
HAL Id: tel-00841704
https://theses.hal.science/tel-00841704

Submitted on 5 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes Branch&Bound Pair-à-Pair pour Grilles de
Calcul

Mathieu Djamai

To cite this version:
Mathieu Djamai. Algorithmes Branch&Bound Pair-à-Pair pour Grilles de Calcul. Calcul parallèle,
distribué et partagé [cs.DC]. Université des Sciences et Technologie de Lille - Lille I, 2013. Français.
�NNT : �. �tel-00841704�

https://theses.hal.science/tel-00841704
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE LILLE 1

ÉCOLE DOCTORALE SPI
Sciences Pour l’Ingénieur

THÈSE
pour obtenir le titre de

Docteur en Sciences

de l’Université Lille 1
Spécialité : Informatique

Soutenue par

Mathieu Djamaï

Algorithmes Branch-and-Bound Pair-à-Pair pour grilles

de calcul

Directeurs de thèse: Pr. Nouredine Melab

et Dr. Bilel Derbel

préparée à INRIA Lille Nord-Europe, Équipe Dolphin

soutenue le 11 Mars 2013

Numéro d’ordre : 41079 — Année : 2013

Jury :

Rapporteurs : Daniel Tuyttens - Professeur, Université de Mons, Belgique
Didier El Baz - Chargé de Recherche HDR, CNRS/LAAS

Examinateur : Mohamed Mosbah - Professeur, LaBRI, Université Bordeaux-1
Directeurs : Nouredine Melab - Professeur, Université Lille 1, Lille

Bilel Derbel - Maître de Conférences, Université Lille 1, Lille
Invité : Mohand Mezmaz - Université de Mons, Belgique

UNIVERSITY OF LILLE 1

DOCTORAL SCHOOL SPI
Engineering Sciences

PHD THESIS
to obtain the title of

Ph.D. of Science

of the University Lille 1
Specialty : Computer Science

Defended by

Mathieu Djamaï

Peer-to-Peer Branch-and-Bound Algorithms for

Computational Grids

Thesis Advisors: Pr. Nouredine Melab

and Dr. Bilel Derbel

prepared at INRIA Lille Nord-Europe, Dolphin Team

defended on March 11
th, 2013

Order Number : 41079 — Year : 2013

Jury :

Reviewers : Daniel Tuyttens - Professor, Université de Mons, Belgique
Didier El Baz - Research Director, HDR, CNRS/LAAS

Examinator : Mohamed Mosbah - Professeur, LaBRI, Université Bordeaux-1
Advisors : Nouredine Melab - Professor, Université Lille 1, Lille

Bilel Derbel - Assistant Professor, Université Lille 1, Lille
Invited : Mohand Mezmaz - Research Scientist, Université de Mons, Belgique

Contents

List of Figures

Acknowledgments

I will seize the opportunity to thank warmly both my thesis advisors, Pr. Nouredine
Melab and Dr. Bilel Derbel for their continuous support during the preparation of
my thesis. I wish to thank Nouredine for being deeply involved in my work, for the
numerous meetings with Bilel discussing my work, the articles and the presentations
i have made during the thesis. I also thank especially Bilel for his great involvement
during these three years, especially when writing and reviewing articles, reviewing
and improving the manuscript, and at every step of the scientific work, when think-
ing about the challenges to face, desiging the solutions, proving the correctness of
these solutions, defining the appropriate experiments.

I am also pleased to thank Pr. Daniel Tuyttens, Dr. Didier El Baz, Pr. Mohamed
Mesbah as well as my advisors and Dr. Mohand Mezmaz for honouring me by their
presence as examination jury for my thesis defense.

I also thank warmly my mother for supporting me during these three years
(during my entire student life, in fact :)), my father for the many discussions we
had on his experience of research in mathematics.

Last but not least, I shall not forget my dearest colleagues and friends (in and
out of the Dolphin team) I have known during the preparation of my thesis, some of
whom I had exchanged so many useful tips and valuable ideas : Mostepha Redouane
Khouadjia, Ali Khanafer, ThÃ c© Van Luong, Moustapha Diaby, Nadia Dahmani,
Imen Chakroun, Marie-ÉlÃ c©onore Marmion, Trong Tuan Vu, Pamela Wattebled,
Russel Nzekwa, Jean Decoster, Julie Hamon, Yacine Kessaci, AhcÃ¨ne Bendjoudi,
Khedidja Seridi, Martin Bue, Karima Boufaras, Ali Asim.

Chapter 1

Introduction

The PhD Thesis, presented in this document, deals with Large-Scale Combinatorial
Optimization on Computational Grids. It has been completed within the DOL-
PHIN 1 research group from CNRS/LIFL , Inria Lille-Nord Europe and Université
Lille 1. The presented works are part of the Inria HEMERA large-scale initiative,
which involves several research teams using the Grid’5000 French experimental grid
infrastructure.

Combinatorial Opimization Problems (COPs) are often NP-hard. Depending
on the expected quality of the solutions, resolution methods for these problems fall
into two categories: near-optimal methods, also referred to as heuristics, and exact

methods. There also exists hybrid methods which combine complementary elements
from multiple methods. Among heuristics, one can find metaheuristics which can
be applied to a greater variety of problems. These methods are often used to tackle
large problems and can produce good solutions within a short amount of time but
these solutions are rarely optimal. On the contrary, exact methods allow to find
optimal solutions along with the proof of optimality. However, their cost in terms
of computation time is huge which makes them unpractical.

Large-scale parallelism, based on computational grids, appears to be a useful
tool to face the processing cost issue of exact optimization methods. A grid can be
seen as a set of resources located on multiple geographical sites, connected through
a large-scale network and characterized by their volatility and heterogeneousness.
Exploiting the potential computing power of such an environment requires the
design of parallel algorithms which deal with the issues of volatility (for Fault-
Tolerance purposes), heretogeneity (for Load Balancing purposes) and efficient
communication management (for Scalability purposes).

During a resolution process, the irregularity of the search tree explored by
exact methods as well as the heterogeneity of computational grids and their
volatility, induce a huge amount of load balancing and checkpointing operations
[Mezmaz 2007a]. All these operations imply high amounts of communications
for storing and transferring work units between computing entities. Besides,

1Discrete multi-objective Optimization for Large-scale Problems with Hybrid dIstributed tech-

Niques

2 Chapter 1. Introduction

the cost of such communications may be even much more important due
to the scale of a grid and its communication delays. It becomes crucial to
design appropriate mechanisms to deal efficiently with these issues. Most
of existing works propose approaches based on the Master-Slave paradigm
[Mezmaz 2007b, Drummond 2006, Mans 1995, V.K. Janakiram 1988], where,
however, the roles of the master and the slave entities can vary greatly from one
approach to another. In a general way, a slave entity is in charge of applying
a given optimization method on a subproblem for the problem being solved. It
computes a partial result which is sent to the master entity. The latter manages
global information and is in charge of balancing workload among slave entities as
well as detecting the termination of the computation (the moment when all the
solutions have been explored).

However, every approach based on the Master-Slave paradigm faces a major
limitation, related to scalability. Indeed, harnessing a huge amount of computa-
tional power to perform a task requires an intensive process of synchronization
between the computing entities. In the case of an exact method, it consists in
sharing the best solution found among all entities, balance the load over the
network, handle checkpointing operations for fault-tolerance purposes. These tasks
generally induce a communication bottleneck on the master entity, degrading
significantly the performance of the approach.

To overcome this limitation, two classes of approaches have been explored in
the literature. The first one consists in introducing additional levels of centraliza-
tion. Such algorithms are better known as hierarchical Master-Slave algorithms
[Bendjoudi 2009]. Additional "sub-master" processes are in charge of overseeing
only a part of the whole network, including communication operations. These
processes send synthesized information to the global master. This kind of approach
reduces the communication load upon the global Master but introduces delays
in processing slaves’ requests as communications have to cross multiple levels of
hierarchy.

The second class includes Peer-to-Peer (P2P) approaches. The Peer-to-Peer
paradigm is usually used for data sharing. In this thesis, we believe that it can be
used for computation purposes, as in [Nguyen 2012].In [Di Constanzo 2007], the
main idea is to provide a generic platform, so that communications induced by a
parallel algorithm can be handled into a P2P fashion, using routing mechanisms.
In their experiments, they validate the platform by using a Master-Slave based
Branch-and-Bound algorithm, named Grid’BnB. Computing entities act as peers,
each one having a set of neighbors. At the application level, one of these peers acts
as the master entity and other peers act as slaves. Thus, whenever a slave peer
needs to communicate with the master, its message is relayed through multiple
peers before being delivered to the master. The main drawback of such an approach
is that the communication load on the master entity is momentarily reduced,

3

but it is distributed through time. Indeed, for a given number of slaves, this
architecture simply allows one to delay the requests from the slaves located far
away from the master in the Peer-to-Peer overlay network so that the master
can process incoming requests within a more reasonable amount of time. The
main issue inherent to a Master-Slave architecture, that is the communication
bottleneck preventing the approach from being scalable, is not overcome. Another
Peer-to-Peer approach has been designed by Bendjoudi et al. [Bendjoudi 2009].
The application is based on a Master-Slave architecture but direct communications
between the computational entities are allowed for sharing the best solution and
other collaboration tasks to reduce the load on the master. The main limitation
is that this kind of optimization can be performed only in specific situations by
defining a sort of P2P communication layer beneath the application level. The
main operation of the algorithm still relies heavily on the master entity and thus,
remains an obstacle to scalability. Moreover, to the best of our knowledge, none of
these works provide a formal proof of the correctness of the designed approaches.

In this thesis, we propose a new approach to overcome this limitation of
scalability. The approach is completely decentralized, that is computational
entities operate in a fully Peer-to-Peer fashion. Designing adequate mechanisms
under such a decentralized architecture is very challenging. Indeed, there is no
entity in the network which has a global view of the network. In the case of the
Branch-and-Bound algorithm, no entity can determine immediately what the best
solution found so far is nor if the termination of the calculation has occurred.
Whereas those two tasks can be handled easily in a centralized2 environment,
they become major challenges in a fully decentralized one. Thus, to face these
challenges, our approach provides the following mechanisms. Each peer is in charge
of handling a local work pool and sharing it with other peers. Global information,
like the best solution found so far by the optimization method, is broadcast over
the network by the peers. Termination detection is handled in an innovative
and decentralized way. Each peer can detect locally the presence or absence of a
work unit somewhere in the network only by communicating with its neighbors
and using some of the network overlay’s properties. Performing all the required
synchronization operations in a fully distributed manner allows to harness resources
at very high scales by reducing significantly the communication load upon the
computational entities. In addition, we propose a formal proof of the correctness
of our approach, that is, the termination of the computation is detected in an
appropriate way, the exploration process is achieved in a finite amount of time and
no deadlock situations can occur during communication operations.

Moreover, we provide an extensive experimental study on the influence of
the network overlay’s topology on the scalability of our approach. Indeed, to the
best of our knowledge, almost none of the existing works take into account the

2Whether Master-Slave or hierarchical architectures.

4 Chapter 1. Introduction

way in which computing entities communicate with each other. Most works using
decentralized architectures simply conduct experiments using a predefined P2P
overlay and present the subsequent results as a proof of concept of the involved
distributed algorithm. We consider various topologies among the most commonly
used in the literature. Experiments show that our approach can operate indepen-
dently from the used topology and that best results are achieved using small-world
graphs, which offer the best compromise for distributing communications over the
network.

Finally, we extend our approach to dynamic environments, that is where re-
sources are volatile. We design additional mechanisms for checkpointing operations,
reassigning work units from failed peers, and handling efficiently the joining or the
departure of peers from the network. Experiments demonstrate the robustness of
the approach when facing real-case as well as "failure-intensive" scenarios.

This thesis is organized into 7 chapters. Chapter 2 introduces some key con-
cepts dealing with Combinatorial Optimization as well as Grid Computing. It also
provides an overview of existing works among Master-Slave based approaches and
P2P-based approaches. Chapter ?? describes our fully Peer-to-Peer approach into
a static environment, that is where all the resources are considered to be reliable, as
well as a complexity study in terms of time and messages. Chapter ?? details the
formal proof of the correctness of our approach. Chapter ?? provides an extensive
experimental study of our approach and the impact of the network topology on its
performances. Chapter ?? describes our Fault-Tolerant approach and the different
mechanisms designed to handle resources volatility. We also demonstrate the
robustness of our approach by simulating various failure scenarios. In Chapter
??, we summarize the major achievements of our contributions in this thesis and
give some perspectives. Appendix A provides an additional study of Peer-to-Peer
protocols.

Chapter 2

Parallel Distributed
Branch-and-Bound Algorithms

Contents
2.1 Introduction . 6

2.2 Combinatorial Optimization and the Branch-and-Bound

Algorithm . 6

2.2.1 Preliminaries . 6

2.2.2 The Branch-and-Bound Algorithm 7

2.2.2.1 Main Operation . 7

2.2.2.2 Exploration Strategies 9

2.3 Parallel Branch-and-bound literature overview 10

2.3.1 Large scale Grid Environments 11

2.3.1.1 Multiple administrative domains 11

2.3.1.2 Heterogeneity . 11

2.3.1.3 Large-Scale systems 11

2.3.1.4 Dynamic environment 12

2.3.2 Parallel models for the B&B 12

2.3.2.1 Multi-parametric parallel model 12

2.3.2.2 Tree-based exploration parallel model 13

2.3.2.3 Parallel evaluation of solutions/bounds model . . . 15

2.3.2.4 The Parallel Evaluation model for a single

bound/objective function 16

2.3.3 Deploying parallel B&B . 17

2.3.3.1 Master-slave approaches 17

2.3.3.2 Peer-to-Peer approaches 20

2.4 The B&B@Grid approach . 21

2.4.1 Tree encoding . 21

2.4.2 Master-Slave tree exploration 22

2.5 Conclusion . 24

6 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

2.1 Introduction

Many real-world problems can be modeled as Combinatorial Optimization Problems
(COPs). Solving such problems in an exact manner may be computing-intensive
and time-consuming and thus requires a huge amount of computational resources to
be achieved. More and more computational resources can be made available from
computational grids, clusters, personal computers connected through the internet,
etc. Solving difficult and large scale combinatorial problems on these environments
requires the design of efficient and scalable distributed algorithms that can be ef-
fectively deployed over large scale distributed environments. In this chapter, we
introduce some key concepts at the crossroads of Combinatorial Optimization and
Distributed Computing related to the issues underlying the design and the deploy-
ment of such algorithms. More precisely, Section 2.2 introduces the main concepts
related to Combinatorial Optimization and particularly, the Branch-and-Bound al-
gorithm. Section 2.3 introduces some concepts related to Grid Computing and
presents an overview of Grid environments and some state-of-the-art works related
to the parallelization of the B&B algorithm. Section 2.4 introduces more technical
elements to be used in our contributions. More precisely, we introduce some elements
from an existing approach and problem-encoding procedure which our contributions
are based on.

2.2 Combinatorial Optimization and the Branch-and-

Bound Algorithm

2.2.1 Preliminaries

Generally speaking, in Combinatorial Optimization, also referred to as discrete opti-

mization, the goal is to find one or several configuration(s), among a finite but large
set of possible configurations, optimizing a given objective function. A configuration
is termed as a solution of the problem being considered and belongs to a mathe-
matical space called solution space. Selecting a solution depends on its cost, which
is defined by an objective function. Solving a combinatorial optimization problem
then turns out to be the process of finding a solution with an ’accurate’ value of its
objective function. Depending of the expected accuracy, resolution methods can be
classified into two categories (See Figure 2.1):

• Exact methods: Exact methods allow to obtain a set of solutions which are
optimal with respect to the objective function. In other words, the output
solutions are guaranteed to maximize (or minimize) the objective function. In
this class of methods, one can cite Branch-and-Bound algorithms, constraint
programming, dynamic programming, etc. Although an exact method allows
to solve a given problem to optimality, it however requires to enumerate (in
an implicit or explicit way) all the possible solutions for the problem being
solved.

2.2. Combinatorial Optimization and the Branch-and-Bound Algorithm7

• Approximate methods: Approximate algorithms, also referred to as heuris-

tics, allow one to obtain "good" solutions without strong guarantees on the
optimality of computed solutions. They can be applied to problems for which
the size of the solution space is subsequent. Some of these heuristics can be
designed to solve a specific type of problems while others are more generic.
The latter are called metaheuristics. These methods can operate in two dif-
ferent ways. They can be single-solution based, meaning that one solution
is initially considered and then improved iteratively along with the solution
space exploration process (Tabu search, simulated annealing, steep descent
methods, hill climbing, etc). The other type is called population-based, mean-
ing that an initial set of solutions is considered and then, all these solutions
are improved simultaneously or independently, during the exploration process
(Particle Swarm optimization, Ant Colonies, Evolutionary Algorithms, etc).

Figure 2.1: Taxonomy of resolution methods in combinatorial optimization.

The goal of this thesis is to design efficient exact algorithms for combinatorial
optimization problems. In fact, although exact methods allow one to find a solution
with optimality guarantees, they are computing intensive and very time consum-
ing when tackling hard and large scale problem instances. In this context, parallel
computing is more than just a possible alternative, it is in fact crucial to not say
mandatory to solve such instances. The contribution of this thesis lies precisely in
the design of parallel Branch-and-Bound algorithm in large scale distributed envi-
ronments. In the next section, we give a brief overview of how a B&B algorithm
operates before switching to a literature review on parallel approaches for B&B.

2.2.2 The Branch-and-Bound Algorithm

2.2.2.1 Main Operation

Let us consider a set S of all candidate solutions with respect to an optimization
problem and a real-valued objective function f which associates a numerical value
to every solution in S. Remark that a candidate solution is not necessary a feasible
solution with respect to problem constraints, but all possible feasible solutions are
assumed to be included in the set S. Without loss of generality, our goal is to
find the solution(s) in S minimizing the value of the f function: argminf (S) =

8 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

{

s ∈ S | f(s) = min
r∈S

f(r)

}

. In the following, we assume that the set S of feasible

solutions is finite, thus making our problem be a discrete optimization problem. The
Branch-and-Bound algorithm [Gendron 1994, Papadimitriou 1998, Ralphs 2003] can
be viewed as an implicit enumeration of all the possible solutions in S in order
to find the best one(s) w.r.t function f . This algorithm takes its origins in the
years 1960’s: Land and Doig [Land 1960] designed an iterative algorithm to solve
what they refer to as "Discrete Programming Problems". Dakin [Dakin 1965] later
proposed improvements to this algorithm and proposed a tree-based algorithm for
mixed integer programming. Those two algorithms were among the first one to be
classified as "Branch-and-Bound" techniques, as defined by Little, Murty, Sweeney
and Karel [Little 1963].

From a more technical point of view, this algorithm decomposes the original
optimization problem into several subproblems of smaller size. The resulting search
tree is explored by building a tree where the root node represents the entire prob-
lem to solve, inner nodes represent subproblems and leaves represent solutions for
the problem being solved. This exploration process can be decomposed into four
mechanisms: branching, bounding, elimination and selection.

1. First, the algorithm performs the branching operation. It is also referred to
as decomposition and consists in partitioning the set of feasible solutions for a
given problem into smaller subsets (subproblems) on which the same optimiza-
tion problem applies. These subproblems are recursively decomposed until the
solution level is reached (leaves in the search tree), or these subproblems are
not likely to improve the best solution found so far.

2. Second, the algorithm bounds the generated subproblems. It computes a
lower bound of the optimal solution for the problem, using data available
from the generated subproblem. Different bounding functions are available
in the literature. We use the well-known lower bound proposed by Lageweg
et al. [Lageweg 1978] for the Flow-Shop Scheduling problem, based on the
Johnson’s algorithm [Johnson 1954].

3. Third, the B&B proceeds with an elimination process. The purpose is to
avoid exploring subproblems that will likely not lead to the discovery of the
optimal solution. This process is achieved in two steps. The algorithm (i)
determines whether the solutions are feasible or not (and then discards non-
feasible solutions) and (ii) compares for the remaining subproblems their lower
bound with the best solution found so far1 and discards subproblems whose
bound is greater (for minimization problems).

4. The last step of the B&B exploration process is to determine a policy for
exploring the remaining subproblems to be explored. More precisely, one
has to determine which problem will be selected for exploration. Multiple

1Solution which can be seen as an upper bound of the optimal solution.

2.2. Combinatorial Optimization and the Branch-and-Bound Algorithm9

strategies exist in the literature and are described in detail in the following
section.

Therefore, the Branch-and-Bound algorithm consists in recursively branching
and bounding (sub)problems aside eliminating some of these and exploring the re-
maining ones according to a predefined strategy.

The previous exploration steps are repeated until all solutions are explicitly or
implicitly visited. The B&B is then guaranteed to output the optimal feasible solu-
tion(s) for the problem being solved. It should be clear from the previous discussion
that the B&B exploration process can be seen as a tree-based process. In fact, the
original problem (whole set S) can be seen as the root of the tree and the subprob-
lems resulting from its decomposition as its direct children nodes. The subproblems
resulting from the decomposition of a subproblem can be recursively considered as
children nodes, and so on until we end up with single solutions being the leaves of
the tree.

Figure 2.2: General illustration of the operation of the Branch-and-Bound algorithm
for a 3-element permutation-based problem.

2.2.2.2 Exploration Strategies

After a problem is decomposed into subproblems, it is necessary to determine which
subproblem will be explored next, according to a specified strategy. Three main
exploration strategies can be distinguished:

• Depth-First Strategy: This policy assumes the existence of an arbitrary or-
der among subproblems. When a problem is decomposed into several subprob-
lems, this strategy consists in always exploring those subproblems according
to the so-defined order. Let us consider a set of n subproblems ordered from
S1 to Sn at some iteration of the B&B algorithm. This strategy then begins
exploring subproblem S1 first. If this subproblem can be decomposed further,
then the first (with respect to the considered order) of its subproblems will
be explored first, then the second subproblem and so on recursively until the
subtree rooted at S1 is completely explored. When the exploration is done
with subproblem S1, then and only then the second subproblem S2 can be

10 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

explored. The procedure is then recursively applied until the whole tree is ex-
plored. Note that this exploration process is independent from the numbering
of the subproblems. Here, problems are labeled according to the order they
were generated by the problem decomposition mechanism, that is S1 is the
first subproblem generated during the decomposition.

• Best-First Strategy: This strategy relies on the lower bounds obtained when
evaluating generated subproblems. It assumes that, when a set of subproblems
is generated, the optimal solution has a greater probability to be contained in
the subproblem having the "best" (lowest) lower bound. When this subprob-
lem is explored, the algorithm explores the subproblem whose lower bound
is immediately higher than the previous one, and so on. This policy implic-
itly assumes that the bounding function is discriminating, meaning that, all
the subproblems resulting from the same decomposition have different lower
bound values. Nevertheless, this limitation can be overcome by defining a
sub-policy to deal with equal priority subproblems.

• Breadth-First Strategy: This policy does not introduce any arbitrary order
in the exploration of subproblems. When a problem is decomposed into several
subproblems, all the generated subproblems are first evaluated then some may
be discarded by the B&B algorithm. The others are again decomposed into
new subproblems. More technically speaking, let us consider a problem B.
The strategy consists in generating its Bi∈[1,n], n ∈ N subproblems at once,
evaluating them all, possibly branching them and then, for all the remaining Bi

subproblems, their subproblems Bi,j∈[1,n′] are generated and so on. The main
advantage of this strategy is that it generates many large subproblems at the
beginning of its execution. In the case of the Branch-and-Bound algorithm, it
enables the branching operator to discard potentially large sets of solutions and
speed up the resolution process. One can note that this exploration strategy
requires to store a potentially sizeable list of subproblems in memory.

Now that we reviewed the main generic components of a Branch-and-Bound
algorithm, we give an overview on which parts of the algorithm can be parallelized
and how this parallel strategies can be effectively deployed. This is the goal of the
next Section where we start providing a general overview of grid-based environments.

2.3 Parallel Branch-and-bound literature overview

In this section, we give an overview of the different works existing in the literature
as well as the parallel models of Branch-and-Bound algorithms. Deploying parallel
B&B algorithms requires to take into account the characteristics of the target exe-
cution environment. Therefore, we shall first study these parallel environments as
well as their characteristics.

2.3. Parallel Branch-and-bound literature overview 11

2.3.1 Large scale Grid Environments

A Grid can be viewed as a set of computational resources scattered over several
geographically distributed sites and connected through a wide-area network. In the
following, we present the main properties defining more precisely a grid environment
[Melab 2005].

2.3.1.1 Multiple administrative domains

First, the computing resources in a grid environment are typically distributed among
multiple administrative domains and managed by different organizations. With re-
spect to this property, one major issue appearing in grid computing is security. In
fact, very often, users and resources providers can be clearly identified, which al-
lows one to improve security. Nevertheless, communicating between multiple sites
typically through firewalls can be an obstacle and pauses challenging issues. In
global computational systems like XtremWeb [Fedak 2003], which are based on
Internet-wide cycle stealing, this issue can be overcome quite easily as these sys-
tems are based on voluntary computing, meaning that computational units initiate
communications from inside the administrative domain. In Condor [Litzkow 1988],
multiple approaches for harnessing multi-domain resources as if they all belong
to a unique domain, have been designed such as Condor-G and Condor Glide-in

[Frey 2002] or flocking. The two first approaches are coupled with the Globus plat-
form [Foster 1997] whereas the latter solution consists in implementing a resource
manager for each administrative domain. These resources managers exchange the
tasks which can not be processed locally.

2.3.1.2 Heterogeneity

A grid is by essence heterogenous. Resources heterogeneity, whether at the hardware
level or the software level, can be viewed as the consequence of the large variety of
equipments composing the grid and the large variety of software tools that could
be run on them. A grid can integrate hardware from multiple vendors, run various
operating systems, and use different network protocols for remote communication,
etc. In contrast, a single site of the grid is often composed of homogeneous resources,
mostly aggregated into clusters.

2.3.1.3 Large-Scale systems

Due to the number of available computational units and the wide-area network in-
terconnection infrastructure, a computational grid is a large-scale system. Depend-
ing on the considered scale, a distinction is generally made between computational
grids on the one hand, and global/P2P computing systems on the other hand. Those
latter are usually believed to enable the aggregation of much more computational
resources and are dedicated to voluntary computing. One of the most famous vol-
untary computing systems is SETI@Home [Milojicic 2008, Anderson 2002]. We can

12 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

also cite XtremWeb [Fedak 2003] which can be considered as a voluntary computing
system but serves more general purposes as it aims to convert any set of resources
into a fully operational grid-like environment. In such large scale systems, com-
puting intensive applications are not guaranteed to scale with the system. This is
typically due to communication latency and load imbalance issues occurring in such
heterogenous and large scale networked systems. Designing distributed protocols
which are both scalable and efficient is one of the most challenging tasks to achieve
high performance using grid environments.

2.3.1.4 Dynamic environment

The last major property characterizing a grid environment is resources’ volatility.
By volatility, we mean the fact that computing resources are not expected to be
always available for the application. This is due to hardware crash, software issues
or any other system variance. Volatility should not be viewed as unlikely or as
an exception in a grid environment. In fact, the probability that resources are
operational and available for the application is usually observed to decrease as the
amount of aggregated resources increases. Volatility poses several challenging issues
such as: dynamic resource discovery, fault tolerance, data recovery, synchronization,
etc. These issues are difficult to deal with at a hardware level as they are mainly
dependent on the nature of the application being executed. They are instead tackled
mostly at the application level.

2.3.2 Parallel models for the B&B

The Branch-and-Bound algorithm can be parallelized according to multiple mod-
els, each one focusing on a specific element of the algorithm. Here, we give
an overview of these different models based on the classification proposed by
[Gendron 1994, Cung 1994, Melab 2005]. Four models have been identified: multi-

parametric parallel model, tree-based exploration parallel model, parallel bounds eval-

uation model and the parallel evaluation of one bound.

2.3.2.1 Multi-parametric parallel model

The multi-parametric parallel model, not often studied in the literature, consists
in considering multiple B&B algorithms (See Figure 2.3), which is a coarse-grained
model. Multiple variants of this model can be derived by modifying one or several
parameter(s) of the algorithms. These algorithms may only differ through the sep-
aration operator (used to split a problem into sub-problems) in [Miller 1993], the
selection operator (determining the order in which sub-problems are explored) in
[V.K. Janakiram 1988] where a variant of the depth-first strategy is used for explo-
ration. Each algorithm randomly selects the next subproblem to explore among the
last generated subproblems. In [Kumar 1984], each algorithm uses a different upper
bound in the experiments. The main idea is that only one algorithm uses the best
solution found so far while others use this value increased by a value ε > 0. Another

2.3. Parallel Branch-and-bound literature overview 13

version of this parallel model consists in splitting the interval composed of the lower
bound for the problem and the best solution found so far into sub-intervals. Each
sub-interval is assigned to one of the algorithms.

Figure 2.3: Illustration of the Multi-Parametric parallel model.

The main advantage of the multi-parametric parallel model is its genericity,
enabling its use transparently for the user. Its main drawback is the additional
cost of exploration as some nodes of the exploration tree are visited multiple times.
Besides, as the number of algorithms involved is low, this model shall be used on
grids along with other parallel models.

2.3.2.2 Tree-based exploration parallel model

The tree-based exploration parallel model consists in exploring in parallel multi-
ple subtrees corresponding to subsets of the search space for the problem. (See
Figure 2.4). This implies that the separation, selection, evaluation and branch-
ing operations are executed in parallel, (a) synchronously by different algorithms
exploring these sub-spaces. In the synchronous mode, the Branch-and-Bound algo-
rithm contains multiple phases. During each phase, algorithms perform exploration
independently from each other. Between the phases, algorithms synchronize to ex-
change information, like the best solution found so far. In the asynchronous mode,
algorithms communicate unpredictably.

In comparison with other models, the tree-based exploration parallel model is
more attractive and is the main focus in many works for two main reasons. On
the one hand, the degree of parallelism of this model can be very high for large-
scale problems, which could justify by itself the use of a computational grid. On
the other hand, the implementation may be faced to multiple parallel programming
challenges. Among these issues, one can cite the localization and the management of
the list of sub-problems to solve, the load balancing, the communication of the best
solution found, the detection of the algorithm’s termination, and the fault tolerance.

14 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

Figure 2.4: Illustration of the Tree-Based Exploration parallel model.

In [Gendron 1994], one can find an analysis of synchronous and asynchronous
Branch-and-Bound algorithms. It appears that synchronization comes to be useless
and inefficient on homogeneous machines with message passing features, consisting
of less than 32 processors. Its usage on computational grids (heterogeneous and
volatile) is not recommended. Still in this article, a study has also been conducted on
the problem of localizing and managing the remaining sub-problems. Two categories
of algorithms have been identified: those using a unique list of subproblems, shared
by all processes and those using multiple lists. In the conclusions of this study, the
authors claim that the use of a single list can be interesting for problems where
the calculation of the bound is not trivial, and for machines (especially with shared
memory) with a low number of processors. Therefore, the use of a single list is not
recommended when using grids. In our works, we will focus only on asynchronous
algorithms using multiple lists to store generated subproblems as they can be seen as
more adapted for grids. Three approaches exist for managing these lists: collegial,

grouped and mixed [Gendron 1994]. In the collegial approach, each process manages
its own list where it stores the subproblems it generates. The grouped organization
consists in defining sets of processes. A global list is defined for these processes to
store all the subproblems they generate. The mixed approach is a collegial approach
where each process manages its own list and simultaneously shares a global list with
all other processes. As the collegial approach is fully distributed, it can be expected
to have a greater scalability. However, the mixed approach can be efficient for grids
with multiple administrative domains: processes belonging to the same domain can
share a common list.

The load balancing issue consists in minimizing the number of situations where
processes have many sub-problems to explore while others have empty lists. A load
balancing policy is necessary. Its aim is to initiate, at some appropriate times,
transfers of sub-problems from overloaded machines to under-used machines. Three
agents define a load balancing policy: an information agent, a transfer agent and

2.3. Parallel Branch-and-bound literature overview 15

a localization agent [Melab 1996, Melab 1997]. The first agent collects information
about the load of processors. It provides a load indicator (number of sub-problems,
CPU usage, . . .), which allows to define the load of a machine, and an information
exchange strategy (centralized, distributed or hierarchical). The transfer agent can
use a passive, active or mixed strategy. In the passive strategy (respectively active),
transfers are initiated by under-used (resp. overloaded) processors. The mixed
strategy combines both. The localization agent allows to determine the receiving
process (often the least used) for the sub-problems in excess in the overloaded ma-
chines. In a grid-like environment, to take into account the machines’ heterogeneity,
their power should be included into the definition of the load indicator. Gathering
information at large scales can induce a communication bottleneck when the global
load increases rapidly. In the large-scale cycle-stealing model, used in our works,
heterogeneity is considered in a more natural way: powerful machines ask for more
work to weaker machines.

The best solution found by a process can be communicated to other processes
whether through a shared storage space or by broadcasting mechanisms. The first
approach consists in the use of a global variable to store the best solution found so
far. This variable is updated each time a process finds a solution better than the
current one. The communication of this value to other processes can be achieved
through broadcasting or using any approach based on propagation through neigh-
bors. The broadcasting method shall not be considered in large scale environments.
The issue of termination detection is not specific to B&B algorithms. In our works,
a process detects termination through gathering information from other processes.

The fault tolerance issue for exact exploration methods is crucial. Indeed, the
loss of one or more sub-problems can prevent the processes from discovering the
optimal solution for the problem being solved. On a volatile computational grid,
the issue can be handled whether at the middleware level of at the application
level. At the middleware level, the proposed solutions are often independent from
applications. The failed process is restarted from scratch, which can be inefficient for
processes with long lifetimes. At the application level, the issue is handled through
a checkpointing mechanism. It allows to restart a failed process from its last saved
state. Thus, it is crucial to determine which data must be saved. The data saved
by each process usually contains the best solution found so far, the current problem
being explored and the list of pending sub-problems. Other data can be saved if the
current parallel model is combined with other models.

2.3.2.3 Parallel evaluation of solutions/bounds model

The Parallel evaluation of solutions/bounds Model can be compared to the Parallel
Population Evaluation Model, often used with metaheuristics. This model is data
parallel and allows the parallelization of the generated subproblems. It can be used
when the evaluation of the bounds is performed entirely after the generation of
the sub-problems. The B&B algorithm is not changed: only the evaluation phase
becomes faster. The main advantage of this method is its genericity (See Figure 2.5).

16 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

Figure 2.5: Illustration of the Parallel evaluation of solutions/bounds model.

However, in a grid environment, it can be inefficient for the following reasons:
(i) the model is intrinsically asynchronous, which makes it costly in terms of CPU
time within a volatile and heterogeneous environment; (ii) its granularity (the cost
of the bound evaluation function) can be fine and thus, inefficient in large-scale
environments. For instance, in the case of the Flow-Shop Problem, the processing
cost of the bound’s evaluation may not be high enough to justify its parallelization.
(iii) The degree of parallelism of this model depends on the problem being solved.
It is often limited and decreases along with the exploration process: the number of
generated sub-problems decreases when the number of constraints for the problem
splitting operation increases. Combining this model with the tree-based exploration
model can induce a massive parallelism which can be efficiently employed only within
grid environments.

2.3.2.4 The Parallel Evaluation model for a single bound/objective func-

tion

This model can be used for the resolution of real-world problems where the evalu-
ation of the objective function/lower bound requires to access to massive amounts
of data that can not be handled on a single machine. Because of this hardware
constraint, those data are distributed among multiple sites. The evaluation of the
objective function takes advantage of the data parallelism. The parallel evaluation
of the objective function can be interesting when it is costly in terms of time.

This model requires the definition of new specific elements for the problem being
processed, like partial objective functions and a function to aggregate these partial
results. As the implementation of this model is naturally synchronous, it is crucial
to memorize all the partial evaluation value for the solution being evaluated, to
manage fault tolerance and variable availability of the resources in a grid. As its
scalability can be very limited, this model shall be combined with other models.

2.3. Parallel Branch-and-bound literature overview 17

2.3.3 Deploying parallel B&B

Having these different parallel strategies in mind, two main paradigms can used
to make a parallel B&B algorithm effective and to deploy it over a distributed
computing environment, namely, the Master-Slave model and the P2P model. In
the next sections, we give a literature review on these models while focusing on their
main characteristics with respect to B&B.

2.3.3.1 Master-slave approaches

In [Aida 2002, Aida 2005], a Master/Slave-based parallel B&B algorithm is
proposed and deployed on a grid. This approach is aimed to avoid performance
degradation caused by the communication overhead between the master process
and worker processes. Processes are organized into sets, where each set comprises a
group of worker processes and one master process to coordinate them. In addition,
a process called Supervisor is in charge of controlling and coordinating all the
sets of processes. One set of worker processes explores a given part of the search
tree. The supervisor assigns a subset of solutions to the master of the set and this
master dispatches the work to its worker processes. One can see the supervisor
as an entity performing load balancing operations between the sets of processes.
This supervisor, as well as the master process of each set of processes, is in charge
of gathering and broadcasting the best solution found so far, thus accelerating
the exploration process. The latter approach shows a limited scalability as it
may create a bottleneck on the Master processes and the Supervisor process.
The authors discuss the granularity of tasks, notably when tasks are fine-grained,
the communication overhead is too high compared to the computation of tasks.
The algorithm has been implemented using GridRPC middleware [Seymour 2002],
Ninf-G [Tanaka 2003], and Ninf [Sato 1997].

The granularity issue is studied in [Di Constanzo 2007] but yet a hierarchical
Master/Slave model is used therein. The architecture of the approach, named
Grid’BnB is quite similar whereas the communication layer is a bit different. The
application’s design is to fit a grid environment. It is composed of four different
types of entities: master, sub-master, worker, and leader. The master has the same
role as the supervisor in the previous approach. The sub-master is in charge of
coordinating one set of worker processes. The difference comes from the leader

role. The approach assumes that the physical architecture is cluster-based. Each
set of processes comprises several workers and is deployed on a physical cluster.
The cluster running the master process also hosts the sub-master processes which
are in charge of communicating with other clusters (see Figure 2.6). In those other
clusters, one worker is chosen to be the leader. It is given a specific role, which is
to handle communications with its sub-master. Thus, when a worker discovers a
new best solution for the problem being solved, it broadcasts it to all the workers
belonging to the same cluster, including the leader. This leader sends it to its
sub-master process, which broadcasts it to the whole network through the master

18 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

process.

A middleware has been designed from this application. It enables to emulate
Master-Slave based parallel B&B techniques on P2P networks or platforms. The
main difference with a classical hierarchical Master-Slave model is that messages
are relayed through peers towards the master and the sub-masters. This approach
is less exposed to a communication bottleneck issue but it may end up with
huge communication delays as these communications can be relayed through a
great number of entities before reaching their destination point. The main goal
of [Di Constanzo 2007] is in fact to design a middleware that hides the network
architecture/topology for computational applications.

Figure 2.6: The Grid’BnB architecture

Xu et al. [Y. Xu 2005] and Eckstein et al. [Eckstein 2000] proposed respectively
ALPS and PICO which are parallel B&Bs based on Master-Hub-Worker in which a
layer of medium-level management is inserted between the master and the workers
where each hub manages a static set of workers. They consider in their approaches
cluster-based architecture. Each cluster contains a local Hub and one or multiple
worker(s). The number of hubs increases with the number of workers and they avoid
becoming overburdened by limiting the number of workers by cluster. Therefore,
some computational burden is moved from the master to the hubs.

In [Drummond 2006], Drummond et al. propose another hierarchical B&B al-
gorithm designed for grid environments. This approach is applied to the Steiner

problem in graphs. In this problem , the branching operation creates two new sub-

2.3. Parallel Branch-and-bound literature overview 19

problems. The approach performs the following operations: a master is run on the
processor of one given cluster. This entity runs and monitors a set of leader pro-
cesses, one on each cluster. Those leaders represent the processors of the cluster
on which they are running. A leader splits its subproblem into two left and right

subproblems. The right one is assigned to another leader. This process is repeated
until no leader is available. Then, each leader processes its subproblem by sharing
it with the workers being run on its own cluster.

In [Bendjoudi 2009], the authors suggest a hierarchical architecture to allow
workers to communicate directly together after receiving a task from the master,
the redundancy induced by [Mezmaz 2005]’s approach when exploring the search
space can be significantly reduced.

Bendjoudi et al. [Bendjoudi 2011] have proposed a fault tolerant hierarchical
B&B (See Figure 2.7), named FTH-B&B, in order to deal with the fault tolerance
and scalability issues in large scale unreliable environments. Their algorithm is com-
posed of several fault tolerant M/W-based B&Bs, organized hierarchically. Some
other works, e.g., Cabani et al.’s PHAC ([Cabani 2007]), Saffre et al.’s Hypergrid
[Saffre 2003], aim to dynamically redesign the topology in order to face communi-
cation bottleneck issues.

Figure 2.7: Illustration of a Hierarchical Master-Slave based architecture

In [Mezmaz 2005], an efficient encoding of the search space is proposed to reduce
the size of exchanged messages. The overall parallel efficiency is then improved
compared to previous solutions. The approach of [Mezmaz 2005] can be considered
as the best parallel Master-Slave B&B approach that can be applied in a large
scale computational environment such as grids [Mezmaz 2007b]. In particular, it
was successfully applied to find the optimal solution of an unsolved Flow-shop hard
instance, namely the Ta056 instance [Taillard 1993, Mezmaz 2007b]. The latter

20 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

approach is also based on the Master-Slave model. We describe it more in details
later.

2.3.3.2 Peer-to-Peer approaches

Parallel applications designed under the Master-Slave paradigm may often face scal-
ability issues due to bottlenecks on the master. To overcome this limitation, some
works consider the use of the Peer-to-Peer (P2P) paradigm for parallel B&B as
in DIB by Finkel et al. [Finkel 1987] and in the work proposed by Iamnitchi et

al. in [Iamnitchi 2000]. The latter proposes a fully decentralized approach for the
Branch-and-Bound algorithm. The role of each process is to manage a local work
pool and share it with other processes whenever they receive a request. The best
solution is broadcast over the network through the most frequently sent messages.
By distributing the communication load among multiple processes, this approach
gains in terms of scalability.

Instead of dealing with the scalability issues at the applicative level, Di Con-
stanzo et al. [Di Constanzo 2007, Caromel 2007] propose a more generic approach
operating at the communication layer. The approach consists in defining a fully
P2P infrastructure and providing an information routing mechanism. Processes
are organized in a P2P fashion: one of them acts as the master and all others as
slaves. Whenever a slave needs to communicate with the master, its messages are
routed/relayed by multiple peers before reaching the Master. While this approach
enables to provide a better scalability, it only distributes the communication load
of the master through time and introduces additional delays for processing slaves’
requests.

More generally, P2P systems are used in wider fields of application, like vol-
untary computing as in SETI@HOME [Anderson 2002] where a central server
collecting radio signals to be processed dispatches the tasks among personal
machines provided by individuals around the world. Other systems were de-
signed for content sharing purposes like Bittorent [Bittorrent 2005], Kademilia
[Maymounkov 2002], Pastry [Rowstron 2001a], for massively distributed comput-
ing like Javelin [Cappello 1997], for data storage and retrieval like OceanStore
[Kubiatowicz 2000], Freenet [Clarke 2001], NaradaBrokering [Fox 2005], PAST
[Druschel 2001].

With respect to the large body of literature dedicated to Master-Slave based
parallel B&B, there is relatively few works dealing with parallel B&B in P2P net-
works. In this thesis, we propose to take benefit from the scalability properties of
P2P network in order to design new distributed B&B algorithms that are able to
handle a huge amount of computational resources. More precisely, we leverage the
tree-based Master slave approach of [Mezmaz 2005, Mezmaz 2007b] by providing a
fully distributed alternative. Although, the approach described in this thesis and
the one of [Mezmaz 2005, Mezmaz 2007b] share the same B&B work encoding, they
are fundamentally different, since the underlying distributed protocols are differ-
ent. In the next section, we give a more detailed overview of the parallel approach

2.4. The B&B@Grid approach 21

Figure 2.8: Example with a 3-variable permutation.

of [Mezmaz 2005, Mezmaz 2007b] which allows the reader to better appreciate our
contributions.

2.4 The B&B@Grid approach

In this section, we analyze more thoroughly the Master-Slave based parallelization
of the Branch-and-Bound Algorithm designed by Mezmaz et al. [Mezmaz 2005,
Mezmaz 2007b], named B&B@Grid, which is, to the best of our knowledge, the
most scalable ’Master-Slave’-based approach in the literature. This approach was
designed for grid environments and parallelizes the B&B algorithm according to
the tree-based exploration parallel model presented in Section 2.3.2.2. Some of the
mechanisms of this approach are reused or referred to in our works.

2.4.1 Tree encoding

For the sake of clarity let us assume that we are given a permutation-like opti-
mization problem, that is a problem where solutions can be encoded by mean of a
permutation of size N . Hence, a basic B&B strategy can be represented by a tree
where the root designates the problem to be solved, a leaf represents a solution (a
permutation) and a node inside the tree represents a partial solution (equivalently,
a sub-problem) where only some variables in the permutation are fixed. From a
parallel/distributed point of view, many B&B algorithms are based on depth-first
strategy when exploring the search space [Zhang 2000, Prieditis 1998, Mans 1995].
A sequential depth-first strategy explores the tree in a depth-first manner branching
and bounding according to some branching and bounding policies. A parallel ver-
sion of this strategy is to run several depth-first explorations in parallel on different
parts of the search tree. As soon as a new best solution for the problem is found,
it is communicated to other processes which allows them to update their own local
best solution and thus to speed up the overall search process.

22 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

One major difficulty when setting up this general idea in a distributed envi-
ronment is to carefully encode the nodes of the B&B tree in order to reduce the
cost of exchanging messages between computational nodes and decide which part
of the tree should be explored by which computational node. A trivial approach
would be to encode a sub-problem of the B&B tree in a fully-comprehensive way
by providing all necessary information. In [Iamnitchi 2000], a tree node (a subprob-
lem) is encoded as a path from the root to the node itself which is still expensive.
In [Mezmaz 2005, Mezmaz 2007b], an extremely simple and efficient encoding is
proposed. Roughly speaking, the tree is labeled in such a way a sub-set of nodes
(corresponding to a subproblem) can be encoded by an interval, i.e., two integers.
A centralized model is then adopted to distribute intervals among computational
nodes. More specifically, the approach described in [Mezmaz 2005, Mezmaz 2007b]
consists in defining a central computational entity (the master) which is in charge
of controlling intervals (work units) assignment to other computational nodes (the
slaves).

In this thesis, we adopt the interval-based encoding of [Mezmaz 2005] while re-
moving the need of the central coordinator. We briefly give an example to illustrate
the tree encoding. For the sake of clarity and to make our results more compre-
hensive, we also recall the basic ideas of the Master-Slave approach and the main
challenges we are addressing. Figure 2.8 gives a simple example with a p-variable
permutation problem, (with p = 3) i.e., the optimal solution of our problem is one
of the 3! = 6 possible ordering of our variables. More precisely, a label (integer)
is assigned to each leaf of the tree, corresponding to a specific permutation. Then,
an interval [x, y[⊆ [0, p![refers to a subtree of the whole search tree. For instance,
one can see in Figure 2.8 the subtrees corresponding to intervals [0, 3[, [0, 2[, and
[2, 6[. Having this labeling, two operators, defined in [Mezmaz 2005], allow us to
switch from the tree representation to the interval-based representation and con-
versely. Notice that exploring intervals [0, 3[and [2, 6[in parallel implies exploring
the same region of the search space (permutation 3) twice, while exploring only
interval [0, 2[and [2, 6[may fail to produce the optimal solution since permutation
2 is not explored.

2.4.2 Master-Slave tree exploration

In [Mezmaz 2007b], this tree encoding is coupled with a Master-Slave model. More
precisely, the master owns initially the whole interval to be explored, i.e., the whole
tree. Then, slaves ask the master for a sub-interval (a piece of the tree) to explore.
The master continuously removes from the list the subintervals that are already
explored and distributes those not explored yet. However, since many slaves having
different computational power can ask for some work at the same time, some Slaves
may end exploring the same part of the search tree inducing a so-called "redun-

dancy". Redundancy issue is highlighted in [Mezmaz 2007b] and work dealing with
this issue can be found in [Kumar 1984]. We also remark that each time a slave
finds a new solution better than the best solution found so far, i.e., an ordering of

2.4. The B&B@Grid approach 23

Figure 2.9: Operation of a Master-Slave based architecture.

variables, it directly informs the master which broadcasts this information to other
slaves. Hence, sharing the best known solution is straightforward and does not
induce any technical difficulty from a pure distributed/parallel point of view. In
addition, termination of the whole distributed search process can be easily detected
by the master, i.e. when the list of remaining sub-intervals maintained by the
Master becomes empty. Load balancing is also quite simple since the master can
control slaves progress and reassign work unit directly to under-used slaves.

A concrete scenario is proposed in Figure 2.9. Assume that we have initially
n slaves. Assume that a first slave wants to start participating in the exploration
process. Then, it sends a work request to the master. When receiving that request,
the master answers with the whole problem to process (since until now the master
has not received any request). In the second step, suppose that the master receives a
work request from a second slave. To balance the load, the master splits the original
interval into two parts and shares it equally between both slaves. Now, suppose that
in the third step, a new request coming from slave 3 reaches the master. The master
shall choose one of the already assigned intervals, split it into two parts and assign
one of them to Slave 3. In the scenario of Figure 2.9, the Master chooses the
interval assigned to slave 2 and shares it with slave 3. However, at this point of
the execution, slave 2 is not aware of its newly assigned sub-interval [p!2 ,

3p!
4 [. As

depicted in Figure 2.9, it may explore the solutions belonging to interval [3p!4 , p![,
i.e. the interval assigned to slave 3, leading to "redundancy". This issue is handled
in [Mezmaz 2007b] as following. The master and the slaves continuously checkpoint
together and update their intervals each fixed period of time. Depending on search
speed and on whenever the checkpoint is done, redundancy may or may not occur.
In our example, slave 1 has updated its work unit whereas slave 2 has not yet.
However, in [Mezmaz 2007b] this solution was shown to be efficient. More precisely,
experimental results have shown that the redundancy rate is of 0.39%. While this
rate may appear to be low, as we are dealing with large-scale instances, it represents
a huge amount of processing time. The associated total computation cost could be

24 Chapter 2. Parallel Distributed Branch-and-Bound Algorithms

highly significant if the exploration time of each node is high.

2.5 Conclusion

In this chapter, we provided a comprehensive description of the Branch-and-Bound
algorithm and gave an overview of the main contributions related to the paralleliza-
tion of this algorithm. We introduced the interval-based encoding of parallel B&B
tasks which we use through this thesis. We also highlight the main characteristics
of existing Master-Slave approaches for B&B. The rest of this thesis is devoted to
provide a fully distributed P2P approach to Master-Slave approaches and assessing
its efficiency.

Appendix A

Peer-to-Peer Protocols

Contents
3.1 Introduction . 25

3.2 Overview of the approach . 27

3.3 Best solution and Work Sharing 30

3.3.1 Best solution sharing . 30

3.3.2 Work Sharing . 31

3.4 Termination Detection . 33

3.4.1 Basic concept . 33

3.4.2 Technical details . 34

3.4.3 Asynchrony issues . 35

3.5 Complexity issues and overlay properties 37

3.6 Conclusion . 40

This section deals with the main constraints related to the Peer-to-Peer tech-
nology, which can have a non-negiligible impact on the deployment and the per-
formances of Peer-to-Peer applications and systems. In [Milojicic 2008], authors
provide a detailed analysis of the main characteristics of any Peer-to-Peer networks.

A.1 Main characteristics of a P2P network.

A.1.1 Decentralization

Peer-to-Peer models requestion the concept of storing and processing data using
centralized servers and accessing this data through "Request-Reply"-based protocols.
In traditional Client-Server models, data is stored on a few main servers and is
communicated, through network infrastructures, to client machines acting as user
interfaces. Such centralized systems are best-fit for particular applications or tasks.
For instance, security-based accesses can be better handled using such systems.
However, this kind of architecture (Client-Server) can degrade performances because
of communication bottlenecks or non-optimal resource usage. Although hardware
performances and costs have improved, centralizing the sources of information can
remain expensive in terms of configuration and maintenance. Human intervention
maigh still be necessary to guarantee the coherence and non-obsoleteness of the
content.

26 Appendix A. Peer-to-Peer Protocols

One of the key ideas behind decentralization is the influence that every user
of the P2P network can have on data and resources. In a completely distributed
system, every peer contributes equally to the network. Thus, implementing P2P
can be very difficult to implement, technically speaking as there is no central entity
having a global view of the network as well as the information stored in it. This is
why many P2P systems are based on hybrid approaches like Napster [?], where a
centralized resource directory is used and peers directly exchange data.

In fully decentralized systems, like Freenet [Clarke 2001] and Gnutella
[Milojicic 2008], joining the network can be challenging. In Gnutella, for instance,
new peers must be aware of a given number of pre-existing peers belonging to the
network. They can also use a list of IP addresses of existing peers. The newcomer
joins the network by connecting to at least one of them. From that point, it can
proceed to discover other peers and gather their network information.

From a historical point of view, the first great project of Distributed Comput-
ing was the Great Internet Mersenne Prime Search (GIMPS, www.mersenne.org),
whose objective was to harness computational resources distributed over the Inter-
net network in order to calculate Mersenne’s prime numbers. The GIMPS project
initially used mails for communication purposes as this protocol is intrinsically de-
centralized. When a central entity assigns work units to unavailable computing
resources, mail servers put corresponding mails into a waiting queue and send it
again as soon as the resources becomes available again.

Then, another Distributed Computing project appeared ("distributed.net"),
which was dedicated to decryption/decyphering. Initially, only one central server
was used, which caused issues related to availability (Sometimes, for multiple weeks
in-a-row). Therefore, a two-level proxy-system was used, on which a version of the
server entity could be deployed and act as a proxy. Practically, task scheduling and
assignment was easy as work coding was very simple : each work unit was referred to
by a key and a set of work units could be represented by an interval of two integers.

P2P systems can be classified into two categories depending of their level of
autonomy : "Pure P2P" and "Hybrid P2P". Of course, the classification can be
made more precisely as shown in Figure A.1. This autonomy can have a direct
impact of the self-organization ability and the scalability of a system, as the most
decentralized systems are loosely linked to the network’s or machines’ infrastructure.

A.1.2 Scalability

One immediate advantage of decentralization is scalability. It can be limited by
various parameters like the number of "centralized" operations (i.e. synchronization
or coordination operations) which have to be performed, the application’s intrinsic
parallelism as well as the programming model used to design the calculation process.

Napster faced the scalability issue by making peers download music files directly
from the peers having these files. Thus, Napster gathered more than six million users
at its highest. On the opposite side, SETI@Home [2001] [?] focuses on a unique
task that is inherently parallel. The objective is to harness computational resources

A.1. Main characteristics of a P2P network. 27

Figure A.1: Degrees of decentralization into various P2P networks.

over Internet to analyze data collected from telescopes in the hope of discovering
extraterrestrial life forms. This platform accounts for almost 3.5 million users. Other
systems like Avaki try to face the issue of scalability through a distributed object
programming model.

Scalability also depends on the ratio between communications and computation
between P2P nodes. Some computing-intensive application like decrypting or find-
ing prime numbers, spend most of the time to computation, thus having a ratio
close to zero. This makes these systems very extensible. In other situations, as
in SETI@HOME, a communication bottleneck appears around the central entity
during intensive data exchanges. For instance, one megabyte of data requires 10
hours of computation to be processed, necessitating a network bandwidth equal to
1 MB multiplied by the number of computational entities involved in its processing.
There exists other applications, like, graphical rendering, that require thousands
of machines to create an animation within hours instead of a year. However, this
application induces a lot of data transfers, which makes it much less extensible.

A.1.3 Ad-hoc property

First data-sharing P2P systems like Gnutella [2001] et Freenet [Clarke 2001] are
ad-hoc by definition.

A peer blindly submits requests to other peers which will in turn search for the
requested resource. This can make the search time become unbounded. In addition,
the lookup process can fail even if the resource exists, thus making the system be
non-deterministic.

More recent systems like CAN, Chord ([Stoica 2001],[Castro 2002]), Oceanstore

28 Appendix A. Peer-to-Peer Protocols

[Kubiatowicz 2000] and PAST [Druschel 2001], impose a rigorous matching between
the resource’s identifier and the node providing that resource. Thus, a resource can
always be retrieved as long as the hosting machines can be reached. Nodes, in those
systems, become a network layer. Each node contains information about a small
number of other nodes of the system. This limits the number of states to update
if the list of resources changes through time and improves extensibility/scalability.
The logical topology of this new network layer guarantees some properties about
the cost of request processing. Oceanstore had been designed to extend to billions
of users, millions of servers and more than 1014 files [Kubiatowicz 2000].

A.1.4 Anonymity

One of the usage made of the Peer-to-Peer technology is to allow individuals to use
communication systems, without any sort of legal (or other type) constraints, on
one hand, and to guarantee that no censorship of digital content is possible. The
designers of Free Haven [Dingledine 2001] identified the following elements related
to anonymity :

• Author : The author or the creator of a document can not be identified.

• Publisher : The individual that published the document on the system can
not be identified.

• Reader : People that read or use content can not be identified.

• Server : Servers hosting a document can not be identified through this docu-
ment.

• Document : Servers do not keep any knowledge about the content they host.

• Request : A server can not say which document is used to satisfy somebody’s
request.

In addition to these points , there exist three different types of anonymity be-
tween each communicating peer :

• Sender anonymity, masking sender’s identity

• Receiver anonymity, masking receiver’s identity

• Mutual anonymity, where both sender and receiver are hidden to each other
as well as other peers[Pfitzmann 1987].

It is also crucial to determine the degree of anonymity that can be reached
by a given method. Reiter and Rubin [1998] propose an overview of the different
degrees of anonymity that ranges among "absolute intimacy", "possible exposure"
and "definitely exposed" Absolute intimacy means that , even if an attacker can

A.1. Main characteristics of a P2P network. 29

determine that a message has been sent, the message’s sender can not be determine
with absolute probability.

There exist six methods among the most commonly used, adapted to different
degrees of anonymity under various constraints.

A.1.4.1 Multicasting

. Multicasting (or broadcasting) can be used to ensure receiver’s anonymity [Pfitz-
mann and Waidner 1987].

A multicast group is created for users willing to remain anonymous. A user
wanting to get a document registers to the corresponding group. The user inside
the group which holds the document, sends it to the whole group. The receiver’s
identity is then effectively hidden for the other peers and sender’s anonymity is
guaranteed. This technique takes advantage from the underlying network that has
the multicast feature, like Ethernet or Token Ring.

A.1.4.2 Mask sender’s identity

In non-connected protocols like UDP, sender’s anonymity can be guaranteed by
spoofing the sender’s IP adress. However, this requires to change protocol. Besides,
it can not always be achieved as most ISPs keep trace of network packets originating
from invalid IP adresses.

A.1.4.3 Spoof identity.

Instead of changing the sender’s identity, anonymity can be achieved by modifying
the identity of an interlocutor. For instance, in Freenet [Clarke 2001], a peer sending
data to another peer can claim itself as the data’s owner. Thus, an attacker can not
be sure that the sender of a data is the actual sender.

A.1.4.4 Stealth paths.

Instead of communicating directly, two entities can do so through intermediate
nodes. Most of existing techniques only ensure sender’s anonymity. A peer willing to
hide its identity elaborates a stealth path towards its interlocutor. One can cite Mix
, Onion [Syverson 1997], Anonymizing Proxy [Gabber 1999], Crowds [Reiter 1998]
and Herdes [Shields 2000]. Stealth paths can use persistent connections or buffered
connections. By varying the path’s length and by changing the path with a variable
frequency, multiple degrees of anonymity can be achieved.

A.1.4.5 Untraceable aliases.

LPWA [Gabber 1999] is a proxy server that generates untraceable aliases for client
machines. The client can create an account and be identified through it, thus mask-
ing its true identity from the server. This kind of method ensure sender’s anonymity
and make use of reliable proxies. The degree of anonymity is almost absolute.

30 Appendix A. Peer-to-Peer Protocols

A.1.4.6 Unwanted hosting.

Another interesting approach is to provide anonymity by hosting non-voluntarily
a document on a node, using for instance hash functions. As the hosting is
non-determinist, host can not be held responsible for hosting a document.

Now, we sum up the different forms of anonymity used into the most popu-
lar P2P networks as well as the techniques employed.

Gnutella [2001] and Freenet [Clarke 2001] provide anonymity through the
way peers exchange documents. In Gnutella, a request is broadcast again and again
until it reaches a peer hosting the requested document. In Freenet, a request is sent
to peers that have the highest probability of hosting the requested document. The
reply is sent along the same path.

APFS [Scarlata 2001] deal with mutual anonymity by considering that reliable
centralization is impossible. Peers must inform a coordinator that they can act as di-
rectories. Both the sender and the receiver of a message must build up stealth paths.

Free Haven [Dingledine 2001] and Publius [Waldman 2000] are designed to
guarantee protection against censorship. Document’s anonymity is reinforced by
splitting it afterwards and saved on multiple servers. Thus, a given server never
hosts all the necessary data for external attackers. Mutual anonymity between the
publisher and the reader is ensured through stealth paths. Both platforms build
these paths by sending many anonymous emails. Publius could be improved by
integrating reader’s anonymity. Anonymous emails could be used also for publishing.

PAST [Rowstron 2001b], CAN [Ratnasamy 2001] and Chord [Stoica 2001] con-
stitute a class of P2P systems based on a reliable infrastructure. One common
characteristic is that object hosting is non-deterministic and a node can not be held
responsible for hosting that object. The included routing mechanisms can be easily
used to build stealth paths and ensure mutual anonymity.

A.1.5 Auto-organisation

In cybernetics, self-organization is defined as "a process where a system’s organi-
zation increases spontaneously, that is it increases without being controlled by its
environment or any external system". [Heylighen 1997].

In P2P systems, self-organization is necessary for extensibility (scalability), fault
tolerance, resources volatility and infrastructure cost. The scale of P2P systems
can not be predicted according to the number of systems involved, the number of
users or the workload. Predicting one of these parameters can be very challenging
without centralizing partially the system. Scalability intrinsically induces a higher
probability of failure, which requires self-maintenance abilities from the system.

A.1. Main characteristics of a P2P network. 31

A similar reasoning can be applied to resources volatility. It can be challenging
for a system configuration to remain as it is for a long period of time. Adaptation
is necessary to face the departure or the joining of peers into the Peer-to-Peer
network. As it would be to maintain a dedicated equipment and/or hire staff
to manage such a dynamic environment, the issue is dealt with directly by the peers.

Some systems and products deal with self-organization. In Oceanstore
[Bindel 2002, Kubiatowicz 2000], self-organization is applied to data localization
and routing infrastructure [Kubiatowicz 2000],[Rhea 2001], [Zhao 2001]. Because
of the sporadic availability of peers as well as variations of network latency and
bandwidth, the infrastructure continuously adapts its routing and localization
mechanisms.

In Pastry, [Rowstron 2001a], self-organization is managed through protocols
dedicated to a node’s departure or joining and based on a Fault-Tolerant network
layer. Clients’ requests are routed within ⌈log16 N⌉ hops.

FastTrack assigns faster searches and transfers to distributed self-organized
networks. In these networks, the most powerful machines automatically become
Superpeers and act as content directories, under criteria related to processing
capacity and network communication (for instance, latency time and bandwidth).

SearchLing uses self-organization to adapt the network according the nature of
search requests, allowing to reduce network traffic and the number of unsatisfied
requests.

A.1.6 Ad-hoc connectivity

The ad-hoc nature of connectivity has a major impact on all classes of P2P systems.
In the field of distributed computing, parallel applications can not be run on every
system indefinitely. This availability may vary from one system to another. P2P
systems and distributed applications must take into account this ad-hoc nature
and be able to manage the departure or joining of computational resources in the
network. Although it can be considered as an exceptional event in distributed
systems, it is seen as usual or frequent in P2P systems.

In P2P applications dedicated to content sharing, users expect to have access
to content whenever they want, regarding the connectivity of content providers.
In the most reliable systems, with guarantees on quality of service, the ad-hoc
characteristic is diminished through redundant service providers, but some of them
may remain unavailable.

In collaborative P2P systems and applications, the ad-hoc nature of connectivity
becomes more obvious. Users cooperating with each other are more and more

32 Appendix A. Peer-to-Peer Protocols

interested in mobile devices, thus making them more connected to Internet and
better suited for collaborative work. To face this situation, cooperative systems
allow transparent communication delays from disconnected systems. this can be
achieved through the use of proxies dedicated to message reception , or other types
of relays which can temporarily suspend communications for a disconnected system.

Besides, not all the systems will be connected to Internet. Even if it were the
case, ad-hoc groups of users must be able to create ad-hoc networks to cooperate.
Existing infrastructures like 802.11b/g, Bluetooth and Infrared. Thus, P2P systems
and applications must be designed to support frequent exits or entries of peers.

A.1.7 Performances and security.

When designing a P2P system, those two points have a great importance regarding
extensibility/scalability of an application.

A.1.7.1 Intelligent routing and network topology.

To take advantage of the great potential of P2P networks, it is crucial to understand
and explore the possible interactions between peers. One of the most advanced
works about social interactions is the "small-world phenomenon" on the Milgram
experiment [1967]. The goal of that experiment was to find a series of acquaintances
(that is, two people who know each other) that could link any couple of people in the
US who do not know each other. By using postcards, Milgram discovered that, in the
1960’s, Americans were linked through a "path" of six people in average. Adamic et

al. explored power-law distributions for P2P networks, and introduced local search
techniques using nodes having a high degree and a scalability cost sub-linear with
the network size[Adamic 1999].

Ramanathan et al. [Ramanathan 2002] determine "good" peers, based on
interests and manipulate dynamically network connections between peers to
guarantee that high degree nodes with similar interests are strongly linked to
one another. Establishing a good set of peers reduces the number of broad-
cast messages on the network and the number of peers processing a request
before the result is found. Some academic systems like Oceanstore and Pas-
try, improve performances by moving data inside the network in a proactive
way. The main advantage of these approaches is that peers can choose who they
connect to and when to open or close a connection , based only on local information.

A.1.7.2 Firewalls.

P2P applications naturally require direct connections between peers. However, in
some administrative domains, internal networks are isolated from the external world,
granting only restricted access to applications. For instance, most firewalls block
incoming TCP connections. That is, a machine located behind a firewall shall not

A.1. Main characteristics of a P2P network. 33

Figure A.2: Using relays to cross firewalls

be accessible from outside the network. Worse, individuals often use, at home,
a private IP address behind a router or a NAT (Network Address Translation)
service to share an Internet connection between multiple machines. This leads to
the issue of non-accessibility. However, as outgoing connections through port 80
(HTTP) are often allowed by firewalls, some mechanisms have been designed to
allow communications between hidden machines (behind a firewall or a NAT system,
unreachable from Internet). This procedure is somewhat limited as it requires the
connection to be initiated by the "hidden" machine. When other communicating
peers are located between different firewalls, the issue becomes even more complex.
A "reflecting" server on Internet will be necessary to allow connections between
hidden peers.(Figure A.2).

A.1.8 Fault Tolerance

One of the main characteristics of a P2P network is to avoid having any central
weak points. Although most of (pure) P2P networks already do it, they still face
some failures which are commonly linked to systems involving multiple hosts or
networks : disconnections, unreachable hosts, network partitioning and nodes
crashes. These failures can be more significant in some networks (for instance,
wireless networks) than others (corporate cabled networks). It would be more
interesting to pursue a collaborative work between peers still connected to the
network when facing such failures. One relevant example could be an application,
like Genome@Home [2001] running a distributed algorithm on multiple peers. Is
it still possible to continue calculations if one of the peers disappears because of
a network connection failure ? Similar questions have to be answered to by P2P
systems willing to provide more than a "best-effort" Internet service.

In the past, client-server disconnections were studied for distributed filesystems
including mobile devices (for instance, Coda [Satyanarayanan 1990]) , and one
solution would be to have solvers proper to each application in order to deal
with inconsistences after reconnections. Some recent P2P networks (Groove
[Groove 2001],[Microsoft 2008]) define special nodes, called "relays", that tem-
porarily memorize any update or communication until the receiver (here, another

34 Appendix A. Peer-to-Peer Protocols

peer) reappears in the network. Others, like Magi [Bolcer 2000], delay messages at
the source, until the receiving peer is detected.

A disconnection can result from a resources unavailability. This can occur when
a machine becomes unreachable due to a network failure, or when the peer holding
the resource crashes. Whereas the first case can be solved by routing information
through an alternate path (a feature already provided by Internet), the second one
requires greater attention. Crucial resources duplication can simplify the problem.
Networks like Napster and Gnutella are systems allowing passive and uncontrolled
duplication of data, based only on date’s popularity. Depending on the application
being run on these networks, it can be necessary to implement data persistency, by
proposing a reliable data duplication policy.

Anonymous broadcasting services like Freenet [Clarke 2001] and Publius
[Waldman 2000] ensure data availability through controlled replication. Oceanstore
[Kubiatowicz 2000] introduces a system with two replication layers, and, through
monitoring administrative domains, avoids to send replicas to sites with a high
probability of failure. However, as a resource into a P2P network can be more than
just a file (like proxies on Internet, online storage space, or shared computational
power), the concepts of distributed data replication must be extended to other
types of resources. Some solutions for distributed computing on grids (for instance,
Legion [Grimshaw 1997]) propose fault tolerance for nodes by restarting calculations
on other nodes.

One of the main challenges for a P2P system is that it manages its own main-
tenance, a task distributed over all the peers, to ensure resources availability. This
is different from client-server systems, where resources availability is ensured by the
server.

A.2 Existing Implementations

In this section, we propose an overview of the main existing P2P networks : Avaki,
SETI@Home, Groove, Magi, FreeNet, Gnutella, JXTA, .NET, NaradaBrokering,
Pastry.

Avaki [Avaki 2002] is designed to allow to see a network of heretogeneous re-
sources as a single virtual machine. This is a classical example of "meta-computing"
which is applied to networks ranging from corporate systems and data grids to
global computational grids over Internet. This is an object-oriented system. Each
entity is considered as an addressable object with a set of methods and interfaces.
It is mostly inspired from Mentat [Grimshaw 1993].

SETI (Search for ExtraTerrestrial Intelligence)) is a collection of projects aim-
ing to discover extraterrestrial civilizations. One of these projects, SETI@Home,

A.2. Existing Implementations 35

analyzes radio signals received from space and collected by the giant telescope in
Arecibo, by using the computing power of millions of unused machines. [Anderson
2002].

Figure A.3: Groove Architecture

Groove [Microsoft 2008] is a collaborative P2P system, which can be also con-
sidered as a platform. Groove mainly addresses to Internet users as well as intranet
ones. It can also be used on mobile devices like PDAs, mobile phones or touchscreen
tablets (Figure A.3). It enables communications, content sharing and proposes tools
for joint activities. For instance, all Groove applications inherit from the integrated
security mechanism without the need to redefine algorithms linked to security. This
allows the deployment of safe applications.

Magi [Bolcer 2000] is a P2P infrastructure for designing secure, portable and
collaborative applications. It uses standardized protocols like HTTP, WebDAV and
XML to allow communications between applications inside corporate networks or
Internet (Figure A.4). Magi Enterprise, the final product, builds an infrastructure
which links computers of project teams to enable file sharing, instant messaging

FreeNet [Freenet 2001] is a P2P file sharing systems based on a model proposed
by Ian Clarke [Clarke 2001]. The prime objective of FreeNet is to guarantee user’s
anonymity. That is, when logging into the system, a user must be able to submit
requests without anyone discovering sender’s identity. a FreeNet user has no
knowledge about the content stored on its hard disk.
Gnutella [Osokine 2002] is a file sharing protocol. Applications implementing
Gnutella allow users to search and download content from other users connected to
Internet.

The objective of the JXTA project [Daniel Brookshier 2002] is to propose
an open and innovative collaboration platform which supports a wide range of
distributed computing applications and allows to harness computing power from
any device connected to the network [Gong 2001]. JXTA provides features on
multiple layers, including basic mechanisms and concepts, high-level services that

36 Appendix A. Peer-to-Peer Protocols

Figure A.4: Magi Architecture

extend these mechanisms to a wide range of applications, which demonstrates the
platform’s potential.

NaradaBrokering [Fox 2005],[Pallickara 2003] is a technology that takes
advantage from two distributed application systems : P2P systems and grid-based
systems. Both systems have complementary advantages. This technology can be
interfaced with a JXTA P2P network. The main idea behind NaradaBrokering
is to provide users with a high quality network. To do so, NaradaBrokering
uses techniques from distributed objects, web services and message-oriented
middlewares. The architecture used is made of local networks of peers that are
linked at large scale through a "core" interconnection network. To access the
services, "brokers" are introduced. Messages-oriented middlewares are mainly
used on this part of the network. Brokers are considered as the smallest unit of
this network. They are in charge of processing and routing messages intelligently.
The NaradaBrokering network is considered as a network made of brokers which
cooperate with one another, whether they are located on client machines or
not. To avoid having a loosely connected network, NaradaBrokering integrates a
inter-broker communication protocol to manage links between brokers and manage
the addition (or substraction) of brokers into/from the network. The network’s
organization is hierarchical, each broker belonging to a sub-group, forming greater
groups with other sub-groups and so on. These first sub-groups have strongly
interconnected brokers to guarantee at least one link even in case of failure.
Thus, we have many small networks connected to one another. Network traffic
increases by a logarithmic trend and not exponential like disorganized networks.
NaradaBrokering also introduces Brokers Network Maps (BNM) that allow the
intelligent routing feature described here above.

Pastry [Gendron 1994],[Castro 2002], [Rowstron 2001a] is a P2P system whose
main characteristic is to propose a topology and a routing algorithm that allows
to have a network traffic increasing logarithmically with the number of peers and
avoids the definition of another type of peers as in NaradaBrokering.

A.2. Existing Implementations 37

Tapestry [Zhao 2001] is very similar to Pastry, the only difference being a vari-
ant in the routing algorithm. In our works, we inspired ourselves from Pastry, which
we detail more thoroughly.

Publications

Book Chapters

• M. Djamaï, B. Derbel and N. Melab, "Large Scale P2P-Inspired Prob-

lem Solving: A Formal and Experimental Study", Large Scale Network-
Centric Computing Systems, Wiley, 2012, To be published.

International Conferences

• M. Djamaï, B. Derbel and N. Melab, "Impact of overlay properties upon

a P2P approach for parallel B&B", The 1st International Conference on
Systems and Computer Science, August 29th-31st 2012, Villeneuve d’Ascq,
France.

• M. Djamaï, B. Derbel and N. Melab, "A Large-Scale Pure P2P ap-

proach for the B&B algorithm", The Fourth IEEE International Scal-
able Computing Challenge (SCALE 2011) held in conjunction with The 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID’2011), Newport Beach, USA, May 23rd-26th, 2011.

International Workshops

• M. Djamaï, B. Derbel and N. Melab, "Distributed B&B : A Pure Peer-

to-Peer Approach", In Proceedings of the 25th IEEE International Parallel
and Distributed Processing Symposium (IPDPS) – Workshop on Large-Scale
Parallel Processing (LSPP’11), Anchorage, Alaska, USA May 16th-20th, 2011.

• M. Djamaï, B. Derbel and N. Melab, "Experimental Study of a P2P

B&B approach on top of Grid’5000",In Grid’5000 Workshop and Spring
School, Reims, France, April 18th-21st, 2011.

• M. Djamaï, B. Derbel and N. Melab, "Distributed Branch-and-Bound

Algorithm : A Pure Peer-to-Peer Approach" , In Grid’5000 Workshop
and Spring School, Lille, France, April 6th-9th, 2010.

Bibliography

[Abadi 2000] I.N. Kamal Abadi, Nicholas G. Hall and Chelliah Sriskandarajah. Min-

imizing Cycle Time in a Blocking Flowshop. Operations Research, vol. 48,
no. 1, pages 177–180, January/February 2000. (Not cited.)

[Adamic 1999] Lada A. Adamic. The Small World Web. In 3th European Confer-
ence on Research and Advanced Technology for Digital Libraries (ECDL’99),
pages 443–452, London, UK, 1999. Springer-Verlag. (Not cited.)

[Aida 2002] K. Aida and Y. Futakata. High-performance parallel and distributed

computing for the BMI eigenvalue problem. In 16th International Parallel
and Distributed Processing Symposium, (IPDPS’02), pages 71 –78, 2002.
(Not cited.)

[Aida 2005] K. Aida and T. Osumi. A Case Study in Running a Parallel Branch and

Bound Application on the Grid. In SAINT ’05: The 5th IEEE Symposium on
Applications and the Internet, pages 164–173, Washington, DC, USA, jan.
2005. (Not cited.)

[Allahverdi 1999] Ali Allahverdi, Jatinder N.D Gupta and Tariq Aldowaisan. A

review of scheduling research involving setup considerations. Omega, vol. 27,
no. 2, pages 219 – 239, 1999. (Not cited.)

[Allahverdi 2004] Ali Allahverdi and Tariq A. Aldowaisan. No-wait flowshops with

bicriteria of makespan and maximum lateness. European Journal of Opera-
tional Research, pages 132–147, 2004. (Not cited.)

[Anderson 2002] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky and
Dan Werthimer. SETI@home: an experiment in public-resource computing.
Communications of the ACM, vol. 45, no. 11, pages 56–61, November 2002.
(Not cited.)

[Andrés 2005] Carlos Andrés, José Miguel Albarracin, Guillermina Tormo, Eduardo
Vicens and José Pedro Garcia-Sabater. Group technology in a hybrid flowshop

environment: A case study. European Journal of Operational Research,
vol. 167, no. 1, pages 272 – 281, 2005. (Not cited.)

[Avaki 2002] Avaki. Avaki grid software: Concepts and architecture. Using Com-
prehensive Grid Software from AVAKI to Provide Wide-Area Access to Pro-
cessing Power, Applications, and Data, Mars 2002. (Not cited.)

[Awerbuch 1985] B. Awerbuch. Complexity of network synchronization. Journal of
the ACM, vol. 32, no. 4, pages 804–823, 1985. (Not cited.)

[Bakken 2002] Dave Bakken. Paradigms for distributed fault tolerance, Février
2002. (Not cited.)

42 Bibliography

[Barabasi 1999] Albert-Laszlo Barabasi and Reka Albert. Emergence of Scaling in

Random Networks. Science, vol. 286, no. 5439, pages 509–512, 1999. (Not
cited.)

[Barrat 2000] A. Barrat and M. Weigt. On the properties of small-world network

models. The European Physical Journal B, Volume 13, Issue 3, pp. 547-560
(2000)., vol. 13, pages 547–560, January 2000. (Not cited.)

[Bendjoudi 2009] A. Bendjoudi, N. Melab and E.-G. Talbi. P2P design and imple-

mentation of a parallel branch and bound algorithm for grids. International
Journal of Grid and Utility Computing, vol. 1, no. 2, pages 159–168, 2009.
(Not cited.)

[Bendjoudi 2011] Ahcene Bendjoudi, Nouredine Melab and El-Ghazali Talbi. Fault-

Tolerant Mechanism for Hierarchical Branch and Bound Algorithm. 2011.
(Not cited.)

[Bendjoudi 2012] Ahcène Bendjoudi. Scalable and Fault-Tolerant Hierarchical B&B

Algorithms For Computational Grids. PhD thesis, Université A.MIRA-
BEJAIA Faculté des Sciences Exactes Département Informatique, 2012. (Not
cited.)

[Bendjoudi 2013] A. Bendjoudi, N. Melab and E-G. Talbi. FTH-B&B: a Fault-

Tolerant Hierarchical Branch and Bound for Large Scale Unreliable Environ-

ments. IEEE Transactions on Computers, 2013. (Not cited.)

[Bindel 2002] David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher
Wells, Ben Zhao and John Kubiatowicz. OceanStore: An Extremely Wide-

Area Storage System. Rapport technique, Berkeley, CA, USA, 2002. (Not
cited.)

[Bittorrent 2005] Bittorrent. Bittorrent Protocol Specification, 2005. (Not cited.)

[Blumofe 1996] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall and Yuli Zhou. Cilk: An Efficient

Multithreaded Runtime System. Journal of Parallel and Distributed Comput-
ing, vol. 37, no. 1, pages 55–69, August 25 1996. (Not cited.)

[Bolcer 2000] G. A. Bolcer. Magi: an architecture for mobile and disconnected work-

flow. vol. 4, no. 3, pages 46–54, May–June 2000. (Not cited.)

[Bonney 1976] M C Bonney and S W Gundry. Solutions to the constrained flowshop

sequencing problem. Operational Research Quarterly, no. 27, page 869, 1976.
(Not cited.)

[Cabani 2007] A. Cabani, S. Ramaswamy, M. Itmi and J.-P. Pécuchet. PHAC: An

Environment for Distributed Collaborative Applications on P2P Networks. In

Bibliography 43

6th International Conference on Distributed Computing and Internet Tech-
nology (ICDCIT), pages 240–247, 2007. (Not cited.)

[Cappello 1997] Peter Cappello, Bernd Christiansen, Mihai F. Ionescu, Michael O.
Neary, Klaus E. Schauser and Daniel Wu. Javelin: Internet-Based Parallel

Computing Using Java, 1997. (Not cited.)

[Caromel 2007] Denis Caromel, Alexandre di Costanzo, Laurent Baduel and Satoshi
Matsuoka. Grid’BnB: a parallel branch and bound framework for grids. In
Proceedings of the 14th international conference on High performance com-
puting, HiPC’07, pages 566–579, Berlin, Heidelberg, 2007. Springer-Verlag.
(Not cited.)

[Castro 2002] Miguel Castro, Peter Druschel, Y. Charlie Hu and Antony Rowstron.
Topology-Aware Routing in Structured Peer-to-Peer Overlay Networks, 2002.
(Not cited.)

[Chandra 2000] R Chandra, R.M. Lefever, M Cukier and W.H. Sanders. Loki: a

state-driven fault injector for distributed systems. In Proceeding International
Conference on Dependable Systems and Networks. DSN 2000, pages 237–242.
IEEE Comput. Soc, 2000. (Not cited.)

[Clarke 2001] Ian Clarke, Oskar Sandberg, Brandon Wiley and Theodore W. Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval Sys-

tem. Lecture Notes in Computer Science, vol. 2009, pages 46–50, 2001. (Not
cited.)

[Claudel 2009] Benoit Claudel, Guillaume Huard and Olivier Richard. TakTuk,

adaptive deployment of remote executions. In Proceedings of the 18th
ACM international symposium on High performance distributed computing,
HPDC ’09, pages 91–100, New York, NY, USA, 2009. ACM. (Not cited.)

[Cung 1994] Dowaji Cung, Mautor Le Cun and Chris Roucairol. Parallel and dis-

tributed branch-and-bound/A* algorithms. Rapport technique, PRiSM Lab-
oratory, Technical Report n94/31, Octobre 1994. (Not cited.)

[Dakin 1965] R. J. Dakin. A tree-search algorithm for mixed integer programming

problems. The Computer Journal, vol. 8, no. 3, pages 250–255, March 1965.
(Not cited.)

[Daniel Brookshier 2002] Brendon Wilson Daniel Brookshier Sing Li. JXTA : P2P

Grows Up. Java Sun Technical Articles, vol. 1, pages 1–6, December 2002.
(Not cited.)

[Dawson 1996] Scott Dawson, Farnam Jahanian and Todd Mitton. ORCHESTRA:

A fault injection environment for distributed systems. Ann Arbor, pages
1–30, 1996. (Not cited.)

44 Bibliography

[Di Constanzo 2007] A. Di Constanzo. Branch-and-bound with peer-to-peer for

large-scale grids. PhD thesis, Ecole doctorale STIC, Sophia Antipolis, France,
Octobre 2007. (Not cited.)

[Dijkstra 1980] Edsger W. Dijkstra and C. S. Scholten. Termination detection for

diffusing computations. Information Processing Letters, vol. 11, no. 1, pages
1–4, August 1980. (Not cited.)

[Dingledine 2001] Freedman M. Rubin A. Dingledine R. Peer-to-peer. harnessing
the power of disruptive technologies, chapitre Free Haven, pages 159–187.
Oram A., 2001. (Not cited.)

[Drummond 2006] Lúcia M.A. Drummond, Eduardo Uchoa, Alexandre D.
Gonçalves, Juliana M.N. Silva, Marcelo C.P. Santos and Maria Clícia S.
de Castro. A grid-enabled distributed branch-and-bound algorithm with ap-

plication on the Steiner Problem in graphs. Parallel Computing, vol. 32,
no. 9, pages 629–642, October 2006. (Not cited.)

[Druschel 2001] Peter Druschel and Antony I. T. Rowstron. PAST: A large-scale,

persistent peer-to-peer storage utility. pages 75–80, 2001. (Not cited.)

[Eckstein 2000] Jonathan Eckstein, Jonathan Eckstein, Cynthia A. Phillips, Cyn-
thia A. Phillips, William E. Hart and William E. Hart. PICO: An Object-

Oriented Framework for Parallel Branch and Bound. Rapport technique,
Rutgers University, Piscataway, NJ, 2000. (Not cited.)

[Erdös 1959] P. Erdös and A. Rényi. On random graphs, I. Publicationes Mathe-
maticae (Debrecen), vol. 6, pages 290–297, 1959. (Not cited.)

[Erdos 1960] P. Erdos and A. Renyi. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, pages 17–61, 1960. (Not cited.)

[Fedak 2003] Gilles Fedak. XtremWeb : une plate-forme pour l’étude expérimentale

du calcul global pair-à-pair. PhD thesis, Université Paris XI, 2003. (Not
cited.)

[Finkel 1987] Raphael Finkel and Udi Manber. DIB—a distributed implementation

of backtracking. ACM Trans. Program. Lang. Syst., vol. 9, no. 2, pages
235–256, 1987. (Not cited.)

[Foster 1997] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastruc-

ture Toolkit. International Journal of Supercomputer Applications, vol. 11,
pages 115–128, 1997. (Not cited.)

[Fox 2005] G. Fox and S. Pallickara. Deploying the NaradaBrokering Substrate in

Aiding Efficient Web and Grid Service Interactions. vol. 93, no. 3, pages
564–577, March 2005. (Not cited.)

[Freenet 2001] Project Freenet. Understand Freenet, 2001. (Not cited.)

Bibliography 45

[Frey 2002] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster and
Steven Tuecke. Condor-G: A Computation Management Agent for Multi-

Institutional Grids. Cluster Computing, vol. 5, no. 3, pages 237–246, 2002.
(Not cited.)

[Gabber 1999] Eran Gabber, Phillip B. Gibbons, David M. Kristol, Yossi Matias
and Alain Mayer. Consistent, yet anonymous, Web access with LPWA. Com-
mun. ACM, vol. 42, no. 2, pages 42–47, 1999. (Not cited.)

[Gangadharan 1993] Rajesh Gangadharan and Chandrasekharan Rajendran.
Heuristic algorithms for scheduling in the no-wait flowshop. International
Journal of Production Economics, vol. 32, no. 3, pages 285–290, 1993. (Not
cited.)

[Gendron 1994] B. Gendron and T. G. Crainic. Parallel Branch-And-Bound Algo-

rithms : Survey and Synthesis. Operations Research, vol. 42, no. 6, pages
1042–1066, Nov-Dec 1994. (Not cited.)

[Grid’5000] Grid’5000. Grid’5000 Website. (Not cited.)

[Grimshaw 1997] Andrew S. Grimshaw, Wm. A. Wulf and CORPORATE The Le-
gion Team. The Legion vision of a worldwide virtual computer. Commun.
ACM, vol. 40, no. 1, pages 39–45, 1997. (Not cited.)

[Groove 2001] Networks Groove. Groove Networks Prodict Backgrounder. 2001.
(Not cited.)

[Hall 1996] Nicholas G. Hall and Chelliah Sriskandarajah. A Survey of Machine

Scheduling Problems with Blocking and No-Wait in Process. Operations Re-
search, vol. 44, no. 3, pages 510–525, May/June 1996. (Not cited.)

[Huffaker 2002] Bradley Huffaker, Marina Fomenkov, Daniel J. Plummer, David
Moore, K. claffy, Bradley Huffaker Marina Fomenkov and A. Background.
Distance Metrics in the Internet. In in IEEE International Telecommunica-
tions Symposium, pages 200–2, 2002. (Not cited.)

[Iamnitchi 2000] A. Iamnitchi and I. Foster. A problem-specific fault-tolerance mech-

anism for asynchronous, distributed systems. In Proceedings of the 29th In-
ternational Conference on Parallel Processing, pages 4–13, 21–24 Aug. 2000.
(Not cited.)

[Johnson 1954] S. M. Johnson. Optimal two- and three-stage production schedules

with setup times included. Naval Research Logistics Quarterly, vol. 1, no. 1,
pages 61–68, 1954. (Not cited.)

[KING 1980] J. R. KING and A. S. SPACHIS. Heuristics for flow-shop scheduling.
International Journal of Production Research, vol. 18, no. 3, pages 345–357,
1980. (Not cited.)

46 Bibliography

[Kleinberg 2000a] Jon Kleinberg. The Small-World Phenomenon: An Algorithmic

Perspective. pages 163–170, 2000. (Not cited.)

[Kleinberg 2000b] Jon M Kleinberg. Navigation in a small world. Nature, vol. 406,
no. 6798, page 845, 2000. (Not cited.)

[Kubiatowicz 2000] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells and Ben Zhao. OceanStore:

an architecture for global-scale persistent storage. SIGPLAN Not., vol. 35,
no. 11, pages 190–201, 2000. (Not cited.)

[Kumar 1984] V. Kumar and L. N. Kanal. Parallel Branch-and-Bound Formulations

for And/or Tree Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence„ vol. PAMI-6, no. 6, pages 768 –778, nov. 1984. (Not cited.)

[Lageweg 1978] B. J. Lageweg, J. K. Lenstra and A. H. G. Rinnooy Kan. A Gen-

eral Bounding Scheme for the Permutation Flow-Shop Problem. Operations
Research, vol. 26, no. 1, pages 53–67, 1978. (Not cited.)

[Lalami 2012] Mohamed Esseghir Lalami and Didier El-Baz. GPU Implementation

of the Branch and Bound Method for Knapsack Problems. 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops &
PhD Forum, vol. 0, pages 1769–1777, 2012. (Not cited.)

[Land 1960] AH Land and AG Doig. An automatic method of solving discrete pro-

gramming problems. Econometrica: Journal of the Econometric Society,
vol. 28, no. 3, pages 497–520, 1960. (Not cited.)

[Little 1963] G. Little, K. Murty, D. Sweyney and C. Karel. An algorithm for the

travelling salesman problem. In Operations Research, 1963. (Not cited.)

[Litzkow 1988] M. J. Litzkow, M. Livny and M. W. Mutka. Condor-a hunter of idle

workstations. In Proc. th International Conference on Distributed Computing
Systems, pages 104–111, 13–17 June 1988. (Not cited.)

[Mans 1995] Bernard Mans, Thierry Mautor and Catherine Roucairol. A parallel

depth first search branch and bound algorithm for the quadratic assignment

problem. European Journal of Operational Research, vol. 81, no. 3, pages
617 – 628, 1995. (Not cited.)

[Mattern 1987] Friedemann Mattern. Algorithms for Distributed Termination De-

tection. Distributed Computing, vol. 2, no. 3, pages 161–175, 1987. (Not
cited.)

[Maymounkov 2002] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer

information system based on the XOR metric. 2002. (Not cited.)

Bibliography 47

[Mehdi 2011] Malika Mehdi. Parallel hybrid optimization methods for permutation

based problems. PhD thesis, Université Lille1 - Sciences et Technologies,
Université du Luxembourg, 2011. (Not cited.)

[Melab 1996] Nordine Melab, Nathalie Devesa, Marie-Paule Lecouffe and Bernard
Toursel. Adaptive Load Balancing of Irregular Applications - A Case Study:

IDA* Applied to the 15-Puzzle Problem. In IRREGULAR ’96: Proceedings
of the Third International Workshop on Parallel Algorithms for Irregularly
Structured Problems, pages 327–338, London, UK, 1996. Springer-Verlag.
(Not cited.)

[Melab 1997] Nouredine Melab. Gestion de la granularité et régulation de charge

dans le modèle P3 d’évaluation parallèle des langages fonctionnels. PhD
thesis, Lille 1, Grenoble, 1997. Th. : informatique. (Not cited.)

[Melab 2005] Nouredine Melab. Contributions à la résolution de problèmes

d’optimisation combinatoire sur grilles de calcul, Novembre 2005. HDR. (Not
cited.)

[Melab 2012] Nouredine Melab, Imen Chakroun, Mohand-Said Mezmaz and Daniel
Tuyttens. A GPU-accelerated Branch-and-Bound Algorithm for the Flow-

Shop Scheduling Problem. CoRR, vol. abs/1208.3933, 2012. (Not cited.)

[Mezmaz 2005] M. Mezmaz, Melab N. and E.-G Talbi. Towards a Coordination

Model for Parallel Cooperative P2P Multi-objective Optimization. In Euro-
pean Grid Conference (EGC’2005), pages 305–314, 2005. (Not cited.)

[Mezmaz 2007a] M. Mezmaz. Une approche efficace pour le passage sur grilles de

calcul de méthodes d’optimisation combinatoire. PhD thesis, Université des
Sciences et Technologies de Lille 1, Novembre 2007. (Not cited.)

[Mezmaz 2007b] M. Mezmaz, N. Melab and E.-G. Talbi. A Grid-enabled Branch and

Bound Algorithm for Solving Challenging Combinatorial Optimization Prob-

lems. In 21st International Parallel and Distributed Processing Symposium,
2007. (IPDPS’07)., pages 1–9, March 2007. (Not cited.)

[Microsoft 2008] Microsoft. Groove Protocols Review, Décembre 2008. (Not cited.)

[Miller 1993] D.L. Miller and J.F. Pekny. The Role of Performance Metrics for

Parallel Mathematical Programming Algorithms. In ORSA J. Computing,
volume 5, pages 26–28, 1993. (Not cited.)

[Milojicic 2008] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins and Z. Xu. Peer-to-Peer Computing. Rapport tech-
nique, 2008. (Not cited.)

[Mittal 2004] Neeraj Mittal, S. Venkatesan and Sathya Peri. Message-Optimal and

Latency-Optimal Termination Detection Algorithms for Arbitrary Topologies.

48 Bibliography

In Proceedings of the 18th Symposium on Distributed Computing (DISC,
pages 290–304, 2004. (Not cited.)

[Moran 2000] S. Moran and S. Snir. Simple and efficient network decomposition

and synchronization. Theoretical Computer Science, vol. 243, no. 1-2, pages
217–241, 2000. (Not cited.)

[Nguyen 2012] The Tung Nguyen and Didier El Baz. Fault Tolerant Implementation

of Peer-to-peer Distributed Iterative Algorithms. In Computational Science
and Engineering (CSE), 2012 IEEE 15th International Conference on, pages
137 –145, dec. 2012. (Not cited.)

[Osokine 2002] S. Osokine. Search Optimization in the Distributed Networks. Inter-
net, Octobre 2002. (Not cited.)

[Pallickara 2003] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: a dis-

tributed middleware framework and architecture for enabling durable peer-to-

peer grids. In Middleware ’03: Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware, pages 41–61, New York, NY, USA,
2003. Springer-Verlag New York, Inc. (Not cited.)

[Papadimitriou 1998] CH Papadimitriou and K Steiglitz. Combinatorial optimiza-
tion: algorithms and complexity. 1998. (Not cited.)

[Pfitzmann 1987] A Pfitzmann and M Waidner. Networks without user observability.
Comput. Secur., vol. 6, no. 2, pages 158–166, 1987. (Not cited.)

[Prieditis 1998] Armand Prieditis. Depth-First Branch-and-Bound vs. Depth-

Bounded IDA*. Computational Intelligence, vol. 14, no. 2, pages 188–206,
1998. (Not cited.)

[Ralphs 2003] T.K. Ralphs, L. Ladanyi and M.J. Saltzman. Parallel branch, cut,

and price for large-scale discrete optimization. Mathematical Programming,
vol. 98, no. 1-3, pages 253–280, September 2003. (Not cited.)

[Ramanathan 2002] Murali Krishna Ramanathan, Vana Kalogeraki and Jim
Pruyne. Finding Good Peers in Peer-to-Peer Networks. In IPDPS ’02: Pro-
ceedings of the 16th International Parallel and Distributed Processing Sym-
posium, page 158, Washington, DC, USA, 2002. IEEE Computer Society.
(Not cited.)

[Ratnasamy 2001] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp
and Scott Schenker. A scalable content-addressable network. In SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, volume 31, pages
161–172. ACM Press, October 2001. (Not cited.)

Bibliography 49

[Reddi 1972] S. S. Reddi and C. V. Ramamoorthy. On the Flow-Shop Sequencing

Problem with No Wait in Process[dagger]. J Oper Res Soc, vol. 23, no. 3,
pages 323–331, September 1972. (Not cited.)

[Reiter 1998] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web

transactions. ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pages 66–92, 1998.
(Not cited.)

[Reza Hejazi 2005] S. Reza Hejazi and S. Saghafian. Flowshop-scheduling problems

with makespan criterion: a review. International Journal of Production Re-
search, vol. 43, no. 14, pages 2895–2929, 2005. (Not cited.)

[Rhea 2001] Sean Rhea, Chris Wells, Patrick Eaton, Dennis Geels, Ben Zhao, Hakim
Weatherspoon and John Kubiatowicz. Maintenance-Free Global Data Stor-

age. IEEE Internet Computing, vol. 5, no. 5, pages 40–49, 2001. (Not cited.)

[Röck 1984] Hans Röck. The Three-Machine No-Wait Flow Shop is NP-Complete.
J. ACM, vol. 31, no. 2, pages 336–345, March 1984. (Not cited.)

[Rowstron 2001a] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized

object location and routing for large-scale peer-to-peer systems. In Lecture
Notes in Computer Science, pages 329–350, 2001. (Not cited.)

[Rowstron 2001b] A. Rowstron and P. Druschel. Storage Management and Caching

in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility, 2001. (Not
cited.)

[Saffre 2003] Fabrice Saffre and Robert Ghanea-Hercock. Beyond anarchy: self-

organized topology for peer to peer networks. Complexity, vol. 9, no. 2, pages
49–53, 2003. (Not cited.)

[Sato 1997] Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi and Satoshi Mat-
suoka. Ninf: A network based information library for global world-wide com-

puting infrastructure. pages 491–502, 1997. (Not cited.)

[Scarlata 2001] V. Scarlata, B.N. Levine and C. Shields. Responder anonymity and

anonymous peer-to-peer file sharing. pages 272–280, Nov. 2001. (Not cited.)

[Seymour 2002] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Don-
garra, Craig Lee and Henri Casanova. Overview of GridRPC: A Remote

Procedure Call API for Grid Computing. pages 274–278, 2002. (Not cited.)

[Shabtay 1994] Lior Shabtay and Adrian Segall. Low Complexity Network Syn-

chronization. Proceedings of the 8th International Workshop on Distributed
Algorithms.(WDAG ’94), pages 223–237, 1994. (Not cited.)

[Shields 2000] Clay Shields and Brian Neil Levine. A protocol for anonymous com-

munication over the Internet. In CCS ’00: Proceedings of the 7th ACM

50 Bibliography

conference on Computer and communications security, pages 33–42, New
York, NY, USA, 2000. ACM. (Not cited.)

[Stoica 2001] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-

net applications. In SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer com-
munications, pages 149–160, New York, NY, USA, 2001. ACM. (Not cited.)

[Stott 2000] D.T. Stott, B Floering, D Burke, Z Kalbarczpk and R.K. Iyer. NF-

TAPE: a framework for assessing dependability in distributed systems with

lightweight fault injectors. In Proceedings IEEE International Computer Per-
formance and Dependability Symposium. IPDS 2000, pages 91–100. IEEE
Comput. Soc, 2000. (Not cited.)

[Stutzbach 2006] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-

to-peer networks. Proceedings of the 6th ACM SIGCOMM on Internet mea-
surement - IMC ’06, page 189, 2006. (Not cited.)

[Syverson 1997] Paul F. Syverson, David M. Goldschlag and Michael G. Reed.
Anonymous Connections and Onion Routing, 1997. (Not cited.)

[Taillard 1993] E. Taillard. Benchmarks for basic scheduling problems. European
Journal of Operational Research, vol. 64, no. 2, pages 278 – 285, 1993. Project
Management and Scheduling. (Not cited.)

[Tanaka 2003] Y Tanaka, H Nakada, S Sekiguchi, T Suzumura and S Matsuoka.
Ninf-G : A Reference Implementation of RPC-based Programming Middle-

ware for Grid Computing. Journal of Grid Computing, vol. 1, no. 1, pages
41–51, 2003. (Not cited.)

[Tanenbaum 2002] AS Tanenbaum and M Van Steen. Distributed systems: princi-
ples and paradigms. Prentice Hall PTR, 2002. (Not cited.)

[V.K. Janakiram 1988] D.P. Agrawal V.K. Janakiram and R. Mehrotra. A Ran-

domized Parallel Branch-and-Bound Algorithm. In in Proc. of Int. Cont. on
Parallel Processing, pages 69–75, Août 1988. (Not cited.)

[Waldman 2000] Marc Waldman, Aviel D. Rubin and Lorrie Faith Cranor. Pub-

lius: a robust, tamper-evident, censorship-resistant web publishing system.
In SSYM’00: Proceedings of the 9th conference on USENIX Security Sym-
posium, pages 5–5, Berkeley, CA, USA, 2000. USENIX Association. (Not
cited.)

[Watts 1998] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of

"small-world" networks. 1998. (Not cited.)

Bibliography 51

[Y. Xu 2005] L. Ladanyi M.-J. Saltzman Y. Xu T. K. Ralphs. ALPS : A Framework

for Implementing Parallel Search Algorithms. pages 319–334, 2005. (Not
cited.)

[Zhang 2000] Weixiong Zhang. Depth-first branch-and-bound versus local search: A

case study. In In Proc. 17th National Conf. on Artificial Intelligence (AAAI-
2000, pages 930–935, 2000. (Not cited.)

[Zhao 2001] Ben Y. Zhao, John D. Kubiatowicz and Anthony D. Joseph. Tapestry:

An Infrastructure for Fault-tolerant Wide-area Location and Routing. Rap-
port technique, Berkeley, CA, USA, 2001. (Not cited.)

Peer-to-Peer Branch-and-Bound Algorithms for Computational
Grids.

Abstract:
In the field of Combinatorial Optimization, the resolution to optimality of large

instances of optimization problems through the use of Branch-and-Bound algorithms
require a huge amount of computational resources. Nowadays, such resources are
available from computing grids, which are sets of computing nodes geographically
distributed over multiple sites. These parallel environments introduces multiples
challenges related to the scalability, the heterogeneity of resources and the fault
tolerance. Most of the existing approaches for the Branch-and-Bound algorithm
are based on the Master-Slave paradigm where a central entity shares work units
among slave entities in charge of processing them. Such an architecture represents
an obstacle to scalability. In this thesis, we propose to face the challenges of grid
environments and overcome this limitation by proposing an innovative and fully dis-
tributed approach based on the Peer-to-Peer paradigm. This architecture is based
on a unique type of entity, a peer which is in charge of exploring its own local work
pool and broadcasts global information to the network. We provide mechanisms to
deal with the main tasks of the Branch-and-Bound algorithm : the load balancing,
the diffusion of the best solution and the detection of the termination. Along with
extensive experiments conducted on the Flow-Shop Scheduling Problem using the
Grid’5000 Experimental Grid, we propose a formal proof of the correctness of our
approach.In addition to this, we tackle a central issue when designing a Peer-to-
Peer application : the impact of the P2P network topology on the performance
of our approach. This aspect is often ignored in most of existing works, where
only a predefined organization is chosen for the peers. The obtained results showed
that the approach allows to deploy computing networks at extreme scales, involv-
ing hundreds of thousands of computing cores. Our final contribution consists in a
Fault-Tolerant approach to deal with the dynamicity of the network (the volatility of
computational resources). Results indicate that it faces efficiently various real-case
and failure-intensive situations.
Keywords: Peer-to-Peer Computing, P2P, Parallel Branch-and-Bound, Fault Tol-
erance, Grid Computing, Large Scale Networks, Topologies, Network Protocols,
Flow-Shop Scheduling Problem, Grid’5000, Termination Detection, Combinatorial
Optimization, Exact Methods.

