
HAL Id: tel-00841969
https://theses.hal.science/tel-00841969

Submitted on 5 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCALABLE AND FAULT TOLERANT
HIERARCHICAL B&B ALGORITHMS FOR

COMPUTATIONAL GRIDS
Ahcène Bendjoudi

To cite this version:
Ahcène Bendjoudi. SCALABLE AND FAULT TOLERANT HIERARCHICAL B&B ALGORITHMS
FOR COMPUTATIONAL GRIDS. Distributed, Parallel, and Cluster Computing [cs.DC]. Université
A.MIRA-BEJAIA, 2012. English. �NNT : �. �tel-00841969�

https://theses.hal.science/tel-00841969
https://hal.archives-ouvertes.fr

République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université A.MIRA-BEJAIA
Faculté des Sciences Exactes
Département Informatique

THÈSE

Présentée par

BENDJOUDI Ahcène

Pour l’obtention du grade de

DOCTEUR EN SCIENCES
Filière : Informatique

 Option : Réseaux et Systèmes Distribués

Thème

SCALABLE AND FAULT TOLERANT HIERARCHICAL

B&B ALGORITHMS FOR COMPUTATIONAL GRIDS

Soutenue le : . . / . . / 2012

Devant le Jury composé de :

Mr DAHMANI Abdelnasser Professeur Université de Béjaïa Président
Mr TALBI El-Ghazali Professeur Université Lille1 Rapporteur

Mr MELAB Nouredine Professeur Université Lille1 Rapporteur

Mr TARI Abdelkamel Maître de
Conférence A

Université de Béjaia Examinateur

Mr BADACHE Nadjib Professeur USTHB Examinateur

Mr KOUDIL Mouloud Professeur ESI Examinateur

Année Universitaire : 2011/2012

i

Abstract:

Solving to optimality large instances of combinatorial optimization problems using Branch
and Bound (B&B) algorithms requires a huge amount of computing resources. Nowadays, such
power is provided by large scale environments such as computational grids. However, grids
induce new challenges: scalability, heterogeneity, and fault tolerance. Most of existing grid-
based B&Bs are developed using the Master-Worker paradigm, their scalability is therefore
limited. Moreover fault tolerance is rarely addressed in these works. In this thesis, we propose
three main contributions to deal with these issues: P2P-B&B, H-B&B, and FTH-B&B. P2P-
B&B is a MW-based B&B framework which deals with scalability by reducing the task request
frequency and enabling direct communication between workers. H-B&B also deals with scala-
bility. Unlike the state-of-the-art approaches, H-B&B is fully dynamic and adaptive, meaning
it takes into account the dynamic acquisition of new computing resources. FTH-B&B is based
on new fault tolerant mechanisms enabling efficient building of the hierarchy and maintaining
its balancing, and minimizing of work redundancy when storing and recovering tasks. The pro-
posed approaches have been implemented using ProActive grid-middleware and applied to the
Flow-Shop scheduling Problem (FSP). The large scale experiments performed on Grid’5000
proved the efficiency of the proposed approaches.

Keys Words : Parallel B&B, Master-Worker, Hierarchical Master-Worker, Fault Toler-
ance, Grid Computing, Large Scale Experiment, FSP, ProActive, Grid’5000.

Résumé:

La résolution exacte de problèmes d’optimisation combinatoire avec les algorithmes Branch
and Bound (B&B) nécessite un nombre exorbitant de ressources de calcul. Actuellement, cette
puissance est offerte par les environnements large échelle comme les grilles de calcul. Cepen-
dant, les grilles présentent de nouveaux challenges : le passage à l’échelle, l’hétérogénéité et
la tolérance aux pannes. La majorité des algorithmes B&B revisités pour les grilles de calcul
sont basés sur le paradigme Master-Worker, ce qui limite leur passage à l’échelle. De plus,
la tolérance aux pannes est rarement adressée dans ces travaux. Dans cette thèse, nous pro-
posons trois principales contributions : P2P-B&B, H-B&B et FTH-B&B. P2P-B&B est un
famework basé sur le paradigme Master-Worker traite le passage à l’échelle par la réduction
de la fréquence de requêtes de tâches et en permettant les communications directes entre les
workers. H-B&B traite aussi le passage à l’échelle. Contrairement aux approches proposées
dans la littérature, H-B&B est complètement dynamique et adaptatif i.e. prenant en compte
l’acquisition dynamique des ressources de calcul. FTH-B&B est basé sur de nouveaux mécha-
nismes de tolérance aux pannes permettant de construire et maintenir la hiérarchie équilibrée,
et de minimiser la redondance de travail quand les tâches sont sauvegardées et restaurées. Les
approches proposées ont été implémentées avec la plateforme pour grille ProActive et ont été
appliquées au problème d’ordonnancement de type Flow-Shop. Les expérimentations large
échelle effectuées sur la grille Grid’5000 ont prouvé l’éfficacité des approches proposées.

Mots clés : B&B Parallèle, Master-Worker, Master-Worker Hiérarchique, Tolérance aux
Pannes, Grilles, FSP, ProActive, Grid’5000.

Contents

Contents ii

List of Tables iv

List of Figures vi

Acknowledgements ix

Introduction 1

1 Parallel Branch and Bound Algorithms Using Grid Computing 5
1.1 Introduction . 5
1.2 Sequential B&B . 5
1.3 Parallel B&B . 6

1.3.1 Classification of Parallel B&B 7
1.3.1.1 Classification of Trienekens et al. 7
1.3.1.2 Classification of Gendron et al. 8
1.3.1.3 Classification of Melab 8
1.3.1.4 Synthesis . 9

1.3.2 Work pool management . 9
1.3.2.1 Single work pool . 10
1.3.2.2 Multiple work pools 10

1.4 Grid-Computing . 10
1.4.1 Characteristics of Grids . 11

1.4.1.1 Multiple administrative domains 11
1.4.1.2 Heterogeneity . 11
1.4.1.3 Scalability . 11
1.4.1.4 Dynamicity . 11

1.4.2 Grid Architecture and positioning 12
1.4.3 ProActive: a Grid Middleware 14

1.5 Grid-based B&B . 16
1.5.1 Grid-based B&B challenges . 16

1.5.1.1 Scalability . 16
1.5.1.2 Fault tolerance . 17
1.5.1.3 Communication cost 18

ii

iii

1.5.2 Grid-based B&B frameworks and applications 18
1.5.2.1 MW-based B&B Algorithms 19
1.5.2.2 HMW-based B&B Algorithms 19
1.5.2.3 Decentralized B&B . 23

1.6 Conclusion . 24

2 P2PB&B: A P2P MW-based B&B 25
2.1 Introduction . 25
2.2 P2P MW-based framework for B&B . 26

2.2.1 Communications in Master-Worker 26
2.2.2 Direct communication between workers 28
2.2.3 Architecture and working of the framework 29
2.2.4 The P2P MW-based framework (P2P-B&B) 31

2.2.4.1 P2PMaster interface 32
2.2.4.2 P2PWorker Interface 33

2.2.5 B&B-Solver: a MW-based B&B Solver for COPs 34
2.3 A Parallel P2P-based B&B using P2P-B&B 36

2.3.1 Branching . 37
2.3.2 Selection and Elimination . 38
2.3.3 Communication and knowledge sharing 39
2.3.4 Application to the Flow-Shop Scheduling Problem 40

2.4 P2P implementation using ProActive 42
2.4.1 Deployment . 42
2.4.2 Task distribution . 43
2.4.3 Group Communications . 46
2.4.4 Management of new connections 46
2.4.5 Fault Tolerance . 47

2.5 Experimentations . 48
2.5.1 Experimental Environment . 48
2.5.2 Experimental Results . 49

2.6 Conclusion . 51

3 H-B&B: A Hierarchical Master/Worker-based B&B Algorithm 53
3.1 Introduction . 53
3.2 AHMW: an Adaptive HMW Framework 54

3.2.1 Processes of the framework . 54
3.2.2 Hierarchical organization and architecture of AHMW 55

3.2.2.1 Hierarchical organization 55
3.2.2.2 Architecture and components of AHMW 56
3.2.2.3 Adaptive feature of AHMW 58
3.2.2.4 Construction of the hierarchy 58

3.2.3 Working and work management 59
3.2.3.1 Task management . 59
3.2.3.2 Dynamic decomposition and distribution of tasks . . . 60
3.2.3.3 Communication . 61
3.2.3.4 Load Balancing . 62
3.2.3.5 Termination detection 63

iv

3.3 H-B&B: An AHMW-based parallel B&B 64
3.3.1 Search Tree Subdivision . 65
3.3.2 Exploration strategies . 66

3.3.2.1 Breadth Search (BS) 66
3.3.2.2 Smart Best-First Search (SBFS) 66
3.3.2.3 Best-First Search (BFS) 68

3.4 Hierarchical Deployment Using ProActive 69
3.5 Experiments . 70

3.5.1 Study of the scalability: H-B&B vs. 1-H-B&B and MW-B&B . 71
3.5.2 Tuning of the group size parameter 72
3.5.3 Study of the adaptive feature 75
3.5.4 Study of the efficiency: H-B&B vs. 1-H-B&B and MW-B&B . . 76
3.5.5 Impact of the granularity on the efficiency of H-B&B 80

3.6 Conclusion . 81

4 FTH-B&B: A Fault Tolerant Hierarchical B&B 82
4.1 Introduction . 82
4.2 Architecture and Working of FTH-B&B 83
4.3 Work management with task recovery 84

4.3.1 Fault recovery . 85
4.3.2 3-Phase communication mechanism 86

4.4 Maintenance of the hierarchy . 87
4.4.1 Simple Connection to Ascendants (SCA) 87
4.4.2 Master Election (ME) . 88
4.4.3 Balanced Hierarchy (BH) . 89

4.5 Distributed checkpointing . 91
4.5.1 Reconstitution of subproblems 91
4.5.2 Reconstitution operators . 92
4.5.3 Consistent global state . 92

4.6 Implementation of FT mechanisms . 94
4.6.1 Fault detection . 95
4.6.2 Implementation of the hierarchy maintenance algorithms 95

4.6.2.1 Simple connection to ascendants (SCA) 95
4.6.2.2 Master Election (ME) 96
4.6.2.3 Balanced Hierarchy (BH) 96

4.7 Performance evaluation . 96
4.7.1 Fault Injection . 97
4.7.2 Experimental Results . 99

4.7.2.1 Efficiency of FTH-B&B 100
4.7.2.2 Evaluation of the hierarchy maintenance strategies . . 101

4.8 Conclusion . 103

Conclusions and Perspectives 106

Publications 108

Bibliography 110

List of Tables

2.1 Experimentation hardware platform . 49
2.2 Some obtained deployment and resolution times 49

3.1 Process roles according to the launched components 58
3.2 Deployment times of H-B&B using different group sizes and different

instances classified by their sizes. 74
3.3 The number of explored B&B tree nodes by H-B&B using the adaptive

behavior of the masters compared to SH-B&B with static roles of the
masters. H-B&B outperforms SH-B&B on all the instances. 75

3.4 Execution times exactly required to H-B&B (column 3), 1-H-B&B (col-
umn 4) and MW-B&B (column 5) to provide the solutions reported in
column 2 . 77

3.5 Efficiency of H-B&B compared to 1-H-B&B and MW-B&B – H-B&B
clearly outperforms 1-H-B&B and MW-B&B in terms of average efficiency 79

4.1 Efficiency of FTH-B&B . 100
4.2 Redundant work with and without task recovery 101

v

List of Figures

1.1 Grid Layered Architecture [COS07] . 12
1.2 Grid Layered Architecture . 14
1.3 HMW classification . 20

2.1 ProActive MW Application. No communication are allowed between the
workers . 27

2.2 Single coarse-grained compact task vs multiple executions of fine-grained
atomic task. 28

2.3 Layered stack of P2P-B&B. 30
2.4 General architecture and interactions between the components of the

framework. 31
2.5 P2P MW-based framework class diagram 32
2.6 Class diagram of the B&B-Solver framework 34
2.7 General scheme of ParallelBB . 37
2.8 runAtomicTask and decompose methods tree exploration 39
2.9 Communications between processes of the algorithm 40
2.10 Illustration of a permutation FSP with n = 3 and m = 4. The table

reports the processing times of the jobs on the machines. The Gantt
diagram shows the optimal solution to the problem instance. 41

2.11 The search tree generated and explored by a B&B algorithm for solving
an FSP with 3 jobs. Nodes with a lower bound (LB) greater (resp. lower
or equal) than the upper bound (UB) are pruned (resp. decomposed or
branched). 42

2.12 Tasks distribution on workers . 44
2.13 Sequence diagram of tasks distribution 45
2.14 Sequence diagram of new connections 46
2.15 Task reallocation sequence diagram in case of failure. 47
2.16 Grid’5000 French nation-wide grid infrastructure 48
2.17 Solutions costs without enabling real-time direct communication between

workers that succeeded to improve the global upper bound 50

vi

vii

2.18 Solutions costs with communication between workers that succeeded to
improve the global upper bound . 51

3.1 Hierarchical organization of AHMW . 55
3.2 Architecture of AHMW . 57
3.3 Identifiers of AHMW processes . 59
3.4 Communication types . 61
3.5 Broadcasting a solution . 61
3.6 Load balancing sequence diagram. 62
3.7 Termination detection sequence diagram 63
3.8 General design of H-B&B . 64
3.9 Search tree subdivision. The search tree is subdivided hierarchically into

several sub-trees and each sub-tree is assigned to one sub-B&B process. 65
3.10 Breadth Search exploration. The root master explores the tree by levels. 67
3.11 Smart Best-First Search. Masters explore subtrees partially and the

obtained subproblems are considered as work pools. 67
3.12 Best-First Search. The workers explore nodes according to the most

promising ones. 68
3.13 Deployment according to the localization of grid nodes. 70
3.14 Evolution over time of the average CPU load on the master(s) of H-B&B,

1-H-B&B and MW-B&B . 72
3.15 Evolution of the deployment cost for different sizes of the computational

pool. H-B&B (using different group sizes) is compared to 1-H-B&B and
MW-B&B. 73

3.16 Adaptive roles of H-B&B processes. 76
3.17 Impact of the granularity on the efficiency of H-B&B 80

4.1 General design of FTH-B&B. Several fault tolerant sub-B&Bs are or-
ganized hierarchically where inside each sub-B&B one master manages
several workers. 83

4.2 Work Management with fault recovery. The parent of a failed worker
only reschedules the unexplored subproblems in order to minimize re-
dundancy. 85

4.3 3-phase communication sequence diagram 86
4.4 Maintenance of the hierarchy using SCA. When a master fails, the orphan

workers connect to their closest safe ascendant. Risk of convergence to
MW-B&B. 88

4.5 Maintenance of the hierarchy using ME. When a master fails, the orphan
workers elect a new master which connects to its closest ascendant and
considers its electors as its children. 89

viii

4.6 Maintenance of the hierarchy using BH. Orphan processes migrate to
safe non-full sub-B&Bs respecting the constraint of the group size. . . . 90

4.7 Consistent global state. Masters perform their checkpoints after they
receive all the couples (p, φp). 93

4.8 An example of subproblems recovery and reduction mechanism. Masters
apply the three operators to deduce the global unexplored subproblems. 94

4.9 Fault detection sequence diagram. 95
4.10 SCA sequence diagram. 96
4.11 ME sequence diagram. 97
4.12 BH sequence diagram. 98
4.13 Lifetime distribution of the launched processes. 99
4.14 Average degree using SCA. The root master becomes rapidly a bottleneck

over the time. 102
4.15 Average degree using ME. Masters are less loaded than when using SCA 103
4.16 Average degree using BH. The masters resist well to failures and do not

become bottlenecks. 104

Acknowledgements

I will take this opportunity to thank gratefully my thesis advisors, Pr El Ghazali Talbi
and Pr Nouredine Melab for their availability and continuous support during my thesis
preparation. Many thanks to Pr El-Ghazali Talbi for his valuable remarks and advices.
Special thanks also to Pr Nouredine Melab for being so deeply involved in my work, for
the lots of fruitful e-mail exchanges, and also for his efficient way to review the papers
related to this work and thesis.

I’m also pleased to thank Pr Abdelnasser Dahmani, Pr Nadjib Badache, Pr Mouloud
Koudil, Dr Abdelkamel Tari, and again Pr El-Ghazali Talbi and Pr Nouredine Melab
who honor me by their presence as examining committee in my thesis defense.

I would like to greatly thank again the director of the CERIST center of research
Pr Nadjib Badache, the chief of DTISI division Pr Omar Nouali, and my first line
responsible Dr Nadia Nouali, for their support and unbounded trust on me and also
for the means they managed to secure for me to fully accomplish my thesis prepara-
tion in an efficient way. Without forgetting to acknowledge my dearest colleagues in
Pervasive computing team, Nadir Bouchama, Abdelaziz Babakhouya, Yacine Belhoul,
Saïd Yahiaoui, Malika Mehdi, Hocine Saadi, and Abderezak Seba, for the whole time
we spent together working, debating, brainstorming, sharing ideas and more.

I’m obliged to the responsible of the doctoral school ReSyD Dr Abdelkamel Tari for
his help and all the administration facilities to the achievement of this thesis.

My greetings to all members of Dolphin team and specially to Yacine Kessaci,
Mostepha Redouane Khouadjia, Moustapha Diaby, Mathieu Djamai, and Thé Van
Luong with whom I exchanged valuable ideas during my visit to LIFL and helped me
to move forward efficiently in my work preparation.

Last but not least, thanks to Abderrahmane Sider, Saïd Gharout, Mohamed Ab-
delghani Bouaissa, and Ali Benssam for their help, and their comments on my thesis.

ix

Introduction

MANY real world economic problems can be modeled as Combinatorial Optimiza-
tion Problems (COPs). Their solving consists in finding one or several best

solution(s) among a very large but finite set of possible configurations. Each configu-
ration constitutes a solution to the considered problem and belongs to a space called
search space. Solving to optimality COPs consists in finding the optimal solution among
the large set of feasible solutions. In practice, COP instances are often large in size
and CPU time-intensive. They require a huge amount of computing resources to be
solved optimally. These problems are known to be NP-hard [GAR79] and their sequen-
tial exact resolution is impractical. The most used exact methods are Branch and X
(B&X) algorithms which refer to three variants of methods: Branch and Cut (B&C),
Branch and Price (B&P), and Branch and Bound (B&B). These algorithms perform an
implicit enumeration of the search space instead of exhaustive one. Based on a prun-
ing technique, they reduce considerably the computation time required to explore the
whole search space. However, such a technique is not sufficient when very large problem
instances are to be dealt with. High performance computing such as grid-based parallel
computing is required.

Nowadays, computational grids provide a huge amount of computing resources that
can offer the power required by parallel B&B algorithms to solve large COP instances.
A computational grid, as defined by Foster et al. in [FK98], is a hardware and software
infrastructure that provides dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities. These last years, computational Grids have
been widely deployed around the world to provide high performance computing tools
for research and industry. Grids gather large amount of heterogeneous resources across
geographically distributed sites to a single virtual organization. Resources are usually
volatile, heterogenous, autonomous, and organized into clusters managed by different
administrative domains. These characteristics make arising new challenges to the clas-
sical parallel B&B algorithms.

The traditional parallel algorithms must be rethought to meet the characteristics
of grids, particularly their large scale and the volatility and heterogeneity of their re-
sources. Scalability is a major issue to be tackled as B&Bs executed in large scale

1

Introduction 2

environments spawn a huge number of work units which must be executed and/or com-
municated. Consequently, bottlenecks can be created on some parts of the network or
some computational resources. The presence of node failures in the computational grid
requires dealing with the fault tolerance issue to correctly perform the computation.
The heterogeneous and the dynamic nature of grids require to balance the work load in
order to maximize the use of the grid resources during the exploration process. Using
communications between distributed processes may increase the computation speedup.
However, grid environments are not adapted for communication because of the high
latency between sites.

Several B&B algorithms and frameworks have been developed and adapted to large
scale environments using the Master-Worker paradigm (MW) [ACK+02][GLY00]. The
MW paradigm consists in defining two entities: a single master and a pool of workers.
The master decomposes an initial task into multiple smaller ones and distributes them
among the workers. The workers, on their side, perform the execution of the different
tasks. After a worker ends its calculation, it sends back the result to the master and
asks for a new task. This simple mechanism makes the MW paradigm widely studied
and successfully used for many parallel applications. Consequently, many of sequential
applications can be easily brought to the MW paradigm since the whole algorithm con-
trol is done by the master. Indeed, users only have to find a way to suitably decompose
the problem to be solved, to distribute tasks, to gather results and to terminate the
calculation.

However, the MW paradigm is strongly limited regarding scalability in large scale
environments such as computational grids [ANF03][AFO06]. Indeed, the central mas-
ter process is subject to bottlenecks caused by the many-to-one requests submitted
by the different workers. This slows down the master in serving the workers and
these later in executing their tasks, thus degrading the global performance of the
exploration process. In the literature, many techniques have been explored to over-
come this drawback [MMT07a, MMT07b, EPH00, ANF03, AFO06, GSDB09, BDLP08,
DVC+09]. These techniques fall into two categories. The first category includes tech-
niques maintaining the use of the MW scheme and modifying the used resolution
methods [MMT07a, MMT07b, EPH00] adapting them to the large scale environment.
In the second category, modifications are brought to the main scheme of the MW
paradigm [ANF03, AFO06, GSDB09, BDLP08, DVC+09] based on the Hierarchical
Master-Worker paradigm (HMW). In this paradigm, there are multiple masters, each
of them supervises a set of workers. Therefore, the hierarchical organization allows
pushing the limits of the MW to bear more worker processes.

Although, a higher scalability can be achieved using hierarchical algorithms, de-
signing such HMW-B&B algorithms is not straightforward since they must also deal
with the unreliability of the computing resources. Fault Tolerance (FT) is the sec-
ond major issue to deal with when developing grid-based B&Bs. The computing
resources are highly unreliable and volatile. They are unforeseeable; they join and
leave the system frequently. FT can be achieved at two levels: application-level or
middleware-level. Several middlewares provide FT mechanisms to reliable execution of

Introduction 3

applications: ProActive [PROA][BBC+06][CDCL06], XtremWeb [XTRE], and Con-
dor [CON][GSDB09][PL96]. Nevertheless, they are costly in terms of CPU execution
time slowing down the application. The second strategy is application-level and consists
in introducing FT mechanism(s) within the algorithms [MMT07a, MMT07b, IAM00,
FM87, GKLY00, GLY00, DVC+09]. Three major aspects must be taken into account
when designing FT at application-level: First, one must ensure fault recovery to avoid
the loss of work units and to gain in terms of execution time by minimizing the redun-
dant work. Second, one must ensure to maintain the same topology (formed between
the different processes of the B&B) during the lifetime of the algorithm. In addition,
one must avoid orphan branches in order to guarantee a valid functioning and then
a valid result of the algorithm. Third, one must ensure an efficient restart of a great
number of failed processes.

However, most of the proposed HMW approaches are static and only composed of
one level of masters each of them manages a set of workers. They still have a limited
scalability in large scale environments of thousands of processors such as computational
grids. In addition, they handle tasks of fixed granularity and do not evolve in time to
deal with the dynamic nature of grids. Moreover, even proposed B&Bs deal with FT,
they are limited in terms of work redundancy because they are based on checkpointing
and rollback mechanisms. Indeed, when a process fails, the entire subproblem (assigned
to it before) is processed again from scratch by another safe process inducing more re-
dundant work.

In this thesis, we present three main contributions: First, we propose a P2P MW-
based B&B framework (P2P-B&B) aiming at facilitating the development of grid-based
B&Bs, hiding the complexity of the grid to the users, and developing complete grid-
based B&Bs. In this framework the scalability is achieved by reducing the task request
frequency and enabling direct communication between workers. The task request fre-
quency is minimized by proposing a solution to handle coarse-grained tasks without
losing performance by performing multiple executions of an atomic task rather than
single execution of a compact coarse-grained task. Direct communications allow the
workers to share their upper bounds and to perform other collaboration tasks alleviat-
ing the master process.

Second, we propose a new HMW-based B&B (H-B&B) aiming at improving the scal-
ability of the conventional MW-based B&B paradigm by eliminating the bottlenecks
created on the central master process. H-B&B is based on the P2P-B&B framework.
Unlike the literature approaches, H-B&B is fully dynamic as it is composed of several
levels of masters, and evolves over time according to the dynamic acquisition of new
computing nodes. It includes several sub-MW-based B&B systems where each master
manages a set of workers organized into groups. The processes of H-B&B form a hier-
archy where the inner nodes host masters and the leaves host workers. Masters perform
decentralized branching on subproblems using a new exploration strategy and workers
perform a complete exploration of the received subproblems. The components of a same
sub-B&B system perform in a collaborative way the same task assigned to them, share
the result of that task, and return it back to their master. The different components of
H-B&B handle tasks of different grain sizes according to their roles (master or worker)

Introduction 4

and to their position in the hierarchy. Accordingly, bottlenecks likely to be created at
centralized points in the hierarchy can be controlled.

Finally, we propose a Fault Tolerant Hierarchical B&B (FTH-B&B) designed for
large scale unreliable environments such as computational grids. FTH-B&B, also based
on P2P-B&B, is an application-level distributed FT mechanism composed of several
FT MW-B&Bs organized hierarchically into groups. A fault recovery mechanism is in-
troduced to avoid the loss of work units and to improve efficiency in terms of execution
time. Indeed, work units are stored so that one can recover at each instant the subprob-
lems assigned to failed processes using a 3-phase communication protocol. Moreover,
our approach ensures to maintain a balanced and safe hierarchy during the lifetime
of the algorithm in order to guarantee a valid functioning. Finally, an efficient restart
of the application is ensured by a distributed checkpointing mechanism in case of failure.

All the proposed contributions are implemented using the ProActive grid-middleware
[PROA]. These solutions have then been applied to solve exactly Flow-Shop schedul-
ing problem (FSP). In most existing works, the grid-based performance evaluation is
performed through simulation. The performance evaluation of our contributions is per-
formed on a real experimental grid: the Grid’5000 French nation-wide grid [GRIDa]
where up to 1900 grid computing nodes are involved in the experiments. These experi-
ments show the ability of the approaches to deal with scalability and fault tolerance. In
fact, the different experiments demonstrate that the approaches scale well and are more
efficient compared to the classical MW and single layer HMW-based B&B which is a
variant of HMW. Indeed, the approaches allow to speed up the search by minimizing the
cost of application deployment, eliminating bottlenecks and minimizing the cost of the
decomposition operations. Moreover, the experiments show the ability of FTH-B&B
to deal efficiently with FT in large scale environments. Indeed, the overall efficiency of
the algorithms reaches easily 98,90% using the FT mechanism. Moreover, the recovered
and rescheduled subproblems allow to minimize the redundant work which improves the
execution performance. Finally, our approach has proved its ability to avoid orphan
branches and to maintain and balance the hierarchy during its lifetime.

This thesis is organized into four chapters: Chapter 1 provides an overview on par-
allel B&B algorithms and their parallelization strategies. It also presents the concept of
Grid Computing, its characteristics and a state-of-the-art on grid-based B&B. Chapter 2
describes our first contribution: P2P-B&B framework. Its architecture, its working,
and large scale experiments are then detailed. In Chapter 3, we describe the proposed
hierarchical B&B (H-B&B). We also present, its architecture, work management, ex-
ploration strategies, its hierarchical deployment using the ProActive middleware, and
large scale experiments on Grid’5000. In Chapter 4, we detail FTH-B&B the proposed
fault tolerant B&B. In this chapter, the task recovery, hierarchy maintenance and the
distributed checkpointing are described. Finally, we summarize the major achievements
of our contributions in this thesis and give some perspectives.

Chapter 1

Parallel Branch and Bound
Algorithms Using Grid Computing

1.1 Introduction
Real-world combinatorial Optimization Problems (COPs) are CPU time-intensive and
require a huge amount of computing resources to be solved optimally. The Branch and
Bound algorithm (B&B) is one of the most efficient methods for exact resolution of
COPs. They perform an implicit enumeration of the search space instead of the ex-
haustive one, so reducing then considerably the computation time required to explore
the whole search space. However, this method remains inefficient when large instances
of COPs are to be dealt with. To mitigate this constraint, parallelization is one of the
most effective ways in terms of improving the computing performances, in particular
the use of large scale parallelism provided by the computational grids. In this chapter,
we present the B&B algorithms and their parallelization strategies, and overview of
Grid computing and the existing grid-based parallel B&B algorithms.

This chapter is organized as follows: Sections (1 and 2) present a state-of-the-art
on B&B algorithms, their parallelization, and a short synthesis on the existing classifi-
cations. In Section 3, we present an overview of the grid computing, its characteristics,
and we position our work in the context of grid computing. We also present the ProAc-
tive middleware which is used to develop the frameworks and algorithms we proposed
in this thesis. Finally, Section 4 highlights the challenges related to computational grids
and summarizes the existing grid-based B&B frameworks and algorithms.

1.2 Sequential B&B
Branch-and-Bound (B&B) algorithms are well-known methods for solving to optimal-
ity NP-hard optimization problems. This technique proceeds to a partial enumeration
of all feasible solutions and returns the guaranteed optimal solution [RLS03, LD60,
DAK65, PS98]. Therefore, B&B belongs to implicit enumeration methods for exact
resolution of combinatorial optimization problems of type P : Z(P) = minx∈Sf(x),
where f : S → R,S ⊆ Rn. P can be solved by enumerating a finite number of elements

5

Chapter 1: Parallel B&B Using Grid-Computing 6

in S [GC94, BCG00]. The algorithm decomposes the original problem into subprob-
lems of smaller sizes. In B&B, the search space is organized as a tree of subproblems
called search tree. The search tree is explored by dynamically building a tree whose
root node designates the original problem. The internal or intermediate nodes repre-
sent subproblems obtained by the decomposition of the subproblem associated to their
parent. The leaf nodes designate potential solutions or subproblems that can not be
decomposed. The construction of the B&B tree and its exploration are performed using
four operators: branching, bounding, selection and elimination [BCG00]:

• Branching: the branching operation, also called decomposition, partitions the
feasible domain of a given problem into a number of smaller subsets on which the
same optimization problem is defined. Problems are recursively decomposed until
either a solution may be easily found, or one determines that further partitioning
is unnecessary because the original problem has been solved, or the subproblems
resulting from decomposition are infeasible, or one may prove that further branch-
ing cannot improve the current best known solution.

• Bounding: The bounding operation is used to compute a lower bound on the
optimal solution of the subproblem. When a solution is identified, it is compared
to this lower bound to decide wether or not it is necessary to continue exploring
that branch.

• Elimination: The elimination operation is used to determine the nodes to elim-
inate because they don’t lead to the optimal solution. The elimination of a node
is based on three steps. Feasibility: a solution is eliminated if it is not feasible.
Bound test: the solution is eliminated if it has a lower bound greater than the cur-
rent upper bound, the upper bound is the best solution found so far. Dominance:
the solution is eliminated if the current subproblem is dominated by another one.

• Selection: The selection strategy determines the order according to which sub
problems are examined that thus determines how the tree is explored. The most
used strategies are: best-first (select the subproblem with the lowest lower bound),
depth-first (select the most recently generated subproblem).

Sequential B&B algorithms then consist in performing branching and bounding opera-
tions, as well as testing the elimination rules using a specific selection strategy.

1.3 Parallel B&B
Although, B&B algorithms showed their efficiency in the literature, they are not suf-
ficient when very large problem instances are to be dealt with. High performance
computing such as grid-based parallel computing is required. Therefore, new parallel

Chapter 1: Parallel B&B Using Grid-Computing 7

versions of B&B have to be designed. The subtrees generated when executing a B&B
algorithm can be explored independently simplifying the parallelization of these algo-
rithms. The only global information in the algorithm is the value of the upper bound.
To parallelize the algorithm one has to take into account the organization and composi-
tion of the target hardware execution environment, the granularity and synchronization
of generated tasks, and the communication between different processes [TB92].

1.3.1 Classification of Parallel B&B

The parallelization of B&B is well studied in the literature and many classifications
have been conducted [GC94, BCG00, MEL05, CCR06, TRI89, TB92]. In the following
we report the different classifications found in the literature.

1.3.1.1 Classification of Trienekens et al.

Trienekens et al. [TB92, TRI89] have classified parallel B&B into high level and low
level of parallelization according to their degree of parallelization. Therefore parallel
B&Bs can be highly or lowly parallelized. This classification is also reported in [CCR06]:

• Low level: Only part of the sequential branch and bound algorithm is paral-
lelized in such a way that the interactions between the parallelized part and the
other parts of the algorithm do not change. For example, the computation of the
bound, the selection of the subproblem to branch from next, or the application of
the elimination rule could be performed by several processes in parallel. Because
the interactions between the various parts of the algorithm are not changed, low
level parallelism does not have consequences for the branch and bound algorithm
as a whole. The overall behavior of the thus created parallel branch and bound
algorithm resembles the behavior of the original sequential branch and bound
algorithm, i.e., the parallel algorithm will branch from the same subproblems in
the same order.

• High Level: In case of high level parallelization, the effects and consequences
of the parallelism introduced are not restricted to a particular part of the branch
and bound algorithm, but influence the algorithm as a whole. The thus created
parallel algorithm is essentially different. The work performed by the parallel
algorithm need not be equal to the work performed by the sequential algorithm.
The order in which the work is performed can differ, and it is even possible that
some parts of the work performed by the parallel algorithm are not performed by
the sequential algorithm, or vice versa. For example, several iterations of the main
loop can be performed in parallel (e.g., several processes executing the algorithm
branch in parallel from their own subproblem).

Chapter 1: Parallel B&B Using Grid-Computing 8

1.3.1.2 Classification of Gendron et al.

Gendron et al. [BCG00, GC94] identified three types of parallel B&Bs according to the
degree of parallelism of the search tree:

• Parallelism of type 1 (node-based): introduces parallelism when performing
the operations on generated subproblems. For instance, it consists of executing
the bounding operation in parallel for each subproblem to accelerate the execu-
tion. Thus, this type of parallelism has no impact on the general structure of the
B&B algorithm and is particular to the problem to be solved.

• Parallelism of type 2 (tree-based): consists of building the solution tree in
parallel by performing operations on several subproblems simultaneously. Hence,
this type of parallelism may affect the design of the algorithm. This type of par-
allelization is suitable for coarse-grained asynchronous MIMD architectures.

• Parallelism of type 3 (multi-search): implies that several solution trees are
generated in parallel. The trees are characterized by different operations (branch-
ing, bounding, and pruning), and the information generated when building one
tree can be used for the construction of another.

1.3.1.3 Classification of Melab

The most recent classification is the one done by Melab in [MEL05] and reported
by Mezmaz in [MEZ07]. This classification is based on the classification of Gen-
dron et al. [BCG00, GC94]. In this taxonomy, four models of parallel B&B algorithms
are identified: parallel multi-parametric model, parallel tree exploration model, parallel
evaluation of the bounds, and parallel evaluation of a single bound.

• Parallel multi-parametric model: consists to consider several coarse-grained
B&B algorithms. Each algorithm uses its own parameters and several variants of
the algorithm can be obtained by modifying these parameters. Therefore, differ-
ent B&B algorithms can be obtained and executed in parallel. The algorithms
can execute different branching, bounding, selection operations.

• Parallel tree exploration model: In this model, different subtrees can be
explored in parallel. Therefore, the branching, bounding, selection, and elim-
ination can be executed in synchronous as well in asynchronous way. In the
synchronous model, the B&B includes different phases and in each phase the pro-
cesses explore their subtrees independently before synchronizing themselves. And
the asynchronous model, the processes communicate dynamically. Most of exist-
ing parallel B&B algorithms belong to this category. The degree of parallelism of

Chapter 1: Parallel B&B Using Grid-Computing 9

this strategy is considerable and it is suitable for grid environments.

• Parallel evaluation of the bounds: This model allows a parallel evaluation of
the subproblems generated by the branching operator. This model is exploitable
only if the bounds evaluation is entirely executed after the branching operation.
However, it is not suitable for grid environments. Indeed, in the case of syn-
chronous model, additional delays are engendered because of the heterogeneous
nature of grid resources. In asynchronous model, the evaluation of the bounds
can be too fine and then can penalize the system performance.

• Parallel evaluation of a single bound: This model does not change the con-
ception of the algorithm because it identical to the sequential version but the
evaluation phase is faster. This model depends on the considered problem, syn-
chronous and centralized. It is limited in terms of extensibility, nevertheless, it is
efficient when combined with other models.

1.3.1.4 Synthesis

Although the different nominations of the strategies some categories of different clas-
sifications converges considerably. For example, in the parallelism of type 1, the low
level parallelism, and the parallel evaluation of bounds, the parallelism is done inside
one of the four B&B operations (branching, bounding, elimination, and selection). And
parallelism of type 2, parallelism of type 3, high level of parallelism, parallel tree explo-
ration, and Parallel multi-parametric model the parallelism is done at the level of the
subtrees. In this thesis, two types of parallel B&Bs are developed: P2PB&B belongs to
the second category since the parallelization is performed at subtree level. In the second
parallel B&B (H-B&B), the subtrees are built in parallel and the branching operation
is also performed in parallel, thus, it belongs to both the first and the second category.

1.3.2 Work pool management

Processes of a parallel B&B pick up and store their work units in a memory location
called work pool. Typically, a process picks up a subproblem in a work pool and exam-
ines it. When it finishes its action, the process stores the subproblems not yet examined
in the same or in a different work pool. Two types of work pools are distinguished: Sin-
gle work pool and multiple work pool. Single pool algorithms make use of only one
memory location, whereas in multiple pool implementations there are several memory
locations where processes find and store subproblems yet to be examined.

Chapter 1: Parallel B&B Using Grid-Computing 10

1.3.2.1 Single work pool

Single work pool algorithms are implemented mainly on shared-memory systems. On
message passing architectures, it is possible to implement them by using the Mas-
ter/Worker paradigm. The master process, which is also the coordinator, executes the
B&B search, specifies the tasks to be executed by the other processes, controls the pool
of subproblems to be examined, and determines the end of the computations (an empty
pool and all processes idle). Worker processes perform bounding and branching opera-
tions. Upon completion of this task, workers return the results - the new subproblems
or a fathoming message - to the master process. When a worker improves the upper
bound, it broadcasts it to the master and all the other workers. The master selects
subproblems from the pool and allocates them to idle workers according to a simple
round-robin strategy. The selection of subproblems may be based on one of the usual
sequential criteria (e.g., depth-first, best-first). In this single-pool strategy, the control
of the search is centralized at the level of the master process [BCG00].

1.3.2.2 Multiple work pools

Multiple work pools algorithms can be organized into three possible schemes: collegial,
grouped and mixed. In a collegial algorithm, each work pool is associated with exactly
one process. This strategy is suitable to hierarchical MW-based algorithms. In a
grouped organization, processes are partitioned, and each work pool is associated with
a subset of this partition. In a mixed organization, each process has an associated work
pool, but there is also a global work pool shared by all processes.

1.4 Grid-Computing
Grid Computing has evolved from earlier developments in parallel, distributed and HPC
(High Performance Computing) in terms of hardware and software. It emerged in the
early 1990s, when high performance computers were connected by fast data communi-
cation with the aim to support calculation and data-intensive scientific applications.

According to the context of the considered work on grids, many definitions have
been given [KBM02, GRI02, FOS02, FKT01, BDS03]. In the following we report the
most popular ones:

The notion of Grid Computing was first introduced by Foster and Kesselman (1998)
[FK98] as: A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end computational ca-
pabilities.

The Globus Project [GLOB] defines the grid as: and infrastructure that enables the
integrated, collaborative use of high-end computers, data bases, networks, and scientific
instruments owned and managed by multiple organizations.

The GirdBus project [GRIDb] is: a type a parallel and distributed system that en-
ables the sharing, selection, and aggregation of geographically distributed dynamically at

Chapter 1: Parallel B&B Using Grid-Computing 11

runtime depending on their availability, capability, performance cost, and users’ quality-
of-service requirements.

From these definitions and within the context of this thesis (combinatorial opti-
mization and large scale computing), we retain the last definition [?] and we consider a
computational grid as collections of loosely-coupled, geographically distributed, hetero-
geneous computing resources that can provide significant computing power over long
time periods. Therefore, they are multi-domain, heterogenous, dynamic, and offering
resources at large scale.

1.4.1 Characteristics of Grids

Grids are mainly characterized by: their multiple administrative domains, their hetero-
geneity and large scale number, and the dynamicity of their resources, as summarized
in [BBL02].

1.4.1.1 Multiple administrative domains

Grid resources are distributed on multiple administrative domains and organizations
and each domain may have its own management and security policies. Resources are
often protected by firewalls and the users are identified to ensure the security of the
resources.

1.4.1.2 Heterogeneity

Sites of a same grid may be owned by different organizations (labs, universities, etc.).
Therefore, the same grid gather resources from different hardware vendors, running with
different operating systems, and relying on different network protocols. In contrast, each
site is usually composed of homogeneous resources, often organized in a single cluster,
which provides a high performance environment for computations and communications.
Although, the existence of standards like XML and SOAP for resources description and
exchange, the developers must take into account the heterogeneity of resources in the
development of grid-based applications.

1.4.1.3 Scalability

Grids offer a large number of computational resources. Therefore, developers must deal
with the scalability issue to ensure a safe running of grid applications. Moreover, the
resources are often geographically distributed. Hence, Grid frameworks have to help
applications with scalability issues, such as providing parallelism capabilities for a large
number of resources.

1.4.1.4 Dynamicity

The large number of resources that are distributed on different domains implies a high
probability of faults, such as hardware failures, network down time, or maintenance.

Chapter 1: Parallel B&B Using Grid-Computing 12

Our contributions

FTH−B&B

P2P−B&B H−B&B

NetSolve

TCP/IP Linux/Windows

OGCE

P2P−MW AHMW

MPICH−G

LSF, PBS, OAR

GAT

GCMCCA

Grid Fabric

Grid Middleware Infrastructure

Federated hardware resources

Computers Scientific InstrumentsDatabases

Grid Programming

Scheduling Networking Operating Systems

Security

Resource tradingSchedulers

Information services

Communication brokers

High−level access to Grid
middlewareModelsEnvironments

PSEs Web Portals Client applications

P
ro

A
ct

iv
e

U
ni

co
re

gL
ite

G
lo

bu
s

Condor

Grid Applications and Portals

Figure 1.1: Grid Layered Architecture [COS07]

Moreover, the resources can leave and join the grid at any time implying the resources to
be highly volatile. This volatility causes issues such as dynamic discovery of resources,
fault tolerance, synchronization, etc. These issues are often hard to take into account
at middleware level, therefore, the grid developers must deal with the dynamic nature
of the resources at application level.

1.4.2 Grid Architecture and positioning

Grid application developers may be classified in three groups, as proposed in [GBF+02].
The most numerous group are end users who build packaged Grid applications by using
simple graphical or Web interfaces; the second group is programmers that know how to
build a Grid application by composing them from existing application components and
Grid services; the third group consists of researchers that build individual components
of a distributed application, such as simulation programs or data analysis modules.

Then, from the software point of view, the development and the execution of Grid
applications involve four concepts: virtual organizations, programming models, deploy-
ment, and execution environments [COS07]. All these concepts may be organized in a
layered view of Grid software, shown in Figure 1.1:

• At the bottom, the Grid fabric, which is all resources gathered by the Grid. These

Chapter 1: Parallel B&B Using Grid-Computing 13

resources consist of computers, databases, sensors, and specialized scientific in-
struments. They are accessed from operating systems (and virtual machines),
network connection protocols (rsh, ssh, etc.), and cluster schedulers (PBS, LSF,
OAR, etc.).

• Above, layer 2, is the Grid middleware infrastructure, which offers core services
such as remote process management and supervision, information registration and
discovery, security and resource reservation. Various frameworks are dedicated to
these aspects. Some of them are global frameworks providing most of these ser-
vices, such as the Globus toolkit [FOS05] and Condor [TTL05].

• Layer 3 is the Grid Programming layer, which includes programming models,
tools, and environments. This layer eases interactions between application and
middleware, such as Simple API for Grid Applications (SAGA) [GJK05] an ini-
tiative of the Global Grid Forum (GGF). This initiative is inspired by the Grid
Application Toolkit (GAT) [ALL05] and Globus-COG [LFGL01] which enhances
the capabilities of the Globus Toolkit by providing work-flows, control flows and
task management at a high level of abstraction.

• The top layer is the Grid Application layer, which contains applications developed
using the Grid programming layer. Web portals are also part of this layer, they
allow users to control and monitor applications through web applications, such as
OGCE [OGCE]. The layer includes Problem Solving Environment (PSE), which
are systems that provide all facilities needed to solve a specific class of prob-
lems, NetSolve/GridSolve [SNMD02] are complete Grid environment that help
programmers for developing PSEs.

Some Grid middlewares cover more than a single layer, it is notably the case for
Unicore [UNIC] and gLite [LHPB04], which provide Grid programming features in ad-
dition of Grid middleware properties, for instance access to federated Grid resources,
with services including resource management, scheduling and security. ProActive is
also one of these, we describe in detail ProActive in Section 1.4.3.

The contributions of this thesis belong to the Grid programming and the Grid
applications layers. The P2P MW-based B&B framework and the Adaptive Hierarchi-
cal MW framework (AHMW) are Grid programming environments and the developed
applications: P2P-B&B, H-B&B, and FTH-B&B using P2P MW-B&B framework, re-
spectively AHMW and P2P-MW-B&B frameworks are a Grid Applications. Related
work and developed MW and HMW-based B&B algorithms for computational Grids
are considered in more details in Section 1.5.

Chapter 1: Parallel B&B Using Grid-Computing 14

Active Object Passive Object

Sequential Multithreaded Distributed

Java Virtual Machine Host

Figure 1.2: Grid Layered Architecture

1.4.3 ProActive: a Grid Middleware

ProActive [PROA] is an open source Java library for Grid computing. It allows con-
current and parallel programming and offers distributed and asynchronous communica-
tions, mobility, and a deployment framework. With a small set of primitives, ProActive
provides an API allowing the development of parallel applications, which may be de-
ployed on distributed systems and on Grids. The active object model and the ProActive
library are used as a basis in this thesis for developing a peer-to-peer infrastructure, a
branch-and-bound framework, and performing large-scale experiments.

Active objects model

ProActive is based on the concept of an Active Object AO, which is a medium-
grained entity with its own configurable activity. A distributed or concurrent applica-
tion built using ProActive is composed of a number of medium-grained entities called
active objects (Figure 1.2). Each active object has its own thread of control and is
granted the ability to decide in which order to serve the incoming method calls that are
automatically stored in a queue of pending requests. Method calls sent to active objects
are asynchronous with transparent future objects and synchronization is handled by a
mechanism known as wait-by-necessity [CAR93]. There is a short rendezvous at the
beginning of each asynchronous remote call, which blocks the caller until the call has
reached the context of the callee [COS07].

The ProActive library

The ProActive library implements the concept of active objects and provides a
deployment framework in order to use the resources of a Grid.

Grids gather large amount of heterogeneous resources, different processor architec-
tures and operating systems. In this context, using a language which relies on a virtual
machine allows maximum portability. ProActive is developed in Java, a cross-platform
language and the compiled application may run on any operating system providing a
compatible virtual machine. Moreover, ProActive only relies on standard APIs and
does not use any operating-system specific routines, other than to run daemons or to

Chapter 1: Parallel B&B Using Grid-Computing 15

interact with legacy applications. There are no modifications to the JVM nor to the
semantics of the Java language, and the bytecode of the application classes is never
modified.

ProActive relies on an extensible meta-object protocol architecture (MOP), which
uses reifective techniques in order to abstract the distribution layer, and to offer features
such as asynchronism or group communications.

An active object has it own activity thread, which is usually used to pick-up invo-
cations from the request queue and serve them, i.e. execute them.

Active objects are instantiated using the ProActive API, by specifying the class of
the root object, the instantiation parameters, and a possible location information:
// instantiate active object of class A on node1 (a possibly remote location)
A a = (A) ProActive.newActive(”A”, new Object[] params, node1);
// use active object as any object of type A
Result r = A.foo();
// possible wait-by-necessity
int b=r.getResult();

Communication by messages

In ProActive, the distribution is transparent: invoking methods on remote objects
does not require the developer to design remote objects with an explicit remoting mech-
anism (like Remote interfaces in Java RMI).

Communications between active objects are realized through method invocations,
which are passed as messages. These messages are serializable Java objects which may
be compared to TCP packets. Indeed, one part of the message contains routing in-
formation towards the different elements of the library, and the other part contains
the data to be communicated to the called object. Three types of communication are
possible: synchronous invocation, one-way asynchronous invocation, and asynchronous
invocation with future result.

Synchronous invocation:

The method returns a non reifiable object: primitive type or final class:
public boolean foo()
In this case, the caller thread is blocked until the reified invocation is effectively pro-
cessed and the eventual result (or exception) is returned.

One-way asynchronous invocation:

The method does not throw any exception and does not return any result:
public void gee()

The invocation is asynchronous and the process flow of the caller continues once the
reified invocation has been received by the active object.

Asynchronous invocation with future result:

Chapter 1: Parallel B&B Using Grid-Computing 16

The return type is a reifiable type, and the method does not throw any exception:
public reifiableType baz()

In this case, a future object is returned and the caller continues its execution flow.
The active object will process the reified invocation according to its serving policy,
and the future object will then be updated with the value of the result of the method
execution. If an invocation from an object A on an active object B triggers another
invocation on another active object C, the future result received by A may be updated
with another future object. In that case, when the result is available from C, the future
of B is automatically updated, and the future object in A is also updated with this
result value, through a mechanism called automatic continuation [CDHQ03].

Typed Group Communications

A typed group communication is the local representant of a set of objects distributed
on interconnected machines. When a method is called upon a group, the execution
environment sends an invocation request of the method on the group members, awaits
one or more answers of the members according to the defined policy and returns back
the result to the caller.

1.5 Grid-based B&B
In general, several factors impact the executing of parallel B&B on parallel environ-
ments: the architecture of the execution environment (SIMD or MIMD), synchronicity
of the algorithm (synchronous or asynchronous processes), the granularity of handled
tasks (coarse or fine-grained tasks), communication between different processes (shared
memory or message passing). Therefore, these issues must be taken into account to
achieve better performance.

1.5.1 Grid-based B&B challenges

Grid environments induce new issues to take into account and the classic parallelizations
must be rethought to adapt them to these new environments. In this section, we
discuss those issues and describe modifications on grid-based B&Bs to take benefit
from the advantages of the grids and to deal with these issues so that to increase their
performance. In the following, we present issues related to scalability, fault tolerance,
and communication cost that are addressed in our work.

1.5.1.1 Scalability

Most of developed parallel B&Bs are based on the master-worker paradigm. The lack
of scalability of these implementations comes from the bottleneck created when a single

Chapter 1: Parallel B&B Using Grid-Computing 17

master process must serve many worker requests. Bottlenecks can be quite serious in
the grid computing environment because most of nowadays algorithms aim at exploiting
thousands of computing resources, thus thousands of workers served by a single master.
There are three ways to increase the efficiency of those algorithms:

• Decrease the task request frequency rate by increasing the granularity of the com-
putation. This can be achieved by handling subtrees instead of handling a fixed
number of nodes (see Chapter 2, Section 2.2.2) for our proposed solution about
decreasing task request frequency. The grain size can be limited by giving an
upper bound on the CPU time (or number of nodes) spent evaluating the subtree.

• Alleviate the master process by assigning to the worker operations such as branch-
ing, load balancing, and direct communication between workers to achieve a col-
laboration work (See also Chapter 2 for direct communication between the workers
and Chapter 3 for collaboration between workers to achieve branching and load
balancing).

• Develop decentralized or hierarchical B&Bs where multiple masters are consid-
ered instead of single one. This pushes the limits of the MW paradigm to support
more computational resources (See Chapter 3 for our proposed hierarchical B&B).
More details on hierarchical approaches are presented in Section 1.5.2.2 and Sec-
tion 1.5.2.3.

1.5.1.2 Fault tolerance

Volatility and dynamic nature of grid resources impose to any grid-based B&B to adopt
a Fault Tolerance (FT) strategy because no loss of data is tolerated in parallel exact
methods designed to solve COPs. In B&B a loss of one or several subproblem(s) can
cause the loss of one or several optimal solution(s). Therefore, each parallel B&B de-
signed to be executed in a volatile environment must take into account FT issue. FT
can be achieved at the middleware level [PROA, XTRE, CON] or at the application
level [MMT07a, MMT07b, IAM00, FM87, GKLY00, GLY00, DVC+09]. FT mecha-
nisms introduced at the middleware level induce additional overheads to the execution
time of the algorithms. For instance, the ProActive middleware provides a FT mecha-
nism based on the replication of the processes involved in the computation. This forces
the application developers to reserve nodes dedicated to the replicated processes which
leads to the loss of computing power. In our case, we focus on FT at the application-
level. In the following, we present the state-of-the-art approaches for application-level
FT.

FT is relatively easy to take into account in MW paradigm where the master can
resubmit the subproblem of the failed worker to another safe worker. However, this
solution induce redundant work and then affect the efficiency of the algorithm. Check-
pointing mechanisms must be developed. Indeed, the master process must perform
periodically regular checkpointing to save the progress of the workers. The master

Chapter 1: Parallel B&B Using Grid-Computing 18

must also develop a mechanism to detect failures by heart-beating the workers. Never-
theless, these operations introduce new overhead to the master process. In this thesis,
the FT is taken into account by resubmitting only a part of the unsolved work to a safe
worker (See Chapter 4). In addition to the primary work pool, the master process holds
secondary work pools. There are as much secondary work pools as active workers. Each
secondary work pool contains the subproblems as decomposed by the workers and then
each time a worker solves a subproblem it is updated. This allows the master process
to resubmit only the unsolved part of the subproblem of a failed worker instead of the
entire subproblem.

1.5.1.3 Communication cost

Grid resources are distributed on different sub-networks with different bandwidth and
connected to each other by shared nationwide networks. This induces significant latency
in communication between processes of the parallel B&B decreasing considerably their
efficiency. Three strategies can be used in order to reduce communication cost [MEZ07]:
(1) reduce the communication delay, (2) reduce the number of communicated messages,
and (3) reduce the size of the messages. In this thesis, we reduced the number of com-
municated messages by enabling direct communication between workers reducing then
the number of flowing messages in the network infrastructure.

Solving combinatorial optimization problems using large pool of resources is not
straightforward. Nevertheless, using communications between distributed processes
may increase the computation speedup. However, Grids are not the most adapted
environment for communicating because of issues such as heterogeneity, high latency
between sites, and scalability.

1.5.2 Grid-based B&B frameworks and applications

As seen previously, scalability and FT are major issues to be tackled when designing a
parallel B&B for large scale environments. Executing a parallel B&B on large instances
of problems spawn a huge number of work units which must be executed and/or commu-
nicated. Consequently, bottlenecks can be created on some parts of the network or some
computational resources. Many investigations of parallel B&B for distributed memory
systems have adopted the MW paradigm [ACK+02, GLY00]. Although this approach
simplifies the management of information and multiple processes and FT can be easily
tackled, it is clearly not scalable. Scalability can be improved through a hierarchical
or fully decentralized organization of processes [XRL05, EPH00, CBCM07], by varying
the size of work units [ANF03, AFO06], or by rethinking the B&B representation and
its adaptation to large scale environments [MMT07a, MMT07b]. In the following we
present the different developed grid-based B&B algorithms and frameworks according
to there architecture and we explain for each approach how it deals with scalability and
fault tolerance.

Chapter 1: Parallel B&B Using Grid-Computing 19

1.5.2.1 MW-based B&B Algorithms

In the literature, most of applications developed for large scale environments are based
on the MW paradigm. SETI@home [ACK+02] is one of the first large scale MW-based
applications. A central master process distributes computational tasks to workers at
the edge of the Internet. When a worker completes its computation, it sends the results
to the central master. Linderoth et al. have proposed MW [GLY00], a framework
allowing to design large scale applications according to the MW paradigm. MW uses
Condor [CON] as its resource management system and PVM [PL96] as a message pass-
ing interface between the master and workers. The master is launched on a dedicated
machine and the workers are created on non-dedicated resources from the Condor pool.
The Condor system matches user-submitted jobs with idle machines in its pool. Three
main classes are defined: MWDriver which corresponds to the master process and con-
tains the control center for distributing tasks to workers, MWTask which represents a
task, and MWWorker class which represents a worker which executes tasks assigned to
it by the master.

Mezmaz et al. [MMT07a, MMT07b] have proposed B&B@Grid for large scale B&B
algorithm using the MW paradigm. The authors have not made any change on the
MW architecture but they have applied adaptation on the B&B. They rethought the
representation of the search space and then minimized the quantity of flowing informa-
tion in the network in order to alleviate the master process. Their approach is based
on an efficient coding of work units. A list of subproblems is represented by a unique
interval defined by only two integers. Fold and unfold operators are defined to deduce a
search sub-space from an interval and vice versa. Therefore, the transferred and stored
information in the grid is an interval instead of a list of subproblems. The approach
also facilitates and optimizes load balancing, FT, and termination detection.

FT is ensured by a checkpointing mechanism. The optimal solution and the un-
explored subproblems are stored as intervals in a backup file. When the master fails,
the file is checked and then the unexplored subproblems are deduced using the folding
operator. Workers update the intervals regularly and inform the master of any new
solution. When a worker fails, the last copy of its interval is either fully allocated
to another B&B process or shared between several B&B processes. However, this FT
mechanism has been only applied to the original B&B@Grid and has not been extended
to the P2P distributed version.

The approach has been experimented using the Grid’5000 [GRIDa] French nation-
wide grid and some academic clusters. The reported results show that the approach
scales well and is more efficient compared to the best known approaches in grid-based
exact optimization. The approach allowed the first optimal resolution of an instance of
50 jobs and 20 machines of the flow shop scheduling problem (Ta056).

1.5.2.2 HMW-based B&B Algorithms

According to the role of the different processes the Hierarchical Master-Worker paradigm
(HMW), two layers can be distinguished: a control layer composed of one or more levels

Chapter 1: Parallel B&B Using Grid-Computing 20

Workers

H
ie

ra
rc

hi
ca

l M
as

te
r

W
or

ke
r

M
as

te
r/

W
or

ke
r

Masters

level N

level 2

level 1

C
on

tr
ol

 la
ye

r
W

or
k

la
ye

r

Figure 1.3: HMW classification

of masters and a work layer which is composed of several workers. We can classify exist-
ing works according to the number of levels constituting the control layer (See Fig.1.3).
A system is considered as HMW when it is composed of, at least, one level of masters.
A no-level system is a particular case which represents the classical MW architecture.
In the single-level class, the main master only communicates with some sub-masters,
and each sub-master manages a set of workers.

Xu et al. [XRL05] and Eckstein et al. [EPH00] proposed respectively ALPS and
PICO which are parallel B&Bs based on Master-Hub-Worker MHW in which a layer of
medium-level management is inserted between the master and the workers where each
hub manages a static set of workers. They consider in their approaches cluster-based ar-
chitecture. Each cluster contains a local Hub and one or multiple workers. The number
of hubs increases with the number of workers and they avoid becoming overburdened
by limiting the number of workers by cluster. Therefore, some computational burden
is moved from the master to the hubs. Nevertheless, at the best of our knowledge, no
FT mechanism is developed in these two approaches.

Aida et al. [ANF03, AFO06] proposed a similar approach of B&B algorithm paral-
lelization using the hierarchical MW paradigm. Their algorithm performs MW at two
levels, computing among PC clusters on the Grid and that among computing nodes on
each PC cluster. They aim at avoiding performance degradation caused by the commu-
nication overhead between the master process and worker processes. In their algorithm,
a single supervisor process controls multiple process sets, each of which composed of
a master process and worker processes. The master process dispatches subproblems
to multiple worker processes, receives back the computed results from the worker pro-
cesses, and performs load balancing operations with the supervisor. The supervisor
process shares the upper-bound and performs a load balancing among master processes

Chapter 1: Parallel B&B Using Grid-Computing 21

by migrating subproblems among master processes. A worker that receives a task de-
composes it, sends the obtained and not-yet computed subproblems to its master, and
returns back the result to it. The authors discuss the granularity of tasks, notably
when tasks are fine-grained, the communication overhead is too high compared to the
computation of tasks. The algorithm has been implemented using GridRPC middle-
ware [SNMD02], Ninf-G [TNS+03], and Ninf [SNS+97].

FT mechanism does not attempt to detect failures of processes and to restore their
data, but rather focuses on detecting not yet completed problems knowing completed
ones. The approach is based on the fact that the generated subproblems of a B&B are
tree nodes. Therefore, subproblems are represented only by their position in the tree.
Given a set of tree nodes, its complement can be easily found.

Each process maintains a list of new locally completed subproblems and a table of
the completed problems. When a problem is completed, it is included in the local list.
After a period of time or after processing a fixed number of subproblems, the list is
sent to a set of other processes, selected randomly, as a work report message. When a
process receives a work report, it stores it. When a process runs out of work, it chooses
an uncompleted problem and solves it.

Di-Costanzo et al. [CBCM07] have proposed a four entities-based HMW for B&B
algorithms: master, sub-master, worker, and leader. The master is the entry point of
the system as well as the unique responsible for branching (task decomposition) among
other roles such as managing task allocation to sub-masters and/or workers, handling
failures and building the different groups of workers. Sub-masters are just intermediary
entities whose role is to ensure scalability. They are hierarchically organized and they
forward tasks from the master to workers and vice versa by returning results to the
master (or their sub-master parent). The unique role of workers is to execute tasks. The
role of a leader process is to forward messages from one worker to another when they
need to communicate. In this work FT is ensured at middleware level using ProActive.

The system has been implemented on top of ProActive [BBC+06, BCM03, CDCL06]
and dedicated to solve the permutation Flow-Shop problem. They conducted low (be-
tween 20 and 60 CPUs) and medium (up to 700) scale experiments on Grid’5000. The
reported results show that the system scales well up to 272 CPUs. However, for more
than 272 CPUs, the total execution time decreases slowly.

Di-Costanzo et al. have proposed an interesting hierarchical system but in our
opinion there are two weak points. First, the sub-masters are under-used and do not
participate in the alleviation of the master in terms of execution of tasks. Indeed, the
main work of the master is the decomposition and distribution of tasks; the system
would be more efficient if sub-masters participate in the decomposition process. Sec-
ond, the unique criterion of the choice of group members is their localization in the
same cluster, which can overload the master when the cluster contains a large number
of computational nodes.

Drummond et al. [DUGS06] have proposed an FT hierarchical B&B designed to be

Chapter 1: Parallel B&B Using Grid-Computing 22

run on grid infrastructure applied to the Steiner problem in graphs. The branching
process of a steiner problem spawns exactly two subproblems. The algorithm is orga-
nized as follows: a root master is launched on a process of a given cluster. The root
master launches and manages a set of leaders on the first processor of each cluster.
Each leader represents the processors of the cluster on which it is launched. A leader
process branches a given problem into left and right subproblems and assigns the right
subproblem to a leader according to a specific assignment algorithm. The process is
repeated until no leader is available, then the branched subproblems are assigned to
the processes of the same cluster.

FT is ensured using uncoordinated checkpoints [EAWJ96] where each process keeps
the unsolved subproblems and sends checkpoint messages to its neighbor (the neigh-
borhood is defined according to a specific formula). The leaders do the same but they
only send checkpoints to the other leaders. The main drawback of the algorithm resides
in the number of tolerated failures. Only one failure per cluster can be handled and
beyond one failure, the whole cluster is considered as failed. Moreover, if a leader fails,
the entire cluster is also considered as failed and no flexibility in this sense is tolerated.
The scalability of their algorithm cannot be proven since they only perform experiments
using between 16 and 33 computing resources.

Berthold et al. [BDLP08] have proposed single and multi-level HMW skeletons to
overcome the master bottleneck caused in a simple MW paradigm. In this model,
they investigate techniques for hierarchically nesting the basic MW scheme presenting
a skeleton implementation for nesting several MW instances. With this scheme the
administrative load of task handling has been shifted to the whole hierarchy of masters.
The experiments show that, in general, MW hierarchies speed up execution keeping
workers busy and avoiding bottlenecks.

An improvement to this work has been made by GhasemiGol et al. [GSDB09]. They
proposed a linda-based [AND86] HMW to decrease the communication cost. They de-
fined sub-masters as shared spaces (linda tuple spaces) that can be accessed by their own
workers. Therefore, several workers can refer to a sub-master concurrently and many
communications are eliminated. Nevertheless, both of Berthold et al. and GhsemiGol
et al. have experimented their approaches only on a reduced number of processors (32
for the first and 9 nodes pool for the second). This makes it difficult to conclude on
the scalability of their approaches.

Dai et al. [DVC+09] have proposed a single-level hierarchical master-worker designed
for divisible tasks which is similar to divide and conquer paradigm. In their framework,
a main master only communicates with some sub-masters, and each sub-master man-
ages a set of workers using multiple pool collegial strategy. Nodes of the hierarchy are
organized into groups. Each group is composed of nodes of the same cluster or LAN
and closer to each other to minimize communication latency. A load balancing strategy
is proposed since a group of workers may be idle while other groups are very busy. In
this case, a sub-master asks its main-master and if this later has no more tasks, it steals
tasks from one of the busy groups.

Both the middleware-level and application-level FT mechanisms are used. The

Chapter 1: Parallel B&B Using Grid-Computing 23

middleware-level mechanism proposed in ProActive [PROA] is used only by the main-
master and the authors do not specify if it is also used by sub-masters and workers.
When an inner master fails, the challenge is to manage its orphan workers. Two tech-
niques are proposed to address this issue: the election of a sub-master from the re-
maining sub-workers and the use of redundant sub-workers. The selected sub-workers
are a replica of sub-masters, when a sub-master fails they are used to generate a new
sub-master.

The main drawback of this approach resides in the use of middleware-level FT and
then the definition of redundant processes which will replace the failed ones. Therefore,
this approach leads to the loss of computing power. Moreover, no solution is proposed
to minimize the redundant work in case of failures.

The model has been experimented on a small cluster of 32 cores. The speed-up
ratio between simple MW and single-level HMW is reported. The results show that
the speed-up ratio increases as the number of nodes increases. On the other hand, in
another experiment, they noticed that their single-level HMW will finally perform as
well as the simple MW does in solving divisible tasks when the hierarchical model deals
with of a large number of tasks. We notice that the experiments they conducted are
not sufficiently large scale, while their model is supposed to scale up the ProActive MW
API [PROA].

Even the ProActive MW API is an efficient tool and easy to use for grid appli-
cations, no mean is however provided to allow direct communication between workers.
This makes the ProActive MW API not suitable to solve problems that need direct com-
munication between the different tasks. As the hierarchical model is based on this API,
the processes of the system cannot communicate between them making it unsuitable to
solve problems that need direct communication.

1.5.2.3 Decentralized B&B

In addition to these hierarchical schemes, we can find peer-to-peer P2P based paral-
lel B&B algorithms which are fully decentralized such as those presented by Finkel
et al. [FM87] in DIB and Iamnitchi et al. [IAM00]. Iamnitchi et al proposed a fully
decentralized parallel B&B algorithm. Each process maintains its local work pool and
sends requests to others when it is empty. The process which receives a work request
sends a part of its work to the requester. The fully decentralized scheme provides better
scalability since no central point is considered. The solution is propagated in circulating
the best known solution among processes embedded in most frequently sent messages.

To ensure FT, Iamnitchi et al. proposes a coding approach of the subproblems based
on their representation according to their position in the B&B tree. The interest of this
representation is to deduce a subproblem from its encoding. This approach requires
that all subproblems belong to the same subtree to be designated with the same code.

In order to overcome the limits of B&B@Grid presented in the previous section
in terms of scalability, Djamai et al. [DDM11] designed a pure P2P approach for the

Chapter 1: Parallel B&B Using Grid-Computing 24

algorithm. It provides fully distributed algorithms to deal with B&B mechanisms like
work sharing, best upper bound sharing and termination detection. However, the FT
is not taken into account in this work.

1.6 Conclusion
Solving to optimality real-world combinatorial optimization problem instances is CPU
time-intensive. The Branch-and-Bound (B&B) algorithm is one of the most known
methods for their exact solving. Nevertheless, such a technique remains insufficient for
very large problem instances. To mitigate this constraint, parallelization is one of the
most effective ways in terms of improving the computing performances, in particular the
use of large scale parallelism based on Grid Computing. However, using grid computing
is not straightforward and the traditional parallel B&B algorithms must be rethought
to meet the characteristics of grids, particularly their large scale and the volatility and
heterogeneity of their resources.

In this chapter we provided an overview on the topics related to the context of this
thesis, i.e., parallel B&B, grid computing and grid-based B&B algorithms. First, we
presented sequential and parallel B&B algorithms. We then summarized the different
classifications conducted in the literature. Second, we presented the grid computing
concept, the characteristics and architecture of grids, and we positioned our work in
the context of grid computing. We also presented the main features of the ProActive
middleware we used to develop our contributions. Finally, we highlighted grid-based
B&B challenges and we gave a state-of-the-art of the existing grid-based B&B.

In the next three chapters, we will detail the contributions we proposed to meet the
requirements of grids: Scalability, heterogeneity, and complexity of grids in Chapters 2
and 3, and fault tolerance in Chpater 4.

Chapter 2

P2PB&B: A P2P MW-based B&B

2.1 Introduction
Large scale environments such as computational grids provide a huge amount of com-
puting resources that can offer the power required by parallel Branch and Bound al-
gorithms B&B to solve large Combinatorial Optimization Problems COP instances.
Grid resources are usually organized in clusters, which are autonomous and managed
by different administrative domains, these resources are volatile and heterogenous. Con-
sequently, these characteristics induce new challenges to the classical B&B algorithms
such as scalability, fault tolerance, load balancing, communication delays, and program-
ming issues related to the complexity of managing grid resources.

Most of developed parallel B&Bs for large scale environments are based on the
Master/Worker paradigm (MW) [ACK+02, GLY00]. The MW paradigm consists in
defining two entities: a single master and a pool of workers. The master decomposes
an initial task into multiple smaller ones and distributes them among the workers. The
workers, on their side, perform the execution of the different tasks. After a worker
finishes its calculation, it sends back the result to the master and asks for a new task.
This simple mechanism makes the MW paradigm widely studied and successfully used
for many parallel applications. Consequently, many sequential applications can be eas-
ily brought to the MW paradigm since all the algorithm control is done by the master.
Indeed, users only have to find a way to suitably decompose the problem to be solved,
to distribute tasks, to gather results and to terminate the calculation.

However, the MW paradigm is strongly limited regarding scalability in large scale
environments [ANF03, AFO06]. Indeed, the central master process is subject to bot-
tlenecks caused by the many-to-one requests submitted by its different workers. This
slows down the master in serving the workers and these later in executing their allocated
tasks, thus degrading the global performance of the exploration process. Additionally,
developing grid-based B&B algorithms is not straightforward for non specialized devel-
opers because of the grid complexity. This reduces the size of the community that can
develop grid-based applications.

In this chapter, we propose P2P-B&B which is a P2P MW-based B&B frame-
work enabling direct communication between workers. The aim of this framework is

25

Chapter 2: P2PB&B: A P2P MW-based B&B 26

twofold: First, it facilitates the development of grid-based B&Bs and hiding the com-
plexity of the grid to the users and non specialized developers. Thus, developers only
need to code the algorithms for solving their optimization problems. Second, it deals
with scalability, so it offers tools to alleviate the master process by enabling direct
communication between workers and minimizing task request frequency. Moreover,
the framework is used to develop a complete grid-based parallel B&B for the Flow-
Shop scheduling Problem (FSP). We also present how to exploit direct communication
of the P2P-MW paradigm to achieve better performance and how this framework is
used to facilitate the development of a grid-based B&B. This work has been published
in [BMT07, BGMM08, BMT09].

The remainder of this chapter is structured as follows: Section 2 presents P2P-B&B
framework, its architecture and the different components. We also detail the way direct
communication between workers are performed and the way the task request frequency
towards the master process is minimized. Section 3 highlights the use of this framework
to develop a grid-based parallel B&B. In Section 4, we present its implementation
concerning deployment, communication, fault tolerance, and work management using
ProActive. The experimental environment, large scale deployment and performance
evaluation on grid formed and managed by ProActive are presented in Section 5. We
conclude this chapter in Section 6.

2.2 P2P MW-based framework for B&B
In this section, we present the proposed (P2P-B&B) framework for P2P MW-based
B&B solvers. It aims at facilitating the development of grid-based B&Bs to deal with
the scalability issue by enabling direct communication between workers and reducing
task request frequency towards the master process. Moreover, we present the framework
P2P-B&B for P2P MW-based B&B solvers to facilitate the development of grid-based
B&Bs.

2.2.1 Communications in Master-Worker

Most of developed MW frameworks are limited in terms of enabling communications
between the different workers. They are either allowing communication through the
master process such as in [GKLY00, GLY00], or do not allow communication between
workers at all such as in the ProActive MW API [CDCL06, PROA] and BOINC [BOI].
In the scope of this thesis we focus on the ProActive MW API which we have used to
implement our contributions in this thesis.

The ProActive middleware proposes a Master-Worker API which is an easy to use
framework for parallelizing embarrassingly parallel applications. It is destined to solve
problems that are easy to segment into a very large number of parallel tasks, and that
don’t need any communication between those parallel tasks. Using the MW API, all
the internal concepts of ProActive are hidden to the user. It allows load-balancing,

Chapter 2: P2PB&B: A P2P MW-based B&B 27

tasks scheduling, fault tolerance, and a mechanism for solution gathering.
The usage of the Master-Worker API is simple and consists of four steps:

1. Deployment of the Master-Worker framework.

2. Task definition and submission

3. Results gathering

4. Release of acquired resources

Master

Worker 1 Worker n

Direct communication

Communication

through the master

Figure 2.1: ProActive MW Application. No communication are allowed between the
workers

However, as the most MW frameworks, this API presents a major drawback. It does
not allow communication between the workers neither direct nor through the master
process. The absence of communication degrades considerably the performance of the
algorithms needing real-time communication such as B&B. In fact, the upper bound
must be communicated as soon as possible to prune more branches in the exploration
tree and to avoid the exploration of unnecessary branches.

This drawback can be circumvented by emulating communications between the
workers. Nevertheless, the emulated communications are delayed and do not happen at
real-time. In fact, to communicate between two workers, each of them needs to wait for
the termination of the other one and then recovers its result. However, the overhead
caused by the waiting of results of other tasks, especially for highly coupled tasks, is
another limitation to consider.

In the case of B&B, the upper bound cannot be communicated at real-time, that
degrades the system performance because when a worker finds a new upper bound, this
latter will be communicated to the master after the worker finishes its current task.
Therefore, the whole workers must wait the termination of that worker to recover the
upper bound within the result of its task.

Chapter 2: P2PB&B: A P2P MW-based B&B 28

Before detailing the framework, we present in the following, our proposition to
remedy to this drawback by enabling direct communication between workers.

2.2.2 Direct communication between workers

As mentioned before, the drawback of the ProActive MW API and most of the pro-
posed MW frameworks is that there is no mean to communicate the upper bound at
real-time. As a consequence, the system performance is considerably decreased espe-
cially when the workers handle coarse-grained tasks, because they take a long time
before communicating the new found solution. Moreover, the collaboration capabilities
of the developed applications are minimized when a worker takes a long time to respond
to other requests coming from other workers for collaboration matter.

The system performance can be improved as the workers handle fine-grained tasks
and the upper bound is communicated at real-time. However, handling fine-grained
tasks can cause bottlenecks at the level of the master when the workers take a short
time to explore their tasks. On the other hand, handling coarse-grained ones can penal-
ize the system and enforce the workers to take a long time to solve their tasks increasing
their silence. Therefore, a tradeoff must be found between the size of the tasks and
the engendered latency/bottleneck. In fact, the granularity must be fixed in a way
to avoid too coarse/fine-grained tasks. Unfortunately, in algorithms such as B&B, the
generated exploration tree is highly dynamic and it is hard to fixe a suitable granularity.

Classical execution
of atomic task

start of the execution

Exection of the atomic task

communication
Serve pending

upper bound
share the new

Communication
queue

Multiple executions

new upper bound

atomic Task

communication of the UB

Compact coarse grained task

N
o

co
m

m
un

ic
at

io
n

du
ri

ng

th
e

ex
ec

ut
io

n
of

 th
e

ta
sk

end of execution

Figure 2.2: Single coarse-grained compact task vs multiple executions of fine-grained
atomic task.

To communicate between workers at real-time, we propose to decompose the initial

Chapter 2: P2PB&B: A P2P MW-based B&B 29

task assigned to a worker into multiple fine-grained tasks without causing any addi-
tional overheads of decomposition and without any additional work request towards
the master process. The decomposition is not done explicitly but it is theoretical and
no modification is performed on the initial task. We define an atomic task which is the
smallest task that a worker can perform without any need to perform communication
(see Figure 2.2). The workers then, execute multiple smaller tasks and perform multiple
communications instead of processing a unique coarse-grained task before communicat-
ing once the obtained result and handling once the upcoming communication. The
worker then can communicate its new upper bound at any time and can also listen
about upcoming communication after each execution of the atomic task.

Figure 2.2 represents a classical execution of a single coarse-grained task versus
multiple executions of an atomic task. The process takes a long time executing the
coarse-grained task before it communicates its result once after it finishes the task.
Whereas, when executing the atomic task, the process can communicate the result and
check for pending communication at each iteration. The use of atomic task is explained
by the algorithm hereafter:

.
while (!endOfComputation())
. runAtomicTask()
. if (needCommunication())
. . shareSolution()
. end if
. if (newCommunication())
. . //routines handling communication
. end if
end while

.

The decomposition of the initial task is done algorithmically and the master process
only sends the initial coarse-grained task. It does not send any information in addition
to the initial task. Moreover, there is no additional processing time at the level of
the workers except the time of the communication of the obtained result -if it exists-
and the time of checking the communication list in the case that another worker sends
something to it.

From the point of view of developers, the four methods (endOfComputation, runAtomic-
Task, needCommunication, and shareSolution) must be implemented to adapt the al-
gorithm to the framework design (see Section 2.3).

2.2.3 Architecture and working of the framework

The P2P MW-based framework is situated between the ProActive middleware and the
user application layers (see Figure 2.3). It uses features of ProActive to acquire/deploy
computing nodes from/on the grid infrastructure. In addition, it uses ProActive typed

Chapter 2: P2PB&B: A P2P MW-based B&B 30

group communications to facilitate collaborations and other features to hide the com-
plexity of the grid to the user. It then provides services to the user to develop a
communicating B&B without dealing with the grid complexity as well as B&B pro-
gramming difficulties using the new B&B solver framework (B&B-Slover) providing
basic routines to develop a generic B&B (see Section 2.2.5).

P
2P

−
B

&
B

WorkerMaster

Worker−Supervisor
Resources−ManagerWork−ManagerTask−Processor Task−Provider

ProActive

COPs

FSP TSP QAP Q3AP

Typed Group Communication
Deployment P2P Services

User B&B Application

Grid Infrastructure

One−way Asynchronous Call

SolverData Problem

B&B−Solver

P2P−MW

Figure 2.3: Layered stack of P2P-B&B.

Figure 2.4 presents the general architecture of the framework. The master process is
composed of one thread (Work-Manager) and three active objects (Resources-Manager,
Worker-Supervisor, and Statistician). The Work-Manager thread allows the master to
manage the work pool. It decomposes the initial task into smaller ones, puts them
into the master’s work pool and provides tasks to the asking workers. The Resources-
Manager serves to manage the computing resources. It acquires free computing nodes
from the computational pool (grid infrastructure) and deploys the workers. It also gath-
ers the workers into communicating groups. The Worker-Supervisor allows the master
to detect any failure or disconnection among the workers. It sends periodically heart-
beats to the workers and waits for their responses. If a worker does not respond then
it is marked as failed. The Worker-Supervisor informs the master process about the
failed worker in order to recover its task and to reassign it to another free worker (see
Section 2.4.5). Finally, the Statistician allows to recover and report statistics during
the execution of the framework such as the processors’ load, efficiency, work progress,
number of launched and failed workers, communication load, etc.

The worker is composed of three threads (Task-Provider, Task-Processor, and Statis-
tician). The Task-Processor thread is the most important process, it allows to execute
the task assigned to the current worker. Task-Provider provides the worker in terms
of tasks by asking the master process. It works in mutual exclusion with the Task-
Processor, it wakes up the Task-Processor when a new task is acquired and then sleeps
waiting for task request event. The Task-Processor on its side, wakes up the Task-
Provider after it finishes its task and then sleeps waiting for new tasks. The Statis-
tician thread periodically sends statistics to the master process. It interacts with the
local threads (Task-Processor and Task-Provider) and with the master’s Statistician.

Chapter 2: P2PB&B: A P2P MW-based B&B 31

Work progress

Failed
workers

T
asks

Tasks

Deployed nodes

Nodes

Computing

D
ep

lo
ym

en
t

St
at

is
ti

cs

T
as

k
re

qu
es

t

H
ea

rt
be

at
s

Direct Communication

Grid Infrastructure

Efficiency

Local work progress

Task request

Task

Processor

Statistician

Task

Worker
Supervisor

Statistician

Resources
Manager

Work
Manager

Master

Worker

Provider

Figure 2.4: General architecture and interactions between the components of the frame-
work.

It collects statistics concerning the state of the worker (in execution or waiting state)
and the task work progress and sends them to the master.

2.2.4 The P2P MW-based framework (P2P-B&B)

Direct communication imposes new requirements to the classical MW paradigm to
adapt the developed applications. Therefore, it is necessary to rethink the classical
MW and to design new routines allowing MW applications to behave as P2P ones.

The designed P2P-based Maser/Worker framework allows direct communication
between workers and facilitates deployment of P2P applications. The framework (Fig-
ure 2.5) uses the functionalities of ProActive and is essentially composed of four entities:
P2PMaster, P2PWorker, Resources-Manager, and Worker-Supervisor. P2PMaster re-
spectively P2PWorker are two Java interfaces proposing the most important routines
that a Master, respectively a Worker have to implement in order to respond to the new
design requirements. The Master and the Worker classes are also Active Objects AOs
to allow them to benefit from the ProActive features.

Chapter 2: P2PB&B: A P2P MW-based B&B 32

<Interface>

P2PWorker
+ compute()
+ shareSolution()
+ addNeighbor()
+ startComputation()
+ stopComputation()

− masterProcess
− workerSupervisor

− taskProvider

− explorer

− taskProcessor

− statistician

. . .

− workerId

Worker

+ compute()
+ shareSolution()
+ addNeighbor()
+ startComputation()
+ stopComputation()

Ressources−
 Manager

− groupSize
− masterProcess
− workerSupervisor
− workerGroup

+ deployment()

+ nodeCreated()
+ newWorker()
+ updateGroup()

Supervisor
Worker−

− workerGroup
− masterProcess
− resourcesManager
− heartBeatPeriod

+ heartBeat()

+ failedWorker()

P2PMaster
<Interface>

+ distribute()
+decomposeProblem()

+ gather()
+ deployNodes()
+ newWorker()

+ reallocateTask()
+ startComputation()
+ stopComputation()

Master

− workerSupervisor
− resourcesManager
− workerGroup
− workManager
− statistician

− decomposer
− workPool
. . .

+ distribute()
+ decomposeProblem()

+ gather()
+ deployNodes()
+ newWorker()

+ reallocateTask()
+ startComputation()
+ stopComputation()

Solver

Figure 2.5: P2P MW-based framework class diagram

2.2.4.1 P2PMaster interface

The P2PMaster interface proposes methods allowing a master process to manage the
workers (connection, disconnection, deployment, and failure detection). In addition, it
includes methods to manage the work (work decomposition, task distribution, result
recovering, and task reallocation). The Java source code of the interface is given bellow:

.
public interface P2PMaster {
. Problem distribute(P2PWorker askingWorker);
. Vector <Problem> decomposeProblem();
. void gather(Problem newSolution,String workerWhichHasFoundTheSolution);
. void deployNodes();
. String newWorker(P2PWorker newWorker);
. void reallocateTask(Problem subProblemToRealocate);
. void startComputation();
. void stopComputation();
}

.

Chapter 2: P2PB&B: A P2P MW-based B&B 33

• decomposeProblem: It decomposes the initial problem into smaller independent sub-
problems. These subproblems are dispatched among the workers that execute
them independently. The Master stores the obtained subproblems into its work
pool. This operation is performed by the Work-Manager thread.

• distribute: It distributes the sub-tasks among the workers. This method can be
executed in parallel with decomposeProblem when the master takes a long time
in the decomposition process. Therefore, the overall waiting time of the workers
is minimized and thus the execution time is reduced (see Section 2.4.2 for more
details on the distribution process).

• gather : It is used to gather results coming from the workers. This method also can be
executed in parallel with decomposeProblem and distribute when a worker finishes
its calculation part and provides a result before the master finishes the decom-
position and the distribution processes. Unlike all existing MW-based solvers,
gather is not only called at the end of the worker execution but rather called by
a worker each time it finds a new solution in order to inform the Master process
about it in real-time.

• startComputation and stopComputation: These two methods start and stop the com-
puting of a group of workers by sending a start or stop message to participants.

• deployNodes: It recovers P2P nodes (Workers) from the P2P network managed by
ProActive. These P2P nodes are transformed into computing resources and then
independent workers are created (see Section 2.4.1 for the deployment).

• newWorker : It manages connections of new workers wishing to participate in the
computation (see 2.4.4 for the management of new connections).

• reallocateTask : It is used to reassign a task to another worker when the worker it is
assigned to fails (see Section. 2.4.5).

2.2.4.2 P2PWorker Interface

P2PWorker interface offers methods that allow the workers to process their tasks, to
collaborate, and to behave as peers in a P2P environment, i.e., to communicate directly
between them without an intermediary. Therefore, the workers can normalize with the
new feature of the proposed communicating framework. The interface is defined bellow:

.
public interface P2PWorker {
. void compute();
. void shareSolution(Integer i);
. void addNeighbor(P2PWorker worker);
. void startComputation();
. void stopComputation();
}

Chapter 2: P2PB&B: A P2P MW-based B&B 34

• compute: It is used when a worker receives a task from the master and stops when
it receives stop message.

• shareSolution: This operation is necessary for an efficient collaboration between the
workers which share their best known solutions without flowing via the master.
For example, in the case of a B&B algorithm, they share their upper bounds.

• star/stopComputaion: They are remotely called by the master to start or stop the
computation of the worker.

2.2.5 B&B-Solver: a MW-based B&B Solver for COPs

To facilitate the development of any B&B solver, we have developed the B&B-Solver
framework (see Figure 2.6). It allows an easy implementation of solvers on specific com-
binatorial optimization problems using tree-based search algorithms such as Branch and
Bound/Price/Cut and in general Divide and Conquer algorithms. Nevertheless, in this
work we only focus on B&B solvers.

+ explore()
+ runAtomicTask()

+ solveProblem()
+ decompose()

+ endOfComputation()
+needCommunication()

+ getObjectiveValue()

+ initSolution()

<Interface>

+ getData()
+ initData()

− nbJobs
− nbMachines
− processingTimes

+ getData()
+ initData()

BranchAndBoundFSP FSP−Data

DataSolverProblem
<Interface><Interface>

− solutionSequence
− objectiveValue

+ needCommunication()
+ endOfComputation()

+ decompose()
+ solveProblem()

+ runAtomicTask()
+ explore()

− data
− bestSolution
− bestObjectiveValue

. . .

+ initSolution()

+ getObjectiveValue()
+ getSolution()

+ getSolution()

Figure 2.6: Class diagram of the B&B-Solver framework

Three main classes are defined: Data, Problem, and Solver. The class Data contains
essential methods to extract data from benchmarks and to initialize them and the data
of the considered problem. For example, in the case of Flow-Shop Problem FSP, the
data will contain the matrix of the processing times of the different tasks on the differ-
ent machines. The class Problem represents the problem to be solved. It contains the

Chapter 2: P2PB&B: A P2P MW-based B&B 35

necessary methods to model the considered problem. It also contains the cost of the
best solution of the subproblem. For example in the case of an FSP, a solution is mod-
eled as a vector of integers representing the order sequence of the tasks on the machines.

The Solver (see the Java code bellow) interface is the most important one. It
contains the methods that a developer should implement to design a solver algorithm
responding to the requirements of a communicating environment. Before implementing
the solver algorithm, the developer has to model his/her problem first as an optimization
problem having a solution and an objective function. After that, he/she has to develop
his/her own solver algorithm according to the Solver interface requirements. Indeed,
he/she must decide how to branch a specific problem. How to evaluate a problem. How
to define the bounding (in the case of B&B). How to decide that a specific information
is global (to be communicated). Finally, how to decide that a problem is already solved.

Both the master and the workers use this interface to decompose/explore the search
space. Solver includes all methods required to allow direct communication between
workers according to the solution proposed in Section 2.2.2. Therefore, the user must
implement the methods: explore(), runAtomicTask(), solveProblem(), decomposeProb-
lem(), endOfComputation(), and needCommunication().

.
package bb-solver;
public interface Solver extends Serializable {
. void explore();
. boolean endOfComputation();
. void runAtomicTask();
. void initSolver();
. void solveProblem(Solution task);
. Problem getResult();
. boolean needCommunication();
. boolean endOfComputation();
. Vector decomposeProblem(int level);
. long evaluateSolution();
. // ...
}

.

The explore method serves to define the way the Solver algorithm explores the
considered problem. endOfComputation() indicates when the solver decides if the con-
sidered problem is already solved in order to stop the worker executing the solver.
runAtomicTask() serves to hold the part of the code of the elementary task of the
problem. Compared to existing frameworks, this method is new. It allows the worker
executing it to avoid taking long time executing coarse-grained tasks. More details on
the atomic task are done in Section 2.2.2. Using initSolver() the developer can perform
some initializations to improve the initial upper bound before beginning the calculation.
solveProblem(Problem problem) allows to assign the problem to solve to the solver. de-
composeProblem() serves to decompose an initial problem. In the point of view of the

Chapter 2: P2PB&B: A P2P MW-based B&B 36

master process, each task is a subproblem which is represented by the class Problem,
therefore, the master process contains a vector of classes that implement the Problem
interface.

2.3 A Parallel P2P-based B&B using P2P-B&B
In the following, we present the proposed parallel B&B algorithm to deal with scala-
bility in large scale environments such as computational grids. It belongs to type 2 of
Gendron et al. classification [BCG00, GC94]. It is a Master/Worker-based algorithm
allowing direct communications between the different processes, i.e., (worker ↔ worker
and worker ↔ master) using the proposed approach in Section 2.2.2. This helps to
alleviate the master process and then avoid the creation of bottlenecks at the level of
the master. The master divides the initial problem into a set of subproblems. A single
work pool is available at the level of master which distributes the tasks among workers
and waits for results of each one of them.

In the following, the Java source code of the main methods of a generic B&B. Note
that the code is simplified and some parts are omitted to facilitate its assimilation.

.
package BB-Solver;
public class BranchAndBound implements Solver, Serializable{
. private Data data; //Data of the problem
. private Problem partialSolution;// Inner node in the search tree
. private Problem bestSolution;
. private int bestObjectiveValue;
. public Stack nodesToExplore; //Priority based stack
. public BranchAndBound(Data data){
. . this.data=data;
. . //...
. }
. public void solveProblem(Problem problem){
. . this.partialSolution=problem;
. . bestObjectiveValue=evaluateSolution(partialSoluton);
. . partialSolution.setObjectiveValue(bestObjectiveValue);
. . nodesToExplore=new Stack();
. . nodesToExplore.push(partialSolution); //push the root problem
. . //...
. }
. public boolean endOfComputation(){ //Termination condition
. . return nodesToExplore.empty();
. }
. public boolean needCommunication(){
. . return needToShareSolution;//This variable is modified when
. } //a new solution is found

Chapter 2: P2PB&B: A P2P MW-based B&B 37

Initial problem

T1 TnT2

W1 W2 Wn

Initial tree explored by master

Subproblems processed
by workers Wi

k
le

ve
ls

Figure 2.7: General scheme of ParallelBB

The implementation of runAtomicTask respectively decomposeProblem are given
in Sections 2.2.2 and 2.3.1, respectively. In the following, we present the principal
operations of the algorithm.

2.3.1 Branching

The branching operation is performed by the master process. It builds its own work
pool by performing a breadth first exploration of the initial tree. The size of the work
pool depends on the number of explored levels in the tree (Figure 2.7). Let k be the
number of explored levels, n the size of the master’s work pool, N the initial size of the
problem: n ≤

∏
0≤i≤k (N − i). The definition of N depends on the considered problem.

For example, in the case of an FSP, N is the number of not yet scheduled tasks.

T1, T2, ...Tn, in the figure represent subproblems (subtrees), each one contains a par-
tial solution having a size equal to the current level in the tree. k is a parameter which
depends on two important factors: the size of the considered problem and the size
of the computational pool. k must be sufficiently great to generate large number of
subproblems which will be processed in parallel by the workers. Therefore, the sub-
problems must have an acceptable granularity to be performed by a single worker. k
also depends on the size of the computational pool. In our case, k depends on the
number of available workers. If there is few workers, it is more interesting to have a
reduced number of parallel tasks to avoid loosing more time in distribution of tasks.

.
. public Vector decomposeProblem(){
. . Vector listOfTasks=breadthExploration(k);
. . return listOfTasks;
. }

Chapter 2: P2PB&B: A P2P MW-based B&B 38

The attribution of tasks to workers is performed by the master process. If the
number of workers is greater than the number of tasks, the master only considers the
workers it needs. Otherwise, it will make a redistribution of tasks to each new available
worker. A worker is said available when it finishes its part of calculation.

2.3.2 Selection and Elimination

The elimination operation is only used to eliminate subtrees whose roots have a lower
bound greater than or equal to the upper bound. Tree exploration policies used by the
master and the workers are different. The master performs a breadth first exploration
on the initial tree in order to build subtrees and to prepare the work pool. The master
explores nodes by priority to the most promising nodes, i.e., the nodes having a lower
bound less than or equal to the upper bound found so far by other workers. These
subproblems are stored in a priority-based queue work pool.

The workers implement runAtomicTask and perform a Best First Search (BFS)
selection policy. They use a priority-based stack with opposite priority stacking of
subproblems according to the least promising, i.e., at the top of the stack we find the
most promising nodes. Therefore, the most promising nodes are explored first.

An example of runAtomicTask Java source code is given in the following:
.

public void runAtomicTask(){
. needToShareSolution=false;
. partialSolution=new FSP((FSP)nodesToExplore.pop());
. childrenList=generateChildren(partialSolution);
. for (int i=childrenList.size()-1;i>=0;i- -){
. . partialSolution=(FSP)childrenList.get(i);
. . if (partialSolution.size()<data.size()){ //inner node
. . . nodesToExplore.push(partialSolution);
. . }
. . else{ //leaf node
. . . partialSolution.evaluateSolution();
. . . if (partialSolution.getObjectiveValue()
. <bestObjectiveValue){ //new upper bound
. . . . bestObjectiveValue=partialSolution.getObjectiveValue();
. . . . bestSolution=partialSolution;
. . . . needToShareSolution=true;
. . . }
. . }
. }
}

.

The use of atomic task is not static and does not give the same result for all problems
and for all exploration methods. The user must take into account the resolution method
in the implementation of the runAtomicTask method of the Solver interface.

Chapter 2: P2PB&B: A P2P MW-based B&B 39

For instance, in the case of the B&B algorithm, the result of one execution of
runAtomicTask() is shown in Figure 2.8. The result of one execution of runAtomicTask
is represented by a quorum in the search tree.

Atomic Task

Figure 2.8: runAtomicTask and decompose methods tree exploration

B&B-Solver is used by both of the Master and the Worker classes. The master uses
it to decompose the initial task and the workers use it to explore their tasks.

2.3.3 Communication and knowledge sharing

The global knowledge related to the upper bound is increased and updated each time a
given worker finds a new upper bound. This operation is performed by communicating
the upper bound to other workers. The collaborative work between workers obtained
by the sharing of the upper bound, allows to gain much in computation time. Sev-
eral branches can be eliminated more quickly than in a traditional B&B (sequential
B&B) without exploring them, quite simply by consulting the best solution found so
far. Unlike traditional B&B, where the upper bound is known only when the explo-
ration process reaches the current node. By using this algorithm, a significant number
of branches can be eliminated. These branches cannot be pruned in a sequential B&B
because the upper bound making it possible can be found only in the future, i.e., this
solution is situated in a search space which will be explored only later.

In Figure 2.9, the upper bound (solution S∗) is found by worker W3. This solution
belongs to the future search space compared to the search spaces of W1 and W2. When
W3 sends the upper bound S* to W1 and W2, it allows them to eliminate the branches:
(2 and 3.1) in the subtree of W1 and (1.1, 2 and 3) in the subtree of W2. Without
multiple execution of atomic task and then enabling real-time direct communication,
S* could not be found by W1 and W2 at real-time.

The master increases also the workers knowledge related to all other workers exe-
cuting in the system (dynamic management). The different types of communications

Chapter 2: P2PB&B: A P2P MW-based B&B 40

W3W1 W2

1 2 3

3.1 3.2 1.1 1.2

1 2 3

Branche cuted

Upper bound

Intermediary node

Sending of the upper bound to the workers

Sending of data + tasks + list of workers + upper bound

Sending of the upper bound to the master

Master

S*

Figure 2.9: Communications between processes of the algorithm

are summarized in the following (see Figure 2.9):

• Master to Worker : The master sends the task to execute (data of the problem
and the subtree to explore). Given that the algorithm is dedicated to large in-
stances, the exploration time is more important than the sending of the instance
itself. It, also sends the pool of executing workers. This information allows each
worker to know its environment concerning other workers in progress for a col-
laborative work. Finally, it sends the initial Upper Bound (UB) to each newly
created worker to eliminate branches from the beginning of the search space.

• Worker to Master : The unique information that a worker sends to the master is
the UB. Each time a worker finds an UB which is better than the current global
UB of the algorithm it sends it to the Master. This allows the master to improve
the knowledge of the future workers with this upper bound.

• Worker to Worker : Each worker sends the upper bound to all the workers in
its communication window (workers in progress) so that these workers will be
able to reduce the search space by eliminating a great number of branches. The
communication window of a worker is reduced to its neighbors, i.e., a worker only
communicates with the workers in progress (its neighbors).

2.3.4 Application to the Flow-Shop Scheduling Problem

The general Flow-Shop problem (FSP) can be formulated as follows [LLK78]: FSP
consists in scheduling a pool of n jobs on a set of m machines such that each of the

Chapter 2: P2PB&B: A P2P MW-based B&B 41

jobs J1, J2, ..., Jn has to be processed on the machines M1, M2, ..., Mm in that order.
Job Ji (i = 1, 2, ..., n) consists therefore of a sequence of m operations Oi1, Oi2, ...
Oim; Oik being the processing of Ji on Mk during an uninterrupted processing time pik.
Mk (k = 1, 2, ..,m) can handle at most one job at time. The objective is to find a pro-
cessing order on each Mk such that the time required to complete all jobs is minimized.
If the problem is restricted to the minimization over all permutation schedules, meaning
with the same processing order on each machine, the resulting problem is called the
permutation Flow-Shop problem, which is the focus of our work. Figure 2.10 shows an
example of an FSP instance (with n = 3 and m = 4) and its associated optimal solution.

��������
��������
��������

��������
��������
��������

���
���
���

���
���
���

�����
�����
�����
�����

����
����
����
����
�������
�������
�������
�������

�����������
�����������
�����������

�����������
�����������
����������������

�����
�����
�����

��
��
��
��

��������
��������
��������
��������

���
���
���

���
���
���

�����������
�����������
�����������
�����������

�������
�������
�������

�������
�������
�������

1 3 5
3

2

5 3 4 1

2 2 1 4

J

J

J

M M M M

2

1

1 2 3 4

M

M

M

M

1

2

3

4

J

J

J

J

J

J

J

J J

J

J

J
3

3

2

2

2

1

1

1

3 2 1

3

16Optimal Solution

Processing Times

Figure 2.10: Illustration of a permutation FSP with n = 3 and m = 4. The table
reports the processing times of the jobs on the machines. The Gantt diagram shows
the optimal solution to the problem instance.

For m = 2, an optimal schedule can be found in O(n.logn) steps using Johnson’s al-
gorithm [JOH54]. For m ≥ 3, the problem has been shown to be NP-complete [GAR79].
Due to such complexity, the enumerative solution approach provided in B&B algorithms
is well-suited to solve the problem to optimality. As illustrated in Figure 2.11 using
the example above, the B&B enumeration scheme is based on a search tree whose root
node contains the original problem (empty schedule).

The decomposition of this problem generates n sons, each of them designates a
subproblem. The son number i represents the subproblem in which job Ji is scheduled
first on all machines. The recursive application of the decomposition operator on the
generated subproblems allows to develop the search tree.

Chapter 2: P2PB&B: A P2P MW-based B&B 42

No job scheduled
Initial Solution

Lower bounds

Initial seed UB =

J1 J2 J3

J3 J2J1J2

16 16

J2 J1J3

J2J1

J1 J2 J3 J3 J2 J1

J1J3J3J1 J3J2

17 < 20
21 > 2023 > 20

LB > UB

New SolutionsNew UB = 20
New UB = 17

20 <

20 < 18 > 17
16 < 17

8

8

8
New UB = 16Optimal Solution

Branches pruned

Figure 2.11: The search tree generated and explored by a B&B algorithm for solving
an FSP with 3 jobs. Nodes with a lower bound (LB) greater (resp. lower or equal)
than the upper bound (UB) are pruned (resp. decomposed or branched).

2.4 P2P implementation using ProActive

2.4.1 Deployment

The deployment of grid application is challenging because of the complexity, diversity,
and the huge number of computing resources offered by grid environments. It is usu-
ally done manually through the use of remote shells for launching the various virtual
machines or daemons on remote computers and clusters. Therefore, the deployment of
applications is another issue to deal with when developing parallel applications. ProAc-
tive provides, as a key approach to the deployment problem, an abstraction from the
source code in order to gain in flexibility [BCMH02].

Using ProActive deployment features the Resources-Manager hides all details about
the grid infrastructure to deploy applications. It implements deployNodes() method to
provide the application by virtual nodes (VNs) that correspond to JVMs which contain
active objects. In our case, the active objects are the workers, so they are remotely
created and activated on the corresponding nodes to receive calculation:

.
ResourcesManager resourcesManager;
. . .
resourcesManager.deployNodes(xmlDescriptor);

.

Chapter 2: P2PB&B: A P2P MW-based B&B 43

xmlDescriptor is a XML descriptor file where ProActive finds the computing re-
sources. The user of the application has just to specify where the application will find
these resources in the file.

The Resources-Manager also implements nodeCreated() method of ProActive to
acquire P2P connections. In this case, a daemon p2pService is launched on all the
hosts wishing to participate in the calculation. When the Resources-Manager detects
a new connection of a worker, it remotely calls the newWorker() method on the master
process (see Section 2.4.4 for new connections).

2.4.2 Task distribution

After initializing the workers, the master generates a set of independent tasks by im-
plementing decomposeProblem():

.
private BranchAndBound decomposer;
. . .
decomposer=new BranchAndBound(data);
. . .
public Vector <Problem> decomposeProblem(){
. Vector <Problem> workPool=decomposer.decomposeProblem(k);
. return workPool;
}

.

These tasks are stored into the local work pool and are represented by the Problem
interface (see Figure 2.12). The master selects tasks from the work pool according to
the used selection policy and implements the distribute method which is launched in
parallel with decomposeProblem. distribute is remotely called by workers:

.
//At the level of a worker:
P2PMaster masterProcess; //
Problem localTask=masterProcess.distribute();
. . .
//and at the level of the master:

public Problem distribute(){
. return workPool.getNextTask();
}

.

Before the master sends a task to the workers, it increases their knowledge concern-
ing their environment. This knowledge concerns the set of workers executing other tasks
and the best solution found so far. This operation is done by the Resources-Manager
active object when it creates the worker. The master activates the calculation by
startComputation() and the workers launch the computing method using compute() to

Chapter 2: P2PB&B: A P2P MW-based B&B 44

explore their tasks:
.

//At the level of a worker
private BranchAndBound explorer;// used to explore a problem
. . .
explorer=new BranchAndBound(data);
. . .
public void compute(){
. explorer.initSolver(bestObjectiveValue);
. explorer.solveProblem(localTask);
. while (!explorer.endOfComputation()){
. explorer.runAtomicTask();
. if (explorer.needCommunication())
. shareSolution(explorer.getBestObjectiveValue());
. }
}
. . .
public void shareSolution(int bestObjectiveValue){
. masterProcess.recover(bestObjectiveValue);
}

.

Wating for Futures

Work Pool

Workers

futureList

Passive Objects (Tasks)

Redistribution event

Distribution event

Results

Future Object

Master

Execution of
atomic task

Figure 2.12: Tasks distribution on workers

The master implements recover to recover results coming from the workers. Each
time a task is assigned to a worker, a future object is created and added to a list of
future objects named futureList. The master waits for all future objects coming from
the workers appearing in its list. A future of a worker designates the calculation result
of its task that the master assigned to it. This is accomplished by listening of any
response (computation result) in the future. The listening is of type wait for any event
made by the method waitForAny(futureList) and is accomplished by waiting for any

Chapter 2: P2PB&B: A P2P MW-based B&B 45

event coming from workers appearing in the list futureList. The event is activated at
each termination of a task processing. The master creates and reallocates a new task
through Problem.

Figure 2.12 does not represent any chronology of events, because all operations are
made in an asynchronous way, i.e., an event of type redistribution can arrive before
other events of type distribution when one of the workers returns back a result before
the master finishes the distribution of all tasks. We can see well on Figure 2.13 an
example of a sequence diagram of the chronology of all task distribution events using
two workers. Operations (1), (2), (7) and (10) are for task distribution. (3) and (4) are
for the sharing of upper bounds between the workers. Note that the upper bound can be
communicated at real-time. (5), (8) and (11) represent delay time of the master waiting
for future objects. (6), (9) and (12) are results coming from the workers. Finally, the
master stops computing when it sends stopComputation in (13).

Future Object 3

Future Object 2

Future Object 4

Future Object 1

Distribute()

ShareSolution()

ReturnResult()

ReturnResult()

Worker1

StopComputation
Gather

Result 1

Result i

Upper Bound 1

Task 3

StartComputation
Distribute()Task 2

2

1

3

6

StartComputation

4

7

9

10

12

13

ShareSolution()

Gather
StopComputation

Upper Bound 2

StartComputation
Distribute()Task 4

ReturnResult()Result 2

StartComputation
Distribute()Task 1

8

5

11

Master Worker2

Figure 2.13: Sequence diagram of tasks distribution

Chapter 2: P2PB&B: A P2P MW-based B&B 46

2.4.3 Group Communications

We have seen previously that communication between different components is very
important for an efficient functioning and workers frequently communicate to ensure
the freshness of the upper bound. The use of classical communication between the
workers, i.e., by sending one message for each worker, is not efficient in this type of
application where the communication cost is very high.

We exploited the typed group communication provided by ProActive and one-way
non blocking and asynchronous invocation methods. workerGroup is created, it is also
an active object and it is a local representant of a set of workers participating in the
computation. When a worker wants to send a message to its colleagues, it passes by
this typed group, which implements the same communication method shareSolution()
implemented on the whole workers. The workerGroup calls this same method on the set
of workers that it represents, using multicast features. When a new solution is found,
few messages are sent. A worker sends only one message to all participants of a typed
group communication.

2.4.4 Management of new connections

The grid resources are often dynamic and volatile; they frequently join and leave the
system. ProActive offers peer to peer framework to discover and to acquire these
resources. To discover these resources, the master implements newWorker method
of P2PMaster which implements nodeCreated interface of ProActive. This interface,
creates a listener which listens for possible peer connections (see Figure 2.14). In
the P2P infrastructure, a P2P daemon is launched on each host participating in the
computation. When a new node is detected, an active node is created there and a
worker is established. The master adds this new worker to the corresponding typed
group communication (workerGroup) through the Resources-Manager. Therefore, this
worker will be able to receive the upper bound value at real-time. On the other hand,
other workers can know about the progress of this new worker and the solutions obtained
by this worker.

Worker

NewArrival Connection request

Destribute ()
StartComputation

ShareSolution()

AskAboutSolutionValue()

Task + P2PGroup
+ Initial upper bound

Current Upper Bound

Initial upper bound

Future object

Select Randomly
one P2PWorker

new WorkerMaster

inform the old group
about the new connection

Figure 2.14: Sequence diagram of new connections

Chapter 2: P2PB&B: A P2P MW-based B&B 47

The workers forming the old group update their group by adding this new worker.
This operation is managed by the Resources-Manager which asks the members of the
old group to add this new worker by remotely calling addNeighbor.

.
P2PWorker workerGroup;
. . .
workerGroup.addNeighbor(newWorker);

2.4.5 Fault Tolerance

The fault tolerance issue is taken into account by both ProActive (middleware-level)
and the P2P MW-based framework (application-level). With ProActive two types of
servers are created: Resource server and Fault tolerance servers.

The resource server returns a free node that can host the recovered active object;
this server can store free nodes by two different ways:

• at deployment time: the user can specify in the deployment descriptor a resource
virtual node. Each node mapped on this virtual node will automatically register
itself as free node at the specified resource server.

• at execution time: the resource server can use an underlying P2P network (see [PROA])
to reclaim free nodes when a hosting node is needed.

Fault tolerance servers are used for checkpointing operations, the localization of
AOs, and failure detection.

Future object (i) Task (i)Destribute ()
StartComputation

Worker 2 Master Worker 1

Heart−Beat

Alive

Heart−Beat

Future object (i)reallocateTask()Task (i)

failure detected

Failure

Figure 2.15: Task reallocation sequence diagram in case of failure.

In our application, the Resources-Manager periodically sends heart-beats to the
workers. If a worker fails, it is removed and its task is recovered and resubmitted
to another safe worker (see Figure 2.15). This operation is done by implementing
reallocateTask of P2PMaster interface. The task is assigned to one or more available
worker(s) and only the first returned result of the same task is taken into account.
Other results of the same task are ignored. This process is performed at the end of the
computation of all tasks.

Chapter 2: P2PB&B: A P2P MW-based B&B 48

Figure 2.16: Grid’5000 French nation-wide grid infrastructure

2.5 Experimentations
P2P-B&B has been experimented on the Flow-Shop scheduling problem (FSP) consid-
ering the total completion time (CMax) as cost function. We considered the Taillard
instances [TAI93]: I1 : ta_20_5_2, I2 : ta_20_5_3, I3 : ta_20_10_1, I4 : ta_20_10_2 and
I5 : ta_20_20_1

1.

2.5.1 Experimental Environment

P2P-B&B has been implemented on top of the ProActive middleware [PROA, BBC+06,
CDCL06]. Recall that ProActive is an open source Java library aiming at simplifying the
programming of multi-threaded, parallel and distributed applications for Grids, multi-
cores systems, clusters and data-centers. It allows concurrent and parallel programming
and offers distributed and asynchronous communication, mobility and a deployment
framework.

The approach has been experimented on Grid’5000 [GRIDa] which is composed of
a set of clusters distributed over 9 sites located in 9 different towns in France (see Fig-
ure 2.16). The different sites are interconnected using a dedicated fiber of the 10Gbps
Renater [RENA] network infrastructure. In our experiments, 6 sites have been involved.
The experimental hardware platform characteristics are presented in Table 2.1. The use
of Grid’5000 is done through the OAR [OAR] reservation system. Once reserved, the

1ta_i_j_k: a Taillard benchmark with i: number of jobs, j: number of machines and k: the instance
number

Chapter 2: P2PB&B: A P2P MW-based B&B 49

Site CPU characteristics Cores
Lille AMD Opteron 285, 2.6 GHz 104

Intel Xeon E5440 QC, 2.83 GHz 368
AMD Opteron 248, 2.2 GHz 106
AMD Opteron 252, 2.6 GHz 40

Lyon AMD Opteron 246, 2.0 GHz 112
AMD Opteron 250, 2.4GHz 158

Bordeaux Intel Xeon EM64T 3GHz 102
AMD Opteron 2218 2.6 GHz 372
AMD Opteron 2218 2.6 GHz 80

Orsay AMD Opteron 246, 2.0 GHz 60
AMD Opteron 246, 2.0 GHz 372

Rennes AMD Opteron 6164 HE, 1.7 Ghz 960
Intel Xeon X5570, 2.93 Ghz 200
Intel Xeon L5420, 2.5 Ghz 512

Intel Xeon 5148 LV, 2.33 Ghz 132
Intel Xeon 5148 LV, 2.33 Ghz 264

Sophia AMD Opteron 246, 2.0 GHz 98
AMD Opteron 275, 2.2 GHz 224
AMD Opteron 2218, 2.6GHz 200
Intel Xeon E5520, 2.26GHz 360

Total 4302

Table 2.1: Experimentation hardware platform

of Depl I1 I2 I3 I4 I5
Proc Time

06 15 03 492 1815 277 2411
20 46 10 409 170 111 2362
50 112 16 277 100 59 2362

100 234 - 194 91 - 2358
200 504 - 160 79 - 2345
300 713 - 158 63 - 2345
600 1949 - 121 64 - 2339

1500 4186 - - - - 2331

Table 2.2: Some obtained deployment and resolution times

machines of the Grid are exclusively owned by the user (dedicated machines). However,
the network is not dedicated, it is shared by the different users of the Grid. Therefore,
up to 1500 grid nodes are involved in the experimentations according to their availabil-
ity.

2.5.2 Experimental Results

The application has been deployed on 6, 20, 100, 200, 300, 600 and 1500 processors. It
was launched in P2P mode where the whole processes run with the lowest priority to
reach one of the P2P Computing characteristics which is the exploitation of idle CPU
cycles.

Table 2.2 shows execution times (in seconds) of the exactly solved instances obtained
using different numbers of processors, and the reached upper bounds for the instance
I5. The total deployment times are showed in the second column.

Chapter 2: P2PB&B: A P2P MW-based B&B 50

First, we notice that the performance raises when the number of processors in-
creases. Indeed, the instance I3 was not solved along 03 hours and 40 minutes on a
single machine. It was solved exactly in 30 minutes and 15 seconds on six machines.
Moreover, it takes only 1 minute 40 seconds using 50 machines (more than 18 times
more efficient than using 6 machines). The only exception is when solving I1, it was
solved three times faster on 6 machines than on 20, and 5 times more efficient than on
50. This can be explained if we take a look at the situation of the solution regarding the
space of solutions. It was found in the 3rd node of the solutions tree, this means that
six machines were sufficient to find the solution and 50 machines take an additional
time to manage tasks and free all workers deployed. However, deployment times in the
table show how this time increases when the number of machines increases. In some
cases this duration is greater than the calculation time itself.

0 5 10 15 20 25 30
2340

2360

2380

2400

2420

2440

2460

2480

2500

Time (min)

C
os

t o
f S

ol
ut

io
ns

 (
C

M
ax

)

Worker1
Worker2
Worker3
Worker4
Worker5
Worker6
Worker7
Worker8
Worker9

Figure 2.17: Solutions costs without enabling real-time direct communication between
workers that succeeded to improve the global upper bound

Second, we notice that the communications were very beneficial. The workers share
the obtained upper bound, they communicate it between them and form a global knowl-
edge base. The workers cooperate between them to find quickly solutions that allow
them to eliminate more branches in their subtrees. With this functionality, no worker
finds a solution less significant than the upper bound or explores a branch with a lower
bound greater than the global upper bound.

In the following, we evaluate the benefit of the direct communication enabled by our
approach. Figure 2.18, respectively Figure 2.17 show the evolution of solutions costs
using real-time direct communication, respectively without using this feature of our
approach. In other words, in Figure 2.18, the workers perform multiple executions of
atomic task and multiple real-time communication, whereas, in Figure 2.17 the workers
perform a single execution of compact task before communicating once.

In the first figure, the curves are crossed between them and no worker knows the
value of the other workers’ upper bounds. Each worker only uses its local knowledge base
and ignores new knowledge generated by the other workers. For example, Worker4 has

Chapter 2: P2PB&B: A P2P MW-based B&B 51

0 5 10 15 20 25 30 35 40 45 50
1550

1600

1650

1700

1750

1800

1850

Time (/30min)

C
os

t o
f S

ol
ut

io
ns

 (
C

M
ax

)

Worker1
Worker2
Worker3
Worker4
Worker5

Figure 2.18: Solutions costs with communication between workers that succeeded to
improve the global upper bound

reached a cost equal to 2416 at only the second minute. If this solution is communicated
to other workers, all less interesting solutions situated in the downstream in comparison
with the current value, would not be explored. The same remark is true for Worker6
when it finds the solution with the cost 2379 at the seventh minute.

In Figure 2.18, the curve of solutions found by the whole of the workers is decreasing.
This means that the workers benefit from the multiple execution of atomic tasks and
the multiple realtime communication using typed group communication provided by
ProActive. These workers, after they know new solutions values, they do not search in
this space again.

2.6 Conclusion
The use of exact methods for the resolution of COPs, such as B&B which is one of
the most known methods is beneficial. However, their use on applications of industrial
size is only possible by the use of a great computational power. Large scale parallelism
based on the use of Grid Computing is shown today as a potential tool which offers
such power. Several factors must be taken into account to develop MW grid-based
methods to take benefit from direct communication and for a better exploitation of the
computing power: (1) A study and a good choice of a suitable parallelism model; (2) A
good management of the knowledge generated by these algorithms; (3) An exploitation
of all the tools that the grid-middleware offers on the control of the computing network.

In this chapter, we proposed a P2P MW-based B&B framework (P2P-B&B) aiming
at facilitating the development of grid-based B&Bs and hiding the complexity of the
grid to the users. The scalability is achieved by reducing the task request frequency.
The task request frequency is reduced by performing multiple executions of an atomic

Chapter 2: P2PB&B: A P2P MW-based B&B 52

task and doing multiple communications rather than single execution of a compact
coarse-grained task before doing a unique communication. This enables direct commu-
nication between workers allowing them to share their upper bounds and to perform
other collaboration tasks alleviating the master process.

The algorithm has been implemented on top of ProActive to take benefit from its
numerous features especially related to deployment and communication. We used the
typed group communications and one-way asynchronous invocation methods for the
knowledge sharing by real-time direct communication between the workers. We also
used the listeners in order to take into account new arrivals. Finally, we used the futures
related to objects for the collection of the computation results.

The performance evaluation of our contributions is performed on Grid’5000. These
experiments showed the interest of the collaborative work and demonstrated the benefit
of the real-time direct communication between workers. However, this approach has
shown its limits in terms of deployment time cost. Indeed, in some cases the deployment
takes more than the computation time.

Chapter 3

H-B&B: A Hierarchical
Master/Worker-based B&B
Algorithm

3.1 Introduction
In the first chapter, we introduced principles about parallel B&B, and we also identified
requirements that a B&B has to fulfill when considering large scale environments. As
mentioned, the scalability is one of the major issues to deal with when developing grid-
based B&Bs. In the previous chapter, we have proposed a framework which facilitates
the developing grid-based B&B using a P2P MW-based paradigm allowing direct com-
munication between the workers. However, we have seen that P2P-B&B is still limited
in terms of deployment when facing larger number amounts of grid resources.

We have seen before in Chapter 1 the proposed approaches in the literature to cir-
cumvent the limits of MW-based B&Bs. Let us recall that these techniques fall into
two categories. The first category includes techniques maintaining the use of the MW
scheme and modifying the used resolution methods such as in [MMT07a, MMT07b,
EPH00] adapting them to the large scale environment. In the second class, modifica-
tions are brought to the main scheme of the MW paradigm [ANF03, AFO06, GSDB09,
BDLP08, DVC+09] based on the Hierarchical Master-Worker paradigm (HMW). In
this paradigm, there are multiple masters, each of them supervises multiple workers.
Therefore, the hierarchical organization allows pushing far the limits of the MW to
support more worker processes.

However, most of the proposed HMW-B&B approaches are static and only com-
posed of one level of masters each of them manages a set of workers. They still have a
limited scalability in large scale environments of thousands of processors such as com-
putational grids. In addition, they handle tasks of fixed grain sizes and do not evolve
over the time to deal with the dynamic nature of grids.

In this chapter, we propose a new HMW-based B&B (H-B&B) aiming at improving

53

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 54

the scalability of the conventional MW-based B&B paradigm eliminating the bottle-
necks created on the central master process. H-B&B is based on the P2P-B&B frame-
work. Unlike the literature approaches, H-B&B is fully dynamic as it is composed of
several levels of masters, and evolves over time according to the dynamic acquisition of
new computing nodes. This work has been published in [BMT12, BMT11b].

This chapter is organized as follows: In Section 2, we present AHMW a framework
on which the hierarchical B&B we developed H-B&B is based on. The architecture,
components of the framework and its working, work management, and the adaptive
feature are then detailed. Section 3 presents the implementation of H-B&B using the
AHMW framework. In this section the exploration strategies, load balancing, and
work management are detailed. In Section 4, we show how to implement it on top of
ProActive. The performance evaluation is presented in Section 5. Finally, we conclude
this chapter in Section 6.

3.2 AHMW: an Adaptive HMW Framework
The AHMW framework developed in this chapter is based on the previously proposed
framework P2P-B&B [BMT09] performing direct communication between processes.
Before detailing the architecture and working of AHMW some concepts used throughout
this paper are defined in the following.

Super-Master: a super-master is the root process of the system which plays the role
of a master in the classic MW paradigm. There is only one instance in the system.

Master: a master is a process which has at least one child. Its children can be
masters and/or workers.

Worker: a worker is a process which has no children. It is similar to a worker in a
simple MW paradigm but has other roles than simply executing tasks.

Child: a child of a master or the super-master can be a master or a worker.
Parent: a parent of a master or a worker process is the process which creates and

manages it, it can be the super-master or another master.
Colleagues: colleagues of a process are all its neighbors except its parent and its

children. A process can have at a time masters and workers as colleagues.

3.2.1 Processes of the framework

AHMW is composed of three processes with different roles: super-master, master and
worker. In the following, we survey each of them and explain their functioning, while
details are presented in the next section.

Super-Master: The super-master is the unique entry of the system and it is the
top master but it is not the unique responsible of managing the processes of the system.
Its main role is to acquire computing resources from the computational grid, to decom-
pose the initial problem to be solved, to distribute obtained sub-tasks among masters
and/or workers it manages and recovers the results, to reassign tasks of failed workers,

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 55

Workers

Masters Super Master

groups *sub−MWs

level 1

level N

level 2

Figure 3.1: Hierarchical organization of AHMW

and it is the initiator of the construction of the entire hierarchy.

Master: Master processes are intermediate processes between leaves (workers) and
the root of the hierarchy (super-master). Unlike all proposed hierarchical systems, it
has no restriction in its role. Indeed, a master can do all the features the super-master
can do except the acquisition of computing resources. In addition, it acquires tasks from
its parent, participates to the execution of tasks, forwards all upcoming and outgoing
communications (to/from the internal group of processes it manages), and detects failed
processes among its children.

Worker: A worker in AHMW is not a simple worker as in MW paradigm. In fact, it
has other roles than the calculation of the assigned task. In addition, it participates in
the building of the hierarchy and the decomposition of the assigned task preparing itself
to change its behavior to become a master when it acquires sufficient computational
nodes.

3.2.2 Hierarchical organization and architecture of AHMW

We have seen previously in chapter 2 that the P2P-B&B is composed essentially of two
entities a master and a worker. Their roles and their components are predefined. Roles
of AHMW processes are either defined by their components and the components that
are running. Before we detail the general architecture of AHMW and summarize the
composition and the functioning of the different processes, we present its hierarchical
organization.

3.2.2.1 Hierarchical organization

AHMW is a multi-layer HMW composed of several sub-MW (sub-MW) systems (see
Figure 3.1). Each sub-MW contains the same processes as the simple MW where each

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 56

master manages a set of workers. The whole sub-MWs are organized in a hierarchy with
several levels of masters. Each sub-MW of the system is based on the P2PBB frame-
work [BMT09] where a master manages a dynamic group of communicating workers.
Hence, the hierarchy generated by AHMW is multi-layered, fully dynamic and evolves
over time according to the dynamic acquisition of new computing nodes. In the hierar-
chy, the workers are represented by the leaves and the masters by the inner nodes. Let
us recall that a master do not only manages workers but also other masters of a lower
level. Moreover, a master can have at a time masters and workers in its descendants.

Width and depth of the hierarchy are both dynamic. They depend on the number
of acquired computing nodes and the size of the groups which form a sub-MW. These
two parameters affect the expected outcome of the system. The width determines the
number of tasks that can be processed in parallel. When the width grows, the number of
parallel tasks grows and vice versa. The depth determines the granularity of processed
tasks. When the hierarchy is deep, the system generates more and more fine-grained
tasks, therefore easy to process. The ideal configuration is to have a deep and large
hierarchy but two important parameters must be taken into account: the capacity of
masters in choosing the size of groups and the minimum authorized granularity of tasks
to compute. For the first parameter, a large sized group of workers, overload their
master then degrade the performance of the whole system. On the other hand, too
fine-grained tasks lead masters to spend much more time in distribution of tasks which
degrades considerably the overall performance.

3.2.2.2 Architecture and components of AHMW

Figure 3.2 shows the general architecture of the framework. The super-master process is
similar to the master process in the P2P-B&B framework. It is composed of one thread
(Work-Manager) and three active objects (Resources-Manager, Worker-Supervisor, and
Statistician). Their roles are also similar to those in P2P-B&B (see Section 2.2.3 in
Chapter 2).

The worker and the master processes in AHMW are composed of the same compo-
nents and their roles are defined by the components that are running.

The worker is composed of four threads (Task-Provider, Task-Processor, Work-
Manager, and Statistician) and two Active Objects (Resources-Manager and Worker-
Supervisor). The Task-Processor thread allows to execute the task assigned to the
current process (it can be a worker or a master). Task-Provider provides the current
process in terms of tasks by asking the master process. It works in mutual exclusion
with the Task-Processor, it wakes up the Task-Processor when a new task is acquired
and then sleeps waiting for task request event. The Task-Processor in its part, wakes
up the Task-Provider after it finishes its task and then sleeps waiting for new tasks.
The Statistician thread periodically sends statistics to the super-master process. It
interacts with the local threads (Task-Processor and Task-Provider) and with the mas-
ter’s Statistician. It collects statistics concerning the state of the current process (in
execution or waiting state) and the task work progress and sends them to the master.
The Work-Manager thread serves when the current process plays the role of master
to manage the work pool and to serve the task requests coming from the processes it

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 57

D
ep

lo
ym

en
t

Failed workers

H
eartbeats

Task request

D
ep

lo
ym

en
t

H
ea

rt
be

at
s

T
asks

T
as

k
re

qu
es

t

St
at

is
ti

cs

Task Request

Task

Work progress

Deployed nodes

workers
Failed

Task

Direct Communication

E
ff

ic
ie

nc
y

Nodes

Computing

Grid Infrastructure

Local work progress

Worker − Master

Manager
Work

Manager
Resources

Statistician

Processor

Statistician

Task

Resources

Manager

Task
Provider

Work
Manager

Super−Master

Supervisor
Worker

Supervisor
Worker

Figure 3.2: Architecture of AHMW

manages.

The Resources-Manager of a master serves to manage the computing resources. Un-
like the super-master’s Resources-Manager which acquires free computing nodes from
the computational pool (grid infrastructure), its role is to only deploy the nodes re-
ceived from the master at the upper level and to organize the deployed processes into
groups according to the used strategy. The Worker-Supervisor allows a master process
to detect any failure or disconnection among the processes it supervises. It sends peri-
odically heartbeats to the processes. If a process does not respond then it is marked as
failed. Finally, the Statistician allows to recover and report statistics during the exe-
cution of the framework such as the processors load, efficiency, work progress, number
of launched and failed workers, communication load, etc.

These threads are not running all the time they are launched if necessary according

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 58

Component Worker Worker and Master Master
Task-Processor X X ×
Task-Provider X X X
Work-Manager × X X
Resources-Manager × X X
Worker-Supervisor × X X
Statistician X X X

Table 3.1: Process roles according to the launched components

to the role of the process. The same for the Active Objects, they are only created when
the process must play the role of master. In the following we present how a process in
AHMW switches from a role to another.

3.2.2.3 Adaptive feature of AHMW

The interest of AHMW lies in the flexibility of managing different types of processes.
Indeed, the role of a node in the hierarchy is not predefined but it is defined in a dynamic
way. Initially, any newly created node behaves as a worker but it changes its behavior
and becomes a master as soon as it acquires computational nodes. Its colleagues will
always consider it as a simple worker. A worker newly converted to a master, has the
choice to terminate its task or to suspend its work and reassign its task to another
worker chosen from its descendants depending on its load. The flexibility in behavior
is also valuable for a master. Indeed, a master becomes a worker when it looses all its
computing nodes.

From implementation point of view, the behavior of a process is defined by the
function it executes. Each process deployed on a computational node launches the two
threads Task-Provider which provides it in terms of tasks and Task-Processor which
executes the current task. Therefore, it behaves as a worker.

When a worker receives computational nodes from its master, it creates the two
Active Objects (Resources-Manager and Worker-Supervisor) to deploy, manage and
supervise the processes it creates. It also launches the Work-Manager thread to manage
the work pool and to serve the requests of the workers. At this time, the process changes
its behavior and plays the role of a master and a worker at a time, i.e., it executes its
task and manages and serves its children. During the execution, if it is overloaded,
i.e., it receives a huge amount of task requests, it gives up to the role of worker and
keeps only the role of master. The different roles of a process according to the launched
components are summarized in Table 3.1.

3.2.2.4 Construction of the hierarchy

Initiated by the super-master, the construction of the hierarchy is performed by the
collaboration of masters and workers of the different sub-MWs. It is built gradually as
and with the arrival of computational resources in the grid through the super-master.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 59

000 001

00 01 02 10 11 12

0

20 21 22

220 221201200111110

21

Figure 3.3: Identifiers of AHMW processes

Each time a computational node joins the Grid it is integrated by the super-master
as a worker if the group size threshold is not achieved. Otherwise, the computational
node is redirected to one of its children which adapts its role to become a master with
the new node as a first worker. Each master (and worker) does the same until the entire
hierarchy is built.

Each process in the system has a unique identifier which identifies it during its life
time. The identifier represents its serial number associated to it at its creation and that
of the sub-MW it belongs to (see Figure 3.3). A sub-MW is identified by its master.
So the identifier of a process is its serial number concatenated with serial numbers of
its ascendance. Let l be the level of the current process, pik the ith ascendant of the
process pk, and C(pi) the identifier of the process pi in the sub-MW it belongs to. The
identifier of a process pk is obtained as follows: Ik =

∪l
i=0 C(pik) ∪ C(pk).

The dispatching of nodes is done according to a policy which maintains the mean
degree1 of the entire tree built by the hierarchy. Maintaining the same degree of the
tree during the lifetime of the system is crucial. When the hierarchy maintains the
same degree, a balanced tree is obtained allowing to preserve the same load in all parts
of the tree as well as it permits to handle a specific granularity of tasks.

3.2.3 Working and work management

3.2.3.1 Task management

AHMW is especially dedicated to problems that can be solved by the divide and con-
quer paradigm. This paradigm recursively breaks down a problem into two or more
subproblems of the same type. In combinatorial optimization, the Branch and X al-
gorithms dynamically spawn new tasks. They perform recursive decompositions of the

1The degree of a node is the number of its sibling nodes. It is also the size of each group in the
hierarchy.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 60

initial problem into a set of N smaller subproblems and then solve each of them inde-
pendently. Population-based heuristics are another type of algorithms in which several
decompositions at different levels can be obtained. For example, in Genetic Algorithms,
a population of individuals can be decomposed into several sub-populations and then
each sub-population can evolve independently.

In AHMW, initially the super-master decomposes the initial task into multiple sub-
tasks. After that, each master getting a new task from its parent, decomposes it into
smaller sub-tasks and saves them into its work pool. In the following, we present the
different mechanisms related to the task decomposition and distribution, the commu-
nication between the different processes and the termination detection.

3.2.3.2 Dynamic decomposition and distribution of tasks

In a classical MW, the decomposition of tasks is centralized, it is made by the central
master process. This causes additional computation to the master which has also in
charge the distribution of tasks, recovery of results, communication, and management
of the different workers. In AHMW, we propose a distributed decomposition. In fact, it
is done by both the super-master and the different masters and workers at the different
levels of the hierarchy. Many advantages can be noticed regarding this decomposition:

• The super-master gains in terms of calculation time and can do other tasks such
as the management of the hierarchy, result recovery, statistics, etc.

• In a centralized MW, the decomposition is sequential whereas in AHMW it is
done in parallel. It reduces considerably the decomposition time, thus the idle
time of workers.

• It allows rapidly reaching fine-grained tasks, which is not easy to obtain with a
centralized decomposition. The same granularity can be reached by the central-
ized master but only after a long execution time which blocks workers waiting for
tasks.

The decentralized decomposition process allows masters and workers of AHMW to
handle tasks of different grain sizes. Each sub-MW at each level handles its own gran-
ularity because of the dynamic decomposition done by the masters at each level. In
fact, each group of masters of a given level handles a task granularity different from
other groups that are at a different level (higher or lower level). A master decomposes
a task with granularity g and obtains a set of tasks with granularity g-k, k is the level
of the decomposition used by the master. As said previously, the granularity of gener-
ated tasks depends on the size of groups. The smaller the groups are, the deeper the
hierarchy is, thus finer tasks at the level of final workers are generated.

Each master has its own work pool which contains the tasks to be performed. This
pool is obtained by the decomposition of the task received from its parent. When a
master receives a task request from one of its children, it assigns one task from the
work pool and then updates the list of assigned tasks which is a mapping between the
assigned task and the worker assigned to. If the master has no more tasks in its pool,
it assigns an empty task, that will force the child to block waiting for a new task.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 61

A master that has at least one task, either received from its parent or obtained after
decomposition of the local task, wakes up all blocked children waiting for tasks.

3.2.3.3 Communication

Super−Master

Worker

Master

Vertical Communication

Direct Communication to super−master

Horizontal Communication

Figure 3.4: Communication types

Masters and workers of the same sub-MW perform direct communications between
them without flowing through an intermediary. Workers inside the same sub-MW are
visible to each other. Two workers of two different sub-MWs are not visible to each
other, so their communication flows through other processes. Two types of communica-
tion are considered: horizontal and vertical (see Figure 3.4). Horizontal communication
occurs between colleagues (1-to-N communication). Vertical communication occurs be-
tween a parent and its children in both directions: 1-to-N for top-down communication
and 1-to-1 for down-top ones. When a worker communicates information to another
worker, it uses horizontal and vertical communication throwing masters of intermediate
sub-MWs.

Horizontal communication

Direct communication to super−master

Vertical communication

lo
g

 (
n

)
k

lo
g

 (
n

)
−

1
k

Figure 3.5: Broadcasting a solution

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 62

stopComputation()

task

startComputation()

taskRequest()

task

taskRequest()

taskRequest()

task

taskRequest()

task

decompose the
pending task

pending task

workPool empty

Master Worker1 Worker2 Worker3

Figure 3.6: Load balancing sequence diagram.

In combinatorial optimization, broadcast communication is often needed. For in-
stance, in B&B algorithms, global 1-to-N communications are needed. A worker that
finds a new upper bound broadcasts it to the others. To perform a broadcast in AHMW,
a worker needs to make one horizontal 1-to-N communication to its colleagues, one ver-
tical 1-to-N communication to its children and one vertical 1-to-1 communication to
inform its parent. Parent, colleagues and children do the same until the new global
solution reaches all the processes in the hierarchy. In order to avoid the loss of the
global solution along the path to the super-master, the worker which finds a new global
solution makes one direct 1-to-1 communication with the super-master to share the
information with it.

In a balanced hierarchy, a message from one worker (in a leaf) takes logk(n) hops
to reach the super-master, k being the size of each group and n the number of com-
putational nodes in the hierarchy. Therefore, a message between two farthest workers2

takes at most 2× logk(n)− 1 hops (see Figure 3.5).

3.2.3.4 Load Balancing

The heterogeneity and dynamic nature of grid resources and the irregularity of the B&B
tree make variable the exploration time of subproblems. This irregularity may affect
the overall performance of the algorithm. Indeed, some workers take a long time to
explore their subproblems and then block other workers waiting for their termination.
To deal with this issue, idle workers are involved in the exploration of subproblems of

2Farthest workers are workers belonging to the descendance of two distinct masters localized in the
first level of the hierarchy

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 63

root Master

no work

10Worker

WR

SP

WR

11Worker

sub−problem (SP)

01Worker
0Master

00Worker

work request (WR) work request (WR)

sub−problem (SP)

SPSP
WR

no work
WR

WR

SP

WRWR

SP

WR

SP

WR

no work no work WR

WR

no work
no work

Master
1

sub−MW sub−MW0 1

Figure 3.7: Termination detection sequence diagram

other pending workers. The subproblems of the pending workers are decomposed by
the master into smaller ones and then distributed among the idle processes (see the
sequence diagram in Figure 3.6). The master holds a list of unexplored subproblems
LUS and a list of pending processes LPP in charge of these subproblems. When the
master receives work request from an idle worker and its work pool is empty, it picks
one subproblem from LUS and branches it into smaller subproblems. The obtained
subproblems are dispatched among the idle workers. The pending worker is removed
from LPP and when it is idle again, it is considered as new idle worker.

3.2.3.5 Termination detection

In massively parallel environments, the termination detection of applications is crucial
and must be taken into account since several parameters make it hard to manage such
as failures, the dynamic nature of B&B trees, and the absence of global information
of the work progress. In our approach, we distinguish two types of termination: local
and global ones. The local termination is trivial, it is detected when the local work
pool is empty and the upper process does not have any more tasks. Let B be the set
of launched sub-MW processes, b a sub-MW process, p a master, Pool(p) the work
pool of p, and A(p) the list of assigned subproblems of p. The termination detection
is performed using the following condition: ∀b ∈ B, ∀p ∈ b, Pool(p) = ϕ ∧ A(p) = ϕ.
The verification of such condition is impossible because we have no global view of the
hierarchy, so the termination cannot be detected because each master has a local (thus
partial) view of the work progress. Each process only knows the state of its own progress
and that of its children. Therefore, each process can detect its own termination when
Pool(p) = ϕ ∧ A(p) = ϕ. Based on such statement, the termination of a group of
processes causes the termination of their parent and the termination of each master p

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 64

B&B Branching Processes

level 2

level 0

level 1

B&B Exploring Processes

P
u

re
 B

ra
n

ch
in

g
C

o
m

p
le

te
 E

xp
lo

ra
tio

n

inner Masters

root Master

Workers (Leaves)

level n

Processes
sub−B&B

groups

Figure 3.8: General design of H-B&B

causes the termination of the sub-B&B b it represents, and so on until the root of the
hierarchy is reached (see the sequence diagram in Figure 3.7).

The figure presents a HMW subdivided hierarchically into two sub-MWs organized
into groups of 2 processes. A root master manages two masters, each of which manages
two workers. The termination of sub-MW0 is detected when Master0 has an empty
work pool and receives no work from the root master. Whereas, the global termination
is detected when the work pool of the root master is empty and it receives the last
unsatisfied work request from its children Master1.

3.3 H-B&B: An AHMW-based parallel B&B
H-B&B is a parallel B&B based on the HMW paradigm using AHMW. It aims at deal-
ing with the scalability issue and performance degradation of the MW-based B&B in
large scale environments. According to the AHMW framework, the proposed approach
is composed of several sub-B&B algorithms. They are launched in parallel and act in-
dependently on different sub-trees so that they are organized hierarchically in different
levels. At the level of each sub-B&B, a MW paradigm is built where one master man-
ages several B&B workers. Therefore, two types of processes are considered: Masters
at the root and the inner nodes of the hierarchy and workers at the level of the leaves.
As mentioned before, AHMW is based on P2P-B&B therefore, H-B&B is composed of
communicating groups of MW-based sub-B&B processes (see Figure 3.8).

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 65

work pools

����

exploring

processes

parallel branching

sub−problems
active

sub−trees
explored

Branching

processes

Figure 3.9: Search tree subdivision. The search tree is subdivided hierarchically into
several sub-trees and each sub-tree is assigned to one sub-B&B process.

H-B&B performs an initial branching on the initial problem to eliminate a great
number of branches at the top of the search tree. Therefore, the overall performance
is improved with the early elimination of subproblems that do not lead to the best
solution. This work is done once by the root master. The inner masters perform a
branching in order to decrease the size of subproblems until reaching sufficiently fine-
grained subproblems which can be explored sequentially by workers at the leaves of the
hierarchy. subproblems are handled by giving the priority to the most promising ones
according to the value of their lower-bounds.

3.3.1 Search Tree Subdivision

The search tree is subdivided hierarchically into several sub-trees (see Figure 3.9), each
sub-tree is assigned to a sub-B&B process according to the available computing nodes.
According to this design, each sub-B&B acts on its own subproblem in parallel. In addi-
tion to the parallel exploration of sub-trees, H-B&B also performs a parallel branching.
Indeed, the inner nodes of the hierarchy perform a parallel branching on subproblems
and the leaves perform a parallel exploration of the obtained subproblems. Therefore,
two types of processes are distinguished: Branching processes (BP), hosted by the root
and the inner masters, and exploring processes (EP), hosted by the workers at the leaves.

Considering the parallel exploration of sub-trees and the parallel branching, H-B&B
overlaps type 1 and type 2 of the Gendron et al. classification according to the degree
of parallelism. In the synthesis presented in Chapter 1, the algorithm belongs to both
the first and the second categories. It belongs to the first category since the search tree

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 66

is built in parallel where each sub-B&B process handles its own subproblem indepen-
dently, and it belongs to the second category since the branching operation is executed
in parallel on the different inner nodes of H-B&B. Starting from the original problem,
the branching processes perform independently recursive branching on subproblems in
order to obtain smaller ones that can be explored in a reasonable time by the exploring
processes. Considering the distributed branching, the branching time is reduced thus
it minimizes the idle time of workers waiting for work.

Each master has its own local work pool represented by a list of active subproblems
and multiple work pools are considered, thus a collegial strategy is used. During the
search, the local pool evolves continuously and when it is empty, the process sends
a work request to the master at the upper level. A master receiving such a request
consults its local work pool and asks its upper level if its work pool is empty. It also
performs an additional branching if the available subproblems do not correspond to the
requested work unit size.

3.3.2 Exploration strategies

To adapt the B&B algorithm to AHMW, three different exploration strategies are
adopted according to the type of the process performing the exploration and to its
role: breadth-first search by the super-master, smart best-first search (a new exploration
strategy introduced in this work) by masters, and best-first search by workers. A smart
best-first search is similar to the best-first search exploration but without reaching
leaves of the subtree. The role of the super-master and masters is to decompose tasks
and spawn new smaller ones, whereas the role of workers is to provide solutions. In
H-B&B, the masters generate and handle different grain sizes. The granularity of a
task is defined as the size of the subproblem. In other words, it is given by the level of
the explored subtree.

3.3.2.1 Breadth Search (BS)

The root master uses the breadth-first selection strategy (see Figure 3.10). It explores
k levels of the original search tree and generates at most n =

∏k−1
i=0 (N− i) subproblems

assigned to the different branching processes of the lower level. Subtrees are explored by
giving priority to the most promising ones according to the value of their lower bound.
The root master obtains as a result a list of sorted subproblems which are assigned to
its children according to their order.

3.3.2.2 Smart Best-First Search (SBFS)

We have defined a new exploration strategy appropriate to an online branching. This
strategy is not greedy in terms of execution time which makes it rapid and appropriate
to generate a great number of fine-grained subproblems in a short time, thus improving
the overall performance.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 67

original problem (size = N)

k

work pool

size = N − 1

N − k

sub−problems

Figure 3.10: Breadth Search exploration. The root master explores the tree by levels.

work pool

different levels
sub−problems of

different grains

original sub−problem

d
e

p
th

1 3 245

Branching

Exploration order

Figure 3.11: Smart Best-First Search. Masters explore subtrees partially and the ob-
tained subproblems are considered as work pools.

The role of the masters is to perform branching on subtrees. Therefore, the search
algorithm is adapted to this role. Indeed, the masters do not perform a complete ex-
ploration of their subtrees but only a partial exploration using SBFS (see Figure 3.11).
They explore subtrees until the threshold of the considered granularity is reached. Then,
the obtained list of subproblems is considered as the local work pool. We define the
granularity of a subproblem as the absolute depth of the handled subtree. A work pool
contains subproblems located at different levels of the subtree. Moreover, according to
the level in the subtree, the subproblems have different grain sizes. As workers of the
same sub-B&B handle the same grain size, the master makes a dynamic on-demand
branching to get the required granularity when it is necessary.

Masters perform a multilevel branching and generate subproblems d times smaller
than the current subproblem, d being the depth of the explored subtree. An SBFS of
degree d is an exploration algorithm allowing to explore d levels in the subtree. The
used degree differs from a master level to another in order to balance the work load of
masters. The SBFS degree must be chosen dynamically in order to obtain, sufficiently
small subproblems at the leaves of the hierarchy. Moreover, it must be fixed in such a
way to avoid too coarse/fine-grained tasks. Handling coarse-grained tasks can penalize
some workers belonging to the same sub-B&B when one or more worker(s) take(s) much

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 68

12 4 3

132

Solutions

Exploration
order

de
pt

h

Figure 3.12: Best-First Search. The workers explore nodes according to the most
promising ones.

more execution time than others. Whereas, fine-grained tasks can create bottlenecks
at the level of the masters when the workers take a short time to explore their tasks.

Masters do not perform branching indefinitely to avoid having too small subprob-
lems. When the minimum size of problems is achieved, the masters do not perform any
more branching. They act like switches and forward subproblems from their parent to
their children. The minimum size of problems is variable from a problem to another
one and from an instance of the same problem to another one according to their search
space landscape.

Let d be the depth of the subtree explored by a master, l the level of the current
master in the hierarchy of H-B&B, and k the number of explored levels by the super-
master in the initial search tree, the granularity of tasks (size of subproblems) handled
by a master mg is fixed as mg = N − (k + (l − 1) × d) and the granularity of tasks
assigned to its children is fixed as follows: wg = N − (k+ l×d). Each master generates
at most n =

∑d−1
i=0 (mg − i)− d subproblems of different grain sizes (from wg to mg).

3.3.2.3 Best-First Search (BFS)

Since the role of workers is a complete exploration of their subtrees, they perform a best-
first search to reach more quickly the solutions contained in the leaves of the subtrees.
A worker which finds a solution better than the best solution found so far broadcasts it
as soon as possible to the whole hierarchy using the policy described in Section 3.2.3.3.
The priority is also given to the most promising branch according to its lower bound
(see Figure 3.12).

The subproblems are smaller as the processes exploring them are closer to the leaves
of the hierarchy. Therefore, the execution time (their total exploration time) is shorter.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 69

That makes masters in the bottom of the hierarchy receiving more work requests be-
cause their children take a short time to explore their subproblems. Therefore, these
masters become rapidly overloaded compared to those at the upper levels which are
idle. To overcome this drawback, the number of work requests must be balanced for
all the masters. Masters at the upper levels must generate more subproblems than
their children. In order to obtain better performance in terms of the frequency of work
request the SBFS degree must be increased for the upper masters and decreased for the
low-level ones. That enforces upper masters to have work pools greater than the lower
ones. Therefore, the work request frequency increases at the level of upper masters and
decreases at the level of the low-level masters.

3.4 Hierarchical Deployment Using ProActive
Deploying efficiently a large number of processes in large scale environments is a great
challenge. Let us remember that in the P2P-B&B framework, the deployment task is
performed by the unique Resources-Manager. In AHMW, therefore in H-B&B, every
master has its own Resources-Manager in order to decentralize the deployment process
and involve the whole processes in this process. Each master is responsible on the
deployment of the current master’s children. Therefore, the deployment process is not
restricted to the Resources-Manager of the super-master, but rather performed collab-
oratively by the different Resources-Manager(s) of the different masters. Using this
strategy, a large number of nodes can be deployed in a reasonable time. If we assume
that the deployment of one process takes x seconds, the deployment of n processes takes
x×n seconds using the traditional M/W paradigm. Using hierarchical deployment en-
sured by H-B&B, the deployment takes only k×x×logk(n), k is the size of a group in one
sub-M/W B&B. That is to say whatever the size of the computational pool, the whole
nodes can be deployed in just few seconds. Let us assume that one node is deployed
in 2 seconds. Therefore, using H-B&B with sub-MWs organized into groups of 10, the
deployment of 1000.000 (1 million) nodes takes only 10×2× log10(1000.000) = 120 sec.
However, it takes 2× 1000.000 = 2000.000 sec ≃ 23 days using the MW paradigm.

In computational grids, the computing nodes are organized into geographically dis-
tributed sites implying a huge communication cost. Using ProActive deployment fea-
tures the super-master’s Resources-Manager implements deployNodes() method to pro-
vide the application by virtual nodes (VNs) that correspond to JVMs which contain
active objects. To adapt the groups to the physical organization of the grid and to
minimize the intra-group communication cost, the super-master’s Resources-Manager
introduces a new method. Indeed, deploymentAccordingToSites() handles the xmlDe-
scriptor file and extracts the different sites the nodes belong to. After that, the first
level of masters are deployed and organized according to the existing sites (see Fig-
ure 3.13). However, organizing the groups considering only the sites can penalizes the
system performance because the same site can contain a large number of computational
nodes inducing to the creation of bottlenecks. Unlike in [CBCM07] and in [DUGS06]
where the unique criterion according to the groups are formed is the physical localiza-
tion of the nodes on the clusters, in our approach, the groups are formed according

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 70

Workers

Groups Communication

Masters

Clusters

Hosts

Distinct

Site1 Site2 Site3

Masters of the first level

Group size = 3

JVMs on

(Active Objects)

(Active Objects)

Figure 3.13: Deployment according to the localization of grid nodes.

to both their physical localization on the different sites and the maximum authorized
group size. Indeed, when the maximum group size is reached, the Resources-Manager
starts dispatching the nodes among the already deployed masters so that the formed
hierarchy remains balanced. Accordingly, the processes belonging to the same group
are deployed on the same grid site except for the first level of masters which contains
masters deployed on different sites.

From the point of view of the user, he/she only has to define the list of nodes through
the xmlDescriptor file and all the details about the grid infrastructure and the groups
organization are hidden.

3.5 Experiments
To validate our contribution, H-B&B has been experimented on the Flow-Shop schedul-
ing problem (FSP).

H-B&B has been experimented on Grid’5000 which is composed of a set of clusters
distributed over 9 sites located in 9 different towns in France. The use of Grid’5000 is
done through the OAR [OAR] reservation system. Once reserved, the machines of the
Grid are exclusively owned by the user (dedicated machines). However, the network is
not dedicated, it is shared by the different users of the Grid. Therefore, up to 1600 grid
nodes are involved in the experimentations according to their availability.

In the following, we experimentally evaluate the ability of H-B&B to deal with the

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 71

large scale issue of grids. Indeed, we evaluate the impact of the size of the computational
pool on the H-B&B deployment CPU time cost. In addition, we evaluate the benefit
of the adaptive feature of the masters on the performance of H-B&B. We also evaluate
the ability of our approach to minimize bottlenecks. Finally, we evaluate the impact
of the dynamic distributed decomposition on the improvement of the execution times
in large scale environment. The performance of H-B&B is compared to single-level
HMW-based B&B (1-H-B&B) and MW-based B&B (MW-B&B) approaches. The
1-H-B&B is developed according to the characteristics of the one developed by Di-
Costanzo et al. [CBCM07]. Indeed, a single Main-Master manages a set of sub-masters
localized on the different sites of the grid, and each of them manages a set of workers
belonging to the same site.

3.5.1 Study of the scalability: H-B&B vs. 1-H-B&B and MW-

B&B

Deploying efficiently distributed applications in large scale environments is a great
challenge. The deployment cost includes: the initial launching of H-B&B masters and
workers on the grid infrastructure, the construction of the hierarchy, and the distribu-
tion of tasks among workers. Each site of Grid’5000 is composed of at least a frontend
machine (from which the user interacts with the Grid), an administration machine (for
system services like NFS) and a pool of computational processor nodes. Proactive is
installed on the frontend of each site involved in the experiment. It is then used to de-
ploy locally (using NFS) the code of our H-B&B framework on the different processor
nodes involved in the experiment and located in its site.

Figure 3.15 shows time taken to deploy a number of grid nodes by a simple MW-
B&B, by a single level HMW approach (1-H-B&B) and by H-B&B using the group sizes
(10, 50, and 100). To obtain more representative results, 10 runs are performed for each
approach and the average values and the confidence intervals are computed. The figure
shows that the two hierarchical approaches (H-B&B and 1-H-B&B) are much faster
than MW-B&B in terms of deployment time and H-B&B (using different group sizes)
is clearly more efficient than both the MW-B&B and the 1-H-B&B approaches. For
example, H-B&B deploys 1500 grid nodes in only 70 seconds, whereas 1-H-B&B deploys
them in 900 seconds and MW-B&B deploys them in 1700 seconds. 1-H-B&B gives an
acceptable deployment time up to 600 nodes but the number of deployed nodes over
time degrades beyond 600 nodes. MW-B&B gives the worst performance in terms of
deployment times where the number of deployed nodes decreases in time. This major
improvement can be explained by the distribution of the deployment load (launching
nodes, decomposition of tasks, and their distribution) among the whole masters in the
different levels of H-B&B, whereas the same work is dispatched by the reduced number
of masters of the first level in 1-H-B&B and all the work is done by the centralized
master in MW-B&B.

Eliminating bottlenecks is another challenge in large scale environments. The main
function overloading the central master in MW-B&B is the task distribution when the

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 72

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Time (Sec)

C
PU

 L
oa

d
(%

)
MW
1−HMW
AHMW

Figure 3.14: Evolution over time of the average CPU load on the master(s) of H-B&B,
1-H-B&B and MW-B&B

number of workers becomes important. In H-B&B, this function is distributed among
the different masters in the hierarchy so that they are alleviated. Figure 3.14 depicts the
evolution over time (10 minutes) of the average CPU load recorded on the master(s)
for the three approaches H-B&B, 1-H-B&B, and MW-B&B for the same number of
computational nodes (1590). The load presented in the figure concerns only the load
generated by the approaches ignoring all additional load of the system. Ten runs are
performed to solve the 10× 20 Taillard’s instances [TAI93]: Ta021 to Ta030 defined by
20 jobs and 20 machines, and the averages are computed. First, the master of MW-
B&B presents a bottleneck and its load is around 90% during all the execution lifetime.
Second, the masters of 1-H-B&B and H-B&B are underloaded compared to MW-B&B.
Therefore, the time wasted by the workers of the two hierarchical approaches waiting
for work is decreased compared to the MW-B&B one. However, masters of 1-H-B&B
are more loaded compared to those of H-B&B. Indeed, the load of the masters of 1-H-
B&B is around 20% whereas, it is only around 10% for the H-B&B making the masters
of H-B&B more alleviated than those of 1-H-B&B.

3.5.2 Tuning of the group size parameter

The group size has a great influence on the number of deployed nodes over time. Fig-
ure 3.15 show that for more than 200 computational nodes, the H-B&B approach is
by far more efficient than 1-H-B&B and MW-B&B especially for small (around 10)
values of the group size. Indeed, H-B&B allows to deploy 1500 grid computing nodes

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 73

0 300 600 900 1200 1500
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Deployed Nodes

D
ep

lo
ym

en
t c

os
t

(in
 s

ec
)

H−B&B (10)

H−B&B (50)

H−B&B (100)

1−H−B&B

MW−B&B

Figure 3.15: Evolution of the deployment cost for different sizes of the computational
pool. H-B&B (using different group sizes) is compared to 1-H-B&B and MW-B&B.

in only 70 seconds using group size 10 whereas they are deployed in 150 seconds, and
350 seconds using respectively the group sizes 50, and 100. Therefore, the deployment
cost grows with the group size. With a larger scale (number of computational nodes),
the cost is highly important. In this case, for problem instances of several dozens of
minutes the framework would spend much more time in deploying the hierarchy than
in solving the problem at hand. Moreover, when using small group sizes, the number
of deployed nodes using H-B&B grows exponentially making it insensitive to the size
of the computational pool. That is to say whatever the size of the computational pool,
the whole nodes will be launched, and assigned their tasks after their decomposition in
just few seconds.

To evaluate the pertinence of the value 10 of the group size, on the one hand, we
have studied the impact of the group size around this value (values 5 and 20) on the
time cost of the deployment of the hierarchy. On the other hand, to evaluate the ro-
bustness and sensitivity of the group size to new applications we have considered 15
Taillard’s problem instances with three classes representing three different sizes: small
(20 jobs on 20 machines), medium (50 jobs on 20 machines) and large (100 jobs on 20
machines). Each problem instance can be seen as a new application as it is represented
at execution by an irregular B&B tree completely different in size and shape.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 74

Instance Instance Group size Average
Size 5 10 20 50 100
20× 20 Ta021 55,60 65,57 93,00 168,25 319,00 140,28

Ta022 58,00 72,50 103,00 137,00 238,00 121,70
Ta023 62,00 78,00 105,00 172,00 280,33 139,47
Ta024 64,00 81,00 105,00 161,00 277,00 137,60
Ta025 61,00 75,00 103,00 197,00 326,00 152,40
Average 60,12 74,41 101,80 167,05 288,07 138,29
Stan. dev. 3,33 5,88 5,02 21,58 35,65 10,96

50× 20 Ta051 59,25 71,33 94,00 172,50 334,00 146,22
Ta052 61,00 73,50 106,50 204,00 371,50 163,30
Ta053 61,00 76,50 102,50 199,50 371,50 162,20
Ta054 61,00 71,00 108,00 213,00 393,00 169,20
Ta055 62,00 72,00 106,00 210,00 371,00 164,20
Average 60,85 72,87 103,40 199,80 368,20 161,02
Stan. dev. 0,99 2,25 5,63 16,13 21,30 8,70

100× 20 Ta071 174,00 66,33 92,25 174,66 347,66 170,98
Ta072 285,00 76,66 105,50 215,66 394,33 215,43
Ta073 186,00 75,00 106,00 214,00 387,00 193,60
Ta074 200,00 75,00 106,00 213,00 402,00 199,20
Ta075 180,00 75,00 103,00 214,00 426,00 199,60
Average 205,00 73,60 102,55 206,26 391,40 195,76
Stan. dev. 45,75 4,13 5,89 17,69 28,51 16,06

Average 108,66 73,63 102,58 191,04 349,22 NA
Standard deviation 74,66 4,08 5,16 24,75 53,15 NA

Table 3.2: Deployment times of H-B&B using different group sizes and different in-
stances classified by their sizes.

Intensive experiments have been carried out using 1450 processing cores and the
obtained results are reported in Table 3.2. For each of the 15 problem instances, the
deployment time cost expressed in seconds (averaged over 10 runs) is reported for dif-
ferent group sizes (5, 10, 20, 50 and 100). Table 3.2 is organized as follows: the first and
second columns represent respectively the size of the Taillard’s instance and its name.
Columns 3 to 7 represent the deployment time cost obtained using the different group
sizes, and the last column shows the average values for each problem instance using the
different group sizes. The average value for a class of instances using the same group
size is presented at the last row of the class.

According to the obtained average values of the deployment time for each class
of instances (at the last line of each instance family), we can notice that the size of
the instance has not a significant impact on the deployment time cost. Indeed, the
deployment time is approximately the same for all the instances when using the group
sizes 10 and 20 (respectively 73, 63 and 102, 58 seconds) with a small standard deviation
(respectively 4, 08 and 5, 16) and it grows softly when using the group sizes 50 and 100
(from 167 to 206 for the group size 50 and from 288 to 391 for the group size 100)
with a larger standard deviation (respectively 24, 75 and 53, 15). However, this is not
the case for the group size 5 for which the deployment time grows significantly. This
may be caused by the fact that when using the group size 5 the sub-MWs take more
time in decomposing and distributing tasks than in the launching of their children.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 75

Instance SH-B&B H-B&B
Ta021 20779763020 22804681476
Ta022 3701361244 4552674332
Ta023 6012176904 7214612284
Ta024 23552625964 25833960748
Ta025 15154613724 17265836556
Ta026 33968795636 39877981352
Ta027 5822311444 6065503812
Ta028 7159046172 7509392584
Ta029 2596539776 3635155684
Ta030 8121546708 8365193108
Average 12711242699 14288134554

Table 3.3: The number of explored B&B tree nodes by H-B&B using the adaptive
behavior of the masters compared to SH-B&B with static roles of the masters. H-B&B
outperforms SH-B&B on all the instances.

This encourages the newly launched processes to request more rapidly tasks from their
parent delaying the forwarding of the requests to integrate grid nodes in the hierarchy to
the lower levels, which is necessary to build the rest of the hierarchy (see Section 3.2.2).
Therefore, the launching of the processes located at the lower levels is delayed. We
can conclude that the use of the group sizes 10 and 20 provide more efficient results.
The group size 10 enables more robust execution in terms of standard deviation. The
experimental results presented in the following sections are obtained using a group size
fixed to 10.

3.5.3 Study of the adaptive feature

As mentioned in Section 3.2.2, one of the features of AHMW is that a master at any
level of the hierarchy can change its behavior when the number of generated tasks be-
comes high. It means that as any worker the master contributes to the exploration
process (not limited to dispatching work units).

Figure 3.16 shows the behavior of a sample process of H-B&B. The figure is com-
posed of two graphics. The graphic at the top shows the evolution of the task request
frequency over time and the graphic at the bottom shows the behavior of the sample
process according to the received task frequency. At the beginning every process has
the role of a worker. After it receives the first task request, it becomes worker and
master at a time. When the task frequency exceeds the considered threshold (fixed
here to 40 requests per second) it becomes a pure master and viceversa.

To evaluate the benefits of such adaptive feature, H-B&B has been experimented
using 1500 Grid’5000 processing nodes and considering 10 Taillard’s problem instances
(20 jobs on 20 machines). Two versions of HMW have been considered: H-B&B and
SH-B&B, which designate respectively Adaptive HMW and Static HMW. In SH-B&B,

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 76

0 100 200 300 400 500 600 700 800 900

Time (Sec)

P
ro

ce
ss

 R
ol

e

Process behavior

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

Time (Sec)

T
as

k
R

eq
ue

st

F
re

qu
en

cy

Task request frequency
Task request frequency threshold

Pure Master

Master & Worker

Pure Worker

Figure 3.16: Adaptive roles of H-B&B processes.

the masters do not contribute to the exploration process whatever the load is. Table 3.3
reports the number of explored B&B tree nodes using H-B&B and SH-B&B for each
problem instance. The results show that the use of the adaptive feature of masters is
beneficial and H-B&B outperforms SH-B&B on all the experimented problem instances.
Indeed, in average H-B&B explores more than 1,5 billion of B&B tree nodes more than
SH-B&B.

3.5.4 Study of the efficiency: H-B&B vs. 1-H-B&B and MW-

B&B

Table 3.4 allows us to evaluate the efficiency and effectiveness of the H-B&B compared
to 1-H-B&B and MW-B&B. The reported results have been obtained within 10 minutes
of execution of the ten 20 × 20 Taillard’s instances Ta021 to Ta30. Column 2 reports
the best solution found after 10 minutes by H-B&B. Columns 3, 4 and 5 report the
CPU times (in seconds) required exactly to find the corresponding solutions in column
2 by respectively H-B&B, 1-H-B&B and MW-B&B. The task grains handled by the
approaches are 12 to 18 for H-B&B and 16 for both 1-H-B&B and MW-B&B. For all

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 77

Instance Best found sol H-B&B 1-H-B&B MW-B&B
Ta021 2317 368 2236 2981
Ta022 2120 368 392 760
Ta023 2336 118 287 565
Ta024 2223 680 1726 2101
Ta025 2307 452 557 866
Ta026 2254 341 660 742
Ta027 2273 366 940 1298
Ta028 2220 414 905 1222
Ta029 2301 344 476 960
Ta030 2178 445 967 955

Table 3.4: Execution times exactly required to H-B&B (column 3), 1-H-B&B (column
4) and MW-B&B (column 5) to provide the solutions reported in column 2

instances, H-B&B finds the best solution more quickly demonstrating its efficiency over
1-H-B&B and MW-B&B. Masters of H-B&B perform a distributed decomposition on
the tasks and reach more rapidly fine-grained tasks (subproblems of size 12) which are
distributed among the workers. Whereas, in 1-H-B&B and MW-B&B, the decomposi-
tion operation takes more time and the workers take more time waiting their tasks, the
fact that affects the whole execution time. Indeed, the use of several levels of masters
in H-B&B is beneficial and allows to find more quickly the solutions than 1-H-B&B and
MW-B&B.

It is shown previously that the masters of H-B&B are alleviated and are not subject
to bottlenecks. Therefore, workers do not waste time waiting for tasks. In addition,
the dynamic distributed decomposition improves the performance by minimizing the
waiting time of workers. In this experiment, we evaluate the ratio R between the
effective execution time tExec and the idle time tI recorded on the different workers.
The idle time includes the communication time tCom and the time tDec a master takes
to decompose its tasks.

R = 100× tExec

tExec + tI
tI = tCom + tDec

Table 3.5 shows the efficiency obtained using H-B&B compared to that obtained
using 1-H-B&B and MW-B&B approaches. Ten runs are performed solving the 20 jobs
and 20 machines Taillard’s instances. The table contains 3 sub-tables representing the
results of H-B&B, 1-H-B&B, and MW-B&B respectively. Within each sub-table, the
resolution time (tExec), the idle time (tI), and the efficiency (R) are represented. As
shown in the table, H-B&B outperforms 1-H-B&B and the two hierarchical approaches
outperform MW-B&B. Indeed, H-B&B presents on average an efficiency (99,02%) with
an insignificant standard deviation (0,68). Whereas, the average efficiency for 1-H-B&B
is 92,63% with the standard deviation 5,57. The efficiency of MW-B&B is only 83,43%
with the standard deviation 6,61. The workers of H-B&B spend 99% of their time

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 78

solving their tasks and less than 1% in communication and waiting for task distribution.
In the point of view of the masters, 1% of their time is spent in decomposition and
distribution of tasks to their children. H-B&B remains insensitive to the size of the
computing pool because whatever the size of the computing pool, the masters of H-
B&B only manage the workers in their sub-MW and the overhead caused by the huge
number of computing nodes is dispatched over the masters on the different levels.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 79

In
st

an
ce

H
-B

&
B

1-
H

-B
&

B
M

W
-B

&
B

So
lv

in
g

Id
le

E
ffi

ci
en

cy
So

lv
in

g
Id

le
E

ffi
ci

en
cy

So
lv

in
g

Id
le

E
ffi

ci
en

cy
t E

x
ec

t I
R

%
t E

x
ec

t I
R

%
t E

x
ec

t I
R

%
Ta

02
1

54
98

9,
24

23
8,

43
99

,5
6

%
61

19
2,

18
10

54
,2

7
98

,3
0

%
37

48
9,

82
22

05
,0

8
94

,5
6

%
Ta

02
2

12
56

1,
80

68
8,

14
99

,4
6

%
13

88
5,

57
13

83
,3

4
90

,9
4

%
09

83
4,

28
02

77
,0

9
81

,5
3

%
Ta

02
3

17
06

3,
36

34
8,

10
98

,0
0

%
11

34
3,

88
14

20
,5

6
88

,8
7

%
09

00
3,

14
23

26
,2

9
79

,4
6

%
Ta

02
4

58
80

1,
92

17
2,

30
99

,7
0

%
68

72
4,

53
10

01
,8

6
98

,5
6

%
33

14
8,

90
21

19
,4

6
93

,9
9

%
Ta

02
5

10
36

9,
25

16
0,

87
98

,4
8

%
06

54
9,

61
14

45
,6

4
81

,9
2

%
08

07
5,

39
22

58
,3

9
78

,1
4

%
Ta

02
6

23
69

2,
37

09
6,

17
99

,7
8

%
46

96
9,

42
11

53
,0

9
97

,6
0

%
08

70
4,

40
21

48
,5

8
80

,2
0

%
Ta

02
7

43
70

3,
89

26
3,

74
99

,2
8

%
34

47
9,

40
12

31
,0

2
96

,5
5

%
12

29
0,

16
21

25
,8

7
85

,2
5

%
Ta

02
8

13
06

4,
99

11
0,

09
98

,7
9

%
12

79
1,

99
13

97
,6

2
90

,1
5

%
09

31
9,

94
21

31
,1

0
81

,3
9

%
Ta

02
9

21
98

6,
17

36
7,

40
98

,1
3

%
13

56
1,

35
13

72
,4

1
90

,8
1

%
07

15
9,

49
22

12
,7

5
76

,3
9

%
Av

er
ag

e
99

,0
2

%
Av

er
ag

e
92

,6
3

%
Av

er
ag

e
83

,4
3

%
St

an
da

rd
D

ev
ia

ti
on

0,
68

%
St

an
da

rd
D

ev
ia

ti
on

05
,5

7
%

St
an

da
rd

D
ev

ia
ti

on
06

,6
1

%

Ta
bl

e
3.

5:
E

ffi
ci

en
cy

of
H

-B
&

B
co

m
pa

re
d

to
1-

H
-B

&
B

an
d

M
W

-B
&

B
–

H
-B

&
B

cl
ea

rl
y

ou
tp

er
fo

rm
s
1-

H
-B

&
B

an
d

M
W

-B
&

B
in

te
rm

s
of

av
er

ag
e

effi
ci

en
cy

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 80

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Size of sub−problems

Ef
fe

cie
nc

y
(%

)
Ta071
Ta072
Ta073
Ta074
Ta075

Figure 3.17: Impact of the granularity on the efficiency of H-B&B

3.5.5 Impact of the granularity on the efficiency of H-B&B

Figure 3.17 shows the efficiency of execution times of H-B&B obtained on 1164 grid
nodes solving the FSP instances Ta071 - Ta075 described above using different grain
sizes. They are obtained by varying the SBFS degree making masters generating dif-
ferent subproblem sizes. The grains represented in the graph are those recorded at the
level of final workers. We tested subproblems of sizes: 14, 18, 22, 30, and 38.

The curves show that the efficiency is less than 90% for most of the instances when
the grain size is lower than 15. It is around 95% when the grain size is lower than 18
and exceeds 99% beyond the grain size 22. To choose the appropriate granularity, we
should also take into account the work request frequency and a tradeoff must be found.
Therefore, regarding these results and those above, for an efficient execution of H-B&B,
we can chose tasks of grain size between 18 and 30. Considering fine grained tasks using
H-B&B allows one to achieve an efficiency of execution similar to the one obtained using
coarse grained tasks on a MW-B&B. The exception is the instance Ta073 which gives
relatively bad efficiency of execution compared to the others. It is probably due to the
search space landscape of the instance which is easy to explore. That makes workers
take a short time to explore the subproblems, thus the masters receive more frequently
work requests slowing them and workers spend more time acquiring subproblems.

Chapter 3: H-B&B: A Hierarchical Master/Worker-based B&B 81

3.6 Conclusion
In this chapter, we have presented a new HMW model (AHMW) in order to make
highly scalable parallel algorithms for solving very large size combinatorial optimiza-
tion problems. AHMW has been used to develop an adaptive hierarchical MW-based
B&B (H-B&B). The new presented scheme allows to prevent from bottlenecks likely to
be created at the level of the central master process in the conventional MW paradigm.
The hierarchy built by our approach is multi-layered and dynamic adaptive. Indeed, it
evolves over time with the arrival of computing resources in the grid, and allows gener-
ating and handling tasks of different grain sizes. H-B&B is composed of three types of
processes: a super-master, masters and workers. Each process has its own role with the
ability to change its behavior from master to worker and vice versa according to the
availability of resources. The strength of our approach resides in the collaboration of all
the processes of H-B&B to perform the different functions such as the construction of
the hierarchy, the decomposition of tasks, and their distribution. Therefore, the load is
shared between all the processes. Processes of H-B&B consider tasks of different grain
sizes allowing to improve the efficiency of our approach by minimizing bottlenecks at
the level of masters and reducing wasted time at the level of workers.

Different large scale experiments of our approach, implemented on top of ProActive,
have been performed using the Grid’5000 real grid hardware infrastructure. The differ-
ent experiments demonstrate the efficiency of H-B&B compared to existing single-level
HMW (1-H-B&B) and more significantly compared to the classical MW-B&B in terms
of scalability. In fact, H-B&B deploys nodes much faster thanks to the participation
of all the launched processes in the parallel deployment. This makes the number of
deployed nodes increasing exponentially in time remaining insensitive to the large scale
number of resources. The adaptive nature of the masters’ behavior demonstrates its
strong impact on the efficiency of H-B&B. Indeed, the contribution of the masters in
the exploration process allows to gain in terms of computing power. The average CPU-
load on masters is minimized and prevents from the creation of bottlenecks among the
masters. In H-B&B, the masters are assisted in the management of work requests and
in the decomposition to achieve acceptable grain size of the tasks. This allows them to
distribute tasks much faster without blocking the workers requesting tasks. Therefore,
the workers spend less than 1% of the total time waiting for tasks from their parents.
From the point of view of the masters, this time (1%) represents mainly the decompo-
sition time to achieve medium and small task grains, which facilitates the work control
and minimizes the waiting time of workers.

Chapter 4

FTH-B&B: A Fault Tolerant
Hierarchical B&B

4.1 Introduction
In the previous chapter we have presented H-B&B, a hierarchical MW-based B&B,
together with experimental results showing its ability to deal with the scalability is-
sue of grids. However, scalability is not the unique issue to take into account when
designing grid-based B&B. In fact, the second major issue of grids is Fault Tolerance
(FT). The grid computational resources are highly unreliable and volatile. They are
unforeseeable, they frequently join and leave the system. Moreover, in an environment
including several thousands of resources, the appearance of faults is unavoidable [HT05].
Recent experimental studies have shown that jobs submitted by users to large scale,
multi-institutional Grid infrastructures often fail to complete successfully. For example,
data collected and analyzed by the WISDOM project [WISD], which submits tens of
thousands of jobs to the EGEE/EGI infrastructure [EGEE] [EGI] indicate that only
the 65% of submitted jobs are executed successfully, therefore, the rate of failure is 35%.

FT can be achieved at two levels: application-level or middleware-level. Several
middlewares provide FT mechanisms to reliable execution of applications: ProAc-
tive [PROA, BBC+06, CDCL06], XtremWeb [XTRE], and Condor [CON, GSDB09,
PL96]. Nevertheless, they are generally costly in terms of CPU execution time and slow
down the application. The second strategy is application-level and consists in includ-
ing FT mechanism(s) into algorithms [MMT07a, MMT07b, IAM00, FM87, GKLY00,
GLY00, DVC+09]. Three major aspects must be taken into account when designing FT
at application-level: First, one must ensure fault recovery to avoid the loss of work units
and to gain in terms of execution time by minimizing the redundant work. Second, one
must ensure to maintain the same topology (formed between the different processes of
the B&B) and avoid orphan branches during the lifetime of the algorithm in order to
guarantee a valid functioning and then a valid result of the algorithm. Third, one must
ensure an efficient restart of a great number of failed processes.

In this chapter, we propose our third contribution which is the design and imple-
mentation of a Fault Tolerant Hierarchical B&B (FTH-B&B) dedicated to large scale

82

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 83

Group of masters

FT MW−B&Bs

local work pools

(leaves)

(inner nodes)

root node

Workers

Masters

level n

level 2

level 0

level 1

Group of workers

Figure 4.1: General design of FTH-B&B. Several fault tolerant sub-B&Bs are organized
hierarchically where inside each sub-B&B one master manages several workers.

unreliable environments such as computational grids. FTH-B&B, also based on P2P-
B&B, is an application-level distributed FT mechanism composed of several FT MW-
B&Bs organized hierarchically into groups. A fault recovery mechanism is introduced
to avoid the loss of work units and to improve efficiency in terms of execution time.
Indeed, work units are stored so that one can recover at each instant the subproblems
assigned to failed processes using a 3-phase communication protocol. Moreover, our
approach ensures to maintain a balanced and safe hierarchy during the lifetime of the
algorithm in order to guarantee a valid functioning. Finally, an efficient restart of the
application is ensured by a distributed checkpointing mechanism in case of failure. This
work has been published in [BMT11a].

The remainder of this chapter is organized as follows: In Section 2 we present the de-
sign of FTH-B&B, the work management, task recovery, maintenance of the hierarchy,
and finally a distributed checkpointing mechanism. Section 3 details the implementa-
tion of the fault tolerance features using ProActive. The performance evaluation of the
approach is studied in Section 4. We conclude the chapter in Section 5.

4.2 Architecture and Working of FTH-B&B
The proposed FTH-B&B is a fault tolerant parallel B&B algorithm based on the Hier-
archical Master/Worker paradigm in order to deal with the fault tolerance issue while
ensuring scalability in large scale environments. The proposed approach is composed of
several fault tolerant Master/Worker-based sub-B&B algorithms (see Figure 1), where
inside each sub-B&B one master manages several workers and performs failure recovery.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 84

The sub-B&Bs are launched in parallel and act independently on different subproblems.
They are organized hierarchically into several levels. The root node and the inner nodes
of the hierarchy designate masters and the leaves designate workers. The masters per-
form a parallel recursive branching in order to decrease the size of subproblems until
reaching sufficiently fine-grained subproblems which can be explored sequentially by
the workers. In addition, they locally store the branched and assigned subproblems for
further rescheduling. Each sub-B&B is composed of one master and a group of workers
that can also be masters for another sub-B&B at the lower level. Each sub-B&B is
developed using the framework AHMW [BMT12] (see Chapter 3), therefore based on
(P2PBB) presented in [BMT09] (see Chapter 2) where one master manages a dynamic
group of communicating workers. Therefore, the algorithm is composed of communi-
cating groups of fault tolerant Master/Worker-based sub-B&B processes.

FTH-B&B is designed to run on computational Grids offering huge amount of com-
puting resources which are highly unreliable. Therefore, for a safe execution of the
algorithm, any failure must be detected and handled. The fault detection is the respon-
sibility of all the processes of the algorithm. Both masters and workers are responsible
to detect failures of the process they depend on or which depends of them. Masters
send heartbeats to their children every Heartbeat Period HP. If a worker is dead or
suspected to have failed, it is removed from its list of children. The unexplored part of
its subproblem is saved and rescheduled to another free safe worker (see Section 4.3 for
more details). Workers also send heartbeats to their masters every HP × G, G being
the size of the group forming one sub-B&B. The period of heartbeats is increased G
times to avoid flooding their masters by their heartbeats.

In order to minimize the communication overhead, the masters do not inform their
children about any worker failure. Within the same sub-B&B group, the workers do
not heartbeat their neighbors but rather they detect failures when they broadcast their
upper-bounds. When that happens, they remove the failed worker from their list of
neighbors, so that they will never send them messages.

Let us recall that when executing FTH-B&B in a faulty environment, one must take
into account three important points. First, one must ensure fault recovery to avoid the
loss of work units and to gain in terms of execution time in minimizing the redundant
work. Second, one must ensure to maintain the same topology during the lifetime of
the algorithm in order to have a valid functioning of FTH-B&B. Third, one must ensure
an efficient restart of a great number of FTH-B&B processes.

4.3 Work management with task recovery
Each master has its local work pool obtained by branching the subproblem assigned to
it by its parent. A collegial strategy is adopted since multiple work pools are considered
and each inner master has its own work pool. During the search, the local pool evolves
continuously and when it is empty, the process sends a work request to the master at
the upper level. A master receiving such a request consults its local work pool and asks

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 85

CB

A

E

EPFPGPHP
BP

GPJPHP

D

PI

E

FP

GP

HP

PJ

PB CP

PI

P

PE

P J

F G

Connection of C

w
o

rk
 p

o
o

l

A sends the unexp−
lored sub−problemswork pool of B

assigned sub−problems

already solved sub−problems

L
is

t
o

f
B

ra
n

ch
e

d

S
u

b
−

p
ro

b
le

m
s

L
B

S
o

f
A

branched sub−problems

Figure 4.2: Work Management with fault recovery. The parent of a failed worker only
reschedules the unexplored subproblems in order to minimize redundancy.

its upper level if its work pool is empty.

4.3.1 Fault recovery

Since no loss of work is tolerated in exact resolution of COPs, the masters manage a
list of assigned subproblems, each element of the list is a mapping between the assigned
subproblem and the process assigned to it. A subproblem has a unique identifier in
the local work pool of the parent problem. When a failure is detected, a part of the
subproblem is rescheduled to another safe worker. To avoid redundant responses, only
the first result is taken into account.

In order to optimize the overall execution time and avoid redundant exploration
of subproblems, when facing failures, the masters also manage a list of branched sub-
problems LBS. It represents the subproblems being explored by their grandchildren
(see Figure 4.2). It is updated each time a grandchild finishes the exploration of its
assigned subproblem. When the process exploring a subproblem fails, the master iden-
tifies the subproblem assigned to it and the branched subproblems in LBS and only
reschedules the unexplored part. For example, in Figure 4.2, the subproblems PE, ..., PJ

are the result of the branching of the problem PB by the process B. B has already
explored PE and PF (in bold in Figure 2) but not yet PG, PH , PI and PJ . Therefore,
when B fails, A will only reschedule PG, PH , PI , and PJ to the newly connected process
C. The size of LBS does not affect the masters because it is static and depends only
on the size of the subproblem and the used branching method. Moreover, it is removed
when the parent subproblem is totally explored and it is replaced by the new assigned
one.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 86

B [1..n]ij

B]m..n]ij

B [1..m] already
explored

ij

ijUpdate B [m]

B [k]Update ij

B [k]ij 1

Update explored
sub−problem B [k]

ij

WR

Update B [m]

ij

P

WR
WR

C M

B
ra

n
ch

in
g

M Cijl i ij
ijk

Failure

WR

P
h

a
se

 3
P

h
a

se
 1

P
h

a
se

 2

t

t+1

Pijk

Figure 4.3: 3-phase communication sequence diagram

4.3.2 3-Phase communication mechanism

The task distribution is performed respecting a fault recovery mechanism using the
proposed 3-phase communication mechanism between the current master, its children
and its grandchildren (see the sequence diagram in Figure 4.3).

• Phase 1 (between a master and its children): It allows a master to assign problems
to its children and to receive back the branched subproblems. In the sequence di-
agram (see Phase 1 in Figure 4.3), Mi assigns a problem Pij to its child Mij. This
latter performs a branching and sends back the branched subproblems Bij[1..n] to
its parent Mi. After that, it can assign the subproblems Bij[1..n] to its available
children Cij[1..g].

• Phase 2 (between a master, its children and its parent): The Phase 2 (see Fig-
ure 4.3) serves to update already explored subproblems. Each time a child Cijk

finishes the exploration of its subproblem Bij[k], Mij informs Mi which updates
Bij[k] the already explored subproblems of its grandchild Cijk. Therefore, the
master knows at any time the unexplored parts of a given problem

• Phase 3 (between a master and a new free process): Phase 3 allows the master to
reschedule the unexplored subproblems to another free safe worker if the process
handling it has failed. For example, if after a period of time t, the children Cij[1..g]
finish the exploration of Bij[1..m < n] subproblems. After t+1, even if Mij fails,

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 87

Mi will only reschedule Bij]m..n] to another free safe process (see Phase 3 in
Figure 4.3).

The 3-phase communication mechanism allows the masters to minimize the execu-
tion of redundant work units, to speed up the exploration, and then to improve the
overall performance. In order to obtain more precision about the already explored sub-
problems and to save more branched subproblems, the 3-phase communication mech-
anism can be extended to the ith grand child. Nevertheless, new communication must
be established between a master and all its ith grandchildren tree at the expense of the
communication overhead. Indeed, the amount of the transferred and saved subprob-
lems grows in an exponential way when i increases. Therefore, a tradeoff must be found
between the number of levels participating in the 3-phase communication mechanism
and the number of saved subproblems, consequently, the amount of redundant work.
In this work, only one level of masters participate in the 3-phase mechanism.

4.4 Maintenance of the hierarchy
It is important to maintain the same topology during the lifetime of the algorithm in
order to get a reliable execution. Indeed, all communication and work management are
based on the used topology (in our case the hierarchy). Additionally, failures can iso-
late some parts of processes from the rest of the hierarchy leading to loss of computing
power and/or data. Moreover, at each instant, the hierarchy must be balanced.

Masters and workers are both subject to failures. A worker failure has not a great
impact because it is located in a leaf of the hierarchy. In fact, no other process de-
pends on it and its task can be partially rescheduled by its parent using the 3-phase
mechanism. However, a master failure can isolate some parts of the hierarchy because
the inner masters represent intermediary links. Indeed, when an inner master fails, the
sub-B&B it represents crashes and the link between its descendants and the rest of the
hierarchy is lost. Therefore, orphan branches may be created leading to the failure of
the algorithm. Hence, it is necessary to rebuild the hierarchy by the creation of new
links between the descendants and the ascendants of the failed master. In the following,
every process pi holds a list of all its ascendants Ai[1..(l− 1)], l is the level of pi in the
hierarchy. Ai contains at most logg(N) elements, N being the size of the computational
pool and g the size of a sub-B&B group. Three rebuilding strategies are proposed:
simple connection to ascendants (SCA), master election (ME), and balanced hierarchy
(BH).

4.4.1 Simple Connection to Ascendants (SCA)

In this strategy, when a master m fails, all its children cm ∈ Cm[1..g] connect to the
closest safe ancestor Am. In Figure 4.4, when D fails, its children E, F, and G connect
to their closest safe ascendant T and consider all its children (C and B) to be their
new neighbors. This strategy is simple to implement and to manage. Nevertheless,
its main drawback is that the closest safe master rapidly becomes a bottleneck when

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 88

T

B DC

E F G

T

B C E F G

to MW−B&B
Risk of convergence

A ={T}
B

A ={D, T}
G

N ={E, F}
G

A ={T}
G

N ={B, C, E, F}
G

Figure 4.4: Maintenance of the hierarchy using SCA. When a master fails, the orphan
workers connect to their closest safe ascendant. Risk of convergence to MW-B&B.

it is faced to several failures among its children. It receives an exponential number
of connections in a short period of time. Indeed, if f masters (children of m) fail, it
receives g × f connections from its grandchildren, g is the size of sub-B&B groups.
Moreover, if one level of masters fail, it receives k2 connections and if l levels fail, it
receives gl+1 connections. Therefore, the FTH-B&B rapidly converges to a traditional
MW-B&B over time as the number of failed masters increases.

4.4.2 Master Election (ME)

In this strategy, when a master m fails, the concerned orphan processes pi ∈ Cm elect
a new master among of them using the bully algorithm [GAR82]. Each process has a
unique identifier assigned to it at the moment of its creation. In this algorithm when
the master fails, the process with the highest identifier is selected as follows: When a
process pi detects the failure of its master, it initiates an election. It sends an election
message to all its neighbors with higher identifier. If no process responds, pi becomes
the master and announces its success to the other processes. If one of the processes
answers, it means that there is at least a safe process which can be a master then pi
ends its election. When a process pj receives an election message from a process pi with
a lower identifier, it answers and initiates a new election algorithm.

If the newly chosen master process pi is a worker, it changes its behavior and becomes

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 89

N ={ H, J }

S =
I

I

E =
I

H I J

PB Q

T
I

F

E F G* *

K L
S ={ K, L }
N ={ E, G }F

F

E =F

E ={ I, J }
H

F

E G H J

IB

A

K L

FN ={ B, I }
S ={ K, L, E, G }F

E ={ B, I }F

Figure 4.5: Maintenance of the hierarchy using ME. When a master fails, the orphan
workers elect a new master which connects to its closest ascendant and considers its
electors as its children.

a master and then it considers its old neighbors to be its children Ci = Ci∪Ni, Ni is the
list of its neighbors. Ci will contain both of its old children and its old neighbors. Each
pj ∈ Ni and pk ∈ Ci update their neighbors Nj/k = Nj/k ∪ Ci. After that, pi connects
to its closest safe ascendant pa ∈ Ai. pa informs pi about its new neighbors Ni = Ca

and the list of the processes it will contact in case of a future election session Ei = Ca.
For example in Figure 4.5, when P fails, E and G select F as a master and F considers
them as its children CF = {K,L,E,G}. After that, it connects to its ascendant T
which informs it about its new neighbors NF = {B, I} and the new electors EF = NF .
To avoid the same process to be always selected and consequently overloaded with the
multiple orphan processes, we consider the lower identifier in the bully algorithm. Each
newly elected master is assigned the highest identifier among its neighborhood.

4.4.3 Balanced Hierarchy (BH)

In this strategy, when a master m crashes, the orphan processes pi ∈ Cm migrate to
another safe sub-B&B. Their migration is done according to a migration mechanism

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 90

E F G

PB D

T
F E

G

T

B P E

GF

Figure 4.6: Maintenance of the hierarchy using BH. Orphan processes migrate to safe
non-full sub-B&Bs respecting the constraint of the group size.

which assigns new orphan processes to a safe non-full sub-B&B. A sub-B&B is full if
the number of processes composing it reaches the threshold group size a master can
manage. The migration mechanism aims at avoiding the convergence of FTH-B&B to
a traditional MW-B&B and to maintain the hierarchy balanced at each instant. That
is achieved with the readjustment of the sub-B&Bs group sizes each time a master fails.
An orphan process pi connects to its closest safe ascendant pa ∈ Ai which holds pi
only if the group it manages is not full in order to maintain the hierarchy balanced. A
process pi receiving orphan processes from its parent also respect the constraint of the
group size. Indeed, it dispatches the orphan processes among its children if the group
it manages is full and so on until a non-full group is found. In Figure 4.6, when D fails,
its children E, F, and G connect to T which holds only one node E and dispatches
the others F and G respectively to its children B and P . Therefore, the hierarchy of
FTH-B&B changes over time as soon as masters fail. This allows one to avoid creating
new bottlenecks after several failures and prevents from the risk of convergence to a
standard MW-B&B during the lifetime of the system. Moreover, at each instant the
hierarchy is balanced whatever the number of failures since the new orphan processes
are dispatched over all the hierarchy.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 91

4.5 Distributed checkpointing
In a traditional MW-B&B, reliability can be achieved through checkpointing operations
performed by the master process. However, this approach assumes that the master is re-
liable. In our approach, there exists several levels of checkpointing. Each master in the
hierarchy performs distributed asynchronous checkpointing operations independently
from others. This makes the whole algorithm more reliable even if some inner masters
fail. Each master process manages a back-up file and saves a sequence of unexplored
branches represented by a vector of partial solutions. When a master fails, the newly
designated master reads the back-up file, reconstitutes the locally unexplored subprob-
lems, and then the exploration process carries on from the last consistent local state of
the sub-B&B. After a crash of the root master, a new instance of the algorithm must
be launched. Then the new processes must reconstitute the unexplored subproblems
from the different found back-up files and the exploration process cannot begin until
a consistent global state is found. The reconstitution operation of the subproblems is
illustrated in the following.

4.5.1 Reconstitution of subproblems

Even though a consistent local state of a sub-B&B is easy to find, finding a global
one is not trivial. The processes must collaborate to determine a consistent global
state of the system. At each instant of the execution of FTH-BB, the graph formed
by the dependencies between the subproblems being explored must match with the one
formed by the processes (the masters and workers). A consistent global state of the
system means that the processes must reconstitute the subproblems respecting their
dependencies before the crash. Therefore, the same graph of dependencies (hierarchy)
must be reconstituted. Let I be the set of processes of FTH-B&B, pi a problem being
explored by the process i, Ci the children of i, and δpi the set of subproblems obtained
by the branching of the problem pi. At each instant, the consistent global state means
that the processes of the algorithm and the dependencies of the subproblems must
satisfy the implication:

∀ i, j ∈ I, j ∈ Ci ⇒ pj ∈ δpi (4.1)

This implication means that whatever a process j being a child of i, it explores
subproblems obtained by the branching of problems belonging to the work pool of its
parent i. After a failure of all processes, a new instance of the system is launched and
then a new hierarchy is formed. The masters retrieve the unexplored subproblems from
the distributed back-up files. Some of the new processes (i and their children j) are
launched on processors different from those on which they were launched before the
failure. They retrieve subproblems belonging to other failed processes. Consequently,
the dependencies between the new retrieved subproblems pj form a random graph and
they do not match with the initial hierarchy. Therefore, (4.1) can not be satisfied
because ∃i, j ∈ I, j ∈ Ci | pj ̸∈ δpi . Moreover, there is no global information about the
retrieved work. Therefore, the global set of unexplored subproblems cannot be known
before reconstituting the subproblems according to their dependencies. To address this
issue, we define 3 operators: Gather, Reduce, and Deduce.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 92

4.5.2 Reconstitution operators

Gather allows one to gather the distributed subproblems and to aggregate them into
several centralized points. Each process sends the retrieved subproblems to its parent
which collects all its children subproblems. Let yi be the subproblem retrieved by the
process i and Ci the set of its children. The set of unexplored subproblems of i can be
formulated as:

Gi =
∪
j∈Ci

(yj) ∪ yi (4.2)

Reduce allows one to reduce several subproblems into their smallest root problem
p ̸= P such that they can be obtained by the branching of p according to (4.3). P is
the original problem. The reduction of two subproblems q and r is achieved using the
equation:

Ri(q, r) =

p if ∃ p | q, r ∈ δp∧
@ p′| p′ ∈ δp ∧ q, r ∈ δp′

r if q = ϕ

q if r = ϕ

{q, r} else.

(4.3)

Each process uses Deduce described in (4.4) to deduce the set of the unexplored
subproblems for each sub-B&B.

Di =
∏

p,q∈Gi

Ri(p, q) (4.4)

The product (∏) represents the application of the operator Reduce to all couples of
subproblems (p, q) including the newly obtained root problems.

Using these 3 operators, the processes perform the reverse operation of the 3-phase
communication mechanism described in Section 4.3.2. In the 3-phase communication
mechanism, a master assigns a problem to its child and then the child sends back
the branched subproblems. Here, a child sends subproblems to its parent and then the
parent reconstitutes their root problem using the Gather, Reduce, and Deduce operators.
After that, it reconstitutes its local work pool and the list of branched subproblems.
The subproblems are sent as a list of couples (p, φp) such that p ∈ Di and φp = {Gi∩δp}.
Each couple represents the root problem p in the set Di and its corresponding set δp of
retrieved subproblems obtained by the branching of p. From the point of view of the
3-phase communication mechanism, Di represents the local work pool of the process i
and Gi represents the list of the branched subproblems (LBS).

4.5.3 Consistent global state

The 3 operators allow to build gradually a consistent global state from the local ones.
At each instant and after applying Gather, Reduce, and Deduce in this order by a

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 93

p retrieved

p retrieved10

G , R (p ,p), D
0 00 01 00

G , R (p ,p), D
1 1110 11

11

10

G , R (R ,R), D0 1

11
W

W

M
0

local consistant states

W01

00

M

M1

W

Global consistent state

Figure 4.7: Consistent global state. Masters perform their checkpoints after they receive
all the couples (p, φp).

process i:

∀j ∈ Ci, pj ∈ pool(j) ⇒ pj ∈ Gi

⇒ ∃pi ∈ Di, ∃p′i ∈ Gi |pi = Ri(pj, p
′
i)

⇒ pj ∈ δpi

(4.5)

These operators are applied on the processes from the leaves to the root master.
All the reduced subproblems (roots of the retrieved subproblems) are obtained and the
global unexplored work is deduced. The consistent global state can be built gradu-
ally (see Figure 4.7) until reaching the root master. Therefore, for the root master
∀i, j ∈ I, j ∈ Ci,⇒ pj ∈ δpi , i.e., Equation (4.1) is satisfied. In Figure 4.7, the check-
points are represented by gray squares. They are performed when a master receives the
couples (p, φp) from all their children.

A complete example of the use of the 3 operators is presented in Figure 4.8 where
a Flow Shop scheduling problem is considered. A subproblem is represented by a vec-
tor V [1..n] of placed jobs. The root problem of two subproblems V1[1..l] and V2[1..m]
is a vector V [1..k ≤ l,m] such that V1 = V V ′ and V2 = V V ′′, V ′ = V1]k..l] and
V ′′ = V2]k..m]. In the figure, the workers check their back-up files and then send the
subproblems to their parents. For each master, the operators are applied and the cou-
ples (p ∈ Di, {Gi ∩ δp}) are computed. The global unexplored subproblems are located
at the level of the root master. For example, the workers W100 and W101 retrieve re-
spectively the subproblems sp100 = [7, 8, 2] and sp101 = [7, 8, 4]. sp100 and sp101 are sent
to the parent master M10 using Gather. M10 reduces them using Reduce and their root
problem rp10 = [7, 8] is found. After that, the locally unexplored subproblems are de-
duced using Deduce and the couple of the root problem and the branched subproblems

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 94

([7,8],)
([3,9],)

([5,3],{[5,3,2],[5,3,9,4]})
D=

[5,3,9,4][7,8,3][7,8,4][7,8,2][5,3,2,7][3,9,1][3,9,6][5,3,2,1]

D10=([7,8],{[7,8,4],[7,8,2]})
D11=

([5,3,9,4],)

([7,8,3],)

D1=
([5,3,9,4,)

([7,8],{[7,8,2],[7,8,3],[7,8,4]})([5,3,2],{[5,3,2,1],[5,3,2,7]})

([3,9],{[3,9,6],[3,9,1]})
D0=

([5,3,2,1],)

([3,9,6],)
D00= ([5,3,2,7],)

([3,9,1],)
D01=

M

M

W

M

1M0

M00 M01

W000 W001 W010 W011 W100 W101 110 W111

10 M11
sub−problems

back−up files
fetched on the

Figure 4.8: An example of subproblems recovery and reduction mechanism. Masters
apply the three operators to deduce the global unexplored subproblems.

D10 = ([7, 8] , {[7, 8, 4], [7, 8, 2]}) is found.

The main drawback of this approach is the large number of generated backup files
when the number of launched sub-B&Bs increases. That can degrade the overall per-
formance of the approach. In fact, when many masters are launched on the same grid
cluster, the multiple disk accesses can slow down the cluster. One can remedy to this
drawback by uniformly launching sub-B&Bs on different grid clusters, or by limiting
the number of masters that can perform checkpointing. Therefore, two types of masters
can be distinguished: masters that perform checkpointing (active masters) and those
that do not (passive masters). The active masters are locate in the upper levels of
the hierarchy and the passive ones in the lower levels. We can decide dynamically if a
master can wether or not participate in the checkpointing process.

4.6 Implementation of FT mechanisms
To take into account FT, new methods have been implemented by the different compo-
nents of the AHMW framework (see Chapter 3). Therefore, they introduce new features
to ensure fault detection and hierarchy maintenance.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 95

Master_0

heart−beat success

failure detected

from workerGroup
remove worker2failedWorker(01)failedWorker(01)

group_0.removeWorker(01)

group_0.heartBeat()

Resources−
Manager_0

Worker−
Supervisor_0 Worker_00 Worker_01

Figure 4.9: Fault detection sequence diagram.

4.6.1 Fault detection

The fault detection is performed by the Worker-Supervisor process (see the sequence
diagram on Figure 4.9). It sends heart-beats to the group of workers it supervises
every heart-beat period by calling the heartBeat() method on the ProActive typed group
group0 representing the children of the current master. The group0 on its side, forwards
the message to the whole workers. Each worker implements the heartBeat() method
which is an empty method allowing the Worker-Supervisor to know whether or not
they are alive using ProActive lower level mechanisms. It informs the master about
the failed workers by calling the method failedWorker() and removes the failed worker
from the group communication using removeNeighbor().

4.6.2 Implementation of the hierarchy maintenance algorithms

4.6.2.1 Simple connection to ascendants (SCA)

The workers use the heartBeat() method implemented on the master to know whether
it is alive or not (see the sequence diagram in Figure 4.10). When they detect the
master’s failure, they connect to the closest master by calling the connectToAscen-
dantsCSA() method on the safe ascendant master. The considered master then informs
its Resources-Manager through the method newWorker() and transfers the identity of
the orphan worker. The Resources-Manager updates the old typed group commu-
nication and involves the orphan workers in the computation by calling the method
addNeighbor() implemented at the level of the workers.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 96

Master_00Ascendant Master_0Resources−Manager_0

heartBeat()

heartBeat()

heartBeat()
failure detected

connectToAscendantsSCA(Id=000)

connectToAscendantsSCA(Id=001)
newWorker(000)

newWorker(001)

updateGroup(group_0)

updateGroup(group_0)

group_0.addNeighbor(001)

group_0.addNeighbor(000)

Worker_000 Worker_001

Figure 4.10: SCA sequence diagram.

4.6.2.2 Master Election (ME)

When a group of workers detect the failure of their master, they initiate the election
by sending their identifiers to the workers involved in the bully algorithm using the
method bullyAlgorithm(). After the algorithm converges, the selected worker changes
its behavior and moves into master and creates its own Resources-Manager, which is
also an Active Object, in order to manage its neighbors. This new master connects to
the closest ascendant master according to the previous method (CSA).

4.6.2.3 Balanced Hierarchy (BH)

The orphan workers connect to the closest safe ascendant master using connectToMas-
terBH(). The considered master informs its Resources-Manager about this new worker
through newWorkerBH(). The Resources-Manager then holds the workers if the group
not yet full and handles it as a simple new worker through newWorker(), otherwise, it
dispatches them among its children through newWorkerBH(). The newWorkerBH() is
called among the children until a non full group is found.

4.7 Performance evaluation
FTH-B&B has been experimented on the Flow-Shop scheduling problem (FSP) con-
sidering the total completion time (CMax) as cost function. In all the reported results
FTH-B&B is experimented at large scale. Indeed, between 1900 and 8900 FTH-B&B
processes are deployed in the different experiments. In order to obtain deeper hierarchy,
for some experiments multiple processes are launched on the same processor.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 97

Manager_0
Resources−

Master_0 Master_00 Worker_000

heartBeat()

updateGroup(group0)

Resources−Manager
Creation of a new

Master_000 Manager_000

heartBeat()
heartBeat()

Resources−

Worker_000 becomes
the new Master (Master_000)

Failure Failure detected

Election Process
Bully algorithm

Bullly Algorithm
According to the
I am the new Master

Connection to the Ascendant Master

newWorker(Id=000)

Behavior change
from Worker to Master

Worker_001 Worker_002

bullyAlgorithm(Id=002)bullyAlgorithm(Id=001)

bullyAlgorithm(Id=002)

newWorker(001)

newWorker(002)

newWorker(000)

group0.addNeighbor(000)

Figure 4.11: ME sequence diagram.

4.7.1 Fault Injection

The simplest and most obvious method to stress a grid-based application in terms of
failures is to emulate a fault on a randomly chosen processor every fixed period of
time. In the literature, several approaches have been proposed for fault injection in
distributed systems. Hoarau et al. have summarized some approaches in [HT05]:

ORCHESTRA [DJM96] is a fault injection tool. It allows the user to test the re-
liability and the liveliness of distributed protocols. A fault injection layer is inserted
between the tested protocol layer and the lower layers, and allows to alter and manip-
ulate messages exchanged between the protocol participants. Messages can be delayed,
lost, reordered, duplicated, modified and new messages can be spontaneously introduced
into the tested system to bring it into a particular global state. This approach cannot
be applied to our work and nowadays grid-based applications since the real challenge
in fault tolerance is not the validity of the exchanged messages but at the level of the
reliability of computing processes.

NFTAPE [SFB00] provides mechanisms for fault-injection, triggering injections,
producing workloads, detecting errors, and logging results. Unlike other tools, NF-
TAPE separates these components so that the user can create his own fault injectors
and injection triggers using the provided interfaces. NFTAPE introduces the notion of
Lightweight Fault Injector (LWFI). LWFIs are simpler than traditional fault injectors,
because they don’t need to integrate triggers, logging mechanisms, and communication

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 98

Master_00 Worker_000Worker_001Master_0Manager_0
Resources−

Master_01Master_02

updateGroup(group02)

Failure detected

Group full

Group non full

heartBeat()

heartBeat()

updateGroup(group01)

connectionToAscendantBH(Id=001)

newWorkerBH(001)

newWorkerBH(000)

newWorkerBH(001)

newWorkerBH(000)

group02.addNeighbor(000)
group01.addNeighbor(001)

connectionToAscendantBH(Id=000)

Figure 4.12: BH sequence diagram.

support. This way, NFTAPE can inject faults using any fault injection method and any
fault model. Interfaces for the other components are also defined to facilitate portabil-
ity to new systems.

LOKI [CLCS00] is a fault injector dedicated to distributed systems. It is based on a
partial view of the global state of the distributed system. The faults are injected based
on a global state of the system. An analysis a posteriori is executed at the end of the
test to infer a global schedule from the various partial views and then verify if faults
were correctly injected according to the planned scenario.

FAIL-FCI [HTV07, HT05, HTV05] (FAult Injection Langage) which is a language
allowing to easily describe fault scenarios and (Cluster Implementation) which is a dis-
tributed fault injection tool using FAIL language. FAIL-FCI is an interesting tool for
distributed fault injection, however, the library is written in C++ reducing than its
portability. Moreover, even though the generated failures are qualitative, but they are
still static and they cannot reflect the realism of the scenarios and they do not take
into account the lifetime of the processes.

However, none of these approaches has considered the lifetime of the processors.
To give more realism to our experiments in an unreliable environment, we consider
that the lifetime distribution function of the processes follows an exponential distri-
bution [XDP04]. The reliability of a process i is considered as the probability that it
performs its function for a specified period of time. The reliability function Ri(t) is the
probability that the process i will be successfully operating without failure within the
interval [0, t], Ri(t) = P (T > t), t ≥ 0, where T is a random variable representing the
failure time. Therefore, the failure probability is given by: F (t) = 1−R(t) = P (T ≤ t).

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 99

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

Lifetime (sec)

Nu
m

be
r o

f p
ro

ce
ss

es

Figure 4.13: Lifetime distribution of the launched processes.

If the lifetime distribution function follows an exponential distribution with parameter
λ, F (t) = 1 − e−λt. In our experiments we only consider the failures of node. Given
constant failure rates of resources, one can obtain the conditional probability of a pro-
cess success as p(t) = e−λt [DLT07], where λ is the failure rate of nodes. In all the
experiments we fixed λ = 0, 5 in order to expose the processes to extreme failure sit-
uations and to evaluate the robustness of the application. The lifetime distribution of
the processes involved in the experiments is presented in Figure 4.13. The height of the
bars indicates the number of processes and their width represents intervals of lifetime
duration. The whole bars show the number of processes that live a given time duration.
According to the exponential distribution, the number of processes decreases as their
lifetime increases.

4.7.2 Experimental Results

In the following, we experimentally evaluate the ability of FTH-B&B to deal with the
fault tolerance issue in large scale unreliable environments. Indeed, we measure the effi-
ciency of FTH-B&B which is the effective CPU time taken by the workers solving their
tasks taking into account fault tolerance (the time of storing and updating subprob-
lems). We also evaluate the benefit of the task recovery using the 3-phase mechanism
on the efficiency of the algorithm in terms of the number of recovered and rescheduled
subproblems and the gain in terms of execution time. Finally, we measure the impact
of failures on the overall topology of FTH-B&B using the three rebuilding strategies
SCA, ME, and BH.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 100

Bench Execution 3-Phase Delay Efficiency
TExec T3−Phase TM + TC

Ta021 46996,603 120,507 (0,25%) 367,501 98,97%
Ta022 30843,960 126,265 (0,40%) 401,372 98,31%
Ta023 47180,395 130,493 (0,27%) 381,944 98,92%
Ta024 57050,001 128,745 (0,22%) 384,204 99,10%
Ta025 60370,203 129,536 (0,21%) 421,354 99,09%
Ta026 50753,190 117,435 (0,23%) 423,435 98,94%
Ta027 54855,053 128,871 (0,23%) 362,219 99,11%

Average 50840,405 125,187 (0,25%) 385,206 98,92%

Table 4.1: Efficiency of FTH-B&B

4.7.2.1 Efficiency of FTH-B&B

In Table 4.1, we report experimental results obtained on Taillard instances defined by
20 jobs and 20 machines published in [TAI93]: Ta021 – Ta027. In this experiment, we
evaluate the delay induced by the 3-phase communication mechanism on the perfor-
mance of the algorithm. We calculate the ratio R between the effective execution time
tExec and the idle time tI recorded on the workers. The idle time includes the com-
munication time tC and additional time of internal management (local overhead) tM ,
and the time masters take to perform the 3-phase communication mechanism t3−Phase

which includes: time of branching, time of storing subproblems received from children
and times of updating the subproblems explored by the grandchildren.

R = 100× tExec

tExec + tI
tI = t3−Phase + tC + tM

The columns 1 to 5 designate, respectively, the name of the instance, the effective
execution time, the 3-Phase communication time, the communication and local man-
agement time, and the parallel efficiency. Times are expressed in seconds. As shown in
Table 4.1, the use of the 3-phase communication mechanism is not costly in terms of
execution time. Indeed, it takes between 0,20% and 0,40% of the execution time which
is insignificant compared to the total execution time on all the experimented instances.
As shown in the last column, the workers spend on average 98, 92% of their time solving
subproblems on most of the instances.

The task recovery mechanism adopted by FTH-B&B aims at minimizing the redun-
dant work (rescheduled subproblems) when the processes handling them fail. Table 4.2
represents a comparison between two strategies of work management: with and without
task recovery in presence of failures. We measure the number of rescheduled subprob-
lems during 40 minutes of execution solving the FSP instances Ta021 - Ta027 described
above using 1120 grid nodes (112 masters and 1008 workers). The hierarchy is re-
built at each instant using BH. Table 4.2 shows respectively, the percentage of dead
processes, the number of rescheduled subproblems (redundant work) using the 3-phase
communication mechanism and without using it, and finally the speedup between the

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 101

Bench (%) Dead Redundant work Speedup
processes Task Recovery (TR) Without TR

Ta021 70,98% 27868835188 41478715872 01,48
Ta022 52,76% 2056690549 19667608092 09,56
Ta023 42,58% 5550936476 31977434544 05,76
Ta024 58,39% 4235795214 18402793860 04,34
Ta025 53,66% 7049773500 48082138104 07,07
Ta026 50,98% 5543751206 32421508416 05,84
Ta027 51,16% 1195024644 12529597080 10,48

Average 54,89% 7642972397 29222827995 6,36

Table 4.2: Redundant work with and without task recovery

two strategies.

We note that without using the 3-phase communication mechanism for task recovery,
the masters reschedule more subproblems than when they use it. Therefore, more
redundant work is done on all the tested instances, slowing down the algorithm. The
speedup between the two strategies is then calculated and shows that it is on average
equal to 6,36. That means that when using the task recovery mechanism, FTH-B&B
is 6 times more efficient than another approach which does not adopt a task recovery
mechanism in an unreliable environment.

4.7.2.2 Evaluation of the hierarchy maintenance strategies

As mentioned in Section 4.4, it is important to maintain the hierarchy balanced during
the lifetime of the algorithm in order to obtain a valid execution and to avoid isolating
some parts of the hierarchy when inner masters are subject to failures. In the follow-
ing, we experiment this aspect according to the three proposed approaches: SCA, ME,
and BH. During the experiments, we measured the degrees (number of children) of the
different masters. The degrees inform us about both the shape of the hierarchy and
whether the nodes are subject of bottlenecks or not. Indeed, when the average degrees
are constant on all the masters, the hierarchy remains balanced. However, when the
degrees differ and diverge from a master to another, the hierarchy is unbalanced. More-
over, if the degree of a master is high, it presents a risk to become a bottleneck. To
obtain a deeper hierarchy, the initial size of a group is fixed to 10 and the number of
launched processes on the same processor is duplicated to get a larger scale in terms of
processes. For each strategy, the algorithm is executed 10 times during 60 minutes.

Figure 4.14 shows the degrees recorded on the four most loaded masters when using
SCA to determine wether or not failures create new bottlenecks in the hierarchy. The
curve represents the evolution of the degrees as a function of time. First, we note that
the degrees of the masters increase over time (with the number of failed processes), the
fact that makes them slow because of the huge number of new workers to manage. Sec-
ond, the root master process rapidly becomes bottleneck passing from a degree equal to
10 at the beginning of the execution, to 1368 at the end. This is due to the fact that in

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 102

0 400 800 1200 1600 2000
0

200

400

600

800

1000

1200

1400

Time (sec)

Nu
mb

er
 of

 ch
ild

re
n (

De
gr

ee
)

root Master
Master

1,6
Master

4
Master

9

Figure 4.14: Average degree using SCA. The root master becomes rapidly a bottleneck
over the time.

this strategy, when an inner master fails, all its children connect to its closest safe par-
ent. Hence, the algorithm rapidly converges to a standard Master/Worker paradigm.
Although SCA is easy to implement and to manage, it is not efficient in presence of
failures since new bottlenecks are created and it rapidly converges to a standard Mas-
ter/Worker.

Figure 4.15 shows the evolution of the degrees of four most loaded masters using ME.
We note that the masters are less loaded compared to SCA and with a medium standard
deviation because when a master is designated, it receives the highest identifier and then
it will not be designated in the next election session. Nevertheless, the degrees have
doubled and have reached their maximum value after killing 25% of processes. This
is due to the fact that when an inner master fails, the newly designated master will
manage the children of the failed master in addition to its own children.

As mentioned in Section 4.4.3, there is no risk of the creation of new bottlenecks
and no risk of convergence to a standard Master/Worker paradigm when using BH.
Therefore, we compute the average degree of masters on each level instead of the most
loaded masters. The degrees are computed as follows:

Dtl =

|Γtl|∑
i=1

dit

|Γtl|
Dtl is the average degree of the masters located at the level l of the hierarchy at

the instant t, Γtl is the set of masters located at the level l at the instant t, and dit the
degree of the master mi at the instant t.

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 103

0 400 800 1200 1600 2000
0

5

10

15

20

25

Time (sec)

Av
er

ag
e

nu
m

be
r o

f c
hil

dr
en

 (d
eg

re
e)

master
0

master
1

master
2

master
3

Figure 4.15: Average degree using ME. Masters are less loaded than when using SCA

Figure 4.16 shows the computed average degrees of the different masters sorted by
their levels. First, we note that the masters resist well to failures and do not become
bottlenecks during all the experiments. Second, the root master maintains the same
degree during all the lifetime of the algorithm. Finally, the average degree decreases
softly for the three first levels and more rapidly for the fourth one. That can be
explained as follows: at the beginning, all sub-B&Bs are initially full because of the
balanced construction of the hierarchy. After the first failures, no master can acquire
orphan processes. Therefore, it uniformly dispatches them among its children, and so
on until achieving the leaves of the hierarchy (workers). The adaptability of FTH-B&B
allows the worker receiving an orphan worker, to change its behavior and becomes a
master. This newly converted master will have only one child (the migrated worker),
therefore its degree=1. Consequently, the overall degree of the masters at the down
levels of the hierarchy is affected. After many failures, the new masters acquire more
and more migrated orphan processes. Therefore, the size of sub-B&B groups converges
to the maximum size of a group stabilizing the global degree.

4.8 Conclusion
Solving to optimality combinatorial optimization problems using parallel B&B algo-
rithms requires a huge amount of computing resources. That can be achieved with
their execution at large scale on computational grids. The scalability can be ensured
using hierarchical Master/Worker-B&B overcoming the limits of the traditional Mas-
ter/Worker paradigm. However, the resources offered by such grids are volatile and
highly unreliable. Therefore, fault tolerance must be taken into account to ensure no
loss of data during the execution of the algorithm which is intolerable for exact solving

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 104

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

11

Time (sec)

Av
er

ag
e

de
gr

ee
 b

y l
ev

el

Level
0
 (root master)

Level
1

Level
2

Level
3

Figure 4.16: Average degree using BH. The masters resist well to failures and do not
become bottlenecks.

of COPs.

In this chapter, we have proposed FTH-B&B (Fault Tolerant Hierarchical B&B al-
gorithm) in order to deal with the fault tolerance issue of grids. The fault tolerance
is introduced at the application level. Indeed, it is composed of several fault tolerant
Master/Worker-based sub-B&Bs launched in parallel and organized into a hierarchy
so that each sub-B&B is composed of a unique master managing several workers and
performing locally a set of fault tolerance mechanisms. A 3-phase communication mech-
anism between a master, its children, and its grandchildren is proposed to distribute,
store, and recover work units in case of failures. This mechanism allows one to gain in
terms of execution time because the master does not reschedule the entire subproblems
but only the unexplored parts. In addition, three strategies are proposed to maintain
the hierarchy during the lifetime of the algorithm when it is faced to failures. Finally,
a distributed checkpointing mechanism is proposed in which each master performs its
checkpointing independently from others. Three operators are defined: Gather, Reduce,
and Deduce, allowing the reconstitution of the unexplored subproblems.

We have implemented our approach on top of ProActive and we have experimented
it on the Grid’5000 real nation-wide grid hardware infrastructure. To give more realism
to our experiments in an unreliable environment, the failures are generated accord-
ing to the exponential lifetime distribution function of the processes. The different
experiments demonstrate the ability of FTH-B&B to ensure fault tolerance while main-
taining high execution efficiency. Indeed, the approach enables to achieve an efficiency
of 98,92%. Moreover, the task recovery allows to speedup the approach in average more
than 6 times compared to the same approach but without using the 3-phase mecha-
nism. Moreover, the experiments show that the hierarchy can be maintained safe and

Chapter 4: FTH-B&B: A Fault Tolerant Hierarchical B&B 105

balanced, thanks to the balanced hierarchy BH maintenance strategy which is more
efficient than the master election ME and the simple connection to ascendants SCA
strategies.

Conclusions and Perspectives

IN this thesis, we presented our contributions to grid-based Branch-and-Bound algo-
rithms for exact resolution of combinatorial optimization problems. We particularly

addressed some challenging issues related to scalability, fault tolerance, heterogeneity of
resources and load balancing, and design and implementation of grid-aware applications.

In the first contribution, we proposed a P2P MW-based B&B framework (P2P-
B&B) aiming at facilitating the development of grid-based B&Bs, hiding the com-
plexity of the grid to the users, and developing a complete grid-based B&B dealing
with scalability. In this framework, the scalability is achieved by reducing the task re-
quest frequency towards the master process and enabling direct communication between
workers. The task request frequency is minimized by proposing a solution to handle
coarse-grained tasks without losing performance. This is achieved by performing multi-
ple executions of an atomic fine-grained task rather than single execution of a compact
coarse-grained task without overloading the master. Direct communication allows the
workers to share their upper bounds at real-time and to perform other collaboration
tasks alleviating the master process. The reported large scale experiments showed the
benefit of the direct communication between the workers in terms of speedup. However,
P2P-B&B is shown limited in terms of deployment time which is relatively high when
considering larger number of computing resources.

In the second contribution, we proposed a new HMW-based B&B (H-B&B) aim-
ing at improving the scalability of the conventional MW-based B&B by eliminating
the bottlenecks created at the level of the central master process. H-B&B is based
on (AHMW) framework on its side based on the P2P-B&B framework. Unlike the
literature approaches, H-B&B is fully dynamic as it is composed of several levels of
masters, and evolves over time according to the dynamic acquisition of new computing
nodes. Masters perform decentralized branching on subproblems using a new proposed
exploration strategy and workers perform a complete exploration of the received sub-
problems. The different components of H-B&B handle tasks of different grain sizes
according to their roles (master or worker) and to their position in the hierarchy. Ac-
cordingly, bottlenecks likely to be created at centralized points in the hierarchy can be
controlled.

106

Conclusions and Perspectives 107

Different large scale experiments of H-B&B demonstrate its efficiency compared to
existing single-level HMW-based B&B (1-H-B&B) and more significantly compared to
the classical MW-based B&B in terms of scalability. In fact, it deploys nodes much
faster than the two other approaches, thanks to the participation of all the launched
processes in the parallel deployment. This makes the number of deployed nodes increas-
ing exponentially in time remaining insensitive to the large scale number of resources.
The adaptive feature of masters behavior demonstrates its benefits on the efficiency of
this approach. Indeed, the contribution of masters in the exploration processes allows
to gain in terms of computing power. The average CPU-load on masters is minimized
and prevents from the creation of bottlenecks among the masters. In the approach,
the masters are assisted in the management of work requests and in the decomposition
to achieve acceptable grains. This allows them to distribute tasks much faster without
blocking the workers requesting tasks. Therefore, the workers spend less than 1% of the
total time waiting for tasks from their parents. From the masters’ point of view, this
time (1%) represents mainly the decomposition time to achieve medium and small task
grains, which facilitates the work control and minimizes the waiting time of workers.

The last contribution concerns Fault Tolerance. We proposed a Fault Tolerant Hi-
erarchical B&B (FTH-B&B). FTH-B&B, also based on AHMW and then P2P-B&B,
is an application-level distributed FT mechanism. A fault recovery mechanism is intro-
duced to avoid the loss of work units and to improve efficiency in terms of execution
time. Moreover, our approach ensures to maintain a balanced and safe hierarchy dur-
ing the lifetime of the algorithm in order to guarantee a valid functioning. Finally, an
efficient restart of the application is ensured by a distributed checkpointing mechanism
in case of failure. The different experiments demonstrate the ability of FTH-B&B to
ensure FT while maintaining high execution efficiency. Indeed, the approach enables
to achieve an efficiency of 98,92%. Moreover, the task recovery allows to speedup the
approach in average 6,36 times compared to other approaches without task recovery.
The experiments show that the hierarchy can be maintained safe and balanced.

The works we presented in this thesis can be extended further in several direc-
tions. First, improve the efficiency of H-B&B by the exploitation of the different grains
spawned at the different levels of the hierarchy. Consequently, to develop a grid-aware
adaptive load balancing mechanism, and to produce several forms of granularities ac-
cording to the processor power. Second we intend to develop an enhanced version which
takes into account a best effort mechanism that allows to exploit a much larger number
of resources on the used computational grid. We also intend to run our application on
real production grids such as EGI/EGEE [EGI][EGEE] that has a high rate of nodes
failure. Finally, we project to extend our hierarchical algorithms and frameworks to
actually challenging infrastructures such as multi-core architectures.

Publications

Journal Papers

A. Bendjoudi, N. Melab, and E-G. Talbi, "An adaptive hierarchical master-
worker (AHMW) framework for grids-Application to B&B algorithms", Jour-
nal of Parallel and Distributed Computing (JPDC), 2012.

A. Bendjoudi, N. Melab, and E-G Talbi. "P2P design and implementation of
a parallel branch and bound algorithm for grids". International Journal of Grid
Utility and Computing, Vol. 1, No 2, issn 1741-847X, pages 159–168, 2009.

Book Chapter

A. Bendjoudi, S. Guerdah, M. Mansoura, N. Melab, and E-G. Talbi. "P2P B&B
and GA for the Flow-Shop Scheduling Problem". Book chapter in Metaheuris-
tics for Scheduling: Distributed Computing Environments, Studies in Computational
Intelligence, Edited by F. Xhafa and A. Abraham, Springer-Verlag Berlin Heidelberg,
ISBN 978-3-540-69260-7, pages 301-321, September 2008.

Conferences and Workshops

A. Bendjoudi, N.Melab, and E-G Talbi. "H-B&B: A Hierarchical B&B for large
scale environments". The Fourth IEEE International Scalable Computing Challenge
IEEE/ACM CCGRID/SCALE’2011, Newport Beach, USA, May 23-26, 2011.

A. Bendjoudi, N.Melab, and E-G Talbi. "Fault-Tolerant Mechanism for Hi-
erarchical Branch and Bound Algorithm". In Proc. of IEEE IPDPS’2011, Woks.
on Large-Scale Parallel Processing (LSPP), May 16-20, Anchorage (Alaska), 2011.

A. Bendjoudi, N.Melab, and E-G Talbi. "A Parallel P2P Branch-and-Bound
Algorithm for Computational Grids". 7th International Workshop on Global and
Peer-to-Peer Computing, International Symposium on Cluster Computing and the Grid

108

Publications 109

2007 IEEE/ACM CCGRID 2007. Rio de Janeiro - Brasil, May 14-17, 2007.

E-G Talbi, A. Bendjoudi, and N.Melab. "Parallel Branch and Bound on P2P
Systems". International Conference on Complex, Intelligent and Software Intensive
Systems, IEEE/CISIS-2007, Vienna, Austria, 10-12 April 2007.

Bibliography

[AND86] S. Ahuja, C. Nicholas, and G. David. Linda and Friends. Computer, 19(8):26–
34, 1986.

[AFO06] K. Aida, Y. Futakata, and T. Osumi. Parallel Branch and Bound Algorithm
with the Hierarchical Master-Worker Paradigm on the Grid(Grid). IPSJ Trans.
on High Performance Computing Systems, 47(12):193–206, 2006.

[ANF03] K. Aida, W. Natsume, and Y. Futakata. Distributed Computing with Hierar-
chical Master-worker Paradigm for Parallel Branch and Bound Algorithm. Cluster
Computing and the Grid, IEEE International Symposium on, 0:156, 2003.

[ALL05] G. Allen et al. The Grid Application Toolkit: Towards Generic and Easy
Application Programming Interfaces for the Grid . In Proceedings of the IEEE,
Vol. 93, pages 534–550, March 2005.

[ACK+02] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: an experiment in public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[BBC+06] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici. Programming, Composing, Deploying for the Grid. In in Grid Com-
puting: Software Environments and. Springer Verlag, 2006.

[BBL02] M. Baker, R. Buyya, and D. Laforenza. Grids and grid technologies for wide
area distributed computing. . In Software-Practice & Experience, 32(15), 1437–
1466, 2002 .

[BCMH02] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssiere. Interactive and
Descriptor-based Deployment of Object-oriented Grid Applications. InIn Proceed-
ings of the 11th IEEE International Symposium on High Performance Distributed
Computing, pages 93–102, IEEE Computer Society, Edinburgh, Scotland, July
2002.

[BCM03] F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierar-
chical Grid Components. In International Symposium on Distributed Objects and
Applications (DOA, pages 1226–1242. Springer-Verlag, 2003.

110

Bibliography 111

[BMT07] A. Bendjoudi, N. Melab, E-G. Talbi. A Parallel P2P Branch-and-Bound
Algorithm for Computational Grids. 7th International Workshop on Global and
Peer-to-Peer Computing, IEEE/ACM International Symposium on Cluster Com-
puting and the Grid 2007 IEEE/ACM CCGRID 2007: 749–754. Rio de Janeiro -
Brasil / May 14-17, 2007.

[BGMM08] A. Bendjoudi, S. Guerdah, M. Mansoura, N. Melab, and E-G. Talbi. P2P
B&B and GA for the Flow-Shop Scheduling Problem. Book chapter in Metaheuris-
tics for Scheduling: Distributed Computing Environments, Studies in Computa-
tional Intelligence, Edited by F. Xhafa and A. Abraham, Springer-Verlag Berlin
Heidelberg, ISBN 978-3-540-69260-7, pages 301-321, September 2008.

[BMT09] A. Bendjoudi, N. Melab, and E-G. Talbi. P2P design and implementation
of a parallel branch and bound algorithm for grids. International Journal of Grid
and Utility Computing, 1(2):159–168, 2009.

[BMT11a] A. Bendjoudi, N. Melab, E-G. Talbi. Fault-Tolerant Mechanism for Hier-
archical Branch and Bound Algorithm. In Proc. of IEEE IPDPS’2011, Woks.
on Large-Scale Parallel Processing (LSPP): 1806–1814, May 16-20, Anchorage
(Alaska), 2011.

[BMT11b] A. Bendjoudi, N. Melab, E-G. Talbi. H-B&B: A Hierarchical B&B for large
scale environments. The Fourth IEEE International Scalable Computing Challenge
IEEE/ACM CCGRID/SCALE’2011, Newport Beach, USA, May 23-26, 2011.

[BMT12] A. Bendjoudi, N. Melab, and E-G. Talbi. An adaptive hierarchical master-
worker (AHMW) framework for grids – Application to B&B algorithms. J. Parallel
Distrib. Comput. 72(2): 120–131, 2012.

[BDLP08] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical Master-
Worker Skeletons. In LNCS, Vol. 4902, pages 248–264. Springer-Verlag Berlin
Heidelburg, 2008.

[BOI] BOINC: Berkeley Open Infrastructure for Network Computing,
http://boinc.berkeley.edu/.

[BDS03] L. Bote-Lorenzo, A. Dimitriadis, and E. G. Sanchez. Grid Characteristics
and Uses: A Grid Definition. In European Across Grids Conference, LNCS 2970,
Lecture Notes in Computer Science, pages 291–298, 2003.

[BCG00] B. Bourbeau, T. G. Crainic, and B. Gendron. Branch and Bound Paral-
lelization strategies applied to a depot location and container fleet management
problem. In Parallel Computing, Vol. 26 (2000) 27–46.

[CAR93] D. Caromel. Towards a Method of Object-Oriented Concurrent Program-
ming. Communications of the ACM, 36(9):90–102, September 1993.

[CDCL06] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive: an
integrated platform for programming and running applications on Grids and P2P
systems. In Computational Methos in Science and Technology 12(1), pages 69–77,
2006.

Bibliography 112

[CDHQ03] D. Caromel, C. Delb, L. Henrio, and R. Quilici. Asynchronous and auto-
matic continuations of results between communicating objects. In French patent
FR03 13876 - US Patent Pending .

[CLCS00] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. LOKI: A state-
driven fault injector for distributed systems. In Proc. of the Int. Conf. on Depend-
able Systems and Networks, June 2000.

[CON] Condor, http://www.cs.wisc.edu/condor/.

[COS07] A. Di-Costanzo. Branch and Bound with Peer to Peer for Large Scale Grids
PhD thesis, Sophia Antipolis, France, 2007.

[CBCM07] A. di Costanzo, L. Baduel, D. Caromel, and S. Matsuoka. Grid’BnB: A
Parallel Branch and Bound Framework for Grids. In Procedings of the 13th In-
ternational Conference on High Performance Computing, Goa, India, December
2007.

[CCR06] T.G. Crainic, B.L. Cun, and C. Roucairol. Parallel Combinatorial Optimiza-
tion. In chapter Parallel Branch-and-Bound Algorithms, pp 1–28. Wiley, 2006.

[DLT07] Y.S. Dai, G. Levitin, and K.S. Trivedi. Performance and reliability of tree-
structured grid services considering data dependence and failure correlation. IEEE
T. Computers, v. 56, pp. 925–936, 2007.

[DVC+09] Z. Dai, F. Viale, X. Chi, D. Caromel, and Z. Lu. A Task-Based Fault-
Tolerance Mechanism to Hierarchical Master/Worker with Divisible Tasks. High
Performance Computing and Communications, 10th IEEE International Confer-
ence on, 0:672–677, 2009.

[DJM96] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection environ-
ment for distributed systems. In 26th International Symposium on Fault-Tolerant
Computing (FTCS), pages 404–414, Sendai, Japan, June 1996.

[DDM11] M. Djamai, B. Derbel, and N. Melab. Distributed B&B: A Pure Peer-to-Peer
Approach. In Proc. of 25th IEEE LSPP/IPDPS, Anchorage, (Alaska) USA, Mai
16th-20th 2011.

[DAK65] RJ. Dakin. A tree-search algorithm for mixed integer programming problems.
In The Computer Journal, 8(3):250, 1965.

[DUGS06] L.M.A. Drummond, E. Uchoa, A.D. Gonçalves, J. M. N. Silva, M. C. P.
Santos, and M. C. S. de Castro. A grid-enabled distributed branch-and-bound
algorithm with application on the steiner problem in graphs. Parallel Comput.,
32:629–642, October 2006.

[EPH00] J. Eckstein, C. A. Phillips, and W. E. Hart. PICO: An Object-Oriented
Framework for Parallel Branch and Bound. Technical report, Rutgers University,
Piscataway, NJ, 2000.

[EGEE] EGEE, http://www.eu-egee.org.

Bibliography 113

[EGI] EGI, http://www.egi.eu.

[EAWJ96] M. Elnozahy, L. Alvisi, Y. Wang, D.B. Johnson. A survey of rollback-
recovery protocols in message-passing systems Report CMU-CS-96-181, School of
Computer Science, Carnegie Mellon Univ., Pittsburgh, 1996.

[FM87] R. Finkel and Udi Manber. Dib—a distributed implementation of backtracking.
ACM Trans. Program. Lang. Syst., 9(2):235–256, 1987.

[FOS02] I. Foster. What is the Grid ? A Three Point Checklist. Grid Today, 1(6), July
22 2002.

[FOS05] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.
In IFIP International Conference on Network and Parallel Computing, in LNCS
3779. Springer-Verlag, 2005.

[FK98] I. Foster, and C. Kesselman. The grid: blueprint for a new computing infras-
tructure. In Morgan Kaufmann Publishers Inc SanFrancisco, CA, USA, 1998.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling
Scalable Virtual Organizations. In Int. J. High Perform. Comput. Appl., 15(3)
200–222, 2001.

[GBF+02] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Anan-
Thakrishman, F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju. Program-
ming the Grid: Distributed Software Components, P2P and Grid Web Services for
Scientific Applications. In Cluster Computing, 5(3):325–336, 2002.

[GAR82] H. Garcia-Molina. Elections in a Distributed Computing System. In IEEE
Transactions on Computers, Vol. C-31, No. 1, 48–59, 1982.

[GAR79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Commpleteness. W. H. Freeman & Co., ISBN 0-7167-1045-5, p.
208–209, New York, NY, 1979.

[GC94] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms: Survey
and Synthesis. Operations Research, 42(06):1042–1066, 1994.

[GSDB09] M. Ghasemi-Gol, M. Sabzekar, H. Deldari, and A-H. Bahmani. A Linda-
based Hierarchical Master-Worker Model. International Journal of Computer The-
ory and Engineering, 1(5):1793–8201, December, 2009.

[GJK05] T. Goodale et al. SAGA: A Simple API for Grid Applications, High-Level Ap-
plication Programming on the Grid. http://www.cs.vu.nl/kielmann/papers/saga-
sc05.pdf, 2005.

[GKLY00] J. Goux, S. Kulkami, J. Linderoth, and M. Yoder. An enabling framework
for master-worker applications on the computational grid. IEEE Symposium and
High Performance Distributed Computing (HPDC9), 9:43, August 2000.

Bibliography 114

[GLY00] J-P. Goux, J. Linderoth, and M. Yoder. Metacomputing and the Master-
Worker Paradigm. In Preprint MCS/ANL-P792-0200, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, 2000.

[GRIDa] Grid’5000, https://www.grid5000.fr.

[GLOB] Globus, http://www.globus.org.

[GRIDb] GridBus, http://www.gridbus.org.

[GRI02] A.S. Grimshaw. What is a Grid ? Grid Today, 1(26), 2002.

[HT05] W. Hoarau, S. Tixeuil. A language-driven tool for fault injection in distributed
applications, In Proceedings of the IEEE/ACM Workshop GRID, November 2005.

[HTV05] W. Hoarau, S. Tixeuil, and F. Vauchelles. Easy Fault Injection and Stress
Testing with FAIL-FCI. Technical Report 1421, Laboratoire de Recherche en In-
formatique, Universit Paris Sud, October 2005.

[HTV07] W. Hoarau, S. Tixeuil, and F. Vauchelles. FAIL-FCI: Versatile fault injection.
Future Generation Computer Systems, Vol. 23, 913–919, 2007.

[IAM00] A. Iamnitchi. A problem-specific fault-tolerance mechanism for asynchronous,
distributed systems. In Proceedings of the International Conference on Parallel
Processing 2000, pages 4–14, 2000.

[JOH54] S.M. Johnson. Optimal two and three-stage production schedules with setup
times included. Naval Research Logistis Quarterly,1:61–68. 1954.

[KBM02] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid
resource management systems for distributed computing . In Software-Practice &
Experience, 32(2) 135–164, 2002.

[LD60] AH. Land, and AG. Doig. An Automatic Method of Solving Discrete Program-
ming Problems. In Econometrica, 28(3):497–520, 1960.

[LFGL01] G. V. Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid
Kit. In Concurrency and Computation: Practice and Experience, 13:643–662,
2001.

[LHPB04] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Bar-
roso, P. Buncic, P. Kunszt. Middleware for the next generation Grid infrastructure.
In Proceedings of CHEP, Interlaken, Switzerland, 2004.

[LLK78] J.K. Lenstra, B.J. Lageweg, and A.H.G.R. Kan. A General boundind scheme
for the permutation flow-shop problem. Operations Research, 26(1):53–67, 1978.

[MEL05] N. Melab. Contribution a la resolution de problemes d’optimisation combi-
natoire sur grilles de calcul. Habilitation a Diriger des Recherches de l’Université
Lille1, 2005.

Bibliography 115

[MEZ07] M. Mezmaz. Une approche efficace pour le passage sur grilles de calcul de
methodes d’optimisation combinatoire PhD Thesis, Université Lille1, 2007.

[MMT07a] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-based Parallel Approach
of the Multi-Objective Branch and Bound. In Fifteen Euromicro Conference on
Parallel, Distributed and Network-based Processing, IEEE Computer Society Press.
Naples, Italy, February. 7-9 2007.

[MMT07b] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-enabled Branch and Bound
Algorithm for Solving Challenging Combinatorial Optimization Problems. In Proc.
of 21th IEEE Intl. Parallel and Distributed Processing Symposium, Long Beach,
California, March 26th - 30th 2007.

[NORD] NorduGrid, http://www.nordugrid.org.

[OAR] OAR, http://oar.imag.fr/

[OGCE] Open grid computing environment (ogce). http://www.ogce.org.

[PS98] C.H. Papadimitriou, and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. In Prentice-Hall, Inc. ISBN: 0-13-152462-3, 1982.

[PROA] ProActive, http://proactive.objectweb.org.

[PL96] J. Pruyne and M. Livny. Interfacing Condor and PVM to haress the cycles of
workstation clusters. Journal on Future Generation of Computer Systems, (12):56–
61, 1996.

[RLS03] T. Ralphs, L. Ladanyi, and M. Saltzman. Parallel Branch, Cut, and Price
for Large-Scale Discrete Optmization. In Mathematical Programming 98 (2003),
253–280.

[RENA] Renater, http://www.renater.fr/.

[SNS+97] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Tak-
agi. Ninf: A network based information library for global world-wide computing
infrastructure. In HPCN Europe, pages 491–502, 1997.

[SNMD02] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H.
Casanova. Overview of GridRPC: A Remote Procedure Call API for Grid Com-
puting. In 3rd International Workshop on Grid Computing, November, 2002.

[SFB00] D.T. Stott et al. Nftape: a framework for assessing dependability in dis-
tributed systems with lightweight fault injectors. In Proceedings of the IEEE In-
ternational Computer Performance and Dependability Symposium, pages 91–100,
March 2000.

[TAI93] E. Taillard. Benchmarks for basic scheduling problems. European Journal of
Operations Research, 64:278–285, 1993.

Bibliography 116

[TNS+03] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-
G: A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. In Journal of Grid Computing, 1(1) 41–51, 2003.

[TTL05] D. Thain, T. Tannenbaum, and M. Livny. Distribute computing in practice:
the Condor experience. In Concurrency-Practice and Experience, 17(2-4) 323–356,
2005.

[TRI89] H.W.J.M. Trienekens. Parallel Branch and Bound on an MIMD System. Re-
port 8640/A, Econometric Institute, Erasmus University, Rotterdam, Netherlands,
1986.

[TB92] H.W.J.M. Trienekens and A. Bruin. Towards a Taxonomy of Parallel Branch
and Bound Algorithms. In Erasmus University, 1992.

[UNIC] Unicore Forum. http://www.unicore.org.

[WISD] WISDOM: Initiative for grid-enabled drug discovery against neglected and
emergent diseases. http://wisdom.eu-egee.fr/.

[XDP04] M. Xie, Y.S. Dai, and K.L. Poh. Computing Systems Reliability: Models and
Analysis. Kluwer Academic Publishers: NewYork, NY, USA, 2004.

[XTRE] XtremWeb, http://www.xtremweb.net.

[XRL05] Y. Xu, T. K. Ralphs, L. Lada’nyi, and M. J. Saltzman. Alps: A framework for
implementing parallel search algorithms. In Proceedings of the Ninth INFORMS
Computing Society Conference, pages 319–334, 2005.

