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Introduction

The three terrestrial planets -Venus, Earth and Mars -have a similar composition and consist mainly of silicate rocks and metals. Therefore they are also referred to as silicate planets, moreover Venus and Earth are of comparable size. After accretion, all three planets separated into at least three different layers: a core, a mantle and a crust. The rheological behaviour of mantle and crust strongly depends on the time scale where load (stress) is applied and the observed time scale. Hence on a "human" timescale they behave as a solid, whereas they may deform like a viscous fluid on a geological timescale of several 100 Mio. years. Due to the planet being in a cold universe, the planet is cooled from the surface. On the other end, at the core mantle boundary (CMB) the mantle is heated. Hence the dense material will sink into the mantle, while the hot material from the CMB rises, i.e. the planetary mantle convects. These large-scale motions are responsible for volcanism, or on Earth for the formation of plates at mid-ocean ridges, which then spread, cool and sink back into the mantle at subduction zones. Therefore mantle convection is an important mechanism to cool a planet.

Despite their similar composition and size, surface dynamics on Earth, Mars and Venus are very different. Some crustal rocks on Mars formed 4.5 Gyr (billion years) ago (e.g. [START_REF] Hartmann | Cratering chronology and the evolution of mars[END_REF] ) and in most models mars is assumed to be in the stagnant lid mode (e.g. [START_REF] Reese | Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to mars and venus[END_REF] ), where the cold thermal boundary layer is not participating in mantle convection. The surface of Venus is younger than a billion years [START_REF] Schaber | Geology and distribution of impact craters on venus: what are they telling us[END_REF] ) which may be due to an episodic resurfacing event about 500 million years ago (e.g. [START_REF] Schaber | Geology and distribution of impact craters on venus: what are they telling us[END_REF], [START_REF] Turcotte | An episodic hypothesis for venusian tectonics[END_REF] ). The youngest surface can be found on Earth, where 60 % are renewed continuously. Earth's surface is composed of several plates. The plates are formed at mid-ocean ridges and sink as downgoing sheets into the mantle at subduction zones. Deformation of the plates is strongly localized to the plate boundaries, which are regions of high seismicity (cf. fig. 1.1). The plates form a network of cold cells. Inside such a cell hot mantle plumes rise, which manifest themselves by hotspot volcanism at the surface (cf. circles in fig. 1.1).

The key-mechanism leading to these different surface expressions on the different planets, is rheology. This chapter is therefore dedicated to give an overview about the structure and rheology of the Earth and convection models employing different rheologies, leading to convection with different surface expressions. Red-circles: current location of hotspot volcanism (cf. [START_REF] Davaille | Convective patterns under the indo-atlantic "box[END_REF] ).

Introduction active hotspot

1.1. The Earth

The Earth

Earth's internal structure is composed of a solid iron core at the center of the liquid outer core that consists mostly of iron and where the Earth's magnetic field is generated, enclosed by the mantle that forms the outer shell of the planet. The basic understanding of the Earth's structure (fig. 1.2 after [START_REF] Davies | Dynamic Earth: Plates, Plumes and Mantle Convection[END_REF] ), is based on seismological observations and experiments at high pressure and temperature that study the mineralogical structure at Earth's mantle conditions. The mantle rocks undergo several phase changes as pressure and temperature increase with depth. Those changes are recorded as seismic discontinuities and may affect mantle dynamics. At 410 km olivine transforms to Wadsleyite, that undergoes another phase change to Ringwoodite at 520 km that transforms to silicate perovskite at 660 km. Perovskite then might undergo another phase transition to post-perovskite (cf. [START_REF] Murakami | Post-Perovskite phase transition in M gSiO 3[END_REF], [START_REF] Oganov | Theoretical and experimental evidence for a Post-Perovskite phase of M gSiO 3 in Earth's D" layer[END_REF] ) at 2600 km depth. The temperature at the core mantle boundary (CMB) is not well constrained (cf. [START_REF] Lay | Core-mantle boundary heat flow[END_REF] and references therein) and is in between 3300 -4300 K. For a hot CMB, another phase transition might then occur above the core mantle boundary, from postperovskite back to perovskite [START_REF] Hernlund | A doubling of the post-perovskiet phase boundary and structure of the Earth's lowermost mantle[END_REF] ). While the 660 km phase transition is endothermic, all other transitions are exothermic. Therefore, e.g. due to the release of latent heat, they may have severe influence on the dynamics of the mantle. The lower and upper thermal boundary layers (TBL) of the convecting mantle correspond to the D"-layer and the lithosphere respectively.

Rheology of the Earth

Rheology studies the flow of a continuous body or liquid as a response to an applied force. For Earth this may be for example the forces exerted by the convecting mantle on the lithosphere. This section will therefore first explain the basic rheological terms which will then be used to discuss the rheology of the Earth.

Basic Rheological Terms 1.2.1.1. Stress and Deformation

The force exerted on an infinitesimal plane whose orientation is specified by the normal vector n is called traction t(n) (fig. 1.3A). Traction across a surface within a continuous body is linked to the stress σ at this point via Cauchy's formula, which is written as : Schematic picture of the Earth after [START_REF] Davies | Dynamic Earth: Plates, Plumes and Mantle Convection[END_REF], with mineralogical zones, seismological observations and dynamical layers. Grey zones: post-perovskite (PPV, cf. [START_REF] Murakami | Post-Perovskite phase transition in M gSiO 3[END_REF], [START_REF] Oganov | Theoretical and experimental evidence for a Post-Perovskite phase of M gSiO 3 in Earth's D" layer[END_REF] ) as a possible mineralogical and dynamical phase in the D"-layer. The dynamical thermal boundary layer (TBL) roughly corresponds to the seismological D"-layer.

t i (n) = σ ij n j (1.
1.2. Rheology of the Earth A: traction vectors describing forces on faces of an infinitesimal cube, where x, ŷ and ẑ are the normal vectors in the direction of x, y and z respectively. B: shear stress acting on a square. A and B Modified after [START_REF] Shearer | Introduction to Seismology[END_REF].

A material deforms under an applied stress. In a continuum, this deformation is reflected in the displacement of the position of points and can be expressed as the sum of strain and solid body rotation. In the infinitesimal strain theory, the infinitesimal strain tensor is symmetric and is written as

ε ij ≡ 1 2 ∂ u i ∂ x j + ∂ u j ∂ x i , (1.2) 
where u = (u x , u y , u z ) is the displacement. The tensor for rigid body rotation is asymmetric and is written as

ω ij ≡ 1 2 ∂ u i ∂ x j - ∂ u j ∂ x i . (1.3)
Deformation is therefore expressed as

∂ u i ∂ x j = 1 2 ∂ u i ∂ x j + ∂ u j ∂ x i + 1 2 ∂ u i ∂ x j - ∂ u j ∂ x i .
(1.4) Fig. 1.4A illustrates the deformation of a 2D square under strain (no rotation) assuming conservation of volume. The latter requires ∂ u x ∂ x = ∂ u z ∂ z = 0 and ∂ u x ∂ z = ∂ u z ∂ x and therefore deformation is given by 

ε = 0 θ θ 0 = 0 ∂ u x ∂ z ∂ u z ∂ x 0 , ( 1 

Elasticity

In a purely elastic material, stress is linearly proportional to strain (fig. 1.5A). A continuous elastic body deforming instantaneously under an applied stress, can recover from this deformation. The relationship is called Hooke's law, which describes for example the deformation of a spring. In its general form it is written as

σ ij = c ijkl e kl , (1.7) 
where c ijkl is the elastic tensor. For an isotropic material it is written as

σ ij = λδ ij e kk + 2µ ′ e ij (1.8)
where λ and µ ′ are the Lamé parameters and δ ij is the Kronecker delta.

Viscosity

Viscosity is the resistance of a fluid to flow under an applied stress. The mechanical analog to viscosity is the dashpot (fig. 1.5B). While elastic deformation is instantaneous, viscous deformation occurs in steady state. Therefore the time over which deformation, due to an exerted stress, occurs becomes important. Therefore in a viscous material stress A: Stress-strain relationship for purely elastic material, whose mechanical analogue is represented by a spring with rigidity µ ′ . B: stress-strain rate relationship for a purely viscous material, whose mechanical analog is described by a dashpot. Modified from [START_REF] Ranalli | Rheology of the Earth[END_REF].

is proportional to the strain rate. For a Newtonian fluid the stress strain rate relationship is linear and is therefore written as

σ ij = µ ρ εij = η εij , (1.9)
where µ is the kinematic viscosity, ρ the density and η is the dynamic viscosity. If the viscosity is Non-Newtonian, the stress-strain rate relationship is non-linear, in most cases the viscosity then decreases with increasing stress [START_REF] Poirier | Creep of Crystals[END_REF] ).

Visco-Plasticity

In a perfectly plastic solid, deformation occurs elastically until the yield stress σ 0 (limit of plasticity) is reached above which a permanent strain appears and deformation becomes irreversible [START_REF] Poirier | Creep of Crystals[END_REF] ). If plastic deformation is achieved by imposing a constant strain rate that results in plastic strain, the object will deform at constant stress (fig.

1.6A). Above the yield stress, the stress-strain rate relationship is linear, therefore stress increases with increasing strain rate (fig. 1.6B). whose mechanical analogue is represented by a parallel combination of a dashpot and a friction block. B: stress-strain rate relationship for a perfect plastic material.

Relationship Between the Deformation of Rocks and Non-Newtonian Fluids

Due to the definition of a viscosity, the deformation of a plastic solid, like rocks, may be compared to the behaviour of a fluid. Like in solids, many fluids have a non-Newtonian viscosity and may only flow, if the yield stress, which is due to the structure of the fluid, is exceeded. Consequently, those fluids are called non-Newtonian fluids. Below σ 0 deformation is elastic and therefore reversible. Different models for yield stress fluids exist, e.g. the Bingham model or the Herschel-Bulkley model. Their general expression in the community of fluid dynamics is

σ = σ 0 + K ν γn (1.10)
where γ is the shear rate and K ν the consistency. For the Bingham model n = 1, i.e. once the yield stress is exceeded, the stress-strain rate relationship is linear (fig. 1.7 red dash-dotted curve) and it flows like a Newtonian fluid (fig. 1.7 black straight curve). The Bingham model [START_REF] Bingham | An investigation of the laws of plastic flow[END_REF] ) is a special case of the Herschel-Bulkley model [START_REF] Herschel | Konsistenzmessungen von Gummi-Benzollösungen[END_REF] ). For a shear thinning fluid n < 1 (fig. 1.7 green dashed curve) viscosity decreases with increasing shear rate whereas it increases with increasing shear rate for a shear thickening fluid where n > 1 (fig. 1.7 blue dotted curve). To avoid confusion with the notation in the geophysics community, the shear rate dependence for geophysical systems will be expressed with n E (adding the index E for Earth) as the 1.2. Rheology of the Earth γ σ σ 0

n E > 1 n < 1 n E =n = 1 n E < 1 n > 1 n E =n= 1, σ 0 =0
. definition of the shear thinning exponents in the two communities is different. In the geophysics community (e.g. [START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF], [START_REF] Scott | The effect of large melt fraction on the deformation behavior of peridotite[END_REF] ), the shear-rate dependence is normally expressed as

η ∝ 1 γ n E -1 n E
.

(1.11)

Comparing the two formulations this implies Fluid dynamics Geophysics

γn-1 = γ 1-n E n E ⇐⇒ n -1 = 1 n E -1 ⇐⇒ n = 1 n E .
(1.12) Therefore in the geophysics community n E > 1 indicates that the fluid is shear thinning, while it is shear thickening for n E < 1 (cf. fig. 1.7).

Physics of deformation of solids

Due to its imperfectness, a crystalline solid can deform in two ways. In diffusion creep shear is transported by the propagation of point defects through the crystal, whereas shear rate is transported in the case of dislocation creep, by the propagation of line defects.

Diffusion creep Under an applied stress, the chemical potential changes, as vacancies are created at the grain boundaries perpendicular to the direction of lowest stress (fig.

1. Introduction 1.8). Therefore vacancies will flow towards the lower potential, whereas atoms move in the opposite direction. The stress-strain rate dependence is then written as ε ∝ D creep d p σ (1.13) with d being the grain size, p the grain size exponent. From Fick's law follows the diffusion coefficient D creep = D 0 exp (-Q/RT ) with Q being the activation energy for creep and R being the universal gas constant. This shows, that creep flow is getting easier at higher temperatures. Furthermore the mechanism is becoming more effective for smaller grain sizes. The grain size exponent depends on how the vacancy propagates. If vacancies propagate through the crystal, this is called Nabarro-Herring creep and the grain size exponent is p = 2, whereas a propagation along grain boundaries is referred to as Coble creep and the grain size index is p = 3. The constant relating stress and strain rate is then the viscosity that, in this case, strongly depends on temperature. Dislocation creep At lower temperatures, the dominant creep is due to the propagation of line defects through the crystal lattice. This mechanism is called dislocation creep.

ε ∝ (σ -σ 0 ) n E exp (-Q/RT ) (1.14)

Rheology of the Earth

While the propagation of a point defect results in a linear stress-strain rate relationship, the propagation of a line defect results in a non-linear relationship. In the case of rocks, the stress exponent is generally in between n E = 2 -4.5 [START_REF] Ranalli | Rheology of the Earth[END_REF] ). Which mechanism

i) ii) iii) v) vi) vii) viii) iv)
Figure 1.9.: Schematic illustration of dislocation creep: propagation of a line defect through the crystal lattice.

dominates the creep behaviour, strongly depends on several factors. In dislocation creep the stress exponent, activation energy and activation volume are higher than in the case of diffusion creep, whereas the grain size exponent is lower. Consequently, at low stresses, small grain size, low temperature and high pressure, diffusion dominates over dislocation creep [START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF] ).

Deformation mechanisms in the Earth's mantle

While most of the mantle deforms under ductile creep, deformation in the upper few kilometres occurs in form of fracture, when grains and crystals are sliding past each other. This is due to the brittle strength σ b being smaller in this region, than the plastic (ductile) strength σ p of the rock (fig. 1.10). With increasing depth, brittle and ductile strength are in the same order of magnitude (brittle-ductile transition zone, fig. 1.10), whereby the depth-extend of the brittle-ductile transition zone depends for example on the composition of rocks as well as the strain rate. With increasing strain rate, the ductile creep curve is shifted to deeper levels in the mantle.

In the ductile regime a viscosity can be defined. The viscosity then depends on grain size [START_REF] Platt | Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere[END_REF], [START_REF] Demouchy | Deformation of olivine in torsion under hydrous conditions[END_REF] ) and stress [START_REF] Karato | Does partial melting reduce the creep strength of the upper mantle?[END_REF], [START_REF] Ranalli | Rheology of the Earth[END_REF] ), but also on temperature [START_REF] Mei | Influence of water on plastic deformation of olivine aggregates: 2. dislocation creep regime[END_REF], [START_REF] Chopra | The role of water in the deformation of dunite[END_REF], [START_REF] Karato | Does partial melting reduce the creep strength of the upper mantle?[END_REF], [START_REF] Hirth | Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere[END_REF], [START_REF] Kohlstedt | Rheology of partially molten mantle rocks[END_REF] ), water fugacity [START_REF] Bai | High-Temperature Creep of Olivine Single Crystals: 1. Mechanical Results for Buffered Samples[END_REF], [START_REF] Karato | Effects of pressure on high-temperature dislocation creep in olivine[END_REF] ) and melt content [START_REF] Karato | Does partial melting reduce the creep strength of the upper mantle?[END_REF], [START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF], [START_REF] Hirth | Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere[END_REF], [START_REF] Kohlstedt | Rheology of partially molten mantle rocks[END_REF], [START_REF] Karato | Effects of pressure on high-temperature dislocation creep in olivine[END_REF] ). After Hirth and Kohlstedt [2003] the deformation rate is then given by ε et al. [1995]. B: schematic stress-strain relationship in the brittle (i), brittleductile transition (ii) and ductile (iii) zones. In the ductile regime, the brittle strength σ b is higher than the plastic strength σ p , therefore allowing for plastic deformation to occur. In the brittle regime the rock fractures before plastic deformation may occur, as σ b < σ p . In the transition zone both strengths have similar values.

= A σ n E d -p f H 2 O exp (β Φ) exp - E * + P V * RT , ( 
where A is a constant, f H 2 O is water fugacity, Φ is the melt fraction, β is a constant, T is the temperature, P is pressure, E * is the activation energy, V * is the activation volume and R is the universal gas constant.

A major problem in measuring the viscosity of rocks in the laboratory is the extrapolation from strain rates accessible in the laboratory over several orders of magnitude to strain rates as they actually take place in the mantle. This problem is for example addressed in [START_REF] Cordier | Modelling the rheology of M gO under Earth's mantle pressure, temperature and strain rates[END_REF], see fig. 1.11. The study shows that a power-law fit for values feasible in the laboratory and a subsequent extrapolation over several orders of magnitude to values relevant for the mantle may lead to large discrepancy between the extrapolated values and the actual values. This shows that the extrapolation of a power-law may not be valid and should be treated with care. 1. Introduction

Thermal Convection

Convection is the motion of a layer of fluid that starts to move due to density-differences. Those density differences can be caused by differences in chemical composition or in temperature. The classical example for thermal convection is the Rayleigh-Bénard Experiment1 , where an infinitely extended fluid in a gravity field between two infinitely extended plates is heated from below and cooled from above, as schematically illustrated in fig. 1.12. Particles near the upper cold wall become denser and tend to sink, while particles near the hot bottom wall decrease their density. The situation is stable as long as i) the buoyancy forces are counterbalanced by the viscous forces acting on a particle while ii) thermal diffusion is larger than momentum diffusivity. Out of equilibrium, less dense particles will rise, while denser particles sink. This motion is called convection.

Fig. 1.13 shows a schematic sketch of the temperature profile that builds up in an isoviscous fluid and a fluid (discussed in section 1.3.2) where the viscosity strongly depends on temperature (discussed in section 1.3.3). In an isoviscous fluid, T mean corresponds to the minimum temperature plus the harmonic mean of the temperature of the two plates. T mean increases as the viscosity contrast Γ, i.e. is the ratio of the viscosity at T min and the viscosity at T max , increases. Hot and cold thermal boundary layers (TBL) have the same thickness in an isoviscous fluid. With increasing Γ the cold TBL grows and becomes significantly thicker than the hot TBL.

Governing Equations and Parameters

Assuming an incompressible fluid in the Boussinesq-approximation (density-differences are neglected everywhere except in the buoyancy-term) the dimensional equations for the conservation of mass, momentum and energy can be written as follows:

∇ • u = 0 conservation of mass (1.16) ρ Du Dt = -∇p + ∇ • σ + αρg∆Te z conservation of momentum (1.17) ρ DT Dt = κ∇ 2 T conservation of energy (1.18)
where κ is the thermal diffusivity, ρ is the density, α is the thermal diffusivity, u is the velocity, t is the time, p is the pressure, σ is the stress tensor. The equations can then be non-dimensionalized, to reduce the number of control parameters. Hence the equations become more general as the dimensionalization can be done using different scales. Here we use a length scale d and a characteristical diffusion time to nondimensionalize the time 1.3. Thermal Convection

1.3. Thermal Convection A g h T 0 ρ = ρ 0 ρ = ρ 0 T 0 B g h T 2 > T 0 ρ > ρ 0 ρ < ρ 0 T 1 < T 0 C g h T 2 > T 0 ρ > ρ 0 ρ < ρ 0 T 1 < T 0
t ′ = t κ d 2 .
The nondimensional velocity is then written as u ′ = u κ d and the nondimensional temperature is T ′ = T ∆T , where ∆T is the temperature difference between hot and cold plate. Finally the stress may be non-dimensionalized as σ ′ = σ d 2 κη , where η is the viscosity. The equations then write as

∇ • u ′ = 0 conservation of mass (1.19) 1 P r Du ′ Dt ′ + ∇p ′ = ∇ • σ ′ + Ra T ′ e z conservation of momentum (1.20) ∂ T ′ ∂t ′ + u ′ • ∇ T ′ = ∇ 2 T ′ + H conservation of energy (1.21)
Here P r is the Prandtl-number (explained below), Ra the Rayleigh number (explained below). Rayleigh-Bénard-Convection can generally be characterized as a convection due to temperature-induced density differences. Non-dimensionalizing the basic equations, there are 2 parameters that govern the system.

Prandtl number P r The Prandtl number describes the ratio of momentum diffusivity (i.e. the kinematic viscosity ν) and thermal diffusivity κ

P r = η ρκ = ν κ (1.22)
where η is the dynamic viscosity and ρ the density. For the Earth Pr is O(10 23 ) so it can be seen as infinite. That means that there is no inertia in the Earth's mantle and implies that a reduction of the driving force (i.e. by decreasing the temperature-difference) below a critical value would result in an instantaneous disrupt of mantle convection.

Grashof number Gr The Grashof number Gr compares buoyancy forces to viscous forces acting on a particle and is therefore defined as

Gr = α g ∆T h 3 ν 2 , (1.23)
where α is the thermal expansivity of the fluid, g acceleration due to gravity, h the height of the box and ∆T the temperature difference.

Rayleigh number Ra The product of Grashof and Prandtl number is the Rayleigh number. It therefore represents the ratio of buoyancy forces and forces due to viscous friction in an enviroment where thermal and momentum diffusivity compete. The Rayleigh number is written as

Ra = αρ g h 3 ∆T κ η .
(1.24)

1. Introduction [START_REF] Davaille | Laboratory studies of mantle Convection[END_REF], compiled from [START_REF] Krishnamurti | On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow[END_REF][START_REF] Einarsson | Seismological Evidence for Lateral Magma Intrusion During the July 1978[END_REF][START_REF] Whitehead | Observations of convection at Rayleigh numbers up to 760000 in a fluid with large Prandtl number[END_REF], [START_REF] Nataf | Convection experiments in a centrifuge and the generation of plumes in a very viscous fluid[END_REF], Jaupart [1995], [START_REF] Zhang | Non-Boussinesq effect: Thermal convection with broken symmetry[END_REF], [START_REF] Manga | Experimental study of non-Boussinesq Rayleigh-Bénard convection at high Rayleigh and Prandtl numbers[END_REF], [START_REF] Xi | From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection[END_REF], [START_REF] Nataf | Convection experiments in a centrifuge and the generation of plumes in a very viscous fluid[END_REF].

Convection in an Iso-Viscous Fluid

Increasing the Rayleigh number Ra leads to three different regimes. Fig. 1.14 (modified from [START_REF] Davaille | Laboratory studies of mantle Convection[END_REF] ) summarizes the different regimes that can be obtained as a function of Rayleigh and Prandtl number. If the Rayleigh number is below the critical Rayleigh number Ra c heat is only transported by diffusion. The critical Rayleigh number depends on the boundary conditions. It may therefore range between Ra c = 657 for free-slip boundary conditions and Ra c = 1708 if both boundaries are rigid [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF]. Above Ra c the mechanism of heat-diffusion is no longer sufficiently efficient and the fluid starts to organize itself in convecting role-structures. A further increase then leads to a cellular convection and for Ra > 10 6 plumes develop and the system is getting more and more time dependent, where turbulence occurs for low P r < 100. The blue line in fig. 1.14 separates the turbulent from the laminar regime.

Thermal Convection

Convection in a Fluid with Temperature-Dependent Viscosity

Viscosity contrast Γ If the viscosity is temperature-dependent, another dimensionless parameter starts to influence the system -the viscosity contrast

Γ = η cold η hot (1.25)
where η cold is the viscosity at the temperature of the cold plate and η hot at the temperature of the hot plate. The temperature dependent viscosity is taken into account in the viscous stress tensor that is written as

σ = η ∇u + ∇u t . (1.26)
Therefore the Navier-Stokes equation for a temperature-dependent viscosity fluid is written as

1 P r Du Dt + ∇p = RaT e z + η ′ ∇ 2 u + dη ′ dt ∇T ∇u + ∇u t .
(1.27)

The case of a temperature-dependent-viscosity has been widely studied (i.e. [START_REF] Richter | Convection and the large-scale circulation of the mantle[END_REF], [START_REF] Booker | Thermal convection with strongly temperature-dependent viscosity[END_REF], [START_REF] Nataf | Convection experiments in fluids with highly temperaturedependent viscosity and the thermal evolution of planets[END_REF], [START_REF] Richter | Heat transfer and horizontally averaged temperature of convection with large viscosity variations[END_REF], [START_REF] Christensen | Heat transport by variable viscosity convection and implications for the earth's thermal evolution[END_REF], [START_REF] White | The planform and onset of convection with a temperature-dependent viscosity[END_REF], [START_REF] Christensen | 3-D convection with variable viscosity[END_REF], [START_REF] Davaille | Transient high-Rayleigh-number thermal convection with large viscosity variations[END_REF], [START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF], [START_REF] Giannandrea | Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the earths mantle[END_REF], [START_REF] Tackley | Three dimensional models of mantle convection: Influence of phase transistions and temperature-dependent viscosity[END_REF], [START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF], [START_REF] Moresi | Numerical investigation of 2D convection with extremely large viscosity variations[END_REF], [START_REF] Tackley | Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles[END_REF], [START_REF] Ratcliff | Transitions in thermal convection with strongly variable viscosity[END_REF], [START_REF] Solomatov | Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets[END_REF], [START_REF] Kameyama | Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box[END_REF], [START_REF] Yoshida | Low-degree mantle convection with strongly temperatureand depth-dependent viscosity in a three-dimensional spherical shell[END_REF], [START_REF] Stemmer | A new method to simulate convection with strongly temperature-dependent and pressure-dependent viscosity in a spherical shell: Applications to the earth's mantle[END_REF], [START_REF] Androvandi | At least three scales of convection in a mantle with strongly temperature-dependent viscosity[END_REF]. Depending on the strength of the temperature-dependence -i.e. the viscosity ratio Γ -different regimes develop (fig. 1.15). It can generally be distinguished between 3 different regimes, as summarized in [START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF] :

(1) Quasi-isoviscous, small Γ (Γ < 2 -5) In case of a low temperature-dependence of the viscosity, the flow generally behaves like convection in a constant-viscosity fluid.

(2) Transient regime, intermediate Γ (5 < Γ < 10 4 ) For an intermediate temperature-dependence of the viscosity, the resistance of motion of the cold TBL due to deformation of the cold TBL becomes comparable to viscous drag of the interior region. Androvandi et al. [2011] (fig. 1.15) show that at high Rayleigh number, several hot plumes form inside one cold cell.

(3) Stagnant lid regime, large Γ (Γ > 10 4 ) For a strong temperature-dependence the advective heat transport due to the motion of the cold TBL becomes negligible compared to the much more effective heat transport of 1. Introduction convecting material underneath. A stagnant lid develops, with a linear temperature profile. This big decrease of temperature over a small region leads to an exponential growth of viscosity in the lid. The convection underneath has similar characteristics as isoviscous convection.

The behaviour found in the transient regime (e.g. [START_REF] Androvandi | At least three scales of convection in a mantle with strongly temperature-dependent viscosity[END_REF] ) resembles the behaviour observed on Earth, where several hot plumes form inside one cold cell. However, for Earth-like parameters (e.g. [START_REF] Karato | Rheology of the upper mantle: A synthesis[END_REF] ), convection would fall into the stagnant lid regime. Therefore the question arises: How can this lid be weakened, to localize deformation to subduction zones, where plates sink into the mantle and participate in convection? The answer to this question seems to be a more complex rheology.

Convection with Plate Tectonics -Plastic Yielding

The lack of plate tectonics in convection models with a temperature-dependent viscosity (section 1.3.3) requires a new approach. Numerical models (e.g. [START_REF] Tackley | Mantle convection and plate tectonics: Toward an integrated physical and chemical theory[END_REF], [START_REF] Bercovici | The generation of plate tectonics from mantle convection[END_REF] ) show that sufficient strain localization is needed to produce plate-like behaviour. Different approaches are employed to localize deformation, inspired by rockrheology, cf. section 1.2. Among those approaches are dynamic self-lubrication [START_REF] Bercovici | Plate generation in a simple model of lithosphere mantle flow with dynamic self-lubrication[END_REF] ), grain-size dependent rheology [START_REF] Ricard | Two-phase damage theory and crustal rock failure: the theoretical 'void' limit, and the prediction of experimental data[END_REF] ) as well as shear heating [START_REF] Regenauer-Lieb | Fast mechanisms for the formation of new plate boundaries[END_REF], [START_REF] Kaus | Initiation of localized shear zones in viscoelastoplastic rocks[END_REF], [START_REF] Crameri | Parameters that control lithospheric-scale thermal localization on terrestrial planets[END_REF], [START_REF] Thielmann | Shear heating induced lithospheric-scale localization: Does it result in subduction? Earth Planet[END_REF] ). Another way to localize strain is plastic yielding [START_REF] Trompert | Mantle convection simulations with rheologies that generate plate-like behaviour[END_REF], Tackley [2000a], [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF] ). As this mechanism is similar to the rheology of Carbopol where the rheology follows a Herschel-Bulkley law (cf. section 2.4), it is discussed in more detail here.

The models of Tackley [2000a] and [START_REF] Trompert | Mantle convection simulations with rheologies that generate plate-like behaviour[END_REF], [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF] employ plastic yielding to weaken the stagnant lid. The same approaches are used in all models of the respective authors (e.g. Tackley [2000a], van Heck andTackley [2008, 2011], [START_REF] Rolf | Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics[END_REF] and [START_REF] Stein | Plate motions and the viscosity structure of the mantle -insights from numerical modelling[END_REF], [START_REF] Stein | The pressure-weakening effect in super-Earths: Consequences of a decrease in lower mantle viscosity on surface dynamics[END_REF][START_REF] Stein | The influence of mantle internal heating on lithospheric mobility: Implications for super-Earths[END_REF] ).

In the models with plastic yielding, the viscosity consists of a temperature dependent contribution η T following an Arrhenius-type law and a stress contribution η E . The effective viscosity is then either taken as the minimum of those two viscosities (e.g. Tackley [2000a] ) or a mean viscosity is calculated (e.g. [START_REF] Trompert | Mantle convection simulations with rheologies that generate plate-like behaviour[END_REF], [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF], [START_REF] Van Heck | Planforms of self-consistently generated plates in 3D spherical geometry[END_REF] ) as

η = 2 1 η T + 1 η E (1.28)
which yields viscosity values slightly bigger than the minimum. The viscosity is nondimensionalized with the viscosity from the Rayleigh-number (cf. van Heck and Tackley [2008] ). The stress dependent contribution is calculated as a Bingham-type as
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η E = η * + σ Y (z) γ (1.29)
with a plastic viscosity η * = 10 -5 in the models of [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF], where this value was leading to the best plate-like behaviour. The viscosity is normalized by the surface viscosity. In the model of Tackley [2000a] the plastic viscosity is equal to zero and the stress dependent viscosity here is written as

η E = σ Y (z) 2 γ (1.30)
The depth dependence of the yield stress that we have seen in fig. 1.10A is mimicked in the numerical simulations using Byerlee's law where the yield stress is defined as

σ Y = σ 0n + σ brittle (1 -z) (1.31)
where σ 0n is zero in Tackley [2000a] and takes values between 2 and 13 in [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF]. Tackley [2000a] then calculates the yield stress as the minimum of σ Y and σ ductile (the upper stress limit for ductile deformation). Hence fig. 1.16 shows that the yield stress increases with depth until σ ductile is reached.

While Tackley [2000a] uses an upper cutoff to avoid infinite viscosities at vanishing shear rates, [START_REF] Trompert | Mantle convection simulations with rheologies that generate plate-like behaviour[END_REF] reference the biviscosity approach used by [START_REF] Burgess | Spin-coating of a viscoplastic material[END_REF], which is generally doing the same as an upper cutoff does, i.e. replacing the theoretically infinite viscosity at vanishing shear rate with a finite viscosity value. The 1.3. Thermal Convection resulting rheological laws are shown in fig. 1.17, depending on the strain rate. The yield stress is set to 200 MPa. If the lower cut-off in the model of Tackley [2000a] is chosen as the same value as η * in the model of [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF] the rheology behaves similar at high strain rates (η * = 10 16 Pa s in fig. 1.17). If the upper cut-off in Tackley [2000a] is chosen to be the same as the upper viscosity in the bi-viscosity approach of [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF], the models behave the same way at low shear rates. With a lower (cut-off) viscosity of 10 16 Pa s (e.g. η max = 10 25 Pa s in fig. 1.17). The Herschel-Bulkley model is shown for comparison, to illustrate that the different rheological laws are not that much different with the proper parameter-choice (σ 0 = 200 MPa, K ν = 0.01 η * , n = 0.6). Even though all three rheologies look different at first glance, they may describe the same, or at least a similar behaviour.

Two important characteristics of plates are the plateness and the poloidal-toroidal ratio. Plateness: The deformation of the surface can be calculated by regarding the squareroot of the second invariant of the strain-rate-tensor, which should be zero where there is no surface deformation, i.e. in the middle of plates and should approach one at plate margins. As there is also deformation within the plate, regions where the deformation is equal or less than 20% of the maximum surface deformation are still regarded as plates, see for example Tackley [2000a], [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF]. Poloidal-Toroidal-Ratio: A 3D-flow field can be divided into a poloidal and a toroidal component. The poloidal component describes convergent or divergent flow and is generated by buoyancy forces. Applied to the earth, poloidal flow is represented by subduction zones or spreading centres. A toroidal component describes strike-slip-motion and can be generated on earth i.e. by the rotation of a plate or transform faults. The ratio of these two components for the velocity field of earth's plate tectonics is between 0.25 and 0.5.

Depending on the yield stress and the viscosity contrast, [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF] observe different regimes (fig. 1.18). At high yield stresses and high viscosity contrasts the system stays in the stagnant lid regime. Lowering the yield stress, and intermittent episodic regime occurs, which would be a possibility to explain the episodic resurfacing observed on Venus. A more Earth-like behaviour, the mobile lid regime may develop for low viscosity contrasts at all yield stresses, whereby the yield stress allowing for the mobile lid regime decreases as the viscosity contrast increases.

These models are typically showing plate-like behaviour for a yield-stress range of 100 to 300 MPa, which is below the yield stress of about 700 MPa estimated from the observations of [START_REF] Kohlstedt | Strength of the lithosphere: Constraints imposed by laboratory experiments[END_REF]. A major drawback of those models is that (i) the above mentioned poloidal-toroidal ratio of those models does not match the observed ratio on Earth. However van Heck and [START_REF] Tackley | Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid[END_REF] could show that this strongly improves when using a spherical instead of a cartesian geometry. Advancement has recently been made by adressing problem (ii), that subduction is always two-sided in the models, which is contradicting the one-sided subduction that is observed on Earth. [START_REF] Rolf | Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics[END_REF] 
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Tackley HB [2004] and green boxes Herschel-Bulkley model (eq. 2.4). C and D show the differences between the models, normalized by the maximum difference. Red triangles show the difference between the Heschel-Bulkley model and the model employed by [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF], blue triangles pointing to the right show the difference between the Herschel-Bulkley model and the model employed by Tackley [2000a] and black triangles pointing to the left show the difference between the models of Tackley [2000a] and [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF]. : Different regimes evolving depending on the non dimensional yield stress and the viscosity contrast, modified from [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF]. The non dimensional yield stress is written as σ Y = d 2 σ dim /η 0 κ, [START_REF] Stein | The influence of mantle internal heating on lithospheric mobility: Implications for super-Earths[END_REF], where η 0 is the viscosity used to calculate the Rayleigh number.
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due to the heterogeneity introduced by the continents, and lead to one-sided convection beneath continents. However this model still does not explain how oceanic subduction zones work, i.e. where oceanic lithosphere subducts beneath oceanic lithosphere. Employing the sticky air method that allows for a deformation of the crust by adding a "stick" very viscous "air" at the surface, that usually has a viscosity of only a few orders of magnitude lower than the crust [START_REF] Schmeling | A benchmark comparison of spontaneous subduction models-Towards a free surface[END_REF] ), [START_REF] Crameri | A free plate surface and weak oceanic crust produce single-sided subduction on Earth[END_REF] obtain one-sided subduction of oceanic lithosphere. A free deformable surface is therefore a key ingredient.

Convection in a Fluid with Complex Rheology

Despite its importance for planetary bodies, only few studies deal with convection in yield stress fluids [START_REF] Zhang | Non-Boussinesq effect: Thermal convection with broken symmetry[END_REF][START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF], [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF][START_REF] Vikhansky | On the onset of natural convection of Bingham liquid in rectangular enclosures[END_REF][START_REF] Vikhansky | On the stopping of thermal convection in viscoplastic liquid[END_REF], [START_REF] Turan | Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls[END_REF][START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF], [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF], [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF], [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] ). From a theoretical point of view, the difficulty is that an instability cannot develop from a conductive profile submitted to infinitesimal perturbation [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF], [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF]. The combination of yield stress and shear thinning fluids is hardly studied, as either a Bingham fluid is used [START_REF] Zhang | Non-Boussinesq effect: Thermal convection with broken symmetry[END_REF], [START_REF] Vikhansky | On the onset of natural convection of Bingham liquid in rectangular enclosures[END_REF][START_REF] Vikhansky | On the stopping of thermal convection in viscoplastic liquid[END_REF], [START_REF] Turan | Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls[END_REF][START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] ), or a shear thinning fluid, that does not exhibit a yield stress [START_REF] Barr | Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites[END_REF], [START_REF] Solomatov | Onset of convection in fluids with strongly temperaturedependent, power-law viscosity[END_REF]. Convection in a fluid that presents weak shear 1. Introduction thinning effects and a yield stress has been studied by [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]. They conclude, that shear thinning favours convection, while a yield stress suppresses convection.

In a study that had started prior to my arrival at FAST, B. Gueslin and A. Davaille have performed laboratory experiments on the existence and morphology of thermal plumes in a yield stress fluid [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF], appendix A.1). The fluid used is Carbopol, a visco-elastic fluid, its rheology can be described by a Herschel-Bulkley model (e.g. [START_REF] Divoux | From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids[END_REF] ). A localized heat source is employed, consisting of a Peltier-element with copper plate on its top, placed in the centre of a square plexiglas tank. In this study we define a yield parameter, comparing the stresses due to the buoyancy of the fluid to the yield stress. Therefore the yield parameter is written as

Y 0 = αρgP kσ 0 , (1.32)
where P is the thermal power of the heat source and k is the thermal conductivity. A systematical variation of the supplied heat and the rheological properties of the fluids shows that depending on Y 0 , three different regimes may be observed (fig. 
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The previous section has shown, that two ingredients are needed to produce plate tectonics in a self-consistent manner: ). Note the mushroom-like structure of the instabilitiy in the Newtonian fluid and the evry smooth velocity field, compared to the finger-like shape of the instability in Carbopol, with a flat velocity field inside the instability and strong gradients of the velocity towards its edges.
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• temperature dependent viscosity, whereby the cold thermal boundary layer forms a stiff plate

• a weakening mechanism, which allows to localize the deformation within the cold plate. As a consequence the plate breaks and sinks into the mantle.

The characterization of convection in fluids with temperature dependent viscosity has largely been studied (cf. sec. 1.3.3). In contrast the knowledge about convection in a fluid that presents a yield stress and is shear thinning is sparse. Only two recent studies [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF], [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] ) deal with systematic experiments with convection in a yield stress fluid and characterize the onset and the dynamics. However several questions remain open. The episodic behaviour of the plume, where the plume reaches the surface in a second pulse [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ) opens the question whether a plume would need more pulses to reach the surface, if the height of the fluid was increased.

In order to study the influence on the dynamics of the plume, I have performed a series of experiments with different fluid heights (chapter 3). Another interesting question is, whether the Herschel-Bulkley model provides a suitable description of the fluid. Hence, I performed numerical simulations to compare to the laboratory results and to identify the relevant mechanisms that are responsible for the emplacement of the instability (chapter 4). The advantage of the numerical simulation is furthermore to avoid the large error on the measurement of the yield stress (cf. fig. 1.19). In chapter 5, I focus on the steadystate characteristics of the plume. Finally, in chapter 6, we shall go back to the Earth.

Here I show that the existence of intrusions in the lithosphere or in the mantle, can give us precious constraints on the rheology of the matrix into which those instabilities where emplaced.

Setup and Fluid

Setup and Heating

The setup consists of a plexiglass tank (cf. fig. 2.1) with a ground surface of 20 × 20 cm 2 which is 50 cm high with a free surface. The heater is placed in the center of the bottom of the tank and consists of a Peltier-element, which is put with the cold side on top of an aluminium plate. On top of the hot side, a copper disk is placed, to uniformly distribute the heat. The heating is embedded into a plexiglass plate, to avoid heat loss towards the sides and to provide clean boundary conditions for the comparison with numerical simulations. Thermocouples measure the temperature below the Peltierelement and inside the copper disk. The Peltier element is operated at constant electrical power. Voltage, current and power are measured every five seconds. The thermal power emitted by the hot side of the Peltier-element is calculated as follows [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] )

P = S P IT h + 1 2 R P I 2 -k P (T h -T c ) (2.1)
where S p is the Seebeck-coefficient, I the current, T h is the temperature measured in the copper plate, T c the temperature measured at the cold side of the Peltier element, R p is the electrical resistance of the Peltier element and k P its thermal conductivity. The accuracy of the thermal power is ≈ 10 % for an uncertainty in temperature of 0.1 K. The fluid is seeded with small spheres (Glass Hollow Spheres 110P8 from LaVision), which reflect the laser light. Images are recorded every ∆t. To calculate the velocity field, the PIV (particle image velocimetry) software DaVis 7.2 from LaVision is used. The image is divided with a grid into several windows. In each grid-window, the position of the intensity maximum of a group of particles is compared between two subsequent images. The displacement field (in pixels) can then be calculated via cross correlation and can then be converted into m/s by knowing how many pixels correspond to which distance and knowing ∆t. The accuracy in distance is in the sub-millimetre range.

Data Acquisition

TLC: Thermochromic Liquid Crystals

To visualize the temperature field we use thermochromic-liquid-crystals (TLC) from hallcrest. To protect them, the liquid crystals are encapsulated. They have a diameter of 10 to 40 µm. TLC reflect the light of a certain wavelength at a certain temperature. If illuminated with white light they therefore show different colors, depending on the temperature of the fluid. We are illuminating the setup with a laser with a wavelength of λ = 532 nm. Hence one type of TLC reflects this light at a given temperature and therefore highlights one isotherm. More details on this method are given in [START_REF] Davaille | Laboratory studies of mantle Convection[END_REF]. The TLCs have been calibrated imposing a stable temperature gradient, the values are given in table 2.2. For convenience, the temperature reflected by each type of TLCs will be referred to as the [24,27,31,35,39] • C-isotherm for Series 1 and [23,26,29,32,36] • C-isotherm for Series 2. 
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Development of a 3D Isotherm Visualization Method

To get familiar with the experimental techniques I have developped a 3D isotherm visualization method for the Rayleigh-Bénard experiment, at the beginning of my thesis project. Therefore the tank is scanned with a laser sheet. The setup (fig. 2.2) consists of a laser beam directed with an optical fibre onto two mirrors. The vertically fast flipping mirror creates the laser sheet, flipping at frequency 100 Hz < f < 1000 Hz). The horizontally slow flipping mirror is then used to the tank. Good results are obtained for 40 images over the 30 cm long box, over two seconds, as the frame rate of the camera (Image ELite by LaVision) is limited to 10 -12 images per second.

The idea of the developed method is to first isolate the brightest isotherm of each picture (which corresponds to different depths inside the tank) and then to reconstruct a surface of the brightest isotherm. One problem of this method is, that it is important to get rid of strong reflections to avoid to reconstruct those reflections instead of or in addition to the isotherm. Therefore it is important to have a good synchronization of the mirror that moves the laser sheet and the camera, because then it is possible to subtract the first picture and to get rid of reflections on the boundaries of the box. In a next step a median filter is used to get rid of the so called "salt-and-pepper-noise" due to the spherical particles used for PIV. Then a Gaussian filter is applied to smooth the image. Afterwards the gradient is calculated. As the intensity is highest in the middle of an 
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isotherm, the gradient is pointing "away" from these points where it is approximately zero.

As the gradient is also zero where there is no intensity at all, it is not sufficient to use the gradient as the only criteria to identify an isotherm. Therefore it is used in combination with a threshold-value for the intensity. If the criterion is fulfilled, the program writes a zero on a place in a matrix corresponding to the position of the considered point, otherwise it writes a one. This procedure is repeated for each picture, then patch and isosurface are used to reconstruct an isosurface of all those values which are zero. To get a better idea of the height, this isosurface can then also be color coded, cf. fig. 2.3. The method is summarized in appendix B.1.

Numerical Simulation

The physical model is based on the assumption of conservation of mass, momentum and energy. The set of equations (1.16-1.18) is discretized using a finite volume method on a staggered grid and solved with an iterative multigrid method, implemented in the code StagYY. Code details and benchmarking for constant viscosity and temperaturedependent viscosity cases are described in detail in [START_REF] Tackley | Three dimensional models of mantle convection: Influence of phase transistions and temperature-dependent viscosity[END_REF][START_REF] Tackley | Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid[END_REF] ( [START_REF] Tackley | Three dimensional models of mantle convection: Influence of phase transistions and temperature-dependent viscosity[END_REF] pp. 286-290 for benchmarking results). For the diffusive term, second order finite differences are used, and a second order upwind scheme is used for the advective terms. The convergence criterion is met, if the normalized residuals of the momentum and continuity equations is smaller than 10 -2 . In the staggered grid method, scalar variables, such as pressure or temperature, are defined at the cell centre, while the velocity is located at the faces of the cells (fig. 2.4). More details on the code and the employed rheological law are given in chapter 4.

Thermal and Rheological Properties of Carbopol

Carbopol is a powder that consists of micron-size particles. If diluted in water those particles swell. The pH of this solution is (for 0.6 g/l in distilled water) around pH = 3.5 and therefore acidic. Adding NaOH to the mixture leads to an extensive swelling of the particles up to 10-1000 times in volume [START_REF] Lee | Investigating the microstructure of a yield-stress fluid by light scattering[END_REF], [START_REF] Oppong | Mircorheology and jamming in a yieldstress fluid[END_REF] ). The neutralized solution forms a transparent, stable gel ( [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF] )) and is therefore ideal for the visualization techniques used in this study.

Flow Test

The rheology of the fluid was determined by using a Physica MCR501-rheometer (Anton Paar, www.anton-paar.com) with a coaxial cylinder geometry (CC27, cf. fig. 2.5). The measuring bob diameter is 26.664 mm, the measuring cup diameter 28.32 mm and the gap length is 40 mm. The geometry is temperature-controlled by a Peltier element and maintained at T = 20 • C. To prevent evaporation we used a solvent trap. To avoid wall slip effects at the inner cone [START_REF] Roberts | New measurements of the flow-curves for Carbopol dispersions without slip artefacts[END_REF], [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF]), we used very fine sandpaper (i.e. 50 µm average grit size).

Measurements with Sandpaper

The sandpaper increases the bob diameter to 27.23 mm, which has to be taken into account. How the stress can be calculated from the torque measured in the rheometer is for example described in [START_REF] Macosko | Rheology: principles, measurements, and applications[END_REF]. The stress is calculated as follows

σ = 1 + δ 2 2000 δ 2 M 2π L r 2 i C L , (2.2) 
where δ is the ratio of the radius of the cup (r e ) and the bob (r i ), M is the torque measured by the rheometer, L is the length of the cone and C L is a correction factor. The shear rate then is calculated as follows

γ = π n v 30 1 + δ 2 δ 2 -1 (2.3)
where n v is the speed measured in 1/min. The other values are L = 39.999 mm and C L = 1.1. To validate the applicability of the sandpaper and the corrective calculations, measurements on glycerol have been performed, whose viscosity is η = 1.412 Pa s for pure glycerol [START_REF] Segur | Viscosity of glycerol and its aqueous solutions[END_REF] ). The measurements (fig. 2.6) show good agreement between the measurements that haven been done without and with the sandpaper and fall on the value of η = 1.412 Pa s. To verify the repeatability of the rheological measurements we carried out two tests under the same conditions (fig. 2.7). First the fluid was pre-sheared at the lowest shear rate measured in the flow test for a duration of 600 s. We then decreased the shear rate from 100 s -1 to 10 -4 s -1 (or 10 -3 s -1 respectively), increasing the measurement-time from 15 s at γ = 100 s -1 to 3000 s at γ = 10 -4 s -1 , following a logarithmic ramp in order to measure sufficiently long. This is important to avoid transitional effects that can occur when the product of time measured at one shear rate and the shear rate itself becomes smaller than one, ∆t MP γ < 1, e.g. [START_REF] Mezger | The rheology handbook: for users of rotational and oscillatory rheometers[END_REF]. This is the case for γ < 10 -3 s -1 (fig. 2.7 dashed grey line), and therefore those values have to be neglected. But even then the effective shear on the fluid is low, as the number of revolutions (n o ) at γ = 10 -3 s -1 is very low, i.e. n o = 0.016. Hence we also show results for a stricter criterion, regarding only values where n o > 0.05. This implies that only values measured at shear rates γ > 10 -2 s -1 (fig. 2.7 straight grey line) can be considered. Therefore the yield stress is in between σ 0 = 0.07 Pa and σ 0 = 0.1 Pa with a total error of 30 %.

The rheology of such a fluid can be described by a Herschel-Bulkley model (e.g. [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF], [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF], [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF] )

σ = σ 0 + K ν γn (2.4)
where σ is the stress, σ 0 the yield stress, K ν the consistency, γ the shear rate and n the shear-thinning parameter. Various measures for the yield stress exist in standard rheology.

In this thesis the first definition will be used

• 1) Rotational test: Decreasing the shear rate and measuring the stress in the limit of vanishing shear rate • 2) Amplitude sweep test: sweeping the amplitude from low to high values at constant frequency. The yield stress corresponds to the stress where the storage (elastic) modulus G′ and the loss (viscous) modulus G′′ cross.

• 3) Rotational test at constant low shear rate: the stress increases through a maximum value and then decreases towards a constant value. The yield stress maybe defined as the value where the increasing stress deviates from a normal development or as the constant value towards which the system evolves.

The definition applied in this thesis will correspond to the first. We therefore fitted our data with a Herschel-Bulkley model. For the range γ > 10 -3 s -1 (respecting the measured values as upper and lower limits) the fit results in a yield stress range σ 0 = [0.0700, 0.0715] Pa with n = 0.58 and K ν = 1.403 Pa s 1/n . For the more strict criterion γ > 10 -2 s -1 we find a yield stress range of σ 0 = [0.0700, 0.1000] Pa, with n and K ν as above.

Dependence of Rheology on pH

A detailed study of how the rheology of Carbopol changes with pH and concentration is given by [START_REF] Gutowski | Scaling and mesostructure of Carbopol dispersions[END_REF]. They also provide a quantitative analysis of the influence on the structure (fig. 2.8). The dark region is water, the lighter regions are the Carbopol particles. The images show, that increasing the pH leads to a swelling of the particles. We have conducted a series of measurements with Carbopol ETD 2623 (Noveon) to test the sensitivity towards changing the pH of the fluid. Fig. 2.9 shows, that the fluid hardly presents any yield stress at pH = 6. The yield stress then first increases with increasing pH and decreases again, as also found in [START_REF] Gutowski | Scaling and mesostructure of Carbopol dispersions[END_REF].

(i) (ii) (iii) (iv)

Sweep Test

One possibility to characterize viscous and elastic material properties is an amplitudesweep test, where the material is deformed with a sinusoidal amplitude at fixed frequency. The procedure is described in details in [START_REF] Macosko | Rheology: principles, measurements, and applications[END_REF]. The strain is calculated as follows

γ = 1 10 1 + δ 2 δ 2 -1 Φ (2.5)
where Φ is the deflection angle. The stress is calculated as in equation 2.2. The storage (elastic) modulus G ′ and the loss (viscous) modulus G ′′ are then calculated as follows

G ′ = σ cos(φ) γ and G ′′ = σ sin(φ) γ , (2.6) 
where φ is the phase angle. Fig. 2.10 shows an amplitude-sweep test performed on Carbopol. G ′ and G ′′ have the same order of magnitude, i.e. the material is visco-elastic. The fluid used in the plume experiments is a mixture of Carbopol (ETD2050, Lubrizol), distilled water and pure Glycerol1 . For the experiments, between 10 and 18 l were prepared in different batches. Each batch contains a mixture of 30 -50 Vol.% Glycerol in water. After mixing, 0.6 g/l Carbopol were added and stirred with a magnetic agitator for two days to hydrate. To guarantee that the fluid is stable and presents a yield stress which is not too big (cf. 2.4.2) each batch was neutralized to a pH = 7.5 ± 0.2 with a NaOH solution (5 M), using a pH-meter ISFET (IQ Scientific Instruments Inc., www.phmeters.com) whose pH range is between 0.00 and 14.00 with an accuracy of 0.01. Once the fluid reaches a certain pH-value (pH ∼ = 6) a significant yield stress appears (cf. fig. 2.9). This causes NaOH drops to stay on top of the fluid and homogeneous mixing becomes difficult. We therefore mixed the fluid carefully by hand, in addition to the magnetic agitator, to be sure to measure a pH, which is representative for the whole fluid. Bubbles due to mixing of the fluid were removed by using an ultrasound bath. The ultrasound causes the bubbles to merge together, hence they become buoyant enough to rise. After a few days we mixed all Carbopol batches, added TLCs and particles for PIV and finally poured the mixture into the tank.

Setup and Fluid
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.11.: A: stress and B: viscosity for measurements and fits of the fluids used in this study, the values are listed in table 2.3.

Flow Test Tesults for Carbopol used in the Plume Experiments

The rheological properties have been determined following the procedure in section 2.4.1.2. The glycerol-water ratio has been 50/50 (V ol%) for all fluids, except CBP5 (33/67) and CBP8 (55/45). CBP10 has been neutralized to a higher pH (pH = 9 ± 0.2). The results from the flow test and the corresponding fits are shown in fig. 2.11, whereby the parameters used for the fits are summarized in table 2.3. The yield stress of the different batches changes over almost one order of magnitude between σ 0 = 0.05596 Pa and σ 0 = 0.3337 Pa. Besides the different glycerol-water ratios and pH, different effective rheologies maybe due to the preparation procedure. Due to the magnetic agitator, some Carbopol may stick to the wall of the beaker and not go into the fluid, therefore lowering the effective concentration. Some measurements present strong shear banding, when the stress values do not follow the yield stress plateau, but form a "hump" instead (cf. fig.

(i) CBP8

, between γ = 10 -2 s -1 and γ = 10 0 s -1 ). The shear banding-effect is largely discussed in literature (e.g. [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF][START_REF] Coussot | Transition from a simple yield stress fluid to a thixotropic material[END_REF], [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF] ) and occurs below a critical deformation (fig. 2.12) where the transition from the solid towards the liquid regime occurs [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF] ).

Amplitude Sweep Test Results for Carbopol used in Plume Experiments

For some samples, an amplitude sweep test has been performed. The measurements are shown in fig. 2.13 and the average values for the visco-elastic properties in the linear visco-elastic range (LVE) are summarized in table 2.3. Generally storage and loss modulus are of the same order of magnitude. While for CBP5 and CBP12 the storage modulus is higher than the loss modulus, it is the other way round for CBP6 and CBP8.

Thermal Properties of Fluids used in the Plume Experiments

The fluid properties are summarized in table 2.4. The density has been determined using a DMA 4100 densimeter (Anton Paar, www.anton-paar.com) with an accuracy of 0.001 g/cm 3 . cf. fig. 2.14. The thermal expansivity α has been determined from the slope of the curve of the density as a function of temperature within the linear range between 20 • C and 40 • C. Thermal conductivity k and heat capacity C p have been determined from the properties of water and Glycerol. 

Name σ 0 [Pa] K ν [Pa s n ] n [-] G ′ [Pa] G ′′ [
T [°C] ρ [g/cm 3 ] CBP5 CBP6 CBP8 CBP10 CBP11 CBP12 CBP13 CBP14

Regimes, Onset and Morphology

To complete the study started by B. Gueslin and A. Davaille [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ), I have carried out a number of new experiments. In these experiments I focussed on the long-time behaviour of the thermal instability. I have varied the height of the fluid and extended the observation time (table 3.1). To better understand certain aspects, I have complemented the experiments with numerical simulations and a detailed parameter study (chapter 4).

Regimes and Onset -Influence of the Source Geometry

In [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] (for details see Appendix A.1), we have shown, that the development of a plume depends on whether the thermally induced stress σ th is sufficiently high to overcome the yield stress σ 0 of the fluid. Thereby the thermally induced stress is due to the stress acting on the surface of the hot pocket forming around the heater and is defined as

σ th = αρgP k , (3.1)
where ρ is the density at room temperature. The ratio of σ th and the yield stress is called the yield parameter Y 0 = σ th /σ 0 . For experiments with the same fluid, but operated at different power P , three regimes are distinguished by two critical values of the yield parameter. In [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] we found, that at Y 0 < Y c1 = 120 ± 15 the fluid does not move at all. For Y c1 < Y 0 < Y c2 = 260 a small cell develops, whose convective motion is confined around the heater. Only for Y 0 > Y c2 = 260 a plume rises through the fluid. Fig. 3.2A shows the regime diagram for the experiments from [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] and this study, where circles stand for the regime with no motion, triangles for the cell and squares for the plume regime. The two studies clearly do not show the same trend (fig.

3.2A and B

). There is a systematic shift for the two boundaries Y c1 and Y c2 . This is also observed for the onset time. As the fluid employed is the same, this has to be due to the different geometries of the heat sources. The difference could be due to the different mechanical boundary condition. While they are rigid in this study, they are a mixture of rigid and free-slip in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF]. But this effect should make it easier for the instabilities observed in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] to evolve, as shown by [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF]. However the opposite is observed here. Another reason could be the power available by the plume. While [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] use a Peltier element with a copper plate on its top, in this study we insulate the copper plate towards the sides with a plexiglas plate, for easier comparison with numerical simulations. Therefore the calculated thermal power is distributed in different ways. While in this study heat can only escape through the top of the copper plate, in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] heat also goes trough the side walls of the copper plate. As we have no measure for the heat distribution below the copper plate (where the Peltier element is cooling and heating the fluid), we assume that the biggest heat loss occurs at the sides. To test this assumption simple geometrical analysis gives a correction for the thermal power as: 

P P lume = P πr 2 Cu πr 2 Cu + 2πr Cu d Cu , ( 3 

Evolution and Morphology

In [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] we show that the thermal instability evolving in Carbopol does not have the classical mushroom-like shape as encountered for less viscous hot plumes in Newtonian fluids, but more a finger-like shape (fig. 3.3A). Furthermore we can see that deformation is very localized to the thermal instability. When increasing the height of the fluid, another interesting aspect may be observed. As plume rises, it stops midway 3. Regimes, Onset and Morphology in the tank (fig. 3.3B). While the material inside the instability continues to convect, the material above is not moving, i.e. an unyielded region persists at the top of the box. To better understand why the plume stops at a given height and what is the role of the rheological parameters, I performed numerical simulations, systematically varying the rheology of the fluid. 

Numerical Simulation of Thermal

Plumes in a Herschel-Bulkley Fluid1 

Abstract

We present a three dimensional numerical study of thermal plumes, developing from a localized heat source in a yield stress and shear thinning fluid. We assume that the fluid viscosity follows a Herschel-Bulkley law with a low shear rate viscosity plateau. Comparison of the plume onset time and morphology observed in the numerical study and in laboratory experiments with Carbopol shows good agreement. An extensive parameter study allows us to identify two local non-dimensional parameters that determine whether a plume rises through the fluid. The first parameter is the Bingham number, Bi, which compares the yield stress to the viscous stress. The second parameter, the yield number Ψ, compares the stress induced by the buoyancy of an equivalent hot sphere to the yield stress. We find that a plume develops only if Ψ > Ψ c = 5 ± 1.2 and Bi < Bi c = 1. As the plume rises it loses its buoyancy due to heat diffusion. So the upward progression of the plume halts as soon as Ψ < Ψ c or Bi > 1. Hot fluid continues to rise from the bottom of the tank but spreads under an unyielded, high viscosity region at the top of the box.

Introduction

Thermal convection and instabilities in yield stress fluids occur in many different fields, from engineering (food-or glass production, [START_REF] Hunt | Industrial and environmental fluid mechanics[END_REF], [START_REF] Steffe | Rheological methods in food process engineering[END_REF] ) to geoscience (formation of dikes and diapirs in the lithosphere or convection in icy satellites [START_REF] Solomatov | Onset of convection in fluids with strongly temperaturedependent, power-law viscosity[END_REF] ). Despite its huge importance it is still not very well understood.

The theoretical difficulty in studying such systems is caused by an infinite viscosity as the shear rate approaches zero. Therefore an instability cannot grow from a conductive profile exposed to an infinitesimal perturbation [START_REF] Solomatov | Onset of convection in fluids with strongly temperaturedependent, power-law viscosity[END_REF], [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF], [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF] ). Former studies on thermal instabilities in Rayleigh-Bénard convection in a yield stress fluid considered either a Bingham fluid (Zhang et al.
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[2006], [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF][START_REF] Vikhansky | On the onset of natural convection of Bingham liquid in rectangular enclosures[END_REF][START_REF] Vikhansky | On the stopping of thermal convection in viscoplastic liquid[END_REF], [START_REF] Turan | Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls[END_REF][START_REF] Turan | Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure[END_REF] ) or a purely shear thinning fluid [START_REF] Barr | Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites[END_REF], [START_REF] Solomatov | Onset of convection in fluids with strongly temperaturedependent, power-law viscosity[END_REF] ). However, fluids exhibiting a yield stress as well as shear thinning behaviour have not been studied extensively. Balmforth and Rust [2009] investigated the stability of a weakly non-linear fluid concluding that shear thinning favors an early onset of convection whereas a yield stress suppresses convection. The same authors tested their numerical predictions experimentally on Carbopol solutions in a Rayleigh-Bénard setup and found that fluids with a high Carbopol concentration, i.e. high yield stress, start to convect only if exposed to finite perturbations.

In a recent study [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] investigated the development of a thermal plume in Carbopol rising from a localized heat source. The Carbopol rheology can be described by a Herschel-Bulkley model [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF], [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF], [START_REF] Oppong | Mircorheology and jamming in a yieldstress fluid[END_REF], [START_REF] Divoux | From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids[END_REF] ). The experiments showed that thermal instabilities in a yield stress fluid behave very differently from those in Newtonian liquids.

A key parameter is the yield parameter, Y 0 , which compares the thermally induced stresses to the yield stress and is therefore written as

Y 0 = α ρ g P k σ 0 , (4.1)
where α is the thermal expansivity, ρ is the density of the fluid at ambient temperature, g the acceleration due to gravity, P the thermal power supplied by the heat source, k the thermal conductivity and σ 0 the yield stress of the fluid. Depending on the yield parameter Y 0 , the system evolves into one of three regimes, which are seperated by two critical yield parameters, Y c1 and Y c2 (cf. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ). For Y 0 < Y c1 only elastic deformation occurs, while for Y c1 < Y 0 < Y c2 a small cell slowly convects around the heater. Only a high yield parameter (Y 0 > Y c2 ) allows the cell to evolve into a plume. This yield parameter is not to be mistaken for the yield number, Ψ, which is applicable to problems involving rising bubbles (Dubash andFrigaard [2004, 2007] ) or sinking spheres [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ) in a yield stress fluid. The yield number is defined as

Ψ = ∆ρ g 2 r eq 3 σ 0 . (4.2)
For bubbles and spheres, ∆ρ is the density difference between the object and the fluid and r eq is the radius of the object. Bubbles or spheres move if Ψ > Ψ c = 6.85 [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], Dubash andFrigaard [2004, 2007], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ). For a thermal instability, ∆ρ = α ρ ∆T and r eq corresponds to the radius of a sphere with a volume equivalent to the volume of the hot pocket that forms around the heater [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ). Therefore for a thermal instability, although Y 0 is constant, Ψ evolves with time as the thermal boundary layer grows. It has been observed experimentally that the plume develops when Ψ > 8.8 ± 0.7 [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ).

The onset time t 0 of this plume, i.e. the time at which the plume starts to rise, depends 4.2. The Model on the yield parameter and increases with decreasing yield parameter. As Y 0 tends to Y c2 , the onset time goes to infinity. The shape of the thermal instability looks like a finger, unlike in a Newtonian fluid, where hot, less viscous plumes have a mushroom shape with a big head on a thin stem [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF] ). Most deformation is localized to the edges of the thermal anomaly and is orders of magnitude smaller within the thermal anomaly. This produces a pseudo-plug area on the plume axis. The evolution in time changes, depending on the rheological parameters of the fluid. For small consistencies, K ν , the plume can show an episodic behaviour whereas it rises continously for high K ν .

In this study we use numerical simulations to investigate the extent to which a purely viscous fluid description, using a regularized Herschel-Bulkley model, is able to describe the evolution from the cell to the plume instability as well as the instability itself. We therefore systematically vary rheological and thermal parameters, as well as the applied thermal history of the heated patch. To confirm the adequacy of the model, we compare the morphology, the evolution in time and the dependence of the onset time on the yield parameter, Y 0 , observed in our numerical model to laboratory results. This validation allows us to study a well defined parameter range, avoiding the uncertainties due to the difficulty in accurately measuring the rheological parameters in the laboratory. The advantage of numerical simulations is that they allow us to test how each rheological parameter, yield stress σ 0 , consistency K ν and shear thinning exponent n, influence the evolution of the plume instability. We therefore varied these parameters systematically. Access to the full three dimensional fields allows us to find the key parameters that characterize the dynamics of the thermal instability.

The Model

Governing Equations

In this study, we consider the fluid to be incompressible and in the Boussinesq approximation. Furthermore we neglect viscous dissipation [START_REF] Gebhart | Effects of viscous dissipation in natural convection[END_REF] ). The fluid can be described by the simplified equations for conservation of mass

∇ • v = 0 (4.3) momentum Dv Dt = - 1 ρ 0 ∇p + α ∆T g e z + ∇ • σ (4.4)
and energy

DT Dt = κ∇ 2 T (4.5)
where v is the velocity, D/Dt = (∂/∂t + v • ∇) the material derivative, ρ 0 is the density of the ambient fluid, p the pressure, α the thermal expansivity, ∆T the temperature difference between heater and ambient fluid, g the gravity acceleration, σ the stress tensor, T the temperature and κ the thermal diffusivity.

The Model Rheology

The viscosity of Carbopol depends mainly on the shear rate, but also on temperature. The shear rate dependence can be described with a Herschel-Bulkley model [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF], [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF], [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF] ), which implies infinite viscosity as the shear rate approaches zero. To avoid this difficulty in the numerical simulations we apply a viscosity truncation. Different models exist for a regularized Herschel-Bulkley model (e.g. [START_REF] Alexandrou | Steady herschel-bulkley fluid flow in three-dimensional expansion[END_REF], [START_REF] Zhu | Non-Newtonian fluids with a yield stress[END_REF] ). We choose the model of de Souza [START_REF] De | Viscosity function for yield-stress liquids[END_REF] due to its convenience for curve-fitting of the rheology measured in the laboratory. This allows for an easier comparison of simulations and experiments. The adequateness of this model to describe the flow of a Carbopol solution through an axisymmetric expansion has been demonstrated in de Souza Mendes et al. [2007]. In a tensorial representation it is written as

σ = 1 -exp -η 0 γ σ 0 (σ 0 + K νT γn ) γ γ-1 , (4.6) 
where the expression in the first bracket is the regularizationterm and the expression in the second bracket describes the Herschel-Bulkley model. The yield stress is given by σ 0 , K ν is the consistency, n the shear thinning exponent and γ the magnitude of the strain rate γ. η 0 represents the upper viscosity cut-off and is chosen to be η 0 = 10 8 Pa s in all the calculations. In section 4.3.2.1 we show that the dynamics of the plume is mostly independent of the cut-off value. To avoid too large viscosity contrasts, our numerical code uses an additional lower cut-off for the viscosity. However, we made sure that this lower value is never reached, so that it does not influence the dynamics. The value was set to η min = 0.01 Pa s for K ν ≤ 0.1403 Pa s n and to η min = 0.1 Pa s for the other cases.

The laboratory measurements showed that σ 0 and n do not depend on the temperature. However the consistency K νT varies with temperature, following an Arrhenius-type law -273.15) , (4.7)

K νT = K ν A e B (T
where A = 1.6927, B = -0.0257 K -1 and where K ν is the consistency at room temperature T = 293.15 K (for details see Appendix A).

The Numerical Model and Boundary Conditions

We solve the set of equations (4.3) -(4.5) using a finite volume discretization on a staggered grid, implemented in the code StagYY. Code details and benchmarking for 
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constant viscosity and temperature-dependent viscosity cases are described in detail in [START_REF] Tackley | Three dimensional models of mantle convection: Influence of phase transistions and temperature-dependent viscosity[END_REF] (pp. 286-290 for benchmarking results) and more briefly in [START_REF] Tackley | Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection[END_REF][START_REF] Tackley | Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles[END_REF]. For the diffusive term, second order finite differences are used, and a second order upwind scheme is used for the advective terms. The convergence criterion is met, if the normalized residuals of the momentum and continuity equations is smaller than 10 -2 . Even though most of the characteristics observed for the plume in the laboratory are axi-symmetric, the tank in the laboratory is not. We need to use straight walls in order to avoid optical distortions during the visualization. To ensure the same boundary conditions as in the laboratory, we use a three-dimensional Cartesian box (fig. 4.1). The box is 20 cm long and wide and 40 cm high with a resolution of 64 × 64 × 128 grid points. We verified that higher resolutions give the same results. The boundary conditions are described by a no-slip and zero-flux condition for the bottom and sidewalls. The top boundary is freeslip and kept at ambient temperature. To compare with the experiments, for which the heating power is constant, we prescribed the temperature history of the heater measured in the laboratory experiments. We calculate the thermal power P , defined as the surface integral of the heat-flux

P = Q dA, (4.8)
which is needed for comparison with the laboratory experiments (e.g. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ), where Q denotes the heat flux and dA the surface through which the heat flux is measured. For the numerical simulations the thermal power is constant within 5 % through time, prior to the onset, and increases when the plume rises, as the heat flux is increased. We generally refer to the minimum value, when dealing with the thermal power P . Due to the numerical grid (fig. 4.1 B) the heated surface is smaller than the surface of an equivalent circle with the same radius. With the resolution 64 × 64 × 128 and a radius of r = 1.25 cm this implies a heated surface of 3.93 cm 2 instead of the surface of the circle 4.91 cm 2 . The smaller surface of the disk results in a smaller heat flux and therefore a smaller thermal power P . However, [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] showed that the system depends strongly on the yield parameter Y 0 (equation 4.1), therefore a smaller P can be adjusted with a higher σ 0 or α.

The Laboratory Experiments

The setup of the laboratory experiments and the procedure by which the fluid is prepared is described in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF]. The heater consists of a Peltier element underneath a copper disk. In the first set of experiments [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ) the heater was placed on top of the tank bottom (fig. 4.1 C). In addition, we performed a series of experiments with a flush mounted heater (fig. 4.1 D), in order to mimic the boundary conditions in the numerical simulations. Additionally in the new series we also studied the influence of higher fluid depths, up to h = 39.2 cm.

Validation of the Purely Viscous Description

Validation of the Purely Viscous Description

Input and Output Parameters

In this study we systematically vary the thermal and rheological parameters (values listed in table 4.1) to evaluate the effect on the dynamics of the plume. Here we will briefly demonstrate the general evolution of a plume and how we evaluate the diagnostic parameters (listed in table 4.1). From equation 4.6, we can calculate an effective viscosity where the plume stops, h y , as the maximum height of the stagnation point. This height only varies very gently through time, once a quasi stationary state is reached. This is assured for all calculations 50 min after the onset of the plume, when the height changes become negligibly small (< 1mm over 50 min). We always measure this height at the end of each calculation. 

η = σ γ-1 = 1 -exp -η 0 γ σ 0 (σ 0 + K ν γn ) γ-1 . ( 4 

Influence of the Model Simplifications
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Table 4.1.: Shear thinning exponent n, consistency K ν , yield stress σ 0 , thermal expansivity α, onset time t 0 , the thermal power P, height reached by viscosity minimum at plume head at for all numerical simulations h y and respective yield parameter Y 0 . Onset-time marked with * indicate that no plume develops even after that time. 3). This shows that the regularization has no significant influence on the plume's behaviour. Given this result, all simulations were run with the same viscosity cut-off value of η 0 = 10 8 Pa s.

# σ 0 K ν n α t 0 P h y Y 0 # σ 0 K ν n α t 0 P h y Y 0 [Pa] [Pa s n ] [-] [ 10 -4 /K] [min] [W] [cm] [-] [Pa] [Pa s n ] [-] [ 10 -4 /K] [min] [W] [cm] [-] 1 0.
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Dependence on the Thermal History

The laboratory experiments [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ) have a constant heating power, which leads to a temperature drop in the copper plate when heat is suddenly taken away by the plume lift off (fig. 4.4 A i) solid blue line). However, in the present paper we intend to vary the rheological parameters. An increase in the yield stress will then lead to an increase in the onset time. If the onset time lies beyond the onset time of the laboratory experiments, a temperature drop in the heated patch would influence (delay or suppress) the onset time or might affect the dynamics of a plume that starts before the laboratory plume. Therefore we generalize the heating history by smooth prolongation of the thermal history curve prior to the onset (cf. fig. 4.4 A i) dashed orange line). In the case of the real temperature history the unyielded region is slightly larger, i.e. h y is smaller, than for the generalized heating. As the supply of heat drops slightly in the laboratory case, the plume is less buoyant and rises less high. However, the difference is rather small, 3% of the absolute value (cf. cross section at 250 min fig. 4.4 B). Keeping this in mind we will use in most of the runs the simplified heating history as shown by the dashed orange line in fig. 4.4 A i).

Comparison with Laboratory Experiments

The uncertainties of the laboratory experiments, e.g. an error of 30 % [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ) on the yield stress, make it difficult to match the exact conditions and to reproduce a series of experiments. As we will show in detail later, the system is very sensitive to small changes, not only in yield stress, but also in shear thinning exponent or in consistency. However, we will show here that the basic characteristics of laboratory experiments, e.g. a finger-like instability and a strong dependence of the onset time on the yield parameter Y 0 [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ), are well captured by our numerical model. Furthermore, in a new set of laboratory experiments with a larger fluid height, we observe the persistance of unyielded regions even after the plume is established. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] had not been able to observe this phenomenon, due to the smaller fluid height. This will allow us to examine in more detail how each rheological property affects the dynamics of the system.

Onset and Evolution

Fig. 4.5 shows the dependence of the onset time on the yield parameter Y 0 , for the numerical simulations, the flush mounted experiments and the bottom mounted experiments [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ). The onset-time of the plume strongly depends on the yield parameter Y 0 . The numerical simulations show a good agreement with the results obtained with the modified setup, where the heating is flush mounted. The critical value for the flush mounted experiments and for the numerical simulations is Y c ≈ 165 ± 25. The dash-dotted line in Fig. 4.5 marks the lower limit at Y 0 = 140, and the error can be explained with the uncertainties in the laboratory measurements (10 % on the thermal Power P and 30 % on the yield stress σ 0 ). However, the critical value for the flush mounted experiments is well below the value for the bottom mounted heating determined by [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] of Y c2 = 260. We attribute this discrepancy to the different heater shapes, which will change the local stress distribution. The plot suggests that n and K ν also influence the onset time, however this will be discussed later. Globally, the plot shows that the onset time approaches two asymptotical values, depending on the yield stress. For low yield parameter, i.e. when the yield stress is important compared to the thermally induced stresses, the onset time is increasing rapidly with decreasing Y 0 . On the other end, for high yield parameter, i.e. low yield stresses, the onset time approaches a finite limit. This is to be expected as the system turns towards the purely shear thinning or Newtonian case.

In Fig. 4.6 the typical spatiotemporal evolutions of a plume for both laboratory and numerical simulations, are compared. Fig. 4.6 A presents the time evolution of the heated patch for experiment (black) and simulation (grey), in the case where we used the real temperature history. Fig. 4.6 C shows a typical snapshot of the plume in the laboratory experiments. The white broad lines outlined in colour are isotherms (blue dash dotted: 23.9 • C, yellow dotted: 31.1 • C, red dashed: 39.9 • C) and thin white lines correspond to particle trajectories. Therefore a horizontal line indicates a particle at rest and white streaks upwards and towards the right are particles moving upwards along the axis. Fig. 4.6 D shows the vertical viscosity profile on the plume axis for the numerical simulations where the viscosity increases from dark blue to dark red. Black lines indicate the position 4. Numerical Simulations of the same isotherms as visualized in the laboratory, where temperature is increasing from inside (bottom) to outside (top).

The thermal power in the laboratory is P = 1.85 ± 0.185 W, the yield stress is determined to be σ 0 = 0.09 ± 0.015 Pa, the consistency K ν = 1.403 ± 0.2 Pa s n and the shear thinning exponent is determined to be n = 0.58 ± 0.01. The measurements have been done using a Physica MCR501-rheometer (Anton Paar, www.anton-paar.com) with a coaxial cylinder geometry (CC27).

We find a good agreement of the onset-time derived from the numerical simulation and the laboratory experiment (t 0 = 119.9 min in the laboratory, t 0 = 120.59 min in the simulations, t = 120 min indicated by the green dashed line) with the parameter-combination P = 1.14 W, σ 0 = 0.068 Pa, K ν = 1.403 Pa s n and n = 0.58. The thermal properties are the same with small errors on the values for the experiments. The thermal expansivity is α = 4.78 ± 0.01 K -1 and the thermal conductivity is k = 0.435 ± 0.02 W / m K. Therefore we can calculate the yield parameter for the laboratory experiments Y 0 = 266.86 ± 71.09 and for the numerical simulations Y 0 = 208.36. The value for the simulations is well within the error range of the laboratory experiments, explaining the good agreement of the onset times.

However, a match of both onset times does not necessarily imply an identical behaviour of the developping instability (fig. 4.6). This is most evident for the isotherms, which, for the simulations, propagate much higher at the onset than in the experiment. There are also similarities: the upper part of the box remains unyielded through time, as indicated by the green arrows. In the experiments this can be seen by following the particles in the upper part of the box. They describe a horizontal line, i.e. the particles are not moving (fig. 4.6 B). In the numerical simulations the very high viscosity (dark red regions in the figure) indicates that shear rate vanishes and that the fluid is not moving. The maximum shear rate at the plume head is represented by the low viscosity in this region as highlighted by the horizontal black dashed line. Above this line viscosity increases rapidly.

The Plume Morphology

Fig. 4.7 shows that small shear rates are already present before the plume evolves, while the isotherms (black lines) still have a circular shape. A small cell is convecting around the heater and as the shear rate increases, this cell evolves into a plume. This plume then exhibits locally very strong deformation, which is localized on the edges of the thermal anomaly. The deformation is much weaker inside (difference of two orders of magnitude). Above the plume, the fluid exhibits unyielded regions. The inner structure of the thermal anomaly develops as a plume with a small head (A ii) and B iii) ) whereas the outer isotherm looks more like a finger. Once the small head is lost, only the stem remains midway in the tank. The instability in the simulations develops just like the instability in the experiments. The dependence of the onset time on the yield parameter is the same as in the laboratory experiments. The thermal anomaly looks like a finger and the instability exhibits strong 4. Numerical Simulations deformation at the edges of the thermal anomaly and a pseudo-plug flow inside the thermal instability, as observed in the laboratory. Therefore we conclude that the purely viscous regularized Herschel-Bulkley model is a sufficient description of the fluid and suitable for studying numerically the development of thermal plumes in Herschel-Bulkley fluids like Carbopol.

Validation of the Purely Viscous Description

Effects of Rheological Parameters on the Dynamics

The laboratory experiments of [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] show a strong dependence of the onset time and evolution of the plume on the yield stress. )) for shear rates γ < 10 -8 s -1 are due to the viscosity cut-off η 0 . The uncertainties on the determination of the rheological parameters make it difficult to study the effect of small changes in the laboratory. We therefore examine numerically how small changes for all rheological parameters (σ 0 , K ν and n) influence the development of the plume.

In order to investigate the effect of the yield stress on the plume's dynamics we varied σ 0 between 0.01 Pa and 0.07 Pa for constant K ν = 1.403 Pa s n and n = 0.58. With increasing yield stress (fig. 4.9 A) from i) σ 0 = 0.035 Pa over ii) σ 0 = 0.04 Pa to iii) σ 0 = 0.06 Pa, the onset time increases, as the yield parameter diminishes. At a given power P it then becomes increasingly difficult for the hot pocket to overcome the yield stress and to penetrate the surrounding fluid. Increasing the yield stress from σ 0 = 0.035 Pa to σ 0 = 0.04 Pa induces a decrease of h y . As the plume cools down on its way up by heat diffusion (cf. fig. 4.10 isotherms), its thermal buoyancy decreases until it cannot anymore overcome the yield stress. h y should therefore depend on the initial buoyancy and the yield stress. At a given P , we expect h y to decrease with increasing σ 0 , as is observed. However, a further increase of the yield stress yields again a higher h y , which may appear surprising at first. Yet this could be explained by the strong increase of the onset time when approaching the critical yield parameter, which allows the plume to accumulate more buoyancy before rising.

The increase of height h y with increasing yield stress can also be observed in the laboratory experiments. In terms of the yield parameter Y 0 an increase in the yield stress is comparable to a decrease of the thermal power P . Fig. 4.10 shows the spatiotemporal evolution of the pixel line on the plume axis for two laboratory experiments with the same fluid, but with different thermal power P . The experiments show that, like in the numerical simulation, a decrease in Y 0 (obtained by decreasing P in the experiments and increasing σ 0 in the simulations) leads to an increase of h y .

We furthermore tested numerically that we obtain the same behaviour by applying a constant temperature. So, whatever the details of the heater history are (constant power in the laboratory experiments or simplified temperature history in the simulations or constant temperature) h y is not a monotonous function of Y 0 , but with increasing Y 0 , h y first decreases and then increases again.

The effect of the increase of the consistency is depicted in fig. 4.9 B and increases from i 

) K ν = 1.0 Pa s n to iii) K ν =

Numerical Simulations

Discussion

The Onset of the Plume

As we saw in the previous section, the onset time does not only depend on the yield parameter, but also on the consistency and the shear thinning exponent. A parameter comparing the yield stress to the viscous stresses is the Bingham number, which is for a Herschel-Bulkley fluid defined as Bi = σ 0 K ν γn . Bi = 1 at onset gives a characteristic scale for the shear rate that has to be overcome to generate a plume. This critical shear rate is then written as

γcr = σ 0 K ν 1/n . (4.11)
This further implies that at onset the local stresses fulfill the following criterion

σ = σ 0 + K ν σ 0 K ν 1/n n = 2 σ 0 . (4.12)
The experiments of [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] indicate that the critical yield number Ψ as defined for bubbles to rise (Dubash andFrigaard [2004, 2007] ) or spheres to sink [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ) in a yield stress fluid is also applicable for the onset 4.5. Discussion 4.5. Yield number Ψ with mean density difference ∆ρ between mean density of hot pocket with radius r eq and ambient fluid at plume onset versus yield parameter. Orange line indicates Ψ = 6.85 [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], Dubash andFrigaard [2004, 2007], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ) and grey bar corresponds to Ψ = 8.8 ± 0.7 [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ). of the plume. The data range accessible from the simulations provides a much cleaner way to determine this parameter, than by the laboratory experiments. Similar to [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] we determine the volume of the fluid with a temperature excess 0.1 ∆T at the onset, where ∆T is the temperature difference between the heated patch and the ambient fluid. We then calculate the equivalent radius of a sphere with the same volume r eq and determine its mean buoyancy, which is derived via the temperature difference of the mean temperature of the hot pocket and the ambient fluid ∆T as ∆ ρ = α ρ ∆T . Substituting these values into the definition of [START_REF] Dubash | Propagation and stopping of air bubbles in Carbopol solutions[END_REF] Ψ = g d ∆ρ 3 σ 0 (4.13) with d = 2 r eq yields values well above, for our simulations 1.6 to 3.8 times, the critical value Ψ c = 6.85 given by these authors (cf. fig. 4.12). This indicates that Ψ ≥ 6.85 is a necessary but not sufficient criterion, as at the same time the Bingham number also needs to be supercritical (Bi < 1).

Plotting the maximum velocity versus the product of the equivalent radius r eq and the maximum shear rate (fig. 4.14) yields a good agreement between those two velocities. Thus, treating the thermal anomaly as a hot pocket of radius r eq rising through the fluid is a good approximation. 

Numerical Simulations

Height where the Plume Stops

In section 4.4 we illustrated the effect of the rheological properties of the fluid on the evolution of the thermal instability and found that all parameters strongly influence the height h y where the plume stops. Fig. 4.15 summarizes these results for the simulations. Fig. 4.15 A therefore assembles h y for all the simulations with Y 0 < 1000. For higher Y 0 the plume always arrives at the surface. The highlighted series (green square, K ν = 1.403 Pa s n , n = 0.58 and varying σ 0 ) will now be discussed. With increasing yield parameter Y 0 , we can observe that h y first decreases and then increases again. We therefore compare two simulations that stop at approximately the same height but are on either branch of that curve (cf. points marked as PI and PII in fig. 4.15). For each simulation we visualized the evolution of the viscosity on the plume axis through time (fig. 4.15 C1 and C2). The plume at lower yield parameter, PI with Y 0 = 245.1, starts much later than PII (Y 0 = 476.2). Once it starts, PI is much faster than PII, as shown by the maximum velocity (fig. 4.15 B), which is 1.5 times higher for PI than for PII. This can be explained by PI having accumulated much more buoyancy than PII, as it was heated for a longer time. In fig. 4.14 we can see that a plume with a higher shear thinning exponent (comparing red points with n = 0.7 to blue points with n = 0.5) rises much faster. Fig. 4.15 A and B show that these faster plumes also rise higher (higher h y ). However this does not explain why the plume stops and how the transition from the left to the right branch of fig. 4.15 takes place.

A plume rises if it is buoyant enough, and as we could see at the onset, the Bingham number has to be supercritical (Bi < 1). We therefore calculate in a first step the Bingham number along the plume axis through time (fig. 4.15 D) using the local shear rates and the respective fluid parameters. Comparing this evolution for each fluid shows that the Bingham number for PI becomes subcritical (Bi > 1) at the plume head as the plume stops. On the other end PII stops even though its Bingham number is still supercritical. In a second step we now calculate the local yield number Ψ, with the maximum temperature difference between head of the plume and ambient fluid and r eq as determined for the onset. We find that as PII stops the yield number becomes Ψ = 5.124, which is below the critical value of Ψ = 6.85 given by [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], Dubash andFrigaard [2004, 2007], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] and also the one determined experimentally for the thermal instability in Carbopol by [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF].

If we do this analysis for all data points, we find simulations in which the Bingham number is already subcritical while the yield number Ψ is still supercritical and vice versa. This indicates that, as soon as Bi or Ψ become subcritical, the plume stops rising. The critical yield number is Ψ c = 5 ± 1.2. This uncertainty is due to the fact that we are not saving every field at every time step.

We then determined for each simulation, which parameter becomes subcritical first, i.e. whether it is the Bingham or the yield number that causes the plume to stop, and the time t s when the respective parameter becomes subcritical. At t s we now determined Besides the differences for h y we can observe that the morphology of the plume changes from the left to the right branch (fig. 4.15 E). On the left branch, where the dynamics are dominated by the Bingham number, the strongest deformation occurs at the edges of the instability. Around the plume axis, deformation is low ( γ < 10 -3 s -1 ) and inside the instability as well (fig. 4.15 D1). The transition from the edges of the instability towards the inside is rather sharp, compared with (fig. 4.15 D2 and fig. 4.15 E2) PII on the right branch, where it is more smeared out. For PII the deformation pattern resembles much more the pattern observed in a Newtonian or purely shear thinning fluid.

Conclusions

We performed a systematic numerical study on the influence of the rheological properties in a regularized Herschel-Bulkley fluid on the development of thermal instabilities produced by a small heated patch. The comparison with laboratory experiments shows that the purely viscous description of de Souza [START_REF] De | Viscosity function for yield-stress liquids[END_REF] is adequate to describe the plume onset and its development. In agreement with [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF], we find that the yield parameter Y 0 = α ρ g P / k σ 0 is the key external parameter to describe the transition from a slowly convecting hot cell around the heater towards a rising plume. Its critical value depends on the heater geometry and is Y 0c = 165 ± 25 for a heater flush-mounted on the bottom of the tank. In addition, the determination of the 3D temperature, velocity, shear stresses and viscosity fields allows us to show that there are two necessary local conditions for a plume to take off and continue to rise. First, the local buoyancy of the hot pocket of fluid should be greater than the yield stress (which implies that Ψ = ∆ρ g 2 r eq / 3 σ 0 , Ψ c = 5 ± 1.2). Second, the Bingham number, which compares the yield stress to the viscous stresses, Bi = σ 0 / K ν γn , should be smaller than 1.0. This implies that the local shear rate should be greater than a characteristic shear rate scale that only depends on the rheological properties of the fluid. As soon as Ψ < Ψ c or Bi > 1, the plume stops its upwards progression. Hot material will continue to rise from the bottom of the tank but it will spread under an unyielded, high viscosity region at the top of the box. Further work is now under way to characterize plume dynamics in steady state.

Numerical Simulations

Figure 4.16: Yield number (Ψ = ∆ρ g 2 r eq /3σ 0 , filled symbols) at the time when, at the plume head, the Bingham number passes Bi = 1 and Bingham number (empty symbols) at the time when the yield number passes critical value Ψ c = 5 ± 1.2 versus yield parameter (Y 0 = α ρ g P/k σ 0 ). For low yield parameter (Y 0 < 300) the Bingham number is the parameter that evokes a stopping of the plume, while Ψ is still supercritical. For higher yield parameter (Y 0 > 300) the stopping of the plume is caused by a loss of sufficient buoyancy, therefore Ψ becomes subcritical, while the Bingham number is still super critical (Bi < 1). 

Characterization of the Steady State

The temperature fields in fig. 5.1 for the laboratory experiment (Y 0 = 316, K ν = 1.114 Pa s n , n = 0.62) and the numerical simulation (Y 0 = 224.11, K ν = 1.403 Pa s n , n = 0.7) look quite different, due to the different fluid parameters and the different power applied. Therefore the question arises, whether there is a unifying formulation that allows to predict certain characteristics of the thermal instability in the steady state. We may therefore assume, that the plume stem has a characteristic radius a(z), corresponding to the size of the shear zone (fig. 5.2 A) and rises with an average vertical velocity w(z).

Dimensional Analysis for the Steady State

In [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] we have shown that the velocity field inside the instability resembles a plug-flow. Therefore the vertical velocity w should be proportional to the product of the radius of the instability a (here the conduit) and the shear rate that is created around it (cf. fig. 5.2) w ∝ γa ⇔ w = C 3 γa.

(5.1)

The governing equations for a stationary plume are as follows: the Stokes equation may be expressed as the total stress in the system due to the buoyancy stress of the fluid inside the stem and is therefore written as

σ 0 + K ν γn = C 1 α∆T (z) a g (5.2)
where ∆T is the temperature difference between source and ambient fluid. In the experiments, the heat source is operated at constant power. Therefore conservation of power requires

P = ρC p w∆T (z)2πrdr ⇔ ∆T (z) = P πC 2 ρC p wa 2
(5.3) Conservation of heat implies

Characterization of the Steady State

(v • ∇) T = κ∇ 2 T (5.4) ⇔ w z ∆T = C 4 κ∆T a 2 (5.5) ⇔ a 2 w = C 4 κz ⇔ a = C 4 κz w 1/2
(5.6)

⇔ w = C 4 κz a 2
(5.7) Substitution of 5.7 into 5.3 yields the temperature at the axis of the instability as a function of the supplied power, the height and the fluids density and thermal conductivity

∆T (z) = 1 πC 2 C 4 P ρC p κz .
(5.8) Substituting equations 5.3 and 5.1 into 5.2 yields

σ 0 + K ν w C 3 a n = αg P C 1 πC 2 C p 1 aw .
(5.9)

For simplicity we assume that the yield stress is small compared to the viscous stress. In fact the Bingham number is about Bi ≈ 0.5 where the shear rate is maximum, as the plume rises. Expressing the velocity w with the radius a (eq. 5.6) leads to a formulation of the characteristic radius The temperature along the plume axis should be described by 5.8. To illustrate the applicability of this scaling, fig. 5.3 shows the temperature difference between plume axis and ambient fluid for simulations and experiment and the prediction by equation 5.8. With C 2 C 4 = 1.25 ± 0.25, scaling and simulation correspond well within 1 K for all three simulations. The difference is bigger for the experiment, however the only uncertainty regarded here, is the uncertainty of the isotherms. Additionally the thermal power is only certain within 10 %, which could result in a shift of the curve towards the left, if the real thermal power was lower. Therefore the laboratory results agree with the prediction within the errorbar.

a = C(n) K ν C p (κz) n+1 αgP 1 3n+1 , ( 5 

The Characteristic Radius of the Stem

In fig. 5.4 Ai) the radius where the shear rate is maximum is compared to the radius obtained from equation 5.10. A good fit between the different radii is obtained for the coefficient

C(n) = C C b n C c a (5.11)
where C a = 0.1645, C b = 3.122 and C c = 1.632, with a root mean square error of 0.002148 for C(n). The radius can then be translated into a shear rate by substituting equation 5.7 into 5.1. This can be done for

• evaluating the position (and therefore the radius) of the maximum shear rate (fig.

5.4Aii) dashed lines)

• the radius calculated from equation 5.10 (fig. 5.4Aii) straight lines).

Shear Rate and Velocity

A comparison with the maximum shear rate in the simulations (fig. 5.4Aii) dots) shows that the curves collapse well, whereby the constants are √ C 4 C 3 = 0.7 ± 0.2. Equation 5.7 then permits to calculate the velocity. Fig. 5.5 shows that the velocity averaged over the plume stem (inside a) is well approximated by equation 5.7 with C 4 = 0.1875 ± 0.0285. 5.2.4. Justification of Simplifying Assumption: Yield-Stress Inside the Plume Stem can be Neglected Fig. 5.6 is an attempt to combine the results obtained in chapter 4 with the scaling obtained for the temperature along the plume axis in the steady state. If the radius is taken as a (from eq. 5.10), the yield number Ψ becomes subcritical before the height h y is reached. This is interesting, as the material inside the plume still continues to rise. This is also the case if the radius to calculate the yield number is taken as the radius of a sphere with equivalent volume as the hot pocket that forms around the heater, r eq . This highlights, that inside the plume, the yield stress is negligible and justifies that this was assumed for the calculation of a.

Validation of the Proposed Scalings
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Conclusions -Scaling for the Steady State

Here we propose a scaling for the characteristic radius of the plume stem in the steady state. The characteristic radius corresponds to the distance of the maximum shear rate from the plume axis and is a function of the height, applied power and fluid properties, where the yield stress is neglected. The mean velocity inside the stem scales with the radius. The temperature along the plume axis is independent of the rheological properties of the fluid and scales with the applied thermal power, the thermal properties of the fluid and height. We have validated the scaling with several numerical simulations and a laboratory experiment to cross-check the results. 2) calculated with the radius of the equivalent bubble r eq (circles) and a (eq. 5.10, squares) for different simulations. The horizontal lines indicate the height h y where the plume stops, as defined in fig. 4.2. The grey region indicates Ψ = 5 ± 1.2, which is the critical value found in Massmeyer et al.
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[2013] (chapter 4), red dashed line Ψ = 6.85 (Dubash andFrigaard [2004, 2007], [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ).

Thermal Instabilities in a Complex

Lithosphere and Mantle.

An overview of the complexity of Earth's rheology is given in section 1.2, describing that the lithosphere may act as a solid even on geological timescales, but may also show a visco-elastic behaviour. This chapter shows how the results obtained in chapters 3-4 may be applied to the Earth and may help to better constrain Earth rheology.

Magmatic Intrusions in the Lithosphere

Dykes are fast intrusions of magma into the lithosphere. They propagate at few metres per second and are seismologically detectable [START_REF] Einarsson | Seismological Evidence for Lateral Magma Intrusion During the July 1978[END_REF] ) as they fracture through the solid lithosphere on a very short timescale. Dykes are very thin, compared to their breadth (cf. fig. 6.1) and their thickness varies between some millimeters to a few meters (eg. Kavanagh et al. [2012b], [START_REF] Gudmundsson | Form and dimensions of dykes in eastern iceland[END_REF] ). Hence the process is limited by the strength of the ambient matrix, and dyking is only possible if the pressure in the magma source (e.g. a magma chamber) is sufficiently high to overcome the yield stress of the lithosphere. The propagation of the dyke then releases the pressure in the magma chamber and the dyke will slow down [START_REF] Buck | Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975-1984 Krafla rifting episode[END_REF] ). [START_REF] Jònsson | Tensile rock mass strength estimated using InSAR[END_REF] inverts InSAR-data recording a dyking event on the western Arabian Peninsula from 2009 and finds a tensile rock strength between 1 -3 MPa. Due to the short timescale of the dyking-event, the lithosphere's response is supposed to be mainly elastic. An analog material behaving elastically on short timescales under high stresses is gelatine [START_REF] Di Giuseppe | Gelatins as rock analogs: a systematic study of their rheological and physical properties[END_REF] ). Hence, several studies used gelatine to model the emplacement of dykes in an elastic lithosphere (e.g. [START_REF] Menand | A phenomenological model for precursor volcanic eruptions[END_REF], [START_REF] Menand | Thermal intertia and reversing buoyancy in flow in porous media[END_REF], [START_REF] Walter | Experiments on rift zone evolution in unstable volcanic edifices[END_REF], [START_REF] Rivalta | Buoyancy-driven fracture ascent: Experiments in layered gelatine[END_REF], [START_REF] Kavanagh | An experimental investigation of sill formation and propagation in layered elastic media[END_REF], [START_REF] Maccaferri | A numerical model of dyke propagation in layered elastic media[END_REF], Kavanagh et al. [2012a] ). The dykes form fissures taking the shape of two-dimensional sheets. In experiments with one layer, the dykes fracture vertically towards the surface. If several layers are used, models show that the dyke may spread horizontally at the contact with a stronger layer, therefore forming sills (e.g. [START_REF] Rivalta | Buoyancy-driven fracture ascent: Experiments in layered gelatine[END_REF], [START_REF] Kavanagh | An experimental investigation of sill formation and propagation in layered elastic media[END_REF] for experiments and [START_REF] Maccaferri | A numerical model of dyke propagation in layered elastic media[END_REF] for simulations and experiments).

Another form of magmatic intrusions in the lithosphere are diapirs. Diapirs are threedimensional objects, similar to plumes, with a diameter of a few 10 km. Their emplacement chamber. Dykes may evolve, when the overpressure in the magma source is sufficiently high. B: Photo of the shiprock (eroded volcano throat) with a joined dyke. Note that the dyke width is much smaller than its length. Image source:
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is much slower than the emplacement of dykes: For example the uplift measured above the Altiplano-Puna magma body is only a few mm/year Fialko and Pearse [2012], fig.

6.2. Hence, due to the different time-scale of emplacement, numerical studies on diapir intrusions into the crust use stress and temperature dependent rheology without (e.g. [START_REF] Bittner | Numerical modelling of melting processes and induced diapirism in the lower crust[END_REF] ) or with an elastic crust (e.g. [START_REF] Gerya | Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulations[END_REF], [START_REF] Fialko | Sombrero uplift above the Altiplano-Puna magma body: Evidence of a ballooning mid-crustal diapir[END_REF] ). [START_REF] Gerya | Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulations[END_REF] place a partially molten peridotite body at ≈ 200 km depth (fig. 6.3) and study the shape of the ascending material and the resulting surface deformation, as a function of the properties of the overlying crust and mantle. [START_REF] Fialko | Sombrero uplift above the Altiplano-Puna magma body: Evidence of a ballooning mid-crustal diapir[END_REF] show that the central uplift and surrounding subsidence (forming a sombrero-shape, cf. fig. 6.2) observed above an active magma body in the central Andes (Altiplano-Puna ultralow-velocity zone) may be explained by a mid-crustal diapir. [START_REF] Jousselin | Oceanic ridge off-axis deep structure in the mansah region (Sumail massif, Oman ophiolite)[END_REF] study an off-axis diapir emplaced in a ridge context in Oman (cf. fig. 6.4). While the on-axis diapir has a very smooth deformation pattern, the off-axis diapir presents strong deformation localized to its edges. The different morphologies can be explained by the viscosity being mostly temperature dependent at the ridge, hence the observed deformation resembles more a Newtonian fluid. However as the lithosphere spreads away from the ridge it cools, and will therefore present viscoelastic properties, i.e. the lithosphere should present a yield stress. Therefore it is not surprising that the diapir strongly resembles the instabilities studied in sections 3 and 4. shows deformation as observed for the off-axis ridge, where strong deformation is localized at the edges of the diapir.

Magmatic Intrusions in the Lithosphere

Conditions for Emplacement of Diapirs and Plumes in Lithosphere or Mantle with Complex Rheology

The results from section 4 show, that two conditions need to be fulfilled to allow for an instability to rise in a yield stress fluid:

• Ψ = 2gr∆ρ 3σ 0 > 6.85 • Bi = σ 0 K ν γ1/n = σ 0 K ν γn E < 1.
The first equation can be reformulated to calculate the maximum yield stress that allows for a given density anomaly to develop. This is the case for yield stresses smaller or equal to σ 0 = 2 3 gr∆ρ 6.85 . (6.1)

In fig. 6.5 the maximum yield stress allowing for an instability to rise in a yield stress matrix is shown, depending on its density difference to the ambient matrix as well as its radius. The implications of this will be discussed in the following for upwellings in the lithosphere and in the mantle.

Emplacement Conditions for Instabilities in the Lithosphere

The diapir [START_REF] Jousselin | Oceanic ridge off-axis deep structure in the mansah region (Sumail massif, Oman ophiolite)[END_REF] ) has a diameter of d ≈ 10 km. The temperature at a distance of 35 km from the ridge should be around 900 • C at 5 km depth. Assuming a density of ρ = 3000 kg m -3 , a thermal expansivity of α ≈ 2 10 -5 K -1 and that the temperature of emplacement is T ≈ 1200 • C, results in a density difference of ∆ρ ≈ 10 -20 kg m -3 . Therefore the maximum yield stress allowing for such an instability to rise would be around σ Lmax = 100 kPa. Such a low yield stress indicates that the surrounding matrix would need to be at least partially molten [START_REF] Kohlstedt | Rheology of partially molten mantle rocks[END_REF], [START_REF] Scott | The effect of large melt fraction on the deformation behavior of peridotite[END_REF] ). This is based on the assumption that the diapir is a result of an asthenospheric, purely thermal, instability [START_REF] Jousselin | Oceanic ridge off-axis deep structure in the mansah region (Sumail massif, Oman ophiolite)[END_REF] ).

In the case of plume-ridge interaction [START_REF] Mittelstaedt | Plume-ridge interaction, lithospheric stresses, and the origin of near-ridge volcanic lineaments[END_REF] ) 1) the temperature difference may be higher and 2) chemical heterogeneities may aid by lowering the density. Another buoyancy source may be decompression melting (e.g. [START_REF] Scott | A self-consistent model of melting, magma migration and buoyancy-driven circulation beneath mid-ocean ridges[END_REF] ) or melt depletion (e.g. [START_REF] Schutt | Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite[END_REF] ). All these mechanisms could increase the density difference uo to ∆ρ ≈ 400 kg/m 3 Therefore a diapir could rise through a matrix with a yield stress of up to σ Lmax = 3 MPa (cf. fig. 6.5). This value corresponds well to the ones found by [START_REF] Jònsson | Tensile rock mass strength estimated using InSAR[END_REF] for the dyking event on the western Arabian

Possible Implications for Viscosity and Shear Rate

Peninsula of 1 -3 MPa. Furthermore this explains why [START_REF] Gerya | Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulations[END_REF] had to use a plastic strength of 1 MPa stating that "higher plastic strength precludes the ascent of magma". [START_REF] Fialko | Sombrero uplift above the Altiplano-Puna magma body: Evidence of a ballooning mid-crustal diapir[END_REF] find that their model best fits the observation if a density difference of ∆ρ = 400 kg m -3 is assumed, while the radius of their instability is about r = 40 -50 km. Such a large diapir with its huge buoyancy could be emplaced in a matrix with a yield stress of up to σ Lmax = 19 MPa.

Emplacement Conditions for Mantle Plumes

Most models assume that the Earth's mantle is Newtonian (e.g. [START_REF] Trompert | Mantle convection simulations with rheologies that generate plate-like behaviour[END_REF], Tackley [2000a], [START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF] ) and therefore without a yield stress. However, a rising plume may be stopped by a strong upper mantle as in the jelly sandwich model (see e.g. [START_REF] Burov | The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée[END_REF] ), if the stress induced by its buoyancy becomes too small compared to the yield stress (cf. section 4). The density contrast might thereby be increased by melting or incorporated chemical heterogeneities in the plume. A purely thermal plume would therefore be stopped for mantle yield stresses between 0.5 MPa for small plume radius and small density contrast and 17 MPa if the plume is larger and more buoyant. If its buoyancy was further increased it might even enter a matrix of up to σ M max ≈ 114 MPa. These values question the possibility of the jelly sandwich model with a strong upper mantle. Depending on the strength this strong layer could make it impossible for thermal instabilities from the mantle to enter the upper mantle or crust.

Possible Implications for Viscosity and Shear Rate

The second condition Bi ≤ 1 allows to calculate the minimum shear rate γ that is needed for given parameter constellations of the yield stress σ 0 , consistency K ν and shear thinning parameter n and the corresponding maximum viscosity that allows for a plume to develop at those conditions

γmin = σ 0 K ν n E ⇔ η max = 2 σ 0 σ 0 K ν -n E . (6.2)
On Earth, rheology depends on several parameters (cf. section 1.2) and writes (after Hirth and Kohlstedt [2003] ) as

γ = A σ n E d -p f H 2 O exp (β Φ) exp - E * + P V * RT , (6.3)
where A is a constant, d is the grain-size with the grain-size exponent p, f H 2 O is water fugacity , Φ is the melt fraction, β is a constant, T is the temperature, P pressure, E * is 99 6. Geophysical Application . 6.4. Conclusions -Geophysical Application the activation energy , V * is the activation volume and R is the universal gas constant.

n E =2 n E =4 n E =3 n E =5 n E =2 n E =4 n E =3 n E =5 A B
A similar reformulation for the Herschel-Bulkley model yields

γ = (σ -σ 0 ) n E 1 K n E ν (6.4)
and shows that K ν translates for Earth as follows

K ν = A d -p f H 2 O exp (β Φ) exp - E * + P V * RT (-1/n E ) (6.5)
The viscosity of the Earth's mantle should roughly be within the range of 10 17 to 10 25 Pas (cf. section 1.2), which corresponds to the range between the white and pink lines on fig.

6.6. The shear thinning exponent is varied between n E = 2 -5, since for the lithosphere n E is in between 2 and 4.5, e.g. [START_REF] Ranalli | Rheology of the Earth[END_REF]. Taking into account the yield stress limits σ Lmax and σ M max for lithosphere and mantle shows that, depending on the intensity of stress dependence, the "choice" of K ν is rather limited. In order to obtain realistic shear rates and viscosities, the interval for K ν depends on the shear thinning index n E . For example n E = 5 would limit K ν between 3.2 10 8 and 10 11 Pa s 5 .

Conclusions -Geophysical Application

In section 6.2 we have shown that the question whether a diapir may be emplaced strongly depends on the rheology of the surrounding matrix. Applying the non dimensional parameters that we obtained in chapter 4, places strong constraints on the strength of the lithosphere and the upper mantle. Depending on the size and the buoyancy of an anomaly, the strength that would permit for such an object to rise, varies between 100 kPa and 114 MPa, corresponding to the results from [START_REF] Jònsson | Tensile rock mass strength estimated using InSAR[END_REF]. This means, that the lithosphere has to be rather weak in order to allow for intrusions. Those values furthermore question the possibility of the jelly sandwich model, as a strong upper mantle could make it impossible for a mantle plume to penetrate the upper mantle or lithosphere. In section 6.3, we place ourselves on the marginal case, where the Bingham number is equal to one, i.e. where the viscous forces are as strong as the yield stress. This places constraints on the maximum value that the consistency K ν may have in order to allow for an instability to develop.

Conclusion and Outlook

In this study, we have combined laboratory experiments and numerical simulations to investigate the dynamics of thermal plumes in a yield stress fluid. We show that a thermal instability in Carbopol is well described with a regularized Herschel-Bulkley model. In both, numerical simulations and laboratory experiments, the instability has a finger-like shape as described in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] and deformation is localized close to the thermal instability.

The numerical simulations permitted to identify the key parameters that determine whether a thermal instability may develop and rise. The first critical parameter is the yield number Ψ, comparing the stresses due to the buoyancy of the hot pocket forming around the heater to the yield stress. We find a critical value of Ψ c = 5 ± 1.2. This value is close to the critical yield parameter found for bubbles that rise in (Dubash andFrigaard [2004, 2007] ) and spheres that sink into [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ) a yield stress fluid, which is Ψ ′ c = 6.85. The second parameter is the Bingham number Bi, comparing the yield stress to the viscous stresses. We show that the plume develops out off a cell and only if the convection of this cell is vigorous enough and produces sufficiently high shear rates, it may evolve into a plume. The critical Bingham number therefore is Bi = 1, i.e. the viscous stresses are equal to the yield stress. These parameters do not only determine whether a plume starts, but also whether it may continue to rise through the fluid.

A comparison of the different regimes that maybe obtained, to those we have found with a different setup in [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] shows, that the different heat-source geometries lead to different critical yield parameters. We show that if we correct the thermal power that is available as a buoyancy source for the plume for the experiments of [START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF], both geometries have the same critical parameter of Y c1 = 100 ± 10 for the transition from no motion to a cell and Y c2 = 150±10 for the transition from cell to plume.

We have shown, that for the dynamics of the plume stem in steady state, the yield stress can be neglected and only the viscous stresses with the shear thinning part need to be taken into account. This allows to derive scaling laws for velocity, temperature at the plume axis and size of the shear zone in the plume stem in the steady state.

Conclusion and Outlook

When we apply the non-dimensional parameters that we find in the numerical simulations and the laboratory experiments to Earth, we find fluid dynamic constraints for the evolution of diapirs. The Bingham number allows to calculate the maximum viscosity that would allow for a plume to develop. More importantly, our results show that, changing with the size and buoyancy of the source, a diapir can only develop, if the strength of the surrounding matrix is limited. This limiting strength is smaller than 100 kPa for small diapirs with diameter of a few ten kilometres and with low buoyancy and smaller than 114 MPa for large and buoyant plumes.

The work presented here is limited to a single instability. It would be interesting to study the spacing between several instabilities. Due to the yield stress it is difficult to study this in a Rayleigh-Bénard setup. A simple way around this could be to study instabilities that form from a heated line. We have performed preliminary tests that were exhibiting an intermittent behaviour, switching between two and one instabilities in time, but those preliminary results would need to be looked at in detail. Besides this, the work opens more interesting perspectives. One question is, whether a yield stress in the Earth's mantle would influence the shape of an instability. Hence it would be interesting to couple a yield stress rheology with a strong temperature dependence, e.g. numerically. Another question could be to investigate what happens to an instability that forms in a Newtonian fluid and tries to penetrate into a non-Newtonian fluid. This could be done with a layered system, e.g. of Natrosol and Carbopol. The difficulty here would be to find two fluids that have similar densities, so that the instability in the lower fluid would be less dense than the upper fluid layer, while at room temperature the upper fluid is less dense. A way around this, could be to study Rayleigh-Taylor instabilities employing for example a technique like [START_REF] Renoult | Deforming static fluid interfaces with magnetic fields: Application to the Rayleigh-Taylor instability[END_REF]. Another possibility would be to inject hot newtonian fluid into a tank that is filled with a non-Newtonian fluid like Carbopol.

A.1. Thermal instabilities in a yield stress fluid:

Existence and Morphology1 .

Abstract We present new laboratory experiments on the development of thermal plumes out of a localized heat source in Carbopol, a yield-stress and shear-thinning fluid. Depending on the Yield number Y 0 , which compares the thermally-induced stress to the yield stress, three different regimes obtain. For low Y 0 (<120), no convection develops; while for intermediate values, a small-scale convection cell appears and remains confined around the heater. For high Y 0 (>260), thermal plumes develop. Their morphology differs from the mushroom-shape typically encountered in Newtonian fluids. Combined temperature and velocity field measurements show that a plug flow develops within the plume thermal anomaly, therefore producing a rising finger-shape. Moreover, light scattering highlights the development of a damaged zone prior to the plume onset, and the peculiar structure of the gel around the plume as it rises. This brings new insights into the solid-liquid transition of soft gels.

A.1.1. Introduction

Although non-Newtonian fluids are common in natural and industrial systems undergoing thermal convection (ie food or glass processing, lava lakes, planetary mantles..), the occurrence and characteristics of thermal instabilities in such fluids are still poorly documented and understood. Part of the difficulty is that the viscosity of these fluids approaches infinity when the shear rate vanishes. Hence, from a theoretical point of view, convective instabilities cannot grow from a static conductive state submitted to infinitesimal perturbations [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF]; [START_REF] Solomatov | Onset of convection in fluids with strongly temperaturedependent power-law viscosity 2. Dependence on the initial perturbation[END_REF]; [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]; [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF]), contrary to the case of Rayleigh-Benard convection in Newtonian fluids [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF]). In laponite, where the non-Newtonian effects increase as the fluid ages, convection is killed after a while [START_REF] Bellon | Coupling between aging and convective motion in a colloidal glass of laponite[END_REF]). Recent qualitative experiments in constant yield stress fluids show that thermal convection only started with the help of spurious bubbles, forced mixing or temperature heterogeneities at the top free surface [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]). When we performed similar experiments with well controlled temperature conditions and no impurities in the fluid, an unstable linear conductive temperature gradient developed but motion never occured (even after three weeks). Most quantitative studies have therefore been limited to configurations where the onset of any motion would not require a critical threshold if the fluid was Newtonian: creeping motion of solid spheres [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF]; [START_REF] Gueslin | Flow induced by a sphere settling in an aging yield-stress fluid[END_REF]; [START_REF] Putz | Settling of an isolated spherical particle in a yield stress shear thinning fluid[END_REF]) and bubbles (Dubash andFrigaard [2004, 2007]), Saffman-Taylor instabilities [START_REF] Coussot | Saffman-Taylor instability in yield stress fluids[END_REF]), Poiseuille flow [START_REF] Frigaard | On the stability of Poiseuille flow of a Bingham fluid[END_REF]; [START_REF] Gabard | Miscible displacement of non-Newtonian fluids in a vertical tube[END_REF]) or Rayleigh-Poiseuille instabilities [START_REF] Frigaard | On three-dimensional linear stability of Poiseuille flow of Bingham fluids[END_REF]; [START_REF] Martinand | Three-dimensional global instability modes associated with a localized hot spot in Rayleigh-Bènard-Poiseuille convection[END_REF]; [START_REF] Metivier | On linear stability of Rayleigh-Bènard Poiseuille flow of viscoplastic fluids[END_REF]).

Here, we investigate experimentally the development of thermal instabilities out of a localized heat source in a yield stress shear-thinning fluid (Carbopol solutions). This set up has been extensively used to study laminar Newtonian starting plumes [START_REF] Whitehead | Dynamics of laboratory diapir and plume models[END_REF][START_REF] Whitehead | Dynamics of laboratory diapir and plume models[END_REF]; [START_REF] Olson | Creeping plumes[END_REF]; [START_REF] Campbell | Stirring and structure in mantle starting plumes[END_REF]; [START_REF] Kaminski | Laminar starting plumes in high-Prandtl-number fluids[END_REF]; [START_REF] Vatteville | Starting laminar plumes: Comparison of laboratory and numerical modeling[END_REF]; [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]). Combined Particle Image Velocimetry (PIV) and Thermochromic Liquid Crystals (TLC) visualizations allowed us to measure simultaneously the velocity and temperature fields [START_REF] Davaille | Laboratory studies of mantle Convection[END_REF]). As the heating power and the rheology of the experimental fluid were varied, different convective regimes and instability morphologies were observed. We focus here on their phenomenology and conditions of existence.

A.1.2. Experimental Setup and Fluids

A.1.2.1. Setup
The heat source consists of a Peltier element covered by a copper disk of thickness d=4 mm and radius R=12.5 mm. It is placed at the center of a square plexiglas tank 20x20x30 cm (fig. 1a). The heater is fixed directly on the bottom surface (fig. 1b). The upper fluid surface is free but there is a plexiglas lid on the tank to avoid evaporation and temperature fluctuations induced by the room. The room is kept at 21.0 ± 1.0 o C (the airconditioning has a 15 to 20 min period) and the tank walls are 3 cm thick. This allows to filter the room temperature oscillations and to ensure a quiescent isothermal initial state in the tank. At time t=0, a constant power P elec is applied to the heater. The ambient temperature and the temperature of the heater surface are measured by thermocouples and monitored through time, as well as the electric current voltage and intensity. Because of the non-linear response of the Peltier device, the thermal power P delivered into the fluid is not equal to the electric power supplied to the Peltier [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]). However, for each experiment, an estimate of the thermal power actually delivered to the fluid can be computed using the Peltier element characteristics (see Annex 1).

The fluid is seeded with three types of encapsulated thermochromic liquid crystals (TLC), each reflecting light at a different temperature. A vertical cross-section of the tank is illuminated by a 532 nm laser sheet, and images are recorded every second using a CCD camera (fig. A.1). Depending on the temperature field, several bright lines can be seen on the images (fig. 1), each of which represents a different "isotherm" (for details on the method see [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]). In our aqueous mixtures of carbopol, the TLCs sometimes also aggregate to form "particles" which scatter light, even without a temperature field (e.g. fig. A.5 and A.6). We therefore use these aggregates as tracer The heater is placed on the center of the bottom plate of the tank. At time t=0, the heater is switched on, and a thermal plume can develop. Here is shown an image of the thermal plumes obtained in Newtonian glucose syrups (e.g. [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]).

The bright lines represent isotherms (see text). b) Close up on the heater configuration. The cold junction of the Peltier element is placed on an metallic plate to dissipate the cold, while the hot junction is in contact with the copper disk. We verified that the temperature on the copper disk was homogeneous [START_REF] Vatteville | Starting laminar plumes: Comparison of laboratory and numerical modeling[END_REF]) and that the flow was not perturbed by the thermocouples. 

A.1.2.2. Fluids

The fluids are mixture of carbopol (Noveon ETD2050), distilled water and glycerin (between 0 and 56 wt%, see Table 1). The Carbopol powder (0.4-0.8g/L) was dispersed in the water-glycerin solvent for 2 days using a magnetic agitator. Then the solution was neutralized with a sodium hydroxide solution (5M). It was then left at rest for 8 days before use to ensure that the gel hydration was complete.

The TLCs were added once the tank is filled. For each fluid, the density and thermal expansion coefficient have been measured as a function of temperature between 15 and 65 o C with a Anton Paar DMA5000. Given the very small quantity of carbopol added, the other physical properties are those of the water-glycerin mixtures [START_REF] Peixinho | Contribution experimentale a l'étude de la convection thermique en regime laminaire, transitoire et turbulent pour un fluide a seuil en ecoulement dans une conduite[END_REF]).

The rheological behavior of the fluids has been measured as a function of shear rate γ and temperature with a RS600 (ThermoHaake) and a MCR501 (Anton Paar). All measurements lead to a description of the fluid rheology with a Herschel-Bulkley model [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF]; [START_REF] Coussot | Macroscopic vs. local rheology of yield stress fluids[END_REF]; [START_REF] Oppong | Mircorheology and jamming in a yieldstress fluid[END_REF]

; fig. A.2): σ = σ 0 + K v γn (A.1)
where σ is the stress. The values of γ typically reached with the rheometer ranged between 10 -4 and 10 2 sec -1 . The rheological parameters values given in Table 1 were obtained by fitting the descending part of the flow curve measured using a Couette geometry. Because the stresses generated by thermal buoyancy are small (see next section), we have to use solutions with very low yield stresses, which are delicate to measure. The existence of a real yield stress at very low values of γ is even still debated (e.g. [START_REF] Roberts | New measurements of the flow-curves for Carbopol dispersions without slip artefacts[END_REF]; [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF]; [START_REF] Moller | Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice[END_REF]). Overall, our flow curves become more noisy when γ < 10 -2 sec -1 , which could be caused by wall slip and/or transitional effects (e.g. [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF]). We therefore kept only the data which was reproducible, i.e. when γ > 10 -2 sec -1 . Measurements on the same fluid, but with different apparatus, lead to variations in yield stress σ 0 of 30%. This large uncertainty is due to the low values of the yield stress. The exponent n is much more reliable, and varies between 0.50 and 0.63 (Table 1), which is in the range found in the literature [START_REF] Roberts | New measurements of the flow-curves for Carbopol dispersions without slip artefacts[END_REF]; [START_REF] Peixinho | Contribution experimentale a l'étude de la convection thermique en regime laminaire, transitoire et turbulent pour un fluide a seuil en ecoulement dans une conduite[END_REF]; [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF]). σ 0 and n do not show any significant variations with temperature [START_REF] Peixinho | Contribution experimentale a l'étude de la convection thermique en regime laminaire, transitoire et turbulent pour un fluide a seuil en ecoulement dans une conduite[END_REF]), while the consistency K v decreases by a factor of 2 for a temperature increase of 20 o C. Table 1 summarizes the rheological parameters and the thermal properties of the various studied fluids. The addition of glycerin results in increasing the coefficient of thermal expansion, and in reducing the yield stress and the consistency compared to water with a similar quantity of carbopol. Given our experimental set up and the rheology of the fluid, several parameters are needed to characterize the system (e.g. [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF]; [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]):

-the box aspect ratio L/H, where H is the fluid height in the tank and L its width. Here L/H ranged between 0.83 and 1.21 depending on the runs.

-the size aspect ratio between the heater and the box R/H, which varied between 13.3 and 19.4 depending on the runs.

-the Reynolds number can be estimated using (e.g. [START_REF] Dubash | Propagation and stopping of air bubbles in Carbopol solutions[END_REF]):

Re = ρR n W 2-n K v (A.2)
where W is the velocity. It never exceeds 1 mm/sec in our experiments, so that Re < 0.01 and the instabilities are always in the creep regime.

-the Bingham number Bi compares the yield and viscous stresses in (A.1):

Bi = σ 0 K v γn (A.3)
When motions are observed, the measured typical shear rates range between 10 -6 and 0.05 sec -1 . This implies Bi between 0.6 and 1000.

-the yield parameter Y 0 compares the yield stress to the stress induced by the thermal density anomaly σ th :

Y 0 = σ th σ 0 = αρgP σ 0 k (A.4)
since for a constant power supply , the hot pocket of fluid applies under the action of gravity a stress which scales as σ th ∼ αρgP/k. In a yield stress fluid initially at rest, the hot pocket will be able to rise only if σ th is greater than the yield stress (e.g. [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF]; Dubash andFrigaard [2004, 2007]; [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF]; [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]). So, Y 0 is the key parameter to determine the onset of convection.

Owing to the small values of the thermal expansion coefficient, and to the maximum temperature difference that the system can encounter without generating bubbles, the thermally induced stresses are small. Therefore, convective instabilities are expected only for rather small yield stresses (Table 1). Using 6 different fluids (see Table 1) and varying the electric power input between 0.02 and 6.5 W, we run 62 experiments with σ th ranging from 1.5 to 80, leading to Yield parameters between 20 and 1600 (fig. A.3). The typical duration of an experiment ranged between 30 minutes and four days.

A.1.3. Three Different Regimes

Once the heat source is turned on, a pocket of hot fluid first grows by diffusion around the heater (fig. A.6a). Then depending on the applied thermal stress and the yield For low thermal powers, no motion is recorded: a drop of dye will remain at its initial position, and the presence of rising bubbles neither starts the flow nor perturbs the temperature field. A steady state temperature structure develops by conduction and the heater temperature compared to the initial fluid temperature scales as ∆T = P/4kR ef f (Carslaw and Jaeger, 1959, p215). Given the geometry of the heater (fig. 1b), we can take R ef f ∼ R + d. The fluid behaves as a solid and due to thermoelasticity, the temperature gradient can produce elastic deformations. Until the heater has reached steady state, the thermoelastic stresses σ T E will build up. According to linear thermoelasticity [START_REF] Landau | Theory of elasticity[END_REF]) , σ T E should scale as:

σ T E = C 0 .∆T. α.E Y 1 -2ν p (A.5)
where ν p is the Poisson ratio, E Y = 2(1 + ν p )G ′ is the Young modulus, G ′ is the elastic modulus and C 0 is a constant which depends on the geometry of the set up.

As long as σ T E remains smaller than the yield stress, no viscous flow can occur. The first critical value of the yield parameter Y c1 therefore corresponds to σ T E ∼ σ 0 , which according to (A.4) and (A.5) gives: .6) shows that the first transition Y c1 depends on the fluid properties and the set up geometry. We do not see variations in the experiments presented here because we are always using the same set up (same R, d and C 0 ) and fluids which are quite similar.

Y c1 ∼ ρ.g.(R + d) C 0 .G ′ . 2(1 -2ν p ) (1 + ν p ) . (A.6) Equation (A
We were not able to measure the elastic modulus at the time of the experiments, but since then, rheometry measurements performed on similar solutions (Massmeyer et al, in prep.) gave us elastic modulus estimates between 0.5 and 3 Pa, similar to values obtained in pure water-carbopol solutions [START_REF] Oppong | Mircorheology and jamming in a yieldstress fluid[END_REF]; [START_REF] Gutowski | Scaling and mesostructure of Carbopol dispersions[END_REF]). The Poisson ratio for Carbopol solutions is unknown, but we expect it to be close to an incompressible liquid, i.e. between 0.4 and 0.5. As it is the thermal power which is kept constant and not the heater temperature, the latter decreases in response to motion. We define here the instability "onset time" t c as the necking time. Other definitions based on the isotherms uplift or on the heater temperature give slightly different measurements (variations of less than 3 %) but the overall trend remains unchanged. but we could not find any rationale between the coefficients a and b and the physical properties of the fluids. Y c2 is much higher than the one reported for sedimentation of solid spheres (Y c = 6.85, [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF], [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF]) or bubbles (Dubash andFrigaard [2004, 2007]). However, in the latter case, the yield number is defined as Y = g.D.∆ρ/3σ 0 , where D is the sphere diameter, and ∆ρ its density excess. In our case, buoyancy is produced by the temperature differences and ∆ρ = αρ∆T av . Since we know the temperature field for each experiment, we therefore can calculate at each time the averaged temperature excess ∆T av contained in the hot pocket of fluid around the heater. We can also calculate the effective radius of a sphere that would have the same volume, and so we finally can estimate Y . To define what constitutes the "hot pocket", we choose all the fluid with a temperature excess greater than 0.1 ∆T . Then the boundary between the cellular convection and the plume formation occurs for Y = 8.8 ± 0.7. This value now is of the same order as Y c . That the two values are different are expected since we have a bottom rigid boundary condition instead of a free surface (as in the experiments for the sphere) and since the geometry of the rising plume is different from a sphere, on which the critical Yield parameter value might depend (Dubash andFrigaard [2004, 2007]).

Episodicity

We have already mentioned the strong time-dependence of the plumes, whereby the temperature and velocity fields fluctuate before reaching steady state (fig. A.7,A.8). In some cases (fig. A.11), the plume completely stops and cools down. Then a second pulse A.1. Existence and Morphology is registered. We could distinguish up to 3 pulses before the steady-state is reached with time lapse between two pulses ranging from 140 to 1000 sec. Given the long time-scales involved, this is not due to the elasticity of the fluid (as seen in falling motions of solid spheres for exemple, i.e. [START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF]), but it is due to instabilities in the plume conduit. Such instabilities have already been reported for Newtonian fluids (e.g. [START_REF] Olson | Structure of axisymmetric mantle plumes[END_REF]; [START_REF] Vatteville | Starting laminar plumes: Comparison of laboratory and numerical modeling[END_REF]; [START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]) and shear thinning fluids (e.g. [START_REF] Van Keken | Evolution of starting mantle plumes: a comparison between numerical and laboratory models[END_REF]) although their origin remains unknown. Here, we notice that the velocity of the first pulse is much higher than the steady state velocity in the plume conduit, and that the amplitude of the velocity variations is decreasing through time (fig.

A.8b). The steady state represents the hot flow that the heat source is able to support continuously. Since it needs to penetrate unyielded material, the first pulse is the most buoyant (i.e. the hottest) and carry more buoyancy than what is produced continuously. Therefore the plume head start drains the source and almost detach from it. However, as it rises, it looses its heat by conduction (i.e. [START_REF] Batchelor | Heat convection and buoyancy effects in fluids[END_REF]), until its local buoyancy cannot overcome anymore the yield stress, which explains its strong slow down, or even arrest (fig. A.11). Meanwhile, the thermal boundary layer around the heater is building again until a new pulse starts. In the referential of the rising plume, its tip is characterized by a stagnation point where dW r /dr is maximum (fig. A.8d, Davaille et al. [2011]). We see clearly on fig. A.11d and fig. A.11 that the second pulse also bears this characteristic signature and starts from the bottom of the tank. However, as it is following the conduit previously built, it needs carrying less buoyancy that the first pulse, therefore its velocity is smaller, closer to what the heat source can sustain continuously. The system therefore will approach steady state by a serie of pulses decreasing in amplitude.

Plume Morphology and Plug Flow:

In newtonian fluids, hot less viscous plumes entering a colder and more viscous environment are mushroom-shaped (e.g. fig. A.1), while cold more viscous plumes are finger-shaped [START_REF] Whitehead | Dynamics of laboratory diapir and plume models[END_REF]; [START_REF] Olson | Creeping plumes[END_REF]). The morphology of the hot and less viscous plumes observed in our experiments is therefore significantly different from the newtonian case. On the other hand, intrusion of fluid in elastic matrices like gelatin or rocks are known to produce columnar or 2-D dikes shapes (i.e. [START_REF] Menand | A phenomenological model for precursor volcanic eruptions[END_REF]).

A close inspection of the velocity field (fig. A.6e-f) reveals that the upwelling material is entirely confined within the thermal anomaly. Moreover, the velocity radial profiles around the plume axis are quite flat (fig. A.6f). As a measure of the shear rate, we can calculate the second invariant of the strain rate tensor from the velocity field (W r , W z ). For an axisymmetric configuration, it writes: A.1.4. From Solid to Flowing Behaviour

The development of the thermal instabitities reported here always goes through three phases: first thermo-elastic deformation, then very slow creep where heat transfer is still dominated by conduction and the Bingham number (equation (A.3)) remains high, and Note that the offset is towards the top for a) which means that the material is rising, while it is downwards for b), which means that the downwards return flow is close to the plume.

finally the sudden rise of a hot finger, with strong shear localization. This behaviour is reminiscent of the sequence of events reported in recent rheometry creep experiments using carbopol [START_REF] Caton | Plastic behavior of some yield stress fluids: from creep to long-time yield[END_REF]; [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF]). Those experiments were investigating the transition to fluidization of a sample when a constant stress was applied. In our case of heating at constant power, the applied stresses, due to the building temperature, are increasing through time till the system reaches steady state. However, in both systems, fluidization involves an episode of strong shear localization and/or shear banding. [START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF] observed total slip on the wall of the apparatus, prior to the establishment of steady shear, while [START_REF] Caton | Plastic behavior of some yield stress fluids: from creep to long-time yield[END_REF] suggested the presence of fractures.

On fig. A.7 and fig. A.9, horizontal bright lines represent particles at rest (i.e. unyielded areas), and continuous oblique lines moving particle trajectories (yielded areas). However, in between the two zones, that is just before onset and around the plume thermal anomaly, there exists a more chaotic zone, which propagates as the plume rises. fig. A.13 presents a zoom on the particles trajectories during the stage of fast uplift of the plume: at the 0.1 mm scale, the trajectories of the particles around the hot thermal anomaly are not continuous but show sudden offsets, as if a damaged zone was developing around the plume. Studies of the microscopic structure of Carbopol solutions show that they are concentrated suspensions of swollen polymer "sponges" with typical size 5-20 µm size [START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF]; [START_REF] Gutowski | Scaling and mesostructure of Carbopol dispersions[END_REF]). So the fact that we are able to see at the 0.1-0.5 mm scale the intermittent sudden disruptions suggests that the transition from solid to flowing behaviour may occur through intermittent plastic events correlated over a finite size area, as proposed by recent models (e.g. [START_REF] Picard | Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple elastoplastic model[END_REF]). However, we are lacking A.1. Existence and Morphology resolution, both in time and space, to tell if those events are fractures or slip of one gel particles aggregate onto another one.

A.1.5. Conclusions

We have conducted experiments on thermal instabilities in yield stress fluids. The Yield parameter, the ratio of stresses of thermal origin over the yield stress, is shown to be the key parameter to predict the convective regime. Given the small value of the thermal expansion coefficient, leading to weak thermal stresses, plumes will develop only for very low yield stresses and will involve weak shear rates (≤ 2.10 -2 sec -1 ). However, their morphology and dynamics are markedly different from those of a Newtonian plume, and unyielded areas coexist with flowing regions. Further work is now under way to quantify the characteristics of plume dynamics, the damage zone extent and the transition from solid to flowing behaviour.

A.1.6. Appendix: Determination of the Thermal Power Delivered by the Peltier Heater

A Peltier element develops a temperature difference between its two surfaces, ∆T = T hot -T cold , when it is fed with a current of intensity I. The thermal power P delivered on the hot surface then writes: At the end of each experiment, the intensity is switched off but because the temperature difference takes some time to vanish, a residual voltage is measured, which decreases through time, and which is indeed proportional to ∆T . According to equation (A.10), this gives us a measure of S p , which is found to be constant through all the experiments: S p =0.023 Volts/ o K.

Then, using equation (A.11), the resistance is determined for each time. It is found that R p slightly varies with temperature, in agreement with the manufacturer. 
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 1 Figure 1.1.: Image c by John Nelson. Earthquakes recorded since 1898, sorted by magnitude.Red-circles: current location of hotspot volcanism (cf.[START_REF] Davaille | Convective patterns under the indo-atlantic "box[END_REF] ).

  Figure 1.2.: Schematic picture of the Earth after Davies [1999], with mineralogical zones, seismological observations and dynamical layers. Grey zones: post-perovskite (PPV, cf. Murakami et al. [2004], Oganov and Ono [2004] ) as a possible mineralogical and dynamical phase in the D"-layer. The dynamical thermal boundary layer (TBL) roughly corresponds to the seismological D"-layer.

  Figure 1.4.: Different effects of strain tensor ε ij (A) and rotation ω ij (B), illustrated by the deformation of a square in the x-z-plane, modified from Shearer [1999].

  Figure1.5.: A: Stress-strain relationship for purely elastic material, whose mechanical analogue is represented by a spring with rigidity µ ′ . B: stress-strain rate relationship for a purely viscous material, whose mechanical analog is described by a dashpot. Modified from[START_REF] Ranalli | Rheology of the Earth[END_REF].

F

  Figure 1.6.: A: Stress-strain relationship for a perfect plastic material at constant shear rate, whose mechanical analogue is represented by a parallel combination of a dashpot and a friction block. B: stress-strain rate relationship for a perfect plastic material.

Figure 1 . 7 :

 17 Figure 1.7: Schematic stress-shearrate relation for different rheologies. Black straight curve: Newtonian fluid, red dashdotted curve: Bingham fluid, green dashed curve: shear thinning fluid and blue dotted curve: shear thickening fluid.
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 1 Figure 1.8.: Schematic illustration of diffusion creep: propagation of a point defect. Red paths: Nabarro-Herring creep, where the vacancy moves through the crystal, blue paths: Coble creep, where the vacancy moves along grain-boundaries. Diffusion creep depends on grain-size (n E = 1, p = 2 for Nabarro Herring creep and p = 3 for Coble creep).
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 1 Figure 1.10.: Deformation mechanisms in the Earth's lithosphere. A: modified from Kohlstedtet al. [1995]. B: schematic stress-strain relationship in the brittle (i), brittleductile transition (ii) and ductile (iii) zones. In the ductile regime, the brittle strength σ b is higher than the plastic strength σ p , therefore allowing for plastic deformation to occur. In the brittle regime the rock fractures before plastic deformation may occur, as σ b < σ p . In the transition zone both strengths have similar values.
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 1 Figure 1.11.: Evolution of the velocity of a dislocation with stress. The power-law fit applied to the range feasible in the laboratory only works in a small range of parameters.
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 11 Figure 1.12.: Schematic picture of thermal convection in a constant-viscosity-fluid. A: Initial state, same properties everywhere. B: Heating from below and cooling from above -particle at the bottom (open circle) becomes less dense than particle at the top (black circle). C: Different competing mechanisms acting on particle. Buoyancy (dashed arrow), viscosity (straight arrow) and thermal diffusion (curved arrows).
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 1 Figure 1.15.: Regime diagram after Androvandi et al. [2011].

  introduce continents into the numerical simulation, which are focusing the stress,

Figure 1 .

 1 Figure 1.17.: Comparison of different rheological laws for a yield stress σ 0,y = 200 MPa. A and B show the stress and the viscosity respectively. Blue stars: Tackley [2000a], red circles: Stein et al. [2004] and green boxes Herschel-Bulkley model (eq. 2.4).C and D show the differences between the models, normalized by the maximum difference. Red triangles show the difference between the Heschel-Bulkley model and the model employed by[START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF], blue triangles pointing to the right show the difference between the Herschel-Bulkley model and the model employed byTackley [2000a] and black triangles pointing to the left show the difference between the models ofTackley [2000a] and[START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF].

  Figure 1.18.: Different regimes evolving depending on the non dimensional yield stress and the viscosity contrast, modified from Stein et al. [2004]. The non dimensional yield stress is written asσ Y = d 2 σ dim /η 0 κ,[START_REF] Stein | The influence of mantle internal heating on lithospheric mobility: Implications for super-Earths[END_REF], where η 0 is the viscosity used to calculate the Rayleigh number.
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 1 Figure 1.19.: From Davaille et al. [2013]. Phase diagram as a function of the yield stress σ 0 and of the stress of thermal origin σ th . Filled symbols stand for the plumes, empty ones for convection confined around the heater, and crosses for no convection. The solid line represents Y c2 = 260 and the dotted line Y c1 = 120. Different symbols represent different fluids. The empty black rectangle in the top left corner shows the uncertainty on the stresses. "a" points toward an experiment without any plume even after four days while experiment "b" generated a plume in less than 30 min.
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 1 Figure 1.21.: A: Thermal structure and velocity field of a hot instabilitiy in a Newtonian Fluid (sugar syrup, image courtesy of Floriane Touitou) versus B: hot instability in Carbopol (modified from Davaille et al. [2013]). Note the mushroom-like structure of the instabilitiy in the Newtonian fluid and the evry smooth velocity field, compared to the finger-like shape of the instability in Carbopol, with a flat velocity field inside the instability and strong gradients of the velocity towards its edges.
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 2 Figure 2.2.: A: setup from above. The laser-beam arrives via an optic fibre on two flipping mirrors: one vertically fast flipping, one slowly horizontally flipping, creating a vertical laser sheet that is horizontally displaced, scanning the tank. Images are recorded with a camera. B: schema of the setup, the box is heated from below and cooled from above. Image results from fast vertically flipping laser beam, images are taken all over the box.
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 2 Figure 2.3.: First 3D-picture-results. Dark blue represents the bottom of the box whereas dark red represents a height of 15 cm. Upper : view from 45 • , lower : view from above. 44 pictures were taken for the reconstruction.
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 225 Figure 2.4.: Schematic illustration of a staggered grid, from Gerya [2010]. Scalar variables (pressure P ) are located at the center of each cell, the velocity is defined at the cell faces.

Figure 2 2 .

 22 Figure 2.6: Validation of measurements with sandpaper. Small symbols: viscosity, big symbols: stress. Red squares show measurements of Glycerol without sandpaper, blue circles show measurements of Glycerol with sandpaper that were calculated with eqs. 2.2-2.3.
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 27 Figure 2.7: Flow test at T = 20 • C from high to low shear rate values. Symbols indicate two different measurements. Magenta lines refer to fitting Herschel-Bulkley model for (σ 0min = 0.07 Pa) and (σ 0max = 0.1 Pa) yield stresses. Dashed grey line marks shear rate below which product of measuring time and shear rate becomes smaller than one ( γ = 10 -3 ).Solid grey line marks shear rate below which the number of revolutions becomes smaller than n o = 0.05 at ( γ = 10 -2 s -1 ).
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 22 Figure 2.8.: from Gutowski et al. [2012]. Confocal images of low pH Carbopol gels dyed with Acridine Orange. The length of the scale bar is 20 µm. (i) 0.05 wt.% pH 3.8 (unmodified) Ultrez 10. (ii) 0.5 wt.% pH 3.5 (unmodified) Ultrez 10. (iii) 0.05 wt.% Ultrez 10 at pH ≈ 4. (iv) 0.5 wt.% pH 3.0 (unmodified) ETD 2050.
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 29 Figure 2.9: Flow test for fluids neutralized to different pH at T = 20 • C from high to low shear rate values. Blue circles: fluid with pH = 6, σ 0 < 0.01, K ν = 0.2715, n = 0.6966, red triangles: fluid with pH = 7, σ 0 = 4.8611, K ν = 4.8611, n = 0.4644, green squares: fluid with pH = 9, σ 0 = 0.1392, K ν = 1.2254, n = 0.5599.

Figure 2 . 10 :

 210 Figure 2.10: Example for an amplitudesweep test for Carbopol (CBP6). The arrow marked with LVE indicates the linear visco-elastic range. The stress value at the end of the LVE corresponds to the yield stress determined with the flow test fig. 2.7. In the LVE the mean values are G ′ = 2.083 Pa and G ′′ = 2.948 Pa.
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 2 Figure 2.12: Deformation of a sample showing shear banding, modified after Coussot et al. [2009]. In the solid regime deformation is uniform.In the flow regime an apparent shear rate is measured, while "bands" form inside the sample, that are sheared at different shear rate.
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 2 Figure 2.13: Visco-elastic properties of some Carbopol solutions, obtained from amplitudesweep test. The mean values in the LVE are summarized in table 2.3.

  .2) where r Cu and d Cu are the radius and the height of the copper plate. The results are shown in fig. 3.2C and D. Applying the correction the data collapses very well. The critical yield parameters are changed to Y c2 = 150 ± 10 and Y c1 = 100 ± 10.

Figure 3

 3 Figure 3.2.: Regime diagram (A) and onset time (B) calculated with total thermal power P emitted from the copper plate. C and D show the same plots, where the thermal power of the experiments from Davaille et al. [2013] have been corrected to compensate for the heat loss at the sides of the copper disk. Filled symbols: experiments with CBP6-14, empty violet symbols: experiments from Davaille et al. [2013], blue stars: numerical simulations from Massmeyer et al. [2013]. Triangles are cells observed for the corresponding fluid and given yield parameter.

Figure 3

 3 Figure 3.3.: A: Shear rate (color code) and raw image for experiment 20120811 in CBP14. B: Spatiotemporal evolution of a vertical pixel-line at the plume axis (as illustrated by sketch) for experiment 20110404 in CBP6. Colored lines highlight isotherms at 23.9 • C (blue), 31.1 • C (yellow) and 39.9 • C (red). Green line indicates unyielded region.

Figure 4

 4 Figure 4.1: A: Schematic illustration of the numerical domain. The calculations are run in a box of w × d × h = 20 cm×20 cm×40 cm with a resolution of n x × n y × n z = 64 × 64 × 128. Top boundary: free-slip, and kept at ambient temperature T 0 , side walls and bottom plate: rigid with zero heat flux. Patch in the center of the bottom of the box follows a prescribed temperature evolution. B: schematic of the approximation of the circular heated patch in the numerical simulation. While in the simulations the heated patch is inside the bottom boundary, in the laboratory experiments it is either; C: bottom mounted Davaille et al. [2013] or D: flush mounted by embedding the copper disk into a Plexiglas plate.
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 4 2 shows the typical evolution of the thermal instability. Upon heating, a hot pocket of fluid forms by heat conduction around the heater. Very slow motions are recorded in this hot pocket. After approximately one hour, a plume develops. The shape of the isotherm (fig. 4.2 A) resembles a finger.

  fig. 4.2 B shows that there remains an unyielded region (i.e. where the viscosity value remains at the cut-off value) at the top of the box during the whole simulation. This means that the plume has stopped rising. In the systematic study below, we shall use two diagnostic variables to characterize the plume evolution: the onset time t 0 (fig. 4.2 C), and the height where the plume stops h y (fig. 4.2 D). • Onset time: Lower viscosity regions form already at an early stage of the plume (fig. 4.2 B and C a)), due to a slowly convecting cell around the heater. The spatiotemporal evolution (fig. 4.2 C) shows that at t = 62.33 min (fig. 4.2 b)) this cell grows very fast. The time when the small cell evolves into a plume is referred to as the onset time t 0 . Several methods to determine the onset time all give similar results within an error of 3 %[START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ). We will show how the transition from the cell to the plume takes place and provides a precise criterion for the determination of the onset time in section 4.5.1.• Height where the plume stops: The spatiotemporal evolution of the viscosity on the plume axis (fig.4.2 C) shows that even after the onset of the plume, high viscosity regions persist at the top of the box. This means that not the whole fluid is convecting, but only a part of it. To define the height where the plume stops we plot a profile of the viscosity on the plume axis (fig.4.2 D). The viscosity shows a local minimum at the head of the plume. This local viscosity minimum corresponds to the point where the radial derivative of the radial velocity (dv r /dr) becomes maximum. Hence, it marks the location of a stagnation point in the moving plume reference frame, and therefore the position of the top of the plume head[START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF] ). So, we define the maximum height that a plume reaches, or height
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 424 Figure 4.2.: Definition of output parameters. A: snapshots of the temperature field in the axis plane for different time steps marked in C. White lines mark the isotherm at T = 23.9 • C. B: snapshots of the viscosity field on the plane through the plume axis. C: spatiotemporal evolution of a vertical line on the plume axis for the viscosity, vertical dotted lines in B and C correspond to each other. D: viscosity profile at t = 249.52 min, h y marks the height where the plume stops, corresponding to a local minimum in the viscosity, which marks the stagnation point.

4. 3

 3 .2.1. Effects of the Viscosity Cut-Off η 0 We tested the influence of different η 0 on the plume dynamics, η 0 = [10 8 , 10 10 , 10 12 ] Pa s. The choice of η 0 neither affects the onset time, nor the dynamic behaviour (fig. 4.3 A).

  Figure 4.4.: Effect of real A: i) real solid blue and generalized dashed orange thermal history on the evolution of the plume. Spatiotemporal evolution for the viscosity of a vertical line at the plume axis ii) laboratory and iii) generalized temperature history of the heated patch. B: cross section of Aii) (blue circles) and Aiii) (orange triangles) at t = 250 min.
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 45 Figure 4.5: Onset time dependence on the nondimensional yield parameter Y 0 which compares the buoyancy induced thermal stress to the yield stress. Diamonds are plumes obtained from laboratory experiments including those of Davaille et al. [2013] (black) and those obtained with the flush mounted heater (orange). Orange octagons: laboratory experiments that exhibit only a cell until the depicted time. All other symbols: Numerical simulations, colours indicate different n, while different symbols indicate different K ν .
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 4 Figure 4.6.: A: Evolution of the heating for the laboratory experiments (black line) and the numerical simulation (grey line) through time. B: Spatiotemporal evolution of a vertical pixel line (vertical white dashed line in C) through time. White lines show particles, coloured lines highlight the isotherms at 23.9 • C (blue dash dotted), 31.1 • C (yellow dotted) and 39.9 • C (red dashed). C: Snapshot from a laboratory experiment at t = 146 min, the white dashed line marks plume axis. D: Spatiotemporal evolution of the viscosity at the plume axis (background colour) and isotherms (black lines). The vertical green dashed line indicates the onset time,which is about the same (laboratory experiment: t 0 = 119.9 min, numerical simulation t 0 = 120.59 min ) for simulation and experiment. The horizontal green line marks the unyielded region for the laboratory experiment; the width of this region for experiment and simulation is given by the green arrows.

  A closer look at different flow curves (fig. 4.8) reveals that a change of the shear thinning exponent (fig. 4.8 A) and/or the consistency (fig. 4.8 B) might also affect the system, as those changes affect the effective viscosity. The flattening of the viscosity curve (fig. 4.8 A and B i)) and the deviation from the stress plateau (fig. 4.8 A and B ii

  Figure 4.7.: Morphology of the deformation (background colour) and the temperature field as indicated by the isotherms (black lines, temperature increases from the inside to the outside, isotherms at 39.9 • C, 31.1 • C and 23.9 • C). A: Laboratory experiment, B: Numerical simulation. A and B are shown for the same shear rate range (colourbar at the side); C: Numerical simulation for a larger shear rate.
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 44 Figure 4.8.: Flow curves for different parameter combinations, i) viscosity versus shear rate and ii) stress versus shear rate. A: constant σ 0 = 0.06 Pa and K ν = 1.403 Pa s n and varying shear thinning exponent n = [0.50, 0.58, 0.70]. B: constant σ 0 = 0.06 Pa and n = 0.58 and varying consistency K ν = [1.000, 1.403, 2.000] Pa s n .
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 410 Figure 4.10: Spatiotemporal evolution of a vertical pixel-line at the plume axis for two laboratory experiments in the same fluid, with different thermal power applied. A: P = 1.85 W, B: P = 1.50 W. Coloured lines highlight isotherms, colour and linestyle convention as in fig. 4.6 B. Green lines indicate the transition to unyielded region.

  2.0 Pa s n at σ 0 = 0.06 Pa and n = 0.58. The flow curve for the viscosity (fig.4.8 B i)) shows that a fluid with a high consistency exhibits higher viscosities at constant shear rate. As a result, we observe that the onset time changes only slightly (compared to the effect of a change in the yield stress), as the consistency increases. On the other hand h y decreases with increasing K ν by roughly 15 % from K ν = 1.0 Pa s n to K ν = 2.0 Pa s n . Inside the instability the viscosity increases with increasing K ν . With constant σ 0 = 0.06 Pa and K ν = 1.403 Pa s n an increase of the shear thinning exponent induces lower viscosities for a given shear rate, fig.4.8 A i). Therefore, the onset time decreases (fig.4.9 C) when n increases from i) n = 0.5 to iii) n = 0.7. Furthermore this decrease in the effective viscosity also results in higher h y .
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 4 Figure 4.11.: Different temporal evolutions for simulation 24, cf. table 4.1. A: evolution of the Bingham number Bi = σ 0 K ν γn max where γmax is the maximum shear rate evaluated at each time step. The vertical green line marks Bi = 1. B: Spatiotemporal evolution of the viscosity at the plume axis. C: Spatiotemporal evolution of the temperature at the plume axis. Red, yellow and blue lines indicate isotherms at T = 39.9 • C, T = 31.1 • C and T = 23.9 • C respectively. D: Spatiotemporal evolution of the temperature of a horizontal line through the thermal boundary layer and the plume axis. The vertical green line indicates when the Bingham number in A becomes one, the vertical black dash-dotted line indicates when the T = 39.9 • C-isotherm in D starts to deform.

  parameter using the maximum shear rate at each time step and then track the evolution ofBi (fig. 4.11 A). Fig.4.11 B shows the evolution of the viscosity on the plume axis. A comparison of both plots shows that the Bingham number value becomes Bi = 1 right prior to the take off of the plume. We can furthermore compare this to the evolution of the temperature field; Fig.4.11 C shows the temporal evolution of a vertical pixel line at the plume axis and Fig.4.11 D a horizontal pixel-line cutting the thermal boundary layer through the plume axis. The grey dotted line indicates the onset time as determined in the laboratory experiments[START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ), where the necking of the isotherms as seen in fig.4.11 D has been used as a criterion for the onset. The state at which Bi = 1 occurs slightly before the onset as determined by the deformation of the isotherms in(fig. 4.11 D). However, when we plot the onset time as determined from the isotherms versus the onset time determined by the criterion Bi = 1 for different rheologies (fig.4.13) the data collapse on a straight line of slope one. Therefore, the Bingham number criterion is suitable to determine the onset time. Additionally, this method provides a more accurate determination of the onset time, since the other methods depend on the choice of the isotherm (cf. fig.4.11 D: the inner (red) isotherm deforms earlier than the outer (blue) isotherm).
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 412 Figure 4.12: Color convention as fig.4.5. Yield number Ψ with mean density difference ∆ρ between mean density of hot pocket with radius r eq and ambient fluid at plume onset versus yield parameter. Orange line indicates Ψ = 6.85[START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF],Dubash and Frigaard [2004, 2007],[START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ) and grey bar corresponds to Ψ = 8.8 ± 0.7[START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] ).
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 4134144 Figure 4.13: Onset time determined from spatiotemporal evolution of a horizontal pixel line of the temperature field in the thermal boundary layer versus onset time determined from the criterion Bi = 1. Colour convention as in fig. 4.5.

  the value of the other parameter, which is still super critical at this time. The results are plotted against the yield parameter Y 0 (fig. 4.16) where the filled symbols show the yield number Ψ (when the Bingham number becomes subcritical) and the open symbols the Bingham number (when the yield number becomes subcritical). The plot (fig. 4.16) is divided into two parts, where separation occurs at Y 0 = Y 0c ≈ 300, corresponding to the minimum observed in fig. 4.15 A. Approaching Y 0c = 300 the yield number approaches the critical value (Ψ → Ψ c ) and the Bingham number Bi → Bi = 1.
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 417 Figure 4.17: Dependence of consistency K νT on temperature T . Rheological properties measured in flow test for CBP10: σ 0 = 0.018 Pa, K ν = 0.75 Pa s n , n = 0.62 and for CBP11: σ 0 = 0.1 Pa, K ν = 1.5 Pa s n , n = 0.5. Measurements are fitted with K νT = K ν a e -b T , with A = 1.6927 and B = -0.0257 K -1 .
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 5 Figure 5.1.: Results from laboratory (A) and numerical (B) experiments for A for Y 0 = 316 and B Y 0 = 224.11. A and B i): temperature field, A ii) velocity field and B ii) strain rate. A: red ellipse at the bottom indicates copper-plate dimension.

  .10) where C(n) is a combination of different constants and a dependence on n. 5. Characterization of the Steady State 5.2. Validation of the Proposed Scalings 5.2.1. Temperature along the Plume Axis

  , σ 0 =0.065 Pa, K ν =1.000 Pa s n n=0.58, σ 0 =0.06 Pa, K ν =1.000 Pa s n n=0.70, σ 0 =0.06 Pa, K ν =1.403 Pa s n

Figure 5

 5 Figure 5.3.: A: Temperature profiles for simulations and calculated from equation 5.8 and the difference between those two temperatures ∆T . The temperature is well predicted within 1 K inside the plume stem. B: Temperature profile for experiment with CBP14 at P = 2.02 W and calculated from equation 5.8 with C 2 C 4 = 1.25. Red bars indicate temperature difference between ambient fluid and isotherm, where the errorbar indicates the error from the isotherm-calibration.
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 55 Figure 5.4.: A: Radius i) and shear rate ii) obtained from scaling (straight line) and simulation (dashed line). Dots indicate the shear-rate obtained with equation 5.10 for the radius where γ is maximum. Colorbar indicates height-colorcode used in B and C. B: Normalized shear rate profiles and C: Normalized temperature profiles as function of the normalized radius.
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 5 Figure 5.6.: Yield number Ψ (eq. 4.2) calculated with the radius of the equivalent bubble r eq (circles) and a (eq. 5.10, squares) for different simulations. The horizontal lines indicate the height h y where the plume stops, as defined in fig.4.2. The grey region indicates Ψ = 5 ± 1.2, which is the critical value found in Massmeyer et al.[2013] (chapter 4), red dashed line Ψ = 6.85(Dubash and Frigaard [2004, 2007],[START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF],[START_REF] Tabuteau | Drag force on a sphere in steady motion through a yield-stress fluid[END_REF] ).

  Figure 6.1.: A: schematic illustration of a dyke propagating from a source, e.g. a magmachamber. Dykes may evolve, when the overpressure in the magma source is sufficiently high. B: Photo of the shiprock (eroded volcano throat) with a joined dyke. Note that the dyke width is much smaller than its length. Image source:

  Figure 6.2.: Adapted from Fialko and Pearse [2012] APULVZ: Altiplano-Puna Ultralow-Velocity Zone. A: Color indicates uplift (red) and subsidence (blue) line-of-sight (LOS) velocities, evaluated from ERS-1/2 and EnviSAT data. Red line denotes extent of the seismically imaged ultra-low-velocity-zone (ULVZ) in the middle crust. B: Observed (black dots) and predicted (solid red line) LOS velocities along northwest-to-southeast profile, crossing the center of the uplift (A). Blue symbols (right axis) show surface velocities due to the Socorro Magma Body (New Mexico).

  Figure 6.5.: Maximum yield stress σ 0 that allows for an instability of given radius r with density difference ∆ρ to rise. Rectangles highlight regions for possible diapirism due to a purely thermal density contrast (dashed) or thermal and chemical density contrast, as well as mantle plumes (dash-dotted). Maximum possible yield stresses for instabilities in the lithosphere and mantle are named σ Lmax and σ M max respectively.

Figure 6

 6 Figure 6.6.: A: Shear rate γmin and B: corresponding viscosity η max at Bi = 1 after equation 6.2 in dependence of K ν and σ 0 for four different n E . Vertical grey lines indicate maximum yield stress that allows for instability to develop after fig. 6.5 in the lithosphere σ Lmax and in the mantle σ M max . White and pink straight lines mark minimum and maximum realistic viscosities.
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  Figure A.1: a) Experimental set up.The heater is placed on the center of the bottom plate of the tank. At time t=0, the heater is switched on, and a thermal plume candevelop. Here is shown an image of the thermal plumes obtained in Newtonian glucose syrups (e.g.[START_REF] Davaille | Anatomy of a laminar starting thermal plume at high Prandtl number[END_REF]).The bright lines represent isotherms (see text). b) Close up on the heater configuration. The cold junction of the Peltier element is placed on an metallic plate to dissipate the cold, while the hot junction is in contact with the copper disk. We verified that the temperature on the copper disk was homogeneous[START_REF] Vatteville | Starting laminar plumes: Comparison of laboratory and numerical modeling[END_REF]) and that the flow was not perturbed by the thermocouples.

  and Morphology particles and calculate velocity fields using Particle Image Velocimetry (PIV package from LaVision).

Figure A. 2 :

 2 Figure A.2: Flow curves measured for three fluids, J1 (red stars), J5 (green triangles) and S7 (magenta disks)and their fits by a Herschel-Bulkley law (solid lines). For the fits, only the measurements for shear rates above 10 -2 have been considered (see text).

  Figure A.3.: Phase diagram as a function of the yield stress σ 0 and of the stress of thermal origin σ th . Filled symbols stand for the plumes, empty ones for convection confined around the heater, and crosses for no convection. The solid line represents Y c2 = 260 and the dotted line Y c1 = 120. Stars stand for fluid J1, disks for S7, diamonds for J6, triangles for J5, and squares for M4. The empty black rectangle in the top left corner shows the uncertainty on the stresses. "a" points toward an experiment without any plume even after four days while experiment "b" generated a plume in less than 30 min.

  Fig. A.4 then shows that the predicted values of Y c1 are close to the observed ones (120±15) for constant C 0 between 0.2 and 1.

Figure A. 4 :Figure

 4 Figure A.4: Value of Y c1 predicted by equation (A.6) as a function of the elastic modulus and the Poisson ratio, for three different values of C 0 (or set ups) and ρ=1142 kg/m 3 . The heavy grey lines represents C 0 =1, the thin grey lines C 0 =0.5, and the thick black lines C 0 =0.2. The numbers indicate the Y c1 values of 120±15.

Figure A. 8 :

 8 Figure A.8: Development of a plume (same as fig. A.6). a) Temperature difference ∆T between the Peltier heater and the bulk fluid (red curve) and its time-derivative as a function of time. b) maximum vertical velocity W z recorded on the plume axis. c) Vertical velocity along the plume axis normalized by its maximum at each time, as a function of depth and time. d) dW r /dr along the plume axis normalized by its maximum at each time, as a function of depth and time. Its maximum corresponds to the stagnation point at the top of the plume ( inset). The two vertical dashed lines show the onset time and the second uplift event (cf. text).

Figure A. 10 :

 10 Figure A.10: Plume dimensionless onset time as a function of the Yield parameter. The same symbols as in fig.3 have been used for the different fluids. The thick dashed line corresponds to Y c2 = 260.To each fluid (and set of rheological parameters), correspond one of the thinner lines, which outlined the trend followed by the data points.
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  Fig. A.10 shows the onset time as a function of Y 0 -Y c2 . As expected, the closer to the Y c2 transition, the latest the onset time. For each fluid, the data points can be fitted with a power law t c = a(Y 0 -Y c2 ) b , (A.7)

  Figure A.12: Vertical cross-section of the plume structure at t=2000 sec ((same plume as fig. A.6)). a) Vertical velocity, b) shear rate according to equation (A.8), c) viscosity calculated with η = σ/ γ0 , d) shear stress normalized by the yield stress. Dark blue areas are for shear rates below the detection level and are therefore probably unyielded.

Fig

  Fig. A.12b shows the map of the characteristic shear rate for t = 2000 sec.: the shear rate in most of the plume axis region is zero (within the uncertainties on the shear rate field). So the fluid there is not sheared but moves up as a plug. This shear localization is characteristic of a yield stress fluid and is commonly observed in pipe flows (e.g.[START_REF] Gabard | Miscible displacement of non-Newtonian fluids in a vertical tube[END_REF]). Moreover, even when the velocity along the axis has reached its steady state, the plume conduit thermal anomaly enlarges slowly with time (fig. A.9a,b): this is due to the progressive erosion by the plume flow of the solid part of the fluid. As seen in rheometry measurements[START_REF] Baudez | Abrupt transition from viscoelastic solidlike to liquidlike behavior in jammed materials[END_REF];[START_REF] Divoux | Transient shear banding in a simple yield stress fluid[END_REF]), we observe the slow outward propagation of the interface between the two phases (fig. A.6g-h, fig.A.9a-b). However, a region of plug flow always remains along the plume axis (fig. A.12), and the plume shape remains columnar.

Figure A. 13 :

 13 Figure A.13: Development of a plume (fluid S7 at P =4.15 W, Y 0 =554). Zoom on the vertical spatio-temporal evolution off axis: a)r=12.5 mm, and b) r=25 mm.Note that the offset is towards the top for a) which means that the material is rising, while it is downwards for b), which means that the downwards return flow is close to the plume.

P 2 I 2 .

 22 = S p .I.T hot + 1 R p -K p .∆T (A.9) where S p is the Seebeck coefficient, R p is the electric resistance, and K p the thermal conductivity. Since we measure the temporal evolution of the voltage U and intensity I, we can determine for each experiment S p and R p through: U = R p .I + S p .∆T (A.10) and R p = U -S p .∆T I (A.11)

Figure B. 1 .:

 1 Figure B.1.: Flowchart of how to isolate the brightest isotherm of each Image(i), creation of mesh and the subsequent isosurface plot combining all images. pol2cart, meshgrid and TriScatteredInterp are used used if correction to the angle of the laser sheet is applied. If distortion is ignored, only meshgrid is used to create the mesh.

  

  

  Ra g is linear with d (and not cubic).[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] find a critical value for the onset of convection which is Ra gc = 40 for free-slip boundary conditions and Ra gc = 80 for no-slip conditions.

					1.19). For
	Y 0 < Y c1 = 120 the fluid does not move. For a further increase of Y 0 (Y c1 < Y 0 < Y c2 = 260)
	a small cell forms that convects around the heater (fig. 1.20)A. For Y 0 > Y c2 a plume
	develops (fig. 1.20)B. The morphology of this plume differs from the mushroom-shape
	typically encountered in Newtonian fluids (fig. 1.21), and is therefore referred to as
	a finger-like shape. Inside the thermal anomaly, the velocity field is rather flat, and
	resembles a plug flow. For small consistencies, an episodic behaviour may be observed
	(fig. 1.20C). The plume rises fast, then halts and then rises in a second pulse to the
	surface.				
	Similar results for the onset of convection are found in a recent study by Darbouli et al.
	[2013], who investigate Rayleigh-Bénard convection in Carbopol in a circular box. They
	define a generalized Rayleigh number, which is similar to the yield parameter (eq. 4.2)
	and is written as	Ra g =	αρg∆T d σ 0	,	(1.33)
	where d is the height of the box. Notably, different from the classical notation of the
	Rayleigh number (eq. 1.24),				

Table 2 .

 2 1.: N: number of semi conductors, G ratio of surface to height of one semi conductor, κ sc thermal conductivity of one semi conductor, h P is the height of the Peltier element, l P the length of its sides, h Cu is the height of the copper plate and d Cu its diameter.

	N	G	κ sc	h P	l P	h Cu	d Cu
	-	-	W/mK	mm mm	mm	mm
	34 0.1633 1.33 × 10 -2 1.4	15 3.36 ± 0.05 25.1 ± 0.1

Table 2 .

 2 2.: Values obtained from calibration of TLC illuminated with a laser of wavelength λ = 532 nm. Series 1 is used for experiments with CBP5-6 and the Rayleigh-Bénard setup described in appendix 2.2.3, Series 2 is used for experiments with CBP8-14.

	Series 1	T [ • C]	Series 2	T [ • C]
	BM/24C2W/S40 23.9 ± 0.26 SLN40/R24C2W 23.40 ± 0.27 BM/27C10W/S40 27.1 ± 0.30 SLN40/R27C2W 26.60 ± 0.37 BM/31C2W/S40 31.1 ± 0.26 SLN40/R30C2W 29.60 ± 0.21 BM/35C10W/S40 35.1 ± 0.30 SLN40/R33C2W 32.86 ± 0.25 BM/40C2W/S40 39.9 ± 0.39 SLN40/R37C2W 36.55 ± 0.34
	2.2. Data Acquisition			
	2.2.1. PIV: Particle Image Velocimetry		

Table 2 .

 2 3.: Thermal and rheological properties of different Carbopol mixtures. Yield stress consistency and shear thinning exponent have been measured at T = 20 • C, storage and loss modulus at the indicated temperatures.

Table 3 .

 3 1.: Summary of experiments added by this study to previously existing experiments Davaille et al. [2013]. Onset times in brackets indicate longest time waited during the experiment. Figure 3.1.: A: heating as employed in Davaille et al. [2013], heat is distributed into several directions. B: heating as employed in this study, the copperplate is insulated by plexiglass, heat only escapes at the top of the copper plate.

	Experiment Fluid Power [W]	Type	Onset time s h fluid [cm]
	CBP5	3.30	nothing (> 3 days)	36.2
	CBP5	3.50	nothing (> 3 days)	24.2
	CBP5	3.60	nothing (> 3 days)	24.2
	CBP6	1.85	plume	7194	39.2
	CBP6	1.67	plume	10182	39.2
	CBP6	1.50	plume	16836	39.2
	CBP6	1.89	plume	2855	28.4
	CBP6	1.45	plume	12114	28.4
	CBP6	2.02	plume	2775	18.6
	CBP6	1.68	plume	4385	18.6
	CBP6	1.55	plume	12114	18.6
	CBP8	2.40	plume	2775	22.8
	CBP8	2.40	plume	4384	22.8
	CBP8	1.90	plume	5209	22.8
	CBP8	1.92	plume	4655	22.8
	CBP11	1.70	plume	60960	24.0
	CBP11	1.82	plume	12480	23.4
	CBP11	2.08	plume	1740	23.4
	CBP11	2.10	plume	1680	23.4
	CBP11	2.10	plume	1680	13.3
	CBP11	2.18	plume	1320	6.5
	CBP11	2.15	plume	1320	7.2
	CBP12	1.84	plume	432000	35.2
	CBP12	2.08	plume	129600	35.2
	CBP12	2.08	plume	157200	35.2
	CBP13	1.83	cell	(270000)	40.2
	CBP13	2.26	cell	(1080000)	40.2
	CBP14	2.35	plume	1120	31.8
	CBP14	2.31	plume	1105	31.8
	CBP14	2.02	plume	1751	20.0
	CBP14	2.02	plume	1665	20.0

  Table A.1.: Fluid properties at 20 o C. Rheological properties: σ 0 yield stress, n shear-thinning index, K v consistency. Thermal properties at 20 o C: ρ density , α thermal expansion , thermal conductivity k.

	Fluid Glycerol Carbopol H wt% g/l mm	σ 0 Pa	n -	K v Pa s n kg/m 3 10 -4 K -1 W/m K α k ρ 0
	J1	56.5	0.4	180 0.037 0.63 0.345 1144	4.69	0.40
	M2	0	0.8	180 0.35	0.5	1.57	999	2.10	0.58
	M4	51.0	0.6	155 0.16	0.5	0.86	1129	4.89	0.41
	J5	56.0	0.65	140 0.15 0.60 0.535 1142	4.61	0.40
	J6	56.0	0.625	187 0.106 0.54 0.855 1142	4.61	0.40
	S7	56.0	0.6	166 0.10 0.54 0.76	1142	4.62	0.40

[START_REF] Bénard | Les Tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en régime permanent[END_REF] reports hexagonally organized convection cells in a layer of walrat heated from below and cooled from above.[START_REF] Rayleigh | On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side[END_REF] examined by "how far the interesting results obtained by Bénard in his careful and skillful experiments can be explained theoretically"

A plume may only form, if the buoyancy induced stress is high enough compared to the yield stress (cf.[START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF],[START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] ). To avoid the difficulties in measuring very small yield stresses, we add glycerol to enhance the thermal expansivity.

This chapter has been published in Journal of Non-Newtonian Fluid Mechanics,[START_REF] Massmeyer | Numerical simulation of thermal plumes in a Herschel-Bulkley fluid[END_REF].

this section has been published in Journal of Non-Newtonian Fluid Mechanics,[START_REF] Davaille | Thermal instabilities in a yield stress fluid: Existence and Morphology[END_REF] 
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Appendix A: Temperature Dependence of the Consistency

The temperature dependence for K νT has been evaluated performing a temperature sweep test at constant shear rate. To verify the uniformness of the model, we used two different mixtures of Carbopol (for rheological properties see figure caption fig. 4.17) and applied two different shear rates γ = 1 s -1 and γ = 10 s -1 . The results are plotted in fig. 4.17. The figure shows that the model K νT = K ν A e -B T with the coefficients A = 1.6927 and B = -0.0257 K -1 fits the data reasonably well, for both fluids and at both shear rates. After the conduction stage, the plume rises quickly at 2200 sec until it stops completely and cools down. Then a second pulse is recorded, starting around 3100 sec.

B.1. Flowchart: 3D-Isotherm-Script

Here the different steps, how to isolate and visualize the isotherm, are summarized in a flowchart (fig. B.1. In a first step the brightest isotherm is isolated for every picture Image(i). First the first picture Image0(i) is subtracted to get rid of noise (e.g. reflections at the sides). Then several filters are applied to get rid of other bright reflections, e.g. reflections from PIV-particles and less bright isotherms. Then the gradient of the image is calculated. It is pointing "away" from the isotherm and its value is around zero on the isotherm. Thus the isotherm is defined as the point where the gradient is around zero and the local intensity is higher than a previously defined threshold value. On a new matrix all points that full fill the criterion are set to one, all other points are set to zero.

To create a 3D-plot of the brightest isotherm a mesh needs to be defined. In the easiest case this can be done with meshgrid. However, the laser sheet prescribes an angle and therefore the scanned area is small on the side where the laser sheet enters the box and then increases to the other side. To take account correct for this deformation, the grid can be calculated using pol2cart, meshgrid and TriScatteredInterp. The drawback is, that TriScatteredInterp is very RAM-and time-consuming. For the plotting all values equal to 1 are patched onto the grid (patch) and then plotted with isonormals. For better visualization isocolors may be used, e.g. to colorcode the height (as in fig. 2.3)