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Résumé

Je présente dans ce mémoire mes travaux sur les limites d’échelle de grandes structures aléatoires. Il s’agit
de décrire les structures combinatoires dans la limite des grandes tailles en prenant un point de vue objectif
dans le sens où on cherche des limites des objets, et non pas seulement de paramètres caractéristiques
(même si ce n’est pas toujours le cas dans les résultats que je présente).

Le cadre général est celui des structures critiques pour lesquelles on a typiquement des distances carac-
téristiques polynomiales en la taille, et non concentrées. Sauf exception, ces structures ne sont en général
pas adaptées aux applications informatiques. Elles sont cependant essentielles de part l’universalité de
leurs propriétés asymptotiques, prouvées ou attendues.

Je parle en particulier d’arbres uniformément choisis, de graphes aléatoires, d’arbres couvrant mini-
maux et de partitions récursives de domaines du plan:

• CHAPITRE 2 – ARBRES ALÉATOIRES UNIFORMES. Il s’agit ici de mieux comprendre un objet
limite essentiel, l’arbre continu brownien (CRT). Je présente quelques résultats de convergence
pour des modèles combinatoires “non-branchants” tels que des arbres sujets aux symétries [P20] et
les arbres à distribution de degrés fixée [P22]. Je décris enfin une nouvelle décomposition du CRT
basée sur une destruction partielle [P6].

• CHAPITRE 3 – GRAPHES ALÉATOIRES. J’y décris la construction algorithmique de la limite d’échel-
le des graphes aléatoires du modèle d’Erdős–Rényi dans la zone critique [P4], et je fais le lien avec
le CRT et donne des constructions structurelles de l’espace métrique limite [P3].

• CHAPITRE 4 – ARBRES COUVRANT MINIMAUX. J’y montre qu’une connection avec les graphes
aléatoires permet de quantifier les distances dans un arbre convrant aléatoire. On obtient non seule-
ment l’ordre de grandeur de l’espérance du diamètre [P10], mais aussi la limite d’échelle en tant
qu’espace métrique mesuré [P5].

• CHAPITRE 5 – PARTITIONS RÉCURSIVES. Sur deux exemples, les arbres cadrant [P23] et les lam-
inations du disque [P25], je montre que des idées basées sur des théorèmes de point fixe conduisent
à des convergences de processus, où les limites sont inhabituelles, et caractérisées par des décom-
positions résursives.
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Chapter 1

Introduction

1.1 General context and overview

This document presents in a synthetic and (hopefully) gentle way the results about scaling limits of large
combinatorial structures I have contributed to: we will talk about random trees, random graphs, but also
about randomized data structures. The subset of results I will present form, in my opinion, a very coherent
collection that has a common story, which I will do my best to tell properly. I also like my other results
very much, which are more in line with the research directions which I started pursuing during my PhD (on
random geometric graphs, branching random walk, combinatorial testing). However, they now certainly
occupy only a smaller proportion of my time, and my research perspectives and long term projects do not
seem to modify this trend.

Most of my research revolve around the estimation of distances in combinatorial structures. From
the point of view of applications, distances in data structures give a handle on their performances, and
distances in networks allow to estimate their navigability. From a theoretical point of view, studying
distances is a way a natural way get access to the object itself by considering a graph as a metric space
(endowed with the graph distance). It is this point of view that will occupy us from now; when it is
possible to rescale the graph distances in such a way that it resembles in the limit a non-trivial (usually
compact) random metric space, we call that limit object the scaling limit. Most applications to computer
science require logarithmic distances for algorithms to be efficient, and unfortunately, the concentration of
pairwise distances forbid the existence of any non-trivial and compact, or even interesting, scaling limit.
This is why we will focus on some critical combinatorial structures, in which distances are polynomial
and not concentrated; although it makes them inefficient from a concrete perspective (unless nothing better
can be done), they are nevertheless essential since they keep popping up everywhere.

The results we present in the first three chapters are all tightly connected. I always find it tricky to
decide how to tell a story: should I take the path that let the audience discover the connections along the
way, or tell in advance some of the important guiding ideas, even if that may spoil some of the surprises?
Here the story actually starts with Chapter 3, and the question of the metric structure of the minimum
spanning tree of a randomly weighted complete graph. This question appears as Research Problem 23
in [53], where it is asked whether the diameter scales like n1/2, relaying an earlier idea of Aldous [4]. I
learned this question almost ten years ago from Claire Mathieu during my Master research. A few months
ago only, I was happy to tell her I knew the answer, and much more: it took some time trying to push
a lower bound of n1/3 up to n1/2 until we realized that we were trying to tighten the wrong end of the
range... The first three chapters are in some sense the written version of this tale: understanding distances
in the minimum spanning tree was done using a connection with random graphs, and an unexpectedly
precise result about the scaling limit of such graphs made it possible to go back to the fine structure of
the minimum spanning tree and to construct its scaling limit. Chapter 1 essentially tells about some of the
results about (uniformly) random trees which were gathered along the way. I have also included the results
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2 Chapter 1. Introduction

about the distribution of extreme distances in non-plane binary trees, which originally did not make it into
the script, but end up fitting nicely in the picture.

The results of Chapter 5 are in some sense fundamentally different: they originate in the analysis of
algorithms and the chase for finer estimation of the performance of data structures, and provide a bridge
to the topics of my PhD. The main question was initially to estimate the variance of the cost of a search
query in a random k-d or quad tree (a multidimensional tree-like data structure). The problem of the
expected value had been solved by Flajolet et al. [49, 51], but every tentative to estimate higher moments
had resulted in failure due some pernicious mistake... The result of our investigations in [P23] prove the
existence of a continuous limit cost process (where the variable is the location of the query). But arguably,
although I was not part of it, the most important outcome of this project is the general theory of Banach-
space valued random variables using the contraction method by Neininger and Sulzbach [90] on which
our result in [P23] heavily relies. I am very happy that Philippe has seen this question he liked very much
solved before he left. The results discussed in Section 5.3 are also a by-product of the initial project on
the data structure. There, the processes of interest actually encode trees, and yield yet another natural real
tree that does not come from an excursion of a Lévy process.

After some short initial preliminaries in Section 1.2, I will present the context and motivations for the
results described in this document in Sections 1.3 to Section 1.6. The presentation in the introduction does
not aim at giving a comprehensive overview of the background, but merely give enough information to
allow the reader to understand the motivation underlying the results.

A list of publications together with links to download the files is available on page 46; the ones which
have not been submitted by the time of the redaction of this document should be put on arXiv soon, and
are available upon request.

1.2 Preliminaries

1.2.1 Convergence of metric spaces

GROMOV–HAUSDORFF DISTANCE. The metric space approach of the scaling limit requires to compare
metric spaces, sometimes measured, and we introduce the relevant distance here. Comparing two subsets
of a single metric space is done using the Hausdorff distance. To compare two metric spaces, Gromov’s
idea was to embed them into a single one in the best possible way (so as to minimize the Hausdorff
distance). More precisely, given two compact metric spaces (X, d) and (X ′, d′), define the Gromov–
Hausdorff distance dGH(X,X ′) between X and X ′ by

dGH(X,X ′) := inf{dZH(φ(X), φ′(X ′))},

where the infimum ranges over the choice of compact metric spaces (Z, dZ), and isometries φ : X → Z
and φ′ : X ′ → Z, and dZH denotes the Hausdorff distance in Z. The distance dGH is a pseudo-metric
between compact metric spaces, and induces a metric on the quotient space which identifies two compact
metric spaces if they are isometric [see, e.g., 42, 56, 74].

GROMOV–HAUSDORFF–PROKHOROV DISTANCE. The analysis of the minimum spanning tree is made
easier if we also control the amount of vertices at different locations. This requires to consider the graphs
as measured metric spaces. The “measure” part is controlled using Prokhorov’s distance in the same way
that the “metric” part is controlled using Hausdorff distance. Let M be the set of measured isometry-
equivalence classes of compact measured metric spaces, and let dGHP denote the Gromov–Hausdorff–
Prokhorov distance onM; the pair (M, dGHP) forms a Polish space.

SEQUENCES OF MEASURED METRIC SPACES. The random graphs we will study are not connected, and to
look at them as a whole one actually needs metrics on a space of sequences of metric spaces, or measured
metric spaces. The product topology is actually too weak for us, and we introduce `p-like spaces built on



1.2. Preliminaries 3

the Gromov–Hausdorff and Gromov–Hausdorff–Prokhorov distances. For finite sequences, we append an
infinite number of metric (or measured metric) spaces consisting of a single point (with no mass).

For two sequences of compact metric spaces A = (Ai, i ≥ 1) and B = (Bi, i ≥ 1) we write

dpGH(A,B) =

∑
i≥1

dGH(Ai, Bi)
p

1/p

.

Similarly, if A = (Ai, i ≥ 1) and B = (Bi, i ≥ 1) are now two sequences of compact measured metric
spaces, we write

dpGHP(A,B) =

∑
i≥1

dGHP(Ai, Bi)
p

1/p

.

1.2.2 Trees, exploration, and encodings

For convenience we write N = {1, 2, . . . } for the set of positive natural numbers. First recall some
definitions related to standard rooted plane trees. Let U =

⋃
n≥0Nn be the set of finite words on the

alphabet N, where N0 = {∅}, and ∅ denotes the empty word. Denote by uv the concatenation of u and
v; by convention ∅u = u∅ = u.

A subset T of U is a plane tree if it satisfies the following properties:

• it contains ∅ (called the root),

• it is stable by prefix (if uv ∈ T for u and v in U , then u ∈ T ), and

• if (uk ∈ T for some k > 1 and u ∈ U) then uj ∈ T for j in {1, . . . , k}.

This last condition appears necessary to get a unique tree with a given genealogical structure. The set of
plane trees will be denoted by T.

Notice that the lexicographical order < on U , also named the depth-first order, induces a total order
on any tree t; this is of prime importance for the encodings of t we will present. For t ∈ T, and u ∈ t, let
ct(u) = max{i : ui ∈ t} be the number of children of u in t. The depth of u in t, its number of letters
as a word in U , is denoted |u|. The notation |t| refers to the cardinality of t, its number of nodes including
the root ∅.

With a tree t ∈ T, one can associate its degree sequence s(t) = (ni(t), i ≥ 0), where ni(t) = #{u ∈
t : ct(u) = i} is the number of nodes with degree i in t.

EXPLORATION AND ENCODINGS. We will use the usual encodings: height processH and depth-first walk
S (or Łukasiewicz path). These encodings are defined by first fixing their values at the integral points, and
then linear interpolation in between (See Figure 1.1). For a tree t ∈ T, let ũ1 = ∅ < ũ2 < · · · < ũ|t|
denote the nodes of t sorted according to the lexicographic order. Then we define H = Ht by H(i) =
|ũi+1|, S = St by St(i) =

∑i
j=1(ct(ũj)− 1); the process Ht is defined on [0, |t| − 1] and St on [0, |t|].

Figure 1.1: A plane tree t ∈ T, its height process Ht, and its depth-first walk (Łukasiewicz walk) St.
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GALTON–WATSON TREES, SIMPLY GENERATED TREES AND BROWNIAN ASYMPTOTICS. The most
classical models of random trees come in two (more or less equivalent) versions the probabilistic point
of view of Galton–Watson trees (the family tree of a Galton–Watson process) and the (more) combinato-
rial version in the simply generated trees.

To define the Galton–Watson tree with progeny distribution ξ, one first consider a family of indepen-
dent copies of ξ, {ξ(u), u ∈ U}. A node u = i1i2 . . . ik ∈ U is in the tree if one has u = ∅ or k ≥ 1 and
i1 ≤ ξ(∅) and for all 2 ≤ j ≤ k one has ij ≤ ξ(i1i2 . . . ij−1).

Simply generated trees are the combinatorial counterpart. In this model trees are sampled with prob-
ability proportional to some weight which has a product form in functions of the degrees of all the nodes.
One is given a collection of non-negative weights (ai, i ≥ 0). Then, a tree t is given weight

w(t) :=
∏
u∈t

act(u) =
∏
i≥0

a
ni(t)
i .

Then, a fixed tree t of size n is chosen with probability w(t)/
∑

t′∈Tn
w(t). This is easily seen to be

similar to the Galton–Watson model.
Some important trees which are not plane, such as uniform labelled trees or Cayley trees, are easily

obtained (at least their shape, the labels are irrelevant but for the definition of the distribution) using the
previous model. Some others, where the progenies are indistinguishable (e.g., non-plane and unlabelled
binary trees) do not fit in the model.

1.3 Large random trees

ASYMPTOTICS AND SCALING LIMITS FOR LARGE RANDOM TREES. Investigations of the asymptotics
for distances in such random trees started with Rényi and Szekeres [99] who proved in particular that the
average height of labelled non-plane trees of size n is asymptotic to 2

√
πn. De Bruijn, Knuth, and Rice

[35] gave a similar result for general plane trees. Rényi and Szekeres actually also derived the limit law
for the height. The first hints of universality are due to Flajolet and Odlyzko [47] who gave the limit law
and the convergence of all moments in a paper whose title could not be more humble. They treated the
case of Galton–Watson trees with a progeny distribution having small exponential moments.

Theorem 1.1 (Flajolet and Odlyzko [47]). The height Hn of a random tree taken uniformly from Yn
admits a limiting theta distribution: for any fixed x > 0, there holds

lim
n→∞

P

(
Hn ≥

2

σ
x
√
n

)
= θ(x) := 2

∑
k≥1

(4k2x2 − 1)e−2k
2x2 .

For those who could read them, this together with the results of Meir and Moon [84] about the altitude
of a random node (which says that the distribution of a random node follows a Rayleigh distribution with
density xe−x

2/2) provides the first signs of universal Brownian asymptotics: for a standard Brownian
excursion e and U , an independent random variable uniform on [0, 1], the distribution of e(U) is Rayleigh
while sup0≤s≤1 e(s) is distributed according to θ(x) [68]. Aldous was the first to make the connection
explicit for general Galton–Watson trees (see also [73]).

Proposition 1.1 (Aldous [4]). Let µ = (µi, i ≥ 0) be a distribution with mean one and variance σ2 ∈
(0,+∞), and let Pµ be the distribution of a Galton–Watson tree with offspring distribution µ. Along the
subsequence {n : Pµ(|t| = n) > 0}, under Pµ( · | |t| = n)(

Ht(nx)√
n

)
x∈[0,1]

−−−→
n→∞

(
2e(x)

σµ

)
x∈[0,1]

in distribution, where e denotes a standard Brownian excursion, the convergence holding in the space
C[0, 1] equipped with the topology of uniform convergence.
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REAL TREES AND THE BROWNIAN CONTINUUM RANDOM TREE. It is possible to re-interpret the pre-
vious result about the convergence of the encodings as a convergence of the trees themselves, as metric
spaces. The natural scaling limits for large trees are real trees. A compact metric space (X, d) is called a
real tree if it is geodesic and acyclic:

• for every x, y ∈ X there exists a unique isometry φx,y : [0, d(x, y)]→ X such that φxy(0) = x and
φxy(d(x, y)) = y, and

• if q is a continuous injective map from [0, 1] to X such that q(0) = x and q(1) = y then q([0, 1]) =
φx,y([0, d(x, y)]).

Continuous excursions may be seen as encoding real trees [7, 42, 74]: Consider a continuous function
f : [0, 1] → [0,∞) such that f(0) = f(1) = 0 and f(s) ≥ 0 for all s ∈ (0, 1). Define df := [0, 1]2 →
[0,∞) by

df (x, y) = f(x) + f(y)− 2 inf{f(s) : x ∧ y ≤ s ≤ x ∨ y}.

One easily verifies that df is a pseudo-metric on [0, 1]. Let x ∼ y if df (x, y) = 0. Write Tf for the
quotient [0, 1]/∼; then (Tf , df ) is a real tree.

The Brownian continuum random tree is defined as T2e, the real tree encoded by twice a Brownian
excursion [4, 6, 7]. The following version of Proposition 1.1 is due to Le Gall [74].

Theorem 1.2. Let Tn be a Galton–Watson tree with progeny distribution ξ, conditioned to have size n.
Let dn be the graph distance in Tn. Then,

(Tn, n
−1/2dn)

d−→ (T2e, σ−1d2e)

in distribution in the Gromov–Hausdorff sense.

Aldous [4] conjectured that many other models should also rescale as the Brownian CRT. Models of
trees which are more combinatorial in nature are harder to represent probabilistically; they are especially
interesting since their treatment must put new ideas on the table.

In Sections 2.1 and 2.2, we present our contributions to the analysis of two such models: random
non-plane unlabeled binary trees (Otter trees) [P19, P20] and trees with a fixed degree sequence [P22].

CUTTING DOWN TREES AND A NEW DECOMPOSITION OF THE BROWNIAN CRT. Random trees also
exhibit some surprising asymptotics. The subject of cutting down trees was introduced by Meir and Moon
[82, 83]. One is given a rooted tree T which is pruned by random removal of edges. At each step, only
the portion containing the root is retained (we refer to the portions not containing the root as the pruned
portions) and the process continues until eventually the root has been isolated. The main parameter of
interest is the random number of cuts necessary to isolate the root. (The dual problem of isolating a leaf
or a node with a specific label has been considered by Kuba and Panholzer [71, 72].)

For conditioned trees emerging from a progeny distribution with variance σ2 ∈ (0,∞), once divided
by σ
√
n, the number of cuts required to isolate the root of a conditioned tree of size n converges in

distribution to a Rayleigh random variable with density xe−x
2/2 on [0,∞). (In this form, under only a

second moment assumption, this was proved by Janson [64]; below we discuss earlier, partial results in
this direction.) The fact that the Rayleigh distribution appears here with a

√
n scaling in a setting involving

conditioned trees struck us as deserving of explanation. Indeed, as we already mentioned, the Rayleigh
distribution also arises as the limiting distribution of the length of a path between two uniformly random
nodes in a conditioned tree, after appropriate rescaling.

In Section 2.3 we show that the existence of a Rayleigh limit in both cases is not fortuitous. We prove
using a coupling method that the number of cuts and the distance between two random vertices are
asymptotically equal in distribution (modulo a constant factor). Our proof also yields a novel reversible
decomposition of the Brownian continuum random tree.
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1.4 Erdős–Rényi random graphs

Since its introduction by Erdős and Rényi [41], the model G(n, p) of random graphs has received an
enormous amount of attention [28, 66]. In this model, a graph on n labeled vertices {1, 2, . . . , n} is
chosen randomly by joining any two vertices by an edge with probability p, independently for different
pairs of vertices. A simple construction of the entire process (G(n, p), p ∈ [0, 1]) consists in assigning an
independent [0, 1]-uniform weight to every pair of vertices, and declaring that two nodes are bound by an
edge in G(n, p) if the corresponding weight is at most p. From now on, we will assume that the graphs
are coupled in this way.

THE PHASE TRANSITION. This model exhibits a radical change in structure (or phase transition) for large
n when the average degree approaches one, that is for p = p(n) ∼ 1/n. For p ∼ c/n with c < 1, the
largest connected component has size (number of vertices) O(log n). On the other hand, when c > 1,
there is a connected component containing a positive proportion of the vertices (the giant component).
The cases c < 1 and c > 1 are called subcritical and supercritical, respectively. This phase transition was
discovered by Erdős and Rényi in their seminal paper [41]; they further observed that in the critical case,
when p = 1/n, the largest components of G(n, p) have sizes of order n2/3. For this reason, the phase
transition in random graphs is sometimes dubbed the double jump.

THE CRITICAL WINDOW. The apparent double jump is actually only an artefact of the parametrization
which is much too crude, and understanding the critical random graph (when p = p(n) ∼ 1/n) requires
a different and finer scaling: the natural parametrization turns out to be of the form p = p(n) = 1/n +
λn−4/3, for λ = o(n1/3) [27, 77, 78]. We will restrict our attention to λ ∈ R; this parameter range is then
usually called the critical window. One of the most significant results about random graphs in the critical
regime was proved by Aldous [10]. He observed that one could encode various aspects of the structure
of the random graph (specifically, the sizes and number of edges of the components) using stochastic
processes. His insight was that standard limit theory for such processes could then be used to get at the
relevant limiting quantities which could, moreover, be analyzed using powerful stochastic-process tools.
Fix λ ∈ R, set p = 1/n + λn−4/3 and write Zni and Sni for the size and surplus (that is, the number
of edges which would need to be removed in order to obtain a tree) of Cni , the i-th largest connected
component of G(n, p). Set Zn = (Zn1 , Z

n
2 , . . . ) and Sn = (Sn1 , S

n
2 , . . . ).

Theorem 1.3 (Aldous [10]). As n→∞.

(n−2/3Zn,Sn)
d−→ (Z,S).

Here, the convergence of the first co-ordinate takes place in `2↘, the set of infinite sequences (x1, x2, . . . )

with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i≥1 x
2
i <∞. (See also [65, 78].) The limit (Z,S) is described in terms of

a Brownian motion with parabolic drift, (W λ(t), t ≥ 0), where

W λ(t) := W (t) + tλ− t2

2

and (W (t), t ≥ 0) is a standard Brownian motion. The limit Z has the distribution of the ordered sequence
of lengths of excursions away from zero of the reflected process W λ(t) − min0≤s≤tW

λ(s), while S is
the sequence of numbers of points of a Poisson point process with rate one in R+ × R+ lying under the
corresponding excursions. Aldous’ limiting picture has since been extended to many other models, with
for instance to random graphs with “immigration” [14], hypergraphs [55], percolation on random regular
graphs with fixed degree [87], random graphs with a prescribed degree sequence [67, 100], and rank-1
random graphs [26, 62, 103].

In Chapter 3, we explain why the representation underlying Theorem 1.3 actually carries much more
information than it seems. In particular, we show that the Brownian process with parabolic drift, and
the location of the Poisson points allow to recover the metric structure of the graph.
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1.5 The minimum spanning tree

Given a connected graph together with edge weights, a minimum weight spanning tree or minimum span-
ning tree of G is a connected subgraph of G that minimizes the sum of the weights of its edges. We
will assume that all weights are distinct, which ensures that the minimum spanning tree (MST) is unique.
Minimum spanning trees have been studied under various models of randomness, in particular the Eu-
clidean model (distances in the graph arise from distances between points in random points Rd) and the
mean-field model (distances are independent and identically distributed). It is the latter mean-field setting
we are interested in: We consider a complete graph whose edges are weighted by i.i.d. random variables
uniform in [0, 1].

Although local parameters of have received a lot of attention, the global structure of the minimum
spanning tree remained until recently mostly untouched. The study is partly motivated by Research Prob-
lem 23 of [53] who relays a question/conjecture of Aldous [4] that the Brownian CRT might actually be
the scaling limit of the minimum spanning tree of the complete graph with random weights (described as
IMST in [4], for which the local structure matches).

KRUSKAL’S ALGORITHM. Kruskal’s algorithm provides a strong connection between the minimum span-
ning tree and Erdős–Rényi random graphs. One can build a forest F (n, p) as follows: taking the edges
in increasing order of weight (which we assume all distinct), add the current edge to the forest unless it
creates a cycle; stop before the first edge with weight greater than p. If the weights are the independent
and uniform used to construct G(n, p), then the collection of vertex sets of the connected component of
F (n, p) and G(n, p) are the same (we only removed edges which were already binding two vertices of the
same connected component). In other words, the sizes of the connected components of F (n, p) exhibit
the same phase transition as those of G(n, p) when p ∼ 1/n. Note that distances in F (n, p) never change
once they become finite.

In Chapter 4, we explain how this connection between the minimum spanning tree and the random
graph allows to locate the range of values of p where the metric structure of the MST is built. This
yields estimates of the expected diameter [P9, P10], and a construction of the scaling limit, using
knowledge of the scaling limit of the random graphs [P5].

1.6 Random recursive partitions

QUAD TREES AND MULTIDIMENSIONAL SEARCH. The quadtree [46] allows to manage multidimensional
data by extending the divide-and-conquer approach of the binary search tree. Consider the point sequence
p1, p2, . . . , pn ∈ [0, 1]2. As we build the tree, regions of the unit square are associated to the nodes where
the points are stored. Initially, the root is associated with the region [0, 1]2 and the data structure is empty.
The first point p1 is stored at the root, and divides the unit square into four regions Q1, . . . , Q4, each
assigned to a child of the root. More generally, when i points have already been inserted, we have a set of
1 + 3i disjoint (lower-level) regions that cover the unit square. The point pi+1 is stored in the node (say u)
that corresponds to the region it falls in, divides it into four new regions that are assigned to the children
of u. See Figure 1.2.

ANALYSIS OF PARTIAL MATCH RETRIEVAL. For the analysis, we will focus on the model of random
quadtrees, where the data points are independent and uniformly distributed in the unit square. In the
present case, the data are just points, and the problem of partial match retrieval consists in reporting all the
data with one of the coordinates (say the first) being s ∈ [0, 1]. It is a simple observation that the number
of nodes of the tree visited when performing the search is precisely Cn(s), the number of regions in the
quadtree that insersect a vertical line at s. The first analysis of partial match in quadtrees is due to Flajolet
et al. [51] (after the pioneering work of Flajolet and Puech [49] in the case of k-d trees). They studied the
singularities of a differential system for the generating functions of partial match cost to prove that, for a
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1

2

3

4

1 2 3 4

Figure 1.2: An example of a (point) quadtree: on the left the partition of the unit square induced by the tree data
structure on the right (the children are ordered according to the numbering of the regions on the left). Answering
the partial match query materialized by the dashed line on the left requires to visit the points/nodes coloured in red.
Note that each one of the visited nodes correspond to a horizontal line that is crossed by the query.

random query ξ, being independent of the tree and uniformly distributed on [0, 1],

E[Cn(ξ)] ∼ κ nβ, (1.1)

for some explicit constants κ and β ∈ (1/2, 1).
This analytic approach only provides estimates for the expected value, and furthermore only when the

query is itself uniformly random. It is a long standing open problem to estimate the variance or any kind
of tail bounds that would guarantee that the expected value is indeed a legitimate estimate of the cost; the
few documents that were claiming to have found the variance or the limit distribution were wrong for they
assumed that subtrees where independent conditionally on the query line, which is false.

In Chapter 5, we present how ideas pertaining to fixed-point theorems can be used to obtain limit
processes in the setting of recursive partitions of the plane. In particular, in Section 5.2 we give one of
the first non-trivial applications of the results of Neininger and Sulzbach [90] for weak convergence of
càdlàg processes.

RECURSIVE LAMINATION OF THE DISK. Our work on quadtrees led us to a related partitioning scheme
in which random chords are sequentially added to the unit disk, unless they intersect an already inserted
chord. Motivated by earlier work of Aldous [8, 9] on uniform triangulations, Curien and Le Gall [34]
introduced the model of random recursive triangulations of the disk. The construction goes as follows: At
n = 1, two points are sampled independently with uniform distribution on the circle. They are connected
by a chord which splits the disk into two fragments. Later on, at each step, two independent points are
sampled uniformly at random on the circle and are connected by a chord if the latter does not intersect any
of the previously inserted chords; in other words the two points are connected by a chord if they both fall
in the same fragment. At time n this gives rise to a lamination Ln of the unit disk which consists of the
union of the chords inserted up to time n. As an increasing closed subset of the disk, Ln converges, and
it is proved in [34] that

L∞ =
⋃
n≥1

Ln

is a triangulation of the disk in the sense that any face of the complement is an open triangle whose vertices
lie on the circumference of the circle (see [8]). Curien and Le Gall also show that the limit lamination L∞
is encoded by a continuous process M in the sense that will be made precise later [8, 9, 34].

The approach in [34] consists in estimating distances in the planar dual of the recursive lamination as
the chords are inserted. Unfortunately, the fragmentation-based arguments only provide asymptotics for
distances between two points which is not enough to obtain the scaling limit of the dual tree itself. Note in
particular that the dual tree is a finer object, since it is actually not characterized by the limit lamination.
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In Section 5.3 we present results proving convergence of the dual tree of the self-similar lamination
converges to a limit compact real tree which is encoded by the process M [P25]. We also give the limit
dual tree of the related homogeneous lamination, thus providing two very different trees which both
encode the same infinite lamination.





Chapter 2

Around the Brownian CRT

In this chapter we present some results related to the Brownian continuum random
tree. Sections 2.1 and 2.2 are about the question of its universality and we follow
the presentation in [P19, P20] and [P22], written in collaboration with Philippe
Flajolet, Jean-François Marckert, respectively. In Section 2.3, we follow [P6], that
is joint work with Louigi Addario-Berry and Cecilia Holmgren, and present a novel
random reversible decomposition of the CRT.

2.1 Extreme distances in non-plane binary trees

2.1.1 Non-plane binary trees

The case of trees (as are considered here) with indistinguishable neighbourhoods is essentially differ-
ent from the framework of Galton–Watson tree presented in the introduction. Such trees are not easily
amenable to direct random walk approach, due to the inherent presence of symmetries.

The analysis of unlabelled non-plane trees finds its origins in the works of Pólya [96] and Otter [91].
However, these authors mostly focused on enumeration—the problem of characterizing typical parame-
ters of these random trees remained largely untouched. Recently, in an independent study, Drmota and
Gittenberger [36] have examined the profile of “general” trees (where all degrees are allowed) and shown
that the joint distribution of the number of nodes at a finite number of levels converges weakly to the
finite dimensional distribution of Brownian excursion local times. They further extended the result to a
convergence of the entire profile to the Brownian excursion local time. (See also [54].)

We consider trees that are binary, non-plane, unlabelled, and rooted; that is, a tree is taken in the
graph-theoretic sense and it has nodes of (out)degree two or zero only; a special node is distinguished,
the root, which has degree two. In this model, the nodes are indistinguishable, and no order is assumed
between the neighbours of a node. Let Y denote the class of such trees, and let Yn be the subset consisting
of trees with n external nodes (i.e., nodes of degree zero). Our aim is to study the (random) height Hn of
a tree sampled uniformly from Yn (largest number of edges of a simple path to the root). Uniform bounds
on the rescaled height are crucial in proving tightness in the proof of convergence of these trees to the
Brownian CRT by Marckert and Miermont [79].

Our approach is entirely based on generating functions. The class Y of (non-plane, unlabelled, rooted)
binary trees is defined to include the tree with a single external node. A tree has size n if it has n external
nodes, hence n − 1 internal nodes. The cardinality of the subclass Yn of trees of size n is denoted by yn
and the generating function (GF) of Y is

y(z) :=
∑
n≥1

ynz
n = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + 23z8 + · · · ,

11
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the coefficients corresponding to the entry A001190 of Sloane’s On-line Encyclopedia of Integer Se-
quences. The trees of Y with size at most 6 are shown in Figure 2.1.

Figure 2.1: The binary unlabelled trees of size less than six.

A binary tree is either an external node or a root appended to an unordered pair of two (not necessarily
distinct) binary trees. In the language of analytic combinatorics [50], this corresponds to the (recursive)
specification

Y = Z + MSet2(Y),

where Z represents a generic atom (of size 1) and MSet2 forms multisets of two elements. The basic
functional equation

y(z) = z +
1

2
y(z)2 +

1

2
y(z2), (2.1)

closely related to the early works of Pólya [96, 97], and first studied by Otter [91], follows from fundamen-
tal principles of combinatorial enumeration [50, 59]. The term 1

2y(z2) accounts for potential symmetries—
hereafter, we refer to such terms involving functions of z2, z3, . . . , as Pólya terms. According to the gen-
eral theory of analytic combinatorics, we shall operate in an essential manner with properties of generating
functions in the complex plane. The Pólya terms, although modifying the nature of the generating function
y, do not change the nature of the dominant singularity. In particular, y has a dominant singularity of the
square-root type, as the generating functions for simply generated trees.

Lemma 2.1 (Otter [91]). Let ρ be the radius of convergence of y(z). Then, one has 1/4 ≤ ρ < 1/2, and ρ
is determined implicitly by ρ+ 1

2y(ρ2) = 1
2 . As z → ρ−, the generating function y(z) satisfies

y(z) = 1− λ
√

1− z/ρ+O (1− z/ρ) , λ =
√

2ρ+ 2ρ2y′(ρ2). (2.2)

Furthermore, the number yn of trees of size n satisfies asymptotically

yn =
λ

2
√
π
· n−3/2ρ−n (1 +O(1/n)) , (2.3)

Lemma 2.1 also suggests that, although there is no clear exact reduction of unlabeled non-plane trees
to random walks, such trees should largely behave like simply generated families of ordered trees. In
particular, it suggests that the rescaled height Hn/

√
n is likely to admit a limit distribution of the theta-

function type [39, 47, 68, 99]. The purpose of [P19, P20] is to prove formally that this is indeed the
case.
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Figure 2.2: Left: the “tube” and “sandclock” regions. Right: the Hankel contour used to estimate eh,n.

2.1.2 Approximations for the generating functions

Let yh,n be the number of trees of size n and height at most h and let yh(z) =
∑

n≥1 yh,nz
n be the

corresponding generating function. Since trees of height at most h + 1 are either a leaf, or made of trees
of height at most h, the arguments leading to (2.1) yield the fundamental recurrence

yh+1(z) = z +
1

2
yh(z)2 +

1

2
yh(z2), h ≥ 0, (2.4)

with initial value y0(z) = z. A central rôle in what follows is played by the generating function of trees
with height exceeding h:

eh(z) ≡
∑
n≥1

eh,nz
n := y(z)− yh(z),

Then, a trite calculation shows that the eh(z) satisfy the main recurrence

eh+1(z) = y(z)eh(z)

(
1− eh(z)

2y(z)

)
+
eh(z2)

2
, e0(z) = y(z)− z, (2.5)

on which our treatment of height is entirely based.

THE GENERAL ANALYTIC APPROACH. The distribution of height is accessible by

P (Hn > h) =
yn − yn,h

yn
=
eh,n
yn

, (2.6)

where eh,n = [zn]eh(z) (and in general we note [zn]
∑

i≥0 aiz
i := an). Lemma 2.1 provides an estimate

for yn, and we shall get a handle on the asymptotic properties of eh,n by means of Cauchy’s coefficient
formula,

en,h =
1

2iπ

∫
γ
eh(z)

dz

zn+1
, (2.7)

upon choosing a suitable integration contour γ in (2.7), of the form commonly used in singularity analysis
theory [50]; see Figure 2.2 below. This task necessitates first developping suitable estimates of eh(z), for
values of z both inside and outside of the disc of convergence |z| < ρ. Precisely, we shall need estimates
valid in a “tube” around an arc of the circle |z| = ρ, as well as inside a “sandclock” anchored at ρ (we
shall not give a formal definition for these regions, see Figure 2.2).
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ESTIMATES FOR eh ALONG THE CONTOUR. Estimates of the sequence of generating functions (eh(z))
within the disc of convergence and a tube, where z stays away from the singularity ρ, are comparatively
easy and follow essentially from a continuity argument. To deal with the portion of the contour lying
inside the tube (γ3∪γ4∪γ5), convergence of eh → 0 thus boundedness is sufficient: taking a contour that
lies sufficiently outside the disk of convergence ((log2 n)/n away suffices) ensures that the Cauchy kernel
in (2.7) is small enough to yield a contribution of order O(ρ−n exp(− log2 n)) = o(yn).

The bulk of the technical work is relative to the sandclock. One first needs the existence of a suitable
sandclock for convergence of eh(z) → 0, uniformly in z, as h → ∞. Furthermore, in the sandclock, the
contour (γ1 ∪ γ2) needs to come too close to the disk of convergence to remain negligible compared to
yn: one needs to obtain refined information about the asymptotics for eh near the singularity. But once
convergence is guaranteed, it is possible to bootstrap it to develop an approximation of the form:

eh(z) ≡ y(z)− yh(z) ≈ 2
1− y
1− yh

yh. (2.8)

The form of the approximation in (2.8) is similar to that in the original paper by Flajolet and Odlyzko
[47] where trees are ordered. Its justification closely follows the general strategy in [47]; however, non-
trivial adaptations are needed, due to the presence of Pólya terms, so that the problem is no longer of a
“pure” iteration type (in the ordered case, the recurrence only involves the generating functions at a single
point z).

2.1.3 Asymptotics for the height

A quantified version of the approximation in (2.8) is all that is needed to reap the crop; from there, the
work is classical and relies on a Tauberian transfer theorem from singularity analysis [48, 50]. There,
we use (2.6), the approximation in (2.8) and the square root singularity of y at ρ to prove the following
theorem relative to the distribution of height Hn:

Theorem 2.1 (Limit law of height). The height Hn of a random tree taken uniformly from Yn admits a
limiting theta distribution: for any fixed x > 0, there holds

lim
n→∞

P
(
Hn ≥ λ−1x

√
n
)

= Θ(x), λ :=
√

2ρ+ 2ρ2y′(ρ2),

where Θ(x) :=
∑
k≥1

(k2x2 − 2)e−k
2x2/4.

The approximation we have is also strong enough to obtain a local limit theorem as well as convergence
of all moments.

Theorem 2.2 (Local limit law of height). The distribution of the height Hn of a random tree taken uni-
formly from Yn admits a local limit: for x in a compact set of R>0 and h = λ−1x

√
n an integer, there

holds uniformly

P (Hn = h) ∼ λ√
n
ϑ(x),

where ϑ(x) = −Θ′(x) = (2x)−1
∑
k≥1

(k4x4 − 6k2x2)e−k
2x2/4.

Theorem 2.3 (Moments of height). Let r ≥ 1. The rth moment of height Hn satisfies

E [Hn] ∼ 2

λ

√
πn and E [Hr

n] ∼ r(r − 1)ζ(r)Γ(r/2)

(
2

λ

)r
nr/2, r ≥ 2. (2.9)
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The asymptotics in Theorem 2.1 have been used by Marckert and Miermont [79] as a tighness argu-
ment to wrap up a proof that the scaling limit of random non-plane binary trees is Aldous’ Brownian CRT,
hence confirming its universal character. Finally, Haas and Miermont [58] devised a general approach
based on the way the mass is fragmented when moving away from the root, which generalized the results
in [79].

The general theorem in [58] requires the branching property: given the sizes the subtrees should behave
independently. This suggest investigating the robustness of the Brownian CRT limit for models which are
not Markov branching in the sense of Haas and Miermont [58], or which do not have the branching
property, even conditional on the size of the subtrees; in the following section, we discuss a model which
lacks the branching property, yet rescales to the Brownian CRT.

2.2 Trees with a prescribed degree sequence

2.2.1 Model and notations

Let t be a rooted tree and ni(t) the number of nodes in t having i children. The sequence (ni(t), i ≥ 0) is
called the degree sequence of t, and satisfies

∑
i≥0 ni(t) = 1 +

∑
i≥0 ini(t) = |t|, the number of nodes

in t.
Our aim in this section is to discuss trees chosen under Ps, the uniform distribution on the set of rooted

plane trees with specified degree sequence s = (ni, i ≥ 0), and size |s| :=
∑

i≥0 ni. More precisely, a
sequence of degree sequences (s(κ), κ ≥ 0) with s(κ) = (ni(κ), i ≥ 0), corresponding to trees with size
nκ := |s(κ)| → +∞ is given, and the investigations concern the limiting behaviour of tree under Ps(κ).

Figure 2.3: The ten trees of Ts for the degree sequence s = (3, 1, 2, 0, 0, . . . ).

We denote by p(κ) = (pi(κ), i ≥ 0) the degree distribution under Ps(κ):

pi(κ) =
ni(κ)

nκ
and σ2κ :=

∑
i≥1

ni(κ)

nκ − 1
i2 − 1; (2.10)

σ2κ is “almost” the associated variance, this choice of definition yields shorter formulae. The maximum
degree of any tree with degree sequence s(κ) is ∆κ = max{i : ni(κ) > 0}.

2.2.2 Motivations and discussions

A GENERALIZATION OF GALTON–WATSON TREES. The model Ps is related to Galton–Watson trees [15,
60], simply generated trees in the combinatorial literature, by a simple conditioning: the distribution Ps

coincides with the distribution of the family tree t of a Galton–Watson process with offspring distribution
(νi, i ≥ 0) (which satisfies νi > 0 if ni > 0) conditioned on {ni(t) = ni, i ≥ 0}. Indeed, Ps assigns the
same probability to all trees with the same degree sequence. In this sense, the distribution ν plays a role
of secondary importance, and Ps appears to be a model of combinatorial nature, far from the world of
Galton–Watson processes. Nevertheless, we will see that our convergence theorem implies Aldous’ result
that Galton–Watson trees rescale to the Brownian continuum random tree. The argument morally relies
on the fact that under Pµ( . | |t| = n), the empirical degree sequence satisfies the hypotheses of Theorem
2.4 (stated later) with probability going to one.
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A CONSTRAINED COALESCENT PROCESS. In the same way that uniform random trees or forests may
be seen as the results of coagulation/fragmentation processes involving particles [94, 95], trees with a
prescribed degree sequence appear naturally in similar aggregation processes. The model where particles
have constrained valence may appear more “physically” grounded. The relevant underlying coalescing
procedure is the additive coalescent [12, 18], a Markov process whose dynamics are such that particles
merge at a rate proportional to the sum of their masses/sizes. The additive coalescent is the aggregation
process appearing in Knuth’s modification of Rényi’s parking problem [61, 98] or the hashing with linear
probing [21, 31]. The reader may find more information about coagulation/fragmentation processes in the
monograph by Bertoin [19] or the recent survey by Berestycki [17].

TOWARDS GRAPHS WITH A PRESCRIBED DEGREE SEQUENCE. We are also motivated by the metric
structure of graphs with a prescribed degree sequence. Introduced by Bender and Canfield [16] and by
Bollobás [29] in the form of the configuration model, these graphs have received a lot of attention since
the first tight analysis of the size of connected components by Molloy and Reed [85, 86]. This is mainly
because the model allows for a lot of flexibility in the degree sequence. In particular, the model provides a
construction of random graphs with degree sequences that may match the observations in large real-world
networks.

Of course, random graphs with a prescribed degree sequence are much more complex than trees with
a prescribed degree sequence, but there is no doubt that the analysis of trees is a first step towards the
identification of the metric structure of the corresponding graphs. Indeed, recent results of Joseph [67]
show that under some moment condition, the sizes of the connected components of random graphs with
a prescribed critical degree sequence are similar to those of Erdős–Rényi G(n, p) random graphs [28,
41, 66]: they may be asymptotically described in terms of the lengths of the excursions of a Brownian
motion with parabolic drift above its current minimum, as demonstrated by Aldous [10] and discussed
in Section 1.4. (See also [100], where it is supposed that the maximum degree is bounded.) On the
other hand, as we will see in Chapter 3, the metric structure of G(n, p) inside the critical window may be
identified in terms of modifications of Brownian CRT [P3, P4]. In other words, the present analysis is one
more building block towards an invariance principle for scaling limits of random graphs, i.e., that critical
random graphs with a prescribed degree sequence have (under a suitable moment condition on the degree
distribution) the same scaling limit (as sequence of compact metric spaces) as classical random graphs
[P4]. This is at least what is suggested by the results of Bhamidi, van der Hofstad, and van Leeuwaarden
[25, 26], Hofstad [62], Joseph [67] and Riordan [100].

2.2.3 Convergence

The best conditions one could hope for which are sufficient to ensure convergence to the Brownian contin-
uum random tree are weak convergence of the degree distribution with convergence of the second moment
and ∆k = o(

√
nκ). The following theorem confirms that these conditions are sufficient.

Let p be a probability distribution with mean one and variance σ2.

Theorem 2.4. Let (s(κ), κ ≥ 0) be a sequence of degree sequences such that nκ → +∞, ∆κ = o(n
1/2
κ ),

p(κ) → p weakly with σ2κ → σ2p. Let t be a plane tree chosen under Ps(κ) and let dt be the graph
distance in t. Under Ps(κ),

(t, σκn
−1/2
κ dt) −−−→

κ→∞
(T2e, d2e)

in distribution in the Gromov–Hausdorff sense.

Our approach uses a phenomenon observed in Marckert & Mokkadem [80] in the case of critical
Galton–Watson tree (having a variance) that (under some mild assumptions) the Łukasiewicz path St and
the height process Ht are asymptotically proportional, that is, up to a scalar normalisation, the difference
between these processes converge to the zero function. It turns out that a similar phenomenon occurs
when the degree sequence is prescribed, and this is the basis of our proof. In order to prove Theorem 2.4
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we proceed in two steps: the first one consists in showing that the depth-first walk St associated to a tree
sampled under Ps(κ) converges to a Brownian excursion.

CONVERGENCE OF THE DEPTH-FIRST WALK. The process St is much easier to deal with than Ht, since
St is essentially a random walk conditioned to stay non-negative, and forced to end up at the origin
(precisely at −1). An urn process containing ni copies of i− 1, i ≥ 0 produces a random permutation of
the degrees (−1); from there, there is a unique way to cyclically shift the sequence so that its partial sums
form the depth-first walk of a tree. The tree obtained is distributed as a tree under Ps. So, modulo a very
moderate amount of verifications, the convergence towards the Brownian excursion follows from standard
theorems on urn sampling.

DISCREPANCY ŁUKASIEWICZ PATH / HEIGHT PROCESS. The core of the work lies in the second step,
which consists in proving that rescaled versions of St and Ht are indeed close, uniformly on [0, 1]; from
the previous paragraph, this would imply that a rescaled Ht indeed converges to a Brownian excursion,
hence proving Theorem 2.4. The value St(i) of the depth-first walk at position i, may be expressed as a
sum of contributions for the nodes on the path between the root and ũi, the i-th node in the lexicographic
order. These contributions can be proved to be essentially independent so that one has concentration,
hence proportionality (at this given location i). Using this argument at a uniformly random location and
then proving tightness using general Gaussian tail bounds from Addario-Berry [2] suffices to complete the
proof.

RECENT RELATED WORK. Recent results of Rizzolo [101] and Kortchemski [70] have a flavor similar to
our Theorem 2.4 (although neither implies the other): they proved scaling limits for Galton–Watson trees
conditioned on the number of nodes having their degrees in a subset A of the support of the measure µ,
the number of nodes with other out-degrees being left free. For instance, they consider trees conditioned
on the number of leaves. The proofs in Rizzolo [101] rely ultimately on the approach based on Markov
branching trees developed by Haas and Miermont [58].

2.3 Cutting down and typical distance

2.3.1 Motivation and approach

The problem of estimating the number of cuts to isolate the root of a random tree is not new, and our results
in this direction are not new. However, apart from the results in [32], all the other proofs [45, 63, 64, 92, 93]
rely on resolutions of recurrence relations or calculation of moments and do not yield any intuition as of
the reason why the Rayleigh limit law appears. The main motivation for the work we present in this section
is to explain why the Rayleigh distribution appears both in the number of cuts required to isolate the root
of a random tree, and the distance between two uniformly chosen random nodes.

The first step consists in studying a canonical instance of Galton–Watson tree which would behave best
with respect to the phenomenon at hand. This special instance is the Cayley tree (uniform labeled tree):
there is actually a bijection which turns a tree and its cutting sequence into a tree with an independent
distinguished node, in such a way that the number of cuts is turned into the length of the path to the
distinguished node. This approach also yields very simple constructive proofs of the results concerning
the distribution of the number of cuts obtained in [45, 63, 64, 92]. This exact discrete correspondence may
also be lifted to the level of real trees: there is a simple way to recombine the pruned subtrees of a logged
Brownian CRT that yields an other Brownian CRT with a distinguished node. This correspondence in
the continuous setting may be interpreted as a new random reversible transformation between a Brownian
excursion and a Brownian bridge.

The construction also generalizes to processes where one must isolate more than one node. This has
been considered by Bertoin [23] who proved that the limit number of cuts required to isolate k independent
nodes in a Cayley tree converges to the length of the subtree spanning k + 1 independent nodes. This has
recently been extended to the case of Galton–Watson trees with a finite variance by Bertoin and Miermont
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[24]. The limit picture which explains constructively the connection between the number of cuts and the
height of a uniformly random node has also recently been generalized to general Lévy trees by Abraham
and Delmas [1].

2.3.2 A bijection for labeled Cayley

At the heart of our approach is a coupling which yields the exact distribution of the number of cuts for
every fixed n, for the special case of uniform Cayley trees (uniformly random labeled rooted trees).

The transformation is very easily explained as follows. Consider an initial tree T . This tree is then
pruned by iterative removal of vertices, uniformly chosen in the connected component which contains
the root; it is this number of vertices we should keep track of. Each time, at least one vertex is removed
and the procedures terminates at time κ = κ(T ) ≤ |T |. Write v1, v2, . . . , vκ for the vertices chosen and
T1, T2, . . . , Tκ for the trees pruned at the stages 1, 2, . . . , κ. In particular, vi is the root of Ti and vκ is the
root of the initial tree T .

Theorem 2.5. If T is uniformly random in Tn, then the ordered labeled forest (T1, T2, . . . , Tκ) is uniformly
random.

Since the number of cuts is turned into the number of vertices on the path between two uniformly
random nodes of a uniformly random labeled tree, it is then clear that it converges in distribution to a
Rayleigh random variable:

Theorem 2.6. Let κ(T ) the number of cuts required to isolate the root of a tree T . If T is uniform in Tn,
then for every x ≥ 0,

P
(
κ(T ) ≤ x

√
n
)
−−−→
n→∞

e−x
2/2.

From the forest floor picture of [22], one sees that the random forest (T1, T2, . . . , Tκ) can be re-
arranged into a random tree by connecting their roots into a path of length κ(T ) and making it rooted at
v1, the root of T1. This tree is a labeled tree and has a distinguished path, or a distinguished node (the root
of T ). We call the new re-arranged tree T̂ .

Theorem 2.7. If T is uniformly random in Tn, then the re-arranged tree T̂ rooted at v1 is also uniformly
random in Tn, and vκ is uniform in {1, 2, . . . , n} and independent of T̂ .

Aldous [5] studied the subtree rooted at a uniformly random node in a critical, finite variance Galton–
Watson tree conditioned to have size n. In particular, he showed that such a subtree converges in distribu-
tion to an unconditioned critical Galton–Watson tree. It is then straightforward that, for fixed k ≥ 1, the
first k trees that are cut converge in distribution to a forest of k critical Galton–Watson trees. On the other
hand, a critical Galton–Watson tree conditioned to be large converges locally (in the sense of local weak
convergence of [13], i.e., inside balls of arbitrary fixed radius k around the root) to the following infinite
tree:

• there is an infinite backbone of nodes having a size-biased number of children (exactly one of which
is again on the infinite path), and

• the children of the nodes of the backbone which are not themselves on the backbone are the root of
an unconditioned critical Galton–Watson tree.

This is the incipient infinite cluster for critical, finite variance Galton–Watson trees [69]. When the progeny
distribution is Poisson(1), one can equivalently consider the backbone as being N, and every node u ∈ N is
the root of a critical Galton–Watson tree with Poisson(1) offspring distribution. Theorem 2.7 then appears
as a strengthening of this latter picture (valid only for Poisson Galton–Watson trees) in which k is allowed
to grow with n.
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This construction can be extended to the isolation of more than one node; explaining it reasonably
well would require more space than I can give here. The details may be found in [P6]. The consequence
for the Brownian continuum random tree is much more interesting and we move on to the real tree version
of the discrete correspondence we have just described.

2.3.3 Lifting the transformation to the continuum random tree

It turns out that our coupling approach allows us to prove results about a natural “continuum version”
of the random cutting procedure which takes place on the Brownian continuum random tree (CRT), here
denoted by (T , d). Although we work principally in the language of R-trees, the correspondence we will
discuss can be viewed as a new, invertible random transformation between the Brownian excursion and a
reflecting Brownian bridge. Though the precise statement requires a fair amount of set-up, if this set-up is
taken for granted the result can be easily described.

CHOOSING “UNIFORMLY” RANDOM POINTS IN THE CRT. The first step in setting the continuous analog
consists in choosing the random points correctly. The continuum random tree comes equipped with a nat-
ural probability measure µ, the push-forward of Lebesgue measure on [0, 1] into the canonical projection
from [0, 1] onto T . Unfortunately, this measure is concentrated on the leaves of T , so that with probability
one, for a point x ∈ T sampled according to µ, T \ {x} has a single connected component, and in par-
ticular the connected component of T \ {x} containing the root still has mass one. In other words, if we
wish to log the continuum random tree, we ought to sample the points using a different measure.

There is actually an other “uniform” measure on T , called the length measure. It is the only sigma-
finite measure ` on skel(T ) such that for any a, b ∈ skel(T ), `(Ja, bK) = d(a, b). The length measure is
the measure one wants to use to log the continuum random tree.

LOGGING THE BROWNIAN CONTINUUM RANDOM TREE. Let (T , d) be a Brownian CRT with root ρ and
mass measure µ, write skel(T ) for its skeleton, and let P be a homogeneous Poisson point process on
skel(T )× [0,∞) with intensity measure `⊗dt, where ` is the length measure on the skeleton. We think of
the second coordinate as a time parameter. View each point (p, τ) of P as a potential cut, but only make a
cut at p if no previous cut has fallen on the path from the root ρ to p. At each time 0 ≤ t <∞, this yields
a forest of countably many rooted R-trees; we write Tt for the component of this forest containing ρ. Run
to time infinity, this process again yields a countable collection of rooted R-trees, later called (fi, i ∈ I∞).
Furthermore, each element fi of the collection comes equipped with a time index τi (the time at which
it was cut). This logging process is a filtered version of the Aldous–Pitman [11] fragmentation that only
keeps those cuts which fall inside the connected component containing ρ.

PUTTING THE PIECES BACK TOGETHER. As in the discrete case, one wants to re-arrange this ordered
forest into a single real tree. (Note that we are aware that the space in which this so-called forest lives is
not clear, but this object is only used for pedagogical reasons.) Although we did not insist on this point in
the discrete setting, putting back the trees together requires to put some missing length back in the game;
this is how the backbone is created. Similarly, in the continuous version, we have to build a path on which
to glue the pruned subtrees. The length of that path should correspond to the length we have removed in
the process. In the continuous setting, the missing length is expressed in terms of a local time, but to avoid
the annoying justification of the existence of this local time we define the length as follows.

For 0 ≤ t < ∞, let L(t) =
∫ t
0 µ(Ts)ds, and let L(∞) = limt→∞ L(t). It turns out that L(∞) is

almost surely finite. Next, create a single compact R-tree (T ′, d′) from the collection (fi, i ∈ I∞) and the
closed interval [0, L(∞)] by identifying the root of fi with the point L(τi) ∈ [0, L(∞)], for each i ∈ I∞,
then taking the completion of the resulting object. (This completion only adds countably many points.)
Let µ′ be the push-forward of µ under the transformation described above.

Theorem 2.8. The triples (T ′, d′, µ′) and (T , d, µ) have the same distribution. Furthermore, 0 ∈ T ′ and
L(∞) ∈ T ′ are independent and both have law µ′.
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Using the standard encoding of the CRT by a Brownian excursion, we may take the triple (T , d, µ),
together with the point ρ, to be encoded by a Brownian excursion. Similarly, it is possible to view the
triple (T ′, d′, µ′), together with the points 0 and L(∞), as encoded by a reflecting Brownian bridge; see
Section 10 of [11] (this is also closely related to the “forest floor” picture of [22]). From this perspective,
the transformation from (T , ρ) to (T ′, 0, L∞) becomes a new, random transformation from Brownian
excursion to reflecting Brownian bridge.

As an immediate consequence of the above development, we reprove the following well-known result.
Let µ(t) be the mass of the tagged fragment in the Aldous–Pitman [11] fragmentation (dual to the standard
additive coalescent) at time t, that is the fragment containing a random point (for instance the root).

Corollary 2.1. The random variable
∫∞
0 µ(t)dt has the standard Rayleigh distribution.

A REVERSE TRANSFORMATION. We are also able to explicitly describe the inverse of the transformation
which takes a real tree together with a distinguished node, and reshuffles the subtrees rooted at the branch-
points of the distinguished path.

Let (T , d, µ) be a measured CRT, and let ρ, ρ′ be independent random points in T with law µ. Let B
be the set of branch points of T on the path from ρ to ρ′. For each b ∈ B let Tb the the set of points x ∈ T
for which the path from b to ρ contains a point b′ ∈ B with d(ρ, b′) > d(ρ, b). In words, T ′ is the set of
points in subtrees that “branch off the path from ρ to ρ′ after b.” Then, independently for each point b ∈ B,
let yb be a random element of Tb, with law µ/µ(Tb). Delete all non-branch points on the path between ρ
and ρ′; then, for each b ∈ B, identify the points b and yb. Write (T ′, d′) for the resulting tree, and µ′ for
the push-forward of µ to T ′.

Theorem 2.9. The triples (T , d, µ) and (T ′, d′, µ′) have the same distribution. Furthermore, the point
ρ′ ∈ T ′ has law µ′.



Chapter 3

The scaling limit of critical random
graphs

In this chapter, we describe the scaling limit of the Erdős–Rényi random graphs
G(n, p) when p = 1/n + λn−4/3 for some fixed real number λ. The presentation
is based on the results in [P3] and [P4] which are in collaboration with Louigi
Addario-Berry and Christina Goldschmidt.

3.1 Intuition and overview

Theorem 1.3 of Aldous [10] gives a very precise description of the sizes and surplus of the largest compo-
nents in the random graph G(n, p) when p = 1/n + λn−4/3, for λ ∈ R. Furthermore, the independence
of the edges ensures that given a connected component’s vertex set and number of edges, the induced
connected graph is uniformly random among all connected graphs with this size and number of edges, and
independent of the rest of the graph. In other words, given the sizes and surpluses of the connected com-
ponents, the entire graph may be recovered (more precisely, an identically distributed copy) by sampling
independent connected components with the required sizes and number of edges.

Information about the graph G(n, p) is gathered thanks to an exploration process (we will define the
one we are interested in precisely in Section 3.2). For now, we only need to know that the exploration is
encoded by a random walk in such a way that excursions away from zero correspond to distinct connected
components; the length of the excursion encodes the size of the connected component. The exploration
process of the graph G(n, p), for p = 1/n+ λn−4/3, converges to the process Bλ defined by

Bλ(t) := W λ(t)− inf
s∈[0,t]

W λ(s) and Wλ(t) := tλ− t2/2 +W (t),

where (W (t), t ≥ 0) is a standard Brownian motion. The fact that connected components have the same
distribution given their sizes should somewhat appear in the formulas, but this fact is not immediately clear
from the limit picture given in Theorem 1.3. However, an excursion theory calculation (see [10, P4]) shows
that, conditional on their lengths, the distributions of the excursions of Bλ above zero do not depend on
their starting points. Write ẽ(σ) for such an excursion conditioned to have length σ; in the case σ = 1, we
will simply write ẽ. The distribution of ẽ(σ) is most easily described via a change of measure with respect
to the distribution of a Brownian excursion e(σ) conditioned to have length σ: for any test function f ,

E[f(ẽ(σ))] =
E
[
f(e(σ)) exp

(∫ σ
0 e(σ)(x)dx

)]
E
[
exp

(∫ σ
0 e(σ)(x)dx

)] . (3.1)
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We refer to ẽ(σ) as a tilted excursion. The surplus of a connected component in Aldous’ view using the
Brownian motion with parabolic drift is built as the number of points of a Poisson point process with unit
rate in [0,∞) × [0,∞) which fall under a given excursion of Bλ. In other words, given ẽ(σ), the surplus
of the corresponding connected component is distributed as Poisson(

∫ σ
0 ẽ(σ)(u)du).

Both tilted excursions and the Poisson point process in the quarter plane are crucial in our construction.
We will make them appear in such a way that explains the connection with the metric structure of the
connected components. It should be noted that the tilted excursions ẽ are present in the work of Aldous
[10], however, the breadth-first exploration procedure he uses makes it difficult to recover the metric
structure of the graph.

Although it does not give a direct access to the distances, Aldous’ result on the sizes and surplus of
components gives a pretty good intuition about what should happen for the metric structure. Roughly, any
single of the largest connected components of the critical graph has size of order n2/3, and a number of
surplus edges which is O(1). This suggest that, although these uniform connected components are not
uniform trees, they should remain fairly close to such trees and after rescaling by

√
n2/3 = n1/3, one

should obtain a non-trivial compact object. In this chapter, we explain more precisely why it is the case,
and the distribution of the limit continuum graph is described in terms of the Brownian continuum random
tree. We also give three constructions of the limit metric space which shed complementary light on the
object and its properties.

THREE CONSTRUCTIONS. Our first construction is the one which is closest to the Brownian with parabolic
drift of [10] and also relies on a careful algorithmic exploration of the graph. In a second construction,
we use a more structural point of view that exhibits the Brownian continuum random trees hidden in the
first construction. Finally, as is well known, the Brownian continuum random tree can be obtained by a
stick breaking construction which is a continuous analog of the Aldous–Broder algorithm in [3, 30]. It is
then clear from the second construction that the limit continuum connected component may be constructed
using a stick-breaking procedure, or more precisely, with stick-breaking procedureS, one for each CRT.
The third construction shows that it is actually possible to build the limit connected component with a
single such procedure.

Before explaining the constructions for a single connected component, we give some properties of
the entire graph which may be derived using a strengthening of the type of convergence which allows
us to describe the diameter of the whole graph. We will actually give this description now, since the
strengthening of the convergence of a single connected components to the following convergence only
requires looking carefully at the tails, and I do not intend to give any detail about this.

Theorem 3.1. Suppose that p = 1/n+λn−4/3, for λ ∈ R. Let Cn1 , C
n
2 , . . . be the connected components

of G(n, p) in decreasing order of their sizes (ties being broken using the labels). Then, there exists a
sequence of non-trivial random compact metric spaces (Ci, i ≥ 1) such that, as n→∞,

(n−1/3Cni , i ≥ 1)→ (Ci, i ≥ 1)

in distribution for d4
GH.

Theorem 3.1 implies results about the actual diameter ofG(n, p), defined as the maximum diameter of
one of its connected components. For a metric space (M,d), we write diam(M) = sup{d(x, y) : x, y ∈
M,d(x, y) <∞} for its diameter.

Theorem 3.2. Suppose that p = 1/n+ λn−4/3 for λ ∈ R. Then

(n−1/3diam(Cni ), i ≥ 1)
d−−−→

n→∞
(diam(Ci), i ≥ 1).

Furthermore, D := supi≥1 diam(Ci) has an absolutely continuous distribution, E[D ] <∞ and we have
n−1/3diam(G(n, p))→ D in distribution, as n→∞.
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3.2 Exploring and generating connected graphs

We now only consider connected graphs with a fixed surplus s. Our aim is to find a way to study the
distances in random connected graphs with a fixed surplus s. For this the approach is the following: For a
given connected graph, we first define a canonical spanning tree. This tree has only s edges less than the
initial graph, and to recover the initial graph from the spanning tree one only needs to specify which pairs
of vertices should be linked by these s edges.

THE DEPTH-FIRST SEARCH TREE. We extract a tree from a connected labeled graph G = ([n], E) using
the depth-first search procedure. The version we use is not completely standard, and we present it in detail.
We proceed using a stack: items first inserted are the last one to get out (last in, first out). The contents
of the stack at step i is kept in Si = Si(G). We will also maintain the edge set of the tree we build; the
current set of edges at time i is called Ei = Ei(G). Of course, at every time step, we have Ei ⊂ E, and
the tree we build is T [G] = ([n], En). The sets Ji = Ji(G) will keep track of the vertices which have
already been explored.

• Initially, the stack contains the vertex 1: S0 = {1}, J0 = ∅ and E0 = ∅;

• at the i-th step, we take out one item of the stack (in the order we defined above), say ui, for every
node v such that {ui, v} ∈ E that is not yet in the stack (v 6∈ Si−1), we add the corresponding edge
to our tree, then put all the nodes in the stack in such a way that the nodes with smaller labels are
pulled out first. In other words we set Ei = Ei−1 ∪ {{ui, v} ∈ E : v 6∈ Si−1 and v 6= uj , j ≤ i},
Ji = Ji−1 ∪ {ui} and Si = Si−1 ∪ {v : {ui, v} ∈ E and v 6= uj , j ≤ i}.

• the process stops when all n nodes have been explored, that is just after step n: at this point there is
no node left that could have been added to the stack, which is then empty.

The order in which the nodes u1, u2, . . . , un are explored is called the depth-first order, and the tree
T [G] is called the depth-first tree.

THE SURPLUS EDGES. The depth-first procedures extracts a tree T [G] (a labeled tree on [n]) with n − 1
edges, from the graph G with n− 1 + s edges. Rather than trying to figure out exactly where these edges
were, we want to understand where they could have been. The underlying idea is the following: if the
graph G is random (say uniform among all graphs with surplus s, for instance) it is enough to understand
the distribution of the location of the edges rather than their exact location. The first step consists in
understanding which edges there could have been in G, whose presence or absence from G does not affect
the depth-first tree.

In other words, we want to see the set CLn of connected labeled graphs on [n] as the following disjoint
union:

CLn =
⊔
t∈TL

n

{G ∈ CLn : T [G] = t},

and then use this partition to provide an alternate two-step procedure to generate random connected graphs:
the procedure would first choose in which set the random graph lies (which amounts to generating T [G]),
and then pick a graph from this set (which amounts to adding some extra edges to T [G]).

Consider the depth-first search procedure on the labeled tree t = ([n], E). Then of course T [t] = t.
Say that an edge {u, v} 6∈ E is allowed by the depth-first search procedure if at some stage u and v have
both been discovered, but neither has been explored, that is, for some i, u and v are both in Si. Let A(t)
be the set of edges which are allowed by the depth-first search procedure on t, and write a(t) = #A(t).

Observe that, for a tree t, (#Si(t), i = 0, . . . , n) is precisely St + 1, where St is the depth-first
process/Lukasiewicz path associated to the tree t (with the canonical ordering). It is reasonably easy to
verify that a(t) actually corresponds to the discrete area of the depth-first process St:
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Figure 3.1: A depth-first walk and the corresponding plane tree. The edges number of edges allowed by the depth-
first is precisely the (integral) area under the depth-first walk (Lemma 3.1).

Lemma 3.1. For any tree t, one has

a(t) = #A(t) =
n−1∑
i=0

St(i).

The first step towards a sampling procedure consists in counting the graphs in {G : T [G] = t}, for
t ∈ Tn. The following simple characterization is crucial:

Lemma 3.2. Let G be a connected labeled graph on [n]. Then T [G] = t if and only if G can be obtained
from t by adding a subset of the allowed edges in A(T ).

The following is then clear from Lemma 3.2.

Corollary 3.1. For any tree t ∈ TLn , we have #{G ∈ CLn : T (G) = t} = 2a(t).

One can now design a few “new” sampling procedures for random various kinds of connected graphs.
Let Cn be a labeled graph generated as follows: pick a tree t on [n] with probability proportional to 2a(t).
Then, add a uniformly random subset of A(t).

Corollary 3.2. The graph Cn is a uniformly random connected graph on [n].

As we have seen, the surplus of large connected components of G(n, p), for p = 1/n + λn−4/3 is
O(1), which is certainly not the case for Cn. So, for an integer s ≥ 0, let Csn be a labeled graph generated
by first picking a tree t on [n] with probability proportional to

(
a(t)
s

)
, and then adding a uniformly random

s-subset of the allowed edges A(t).

Corollary 3.3. The graph Csn is a uniformly random among the set of connected graph on [n] with sur-
plus s.

Finally, connected components of G(n, p) may be obtained by mixing the previous sampling proce-
dure. Let C̃pm be constructed by first choosing a random tree T̃ pm in such a way that P(T̃ pm = t) ∝
(1− p)−a(t). Then each edge of A(t) is added with probability p, independently of the others.

Corollary 3.4. The graph C̃m,p is distributed as a connected graph of G(n, p), n ≥ m, conditioned to
have size m.

Putting together the results above and the remark about the labels, it is easy to see that one may
actually sample the graphs (with their labels removed) using the depth-first process (for the canonical
tree) and some points under the depth-first process (for the surplus edges). Rather than any bijection, we
will need the following specific one which permits to follow the influence of the surplus edges on the
metric structure. Consider a fixed tree t, and its depth-first walk St. Let u1, u2, . . . , un be the nodes of
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t enumerated in the depth-first order. At time i, the value St(i) of the depth-first walk is precisely the
number of nodes uj , j > i, such that uj is a child of an ancestor of ui. Write vij , j = 1, . . . , St(i) for these
nodes, in the reverse depth-first order.

Definition 3.1. For a depth-first walk S, and a pointset P ⊂ {(x, y) : 0 ≤ x < n, S(x) > y} let G(S, P )
be the graph obtained by
a. first taking the only plane tree t such that St = S;
b. then adding the edges {ux, vxy}, for every (x, y) ∈ P ;

Note that the graphG(S, P ) has its nodes labeled in the depth-first order, however the actual labels are
unimportant for the metric structure; one could of course relabel the graph with the correct distribution by
enforcing that the first node be labeled one, and distributing uniformly groups of k labels to the nodes of
(out-)degree k, k ≥ 0 which should then be assigned to the nodes so that at every node, the labels of the
children are increasing in depth-first order.

Figure 3.2: An illustration of the bijection in Definition 3.1: the red point correspond to the node ui currently
explored; the blue ones are the ones in the stack at time i, the black one is the one to which we add an edge.

3.3 Asymptotics for connected graphs

3.3.1 Convergence

In the previous section, we have seen a sampling procedure for connected graphs distributed like the
connected components of G(n, p). We now describe how this may help in getting information about the
asymptotic metric structure of such graphs. Most of the metric information is contained in the canonical
spanning tree, and we first focus on scaling limit of this tree; the effect of the surplus edges can be
recovered by a modification of the scaling limit of the spanning tree.

LIMIT OF THE TILTED TREE. We know that for a sequence of uniformly random labeled trees Tn, n ≥
1, the rescaled depth-first search process (n−1/2STn(nx))x∈[0,1] converges in distribution to a standard
Brownian excursion e = (e(x))x∈[0,1]. We want to use this piece of information to find the limit in
distribution of the rescaled depth-first process of the depth-first search tree of the connected graphs we
have introduced in Section 3.2. Let Cpm be distributed like a connected component ofG(n, p), conditioned
on its size being m ≤ n. To simplify the exposition, we suppose that m ∼ n2/3, so that here σ = 1; the
general case where m ∼ σn2/3 is easily recovered using Brownian scaling. By Corollary 3.4, we have
P(T [Cpm] = t) ∝ (1− p)−a(t).

If this change of measure is well-behaved one can expect that for T̃ pm = T [C̃pm], the rescaled depth-first
walk (n−1/2ST̃ p

m
(nx))x∈[0,1] converges in distribution to a continuous excursion ẽ whose distribution is

given by, for any Borel set B

P (ẽ ∈ B) =
E[1{e∈B} · exp(

∫ 1
0 e(x)dx)]

E[exp(
∫ 1
0 e(x)dx)]

, (3.2)
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where e denotes a standard Brownian excursion. The expression in (3.2) is the very equivalent in the
continuous setting of the bias by (1 − p)−a(t), since as n → ∞, one expects that a(t) should be of the
order of m×

√
m ∼ n, so that (1− p)−a(t) ≈ exp(a(t)/n) should remain bounded and converge. Going

back to the case where σ is general, we write ẽ(σ)(·) =
√
σ · ẽ(·/σ). Writing H̃m for the height process

of T̃ pm One then deduces that

Theorem 3.3. Suppose that p = p(m) is such that mp2/3 → σ as m→∞. Then, as m→∞,

((m/σ)−1/2H̃m(b(m/σ)tc), 0 ≤ t ≤ σ)→ (2ẽ(σ)(t), 0 ≤ t ≤ σ)

in distribution in the sense of D([0, σ],R+).

LIMIT SURPLUS EDGES. Using the bijection of the previous section, the extra edges are represented by a
random subset of the integral points under the discrete excursion defined by the Łukasiewicz walk of ST̃ s

n
,

where each point is present with probability p independently of the others. As n→∞, this point process
should converge to a Poisson process of points under the limit excursion ẽ(σ).

Lemma 3.3. Let p = p(m) be such that mp2/3 → σ as m→∞. Pick a labeled tree T̃ pm on [m] in such a
way that P(T̃ pm = T ) ∝ (1− p)−a(T ) and let X̃m be the associated depth-first walk. Let Qp ⊂ Z+ × Z+

be a Binomial pointset of intensity p. Let Pm = {((m/σ)−1i, (m/σ)−1/2j) : (i, j) ∈ Qp}. Then(
(m/σ)−1/2X̃m(b(m/σ)·c),Pm ∩ ((m/σ)−1/2X̃m(b(m/σ)·c)

) d−→
(
ẽ(σ),P ∩ ẽ(σ)

)
as n→∞, whereP is a homogeneous Poisson point process with intensity measure the Lebesgue measure
L on R+ × R+, and P is independent of ẽ(σ). Convergence in the first co-ordinate is in D([0, σ],R+),
and in the second co-ordinate is in the sense of the Hausdorff distance.

Lemma 3.3 gives a nice description of the limit of the bijective encoding. Unfortunately, it is not
immediately clear that the location of the edges should behave nicely with respect to the metric. One way
to see that it must uses the observation by Marckert and Mokkadem [80] that the height process, which
does encode the metric, and the depth-first walk whose limit we know, are actually proportional: in other
words, the bijective picture of the pair (depth-first walk;point process) asymptotically corresponds exactly
to the pair (height process; point process) and the location of the edges are then easily seen to behave
nicely. One can deduce that the connected component should converge to a metric space formed by a
spanning tree in which one identifies some points as follows:

• the canonical tree converges to the tree encoded by (twice) the limit depth-first process (since this is
also the height process!), and

• the surplus edges encoded by the discrete point process should converge to point identifications
given by the limit point process; each identification occurs between a point, and one of its ancestors.

3.3.2 The limit of connected graphs

In the last section, we have explained informally how a limit connected component should be built. We
now construct it directly. We first describe the deterministic operation we will in the construction. For a
given excursion h, let Ah = {(x, y) : 0 ≤ x ≤ σ, 0 ≤ y ≤ h(x)} be the set of points under h and above
the x-axis. Let

`(ξ) = `((x, y)) = sup{x′ ≤ x : y = h(x′)}
r(ξ) = r((x, y)) = inf{x′ ≥ x : y = h(x′)}

be the points of [0, σ] nearest to x for which h(`(ξ)) = h(r(ξ)) = y (see Figure 3.3). It is now straight-
forward to describe how the points of a finite pointsetQ ⊂ Ah can be used to make vertex-identifications:
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for ξ ∈ Q, we simply identify the images of x and r(x) in the canonical projection from [0, σ] onto Th.
(Hereafter we abuse notation by referring to points of Th using some points of [0, σ].) We write g(h,Q)
for the resulting “glued” metric space; the tree metric is altered in the obvious way to accommodate the
vertex-identifications.

x r(x)

ξ

Figure 3.3: A finite excursion h on [0, 1] coding a compact real tree Th. Horizontal lines connect points of the
excursion which form equivalence classes in the tree. The point ξ = (x, y) yields the identification of the equivalence
classes [x] and [r(x)], which are represented by the horizontal dashed lines.

Given ẽ(σ), write P for the points of a homogeneous Poisson point process of rate 1
2 in the plane which

fall under the excursion 2ẽ(σ). Note that as a consequence of the homogeneity of P , conditional on ẽ(σ),
the number of points |P| has a Poisson distribution with mean

∫ σ
0 ẽ(σ)(x)dx.

PROCEDURE 1: VERTEX IDENTIFICATIONS WITHIN A TILTED TREE

1. Sample a tilted excursion ẽ(σ).

2. Sample a set P containing a Poisson
(∫ σ

0 ẽ(σ)(x)dx
)

number of points uniform in the area under
2ẽ(σ).

3. Output g(2ẽ(σ),P).

The above procedure constructs metric spaces which are distributed as the connected components of
critical random graphs; in other words g(2ẽ(σ),P) is the scaling limit of a connected component ofG(n, p)
conditioned on its size in the following sense:

Theorem 3.4. Let C̃pm be a connected component of G(n, p) conditioned to have size m ≤ n, considered
as a metric space equipped with the graph distance. Suppose that mn−2/3 → σ ∈ (0,∞). Then, as
n→∞,

n−1/3C̃pm → g(2ẽ(σ),P)

in distribution for the Gromov–Hausdorff topology.

3.4 The structural point of view

In this section we adopt a radically different approach closest to the graph theoretic point of view: we
see connected graphs as a cycle structure decorated with trees. This permits to exhibit the Brownian
continuum random trees hidden in the scaling limit g(2ẽ,P). This picture also yields some interesting
information about the distributions of specific lengths in the connected components.

GRAPHS AND THEIR CYCLE STRUCTURE. The number of surplus edges, or simply surplus, of a con-
nected labeled graph G = (V,E) is defined to be s = s(G) = |E| − |V | + 1. We say that the connected
graph G is unicylic if s = 1, and complex if s ≥ 2. Define the core (sometimes called the 2-core)
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C = C(G) to be the maximum induced subgraph of G which has minimum degree two (so that, in partic-
ular, if G is a tree then C is empty). Clearly the graph induced by G on the set of vertices V \ V (C) is a
forest. So if u ∈ V \ V (C), then there is a unique shortest path in G from u to some v ∈ V (C), and we
denote this v by c(u). We extend the function c( · ) to the rest of V by setting c(v) = v for v ∈ V (C).

We next define the kernel K = K(G) to be the multigraph obtained from C(G) by replacing all paths
whose internal vertices all have degree two in C and whose endpoints have degree at least three in C by
a single edge [see, e.g., 66]. If the surplus s is at most 1, we agree that the kernel is empty; otherwise the
kernel has minimum degree three and precisely s − 1 more edges than vertices. It follows that the kernel
always has at most 2s vertices and at most 3s edges. We write mult(e) for the number of copies of an
edge e in K. We now define κ(v) to be “the closest bit of K to v”, whether that bit happens to be an edge
or a vertex. Formally, if v ∈ V (K) we set κ(v) = v. If v ∈ V (C) \ V (K) then v lies in a path in G that
was contracted to become some copy ek of an edge e in K; we set κ(v) = ek. If v ∈ V (G) \ V (C) then
we set κ(v) = κ(c(v)). In this last case, κ(v) may be an edge or a vertex, depending on whether or not
c(v) is in V (K). The graphs induced by G on the sets κ−1(v) or κ−1(ek) for a vertex v or an edge ek of
the kernel K are trees; we call them vertex trees and edge trees, respectively, and denote them T (v) and
T (ek). In each copy ek of an edge uv, we distinguish in T (ek) the vertices that are adjacent to u and v on
the unique path from u to v in the core C(G), and thus view T (ek) as doubly-rooted.

Remark. Before we define the corresponding notions of core and kernel for the limit of a connected
graph, it is instructive to discuss the description of a finite connected graph G given in Section 3.3, and to
see how the core appears in that picture. Let G = (V,E) be connected and on V = [m] for some m ≥ 1.
Let T = T [G] be the depth-first tree. Let E∗ = E \ E(T ) ⊆ A(T ) be the set of surplus edges which
must be added to T in order to obtain G. Let V ∗ be the set of endpoints of edges in E∗, and let TC(G) be
the union of all shortest paths in T [G] between elements of V ∗. Then the core C(G) is precisely TC(G),
together with all edges in E∗, and TC(G) = T [C(G)].

a
b c

d

A

B

C

D

1

2

3

Figure 3.4: An excursion h and the reduced tree which is the subtree TR(h,Q) of Th spanned by the root and the
leaves A,B,C,D corresponding to the pointset Q = {a, b, c, d} (which has size k = 4). The tree TR(h,Q) is
a combinatorial tree with edge-lengths. It has 2k vertices: the root, the leaves and the branch-points 1, 2, 3. The
dashed lines have zero length.

THE CYCLE STRUCTURE OF SPARSE CONTINUOUS METRIC SPACES. Now consider a real tree Th derived
from an excursion h, along with a finite pointset Q ⊂ Ah which specifies certain vertex-identifications,
as described in Section 3.3.2. Let Qx = {x : ξ = (x, y) ∈ Q} and let Qr = {r(x) : ξ = (x, y) ∈ Q},
both viewed as sets of points of Th. We let TC(h,Q) be the union of all shortest paths in Th between
vertices in the set Qx ∪ Qr. Then TC(h,Q) is a subtree of Th, with at most 2|Q| leaves. We define the
core C(h,Q) of g(h,Q) to be the metric space obtained from TC(h,Q) by identifying x and r(x) for each
ξ = (x, y) ∈ Q. We obtain the kernel K(h,Q) from the core C(h,Q) by replacing each maximal path in
C(h,Q) for which all points but the endpoints have degree two by an edge. For an edge uv of K(h,Q),
we write π(uv) for the path in C(h,Q) corresponding to uv, and |π(uv)| for its length.
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For each x, let c(x) be the nearest point of TC(h,Q) to x in Th. In other words, c(x) is the point
of TC(h,Q) which minimizes dh(x, c(x)). The nearest bit κ(x) of K(h,Q) to x is then defined in an
analogous way to the definition for finite graphs. For a vertex v of K(h,Q), we define the vertex tree
T (v) to be the subgraph of g(h,Q) induced by the points in κ−1(v) = {x : c(x) = v} and the mass µ(v)
as the Lebesgue measure of κ−1(v). Similarly, for an edge uv of the kernel K(h,Q) we define the edge
tree T (uv) to be the tree induced by κ−1(uv) = {x : c(x) ∈ π(uv), c(x) 6= u, c(x) 6= v} ∪ {u, v} and
write µ(uv) for the Lebesgue measure of κ−1(uv). The two points u and v are considered as distinguished
in T (uv), and so we again view T (uv) as doubly-rooted. It is easily seen that these sets are countable
unions of intervals, so their measures are well-defined. Figures 3.4 and 3.5 illustrate the above definitions.

A

B

C

D

a

b c
d

1
3

A

B

C

D

a

b c
d

1
3

a

1

b d

3c

Figure 3.5: From left to right: the tree TC(h,Q) from the excursion and pointset of Figure 3.4, the corresponding
kernel K(h,Q) and core C(h,Q). The dashed lines indicate vertex identifications.

SAMPLING A LIMIT CONNECTED COMPONENT. There are two key facts for the first construction proce-
dure. The first is that, for a random metric space g(2ẽ,P) as above, conditioned on its mass, an edge tree
T (uv) is distributed as a Brownian CRT of mass µ(uv) and the vertex trees are almost surely empty. The
second is that the kernelK(2ẽ,P) is almost surely 3-regular (and so has 2(|P|−1) vertices and 3(|P|−1)
edges). Furthermore, for any 3-regular K with t loops,

P (K(2ẽ,P) = K | |P|) ∝

(
2t

∏
e∈E(K)

mult(e)!

)−1
. (3.3)

These two facts, together with some additional arguments, justify the validity of the following sampling
procedure. Let us condition on |P| = k. As explained before, it then suffices to describe the construction
of a component of standard mass σ = 1.

Theorem 3.5. The metric space generated by Procedure 2 is distributed as g(2ẽ,P), conditioned on
|P| = k.
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PROCEDURE 2: RANDOMLY RESCALED BROWNIAN CRT’S

• If k = 0 then let the component simply be a Brownian CRT of total mass 1.

• If k = 1 then let (X1, X2) be a Dirichlet(12 ,
1
2) random vector, let T1, T2 be independent Brownian

CRT’s of sizes X1 and X2, and identify the root of T1 with a uniform leaf of T1 and with the root of
T2, to make a “lollipop” shape.

• If k ≥ 2 then let K be a random 3-regular graph with 2(k − 1) vertices chosen according to the
probability measure in (3.3), above.

1. Order the edges of K arbitrarily as e1, . . . , e3(k−1), with ei = uivi.

2. Let (X1, . . . , X3(k−1)) be a Dirichlet(12 , . . . ,
1
2) random vector.

3. Let T1, . . . , T3(k−1) be independent Brownian CRT’s, with tree Ti having mass Xi, and for each
i let ri and si be the root and a uniform leaf of Ti.

4. Form the component by replacing edge uivi with tree Ti, identifying ri with ui and si with vi,
for i = 1, . . . , 3(k − 1).

3.5 The stick-breaking construction

In the previous section, we have seen that there are some Brownian continuum random trees hidden in the
scaling limit g(2ẽ,P). One of the beguiling features of the Brownian CRT is that it can be constructed
in so many different ways, in particular there is a the stick-breaking construction. It is possible to show
that g(2ẽ,P), and in particular all the Brownian continuum random trees it contains may actually jointly
be constructed using a single stick-breaking process. We start by describing shortly the construction for a
single Brownian CRT after [4].

STICK-BREAKING CONSTRUCTION OF THE BROWNIAN CRT. Consider an inhomogeneous Poisson pro-
cess on [0,∞) with instantaneous rate t at t > 0. Let J1, J2, . . . be its inter-jump times, in the order they
occur (J1 being measured from 0). Now construct a sequence of real trees (An, n ≥ 1) as follows. First
take a (closed) line-segment of length J1. Then attach another line-segment of length J2 to a uniform
position on the first line-segment. Attach subsequent line-segments at uniform positions on the whole of
the structure already created. Finally, take the closure of the object obtained.

Aldous [7] proves that the real treeAn is distributed like the subtree of the Brownian CRT spanned by
n uniform points and the root. This is the notion of random finite-dimensional distributions for continuum
random trees [see also 73]. The sequence of these random f.d.d.’s specifies the distribution of the CRT
[see 7]. One actually has convergence of An to the Brownian continuum random tree in the strong sense:

Theorem 3.6. As n → ∞, An converges in distribution to the Brownian CRT in the Gromov–Hausdorff
distance dGH.

This construction for a Brownian CRT may be extended in the following procedure for constructing
g(ẽ,P). In the following, let U[0, 1] denote the uniform distribution on [0, 1].
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PROCEDURE 3: A STICK-BREAKING CONSTRUCTION

First construct a graph with edge-lengths on which to build the component:

• CASE k = 0. Let Γ = 0 and start the construction from a single point.

• CASE k = 1. Sample Γ ∼ Gamma(32 ,
1
2) and U ∼ U[0, 1] independently. Take two line-

segments of lengths
√

ΓU and
√

Γ(1 − U). Identify the two ends of the first line-segment and
one end of the second.

• CASE k ≥ 2. Let m = 3k− 3 and sample a kernel K according to the distribution (3.3). Sample
Γ ∼ Gamma(m+1

2 , 12) and (Y1, Y2, . . . , Ym) ∼ Dirichlet(1, 1, . . . , 1) independently of each
other and the kernel. Label the edges of K by {1, 2, . . . ,m} arbitrarily and attach a line-segment
of length

√
ΓYi in the place of edge i, 1 ≤ i ≤ m.

Now run an inhomogeneous Poisson process of rate t at time t > 0, conditioned to have its first point at√
Γ. For each subsequent inter-jump time Ji, i ≥ 2, attach a line-segment of length Ji to a uniformly-

chosen point on the object constructed so far. Finally, take the closure of the object obtained.

Theorem 3.7. Procedure 3 generates a component with the same distruction as g(2ẽ,P) conditioned to
have |P| = k ≥ 1.

A few comments are in order to explain Procedure 3. First, this theorem implicitly contains infor-
mation about the total length of the core of g(2ẽ,P): remarkably, conditional upon |P|, the total length
of the core has precisely the right distribution from which to “start” the inhomogeneous Poisson process.
Equivalently, the bias of the entire excursion/tree can be obtained by biasing the lengths to |P| leaves only.

Also, the joint distribution of the masses of the edge-trees may be explained using this construc-
tion. The process may indeed be seen as a continuous urn model, with the m partially-constructed edge
trees corresponding to the balls of m different colors in the urn, the probability of adding to a particu-
lar edge tree being proportional to the total length of its line segments. Since concentration kicks in as
the number of edges of a tree gets large, on may focus of the number of edges of the edge-trees. Let
N1(n), N2(n), . . . , Nm(n) be the number of balls at step n of Pólya’s urn model started with one ball of
each color, and evolving in such a way that every ball picked is returned to the urn along with two extra
balls of the same color [see 40]. Then N1(0) = N2(0) = · · · = Nm(0) = 1, and the vector(

N1(n)

m+ 2n
, . . . ,

Nm(n)

m+ 2n

)
converges almost surely to a limit which has distribution Dirichlet(12 , . . . ,

1
2) [44, Section VII.4], [15,

Chapter V, Section 9]. This is also the distribution of the proportions of total mass in each of the edge
trees of the component.





Chapter 4

Mean-field minimum spanning trees

In this chapter, we present both the beginning and the end of our story about minimum
spanning trees. The beginning consists in pinning down the diameter, and the end –
the scaling limit – was only made possible thanks to the work on random graphs
presented in Chapter 3. The results on the diameter are based on [P10] written with
Louigi Addario-Berry and Bruce Reed, and the scaling limit relies on [P5] which is
joint with with Louigi Addario-Berry, Christina Goldschmidt and Grégory Miermont.

4.1 Introduction

Recall the setting described in Section 1.5. We consider a complete graph on n vertices, with edges
weighted by independent [0, 1]-uniform random variables. The uniform distribution is convenient, but not
crucial; in particular, any other absolutely continuous distribution would do since as an unweighted graph,
the minimum spanning tree only depends on the relative ranks of the edges.

In order to estimate distances in the minimum spanning tree Mn, we intend to track the relevant
information as the tree Mn is constructed by Kruskal’s algorithm. Let F (n, p) be the forest consisting of
the edges ofMn which have weight at most p. The process (F (n, p), p ∈ [0, 1]) describes the construction
of the minimum spanning tree Mn = F (n, 1) as Kruskal’s algorithm is performed. Most importantly,
F (n, p) is intimately connected to G(n, p) (the version which contains the edges with weight at most p).
For instance, the vertex sets of the connected components of F (n, p) andG(n, p) are identical for every p;
indeed, Kruskal’s algorithm only discard edges that would bind two nodes which are already in the same
connected component. This simple observation underlies the entire analysis.

Rather than trying to find a needle in a haystack, we first try to restrict the range of values of p one
needs to look at in order to estimate distances.

THE METRIC STRUCTURE OF THE MST AND THE CRITICAL WINDOW. The random graph phase transi-
tion immediately suggests that the metric structure of the minimum spanning tree should be built within or
at least close to the critical window. In the subcritical phase all connected components have sizeO(log n),
so all distances are at mostO(log n) as well. In the supercritical phase, it suffices to focus on the evolution
of the distances in the giant component. Note that every edge added by Kruskal’s algorithm is uniformly
chosen among all those which do not create a cycle. There, all other connected components have size
O(log n), but the average size is O(1). If all connected components had size one (and in particular were
not growing on their own before hooking to the giant component) then every tree that is constructed dur-
ing the supercritical phase would be a uniform random recursive tree, a growing tree in which incoming
nodes hook up to a uniformly random parent. Such trees of size n have diameter O(log n), which strongly

33
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suggest that the paths built during the supercritical phase be rather small: the slight variations in the sizes
of the small connected components should only modify moderately this picture, and the longest path built
in the supercritical phase should have size O(logβ n) for some constant β.

THE DIAMETER OF THE MINIMUM SPANNING TREE. The natural next step consists in addressing the
actual order of magnitude of distances in Mn. The above arguments show that one should see most of the
construction of the metric structure in F (n, p) as we cross the critical window at p ∼ 1/n.

For p = 1/n the largest component is a tree of size Θ(n2/3) with probability bounded away from zero
[10, 28, 66], and such a tree is uniformly random given its vertex set; this tree must appear as a subtree
of the minimum spanning tree, so that the diameter of Mn is at least of order

√
n2/3 = n1/3 (see also

Chapter 3). Most of the work in [P9, P10] consists in establishing the upper bound by showing that the
large components hook up nicely among each other, and that no path larger than O(n1/3) is ever built.
Further arguments about the tail probabilities yield that the diameter of the minimum spanning tree Mn

is such that E [diam(Mn)] = Θ(n1/3). We explain this in Section 4.2. This provides the scaling factor
by which one should divide the distance in order to (hopefully) observe a non-trivial and compact scaling
limit for Mn := F (n, 1).

THE SCALING LIMIT OF THE MINIMUM SPANNING TREE. Knowing the results about the scaling limit of
G(n, p) inside the critical window presented in Chapter 3, one would hope that much more information
should be accessible using the connection with Kruskal’s algorithm than the mere order of magnitude of
the length the longest path. In particular, it is reasonable to expect that for p = 1/n+ λn−4/3, the scaling
limit of F (n, p) should be obtained from that of G(n, p) by removing the cycles that should not be there.
In other words, one possible approach to the scaling limit of the minimum spanning tree Mn = F (n, 1)
would be to

1. choose λ large enough such that F (n, 1) and F (n, p) are sufficiently close (εn1/3) in the Gromov–
Hausdorff sense (this should be possible since the metric is built close to the critical phase)

2. look at the scaling limit of G(n, p) for this large value of λ, and break down the cycles of the
continuum random graph obtained to obtain (at least in distribution) the scaling limit of F (n, p), for
this value of λ.

Of course, for any fixed λ ∈ R, G(n, p) and F (n, p) both have multiple large connected components, but
there exists a random but finite λ such that the largest one is never again defeated by a smaller challenger
for further values of p. This connected component is a good approximation of Mn. Note that again, in
the backwards procedure which erases the edges as p decreases, the next edge to be erased is uniformly
random: so to obtain (a graph distributed like) F (n, p) from G(n, p) it suffices to remove uniform random
edges unless doing so would disconnect a connected component. In Section 4.3 we explain how to make
this idea formal. These arguments yield the existence of a random compact real tree M such that, as
n→∞,

n−1/3Mn →M

in distribution in the Gromov–Hausdorff sense, which is the main result of this chapter. The random
metric space M is not the Brownian CRT. In particular, as the scaling n−1/3 suggests, its box-counting
dimension is three, while that of the Brownian CRT is two.

4.2 Towards a compact object: the diameter

The following theorem answers the question of Frieze and McDiarmid [53, Research Problem 23], proving
that the diameter of the minimum spanning tree Mn is actually much smaller than

√
n.

Theorem 4.1. There exists a constant C ∈ (0,∞) such that, for all n large enough,

C−1n1/3 ≤ E[diam(Mn)] ≤ Cn1/3.
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As we already mentioned, the rough idea is to control the increase in diameter of F (n, p) as p increases
from zero to one. The range of values is more or less easily reduced to a range which is essentially the
critical window. Two problems arise when trying to make this idea formal:

• we need to cover all bases, and we must control the increase in diameter on a range (p, 1], for some
point p at which we can bound the diameter, and

• some of the nice properties which allow the necessary control only happen with high probability
towards the end of the critical window.

So it seems that the first point requires that p be inside the critical window (to have control at location p)
while the second one requires that p be outside (to have control on the increase). To deal with this issue,
we start at a random point tailored to provide the best of both worlds. Consider an increasing sequence
1/n < p0 < p1 < . . . < pt < 1 of values of p at which we could take a snapshot of the random graph
process. Specifically, we fix some large constant f0, and for i ≥ 1, we set fi = (5/4)if0, stopping at the
first integer t for which ft ≥ n1/3/ log n, and choose pi = 1/n + fi/n

4/3. This is similar to Łuczak’s
method of considering “moments” of the graph process [77].

For each pi, we consider the largest component Cn1 (pi) of G(n, pi). Define Di to be the diameter of
Mn ∩ Cn1 (pi). We intend to control the increase in diameter (more precisely, Di+1 − Di) between any
two successive pi and pi+1. Note that Di might not be the diameter of F (n, pi), and that Cn1 (pi) might
not be contained in Cn1 (pi+1), although we certainly expect that it should happen for i large enough. The
increase will be bounded using the following easy lemma. For a graph G = (V,E), and U ⊂ V we write
G[U ] to denote the subgraph induced byG on U . We also write `(G) for the length of the longest (simple)
path in G.

Lemma 4.1. Let G,G′ be graphs such that G ⊂ G′. Let H and H ′ be connected components of G,G′

respectively. Then diam(H ′) ≤ diam(H) + 2`(G′[V − V (H)]) + 2.

We proceed now in three phases depending on a random index i? ∈ {1, 2, . . . , t} which we will soon
define: the “early” critical phase [1/n, pi? ] to decide where to start tracking distances, the late critical
phase [pi? , pt], and finally the remainder of the range [pt, 1].

THE LATE CRITICAL PHASE. For 1 ≤ i < t, we say G(n, pi) is well-behaved if the following events
occur:

Ai: |Cn1 (pi)| ≥ (3/2)n2/3fi and the longest path of Cn1 (pi) has length at most f4i n
1/3, and

Bi: the longest path of G(n, pi+1)[V − V (Cn1 (pi))] has length lower than n1/3/
√
fi.

If G(n, pi) is well-behaved then by Lemma 4.1, Di+1 −Di ≤ 2n1/3/
√
fi. Let i? be the smallest integer

for which G(n, pj) is well-behaved for all i? ≤ j < t or i? = t if G(n, pt−1) is not well-behaved.
Once the graph is well-behaved, the increase in diameter is easily bounded. By Lemma 4.1, we have
deterministically that

Dt −Di? ≤ 2
t−1∑
i=i?

n1/3/
√
fi ≤ 2f0n

1/3
t−1∑
i=1

(4/5)i/2 = O(n1/3). (4.1)

THE SUPERCRITICAL PHASE. By definition, we have pt = 1/n+ 1/(n log n), so pt is not quite supercrit-
ical in the sense that npt → 1, as n → ∞. For such pt, we cannot prove the poly-logarithmic bound we
claimed holds if pt had been c/n for c > 1. However, pt is far enough from 1/n that we are able to prove
that E[diam(Mn)−Dt] = O(n1/3):

Lemma 4.2. One has E[diam(Mn)]−E[Dt] = O(n1/6(log n)7/2).
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This slight modification in the extents of the phases permits us to even their contributions, and keep pt
within the range 1/n+o(1/n), which happens to be crucial to analyze the eventsAi andBi, i = 1, 2, . . . , t.
It follows that

E[diam(Mn)] = E[Di? ] +O(n1/3). (4.2)

SKIPPING THE EARLY CRITICAL PHASE. Finally, it remains to bound E [Di? ], which amounts to estimat-
ing the distribution of i?. The key to doing so is to show that for all j between 0 and t− 1

P (i? = j + 1) ≤ 6e−
√
fj/8. (4.3)

Using (4.3) together with (4.1) and the fact that the longest path has length no longer than n yields that

E[Di? ] ≤ f40n1/3 + nP (i? = t) +

t−1∑
i=1

f4i n
1/3P (i? = i) ,

which then yields that E[Di? ] = O(n1/3). To prove (4.3), we note that if i? = j + 1 and j > 0, then one
of Aj or Bj must fail. We show that the probability of any of these events happening is small enough:

Lemma 4.3. The following bounds hold for the events Aj and Bj defined above:

(a) P (Aj fails) ≤ e−
√
fj

(b) P (Bj fails) ≤ 5e−
√
fj/8.

The proof of Lemma 4.3 is the main technical step, and refines existing estimates which were only
asymptotic. The proof goes by analyzing precisely some walks associated to the graph. Even though it is
the technical core of the proof, giving even just a decent sketch would require too much space, and dilute
the big picture, so we skip it and move on to the description of the scaling limit.

4.3 Rescaling the minimum spanning tree

In this section, we refine the strategy to show that after suitable rescaling of distances and of mass, the
minimum tree Mn, viewed as a measured metric space, converges in distribution to a random compact
measured metric space M of total mass measure one, which is a random real tree.

The space M is the scaling limit of the minimum spanning tree on the complete graph. It is binary and
its mass measure is concentrated on the leaves. The space M shares all these features with the Brownian
continuum random tree [4, 6, 7, 75]. However, M is not the Brownian CRT; we rule out this possibility by
proving that M has box-counting dimension three (see Section 4.3.2 for a definition); the CRT has both
box-counting dimension two and Hausdorff dimension two.

4.3.1 Description of the results

We consider the minimum spanning tree as an element of (M,dGHP). In order to do this, we slightly abuse
notation and let n−1/3Mn denote the measured metric space obtained from Mn by rescaling distances by
n−1/3 and assigning mass 1/n to each vertex; so n−1/3Mn also carries a probability measure, the discrete
mass measure. (We will do so in the entire section, but it should always be clear from context in particular
the topologies that we are considering measured metric spaces.) The main result of this section is the
following theorem.

Theorem 4.2. There exists a random, compact measured metric space M , such that as n→∞,

n−1/3Mn →M

in distribution for the Gromov–Hausdorff–Prokhorov topology. The limit M is a random real tree. It is
almost surely binary, and its mass measure is concentrated on the leaves of M . Furthermore, the laws of
M and of the Brownian CRT are mutually singular.
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As mentioned earlier, we approach the study ofMn and of its scaling limit M via a detailed description
of the graph G(n, p) and of the forest F (n, p) for p = 1/n+ λ/n1/3 with λ ∈ R. Write

(Gn,iλ , i ≥ 1)

for the components of G(n, 1/n + λ/n4/3) listed in decreasing order of size. For each i ≥ 1, we then
write n−1/3Gn,iλ for the measured metric space obtained from Gn,iλ by rescaling distances by n−1/3 and
giving each vertex mass n−2/3. We likewise define a sequence (Tn,iλ , i ≥ 1) of graphs, and a sequence
(n−1/3Tn,iλ , i ≥ 1) of measured metric spaces, starting from the forest F (n, 1/n + λ/n4/3) instead of
from the graph G(n, 1/n+ λ/n4/3).

Theorem 3.1 states that for each λ ∈ R, there is a random sequence (G i
λ, i ≥ 1) of compact measured

metric spaces, such that
(n−1/3Gn,iλ , i ≥ 1)

d−→ (G i
λ, i ≥ 1), (4.4)

for the topology of d4
GHP. (Theorem 3.1 is, in fact, slightly weaker than this because the metric spaces there

are considered without their accompanying measures, but it is easily strengthened.) Using the convergence
in (4.4) and an analysis of the cycle breaking algorithm (the backward Kruskal procedure), we prove:

Theorem 4.3. Fix λ ∈ R. Then there exists a random sequence (T i
λ , i ≥ 1) of compact measured metric

spaces, in fact compact measured real trees, such that as n→∞,

(n−1/3Tn,iλ , i ≥ 1)
d−→ (T i

λ , i ≥ 1)

for the topology associated to d4
GHP.

Furthermore, the sequence (T i
λ , i ≥ 1) is constructed from (G i

λ, i ≥ 1) by a continuum analogue of
the cycle breaking procedure which samples cut points according to length measure on the core of the real
graphs until no more cycle remains. (Recall that the results in Chapter 3 provide precise distributional
descriptions of the cores and kernels of the components of (G i

λ, i ≥ 1).) Showing that the continuum
analogue of cycle breaking is well-defined and commutes with the appropriate limits is somewhat involved.

Note that, for fixed n, the process tracking the minimum spanning tree of the largest connected com-
ponent (n−1/3Tn,1λ , λ ∈ R) is eventually constant (p actually reaches one, and even passes it), and we
write Tn for the space obtained from limλ→∞ T

n,1
λ by giving each vertex mass 1/n (this renormalizes the

mass, which is n×n−2/3 in limλ→∞ T
n,1
λ ). Then Tn has the same distribution as n−1/3Mn, the measured

metric space corresponding to the minimum spanning tree. So proving Theorem 4.2 reduces to proving
convergence of Tn.

In order to establish that Tn converges in distribution in the space (M, dGHP) as n → ∞, we rely
on two ingredients. First, the convergence in Theorem 4.3 implies that the first component n−1/3Tn,1λ

converges in distribution as n → ∞ to T 1
λ in the space (M,dGHP). Second, the results in Section 4.2

entail that
lim
λ→∞

lim sup
n→∞

P(dGH(n−1/3Tn,1λ , Tn) ≥ ε) = 0. (4.5)

This is enough to prove a version of our main result for the metric spaces without their measures.
The strengthening to the level of measured metric space requires to tweak the measure once again: Let

n−1/3T̂n,1λ be the measured metric space obtained from n−1/3Tn,1λ by rescaling the measure so that the
total mass is one. Then

lim
λ→∞

lim sup
n→∞

P(dGHP(n−1/3T̂n,1λ , Tn) ≥ ε) = 0.

Since Tn and n−1/3Mn have the same distribution and (M,dGHP) is a complete and separable space, the
so-called principle of accompanying laws (Theorem 9.1.13 of [102]) entails that

n−1/3Mn
d−→M
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in the space (M, dGHP) for some limiting random measured metric space M which is thus the scaling
limit of the minimum spanning tree on the complete graph. Furthermore, still as a consequence of the
principle of accompanying laws, M is also the limit in distribution of T 1

λ as λ → ∞ in the space
(M,dGHP).

4.3.2 Properties of the scaling limit

Finally, we sketch some of the arguments leading to the properties of the scaling limit M , in particular
the one which allows us to ensure that M is not the Brownian CRT.

M IS BINARY, AND ITS MASS MEASURE IN CONCENTRATED ON THE LEAVES. For fixed λ ∈ R, each
component of Tλ is almost surely binary. Since M is compact and (if the measure is ignored) is an
increasing limit of T 1

λ as λ→∞, it will follow that M is almost surely binary.
To prove that the mass measure is concentrated on the leaves of M , we use a result of Łuczak [77] on

the size of the largest component in the barely supercritical regime. This result in particular implies that
for all ε > 0,

lim
λ→∞

lim sup
n→∞

P

(∣∣∣∣∣ |V (Tn,1λ )|
2λn2/3

− 1

∣∣∣∣∣ > ε

)
= 0.

Since |V (Tn)| has n vertices, it follows that for any λ ∈ R, the proportion of the mass of Tn already
present in Tn,1λ is asymptotically negligible. But (4.5) tells us that for λ large, with high probability every
point of Tn not in Tn,1λ has distance oλ→∞(1) from a point of Tn,1λ , so has distance oλ→∞(1) from a leaf
of Tn. Passing this argument to the limit, it will follow that M almost surely places all its mass on its
leaves.

THE MEASURED METRIC SPACE M IS NOT THE CRT. To prove that M is distinct from the CRT, we
look at a simple and natural notion of fractal dimension, the box-counting or Minkowski dimension [43].
Given a compact metric space X and r > 0, let N(X, r) be the number of balls of radius at most r needed
to cover X . We define the lower and upper box-counting dimensions by

dimM (X) = lim inf
r↓0

logN(X, r)

log(1/r)
and dimM (X) = lim sup

r↓0

logN(X, r)

log(1/r)
,

respectively. If dimM (X) = dimM (X), the common value is called the box-counting dimension and is
denoted dimM (X).

Proposition 4.1. As r → 0, we have the following almost sure convergence:

log(N(M , r))

log(r−1)
→ 3.

For the Brownian CRT T , N(T , r) almost surely has order r−2 as r → 0 (see Proposition 5.2 of [38]),
so the laws of M and of the Brownian CRT are mutually singular. To prove Proposition 4.1, we use the
asymptotics about the structure of C λ

1 , the scaling limit of the largest component of G(n, 1/n+ λn−4/3),
as λ → ∞. The intuitive argument goes as follows: the metric space C λ

1 has mass about 2λ and about
Θ(λ3) (the largest excursion of W λ is essentially the parabola tλ− t2/2). Thus, the CRTs which decorate
the Θ(λ3) edges of the kernel of C λ

1 have mass of order λ−2, hence distances of order λ−1. Putting
everything together, N(C λ

1 , λ
−1) should be about the number of edges of the kernel, that is Θ(λ3), hence

the box-counting dimension.



Chapter 5

Limit theorems for recursive partitions

In this chapter, we present some results on the asymptotic behaviour of some models
of recursive partitions. This has been initially motivated by the estimation of cost
of search queries in multidimensional data structures (Section 5.2). The problem of
the dual tree of the (self-similar) lamination of the disk (Section 5.3) happened to be
amenable to similar ideas. We rely on the documents [P23] which is joint work with
Ralph Neininger et Henning Sulzbach and [P25] with Henning Sulzbach.

5.1 Generalities

In this chapter, we present some recent work on the asymptotic behavior of some recursive models which
play an important role in computer science via the divide-and-conquer paradigm. The limit processes
involved are not completely standard in that they are not Brownian or even Lévy processes. It makes them
slightly more complex to capture since the lack of homogeneity or independence between the increments
ruins many an approach.

The collection of ideas used in the proofs originate in the now so-called contraction method which
has been developed mostly in the theoretical computer science literature. The general approach is very
natural: one looks for a convergence in distribution for a sequence of random variables; the recursive
structure of the divide-and-conquer problems yields equations which bind all the distributions of all these
random variables; if the random variables converge in distribution, their law should be a fixed point of a
limit fixed point equation. Then, the idea is to devise a suitable space of probability measures in which
the fixed point equation is a contraction, which ensures by a fixed-point theorem that there is a unique
possible limit. The contraction method gives a framework for this approach and general conditions which
ensure the convergence to this fixed point.

The collection of results proved using the contraction method has until very recently mostly been
focused on scalar or (finite-dimensional) vector-valued random variables. In particular, the method has
permitted the analysis of the performance of many algorithms via some parameters such as the path length
(sum of the length of paths to the root). Only very recently, Neininger and Sulzbach [90] have developed
a general approach for random processes. The results presented in Section 5.2 are a direct application of
their theorems. Most of the work consists in proving that the theorem indeed applies which (essentially)
requires to construct the limit process, prove that it is continuous, verify that it has the right first moment,
and that its supremum has a finite second moment. The results in this section settle open problems which
had been left open since the first average-case analysis by Flajolet et al. [51]. Section 5.3 is devoted to
a recent results for the related problem of recursive lamination of the disk. We initially intended to take
a route which closely follows the one for the quad tree, until we realized that significant short-cuts could
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be made; these short-cuts yield both elementary proofs and stronger results, but unfortunately rely on the
very specific structure of the recursion at hand.

Before proceeding to the examples, I warn the reader that the presentation here is much more descrip-
tive than in the other chapters, and focuses more on the issues and the objects than on the ideas underlying
the proofs.

5.2 Quadtrees and partial match queries

5.2.1 Context and history

Recall the presentation of the model in Section 1.6. To gain a refined understanding of the cost beyond
the level of expectations we pursue two directions. First, to quantify the order of typical deviations from
the mean we study the order of the variance together with limit distributions. However, deriving higher
moments turns out to be subtle. In particular, when the query line is random (like when studying the
cost Cn(ξ) at a uniformly random location ξ) although the four subtrees at the root are independent given
their sizes, the contributions of the two subtrees that do hit the query line are dependent. The relative
location of the query line inside these two subtrees is again uniform, but unfortunately it is the same
in both regions. Hence, one cannot easily setup recurrence relations and perform an asymptotic analysis
exploiting independence. This issue has not been addressed appropriately in the past, and there is currently
no result on the variance or higher moments for Cn(ξ).

The second issue lies in the definition of the cost measure itself: even if the data follow some distribu-
tion, should one assume that the query follows the same distribution? In other words, should we focus on
Cn(ξ)? Maybe not. But then, what distribution should one use for the query line?

One possible approach to overcome both problems is to consider the query line to be fixed and to study
Cn(s) for a fixed s ∈ [0, 1]. This raises another problem: even if s is fixed at the top level, as the search is
performed, the relative location of the queries in the recursive calls varies from one node to another. Thus,
in following this approach, one is led to consider the entire stochastic process (Cn(s))s∈[0,1]; this is the
method we use here.

Write

β :=

√
17− 3

2
.

Recently Curien and Joseph [33] obtained some results in this direction. They proved that for every fixed
s ∈ (0, 1),

E[Cn(s)] ∼ K1(s(1− s))β/2nβ, and K1 =
Γ(2β + 2)Γ(β + 2)

2Γ(β + 1)3Γ (β/2 + 1)2
. (5.1)

On the other hand, Flajolet et al. [51, 52] prove that, along the edge one has E[Cn(0)] = Θ(n
√
2−1), so

that E[Cn(0)] = o(nβ) (see also [33]). The behavior about the x-coordinate U of the first data point
certainly resembles that along the edge, so that one has E[Cn(U)] = o(nβ). It suggests that Cn(s) should
not be concentrated around its mean, and that n−βCn(s) should converge to a non-trivial random variable
as n→∞.

5.2.2 Main results and implications

We denote by D[0, 1] the space of càdlàg functions on [0, 1] and by ‖f‖ := supt∈[0,1] |f(t)| the uniform
norm of f ∈ D[0, 1]. Our main contribution is to prove the following convergence result:

Theorem 5.1. Let Cn(s) be the cost of a partial match query at a fixed line s in a random quadtree. Then,
there exists a random continuous function Z such that, as n→∞,(

Cn(s)

K1nβ
, s ∈ [0, 1]

)
d−→ (Z(s), s ∈ [0, 1]). (5.2)
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Figure 5.1: The limit partial match process Z.

This convergence in distribution holds in D[0, 1] equipped with the Skorokhod topology.

The limit process Z may be characterized as follows (see Figure 5.1 for a simulation).

Proposition 5.1. The distribution of the random function Z in (5.2) is a fixed point of the following
functional recursive distributional equation, as process in s ∈ [0, 1],

Z(s)
d
=1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U
1− U

)
+ ((1− U)(1− V ))βZ(4)

(
s− U
1− U

)]
, (5.3)

where U and V are independent [0, 1]-uniform random variables and Z(i), i = 1, . . . , 4 are independent
copies of the process Z, which are also independent of U and V . Furthermore, Z in (5.2) is the only
continuous solution of (5.3) such that E[Z(s)] = (s(1− s))β/2 for all s ∈ [0, 1] and E[‖Z‖2] <∞.

The fixed point equation in (5.3), which might at first look awful, is the simple limit which arise from
the natural decomposition at the root of the quad tree: either the query falls on the left and there are two
contributions, or it falls on the right, and there are also two contributions (see Figure 1.2).

It turns out that the convergence that implies Theorem 5.1 is actually strong enough to guarantee
convergence of the variance of the costs of partial match queries. The following theorem for uniform
queries ξ is the direct extension of the pioneering work of Flajolet and Puech [49], Flajolet et al. [51] for
the expected cost of partial match queries at a uniform line ξ in random two-dimensional trees.

Theorem 5.2. If ξ is uniformly distributed on [0, 1], independent of (Cn) and Z, then

Cn(ξ)

K1nβ
→ Z(ξ),

in distribution. Moreover, we have Var (Cn(ξ)) ∼ K4n
2β where, with K1 given in (5.1),

K4 := K2
1 ·Var(Z(ξ)) = K2

1

(
2(2β + 1)

3(1− β)
B(β + 1, β + 1)2 − B(β/2 + 1, β/2 + 1)2

)
.
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Here B(a, b) :=
∫ 1
0 t

a−1(1 − t)b−1dt denotes the Eulerian integral for a, b > −1. In particular,
Theorem 5.2 identifies the asymptotic order of Var (Cn(ξ)) which is to be compared with studies that
neglected the dependence between the contributions of the subtrees mentioned above [81, 88, 89]. A
refined result for the asymptotic order of Var (Cn(s)) at a fixed position is

Var (Cn(s)) ∼ K2
1Var (Z(s))n2β,

where s ∈ (0, 1).
Another consequence of Theorem 5.1 concerns the order of magnitude of the cost of the worst query

sups∈[0,1]Cn(s). This guarantees that even the worst query has cost of order nβ .

Theorem 5.3. Let Sn = sups∈[0,1]Cn(s). Then, as n→∞,

Sn
K1nβ

→ S := sup
s∈[0,1]

Z(s)

in distribution and with convergence of all moments. In particular,

E[Sn] ∼ K1n
βE[S], and Var(Sn) ∼ K2

1n
2βVar(S).

We also mention the following nice fact: the one-dimensional marginals of the limit process (Z(s), s ∈
[0, 1]) are all the same up to a multiplicative constant:

Theorem 5.4. There is a random variable Z ≥ 0 such that for all s ∈ [0, 1],

Z(s)
d
= (s(1− s))β/2Z. (5.4)

The distribution of Z is characterized by its moments cm := E [Zm], m ∈ N. They are given by c1 = 1
and the recurrence, for m ≥ 2,

cm =
βm+ 1

(m− 1)(m+ 1− 3βm/2)

m−1∑
`=1

(
m

`

)
B(β`+ 1, β(m− `) + 1)c`cm−`. (5.5)

Convergence of all moments of the supremum n−βSn in Theorem 5.3 implies uniform integrability of
any moment of the process n−βCn, hence the following result about convergence of all moments.

Theorem 5.5. For all s ∈ [0, 1], we have

E

[(
Cn(s)

K1nβ

)m]
→ E [Z(s)m] = cm(s(1− s))βm/2,

for all m ∈ N as n→∞ where cm is given in (5.5). The analogous result holds true for Zn(ξ) where ξ is
uniform on [0, 1] and independent of (Zn)n≥0 and Z. Moreover, for any natural number ` > 0, positions
0 ≤ s1 < . . . < s` ≤ 1, and k1, . . . , k` ∈ N one has

E[Ck1n (s1) · · ·Ck`n (s`)] ∼ (K1n
β)

∑`
j=1 kj ·E[Zk1(s1) · · ·Zk`(s`)].

Remark. The results presented here may be extended to the related case of the k-d tree. Details may be
found in [P24].
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5.3 Recursive laminations of the disk

5.3.1 Context and history

The work of Curien and Le Gall [34] was motivated by the pioneering work of Aldous [8, 9] who studied
uniform random triangulations of the disk which arise as limiting objects for uniform triangulations of
regular n-gons as n → ∞. The recursive nature of the triangulation hides a natural tree, which is dual to
the triangulation. Each face of a triangulation is associated with a node and two nodes are connected in
the tree if and only if their corresponding faces share an edge in the triangulation. The tree is rooted at a
node associated to a fixed edge of the n-gon. In the case of uniform triangulations, the classical bijection
between triangulations of the n-gon and rooted binary trees implies that the dual tree is a uniformly random
rooted binary tree. Therefore, this tree converges to the Brownian continuum random tree. However, much
more is true. By definition, distances in the tree correspond to the number of chords to cross to go from
one face to an other. The embedding of the tree inside the n-gon yields an ordering of the nodes which
are each associated with one of the n edges of the n-gon. When nodes are listed in this order, the height
process of the dual tree converges uniformly to a Brownian excursion after distances have been rescaled
by n−1/2.

0

s

Cn(s)

Figure 5.2: A lamination, its right-continuous height process and the corresponding rooted dual tree. Distances in
the tree correspond to the number of chords separating fragments in the laminations.

5.3.2 The dual tree of the recursive lamination

Before going further, let us introduce some notation. We consider the circle C = {z ∈ C : |z| = 1/(2π)}
as a subset of the complex plane. For convenience, C is identified with the unit interval where the points
0 and 1 have been glued: we identify s ∈ [0, 1] with the point 1

2π exp(2πis) ∈ C . At some time n, we
let Ln be the collection of inserted (closed) chords, Cn(s) the number or chords in Ln which intersect the
straight line going through the points 0 and s of the circle. The value Cn(s) is precisely the height of the
node corresponding to the face adjacent to the point s in the dual tree Tn, see Figure 5.2. A priori, for any
n ≥ 1, Cn(s) is not properly defined at endpoints of chords, and we consider a right-continuous version.

Let

β =

√
17− 3

2
= 0.561552 . . . . (5.6)

Using the theory of fragmentation processes [19], Curien and Le Gall [34] proved that there exists a
random continuous process M such that for every s ∈ [0, 1] n−β/2Cn(s) → M (s) in probability, as
n→∞. The process M encodes the limiting triangulation in the sense of [9] (for a detailed description,
see [34, Section 2.3]). Almost surely, for any ε > 0, the process M is (β− ε)-Hölder continuous, and for
any s ∈ [0, 1] we have

E[M (s)] = κ(s(1− s))β (5.7)
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for some constant κ > 0. Finally, M inherits the recursive structure of the lamination process and satisfies
the following distributional fixed-point equation: let M (0),M (1) denote independent copies of M , let also
(U, V ) be independent of (M (0),M (1)) with density 21{0≤u≤v≤1} on [0, 1]2. Then the process defined
by 

(1− (V − U))βM (0)

(
s

1− (V − U)

)
if s < U

(1− (V − U))βM (0)

(
U

1− (V − U)

)
+ (V − U)βM (1)

(
s− U
V − U

)
if U ≤ s < V

(1− (V − U))βM (0)

(
s− (V − U)

1− (V − U)

)
if s ≥ V,

(5.8)

is distributed like the initial process M .
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Figure 5.3: An instance of limit height process M .

In some sense, the height process or the dual tree is arguably the important object. The proof of
convergence of random recursive lamination by Curien and Le Gall [34] relies only on the convergence
of the finite dimensional distributions of the height process (no rescaling is needed for the convergence).
The main purpose of this section is to show that, after a suitable rescaling of distances, the dual tree Tn of
the recursive lamination process converges almost surely to a compact real tree in the Gromov–Hausdorff
sense.

Theorem 5.6. Almost surely as n→∞,

(Tn, n
−β/2dn)→ (TM , dM )

in the sense of the Gromov–Hausdorff distance between compact metric spaces.

Note that the number of chords Nn inserted by time n is of order
√
n. More precisely, Curien and

Le Gall [34] show that Nn/
√
n →

√
π almost surely. Thus, in the statement of Theorem 5.6, we may

replace nβ/2 by Nβ
nπ−β/2 (the scaling of distances in Tn is volume to the β.) The limit metric space TM

is yet another natural random real tree which does not come from a Brownian excursion [4, 6, 7] or an
other more general Lévy process [37, 76]. Other examples include the fragmentations trees of Haas and
Miermont [57, 58], and the scaling limit of the minimum spanning tree discussed in Chapter 4.

Proposition 5.2. The real tree (TM , dM ) is almost surely binary and has its mass concentrated on the
leaves. Furthermore, its box-counting dimension equals 1/β almost surely.
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The proof of Theorem 5.6 relies on Theorem 5.7 below. Here there is some sort of miracle, due to
the very specific recursive structure: proving uniform convergence of n−β/2Cn(s) for s ∈ [0, 1] simply
reduces to proving the convergence at an independent uniformly random location. We do not intend to
give the formal argument here, but we try to give hint of why this ought to be true:

• there are only two contributing terms (two smaller subregions to examine) when s and 0 are sepa-
rated by the first chord (case U ≤ s < V of equation (5.8)), and

• if this happens, then one of these two contributions is completely decoupled: the relative location of
the ray in the subregion, U/(1−V +U), is exactly uniform and independent of {V −U, 1−V +U}!

This observation is the key to the entire proof, and explains why we can obtain uniform convergence in all
Lp. Indeed, one can treat convergence at a uniformly random location easily (for instance, it is one of the
preliminary results in [34]); it then suggests that there be actually only one “non-vanishing” contributing
subproblem left, regardless of the case, and that there ought to be a nice underlying contraction by taking
Lp for p ≥ 2 (even for the uniform norm). Making this idea formal then shows that:

Theorem 5.7. As n→∞,

n−β/2Cn →M almost surely and in Lm, for all m ∈ N. (5.9)

Up to a multiplicative constant, the process M is the unique solution of (5.8) (in distribution) with càdlàg
paths continuous at 1 subject to

∫ 1
0 E[M (s)2]ds <∞.

Note that Theorem 5.7 is actually much stronger than what is needed to prove Gromov–Hausdorff
convergence of Tn; indeed, it implies in particular that all the moments of the rescaled height also con-
verge. Note however that, a priori, the process M is not fully identified because of the free multiplicative
constant. (Curien and Le Gall [34] proved that the scaling constant κ in (5.7) exists, but they did need to
identify it for the main topic there is the limit lamination which is not affected by this leading constant.) In
order to identify M precisely, we study the asymptotics of E[Cn(ξ)] for an independent uniform random
variable ξ.

Theorem 5.8. Let γ = β/2 + 1 and γ̄ = −
√
17+1
4 . Then

E [Cn(ξ)] =

√
π

4

n∑
k=1

(
n

k

)
(−1)k+1 Γ(k − γ + 1)Γ(k − γ̄ + 1)

k!Γ(k + 3/2)Γ(2− γ)Γ(2− γ̄)
.

Furthermore, as n→∞,

E[Cn(ξ)] = cnβ/2 +O(1) with c =

√
πΓ(2γ − 1/2)

2Γ(γ)Γ2(γ + 1/2)
= 1.178226 . . . . (5.10)

Theorem 5.8 below is the key to properly identifying the limit dual tree. The first order asymptotics
also follows the work of Bertoin and Gnedin [20] on non-conservative fragmentations; the error term may
be obtained using their representation with little extra work.

Corollary 5.1. The process M in (5.9) is such that

E[M (s)] = κ(s(1− s))β, κ =
c

B(β + 1, β + 1)
= 3.34443 . . . ,

where c is given in (5.10), which identifies uniquely the solution of (5.8) among all processes with càdlàg
paths continuous at 1 subject to

∫ 1
0 E[M (s)2]ds <∞.
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OTHER SELF-SIMILAR RECURSIVE LAMINATIONS. The lamination process we have introduced is actu-
ally an instance of a more general fragmentation process which is also discussed in [34] using a two-stage
split procedure: first pick a fragment with probability proportional to its mass to the power α = 2 (the
Lebesgue measure of the corresponding intersection of the portion of the disk with the circle), then choose
the random chord within this fragment by sampling two independent uniform points on the intersection
with the circle. In the language of fragmentation theory [19], α is the index of self-similarity, and the
actual split given the fragment is described by a dislocation measure, which is here (essentially) given by
the two uniform points conditioned to fall in the same fragment. One may define related fragmentations
where the next fragment to split is chosen with probability proportional to its mass to the power α ∈ R,
the cases of interest here are those with α ≥ 0. When α ≥ 0, Curien and Le Gall [34] have shown that
the limit laminations are all identical (the set of chords are the same); however, and although it encodes
the same lamination for every α ≥ 0, the encoding process (related to the dual trees) depends on whether
α > 0 or α = 0. It is thus a natural question to investigate the dual tree in the case α = 0.

5.3.3 The dual tree of the homogeneous lamination

When α = 0, the choice of the next fragment is independent of its mass – hence homogeneous – and there
is a drastic change in the behaviour of the height process. Note here that every trial yields a new insertion,
and the lamination at time n contains n chords. WriteC(0)

n (s) for the height in the dual tree of the fragment
containing s ∈ [0, 1]. Curien and Le Gall [34] prove that for every s ∈ (0, 1) the quantity n−1/3C(0)

n (s)
converges in probability as n → ∞, where the point-wise limit H (s) may be described by a process H
with continuous sample paths which satisfy another, similar but different, fixed-point equation: let H (0),
H (1) denote independent copies of H such that (H (0),H (1)), (U, V ), W are independent, (U, V ) has
density 21{0≤u≤v≤1} and W is uniformly distributed on the unit interval. Then, the process defined by,
for every s ∈ [0, 1],

W 1/3H (0)

(
s

1− (V − U)

)
if s < U

W 1/3H (0)

(
U

1− (V − U)

)
+ (1−W )1/3H (1)

(
s− U
V − U

)
if U ≤ s < V

W 1/3H (0)

(
s− (V − U)

1− (V − U)

)
if s ≥ V.

(5.11)

is distributed like the original process H . Furthermore, Curien and Le Gall [34] prove that the limit
process H , which is distributed like H here, satisfies

E[H (s)] = κ(0)(s(1− s))1/2 (5.12)

for some unidentified constant κ(0) > 0.
In this case, the approach used to prove Theorem 5.6 yields the following result: let T (0)

n denote the
tree dual to the homogeneous laminations L(0)

n , and let d(0)n denote the graph distance in T (0)
n .

Theorem 5.9. Almost surely, as n→∞,

(T (0)
n , n−1/3d(0)n )→ (TH , dH ),

in the Gromov–Hausdorff sense.
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Figure 5.4: An instance of the limit process H .





Publications

The documents are available online at http://algo.inria.fr/broutin/publications, via the DOI, or upon re-
quest.

[P1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probability
Theory and Related Fields, 151:265–295, 2011. doi:10.1007/s00440-010-0299-2

[P2] L. Addario-Berry, N. Broutin, L. Devroye, and G. Lugosi. On combinatorial testing problems. The
Annals of Statistics, 38:3063–3092, 2010. doi:10.1214/10-AOS817

[P3] L. Addario-Berry, N. Broutin, and C. Goldschmidt. Critical random graphs: limiting constructions
and distributional properties. Electronic Journal of Probability, 15:741–775, 2010.

[P4] L. Addario-Berry, N. Broutin, and C. Goldschmidt. The continuum limit of critical random graphs.
Probability Theory and Related Fields, 152:367–406, 2012. doi:10.1007/s00440-010-0325-4

[P5] L. Addario-Berry, N. Broutin, C. Goldschmidt, and G. Miermont. The scaling limit of the minimum
spanning tree of the complete graph, submitted, 60 p, 2013. arxiv:1301.1664

[P6] L. Addario-Berry, N. Broutin, and C. Holmgren. Cutting down trees with a Markov chainsaw.
Submitted, 2011. arxiv:1110.6455

[P7] L. Addario-Berry, N. Broutin, and G. Lugosi. Effective resistance of random trees. The Annals of
Applied Probability, 19:1092–1107, 2009. doi:10.1214/08-AAP572

[P8] L. Addario-Berry, N. Broutin, and G. Lugosi. The longest minimum weight path in a complete
graph. Combinatorics, Probability and Computing, 19:1–19, 2010. doi:10.1017/S0963548309990204

[P9] L. Addario-Berry, N. Broutin, and B. Reed. The diameter of the minimum spanning tree of the
complete graph. In Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees
Combinatorics and Probability, volume AG of DMTCS Proc., pages 237–240, 2006.

[P10] L. Addario-Berry, N. Broutin, and B. Reed. Critical random graphs and the structure of a minimum
spanning tree. Random Structures Algorithms, 35:323–347, 2009. doi:10.1002/rsa.20241

[P11] N. Broutin and L. Devroye. Large deviations for the weighted height of an extended class of trees.
Algorithmica, 46:271–297, 2006. doi:10.1007/s00453-006-0112-x

[P12] N. Broutin and L. Devroye. The height of list tries and TST. In International Conference on
Analysis of Algorithms, volume AH of DMTCS Proceedings, pages 271–282, 2007.

[P13] N. Broutin and L. Devroye. An analysis of the height of tries with random weights on the edges.
Combinatorics, Probability and Computing, 17:161–202, 2008. doi:10.1017/S0963548307008796

[P14] N. Broutin, L. Devroye, N. Fraiman, and G. Lugosi. Connectivity threshold for Bluetooth graphs.
Random Structures and Algorithms, to appear, 2011. doi:10.1002/rsa.20459

[P15] N. Broutin, L. Devroye, and E. McLeish. Weighted height of random trees. Acta Informatica, 45:
237–277, 2008. doi:10.1007/s00236-008-0069-0

[P16] N. Broutin, L. Devroye, and E. McLeish. Note on the structure of Kruskal’s algorithm. Algorith-

49

http://algo.inria.fr/broutin/publications
http://dx.doi.org/10.1007/s00440-010-0299-2
http://dx.doi.org/10.1214/10-AOS817
http://dx.doi.org/10.1007/s00440-010-0325-4
http://arxiv.org/abs/1301.1664
http://arxiv.org/abs/1110.6455
http://dx.doi.org/10.1214/08-AAP572
http://dx.doi.org/10.1017/S0963548309990204
http://dx.doi.org/10.1002/rsa.20241
http://dx.doi.org/10.1007/s00453-006-0112-x
http://dx.doi.org/10.1017/S0963548307008796
http://dx.doi.org/10.1002/rsa.20459
http://dx.doi.org/10.1007/s00236-008-0069-0


50 Publications

mica, 56:141–156, 2010. doi:10.1007/s00453-008-9164-4

[P17] N. Broutin, L. Devroye, E. McLeish, and M. de la Salle. The height of increasing trees. Random
Structures and Algorithms, 32:494–518, 2008. doi:10.1002/rsa.20202

[P18] N. Broutin and O. Fawzi. Longest distance in random circuits. Combinatorics, Probability and
Computing, vol. 21, pp. 856–881, 2012. doi:10.1017/S0963548312000260

[P19] N. Broutin and P. Flajolet. The height of random binary unlabelled trees. In Fifth Colloquium on
Mathematics and Computer Science, volume AI of DMTCS Proc., pages 121–134, 2008.

[P20] N. Broutin and P. Flajolet. The distribution of height and diameter in random non-plane binary
trees. Random Structures and Algorithms, vol. 41, pp. 215–252, 2012. doi:10.1002/rsa.20393

[P21] N. Broutin and C. Holmgren. The total path length of split trees. The Annals of Applied Probability,
vol. 22, pp. 1745–1777, 2012. doi:10.1214/11-AAP812

[P22] N. Broutin and J.-F. Marckert. Asymptotics of trees with a prescribed degree sequence and appli-
cations. Random Structures and Algorithms, to appear, 2012. doi:10.1002/rsa.20463

[P23] N. Broutin, R. Neininger, and H. Sulzbach. Partial match queries in random quadtrees. In Y. Rabani,
editor, Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1056–1065,
2012.

[P24] N. Broutin, R. Neininger, and H. Sulzbach. A limit process for partial match queries in random
quadtrees. The Annals of Applied Probability, to appear, 2012. arxiv:1202.1342

[P25] N. Broutin and H. Sulzbach. The dual tree of a recursive triangulation of the disk, Submitted, 29
pages, 2012. arXiv:1211.1343

http://www.springerlink.com/content/f4t1m2j2v32rn701/
http://dx.doi.org/10.1002/rsa.20202
http://dx.doi.org/10.1017/S0963548312000260
http://dx.doi.org/10.1002/rsa.20393
http://dx.doi.org/10.1214/11-AAP812
http://dx.doi.org/10.1002/rsa.20463
http://arxiv.org/abs/1202.1342
http://arxiv.org/abs/1211.1343


References

[1] R. Abraham and J.-F. Delmas. The forest associated with the record process on a Lévy tree. arXiv:1204.2357
[math.PR], 2012.

[2] Louigi Addario-Berry. Tail bounds for the height and width of a random tree with a given degree sequence.
Random Structures & Algorithms, 41:253–261, 2012.

[3] D. Aldous. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM
Journal on Discrete Mathematics, 3:450–465, 1990.

[4] D. Aldous. The continuum random tree II: an overview. In M.T. Barlow and N.H. Bingham, editors, Stochastic
Analysis, pages 23–70. Cambridge University Press, 1991.

[5] D. Aldous. Asymptotic fringe distibutions for general families of random trees. The Annals of Applied
Probability, 1:228–266, 1991.

[6] D. Aldous. The continuum random tree. I. The Annals of Probability, 19:1–28, 1991.

[7] D. Aldous. The continuum random tree III. The Annals of Probability, 21:248–289, 1993.

[8] D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. The
Annals of Probability, 22:527–545, 1994.

[9] D. Aldous. Triangulating the circle, at random. The American Mathematical Monthly, 101:223–233, 1994.

[10] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. The Annals of
Probability, 25:812–854, 1997.

[11] D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Structures and
Algorithms, 5:487–512, 1994.

[12] D. Aldous and J. Pitman. The standart additive coalescent. The Annals of Probability, 26:1703–1726, 1998.

[13] D. Aldous and J. M. Steele. The objective method: probabilistic combinatorial optimization and local weak
convergence. In H. Kesten, editor, Discrete and Combinatorial Probability, pages 1–72. Springer Verlag,
2003.

[14] D.J. Aldous and B. Pittel. On a random graph with immigrating vertices: Emergence of the giant component.
Random Structures and Algorithms, 17:79–102, 2000.

[15] K. B. Athreya and P. E. Ney. Branching Processes. Springer, Berlin, 1972.

[16] E.A. Bender and E.R. Canfield. The asymptotic number of labeled graphs with given degree sequences.
Journal of Combinatorial Theory, Series A, 24:296–307, 1978.

[17] N. Berestycki. Recent progress in coalescent theory. Ensaios Matematicos, 16:1–193, 2009.

[18] J. Bertoin. A fragmentation process connected to Brownian motion. Probability Theory and Related Fields,
117:289–301, 2000.

[19] J. Bertoin. Random fragmentation and coagulation processes. Cambridge University Press, Cambridge,
2006.

[20] J. Bertoin and A. Gnedin. Asymptotic laws for nonconservative self-similar fragmentations. Electronic
Journal of Probability, 9:575–593, 2004.

[21] J. Bertoin and G. Miermont. Asymptotics in Knuth’s parking problem for caravans. Random Structures and
Algorithms, 29:38–55, 2006.

[22] J. Bertoin and J. Pitman. Path transformations connecting Brownian bridge, excursion and meander. Bull.
Sci. Math., 118:147–166, 1994.

51



52 References

[23] Jean Bertoin. Fire on trees. arXiv:1011.2308v2 [math.PR], 2011.

[24] Jean Bertoin and Grégory Miermont. The cut-tree of large Galton–Watson trees and the Brownian CRT.
2012.

[25] S. Bhamidi, R. van der Hofstad, and J.S.H. van Leeuwaarden. Novel scaling limits for critical inhomogeneous
random graphs. arXiv:0909.1472 [math.PR], 2009.

[26] S. Bhamidi, R. van der Hofstad, and J.S.H. van Leeuwaarden. Scaling limits for critical inhomogeneous
random graphs with finite third moments. Electronic Journal of Probability, 2012. to appear.

[27] B. Bollobás. The evolution of random graphs. Transactions of the American Mathematical Society, 286:
257–274, 1984.

[28] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press,
second edition, 2001.

[29] Bela Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
European Journal of Combinatorics, 1:311–316, 1980.

[30] A. Broder. Generating random spanning trees. In 30th Annual Symposium on Foundations of Computer
Science,, pages 442–447, 1989.

[31] P. Chassaing and G. Louchard. Phase transition for parking blocks, Brownian excursion and coalescence.
Random Structures & Algorithms, 21:76–119, 2002.

[32] P. Chassaing and R. Marchand. Merging costs for the additive Marcus–Lushnikov process, and union-find
algorithms. arXiv:math.PR/0406094, 2004.

[33] N. Curien and A. Joseph. Partial match queries in two-dimensional quadtrees: A probabilistic approach.
Advances in Applied Probability, 43:178–194, 2011.

[34] Nicolas Curien and Jean-François Le Gall. Random recursive triangulation of the disk via fragmentation
theory. The Annals of Probability, 39:2224–2270, 2011.

[35] N.G. De Bruijn, D. E. Knuth, and S. Rice. The average height of planted plane trees. In R.-C. Read, editor,
Graph Theory and Computing, pages 15–22, New York, 1972. Academic Press.

[36] M. Drmota and B. Gittenberger. The shape of unlabeled rooted random trees. European Journal of Combi-
natorics, 31:2028–2063, 2010.

[37] T. Duquesne and J.-F. Le Gall. Random trees, Levy processes and spacial branching processes, volume 281
of Asterisque. 2002.

[38] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probability Theory and Related
Fields, 131(4):553–603, 2005.

[39] R.T. Durrett and D.L. Iglehart. Functionals of Brownian meander and Brownian excursion. The Annals of
Probability, 5:130–135, 1977.

[40] F. Eggenberger and G. Pólya. Uber die Statistik verketteter Vorgange. Zeitschrift fur Angewandte Mathematik
und Mechanik, 3(4):279–289, 1923.
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