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Mme Andréa Tommasi Présidente du Jury



ii



Remerciements

First of all I would like to thank my two“directrices de these”, Anne Davaille and Erika
Di Giuseppe. Thank you Anne, for all your help with administrative things making the
first steps in France much easier, for all your ideas and the resulting discussions and for
sending me to all the different workshops and conferences that helped to keep my interest
on the work awake during the whole thesis. Thanks to Erika who became a good friend.
Thank you for introducing me with your great pedagogic skills to the world of rheology,
sharing your knowledge and experience with me and for the plenty discussions we had,
that always pushed me a large step forward. Thank you for being my travel planner,
hostel during RER-problems, your friendship and so much more, I cannot list everything
here...

I would also like to thank Paul Tackley and Tobias Rolf for the collaboration that
largely improved our understanding of the laboratory system. Thanks to Tobi for patiently
answering my emails and for taking your time to introduce me to the numerical code when
I was in Zürich.
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Abstract

Thermal instabilities in a yield-stress fluid: from the laboratory to the plane-
tary scale
Plumes are known to migrate through the ductile quasi-Newtonian mantle, while dikes

fracture and propagate through the solid lithosphere. However, depending on the timescale,
the lithosphere presents solid as well as viscous properties. To determine what happens
in the complex case, where instabilities propagate through a visco-elastic matrix, we per-
formed a combined study of laboratory experiments and numerical simulations. Here we
investigate the development of thermal plumes in aqueous solutions of Carbopol, a poly-
mer gel, forming a continuous network of micrometric sponges. This fluid is shear thinning
and has a yield-stress σ0, whereby flow occurs only if the local stress exceeds this critical
value σ0. Below this value, the fluid acts as an elastic solid. The rheological properties
of the solutions can be systematically varied by varying the Carbopol concentration. The
setup consists of a localized heat-source operated at constant power, placed at the centre
of a square tank.
Depending on the ratio of the thermally induced stresses and the yield stress, Y0, three

different regimes may be obtained. For low Y0 < Yc1 no motion occurs, whereas for
Yc1 < Y0 < Yc2 a cell develops, that evolves into a plume for Y0 > Yc2. We show that the
critical parameters (Yc1, Yc2) strongly depend on the geometry of the heating.
Combined temperature and velocity field measurements show that the morphology of

the plume resembles a finger, contrary to the mushroom-like shape encountered in Newto-
nian fluids. Numerical simulations using a purely viscous description, where the rheology
of the fluid is described by a regularized Herschel-Bulkley model, are sufficient to capture
the plume dynamics.
A detailed parametric study shows that the plume dynamics are governed by the in-

terplay between yield stress, buoyancy induced stress and viscous stresses. We identify
two non-dimensional parameters: the yield parameter Ψ comparing the buoyancy induced
stress to the yield stress, and the Bingham number Bi comparing the yield stress to the
viscous stresses. We show that a plume can rise only if both parameters are supercrit-
ical, i.e. if buoyancy induced stress and viscous stresses each overcome the yield stress.
Therefore the plume may come to a halt before it reaches the surface.

We propose scaling laws for the plume stem velocity, temperature and the size of the
shear zone in the steady state. We show that the scaling laws describe the behaviour in
the plume stem reasonably well, if the yield stress is neglected and only the shear thinning
behaviour is taken into account.
Applying the non-dimensional parameters to Earth places severe constraints on the

strength of mantle and lithosphere. The maximum strength that allows for thermal insta-
bilities to penetrate the lithosphere or upper mantle is in between 100 kPa and 100MPa,
and strongly depends on the size and buoyancy of the anomaly.
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Résumé

Instabilités thermiques dans un fluide à seuil : de l’échelle du laboratoire à
celle de la planète
Des panaches sont connus pour migrer à travers le manteau ductile et quasi-Newtonien ;

alors que les dikes se fracturent et se propagent dans la lithosphère solide. Cependant,
la lithosphère est en fait visco-élastique. Afin de déterminer ce qui se passe dans ce cas
complexe, nous avons réalisé une étude expérimentale et numérique sur le développement
de panaches thermiques dans des solutions aqueuses de Carbopol, un gel de polymères
formant une réseau continu d’éponges microscopiques. Ce fluide est rhéofluidifiant et
présente un seuil de contrainte σ0, de sorte que l’écoulement ne se produit que si la con-
trainte locale dépasse cette valeur critique σ0. En dessous de cette valeur, le fluide agit
comme un solide élastique. Les propriétés rhéologiques des solutions peuvent être systé-
matiquement ajustées en variant la concentration de Carbopol. Le dispositif consiste en
une source locale de chaleur de puissance constante placée au centre d’une cuve cubique.
Selon la valeur du rapport entre la contrainte d’origine thermique et la contrainte seuil,

Y0, on peut observer trois régimes différents. A faible Y0 < Yc1, aucun movement n’est
détecté; tandis que pour Yc1 < Y0 < Yc2 une cellule se développe, puis évolve vers un
panache pour Y0 > Yc2. Nous montrons que les paramètres critiques (Yc1, Yc2) dépendent
fortement de la géométrie du chauffage.
Des mesures simultanées de température et de champs de vitesse montrent que la mor-

phologie du panache ressemble à un doigt, contrairement à la forme de champignon rencon-
trée dans les fluides newtoniens. Utilisant des simulations numériques avec une description
purement visqueuse, où la rhéologie du fluide est décrite par un modèle de Herschel-Bulkley
régularisé, sont suffisantes pour rendre compte de la dynamique du panache.
Une étude détaillée des paramètres indiquent que la dynamique du panache est gou-

vernée par la compétition entre la contrainte seuil, la contrainte induite par la flottabilité
et les contraintes visqueuses. Nous avons identifié deux paramètres adimensionnés : le
paramètre seuil Ψ comparant la contrainte induite par la flottabilité et la contrainte seuil,
et le nombre de Bingham Bi comparant la contrainte seuil et les contraintes visqueuses.
Un panache ne peut s’élever que si les deux paramètres sont supercritiques, i.e. la con-
trainte induite par la flottabilité et les contraintes visqueuses sont plus importantes que
la contrainte seuil. Par conséquent, le panache peut s’arrêter avant d’atteindre la surface.
Des lois d’échelles dans le conduit du panache ont été determinées pour la vitesse,

la température et la taille de la région cisaillée en régime permanent. Elles décrivent
raisonnablement le comportement du conduit bien que seul l’effet rhéofluidifiant soit pris
en compte.
L’application de ces paramètres adimmensionnées à la Terre contraignent significative-

ment la limite de plasticité du manteau et de la lithosphère. Le contrainte seuil maxi-
male qui permet à une instabilité thermique de pénétrer dans la lithosphère ou le man-
teau supérieur est entre 100 kPa et 100MPa, et elle dépend fortement de la taille et de
l’anomalie de densité de l’intrusion.
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1. Introduction

The three terrestrial planets - Venus, Earth and Mars - have a similar composition
and consist mainly of silicate rocks and metals. Therefore they are also referred to as
silicate planets, moreover Venus and Earth are of comparable size. After accretion, all
three planets separated into at least three different layers: a core, a mantle and a crust.
The rheological behaviour of mantle and crust strongly depends on the time scale where
load (stress) is applied and the observed time scale. Hence on a “human” timescale they
behave as a solid, whereas they may deform like a viscous fluid on a geological timescale
of several 100Mio. years. Due to the planet being in a cold universe, the planet is cooled
from the surface. On the other end, at the core mantle boundary (CMB) the mantle is
heated. Hence the dense material will sink into the mantle, while the hot material from
the CMB rises, i.e. the planetary mantle convects. These large-scale motions are respon-
sible for volcanism, or on Earth for the formation of plates at mid-ocean ridges, which
then spread, cool and sink back into the mantle at subduction zones. Therefore mantle
convection is an important mechanism to cool a planet.

Despite their similar composition and size, surface dynamics on Earth, Mars and Venus
are very different. Some crustal rocks on Mars formed 4.5Gyr (billion years) ago (e.g.
Hartmann and Neukum [2001]) and in most models mars is assumed to be in the stagnant
lid mode (e.g. Reese and Solomatov [1998]), where the cold thermal boundary layer is
not participating in mantle convection. The surface of Venus is younger than a billion
years (Schaber et al. [1992]) which may be due to an episodic resurfacing event about 500
million years ago (e.g. Schaber et al. [1992], Turcotte [1993]). The youngest surface can
be found on Earth, where 60% are renewed continuously. Earth’s surface is composed of
several plates. The plates are formed at mid-ocean ridges and sink as downgoing sheets
into the mantle at subduction zones. Deformation of the plates is strongly localized to
the plate boundaries, which are regions of high seismicity (cf. fig. 1.1). The plates form a
network of cold cells. Inside such a cell hot mantle plumes rise, which manifest themselves
by hotspot volcanism at the surface (cf. circles in fig. 1.1).
The key-mechanism leading to these different surface expressions on the different planets,
is rheology. This chapter is therefore dedicated to give an overview about the structure
and rheology of the Earth and convection models employing different rheologies, leading
to convection with different surface expressions.
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1. Introduction

active hotspot

Figure 1.1.: Image c©by John Nelson. Earthquakes recorded since 1898, sorted by magnitude.
Red-circles: current location of hotspot volcanism (cf. Davaille et al. [2005]).
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1.1. The Earth

1.1. The Earth

Earth’s internal structure is composed of a solid iron core at the center of the liquid
outer core that consists mostly of iron and where the Earth’s magnetic field is generated,
enclosed by the mantle that forms the outer shell of the planet. The basic understanding
of the Earth’s structure (fig. 1.2 after Davies [1999]), is based on seismological obser-
vations and experiments at high pressure and temperature that study the mineralogical
structure at Earth’s mantle conditions. The mantle rocks undergo several phase changes
as pressure and temperature increase with depth. Those changes are recorded as seismic
discontinuities and may affect mantle dynamics. At 410 km olivine transforms to Wads-
leyite, that undergoes another phase change to Ringwoodite at 520 km that transforms to
silicate perovskite at 660 km. Perovskite then might undergo another phase transition to
post-perovskite (cf. Murakami et al. [2004], Oganov and Ono [2004]) at 2600 km depth.
The temperature at the core mantle boundary (CMB) is not well constrained (cf. Lay
et al. [2008] and references therein) and is in between 3300 − 4300K. For a hot CMB,
another phase transition might then occur above the core mantle boundary, from post-
perovskite back to perovskite (Hernlund et al. [2005]). While the 660 km phase transition
is endothermic, all other transitions are exothermic. Therefore, e.g. due to the release of
latent heat, they may have severe influence on the dynamics of the mantle. The lower
and upper thermal boundary layers (TBL) of the convecting mantle correspond to the
D”-layer and the lithosphere respectively.

1.2. Rheology of the Earth

Rheology studies the flow of a continuous body or liquid as a response to an applied
force. For Earth this may be for example the forces exerted by the convecting mantle on
the lithosphere. This section will therefore first explain the basic rheological terms which
will then be used to discuss the rheology of the Earth.

1.2.1. Basic Rheological Terms

1.2.1.1. Stress and Deformation

The force exerted on an infinitesimal plane whose orientation is specified by the normal
vector n̂ is called traction t(n̂) (fig. 1.3A). Traction across a surface within a continuous
body is linked to the stress σ at this point via Cauchy’s formula, which is written as

ti(n̂) = σij nj (1.1)

3
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Figure 1.2.: Schematic picture of the Earth after Davies [1999], with mineralogical zones, seis-
mological observations and dynamical layers. Grey zones: post-perovskite (PPV,
cf. Murakami et al. [2004], Oganov and Ono [2004]) as a possible mineralogical
and dynamical phase in the D”-layer. The dynamical thermal boundary layer
(TBL) roughly corresponds to the seismological D”-layer.
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Figure 1.3.: A: traction vectors describing forces on faces of an infinitesimal cube, where x̂, ŷ
and ẑ are the normal vectors in the direction of x, y and z respectively. B: shear
stress acting on a square. A and B Modified after Shearer [1999].

A material deforms under an applied stress. In a continuum, this deformation is re-
flected in the displacement of the position of points and can be expressed as the sum of
strain and solid body rotation. In the infinitesimal strain theory, the infinitesimal strain
tensor is symmetric and is written as

εij ≡ 1

2

(

∂ ui

∂ xj

+
∂ uj

∂ xi

)

, (1.2)

where u = (ux, uy, uz) is the displacement. The tensor for rigid body rotation is asym-
metric and is written as

ωij ≡ 1

2

(

∂ ui

∂ xj

− ∂ uj

∂ xi

)

. (1.3)

Deformation is therefore expressed as

∂ ui

∂ xj
=

1

2

(

∂ ui

∂ xj
+

∂ uj

∂ xi

)

+
1

2

(

∂ ui

∂ xj
− ∂ uj

∂ xi

)

. (1.4)

Fig. 1.4A illustrates the deformation of a 2D square under strain (no rotation) assuming
conservation of volume. The latter requires ∂ ux

∂ x
= ∂ uz

∂ z
= 0 and ∂ ux

∂ z
= ∂ uz

∂ x
and therefore

deformation is given by

ε =

[

0 θ
θ 0

]

=

[

0 ∂ ux

∂ z
∂ uz

∂ x
0

]

, (1.5)

with θ being the angle of rotation of each side. The rigid body rotation (fig. 1.4B) requires
∂ ux

∂ z
= −∂ uz

∂ x
and is written as

ω =

[

0 θ
−θ 0

]

=

[

0 ∂ ux

∂ z
∂ uz

∂ x
0

]

. (1.6)
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B

Figure 1.4.: Different effects of strain tensor εij (A) and rotation ωij (B), illustrated by the
deformation of a square in the x-z-plane, modified from Shearer [1999].

1.2.1.2. Elasticity

In a purely elastic material, stress is linearly proportional to strain (fig. 1.5A). A
continuous elastic body deforming instantaneously under an applied stress, can recover
from this deformation. The relationship is called Hooke’s law, which describes for example
the deformation of a spring. In its general form it is written as

σij = cijklekl, (1.7)

where cijkl is the elastic tensor. For an isotropic material it is written as

σij = λδijekk + 2µ′eij (1.8)

where λ and µ′ are the Lamé parameters and δij is the Kronecker delta.

1.2.1.3. Viscosity

Viscosity is the resistance of a fluid to flow under an applied stress. The mechanical
analog to viscosity is the dashpot (fig. 1.5B). While elastic deformation is instantaneous,
viscous deformation occurs in steady state. Therefore the time over which deformation,
due to an exerted stress, occurs becomes important. Therefore in a viscous material stress
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σ

ε

µ'

σ
ε

η

1/2 η

.

A B

Figure 1.5.: A: Stress-strain relationship for purely elastic material, whose mechanical analogue
is represented by a spring with rigidity µ′. B: stress-strain rate relationship for
a purely viscous material, whose mechanical analog is described by a dashpot.
Modified from Ranalli [1995].

is proportional to the strain rate. For a Newtonian fluid the stress strain rate relationship
is linear and is therefore written as

σij =
µ

ρ
ε̇ij = η ε̇ij , (1.9)

where µ is the kinematic viscosity, ρ the density and η is the dynamic viscosity. If the
viscosity is Non-Newtonian, the stress-strain rate relationship is non-linear, in most cases
the viscosity then decreases with increasing stress (Poirier [1985]).

1.2.1.4. Visco-Plasticity

In a perfectly plastic solid, deformation occurs elastically until the yield stress σ0 (limit
of plasticity) is reached above which a permanent strain appears and deformation becomes
irreversible (Poirier [1985]). If plastic deformation is achieved by imposing a constant
strain rate that results in plastic strain, the object will deform at constant stress (fig.
1.6A). Above the yield stress, the stress-strain rate relationship is linear, therefore stress
increases with increasing strain rate (fig. 1.6B).
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ε=const.
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Figure 1.6.: A: Stress-strain relationship for a perfect plastic material at constant shear rate,
whose mechanical analogue is represented by a parallel combination of a dashpot
and a friction block. B: stress-strain rate relationship for a perfect plastic material.

1.2.1.5. Relationship Between the Deformation of Rocks and Non-Newtonian

Fluids

Due to the definition of a viscosity, the deformation of a plastic solid, like rocks, may be
compared to the behaviour of a fluid. Like in solids, many fluids have a non-Newtonian
viscosity and may only flow, if the yield stress, which is due to the structure of the
fluid, is exceeded. Consequently, those fluids are called non-Newtonian fluids. Below σ0

deformation is elastic and therefore reversible. Different models for yield stress fluids exist,
e.g. the Bingham model or the Herschel-Bulkley model. Their general expression in the
community of fluid dynamics is

σ = σ0 + Kν γ̇
n (1.10)

where γ̇ is the shear rate and Kν the consistency. For the Bingham model n = 1, i.e.
once the yield stress is exceeded, the stress-strain rate relationship is linear (fig. 1.7 red
dash-dotted curve) and it flows like a Newtonian fluid (fig. 1.7 black straight curve).
The Bingham model (Bingham [1916]) is a special case of the Herschel-Bulkley model
(Herschel and Bulkley [1926]). For a shear thinning fluid n < 1 (fig. 1.7 green dashed
curve) viscosity decreases with increasing shear rate whereas it increases with increasing
shear rate for a shear thickening fluid where n > 1 (fig. 1.7 blue dotted curve). To avoid
confusion with the notation in the geophysics community, the shear rate dependence for
geophysical systems will be expressed with nE (adding the index E for Earth) as the

8
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γ
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nE =n = 1nE < 1

  n > 1

nE =n= 1, σ0=0

.

Figure 1.7: Schematic stress-shearrate
relation for different rheolo-
gies. Black straight curve:
Newtonian fluid, red dash-
dotted curve: Bingham
fluid, green dashed curve:
shear thinning fluid and
blue dotted curve: shear
thickening fluid.

definition of the shear thinning exponents in the two communities is different. In the
geophysics community (e.g. Solomatov [1995], Scott and Kohlstedt [2006]), the shear-rate
dependence is normally expressed as

η ∝ 1

γ̇
nE−1

nE

. (1.11)

Comparing the two formulations this implies

Fluid dynamics Geophysics

γ̇n−1 =γ̇
1−nE
nE

⇐⇒ n− 1 =
1

nE
− 1

⇐⇒ n =
1

nE

. (1.12)

Therefore in the geophysics community nE > 1 indicates that the fluid is shear thinning,
while it is shear thickening for nE < 1 (cf. fig. 1.7).

1.2.2. Physics of deformation of solids

Due to its imperfectness, a crystalline solid can deform in two ways. In diffusion creep
shear is transported by the propagation of point defects through the crystal, whereas shear
rate is transported in the case of dislocation creep, by the propagation of line defects.

Diffusion creep Under an applied stress, the chemical potential changes, as vacancies
are created at the grain boundaries perpendicular to the direction of lowest stress (fig.
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1.8). Therefore vacancies will flow towards the lower potential, whereas atoms move in
the opposite direction. The stress-strain rate dependence is then written as

ε̇ ∝ Dcreep

dp
σ (1.13)

with d being the grain size, p the grain size exponent. From Fick’s law follows the diffusion
coefficient Dcreep = D0exp (−Q/RT ) with Q being the activation energy for creep and R
being the universal gas constant. This shows, that creep flow is getting easier at higher
temperatures. Furthermore the mechanism is becoming more effective for smaller grain
sizes. The grain size exponent depends on how the vacancy propagates. If vacancies
propagate through the crystal, this is called Nabarro-Herring creep and the grain size
exponent is p = 2, whereas a propagation along grain boundaries is referred to as Coble
creep and the grain size index is p = 3. The constant relating stress and strain rate is
then the viscosity that, in this case, strongly depends on temperature.

σ

σ

σ

σ

Figure 1.8.: Schematic illustration of diffusion creep: propagation of a point defect. Red paths:
Nabarro-Herring creep, where the vacancy moves through the crystal, blue paths:
Coble creep, where the vacancy moves along grain-boundaries. Diffusion creep
depends on grain-size (nE = 1, p = 2 for Nabarro Herring creep and p = 3 for
Coble creep).

Dislocation creep At lower temperatures, the dominant creep is due to the propagation
of line defects through the crystal lattice. This mechanism is called dislocation creep.

ε̇ ∝ (σ − σ0)
nEexp (−Q/RT ) (1.14)
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1.2. Rheology of the Earth

While the propagation of a point defect results in a linear stress-strain rate relationship,
the propagation of a line defect results in a non-linear relationship. In the case of rocks, the
stress exponent is generally in between nE = 2− 4.5 (Ranalli [1995]). Which mechanism

i) ii) iii) v) vi) vii) viii)iv)

Figure 1.9.: Schematic illustration of dislocation creep: propagation of a line defect through
the crystal lattice.

dominates the creep behaviour, strongly depends on several factors. In dislocation creep
the stress exponent, activation energy and activation volume are higher than in the case
of diffusion creep, whereas the grain size exponent is lower. Consequently, at low stresses,
small grain size, low temperature and high pressure, diffusion dominates over dislocation
creep (Karato and Wu [1993]).

1.2.3. Deformation mechanisms in the Earth’s mantle

While most of the mantle deforms under ductile creep, deformation in the upper few
kilometres occurs in form of fracture, when grains and crystals are sliding past each other.
This is due to the brittle strength σb being smaller in this region, than the plastic (ductile)
strength σp of the rock (fig. 1.10). With increasing depth, brittle and ductile strength are
in the same order of magnitude (brittle-ductile transition zone, fig. 1.10), whereby the
depth-extend of the brittle-ductile transition zone depends for example on the composition
of rocks as well as the strain rate. With increasing strain rate, the ductile creep curve is
shifted to deeper levels in the mantle.
In the ductile regime a viscosity can be defined. The viscosity then depends on grain size

(Platt and Behr [2011], Demouchy et al. [2012]) and stress (Karato [1986], Ranalli [1995]),
but also on temperature (Mei and Kohlstedt [2000], Chopra and Paterson [1984], Karato
[1986], Hirth and Kohlstedt [1996], Kohlstedt and Zimmerman [1996]), water fugacity
(Bai et al. [1991], Karato and Jung [2003]) and melt content (Karato [1986], Karato and
Wu [1993], Hirth and Kohlstedt [1996], Kohlstedt and Zimmerman [1996], Karato and
Jung [2003]). After Hirth and Kohlstedt [2003] the deformation rate is then given by

ε̇ = AσnE d−pfH2O exp (β Φ) exp

(

−E∗ + P V ∗

RT

)

, (1.15)
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Figure 1.10.: Deformation mechanisms in the Earth’s lithosphere. A: modified from Kohlstedt
et al. [1995]. B: schematic stress-strain relationship in the brittle (i), brittle-
ductile transition (ii) and ductile (iii) zones. In the ductile regime, the brittle
strength σb is higher than the plastic strength σp, therefore allowing for plastic
deformation to occur. In the brittle regime the rock fractures before plastic
deformation may occur, as σb < σp. In the transition zone both strengths have
similar values.
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1.2. Rheology of the Earth

where A is a constant, fH2O is water fugacity, Φ is the melt fraction, β is a constant, T is
the temperature, P is pressure, E∗ is the activation energy, V ∗ is the activation volume
and R is the universal gas constant.
A major problem in measuring the viscosity of rocks in the laboratory is the extra-

polation from strain rates accessible in the laboratory over several orders of magnitude
to strain rates as they actually take place in the mantle. This problem is for example
addressed in Cordier et al. [2012], see fig. 1.11. The study shows that a power-law fit
for values feasible in the laboratory and a subsequent extrapolation over several orders
of magnitude to values relevant for the mantle may lead to large discrepancy between
the extrapolated values and the actual values. This shows that the extrapolation of a
power-law may not be valid and should be treated with care.
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Figure 1.11.: Evolution of the velocity of a dislocation with stress. The power-law fit applied
to the range feasible in the laboratory only works in a small range of parameters.
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1.3. Thermal Convection

Convection is the motion of a layer of fluid that starts to move due to density-differences.
Those density differences can be caused by differences in chemical composition or in
temperature. The classical example for thermal convection is the Rayleigh-Bénard Ex-
periment1, where an infinitely extended fluid in a gravity field between two infinitely
extended plates is heated from below and cooled from above, as schematically illustrated
in fig. 1.12. Particles near the upper cold wall become denser and tend to sink, while
particles near the hot bottom wall decrease their density. The situation is stable as long
as i) the buoyancy forces are counterbalanced by the viscous forces acting on a particle
while ii) thermal diffusion is larger than momentum diffusivity. Out of equilibrium, less
dense particles will rise, while denser particles sink. This motion is called convection.
Fig. 1.13 shows a schematic sketch of the temperature profile that builds up in an

isoviscous fluid and a fluid (discussed in section 1.3.2) where the viscosity strongly depends
on temperature (discussed in section 1.3.3). In an isoviscous fluid, Tmean corresponds to
the minimum temperature plus the harmonic mean of the temperature of the two plates.
Tmean increases as the viscosity contrast Γ, i.e. is the ratio of the viscosity at Tmin and
the viscosity at Tmax, increases. Hot and cold thermal boundary layers (TBL) have the
same thickness in an isoviscous fluid. With increasing Γ the cold TBL grows and becomes
significantly thicker than the hot TBL.

1.3.1. Governing Equations and Parameters

Assuming an incompressible fluid in the Boussinesq-approximation (density-differences
are neglected everywhere except in the buoyancy-term) the dimensional equations for the
conservation of mass, momentum and energy can be written as follows:

∇ · u = 0 conservation of mass (1.16)

ρ
Du

Dt
= −∇p+∇ · σ + αρg∆Tez conservation of momentum (1.17)

ρ
DT

Dt
= κ∇2T conservation of energy (1.18)

where κ is the thermal diffusivity, ρ is the density, α is the thermal diffusivity, u is the
velocity, t is the time, p is the pressure, σ is the stress tensor. The equations can then be
non-dimensionalized, to reduce the number of control parameters. Hence the equations
become more general as the dimensionalization can be done using different scales. Here
we use a length scale d and a characteristical diffusion time to nondimensionalize the time

1Bénard [1901] reports hexagonally organized convection cells in a layer of walrat heated from below and
cooled from above. Rayleigh [1916] examined by “how far the interesting results obtained by Bénard
in his careful and skillful experiments can be explained theoretically”
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Figure 1.12.: Schematic picture of thermal convection in a constant-viscosity-fluid. A: Initial
state, same properties everywhere. B: Heating from below and cooling from above
- particle at the bottom (open circle) becomes less dense than particle at the top
(black circle). C: Different competing mechanisms acting on particle. Buoyancy
(dashed arrow), viscosity (straight arrow) and thermal diffusion (curved arrows).
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fluids: isoviscous fluid (black dashed line) and a fluid where the viscosity depends
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temperature Tmean for each case. Straight lines show linear approximation of the
thermal boundary layer (TBL). The thickness of the TBL (dTBL) is defined as
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1.3. Thermal Convection

t′ = t κ
d2
. The nondimensional velocity is then written as u′ = u κ

d
and the nondimensional

temperature is T ′ = T
∆T

, where ∆T is the temperature difference between hot and cold

plate. Finally the stress may be non-dimensionalized as σ′ = σ d2

κη
, where η is the viscosity.

The equations then write as

∇ · u′ = 0 conservation of mass (1.19)

1

Pr

Du′

Dt′
+ ∇p′ = ∇ · σ′ + RaT ′ ez conservation of momentum (1.20)

∂ T ′

∂t′
+ u′ · ∇T′ = ∇2T ′ +H conservation of energy (1.21)

Here Pr is the Prandtl-number (explained below), Ra the Rayleigh number (explained
below). Rayleigh-Bénard-Convection can generally be characterized as a convection due
to temperature-induced density differences. Non-dimensionalizing the basic equations,
there are 2 parameters that govern the system.

Prandtl number Pr The Prandtl number describes the ratio of momentum diffusivity
(i.e. the kinematic viscosity ν) and thermal diffusivity κ

Pr =
η

ρκ
=

ν

κ
(1.22)

where η is the dynamic viscosity and ρ the density. For the Earth Pr is O(1023) so it can
be seen as infinite. That means that there is no inertia in the Earth’s mantle and implies
that a reduction of the driving force (i.e. by decreasing the temperature-difference) below
a critical value would result in an instantaneous disrupt of mantle convection.

Grashof number Gr The Grashof number Gr compares buoyancy forces to viscous
forces acting on a particle and is therefore defined as

Gr =
α g∆T h3

ν2
, (1.23)

where α is the thermal expansivity of the fluid, g acceleration due to gravity, h the height
of the box and ∆T the temperature difference.

Rayleigh number Ra The product of Grashof and Prandtl number is the Rayleigh
number. It therefore represents the ratio of buoyancy forces and forces due to viscous
friction in an enviroment where thermal and momentum diffusivity compete. The Rayleigh
number is written as

Ra =
αρ g h3∆T

κ η
. (1.24)
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Figure 1.14.: Regime diagram after Davaille and Limare [2007], compiled from Krishnamurti
[1970a,b, 1979], Whitehead Jr. and Parsons [1977], Nataf et al. [1984], Jaupart
[1995], Zhang et al. [1997], Manga and Weeraratne [1999], Xi et al. [2004], Nataf
et al. [1984].

1.3.2. Convection in an Iso-Viscous Fluid

Increasing the Rayleigh number Ra leads to three different regimes. Fig. 1.14 (modified
from Davaille and Limare [2007]) summarizes the different regimes that can be obtained
as a function of Rayleigh and Prandtl number. If the Rayleigh number is below the critical
Rayleigh number Rac heat is only transported by diffusion. The critical Rayleigh number
depends on the boundary conditions. It may therefore range between Rac = 657 for
free-slip boundary conditions and Rac = 1708 if both boundaries are rigid Chandrasekhar
[1961]. Above Rac the mechanism of heat-diffusion is no longer sufficiently efficient and
the fluid starts to organize itself in convecting role-structures. A further increase then
leads to a cellular convection and for Ra > 106 plumes develop and the system is getting
more and more time dependent, where turbulence occurs for low Pr < 100. The blue line
in fig. 1.14 separates the turbulent from the laminar regime.
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1.3. Thermal Convection

1.3.3. Convection in a Fluid with Temperature-Dependent Viscosity

Viscosity contrast Γ If the viscosity is temperature-dependent, another dimensionless
parameter starts to influence the system - the viscosity contrast

Γ =
ηcold
ηhot

(1.25)

where ηcold is the viscosity at the temperature of the cold plate and ηhot at the temperature
of the hot plate. The temperature dependent viscosity is taken into account in the viscous
stress tensor that is written as

σ = η
(

∇u+∇ut
)

. (1.26)

Therefore the Navier-Stokes equation for a temperature-dependent viscosity fluid is
written as

1

Pr

Du

Dt
+ ∇p = RaTez + η′∇2u +

dη′

dt
∇T

(

∇u+∇ut
)

. (1.27)

The case of a temperature-dependent-viscosity has been widely studied (i.e. Richter
[1973], Booker [1976], Nataf and Richter [1982], Richter et al. [1982], Christensen [1984],
White [1988], Christensen and Harder [1991], Davaille and Jaupart [1993], Hansen and
Yuen [1993], Giannandrea and Christensen [1993], Tackley [1994], Solomatov [1995],
Moresi and Solomatov [1995], Tackley [1996], Ratcliff et al. [1997], Solomatov and Moresi
[2000], Kameyama and Ogawa [2000], Yoshida and Kageyama [2006], Stemmer et al.
[2006], Androvandi et al. [2011]. Depending on the strength of the temperature-dependence
- i.e. the viscosity ratio Γ - different regimes develop (fig. 1.15). It can generally be dis-
tinguished between 3 different regimes, as summarized in Solomatov [1995] :

(1) Quasi-isoviscous, small Γ (Γ < 2− 5)
In case of a low temperature-dependence of the viscosity, the flow generally behaves like
convection in a constant-viscosity fluid.

(2) Transient regime, intermediate Γ (5 < Γ < 104)
For an intermediate temperature-dependence of the viscosity, the resistance of motion of
the cold TBL due to deformation of the cold TBL becomes comparable to viscous drag
of the interior region. Androvandi et al. [2011] (fig. 1.15) show that at high Rayleigh
number, several hot plumes form inside one cold cell.

(3) Stagnant lid regime, large Γ (Γ > 104)
For a strong temperature-dependence the advective heat transport due to the motion of
the cold TBL becomes negligible compared to the much more effective heat transport of
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convecting material underneath. A stagnant lid develops, with a linear temperature pro-
file. This big decrease of temperature over a small region leads to an exponential growth
of viscosity in the lid. The convection underneath has similar characteristics as isoviscous
convection.

The behaviour found in the transient regime (e.g. Androvandi et al. [2011]) resembles
the behaviour observed on Earth, where several hot plumes form inside one cold cell. How-
ever, for Earth-like parameters (e.g. Karato and Wu [1993]), convection would fall into
the stagnant lid regime. Therefore the question arises: How can this lid be weakened, to lo-
calize deformation to subduction zones, where plates sink into the mantle and participate
in convection? The answer to this question seems to be a more complex rheology.

1.3.4. Convection with Plate Tectonics - Plastic Yielding

The lack of plate tectonics in convection models with a temperature-dependent vis-
cosity (section 1.3.3) requires a new approach. Numerical models (e.g. Tackley [2000b],
Bercovici [2003]) show that sufficient strain localization is needed to produce plate-like
behaviour. Different approaches are employed to localize deformation, inspired by rock-
rheology, cf. section 1.2. Among those approaches are dynamic self-lubrication (Bercovici
[1996]), grain-size dependent rheology (Ricard and Bercovici [2003]) as well as shear heat-
ing (Regenauer-Lieb and Yuen [2000], Kaus and Podladchikov [2006], Crameri and Kaus
[2010], Thielmann and Kaus [2012]). Another way to localize strain is plastic yielding
(Trompert and Hansen [1998], Tackley [2000a], Stein et al. [2004]). As this mechanism
is similar to the rheology of Carbopol where the rheology follows a Herschel-Bulkley law
(cf. section 2.4), it is discussed in more detail here.

The models of Tackley [2000a] and Trompert and Hansen [1998], Stein et al. [2004]
employ plastic yielding to weaken the stagnant lid. The same approaches are used in
all models of the respective authors (e.g. Tackley [2000a], van Heck and Tackley [2008,
2011], Rolf and Tackley [2011] and Stein and Hansen [2008], Stein et al. [2011, 2013]).

In the models with plastic yielding, the viscosity consists of a temperature dependent
contribution ηT following an Arrhenius-type law and a stress contribution ηE. The effective
viscosity is then either taken as the minimum of those two viscosities (e.g. Tackley [2000a])
or a mean viscosity is calculated (e.g. Trompert and Hansen [1998], Stein et al. [2004],
van Heck and Tackley [2008]) as

η =
2

1
ηT

+ 1
ηE

(1.28)

which yields viscosity values slightly bigger than the minimum. The viscosity is non-
dimensionalized with the viscosity from the Rayleigh-number (cf. van Heck and Tackley
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Figure 1.16: Depth dependent yield stress in
Tackley [2000a] (blue) and Stein
et al. [2004] (red). In the model
of Tackley [2000a] the yield stress
is set constant, once σductile is
reached.
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[2008]). The stress dependent contribution is calculated as a Bingham-type as

ηE = η∗ +
σY (z)

γ̇
(1.29)

with a plastic viscosity η∗ = 10−5 in the models of Stein et al. [2004], where this value
was leading to the best plate-like behaviour. The viscosity is normalized by the surface
viscosity. In the model of Tackley [2000a] the plastic viscosity is equal to zero and the
stress dependent viscosity here is written as

ηE =
σY (z)

2 γ̇
(1.30)

The depth dependence of the yield stress that we have seen in fig. 1.10A is mimicked in
the numerical simulations using Byerlee’s law where the yield stress is defined as

σY = σ0n + σbrittle(1− z) (1.31)

where σ0n is zero in Tackley [2000a] and takes values between 2 and 13 in Stein et al.
[2004]. Tackley [2000a] then calculates the yield stress as the minimum of σY and σductile

(the upper stress limit for ductile deformation). Hence fig. 1.16 shows that the yield stress
increases with depth until σductile is reached.
While Tackley [2000a] uses an upper cutoff to avoid infinite viscosities at vanishing shear

rates, Trompert and Hansen [1998] reference the biviscosity approach used by Burgess and
Wilson [1996], which is generally doing the same as an upper cutoff does, i.e. replacing
the theoretically infinite viscosity at vanishing shear rate with a finite viscosity value. The
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1.3. Thermal Convection

resulting rheological laws are shown in fig. 1.17, depending on the strain rate. The yield
stress is set to 200MPa. If the lower cut-off in the model of Tackley [2000a] is chosen as
the same value as η∗ in the model of Stein et al. [2004] the rheology behaves similar at high
strain rates (η∗ = 1016Pa s in fig. 1.17). If the upper cut-off in Tackley [2000a] is chosen
to be the same as the upper viscosity in the bi-viscosity approach of Stein et al. [2004],
the models behave the same way at low shear rates. With a lower (cut-off) viscosity of
1016 Pa s (e.g. ηmax = 1025 Pa s in fig. 1.17). The Herschel-Bulkley model is shown for
comparison, to illustrate that the different rheological laws are not that much different
with the proper parameter-choice (σ0 = 200MPa, Kν = 0.01 η∗, n = 0.6). Even though
all three rheologies look different at first glance, they may describe the same, or at least
a similar behaviour.

Two important characteristics of plates are the plateness and the poloidal-toroidal ratio.

Plateness: The deformation of the surface can be calculated by regarding the square-
root of the second invariant of the strain-rate-tensor, which should be zero where there
is no surface deformation, i.e. in the middle of plates and should approach one at plate
margins. As there is also deformation within the plate, regions where the deformation is
equal or less than 20% of the maximum surface deformation are still regarded as plates,
see for example Tackley [2000a], Stein et al. [2004].

Poloidal-Toroidal-Ratio: A 3D- flow field can be divided into a poloidal and a toroidal
component. The poloidal component describes convergent or divergent flow and is gener-
ated by buoyancy forces. Applied to the earth, poloidal flow is represented by subduction
zones or spreading centres. A toroidal component describes strike-slip-motion and can be
generated on earth i.e. by the rotation of a plate or transform faults. The ratio of these
two components for the velocity field of earth’s plate tectonics is between 0.25 and 0.5.

Depending on the yield stress and the viscosity contrast, Stein et al. [2004] observe
different regimes (fig. 1.18). At high yield stresses and high viscosity contrasts the system
stays in the stagnant lid regime. Lowering the yield stress, and intermittent episodic regime
occurs, which would be a possibility to explain the episodic resurfacing observed on Venus.
A more Earth-like behaviour, the mobile lid regime may develop for low viscosity contrasts
at all yield stresses, whereby the yield stress allowing for the mobile lid regime decreases
as the viscosity contrast increases.

These models are typically showing plate-like behaviour for a yield-stress range of 100
to 300MPa, which is below the yield stress of about 700MPa estimated from the obser-
vations of Kohlstedt et al. [1995]. A major drawback of those models is that (i) the above
mentioned poloidal-toroidal ratio of those models does not match the observed ratio on
Earth. However van Heck and Tackley [2008] could show that this strongly improves
when using a spherical instead of a cartesian geometry. Advancement has recently been
made by adressing problem (ii), that subduction is always two-sided in the models, which
is contradicting the one-sided subduction that is observed on Earth. Rolf and Tackley
[2011] introduce continents into the numerical simulation, which are focusing the stress,
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Figure 1.17.: Comparison of different rheological laws for a yield stress σ0,y = 200MPa. A
and B show the stress and the viscosity respectively. Blue stars: Tackley [2000a],
red circles: Stein et al. [2004] and green boxes Herschel-Bulkley model (eq. 2.4).
C and D show the differences between the models, normalized by the maximum
difference. Red triangles show the difference between the Heschel-Bulkley model
and the model employed by Stein et al. [2004], blue triangles pointing to the
right show the difference between the Herschel-Bulkley model and the model
employed by Tackley [2000a] and black triangles pointing to the left show the
difference between the models of Tackley [2000a] and Stein et al. [2004].
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viscosity used to calculate the Rayleigh number.

due to the heterogeneity introduced by the continents, and lead to one-sided convection
beneath continents. However this model still does not explain how oceanic subduction
zones work, i.e. where oceanic lithosphere subducts beneath oceanic lithosphere. Employ-
ing the sticky air method that allows for a deformation of the crust by adding a “stick”
very viscous “air” at the surface, that usually has a viscosity of only a few orders of magni-
tude lower than the crust (Schmeling et al. [2008]), Crameri et al. [2012] obtain one-sided
subduction of oceanic lithosphere. A free deformable surface is therefore a key ingredient.

1.3.5. Convection in a Fluid with Complex Rheology

Despite its importance for planetary bodies, only few studies deal with convection in
yield stress fluids (Zhang et al. [1997, 2006], Vikhansky [2009, 2010, 2011], Turan et al.
[2010, 2012], Balmforth and Rust [2009], Davaille et al. [2013], Darbouli et al. [2013]).
From a theoretical point of view, the difficulty is that an instability cannot develop from
a conductive profile submitted to infinitesimal perturbation Zhang et al. [2006], Vikhan-
sky [2009]. The combination of yield stress and shear thinning fluids is hardly studied,
as either a Bingham fluid is used (Zhang et al. [1997], Vikhansky [2010, 2011], Turan
et al. [2010, 2012]), or a shear thinning fluid, that does not exhibit a yield stress Barr
et al. [2004], Solomatov and Barr [2006]. Convection in a fluid that presents weak shear
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1. Introduction

thinning effects and a yield stress has been studied by Balmforth and Rust [2009]. They
conclude, that shear thinning favours convection, while a yield stress suppresses convec-
tion.

In a study that had started prior to my arrival at FAST, B. Gueslin and A. Davaille have
performed laboratory experiments on the existence and morphology of thermal plumes in
a yield stress fluid (Davaille et al. [2013], appendix A.1). The fluid used is Carbopol, a
visco-elastic fluid, its rheology can be described by a Herschel-Bulkley model (e.g. Divoux
et al. [2011]). A localized heat source is employed, consisting of a Peltier-element with
copper plate on its top, placed in the centre of a square plexiglas tank. In this study we
define a yield parameter, comparing the stresses due to the buoyancy of the fluid to the
yield stress. Therefore the yield parameter is written as

Y0 =
αρgP

kσ0
, (1.32)

where P is the thermal power of the heat source and k is the thermal conductivity. A
systematical variation of the supplied heat and the rheological properties of the fluids
shows that depending on Y0, three different regimes may be observed (fig. 1.19). For
Y0 < Yc1 = 120 the fluid does not move. For a further increase of Y0 (Yc1 < Y0 < Yc2 = 260)
a small cell forms that convects around the heater (fig. 1.20)A. For Y0 > Yc2 a plume
develops (fig. 1.20)B. The morphology of this plume differs from the mushroom-shape
typically encountered in Newtonian fluids (fig. 1.21), and is therefore referred to as
a finger-like shape. Inside the thermal anomaly, the velocity field is rather flat, and
resembles a plug flow. For small consistencies, an episodic behaviour may be observed
(fig. 1.20C). The plume rises fast, then halts and then rises in a second pulse to the
surface.
Similar results for the onset of convection are found in a recent study by Darbouli et al.

[2013], who investigate Rayleigh-Bénard convection in Carbopol in a circular box. They
define a generalized Rayleigh number, which is similar to the yield parameter (eq. 4.2)
and is written as

Rag =
αρg∆Td

σ0
, (1.33)

where d is the height of the box. Notably, different from the classical notation of the
Rayleigh number (eq. 1.24), Rag is linear with d (and not cubic). Darbouli et al. [2013]
find a critical value for the onset of convection which is Ragc = 40 for free-slip boundary
conditions and Ragc = 80 for no-slip conditions.

1.4. This Study

The previous section has shown, that two ingredients are needed to produce plate
tectonics in a self-consistent manner:

26



1.4. This Study

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10

20

30

40

50

60

70

80

NO MOTION

CELL

PLUME

YIELD STRESS  0  (Pa)

T
H

E
R

M
A

L 
S

T
R

E
S

S
  

th
  (

P
a

)

a

b
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Figure 1.20.: Modified from Davaille et al. [2013]. A: isotherms (i) and velocity (ii) for a cell
regime. B isotherms and velocity field for the plume regime. C: (i) spatiotemporal
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highlight different isotherms (red: 24.6 ◦C, blue: 31.5 ◦C, yellow: 39.5 ◦C). (ii)
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Figure 1.21.: A: Thermal structure and velocity field of a hot instabilitiy in a Newtonian
Fluid (sugar syrup, image courtesy of Floriane Touitou) versus B: hot instability
in Carbopol (modified from Davaille et al. [2013]). Note the mushroom-like
structure of the instabilitiy in the Newtonian fluid and the evry smooth velocity
field, compared to the finger-like shape of the instability in Carbopol, with a flat
velocity field inside the instability and strong gradients of the velocity towards
its edges.
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1. Introduction

• temperature dependent viscosity, whereby the cold thermal boundary layer forms a
stiff plate

• a weakening mechanism, which allows to localize the deformation within the cold
plate. As a consequence the plate breaks and sinks into the mantle.

The characterization of convection in fluids with temperature dependent viscosity has
largely been studied (cf. sec. 1.3.3). In contrast the knowledge about convection in a
fluid that presents a yield stress and is shear thinning is sparse. Only two recent studies
(Davaille et al. [2013], Darbouli et al. [2013]) deal with systematic experiments with
convection in a yield stress fluid and characterize the onset and the dynamics. However
several questions remain open. The episodic behaviour of the plume, where the plume
reaches the surface in a second pulse (Davaille et al. [2013]) opens the question whether a
plume would need more pulses to reach the surface, if the height of the fluid was increased.
In order to study the influence on the dynamics of the plume, I have performed a series
of experiments with different fluid heights (chapter 3). Another interesting question is,
whether the Herschel-Bulkley model provides a suitable description of the fluid. Hence, I
performed numerical simulations to compare to the laboratory results and to identify the
relevant mechanisms that are responsible for the emplacement of the instability (chapter
4). The advantage of the numerical simulation is furthermore to avoid the large error on
the measurement of the yield stress (cf. fig. 1.19). In chapter 5, I focus on the steady-
state characteristics of the plume. Finally, in chapter 6, we shall go back to the Earth.
Here I show that the existence of intrusions in the lithosphere or in the mantle, can give
us precious constraints on the rheology of the matrix into which those instabilities where
emplaced.
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2. Setup and Fluid

2.1. Setup and Heating

The setup consists of a plexiglass tank (cf. fig. 2.1) with a ground surface of 20 ×
20 cm2 which is 50 cm high with a free surface. The heater is placed in the center of
the bottom of the tank and consists of a Peltier-element, which is put with the cold
side on top of an aluminium plate. On top of the hot side, a copper disk is placed, to
uniformly distribute the heat. The heating is embedded into a plexiglass plate, to avoid
heat loss towards the sides and to provide clean boundary conditions for the comparison
with numerical simulations. Thermocouples measure the temperature below the Peltier-
element and inside the copper disk. The Peltier element is operated at constant electrical
power. Voltage, current and power are measured every five seconds. The thermal power
emitted by the hot side of the Peltier-element is calculated as follows (Davaille et al.
[2013])

P = SP ITh +
1

2
RP I

2 − kP (Th − Tc) (2.1)

where Sp is the Seebeck-coefficient, I the current, Th is the temperature measured in the
copper plate, Tc the temperature measured at the cold side of the Peltier element, Rp

is the electrical resistance of the Peltier element and kP its thermal conductivity. The
accuracy of the thermal power is ≈ 10% for an uncertainty in temperature of 0.1K.

Table 2.1.: N: number of semi conductors, G ratio of surface to height of one semi conductor,
κsc thermal conductivity of one semi conductor, hP is the height of the Peltier
element, lP the length of its sides, hCu is the height of the copper plate and dCu its
diameter.

N G κsc hP lP hCu dCu

- - W/mK mm mm mm mm
34 0.1633 1.33× 10−2 1.4 15 3.36± 0.05 25.1± 0.1
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Laser
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hfluid

Temperature
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apply
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plexiglass

Figure 2.1.: Setup used during the experiments. The total height of the tank is 50 cm, the
ground surface is 20 × 20 cm2. The heater consists of a Peltier element, placed
on a 2 cm thick aluminium block. On top of the Peltier element a copper disk is
placed to uniformly distribute the heat, both are embedded into a plexiglass plate.
Thermocouples measure the temperature below the Peltier element and inside the
copper disk. Specifications of the copper plate and the Peltier element are given
in table 2.1.
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2.2. Data Acquisition

Table 2.2.: Values obtained from calibration of TLC illuminated with a laser of wavelength
λ = 532 nm. Series 1 is used for experiments with CBP5-6 and the Rayleigh-Bénard
setup described in appendix 2.2.3, Series 2 is used for experiments with CBP8-14.

Series 1 T [◦C] Series 2 T [◦C]
BM/24C2W/S40 23.9 ± 0.26 SLN40/R24C2W 23.40 ± 0.27
BM/27C10W/S40 27.1 ± 0.30 SLN40/R27C2W 26.60 ± 0.37
BM/31C2W/S40 31.1 ± 0.26 SLN40/R30C2W 29.60 ± 0.21
BM/35C10W/S40 35.1 ± 0.30 SLN40/R33C2W 32.86 ± 0.25
BM/40C2W/S40 39.9 ± 0.39 SLN40/R37C2W 36.55 ± 0.34

2.2. Data Acquisition

2.2.1. PIV: Particle Image Velocimetry

The fluid is seeded with small spheres (Glass Hollow Spheres 110P8 from LaVision),
which reflect the laser light. Images are recorded every ∆t. To calculate the velocity field,
the PIV (particle image velocimetry) software DaVis 7.2 from LaVision is used. The
image is divided with a grid into several windows. In each grid-window, the position
of the intensity maximum of a group of particles is compared between two subsequent
images. The displacement field (in pixels) can then be calculated via cross correlation
and can then be converted into m/s by knowing how many pixels correspond to which
distance and knowing ∆t. The accuracy in distance is in the sub-millimetre range.

2.2.2. TLC: Thermochromic Liquid Crystals

To visualize the temperature field we use thermochromic-liquid-crystals (TLC) from
hallcrest. To protect them, the liquid crystals are encapsulated. They have a diameter
of 10 to 40µm. TLC reflect the light of a certain wavelength at a certain temperature.
If illuminated with white light they therefore show different colors, depending on the
temperature of the fluid. We are illuminating the setup with a laser with a wavelength
of λ = 532 nm. Hence one type of TLC reflects this light at a given temperature and
therefore highlights one isotherm. More details on this method are given in Davaille and
Limare [2007]. The TLCs have been calibrated imposing a stable temperature gradient,
the values are given in table 2.2. For convenience, the temperature reflected by each
type of TLCs will be referred to as the [24, 27, 31, 35, 39] ◦C-isotherm for Series 1 and
[23, 26, 29, 32, 36] ◦C-isotherm for Series 2.
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Figure 2.2.: A: setup from above. The laser-beam arrives via an optic fibre on two flipping
mirrors: one vertically fast flipping, one slowly horizontally flipping, creating a
vertical laser sheet that is horizontally displaced, scanning the tank. Images are
recorded with a camera. B: schema of the setup, the box is heated from below and
cooled from above. Image results from fast vertically flipping laser beam, images
are taken all over the box.

2.2.3. Development of a 3D Isotherm Visualization Method

To get familiar with the experimental techniques I have developped a 3D isotherm vi-
sualization method for the Rayleigh-Bénard experiment, at the beginning of my thesis
project. Therefore the tank is scanned with a laser sheet. The setup (fig. 2.2) consists of
a laser beam directed with an optical fibre onto two mirrors. The vertically fast flipping
mirror creates the laser sheet, flipping at frequency 100Hz < f < 1000Hz). The hori-
zontally slow flipping mirror is then used to the tank. Good results are obtained for 40
images over the 30 cm long box, over two seconds, as the frame rate of the camera (Image
ELite by LaVision) is limited to 10− 12 images per second.

The idea of the developed method is to first isolate the brightest isotherm of each
picture (which corresponds to different depths inside the tank) and then to reconstruct
a surface of the brightest isotherm. One problem of this method is, that it is important
to get rid of strong reflections to avoid to reconstruct those reflections instead of or in
addition to the isotherm. Therefore it is important to have a good synchronization of the
mirror that moves the laser sheet and the camera, because then it is possible to subtract
the first picture and to get rid of reflections on the boundaries of the box. In a next
step a median filter is used to get rid of the so called “salt-and-pepper-noise” due to the
spherical particles used for PIV. Then a Gaussian filter is applied to smooth the image.
Afterwards the gradient is calculated. As the intensity is highest in the middle of an
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2.2. Data Acquisition

Figure 2.3.: First 3D-picture-results. Dark blue represents the bottom of the box whereas dark
red represents a height of 15 cm. Upper : view from 45◦, lower : view from above.
44 pictures were taken for the reconstruction.
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isotherm, the gradient is pointing “away” from these points where it is approximately zero.
As the gradient is also zero where there is no intensity at all, it is not sufficient to use the
gradient as the only criteria to identify an isotherm. Therefore it is used in combination
with a threshold-value for the intensity. If the criterion is fulfilled, the program writes a
zero on a place in a matrix corresponding to the position of the considered point, otherwise
it writes a one. This procedure is repeated for each picture, then patch and isosurface
are used to reconstruct an isosurface of all those values which are zero. To get a better
idea of the height, this isosurface can then also be color coded, cf. fig. 2.3. The method
is summarized in appendix B.1.

2.3. Numerical Simulation

The physical model is based on the assumption of conservation of mass, momentum
and energy. The set of equations (1.16-1.18) is discretized using a finite volume method
on a staggered grid and solved with an iterative multigrid method, implemented in the
code StagYY. Code details and benchmarking for constant viscosity and temperature-
dependent viscosity cases are described in detail in Tackley [1994, 2008] (Tackley [1994]
pp. 286-290 for benchmarking results). For the diffusive term, second order finite differ-
ences are used, and a second order upwind scheme is used for the advective terms. The
convergence criterion is met, if the normalized residuals of the momentum and continuity
equations is smaller than 10−2. In the staggered grid method, scalar variables, such as
pressure or temperature, are defined at the cell centre, while the velocity is located at the
faces of the cells (fig. 2.4). More details on the code and the employed rheological law
are given in chapter 4.

2.4. Thermal and Rheological Properties of Carbopol

Carbopol is a powder that consists of micron-size particles. If diluted in water those
particles swell. The pH of this solution is (for 0.6 g/l in distilled water) around pH = 3.5
and therefore acidic. Adding NaOH to the mixture leads to an extensive swelling of the
particles up to 10-1000 times in volume (Lee et al. [2011], Oppong and de Bruyn [2011]).
The neutralized solution forms a transparent, stable gel ((Piau [2007])) and is therefore
ideal for the visualization techniques used in this study.

2.4.1. Flow Test

The rheology of the fluid was determined by using a Physica MCR501-rheometer (An-
ton Paar, www.anton-paar.com) with a coaxial cylinder geometry (CC27, cf. fig. 2.5).
The measuring bob diameter is 26.664mm, the measuring cup diameter 28.32mm and
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Figure 2.4.: Schematic illustration of a staggered grid, from Gerya [2010]. Scalar variables
(pressure P ) are located at the center of each cell, the velocity is defined at the
cell faces.
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Figure 2.5: Schematic picture of the
Couette-geometry used to
determine the rheological
properties. L is the gap
length, db the bob diameter
and dc the cup diameter.

the gap length is 40mm. The geometry is temperature-controlled by a Peltier element
and maintained at T = 20 ◦C. To prevent evaporation we used a solvent trap. To avoid
wall slip effects at the inner cone (Roberts and Barnes [2001], Divoux et al. [2010]), we
used very fine sandpaper (i.e. 50µm average grit size).

2.4.1.1. Measurements with Sandpaper

The sandpaper increases the bob diameter to 27.23mm, which has to be taken into
account. How the stress can be calculated from the torque measured in the rheometer is
for example described in Macosko [1994]. The stress is calculated as follows

σ =
1 + δ2

2000 δ2
M

2π L r2i CL

, (2.2)

where δ is the ratio of the radius of the cup (re) and the bob (ri), M is the torque measured
by the rheometer, L is the length of the cone and CL is a correction factor. The shear
rate then is calculated as follows

γ̇ = π
nv

30

1 + δ2

δ2 − 1
(2.3)

where nv is the speed measured in 1/min. The other values are L = 39.999mm and
CL = 1.1. To validate the applicability of the sandpaper and the corrective calculations,
measurements on glycerol have been performed, whose viscosity is η = 1.412Pa s for pure
glycerol (Segur and Oberstar [1951]). The measurements (fig. 2.6) show good agreement
between the measurements that haven been done without and with the sandpaper and
fall on the value of η = 1.412Pa s.
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Figure 2.6: Validation of measurements
with sandpaper. Small sym-
bols: viscosity, big sym-
bols: stress. Red squares
show measurements of Glyc-
erol without sandpaper, blue
circles show measurements
of Glycerol with sandpaper
that were calculated with
eqs. 2.2-2.3.
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2.4.1.2. Procedure of Determining the Fluid’s Rheology During Flow Tests

To verify the repeatability of the rheological measurements we carried out two tests
under the same conditions (fig. 2.7). First the fluid was pre-sheared at the lowest shear
rate measured in the flow test for a duration of 600 s. We then decreased the shear
rate from 100 s−1 to 10−4 s−1 (or 10−3 s−1 respectively), increasing the measurement-time
from 15 s at γ̇ = 100 s−1 to 3000 s at γ̇ = 10−4 s−1, following a logarithmic ramp in
order to measure sufficiently long. This is important to avoid transitional effects that
can occur when the product of time measured at one shear rate and the shear rate itself
becomes smaller than one, ∆tMP γ̇ < 1, e.g. Mezger and Zorll [2002]. This is the case for
γ̇ < 10−3 s−1 (fig. 2.7 dashed grey line), and therefore those values have to be neglected.
But even then the effective shear on the fluid is low, as the number of revolutions (no)
at γ̇ = 10−3 s−1 is very low, i.e. no = 0.016. Hence we also show results for a stricter
criterion, regarding only values where no > 0.05. This implies that only values measured
at shear rates γ̇ > 10−2 s−1 (fig. 2.7 straight grey line) can be considered. Therefore the
yield stress is in between σ0 = 0.07Pa and σ0 = 0.1Pa with a total error of 30%.

The rheology of such a fluid can be described by a Herschel-Bulkley model (e.g. Piau
[2007], Coussot et al. [2009], Divoux et al. [2010])

σ = σ0 + Kν γ̇
n (2.4)

where σ is the stress, σ0 the yield stress, Kν the consistency, γ̇ the shear rate and n the
shear-thinning parameter. Various measures for the yield stress exist in standard rheology.
In this thesis the first definition will be used

• 1) Rotational test: Decreasing the shear rate and measuring the stress in the limit
of vanishing shear rate
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2. Setup and Fluid

Figure 2.7: Flow test at T = 20 ◦C
from high to low shear
rate values. Symbols indi-
cate two different measure-
ments. Magenta lines refer
to fitting Herschel-Bulkley
model for (σ0min = 0.07Pa)
and (σ0max = 0.1Pa)
yield stresses. Dashed grey
line marks shear rate below
which product of measuring
time and shear rate becomes
smaller than one (γ̇ = 10−3).
Solid grey line marks shear
rate below which the num-
ber of revolutions becomes
smaller than no = 0.05 at
(γ̇ = 10−2 s−1). γ̇ [s-1]
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• 2) Amplitude sweep test: sweeping the amplitude from low to high values at constant
frequency. The yield stress corresponds to the stress where the storage (elastic)
modulus G′ and the loss (viscous) modulus G′′ cross.

• 3) Rotational test at constant low shear rate: the stress increases through a max-
imum value and then decreases towards a constant value. The yield stress maybe
defined as the value where the increasing stress deviates from a normal development
or as the constant value towards which the system evolves.

The definition applied in this thesis will correspond to the first.
We therefore fitted our data with a Herschel-Bulkley model. For the range γ̇ > 10−3 s−1

(respecting the measured values as upper and lower limits) the fit results in a yield stress
range σ0 = [0.0700, 0.0715] Pa with n = 0.58 and Kν = 1.403Pa s1/n. For the more
strict criterion γ̇ > 10−2 s−1 we find a yield stress range of σ0 = [0.0700, 0.1000] Pa, with
n and Kν as above.

2.4.2. Dependence of Rheology on pH

A detailed study of how the rheology of Carbopol changes with pH and concentration is
given by Gutowski et al. [2012]. They also provide a quantitative analysis of the influence
on the structure (fig. 2.8). The dark region is water, the lighter regions are the Carbopol
particles. The images show, that increasing the pH leads to a swelling of the particles.
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(i) (ii)

(iii) (iv)

Figure 2.8.: from Gutowski et al. [2012]. Confocal images of low pH Carbopol gels dyed with
Acridine Orange. The length of the scale bar is 20µm. (i) 0.05 wt.% pH 3.8
(unmodified) Ultrez 10. (ii) 0.5 wt.% pH 3.5 (unmodified) Ultrez 10. (iii) 0.05
wt.% Ultrez 10 at pH ≈ 4. (iv) 0.5 wt.% pH 3.0 (unmodified) ETD 2050.
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2. Setup and Fluid

Figure 2.9: Flow test for fluids neu-
tralized to different pH at
T = 20 ◦C from high to
low shear rate values. Blue
circles: fluid with pH = 6,
σ0 < 0.01, Kν = 0.2715,
n = 0.6966, red triangles:
fluid with pH = 7, σ0 =
4.8611, Kν = 4.8611, n =
0.4644, green squares: fluid
with pH = 9, σ0 = 0.1392,
Kν = 1.2254, n = 0.5599.
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We have conducted a series of measurements with Carbopol ETD 2623 (Noveon) to test
the sensitivity towards changing the pH of the fluid. Fig. 2.9 shows, that the fluid hardly
presents any yield stress at pH = 6. The yield stress then first increases with increasing
pH and decreases again, as also found in Gutowski et al. [2012].

2.4.3. Sweep Test

One possibility to characterize viscous and elastic material properties is an amplitude-
sweep test, where the material is deformed with a sinusoidal amplitude at fixed frequency.
The procedure is described in details inMacosko [1994]. The strain is calculated as follows

γ =
1

10

1 + δ2

δ2 − 1
Φ (2.5)

where Φ is the deflection angle. The stress is calculated as in equation 2.2. The storage
(elastic) modulus G′ and the loss (viscous) modulus G′′ are then calculated as follows

G′ =
σ cos(φ)

γ
and G′′ =

σ sin(φ)

γ
, (2.6)

where φ is the phase angle. Fig. 2.10 shows an amplitude-sweep test performed on
Carbopol. G′ and G′′ have the same order of magnitude, i.e. the material is visco-elastic.
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Figure 2.10: Example for an amplitude-
sweep test for Carbopol
(CBP6). The arrow
marked with LVE indicates
the linear visco-elastic
range. The stress value
at the end of the LVE
corresponds to the yield
stress determined with
the flow test fig. 2.7. In
the LVE the mean values
are 〈G′〉 = 2.083Pa and
〈G′′〉 = 2.948Pa.
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2.4.4. Properties of Fluids used in the Plume Experiments

2.4.4.1. Preparation of Carbopol for Plume-Experiments

The fluid used in the plume experiments is a mixture of Carbopol (ETD2050, Lubri-
zol), distilled water and pure Glycerol1. For the experiments, between 10 and 18 l were
prepared in different batches. Each batch contains a mixture of 30 − 50Vol.% Glycerol
in water. After mixing, 0.6 g/l Carbopol were added and stirred with a magnetic agita-
tor for two days to hydrate. To guarantee that the fluid is stable and presents a yield
stress which is not too big (cf. 2.4.2) each batch was neutralized to a pH = 7.5 ± 0.2
with a NaOH solution (5M), using a pH-meter ISFET (IQ Scientific Instruments Inc.,
www.phmeters.com) whose pH range is between 0.00 and 14.00 with an accuracy of 0.01.
Once the fluid reaches a certain pH-value (pH ∼= 6) a significant yield stress appears
(cf. fig. 2.9). This causes NaOH drops to stay on top of the fluid and homogeneous
mixing becomes difficult. We therefore mixed the fluid carefully by hand, in addition to
the magnetic agitator, to be sure to measure a pH, which is representative for the whole
fluid. Bubbles due to mixing of the fluid were removed by using an ultrasound bath. The
ultrasound causes the bubbles to merge together, hence they become buoyant enough to
rise. After a few days we mixed all Carbopol batches, added TLCs and particles for PIV
and finally poured the mixture into the tank.

1A plume may only form, if the buoyancy induced stress is high enough compared to the yield stress (cf.
Davaille et al. [2013], Darbouli et al. [2013]). To avoid the difficulties in measuring very small yield
stresses, we add glycerol to enhance the thermal expansivity.
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Figure 2.11.: A: stress and B: viscosity for measurements and fits of the fluids used in this
study, the values are listed in table 2.3.

2.4.4.2. Flow Test Tesults for Carbopol used in the Plume Experiments

The rheological properties have been determined following the procedure in section
2.4.1.2. The glycerol-water ratio has been 50/50 (V ol%) for all fluids, except CBP5
(33/67) and CBP8 (55/45). CBP10 has been neutralized to a higher pH (pH = 9 ± 0.2).
The results from the flow test and the corresponding fits are shown in fig. 2.11, whereby
the parameters used for the fits are summarized in table 2.3. The yield stress of the
different batches changes over almost one order of magnitude between σ0 = 0.05596Pa
and σ0 = 0.3337Pa. Besides the different glycerol-water ratios and pH, different effective
rheologies maybe due to the preparation procedure. Due to the magnetic agitator, some
Carbopol may stick to the wall of the beaker and not go into the fluid, therefore lowering
the effective concentration. Some measurements present strong shear banding, when the
stress values do not follow the yield stress plateau, but form a “hump” instead (cf. fig.
2.11 (i) CBP8, between γ̇ = 10−2 s−1 and γ̇ = 100 s−1). The shear banding-effect is largely
discussed in literature (e.g. Coussot et al. [2009, 2008], Divoux et al. [2010]) and occurs
below a critical deformation (fig. 2.12) where the transition from the solid towards the
liquid regime occurs (Coussot et al. [2009]).

2.4.4.3. Amplitude Sweep Test Results for Carbopol used in Plume Experiments

For some samples, an amplitude sweep test has been performed. The measurements
are shown in fig. 2.13 and the average values for the visco-elastic properties in the linear
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Figure 2.12: Deformation of a sample show-
ing shear banding, modified af-
ter Coussot et al. [2009]. In
the solid regime deformation is
uniform. In the flow regime
an apparent shear rate is mea-
sured, while “bands” form inside
the sample, that are sheared at
different shear rate.
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Figure 2.13: Visco-elastic properties of
some Carbopol solutions,
obtained from amplitude-
sweep test. The mean val-
ues in the LVE are summa-
rized in table 2.3.

visco-elastic range (LVE) are summarized in table 2.3. Generally storage and loss modulus
are of the same order of magnitude. While for CBP5 and CBP12 the storage modulus is
higher than the loss modulus, it is the other way round for CBP6 and CBP8.

2.4.4.4. Thermal Properties of Fluids used in the Plume Experiments

The fluid properties are summarized in table 2.4. The density has been determined
using a DMA 4100 densimeter (Anton Paar, www.anton-paar.com) with an accuracy of
0.001 g/cm3. cf. fig. 2.14. The thermal expansivity α has been determined from the slope
of the curve of the density as a function of temperature within the linear range between
20 ◦C and 40 ◦C. Thermal conductivity k and heat capacity Cp have been determined
from the properties of water and Glycerol.
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Table 2.3.: Thermal and rheological properties of different Carbopol mixtures. Yield stress
consistency and shear thinning exponent have been measured at T = 20 ◦C, storage
and loss modulus at the indicated temperatures.

Name σ0 [Pa] Kν [Pa s
n] n [-] 〈G′〉 [Pa] 〈G′′〉 [Pa]

CBP5 0.33 0.980 0.53 2.198 (50 ◦C) 1.475 (50 ◦C)

CBP6 0.09 1.403 0.58 2.083 (20 ◦C) 2.948 (20 ◦C)

CBP8 0.13 1.350 0.59 0.790 (50 ◦C) 1.035 (50 ◦C)

CBP10 0.06 0.565 0.66 - -

CBP11 0.17 1.896 0.55 - -

CBP12 0.12 0.622 0.75 1.300 (20 ◦C) 0.567 (20 ◦C)

CBP13 0.21 1.555 0.56 - -

CBP14 0.09 1.114 0.62 - -

Figure 2.14: Density of the different fluids as
a function of temperature.
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Table 2.4.: Thermal properties of different Carbopol mixtures.

Name ρ0 [kg/m
3] α [10−4K−1] Cp [J/kgK] k [W/mK]

CBP5 1082 4.07 3678 0.4984

CBP6 1151 4.78 3286 0.435

CBP8 1158 4.84 3196 0.4205

CBP10 1145 5.19 3286 0.435

CBP11 1192 5.14 3286 0.435

CBP12 1143 4.88 3286 0.435

CBP13 1148 4.93 3286 0.435

CBP14 1151 4.96 3286 0.435
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3. Regimes, Onset and Morphology

To complete the study started by B. Gueslin and A. Davaille (Davaille et al. [2013]),
I have carried out a number of new experiments. In these experiments I focussed on
the long-time behaviour of the thermal instability. I have varied the height of the fluid
and extended the observation time (table 3.1). To better understand certain aspects, I
have complemented the experiments with numerical simulations and a detailed parameter
study (chapter 4).

3.1. Regimes and Onset - Influence of the Source

Geometry

In Davaille et al. [2013] (for details see Appendix A.1), we have shown, that the de-
velopment of a plume depends on whether the thermally induced stress σth is sufficiently
high to overcome the yield stress σ0 of the fluid. Thereby the thermally induced stress is
due to the stress acting on the surface of the hot pocket forming around the heater and
is defined as

σth =
αρgP

k
, (3.1)

where ρ is the density at room temperature. The ratio of σth and the yield stress is called
the yield parameter Y0 = σth/σ0. For experiments with the same fluid, but operated
at different power P , three regimes are distinguished by two critical values of the yield
parameter. In Davaille et al. [2013] we found, that at Y0 < Yc1 = 120± 15 the fluid does
not move at all. For Yc1 < Y0 < Yc2 = 260 a small cell develops, whose convective motion
is confined around the heater. Only for Y0 > Yc2 = 260 a plume rises through the fluid.
Fig. 3.2A shows the regime diagram for the experiments from Davaille et al. [2013] and
this study, where circles stand for the regime with no motion, triangles for the cell and
squares for the plume regime. The two studies clearly do not show the same trend (fig.
3.2A and B). There is a systematic shift for the two boundaries Yc1 and Yc2. This is also
observed for the onset time. As the fluid employed is the same, this has to be due to
the different geometries of the heat sources. The difference could be due to the different
mechanical boundary condition. While they are rigid in this study, they are a mixture of
rigid and free-slip in Davaille et al. [2013]. But this effect should make it easier for the
instabilities observed in Davaille et al. [2013] to evolve, as shown by Darbouli et al. [2013].

49



3. Regimes, Onset and Morphology

Table 3.1.: Summary of experiments added by this study to previously existing experiments
Davaille et al. [2013]. Onset times in brackets indicate longest time waited during
the experiment.

Experiment Fluid Power [W] Type Onset time s hfluid [cm]

20110221 CBP5 3.30 nothing (> 3 days) 36.2
20110223 CBP5 3.50 nothing (> 3 days) 24.2
20110223 CBP5 3.60 nothing (> 3 days) 24.2
20110404 CBP6 1.85 plume 7194 39.2
20110407 CBP6 1.67 plume 10182 39.2
20110411 CBP6 1.50 plume 16836 39.2
20110413 CBP6 1.89 plume 2855 28.4
20110426 CBP6 1.45 plume 12114 28.4
20110429 CBP6 2.02 plume 2775 18.6
20110502 CBP6 1.68 plume 4385 18.6
20110504 CBP6 1.55 plume 12114 18.6
20110812 CBP8 2.40 plume 2775 22.8
20110814 CBP8 2.40 plume 4384 22.8
20110816 CBP8 1.90 plume 5209 22.8
20110818 CBP8 1.92 plume 4655 22.8
20120515 CBP11 1.70 plume 60960 24.0
20120520 CBP11 1.82 plume 12480 23.4
20120521 CBP11 2.08 plume 1740 23.4
20120524 CBP11 2.10 plume 1680 23.4
20120526 CBP11 2.10 plume 1680 13.3
20120527 CBP11 2.18 plume 1320 6.5
20120529 CBP11 2.15 plume 1320 7.2
20120703 CBP12 1.84 plume 432000 35.2
20120709 CBP12 2.08 plume 129600 35.2
20120715 CBP12 2.08 plume 157200 35.2
20120721 CBP13 1.83 cell (270000) 40.2
20120727 CBP13 2.26 cell (1080000) 40.2
201208101 CBP14 2.35 plume 1120 31.8
201208102 CBP14 2.31 plume 1105 31.8
20120811 CBP14 2.02 plume 1751 20.0
20120812 CBP14 2.02 plume 1665 20.0
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Peltier element

copper plate

aluminium block

plexiglass

Peltier element

copper plate

aluminium block

A B

Figure 3.1.: A: heating as employed in Davaille et al. [2013], heat is distributed into several
directions. B: heating as employed in this study, the copperplate is insulated by
plexiglass, heat only escapes at the top of the copper plate.

However the opposite is observed here. Another reason could be the power available by
the plume. While Davaille et al. [2013] use a Peltier element with a copper plate on its
top, in this study we insulate the copper plate towards the sides with a plexiglas plate, for
easier comparison with numerical simulations. Therefore the calculated thermal power is
distributed in different ways. While in this study heat can only escape through the top
of the copper plate, in Davaille et al. [2013] heat also goes trough the side walls of the
copper plate. As we have no measure for the heat distribution below the copper plate
(where the Peltier element is cooling and heating the fluid), we assume that the biggest
heat loss occurs at the sides. To test this assumption simple geometrical analysis gives a
correction for the thermal power as:

PPlume = P
πr2Cu

πr2Cu + 2πrCudCu
, (3.2)

where rCu and dCu are the radius and the height of the copper plate. The results are
shown in fig. 3.2C and D. Applying the correction the data collapses very well. The
critical yield parameters are changed to Yc2 = 150± 10 and Yc1 = 100± 10.

3.2. Evolution and Morphology

In Davaille et al. [2013] we show that the thermal instability evolving in Carbopol does
not have the classical mushroom-like shape as encountered for less viscous hot plumes in
Newtonian fluids, but more a finger-like shape (fig. 3.3A). Furthermore we can see that
deformation is very localized to the thermal instability. When increasing the height of
the fluid, another interesting aspect may be observed. As plume rises, it stops midway
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Figure 3.2.: Regime diagram (A) and onset time (B) calculated with total thermal power
P emitted from the copper plate. C and D show the same plots, where the
thermal power of the experiments from Davaille et al. [2013] have been corrected
to compensate for the heat loss at the sides of the copper disk. Filled symbols:
experiments with CBP6-14, empty violet symbols: experiments from Davaille et al.
[2013], blue stars: numerical simulations from Massmeyer et al. [2013]. Triangles
are cells observed for the corresponding fluid and given yield parameter.
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in the tank (fig. 3.3B). While the material inside the instability continues to convect,
the material above is not moving, i.e. an unyielded region persists at the top of the
box. To better understand why the plume stops at a given height and what is the role
of the rheological parameters, I performed numerical simulations, systematically varying
the rheology of the fluid.
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Figure 3.3.: A: Shear rate (color code) and raw image for experiment 20120811 in CBP14. B:
Spatiotemporal evolution of a vertical pixel-line at the plume axis (as illustrated
by sketch) for experiment 20110404 in CBP6. Colored lines highlight isotherms at
23.9 ◦C (blue), 31.1 ◦C (yellow) and 39.9 ◦C (red). Green line indicates unyielded
region.
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4. Numerical Simulation of Thermal

Plumes in a Herschel-Bulkley Fluid1

Abstract

We present a three dimensional numerical study of thermal plumes, developing from
a localized heat source in a yield stress and shear thinning fluid. We assume that the
fluid viscosity follows a Herschel-Bulkley law with a low shear rate viscosity plateau.
Comparison of the plume onset time and morphology observed in the numerical study and
in laboratory experiments with Carbopol shows good agreement. An extensive parameter
study allows us to identify two local non-dimensional parameters that determine whether
a plume rises through the fluid. The first parameter is the Bingham number, Bi, which
compares the yield stress to the viscous stress. The second parameter, the yield number
Ψ, compares the stress induced by the buoyancy of an equivalent hot sphere to the yield
stress. We find that a plume develops only if Ψ > Ψc = 5 ± 1.2 and Bi < Bic = 1.
As the plume rises it loses its buoyancy due to heat diffusion. So the upward progression
of the plume halts as soon as Ψ < Ψc or Bi > 1. Hot fluid continues to rise from the
bottom of the tank but spreads under an unyielded, high viscosity region at the top of
the box.

4.1. Introduction

Thermal convection and instabilities in yield stress fluids occur in many different fields,
from engineering (food- or glass production, Hunt [1991], Steffe [1996]) to geoscience (for-
mation of dikes and diapirs in the lithosphere or convection in icy satellites (Solomatov
and Barr [2006]). Despite its huge importance it is still not very well understood.
The theoretical difficulty in studying such systems is caused by an infinite viscosity as

the shear rate approaches zero. Therefore an instability cannot grow from a conductive
profile exposed to an infinitesimal perturbation (Solomatov and Barr [2006], Zhang et al.
[2006], Balmforth and Rust [2009]). Former studies on thermal instabilities in Rayleigh-
Bénard convection in a yield stress fluid considered either a Bingham fluid (Zhang et al.

1This chapter has been published in Journal of Non-Newtonian Fluid Mechanics, Massmeyer et al.
[2013].
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[2006], Vikhansky [2009, 2010, 2011], Turan et al. [2010, 2012]) or a purely shear thin-
ning fluid (Barr et al. [2004], Solomatov and Barr [2006]). However, fluids exhibiting a
yield stress as well as shear thinning behaviour have not been studied extensively. Balm-
forth and Rust [2009] investigated the stability of a weakly non-linear fluid concluding
that shear thinning favors an early onset of convection whereas a yield stress suppresses
convection. The same authors tested their numerical predictions experimentally on Car-
bopol solutions in a Rayleigh-Bénard setup and found that fluids with a high Carbopol
concentration, i.e. high yield stress, start to convect only if exposed to finite perturba-
tions.
In a recent study Davaille et al. [2013] investigated the development of a thermal plume

in Carbopol rising from a localized heat source. The Carbopol rheology can be described
by a Herschel-Bulkley model (Piau [2007], Coussot et al. [2009], Oppong and de Bruyn
[2011], Divoux et al. [2011]). The experiments showed that thermal instabilities in a yield
stress fluid behave very differently from those in Newtonian liquids.
A key parameter is the yield parameter, Y0, which compares the thermally induced

stresses to the yield stress and is therefore written as

Y0 =
α ρ g P

k σ0
, (4.1)

where α is the thermal expansivity, ρ is the density of the fluid at ambient temperature,
g the acceleration due to gravity, P the thermal power supplied by the heat source, k
the thermal conductivity and σ0 the yield stress of the fluid. Depending on the yield
parameter Y0, the system evolves into one of three regimes, which are seperated by two
critical yield parameters, Yc1 and Yc2 (cf. Davaille et al. [2013]). For Y0 < Yc1 only
elastic deformation occurs, while for Yc1 < Y0 < Yc2 a small cell slowly convects around
the heater. Only a high yield parameter (Y0 > Yc2) allows the cell to evolve into a plume.
This yield parameter is not to be mistaken for the yield number, Ψ, which is applicable to
problems involving rising bubbles (Dubash and Frigaard [2004, 2007]) or sinking spheres
(Beris et al. [1985], Tabuteau et al. [2007]) in a yield stress fluid. The yield number is
defined as

Ψ =
∆ρ g 2 req

3 σ0

. (4.2)

For bubbles and spheres, ∆ρ is the density difference between the object and the fluid
and req is the radius of the object. Bubbles or spheres move if Ψ > Ψc = 6.85 (Beris
et al. [1985], Dubash and Frigaard [2004, 2007], Tabuteau et al. [2007]). For a thermal
instability, ∆ρ = α ρ∆T and req corresponds to the radius of a sphere with a volume
equivalent to the volume of the hot pocket that forms around the heater (Davaille et al.
[2013]). Therefore for a thermal instability, although Y0 is constant, Ψ evolves with time
as the thermal boundary layer grows. It has been observed experimentally that the plume
develops when Ψ > 8.8 ± 0.7 (Davaille et al. [2013]).
The onset time t0 of this plume, i.e. the time at which the plume starts to rise, depends
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on the yield parameter and increases with decreasing yield parameter. As Y0 tends to
Yc2, the onset time goes to infinity. The shape of the thermal instability looks like a fin-
ger, unlike in a Newtonian fluid, where hot, less viscous plumes have a mushroom shape
with a big head on a thin stem (Davaille et al. [2011]). Most deformation is localized to
the edges of the thermal anomaly and is orders of magnitude smaller within the thermal
anomaly. This produces a pseudo-plug area on the plume axis. The evolution in time
changes, depending on the rheological parameters of the fluid. For small consistencies,
Kν , the plume can show an episodic behaviour whereas it rises continously for high Kν .

In this study we use numerical simulations to investigate the extent to which a purely
viscous fluid description, using a regularized Herschel-Bulkley model, is able to describe
the evolution from the cell to the plume instability as well as the instability itself. We
therefore systematically vary rheological and thermal parameters, as well as the applied
thermal history of the heated patch. To confirm the adequacy of the model, we compare
the morphology, the evolution in time and the dependence of the onset time on the yield
parameter, Y0, observed in our numerical model to laboratory results. This validation
allows us to study a well defined parameter range, avoiding the uncertainties due to
the difficulty in accurately measuring the rheological parameters in the laboratory. The
advantage of numerical simulations is that they allow us to test how each rheological
parameter, yield stress σ0, consistency Kν and shear thinning exponent n, influence the
evolution of the plume instability. We therefore varied these parameters systematically.
Access to the full three dimensional fields allows us to find the key parameters that
characterize the dynamics of the thermal instability.

4.2. The Model

4.2.1. Governing Equations

In this study, we consider the fluid to be incompressible and in the Boussinesq approx-
imation. Furthermore we neglect viscous dissipation (Gebhart [1962]). The fluid can be
described by the simplified equations for conservation of mass

∇ · v = 0 (4.3)

momentum
Dv

Dt
= − 1

ρ0
∇p + α∆T g ez + ∇ · σ (4.4)

and energy
DT

Dt
= κ∇2T (4.5)
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where v is the velocity, D/Dt = (∂/∂t + v · ∇) the material derivative, ρ0 is the density
of the ambient fluid, p the pressure, α the thermal expansivity, ∆T the temperature
difference between heater and ambient fluid, g the gravity acceleration, σ the stress tensor,
T the temperature and κ the thermal diffusivity.

4.2.2. The Model Rheology

The viscosity of Carbopol depends mainly on the shear rate, but also on temperature.
The shear rate dependence can be described with a Herschel-Bulkley model (Piau [2007],
Coussot et al. [2009], Divoux et al. [2010]), which implies infinite viscosity as the shear
rate approaches zero. To avoid this difficulty in the numerical simulations we apply a
viscosity truncation. Different models exist for a regularized Herschel-Bulkley model (e.g.
Alexandrou et al. [2001], Zhu et al. [2005]). We choose the model of de Souza Mendes
and Dutra [2004] due to its convenience for curve-fitting of the rheology measured in the
laboratory. This allows for an easier comparison of simulations and experiments. The
adequateness of this model to describe the flow of a Carbopol solution through an axi-
symmetric expansion has been demonstrated in de Souza Mendes et al. [2007]. In a
tensorial representation it is written as

σ =

(

1 − exp

(−η0 γ̇

σ0

))

(σ0 + KνT γ̇n) γ̇ γ̇−1 , (4.6)

where the expression in the first bracket is the regularizationterm and the expression in
the second bracket describes the Herschel-Bulkley model. The yield stress is given by σ0,
Kν is the consistency, n the shear thinning exponent and γ̇ the magnitude of the strain
rate γ̇. η0 represents the upper viscosity cut-off and is chosen to be η0 = 108 Pa s in all

the calculations. In section 4.3.2.1 we show that the dynamics of the plume is mostly
independent of the cut-off value. To avoid too large viscosity contrasts, our numerical
code uses an additional lower cut-off for the viscosity. However, we made sure that this
lower value is never reached, so that it does not influence the dynamics. The value was
set to ηmin = 0.01Pa s for Kν ≤ 0.1403Pa sn and to ηmin = 0.1Pa s for the other cases.
The laboratory measurements showed that σ0 and n do not depend on the temperature.

However the consistency KνT varies with temperature, following an Arrhenius-type law

KνT = Kν AeB (T−273.15), (4.7)

where A = 1.6927, B = −0.0257K−1 and where Kν is the consistency at room tempera-
ture T = 293.15K (for details see Appendix A).

4.2.3. The Numerical Model and Boundary Conditions

We solve the set of equations (4.3) - (4.5) using a finite volume discretization on a
staggered grid, implemented in the code StagYY. Code details and benchmarking for
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Figure 4.1: A: Schematic illustration of the nu-
merical domain. The calculations
are run in a box of w × d × h =
20 cm×20 cm×40 cm with a resolu-
tion of nx × ny × nz = 64 × 64 ×
128. Top boundary: free-slip, and
kept at ambient temperature T0,
side walls and bottom plate: rigid
with zero heat flux. Patch in the
center of the bottom of the box fol-
lows a prescribed temperature evo-
lution. B: schematic of the approxi-
mation of the circular heated patch
in the numerical simulation. While
in the simulations the heated patch
is inside the bottom boundary, in
the laboratory experiments it is ei-
ther; C: bottom mounted Davaille
et al. [2013] or D: flush mounted
by embedding the copper disk into
a Plexiglas plate.
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constant viscosity and temperature-dependent viscosity cases are described in detail in
Tackley [1994] (pp. 286-290 for benchmarking results) and more briefly in Tackley [1993,
1996]. For the diffusive term, second order finite differences are used, and a second order
upwind scheme is used for the advective terms. The convergence criterion is met, if the
normalized residuals of the momentum and continuity equations is smaller than 10−2.
Even though most of the characteristics observed for the plume in the laboratory are

axi-symmetric, the tank in the laboratory is not. We need to use straight walls in order to
avoid optical distortions during the visualization. To ensure the same boundary conditions
as in the laboratory, we use a three-dimensional Cartesian box (fig. 4.1). The box is 20 cm
long and wide and 40 cm high with a resolution of 64× 64× 128 grid points. We verified
that higher resolutions give the same results. The boundary conditions are described by
a no-slip and zero-flux condition for the bottom and sidewalls. The top boundary is free-
slip and kept at ambient temperature. To compare with the experiments, for which the
heating power is constant, we prescribed the temperature history of the heater measured
in the laboratory experiments. We calculate the thermal power P , defined as the surface
integral of the heat-flux

P =

∫

QdA, (4.8)

which is needed for comparison with the laboratory experiments (e.g. Davaille et al.
[2013]), where Q denotes the heat flux and dA the surface through which the heat flux
is measured. For the numerical simulations the thermal power is constant within 5%
through time, prior to the onset, and increases when the plume rises, as the heat flux
is increased. We generally refer to the minimum value, when dealing with the thermal
power P .
Due to the numerical grid (fig. 4.1 B) the heated surface is smaller than the surface

of an equivalent circle with the same radius. With the resolution 64 × 64 × 128 and a
radius of r = 1.25 cm this implies a heated surface of 3.93 cm2 instead of the surface
of the circle 4.91 cm2. The smaller surface of the disk results in a smaller heat flux and
therefore a smaller thermal power P . However, Davaille et al. [2013] showed that the
system depends strongly on the yield parameter Y0 (equation 4.1), therefore a smaller P
can be adjusted with a higher σ0 or α.

4.2.4. The Laboratory Experiments

The setup of the laboratory experiments and the procedure by which the fluid is pre-
pared is described in Davaille et al. [2013]. The heater consists of a Peltier element
underneath a copper disk. In the first set of experiments (Davaille et al. [2013]) the
heater was placed on top of the tank bottom (fig. 4.1 C). In addition, we performed a
series of experiments with a flush mounted heater (fig. 4.1 D), in order to mimic the
boundary conditions in the numerical simulations. Additionally in the new series we also
studied the influence of higher fluid depths, up to h = 39.2 cm.
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4.3. Validation of the Purely Viscous Description

4.3.1. Input and Output Parameters

In this study we systematically vary the thermal and rheological parameters (values
listed in table 4.1) to evaluate the effect on the dynamics of the plume. Here we will
briefly demonstrate the general evolution of a plume and how we evaluate the diagnostic
parameters (listed in table 4.1).
Fig. 4.2 shows the typical evolution of the thermal instability. Upon heating, a hot

pocket of fluid forms by heat conduction around the heater. Very slow motions are
recorded in this hot pocket. After approximately one hour, a plume develops. The shape
of the isotherm (fig. 4.2 A) resembles a finger.
From equation 4.6, we can calculate an effective viscosity

η = σ γ̇−1 =

(

1 − exp

(−η0 γ̇

σ0

))

(σ0 + Kν γ̇
n) γ̇−1 . (4.9)

fig. 4.2 B shows that there remains an unyielded region (i.e. where the viscosity value
remains at the cut-off value) at the top of the box during the whole simulation. This
means that the plume has stopped rising. In the systematic study below, we shall use
two diagnostic variables to characterize the plume evolution: the onset time t0 (fig. 4.2
C), and the height where the plume stops hy (fig. 4.2 D).

• Onset time: Lower viscosity regions form already at an early stage of the plume
(fig. 4.2 B and C a)), due to a slowly convecting cell around the heater. The
spatiotemporal evolution (fig. 4.2 C) shows that at t = 62.33min (fig. 4.2 b)) this
cell grows very fast. The time when the small cell evolves into a plume is referred
to as the onset time t0. Several methods to determine the onset time all give
similar results within an error of 3% (Davaille et al. [2013]). We will show how the
transition from the cell to the plume takes place and provides a precise criterion for
the determination of the onset time in section 4.5.1.

• Height where the plume stops: The spatiotemporal evolution of the viscosity on
the plume axis (fig. 4.2 C) shows that even after the onset of the plume, high
viscosity regions persist at the top of the box. This means that not the whole fluid
is convecting, but only a part of it. To define the height where the plume stops we
plot a profile of the viscosity on the plume axis (fig. 4.2 D). The viscosity shows a
local minimum at the head of the plume. This local viscosity minimum corresponds
to the point where the radial derivative of the radial velocity (dvr/dr) becomes
maximum. Hence, it marks the location of a stagnation point in the moving plume
reference frame, and therefore the position of the top of the plume head (Davaille
et al. [2011]). So, we define the maximum height that a plume reaches, or height
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Figure 4.2.: Definition of output parameters. A: snapshots of the temperature field in the
axis plane for different time steps marked in C. White lines mark the isotherm
at T = 23.9 ◦C. B: snapshots of the viscosity field on the plane through the
plume axis. C: spatiotemporal evolution of a vertical line on the plume axis
for the viscosity, vertical dotted lines in B and C correspond to each other. D:
viscosity profile at t = 249.52min, hy marks the height where the plume stops,
corresponding to a local minimum in the viscosity, which marks the stagnation
point.
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Figure 4.3.: A: Spatiotemporal evolution of the viscosity at the plume axis for three different
viscosity cut-offs η0. B: vertical viscosity profile at t = 250min for the different cut-
off values η0 = 108 Pa s (blue circles), η0 = 1010 Pa s (green stars), η0 = 1012 Pa s
(red squares). The height hy in B is marked in A by the horizontal black dashed
lines, corresponding to a local minimum viscosity.

where the plume stops, hy, as the maximum height of the stagnation point. This
height only varies very gently through time, once a quasi stationary state is reached.
This is assured for all calculations 50min after the onset of the plume, when the
height changes become negligibly small (< 1mm over 50min). We always measure
this height at the end of each calculation.

4.3.2. Influence of the Model Simplifications

4.3.2.1. Effects of the Viscosity Cut-Off η0

We tested the influence of different η0 on the plume dynamics, η0 = [108, 1010, 1012] Pa s.
The choice of η0 neither affects the onset time, nor the dynamic behaviour (fig. 4.3 A).
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Table 4.1.: Shear thinning exponent n, consistency Kν , yield stress σ0, thermal expansivity α, onset time t0, the thermal
power P, height reached by viscosity minimum at plume head at for all numerical simulations hy and respective
yield parameter Y0. Onset-time marked with * indicate that no plume develops even after that time.

# σ0 Kν n α t0 P hy Y0 # σ0 Kν n α t0 P hy Y0

[Pa] [Pa sn] [−] [ 10−4/K] [min] [W] [cm] [−] [Pa] [Pa sn] [−] [ 10−4/K] [min] [W] [cm] [−]
1 0.0100 0.140 0.58 6.00 1.3550 1.709 - 2666.26 29 0.0630 1.403 0.58 4.78 77.2340 1.157 26.85 228.26
2 0.0100 1.000 0.58 4.78 2.3712 1.539 40.00 1912.83 30 0.0650 1.000 0.58 4.78 82.6539 1.16 30.63 221.81
3 0.0100 1.000 0.58 4.78 3.0487 1.215 40.00 1510.13 31 0.0650 1.000 0.50 4.78 108.3985 1.148 28.92 219.51
4 0.0100 1.403 0.58 6.00 1.3550 1.552 40.00 2421.31 32 0.0650 1.000 0.70 4.78 67.7491 1.18 37.22 225.64
5 0.0100 1.403 0.90 6.00 1.3550 1.682 40.00 2624.13 33 0.0650 1.403 0.58 4.78 90.7838 1.157 28.23 221.24
6 0.0200 1.000 0.58 4.78 5.7587 1.463 40.00 909.18 34 0.0650 1.403 0.50 4.78 131.4332 1.139 27.20 217.80
7 0.0200 1.403 0.58 4.78 5.4199 1.429 40.00 888.05 35 0.0650 1.403 0.70 4.78 71.8140 1.172 31.63 224.11
8 0.0200 1.403 0.58 6.00 4.4037 1.481 40.00 1155.28 36 0.0650 2.000 0.58 4.78 105.6886 1.15 26.16 219.90
9 0.0250 1.403 0.58 4.78 6.7749 1.449 31.63 720.39 37 0.0650 2.000 0.50 4.78 181.5675 1.122 26.16 214.54
10 0.0300 1.403 0.58 4.78 10.1624 1.380 27.85 571.74 38 0.0650 2.000 0.70 4.78 75.8790 1.165 28.92 222.77
11 0.0350 1.403 0.58 4.78 13.5498 1.341 24.95 476.21 39 0.0670 0.140 0.58 4.78 82.6539 1.158 40.00 214.82
12 0.0400 0.140 0.58 4.78 12.8723 1.346 - 418.28 40 0.0670 1.000 0.58 4.78 98.9137 1.148 32.62 212.96
13 0.0400 0.140 0.58 6.00 8.1299 1.426 - 556.18 41 0.0670 1.403 0.90 6.00 81.2989 1.156 40.00 269.18
14 0.0400 1.000 0.58 4.78 16.9373 1.317 23.9 409.255 42 0.0670 1.403 0.58 6.00 37.2620 1.227 23.5 285.71
15 0.0400 1.403 0.58 4.78 16.9373 1.308 22.67 406.43 43 0.0670 1.403 0.58 4.78 108.3985 1.145 29.61 212.41
16 0.0400 1.403 0.58 6.00 10.8399 1.367 27.2 533.17 44 0.0670 2.000 0.58 4.78 126.0133 1.144 27.54 212.22
17 0.0400 1.403 0.90 4.78 8.1299 1.427 40.00 443.41 45 0.0670 14.000 0.58 4.78 1400* 1.025 0 190.15
18 0.0500 1.000 0.58 4.78 30.4871 1.28 23.37 318.18 46 0.0675 1.403 0.58 4.78 113.8185 1.156 30.29 212.86
19 0.0500 1.403 0.58 4.78 33.8745 1.263 21.8 313.96 47 0.0680 1.403 0.58 4.78 120.5934 1.140 30.96 208.37
20 0.0600 1.000 0.58 4.78 55.5542 1.196 27.20 247.75 48 0.0700 1.000 0.58 4.78 131.4332 1.157 36.00 205.43
21 0.0600 1.000 0.50 4.78 73.1690 1.183 25.81 245.06 49 0.0700 1.000 0.50 4.78 170.7277 1.123 33.59 199.40
22 0.0600 1.000 0.70 4.78 46.0694 1.215 30.29 251.69 50 0.0700 1.000 0.70 4.78 113.8185 1.215 40.00 215.73
23 0.0600 1.403 0.58 4.78 62.3292 1.183 25.11 245.06 51 0.0700 1.403 0.58 4.78 146.3380 1.14 32.95 202.42
24 0.0600 1.403 0.50 4.78 89.4288 1.163 24.07 240.92 52 0.0700 1.403 0.50 4.78 222.0000 1.111 31.63 197.27
25 0.0600 1.403 0.70 4.78 48.7793 1.198 27.89 248.17 53 0.0700 1.403 0.70 4.78 117.8834 1.137 40.00 201.88
26 0.0600 2.000 0.58 4.78 73.1690 1.173 23.37 242.99 54 0.0700 2.000 0.58 4.78 166.6627 1.138 30.29 202.06
27 0.0600 2.000 0.50 4.78 108.3985 1.146 23.37 237.39 55 0.0700 2.000 0.50 4.78 319.7757 1.103 30.63 195.85
28 0.0600 2.000 0.70 4.78 51.4893 1.195 26.16 247.55 56 0.0700 2.000 0.70 4.78 121.9483 1.145 34.22 203.30
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Figure 4.4.: Effect of real A: i) real solid blue and generalized dashed orange thermal history on
the evolution of the plume. Spatiotemporal evolution for the viscosity of a vertical
line at the plume axis ii) laboratory and iii) generalized temperature history of the
heated patch. B: cross section of Aii) (blue circles) and Aiii) (orange triangles) at
t = 250min.

The viscosity profile inside the plume remains the same (fig. 4.3 B), and only the un-
yielded structure above the plume (h > hy) is influenced by the cut-off value. However
the height where the plume stops, hy, does not change for different cut-off values (see
close up fig. 4.3). This shows that the regularization has no significant influence on the
plume’s behaviour. Given this result, all simulations were run with the same viscosity
cut-off value of η0 = 108 Pa s.
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4.3.2.2. Dependence on the Thermal History

The laboratory experiments (Davaille et al. [2013]) have a constant heating power,
which leads to a temperature drop in the copper plate when heat is suddenly taken away
by the plume lift off (fig. 4.4 A i) solid blue line). However, in the present paper we
intend to vary the rheological parameters. An increase in the yield stress will then lead
to an increase in the onset time. If the onset time lies beyond the onset time of the
laboratory experiments, a temperature drop in the heated patch would influence (delay
or suppress) the onset time or might affect the dynamics of a plume that starts before the
laboratory plume. Therefore we generalize the heating history by smooth prolongation
of the thermal history curve prior to the onset (cf. fig. 4.4 A i) dashed orange line). In
the case of the real temperature history the unyielded region is slightly larger, i.e. hy

is smaller, than for the generalized heating. As the supply of heat drops slightly in the
laboratory case, the plume is less buoyant and rises less high. However, the difference is
rather small, 3% of the absolute value (cf. cross section at 250min fig. 4.4 B). Keeping
this in mind we will use in most of the runs the simplified heating history as shown by
the dashed orange line in fig. 4.4 A i).

4.3.3. Comparison with Laboratory Experiments

The uncertainties of the laboratory experiments, e.g. an error of 30% (Davaille et al.
[2013]) on the yield stress, make it difficult to match the exact conditions and to reproduce
a series of experiments. As we will show in detail later, the system is very sensitive to small
changes, not only in yield stress, but also in shear thinning exponent or in consistency.
However, we will show here that the basic characteristics of laboratory experiments, e.g.
a finger-like instability and a strong dependence of the onset time on the yield parameter
Y0 (Davaille et al. [2013]), are well captured by our numerical model. Furthermore, in a
new set of laboratory experiments with a larger fluid height, we observe the persistance of
unyielded regions even after the plume is established. Davaille et al. [2013] had not been
able to observe this phenomenon, due to the smaller fluid height. This will allow us to
examine in more detail how each rheological property affects the dynamics of the system.

4.3.3.1. Onset and Evolution

Fig. 4.5 shows the dependence of the onset time on the yield parameter Y0, for the
numerical simulations, the flush mounted experiments and the bottom mounted exper-
iments (Davaille et al. [2013]). The onset-time of the plume strongly depends on the
yield parameter Y0. The numerical simulations show a good agreement with the results
obtained with the modified setup, where the heating is flush mounted. The critical value
for the flush mounted experiments and for the numerical simulations is Yc ≈ 165 ± 25.
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Figure 4.5: Onset time dependence on the non-
dimensional yield parameter Y0

which compares the buoyancy in-
duced thermal stress to the yield
stress. Diamonds are plumes
obtained from laboratory experi-
ments including those of Davaille
et al. [2013] (black) and those
obtained with the flush mounted
heater (orange). Orange octagons:
laboratory experiments that ex-
hibit only a cell until the depicted
time. All other symbols: Numer-
ical simulations, colours indicate
different n, while different symbols
indicate different Kν .
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The dash-dotted line in Fig. 4.5 marks the lower limit at Y0 = 140, and the error can
be explained with the uncertainties in the laboratory measurements (10% on the ther-
mal Power P and 30% on the yield stress σ0). However, the critical value for the flush
mounted experiments is well below the value for the bottom mounted heating determined
by Davaille et al. [2013] of Yc2 = 260. We attribute this discrepancy to the different
heater shapes, which will change the local stress distribution. The plot suggests that n
and Kν also influence the onset time, however this will be discussed later. Globally, the
plot shows that the onset time approaches two asymptotical values, depending on the
yield stress. For low yield parameter, i.e. when the yield stress is important compared
to the thermally induced stresses, the onset time is increasing rapidly with decreasing
Y0. On the other end, for high yield parameter, i.e. low yield stresses, the onset time
approaches a finite limit. This is to be expected as the system turns towards the purely
shear thinning or Newtonian case.

In Fig. 4.6 the typical spatiotemporal evolutions of a plume for both laboratory and
numerical simulations, are compared. Fig. 4.6 A presents the time evolution of the heated
patch for experiment (black) and simulation (grey), in the case where we used the real
temperature history. Fig. 4.6 C shows a typical snapshot of the plume in the laboratory
experiments. The white broad lines outlined in colour are isotherms (blue dash dotted:
23.9 ◦C, yellow dotted: 31.1 ◦C, red dashed: 39.9 ◦C) and thin white lines correspond to
particle trajectories. Therefore a horizontal line indicates a particle at rest and white
streaks upwards and towards the right are particles moving upwards along the axis. Fig.
4.6 D shows the vertical viscosity profile on the plume axis for the numerical simulations
where the viscosity increases from dark blue to dark red. Black lines indicate the position
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of the same isotherms as visualized in the laboratory, where temperature is increasing
from inside (bottom) to outside (top).
The thermal power in the laboratory is P = 1.85 ± 0.185W, the yield stress is de-

termined to be σ0 = 0.09 ± 0.015Pa, the consistency Kν = 1.403 ± 0.2Pa sn and the
shear thinning exponent is determined to be n = 0.58 ± 0.01. The measurements have
been done using a Physica MCR501-rheometer (Anton Paar, www.anton-paar.com) with
a coaxial cylinder geometry (CC27).
We find a good agreement of the onset-time derived from the numerical simulation and

the laboratory experiment (t0 = 119.9min in the laboratory, t0 = 120.59min in the simu-
lations, t = 120min indicated by the green dashed line) with the parameter-combination
P = 1.14W, σ0 = 0.068Pa, Kν = 1.403Pa sn and n = 0.58. The thermal properties
are the same with small errors on the values for the experiments. The thermal expansiv-
ity is α = 4.78 ± 0.01K−1 and the thermal conductivity is k = 0.435 ± 0.02W /mK.
Therefore we can calculate the yield parameter for the laboratory experiments Y0 =
266.86 ± 71.09 and for the numerical simulations Y0 = 208.36. The value for the simu-
lations is well within the error range of the laboratory experiments, explaining the good
agreement of the onset times.
However, a match of both onset times does not necessarily imply an identical behaviour

of the developping instability (fig. 4.6). This is most evident for the isotherms, which, for
the simulations, propagate much higher at the onset than in the experiment. There are
also similarities: the upper part of the box remains unyielded through time, as indicated
by the green arrows. In the experiments this can be seen by following the particles in the
upper part of the box. They describe a horizontal line, i.e. the particles are not moving
(fig. 4.6 B). In the numerical simulations the very high viscosity (dark red regions in the
figure) indicates that shear rate vanishes and that the fluid is not moving. The maximum
shear rate at the plume head is represented by the low viscosity in this region as high-
lighted by the horizontal black dashed line. Above this line viscosity increases rapidly.

4.3.3.2. The Plume Morphology

Fig. 4.7 shows that small shear rates are already present before the plume evolves,
while the isotherms (black lines) still have a circular shape. A small cell is convecting
around the heater and as the shear rate increases, this cell evolves into a plume. This
plume then exhibits locally very strong deformation, which is localized on the edges of
the thermal anomaly. The deformation is much weaker inside (difference of two orders of
magnitude). Above the plume, the fluid exhibits unyielded regions. The inner structure
of the thermal anomaly develops as a plume with a small head (A ii) and B iii) ) whereas
the outer isotherm looks more like a finger. Once the small head is lost, only the stem
remains midway in the tank.
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Figure 4.6.: A: Evolution of the heating for the laboratory experiments (black line) and the
numerical simulation (grey line) through time. B: Spatiotemporal evolution of
a vertical pixel line (vertical white dashed line in C) through time. White lines
show particles, coloured lines highlight the isotherms at 23.9 ◦C (blue dash dotted),
31.1 ◦C (yellow dotted) and 39.9 ◦C (red dashed). C: Snapshot from a laboratory
experiment at t = 146min, the white dashed line marks plume axis. D: Spa-
tiotemporal evolution of the viscosity at the plume axis (background colour) and
isotherms (black lines). The vertical green dashed line indicates the onset time,
which is about the same (laboratory experiment: t0 = 119.9min, numerical sim-
ulation t0 = 120.59min ) for simulation and experiment. The horizontal green
line marks the unyielded region for the laboratory experiment; the width of this
region for experiment and simulation is given by the green arrows.

The instability in the simulations develops just like the instability in the experiments.
The dependence of the onset time on the yield parameter is the same as in the laboratory
experiments. The thermal anomaly looks like a finger and the instability exhibits strong
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deformation at the edges of the thermal anomaly and a pseudo-plug flow inside the thermal
instability, as observed in the laboratory. Therefore we conclude that the purely viscous
regularized Herschel-Bulkley model is a sufficient description of the fluid and suitable for
studying numerically the development of thermal plumes in Herschel-Bulkley fluids like
Carbopol.

4.4. Effects of Rheological Parameters on the Dynamics

The laboratory experiments of Davaille et al. [2013] show a strong dependence of the
onset time and evolution of the plume on the yield stress. A closer look at different
flow curves (fig. 4.8) reveals that a change of the shear thinning exponent (fig. 4.8 A)
and/or the consistency (fig. 4.8 B) might also affect the system, as those changes affect
the effective viscosity. The flattening of the viscosity curve (fig. 4.8 A and B i)) and the
deviation from the stress plateau (fig. 4.8 A and B ii)) for shear rates γ̇ < 10−8 s−1 are
due to the viscosity cut-off η0. The uncertainties on the determination of the rheological
parameters make it difficult to study the effect of small changes in the laboratory. We
therefore examine numerically how small changes for all rheological parameters (σ0, Kν

and n) influence the development of the plume.
In order to investigate the effect of the yield stress on the plume’s dynamics we

varied σ0 between 0.01Pa and 0.07Pa for constant Kν = 1.403Pa sn and n = 0.58.
With increasing yield stress (fig. 4.9 A) from i) σ0 = 0.035Pa over ii) σ0 = 0.04Pa
to iii) σ0 = 0.06Pa, the onset time increases, as the yield parameter diminishes. At
a given power P it then becomes increasingly difficult for the hot pocket to overcome
the yield stress and to penetrate the surrounding fluid. Increasing the yield stress from
σ0 = 0.035Pa to σ0 = 0.04Pa induces a decrease of hy. As the plume cools down on its
way up by heat diffusion (cf. fig. 4.10 isotherms), its thermal buoyancy decreases until
it cannot anymore overcome the yield stress. hy should therefore depend on the initial
buoyancy and the yield stress. At a given P , we expect hy to decrease with increasing
σ0, as is observed. However, a further increase of the yield stress yields again a higher hy,
which may appear surprising at first. Yet this could be explained by the strong increase
of the onset time when approaching the critical yield parameter, which allows the plume
to accumulate more buoyancy before rising.
The increase of height hy with increasing yield stress can also be observed in the labo-

ratory experiments. In terms of the yield parameter Y0 an increase in the yield stress is
comparable to a decrease of the thermal power P . Fig. 4.10 shows the spatiotemporal
evolution of the pixel line on the plume axis for two laboratory experiments with the
same fluid, but with different thermal power P . The experiments show that, like in the
numerical simulation, a decrease in Y0 (obtained by decreasing P in the experiments and
increasing σ0 in the simulations) leads to an increase of hy.
We furthermore tested numerically that we obtain the same behaviour by applying a
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Figure 4.7.: Morphology of the deformation (background colour) and the temperature field as
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B: Numerical simulation. A and B are shown for the same shear rate range
(colourbar at the side); C: Numerical simulation for a larger shear rate.
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Figure 4.10: Spatiotemporal evolution of a
vertical pixel-line at the plume
axis for two laboratory experi-
ments in the same fluid, with
different thermal power applied.
A: P = 1.85W, B: P =
1.50W. Coloured lines highlight
isotherms, colour and linestyle
convention as in fig. 4.6 B. Green
lines indicate the transition to un-
yielded region.
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constant temperature. So, whatever the details of the heater history are (constant power
in the laboratory experiments or simplified temperature history in the simulations or con-
stant temperature) hy is not a monotonous function of Y0, but with increasing Y0, hy first
decreases and then increases again.
The effect of the increase of the consistency is depicted in fig. 4.9 B and increases from
i) Kν = 1.0Pa sn to iii) Kν = 2.0Pa sn at σ0 = 0.06Pa and n = 0.58. The flow curve
for the viscosity (fig. 4.8 B i)) shows that a fluid with a high consistency exhibits higher
viscosities at constant shear rate. As a result, we observe that the onset time changes only
slightly (compared to the effect of a change in the yield stress), as the consistency increases.
On the other hand hy decreases with increasing Kν by roughly 15% from Kν = 1.0Pa sn

to Kν = 2.0Pa sn. Inside the instability the viscosity increases with increasing Kν . With
constant σ0 = 0.06Pa and Kν = 1.403Pa sn an increase of the shear thinning exponent
induces lower viscosities for a given shear rate, fig. 4.8 A i). Therefore, the onset time
decreases (fig. 4.9 C) when n increases from i) n = 0.5 to iii) n = 0.7. Furthermore this
decrease in the effective viscosity also results in higher hy.
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Figure 4.11.: Different temporal evolutions for simulation 24, cf. table 4.1. A: evolution of the
Bingham number Bi = σ0

Kν γ̇n
max

where γ̇max is the maximum shear rate evaluated
at each time step. The vertical green line marks Bi = 1. B: Spatiotemporal
evolution of the viscosity at the plume axis. C: Spatiotemporal evolution of the
temperature at the plume axis. Red, yellow and blue lines indicate isotherms at
T = 39.9 ◦C, T = 31.1 ◦C and T = 23.9 ◦C respectively. D: Spatiotemporal
evolution of the temperature of a horizontal line through the thermal boundary
layer and the plume axis. The vertical green line indicates when the Bingham
number in A becomes one, the vertical black dash-dotted line indicates when the
T = 39.9 ◦C-isotherm in D starts to deform. 75
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4.5. Discussion

4.5.1. The Onset of the Plume

As we saw in the previous section, the onset time does not only depend on the yield
parameter, but also on the consistency and the shear thinning exponent. A parameter
comparing the yield stress to the viscous stresses is the Bingham number, which is for a
Herschel-Bulkley fluid defined as

Bi =
σ0

Kν γ̇n
. (4.10)

We calculate this parameter using the maximum shear rate at each time step and then
track the evolution of Bi (fig. 4.11 A). Fig. 4.11 B shows the evolution of the viscosity
on the plume axis. A comparison of both plots shows that the Bingham number value
becomes Bi = 1 right prior to the take off of the plume. We can furthermore compare
this to the evolution of the temperature field; Fig. 4.11 C shows the temporal evolution
of a vertical pixel line at the plume axis and Fig. 4.11 D a horizontal pixel-line cutting
the thermal boundary layer through the plume axis. The grey dotted line indicates the
onset time as determined in the laboratory experiments (Davaille et al. [2013]), where
the necking of the isotherms as seen in fig. 4.11 D has been used as a criterion for
the onset. The state at which Bi = 1 occurs slightly before the onset as determined
by the deformation of the isotherms in (fig. 4.11 D). However, when we plot the onset
time as determined from the isotherms versus the onset time determined by the criterion
Bi = 1 for different rheologies (fig. 4.13) the data collapse on a straight line of slope
one. Therefore, the Bingham number criterion is suitable to determine the onset time.
Additionally, this method provides a more accurate determination of the onset time, since
the other methods depend on the choice of the isotherm (cf. fig. 4.11 D: the inner (red)
isotherm deforms earlier than the outer (blue) isotherm).
Bi = 1 at onset gives a characteristic scale for the shear rate that has to be overcome

to generate a plume. This critical shear rate is then written as

γ̇cr =

(

σ0

Kν

)1/n

. (4.11)

This further implies that at onset the local stresses fulfill the following criterion

σ = σ0 +Kν

(

(

σ0

Kν

)1/n
)n

= 2 σ0. (4.12)

The experiments of Davaille et al. [2013] indicate that the critical yield number Ψ as
defined for bubbles to rise (Dubash and Frigaard [2004, 2007]) or spheres to sink (Beris
et al. [1985], Tabuteau et al. [2007]) in a yield stress fluid is also applicable for the onset
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Figure 4.12: Color convention as fig. 4.5.
Yield number Ψ with mean den-
sity difference ∆ρ between mean
density of hot pocket with radius
req and ambient fluid at plume on-
set versus yield parameter. Or-
ange line indicates Ψ = 6.85
(Beris et al. [1985], Dubash and
Frigaard [2004, 2007], Tabuteau
et al. [2007]) and grey bar cor-
responds to Ψ = 8.8 ± 0.7
(Davaille et al. [2013]).
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of the plume. The data range accessible from the simulations provides a much cleaner
way to determine this parameter, than by the laboratory experiments. Similar to Davaille
et al. [2013] we determine the volume of the fluid with a temperature excess 0.1∆T at the
onset, where ∆T is the temperature difference between the heated patch and the ambient
fluid. We then calculate the equivalent radius of a sphere with the same volume req and
determine its mean buoyancy, which is derived via the temperature difference of the mean
temperature of the hot pocket and the ambient fluid ∆T as ∆ ρ = α ρ∆T . Substituting
these values into the definition of Dubash and Frigaard [2007]

Ψ =
g d∆ρ

3 σ0

(4.13)

with d = 2 req yields values well above, for our simulations 1.6 to 3.8 times, the critical
value Ψc = 6.85 given by these authors (cf. fig. 4.12). This indicates that Ψ ≥ 6.85
is a necessary but not sufficient criterion, as at the same time the Bingham number also
needs to be supercritical (Bi < 1).
Plotting the maximum velocity versus the product of the equivalent radius req and the

maximum shear rate (fig. 4.14) yields a good agreement between those two velocities.
Thus, treating the thermal anomaly as a hot pocket of radius req rising through the fluid
is a good approximation.
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Figure 4.13: Onset time determined from spa-
tiotemporal evolution of a hori-
zontal pixel line of the tempera-
ture field in the thermal bound-
ary layer versus onset time deter-
mined from the criterion Bi = 1.
Colour convention as in fig. 4.5. tonset [min] from Bi = 1 
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4.5.2. Height where the Plume Stops

In section 4.4 we illustrated the effect of the rheological properties of the fluid on the
evolution of the thermal instability and found that all parameters strongly influence the
height hy where the plume stops. Fig. 4.15 summarizes these results for the simula-
tions. Fig. 4.15 A therefore assembles hy for all the simulations with Y0 < 1000. For
higher Y0 the plume always arrives at the surface. The highlighted series (green square,
Kν = 1.403Pa sn, n = 0.58 and varying σ0) will now be discussed. With increasing
yield parameter Y0, we can observe that hy first decreases and then increases again. We
therefore compare two simulations that stop at approximately the same height but are
on either branch of that curve (cf. points marked as PI and PII in fig. 4.15). For each
simulation we visualized the evolution of the viscosity on the plume axis through time (fig.
4.15 C1 and C2). The plume at lower yield parameter, PI with Y0 = 245.1, starts much
later than PII (Y0 = 476.2). Once it starts, PI is much faster than PII, as shown by the
maximum velocity (fig. 4.15 B), which is 1.5 times higher for PI than for PII. This can be
explained by PI having accumulated much more buoyancy than PII, as it was heated for
a longer time. In fig. 4.14 we can see that a plume with a higher shear thinning exponent
(comparing red points with n = 0.7 to blue points with n = 0.5) rises much faster. Fig.
4.15 A and B show that these faster plumes also rise higher (higher hy). However this
does not explain why the plume stops and how the transition from the left to the right
branch of fig. 4.15 takes place.
A plume rises if it is buoyant enough, and as we could see at the onset, the Bingham

number has to be supercritical (Bi < 1). We therefore calculate in a first step the Bing-
ham number along the plume axis through time (fig. 4.15 D) using the local shear rates
and the respective fluid parameters. Comparing this evolution for each fluid shows that
the Bingham number for PI becomes subcritical (Bi > 1) at the plume head as the plume
stops. On the other end PII stops even though its Bingham number is still supercritical.
In a second step we now calculate the local yield number Ψ, with the maximum tempera-
ture difference between head of the plume and ambient fluid and req as determined for the
onset. We find that as PII stops the yield number becomes Ψ = 5.124, which is below
the critical value of Ψ = 6.85 given by Beris et al. [1985], Dubash and Frigaard [2004,
2007], Tabuteau et al. [2007] and also the one determined experimentally for the thermal
instability in Carbopol by Davaille et al. [2013].
If we do this analysis for all data points, we find simulations in which the Bingham

number is already subcritical while the yield number Ψ is still supercritical and vice versa.
This indicates that, as soon as Bi or Ψ become subcritical, the plume stops rising. The
critical yield number is Ψc = 5 ± 1.2. This uncertainty is due to the fact that we are not
saving every field at every time step.
We then determined for each simulation, which parameter becomes subcritical first,

i.e. whether it is the Bingham or the yield number that causes the plume to stop, and
the time ts when the respective parameter becomes subcritical. At ts we now determined
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the value of the other parameter, which is still super critical at this time. The results are
plotted against the yield parameter Y0 (fig. 4.16) where the filled symbols show the yield
number Ψ (when the Bingham number becomes subcritical) and the open symbols the
Bingham number (when the yield number becomes subcritical).
The plot (fig. 4.16) is divided into two parts, where separation occurs at Y0 = Y0c ≈

300, corresponding to the minimum observed in fig. 4.15 A. Approaching Y0c = 300
the yield number approaches the critical value (Ψ → Ψc) and the Bingham number
Bi → Bi = 1.
Besides the differences for hy we can observe that the morphology of the plume changes

from the left to the right branch (fig. 4.15 E). On the left branch, where the dynamics
are dominated by the Bingham number, the strongest deformation occurs at the edges of
the instability. Around the plume axis, deformation is low (γ̇ < 10−3 s−1) and inside the
instability as well (fig. 4.15 D1). The transition from the edges of the instability towards
the inside is rather sharp, compared with (fig. 4.15 D2 and fig. 4.15 E2) PII on the right
branch, where it is more smeared out. For PII the deformation pattern resembles much
more the pattern observed in a Newtonian or purely shear thinning fluid.

4.6. Conclusions

We performed a systematic numerical study on the influence of the rheological prop-
erties in a regularized Herschel-Bulkley fluid on the development of thermal instabilities
produced by a small heated patch. The comparison with laboratory experiments shows
that the purely viscous description of de Souza Mendes and Dutra [2004] is adequate to
describe the plume onset and its development. In agreement with Davaille et al. [2013],
we find that the yield parameter Y0=α ρ g P / k σ0 is the key external parameter to de-
scribe the transition from a slowly convecting hot cell around the heater towards a rising
plume. Its critical value depends on the heater geometry and is Y0c = 165 ± 25 for a
heater flush-mounted on the bottom of the tank. In addition, the determination of the 3D
temperature, velocity, shear stresses and viscosity fields allows us to show that there are
two necessary local conditions for a plume to take off and continue to rise. First, the local
buoyancy of the hot pocket of fluid should be greater than the yield stress (which implies
that Ψ = ∆ρ g 2 req / 3 σ0, Ψc = 5 ±1.2). Second, the Bingham number, which compares
the yield stress to the viscous stresses, Bi = σ0 /Kν γ̇

n, should be smaller than 1.0. This
implies that the local shear rate should be greater than a characteristic shear rate scale
that only depends on the rheological properties of the fluid. As soon as Ψ < Ψc or Bi > 1,
the plume stops its upwards progression. Hot material will continue to rise from the bot-
tom of the tank but it will spread under an unyielded, high viscosity region at the top
of the box. Further work is now under way to characterize plume dynamics in steady state.
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Figure 4.16: Yield number (Ψ =
∆ρ g 2 req/3σ0, filled sym-
bols) at the time when,
at the plume head, the
Bingham number passes
Bi = 1 and Bingham
number (empty symbols)
at the time when the yield
number passes critical
value Ψc = 5 ± 1.2
versus yield parameter
(Y0 = α ρ g P/k σ0).
For low yield parameter
(Y0 < 300) the Bingham
number is the parameter
that evokes a stopping
of the plume, while Ψ
is still supercritical. For
higher yield parameter
(Y0 > 300) the stopping
of the plume is caused by
a loss of sufficient buoy-
ancy, therefore Ψ becomes
subcritical, while the
Bingham number is still
super critical (Bi < 1).
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Figure 4.17: Dependence of consistency KνT

on temperature T . Rheological
properties measured in flow test
for CBP10: σ0 = 0.018Pa, Kν =
0.75Pa sn , n = 0.62 and for
CBP11: σ0 = 0.1Pa, Kν =
1.5Pa sn, n = 0.5. Measurements
are fitted with KνT = Kν a e

−b T ,
with A = 1.6927 and B =
−0.0257K−1.
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Appendix A: Temperature Dependence of the

Consistency

The temperature dependence for KνT has been evaluated performing a temperature
sweep test at constant shear rate. To verify the uniformness of the model, we used two
different mixtures of Carbopol (for rheological properties see figure caption fig. 4.17) and
applied two different shear rates γ̇ = 1 s−1 and γ̇ = 10 s−1. The results are plotted
in fig. 4.17. The figure shows that the model KνT = Kν Ae−B T with the coefficients
A = 1.6927 and B = −0.0257K−1 fits the data reasonably well, for both fluids and at
both shear rates.
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5. Characterization of the Steady State

The temperature fields in fig. 5.1 for the laboratory experiment (Y0 = 316, Kν =
1.114Pa sn, n = 0.62) and the numerical simulation (Y0 = 224.11, Kν = 1.403Pa sn,
n = 0.7) look quite different, due to the different fluid parameters and the different power
applied. Therefore the question arises, whether there is a unifying formulation that allows
to predict certain characteristics of the thermal instability in the steady state. We may
therefore assume, that the plume stem has a characteristic radius a(z), corresponding to
the size of the shear zone (fig. 5.2 A) and rises with an average vertical velocity w(z).

5.1. Dimensional Analysis for the Steady State

In Davaille et al. [2013] we have shown that the velocity field inside the instability
resembles a plug-flow. Therefore the vertical velocity w should be proportional to the
product of the radius of the instability a (here the conduit) and the shear rate that is
created around it (cf. fig. 5.2)

w ∝ γ̇a ⇔ w = C3γ̇a. (5.1)

The governing equations for a stationary plume are as follows: the Stokes equation may
be expressed as the total stress in the system due to the buoyancy stress of the fluid inside
the stem and is therefore written as

σ0 +Kν γ̇
n = C1α∆T (z) a g (5.2)

where ∆T is the temperature difference between source and ambient fluid. In the exper-
iments, the heat source is operated at constant power. Therefore conservation of power
requires

P = ρCp

∫

w∆T (z)2πrdr ⇔ ∆T (z) =
P

πC2ρCpwa2
(5.3)
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5.1. Dimensional Analysis for the Steady State

a (z)

a (z)

a (z)

w

A B C

Figure 5.2.: A: schematic idea of fluid pocket rising as a solid object. The pocket moves at
constant speed, therefore produces a plug-flow, cf. B: velocity profile created by
the rising pocket. C: shear rate profile with typical profile (black line) and profile
that would result from solid object.

Conservation of heat implies

(v · ∇)T = κ∇2T (5.4)

⇔ w

z
∆T = C4

κ∆T

a2
(5.5)

⇔ a2w = C4κz

⇔ a =
(

C4
κz

w

)1/2

(5.6)

⇔ w = C4
κz

a2
(5.7)

Substitution of 5.7 into 5.3 yields the temperature at the axis of the instability as a function
of the supplied power, the height and the fluids density and thermal conductivity

∆T (z) =
1

πC2C4

P

ρCpκz
. (5.8)

Substituting equations 5.3 and 5.1 into 5.2 yields

σ0 +Kν

(

w

C3a

)n

= αg
PC1

πC2Cp

1

aw
. (5.9)

For simplicity we assume that the yield stress is small compared to the viscous stress. In
fact the Bingham number is about Bi ≈ 0.5 where the shear rate is maximum, as the
plume rises. Expressing the velocity w with the radius a (eq. 5.6) leads to a formulation
of the characteristic radius

a = C(n)

(

KνCp(κz)
n+1

αgP

)
1

3n+1

, (5.10)

where C(n) is a combination of different constants and a dependence on n.
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5. Characterization of the Steady State

5.2. Validation of the Proposed Scalings

5.2.1. Temperature along the Plume Axis

The temperature along the plume axis should be described by 5.8. To illustrate the
applicability of this scaling, fig. 5.3 shows the temperature difference between plume axis
and ambient fluid for simulations and experiment and the prediction by equation 5.8.
With C2C4 = 1.25 ± 0.25, scaling and simulation correspond well within 1K for all three
simulations. The difference is bigger for the experiment, however the only uncertainty
regarded here, is the uncertainty of the isotherms. Additionally the thermal power is only
certain within 10%, which could result in a shift of the curve towards the left, if the
real thermal power was lower. Therefore the laboratory results agree with the prediction
within the errorbar.

5.2.2. The Characteristic Radius of the Stem

In fig. 5.4 Ai) the radius where the shear rate is maximum is compared to the radius
obtained from equation 5.10. A good fit between the different radii is obtained for the
coefficient

C(n) = C
Cbn

Cc
a (5.11)

where Ca = 0.1645, Cb = 3.122 and Cc = 1.632, with a root mean square error of 0.002148
for C(n). The radius can then be translated into a shear rate by substituting equation
5.7 into 5.1. This can be done for

• evaluating the position (and therefore the radius) of the maximum shear rate (fig.
5.4Aii) dashed lines)

• the radius calculated from equation 5.10 (fig. 5.4Aii) straight lines).

5.2.3. Shear Rate and Velocity

A comparison with the maximum shear rate in the simulations (fig. 5.4Aii) dots) shows
that the curves collapse well, whereby the constants are

√
C4C3 = 0.7± 0.2.

Equation 5.7 then permits to calculate the velocity. Fig. 5.5 shows that the veloc-
ity averaged over the plume stem (inside a) is well approximated by equation 5.7 with
C4 = 0.1875± 0.0285.
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5.2.4. Justification of Simplifying Assumption: Yield-Stress Inside

the Plume Stem can be Neglected

Fig. 5.6 is an attempt to combine the results obtained in chapter 4 with the scaling
obtained for the temperature along the plume axis in the steady state. If the radius is
taken as a (from eq. 5.10), the yield number Ψ becomes subcritical before the height
hy is reached. This is interesting, as the material inside the plume still continues to rise.
This is also the case if the radius to calculate the yield number is taken as the radius of a
sphere with equivalent volume as the hot pocket that forms around the heater, req. This
highlights, that inside the plume, the yield stress is negligible and justifies that this was
assumed for the calculation of a.

5.3. Conclusions - Scaling for the Steady State

Here we propose a scaling for the characteristic radius of the plume stem in the steady
state. The characteristic radius corresponds to the distance of the maximum shear rate
from the plume axis and is a function of the height, applied power and fluid properties,
where the yield stress is neglected. The mean velocity inside the stem scales with the
radius. The temperature along the plume axis is independent of the rheological properties
of the fluid and scales with the applied thermal power, the thermal properties of the fluid
and height. We have validated the scaling with several numerical simulations and a
laboratory experiment to cross-check the results.
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6. Thermal Instabilities in a Complex

Lithosphere and Mantle.

An overview of the complexity of Earth’s rheology is given in section 1.2, describing
that the lithosphere may act as a solid even on geological timescales, but may also show a
visco-elastic behaviour. This chapter shows how the results obtained in chapters 3-4 may
be applied to the Earth and may help to better constrain Earth rheology.

6.1. Magmatic Intrusions in the Lithosphere

Dykes are fast intrusions of magma into the lithosphere. They propagate at few metres
per second and are seismologically detectable (Einarsson and Brandsdòttir [1979]) as
they fracture through the solid lithosphere on a very short timescale. Dykes are very
thin, compared to their breadth (cf. fig. 6.1) and their thickness varies between some
millimeters to a few meters (eg. Kavanagh et al. [2012b], Gudmundsson [1983]). Hence
the process is limited by the strength of the ambient matrix, and dyking is only possible if
the pressure in the magma source (e.g. a magma chamber) is sufficiently high to overcome
the yield stress of the lithosphere. The propagation of the dyke then releases the pressure
in the magma chamber and the dyke will slow down (Buck et al. [2006]). Jònsson [2012]
inverts InSAR-data recording a dyking event on the western Arabian Peninsula from 2009
and finds a tensile rock strength between 1− 3MPa.
Due to the short timescale of the dyking-event, the lithosphere’s response is supposed
to be mainly elastic. An analog material behaving elastically on short timescales under
high stresses is gelatine (Di Giuseppe et al. [2009]). Hence, several studies used gelatine
to model the emplacement of dykes in an elastic lithosphere (e.g. Menand and Tait
[2001], Menand et al. [2003], Walter and Troll [2003], Rivalta et al. [2005], Kavanagh
et al. [2006], Maccaferri et al. [2010], Kavanagh et al. [2012a]). The dykes form fissures
taking the shape of two-dimensional sheets. In experiments with one layer, the dykes
fracture vertically towards the surface. If several layers are used, models show that the
dyke may spread horizontally at the contact with a stronger layer, therefore forming sills
(e.g. Rivalta et al. [2005], Kavanagh et al. [2006] for experiments and Maccaferri et al.
[2010] for simulations and experiments).
Another form of magmatic intrusions in the lithosphere are diapirs. Diapirs are three-

dimensional objects, similar to plumes, with a diameter of a few 10 km. Their emplacement
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Figure 6.1.: A: schematic illustration of a dyke propagating from a source, e.g. a magma
chamber. Dykes may evolve, when the overpressure in the magma source is suf-
ficiently high. B: Photo of the shiprock (eroded volcano throat) with a joined
dyke. Note that the dyke width is much smaller than its length. Image source:
www.geulogy.com/images/st-pauls-island/magmatic-dike-dyke-shiprock.jpg.

is much slower than the emplacement of dykes: For example the uplift measured above
the Altiplano-Puna magma body is only a few mm/year Fialko and Pearse [2012], fig.
6.2. Hence, due to the different time-scale of emplacement, numerical studies on diapir
intrusions into the crust use stress and temperature dependent rheology without (e.g.
Bittner and Schmeling [1995]) or with an elastic crust (e.g. Gerya and Burg [2007],
Fialko and Pearse [2012]). Gerya and Burg [2007] place a partially molten peridotite
body at ≈ 200 km depth (fig. 6.3) and study the shape of the ascending material and the
resulting surface deformation, as a function of the properties of the overlying crust and
mantle. Fialko and Pearse [2012] show that the central uplift and surrounding subsidence
(forming a sombrero-shape, cf. fig. 6.2) observed above an active magma body in the
central Andes (Altiplano-Puna ultralow-velocity zone) may be explained by a mid-crustal
diapir.
Jousselin and Nicolas [2000] study an off-axis diapir emplaced in a ridge context in Oman
(cf. fig. 6.4). While the on-axis diapir has a very smooth deformation pattern, the off-axis
diapir presents strong deformation localized to its edges. The different morphologies can
be explained by the viscosity being mostly temperature dependent at the ridge, hence
the observed deformation resembles more a Newtonian fluid. However as the lithosphere
spreads away from the ridge it cools, and will therefore present viscoelastic properties, i.e.
the lithosphere should present a yield stress. Therefore it is not surprising that the diapir
strongly resembles the instabilities studied in sections 3 and 4.
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6.1. Magmatic Intrusions in the Lithosphere
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Figure 6.2.: Adapted from Fialko and Pearse [2012] APULVZ: Altiplano-Puna Ultralow-
Velocity Zone. A: Color indicates uplift (red) and subsidence (blue) line-of-sight
(LOS) velocities, evaluated from ERS-1/2 and EnviSAT data. Red line denotes
extent of the seismically imaged ultra-low-velocity-zone (ULVZ) in the middle
crust. B: Observed (black dots) and predicted (solid red line) LOS velocities along
northwest-to-southeast profile, crossing the center of the uplift (A). Blue symbols
(right axis) show surface velocities due to the Socorro Magma Body (New Mexico).
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A

B

Figure 6.3.: from Gerya and Burg [2007]. A: initial model setup, with partially molten peri-
dotite at 200 km depth. B: the partial melt ascends through a heated channel
and forms intrusions in the crust. Colorcode: weak layer (1), sediments (2), upper
solid (3) and molten (4) crust, lower solid (5) and molten (6) crust, lithospheric (7)
and asthenospheric (8) mantle, molten (9) and crystallized (10) peridotite, molten
(11) and crystallized (12) gabbro. White lines are isotherms in ◦C.
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Figure 6.4.: Sketch of ridge-cross section, courtesy of Jousselin and Nicolas [2000]. Detail
shows deformation as observed for the off-axis ridge, where strong deformation is
localized at the edges of the diapir.

6.2. Conditions for Emplacement of Diapirs and Plumes

in Lithosphere or Mantle with Complex Rheology

The results from section 4 show, that two conditions need to be fulfilled to allow for an
instability to rise in a yield stress fluid:

• Ψ = 2gr∆ρ
3σ0

> 6.85

• Bi = σ0

Kν γ̇1/n = σ0

Kν γ̇nE
< 1.

The first equation can be reformulated to calculate the maximum yield stress that allows
for a given density anomaly to develop. This is the case for yield stresses smaller or equal
to

σ0 =
2

3

gr∆ρ

6.85
. (6.1)

In fig. 6.5 the maximum yield stress allowing for an instability to rise in a yield stress
matrix is shown, depending on its density difference to the ambient matrix as well as its
radius. The implications of this will be discussed in the following for upwellings in the
lithosphere and in the mantle.

6.2.1. Emplacement Conditions for Instabilities in the Lithosphere

The diapir (Jousselin and Nicolas [2000]) has a diameter of d ≈ 10 km. The tem-
perature at a distance of 35 km from the ridge should be around 900 ◦C at 5 km depth.
Assuming a density of ρ = 3000 kgm−3, a thermal expansivity of α ≈ 2 10−5K−1 and
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due to a purely thermal density contrast (dashed) or thermal and chemical den-
sity contrast, as well as mantle plumes (dash-dotted). Maximum possible yield
stresses for instabilities in the lithosphere and mantle are named σLmax and σMmax

respectively.

that the temperature of emplacement is T ≈ 1200 ◦C, results in a density difference of
∆ρ ≈ 10−20 kgm−3. Therefore the maximum yield stress allowing for such an instability
to rise would be around σLmax = 100 kPa. Such a low yield stress indicates that the sur-
rounding matrix would need to be at least partially molten (Kohlstedt and Zimmerman
[1996], Scott and Kohlstedt [2006]). This is based on the assumption that the diapir is
a result of an asthenospheric, purely thermal, instability (Jousselin and Nicolas [2000]).
In the case of plume-ridge interaction (Mittelstaedt and Ito [2005]) 1) the temperature
difference may be higher and 2) chemical heterogeneities may aid by lowering the den-
sity. Another buoyancy source may be decompression melting (e.g. Scott and Stevenson
[1989]) or melt depletion (e.g. Schutt and Lesher [2006]). All these mechanisms could
increase the density difference uo to ∆ρ ≈ 400 kg/m3 Therefore a diapir could rise through
a matrix with a yield stress of up to σLmax = 3MPa (cf. fig. 6.5). This value corresponds
well to the ones found by Jònsson [2012] for the dyking event on the western Arabian
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Peninsula of 1 − 3MPa. Furthermore this explains why Gerya and Burg [2007] had to
use a plastic strength of 1MPa stating that “higher plastic strength precludes the ascent
of magma”. Fialko and Pearse [2012] find that their model best fits the observation if a
density difference of ∆ρ = 400 kgm−3 is assumed, while the radius of their instability is
about r = 40− 50 km. Such a large diapir with its huge buoyancy could be emplaced in
a matrix with a yield stress of up to σLmax = 19MPa.

6.2.2. Emplacement Conditions for Mantle Plumes

Most models assume that the Earth’s mantle is Newtonian (e.g. Trompert and Hansen
[1998], Tackley [2000a], Stein et al. [2004]) and therefore without a yield stress. However,
a rising plume may be stopped by a strong upper mantle as in the jelly sandwich model
(see e.g. Burov and Watts [2006]), if the stress induced by its buoyancy becomes too
small compared to the yield stress (cf. section 4). The density contrast might thereby
be increased by melting or incorporated chemical heterogeneities in the plume. A purely
thermal plume would therefore be stopped for mantle yield stresses between 0.5MPa for
small plume radius and small density contrast and 17MPa if the plume is larger and
more buoyant. If its buoyancy was further increased it might even enter a matrix of up
to σMmax ≈ 114MPa. These values question the possibility of the jelly sandwich model
with a strong upper mantle. Depending on the strength this strong layer could make it
impossible for thermal instabilities from the mantle to enter the upper mantle or crust.

6.3. Possible Implications for Viscosity and Shear Rate

The second condition Bi ≤ 1 allows to calculate the minimum shear rate γ̇ that is
needed for given parameter constellations of the yield stress σ0, consistency Kν and shear
thinning parameter n and the corresponding maximum viscosity that allows for a plume
to develop at those conditions

γ̇min =

(

σ0

Kν

)nE

⇔ ηmax = 2 σ0

(

σ0

Kν

)

−nE

. (6.2)

On Earth, rheology depends on several parameters (cf. section 1.2) and writes (after Hirth
and Kohlstedt [2003]) as

γ̇ = AσnE d−pfH2O exp (β Φ) exp

(

−E∗ + P V ∗

RT

)

, (6.3)

where A is a constant, d is the grain-size with the grain-size exponent p, fH2O is water
fugacity , Φ is the melt fraction, β is a constant, T is the temperature, P pressure, E∗ is
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6.2 in dependence of Kν and σ0 for four different nE . Vertical grey lines indicate
maximum yield stress that allows for instability to develop after fig. 6.5 in the
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the activation energy , V ∗ is the activation volume and R is the universal gas constant.
A similar reformulation for the Herschel-Bulkley model yields

γ̇ = (σ − σ0)
nE

1

KnE
ν

(6.4)

and shows that Kν translates for Earth as follows

Kν =

(

Ad−pfH2O exp (β Φ) exp

(

−E∗ + P V ∗

RT

))(−1/nE)

(6.5)

The viscosity of the Earth’s mantle should roughly be within the range of 1017 to 1025 Pas
(cf. section 1.2), which corresponds to the range between the white and pink lines on fig.
6.6. The shear thinning exponent is varied between nE = 2− 5, since for the lithosphere
nE is in between 2 and 4.5, e.g. Ranalli [1995]. Taking into account the yield stress limits
σLmax and σMmax for lithosphere and mantle shows that, depending on the intensity of
stress dependence, the “choice” of Kν is rather limited. In order to obtain realistic shear
rates and viscosities, the interval for Kν depends on the shear thinning index nE . For
example nE = 5 would limit Kν between 3.2 108 and 1011 Pa s5.

6.4. Conclusions - Geophysical Application

In section 6.2 we have shown that the question whether a diapir may be emplaced
strongly depends on the rheology of the surrounding matrix. Applying the non dimen-
sional parameters that we obtained in chapter 4, places strong constraints on the strength
of the lithosphere and the upper mantle. Depending on the size and the buoyancy of an
anomaly, the strength that would permit for such an object to rise, varies between 100 kPa
and 114MPa, corresponding to the results from Jònsson [2012]. This means, that the
lithosphere has to be rather weak in order to allow for intrusions. Those values further-
more question the possibility of the jelly sandwich model, as a strong upper mantle could
make it impossible for a mantle plume to penetrate the upper mantle or lithosphere.
In section 6.3, we place ourselves on the marginal case, where the Bingham number is
equal to one, i.e. where the viscous forces are as strong as the yield stress. This places
constraints on the maximum value that the consistency Kν may have in order to allow
for an instability to develop.
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7. Conclusion and Outlook

In this study, we have combined laboratory experiments and numerical simulations to
investigate the dynamics of thermal plumes in a yield stress fluid. We show that a thermal
instability in Carbopol is well described with a regularized Herschel-Bulkley model. In
both, numerical simulations and laboratory experiments, the instability has a finger-like
shape as described in Davaille et al. [2013] and deformation is localized close to the ther-
mal instability.

The numerical simulations permitted to identify the key parameters that determine
whether a thermal instability may develop and rise. The first critical parameter is the
yield number Ψ, comparing the stresses due to the buoyancy of the hot pocket forming
around the heater to the yield stress. We find a critical value of Ψc = 5± 1.2. This value
is close to the critical yield parameter found for bubbles that rise in (Dubash and Frigaard
[2004, 2007]) and spheres that sink into (Beris et al. [1985], Tabuteau et al. [2007]) a
yield stress fluid, which is Ψ′

c = 6.85. The second parameter is the Bingham number Bi,
comparing the yield stress to the viscous stresses. We show that the plume develops out
off a cell and only if the convection of this cell is vigorous enough and produces sufficiently
high shear rates, it may evolve into a plume. The critical Bingham number therefore is
Bi = 1, i.e. the viscous stresses are equal to the yield stress. These parameters do not
only determine whether a plume starts, but also whether it may continue to rise through
the fluid.

A comparison of the different regimes that maybe obtained, to those we have found
with a different setup in Davaille et al. [2013] shows, that the different heat-source ge-
ometries lead to different critical yield parameters. We show that if we correct the thermal
power that is available as a buoyancy source for the plume for the experiments of Davaille
et al. [2013], both geometries have the same critical parameter of Yc1 = 100± 10 for the
transition from no motion to a cell and Yc2 = 150±10 for the transition from cell to plume.

We have shown, that for the dynamics of the plume stem in steady state, the yield
stress can be neglected and only the viscous stresses with the shear thinning part need to
be taken into account. This allows to derive scaling laws for velocity, temperature at the
plume axis and size of the shear zone in the plume stem in the steady state.
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When we apply the non-dimensional parameters that we find in the numerical simula-
tions and the laboratory experiments to Earth, we find fluid dynamic constraints for the
evolution of diapirs. The Bingham number allows to calculate the maximum viscosity that
would allow for a plume to develop. More importantly, our results show that, changing
with the size and buoyancy of the source, a diapir can only develop, if the strength of the
surrounding matrix is limited. This limiting strength is smaller than 100 kPa for small
diapirs with diameter of a few ten kilometres and with low buoyancy and smaller than
114MPa for large and buoyant plumes.

The work presented here is limited to a single instability. It would be interesting to
study the spacing between several instabilities. Due to the yield stress it is difficult to
study this in a Rayleigh-Bénard setup. A simple way around this could be to study
instabilities that form from a heated line. We have performed preliminary tests that were
exhibiting an intermittent behaviour, switching between two and one instabilities in time,
but those preliminary results would need to be looked at in detail. Besides this, the work
opens more interesting perspectives. One question is, whether a yield stress in the Earth’s
mantle would influence the shape of an instability. Hence it would be interesting to couple
a yield stress rheology with a strong temperature dependence, e.g. numerically. Another
question could be to investigate what happens to an instability that forms in a Newtonian
fluid and tries to penetrate into a non-Newtonian fluid. This could be done with a layered
system, e.g. of Natrosol and Carbopol. The difficulty here would be to find two fluids
that have similar densities, so that the instability in the lower fluid would be less dense
than the upper fluid layer, while at room temperature the upper fluid is less dense. A
way around this, could be to study Rayleigh-Taylor instabilities employing for example a
technique like Renoult et al. [2011]. Another possibility would be to inject hot newtonian
fluid into a tank that is filled with a non-Newtonian fluid like Carbopol.
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A. Thermal instabilities in a yield stress fluid:

A.1. Thermal instabilities in a yield stress fluid:

Existence and Morphology1.

Abstract We present new laboratory experiments on the development of thermal plumes
out of a localized heat source in Carbopol, a yield-stress and shear-thinning fluid. De-
pending on the Yield number Y0, which compares the thermally-induced stress to the
yield stress, three different regimes obtain. For low Y0 (<120), no convection develops;
while for intermediate values, a small-scale convection cell appears and remains confined
around the heater. For high Y0 (>260), thermal plumes develop. Their morphology differs
from the mushroom-shape typically encountered in Newtonian fluids. Combined temper-
ature and velocity field measurements show that a plug flow develops within the plume
thermal anomaly, therefore producing a rising finger-shape. Moreover, light scattering
highlights the development of a damaged zone prior to the plume onset, and the pecu-
liar structure of the gel around the plume as it rises. This brings new insights into the
solid-liquid transition of soft gels.

A.1.1. Introduction

Although non-Newtonian fluids are common in natural and industrial systems under-
going thermal convection (ie food or glass processing, lava lakes, planetary mantles..),
the occurrence and characteristics of thermal instabilities in such fluids are still poorly
documented and understood. Part of the difficulty is that the viscosity of these fluids
approaches infinity when the shear rate vanishes. Hence, from a theoretical point of view,
convective instabilities cannot grow from a static conductive state submitted to infinites-
imal perturbations (Zhang et al. [2006]; Solomatov and Barr [2007]; Balmforth and Rust
[2009]; Vikhansky [2009]), contrary to the case of Rayleigh-Benard convection in Newto-
nian fluids (Chandrasekhar [1961]). In laponite, where the non-Newtonian effects increase
as the fluid ages, convection is killed after a while (Bellon et al. [2007]). Recent qualita-
tive experiments in constant yield stress fluids show that thermal convection only started
with the help of spurious bubbles, forced mixing or temperature heterogeneities at the
top free surface (Balmforth and Rust [2009]). When we performed similar experiments
with well controlled temperature conditions and no impurities in the fluid, an unstable
linear conductive temperature gradient developed but motion never occured (even after
three weeks). Most quantitative studies have therefore been limited to configurations
where the onset of any motion would not require a critical threshold if the fluid was New-
tonian: creeping motion of solid spheres (Beris et al. [1985]; Gueslin et al. [2006]; Putz
et al. [2008]) and bubbles (Dubash and Frigaard [2004, 2007]), Saffman-Taylor instabil-
ities (Coussot [1998]), Poiseuille flow (Frigaard et al. [1994]; Gabard and Hulin [2003])

1this section has been published in Journal of Non-Newtonian Fluid Mechanics, Davaille et al. [2013]
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or Rayleigh-Poiseuille instabilities (Frigaard and Nouar [2003]; Martinand et al. [2006];
Metivier and Nouar [2008]).
Here, we investigate experimentally the development of thermal instabilities out of a

localized heat source in a yield stress shear-thinning fluid (Carbopol solutions). This
set up has been extensively used to study laminar Newtonian starting plumes (1975 Jr.
and Luther [1975]; Olson and Singer [1985]; Campbell and Griffiths [1990]; Kaminski and
Jaupart [2003]; Vatteville et al. [2009]; Davaille et al. [2011]). Combined Particle Im-
age Velocimetry (PIV) and Thermochromic Liquid Crystals (TLC) visualizations allowed
us to measure simultaneously the velocity and temperature fields (Davaille and Limare
[2007]). As the heating power and the rheology of the experimental fluid were varied,
different convective regimes and instability morphologies were observed. We focus here
on their phenomenology and conditions of existence.

A.1.2. Experimental Setup and Fluids

A.1.2.1. Setup

The heat source consists of a Peltier element covered by a copper disk of thickness
d=4 mm and radius R=12.5 mm. It is placed at the center of a square plexiglas tank
20x20x30 cm (fig.1a). The heater is fixed directly on the bottom surface (fig.1b). The
upper fluid surface is free but there is a plexiglas lid on the tank to avoid evaporation and
temperature fluctuations induced by the room. The room is kept at 21.0± 1.0oC (the air-
conditioning has a 15 to 20 min period) and the tank walls are 3 cm thick. This allows to
filter the room temperature oscillations and to ensure a quiescent isothermal initial state
in the tank. At time t=0, a constant power Pelec is applied to the heater. The ambient
temperature and the temperature of the heater surface are measured by thermocouples
and monitored through time, as well as the electric current voltage and intensity. Because
of the non-linear response of the Peltier device, the thermal power P delivered into the
fluid is not equal to the electric power supplied to the Peltier (Davaille et al. [2011]).
However, for each experiment, an estimate of the thermal power actually delivered to the
fluid can be computed using the Peltier element characteristics (see Annex 1).
The fluid is seeded with three types of encapsulated thermochromic liquid crystals

(TLC), each reflecting light at a different temperature. A vertical cross-section of the
tank is illuminated by a 532 nm laser sheet, and images are recorded every second using
a CCD camera (fig. A.1). Depending on the temperature field, several bright lines can
be seen on the images (fig.1), each of which represents a different “isotherm” (for details
on the method see Davaille et al. [2011]). In our aqueous mixtures of carbopol, the
TLCs sometimes also aggregate to form “particles” which scatter light, even without a
temperature field (e.g. fig. A.5 and A.6). We therefore use these aggregates as tracer
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Figure A.1: a) Experimental set up. The
heater is placed on the center of
the bottom plate of the tank. At
time t=0, the heater is switched
on, and a thermal plume can de-
velop. Here is shown an image
of the thermal plumes obtained
in Newtonian glucose syrups (e.g.
Davaille et al. [2011]). The
bright lines represent isotherms
(see text). b) Close up on the
heater configuration. The cold
junction of the Peltier element is
placed on an metallic plate to dis-
sipate the cold, while the hot junc-
tion is in contact with the cop-
per disk. We verified that the
temperature on the copper disk
was homogeneous (Vatteville et al.
[2009]) and that the flow was not
perturbed by the thermocouples.
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particles and calculate velocity fields using Particle Image Velocimetry (PIV package from
LaVision).

A.1.2.2. Fluids

The fluids are mixture of carbopol (Noveon ETD2050), distilled water and glycerin
(between 0 and 56 wt%, see Table 1). The Carbopol powder (0.4-0.8g/L) was dispersed
in the water-glycerin solvent for 2 days using a magnetic agitator. Then the solution was
neutralized with a sodium hydroxide solution (5M). It was then left at rest for 8 days
before use to ensure that the gel hydration was complete.
The TLCs were added once the tank is filled. For each fluid, the density and thermal

expansion coefficient have been measured as a function of temperature between 15 and 65
oC with a Anton Paar DMA5000. Given the very small quantity of carbopol added, the
other physical properties are those of the water-glycerin mixtures (Peixinho [2004]).
The rheological behavior of the fluids has been measured as a function of shear rate

γ̇ and temperature with a RS600 (ThermoHaake) and a MCR501 (Anton Paar). All
measurements lead to a description of the fluid rheology with a Herschel-Bulkley model
(Piau [2007]; Coussot et al. [2009]; Oppong and de Bruyn [2011]; fig. A.2):

σ = σ0 +Kvγ̇
n (A.1)

where σ is the stress. The values of γ̇ typically reached with the rheometer ranged between
10−4 and 102 sec−1. The rheological parameters values given in Table 1 were obtained by
fitting the descending part of the flow curve measured using a Couette geometry. Because
the stresses generated by thermal buoyancy are small (see next section), we have to use
solutions with very low yield stresses, which are delicate to measure. The existence of a
real yield stress at very low values of γ̇ is even still debated (e.g. Roberts and Barnes
[2001]; Piau [2007]; Moller et al. [2006]). Overall, our flow curves become more noisy
when γ̇ < 10−2 sec−1, which could be caused by wall slip and/or transitional effects (e.g.
Piau [2007]). We therefore kept only the data which was reproducible, i.e. when γ̇ > 10−2

sec−1. Measurements on the same fluid, but with different apparatus, lead to variations
in yield stress σ0 of 30%. This large uncertainty is due to the low values of the yield
stress. The exponent n is much more reliable, and varies between 0.50 and 0.63 (Table 1),
which is in the range found in the literature (Roberts and Barnes [2001]; Peixinho [2004];
Divoux et al. [2010]). σ0 and n do not show any significant variations with temperature
(Peixinho [2004]), while the consistency Kv decreases by a factor of 2 for a temperature
increase of 20oC.

Table 1 summarizes the rheological parameters and the thermal properties of the various
studied fluids. The addition of glycerin results in increasing the coefficient of thermal
expansion, and in reducing the yield stress and the consistency compared to water with
a similar quantity of carbopol.
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Fluid Glycerol Carbopol H σ0 n Kv ρ0 α k

wt% g/l mm Pa - Pa sn kg/m3 10−4K−1 W/mK
J1 56.5 0.4 180 0.037 0.63 0.345 1144 4.69 0.40
M2 0 0.8 180 0.35 0.5 1.57 999 2.10 0.58
M4 51.0 0.6 155 0.16 0.5 0.86 1129 4.89 0.41
J5 56.0 0.65 140 0.15 0.60 0.535 1142 4.61 0.40
J6 56.0 0.625 187 0.106 0.54 0.855 1142 4.61 0.40
S7 56.0 0.6 166 0.10 0.54 0.76 1142 4.62 0.40

Table A.1.: Fluid properties at 20oC. Rheological properties: σ0 yield stress, n shear-thinning
index, Kv consistency. Thermal properties at 20 oC: ρ density , α thermal expan-
sion , thermal conductivity k.

Figure A.2: Flow curves measured for three
fluids, J1 (red stars), J5 (green
triangles) and S7 (magenta disks)
and their fits by a Herschel-
Bulkley law (solid lines). For the
fits, only the measurements for
shear rates above 10−2 have been
considered (see text). SHEAR RATE (sec -1)

S
H

E
A

R
 S

T
R

E
S

S
 (

P
a

)

10
-3

10
-1

10
1

10
-2

10
-1

10
0

10
1

110



A.1. Existence and Morphology

A.1.2.3. Parameters

Given our experimental set up and the rheology of the fluid, several parameters are
needed to characterize the system (e.g. Zhang et al. [2006]; Balmforth and Rust [2009]):
-the box aspect ratio L/H, where H is the fluid height in the tank and L its width.

Here L/H ranged between 0.83 and 1.21 depending on the runs.
- the size aspect ratio between the heater and the box R/H, which varied between 13.3

and 19.4 depending on the runs.
- the Reynolds number can be estimated using (e.g. Dubash and Frigaard [2007]):

Re =
ρRnW 2−n

Kv

(A.2)

where W is the velocity. It never exceeds 1 mm/sec in our experiments, so that Re < 0.01
and the instabilities are always in the creep regime.
-the Bingham number Bi compares the yield and viscous stresses in (A.1):

Bi =
σ0

Kvγ̇n
(A.3)

When motions are observed, the measured typical shear rates range between 10−6 and
0.05 sec−1. This implies Bi between 0.6 and 1000.
-the yield parameter Y0 compares the yield stress to the stress induced by the thermal

density anomaly σth:

Y0 =
σth

σ0

=
αρgP

σ0k
(A.4)

since for a constant power supply , the hot pocket of fluid applies under the action of
gravity a stress which scales as σth ∼ αρgP/k. In a yield stress fluid initially at rest, the
hot pocket will be able to rise only if σth is greater than the yield stress (e.g. Beris et al.
[1985]; Dubash and Frigaard [2004, 2007]; Tabuteau et al. [2007]; Balmforth and Rust
[2009]). So, Y0 is the key parameter to determine the onset of convection.
Owing to the small values of the thermal expansion coefficient, and to the maximum

temperature difference that the system can encounter without generating bubbles, the
thermally induced stresses are small. Therefore, convective instabilities are expected only
for rather small yield stresses (Table 1). Using 6 different fluids (see Table 1) and varying
the electric power input between 0.02 and 6.5 W, we run 62 experiments with σth ranging
from 1.5 to 80, leading to Yield parameters between 20 and 1600 (fig. A.3). The typical
duration of an experiment ranged between 30 minutes and four days.

A.1.3. Three Different Regimes

Once the heat source is turned on, a pocket of hot fluid first grows by diffusion around
the heater (fig. A.6a). Then depending on the applied thermal stress and the yield
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Figure A.3.: Phase diagram as a function of the yield stress σ0 and of the stress of thermal
origin σth. Filled symbols stand for the plumes, empty ones for convection con-
fined around the heater, and crosses for no convection. The solid line represents
Yc2 = 260 and the dotted line Yc1 = 120. Stars stand for fluid J1, disks for S7, dia-
monds for J6, triangles for J5, and squares for M4. The empty black rectangle in
the top left corner shows the uncertainty on the stresses. “a” points toward an ex-
periment without any plume even after four days while experiment “b” generated
a plume in less than 30 min.
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stress of the fluid, three different regimes occur. Fig. A.3 shows that the transition
between the different regims depends primarily on the Yield parameter. For Y0 smaller
than Yc1 = 120(±15), no motion was detected. For moderate Y0 ( Yc1 < Y0 < Yc2,
Yc2 = 260(±20)), small scale convection cells remain confined around the heater (fig.
A.5). For Y0 > Yc2, plumes develop (fig. A.6). The transition at Y0 = Yc2 is quite sharp:
on fig. A.3, experiment “a”did not show any plume even after four days while experiment
“b” generated a plume in less than 30 min.

A.1.3.1. No Motion

For low thermal powers, no motion is recorded: a drop of dye will remain at its ini-
tial position, and the presence of rising bubbles neither starts the flow nor perturbs the
temperature field. A steady state temperature structure develops by conduction and the
heater temperature compared to the initial fluid temperature scales as ∆T = P/4kReff

(Carslaw and Jaeger, 1959, p215). Given the geometry of the heater (fig.1b), we can take
Reff ∼ R + d. The fluid behaves as a solid and due to thermoelasticity, the temperature
gradient can produce elastic deformations. Until the heater has reached steady state, the
thermoelastic stresses σTE will build up. According to linear thermoelasticity (Landau
and Lifshitz [1986]) , σTE should scale as:

σTE = C0.∆T.
α.EY

1− 2νp
(A.5)

where νp is the Poisson ratio, EY = 2(1 + νp)G
′ is the Young modulus, G′ is the elastic

modulus and C0 is a constant which depends on the geometry of the set up.
As long as σTE remains smaller than the yield stress, no viscous flow can occur. The

first critical value of the yield parameter Yc1 therefore corresponds to σTE ∼ σ0, which
according to (A.4) and (A.5) gives:

Yc1 ∼
ρ.g.(R + d)

C0.G′
.
2(1− 2νp)

(1 + νp)
. (A.6)

Equation (A.6) shows that the first transition Yc1 depends on the fluid properties and the
set up geometry. We do not see variations in the experiments presented here because we
are always using the same set up (same R, d and C0) and fluids which are quite similar.
We were not able to measure the elastic modulus at the time of the experiments, but
since then, rheometry measurements performed on similar solutions (Massmeyer et al, in
prep.) gave us elastic modulus estimates between 0.5 and 3 Pa, similar to values obtained
in pure water-carbopol solutions (Oppong and de Bruyn [2011]; Gutowski et al. [2012]).
The Poisson ratio for Carbopol solutions is unknown, but we expect it to be close to an
incompressible liquid, i.e. between 0.4 and 0.5. Fig. A.4 then shows that the predicted
values of Yc1 are close to the observed ones (120±15) for constant C0 between 0.2 and 1.
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Figure A.4: Value of Yc1 predicted by equa-
tion (A.6) as a function of the elas-
tic modulus and the Poisson ratio,
for three different values of C0 (or
set ups) and ρ=1142 kg/m3. The
heavy grey lines represents C0=1,
the thin grey lines C0=0.5, and
the thick black lines C0=0.2. The
numbers indicate the Yc1 values of
120±15. ELASTIC MODULUS (Pa)
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A.1.3.2. Cellular Convection

Fig. A.5 shows the convective pattern obtained for intermediate Y0: after 3 hours
of experiment, the temperature structure around the heater has reached its steady state
(fig. A.5b-e) for the isotherms ≤ 31◦C. The isotherms closer to ambient temperature take
longer to stabilize (about a day) but no plume will ever developed (even after four days, fig.
A.5e). However, on 30 min time-scale, very slow particle motions (typically 2 to 3 orders
of magnitude slower than in the plume cases) are detectable within the hot pocket around
the heater (fig. A.5f). Dyed areas in the fluid are continuously deformed under the action
of the viscous flow as seen on fig. A.5. This is radically different from their behaviour in
the previous elastic regime, and shows that the velocity we computed indeed represents
motion and not elastic deformation. The very low velocity results in a very low Peclet
number (Pe = W R/κ ∼ 0.1), which implies that advection is negligible compared to
diffusion of heat in the conservation of energy equation. Therefore, only solving the heat
conduction equation (ignoring the advection) predicts quite well the thermal structure
(fig. A.5e): only the 24.6 oC isotherm is broader than predicted by the analytical solution,
which is compatible with the temperature homogeneization in the core of a convective
cell.

A.1.3.3. Plumes Development

Fig. A.6-A.9 show the development of a hot instability when Y0 > Yc2. First, the hot
pocket grows by diffusion around the heater and the particles record no motion (t < 200
sec on fig. A.7 and fig. A.9). Then slow motions can be detected within the hot fluid
pocket for 200 < t < 500 sec, although the growth of the latter is still dominated by
heat conduction (fig. A.6a). It is impossible to determine exactly when the transition for
no motion to the small convective cell occurs since the detection of very low velocities
requires correlation between images 50 to 250 sec apart! However the transition to the
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Figure A.5.: Images for the cellular regime (fluid S7 at P=1.85 W, Y0=247). a) t=0. Two
dyed drops of fluid have been outlined in orange and green. b) t=2000 sec. The
isotherms (values indicated in black) appear as bright linear zones and their thick-
ness reflects the local temperature gradient; c) t=6000 sec.; d) t=12000sec. ; e)
t=3.2×105 sec. Superimposed is the analytical solution for the steady state in
pure conduction (Carslaw and Jaeger [1959]). The values of the isotherms are
indicated in oC. The orange drop is now stretched in an horizontal bar, and the
green drop has been stretched in a filament that we cannot distinguish from the
isotherm anymore. f) velocity field obtained for e) with PIV (cross-correlation
of images 250 sec. apart). The maximum velocity is 1.3 × 10−6 m/s. The fluid
colder than isotherm 24.1oC remains unyielded. Significant velocity remains con-
fined around the heater. 115
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a) b) c) d)
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Figure A.6.: Development of a plume (fluid S7 at P=4.15 W, Y0=554). The bright lines are the
TLCs isotherms: a) t=300 sec; b) t=532 sec. The colours arrows show the vertical
component of the velocity field Wz. They are superimposed on the raw image.
The same colour scale has been applied for images b), e) and f). The maximum
Wz (in white) is 0.38 mm/sec ; c) t=560 sec; d) t=600 sec; e) t=652 sec; f) t=1140
sec; g) t=1700 sec; h) t=2200 sec. The velocity fields were calculated with PIV
using cross-correlation of images 5 sec. (b) to 1 sec.(c-h) apart.
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Figure A.7: Development of a plume (same as
fig. A.6). Light intensity of the
pixels line: a) along the plume
axis (r=0) as a function of time
and height. The isotherms have
been highlighted in red (24.6oC),
blue (31.5oC) and yellow (39.5oC).
We can also follow the particles as
they rise along the axis. After a
stage where the heat transfer in
the fluid is mainly by conduction,
the plume rises quickly around
550 sec. The white vertical bars
correspond to the snapshots of fig.
A.6 and the black horizontal bars
to the horizontal cross-sections in
fig. A.9. b) vertically above the
heater edge (r=12.5 mm). c) ver-
tically above r=25 mm. The num-
bers in black indicate the isotherm
value.

plume formation is very easy to spot. For t > 500 sec, a finger of hot fluid emerges from
the hot pocket (fig. A.6b-d). It rises in two phases, quickly at first, and then at a steady
slower pace (fig. A.7,A.8). Close inspection of the isotherms inside the plume shows that
their heights oscillate through time before becoming constant. And so is the velocity field
(fig. A.8). Nevertheless, in these experiments, all the plumes eventually reach the surface.

Transition from Cellular Convection to Plume:

The departure of the hot instability is quite sudden: it corresponds to the fast uplift
of the isotherms on the vertical spatio-temporal diagram (fig. A.7) and to the necking of
the isotherms close to the heat source on the horizontal spatio-temporal diagrams (arrows
on fig. A.9c,d). It also coincides with the maximum temperature recorded on the heater
(fig. A.8a) since heat is suddenly removed from the heater surface when the plume starts.
As it is the thermal power which is kept constant and not the heater temperature, the
latter decreases in response to motion. We define here the instability“onset time” tc as the
necking time. Other definitions based on the isotherms uplift or on the heater temperature
give slightly different measurements (variations of less than 3 %) but the overall trend
remains unchanged.
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Figure A.8: Development of a plume (same as
fig. A.6). a) Temperature dif-
ference ∆T between the Peltier
heater and the bulk fluid (red
curve) and its time-derivative as a
function of time. b) maximum ver-
tical velocity Wz recorded on the
plume axis. c) Vertical velocity
along the plume axis normalized
by its maximum at each time, as
a function of depth and time. d)
dWr/dr along the plume axis nor-
malized by its maximum at each
time, as a function of depth and
time. Its maximum corresponds
to the stagnation point at the top
of the plume ( inset). The two ver-
tical dashed lines show the onset
time and the second uplift event
(cf. text). TIME (sec)
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Figure A.9: Development of a plume (same
as fig. A.6). Light intensity of
the pixels line along a radius as
a function of time at four differ-
ent depths z: a) z = 102.1 mm; b)
z = 66.5 mm; c) z = 12.1 mm; d)
z = 3.2 mm. The black arrows in-
dicate the “necking” time used to
define the plume onset time (see
text). The insets show where is
the cross-section relative to the
tank.
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Figure A.10: Plume dimensionless onset time
as a function of the Yield param-
eter. The same symbols as in
fig.3 have been used for the dif-
ferent fluids. The thick dashed
line corresponds to Yc2 = 260.
To each fluid (and set of rheolog-
ical parameters), correspond one
of the thinner lines, which out-
lined the trend followed by the
data points. Y 0 c2
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Fig. A.10 shows the onset time as a function of Y0 − Yc2. As expected, the closer to
the Yc2 transition, the latest the onset time. For each fluid, the data points can be fitted
with a power law

tc = a(Y0 − Yc2)
b, (A.7)

but we could not find any rationale between the coefficients a and b and the physical
properties of the fluids.
Yc2 is much higher than the one reported for sedimentation of solid spheres (Yc = 6.85,

Beris et al. [1985], Tabuteau et al. [2007]) or bubbles (Dubash and Frigaard [2004, 2007]).
However, in the latter case, the yield number is defined as Y = g.D.∆ρ/3σ0, where D is
the sphere diameter, and ∆ρ its density excess. In our case, buoyancy is produced by the
temperature differences and ∆ρ = αρ∆Tav. Since we know the temperature field for each
experiment, we therefore can calculate at each time the averaged temperature excess ∆Tav

contained in the hot pocket of fluid around the heater. We can also calculate the effective
radius of a sphere that would have the same volume, and so we finally can estimate Y .
To define what constitutes the “hot pocket”, we choose all the fluid with a temperature
excess greater than 0.1 ∆T . Then the boundary between the cellular convection and the
plume formation occurs for Y = 8.8±0.7. This value now is of the same order as Yc. That
the two values are different are expected since we have a bottom rigid boundary condition
instead of a free surface (as in the experiments for the sphere) and since the geometry of
the rising plume is different from a sphere, on which the critical Yield parameter value
might depend (Dubash and Frigaard [2004, 2007]).

Episodicity

We have already mentioned the strong time-dependence of the plumes, whereby the
temperature and velocity fields fluctuate before reaching steady state (fig. A.7,A.8). In
some cases (fig. A.11), the plume completely stops and cools down. Then a second pulse
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is registered. We could distinguish up to 3 pulses before the steady-state is reached with
time lapse between two pulses ranging from 140 to 1000 sec. Given the long time-scales
involved, this is not due to the elasticity of the fluid (as seen in falling motions of solid
spheres for exemple, i.e. Tabuteau et al. [2007]), but it is due to instabilities in the
plume conduit. Such instabilities have already been reported for Newtonian fluids (e.g.
Olson et al. [1993]; Vatteville et al. [2009]; Davaille et al. [2011]) and shear thinning fluids
(e.g. van Keken [1997]) although their origin remains unknown. Here, we notice that
the velocity of the first pulse is much higher than the steady state velocity in the plume
conduit, and that the amplitude of the velocity variations is decreasing through time (fig.
A.8b). The steady state represents the hot flow that the heat source is able to support
continuously. Since it needs to penetrate unyielded material, the first pulse is the most
buoyant (i.e. the hottest) and carry more buoyancy than what is produced continuously.
Therefore the plume head start drains the source and almost detach from it. However, as
it rises, it looses its heat by conduction (i.e. Batchelor [1954]), until its local buoyancy
cannot overcome anymore the yield stress, which explains its strong slow down, or even
arrest (fig. A.11). Meanwhile, the thermal boundary layer around the heater is building
again until a new pulse starts. In the referential of the rising plume, its tip is characterized
by a stagnation point where dWr/dr is maximum (fig. A.8d, Davaille et al. [2011]). We
see clearly on fig. A.11d and fig. A.11 that the second pulse also bears this characteristic
signature and starts from the bottom of the tank. However, as it is following the conduit
previously built, it needs carrying less buoyancy that the first pulse, therefore its velocity
is smaller, closer to what the heat source can sustain continuously. The system therefore
will approach steady state by a serie of pulses decreasing in amplitude.

Plume Morphology and Plug Flow:

In newtonian fluids, hot less viscous plumes entering a colder and more viscous en-
vironment are mushroom-shaped (e.g. fig. A.1), while cold more viscous plumes are
finger-shaped (Jr. and Luther [1975]; Olson and Singer [1985]). The morphology of the
hot and less viscous plumes observed in our experiments is therefore significantly different
from the newtonian case. On the other hand, intrusion of fluid in elastic matrices like
gelatin or rocks are known to produce columnar or 2-D dikes shapes (i.e. Menand and
Tait [2001]).

A close inspection of the velocity field (fig. A.6e-f) reveals that the upwelling material
is entirely confined within the thermal anomaly. Moreover, the velocity radial profiles
around the plume axis are quite flat (fig. A.6f). As a measure of the shear rate, we can
calculate the second invariant of the strain rate tensor from the velocity field (Wr,Wz).
For an axisymmetric configuration, it writes:

γ̇0 = [(
dWr

dr
)2 +

W 2
r

r2
+ (

dWz

dz
)2 +

1

2
(
dWz

dr
+

dWr

dz
)2]1/2 (A.8)
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Figure A.11.: Strong plume episodicity (fluid J5 at P=3.9 W, Y0=333) . a) Light intensity
of the pixels line along the plume axis (r=0) as a function of time and height.
The isotherms have been highlighted in red (24.6oC), blue (31.5oC) and yellow
(39.5oC). b) Vertical velocity along the plume axis normalized by its maximum
at each time, as a function of depth and time. c) dWr/dr along the plume
axis normalized by its maximum at each time, as a function of depth and time.
After the conduction stage, the plume rises quickly at 2200 sec until it stops
completely and cools down. Then a second pulse is recorded, starting around
3100 sec.
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Figure A.12: Vertical cross-section of the
plume structure at t=2000 sec
((same plume as fig. A.6)). a)
Vertical velocity, b) shear rate ac-
cording to equation (A.8), c) vis-
cosity calculated with η = σ/γ̇0,
d) shear stress normalized by the
yield stress. Dark blue areas are
for shear rates below the detec-
tion level and are therefore prob-
ably unyielded.

Fig. A.12b shows the map of the characteristic shear rate for t = 2000 sec.: the shear
rate in most of the plume axis region is zero (within the uncertainties on the shear rate
field). So the fluid there is not sheared but moves up as a plug. This shear localization is
characteristic of a yield stress fluid and is commonly observed in pipe flows (e.g. Gabard
and Hulin [2003]). Moreover, even when the velocity along the axis has reached its steady
state, the plume conduit thermal anomaly enlarges slowly with time (fig. A.9a,b): this is
due to the progressive erosion by the plume flow of the solid part of the fluid. As seen in
rheometry measurements (Baudez and Coussot [2004]; Divoux et al. [2010]), we observe
the slow outward propagation of the interface between the two phases (fig. A.6g-h, fig.
A.9a-b). However, a region of plug flow always remains along the plume axis (fig. A.12),
and the plume shape remains columnar.

A.1.4. From Solid to Flowing Behaviour

The development of the thermal instabitities reported here always goes through three
phases: first thermo-elastic deformation, then very slow creep where heat transfer is still
dominated by conduction and the Bingham number (equation (A.3)) remains high, and
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Figure A.13: Development of a plume
(fluid S7 at P=4.15 W,
Y0=554). Zoom on the ver-
tical spatio-temporal evo-
lution off axis: a)r=12.5
mm, and b) r=25 mm.
Note that the offset is to-
wards the top for a) which
means that the material
is rising, while it is down-
wards for b), which means
that the downwards return
flow is close to the plume.

finally the sudden rise of a hot finger, with strong shear localization. This behaviour
is reminiscent of the sequence of events reported in recent rheometry creep experiments
using carbopol (Caton and Baravian [2008]; Divoux et al. [2010]). Those experiments
were investigating the transition to fluidization of a sample when a constant stress was
applied. In our case of heating at constant power, the applied stresses, due to the building
temperature, are increasing through time till the system reaches steady state. However,
in both systems, fluidization involves an episode of strong shear localization and/or shear
banding. Divoux et al. [2010] observed total slip on the wall of the apparatus, prior to the
establishment of steady shear, while Caton and Baravian [2008] suggested the presence of
fractures.

On fig. A.7 and fig. A.9, horizontal bright lines represent particles at rest (i.e. unyielded
areas), and continuous oblique lines moving particle trajectories (yielded areas). However,
in between the two zones, that is just before onset and around the plume thermal anomaly,
there exists a more chaotic zone, which propagates as the plume rises. fig. A.13 presents
a zoom on the particles trajectories during the stage of fast uplift of the plume: at the
0.1 mm scale, the trajectories of the particles around the hot thermal anomaly are not
continuous but show sudden offsets, as if a damaged zone was developing around the
plume. Studies of the microscopic structure of Carbopol solutions show that they are
concentrated suspensions of swollen polymer “sponges” with typical size 5-20 µm size
(Piau [2007]; Gutowski et al. [2012]). So the fact that we are able to see at the 0.1-0.5
mm scale the intermittent sudden disruptions suggests that the transition from solid to
flowing behaviour may occur through intermittent plastic events correlated over a finite
size area, as proposed by recent models (e.g. Picard et al. [2005]). However, we are lacking
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resolution, both in time and space, to tell if those events are fractures or slip of one gel
particles aggregate onto another one.

A.1.5. Conclusions

We have conducted experiments on thermal instabilities in yield stress fluids. The Yield
parameter, the ratio of stresses of thermal origin over the yield stress, is shown to be the
key parameter to predict the convective regime. Given the small value of the thermal
expansion coefficient, leading to weak thermal stresses, plumes will develop only for very
low yield stresses and will involve weak shear rates (≤ 2.10−2 sec−1). However, their
morphology and dynamics are markedly different from those of a Newtonian plume, and
unyielded areas coexist with flowing regions. Further work is now under way to quantify
the characteristics of plume dynamics, the damage zone extent and the transition from
solid to flowing behaviour.

A.1.6. Appendix: Determination of the Thermal Power Delivered by

the Peltier Heater

A Peltier element develops a temperature difference between its two surfaces, ∆T =
Thot − Tcold, when it is fed with a current of intensity I. The thermal power P delivered
on the hot surface then writes:

P = Sp.I.Thot +
1

2
I2.Rp −Kp.∆T (A.9)

where Sp is the Seebeck coefficient, Rp is the electric resistance, and Kp the thermal
conductivity. Since we measure the temporal evolution of the voltage U and intensity I,
we can determine for each experiment Sp and Rp through:

U = Rp.I + Sp.∆T (A.10)

and

Rp =
U − Sp.∆T

I
(A.11)

At the end of each experiment, the intensity is switched off but because the temperature
difference takes some time to vanish, a residual voltage is measured, which decreases
through time, and which is indeed proportional to ∆T . According to equation (A.10),
this gives us a measure of Sp, which is found to be constant through all the experiments:
Sp=0.023 Volts/oK.
Then, using equation (A.11), the resistance is determined for each time. It is found

that Rp slightly varies with temperature, in agreement with the manufacturer.
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B. 3D Visualization of the temperature

B.1. Flowchart: 3D-Isotherm-Script

Here the different steps, how to isolate and visualize the isotherm, are summarized in
a flowchart (fig. B.1. In a first step the brightest isotherm is isolated for every picture
Image(i). First the first picture Image0(i) is subtracted to get rid of noise (e.g. reflections
at the sides). Then several filters are applied to get rid of other bright reflections, e.g.
reflections from PIV-particles and less bright isotherms. Then the gradient of the image
is calculated. It is pointing “away” from the isotherm and its value is around zero on the
isotherm. Thus the isotherm is defined as the point where the gradient is around zero and
the local intensity is higher than a previously defined threshold value. On a new matrix
all points that full fill the criterion are set to one, all other points are set to zero.
To create a 3D-plot of the brightest isotherm a mesh needs to be defined. In the easiest
case this can be done with meshgrid. However, the laser sheet prescribes an angle and
therefore the scanned area is small on the side where the laser sheet enters the box and
then increases to the other side. To take account correct for this deformation, the grid
can be calculated using pol2cart, meshgrid and TriScatteredInterp. The drawback is, that
TriScatteredInterp is very RAM- and time-consuming.
For the plotting all values equal to 1 are patched onto the grid (patch) and then plotted
with isonormals. For better visualization isocolors may be used, e.g. to colorcode the
height (as in fig. 2.3)
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B.1. Flowchart: 3D-Isotherm-Script

Read Image(i), Image0 
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Figure B.1.: Flowchart of how to isolate the brightest isotherm of each Image(i), creation of
mesh and the subsequent isosurface plot combining all images. pol2cart, meshgrid
and TriScatteredInterp are used used if correction to the angle of the laser sheet
is applied. If distortion is ignored, only meshgrid is used to create the mesh.
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