’équation de Schrödinger non-linéaire. Ces intégrateurs s’inscrivent dans le
cadre des méthodes multi-échelles micro-macro (ici en temps), dans l’esprit des méthodes
d’homogénéisation d’EDP multi-échelles (en espace) présenté dans le troisième chapitre.
Ceci illustre aussi la complémentarité des thèmes de recherche abordés dans cette thèse.

Le second chapitre se focalise sur la construction de méthodes d’ordre élevé au sens
faible pour les problèmes d’EDS raides (et stables en moyenne quadratique) avec un
bruit général non commutatif. A l’instar du cas déterministe, il est en général difficile
de construire des intégrateurs qui soient à la fois d’ordre élevé et avec des propriétés de
stabilité favorables pour éviter des restrictions sévères de longueur de pas de temps pour
les problèmes d’EDS raides. En stabilisant une variante efficace de la méthode de Milstein-
Talay d’ordre faible deux, nous introduisons une méthode de type Runge-Kutta stochas-
tique qui est à la fois d’ordre faible deux et A-stable au sens stochastique. Cet intégrateur
est semi-implicite : il est implicite par rapport à la partie déterministe, mais explicite par
rapport à la partie stochastique de l’EDS. Nous introduisons ensuite une famille d’inté-
grateurs explicites stabilisés d’ordre faible deux avec de grand domaines de stabilité (au
sens des moyennes quadratiques), qui sont d’un grand intérêt pour les systèmes stochas-
tiques raides en grande dimension (par exemple issus d’une discrétisation spatiale d’EDP
stochastique). Ces intégrateurs d’ordre faible deux sont à notre connaissance les premiers
construits avec d’aussi bonnes propriétés de stabilité. Ces idées ont inspiré la construction
d’un nouvel intégrateur dit “couteau-suisse” qui permet d’intégrer des problèmes raides de
type diffusion-advection-réaction avec (ou sans) bruit stochastique pour une grande varié-
tés de régimes de raideur et de nombres de Péclet, et tout en conservant les avantages des
intégrateurs explicites stabilisés.

Le troisième chapitre porte sur la construction et l’analyse d’intégrateurs multi-échelles
pour l’homogénéisation dans les EDP. Nous nous concentrons sur la méthode des élé-
ments finis hétérogène multi-échelles (FE-HMM) qui s’appuie sur le principe des méthodes
multi-grilles en couplant des méthodes d’éléments finis aux échelles microscopique et ma-
croscopique. Cette méthode permet de réduire considérablement le nombre de degrés de
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liberté par rapport aux méthodes d’éléments finis standards. Nous présentons une ana-
lyse a priori de l’erreur avec des vitesses de convergences optimales dans les normes L2 et
H1 pour deux classes de problèmes de natures différentes, mais avec un cadre unifié pour
leur analyse multi-échelles : dans un premier temps des problèmes paraboliques linéaires
avec un tenseur hautement oscillant en espace et dépendant du temps, et dans un second
temps des problèmes elliptiques quasi-linéaires de type non monotone. Une originalité du
travail est l’étude du couplage de la FE-HMM pour des problèmes paraboliques avec des
intégrateurs en temps ayant de bonnes propriétés de stabilité (intégrateurs implicites et
explicites stabilisés, comme étudié dans un contexte stochastique dans le second chapitre),
avec une analyse de la discrétisation complètes temps/échelle micro/échelle macro. L’ana-
lyse non linéaire pour des problèmes elliptiques non monotones est la première analyse de
la FE-HMM proposée qui soit valable en dimension trois d’espace.
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8 Chapter 1: High-order geometric methods for deterministic and stochastic problems

We first recall in Section 1.1 important classical tools in the context of geometric
numerical integration, together with some Ph.D. contributions of the author, and that
will be useful to understand the results presented, in particular an extension to stochastic
differential equations (Section 1.2), and a new class of geometric integrators for highly-
oscillatory problems obtained by considering modified oscillatory periods (Section 1.3).

1.1 Modified differential equations

Modified differential equations in combination with backward error analysis form an im-
portant tool for studying the long-time behaviour of numerical integrators for ordinary
differential equations (cf. the monographs [HLW06] and [LR04]). The main idea of this
theory is sketched and, by inverting the roles of the exact and numerical flows, a new
approach for the construction of high order numerical integrators for ordinary differential
equations is developed [CHV07b, CHV07a, Vil08a]. As an application, a computationally
efficient and highly accurate modification of the Discrete Moser–Veselov algorithm for the
simulation of the free rigid body is presented [HV06].

1.1.1 Modified equations for backward error analysis

Consider an initial value problem

ẏ = f(y), y(0) = y0 (1.1)

with sufficiently smooth vector field f(y), and a numerical one-step integrator yn+1 =
Φf,h(yn). The idea of backward error analysis is to search for a modified differential equa-
tion

ż = fh(z) = f(z) + hf2(z) + h2f3(z) + . . . , z(0) = y0, (1.2)

which is a formal series in powers of the step size h, such that the numerical solution {yn}
is formally equal to the exact solution of (1.2),

yn = z(nh) for n = 0, 1, 2, . . . , (1.3)

see the top picture of Figure 1.1.
The idea of backward error analysis was originally introduced by Wilkinson (1960)

in the context of numerical linear algebra. For the integration of ODEs it was not used
until one became interested in the long-time behaviour of numerical solutions. Without
considering it as a theory, Ruth [Rut83] uses the idea of backward error analysis to motivate
symplectic integrators for Hamiltonian systems. In fact, applying a symplectic numerical
method to a Hamiltonian system

q̇ = ∇pH(p, q), ṗ = −∇qH(p, q),

gives rise to a modified differential equation that is also Hamiltonian. This is the main tool
for proving the good conservation (without drift) of the energy by symplectic integrators
applied to Hamiltonian systems over (exponentially) long time intervals (under appropriate
assumptions). Indeed, it permits to transfer known properties of perturbed Hamiltonian
systems (e.g., conservation of energy, KAM theory for integrable systems) to properties
of symplectic numerical integrators. One became soon aware that this kind of reasoning
is not restricted to Hamiltonian systems, and new insight can be obtained with the same
techniques also for reversible differential equations, for Poisson systems, for divergence-
free problems, etc. A rigourous analysis has been developed in the nineties. We refer



1.1 Modified differential equations 9

q

1

Backward error analysis
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Figure 1.1: Backward error analysis opposed to numerical integrators based on modified
equations

the interested reader to [HLW06, Chapter IX], where backward error analysis and its
applications are explained in detail (see also the study [CHV09] in the context of optimal
control).

1.1.2 Numerical integrators based on modified equations

Backward error analysis is a purely theoretical tool that gives much insight into the long-
term integration with geometric numerical methods. We shall show that by simply ex-
changing the roles of the “numerical method” and the “exact solution” (cf. the two pictures
in Figure 1.1), it can be turned into a mean for constructing high order integrators that
conserve geometric properties. They will be useful for integrations over long times.

Let us be more precise. As before, we consider an initial value problem (1.1) and a
numerical integrator. But now we search for a modified differential equation, again of the
form (1.2), such that the numerical solution {zn} of the method applied with step size h
to (1.2) yields formally the exact solution of the original differential equation (1.1), i.e.,

zn = y(nh) for n = 0, 1, 2, . . . , (1.4)

see the bottom picture of Figure 1.1. Note that this modified equation is different from the
one considered before. However, due to the close connection with backward error analysis,
all theoretical and practical results have their analogue in this new context. The modified
differential equation is again an asymptotic series that usually diverges, and its truncation
inherits geometric properties of the exact flow if a suitable integrator is applied. The
coefficient functions fj(z) can be computed recursively by using a formula manipulation
program like maple. This can be done by developing both sides of z(t+ h) = Φfh,h(z(t))
into a series in powers of h, and by comparing their coefficients. Once a few functions fj(z)
are known, the following algorithm suggests itself.
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Algorithm 1.1.1 (Numerical integrators based on modified equations) Consider
the truncation

ż = f
[r]
h (z) = f(z) + hf2(z) + · · ·+ hr−1fr(z) (1.5)

of the modified differential equation corresponding to Φf,h(y). Then,

zn+1 = Ψf,h(zn) := Φ
f
[r]
h
,h
(zn)

defines a numerical method of order r that approximates the solution of (1.1). We call it
integrator based on modified equations, because the vector field f(y) of (1.1) is modified into

f
[r]
h before the basic integrator is applied.

This is an alternative approach for constructing high order numerical integrators for
ODEs (classical approaches are multistep, Runge–Kutta, Taylor series, extrapolation, com-
position, and splitting methods). It is particularly interesting in the context of geometric
integration because, as known from backward error analysis, the modified differential equa-
tion inherits the same structural properties as (1.1) if a suitable integrator is applied.

A few known methods can be cast into the framework of integrators based on modified
equations although they have not been constructed in this way. The most important are
the generating function methods as introduced by Feng [Fen86]. These are high order
symplectic integrators obtained by applying a simple symplectic method to a modified
Hamiltonian system. The corresponding Hamiltonian is the solution of a Hamilton–Jacobi
partial differential equation. Another special case is a modification of the discrete Moser–
Veselov algorithm for the Euler equations of the rigid body, proposed by McLachlan and
Zanna [MZ05]. The general approach of Algorithm 1.1.1 and the example of Algorithm
1.1.2 are introduced and discussed in [CHV07b].

Algorithm 1.1.2 For the numerical integration of (1.1) we consider the implicit midpoint
rule

yn+1 = yn + h f
(yn + yn+1

2

)
. (1.6)

Applying (1.6) to ż = f
[5]
h (z) with the truncated modified vector given by

f
[5]
h = f +

h2

12

(
− f ′f ′f +

1

2
f ′′(f, f)

)
+

h4

120

(
f ′f ′f ′f ′f − f ′′(f, f ′f ′f) +

1

2
f ′′(f ′f, f ′f)

)

+
h4

240

(
− 1

2
f ′f ′f ′′(f, f) + f ′f ′′(f, f ′f) +

1

2
f ′′(f, f ′′(f, f))− 1

2
f (3)(f, f, f ′f)

)

+
h4

80

(
− 1

6
f ′f (3)(f, f, f) +

1

24
f (4)(f, f, f, f)

)
(1.7)

yields a numerical approximation of order 6 for (1.1) which is symmetric (i.e. Φh◦Φ−h(y) =
y). In addition, it is symplectic for all Hamiltonian vector field f .

Here, we use the notations f ′(x)· for the first derivative (a linear form) and f ′′(x)(·, ·)
for the second derivative (a symmetric bilinear form) of f at the point X0 and similar
notations for the higher order derivatives. At first glance the modified equation (1.7)
looks extremely complicated and it is hard to imagine that the modified midpoint rule
can compete with other methods of the same order. This is true in general, but there
are important differential equations for which the evaluation of f [r]h (y) is not much more
expensive than that of f(y), so that the modified integrators of Algorithm 1.1.1 can become
efficient. A spectacular example is the equations of motion for the full dynamics of a rigid
body (see [CHV07b, HV06, Vil08b], the survey [Vil13], and Section 1.1.2 below).
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Accurate rigid-body integrator based on the DMV algorithm As illustration of
how efficient integrators based on modified equations can be, we consider the equations of
motion for a rigid body,

ẏ = ŷ I−1y, Q̇ = Q Î−1y, where â =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 (1.8)

for a vector a = (a1, a2, a3)
T . Here, I = diag(I1, I2, I3) is the matrix formed by the

moments of inertia, y is the vector of the angular momenta, and Q is the orthogonal
matrix that describes the rotation relative to a fixed coordinate system. As numerical
integrator we choose the Discrete Moser–Veselov algorithm (DMV) [MV91],

ŷn+1 = Ωn ŷnΩ
T
n , Qn+1 = QnΩ

T
n , (1.9)

where the orthogonal matrix Ωn is given from ΩTnD − DΩn = h ŷn. Here, the diagonal
matrix D = diag(d1, d2, d3) is determined by d1 + d2 = I3, d2 + d3 = I1, and d3 + d1 = I2.
This algorithm is an excellent geometric integrator and shares many geometric properties
with the exact flow. It is symplectic, it exactly preserves the Hamiltonian, the Casimir
and the angular momentum Qy (in the fixed frame), and it keeps the orthogonality of Q,
which permits an efficient implementation using quaternions. Its only disadvantage is the
low order two.

The technique of integrators based on modified equations cannot be directly applied to
increase the order of this method, because the algorithm (1.9) is not defined for general
problems (1.1). It is, however, defined for arbitrary Ij , and therefore we look for modified
moments of inertia Ĩj such that the DMV algorithm applied with Ĩj yields the exact solution
of (1.8). It is shown in [HV06] that this is possible with

1

Ĩj
=

1

Ij

(
1 + h2s3(yn) + h4s5(yn) + · · ·

)
+ h2d3(yn) + h4d5(yn) + · · · . (1.10)

The expressions sk(y) and dk(y) can be computed by a formula manipulation package
similar as the modified differential equation is obtained. The first of them are

s3(yn) = −1

3

(
1

I1
+

1

I2
+

1

I3

)
H(yn) +

I1 + I2 + I3
6 I1 I2 I3

C(yn),

d3(yn) =
I1 + I2 + I3
6 I1 I2 I3

H(yn)−
1

3 I1 I2 I3
C(yn),

where

C(y) =
1

2

(
y21 + y22 + y23

)
and H(y) =

1

2

(y21
I1

+
y22
I2

+
y23
I3

)
(1.11)

are the Casimir and the Hamiltonian of the system. The physical interpretation of this
result is the following: after perturbing suitably the form of the body, an application of
the DMV algorithm yields the exact motion of the body. Truncating the series in (1.10)
after the h2r−2 terms, yields a modified DMV algorithm of order 2r.

1.1.3 Algebraic structures of Butcher-series

Since the work of Cayley [Cay57] and Merson [Mer57] it is known that the expressions
arising in the derivatives of the solution of (1.1), ÿ = (f ′f)(y),

...
y = (f ′′(f, f))(y) +
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(f ′f ′f)(y), are in one-to-one correspondence with rooted trees. It is therefore natural to
consider formal series of the form

B(a, hf, y) = a(∅)y + ha( )f(y) + h2a( )(f ′f)(y) +
h3

2
a( )

(
f ′′(f, f)

)
(y)

+ h3a( )(f ′f ′f)(y) + h4a( )
(
f ′′(f, f ′f)

)
(y) + . . . (1.12)

with scalar coefficients a(∅), a( ), a( ), etc. The exact solution of (1.1) is of this form
with a(∅) = a( ) = 1, a( ) = 1/2, a( ) = 1/3, etc. In his fundamental work on order
conditions, Butcher discovered in the 1960ies (culminating in the seminal article [But72])
that the numerical solution of a Runge–Kutta method is also a series of the form (1.12)
with a(τ) depending only on the coefficients of the method. Hairer and Wanner [HW74]
considered series (1.12) with arbitrary coefficients and called them B-series1. They applied
them to the elaboration of order conditions for general multi-value methods. B-series and
extensions thereof are now exposed in various textbooks and articles, possibly with different
normalizations e.g., [HLW06, But08].

B-series play an important role in the study and construction of numerical integrators.
This is a consequence of the following two operations on B-series:

• Composition law ([But72, HW74]). For b(∅) = 1, a B-series considered as a mapping
y 7→ B(b, hf, y) is O(h)-close to the identity. It is therefore possible to replace y in
(1.12) with B(b, hf, y), and to expand all expressions around y. Interestingly, the
result is again a B-series and we have

B
(
a, hf,B(b, hf, y)

)
= B(b · a, hf, y). (1.13)

• Substitution law ([CHV05, CHV07b]). For b(∅) = 0, the B-series B(b, hf, y) is a vector
field that is a perturbation of hf(y), multiplied by the scalar b( ). Therefore, we can
substitute the vector field B(b, hf, ·) for hf in (1.12). Also in this case we obtain a
B-series, which we denote

B
(
a,B(b, hf, ·), y

)
= B(b ⋆ a, hf, y). (1.14)

A straightforward computation yields for the composition law (b · a)(∅) = a(∅) and

(b · a)( ) = a(∅)b( ) + a( ),

(b · a)( ) = a(∅)b( ) + a( )b( ) + a( ),

(b · a)( ) = a(∅)b( ) + a( )b( )2 + 2a( )b( ) + a( ),

(b · a)( ) = a(∅)b( ) + a( )b( ) + a( )b( ) + a( ).

(1.15)

Similarly, for the substitution law we obtain (b ⋆ a)(∅) = a(∅) and

(b ⋆ a)( ) = a( )b( ),

(b ⋆ a)( ) = a( )b( ) + a( )b( )2,

(b ⋆ a)( ) = a( )b( ) + 2a( )b( )b( ) + a( )b( )3,

(b ⋆ a)( ) = a( )b( ) + 2a( )b( )b( ) + a( )b( )3.

(1.16)

General formulae for the substitution law where first derived in [CHV05] (see also [CHV10]).
1Originally named Butcher series.
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The composition law is an important tool for the construction of various integration
methods, such as Runge–Kutta methods, general linear methods, Rosenbrock methods,
multi-derivative methods, etc. It allows the derivation of the order conditions for arbitrarily
high orders in an elegant way avoiding tedious series expansions [HNW93, HW96]. Another
application is the composition of different numerical integrators yielding higher accuracy:
effective order or pre- and post-processing of composition methods [But69, BCR99].

Applications of the substitution law are more recent and mainly in connection with
structure-preserving algorithms (geometric numerical integration). This law gives much
insight into the modified differential equation of backward error analysis [HLW06], and
it is the main ingredient for the construction of integrators based on modified equations
[CHV07b].

Group and monoid structures. Let T = { , , , . . .} be the set of rooted trees, and
consider the set T0 = T ∪ {∅} including the empty tree. The set of mappings

GC = {a : T0 → R ; a(∅) = 1} (1.17)

with the product (1.15) of the composition law is a group. Identity is the element that
corresponds to the B-series B(a, hf, y) = y. Associativity follows from that of the compo-
sition of mappings and the existence of an inverse is obtained from the explicit formulae
for the product. The group GC has been introduced in [But72] and is called the Butcher
group in [HW74].

In a similar way, the substitution law (1.16) makes the set

GS = {a : T0 → R ; a(∅) = 0} (1.18)

a monoid. It is a monoid of vector fields and has first been considered in [CHV05]. The
identity element is the mapping that corresponds to the B-series B(a, hf, y) = hf(y).
Invertible elements in GS are those with a( ) 6= 0 and yield the group

G∗
S = {a : T0 → R ; a(∅) = 0, a( ) 6= 0}. (1.19)

Hopf algebras of trees. Independently of the theory of B-series, Connes and Moscovici
[CM98] in the context of non-commutative geometry, and Connes and Kreimer [CK98,
CK00] in the theory of renormalization consider a Hopf algebra of rooted trees whose
co-product is for the first trees given by ∆CK(∅) = ∅ ⊗ ∅ and

∆CK( ) = ⊗ ∅+ ∅ ⊗ ,
∆CK( ) = ⊗ ∅+ ⊗ + ∅ ⊗ ,

∆CK( ) = ⊗ ∅+ ⊗ + 2 ⊗ + ∅ ⊗ ,

∆CK( ) = ⊗ ∅+ ⊗ + ⊗ + ∅ ⊗ .

(1.20)

Brouder [Bro00, Bro04] (and also implicitly Dür [Dür86]) noticed the close connection
between this co-product and the product (1.15) of the composition law.

Indeed, it is obtained from (1.15) by writing the argument of the mapping a to the
right of the ⊗ sign, and those of the mapping b to the left of it. To the last terms in (1.15),
which do not contain any b(τ), one adds the trivial factor b(∅) = 1.
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It is not surprising that a similar connection holds also for the substitution law. Inspired
by the work [CHV05], Calaque, Ebrahimi-Fard and Manchon [CEFM09] introduced a co-
product which, for the first trees, is given by

∆CEM ( ) = ⊗ ,

∆CEM ( ) = ⊗ + 2 ⊗ ,

∆CEM ( ) = ⊗ + 2 ⊗ + 3 ⊗ ,

∆CEM ( ) = ⊗ + 2 ⊗ + 3 ⊗ .

(1.21)

As shown in [CEFM09], it gives rise to a new Hopf algebra of trees, interacting with the
Hopf algebra of trees of Connes and Kreimer.

1.2 High weak order stochastic integrators based on modified
equations

We explain in this section how the approach of numerical integrators for modified equa-
tions introduced in [CHV07b] and described in Sect. 1.1.2 can be generalized to stochastic
differential equations. This is a summary of the work [ACVZ12] in collaboration with A.
Abdulle, D.Cohen, and K.C. Zygalakis.

1.2.1 Weak stochastic integrators

We consider a general Itô stochastic system of ordinary differential equations

dX(t) = f(X(t))dt+
m∑

r=1

gr(X(t))dWr(t), X(0) = X0, (1.22)

where X(t) is a random variable with values in RN , f : RN → RN is the drift term, gr :
RN → RN , r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m are independent
one-dimensional Wiener processes. The drift and diffusion functions are assumed smooth
enough, Lipschitz continuous and to satisfy a growth bound in order to ensure a unique
(mean-square bounded) solution of (1.22) [Arn74, KP92]. For the numerical approximation
of (1.22) we consider the discrete map

Xn+1 = Ψ(Xn, h, ξn), (1.23)

where Ψ(·, h, ξn) : RN → RN , Xn ∈ RN for n ≥ 0, h denotes the timestep size, and ξn
denotes a random vector. The numerical approximation (1.23), starting from the exact
initial condition X0 of (1.22) is said to have weak order τ if for all functions2 φ : RN →
R ∈ C

2(τ+1)
P (RN ,R),

|E(φ(Xn))− E(φ(X(tn)))| ≤ Chτ , (1.24)

and to have strong order τ if

E(|Xn −X(tn)|) ≤ Chτ , (1.25)

for any tn = nh ∈ [0, T ] with T > 0 fixed, for all h small enough, with constants C
independent of h.

2Here and in what follows, Cℓ
P (R

N ,R) denotes the space of ℓ times continuously differentiable functions
RN → R with all partial derivatives with polynomial growth.
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Remark 1.2.1 A well-known theorem of Milstein [Mil86] (see [MT04, Chap. 2.2]) al-
lows to infer the global weak order from the error after one step. Assuming that f, gr ∈
C

2(τ+1)
P (RN ,RN ), r = 1, . . . ,m are Lipschitz continuous, that for all r ∈ N, the moments

E(|Xn|2r) are bounded for all n, h with 0 ≤ nh ≤ T uniformly with respect to all h suf-

ficiently small, and that the local error bound for all φ ∈ C
2(τ+1)
P (RN ,R) and all initial

values X(0) = X0 satisfies

|E(φ(X1))− E(φ(X(t1)))| ≤ Chτ+1 (1.26)

for all h sufficiently small, then the global error bound (1.24) holds. Here the constant C
is again independent of h. For the strong convergence we have the following result [Mil87].
If the functions f, gr are sufficiently smooth and Lipschitz continuous and

E|X1 −X(t1)| ≤ Chτ+1/2 and |E(X1)− E(X(t1))| ≤ Chτ+1, (1.27)

for all initial values X(0) = X0, then the global error bound (1.25) holds.

The simplest method to approximate solutions to the Itô SDE (1.22) is the so-called Euler-
Maruyama method

Xn+1 = Xn + hf(Xn) +
m∑

r=1

gr(Xn)∆Wn,r, (1.28)

where ∆Wn,r ∼ N (0, h), r = 1, . . .m are independent Wiener increments. This method
has strong order 1/2 and weak order 1 for a general system of Itô SDEs [Mar55]. Vari-
ous higher order weak methods have been considered in the literature [KP92, MT04]. For
example, weak second order methods were proposed by Milstein [Mil78, Mil86], Platen
[Pla92], Talay [Tal84] and Tocino and Vigo-Aguiar [TVA02], and more recently classes of
Runge-Kutta type methods were proposed by Rößler [Röß03]. We mention also the extrap-
olation methods of Talay and Tubaro [TT90] and of [KPH95] that combines methods with
different stepsizes to achieve higher weak order convergence. Higher order integrators can
be constructed. We mention the classical Milstein-Talay method [Tal84] which has strong
order one and weak order two,

X1 = X0 + hf(X0) +
m∑

r=1

gr(X0)∆Wr +
m∑

q,r=1

(gr)′(X0)g
q(X0)Iq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)
+

m∑

r=1

f ′(X0)g
r(X0)Ir,0

+

m∑

r=1

(
(gr)′(X0)f(X0) +

m∑

q=1

1

2
(gr)′′(X0)(g

q(X0), g
q(X0))

)
I0,r, (1.29)

where Ir,0, I0,r, Iq,r denote the stochastic integrals defined by

Ir,0 =

∫ t1

t0

∫ t

t0

dWr(s)dt, I0,r =

∫ t1

t0

∫ t

t0

ds dWr(t), Iq,r =

∫ t1

t0

∫ t

t0

dWq(s)dWr(t). (1.30)

For notational brevity, we shall always write X1 and X0 in place of Xn+1 and Xn when
introducing an integrator.

Remark 1.2.2 As given above, the method (1.29) is not practical for implementation: it
contains derivatives which are expensive in general, and stochastic integrals that are difficult
to simulate. If one is only interested in the weak convergence, a standard approach is to
replace these stochastic multiple integrales by appropriate weak approximation with discrete
random variable. This will discussed and exploited in Section 2.2.
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1.2.2 Modified stochastic differential equations

The general idea of constructing high order integrators based on modifying equation can
be generalized to SDEs as follows. Consider a numerical method (1.23) for problem (1.22),
with smooth vector fields f, gr, r = 1, . . . ,m, and assume that its weak order of convergence
(1.24) is p ≥ 1. We show that under suitable assumptions, the weak order p of the numerical
integrator (1.23) can be increased to p+ r with r ≥ 1 by applying it to a suitably modified
SDE

dX̃ = fh(X̃)dt+ gh(X̃)dW (t), X̃(0) = X0, (1.31)

with modified drift and noise of the form

fh(x) = f(x) + hf1(x) + . . .+ hsfs(x), (1.32)

gh(x) = g(x) + hg1(x) + . . .+ hsgs(x), (1.33)

where s = p+ r − 1. The integrator with improved weak order r can be written as

X̃n+1 = Ψ(fh,p+r−1, gh,p+r−1, X̃n, h, ξn). (1.34)

Remark 1.2.3 The above procedure should not be confused with a procedure called back-
ward error analysis for SDEs [DF12, Zyg11] or the related approach [Sha06], developed to
study the long time behavior of numerical methods for SDEs. There, one tries to find a
modified equation

dX̂ = ah(X̂)dt+ bh(X̂)dW (t), X̂(0) = X0, (1.35)

such that its exact solution is closer to the numerical solution (1.23), i.e.,

|E(φ(XN ))− E(φ(X̂(tN )))| ≤ Chp+q,

with q > 0. In general, the modified SDEs (1.35) and (1.31) are different similarly to the
deterministic case.

1.2.3 Construction of high-order integrators based on modified equa-

tions

A natural and standard way of looking at expectations of functionals of diffusion pro-
cesses is by using the backward Kolmogorov equation associated to (1.22), which is the
(deterministic) partial differential equation

∂u

∂t
= Lu, u(x, 0) = φ(x), (1.36)

where φ : Rd → R is a smooth function, and the differential operator L, called the generator
of the SDE, is given by

L := f · ∇x +
1

2
(ggT ) : ∇2

x. (1.37)

In (1.37), ∇x and ∇2
x denote respectively the gradient and the Hessian matrix operator 3

with respect to x. In the case m = d = 1, the generator reduces to

L = f
∂

∂x
+

1

2
g2

∂2

∂x2
.

3Here, we consider the usual scalar product on matrices defined by A : B = trace(ATB).
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The probabilistic interpretation (see for example [Øks03, PS08, Ris89]) of the solution
u = uf,g(φ, x, t) to (1.36) is that

uf,g(φ, x, t) = E (φ(X(t))|X(0) = x) ,

where X(t) solves (1.22). Using (1.36) one can easily derive the following formal Taylor
expansion [DF12, Zyg11]

uf,g(φ, x, h)− φ(x) =
∞∑

j=1

hj

j!
Ljφ(x).

Under appropriate smoothness assumptions on f, g and φ one can prove that

uf,g(φ, x, h)− φ(x) =
k∑

j=1

hj

j!
Ljφ(x) +O(hk+1), (1.38)

for all integer k. By defining

Uf,g(φ, x, h) = E (φ (Ψ(f, g,X0, h, ξ0)|X0 = x)) , (1.39)

for the numerical integrator (1.23), we see that the local weak error of the numerical
integrator applied to (1.22) after one step is given by

E(φ(X1))− E(φ(X(t1))) = Uf,g(φ, x, h)− uf,g(φ, x, h). (1.40)

Note that (1.40) is the reformulation of the left-hand side of the local error bound (1.26)
in terms of the solution of the backward Kolmogorov equation (1.36) associated to (1.22).
Motivated by an expansion of (1.39) in Taylor series, we assume

Assumption 1.2.4 The numerical solution (1.39) has the following expansion

Uf,g(φ, x, h) = φ(x) + hA0(f, g)φ(x) + h2A1(f, g)φ(x) + . . . , (1.41)

where Ai(f, g), i = 0, 1, 2, . . . are differential operators depending on the drift and diffusion
functions of the SDE to which the numerical integrator is applied to. We further assume
that these differential operators Ai(f, g), i = 0, 1, 2, . . . satisfy for all f, f̂ , g, ĝ and ε→ 0,

Ai(f + εf̂ , g + εĝ) = Ai(f, g) + εÂi(f, f̂ , g, ĝ) +O(ε2),

where Âi(f, f̂ , g, ĝ), i = 0, 1, 2, . . . are again differential operators.

The above smoothness hypothesis is usually satisfied by numerical integrators. For the
assumption that the expansion has integer powers of the stepsize h, special care has to be
taken (see [ACVZ12, Rem. 2.2] for details).

Theorem 1.2.5 Assume that the numerical scheme (1.23) has order p ≥ 1 and that
Assumption 1.2.4 holds. Let r ≥ 1 and assume that the functions fj and gj for j =

1, . . . , p+r−2 have been constructed such that X̃n+1 = Ψ(fh,p+r−2, gh,p+r−2, X̃n, h, ξn) has
weak order p+ r − 1. Consider the differential operator defined as

Lp+r−1 := lim
h→0

uf,g(·, x, h)− Ufh,p+r−1,gh,p+r−1(·, x, h)
hp+r

, (1.42)
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where uf,g(φ, x, h) is expanded in (1.38) and Uf,g(φ, x, h) is defined in (1.39). If there exist
functions fp+r−1 : Rd → Rd and gp+r−1 : Rd → Rd×m such that the differential operator
(1.42) can be written in the form Lj = fj · ∇x +

1
2

∑j
k=0(gkg

T
j−k) : ∇2

x, (where f0 := f and
g0 := g), then the numerical integrator (1.34) applied to the SDE with the modified drift
and noise (1.32),(1.33) has weak order of accuracy p + r for the original system of SDEs

(1.22) provided fh,p+r−1, gh,p+r−1 ∈ C
2(p+r)+1
P (Rd,Rd). The error bound

|E(φ(X̃N ))− E(φ(X(tN )))| ≤ Chp+r,

holds for any fixed tN = Nh ∈ [0, τ ] with h sufficiently small and for all functions φ ∈
C

2(p+r)+1
P (Rd,R).

1.2.4 Application: the modified θ-Milstein method

Consider the multi-dimensional SDE (1.22), where f, gr, r = 1, . . . ,m are (smooth) column
vector fields of size d. For a fixed parameter θ, consider the θ-Milstein method, which has
strong and weak orders one,

X1 = X0 + (1− θ)hf(X0) + θhf(X1) +
m∑

r=1

gr(X0)∆W0 +M(X0,W ), (1.43)

where the Milstein term M(X0,W ) is defined by

M(X0,W ) =
m∑

q,r=1

(gr)′(X0)g
q(X0)Iq,r

where Iq,r is defined in (1.30). Applying the modified equation approach to increase the
weak order yields the modified θ-Milstein method of weak order two

X1 = X0 + (1− θ)hf(X0) + θhfh,1(X1) +
m∑

r=1

grh,1(X0)∆W0 +M(X0,W ), (1.44)

where fh,1 = f + hf1, grh,1 = gr + hgr1, and f1, gr1, r = 1, . . . ,m are given by

f1 =

(
1

2
− θ

)
(f ′f) +

1

2

(
1

2
− θ

) m∑

r=1

f ′′(gr, gr),

gr1 =

(
1

2
− θ

)
f ′gr +

1

2
(gr)′f +

1

4

m∑

r=1

g′′(gr, gr), (1.45)

for all i = 1, . . . , d and j = 1, . . . ,m.

Remark 1.2.6 It can be shown that the functions gr in the definition of M(X0,W ) can
remain unchanged without affecting the weak order two of the modified θ-Milstein method
(1.44).

Remark 1.2.7 It can be shown that the modified θ-Milstein method has the mean-square
A-stable property (a standard notion discussed further in Section 2.1) for θ = 1. This
makes this integrator suitable for the numerical integration of stiff systems of SDEs. Note
that the integrator (1.44) belongs to a sub-class of a general family of weak second order
methods introduced by Milstein [Mil86]. For θ = 0 it has also been considered by Talay who
proved its order of convergence [Tal84]. For θ = 1/2 the method was considered by Milstein
who showed its good stability behavior for scalar SDEs with additive noise. For θ = 1, the
method does not seem to have appeared explicitly in the literature.
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We observe that the above method contains derivatives of the drift and diffusion functions.
This is a general feature of the methods obtained using modified equations. In some cases,
these derivatives are easy and cheap to compute (see for example the stochastic mechanical
problem in the next Section 1.2.5). In general, these derivatives can be approximated. In
particular, one can use formulas based on finite differences. Some care is however required
for an efficient implementation (i.e., a low number of function evaluations in dependence
on the number of Wiener processes [DR09b]).

1.2.5 Application: the modified stochastic implicit midpoint rule

Another application of the modified equation strategy is the construction of numerical
integrators for Stratonovich SDEs of high weak order which exactly conserve all quadratic
first integrals (up to machine precision). We consider the SDE (1.22) in Stratonovich form
with a one-dimensional noise

dX = f(X)dt+ g(X) ◦ dW (t), X(0) = X0, (1.46)

where the notation ◦dW (t) emphasizes that the Stratonovich stochastic integrals are con-
sidered for (1.46). As a basic numerical integrator to apply our methodology of modified
equation, we choose the (fully) implicit midpoint rule, as first introduced in [MRT02],

Xn+1 = Xn + hf

(
Xn +Xn+1

2

)
+ g

(
Xn +Xn+1

2

)
∆Wn, (1.47)

where ∆Wn is a scalar random variable. It is shown in [MRT02] that (1.47) has weak and
strong orders one in the case of a one-dimensional or commutative multi-dimensional noise.
Notice however that for general SDEs with multi-dimensional noise, the strong order is 1/2
and the weak order is 1.

First integral conservation A smooth quantity C(x) is called a first integral of the
system (1.46) if it is exactly conserved along time for all realizations of the Wiener process
W (t), i.e. C(X(t)) = C(X0) for all time t and all initial condition X(0) = X0. Given a
smooth function C(x), the identity4 dC(X) = ∇C(X) · f(X)dt +∇C(X) · g(X) ◦ dW (t)
shows that C(X) is a first integral of (1.46) if and only if

∇C(x) · f(x) = ∇C(x) · g(x) = 0 for all x ∈ Rd. (1.48)

Remark 1.2.8 The method (1.47) is implicit with respect to both the drift and the noise
terms. In the case where ∆Wn is a standard Gaussian variable, the unboundedness of ∆Wn

for arbitrarily small h leads to non-uniqueness of solutions to the non-linear system (1.47)
and the integrator is not well defined. One way to address this problem, is to replace ∆Wn,
with a suitable chosen bounded random variable [MRT02] (see also [MT04, Sect. 1.3]). Here
we shall simply consider three point discrete random variable (see χr in (2.10) in Section
2.2), which are obviously bounded.

Using the framework of integrators based on modified equations, we introduce the
following new numerical integrator of weak second order for the SDE (1.46) which preserves
all quadratic first integrals.

4Note that Stratonovich calculus is used here.
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Algorithm 1.2.9 (Modified stochastic midpoint rule of weak second order)

Xn+1 = Xn + hfh,1

(
Xn +Xn+1

2

)
+ gh,1

(
Xn +Xn+1

2

)
∆Wn, (1.49)

where fh,1 = f + hf1 and gh,1 = g + hg1 and

f1 =
1

4

(
1

2
f ′′(g, g)− g′f ′g

)
g1 =

1

4

(
1

2
g′′(g, g)− g′g′g

)
. (1.50)

We obtain that if we consider the modified Stratonovich SDE

dX = [f(X) + hf1(X)] dt+ [g(X) + hg1(X)] ◦ dW (t), (1.51)

then (1.49) is equivalent to applying the original midpoint rule (1.47) to the modified
Stratonovich SDE (1.51).

Theorem 1.2.10 The integrator (1.49) for a system of Stratonovich SDEs (1.46) with
m = 1 noise has weak order 2. It exactly conserves all quadratic first integrals of (1.46).

Example: a stochastic rigid body model To illustrate that the integrators previ-
ously introduced conserve quadratic first integrals and to compare the performance of the
proposed high-order integrators preserving quadratic first integrals, we consider a ran-
domly perturbed rigid body problem that is, the motion of a rigid body in R3 subject to
a scalar white noise perturbation. The equations of motion of an asymmetric rigid body
with Stratonovich noise in dimension m = 1 are given by 5

dy = ŷI−1ydt+ µŷe1 ◦ dW (t),

dQ = QÎ−1ydt+ µQê1 ◦ dW (t), (1.52)

where e1 = (1, 0, 0)T , µ ≥ 0 is a parameter and I = diag (I1, I2, I3). A generalization of
equation (1.52) for a 3-dimensional noise is presented in [LCO09, Eq. (6.9)-(6.10)], where
one can also find a physical justification for these equations. This model is a variant of the
model proposed in [Lia97] with the additional feature that it preserves the spatial angular
momentum Qy. In the case where µ = 0, we recover the standard deterministic equations
of motion of an asymmetric rigid body (1.8). The system of SDEs (1.52) has the same first
integrals as in the deterministic case (all of which are quadratic), with the exception of the

Hamiltonian in (1.11). Indeed, dH(y) = µ
y[2]y[3]

2

(
1
I2

− 1
I3

)
◦ dW (t), is non zero in general

(unless µ(I2 − I3) = 0).
Using formulas (1.50) where the functions f and g correspond to the right-hand side of

(1.52), a straightforward computation yields the modified SDE associated to (1.52),

dy = ŷ(I−1 +
hµ2

4
J −1)ydt+ µ

(
1 +

hµ2

4

)
ŷe1 ◦ dW (t), (1.53)

dQ = Q(Î−1y +
hµ2

4
Ĵ −1y)dt+ µ

(
1 +

hµ2

4

)
Qê1 ◦ dW (t),

where we define J = diag (I1, I3, I2). We obtain from Theorem 1.2.10 that applying
the implicit midpoint rule (1.47) to the Statonovitch SDE (1.53) yields a weak order two
approximation of the solution of (1.52) which exactly conserves all quadratic first integrals,

5We use again the standard hat notation defined in (1.8).
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(a) Error for E(sin(eT1 Qe1)). Noise size µ = 0.1.
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(b) Error for E(sin(eT1 Qe1)). Noise size µ = 0.01.

Figure 1.2: Rigid body problem (1.52). Comparison of weak convergence rates for imr,
see (1.47) (dotted lines), imr2, see (1.49) (solid lines), imr2(4) (dashed lines), and imr(4)
(dashed-dotted lines).

i.e. C(yn+1) = C(yn), Qn+1yn+1 = Qnyn and QTnQn = Id for all n, and in the case I2 = I3
(symmetric body), we have also H(yn+1) = H(yn), where C(y) and H(y) are defined in
(1.11).

Note that the modified SDE (1.53) is of the same form as the original equations (1.52)
with modified data parameters µ̃ = µ(1+hµ2/4),, Ĩ1, Ĩ2, Ĩ3. Thus, our modification to high
weak order reduces to a perturbation of the parameters and has a negligible overcost.

Weak convergence rates In Figure 1.2, we compare the performance of the modified
stochastic implicit midpoint rule (denoted imr2) applied to the stochastic rigid body model
(1.52) to the standard implicit midpoint rule (1.47) (denoted imr). For comparison, we
also include the methods imr(4) and imr2(4) which are the same methods as imr and imr2

with the exception that the deterministic O(h2) correction term from (1.7) is also included.
We take the moments of inertia I1 = 0.345, I2 = 0.653, I3 = 1.0, which correspond to the
water molecule (nearly flat body). Initial values are X(0) = (0.8, 0.6, 0)T and Q(0) is
the identity matrix. We plot the errors for E(sin(eT1Qe1)) at final time t = 10 versus
the timestep h = 2−i, i = 1, . . . , 8. The reference solution is computed using the small
timestep h = 2−14. To check carefully the accuracy of the methods, we compute numerically
E(sin(eT1Qe1)) using the averages over 300 millions of trajectories (this computation was
performed using the EPFL cluster on one hundred independent CPUs). We consider two
values of the noise parameter: µ = 0.1 and µ = 0.01. We observe in all cases lines of
slope two for the modified midpoint rule imr2 (1.49) which confirms its weak order two of
accuracy. For the standard midpoint rule imr in (1.47) and the modified version imr(4)
which both have weak order one, we observe for large stepsizes h, lines of slope four and
two respectively in the case where the deterministic error (h2 or h4) is dominant compared
to the stochastic error with size µ2h.

1.3 Multi-revolution composition methods for highly oscilla-
tory problems

This section summarizes the work [CMMV13]. The aim is to construct geometric inte-
grators for highly oscillatory problems allowing the use of large timesteps, with uniform
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accuracy with respect to the highly oscillatory frequency of the problem.
Although this work cannot be cast directly in the framework of integrators based on

modified equations, the idea is to capture an averaged system’s solution (in the spirit of
homogenization methods) with appropriate modifications of the oscillatory period.

The originality of the approach is to apply geometric integration techniques (high-
order composition methods) originally designed for non-stiff problems to highly oscillatory
problems which are stiff and for which the computational cost of standard integrators
grows with the stiffness due to accuracy and stability constraints. Indeed, for standard
integrators stability and accuracy requirements induce a step-size restriction of the form
h ≤ Cε, where 1/ε is the highly oscillatory frequency, which renders the computation of
a reasonably accurate solution more and more costly and sometimes even untractable for
small values of ε.

Approximating iterations of a near identity map We are concerned with the ap-
proximation of the M -th iterates of a near-identity smooth map by compositions methods.
More precisely, considering a smooth map (ε, y) 7→ ϕε(y) of the form

ϕε(y) = y + εΘε(y), (1.54)

we wish to approximate the result of M = O(1/ε) compositions of ϕε with itself

ϕMε = ϕε ◦ · · · ◦ ϕε︸ ︷︷ ︸
M times

(1.55)

with the aid of a method whose efficiency remains essentially independent of ε.
In order to motivate our composition methods, it will be usefull to observe that ϕε can

be seen as one step with step-size ε of a first order integrator for the differential equation

dz(t)

dt
= Θ0(z(t)), (1.56)

where Θ0(z) =
d
dεϕε(z)

∣∣
ε=0

, and thus, ϕMε (y) may be interpreted as an approximation at
t =Mε of the solution z(t) of (1.56) with initial condition

z(0) = y. (1.57)

A standard error analysis shows that ϕNε (y) − z(Nε) = O(εH) as H = Nε → 0, which
makes clear that, for sufficiently small H = εN , ϕNε (y) could be approximated by one step
ΨH(y) ≈ z(H) of any pth order integrator applied to the initial value problem (1.56)–
(1.57) within an error of size O(Hp+1+ εH). In particular, ϕH can be seen as a first order
integrator for the ODE (1.56), and a second order integrator can be obtained as

ΨH(y) = ϕH/2 ◦ ϕ∗
H/2(y), (1.58)

where ϕ∗
ε := ϕ−1

−ε is the adjoint map of ϕε.

New class of multi-revolution composition methods Motivated by that, we gener-
alize the above approximation by considering coefficients αj , βj , j = 1, . . . depending on N ,
and chosen in such a way that ϕNε is approximated for sufficiently small H = Nε within
an error of size O(Hp+1), where the error constant is independent of N,H, ε. We say that
the composition method

ΨN,H(y) := ϕα1(N)H ◦ ϕ∗
β1(N)H ◦ · · · ◦ ϕαs(N)H ◦ ϕ∗

βs(N)H(y) (1.59)
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is an s-stage pth order multi-revolution composition method (MRCM) if

ΨN,H(y) = ϕNε (y) +O(Hp+1), for H = Nε ≤ H0. (1.60)

For instance, we will see that the second order standard composition method (1.58)
can be modified to give a second order MRCM (1.59) with s = 1, α1(N) = (1 +N−1)/2,
and β1(N) = (1−N−1)/2,

ΨN,H(y) = ϕα1(N)H ◦ ϕ∗
β1(N)H(y) = ϕNε (y) +O(H3), H = Nε.

It is interesting to observe that this second order MRCM reduces in the limit case N → ∞
to the standard composition method (1.58) (a second order integrator for the ODE (1.56)),
which is consistent with the fact that ϕNH/N converges to the H-flow of (1.56) as N → ∞.
More generally, any pth order MRCM (1.59), gives rise to a pth order standard composition
method with coefficients

ai = lim
N→∞

αi(N), bi = lim
N→∞

βi(N).

In practice, if one wants to approximately compute the map ϕMε for a given small value
of ε and large positive integers M within a given error tolerance by means of a s-stage
pth order MRCM (1.59), then one should choose a sufficiently small step-size H to achieve
the required accuracy, and accordingly choose N as the integer part of H/ε, in order to
approximate ϕMε (y), for M = mN , m = 1, 2, 3 . . ., as ϕmNε (y) ≈ ΨN,H(y)

m.

Application to highly oscillatory problems The main application we have in mind
is the time integration of highly-oscillatory problems with a single harmonic frequency
ω = 2π/ε. In the numerical examples, we consider in particular problems of the form

d

dt
y(t) =

1

ε
Ay(t) + f(y(t)), 0 ≤ t ≤ T, y(0) = y0 ∈ Rd, (1.61)

where A is a d × d skew-symmetric matrix with eigenvalues in 2πiZ, so that etA is 1-
periodic in time, and where f : Rd → Rd is a given nonlinear smooth function. In this
situation, we shall consider ϕε as the flow with time ε (the period of the unperturbed
equation corresponding to f(y) ≡ 0) of equation (1.61), or equivalently, the flow with time
1 of the system

d

dt
y(t) = Ay(t) + εf(y(t)).

It is well known [CMSS10, CMSS12] that such a map ϕε is a smooth near-identity map, and
furthermore, that (1.56) is in this case the first order averaged equation, more precisely,

Θ0(z) =
d

dε
ϕε(z)

∣∣∣∣
ε=0

=

∫ 1

0
e−Atf(eAtz)dt.

The solution y(t) of the initial value problem (1.61) sampled at the times t = εM will then
be given by

y(εM) = ϕMε (y0),

and thus, for an appropriately chosen positive integer N (determined by accuracy require-
ments and the actual value of ε), we may use a pth order MRCM (1.59) to compute the
approximations

ym = ΨN,H(y)
m ≈ ϕmNε (y0) = y(tm), where tm = mH, H = εN.
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The local error estimate (1.60) then leads by standard arguments to a global error estimate
of the form

ym − y(tm) = O(Hp), for tm = mH ≤ T,

where the constant in the O-term depends on T but is independent of ε and H.

Derivation of general order conditions In [CMMV13], we derive general order con-
ditions for multi-revolution composition methods (1.59) to satisfy (1.60) (see Table 1.1 for
conditions up to order four). This is done by comparing the Taylor expansions of both

Order 1: 1

s∑

k=1

(αk + βk) = 1 Order 2: 2

s∑

k=1

(α2
k − β2k) = N−1

Order 3: 3
s∑

k=1

(α3
k + β3k) = N−2

2

1 s∑

k=1

(α2
k − β2k)

k∑

ℓ=1

′(αℓ + βℓ) =
N−1 −N−2

2

Order 4: 4

s∑

k=1

(α4
k − β4k) = N−3

3

1 s∑

k=1

(α3
k + β3k)

k∑

ℓ=1

′(αℓ + βℓ) =
N−2 −N−3

2

2

1 1 s∑

k=1

(α2
k − β2k)

( k∑

ℓ=1

′(αℓ + βℓ)
)2

=
N−1(1−N−1)(2−N−1)

6

Table 1.1: Fourth-order conditions for MRCMs (1.59). The prime attached to a summation
symbol indicates that the sum of αjℓ is only from 1 to k − 1 while the sum of βjℓ remains
for 1 to k

.

sides of ΨN,H(y) ≃ ϕNε (y). Although conceptually easy, the task is rendered very intricate
by the enormous number of terms and redundant order conditions naturally arising. For
instance, for order 4, there are 21 order conditions, but 14 or them are superfluous, and the
true number of independent order conditions is only 7. Explicit conditions for standard
composition methods have been obtained in a systematic way in [MSS99] by using the
formalism of B∞-series and trees (a generalization of B-series presented in Section 1.1.3,
involving trees with labelled vertices), and this is again the main tool in our context.

A micro-macro method Typically, the maps ϕµ and ϕ∗
µ in (1.59) with µ = αj(N)H,

µ = βj(N)H (j = 1, . . . , s) can not be computed exactly. In the context of highly oscilla-
tory systems, and in particular, for systems of the form (1.61), the actual (approximate)
computation of ϕµ can be carried out essentially as a black-box operation: In practice, one
may use any available implementation of some numerical integrator to approximate the
flow with time 1 of the ODE

d

dt
y(t) = Ay(t) + µf(y(t)). (1.62)
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In particular, ϕµ may be approximated by applying n steps of step-size h = 1/n of an
appropriate splitting method to (1.62), where n is chosen so as to resolve one oscillation.
Let Φµ,h(y) denote the approximation of ϕµ obtained in this way with a qth order splitting
method, then the following estimate

Φµ,h(y)− ϕµ(y) = O(µrhq) (1.63)

will be guaranteed to hold with r = 1. It is worth remarking that more refined estimates
of the form O(µr1hq1 + . . .+µrℓhqℓ) can be obtained for certain splitting methods [McL95].
Observe that one can expect r ≥ 1 in the right-hand side of (1.63) if (as in the case of
splitting methods for (1.62),) Φµ,h is constructed so that Φ0,h(y) = ϕ0(y) = y. We next
define the following fully-discrete MRCM,

ϕNε (y) ≃ ΨN,H,h(y) := Φα1H,h ◦ Φ−1
−β1H,h ◦ · · · ◦ ΦαsH,h ◦ Φ−1

−βsH,h(y) (1.64)

in the spirit of Heterogenerous multiscale methods (see [AEEVE12, EE03, EEL+07] and the
work presented in Chapter 3) which combine the application of macro-steps of length H (to
advance along the solution of (1.61)) with the application to (1.62) of some integrator with
micro-steps of size h = 1/n (where n is chosen large enough to resolve each oscillation).

Comparison with other multi-revolution integrators The general idea of multi-
revolution methods has been first considered in astronomy, where ε-perturbation of pe-
riodic systems are recurrent, and named as such since these methods approximate many
revolutions (N periods of time) by only a few (in our approach, 2s compositions then ac-
counts for 2s revolutions with different values of the perturbation parameter ε). A class
of multi-revolution Runge-Kutta type methods has then been studied in the context of os-
cillatory problems of the form (1.61) [CMR03, CMR07, CJMR04, MP97, PJY97]. Closely
related methods where considered in [Kir88] and also in [CCMSS11].

Actually, MRCMs are asymptotic preserving, a notion introduced in the context of
kinetic equations (see [Jin99], and the recent works [LM08, FJ10]) and ensuring that a
method is uniformly accurate for a large range of values of the parameter ε with a compu-
tational cost essentially independent of ε.

The methods introduced here differ from existing other multi-revolution methods in
that they are intrinsically geometric, since they solely use compositions of maps of the form
ϕµ and ϕ−1

µ , whose geometric properties are determined by equation (1.61). In particular,
it is symplectic if (1.61) is Hamiltonian, volume-preserving if (1.61) is divergence-free, and
shares the same invariants which are independent of ε as the flow of (1.61).

Application: the nonlinear Schrödinger equation Highly oscillatory problems of
the form (1.61) are in particular obtained by appropriate discretization in space of several
Hamiltonian partial differentiation equations, such as nonlinear versions of the wave equa-
tion and the Schrödinger equation. In Figure 1.3, we consider MRCMs for the following
problem with nonlinear effects analyzed by B. Grébert and C. Villegas-Blas in [GVB11]. It
consists of a nonlinear Schrödinger equation with a cubic nonlinearity |u|2u multiplied by
an excitation term of the form 2 cos(2x) and may be stated on the one-dimensional torus
as

i∂tu = −∆u+ 2ε cos(2x)|u|2u, t ≥ 0, u(t, ·) ∈ Hs(T2π) (1.65)

u(0, x) = cosx+ sinx.
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Figure 1.3: Nonlinear Schrödinger problem (1.65) with ε = 10−4 on the time interval
(0, 2πε−1). Plot of the actions |ξj(t)|, for j = 1, 3, 5 (solid lines) and for j = −1,−3,−5
(dotted lines) with colors red (|j| = 1), brown (|j| = 3), black (|j| = 5). The micro stepsize
is h = 2π/n with n = 100.

The problem is known to have a unique global solution in all Sobolev spaces Hs(T2π)
for s ≥ 0. A pseudospectral approximation of the form u(t, x) ≈ ∑ℓ

k=−ℓ ξk(t)e
ikx may

be obtained by determining the approximate Fourier modes ξk(t) as the solution with
appropriate initial values of a semidiscrete version of equation (1.65)

d

dt
ξk = −ik2ξk + ε fk(ξ−ℓ, . . . , ξ−1, ξ0, ξ1, . . . , ξℓ), k = −ℓ, . . . ,−1, 0, 1, . . . , ℓ. (1.66)

Clearly, the system of ODEs (1.66) can be recast into the format (1.61) by rescaling time
(that is, by rewriting the system in terms of the new time variable t̂ = ε

2π t). We plot in
Figure 1.3 the solution (the action) obtained with a MRCM of order 4 with multirevolution
parameter N = 100. We observe satisfactory solutions (with a characteristic nonlinear
beating effect in the modes ξ±1) compared to the reference solution (Strang Splitting) at
a reduced computational cost of about two orders of magnitude for ε = 10−4.

1.4 Perspectives

There are two natural directions in which we would like to pursue our research in the
context of modified differential equations.

• It is clear that the weak order p of a given integrator implies the same accuracy when
sampling a given invariant measure. However, based on the framework of modified
equations, it can be shown that this assumption can be relaxed (work [AVZ13a] in
progress with A. Abdulle and K. Zygalakis), and simplified order conditions can be
derived for the derivation of high order invariant measure sampling integrators.

• We would like also to extend the class of multi-revolution composition methods to
a stochastic highly oscillatory context. There is a strong need in applications of
efficient large time step integrators with favorable stability and geometric properties
in particular for stochastic nonlinear Schrödinger equations. We would like also
to explore the extension of splitting methods with complex times introduced in a
deterministic setting [CCDV09] (reaction diffusion problems) for the construction of
weak high order integrators with favorable geometric properties.
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In Section 1.2, implicit weak second order methods with favorable geometric and/or
stability properties were introduced using the framework [ACVZ12] of modified differential
equations. This framework could in principle be used to construct higher order weak sta-
bilized methods. Here we follow a different approach based on stabilizing a second weak
order scheme originating from the weak second order Taylor method (1.29) known as the
Milstein-Talay method [Tal84]. This chapter is organized as follows. In Section 2.1, we
recall standard stability concepts that are essential for the understanding of stiff stochastic
integrators. In Section 2.2 we describe an efficient implementation of the Milstein-Talay
method (1.29) that will be useful to construct our stabilized integrators. We then construct
successively a drift-implicit integrator (Section 2.3 summarizing [AVZ13b]) and an explicit
stabilized integrator (Section 2.4, summarizing [AVZ12]) with extended mean-square sta-
bility domains. The developed methodology for the stabilization of stochastic integrators
permits to construct a new “swiss-knife” integrator for diffusion problems with various
stiffness regimes (advection, reaction, noise), see Section 2.5 summarizing [AV13b].

2.1 Standard stability concepts for SDEs

In practice it is not only the order of convergence that guarantees an efficient approximation
of an SDE, but also the long-time behavior of the solution. Stability properties of the exact
and the numerical solutions are important to understand this behavior. Widely used char-
acterizations of stability for SDEs are the mean-square and the asymptotic stability (in the
large) [Arn74, Has80]. The former measures the stability of moments, the latter measures
the overall behavior of sample paths. In particular, we have the following definitions. The
steady solution X ≡ 0 of a system of Itô SDEs (1.22) with f(0) = gr(0) = 0, r = 1, . . . ,m
is called stochastically asymptotically stable in the large if there exists δ > 0 such that

lim
t→∞

|X(t)| = 0 with probability 1 for all |X0| < δ, (2.1)

mean-square stable if there exists δ > 0, such that

lim
t→∞

E(|X(t)|2) = 0 for all |X0| < δ. (2.2)

2.1.1 The stochastic scalar test equation with multiplicative noise

To gain insight on the stability behavior of a numerical method, we consider a class of
linear scalar test problems widely used in the literature [SM96, Hig00, BBT04, Toc05],

dX(t) = λX(t)dt+ µX(t)dW (t), X(0) = 1, (2.3)

in dimensions N = m = 1, with fixed complex scalar parameters λ, µ. The exact solution
of (2.3), given by X(t) = exp((λ− 1

2µ
2)t+ µW (t)), is stochastically asymptotically stable

if and only if limt→∞ |X(t)| = 0 with probability 1, equivalently (λ, µ) ∈ SAS
SDE

with

SASSDE :=
{
(λ, µ) ∈ C2 ; ℜ

(
λ− 1

2
µ2

)
< 0

}
, (2.4)

and mean-square stable if and only if limt→∞ E
(
|X(t)|2

)
= 0, equivalently (λ, µ) ∈ SMS

SDE

with
SMS

SDE :=
{
(λ, µ) ∈ C2 ; ℜ(λ) + 1

2
|µ|2 < 0

}
. (2.5)

We name the domains SMS
SDE

⊂ SAS
SDE

the mean-square and asymptotic stability domains of
the test equation (2.3), respectively.
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Note that the justification of the test equation (2.3) is delicate for multi-dimensional
systems. Already for multi-dimensional linear systems dX = AXdt +

∑m
r=1BrXdWr(t),

where A,Br are N × N matrices and dWr are independent one-dimensional Wiener pro-
cesses, it is difficult to extend the stability analysis of numerical integrators if A and
Br, r = 1, . . . ,m do not commute and can thus not be simultaneously diagonalized. This
has been investigated in [SM02, RB08] but these studies do not allow for an easy character-
ization of stability criteria. Using the theory of stochastic stabilization and destabilization
[Mao94] an attempt to generalize the linear test equation has been proposed in [BK10],
where two sets of test equations with N = m = 2 and N = m = 3 have been studied. The
conclusion of these studies is that the stability behavior of the Euler-Maruyama method (or
its generalization obtained by using the θ method for the drift term) is essentially captured
by the test equation (2.3). We mention however that for linear systems with a non normal
drift, the additional test equations in [BK10] capture stability behaviors (in particular in
the pre asymptotic regime) of a numerical scheme that cannot be seen by studying (2.3).
This phenomenon is also well known for systems of ODEs (see [HW96, IV.11]).

2.1.2 Stability of numerical integrators for SDEs

We now look for conditions such that a numerical method (1.23) applied to the linear test
problem (2.3) yields numerically stable solutions. Similarly to the continuous case, we say
that the numerical method (1.23) applied to (2.3) is said to be

• numerically asymptotically stable if limn→∞ |Xn| = 0 with probability 1;

• numerically mean-square stable if limn→∞ E(|Xn|2) = 0.

Applying a numerical method to the test SDE (2.3) usually yields [Hig00] the following
one step difference equation

Xn+1 = R(p, q, ξn)Xn, (2.6)

where p = λh, q = µ
√
h, and ξn is a random variable (e.g. a Gaussian ξn ∼ N (0, 1) or a

discrete random variable). Once this difference equation is formulated, it is not difficult
to define the domains of mean-square and asymptotic stability of the numerical method
applied to the test SDE (2.3). In particular, for the numerical mean-square stability, we
have [Hig00]

lim
n→∞

E(|Xn|2) = 0 ⇐⇒ (p, q) ∈ SMS
num where SMS

num :=
{
(p, q) ∈ C2 ;E|R(p, q, ξ)|2 < 1

}
,

(2.7)
and for the numerical asymptotic stability, assuming R(p, q, ξ) 6= 0 with1 probability 1 and
E((log |R(p, q, ξ)|)2) <∞, it is shown in [Hig00, Lemma 5.1] the equivalence

lim
n→∞

|Xn| = 0 with probability 1 ⇐⇒ (p, q) ∈ SASnum, (2.8)

with SASnum :=
{
(p, q) ∈ C2 ; E(log |R(p, q, ξ)|) < 0

}
.

Mean-square A-stability and L-stability We denote SASnum,SMS
num, respectively, the

above domains of asymptotic and mean-square stability. A numerical integrator is called

• mean-square A-stable if SMS
SDE

⊆ SMS
num;

1 Note that if R(p, q, ξ) = 0 with a non-zero probability, then (2.6) is numerically asymptotically stable.
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• mean-square L-stable, if it is mean-square A-stable and if E(|R(pk, qk, ξ)|2) → 0 holds
for all sequences (pk, qk) ∈ SMS

SDE with ℜ(pk) → −∞.

If we restrict (p, q) ∈ R2 then the domains of mean-square or asymptotic stability are called
regions of stability. Applied to the scalar test equation (2.3), the Milstein-Talay method

Milstein-Talay method, see (1.29)

q²

p

-5 -4 -3 -2 -1 0 1
0

1

2

3

4

Figure 2.1: Mean-square stability region (dark gray) and asymptotic stability region (dark
and light grays) of the explicit second order Milstein-Talay method with stability function
(2.9).

(1.29) (and also its derivative-free weak formulation (2.14) introduced in the next Section)
has a stability function (2.6) satisfying

E(|R(p, q, ξ)|2) =
∣∣∣∣1 + p+

p2

2

∣∣∣∣
2

+ |1 + p|2|q|2 + |q|4
2
. (2.9)

It can be seen in Figure 2.1 that this scheme has restricted mean-square and asymptotic
stability regions in the (p, q)-plan (here with real values). This is expected for classical
explicit methods and our goal is to introduce new weak second order integrators with
extended stability domains to avoid severe timestep size restrictions for stiff SDEs. Here,
the dotted lines in Figure 2.1 indicate the boundaries of the mean-square stability domain
(2.4) and asymptotic stability domain (2.5) for the exact solution of (2.3).

2.2 Efficient derivative free explicit Milstein-Talay method

We briefly discuss the weak order two Milstein-Talay method (1.29) and explain an efficient
implementation of (1.29) that will be helpful to understand our new stabilized stochastic
integrators. First it is well-known that one can replace the stochastic integrals Ir,0, I0,r, Iq,r
in (1.29) by discrete random increments without altering the weak order two. Consider
independent discrete random variables χr, ξr, r = 1, . . . ,m satisfying

P(χr = ±1) = 1/2, P(ξr = ±
√
3) = 1/6, P(ξr = 0) = 2/3, (2.10)

then both Ir,0 and I0,r can be replaced by h3/2ξr and Iq,r can be replaced by

Jq,r =





h(ξrξr − 1)/2 if q = r
h(ξqξr − χq)/2 if r < q
h(ξqξr + χr)/2 if r > q.

(2.11)

The weak approximation (2.11) involving 2m− 1 discrete random variables was first pro-
posed in [Mil86] (see also [MT04, p. 96, eq. (1.25)]). The weak second order method (1.29)
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with discrete random increments then reads (see e.g. [MT04, p. 103, eq. (2.18)])

X̂1 = X0 + hf(X0) +
√
h

m∑

r=1

gr(X0)ξr +
m∑

q,r=1

(gr)′(X0)g
q(X0)Jq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)

(2.12)

+
m∑

r=1

(
(gr)′(X0)f(X0) +

1

2

m∑

q=1

(gr)′′(X0)(g
q(X0), g

q(X0)) + f ′(X0)g
r(X0)

)h3/2ξr
2

.

Using additional Runge-Kutta stages allows to remove f ′f, f ′gr, f ′′(gr, gr) without altering
the weak order two of (2.12). Next, we use the following approximation first proposed in
[Röß09] to construct efficient derivative free second order methods,
m∑

q,r=1

(gr(X0))
′gq(X0)Jq,r =

1

2

m∑

r=1

[
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r

)]

+ O(h3). (2.13)

Again, this approximation does not alter the weak second order of the method and requires
only 3 evaluations of each function gr. In contrast, a naive finite difference approximation
e.g., 1

2h

∑m
q,r=1

[
gr
(
x+ hgq(x)

)
− gr

(
x− hgq(x)

)]
Jq,r, would require 2m+ 1 evaluations

of each function gr at the points x, x±hgq(x). Finally, we naturally arrive to the following
scheme for general systems of Itô SDEs (1.22).

Algorithm 2.2.1 (Derivative-free Milstein-Talay integrator of weak order 2)
Given X0, compute X1 explicitly as follows.

K1 = X0 + hf(X0), K2 = K1 +
√
h

m∑

r=1

gr(X0)ξr,

X1 = X0 +
h

2

(
f(X0) + f(K2)

)

+
1

2

m∑

r=1

(
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r

))
(2.14)

+

√
h

2

m∑

r=1

(
gr
(X0 +K1

2
+

√
h

2

m∑

q=1

gq(X0)χq
)
+ gr

(X0 +K1

2
−
√
h

2

m∑

q=1

gq(X0)χq
))
ξr.

Each step of the above scheme necessitates only five evaluations of the diffusion functions
gr, r = 1, . . . ,m, independently of the dimension m. The method (2.14) – a modification
of the second order method in [KP92, eq. (2.7) Chap. 14] – seems not to have appeared
in the literature, in particular the finite difference discretisation in the last line of (2.14)
seems new. The following proposition states that its weak order of accuracy is two. The
idea of the proof is to study the difference after one step of weak order two scheme (2.12)
and the modified version (2.14). It relies on standard arguments using Remark 1.2.1. It
will be useful for the construction of high weak order integrators for stiff SDEs.

Theorem 2.2.2 Consider the system of SDEs (1.22) with f, gr ∈ C6
P (R

N ,RN ), Lipschitz
continuous. Then the derivative free Milstein-Talay method (2.14) for the approximation
of (1.22) satisfies

|E(φ(X(nh)))− E(φ(Xn))| ≤ Ch2, 0 ≤ nh ≤ T

for all φ ∈ C6
P (R

N ,R), where C is independent of n, h.
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2.3 Diagonally implicit integrators for SDEs

This section summarizes the work [AVZ13b]. Based on the derivative-free Milstein-Talay
integrator (2.14), we introduce the following integrator of weak order two for the integration
of (1.22). We highlight that the integrator is drift-implicit, which means that it is implicit
with respect to the drift function f , but explicit with respect to the diffusion functions
gr, r = 1, . . . ,m. Recall that such explicitness with respect to the diffusion functions is a
desirable property to avoid stability issues (see Remark 1.2.8).

Algorithm 2.3.1 (S-SDIRK: diagonally implicit Runge-Kutta method of weak second or-
der) Given X0, compute X1 as follows.

K1 = X0 + γhf(K1),

K2 = X0 + (1− 2γ)hf(K1) + γhf(K2),

K∗
1 = X0 + β1γhf(K1) + β2γhf(K2),

K∗
2 = X0 + γhf(K1) +D−1(K∗

1 −X0),

K∗
3 = K∗

1 + β3hf(K
∗
2 ),

X1 = X0 +
h

2
f(K1) +

h

2
f
(
K2 +

√
h

m∑

r=1

gr(K∗
2 )ξr

)

+
1

2

m∑

r=1

[
gr
(
K∗

2 +
m∑

q=1

gq(K∗
2 )Jq,r

)
− gr

(
K∗

2 −
m∑

q=1

gq(K∗
2 )Jq,r

)]

+

√
h

2

m∑

r=1

[
gr
(
K∗

3 +

√
h

2

m∑

q=1

g(K∗
2 )χq

)
+ gr

(
K∗

3 −
√
h

2

m∑

q=1

g(K∗
2 )χq

)]
ξr,(2.15)

where β1 = 2−5γ
1−2γ , β2 = γ

1−2γ , β3 = 1
2 − 2γ, and ξr, χr, Jq,r satisfy (2.10) and (2.11)

respectively.

For γ = 0, we have K∗
1 = K∗

2 = X0 and K∗
3 = X0 + (h/2)f(X0) and we recover the

explicit Milstein-Talay method (2.14). For the stage K∗
2 , we use D−1 to stabilize K∗

1 −
X0, where D = I − γhf ′(X0). This stabilization procedure is well-known in ODEs (to
stabilize the error estimator of an integrator) and has been introduced by Shampine [HW96,
Sect. IV.8], its use for SDEs is motivated in Remark 2.3.2 below. We emphasize that it does
not represent a computational overhead as the LU -factorization of D needed to compute
D−1(K∗

1 −X0) is already available from the solution of the nonlinear system for the stages
(K1,K2) (see Remark 2.3.3).

We consider two choices for γ that yield mean-square A-stable integrators:

• the S-SDIRK(2,2) method for the value γ = 1 −
√
2
2 which gives a weak order 2

A-stable method with deterministic order 2;

• the S-SDIRK(2,3) method for the value γ = 1
2 +

√
3
6 which gives a weak order 2

A-stable method with deterministic order 3.

The value of γ for the S-DIRK(2,3) yields in the deterministic case a method of order 3
which is strongly A-stable, i.e. |R(∞)| < 1, while the value of γ for the S-DIRK(2,2) yields
a method of order 2 which is L-stable, i.e. it is A-stable and R(∞) = 0. L-stability is
desirable in the case of very stiff deterministic problems as it permits to damp the very
high frequencies.
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Remark 2.3.2 We observe that by removing the term involving D−1 in the S-SDIRK
methods (2.15), the denominators of the stability functions of the internal stages K∗

j would
scale at best as (1− γp)2. The resulting methods would no longer be mean-square A-stable.

Standard arguments permit to show that the integrator (2.15) has second weak order of
accuracy for general systems of SDEs: it satisfies the statement of Theorem 2.2.2.

Complexity In addition to the solution of the deterministic two stage SDIRK method
(which yields the stages (K1,K2)) one step of the scheme (2.15) costs one evaluation of
the drift function f , 5 evaluations of each diffusion functions gr, and the generation of
2m random variables. The cost is similar to the diagonally implicit methods proposed in
[DR09a] (in particular the number of evaluation of the diffusion functions gr, r = 1, . . . ,m
is independent of the number of Wiener processes m).

Remark 2.3.3 We emphasize that the computation of D−1(K∗
1−X0) in the scheme (2.15)

does not represent any computational overhead. Indeed, as for any deterministic or stochas-
tic diagonally implicit method [HW96, DR09a], the usual procedure for evaluating K1,K2

is to compute the LU -factorization of D = I−γhf ′(X0) (f ′(X0) is usually further approx-
imated by finite differences) and make the quasi-Newton iterations

LU(Kk+1
i −Kk

i ) = −Kk
i +X0 + δ2i(1− 2γ)hf(K1) + γhf(Kk

i ), i = 1, 2, (2.16)

where δ2i is the Kronecker delta function. The same LU -factorization is then used to
compute D−1(K∗

1 −X0) by solving

LUY = K∗
1 −X0,

whose cost in negligible: the cost of evaluating K∗
2 together with K∗

3 is the same as one
iteration of (2.16).

The following Theorem states that S-SDIRK(2,2) is not only a mean-square A-stable
integrator, but also a mean-square L-stable integrator, as defined in Section 2.1.2.

Theorem 2.3.4 The integrator S-SDIRK(2,2) is mean-square L-stable.

The main idea of the proof of Theorem 2.3.4 is to note that E(|R(p, q, ξ)|2) is an increasing
function of |q|2, thus the mean-square A-stability of the method is equivalent to

sup
ℜz<0

E(|R(z,
√
−2ℜz, ξ)|2) ≤ 1.

and for the mean-square L-stability one has to prove in addition

sup
ℜz<0

E(|R(z,
√
−2ℜz, ξ)|2) → 0 for ℜz → −∞.

The above quantity can be studied as a function of z = x + iy. It turns out that its
maximum with respect to y is achieved simply for y = 0.

Remark 2.3.5 It can be checked numerically that the integrator S-SDIRK(2,3) is mean-
square A-stable. A rigorous proof is however more tedious to derive because the determin-
istic stability function of the method does not decay to zero (note that the scheme is not
L-stable).
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DDIRDI5 [DR09a]
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Figure 2.2: Mean-square stability region (dark gray) and asymptotic stability region (dark
and light grays) for DDIRDI5 [DR09a] (left pictures) and S-SDIRK(2,2) (right pictures).

SDE test problem: dX(t) = λX(t)dt+ µX(t)dW (t)
mean-square stepsize restriction for mean-square stability

method A-stability −λ = µ2 = 5 −λ = µ2 = 50 −λ = µ2 = 500
Milstein-Talay (2.14) no h ≤ 0.236 h ≤ 0.0236 h ≤ 0.00236
DDIRDI5 [DR09a] no h ≤ 0.246 h ≤ 0.0246 h ≤ 0.00246

S-SDIRK (2,2) or (2,3) yes no restriction no restriction no restriction

Table 2.1: Comparison of mean-square stability constraints.

The mean-square A-stability of S-SDIRK(2,2) is illustrated in in Figure 2.2 (right pic-
tures). We now exhibit the advantage of our method over the Milstein-Talay method (2.14)
and the weak second order drift-implicit method DDIRDI5 considered in [DR09a] and suit-
able only for small noise regimes (left pictures in Fig. 2.2). In particular, we consider the
linear test problem (2.3) and compare the behaviour of the three different methods for
a range of parameters λ, µ for which the solution of (2.3) is mean-square stable. As we
can see in Table 2.1, even for a moderate stiff problem (−λ = µ2 = 5) in contrast to the
S-SDIRK methods introduced here, there is quite a severe stepsize restriction in order for
the numerical solution to be mean-square stable for the Milstein-Talay and the DDIRDI5
methods. Furthermore, as expected we observe that the stepsize restriction for the other
two methods becomes more severe as we increase the stiffness of the problem.

We finally compare the performance of the introduced stochastic integrators on a non-
linear stiff system of SDEs with a one-dimensional noise (d = 2,m = 1),

dX(t) =
(
α(Y (t)− 1)− λ1X(t)(1−X(t))

)
dt− µ1X(t)(1−X(t))dW (t),

dY (t) = −λ2Y (t)(1− Y (t))dt− µ2Y (t)(1− Y (t))dW (t), (2.17)

which is inspired from a one-dimensional population dynamics model [Gar88, Chap. 6.2].
Note that if we linearise (2.17) around the stationary solution (X,Y ) = (1, 1), for α = 0
we recover (twice) the linear test problem (2.3). We take the initial conditions X(0) =
Y (0) = 0.95 close to this steady state and use the parameters λ2 = −4, µ2 = 1, α = 1.

We take for the deterministic part of the problem the stiff parameter λ1 = −500 and we
shall consider for the noise parameter µ1 either the stiff value µ1 =

√
500 or the non-stiff
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Figure 2.3: Weak convergence plots for the nonlinear stiff problem (2.17) for S-SDIRK(2,2)
(solid line), S-SDIRK(2,3) (dashed line), DDIRDI5 (dashed-dotted-dotted line) [DR09a].
Error for E(X(1)2) versus the stepsize h, where 1/h = 1, 2, 3, 4, 6, 8, 11, 16, 23, 32. Averages
over 108 samples.

value µ1 = 1. We plot in Figure 2.3 the errors for E(X(T )2) at the final time T = 1 versus
stepsizes h for the integrators DDIRDI5, S-SDIRK(2,2), S-SDIRK(2,3) taking the averages
over 108 samples. Reference solutions where computed using the Milstein-Talay method
(2.14) with stepsize h = 10−4. We consider the two cases of a non-stiff noise (µ1 = 1)
and a stiff noise (µ1 =

√
500). In the non-stiff noise case (left picture), the results of S-

SDIRK(2,3) are nearly identical to those of DDIRDI5 with hardly distinguishable curves,
while in the stiff noise case (right picture), the results for DDIRDI5 are not included
because this method is unstable for the considered stepsizes, as predicted by the linear
stability analysis (see the stepsize restrictions in Table 2.1). It is remarkable in both cases
that S-SDIRK(2,2) is more than four magnitudes more accurate than S-SDIRK(2,3) for
steps with size ∼ 10−1, a regime for which curves with slope two can be observed. We
believe that the mean-square L−stability of the S-SDIRK(2,2) method is responsible for
this behavior.

2.4 Explicit stabilized integrators for stiff stochastic prob-
lems

This section summarized the work [AVZ12]. The mean-square stability domain of an ex-
plicit stochastic integrator is always bounded because its stability function involves poly-
nomial expressions. Such integrator is thus never mean-square A-stable. The aim of the
Section is to present a new class of explicit stabilized integrators, whose mean-square sta-
bility domain size grows rapidly compared to the computational cost (quadratically with
respect to the number of function evaluations of the method).

We first define for a > 0 the following “portion of the true mean-square stability region"

SMS
a = {(p, q) ∈ (−a, 0)× R ; p+

1

2
|q|2 < 0}, (2.18)

and define for a given method

ℓ = sup{a > 0 ; SMS
a ⊂ SMS

num}, d = sup{a > 0 ; (−a, 0)× {0} ⊂ SMS
num}, (2.19)
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where d is the size of the stability domain along the deterministic p-axis (observe that
d ≥ ℓ). For the Milstein-Talay methods (1.29) or (2.14), we have ℓ = 0, d = 2. In
contrast, the new S-ROCK2 methods introduced in the present section have values ℓ, d
increasing quadratically with the stage parameter s. In turn, the ratio of stability versus
work increases linearly, while for classical explicit methods, it is bounded.

Weak order one S-ROCK methods [AL08] For deterministic systems (1.1) of ODEs,
a well-know stabilization procedure for the Euler method has been proposed in [VS80]. Its
construction is based on the classical Chebyshev polynomials Ts(cosx) = cos(sx). Given
an integer s ≥ 1, the number of stages, and a damping parameter η ≥ 0, we define the
following Runge-Kutta method (first order Chebyshev method) with step size h by the
following explicit recursion

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s

X1 = Ks, (2.20)

where ω0 = 1 + η
s2
, ω1 = Ts(ω0)

T ′
s(ω0)

. Applied to the linear test problem dX(t)/dt = λX(t)

the method (2.20) gives X1 = Rs(p)X0, where p = λh and where Rs(p), called the sta-
bility function (polynomial) of the method, is given by Rs(p) = Ts(ω0 + ω1p)/Ts(ω0). We
emphasize that (2.20) denotes in fact a family of methods indexed by the stage number s.
A crucial property of the methods (2.20) is

|Rs(p)| ≤ 1 for all p ∈ (−ds, 0), (2.21)

with ds ≃ C · s2, for s large enough, where C depends on the damping parameter η (for
η = 0, C = 2). Thus, the length ds of the stability domain

S := {p ∈ C; |R(z)| ≤ 1} (2.22)

of the methods increases quadratically with s on the negative real axis. This quadratic
growth of the stability domain is the key feature of such methods compared to standard
explicit integrators.

The idea for stabilizing the Euler-Maruyama (1.28) is now simply to damp its stability
function R(p, q, ξ) = 1 + p + qξ, obtained by applying (1.28) to (2.3) using Rs(p) (with a
value of the damping η optimized for each s, see [AL08]). The corresponding Runge-Kutta
type scheme reads [AL08]

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s

X1 = Ks +
m∑

r=1

gr(Ks)∆Wr. (2.23)

The method (2.23) is denoted S-ROCK(1/2,1) and has strong order 1/2 and weak order 1
for general systems of SDEs (1.22). Another method of strong and weak orders 1 has
been considered in [AL08] in a one-dimensional context. Using the approximation (2.13)
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from [Röß09], a multi-dimensional derivative free version, denoted S-ROCK(1,1), can be
obtained straightforwardly by replacing the last line in (2.23) by

X1 = Ks +

m∑

r=1

gr(Ks)∆Wr +
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Iq,r
)
− gr

(
Ks −

m∑

q=1

gq(Ks)Iq,r
))
,

where Iq,r are defined in (1.30) and by considering a larger damping η as discussed in [AL08]
(see also the related work [KB13]). It turns out that S-ROCK(1/2,1) and S-ROCK(1,1)
include a portion of the true mean-square stability region that scales like ℓs ≃ 0.33 · s2 and
ℓs ≃ 0.19 · s2, respectively.

Second order stabilization Similarly to the weak order one S-ROCK methods, the
idea to design new integrators is to stabilize a weak second order method, and we shall
consider the non-stiff integrator (2.14). We start with a deterministic stabilized second
order Chebyshev method. Recall that the derivation of optimal stability functions suitable
for the stabilization of second order (deterministic methods) is a non trivial task and various
strategies have been proposed [Leb89, VS80, AM01, Abd02]. We choose here the second
order orthogonal Runge-Kutta Chebyshev methods (ROCK2) introduced in [AM01]. The
idea is to search for a stability polynomial Rs(p) = w2(p)Ps−2(p), where Ps−2(p) is a
member family of polynomials {Pj(z)}j≥0 orthogonal with respect to the weight function
w2(x)2√
1−x2 . The polynomial Ps−2 has degree s− 2, while w2 is a positive polynomial of degree

two (depending on s). One constructs the polynomials w2 such that Rs satisfies [AM01]

Rs(p) = 1 + p+
p2

2
+O(p3), (2.24)

together with a large stability interval along the negative real axis (2.21), increasing as
ds ≃ 0.81 ·s2. Thanks to the recurrence relation of the orthogonal polynomials {Pj(z)}j≥0,
a method of order two for (1.1) based on a recurrence formula can be constructed 2

K0 = X0, K1 = K0 + µ1hf(K0),

Kj = µjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2τhf(Ks−2),

X1 = Ks−2 +

(
2σ − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (2.25)

The parameters µj , kj (depending on s) are obtained from the three-term recurrence rela-
tion [AM01, eq. (24)-(25)] of the orthogonal polynomials {Pj(z)}j≥0, while σ, τ (that also
depend on s) satisfy w2(p) = 1 + 2σp+ τp2 and are chosen such that (2.24) holds.

In preparation for the extension of the ROCK2 methods to stochastic problems, we
explain a novel strategy to introduce damping in the scheme (2.25). The idea is to consider
the following scheme for a fixed scalar parameter α.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = αµjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2ταhf(Ks−2)

X1 = Ks−2 +

(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (2.26)

2The two last stages of the method are written is a slightly different way as in the ROCK2 method
[AM01, Equ. (26-27)] as (2.25) is more convenient for an extension to stochastic integrators. We emphasize
that it has the same order and similar stability properties as the ROCK2 method [AM01, Equ. (26-27)].
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Figure 2.4: Comparison of polynomials involved in ROCK2 and S-ROCK2 for s = 13.
Polynomials Rs,α (solid lines), Ps−2(αp) (dashed lines). We also include the polynomial
Ps(αp) in the right picture (dotted lines).

Note that for α = 1, we recover the original ROCK2 method (2.25). Applied to the linear
test problem dX/dt = λX,X(0) = X0 this method yields (setting p = hλ and X0 = 1)

X1 = (1 + 2σαp+ ταp
2)Ps−2(αp) =: Rs,α(p). (2.27)

Lemma 2.4.1 The method (2.26) has second order for the system of ODEs (1.1) for any
α provided

σα =
1− α

2
+ ασ, τα =

(α− 1)2

2
+ 2α(1− α)σ + α2τ. (2.28)

In Figure 2.4, we plot, for s = 13, the polynomials Ps−2(αp) and Rs,α(p) (defined in (2.27))
involved in the standard ROCK2 method (α = 1, left picture) and the S-ROCK2 method
(α ≃ 1.615 right picture) introduced in the next section. It can be seen that increasing
α reduces the amplitude of the oscillations of Rs,α(p). The appropriate choice of α is
discussed below.

We are now in position to introduce our new explicit stabilized integrator, obtained
by stabilizing the stochastic Milstein-Talay method (2.14) with the modified deterministic
ROCK2 method (2.26).

Algorithm 2.4.2 (S-ROCK2 integrator of weak order two) Given X0, compute X1

as follows.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = µjαhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s,

K∗
s−1 = Ks−2 + 2ταhf(Ks−2) +

√
h

m∑

r=1

gr(Ks)ξr,

X1 = Ks−2 +
(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(K∗

s−1)

+
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Jq,r

)
− gr

(
Ks −

m∑

q=1

gq(Ks)Jq,r

))
(2.29)

+

√
h

2

m∑

r=1

(
gr
(
Ks−1 +

√
h

2

m∑

q=1

gq(Ks)χq
)
+ gr

(
Ks−1 −

√
h

2

m∑

q=1

gq(Ks)χq
))
ξr.

where α = 1/(2P ′
s−1(0)) and σα, τα are given by (2.28). Here, the constants µj , νj , κj , σ, τ

depend on s and are the same as for the standard deterministic ROCK2 integrator (2.25).
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work stability
integrator #f #gr #random ds ℓs

s steps of Milstein-Talay (2.14) 2s 5s 2ms 2s 0
one step of S-ROCK2 (2.29) s+ 2 5 2m ≃ 0.42(s+ 2)2 ≃ 0.42(s+ 2)2

Table 2.2: Computational complexity for an SDE in dimensions N (drift) andm (diffusion).
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Figure 2.5: Comparison of S-ROCK2 (solid lines) and the weak order one S-ROCK
methods (1, 1) (dashed lines), (12 , 1) (dotted lines). Left picture: optimal stage parameter
s as a function of

√
ℓ, where ℓ is given by (2.19). Right picture: stability efficiency c(s) =

ℓs/s
2.

Numerical computations show that the S-ROCK2 method includes a portion of the
true mean-square stability region SMS

ℓ that grows with the stage number as ℓS−ROCK2 ≃
0.42(s + 2)2. The computational complexity of one step of the S-ROCK2 method with
stepsize h is reported in Table 2.2 and compared to s steps with stepsize h/s of the weak
second order Milstein-Talay method (2.14). The main feature of our S-ROCK2 integrators
is that the mean-square stability region sizes ℓs, ds grow quadratically with respect to the
computational work #f + #gr, while ℓs = 0 and ds grows only linearly for the standard
explicit method.

In Figure 2.5 we plot the length ℓ defined in (2.19) of the portion of the true mean-
square stability region SMS

ℓ as a function of the number of stages used. As we can see
the behaviour of the S-ROCK2 method is ℓ ≃ Cs2 similarly to the S-ROCK methods of
weak order 1 [AL08, AC08]. Furthermore, once can also see that the S-ROCK2 method
is actually more efficient from a stability point of view, since the stability efficiency factor
c(s) = ℓs/s

2 converges numerically to about 0.42 for large s, which is larger than the
S-ROCK(1/2,1/2) and S-ROCK(1,1) values of 0.33 and 0.19, respectively.

Standard arguments show that the S-ROCK2 method (2.29) has weak second order of
accuracy: it satisfies the statement of Theorem 2.2.2 for general systems of SDEs.

Example: electric potential in a neuron Although our analysis applies only to sys-
tems of SDEs, we consider here an SPDE model for the propagation of an electric potential
V (x, t) in a neuron [Wal86]. This potential is governed by a system of non-linear PDEs
called the Hodgkin-Huxley equations [HH52], but in certain ranges of values of V, this
system of PDEs can be well approximated by the cable equation [Wal86]. In particular, if
the neuron is subject to a uniform input current density over the dendrites and if certain
geometric constraints are satisfied, then the electric potential satisfies the following linear
cable equation with uniform input current density.
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Figure 2.6: Mean-square stability regions (dark gray) and asymptotic stability regions
(dark and light grays) of S-ROCK2 for s+ 2 = 8, 15, 30, and 127 stages, respectively.

∂V

∂t
(x, t) = ν

∂2V

∂x2
(x, t)− βV (x, t) + σ(V (x, t) + V0)Ẇ (x, t), 0 ≤ x, t ≤ 1, (2.30)

∂V

∂x
(0, t) =

∂V

∂x
(1, t) = 0, t > 0, V (x, 0) = V0(x), 0 ≤ x ≤ 1,

where Ẇ (x, t) = ∂2

∂x∂tw(x, t) is a space-time white noise meant in the Itô sense. Here we
have assumed that the distance between the origin (or soma) to the dendritic terminals is 1,
and that the soma is located at x = 0. Furthermore, the white noise term is describing the
effect of the arrival of random impulses and the multiplicative noise structure depicts the
fact that the response of the neuron to a current impulse may depend on a local potential
[Wal86]. The quantity of interest is the threshold time τ = inf{t > 0;V (t, 0) > λ}, since
when the potential at the soma (somatic depolarization) exceeds the threshold λ the neuron
fires an action potential.

The SPDE (2.30) yields, after space discretization with finite differences [DG00] the
following stiff system of SDEs where V (xi, t) ≈ ui, with xi = i∆x, ∆x = 1/N ,

dui = ν
ui+1 − 2ui + ui−1

∆x2
dt− βuidt+ σ

ui + V0√
∆x

dwi, i = 0, . . . , N, (2.31)

where the Neumann boundary condition requires u−1 = u1 and uN+1 = uN−1. Here
w0, . . . wN are independent standard Wiener processes, and dwi indicates Itô noise. We
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(b) ∆t = 1/50, ∆x = 1/200, fixed t.

0

0.5

1

0

0.5

1
−100

−80

−60

−40

−20

xt

V(x,t)

(c) ∆t = 1/50, ∆x = 1/200. Solution
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Figure 2.7: Samples of realisations of the SPDE (2.30) (discretized in space) using S-
ROCK2 with s + 2 = 8 stages (resp. 11) for ∆x = 1/150 (resp. ∆x = 1/200). Figures
(a),(b): solutions as functions of x at fixed times t = 0, 0.2, 0.4, . . . , 1.0 (increasing with
time, from bottom to top). Figure (d): solution as a function of t for x = 0.

consider the initial condition V0(x) = −70+20 cos(5πx)(1−x) and the constants ν = 10−2,
σ = 4 · 10−3, β = 1, V0 = 10, λ = −40. We consider the time interval (0, T ) with T = 1.
Note that the noise in (2.31) is in diagonal form which permits to simplify the formulation
of the method (see [AVZ12, Rem. 3.3]).

2.5 A “swiss-knife” integrator for stiff (stochastic) diffusion-
advection-reaction problems

This section summarizes the work in [AV13b]. We introduce a new partitioned implicit-
explicit integrator, called PIROCK, based on the explicit second order orthogonal Runge-
Kutta Chebyshev method (ROCK2) introduced in [AM01] and combining ideas from
[VSH04, AL08, AVZ12, AVZ13b, Zbi11]. We derive a single algorithm that can combine
a diffusion term FD with any combination of advection and/or reaction terms FA, FR and
that can also treat Itô stochastic systems of the form

ẏ = F (y) = FD(y) + FA(y) + FR(y) +
m∑

j=1

F jG(y)ξ̇j , y(0) = y0, (2.32)

where ξj , j = 1, . . . ,m are independent one-dimensional Wiener processes. The main idea
of the new method is to modify the finishing procedure of the standard ROCK2 method
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[AM01], i.e. the final stages of ROCK2 used to achieve the order two of accuracy. We
introduce a partitioned RK method, where the diffusion terms FD and advection terms FA
are treated explicitly, while the reaction terms FR are treated implicitly.

Compared to similar existing stabilized methods, the PIROCK method has the follow-
ing features:

• for problems with stiff reactions, the number of function evaluations of the reaction
terms FR (solved implicitly) is independent of the stage number s used to handle the
stiffness of the diffusion terms FD (in contrast, the number of implicit stages in each
step of the IRKC method is equal to s);

• for advection dominated problem,3 the PIROCK method is more efficient than the
RKC or ROCK2 solvers as it has better stability in the imaginary direction and
requires a number of evaluations of the advection terms that is independent of the
stage number of the method; compared to the PRKC method [Zbi11], the PIROCK
method has larger stability domains on both the real and the imaginary parts;

• for problems with expensive evaluation of (non-stiff) reaction terms PIROCK is more
efficient than RKC [VS80] or ROCK2 [AM01] as the number of evaluation of the
reaction terms is independent of the stage number of the method; for such problems,
it is comparable to the PRKC method [Zbi11] but has larger stability along the
negative real axis;

• for problems involving white noise, it is more efficient than previously constructed
S-ROCK methods [AC08, AL08], as PIROCK has a larger mean-square stability
domain;

• it is the first explicit stabilized integrator that can treat non-symmetric diffusion
operators: in the case of a non-symmetric differential operator the eigenvalues of the
Jacobian of FD are typically located in a sector

Sθ = {−ρeiτ ; ρ ≥ 0,−θ ≤ τ ≤ θ} (2.33)

of the left half complex plane, where θ ≤ π/2 is the angle of this sector. The PIROCK
integrator can deal with for large angles up to θ = π/4, whereas standard stabilized
integrators like RKC and ROCK2 can be applied only if θ is very small.

The proposed PIROCK algorithm is versatile and efficient (hence the “ swiss-knife")
in handling problems such as (1.1) for various regimes with a single code. It is fully
adaptive and requires no tuning from the user. Appropriate error estimators take care
of the stiff and non-stiff components of the problems as to deliver a variable step size
aiming at an integration error of the size of a tolerance given by the user. While efficient
stabilized integrators for special regimes of (1.1) are available, none has existed until now
for the various potential regimes of (1.1). We also emphasize that PIROCK is more than
a simple combination of integrators developed in [VSH04, AL08, AVZ12, AVZ13b, Zbi11],
as the coupling of the different regimes requires new ideas to stabilize the various possible
combinations of the dynamics in (1.1).

3 Notice also that optimal stabilized polynomial functions along the imaginary axis have only a linear
growth with respect to the stage number [IV.2,1]. Thus, stabilized explicit integrators have no advantage
for pure hyperbolic problems.
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The PIROCK algorithm couples the standard ROCK2 integrator with the following
classical deterministic methods. The noise terms are treated using similar ideas as for the
S-SDIRK(2,2) and the S-ROCK2 methods.

FA–method FR–method
0
1
3

1
3

2
3

2
3

1
4 0 3

4

γ γ
1− γ 1− 2γ γ

1
2

1
2

(2.34)

where γ = 1−
√
2/2. A 3-stage third order explicit method is taken for the advection (so

that a non-empty portion (−i
√
3, i

√
3) of the imaginary axis is included in the stability

domain of the FA method) and a 2-stage second order singly diagonally implicit RK method
for the reaction. This latter method is L-stable and can be efficiently implemented: due

advection FA
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Figure 2.8: Complex stability domains (2.22) for the FA and the FR when applied to the
linear test problem dX(t)/dt = λX(t). The dashed lines indicate the boundaries of the
error estimator stability domains.

to the diagonal structure of the RK coefficients, a only single LU factorization needs to be
done once per step if using a quasi-Newton method [HW96].

Example: a 2D brusselator with non-symmetric diffusion, advection, a highly
stiff reaction, and stiff Itô stochastic noise To illustrate the versatility and efficiency
of the proposed PIROCK integrator, we consider a modification of the Brusselator problem
[HW96] with simultaneously all the difficulties of a non-symmetric diffusion operator, a stiff
reaction, advection, and a two-dimensional stiff Itô stochastic noise, defined as

∂u

∂t
= ν∆u+ ν/2∆v + µU · ∇u+

(
A+ u2v − (B + 1)u

)
+ (σ11 + σ12u)Ẇ1,

∂v

∂t
= −ν/2∆u+ ν∆v +

(
µV · ∇v + f

)
+
(
Bu− u2v

)
+ (σ21 + σ22uv)Ẇ2. (2.35)

For this problem we thus have to open all the blades of the “swiss-knife". For the diffusion
and advection parameters, we take ν = 0.1, µ = 0.1, U = (−0.5, 1)T , V = (0.4, 0.7)T .
We also consider a stiff reaction with parameters A = 1.3, B = 107, and with stiff noise
parameters σ11 = 3, σ12 = 4.4 ·103, σ21 = 0.5, σ22 = 1. Since −B+σ221/2 < 0, the reaction-
noise system can be shown to be mean-square stable. We also consider an inhomogenity
defined as f(x) = 5 if (x1−0.3)2+(x2−0.6)2 ≤ 0.32, and f(x) = 0 else. We consider a space
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Figure 2.9: Non-symmetric diffusion-advection-reaction-noise problem (2.35). Space dis-
cretization: two 200× 200 meshes. Constant step size h = 10−2.

discretization with two 200×200 meshes and consider the constant time step size h = 10−2

on the time interval (0, 1). The number of stages used at each step to treat the diffusion is
smax = 28. We plot in Figure 2.9 one realisation of the problem (2.35). In picture 2.9(a),
we plot the solutions u(x, t), v(x, t) as a function of time t for x = (0, 0) fixed, while in
picture 2.9(b), we plot the solution v(x, t) at final time t = 1 as a function of the spatial
variable x = (x1, x2). It can be seen that the solution oscillates stochastically in time, while
it remains smooth in space. Note that for the standard Euler-Maruyama method, the step
size restriction for mean-square stability can be estimated as h ≤ 0.64 · 10−8, which makes
this method of no practical use for this problem.

2.6 Perspectives

Note that the stabilization methodology used for deriving our weak order two integrators
for stiff SDEs can in principle be adapted to stabilize higher order integrators. In addition,
for a practical computation, the expectancy E(φ(XN )) is approximated by a Monte-Carlo
method [KP92]. The efficiency of this later approximation is not addressed in this work
but very important in practice. In particular, the new weak order two integrators for stiff
SDEs introduced could be combined with the recently proposed Multilevel Monte-Carlo
method [Gil08].

It would be interesting the extend the swiss-knife integrator to treat the issues of
constrained systems (e.g. the conservation of mass in the Navier-Stokes equation) or local
spatial mesh refinements. This remains a challenge in the context of explicit stabilized
integrators.
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This chapter is devoted to the numerical approximation of the solution of multiscale
in space problems and summarizes the works [AV12a] and [AV11, AV12b, AV13a] in col-
laboration with A. Abdulle. A standard finite element method usually requires a very
fine spatial mesh that resolves this multiscale structure. In contrast, an appropriate ho-
mogenization method can provide an accurate solution, but with a significantly reduced
computational cost.

Multiscale media properties enter in the modeling of many important problems, we
mention the infiltration of water in porous medium (e.g. the Richards problem [BB91]), and
nonlinearities of the type considered in this chapter arise naturally in several applications,
for instance the modeling of the thermal conductivity of the Earth’s crust [WHN09], the
study of electrical potential or thermal diffusion in composite materials [KL08] (see also
the surveys [AEEVE12, Abd13] and reference therein).

3.1 Homogenization framework

Given a bounded, convex, and polyhedral domain Ω in Rd, we focus successively on the
following two classes of problems. Although they are of different natures, we would like to
highlight in the chapter common phenomena and tools arising in their study:

• a class of linear parabolic problems with a multiscale time-dependent tensor,

∂tuε −∇ · (aε(x, t)∇uε) = f in Ω× (0, T )

uε = 0 on (0, T )× ∂Ω (3.1)

uε(x, 0) = g(x) in Ω,

where T > 0 is fixed and we assume f ∈ L2(0, T ;L2(Ω)), g ∈ L2(Ω),

• and a class of nonlinear elliptic problems with a nonlinear multiscale tensor,

−∇ · (aε(x, uε)∇uε) = f in Ω

uε = 0 on ∂Ω, (3.2)

where we assume f ∈ H−1(Ω).

In (3.1), the tensor aε is time-dependent, while in (3.2) it depends non-linearly on the
solution uε itself. In both cases, we assume that the tensor aε(x, t) satisfies aε ∈ (L∞(Ω×
J))d×d where J = (0, T ) or R, respectively, and that it is elliptic and bounded uniformly
with respect to ε, i.e.,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x, t)ξ · ξ, ‖aε(x, t)ξ‖ ≤ Λ‖ξ‖, (3.3)

∀ξ ∈ Rd and a.e. x ∈ Ω, t ∈ J, ∀ε > 0.

For the nonlinear problem (3.2), we make the additional assumption that aε(x, s) is Lip-
schitz continuous with respect to s uniformly with respect to ε and a.e. x. Using the
smoothness assumptions on the data, for all fixed ε > 0, both problems (3.1) and (3.2) are
known to have a unique solution uε in the Sobolev spaces1

E = {v; v ∈ L2(0, T ;H1
0 (Ω)), ∂tv ∈ L2(0, T ;H−1(Ω)} (3.4)

for problem (3.1) (see for example [LM68]) and E = H1
0 (Ω) for problem (3.2) (see [Chi09,

Thm. 11.6] for a proof), respectively. Using the assumptions (3.3) where all constants are
1 The Sobolev space (3.4) is equipped with the usual norm ‖v‖E = ‖v‖L2(0,T ;H1(Ω))+‖∂tv‖L2(0,T ;H−1(Ω)).



3.1 Homogenization framework 47

independent of ε, we have in both problems that uε is bounded in E uniformly with respect
to ε. Standard compactness arguments then ensure the existence of a subsequence of {uε}
(still denoted by ε) such that

uε ⇀ u0 weakly in E. (3.5)

The aim of homogenization theory is to find and study a limiting equation for the weak
limit u0. Asymptotic expansions can be used to find a candidate for such a limiting
equation. To show that the solution of this latter equation is the limit (in some sense) of
the oscillating family of functions {uε}, one uses usually the notion of G or H convergence
(see [Spa68, DGS73, MT97]), the former being restricted to symmetric tensors. It is then
possible to show that there exists a subsequence of {uε} (still denoted by ε) satisfying (3.5)
and such that u0 is the solution of a so-called homogenized problem of the same form as
the multiscale problem (3.1)

∂tu0 −∇ ·
(
a0(x, t)∇u0

)
= f in Ω× (0, T )

u0 = 0 on (0, T )× ∂Ω (3.6)

u0(x, 0) = g(x) in Ω,

or the multiscale problem (3.2),

−∇ ·
(
a0(x, u0)∇u0

)
= f in Ω

u0 = 0 on ∂Ω, (3.7)

respectively, with the exception that the tensor aε(x, t) is replaced by an homogenized
tensor a0(x, t) satisfying again (3.3), possibly with different constants λ,Λ. We refer to
[BLP78, BOFM92, CD99] and [BM81] for details on homogenization theory in the context
of linear parabolic problems and nonlinear elliptic problems, respectively.

Let us note that if aε(x, t) has more structure as for example if aε(x, t) = a(x, x/ε, t) =
a(x, y, t) is periodic with respect to y, with a(x, y+ei, t) = a(x, y, t) where ei, i = 1, . . . , d
denotes the canonical basis of Rd, then one can show provided appropriate smoothness
conditions that the whole sequence {uε} weakly converges in the sense (3.5), without the
need of extracting a subsequence. In addition, the homogenized tensor can be characterized
in the following way [AD82]:

a0(x, s) =

∫

Y
a(x, y, s)(I + JTχ(x,y,s))dy, for x ∈ Ω, s ∈ R, (3.8)

where Y = (0, 1)d, Jχ(x,y,s) is a d × d matrix with entries Jχ(x,y,s)ij = (∂χi)/(∂yj) and

χi(x, ·, s), i = 1, . . . , d are the unique solutions of the cell problems
∫

Y
a(x, y, s)∇yχ

i(x, y, s) ·∇w(y)dy = −
∫

Y
a(x, y, s)ei ·∇w(y)dy, ∀w ∈W 1

per(Y ). (3.9)

Remark 3.1.1 We sometimes refer to the problems (3.2) or (3.7) as “non monotone prob-
lems”. This stems from the following fact: writing for example (3.7) in weak form

B(u0;u0, v) =

∫

Ω
a0(x, u0(x))∇u0(x)∇v(x)dx = (f, v), ∀v ∈ H1

0 (Ω)

we observe that the monotonicity property B(u0;u0, u0 − v) − B(v; v, u0 − v) ≥ C‖u0 −
v‖2H1Ω with C ≥ 0 does not hold in general for the quasilinear problem (3.7). This lack
of monotonicity makes the numerical analysis for finite element method, specially when
quadrature formula are used, a nontrivial task as shown in Section 3.4.1.
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Prohibitive cost of standard integrators The discretization of the problems (3.1)
and (3.2) with a standard finite element method (FEM) is a well understood problem.
Taking a finite dimensional subspace S(Ω, Th) of the Banach space (3.4), we search for a
piecewise polynomial solution uh(t) ∈ S(Ω, Th) of the variational equation corresponding
to (3.1) in S(Ω, Th). However, the major issue is that usual convergence rates can only be
obtained if the spatial meshsize h satisfies h < ε. For multiscale problems with order of
magnitude of discrepancies between the scale of interest (for which we would like to set the
spatial grid) and ε, the restriction h < ε can be prohibitive in terms of degrees of freedom
of the computational procedure if not impossible to realize.

A micro-macro homogenization method In this chapter, we focus on the so-called
finite element Heterogeneous Multiscale Method (FE-HMM). The idea of the FE-HMM
detailed in the next section is to rely on two grids, and in turn on two FE methods for
the approximation of the homogenized solution u0. A macroscopic method relying on a
macroscopic mesh H > ε which does not discretize the fine scale and microscopic meshes
(defined on sampling domains within the macroscopic mesh) which discretize the smallest
scale. Proper averaging of the microscopic FEM on the sampling domains allows to recover
macroscopic (averaged) data related to the homogenized problem whose coefficients are
unknown beforehand.

We mention that a popular alternative approach for multiscale PDE problems is the
Multiscale Finite Element method (MsFEM) [HWC99, AB05] (see also [CS08] in the con-
text of quasilinear problems of the type (3.2)), where the main idea is to enrich a coarse
FE space with oscillating functions for the computation of the oscillatory solution uε. The
computational complexity of the MsFEM is O(H−dε−d) where H denotes the mesh size
and d is the dimension of the computational domain. Note that the MsFEM complexity
grows as ε tends to zero. In contrast, denoting H and ĥ = h/ε the macro mesh size
and (scaled) micro mesh sizes, the complexity of the FE-HMM is O(H−dĥ−d) (consisting
of O(H−d) independent linear micro problems with O(ĥ−d) degrees of freedom) and this
is independent of the smallness of the parameter ε (optimal macro and micro mesh size
refinement strategies are presented in Sect. 3.4.2.2).

Corrector procedure We emphasize that the FE-HMM aims at capturing the homog-
enized solution u0 of (3.1) and (3.2). However, a numerical corrector can be defined
extending the alreading computed micro solutions (defined in the sampling domains) on
each whole macro element. With the help of a numerical corrector, an approximation of
the fine scale solution uε can then be obtained (see [EMZ05],[ABDe09, Chap. 3.3.2] in the
context of the linear FE-HMM). For nonlinear monotone elliptic problems, the convergence
of such reconstruction procedure has been proved in [EP03, EP04] for the MsFEM in the
stochastic case, and in [Glo06] for both the MsFEM and HMM in the general case of an
arbitrary G-converging sequence.

3.2 The finite element heterogeneous multiscale method (FE-
HMM)

In this section we describe the numerical method under study for the class of multiscale
parabolic problems (3.1). It is based on the finite element heterogeneous multiscale meth-
ods, introduced an analyzed in [EE03, Abd05, EMZ05] (see [ABDe09, Abd11] for a review).
The modifications of the method for solving the considered class of nonlinear problems (3.2)
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are discussed in Section 3.4.2. In the HMM context, two approaches for the (spatial) nu-
merical homogenization of parabolic problems have been proposed. The method in [AE03]
is based on finite difference discretization techniques while the method in [MZ07] is based
on finite element discretization techniques.

Macro finite element space We consider a partition TH of Ω in simplicial or quadri-
lateral elements K of diameter HK and denote H := maxK∈TH HK . We assume that this
triangulation is conformal, shape regular. We consider the family of FE spaces

Sℓ0(Ω, TH) = {vH ∈ H1
0 (Ω); v

H |K ∈ Rℓ(K), ∀K ∈ TH}, (3.10)

where Rℓ(K) is the space Pℓ(K) of polynomials on K of total degree at most ℓ if K is a
simplicial FE, or the space Qℓ(K) of polynomials onK of degree at most ℓ in each variable if
K is a quadrilateral FE. We define a quadrature formula {x̂j , ω̂j}Jj=1 on a reference element
K̂, where x̂j are integration points and ω̂j are quadrature weights. The quadrature formula
{xj,K , ωj,K}Jj=1 is then defined as usual on any element K of the triangulation using an
affine transformation. We make the following assumptions, which are similar to the case
of linear elliptic problems (see [CR72] or [Cia91, Sect. 29]):
(Q1) ω̂j > 0, j = 1, . . . , J , and

∑
j∈J ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2

L2(K̂)
, ∀p̂(x̂) ∈ Rℓ(K̂);

(Q2)
∫
K̂ p̂(x)dx =

∑
j∈J ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2ℓ − 2, ℓ) if K̂ is a

simplicial FE, or σ = max(2ℓ− 1, ℓ+ 1) if K̂ is a rectangular FE.
These requirements on the quadrature formula ensure that the optimal H1 and L2

convergence rates for standard FEM hold when using numerical integration [CR72].

Micro finite element spaces Based on the quadrature points, we define the microscopic
sampling FE domains

Kδj = xKj
+ δI, I = (−1/2, 1/2)d (δ ≥ ε). (3.11)

We consider a (micro) partition Th of each sampling domain Kδj , conformal and shape reg-
ular, in simplicial or quadrilateral elements Q of diameter hQ and denote h = maxQ∈Th hQ.
The sampling domains Kδj are typically of size ε, that is |Kδj | = O(εd), and hence
h < ε ≤ δ holds for the micro mesh size. For this partition we define a micro FE space

Sq(Kδj , Th) = {zh ∈W (Kδj ); z
h|T ,∈ Rq(Q), Q ∈ Th}, (3.12)

where W (Kδj ) is a certain Sobolev space. Various spaces can be chosen for the micro
numerical method, and the choice of the particular space has important consequences in
the numerical accuracy of the method as we will see below (this choice sets the coupling
condition between macro and micro solvers). We consider here

W (Kδj ) =W 1
per(Kδj ) = {z ∈ H1

per(Kδj );

∫

Kδj

zdx = 0}, (3.13)

for a periodic coupling or
W (Kδj ) = H1

0 (Kδj ) (3.14)

for a coupling through Dirichlet boundary conditions. Essential for the definition of the
multiscale method below is the definition of the following microfunctions. Let wH ∈
Sℓ0(Ω, TH) and consider its linearization

wHlin = wH(xKj
) + (x− xKj

) · ∇wH(xKj
)
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at the integration point xKj
. Associated to wHlin in the sampling domain Kδj we define a

microfunction wh,tKj
, depending on t, such that (wh,tKj

− wHlin) ∈ Sq(Kδj , Th) and
∫

Kδj

aε(x, t)∇wh,tKj
· ∇zhdx = 0 ∀zh ∈ Sq(Kδj , Th). (3.15)

We may now define the FE-HMM for (3.1).

Multiscale FE-HMM method. Find uH ∈ [0, T ]× Sℓ0(Ω, TH) → R such that

(∂tu
H , vH) +BH(t;u

H , vH) = (f(t), vH) ∀vH ∈ Sℓ0(Ω, TH)
uH = 0 on ∂Ω× (0, T ) (3.16)

uH(x, 0) = uH0 ,

where

BH(t;u
H , vH) :=

∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

aε(x, t)∇uh,tKj
· ∇vh,tKj

dx, (3.17)

and uH0 ∈ Sℓ0(Ω, TH) is chosen to approximate the exact initial condition g (see Remark
3.3.8 below). Here, uh,tKj

, vh,tKj
are the solution of the microproblems (3.15) constrained by

uHlin, v
H
lin, respectively.

3.3 Optimal a priori estimates for linear parabolic problems

3.3.1 Preliminaries: reformulation of the FE-HMM

In order to perform the analysis of the FE-HMM, it is convenient to introduce the following
auxiliary bilinear form

B(t; v, w) =

∫

Ω
a0(x, t)∇v(x) · ∇w(x)dx, ∀v, w ∈ H1

0 (Ω), (3.18)

where a0(x, t) is the homogenized tensor of (3.6). Consider also the associated bilinear
form for standard FEM with numerical quadrature,

B0,H(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
a0(xKj

, t)∇vH(xKj
) · ∇wH(xKj

), (3.19)

for all vH , wH ∈ Sℓ0(Ω, TH). Of course, a0(x, t) is usually unknown, otherwise there is no
need for a multiscale method. In order to define the FEM with numerical quadrature (as
in the above bilinear form) and for the analysis, some regularity on the tensor a0(x, t) is
needed. We assume

(H1) a0ij , ∂ta
0
ij ∈ C0([0, T ]×K) for all K ∈ TH for all i, j = 1, . . . , d.

The following construction of a numerically homogenized tensor is useful (see [Abd11,
Abd12] for details). Let ei, i = 1, . . . , d, denote the canonical basis of Rd. For each ei and
each t ∈ [0, T ], we consider the following elliptic problem
∫

Kδj

aε(x, t)∇ψi,h,tKj
(x) · ∇zh(x)dx = −

∫

Kδj

aε(x, t)ei · ∇zh(x)dx, ∀zh ∈ Sq(Kδj , Th),

(3.20)
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where Sq(Kδj , Th) is defined in (3.12) with either periodic or Dirichlet boundary conditions.
We also consider the problem

∫

Kδj

aε(x, t)∇ψi,tKj
(x) · ∇z(x)dx = −

∫

Kδj

aε(x, t)ei · ∇z(x)dx, ∀z ∈W (Kδj ), (3.21)

where the Sobolev space W (Kδj ) is defined in (3.13) or (3.14). We then define two tensors

a0K(xKj
, t) :=

1

|Kδj |

∫

Kδj

aε(x, t)

(
I + JT

ψh,t
Kj

(x)

)
dx, (3.22)

where J
ψh,t
Kj

(x)
is a d× d matrix with entries

(
J
ψh,t
Kj

(x)

)

iℓ

= (∂ψi,h,tKj
)/(∂xℓ) and

ā0K(xKj
, t) :=

1

|Kδj |

∫

Kδj

aε(x, t)

(
I + JTψt

Kj
(x)

)
dx, (3.23)

where Jψt
Kj

(x) is a d× d matrix with entries
(
Jψt

Kj
(x)

)

ik

= (∂ψi,tKj
)/(∂xk).

Using the above numerically homogenized tensors (3.22) or (3.23) and the results of
[Abd12] (see also Lemmas 11 and 12 of [Abd11]) we obtain the following reformulation of
the bilinear form BH(·, ·) of (3.17) which will be useful for the analysis.

Lemma 3.3.1 The bilinear form BH(·, ·) defined in (3.17) can be written as

BH(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
a0K(xKj

, t)∇vH(xKj
) · ∇wH(xKj

). (3.24)

Using (3.23) we can also define a bilinear form useful for the subsequent analysis

B̄H(t; v
H , wH) =

∑

K∈TH

J∑

j=1

ωKj
ā0K(xKj

, t)∇vH(xKj
) · ∇wH(xKj

). (3.25)

Solving the parabolic problem (3.16) with the bilinear form B̄H amounts to neglecting the
micro errors, as the micro functions in (3.21) are exact.

We quantify the discrepancy between the bilinear forms B0,H(t; ·, ·) defined in (3.19)
and BH(t; ·, ·) defined in (3.17). This will account for the error done at the microscale
as well as the so-called modeling error, the error induced by artificial micro boundary
conditions or non-optimal sampling of the micro structure. Consider the quantity

rHMM := sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖a0(xKj

, t)− a0K(xKj
, t)‖F (3.26)

+ sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂ta0(xKj

, t)− ∂ta
0
K(xKj

, t)‖F ,

where ‖ · ‖F denotes the Frobenius norm2. Following the strategy developed in [Abd12,
Abd09, Abd11] for the error analysis, we can further decompose rHMM into micro and

2 The Frobenius norm of a matrix M is defined as ‖M‖F =
√

trace(MTM).
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modeling error terms as

rHMM =
1∑

k=0

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂kt a0(xKj

, t)− ∂kt ā
0
K(xKj

, t)‖F
︸ ︷︷ ︸

rMOD

+
1∑

k=0

sup
K∈TH ,xKj

∈K,t∈[0,T ]
‖∂kt ā0K(xKj

, t)− ∂kt a
0
K(xKj

, t)‖F
︸ ︷︷ ︸

rMIC

, (3.27)

where we have used the tensor (3.23).
The following lemma is a consequence of the Cauchy-Schwarz inequality.

Lemma 3.3.2 Let B0,H(t; ·, ·) and BH(t; ·, ·) be the bilinear forms defined in (3.19) and
(3.17), respectively. Then we have

|B0,H(t; v
H , wH)−BH(t; v

H , wH)|+ |B′
0,H(t; v

H , wH)−B′
H(t; v

H , wH)|
≤ CrHMM‖vH‖H1(Ω)‖wH‖H1(Ω)

Analogously, the modeling and the micro error can be traced in the following lemma.

Lemma 3.3.3 Let B0,H(t; ·, ·), BH(t; ·, ·) and B̄H(t; ·, ·) be the bilinear forms defined in
(3.19), (3.17), and (3.25), respectively. Then we have for all vH , wH ∈ Sℓ0(Ω, TH),

|B0,H(t; v
H , wH)− B̄H(t; v

H , wH)|+ |B′
0,H(t; v

H , wH)− B̄′
H(t; v

H , wH)|
≤ CrMOD‖vH‖H1(Ω)‖wH‖H1(Ω),

|B̄H(t; vH , wH)−BH(t; v
H , wH)|+ |B̄′

H(t; v
H , wH)−B′

H(t; v
H , wH)|

≤ CrMIC‖vH‖H1(Ω)‖wH‖H1(Ω).

Standard estimates for bilinear forms with numerical quadrature. Consider the
usual nodal interpolant IH : C0(Ω) → Sℓ0(Ω, TH) onto the FE space Sℓ0(Ω, TH) defined in
(3.10). The following estimates are based on the Bramble-Hilbert lemma and have first
been derived in [CR72, Thm. 4 and Thm. 5]. They will often be used in our analysis.
Assuming (Q2) and the regularity assumptions of Theorem 3.3.4 (see next section), we
have for all vH , wH ∈ Sℓ0(Ω, TH) (where µ = 0 or 1),

|B(t; vH , wH)−B0,H(t; v
H , wH)| ≤ CH‖vH‖H1(Ω)‖wH‖H1(Ω), (3.28)

|B(t; IHu0, wH)−B0,H(t; IHu0, wH)| ≤ CHℓ‖u0(t)‖W ℓ+1,p(Ω)‖wH‖H1(Ω), (3.29)

|B(t; IHu0, wH)−B0,H(t; IHu0, wH)| ≤ CHℓ+µ‖u0(t)‖W ℓ+1,p(Ω)‖wH‖H̄2(Ω). (3.30)

where ‖wH‖H̄2(Ω) =
(∑

K∈TH ‖wH‖2H2(K)

)1/2.
An α-accretive operator. For the time-discretization analysis, we introduce for each
time t the linear operator AH(t) : Sℓ0(Ω, TH) → Sℓ0(Ω, TH) defined as

(−AH(t)vH , wH) = BH(t; v
H , wH), for all vH , wH ∈ Sℓ0(Ω, TH), (3.31)

where BH is the bilinear form defined in (3.17). Consider the sector in the complex plane

Sα = {ρeiθ ; ρ ≥ 0, |θ| ≤ α}.
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The operator AH can be extended straightforwardly to a complex Hilbert space based
on Sℓ0(Ω, TH) equipped with the complex scalar product (u, v) =

∫
Ω u(x)v(x)dx which is

an extension of the usual L2 scalar product. It can be shown that −AH is a so-called
α-accretive operator3: there exist 0 ≤ α ≤ π/2 and C > 0 such that for all z /∈ Sα, the
operator zI +AH(t) is an isomorphism and

‖(zI +AH(t))
−1‖L2(Ω)→L2(Ω) ≤

1

d(z, Sα)
for all z /∈ Sα, (3.32)

where d(z, Sα) is the distance between z and Sα. In general one can show that α ∈ [0, π/2)
using the ellipticity and boundedness of the tensor. In the case of a symmetric tensor, all
the eigenvalues of AH are real and located on the negative real axis of the complex plane,
and one has simply α = 0. The proof of (3.32) is omitted as this is a classical result for the
time discretization of parabolic PDEs. More details can be found for instance in [Cro05].

3.3.2 Fully-discrete analysis of the multiscale spatial discretization for a

time-dependent tensor

We main now state the main result of this section.

Theorem 3.3.4 Consider u0, uH the solutions of (3.6), (3.16), respectively. Let µ = 0 or
1, ℓ ≥ 1 and 2 ≤ p ≤ ∞ such that ℓ > d/p. Assume (Q1),(Q2),(H1), (3.3) and

u0, ∂tu0 ∈ L2(0, T ;W ℓ+1,p(Ω)),

a0ij , ∂ta
0
ij ∈ L∞(0, T ;W ℓ+µ,∞(Ω)), ∀i, j = 1 . . . d.

Then we have the L2(H1) and C0(L2) estimates

‖u0 − uH‖L2([0,T ];H1(Ω)) ≤ C(Hℓ + rHMM + ‖g − uH0 ‖L2(Ω)), (3.33)

‖u0 − uH‖C0([0,T ];L2(Ω)) ≤ C(Hℓ+1 + rHMM + ‖g − uH0 ‖L2(Ω)), if µ = 1. (3.34)

If in addition, the tensor is symmetric, then we have the C0(H1) estimate

‖u0 − uH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ + rHMM + ‖g − uH0 ‖H1(Ω)). (3.35)

The constants C are independent of H, rHMM .

The first term in the right-hand side of the above estimates quantifies the error of the
macro solver. It shows that the proposed multiscale FEM gives optimal (macroscopic)
convergence rates in the C0(L2) and L2(H1) norms (and C0(H1) for symmetric tensors)
of the fully discrete FE-HMM (3.16). We emphasize that the above error estimates have
been derived without specific assumptions on the oscillation of the multiscale tensor. We
recall that the additional term rHMM defined in (3.26), that appears in the right-hand side
of (3.33) or (3.34), encodes the so-called modeling and micro error, i.e., the error due to
a possible mismatch of the averaging procedure in the FE-HMM, the boundary conditions
and size of the sampling domains as well as the discretization error done of the micro
FEMs.

To quantify further the term rHMM we need some regularity and growth assumption (in
terms of ε) of the solution of the microproblems (3.21). Motivated by the case of periodic
tensors (e.g. the chain rule applied to aε = a(x, x/ε, t)) we consider the following regularity

3 Equivalently, +AH is called an α-dissipative operator.
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assumption on the solution of problem (3.21)

(H2) |ψi,tKj
|Hq+1(Kδj

) + |∂tψi,tKj
|Hq+1(Kδj

) ≤ C ε−q
√
|Kδj |, where C is independent of ε, the

time t, the quadrature points xKj
, and the domain Kδj . We also suppose that the map

t → aε(·, t) ∈ (L∞(Ω))d×d is C1 and |∂taεij(t, ·)|L∞(Ω) ≤ C, for all t ∈ (0, T ) and all ε > 0.
We make the same assumptions on the solution of the modified problem (3.21) where the
tensor aε is replaced by aεT (the adjoint problem).

Remark 3.3.5 When Dirichlet boundary conditions (3.14) are imposed in (3.20), the as-
sumption (H2) can be easily satisfied (without any further knowledge about the structure

of the oscillating tensor aε) for q = 1 as |ψi,tKj
|H2(Kδj

) ≤ Cε−1
√

|Kδj | follows from classical

H2 regularity results ([Lad85, Chap. 2.6]), provided that |aεij(·, t)|W 1,∞(Ω) ≤ Cε−1 for i, j =

1, . . . , d. Then, following the proof of [AV13a, Lemma 4.12], |∂tψi,tKj
|H2(Kδj

) ≤ Cε−1
√
|Kδj |

holds, provided |∂taεij(·, t)|W 1,∞(Ω) ≤ Cε−1. For periodic boundary conditions (3.13) in
(3.20), (H2) can be established for any given q, provided aε = a(x, x/ε, t) = a(x, y, t) is
Y -periodic in y, δ/ε ∈ N, and aε is sufficiently smooth, by following classical regularity
results for periodic problems (see [BJS64, Chap. 3]). 4

Using the smoothness assumption (H2) permits to estimate the quantity rMIC in (3.27),
while the following structure assumption of a periodic tensor permits to estimate rMOD.

(H3) aε = a(x, x/ε, t) = a(x, y, t) Y -periodic in y, where we set Y = (0, 1)d.

We then have the following theorem.

Theorem 3.3.6 Consider u0, uH the solutions of (3.6), (3.16), respectively. In addition
to the assumptions of Theorem 3.3.4, assume (H2) and (H3). Assume also that ψi,tKδj

is the solution of the cell problem (3.20) in the space W 1
per(Kδj ), that ε/δ ∈ N, and that

the tensor a(x, x/ε, t) is collocated at the quadrature points a(xKj
, x/ε, t) in the FE-HMM

macro bilinear form (3.17) and in the micro problems (3.15). Then we have

‖u0 − uH‖L2([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ ‖g − uH0 ‖L2(Ω)),

‖u0 − uH‖C0([0,T ];L2(Ω)) ≤ C(Hℓ+1 +

(
h

ε

)2q

+ ‖g − uH0 ‖L2(Ω)), if µ = 1. (3.36)

If in addition, the tensor is symmetric, then

‖u0 − uH‖C0([0,T ];H1(Ω)) ≤ C(Hℓ +

(
h

ε

)2q

+ ‖g − uH0 ‖H1(Ω)).

The constants C are independent of H,h, ε.

The first term in Theorem 3.3.6 quantifies the error coming from the macro solver. The
second term quantities the error coming from the micro solver – when discretizing the
microproblems by a FEM – transmitted to macroscale. This term does not appear in the
analysis given in [MZ07], where the microsolutions uh, vh in (3.17) where supposed to be
exact. The additional analysis of the micro error allows to derive a macro-micro refinement
strategy.

4We also note that ∂k
t a

ε
ij |K ∈ W 1,∞(K) ∀K ∈ TH and |∂k

t a
ε
ij |W1,∞(K) ≤ Cε−1 with k = 0 and 1 are

sufficient, if the macro mesh is aligned with the (possible) discontinuities of aε (see [Abd12] for details).
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Remark 3.3.7 We emphasize that the remaining term rMOD defined in (3.27) does not
depend on the macro and micro mesh sizes H and h. In particular, any result concerning
the approximation of the homogenized tensor with artificial micro boundary conditions or
modified cell problems (e.g. [BP04],[EMZ05],[BB10],[Glo11],[Glo12],[Yur86]) could be used
in our analysis. If the tensor a(x, x/ε, t) is not collocated at the slow variable in the above
theorem, we get for the modeling error (see [AV13a, Appendix],[ABDe09, Prop. 14])

rMOD ≤ C δ.

If the solution of the cell problem (3.20) in H1
0 (Kδj ), a resonance error contributes to

rMOD. For a tensor independent of time, the results in [EMZ05] can be readily used in the
framework developed here for the analysis of parabolic problems and we have

rMOD ≤ C(δ +
ε

δ
).

This results could be extended for time-dependent tensor by following [EMZ05] and [AV13a,
Appendix].

3.3.3 Coupling with strongly A-stable implicit Runge-Kutta methods

In this section, we explain how fully discrete estimates in both space and time can be de-
rived. We focus on on implicit time discretizations (Runge-Kutta methods) with variable
timesteps analyzed in [LO95]. The case of explicit stabilized integrators (Chebyshev meth-
ods) is investigated in the next Section. We assume that the numerical initial condition
uH0 of the FE-HMM in (3.16) is chosen to approximate the exact initial condition g as

‖uH0 − g‖L2(Ω) ≤ C(Hℓ+1 + rHMM ), (3.37)

‖uH0 − g‖H1(Ω) ≤ C(Hℓ + rHMM ). (3.38)

Remark 3.3.8 There are several natural choices for the initial condition uH0 to satisfy
(3.37)-(3.38). For instance, one can take uH0 = ΠHg, the L2 projection of g on Sℓ0(Ω, TH),
defined as

(ΠHg − g, zH) = 0, ∀zH ∈ Sℓ0(Ω, TH), (3.39)

and then (3.37)-(3.38) hold without the rHMM terms5. One can also consider the elliptic
projection uH0 = PHg with respect to the bilinear forms B in (3.18) and BH in (3.17),

BH(0;PHg, z
H) = B(0; g, zH), ∀zH ∈ Sℓ0(Ω, TH), (3.40)

and (3.37)-(3.38) hold.

We consider a subclass of Runge-Kutta methods with coefficients aij , bj , j = 1, . . . , s
which are of order r with stage order (the accuracy of the internal stages) r−1, and which
are strongly A(θ)-stable with 0 ≤ θ ≤ π/2. This latter condition means that I−zΓ (where
Γ = (aij)) is a nonsingular matrix in the sector |arg(−z)| ≤ θ and the stability function 6

R(z) = 1 + zbT (I − zΓ)−1
1 satisfies |R(z)| < 1 in |arg(−z)| ≤ θ (we refer to [HW96, Sect.

IV.3,IV.15] for details on the stability concepts described here).

5 Note that the regularity assumed on u0, ∂tu0 in Theorem 3.3.4 implies u0(0) = g ∈ W ℓ+1,p(Ω).
6We recall that the stability function of a Runge-Kutta method is the rational function R(∆tλ) = R(z)

obtained after applying the method over one step ∆t to the scalar problem dy/dt = λy, y(0) = 1, λ ∈ C.



56 Chapter 3: Numerical homogenization methods for linear and nonlinear PDEs

Note that all s-stage Radau Runge-Kutta methods satisfy the above assumptions (with
θ = π/2) [HW96]. In particular, for s = 1, we retrieve the implicit Euler method

(M +∆tK(tn+1))U
H
n+1 =MUHn + FH(tn+1). (3.41)

where M denotes the mass matrix and K(t) denotes the stiffness matrix associated to the
FE-HMM bilinear form (3.17) in the basis of the macro FE space Sℓ0(Ω, TH). Our analysis
for implicit methods covers variable time step methods, provided that the stepsize sequence
{∆tn}0≤n≤N−1 with ∆tn = tn+1 − tn > 0 and tN = T satisfies for C, c > 0

N−1∑

n=0

|∆tn+1/∆tn − 1| ≤ C, c∆t ≤ ∆tn ≤ ∆t for all 0 ≤ n ≤ N − 1. (3.42)

The condition (3.42) may appear restrictive. However, a finite subdivision of the inter-
val [0, T ] into subintervals can be considered and (3.42) is required only on each of the
subintervals (see [LO95, Sect. 5]). This permits to use stepsizes of different scales.

The first theorem treats the case of implicit methods and is obtained by combining our
fully discrete error estimates in space (Theorem 3.3.6) with the results of [LO95].

Theorem 3.3.9 Consider u0 the exact solution of (3.6) and uHn the numerical solution
of a Runge-Kutta method for the FE-HMM problem (3.16), with variable timesteps {∆tn}
satisfying (3.42). Given an integer r ≥ 1, assume that the Runge-Kutta method has order
r when applied to ordinary differential equations, that it has stage order r − 1, and that it
is strongly A(θ)-stable with α < θ where α is the angle in (3.32) of accretivity of −AH .
Assume the hypotheses of Theorem 3.3.6 with µ = 1. Assume further (3.37),

f ∈ Hr(0, T ;L2(Ω)), aε ∈ Cr([0, T ], L∞(Ω)d×d) with ‖∂kt aε‖(L∞(Ω))d×d ≤ C, k = 1 . . . r,

and
‖∂rt uH(0)‖L2(Ω) ≤ C, (3.43)

where uH is the solution of (3.16). Then, we have the C0(L2) estimate

max
0≤n≤N

‖uHn − u0(tn)‖L2(Ω) ≤ C

(
Hℓ+1 +

(h
ε

)2q
+∆tr

)
. (3.44)

Assuming in addition (3.38) and that aε is symmetric, then we have the L2(H1) estimate

N−1∑

n=0

∆tn‖uHn − u0(tn)‖2H1(Ω) ≤ C

(
Hℓ +

(h
ε

)2q
+∆tr

)2

. (3.45)

All the above constants C are independent of H,h, ε,∆t.

The assumption (3.43) can be satisfied in dimension d = dimΩ ≤ 3 as proved in [AV12a,
Prop. 5.3] . We mention that for r = 1 the symmetry assumption on the tensor can be
removed for the estimate (3.45).

3.3.4 Coupling with explicit stabilized time-integrators

Recall form Section 2.4 that Chebyshev methods are a subclass of explicit Runge-Kutta
methods with extended stability domains along the negative real axis, which make them
integrators of choice for diffusion problems as considered in this chapter.
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In [VHS90], convergence rates in time independent of the spatial discretization parame-
ters have been derived for a class of linear parabolic problems for the RKC method [SSV98].
In this section, we extend such analysis to classes of explicit stabilized methods (including
ROCK2) in our context of multiscale homogenization problems.

We focus for simplicity on the case where the tensor aε is symmetric and time-independent.
Recall that it is essential when considering Chebychev methods that the eigenvalues of the
differential operator of the problem remain close to the negative real axis. This is auto-
matically the case when the tensor is symmetric.

Chebyshev methods are usually used in a “damped” form, where the stability function
satisfies the strong stability condition

sup
z∈[−Ls,−γ], s≥1

|Rs(z)| < 1, for all γ > 0, (3.46)

where Ls denotes the length of the stability domain, which grows quadratically with respect
to the stage number s (related to the number of diffusion function evaluations). For the
analysis, we shall also need that the stability functions are bounded in a neighbourhood of
zero uniformly with respect to s, precisely, there exist γ > 0 and C > 0 such that7

|Rs(z)| ≤ C for all |z| ≤ γ and all s. (3.47)

Theorem 3.3.10 Consider u0 the exact solution of (3.6) and uHn the numerical solution
of a Chebyshev method for the FE-HMM problem (3.16), applied with a constant timestep
∆t = T/N , and with stability functions {Rs(z)}s≥1. Assume that the tensor aε is symmet-
ric and time-independent, and that f = 0. Assume (3.37) and the hypotheses of Theorem
3.3.6 with µ = 1. Given r ≥ 1, assume that the order of the Chebyshev method is r,
precisely,

lim
z→0

∣∣∣∣
ez −Rs(z)

zr+1

∣∣∣∣ <∞ for all s ≥ 1. (3.48)

In addition to (3.47), assume the strong stability condition (3.46) holds with the number
of stages s chosen such that ρ∆t ≤ Ls, where ρ is the spectral radius of the operator AH
defined in (3.31). Then,

max
0≤n≤N

‖uHn − u0(tn)‖L2(Ω) ≤ C

(
Hℓ+1 +

(h
ε

)2q
+∆tr

)
. (3.49)

For the sake of brevity of the analysis, we assumed in Theorem 3.3.10 above that the source
term f is zero. Note that a non-zero time-independent source f(x) could also be considered
in the analysis by using a change of variable of the standard form u0(x, t) ↔ u0(x, t)−u0(x)
where u0 denotes the stationary solution of the problem, to retreive the zero source case
(we omit the details). Moreover, in the case where the strong stability condition (3.46) is
not satisfied (for instance if the damping is zero in the Chebyshev method (2.20)), we can
still show the convergence by exploiting the regularity of the initial condition, as illustrated
in [AV12a, Thm. 5.6].

Remark 3.3.11 For simplicity, we assumed rMOD = 0 in Theorems 3.3.9 and 3.3.10. If
(H3) does not hold, then (3.44), (3.45), and (3.49) remain valid provided the term rMOD

defined in (3.27) is added in the right-hand sides of these estimates.

7 The estimate (3.47) can be easily checked for the the Chebyshev methods (2.20) using the standard
formula Ts(x) = (ξs1 + ξs2)/2 where ξ1, ξ2 are the complex roots of X2 − 2xX + 1.
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3.4 Optimal a priori estimates for nonlinear non-monotone
elliptic problems

The finite element heterogeneous multiscale method relies of the standard finite element
method (FEM) with numerical quadrature. We first derive in Section 3.4.1 convergence
estimates for the standard FEM with the numerical quadrature, and then derive in Section
3.4.1.1 the convergence analysis of the FE-HMM.

3.4.1 The one scale case: analysis of numerical quadrature effects in

standard nonlinear finite element methods

We study finite element (FE) discretizations of second-order quasilinear elliptic problems
of the form (3.7),

−∇ · (a(x, u(x))∇u(x)) = f(x) in Ω, u(x) = 0 on ∂Ω, (3.50)

where Ω is a bounded convex polyhedron in Rd with d ≤ 3. We recall the assumptions
made on the tensor a(x, s) = (amn(x, s))1≤m,n≤d:

• the coefficients amn(x, s) are continuous functions on Ω × R which are uniformly
Lipschitz continuous with respect to s, i.e.,

∃Λ1 > 0, |amn(x, s1)−amn(x, s2)| ≤ Λ1|s1−s2|, ∀x ∈ Ω, ∀s1, s2 ∈ R, ∀ 1 ≤ m,n ≤ d.
(3.51)

• a(x, s) is uniformly coercive and bounded, i.e.,

∃λ,Λ0 > 0, λ‖ξ‖2 ≤ a(x, s)ξ·ξ, ‖a(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ Rd, ∀x ∈ Ω, ∀s ∈ R.
(3.52)

Since (3.51)-(3.52) hold, it is known (see e.g. [Chi09, Thm. 11.6]) that (3.50) has a unique
solution u ∈ H1

0 (Ω) for all f ∈ L2(Ω).
The convergence inH1(Ω) of the FE solution with numerical quadrature was first shown

in [FKS93] for piecewise linear FEs, without convergence rates. Note that the differential
operator associated to (3.50) is not monotone in general, so the analysis in [FŽ87] does not
apply here. In the absence of numerical quadrature, optimal a priori error estimates in the
H1 and L2 norms for FE methods (FEMs) were first given in [DD75]. The case of a FEM
with numerical quadrature is considered in this section. As exact integration in FEMs is
rarely possible, it is important to quantify the effect of numerical quadrature. This is an
essential ingredient of the analysis of the nonlinear FE-HMM conducted in Section 3.4.2.
Optimal convergence rates in the H1 and L2 norms are proved in this case. The practical
implementation of the non-linear FEM requires a Newton method. We also establish the
convergence of this latter method (crucial in applications) and the uniqueness of the FE
solution for a sufficiently fine FE mesh. If a(x, s) becomes independent of s, we recover
the results of [CR72] on FEMs with numerical quadrature for linear problems (convex
polyhedral domain case).

3.4.1.1 Finite element method with numerical quadrature

Consider the partition TH of Ω in simplicial or quadrilateral elements K satisfying the
usual assumptions (see Section 3.2). For the nonlinear analysis, we make the additional
assumption of a quasi-uniform mesh,

H

HK
≤ C for all K ∈ TH and all TH of the family of triangulations. (3.53)
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Consider for v, w scalar or vector functions that are piecewise continuous with respect to
the partition TH of Ω, the semi-definite inner product

(u, v)H :=
∑

K∈TH

J∑

j=1

ωj,Ku(xj,K)v(xj,K).

The FE solution of (3.50) with numerical integration reads: find uH ∈ Sℓ0(Ω, TH) such that

(a(·, uH)∇uH ,∇wH)H = FH(w
H) ∀wH ∈ Sℓ0(Ω, TH), (3.54)

where the linear form FH(w
H) is an approximation of

∫
Ω f(x)w

H(x)dx obtained for exam-
ple by using a quadrature formula. If f ∈W ℓ,q(Ω) with 1 ≤ q ≤ ∞ and ℓ > d/q, then f is
continuous on Ω and one can take FH(wH) := (f, wH)H .

The existence of the FE solution uH ∈ Sℓ0(Ω, TH) in (3.54) can be shown for all H > 0
using the Brouwer fixed point theorem. Details can be found for example in [DD75] (see
also [BS08]).

3.4.1.2 A priori error analysis for non-monotone problems

The following theorem states the that the convergence rates in the H1 and L2 norms of
standard FEM with numerical quadrature for the class of nonlinear elliptic problems (3.50)
are identical to the linear elliptic case.

Theorem 3.4.1 Consider u the solution of problem (3.50). Let ℓ ≥ 1. Let µ = 0 or 1.
Assume (Q1), (Q2), (3.53), and

u ∈ Hℓ+1(Ω) ∩W 1,∞(Ω),
amn ∈W ℓ+µ,∞(Ω× R), ∀m,n = 1 . . . d,
f ∈W ℓ+µ,q(Ω), where 1 ≤ q ≤ ∞, ℓ > d/q.

In addition to (3.51), (3.52), assume that ∂uamn ∈W 1,∞(Ω×R), and that the coefficients
amn(x, s) are twice differentiable with respect to s, with the first and second order derivatives
continuous and bounded on Ω× R, for all m,n = 1 . . . d.8

Then there exists H0 > 0 such that for all H ≤ H0, the solution uH of (3.54) is unique,
and the following H1 and L2 error estimates hold,

if µ = 0, 1, ‖u− uH‖H1(Ω) ≤ Chℓ for all h ≤ h0, (3.55)

if µ = 1, ‖u− uH‖L2(Ω) ≤ Chℓ+1 for all h ≤ h0, (3.56)

where the constant C is independent of h.

Inspired by [DD75], the proof of Theorem 3.4.1 is conducted in three main steps.
Step 1. Using the compact injection H1(Ω) ⊂ L2(Ω), the boundedness of a numerical
solution in H1

0 (Ω) and the uniqueness in H1
0 (Ω) of the exact solution of (3.50), we show,

‖u− uH‖L2(Ω) → 0 for H → 0. (3.57)

Step 2. We derive the following H1 a priori error bound

‖u− uH‖H1(Ω) ≤ C(Hℓ + ‖u− uH‖L2(Ω)), for all H > 0. (3.58)

8 The uniqueness of uH for all H ≤ H0 and the H1 estimate (3.55) for all H > 0 both hold without this
additional assumption and without (3.53) and u ∈ W 1,∞(Ω), if Cλ−1Λ1‖u‖H2(Ω) < 1 (where C depends

only on Ω and (Sℓ
0(Ω, TH))H>0).
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Compared to the linear case, the additional term ‖u−uH‖L2(Ω) in the right-hand side is due
to the non-monotonicity of the differential operator of (3.50). The proof of (3.58) relies on
an estimate for (a(uH)∇uH ,∇wH)−(a(uH)∇uH ,∇wH)H (obtained by using the Bramble-
Hilbert lemma and generalizing to a nonlinear context the estimates (3.28)(3.29)(3.30)),
and the use of the Gagliardo-Niremberg inequality ‖v‖2L3(Ω) ≤ C‖v‖L2(Ω)‖v‖H1(Ω), which
holds for all v ∈ H1(Ω) for d ≤ 3.
Step 3. We show that there exists H1 > 0 such that

‖u− uH‖L2(Ω) ≤ C(Hℓ+µ + ‖u− uH‖2H1(Ω)), for all H ≤ H1. (3.59)

This estimates relies on an Aubin-Nitsche duality argument, where we consider the adjoint
L∗ of the linearized operator associated to (3.50),

Lϕ := −∇ · (a(·, u)∇ϕ+ ϕ∂ua(·, u)∇u). (3.60)

An estimate between the FE solution with numerical quadrature of (3.60) and its exact
solution is crucial. It is established by using estimates for FEM with numerical quadrature
for indefinite linear elliptic problems (using a variant of Proposition 3.4.2 below).
Proof. [Proof of the H1 and L2 estimates.] Substituting (3.58) into (3.59) (with µ = 0), we
obtain

‖u− uH‖H1(Ω) ≤ C(Hℓ + ‖u− uH‖2H1(Ω)), for all H ≤ H1.

Substituting (3.57) into (3.58), we obtain ‖u − uH‖H1(Ω) → 0 for h → 0. We deduce
in the above inequality 1 − C‖u − uH‖H1(Ω) ≥ δ > 0 for all h ≤ h2, with h2 small
enough (but independent of the particular solution uH) hence, (3.55) is established for all
h ≤ min{h1, h2}. The estimate (3.56) is deduced by substituting (3.55) into (3.59) with
µ = 1. We postpone the proof of the uniqueness of uH to the end of Section 3.4.1.3.
FEM with numerical quadrature for indefinite linear problems. The Step 3 in
the proof of Theorem 3.4.1 relies on a priori estimates for FEM with numerical quadrature
for indefinite linear elliptic problems of the form

−∇ · (α(x)∇ϕ(x)) + β(x) · ∇ϕ(x) + γ(x)ϕ(x) = f(x) on Ω, ϕ = 0 on ∂Ω. (3.61)

This result, which may be of independent interest, generalizes to the case of numerical
quadrature a result of Schatz [Sch74]. The proof of the Proposition 3.4.2 below, relies
on the Aubin-Nitche duality argument (applied with the adjoint of (3.61)), the Fredholm
alternative, and the compact injection of L2(Ω) into H−1(Ω). Note that the bilinear form
associated to (3.61) is not uniformly coercive (it is indefinite) but it satisfies the Gårding
inequality (for bounded data α, β, γ).

Proposition 3.4.2 Let ℓ ≥ ℓ′ ≥ 1. Consider the linear problem (3.61) where α ∈
(W ℓ′,∞(Ω))d×d, β ∈ (W ℓ′,∞(Ω))d, γ ∈ W ℓ′,∞(Ω). Assume (Q1), (Q2). Assume that
the tensor α is uniformly coercive and bounded, i.e. satisfies (3.52). Assume that for all
right-hand side in H−1(Ω), the solution ϕ ∈ H1

0 (Ω) of problem (3.61) is unique. For a
fixed f , assume that the solution of (3.61) exists with regularity ϕ ∈ Hℓ′+1(Ω). Then, for
all h small enough, the FE problem: find ϕH ∈ Sℓ0(Ω, TH) such that

(α∇ϕH ,∇vH)H + (β · ∇ϕH + γϕH , vH)H = (f, vH), ∀vH ∈ Sℓ0(Ω, TH), (3.62)

possesses a unique solution ϕH ∈ Sℓ0(Ω, TH); and ϕH satisfies the estimate

‖ϕ− ϕH‖H1(Ω) ≤ CHℓ′‖ϕ‖Hℓ′+1(Ω) (3.63)
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where C is independent of H. 9

Using the Aubin-Nitsche duality argument for coercive linear elliptic problems with nu-
merical quadrature [CR72, Thm. 10], and assuming additional regularity on the coeffi-
cients (e.g. αmn, βm, γ ∈ W ℓ′+1,∞(Ω)), it is also possible to show the optimal L2 estimate
‖ϕ− ϕH‖L2(Ω) ≤ Chℓ

′+1‖ϕ‖Hℓ′+1(Ω).

3.4.1.3 The Newton method and the uniqueness of the numerical solution

We show that under the hypotheses of Theorem 3.4.1, the Newton method (3.64) can be
used to compute the numerical solution uH of the nonlinear system (3.54). Given an initial
guess zH0 ∈ Sℓ0(Ω, TH), the Newton method reads

NH(z
H
k ; zHk+1 − zHk , v

H) = FH(v
H)− (a(zHk )∇zHk ,∇vH)H , ∀vH ∈ Sℓ0(Ω, TH), (3.64)

where

NH(z
H ; vH , wH) := (a(·, zH)∇vH ,∇wH)H + (vH∂ua(·, zH)∇zH ,∇wH)H .

Consider for all h the quantity σH := supvH∈Sℓ
0(Ω,TH) ‖vH‖L∞(Ω)/‖vH‖H1(Ω). Using

(3.53), on can show the estimates σH ≤ C(1+| lnh|)1/2 for d = 2, and σH ≤ Ch−1/2 for d =
3, where C is independent of h. Theorem 3.4.3 generalizes the results in [DD75] to the
case of numerical quadrature. Its proof uses similar arguments.

Theorem 3.4.3 Consider uH a solution of (3.54). Under assumptions of Theorem 3.4.1,
there exist H0, δ > 0 such that if H ≤ H0 and σH‖zH0 − uH‖H1(Ω) ≤ δ, then the sequence
(zHk ) for the Newton method (3.64) is well defined, and ek := ‖zHk −uH‖H1(Ω) is a decreasing
sequence that converges quadratically to 0 for k → ∞,

ek+1 ≤ CσHe
2
k, (3.65)

where C is a constant independent of H, k.

Proof of the uniqueness of the FE solution (Theorem 3.4.1). Given two solutions
uH , ũH of (3.54), we consider the Newton method with initial value zH0 = ũH . Then, on
one hand, zHk = zH0 for all k (as ũH solves (3.54)). On the other hand, σH‖ũH−uH‖H1(Ω) ≤
CσHh

ℓ → 0 (as both ũH , uH satisfy (3.55)). Hence, Theorem 3.4.3 shows uH = ũH for all
H ≤ H3, where H3 is small enough. 10

�

3.4.2 The multiscale case: analysis of the nonlinear FE-HMM

We consider the class of nonlinear non-monotone multiscale problems (3.2) together with
the corresponding homogenized problem (3.7), as shown in [BM81, Theorem 3.6].

The FE-HMM method for computing a numerical approximation uH of u0, essentially
similar to the method proposed in [EMZ05]11 reads as follows. It is based on a macroscopic

9 A quadrature formula can also be used in the right-hand side of (3.62), if f has the regularity of Thm.
3.4.1.

10Observe that H3 ≤min{H1, H2}, where H1, H2 are defined in the proof of the H1-L2 bounds, thus
H0 = H3 in Thm. 3.4.1.

11 In [EMZ05] (3.66) is based on exact micro functions vKj
, wKj

instead of the FE micro functions

vh,sKj
, wh,s

Kj
and the micro-problems are nonlinear (see [EMZ05, equs. (5.3)-(5.4)]).
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FEM defined on QF with a macro FE space Sℓ0(Ω, TH) (defined as in Sect. 3.2), and mi-
croscopic FEMs recovering the missing macroscopic tensor at the macroscopic quadrature
points. For each macro element K ∈ TH and each integration point xKj

∈ K, j = 1, . . . , J,

we define the sampling domains Kδj = xKj
+ (−δ, δ)d, (δ ≥ ε). For each Kδj , we then

define a micro FE space Sq(Kδj , Th) ⊂ W (Kδj ) with simplicial or quadrilateral FEs and
a conformal and shape regular family of triangulation Th. The space W (Kδj ) is either
the Sobolev space W (Kδj ) = W 1

per(Kδj ) = {z ∈ H1
per(Kδj );

∫
Kδj

zdx = 0} for a periodic

coupling or W (Kδj ) = H1
0 (Kδj ) for a coupling through Dirichlet boundary conditions.

FE-HMM We define the nonlinear FE-HMM as follows. Find uH ∈ Sℓ0(Ω, TH) such that

BH(u
H ;uH , wH) = FH(w

H), ∀wH ∈ Sℓ0(Ω, TH),

where

BH(u
H ; vH , wH) :=

∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

aε(x, uH(xKj
))∇vh,u

H(xKj
)

Kj
(x)·∇wh,u

H(xKj
)

Kj
(x)dx,

(3.66)

and w
h,uH(xKj

)

Kj
(and similarly for v

h,uH(xKj
)

Kj
) denotes the solution of the micro problem

(3.15) with scalar parameter t = uH(xKj
).

3.4.2.1 Fully-discrete a priori error analysis

Consider the following smoothness and structure assumptions (H2), (H3) on the tensor,
analogous to those described in Section 3.3.2 and motivated in Remark 3.3.5.

(H2) Given q ∈ N, the cell functions ψi,sKj
∈ W (Kδj ) of problem (3.21) satisfy the bound

|ψi,sKj
|Hq+1(Kδj

) ≤ Cε−q
√
|Kδj |, with C independent of ε, the quadrature point xKj

, the
domain Kδj , and the parameter s for all i = 1 . . . d. Here, e1, . . . , ed is the canonical basis
of Rd. The same assumption is also made with the tensor aε replaced by (aε)T in (3.21).

(H3) For all m,n = 1, . . . , d, we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s) is
y-periodic in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and bounded
from Ω× R into W 1,∞

per (Y ).

Following the framework of analysis presented in Sect. 3.4.1.2 in the context of one-scale
problems, we obtain the following H1 and L2 a priori estimates of the nonlinear FE-HMM
involving the macro and micro mesh sizes H,h.

Theorem 3.4.4 Let ℓ ≥ 1, q ≥ 1 and µ = 0 or 1. In addition to the assumptions of
Theorem 3.4.1 on problem (3.7), assume (H2), (H3), and assume that aε satisfies (3.51),
(3.52). Then, there exist H0 > 0 and r0 > 0 such at if H ≤ H0 and h/ε ≤ r0 then

‖u0−uH‖H1−µ(Ω) ≤





C(Hℓ+µ + (hε )
2q + δ), if W (Kδj ) =W 1

per(Kδj ), δ/ε ∈ N∗,

C(Hℓ+µ + (hε )
2q),

if W (Kδj ) = W 1
per(Kδj ), δ/ε ∈ N∗,

and aε(x, s) is replaced by
a(xKj

, x/ε, s) in (3.66), (3.15),
(3.21),

C(Hℓ+µ + (hε )
2q + δ + ε

δ ), if W (Kδj ) = H1
0 (Kδj ) (δ > ε),

where we also assume δ ≤ r0 or δ + ε/δ ≤ r0 in the first and third cases, respectively. We
use the notation H0(Ω) = L2(Ω). The constants C are independent of H,h, ε, δ.
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If in addition to the assumptions of Theorem 3.4.4, the map s ∈ R 7→ aε(·, s) ∈ (W 1,∞(Ω))d

is of class C2 with first and second derivatives bounded by Cε−1, then for sufficiently fine
meshes and modeling errors (e.g. in the second case of Theorem 3.4.4, for (h/ε)2q ≤ H ≤
H1), one can show the convergence of the Newton method used in practice to compute the
FE-HMM solution uH , and the uniqueness of this numerical solution.

3.4.2.2 Numerical examples

We shall illustrate the sharpness of the H1 and L2 a priori error estimates of Theorem
3.4.4. First, we consider a simple test problem where the exact homogenized tensor and
the exact solution are known analytically. Second, we apply our multiscale method to a
steady state model of Richards equation for porous media flows.
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(a) Optimal H1 refinement strategy with
NMicro ∼

√
NMacro where NMicro = 4, 8, 16, 32,

NMacro = 4, 16, 64, 256 respectively.
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(b) Optimal L2 refinement strategy with
NMicro = NMacro = 4, 8, 16, 32, 64.

Figure 3.1: Nonlinear homogenization test problem (3.7)-(3.68). eL2 error (solid lines)
and eH1 error (dashed lines) as a function of the size NMacro of the uniform mesh with
MMacro = NMacro ×NMacro Q1-quadrilateral elements.

Convergence rates: test problem We recall that for a tensor of the form aε(x, s) =
a(x, x/ε, s) where a(x, y, s) is periodic with respect to the fast variable y and collocated in
the slow variable x (i.e. (3.66) is used), the H1 and L2 errors satisfy (see the second case
in Theorem 3.4.4 with ℓ = q = 1)

‖uH − u0‖H1(Ω) ≤ C(H + ĥ2), ‖uH − u0‖L2(Ω) ≤ C(H2 + ĥ2), (3.67)

where ĥ := h/ε is the scaled micro mesh size. In the above estimates, periodic boundary
conditions are used for (3.15) and we assume that the micro sampling domains cover one
period of the oscillating tensor in each spatial dimension. For rectangular elements, we
consider the Gauss quadrature with J = 4 nodes (1/2 ±

√
3/6, 1/2 ±

√
3/6), while for

triangular elements, we consider the quadrature formula with J = 1 node located at the
barycenter. Note that we obtain similar results when considering either rectangular or
triangular elements.

We consider the non-linear problem (3.7) on the domain Ω = (0, 1)2 with homogeneous
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Figure 3.2: Nonlinear homogenization test problem (3.7)-(3.68). eL2 error (solid lines)
and eH1 error (dashed lines) as a function of the size NMacro of the uniform mesh with
MMacro = NMacro ×NMacro Q1-quadrilateral elements. The lines correspond respectively
to NMicro = 4, 8, 16, 32, 64.

Dirichlet boundary conditions and the following anisotropic oscillatory tensor

aε(x, s) =
1√
3

(
(2 + sin(2πx1/ε))(1 + x1 sin(πs)) 0

0 (2 + sin(2πx2/ε))(2 + arctan(s))

)
.

(3.68)
The homogenized tensor can be computed analytically and is given by

a0(x, s) =

(
1 + x1 sin(πs) 0

0 2 + arctan(s)

)
.

The source f(x) in (3.7) is adjusted analytically so that the homogenized solution u0 is

u0(x) = 8 sin(πx1)x2(1− x2), (3.69)

The H1 and L2 relative errors between the exact homogenized solution u0 and the FE-
HMM solution uH can be estimated by quadrature with

e2L2 := ‖u0‖−2
L2(Ω)

∑

K∈TH

J∑

j=1

ωKj
|uH(xKj

)− u0(xKj
)|2,

e2H1 := ‖∇u0‖−2
L2(Ω)

∑

K∈TH

J∑

j=1

ωKj
‖∇uH(xKj

)−∇u0(xKj
)‖2,

so that

eL2 ≈
‖u0 − uH‖L2(Ω)

‖u0‖L2(Ω)
, eH1 ≈

‖∇(u0 − uH)‖L2(Ω)

‖∇u0‖L2(Ω)
.

We emphasize that ε is needed for the algorithm but its precise value is not impor-
tant, as for locally periodic problem solved with periodic micro boundary conditions,
the convergence rate and the computational cost are independent of ε (see (3.67)). We
consider a sequence of uniform macro partitions TH with meshsize H = 1/NMacro and
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NMacro = 4, 6, 8, . . . , 256. We choose Q1-rectangular elements with size H = 1/NMacro in
the experiments below; the results are silimar for P1-triangular elements.

In Figure 3.1 the H1 an L2 relative errors between the exact homogenized solution and
the FE-HMM solutions are shown for the above sequence of partitions using a simultaneous
refinement of H and ĥ according to ĥ ∼ H (L2 norm) and ĥ ∼

√
H (H1 norm). We observe

the expected (optimal) convergence rates (3.67) in agreement with Theorem 3.4.1.
We next show that the ratio between the macro and micro meshes is sharp. For that,

we refine the macromesh H while keeping fixed the micro mesh size. This is illustrated in
Figure 3.2, where we plot the H1 an L2 relative errors as a function of H = 1/NMacro. Five
sizes of micro meshes are chosen with size ĥ,= 1/NMicro and N = Micro = 4, 8, 16, 32.
We observe that for small values of H = 1/NMacro, the error due to the macro domain
discretization is dominant. 12 For large values of NMacro = 1/H, the error due to the micro
domains discretization becomes dominant and the H1 and L2 errors becomes independent
of NMacro (horizontal lines). We observe that when NMicro = 1/ĥ is multiplied by 2, both
the H1 and L2 errors are divided by 4, which corroborates Theorem 3.4.4 : the micro error
has size O(ĥ2). This experiments illustrate that simultaneous refinement of macro and
micro meshes (at the right ratio) is needed for optimal convergence rates with minimal
computational cost.

Richards equation for multiscale porous media We consider the Richards equation
for describing the fluid pressure u(x, t) in an unsaturated porous medium, with multiscale
permeability tensor Kε and volumetric water content Θε,

∂Θε(uε(x))

∂t
−∇ · (Kε(uε(x))∇uε(x))) +

∂Kε(uε(x))

∂x2
= f(x) in Ω,

where x2 is the vertical coordinate, and f corresponds to possible sources or sinks. We
choose an exponential model for the permeability tensor Kε similar to the one in [CDY05,
Sect. 5.1],

Kε(x, s) = αε(x)eα
ε(x)s where αε(x) =

1/117.4

(2 + 1.8 sin(2π(2x2/ε− x1/ε)))
. (3.70)

For our numerical simulation, we consider the steady state ∂Θε(uε)/∂t = 0.

−∇ · (Kε(uε(x))∇(uε(x)− x2)) = 0 in Ω = (0, 1)2, (3.71)

where for simplicity we set f(x) ≡ 0. Note that (3.71) can be cast in the form (3.7) by
considering the change of variable vε(x) = uε(x)−x2. We add mixed boundary conditions
of Dirichlet and Neumann types. We put Neumann conditions on the left, right and bottom
boundaries of the domain (n denotes the vector normal to the boundary) and a Dirichlet
condition on the top boundary. Precisely, we take

uε(x) = −1.9x21 on ∂ΩD = [0, 1]× {1},
n · (Kε(uε(x))∇(uε(x)− x2)) = 0 on ∂ΩN = {0, 1} × [0, 1] ∪ [0, 1]× {0}.

We refine the macro and micro meshes according to the optimal strategy as seen in
the above test problem. The numerical results are compared to a resolved standard FE
solution for the fine scale problem where ε = 10−2 using ∼ 106 degrees of freedom, and
plotted in Fig. 3.3(f). As we compare the fine scale solution with the FE-HMM solution

12Note that the curves for the H1 error are nearly identical for NMicro = 32, 64.
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(a) FE-HMM. macro and micro
meshes of size 8× 8.

(b) FE-HMM. macro and micro
meshes of size 16× 16.

(c) FE-HMM. macro and micro
meshes of size 32× 32.
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(d) FE-HMM. L2 relative error. (e) FEM. mesh size: 32× 32 (un-
resolved).

(f) FEM. mesh size: 1024× 1024
(finescale).

Figure 3.3: Richards problem (3.70)-(3.71). Top pictures: level curves of the FE-
HMM solutions with NMacro = NMicro. Fig. (d): L2 relative error for uH − uε versus
N = NMacro = NMicro (optimal L2 refinement strategy). Figs. (e)-(f): level curves of the
standard FEM solutions.

(without reconstruction) we restrict ourselves to comparison in the L2 norm. From the
results in Sections 3 and 4 we know that

‖uH − uε‖L2(Ω) ≤ C(H2 + ĥ2) + ηε

where ηε := ‖u0 − uε‖L2(Ω) → 0 for ε → 0. We first see in Figure 3.3(d) the expected
convergence rate for the L2 error when macro and micro meshes are refined at the same
speed NMacro = NMicro = N , and the horizontal line corresponds to the term ηε, which
numerically appears to be of the size13 of ε. In Figures 3.3(a)-(c), we plot the level curves
of the FE-HMM solution for problem (3.50), where we consider uniform N × N macro
meshes with couples of P1-triangular FEs, and uniform N × N micro meshes with Q1-
rectangular FEs. For comparison, we also plot the standard FEM solution of (3.7) with a
coarse 32× 32 mesh (unresolved) and a finescale solution on a fine 1024× 1024 mesh. We
observe that the unresolved FEM does not yield a qualitative correct result. In contrast,
the FE-HMM permits to capture the correct behavior of the resolved solution at a much
lower computational cost.

3.5 Perspectives

The framework of the FE-HMM permits in principle to couple the macro FE method with
various types of micro FE methods. In [ABV13b, ABV13a] we investigate the coupling
with the reduced basis finite element method for the class of quasilinear problems (3.2).
This yields the reduced basis finite element heterogeneous multiscale method (RB-FE-
HMM). The analysis supported by numerical experiments in 2D and 3D show how the use

13 Recall that for linear homogenization problems, one has ‖u0 − uε‖L2(Ω) ≤ Cε [JKO94, Sect. 1.4].
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of reduced basis (RB) considerably improves the efficiency by orders of magnitude it terms
of computational cost, by reducing drastically the number of degrees of freedom especially
in 3D (see the example in Fig. 3.4).

In [AHV13] (in preparation), our aim is to extend and analysis the FE-HMM method to
parabolic nonlinear problems where the tensor aε depends nonlinearly on the gradient ∇uε
of the solution. Such models arise for instance in multiscale composite carbon materials
in magnetostatics [NSDG11]. Due to the oscillatory nature of uε, nonlinearities naturally
arise in the micro cell problems of homogenization theory which are particularly challenging
to treat, both from the numerical and theoretical points of view.

(a) 3D geometry of the computational domain

(b) Nonlinear P1 RB-FE-HMM solution (transversal cut) on a macro mesh with 90000 tetrahedra.

Figure 3.4: Example of the heat transfert in a 3D car rotor part made with composite
material. Quasilinear multiscale model of the form (3.2). Figure from [ABV13a].
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Résumé

Mes travaux de recherche portent sur l’analyse numérique des 
intégrateurs géométriques et multi-échelles pour les équations 
différentielles déterministes ou stochastiques. Les modèles 
d’équations différentielles issus de la physique ou la chimie 
possèdent souvent une structure géométrique ou multi-échelles 
particulière (par exemple, les structures hamiltoniennes, les 
intégrales premières, les structures multi-échelles en temps 
ou en espace, les systèmes hautement oscillatoires), mais leur 
complexité est souvent telle qu’une solution satisfaisante est 
hors de portée en utilisant seulement des méthodes numériques 
standards à usage général. L’objectif est donc d’identifier les 
propriétés géométriques ou multi-échelles pertinentes de ces 
problèmes, et d’en tirer avantage pour concevoir et analyser de 
nouveaux intégrateurs efficaces, fiables et précis, reproduisant 
fidèlement le comportement qualitatif de la solution exacte des 
modèles considérés.

Mots-clés : 
équations différentielles ordinaires, équations différentielles 
stochastiques, équations aux dérivées partielles, intégration 
numérique géométrique, problèmes raides, systèmes hautement 
oscillants, méthodes numériques d’homogénéisation, éléments 
finis.

Summary

My research focuses on the numerical analysis of geometric and 
multiscale integrators for deterministic or stochastic differential 
equations. Numerous physical or chemical phenomena can be 
modeled by differential equations which possess a particular 
geometric or multiscale structure (e.g. Hamiltonian structures, 
first integrals, multiscale structures in time or in space, highly 
oscillatory systems), but their complexity is often so huge that a 
satisfactory solution is out of reach using only general purpose 
numerical methods. The aim is thus to identify the relevant 
geometric or multiscale properties of such problems, and try to 
take advantage of them to design and study new efficient, reliable, 
and accurate integrators, that reproduce the qualitative behavior 
of the exact solution of the considered models.

Keywords:
ordinary differential equations, stochastic differential equations, 
partial differential equations, geometric numerical integration, stiff 
problems, highly oscillatory problems, numerical homogenization 
methods, finite elements.
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