
HAL Id: tel-00841965
https://theses.hal.science/tel-00841965

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel heterogeneous Branch and Bound algorithms for
multi-core and multi-GPU environments

Imen Chakroun

To cite this version:
Imen Chakroun. Parallel heterogeneous Branch and Bound algorithms for multi-core and multi-
GPU environments. Distributed, Parallel, and Cluster Computing [cs.DC]. Université des Sciences et
Technologie de Lille - Lille I, 2013. English. �NNT : �. �tel-00841965�

https://theses.hal.science/tel-00841965
https://hal.archives-ouvertes.fr

Ecole Doctorale Sciences Pour l'Ingénieur Université Lille 1 Nord-de-France

Laboratoire d'Informatique Fondamentale de Lille (UMR CNRS 8022)

Centre de Recherche INRIA Lille Nord Europe

Thèse présentée pour obtenir le grade de docteur

Discipline : Informatique

Parallel heterogeneous Branch and Bound

algorithms for multi-core and multi-GPU

environments

Défendue par :

Imen Chakroun

Octobre 2010 - Juin 2013

Devant le jury composé de:

Rapporteur : Pierre Manneback, Professeur, Université de Mons, Belgique

Rapporteur : Catherine Roucairol, Professeur, Université de Versailles

Examinateur : Pierre Boulet, Professeur, Université Lille 1 Sciences et Technologies

Examinateur : Stéphane Genaud, MCF HDR, ENSIIE Université de Strasbourg

Directeur de thèse : Nouredine Melab, Professeur, Université Lille 1 Sciences et Technologies

Numéro d'ordre : 41136 | Année : 2013

Abstract:

Branch and Bound (B&B) algorithms are attractive for solving to optimality combina-

torial optimization problems (COPs) by exploring a tree-based search space. Nevertheless,

they are highly time-intensive when dealing with large problem instances (e.g. Taillard's

FSP benchmarks) even using grid computing [Mezmaz et al., IEEE IPDPS'2007]. Mas-

sively parallel computing supplied through today's heterogeneous (GPU-enhanced multi-

core) platforms [TOP500] is required to tackle more e�ciently those instances. The

challenge is therefore to exploit all the underlying levels of parallelism and thus to rethink

accordingly the parallel models of B&B. In this thesis, we revisit the design and imple-

mentation of B&B for solving large COPs on (large) multi-core and multi-GPU platforms.

The Flow-Shop scheduling problem (FSP) is considered as a case study.

A preliminary experimental study on some large FSP instances has revealed that the

search tree is highly irregular (in shape and size) and very large (billions of billions of

nodes), and the bounding operator is time-exorbitant (about 97% of B&B). Therefore, our

�rst contribution is to propose a (single CPU core) GPU-accelerated approach (GB&B)

in which only the bounding operator is performed on the GPU device. The approach

deals with two issues: thread divergence [Chakroun et al., Concurrency and Computation:

Practice and Experience 2012] and device hierarchical memory optimization [Melab et al.,

IEEE Cluster 2012]. Compared to a single CPU core-based implementation, speed-ups

up to (×100) are obtained on Nvidia Tesla C2050. Although these good speed-ups, the

performance analysis has shown that the overhead induced by the data transfer between

CPU and GPU is high. Therefore, the aim of the second contribution [Chakroun et al.,

ICCS 2013] is to extend the approach (LL-GB&B) in order to minimize the CPU-GPU

communication latency. Such objective is achieved through a GPU-based �ne-grained

parallelization of the branching and pruning operators in addition to the bounding one.

The major and particularly challenging issue addressed here is thread divergence due to

the strongly irregular nature of the explored tree mentioned above. Compared to a single

CPU-based execution, LL-GB&B allows accelerations up to (×160) for large problem

instances.

The third contribution [Chakroun et al., Journal of Parallel and Distributed Comput-

ing, 2013] consists in investigating the combination of GPU with multi-core processing.

Two scenarios have been explored leading to two approaches: a concurrent (RLL-GB&B)

and a cooperative one (PLL-GB&B). In the �rst one, the exploration process is performed

concurrently by the GPU and the CPU cores. In the cooperative approach, the CPU cores

ii

prepare and o�-load to GPU pools of subproblems using data streaming while the GPU

performs the exploration. When combining multi-core and GPU, we �gure out that using

RLL-GB&B is not bene�cial while PLL-GB&B enables an improvement up to (36%) com-

pared to LL-GB&B. Recently computational grids such as Grid5000 (on some sites) have

been enhanced with GPU accelerators, therefore the fourth contribution of this thesis is

to address the combination of GPU and multi-core computing with large scale distributed

computing. To do that, the di�erent revisited algorithms have been put together in a het-

erogeneous meta-algorithm which automatically selects the one to be deployed according

to the target hardware con�guration. The meta-algorithm is coupled with the B&B@Grid

approach proposed in [Mezmaz et al., IEEE IPDPS'2007]. B&B@Grid distributes the

work units (search subspaces coded by intervals) among the grid nodes while the meta-

algorithm selects and applies locally a parallel B&B algorithm on the received intervals.

The combined approach allowed us to solve to optimality and e�ciently some Taillard's

FSP instances (20 jobs on 20 machines).

Keywords:

Parallel Branch-and-Bound, Heterogeneous computing, Graphics processing units,

Multi-core computing, Grid'5000, Flowshop Scheduling Problem, Combinatorial Opti-

mization, Exact Methods.

iii

Résumé:

Les algorithmes Branch and Bound (B&B) sont attractifs pour la résolution exacte de

problèmes d'optimisation combinatoire (POC) par exploration d'un espace de recherche

arborescent. Néanmoins, ces algorithmes sont très gourmands en temps de calcul pour

des instances de problèmes de grande taille (exemple : benchmarks de Taillard pour FSP)

même en utilisant le calcul sur grilles informatiques [Mezmaz et al., IEEE IPDPS'2007].

Le calcul massivement parallèle fourni à travers les plates-formes de calcul hétérogènes

d'aujourd'hui [TOP500] est requis pour traiter e�cacement de telles instances. Le dé�

est alors d'exploiter tous les niveaux de parallélisme sous-jacents et donc de repenser en

conséquence les modèles parallèles des algorithmes B&B. Dans cette thèse, nous nous at-

tachons à revisiter la conception et l'implémentation des ces algorithmes pour la résolution

de POC de grande taille sur (larges) plates-formes de calcul multi-coeurs et multi-GPUs.

Le problème d'ordonnancement Flow-Shop (FSP) est considéré comme étude de cas.

Une étude expérimentale préliminaire sur quelques grandes instances du FSP a révélé

que l'arbre de recherche est hautement irrégulier (en forme et en taille) et très large

(milliards de milliards de noeuds), et que l'opérateur d'évaluation des bornes est exorbitant

en temps de calcul (environ 97% du temps de B&B). Par conséquent, notre première

contribution est de proposer une approche GPU avec un seul coeur CPU (GB&B) dans

laquelle seul l'opérateur d'évaluation est exécuté sur GPU. L'approche traite deux dé�s:

la divergence de threads [Chakroun et al., Concurrency and Computation: Practice and

Experience 2012] et l'optimisation de la gestion de la mémoire hiérarchique du GPU [Melab

et al., IEEE Cluster 2012]. Comparée à une version séquentielle, des accélérations allant

jusqu'à (×100) sont obtenues sur Nvidia Tesla C2050. L'analyse des performances de

GB&B a montré que le surcoût induit par le transfert des données entre le CPU et le GPU

est élevé. Par conséquent, l'objectif de la deuxième contribution [Chakroun et al., ICCS

2013] est d'étendre l'approche (LL-GB&B) a�n de minimiser la latence de communication

CPU-GPU. Cet objectif est réalisé grâce à une parallélisation à grain �n sur GPU des

opérateurs de séparation et d'élagage. Le dé� majeur relevé ici est la divergence de threads

qui est due à la nature fortement irrégulière citée ci-dessus de l'arbre exploré. Comparée à

une exécution séquentielle, LL-GB&B permet d'atteindre des accélérations allant jusqu'à

(×160) pour les plus grandes instances.

La troisième contribution [Chakroun et al., Journal of Parallel and Distributed Com-

puting, 2013] consiste à étudier l'utilisation combinée des GPUs avec les processeurs

multi-coeurs. Deux scénarios ont été explorés conduisant à deux approches: une concur-

rente (RLL-GB&B) et une coopérative (PLL-GB&B). Dans le premier cas, le processus

d'exploration est e�ectué simultanément par le GPU et les coeurs du CPU. Dans l'approche

iv

coopérative, les coeurs du CPU préparent et transfèrent les sous-problèmes en utilisant le

�streaming CUDA� tandis que le GPU e�ectue l'exploration. L'utilisation combinée du

multi-coeur et du GPU a montré que l'utilisation de RLL-GB&B n'est pas béné�que et

que PLL-GB&B permet une amélioration allant jusqu'à (36%) par rapport à LL-GB&B.

Sachant que récemment des grilles de calcul comme Grid5000 (certains sites) ont été

équipées avec des GPU, la quatrième contribution de cette thèse traite de la combinaison

du calcul sur GPU et multi-coeur avec le calcul distribué à grande échelle. Pour ce faire,

les di�érentes approches proposées ont été réunies dans un méta-algorithme hétérogène

qui sélectionne automatiquement l'algorithme à déployer en fonction de la con�guration

matérielle cible. Ce méta-algorithme est couplé avec l'approche B&B@Grid proposée dans

[Mezmaz et al., IEEE IPDPS'2007]. B&B@Grid répartit les unités de travail (sous-espaces

de recherche codés par des intervalles) entre les noeuds de la grille tandis que le méta-

algorithme choisit et déploie localement un algorithme de B&B parallèle sur les intervalles

reçus. L'approche combinée nous a permis de résoudre à l'optimalité et e�cacement les

instances (20 × 20) de Taillard.

Mots clés:

Branch-and-Bound Parallèlle, Calcul hétérogène, Processeurs Graphiques, Machines

multi-coeurs, Problème d'ordonnancement du Flowshop, Grid'5000, Optimisation Combi-

natoire, Méthodes exactes.

v

Acknowledgments

During these three years of PhD, I have been receiving help, support and encouragement

from many people I would like to thank through these lines.

First of all, I would like to express my deepest gratitude to my supervisor Pr. Nouredine

Melab. I thank him for the e�ort he put into training me in the scienti�c �eld. Thanks to

his experience and encouragement I was able to conduct my research in the right direction

despite the times doubt. I learned a lot of him during these years both professionally and

personally. It was a pleasure to work with him.

I am also very much grateful to Dr. Mohand Mezmaz and Dr. Ahcène Bendjoudi for

their generous help. I would like to thank them for sharing their time very often with me

and for the scienti�c discussions we have held.

I am pleased to thank the members of my thesis examination committee: Pr. Pierre

Manneback and Pr. Catherine Roucairol for reviewing this work, for spending their time

on careful reading and for their many valuable comments on how to improve the thesis

manuscript. I also thanks Pr. Pierre Boulet and Dr. Stephane Genaud for agreeing to

examine my thesis defense.

I shall not forget my colleagues and friends I have known during these three years of

PhD, with whom I had exchanged so many useful tips and valuable ideas and nice and

happy moments: Khedidja Seridi, Rahma Yengui, Hajer Sassi, Karima Boufaras, Sana

Cherif, Hana Krichen, Chiraz Trabelsi, Nadia Dahmani, Ines Bahri.

It is also a pleasure to thank all the people working in the Dolphin Team: Kate-

rina, Sezin, Sophie, Marie-Eléonore, Julie, Julie, Bayrem, Mostepha Redouane, Thé Van,

Moustapha, Mathieu, Tuan, Yacine, Martin.

These acknowledgments would not be complete without thanking my family for their

constant support and care. Today I feel that my parents hard work and dreams have been

blossomed. I thank my father Abdelrazzek, my mother Jamila and my sister Olfa. I also

wish to extend my thanks to my family-in-law for their kind support.

Finally, I would like to mention two other people who are very important in my life: My

husband Mahmoud and my little coming son. A warm thanks to Mahmoud for everything,

for making me so happy, for his comprehension and for his unconditional support and

encouragement during these three years.

List of Figures

2.1 Illustration of a permutation FSP with n = 3 and m = 4. The table reports

the processing times of the jobs on the machines. The Gantt diagram shows

the optimal solution to the problem instance. 9

2.2 The search tree generated and explored by a B&B algorithm for solving

an FSP with 3 jobs. Nodes with a lower bound (LB) greater (resp. lower

or equal) than the current best solution are pruned (resp. decomposed or

branched). 13

2.3 Percentage of subproblems with corresponding number of children per depth

in the instance Ta023. 15

2.4 Comparison of the structures of the 10 standard instances of FSP de�ned

with 20 jobs and 20 machines . 16

2.5 Illustration of the parallel tree exploration model. 17

2.6 Illustration of the parallel multi-parametric model. 18

2.7 Illustration of the parallel evaluation of bounds model. 19

3.1 The lag lj of a job Jj for a couple (k, l) of machines is the sum of the

processing times of the job on all the machines between k and l. 36

3.2 The overall architecture of the GPU-accelerated algorithm based on the

parallel evaluation of bounds (GB&B). 37

3.3 Pseudo-code implementing the LB function 45

3.4 Number of divergent branches with and without thread divergence reduction. 56

3.5 Elapsed time by the branches with and without thread divergence reduction. 56

4.1 The overall architecture of the GPU-accelerated B&B algorithm based on

the parallel evaluation of bounds. The approach introduces two main adap-

tations compared to a traditional B&B : selection of thousand of nodes and

evaluation in parallel. 66

4.2 The overall architecture of the multiple-nodes driven GPU-accelerated B&B

algorithm. 69

4.3 Representation of a partial schedule associated with a subproblem. The

indexes between brackets correspond to unscheduled jobs. 71

4.4 The overall architecture of the parallel single-node driven GPU-accelerated

B&B algorithm. 73

viii List of Figures

4.5 Comparison of memory location accesses in the multiple-nodes driven and

single-node driven GPU-based branching operator. 76

4.6 The speedups and corresponding used pools obtained using the auto-tuned

algorithm. 78

4.7 Comparison of the speedups obtained with di�erent GPU accelerated ver-

sions of the B&B. 81

5.1 Illustration of the multi-core B&B algorithm. 88

5.2 Illustration of the ConcuRrent multi-core Low-Latency GPU-accelerated

B&B. 90

5.3 Illustration of the cooperative multi-core low latency GPU-accelerated B&B

PLL-GB&B. 94

5.4 Sequential and concurrent operations performed on GPU devices with com-

pute capability 2.0. Two copy engine and a kernel engine enables concurrent

transfer operations and kernel execution. 95

5.5 Illustration of the multi-GPU B&B algorithm where only the bounding

kernel is on GPU. 98

5.6 Illustration of the Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B).100

5.7 Data transfer without Peer to Peer direct transfer memory (via CPU mem-

ory) (a) with Peer to Peer direct transfer memory (b) (direct between GPUs)

[NVIDIA Corporation 2011b]. 100

5.8 Comparing the speedup for di�erent problem instances using a single /

multiple GPUs. 106

6.1 Overview of the distributed heterogeneous B&B (HB&B@GRID). 110

6.2 A simpli�ed representation of a cluster/grid that contains interconnected

heterogeneous ressources with single/multiple CPUs and single/multiple

GPUs. 111

6.3 The tree-based representation where each node has a unique number and

contiguous nodes are represented by intervals. 114

6.4 The experimental computational grid Grid'5000 [Gri 2003]. 116

6.5 Comparison between the GPU-based Branch and Bound and the CPU-

based distributed version of the algorithm. 121

A.1 A simpli�ed hardware block diagram for the NVIDIA Fermi GPU architec-

ture [NVIDIA Corporation 2011b]. 138

List of Figures ix

A.2 CUDA hierarchy of threads, blocks and grids with corresponding per-

thread private, per-block shared and per-application global memory spaces

[NVIDIA Corporation 2011b]. 140

List of Tables

3.1 Execution time of the bounding operator compared to the execution time

of the whole B&B algorithm. 37

3.2 The di�erent data structures of the LB algorithm and their associated

complexities in memory size and numbers of accesses. The parameters n,

m and n′ designate respectively the total number of jobs, the total number

of machines and the number of remaining jobs to be scheduled for the

subproblems for which the lower bound is being computed. 46

3.3 The sizes of each data structure for the di�erent experimented problem

instances. The sizes are given in number of elements and in bytes (between

brackets). 47

3.4 Size of the data structures used the by each group of instance. 49

3.5 Average normalized execution times as a function of the number of blocks

and the number of threads per block. 50

3.6 The serial resolution time of each instance according to its number of jobs

and machines . 52

3.7 Speedups for di�erent problem instances and pool sizes. 53

3.8 Speedups for di�erent problem instances and pool sizes using a sorted pool. 54

3.9 Speedups for di�erent instances and pool sizes using thread divergence man-

agement. 55

3.10 Improvement obtained for the MCML problem using the branch refactoring

method. 57

3.11 Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. PTM , RM , QM and MM are placed in the GPU

shared memory. JM and LM are copied to the global memory. 58

3.12 Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. JM , RM , QM and MM are placed in the GPU

shared memory. PTM and LM are copied to the global memory. 59

3.13 Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. PTM and JM are placed together in shared memory

and all others are placed in global memory. 60

3.14 Percentage of time consumed by each step of the parallel bounding approach. 61

4.1 Parallel speedup measured for di�erent problem instances and pool sizes

without using the ASH heuristic. 79

xii List of Tables

4.2 Speedups reported for the two approaches of the GPU-based B&B. 79

4.3 Speedup calculated with the parallelization of each operator. 81

4.4 Comparison of the amount of data transfer with the di�erent parallelization

approaches. 82

5.1 Obtained speedups using the (MC-B&B) approach where no GPU is used. 103

5.2 Obtained speedups using the RLL-GB&B approach with a single GPU. . . 104

5.3 Average normalized waiting times spent by the concurrent GPU thread

when accessing global data structures. 104

5.4 Obtained speedups using the PLL-GB&B approach where the cooperative

CPU thread does not perform the exploration of subproblems. 105

5.5 Obtained speedups using the PLL-GB&B approach where the collaborative

CPU threads explores nodes in parallel to the GPU execution. 105

6.1 Con�gurations of the distributed machines used for the experiments on

Grid'5000. 118

6.2 Sequential resolution times (seconds) for the instances Ta021-Ta030 corre-

sponding to the group of instances with 20 jobs and 20 machines. 119

6.3 Execution times (seconds) for the instances Ta021 to Ta030 using di�erent

scales of the distributed CPU-based version of the B&B. 120

6.4 Execution times (seconds) for the instances Ta021 to Ta030 using di�erent

scales of the distributed GPU-accelerated version of the B&B. 121

Contents

1 Introduction 1

2 Parallel Branch and Bound algorithms 7

2.1 Introduction to combinatorial optimization 8

2.1.1 The Permutation Flowshop Scheduling Problem 8

2.1.2 Resolution methods for combinatorial optimization problems . . . 9

2.2 Branch and Bound algorithms . 10

2.2.1 Serial B&B . 11

2.2.2 Illustration on the Permutation Flowshop Scheduling Problem . . . 12

2.2.3 Analysis of the irregularity of the B&B algorithm 13

2.3 Parallel Branch-and-Bound algorithms . 16

2.3.1 Parallel tree exploration model . 17

2.3.2 Parallel multi-parametric model . 17

2.3.3 Parallel evaluation of the bounds 18

2.3.4 Parallel evaluation of a single bound/solution 19

2.4 Parallel B&B for Graphics Processing Units 20

2.4.1 Thread divergence . 21

2.4.2 Memory access optimization . 22

2.4.3 CPU-GPU communication optimization 23

2.4.4 Related works . 24

2.5 Parallel B&B for multi-core shared memory machines 25

2.5.1 Synchronization and caching issues 25

2.5.2 Related works . 26

2.6 Parallel B&B for computational grids . 27

2.6.1 Challenging issues . 27

2.6.2 Related works . 29

2.7 Conclusion . 31

3 GPU-accelerated parallel bounding applied to FSP 33

3.1 Introduction . 34

3.2 Lower Bound for FSP . 34

3.3 A GPU-accelerated B&B based on the parallel evaluation of bounds (GB&B) 36

3.4 Thread divergence reduction . 38

3.4.1 Problem statement in the FSP lower bound 38

xiv Contents

3.4.2 Mechanisms for reducing branch divergence 40

3.5 Data placement optimization for the FSP lower bound 44

3.5.1 Complexity analysis and implementation 44

3.5.2 Data placement pattern of the lower bound on GPU 46

3.6 Experiments . 48

3.6.1 Experimental settings and parameters tuning 48

3.6.2 Experimental protocol . 51

3.6.3 Performance Evaluation of the GB&B 53

3.6.4 Performances of the thread reduction approaches 54

3.6.5 Performances of the data access optimizations 58

3.6.6 Overhead characterization of the GPU-accelerated parallel bounding

operator . 60

3.7 Conclusion . 61

4 GPU-based parallel tree exploration 63

4.1 Introduction . 64

4.2 An adaptive selection operator based on a dynamic parameter tuning heuristic 66

4.3 The multiple-nodes driven GPU-accelerated approach 68

4.3.1 Branching Operator . 70

4.3.2 Pruning Operator . 70

4.3.3 Synthesis . 71

4.4 The single-node driven GPU-accelerated B&B 73

4.4.1 Branching Operator . 75

4.4.2 Pruning operator . 76

4.4.3 Synthesis . 77

4.5 Experiments . 78

4.5.1 Performance evaluation of the ASH heuristic 78

4.5.2 Performance evaluation of the proposed GPU-based approaches . . 79

4.5.3 Impact of the parallelization of each operator of the single-node

driven approach . 80

4.6 Conclusion . 82

5 Parallel Heterogeneous B&B combining GPU accelerators and multi-

core processors 85

5.1 Introduction . 86

5.2 Multi-core B&B (MC-B&B) . 87

5.3 ConcuRrent multi-core Low-Latency GPU-accelerated B&B (RLL-GB&B) 89

Contents xv

5.3.1 Concurrent GPU thread . 91

5.3.2 Concurrent CPU threads . 92

5.4 CooPerative multi-core Low Latency GPU-accelerated B&B (PLL-GB&B) 93

5.4.1 Overlapping data transfers and kernel calls 94

5.4.2 Cooperative GPU threads . 95

5.4.3 Cooperative CPU thread . 96

5.5 Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B) 98

5.6 Experiments . 102

5.6.1 Performance of the multi-core B&B 102

5.6.2 Performance of the RLL-GB&B approach 103

5.6.3 Performance of the PLL-GB&B approach 105

5.6.4 Performance of the LL-MultiGB&B approach 106

5.7 Conclusion . 107

6 Towards a grid-enabled GPU-accelerated Branch and Bound 109

6.1 Parallel heterogeneous B&B for computational grids : joining two levels of

parallelism . 110

6.1.1 Overall design of the distributed heterogeneous B&B (HB&B@GRID)110

6.1.2 The B&B meta-algorithm . 111

6.1.3 The B&B@Grid approach . 113

6.2 Experiments . 115

6.2.1 Experimental platform . 115

6.2.2 Performance Evaluation . 117

6.3 Conclusion . 121

7 Conclusion and future works 123

Bibliography 127

A Graphics Processing Units 137

A.1 State of GPU computing . 137

A.2 The Compute Uni�ed Device Architecture programming model 138

A.3 Device Memory Spaces . 139

B Parallelization strategies for Branch and Bound algorithms 143

B.1 Classi�cation of Granic et al. 143

B.2 Classi�cation of Trienekens et al. 143

B.3 Classi�cation of Gendron et al. 144

Chapter 1

Introduction

The Ph.D thesis, presented in this document, has been realized within the DOLPHIN 1

research group from CNRS/LIFL, Inria Lille-Nord Europe and Université Lille 1.

Branch-and-Bound (B&B) algorithms are well-known methods for solving to opti-

mality NP-hard combinatorial optimization problems (COPs)2 such as job scheduling,

task allocation, network routing, etc. They are based on an implicit enumeration of all

feasible solutions and return the guaranteed optimal one(s). The basic idea of a B&B

algorithm is to traverse a subset of feasible solutions over a search space and eliminate

others when they are not likely to lead to an optimal solution. The algorithm proceeds in

several iterations during which it recursively decomposes the problem being solved into

subproblems and progressively improves the best solution found so far. The generated

and not yet examined subproblems are kept into a list initialized to the original problem.

At each iteration, a subproblem is selected from this list, according to some strategy

(depth-�rst, best-�rst,...), using the selection operator. The branching operator performs

its decomposition into other subproblems. The bounding operator calculates a lower

bound of each generated subproblem. Each subproblem having a lower bound greater

than the best solution found so far is eliminated using the pruning operator, this means

that it will not be decomposed.

In practice, COPs are often computation time-intensive, therefore even with highly

e�cient bounding and pruning operators only small instances can be solved in a

reasonable amount of time using a single processing core [Garey 1976]. Over the last

decades, parallel computing has been revealed as an attractive way to deal with larger

instances. Because the design and implementation of parallel B&B is strongly in�uenced

by the computing platform [Bader 2005], di�erent architecture-oriented contributions

have been proposed for Massively Parallel Processors (MPP) [Allen 1997], Networks

1Discrete multi-objective Optimization for Large-scale Problems with Hybrid dIstributed techNiques
2An optimization problem consists in minimizing or maximizing a cost function. Without loss of

generality, in this Ph.D thesis the minimization case is considered.

2 Chapter 1. Introduction

or Clusters of Workstations (NOWs or COWs) [Tschöke 1995, Quinn 1990] and Shared

Memory or SMP machines [Casado 2008]. The proposed approaches are based on

three parallel models presented in [Gendron 1994]: parallel application of the operators

on the generated subproblems (Type 1), parallel building and exploration of a B&B

tree (Type 2), and parallel (cooperative or independent) building and exploration

of several B&B trees (Type 3). These parallel approaches have been later revisited

for large-scale computational grids using the Master-Worker paradigm [Mezmaz 2007a],

the hierarchical paradigm [Bendjoudi 2012] and the Peer-to-Peer paradigm [Djamai 2011].

Recently, Graphics Processing Units (GPU accelerators) have emerged as a new pop-

ular support for massively parallel computing. Such resources supply a great computing

power, are energy-e�cient and highly available everywhere: laptops, desktops, clusters,

etc. During many years, GPU computing has been used to speed up the execution of

graphics and video applications. Its utilization has been extended to other application

domains such as High Performance Computing (HPC). Indeed, GPU accelerators are

more and more integrated into clusters, computational grids and clouds. These last years

the �rst machines in the Top500 ranking include GPUs. One can say that the HPC

hardware evolution follows the application needs, now the challenge is how to design and

implement e�cient algorithms for those GPU-enhanced environments? 3

In combinatorial optimization, such challenge has been successfully addressed for

meta-heuristics (near-optimal methods) [Luong 2011] but little attention has been

given to exact methods such as B&B algorithms. Indeed, few works on GPU-based

B&B [Lalami 2012, Carneiro 2011] and multi-core B&B [Casado 2008, Barreto 2010]

exist. However, to the best of our knowledge, no contribution addressing B&B on

heterogeneous environments combining multi-core processors with GPUs exists. In this

Ph.D thesis, the major objective is to revisit the design and implementation of B&B

algorithms for GPU-enhanced multi-core environments for solving challenging COPs.

The revisited B&B should be portable in a transparent way on laptops, workstations,

clusters and computational grids. Without loss of generality, the Flowshop Scheduling

Problem (FSP) is considered as a case study. The problem consists in scheduling a pool

of jobs on a set of machines with respect to two constraints: the jobs are processed on

all the machines in the same order and each machine can not process more than one job

3Edsger DIJKSTRA, 1972 Turing Award Lecture, �The Humble Programmer": �To put it quite bluntly:

as long as there were no machines, programming was no problem at all; when we had a few weak computers,

programming became a mild problem, and now we have gigantic computers, programming has become an

equally gigantic problem."

3

at a time. The objective is to �nd a processing order on each machine such that the

time required to complete all jobs is minimized. The lower bound function used in this

work is the one of Johnson proposed in [Johnson 1954] for two machines and generalized

in [Lenstra 1978] to more than two machines.

Rethinking B&B algorithms for GPU-enhanced multi-core environments raises several

design and implementation challenges related to GPU computing, multi-core computing,

hybrid computing combining GPU and multi-core, and heterogeneous cluster and grid

computing. The challenges and associated contributions are addressed following an incre-

mental design methodology: B&B for a single CPU core combined with a single GPU,

B&B for a multi-core CPU combined with a single GPU, B&B for a multi-core CPU

combined with multiple GPUs, B&B for a cluster or grid of heterogeneous computational

nodes. The addressed issues and proposed contributions are summarized in the following:

- Preliminary experiments we have carried out on some Taillard's problem instances

[Taillard 1993a] have shown that the time spent by the B&B algorithm in evaluating

the lower bounds of the examined subproblems is on average between 97% and

99% of its total execution time. Such result demonstrates the need to parallelize

the bounding operation. The �rst challenge is thus to revisit the parallel bounding

model on GPU considering a single CPU core and a single GPU. Such challenge

is di�cult because on the one hand, a GPU is a many-core co-processor device

that provides a hierarchy of memories having di�erent sizes and access latencies

making challenging data placement and sharing. Besides, the GPU device provides

a highly multi-threaded environment where the threads are scheduled and executed

as warps4 using the SIMD model. Such model is well-suited and very e�cient

for regular kernels. However, if the kernel code contains loops and conditional

instructions another challenging issue has to be faced: thread or branch divergence.

Such problem arises when for instance the threads of the same wrap have to execute

simultaneously di�erent branches of a conditional instruction. As the execution

model is SIMD, the threads are executed in a serial way slowing down the execution.

On the other hand, the Johnson's FSP lower bound function makes use of six data

structures of di�erent sizes and access frequencies. Moreover, the function contains

several loops and conditional instructions making irregular its associated code.

The �rst contribution of this Ph.D thesis consists in revisiting on GPU the parallel

bounding model (Type 1). Having in mind the characteristics of both the lower

4A warp contains 32 threads in the G80 model, each thread executing the same code called a kernel

4 Chapter 1. Introduction

bound function and the GPU device mentioned above, the challenge is twofold: (1)

de�ning a new approach for optimal mapping of the data structures of the lower

bound function on the hierarchy of memories provided in the GPU device. A careful

analysis is required of both the data structures (size and access frequency) and

the GPU memories (size and access latency). (2) proposing a new approach for

thread/branch divergence reduction through a thorough analysis of the di�erent

loops and conditional instructions of the bounding function.

- Even if the bounding operator is highly time-consuming, the experimental study

has shown that there is no guarantee that its GPU-based acceleration will signi�-

cantly improve the performances of the B&B. The parallel bounding-based algorithm

requires, in fact, some additional tasks which induce a notable overhead: the prepa-

ration of the pool of subproblems on which the bounding operator is applied, the

transfer of the pool from CPU to GPU, and the transfer of the computed lower

bounds from GPU to CPU. Therefore, the second contribution of this thesis is to

extend the former approach to minimize such overhead by further rethinking the

design and implementation of a GPU-accelerated B&B based on the parallel tree

exploration (Type 2). For achieving optimized CPU-GPU communications, we pro-

pose to revisit on GPU the parallel tree exploration model which is re�ected by

the parallelization on GPU of the branching and pruning operators as well even if

they consume less time than the bounding operator. For achieving this, we inves-

tigate two di�erent approaches for executing the branching, bounding and pruning

operators on GPUs: the �rst multiple-nodes driven approach consists in exploring

in parallel di�erent sub-spaces of the tree, the second single-node driven approach

limit the granularity of each thread to the application of an operator to a single

node. For both approaches, the selection operator is executed on the CPU side

but e�ciently adjusted according to the tackled problem instance and the hardware

con�guration. Indeed, an adaptive version of the GPU-accelerated B&B is proposed

where the selection operator is revisited so that the size of the selected pool is tuned

dynamically using an empirical heuristic for parameters auto-tuning at runtime.

- Although the proposed GPU-accelerated B&B algorithms allow one to signi�cantly

reduce the execution time needed to explore the B&B search tree, further speedups

could be reached if the multiple CPU cores available on the underlying platforms

are judiscioulsy used. In this context, our contributions are (1) rethink the B&B

algorithm for multi-core machines endowed with multiple processing cores without

GPUs, (2) to propose a multi-core CPU-GPU accelerated B&B by investigating two

patterns for combining multiple CPU cores and a single GPU and (3) to redesign

5

the CPU-GPU accelerated B&B for multi-GPU enabled con�gurations.

- To be relevant to the arrival of GPU accelerators and the advent of multi-core

processors in clusters and grids, we �nally propose a large-scale distributed version

of the heterogeneous multi-core GPU-accelerated B&B algorithm. The approach

consists in hierarchically combining two levels of parallelism by (1) dividing the

B&B tree exploration among multiple distributed grid nodes and (2) exploring in

parallel each sub-tree. For achieving this, a B&B meta-algorithm is proposed and

coupled with the B&B@GRID approach proposed in [Mezmaz 2007a]. Indeed, while

B&B@GRID allows one to e�ciently partition the B&B tree search among distant

grid nodes, the meta-algorithm explores assigned sub-trees using the parallel B&B

algorithm that best �ts the targeted hardware con�guration.

This thesis is organized into six chapters. Chapter 2 introduces all the background

and prerequisites necessary to the comprehension of the global document namely the

B&B algorithm as well as the FSP problem. It also provides an overview of the di�erent

parallelization strategies of B&B and a synthesis of the existing work dealing with

parallel B&B classi�ed by the target computational platform (multi-threaded many-core

processors, shared memory multi-core systems and computational grids).

Chapter 3 describes our �rst contribution which consists in rethinking for GPU the

parallel evaluation of bounds model. First, the design of the proposed GPU-accelerated

B&B based on the parallel evaluation of lower bounds is introduced. Afterward, the thread

divergence issue is addressed: the scenarios where the thread divergence occurs in the

studied FSP lower bound, a review of di�erent works of the literature for reducing thread

divergence and details about the proposed mechanisms we propose to reduce the number

of divergent branches within a warp are given. The memory access pattern is detailed next.

Finally, details about the performed experimental study (the used experimental metrics,

the experimented problem instances, etc.) are given and the obtained results are discussed.

Chapter 4 introduces the adaptive selection operator based on the auto-tuning heuris-

tic and presents the two investigated approaches to reduce CPU-GPU communications

latency: multiple-nodes driven GPU-accelerated and single-node driven GPU-accelerated

B&B. The details on the parallelization of each operator are provided.

In Chapter 5, the two investigated approaches for the heterogeneous multi-core

CPU-GPU accelerated B&B are presented together with the CPU-GPU accelerated B&B

for multi-GPU enabled con�gurations.

6 Chapter 1. Introduction

In Chapter 6, the overall architecture of the parallel heterogeneous B&B for compu-

tational grids is introduced. The comprehensive description includes details about the

B&B meta-algorithm and the used B&B@GRID approach.

Finally, some concluding remarks are drawn in Chapter 7. In addition, we propose

some future extensions of the proposed approaches and some perspectives related to the

evolution of the context of High Performance Computing.

Chapter 2

Parallel Branch and Bound

algorithms

Contents

2.1 Introduction to combinatorial optimization 8

2.1.1 The Permutation Flowshop Scheduling Problem 8

2.1.2 Resolution methods for combinatorial optimization problems 9

2.2 Branch and Bound algorithms . 10

2.2.1 Serial B&B . 11

2.2.2 Illustration on the Permutation Flowshop Scheduling Problem . . . 12

2.2.3 Analysis of the irregularity of the B&B algorithm 13

2.3 Parallel Branch-and-Bound algorithms 16

2.3.1 Parallel tree exploration model . 17

2.3.2 Parallel multi-parametric model . 17

2.3.3 Parallel evaluation of the bounds . 18

2.3.4 Parallel evaluation of a single bound/solution 19

2.4 Parallel B&B for Graphics Processing Units 20

2.4.1 Thread divergence . 21

2.4.2 Memory access optimization . 22

2.4.3 CPU-GPU communication optimization 23

2.4.4 Related works . 24

2.5 Parallel B&B for multi-core shared memory machines 25

2.5.1 Synchronization and caching issues 25

2.5.2 Related works . 26

2.6 Parallel B&B for computational grids 27

2.6.1 Challenging issues . 27

2.6.2 Related works . 29

2.7 Conclusion . 31

8 Chapter 2. Parallel Branch and Bound algorithms

This �rst chapter presents all the background and prerequisites necessary to the com-

prehension of the global document. First, we introduce the Flowshop Scheduling Problem,

a combinatorial optimization problem considered as a case study in this thesis. There-

after, we introduce the Branch and Bound algorithm. An overview is made on the di�erent

parallelization strategies of Branch and Bound with the aim to accelerate the search pro-

cess. Afterward, a synthesis of the existing work dealing with parallel B&B classi�ed by

the target computational platform (multi-threaded many-core processors, shared memory

multi-core systems, computational grids) is presented. For each considered category of

platform, related challenges are identi�ed and discussed.

2.1 Introduction to combinatorial optimization

In combinatorial optimization, also referred to as discrete optimization, the goal is to �nd

one or more (near-) optimal con�guration(s) among a �nite set of possible con�gurations

(or solutions) optimizing a given objective also called cost function.

In practice, a wide range of problems in di�erent industrial and economic �elds, such as

task allocation, job scheduling, network routing, cutting, packing, etc. can be modeled as

NP-hard combinatorial optimization problems (COPs). Because of its practical relevance

and without loss of generality, the focus of this work is on the Permutation Flowshop

Scheduling Problem (FSP) which is one of the most known problems in combinatorial

optimization and scheduling area.

2.1.1 The Permutation Flowshop Scheduling Problem

Permutation Flowshop Scheduling Problems [Bonney 1976, King 1980, Allahverdi 1999]

are common in manufacturing environments in which a set of n jobs are to be processed

on a series of m machines optimizing a given objective function. FSP consists in scheduling

a set of n jobs on a set of m machines so that each of the jobs J1, J2, ..., Jn is processed

on the machines M1, M2, ..., Mm organized in the line. Job Ji (i = 1, 2, ... , n) consists

therefore of a sequence of m operations Oi1, Oi2, ... Oim where Oik corresponds to the

processing of Ji on Mk during an uninterrupted processing time pik. The objective is to

�nd a processing order on each Mk such that the time required to complete all jobs, called

makespan, is minimized. In the remainder of this thesis, FSP designates a permutation

FSP [Allahverdi 1999, Hejazi 2005]. For m = 2, an optimal schedule for FSP can be found

in O(n. log n) steps using Johnson's algorithm [Johnson 1954]. For m ≥ 3, the problem

2.1. Introduction to combinatorial optimization 9

has been shown to be NP-hard [Garey 1976].

To sum up, a feasible solution of FSP should satisfy these constraints:

• A machine can not start processing a job if all the machines, which are located

upstream, did not �nish their treatment. Thus, the operation oij cannot be processed

by the machine mj if it is not completed on mj−1.

• An operation can not be interrupted, and the machines are critical resources, because

a machine processes one job at a time.

• The sequence of jobs should be the same on every machine, e.g. if j3 is treated in

position 2 on the �rst machine, j3 is also executed in position 2 on all machines.

Figure 2.1 shows an example of an FSP instance (with n = 3 and m = 4) and its

associated optimal solution.

���������
���������
���������

���������
���������
���������

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����
������
������
������
������

����������
����������
����������

����������
����������
��������������

����
����
����

��
��
��
��

���������
���������
���������
���������

��
��
��

��
��
��

�����������
�����������
�����������
�����������

������
������
������

������
������
������

M

M

M

M

1

2

3

4

J

J

J

J

J

J

J

J J

J

J

J
3

3

2

2

2

1

1

1

3 2 1

3

Processing Times

Optimal Solution

16

1 3 5
3

2

5 3 4 1

2 2 1 4

J

J

J

M M M M

2

1

1 2 3 4

Figure 2.1: Illustration of a permutation FSP with n = 3 and m = 4. The table reports

the processing times of the jobs on the machines. The Gantt diagram shows the optimal

solution to the problem instance.

2.1.2 Resolution methods for combinatorial optimization problems

The techniques for solving COPs can roughly be classi�ed into two main categories: exact

and heuristic or approximate methods.

An approximate search method aims to �nd a near-optimal solution to the tackled

problem in a reasonable time by exploring a selected part of the solution space in which

10 Chapter 2. Parallel Branch and Bound algorithms

good quality solutions are expected. Unlike exact methods, there is no guarantee of

optimality of the found solutions. The most popular search algorithms in the class of

heuristic methods are metaheuristics. Metaheuristics are general-purpose optimization

methods that can be applied to any kind of problems as they contain limited problem-

speci�c knowledge in their design line compared to speci�c heuristics. Metaheuristics are

either single-solution based: one solution is initially considered and iteratively improved

along with the solution space exploration process (Tabu search, simulated annealing, hill

climbing, etc), or population-based: a set of solutions is considered and simultaneously

or independently improved during the exploration process (Particle Swarm optimization,

Ant Colonies, Evolutionary Algorithms, etc).

Exact methods aim to �nd the optimal solution(s) to the problem and to prove its

(their) optimality. This class of methods includes Branch and X methods 1, constraints

programming, dynamic programming, A*, etc. Branch and X methods are tree-based and

enumerative methods which intelligently (or implicitly) explore the whole search space in

order to �nd the optimal solution to the problem. The problem is solved by subdividing

it into smaller and simpler subproblems.

Although exact methods allow to resolve a problem with guarantee of optimality,

they are computing intensive and very time consuming when tackling hard and large

scale problem instances. The goal of this thesis is to design e�cient exact algorithms

for combinatorial optimization problems. Therefore, in the next section, a comprehensive

overview of how this tree-based search algorithm operates is given.

2.2 Branch and Bound algorithms

Branch and Bound (B&B) algorithms [Gendron 1994, Papadimitriou 1982] are one of the

most used tree-based exploratory methods for solving to optimality NP-hard discrete op-

timization problems. A B&B algorithm allows one to �nd the optimal solution(s) of a

problem and to prove that no better other one exists. It performs an implicit enumeration

of all feasible solutions and returns the guaranteed optimal one. The basic idea of the B&B

algorithm is to traverse a subset of feasible solutions over a search space and eliminate

others when they are not likely to lead to an optimal solution. The search space is explored

by dynamically building a tree whose root node is the original problem. The leaf nodes are

the potential solutions and the internal nodes are sub-spaces of the total solution space.

1X refers to Bound, Cut, Price, etc.

2.2. Branch and Bound algorithms 11

Each internal node contains a subproblem obtained by decomposition 2. The construction

of such tree and its exploration are performed using four operators: branching, bounding,

selection and pruning.

2.2.1 Serial B&B

The algorithm proceeds in several iterations during which the best solution found so far,

namely best-sol, is progressively improved. During the exploration process, the generated

and not yet examined (pending) tree nodes are kept into a list, namely pending-nodes,

initialized with the original problem. At each iteration of the algorithm, the following

steps are performed:

- The selection operator chooses the next tree node to be explored from the pending-

nodes list according to a de�ned selection strategy. Possible selection strategies

include depth-�rst, breadth-�rst and best-�rst. Depth-�rst strategy explores the

furthest left branch until the leaves are reached or the branch is eliminated. This

strategy aims to reach a feasible solution to the problem as soon as possible in order

to update the current best solution. Breadth-�rst strategy consists of exploring all

the nodes of the level l before moving to the level l+1. Using this strategy, memory

issues often arise making it unpractical to do such searches for larger problems.

Best-�rst strategy uses the bounding function to perform a descending order of the

set of pending nodes. It assumes that the next tree node to be explored is the node

with the best bound which is more likely to quickly lead to an improving solution.

The advantage of this strategy is the possible early improvement of the bound.

- The branching operator subdivides a solution space into two or more disjointed sub-

spaces to be investigated in a subsequent iteration. This operator decomposes a

given problem into smaller subproblems through the addition of constraints.

- The bounding operator computes a bound value (a lower bound for a minimizing

problem such as considered in this thesis without loss of generality) of the optimal

solution of each generated subproblem. A bounding function is used to estimate the

quality of the solutions covered by the evaluated node. Tight bounds help the B&B

to eliminate nodes of the solution space that are not likely to guide the search to an

improving solution.

- Each subproblem having a lower bound greater than the cost of the best solution

found so far, is eliminated using the pruning operator. This operator helps to reduce

2In the rest of the document, the terms node and subproblem will be used to refer to an internal node

of the B&B tree.

12 Chapter 2. Parallel Branch and Bound algorithms

the size of the space search to a computationally manageable size by cutting some

branches of the tree.

Algorithm 1 gives the general template of the B&B method which, in summary, consists

in recursively branching and bounding (sub)problems aside eliminating some of these and

exploring the remaining ones according to a prede�ned strategy. The previous exploration

steps are repeated until all solutions are explicitly or implicitly visited.

Algorithm 1 General template of the B&B Algorithm.

Create the initial problem;

Insert the initial problem into the tree as a root;

Set the Cost_best_solution to +∞;

Set the Best_Solution to ∅;

while not_empty_tree() do

Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Cost_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else
Lower_Bound = compute_lower_bound(Sub_Problem);

if Lower_Bound ≤ Cost_best_solution then
Branch(Sub_Problem);

Insert child subproblems into the tree;

end

else
Prune (Sub_Problem);

end

end

end

2.2.2 Illustration on the Permutation Flowshop Scheduling Problem

Figure 2.2 illustrates the B&B enumeration scheme applied to the 3-jobs FSP instance

described in Figure 2.1. The resolution of the problem proceeds by building a search

tree whose root node contains the original problem (empty schedule). The decomposition

of this problem generates n sons, each of them designates a new subproblem. The son

2.2. Branch and Bound algorithms 13

number i corresponds to the subproblem where job Ji is scheduled �rst on all machines.

The recursive application of the decomposition operator on the generated subproblems

allows one to develop the search tree. The number of potential schedules (permutations) is

n!, which is highly exorbitant for large problem instances. For instance, for FSP Taillard's

instances with 500 jobs, the search space is composed by 500! permutations.

A major powerful way to speed up the exploration of large search trees, is the use of

an e�cient bounding operator which allows to signi�cantly reduce the size of the explored

search space. Applied to a subproblem, such operator associates a value to its correspond-

ing tree node using a lower bound function. As illustrated in Figure 2.2, a subproblem is

not decomposed (and its tree node is pruned) if its lower bound value is greater than the

cost of the best schedule found so far during the exploration of the search tree.

No job scheduled
Initial Solution

Lower bounds

Initial seed UB =

J1 J2 J3

J3 J2J1J2

16 16

J2 J1J3

J2J1

J1 J2 J3 J3 J2 J1

J1J3J3J1 J3J2

17 < 20
21 > 2023 > 20

LB > UB

New SolutionsNew UB = 20
New UB = 17

20 <

20 < 18 > 17
16 < 17

8

8

8

New UB = 16Optimal Solution

Branches pruned

Figure 2.2: The search tree generated and explored by a B&B algorithm for solving an

FSP with 3 jobs. Nodes with a lower bound (LB) greater (resp. lower or equal) than the

current best solution are pruned (resp. decomposed or branched).

Using a bounding operator not only reduces the size of the B&B search tree but also

impacts its shape. Indeed, the number of tree nodes at each level is unpredictable and

depends on the number of branches pruned by the algorithm (due to their associated

lower bounds) which yields to an irregular structure. This irregularity is analyzed in the

following section.

2.2.3 Analysis of the irregularity of the B&B algorithm

In order to demonstrate the unpredictable and irregular nature of the workload character-

izing B&B tree traversal, two preliminary analyses have been performed to (1) evaluate

the intra-instance irregularity and (2) compare the di�erences between the structures of

the B&B trees (inter-instances irregularity).

14 Chapter 2. Parallel Branch and Bound algorithms

2.2.3.1 Intra-instance irregularity analysis

The irregularity of the tree explored by B&B is one of the major challenges for revisiting

this algorithm on heterogeneous architectures. The evaluation of the irregularity of a B&B

tree is not easy. Indeed, the size of the explored tree, when solving a small instance, is not

large enough to be representative, while the resolution of a large instance needs several

months and sometimes years of computing. In addition, the size of the explored tree,

when solving a large instance, is huge to be stored in order to be analyzed. Therefore, the

irregularity measures presented in this section are only based on instances of intermediate

size. These instances are the 10 FSP Taillard's instances [Taillard 1993b] de�ned with 20

jobs and 20 machines, namely Ta021, Ta022, ..., and Ta030.

The resolution of these 10 instances with a serial B&B algorithm needs about 18 days

of computing in total. The 10 explored trees are saved in 10 di�erent �les with a total size

of about 120 GB. Each line of these �les provides information on one subproblem. For each

explored subproblem, the algorithm saves the ID of this subproblem, its depth in the tree,

the value of the associated bound, and the ID of its father subproblem. The depth of a

subproblem in a B&B tree is equal to the number of scheduled jobs. For example, the root

problem has a depth equal to 0 since no job is scheduled for this problem. A subproblem

with a depth 18 (i.e. 18 scheduled jobs) admits 2 possible solutions. In our B&B algorithm,

subproblems with depth 18 are considered simple and are not decomposed. Therefore, the

maximum depth in the obtained B&B tree is equal to 18.

The goal of the �rst analysis is to evaluate the irregularity within each instance's tree.

Figure 2.3 shows the irregularity observed on the tree obtained when solving the instance

Ta023. The ordinate of the �gure represents the di�erent possible depths. For each depth,

this row-stacked histogram gives the percentage of subproblems with no children, the

percentage of subproblems with 1 child, ... and the percentage of subproblems with 20

children. For the depth 10 for example, the percentage of subproblems with no children

is equal to 53%, those with 1 child is equal to 23%, and those with 2 children is equal to

11%, etc.

Figure 2.3 shows that these percentages are di�erent from a depth to another. At the

depth 2 for example, the percentage of subproblems with 17 children (i.e. 41%) is greater

than the percentage of subproblems with 15 children (i.e. 10%), while, at the depth 3,

the percentage of subproblems with 17 children (i.e. 1%) is smaller than the percentage

of subproblems with 15 children (i.e. 12%). Ta023 is selected to be plotted in Figure 2.3

because the size of its tree is the largest one. We also observed that the other 9 trees are

as highly irregular.

2.2. Branch and Bound algorithms 15

20

40

60

80

100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Pe
rc

en
ta

ge
 o

f
su

bp
ro

bl
em

s
(%

)

Depth in the B&B tree

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 2.3: Percentage of subproblems with corresponding number of children per depth

in the instance Ta023.

2.2.3.2 Inter-instances irregularity analysis

This subsection presents the inter-instances irregularity analysis. The goal of this analysis

is to measure the di�erences between the explored trees when solving the 10 instances.

This subsection compares thus the 10 obtained trees in Subsection 2.2.3.1.

Figure 2.4 shows the di�erences between the structures of the B&B trees explored

during the resolution of these di�erent 10 instances. The ordinate of the �gure represents

the number of subproblems and the abscissa the possible depths of the B&B tree. Each

curve represents the number of subproblems explored at each level (depth) of the tree.

Each curve corresponds to one of the 10 instances. The �gure shows that the sizes of the

B&B trees are very di�erent even if these instances are de�ned by the same number of

jobs and machines. For example, for the instance Ta025, 100.000.000 nodes are explored

on the level 11 of the search tree, while it is about 50.000.000 for the instance Ta022 at

the same level. As other example, the Ta023 B&B tree contains about 85 times more

subproblems than the tree of Ta030. These 10 curves look like normal distributions with

di�erent means and standard deviations.

From the two analyses, one can conclude that the trees associated to the 10 instances

exhibit di�erent sizes and shapes demonstrating their irregularity. The same should go for

the other Taillard instances. We believe that the conclusions drawn from the experiments

are the same whatever is the shape of (how irregular is) the tree and thus for any tree-based

application.

16 Chapter 2. Parallel Branch and Bound algorithms

50,000,000

100,000,000

200,000,000

300,000,000

333,000,000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
 s

ub
pr

ob
le

m
s

Depth in the B&B tree

Ta030
Ta029
Ta028
Ta027
Ta022
Ta024
Ta025
Ta021
Ta026
Ta023

Figure 2.4: Comparison of the structures of the 10 standard instances of FSP de�ned with

20 jobs and 20 machines

Although B&B can be endowed with performant mechanisms (e�cient bounding and

pruning) allowing to signi�cantly reduce the number of branches to be explored, the size

of the remaining tree is still huge when tackling large instances making its serial traversal

very time consuming. Therefore, the idea to parallelize them has naturally emerged as an

attractive way to solve problems faster and to tackle larger problems. For example, an ef-

�cient parallel resolution of the FSP instance Ta056, performed in [Mezmaz 2007a], lasted

25 days with an average of 328 processors picked at 1195 processors, and a cumulative

computation time of about 22 years.

2.3 Parallel Branch-and-Bound algorithms

The parallelization of B&B is well studied in the literature and many classi�ca-

tions have been conducted [Trienekens 1992, Gendron 1994, Roucairol 1996, Melab 2005,

Crainic 2006]. In Appendix B, a thorough overview of the existing parallelization strate-

gies for B&B algorithms is presented.

The most recent taxonomy is the one proposed by Melab in [Melab 2005] which is based

on the classi�cation of Gendron et al. [Gendron 1994]. In this taxonomy, four models

of parallel B&B algorithms are identi�ed: parallel multi-parametric model, parallel tree

exploration model, parallel evaluation of the bounds, and parallel evaluation of a single

bound.

2.3. Parallel Branch-and-Bound algorithms 17

2.3.1 Parallel tree exploration model

The parallel tree exploration model consists in launching several B&B processes to explore

simultaneously di�erent paths (sub-trees) of the same tree (see Figure 2.5). The di�erent

selection, branching, bounding and pruning operators are executed in parallel either in

a synchronous or asynchronous fashion. In a synchronous mode, B&B processes need to

exchange global information that accelerate the tree traversal such as the best solution

found so far. In an asynchronous mode, B&B processes communicate unpredictably.

Figure 2.5: Illustration of the parallel tree exploration model.

Compared to the other models, the parallel tree exploration generates great interest

and has been the subject of several existing research on parallel B&B algorithms. The

degree of parallelism of this model is actually very high mainly for large problem instances

which justify by itself its use on top of many-core and multi-core architectures. However,

this parallelization strategy leads to unpredictable and unbalanced work units which raises

several challenges on top of data-parallel platforms such as GPUs.

2.3.2 Parallel multi-parametric model

The multi-parametric parallel model consists in considering simultaneously several B&B

processes which di�er by one or more operator(s), or have the same operators di�erently

parameterized (see Figure 2.6). Each B&B process explores a tree which is not necessarily

the same compared to its concurrents. Parallel B&B algorithms may di�er by the branch-

ing operator such as in [Miller 1993], by the selection operator [Janakiram 1988] or use

di�erent bounds such as in [Kumar 1984]. The main advantage of the multi-parametric

model is its genericity enabling its use transparently to the user. However, it might lead

18 Chapter 2. Parallel Branch and Bound algorithms

to a redundant exploration of some subproblems which slow down the exploration time

needed for traversing the B&B search tree.

Figure 2.6: Illustration of the parallel multi-parametric model.

The multi-parametric parallel model is coarse-grained and well-suited for MIMD (Mul-

tiple Instruction Multiple Data) architectures rather than for data-parallel architectures

such as GPU accelerators where the executed work units should be the same. Moreover,

B&B processes might need to exchange information such as new best solutions which is

not recommended in GPU computing since synchronization barriers signi�cantly harm the

performances. Finally, the degree of parallelism created by this parallelization strategy is

not exploitable on highly parallel environments unless it is combined with other parallel

models.

2.3.3 Parallel evaluation of the bounds

The parallel evaluation of bounds consists in launching only one B&B process where a

parallel evaluation of the subproblems generated by the branching operator is performed

(See Figure 2.7).

This model is data-parallel, intrinsically asynchronous and �ne-grained (the cost of the

bound evaluation) which is the execution model that better �ts graphics processing units.

However, the parallel bounding is pro�table only if the evaluation operation of the bounds

is time consuming mainly on architectures with high ratio of arithmetic operations.

2.3. Parallel Branch-and-Bound algorithms 19

Figure 2.7: Illustration of the parallel evaluation of bounds model.

2.3.4 Parallel evaluation of a single bound/solution

The parallel evaluation of a single bound/solution is similar to the previous one (parallel

evaluation of the bounds) as only one B&B process is used. In this model, a set of processes

evaluate in parallel the bound/objective function of a single node. It requires the de�nition

of new speci�c elements for the problem being processed, like partial objective functions

and a method to aggregate these partial results. As the implementation of this model is

naturally synchronous, it is crucial to memorize all the partial evaluation values for the

solutions being evaluated.

The parallel evaluation of a single bound/solution is strongly problem-speci�c and

should be considered when the bounding/objective function is too awkward and easy to

parallelize. In our case, it is not well suited to the FSP problem considered as a case study

in this thesis since the objective function can not be �nely dissociated and the degree of

parallelism induced is not pro�table for the GPU computing power.

Because the design of parallel B&B is strongly in�uenced by the computational plat-

form [Bader 2005], many architecture-oriented contributions for parallel B&B have been

proposed [Djerrah 2006] ranging from networks or clusters of workstations [Tschöke 1995,

Quinn 1990, Aida 2002] and shared memory machines [Casado 2008, Mans 1995] to

Graphics Processing Units [Lalami 2012, Carneiro 2011]. As discussed above, the par-

allel tree exploration and the parallel evaluation of the bounds models better suit highly

threaded data-parallel architectures such as GPU accelerators. Rethinking these two mod-

els is however not straightforward and many challenges have to be faced. In the following,

an overview of the existing work dealing with these two parallel B&B models classi�ed

by the target computational platform is presented. For each considered category, related

challenges are identi�ed and discussed.

20 Chapter 2. Parallel Branch and Bound algorithms

2.4 Parallel B&B for Graphics Processing Units

Graphics Processing Units (GPUs) are at the leading edge of many-core parallel compu-

tational platforms in several research �elds. For years, the use of graphics processors was

dedicated to high-de�nition 3D graphics. However, since NVIDIA released the Compute

Uni�ed Device Architecture (CUDA) programming model [NVIDIA Corporation 2011a],

massive data processing capability of modern GPUs is attracting researchers to explore

mapping more general non-graphics computations onto them.

The execution of a GPU program starts with host (CPU) execution. When a ker-

nel function is invoked, or launched, the execution is moved to a device (GPU), where

a large number of threads are generated to execute the kernel function many times in

parallel leading to a valuable data parallelism. All the created threads are organized into

thread blocks and grids of thread blocks. Each thread within a thread block executes an

instance of the kernel, and has a thread identi�er within its thread block. Threads are

partitioned into groups of 32 threads called warps which execution is scheduled following

a time-sharing strategy. A thread block is a set of concurrently executing threads that

can cooperate among themselves through barrier synchronization and shared memory. A

thread block has a block identi�er within its grid. A grid is an array of thread blocks that

execute the same kernel, read inputs from global memory, write results to global mem-

ory, and synchronize between dependent kernel calls. Active GPU threads have access

to several memory spaces with di�erent characteristics that re�ect their distinct usages.

These memory spaces include global, local, shared, texture, and registers. For further

information about GPU programming and the GPU memory hierarchy please refer to

Appendix A.

Little attention has been given to the study of B&B in massively parallel environments

like GPUs. Our work [Chakroun 2011] was among prior contributions in this context. The

�rst concern when designing an unpredictable and irregular tree-search algorithm such as

B&B on GPUs (see Section 2.2.3), is to identify the best way to extract ample �ne-grained

data-level parallelism with a high ratio of arithmetic operations which best suit the GPU

programming model taking into account that:

1- First, GPUs are based on the Simple Instruction Multiple Data (SIMD) program-

ming model which assumes multiple processing elements performing the same oper-

ation on multiple data points simultaneously.

2- Second, the B&B search tree is unpredictable and extremely unbalanced and the

variance in the size of the B&B sub-trees is very high making it di�cult to evaluate

2.4. Parallel B&B for Graphics Processing Units 21

the required computation and memory space for traversing each of them. Besides,

search algorithms such as B&B have dynamic access behavior to data structures and

varying computational workload which leads to a strongly input-dependent program

behavior and to a challenging data mapping on the device memories.

3- Third, for large problem instances and therefore large search trees, the amount of

data to be transferred between CPU and GPU is huge.

Therefore, because of variable program �ow, GPU threads executing B&Bs may have

di�erent accesses to the memory hierarchy of the GPU and di�erent behaviors within a

same warp which induces thread divergence and impacts the throughput of the application.

Moreover, to allow e�cient solving of large problems, the overhead induced by the data

transfer between CPU and GPU should be minimized. These three challenges are detailed

in the following sections.

2.4.1 Thread divergence

To manage thousands of threads, each streaming multi-processor (see Appendix A.1)

schedules and executes threads in groups of parallel threads called warps following a SIMT

(Single-Instruction Multiple Thread) fashion. When a multi-processor is given one or more

thread block(s) to execute, it splits it/them into warps that contain threads of consecutive

and increasing thread identi�ers with the �rst warp containing thread 0.

For each instruction of the �ow, the multi-processor selects a warp that is ready to be

run. A warp executes one common instruction at a time, so best performances are attained

when all threads of a warp follow the same control �ow path. When threads in the same

warp follow di�erent paths of control �ow, the scenario is referred to as thread or branch

divergence [Fung 2007, Meng 2010]. If threads of a warp diverge via a data-dependent

conditional branch, the warp serially executes each branch path taken, disabling threads

that are not on that path. When all paths complete, the threads converge back to the same

execution path. Branch divergence occurs only within a warp. Di�erent warps execute

independently regardless of whether they are executing common or disjointed code paths.

For example, for an if-then-else construct, full e�ciency is achieved when either all

threads execute the then part or all execute the else part. When threads disagree on

their execution path, the execution of the warp will require multiple passes through these

divergent paths. One pass will be needed for threads that follow the then path and another

pass for those that follow the else path. These passes are serially executed which induces

extra execution time.

22 Chapter 2. Parallel Branch and Bound algorithms

As quoted above, for GPU-based B&B, thread divergence often occur because the GPU

programming model assumes multiple processing elements performing the same operation

on multiple data points simultaneously. However, the parallel tree exploration and the

parallel evaluation of bounds models are problem-dependent parallelisms that lead to an

irregular computation depending on the data of each subproblem.

2.4.2 Memory access optimization

Memory access optimization is by far the most studied topic for improving GPU-based

application performances [Ryoo 2008, Yang 2010, Mahmoudi 2013]. Indeed, many con-

straints are related to the use of the hierarchy of memory available on GPU architectures.

The �rst concerns for optimizing memory management is adjusting the pattern of

accesses to the GPU device memory. Indeed, as detailed in Appendix A.3, CUDA-enabled

devices use several memory spaces, which have di�erent characteristics in terms of sizes

and access latencies:

• At the thread-level, each thread has its own allocated registers and a private local

memory. CUDA uses this local memory for thread-private variables that do not �t

in the threads registers, as well as for stack frames and register spilling.

• At the thread block-level, each thread block has a shared memory visible to all its

associated threads.

• At the grid-level, all threads have access to the same global memory. Texture and

constant cached memories are two other memories accessible by all threads.

The goal of memory access optimization is generally to use as much fast memory and

as little slow-access memory as possible which grants programmers to further improve

the throughput of many high-performance CUDA applications. For example, for B&B

applied to FSP, all thread blocks perform concurrent accesses to the six data structures of

the problem when they execute the lower bound function. To optimize the performance

of such application, the best mapping of the data structures is to copy them on the shared

memory of the GPU device. However, for large problem instances the data structures do

not �t in the shared memory for some GPU con�gurations. The challenge raised in this

case, is therefore to �nd which data structure has to be mapped on which memory and in

some cases how to split the data structures on di�erent memories and e�ciently manage

their accesses.

The second issue that must be considered for optimizing memory access is memory

coalescing. Memory coalescing occurs when threads of the same warp read global memory

2.4. Parallel B&B for Graphics Processing Units 23

in an ordered pattern. If per-thread memory accesses within a warp constitute a contiguous

range of addresses, accesses will be coalesced into a single memory transaction. Otherwise,

accessing misplaced locations induces memory divergence and requires the processor to

produce one memory transaction per thread. Because it leads to performance degradation,

memory coalescing is one of the most critical aspect of performance optimization.

For GPU-based B&B, uncoalesced memory accesses occur very often and represent a

very challenging issue. Indeed, during the exploration of the B&B tree, the number of

nodes to generate are variable and depend on the level of the tree being explored mainly

for FSP 3. Due to such unstructured and unpredictable nature of the search tree and

to unbalanced workload, threads of a same warp may read and write from/to di�erent

locations of the global memory.

2.4.3 CPU-GPU communication optimization

CPU-GPU communication optimization is a crucial issue encountered in GPU computing

that aims to e�ciently transfer data between the host and device. Because the peak band-

width between the device memory and the GPU is much higher than the peak bandwidth

between host memory and device memory, the policy of data transfers between the host

and GPU devices can make or break the overall application performance.

For the GPU-based B&B, we applied the following recommended best practices for

optimizing data transfer between the host and the device:

• Minimizing the amount of data transferred between host and device when possi-

ble even if that means running kernels on the GPU that get little speed-up com-

pared to running them on the host CPU. Such technique has also been adopted in

[Luong 2011].

• Using intermediate data structures in device memory that are operated on by the

device and destroyed without ever being mapped by the host or copied to host

memory.

• Batching many small transfers into one larger transfer which performs better than

making each transfer separately since it eliminates most of the per-transfer overhead.

• Overlapping data transfers between the host and device with kernel execution and

other data transfers such as assumed in [Mahmoudi 2013, Mahmoudi 2012]. Indeed,

most modern GPUs have a copy engine that uses direct memory access to bypass

3For the knapsack problem for example the search tree is binary

24 Chapter 2. Parallel Branch and Bound algorithms

the CPU when transferring data. This is much faster than normal data transfer and

has the added bene�t that the CPU is free to do something else. Furthermore, the

copy engine is a separate unit from the kernel engine that runs the kernels on the

GPU, which allows concurrent data transfer and kernel execution.

• Using non-blocking transfer functions that immediately return the control to the host

and thereby allows CPU routines to be performed while the data are transferred to

the device and the kernel is executed.

2.4.4 Related works

Designing irregular algorithms on top of SIMD architectures like GPUs is not straightfor-

ward. As quoted above, such algorithms use graph or pointer-based data structures such

as trees or graphs and have irregular memory-access patterns. Therefore, few insights

into exploiting the parallelism of irregular algorithms on top of GPUs exist. As far as the

B&B algorithm is concerned, apart from our contribution only two works [Lalami 2012],

[Carneiro 2011] deal with designing B&B on GPUs. Moreover, our work [Chakroun 2011]

was the prior work investigating GPU-based B&B applied to FSP problems.

In [Carneiro 2011], the B&B is applied to the traveling salesman problem. The aim

of this work is to use the GPU to exploit the advantages of depth-�rst search in parallel

B&B algorithms, and evaluate the solutions space in parallel. In that proposed schema,

the parallel tree exploration model is applied. Each node belonging to the pending nodes

list is a concurrent depth-�rst search root. The depth-�rst search is performed by each

thread, i.e. each thread is responsible for evaluating a small portion of the search space.

When threads have �nished their searches, they communicate the amount of solutions

they have found and the best one. The reported results show that the GPU-based B&B

is a dozen of times faster than the equivalent serial algorithm.

In [Lalami 2012], a GPU-accelerated B&B based on the parallelization of the bounding

and branching operators is applied to the knapsack problem which is also a well-known

combinatorial optimization problem. The revisited B&B algorithm is akin to the parallel

evaluation of bounds model coupled with a parallel tree exploration model where a part of

the operators are parallelized. In fact, it assumes that the decomposition and evaluation

of the subproblems are performed on GPU while the pruning and selection operators are

executed on the host side. Unlike other combinatorial optimization problems such as FSP,

quadratic assignment problem QAP, traveling salesman problem TSP, etc. knapsack is

solved using a binary search tree: at each level on the tree, a parent node has only two

children. Hence, the workload computed by each thread of the device is the same and

2.5. Parallel B&B for multi-core shared memory machines 25

no irregular task balancing occurs. For FSP, applying a B&B induces a highly irregular

workload due on the one hand to the unpredictable number of branches pruned by the

algorithm and on the other hand to the representation of FSP. At each level of the tree,

the number of new generated nodes and the number of promising nodes are variable and

depend on the level of the tree being explored and on the best solution found so far. As

exploration strategy, the author uses a breadth-�rst search strategy. This means that

the pool of nodes that is o�-loaded to the GPU are from the same tree level unless from

successive levels. This selection strategy emphasizes the regular amount of the work �ow

that is assigned to each thread. Best obtained speedup in this thesis, have been registered

for instances with great number of nodes and met a level around 20.

2.5 Parallel B&B for multi-core shared memory machines

Shared memory systems refer to a block of random access memory that can be accessed

by several di�erent central processing units (CPUs) in a multiple-processor computer sys-

tem. This paradigm assumes that many simultaneous asynchronous processes (or threads

of computation) share the same logical address space and access directly any part of

the data structure in a parallel computation. Thanks to its single address space, the

programmability of a parallel machine is enhanced by simplifying the issues of data par-

titioning, migration and load balancing.

2.5.1 Synchronization and caching issues

Usually, computations on multi-processor computers with shared memory can naturally

synchronize on data structure states and thus need fewer explicit synchronization. How-

ever, for irregular applications with unpredictable execution traces and data localities, a

characteristic of B&B as we demonstrate in Section 2.2.3, synchronization becomes an

important obstacle to the correct and e�cient implementation of parallel tree-search algo-

rithms. Indeed, lack of synchronization could impacts the consistency of shared data and

consequently the execution of the whole algorithm. Therefore, often, the recommenda-

tion when using multi-core shared memory machines, is to use locks as a synchronization

mechanism since they enforce mutual exclusion and guarantee the coherence of the data.

Another issue encountered in multi-processor computers is ensuring cache coherence

which refers to the consistency of data stored in local caches of a shared resource. Indeed,

in a shared memory multi-processor machine with a separate cache memory for each

processor, it is possible to have many copies of a data: one copy in the main memory and

one in each cache memory. When one copy of a data is changed, the other copies must be

26 Chapter 2. Parallel Branch and Bound algorithms

changed also. E�cient cache coherence management ensures that changes in the values

of shared data are propagated throughout the system in a timely fashion. Best known

cache coherence mechanisms includes directory-based coherence (the data being shared

is placed in a common directory that maintains the coherence between caches), snooping

(individual caches monitor address lines for accesses to memory locations that they have

cached), snar�ng (a cache controller watches both address and data in an attempt to

update its own copy of a memory location when a second process modi�es a location in

main memory).

In the following, an overview of the existing works of the literature that investigate

parallel B&B algorithms on top of multi-core shared-memory systems is given.

2.5.2 Related works

In [Evtushenko 2009], the B&B solver (BNB-Solver), a software platform allowing the

use of serial, shared memory and distributed memory B&B algorithm is presented. BNB-

Solver is based on the parallel exploration of the tree and assumes that several CPU threads

are used where each thread has its local pool of subproblems and shared a common pool

of subproblems with other threads. In BNB-Solver, each thread executes a �xed number

N of iterations of the global B&B algorithm 4. During the N iterations, each thread stores

the generated new subproblems in its local pool. It transfers a part of them from the local

pool to the global pool when the N iterations end. Each thread tries to select from its local

pool the next subproblem to be processed. If the local pool is empty, the thread selects a

subproblem from the global pool. If the global pool is empty, the thread blocks itself until

another thread puts at least one subproblem in the global pool. Once the global pool

is not empty, blocked threads are released and take subproblems from the global pool.

BNB-Solver ends when the global pool is empty and all threads are blocked.

PAMIGO [Casado 2008] (Parallel advanced multidimensional interval analysis global

optimization) is a parallel B&B algorithm designed for shared memory multi-core archi-

tecture and based on the parallel tree exploration model. Two versions of this algorithm,

called Global-PAMIGO and Local-PAMIGO, are proposed where POSIX Threads is used.

In Global-PAMIGO, threads share the same pool of subproblems. In Local-PAMIGO, each

thread has its own pool of subproblems. A synchronization mechanism between threads,

using semaphores, is necessary in Global-PAMIGO. In Local-PAMIGO, a dynamic load

balancing mechanism among threads and a termination detection mechanism are imple-

mented. One of the major issues addressed by the authors of PAMIGO is the number

4Recall here that the B&B proceeds iteratively its search for the optimal solution

2.6. Parallel B&B for computational grids 27

of threads. In Global-PAMIGO, the number of threads is always equal to the number of

cores, and the number of threads in Local-PAMIGO must be equal to or less than the

number of cores. In Local-PAMIGO, a thread stops when its local pool of subproblems

is empty. At each iteration, a thread checks the number of running threads and creates

a new thread if two conditions are met: the number of threads is less than the total

number of computing cores and second the current thread contains at least two subprob-

lems in its local pool. Local-PAMIGO ends when there is no more running threads, and

Global-PAMIGO ends when the global pool is empty.

OpenMP has been used in [Paulavicius 2009] to implement a parallel B&B algorithm

with combination of Lipschitz bounds for multi-core computers. The authors use breadth-

�rst strategy to explore the B&B tree. Only the problem-speci�c bounding operator is

parallelized in this approach.

In [Barreto 2010], the authors compare the serial, OpenMP (Shared memory parallel

model) and MPI (Distributed memory parallel model) B&B approaches. These algorithms

are used to solve a mixed integer programming problem. A common approach to solve

this problem, using a B&B, is to convert subproblems of the mixed integer problem to

linear programming problems, thereby eliminating some of the integer constraints, and

then trying to solve these subproblems using an existing linear program approach. In the

OpenMP approach of [Barreto 2010], threads share the same pool of subproblems. The

obtained speedups were better in the MPI approach than the OpenMP approach. This

work highlights the need to avoid misusing control and synchronization mechanisms in

order to prevent the performance of an OpenMP B&B from a signi�cant decrease.

2.6 Parallel B&B for computational grids

Large-scale distributed computing environments, usually called computational grids, is a

hardware and software infrastructure that gather computers, storage systems and other

devices that provide consistent and pervasive access to high-end computational capabil-

ities [Foster 1998]. Grid applications are distinguished from traditional client-server ap-

plications by their simultaneous use of dynamic large pooling of resources from multiple

administrative domains and complex communication structures.

2.6.1 Challenging issues

As de�ned in [Baker 2002], a computational grid is a collection of loosely-coupled, geo-

graphically distributed, heterogeneous computing resources that can provide signi�cant

28 Chapter 2. Parallel Branch and Bound algorithms

computing power over long time periods. It is hence de�ned according to four main char-

acteristics:

- Multi-domain of administration: resources of computational grids are distributed

among multiple sets of administration domains which are managed according to dif-

ferent administration organizations. For example, security policies change from one

site to another and enabling secure communications between multiple sites typically

through �rewalls might turn-out to a challenging issue.

- Heterogeneity of the resources: a grid can integrate hardware from multiple ven-

dors, run various operating systems, and use di�erent network protocols for remote

communication, etc. In contrast, a single site of the grid is often composed of ho-

mogeneous resources, mostly aggregated into clusters.

- Volatility of the resources: a grid is a dynamic environment characterized by its

resource's volatility. Indeed, computing resources are not expected to be always

available for the application. The availability of the resources is variant due to

hardware crash, software issues or any other system variance. Volatility poses several

challenging issues such as: dynamic resource discovery, fault tolerance, data recovery,

synchronization, etc. These issues are di�cult to deal with at a hardware level as

they are mainly dependent on the nature of the application being executed. They

are instead tackled mostly at the application level.

- Scalability: Due to the number of available computational units and the wide-area

network interconnection infrastructure, a computational grid is a large-scale system.

The scale of the grid is expressed in terms of network communications and in terms

of number of processing cores. Therefore, developers must deal with the scalability

issue to ensure a safe running of grid applications mainly as far as communication

between resources is concerned.

The characteristics of computational grids lead to a set of challenges when used for

parallel optimization algorithms. For example, for B&B algorithms, the volatility and

dynamic nature of resources may lead to the loss of one or several subproblem(s) and

consequently the loss of one or several optimal solution(s) if no fault tolerance mechanism

is used. Besides, distributed grid nodes are localed on distant networks with di�erent

bandwidths and connected via shared nation-wide networks. This property induces signif-

icant latency overhead in communication between processes running parallel B&B which

considerably impacts their e�ciency.

2.6. Parallel B&B for computational grids 29

2.6.2 Related works

Designing parallel B&B on computational grids had a great interest and has been the sub-

ject of several research works. Many investigations of parallel B&B for large-scale systems

have adopted the master-worker approach where information is centralized and there-

fore easily manageable but that lacks scalability. Scalability has been improved through

hierarchical (hierarchical master-worker approaches) or fully decentralized organization

of processes (Peer-to-Peer approaches). Whereas the work unit distribution di�ers from

one approach to another, all approaches are based on the parallel tree exploration model

which is coarse-grained with an important degree of parallelism mainly for large prob-

lem instances which justify by itself its relevance to grid computing. In the following, an

overview of existing grid-based B&B algorithms are presented and classi�ed according to

underlying architecture.

2.6.2.1 Master-worker approaches

Most of applications developed for large scale environments are based on the master-worker

paradigm. SETI@home [Anderson 2002] is one of the �rst large scale master-worker based

applications. A central master process distributes computational tasks to workers at the

edge of the Internet. When a worker completes its computation, it sends the results to

the central master. Work units sharing, communication of the best solution, termination

detection and checkpointing mechanisms are centralized within the master's commitment.

In [Mezmaz 2007a], a grid-enabled B&B algorithm based on the master-worker model

is proposed. The major contribution of the authors is to propose an e�cient encoding of

the search space to reduce the size of exchanged messages. The overall parallel e�ciency

is then improved compared to previous solutions. The approach of [Mezmaz 2007a] can

be considered as the best parallel master-worker B&B approach that can be applied in

a large scale computational environment such as grids. In particular, it was successfully

applied to �nd the optimal solution of an unsolved FSP hard instance, namely the Ta056

instance.

2.6.2.2 Hierarchical master-worker approaches

In [Aida 2002, Aida 2005], a hierarchical master/worker-based parallel B&B algorithm is

proposed and deployed on a grid. This approach is aimed to minimize performance degra-

dation caused by the communication overhead between the master process and worker

processes. Processes are organized into sets, each set having a group of worker processes

and one master process to coordinate them. In addition, a process called supervisor is in

30 Chapter 2. Parallel Branch and Bound algorithms

charge of controlling and coordinating all the sets of processes. One set of worker processes

explores a given part of the search tree. The supervisor assigns a subset of solutions to

the master of the set and this master dispatches the work to its worker processes. This

supervisor, as well as the master process of each set of processes, is in charge of gathering

and broadcasting the best solution found so far, thus accelerating the exploration process.

The latter approach shows a limited scalability as it may create a bottleneck on the mas-

ter processes and the supervisor process. The authors discuss the granularity of tasks,

notably when tasks are �ne-grained, the communication overhead is too high compared

to the computation of tasks.

The granularity issue is studied in [Diconstanzo. 2007] but yet a hierarchical mas-

ter/worker model is used therein. The architecture of the approach, named Grid'BnB is

quite similar whereas the communication layer is a bit di�erent. It is composed of four

di�erent types of entities: master, sub-master, worker, and leader. The master has the

same role as the supervisor in the previous approach. The sub-master is in charge of

coordinating one set of worker processes. Each set of processes comprises several workers

and is deployed on a physical cluster. The cluster running the master process also hosts

the sub-master processes which are in charge of communicating with other clusters. In

those other clusters, one worker is chosen to be the leader. It is given a speci�c role, which

is to handle communications with its sub-master. Thus, when a worker discovers a new

best solution for the problem being solved, it broadcasts it to all the workers belonging

to the same cluster, including the leader. This leader sends it to its sub-master process,

which broadcasts it to the whole network through the master process.

In [Bendjoudi 2012], the authors suggest a hierarchical architecture to allow work-

ers to communicate directly together after receiving a task from the master. Bendjoudi

et al. [Bendjoudi 2013] have also proposed a fault tolerant adaptive hierarchical B&B,

named FTH-B&B, in order to deal with the fault tolerance and scalability issues in

large scale unreliable environments. Their algorithm is composed of several fault tolerant

master/worker-based B&Bs, organized hierarchically.

2.6.2.3 Peer-to-Peer approaches

Parallel applications designed under the master/worker paradigm may often face scala-

bility issues due to bottlenecks on the master. To overcome this limitation, some works

consider the use of the Peer-to-Peer (P2P) paradigm for parallel B&B as in DIB by Finkel

et al. [Finkel 1987] and in the work proposed by Iamnitchi et al. in [Iamnitchi 2000]. The

latter proposes a fully decentralized approach for the B&B algorithm. The role of each

process is to manage a local work pool and share it with other processes whenever they

2.7. Conclusion 31

receive a request. The best solution is broadcast over the network through the most fre-

quently sent messages. By distributing the communication load among multiple processes,

this approach gains in terms of scalability.

Instead of dealing with the scalability issues at the applicative level, Di Constanzo et

al. [Diconstanzo. 2007] proposed a more generic approach operating at the communication

layer. The approach consists in de�ning a fully P2P infrastructure and providing an

information routing mechanism. Processes are organized in a P2P fashion: one of them

acts as the master and all others as workers. Whenever a worker needs to communicate

with the master, its messages are routed/relayed by multiple peers before reaching the

master. While this approach enables to provide a better scalability, it only distributes

the communication load of the master through time and introduces additional delays for

processing slaves's requests.

In order to overcome the limits of B&B@Grid [Mezmaz 2007a] in terms of scalability,

Djamai et al. [Djamai 2011] designed a new fully Peer-to-Peer approach for the B&B

algorithm parallelization. The approach is able to handle a number of nodes which is

exponentially higher than a classical master/worker one. It provides a new work sharing

mechanism where each peer shares its interval with its neighbors on request, avoiding

redundancy during the tree exploration. It provides a distributed termination detection

mechanism which detects the presence (or absence) of a work unit somewhere in the

network by counting the number of unsuccessful requests broadcast to its neighbors.

2.7 Conclusion

In this chapter, we provided an overview on the topics related to the context of this thesis.

First, we presented the combinatorial problem considered as case study in this thesis which

is the Flowshop Scheduling Problem. Thereafter, a comprehensive description of serial

B&B algorithms is given. Afterward, a summary of the di�erent classi�cations of parallel

B&B conducted in the literature is presented and an overview of the existing work dealing

with parallel B&B classi�ed by the target computing platform (multi-threaded many-core

processors, shared memory multi-core systems, computational grids) is made. For each

considered architecture, related challenges are identi�ed and discussed and related works

are presented.

Chapter 3

GPU-accelerated parallel bounding

applied to FSP

Contents

3.1 Introduction . 34

3.2 Lower Bound for FSP . 34

3.3 A GPU-accelerated B&B based on the parallel evaluation of

bounds (GB&B) . 36

3.4 Thread divergence reduction . 38

3.4.1 Problem statement in the FSP lower bound 38

3.4.2 Mechanisms for reducing branch divergence 40

3.5 Data placement optimization for the FSP lower bound 44

3.5.1 Complexity analysis and implementation 44

3.5.2 Data placement pattern of the lower bound on GPU 46

3.6 Experiments . 48

3.6.1 Experimental settings and parameters tuning 48

3.6.2 Experimental protocol . 51

3.6.3 Performance Evaluation of the GB&B 53

3.6.4 Performances of the thread reduction approaches 54

3.6.5 Performances of the data access optimizations 58

3.6.6 Overhead characterization of the GPU-accelerated parallel bounding

operator . 60

3.7 Conclusion . 61

Main publications related to this chapter

I.Chakroun, M.Mezmaz, N. Melab, and A.Bendjoudi.

Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm.

34 Chapter 3. GPU-accelerated parallel bounding applied to FSP

Concurrency and Computation: Practice and Experience - John Wiley & Sons, 2012.

N. Melab, I. Chakroun, M. Mezmaz and D.Tuyttens.

A GPU-accelerated Branch and Bound Algorithm for the Flow-Shop Scheduling Problem.

14th IEEE International Conference on Cluster Computing, CLUSTER'12. China, Beijin,

September 24-28, 2012.

I. Chakroun, A. Bendjoudi and N. Melab.

Reducing Thread Divergence in GPU-based B&B applied to the Flow-Shop Problem.

In the LNCS Proceedings of 9th International Conference on Parallel Processing and

Applied Mathematics (PPAM), Torun, Poland, September 9-11, 2011.

3.1 Introduction

The objective of this chapter is to present the design and implementation of the GPU-

accelerated parallel bounding we propose for B&B algorithms. We particularly identi�ed

two main challenges raised when revisiting the design and implementation of the parallel

evaluation of FSP lower bounds on GPU devices. The focus is �rst put on the thread diver-

gence issue related to the SIMD execution model of the GPU. Afterward, the optimization

of the access pattern to the hierarchy of GPU memories is addressed.

The remainder of this chapter is structured as follows: In Section 3.2 the FSP lower

bound used in this thesis is presented and analyzed. Section 3.3 presents the design of the

proposed GPU-accelerated B&B based on the parallel evaluation of lower bounds. Section

3.4 highlights the scenarios where the thread divergence occurs in the studied FSP lower

bound, presents a review of di�erent works of the literature for reducing thread divergence

and details the mechanisms we propose to reduce the number of divergent branches within

a warp. Section 3.5 explains the memory access optimizations we recommend for the

data structures used in the lower bound kernel. Finally, in Section 3.6 details about the

performed experimental study (the used experimental metrics, the experimented problem

instances, etc.) are given and the obtained results are discussed.

3.2 Lower Bound for FSP

The bounding operator provides a lower bound (LB) for each subproblem generated by

the branching operator. The more accurate the bound is, the more it allows to elimi-

nate unfruitful nodes from the search tree. Therefore, the e�ciency of a B&B algorithm

3.2. Lower Bound for FSP 35

depends strongly on the quality of its lower bound function. In this work, we use the

lower bound proposed by Lenstra et al. [Lenstra 1978] for FSP, based on the Johnson's

algorithm [Johnson 1954].

The Johnson's algorithm allows to solve optimally FSP with two machines (m = 2)

using the following transitive rule �:

Ji � Jj ⇔ min(pi,1 ; pj,2) ≤ min(pi,2 ; pj,1)

We recall that pk,l designates the processing time of the job Jk on the machine Ml.

From the above rule, it follows the Johnson's theorem:

Jonhson's theorem Given P an FSP with m = 2, if Ji � Jj there exists an optimal

schedule for P in which the job Ji precedes the job Jj.

According to Johnson's theorem, FSP with m = 2 is solved with a time complexity of

O(n.logn). The optimal solution is obtained by �rst sorting in increasing order the jobs

having a processing time shorter on the �rst machine than on the second one. Second,

sorting in decreasing order the jobs having a shorter processing time on the second ma-

chine. In practice, Johnson's algorithm assumes to �rst identify the job with the smallest

processing time (on either machine). If the smallest processing time involves machine 1,

to schedule the job at the beginning of the permutation, else (the smallest processing time

involves machine 2) to schedule the job at the end of the permutation.

In [J.R.Jackson 1956] and [L.G.Mitten 1959], the Johnson's rule has been extended by

Jackson and Mitten with lags which allowed further Lenstra et al. to propose a lower bound

for FSP with m ≥ 3. A lag lj designates the minimum duration between the starting time

of the job Jj on the second machine and its �nishing time on the �rst machine. Jackson

and Mitten demonstrated that the optimal solution for FSP with m = 2 can be obtained

using the following transitive rule �:

Ji � Jj ⇔ min(pi,1 + li ; lj + pj,2) ≤ min(li + pi,2 ; pj,1 + lj)

Based on this rule, Lenstra et al. [Lenstra 1978] have proposed the following lower

bound for a subproblem associated to a partial schedule where a set  of jobs have to be

scheduled on m machines. P ∗
Ja(,Mk,Ml) represents the Jackson-Mitten optimal solution

for the subproblem that consists in scheduling the set  of jobs on the two machines Mk

and Ml. The term ri,k =
∑

l<k pi,l designates the starting time of the job Ji on the

machine Mk. The other term qj,l =
∑

k>l pj,k refers to the latency between the �nishing

time of Jj on Ml and the �nishing time of the schedule.

36 Chapter 3. GPU-accelerated parallel bounding applied to FSP

LB() = max
1≤k<l≤m

{P ∗
Ja(,Mk,Ml) + min

(i,j)∈2,i 6=j
(ri,k + qj,l)}

l = pj Σ
k < < lµ j,µ

�������������������
�������������������
�������������������
�������������������

M = M

M = M

M

p = p

p = p
2

1

0

j,1

j,2

l

k

j,k

j,l

Figure 3.1: The lag lj of a job Jj for a couple (k, l) of machines is the sum of the processing

times of the job on all the machines between k and l.

According to this LB expression, the lower bound for the scheduling of a subset 

of jobs is calculated by applying the Johnson's rule with lags considering all the couples

(k, l) for 1 ≤ k, l ≤ m and k < l. As illustrated in Figure 3.1, the lag lj of a job Jj for a

couple (k, l) of machines is the sum of the processing times of the job on all the machines

between k and l.

3.3 A GPU-accelerated B&B based on the parallel evalua-

tion of bounds (GB&B)

As said previously, the time complexity of the Jonhson's algorithm for two machines

is O(n.logn). Therefore, the time complexity of the lower bound LB for m machines

is O(m2.n.logn). The computation of the lower bound is consequently time intensive

especially for problem instances for which m is high.

In order to experimentally evaluate its CPU time cost, we performed a preliminary

study where we measure the execution time of each operator of the algorithm. There-

fore, we carried out experiments on some standard's FSP instances, commonly known as

Taillard's problem instances [Taillard 1993b, Taillard 1993a]. A serial version of the B&B

algorithm is run during 600 seconds.

Table 3.1 reports the durations of the bounding operator of the B&B for several in-

stances of 20 machines and a number of jobs ranging from 20 to 200. The results show

that the bounding operator that calculates a lower bound for each subproblem, is the

most costly operation in the B&B algorithm taking on average between 97% and 99% of

its total execution time. Such result demonstrates the need to parallelize the bounding

3.3. A GPU-accelerated B&B based on the parallel evaluation of bounds

(GB&B) 37

Type of instances Bounding (s) Bounding / B&B (%)

200×20 582,968 97,16%

100×20 591,329 98,55 %

50×20 592,560 98,76 %

20×20 592,785 98,79 %

Table 3.1: Execution time of the bounding operator compared to the execution time of

the whole B&B algorithm.

operator. Indeed, not only the parallel evaluation of bounds is akin to data-parallelism

but is also a very time consuming operation as shown through the experimentation.

Therefore, we propose a parallel GPU-accelerated approach (GB&B) based on the

parallel evaluation of bounds where the generation of the subproblems (pruning, selection

and branching operations) to be solved is performed on CPU and the evaluation of their

lower bounds (bounding operation) is executed on the GPU device.

End
of

Permutations

Initialization of
the matrices

Copy of the pool of permutations

Threads Block

LB Computing Function

H
ie

ra
rc

hi
ca

l M
em

or
y

Generation of a pool

Elimination of the
solutions having

LB > UB
Copy of the pool of Lower Bounds

CPU

GPU

of permutations

T0 T1 T2 Tm

Figure 3.2: The overall architecture of the GPU-accelerated algorithm based on the parallel

evaluation of bounds (GB&B).

As illustrated in Figure 3.2, a pool of subproblems generated on CPU is selected

according to a depth-�rst strategy and o�-loaded to the GPU device to be evaluated by a

pool of threads partitioned into blocks. Each thread applies the lower bound function to

one subproblem. Once the evaluation is completed, the lower bound values corresponding

to the di�erent subproblems are returned to the CPU to be used by the pruning operator

to decide either to be eliminated or to be decomposed. The process is iterated until the

exploration is completed and the optimal solution is found.

38 Chapter 3. GPU-accelerated parallel bounding applied to FSP

The template of the GPU implementation of the parallel evaluation of bounds is given

in Algorithm 2.

Algorithm 2 Kernel of the parallel computation of the lower bound on GPU.

Data: poolToEvaluate = Pool of nodes to be evaluated in parallel.

Result: poolOfBounds = Pool of returned bounds values.

__global__ void evaluateOnGPU(/*parameters*/)

{

int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

if Is_leaf(poolToEvaluate[thread_idx]) then
lower_bound = evaluateSolution(poolToEvaluate[thread_idx].permutation,PTM,

/*other less important arguments*/);

end

else
// Some necessary initializations before computing the lower bound

lower_bound = computeLB(/*parameters*/);

end

poolOfBounds[thread_idx] = lower_bound;

}

The parallel evaluation of bounds is a problem-speci�c parallelism. This feature implies

an irregular computation depending on the data of each subproblem which is re�ected in

several control �ow instructions and that conducts to di�erent behaviors. As explained

in Section 2.4, when such data-dependent conditional instructions are executed on top of

GPU, di�erent behaviors within threads of a same warp occur. This leads to the thread

divergence issue and impacts the throughput of the application.

3.4 Thread divergence reduction

This section discusses the thread divergence issue encountered when computing the lower

bounds of FSP on GPU, presents a review of the di�erent works that aims at reduc-

ing thread divergence and details the mechanisms we propose to reduce the number of

divergent branches within a warp.

3.4.1 Problem statement in the FSP lower bound

In the FSP lower bound, thread divergence occurs due to two major factors: the locations

of nodes within the search tree and the control �ow instructions within the bounding

3.4. Thread divergence reduction 39

operator.

Divergence related to the control �ow instructions. Control �ow refers to the

order in which the instructions, statements or function calls are executed in a program.

This �ow is determined by conditional and loop instructions such as if-then-else, for,

while-do, switch-case, etc. There are a dozen of such instructions in the algorithm of the

bounding operator of FSP. The source code examples given below show two scenarios in

which this kind of instruction is used.

• Example 1:

if(pool[thread_idx].index_start != 0)

time = TimeMachines[1] ;

else

time = TimeArrival[1] ;

• Example 2:

for(int k = 0 ; k < pool[thread_idx].index_start; k++)

jobTime = jobEnd[k] ;

In these two examples, thread_idx is the index associated to the current

thread. Let us suppose that the instruction in Example 1 is executed by 32

threads where pool[thread_idx].index_start is equal to 0 for the �rst thread, and

pool[thread_idx].index_start is not equal to 0 for the other 31 threads. The �rst thread

will execute the code associated with the �false� condition (pool[thread_idx].index_start

== 0) and the other threads will execute the code associated with the �true� condition

(pool[thread_idx].index_start != 0). Since the instruction decoder can only handle one

branch at a time, these branches cannot be executed concurrently and would be executed

in sequence. When the �rst thread executes the else construct, the remaining 31 threads

of that warp which are not on the taken path are disabled. The problem in this case

is that no other warps are allowed to run on that multiprocessor meanwhile because the

warp is not completely idle which impacts the execution times.

The same scenario occurs during the execution of Example 2. Let us suppose that the

instruction is executed by 32 threads, pool[thread_idx].index_start is equal to 100 for the

�rst thread, and pool[thread_idx].index_start is equal to 10 for the other 31 threads. In

this case, all threads will �nish the �rst 10 iterations together. Two passes are required

to execute each of the following iterations, one pass for those that take the iteration and

another pass for those that do not.

40 Chapter 3. GPU-accelerated parallel bounding applied to FSP

Divergence related to the location of nodes. Below is given an example from the

source code of the used LB showing how the execution �ow depends on the position of the

node in the search tree. In the following piece of code, three methods are used is_leaf(),

makespan() and lower_bound(). is_leaf() tests if the node _node is a leaf or an internal

node. If _node is a leaf, makespan() computes the cost of its makespan. Otherwise, _node

is an internal node and lower_bound() computes the value of its lower bound.

if (_node.is_leaf())

return _node.makespan();

else

return _node.lower_bound();

3.4.2 Mechanisms for reducing branch divergence

Using GPUs has become increasingly popular in high performance computing. A large

number of optimizations have been proposed to improve the performance of GPU pro-

grams. The majority of these optimizations target the GPU memory hierarchy by ad-

justing the pattern of accesses to the device memory [Ryoo 2008, Yang 2010, Sung 2010,

Jang 2011]. In contrast, there has been less work on optimizations that tackle another

fundamental aspect of GPU performance, namely its SIMD execution model. This section

presents some major existing works related to the thread divergence reduction.

Dynamic Warp Formation (DWF) [Fung 2007] is a hardware mechanism proposed in

order to improve the e�ciency of SIMD branch execution. Every cycle the thread scheduler

recomposes warps from the active threads by grouping those that are executing the same

path into the same warp. To achieve this, DWF requires an additional hardware that does

thread regrouping. Meng et al. [Meng 2010] also propose a hardware mechanism. This

tool, called Dynamic Warp Subdivision (DWS), splits a warp into sub-warps at divergent

branches that can be scheduled independently.

In [Zhang 2010], the proposed approach performs a runtime data remapping across

multiple warps. It is proposed that the remapping happens on the �y because of the

dependence of thread divergences on runtime values. The major inconvenient with this

approach is that it requires a CPU-GPU pipelining scheme, feature that incurs extra

host-device communications.

In [Han 2011], the authors intervene at code level and introduce two software-based

optimizations: iteration delaying and branch distribution. Iteration delaying improves

the utilization of execution units in the presence of a divergent branch within a loop, by

executing only one branch path at each iteration and delaying the threads that follow the

3.4. Thread divergence reduction 41

other path until later iterations. Branch distribution aims to reduce the divergent portion

of a branch by factoring out structurally similar code from the branch paths.

The existing techniques for handling branch divergence either demand hardware sup-

port [Fung 2007] or require host-GPU interaction [Zhang 2010], which incurs overhead.

Some other works such as [Han 2011] intervene at the code level. They expose a branch

distribution method that aims to reduce the divergent portion of a branch by factoring

out structurally similar code from the branch paths. In our work, we have also opted

for software-based optimizations like [Han 2011]. In fact, we �gure out how to literally

rewrite the branching instructions into basic ones in order to make thread execution paths

uniform. We also demonstrate that we could ameliorate performances by appropriately

reordering data being assigned to each thread.

In the following, we outline the proposed mechanisms identi�ed with the aim to reduce

the number of divergent threads during the execution of the lower found function on GPU.

The �rst thread-data reordering method targets the divergence that is induced by the loop

constructs. The second approach called branch refactoring aims at decreasing the number

of divergent branches that result from the if-then-else instructions.

3.4.2.1 Thread-data reordering

In the B&B applied to FSP, a node from the search tree corresponds to a permutation

containing a set of scheduled and unscheduled jobs. The range of scheduled and unsched-

uled jobs depends on the level of the node in the tree. When computing in parallel the

LB function, each thread picks one position from the set of unscheduled jobs, schedules it

and computes the corresponding makespan.

A deep analysis of the used lower bound function shows that most of the loop con-

structs it encloses are related to the range of unscheduled jobs contained in the underlying

permutation. Therefore, and because the selected pool that is o�-loaded to GPU may

contain subproblems from di�erent levels of the tree, threads of a same warp may not

�nish loop's iterations at the same time and several passes will be used.

The purpose of thread-data reordering is to reduce the number of threads that might

diverge on the loop constructs. The idea is to sort the pool of selected subproblems before

it is o�-loaded to the GPU device according to their position in the tree. As quoted above,

this position dictates the range of the unscheduled jobs. This sorting process is used in

order to make the pool as homogeneous as possible (selected nodes are from the same level

in the tree unless from nearby levels).

42 Chapter 3. GPU-accelerated parallel bounding applied to FSP

3.4.2.2 Branch refactoring

The proposed branch refactoring approach consists in rewriting the conditional instruc-

tions so that threads of the same warp execute an uniform code avoiding their divergence.

To do so, two major scenarios are studied and optimizations are proposed accordingly.

These two scenarios correspond to the conditional instructions contained in the LB kernel

code but can easily be generalized.

In the �rst scenario, the conditional expression is a comparison of the content of a

variable to 0. The following example extracted from the pseudo-code of the lower bound

LB illustrates such scenario.

if(pool[thread_idx].index_start != 0)

time = TimeMachines[1] ;

else

time = TimeArrival[1] ;

The refactoring idea consists in replacing the conditional expression by two functions

f and g as explained in Equation 3.1.

if(x 6= 0) a = b[1]; if(x 6= 0) a = b[1] + 0× c[1];

⇒

else a = c[1]; else a = 0× b[1] + c[1];

⇒ a = f(x)× b[1] + g(x)× c[1];

where:

f(x) =

{

f(x) = 0 if x = 0

1 else

and

g(x) =

{

g(x) = 1 if x = 0

0 else

(3.1)

The behavior of f and g perfectly �ts the cosine trigonometric function. These func-

tions return values between 0 and 1. An integer variable is used to store the result of the

cosine function. Its value is 0 or 1 since it is rounded to 0 if it is not equal to 1. In order

to increase the performances, runtime math operations are used: sinf(x), expf(x) and

so forth. Those functions are mapped directly to the hardware level. They are faster but

provide lower accuracy which does not matter in our case because the results are rounded

3.4. Thread divergence reduction 43

to int. For NVIDIA GPUs, the throughput of sinf(x), cosf(x), expf(x) is one operation

per clock cycle [NVIDIA Corporation 2011a].

The refactoring result for the �if� pseudo-code given above is the following:

int coeff = cosf (pool[thread_idx].index_start);

time = (1 - coeff) * TimeMachines[1] + coeff * TimeArrival[1];

The second �if� scenario considered compares two values between themselves as shown

in Equation 3.2.

if(x
 y) a = b[1]; ⇒ if(x− y ≥ 1) a = b[1];

⇒ if(x− y − 1 ≥ 0) a = b[1]; (x, y) ∈ N

⇒ a = f(x, y)× b[1] + g(x, y)× a;

where: f(x,y)=

{

1 if x− y − 1 ≥ 0

0 if x− y − 1 < 0

and g(x,y)=

{

0 if x− y − 1 ≥ 0

1 if x− y − 1 < 0

(3.2)

For instance, the following example extracted from the pseudo-code of the lower bound

LB illustrates such scenario.

if (TimeArrival[1] > min)

Best_idx = Current_idx;

The same transformations as those employed for the �rst scenario are applied here

using the exponential function. The exponential is a positive function which is equal to 1

when applied to 0. Thus, if x is less than y __expf(x− y− 1) returns a value between 0

and 1. If this result is rounded to an integer value 0 is obtained. Now, if x is greater than

y __expf(x − y − 1) returns a value greater than 1 and since the minimum between 1

and the exponential is considered, the returned result would be 1. This behavior exactly

satis�es our prerequisites.

The above �if� instruction pseudo-code is now equivalent to:

int coeff = min(1, __expf(TimeArrival[1] - min - 1));

Best_idx = coeff * Current_idx + (1 - coeff) * Best_idx ;

44 Chapter 3. GPU-accelerated parallel bounding applied to FSP

As explained in Section 2.4, memory access optimization is a key enabler for improving

GPU-based application performances. Indeed, many constraints are related to the use of

the hierarchy of memory available on GPU architectures. For the FSP lower bound kernel,

several data structures are used with di�erent sizes and access rates. Our objective in the

following section is to identify the best mapping of the LB data structures which should

use as much fast memory and as little slow-access memory as possible.

3.5 Data placement optimization for the FSP lower bound

In this section, optimizing the data access pattern of the proposed parallel bounding

approach is investigated. We particularly discuss how our approach maps the di�erent

data structures on the memory hierarchy of the GPU device taking into account the

characteristics of the data structures and those of the di�erent GPU memories.

3.5.1 Complexity analysis and implementation

In this section, the characteristics of the data structures used by the lower bound function

presented in Section 3.2 are studied in terms of size and access frequency.

For an e�cient implementation of the LB, illustrated in Figure 3.3, six data structures

are required: the matrix PTM of the processing times of the jobs, the matrix of lags

LM , the Johnson's matrix JM , the matrix RM of the earliest starting times of jobs, the

matrix QM of their lowest latency times and the matrix MM containing the couples of

machines.

In the LB expression (see Section 3.2), the computation of the term P ∗
Ja(,Mk,Ml)

requires the calculation of the lag of each remaining job to be scheduled on the couple

(Mk,Ml) of machines using its processing times on these machines (Johnson's rule with

lags). Such computation is repeated for each couple (Mk,Ml) of machines with 1 ≤ k, l ≤

m and k < l. To avoid the repetitive computation of the lags, they are computed once

at the beginning of the algorithm and stored in the matrix LM . The dimension of LM

is n × m×(m−1)
2 , where n and m are respectively the number of jobs to be scheduled and

m the number of machines. LM is accessed n′ × m×(m−1)
2 times, n′ being the number

of remaining jobs to be scheduled in the subproblem for which the lower bound is being

calculated. The processing times of all the jobs on all the machines are stored in the

matrix PTM . This matrix has a dimension of n × m and is accessed n′ × m × (m − 1)

times.

In order to avoid relaunching the Johnson's algorithm for each couple of machines and

3.5. Data placement optimization for the FSP lower bound 45

(01) int computeLB(){

(02) LB=maxInteger;

(03) for (index=0;index< m×(m−1)
2 ;index++){

(04) M1=MM[index][0];

(05) M2=MM[index][1];

(06) timeOnM1= min
0≤j≤n

(RM[M1][j]);

(07) timeOnM2= min
0≤j≤n

(RM[M2][j]);

(08) for (i=0;i<n;i++){

(09) job=JM[i][index];

(10) if (job not yet scheduled){

(11) timeOnM1=timeOnM1+PTM[job][M1];

(12) if (timeOnM2>timeOnM1+LM[job][index])

(13) timeOnM2+=PTM[job][M2];

(14) else

(15) timeOnM2=timeOnM1+LM[job][index]+PTM[job][M2];

(16) }

(17) }

(18) timeOnM2+= min
0≤j≤n

(QM[M2][j]);

(19) LB=max(timeOnM2,LB);

(20) }

(22) return LB;

(23)}

Figure 3.3: Pseudo-code implementing the LB function

each subset of jobs, the Johnson's algorithm is computed once to �nd the optimal solutions

on the couples of machines. These optimal solutions are then stored in the Johnson's

matrix JM . This matrix has the same dimension as LM and is accessed n × m×(m−1)
2

times during the computation of the lower bound.

To reduce the computation time cost of the term min
(i,j)∈2,i 6=j

(ri,k + qj,l) in the LB

expression, two matrices are de�ned, namely RM and QM . They are used to store

respectively the lowest starting and latency times of all the jobs on each machine. Their

dimension is m and are accessed m × (m − 1) times and m×(m−1)
2 times respectively.

Finally, the MM matrix that contains all the couples of machines has a dimension and

access frequency of m× (m− 1).

The complexities in terms of size and access frequency of the di�erent data structures

46 Chapter 3. GPU-accelerated parallel bounding applied to FSP

are summarized in Table 3.2 where the columns represent respectively the name of the

data structure, its size and the number of times it is accessed.

Matrix Size Number of accesses

PTM n×m n′ ×m× (m− 1)

LM n× m×(m−1)
2 n′ × m×(m−1)

2

JM n× m×(m−1)
2 n× m×(m−1)

2

RM m m× (m− 1)

QM m m×(m−1)
2

MM m× (m− 1) m× (m− 1)

Table 3.2: The di�erent data structures of the LB algorithm and their associated com-

plexities in memory size and numbers of accesses. The parameters n, m and n′ designate

respectively the total number of jobs, the total number of machines and the number of

remaining jobs to be scheduled for the subproblems for which the lower bound is being

computed.

3.5.2 Data placement pattern of the lower bound on GPU

When identifying the best mapping of the data structures on the memory hierarchy of the

GPU device, our focus is put on the shared memory which is a key enabler for many high-

performance GPU applications. Indeed, because it is on-chip, shared memory has much

higher bandwidth and lower latency than local and global memory. However, for large

problem instances (large n and m) the data structures especially JM and LM, do not �t in

the shared memory for some GPU con�gurations. In order to achieve further performances,

we also take care of adequately use the global memory by judiciously con�guring the L1

cache which greatly enables improving performance over direct access to global memory.

Table 3.3 reports the sizes of each data structure for di�erent Taillard's problem in-

stances [Taillard 1993a, Taillard 1993b]. The sizes are given in number of elements and in

bytes (between brackets).

Taking into consideration the sizes of each data structure presented in Table 3.3, our

challenge is to �nd which data structure has to be mapped on which memory and for large

problem instances how to split the data structures on di�erent memories and e�ciently

manage their accesses. The sizes in bytes reported in Table 3.3, are computed knowing

that in our implementation the elements of JM and PTM are unsigned char (one byte)

3.5. Data placement optimization for the FSP lower bound 47

Nb.Jobs × Nb.machines JM LM PTM RM, QM MM

200× 20 38.000 (38KB) 38.000 (76KB) 4.000 (4KB) 20 (0.04KB) 380 (0.76KB)

100× 20 19.000 (19KB) 19.000 (38KB) 2.000 (2KB) 20 (0.04KB) 380 (0.76KB)

50× 20 9.500 (9.5KB) 9.500 (19KB) 1.000 (1KB) 20 (0.04KB) 380 (0.76KB)

20× 20 3.800 (3.8KB) 3.800 (7.6KB) 400 (0.4KB) 20 (0.04KB) 380 (0.76KB)

Table 3.3: The sizes of each data structure for the di�erent experimented problem in-

stances. The sizes are given in number of elements and in bytes (between brackets).

and that the elements of LM , RM , QM and MM are unsigned short int (2 bytes). It

is important here to highlight that the types of the data of the used matrices impact the

size of each matrix. For instance, a matrix of 100 integers has a size of 400 bytes while

the same matrix with 100 unsigned chars has a size of 100 bytes. In order to minimize the

size of each of the used matrices, we analyzed the ranges of their values and de�ned their

data types accordingly. For instance, in PTM all the processing times have positive values

varying between 0 and 100. Therefore, we de�ned PTM as a matrix of unsigned char

having values in the range [0, 255]. Using the unsigned char type instead of the integer

type allows us to reduce by 4 times the memory space occupied by PTM. According to

Table 3.3:

• The data structures RM , QM and MM are small sized matrices. Therefore, their

impact on the performances is not signi�cant whatever is the memory they are o�-

loaded to. Indeed, preliminary experiments prove that putting them on the shared

memory allows a very poor performance improvement.

• The LM data structure is the double of the JM in memory size but with a much

lower access frequency. Therefore, it is better to map JM on the shared memory.

• The PTM has almost the same access frequency than JM but requires less memory

space.

Consequently, the focus is put on the study of the performance impact of the placement

of JM and PTM on the shared memory. Three placement scenarios of JM and PTM

are experimented and studied: (1) Only PTM is stored in shared memory and all others

are placed on global memory; (2) Only JM is stored in shared memory and all others are

placed on global memory; (3) PTM and JM are stored together in shared memory and

all others are placed on global memory.

48 Chapter 3. GPU-accelerated parallel bounding applied to FSP

3.6 Experiments

In this section, we introduce the protocol used for the experiments presented in the rest of

the document. The problem instances experimented for the di�erent proposed approaches,

the hardware con�gurations and the several experimental metrics are also detailed.

3.6.1 Experimental settings and parameters tuning

In the following, details are given about the experimented problem instances, the used

experimental hardware and the experimental metrics.

3.6.1.1 Experimental settings

To evaluate the performance of the proposed GPU-based parallel approaches, we have

considered the Taillard's FSP benchmarks proposed in [Taillard 1993a, Taillard 1993b].

These standard instances are often used in the literature to evaluate the performance

of methods that minimize the makespan. Optimal solutions of some of these instances

are still not known. These instances are divided into groups of 10 instances. In each

group, the 10 instances are de�ned by the same number of jobs and the same number

of machines. The groups of 10 instances have di�erent numbers of jobs, namely 20, 50,

100, 200 and 500, and di�erent numbers of machines, namely 5, 10 and 20. For example,

there are 10 instances with 200 jobs and 20 machines belonging to the same group of

instances. In our experiments, only the instances where the number of machines is equal

to 20 and the number of jobs equal to 20, 50, 100, 200 are used. Indeed, instances where

the number of machines is equal to 5 or 10 are easy to solve. For these instances, the

used bounding operator gives so good lower bounds that it is possible to solve them in few

minutes using a serial B&B. In particular, preliminary experiments have shown that using

a single CPU-based B&B performs better than a GPU-accelerated B&B for the instances

with 5 machines and that small accelerations (on average around 11) are obtained with

10 machines with the GPU-based B&B compared to the serial version of the algorithm.

Therefore, these instances do not require the use of a GPU.

In our experiements, we also omit instances with 500 jobs because they do not �t in

the memory of the GPU. Indeed, as shown in Table 3.4, the size of the data structures

(data used for the computing the FSP lower bound, intermediate structures where the

subproblems are generated, etc.) used for these category of instances are signi�cant and

reaches the limit size dedicated by the GPU global memory. Indeed, because ECC is

on [NVIDIA Corporation 2010], the size of the provided global memory is decreased by

12.5% and is only about 2.45 GB. Nevertheless, the 2.3 GB of data used for the instances

3.6. Experiments 49

with 500 jobs can't be accomodated since the GPU devote some segments of the global

memory to accomodate the kernel instructions which are stored in global memory that is

inaccessible to the user but are prefetched into an instruction cache during execution.

Problem instances Size of the used data (MB)

20 × 20 126.04

50 × 20 261.08

100 × 20 486.16

200 × 20 936.32

500 × 20 2286.80

Table 3.4: Size of the data structures used the by each group of instance.

The di�erent approaches we propose have been implemented using C-CUDA 4.0. The

experiments have been carried out using an Intel Xeon E5520 bi-processor coupled with a

GPU device. The bi-processor is 64-bit, quad-core and has a clock speed of 2.27GHz. The

GPU device is an Nvidia Tesla C2050 with 448 CUDA cores (14 multiprocessors with 32

cores each), a clock speed of 1.15GHz, a 2.8GB global memory, a 49.15KB con�gurable

shared memory, and a warp size of 32.

3.6.1.2 Tuning the number of blocks and number of threads

A kernel function running on a GPU is generally tuned by two leading parameters: the

number of threads per block N and the total number of threads S. Tunning the number

of active threads is, in fact, a key point to maximize hardware utilization. For the GB&B

approach, the execution of the lower bound on GPU assumes that each thread is associated

to one subproblem; each thread applies the lower bound function to one subproblem.

Therefore, when the size of the pool o�-loaded to GPU is equal to N×S, N×S threads

should be triggered at the kernel launching.

Preliminary experiments, reported in Table 3.5, show the comparison between average

execution time for all the instances obtained with di�erent numbers of blocks and block

sizes. The �rst column represents the size of the pool o�-loaded to the GPU. The other

columns give the corresponding number of blocks, number of threads per block and average

normalized execution time. The average normalized execution times are calculated for all

instances with 20, 50, 100 and 200 jobs over 20 machines. For each row, the execution

times are normalized and divided by the execution time obtained with the pair (number

50 Chapter 3. GPU-accelerated parallel bounding applied to FSP

of blocks × number of threads per block) given the same pool size and having the lower

number of blocks. For instance, for a pool size of 4096, all the execution times are divided

by the execution time obtained using 16 blocks and 256 threads per block. For this pool

size, the obtained execution time using 32 blocks and 128 threads per block is almost half

(54%) of the execution time obtained using 16 blocks and 256 threads per block.

During the tuning process, the primary concern when choosing the number of blocks

per grid was keeping the entire GPU busy. Indeed, this parameter should be larger than

the number of multiprocessors of the used device so that all multiprocessors have at least

one block to execute. Thus, the number of blocks is �rst initialized as the nearest power

of 2 from the number of the multiprocessors detected. Namely on the C2050 GPU used

card, there are 14 multiprocessors so we started the number of blocks from 16.

Pool size #Blocks × #Threads 16×256 32×128 64×64 128×32 256×16

4096 Average normalized time 1 0.547 0.579 0.762 0.859

Pool size #Blocks × #Threads 16×512 32×256 64×128 128×64 256×32 512×16

8192 Average normalized time 1 0.503 0.524 0.606 0.722 0.808

Pool size #Blocks × #Threads 16×1024 32×512 64×256 128×128 256×64 512×32 1024×16

16384 Average normalized time 1 0.523 0.494 0.549 0.600 0.733 0.813

Pool size #Blocks × #Threads 32×1024 64×512 128×256 256×128 512×64 1024×32

32768 Average normalized time 1 0.948 0.898 0.969 1.083 1.336

Pool size #Blocks × #Threads 64×1024 128×512 256×256 512×128 1024×64

65536 Average normalized time 1 0.924 0.864 0.959 1.073

Pool size #Blocks × #Threads 128×1024256×512 512×256 1024×128

131072 Average normalized time 1 0.939 1.117 1.128

Pool size #Blocks × #Threads 256×1024 512×512 1024×256

262144 Average normalized time 1 0.922 0.866

Table 3.5: Average normalized execution times as a function of the number of blocks and

the number of threads per block.

The results show that the worst execution times are always obtained with a number of

blocks equal to 16. As quoted above, with less than 16 blocks some of the multiprocessors

of the device are idle. With 16 blocks all the multiprocessors are used, however there is

only one block per multiprocessor which does not allow to hide the latency of the memory

accesses. With more than 16 blocks the speed scales better. The results also show that for

all the pool sizes except 4096 a block size equal to 256 gives the best results. Therefore,

in the rest of the document, the block size (i.e. the number of threads per block) is equal

to 256 in all our experiments. The experimentally found best value for the block size (i.e.

256) has been consolidated using the CUDA occupancy calculator provided by NVIDIA

3.6. Experiments 51

[NVIDIA Corporation 2008]. This tool allows one to easily calculate the best block size

based on register and shared memory usage of the kernel.

3.6.2 Experimental protocol

To assess the performances of the di�erent proposed approaches presented in this docu-

ment, we calculate their speedups. These speedups are obtained by comparing the GPU-

accelerated B&B versions to a serial B&B version deployed on a single CPU core. However,

most of the Taillard's FSP instances used in our experiments are extremely hard to solve.

Indeed, the resolution of these instances requires several months of computation on one

CPU core and the optimal solutions of many of these instances are still unknown. For

example, the optimal solution of one of these instances de�ned by 50 jobs and 20 ma-

chines has been obtained after 25 days of computation using an average of 328 CPU cores

[Mezmaz 2007a, Mezmaz 2007b].

Employing the method de�ned in [Mezmaz 2007a, Mezmaz 2007b] allows to obtain

a random list L of subproblems such that the resolution of L lasts Tcpu minutes when

the serial B&B algorithm is initialized by (1) this list L and (2) the optimal solution

of L. If these two conditions are met, then, for all exploration strategies, (1) the serial

B&B algorithm always explores the same subproblems, and (2) the resolution time of

this serial algorithm is always the same regardless of the used strategy. To ensure that

the subproblems explored by the GPU and CPU B&B versions are exactly the same, we

initialize the pool of our GPU-based B&B with the same list L of subproblems used in

the serial version. If we assume the resolution of the GPU-based B&B lasts Tgpu seconds,

the reported speedup of the algorithm will be equal to Tcpu/Tgpu.

In summary, to �nd the speedup associated to an instance, we:

- compute, using the approach de�ned in [Mezmaz 2007a, Mezmaz 2007b], a list L of

subproblems such that the resolution of L lasts Tcpu minutes with a serial B&B,

- initialize the serial B&B with the subproblems of this list L,

- explore the subproblems of L with the serial B&B and get the number of explored

subproblems Ncpu,

- initialize the GPU-based B&B with the subproblems of the list L,

- explore the subproblems of L with the GPU B&B,

- get the GPU resolution time Tgpu and the number of explored subproblems Ngpu,

52 Chapter 3. GPU-accelerated parallel bounding applied to FSP

- check that Ngpu is exactly equal to Ncpu,

- and �nally compute the speedup associated to this instance by dividing Tcpu on

Tgpu (i.e. Tcpu/Tgpu).

Instance (No. of jobs x No. of machines) 20×20 50×20 100×20 200×20

Sequential resolution time (minutes) 10 50 150 300

Table 3.6: The serial resolution time of each instance according to its number of jobs and

machines

Table 3.6 gives, for each instance according to its number of jobs and its number

of machines, the used resolution time Tcpu with a serial B&B. For example, the serial

resolution time of each instance de�ned with 20 jobs and 20 machines is approximately

10 minutes. Let us recall that the computation time of the lower bound of a subproblem

de�ned with 20 jobs and 20 machines is on average less than the computation time of the

lower bound of a subproblem de�ned with 50 jobs and 20 machines. Therefore, as shown

in Table 3.6, the serial resolution time increases with the size of the instance in order to

be sure that the number of subproblems explored is signi�cant for all instances.

In the following section, an experimental study is presented with the objective to

evaluate the performance impact of the GPU-based parallel evaluation of the lower bounds,

the thread divergence reduction mechanisms and the data access optimization. For each,

we present the objectives of the experiments and report the obtained results.

Two parameters are considered: the problem instances (n×m) (as rows in the tables)

and the size of the pool of subproblems to be evaluated (as columns in the tables). The

�rst parameter gives information on the granularity of the thread computations. As the

complexity of the computation of the lower bound is O(m2 n. log n), for large problem

instances (i.e. large values of n and m) the grain size of the kernel executed by each

thread is much higher. The second parameter is useful to get information on the time

cost of the data transfer between CPU and GPU and on the total number of threads to

be triggered on GPU. For each couple of values associated to the two former parameters

(the problem instances and the size of the pool), each table/graphics reports the average

speedup corresponding to each group of 10 instances de�ned by the same number of jobs

and the same number of machines and to each pool size.

3.6. Experiments 53

3.6.3 Performance Evaluation of the GB&B

In this section, we experiment the e�ectiveness of the parallelization of the bounding

operator in a B&B algorithm on top of a GPU device. The objective here is to demonstrate

that the use of GPU for evaluating in parallel a selected pool of subproblems allows one

to signi�cantly accelerate the execution of the B&B.

The obtained experimental results are reported in Table 3.7. The results show that

evaluating in parallel the bounds of a selected pool, allows one to signi�cantly speedup the

execution of the B&B. Indeed, an acceleration factor up to 71.69 is obtained for the 200

× 20 problem instances using a pool of 262.144 (1024 blocks × 256 threads per blocks)

subproblems. The results show also that the parallel e�ciency grows with the size of the

problem instance. For a �xed number of machines (here 20 machines) and a �xed pool

size, the obtained speedup grows accordingly to the number of jobs. For instance, for a

pool size of 262.144, the acceleration factor obtained with 200 jobs (×71.69) is almost the

double of the one obtained with 20 jobs (×38.40). This behavior is due to the complexity

of the computation of the lower bound which is O(m2.n.logn). For large problem instances

(i.e. large values of n and m) the grain size of the kernel executed by each thread is much

higher which increases the GPU throughput.

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 43.83 58.23 59.68 61.21 66.75 68.30 71.69

100×20 42.59 57.18 58.53 59.95 60.52 65.70 65.97

50×20 41.57 56.15 55.69 55.49 55.39 55.27 55.14

20×20 38.74 46.47 45.37 41.92 39.55 38.90 38.40

Total average speedup 41.68 54.5 54.81 54.89 55.5 57.04 57.80

Table 3.7: Speedups for di�erent problem instances and pool sizes.

As far the pool size tuning is considered, we could notice that whatever the FSP

instance is, the pool size has an important impact on the performance of a GPU-based

B&B applied to FSP. Indeed, for a �xed number of machines and a �xed number of jobs,

the obtained speedup di�er accordingly with the size of the pool being o�-loaded to the

GPU. For instance for a pool size of 262.144, the acceleration factor obtained with 200

jobs is about 40% higher than the speedup reached with a pool size of 4096 subproblems.

The results show also that this parameter (the pool size) depends strongly on the problem

instance being solved. For example, for the instances with 50 jobs and 20 machines, the

54 Chapter 3. GPU-accelerated parallel bounding applied to FSP

best speedup is obtained with a pool size of 8192 subproblems while the best acceleration

is reached with a pool size of 262.144 nodes for the instances with 100 jobs over 20

machines. The best size of the pool is thus hard to be �xed a priori and so has to be

tuned dynamically with respect to the problem being solved.

3.6.4 Performances of the thread reduction approaches

The objective of the experimental study presented in this section is to evaluate the perfor-

mances of the proposed techniques (the data reordering method and the branch refactoring

mechanism) for reducing the thread divergence.

3.6.4.1 Impact of the data reordering technique

In the following, we study the impact of sorting the pool to be transferred to the device on

the performance of the GPU-accelerated B&B. The results, reported in Table 3.8, show

that reordering data makes the kernel running fast with a homogeneous pool than with

an unordered pool. Indeed, the approach improves the GPU acceleration compared to

the results reported in Table 3.7 whatever the instance and the pool size are. This is

expected since assembling the subproblems according to their level in the tree and thus

their set of unscheduled jobs (see Section 3.4.2) allows one to reduce the impact of the

loop instructions that depend on these values.

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 44.04 59.67 60.13 63.10 68.94 71.23 74.20

100×20 43.93 57.93 59.01 60.95 62.47 66.30 66.66

50×20 42.58 57.26 56.81 56.73 56.54 56.28 55.93

20×20 39.92 48.58 47.53 44.72 41.14 40.63 40.59

Total average speedup 42.61 55.86 55.88 56.37 57.27 58.61 59.35

Table 3.8: Speedups for di�erent problem instances and pool sizes using a sorted pool.

3.6.4.2 Evaluation of the branch refactoring mechanism

The objective here is to demonstrate that the thread divergence reduction mechanism

based on branch refactoring has an impact on the performance of the GPU-accelerated

B&B and to evaluate how this impact is signi�cant. Table 3.9 shows the experimental

results obtained using the refactoring approach presented in Section 3.4.2. The results

3.6. Experiments 55

show that the refactoring-based optimizations accentuate the GPU acceleration reported

in Table 3.7 and Table 3.8 and obtained without thread divergence reduction. For exam-

ple, for the instances of 200 jobs over 20 machines and a pool size of 262.144, the average

reported speedup is ×77.46 while the average acceleration factor obtained without thread

divergence management for the same instances and the same pool size is ×74.20 which

corresponds to an improvement of 4.21%. Such considerable but not outstanding improve-

ment is predictable, as claimed in [Han 2011], since the factorized part of the branches in

the FSP lower bound is very small.

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 46.63 60.88 63.80 67.51 73.47 75.94 77.46

100×20 45.35 59.49 60.15 62.75 66.49 66.64 67.01

50×20 44.39 58.30 57.72 57.68 57.37 57.01 56.42

20×20 41.71 50.28 49.19 45.90 42.03 41.80 41.65

Total average speedup 44.52 57.23 57.72 58.46 59.84 60.35 60.64

Table 3.9: Speedups for di�erent instances and pool sizes using thread divergence man-

agement.

In order to better investigate the impact of the thread divergence reduction, we draw

in Figure 3.4 the number of divergent branches within a warp measured using the Nvidia

Compute Visual Pro�ler [NVIDIA Corporation 2008] for the instances of 20 jobs over 20

machines. Counter values obtained from the Compute Visual Pro�ler are not the same

as numbers obtained by inspecting kernel code. They are best used to identify relative

performance di�erences between un-optimized and optimized code. These performance

counter values represent events within a thread warp; they do not correspond to individual

thread activity. Indeed, the divergent branch counter, we plot, is incremented by one at

each point of divergence in a warp: if at least one thread in a warp diverges via a data-

dependent conditional branch, the counter is incremented.

Figure 3.5 shows the time elapsed for executing the instructions contained in the

divergent branches also for the instances of 20 jobs over 20 machines. For measuring the

latter execution time we used the time function clock() which once executed in the device

function returns the value of a per-multiprocessor counter that is incremented every clock

cycle. Sampling this counter at the beginning and at the end of all conditional instructions,

taking the di�erence of the two samples and recording the result provides a measure of

56 Chapter 3. GPU-accelerated parallel bounding applied to FSP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

D
iv

er
ge

nt
 B

ra
nc

he
s

Iteration number in the branch-and-bound algorithm

Optimized version
Basic version

Figure 3.4: Number of divergent branches with and without thread divergence reduction.

the number of clock cycles taken by the device to completely execute these divergent

instructions.

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

(s
)

Iteration number in the branch-and-bound algorithm

Optimized version
Basic version

Figure 3.5: Elapsed time by the branches with and without thread divergence reduction.

The reported results in both �gures show that the number of divergent branches mea-

sured using the code optimization we proposed is on average three times less than the num-

ber measured without code optimizations. However, the di�erence between the measured

elapsed time for executing conditional instructions with and without code optimization is

very tiny (on average around 0.12s). As claimed above, this little di�erence in execution

3.6. Experiments 57

time is due to the factorized part of the branches in the FSP lower bound which is very

small and which explains the weakness of the obtained improvement.

Comparison of the branch refactoring technique with other software-

based methods

As an additional enhancement of the proposed techniques, the branch refactoring method

has been applied to the Monte Carlo simulation for Multi-Layered media (MCML) prob-

lem. MCML is a real-world medical application that models the scattering and absorption

of photons in the tissue. This application is highly parallelizable, where a large number

of photons are propagated independently, but according to identical rules and di�erent

random number sequences. The parallel nature of this special type of Monte Carlo sim-

ulation renders it highly suitable for execution on a GPU. This problem has been chosen

in order to compare the proposed contribution with the work proposed in [Han 2011].

In [Han 2011], the authors also intervene at code level and introduce some software-

based optimizations for reducing branch divergence in GPU programs: iteration delaying

and branch distribution. Iteration delaying improves the utilization of execution units in

the presence of a divergent branch within a loop. Branch distribution aims to reduce the

divergent portion of a branch by factoring out structurally similar code from the branch

paths. In our work, the focus is on transforming the if-then-else conditional instructions

which is more akin to the branch distribution method rather than the iteration delay

approach that targets the loop instructions.

Number of Photons 10000 50000 100000 500000 1000000 5000000

Percentage of improvement (%) 10.16 % 12.56 % 16.91 % 22.83 % 25.615 % 29.27 %

Table 3.10: Improvement obtained for the MCML problem using the branch refactoring

method.

For experimentation, the GPU implementation proposed in [Alerstam 2010] has been

used and tested on the same GPU device used in [Han 2011] namely a GTX 480 card.

MCML has one kernel where each thread is assigned a number of photons to be simulated.

Paths of the if-then-else instructions for which our transformations are applied, contain

on average 80 fused multiply add instructions. Table 3.10 reports the improvement per-

centage obtained when applying the branch refactoring method compared to the original

if-then-else instruction. The results show that the improvement grows accordingly to the

number of simulated photons. The acceleration achieved by our refactoring method varies

58 Chapter 3. GPU-accelerated parallel bounding applied to FSP

from 10% to 29% while the acceleration achieved by the branch distribution proposed in

[Han 2011] varies from 5.6% to 16.1%.

3.6.5 Performances of the data access optimizations

The objective of the experimental study presented in this section is to �nd the best map-

ping of the six data structures of the lower bound LB kernel on the memories of the GPU

device. As quoted in Section 3.5.1, such mapping depends on the sizes and access laten-

cies/frequencies of these data structures and the GPU memories. The focus of our study

is put on the global and shared memories.

Taking pro�t from the con�gurable storage space provided in the new Fermi-based

devices such as the Tesla C2050 we used in our experiments, the 64 KB of storage was

split between the shared memory and the L1 cache according to the experimented scenario.

• For the scenario were the data structures are put on the shared memory, the 64 KB

of available storage are split on 48 KB for shared memory and 16 KB for L1 cache.

• For the scenario where the data sets are put on global memory, we used 16 KB for

shared memory and 48 KB for L1 cache.

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 54.03 67.75 68.43 72.17 82.01 88.35 90.51

100×20 52.92 66.57 66.25 71.21 76.63 79.76 83.01

50×20 49.85 65.68 64.40 62.91 59.57 58.36 58.09

20×20 43.94 58.10 52.18 51.06 49.78 45.22 43.78

Average Speedup 50.18 64.52 62.56 64.33 66.99 67.92 68.84

Table 3.11: Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. PTM , RM , QM and MM are placed in the GPU shared memory.

JM and LM are copied to the global memory.

Table 3.11 reports the behavior of the speedup averaged on the di�erent problem

instances (sizes) as a function of the pool size when the matrices PTM , RM , QM and

MM are put on the shared memory and JM and LM copied to the global memory. The

table shows that the calculated acceleration grows on average with the growing of the size

of the instance (the number of jobs) in the same way as in Table 3.7. For example, for

the largest problem instance and a pool size of 262.144, the acceleration factor obtained

3.6. Experiments 59

is about ×90.51 faster than a single core-based execution while the best speedup for the

instance with 20 jobs is ×58.10.

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 63.01 79.40 81.40 84.02 93.61 96.56 97.83

100×20 61.70 77.79 79.32 81.25 86.73 87.81 88.69

50×20 59.79 75.32 72.20 71.04 70.12 68.74 68.07

20×20 49.00 60.25 55.50 52.88 50.47 49.11 47.82

Average Speedup 58.37 73.19 72.11 72.29 75.23 75.56 75.61

Table 3.12: Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. JM , RM , QM and MM are placed in the GPU shared memory.

PTM and LM are copied to the global memory.

Compared to the speedups calculated in Table 3.7, which correspond to the scenario

where all data structures are placed on the global memory, putting the matrix of processing

times PTM on the shared memory allows improvements whatever the instance and the

pool size are. For the instances of 100 jobs × 20 machines, the best speedup when all

matrices are on global memory is calculated with the pool size 262.144 and is about×67.01.

For the same group of instance and the same pool size, the speedup in this scenario is

×83.01 which corresponds to an enhancement of 19%.

Table 3.12 reports the behavior of the speedup averaged on the di�erent problem

instances (sizes) as a function of the pool size when the matrix JM , RM , QM and MM

are put on the shared memory and PTM and LM copied to the global memory. The

results show that placing JM on shared memory accelerate the execution of the B&B by

about 7% compared to the scenario where PTM is placed on shared memory and enables

acceleration of ×97.83 compared to a serial B&B.

Table 3.13 reports the behavior of the speedup averaged on the di�erent problem

instances (sizes) as a function of the pool size when the matrix PTM and JM are placed

together in shared memory and all others are placed in global memory. The results show

that placing JM and PTM on shared memory accelerates the execution of the B&B by

about 23% compared to the results in Table 3.7 where no data access optimization is

considered.

60 Chapter 3. GPU-accelerated parallel bounding applied to FSP

Problem instance Pool size 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 66.13 87.34 88.86 95.23 98.83 99.89 100.48

100×20 65.85 86.33 87.60 89.18 91.41 92.02 92.39

50×20 64.91 81.50 78.02 74.16 73.83 73.25 72.71

20×20 53.64 61.47 59.55 53.39 52.40 50.03 49.37

Average Speedup 62.63 79.16 78.51 77.99 79.11 78.79 78.73

Table 3.13: Speedups for di�erent problem instances and pool sizes obtained with data

access optimization. PTM and JM are placed together in shared memory and all others

are placed in global memory.

3.6.6 Overhead characterization of the GPU-accelerated parallel

bounding operator

In order to further analyze the obtained speedups and to characterize the overhead induced

by the host-device communications, we performed a temporal analysis of the steps involved

in the GPU-based parallel evaluation of bounds:

- branching the subproblems on CPU.

- copying the pool from the host to the device.

- launching the kernel.

- copying the bounds from the device back to the host.

- assigning the bounds values to the corresponding subproblems.

To obtain an accurate assessment of the overhead, we used a high-level pro�ling as we

computed the percentage of time consumed by each of the former steps for di�erent FSP

Taillard's problem instances. The obtained results are reported in Table 3.14.

The results show that the pre-treatment (branching the subproblems and copying

them to GPU) and the post-treatment (copying the resulting bounds and assigning them

to the corresponding subproblems) of the pool transfered to the device consume the major

part of the time necessary for the evaluation of bounds on GPU. This observation is often

encountered in GPU applications. Indeed, generally speaking, host-device synchronization

is known to be a bottleneck that impacts the overall performance of GPU-accelerated

applications. Therefore, as a further enhancement of our approach, the optimization of

3.7. Conclusion 61

(Nb. jobs × Nb. machines) Branching Copy_Pool Kernel Copy_bounds Assignment

on_CPU (H2D) (D2H) of_bounds

200×20 39.11% 47.92% 0.0031% 5.31% 7.65%

100×20 39.75% 43.96% 0.0033% 5.07% 11.21%

50×20 42.41% 33.89% 0.0045% 4.52% 19.18%

20×20 40.62% 24.59% 0.0062% 2.75% 32.04%

Table 3.14: Percentage of time consumed by each step of the parallel bounding approach.

the transfer of the subproblems and their associated lower bound values between CPU

and GPU should be addressed.

3.7 Conclusion

In this chapter, we have presented the design of the GPU-accelerated parallel bounding

operator we proposed to accelerate the execution of B&B algorithms. We particularly

identi�ed two main challenges that arise when revisiting the FSP lower bound kernel on

GPUs. Indeed, because bounding is a problem-speci�c operator, it leads to a strongly

input-dependent program behavior that impacts the accesses to the memory hierarchy of

the GPU and conducts to thread divergence which harms the global throughput of the

algorithm.

- Designing a GPU-accelerated B&B based on the parallel evaluation of

bounds: In the proposed GPU-based approach (GB&B), the selection, branching

and pruning of the subproblems are performed on CPU and the evaluation of their

lower bounds (bounding operation) is executed on the GPU device. Pools of subprob-

lems are o�-loaded from CPU to GPU to be evaluated by blocks of threads. After

evaluation, the lower bounds are returned to the CPU. The experimental results

show that accelerations up to ×71.69 can be obtained especially for large problem

instances and large pools of subproblems.

- Mechanisms for reducing the number of divergent threads within a warp:

We proposed two mechanisms that aim to reduce the number of divergent threads

during the execution of the FSP lower found function on GPU. The �rst thread-

data reordering method target the divergence that is induced by the loop constructs.

The second approach we called branch refactoring aims at decreasing the number of

divergent branches that result from the if-then-else instructions. The experimental

results show that the proposed techniques improve the speedup over a serial version

62 Chapter 3. GPU-accelerated parallel bounding applied to FSP

of the B&B up to ×77.46.

- Memory access optimizations: We proposed a data access optimization approach

that takes into account both the characteristics of the tackled instance and the

memory constraints of the GPU device. The proposed data access pattern is based

on a preliminary analysis of the FSP lower bound function. Such analysis allowed

us to identify six data structures for which we have proposed a complexity analysis

in terms of memory size and access frequency. Due to the limited size of the shared

memory the matrices do not �t in all together. According to the complexity study,

the recommendation is to put in the shared memory the Johnson's and the processing

time matrices (JM and PTM) if they �t in together. Otherwise, the whole or a

part of the Johnson's matrix has to be put in priority in the shared memory. The

other data structures are mapped to the global memory. Such recommendation has

been con�rmed through extensive experiments. The optimizations obtained with

the proposed approaches allowed us to achieve accelerations up to more than ×100.

Although, the proposed GPU-accelerated parallel bounding allows good speedups com-

pared to a serial B&B, further improvements of the obtained results could be reached by

optimizing the management of the pool of subproblems o�-loaded to the device. First,

the size of the pool should be tuned dynamically in respect to the problem being solved

and to the used hardware con�guration. Second, the transfer latency of the subproblems

and their associated lower bound values between CPU and GPU should be minimized.

Chapter 4

GPU-based parallel tree exploration

Contents

4.1 Introduction . 64

4.2 An adaptive selection operator based on a dynamic parameter

tuning heuristic . 66

4.3 The multiple-nodes driven GPU-accelerated approach 68

4.3.1 Branching Operator . 70

4.3.2 Pruning Operator . 70

4.3.3 Synthesis . 71

4.4 The single-node driven GPU-accelerated B&B 73

4.4.1 Branching Operator . 75

4.4.2 Pruning operator . 76

4.4.3 Synthesis . 77

4.5 Experiments . 78

4.5.1 Performance evaluation of the ASH heuristic 78

4.5.2 Performance evaluation of the proposed GPU-based approaches . . . 79

4.5.3 Impact of the parallelization of each operator of the single-node

driven approach . 80

4.6 Conclusion . 82

Main publications related to this chapter

I. Chakroun and N. Melab.

Operator-level GPU-accelerated Branch and Bound algorithms. International Conference

on Computational Science, ICCS 2013. Barcelona, Spain, June 5-7, 2013.

I. Chakroun and N. Melab.

An Adaptive Multi-GPU based Branch and Bound. A Case Study: the Flow-Shop

64 Chapter 4. GPU-based parallel tree exploration

Scheduling Problem. 14th IEEE International Conference on High Performance Com-

puting and Communications, HPCC'12. United Kingdom, Liverpool, June 24-27, 2012.

4.1 Introduction

In this chapter, we extend the design and implementation of the former presented GPU-

accelerated B&B based on the parallel evaluation of bounds (GB&B). The proposed op-

timizations target the management of the pool of subproblems that is o�-loaded to the

GPU. Indeed, the experimental results obtained in Section 3.6.6 and the temporal analysis

performed in Section 3.6.3, have shown that the pre-treatment and the post-treatment of

the pool transfered to the device consume the major part of the time necessary for the

evaluation of bounds on GPU and that the size of this pool has an important impact on

the overall throughput of the algorithm.

Having in mind these observations, we �rst introduce an adaptive version of the

(GB&B) where the selection operator is revisited so that the size of the selected pool

is tuned dynamically according to the problem being solved and to the targeted hard-

ware con�guration. For dealing with this issue, we propose an empirical heuristic for

parameters auto-tuning at runtime. As a second optimization, we tackle the CPU-GPU

communication bottleneck that results from the transfer of the pool of subproblems and

their associated lower bound values between the host and the device. Indeed, even if the

bounding operator is highly time-consuming (97% to 99% of the total execution time),

there is no guarantee that its GPU-based acceleration will signi�cantly improve the per-

formances of the B&B. This parallel bounding-based algorithm requires, in fact, some

additional tasks which induce a notable overhead: the preparation of the pool of sub-

problems on which the bounding operator is applied, the transfer of the pool from CPU

to GPU, and the transfer of the lower bounds from GPU to CPU. Therefore, the second

contribution of this chapter is to extend the GB&B approach to minimize such overhead.

For achieving optimized CPU-GPU communications (see Section 2.4.3), our idea is to

revisit on GPU the parallel tree exploration model which is re�ected by the parallelization

on GPU of the branching and pruning operators as well even if they consume less time

than the bounding operator such as demonstrated in Section 3.3. Since they allow to re-

duce the cost of the data transfer between CPU and GPU, higher performances should be

achieved. Indeed, knowing that the peak bandwidth between the internal device memory

is much higher than the peak bandwidth between host memory and device memories, it is

intelligible to minimize data transfer between the host and the device even if that means

running kernels on the GPU that do not apparently demonstrate great speed-up compared

4.1. Introduction 65

with running them on the host CPU. Therefore, we investigate two di�erent approaches

based on the parallel tree exploration paradigm for performing full B&B operators on

GPUs. The �rst multiple-nodes driven approach consists in exploring in parallel di�er-

ent sub-spaces of the tree. Selected parent nodes from the tree are assigned to di�erent

GPU threads which locally execute their own B&B. Each GPU thread locally performs

the branching, bounding and pruning operators on multiple nodes and returns back to

the host the list of promising nodes that would be explored in the following iterations.

The second single-node driven approach consists in transforming the unpredictable and

irregular workload associated to the B&B search tree (see Section 2.2.3) into data-parallel

kernels optimized for the SIMD-based execution model of GPUs. All GPU threads com-

pute in parallel the same amount of work on a single tree node. Using persistent data

structures, the di�erent operators are applied in parallel on a pool of unexplored nodes.

At each iteration, parent nodes are selected and assigned to the GPU threads. First, the

branching operator is applied in parallel: each thread generates a unique child and inserts

it into a global pool. The underlying pool is used by the bounding operator which assigns

a lower bound to each tree node. Finally, pruning is applied by each thread to decide

whether to delete the assigned node or to turn it back to the host. Both approaches are

experimented and their associated performances are compared to each other.

An e�cient GPU-accelerated B&B algorithm is not only akin to a regular data-

parallelism application but should also provide optimal values of algorithmic parameters

which represent di�erent variations and con�gurations of the algorithm. The size of the

selected pool of subproblems is considered as an algorithmic parameter of our GPU-based

B&B since it does not change the result of computations but has an impact on the overall

performance. The empirical determination of the optimal values of the number of blocks

and number of threads blocks presented in Section 3.6 was our �rst contribution towards

an e�cient measurement of the size of the pool. As a additional improvement of the size

tuning, we propose an empirical heuristic for parameters auto-tuning at runtime. The

heuristic dynamically adjusts the size of the pool to be o�-loaded to the GPU according

to the tackled problem and to the used hardware con�guration.

The remainder of this chapter is structured as follows: Section 4.2 introduces the

adaptive selection operator based on a proposed auto-tuning heuristic. Section 4.3 presents

the multiple-nodes driven GPU-accelerated approach we investigate for accelerating the

traversal of the tree search of the B&B. In Section 4.4, the single-node driven GPU-

accelerated B&B is described and details about the parallelization of each operator are

provided. Finally, in Section 4.5 details about the performed experimental study are given

and the obtained results are discussed.

66 Chapter 4. GPU-based parallel tree exploration

4.2 An adaptive selection operator based on a dynamic pa-

rameter tuning heuristic

One of the challenging concerns we considered with the aim to make e�cient the GPU-

based B&B is supplying the device with a large pool of subproblems. Indeed, experiments

presented in Section 3.6 show that the proposed parallel bounding model is e�cient when

large pools (thousands of subproblems) are considered whatever the size of the FSP in-

stances being tackled is. As a solution for the problem, we come up with a new selection

strategy. Rather than selecting a single pending node as in traditional B&B algorithms,

our approach assumes that a pool of nodes is selected from the pending nodes list (see

Figure 4.1).

1 2 4 5

3 6

1 2 4 5

3 6

pool to evaluate using

Exploration

GPU

1 6

LB LB

Node . . . Node

61

Elimination

root node

inner nodes

pending (unnexplored) nodes

CPU

predefined selection strategy

T
0

T
m

T
1

H
ie

ra
rc

hi
ca

l M
em

or
y

L
B

 C
om

pu
tin

g
Fu

nc
tio

n

Figure 4.1: The overall architecture of the GPU-accelerated B&B algorithm based on the

parallel evaluation of bounds. The approach introduces two main adaptations compared

to a traditional B&B : selection of thousand of nodes and evaluation in parallel.

At each iteration of the algorithm, a pool of unexplored nodes is selected from the

search tree according to their depth. Deepest pending nodes are the �rst selected for

being branched. As explained before, that pool of subproblems, corresponding to the

generated tree nodes and resulting from the branching operation, is o�-loaded from CPU

4.2. An adaptive selection operator based on a dynamic parameter tuning

heuristic 67

to GPU to be evaluated by blocks of threads.

As identi�ed in Section 3.6, the size of the pool to be o�-loaded to the GPU has an

important impact on the performance of the algorithm. This parameter depends strongly

on the problem instance being solved. It is thus hard to be �xed a priori and so has to

be tuned dynamically depending on the problem. For dealing with this issue, we propose

an empirical heuristic, we called it Adaptive Selection Heuristic (ASH), for parameters

auto-tuning at runtime. Algorithm 3 gives the general template for this heuristic. The

main idea of this approach is to send the pending subproblems using di�erent-sized pools

to the GPU device during the �rst iterations of the B&B algorithm. For each iteration, the

e�ciency of the used pool is computed and the size of the pool to o�-load to the GPU is

doubled. After a �xed number of trials, the better e�ciency overall selected con�gurations

is used for the remaining iterations of the algorithm.

Since tunning the size of the pool to submit to the GPU is equivalent to adjusting the

number of threads to be triggered, ASH �rst identi�es the characteristics of the used hard-

ware. It determines the maximum con�guration that can be used, namely the maximum

number of threads and blocks that can be run in parallel over the GPU card. Indeed, in

some cases, when a thread block allocates more registers than are available on a multi-

processor, the execution of the kernel fails. During all the tuning process, the number of

threads per block is set using the occupancy calculator tool provided by NVIDIA which

allows the programmer to easily calculate the best thread block size based on register and

shared memory usage of a kernel. Regarding the number of blocks per grid, our primary

concern when choosing this parameter was keeping the entire GPU busy. Indeed, the

number of blocks in a grid should be larger than the number of multiprocessors so that

each of them has at least one block to execute. Thus, the number of blocks is �rst initial-

ized with the number of multiprocessors detected on the device. This number is doubled

repeatedly after a certain number of iterations (�xed experimentally) until the number of

threads per block × the number of blocks doesn't exceed the maximum number of active

threads allowed on the device.

So far, our empirical search for the best e�ciency is coarse-grained. Indeed, doubling

the size in every step, and stopping when the e�ciency is no longer improved, or when the

limits of the GPU have been reached might �nd an imprecise upper bound of the perfor-

mance. For this reason and in order to make the tuning more thorough, we considered to

also perform a binary search around the best pool size found so far. When the maximum

number of active threads is reached, the iterative doubling process terminates and returns

the best found con�guration parameters. Thereafter, the heuristic computes a downwards

and an upwards search around the best pool size found so far. The best e�ciency overall

68 Chapter 4. GPU-based parallel tree exploration

selected con�gurations is used for the remaining iterations of the algorithm.

Algorithm 3 Template of the Adaptive Selection Heuristic (ASH).

Data: nb_iterations;

Result: best_number_of_threads

max_nb_threads = Detect_GPU_Characteristics();

nb_threads = Use_Cuda_Occupancy_Calculator();

nb_blocks := Get_Number_Of_Multiprocessors();

while not_empty_tree() do

while pool_size ≤ nb_threads × nb_blocks do
take_sub_problem();

end

Iteration pre-treatment on host side;

Kernel evaluation on GPU;

Iteration post-treatment on host side;

if (iteration % nb_iterations = 0) and ((nb_threads × nb_blocks) ≤

max_nb_threads) then

if Is_best_pool_improved() then
best_number_of_threads = nb_threads × nb_blocks ;

end

nb_blocks := nb_blocks * 2 ;

end

else
Compute_Binary_Search_Around_Best_Pool() ;

end

iteration := iteration + 1 ;

end

As a second optimization towards an e�cient management of the pool of subproblems

o�-loaded to the GPU, we tackled the CPU-GPU communication bottleneck that results

from its transfer between the host and the device. The �rst approach we investigate is

presented in the following section.

4.3 The multiple-nodes driven GPU-accelerated approach

The �rst multiple-nodes driven approach we proposed for designing e�cient B&B on

GPUs, where the main operators are parallelized, consists in dividing the global search

4.3. The multiple-nodes driven GPU-accelerated approach 69

space into disjoint sub-spaces that are explored in parallel by the GPU threads. The

approach is an extension of the model proposed in [Carneiro 2011]. As illustrated in

Figure 4.2, in the considered GPU-based schema, a set of root nodes is selected from the

pending nodes list according to their depth: deepest pending nodes are selected �rst.

Figure 4.2: The overall architecture of the multiple-nodes driven GPU-accelerated B&B

algorithm.

The selected pool of nodes is o�-loaded to the GPU where to each thread is assigned

a node. Each thread builds its own local search tree by applying the branching, bounding

and pruning operators to the assigned node. The resulting nodes are moved back to the

host where the promising nodes are inserted into the pending nodes set. The non promising

nodes are kept on the device memory and deleted there. Figure 4.2 illustrates the overall

architecture of the multiple-nodes driven GPU-accelerated B&B algorithm.

70 Chapter 4. GPU-based parallel tree exploration

4.3.1 Branching Operator

Because all threads in a grid execute the same kernel function, they rely on unique coor-

dinates to distinguish themselves from each other and to identify the appropriate portion

of the data to process. As a remainder, these threads are organized into a two-level hier-

archy using unique coordinates blockIdx (for block index) and threadIdx (for thread index)

assigned to them by the CUDA runtime system. Therefore, de�ning an appropriate map-

ping mechanism is a critical step since it de�nes for each thread its assigned role, assigns

speci�c input and output positions and determines the work unit to perform.

Mapping strategy

In our case, each node (subproblem) from the selected set is mapped to a thread to ensure

that each sub-space of the solution space is evaluated concurrently and is disjoint from

others. As detailed in Algorithm 4, thread i branches the node i, thread i+1 branches the

nodes i+1, and so on. For each node i from the pending set, the number of subproblems

to generate is calculated and an output pool where the generated nodes are written is

allocated accordingly. Each thread writes the nodes it generates in the allocated range.

In particular, thread i writes the generated nodes according to the number of children of

the thread i− 1. For instance, if thread 1 generates 3 children, and thread 2 generates 5

children then thread 2 starts writing in the output array from the position 3 and thread 3

starts writing from the position 8, etc. This pattern of writing in global memory locations

leads to uncoalesced memory accesses which signi�cantly penalize the throughput of the

kernel execution.

4.3.2 Pruning Operator

The Johnson's algorithm used for computing the FSP lower bound assumes to assign jobs

at the beginning and at the end of a partial schedule associated with a subproblem (see

Section 3.2). Therefore, regardless of its level in the tree, each internal node has two

pools of children: the �rst pool of children is obtained by scheduling jobs at the beginning

of the partial schedule while the second results from scheduling jobs at the end of the

partial schedule. In the schedule presented in Figure 4.3, jobs 1 and 2 are scheduled at

the beginning, jobs 9 and 10 are scheduled at the end, and the other jobs are not yet

scheduled.

The two pools of generated nodes are called Begin and End. As detailed in Algo-

rithm 4, if the generated child corresponds to a schedule of a job at the beginning of the

partial permutation, the child is inserted is the pool Begin otherwise it is put in the pool

4.3. The multiple-nodes driven GPU-accelerated approach 71

Figure 4.3: Representation of a partial schedule associated with a subproblem. The indexes

between brackets correspond to unscheduled jobs.

End. Then, thread i computes the lower bound value for each child of the node i and

writes the resulting nodes into the output pool in the position speci�ed by its index. For

pruning nodes, thread i compares the value of the bound of each node of the pool Begin

and End to the best solution found so far best-sol and decides which pool to move back

to the CPU and which pool to delete.

Algorithm 4 Kernel of the multiple-nodes driven GPU-accelerated B&B.

Data: Fathers = Parents nodes.

Result: Children = Nodes to be explored in the next iterations.

thread_idx = Get thread_id() ;

father = fathers[thread_idx];

output_position = estimated_children[thread_idx - 1];

for j ∈ [father.index_start + 1 , father.index_end] do

child_begin = Generate_child_Begin(j);

child_end = Generate_child_End(j);

Evaluate_Lower_Bound(child_begin);

Evaluate_Lower_Bound(child_end);

end

if Choose_Begin_End() == Begin then
Prune_End();

Write_Begin_in_Children(output_position);

end

else
Prune_Begin();

Write_End_in_Children(output_position);

end

4.3.3 Synthesis

Using the above described approach, where each thread generates all the children of its

root node, not only leads to uncoalesced memory accesses (see Section 2.4.2) but also

72 Chapter 4. GPU-based parallel tree exploration

conduct to an unbalanced workload between threads. As demonstrated in Section 2.2.3,

during the exploration of the B&B tree, the number of new generated nodes and the

number of promising nodes are variable and depend on the level of the tree being explored

and on the best solution found so far best-sol. Therefore, due to such unstructured and

unpredictable nature of the search tree, some threads might stay idle while other threads

are overloaded. For instance, let us consider the example below which is extracted from

the template of Algorithm 4 and used in the implementation of the branching operator.

Let us suppose here that for 32 threads (father.index_end - father.index_start) is equal

to 100 for the �rst thread and to 10 for the other 31 threads. In this case, all threads will

�nish the �rst 10 iterations together. Two passes will be used to execute each of the 90

following iterations, one pass for those that take the iteration and one for those that do

not. All this extra-time (compared to an optimized execution) elapsed because of thread

divergence (see Section 2.4.1), decrease the performances of the GPU-accelerated parallel

tree exploration approach.

for j ∈ [father.index_start + 1 , father.index_end] do

child_begin = Generate_child_Begin(j);

child_end = Generate_child_End(j);

Evaluate_Lower_Bound(child_begin);

Evaluate_Lower_Bound(child_end);

end

Compared to the approach proposed in [Carneiro 2011] which assumes that the pruning

operator is performed on the CPU side, in the schema we suggest the pruning operator is

also applied on the GPU device. Moreover, in [Carneiro 2011] the size of the pool to be

o�-loaded to the GPU is determined statically without taking into consideration neither

the instance of the problem nor the underlying hardware con�guration. In our approach,

the size of the pool to be transfered to the device is calculated dynamically at runtime

depending on the instance being solved and the used GPU con�guration using the heuristic

ASH described in Section 4.2.

In the following section, the second proposed template for the GPU-based parallel tree

exploration is detailed. While the multiple-nodes driven approach is akin to an irregular

computation-based model, the idea of the second proposed approach is to transform the

unpredictable and irregular workload associated to the exploration of the B&B tree (see

Section 2.2.3) into a sequence of regular data-parallel kernels applied to a set of nodes and

optimized for the SIMD-based execution model of GPUs.

4.4. The single-node driven GPU-accelerated B&B 73

4.4 The single-node driven GPU-accelerated B&B

The second GPU-accelerated B&B we propose consists in launching consecutive data-

parallel kernels that perform in parallel B&B operators. The main asset of this approach

is that it transforms an irregular and unpredictable tree traversal into regular even tasks

to be performed in parallel. All GPU threads compute in parallel the same amount of

work on a single node.

Figure 4.4: The overall architecture of the parallel single-node driven GPU-accelerated

B&B algorithm.

As illustrated in Figure 4.4, the proposed algorithm proceeds as follows: at each it-

eration, a pool of root subproblems is selected on CPU host (according to the strategy

described in Section 4.2) from the tree and o�-loaded to the GPU where the branching

operator is applied �rst: each thread generates a unique child and inserts it into a global

pool. Here, it is important to highlight that we take care of using persistent data structures

in order to minimize the data transfers between the CPU and the GPU.

74 Chapter 4. GPU-based parallel tree exploration

Algorithm 5 Template of the single-node driven GPU-accelerated B&B based on the

parallelization of the branching, bounding and pruning operators.

Create the initial problem;

Insert the initial problem into the tree;

Set the Upper_Bound to +∞;

Set the Best_Solution to ∅;

GPU_Pool_Size = Run_Heuristic_For_Tuning_Pool_Size();

while not_empty_tree() do

Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Upper_Bound = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else

if Pool_Of_Fathers.size() < GPU_Pool_Size then
Pool_Of_Fathers.push(Sub_Problem);

end

else
Copy_Fathers_Pool_To_GPU();

Copy_Number_Estimated_Children_Pool_To_GPU();

Branching_Kernel<<>>;

Bounding_Kernel<<>>;

Pruning_Kernel<<>>;

Copy_Promising_Children_Pool_From_GPU();

Insert_Promising_Children();

end

end

end

Hence, the generated pool of children is kept in the device memory and used by the

second kernel which implements the parallel evaluation of bounds and where each thread

assigns a lower bound to a node. Then, the evaluated pool of children is again kept in

the device memory (so not moved back to the CPU) where the pruning operator is run

4.4. The single-node driven GPU-accelerated B&B 75

in parallel to decide which nodes should be moved back to the CPU and which nodes

should be deleted. Algorithm 5 gives the general template of the single-node driven GPU-

accelerated B&B.

4.4.1 Branching Operator

In order to ensure that all threads execute exactly the same amount of work, we rede�ned

the serial branching operator so that each active thread generates only one of the children

of its root node.

Mapping strategy

While in the multiple-nodes driven method, the thread i generates all the children of its

root node, in this approach thread i only generates one child of its root node according to

its unique identi�er. Apart from the pool of root nodes, a pool containing the number of

children of each root node is o�-loaded to the device. As illustrated in Algorithm 6, using

its unique identi�er, each thread identi�es its root node, which child it should generate and

where to write the newly generated node in the global output structure stored in the device

global memory. Compared to the multiple-nodes driven method, this way of applying in

parallel the branching operator prevents from the thread divergence phenomenon explained

in Section 2.4.1 since no data-dependent loop instructions occur and all threads execute

exactly the same �ow of instructions.

Algorithm 6 Kernel of the parallel branching operator on GPU.

Data: Fathers = Parents nodes.

Result: Children = Nodes to be explored in the next iterations.

thread_idx = Get_thread_id();

father = Get_father(thread_idx,Fathers);

generated_child = Generate_child(thread_idx,father);

Write_Generated_Children(thread_idx,generated_child,Children);

Apart from ensuring an even workload distribution among running threads, another

major asset of the considered approach is that it prevents from the uncoalesced accesses to

the global memory of the GPUs since its memory accesses constitute a contiguous range

of addresses. Indeed, thread i writes the generated child node i in the position i (thread

with idx = 1 generates one child and writes it in the position 1, thread with idx = 2

generates one child and writes it in the position 2, etc..). Figure 4.5 exhibits an example

of the coalesced access to the output structure performed in the branching kernel of the

76 Chapter 4. GPU-based parallel tree exploration

second approach and the scattered access in the branching operator performed in the

multiple-nodes driven approach.

Figure 4.5: Comparison of memory location accesses in the multiple-nodes driven and

single-node driven GPU-based branching operator.

4.4.2 Pruning operator

In order to reduce the overhead induced by bringing the pool back and forth on GPU,

the pruning operator is performed on top of GPU. This way, the time of transfering the

resulting pool from the GPU to the CPU is reduced since the non promising subproblems

are kept in the GPU memory and deleted there. To do so, the pool of bounded children

is kept in the device memory where the elimination operator is applied by each thread in

parallel to decide which nodes should be moved back to the CPU and which nodes should

be deleted.

Since the Johnson's algorithm (used for computing the lower bound of the FSP) pro-

ceeds iteratively by assigning jobs at the beginning and at the end of a partial schedule

(see Section 3.2), we de�ned two pools Begin and End where threads write the generated

and evaluated children according to their indexes. As illustrated in Algorithm 7, if the

generated child corresponds to a schedule of a job at the beginning of the partial permu-

tation the node is written in the pool Begin else in the pool End. To each thread are

assigned the two pools of children Begin and End corresponding to a same parent node.

Using the value of best-sol, threads estimate which of the pools Begin and End are able to

produce more promising nodes. The best pool is moved back to the CPU and inserted into

the pending nodes list, the remaining pool is pruned in the GPU. This way of eliminating

4.4. The single-node driven GPU-accelerated B&B 77

subproblems on the GPU level alleviates the overhead induced by bringing data back to

CPU.

Algorithm 7 Kernel of the parallel pruning operator on GPU.

Data: Bounded_nodes = Nodes returned by the bounding kernel.

Result: Promising_nodes = Nodes to be explored next.

thread_idx = Get_thread_id() ;

parent_node = Get_father(thread_idx);

begin_pool = Get_begin_pool(thread_idx, parent_node, Bounded_nodes);

end_pool = Get_end_pool(thread_idx, parent_node, Bounded_nodes);

if choose_pool(begin_pool, end_pool) == begin_pool then
write(begin_pool, Promising_nodes);

end

else
write(end_pool, Promising_nodes);

end

4.4.3 Synthesis

A similar design of this approach is proposed in [Lalami 2012] where a GPU-accelerated

B&B based on a parallel evaluation of bounds model coupled with a parallel tree explo-

ration model where only the branching operator is parallelized. The algorithm is applied

to the knapsack problem which is solved using a binary search tree: at each level of the

tree, a parent node has only two children. This characteristic implies that the workload

computed by each thread is the same and no irregular task balancing occurs. However for

FSP, as demonstrated in Section 2.2.3, applying a B&B induces a highly irregular workload

due on the one hand to the unpredictable number of branches pruned by the algorithm

and on the other hand to the representation of FSP. At each level of the tree, the number

of new generated nodes and the number of promising nodes are variable and depend on

the level of the tree being explored and on the best solution found so far. As exploration

strategy, the author uses a breadth-�rst search strategy which means that the pool of

nodes that is o�-loaded to the GPU are from the same tree level unless from successive

levels. Compared to a depth-�rst selection strategy, using breadth-�rst one emphasizes

the regular amount of the work �ow that is assigned to each thread. In [Lalami 2012], the

size of the pool o�-loaded to GPU is statically determined and the pruning is performed

on the CPU side.

78 Chapter 4. GPU-based parallel tree exploration

4.5 Experiments

In the following, the performances of the ASH heuristic and of both multiple-nodes and

single-node driven approaches are evaluated.

4.5.1 Performance evaluation of the ASH heuristic

The objective of the experimental study presented in this section is to demonstrate that

the use of the adaptive selection operator is e�cient and that it returns the best pool size

that allows to take the most bene�t from the use of the GPU.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Best-Pool 8192

Best-Pool 8192

Best-Pool 262144

Best-Pool 262144

Figure 4.6: The speedups and corresponding used pools obtained using the auto-tuned

algorithm.

Figure 4.6 depicts the speedups obtained for the di�erent problem instances using

the GB&B. For each problem instance we report the best pool returned by the proposed

dynamic parameter tuning heuristic. To validate the obtained results, we run several

experiments using di�erent pre-�xed pool sizes. The corresponding results are reported in

Table 4.1. The rows correspond to the problem instances de�ned by (Number of jobs ×

Number of machines) and the columns correspond to the size of the pool of subproblems

evaluated in parallel.

The reported results con�rm that the best speedups measured when varying the sizes

of the pool are obtained with the same pool sizes returned by ASH (see Figure 4.6). For

example, the best speedup for the 200 × 20 instances is obtained with a pool size of 262.144

which is the best pool size the proposed heuristic calculated for the same instances.

4.5. Experiments 79

Problem instance 4096 8192 16384 32768 65536 131072 262144

(No. of jobs × No. of machines) Average speedup for each group of 10 instances

200×20 66.13 87.34 88.86 95.23 98.83 99.89 100.48

100×20 65.85 86.33 87.60 89.18 91.41 92.02 92.39

50×20 64.91 81.50 78.02 74.16 73.83 73.25 72.71

20×20 53.64 61.47 59.55 53.39 52.40 50.03 49.37

Table 4.1: Parallel speedup measured for di�erent problem instances and pool sizes without

using the ASH heuristic.

4.5.2 Performance evaluation of the proposed GPU-based approaches

The objective of the experimental study presented in this section is to evaluate and com-

pare the performances of both the multiple-nodes driven GPU-accelerated B&B and the

single-node driven GPU-based B&B. The adaptive selection operator is used for both

approaches.

Table 4.2 reports the speedups obtained for the di�erent problem instances using the

two approaches presented in Section 4.4 and Section 4.3. The rows correspond to the used

approach while the columns correspond to the experimented problem instance de�ned by

(Number of jobs × Number of machines). The reported results show that executing the

operators of the B&B in parallel allows to signi�cantly speedup the execution of a B&B

and that it is by far more e�cient than exploring the B&B tree in parallel on GPU.

Number_of_jobs × Number_of_machines 20×20 50×20 100×20 200×20

Multiple-nodes driven approach 42.94 37.12 27.59 12.94

Single-node driven approach 79.42 128.41 144.13 160.41

Table 4.2: Speedups reported for the two approaches of the GPU-based B&B.

Compared to a single core CPU-based execution, the single-node driven approach al-

lows signi�cant accelerations reaching up to (×160.41) for the 200 × 20 problem instances.

The same behavior observed for the GB&B approach (see Section 3.3) is perceived here

since the obtained speedup with the single-node driven approach grows with the size of

the problem instance. For a �xed number of machines, the speedup grows accordingly

with the number of jobs. For instance, the speedup calculated with 200 jobs (×160.41)

is higher than the one calculated with 100 jobs (×144.13), 50 jobs (×128.41) and 20 jobs

(×79.42). This property is mainly due to the complexity of the computation of the lower

80 Chapter 4. GPU-based parallel tree exploration

bound which is O(m2.n.log(n)). Indeed, for large problem instances the grain size of the

kernel executed by each thread is much higher which increases the GPU throughput.

Compared to the multiple-nodes driven GPU-accelerated B&B approach, the single-

node driven approach is by far much more e�cient. For example, while the latter approach

reaches speedup of ×160.41 for the instance with 200 jobs on 20 machines, a speedup

of only ×12.94 is obtained with the multiple-nodes driven approach. Moreover, on the

contrary of the single-node approach, in the multiple-nodes driven GPU B&B the speedups

decrease when the problem instance becomes higher. Remember here that while in the

single-node approach all threads compute only one node each whatever the permutation

size is. In the multiple-nodes driven approach, each thread branches all the nodes of its

root node. Therefore, the bigger the size of the permutation is, the bigger the amount of

work performed by each thread is and the bigger the di�erence between the workloads is.

Indeed, let us suppose that for the instance with 200 jobs, the thread 0 handles a node

from the level 2 of the tree and the thread 100 handles a node from the level 170 of the

tree. In this case, the thread 0 generates and evaluates about 6 times more nodes than

the thread 100. The problem in this example is that the kernel execution would last until

the thread 0 �nishes its work while the other threads might have ended their works and

stayed idle.

4.5.3 Impact of the parallelization of each operator of the single-node

driven approach

In order to further detail the analysis of the performance of the single-node driven ap-

proach, we plot the impact of the parallelization of each of the operators of the B&B

algorithm. Figure 4.7 shows that whatever the problem instance is, the three GPU mod-

els based on the parallel regular execution of the operators of B&B behaves better than

the multiple-nodes driven approach.

For further details, Table 4.3 reports the speedups obtained for the three di�erent

single-node driven GPU-accelerated parallel B&Bs: (1) only the bounding operator is

parallelized, (2) the branching and bounding operators are computed on GPU and (3)

bounding, branching and pruning are executed on GPU. The results shows that computing

all the branching, bounding and pruning operators on GPU gives the best accelerations.

The results show also that carrying out the branching operator on the GPU device exhibits

improvements ranging from about 14% for the smaller instances (with 20 jobs) to about

20% for the larger ones (with 100 jobs). Parallelizing the pruning operator on top of GPU

allows an enhancement of about 29% for the instances with 200 jobs, 20% for the instances

with 100 and 50 jobs and 10% for those with 20 jobs.

4.5. Experiments 81

 0

 20

 40

 60

 80

 100

 120

 140

 160

Ta20*20 Ta50*20 Ta100*20 Ta200*20

S
pe

ed
up

s

Flowshop Taillard Intances

Multiple-nodes driven approach
Parallel Bounding

Parallel Branching and Bounding
Parallel Branching, Bounding and Pruning

Figure 4.7: Comparison of the speedups obtained with di�erent GPU accelerated versions

of the B&B.

(Nb. jobs × Nb. machines) Bounding Branching Branching, Bounding

Only on GPU and Bounding on GPU and Pruning on GPU

200×20 100.48 114.63 160.41

100×20 92.39 116.00 144.13

50×20 81.50 103.90 128.41

20×20 61.47 71.73 79.42

Table 4.3: Speedup calculated with the parallelization of each operator.

To explain the enhancement resulting from each operator, we report in Table 4.4 the

amount of data transfers exchanged between the CPU and GPU when each operator

is parallelized. The results show that the average amount of the data transfer largely

di�ers from an instance to another and becomes exorbitant for large instances with 100

and 200 jobs. The results demonstrate also that performing all branching, bounding and

pruning operators on GPU allows one to reduce by about 50% the average amount of data

exchanged between the host and the device compared to the data transfered when only

branching and bounding are parallelized. This observation assets that in order to achieve

best throughputs for GPU applications, one should strive to minimize the data transfers

between the host and the device because those transfers have much lower bandwidth than

internal device data transfers. Our recommendation here, is to avoid big data transfer by

simply recomputing them whenever it is needed.

82 Chapter 4. GPU-based parallel tree exploration

(Nb. jobs × Nb. machines) Bounding Branching Branching, Bounding

Only and Bounding and Pruning

200×20 181.29 MB 180.91 MB 98.42 MB

100×20 101.39 MB 100.45 MB 65.45 MB

50×20 1865.90 KB 1860.96 KB 840.10 KB

20×20 916.72 KB 926.26 KB 384.18 KB

Table 4.4: Comparison of the amount of data transfer with the di�erent parallelization

approaches.

Regarding the execution of the branching operator on GPU, one could notice that

the amount of data transfered is almost the same as the amount exchanged when only

the bounding operator is on GPU. Indeed, the pool of subproblems is no more transfered

from the CPU to the GPU to be evaluated but it is generated on the device, evaluated

and moved back from the GPU to the CPU which preserve almost the same amount of

data transfer. However, the speedups calculated with the GPU-accelerated B&B where

subproblems are generated on GPU are better than ones calculated when subproblems are

decomposed on the host side. This is accomplished because more code is moved from the

host to the device.

4.6 Conclusion

In this chapter, we have rethinked the design and implementation of the GPU-accelerated

B&B based on the parallel tree exploration model. The management of the pool of sub-

problem exchanged between the CPU and the GPU is particularly addressed. We �rst

investigated an e�cient tuning of the size of the pool that is selected at each iteration.

Second, we explored the optimization of the transfer of this pool and its associated lower

bounds from the host to device. More exactly, the parallel B&B algorithm is extended

with the parallelization on GPU of the branching and pruning operators which allows to

reduce the cost of the data transfer between CPU and GPU.

- An adaptive selection operator based on a dynamic parameter tuning

heuristic. Because of the size of the pool to be o�-loaded to the GPU strongly

depends on the problem instance being solved, we proposed an empirical heuristic

for parameters auto-tuning at runtime that adjusts the size of the pool dynamically

according to the problem being solved and to the used hardware con�guration. The

experiments show that using the adaptive selection operator is e�cient and that it

returns the best pool size that allows to take the most bene�t from the GPU.

4.6. Conclusion 83

- The multiple-nodes driven GPU-accelerated approach. The �rst investi-

gated approach consists in exploring in parallel di�erent sub-spaces of the tree.

Selected parent nodes from the tree are assigned to di�erent GPU threads which

locally execute their own B&B. Each GPU thread locally performs the branching,

bounding and pruning operators and returns back to the host the list of promising

nodes that would be explored in the following iterations.

- The single-node driven GPU-accelerated B&B. The second proposed tem-

plate for GPU-accelerated B&B transforms the irregular workload into regular data-

parallel kernels optimized for the SIMD-based execution model of GPUs. Compared

to the multiple-nodes driven approach, thread divergence and uncoalesced mem-

ory accesses are considered in the optimization process. Compared to a serial ex-

ecution, the single-node approach allows very signi�cant acceleration reaching up

to (×160.41) for the 200×20 problem instances. Compared to the multiple-nodes

driven GPU-accelerated B&B approach, the single-node approach is by far much

more e�cient.

Because it is massively data-parallel and more �ne-grained, the single-node driven

approach is the most e�cient approach for rethinking on GPU the parallel tree exploration

model. However, further speedups could be reached if the multiple CPU cores available on

nowadays ressources are judiscioulsy used. In the next chapter, this approach is extended

for heterogeneous platforms where multiple CPU cores and multiple GPU devices are

provided. In the rest of the document, the term LL-GB&B for Low-Latency GPU B&B

refers to the GPU single-node driven approach since its major asset is to hide the latency

induced by data transfers between CPU and GPU.

Chapter 5

Parallel Heterogeneous B&B

combining GPU accelerators and

multi-core processors

Contents

5.1 Introduction . 86

5.2 Multi-core B&B (MC-B&B) . 87

5.3 ConcuRrent multi-core Low-Latency GPU-accelerated B&B

(RLL-GB&B) . 89

5.3.1 Concurrent GPU thread . 91

5.3.2 Concurrent CPU threads . 92

5.4 CooPerative multi-core Low Latency GPU-accelerated B&B

(PLL-GB&B) . 93

5.4.1 Overlapping data transfers and kernel calls 94

5.4.2 Cooperative GPU threads . 95

5.4.3 Cooperative CPU thread . 96

5.5 Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B) 98

5.6 Experiments . 102

5.6.1 Performance of the multi-core B&B 102

5.6.2 Performance of the RLL-GB&B approach 103

5.6.3 Performance of the PLL-GB&B approach 105

5.6.4 Performance of the LL-MultiGB&B approach 106

5.7 Conclusion . 107

Main publications related to this chapter

I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens.

Combining multi-core and GPU computing for solving combinatorial optimization

86

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

problems. Journal of Parallel and Distributed Computing (JPDC) - Elsevier (Under

revision).

I. Chakroun and N. Melab.

Towards an heterogeneous and adaptive parallel Branch and Bound algorithm. Journal of

Computer and System Sciences - Elsevier (Under revision).

5.1 Introduction

Heterogeneous computing systems combining GPU devices and multi-core CPUs, provide

an opportunity to impressively increase the computational power for solving challeng-

ing problems. Therefore, designing heterogeneous parallel algorithms has been an active

research area over last decade [Lastovetsky 2009, Brodtkorb 2010, Buchty 2012]. Never-

theless, none of the existing works on GPU-accelerated B&B algorithms [Lalami 2012,

Carneiro 2011] has investigated the conjunction of the multi-core and the many-core pro-

cessors for reducing the execution time of B&B algorithms. In this chapter, we introduce

a prior work on designing an heterogeneous CPU-GPU accelerated multi-core B&B algo-

rithm.

Although the GPU-accelerated B&B algorithms proposed in the previous chapters,

allows one to signi�cantly reduce the execution time needed to explore the B&B search

tree, further speedups could be reached if the multiple CPU cores available on the un-

derlying platforms are judiscioulsy used. Nevertheless, revisiting these algorithms for het-

erogeneous architectures requires a complete redesign to �t in together di�erent hardware

con�gurations. Indeed, the heterogeneity and incompatibility of CPU and GPU resources

in terms of programming models makes parallelizing search algorithms very challenging

and imposes one to judiscioulsy distribute data and computations workload between them.

While some strategies give advantages to CPU cores, by making some host routines to

be executed asynchronously with the GPU computations (for example, some iterations of

the B&B algorithm are performed on the multiple CPU cores while other iterations are

performed in parallel on GPU), others assume to use the CPU cores for only handling

data input and output of GPU devices.

To be relevant to the growing number of heterogeneous computing systems, we have

studied the combination of multiple CPU cores with one GPU and with several GPUs.

For achieving this, we have proposed the following contributions:

- Rethink the B&B algorithm for multi-core machines endowed with multiple process-

ing cores without GPUs.

5.2. Multi-core B&B (MC-B&B) 87

- Propose a multi-core CPU-GPU accelerated B&B by investigating two patterns for

combining multiple CPU cores and a single GPU.

- Redesign the CPU-GPU accelerated B&B for multi-GPU enabled con�gurations.

The remainder of this paper is organized as follows. Section 5.2 introduces a multi-core

design and implementation of a B&B algorithm where no GPU device is used. In Section

5.3, the �rst approach for combining multi-core and GPU is presented. In Section 5.4, the

second approach consisting in overlapping multi-core and GPU computing is detailed. In

Section 5.5, the multi-GPU version of the algorithm is described. Section 5.6 details and

discusses the performances for each of the proposed scenarii. Conclusions are drawn in

Section 5.7.

5.2 Multi-core B&B (MC-B&B)

The scenario studied in this section concerns multi-core machines endowed with multi-

ple processing cores that can be used concurrently (nCPU-0GPU). Several approaches

to parallel programming for multi-core CPUs exist, ranging from low-level multi-tasking

or multi-threading to high-level libraries that provide abstractions and features that at-

tempt to simplify software development. For the proposed multi-core B&B algorithm,

we have adopted a library-based approach using the standard POSIX thread library for

implementation [Bradford 1996].

The proposed multi-core approach consists in partitioning the exploration of the B&B

tree among running CPU threads (thread-based parallel tree exploration model). As

illustrated in Figure 5.1, the algorithm starts by creating a number of threads that explore

in parallel the B&B search tree. The number of running threads is a platform parameter

that is �xed according to the used machine. The number of concurrent threads do not

exceed the total number of computing cores. Threads cooperate by updating information

stored in global shared variables. At any time during the exploration process, these two

variables pending-nodes (the global pool of pending subproblems) best-sol (the best solution

found so far) describe the current state of the B&B algorithm.

When using such shared memory between threads, the recommendation is to use locks

as a synchronization mechanism since they enforce mutual exclusion and guarantee the

coherence of the data. Thus, if two concurrent CPU threads try at the same time to pick

or to insert a subproblem from or into the pending-nodes list, one of them is forced to wait

until the lock is released by the other thread. At each iteration, a concurrent CPU thread

88

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Figure 5.1: Illustration of the multi-core B&B algorithm.

tries to select a subproblem from the pending-nodes list. If no other thread is locking the

pool, it picks the deepest subproblem having the smallest lower bound. Otherwise, this

thread waits until the lock is free. If the selected subproblem is a leaf of the tree search,

the cost of the solution of this subproblem is calculated and compared to the cost of the

best solution found so far. If the cost of the best solution is improved, the thread puts

a lock on the shared variable which stores the best solution found, and updates it with

the new solution. Otherwise, the subproblem is deleted. If the selected subproblem is

an internal node of the tree, it is decomposed and the lower bound function is applied

to each of the generated children. The pruning operator eliminates each new generated

subproblem having a bound greater than the cost of the best solution found so far. Finally,

the non-eliminated subproblems are inserted into the pending-nodes list after locking the

access to it. The concurrent CPU threads repeat the described process until this list is

empty which corresponds to the termination of the algorithm.

As quoted above, the POSIX library is used for implementation. POSIX threads

are native threads of processing that run within a single process/application and can

5.3. ConcuRrent multi-core Low-Latency GPU-accelerated B&B

(RLL-GB&B) 89

share access to resources and memory at a �ne-scale. The programmer explicitly creates

and manages threads, with each thread inheriting its parent's access to resources. The

programmer can synchronize threads and protect critical sections, such as shared memory

locations in data structures and access to input/output resources, via mutual exclusion

locks. These support three operations: lock, unlock, and try, a non-blocking version of

lock where a thread either succeeds at acquiring the lock, or resumes execution without

the lock. Condition variables suspend a thread until an event occurs that wakes up the

thread. These variables in conjunction with mutex locks allow one to create higher-

level synchronization events such as shared-memory barriers. In a threaded code, the

programmer can then rely on coherency protocols to update shared memory locations.

5.3 ConcuRrent multi-core Low-Latency GPU-accelerated

B&B (RLL-GB&B)

The scenario exposed in this section involves a large number of heterogeneous platforms

where multi-core processors are combined with many-core processors. However, most

of the heterogeneous applications that aim to bring in together multi-core processors and

GPUs use multi-threading approaches to control independent GPU devices. Using multiple

CPU cores for handling multiple GPUs is straightforward since one device could easily be

assigned to one CPU core avoiding load balancing and concurrent access problems that

might occur when only one GPU is shared by multiple CPU cores. In this latter case,

more challenges related to the computation and data partitioning arise.

In order to combine using shared memory multi-core architecture and GPU, one of our

investigated approaches consists in partitioning the exploration of the B&B tree among

the CPU cores and the GPU device. For achieving this, a multi-threaded B&B is designed

and implemented using the POSIX [Bradford 1996] standard.

As illustrated in Figure 5.2 and detailed in Algorithm 8, the algorithm starts by creating

a �xed platform parameter number of threads that explore in parallel the B&B search tree.

These threads are called concurrent CPU threads. In addition, the algorithm creates one

special CPU thread called concurrent GPU thread to which the highest priority is assigned.

Its role is to exploit the computing power of the GPU. The concurrent CPU threads and

the GPU thread have a shared access to the pending-nodes list and to the best-sol variable.

At any time during the exploration process, these two variables describe the current state

of the B&B algorithm. The access to this couple of shared variables is handled using the

same synchronization mechanism described in the previous section.

90

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Figure 5.2: Illustration of the ConcuRrent multi-core Low-Latency GPU-accelerated B&B.

Algorithm 8 Template of the ConcuRrent multi-core Low-Latency GPU-B&B.

Create the initial problem;

Insert the initial problem into the tree;

Set the Cost_of_best_solution to +∞;

Set the Best_Solution to ∅;

pthread_create(NULL,NULL,Concurrent_GPU_Branch_and_Bound_thread,NULL);

for j ∈ [1 , Number_of_threads] do
pthread_create(NULL,NULL,Concurrent_CPU_Branch_and_Bound_thread,NULL);

end

5.3. ConcuRrent multi-core Low-Latency GPU-accelerated B&B

(RLL-GB&B) 91

5.3.1 Concurrent GPU thread

Algorithm 9 Template of a Concurrent_GPU_Branch_and_Bound_thread.

GPU_Pool_Size = Run_Heuristic_For_Tuning_Pool_Size();

while not_empty_tree() do

Lock_shared_pool();

Sub_Problem = Take_sub_problem();

UnLock_shared_pool();

if Is_leaf (Sub_Problem) then
Lock_best_solution();

Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

UnLock_best_solution();

end

else

if Pool_Of_Fathers.size() < GPU_Pool_Size then
Pool_Of_Fathers.push(Sub_Problem);

end

else
Copy_Fathers_Pool_To_GPU();

Copy_Number_Estimated_Children_Pool_To_GPU();

Branching_Kernel<<>>;

Bounding_Kernel<<>>;

Pruning_Kernel<<>>;

Copy_Promising_Children_Pool_From_GPU();

Lock_shared_pool();

Insert_Promising_Children();

UnLock_shared_pool();

end

end

end

As shown in Algorithm 9, the concurrent GPU thread proceeds in several iterations.

92

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

At each iteration, it tries to pick a subproblem from the pending-nodes list. If no other

thread is locking the pool, it selects the deepest subproblem having the smallest lower

bound. Otherwise, this thread waits until the lock is free. If the selected subproblem

corresponds to a leaf of the tree search, the cost of the solution of this subproblem is

calculated and compared to the cost of the best solution found so far. If the best cost

is improved, the concurrent GPU thread puts a lock on the best-sol shared variable and

updates this variable with the new solution. Otherwise, the found solution is deleted.

If the selected subproblem is an internal node, the GPU thread inserts this subproblem

in the pending-nodes list. The concurrent GPU thread continues selecting subproblems

until the estimated number of children of the selected subproblems (see Section 4.4.1)

exceeds the size threshold of the pool to o�-load to the GPU returned by the ASH tuning

heuristic. Once this size reached, the pool of the selected root nodes and the pool contain-

ing the number of children of each parent are copied to the device. After the branching,

bounding and pruning kernels are �nished, the pool of newly generated subproblems is

inserted into the pending-nodes list. In order to insert these new nodes, the concurrent

GPU thread waits until the other CPU threads free the lock of this shared list. The con-

current GPU thread repeats the described process until the shared pool is empty which

corresponds to the termination of the algorithm.

5.3.2 Concurrent CPU threads

In the meanwhile, the other concurrent CPU threads execute a sequential version of the

B&B as detailed in Algorithm 10. At each iteration, a concurrent CPU thread tries to

select a subproblem from the pending-nodes list. If no other thread is locking the pool,

the concurrent CPU thread picks only one subproblem. This thread uses the same selec-

tion strategy as that used by the concurrent GPU thread. In other words, the deepest

subproblem having the smallest lower bound is the �rst to be selected. Once the subprob-

lem is chosen, the thread frees the lock of the shared pool. As for the concurrent GPU

thread, if the selected subproblem corresponds to a leaf of the tree search, the cost of its

solution is calculated and compared to the cost of the best solution found so far. If the

cost of the best solution is improved, the thread puts a lock on the shared variable which

stores the best found solution. Then, this variable is updated with the new found solution.

Otherwise, the subproblem is deleted.

However, if the selected subproblem is an internal node of the tree, it is decomposed

into sub-sequent subproblems. The lower bound function is then applied to each generated

node. The pruning operator eliminates each new generated subproblem having a bound

greater than the cost of the best solution found so far. Finally, the non-eliminated sub-

5.4. CooPerative multi-core Low Latency GPU-accelerated B&B

(PLL-GB&B) 93

problems are inserted into the pending-nodes list after locking the access to this variable.

Algorithm 10 Template of Concurrent_CPU_Branch_and_Bound_thread.

while not_empty_tree() do

Lock_shared_pool();

Sub_Problem = Take_sub_problem();

UnLock_shared_pool();

if Is_leaf (Sub_Problem) then
Lock_best_solution();

Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

UnLock_best_solution();

end

else
Lower_Bound = compute_lower_bound(Sub_Problem);

if Lower_Bound ≤ Cost_of_best_solution then
Branch(Sub_Problem);

Lock_shared_pool();

Insert child sub problems into the tree;

UnLock_shared_pool();

end

else
Prune (Sub_Problem);

end

end

end

5.4 CooPerative multi-core Low Latency GPU-accelerated

B&B (PLL-GB&B)

In order to avoid the synchronization issue and the overhead induced in the RLL-GB&B

approach, the parallel algorithm proposed in this section is based on a more collaborative

approach. Moreover, this approach allows one to further minimize the data transfer latency

from CPU to GPU.

94

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

5.4.1 Overlapping data transfers and kernel calls

The principle of this approach is to make the GPU computations (i.e. the kernel calls)

interleaved and overlapped with the data transfer operations. These operations are ex-

ecuted in parallel by the di�erent threads. Since the communications between the host

and the GPU device induce a considerable overhead on the performance of CPU-GPU

accelerated applications, the aim of this proposed algorithm is to hide the latency of these

operations by executing them asynchronously with the kernel calls.

Figure 5.3: Illustration of the cooperative multi-core low latency GPU-accelerated B&B

PLL-GB&B.

As illustrated in Figure 5.3, at each iteration of the algorithm, a thread, called collab-

orative CPU thread, picks a subproblem from the pending-nodes global list. This subprob-

lem is inserted into the pool which contains the root subproblems to be transferred to the

GPU. The collaborative CPU thread stops adding nodes to this pool when its size reaches

the threshold �xed by the adaptive selection heuristic ASH. Then, the collaborative CPU

thread creates a �xed platform-parameter number of threads, called collaborative GPU

threads. The created new collaborative GPU threads execute in parallel a stream of or-

5.4. CooPerative multi-core Low Latency GPU-accelerated B&B

(PLL-GB&B) 95

dered operations where the use of the GPU is interleaved and shared among these threads.

The collaborative CPU thread waits for all the collaborative GPU threads to �nish their

executions. Then, the collaborative CPU thread inserts results of the collaborative GPU

threads into the pending-nodes list.

Figure 5.4: Sequential and concurrent operations performed on GPU devices with compute

capability 2.0. Two copy engine and a kernel engine enables concurrent transfer operations

and kernel execution.

A stream of ordered operations is associated with each collaborative GPU thread to

perform its execution on the GPU. This is achieved using CUDA-enabled devices with

compute capability 2.0, where a sequence of operations that are executed in issue-order

on GPU is introduced. As illustrated in Figure 5.4, a compute (kernel) engine and two

copy engines are provided: one for uploading from host to device and one for downloading

from device to host. Each engine is equipped with a queue that stores pending data and

kernels that will be processed by the engine shortly. Compared to classical execution on

GPU where sequentially the data are pushed to the GPU, the kernel is launched and the

results are retrieved, CUDA operations of di�erent streams could overlap one with others.

For example, as shown in Figure 5.4, the kernel launched by the host thread 2 is executed

concurrently in parallel in stream 2 with the data copy (from host to device) performed

in stream 1 by host thread 3.

5.4.2 Cooperative GPU threads

Each cooperative GPU thread handles a part of the pool of root nodes that is equally

split. As illustrated in Algorithm 11, using a stream identi�er, each thread (1) performs

asynchronous transfers of its partition of the input pool to the device, (2) calls the kernels of

branching, bounding and pruning operators that are processed only on its input partition,

then (3) copies its portion of the output pool (the generated nodes of its assigned portion of

subproblems) back to the CPU host side. In this approach, each collaborative GPU thread

96

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

uses asynchronous data copy functions which are non-blocking. Using these functions

ensures that the control is returned back to the collaborative CPU thread immediately and

before the device has completed the requested task. Therefore, there is no synchronization

between the cooperative GPU threads. Only the collaborative CPU thread must wait the

end of all the collaborative GPU threads in order to insert the obtained new subproblems

into the pending-nodes list.

Algorithm 11 Template of a Cooperative_GPU_Branch_and_Bound_thread.

Copy_Fathers_Pool_To_GPU(stream_id);

Copy_Number_Estimated_Children_Pool_To_GPU(stream_id);

Branching_Kernel<< stream_id >>;

Bounding_Kernel<< stream_id >>;

Pruning_Kernel<< stream_id >>;

Copy_Promising_Children_Pool_From_GPU(stream_id);

5.4.3 Cooperative CPU thread

As sketched in Algorithm 12, the main role of the collaborative CPU thread is to initialize

the program and to create the collaborative GPU threads. In addition, this thread explores

some pending subproblems from the global list while the collaborative GPU threads are

performing parallel operations on the GPU. In a naive approach, the collaborative CPU

thread has to wait until all the output data are brought back from the device to the host.

In the proposed approach, since the global pending-nodes list is not used in the mean-

while, the collaborative CPU thread picks a subproblem from the this list, and tests if the

selected subproblem is a leaf. In the case this subproblem is a leaf, the collaborative CPU

thread updates the best-sol variable if the solution of the leaf has a better cost than the

existing one.

If the subproblem is an internal node of the tree, the collaborative CPU thread (1)

decomposes this subproblem into a pool of subproblems, (2) bounds all the subproblems of

the pool, (3) eliminates the nodes which are non-promising, and (4) inserts the promising

subproblems into the global pool list. When all collaborative GPU threads �nish their

executions, the collaborative CPU thread continues processing the next iteration of the

B&B. The algorithm stops when the global pool list becomes empty.

5.4. CooPerative multi-core Low Latency GPU-accelerated B&B

(PLL-GB&B) 97

Algorithm 12 Template of Cooperative_CPU_Branch_and_Bound_thread.

GPU_Pool_Size = Run_Heuristic_For_Tuning_Pool_Size();

while not_empty_tree() do
Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else

if Pool_Of_Fathers.size() < GPU_Pool_Size then
Pool_Of_Fathers.push(Sub_Problem);

end

else
Split_ Pool_Of_Fathers();

for j ∈ [1 , Number_of_threads] do
pthread create(...,Cooperative_GPU_Branch_and_Bound_thread,....);

end

while GPU_threads_running() = True do
Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else
Lower_Bound = compute_lower_bound(Sub_Problem);

if Lower_Bound ≤ Cost_of_best_solution then
Branch(Sub_Problem);

Insert child sub problems into the tree;

end

else
Prune (Sub_Problem);

end

end

end

Insert child subproblems returned by the GPU threads;

end

end

end

98

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

5.5 Low Latency Multi-GPU B&B algorithm (LL-

MultiGB&B)

Nowadays, the trend in general-purpose computing on graphics processing units is to

use multiple GPUs on a given system, like using multiple cores on CPU-based systems.

The objective is to improve the performances by exploiting larger degrees of parallelism

using multiple (parallel) GPUs. In the following section, details are given on the multi-

GPU B&B algorithm. This algorithm is selected when the used hardware is composed by

multiple CPU cores and at least two GPU devices (nCPU-nGPU).

Figure 5.5: Illustration of the multi-GPU B&B algorithm where only the bounding kernel

is on GPU.

The �rst step toward a multi-GPU design is to determine how many GPUs will be used

and how each GPU will be exploited. In [Chakroun 2012], we have proposed a multi-GPU

design of a B&B algorithm, where only the bounding operator is parallelized on GPU.

5.5. Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B) 99

The aim is to use multiple GPUs to speedup the kernel execution rather than using each

GPU di�erently. Consequently, the only concern in that case was to de�ne a workload

distribution between the used GPUs in order to make all the available devices compute the

same work in parallel without need of synchronization. Since the approach ensures that

the decomposed subproblems are di�erent and independent from each other and since the

used lower bound function is problem-dependent, we opted for simply splitting the pool

of subproblems among the selected GPUs. Each pool is then evaluated in parallel and

independently from other pools. After each GPU has �nished computing the bounding

kernel function, the outputs from each device have to be merged to get �nal results. The

process is illustrated in Figure 5.5.

A main CPU thread selects a pool of from the pending-nodes list according to their

depth. That pool of subproblems is equally split into as many pools as there are devices.

In order to ensure full concurrency between the bounding computations, as many CPU

threads as GPUs to be used are created. To each CPU thread is assigned an individual

GPU using the NVIDIA CUDA �cudaSetDevice()� method [NVIDIA Corporation 2011a],

which gives the possibility to select which device to execute the kernel on. Each created

CPU thread copies its pool of subproblems from the CPU to its a�liated GPU, executes

the kernel, and copies the resulting bounds back to the CPU. The main CPU thread waits

for all other CPU threads to complete and merges the results into one.

In the newer optimized version of the algorithm, three kernels are executed separately

on GPU. Therefore, the idea of the new multi-GPU based B&B is to split the kernels

across the available GPUs and to pro�t from the time during which the kernels run in

parallel to proceed with the next iterations of the algorithm. Concurrent CPU threads are

used to decompose tasks among the multiple GPUs and deal with the challenges of data

communication and synchronization.

As illustrated in Figure 5.6 and detailed in Algorithm 13, the main CPU thread selects

a pool of unexplored nodes from the search tree. The branching kernel is executed �rst

on one GPU device. Once the execution �nished, the resulting pool of children is moved

to the memory of a second GPU device using the peer-to-peer memory access feature

explained in Figure 5.7. Peer-to-peer memory copies between two devices no longer need

to be staged through the host and are therefore faster. As sketched in Algorithm 14, a

second CPU thread launches then the bounding and the pruning kernels on the second

device while the �rst CPU thread prepares the pool of the next nodes to be explored.

When the second CPU thread �nishes, i.e. when the bounding and pruning kernels end,

the �rst CPU thread unlocks the shared pool where the resulting pool of children is pushed.

100

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Figure 5.6: Illustration of the Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B).

(a) (b)

Figure 5.7: Data transfer without Peer to Peer direct transfer memory (via CPU

memory) (a) with Peer to Peer direct transfer memory (b) (direct between GPUs)

[NVIDIA Corporation 2011b].

If four GPU devices are provided, the idea is to combine two levels of parallelism. The

�rst two CPU threads launch the branching kernels on two devices. To each thread CPU

is assigned an individual GPU using the NVIDIA CUDA Runtime API �cudaSetDevice()�

method. The selected pool of subproblems is equally split between both devices. There-

5.5. Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B) 101

Algorithm 13 Template of Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B).

Create the initial problem;

Insert the initial problem into the tree;

Set the Cost_of_best_solution to +∞;

Set the Best_Solution to ∅;

GPU_Pool_Size = Run_Heuristic_For_Tuning_Pool_Size();

while not_empty_tree() do

Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else

if Pool_Of_Fathers.size() < GPU_Pool_Size then
Pool_Of_Fathers.push(Sub_Problem);

end

else
Branching_Kernel<< device_0 >>;

cudaMemcpyPeer (...,device_0,...,device_1,....);

pthread create(...,Multi-GPU_Branch_and_Bound_thread,...);

while Multi-GPU_thread_running() = True do
Sub_Problem = Take_sub_problem();

if Is_leaf (Sub_Problem) then
Cost_of_best_solution = Cost_Of(Sub_Problem);

Best_Solution = Sub_Problem;

end

else

if Pool_Of_Fathers.size() < GPU_Pool_Size then
Pool_Of_Fathers.push(Sub_Problem);

end

end

end

Insert child subproblems returned by the Multi-GPU threads;

end

end

end

102

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Algorithm 14 Template of a multi-GPU_Branch_and_Bound_thread.

cudaSetDevice(device_1);

Bounding_Kernel<<>>;

Pruning_Kernel<<>>;

after, the pool of subproblems generated by the branching kernel is copied respectively to

the memory of remaining devices using the peer-to-peer memory copy where the bound-

ing and the pruning kernels are executed. Each CPU thread copies the resulting pool of

children produced by its a�liated GPU back to the CPU where they are merged into the

pending-nodes list. In the meanwhile, the �rst two CPU threads select a pool from this

list for the next iterations of the algorithm.

5.6 Experiments

The di�erent approaches we have proposed in this chapter have been implemented using

C-CUDA 4.0. The experiments have been carried out using an Intel Xeon E5520 bi-

processor coupled with four GPU devices. The bi-processor is 64-bit, quad-core and has a

clock speed of 2.27GHz. The GPU devices are an Nvidia Tesla C2050 with 448 CUDA cores

(14 multiprocessors with 32 cores each), a clock speed of 1.15GHz, a 2.8GB global memory,

a 49.15KB con�gurable shared memory, and a warp size of 32. The same experimental

protocol as de�ned in 3.6.2 is used and the speedups are calculated relatively to the same

serial B&B deployed on a single CPU core.

5.6.1 Performance of the multi-core B&B

The objective of the experimental study presented in this section is to evaluate the perfor-

mance of the approach based on concurrent parallel exploration of the search tree using

multi-core CPUs.

Table 5.1 reports the obtained speedups using the multi-core based B&B algorithm on

di�erent problem instances. The columns correspond to the number of concurrent CPU

threads. The rows correspond to the problem instances de�ned by the number of jobs

and the number of machines. Reported results show that the speedup obtained grows on

average with the growing of the number of used CPU processing cores. For example, for

the instances of 200 jobs on 20 machines, an acceleration factor of ×5.71 is calculated

using 6 concurrent CPU threads while only a speedup of ×1.96 is calculated using 2 CPU

threads running on 2 distinct CPU cores.

5.6. Experiments 103

Number of concurrent CPU threads 2 3 4 5 6

200×20 1.96 2.86 3.81 4.76 5.71

100×20 1.96 2.87 3.82 4.77 5.73

50×20 1.95 2.86 3.81 4.76 5.70

20×20 1.91 2.86 3.80 4.75 5.20

Table 5.1: Obtained speedups using the (MC-B&B) approach where no GPU is used.

The results exhibit also that the slope is linear and that the acceleration factor is

independent from the tackled instance. In fact, a speedup of on average ×5 is reported

with 6 CPU threads and on average ×3.8 with 3 CPU threads whatever the number of

jobs is.

Compared to the performances of the LL-GB&B approach reported in Section 4.5, the

speedups obtained using only multi-core CPUs are by far less important. For example,

for the instances of 100 jobs on 20 machines, using the GPU-based parallel B&B performs

almost 26 times faster than the 6 cores-based B&B. However, the aim of the scenario

considered here, is to demonstrate that with machines where multiple CPU cores are

provided, the proposed approach allows accelerations compared to a serial B&B.

5.6.2 Performance of the RLL-GB&B approach

The objective of the experimental study presented in this section is to evaluate the per-

formance of the approach presented in Section 5.3 and based on concurrent parallel tree

exploration between the multi-core CPU and the GPU device.

Table 5.2 reports the speedup of the parallel CPU-GPU concurrent B&B averaged on

the di�erent problem instances. The columns correspond to the number of concurrent

CPU threads. In this experiment, the number of concurrent GPU threads is always equal

to 1. The rows correspond to the problem instances de�ned by the number of jobs and

the number of machines.

The obtained results show that not only using CPU-GPU concurrent B&B approach

decreases the speedup obtained with the LL-GB&B approach reported in Section 4.5, but

also that the more the number of cores is, the worst the speedup is. For example, for

the instances with 50 jobs over 20 machines, the acceleration factor is about ×123 with

two CPU threads while it is about ×114 with �ve concurrent CPU threads and one GPU

thread which corresponds to 7% of performances decrease.

104

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Number of concurrent CPU threads 2 3 4 5

Number of concurrent GPU threads 1 1 1 1

200×20 155.02 151.16 146.45 143.42

100×20 142.67 141.18 139.49 137.73

50×20 123.17 120.09 116.15 114.74

20×20 79.29 78.64 77.91 76.96

Table 5.2: Obtained speedups using the RLL-GB&B approach with a single GPU.

To explain this behavior, we report in Table 5.3 the average normalized waiting times

spent by the concurrent GPU thread for accessing global data structures. For each row, the

waiting times are normalized and divided by the values obtained when only one concurrent

GPU thread is used (no concurrent CPU threads). The reported results prove that when

the GPU �nishes its computation, the GPU thread is forced to wait for the lock to be

free in order to access to the global pool (insert generated subproblems and take new

subproblems to explore) even though the highest priority is assigned to it. This waiting

time increases when the number of used concurrent CPU threads increases which explains

the decrease in speedup when the number of concurrent CPU threads increases.

Concurrent CPU threads 0 1 2 3 4 5

Concurrent GPU threads 1 1 1 1 1 1

20×20 1 1.13 1.15 1.16 1.17 1.19

50×20 1 1.16 1.2 1.23 1.30 1.44

100×20 1 1.22 1.26 1.32 1.41 1.56

200×20 1 1.94 2.12 2.28 2.42 2.9

Table 5.3: Average normalized waiting times spent by the concurrent GPU thread when

accessing global data structures.

Moreover, the results previously reported in Table 5.1 correspond to a CPU-GPU

concurrent B&B approach where no concurrent GPU thread is used. As quoted before and

unlike the results observed in Section 5.2, the speedup obtained when no concurrent GPU

thread is used grows on average with the growing of the number of used computing CPU

cores. This further demonstrates that the limited behavior of the CPU-GPU concurrent

B&B algorithm is not due to the concurrent CPU threads but to the under-utilization of

5.6. Experiments 105

the GPU by the concurrent GPU thread.

5.6.3 Performance of the PLL-GB&B approach

In this section, the performance of the CPU-GPU cooperative parallel B&B algorithm

introduced in Section 5.4 and based on the collaborative computation between the multi-

core CPU and the GPU device is evaluated.

Number of cooperative CPU threads 1 1 1 1

Number of cooperative GPU threads 2 3 4 5

200×20 161.28 162.95 164.41 168.67

100×20 148.64 153.46 155.38 160.91

50×20 140.55 148.21 149.87 153.92

20×20 109.27 111.08 113.11 122.31

Table 5.4: Obtained speedups using the PLL-GB&B approach where the cooperative CPU

thread does not perform the exploration of subproblems.

Table 5.4 reports the speedups obtained by the CPU-GPU cooperative B&B approach

on the di�erent problem instances. The columns correspond to the number of cooperative

GPU threads. The number of cooperative CPU threads is always equal to 1. In these ex-

periments, the used cooperative CPU thread does not explore nodes. The rows correspond

to the problem instances de�ned by the number of jobs and the number of machines. The

results show that the obtained speedups increase according to the instance size and to the

number of used cooperative GPU threads. For a same instance, for example the instance

de�ned by 20 jobs and 20 machines, the speedup obtained using two cooperative GPU

threads is ×109.27 while it is ×122.31 using �ve cooperative GPU threads.

Number of cooperative CPU threads 1 1 1 1

Number of cooperative GPU threads 2 3 4 5

200×20 164.69 165.99 167.52 170.69

100×20 150.12 155.29 156.59 162.27

50×20 144.72 150.81 151.16 156.70

20×20 112.22 114.86 117.53 124.10

Table 5.5: Obtained speedups using the PLL-GB&B approach where the collaborative

CPU threads explores nodes in parallel to the GPU execution.

106

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

Table 5.5 reports the impact of making the cooperative CPU thread exploring in

parallel the search tree while the other cooperative GPU threads are busy sharing the

use of the GPU. The results show that exploring in parallel some subproblems on the

CPU side, while the GPU is computing and when no concurrent access to the shared

queue occurs, allows accelerations up to 36% compared to the LL-GB&B approach. For

example, for the instances with 20 jobs over 20 machines, the speedup obtained with the

LL-GB&B is ×79.42 (see Table 4.2) while it is ×124.10 with the PLL-GB&B (see Table

5.5).

5.6.4 Performance of the LL-MultiGB&B approach

In this section, we experiment the use of the parallel B&B algorithm with multiple GPUs.

The objective here is to evaluate the impact of the LL-MultiGB&B approach proposed in

Section 5.5.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220

20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Using one GPU
Using two GPUs
Using four GPUs

Figure 5.8: Comparing the speedup for di�erent problem instances using a single / multiple

GPUs.

Figure 5.8 compares the computed speedups obtained for the di�erent problem in-

stances using respectively 1, 2 and 4 GPU(s). The reported results show that the speedup

grows accordingly to the number of used GPUs. For instance, an acceleration factor up

to ×216.92 is obtained with 4 GPUs for the 200 × 20 problem instances while a speedup

of ×198.55 is obtained for the same instances using 2 GPUs and ×160.41 with only one

device. However, the improvement is not linear and the slop decrease as long as the num-

ber of the used GPUs raises. This is explained by the synchronization overhead induced

5.7. Conclusion 107

by the use of CPU threads. Let us recall here that, unlike the scenario where 2 GPUs

are used, the pool of selected nodes is split into as many pools as used devices and copied

to the memory of each GPU. The CPU threads have also to copy the resulting pools of

promising nodes (evaluated) produced by its a�liated GPU back to the CPU and merge

them into the pending-nodes list.

5.7 Conclusion

In this chapter, we have investigated the design and implementation of an heterogeneous

CPU-GPU accelerated multi-core B&B algorithm. Our �rst contribution was to propose

a new template for a heterogeneous multi-CPU single-GPU accelerated B&B. As a second

contribution, we rethink the CPU-GPU accelerated B&B for multi-GPU enabled con�gu-

rations.

- Multi-core based B&B algorithm (MC-B&B) This �rst parallel B&B concerns

multi-core machines and consists in partitioning the exploration of the B&B tree

among CPU threads. Threads cooperate by updating the pending nodes and the

best-sol shared variables. The results exhibit that the speedup grows with the num-

ber of used CPU cores, that the slope is linear and that the acceleration factor is

independent from the tackled instance. Compared to LL-GB&B, the speedups ob-

tained using only multi-core CPUs are by far less important. However, the aim of

the scenario considered here, is to demonstrate that with machines where multiple

CPU cores are provided, the proposed approach allows accelerations compared to a

serial B&B.

- ConcuRrent multi-core Low Latency GPU-accelerated B&B (RLL-GB&B)

In this approach where a GPU and multi-core CPUs are bringing in together, the

computations performed by the GPU and the multi-core are concurrent. Each of

the CPU threads and the GPU device explores in parallel the search space. The

experiments show that using a concurrent exploration of the B&B tree between

GPU and CPU threads is not e�cient compared to a single core CPU-GPU execution

since the GPU is forced to wait for shared memory spaces to be free which lead to

its under-utilization.

- CooPerative multi-core Low Latency GPU-accelerated B&B (PLL-GB&B)

In this approach, CPU threads and GPU cooperate together in order to avoid syn-

chronization issues. Towards a latency hiding strategy, the algorithm assumes that

the threads overlap the memory copies of the data that are o�-loaded to the device

108

Chapter 5. Parallel Heterogeneous B&B combining GPU accelerators and

multi-core processors

with the kernel executions on the GPU. The second asset of this approach is to add

further degree of concurrency by making the main CPU thread exploring some pend-

ing subproblems while other threads are busy with the GPU. The reported results

show that the PLL-GB&B approach enables accelerations up to 36% compared to

LL-GB&B.

- Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B) The idea of the

multi-GPU based B&B is to split the kernels across the available GPUs and to pro�t

from the time where the kernels run in parallel to proceed with the next iterations

of the algorithm. The branching kernel is executed �rst on one GPU device and the

resulting pool of subproblems is moved to the memory of a second GPU device using

the peer-to-peer memory copy. A second CPU thread launches then the bounding

and the pruning kernels on the second device while the �rst CPU thread prepares

the pool of the next nodes to be explored. Compared to a serial B&B, accelerations

up to ×216.92 are reached for large problem instances with the multi-GPU based

approach and the more GPU devices are used, the better the speedups are.

Chapter 6

Towards a grid-enabled

GPU-accelerated Branch and Bound

Contents

6.1 Parallel heterogeneous B&B for computational grids : joining

two levels of parallelism . 110

6.1.1 Overall design of the distributed heterogeneous B&B (HB&B@GRID) 110

6.1.2 The B&B meta-algorithm . 111

6.1.3 The B&B@Grid approach . 113

6.2 Experiments . 115

6.2.1 Experimental platform . 115

6.2.2 Performance Evaluation . 117

6.3 Conclusion . 121

To be relevant to the arrival of GPU accelerators and the advent of multi-core in

clusters and computational grids, we propose in this chapter a large-scale distributed ver-

sion of the heterogeneous multi-core GPU-accelerated Branch and Bound algorithm. The

targeted execution environment is composed of a set of heterogeneous computing nodes

provided through a computational grid. Each computing node is either a single multi-core

processor or multi-core processors coupled with one or several GPU(s). For achieving

this, we propose B&B meta-algorithm coupled with the B&B@GRID approach proposed

in [Mezmaz 2007a]. Indeed, while B&B@GRID allows one to e�ciently partition the B&B

tree search among distant computing nodes, the meta-algorithm explores assigned sub-

trees using the parallel B&B algorithm that best �ts the hardware con�guration of the

underlying execution nodes.

The remainder of this chapter is structured as follows: Section 6.1 presents the overall

design of the heterogeneous B&B for computational grids. The comprehensive description

includes details about the B&B meta-algorithm and the used B&B@GRID approach. In

Section 6.2 details about the used experimental platform and the experimented problem

instances are given and the obtained results are discussed.

110 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

6.1 Parallel heterogeneous B&B for computational grids :

joining two levels of parallelism

In this section, the overall design of the proposed heterogeneous GPU-enabled B&B for

computational grids is detailed.

6.1.1 Overall design of the distributed heterogeneous B&B

(HB&B@GRID)

Our approach to further reduce the exploration time consumed by B&B algorithms for

solving challenging COPs, is to extend our work to use a large number of computational-

powered ressources. As claimed in Section 2.6, such signi�cant computing power may be

provided through a computational grid which is a collection of geographically-distributed

heterogeneous computing resources. As illustrated in Figure 6.1, the proposed approach

consists in hierarchically combining two levels of parallelism by (1) dividing the B&B tree

among multiple distributed grid nodes and (2) exploring in parallel each sub-tree.

Figure 6.1: Overview of the distributed heterogeneous B&B (HB&B@GRID).

The �rst level of parallelism, carried out by the B&B@GRID master-worker approach,

is based on the parallel tree exploration model presented in Section 2.3.1. It consists

in launching a master process to control the distributed exploration and several worker

6.1. Parallel heterogeneous B&B for computational grids : joining two levels

of parallelism 111

processes to explore simultaneously di�erent paths of the same tree. Each worker applies

the B&B algorithm using a depth �rst exploration strategy. As soon as a new best solution

for the problem being solved is found, it is communicated to other workers through the

master.

The second level of parallelism is carried out using a B&B meta-algorithm that auto-

matically selects the parallel B&B to be deployed according to the hardware con�guration

of the underlying grid node. As illustrated in Figure 6.2, four hardware con�guration sce-

narii have been considered: single CPU core coupled with a single GPU (1CPU-1GPU),

multi-core CPU without GPUs (nCPU-0GPU), multi-core CPU coupled with a single

GPU (nCPU-1GPU), multi-core CPU coupled with multiple GPUs (nCPU-nGPU).

Figure 6.2: A simpli�ed representation of a cluster/grid that contains interconnected

heterogeneous ressources with single/multiple CPUs and single/multiple GPUs.

6.1.2 The B&B meta-algorithm

On heterogeneous platforms where processing elements have di�erent performance charac-

teristics, the portability and the ability to automatically tune algorithms to any hardware

platform is a major challenge. With the aim to design a portable and adaptive heteroge-

112 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

neous parallel B&B algorithm, we propose a new meta-algorithm. This meta-algorithm

selects the parallel B&B algorithm to be deployed according to the number of CPU cores

and GPU devices in the target hardware con�guration. As illustrated in Algorithm 15,

the meta-algorithm proceeds by detecting the number of provided CPU cores and GPU

devices. If the underlying grid node does not contain GPU devices, the multi-core B&B

presented in Section 5.2 is used. If only a single CPU core coupled with a single GPU

device is available, the B&B meta-algorithm runs the LL-GB&B algorithm presented in

Section 4.4. When multiple CPU cores are coupled with a single GPU device, the PLL-

GB&B algorithm is selected (see Section 5.4). Finally, if more GPUs are available, the

LL-MultiGB&B algorithm is deployed (see Section 5.5).

Algorithm 15 Template of the proposed meta-algorithm.

max_nb_devices = Detect_GPU_Characteristics();

max_nb_cores = Get_CPU_Characteristics();

if max_nb_devices = 0 then
Run_MCB&B_algorithm();

end

else if max_nb_devices = 1 && max_nb_cores < 2 then
Run_LLGB&B_algorithm();

end

else if max_nb_devices = 1 && max_nb_cores >= 2 then
Run_PLLGB&B_algorithm();

end

else if max_nb_devices > 1 then
Run_LL-MultiGB&B_algorithm();

end

For each of the studied hardware con�gurations, three groups of parameters have been

identi�ed [Lastovetsky 2009] and tuned: problem parameters, algorithmic parameters and

platform parameters.

• The problem parameters are those of the problem to be solved. For our B&B algo-

rithm, these parameters correspond to the data related to the instance of the problem

being solved and are de�ned accordingly. For example, for FSP, the instance of a

problem determines the size of the matrices used to compute the lower bound, the

size of the permutation representing the solution, etc.

• The algorithmic parameters represent di�erent variations and con�gurations of the

6.1. Parallel heterogeneous B&B for computational grids : joining two levels

of parallelism 113

algorithm. These parameters do not change the semantics of the algorithm but

can have an impact on its performance. For the proposed B&B, these parameters

correspond to the size of the pool of nodes that are selected from the search tree and

o�-loaded to the GPU. The pool size depends strongly on the problem being solved

and the underlying used GPU. Hence, it has to be tuned at runtime.

• The platform parameters are related to the execution heterogeneous platform such as

the number of CPU cores, the number of GPU accelerators, etc. For B&B, according

to the target hardware, a speci�c scenario is selected. Moreover, if a GPU device is

available, the number of used blocks and threads are tunned according to the GPU

con�guration.

6.1.3 The B&B@Grid approach

In [Mezmaz 2007a], the authors rethought the representation of the search space through

an e�cient encoding of work units to minimize the cost of information �owing in the

network. The approach also includes e�cient load sharing, fault tolerance and termination

detection mechanisms. In particular, this approach was successfully applied to �nd the

optimal solution of an unsolved �owshop hard instance, namely the Ta056 instance which

belongs to the group of instances of Taillard with 50 jobs to be scheduled on 20 machines.

6.1.3.1 Tree encoding

The principle of the approach is constructed upon the assignment of a number to each

pending node of the tree. The tree is labeled in such a way a sub-set of nodes is encoded by

an interval: the numbers of any set of nodes always form an interval. The approach thus

de�nes a pairing between the list of pending nodes and intervals. Thanks to its reduced

size, the interval is used to optimize communication and check-pointing operations, while

the list of pending nodes is used for exploration.

In order to retrieve a set of nodes from a given interval and vice versa, the approach

de�nes two additional operators: the fold operator and the unfold operator. The fold oper-

ator deduces an interval from a list of pending nodes, and the unfold operator deduces an

unique and minimal list of pending nodes from an interval. To de�ne these two operators,

three concepts are introduced: node's weight, node's number and node's range.

As illustrated in Figure 6.3 (a), the weight(p) of a node p corresponds to the number

of leaves of the sub-tree generated from p. The number(p) is assigned to p according

to the value of path(p) which is the set of nodes from the root to the node p, including

both the root and p and to the rank of p which is the position of the node p among its

114 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

Figure 6.3: The tree-based representation where each node has a unique number and

contiguous nodes are represented by intervals.

sibling nodes. During the generation of the children of a given node, the rank of the �rst

generated node is 0, the rank of the second generated node is 1, and so on. An example

of how numbers are assigned is shown in Figure 6.3 (b). The range(p) of a node p, as

a result, de�nes the interval that contains all the nodes of which the node p is the root

node. As shown in Figure 6.3 (c) which is an example for coding a one-permutation tree

of size n = 3, any set of contiguous nodes can be represented by an interval. Assuming

that n is the size of the permutations, the size of the search space is S = n! and the whole

search space can be represented by the global interval I = [0, n![. In Figure 6.3 (c), the

global interval is equal to [0, 6[.

6.1.3.2 Master-Slave tree exploration

As quoted above, the B&B@GRID is based on a master-worker exploration model (see

Section 2.6). The approach assumes that each worker process explores an interval and

manages the local best solution while the master keeps a copy of all the not yet explored

intervals in the intervals list and manages the global best solution found so far stored in

the solutions variable.

The master continuously updates intervals by removing the subintervals that are al-

6.2. Experiments 115

ready explored and distributing others. Each time a worker process requests an interval

(when it joins the calculation for the �rst time or when it �nishes the exploration of its

interval), the master assign an interval to it by partitioning an existing one into two parts.

It also ensures e�cient solution sharing by updating the solutions variable each time a

worker informs that its best local solution is improved. The master is also responsible

for notifying workers of the algorithm termination detection which occur when the list

intervals of remaining sub-intervals becomes empty.

When distributing tree search works over multiple CPUs and GPUs, a major constraint

have to be considered: GPU are substantially faster in evaluating tree nodes than a CPU.

This observation has been con�rmed in our previous chapters. In Section 4.5, for example,

we report that our GPU-accelerated exploration of an interval that corresponds to a set

of sub-problems is almost 160 times faster than the serial (single-core based) exploration

of the same interval. Thereby, one may think that a fair partitioning between workers

should grant GPU-endowed resources with longer intervals and consequently more nodes

to explore which is not always valuable. Indeed, one should have in mind here that no

assumption can be done about the amount of tree nodes that is explored in each interval.

Besides, computers with multi-core CPUs might be more available in a grid than GPU-

enabled ones which must be taken into consideration as well. The solution here is to

assume that load sharing occurs according to the rate heterogeneous resources asks for

works. Hence, if GPUs run out of work more frequently than CPUs does, they will ask

the master for work more often and will be served correspondingly. In contrast, if a larger

number of CPUs are provided than GPUs, no loss in performance will occur since the

CPUs will be granted intervals that have been taken o� from GPUs.

6.2 Experiments

In this section, we will introduce the experimental platform used for evaluating the perfor-

mances of the distributed heterogeneous B&B and present the results of the experimen-

tations conducted on standard FSP benchmarks.

6.2.1 Experimental platform

Our experiments have been conducted on the French nation-wide Grid'5000 Experimental

Grid [Bolze 2006]. Grid'5000 is a scienti�c instrument launched in 2003 and designed to

support experiment-driven research in all areas of computer science related to parallel,

large-scale or distributed computing and networking. Grid'5000 inter-connects 10 sites

0Lille, Reims, Orsay1, Nancy, Rennes, Bordeaux, Toulouse, Grenoble, Lyon, Sophia-Antipolis.

116 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

in France via RENATER (the French academic network) and one site in Luxembourg via

RESTENA (the luxembourgian academic network) (see Figure 6.4). The interconnection

network is a Virtual Private Network (VPN) built on top of the RENATER network, com-

posed of 10 Gbps network links using optical �bers. In May 2013, Gird'5000 comprises

about 8.150 computational cores and more than 100 Tb of non-volatile storage capacity.

All the physical machines used feature multi-core processors (varying from 2 to 24 de-

pending on the machine). These resources are managed by di�erent institutions and have

to be reserved before being used. A reservation (commonly called a job) can be made

under three modes: normal, deploy (where one can deploy his/her own operating system

on the grid nodes) and best-e�ort (where some of the reserved resources can be reassigned

to another job during the reservation).

Figure 6.4: The experimental computational grid Grid'5000 [Gri 2003].

Grid'5000 is built in such a way to facilitate the deployment of user applications,

and the retrieval of the results in a transparent way for the end user. For this, many

management systems, middlewares and services were developed by di�erent collaborating

6.2. Experiments 117

laboratories. The main advantage of Grid5000 is its degree of recon�gurability. This

functionality, allows researchers to deploy and install the exact software environment they

need for their experiments, making the platform the ideal tool for real-life experimentation.

The recon�guration mechanism allows the deployment of the constructed environment on

the number of nodes that are requested for the experiments. Taking advantage of this

capability, a user can very easily deploy his/her own cluster or grid upon the Grid'5000

platform.

6.2.2 Performance Evaluation

In the prospect of a thorough performance evaluation of the proposed template for run-

ning distributed heterogeneous B&B algorithms on computational grid, it is interesting

to compare its performance with a same multi-level architecture that exploits distributed

multi-core machines without GPU accelerators.

6.2.2.1 Experimental settings

In order to perform a fair comparison between the throughput of each considered ap-

proach, the di�erent used architectures must have a same computational power in terms

of theoretical peak of �oating-point operations per second (FLOPS). FLOPS is a com-

mon measure of a computer's performance, especially in �elds of scienti�c computing that

make heavy use of �oating-point calculations. Because it measures the computing ability,

FLOPS is used as a benchmark indicator for rating the speed of supercomputers such as

TOP500 [TOP500].

For the di�erent machines used for the experiments, the number of potential GFLOPS

is calculated from the theoretical ones provided by constructors [Intel Corporation 2011b,

Intel Corporation 2011a, Intel Corporation 2011c]. The di�erent workstations have been

chosen according to the used GPU con�guration i.e. in agreement with their computa-

tional power. As quoted in Section 3.6, the experiments have been carried out on using an

Nvidia Tesla C2050. According to its constructor [NVIDIA Corporation 2010], the theo-

retical double precision �oating-point performance peak of this GPU device is about 515

GFLOPS. Therefore, we used the set of machines described in Table 6.1 which has a double

precision �oating-point performance peak equivalent of greater than the NVIDIA Tesla's

one. The objective is, indeed, to investigate the value-added of using GPU accelerators

compared to an equivalent horsepower.

The theoretical FLOPS provided in [Intel Corporation 2011b,

Intel Corporation 2011a, Intel Corporation 2011c] are given per CPU core. There-

118 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

Architecture Con�guration

Machines GFLOPS

GPU Tesla M2050 515

20 Intel Xeon E5520 (Edel cluster) 20 nodes * 8 cores/node * 36 GFLOPS = 5760

10 Intel Xeon E5420 (Genepi cluster) 10 nodes * 8 cores/node * 40 GFLOPS = 3200

Grid 20 Intel Xeon E5620 (Chimint cluster) 10 nodes * 8 cores/node * 38 GFLOPS = 3040

25 Intel Xeon X5570 (Parapide cluster) 25 nodes * 8 cores/node * 46 GFLOPS = 9200

Table 6.1: Con�gurations of the distributed machines used for the experiments on

Grid'5000.

fore for an octo-core workstation, such as the ones considered in our experiments, the

total number of FLOPS is multiplied by eight i.e. the number of CPU cores provided.

For example, from the Edel cluster (available in Grenoble site) we used 20 Intel Xeon

E5520 nodes having each 8 CPU cores, the total GFLOPS of the workstations used is as

a result equal to 5760 since the GFLOPS of an Intel Xeon E5520 is 36 GFLOPS.

6.2.2.2 Experimental results

The FSP benchmarks used to evaluate the performances of the HB&B@GRID algorithm

are the Taillard's instances ranging from Ta021 to Ta030, aiming at scheduling 20 jobs on

20 machines. Table 6.2 reports the sequential resolution times for these instances obtained

by using a single core of an Intel Xeon E5520 processor. These instances allow us to study

the performances of our approach along the entire resolution process. For all experimented

instances (Ta021-Ta030), the proposed heterogeneous GPU-accelerated B&B and the serial

B&B lead to the same best known solutions reported in [Taillard 1993b].

Table 6.3 reports the execution times in seconds for a grid-enabled parallel B&B exe-

cuted on several CPU cores. The rows correspond to the experimented instance ranging

from Ta021 to Ta030. The columns correspond to the number of used CPU cores and

the corresponding theoretical peak in GFLOPS. The results shows that whatever the

used computational resource is, the execution times signi�cantly vary from an instance to

another even though they belong to the same group of instances with 20 jobs and 20 ma-

chines. For example, for the 15 CPU cores-based execution the resolution time is 9173.00

(s) for the instance Ta021 and about 29674.34 (s) for the instance Ta023. Therefore, our

analysis of the former results will be based on the average of the obtained values.

The results show that on average when increasing the number of CPU cores involved

6.2. Experiments 119

Instance Resolution Time (Seconds)

Ta021 98056

Ta022 120806

Ta023 384300

Ta024 93544

Ta025 376094

Ta026 212135

Ta027 165082

Ta028 31444

Ta029 97699

Ta030 17257

Table 6.2: Sequential resolution times (seconds) for the instances Ta021-Ta030 correspond-

ing to the group of instances with 20 jobs and 20 machines.

in the computations, the execution times necessary for solving the considered instances

decrease accordingly. However, the slope is not linear. For example, when using 100 CPU

cores the average execution time over all the instances is 2160 (s) while it is 1266 (s) when

using 200 CPU cores. The expected theoretical execution time with 200 CPU cores should

be twice less than the one registered with 100 CPU cores, while it is only 40% less in the

performed experiments. This behavior is a characteristic of grid-based computations which

are closely related to the underlying communication time. In such environments, higher

accelerations can be reached as long as the computing time is not too much dominated by

the communication time. Particularly, in our case, using 200 CPU cores obviously lead to

upper communications time than in experiments where only 100 CPU cores are running

which explains the drift away from the theoretically attainable performances.

Table 6.4 reports the execution times in seconds for the grid-enabled parallel B&B using

several distributed GPUs. The rows correspond to the experimented instance ranging from

Ta021 to Ta030. The columns correspond to the number of used GPU devices and the

corresponding theoretical peak in GFLOPS. It is important to highlight here that the

GPU devices are located on distinct machines. As noticed for the CPU-based executions,

the resolution times signi�cantly vary from an instance to another. Therefore, our analysis

of these results will be also based on the average of the obtained values. On average, the

results show that when increasing the number GPU devices involved in the computations,

the execution times necessary for resolving the considered instances decrease accordingly.

Figure 6.5 exhibits the comparison between the average speedups for the instances 20

120 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

Used computational 15 50 100 200 500

resources CPU cores CPU cores CPU cores CPU cores CPU cores

Average Performances 570 1900 3800 7600 19000

in GFLOPS

Ta021 9173.00 3149.70 1753.581 1106.254 762.633

Ta022 9885.30 3281.12 1958.009 912.393 767.208

Ta023 29674.34 12593.98 4984.879 2337.605 1691.613

Ta024 8118.44 2725.63 1260.54 762.863 592.873

Ta025 24719.96 8539.17 3787.595 2317.965 1735.098

Ta026 18317.21 5606.03 3937.5 2215.491 1233.828

Ta027 15975.82 5195.50 2225.421 1782.05 980.038

Ta028 2580.20 741.87 510.573 388.148 326.61

Ta029 4077.29 1177.69 881.006 562.789 447.666

Ta030 1372.82 368.30 309.163 282.771 235.494

Average Execution time 12389.44 4337.90 2160.83 1266.83 877.31

Table 6.3: Execution times (seconds) for the instances Ta021 to Ta030 using di�erent

scales of the distributed CPU-based version of the B&B.

machines × 20 jobs (compared to the serial execution reported in Table 6.2) obtained

with the distributed GPU-based B&B and the distributed CPU-based version of the algo-

rithm. For a same computational power, our approach for designing B&B algorithms on

top of GPU accelerators is much more e�cient than a large-scale distributed CPU-based

execution. Indeed, for a computational power around 515 GFLOPS, the average accel-

eration calculated when using the distributed GPU-based B&B is ×88.52. For a same

computational power (around 15 CPU cores) the speedup of the distributed CPU-based

B&B is on average ×13.32. Even when using up to 100 CPU cores, using a single GPU

is more e�cient although the theoretical peak in GFLOPS of 100 CPU cores is almost 7

times more than the GPU device. Moreover, the GPU-based B&B executed on top of 3

distant GPU devices (1545 GFLOPS) runs on average 5 times faster than the CPU-based

B&B executed on top of 50 CPUs which has an equivalent computational power (1900

GFLOPS). For the upper computational powers, the experimental results show that using

3 GPU devices is e�cient enough to perform as good as using 500 distributed CPU cores

and that using 5 GPU devices allows accelerations twice higher than those obtained using

500 CPU cores.

6.3. Conclusion 121

Used computational 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs

resources

Average Performances 515 1030 1545 2060 2575

in GFLOPS

Ta021 993.41 567.08 411.10 322.93 302.68

Ta022 1405.13 852.67 455.82 385.69 335.79

Ta023 4913.19 2776.68 2207.35 1765.88 1119.04

Ta024 1017.73 598.66 439.42 351.54 288.36

Ta025 3854.63 2322.06 1702.45 1302.94 1090.92

Ta026 2631.50 1529.94 1102.75 883.55 655.04

Ta027 1842.34 1103.20 813.40 647.89 527.63

Ta028 368.97 217.04 153.73 123.56 100.46

Ta029 1058.66 619.10 445.65 376.25 297.47

Ta030 202.92 120.07 86.90 69.57 54.21

Average Execution time 1884.85 1070.65 781.86 622.98 477.16

Table 6.4: Execution times (seconds) for the instances Ta021 to Ta030 using di�erent

scales of the distributed GPU-accelerated version of the B&B.

 0

 50

 100

 150

 200

 250

 300

 350

GPU
2 GPUs

3 GPUs
4 GPUs

5 GPUs
15 CPUs

50 CPUs

100 CPUs

200 CPUs

500 CPUs

A
ve

ra
ge

 S
pe

ed
up

s

 Used computational ressources

Figure 6.5: Comparison between the GPU-based Branch and Bound and the CPU-based

distributed version of the algorithm.

6.3 Conclusion

In this chapter, we have presented the design and implementation of a large-scale het-

erogeneous B&B algorithm that uses the combined computing power of several multi-core

122 Chapter 6. Towards a grid-enabled GPU-accelerated Branch and Bound

machines and GPUs distributed within a cluster or a grid. Indeed, with the arrival of GPU

resources and the advent of multi-core resources on computational grids, it is relevant to

study the performances of a large-scale heterogeneous multi-core GPU-accelerated B&B

algorithm and compare it with other successful large-scale algorithms.

- Parallel heterogeneous B&B for computational grids The approach consists

in using a parallel heterogeneous B&B on top of several resources that are distributed

inside one or several clusters and to make these ressources communicate e�ciently.

For achieving this, a B&B meta-algorithm is coupled with the B&B@GRID ap-

proach proposed in [Mezmaz 2007a]. Indeed, while B&B@GRID allows one to ef-

�ciently partition the B&B tree search among distant nodes, the meta-algorithm

explores assigned sub-trees using the parallel B&B algorithm that best �ts the tar-

geted hardware con�guration.

- Performance of the distributed heterogeneous GPU-accelerated B&B al-

gorithm Comparison between the speedups obtained with the distributed GPU-

based B&B and a distributed CPU-based algorithm, show that for a same computa-

tional power, the GPU-based approach is much more e�cient. For a computational

power equivalent to 50 CPU cores which is respectively equal to 3 times its com-

putational power, our GPU-based B&B runs two times faster than the CPU-based

version. Even when using up to 100 CPU cores, using a single GPU is more e�cient

although the theoretical peak in GFLOPS of 100 CPU cores is almost 7 times more

than the GPU device. For the upper computational powers, experimental results

show that using 3 GPU devices is e�cient enough to perform as good as using 500

distributed CPU cores and that using 5 GPU devices allows accelerations two times

higher than those obtained using 500 CPU cores.

Chapter 7

Conclusion and future works

GPU accelerators are nowadays available everywhere: in our laptops, in high performance

computing workstations, in hybrid clusters and in computational grids and clouds. Such

availability will increase with the arrival of exascale machines announced for 2018-2020.

The challenge is, and will be in the near future, how to design and implement e�cient

algorithms for those GPU-enhanced computing environments. In this thesis, the focus

is put on tree-based exact combinatorial optimization. Indeed, we have revisited the

design and implementation of B&B algorithms for solving challenging COPs on top of

GPU-enhanced heterogeneous computational platforms. Without loss of generality, the

Flowshop Scheduling Problem (FSP) has been considered as a case study.

For achieving this, we have �rst investigated the use of a single CPU coupled with a

GPU device tackling di�erent issues related to the characteristics of GPU and the highly

irregular nature of B&B: thread divergence, device memory management, adaptive sizing

of transferred data and CPU-GPU data transfer optimization. Because it is data-parallel,

intrinsically asynchronous and �ne-grained and as it is the most time consuming operation

in the B&B algorithm, our focus was �rst put only on the bounding operator. In the

proposed GPU-based approach (GB&B), the selection, branching and pruning of the sub-

problems are performed on CPU and the evaluation of their lower bounds is executed

on the GPU device where each thread applies a computation function (lower bound) to

a tree node. The analysis of the code implementing the lower bound function allows us

to identify the thread/branch divergence sources and the data structures shared by the

threads. For B&B algorithms or tree-based exploration algorithms in general, two insights

came out (1) thread divergence reduction is interesting only for branches that contain long

�ows of instructions and (2) the use of shared memory for shared data structures allows

a signi�cant improvement of the performance. The proposed optimizations allow to reach

speedups up to ×100 compared to a serial CPU-based B&B.

Even if the bounding operator represents more than 97% of the computation time of a

B&B algorithm, its parallelization on GPU is not su�cient even if it is e�cient. Indeed,

further performance improvement can be obtained by reducing the overhead induced by

124 Chapter 7. Conclusion and future works

the management of the pools of subproblems (tree nodes): their preparation on CPU,

their transfer to GPU and the transfer of their associated lower bounds back to CPU.

Therefore, our second focus in this work was to investigate the tree-based exploration

model on GPU. For acheiving this, we extended the GB&B algorithm to the Low Latency

GPU-accelerated B&B (LL-GB&B) algorithm which assumes to execute the branching,

bounding and pruning operators on GPUs. Such parallelization requires to address the

highly irregular nature of the explored search tree. Indeed, a preliminary experimental

analysis has shown that even if a pool of nodes belong to the same level on the tree their

branching may generate di�erent numbers of children. To deal with such issue which arise

in tree-based exploration algorithms in general be them B&B or not, the recommendation

is to limit the granularity of each thread to the application of an operator (branching,

bounding and pruning) to a single node. Further speedups compared to GB&B have been

obtained reaching up to ×160.

With the ever-increasing demand for more computing performance, the HPC industry

is moving toward a hybrid computing model, where GPUs and CPUs collaborate together

to perform general-purpose computing tasks. Therefore, to be relevant to the growing

number of heterogeneous computing systems, we have studied the combination of multi-

ple CPU cores with one GPU and with several GPUs. The major issue addressed therein

is mainly the repartition of pools of subproblems and their associated exploration com-

putation between the CPU cores and the GPU device(s). When only one GPU is used,

two scenarios have been explored leading to two approaches: concurrent LL-GB&B (rLL-

GB&B) and cooperative LL-GB&B (pLL-GB&B). Due to synchronization overhead, even

if the concurrent approach makes all the CPU cores contributing to the exploration pro-

cess, it does not improve the performance compared to the single CPU core GPU-based

approach. On the contrary, the cooperative approach enables an improvement of up to

36% compared to LL-GB&B. Therefore, as a general recommendation, one can say that

when using this parallelization for tree-based algorithms, the exploration process including

all the operators should be performed on GPU and that CPU cores should participate to

the exploration process but and mainly to the preparation and transfer of the pools of

tree nodes to GPU. We also suggest to use the CUDA data streaming to further reduce

the cost of data transfer between CPU and GPU. When several GPUs are available, one

e�cient method is to split the kernels across these devices and to pro�t from the time

where the kernels run in parallel to proceed with the next iterations of the algorithm.

In addition, the direct memory access between di�erent devices through the peer-to-peer

memory access feature is highly suggested. Indeed, over a serial B&B, accelerations up to

×216.92 are reached for large instances of FSP and the more GPU devices are used, the

125

better the speedups are.

With the arrival of GPU accelerators and the advent of multi-core processors on clus-

ter and computational grids, our �nal contribution consists in proposing a large-scale

version of the heterogeneous multi-core GPU-accelerated Branch and Bound algorithm.

The proposed approach (H-B&B@GRID) consists in using a B&B meta-algorithm on top

of several heterogeneous resources that are distributed over one or several cluster(s) and

to ensure e�cient work sharing and communication through the B&B@GRID approach.

The algorithm consists in hierarchically combining two levels of parallelism by (1) dividing

the B&B tree exploration among multiple distributed ressources using the B&B@GRID

and (2) explore in parallel each sub-tree using the heterogeneous meta-algorithm. Using

this portable, heterogeneous and self-adaptive approach allows us to acheive high per-

formances comparable and sometimes even better than 500 distributed CPU cores when

using 5 GPU devices of equivalent horsepower.

As future research directions for this work, we have identi�ed some challenging per-

spectives summerized in the following:

- In this thesis, we have considered the Johnson's lower bound function as a case

study for FSP but other bounds [Gharbi 2013] should be investigated. We believe

that some functions might be e�cient on single or multi-core CPU but ine�cient

on GPU because their parallelization on that device is hard and vice versa. A

further challenging improvement of the B&B meta-algorithm consists in designing

and implementing a library of lower bounds for the same problem on single and multi-

core CPU and on GPU. As an additional level of adaptivity, the meta-algorithm will

dynamically and automatically choose the implementation that best suits to the

underlying execution machine.

- In the grid-enabled heterogeneous B&B approach, the CPU-level checkpointing

mechanism proposed in B&B@Grid is used to deal with failures even if the CPU

is coupled with a GPU device. The mechanism should be revisited to take into

account GPU-level failures.

- We believe that the conclusions drawn from the experiments are the same whatever

is the shape of (how irregular is) the tree and thus for any tree-based application.

In the near future, we plan to revisit, within the framework of the Ph.D thesis of

Rudi Leroy, the proposed approaches for other tree-based exploration algorithms

especially B&X ones, X being Cut, Price, etc.

Other challenging perspectives are related to the recent evolutions in the context of

126 Chapter 7. Conclusion and future works

High Performance Computing (HPC). Indeed, HPC is moving from in-house to cloud-

based computing, the software is becoming energy-aware, and GPU accelerators are more

and more massively parallel and CPU-independent. The underlying future evolutions of

the proposed approaches are outlined in the following:

- With the arrival of GPU resources in cloud computing infrastructures, the challenge

is to revisit our proposed approaches on virtualized environments. This is a �rst

natural step towards energy saving. So far, some experimental results reported in

this thesis show that a single GPU is as e�cient as 100 CPU cores but much less

energy-consuming. However, the energy consumption criterion should be explicitely

considered in the design and implementation of our approaches.

- Recently, the GPU technology has known an evolution coming up with a new

generation of devices including advanced features. For instance, Kepler-based de-

vices [NVIDIA Corporation 2012] allow dynamic parallelism and Nvidia GPUDirect.

Dynamic parallelism consists in allowing the GPU device to generate new work

by itself, synchronizing on results, and controling the scheduling of that work via

dedicated and accelerated hardware paths, all without involving the CPU. Nvidia

GPUDirect is a capability enabling GPUs located on servers distributed across the

network to directly exchange data, in a peer-to-peer way, without passing through

the CPU. A future challenge will consist in revisiting the proposed GPU-aware tree-

based approaches for those modern GPUs taking into account their underlying ad-

vanced features.

Bibliography

[Aida 2002] K. Aida and Y. Futakata. High-performance parallel and distributed comput-

ing for the BMI eigenvalue problem. In 16th International Parallel and Distributed

Processing Symposium, pages 71�78, 2002. (Cited on pages 19 and 29.)

[Aida 2005] K. Aida and T. Osumi. A Case Study in Running a Parallel Branch and

Bound Application on the Grid. SAINT'05: The 5th IEEE Symposium on Appli-

cations and the Internet, vol. 27, no. 2, pages 164�173, 2005. (Cited on page 29.)

[Alerstam 2010] E. Alerstam, W. Chun Yip Lo, T. D. Han, J. Rose, S. Andersson-Engels

and L. Lilge. Next-generation acceleration and code optimization for light transport

in turbid media using GPUs. Biomedical Optics Express, pages 658�675, 2010.

(Cited on page 57.)

[Allahverdi 1999] A. Allahverdi, J.N.D Gupta and T. Aldowaisan. A review of scheduling

research involving setup considerations. Omega, vol. 27, no. 2, pages 219�239, 1999.

(Cited on page 8.)

[Allen 1997] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasuda. A Parallel

Algorithm for Graph Matching and Its MasPar Implementation. IEEE Transactions

on Parallel and Distributed Systems, vol. 8, no. 5, pages 490�501, 1997. (Cited on

page 1.)

[Anderson 2002] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer.

SETI@home: an experiment in public-resource computing. Communications of the

ACM, vol. 45, no. 11, pages 56�61, 2002. (Cited on page 29.)

[Bader 2005] D. A. Bader, W. E. Hart and C. A. Phillips. Parallel Algorithm Design for

Branch and Bound. vol. 76, pages 5�1�5�44, 2005. (Cited on pages 1 and 19.)

[Baker 2002] M. Baker, R. Buyya and D. Laforenza. Grids and grid technologies for wide-

area distributed computing. Software: Practice and Experience, vol. 32, no. 15,

pages 1437�1466, December 2002. (Cited on page 27.)

[Barreto 2010] L. Barreto and M. Bauer. Parallel branch and bound algorithm-a com-

parison between serial, openmp and mpi implementations. In Journal of Physics:

Conference Series, vol. 256, 2010. (Cited on pages 2 and 27.)

128 Bibliography

[Bendjoudi 2012] A. Bendjoudi, N. Melab and E-G. Talbi. Hierarchical branch and bound

algorithm for computational grids. Future Generation Computer Systems, vol. 28,

no. 8, pages 1168�1176, 2012. (Cited on pages 2 and 30.)

[Bendjoudi 2013] A. Bendjoudi, N. Melab and E-G. Talbi. FTH-B&B: a Fault-Tolerant

Hierarchical Branch and Bound for Large Scale Unreliable Environments. IEEE

Transactions on Computers, 2013. (Cited on page 30.)

[Bolze 2006] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jé-

gou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier,

O.Richard, E-G. Talbi and I. Touche. Grid'5000: A Large Scale And Highly Recon-

�gurable Experimental Grid Testbed. volume 20, pages 481�494, Thousand Oaks,

CA, USA, November 2006. Sage Publications, Inc. (Cited on page 115.)

[Bonney 1976] M.C. Bonney and S.W. Gundry. Solutions to the constrained �owshop

sequencing problem. Operational Research Quarterly, page 869, 1976. (Cited on

page 8.)

[Bradford 1996] N. Bradford, B. Dick and F.J. Proulx. O'Reilly, 1996. (Cited on pages 87

and 89.)

[Brodtkorb 2010] A. R. Brodtkorb, C. Dyken, T.R. Hagen, J.M. Hjelmervik and O.O.

Storaasli. State-of-the-art in heterogeneous computing. Journal of Scienti�c Pro-

gramming, vol. 18, no. 1, pages 1�33, 2010. (Cited on page 86.)

[Buchty 2012] R. Buchty, V. Heuveline, W. Karl and J.P. Weiss. A survey on hardware-

aware and heterogeneous computing on multicore processors and accelerators. Con-

currency and Computation: Practice and Experience., vol. 24, no. 7, pages 663�675,

2012. (Cited on page 86.)

[Carneiro 2011] T. Carneiro, A.E Muritiba, M. Negreiros and G.A. Lima de Campos.

A New Parallel Schema for Branch-and-Bound Algorithms Using GPGPU. In

23rd International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD), 2011. (Cited on pages 2, 19, 24, 69, 72 and 86.)

[Casado 2008] L. G. Casado, J.A. Martinez, I. Garcia and E. M. T. Hendrix. Branch-and-

Bound interval global optimization on shared memory multiprocessors. Optimiza-

tion Methods Software, vol. 23, no. 5, pages 689�701, 2008. (Cited on pages 2, 19

and 26.)

[Chakroun 2011] I. Chakroun, A. Bendjoudi and N. Melab. Reducing Thread Divergence in

GPU-based B&B Applied to the Flow-shop problem. In 9th International Conference

Bibliography 129

on Parallel Processing and Applied Mathematics (PPAM 2011), Torun, Pologne,

September 2011. (Cited on pages 20 and 24.)

[Chakroun 2012] I. Chakroun and N. Melab. An Adaptive Multi-GPU Based Branch-

and-Bound. A Case Study: The Flow-Shop Scheduling Problem. In 14th IEEE

International Conference on High Performance Computing and Communication,

HPCC'12, Liverpool, United Kingdom, June 25-27, pages 389�395, 2012. (Cited

on page 98.)

[Crainic 2006] T.G. Crainic, B. Le Cun and C. Roucairol. Parallel branch-and-bound

algorithms, pages 1�28. JohnWiley & Sons, Inc., 2006. (Cited on pages 16 and 143.)

[Diconstanzo. 2007] A. Diconstanzo. Branch-and-bound with peer-to-peer for large-scale

grids. In PhD thesis, Ecole doctorale STIC, Sophia Antipolis, France, 2007. (Cited

on pages 30 and 31.)

[Djamai 2011] M. Djamai, B. Derbel and N. Melab. Distributed B&B: A Pure Peer-to-

Peer Approach. 2012 IEEE 26th International Parallel and Distributed Processing

Symposium Workshops & PhD Forum, vol. 0, pages 1788�1797, 2011. (Cited on

pages 2 and 31.)

[Djerrah 2006] A. Djerrah, B. Le Cun, V. Cung and C. Roucairol. Bob++: Framework

for Solving Optimization Problems with Branch-and-Bound methods. In 15th IEEE

International Symposium on High Performance Distributed Computing, pages 369�

370, 2006. (Cited on page 19.)

[Evtushenko 2009] Y. Evtushenko, M. Posypkin and I. Sigal. A framework for parallel

large-scale global optimization. Computer Science - Research and Development,

vol. 23, pages 211�215, 2009. (Cited on page 26.)

[Finkel 1987] R. Finkel and U. Manber. DIB-a distributed implementation of backtracking.

ACM Transactions on Programming Languages and Systems, vol. 9, no. 2, pages

235�256, March 1987. (Cited on page 30.)

[Foster 1998] I. Foster and C. Kesselman. Computational Grids, 1998. (Cited on page 27.)

[Fung 2007] W. L. Fung, I. Sham, G. Yuan and T.M Aamodt. Dynamic Warp Formation

and Scheduling for E�cient GPU Control Flow. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages

407�420. IEEE Computer Society, 2007. (Cited on pages 21, 40 and 41.)

130 Bibliography

[Garey 1976] M.R. Garey, D.S. Johnson and R. Sethi. The complexity of �ow-shop and

job-shop scheduling. Mathematics of Operations Research, vol. 1, pages 117�129,

1976. (Cited on pages 1 and 9.)

[Gendron 1994] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms:

Survey and Synthesis. Operations Research, vol. 42, no. 6, pages 1042�1066, 1994.

(Cited on pages 2, 10, 16, 143 and 144.)

[Gharbi 2013] A. Gharbi and A. Mahjoubi. New Lower Bounds for Flow Shop Scheduling.

International Journal of Humanities and Management Sciences (IJHMS), 2013.

(Cited on page 125.)

[Gri 2003] French national gird. In https://www.grid5000.fr, 2003. (Cited on pages viii

and 116.)

[Han 2011] T. D. Han and T. S. Abdelrahman. Reducing branch divergence in GPU

programs. In Proceedings of the Fourth Workshop on General Purpose Processing

on Graphics Processing Units, GPGPU-4, New York, NY, USA, 2011. ACM. (Cited

on pages 40, 41, 55, 57 and 58.)

[Hejazi 2005] S. Reza Hejazi and S. Sagha�an. Flowshop-scheduling problems with

makespan criterion: a review. International Journal of Production Research,

vol. 43, no. 14, pages 2895�2929, 2005. (Cited on page 8.)

[Iamnitchi 2000] A. Iamnitchi and I. Foster. A Problem-Speci�c Fault-Tolerance Mecha-

nism for Asynchronous, Distributed Systems. In Proceedings of the Proceedings of

the 2000 International Conference on Parallel Processing, ICPP '00, Washington,

DC, USA, 2000. IEEE Computer Society. (Cited on page 30.)

[Intel Corporation 2011a] Intel Corporation. Intel Xeon Processor 5400 Series.

In http://download.intel.com/support/processors/xeon/sb/xeon_5400.pdf, April

2011. (Cited on page 117.)

[Intel Corporation 2011b] Intel Corporation. Intel Xeon Processor 5500 Series.

In http://download.intel.com/support/processors/xeon/sb/xeon_5500.pdf, April

2011. (Cited on page 117.)

[Intel Corporation 2011c] Intel Corporation. Intel Xeon Processor 5600 Series.

In http://download.intel.com/support/processors/xeon/sb/xeon_5600.pdf, April

2011. (Cited on page 117.)

Bibliography 131

[Janakiram 1988] V. Janakiram, EF. Gehringer, DP. Agrawal and R. Mehrotra. A ran-

domized parallel branch-and-bound algorithm. International Journal of Parallel Pro-

gramming, vol. 17, no. 3, pages 277�301, 1988. (Cited on page 17.)

[Jang 2011] B. Jang, D. Schaa, P. Mistry and D. Kaeli. Exploiting Memory Access Patterns

to Improve Memory Performance in Data-Parallel Architectures. IEEE Transaction

on Parallel and Distributed Systems, vol. 22, no. 1, pages 105�118, 2011. (Cited

on page 40.)

[Johnson 1954] S.M. Johnson. Optimal two and three-stage production schedules with setup

times included. Naval Research Logistis Quarterly, vol. 1, pages 61�68, 1954. (Cited

on pages 3, 8 and 35.)

[J.R.Jackson 1956] J.R.Jackson. An Extension of Johnson's results on Job-Lot Scheduling.

Naval Research Logistis Quarterly, 1956. 3:3. (Cited on page 35.)

[King 1980] J. R. King and A. S. Spachis. Heuristics for �ow-shop scheduling. Interna-

tional Journal of Production Research, vol. 18, no. 3, page 345â357, 1980. (Cited

on page 8.)

[Kirk 2010] D. B. Kirk and Wen mei W. Hwu. Programming massively parallel processors:

A hands-on approach. Morgan Kaufmann Publishers Inc. 1st edition, 2010. (Cited

on page 137.)

[Kumar 1984] V. Kumar and L.N. Kanal. Parallel Branch-and-Bound Formulations for

AND/OR Tree Search. IEEE Transactions on Pattern Analysis and Machine In-

telligence, no. 6, pages 768�778, 1984. (Cited on page 17.)

[Lalami 2012] M.E. Lalami. Contribution à la résolution de problèms d'optimisation com-

binatoire: méthodes séquentielles et parallèles. Université de Toulouse III - Paul

Sabatier., 2012. (Cited on pages 2, 19, 24, 77 and 86.)

[Lastovetsky 2009] A. Lastovetsky and J. Dongarra. High performance heterogeneous

computing. Wiley, 2009. (Cited on pages 86 and 112.)

[Lenstra 1978] J.K. Lenstra, B.J. Lageweg and A.H.G. Rinnooy Kan. A General bounding

scheme for the permutation �ow-shop problem. Operations Research, vol. 26, no. 1,

pages 53�67, 1978. (Cited on pages 3 and 35.)

[L.G.Mitten 1959] L.G.Mitten. Sequencing n jobs on two machines with arbitrary time

lags. Management Science, 1959. (Cited on page 35.)

132 Bibliography

[Luong 2011] T.V. Luong. Métaheuristiques parallèles sur GPU. Université des Sciences

et Technologie de Lille, 2011. (Cited on pages 2 and 23.)

[Mahmoudi 2012] S.A. Mahmoudi and P. Manneback. E�cient Exploitation of Heteroge-

neous Platforms for Images Features Extraction. 10/2012 2012. (Cited on page 23.)

[Mahmoudi 2013] S.A. Mahmoudi. Traitement e�cace d'objects multimédia sur architec-

tures parallèles et hétérogènes. PhD thesis, Université de Mons, 2013. (Cited on

pages 22 and 23.)

[Mans 1995] B. Mans, T. Mautor and C. Roucairol. A parallel depth �rst search branch

and bound algorithm for the quadratic assignment problem. European Journal of

Operational Research, vol. 81, no. 3, pages 617 � 628, 1995. (Cited on page 19.)

[Melab 2005] N. Melab. Contributions à la résolution de problèmes d'optimisation combi-

natoire sur grilles de calcul, 2005. (Cited on pages 16 and 143.)

[Meng 2010] J. Meng, D.Tarjan and K.Skadron. Dynamic warp subdivision for integrated

branch and memory divergence tolerance. In Proceedings of the 37th annual in-

ternational symposium on Computer architecture, ISCA '10, pages 235�246, New

York, NY, USA, 2010. ACM. (Cited on pages 21 and 40.)

[Mezmaz 2007a] M. Mezmaz. Une approche e�cace pour le passage sur grilles de calcul

de méthodes d'optimisation combinatoire. PhD thesis, Université des Sciences et

Technologies de Lille 1, 2007. (Cited on pages 2, 5, 16, 29, 31, 51, 109, 113 and 122.)

[Mezmaz 2007b] M. Mezmaz, N. Melab and E-G. Talbi. A grid-enabled branch and bound

algorithm for solving challenging combinatorial optimization problems. In In Proc.

of 21th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS). Long

Beach, California, March 2007. (Cited on page 51.)

[Miller 1993] Donald L. Miller and Joseph F. Pekny. The Role of Performance Metrics for

Parallel Mathematical Programming Algorithms. vol. 5, no. 1, pages 26�28, 1993.

(Cited on page 17.)

[NVIDIA Corporation 2008] NVIDIA Corporation. COMPUTE VISUAL PROFILER

User Guide. In https://developer.nvidia.com/nvidia-visual-pro�ler, 2008. (Cited

on pages 51 and 55.)

[NVIDIA Corporation 2010] NVIDIA Corporation. TESLA C2050 / C2070

GPU Computing Processor (NVIDIA TESLA | DATASHEET) . In

Bibliography 133

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10

_lores.pdf, July 2010. (Cited on pages 48 and 117.)

[NVIDIA Corporation 2011a] NVIDIA Corporation. NVIDIA CUDA C Programming

Guide. In http://developer.nvidia.com/nvidia-gpu-computing-documentation,

June 2011. (Cited on pages 20, 43 and 99.)

[NVIDIA Corporation 2011b] NVIDIA Corporation. Peer-to-Peer & Uni�ed Virtual Ad-

dressing. In http://developer.download.nvidia.com/CUDA/training/cuda _webi-

nars_GPUDirect_uva.pdf, 2011. (Cited on pages viii, ix, 100, 138 and 140.)

[NVIDIA Corporation 2012] NVIDIA Corporation. Kepler TM GK110 White paper.

In www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf, 2012. (Cited on page 126.)

[Papadimitriou 1982] C.H. Papadimitriou and K.Steiglitz. Combinatorial optimization:

algorithms and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1982. (Cited on page 10.)

[Paulavicius 2009] R. Paulavicius and J. Zilinskas. Parallel Branch and Bound Algorithm

with Combination of Lipschitz Bounds over Multidimensional Simplices for Mul-

ticore Computers. In Parallel Scienti�c Computing and Optimization, volume 27

of Springer Optimization and Its Applications, pages 93�102. Springer New York,

2009. (Cited on page 27.)

[Quinn 1990] J. Quinn. Analysis and Implementation of Branch-and-Bound Algorithms on

a Hypercube Multicomputer. IEEE Trans. Comput., vol. 39, no. 3, pages 384�387,

1990. (Cited on pages 2 and 19.)

[Roucairol 1996] C. Roucairol. Parallel processing for di�cult combinatorial optimization

problems. European Journal of Operational Research, vol. 92, no. 3, pages 573 �

590, 1996. (Cited on page 16.)

[Ryoo 2008] S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, S.Z. Ueng, S.S. Baghsorkhi

and Wen mei W. Hwu. Program optimization carving for GPU computing. Journal

of Parallel and Distributed Computing, vol. 68, no. 10, pages 1389�1401, 2008.

(Cited on pages 22 and 40.)

[Stone 2010] J. E. Stone, D. J. Hardy, I. S. U�mtsev and K. Schulten. GPU-accelerated

molecular modeling coming of age. Journal of Molecular Graphics and Modelling,

vol. 29, no. 2, pages 116 � 125, 2010. (Cited on page 137.)

134 Bibliography

[Sung 2010] I-Jui. Sung, J.A. Stratton A. and Wen-Mei W. Hwu. Data layout transforma-

tion exploiting memory-level parallelism in structured grid many-core applications.

In Proceedings of the 19th international conference on Parallel architectures and

compilation techniques, PACT '10, pages 513�522, New York, NY, USA, 2010.

ACM. (Cited on page 40.)

[Taillard 1993a] E. Taillard. Benchmarks for basic scheduling problems. European Journal

of Operational Research, vol. 64, no. 2, page 278 â 285, 1993. (Cited on pages 3,

36, 46 and 48.)

[Taillard 1993b] E. Taillard. Taillard's FSP benchmarks. In http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html, 1993.

(Cited on pages 14, 36, 46, 48 and 118.)

[TOP500] TOP500. TOP 500 supercomputer sites. In http://www.top500.org/. (Cited

on pages i, iii and 117.)

[Trienekens 1992] H.W.J.M. Trienekens and A. de Bruin. Towards a Taxonomy of Parallel

Branch and Bound Algorithms. Rapport technique, 1992. (Cited on pages 16

and 143.)

[Tschöke 1995] S. Tschöke, R. Lüling and B. Monien. Solving the traveling salesman prob-

lem with a distributed branch-and-bound algorithm on a 1024 processor network. In

Proceedings of the 9th International Symposium on Parallel Processing, IPPS '95,

pages 182�189, Washington, DC, USA, 1995. IEEE Computer Society. (Cited on

pages 2 and 19.)

[Yang 2010] Y. Yang, P. Xiang, J. Kong and H. Zhou. A GPGPU compiler for mem-

ory optimization and parallelism management. In Proceedings of the 2010 ACM

SIGPLAN conference on Programming language design and implementation, PLDI

'10, pages 86�97, New York, NY, USA, 2010. ACM. (Cited on pages 22 and 40.)

[Zhang 2010] E. Z. Zhang, Y. Jiang, G. Ziyu and S. Xipeng. Streamlining GPU ap-

plications on the �y: thread divergence elimination through runtime thread-data

remapping. In Proceedings of the 24th ACM International Conference on Super-

computing, ICS '10, pages 115�126, New York, NY, USA, 2010. ACM. (Cited on

pages 40 and 41.)

International Publications

International Journals

- I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens.

�Combining multi-core and GPU computing for solving combinatorial optimization

problems�. Journal of Parallel and Distributed Computing (JPDC) - Elsevier - In

Press.

- I. Chakroun, M.Mezmaz, N. Melab, and A.Bendjoudi.

� Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm�.

Concurrency and Computation: Practice and Experience - vol 25, N◦ 8, pages 1121-

1136, 2013 - John Wiley & Sons..

- N. Melab, I. Chakroun, and A. Bendjoudi.

�GPU-accelerated Bounding for Branch-and-Bound applied to a Permutation Prob-

lem using Data Access Optimization�. Concurrency and Computation: Practice and

Experience - John Wiley & Sons (Accepted with minor revision).

- I. Chakroun and N. Melab.

�Towards an heterogeneous and adaptive parallel Branch-and-Bound algorithm.�

Journal of Computer and System Sciences - Elsevier (Under revision).

International Conferences

- I. Chakroun and N. Melab. �Operator-level GPU-accelerated Branch and

Bound algorithms�. International Conference on Computational Science, ICCS'13.

Barcelona, Spain, June 5-7, 2013.

- N. Melab, I. Chakroun , M. Mezmaz and D.Tuyttens. � A GPU-accelerated Branch-

and-Bound Algorithm for the Flow-Shop Scheduling Problem�. 14th IEEE Interna-

tional Conference on Cluster Computing, CLUSTER'12. China, Beijin, September

24-28, 2012.

- I. Chakroun and N. Melab. �An Adaptative Multi-GPU based Branch-and-Bound.

A Case Study: the Flow-Shop Scheduling Problem�. 14th IEEE International Con-

ference on High Performance Computing and Communications, HPCC'12. United

Kingdom, Liverpool, June 24-27, 2012.

136 Bibliography

- I. Chakroun, A. Bendjoudi, and N.Melab. �Reducing Thread Divergence in GPU-

based B&B Applied to the Flow-shop problem�. 9th International Conference on

Parallel Processing and Applied Mathematics PPAM'11, LNCS. Poland, Torun,

September 11-14, 2011.

Book Chapter

- I.Chakroun and N.Melab. �GPU-accelerated Tree-based Exact Optimization Meth-

ods�. Designing scienti�c applications on GPUs. CRC Press, Taylor & Francis

Group.

Appendix A

Graphics Processing Units

A.1 State of GPU computing

Graphics Processing Units (GPUs) are at the leading edge of many-core parallel compu-

tational platforms in several research �elds. For years, the use of graphics processors was

dedicated to high-de�nition 3D graphics. Driven by the demand for high-de�nition 3D

graphics on personal computers, GPUs have evolved into a highly parallel, multi-threaded

and many-core environment endowed with great computational horsepower and a very

high memory bandwidth compared to traditional CPUs. Nowadays, the massive data

processing capability of modern GPUs is attracting researchers to explore mapping more

general non-graphics computations onto them [Kirk 2010].

The GPU is especially well-suited for �ne-grained, data-parallel computations consist-

ing of thousands of independent threads executing the same program concurrently. It

excels with programs that are executed on many data elements in parallel and with a high

ratio of arithmetic operations to memory operations. Indeed, GPUs have a large number

of arithmetic units with a limited cache and few control units. More of its transistors are

used for data processing rather than data caching and �ow control.

A GPU is organized into an array of highly threaded streaming multiprocessors (SMs).

Each streaming multiprocessor contains a set general purpose arithmetic units called

streaming processors (SPs) and a number of special function units (SFU) used for comput-

ing special algebraic functions not provided by the SPs. Memory load/store units (LDST),

texture units (TEX), fast on-chip data caches (shared memory and constant cache), and

a high-bandwidth main memory system provide the GPU with su�cient operand band-

width to keep the arithmetic units productive. Figure A.1 [Stone 2010] depicts a simpli�ed

hardware block diagram for the NVIDIA Fermi GPU architecture.

138 Appendix A. Graphics Processing Units

Figure A.1: A simpli�ed hardware block diagram for the NVIDIA Fermi GPU architecture

[NVIDIA Corporation 2011b].

A.2 The Compute Uni�ed Device Architecture program-

ming model

CUDA (Compute Uni�ed Device Architecture) is a parallel computing environment, which

provides an application programming interface for NVIDIA architectures. CUDA comes

with a software environment that allows developers to use C as a high-level programming

language. A CUDA program is a C-like uni�ed source code encompassing both host and

device code. The parts of the program that exhibit little or no data parallelism are imple-

mented in host code, other parts with rich amount of data parallelism are implemented

in the device code. The NVIDIA C compiler (nvcc) separates the two parts during the

compilation process.

The execution starts with host (CPU) execution. When a kernel function is invoked, or

launched, the execution is moved to a device (GPU), where a large number of threads are

generated and execute the kernel function many times in parallel leading to a valuable data

parallelism. All the threads that are generated by a kernel are organized onto thread blocks

and grids of thread blocks. Each thread within a thread block executes an instance of the

kernel, and has a thread identi�er within its thread block, program counter, registers, per-

thread private memory, inputs, and output results. Threads are partitioned into groups

of 32 threads called warps which execution is scheduled following a time-sharing strategy.

For each instruction of the kernel, the multiprocessor selects a warp that is ready to be

run. A warp executes one common instruction at a time, so full e�ciency is realized when

all threads of a warp agree on their execution path. A thread block is a set of concurrently

A.3. Device Memory Spaces 139

executing threads that can cooperate among themselves through barrier synchronization

and shared memory. A thread block has a block identi�er within its grid. A grid is an

array of thread blocks that execute the same kernel, read inputs from global memory,

write results to global memory, and synchronize between dependent kernel calls.

CUDA-enabled devices use several memory spaces with di�erent characteristics that

re�ect their distinct usages. These memory spaces include global, local, shared, texture,

and registers.

A.3 Device Memory Spaces

In the CUDA parallel programming model, di�erent memory spaces are de�ned. As

illustrated in Figure A.2, each thread has a per-thread private memory space used for

register spills, function calls, and C automatic array variables. Each thread block has a

per-block shared memory space used for inter-thread communication, data sharing, and

result sharing. Grids of thread blocks share results in global memory space after kernel

global synchronization.

Global Memory Communication between the host and the GPU occurs through the

global memory. This memory has the lifetime of the application and is accessible to all

threads of all kernels. The global memory is the largest in size but has a high access latency.

In some GPU con�gurations (with compute capability 1.x), this memory is not cached and

its access is slow, therefore the accesses to global memory (read/write operations) need to

be minimized. Reads from global memory is cached only on devices that support compute

capability 2.0.

Registers Scalar variables that are declared in the scope of a kernel function are stored

in register memory by default. Register variables are private to the thread. Threads in

the same block will get private versions of each register variable. Register variables only

exists as long as the thread exists. Once the thread �nishes execution, a register variable

cannot be accessed again. Register memory access is very fast, but the number of registers

that are available per block is limited.

Local Memory Any variable that cannot �t into the register space allowed for the

kernel will spill-over into local memory. Like registers, local memory is private to the

thread. Like registers, variables in local memory have the lifetime of the thread: once the

thread is �nished, the local variable is no longer accessible. However, local memory is so

named because its scope is local to the thread, not because of its physical location. In

140 Appendix A. Graphics Processing Units

Figure A.2: CUDA hierarchy of threads, blocks and grids with correspond-

ing per-thread private, per-block shared and per-application global memory spaces

[NVIDIA Corporation 2011b].

fact, local memory is o�-chip. Hence, access to local memory is as expensive as access to

global memory. Like global memory, local memory is not cached on devices of compute

capability 1.x.

Shared Memory Because it is on-chip, shared memory has much higher bandwidth and

much lower latency than local or global memory. Shared memory is shared by threads of

each thread block, it provides a way for threads to communicate within the same block.

To achieve high bandwidth, shared memory is divided into equally-sized memory modules,

A.3. Device Memory Spaces 141

called banks, which can be accessed simultaneously.

Constant Memory Constant memory is a cached read only memory. Constant memory

provides one cycle of latency when there is a cache hit even though constant memory

resides in device (global) memory. The constant cache is written only by the host and

is persistent across kernel calls within the same application. Access to data in constant

memory can range from one cycle for in cache data to hundreds of cycles depending on

cache locality.

L1 cache Devices of compute capability 2.x come with an L1 cache hierarchy that is

used to cache local and global memory accesses. The same on-chip memory is used for

both L1 and shared memory, and the amount dedicated to L1 versus shared memory is

con�gurable for each kernel call. Experimentation is recommended to �nd out the best

combination for a given kernel: 16 KB or 48 KB of L1 cache (and vice versa for shared

memory) with or without global memory caching in L1 and with more or less local memory

usage.

Texture Memory The read-only texture memory space is cached. Therefore, a texture

fetch costs one device memory read only on a cache miss; otherwise, it just costs one read

from the texture cache which is optimized for 2D spatial locality. On devices of compute

capability 1.x, some kernels achieve a speedup when using (cached) texture fetches rather

than regular global memory loads. This optimization can be counter-productive on devices

of compute capability 2.x, however, since global memory loads are cached in L1 and the

L1 cache has higher bandwidth than the texture cache.

Appendix B

Parallelization strategies for Branch

and Bound algorithms

The parallelization of B&B is widely studied in the literature and di�erent classi�cations

have been proposed [Trienekens 1992, Gendron 1994, Crainic 2006, Melab 2005].

B.1 Classi�cation of Granic et al.

Granic et al. [Crainic 2006] identi�ed a classi�cation with two main types of paralleliza-

tion: node-based parallelization and tree-based parallelization.

- Node-based parallelization introduces parallelism when performing the opera-

tions on a single problem. It aims to accelerate the search by executing in parallel a

particular operation, mainly associated to the subproblem: computation in parallel

of lower or upper bound, evaluation in parallel of sons, and so on. This type of

parallelism has no in�uence on the general structure of the B&B algorithm and is

particular to the problem being solved.

- Tree-based parallelization consists in building and/or exploring the solution

tree in parallel by performing operations on several sub-problems simultaneously.

This coarse-grained type of parallelism a�ects the general structure of the B&B

algorithm and yields to irregularity.

B.2 Classi�cation of Trienekens et al.

Trienekens et al. [Trienekens 1992] have proposed two levels of parallelization for B&B

algorithms: low level parallelization and high level parallelization.

- Low level parallelization: Only part of the serial Branch and Bound algorithm

is parallelized in such a way that the interactions between the parallelized part and

the other parts of the algorithm do not change. For example, the computation of the

144 Appendix B. Parallelization strategies for Branch and Bound algorithms

bound, the selection of the next sub-problem to be branched, the parallelization of

the application of the elimination rule. Because the interactions between the various

parts of the algorithm are not changed, low level parallelization does not change the

semantics of the B&B algorithm as a whole. It means that the overall behavior of

the created parallel B&B algorithm is similar to the behavior of the original serial

Branch and Bound algorithm.

- High Level parallelization: For high level parallelization, the e�ects and con-

sequences of the parallelism introduced are not restricted to a particular part of

the B&B algorithm, but in�uence the semantics of the algorithm as a whole. The

work performed by the parallel algorithm does not need to be the same as the work

performed by the serial algorithm. The order in which the work is performed can

di�er, and it is even possible that some parts of the work performed by the parallel

algorithm are not performed by the serial algorithm, or vice versa. For example, the

parallel exploration of the search tree can lead to early improve the best solution

and therefore allows to prune some branches of the tree that are explored in the

serial version of the algorithm.

B.3 Classi�cation of Gendron et al.

Gendron et al. [Gendron 1994] identi�ed three main approaches for designing parallel

B&Bs according to the degree of parallelism potentially provided by the search tree:

- Parallelism of type 1 introduces parallelism when the operations are performed on

generated sub-problems. For instance, executing the bounding operation in parallel

for each sub-problem to accelerate the execution. This type of parallelism has no

impact on the general structure of the B&B algorithm and is particular to the

problem to be solved.

- Parallelism of type 2 consists of building the search tree in parallel by simultane-

ously applying the B&B operators on several sub-problems. This type of parallelism

may a�ect the design and semantics of the algorithm.

- Parallelism of type 3means that several search trees are generated in parallel. The

trees are explored using di�erent variants of the operations (branching, bounding,

and pruning), and the information generated when building one tree can be used for

the construction of another.

Another classi�cation based on the concept of work pool, which is a memory location

processes pick from �nd and store in their units of work, is also proposed in [Gendron 1994].

B.3. Classi�cation of Gendron et al. 145

- Single work pool: only one memory location is used to store the units of work. Sin-

gle pool B&B algorithms are mainly implemented on shared-memory architectures

where threads access concurrently the common work pool to pick and insert sub-

problems. On distributed-memory architectures, this model can be implemented

using the master/slave paradigm: one process called master manages the work pool

and sends work units to other processes called slaves.

- Multiple work pools: in multiple pool algorithms, several memory locations are used.

Several organization schemes are possible: each work pool is associated with exactly

one process, each group of processes share a work pool or each process has its own

work pool and there is a global pool shared by all processes.

146 Appendix B. Parallelization strategies for Branch and Bound algorithms

	Introduction
	Parallel Branch and Bound algorithms
	Introduction to combinatorial optimization
	The Permutation Flowshop Scheduling Problem
	Resolution methods for combinatorial optimization problems

	Branch and Bound algorithms
	Serial B&B
	Illustration on the Permutation Flowshop Scheduling Problem
	Analysis of the irregularity of the B&B algorithm

	Parallel Branch-and-Bound algorithms
	Parallel tree exploration model
	Parallel multi-parametric model
	Parallel evaluation of the bounds
	Parallel evaluation of a single bound/solution

	Parallel B&B for Graphics Processing Units
	Thread divergence
	Memory access optimization
	CPU-GPU communication optimization
	Related works

	Parallel B&B for multi-core shared memory machines
	Synchronization and caching issues
	Related works

	Parallel B&B for computational grids
	Challenging issues
	Related works

	Conclusion

	GPU-accelerated parallel bounding applied to FSP
	Introduction
	Lower Bound for FSP
	A GPU-accelerated B&B based on the parallel evaluation of bounds (GB&B)
	Thread divergence reduction
	Problem statement in the FSP lower bound
	Mechanisms for reducing branch divergence

	Data placement optimization for the FSP lower bound
	Complexity analysis and implementation
	Data placement pattern of the lower bound on GPU

	Experiments
	Experimental settings and parameters tuning
	Experimental protocol
	Performance Evaluation of the GB&B
	Performances of the thread reduction approaches
	Performances of the data access optimizations
	Overhead characterization of the GPU-accelerated parallel bounding operator

	Conclusion

	GPU-based parallel tree exploration
	Introduction
	An adaptive selection operator based on a dynamic parameter tuning heuristic
	The multiple-nodes driven GPU-accelerated approach
	Branching Operator
	Pruning Operator
	Synthesis

	The single-node driven GPU-accelerated B&B
	Branching Operator
	Pruning operator
	Synthesis

	Experiments
	Performance evaluation of the ASH heuristic
	Performance evaluation of the proposed GPU-based approaches
	Impact of the parallelization of each operator of the single-node driven approach

	Conclusion

	Parallel Heterogeneous B&B combining GPU accelerators and multi-core processors
	Introduction
	Multi-core B&B (MC-B&B)
	ConcuRrent multi-core Low-Latency GPU-accelerated B&B (RLL-GB&B)
	Concurrent GPU thread
	Concurrent CPU threads

	CooPerative multi-core Low Latency GPU-accelerated B&B (PLL-GB&B)
	Overlapping data transfers and kernel calls
	Cooperative GPU threads
	Cooperative CPU thread

	Low Latency Multi-GPU B&B algorithm (LL-MultiGB&B)
	Experiments
	Performance of the multi-core B&B
	Performance of the RLL-GB&B approach
	Performance of the PLL-GB&B approach
	Performance of the LL-MultiGB&B approach

	Conclusion

	Towards a grid-enabled GPU-accelerated Branch and Bound
	Parallel heterogeneous B&B for computational grids : joining two levels of parallelism
	Overall design of the distributed heterogeneous B&B (HB&B@GRID)
	The B&B meta-algorithm
	The B&B@Grid approach

	Experiments
	Experimental platform
	Performance Evaluation

	Conclusion

	Conclusion and future works
	Bibliography
	Graphics Processing Units
	State of GPU computing
	The Compute Unified Device Architecture programming model
	Device Memory Spaces

	Parallelization strategies for Branch and Bound algorithms
	Classification of Granic et al.
	Classification of Trienekens et al.
	Classification of Gendron et al.

