
HAL Id: tel-00841496
https://theses.hal.science/tel-00841496v1

Submitted on 4 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comportement asymptotique de marches aléatoires de
branchement dans Rd et dimension de Hausdorff

Najmeddine Attia

To cite this version:
Najmeddine Attia. Comportement asymptotique de marches aléatoires de branchement dans Rd

et dimension de Hausdorff. Analyse classique [math.CA]. Université Paris-Nord - Paris XIII, 2012.
Français. �NNT : �. �tel-00841496�

https://theses.hal.science/tel-00841496v1
https://hal.archives-ouvertes.fr


No d’ordre:

THÈSE

Présentée pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES
DE L’UNIVERSITÉ PARIS-NORD XIII

Spécialité: Mathématiques

par

Najmeddine Attia

Comportement asymptotique de marches

aléatoires de branchement dans Rd et

dimension de Hausdorff.

Soutenue le 20 décembre 2012 devant la Commission d’examen:

M. J. Barral (Directeur de thèse)
Mme I. Bhouri (Examinateur)
M. H. De Thélin (Examinateur)
M. Y. Heurteaux (Examinateur)
M. Y. Hu (Examinateur)
M. S. Jaffard (Examinateur)
M. S. Seuret (Examinateur)

Rapporteurs:

M. D. KHOSHNEVISAN

M. Q. LIU



Thèse préparée au

Projet SISYPHE

INRIA Paris-Rocquencourt

Domaine de Voluceau, BP 105

78 153 Le Chesnay CEDEX



Résumé

Nous calculons presque sûrement, simultanément, les dimensions de Hausdorff des en-
sembles de branches infinies de la frontière d’un arbre de Galton-Watson super-critique (muni
d’une métrique aléatoire) le long desquelles les moyennes empiriques d’une marche aléatoire
de branchement vectorielle admettent un ensemble donné de points limites. Cela va au-delà
de l’analyse multifractale, question pour laquelle nous complétons les travaux antérieurs en
considérant les ensembles associés à des niveaux situés dans la frontière du domaine d’étude.
Nous utilisons une méthode originale dans ce contexte, consistant à construire des mesures de
Mandelbrot inhomogènes appropriées. Cette méthode est inspirée de l’approche utilisée pour
résoudre des questions similaires dans le contexte de la dynamique hyperboliques pour les
moyennes de Birkhoff de potentiels continus. Elle exploite des idées provenant du chaos mul-
tiplicatif et de la théorie de la percolation pour estimer la dimension inférieure de Hausdorff
des mesures de Mandelbrot inhomogènes. Cette méthode permet de renforcer l’analyse mul-
tifractale en raffinant les ensembles de niveaux de telle sorte qu’ils contiennent des branches
infinies le long desquels on observe une version quantifiée de la loi des grands nombres d’Erdös
Renyi ; de plus elle permet d’obtenir une loi de type 0-∞ pour les mesures de Hausdorff de ces
ensembles. Nos résultats donnent naturellement des informations géométriques et de grandes
déviations sur l’hétérogénéité du processus de naissance le long des différentes branches infi-
nies de l’arbre de Galton-Watson.

Mots-clefs : Marches aléatoires de branchement vectorielles, chaos multiplicatif, percolation,
dimension de Hausdorff, analyse multifractale.

Asymptotic behavior of branching random walks in Rd and Hausdorff

dimension.

Abstract

We compute almost surely (simultaneaously) the Hausdorff dimensions of the sets of infi-
nite branches of the boundary of a super-critical Galton-Watson tree (endowed with a random
metric)along which the averages of a vector valued branching random walk have a given set
of limit points. This goes beyond multifractal analysis, for which we complete the previous
works on the subject by considering the sets associated with levels in the boundary of the
domain of study. Our method is inspired by some approach used to solve similar questions in
the different context of hyperbolic dynamics for the Birkhoff averages of continuous potentials.
It also exploits ideas from multiplicative chaos and percolation theories, which are used to
estimate the lower Hausdorff dimension of a family of inhomogeneous Mandelbrot measures.
This method also makes it possible to strengthen the multifractal analysis of the branching
random walk averages by refining the level sets so that they contain branches over which a
quantified version of the Erdös Renyi law of large numbers holds, and yields a 0-∞ law for the
Hausdorff measures of these sets. Our results naturally give geometric and large deviations
information on the heterogeneity of the birth process along different infinite branches of the
Galton-Watson tree.

Keywords : Branching random walks, multiplicative chaos, percolation, Hausdorff dimen-
sion, multifractal analysis.
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Chapitre 1

Introduction

1.1 Introduction and mains results

My PhD thesis was founded via the french National Research Agency project
“DMASC”, whose goal was both to develop theoretical results on multifractal analysis
and large deviations theory, and develop tools based on these theories to study the dy-
namics of cardiac electro-mecanical activity, starting with cardiac signals processing.
This manuscript is devoted to theoretical results. I also participated to the elaboration
of an applied paper published this year by DMASC project in the journal Physica A
(P. Loiseau, C. Médigue, P. Gonçalvès, N. Attia, S. Seuret, F. Cottin, D. Chemla, M.
Sorine, and J. Barral, Physica A, 391 (2012) 5658–5671) about the application to the
so-called R-R signals of some new signal processing tools dedicated to “multifractal”
signals developed in [5].

The theoretical part of this thesis deals with the natural question of measuring,
through their Hausdorff dimensions, the sizes of the sets of infinite branches of the
boundary of a supercritical Galton-Watson tree (endowed with a random ultrametric)
along which the averages of a vector valued branching random walk have a given set of
limit points ; this goes beyond the multifractal analysis, which consists in computing the
Hausdorff dimension of the level sets of infinite branches over which the averages of the
walk has a given limit, and for which we solve a delicate question left open in previous
works, namely the case of levels belonging to the boundary of the set of possible levels.
The corresponding questions have been studied extensively in the context of Birkhoff
averages of continuous potentials on conformal repellers, a situation which, though
different, is inspiring in our context (we will give some references making it possible to
compare our results with the corresponding litterature). The new method we develop,
combined with recent almost sure large deviations results for random walks also yields
a refinement of the multifractal analysis by considering level sets over the branch of
which large deviations with respect to the average behavior are measured through a
quantified version of the Erdös Renyi law of large numbers, and giving a 0-∞ law for
the Hausdorff measures of these sets. Before going to the detail of our results, we need
some definitions and notations.

Let (N,X1, X2, . . .) be a random vector taking values in N+ × (Rd)N+ .

11



12 Introduction and mains results

Let {(Nu0, Xu1, Xu2), . . .)}u be a family of independent copies of (N,X1, X2, . . .)
indexed by the finite sequences u = u1 · · · un, n ≥ 0, ui ∈ N+ (n = 0 corresponds to
the empty sequence denoted ∅), and let T be the Galton-Watson tree with defining
elements {Nu} : we have ∅ ∈ T and, if u ∈ T and i ∈ N+ then ui, the concatenation of
u and i, belongs to T if and only if 1 ≤ i ≤ Nu. Similarly, for each u ∈

⋃
n≥0 N

n
+, denote

by T(u) the Galton-Watson tree rooted at u and defined by the {Nuv}, v ∈
⋃
n≥0 N

n
+.

The probability space over which the previous random variables are built is denoted
(Ω,A,P), and the expectation with respect to P is denoted E.

We assume that E(N) > 1 so that the Galton-Watson tree is supercritical. Without
loss of generality, we also assume that the probability of extinction equals 0, so that
P(N ≥ 1) = 1.

Also, we will assume without loss of generality the following property about X :

6 ∃ (q, c) ∈ (Rd \ {0})× R, 〈q|Xi〉 = c ∀ 1 ≤ i ≤ N a. s. (1.1)

Otherwise, if d = 1, then the Xi, 1 ≤ i ≤ N , are equal to the same constant almost
surely, and the situation is trivial, and if d ≥ 2, they belong to the same hyperplane so
that we can reduce our study to the case of Rd−1 valued random variables.

For each u ∈
⋃
n≥0 N

n
+, we denote by |u| its length, i.e. the number of letters of u,

and [u] the cylinder u · N+
N+ , i.e. the set of those t ∈ N+

N+ such that t1t2 · · · t|u| = u.
If t ∈ N+

N+ , we set |t| = ∞, and the set of prefixes of t consists of {∅} ∪ {t1t2 · · · tn :
n ≥ 1} ∪ {t}.

Our results will depend on the metric under which we will work. Let us recall that
given a subset K of NN+

+ endowed with a metric d making it σ-compact, g : R+ → R+

a continuous non-decreasing function near 0 and such that g(0) = 0, and E a subset of
K, the Hausdorff measure of E with respect to the gauge function g is defined as

Hg(E) = lim
δ→0+

inf
ß∑
i∈N

g(diam(Ui))
™
,

the infimum being taken over all the countable coverings (Ui)i∈N of E by subsets of K
of diameters less than or equal to δ.

If s ∈ R∗
+ and g(u) = us, then Hg(E) is also denoted Hs(E) and called the s-

dimensional Hausdorff measure of E. Then, the Hausdorff dimension of E is defined
as

dimE = sup{s > 0 : Hs(E) = ∞} = inf{s > 0 : Hs(E) = 0},

with the convention sup ∅ = 0 and inf ∅ = ∞. Moreover, if E is a Borel set and µ is a
measure supported on E, then its lower Hausdorff dimension is defined as

dim(µ) = inf
¶
dim F : F Borel, µ(F ) > 0

©
,

and we have

dim(µ) = ess infµ lim inf
r→0+

log µ(B(t, r))

log(r)
,
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where B(t, r) stands for the closed ball of radius r centered at t ; (see [28] for instance,
in which upper Hausdorff dimensions and lower and upper packing dimensions are also
considered).

Let us assume for the moment that NN+
+ is endowed with the standard ultrametric

distance
d1 : (s, t) 7→ exp(−|s ∧ t|),

where s ∧ t stands for the longest common prefix of s and t, and with the convention
that exp(−∞) = 0.

The boundary of T is the subset of NN+
+ defined as

∂T =
⋂

n≥1

⋃

u∈Tn

[u],

where Tn = T ∩ Nn
+. With probability 1, the metric space (∂T, d1) is compact.

The vector space Rd is endowed with the canonical scalar product and the associated
Euclidean norm respectively denoted 〈·|·〉 and ‖ · ‖. For q ∈ Rd let

S(q) =
N∑

i=1

exp(〈q|Xi〉).

Let us assume that
∀ q ∈ Rd, E(S(q)) <∞ (1.2)

(we will see how to relax this assumption). In particular, the logarithmic moment
generating function

‹P : q ∈ Rd 7→ logE(S(q)) (1.3)

is finite over Rd, and under (1.1) it is strictly convex.

We are interested in the asymptotic behavior of the branching random walk

SnX(t) =
n∑

k=1

Xt1···tk (t ∈ ∂T).

Since this quantity depends on t1 · · · tn only, we also denote by SnX(u) the constant
value of SnX(·) over [u] whenever u ∈ Tn.

The multifractal analysis of SnX is a first natural consideration. It consists in
computing the Hausdorff dimensions of the sets

EX(α) =
ß
t ∈ ∂T : lim

n→∞

SnX(t)

n
= α

™
, (α ∈ Rd).

Indeed, considering the branching measure on ∂T (see Section 6 for the definition)
makes it possible to show that EX(α0) is of full Hausdorff dimension in ∂T, where

α0 = ∇‹P (0) = E

Å∑N
i=1Xi

ã
/E(N), and it is worth investigating the existence of other

branches over which such a law of large numbers holds, with different values of α.



14 Introduction and mains results

Such deviations phenomena with respect to a typical one emerge in many suffi-
ciently random, or chaotic, contexts. Quantifying these phenomena has always genera-
ted strong, reach and new interplays between probability or dynamical systems theory,
and geometric measure theory. As important examples, let us mention the problem of
measuring how often on a Brownian motion the law of the iterated logarithm fails, by
measuring the Hausdorff or packing dimension of sets of rapid points [65, 50] and slow
points [44, 67] ; we must also mention the works of Jarnik and his followers about the
sets of irrational numbers with a given rate of approximation by rational numbers [42]
and the works of Besicovitch and Eggleston around the Hausdorff dimension of the sets
of real numbers with prescribed frequencies of their digits in a given basis [23] ; also,
and this is closely related to the subject of this thesis (and Besicovitch sets), after the
concept of multifractals, i.e. the notion of iso-Hölder sets of a measure or a function, was
pointed out by physicits in turbulence and statistical physics [36, 38, 21] as a convenient
way to describe the heterogeneity of energy distribution by a hierarchy of fractal sets,
a considerable mathematical literature has developed around the multifractal analysis
of measures generated by multiplicative procedures, like Mandelbrot measures defi-
ned below, self-conformal measures and Gibbs measures on hyperbolic repellers (see
[68, 4] and references therein), the multifractal analysis of the harmonic measures on
the Brownian frontier [52] and more generally on the boundary of simply connected
planar domains [59], and the multifractal analysis of functions [40, 41, 10, 7, 6].

Let us come back to our problem. We will see that the domain of those α for which
EX(α) 6= ∅ is the convex compact set

I = IX = {α ∈ Rd : ‹P ∗(α) ≥ 0},

where
f ∗(α) = inf{f(q)− 〈q|α〉 : q ∈ Rd}

for any function f : Rd → R ∪ {∞} and any α ∈ Rd.

A direct approach to the Hausdorff dimension of EX(α) consists in taking α ∈ I
such that α = ∇‹P (q) for some q ∈ Rd and ‹P ∗(α) > 0 (we will see in the proof of
Proposition 3.1 that this is equivalent to taking α ∈ I̊, the interior of I). Then, one
considers the associated Mandelbrot measure on ∂T defined as

µq([u]) = exp(〈q|SnX(u)〉 − n‹P (q))Z(q, u), (u ∈ Tn),

where
Z(q, u) = lim

p→∞

∑

v∈Tp(u)

exp(〈q|(Sn+pX(u · v)− SnX(u))〉 − p‹P (q))

and here we simply denoted [u]∩ ∂T by [u] (see Section 6.1 for a general description of
Mandelbrot measures). Under our assumptions, the fact that ‹P ∗(α) > 0 implies that
this measure is almost surely positive [45, 13, 54, 56] (while µq = 0 almost surely if
‹P ∗(α) ≤ 0). Moreover, µq is carried by EX(α) and its Hausdorff dimension is ‹P ∗(α),
so that dimEX(α) ≥ ‹P ∗(α). Then, a simple covering argument yields dimEX(α) =
‹P ∗(α). This approach holds for each α ∈ I̊ almost surely, and it has been followed
in the case d = 1 for the multifractal analysis of Mandelbrot measures, especially in
[39, 62, 27, 60, 1, 17] (under always weaker assumptions), where more general metric
than d1 are considered to get results for geometric realizations of these measures in
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Rn. Nevertheless, it is possible to strengthen the result to get, with probability 1,
dimEX(α) = ‹P ∗(α) for all α ∈ I̊. This is done in [2] for the case d = 1 on homogeneous
Galton Watson trees with bounded branching number. Let us assume in addition to
(1.2) the following property.

∃ γ : q ∈ J 7→ γq ∈ (1,∞), C0 and such that E
Ä
S(q)γq

ä
<∞ for all q ∈ J. (1.4)

We obtain the following result, which does not follow from a direct adaptation of the
techniques used in [3], as we explain in Section 2.3, and is proved in Chapter 2.

Theorem 1.1 Assume (1.2) and (1.4) hold. Suppose that ∂T is endowed with the me-
tric d1. With probability 1, for all α ∈ I̊, dimEX(α) = ‹P ∗(α) ; in particular, EX(α) 6= ∅.

It is worth mentioning that a direct consequence of the previous result is the following
large deviation property, which could also be deduced from the study achieved in [16] :
With probability 1, for all α ∈ I̊,

lim
ǫ→0+

lim inf
n→∞

n−1 log#
¶
u ∈ Tn : n−1SnX(u) ∈ B(α, ǫ)

©

= lim
ǫ→0+

lim sup
n→∞

n−1 log#
¶
u ∈ Tn : n−1SnX(u) ∈ B(α, ǫ)

©
= ‹P ∗(α).

The method we use to prove Theorem 1.1 requires to simultaneously building the
measures µq and computing their Hausdorff dimension ; it will extensively use tech-
niques combining analytic functions in several variables theory and large deviations
estimates. However, this approach is unable to cover the levels α ∈ ∂I. When d = 1,
this boundary consists of two points, and the question has been solved partially in
[2] and completely in [7] in the case of homogeneous trees : when α ∈ ∂I takes the
form ‹P ′(q) for q ∈ R such that ‹P ∗(‹P ′(q)) = 0, one substitutes to µq a measure that
is naturally deduced from the fixed points of the associated smoothing transforma-
tion in the “boundary case” (see [18, 2]) ; when α ∈ ∂I and α = limq→∞

‹P ′(q) (resp.
limq→−∞

‹P ′(q)), a “concatenation” method is used in [7] to build an inhomogeneous
Mandelbrot measure carried by EX(α) and with the right dimension (see Section 6.2
for a foreword about inhomogeneous Mandelbrot measures).

It turns out that these methods are not sufficient to deal with the points of ∂I
when d ≥ 2. In collaboration with J. Barral, we adopted an approach, based on a more
sofisticated construction of inhomogeneous Mandelbrot measures than that considered
in [7], that makes it possible to deal with the cases α ∈ I̊ and α ∈ ∂I in a unified way.
This approach is inspired by the study of vector Birkhoff averages on mixing subshift
of finite type and their geometric realizations on conformal repellers [12, 30, 35, 34,
11, 63, 33]. It makes it possible to conduct the calculation of the Hausdorff dimension
of far more general sets and obtain in the context of branching random walks the
counterpart of the main results obtained in the papers mentioned above about the
asymptotic behavior of Birkhoff averages.

Let us assume

∀ q ∈ Rd, E(S(q)) <∞, and ∀q ∈ J, ∃γ > 1, E(S(q)γ) <∞. (1.5)
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If K is a compact connected subset of Rd, let

EX(K) =
ß
t ∈ ∂T :

⋂

N≥1

ßSnX(t)

n
: n ≥ N

™
= K

™
,

the set of those t ∈ ∂T such that the set of limit points of (SnX(t)/n)n≥1 is equal to K.

Recall that I = IX = {α ∈ Rd : ‹P ∗(α) ≥ 0}.

Theorem 1.2 Assume (1.5). Suppose that ∂T is endowed with the metric d1. With
probability 1, for all compact connected subset K of Rd, we have EX(K) 6= ∅ if and
only if K ⊂ I, and in this case

dimEX(K) = inf
α∈K

‹P ∗(α).

Section 6.2 aims at giving basic properties of inhomogeneous measures that should
convince the reader of the pertinence of this family of measures to control the sets
EX(K).

The first part of the next result about multifractal analysis is a corollary of the
previous result. The second one provides an information to be compared with the
information provided by the approach consisting in putting on EX(∇‹P (q)) the Man-
delbrot measure µq to get the dimension of EX(∇‹P (q)). The third one adds a precision
about the level set of maximal dimension which will be useful to state Theorem 1.8.

Theorem 1.3 (Multifractal analysis) Assume (1.5). With probability 1,

1. for all α ∈ Rd, EX(α) 6= ∅ if and only if α ∈ I, and in this case dimEX(α) =‹P ∗(α) ;

2. if α ∈ I, then EX(α) carries uncountably many mutually singular inhomogeneous
Mandelbrot measures of Hausdorff dimension ‹P ∗(α) (in particular EX(α) is not
countable when ‹P ∗(α) = 0). Moreover, if α ∈ I̊ then EX(α) carries a unique
Mandelbrot measure of maximal Hausdorff dimension, namely µq if α is written

∇‹P (q).
3. EX(∇‹P (0)) is the unique level set of maximal Hausdorff dimension dim ∂T =

logE(N).

The part on the uniqueness of the Mandelbrot measure should be compared to the
uniqueness of the ergodic measure carried by such a set in the multifractal analysis
of Hölder potentials on symbolic spaces, especially when this potential only depends
on the first digit. As a corollary of Theorem 1.3, we get the following large deviations
result, which completes what can be deduced from the study achieved by Biggins in
[15], by including the points of ∂I.

Corollary 1.1 (Large deviations) Assume (1.5). With probability 1, for all α ∈ I,

lim
ǫ→0+

lim inf
n→∞

n−1 log#
¶
u ∈ Tn : n−1SnX(u) ∈ B(α, ǫ)

©

= lim
ǫ→0+

lim sup
n→∞

n−1 log#
¶
u ∈ Tn : n−1SnX(u) ∈ B(α, ǫ)

©
= ‹P ∗(α).
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The upper bounds estimates for the Hausdorff dimensions of the sets EX(K) are
quite easy. Lower bounds estimates are much more delicate and will use a uniform
version of the percolation argument introduced by Kahane in [46] to calculate the
Hausdorff dimension of a non-degenerate Mandelbrot measure µ on a homogeneous
tree, without using assumptions assuring that E(‖µ‖ log+(‖µ‖)) <∞ as it was done by
Peyrière in [64, 45]. Specifically, the approach developed in this paper extends Kahane’s
result by making it possible to control simultaneously the lower Hausdorff dimension of
uncountably many non degenerate limits of inhomogeneous Mandelbrot martingales on
∂T, and under the random metrics described below. The simplest extension of Kahane’s
result consisting in dealing with a single Mandelbrot measure on ∂T is described in
Section 6.1. Let us also mention that our uniform approach is based, in an essential way,
on vector martingales theory (see [61] for instance), whose first using in the context of
the branching random walk seem to go back to [43], in which the authors consider the
case where N = 2, X1 and X2 are two independent real valued random variables of
characteristic function ϕ, and study the continuous functions valued martingale t ∈ I 7→
Zn(t) = (2ϕ(t))−n

∑
u∈{0,1}n e

itSnX(u), in the domain {t : 2|ϕ(t)|2 > 1} (they use the L2

criterion for convergence) ; they also prove that when X1 and X2 are Bernoulli variables
taking values 0 and 1 with probability 1/2, #{u ∈ {0, 1}n : SnX(u) = 0} = o(n).

Remark 1.1 Theorem 1.2 should be compared to the results of [35] and [63], and
Theorem 1.3(1) and Corollary 1.1 to the results of [30], obtained in the context of
Birkhoff averages of continuous potentials over a symbolic space endowed with the
standard metric.

The space N
N+
+ can be endowed with other ultrametric distances than d1. Here

we consider the following natural, and classical, generalization of d1. Instead of
(N,X1, X2, . . .) we consider (N, (X1, φ1), (X2, φ2), . . .) a random vector taking values
in N+ × (Rd × R∗

+)
N+ .

Then we consider {(Nu0, (Xu1, φu1, (Xu2, φu2), . . .)}u∈
⋃

n≥0
Nn
+
, a family of inde-

pendent copies of (N, (X1, φ1), (X2, φ2), . . .). This yields two branching random walks

SnX and Snφ. Moreover, if there exists γ > 0 such that E

Å∑N
i=1 exp(−γφi)

ã
< 1

(which happens for instance if E
Å∑N

i=1 exp(−γφi)
ã
< ∞ for all γ > 0 by dominated

convergence) then (see Lemma 4.1), with probability 1, Snφ(u) tends to ∞ uniformly
in u ∈ Tn, as n→ ∞, so that we get the random ultrametric distance

dφ : (s, t) 7→ exp(−S|s∧t|φ(s ∧ t)),

on ∂T, and (∂T, dφ) is compact. Such metrics are used to obtain geometric realization of
Mandelbrot measures on random self-similar sets satisafying some separation conditions
[27, 62, 2, 17].

For all (q, t) ∈ Rd × R, let

S(q, t) =
N∑

i=1

exp(〈q|Xi〉 − tφi).
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Then, since the φi are positive, for each q ∈ Rd and α ∈ Rd there exists a unique
t = ‹Pα(q) ∈ R such that

E

Å N∑

i=1

exp(〈q|Xi − α〉 − tφi)
ã
= 1.

Moreover, it is direct to see that (α, q) 7→ Pα(q) is analytic by using the implicit

function theorem and the analyticity of (α, q, t) 7→ E

Å∑N
i=1 exp(〈q|Xi − α〉 − tφi)

ã
.

Notice that ‹Pα(0) does not depend on α. Notice also that when φi = 1 for all i ≥ 1,
we have dφ = d1, and ‹Pα(q) = ‹P (q)− 〈q|α〉, hence ‹P ∗

α(0) =
‹P ∗(α).

We assume that

∀ (q, α) ∈ Rd × Rd such that ‹P ∗
α(∇

‹Pα(q)) > 0, ∃ γ > 1, E(S(q, ‹Pα(q))γ) <∞. (1.6)

Theorem 1.2 now takes the following form.

Theorem 1.4 Suppose that ∂T is endowed with the distance dφ almost surely. Assume
(1.6).

With probability 1, for all compact connected subset K of Rd, we have EX(K) 6= ∅
if and only if K ⊂ I, and in this case

dimEX(K) = inf
α∈K

‹P ∗
α(0).

The analogues, under dφ, of some parts of Theorem 1.3 hold under the same as-
sumptions as in Theorem 1.4, but we need additional assumptions to extend the other
ones : we need to assume the following property, which under (1.6) holds for instance
if the φi are uniformly bounded, or if they are independent of N and the Xi and

supi≥1 E(φi) <∞, or if supq∈Rd E

Å∑N
i=1 exp

Ä
2(〈q|Xi〉 − ‹P (q))

äã
<∞ :

sup
q∈Rd

E

Å N∑

i=1

φi exp(〈q|Xi〉 − ‹P (q))
ã
<∞. (1.7)

Under this property (that we have not been able to relax), we have the following fact
(the proof is given in Section 4.1) :

Proposition 1.1 Assume (1.7). For each α ∈ I̊, there exists a unique q = qα such
that ∇‹Pα(q) = 0. Moreover, α ∈ I̊ 7→ qα is analytic.

Theorem 1.3 has the following extension, whose proof is given in Section 5.1.

Theorem 1.5 Suppose that ∂T is endowed with the distance dφ almost surely. Assume
(1.6). With probability 1,

1. for all α ∈ Rd, EX(α) 6= ∅ if and only if α ∈ I, and in this case dimEX(α) =‹P ∗
α(0) ;
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2. if α ∈ I, then EX(α) carries uncountably many mutually singular inhomogeneous
Mandelbrot measures of Hausdorff dimension ‹P ∗

α(0) ; if (1.7) holds and α ∈ I̊,
then EX(α) carries a unique Mandelbrot measure of maximal Hausdorff dimen-
sion (namely the measure µqα,α defined in the beginning of Section 4.3) ;

3. recall that ‹Pα(0) does not depend on α. Denote this number by t0. Let α0 =

E

Å∑N
i=1Xi exp(−t0φi)). The level set EX(α0) is the unique level set of maximal

dimension dim ∂T = t0.

Corollary 1.3 has the following analogue under dφ :

Corollary 1.2 (Large deviations)Assume (1.6). With probability 1, for all α ∈ I,

lim
ǫ→0+

lim inf
n→∞

n−1 log#
¶
u ∈

⋃

k≥1

Tk : diam([u]) = e−n; |u|−1S|u|X(u) ∈ B(α, ǫ)
©

= lim
ǫ→0+

lim sup
n→∞

n−1 log#
¶
u ∈

⋃

k≥1

Tk : diam([u]) = e−n; |u|−1S|u|X(u) ∈ B(α, ǫ)
©
= ‹P ∗

α(0).

Notice that contrarily to what happens when ∂T is endowed with d1, in general the
mapping α ∈ I 7→ dimEX(α) = ‹P ∗

α(0) is not concave when ∂T is endowed with dφ. For
instance, when Xi = φi, the distortion induced by dφ can be observed by noting that
in this case ‹Pα(q) = q − ‹P−1(αq), which implies ‹P ∗

α(0) =
‹P ∗(α)/α for α ∈ I.

Remark 1.2 When ∂T is endowed with a random metric, our results should be com-
pared to those obtained in [63] (for Theorem 1.4) and [11, 34] in the context of Birkhoff
averages on conformal repellers (for Theorem 1.5).

Theorem 1.4 has the following generalization. Instead of (N, (X1, φ1), (X2, φ2), . . .),
consider a random (N, (X1, X̃1, φ1), (X2, X̃2, φ2), . . .) vector taking values in N+×(Rd×
(R∗

+)
d × R∗

+)
N+ .

Then we consider {(Nu0, (Xu1, X̃u1, φu1, (Xu2, X̃u2, φu2), . . .)}u∈
⋃

n≥0 N
n
+

a family of

independent copies of (N, (X1, X̃1, φ1), (X2, X̃2, φ2), . . .). If we denote by Xj (resp. X̃j)
the j-th component of X (resp. X̃), we can consider the asymptotic behavior of the

vector
Å
SnXj(t)

SnX̃j(t)

ã
1≤j≤d

. The previous situation corresponds to X̃j
i = 1 almost surely for

all 1 ≤ i ≤ N and 1 ≤ j ≤ d.

For all (q, t) ∈ Rd × R, let

‹S(q, t) =
N∑

i=1

exp(〈q|X̃i〉 − tφi).

We assume that

∀ (q, t) ∈ Rd × R, ∃ γ > 1, E(S(q, t)γ) + E(‹S(q, t)γ) <∞. (1.8)
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If α = (α1, . . . , αd) ∈ Rd and u ∈ Rd, we define

α · u = (α1u1, . . . , αdud).

For each q ∈ Rd and α ∈ Rd there exists a unique t = ‹Pα(q) ∈ R such that

E

Å N∑

i=1

exp(〈q|Xi − α · X̃i〉 − tφi)
ã
= 1.

Theorem 1.6 Assume (1.8). Suppose that ∂T is endowed with the distance dφ almost

surely. Let K = {α ∈ Rd : ‹P ∗
α(0) ≥ 0}.

1. The set K is a non-empty compact connected set.

If K is a compact connected subset of Rd set

E
X,X̃

(K) =
ß
t ∈ ∂T :

⋂

N≥1

ßÅSnXj(t)

SnX̃j(t)

ã
1≤j≤d

: n ≥ N
™
= K

™
.

2. With probability 1, for every compact connected subset K of Rd, we have
E
X,X̃

(K) 6= ∅ if and only if K ⊂ K, and in this case dimE
X,X̃

(K) =

infα∈K ‹P ∗
α(0).

Remark 1.3 (1) When K is a singleton, Theorem 1.6 should be compared to the
results obtained in [11, 33, 9] for ratios of Birkhoff averages.

(2) Suppose that d = 1 to simplify the discussion. The special case X̃i = φi cor-
responds to study the level sets associated with the averages SnX(t)/Snφ(t), and it is
closely related to the multifractal analysis of Mandelbrot measures under dφ. A direct
application of the definitions yields ‹Pα(q) = τ(q) − qα where τ(q) is the convex func-

tion defined by E

Å∑N
i=1 exp(qXi − τ(q)φi)

ã
= 1, so ‹P ∗

α(0) = τ̃ ∗(α), and this situation

appears as, and indeed is, similar to the case X̃i = φi = 1 considered in Theorem 1.2.

In the general case considered in Theorems 1.4 and 1.5, the introduction of ‹Pα(·)
comes from the remark that the points t such that SnX(t)/n − α tends to 0, are also
those for which Sn(X −α)(t)/Snφ(t) tends to 0, hence the study of EX(α) is reducible
to that of the level 0 Sn(X − α)/Snφ, which, as we just said, is similar to that of the
level 0 of SnX/n when working under the metric d1. Such an idea seems to come from
[34] in the study of Birkhoff averages on conformal repellers.

Theorems 1.2 and 1.4 follow from Theorem 1.6. However, it turns out that the proof
of Theorem 1.2 simplifies the understanding of the proof of the other results. So, we
will first give the proof of Theorem 1.2 in Chapter 3, then explain in Chapter 4 the
(non direct) modifications needed to prove Theorem 1.4, and finally Theorem 1.6.

Now let us come to the refinement of the multifractal analysis announced in the
beginning of the introduction. It consists in a better description of the asymptotic
behavior limn→∞ SnX(t)/n = α along the branches distinguished when considering the
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set EX(α). Specifically, our goal is, given a sequence k(n) increasing to ∞, to quantify
along the walk SnX(t), how many blocks

∆SnX(j, t) = SjnX(t)− S(j−1)nX(t)

behave like nβ, with β 6= α.

Recall the definition of the Mandelbrot measures µq given above, which is the most
natural measure carried by EX(∇‹P (q)) with full Hausdorff dimension when ∂T is
endowed with d1. For each q ∈ J , let

Λq : λ ∈ Rd 7→ logE
Å N∑

i=1

exp
Ä
〈(q + λ|Xi〉)− ‹P (q)

äã
= ‹P (q + λ)− ‹P (q). (1.9)

According to the quantified version of the Erdös-Renyi law of large numbers [25] es-
tablished in [8] (see specifically [8, section 3.4]) if we define for t ∈ ∂T, B any Borel
subset of Rd and any λ ∈ Rd

µtn(B) =
#
ß
1 ≤ j ≤ k(n) :

∆SnX(j, t)

n
∈ B

™

k(n)

and
Λtn(λ) = log

∫

Rd
exp(n〈λ|x〉)dµtn(x), (1.10)

then, for all q ∈ J , with probability 1, for µq-almost every t, limn→∞ SnX(t)/n =

∇‹P (q) = ∇Λq(0), i.e. t ∈ EX(∇Λq(0)), and the following large deviations properties
hold (notice that by convention the concave Legendre transform defined in this pa-
per, which is convenient to express Hausdorff dimensions, is the opposite of the more
standard convex convention used in [8]) :

LD(q) :

(1) for all λ ∈ Rd such that lim infn→∞
log(k(n))

n
> −Λ∗

q(∇Λq(λ)), we have

lim
n→∞

1

n
Λtn(λ) = Λq(λ);

due to the Gartner-Ellis theorem [24], this implies that for all λ ∈ Rd such that
lim infn→∞

log(k(n))
n

> −Λ∗
q(∇Λq(λ)),

lim
ǫ→0

lim
n→∞

1

n
log µtn(B(∇Λ(λ), ǫ)) = Λ∗

q(∇Λq(λ)).

(2) For all λ ∈ Rd such that lim supn→∞
log(k(n))

n
< −Λ∗

q(∇Λq(λ)), there exists ǫ > 0

such that for n large enough,
ß
1 ≤ j ≤ k(n) : ∆SnX(j,t)

n
∈ B(∇Λq(λ), ǫ)

™
= ∅.

In particular, for all q ∈ J , if we define

E
LD(q)
X (∇‹P (q)) = {t ∈ EX(∇‹P (q)) : LD(q) holds},

with probability 1, µq(E
LD(q)
X (∇‹P (q)) > 0, hence we have the following fact.
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Proposition 1.2 Suppose that ∂T is endowed with the distance d1 almost surely. As-
sume (1.5). For all q ∈ J , with probability 1, dim ELD

X (∇‹P (q)) = ‹P ∗(∇‹P (q)).

It turns out that to strengthen this result into a result valid simultaneously for all q ∈ J ,
the simultaneous consideration of the measures µq, together with a combination of the
approach developed in Chapter 2 for the simultaneous study of the sets EX(∇‹P (q))
and the approach of [8] to get the previous proposition seems to be not sufficient.
However, the family of inhomogeneous Mandelbrot measures that we will consider is
adapted to get the strong version. Notice that the previous result only deals with the
level sets EX(α) with α ∈ I̊. Indeed, when α ∈ ∂I ∩ ∇‹P (Rd), the function Λq is well
defined as well as LD(q), but our approach fails. When α ∈ ∂I \ ∇‹P (Rd), there is no
natural substitute to LD(q).

We also want such a strong version for any random metric dφ. For this we assume
(1.7). In this case, according to Proposition 1.1, if α ∈ I̊ we can build the measure µqα,α
of Theorem 1.5(2), which is carried by EX(α) and of maximal Hausdorff dimension.

For α ∈ I̊ let

Λqα,α : λ ∈ Rd 7→ logE
Å N∑

i=1

exp(〈λ|Xi〉+ 〈qα|Xi − α〉 − ‹Pα(qα)φi)
ã
. (1.11)

When φi = 1 for all i ≥ 1, this corresponds to (1.9). Given an increasing sequence of
positive integers (k(n))n≥1, for any α ∈ I̊, define for any t ∈ N

N+
+ the large deviation

property (which given α, due to [8] applied to our context, is pointed out almost surely,
µqα,α-almost everywhere)

LD(qα, α) :

(1) for all λ ∈ Rd such that lim infn→∞
log(k(n))

n
> −Λ∗

qα,α(∇Λqα,α(λ)), we have

lim
n→∞

1

n
Λtn(λ) = Λqα,α(λ),

so that for all λ ∈ Rd such that lim infn→∞
log(k(n))

n
> −Λ∗

qα,α(∇Λqα,α(λ)),

lim
ǫ→0

lim
n→∞

1

n
log µtn(B(∇Λ(λ), ǫ)) = Λ∗

qα,α(∇Λqα,α(λ)).

(2) For all λ ∈ Rd such that lim supn→∞
log(k(n))

n
< −Λ∗

qα,α(∇Λqα,α(λ)), there exists

ǫ > 0 such that for n large enough,
ß
1 ≤ j ≤ k(n) : ∆SnX(j,t)

n
∈ B(∇Λqα,α(λ), ǫ)

™
= ∅.

Now define
E

LD(qα,α)
X (α) = {t ∈ EX(α) : LD(qα, α)) holds}.

We will prove in Section 5.2 the following result.

Theorem 1.7 Assume (1.6) and (1.7). Suppose that ∂T is endowed with the distance

dφ almost surely. With probability 1, for all α ∈ I̊, dimE
LD(qα,α)
X (α) = ‹P ∗

α(0).
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It is worth mentioning that changing the metric has changed the large devia-
tions principle LD(q) into LD(qα, α), so that the previous result says nothing about
dimE

LD(q)
X (α) under dφ when α = ∇‹P (q) if φ is not a multiple of (1)i≥1. Then a natural

related question is : is it possible to find in EX(α) other subsets of full Hausdorff di-
mension ‹P ∗

α(0), each corresponding to a different large deviations principle for (µtn)n≥1

holding over its infinite branches ?

It is now interesting to try precising the information we obtained about Hausdorff
dimension of the sets ELD(qα,α)

X (α) by information concerning their Hausdorff mea-
sure when the gauge function varies. Our approach provides a 0-∞ law for the sets
E

LD(qα,α)
X (α) subject to dimE

LD(qα,α)
X (α) < dim ∂T. Indeed the level set EX(α0) of

maximal Hausdorff dimension has a particular status because it carries a Mandelbrot
measure of maximal Hausdorff dimension on (∂T, dφ), and the behavior of its Hausdorff
measures turns out to differ from that of the other sets EX(α), because it is closely
related to that of ∂T. We refer the reader to [37, 53, 73] for the study of the Hausdorff
measures of ∂T. We notice that in the deterministic case, such a 0-∞ law has been ob-
tained in [58] when d = 1 for the sets EX(α) seen as Besicovich subsets of the attractor
of an IFS of contractive similtudes of R satisfying the open set condition. Our result,
which is proved in Section 5.3, is the following.

Theorem 1.8 Assume (1.6) and (1.7). Suppose that ∂T is endowed with the dis-
tance dφ almost surely. With probability 1, for all α ∈ I̊ such that dimE <

dim ∂T, if E ∈ {EX(α), E
LD(qα,α)
X (α)}, for all gauge functions g, Hg(E) = ∞ if

lim supt→0+ log(g(t))/ log(t) ≤ dimE and Hg(E) = 0 otherwise.

Let us give some simple consequences of our study. The first one concerns the
branching process itself. Assuming that the moment generating function of the random
variable N is finite over R, the previous results apply to the natural branching random
walk associated with the branching numbers, namely SnN(t) = Nt1 + Nt1t2 + · · · +
Nt1···tn and provide, if N is not constant, geometric and large deviations information
on the heterogeneity of the birth process along different infinite branches. The same
kind of information can be derived for the branching random walk obtained from an
homogeneous percolation process : the Xu, u ∈

⋃
n≥1 N

n
+ are independent copies of

the same Bernoulli variable, and are independent of ∂T. The branching random walk
SnX(t) must be interpreted as the covering number of t by the family of balls [u] of
generation not greater than n such that Xu = 1 (see [31] for related results concerning
some subsets of the sets EX(α) on a dyadic tree). Then, our results also provide for
instance a joint multifractal analysis of SnN(t) and SnX(t).

1.2 Some comments and perspectives

1.2.1 Possible relaxation of the assumptions

We have deliberately assumed strong assumptions like (1.6) on the moment gene-
rating functions of the random walks to be sure to have a whole compact domain I
of study at our disposal, and be in a situation comparable to that of the context of
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Birkhoff averages of continuous potentials on conformal repellers, where this domain
is always compact, the pressure functions (analogues of ‹P ), being always defined eve-
rywhere, and with bounded subgradiant, because the potentials are bounded. In our
context, the analogous property would amount to assume that the random variables
Xi and φi, 1 ≤ i ≤ N are bounded, which is rather restrictive, and in this sense the
assumptions of the introduction are not so unsatisfactory. However they can be relaxed.

For Theorem 1.1, see Section 2.3.

For Theorem 1.2, the point is to consider the domain of the convex function ‹P
as possibly smaller than Rd. We will assume that it has a non-empty interior. This
makes it possible to define J = {q ∈ dom(‹P ) : ∇‹P (q) exists and ‹P ∗(∇‹P (q)) > 0}.
Then, if we assume that for all q ∈ J there exists γ > 1 such that E(S(q)γ) < ∞, the
conclusions of Theorem 1.2 hold, except that IX can cease to be compact (the other
conclusions of Proposition 3.1 about IX remain valid). Otherwise, we can consider
J̃ = {q ∈ J : ∃ γ > 1 : E(S(q)γ) < ∞} (it equals J if N is bounded), and then
the conclusions of Theorem 1.2 hold for the compact connected sets of points α of
IX for which there exists a sequence (qn)n≥1 of points in J̃ such that ∇‹P (qn) → α,
‹P ∗(∇‹P (qn)) > 0 and ‹P ∗(∇‹P (qn)) > 0 as n → ∞. Theorem 1.3 is also valid under
these assumptions.

For instance, if we consider for the Xi i.i.d positive vectors with d i.i.d. α-stable
components (α ∈ (0, 1)), and independent of N , there exists c > 0 such that ‹P (q) =
log(E(N))−c

∑d
i=1 |qi|

α for q ∈ (−∞, 0]d and ‹P (q) = +∞ for q ∈ Rd\(−∞, 0]d, and we
find IX = {cα(|qi|α−1)1≤i≤d : log(E(N))− c(1− α)

∑d
i=1 |qi|

α > 0 and q ∈ (−∞, 0]d}.

For Theorems 1.4 the following condition is a bit technical because closely connected
to the heart of the proof, but in the spirit of the previous lines. In general, the results are
valid for the compact connected sets of points α ∈ I for which we can find a sequence

(qn, αn)n≥1 in the interior of
ß
(q, α) ∈ Rd×Rd : ‹Pα(q) and ∇‹Pα(q) are defined, ‹Pα(q)−

〈q|∇‹Pα(q)〉 > 0 and ∃ γ > 1 : E
ÅÅ∑N

i=1 exp(〈q|Xi − α · X̃i〉 − ‹Pα(q)φi)
ãγã

<∞
™
, such

that αn → α, ∇‹Pαn(qn) → 0, and ‹Pα(qn)− 〈qn|∇‹Pα(qn)〉 → ‹P ∗
α(0), as n→ ∞. Similar

conditions can be stated in relation with Theorem 1.8.

The validity of Theorems 1.7 and 1.8 is based on Proposition 1.1, which already
requires the strong assumption (1.7). Nevertheless, under our assumptions and without
assuming (1.7), it is true that α 7→ qα is well defined and analytic in a neighborhood of
α0, because qα0 is clearly identified as being 0, and one can apply the implicit function
theorem. However, we were unable to prove that this neighborhood can be extended
to I̊ in general.

1.2.2 Possible analogous results for the packing dimension

For all the sets EX(α) and E
LD(qα,α)
X (α), it is clear that packing and Hausdorff

dimension coincide, due to the self-similarity properties.

For the connected compact sets K of IX , one expects dimP K = supα∈K
‹P ∗
α(0).

In fact, our approach as it is developed may provide this result for K in the interior
of IX , and also an extension of Theorem 1.8 for packing measures, with a 0-∞ law
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related to lim infr→0+ log(g(r))/ log(r). However, we meet some difficulties to control
what happens when K touches the boundary of IX (also for the Hausdorff measures of
the sets EX(α) when α ∈ ∂IX). This is due to an not sufficient control of the right tail
at of the supremum of the total masses of the collection of inhomogeneous martingales
we build. However, we realized these last days that the solution may come from the
adaptation of some ideas in [14], in which case we would also have an alternative to
the uniform Kahane’s argument.

1.2.3 Some other perspectives

We briefly mention here that we strongly believe that our method is suitable to solve
related questions like (1) the multifractal analysis of Lyapunov exponents of products
of independent matrices on Galton-Watson trees ; (2) strengthening the multifractal
analysis of statistically self-similar measures obtained in [17] under the open set condi-
tion, which does not obtain almost surely the whole spectrum but only its value for
each fixed singularity almost surely. We think inhomogeneous Mandelbrot measures
may introduce flexibility to control some delicate geometric aspects of the problem.
Finally, it would be interesting to study the possibility of combining our approach with
that of [51], to improve the partial results obtained there about the joint multifractal
analysis of the branching and the visibility measures.



Chapitre 2

Uniform result for the sets EX(α)
when α ∈ I̊X, and under the metric d1

Recall that J = {q ∈ Rd : ‹P ∗(∇‹P (q)) > 0}. We prove Theorem 1.1 by exploiting
the simultaneous construction of the Mandelbrot measures µq, q ∈ J . We will focus on
the lower bounds for the Hausdorff dimensions of the sets EX(α), α ∈ ∇‹P (J), only,
since the upper bounds estimates follow the same lines as in Chapter 3. At the end
of the chapter, we will give some partial answers to the calculation of dimEX(α) for
α ∈ ∂I, and we also give some information about the pressure like function

P (q) = lim sup
n→∞

1

n
log
Å ∑
u∈Tn

exp(〈q|SnX(u)〉)
ã

(q ∈ Rd)

used in Section 3.2 to get general upper bounds for the sets EX(K). The main infor-
mation we collect from Section 3.2 is that, with probability 1, for all q ∈ Rd we have
P (q) ≤ ‹P (q), and for all α ∈ Rd, dimEX(α) ≤ P ∗(α) ≤ ‹P ∗(α).

2.1 Lower bounds for the Hausdorff dimensions

For (q, p) ∈ J × [1,∞), we define the function

φ(p, q) = exp(‹P (pq)− p‹P (q)).

and for q ∈ J and u ∈ T , we define the sequence

Yn(u, q) = E

Å N∑

i=1

e〈q|Xi〉
ã−n ∑

v∈Tn(u)

e〈q|S|u|+nX(uv)−S|u|(u)〉, (n ≥ 1).

When u = ∅, Yn(∅, q) will be denoted by Yn(q).
The sequence

Ä
Yn(u, q)

ä
n≥1

is a positive martingale with expectation 1, which converges

almost surely and in L1 norm to a positive random variable Y (u, q) (see [45, 13] or [16,
Theorem 1]). However, our study will need the almost sure simultaneous convergence
of these martingales to positive limits (see Proposition 2.1(1)).

26



CHAPITRE 2. UNIFORM RESULT FOR THE SETS EX(α) WHEN α ∈ I̊X , AND UNDER THE

METRIC D1 27

Let us start by stating two propositions, the proof of which is postponed to the end
of this section. The uniform convergence part of Proposition 2.1 is essentially Theorem
2 of [16], with slightly different assumptions. However, for the reader convenience,
and since the method used by Biggins will be used also in proving Propositions 2.2
and 2.3, we will include its proof. The second part of Proposition 2.1 defines the family
of Mandelbrot measures built simultaneously to control the Hausdorff dimensions of
the sets EX(∇‹P (q)), q ∈ J , from below. Then Proposition 2.2 introduces suitable
logarithmic moment generating functions associated with these measures to get the
desired lower bounds via large deviations inequalities.

Proposition 2.1 1. Let K be a compact subset of J . There exists pK ∈ (1, 2] such
that for all u ∈

⋃
n≥0 N

n
+, the continuous functions q ∈ K 7→ Yn(u, q) converge

uniformly, almost surely and in LpK norm, to a limit q ∈ K 7→ Y (u, q). In
particular, E(sup

q∈K
Y (u, q)pK ) <∞. Moreover, Y (u, ·) is positive almost surely.

In addition, for all n ≥ 0, σ
Ä
{(Xu1, · · · , XuN(u)), u ∈ Tn}

ä
and σ

Ä
{Y (u, ·), u ∈

Tn+1}
ä

are independent, and the random functions Y (u, ·), u ∈ Tn+1, are a inde-
pendent copies of Y (·).

2. With probability 1, for all q ∈ J , the function

µq([u]) = E

Å N∑

i=1

e〈q|Xi〉
ã−|u|

e〈q|S|u|(u)〉Y (u, q)

defines a measure on ∂T .

For q ∈ J , let

Ln(q, λ) =
1

n
log

∫

∂T
exp
Ä
〈λ|SnX(t)〉

ä
dµq(t), (λ ∈ Rd),

and

L(q, λ) = lim sup
n→∞

Ln(q, λ).

Proposition 2.2 Let K be a compact subset of J . There exists a compact neighborhood
Λ of the origin such that, with probability 1,

lim
n→∞

sup
λ∈Λ

sup
q∈K

|Ln(q, λ)− (‹P (q + λ)− ‹P (q))| = 0, (2.1)

in particular L(q, λ) = ‹P (q + λ)− ‹P (q) for (q, λ) ∈ K × Λ.

Corollary 2.1 With probability 1, for all q ∈ J , for µq-almost every t ∈ ∂T,

lim
n→∞

SnX(t)

n
= ∇‹P (q).
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Proof It follows from Proposition 2.2 that there exists Ω′ ⊂ Ω with P(Ω′) = 1, and
such that for all ω ∈ Ω′, for all q ∈ J , there exists a neighborhood of 0 over which
Ln(q, λ) converges uniformly in λ towards L(q, λ) = ‹P (q + λ)− ‹P (q).

For each ω ∈ Ω′, let us define for each q ∈ J the sequence of measures {µωq,n}n≥1 as
µωq,n(B) = µωq ({t ∈ ∂T : 1

n
SnX(t) ∈ B}) for all Borel set B ⊂ Rd. We denote L(q, λ) by

Lq(λ). Since

Ln(q, λ) =
1

n
log

∫

Rd
exp(n〈λ|u〉) dµωq,n(u),

it is known that for all closed subset Γ of Rd, we have for all q ∈ J

lim sup
n→∞

1

n
log µωq,n(Γ) ≤ sup

α∈Γ
L∗
q(α).

Let ǫ > 0, and for each q ∈ J let Aq,ǫ =
¶
α ∈ Rd : d(α,∇Lq(0)) > ǫ)

©
. In

particular we have lim sup
n→∞

1

n
log µωq,n(Aq,ǫ) ≤ sup

α∈Aq,ǫ

L∗
q(α). In addition, since Lq(λ) =

‹P (q + λ)− ‹P (q) in a neighborhood of 0, we have ∇Lq(0) = ∇‹P (q) and L∗
q(∇Lq(0)) =

0 = maxL∗
q. Moreover, since Lq is differentiable at 0, we have L∗

q(α) < L∗
q(∇Lq(0)) for

all α 6= ∇Lq(0). Indeed, suppose that L∗
q(α) = 0 ; then it follows from the definition of

the Legendre transformation and the fact that Lq(0) = 0, that

∀λ ∈ Rd, Lq(λ) ≥ Lq(0) + 〈λ|α〉 ,

hence α belongs to the subgradient of Lq at 0, which reduces to {∇Lq(0)} since Lq is
differentiable at 0.

Now, due to the upper semi-continuity of the concave function L∗
q, we have γq,ǫ =

supα∈Aq,ǫ
L∗
q(α) < 0.

Consequently, for all q ∈ J , for n large enough, µωq,n(Aq,ǫ) ≤ enγq,ǫ/2 , i.e.

µωq
Ä¶
t ∈ ∂T :

1

n
SnX(t) ∈ Aq,ǫ

©ä
≤ enγq,ǫ/2.

Then it follows from the Borel-Cantelli Lemma (applied with respect to µωq ) that for

all q ∈ J , for µωq -almost every t ∈ ∂T, we have 1
n
SnX(t) ∈ B(∇‹P (q), ǫ) for n large

enough. Letting ǫ tend to 0 along a countable sequence yields the desired conclusion.

The next corollary uses the notations of the previous proof.

Corollary 2.2 With probability 1, for all q ∈ J , the sequence of random measure
(µωq,n)n≥1 satisfies the following large deviation property : for all λ in a neighborhood
of 0,

lim
ǫ→0

lim
n→∞

1

n
log µωq,n

Ä
B(∇Lq(λ), ǫ)

ä
= L∗

q(∇Lq(λ)).

Proof It is a consequence of Gartner Ellis theorem (see [22]).

We need a last proposition to get the lower bounds in Theorem 1.1. Its proof will
end the section.
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Proposition 2.3 With probability 1, for all q ∈ J , for µq-almost every t ∈ ∂T,

lim
n→∞

log Y (t|n, q)

n
= 0.

Proof of the lower bounds in Theorem 1.1 : From Corollary 2.1, we have with
probability 1, µq

Ä
EX(∇‹P (q))

ä
= 1. In addition, with probability 1, for µq-almost every

t ∈ E(∇‹P (q)), from the same corollary and Proposition 2.3, we have

lim
n→∞

log(µq[t|n])

log(diam([t|n]))
= lim

n→∞

−1

n
log
Å
exp
Ä
〈q|SnX(t)〉 − n‹P (q)

ä
Y (t|n, q)

ã

= ‹P (q) + lim
n→∞

〈q|SnX(t)〉

−n
+ lim

n→∞

log Y (t|n, q)

n

= ‹P (q)−
¨
q|∇‹P (q)

∂
= ‹P ∗(∇‹P (q)).

This implies that the lower Hausdorff dimension of µq is equal to ‹P ∗(∇‹P (q)), hence
dimEX(∇‹P (q) ≥ E(∇‹P (q).

Before giving the proofs of the previous propositions, we will first recall the Cauchy
formula for holomorphic functions in several variables.

Definition 2.1 Let d ≥ 1. Asubset D of Cd is an open polydisc if there exist open
discs D1, ..., Dd of C such that D = D1 × ...×Dd. If we denote by ζj the centre of Dj,
then ζ = (ζ1, ..., ζd) is the centre of D and if rj is the radius of Dj then r = (r1, ..., rd)
is the multiradius of D. The set ∂D = ∂D1 × ... × ∂Dd is the distinguished boundary
of D. We denote by D(ζ, r) the polydisc with center ζ and radius r.

Let D = D(ζ, r) be a polydisc of Cd and g ∈ C(∂D) a continuous function on ∂D.
We define the integral of g on ∂D as

∫

∂D
g(ζ)dζ1...dζd = (2iπ)dr1...rd

∫

[0,1]d
g(ζ(θ))ei2πθ1 ...ei2πθddθ1...dθd,

where ζ(θ) = (ζ1(θ), ..., ζd(θ)) and ζj(θ) = ζj + rje
i2πθj for j = 1, ..., d.

Theorem 2.1 Let D = D(a, r) be polydisc in Cd with a multiradius whose components
are positive, and f be a holomorphic function in a neiborhood of D. Then, for all z ∈ D

f(z) =
1

(2iπ)d

∫

∂D

f(ζ)dζ1...dζd
(ζ1 − z1)...(ζd − zd)

.

It follows that

sup
z∈D(a,r/2)

|f(z)| ≤ 2d
∫

[0,1]d
|f(ζ(θ))| dθ1...dθd (2.2)

Now, we give the proofs of the previous propositions. We start by reminding that
we assumed (1.4) :

∃ q ∈ J 7→ pq ∈ (1,∞), C0 and such that E
Ä
S(q)pq

ä
<∞ for all q ∈ J.

Next we establish several lemmas.
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Lemma 2.1 For all nontrivial compact K ⊂ J there exists a real number 1 < pK < 2
such that for all 1 < p ≤ pK we have

sup
q∈K

φ(pK , q) < 1.

Proof Let q ∈ J , since ‹P ∗(∇‹P (q)) > 0 one has ∂φ
∂p
(1+, q) < 0 and there exists pq > 1

such that φ(pq, q) < 1. Therefore, in a neighborhood Vq of q, one has φ(p, q′) < 1 for
all q′ ∈ Vq. If K is a nontrivial compact of J , it is covered by a finite number of such
Vqi and for all q ∈ K one has φ(pK , q) < 0 with pK = inf

i
pqi . Now, if 1 < p ≤ pK

and supq∈K φ(p, q) = 1, there exists q ∈ K tel que ϕ(p, q) = 1. By log-convexity of the
mapping p 7→ φ(p, q) and the fact that φ(1, q) = 1, there is a contradiction.

Lemma 2.2 For all compact K ⊂ J , there exists p̃K > 1 such that,

sup
q∈K

E

ÅÄ N∑

i=1

e〈q|Xi〉
äp̃Kã

<∞.

Proof Since q 7→ pq is continuous, there exists p̃K > 1 such that we have

E

ÅÄ N∑

i=1

e〈q|Xi〉
äp̃Kã

<∞ for all q ∈ K.

Then the result follows from the same continuity argument as in [16, p. 141].

The next lemma comes from [16].

Lemma 2.3 If {Xi}i∈I is a finite family of integrable and independent complex random
variables with E(Xi) = 0, then E|

∑
i∈I Xi|

p ≤ 2p
∑

E|Xi|
p for 1 ≤ p ≤ 2.

Lemma 2.4 Let (N, V1, V2, · · · ) be a random vector taking values in N+ × CN+ and
such that

∑N
i=1 Vi is integrable and E

Ä∑N
i=1 Vi

ä
= 1. Let M be an integrable complex

random variable. Consider
¶
(Nu, Vu1, Vu2, . . .)

©
u∈
⋃

n≥0
Nn
+

a sequence of independent co-

pies of (N, V1, · · · , VN) and {Mu}u∈
⋃

n≥0
Nn
+

a sequence of copies of M such that for

all n ≥ 1, the random variables M(u), u ∈ Nn
+, are independent, and independent of¶

(Nu, Vu1, Vu2, . . .)
©
u∈
⋃n−1

k=0
Nk
+

. We define the sequence (Zn)n≥0 by Z0 = E(M) and for

n ≥ 1

Zn =
∑

u∈Tn

Ä n∏

k=1

Vu|k
ä
M(u).

Let p ∈ (1, 2]. There exists a constant Cp depending on p only such that for all n ≥ 1

E(|Zn − Zn−1|
p) ≤ CpE(|M |p)

Å
E
Ä N∑

i=1

|Vi|
p
äãn−1Å

E
Ä N∑

i=1

|Vi|
p
ä
+ E
Ä
|
N∑

i=1

Vi|
p
ä
+ 1
ã
.
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Proof The definition of the process Zn gives immediately

Zn − Zn−1 =
∑

u∈Tn−1

n−1∏

k=1

Vu|k

Å Nu∑

i=1

VuiM(ui)−M(u)
ã
. (2.3)

For each n ≥ 1 let Fn = σ
¶
(Nu, Vu1, . . .) : |u| ≤ n − 1

©
and let F0 be the trivial

sigma-field. The random variable Zn − Zn−1 is a weighted sum of independent and
identically distributed random variables with zero mean, namely the random variables∑Nu
i=1 VuiM(ui)−M(u), which are independent of Fn−1. Applying the Lemma 2.3 with

Xu =
n−1∏

k=1

Vu|k

Å Nu∑

i=1

VuiM(ui)−M(u)
ã
, (u ∈ Tn),

given Fn−1, and noticing that the weights
∏n−1
k=1 Vu|k , u ∈ Tn−1, are Fn−1-measurable,

we get

E
Ä
|Zn − Zn−1|

p
ä

= E

Å
E
Ä
|Zn − Zn−1|

p
ä
| Fn−1

ã

≤ E

Å
2p

∑

u∈Tn−1

n−1∏

k=1

|Vu|k |
pE
∣∣∣
Nu∑

i=1

VuiM(ui)−M(u)
∣∣∣
p
ã
.

It is easy to see that E
Ä ∑

u∈Tn−1

n−1∏

k=1

|Vu|k |
p
ä
=

n−1∏

k=1

E
Ä N∑

i=1

|Vi|
p
ä
. Using the inequality

|x+ y|r ≤ 2r−1(|x|r + |y|r), (r > 1), (2.4)

we get

E
Ä∣∣∣

Nu∑

i=1

VuiM(ui)−M(u)
∣∣∣
pä

≤ 2p−1E
Ä∣∣∣

Nu∑

1=1

VuiM(ui)
∣∣∣
p
+ E(|M |)p

ä
.

Write M(ui) =M(ui)−E(M(ui))+E(M(ui)). Then from the inequality (2.4), we get

E
Ä∣∣∣

Nu∑

i=1

VuiM(ui)
∣∣∣
pä

= E
Ä∣∣∣

Nu∑

1=1

Vui(M(ui)− E(M(ui))) + VuiE(M(ui))
∣∣∣
pä

≤ 2p−1E
Ä∣∣∣

Nu∑

i=1

Vui(M(ui)− E(M(ui)))
∣∣∣
pä

+ 2p−1E(|M |p)E
Ä∣∣∣

Nu∑

1=1

Vui
∣∣∣
pä
.

It follows, from the Lemma 2.3 applied with Xi = Vui(M(ui) − E(M(ui))), and from
the independence of M(ui) and (Nu, Vu1, · · · , VuNu), that

E
Ä∣∣∣

Nu∑

1=1

Vui(M(ui)− E(M(ui)))
∣∣∣
pä

≤ 2pE
Ä Nu∑

i=1

∣∣∣Vui(M(ui)− E(M(ui)))
∣∣∣
pä

≤ 2pE
Ä∣∣∣M(u)− E(M(u))

∣∣∣
pä
E
Ä Nu∑

i=1

|Vui|
p
ä

≤ 22pE
Ä
|M |p

ä
E
Ä N∑

i=1

|Vi|
p
ä
.

Finally, we have

E
Ä∣∣∣

Nu∑

i=1

VuiM(ui)
∣∣∣
pä

≤ CpE|M |p)
Å
E
Ä N∑

i=1

|Vi|
p
ä
+ E
Ä
|
N∑

i=1

Vi|
p
ä
+ 1
ã
.
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Now we prove Propositions 2.1 and 2.2.

Proof of the Proposition 2.1 : (1) Recall that the uniform convergence result uses
an argument developed in [17]. Fix a compact K ⊂ J . By Lemma 2.2 we can fix a
compact neighborhood K ′ of K and p̃K′ > 1 such that

sup
q∈K′

E

ÅÄ N∑

i=1

e〈q|Xi〉
äp̃K′
ã
<∞.

By Lemma 2.1, we can fix 1 < pK ≤ min(2, p̃K′) such that supq∈K φ(pK , q) < 1. Then
for each q ∈ K, there exists a neighborhood Vq ⊂ Cd of q, whose projection to Rd is
contained in K ′, and such that for all u ∈ T and z ∈ Vq, the random variable

Wz(u) =
e〈z|Xu〉

E

Å N∑

i=1

e〈z|Xi〉
ã

is well defined, and we have
sup
z∈Vq

φ(pK , z) < 1,

where for all z, z′ ∈ Cd we set 〈z|z′〉 =
d∑

i=1

ziz̄i, and

φ(pK , z) =
E

Å∑N
i=1 |e

〈z|Xi〉|pK
ã

∣∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣∣
pK

.

By extracting a finite covering of K from
⋃

q∈K

Vq, we find a neighborhood V ⊂ Cd of K

such that
sup
z∈V

φ(pK , z) < 1.

Since the projection of V to Rd is included in K ′ and the mapping z 7→
E
Ä∑N

i=1 e
〈z|Xi〉

ä
is continuous and does not vanish on V , by considering a smaller neigh-

borhood of K included in V if necessary, we can assume that

AV = sup
z∈V

E

Å∣∣∣
N∑

i=1

e〈z|Xi〉
∣∣∣
pK
ã∣∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣∣

−pK

+ 1 <∞.

Now, for u ∈ T , we define the analytic extension to V of Yn(u, q) given by

Yn(u, z) =
∑

v∈Tn(u)

Wz(u · v1) · · ·Wz(u · v1 · · · vn)

= E
Ä N∑

i=1

e〈z|Xi〉
ä−n ∑

v∈Tn(u)

e〈z|S|u|+nX(uv)−S|u|(u)〉.

We denote also Yn(∅, z) by Yn(z). Now, applying Lemma 2.4, with

Vi = e〈z|Xi〉/E
Ä N∑

j=1

e〈z|Xj〉
ä
, and M = 1,
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we get

E
Ä
|Yn(z)− Yn−1(z)|

pK
ä

≤ CpK

Å
E
Ä N∑

i=1

|Vi|
pK
äãn−1Å

E
Ä N∑

i=1

|Vi|
pK
ä
+ E
Ä
|
N∑

i=1

Vi|
pK
ä
+ 1
ã
.

Notice that E

Å∑N
i=1 |Vi|

pK

ã
= φ(pK , z). Then,

E
Ä
|Yn(z)− Yn−1(z)|

pK
ä

≤ CpK sup
z∈V

φ(pK , z)
n + CpKAV sup

z∈V
φ(pK , z)

n−1.

With probability 1, the functions z ∈ V 7→ Yn(z), n ≥ 0, are analytic. Fix a closed
polydisc D(z0, 2ρ) ⊂ V . Equation (2.2) gives

sup
z∈D(z0,ρ)

|Yn(z)− Yn−1(z)| ≤ 2d
∫

[0,1]d

∣∣∣Yn(z0 + 2ρei2πt)− Yn−1(z0 + 2ρei2πt)
∣∣∣ dt.

Furthermore Jensen’s inequality and Fubini’s Theorem give

E
Ä

sup
z∈D(z0,ρ)

|Yn(z)− Yn−1(z)|
pK
ä

≤ E

Å
(2d

∫

[0,1]d

∣∣∣Yn(z0 + 2ρei2πt)− Yn−1(z0 + 2ρei2πt)
∣∣∣ dt)pK

ã

≤ 2dpKE
Å ∫

[0,1]d

∣∣∣Yn(z0 + 2ρei2πt)− Yn−1(z0 + 2ρei2πt)
∣∣∣
pK
dt
ã

≤ 2dpK
∫

[0,1]d
E
∣∣∣Yn(z0 + 2ρei2πt)− Yn−1(z0 + 2ρei2πt)

∣∣∣
pK
dt

≤ 2dpKCpK sup
z∈V

φ(pK , z)
n + CpK sup

z∈V
φ(pK , z)

n−1A.

Since sup
z∈V

φ(pK , z) < 1, it follows that
∑

n≥1

∥∥∥ sup
z∈D(z0,ρ)

|Yn(z)− Yn−1(z)|
∥∥∥
pK

< ∞. This

implies, z 7→ Yn(z) converge uniformly, almost surely and in LpK norm over the compact
D(z0, ρ), to a limit Y (z). This also implies that

∥∥∥∥ sup
z∈D(z0,ρ)

Y (z)
∥∥∥∥
pK

<∞.

Since K can be covered by finitely many such polydiscs D(z0, ρ) we get the uniform
convergence, almost surely and in LpK norm, of the sequence (q ∈ K 7→ Yn(q))n≥1 to
q ∈ K 7→ Y (q). Moreover, since J can be covered by a countable union of such compact
K we get the simultaneous convergence for all q ∈ J . The same holds simultaneously
for all the function q ∈ J 7→ Yn(u, q), u ∈

⋃
n≥0 N

n
+, because

⋃
n≥0 N

n
+ is countable.

To finish the proof of Proposition 2.2(1), we must show that with probability 1,
q ∈ K 7→ Y (q) does not vanish. Without loss of generality we can suppose that
K = [0, 1]d. If I is a dyadic closed subcube of [0, 1]d, we denote by EI the event
{∃ q ∈ I : Y (q) = 0}. Let I0, I1, · · · , I2d−1 stand for the descendants of I. The event
EI being a tail event of probability 0 or 1, if we suppose that P (EI) = 1, there exists
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j ∈ {0, 1, · · · , 2d−1} such that P (EIj) = 1. Suppose now that P (EK) = 1. The previous
remark allows to construct a decreasing sequence (I(n))n≥0 of dyadic subscubes of K
such that P (EI(n)) = 1. Let q0 be the unique element of ∩n≥0I(n). Since q 7→ Y (q)
is continuous we have P (Y (q0) = 0) = 1, which contradicts the fact that (Yn(q0))n≥1

converge to Y (q0) in L1.

(2) It is a consequence of the branching property

Yn+1(u, q) =
N∑

i=0

e〈q|Xui〉−P̃ (q)Yn(ui, q).

Proof of Proposition 2.2 : Let K be a compact subset of J . Since for all q ∈ K,
we have q + 0 ∈ J , there exists a compact neighborhood Λ of the origin such that
{q + λ : q ∈ K,λ ∈ Λ} ⊂ J . Let R = {q + λ : q ∈ K,λ ∈ Λ}. For q ∈ K and λ ∈ Λ we
define

Fn(q, λ) =
∑

u∈Tn

e〈q+λ|SnX(u)〉−nP̃ (q)Y (q, u)

and

Zn(q, λ) =
Fn(q, λ)

E(Fn(q, λ))
=

∑

u∈Tn

e〈q+λ|SnX(u)〉−nP̃ (q+λ)Y (q, u).

As in the proof of Proposition 2.1, we can find pR ∈ (1, 2] and a neighborhood V ×VΛ ⊂
Cd × Cd of K × Λ such that the functions

Fn(z, z
′) =

Å
E
Ä N∑

i=1

e〈z+z
′|Xi〉
äã−n ∑

u∈Tn

e〈z+z
′|SnX(u)〉Y (z, u),

and

Zn(z, z
′) =

Fn(z, z
′)

E(Fn(z, z′))

are well defined on V × VΛ, and




supz′∈VΛ supz∈V φ(pR, z + z′) < 1,

AV×VΛ = sup
(z,z′)∈V×VΛ

E

Å∣∣∣
N∑

i=1

e〈z+z
′|Xi〉

∣∣∣
pR
ã∣∣∣∣E
Ä N∑

i=1

e〈z+z
′|Xi〉
ä∣∣∣∣

−pR

+ 1 <∞
.

Suppose that for each (z0, z
′
0) ∈ V × VΛ and ρ > 0 such that D(z0, 2ρ) ×D(z′0, 2ρ) ⊂

V × VΛ we have

∑

n≥1

E

Å
sup

(z,z′)∈D(z0,ρ)×D(z′0,ρ)

|Zn(z, z
′)− Zn−1(z, z

′)|
pR
ã
<∞. (2.5)

Then, with probability 1, (z, z′) 7→ Zn(z, z
′) converges uniformly on D(z0, ρ)×D(z′0, ρ)

to a limit Z(z, z′), whose restriction to K×Λ can be shown to be positive, in the same
way as Y (·) was shown to be positive. Since K × Λ can be covered by finitely many
polydiscs of the previous form D(z0, ρ) × D(z′0, ρ), we get the almost sure uniform
convergence of Zn(q, λ) over K × Λ to Z(q, λ) > 0, hence the almost sure uniform
convergence of 1

n
log(Zn(q, λ)) to 0 over K × Λ. This yields the conclusion.
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Now we prove (2.5). Given (z, z′) ∈ V × VΛ, applying Lemma 2.4 with

Vi = e〈z+z
′|Xi〉/E

Ä N∑

j=1

e〈z+z
′|Xj〉
ä

and M = Y (z),

we get

E
Ä
|Zn(z, z

′)− Zn−1(z, z
′)|
pR
ä

≤ CpRE(|Y (z)|pR)(φ(pR, z + z′)n + AV×VΛφ(pR, z + z′)n−1).

For z̃ = (z, z′) ∈ V × VΛ and n ≥ 1 let Mn(z̃) = Zn(z, z
′) − Zn−1(z, z

′). With
probability 1 the functions z̃ ∈ V × VΛ 7→ Mn(z̃), n ≥ 1, are analytic. Fix a closed
polydisc D(z̃0, 2ρ) ⊂ V × VΛ with ρ > 0. The Cauchy formula gives

sup
Z∈D(z̃0,ρ)

|Mn(z̃)| ≤ 22d
∫

[0,1]2d
|Mn(z̃0 + 2ρei2πt)|dt.

Furthermore Jensen’s inequality and Fubini’s Theorem give

E
Ä

sup
z̃∈D(Z0,ρ)

|Mn(z̃)|
pR
ä

≤ E
Ä
(22d

∫

[0,1]2d

∣∣∣Mn(z̃0 + 2ρei2πt)
∣∣∣ dt)pR

ä

≤ 22dpRE
Ä ∫

[0,1]2d

∣∣∣Mn(z̃0 + 2ρei2πt)
∣∣∣
pR
dt
ä

≤ 22dpR
∫

[0,1]2d
E
∣∣∣Mn(z̃0 + 2ρei2πt)

∣∣∣
pR
dt

≤ 22dpRCpRE
Ä
sup
z∈V

|Y (z)|pR
ä

·
Å

sup
(z,z′)∈V×VΛ

φ(pR, z + z′)n + AV×VΛ sup
(z,z′)∈V×VΛ

φ(pR, z + z′)n−1
ãã
.

Since sup(z,z′)∈V×VΛ
φ(pR, z + z′) < 1, we get the conclusion.

Proof of the Proposition 2.3 Let K be a compact subset of J and λ ∈ {−1, 1}. For
a > 0, q ∈ K and n ≥ 1, we set

Eλ
n,a =

¶
t ∈ ∂T : Y (t|n, q)

λ > anλ
©
.

It is sufficient to show that for λ ∈ {−1, 1},

E
Ä
sup
q∈K

∑

n≥1

µq(E
λ
n,a)
ä
<∞. (2.6)

Indeed, if this holds, then with probability 1, for each q ∈ K ,
∑
n≥1 µq(E

λ
n,a) <∞, for

all λ ∈ {−1, 1}, hence by the Borel-Cantelli lemma, for µq-almost every t ∈ ∂T, if n is
big enough we have

− log a ≤ lim inf
n→∞

1

n
log Y (t|n, q) ≤ lim sup

n→∞

1

n
log Y (t|n, q) ≤ log a.

Letting a tend to 1 along a countable sequence yields the result.
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Let us prove (2.6) for λ = 1 (the case λ = −1 is similar). At first we have,

sup
q∈K

µq(E
1
n,a) = sup

q∈K

∑

u∈Tn

µq([u])1{Y (u,q)>an}

= sup
q∈K

∑

u∈Tn

e〈q|SnX(u)〉e−nP̃ (q)Y (u, q)1{Y (u,q)>an}

≤ sup
q∈K

∑

u∈Tn

e〈q|SnX(u)〉e−nP̃ (q)(Y (u, q))1+νa−nν , ν > 0.

For q ∈ K and ν > 0, we set Hn(q, ν) =
∑

u∈Tn

e〈q|SnX(u)〉e−nP̃ (q)a−nν , and we have

E
Ä
sup
q∈K

µq(E
1
n,a)
ä
≤ E

Ä
sup
q∈K

Y (q)1+ν
ä
E
Ä
sup
q∈K

Hn(q, ν)
ä
. (2.7)

Lemma 2.5 Let Hn(z, ν) = E

Å N∑

i=1

e〈z|Xi〉
ã−n ∑

u∈Tn

e〈z|SnX(u)〉a−nν. There exists a neigh-

borhood V ⊂ Cd of K such that, for all z ∈ V , for all n ∈ N∗,

E
Ä∣∣∣Hn(z, ν)

∣∣∣
ä
≤ a−nν/2. (2.8)

Proof For z ∈ Cd and close to K,

H̃1(z, ν) =
∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣−1

E
Ä N∑

i=1

∣∣∣e〈z|Xi〉
∣∣∣
ä
a−ν

is well defined since E
Ä N∑

i=1

e〈z|Xi〉
ä

does not vanish. Let q ∈ K. Since E(H̃1(q, ν) =

H1(q, ν)) = a−ν , there exists a neighborhood Vq ⊂ Cd of q such that for all z ∈ Vq we

have E

Å∣∣∣H̃1(z, ν)
∣∣∣
ã
≤ a−ν/2. By extracting a finite covering of K from

⋃

q∈K

Vq, we find a

neighborhood V ⊂ Cd of K such that E

Å∣∣∣H̃1(z, ν)
∣∣∣
ã
≤ a−ν/2 for all z ∈ V . Therefore,

E
Ä∣∣∣Hn(z, ν)

∣∣∣
ä

=
∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣−nE

Ä∣∣∣
∑

u∈Tn

e〈z|SnX(u)〉
∣∣∣
ä
a−nν

≤
∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣−nE

Ä ∑
u∈Tn

∣∣∣e〈z|SnX(u)〉
∣∣∣
ä
a−nν

=
∣∣∣E
Ä N∑

i=1

e〈z|Xi〉
ä∣∣∣−nE

Ä N∑

i=1

∣∣∣e〈z|Xi〉
∣∣∣
än
a−nν

≤ E

Å∣∣∣H̃1(z, ν)
∣∣∣
ãn

≤ a−nν/2.

With probability 1, the functions z ∈ V 7−→ Hn(z, ν) are analytic. Fix a closed polydisc
D(z0, 2ρ) ⊂ V , ρ > 0. Cauchy’s formula gives

sup
z∈D(z0,ρ)

∣∣∣Hn(z, ν)
∣∣∣ ≤ 2d

∫

[0,1]d

∣∣∣Hn(z0 + 2ρei2πt, ν)
∣∣∣dt.



2.2.1 - Answer to the question 1. 37

Furthermore Fubini’s Theorem gives

E
Ä

sup
z∈D(z0,ρ)

|Hn(z, ν)|
ä

≤ E
Ä
2d
∫

[0,1]d

∣∣∣Hn(z0 + 2ρei2πt, ν)
∣∣∣ dt
ä

≤ 2d
∫

[0,1]d
E
∣∣∣Hn(z0 + 2ρei2πt, ν)

∣∣∣ dt

≤ 2da−nν/2.

Taking ν = pK − 1 in (2.7), we get

E
Ä
sup
q∈K

µq(E
1
n,a)
ä
≤ 2dE

Ä
sup
q∈K

Y (q)pK
ä
a−n(pK−1)/2.

Since E
Ä
sup
q∈K

Y (q)pK
ä
<∞, we get (2.6).

2.2 Behavior of P (q) outside J and partial results for
α ∈ ∂I

We have proved that, with probability 1, for all α ∈ I̊, we have

dimEX(α) = ‹P ∗(α) = P ∗(α).

Also, as a consequence of Proposition 2.1, by considering log(Yn(q))/n we have
‹P (·) = P (·) almost surely on J . For α /∈ I, we have ‹P ∗(α) < 0, then the set EX(α) = ∅.
So, it is naturally to ask :

1. What is the value of P outside J

2. Why the previous method no longer works when α ∈ ∂I ?

3. Is, for α ∈ ∂I, the set EX(α) non-empty, and if so what is its Hausdorff dimen-
sion ?

The last question is solved in Theorem 1.3, but we will give in this section some
weak results in this direction.

2.2.1 Answer to the question 1.

Let Sd = {v ∈ Rd : ‖x‖ = 1}, and consider, for v ∈ Sd, the mapping ‹P ∗
v : λ ≥ 0 7→

‹P ∗(∇‹P (λv)). Since the concave function ‹P ∗ reaches its supremum at λ = 0, we deduce
that ‹P ∗

v is a decreasing function. Then, we can define for all v ∈ Sd

λv = sup{λ > 0 : [0, λv[⊂ J},

and we have the following proposition.

Proposition 2.4 With probability 1, for v ∈ Sd, we have

1. If λv = ∞, then ∀ λ ≥ 0, ‹P (λv) = P (λv).
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2. If λv < ∞, then, ∀ 0 ≤ λ ≤ λv, ‹P (λv) = P (λv) and ∀ λ ≥ λv, P (λv) =
λ〈∇‹P (λvv)|v〉.

3. If λv <∞, then ∀λ > λv, ‹P ∗(∇‹P (λv)) < 0 and P ∗(∇P (λv)) = 0.

Proof. (1) and (2). Here we follow the approach used in [66] to obtain the Lq spectrum
of Mandelbrot measures.

Recall that, with probability 1, for all q ∈ J , we have ‹P (q) = P (q). Then, with
probability 1, ∀v ∈ Sd and ∀ 0 ≤ λ ≤ λu,

P (λu) = ‹P (λu).
Let v ∈ Sd such that λv < ∞. In this case, we have λvv ∈ ∂J and ‹P ∗(∇‹P (λvv)) = 0,
so that

‹P (λvv) = λv〈∇‹P (λvv)|v〉.
Thus, the line ∆ : y(λv) = λ〈∇‹P (λvv)|v〉 is the tangent to the graph of P at
(λvv, ‹P (λvv)). Since P is convex, ∀λ ∈ R+, P (λv) ≥ λ〈v,∇‹P (λvv)〉. On the other
hand, for each λ > λv

∑

u∈Tn

exp(〈λv|SnX(u)〉) =
∑

u∈Tn

exp(

Æ
λ

λv
λvv|SnX(u)

∏
)

≤ [
∑

u∈Tn

exp(〈λvv|SnX(u)〉)]
λ
λv ,

which implies that P (λv) ≤ λ
λv
P (λvv) =

λ
λv
‹P (λvv) = λv〈∇‹P (λvv)|v〉 = λ〈∇‹P (λvv)|v〉.

(3) Let v ∈ Sd such that λv < ∞. From (2), we have for all λ > λv that
〈∇P (λvv)|v〉 = 〈∇P (λv)|v〉. Moreover, P (λv) = λ〈∇‹P (λvv)|v〉, so that P ∗(∇P (λv)) =
0. And since λvv ∈ ∂J , we have λv /∈ J , so that ∇‹P (λv) /∈ I, hence ‹P ∗(∇‹P (λv)) < 0.

2.2.2 Partial answer to the second question

Let α ∈ ∂I, then two cases can occur.

1. There exists q ∈ ∂J , such that α = ∇‹P (q). Then ‹P ∗(α) = 0. Also, ∂φ
∂p
(1, q) = 0,

so we cannot find p > 1 such that φ(p, q) < 1 and Lemma 2.1 is not verified.

2. There does not exist q ∈ ∂J such that α = ∇‹P (q). In this case, ‹P ∗(α) ≥ 0 and
there exists a sequence (qn)n≥1 converging in norm to ∞ and α = lim

n→∞
∇‹P (qn).

In this situation, there is no q to construct the Mandelbrot measure µq.

This problem was solved in dimension 1 in [7], and when d ≥ 1 we have the following
result.

Theorem 2.2 Let α ∈ ∂I. Assume that

R(α) : ∃v ∈ Sd such that α = lim
λ→λv

∇‹P (λv)

holds. Then with probability 1, dimEX(α) = ‹P ∗(α).

Proof Notice first that if α ∈ ∂I and α = ∇‹P (q) for some q ∈ ∂J then condition R
holds true automatically. But, R is difficult to check when λv = ∞.
Under R, we can go back to dimension 1, and the proof is given in [7].
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2.3 Remarks

1. To estimate the dimension of the measure µq, we could have introduced, the
logarithmic generating functions

‹Ln(q, s) =
1

n
log

∫

∂T
µq(x|n)

sdµq(x), (q ∈ J, s ∈ R),

and studied their convergence in the same way as Ln(q, s) was studied in Pro-
position 2.2. However, we would have had to find an analytic extension of the
mapping q 7→ Y (q)1+s, almost surely in a deterministic neighborhood of any com-
pact subset of J in order to apply the technique using Cauchy formula. It turns
out that the existence of such an extension is not clear, but assuming its exis-
tence, the same approach as in the proof of Corollary 2.1 would give the Hausdorff
dimension of µq. If we only seek for a result valid for each q ∈ J almost surely,
then it is not hard to get the almost sure uniform convergence of s 7→ ‹Ln(q, s)
in a compact neighborhood of 0 towards s 7→ ‹P (q(1 + s))− (1 + s)‹P (q), and the
same approach as that of Corollary 2.1 yields the dimension of µq.

2. The method used in this paper is not a direct extension of that used in [2] for the
case d = 1 on homogeneous trees. Indeed, in [2] the complex extension is used
to build simultaneously the measures µq, but the proof that, uniformly in q, µq
is carried by EX(P ′(q)) and has a Hausdorff dimension P (q)− qP ′(q) uses a real
analysis method, which seems hard to extend when d ≥ 2.

3. Our assumptions can be relaxed as follows. We could assume that ‹P is finite
over a neighborhood V of 0, consider JV = {q ∈ V : ‹P (q) − 〈q|∇‹P (q)〉 > 0},
and suppose that there exists a continuous function q ∈ JV 7→ pq ∈ (1,∞) such

that E

ÅÄ∑N
i=1 e

〈q|Xi〉
äpqã

< ∞ for all q ∈ JV . Then the same conclusions as in

Theorem 1.1 hold with I = {∇‹P (q) : q ∈ JV }.



Chapitre 3

The Hausdorff dimensions of the sets

EX(K) under the metric d1

This chapter is devoted to the proof of Theorem 1.2.

3.1 The domain of study

Recall that IX = I = {α ∈ Rd : ‹P ∗(α) ≥ 0}. Define also J = {q ∈ Rd :
‹P ∗(∇‹P (q)) > 0}.

Proposition 3.1

1. I is convex, compact and non-empty.

2. I = {∇‹P (q) : q ∈ J}, and I̊ = ∇‹P (J).

Proof Recall that we can assumed (1.1).

(1) At first notice that I contains ∇‹P (0) (‹P ∗(∇‹P (0)) = ‹P (0) = log(E(N)) > 0). The
convexity of I comes from the concavity of the function ‹P ∗. The fact that I is closed
results from the upper semi-continuity of ‹P ∗. It remains to show that I is bounded.
Suppose that this is not the case. Let (αn)n≥1 ∈ IN+ which tends to ∞ as n tends
to ∞. Since Sd−1 is compact, without loss of generality we can assume that ( αn

‖αn‖
)n≥1

converges to a limit u ∈ Sd−1 as n → ∞. Let λ > 0. From the definition of ‹P ∗, since
‹P ∗(α) ≥ 0, we have

0 ≤ ‹P (λu)− λ〈u|αn〉 = ‹P (λu)− λ〈u|‖αn‖u〉+ λ〈u|‖αn‖u− αn〉

= ‹P (λu)− λ‖αn‖
Å
1 +

≠
u
∣∣∣∣u−

αn
‖αn‖

∑ã
.

Since αn

‖αn‖
converge to u as n→ ∞, this yields

‹P (λu) ≥ λ‖αnk
‖(1 + o(1)) as n→ ∞,

40
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hence ‹P (λu) = ∞ for all λ > 0. This contradics the finiteness of ‹P over Rd.

(2) We first notice that (1.1) implies the strict convexity of ‹P , hence the second
differential of ‹P is positive definite, so ∇‹P is a diffeomorphism from J onto its
image. Indeed, suppose that there exists q 6= q′ ∈ Rd and λ ∈ (0, 1) such that
‹P (λq+(1−λ)q′) = λ‹P (q)+(1−λ)‹P (q′). Applying successively the Hölder inequality to
∑N
i=1 exp(〈q|Xi〉) exp(〈q

′|Xi〉)
1−λ in RN and E(ZλZ ′1−λ) with Z =

Å∑N
i=1 exp(〈q|Xi〉)

ãλ

and Z =
Å∑N

i=1 exp(〈q
′|Xi〉)

ã1−λ
, we see that this forces the existence of a determinis-

tic c ∈ R∗
+ such that exp(〈q|Xi〉) = c exp(〈q′|Xi〉) almost surely for all 1 ≤ i ≤ N , in

contradiction with (1.1).

The previous lines imply that I̊ 6= ∅ since it must contain ∇‹P (J), which is an open
set. Now, we use the general facts about the concave function ‹P ∗ : its domain, i.e.
{α ∈ Rd : ‹P ∗(α) > −∞}, is included in the closure of the range of ∇‹P , and its interior
is included in the image of ∇‹P (see [71, Sec. 24, p. 227]).

Suppose that α ∈ I̊ and there exists a sequence (qn)n≥1 of vectors in Rd such that
α = limn→∞ ∇‹P (qn) and ‹P ∗(∇‹P (qn)) ≤ 0 for all n ≥ 1. Then the concave function ‹P ∗

being continuous at α, we have ‹P ∗(α) = 0. Since ∇‹P (0) ∈ I̊ and ‹P ∗(∇‹P (0)) = ‹P (0) >
0 (or more generally since J 6= ∅), the concavity of ‹P ∗ implies that ‹P ∗ takes negative
values over I̊, which is excluded by definition of I. Thus I̊ ⊂ ∇‹P (J). Consequently,

I̊ = ∇‹P (J) and I = ∇‹P (J).

Corollary 3.1 Let D be a dense subset of J . For all α ∈ I, there exists a sequence
(qn)n≥1 of elements of D such that limn→∞ ∇‹P (qn) = α and limn→∞

‹P ∗(∇‹P (qn)) =
‹P ∗(α).

Proof Fix a point β ∈ I̊ \ {α}. The restriction of ‹P ∗ to [β, α] is continuous, since ‹P ∗

is concave and upper semi-continuous. Thus limt→0+
‹P ∗(tβ + (1 − t)α) = ‹P ∗(α). For

each integer n ≥ 1 let αn = n−1β + (1− n−1)α. This point is in I̊, so it takes the form
∇‹P (λn) with λn ∈ J . Since D is dense in J and ‹P ∗(∇‹P (·)) is continuous, we can find
qn ∈ D such that ‖λn− qn‖ ≤ 1/n and |‹P ∗(αn)− ‹P ∗(∇‹P (qn))| ≤ 1/n. By construction
the sequence (qn)n≥1 is as desired.

3.2 Upper bounds for the Hausdorff dimensions

Let us define the pressure like function

P (q) = lim sup
n→∞

1

n
log
Å ∑
u∈Tn

exp(〈q|SnX(u)〉)
ã

(q ∈ Rd). (3.1)

Proposition 3.2 With probability 1, P (q) ≤ ‹P (q) for all q ∈ Rd.
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Proof The fonctions ‹P and P being convex, we only need to prove the inequality for
each q ∈ Rd almost surely. Fix q ∈ Rd. For s > ‹P (q) we have

E(
∑

n≥1

e−ns
∑

u∈Tn

exp(〈q|SnX(u)〉) =
∑

n≥1

e−nsE(
N∑

i=1

exp(〈q|Xi〉))
n

=
∑

n≥1

en(P̃ (q)−s).

Consequently,
∑

n≥1

e−ns
∑

u∈Tn

exp(〈q|SnX(u)〉) < ∞ almost surely, so that

∑

u∈Tn

exp(〈q|SnX(u)〉) = O(ens) and P (q) < s. Since s > ‹P (q) is arbitrary, we have

the conclusion.

For α ∈ Rd let

“EX(α) =
ß
t ∈ ∂T : α ∈

⋂

N≥1

ßSnX(t)

n
: n ≥ N

™™
.

Proposition 3.3 With probability 1, for all α ∈ Rd, dim “EX(α) ≤ P ∗(α), where
P ∗(α) = infq∈Rd P (q)− 〈q|α〉, and a negative dimension means that “EX(α) is empty.

Proof We have

“EX(α) =
⋂

ǫ>0

⋂

N≥1

⋃

n≥N

{t ∈ ∂T : ‖SnX(t)− nα‖ ≤ nǫ}

⊂
⋂

q∈Rd

⋂

ǫ>0

⋂

N≥1

⋃

n≥N

{t ∈ ∂T : |〈q|SnX(t)− nα〉| ≤ n‖q‖ǫ}.

Fix q ∈ Rd and ǫ > 0. For N ≥ 1, the set E(q,N, ǫ, α) =
⋃
n≥N{t ∈ ∂T : |〈q|SnX(t)−

nα〉| ≤ n‖q‖ǫ} is covered by the union of those [u] such that u ∈ Tn and 〈q|SnX(u)−
nα〉+ n‖q‖ǫ ≥ 0. Consequently, for s ≥ 0,

Hs
e−N (E(q,N, ǫ, α)) ≤

∑

n≥N

∑

u∈Tn

e−ns exp(〈q|SnX(u)− nα〉+ n‖q‖ǫ).

Thus, if η > 0 and s > P (q) + η − 〈q|α〉 + ‖q‖ǫ, by definition of P (q), for N large
enough we have

Hs
e−N (E(q,N, ǫ, α)) ≤

∑

n≥N

e−nη/2.

This yields Hs(E(q,N, ǫ, α)) = 0, hence dimE(q,N, ǫ, α) ≤ s. Since this holds for all
η > 0, we get dimE(q,N, ǫ, α) ≤ P (q)− 〈q|α〉+ ‖q‖ǫ. It follows that

dim “EX(α) ≤ inf
q∈R

inf
ǫ>0

P (q)− 〈q|α〉+ ‖q‖ǫ = P ∗(α).

If P ∗(α) < 0, we necessarily have “EX(α) = ∅.

Corollary 3.2 With probability 1, for all compact connected subset K of Rd, we have
EX(K) = ∅ if K 6⊂ I, and dimEX(K) ≤ infα∈K ‹P ∗(α) otherwise.

Proof We have EX(K) =
⋂
α∈K

“EX(α). Consequently, due to the previous proposition,
if K 6⊂ I, EX(K) = ∅. Otherwise, dimEX(K) ≤ infα∈K dim “EX(α) ≤ infα∈K P

∗(α) ≤
infα∈K ‹P ∗(α).
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3.3 Construction of inhomogeneous Mandelbrot mea-
sures and lower bounds for the Hausdorff dimen-
sions of the sets EX(K)

3.3.1 A family of inhomogeneous Mandelbrot martingales

The set of parameters

Recall that J = {q ∈ Rd : ‹P ∗(∇‹P (q)) > 0}. For (q, p) ∈ J × [1,∞), let

ϕ(p, q) = ‹P (pq)− p‹P (q).

Let (Dj)j≥1 be an increasing sequence of non-empty set of J , such that Dj has
cardinality j and D =

⋃
j≥1Dj is a dense subset of J . Without loss of generality we

assume that ∇‹P does not vanish on D (this will be used in (3.14)).

Let (Nj)j≥0 be a sequence of integers such that N0 = 0, and that we will specify at
the end of this section.

Then let (Mj)j≥0 be the increasing sequence defined as

Mj =
j∑

k=1

Nk for all j ≥ 0. (3.2)

For n ∈ N, let jn denote the unique integer satisfying

Mjn + 1 ≤ n ≤Mjn+1.

We will build a random family of measures indexed by the set of sequences

J = {̺ = (qk)k≥1 : ∀j ≥ 0, qMj+1 = qMj+2 = · · · = qMj+1
∈ Dj+1}. (3.3)

Since each Dj is finite, so compact, for all j ≥ 1, the set J is compact for the metric

d(̺ = (qk)k≥1, ̺
′ = (q′k)k≥1) =

∑

k≥1

2−k
|qk − q′k|

1 + |qk − q′k|
.

For ̺ = (qk)k≥1 ∈ J and n ≥ 1 we will denote by ̺|n the sequence (qk)1≤k≤n.

Inhomogeneous Mandelbrot martingales indexed by J

For each β ∈ (0, 1], let Wβ be a random variable taking the value 1/β with proba-
bility β and the value 0 with probability 1− β. Then let {Wβ,u}u∈

⋃
n≥0 N

n
+

be a family
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of independent copies of Wβ. Denote by (Ωβ,Aβ,Pβ) the probability space on which
this family is defined.

We naturally extend to (Ωβ × Ω,Aβ ⊗ A,Pβ ⊗ P) the random variables Wβ,u and
the random vectors (Nu0, Xu1, Xu2), . . .) as

Wβ,u(ωβ, ω) = Wβ,u(ωβ)

(Nu0(ωβ, ω), Xu1(ωβ, ω), Xu2(ωβ, ω), . . .) = (Nu0(ω), Xu1(ω), Xu2(ω), . . .),

so that the families {Wβ,u}u∈
⋃

n≥0
Nn
+

and {(Nu0, Xu1, Xu2, . . .)}u∈
⋃

n≥0
Nn
+

are inde-
pendent.

The expectation with respect to Pβ ⊗ P will be also denoted by E.

For n ≥ 1 and β ∈ (0, 1], we set Fn = σ
Å
(Nu, Xu1, Xu2, . . .) : u ∈

⋃n
k=0 N

n−1
+

ã
and

Fβ,n = σ
Å
Wβ,u1, (Wβ,u2, . . .) : u ∈

⋃n
k=0 N

n−1
+

ã
. We also denote by F0 and Fβ,0 the

trivial σ-field.

If βE(N) > 1, the random variables Nβ,u(ωβ, ω) =
∑Nu(ω)
i=1 1{β−1}(Wβ,ui(ωβ)) define

a new supercritical Galton-Watson process to which are associated the trees Tβ,n ⊂ Tn

and Tβ,n(u) ⊂ Tn(u), u ∈
⋃
n≥0 N

n
+, n ≥ 1, as well as the infinite tree Tβ ⊂ T and the

boundary ∂Tβ ⊂ ∂T conditionally on non extinction.

For u ∈
⋃
n≥0 N

n
+, 1 ≤ i ≤ N(u) and ̺ ∈ J we define

W̺,ui =
exp(〈q|u|+1|Xui〉)

E(
N∑

i=1

exp(〈q|u|+1|Xi〉)

= exp(〈q|u|+1|Xui〉 − ‹P (q|u|+1)),

and

Wβ,̺,ui =
Wβ,ui exp(〈q|u|+1|Xui〉)

E(
N∑

i=1

Wβ,i exp(〈q|u|+1|Xi〉)

= Wβ,uiW̺,ui

(since E(Wβ,i) = 1 and (E(Wβ,i))i≥1 and (N, (Xi)i≥1) are independent).

For ̺ = (qk)k≥1 ∈ J , u ∈
⋃
n≥0 N

n
+ and n ≥ 0 we define





Yn(̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

W̺,u·v1···vk

Yn(β, ̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

Wβ,̺,u·v1···vk

When u = ∅ those quantities will be denoted by Yn(̺) and Yn(β, ̺) respectively, and
when n = 0, their values equal 1.

For β ∈ (E(N)−1, 1], L ≥ 1 and ǫ > 0 we set

Jβ,L,ǫ =
ß
̺ ∈ J :

1

n

n∑

k=1

‹P ∗(∇‹P (qk)) ≥ − log β + ǫ, ∀n ≥ L
™
,
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which is a compact subset of J .

Notice that since ‹P ∗ takes values between 0 and ‹P (0) = log(E(N)) over I, we have

ß
̺ ∈ J : lim inf

n→∞

1

n

n∑

k=1

‹P ∗(∇‹P (qk) > 0
™
=

⋃

β∈(E(N)−1,1],L≥1,ǫ>0

Jβ,L,ǫ. (3.4)

Specification of the sequence (Nj)j≥1

The function ‹P is analytic. We denote by H its Hessian matrix. For each j ≥ 1,

mj = sup
t∈[0,1]

sup
v∈Sd−1

sup
q∈Dj

tvH(q + tv)v (3.5)

and
m̃j = sup

t∈[0,1]
sup
p∈[1,2]

sup
q∈Dj

tqH(q + t(p− 1)q)q (3.6)

are finite.

Next we notice that due to (1.1), two applications of the Cauchy-Schwartz inequality
as in the proof of Proposition 3.1 yield

c(q, q′) = E

Å N∑

i=1

exp
ï1
2
(〈q|Xi〉 − ‹P (q))

ò
exp
ï1
2
(〈q′|Xi〉 − ‹P (q′))

òã
< 1 (3.7)

if q 6= q′ ∈ Rd. For j ≥ 2 let

cj = sup
q 6=q′∈Dj

c(q, q′) < 1. (3.8)

Let (γj)j≥1 ∈ (0, 1]N+ be a positive sequence such that γ2jmj converges to 0 as
j → ∞ (in particular limj→∞ γj = 0) and γ2j+1mj+1 = o(log cj) as j → ∞.

Let (p̃j)j≥1 be a sequence in (1, 2) such that (p̃j − 1)m̃j converges to 0 as j tends
to ∞.

We can also suppose that p̃j is small enough so that we also have

sup
q∈Dj

E(S(q)p̃j) <∞.

For each q ∈ J there exists a real number 1 < pq < 2 such that ϕ(p, q) < 0 for all
p ∈ (1, pq). Indeed, since ‹P ∗(∇‹P (q)) > 0 one has ∂φ

∂p
(q, 1+) < 0.

For all j ≥ 1 we set

pj = min(p̃j, inf
q∈Dj+1

pq), and aj = sup
q∈Dj

ϕ(pj, q).

By construction, we have aj < 0. Then let

sj = max

®
‖S(q)‖pj
‖S(q)‖1

: q ∈ Dj

´
and rj = max

Ä
aj/pj, (2jpj)

−1(1− pj)
ä
. (3.9)
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Recall that N0 = 0. For j ≥ 1 choose an integer Nj big enough so that

(j + 1)!sj+1

1− exp(rj+1)
exp(Njrj+1) ≤ j−2 (3.10)

(which is possible since rj+1 < 0),

(j + 1)!sj+1

1− exp(rj+1)
+

(j + 2)!sj+2

1− exp(rj+2)
≤ C0 exp(Njγ

2
j+1mj+1) (3.11)

with C0 =
s1

1− exp(r1)
+

2s2
1− exp(r2)

,

Nj ≥ max(γ−2
j+1, 3 log((j + 1)!); (3.12)

if j ≥ 2

(j!)2c
Nj/2
j ≤ j−2 (3.13)

and

Å j−1∑

k=1

Nk

ã
max(1,max{‖∇‹P (q)‖ : q ∈ Dj−1}) ≤ j−1Nj min(1, {‖∇‹P (q)‖ : q ∈ Dj}).

(3.14)

3.3.2 A family of measures indexed by J

Proposition 3.4

1. For all u ∈
⋃
n≥0 N

n
+, the sequence of continuous functions Yn(·, u) converges

uniformly on J , almost surely and in L1 norm, to a positive limit Y (·, u).

2. With probability 1, for all ̺ ∈ J , the mapping

µ̺([u]) = (
n∏

k=1

W̺,u1···uk)Y (̺, u), u ∈ Tn.

defines a positive measure on ∂T.

3. With probability 1, for all (̺, ̺′) ∈ J 2, the measures µ̺ and µ̺′ are absolutely
continuous with respect to each other or mutually singular according to whether
̺ and ̺′ coincide ultimately or not.

The measures µ̺ will be used to approximate from below the Hausdorff dimensions
of the sets EX(K) in the next section.

Lemma 3.1 [72] Let (Xj)j≥1 be a sequence of centered independent real valued random
variables. For every finite I ⊂ N+ and p ∈ (1, 2)

E

Å∣∣∣∣
∑

i∈I

Xi

∣∣∣∣
pã

≤ 2p−1
∑

i∈I

E(|Xi|
p).
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Lemma 3.2 Let ̺ ∈ J and β ∈ (0, 1]. Define Zn(β, ̺) = Yn(β, ̺) − Yn−1(β, ̺) for
n ≥ 0. For every p ∈ (1, 2) we have

E(|Zn(β, ̺)|
p) ≤ (2β−1)p

E(S(qn)
p)

E(S(qn))p

n−1∏

k=1

β1−p exp
Ä‹P (pqk)− p‹P (qk)

ä
. (3.15)

Proof Fix p ∈ (1, 2]. By using the branching property we can write

Zn(β, ̺) =
∑

u∈Tn−1

n−1∏

k=1

Wβ,u1···ukW̺,u1···uk

ÅN(u)∑

i=1

Wβ,uiW̺,ui − 1
ã
.

Let Au =
N(u)∑

i=1

Wβ,uiW̺,ui. By construction, the random variables (Au − 1),

u ∈ Tn−1, are centered and i.i.d., and independent of Fβ,n−1 ⊗ Fn−1. Conse-
quently, conditionally on Fβ,n−1 ⊗ Fn−1, we can apply Lemma 3.1 to the family
{Au

∏n−1
k=1 Wβ,u1···ukW̺,u1···uk}u∈Tn−1 . Noticing that the Au, u ∈ Tn−1, have the same

distribution, this yields

E(|Zn(β, ̺)|
p |Fn−1 ⊗Fβ,n−1) ≤ 2p−1E(|A− 1|p)

∑

u∈Tn−1

n−1∏

k=1

W p
β,u1···uk

W p
̺,u1···uk

.

Since E(A) = 1 and A ≥ 0, convexity inequalities yield E(|A − 1|p) ≤ 2E(Ap).
Moreover, since 0 ≤ Wβ,i ≤ β−1, we have A ≤ β−1S(qn)/E(S(qn)), and then
2p−1E(|A − 1|p) ≤ (2β−1)p E(S(qn)

p)
E(S(qn))p

. Moreover, a recursive using of the branching pro-
perty and the independence of the random vectors (Nu, Xu1, . . .) and random variables
Wβ,u used in the constructions yields, setting Wqk,i = exp(〈qk|Xi〉)/E(S(qk)) :

E

Å ∑

u∈Tn−1

n−1∏

k=1

W p
β,u1···uk

W p
̺,u1···uk

ã
=

n−1∏

k=1

E(W p
β )E
Å N∑

i=1

W p
qk,i

ã

=
n−1∏

k=1

β1−pE(S(pqk))

E(S(qk))p
=

n−1∏

k=1

β1−p exp
Ä‹P (pqk)− p‹P (qk)

ä
.

Collecting the previous estimates yields the conclusion.

Proof of Proposition 3.4. (1) Recall the definitions of the paragraph of section 3.3.1 in
which the parameter set J is defined.

Let us first assume that u = ∅. First observe that if n ≥ 1, it is easily seen from
its construction that Yn(·) = Yn(·, ∅) is a continuous function, constant over the set of
those ̺ sharing the same n first components.

For n ≥ 1 and ̺ ∈ J , we have Mjn + 1 ≤ n ≤Mjn+1, and Lemma 3.2 applied with
p = pjn+1 and β = 1 provides us with the inequality

‖Yn(̺)− Yn−1(̺)‖
pjn+1
pjn+1

≤ 2pjn+1
E(S(qn)

pjn+1)

E(S(qn))pjn+1

n−1∏

k=1

exp
Ä‹P (pjn+1qk)− pjn+1

‹P (qk)
ä

= 2pjn+1
E(S(qn)

pjn+1)

E(S(qn))pjn+1

n−1∏

k=1

exp
Ä
ϕ(pjn+1, qk)

ä



48

Construction of inhomogeneous Mandelbrot measures and lower bounds for the

Hausdorff dimensions of the sets EX(K)

≤ 2pjn+1s
pjn+1

jn+1

n−1∏

k=1

exp
Ä

sup
q∈Djn+1

ϕ(pjn+1, q)
ä

(since {qk : 1 ≤ k ≤ n} ⊂ Djn+1)

≤ 2pjn+1s
pjn+1

jn+1 exp((n− 1)pjn+1rjn+1)

(due (3.9) ; this bound is independent of ̺).

Notice that by the definition of J , the cardinality of {̺|n : ̺ ∈ J } is equal to that of
∏jn+1
j=1 Dj, i.e. (jn+1)!, and Yn(̺)−Yn−1(̺) only depends on (q1, · · · , qn). Consequently,

‖ sup
̺∈J

|Yn(̺)− Yn−1(̺)|‖1 ≤
∑

{̺|n:̺∈J}

‖Yn(̺)− Yn−1(̺)‖pjn+1
≤ 2(jn + 1)!sjn+1 exp((n− 1)rjn+1).

We deduce from this that
∑

n≥1

‖ sup
̺∈J

|Yn(̺)− Yn−1(̺)|‖1 ≤
∑

j≥0

∑

Mj+1≤n≤Mj+1

2(j + 1)!sj+1 exp((n− 1)rj+1)

≤
∑

j≥0

2(j + 1)!sj+1
exp(Mjrj+1)

1− exp(rj+1)

≤
2s1

1− exp(r1)
+
∑

j≥1

2(j + 1)!sj+1
exp(Njrj+1)

1− exp(rj+1)

≤
2s1

1− exp(r1)
+ 2

∑

j≥1

j−2 <∞,

where we have used (3.10). The convergence of the above series gives the desired uniform
convergence, almost surely and in L1 norm, of Yn to a function Y .

Let us show that Y does not vanish on J almost surely. For each n ≥ 1 let Jn =
{̺|n : ̺ ∈ J }, and for γ = (γ1, . . . , γn) ∈ Jn define the event Eγ = {ω ∈ Ω : ∃̺ ∈
J , Y (̺) = 0, ̺|n = γ}. Let E = {ω ∈ Ω : ∃̺ ∈ J , Y (̺) = 0}. Since the functions Yn
are almost surely positive, this event is a tail event, and it has probability 0 or 1. The
same property holds for the events Eγ, γ ∈

⋃
n≥1 Jn.

Suppose that E has probability 1. Since E =
⋃
̺1∈J1

Eγ1 , necessarily, there exists
γ1 ∈ J1 such that P(Eγ1) > 0, and so P(Eγ1) = 1. Iterating this remark we can build
an infinite deterministic sequence γ = (γk)k≥1 ∈ J such that P(E(γ1,...,γn)) = 1 for all
n ≥ 1. This means that almost surely, for all n ≥ 1, there exists ̺(n) ∈ J such that
̺
(n)
|n = (γ1, . . . , γn) and Y (̺(n)) = 0. But ̺(n)|n = (γ1, . . . , γn) implies that ̺(n) converges

to γ. Hence, by continuity of Y at γ, we get Y (γ) = 0 almost surely. However, a
consequence of our convergence result for Yn is that the martingale Yn(γ) converges in
L1 to Y (γ), so that E(Y (γ)) = 1. This is a contradiction. Thus P(E) = 0.

Now let u ∈
⋃
n≥1 N

n
+. By using the same calculations as above, for all n ≥ 1 we get

‖ sup
̺∈J

|Yn(̺, u)− Yn−1(̺, u)|‖1 ≤ 2(j|u|+n + 1)!sj|u|+n+1 exp((n− 1)rj|u|+n+1).

Thus
∑

n≥1

‖ sup
̺∈J

|Yn(̺, u)− Yn−1(̺, u)|‖1
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≤

Mj|u|+1−|u|∑

n=1

2(j|u| + 1)!sj|u|+1 exp((n− 1)rj|u|+1)

+
∑

j≥j|u|+1

∑

Mj+1≤|u|+n≤Mj+1

2(j + 1)!sj+1 exp((n− 1)rj+1)

≤
∑

j|u|≤j≤j|u|+1

2(j + 1)!sj+1

1− exp(rj+1)
+

∑

j≥j|u|+2

2(j + 1)!sj+1
exp((Mj − |u|)rj+1)

1− exp(rj+1)
.

Now, since Mj|u| + 1 ≤ |u| ≤Mj|u|+1, for j ≥ j|u| + 2 we have and Mj − |u| ≥ Nj and
∑

n≥1

‖ sup
̺∈J

|Yn(̺, u)− Yn−1(̺, u)|‖1

≤
∑

j|u|≤j≤j|u|+1

2(j + 1)!sj+1

1− exp(rj+1)
+

∑

j≥j|u|+2

2(j + 1)!sj+1
exp(Njrj+1)

1− exp(rj+1)
(3.16)

≤ 2C0 exp(Nj|u|γ
2
j|u|+1mj|u|+1) + 2

∑

j≥j|u|+2

j−2,

where we have used (3.10) and (3.11). This yields the desired convergence to a limit
Y (·, u). Moreover, since

⋃
k≥0 N

k
+ is countable, the convergence holds almost surely,

simultaneously for all u. Then the proof finishes as for u = ∅.

Let us put the previous upper bound in a form that will be useful. Let ǫk =
γ2jk+1mjk+1 for all k ≥ 0. It follows from the above calculations, the fact that Y0(·, u) = 1
for all u ∈

⋃
k≥0 N

k
+, and the fact that |u| ≥ Nj|u| that there exists a constant CJ such

that :

‖ sup
̺∈J

Y (̺, u)‖1 ≤ CJ exp(ǫ|u|Nj|u|) ≤ CJ exp(ǫ|u||u|) (∀ u ∈
⋃

k≥0

Nk
+). (3.17)

Remark 3.1 Let K be a compact subset of J containing the unique element of
D1. Then, it is not difficult to see that there exists pK ∈ (1, 2) such that

supj≥1 supq∈Dj∩K
ϕ(pK , q) < 0 and supj≥1 supq∈Dj∩K

‖S(q)‖pK
‖S(q)‖1

< ∞. Then it follows

from the previous calculations that if we define J (K) = {̺ ∈ J : ∀ k ≥ 1, qk ∈ K},
then

‖ sup
̺∈J (K)

Y (̺, u)‖pK = O((j|u| + 2)!).

(2) This is a direct consequence of the branching property.

(3) Postponed to Section 3.3.5.

�

3.3.3 Lower bounds for the Hausdorff dimensions of the mea-

sures {µ̺}̺∈J

The estimation of the Hausdorff dimensions of the measures µ̺, ̺ ∈ J , will use the
second part of the next proposition, together with a uniform version of the percolation-
covering argument introduced by Kahane in [47, 46] in order to remove a technical
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assumption made in [45] to estimate the Hausdorff dimension of Mandelbrot measures
on the boundary of a homogeneous tree.

Proposition 3.5 Let β ∈ (0, 1] such that βE(N) > 1. Conditionally on non extinction
of (Tβ,n(u))n≥1, for all N ≥ 1 and ǫ ∈ Q∗

+,

1. the sequence of continuous functions Yn(·, β) converges uniformly, almost surely
and in L1 norm, to a positive limit Y (β, ·) on Jβ,L,ǫ.

2. the sequence of continuous functions

̺ 7→ ‹Yn(β, ̺) =
∑

u∈Tn

(
n∏

k=1

Wβ,u1···uk)µ̺([u])

converges uniformly, almost surely and in L1-norm, towards Y (β, ·) on Jβ,L,ǫ.

Proof (1) Let L ≥ 1 and ǫ > 0. For ̺ ∈ Jβ,L,ǫ and n ≥ 1, Lemma 3.2 applied with
p = pjn+1 provides us with the inequality

‖Yn(β, ̺)− Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1
E(S(qn)

pjn+1)

E(S(qn))pjn+1

n−1∏

k=1

β1−pjn+1 exp
Ä‹P (pjn+1qk)− pjn+1

‹P (qk)
ä
.

Let q ∈ Djn+1 and set g : λ ∈ R 7→ ‹P (λq). For p ∈ [1, 2] we have

g(p) = g(1) + (p− 1)g′(1) + (p− 1)2
∫ 1

0
(1− t)g′′(1 + t(p− 1)) dt,

with

g′′(1 + t(p− 1)) = qtH(q + t(p− 1)q)q ≤ sup
q∈Djn+1

qtH(q + t(p− 1)q)q ≤ m̃jn+1,

where (m̃j)j≥1 is defined in (3.6). Let ηj = 2(pj − 1)m̃j for j ≥ 1. By construction of
(pj)j≥1 we have limj→∞ ηj = 0. Specifying p = pjn+1 we have now

‹P (pjn+1q)− pjn+1
‹P (q) = g(p)− pg(1)

≤ (1− pjn+1)(g(1)− g′(1)) + ηjn+1(pjn+1 − 1)

= (1− pjn+1)‹P ∗(∇‹P (q)) + ηjn+1(pjn+1 − 1).

We can insert this upper bound in our estimation of ‖Yn(β, ̺) − Yn−1(β, ̺)‖
pjn+1
pjn+1 and

get, remembering that ̺ ∈ Jβ,L,ǫ, for n ≥ L+ 1

‖Yn(β, ̺)− Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Å
(1− pjn+1)

n−1∑

k=1

Ä
log(β) + ‹P ∗(∇‹P (qk))− ηjn+1

äã

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Ä
(n− 1)(1− pjn+1)(ǫ− ηjn+1)

ä
.
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Let j(ǫ) = min{j ≥ ⌊ǫ−1⌋ + 1 : ηj ≤ ǫ/2} and nǫ = min{n ≥ L + 1 : jn+1 ≥ j(ǫ)}. For
n ≥ nǫ we have, remembering (3.9)

‖Yn(β, ̺)− Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Ä
(n− 1)(1− pjn+1)ǫ/2)

ä

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Ä
(n− 1)(1− pjn+1)/2(jn + 1))

ä

= (2β−1)pjn+1s
pjn+1

jn+1 exp
Ä
(n− 1)pjn+1rjn+1)

ä

Consequently, using the same inequalities as in the proof of Proposition 3.4 we get
∑

n≥nǫ

‖ sup
̺∈Jβ,L,ǫ

|Yn(β, ̺)− Yn−1(β, ̺)|‖1 ≤
∑

j≥j(ǫ)

∑

Mj+1≤n≤Mj+1

2(j + 1)!sj+1 exp((n− 1)rj+1)

≤
∑

j≥0

2β−1(j + 1)!sj+1
exp(Mjrj+1)

1− exp(rj+1)

≤
2β−1s1

1− exp(r1)
+
∑

j≥1

2β−1(j + 1)!sj+1
exp(Njrj+1)

1− exp(rj)

≤
2β−1s1

1− exp(r1)
+ 2β−1

∑

j≥1

j−2 <∞.

This yields the conclusion on uniform convergence. The fact that the limit Y (β, ·) does
not vanish almost surely, conditionally on non extinction of (Tβ,n)n≥1, follows the same
lines as in the study of Y (·), combined with the fact that for a fixed ̺ ∈ Jβ,L,ǫ, the
probability that the limit of Yn(β, ̺) be 0 equals that of the extinction of (Tβ,n)n≥1.
This comes from the fact that conditionally on non extinction, the event {Y (β, ̺) = 0}
is asymptotic so has probability 0 or 1, and it has probability 0 since the convergence
of Yn(β, ̺) to Y (β, ̺) holds in L1.

Thus, we have the desired result for a given couple (L, ǫ) ; but it holds simultaneously
for all L ≥ 1 and ǫ ∈ Q∗

+ since N+ ×Q∗
+ is countable.

(2) Here we develop, in the context of the boundary of a supercritical Galton-Watson
tree, a uniform version of the argument used by Kahane in [46] on homogeneous trees,
and written in complete rigor in [75] and in [32] (for general multiplicative chaos). Our
uniform approach can be generalized to uncountable families of multiplicative chaos on
general σ-compact sets.

Fix L ≥ 1 and ǫ > 0. Denote by E the separable Banach space of the real valued
continuous functions over the compact set Jβ,L,ǫ endowed with the supremum norm
‖ ‖∞.

For n ≥ m ≥ 1 and ̺ ∈ Jβ,L,ǫ let

Zm,n(̺) =
∑

u∈Tm

Yn−m(̺, u)
m∏

k=1

Wβ,u|kW̺,u|k .

Notice that Zn,n(̺) = Yn(β, ̺). Moreover, since Yn(β, ·) converges almost surely and in
L1 norm to Y (β, ·) as n → ∞, Yn(β, ·) belongs to L1

E = L1
E(Ωβ × Ω,Aβ × A,Pβ × P)

(where we use the notations of [61, Section V-2]), so that the continuous random
function E(Zn,n(̺)|Fβ,m ⊗Fn) is well defined by [61, Proposition V-2-5] ; also, for any
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fixed ̺ ∈ Jβ,L,ǫ, we can deduce from the definitions and the independence assumptions
that

Zm,n(̺) = E(Zn,n(̺)|Fβ,m ⊗Fn)

almost surely. By [61, Proposition V-2-5] again, since g ∈ E 7→ g(̺) is a continuous
linear form over E, we thus have

Zm,n(̺) = E(Zn,n(·)|Fβ,m ⊗Fn)(̺)

almost surely. By considering a dense countable set of ̺ in Jβ,L,ǫ, we can conclude that
the random continuous functions Zm,n(·) and E(Zn,n(·)|Fβ,m ⊗ Fn) are equal almost
surely.

Similarly, since for each ̺ ∈ Jβ,L,ǫ the martingale (Yn(β, ̺),Fβ,n ⊗ Fn) converges
to Y (β, ̺) almost surely and in L1, and Y (β, ·) ∈ L1

E, by using [61, Proposition V-2-5]
again we can get

Zn,n(·) = E(Y (β, ·)|Fβ,n ⊗Fn), hence Zm,n(·) = E(Y (β, ·)|Fβ,m ⊗Fn), (3.18)

almost surely. Moreover, it follows from Proposition 3.4(1) and the definition of µ̺([u])
that Zm,n(·) converges almost surely uniformly and in L1 norm, as n→ ∞, to ‹Ym(β, ·).
This and (3.18) yield, using [61, Proposition V-2-6],

‹Ym(β, ·) = lim
n→∞

Zm,n(·) = E
Ä
Y (β, ·)|Fβ,m ⊗ σ(

⋃

n≥1

Fn)
ä
,

and finally

lim
m→∞

‹Ym(β, ·) = E
Ä
Y (β, ·)|σ(

⋃

m≥1

Fβ,m)⊗ σ(
⋃

n≥1

Fn)
ä
= Y (β, ·).

almost surely (since by construction Y (β, ·) is σ(
⋃
m≥1 Fβ,m)⊗σ(

⋃
n≥1 Fn)-measurable),

where the convergences hold in the uniform norm.

Proposition 3.6 With probability 1, for all ̺ ∈ J ,

dim(µ̺) ≥ lim inf
n→∞

n−1
n∑

k=1

‹P ∗(∇‹P (qk)).

Proof Let β ∈ (0, 1] such that βE(N) > 1. Let L ≥ 1 and ǫ ∈ Q∗
+.

For every t ∈ ∂T and ωβ ∈ Ωβ set

Qβ,n(t, ωβ) =
n∏

k=1

Wβ,t|k ,

so that for ̺ ∈ Jβ,L,ǫ, ‹Yn(β, ̺) is the total mass of the measure Qβ,n(t, ωβ) · dµ
ω
̺ (t).

Now, Proposition 3.5 claims that there exists a measurable subset A of Ω × Ωβ

of full probability in the set of those (ω, ωβ, ) such that (Tβ,n)n≥1 survives such that
for all (ω, ωβ) ∈ A, for all ̺ ∈ Jβ,L,ǫ, ‹Yn(β, ̺) does not converge to 0. Moreover,
since the branching number of the tree T is P-almost surely equal to the constant
E(N) and βE(N) > 1, conditionally on T, the Pβ-probability of non extinction of
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(Tβ,n)n≥1 is positive ([57, Th. 6.2]). Thus, the projection of A to Ω has P-probability
1, and there exists a measurable subset Ω(β, L, ǫ) of Ω, such that P(Ω(β, L, ǫ)) = 1
and for all ω ∈ Ω(β, L, ǫ), there exists Ωω

β ⊂ Ωβ of positive probability such that for

all ω ∈ Ω(β, L, ǫ), for all ̺ ∈ Jβ,L,ǫ, for all ωβ ∈ Ωω
β ,
‹Yn(β, ̺) does not converge to 0.

In terms of the multiplicative chaos theory developed in [47], this means, that for all
ω ∈ Ω(β, L, ǫ) and ̺ ∈ Jβ,L,ǫ, the set of those ωβ such that the multiplicative chaos
(Qβ,n(·, ω))n≥1 has not killed the measure µ̺ on the compact set ∂T has a positive
Pβ-probability. Now, the good property of (Qβ,n(·, ω))n≥1 is that Eβ

Ä
sup
t∈B

(Qβ,n(t))
h
ä
=

en(1−h) log(β) = (|B|)−(1−h) log(β) for any h ∈ (0, 1) and any ball B of generation n in ∂T,
where |B| stands for the diameter of B and Eβ stands for the expecttion with respect
to Pβ. Thus, we can apply Theorem 3 of [47] and claim that for all ω ∈ Ω(β, L, ǫ) and
all ̺ ∈ Jβ,L,ǫ, the measure µ̺ is not carried by a Borel set of Hausdorff dimension less
than − log(β).

Let Ω′ =
⋂
β∈(E(N)−1,1]∩Q∗

+,L≥1,ǫ∈Q∗ Ω(β, L, ǫ). This set is of P-probability 1. Let ̺ ∈

J . If D := lim infn→∞ n−1∑n
k=1
‹P ∗(∇‹P (qk)) = 0, then it is clear that dim(µ̺) ≥ D.

Otherwise, by (3.4), there exists a sequence of points (βn, Ln, ǫn) ∈ (E(N)−1, 1] ×
N+ × Q∗

+ such that D ≥ − log(βn) + ǫn/2 for all n ≥ 1, limn→∞ − log(βn) = D,
limn→∞ ǫn = 0, and ̺ ∈

⋂
n≥1 Jβn,Ln,ǫn . Consequently, the previous paragraph implies

that for all ω ∈ Ω′, dim(µω̺ ) ≥ lim supn→∞ − log(βn) = D.

3.3.4 Lower bounds for the Hausdorff dimensions of the set

EX(K)

The sharp lower bound estimates for the Hausdorff dimensions of the set EX(K)
are direct consequences of Proposition 3.6 and the following last two propositions.

Proposition 3.7 With probability 1, for all ̺ = (qk)k≥1 ∈ J , for µ̺-almost all t ∈ ∂T
we have

lim
n→∞

n−1
Å
SnX(t)−

n∑

k=1

∇‹P (qk)
ã
= 0.

Proof Let v a be vector of the canonical basis B of Rd. For ̺ ∈ J , n ≥ 1 and ǫ > 0,
we set :

E1
̺,n,ǫ(v) =

ß
t ∈ ∂T :

≠
v
∣∣∣∣SnX(t)−

n∑

k=1

∇‹P (qk)
∑
≥ nǫ

™

E−1
̺,n,ǫ(v) =

ß
t ∈ ∂T :

≠
v
∣∣∣∣SnX(t)−

n∑

k=1

∇‹P (qk)
∑
≤ −nǫ

™

Suppose we have shown that for all ǫ > 0, λ ∈ {−1, 1} and v ∈ B we have

E

Å
sup
̺∈J

∑

n≥1

µ̺(E
λ
̺,n,ǫ(v))

ã
<∞. (3.19)

Then, with probability 1, for all ̺ ∈ J , λ ∈ {−1, 1}, ǫ ∈ Q∗
+ and v ∈ B,∑

n≥1

µ̺(E
λ
̺,n,ǫ(v)) < ∞, consequently, by the Borel-Cantelli lemma, for µ̺-almost every
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t, for all v ∈ B, we have

lim
n→∞

≠
v
∣∣∣∣n

−1
Å
SnX(t)−

n∑

k=1

∇‹P (qk)
ã∑

= 0,

which yields the desired result.

Now we prove (3.19) when λ = 1 (the case λ = −1 is similar). Let ̺ ∈ J . For every
γ > 0 have

µ̺(E
1
̺,n,ǫ) ≤

∑

u∈Tn

µ̺([u])
n∏

k=1

exp
Ä
γ〈v|Xu|k − γ〈v|∇‹P (qk)〉 − γǫ

ä
= fn,γ(̺),

and due to the definition of µ̺, fn,γ(̺) can be written

fn,γ(̺) =
∑

u∈Tn

Y (̺, u)
n∏

k=1

exp
Ä
〈qk + γv|Xu|k〉 −

‹P (qk)− 〈γv|∇‹P (qk)〉 − γǫ
ä
.

We have

sup
̺∈J

fn,γ(̺) ≤
∑

u∈Tn

sup
̺∈J

Y (̺, u) sup
̺|n:̺∈J

n∏

k=1

exp
Ä
〈qk + γv|Xu|k〉 −

‹P (qk)− 〈γv|∇‹P (qk)〉 − γǫ
ä
.

Consequently, since E(sup̺∈J Y (̺, u)) ≤ CJ exp(ǫ|u||u|) by (3.17), we have (taking into
account the independences)

E(sup
̺∈J

fn,γ(̺))

≤ CJ exp(nǫn)E
Å ∑
u∈Tn

sup
̺|n:̺∈J

n∏

k=1

exp
Ä
〈qk + γv|Xu|k〉 −

‹P (qk)− 〈γv|∇‹P (qk)〉 − γǫ
äã

≤ CJ exp(nǫn)E
Å ∑
u∈Tn

∑

̺|n:̺∈J

n∏

k=1

exp
Ä
〈qk + γv|Xu|k〉 −

‹P (qk)− 〈γv|∇‹P (qk)〉 − γǫ
äã

= CJ exp(nǫn)
∑

̺|n:̺∈J

n∏

k=1

exp
Ä‹P (qk + γv)− ‹P (qk)− 〈γv|∇‹P (qk)〉 − γǫ

ä
.

For each ̺ ∈ J , we have qk ∈ Djn+1 for all 1 ≤ k ≤ n. Thus, writing for each
1 ≤ k ≤ n the Taylor expansion with integral rest of order 2 of γ 7→ ‹P (qk + γv) −
‹P (qk)− 〈γv|∇‹P (qk)〉 at 0, taking γ = γjn+1, and using (3.5) we get

n∑

k=1

‹P (qk + γv)− ‹P (qk)− 〈γv|∇‹P (qk)〉 ≤ nγ2jn+1mjn+1

uniformly in ̺ ∈ J . Consequently, using that ǫn = 2γ2jn+1mjn+1 and card({̺|n : ̺ ∈
J }) = (jn + 1)!, we get

E(sup
̺∈J

fn,̺,γjn+1
) ≤ CJ (jn + 1)! exp

Ä
(−nγjn+1(ǫ− 3γjn+1mjn+1)

ä
.

Now we use (3.12) : (jn + 1)! ≤ exp(N
1/3
jn ) ≤ exp(n1/3) and γjn+1 ≥ N

−1/2
jn ≥ n−1/2.

Thus

E
Ä
sup
̺∈J

µ̺(E
1
̺,n,ǫ(v))

ä
≤ E(sup

̺∈J
fn,̺,γjn+1

) ≤ CJ exp(n1/3) exp
Ä
− n1/2(ǫ− 3γjn+1mjn+1)

ä
.

Since γjn+1mjn+1 tends to 0 as n tends to ∞, we get
∑
n≥1 E

Ä
sup̺∈J µ̺(E

1
̺,n,ǫ(v))

ä
<∞,

as desired.
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Proposition 3.8 For every compact connected subset K of I there exists ̺ ∈ J such
that 




⋂

N≥1

ß
n−1

n∑

k=1

∇‹P (qk) : n ≥ N
™
= K

lim infn→∞ n−1∑n
k=1
‹P ∗(∇‹P (qk)) ≥ inf{‹P ∗(α) : α ∈ K}

.

Proof For every integer m ≥ 1, let B(αm,ℓ, 1/m)1≤ℓ≤Lm be a finite covering of K by
balls centered on K, with Lm ≥ 2. Since K is connected, without loss of generality
we can assume that B(αm,ℓ, 1/m) ∩ B(αm,ℓ+1, 1/m) 6= ∅ for all 1 ≤ ℓ ≤ Lm − 1, and
B(αm+1,1, 1/(m+ 1)) ∩ B(αm,Lm , 1/m) 6= ∅.

Now, applying Corollary 3.1, for each αm,ℓ let qm,ℓ ∈ D such that ‖∇‹P (qm,ℓ) −
αm,ℓ‖ ≤ 1/m and |‹P ∗(∇‹P (qm,ℓ))− ‹P ∗(αm,ℓ)| ≤ 1/m. Let j1,1 = min{j ≥ 1 : q1,1 ∈ Dj}.
Then for each αm,ℓ, 1 ≤ Lm − 1, let jm,ℓ+1 = min{j > jm,ℓ : qm,ℓ+1 ∈ Dj}, and let
jm+1,1 = min{j > jm,Lm : qm+1,1 ∈ Dj}.

We build ̺ as follows. We pick q ∈ D1 and let qk be equal to q for 1 ≤ k ≤
Mj1,1−1. Then, we let qk = q1,j1,1 for k ∈ [Mj1,1−1 + 1,Mj1,2−1], and so on recursively
qk = qm,ℓ for k ∈ [Mjm,ℓ−1 + 1,Mjm,ℓ+1−1] if 1 ≤ ℓ ≤ Lm − 1 and qk = qm,Lm for
k ∈ [Mjm,Lm−1 + 1,Mjm+1,1−1].

Now let n ≥Mj2,1 +1. There is an integer mn ≥ 2 such that either n ∈ [Mjmn,ℓn−1+
1,Mjmn,ℓn+1−1] for some 1 ≤ ℓn ≤ Lmn − 1 or n ∈ [Mjmn,Lmn−1

+ 1,Mjmn+1,1−1].

In the first case, let us write
∑n
k=1 ∇

‹P (qk) = S1 + S2 + S3, where

S1 =

Mjmn,ℓn
−2∑

k=1

∇‹P (qk), S2 =

Mjmn,ℓn
−1∑

k=Mjmn,ℓn
−2+1

∇‹P (qk), S3 =
n∑

k=Mjmn,ℓn
−1+1

∇‹P (qk).

We have S2 = (Mjmn,ℓn−1 −Mjmn,ℓn−2)∇‹P (q), where q = qmn,ℓn−1 if ℓn ≥ 2 and q =
qmn−1,Lmn−1 otherwise, so by construction of αm,ℓ and qm,ℓ, we have ‖S2 − (Mjmn,ℓn−1 −
Mjmn,ℓn−2)α1‖ ≤ (Mjmn,ℓn−1 −Mjmn,ℓn−2)/(mn − 1), where α1 = αmn,ℓn−1 if ℓn ≥ 2 and

α1 = αmn−1,Lmn−1 otherwise. Also, we have S3 = (n−Mjmn,ℓn−1)∇‹P (q) with q = qmn,ℓn ,
so ‖S3 − (n−Mjmn,ℓn−1)α2‖ ≤ (n−Mjmn,ℓn−1)/mn, where α2 = αmn,ℓn . Moreover, due

to (3.14), we have ‖S1‖ ≤ (jmn,ℓn − 1)−1Njmn,ℓn−1‖∇‹P (q))‖ ≤ (jmn,ℓn − 1)−1n‖∇‹P (q)‖
with q = qmn,ℓn , so S1 ≤ (jmn,ℓn − 1)−1n(‖α2‖ + 1/mn) ; also due to (3.14) we have
‖Mjmn,ℓn−2αmn,ℓn‖ ≤ (jmn,ℓn − 1)−1n‖αmn,ℓn‖. Moreover, our construction of the balls
B(αm,ℓ, 1/m) implies that ‖α1−α2‖ ≤ 1/(mn−1). Consequently, putting the previous
estimates together we get

∥∥∥∥
n∑

k=1

∇‹P (qk)− nαmn,ℓn

∥∥∥∥ ≤ n
Å 3

mn − 1
+

2‖αmn,ℓn‖+ 1/mn

jmn,ℓn − 1

ã
.

The same estimate holds if n ∈ [Mjmn,Lmn−1
+ 1,Mjmn+1,1−1]. Consequently, since as

n tends to ∞ the sequence αmn,ℓn describes all the αm,ℓ, the set of limit points of
n−1∑n

k=1 ∇
‹P (qk) is the same as that of the sequence ((αm,ℓ)1≤ℓ≤Lm)m≥1, that is K by

construction.

The fact that lim infn→∞ n−1∑n
k=1
‹P ∗(∇‹P (qk)) ≥ inf{‹P ∗(α) : α ∈ K} is a direct

consequence of the choice of the vectors qm,ℓ, since P ∗(∇‹P (qm,ℓ)) ≥ inf{‹P ∗(α) : α ∈
K} − 1/m.
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3.3.5 Mutual singularity of the measures µ̺ and application

Proposition 3.9 With probability 1, for all ̺, ̺′ ∈ J such that qj 6= q′j for infinitely
many j ≥ 1, the measures µ̺ and µ̺′ are mutually singular.

Proof We will use the notion of Hellinger distance between probability measures (it
was already used in the context of Mandelbrot martingales in [55] to prove the mutual
singularity of the branching and visibility measures on ∂T).

For j ≥ 1 let

J̃j = {(̺, ̺′) ∈ J × J : qk 6= q′k, ∀ Mj−1 + 1 ≤ k ≤Mj}.

and let

J̃ =
⋂

ℓ≥1

⋃

j≥ℓ

J̃j = {(̺, ̺′) ∈ J × J : qk 6= q′k for infinitely many k}.

For n ≥ 1 and (̺, ̺′) ∈ J̃ let

An(̺, ̺
′) =

∑

u∈Tn

µ̺([u])
1/2µ̺′([u])

1/2.

Notice that (An(̺, ̺
′))n≥1 is non increasing. Let A(̺, ̺′) denote its limit. If we show

that A(̺, ̺′) = 0 almost surely, then by definition almost surely the Hellinger distance
between µ̺/‖µ̺‖ and µ̺′/‖µ̺′‖ is 1, i.e. µ̺ and µ̺′ are mutually singular. Of course,
we want A(̺, ̺′) = 0 almost surely, simultaneously for all (̺, ̺′) ∈ J . We notice that
for every j ≥ ℓ ≥ 1 and (̺, ̺′) ∈ J̃j, we have

A(̺, ̺′) ≤
∑

u∈TMj

µ̺([u])
1/2µ̺′([u])

1/2.

Consequently,

A = sup
(̺,̺′)∈J̃

A(̺, ̺′) ≤
∑

j≥ℓ

sup
(̺,̺′)∈J̃j

A(̺, ̺′) ≤
∑

j≥ℓ

sup
(̺,̺′)∈J̃j

∑

u∈TMj

µ̺([u])
1/2µ̺′([u])

1/2,

so

E(A)

≤
∑

j≥ℓ

E

Å
sup

(̺,̺′)∈J̃j

∑

u∈TMj

µ̺([u])
1/2µ̺′([u])

1/2
ã

=
∑

j≥ℓ

E

Å ∑

u∈TMj

sup
(̺,̺′)∈J̃j

Å Mj∏

k=1

W 1/2
̺,u1···uk

W
1/2
̺′,u1···uk

ã
Y (̺, u)1/2Y (̺′, u)1/2

ã

≤
∑

j≥ℓ

E

Å ∑

u∈TMj

sup
(̺,̺′)∈J̃j

Mj∏

k=1

W 1/2
̺,u1···uk

W
1/2
̺′,u1···uk

ã
E(sup

̺∈J
Y (̺, u(j)))

≤
∑

j≥ℓ

(#{(̺|Mj
, ̺′|Mj

) : (̺, ̺′) ∈ J̃j}) sup
(̺,̺′)∈J̃j

E

Å ∑

u∈TMj

Mj∏

k=1

W 1/2
̺,u1···uk

W
1/2
̺′,u1···uk

ã
E(sup

̺∈J
Y (̺, u(j)))
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≤
∑

j≥ℓ

(j!)2
Å

sup
(̺,̺′)∈J̃j

Mj∏

k=1

c(qk, q
′
k)
ã
E
Ä
sup
̺∈J

Y (̺, u(j))
ä
,

where u(j) is any word in N
Mj

+ , c(qk, q′k) is defined in (3.7), and we used the fact that

E

Å ∑

u∈TMj

Mj∏

k=1

W
1/2
̺,u1···u(j)

W
1/2
̺′,u1···uk

ã
=

Mj∏

k=1

c(qk, q
′
k).

Moreover,
Mj∏

k=1

c(qk, q
′
k) ≤

Mj∏

k=Mj−1+1

c(qk, q
′
k)

since c(qk, q′k) is always bounded by 1. Consequently, due to the definition of J̃j and cj
in (3.8), and recalling (3.17) we have

E(A) ≤
∑

j≥ℓ

CJ (j!)
2 exp(Njγ

2
j+1mj+1)c

Nj

j .

Remember that we required γ2j+1mj+1 = o(log cj) as j → ∞ in the definition of (γj)j≥1.
Consequently, for ℓ large enough, we have E(A) ≤

∑
j≥ℓ CJ /j

2 due to (3.13). Conse-
quently A = 0 almost surely.

Application : EX(α) carries uncountably many mutually singular inhomoge-

neous Mandelbrot measures of Hausdorff dimension ‹P ∗(α)

Indeed, with probability 1, for all α ∈ I simultaneously, we can find uncountably
many ̺ ∈ J such that µ̺ is carried by EX(α) and these measures are all mutually
singular ; moreover they can be taken to have Hausdorff dimension equal to ‹P ∗(α). To
see this, given α ∈ I, for each j ≥ 1, fix in Dj points q(0)α,j and q

(1)
α,j, distinct if j ≥ 2,

among those q such that (∇‹P (q), ‹P ∗(∇‹P (q)) is as close as possible to (α, ‹P ∗(α)). Now
the set of those sequences ̺ of the form (q

(1C(j))
α,j , · · · , q

(1C(j))
α,j︸ ︷︷ ︸

Nj

)j≥1, where C runs in the

set of equivalent classes of subsets of N+ under the relation S ∼ S ′ if 1S(j) = 1S′(j)
for j large enough, is as desired.



Chapitre 4

The Hausdorff dimensions of the sets

EX(K) and EX,fiX(K) under the

metric dφ

We prove Theorems 1.4 and 1.6.

4.1 Justification of some claims of the introduction

We start with the justification of the fact that dφ is a metric, and then we prove
Proposition 1.1. The fact that dφ is a metric is a direct consequence of the following
lemma, which tells us a little more about (Snφ)n≥1.

Lemma 4.1 Assume E(S(0, γ)) <∞ for all γ ∈ R. There exist 0 < β1 < β2 < 1 such
that, with probability 1, under the metric dφ, for n large enough,

βn1 ≤ min{exp(−Snφ(u)) = diam([u]) : u ∈ Tn} ≤ max{exp(−Snφ(u)) : u ∈ Tn} ≤ βn2 .

We notice that the same result with β1 = 0 as close as desired of 0− can be deduced
from Corollary 1.1 applied to the positive random branching random walk (Snφ)n≥1

since under our assumptions Iφ must be a compact subset of R+.

Proof For every n ≥ 1 let us denote rn = max{diam([u]) : u ∈ Tn} and r′n =
min{diam([u]) : u ∈ Tn}.

For each β ∈ R∗
+ and γ > 0, we have P(rn ≥ βn) = P({∃ u ∈

Tn, exp(−Snφ(u))β
−n ≥ 1}) ≤ E(

∑
u∈Tn

β−nγ exp(−γSnφ(u))) = β−nγ
Ä
E(S(0, γ)

än
.

Since the φi are positive and we assumed that E(S(0, γ)) < ∞ for all γ ∈ R, there
exists γ0 > 0 such that E(S(0, γ0)) < 1. Consequently, if β ∈ (E(S(0, γ0))

1/γ0 , 1), we
have

∑
n≥1 P(rn ≥ βn) < ∞, hence by the Borel-Cantelli Lemma, with probability 1,

for n lage enough, rn ≤ βn.

Similarly, for each β ∈ R∗
+ and γ > 0, we may write the inequality P(r′n ≤

βn) = P({∃ u ∈ Tn, exp(−Snφ(u))β
−n ≤ 1}) ≤ E(

∑
u∈Tn

βnγ exp(γSnφ(u))) =

58
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βnγ
Ä
E(S(0,−γ)

än
. Since 1 < E(S(0,−γ)) < ∞ choosing β ∈ (0, 1) small enough

so that βγE(S(0,−γ)) < 1, yields that, with probability 1, for n lage enough, r′n ≥ βn.

Proof of Proposition 1.1. Denote by λ the supremum in (1.7). Fix q ∈ Rd and α ∈ I̊.
Then for t ∈ R write

h(t) = logE
Å N∑

i=1

exp
Ä
〈q|Xi−α〉−tφi

äã
= log

ï
E

Å N∑

i=1

exp
Ä
〈q|Xi〉−‹P (q)−tφi

äãò
+‹P (q)−〈q|α〉.

We have h(0) = ‹P (q) − 〈q|α〉 and h′(0) = −E

Å∑N
i=1 φi exp

Ä
〈q|Xi〉 − ‹P (q)

äã
≥ −λ.

Moreover h is convex, so for all t ≥ 0 we have h(t) ≥ h(0)− λt. By definition, we have
h(‹Pα(q)) = 0, hence ‹Pα(q) ≥ λ−1(‹P (q) − 〈q|α〉). Now it follows from the convexity
in q of ‹Pα(q), the strict convexity of ‹P (q) − 〈q|α〉, and the fact that ‹P (q) − 〈q|α〉
reaches its infimum that ‹Pα(q) reaches its infimum at some qα ∈ Rd. If there are
two distinct such qα and q′α, then ∇‹Pα(q) = 0 over [qα, q

′
α], i.e. due to (4.1) below,

E

Å∑N
i=1(Xi − α) exp(〈q|Xi − α〉 − ‹Pα(q)φi)

ã
= 0. Differentiating in the direction of

v = qα−q
′
α and taking the scalar product with v yields E

Å∑N
i=1〈v|Xi−α〉

2 exp(〈q|Xi−

α〉 − ‹Pα(q)φi)
ã
= 0 over [qα, q′α], hence 〈qα|Xi − α〉 = 〈q′α|Xi − α〉 almost surely for all

1 ≤ i ≤ N . But this contradicts (1.1).

To see that α 7→ qα is analytic, an examination of the differential of q 7→ ∇‹Pα(q) at
qα shows that it is invertible, except if there exists q0 ∈ Rd\{0} such that 〈q0|Xi−α〉 = 0
for all 1 ≤ i ≤ N almost surely, which is forbidden by (1.1). Then the invertibility of
q 7→ ∇‹Pα(q) at qα for each α ∈ I̊ makes it possible to apply the implicit function
theorem to (α, q) 7→ ∇‹Pα(q) at (α, qα).

�

Now we explain the modifications to make with respect to the proof of Theorem 1.2
to get Theorem 1.4, by following the same structure of paragraphs. Then, we explain
how to get Theorem 1.6.

4.2 Upper bounds for the Hausdorff dimensions

For each (q, α, t) ∈ Rd × Rd × R let us define

Pα(q) = inf
ß
t ∈ R : lim sup

n→∞

1

n
log
Å ∑
u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u))
ã
≤ 0
™
.

The following proposition is a direct consequence of the log-convexity of
the mappings (q, t) 7→

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u)) and (α, t) 7→

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u)) given α ∈ Rd and q ∈ Rd respectively.

Proposition 4.1 The mappings q 7→ Pα(q) and α 7→ Pα(q) are convex.
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Proposition 4.2 With probability 1, Pα(q) ≤ ‹Pα(q) for all (q, α) ∈ Rd × Rd.

Proof Due to Proposition 4.1, we only need to prove the inequality for each (q, α) ∈
Rd × Rd almost surely. Fix (q, α) ∈ Rd × Rd. For t > ‹Pα(q) we have

E(
∑

n≥1

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − tSnφ(u)) =
∑

n≥1

E(
N∑

i=1

exp(〈q|Xi − α〉 − tφi))
n <∞.

Consequently,
∑

u∈Tn

exp
Ä
〈q|Sn(X − α)(u)〉 − tSnφ(u)

ä
is bounded almost surely, so t ≥

Pα(q) almost surely. Since t > ‹Pα(q) is arbitrary, we have the conclusion.

Recall that for α ∈ Rd we defined

“EX(α) =
ß
t ∈ ∂T : α ∈

⋂

N≥1

ßSnX(t)

n
: n ≥ N

™™
.

Proposition 4.3 With probability 1, for all α ∈ Rd, dim “EX(α) ≤ P ∗
α(0), a negative

dimension meaning that “EX(α) is empty.

Proof For every n ≥ 1 let us denote rn = max{diam([u]) : u ∈ Tn}. Recall that

“EX(α) =
⋂

ǫ>0

⋂

N≥1

⋃

n≥N

{t ∈ ∂T : ‖SnX(t)− nα‖ ≤ nǫ}

⊂
⋂

q∈Rd

⋂

ǫ>0

⋂

N≥1

⋃

n≥N

{t ∈ ∂T : |〈q|SnX(t)− nα〉| ≤ n‖q‖ǫ}.

Fix q ∈ Rd and ǫ > 0. For N ≥ 1, the set E(q,N, ǫ, α) =
⋃
n≥N{t ∈ ∂T : |〈q|SnX(t)−

nα〉| ≤ n‖q‖ǫ} is covered by the union of those [u] such that u ∈ Tn and 〈q|SnX(u)−
nα〉+ n‖q‖ǫ ≥ 0. Consequently, for s ≥ 0,

Hs
rN
(E(q,N, ǫ, α)) ≤

∑

n≥N

∑

u∈Tn

diam([u])s exp(〈q|SnX(u)− nα〉+ n‖q‖ǫ)

=
∑

n≥N

∑

u∈Tn

exp(〈q|Sn(X − α)(u)〉 − sSnφ(u) + n‖q‖ǫ).

Hence, if η > 0 and s > Pα(q) + η + ‖q‖ǫ, by definition of Pα(q), for N large enough
we have

Hs
rN
(E(q,N, ǫ, α)) ≤

∑

n≥N

e−nη/2.

Since rN tends to 0 almost surely as N tends to ∞, we thus have Hs(E(q,N, ǫ, α)) = 0,
hence dimE(q,N, ǫ, α) ≤ s. Since this holds for all η > 0, we get dimE(q,N, ǫ, α) ≤
Pα(q) + ‖q‖ǫ. It follows that

dim “EX(α) ≤ inf
q∈R

inf
ǫ>0

Pα(q) + ‖q‖ǫ = inf
q∈R

Pα(q).

If infq∈R Pα(q) < 0, we necessarily have “EX(α) = ∅.

Corollary 4.1 With probability 1, for all compact connected subset K of Rd, we have
EX(K) = ∅ if K 6⊂ I, and dimEX(K) ≤ infα∈K ‹P ∗

α(0) otherwise.
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4.3 Construction of inhomogeneous Mandelbrot mea-
sures and lower bounds for the Hausdorff dimen-
sions of the sets EX(K)

Preliminary facts

A calculation shows that

∇‹Pα(q) =
E

Å∑N
i=1Xi exp(〈q|Xi − α〉 − ‹Pα(q)φi)

ã
− α

E

Å∑N
i=1 φi exp(〈q|Xi − α〉 − ‹Pα(q)φi)

ã . (4.1)

By construction, for each (q, α) ∈ Rd × Rd, a Mandelbrot measure µq,α on ∂T

is associated with the vectors (Nu, exp(〈q|Xu1 − α〉 − ‹Pα(q)φu1), exp(〈q|Xu2 − α〉 −
‹Pα(q)φu2), . . .), u ∈

⋃
n≥0 N

n
+, and this measure is non degenerate (see section 6) if and

only if the “entropy”

h(q, α) = −E

Å N∑

i=1

Ä
〈q|Xi − α〉 − ‹Pα(q)φi

ä
exp(〈q|Xi − α〉 − ‹Pα(q)φi)

ã
> 0, (4.2)

Define the “Lyapounov exponent”

λ(q, α) := E

Å N∑

i=1

φi exp(〈q|Xi − α〉 − ‹Pα(q)φi)
ã
∈ (0,∞). (4.3)

An identification shows that

‹P ∗
α(∇

‹Pα(q)) = ‹Pα(q)− 〈q|∇‹Pα(q)〉 =
h(q, α)

λ(q, α)
,

hence µq,α is non degenerate if and only if ‹P ∗
α(∇

‹Pα(q)) > 0. Moreover (see section 6
again), with probability 1, we have

lim
n→∞

SnX(t)

n
= αX(q, α) µq,α-a.e., (4.4)

where

αX(q, α) = E

Å N∑

i=1

Xi exp(〈q|Xi − α〉 − ‹Pα(q)φi)
ã
,

Notice that when the assumption of Proposition 1.1 holds, α ∈ I̊ and q = qα, we have
∇‹Pα(q) = 0, hence αX(q, α) = α and ‹P ∗

α(∇
‹Pα(q)) = ‹Pα(q).

We will exploit the previous facts to build the new family of inhomogeneous Man-
delbrot measures adapted to the context associated with the random metric dφ. Let

Jφ =
¶
(q, α) ∈ Rd × I : ‹Pα(q)− 〈q|∇‹Pα(q)〉 > 0

©
.

We will need the following generalization of Corollary 3.1.
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Proposition 4.4 Let D be a dense subset of Jφ. For all α ∈ I, there exists a sequence

(qn, αn)n≥1 of elements of D such that limn→∞ αX(qn, αn) = α and limn→∞
‹Pαn(qn) −

〈qn|∇‹Pαn(qn)〉 =
‹P ∗
α(0).

Moreover, if (1.7) holds, and D contains a sequence (qαm , αm)m≥1 such that {αm :

m ≥ 1} is dense in I̊, then for α ∈ I̊ the previous sequence can be chosen so that
qn = qαn.

Proof Let α ∈ I. Since EX(α) 6= ∅, we have 0 ≤ dimEX(α) ≤ infq∈Rd
‹Pα(q) = ‹P ∗

α(0).
The upper-semi-continuous concave function ‹P ∗

α possesses the same properties as ‹P ∗

in Corollary 3.1. Consider a sequence (qn)n≥1 such that ∇‹Pα(qn) tends to 0, ‹Pα(qn)−
〈qn|∇‹Pα(qn)〉 > 0 so that (qn, α) ∈ Jφ, and limn→∞

‹Pα(qn)− 〈qn|∇‹Pα(qn)〉 = ‹P ∗
α(0).

Since E

Å∑N
i=1 φi exp(〈q|Xi−α〉− ‹Pα(q)φi)

ã
∈ (0,∞), limn→∞ ∇‹Pα(qn) = 0 implies

limn→∞ αX(qn, α) = α. Now, the mappings (q, α) 7→ αX(q, α) and (q, α) 7→ ‹Pα(q) −
〈q|∇‹Pα(q)〉 being continuous, the first property follows. The second one is obvious due
to Proposition 1.1.

4.3.1 Parametrized family of inhomogeneous Mandelbrot mar-

tingales

At first we need to make the following observation. Applications of the Cauchy-
Schwartz inequality as of the Hölder inequality in the proof of Proposition 3.1 yield
(remembering the definition of ‹Pα(·)), for (q, α) 6= (q′, α′) ∈ Rd × Rd

c((q, α), (q′, α′)) = E

Å N∑

i=1

exp
ï1
2
(〈q|Xi−α〉−‹Pα(q)φi)

ò
exp
ï1
2
(〈q′|Xi−α

′〉−‹Pα′(q′)φi)
òã
< 1,

(4.5)
except in the case that 〈q|Xi − α〉 − ‹Pα(q)φi = 〈q′|Xi − α′〉 − ‹Pα′(q′)φi almost surely
for all 1 ≤ i ≤ N . This situation holds if and only if the φi depend linearly on the
Xi. Moreover, if this equality holds for all the distinct couples (q, α) and (q′, α′) of
an open set, which can be taken in the form U × V , differentiating with respect to
q yields, for all 1 ≤ i ≤ N , for all (q, α) ∈ U × V , Xi − α − ∇‹Pα(q)φi = 0 almost
surely, hence ∇‹Pα(q) must be constant. Consequently, up to a simple transformation,
the situation reduces to Xi = φiu for a fixed vector u ∈ Rd, so that we can assume
that d = 1 and Xi = φi almost surely for all 1 ≤ i ≤ N . Then, coming back to
〈q|Xi − α〉 − ‹Pα(q)φi = 〈q′|Xi − α′〉 − ‹Pα′(q′)φi, we see that since Xi = φi, 1 ≤ i ≤ N ,
we have (q − ‹Pα(q)− (q′ − ‹Pα′(q′)))Xi = αq − α′q, so either q − ‹Pα(q) is constant over
U × V , which is impossible, or there exists c ∈ R such that Xi = c, almost surely for
all 1 ≤ i ≤ N , which contradicts (1.1).

Consequently, we can find a dense countable subset D of Rd × Rd such that
c((q, α), (q′, α′)) < 1 for all (q, α) 6= (q′, α′) ∈ D. Also, under (1.7) we can find a dense
countable subset of I̊ such that for all α 6= α′ ∈ D we have c((qα, α), (q′α, α

′)) < 1.
Indeed, if α 6= α′ in I̊, the equality 〈qα|Xi − α〉 − ‹Pα(qα)φi = 〈qα′ |Xi − α′〉 − ‹Pα′(qα′)φi
almost surely for all 1 ≤ i ≤ N implies that the Mandelbrot measures µqα,α and µqα′ ,α′
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coincide, so that by Proposition 6.1 we have αX(qα, α) = αX(qα′ , α′), i.e. α = α′, which
is a contradiction.

The set of parameters

For (q, α, t) ∈ Rd × Rd × R let

Sα(q, t) =
N∑

i=1

exp(〈q|Xi − α〉 − tφi),

and
ψα(q, t) = logE

Ä
Sα(q, t)

ä
.

Useful in some calculations will be the equalities :

∂ψα
∂q

(q, ‹Pα(q)) = αX(q, α)− α and
∂ψα
∂t

(q, ‹Pα(q)) = −λ(q, α), (4.6)

and

dψα((1 + u)q, (1 + u)‹Pα(q))
du

(0) = −h(q, α) = 〈q|αX(q, α)− α〉 − ‹Pα(q)λ(q, α). (4.7)

Let (Dj)j≥1 be an increasing sequence of non-empty subsets of Jφ such that Dj

has cardinality j, D =
⋃
j≥1Dj is a dense subset of Jφ, and c((q, α), (q′, α′)) < 1 for

all (q, α) 6= (q′, α′) ∈ D. Moreover, assume without loss of generality that αX(q, α)
does not vanish on D. If, moreover, (1.7) holds, according to Proposition 4.4 and the
discussion of the beginning of this section, we can choose D so that it contains only
pairs of the form (qα, α), α ∈ I̊ (this will be used in the proof of Theorem 1.8).

Let (Nj)j≥0 be a sequence of integers such that N0 = 0, and that we will specify at
the end of this section. Then let (Mj)j≥0 be the increasing sequence defined as

Mj =
j∑

k=1

Nk for all j ≥ 0. (4.8)

For n ∈ N, let jn denote the unique integer satisfying

Mjn + 1 ≤ n ≤Mjn+1.

We will build a random family of measures indexed by the set

Jφ = {̺ = ((qk, αk)k≥1 : ∀j ≥ 0, (qMj+1, αMj+1) = (qMj+2, αMj+2) = · · · = (qMj+1
, αMj+1

) ∈ Dj+1}.

Since each Dj is finite, so compact, for all j ≥ 1, the set Jφ is compact for the metric

d(̺, ̺′) =
∑

k≥1

2−k
|qk − q′k|+ |α′

k − αk|

1 + |qk − q′k|+ |α′
k − αk|

.

For ̺ = (qk, αk)k≥1 ∈ Jφ and n ≥ 1 we will denote by ̺|n the sequence (qk, αk)1≤k≤n.
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Inhomogeneous Mandelbrot martingales indexed by Jφ

For u ∈
⋃
n≥0 N

n
+, 1 ≤ i ≤ N(u), βE(N) > 1, and ̺ ∈ Jφ we define

W̺,ui = exp(〈q|u|+1|Xui − α|u|+1〉 − ‹Pα|u|+1
(q|u|+1)φui),

and
Wβ,̺,ui = Wβ,uiW̺,ui.

For ̺ = (qk, αk)k≥1 ∈ Jφ, u ∈
⋃
n≥0 N

n
+, βE(N) > 1, and n ≥ 0 we define





Yn(̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

W̺,u·v1···vk

Yn(β, ̺, u) =
∑

v1···vn∈Tn(u)

n∏

k=1

Wβ,̺,u·v1···vk

When u = ∅ those quantities will be denoted by Yn(̺) and Yn(β, ̺) respectively, and
when n = 0, their values equal 1.

Recall the definition of h(q, α) given in (4.2). For β ∈ (E(N)−1, 1], L ≥ 1 and ǫ > 0
we set

Jφ,β,L,ǫ =
ß
̺ ∈ Jφ :

1

n

n∑

k=1

h(qk, αk) ≥ − log β + ǫ, ∀n ≥ L
™
,

which is a compact subset of Jφ.

Notice that h(qk, αk)>0, and this number is the opposite of the derivative at 1 of
the convex function f : λ ≥ 0 7→ logE(

∑N
i=1W

λ
i ), with Wi = exp(〈qk|Xi − αk〉 −‹Pαk

(qk)φi), so that f(1) = 0 and f(0) = logE(N) > 0. Thus h(qk, αk) ∈ (0, logE(N)].
Consequently,

ß
̺ ∈ Jφ : lim inf

n→∞

1

n

n∑

k=1

h(qk, αk) > 0
™
=

⋃

β∈(E(N)−1,1],L≥1,ǫ>0

Jφ,β,L,ǫ. (4.9)

For n ≥ 1 and β ∈ (0, 1], we set Fn = σ
Å
(Nu, (Xu1, φu1, (Xu2, φu2), . . .) : u ∈

⋃n
k=0 N

n−1
+

ã
and Fβ,n = σ

Å
Wβ,u1, (Wβ,u2, . . .) : u ∈

⋃n
k=0 N

n−1
+

ã
. We also denote by F0

and Fβ,0 the trivial σ-field.

Specification of the sequence (Nj)j≥1

For each α ∈ I the function ψα is analytic. We denote by Hψα its Hessian matrix.
For each j ≥ 1,

mj = max
t∈[0,1]

max
v∈Sd−1

max
(q,α)∈Dj

t

Ç
v
0

å
Hψα(q + tv, ‹Pα(q))

Ç
v
0

å

+ max
t∈[0,1]

max
v∈{−1,1}

max
(q,α)∈Dj

∂2

∂t2
ψα(q, ‹Pα(q) + tv) (4.10)



4.3.1 - Parametrized family of inhomogeneous Mandelbrot martingales 65

and

m̃j = max
t∈[0,1]

max
p∈[1,2]

sup
q∈Dj

t

(
q
‹Pα(q)

)
Hψα

Ä
q+t(p−1)q, ‹Pα(q)+t(p−1)‹Pα(q)

ä( q
‹Pα(q)

)
(4.11)

are finite. Let
m̂j = max(mj, m̃j).

For j ≥ 2 let
cj = sup

(q,α) 6=(q′,α′)∈Dj

c((q, α), (q′, α′)) < 1

(recall the definition (4.5)). Let (γj)j≥1 ∈ (0, 1]N+ be a positive sequence such that
γ2j m̂j converges to 0 as j → ∞ (in particular limj→∞ γj = 0) and γ2j+1m̂j+1 = o(log cj)
as j → ∞.

Let (p̃j)j≥1 be a sequence in (1, 2) such that (p̃j − 1)m̃j converges to 0 as j tends
to ∞.

We can also suppose that p̃j is small enough so that we also have

sup
(q,α)∈Dj

E(Sα(q, ‹Pα(q))p̃j) <∞.

For each (q, α) ∈ Jφ there exists a real number 1 < pq < 2 such that
ψα(pq, p‹Pα(q)) < 0 for all p ∈ (1, pq). Indeed, ‹P ∗

α(∇
‹Pα(q)) > 0 is equivalent to

d
dp
(ψα(pq, p‹Pα(q)))(1+) < 0.

For all j ≥ 1 we set

pj = min(p̃j, inf
(q,α)∈Dj+1

pq) and aj = sup
(q,α)∈Dj

ψα(pjq, pj ‹Pα(q)).

By construction, we have aj < 0. Then let

sj = max
¶
‖Sα(q, ‹Pα(q)))‖pj : (q, α) ∈ Dj

©
and rj = max

Ä
aj/pj, (2jpj)

−1(1− pj)
ä

(4.12)

Now set N0 = 0 and for j ≥ 1 choose an integer Nj big enough so that

(j + 1)!sj+1

1− exp(rj+1)
exp(Njrj+1) ≤ j−2, (4.13)

(j + 1)!sj+1

(1− exp(rj+1)
+

(j + 2)!sj+2

(1− exp(rj+2)
≤ C0 exp(Njγ

2
j+1mj+1), (4.14)

with C0 =
s1

1− exp(r1)
+

2s2
1− exp(r2)

,

Nj ≥ max
Ä
(γ2j+1m̂j+1)

−2, 5 log((j + 1)!); (4.15)

if j ≥ 2

(j!)2c
Nj/2
j ≤ j−2

and
Å j−1∑

k=1

Nk

ã
max(1,max{‖αX(q, α)‖ : (q, α) ∈ Dj−1}) ≤ j−1Nj min(1, {‖αX(q, α)‖ : (q, α) ∈ Dj}).

(4.16)
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4.3.2 A family of measures indexed by Jφ

Proposition 4.5

1. For all u ∈
⋃
n≥0 N

n
+, the sequence of continuous functions Yn(·, u) converges

uniformly, almost surely and in L1 norm, to a positive limit Y (·, u) on Jφ.

2. With probability 1, for all ̺ ∈ Jφ, the mapping

µ̺([u]) = (
n∏

k=1

W̺,u1···uk)Y (̺, u).

defines a positive measure on ∂T.

3. With probability 1, for all (̺, ̺′) ∈ J 2, the measures µ̺ and µ̺′ are absolutely
continuous with respect to each other or mutually singular according to whether
̺ and ̺′ coincide ultimately or not.

The following lemma is a direct extension of Lemma 3.2.

Lemma 4.2 Let ̺ ∈ J and β ∈ (0, 1]. Define Zn(β, ̺) = Yn(β, ̺) − Yn−1(β, ̺) for
n ≥ 0. For every p ∈ (1, 2) we have

E(|Zn(β, ̺)|
p) ≤ (2β−1)pE

Ä
Sαn(qn,

‹Pαn(qn))
p
ä n−1∏

k=1

β1−p exp
Ä
ψαk

(pqk, p‹Pαk
(qk))

ä
.

(4.17)

Proof of Proposition 4.5. The proof is formally the same as that of Proposition 3.4, but
uses Lemma 4.2 instead of Lemma 3.2.

If we set ǫk = γ2jk+1m̂jk+1 for all k ≥ 0, we still get CJφ
> 0 such that :

‖ sup
̺∈Jφ

Y (̺, u)‖1 ≤ CJφ
exp(ǫ|u|Nj|u|) ≤ CJφ

exp(ǫ|u||u|) (∀ u ∈
⋃

k≥0

Nk
+). (4.18)

�

Remark 4.1 This is the analogue of Remark 3.1.

Let K be a compact subset of Jφ containing the unique element of D1. Then, there
exists pK ∈ (1, 2) such that

sup
j≥1

sup
(q,α)∈Dj∩K

ψα(pKq, pK ‹Pα(q)) < 0 and sup
j≥1

sup
(q,α)∈Dj∩K

E
Ä
Sα(q, ‹Pα(q))pK

ä
<∞.

Then if we define J (K) = {̺ ∈ J : ∀ k ≥ 1, qk ∈ K}, we have

‖ sup
̺∈J (K)

Y (̺, u)‖pK = O((j|u| + 2)!).
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4.3.3 Lower bounds for the Hausdorff dimensions of the mea-

sures {µ̺}̺∈J

Proposition 4.6 Let β ∈ (0, 1] such that βE(N) > 1. Conditionally on non extinction
of (Tβ,n(u))n≥1, for all N ≥ 1 and ǫ ∈ Q∗

+,

1. the sequence of continuous functions Yn(·, β) converges uniformly, almost surely
and in L1 norm, to a positive limit Y (β, ·) on Jφ,β,L,ǫ,

2. the sequence of continuous functions

̺ 7→ ‹Yn(β, ̺) =
∑

u∈Tn

(
n∏

k=1

Wβ,u1···uk)µ̺([u])

converges uniformly, almost surely and in L1 norm, towards Y (β, ·) on Jφ,β,L,ǫ.

Proof (1) Let L ≥ 1 and ǫ > 0. For ̺ ∈ Jφ,β,L,ǫ and n ≥ 1, Lemma 4.2 applied with
p = pjn+1 provides us with the inequality

‖Yn(β, ̺)− Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1E
Ä
Sαn(qn,

‹Pαn(qn))
pjn+1

ä n−1∏

k=1

β1−pjn+1 exp
Ä
ψαk

(pjn+1qk, pjn+1
‹Pαk

(qk))
ä

Let (α, q) ∈ Djn+1 and set g : λ ∈ R 7→ ψα(pq, p‹Pα(q). By construction we have
g(1) = 0 so for p ∈ [1, 2]

g(p) = (p− 1)g′(1) + (p− 1)2
∫ 1

0
(1− t)g′′(1 + t(p− 1)) dt,

with g′(1) = −h(q, α) (see (4.2) for the definition) and

g′′(1 + t(p− 1)) = t

(
q
‹Pα(q)

)
Hψα

Ä
q + t(p− 1)q, ‹Pα(q) + t(p− 1)‹Pα(q)

ä( q
‹Pα(q)

)

≤ m̃jn+1,

where (m̃j)j≥1 is defined in (4.11). Let ηj = 2(pj − 1)m̃j for j ≥ 1. By construction of
(pj)j≥1 we have limj→∞ ηj = 0. Specifying p = pjn+1 we have now

ψα(pjn+1q, pjn+1
‹Pα(q)) ≤ (1− pjn+1)h(q, α) + ηjn+1(pjn+1 − 1).

We can insert this upper bound in our estimation of Yn(β, ̺) − Yn−1(β, ̺) and get,
remembering that ̺ ∈ Jφ,β,L,ǫ, for n ≥ L+ 1

‖Yn(β, ̺)− Yn−1(β, ̺)‖
pjn+1
pjn+1

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Å
(1− pjn+1)

n−1∑

k=1

log(β) + h(qk, αk)− ηjn+1

ã

≤ (2β−1)pjn+1s
pjn+1

jn+1 exp
Ä
(n− 1)(1− pjn+1)(ǫ− ηjn+1)

ä
.

The proof ends like that of Proposition 3.5.
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Recall definitions (4.2) and (4.3). The proof of the next proposition follows the same
lines as that of Proposition 4.9 in the next section.

Proposition 4.7 There exists a positive sequence (δn)n≥1 converging to 0 such that,
with probability 1, for all ̺ = (qk, αk)k≥1 ∈ Jφ, for µ̺-almost all t ∈ ∂T, for n large
enough, we have

n−1
∣∣∣∣Snφ(t)−

n∑

k=1

λ(qk, αk)
∣∣∣∣ ≤ δn.

Proposition 4.8 With probability 1, for all ̺ ∈ Jφ,

dim(µ̺) := inf
ß
dim E : E Borel, µ̺(E) > 0

™
≥ lim inf

n→∞

Åh(qn, αn)
λ(qn, αn)

= ‹P ∗
αn
(∇‹Pαn(qn))

ã
.

Proof Let β ∈ (0, 1] such that βE(N) > 1. Let L ≥ 1 and ǫ ∈ Q∗
+.

For every t ∈ ∂T and ωβ ∈ Ωβ set

Qβ,n(t, ωβ) =
n∏

k=1

Wβ,t|k ,

so that for ̺ ∈ Jβ,L,ǫ, ‹Yn(β, ̺) is the total mass of the measure Qβ,n(t, ωβ) · dµ
ω
̺ (t).

There exists a measurable subset Ω(β, L, ǫ) of Ω, such that P(Ω(β, L, ǫ)) = 1 and
for all ω ∈ Ω(β, L, ǫ), there exists Ωω

β ⊂ Ωβ of positive probability such that for all

ω ∈ Ω(β, L, ǫ), for all ̺ ∈ Jφ,β,L,ǫ, for all ωβ ∈ Ωω
β ,
‹Yn(β, ̺) does not converge to 0.

In terms of the multiplicative chaos theory developed in [47], this means, that for all
ω ∈ Ω(β, L, ǫ) and ̺ ∈ Jβ,L,ǫ, the set of those ωβ such that the multiplicative chaos
(Qβ,n(·, ω))n≥1 has not killed the measure µ̺ on the compact set ∂T has a positive
Pβ-probability.

Let Ω′ =
⋂
β∈(E(N)−1,1]∩Q∗

+,L≥1,ǫ∈Q∗ Ω(β, L, ǫ). This set is of P-probability 1. Let ̺ ∈
Jφ. The same argument as in the proof of Proposition 3.6 shows that setting D =
lim infn→∞ n−1∑n

k=1 h(qk, αk), the lower Hausdorff dimension of µ̺ with respect to the

metric d1 it larger than or equal to D ; in particular, we have lim inf
n→∞

log µ̺([t|n])

−n
≥ D,

µ̺-almost everywhere. Then, since by definition of dφ the diameter |[t|n]| of [t|n] equals
exp(−Snφ(t)), Proposition 4.7 together with Lemma 4.1 yield that for all η ∈ (0, 1),
for µ̺-almost every t, for n large enough,

log µ̺([t|n])

log |[t|n]|
≥ (1− η)

nD
∑n
k=1 λ(qk, αk)

.

Let Dφ = lim infn→∞
h(qn, αn)

λ(qn, αn)
. By definition of D we have lim inf

n→∞

Dn
∑n
k=1 λ(qk, αk)

≥

Dφ : Indeed, let (nj)j≥1 be an increasing sequence of integers such that

lim
j→∞

n−1
j

nj∑

k=1

h(qk, αk) = D. For any δ > 0, for k large enough we have h(qk, αk) ≥

(Dφ − δ)λ(qk, αk), from which we deduce that lim inf
j→∞

njD∑nj

k=1 λ(qk, αk)
≥ Dφ − δ. Conse-

quently, dim(µ̺) ≥ Dφ in the metric dφ.
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4.3.4 Lower bounds for the Hausdorff dimensions of the set

EX(K)

The sharp lower bound estimates for the Hausdorff dimensions of the set EX(K)
are direct consequences of the following two propositions.

Proposition 4.9 There exists a positive sequence (δn)n≥1 converging to 0 such that,
with probability 1, for all ̺ = (qk)k≥1 ∈ Jφ, for µ̺-almost all t ∈ ∂T, for n large enough
we have

n−1
∥∥∥∥SnX(t)−

n∑

k=1

αX(qk, αk)
∥∥∥∥ ≤ δn.

Proof Fix a positive sequence (δn)n≥1 converging to 0. Let v be a vector of the cano-
nical basis B of Rd. For ̺ ∈ Jφ and n ≥ 1, we set :

E1
̺,n,δn(v) =

ß
t ∈ ∂T :

≠
v
∣∣∣∣SnX(t)−

n∑

k=1

αX(qk, αk)
∑
≥ nδn

™

E−1
̺,n,δn

(v) =
ß
t ∈ ∂T :

≠
v
∣∣∣∣SnX(t)−

n∑

k=1

αX(qk, αk)
∑
≤ −nδn

™

It is enough to specify (δn)n≥1 such that for λ ∈ {−1, 1} and v ∈ B we have

E

Å
sup
̺∈Jφ

∑

n≥1

µ̺(E
λ
̺,n,δn(v))

ã
<∞. (4.19)

Then, with probability 1, for all ̺ ∈ Jφ, λ ∈ {−1, 1} and v ∈ B,
∑

n≥1

µ̺(E
λ
̺,n,δn(v)) <∞,

and consequently, by the Borel-Cantelli lemma, for µ̺-almost every t for all v ∈ B, for
n large enough we have

∣∣∣∣
≠
v
∣∣∣∣n

−1
Å
SnX(t)−

n∑

k=1

αX(qk, αk)
ã∑∣∣∣∣ ≤ δn,

which yields the desired result.

Now we prove (4.19) when λ = 1 (the case λ = −1 is similar). Let ̺ ∈ Jφ. For
every γ > 0 we have

µ̺(E
1
̺,n,δn(v)) ≤ fn,γ(̺),

where

fn,γ(̺) =
∑

u∈Tn

µ̺([u])
n∏

k=1

exp
Ä
γ〈v|Xu|k − αX(qk, αk)〉 − γδn

ä

=
∑

u∈Tn

Πn,γ(̺, u)Y (̺, u),

where we used the definition of µ̺ and set

Πn,γ(̺, u) =
n∏

k=1

exp
Ä
〈qk + γv|Xu|k − αk〉 − ‹Pαk

(qk)φu|k − 〈γv|αX(qk, αk)− αk〉 − γδn
ä
.
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Since Πn(̺, u) only depends on ̺|n and u, we have

sup
̺∈Jφ

fn,γ(̺) ≤
∑

u∈Tn

sup
̺|n:̺∈Jφ

Πn(̺, u) · sup
̺∈Jφ

Y (̺, u).

Consequently, since E(sup̺∈J Y (̺, u)) ≤ CJφ
exp(ǫ|u||u|) by (4.18), we have (taking

into account the independences)

E( sup
̺∈Jφ

fn,γ(̺))

≤ CJφ
exp(nǫn)E

Å ∑
u∈Tn

sup
̺|n:̺∈Jφ

Πn(̺, u)
ã

≤ CJφ
exp(nǫn)E

Å ∑
u∈Tn

∑

̺|n:̺∈Jφ

Πn(̺, u)
ã

= CJφ
exp(nǫn)

∑

̺|n:̺∈Jφ

n∏

k=1

exp
Ä
ψαk

(qk + γv, ‹Pαk
(qk))− 〈γv|αX(qk, αk)− αk〉 − γδn

ä
.

For each ̺ ∈ Jφ, we have qk ∈ Djn+1 for all 1 ≤ k ≤ n. Thus, writing for each 1 ≤ k ≤ n

the Taylor expansion with integral rest of order 2 of γ 7→ ψαk
(qk + γv, ‹Pαk

(qk)) −
〈γv|αX(qk, αk)− αk〉 at 0, taking γ = γjn+1, and using (4.6) and (4.10) we get

n∑

k=1

ψαk
(qk+γjn+1v, ‹Pαk

(qk))−〈γjn+1v|αX(qk, αk)−αk〉−γjn+1δn ≤ nγ2jn+1mjn+1−nγjn+1δn

uniformly in ̺ ∈ Jφ. Consequently, using that ǫn = 2γ2jn+1m̂jn+1, mjn+1 ≤ m̂jn+1, and
card({̺|n : ̺ ∈ J }) = (jn + 1)!, we get

E( sup
̺∈Jφ

fn,γjn+1
(̺)) ≤ CJφ

(jn + 1)! exp
Ä
(−nγjn+1(δn − 3γ2jn+1m̂jn+1)

ä
.

Let δn = 4γ2jn+1m̂jn+1. Now we use (4.15) : (jn + 1)! ≤ exp(N
1/5
jn ) ≤ exp(n1/5) and

γ2jn+1
m̂jn+1 ≥ N

−1/2
jn ≥ n−1/2. Thus

E
Ä
sup
̺∈Jφ

µ̺(E
1
̺,n,δn(v))

ä
≤ E( sup

̺∈Jφ

fn,γjn+1
(̺)) ≤ CJφ

exp(n1/5) exp(−n1/2).

Since δn = 4γ2jn+1m̂jn+1 tends to 0 as n tends to ∞, and
∑
n≥1 E

Ä
sup̺∈Jφ

µ̺(E
1
̺,n,δn)

ä
<

∞, we get the desired conclusion.

Proposition 4.10 For every compact connected subset K of I there exists ̺ ∈ Jφ
such that 




⋂

N≥1

ß
n−1

n∑

k=1

αX(qk, αk) : n ≥ N
™
= K

lim infn→∞
‹P ∗
αn
(∇‹Pαn(qn)) ≥ inf{P ∗(α) : α ∈ K}

.

Proof It is similar to that of Proposition 3.8 but uses Propositions 4.4 and 4.8 , as
well as (4.16) instead of Corollary 3.1, Proposition 3.6 and (3.14).
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4.4 Proof of Theorem 1.6

(1) We will interpret K via the set of the possible accumulating points of
(SnX,SnX̃). Consider

‹P
(X,X̃)

(q, q̃) = logE
Å N∑

i=1

exp(〈q|X〉+ 〈q̃|X̃〉)
ã

and the compact set

I
(X,X̃)

=
ß
(α, α̃) ∈ Rd × Rd : ‹P ∗

(X,X̃)
(α, α̃) ≥ 0

™
.

Due to Theorem 1.3 applied to (X, X̃) and X̃, the projection on the second coordinate
of I

(X,X̃)
equals I

X̃
. Moreover using arguments similar to those use to prove Lemma 4.1,

we can get that I
X̃
⊂ R∗

+
d.

Let Φ : Rd × R∗
+
d → Rd be the mapping defined as

Φ(x1, . . . , xd, y1, . . . yd) =
Åx1
y1
, . . . ,

xd
yd

ã
.

Proposition 4.11 We have
K = Φ(I

(X,X̃)
).

Notice that this proposition implies the compactness and connectedness of K since Φ
is continuous and I

(X,X̃)
is convex.

Proof First for α ∈ Rd let us define

“E
X,X̃

(α) =



t : α ∈

⋂

N≥1

ßÅSnXj(t)

SnX̃j(t)

ã
1≤j≤d

: n ≥ N
™
 .

For every t ∈ ∂T and α ∈ Rd,

α ∈
⋂

N≥1

ßÅSnXj(t)

SnX̃j(t)

ã
1≤j≤d

: n ≥ N
™

iff 0 ∈
⋂

N≥1

ßÅSn(Xj − αjX̃j)(t)

n

ã
1≤j≤d

: n ≥ N
™
,

in other words “E
X,X̃

(α) = “E
X−α·X̃

(0).

Now suppose that α ∈ K, i.e. infq∈Rd
‹Pα(q) ≥ 0. Like in Proposition 4.4 we can

find a sequence (qk)k≥1 in Rd such that ‹P ∗
α(∇

‹Pα(qk)) > 0 and ∇‹Pα(qk) converges to 0.
For each qk in the sequence, let µqk,α be the Mandelbrot measure associated with the
family of vectors (Nu, X

′
u1 = 〈qk|Xu1−α · X̃u1〉− ‹Pα(qk)φu1, X ′

u2 = 〈qk|Xu2−α · X̃u2〉−‹Pα(qk)φu2, . . .), u ∈
⋃
n≥0 N

n
+ (see Section 6). For the same reasons as those invoked in

Section 4.3 for the measure µq,α, this measure is non degenerate. Also, here

∇‹Pα(qk) =
E

Å∑N
i=1(Xi − α · X̃i) exp(〈qk|Xi − α · X̃i〉 − ‹Pα(qk)φi)

ã

E

Å∑N
i=1 φi exp(〈qk|Xi − α · X̃i〉 − ‹Pα(qk)φi)

ã .
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Consequently, if we set for q ∈ Rd

αX(q, α) = E

Å N∑

i=1

Xi exp(〈q|Xi − α · X̃i〉 − ‹Pα(q)φi)
ã
,

α
X̃
(q, α) = E

Å N∑

i=1

X̃i exp(〈q|Xi − α · X̃i〉 − ‹Pα(q)φi)
ã
.

by Proposition 6.1, with probability 1, for µqk,α-almost every t ∈ ∂T,

lim
n→∞

SnX(t)− α · SnX̃(t)

n
= E

Å N∑

i=1

φi exp(X
′
i)
ã
∇‹Pα(qk) (4.20)

= αX(qk, α)− α · α
X̃
(qk, α)

lim
n→∞

SnX(t)

n
= αX(qk, α),

lim
n→∞

SnX̃(t)

n
= α

X̃
(qk, α),

lim
n→∞

Snφ(t)

n
= E

Å N∑

i=1

φi exp(X
′
i)
ã

We notice that E

Å∑N
i=1 φi exp(X

′
i)
ã
, which depends on k, is a limit point of Snφ(t)

n
, so

it belongs to a deterministic compact set isolated from 0. Also, (αX(qk, α), αX̃(qk, α))

being a limit point of Sn(X,X̃)(t)
n

, it belongs to I
(X,X̃)

. Moreover, since ∇‹Pα(qk) converges
to 0 as k → ∞, the above limit show that α = limk→∞ Φ(αX(qk, α), αX̃(qk, α)), and
since Φ is continuous, α belongs to the closed set Φ(I

X,X̃
). This yields K ⊂ Φ(I

X,X̃
).

Now consider (γ, γ̃) ∈ I
X,X̃

. Our study of the level sets of the limit points of

Sn(X, X̃)/n shows that limn→∞ Sn(X, X̃)(t)/n = (γ, γ̃) a.s. for some t ∈ ∂T. It follows
that if α = Φ(γ, γ), we have “E

X,X̃
(α) 6= ∅. Moreover, our study in Section 4.2 implies

that dim “E
X,X̃

(α) ≤ infq∈Rd
‹Pα(q) almost surely for all α simultanously, a negative

dimension meaning that “E
X,X̃

(α) = ∅. We thus have infq∈Rd
‹Pα(q) ≥ 0 and α ∈ K.

Thus we have proved that Φ(I
X,X̃

) ⊂ K.

(2) The upper bound for the Hausdorff dimension comes from the previous lines. For
the lower bound, the strategy is exactly the same as the one developed to prove Theo-
rem 1.4. The essential changes are as follow. We again set Jφ =

¶
(q, α) ∈ Rd × Rd :

‹P ∗
α(∇

‹Pα(q)) > 0
©
, but remind that the definition of ‹Pα has changed.

The sets Dj, j ≥ 1, and the set of sequences Jφ are defined formally in the same
way as in Section 4.3, and for u ∈

⋃
n≥0 N

n
+, 1 ≤ i ≤ N(u), and ̺ ∈ Jφ we define

W̺,ui = exp(〈q|u|+1|Xui − α|u|+1 · X̃ui〉 − ‹Pα|u|+1
(q|u|+1)φui)

to build the associated inhomogeneous Mandelbrot measure µ̺. Then, choosing the
sequence (Nj)j≥1 suitably, with probability 1, for all ̺ = ((qk, αk))k≥1 ∈ J̺, µ̺ has ∂T
as closed support, and for µ̺-almost every t we have

lim
n→∞

1

n

Å
SnX(t)−

n∑

k=1

αX(qk, αk)
ã

= 0,
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lim
n→∞

1

n

Å
SnX̃(t)−

n∑

k=1

α
X̃
(qk, αk)

ã
= 0,

so lim
n→∞

1

n

Å
Sn(X − α · X̃)(t)−

n∑

k=1

(αX(qk, αk)− α · α
X̃
(qk, αk)

ã
= 0 (∀α ∈ Rd),

moreover dimµ̺ ≥ lim infn→∞
‹P ∗
αk
(∇‹Pαk

(qk)).

Also, given a compact connected subset K of K, for each point α of K we can find
(q, α′) ∈ Jφ such that α′ is arbitrarily close to α, ∇‹Pα′(q) is arbitrarily close to 0 and
‹P ∗
α′(∇‹Pα′(q)) is arbitrarily close to infq∈Rd

‹Pα(q). Notice that assuming that ∇‹Pα′(q)
is close to 0 implies, after (4.20), that αX(q′α) − α′ · α

X̃
(q, α′) is close to 0, and so

αX(q
′
α) − α · α

X̃
(q, α′) is. This and the previous properties valid for any µ̺ can be

used to build, in the spirit of Propositions 3.8 and 4.10, a sequence ̺ ∈ Jφ such that
lim infn→∞

‹P ∗
αk
(∇‹Pαk

(qk)) ≥ infα∈K infq∈Rd
‹Pα(q) and

K =
⋂

N≥1

ß
Φ
Å
n−1

n∑

k=1

αX(qk, αk), n−1
n∑

k=1

α
X̃
(qk, αk)

ã
: n ≥ N

™
,

so that µ̺(EX,X̃(K)) > 0.



Chapitre 5

Results about the level sets EX(α) and

E
LD(qα,α)
X under the metric dφ

We prove Theorems 1.5, 1.7 and 1.8

5.1 Proof of Theorem 1.5

(1) It is a consequence of Theorem 1.4.

(2) The part concerning inhomogeneous measures can be proved by using the same
approach as in Section 3.3.5.

The point concerning the fact that almost surely, for all α ∈ I̊ simultaneously, the
measures µqα,α is supported on EX(α) and of maximal Hausdorff dimension requires
first to prove that the associated homogeneous Mandelbrot martingales converge al-
most surely simultaneously to non trivial limits µqα,α, which are indeed carried by the
sets EX(α) and have lower Hausdorff dimension at least ‹P ∗

α(0). This can be done by
mimicking the approach of Chapter 2, since we know that α ∈ I̊ 7→ qα is analytic (Pro-
position 1.1). The point concerning the uniqueness of the Mandelbrot measure carried
by EX(α) follows from the following general fact.

Proposition 5.1 Let µ′ be a non degenerate Mandelbrot measure built simultaneously
with (SnX,Snφ)n≥1 as in Section 6. Fix (q, α) ∈ R2d. For s ∈ [0, 1] let

Φ(s) = logE
Å N∑

i=1

exp(X ′
i) exp(s(〈q|Xi − α〉 − ‹Pα(q)φi −X ′

i))
ã
.

Suppose that Φ(1) = 0. Then

E

Å N∑

i=1

(〈q|Xi − α〉 − ‹Pα(q)φi) exp(X ′
i)
ã
− E

Å N∑

i=1

X ′
i exp(X

′
i)
ã
≤ 0 (5.1)

with equality if and only if X ′
i = 〈q|Xi − α〉 − ‹Pα(q)φi for all 1 ≤ i ≤ N almost surely.
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We assume this proposition and apply it with q = qα, where α ∈ ∇‹P (J) (this is
possible since we assumed (1.7)). Suppose that µ′ is a non degenerate Mandelbrot

measure built simultaneously with (SnX,Snφ)n≥1, such that E
Å∑N

i=1 ‖Xi‖ exp(X
′
i)
ã
<

∞, and E

Å∑N
i=1Xi exp(X

′
i)
ã
= α, i.e. µ′ is supported on EX(α), and dimµ′ = ‹P ∗

α(0) =

dimµqα,α, where we recall that µqα,α is the Mandelbrot measure generated by the vectors
(Nu, (〈q|Xui − α〉 − ‹Pα(q)φui)i≥1), u ∈

⋃
n≥0 N

n
+. By using Theorem 6.1 we get

‹P ∗
α(0) = −

E

Å∑N
i=1X

′
i exp(X

′
i)
ã

E

Å∑N
i=1 φi exp(X

′
i)
ã (5.2)

(notice that since α ∈ I̊ we have ‹P ∗
α(0) > 0 hence E

Å∑N
i=1 φi exp(X

′
i)
ã
< ∞). On the

other hand, the equality E

Å∑N
i=1Xi exp(X

′
i)
ã
= α implies that E

Å∑N
i=1(〈qα|Xi−α〉 −

‹Pα(qα)φi) exp(X ′
i)
ã

= −‹Pα(qα)E
Å∑N

i=1 φi exp(X
′
i)
ã

= −‹P ∗
α(0)E

Å∑N
i=1 φi exp(X

′
i)
ã
,

and by (5.2) this equals E

Å∑N
i=1X

′
i exp(X

′
i)
ã
. Thus equality holds in (5.1), hence the

conclusion.

Proof of Proposition 5.1. It is enough to notice that Φ is convex and Φ(0) = Φ(1) = 0,
and equality in (5.1) means that Φ′(0+) = 0, so that Φ(s) = 0 for all s ∈ [0, 1]. Using
Hölder’s inequality yields the conclusion. �

(3) The fact that EX(α0) and ∂T have Hausdorff dimension t0 comes from the
fact that by using the natural covering of ∂T by the cylinders of generation n and
the definition of t0 one finds dim ∂T ≤ t0 almost surely, and the Mandelbrot measure
µ0,α, which does not depend on α, is by construction of dimension t0 and is carried by
EX(α0) almost surely. Suppose that another level set EX(α) has Hausdorff dimension
t0 = ‹Pα(0). This means ‹P ∗

α(0) = t0, so that ‹Pα(q) reaches its minimum at q = 0. Then,
due to (4.1), we have α = α0.

5.2 Proof of Theorem 1.7

Additional conditions on (Nj)j≥1 and definitions

We need to slightly modify the set Jφ by requiring, in addition to the initial condi-
tions on (Nj)j≥0, that for all j ≥ 1

Nj+1 > Mjk(Mj) and ((j + 3)!)2 exp(−Nj/j) ≤ j−2. (5.3)

Since the sequence (k(n))n≥1 is increasing, writing Mjn + 1 ≤ n ≤ Mjn+1 we have
nk(n) ≤Mjn+1k(Mjn+1) < Njn+2 < Mjn+2, so jnk(n) ≤ jn + 1.

For each integer m ≥ 1, define the compact set

Km = {(q, α) ∈ Jφ ∩ B(0,m) : d((q, α), ∂Jφ) ≥ 1/m} ∪ {(q1, α1)},
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where B(0,m) is the ball of radius m centered at 0 in R2d and (q1, α1) is the unique
element of D1. Then, for ℓ,m ≥ 1 let

Jφ,m =
ß
̺ = (qk, αk)k≥1 ∈ Jφ ∩K

N+
m : ∃ α ∈ ∇‹P (J), lim

k→∞
(qk, αk) = (qα, α)

™
(5.4)

and
Im =

ß
α ∈ ∇‹P (J) : (qα, α) ∈ { lim

k→∞
̺k = (qk, αk) : ̺ ∈ Jφ,m}

™
.

By construction we have ∇‹P (J) = ⋃
m≥1 Im. If (qα, α) = limk→∞ ̺k, set α = α̺.

Let κ = lim infn→∞ log(k(n))/n and κ′ = lim supn→∞ log(k(n))/n. For all integers
ℓ,m ≥ 1 and closed dyadic cube Q in Rd, define the sets

Jφ,m,ℓ,Q =
{
̺ ∈ Jφ,m : ∀ λ ∈ ‹Q, −Λ∗

qα̺ ,α̺
(∇Λqα̺ ,α̺(λ)) < min(ℓ, κ− 1/ℓ)

}
,

J ′
φ,m,ℓ,Q =

{
̺ ∈ Jφ,m : ∀ λ ∈ Q, −Λ∗

qα̺ ,α̺
(∇Λqα̺ ,α̺(λ)) > κ′ + 1/ℓ

}
,

where ‹Q stands for the union of Q and the closed dyadic cubes of the same generation
as Q and neighboring Q.

Proposition 5.2 With probability 1, for all integers ℓ,m ≥ 1 and all dyadic cubes Q,

1. for all ̺ ∈ Jφ,m,ℓ,Q, for µ̺-almost every t, we have limn→∞ n−1Λtn(λ) = Λqα̺ ,α̺(λ)
for all λ ∈ Q.

2. For all ̺ ∈ J ′
φ,m,ℓ,Q, for µ̺-almost every t, for all λ ∈ Q, there exists ǫ > 0 such

that for n large enough,
ß
1 ≤ j ≤ k(n) :

∆SnX(j, t)

n
∈ B(∇Λqα̺ ,α̺(λ), ǫ)

™
= ∅.

Suppose the proposition has been proved. Let us prove the theorem. We have

{(α, λ) ∈ ∇‹P (J)× Rd : −Λ∗
qα,α(∇Λqα,α(λ)) < κ}

=
⋃

m≥1

⋃

ℓ≥1

{(α, λ) ∈ ∇‹P (J)× Rd : α ∈ Im, −Λ∗
qα,α(∇Λqα,α(λ)) < min(ℓ, κ− 1/ℓ)}

=
⋃

m≥1

⋃

ℓ≥1

⋃

Q,
dyadic cube

{α ∈ Im : ∀λ ∈ ‹Q, −Λ∗
qα,α(∇Λqα,α(λ)) < min(ℓ, κ− 1/ℓ)} × ‹Q,

where we have used the continuity in (α, λ) of −Λ∗
qα,α(∇Λqα,α(λ)). Consequently, due

to Proposition (5.2)(1), with probability 1, for all α ∈ ∇‹P (J), if m is large enough
so that α ∈ Im, for all ̺ ∈ Jφ,m such that limk→∞ ̺k = (qα, α), since each λ ∈ Rd

such that −Λ∗
qα,α(∇Λqα,α(λ)) < κ belongs, for ℓ large enough, to a dyadic cube Q such

that −Λ∗
qα,α(∇Λqα,α) < min(ℓ, κ − 1/ℓ) over ‹Q, we have that µ̺-almost everywhere,

limn→∞ n−1Λtn(λ) = Λqα,α for all λ ∈ Rd such that −Λ∗
qα,α(∇Λqα,α(λ)) < κ, i.e. the first

part of the large deviations principle LD(qα, α). For the second point, one uses a similar
argument. Now, to get the desired lower bound for dimE

LD(qα,α)
X (α), it is enough to

pick ̺ such that limk→∞ ̺k = (qα, α) and limk→∞
‹Pαk

(qk)− 〈qk|∇‹Pαk
(qk)〉 = ‹P ∗

α(0), as
in Proposition 4.4 (then Proposition(4.8) yields the result).

Proof of Proposition 5.2. Fix m, ℓ,Q. We need to cut the sets Jφ,m,ℓ,Q and J ′
φ,m,ℓ,Q as

follows : for every integer L ≥ 1 let

Jφ,m,ℓ,L,Q =
¶
̺ ∈ Jφ,m,ℓ,Q : ∀ k ≥ L, ∀ λ ∈ ‹Q, −Λ∗

qk,αk
(∇Λqk,αk

(λ)) < min(2ℓ, κ− 1/2ℓ)
©
,
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and

J ′
φ,m,ℓ,L,Q

=
{
̺ ∈ Jφ,m,ℓ,Q : ∀ k ≥ L, ∀ λ ∈ Q, |Λ∗

qk,αk
(∇Λqk,αk

(λ))− Λ∗
qα̺ ,α̺

(∇Λqα̺ ,α̺(λ))| < 1/2ℓ
}
.

Due to the continuity of Λq,α as a function of (q, α) taking values in the set of conti-
nuous functions over Rd × Rd endowed with the topology of the uniform convergence
over compact sets and the compactness of ‹Q, we have Jφ,m,ℓ,Q =

⋃
L≥1 Jφ,m,ℓ,L,Q and

J ′
φ,m,ℓ,Q =

⋃
L≥1 J

′
φ,m,ℓ,L,Q.

(1) Fix L ≥ 1. For ̺ ∈ Jφ,m,ℓ,L,Q, λ ∈ ‹Q, n ≥ 1, 1 ≤ j ≤ k(n) and t ∈ ∂T, set

sn,j(̺, λ) =
jn∑

k=(j−1)n+1

Λqk,αk
(λ)

and
Zn,j(̺, λ, t) = exp(〈λ|∆SnX(j, t)〉 − sn,j(̺, λ)). (5.5)

It is enough that we prove that for every λ ∈ ‹Q and ǫ > 0 we have

E

Ñ
∑

n≥1

sup
ß
µ̺

Åß
t ∈ ∂T :

∣∣∣∣k(n)
−1

k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣ > ǫ

ã
: ̺ ∈ Jφ,m,ℓ,L,Q

™é
<∞.

(5.6)
Indeed, suppose that (5.6) holds true. Then, for every λ ∈ ‹Q and ǫ ∈ (0, 1), with
probability 1, for all ̺ ∈ Jφ,m,ℓ,L,Q, applying the Borel-Cantelli lemma to µ̺ yields, for
µ̺-almost every t, an integer n̺ ≥ 1 such that for all n ≥ n̺,

1− ǫ ≤ k(n)−1
k(n)∑

j=1

Zn,j(̺, λ, t) ≤ 1 + ǫ.

Moreover, given ̺ ∈ Jφ,m,ℓ,L,Q, there exists k̺ > 1 such that for all k ≥ k̺, one has
|Λqk,αk

(λ)− Λqα̺ ,α̺(λ)| ≤ ǫ, hence for n ≥ k̺ we have



|sn,j(̺, λ)− nΛqα̺ ,α̺(λ)| ≤ nǫ if j ≥ 2

|sn,1(̺, λ)− nΛqα̺ ,α̺(λ)| ≤ nǫ+ C̺(λ)
,

where C̺(λ) =
∑k̺
k=1 |Λqk,αk

(λ)− Λqα̺ ,α̺(λ)|.

Consequently, for n ≥ max(k̺, n̺), recalling the definition (1.10) of Λtn(λ) we have

(1 − ǫ) exp(−nǫ − C̺(λ)) ≤ exp
Ä
Λtn(λ) − nΛqα̺ ,α̺(λ)

ä
≤ (1 + ǫ) exp(nǫ + C̺(λ)).

Letting ǫ go to 0 along a discrete family, this gives that almost surely, for all ̺ ∈
Jφ,m,ℓ,L,Q, for µ̺-almost every t, limn→∞ n−1Λtn(λ) = Λqα̺ ,α̺(λ). Then this convergence

holds almost surely for a countable and dense subset of elements λ of ‹Q, and finally the
convexity of the functions Λtn gives the convergence for all λ ∈ Q, since Q is included
in the interior of ‹Q. Then the desired result comes from the Gartner-Ellis theorem.

To prove (5.6), we need the following lemma, in which Q̺ stands for the Peyrière
measure associated with µ̺ (see section 6.2).
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Lemma 5.1 1. Let ̺ ∈ Jφ,m,ℓ,L,Q and λ ∈ ‹Q. The random variables (ω, t) 7→

Zn,j(̺, λ, t)− 1, 1 ≤ j ≤ k(n), defined on Ω×N
N+
+ are centered and independent

with respect to Q̺.

2. There exists p(m, ℓ, L,Q) ∈ (1, 2] and C(m, ℓ, L,Q) > 0 such that for all p ∈
(1, p(m, ℓ, L, c)], for all ǫ > 0,

Q̺

Å∣∣∣∣k(n)−1
k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣ > ǫ

ã
≤ C(m, ℓ, L,Q) exp(−n(p− 1)ℓ/4)

independently of ̺ ∈ Jφ,m,ℓ,L,Q and λ ∈ ‹Q.

We postpone the proof of this lemma to the end of the section.

Now, for ̺ ∈ Jφ,m,ℓ,L,Q, λ ∈ ‹Q, and t ∈ ∂T let

Vn(̺, λ, t) =
∣∣∣∣k(n)

−1
k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣,

and notice that by construction Vn(̺, λ, t) is constant over each cylinder [u] of genera-
tion nk(n), so that we also denote it by Vn(̺, λ, u). Now we can write

µ̺({t ∈ ∂T : Vn(̺, λ, t) > ǫ}) =
∑

u∈Tnk(n)

1{Vn(̺,λ,u)>ǫ}µ̺([u]).

Recall that by definition we have µ̺([u]) as (
n∏

k=1

W̺,u1···uk)Y (̺, u), with E(Y (̺, u)) = 1,

and due to Remark 4.1, since Jφ,m,ℓ,L,Q ⊂ J (Km), we have ‖ sup̺∈Jφ,m,ℓ,L,Q
Y (̺, u)‖1 ≤

O((j|u| + 2)!).

Consequently, using the independence between (
n∏

k=1

W̺,u1···uk)̺∈Jφ,m,ℓ,L,Q
and Y (·, u)

for all u ∈ Tnk(n), we get

E

Å
sup
ß
µ̺({t ∈ ∂T : Vn(̺, λ, t) > ǫ}) : ̺ ∈ Jφ,m,ℓ,L,Q

™ã

≤ E

Å ∑

u∈Tnk(n)

sup
̺∈Jφ,m,ℓ,L,Q

{1{Vn(̺,λ,u)>ǫ}

nk(n)∏

k=1

W̺,u1···uk

ã
‖ sup
̺∈Jφ,m,ℓ,L,Q

Y (̺, u)‖1

≤
∑

̺|nk(n):̺∈Jφ,m,ℓ,L,Q

E

Å ∑

u∈Tnk(n)

{1{Vn(̺,λ,u)>ǫ}

nk(n)∏

k=1

W̺,u1···uk

ã
‖ sup
̺∈Jφ,m,ℓ,L,Q

Y (̺, u)‖1

=
∑

̺|nk(n):̺∈Jφ,m,ℓ,L,Q

E

Å ∑

u∈Tnk(n)

{1{Vn(̺,λ,u)>ǫ}

Å nk(n)∏

k=1

W̺,u1···uk

ã
Y (̺, u)

ã
‖ sup
̺∈Jφ,m,ℓ,L,Q

Y (̺, u)‖1

=
∑

̺|nk(n):̺∈Jφ,m,ℓ,L,Q

Q̺(Vn(̺, λ, t) > ǫ) ‖ sup
̺∈Jφ,m,ℓ,L,Q

Y (̺, u)‖1

≤ (#̺|nk(n) : ̺ ∈ Jφ)
Å

sup
̺∈Jφ,m,ℓ,L,Q

Q̺(Vn(̺, λ, t) > ǫ)
ã
‖ sup
̺∈Jφ,m,ℓ,L,Q

Y (̺, u)‖1
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≤ (jnk(n)!)C(m, ℓ, L,Q) exp(−n(p− 1)ℓ/4)O((jnk(n) + 2)!),

where we have used Lemma 5.1(2). Now recall that due to (5.3) we have jnk(n) ≤ jn+1,
hence

E

Å
sup
ß
µ̺({t ∈ ∂T : Vn(̺, λ, t) > ǫ}) : ̺ ∈ Jφ,m,ℓ,L,Q

™ã

≤ O(1)C(m, ℓ, L,Q)((jn + 3)!)2 exp(−n(p− 1)ℓ/4).

It follows that

∑

n≥1

E

Å
sup
ß
µ̺({t ∈ ∂T : Vn(̺, λ, t) > ǫ}) : ̺ ∈ Jφ,m,ℓ,L,Q

™ã

= O
Å∑
j≥0

∑

Mj+1≤n≤Mj+1

((j + 3)!)2 exp(−n(p− 1)ℓ/4)
ã

= O
Å∑
j≥0

((j + 3)!)2

1− exp(−(p− 1)ℓ/4)
exp(−Mj(p− 1)ℓ/4)

ã

= O
Å∑
j≥0

((j + 3)!)2 exp(−Nj(p− 1)ℓ/4)
ã
.

Due to (5.3) the above series converges.

(2) This situation is not empty only if κ′ <∞. Fix L > 0. Given ̺ ∈ J ′
φ,m,ℓ,L,Q, λ ∈ Q,

ǫ > 0, n ≥ 1 and 1 ≤ j ≤ k(n), we set Vj(̺, λ, t) = 1{∆SnX(j,t)−n∇Λqα̺ ,α̺ (λ)∈B(0,nǫ)}.
Mimicking what was done above, we can get

E

Å
sup

̺∈J ′
φ,m,ℓ,L,Q

µ̺

Åß
t :

k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ãã

≤ (#̺|nk(n) : ̺ ∈ Jφ)
Å

sup
̺∈J ′

φ,m,ℓ,L,Q

Q̺

Åß k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ãã

‖ sup
̺∈J ′

φ,m,ℓ,L,Q

Y (̺, u)‖1

= O((jn + 3)!2) sup
̺∈J ′

φ,m,ℓ,L,Q

Q̺

Åß k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ã
.

We have

Q̺

Åß k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ã

≤
k(n)∑

j=1

Q̺({Vj(̺, λ, t) ≥ 1}) ≤
k(n)∑

j=1

Q̺(〈λ|∆SnX(j, t)− n∇Λqα̺ ,α̺(λ)〉 ≥ −nǫ‖λ‖)

≤
k(n)∑

j=1

exp
Ä
nǫ‖λ‖ − n〈λ|∇Λqα̺ ,α̺(λ)〉

ä
EQ̺(exp(〈λ|∆SnX(j, t)〉))

=
k(n)∑

j=1

exp
Ä
nǫ‖λ‖ − n〈λ|∇Λqα̺ ,α̺(λ)〉

ä
exp
Å jn∑

k=(j−1)n+1

Λqk,αk
(λ)
ã
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≤ A
k(n)∑

j=1

exp
Ä
nǫ‖λ‖ − n〈λ|∇Λqα̺ ,α̺(λ)〉

ä
exp
Å
n/2ℓ+ nΛqα̺ ,α̺(λ)

ã

= A
k(n)∑

j=1

exp
Ä
nǫ‖λ‖+ n/2ℓ+ nΛ∗

qα̺ ,α̺
(∇Λqα̺ ,α̺(λ))

ä
≤ Ak(n) exp

Ä
nǫ‖λ‖ − n/2ℓ− nκ′

ä
,

where we have used the definition of J ′
φ,m,ℓ,L,Q and

log(A) = sup
̺∈J ′

φ,m,ℓ,L,Q

sup
λ∈Q

L∑

k=1

|Λqα̺ ,α̺(λ)− Λqk,αk
(λ)|.

Thus, taking 0 < ǫ = ǫλ small enough so that ǫ‖λ‖ ≤ ℓ/8, since log(k(n)) < n(κ′+ ℓ/8)
for n large enough, we get that

sup
̺∈J ′

φ,m,ℓ,L,Q

Q̺

Åß k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ã

= O(exp(−n/4ℓ)).

Mimicking the end of the proof of part (1) of this proposition, we can get that given
λ ∈ Q, with ǫ = ǫλ

E

Å∑
n≥1

sup
̺∈J ′

φ,m,ℓ,L,Q

µ̺

Åß
t :

k(n)∑

j=1

Vj(̺, λ, t) ≥ 1
™ãã

<∞,

hence, with probability 1, by the Borel Cantelli-Lemma applied to each µ̺, we have
that for all ̺ ∈ J ′

φ,m,ℓ,L,Q, for µ̺-almost every t, for n large enough, {1 ≤ j ≤ k(n) :
n−1∆Sn(j, t) ∈ B(∇Λqα̺ ,α̺(λ), ǫλ)} = ∅.

Now, for each λ ∈ Q, there exists ηλ > 0 such that for all λ′ ∈ B(λ, ηλ), for all
̺ ∈ J ′

φ,m,ℓ,L,Q we have B(∇Λqα̺ ,α̺(λ
′), ǫλ/2) ⊂ B(∇Λqα̺ ,α̺(λ), ǫλ). We can extract from

(B(λ, ηλ))λ∈Q a finite subfamily (B(λi, ηλi))1≤i≤r which covers Q. Since this family is
finite, with probability 1, for all ̺ ∈ J ′

φ,m,ℓ,L,Q, for µ̺-almost every t, for n large
enough, for all 1 ≤ i ≤ r, {1 ≤ j ≤ k(n) : n−1∆Sn(j, t) ∈ B(∇Λqα̺ ,α̺(λi), ǫλi)} = ∅ ;
consequently, by construction of (B(λi, ηλi))1≤i≤r, for all λ′ ∈ Q, {1 ≤ j ≤ k(n) :
n−1∆Sn(j, t) ∈ B(∇Λqα̺ ,α̺(λ

′), inf1≤i≤r ǫλi/2)} = ∅. This finishes the proof of the
proposition. �

Proof of Lemma 5.1. (1) Let n ≥ 1 and (f1, . . . , fk(n)) be k(n) Borel functions defined
on R. Using the fact that Zn,j(̺, λ, t) is σ(N(u), Xui : u ∈

⋃jn−1
k=(j−1)nN

k
+, i ∈ N+) ⊗ C-

measurable, using the definition of µ̺ as well as the independence between generations
and the branching property yields

EQ̺

Å k(n)∏

j=1

fj(Zn,j(̺, λ, t))
ã

= E

Å k(n)∏

j=1

fj(Zn,j(̺, λ, u)) dµ̺(t)
ã

= E

Å ∑

u∈Tnk(n)

Y (̺, u))
k(n)∏

j=1

Å
fj(Zn,j(̺, λ, u))

jn∏

k=(j−1)n+1

W̺,u1···uk

ãã



CHAPITRE 5. RESULTS ABOUT THE LEVEL SETS EX(α) AND E
LD(Qα,α)
X UNDER THE

METRIC Dφ 81

= E

Å ∑

u∈Tnk(n)

k(n)∏

j=1

Å
fj(Zn,j(̺, λ, u))

jn∏

k=(j−1)n+1

W̺,u1···uk

ãã

= E

Å ∑

u∈Tnk(n)

k(n)∏

j=1

Å
fj(Zn,j(̺, λ, u))

jn∏

k=(j−1)n+1

exp(〈qk|Xu1···uk − αk〉 − ‹Pαk
(qk)φu1···uk)

ãã
.

Set

Un,j(u) = fj(Zn,j(̺, λ, u))
jn∏

k=(j−1)n+1

exp(〈qk|Xu1···uk − αk〉 − ‹Pαk
(qk)φu1···uk)

and notice that this random variable is measurable with respect to Gn,j =
σ
Ä
(Nu, (Xu1, φu1), . . .) : u ∈

⋃jn−1
k=(j−1)nN

k
+

ä
. Now, the above equality can be rewritten

EQ̺

Å k(n)∏

j=1

fj(Zn,j(̺, λ, t))
ã
= E

Å ∑

u∈Tn(k(n)−1)

∑

v∈Tn(u)

k(n)∏

j=1

Un,j(uv)
ã
.

Conditioning on Gn,k(n) and using the independences and identity in distribution bet-
ween the random variables of the construction we get

EQ̺

Å k(n)∏

j=1

fj(Zn,j(̺, λ, t))
ã
= E

Å ∑

u∈Tn(k(n)−1)

k(n)−1∏

j=1

Un,j(uv)
ã
‹Un,k(n),

where

‹Un,j = E

Å ∑
u∈Tn

fj
Ä
exp(〈λ|SnX(u)〉 − sn,j(̺, λ)

ä

·
n∏

k=1

exp(〈q(j−1)n+k|Xu1···uk − α(j−1)n+k〉 − ‹Pα(j−1)n+k
(qk+(j−1)n)φu1···uk)

ã

for 1 ≤ j ≤ k(n). Iterating this yields

EQ̺

Å k(n)∏

j=1

fj(Zn,j(̺, λ, t))
ã
=

k(n)∏

j=1

‹Un,j.

Applying this with fj′ = 1 for j′ 6= j yields

EQ̺

Å k(n)∏

j=1

fj(Zn,j(̺, λ, t))
ã
=

k(n)∏

j=1

EQ̺

Ä
fj(Zn,j(̺, λ, t))

ä
,

hence the desired independence. Then taking fj(z) = z and fj′(z) = 1 for j′ 6= j yields,
writing k′ for (j − 1)n+ k

EQ̺

Ä
Zn,j(̺, λ, t)

ä

= E

Å ∑
u∈Tn

n∏

k=1

exp
Ä
〈λ|Xu1···uk〉 − Λqk′ ,αk′

(λ) + 〈qk′ |Xu1···uk − αk′〉 − ‹Pαk′
(qk′)φu1···uk

äã

=
n∏

k=1

E

Å N∑

i=1

exp(
Ä
〈λ|Xi〉+ 〈qk′ |Xi − αk′〉 − ‹Pαk′

(qk′)φi − Λqk′ ,αk′
(λ)
äã
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= 1

by definition of Λqk′ ,αk′
(λ). Finally, the random variables Zn,j(̺, λ, t) − 1 are Q̺-

independent and centered.

(2) Thanks to (1), we can apply Lemma 3.1 and get

Q̺

Å∣∣∣∣k(n)−1
k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣ > ǫ

ã
≤ (ǫk(n))−pEQ̺

Å∣∣∣∣
k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣
pã

≤ 2p−1(ǫk(n))−p
k(n)∑

j=1

EQ̺(|Zn,j(̺, λ, t)− 1|p) ≤ 22p−1(ǫk(n))−p
k(n)∑

j=1

EQ̺(Zn,j(̺, λ, t)
p)

since EQ̺(Zn,j(̺, λ, t)) = 1. Moreover, calculations similar to those used to establish
part (1) of this lemma yield

EQ̺(Zn,j(̺, λ, t)
p) = exp

Å jn∑

k=(j−1)n+1

Λqk,αk
(pλ)− pΛqk,αk

(λ)
ã
.

Since Jφ,m,ℓ,L,Q ⊂ J (Km), with Km a compact subset of Jφ, using Taylor’s expansion
we have Λqk,αk

(pλ) − pΛqk,αk
(λ) = (1 − p)Λ∗

qk,αk
(∇Λqk,αk

λ) + O((p − 1)2) uniformly in

̺ ∈ Jφ,m,ℓ,L,Q, λ ∈ ‹Q and p − 1 small enough. Consequently, using the definition of
Jφ,m,ℓ,L,Q for k ≥ L, we have

Λqk,αk
(pλ)− pΛqk,αk

(λ) ≤ (p− 1)min(2ℓ, κ− 1/2ℓ) +O((p− 1)2),

hence for all 1 ≤ j ≤ k(n)

jn∑

k=(j−1)n+1

Λqk,αk
(pλ)− pΛqk,αk

(λ) ≤ A+ n
Ä
(p− 1)min(2ℓ, κ− 1/2ℓ) +O((p− 1)2)

ä

uniformly in ̺ ∈ Jφ,m,ℓ,L,Q, λ ∈ ‹Q and p− 1 small enough, where

A = sup
p∈[1,2]

sup
̺∈Jφ,m,ℓ,L,Q

sup
λ∈Q̃

L∑

k=1

|Λqk,αk
(pλ)− pΛqk,αk

(λ)|.

The previous estimates yield

Q̺

Å∣∣∣∣k(n)−1
k(n)∑

j=1

(Zn,j(̺, λ, t)−1)
∣∣∣∣ > ǫ

ã
≤ eAǫ−pk(n))1−p exp

Ä
n
Ä
(p−1)min(2ℓ, κ−1/2ℓ)+O((p−1)2)

ää

in the same uniform manner as above. Take p close enough to 1 so that O((p− 1)2) ≤
(p− 1)/8ℓ.

Now, for n large enough, we have k(n) ≥ exp(n(min(2ℓ, κ− 1/8ℓ))), so that

Q̺

Å∣∣∣∣k(n)−1
k(n)∑

j=1

(Zn,j(̺, λ, t)− 1)
∣∣∣∣ > ǫ

ã
≤ eAǫ−p exp

Ä
n
Ä
1− p)ℓ/4)

uniformly in ̺ ∈ Jφ,m,ℓ,L,Q and λ ∈ ‹Q. �
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5.3 Proof of Theorem 1.8

We need two new propositions. Let J̃φ =
¶
̺ ∈ Jφ : {qk, αk} : k ≥ 1} ⊂ Jφ

©
.

Proposition 5.3 There exists a positive sequence (δn)n≥1 converging to 0 such that,

with probability 1, for all ̺ ∈ J̃φ, for µ̺-almost every t, for n large enough,
n−1| log Y (̺, t|n)| ≤ δn.

Proof For each m ≥ 1, let Jφ,m be defined as in (5.4). Fix a positive sequence (δn)n≥1

converging to 0, to be specified later, and m ≥ 1. For every ̺ ∈ Jφ,m, η ∈ {−1, 1} and
n ≥ 1 let

E(̺, n, η) = {t ∈ ∂T : Y (̺, t|n)
η ≥ enδn},

and notice that for any γ > 0

µ̺(E(̺, n, η)) ≤
∑

u∈Tn

µ̺([u])Y (̺, u)γηe−nγδn =
∑

v1···vn∈Tn

Å n∏

k=1

W̺,u1···uk

ã
Y (̺, u)1+γηe−nγδn .

According to Remark 4.1, we can choose γ < 1 small enough so that there exists Cm > 0
for which E

Ä
sup̺∈Jφ,m

Y (̺, u)1+γ
ä
≤ Cm(jn + 2)!)1+γ for all n ≥ 1 and u ∈ Nn

+. Then,
using an approach similar to the one used to establish (4.19), we can get

E
Ä

sup
̺∈Jφ,m

µ̺(E(̺, n, η)) ≤ Cm(jn + 2)!)1+γe−nγδn ≤ Cme
n2/5

e−nγδn .

Now, taking δn = γ−1γ2jn+1mjn+1 and using (4.15) we get

E
Ä

sup
̺∈Jφ,m

µ̺(E(̺, n, η)) ≤ Cme
n2/5

e−n
1/2N

1/2
jn

γ2jn+1mjn+1 ≤ Cme
n2/5

e−n
1/2

.

The previous inequality yields

E

Å∑
n≥1

∑

η∈{−1,1}

sup
̺∈Jφ,m

µ̺(E(̺, n, η))
ã
<∞,

hence the desired result when ̺ ∈ Jφ,m. Since J̃φ is the countable union of the sets
Jφ,m, the result holds with J̃φ.

Proposition 5.4 There exists a positive sequence (δn)n≥1 converging to 0 such that,
with probability 1, for all ̺ ∈ Jφ, for µ̺-almost every t, for n large enough,

n−1
∣∣∣∣
n∑

k=1

〈qk|Xt1···tk−αk〉−
‹Pαk

(qk)φt1···tk−
n∑

k=1

〈qk|αX(qk, αk)−αk〉−‹Pαk
(qk)λ(qk, αk)

∣∣∣∣ ≤ δn.

Proof It is similar to that of Proposition 4.9. Fix (δn)n≥1 a positive sequence conver-
ging to 0.

For ̺ ∈ Jφ n ≥ 1, and t ∈ ∂T we set :

sn(̺) =
n∑

k=1

〈qk|αX(qk, αk)− αk〉 − ‹Pαk
(qk)λ(qk, αk),
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sn(̺, t|n) =
n∑

k=1

〈qk|Xt1···tk − αk〉 − ‹Pαk
(qk)φt1···tk .

E1
̺,n,δn =

ß
t ∈ ∂T : sn(̺, t|n)− sn(̺) ≥ nδn

™

E−1
̺,n,δn

=
ß
t ∈ ∂T : sn(̺, t|n)− sn(̺) ≤ −nδn

™

It is enough to specify (δn)n≥1 such that for λ ∈ {−1, 1} we have

E

Å
sup
̺∈Jφ

∑

n≥1

µ̺(E
λ
̺,n,δn)

ã
<∞. (5.7)

We prove (5.7) when λ = 1 (the case λ = −1 is similar). Let ̺ ∈ Jφ. For every
γ > 0 we have

µ̺(E
1
̺,n,δn(v)) ≤ fn,γ(̺),

where

fn,γ(̺) =
∑

u∈Tn

µ̺([u] exp
Ä
γ(sn(̺, u)− sn(̺))− γnδn

ä

=
∑

u∈Tn

Πn,γ(̺, u)Y (̺, u),

where we used the definition of µ̺ and

Πn,γ(̺, u) =
n∏

k=1

exp
Ä
(1 + γ)〈qk|Xu|k − αk〉 − (1 + γ)‹Pαk

(qk)φu|k
ä

· exp
Ä
− (γ〈qk|αX(qk, αk)− αk〉 − γ ‹Pαk

(qk)λ(qk, αk))− γδn
ä
.

The same arguments as in the proof of Proposition 4.9 yields

E( sup
̺∈Jφ

fn,γ(̺)) ≤ CJφ
exp(nǫn)E

Å ∑
u∈Tn

∑

̺|n:̺∈Jφ

Πn(̺, u)
ã

= CJφ
exp(nǫn)

∑

̺|n:̺∈Jφ

n∏

k=1

ek(̺, γ),

where

ek(̺, γ) = exp
Å
ψαk

((1 + γ)qk, (1 + γ)‹Pαk
(qk))− γ

dψαk
((1 + u)qk, (1 + u)‹Pα(qk))

du
(0)− γδn

ã
,

since by (4.7)

〈qk|αX(qk, αk)− αk〉 − ‹Pαk
(qk)λ(qk, αk)) =

dψαk
((1 + u)qk, (1 + u)‹Pα(qk))

du
(0). For each

̺ ∈ Jφ, we have qk ∈ Djn+1 for all 1 ≤ k ≤ n. Thus, by writing for each 1 ≤ k ≤ n the
Taylor expansion with integral rest of order 2 of γ 7→ ψαk

Ä
(1 + γ)qk, (1 + γ)‹Pαk

(qk)
ä

at
0 as in the proof of Proposition 4.6, and taking γ = γjn+1, we get

n∑

k=1

ψαk

Ä
(1 + γ)qk, (1 + γ)‹Pαk

(qk)
ä
− γjn+1δn ≤ nγ2jn+1m̃jn+1 − nγjn+1δn
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uniformly in ̺ ∈ Jφ. Consequently, using that ǫn = 2γ2jn+1m̂jn+1, m̃j ≤ m̂jn+1, and
card({̺|n : ̺ ∈ J }) = (jn + 1)!, we get

E(sup
̺∈J

fn,γjn+1
(̺)) ≤ CJ (jn + 1)! exp

Ä
(−nγjn+1(δn − 3γ2jn+1m̂jn+1)

ä
.

Let δn = 4γ2jn+1m̂jn+1. Now we use (4.15) : (jn + 1)! ≤ exp(N
1/5
jn ) ≤ exp(n1/5) and

γ2jn+1
m̂jn+1 ≥ N

−1/2
jn ≥ n−1/2. Thus

E
Ä
sup
̺∈Jφ

µ̺(E
1
̺,n,δn(v))

ä
≤ E( sup

̺∈Jφ

fn,γjn+1
(̺)) ≤ CJφ

exp(n1/5) exp(−n1/2).

Since δn = 4γ2jn+1m̂jn+1 tends to 0 as n tends to ∞, we get
∑
n≥1 E

Ä
sup̺∈Jφ

µ̺(E
1
̺,n,δn)

ä
<∞, as desired.

Now we come to the proof of Theorem 1.8. We fix a set Ω′ of probability 1 over
which the conclusions of Theorem 1.7 hold, as well as those of Propositions 4.7, 5.3
and 5.4 with the same sequence (δn)n≥1.

Let α ∈ I̊ such that ‹P ∗
α(0) < dim ∂T, as well as g, a gauge function satisfying

the property lim supr→0+ log(g(r))/ log(r) ≤ ‹P ∗
α(0) (the fact that Hg(E

LD(qα,α)
X (α)) = 0

if this does not hold is obvious). The conclusion will come if for all ω ∈ Ω′ there
exists ̺ ∈ J̃φ such that µ̺(E

LD(qα,α)
X (α)) > 0 and there is a positive sequence (δ′n)n≥1

such that limn→∞ nδ′n = +∞ and for µ̺-almost every t, for n large enough, we have
g(diam([t|n]) ≥ Cµ̺([t|n])

1−δ′n .

We can find a non decreasing function θ such that g(r) ≥ rP̃
∗
α(0)+θ(r), with

limr→0+ θ(r) = 0. Let θn = θ(βn2 ), where β2 is chosen as in Lemma 4.1.

Let (ηk)k≥1 be decreasing sequence converging to 0, and such that limn→∞ nηn = ∞

and nδn = o
Å∑n

k=1 ηk

ã
as n → ∞. Now fix ̺ ∈ J̃φ such that qk = qαk

for all

k ≥ 1, αk converges to α, so that ‹Pαk
(qk) = ‹P ∗

αk
(0) converges to ‹P ∗

α(0), but en-

ough slowly so that for k large enough we have ‹Pαk
(qk) ≥ (1 + ηk)

2(‹P ∗
α(0) + θk).

We recall that due to the relation between αk and qk we have αX(qk, αk) = αk.
Proposition 5.4 applied with µ̺ then takes a particularly simple form, and writing
µ̺([tn]) = Y (̺, t1 · · · tn)

∏n
k=1 exp(〈qαk

|Xt|k − αk〉 − ‹Pαk
(qαk

)φt|k) and using simulta-
neously Propositions 5.3 and 5.4 we get, for µ̺- almost every t, for n large enough,

µ̺([tn]) ≤ exp
Å
2nδn −

n∑

k=1

(1 + ηk)
2(‹P ∗

α(0) + θk)λ(qαk
, αk)

ã

≤ exp
Å
2nδn − (1 + ηn)(‹P ∗

α(0) + θn)
n∑

k=1

(1 + ηk)λ(qαk
, αk)

ã
.

Now, we notice that since each Lyapounov exponent λ(qαk
, αk) belongs to the com-

pact interval Iφ, it is larger than or equal to log(1/β2). Consequently, since nδn =

o
Å∑n

k=1 ηk

ã
, for n large enough we have 2nδn−(1+ηn)(‹P ∗

α(0)+θn)
∑n
k=1 ηkλ(qαk

, αk) ≤

−(1 + ηn)(‹P ∗
α(0) + θn)nδn, so that

µ̺([tn]) ≤ exp
Å
− (1 + ηn)(‹P ∗

α(0) + θn)
Å
nδn +

n∑

k=1

λ(qαk
, αk)

ãã
.
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On the other hand, Proposition 4.7 yields, for n large enough,

diam([t|n]) = exp(−Snφ(t)) ≥ exp
Å
− nδn −

n∑

k=1

λ(qαk
, αk)

ãã
.

Thus

µ̺([tn]) ≤ (diam([t|n]))
(1+ηn)(P̃ ∗

α(0)+θn)

≤ (diam([t|n]))
(1+ηn)(P̃ ∗

α(0)+θ(diam([t|n])) ≤ g(diam([t|n]))
(1+ηn).

Finally, the sequence δ′n = 1− 1/(1 + ηn) is as desired.



Chapitre 6

Homogeneous and inhomogeneous

Mandelbrot measures ; some basic

properties

6.1 Mandelbrot measures

Let (N, (X1, X
′
1, φ1), (X2, X

′
2, φ2), . . .) be a random vector taking values in N+ ×

(Rd × R × R∗
+)

N+ . Suppose that N satisfies the assumptions of the previous sections
and, moreover,





E

Å∑N
i=1 exp(X

′
i)
ã
= 1,

E

Å∑N
i=1X

′
i exp(X

′
i)
ã
< 0,

E

ÅÅ∑N
i=1 exp(X

′
i)
ã
log+

Å∑N
i=1 exp(X

′
i)
ãã

<∞

, (6.1)

and

E

Å N∑

i=1

‖Xi‖ exp(X
′
i)
ã
<∞. (6.2)

Let {(Nu0, (Xu1, X
′
u1, φu1), (Xu2, X

′
u2, φu2), . . .)}u be a family of independent copies

of (N, (X1, X
′
1, φ1), (X2, X

′
2, φ2), . . .) indexed by the finite sequences u = u1 · · · un, n ≥

0, ui ∈ N+ and defined on a probability space (Ω′,A′,P′)

Condition (6.1) implies that with probability 1, for all n ≥ 1 and u ∈ Nn
+, the

sequence
Y ′
p(u) =

∑

v∈Tp(u)

exp(Sn+pX
′(uv)− SnX

′(u)) (p ≥ 1)

converges to a positive limit Y ′(u), while the limit exists and vanishes if the condition
is violated. This fact was proven by Kahane in [45] when N is constant and Biggins
in [13] in general. Then with the family {(Nu0, (Xu1, X

′
u1), (Xu2, X

′
u2), . . .)}u, we can

associate the Mandelbrot measure defined on the σ-field C generated by the cylinders
of NN+

+ as

µ′([u]) =




exp(SnX

′(u))Y ′(u) if u ∈ Tn

0 otherwise
,
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and supported on ∂T. The branching measure corresponds to the choice X ′
i =

− logE(N) for 1 ≤ i ≤ N .

Using 6.2 to apply the strong law of large numbers to SnX(t) with respect to the

so-called Peyrière’s measure Q′ defined on A′ ⊗ C as Q′(E) = EP′

Å ∫
1E(ω

′, t)µ′(dt)
ã
,

we get the well known following fact (see [45, 55, 3] for instance) :

Proposition 6.1 With probability 1, for µ′-almost every t,

lim
n→∞

SnX(t)

n
= E

Å N∑

i=1

Xi exp(X
′
i)
ã

and lim
n→∞

Snφ(t)

n
= E

Å N∑

i=1

φi exp(X
′
i)
ã
∈ R+∪{+∞}.

Moreover, still following either of [45, 55, 3], since E(Y ′) <∞ we have :

Proposition 6.2 With probability 1, for µ′-almost every t,

lim sup
n→∞

log Y ′(t|n)

−n
≤ 0.

Corollary 6.1 With probability 1, for µ′-almost every t,

lim sup
n→∞

log µ′([t|n])

−n
≤ −E

Å N∑

i=1

X ′
i exp(X

′
i)
ã
.

The next result holds thanks to a similar argument to that yielding Corollary 6.1 un-
der the property E(Y ′ log+ Y ′) < ∞, hence in particular when E(Y ′h) < ∞ for some
h > 1 (see [45, 55, 3]). However this property necessitates to add assumptions on
(N,X ′

1, X
′
2, . . .), while the approach developed by Kahane in [46] for Mandelbrot ca-

nonical cascades on homogeneous trees, and extended in this paper to simultaneously
control the lower Hausdorff dimensions of uncountably many inhomogeneous Mandel-
brot measures, requires no additional information :

Proposition 6.3 With probability 1, for µ′-almost every t,

lim inf
n→∞

log µ′([t|n])

−n
≥ −E

Å N∑

i=1

X ′
i exp(X

′
i)
ã
.

We deduce the following theorem.

Theorem 6.1 With probability 1, for µ′-almost every t,

lim
n→∞

log µ′([t|n])

−Snφ(t)
= −

E

Å∑N
i=1X

′
i exp(X

′
i)
ã

E

Å∑N
i=1 φi exp(X

′
i)
ã .

Consequently, if dφ defines a metric on ∂T (see the introduction), then µ′ is exact

dimensional with dimension D = −E

Å∑N
i=1X

′
i exp(X

′
i)
ã
/E
Å∑N

i=1 φi exp(X
′
i)
ã
, in the

sense that D = inf
¶
dim F : F Borel, µ(F ) > 0

©
= inf

¶
dimP F : F Borel, µ(F ) =

‖µ‖
©
, where dimP stands for the packing dimension.
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6.2 Inhomogeneous Mandelbrot measures

We consider an integer valued random variable N and a family (N,X ′
k,1, X

′
k,2, . . .),

k ≥ 1, of random vectors taking values in N+ × RN+ , and such that the normalization

E

Å∑N
i=1 exp(X

′
k,i)
ã
= 1 holds.

For each k ≥ 1, let {(Nu, X
′
k,u1, X

′
k,u2, . . .)}u∈Nk−1

+
be a family of copies of

(N,X ′
k,1, X

′
k,2, . . .), so that all the random vectors so obtained as u runs in

⋃
k≥0 N

k−1
+

are independent.

With probability 1, for all n ≥ 1 and u ∈ Nn
+, the sequence

Y ′
n(u) =

∑

v∈Tp(u)

exp(X ′
n+1,uv1

+X ′
n+2,uv1v2

· · ·X ′
n+p,uv1···vp

) (p ≥ 1)

converges to a non negative li-
mit Y ′(u). Then with the family {(Nu, X

′
k,u1, X

′
k,u2, . . .)}k≥1,u∈Nk−1

+
, we can associate

the inhomogeneous Mandelbrot measure defined on the σ-field C generated by the
cylinders of NN+

+ as

µ′([u]) =




exp(X ′

1,u1
+X ′

2,u1u2
+ · · ·X ′

n,u1···un
)Y ′(u) if u ∈ Tn

0 otherwise
,

and supported by ∂T. It is proved in [3] (and this also follows from computations similar
to those achieved in the previous chapters) that if there exists γ > 1

sup
k≥1

E

Å N∑

i=1

exp(γX ′
k,i)
ã
+ sup

k≥1
E

ÅÅ N∑

i=1

exp(X ′
k,i)
ãγã

<∞,

then the limit measure µ′ is positive almost surely (in fact [3] assumes weaker assump-
tions). Suppose, moreover, that

∑

k≥1

k−2E

Å N∑

i=1

X ′
k,i

2
exp(X ′

k,i)
ã
<∞.

Proposition 6.4 Under the above assumptions, with probability 1, for µ′-almost every
t, ve have

lim inf
n→∞

−1

n

n∑

k=1

E

Å N∑

i=1

X ′
k,i exp(X

′
k,i)
ã
= lim inf

n→∞

log µ′([t|n])

−n

≤ lim sup
n→∞

log µ′([t|n])

−n
= lim sup

n→∞

−1

n

n∑

k=1

E

Å N∑

i=1

X ′
k,i exp(X

′
k,i)
ã
.

This yields the Hausdorff and packing dimensions of µ′ (see [26, 28] for precise defini-
tions). Following the ideas of [3], which itself followed the L2-martingale approach to
the law of large numbers used by Peyrière in [45] to compute the Hausdorff dimension
of Mandelbrot measures on homogeneous trees, one can easily prove the following re-
sult about the asymptotic behavior of the branching random walk SnX, if it is built
simultanously with µ′.
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Proposition 6.5 Suppose, in addition to the above assumptions, that

∑

k≥1

k−2E

Å N∑

i=1

‖Xk,i‖
2 exp(X ′

k,i)
ã
<∞.

With probability 1, for µ′-almost every t, we have

lim
n→∞

n−1
Å
SnX(t)−

n∑

k=1

E

Å N∑

i=1

Xi exp(X
′
k,i)
ãã

= 0.

The previous propositions entail inhomogeneous Mandelbrot measures as a useful tool
to study level sets of infinite branches over which SnX(t) possesses a given set of limit
points. This thesis provides for all these level sets simultaneously, such a measure of
maximal lower Hausdorff dimension.
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