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Introduction

Let Q→ Q be an algebraic closure of the field of rational numbers Q. In this thesis we obtain

explicit bounds for Arakelov invariants of curves over Q. We use our results to give algorithmic,

geometric and Diophantine applications.

Let X be a smooth projective connected curve over Q of genus g. Belyi proved that there

exists a finite morphism X → P1
Q

ramified over at most three points; see [5]. Let degB(X)

denote the Belyi degree of X , i.e., the minimal degree of a finite morphism X → P1
Q

unramified

over P1
Q
− {0, 1,∞}. Since the topological fundamental group of the projective line P1(C)

minus three points is finitely generated, the set of Q-isomorphism classes of curves with bounded

Belyi degree is finite.

We prove that, if g ≥ 1, the Faltings height hFal(X), the Faltings delta invariant δFal(X),

the discriminant ∆(X) and the self-intersection of the dualizing sheaf e(X) are bounded by a

polynomial in degB(X); the precise definitions of these Arakelov invariants of X are given in

Section 1.5.

Theorem A. For any smooth projective connected curve X over Q of positive genus g,

− log(2π)g ≤ hFal(X) ≤ 13 · 106g degB(X)5

0 ≤ e(X) ≤ 3 · 107(g − 1) degB(X)5

0 ≤ ∆(X) ≤ 5 · 108g2 degB(X)5

−108g2 degB(X)5 ≤ δFal(X) ≤ 2 · 108g degB(X)5.

We give several applications of Theorem A in this thesis. Before we explain these, let us

mention that the Arakelov invariants hFal(X), e(X), ∆(X) and δFal(X) in Theorem A all have a

different flavour to them. For example, the Faltings height hFal(X) plays a key role in Faltings’

proof of his finiteness theorem on abelian varieties; see [23]. On the other hand, the strict posi-

tivity of e(X) (when g ≥ 2) is related to the Bogomolov conjecture; see [64]. The discriminant

∆(X) “measures” the bad reduction of the curve X/Q, and appears in Szpiro’s discriminant

conjecture for semi-stable elliptic curves; see [62]. Finally, as was remarked by Faltings in his

introduction to [24], Faltings’ delta invariant δFal(X) can be viewed as the minus logarithm of
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a “distance” to the boundary of the moduli space of compact connected Riemann surfaces of

genus g.

We were first led to investigate this problem by work of Edixhoven, de Jong and Schepers

on covers of complex algebraic surfaces with fixed branch locus; see [22]. They conjectured an

arithmetic analogue ([22, Conjecture 5.1]) of their main theorem (Theorem 1.1 in loc. cit.). We

use our results to prove this conjecture; see Section 3.3 for a more precise statement.

Let us briefly indicate where the reader can find some applications of Theorem A in this

thesis.

1. The Couveignes-Edixhoven-Bruin algorithm for computing coefficients of modular forms

runs in polynomial time under the Riemann hypothesis for number fields; see Section 3.1.

2. Let U be a smooth quasi-projective curve over Q. We show that the “height” of a finite

étale cover of degree d of U is bounded by a polynomial in d; see Section 3.3.

3. Theorem A gives explicit bounds for the “complexity” of the semi-stable reduction of a

curve in terms of its Belyi degree. From this, we obtain explicit bounds on the “complexity”

of the semi-stable reduction for modular curves, Fermat curves and Galois Belyi curves; see

Corollary 3.2.2.

4. We prove a conjecture of Szpiro for genus g curves X over a number field K with fixed

set S of bad reduction (Szpiro’s small points conjecture) in a special case. More precisely,

we prove Szpiro’s small points conjecture for cyclic covers of prime degree; see Theorem

4.4.1.

In the course of proving Theorem A we establish several results which will certainly interest

some readers.

– We show that, in order to bound Arakelov invariants of a curve X over Q, it essentially

suffices to find an algebraic point x in X(Q) of bounded height; see Theorem 2.2.1.

– We prove a generalization of Dedekind’s discriminant conjecture; we learned the argument

from H.W. Lenstra jr. (Section 2.4.1).

– We use a theorem of Merkl-Bruin to prove explicit bounds for Arakelov-Green functions

of Belyi covers; see Section 2.3.

– We use techniques due to Q. Liu and D. Lorenzini to construct suitable models for covers

of curves; see Theorem 2.4.9.

To prove Theorem A we will use Arakelov theory for curves over a number field K. To apply

Arakelov theory in this context, we will work with arithmetic surfaces associated to such curves,

i.e., regular projective models over the ring of integers OK of K. We refer the reader to Section

2



1.2 for precise definitions. For a smooth projective connected curve X over Q of genus g ≥ 1,

we define the Faltings height hFal(X), the discriminant ∆(X), Faltings’ delta invariant δFal(X)

and the self-intersection of the dualizing sheaf e(X) in Section 1.5. These are the four Arakelov

invariants appearing in Theorem A.

We introduce two functions on X(Q) in Section 1.7: the canonical Arakelov height function

and the Arakelov norm of the Wronskian differential. We show that, to prove Theorem A, it

suffices to bound the canonical height of some non-Weierstrass point and the Arakelov norm of

the Wronskian differential at this point; see Theorem 2.2.1 for a precise statement.

We estimate Arakelov-Green functions and Arakelov norms of Wronskian differentials on

finite étale covers of the modular curve Y (2) in Theorem 2.3.12 and Proposition 2.3.13, re-

spectively. In our proof we use an explicit version of a result of Merkl on the Arakelov-Green

function; see Theorem 2.3.2. This version of Merkl’s theorem was obtained by Peter Bruin in

his master’s thesis; see [9]. The proof of this version of Merkl’s theorem is reproduced in the

appendix to [30] by Peter Bruin.

In Section 2.5.2 we prove the existence of a non-Weierstrass point on X of bounded height;

see Theorem 2.5.4. The proof of Theorem 2.5.4 relies on our bounds for Arakelov-Green func-

tions (Theorem 2.3.12), the existence of a “wild” model (Theorem 2.4.9) and a generalization of

Dedekind’s discriminant conjecture for discrete valuation rings of characteristic zero (Proposi-

tion 2.4.1) which we attribute to Lenstra.

A precise combination of the above results constitutes the proof of Theorem A given in Sec-

tion 2.5.3.

The main result of this thesis (Theorem A) also appears in our paper [30]. In loc. cit. the

reader can also find the applications of Theorem A given in Chapter 3. The proof of Szpiro’s

small points conjecture for cyclic covers of prime degree is joint work with Rafael von Känel;

see [31].

3



CHAPTER 1

Arakelov invariants, canonical Arakelov

height, Belyi degree

We are going to apply Arakelov theory to smooth projective geometrically connected curvesX

over number fields K. In [3] Arakelov defined an intersection theory on the arithmetic surfaces

attached to such curves. In [24] Faltings extended Arakelov’s work. In this chapter we aim at

giving the necessary definitions for what we need later (and we need at least to fix our notation).

We start with some preparations concerning Riemann surfaces and arithmetic surfaces; see

Section 1.1 and Section 1.2. We recall some basic properties of semi-stable arithmetic surfaces in

Section 1.4. In Section 1.5 we define the main objects of study of this thesis: Arakelov invariants

of curves over Q. For the sake of completeness, we also included a section on Arakelov invariants

of abelian varieties (Section 1.6). The results of that section will not be used to prove the main

result of this thesis. To prove the main result of this thesis, we will work with the canonical

Arakelov height function on a curve over Q; see Section 1.7. A crucial ingredient is an upper

bound for the Faltings height in terms of the height of a non-Weierstrass point and the Arakelov

norm of the Wronskian differential; this is the main result of Section 1.8. Finally, we introduce

the Belyi degree in Section 1.9 and prove some of its basic properties.

1.1. Arakelov invariants of Riemann surfaces

In this sections we follow closely [21, Section 4.4]. Let X be a compact connected Riemann

surface of genus g ≥ 1. The space of holomorphic differentials H0(X,Ω1
X) carries a natural

hermitian inner product:

(ω, η) 7→ i

2

∫
X

ω ∧ η.
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For any orthonormal basis (ω1, . . . , ωg) with respect to this inner product, the Arakelov (1, 1)-

form is the smooth positive real-valued (1, 1)-form µ on X given by

µ =
i

2g

g∑
k=1

ωk ∧ ωk.

Note that µ is independent of the choice of orthonormal basis. Moreover,
∫
X
µ = 1.

Denote by C∞ the sheaf of complex valued C∞-functions on X , and byA1 the sheaf of com-

plexC∞ 1-forms onX . There is a tautological differential operator d : C∞ → A1. It decomposes

as d = ∂ + ∂ where, for any local C∞ function f and any holomorphic local coordinate z, with

real and imaginary parts x and y, one has ∂f = 1
2
(∂f
∂x
− i∂f

∂y
) · dz and ∂f = 1

2
(∂f
∂x

+ i∂f
∂y

) · dz.

Proposition 1.1.1. For each a in X , there exists a unique real-valued ga in C∞(X − {a}) such

that the following properties hold:

1. we can write ga = log |z − z(a)| + h in an open neighbourhood of a, where z is a local

holomorphic coordinate and where h is a C∞-function;

2. ∂∂ga = πiµ on X − {a};

3.
∫
X
gaµ = 0.

Let grX be the Arakelov-Green function on (X × X)\∆, where ∆ ⊂ X × X denotes the

diagonal. That is, for any a and b in X , we have grX(a, b) = ga(b) with ga as in Proposition

1.1.1; see [3], [15], [21] or [24] for a further discussion of the Arakelov-Green function grX . The

Arakelov-Green functions determine certain metrics whose curvature forms are multiples of µ,

called admissible metrics, on all line bundles OX(D), where D is a divisor on X , as well as on

the holomorphic cotangent bundle Ω1
X . Explicitly: for D =

∑
P DPP a divisor on X (with DP

a real number), the metric ‖·‖ on OX(D) satisfies log ‖1‖(Q) = grX(D,Q) for all Q away from

the support of D, where

grX(D,Q) :=
∑
P

DP grX(P,Q).

Furthermore, for a local coordinate z at a point a inX , the metric ‖·‖Ar on the sheaf Ω1
X satisfies

− log ‖dz‖Ar(a) = lim
b→a

(grX(a, b)− log |z(a)− z(b)|) .

We will work with these metrics on OX(P ) and Ω1
X (as well as on tensor product combinations

of them) and refer to them as Arakelov metrics. A metrised line bundle L is called admissible if,

up to a constant scaling factor, it is isomorphic to one of the admissible bundles OX(D). Note

that it is non-trivial to show that the line bundle Ω1
X endowed with the above metric is admissible;

see [3] for details. For an admissible line bundle L, we have curv(L) = (degL) · µ by Stokes’

theorem.
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For any admissible line bundle L, we endow the determinant of cohomology

λ(L) = det H0(X,L)⊗ det H1(X,L)∨

of the underlying line bundle with the Faltings metric, i.e., the metric on λ(L) determined by the

following set of axioms (cf. [24]): (i) any isometric isomorphism L1 −̃→ L2 of admissible line

bundles induces an isometric isomorphism λ(L1) −̃→ λ(L2); (ii) if we scale the metric on L by

a factor α, the metric on λ(L) is scaled by a factor αχ(L), where

χ(L) = degL − g + 1

is the Euler-Poincaré characteristic of L; (iii) for any divisor D and any point P on X , the exact

sequence

0→ OX(D − P )→ OX(D)→ P∗P
∗OX(D)→ 0

induces an isometry λ(OX(D)) −̃→ λ(OX(D − P ))⊗ P ∗OX(D); (iv) for L = Ω1
X , the metric

on λ(L) ∼= det H0(X,Ω1
X) is defined by the hermitian inner product

(ω, η) 7→ (i/2)

∫
X

ω ∧ η

on H0(X,Ω1
X). In particular, for an admissible line bundle L of degree g − 1, the metric on the

determinant of cohomology λ(L) does not depend on the scaling.

Let Hg be the Siegel upper half space of complex symmetric g-by-g-matrices with positive

definite imaginary part. Let τ in Hg be the period matrix attached to a symplectic basis of

H1(X,Z) and consider the analytic Jacobian

Jτ (X) = Cg/(Zg + τZg)

attached to τ . On Cg one has a theta function

ϑ(z; τ) = ϑ0,0(z; τ) =
∑
n∈Zg

exp(πi tnτn+ 2πi tnz),

giving rise to a reduced effective divisor Θ0 and a line bundle O(Θ0) on Jτ (X). The function ϑ

is not well-defined on Jτ (X). Instead, we consider the function

‖ϑ‖(z; τ) = (det=(τ))1/4 exp(−π ty(=(τ))−1y)|ϑ(z; τ)|,

with y = =(z). One can check that ‖ϑ‖ descends to a function on Jτ (X). Now consider on the

other hand the set Picg−1(X) of divisor classes of degree g − 1 on X . It comes with a canonical

subset Θ given by the classes of effective divisors and a canonical bijection Picg−1(X) −̃→ Jτ (X)

mapping Θ onto Θ0. As a result, we can equip Picg−1(X) with the structure of a compact com-

plex manifold, together with a divisor Θ and a line bundle O(Θ). Note that we obtain ‖ϑ‖
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as a function on Picg−1(X). It can be checked that this function is independent of the choice

of τ . Furthermore, note that ‖ϑ‖ gives a canonical way to put a metric on the line bundle O(Θ)

on Picg−1(X).

For any line bundle L of degree g − 1 there is a canonical isomorphism from λ(L) to

O(−Θ)[L], the fibre of O(−Θ) at the point [L] in Picg−1(X) determined by L. Faltings proves

that when we give both sides the metrics discussed above, the norm of this isomorphism is a

constant independent of L; see [24, Section 3]. We will write this norm as exp(δFal(X)/8) and

refer to δFal(X) as Faltings’ delta invariant of X . (Note that δFal(X) was denoted as δ(X) by

Faltings in [24].)

Let S(X) be the real number defined by

logS(X) = −
∫
X

log ‖ϑ‖(gP −Q) · µ(P ), (1.1.1)

where Q is any point on X; see [15]. It is related to Faltings’ delta invariant δFal(X). In fact, let

(ω1, . . . , ωg) be an orthonormal basis of H0(X,Ω1
X). Let b be a point on X and let z be a local

coordinate about b. Write ωk = fkdz for k = 1, . . . , g. We have a holomorphic function

Wz(ω) = det

(
1

(l − 1)!

dl−1fk
dzl−1

)
1≤k,l≤g

locally about b from which we build the g(g + 1)/2-fold holomorphic differential

Wz(ω)(dz)⊗g(g+1)/2.

It is readily checked that this holomorphic differential is independent of the choice of local

coordinate and orthonormal basis. Thus, this holomorphic differential extends over X to give

a non-zero global section, denoted by Wr, of the line bundle Ω
⊗g(g+1)/2
X . The divisor of the

non-zero global section Wr, denoted byW , is the divisor of Weierstrass points. This divisor is

effective of degree g3 − g. We follow [15, Definition 5.3] and denote the constant norm of the

canonical isomorphism of (abstract) line bundles

Ω
g(g+1)/2
X ⊗OX

(
ΛgH0(X,Ω1

X)⊗C OX
)∨ −→ OX(W)

by R(X). Then,

logS(X) =
1

8
δFal(X) + logR(X). (1.1.2)

Moreover, for any non-Weierstrass point b in X ,

grX(W , b)− logR(X) = log ‖Wr‖Ar(b). (1.1.3)

7



1.2. Arakelov invariants of arithmetic surfaces

Let K be a number field with ring of integers OK , and let S = SpecOK . Let p : X → S

be an arithmetic surface, i.e., an integral regular flat projective S-scheme of relative dimension

1 with geometrically connected fibres; see [41, Chapter 8.3] for basic properties of arithmetic

surfaces.

Suppose that the genus of the generic fibre XK is positive. An Arakelov divisor D on X
is a divisor Dfin on X , plus a contribution Dinf =

∑
σ ασFσ running over the embeddings

σ : K −→ C of K into the complex numbers. Here the ασ are real numbers and the Fσ are

formally the “fibers at infinity”, corresponding to the Riemann surfaces Xσ associated to the al-

gebraic curves X ×OK ,σ C. We let D̂iv(X ) denote the group of Arakelov divisors on X . To a

non-zero rational function f on X , we associate an Arakelov divisor d̂iv(f) := (f)fin + (f)inf

with (f)fin the usual divisor associated to f on X , and (f)inf =
∑

σ vσ(f)Fσ, where we define

vσ(f) := −
∫
Xσ log |f |σ · µσ. Here µσ is the Arakelov (1, 1)-form on Xσ as in Section 1.1. We

will say that two Arakelov divisors on X are linearly equivalent if their difference is of the form

d̂iv(f) for some non-zero rational function f on X . We let Ĉl(X ) denote the group of Arakelov

divisors modulo linear equivalence on X .

In [3] Arakelov showed that there exists a unique symmetric bilinear map

(·, ·) : Ĉl(X )× Ĉl(X ) −→ R

with the following properties:

– if D and E are effective divisors on X without common component, then

(D,E) = (D,E)fin −
∑

σ:K→C

grXσ(Dσ, Eσ),

where σ runs over the complex embeddings of K. Here (D,E)fin denotes the usual inter-

section number of D and E as in [41, Section 9.1], i.e.,

(D,E)fin =
∑
s∈|S|

is(D,E) log #k(s),

where s runs over the set of closed points |S| of S, is(D,E) is the intersection multiplicity

of D and E at s and k(s) denotes the residue field of s. Note that if D or E is vertical ([41,

Definition 8.3.5]), the sum
∑

σ:K→C grXσ(Dσ, Eσ) is zero;

– ifD is a horizontal divisor ([41, Definition 8.3.5]) of generic degree n over S, then (D,Fσ) = n

for every σ : K −→ C;

– if σ1, σ2 : K → C are complex embeddings, then (Fσ1 , Fσ2) = 0.

8



In particular, if D is a vertical divisor and E = Efin +Einf is an Arakelov divisor on X , we have

(D,E) = (D,Efin)fin.

An admissible line bundle onX is the datum of a line bundleL onX , together with admissible

metrics on the restrictionsLσ ofL to theXσ. Let P̂ic(X ) denote the group of isomorphism classes

of admissible line bundles onX . To any Arakelov divisorD = Dfin+Dinf withDinf =
∑

σ ασFσ,

we can associate an admissible line bundle OX (D). In fact, for the underlying line bundle of

OX (D) we take OX (Dfin). Then, we make this into an admissible line bundle by equipping

the pull-back of OX (Dfin) to each Xσ with its Arakelov metric, multiplied by exp(−ασ). This

induces an isomorphism Ĉl(X )
∼ // P̂ic(X ) . In particular, the Arakelov intersection of two

admissible line bundles on X is well-defined.

Recall that a metrised line bundle (L, ‖·‖) on SpecOK corresponds to an invertible OK-

module, L, say, with hermitian metrics on the complex vector spaces Lσ := C ⊗σ,OK L. The

Arakelov degree of (L, ‖·‖) is the real number defined by:

d̂eg(L) = d̂eg(L, ‖·‖) = log #(L/OKs)−
∑

σ : K→C

log ‖s‖σ,

where s is any non-zero element of L (independence of the choice of s follows from the product

formula).

Note that the relative dualizing sheaf ωX/OK of p : X → S is an admissible line bundle on X
if we endow the restrictions Ω1

Xσ of ωX/OK to the Xσ with their Arakelov metric. Furthermore,

for any section P : S → X , we have

d̂eg P ∗ωX/OK = (OX(P ), ωX/OK ) =: (P, ωX/OK ),

where we endow the line bundle P ∗ωX/OK on SpecOK with the pull-back metric.

We state three basic properties of Arakelov’s intersection pairing; see [3] and [24].

Adjunction formula: Let b : SpecOK → X be a section. Then

(b, b) = −(OX (b), ωX/OK ),

where we identify b : SpecOK → X with its image in X .

Base change: Let L/K be a finite field extension with ring of integers OL, and let

q : SpecOL → SpecOK

be the associated morphism. Then, ifX ′ → X×OK SpecOL denotes the minimal resolution

of singularities and r : X ′ → X is the associated morphism, for two admissible line bundles

L1 and L2 on X ,

(r∗L1, r
∗L2) = [L : K](L1,L2).
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Riemann-Roch: Let L be an admissible line bundle on X . Let detR·p∗L be the determinant of

cohomology on SpecOK endowed with the Faltings metric (defined in Section 1.1). Then

there is a canonical isomorphism of metrized line bundles

detR·p∗ωX/OK = det p∗ωX/OK

on SpecOK and

d̂eg detR·p∗L =
1

2
(L,L ⊗ ω−1

X/OK ) + d̂eg det p∗ωX/OK .

We are now ready to define certain invariants (read “real numbers”) associated to the arith-

metic surface p : X → SpecOK . We will refer to these invariants as Arakelov invariants of

X .

The Faltings delta invariant of X is defined as

δFal(X ) =
∑

σ:OK→C

δFal(Xσ),

where σ runs over the complex embeddings of OK into C. Similarly, we define

‖ϑ‖max(X ) =
∏

σ:OK→C

max
Picg−1(Xσ)

‖ϑ‖.

Moreover, we define

R(X ) =
∏

σ:OK→C

R(Xσ), S(X) =
∏

σ:OK→C

S(Xσ).

The Faltings height of X is defined by

hFal(X ) = d̂eg det p∗ωX/OK = d̂eg detR·p∗OX ,

where we endow the determinant of cohomology with the Faltings metric (Section 1.1) and

applied Serre duality. Furthermore, we define the self-intersection of the dualizing sheaf of X ,

denoted by e(X ), as

e(X ) := (ωX/OK , ωX/OK ),

where we employed Arakelov’s intersection pairing on the arithmetic surface X/OK .

1.3. Arakelov invariants of curves over number fields

LetK be a number field with ring of integersOK . For a curveX overK, a regular (projective)

model of X over OK consists of the data of an arithmetic surface p : X → SpecOK and an
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isomorphism X ∼= Xη of the generic fibre Xη of p : X → SpecOK over K. Recall that any

smooth projective geometrically connected curve X over K has a regular model by Lipman’s

theorem ([41, Theorem 9.3.44]). For a curve X over K, a (relatively) minimal regular model

of X over OK is a regular model p : X → SpecOK which does not contain any exceptional

divisors; see [41, Definition 9.3.12]. Any smooth projective geometrically connected curve over

K of positive genus admits a unique minimal regular model over OK ; see [41, Theorem 9.3.21].

Let X be a smooth projective geometrically connected curve over K of positive genus. We

define certain invariants (read “real numbers”) associated to X . We will refer to these invariants

of X as Arakelov invariants.

Let p : X → SpecOK be the minimal regular model of X over OK . Then

δFal(X/K) := δFal(X ), ‖ϑ‖max(X/K) := ‖ϑ‖max(X ),

S(X/K) := S(X ), R(X/K) := R(X ).

Moreover,

hFal(X/K) := hFal(X ), e(X/K) := e(X ).

The following proposition shows that the Arakelov invariant hFal(X/K) can be computed on any

regular model of X over OK .

Proposition 1.3.1. LetY → SpecOK be a regular model forX overOK . Then hFal(X/K) = hFal(Y).

Proof. Recall that p : X → SpecOK denotes the minimal regular model of X over OK . By

the minimality of X , there exists a unique birational morphism φ : Y → X ; see [41, Corollary

9.3.24]. Let E be the exceptional locus of φ. Since the line bundles ωY/OK and φ∗ωX/OK agree

on Yi − E, there is an effective vertical divisor V (supported on E) and an isomorphism of

admissible line bundles

ωY/OK = φ∗ωX/OK ⊗OY OY(V ).

By the projection formula and the equality φ∗OY(V ) = OX , we obtain that

(pφ)∗ωY/OK = p∗φ∗(φ
∗ωX/OK ⊗OY OY(V )) = p∗ωX/OK .

In particular, det(pφ)∗ωY/OK = det p∗ωX/OK . Taking the Arakelov degree, the latter implies

that

hFal(X/K) = hFal(X ) = hFal(Y).

11



1.4. Semi-stability

The Arakelov invariants of curves we introduce in this chapter are associated to models with

“semi-stable” fibers. In this short section, we give the necessary definitions and basic properties

needed in this thesis concerning semi-stable arithmetic surfaces.

Let K be a number field with ring of integers OK .

Definition 1.4.1. Let p : X → SpecOK be an arithmetic surface. We say that X is semi-stable

(or nodal) over OK if every geometric fibre of X over OK is reduced and has only ordinary

double singularities; see [41, Definition 10.3.1].

Remark 1.4.2. Suppose that X is semi-stable and minimal. The blowing-up Y → X along a

smooth closed point on X is semi-stable over OK , but no longer minimal.

Definition 1.4.3. Let p : X → SpecOK be a semi-stable arithmetic surface. The discriminant

of X (over OK), denoted by ∆(X ), is defined as

∆(X ) =
∑
p⊂OK

δp log #k(p),

where p runs through the maximal ideals of OK and δp denotes the number of singularities in the

geometric fibre of p : X → SpecOK over p. Since p : X → SpecOK is smooth over all but

finitely many points in SpecOK and the fibres of X → SpecOK are geometrically reduced, the

discriminant of X is a well-defined real number.

We will work with the following version of the semi-stable reduction theorem.

Theorem 1.4.4. (Deligne-Mumford) [18] Let X be a smooth projective geometrically con-

nected curve over K of positive genus. Then, there exists a finite field extension L/K such that

the minimal regular model of the curve XL over OL is semi-stable over OL.

Theorem 1.4.5. Let p : X → SpecOK be a semi-stable arithmetic surface. Let L/K be a finite

field extension, and let OL be the ring of integers of L. Let X ′ → X ×OK OL be the minimal

resolution of singularities, and let r : X ′ → X be the induced morphism.

1. The arithmetic surface p′ : X ′ → SpecOL is semi-stable.

2. The equality of discriminants ∆(X )[L : K] = ∆(X ′) holds.

3. The canonical morphism ωX ′/OL → r∗ωX/OK is an isomorphism of line bundles on X ′.

4. The equality e(X )[L : K] = e(X ′) holds.
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5. Let q : SpecOL → SpecOK be the morphism of schemes associated to the inclusion

OK ⊂ OL. Then, the canonical map

det p′∗ωX ′/OL → q∗ det p∗ωX/OK

is an isomorphism of line bundles on SpecOL.

6. The equality hFal(X )[L : K] = hFal(X ′) holds.

Proof. We start with the first two assertions. To prove these, we note that the scheme X ×OK OL

is normal and each geometric fibre of the flat projective morphism X ×OK OL → SpecOL is

connected, reduced with only ordinary double singularities. Thus, the minimal resolution of

singularities X ′ → X ×OK OL is obtained by resolving the double points of X ×OK OL. By [41,

Corollary 10.3.25], a double point in the fiber of X ⊗OK OL → SpecOL over the maximal ideal

q ⊂ OL is resolved by eq − 1 irreducible components of multiplicity 1 isomorphic to P1
k(q) with

self-intersection −2, where k(q) denotes the residue field of q and eq is the ramification index of

q over OK . This proves the first two assertions. The third assertion is proved in [37, Proposition

V.5.5]. The fourth assertion follows from the third assertion and basic properties of Arakelov’s

intersection pairing. Finally, note that (5) follows from (3) and (6) follows from (5).

Definition 1.4.6. LetX be a smooth projective geometrically connected curve overK with semi-

stable reduction overOK , and let X → SpecOK be its minimal regular (semi-stable) model over

OK . We define the discriminant of X over K by ∆(X/K) := ∆(X ).

Remark 1.4.7. Let us mention that, more generally, one can define the “relative discriminant”

of a curve X over K to be the Artin conductor of its minimal regular model over OK . More

generally, one can even give a sensible definition of the relative discriminant of an arithmetic

surface in this way. Since we are only dealing with curves with semi-stable reduction over K,

we do not give a precise definition, but rather refer the interested reader to Saito [54].

1.5. Arakelov invariants of curves over Q

The following lemma asserts that Arakelov invariants of curves with semi-stable reduction

are “stable”.

Lemma 1.5.1. Let K be a number field and let X0 be a smooth projective geometrically con-

nected curve over K of positive genus. Assume that the minimal regular model of X0 over OK

is semi-stable over OK . Then, for any finite field extension L/K, we have

hFal (X0/K) [L : K] = hFal((X0 ×K L)/L),
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∆(X0/K)[L : K] = ∆((X0 ×K L)/L),

e(X0/K)[L : K] = e((X0 ×K L)/L).

Proof. This follows from the second, fourth, and sixth assertion of Theorem 1.4.5.

Remark 1.5.2. Let X be a smooth projective geometrically connected curve over a number field

K. One can consider stable Arakelov invariants of X . These are defined as follows. Let L/K be

a finite field extension such thatXL has semi-stable reduction overOL. Then the stable Arakelov

invariants of X over K are defined as

hFal,stable(X) =
hFal(XL/L)

[L : Q]
, estable(X) =

e(XL/L)

[L : Q]
,

∆stable(X) =
∆(XL/L)

[L : Q]
.

By Lemma 1.5.1, these invariants do not depend on the choice of field extension L/K.

Let Q → Q be an algebraic closure of the field of rational numbers Q. Let X be a smooth

projective connected curve over Q of positive genus. There exists a number field K, an embed-

ding K → Q and a model X0 over K for X , with respect to the embedding K → Q, such

that the minimal regular model of X0 over OK is semi-stable. This follows from the semi-stable

reduction theorem (Theorem 1.4.4). We wish to show that the real numbers

hFal,stable(X0), estable(X0), and ∆stable(X0)

are invariants of X over Q, i.e., they do not depend on the choice of K, K → Q and X0. This

boils down to the following lemma.

Lemma 1.5.3. LetK/Q be a finite Galois extension with ring of integersOK . Let p : X → SpecOK

be a semi-stable arithmetic surface. Then, for any g in the Galois group Gal(K/Q), the equali-

ties

hFal(X ) = hFal(gX ), e(X ) = e(gX ), ∆(X ) = ∆(gX )

hold, where gX is the conjugate of X with respect to g.

Proof. Since g permutes the finite places of K with the same residue characteristic, it is clear

that ∆(X ) = ∆(gX ). Note that hFal(X ) = hFal(gX ). In fact, we have a cartesian diagram

gX
q

��

// X
p

��
SpecOK g

// SpecOK .
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Note that g∗ det p∗ωX/OK = det q∗ωgX/OK . By the Galois invariance of the Arakelov degree d̂eg,

we conclude that

hFal(X ) = d̂eg det p∗ωX/OK = d̂eg g∗ det q∗ωgX/OK = d̂eg det q∗ωgX/OK .

The latter clearly equals hFal(gX ). A similar reasoning applies to the self-intersection of the

dualizing sheaf e(X ).

We are now ready to define Arakelov invariants of X over Q. We define

δFal(X) :=
δFal(X0/K)

[K : Q]
, ‖ϑ‖max(X) := ‖ϑ‖max(X0/K)1/[K:Q],

S(X) := S(X0/K)1/[K:Q], R(X) := R(X0/K)1/[K:Q].

We will refer to δFal(X) as the Faltings delta invariant of X . We also define

hFal(X) := hFal,stable(X0), e(X) := estable(X0), ∆(X) := ∆stable(X0).

We will refer to hFal(X) as the Faltings height of X , to e(X) as the self-intersection of the

dualizing sheaf of X and to ∆(X) as the discriminant of X .

1.6. The stable Faltings height of an abelian variety

In this section we state two important properties of the Faltings height of a curve over Q. Let

us be more precise.

Let K be a number field, and let A be a g-dimensional abelian variety over K. Let A be the

Néron model ofA overOK ; see [7]. Then we have the locally freeOK-module Cot0(A) := 0∗ΩA/OK

of rank g, and hence the invertible OK-module of rank one:

ωA := ΛgCot0(A).

For each complex embedding σ : K → C, we have the scalar product on C⊗OK ωA given by

(ω, η) =
i

2
(−1)g(g−1)/2

∫
Aσ(C)

ωη.

The relative Faltings height ofA overK is then defined to be the Arakelov degree of the metrized

line bundle ωA,

hFal(A/K) = d̂eg ωJ .

Recall that A has semi-stable reduction over OK if the unipotent rank of each special fibre

of A over OK equals zero. By the semi-stable reduction theorem for abelian varieties (see [1]),

there exists a finite field extension L/K such that AL has semi-stable reduction over OL.
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Definition 1.6.1. Let L/K be a finite field extension such thatAL has semi-stable reduction over

OL. Then the stable Faltings height of A is defined to be

hFal,stable(A) :=
hFal(AL/L)

[L : K]
.

Definition 1.6.2. Let A be an abelian variety over Q. Let K be a number field such that the

abelian variety A has a model A0 over K with semi-stable reduction over OK . Then the Falt-

ings height of A is defined as hFal(A) := hFal,stable(A0).

To show that these invariants are well-defined one applies arguments similar to those given in

the proofs of Lemma 1.5.1 and Lemma 1.5.3. For the sake of completeness, we now state two

important properties of the Faltings height.

Theorem 1.6.3. Let X be a curve over Q of positive genus. Then

hFal(X) = hFal(Jac(X)).

Proof. See Lemme 3.2.1 of Chapter 1 in [59].

The Faltings height has the following Northcott property.

Theorem 1.6.4. (Faltings) Let C be a real number and let g be an integer. For a number field

K, there are only finitely many K-isomorphism classes of g-dimensional principally polarized

abelian varieties A over K such that A has semi-stable reduction over OK and hFal ≤ C.

Proof. This is shown in [23]. An alternative proof was given by Pazuki in [50].

This implies the Northcott property for the Faltings height of curves.

Theorem 1.6.5. Let C be a real number, and let g ≥ 2 be an integer. For a number fieldK, there

are only finitely many K-isomorphism classes of smooth projective connected curves X over K

of genus g with semi-stable reduction over OK and hFal,stable(X) ≤ C.

Proof. The Faltings height of X coincides with the Faltings height of its Jacobian J ; see The-

orem 1.6.3. Moreover, X has semi-stable reduction over OK if and only if J has semi-stable

reduction over OK ; see [18]. Thus, the result follows from Torelli’s theorem (and a standard

Galois cohomology argument as in Remark 4.1.4).

1.7. Arakelov height and the Arakelov norm of the Wronskian

The main goal of this thesis is to obtain bounds for the Arakelov invariants defined in Section

1.5. To do this, we introduce the height function on a curve. Let us be more precise.
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Let X be a smooth projective connected curve over Q of positive genus. We introduce two

functions on X(Q): the height and the Arakelov norm of the Wronskian differential. More

precisely, let b ∈ X(Q). Let K be a number field, K → Q an embedding and X0 a smooth

projective geometrically connected curve over K whose minimal regular model X → SpecOK

over OK is semi-stable such that X0×K Q is isomorphic to X over Q and b induces a section P

of X over OK . Then we define the (canonical Arakelov) height of b, denoted by h(b), to be

h(b) =
d̂egP ∗ωX/OK

[K : Q]
=

(P, ωX/OK )

[K : Q]
.

Note that the height of b is the stable canonical height of a point, in the Arakelov-theoretic sense,

with respect to the admissible line bundle ωX/OK . That is, let K be a number field, K → Q an

embedding and X0 a smooth projective geometrically connected curve over K whose minimal

regular model X → SpecOK over OK is semi-stable such that X0 ×K Q is isomorphic to X

over Q and b induces an algebraic point bK of X . If D denotes the Zariski closure of bK in X ,

then

h(b) =
(D,ωX/OK )

[K : Q] deg(D/K)
.

The height is a well-defined function, i.e., independent of the choice of K, K → Q and X0. To

prove this, one can argue as in Section 1.5.

Moreover, we define the Arakelov norm of the Wronskian differential

‖Wr‖ : X(Q)→ R≥0

as

‖Wr‖Ar(b) =

( ∏
σ:K→C

‖Wr‖Ar(bσ)

)1/[K:Q]

.

Example 1.7.1. For the reader’s convenience, we collect some explicit formulas for elliptic

curves from [16], [24] and [57]. Suppose that X/Q is an elliptic curve. Then e(X) = 0 and

12hFal(X) = ∆(X) + δFal(X)− 4 log(2π).

One can relate ∆(X) and δFal(X) to some classical invariants. In fact, letK,K → Q,X0 → SpecK

and X → SpecOK be as above. Let D be the minimal discriminant of the elliptic curve

X0 → SpecK and let ‖∆‖(X0,σ) be the modular discriminant of the complex elliptic curve

X0,σ, where σ : OK → C is a complex embedding. Then

∆(X) = log |NK/Q(D)|,

where NK/Q is the norm with respect to K/Q. Moreover,

[K : Q]δFal(X) + [K : Q]8 log(2π) =
∑

σ:OK→C

− log ‖∆‖(X0,σ).
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Szpiro showed that, for any b ∈ X(Q), we have 12h(b) = ∆(X). In particular, the “height”

function on X(Q) is constant. Therefore, h : X(Q) → R≥0 is not a “height” function in the

usual sense when g = 1.

If g ≥ 2, for any real number A, there exists a point x ∈ X(Q) such that h(x) ≥ A; see [58,

Exposé XI, Section 3.2]. Also, if g ≥ 2, the canonical Arakelov height function onX(Q) has the

following Northcott property. For any real number C and integer d, there are only finitely many

x in X(Q) such that h(x) ≤ C and [Q(x) : Q] ≤ d. Faltings showed that, for all x in X(Q),

the inequality h(x) ≥ 0 holds; see [24, Theorem 5]. In particular, when g ≥ 2, the function

h : X(Q)→ R≥0 is a height function in the usual sense.

Changing the model for X might change the height of a point. Let us show that the height of

a point does not become smaller if we take another regular model over OK .

Lemma 1.7.2. Let X ′ → SpecOK be an arithmetic surface such that the generic fibre X ′K is

isomorphic to XK . Suppose that b ∈ X(Q) induces a section Q of X ′ → SpecOK . Then

h(b) ≤
(Q,ωX ′/OK )

[K : Q]
.

Proof. By the minimality of X , there is a unique birational morphism φ : X ′ → X ; see [41,

Corollary 9.3.24]. By the factorization theorem, this morphism is made up of a finite sequence

X ′ = Xn
φn // Xn−1

φn−1 // . . . φ1 // X0 = X

of blowing-ups along closed points; see [41, Theorem 9.2.2]. For an integer i = 1, . . . , n, let

Ei ⊂ Xi denote the exceptional divisor of φi. Since the line bundles ωXi/OK and φ∗iωXi−1/OK

agree on Xi − Ei, there is an integer a such that

ωXi/OK = φ∗iωXi−1/OK ⊗OXi OXi(aEi).

Applying the adjunction formula, we see that a = 1. Since φi restricts to the identity morphism

on the generic fibre, we have a canonical isomorphism of admissible line bundles

ωXi/OK = φ∗iωXi−1/OK ⊗OXi OXi(Ei).

Let Qi denote the section of Xi over OK induced by b ∈ X(Q). Then

(Qi, ωXi/OK ) = (Qi, φ
∗
iωXi−1/OK ) + (Qi, Ei) ≥ (Qi, φ

∗
iωXi−1/OK )

= (Qi−1, ωXi−1/OK ),

where we used the projection formula in the last equality. Therefore,

(Q,ωX ′/OK ) = (Qn, ωXn/OK ) ≥ (Q0, ωX0/OK ) = (P, ωX/OK ).

Since (P, ωX/OK ) = h(b)[K : Q], this concludes the proof.
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1.8. A lower bound for the height of a non-Weierstrass point

We follow [15] in this section.

Proposition 1.8.1. Let X be a smooth projective connected curve over Q of genus g ≥ 1. Then,

for any non-Weierstrass point b in X(Q),

1

2
g(g + 1)h(b) + log ‖Wr‖Ar(b) ≥ hFal(X).

Proof. This follows from [15, Proposition 5.9]. Let us explain this. Let K be a number field

such that X has a model X0 over K with semi-stable reduction over OK and the property that b

is rational over K. Then, if p : X → SpecOK is the minimal regular (semi-stable) model of X0

over OK , by [15, Proposition 5.9], the real number 1
2
g(g + 1)(P, ωX/OK ) equals

hFal(X )−
∑

σ:K→C

log ‖Wr‖Ar,Xσ(bσ) + log
(
#R1p∗OX (gP )

)
,

where we let P denote the section of p : X → SpecOK induced by b. Since

log
(
#R1p∗OX (gP )

)
≥ 0,

the inequality

1

2
g(g + 1)(P, ωX/OK ) ≥ hFal(X )−

∑
σ:K→C

log ‖Wr‖Ar,Xσ(bσ)

holds. Dividing both sides by [K : Q] gives the sought inequality. In fact, by definition,

h(b) =
(P, ωX/OK )

[K : Q]
, hFal(X) =

hFal(X )

[K : Q]
,

and

log ‖Wr‖Ar(b) =
1

[K : Q]

∑
σ:K→C

log ‖Wr‖Ar,Xσ(bσ).

1.9. The Belyi degree of a curve

We finish this chapter with a discussion of the Belyi degree of a smooth projective connected

curve over Q.

Theorem 1.9.1. Let X be a smooth projective connected curve over C. Then the following

assertions are equivalent.

1. The curve X can be defined over a number field.

2. There exists a finite morphism X → P1
C ramified over precisely three points.
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Proof. Weil (and later Grothendieck) showed that “2 implies 1”; see [27]. In [5] Belyi proved

that “1 implies 2”.

Example 1.9.2. Let Γ ⊂ SL2(Z) be a finite index subgroup. Then the compactification XΓ

of the Riemann surface Γ\H (obtained by adding cusps) can be defined over a number field.

This follows from the implication (2) =⇒ (1) of Theorem 1.9.1. In fact, the morphism

XΓ → X(1) ∼= P1
C of degree at most [SL2(Z) : Γ] is ramified over precisely three points if

g(XΓ) ≥ 1. (The isomorphism X(1) ∼= P1(C) is given by the j-invariant.)

Example 1.9.3. Let n ≥ 4 be an integer. Let F (n) be the curve defined by the equation

xn + yn = zn in P2
C. We call F (n) the Fermat curve of degree n. The morphism from F (n) to

P1
Q

given by (x : y : z) 7→ (xn : zn) is ramified over precisely three points. We note that this

finite morphism is of degree n2.

Definition 1.9.4. Let X be a smooth projective connected curve over C which can be defined

over a number field. Then the Belyi degree ofX , denoted by degB(X), is defined as the minimal

degree of a finite morphism X → P1
C ramified over precisely three points.

Remark 1.9.5. Let U over Q be a smooth quasi-projective connected variety over Q. Then

base-change from Q to C (with respect to any embedding Q → C) induces an equivalence of

categories from the category of finite étale covers of U to the category of finite étale covers of

UC; see [27]

Definition 1.9.6. Let X be a smooth projective connected curve over Q. Then the Belyi degree

of X , denoted by degB(X), is defined as the minimal degree of a finite morphism X → P1
Q

ramified over precisely three points. (Note that such a morphism always exists by Remark 1.9.5.)

Definition 1.9.7. LetX be a curve over a number fieldK. LetK → C be a complex embedding.

We define the Belyi degree degB(X) of X to be the Belyi degree of XC. This real number is

well-defined, i.e., it does not depend on the choice of the embedding K → C.

Example 1.9.8. The Belyi degree of the curve XΓ is bounded from above by the index of Γ in

SL2(Z).

Example 1.9.9. For all n ≥ 1, the Belyi degree of the Fermat curve F (n) is bounded by n2.

Lemma 1.9.10. ForX a smooth projective connected over Q of genus g, we have 2g+1 ≤ degB(X).

Proof. Let π : X → P1
Q

be ramified over precisely three points. By Riemann-Hurwitz, the

equality 2g − 2 = −2 deg π + degR holds, where R is the ramification divisor of π : X → P1
Q

.

The lemma follows from the inequality degR ≤ 3 deg π − 3.
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Example 1.9.11. The Belyi degree of the genus g curve y2 + y = x2g+1 equals 2g + 1. In fact,

the projection onto y is a Belyi cover of degree 2g + 1. In particular, the inequality of Lemma

1.9.10 is sharp.

Proposition 1.9.12. Let C be a real number. The set of Q-isomorphism classes of smooth pro-

jective connected curves X such that degB(X) ≤ C is finite.

Proof. The fundamental group of the Riemann sphere minus three points is finitely generated.
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CHAPTER 2

Polynomial bounds for Arakelov invariants

of Belyi curves

This chapter forms the technical heart of this thesis. Most of the results of this chapter also

appear in our article [30].

2.1. Main result

We prove that stable Arakelov invariants of a curve over a number field are polynomial in the

Belyi degree. We use our results to give algorithmic, geometric and Diophantine applications in

the following two chapters.

Let X be a smooth projective connected curve over Q of genus g. In [5] Belyi proved that

there exists a finite morphism X → P1
Q

ramified over at most three points. Let degB(X) denote

the Belyi degree of X (introduced in Section 1.9). Since the topological fundamental group

of the projective line P1(C) minus three points is finitely generated, the set of Q-isomorphism

classes of curves with bounded Belyi degree is finite; see Proposition 1.9.12. In particular, the

“height” of X is bounded in terms of degB(X).

We prove that, if g ≥ 1, the Faltings height hFal(X), the Faltings delta invariant δFal(X),

the discriminant ∆(X) and the self-intersection of the dualizing sheaf e(X) are bounded by an

explicitly given polynomial in degB(X).

Theorem 2.1.1. For any smooth projective connected curve X over Q of genus g ≥ 1,

− log(2π)g ≤ hFal(X) ≤ 13 · 106g degB(X)5

0 ≤ e(X) ≤ 3 · 107(g − 1) degB(X)5

0 ≤ ∆(X) ≤ 5 · 108g2 degB(X)5

−108g2 degB(X)5 ≤ δFal(X) ≤ 2 · 108g degB(X)5.
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We were first led to investigate this problem by work of Edixhoven, de Jong and Schepers

on covers of complex algebraic surfaces with fixed branch locus; see [22]. They conjectured an

arithmetic analogue ([22, Conjecture 5.1]) of their main theorem (Theorem 1.1 in loc. cit.). We

use our results to prove their conjecture; see Section 3.3 for a more precise statement.

Outline of proof

To prove Theorem 2.1.1 we will use Arakelov theory for curves defined over a number field

K. To apply Arakelov theory in this context, we will work with arithmetic surfaces associated

to such curves. We refer the reader to Section 1.2 for precise definitions.

Firstly, we show that, to prove Theorem 2.1.1, it suffices to bound the canonical height of

some non-Weierstrass point and the Arakelov norm of the Wronskian differential at this point;

see Theorem 2.2.1 for a precise statement.

In Section 2.3 we have gathered all the necessary analytic results. We estimate Arakelov-

Green functions and Arakelov norms of Wronskian differentials on finite étale covers of the

modular curve Y (2) in Theorem 2.3.12 and Proposition 2.3.13, respectively. In our proof we use

an explicit version of a result of Merkl on the Arakelov-Green function; see Theorem 2.3.2. This

version of Merkl’s theorem was obtained by Peter Bruin in his master’s thesis ([9]). The proof

of this version of Merkl’s theorem is reproduced in the appendix of [30] by Peter Bruin.

In Section 2.5.2 we prove the existence of a non-Weierstrass point on X of bounded height;

see Theorem 2.5.4. The proof of Theorem 2.5.4 relies on our bounds for Arakelov-Green func-

tions (Theorem 2.3.12), the existence of a “wild” model (Theorem 2.4.9) and a generalization of

Dedekind’s discriminant conjecture for discrete valuation rings of characteristic zero (Proposi-

tion 2.4.1) which we attribute to H.W. Lenstra jr.

A precise combination of the above results constitutes the proof of Theorem 2.1.1 given in

Section 2.5.3.

2.2. Reduction to bounding the Arakelov height of a point

In this section we prove bounds for Arakelov invariants of curves in the height of a non-

Weierstrass point and the Arakelov norm of the Wronskian differential in this point.

Theorem 2.2.1. Let X be a smooth projective connected curve over Q of genus g ≥ 1. Let

b ∈ X(Q). Then
e(X) ≤ 4g(g − 1)h(b),

δFal(X) ≥ −90g3 − 4g(2g − 1)(g + 1)h(b).
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Suppose that b is not a Weierstrass point. Then

hFal(X) ≤ 1
2
g(g + 1)h(b) + log ‖Wr‖Ar(b),

δFal(X) ≤ 6g(g + 1)h(b) + 12 log ‖Wr‖Ar(b) + 4g log(2π),

∆(X) ≤ 2g(g + 1)(4g + 1)h(b) + 12 log ‖Wr‖Ar(b) + 93g3.

This theorem is essential to the proof of Theorem 2.1.1 given in Section 2.5.2. We give a

proof of Theorem 2.2.1 at the end of this section.

Lemma 2.2.2. For a smooth projective connected curve X over Q of genus g ≥ 1,

log ‖ϑ‖max(X) ≤ g

4
log max(1, hFal(X)) + (4g3 + 5g + 1) log(2).

Proof. We kindly thank R. de Jong for sharing this proof with us. We follow the idea of [26,

Section 2.3.2], see also [14, Appendice]. Let Fg be the Siegel fundamental domain of dimension

g in the Siegel upper half-space Hg, i.e., the space of complex (g × g)-matrices τ in Hg such

that the following properties are satisfied. Firstly, for every element uij of u = <(τ), we have

|uij| ≤ 1/2. Secondly, for every γ in Sp(2g,Z), we have det=(γ · τ) ≤ det=(τ), and finally,

=(τ) is Minkowski-reduced, i.e., for all ξ = (ξ1, . . . , ξg) ∈ Zg and for all i such that ξi, . . . , ξg
are non-zero, we have ξ=(τ)tξ ≥ (=(τ))ii and, for all 1 ≤ i ≤ g − 1 we have (=(τ))i,i+1 ≥ 0.

One can show that Fg contains a representative of each Sp(2g,Z)-orbit in Hg.

Let K be a number field such that X has a model XK over K. For every embedding

σ : K → C, let τσ be an element of Fg such that

Jac(XK,σ) ∼= Cg/(τσZ
g + Zg)

as principally polarized abelian varieties, the matrix of the Riemann form induced by the polar-

ization of Jac(XK,σ) being =(τσ)−1 on the canonical basis of Cg. By a result of Bost (see [26,

Lemme 2.12] or [50]), we have∑
σ:K→C log det(=(τσ))

[K : Q]
≤ g log max(1, hFal(X)) + (2g3 + 2) log(2).

Here we used that hFal(X) = hFal(Jac(X)); see Theorem 1.6.3. Now, let ϑ(z; τ) be the Riemann

theta function as in Section 1.1, where τ is in Fg and z = x + iy is in Cg with x, y ∈ Rg.

Combining the latter inequality with the upper bound

exp(−πty(=(τ))−1y)|ϑ(z; τ)| ≤ 23g3+5g (2.2.1)

implies the result. Let us prove (2.2.1). Note that, if we write

y = =(z) = (=(τ)) · b
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for b in Rg,

exp(−πty(=(τ))−1y)|ϑ(z; τ)| ≤
∑
n∈Zg

exp(−πt(n+ b)(=(τ))(n+ b)).

Since =(τ) is Minkowski reduced, we have

tm=(τ)m ≥ c(g)

g∑
i=1

m2
i (=(τ))ii

for all m in Rg. Here c(g) =
(

4
g3

)g−1 (
3
4

)g(g−1)/2. Also, (=(τ))ii ≥
√

3/2 for all i = 1, . . . , g

(cf. [29, Chapter V.4] for these facts). For i = 1, . . . , g, we define

Bi := πc(g)(ni + bi)
2(=(τ))ii.

Then, we deduce that∑
n∈Zg

exp(−πt(n+ b)(=(τ))(n+ b)) ≤
∑
n∈Zg

exp

(
−

g∑
i=1

Bi

)

≤
g∏
i=1

∑
ni∈Z

exp(−Bi)

Finally, we note that the latter expression is at most
g∏
i=1

2

1− exp(−πc(g)(=(τ))ii)
≤ 2g

(
1 +

2

π
√

3c(g)

)g
.

This proves (2.2.1).

Lemma 2.2.3. Let a ∈ R>0 and b ∈ R≤1. Then, for all real numbers x ≥ b,

x− a log max(1, x) =
1

2
x+

1

2
(x− 2a log max(1, x)),

and
1

2
x+

1

2
(x− 2a log max(1, x)) ≥ 1

2
x+ min(

1

2
b, a− a log(2a)).

Proof. It suffices to prove that x− 2a log max(1, x) ≥ min(b, 2a− 2a log(2a)) for all x ≥ b. To

prove this, let x ≥ b. Then, if 2a ≤ 1, we have

x− 2a log max(1, x) ≥ b ≥ min(b, 2a− 2a log(2a)).

(To prove that x − 2a log max(1, x) ≥ b, we may assume that x ≥ 1. It is easy to show that

x − 2a log x is a non-decreasing function for x ≥ 1. Therefore, for all x ≥ 1, we conclude that

x−2a log x ≥ 1 ≥ b.) If 2a > 1, the function x−2a log(x) attains its minimum value at x = 2a

on the interval [1,∞) . This concludes the proof.
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Lemma 2.2.4. (Bost) Let X be a smooth projective connected curve over Q of genus g ≥ 1.

Then

hFal(X) ≥ − log(2π)g.

Proof. See [25, Corollaire 8.4]. (Note that the Faltings height h(X) utilized by Bost, Gau-

dron and Rémond is bigger than hFal(X) due to a difference in normalization. In fact, we have

h(X) = hFal(X) + g log(
√
π). In particular, the slightly stronger lower bound

hFal(X) ≥ − log(
√

2π)g

holds.)

Lemma 2.2.5. Let X be a smooth projective connected curve over Q of genus g ≥ 1. Then

logS(X) + hFal(X)

is at least

hFal(X)

2
− (4g3 + 5g + 1) log(2) + min

(
−g log(2π)

2
,
g

4
− g

4
log
(g

2

))
.

Proof. By the explicit formula (1.1.1) for S(X) and our bounds on theta functions (Lemma

2.2.2),

logS(X) + hFal(X)

is at least

−g
4

log max(1, hFal(X))− (4g3 + 5g + 1) log(2) + hFal(X).

Since hFal(X) ≥ −g log(2π), the statement follows from Lemma 2.2.3 (with x = hFal(X),

a = g/4 and b = −g log(2π)).

Lemma 2.2.6. Let X be a smooth projective connected curve of genus g ≥ 2 over Q. Then

(2g − 1)(g + 1)

8(g − 1)
e(X) +

1

8
δFal(X) ≥ logS(X) + hFal(X).

Proof. By [15, Proposition 5.6],

e(X) ≥ 8(g − 1)

(g + 1)(2g − 1)
(logR(X) + hFal(X)) .

Note that logR(X) = log S(X)− δFal(X)/8; see (1.1.2). This implies the inequality.

Lemma 2.2.7. (Noether formula) Let X be a smooth projective connected curve over Q of

genus g ≥ 1. Then

12hFal(X) = e(X) + ∆(X) + δFal(X)− 4g log(2π).
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Proof. This follows from [24, Theorem 6] and [47, Théorème 2.2].

Proposition 2.2.8. Let X be a smooth projective connected curve of genus g ≥ 2 over Q. Then

hFal(X) ≤ (2g−1)(g+1)
4(g−1)

e(X) + 1
4
δFal(X) + 20g3

−g log(2π) ≤ (2g−1)(g+1)
4(g−1)

e(X) + 1
4
δFal(X) + 20g3

∆(X) ≤ 3(2g−1)(g+1)
g−1

e(X) + 2δFal(X) + 248g3.

Proof. Firstly, by Lemma 2.2.6,

(2g − 1)(g + 1)

8(g − 1)
e(X) +

1

8
δFal(X) ≥ logS(X) + hFal(X).

To obtain the upper bound for hFal(X), we proceed as follows. Write

s := logS(X) + hFal(X).

By Lemma 2.2.5,

s ≥ 1

2
hFal(X)− (4g3 + 5g + 1) log(2) + min

(
−g

2
log(2π),

g

4
− g

4
log
(g

2

))
.

From these two inequalities, we deduce that 1
2
hFal(X) is at most

(2g − 1)(g + 1)

8(g − 1)
e(X) +

δFal(X)

8
+ (4g3 + 5g + 1) log(2)+

+ max
(g

2
log(2π),

g

4
log
(g

2

)
− g

4

)
.

Finally, it is straightforward to verify the inequality

(4g3 + 5g + 1) log(2) + max
(g

2
log(2π),

g

4
log
(g

2

)
− g

4

)
≤ 10g3.

This concludes the proof of the upper bound for hFal(X).

The second inequality follows from the first inequality of the proposition and the lower bound

hFal(X) ≥ −g log(2π) of Bost (Lemma 2.2.4).

Finally, to obtain the upper bound of the proposition for the discriminant of X , we eliminate

the Faltings height of X in the first inequality using the Noether formula and obtain that

∆(X) + e(X) + δFal(X)− 4g log(2π)

is at most
3(2g − 1)(g + 1)

(g − 1)
e(X) + 3δFal(X) + 240g3.

In [24, Theorem 5] Faltings showed that e(X) ≥ 0. Therefore, we conclude that

∆(X) ≤ 3(2g − 1)(g + 1)

(g − 1)
e(X) + 2δFal(X) + (240 + 4 log(2π))g3.
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We are now ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The proof is straightforward. The upper bound

e(X) ≤ 4g(g − 1)h(b)

is well-known; see [24, Theorem 5].

Let us prove the lower bound for δFal(X). If g ≥ 2, the lower bound for δFal(X) can be de-

duced from the second inequality of Proposition 2.2.8 and the upper bound e(X) ≤ 4g(g−1)h(b).

When g = 1, we can easily compute an explicit lower bound for δFal(X). For instance, it not

hard to show that δFal(X) ≥ −8 log(2π) (using the explicit description of δFal(X) as in Remark

1.7.1).

From now on, we suppose that b is a non-Weierstrass point. The upper bound

hFal(X) ≤ 1

2
g(g + 1)h(b) + log ‖Wr‖Ar(b)

is Proposition 1.8.1.

We deduce the upper bound

δFal(X) ≤ 6g(g + 1)h(b) + 12 log ‖Wr‖Ar(b) + 4g log(2π)

as follows. Since e(X) ≥ 0 and ∆(X) ≥ 0, the Noether formula implies that

δFal(X) ≤ 12hFal(X) + 4g log(2π).

Thus, the upper bound for δFal(X) follows from the upper bound for hFal(X).

Finally, the upper bound

∆(X) ≤ 2g(g + 1)(4g + 1)h(b) + 12 log ‖Wr‖Ar(b) + 93g3

follows from the inequality ∆(X) ≤ 12hFal(X)−δFal(X)+4g log(2π) and the preceding bounds.

(One could also use the last inequality of Proposition 2.2.8 to obtain a similar result.)

2.3. Analytic part

Our aim is to give explicit bounds for the Arakelov-Green function on a Belyi cover of X(2)

in this section. Such bounds have been obtained for certain Belyi covers using spectral methods

in [33]. The results in loc. cit. do not apply to our situation since the smallest positive eigenvalue

of the Laplacian can go to zero in a tower of Belyi covers; see [43, Theorem 4].
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Instead, we use a theorem of Merkl to prove explicit bounds for the Arakelov-Green function

on a Belyi cover in Theorem 2.3.12. More precisely, we construct a “Merkl atlas” for an arbitrary

Belyi cover. Our construction uses an explicit version of a result of Jorgenson and Kramer ([32])

on the Arakelov (1, 1)-form due to Bruin.

We use our results to estimate the Arakelov norm of the Wronskian differential in Proposition

2.3.13.

2.3.1. Merkl’s theorem

Let X be a compact connected Riemann surface of positive genus and recall that µ denotes

the Arakelov (1, 1)-form on X .

Definition 2.3.1. A Merkl atlas for X is a quadruple

({(Uj, zj)}nj=1, r1,M, c1),

where {(Uj, zj)}nj=1 is a finite atlas for X , 1
2
< r1 < 1, M ≥ 1 and c1 > 0 are real numbers such

that the following properties are satisfied.

1. Each zjUj is the open unit disc.

2. The open sets U r1
j := {x ∈ Uj : |zj(x)| < r1} with 1 ≤ j ≤ n cover X .

3. For all 1 ≤ j, j′ ≤ n, the function |dzj/dzj′ | on Uj ∩ Uj′ is bounded from above by M .

4. For 1 ≤ j ≤ n, write µAr = iFjdzj ∧ dzj on Uj . Then 0 ≤ Fj(x) ≤ c1 for all x ∈ Uj .

Given a Merkl atlas ({(Uj, zj)}nj=1, r1,M, c1) for X , the following result provides explicit

bounds for Arakelov-Green functions in n, r1, M and c1.

Theorem 2.3.2 (Merkl). Let ({(Uj, zj)}nj=1, r1,M, c1) be a Merkl atlas for X . Then

sup
X×X\∆

grX ≤
330n

(1− r1)3/2
log

1

1− r1

+ 13.2nc1 + (n− 1) logM.

Furthermore, for every index j and all x 6= y ∈ U r1
j , we have that

| grX(x, y)− log |zj(x)− zj(y)||

is at most
330n

(1− r1)3/2
log

1

1− r1

+ 13.2nc1 + (n− 1) logM.

Proof. Merkl proved this theorem without explicit constants and without the dependence on r1

in [45]. A proof of the theorem in a more explicit form was given by P. Bruin in his master’s

thesis; see [9]. This proof is reproduced, with minor modifications, in the appendix of [30].
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2.3.2. An atlas for a Belyi cover of X(2)

Let H denote the complex upper half-plane. Recall that SL2(R) acts on H via Möbius trans-

formations. Let Γ(2) denote the subgroup of SL2(Z) defined as

Γ(2) = {( a bc d ) ∈ SL2(Z) : a ≡ d ≡ 1 mod 2 and b ≡ c ≡ 0 mod 2} .

The Riemann surface Y (2) = Γ(2)\H is not compact. Let X(2) be the compactification of the

Riemann surface Y (2) = Γ(2)\H obtained by adding the cusps 0, 1 and ∞. Note that X(2)

is known as the modular curve associated to the congruence subgroup Γ(2) of SL2(Z). The

modular lambda function λ : H→ C induces an analytic isomorphism λ : X(2)→ P1(C); see

Section 2.5.1 for details. In particular, the genus of X(2) is zero. For a cusp κ ∈ {0, 1,∞}, we

fix an element γκ in SL2(Z) such that γκ(κ) =∞.

We construct an atlas for the compact connected Riemann surface X(2). Let Ḃ∞ be the open

subset given by the image of the strip

Ṡ∞ :=

{
x+ iy : −1 ≤ x < 1, y >

1

2

}
⊂ H

in Y (2) under the quotient map H −→ Γ(2)\H defined by τ 7→ Γ(2)τ . The quotient map

H −→ Γ(2)\H induces a bijection from this strip to Ḃ∞. More precisely, suppose that τ and τ ′

in Ṡ∞ lie in the same orbit under the action of Γ(2). Then, there exists an element

γ =

(
a b

c d

)
∈ Γ(2)

such that γτ = τ ′. If c 6= 0, by definition, c is a non-zero integral multiple of 2. Thus, c2 ≥ 4.

Therefore,
1

2
< =τ ′ = =τ

|cτ + d|2
≤ 1

4=τ
<

1

2
.

This is clearly impossible. Thus, c = 0 and τ ′ = τ ± b. By definition, b = 2k for some integer

k. Since τ and τ ′ lie in the above strip, we conclude that b = 0. Thus τ = τ ′.

Consider the morphism z∞ : H −→ C given by τ 7→ exp(πiτ + π
2
). The image of the strip

Ṡ∞ under z∞ in C is the punctured open unit disc Ḃ(0, 1). Now, for any τ and τ ′ in the strip Ṡ∞,

the equality z∞(τ) = z∞(τ ′) holds if and only if τ ′ = τ ± 2k for some integer k. But then k = 0

and τ = τ ′. We conclude that z∞ factors injectively through Ḃ∞. Let z∞ : B∞ −→ B(0, 1)

denote, by abuse of notation, the induced chart at∞, whereB∞ := Ḃ∞∪{∞} andB(0, 1) is the

open unit disc in C. We translate our neighbourhood B∞ at∞ to a neighborhood for κ, where κ

is a cusp of X(2). More precisely, for any τ in H, define zκ(τ) = exp(πiγ−1
k τ + π/2). Let Ḃκ

be the image of Ṡ∞ under the map H −→ Y (2) given by

τ 7→ Γ(2)γκτ.
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We define Bκ = Ḃκ ∪ {κ}. We let zκ : Bκ → B(0, 1) denote the induced chart (by abuse of

notation).

Since the open subsets Bκ cover X(2), we have constructed an atlas {(Bκ, zκ)}κ for X(2),

where κ runs through the cusps 0, 1 and∞.

Definition 2.3.3. A Belyi cover of X(2) is a morphism of compact connected Riemann surfaces

Y −→ X(2) which is unramified over Y (2). The points of Y not lying over Y (2) are called

cusps.

Lemma 2.3.4. Let π : Y −→ X(2) be a Belyi cover with Y of genus g. Then, g ≤ deg π.

Proof. This follows from Lemma 1.9.10.

Let π : Y −→ X(2) be a Belyi cover. We are going to “lift” the atlas {(Bκ, zκ)} for X(2) to

an atlas for Y .

Let κ be a cusp of X(2). The branched cover π−1(Bκ) −→ Bκ restricts to a finite degree

topological cover π−1(Ḃκ) −→ Ḃκ. In particular, the composed morphism

π−1Ḃκ
// Ḃκ

∼
zκ|Ḃκ

// Ḃ(0, 1)

is a finite degree topological cover of Ḃ(0, 1).

Recall that the fundamental group of Ḃ(0, 1) is isomorphic to Z. More precisely, for any con-

nected topological cover of V → Ḃ(0, 1), there is a unique integer e ≥ 1 such that V → Ḃ(0, 1)

is isomorphic to the cover Ḃ(0, 1) −→ Ḃ(0, 1) given by x 7→ xe.

For every cusp y of Y lying over κ, let V̇y be the unique connected component of π−1Ḃκ

whose closure Vy in π−1(Bκ) contains y. Then, for any cusp y, there is a positive integer ey and

an isomorphism

wy : V̇y
∼ // Ḃ(0, 1)

such that weyy = zκ ◦ π|V̇y . The isomorphism wy : V̇y −→ Ḃ(0, 1) extends to an isomorphism

wy : Vy −→ B(0, 1) such that weyy = zκ ◦ π|Vy . This shows that ey is the ramification index of y

over κ. Note that we have constructed an atlas {(Vy, wy)} for Y , where y runs over the cusps of

Y .

2.3.3. The Arakelov (1, 1)-form and the hyperbolic metric

Let

µhyp(τ) =
i

2

1

=(τ)2
dτdτ
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be the hyperbolic (1, 1)-form on H. A Fuchsian group is a discrete subgroup of SL2(R). For

any Fuchsian group Γ, the quotient space Γ\H is a connected Hausdorff topological space and

can be made into a Riemann surface in a natural way. The hyperbolic metric µhyp on H induces

a measure on Γ\H, given by a smooth positive real-valued (1, 1)-form outside the set of fixed

points of elliptic elements of Γ. If the volume of Γ\H with respect to this measure is finite, we

call Γ a cofinite Fuchsian group.

Let Γ be a cofinite Fuchsian group, and let X be the compactification of Γ\H obtained by

adding the cusps. We assume that Γ has no elliptic elements and that the genus g ofX is positive.

There is a unique smooth function FΓ : X −→ [0,∞) which vanishes at the cusps of Γ such that

µ =
1

g
FΓµhyp. (2.3.1)

A detailed description of FΓ is not necessary for our purposes.

Definition 2.3.5. Let π : Y −→ X(2) be a Belyi cover. Then we define the cofinite Fuch-

sian group ΓY (or simply Γ) associated to π : Y → X(2) as follows. Since the topological

fundamental group of Y (2) equals

Γ(2)/{±1},

we have π−1(Y (2)) = Γ′\H for some subgroup Γ′ ⊂ Γ(2)/{±1} of finite index. We define

Γ ⊂ Γ(2) to be the inverse image of Γ′ under the quotient map Γ(2) −→ Γ(2)/{±1}. Note that

Γ is a cofinite Fuchsian group without elliptic elements.

Theorem 2.3.6. (Jorgenson-Kramer) For any Belyi cover π : Y −→ X(2), where Y has

positive genus,

sup
τ∈Y

FΓ ≤ 64 max
y∈Y

(ey)
2 ≤ 64(deg π)2.

Proof. This is shown by Bruin in [8]. More precisely, in the notation of loc. cit., Bruin shows

that, with a = 1.44, we haveNSL2(Z)(z, 2a
2−1) ≤ 58. In particular, supz∈Y NΓ(z, z, 2a2−1) ≤ 58;

see Section 8.2 in loc. cit.. Now, we apply Proposition 6.1 and Lemma 6.2 (with ε = 2 deg π) in

loc. cit. to deduce the sought inequality.

Remark 2.3.7. Jorgenson and Kramer prove a stronger (albeit non-explicit) version of Theorem

2.3.6; see [32].

2.3.4. A Merkl atlas for a Belyi cover of X(2)

In this section we prove bounds for Arakelov-Green functions of Belyi covers.
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Recall that we constructed an atlas {(Bκ, zκ)}κ for X(2). For a cusp κ of X(2), let

yκ : H −→ (0,∞)

be defined by

τ 7→ =(γ−1
κ τ) =

1

2
− log |zκ(τ)|

π
.

This induces a function Ḃκ −→ (0,∞) also denoted by yκ.

Lemma 2.3.8. For any two cusps κ and κ′ of X(2), we have∣∣∣∣ dzκdzκ′

∣∣∣∣ ≤ 4 exp(3π/2)

on Bκ ∩Bκ′ .

Proof. We work on the complex upper half-plane H. We may and do assume that κ 6= κ′. By

applying γ−1
κ′ , we may and do assume that κ′ =∞. On Bκ ∩B∞, we have

dzκ(τ) = πi exp(πiγ−1
κ τ + π/2)d(γ−1

κ τ),

and

dz∞(τ) = πi exp(πiτ + π/2)d(τ).

Therefore,
dzκ
dz∞

(τ) = exp(πi(γ−1
κ τ − τ))

d(γ−1
κ τ)

d(τ)
.

It follows from a simple calculation that, for γ−1
κ =

(
a b

c d

)
with c 6= 0,

∣∣∣∣ dzκdz∞

∣∣∣∣ (τ) =
1

|cτ + d|2
exp(π(y∞(τ)− yκ(τ))).

For τ and γ−1
κ τ inB∞, one has y∞(τ) > 1/2 and yκ(τ) > 1/2. From the inequality |cτ+d| ≥ y∞(τ) = =(τ),

it follows that

yκ(τ) = =(γ−1
κ (τ)) = γ∞

(
aτ + b

cτ + d

)
=

=τ
|cτ + d|2

≤ =τ
(=τ)2

≤ 2,

and similarly y∞(τ) ≤ 2. The statement follows.

Let π : Y −→ X(2) be a Belyi cover. Recall that we constructed an atlas {(Vy, wy)} for

Y . We assume that the genus g of Y is positive and, as usual, we let µ denote the Arakelov

(1, 1)-form on Y . Also, we let V = π−1(Y (2)).
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Lemma 2.3.9. For a cusp y of π : Y → X(2) with κ = π(y), the equality

idwydwy =
2π2y2

κ|wy|2

e2
y

µhyp

holds on V̇y.

Proof. Let κ = π(y) in X(2). We work on the complex upper half-plane. By the chain rule, we

have

d(zκ) = d(weyy ) = eyw
ey−1
y dwy.

Therefore,

e2
y|wy|2ey−2dwydwy = dzκdzκ.

Note that dzκ = πizκd(γ−1
κ ), where we view γ−1

κ : H −→ C as a function. Therefore,

e2
y|wy|2ey−2dwydwy = π2|zκ|2d(γ−1

κ )d(γ−1
κ ).

Since |weyy | = |zκ|, we have

idwydwy =
iπ2|wy|2

e2
y

d(γ−1
κ )d(γ−1

κ )

=
2π2y2

κ|wy|2

e2
y

id(γ−1
κ )d(γ−1

κ )

2y2
κ

=
2π2y2

κ|wy|2

e2
y

(
µhyp ◦ γ−1

κ

)
.

Since the hyperbolic (1,1)-form µhyp is invariant under the action of SL2(Z), this concludes the

proof.

Proposition 2.3.10. Let y be a cusp of π : Y → X(2). Write

µ = iFydwydwy

on Vy. Then Fy is a subharmonic function on Vy and

0 ≤ Fy ≤
128 exp(3π)(deg π)4

π2g
.

Proof. The first statement follows from [32, page 8]; see also [10, page 58]. The lower bound

for Fy is clear from the definition. Let us prove the upper bound for Fy.

For a cusp κ of X(2), let Ḃκ(2) ⊂ Ḃκ be the image of the strip

{x+ iy : −1 ≤ x < 1, y > 2}

in Y (2) under the map H −→ Y (2) given by τ 7→ Γ(2)γκτ . For a cusp y of Y lying over κ,

define V̇y(2) = π−1(Ḃκ(2)) and Vy(2) = V̇y(2) ∪ {y}. Since the boundary ∂Vy(2) of Vy(2) is
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contained in Vy − Vy(2), by the maximum principle for subharmonic functions,

sup
Vy

Fy = max(sup
Vy(2)

Fy, sup
Vy−Vy(2)

Fy)

= max( sup
∂Vy(2)

Fy, sup
Vy−Vy(2)

Fy)

= sup
Vy−Vy(2)

Fy.

By Lemma 2.3.9, Definition 2.3.5 and (2.3.1) in Section 2.3.3,

Fy = FΓ

e2
y

2gπ2y2
κ|wy|2

. (2.3.2)

Note that y−2
κ < 4 on Vy. Furthermore,

sup
Vy−Vy(2)

|wy|−2 ≤ sup
Bκ−Bκ(2)

|zκ|−2 = exp(−π) sup
Bκ−Bκ(2)

exp(2πyκ) ≤ e3π.

Thus, the proposition follows from Jorgenson-Kramer’s upper bound for FΓ (Theorem 2.3.6).

Definition 2.3.11. Define s1 =
√

1/2. Note that 1
2
< s1 < 1. For any cusp κ of X(2), let Bs1

κ

be the open subset of Bκ whose image under zκ is {x ∈ C : |x| < s1}. Moreover, define the

positive real number r1 by the equation rdeg π
1 = s1. Note that 1

2
< r1 < 1. For all cusps y of

π : Y → X(2), define the subset V r1
y ⊂ Vy by V r1

y = {x ∈ Vy : |wy(x)| < r1}.

Theorem 2.3.12. Let π : Y −→ X(2) be a Belyi cover such that Y is of genus g ≥ 1. Then

sup
Y×Y \∆

grY ≤ 6378027
(deg π)5

g
.

Moreover, for every cusp y and all x 6= x′ in V r1
y ,

|grY (x, x′)− log |wy(x)− wy(x′)|| ≤ 6378027
(deg π)5

g

Proof. Write d = deg π. Let s1 and r1 be as in Definition 2.3.11. We define real numbers

n := #(Y − V ), M := 4d exp(3π), c1 :=
128 exp(3π)d4

π2g
.

Since n is the number of cusps of Y , we have n ≤ 3d. Moreover

1

1− r1

≤ d

1− s1

.

Note that
330n

(1− r1)3/2
log

1

1− r1

+ 13.2nc1 + (n− 1) logM ≤ 6378027
d5

g
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Therefore, by Theorem 2.3.2, it suffices to show that

({(Vy, wy)}y, r1,M, c1),

where y runs over the cusps of π : Y → X(2), constitutes a Merkl atlas for Y .

The first condition of Merkl’s theorem is satisfied. That is, wyVy is the open unit disc in C.

To verify the second condition of Merkl’s theorem, we have to show that the open sets V r1
y

cover Y . For any x ∈ Vy, we have x ∈ V r1
y if π(x) ∈ Bs1

κ . In fact, for any x in Vy, we have

|wy(x)| < r1 if and only if

|zκ(π(x))| = |wy(x)|ey < r
ey
1 .

Since r1 < 1, we see that s1 = rd1 ≤ r
ey
1 . Therefore, if π(x) lies in Bs1

κ , we see that x lies in

V r1
y . Now, since s1 <

√
3

2
, we have X(2) = ∪κ∈{0,1,∞}Bs1

κ . Thus, we conclude that Y = ∪yV r1
y ,

where y runs through the cusps.

Since we have already verified the fourth condition of Merkl’s theorem in Lemma 2.3.10, it

suffices to verify the third condition to finish the proof. Let κ and κ′ be cusps of X(2). We may

and do assume that κ 6= κ′. Now, as usual, we work on the complex upper half-plane. By the

chain rule, ∣∣∣∣ dwydwy′

∣∣∣∣ ≤ d

|wy|ey−1
sup

Bκ∩Bκ′

∣∣∣∣ dzκdzκ′

∣∣∣∣
on Vy ∩ Vy′ . Note that |wy(τ)|ey−1 ≥ |wy(τ)|ey = |zκ(τ)| for any τ in H. Therefore,∣∣∣∣ dwydwy′

∣∣∣∣ ≤ d

|zκ|
sup

Bκ∩Bκ′

∣∣∣∣ dzκdzκ′

∣∣∣∣ ≤M,

where we used Lemma 2.3.8 and the inequality |zκ| > exp(−3π/2) on Bκ ∩Bκ′ .

2.3.5. The Arakelov norm of the Wronskian differential

Proposition 2.3.13. Let π : Y −→ X(2) be a Belyi cover with Y of genus g ≥ 1. Then

sup
Y−SuppW

log ‖Wr‖Ar ≤ 6378028g(deg π)5.

Proof. Let b be a non-Weierstrass point on Y and let y be a cusp of Y such that b lies in V r1
y . Let

ω = (ω1, . . . , ωg) be an orthonormal basis of H0(Y,Ω1
Y ). Then, as in Section 1.1,

log ‖Wr‖Ar(b) = log |Wwy(ω)(b)|+ g(g + 1)

2
log ‖dwy‖Ar(b).

By Theorem 2.3.12,

g(g + 1)

2
log ‖dwy‖Ar(b) ≤ 6378027g(deg π)5.
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Let us show that log |Wwy(ω)(b)| ≤ g(deg π)5. Write ωk = fkdwy on Vy. Note that

ωk ∧ ωk = |fk|2dwy ∧ dwy.

Therefore,

µ =
i

2g

g∑
k=1

ωk ∧ ωk =
i

2g

g∑
k=1

|fk|2dwy ∧ dwy.

We deduce that
∑g

k=1 |fk|2 = 2gFy, where Fy is the unique function on Vy such that

µ = iFydwy ∧ dwy.

By our upper bound for Fy (Proposition 2.3.10), for any j = 1, . . . , g,

sup
Vy

|fj|2 ≤ sup
Vy

g∑
k=1

|fk|2 = 2gFy ≤
256 exp(3π)(deg π)4

π2
.

By Hadamard’s inequality,

log |Wwy(ω)(b)| ≤
g−1∑
l=0

log

(
g∑

k=1

∣∣∣∣dlfkdwly

∣∣∣∣2 (b)

)1/2

.

Let r1 < r < 1 be some real number. By Cauchy’s integral formula, for any 0 ≤ l ≤ g − 1,∣∣∣∣dlfkdwly

∣∣∣∣ (b) =

∣∣∣∣∣ l!2πi

∫
|wy |=r

fk
(wy − wy(b))l+1

dwy

∣∣∣∣∣ .
It is not hard to see that∣∣∣∣∣ l!2πi

∫
|wy |=r

fk
(wy − wy(b))l+1

dwy

∣∣∣∣∣ ≤ l!

(r − r1)l+1
sup
Vy

|fk| ≤
g!

(1− r1)g
sup
Vy

|fk|.

By the preceding estimations, since g! ≤ gg and 1
1−r1 ≤

deg π
1−s1 , we obtain that

log |Wwy(ω)(b)| ≤
g−1∑
l=0

log

 g!

(1− r1)g

(
g∑

k=1

sup
Vy

|fk|2
)1/2


≤

g−1∑
l=0

log

 g!

(1− r1)g

(
g∑

k=1

256 exp(3π)(deg π)4

π2

)1/2
 .

Note that the latter expression equals

g log(g!) + g2 log

(
1

1− r1

)
+
g

2
log

(
256g exp(3π)

π2

)
+ 2g log(deg π).

Now, note that the latter expression is at most(
4.5 + log

(
1

1− s1

)
+

1

2
log

(
256 exp(3π)

π2

))
g2 log(deg π).
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The latter expression is easily seen to be bounded by

13g(deg π)2.

Since g ≥ 1 and π : Y → X(2) is a Belyi cover, the inequality deg π ≥ 3 holds. Thus,

13g(deg π)2 ≤ 13g(deg π)5

27
≤ g(deg π)5.

2.4. Arithmetic part

2.4.1. Lenstra’s generalization of Dedekind’s discriminant bound

LetA be a discrete valuation ring of characteristic zero with fraction fieldK. Let ordA denote

the valuation on A. Let L/K be a finite field extension of degree n, and let B be the integral

closure of A in L. Note that L/K is separable, and B/A is finite.

The inverse different D−1
B/A of B over A is the fractional ideal

{x ∈ L : Tr(xB) ⊂ A},

where Tr is the trace of L over K. The inverse of the inverse different, denoted by DB/A, is the

different of B over A. Note that DB/A is actually an integral ideal of L.

The following proposition (which we would like to attribute to H.W. Lenstra jr.) is a general-

ization of Dedekind’s discriminant bound; see [56, Proposition III.6.13].

Proposition 2.4.1. (H.W. Lenstra jr.) Suppose that B is a discrete valuation ring of ramifi-

ciation index e over A. Then, the valuation r of the different ideal DB/A on B satisfies the

inequality

r ≤ e− 1 + e · ordA(n).

Proof. Let x be a uniformizer of A. Since A is of characteristic zero, we may define y := 1
nx

;

note that y is an element of K. The trace of y (as an element of L) is 1
x
. Since 1/x is not in

A, this implies that the inverse different D−1
B/A is strictly contained in the fractional ideal yB.

(If not, since A and B are discrete valuation rings, we would have that yB is strictly contained

in the inverse different.) In particular, the different DB/A strictly contains the fractional ideal

(nx). Therefore, the valuation ordB(DB/A) on B of DB/A is strictly less than the valuation of

nx. Thus,

ordB(DB/A) < ordB(nx) = e · ordA(nx) = e(ordA(n) + 1) = e · ordA(n) + e.

This concludes the proof of the inequality.
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Remark 2.4.2. If the extension of residue fields of B/A is separable, the above lemma follows

from the Remarque following Proposition III.6.13 in [56]. (The result in loc. cit. was conjectured

by Dedekind and proved by Hensel when A = Z.) The reader will see that, in the proof of

Proposition 2.4.7, we have to deal with imperfect residue fields.

Proposition 2.4.3. Suppose that the residue characteristic p ofA is positive. Letm be the biggest

integer such that pm ≤ n. Then, for β ⊂ B a maximal ideal of B with ramification index eβ over

A, the valuation rβ of the different ideal DB/A at β satisfies the inequality

rβ ≤ eβ − 1 + eβ · ordA(pm).

Proof. To compute rβ , we localize B at β, and then take the completions Â and B̂β of A and Bβ ,

respectively. Let d be the degree of B̂β over Â. Then, by Lenstra’s result (Proposition 2.4.1), the

inequality

rβ ≤ eβ − 1 + eβ · ordÂ(d).

holds. By definition, ordÂ(d) = ordA(d) ≤ ordA(pm). This concludes the proof.

2.4.2. Covers of arithmetic surfaces with fixed branch locus

Let K be a number field with ring of integers OK , and let S = SpecOK . Let D be a reduced

effective divisor on X = P1
S , and let U denote the complement of the support of D in X . Let

ωX/S be the relative dualizing sheaf of X → S; note that ωX/S is a line bundle on X .

Let Y → S be an integral normal 2-dimensional flat projective S-scheme with geometrically

connected fibres, and let π : Y −→ X be a finite surjective morphism of S-schemes which

is étale over U . Let ψ : Y ′ → Y be the minimal resolution of singularities ([41, Proposition

9.3.32]). Note that we have the following diagram of morphisms

Y ′
ψ // Y π // X // S.

Consider the prime decomposition D =
∑

i∈I Di, where I is a finite index set. Let Dij be an

irreducible component of π−1(D) mapping onto Di, where j is in the index set Ji. We define rij
to be the valuation of the different ideal of OY,Dij/OX ,Di . We define the ramification divisor R

to be
∑

i∈I
∑

j∈Ji rijDij . We define B := π∗R.

We apply [41, 6.4.26] to obtain that there exists a dualizing sheaf ωY/S for Y → S, and a

dualizing sheaf ωπ for π : Y → X such that the adjunction formula

ωY/S = π∗ωX/S ⊗ ωπ
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holds. Since the local ring at the generic point of a divisor on X is of characteristic zero, basic

properties of the different ideal imply that ωπ is canonically isomorphic to the line bundleOY(R).

We deduce the Riemann-Hurwitz formula

ωY/S = π∗ωX/S ⊗OY(R).

In particular, we conclude that ωY/S is a line bundle on Y .

Let KX = −2 · [∞] be the divisor defined by the tautological section of ωX/OK . Let KY ′

denote the Cartier divisor on Y ′ defined by the rational section d(π ◦ ψ) of ωY ′/S . We define the

Cartier divisor KY on Y analogously, i.e., KY is the Cartier divisor on Y defined by dπ. Note

that KY = ψ∗KY ′ . Also, the Riemann-Hurwitz formula implies the following equality of Cartier

divisors

KY = π∗KX +R.

Let E1, . . . , Es be the exceptional components of ψ : Y ′ −→ Y . Note that the pull-back of

the Cartier divisor ψ∗KY coincides with KY ′ on

Y ′ −
s⋃
i=1

Ei.

Therefore, there exist integers ci such that

KY ′ = ψ∗KY +
s∑
i=1

ciEi,

where this is an equality of Cartier divisors (not only modulo linear equivalence). Note that

(ψ∗KY , Ei) = 0 for all i. In fact, KY is linearly equivalent to a Cartier divisor with support

disjoint from the singular locus of Y .

Lemma 2.4.4. For all i = 1, . . . , s, we have ci ≤ 0.

Proof. We have the following local statement. Let y be a singular point of Y , and let E1, . . . , Er

be the exceptional components of ψ lying over y. We define

V+ =
r∑

i=1,ci>0

ciEi

as the sum on the ci > 0. To prove the lemma, it suffices to show that V+ = 0. Since the intersec-

tion form on the exceptional locus of Y ′ → Y is negative definite ([41, Proposition 9.1.27]), to

prove V+ = 0, it suffices to show that (V+, V+) ≥ 0. Clearly, to prove the latter inequality, it suf-

fices to show that, for all i such that ci > 0, we have (V+, Ei) ≥ 0. To do this, fix i ∈ {1, . . . , r}
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with ci > 0. Since Y ′ → Y is minimal, we have that Ei is not a (−1)-curve. In particular, by the

adjunction formula, the inequality (KY ′ , Ei) ≥ 0 holds. We conclude that

(V+, Ei) = (KY ′ , Ei)−
r∑

j=1,cj<0

cj(Ej, Ei) ≥ 0,

where, in the last inequality, we used that, for all j such that cj < 0, we have that Ej 6= Ei.

Proposition 2.4.5. Let P ′ : S → Y ′ be a section, and let Q : S → X be the induced section. If

the image of P ′ is not contained in the support of KY ′ , then

(KY ′ , P
′)fin ≤ (B,Q)fin.

Proof. Note that, by the Riemann-Hurwitz formula, we have KY = π∗KX + R. Therefore, by

Lemma 2.4.4, we get that

(KY ′ , P
′)fin = (ψ∗KY +

∑
ciEi, P

′)fin

= (ψ∗π∗KX + ψ∗R +
s∑
i=1

ciEi, P
′)fin

≤ (ψ∗π∗KX , P
′)fin + (ψ∗R,P ′)fin.

Since the image of P ′ is not contained in the support ofKY ′ , we can apply the projection formula

for the composed morphism π ◦ ψ : Y ′ → X to (ψ∗π∗KX , P
′)fin and (ψ∗R,P ′)fin; see [41,

Section 9.2]. This gives

(KY ′ , P
′)fin ≤ (ψ∗π∗KX , P

′)fin + (ψ∗R,P ′)fin = (KX , Q)fin + (π∗R,Q)fin.

Since KX = −2 · [∞], the inequality (KX , Q)fin ≤ 0 holds. By definition, B = π∗R. This

concludes the proof.

We introduce some notation. For i in I and j in Ji, let eij and fij be the ramification index

and residue degree of π at the generic point of Dij , respectively. Moreover, let pi ⊂ OK be

the maximal ideal corresponding to the image of Di in SpecOK . Then, note that eij is the

multiplicity of Dij in the fibre of Y over pi. Now, let epi and fpi be the ramification index and

residue degree of pi over Z, respectively. Finally, let pi be the residue characteristic of the local

ring at the generic point of Di and, if pi > 0, let mi be the biggest integer such that pmii ≤ deg π,

i.e., mi = blog(deg π)/ log(pi)c.

Lemma 2.4.6. Let i be in I such that 0 < pi ≤ deg π. Then, for all j in Ji,

rij ≤ 2eijmiepi .
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Proof. Let ordDi be the valuation on the local ring at the generic point of Di. Then, by Lenstra’s

result (Proposition 2.4.3), the inequality

rij ≤ eij − 1 + eij · ordDi(p
mi
i )

holds. Note that ordDi(p
mi
i ) = miepi . Since pi ≤ deg π, we have that mi ≥ 1. Therefore,

rij ≤ eij − 1 + eijmiepi ≤ 2eijmiepi .

Let us introduce a bit more notation. Let I1 be the set of i in I such that Di is horizontal (i.e.,

pi = 0) or pi > deg π. Let D1 =
∑

i∈I1 Di. We are now finally ready to combine our results to

bound the “non-archimedean” part of the height of a point.

Proposition 2.4.7. Let P ′ : S → Y ′ be a section, and let Q : S → X be the induced section. If

the image of P ′ is not contained in the support of KY ′ , then

(KY ′ , P
′)fin ≤ deg π(D1, Q)fin + 2(deg π)2 log(deg π)[K : Q].

Proof. Note that

B =
∑
i∈I

(∑
j∈Ji

rijfij

)
Di.

Let I2 be the complement of I1 in I . Let D2 =
∑

i∈I2 Di, and note that D = D1 + D2. In

particular,

(B,Q)fin =
∑
i∈I

∑
j∈Ji

rijfij(Di, Q)fin

=
∑
i∈I1

∑
j∈Ji

rijfij(Di, Q)fin +
∑
i∈I2

∑
j∈Ji

rijfij(Di, Q)fin.

Note that, for all i in I1 and j in Ji, the ramification of Dij over Di is tame, i.e., the equality

rij = eij − 1 holds. Note that, for all i in I , we have
∑

j∈Ji eijfij = deg π. Thus,∑
i∈I1

∑
j∈Ji

rijfij(Di, Q)fin ≤
∑
i∈I1

∑
j∈Ji

eijfij(Di, Q)fin = deg π(D1, Q)fin.

We claim that ∑
i∈I2

∑
j∈Ji

rijf(Di, Q)fin ≤ 2(deg π)2 log(deg π)[K : Q].

In fact, since, for all i in I2 and j in Ji, by Proposition 2.4.6, the inequality

rij ≤ 2eijmiepi
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holds, we have that∑
i∈I2

∑
j∈Ji

rijfij(Di, Q)fin ≤ 2
∑
i∈I2

miepi(Di, Q)fin

(∑
j∈Ji

eijfij

)
= 2(deg π)

∑
i∈I2

miepi(Di, Q)fin.

Note that (Di, Q) = log(#k(pi)) = fpi log pi. We conclude that

∑
i∈I2

miepi(Di, Q)fin =
∑
p prime

( ∑
i∈I2,pi=p

epifpi

)⌊
log(deg π)

log p

⌋
log(p)

= [K : Q]
∑

Xp∩|D2|6=∅

⌊
log(deg π)

log p

⌋
log(p),

where the last sum runs over all prime numbers p such that the fibre Xp contains an irreducible

component of the support of D2. Thus, the real number (B,Q)fin is at most

(deg π)(D1, Q)fin + 2(deg π)[K : Q]
∑

Xp∩D2 6=∅

⌊
log(deg π)

log p

⌋
log(p)

holds. Note that∑
Xp∩D2 6=∅

⌊
log(deg π)

log p

⌋
log(p) ≤

∑
Xp∩D2 6=∅

log(deg π) ≤ deg π log(deg π),

where we used that Xp ∩D2 6= ∅ implies that p ≤ deg π. In particular,

(B,Q)fin ≤ (deg π)(D1, Q)fin + 2(deg π)2 log(deg π)[K : Q].

By Proposition 2.4.5, we conclude that

(KY ′ , P
′)fin ≤ (deg π)(D1, Q)fin + 2(deg π)2 log(deg π)[K : Q].

2.4.3. Models of covers of curves

In this section, we give a general construction for a model of a cover of the projective line.

Let K be a number field with ring of integers OK , and let S = SpecOK .

Proposition 2.4.8. Let Y → SpecOK be a flat projective morphism with geometrically con-

nected fibres of dimension one, where Y is an integral normal scheme. Then, there exists a finite

field extension L/K such that the minimal resolution of singularities of the normalization of

Y ×OK OL is semi-stable over OL.

Proof. This follows from [42, Corollary 2.8].
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The main result of this section reads as follows.

Theorem 2.4.9. Let K be a number field, and let Y be a smooth projective geometrically con-

nected curve over K. Then, for any finite morphism πK : Y → P1
K , there exists a number field

L/K such that:

– the normalization π : Y → P1
OL

of P1
OL

in the function field of YL is finite flat surjective;

– the minimal resolution of singularities ψ : Y ′ −→ Y is semi-stable over OL;

– each irreducible component of the vertical part of the branch locus of the finite flat mor-

phism π : Y → P1
OL

is of characteristic less or equal to deg π. (The characteristic of a

prime divisor D on P1
OL

is the residue characteristic of the local ring at the generic point

of D.)

Proof. By Proposition 2.4.8, there exists a finite field extension L/K such that the minimal res-

olution of singularities ψ : Y ′ −→ Y of the normalization of P1
OL

in the function field of YL is

semi-stable over OL. Note that the finite morphism π : Y → P1
OL

is flat. (The source is normal

of dimension two, and the target is regular.) Moreover, since the fibres of Y ′ → SpecOL are

reduced, the fibres of Y over OL are reduced. Let p ⊂ OL be a maximal ideal of residue char-

acteristic strictly bigger than deg π, and note that the ramification of π : Y → P1
OL

over (each

prime divisor of P1
OL

lying over) p is tame. Since the fibres of Y → SpecOL are reduced, we see

that the finite morphism π is unramified over p. In fact, since P1
OL
→ SpecOL has reduced (even

smooth) fibres, the valuation of the different idealDOD/Oπ(D)
onOD of an irreducible component

D of Yp lying over π(D) in X is precisely the multiplicity of D in Yp. (Here we let OD denote

the local ring at the generic point of D, and Oπ(D) the local ring at the generic point of π(D).)

Thus, each irreducible component of the vertical part of the branch locus of π : Y → P1
OL

is of

characteristic less or equal to deg π.

2.5. Proof of main result

2.5.1. The modular lambda function

The modular function λ : H→ C is defined as

λ(τ) =
p
(

1
2

+ τ
2

)
− p

(
τ
2

)
p
(
τ
2

)
− p

(
1
2

) ,

where p denotes the Weierstrass elliptic function for the lattice Z + τZ in C. The function λ

is Γ(2)-invariant. More precisely, λ factors through the Γ(2)-quotient map H → Y (2) and an

analytic isomorphism

Y (2)
'−→ C− {0, 1}.
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Thus, the modular function λ induces an analytic isomorphism from X(2) to P1(C). Let us note

that λ(i∞) = 0, λ(1) =∞ and λ(0) = 1.

The restriction of λ to the imaginary axis {iy : y > 0} in H induces a homeomorphism, also

denoted by λ, from {iy : y > 0} to the open interval (0, 1) in R. In fact, for α in the open

interval (0, 1),

λ−1(α) = i
M(1,

√
α)

M(1,
√

1− α)
,

where M denotes the arithmetic-geometric-mean.

Lemma 2.5.1. For τ in H, let q(τ) = exp(πiτ) and let

λ(τ) =
∞∑
n=1

anq
n(τ)

be the q-expansion of λ on H. Then, for any real number 4/5 ≤ y ≤ 1,

− log |
∞∑
n=1

nanq
n(iy)| ≤ 2.

Proof. Note that
∞∑
n=1

nanq
n = q

dλ

dq
.

It suffices to show that |qdλ/dq| ≥ 3/20. We will use the product formula for λ. Namely,

λ(q) = 16q
∞∏
n=1

fn(q), fn(q) :=
1 + q2n

1 + q2n−1
.

Write f ′n(q) = dfn(q)/dq. Then,

q
dλ

dq
= λ

(
1 + q

∞∑
n=1

f ′n(q)

fn(q)

)
= λ

(
1 + q

∞∑
n=1

d

dq
(log fn(q))

)
.

Note that, for any positive integer n and 4/5 ≤ y ≤ 1,(
d

dq
log fn(q)

)
(iy) ≤ 0.

Moreover, since λ(i) = 1/2 and λ(0) = 1, the inequality λ(iy) ≥ 1/2 holds for all 0 ≤ y ≤ 1.

Also, for all 4/5 ≤ y ≤ 1, (
−q

∞∑
n=1

(
d

dq
(log fn(q))

))
(iy) ≤ 7

10
.

In fact,
∞∑
n=1

d

dq
(log fn(q)) =

∞∑
n=1

2nq2n−1

1 + q2n
−
∞∑
n=1

(2n− 1)q2n−2

1 + q2n−1
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It is straightforward to verify that, for all 4/5 ≤ y ≤ 1, the real number

∞∑
n=1

2nq2n−1(iy)

1 + q2n(iy)
−
∞∑
n=1

(2n− 1)q2n−2(iy)

1 + q2n−1(iy)

is at least
100

109

∞∑
n=1

2nq2n−1(iy)−
∞∑
n=1

(2n− 1)q2n−2(iy)

holds. Finally, utilizing classical formulas for geometric series, for all 4/5 ≤ y ≤ 1, the real

number

q(iy)
∞∑
n=1

d

dq
(log fn(q)) (iy)

is at least

q(iy)

(
200q(iy)

109(1− q2(iy))2
− 1 + q2(iy)

(1− q2(iy))2

)
≥ 7

10
.

We conclude that ∣∣∣∣qdλdq
∣∣∣∣ ≥ 1

2

(
1− 7

10

)
=

3

20
.

2.5.2. A non-Weierstrass point with bounded height

The logarithmic height of a non-zero rational number a = p/q is given by

hnaive(a) = log max(|p|, |q|),

where p and q are coprime integers and q > 0.

Theorem 2.5.2. Let πQ : Y −→ P1
Q

be a finite morphism of degree d, where Y/Q is a smooth

projective connected curve of positive genus g ≥ 1. Assume that πQ : Y → P1
Q

is unramified

over P1
Q
−{0, 1,∞}. Then, for any rational number 0 < a ≤ 2/3 and any b ∈ Y (Q) lying over

a,

h(b) ≤ 3hnaive(a)d2 + 6378031
d5

g
.

Proof. By Theorem 2.4.9, there exist a number field K and a model

πK : Y −→ P1
K

for πQ : Y −→ P1
Q

with the following three properties: the minimal resolution of singularities

ψ : Y ′ −→ Y of the normalization π : Y −→ P1
OK

of P1
OK

in Y is semi-stable over OK , each

irreducible component of the vertical part of the branch locus of π : Y → P1
OK

is of characteristic

less or equal to deg π and every point in the fibre of πK over a is K-rational. Also, the morphism

π : Y → P1
OK

is finite flat surjective.
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Let b ∈ Y (K) lie over a. Let P ′ be the closure of b in Y ′. By Lemma 1.7.2, the height of b is

“minimal” on the minimal regular model. That is,

h(b) ≤
(P ′, ωY ′/OK )

[K : Q]
.

Recall the following notation from Section 2.4.2. Let X = P1
OK

. Let KX = −2 · [∞] be

the divisor defined by the tautological section. Let KY ′ be the divisor on Y ′ defined by d(πK)

viewed as a rational section of ωY ′/OK . Since the support of KY ′ on the generic fibre is contained

in π−1
K ({0, 1,∞}), the section P ′ is not contained in the support of KY ′ . Therefore, we get that

h(b)[K : Q] ≤ (P ′, ωY ′/OK ) = (P ′, KY ′)fin +
∑

σ:K−→C

(− log ‖dπK‖σ)(σ(b)).

Let D be the branch locus of π : Y −→ X endowed with the reduced closed subscheme

structure. Write D = 0 + 1 +∞ + Dver, where Dver is the vertical part of D. Note that, in the

notation of Section 2.4.2, we have that D1 = 0 + 1 +∞. Thus, if Q denotes the closure of a in

X , by Proposition 2.4.7, we get

(P ′, KY ′)fin ≤ (deg π)(0 + 1 +∞, Q)fin + 2(deg π)2 log(deg π)[K : Q].

Write a = p/q, where p and q are coprime positive integers with q > p. Note that

(0 + 1 +∞, Q)fin = [K : Q] log(pq(q − p))

≤ 3 log(q)[K : Q]

= 3hnaive(a)[K : Q].

We conclude that
(P ′, KY ′)fin

[K : Q]
≤ 3hnaive(a)(deg π)2 + 2(deg π)3.

It remains to estimate
∑

σ:K−→C(− log ‖dπK‖σ)(σ(b)). To do this, we will use our bounds

for Arakelov-Green functions.

Let σ : K → C be an embedding. The composition

Yσ
πσ // P1(C)

λ−1
// X(2)

is a Belyi cover (Definition 2.3.3). By abuse of notation, let π denote the composed morphism

Yσ −→ X(2). Note that λ−1(2/3) ≈ 0.85i. In particular, =(λ−1(a)) ≥ =(λ−1(2/3)) > s1.

(Recall that s1 =
√

1/2.) Therefore, the element λ−1(a) lies in Ḃs1
∞. Since V r1

y ⊃ Vy ∩ π−1Bs1
∞,

there is a unique cusp y of Yσ → X(2) lying over∞ such that σ(b) lies in V r1
y .

Note that q = z∞ exp(−π/2). Therefore, since λ =
∑∞

j=1 ajq
j on H,

λ ◦ π =
∞∑
j=1

aj exp(−jπ/2)(z∞ ◦ π)j =
∞∑
j=1

aj exp(−jπ/2)weyjy
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on Vy. Thus, by the chain rule,

d(λ ◦ π) = ey

∞∑
j=1

jaj exp(−jπ/2)weyj−1
y d(wy).

The real number

− log ‖d(λ ◦ π)‖Ar(σ(b))

equals

− log ‖dwy‖Ar(σ(b))− log |ey
∞∑
j=1

jaje
−jπ/2weyj−1

y (σ(b))|.

By the trivial inequality ey ≥ 1 and the inequality |wy| ≤ 1, the latter is at most

− log ‖dwy‖Ar(σ(b))− log |
∞∑
j=1

jaje
−jπ/2weyjy (σ(b))|.

By Lemma 2.5.1, the latter is at most

− log ‖dwy‖Ar(σ(b)) + 2.

Thus, by Theorem 2.3.12, we conclude that∑
σ:K→C(− log ‖dπK‖σ)(σ(b))

[K : Q]
≤ 6378027

(deg π)5

g
+ 2.

Corollary 2.5.3. Let X be a smooth projective connected curve over Q of genus g ≥ 1. Then,

there exists a point b in X(Q) such that

h(b) ≤ 6378032
degB(X)5

g
.

Proof. Write d = degB(X). We apply Theorem 2.5.2 with a = 1/2. This gives

h(b) ≤ 3 log(2)d2 + 6378031
d5

g
.

Since d ≥ 3 and d ≥ g, the inequality 3 log(2) degB(X)2 ≤ d5/g holds. This clearly implies the

sought inequality.

Theorem 2.5.4. Let Y be a smooth projective connected curve over Q of genus g ≥ 1. For any

finite morphism π : Y → P1
Q

ramified over exactly three points, there exists a non-Weierstrass

point b on Y such that

h(b) ≤ 6378033
(deg π)5

g
.
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Proof. Define the sequence (an)∞n=1 of rational numbers by a1 = 1/2 and, for all n ≥ 2, by

an = n/(2n− 1). Note that 1/2 ≤ an ≤ 2/3, and that the inequality hnaive(an) ≤ log(2n) holds.

We may and do assume that π : Y → P1
Q

is unramified over P1
Q
−{0, 1,∞}. By Theorem 2.5.2,

for all x ∈ π−1({an}),

h(x) ≤ 3 log(2n)(deg π)2 + 6378031
(deg π)5

g
. (2.5.1)

Since the number of Weierstrass points on Y is at most g3−g, there exists an integer 1 ≤ i ≤ (deg π)2

such that the fibre π−1(ai) contains a non-Weierstrass point, say b. Applying (2.5.1) to b, we ob-

tain that

h(b) ≤ 3 log(2(deg π)2)(deg π)2 + 6378031
(deg π)5

g
.

Therefore, we may conclude that

h(b) ≤ 2
(deg π)5

g
+ 6378031

(deg π)5

g
.

Remark 2.5.5. Let us mention that combining the above results with a theorem of Zhang (The-

orem4.5.2) we obtain infinitely many points b in X(Q) such that

h(b) ≤ 13 · 106 degB(X)5.

2.5.3. Proving Theorem 2.1.1

For a smooth projective connected curve X over Q, we let degB(X) denote the Belyi degree

of X .

Proof of Theorem 2.1.1. The lower bound for ∆(X) ≥ 0 is trivial, the lower bound e(X) ≥ 0

is due to Faltings ([24, Theorem 5]) and the lower bound hFal(X) ≥ −g log(2π) is due to Bost

(Lemma 2.2.4).

For the remaining bounds, we proceed as follows. By Theorem 2.5.4, there exists a non-

Weierstrass point b in X(Q) such that

h(b) ≤ 6378033
degB(X)5

g
.

By our bound on the Arakelov norm of the Wronskian differential in Proposition 2.3.13, we have

log ‖Wr‖Ar(b) ≤ 6378028g degB(X)5.

To obtain the theorem, we combine these bounds with Theorem 2.2.1.
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CHAPTER 3

Applications

3.1. The Couveignes-Edixhoven-Bruin algorithm

Let Γ ⊂ SL2(Z) be a congruence subgroup, and let k be a positive integer. Let

d(Γ) = [SL2(Z) : {±1}Γ]/12.

A modular form f of weight k for the group Γ is determined by k and its q-expansion coefficients

ai(f) for 0 ≤ i ≤ k · d(Γ); see [19] for definitions. In this section we follow [11] and give an

algorithmic application of the main result of this thesis. More precisely, the goal of this section

is to complete the proof of the following theorem. The proof is given at the end of this section.

Theorem 3.1.1. (Couveignes-Edixhoven-Bruin) Assume the Riemann hypothesis for ζ-functions

of number fields. Then there exists a probabilistic algorithm that, given

– a positive integer k,

– a number field K,

– a congruence subgroup Γ ⊂ SL2(Z),

– a modular form f of weight k for Γ over K, and

– a positive integer m in factored form,

computes am(f) of f , and whose expected running time is bounded by a polynomial in the length

of the input.

To make the above theorem into a precise statement, we explain in the following remarks how

the number field K and the modular form f are supposed to be given.

Remark 3.1.2. In the algorithm, we represent K by its multiplication table with respect to some

Q-basis (b1, . . . , br) of K. This means that we represent K by the rational numbers cijk with

1 ≤ i, j, k ≤ r such that

bibj =
r∑

k=1

cijkbk.
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We represent elements of K as Q-linear combinations of (b1, . . . , br).

Remark 3.1.3. Let us make precise how the modular form f of weight k for the group Γ should

be given. Firstly, a modular form f of weight k for the group Γ is determined by k and its

q-expansion coefficients ai(f) for 0 ≤ i ≤ k · d(Γ). For the algorithm, we represent f by its

coefficients

a0(f), . . . , ak·d(Γ)(f).

These are all elements in K and are thus given as explained in Remark 3.1.2.

Remark 3.1.4. We have made precise how the number field K and the modular form f should

be given to the algorithm, and how the algorithm returns the coefficient am(f). We should also

explain what “probabilistic” means in this context. The correct interpretation is that the result

is guaranteed to be correct, but that the running time depends on random choices made during

execution. We refer to [38] for a discussion of such probabilistic algorithms.

The above remarks make Theorem 3.1 into a precise mathematical statement.

Remark 3.1.5. The algorithm is due to Bruin, Couveignes and Edixhoven. Assume the Riemann

hypothesis for ζ-functions of number fields. It was shown that the algorithm runs in polynomial

time for certain congruence subgroups; see [11, Theorem 1.1]. Bruin did not have enough

information about the semi-stable bad reduction of the modular curve X1(n) at primes p such

that p2 divides n to show that the algorithm runs in polynomial time. Nevertheless, our bounds

on the discriminant of a curve can be used to show that the algorithm runs in polynomial time

for all congruence subgroups.

Proof. We follow Bruin’s strategy; see [10, Chapter V.1, p. 165]. In fact, Bruin notes that the

algorithm runs in polynomial time for all congruence subgroups if, for all positive integers n, the

discriminant ∆(X1(n)) is bounded by a polynomial in n. Now, by Theorem 2.1.1, the inequality

∆(X1(n)) ≤ 5 · 108 degB(X1(n))7 holds. Note that

degB(X1(n)) ≤ [SL2(Z) : Γ1(n)].

Since

[SL2(Z) : Γ1(n)] = n2
∏
p|n

(1− 1/p2) ≤ n2,

we conclude that ∆(X1(n)) ≤ 5 · 108n14. We conclude that ∆(X1(n)) is bounded by a polyno-

mial in n.
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3.2. Modular curves, Fermat curves, Hurwitz curves, Galois Belyi curves

LetX be a smooth projective connected curve over Q of genus g ≥ 2. We say thatX is a Fer-

mat curve if there exists an integer n such thatX is isomorphic to the curve given by the equation

xn + yn = zn in P2
Q

. Moreover, we say that X is a Hurwitz curve if #Aut(X) = 84(g − 1).

Also, we say that X is a Galois Belyi curve if the quotient X/Aut(X) is isomorphic to P1
Q

and

the morphism X → X/Aut(X) is ramified over exactly three points; see [12, Proposition 2.4],

[66] or [67]. Note that Fermat curves and Hurwitz curves are Galois Belyi curves. Finally, we

say that X is a modular curve if XC is a classical congruence modular curve for some (hence

any) embedding Q ⊂ C.

If X is a Galois Belyi curve, we have degB(X) ≤ 84(g − 1). This follows from the Hurwitz

bound #Aut(X) ≤ 84(g − 1). In particular, by Proposition 1.9.12, there are only finitely many

isomorphism classes of Galois Belyi curves of bounded genus.

Proposition 3.2.1. If X is a modular curve, then degB(X) ≤ 128(g + 1).

Proof. This result is due to Zograf; see [70]. Zograf’s proof uses methods from the spectral

theory of the Laplacian. Let us explain Zograf’s proof more precisely. Let Γ be a cofinite

Fuchsian group, i.e., a discrete subgroup of SL2(R) such that the volume vol(Γ\H) of Γ\H is

finite; see Section 2.3.3. (Recall that the hyperbolic metric µhyp on H induces a measure on

Γ\H, and we take the volume of Γ\H with respect to this measure.) The Laplace operator ∆ on

the space of smooth Γ-invariant functions on H with compact support (as a function on Γ\H) is

defined as

∆ = −y2(∂2
x + ∂2

y),

where we write τ = x+ iy on H. This operator can be extended to an (unbounded) self-adjoint

operator on the Hilbert space L2(Γ\H) of square-integrable complex-valued functions on H

(with respect to the measure induced by µhyp), defined on a dense open subspace; we denote this

extension by ∆ as well. The spectrum of ∆ consists of a discrete part and a continuous part. The

discrete spectrum of ∆ consists of eigenvalues of ∆ and is of the form {λj}∞j=0 with

0 = λ0 < λ1 ≤ λ2 ≤ . . . , λj →∞ as j →∞.

Zograf proves a generalization of the Yang-Yau inequality of a compact Riemann surface; see

[68]. More precisely, Zograf proves that, if g(Γ) denotes the genus of the compactification XΓ

of Γ\H obtained by adding the cusps and we have vol(Γ\H) > 32π(g(Γ) + 1), the inequality

λ1 <
8π(g(Γ) + 1)

vol(Γ\H)
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holds; see [70, Theorem 1]. This statement implies that, for Γ a congruence subgroup of SL2(Z),

the inequality

[SL2(Z) : Γ] < 128(g(Γ) + 1)

holds, where [SL2(Z) : Γ] denotes the index of Γ in SL2(Z); see [70, Corollary 1]. To prove the

latter inequality, we argue by contradiction. In fact, suppose that

[SL2(Z) : Γ] ≥ 128(g(Γ) + 1).

Since 3vol(Γ\H) = π[SL2(Z) : Γ], we deduce that

vol(Γ\H) ≥ 128

3
π(g(Γ) + 1) > 32π(g(Γ) + 1).

Now, Zograf’s generalization of the Yang-Yau inequality implies that

λ1 <
8π(g(Γ) + 1)

vol(Γ\H)
≤ 3

16
.

That is, the smallest positive eigenvalue is strictly less than 3/16. But this contradicts Selberg’s

famous lower bound for the smallest positive eigenvalue of the Laplace operator associated to a

congruence subgroup, i.e., the first eigenvalue λ1 of ∆ is not less than 3/16; see [55]. Finally,

to deduce the upper bound for the Belyi degree of the congruence modular curve XΓ, note that

degB(XΓ) ≤ [SL2(Z) : Γ].

Corollary 3.2.2. Let X be a smooth projective connected curve over Q of genus g ≥ 1. Suppose

that X is a modular curve or Galois Belyi curve. Then

max(hFal(X), e(X),∆(X), |δFal(X)|) ≤ 2 · 1019g2(g + 1)5.

Proof. For X a modular curve, this follows from Theorem 2.1.1 and the inequality

degB(X) ≤ 128(g + 1)

due to Zograf (Proposition 3.2.1). For X a Galois Belyi curve, this follows from Theorem 2.1.1

and the inequality degB(X) ≤ 84(g − 1).

Remark 3.2.3. Let Γ ⊂ SL2(Z) be a finite index subgroup, and let X be the compactification

of Γ\H obtained by adding the cusps, where Γ acts on the complex upper half-plane H via

Möbius transformations. Let X(1) denote the compactification of SL2(Z)\H. The inclusion

Γ ⊂ SL2(Z) induces a morphism X → X(1). There is a unique finite morphism Y → P1
Q

of

smooth projective connected curves over Q corresponding to X −→ X(1). The Belyi degree of

Y is bounded from above by the index d of Γ in SL2(Z). In particular, the inequality

max(hFal(Y ), e(Y ),∆(Y ), |δFal(Y )|) ≤ 109d7

holds.
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Remark 3.2.4. Non-explicit versions of Corollary 3.2.2 were previously known for certain mod-

ular curves. Firstly, polynomial bounds for Arakelov invariants of X0(n) with n squarefree were

previously known; see [65, Théorème 1.1], [65, Corollaire 1.3], [2], [46, Théorème 1.1] and

[34]. The proofs of these results rely on the theory of modular curves. Also, similar results for

Arakelov invariants of X1(n) with n squarefree were shown in [20] and [44]. Finally, bounds for

the self-intersection of the dualizing sheaf of a Fermat curve of prime exponent are given in [13]

and [36].

3.3. Heights of covers of curves with fixed branch locus

For any finite subset B ⊂ P1(Q) and integer d ≥ 1, the set of smooth projective connected

curves X over Q such that there exists a finite morphism X → P1
Q

étale over P1
Q
−B of degree

d is finite. In particular, the Faltings height of X is bounded by a real number depending only on

B and d. In this section we prove an explicit version of the latter statement. To state our result

we need to define the height of B.

For any finite set B ⊂ P1(Q), define the (exponential) height as

HB = max{H(α) : α ∈ B},

where the height H(α) of an element α in Q is defined as

H(α) =

(∏
v

max(1, ‖α‖v)

)1/[K:Q]

.

HereK is a number field containing α and the product runs over the set of normalized valuations

v of K. (As in [35, Section 2] we require our normalization to be such that the product formula

holds.)

Theorem 3.3.1. Let U be a non-empty open subscheme in P1
Q

with complement B ⊂ P1(Q).

Let N be the number of elements in the orbit of B under the action of Gal(Q/Q). Define

c(B) := (4NHB)45N32N−2N !.

Then, for any finite morphism π : Y → P1
Q

étale over U , where Y is a smooth projective

connected curve over Q of genus g ≥ 1,

−1
2

log(2π)g ≤ hFal(Y ) ≤ 13 · 106gc(B)(deg π)5

0 ≤ e(Y ) ≤ 3 · 107(g − 1)c(B)(deg π)5

0 ≤ ∆(Y ) ≤ 5 · 108g2c(B)(deg π)5

−108g2c(B)(deg π)5 ≤ δFal(Y ) ≤ 2 · 108gc(B)(deg π)5.
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Theorem 3.3.1 is a consequence of Theorem 3.3.3 given below where we consider branched

covers of any curve over Q (i.e., not only P1
Q

). Firstly, let us explain how Theorem 3.3.1 settles

a conjecture of Edixhoven-de Jong-Schepers ([22, Conjecture 5.1]). Let us start by stating their

conjecture.

Conjecture 3.3.2. (Edixhoven-de Jong-Schepers) Let U ⊂ P1
Z be a non-empty open sub-

scheme. Then there are integers a and b with the following property. For any prime number `,

and for any connected finite étale cover π : V → UZ[1/`], the Faltings height of the normalization

of P1
Q in the function field of V is bounded by (deg π)a`b.

Proof of Conjecture 3.3.2. We claim that this conjecture holds with b = 0 and an integer a

depending only on UQ. In fact, let U ⊂ P1
Z be a non-empty open subscheme, and let V → U be

a connected finite étale cover. Let π : Y → P1
Q be the normalization of P1

Q in the function field

of V and note that π is étale over UQ. Let B = P1
Q − UQ ⊂ P1(Q) and let N be the number of

elements in the orbit of B under the action of Gal(Q/Q). By Theorem 3.3.1,

hFal(Y ) :=
∑
X⊂YQ

hFal(X) ≤ (deg π)a,

where the sum runs over all connected components X of YQ := Y ×Q Q, and

a = 6 + log
(

13 · 106N(4NHB)45N32N−2N !
)
.

Here we used that, g ≤ N deg π and

13 · 106g(4NHB)45N32N−2N ! ≤ (deg π)
1+log

(
13·106N(4NHB)45N

32N−2N !
)
.

This proves Conjecture 3.3.2.

We now state and prove Theorem 3.3.3. Let X be a smooth projective connected curve over

Q. We prove that Arakelov invariants of (possibly ramified) covers of X are polynomial in the

degree. Let us be more precise.

Theorem 3.3.3. Let X be a smooth projective connected curve over Q, let U be a non-empty

open subscheme of X , let Bf ⊂ P1(Q) be a finite set, and let f : X → P1
Q

be a finite morphism

of degree n unramified over P1
Q
− Bf . Define B := f(X − U) ∪ Bf . Let N be the number of

elements in the orbit of B under the action of Gal(Q/Q) and let HB be the height of B. Define

cB := (4NHB)45N32N−2N !.
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Then, for any finite morphism π : Y → X étale over U , where Y is a smooth projective con-

nected curve over Q of genus g ≥ 1,

−1
2

log(2π)g ≤ hFal(Y ) ≤ 13 · 106gcB · n5(deg π)5

0 ≤ e(Y ) ≤ 3 · 107(g − 1)cB · n5(deg π)5

0 ≤ ∆(Y ) ≤ 5 · 108g2cB · n5(deg π)5

−108g2cB · n5(deg π)5 ≤ δFal(Y ) ≤ 2 · 108gcB · n5(deg π)5.

Proof. We apply Khadjavi’s effective version of Belyi’s theorem. More precisely, by [35, Theo-

rem 1.1.c], there exists a finite morphism

R : P1
Q
→ P1

Q

étale over P1
Q
− {0, 1,∞} such that R(B) ⊂ {0, 1,∞} and

degR ≤ (4NHB)9N32N−2N !.

Note that the composed morphism

R ◦ f ◦ π : Y π // X
f // P1

Q
R // P1

Q

is unramified over P1
Q
−{0, 1,∞}. We conclude by applying Theorem 2.1.1 to the composition

R ◦ f ◦ π.

Proof of Theorem 3.3.1. We apply Theorem 3.3.3 with X = P1
Q

, Bf the empty set, and

f : X → P1
Q

the identity map.

In the proof of Theorem 3.3.3, we applied Khadjavi’s effective version of Belyi’s theorem.

Khadjavi’s bounds are not optimal; see [40, Lemme 4.1] and [35, Theorem 1.1.b] for better

bounds when B is contained in P1(Q). Actually, the use of Belyi’s theorem makes the depen-

dence on the branch locus enormous in Theorem 3.3.3. It should be possible to avoid the use of

Belyi’s theorem and improve the dependence on the branch locus in Theorem 3.3.3.

Remark 3.3.4. We mention the quantitative Riemann existence theorem due to Bilu and Strambi;

see [6]. Bilu and Strambi give explicit bounds for the naive logarithmic height of a cover of P1
Q

with fixed branch locus. Although their bound on the naive height is exponential in the degree,

the dependence on the height of the branch locus in their result is logarithmic.
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CHAPTER 4

Diophantine applications

In [23] Faltings proved the Shafarevich conjecture. That is, for a number field K, finite set S

of finite places of K, and integer g ≥ 2, there are only finitely many K-isomorphism classes of

curves over K of genus g with good reduction outside S. This is a qualitative statement, i.e., this

statement does not give an explicit bound on the “complexity” of such a curve.

In this chapter we are interested in quantitative versions of the Shafarevich conjecture, e.g.,

the effective Shafarevich conjecture and Szpiro’s small points conjecture.

Our main result (joint with Rafael von Känel) is a proof of Szpiro’s small points conjecture

for cyclic covers of the projective line of prime degree; see Theorem 4.4.1. To explain a part of

our proof, we have also found it fit to discuss the proof of the effective Shafarevich conjecture

for cyclic covers of the projective line of prime degree due to de Jong-Rémond and von Känel

in Section 4.2.1. We finish this chapter with a discussion of a result of Levin which gives some

hope for obtaining applications of the results in this chapter to long-standing conjectures in

Diophantine geometry.

The results of this chapter form only a small part of our article with von Känel [31]. In loc.

cit we also discuss the optimality of the constant, and we give better bounds than those presented

here.

4.1. The effective Shafarevich conjecture

In this section we follow Rémond ([51]). Firstly, we recall Faltings’ finiteness theorem for

abelian varieties.

Theorem 4.1.1. (Faltings [23]) Let K be a number field, S a finite set of finite places of K and

g an integer. Then there are only finitely many K-isomorphism classes of g-dimensional abelian

varieties over K with good reduction outside S.
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An application of Torelli’s theorem allows one to deduce the following finiteness theorem for

curves from Theorem 4.1.1.

Theorem 4.1.2. LetK be a number field, S a finite set of finite places ofK and g ≥ 2 an integer.

Then there are only finitely many K-isomorphism classes of genus g curves over K with good

reduction outside S.

We are interested in an effective version of Faltings’ finiteness theorem for curves. Let us

consider the “effective Shafarevich” conjecture as stated in [51].

Conjecture 4.1.3. (Effective Shafarevich for curves) Let K be a number field, S a finite set of

finite places of K and g ≥ 2 an integer. Then, there exists an explicit real number c (depending

only onK, S and g) such that, for a smooth projective geometrically connected curveX of genus

g over K with good reduction outside S,

hFal,stable(X) ≤ c.

Remark 4.1.4. Removing the word “explicit” from Conjecture 4.1.3 gives a statement equivalent

to Faltings’ finiteness theorem for curves (Theorem 4.1.2). In fact, it is clear that such a statement

follows from Faltings’ finiteness theorem. Conversely, the above conjecture (with or without the

word “explicit”) implies that, for any number fieldK, finite set of finite places S ofK and integer

g ≥ 2, there are only finitely many K-isomorphism classes of genus g curves over K with semi-

stable reduction over OK and good reduction outside S. Here we use the “Northcott property” of

the Faltings height (Theorem 1.6.5). To obtain Theorem 4.1.2, we argue as follows. For a curve

X over K of genus g ≥ 2 with good reduction outside S, there exists a field extension L/K of

bounded degree in g and ramified only over S ∪ {3, 5} such that XL has semi-stable reduction

over OL. Thus, by the Hermite-Minkowski theorem, it suffices to show that, for a finite Galois

extension L/K and smooth projective geometrically connected curve X of genus at least two

over K, there are only finitely many curves X ′ over K such that X ′L is isomorphic to XL. Note

that the set of such X ′ is in one-to-one correspondence with H1(Gal(L/K),AutK(XK)). Since

AutK(XK) is finite, the cohomology set

H1(Gal(L/K),AutK(XK))

is finite. This proves Theorem 4.1.2.

4.2. The effective Shafarevich conjecture for cyclic covers

In this section we follow de Jong-Rémond ([17]).
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For a number field K, let ∆ = |∆K/Q| be its absolute discriminant. For a finite set of finite

places S of a number field K, let

∆S = ∆ exp

(
(
∑
p∈S

logNK/Q(p) + [K : Q] log 4)2

)
.

The following theorem is the main result of loc. cit. and proves Conjecture 4.1.3 for cyclic

covers of the projective line of prime degree.

Theorem 4.2.1. (de Jong-Rémond) Let K be a number field, S a finite set of finite places of K

and g an integer. Let X be a smooth projective geometrically connected curve of genus g over K

with good reduction outside S. Suppose that there exists a finite morphism X → P1
K such that

XK → P1
K

is a cyclic cover of prime degree for some (hence any) algebraic closure K → K.

Then

hFal,stable(X) ≤ 22229g∆215g5

S .

In this section we aim at explaining the main ingredients of the proof of Theorem 4.2.1. The

proof of de Jong-Rémond is obtained in five steps which we will give below. We will give the

proof of Theorem 4.2.1 at the end of this section. The first step is to replace the Faltings height

of X by the theta height hθ(X) of the Jacobian of X with respect to its principal polarization

induced by the theta divisor; see [50, Definition 2.6] or [51, Section 4.a].

Lemma 4.2.2. (Bost-David-Pazuki) Let g ≥ 1 be an integer. Then, for a smooth projective

geometrically connected genus g curve X over Q, the inequality

hFal(X) ≤ 2hθ(X) + 25g+1 (2 + max(1, hθ(X))

holds.

Proof. This follows from [50, Corollary 1.3]. (Note that we are working with r = 4 here in the

notation of loc. cit..)

The second step consists of invoking an explicit upper bound for the theta height due to

Rémond ([52]). Let K be a number field, K → K an algebraic closure of K, S a finite set of

finite places and g an integer. Let X be a smooth projective geometrically connected curve over

K. Let X → P1
K be a finite morphism such that XK → P1

K
is a cyclic cover of prime degree.

Let H be the height of the finite set of cross-ratios associated to the branch points of XK → P1
K

;

see Section 3.3 for the definition of the height of a finite set of algebraic numbers and [17] for

the definition of the set of cross-ratios.
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Lemma 4.2.3. We have

hθ(XK) ≤ 23360·g38gH.

Proof. The computation can be found in [17, p. 1141-1142].

Thus, to prove Theorem 4.2.1, it suffices to bound H explicitly in terms of K, S and g. The

idea is to show that every cross-ratio satisfies a well-studied Diophantine equation.

Lemma 4.2.4. (de Jong-Rémond) Let b be a cross-ratio of the branch locus of XK → P1
K

.

Then, if L = K(b) and S ′ = SL, we have that b and 1− b are SL-units in L.

Proof. By applying [17, Proposition 2.1] to b, 1 − b, b−1 and (1 − b)−1, it follows that b, 1 − b,
b−1 and (1− b)−1 are SL-integers in L. This implies that b and 1− b are SL-units in L.

The fourth step consists of applying the well-established theory of logarithmic forms ([4]).

Lemma 4.2.5. (Baker-Győry-Yu) Let L be a number field and SL a finite set of finite places

of L. Let d, R and P be the degree of L over Q, the regulator of L over Q and the maximum

of |NL/Q(p)| as p runs over SL. Let s = #SL + d. Then, if b and 1 − b are SL-units in L, the

inequality

h(b) ≤ 215(16sd)2s+4PR

(
1 +

max(1, logR)

max(1, logP )

)
holds.

Proof. This is an application of the main result of [28] to b. In fact, the pair (b, 1−b) is a solution

of the equation x + y = 1 with (x, y) ∈ O×SL × O
×
SL

. (See the proof of [15, Lemme 3.1] for

details.)

The preceding two lemmata can be combined into giving an explicit upper bound for H .

Lemma 4.2.6. We have

H ≤ ∆
(8g)5

S .

Proof. Every cross-ratio is an SL-unit, and by Lemma 4.2.5, the height of such an algebraic

number can explicitly bounded in terms of the degree [L : Q], the regulator of L over Q and the

maximum of |NL/Q(p)| as p runs over SL. This explicit bound implies an explicit upper bound

in terms of K, S and g. This computation requires some results from algebraic number theory;

see [17, p. 1139-1140] for the proof.

Proof of Theorem 4.2.1. By Lemma 4.2.2, it suffices to bound the theta height hθ(X) explicitly

(in terms of K, S and g). By Lemma 4.2.3, it suffices to bound H explicitly. This is precisely

the content of Lemma 4.2.6.
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4.3. Szpiro’s small points conjecture

We consider Szpiro’s small points conjecture; see [60], [61], [63], [64], [59].

Conjecture 4.3.1. (Szpiro’s small points conjecture) Let K be a number field, K → K an

algebraic closure of K, S a finite set of finite places of K and g ≥ 2 an integer. Then, there

exists an explicit real number c such that, for a smooth projective geometrically connected curve

X of genus g over K with good reduction outside S, there is a point a in X(K) with

h(a) ≤ c.

A point a satisfying the conclusion of Conjecture 4.3.1 is called a “small point”. Roughly

speaking, the following theorem shows that the existence of a small point on X is equivalent to

an explicit upper bound for e(X).

Theorem 4.3.2. Let X be a smooth projective connected curve over Q of genus g ≥ 2. Then,

for all a in X(Q), the inequality

e(X) ≤ 4g(g − 1)h(a)

holds. Moreover, for any ε > 0, there exists a in X(Q) such that

h(a) ≤ e(X)

4(g − 1)
+ ε.

Proof. The first statement is due to Faltings; see Theorem 2.2.1. The second statement follows

from Faltings’ Riemann-Roch theorem (Section 1.2) and is due to Moret-Bailly; see the proof of

[48, Proposition 3.4].

Remark 4.3.3. Removing the word “explicit” from Conjecture 4.3.1 gives a statement equivalent

to Faltings’ finiteness theorem for curves (Theorem 4.1.2). In fact, the Arakelov invariant e(X)

satisfies the following Northcott property. Let C be a real number, and let g ≥ 2 be an integer.

For a number field K, there are only finitely many K-isomorphism classes of smooth projective

connected curves X over K of genus g with semi-stable reduction over OK and estable(X) ≤ C.

Thus, since e(X) ≤ 4g(g− 1)h(b) for any b in X(K), to deduce Faltings’ finiteness theorem for

curves from Conjecture 4.3.1, we can argue as in Remark 4.1.4.

4.4. Szpiro’s small points conjecture for cyclic covers

The following theorem proves Szpiro’s small points conjecture (Conjecture 4.3.1) for cyclic

covers of the projective line of prime degree.
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Theorem 4.4.1. ([31, Theorem 3.1]) LetK be a number field of degree d over Q, S a finite set of

finite places of K and g an integer. Let X be a smooth projective geometrically connected curve

of genus g over K with good reduction outside S. Suppose that there exists a finite morphism

π : X → P1
K such that πK : XK → P1

K
is a cyclic cover of prime degree for some algebraic

closure K → K. Then there exists a in X(K) such that

h(a) ≤ 107

g

(
4d!(2g + 2)∆

(8g)5

S

)45(d!(2g+2))32d!(2g+1)−2(d!(2g+1))!

(2g + 1)5.

Proof. We may and do assume that 0, 1, and ∞ are branch points of the finite morphism

π : X → P1
K . Now, by Corollary 2.5.3, there exists a in X(Q) such that

h(a) ≤ 107 degB(X)5

g
.

To bound degB(X), we argue as in the proof Theorem 3.3.3. In fact, by Khadjavi’s effective

version of Belyi’s theorem ([35, Theorem 1.1.c]), the inequality

degB(X) ≤ (4NHB)9N32N−2N ! deg π

holds, where B is the branch locus of πK , HB is the height of the set B, and N is the number of

elements in the orbit of B under the action of Gal(Q/Q). Let H be the height of the finite set of

cross-ratios associated to B. Note that

N ≤ [K : Q]!#B, #B ≤ 2g + 2, deg π ≤ 2g + 1, HB ≤ H,

where the first inequality is clear, the second inequality and third inequality follow from Riemann-

Hurwitz, and the last inequality follows from the fact that every algebraic number α different

from 0 and 1 equals the cross ratio of 0, 1,∞ and α. By Lemma 4.2.6, H ≤ ∆
(8g)5

S , where ∆S is

as in Section 4.2.1. Putting these inequalities together implies the theorem.

Remark 4.4.2. The above proof of Theorem 4.4.1 gives a very large upper bound on h(a). We

actually give a much better upper bound for h(a) in our article [31]. In fact, we prove that

h(a) ≤ exp
(
µdµ(NS∆)µ

)
,

where we let d = [K : Q], ∆ the absolute discriminant of K over Q, NS =
∏

v∈S Nv, and

µ = d(5g)5. In loc. cit. we also study the optimality of the upper bound, we study points with

small Néron-Tate height, and we improve its value under further restrictive assumptions on X .

4.5. Zhang’s lower bound for e(X)

In this section we prove a slightly stronger version of Szpiro’s small points conjecture for

cyclic covers of prime degree of the projective line.
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Theorem 4.5.1. ([31, Theorem 3.1]) Let K be a number field, S a finite set of finite places of K

and g an integer. Let X be a smooth projective geometrically connected curve of genus g over K

with good reduction outside S. Suppose that there exists a finite morphism X → P1
K such that

XK → P1
K

is a cyclic cover of prime degree. Then there are infinitely many a in X(K) with

h(a) ≤ 2 · 107
(

4d!(2g + 2)∆
(8g)5

S

)45(d!(2g+2))32d!(2g+1)−2(d!(2g+1))!

(2g + 1)5.

To prove Theorem 4.5.1, we will apply the following result of Zhang.

Theorem 4.5.2. There are infinitely many points a in X(Q) such that

h(a) ≤ e(X)

2(g − 1)
.

Proof. This follows from [69, Theorem 6.3].

Proof of Theorem 4.5.1. Theorem 4.5.1 is a consequence of Theorem 4.4.1 and the above result of

Zhang. In fact, by Zhang’s result and Faltings’ inequality ([24, Theorem 5]), there are infinitely

many points a in X(Q) such that, for all b in X(Q), the inequality

h(a) ≤ 4g(g − 1)e(X) ≤ 2gh(b)

holds.

4.6. Diophantine applications of the effective Shafarevich conjecture (af-

ter Levin)

In this section we follow Levin ([39]). Faltings proved the Mordell conjecture via the Sha-

farevich conjecture. In fact, in [49] Parshin famously proved that the Shafarevich conjecture for

curves (Theorem 4.1.2) implies Mordell’s conjecture.

Theorem 4.6.1. (Faltings) For a number fieldK and smooth projective geometrically connected

curve X over K of genus at least two, the set X(K) of K-rational points on X is finite.

Rémond proved that the effective Shafarevich conjecture (Conjecture 4.1.3) implies an “ef-

fective version of the Mordell conjecture”. His proof relies on Kodaira’s construction. For the

sake of brevity, we only state a consequence of Rémond’s result. We refer the reader to [51,

Théorème 5.3] for a more precise statement.

Theorem 4.6.2. ([51, Théorème 5.3]) Assume Conjecture 4.1.3. Let K be a number field and

X a smooth projective geometrically connected curve over K of genus g ≥ 2. Then there exists

an explicit real number c such that, for all a ∈ X(K), we have

h(a) ≤ c.
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Remark 4.6.3. An explicit expression for c is given in [51, Théorème 5.3].

It is natural to ask whether “weak versions” of the effective Shafarevich conjecture have

Diophantine applications. For instance, one could ask whether Theorem 4.2.1 implies “a weak

effective version of the Mordell conjecture”. Currently, no such implication is known. Never-

theless, it seems reasonable to suspect that some “weak version” of the effective Shafarevich

conjecture implies some version of Siegel’s theorem.

Theorem 4.6.4. (Siegel) Let X be a smooth quasi-projective curve over a number field K, S a

finite set of places of K, OK,S the ring of S-integers, and f ∈ K(X). If X is a rational curve,

then we assume further that f has at least three distinct poles. Then the set of S-integral points

of X with respect to f ,

X(f,K, S) = {a ∈ X(K) | f(a) ∈ OK,S}

is finite.

In general, there is no quantitative version of Siegel’s theorem known, i.e., there is no known

algorithm for explicitly computing the setX(f,K, S). Of course, in some special cases there are

known techniques for effectively computing X(f,K, S); see [39, Section 1]. This ineffectivity

arises in the classical proofs of Siegel’ theorem from the use of Roth’s theorem. (Actually, a

weaker version of Roth’s theorem due to Thue and Siegel is used.)

Theorem 4.6.5. (Roth [53]) Let θ be a real algebraic number of degree d ≥ 2. For all ε > 0,

there are only finitely many rational numbers p/q, with p, q ∈ Z coprime, such that

|θ − p

q
| ≤ 1

|q|2+ε
.

Currently, Roth’s theorem remains ineffective. That is, if θ is a real algebraic number of

degree d ≥ 2, there is no known algorithm (in general!) for explicitly computing the set of

rational numbers p/q such that |θ − p/q| ≤ 1
|q|2+ε .

An interesting result of Levin shows that an effective version of the Shafarevich conjecture

for hyperelliptic Jacobians has Diophantine applications. In fact, Levin proves that an effective

Shafarevich conjecture for hyperelliptic Jacobians implies an effective version of Siegel’s theo-

rem for integral points on hyperelliptic curves. We interpret his result as to give some hope for

obtaining applications of the results in this chapter to effective Diophantine conjectures such as

Siegel’s theorem.

Theorem 4.6.6. ([39, Theorem 3] ) Let g ≥ 2 be an integer. Suppose that, for any number fieldK

and finite set of finite places S of K the set of K-isomorphism classes of hyperelliptic Jacobians
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J = Jac(C) over K of genus g with good reduction outside S is effectively computable (e.g., an

explicit hyperelliptic Weierstrass equation for each such curve C is given). Then for any number

field K, any finite set of places S of K, any hyperelliptic curve X over K of genus g, and any

rational function f in K(X), the set of S-integral points with respect to f ,

X(f,K, S) = {a ∈ X(K) | f(a) ∈ OK,S}

is effectively computable.

Levin’s proof uses a slight variation on Parshin’s proof of the well-known implication men-

tioned before “Shafarevich implies Mordell”. It remains to be seen whether one can use Parshin-

type constructions to obtain applications of the results in this chapter to effective Diophantine

conjectures.
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[28] K. Győry and K. Yu. Bounds for the solutions of S-unit equations and decomposable form

equations. Acta Arith., 123(1):9–41, 2006.

[29] J.-I. Igusa. Theta functions. Springer-Verlag, New York, 1972. Die Grundlehren der

mathematischen Wissenschaften, Band 194.

[30] A. Javanpeykar. Polynomial bounds for Arakelov invariants of Belyi curves. Algebra

Number Theory.

[31] A. Javanpeykar and R. von Känel. On Szpiro’s small points conjecture. Submitted.

[32] J. Jorgenson and J. Kramer. Bounding the sup-norm of automorphic forms. Geom. Funct.

Anal., 14(6):1267–1277, 2004.

[33] J. Jorgenson and J. Kramer. Bounds on canonical Green’s functions. Compos. Math.,

142(3):679–700, 2006.

[34] J. Jorgenson and J. Kramer. Bounds on Faltings’s delta function through covers. Ann. of

Math. (2), 170(1):1–43, 2009.

[35] L.S. Khadjavi. An effective version of Belyi’s theorem. J. Number Theory, 96(1):22–47,

2002.

[36] U. Kühn. On the arithmetic self-intersection number of the dualizing sheaf on arithmetic

surfaces. arXiv:0906.2056v1 [math.NT].

[37] Serge Lang. Introduction to Arakelov theory. Springer-Verlag, New York, 1988.

[38] H. W. Lenstra, Jr. and Carl Pomerance. A rigorous time bound for factoring integers. J.

Amer. Math. Soc., 5(3):483–516, 1992.

68



[39] Aaron Levin. Siegel’s theorem and the Shafarevich conjecture. J. Théor. Nombres Bor-

deaux, 24(3):705–727, 2012.
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Samenvatting

Zij Q het lichaam van rationale getallen en Q→ Q een algebraïsche afsluiting van Q. In dit

proefschrift bestuderen wij krommen over Q en bewijzen wij ongelijkheden voor Arakelovinva-

rianten geassocieerd aan een kromme over Q.

Zij X een kromme over Q van geslacht g ≥ 1 met Belyigraad degB(X). Wij bewijzen in dit

proefschrift dat de Faltingshoogte hFal(X) van X voldoet aan de ongelijkheid

hFal(X) ≤ 109 degB(X)7.

Met andere woorden, de Faltingshoogte van een kromme is polynomiaal begrensd in de Belyi-

graad. Wij laten ook zien dat de discriminant ∆(X) van X voldoet aan de ongelijkheid

∆(X) ≤ 109 degB(X)7.

Deze twee ongelijkheden generalizeren wij als volgt. Zij h(X) een Arakelovinvariant van X

zoals gedefinieerd in het proefschrift. Dan geldt er dat

h(X) ≤ 109 degB(X)7.

Het belang van expliciete ongelijkheden voor Arakelovinvarianten werd voor het eerst opge-

merkt door Parshin in de jaren tachtig. Men kan laten zien dat een expliciete bovengrens voor

de Faltingshoogte van een kromme over een getallenlichaam K, van gegeven geslacht en slechte

reductie over de getallenring OK van K, een effectieve versie van de stelling van Faltings (quon-

dam Mordell’s vermoeden) zou impliceren. In deze algemeenheid zijn dergelijke bovengrenzen

niet bekend. Desalniettemin bewijzen wij in dit proefschrift dergelijke bovengrenzen voor cy-

clische overdekkingen van priemgraad van de projectieve lijn P1
K . Wij bewijzen hiermee een

speciaal geval van Szpiro’s small points conjecture.

Polynomiale ongelijkheden voor Arakelovinvarianten worden op een cruciale wijze toegepast

in het werk van Peter Bruin, Jean-Marc Couveignes en Bas Edixhoven betreffende computati-

onale aspecten van modulaire vormen en Galoisrepresentaties. De bovengenoemden vereisten

polynomiale grenzen voor Arakelovinvarianten van modulaire krommen. Het eindproduct van
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dit proefschrift is een veralgemenisering van de ongelijkheden voor Arakelovinvarianten van

modulaire krommen in termen van hun niveau.

Het is zeer aannemelijk dat de methodes van Bruin, Couveignes en Edixhoven kunnen worden

gegeneralizeerd om de Galoisrepresentaties geassocieerd aan een oppervlak over Q te bepalen.

Onze bijdrage aan dit probleem is een bewijs van een vermoeden van Edixhoven, de Jong en

Schepers. Wij bewijzen dat, als X een kromme is over Q, B een eindige verzameling gesloten

punten is opX en Y → X een overdekking is van graad d onvertakt overX−B, de ongelijkheid

hFal(Y ) ≤ c(X,B) · d7

geldt, met c(X,B) een reëel getal dat alleen afhangt van X en B. Dit resultaat zal hopelijk

worden toegepast om te bewijzen dat er een polynomiaal algoritme is dat de étale cohomologie

als Galoisrepresentatie van een oppervlak over Q bepaalt.
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Résumé

Soient Q le corps des nombres rationnels et Q → Q une clôture algébrique de Q. Dans

cette thèse nous considérons des courbes sur Q. Nous montrons des inégalités pour les invariants

arakeloviens d’une courbe sur Q.

Soit X une courbe sur Q de genre g ≥ 1 et de degré de Belyi degB(X). Nous montrons dans

cette thèse que la hauteur de Faltings hFal(X) de X satisfait l’inégalité

hFal(X) ≤ 109 degB(X)7.

C’est-à-dire, la hauteur de Faltings d’une courbe est bornée par un polynôme en le degré du

Belyi. De plus, nous prouvons que le discriminant ∆(X) de X satisfait l’inégalité

∆(X) ≤ 109 degB(X)7.

Nous généralisons les deux inégalités ci-dessus de la manière suivante. En effet, si h(X) est un

invariant arakeloviens associé à X (comme défini dans cette thèse), nous montrons que

h(X) ≤ 109 degB(X)7.

Soient K un corps de nombres, g ≥ 2 un entier et S un ensemble fini de places finies de K.

Parshin a remarqué en premier l’importance d’une majoration explicite enK, g et S de l’invariant

arakelovien e(X) pour toutes les courbes X sur K de genre g et de bonne réduction en dehors

de S. En effet, il a montré qu’un tel résultat impliquerait une version effective du théorème de

Faltings (quondam la conjecture de Mordell). Malheureusement, il est très difficile de démontrer

de telles inégalités. Dans cette thèse nous déduisons de nos inégalités citées ci-dessus un résultat

plus faible que celui espéré par Parshin. En effet, nous montrons une majoration explicite pour

e(X) si X est un revêtement cyclique de la droite projective de degré premier. Nous démontrons

en particulier la conjecture des petits points de Szpiro pour ces courbes.

Dans les travaux de Peter Bruin, Jean-Marc Couveignes et Bas Edixhoven sur le calcul de

coefficients de formes modulaires et représentations galoisiennes, il s’avère important de borner

des invariants arakeloviens des courbes modulaires X1(n) dans le niveau n. Le produit final de
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cette thèse est une généralisation des inégalités pour les courbes modulaires obtenues par les

mathématiciens mentionnés ci-dessus. En effet, en remplaçant la courbe modulaire X1(n) de

niveau n par une courbe X quelconque définie sur Q et en remplaçant le niveau n par le degré de

Belyi deX , le résultat principal de cette thèse implique la généralisation énoncée précédemment.

Il semble possible que les méthodes de Bruin, Couveignes et Edixhoven puissent être géné-

ralisées pour calculer les représentations galoisiennes associé à une surface sur Q. Notre contri-

bution à ce problème est une démonstration d’une conjecture de Edixhoven, de Jong et Schepers

sur la hauteur de Faltings d’un revêtement de la droite projective. En d’autres termes, nous dé-

montrons le résultat suivant. Soient X une courbe sur Q, B un ensemble fini de points fermés

de X et Y → X un revêtement fini de degré d qui est étale au-dessus de X\B. Alors, on a

l’inégalité

hFal(Y ) ≤ c(X,B) · d7.

Ici c(X,B) est un nombre réel qui dépend uniquement de X et de B. Nous espérons que ce

résultat sera utile dans le calcul des représentations galoisiennes associées à une surface sur Q.
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