
HAL Id: tel-00842447
https://theses.hal.science/tel-00842447

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Deep Representations : Toward a better new
understanding of the deep learning paradigm

Ludovic Arnold

To cite this version:
Ludovic Arnold. Learning Deep Representations : Toward a better new understanding of the
deep learning paradigm. Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. �NNT :
2013PA112103�. �tel-00842447�

https://theses.hal.science/tel-00842447
https://hal.archives-ouvertes.fr

école doctorale d’Informatique de l’Université Paris Sud (ED427)

Laboratoire des Sciences et Mécaniques de l’Ingénieur (LIMSI)

Équipe INRIA TAO

thèse de doctorat de l’université paris-sud

spécialité : informatique

soutenue le 25/06/2013 par

ludovic arnold

L E A R N I N G D E E P R E P R E S E N TAT I O N S
Toward a better understanding of the deep learning paradigm

Co-directeurs de thèse:

Mme. Hélène PAUGAM-MOISY Professeur (Université Lyon 2), LRI-TAO

M. Philippe TARROUX Professeur (ENS), LIMSI

Composition du jury:

M. Yoshua BENGIO Full Professor (Université de Montréal), LISA Rapporteur

M. Stéphane CANU Professeur (INSA Rouen), LITIS Rapporteur

M. Thierry ARTIÈRES Professeur (Université Paris 6), LIP6 Examinateur

Mme. Michèle SEBAG Directeur de Recherche CNRS, LRI-TAO Examinateur

L E A R N I N G D E E P R E P R E S E N TAT I O N S

ludovic arnold

Toward a better understanding of the deep learning paradigm

June 2013

Ludovic Arnold: Learning deep representations, Toward a better understanding
of the deep learning paradigm, © June 2013

Once the machine thinking method has started, it would not take long to

outstrip our feeble powers. ... At some stage therefore we should have to expect

the machines to take control.

Alan Turing, 1951

The point about this approach is that it scales beautifully. Basically you just

need to keep making it bigger and faster, and it will get better. There’s no

looking back now.

Geoffrey Hinton, 2012

A B S T R AC T

Since 2006, deep learning algorithms which rely on deep architectures with sev-
eral layers of increasingly complex representations have been able to outperform
state-of-the-art methods in several settings. Deep architectures can be very ef-
ficient in terms of the number of parameters required to represent complex op-
erations which makes them very appealing to achieve good generalization with
small amounts of data. Although training deep architectures has traditionally
been considered a difficult problem, a successful approach has been to employ
an unsupervised layer-wise pre-training step to initialize deep supervised mod-
els. First, unsupervised learning has many benefits w.r.t. generalization because
it only relies on unlabeled data which is easily found. Second, the possibility
to learn representations layer by layer instead of all layers at once further im-
proves generalization and reduces computational time. However, deep learning is
a very recent approach and still poses a lot of theoretical and practical questions
concerning the consistency of layer-wise learning with many layers and difficul-
ties such as evaluating performance, performing model selection and optimizing
layers.

In this thesis we first discuss the limitations of the current variational justi-
fication for layer-wise learning which does not generalize well to many layers.
We ask if a layer-wise method can ever be truly consistent, i.e. capable of find-
ing an optimal deep model by training one layer at a time without knowledge
of the upper layers. We find that layer-wise learning can in fact be consistent
and can lead to optimal deep generative models. To that end, we introduce the
Best Latent Marginal (BLM) upper bound, a new criterion which represents the
maximum log-likelihood of a deep generative model where the upper layers are
unspecified. We prove that maximizing this criterion for each layer leads to an
optimal deep architecture, provided the rest of the training goes well. Although
this criterion cannot be computed exactly, we show that it can be maximized
effectively by auto-encoders when the encoder part of the model is allowed to
be as rich as possible. This gives a new justification for stacking models trained
to reproduce their input and yields better results than the state-of-the-art vari-
ational approach. Additionally, we give a tractable approximation of the BLM
upper-bound and show that it can accurately estimate the final log-likelihood
of models. Taking advantage of these theoretical advances, we propose a new
method for performing layer-wise model selection in deep architectures, and a
new criterion to assess whether adding more layers is justified. As for the difficulty
of training layers, we also study the impact of metrics and parametrization on
the commonly used gradient descent procedure for log-likelihood maximization.
We show that gradient descent is implicitly linked to the metric of the underlying

vii

space and that the Euclidean metric may often be an unsuitable choice as it in-
troduces a dependence on parametrization and can lead to a breach of symmetry.
To alleviate this issue, we study the benefits of the natural gradient and show
that it can restore symmetry, regrettably at a high computational cost. We thus
propose that a centered parametrization may alleviate the problem with almost
no computational overhead.

viii

R É S U M É

Depuis 2006, les algorithmes d’apprentissage profond qui s’appuient sur des mo-
dèles comprenant plusieurs couches de représentations croissantes en complexité
ont pu surpasser l’état de l’art dans plusieurs domaines. Les modèles profonds
peuvent être très efficaces en termes du nombre de paramètres nécessaires pour
représenter des opérations complexes, ce qui les rend très intéressants pour ob-
tenir une bonne généralisation avec de faibles quantités de données. Bien que
l’entraînement des modèles profonds ait été traditionnellement considéré comme
un problème difficile, une approche réussie a été d’utiliser une étape de pré-
entraînement couche par couche, non supervisée, pour initialiser des modèles
profonds supervisés. Tout d’abord, l’apprentissage non-supervisé présente de
nombreux avantages par rapport à la généralisation car il repose uniquement
sur des données non étiquetées qu’il est facile de trouver. Deuxièmement, la pos-
sibilité d’apprendre des représentations couche par couche, au lieu de toutes les
couches à la fois, améliore encore la généralisation et réduit les temps de cal-
cul. Cependant, l’apprentissage profond est une approche très récente et pose
encore beaucoup de questions théoriques et pratiques relatives à la consistance
de l’apprentissage couche par couche, avec de nombreuses couches, et à la dif-
ficulté d’évaluer la performance, de sélectionner les modèles et d’optimiser la
performance des couches.

Dans cette thèse, nous examinons d’abord les limites de la justification varia-
tionnelle actuelle pour l’apprentissage couche par couche qui ne se généralise pas
bien à de nombreuses couches et demandons si une méthode couche par couche
peut jamais être vraiment consistante, c’est à dire capable de trouver un mo-
dèle profond optimal en entraînant un modèle de bas en haut, sans connaissance
des couches supérieures. Nous constatons que l’apprentissage couche par couche
peut en effet être consistant et peut conduire à des modèles génératifs profonds
optimaux. Pour ce faire, nous introduisons la borne supérieure de la meilleure
probabilité marginale latente (BLM upper bound), un nouveau critère qui repré-
sente la log-vraisemblance maximale d’un modèle génératif profond quand les
couches supérieures ne sont pas connues. Nous prouvons que la maximisation
de ce critère pour chaque couche conduit à une architecture profonde optimale,
à condition que le reste de l’entraînement se passe bien. Bien que ce critère ne
puisse pas être calculé de manière exacte, nous montrons qu’il peut être maximisé
efficacement par des auto-encodeurs quand l’encodeur du modèle est autorisé à
être aussi riche que possible. Cela donne une nouvelle justification pour empiler
les modèles entraînés pour reproduire leur entrée et donne de meilleurs résul-
tats que l’approche variationnelle, qui est la meilleure méthode actuellement
connue. En outre, nous donnons une approximation calculable de la BLM upper

ix

bound et montrons qu’elle peut être utilisée pour estimer avec précision la log-
vraisemblance finale des modèles. Tirant parti de ces avancées théoriques, nous
proposons une nouvelle méthode pour la sélection de modèles couche par couche
pour les modèles profonds, et un nouveau critère pour déterminer si l’ajout de
couches est justifié. Quant à la difficulté d’entraîner chaque couche, nous étu-
dions aussi l’impact des métriques et de la paramétrisation sur la procédure de
descente de gradient couramment utilisée pour la maximisation de la vraisem-
blance. Nous montrons que la descente de gradient est implicitement liée à la
métrique de l’espace sous-jacent et que la métrique Euclidienne peut souvent
être un choix inadapté car elle introduit une dépendance sur la paramétrisation
et peut entraîner une violation de la symétrie. Pour pallier ce problème, nous
étudions les avantages du gradient naturel et montrons qu’il peut être utilisé
pour restaurer la symétrie, mais avec un coût de calcul élevé. Nous proposons
donc qu’une paramétrisation centrée peut également rétablir la symétrie, mais
avec une très faible surcharge computationnelle.

x

AC K N OW L E D G M E N T S

I would like to thank my thesis advisor Hélène Paugam-Moisy for her unwaivering
support in difficult times. She was always there when I needed her, and was
truly dedicated to supporting me. I couldn’t have found a better thesis advisor.
I thank Yann Ollivier for his much needed supervision in mathematics and his
friendly ear in general. I also thank Philippe Tarroux whose vision of AI pretty
much guided my decision to start this Ph.D, Michèle Sebag co-director of the
TAO Team for her insights into the field of Machine Learning, and Christian
Gagné for the opportunity he gave me to visit the LSVN in Québec.

I would also like to thank all the Ph.D. students with whom I was able to
have enlightening discussions such as Pierre Delarboulas, Jean Marc Montanier,
Pierre Allegraud, Sylvain Chevallier and Sébastien Rebecchi.

xi

C O N T E N T S

Introduction 1

i optimization and machine learning 7
1 optimization 9
1.1 Problem statement . 9
1.2 The curse of dimensionality . 11
1.3 Convex functions . 11
1.4 Continuous differentiable functions 12
1.5 Gradient descent . 13
1.6 Black-box optimization and Stochastic optimization 15
1.7 Evolutionary algorithms . 16
1.8 EDAs . 18
2 from optimization to machine learning 23
2.1 Supervised and unsupervised learning 23
2.2 Generalization . 25
2.3 Supervised Example: Linear classification 26
2.4 Unsupervised Example: Clustering and K-means 28
2.5 Supervised Example: Polynomial regression 30
2.6 Model selection . 32
2.7 Changing representations . 32
2.7.1 Preprocessing and feature space 33
2.7.2 The kernel trick . 33
2.7.3 The manifold perspective . 34
2.7.4 Unsupervised representation learning 35
3 learning with probabilities 39
3.1 Notions in probability theory . 39
3.1.1 Sampling from complex distributions 41
3.2 Density estimation . 45
3.2.1 KL-divergence and likelihood . 47
3.2.2 Bayes’ rule . 47
3.3 Maximum a-posteriori and maximum likelihood 49
3.4 Choosing a prior . 49
3.5 Example: Maximum likelihood for the Gaussian 51
3.6 Example: Probabilistic polynomial regression 51
3.7 Latent variables and Expectation Maximization 52
3.8 Example: Gaussian mixtures and EM 53
3.9 Optimization revisited in the context of maximum likelihood 55
3.9.1 Gradient dependence on metrics and parametrization 56

xiii

xiv contents

3.9.2 The natural gradient . 57

ii deep learning 61
4 artificial neural networks 63
4.1 The artificial neuron . 63
4.1.1 Biological inspiration . 63
4.1.2 The artificial neuron model . 64
4.1.3 A visual representation for images 65
4.2 Feed-forward neural networks . 66
4.3 Activation functions . 68
4.4 Training with back-propagation . 69
4.5 Auto-encoders . 71
4.6 Boltzmann Machines . 72
4.7 Restricted Boltzmann machines . 73
4.8 Training RBMs with Contrastive Divergence 75
5 deep neural networks 79
5.1 Shallow v.s. deep architectures . 79
5.2 Deep feed-forward networks . 80
5.3 Convolutional networks . 81
5.4 Layer-wise learning of deep representations 82
5.5 Stacked RBMs and deep belief networks 83
5.6 stacked auto-encoders and deep auto-encoders 85
5.7 Variations on RBMs and stacked RBMs 87
5.8 Tractable estimation of the log-likelihood 88
5.9 Variations on auto-encoders . 88
5.10 Richer models for layers . 89
5.11 Concrete breakthroughs . 90
5.12 Principles of deep learning under question ? 91
6 what can we do ? 95

iii contributions 99
7 presentation of the first article 101
7.1 Context . 101
7.2 Contributions . 101

Unsupervised Layer-Wise Model Selection in Deep Neural

Networks 103
1 Introduction . 103
2 Deep Neural Networks . 104
2.1 Restricted Boltzmann Machine (RBM) 104
2.2 Stacked RBMs . 106
2.3 Stacked Auto-Associators . 107
3 Unsupervised Model Selection . 107
3.1 Position of the problem . 107
3.2 Reconstruction Error . 108

contents xv

3.3 Optimum selection . 108
4 Experimental Validation . 109
4.1 Goals of experiments . 109
4.2 Experimental setting . 109
4.3 Feasibility and stability . 109
4.4 Efficiency and consistency . 111
4.5 Generality . 112
4.6 Model selection and training process 113
5 Conclusion and Perspectives . 115
References . 115

7.3 Discussion . 119
8 presentation of the second article 121
8.1 Context . 121
8.2 Contributions . 122

Layer-wise training of deep generative models 123
Introduction . 123
1 Deep generative models . 124
1.1 Deep models: probability decomposition 125
1.2 Data log-likelihood . 125
1.3 Learning by gradient ascent for deep architectures 126
2 Layer-wise deep learning . 127
2.1 A theoretical guarantee . 127
2.2 The Best Latent Marginal Upper Bound 129
2.3 Relation with Stacked RBMs . 133
2.4 Relation with Auto-Encoders . 135
2.5 From stacked RBMs to auto-encoders: layer-wise consistency . . . 136
2.6 Relation to fine-tuning . 138
2.7 Data Incorporation: Properties of qD 139
3 Applications and Experiments . 143
3.1 Low-Dimensional Deep Datasets 144
3.2 Deep Generative Auto-Encoder Training 147
3.3 Layer-Wise Evaluation of Deep Belief Networks 154
Conclusions . 165
References . 167

8.3 Discussion . 171
9 presentation of the third article 173
9.1 Context . 173
9.2 Contributions . 174

Information-Geometric Optimization Algorithms: A Unify-

ing Picture via Invariance Principles 175
Introduction . 175
1 Algorithm description . 179
1.1 The natural gradient on parameter space 180

xvi contents

1.2 IGO: Information-geometric optimization 183
2 First properties of IGO . 188
3 IGO, maximum likelihood, and the cross-entropy method 188
4 CMA-ES, NES, EDAs and PBIL from the IGO framework 188
5 Multimodal optimization using restricted Boltzmann machines . . . 188
5.1 IGO for restricted Boltzmann machines 189
5.2 Experimental setup . 195
5.3 Experimental results . 196
5.4 Convergence to the continuous-time limit 204
6 Further discussion and perspectives 205
Summary and conclusion . 211
Appendix: Proofs . 212
References . 212

9.3 Discussion . 217

Conclusion and perspectives 219

bibliography 227

AC RO N Y M S

AI Artificial Intelligence

BLM Best Latent Marginal

CD Contrastive-Divergence

CMA-ES Covariance Matrix Adaptation Evolution Strategy

EDA Estimation of Distribution Algorithm

EM Expectation Maximization

iid independent and identically distributed

KL Kullblack-Leibler

ML Machine Learning

RBM Restricted Boltzmann Machine

SVM Support Vector Machine

MCMC Monte Carlo Markov Chain

MSE Mean Square Error

PBIL Population Based Incremental Learning

RBF Radial Basis Function

xvii

N O TAT I O N S

algebra

x a real vector.

xi ith component of the vector x.

xi the ith vector in a set of vectors x1, x2, . . . , xN .

A a matrix.

AT the transpose of A.

aij the entry of the matrix A at row i, column j.

ÎxÎp Lp norm ÎxÎp = (
q

i |xi|p)
1
p .

ÎxÎ L2 norm (a.k.a. Euclidean norm).

optimization

arg minxœdom f f(x) xú such that f(xú) = minxœdom f f(x).

arg maxxœdom f f(x) xú such that f(xú) = maxxœdom f f(x).

differentiation
ˆf (x,y,z)

ˆx partial derivative of f with respect to x.
ˆ2f (x,y,z)

ˆxˆy second derivative with respect to x and y.

Òf(x) gradient of f at x (first derivative).

Òf(x) =
1

ˆf (x)
ˆx1

,
ˆf (x)
ˆx2

, . . . ,
ˆf (x)
ˆxD

2

.

Ò2f(x) Hessian of f at x (second derivative) given by the
symmetric matrix Ò2f(x)i,j =

ˆf (x)
ˆxiˆxj

.

probabilities

x ≥ P x is distributed according to the distribution P .
Equivalently: x is a sample from P .

U(S) uniform law over the set S.

B(p) Bernoulli probability of parameter p.

N (µ, ‡2) normal law of mean µ and variance ‡2.

N (µ, Σ) multidimensional normal law of mean µ and
covariance matrix Σ.

Beta(a, b) Beta distribution of parameters a, b.

xviii

L I S T O F F I G U R E S

Figure 0.1 Approaches to optimization (non-exhaustive). 5
Figure 0.2 Machine Learning tasks (non-exhaustive). 5
Figure 1.1 Global and local optima of a function f 10
Figure 1.2 The graph of a convex function f . The values of f be-

tween two points a and b are always below the chord, i.e.
the line segment between (a, f(a)) and (b, f(b)). 13

Figure 1.3 Two possible gradient descent trajectories. In (a) the ob-
jective function is well behaved which allows the gradient
to move smoothly towards the optimum. In (b) the gra-
dient starts to oscillate as it falls into a narrow valley,
thus converging more slowly. 15

Figure 1.4 Visualization of an evolutionary algorithm on a 2D toy
problem. The dotted lines represent level sets of the fit-
ness function. At generation n (a), the best individuals
according to the fitness function are selected (b). These
individuals are then the basis of a reproduction process
(c) leading to a new generation (d). The process can then
continue with step (b) for the new generation. Notice that
generation n + 1 has progressed towards better values of
the fitness function. 17

Figure 1.5 The steps of an EDA given a fitness function (a) and a
Gaussian proposal distribution at time t (b). First, sam-
ples are drawn from the proposal distribution (c). The
‡ best samples are then selected according to their f -
values (d). Finally, the likelihood of the selected samples
w.r.t. the parameters (e) can be increased with a step of
log-likelihood gradient ascent leading to a new proposal
distribution at time t + 1 (f). 20

Figure 2.1 Expected variation of the training and testing error with
increasing model complexity. 26

Figure 2.2 A classification dataset with two classes. The graph shows
two possible separating hyperplanes. 27

Figure 2.3 Three linearly non-separable classification datasets and a
possible separating surface. 27

xix

xx List of Figures

Figure 2.4 Convergence of the K-means algorithm on a toy 2-dimensional
clustering dataset with K = 3. The dataset set is given
in (a). The centroids •,• and • and the points closest to
them (◊,◊ and ◊) are represented with the same color
in steps 1 to 3. 29

Figure 2.5 Example of a regression dataset: a noisy version of the
function sin(x) + 1

2x. 30
Figure 2.6 Best polynomial fits for several degrees on the example

regression dataset. (a) gives a case of under-fitting. (b)
and (c) are examples of what would be considered good
fits. In (d) we see an example of over-fitting. 31

Figure 2.7 Illustration of the simplification power of a feature space.
Given the non linearly separable classification problem
(a), the projection Φ(x, y) = (x, y, z) where z is a feature
such that z = exp

#≠(x2 + y2)/2
$

makes the problem lin-
early separable in (b). 33

Figure 2.8 Illustration of a two dimensional manifold immersed in 3D
space (a). The same two dimensional manifold immersed
in 2D space (b). 34

Figure 2.9 Example of the influence of unlabeled data in the semi-
supervised setting. The unlabeled samples are repre-
sented with ¶, and the labeled samples with • and • de-
pending on their class. The unlabeled data in (a) gives a
good picture of the data distribution and may allow more
complex models to be learned than in (b) where there are
too few samples to find a suitable separating surface. . . 36

Figure 2.10 Examples of sparse and distributed representations. A
sparse non-distributed representation can only have one
non-zero element for any input vector (left). A non-sparse
distributed representation uses all variables to represent
an input (center). A sparse distributed representation
can use several non zero elements but must have many
zeros (right). 37

Figure 3.1 In rejection sampling, taking a sample x from q and a
sample u from U [0; Mq(x)], results in a uniform distribu-
tion of points (x, u) below the graph of Mq(x). Samples
from p can then be obtained by accepting only the sam-
ples such that u < p(x). 42

Figure 3.2 Visualization of the Gibbs sampling algorithm for a joint
distribution p(x, y). The algorithm starts at a random
position (x(0), y(0)) and then alternatively samples ac-
cording to p(y|x) and p(x|y). 46

List of Figures xxi

Figure 3.3 Three possible choices of prior for a Bernoulli distribu-
tion. Beta(10, 10) (left), Beta(2, 2) (middle), Beta(1, 1)
or equivalently uniform distribution (right). 50

Figure 3.4 The Gaussian distribution being unimodal, a single Gaus-
sian is unable to capture the structure of this dataset.
Using a mixture of Gaussians allows for a better fit. The
red lines give the points at 1 and 2 standard deviations
from the mean of each Gaussian. 54

Figure 4.1 The structure of a biological neuron. Information comes
from input neurons in the form of action potentials. If
the neuron receives enough action potentials from its pre-
synaptic neurons, it fires a spike, sending an action po-
tential through its axon to the post-synaptic neurons. . . 64

Figure 4.2 Computational properties of an artificial neuron. The
activation of a neuron is computed as a weighted sum
of the activations of the input neurons, transformed by
an activation function „. The weights of the connections
determine how much influence an input neuron has on
the output neuron. 65

Figure 4.3 The result of filtering an input image with a weight vector.
The image (c) is the element-wise product of (a) and (b).
If the pixel intensities of (a) and (b) are elements of the
input vector x and the weight vector w respectively, then
the average intensity of (c) is the pre-activation w€x.
When a weight wi is near 0 as in the black region of (b),
the corresponding input xi is filtered out and does not
influence the final result. 65

Figure 4.4 Different topologies of neural networks: a recurrent neu-
ral network (a) and a feed-forward neural network (b). . 66

Figure 4.5 A multi-layer neural network. Activations can be propa-
gated layer by layer from the input layer x to the output
layer y. 67

Figure 4.6 Three common activation functions: linear activation (a),
Heaviside step function (b), logistic function (c) and hy-
perbolic tangent (d). 70

Figure 4.7 The structure of an auto-encoder. The target output y is
the input itself . 71

Figure 4.8 The Boltzmann machine architecture with visible units
(v), hidden units (h) and the joint configuration x = v, h. 72

Figure 4.9 The Restricted Boltzmann Machine (RBM) architecture
with the visible (v) and hidden (h) layers. 73

xxii List of Figures

Figure 4.10 Relation between the modes of a Gaussian-Bernoulli RBM
with two visible units and two hidden units. The bias a

on the visible units gives the position of the mode for
which all hidden units are set to 0. Each row Wi of the
weight matrix W can then contribute an additive term
to the mean of the Gaussian distribution if hi is set to 1.
The points ◊ correspond to samples from each mode of
the distribution. 75

Figure 5.1 Convolutional and pooling layers of a convolutional net-
work. New layers can be added by considering each pool-
ing plane as the input of a new convolutional network. . 81

Figure 5.2 Illustration of the stacked RBMs training scheme. 83
Figure 5.3 Illustration of the stacked auto-encoder training scheme. 85

I N T RO D U C T I O N

1

introduction 3

The goal of Artificial Intelligence (AI) is to have a system perform a task that
requires intelligence.

Such tasks can be found in a variety of domains:

• Language: Translation, Summarizing, Topic extraction

• Vision: Classification, Segmentation, Image retrieval

• Games: Chess, Go, Strategy games

• ...and others: Regression, Decision, Risk analysis

For some tasks such as Chess, the performance of the computer now surpasses
that of the human being, while for other tasks, it has yet to even approach it.
In particular, many problems solved effortlessly by human beings in the fields
of vision and language turn out to be very difficult to solve using algorithms.
While the term AI defines the problem, it does not refer to any specific method
for solving it. A wide variety of approaches have emerged over the years, but
all have failed to create a general purpose AI: an AI with the same capacity for
reasoning as the human mind.

Consider now an AI system as described above. Such a system will have
to perform tasks, take decisions and make choices. All those actions add up to
constitute what we could call the behavior of the system. Machine Learning (ML)
is based on the important realization that intelligent behavior is too complex to
be simply “programmed”. Instead, the system will learn its behavior from data.
A system endowed with this capacity to learn some kind of intelligent behavior
is simply called a model, and the process by which we train a model given data
is called a machine learning algorithm.

In practice, a model is defined by some equation or algorithm which, before
learning, has a set of undetermined variables called parameters. During the
learning procedure, the data is used to choose values for the parameters which
will maximize the capacity of the model to perform the objective task. This
“capacity to perform” is measured by what is called a fitness function or objective

function. To do this, we turn to optimization which is a branch of mathematics
consisting in the study of how to choose parameters to maximize an objective
function. An ML problem can then be understood as an optimization one, where
the objective is to maximize some performance measure w.r.t a final task. Clearly,
optimization is useful to machine learning, but as we will see, learning can also be
useful to optimization. In essence, learning algorithms can be used to learn the
landscape of an objective function, facilitating the search for suitable parameters.

As for the data from which the system will learn, it should be informative of the
objective task. For example, in the field of supervised learning, the goal is to learn
a model given examples of what the model should do in several situations. The
data then consists in a set of examples (stimulus x æ response y) which describe
how the system should ideally respond to several input stimuli. Supervised
learning has a large number of applications such as:

4 introduction

• Prediction: given an observation x at time t, what is the probable obser-
vation y at time t + 1.

• Games: given the state of a game board x, what is the next best move y.

• Search engines: given a search query x, what is the most relevant result y.

• Pattern recognition: e.g. in the case of Handwritten characters, given the
pixels of a scanned zip-code x, what is the zip-code y.

A problem quickly arises when the link between x and y is not straightforward.
This leads practitioners to use a preprocessing step in which an expert has to
find a set of features f (x) such that learning the relation between f (x) and y

becomes simpler. However, hand-crafted features are costly because they require
expert knowledge, often acquired after years of experimentation.

In representation learning, a learning algorithm is used to find interesting
features from the data. Learning features, instead of using a preprocessing step
has many benefits as it makes the whole approach less dependent on human
input, and thus more general. Even if this can seem challenging, learning useful
representations can be accomplished in practice with unsupervised learning where
learning is done on a dataset of training examples x without the corresponding
answers y. Unsupervised learning includes tasks such as:

• clustering, where the objective is to group similar observations.

• compression or dimensionality reduction, where the objective is to learn a
representation smaller than the input.

• density estimation, where the objective is to find a probability distribution
which is likely to have generated the dataset.

One aspect of particular relevance to this thesis and to unsupervised learning is
the possibility to consider several layers of processing, i.e. a deep architecture.
Although learning deep architectures raises serious computational issues, the
principle has been applied successfully in recent years using a layer wise approach,
essentially trying to learn features one layer at a time instead of trying to learn
them all at once. The approach can be summarized as follows: first train a set
of features f1(x) to better represent the input x, then consider learning higher
level features f2(f1(x)) using f1(x) as a new representation of the dataset. In
this setting, the features f1 are trained to explain the data x, and fk+1 is trained
to explain the data as represented by the features fk.

With this in mind, learning deep representations refers to the
problem of learning multiple layers of interesting features for a given dataset.

As we have already seen, optimization is a very important topic for Machine
Learning as it serves to choose parameter values which maximize an objective
function. Several approaches to optimization are given in Figure 0.1. As for
machine learning, the organization of several possible tasks is represented in
Figure 0.2.

introduction 5

Figure 0.1: Approaches to optimization (non-exhaustive).

Figure 0.2: Machine Learning tasks (non-exhaustive).

6 introduction

This thesis is composed of three parts:

part i: optimization and machine learning starts with a definition
of what constitutes an optimization problem and describes several ap-
proaches to find a solution. It then describes how ML problems can be
posed as optimization problems. Finally, we introduce the probabilistic
perspective on ML which has gained a lot of attention in recent years.

part ii: deep learning begins with a presentation of neural networks which
are the most successful approach to deep learning yet. It then describes
how neural networks can be used in the context of learning deep represen-
tations. Finally, the part ends with a review of recent advances in deep
learning, introducing the questions which motivate the author’s contribu-
tions

part ii i: contributions contains the three main publications of the au-
thor, replaced in their context and commented to make clear their contri-
bution in the light of the questions which arose in Part II.

Finally, the thesis concludes with a summary of the author’s contributions, a
discussion of their impact on the current understanding of the deep learning
paradigm, and with new perspectives of research which arise from the accom-
plished work.

Part I

O P T I M I Z AT I O N A N D M AC H I N E L E A R N I N G

1
O P T I M I Z AT I O N

A solution to a learning problem is usually found by an optimization procedure,
i.e. maximizing some performance measure (e.g. classification accuracy) or
minimizing a loss function (e.g. minimize the number of misclassified examples)
over a dataset. However, optimization is a much larger problem, namely that
of finding the parameters of a function which maximize the associated value.
Optimization applies to a large variety of problems such as designing efficient
engines or minimizing costs, provided there exists a function which can measure
the fitness of candidate solutions.

In this chapter, we start by a definition of what constitutes an optimization
problem and discuss the important issue of local minima. We discuss the special
case of convex functions for which every local minimizer is a global one, and
that of continuously differentiable functions for which optimum values are among
those where the derivative of the objective function is zero. Then, we present
the gradient descent algorithm which is a widely used method in ML. Finally,
we introduce the black-box optimization setting where inner workings of the
objective function are assumed unknown and present Estimation of Distribution
Algorithms (EDAs) which are especially suited to this context.

1.1 Problem statement

When faced with an optimization problem, the goal can be:

• to find optimal parameters xú for which f(xú) has the least possible value
–in which case we refer to it as a minimization problem–, or

• to find optimal parameters xú for which f(xú) has the greatest possible
value –in which case we refer to it as a maximization problem.

The space of values of x considered as possible solutions is called the domain of
f and is noted dom f . We now give a formal definition.

9

10 optimization

!"!#

!

!"#$%&#'()#*+,#

!,-%!,

)#*+,#

!%.%!"!

,(#*/,#

!,-%!"!

,(#*/,#

!%.%!"!

,.(*$0'1(#*/,#

!%.%!"!

Figure 1.1: Global and local optima of a function f .

Definition 1.1. (global optimization problem). Let us consider the prob-
lem of minimizing a function f over it’s domain dom f which we note

min
xœdom f

f(x).

Let xú be a solution to the above minimization problem which we note

xú = arg min
xœdom f

f(x),

then xú is called a global minimum and satisfies

’x œ dom f, f(xú) Æ f(x).

A global maximization problem and a global maximum are defined anal-
ogously using the notations max and arg max. The terms optimum and
global optimum can be used indiscriminately to refer to maxima or min-
ima.

It is often very hard to find a global optimum because it is defined as being
better than all possible values of x in the available domain. Therefore it is
sometimes necessary to consider only the simpler problem of local optimization.

1.2 the curse of dimensionality 11

Definition 1.2. (local optimum). xú is a local minimum of f iff

÷‘ > 0, ’x œ dom f, Îx ≠ xúÎ < ‘ ∆ f(xú) Æ f(x).

The definition of a local maximum is analogous with f(xú) Ø f(x).

In other words, xú is a local minimum if it is possible to find a small neighborhood
of xú such that xú is a global minimum of the restriction of f to this neighborhood.
See Figure 1.1 for a visual representation of global and local optima of a simple
function.

In particular, any global optimum is also a local optimum for which any choice
of neighborhood is acceptable.

1.2 The curse of dimensionality

Optimization in spaces of high dimensionality can be somewhat counter intuitive.
Consider for instance the unit cube in dimension n. By comparison, the volume
of the cube of side 0.99 which contains 99% of the volume of the unit cube in
dimension 1 only contains about 36% of it in 100 dimensions and 4.3 ◊ 10≠5% in
dimension 1000. Thus, almost all the volume of a 1000-dimensional hypercube is
concentrated in an infinitesimal region near its boundary with almost no volume
in the center.

This can be interpreted as a fundamental difference in the behavior of distances
in spaces of high dimensionality. The above example can be understood as
a manifestation of the fact that almost no points are close together in high
dimension because they have so many ways of being dissimilar.

In the context of optimization, the unusual behavior of high dimensional spaces
can become very problematic. For instance, it could seem reasonable to use a
grid search approach (see Algorithm 1.1, i.e. testing the fitness of 100 values of
x at intervals of length 0.01. However, in a 1000-dimension space, the number
of function evaluations needed to form such a grid would be 1001000: intractable
even for trivial problems.

These issues are by no means insurmountable but can turn up in many situa-
tions. We will try to address them when they do.

1.3 Convex functions

The particular case of convex functions plays an important role w.r.t. to the
problem of local minima.

12 optimization

Algorithm 1.1 The grid-search algorithm.

input: f, a function with dom f = [0, 1]D.
d, distance between observations.

output: x̂, approximation of a global minimum.

variables: xt, candidate solution of the algorithm at time t.

begin

x̂ = (0, 0, . . . , 0)
for u1 from 0 to 1 by step d:

for u2 from 0 to 1 by step d:
...
for uD from 0 to 1 by step d:

xt := (u1, u2, . . . , uD)
if f(xt) < f(x̂) then x̂ := xt

return x̂.
end

Definition 1.3. (convex function). Let f be a function defined over
some domain dom f . f is said to be convex, iff

’a, b œ dom f, ’k œ [0; 1], f(ka + (1 ≠ k)b) Æ kf(a) + (1 ≠ k)f(b)

This means that any point between a and b has an image by f which is below
the line segment joining (a, f(a)) and (b, f(b)) as depicted in Figure 1.2.
Convex functions have the very interesting property that any local minimum is
in fact a global minimum, thus simplifying the problem for practitioners.

1.4 Continuous differentiable functions

In the case of continuous differentiable functions, every local optimum satisfies
the so-called 1st order necessary condition, i.e. the gradient at that point has to
be 0. Note that not all points which satisfy this condition are local optima, as
in the function x3 at 0.

Definition 1.4. (1st order necessary optimality condition). Let xú be a
local optimum of f , then Òf(xú) = 0.

This means that at every local optimum, the graph of f has a horizontal tangent1.
To get a visual intuition of this fact, the reader is again referred to Figure 1.1.

Additionally, if f is continuous and twice differentiable, the second order
derivative, i.e. the Hessian can be used to define both a necessary condition
and a sufficient condition for local optimality.

1 this horizontal tangent is in fact a horizontal tangent hyperplane if the dimension of dom f is
larger than 1.

1.5 gradient descent 13

!"!#

!

!"$#

!"%#

&!"$#'"()&#!"%#

!"&$'"()&#%#

&$'"()&#%$ %

Figure 1.2: The graph of a convex function f . The values of f between two points a and
b are always below the chord, i.e. the line segment between (a, f(a)) and (b, f(b)).

Definition 1.5. (2nd order necessary optimality condition). Let xú be a
local minimum of f , then Òf(xú) = 0 and Ò2f(xú) is positive semidefi-
nite.

Definition 1.6. (2nd order sufficient optimality condition). Suppose
that f is continuous and twice differentiable, and Òf(xú) = 0 and
Ò2f(xú) is positive definite. Then xú is a strict local minimum.

The above conditions could be used to prove for instance that a function f :

x æ x2 + x ≠ 1 has a global minimum at xú = 1. The principle can then
be generalized to arbitrarily complicated functions in high dimensional spaces,
provided the gradient and the Hessian can be found analytically.

1.5 Gradient descent

A common local optimization method is the gradient descent algorithm. The
gradient Òf(x) has the direction of greatest increase of the function f at x.

Òf(x)

ÎÒf(x)Î = lim
‘æ0

arg max
z,ÎzÎÆ1

f(x + ‘z)

14 optimization

Algorithm 1.2 The gradient descent algorithm.

input: f, a function.
”t, the step size.
K, the number of steps.

output: x̂, approximation of a global minimum.

variables: xt, candidate solution of the algorithm at time t.

begin

repeat K times:
xt+1 := xt ≠ ”tÒf(xt)

return last position x̂ := xtmax.
end

The gradient can be computed using the partial derivatives w.r.t. each compo-
nent of the input vector x:

Òf(x) =

3
ˆf(x)

ˆx1
,
ˆf(x)

ˆx2
, . . . ,

ˆf(x)

ˆxD

4

In gradient descent2 (see Algorithm 1.2), we start at some initial guess x0 and
iteratively take small steps of size ”t in the direction of ≠Òf(xk). In practice it is
common to stop the algorithm after a predefined number of steps or when a the
objective function has not decreased for some time. In the limit of infinitesimal
step size, there is a guarantee that the algorithm decreases the value of f at
each step, and a guarantee that the algorithm converges to a local minimum if it
doesn’t encounter a saddle point at which Òf(xk) = 0. However, a bigger step
size allows the algorithm to move faster in the domain of f , possibly leading to
faster convergence when it does not lead to oscillations. Figure 1.3 gives an
example of gradient descent trajectory towards a local minimum.

Gradient descent often behaves poorly when the objective function has nar-
row valleys which cause oscillations. When confronted with such functions, a
possible approach is to use 2nd order information from the Hessian, e.g. us-
ing Newton’s method (Nocedal and Wright, 2006) or Hessian-Free optimization
(Martens, 2010; Martens and Sutskever, 2011; Sutskever et al., 2011).

Surprisingly, gradient descent does not suffer from the curse of dimensionality
and could in fact be considered to benefit from many dimensions. Common
issues with gradient descent have to do with the gradient getting stuck in local
minima and on plateaus where the derivative is zero. However, in spaces of high
dimension, these issues are much less common because every dimension increases
the possibility of finding a way out.

Nonetheless, the gradient descent algorithm depends on the possibility to com-
pute the partial derivatives at each step. This is only possible when an explicit
formula is available for the objective function, which is not always the case.

2 Gradient ascent is defined identically except for a change of sign in the update.

1.6 black-box optimization and stochastic optimization 15

Figure 1.3: Two possible gradient descent trajectories. In (a) the objective function is
well behaved which allows the gradient to move smoothly towards the optimum. In
(b) the gradient starts to oscillate as it falls into a narrow valley, thus converging more
slowly.

1.6 Black-box optimization and Stochastic optimiza-

tion

In many cases, the objective function is not given by a specific formula but is only
given in the form of an evaluation process. For example, if the objective is to find
the best number of pistons k in an engine to maximize the mileage per gallon
f(k), f does not have an analytical formulation. In this example, the objective
function presents the additional difficulty of having a discrete domain, namely
the set of positive natural numbers k œ N

ú. In discrete optimization, necessary
conditions, sufficient conditions and gradient based algorithms are inapplicable.

Nevertheless, f can still be evaluated for any candidate solution that might be
considered. In the previous example, f(k) can be evaluated by actually building
an engine with k pistons and measuring the mileage per gallon empirically, clearly
a costly process.

A problem such as the one we just described is known as a black-box optimiza-
tion problem.

Definition 1.7. (black-box optimization problem). Let us consider the
minimization problem

min
xœdom f

f(x),

where the only available operation on f is evaluation, namely obtaining
f(x) from any given value x.
Then the above problem is referred to as a black-box optimization prob-
lem.

16 optimization

Algorithm 1.3 The uniform random search algorithm.

input: f, a function.

output: x̂, approximation of a global minimum.

variables: xt, candidate solution of the algorithm at time t.

begin

x0 ≥ U(dom f)
x̂ := x0
until satisfied:

xt+1 ≥ U(dom f)
if f(xt+1) < f(x̂) then x̂ := xt+1

return best guess so far x̂.
end

The efficiency of black box optimization strategies is usually measured in terms
of the number of evaluations to reach a target value or reciprocally in terms of
the target value attainable for a given number of evaluations.

In this context, stochastic optimization algorithms propose to iteratively try
new candidate solutions based on a probability distribution on the domain of f .
Consider for instance the example of uniform random search which consists in
repeatedly sampling candidate solutions in a uniform distribution over dom f ,
i.e. xt ≥ U(dom f), and returning the best candidate found so far (see Algo-
rithm 1.3).

Although this algorithm does not seem very efficient3, it has a number of
interesting properties. First, it is a global optimization method and never gets
stuck into local minima; second, there is a guarantee that each step can only
improve performance. Finally, this algorithm is capable of ignoring dimensions
which are not relevant to the problem and can therefore be much more efficient
than a grid search approach (Bergstra and Bengio, 2012).

An interesting improvement of this method concerns the possibility of adapting
the probability distribution based on past observations. In essence, the goal is
then to learn from previous attempts, where better values might be located in
the search space.

1.7 Evolutionary algorithms

Evolutionary algorithms propose to optimize an objective function by using an
artificial evolution process to select relevant parameters. In this setting, param-
eter values are seen as organisms evolving in an environment which only allows
survival and reproduction of the fittest –the fittest being the best parameter
values according to the objective function. The algorithm starts with a set of
proposal solutions which is seen as a population of individuals. Based on the eval-

3 Statements about the superiority of a particular optimization method should always be consid-
ered in the light of the no free lunch theorem (Wolpert and Macready, 1997), which states that
no optimization algorithm is strictly better than another on all problems.

1.7 evolutionary algorithms 17

(a) generation n.

(b) selection.

(c) reproduction + mutation.

(d) generation n + 1.

Figure 1.4: Visualization of an evolutionary algorithm on a 2D toy problem. The dotted
lines represent level sets of the fitness function. At generation n (a), the best individuals
according to the fitness function are selected (b). These individuals are then the basis of a
reproduction process (c) leading to a new generation (d). The process can then continue
with step (b) for the new generation. Notice that generation n + 1 has progressed
towards better values of the fitness function.

18 optimization

uation of these individuals according to the function f , the best individuals are
then selected for reproduction. Reproduction serves to generate new individuals
using a mutation operator, and sometimes a cross-over operator. Finally, the
new individuals replace the previous population thus creating a new generation.
This process is summarized in Figure 1.4.

The mutation operator is meant to propose variations of current individuals to
allow exploration of the search space over time. However, the mutation operator
takes the best individuals of the previous population as input, thus it should
only propose small variations, exploiting the fact that previously selected points
have –relatively speaking– a higher fitness. Preferring larger variations (to move
faster in parameter space) or smaller variations (to better exploit the fitness of
the best current individuals) is a recurring problem commonly referred to as the
exploration–exploitation dilemma.

The mutation operator can be interpreted as defining a neighborhood on indi-
viduals, where the function f is assumed to have small variations. Possible mu-
tations then correspond to nearby individuals and are thus guaranteed to have
similar f -values (if the assumption holds). This assumption that the f -values
do not differ to much after mutation is what makes the so-called exploitation
possible.

However, w.r.t. the algorithm, the important notion of neighborhood is on
populations, not on individuals. If the reproduction step creates a few unfit indi-
viduals, they will not be selected for reproduction and therefore cannot impact
later generations. What matters is that the reproduction process generates a
population close to the previous one as a whole.

The mutation operator implicitly defines a neighborhood on populations by
allowing a small variation of each individual. However, there are some settings
where nearby populations can also be obtained by allowing the combination of
several individuals into a new one. when such an operator exists, it is called a
cross-over operator.

This implicit definition of neighborhood in parameter space makes evolution-
ary algorithms particularly efficient when the parameter space is discrete such as,
sequences, trees or graphs, where the usual notion of distance is rarely helpful.

However, despite their effectiveness, evolutionary algorithms have long been
criticized for their lack of theoretical justification. A point which is addressed in
the next section.

1.8 EDAs

Estimation of Distribution Algorithms (EDAs) are mathematically principled evo-
lutionary algorithm which do away with the biological analogy. As the name
suggests EDAs are based on an unsupervised learning topic: density estimation,
which will be reviewed thoroughly in chapter 3. EDAs achieve state of the art

1.8 edas 19

performance in the black-box optimization setting where the goal is to optimize
a function f without any knowledge of how f computes its values.

EDAs propose to represent individuals as samples from a probability distri-
bution: the so called proposal distribution. A population is then a set of inde-
pendent and identically distributed (iid) samples from this distribution. In the
preceding section, we saw that the mutation and cross-over operators served to
define small possible movements around a current population. The EDA approach
has the advantage of transforming the problem of moving towards better popu-
lations in the input space –which may not be well behaved– to a proxy problem
which is usually well behaved: moving towards better proposal distributions.

Formally the algorithm generates a new population by taking µ samples from
a proposal distribution P◊t(x). These µ individuals are then ranked according
to their f -values and the ‡ best individuals are used to update the proposal
distribution with a log-likelihood gradient ascent step, i.e.

P◊t+1(x) = P◊t(x) + ”tÒ log P◊t(x)

where ”t is the step size of the gradient ascent update. The algorithm can then
run for a number of steps, until a satisfactory solution is found. Figure 1.5 gives
an example of EDA update for a Gaussian proposal distribution.

Although the purpose of the algorithm is to maximize E [f(x)], it consists in
the maximization of a surrogate objective: E [w(x)], where the weight function
w(x) is equal to 1 for the ‡ best individuals, and 0 otherwise. This has the
advantage of making the approach invariant w.r.t. monotone transformations of
the objective function f .

The maximization of the surrogate objective E [w(x)] is done with gradient
ascent:

ÒE [w(x)] = Ò
⁄

dom f
w(x)P◊t(x)

=
⁄

dom f
w(x)ÒP◊t(x)

=
⁄

dom f
Ò log P◊t(x)w(x)P◊t(x)

where taking ‡ samples from w(x)P◊t(x) can be done by taking samples from
P◊t(x) and keeping only the ‡ best according to f .

This general framework can be adapted to optimize functions in R
D e.g. with

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2008), or
in discrete spaces such as {0, 1}D with Population Based Incremental Learning
(PBIL) (Baluja, 1994). It has the advantage of allowing a move towards several
proposal solutions at once, contrary to methods such as hill climbing. The
Population Based Incremental Learning (PBIL) algorithm for optimization over
{0, 1}D is given in Algorithm 1.4.

20 optimization

(a) fitness function. (b) proposal distribution.

(c) sampling. (d) selection (ranking).

(e) likelihood of selected points w.r.t. µ. (f) gradient update and new distribution.

Figure 1.5: The steps of an EDA given a fitness function (a) and a Gaussian proposal
distribution at time t (b). First, samples are drawn from the proposal distribution
(c). The ‡ best samples are then selected according to their f -values (d). Finally, the
likelihood of the selected samples w.r.t. the parameters (e) can be increased with a step
of log-likelihood gradient ascent leading to a new proposal distribution at time t+ 1 (f).

1.8 edas 21

Algorithm 1.4 The Population Based Incremental Learning (PBIL) algorithm.

input: f, a function with dom f = {0, 1}D.
N, number of proposal samples.
Ns, number of samples to select at each step.
”t, the step-size.
m, the probability of a mutation.
–, the mutation shift.

output: x̂, approximation of a global minimum.

variables: (pt,1, pt,1, . . . , pt,D), the parameters of an independent
Bernoulli proposal distribution at time t:

P◊t(x) = px1
t,1(1 ≠ pt,1)(1≠x1) ◊ · · · ◊ p

xD
t,D(1 ≠ pt,D)(1≠xD)

for pt,i the probability that xi = 1 at time t.

x(1), . . . , x(N) the proposal samples at time t, not to be
confused with x1, . . . , xD the components of a vector x.

begin

p0,1, . . . , p0,D := 1
2 , . . . , 1

2
until satisfied:

x(1) ≥ P◊t(x), . . . , x(N) ≥ P◊t(x)
rank samples ensuring x(1) Æ · · · Æ x(N)

update probability vector
for i from 1 to Ns:

for j from 1 to D:

pt+1,i := pt,i ◊ (1 ≠ ”t) + x
(i)
j ◊ ”t

mutate probability vector
for j from 1 to D:

if U([0; 1]) < m:
then pt+1,i := pt+1,i ◊ (1 ≠ –) + U({0, 1}) ◊ –

return best solution x̂ := x(1).
end

22 optimization

Summary

• An optimization problem consists in finding parameters which minimize or
maximize an objective function.

• In the general case, a function can have several local optima or plateaus.

• High dimensional spaces behave in non intuitive ways which can dramati-
cally affect optimization performance.

• Any local optimum of a convex function is in fact a global optimum.

• Local optima can sometimes be found analytically using properties of the
gradient and the Hessian.

• Gradient descent is an iterative optimization method which follows the
direction of steepest descent at each step and can benefit from high dimen-
sional spaces.

• In black-box optimization the landscape of the objective function cannot
be studied analytically and can only be discovered through evaluation.

• Evolutionary algorithms are optimization methods particularly adapted to
the black box scenario, which involve moving a population of candidate
solutions towards better fitness.

• Evolutionary algorithms allow the practitioner to choose a useful implicit
metric with the mutation and cross-over operators.

• EDAs are a mathematically principled form of evolutionary algorithm which
move towards better solutions in parameter space by updating a proposal
distribution.

We now turn to ML and show how learning problems can be formally defined
with the help optimization.

2
F RO M O P T I M I Z AT I O N T O M AC H I N E
L E A R N I N G

Optimization methods give practical means to minimize or maximize objective
functions. An ML problem can then be posed from an optimization perspective
by choosing a suitable objective function. The optimization procedure is then
responsible for maximizing the fitness of a model for a specific task.

This approach is particularly suited to supervised learning problems where
the objective is to learn a function fú : x æ y from a set of training examples
{(x1, y1), . . . (xN , yN)}. In this case, the objective function can simply be de-
fined as the average error of the model over this set of examples. An optimization
method can then be used to find the model which minimizes the error.

We now give a presentation of supervised and unsupervised learning problems
and discuss the question of generalization. Then, we study several examples: lin-
ear classification, the K-means algorithm and polynomial regression. This leads
us to pose the questions of hyper-parameter selection and of feature extraction.
Finally, we present the semi-supervised learning problem and show how it can
be used to achieve better performance in supervised settings with the help of
unsupervised data.

2.1 Supervised and unsupervised learning

In supervised learning, the objective is to approximate an unknown function
fú from a number of observations (x, y) with the assumption that y = fú(x).
These observations are called learning examples and are usually compiled into a
set D = {(x1, y1), . . . (xN , yN)} called a dataset.

23

24 from optimization to machine learning

Definition 2.1. (supervised learning problem) Consider a set D =

{(x1, y1), . . . (xN , yN)} and a class of functions H. The problem of find-
ing a function f̂ œ H matching inputs xi to their expected output yi as
in

f̂(xi) ¥ yi

is called a supervised learning problem. The set D is referred to as the
training dataset or simply training set. The class of function H is called
the hypothesis space. The expected output y is often referred to as the
label or the target.

Supervised learning problems arise in many settings but can often be reduced
to either a classification problem when the label y is a natural number y œ N

or, a regression problem when y is a real number y œ R
D. We now define these

two problems formally as optimization problems.

Definition 2.2. (classification problem) Classification concerns the case
when the label y can be interpreted as a class variable and y œ N. The
loss to minimize is usually the misclassification rate, i.e. the 0-1 loss:

f̂ = arg min
fœH

ÿ

(x,y)œD

{y ”= f(x)}

where is the indicator function equal to 1 when the argument evaluates
to true and 0 otherwise.

Definition 2.3. (regression problem) Regression concerns the case when
the target variable y is in R

K and the loss to minimize is usually the
average distance between y and f(x), i.e. the Mean Square Error (MSE):

f̂ = arg min
fœH

ÿ

(x,y)œD

[y ≠ f(x)]2

In unsupervised learning we consider a dataset D = {x1, x2, . . . , xN } where there
is no label. The goal can be to better understand the structure of the dataset
D or, to learn new representations and improve performance in a supervised
setting.

Clustering, dimensionality reduction, and density estimation are common un-
supervised learning problems and are described below. Note that we do not
give a complete and formal definition of these problems, but rather try to give
examples of the corresponding optimization problems.

Clustering The objective of a clustering algorithm is to group similar ob-
servations into clusters, such that points inside a cluster are similar to each
other. Formally, a clustering algorithm returns a partition of observations into
disjoint sets C1, . . . , CK called clusters. The model is often given by a set of points

2.2 generalization 25

{c1, c2, . . . , cK} called exemplars or centroids such that each ci is representative
of the elements in the cluster Ci. The objective is then e.g. to minimize the
average distance from points in a cluster to their representing centroid, i.e. :

{ĉ1, ĉ2, . . . , ĉK} = arg min
{c1,c2,...,cK}

Kÿ

i=1

ÿ

xœCi

Îx ≠ ciÎ .

Dimensionality reduction The purpose of dimensionality reduction is to
find a representation of lower dimensionality for the dataset D. This can be
done in several ways, for instance by assuming that the training samples are
all on a sub-manifold of the input space or by trying to find a variable y with
dim y < dim x such that x can be reconstructed from y, thus trying to solve the
following optimization problem:

{ŷ1, ŷ2, . . . , ŷN }, f̂ = arg min
{y1,y2,...,yN },fœH

Nÿ

i=1

Îxi ≠ f(yi)Î

Note that the optimization problem is then on the function f and the values
y1, y2, . . . , yN which are not provided.

Density estimation Given the training dataset D = {x1, x2, . . . , xN }, the
goal of density estimation is to find a probability density which could have gen-
erated the dataset, often with the assumption that the training samples are iid.
This is usually done with the maximization of the log-likelihood of D under a
parametrized family of distributions p◊(x) i.e. choosing p◊̂(x) such that

◊̂ = arg max
◊

ÿ

xœD

log p◊(x).

Density estimation will be reviewed in more detail in Chapter 3.

2.2 Generalization

In the above problems, the hypothesis space H plays an important role. Consider,
in a supervised setting, the function f such that f(x) = y for (x, y) œ D and
g(x) = 0 otherwise. Clearly if f is in H, it is optimal for any classification or
regression problem according to Definitions 2.2 and 2.3. However, this function is
not a desirable solution. Indeed, if a model is trained using examples (x, y) œ D,
the objective is not to have a model that performs well only on these given
examples. Instead, we want a model to generalize from the examples in the
dataset, and give accurate values y for unseen points x which were not used
during training.

Consequently, the hypothesis space should not contain functions such as the
one presented above where the points in the dataset can be learned exactly at

26 from optimization to machine learning

Figure 2.1: Expected variation of the training and testing error with increasing model
complexity.

the expense of generalization, but should represent a hypothesis on the form of
possible solutions by containing only functions which have a credible behavior.
A common hypothesis for instance is that of smoothness, i.e. f is assumed to
have similar values for inputs which are close to each other.

When a model matches the training examples too closely at the expense of
generalization, it is said to be over-fitting. Over-fitting results from having a
hypothesis space too big for the dataset and containing spurious functions such
as the one given above. Conversely, when the hypothesis space is too small and
a model is unable to capture important variations of the dataset, we say that
the model is under-fitting.

It seems important to point out that learning without generalization is just a
method for storing information and therefore, is not learning at all: the purpose
of learning is generalization. Accordingly, we cannot assess performance from the
loss on the training dataset which can be arbitrarily low when the hypothesis
space is too big: we must use an other disjoint dataset. Thus, it is usual to
have two datasets: a training set on which to minimize the loss during training,
and a disjoint testing set to evaluate the final performance of a trained model.
Figure 2.1 gives an account of how training error and testing error are expected
to vary when model complexity increases.

2.3 Supervised Example: Linear classification

Let us now consider a simple classification problem on the dataset in Figure 2.2.
The dataset has two classes and the input x is in two dimensions. We use ◊
to represent points belonging to the first class and ¶ to represent points in the
second class.

2.3 supervised example: linear classification 27

Figure 2.2: A classification dataset with two classes. The graph shows two possible
separating hyperplanes.

The objective in a classification problem is to find a separating surface which
places points from one class on one side of this surface, and points from the
other class on the other side. Note that the dataset of Figure 2.2 is linearly

separable meaning that it is possible to find a hyperplane (in this case a line)
which separates the target classes. Not all datasets are linearly separable and
Figure 2.3 gives examples of separating surfaces for such datasets.

Figure 2.3: Three linearly non-separable classification datasets and a possible separating
surface.

28 from optimization to machine learning

Because our dataset is linearly separable, we can then resort to a linear model
to perform classification1,e.g. :

f(x) = wT x + a

where the parameters of the model are a and w. Note that even though we are
in a binary classification problem, f(x) is in R and not in {0, 1}. In practice,
the classification decision is made by using sign(f(x)) instead of f(x) itself.
The real value can then be seen as a measure of confidence in the result. With
the above model, it is common to optimize a proxy of the problem given in
Definition 2.2, i.e using the MSE which is continuously differentiable instead of
the misclassification rate:

â, ŵ = arg min
a,w

ÿ

(x,y)œD

Ë

y ≠ (wT x + a)
È2

The problem can then be solved with gradient descent (see Chapter 1).
Figure 2.2 gives linear separation surfaces which are examples of solutions to

the above optimization problem.

2.4 Unsupervised Example: Clustering and K-means

The K-means algorithm is a clustering algorithm in which centroids ci are simply
the arithmetic mean of points in the cluster Ci. Accordingly, the loss to minimize
is the average distance of a point x to the nearest centroid:

L(D) =
Kÿ

i=1

ÿ

xœCi

Îx ≠ ciÎ .

The K-means algorithm only requires a number of clusters K and random
initial centroids as input. It then alternates between two steps:

1. Place in cluster Ci, the points nearest to the centroid ci.

2. Set each centroid ci to the arithmetic mean of the points in cluster Ci.

Algorithm 2.1 gives the complete algorithm and Figure 2.4 shows an example of
convergence on a toy dataset.

Although we show an example of convergence, the K-means algorithm does
not always converge to an appropriate solution as it can converge to a local
minimum.

1 When confronted with a new dataset, it is often a good idea to check linear separability with
a linear model before trying to use more complex models.

2.4 unsupervised example: clustering and k-means 29

Algorithm 2.1 The K-means clustering algorithm.

input: K, the number of clusters.
{c1, c2, . . . , cK}, initial set of centroids at step 0.

output: {c1, c2, . . . , cK}, final set of centroids.

variables: C = {C1, C2, . . . , CK}, the set of sets Ci containing the
points closest to ci.

begin

until satisfied:
for i from 1 to K:

Ci := {x œ D|ci is the centroid closest to x}
for i from 1 to K:

ci =
1

|Ci|

q

xœCi
x

return {c1, c2, . . . , cK}.
end

(a) dataset. (b) step 1.

(c) step 2. (d) step 3.

Figure 2.4: Convergence of the K-means algorithm on a toy 2-dimensional clustering
dataset with K = 3. The dataset set is given in (a). The centroids •,• and • and the
points closest to them (◊,◊ and ◊) are represented with the same color in steps 1 to 3.

30 from optimization to machine learning

Figure 2.5: Example of a regression dataset: a noisy version of the function sin(x) + 1
2x.

The K-means algorithm can be suited to extract features for classification,
however probabilistic models can be much more powerful to capture complex
structure in data.

2.5 Supervised Example: Polynomial regression

Let us now consider a simple regression problem on the dataset of Figure 2.5. The
problem consists in finding an approximation of the function f(x) = sin(x) + 1

2x

given observations of f(x) perturbed by a small Gaussian random noise. Notice
that the observations are split in two datasets: the training set for learning
parameters, and the test set to evaluate the quality of the resulting model.

In order to solve this problem, we propose to use polynomial regression, that
is to try and fit a polynomial of fixed degree K to the training points. The model
can be defined by:

f̂(x) =
Kÿ

k=0

akxk

where (a0, . . . , aK) are the parameters of the model.

2.5 supervised example: polynomial regression 31

(a) polynomial fit of degree 2. (b) polynomial fit of degree 3.

(c) polynomial fit of degree 5. (d) polynomial fit of degree 9.

Figure 2.6: Best polynomial fits for several degrees on the example regression dataset.
(a) gives a case of under-fitting. (b) and (c) are examples of what would be considered
good fits. In (d) we see an example of over-fitting.

Learning then consists in an optimization problem where the goal is to find
the parameters ak that minimize the MSE2, namely find f̂ such that

f̂ = arg min
(a0,...,aK)

ÿ

(x,y)œD

C

y ≠
Kÿ

k=0

akxk

D2

Depending on the degree we chose for the polynomial, Figure 2.6 shows that
the results can be very different. When the degree is too small, we can see an
example of under-fitting: the model is too simple to represent the target function
accurately. On the other hand, if the degree of the polynomial is too large, we
risk the problem of over-fitting: the model can fit the training points more closely
but points in the testing set are not well approximated anymore.

2 There are many readily available algorithms capable of solving this kind of problem. Here we
use the polyfit function of the numpy python package.

32 from optimization to machine learning

Trying to choose the best degree K for the polynomial, consists in a secondary
optimization problem. In this setting, K is a special kind of parameter, i.e. a
hyper-parameter.

2.6 Model selection

A learning algorithm consists in an optimization algorithm applied to the param-
eters of a model in order to minimize a specific loss. Nonetheless, it is often the
case that the learning algorithm itself depends on some parameters being set, as
e.g. the complexity of the model (the degree K in the previous example) or the
learning rate of a gradient descent procedure.

Such parameters which are outside of the main optimization procedure are
called hyper-parameters. Accordingly, the problem of choosing suitable values
for the hyper-parameters is called hyper-parameter selection or model selection

and consists in an optimization problem in which learning models is considered
as a sub-problem.

Although we need to optimize the hyper-parameters w.r.t the performance on
some dataset, we cannot choose model complexity according to the training set
because it would lead to poor generalization. In our example, choosing the best
degree K according to the training set would inevitably lead to choosing higher
degrees for the polynomial, even though they do not make for a better fit on the
testing set.

However, the testing set is meant to be used for evaluating the performance of
a model on unseen data and cannot therefore be used during hyper-parameter
selection. If it were, the optimization process would choose values particularly
suited to maximize performance on the test set and thus artificially increase the
test set performance.

To solve this problem, the solution usually retained is to use a third dataset
called a validation dataset to optimize the hyper-parameters. The testing error
can then be used safely to evaluate performance.

2.7 Changing representations

In the preceding problems, we have seen how to learn a function fú : x æ y

from examples. However, when the relation between the input x and the label
y is too complex to be captured by simple models, we are faced with both a
generalization problem and a computational problem. Generalization becomes
difficult because large models are more prone to over-fitting and optimization
becomes more expensive because it takes place in a high dimensional space.

2.7 changing representations 33

(a) A non linearly separable dataset. (b) Possible feature space representation.

Figure 2.7: Illustration of the simplification power of a feature space. Given the non
linearly separable classification problem (a), the projection Φ(x, y) = (x, y, z) where z

is a feature such that z = exp
#
≠(x2 + y2)/2

$
makes the problem linearly separable in

(b).

2.7.1 Preprocessing and feature space

A solution, instead of trying to increase model complexity, possibly at the ex-
pense of generalization and computational cost, is to create a vector of features
Φ(x) = („1(x), . . . , „K(x)) as a pre-processing step, which are then meant to
be used as input of the learning procedure. The objective of the new supervised
learning problem is then to approximate the function fú : Φ(x) æ y. If the fea-
tures „i(x) extract relevant information from the raw data x, it can result in a
simplified problem which can hopefully be solved using a simple model. The fea-
ture extraction function Φ can be seen as projecting data into a feature space, i.e.
representing data so as to make the euclidean distance between training exam-
ples dE(Φ(x), Φ(xÕ)) more meaningful than in the input space. Figure 2.7 shows
how such a projection can make a non linearly separable problem separable.

2.7.2 The kernel trick

In the illustration above, the projection Φ is easily computable which allows us to
show the data in the feature space. However, most linear methods do not require
the exact coordinates Φ(x) of points in the new feature space but only rely on
the inner products Èw, xÍ between features w and input vectors x. Whereas the
usual inner product is taken in the input space where Èw, xÍ = wT x, the so
called kernel trick proposes to directly define an inner product K(w, x) without

34 from optimization to machine learning

(a) (b)

Figure 2.8: Illustration of a two dimensional manifold immersed in 3D space (a). The
same two dimensional manifold immersed in 2D space (b).

explicitly formulating the feature space to which it corresponds. Common choices
of kernels include the polynomial kernel:

K(w, x) = (wT x + c)d for d Ø 0

and Radial Basis Function (RBF) kernels, such as the Gaussian kernel:

K(w, x) = exp

C

≠Îw ≠ xÎ2

2‡2

D

Figure 2.7 can be interpreted as showing the value of the RBF kernel K(x, 0)

corresponding to the projection of data points x on the zero vector in the RBF

feature space.
Note that the RBF kernel corresponds to a projection into a feature space of in-

finite dimension which may seem counter-productive. However, high dimensional
spaces make it much easier to find a linear separating surface which simplifies
the problem considerably.

2.7.3 The manifold perspective

Under the manifold hypothesis, the data is assumed to lie on a manifold (usually
low dimensional) immersed in the input space. Figure 2.8(a) gives a representa-
tion of a two dimensional manifold in 3D space. Instead of considering the coor-
dinates of points x in the original input space, an interesting approach is then to
try and find a feature space which recovers the structure of this manifold, i.e. to
find features Φ(x) = („1(x), . . . , „K(x)) which correspond to the coordinates

2.7 changing representations 35

of x inside the manifold. This search for a good coordinate system is implicitly
linked to the notion of metric. Namely, if the features Φ represent the coordi-
nates of points inside the manifold, the Euclidean distance ÎΦ(x1) ≠ Φ(x2)Î of
two points in this new coordinate system should be more informative than the
Euclidean distance Îx1 ≠ x2Î in the input space.

Although the manifold perspective usually considers low dimensional mani-
folds immersed in a high dimensional space, the idea can also be applied to
consider manifolds of same (or even greater3) dimension than the input. Fig-
ure 2.8(b) shows how the manifold perspective can be useful to understand the
impact of metrics in this setting: even though it shows a two dimensional man-
ifold in 2D space, the Euclidean metric in the input space does not reflect the
structure of the manifold, especially in the region where it folds. By using fea-
tures, it may be possible to recover a more suitable coordinate system, and thus
a better metric.

2.7.4 Unsupervised representation learning

Although the projection into a feature space can be a very powerful tool, inter-
esting features are often found with hard work, sometimes after years of research.
Nevertheless, it is sometimes possible to learn interesting features with an un-
supervised algorithm, i.e. with unsupervised representation learning, a central
point of this thesis. Assuming a suitable set of features can be learned, the final
supervised problem becomes simpler.

Putting aside the usually simple final problem, one could argue that learning
representations only transforms a supervised learning problem into an equally
difficult unsupervised learning problem. However, this transformation has sev-
eral benefits.

Better generalization In any practical application, the input variable x

is expected to carry a lot of information about itself and only little information
about the target variable y. Accordingly, an unsupervised learning problem on
the variable x has access to a lot of information during learning and is thus
less prone to over-fitting than the supervised learning problem on x and y. Ad-
ditionally, once a representation has been obtained with unsupervised learning,
the final supervised learning problem can be solved with a small number of
parameters which means that over-fitting is, again, less likely.

Access to more data with semi-supervised Learning Learning repre-
sentations with an unsupervised learning algorithm has the advantage that it
only depends on unlabeled data which is easily available in most settings. Be-
cause more data is available, more complex models can be learned without an
adverse effect on generalization. In essence, the complete learning procedure

3 Unfortunately, the author was unable to make a nice figure illustrating this fact.

36 from optimization to machine learning

(a) A semi-supervised dataset. (b) Corresponding supervised dataset.

Figure 2.9: Example of the influence of unlabeled data in the semi-supervised setting.
The unlabeled samples are represented with ¶, and the labeled samples with • and •
depending on their class. The unlabeled data in (a) gives a good picture of the data
distribution and may allow more complex models to be learned than in (b) where there
are too few samples to find a suitable separating surface.

can then leverage the information contained in an unlabeled dataset to perform
better on a supervised task. This approach is known as semi-supervised learning.
Formally, a semi-supervised learning problem given two datasets

DL = {(x1, y1), . . . (xL, yL)}
and DU = {xL+1, . . . , xN }

consists in finding a function f̂ such that f̂(xi) ¥ yi when a label is available.
Figure 2.9 gives an illustration of the usefulness of unlabeled data to solve a
supervised task.

Sparse and distributed representations Although it is hard to define
what constitutes a good representation in general, sparse and distributed repre-
sentations seem to have interesting properties and have been the subject of a lot
of attention in recent years. Formally, a sparse representation is such that the fea-
ture vector Φ(x) contains many zeros. The sparsity is often measured with the
L0 norm which counts the number of non-zero elements. When trying to learn a
representation with an unsupervised learning algorithm, sparsity can be seen as
a way to impose a constraint on the hypothesis space H, reducing the size of the
search space and therefore improving generalization. Distributed representations
concern the case where each input is represented by several features. Although
this does not result in a reduced search space, the representation of input pat-
terns according to several distinct attributes allows for non-local generalization.

2.7 changing representations 37

Figure 2.10: Examples of sparse and distributed representations. A sparse non-
distributed representation can only have one non-zero element for any input vector
(left). A non-sparse distributed representation uses all variables to represent an input
(center). A sparse distributed representation can use several non zero elements but must
have many zeros (right).

Namely, let us consider that a set of features Φ(x) = („1(x), . . . , „K(x)) has
been obtained with an unsupervised algorithm. Even if an input x is not close
to any training example, it may still be interpreted as an unseen combination
of existing features. An illustration of sparse and distributed representations is
given in Figure 2.10.

Interestingly, training sparse distributed representations on natural images4

seems to result in features which have some resemblance with the neuron re-
ceptive fields of a primate’s visual cortex (Olshausen and Field, 1996, 1997).
Therefore, sparse distributed representations may have (besides their theoretical
benefits) the advantage of representing information in a manner similar to ours.

4 The so-called natural image distribution usually corresponds to images found in the outside
world, i.e. images of trees, plains and lakes, but also animals, buildings, planes, boats etc.

38 from optimization to machine learning

Summary

• ML problems can be posed as optimization problems where the objective
function represents an error or performance measure on a dataset of train-
ing examples.

• The objective of classification is to minimize the misclassification rate. The
goal of regression is to minimize the MSE.

• The fundamental problem of ML is generalization to unseen examples.

• ML relies on models to represent assumptions about the regularities of a
dataset.

• Generalization is achieved by controlling model complexity to avoid under-
fitting or over-fitting.

• K-means is a clustering algorithm which alternates between an update of
clusters given centroids and an update of the centroids given clusters.

• Model selection can be seen as a secondary learning problem where the ob-
jective is to find hyper-parameters which help maximizing generalization.

• Supervised learning can benefit from a new representation which corre-
sponds to a mapping of the input to a new feature space.

• A new feature space can be obtained without human intervention by learn-
ing representations with an unsupervised algorithm.

• Learning representations with an unsupervised algorithm has several ben-
efits w.r.t. generalization.

• Learning sparse representations may improve generalization if we can as-
sume that inputs can be represented by a limited number of features.

• Learning distributed representations may allow for non-local generalization
if each example can be interpreted as combining several features.

• Combining sparse and distributed representations leads to features which
are similar to those found in primate brains.

We now consider the probabilistic approach and show how it applies in the ML

setting.

3
L E A R N I N G W I T H P RO B A B I L I T I E S

We have seen how a learning algorithm can be posed as an optimization one.
However, learning from data benefits greatly from a probabilistic perspective.
Namely, Bayesian probability theory gives a sound mathematical framework for
updating models based on data observations.

In this chapter, we start by giving a quick review of basic notions in prob-
ability theory and then present how to estimate distributions in the Bayesian
framework. This leads us to review the concepts of maximum likelihood and
maximum a posteriori. We give an example in the case of the Gaussian family
and give the example of polynomial regression a probabilistic perspective. This
theoretical framework then allows us to introduce the possibility of learning rep-
resentations with probabilistic models. We describe the Expectation Maximiza-
tion (EM) algorithm and how it can be applied to Gaussian mixtures. Finally,
we revisit optimization by considering the specific problem of maximizing the
likelihood of a probabilistic model and show how a suitable metric (the Fisher
metric) can lead to the natural gradient which improves the ordinary gradient
descent procedure by making it invariant w.r.t. parametrization.

3.1 Notions in probability theory

A probability can be seen as a number between 0 and 1 indicating a degree of
belief. This is referred to as the Bayesian view, in contrast with the frequentist
view in which a probability represents the average number of times an event
occurs, in the limit of infinitely many experiments. In support of the Bayesian
view, Cox (1946) argues that any system of beliefs consistent with common sense
must satisfy the rules of probability which we state informally in table 3.1.

Note that the rules of frequentist and Bayesian probabilities are the same,
but the Bayesian interpretation has the advantage of being much more widely
applicable, and without the need for complicated arguments to justify why the
question concerns a repeatable experiment.

Consider for instance the event A=“The world will end in 2012”. It is quite
natural to consider the belief we have in the realization of this event as a prob-
ability. We can then reflect on P (A) using the rules of probability to connect

39

40 learning with probabilities

basic notions

P (A) represents the belief that some event A

will happen.

P (Ā) represents the belief that A will not
happen.

P (A) = 0 represents impossibility of A.

P (A) = 1 represents certainty of A.

P (A fl B) represents the belief that A and B will
both happen.

P (A fi B) represents the belief that either A or B

will happen (possibly both).

P (A|B) represents the belief that A will happen
given that B has happened.

and now a few rules

P (Ā) = 1 ≠ P (A) Complementary event.

P (A fl B) = P (A)P (B) if and only if
A and B are independent .

Independent events

P (A fi B) = P (A) + P (B) ≠ P (A fl B). Union of events.

P (A fl B) = P (A|B)P (B) Conditional probability.

random variables

P (X = x) represents the probability that a
random variable X will take the value
x.

P (x) is a shorthand for P (X = x) when
there is no ambiguity on the random
variable.

P (X = x, Y = y) is called the joint probability of X and
Y . It can be thought of as
P (X = x fl Y = y).

P (x, y) is a shorthand for P (x = X, y = Y)
when there is no ambiguity on the
random variables.

rules on random variables

P (x, y) = P (x)P (y) if and only if X

and Y are independent.
Independent random variables.

P (x, y) = P (x|y)P (y) = P (y|x)P (x) Product rule.

P (x) =
q

y P (x, y) Sum rule.

P (y|x) = P (x|y)P (y)

P (x)
Bayes’ rule.

Table 3.1: Basic notions and rules of probability theory.

3.1 notions in probability theory 41

it to other events, maybe considering conditional probabilities such as P (A|B)

with “North Korea will test a nuclear delivery system in 201”. In the frequentist
interpretation, it is difficult to see A or B as repeatable events and therefore
to study them with a probabilistic perspective without an abstruse argument
considering Quantum theory and many universes.

Importantly, the world did not end in 2012 and when the frequentist can only
say that we observed one of two possible outcomes, the Bayesian can now assert
with confidence P (A) = 0. In the Bayesian framework, it is natural to update
our beliefs when confronted with experimental evidence, i.e. to learn from data.
We now present how to leverage this possibility in the context of ML.

3.1.1 Sampling from complex distributions

Learning with probabilities often involves complex distributions in high dimen-
sional spaces which makes them difficult to approach analytically. Nevertheless,
by taking samples, it becomes possible to estimate almost any quantity of in-
terest empirically (Robert and Casella, 2005; Neal, 1993). Most notably, these
quantities of interest are often expressed as expectations:

Ex≥p(x) [h(x)] =
⁄

X
h(x)p(x)dx

where x œ X , and x ≥ p(x) represents the fact that x is a sample from the
distribution p. Using iid samples x1, x2, . . . , xN , the above expectation can be
estimated with the average of h(x):

Êx≥p(x) [h(x)] =
1
N

Nÿ

i=1

h(xi)

However, taking the required samples in the distribution p can be difficult. Even
when the density p(x) is tractable, there is often no easy way to take samples from
p1. It is then interesting to temporarily circumvent the problem. A first approach
is to take samples from a different distribution q using a selection or weighting
scheme to ensure that the resulting samples are distributed according to the
target distribution p, the principle behind rejection sampling and importance
sampling. A second possibility is to use an Monte Carlo Markov Chain (MCMC)
method such as Metropolis-Hastings or Gibbs sampling which relies on a Markov
chain to produce samples.

Rejection sampling, importance sampling, the Metropolis-Hastings algorithm
and Gibbs sampling are presented below.

1 In many cases, the practitioner must deal with the additional difficulty of only knowing p(x)
up to a constant.

42 learning with probabilities

Figure 3.1: In rejection sampling, taking a sample x from q and a sample u from
U [0; Mq(x)], results in a uniform distribution of points (x, u) below the graph of Mq(x).
Samples from p can then be obtained by accepting only the samples such that u < p(x).

Rejection sampling Let us suppose that the distribution p is bounded by
Mq for M a constant and q some distribution from which samples can be taken
easily. We can then generate samples (x, u) from the joint distribution U(X ◊
[0; Mq(x)]): taking a sample x from q, and then taking a sample u in [0; Mq(x)].

These samples correspond to uniformly distributed points below the graph of
Mq(x). The distribution p can then be recovered by accepting only samples such
that u < p(x). This process is explained in Figure 3.1 and given in Algorithm 3.1.

If the envelope Mq(x) is too far from p(x), a large number of samples from
q(x) will be needed before one is accepted. Thus the efficiency of rejection

Algorithm 3.1 The rejection sampling algorithm.

input: p(x), the target distribution.
q(x), an instrumental distribution easy to sample from.
M, a constant such that ’x œ X , p(x) Æ Mq(x)

output: x, a sample from the distribution p.

variables: u, an auxiliary random variable.
begin

until a sample is accepted:

x ≥ q(x)
u ≥ U [0; Mq(x)]
if u < p(x) accept the sample x

otherwise reject the sample
end

3.1 notions in probability theory 43

sampling depends on whether the acceptance ratio number of accepted samples
total can

be kept sufficiently high.
Furthermore, rejection sampling does not behave well in high dimensional

spaces. Remember that in high dimension, a hypercube of side 0.99 only contains
a small fraction of the volume of a larger cube of side 1. Similarly, in high
dimensional spaces, the density p(x) tends to represent only a small fraction of
the envelope Mq(x) leading to very low acceptance rates.

Importance sampling It is possible to sample from any distribution without
rejecting samples, using a sampling distribution q and using the importance
sampling identity, i.e.

⁄

X
h(x)p(x)dx =

⁄

X
h(x)

p(x)

q(x)
q(x)dx

Accordingly, an estimate for the above expectation can be obtained by taking iid

samples x1, x2, . . . , xN from q and computing:

Nÿ

i=1

h(x)
p(x)

q(x)

where p(x)
q(x) are the importance sampling weights.

Importance sampling has the advantage of not rejecting any sample, therefore
all samples are used as part of the estimation. However, if the sampling distri-
bution q does not fit p closely enough, important regions of p can be completely
ignored and lead to an infinite variance of the estimator.

Although importance sampling can be very efficient, finding a suitable dis-
tribution q which is both easy to sample from and close enough to the target
distribution f is sometimes impossible which is why more complex sampling
schemes are sometimes needed.

Metropolis-Hastings algorithm Let us consider Markov chains which
admit a unique stationary distribution fi. By designing a Markov chain such
that fi(x) = p(x), we can start at a random position x(0) and run the Markov
chain until it converges to its stationary distribution to produce a sample from
p(x). f

To ensure that fi(x) = p(x), it is sufficient that the transition probabilities
T (x æ xÕ) from one state to the next satisfy the condition of detailed balance,
i.e. :

’x, ’xÕ, p(x)T (x æ xÕ) = p(xÕ)T (xÕ æ x)

where T (x æ xÕ) is the transition probability of the Markov chain from state
x to state xÕ. A Markov chain which satisfies the above property and is er-
godic can be proved to converge to the distribution p(x) as time goes to infinity.

44 learning with probabilities

Algorithm 3.2 The Metropolis-Hastings algorithm.

input: p(x), the target distribution.
T (x æ xÕ), the proposal probability of jumping from
state x to state xÕ.
x(0), the initial state of the Markov chain.
B, a burn-in period.
K, a number of iterations between collected samples.

output: S = x1, x2, . . . , xN , a set of samples from the distribution
p.

variables: x(t), the state of the Markov chain at time t.
begin

for t = 0 to B + N ◊ K ≠ 1:

while xÕ is not accepted:

xÕ ≥ T (x(t) æ xÕ)
a ≥ U [0; 1]

if a <
p(xÕ)T (xÕ æ x)

p(x)T (x æ xÕ)
: accept xÕ

else: reject xÕ

x(t+1) := xÕ

if t Ø B and ((t ≠ B) mod K) = 0: S := S fi {x(t+1)}
return S
end

The Metropolis-Hastings algorithm which is based on this principle is given in
Algorithm 3.2.

In practice, the convergence to p as time goes to infinity means that a
Markov chain must run for many iterations before a sample can reasonably be
assumed to be distributed according to the target distribution. Note that, even if
x(t+1), x(t+2), . . . , x(t+N) are theoretically better samples in terms of convergence,
nearby samples are not independent. This means that it is necessary to wait a
number of steps between each sample to ensure that the Markov chain has enough
time to produce independent samples.

Despite the fact that only a fraction of the algorithm’s iterations actually result
in a valid sample, the somewhat high computational cost is counterbalanced by
the fact that the Metropolis-Hastings algorithm does not suffer from the curse of
dimensionality. This makes the Metropolis-Hastings algorithm and its variants
especially useful when confronted with complex distributions in high dimension.

Gibbs sampling When trying to sample from a joint distribution p(x) =

p(x1, x2, . . . , xD) it is sometimes easy to sample from the conditional distribu-
tions p(xi|x1, x2, . . . xi≠1, xi+1, . . . , xD). The Gibbs sampling algorithm is a vari-
ant of the Metropolis-Hastings algorithm which proposes to repeatedly sample
each variable given the others. This results in a Markov chain which converges
to the joint distribution p(x1, x2, . . . , xD).

3.2 density estimation 45

Algorithm 3.3 The Gibbs sampling algorithm.

input: p(xi|x1, x2, . . . xi≠1, xi+1, . . . , xD), the conditional
probabilities of the target distribution p(x).

x(0) = x
(0)
1 , x

(0)
2 , . . . , x

(0)
D , the initial state of the Markov

chain.
K, a number of iterations before taking a sample.

output: x, a sample from the distribution p.

variables: x(t) = x
(t)
1 , x

(t)
2 , . . . , x

(t)
D , the state of the Markov chain at

time t.
begin

for t = 1 to K:

for i = 1 to D:

x
(t)
i = p(xi|x(i)

1 , x
(i)
2 , . . . x

(i)
i≠1, x

(i≠1)
i+1 , . . . , x

(i≠1)
D)

x := x
(K)
1 , x

(K)
2 , . . . , x

(K)
D

return x
end

A visualization of the Gibbs sampling algorithm is shown in Figure 3.2, the
full algorithm is given in Algorithm 3.3.

Gibbs sampling is often a very efficient sampling algorithm when the condi-
tional distributions are available.

3.2 Density estimation

Learning with a probabilistic approach often reduces to the problem of density
estimation: trying to find a probability distribution p(x) which is likely to have
generated the dataset D.

The search for a suitable p(x) is usually limited to a specific family of proba-
bility distributions such as the Gaussian family N (µ, ‡2) of mean µ and variance
‡2. In practice, the parameters can be regrouped in a set of parameters ◊; for
the Gaussian distribution, we have for instance ◊ = {µ, ‡2}. The problem is
then to find the likely parameters ◊ given that p◊(x) should have generated the
dataset D.

One can easily understand that not all parameter values are equally likely. For
instance, if the dataset consists of points x between 100 and 101, the standard
normal distribution N (0, 1) centered on 0 is a very unlikely candidate.

Although the above notations may seem to be specific to unsupervised learning,
density estimation also applies to supervised learning. The goal for a dataset
D = {(x1, y1), . . . , (xN , yN)} is then to find a conditional distribution p(y|x)
which is likely to have generated each yi given xi.

We now look into several approaches which can be used to estimate distribu-
tions.

46 learning with probabilities

(a) Initialization at (x(0), y(0)). (b) Sample y(1) from p(y|x(0)).

(c) Sample x(1) from p(x|y(1)). (d) Sample y(2) from p(y|x(1)).

Figure 3.2: Visualization of the Gibbs sampling algorithm for a joint distribution p(x, y).
The algorithm starts at a random position (x(0), y(0)) and then alternatively samples
according to p(y|x) and p(x|y).

3.2 density estimation 47

3.2.1 KL-divergence and likelihood

In the previous chapter, we considered several loss functions, each adapted to
a particular problem. In the context of density estimation, we can use the
Kullblack-Leibler (KL)-divergence, which is given by:

dKL(p, q) = ≠
ÿ

x

log
3

p(x)

q(x)

4

p(x)

where the sum runs over all possible values of x.
The KL-divergence can be used as a measure of difference between distributions

but it is not symmetric (i.e. in the general case dKL(p, q) ”= dKL(q, p)) and does
not respect the triangular inequality, therefore it is not a distance.

If we consider the empirical data distribution pD defined by the training dataset
D = {x1, x2, . . . , xN }, where each sample has a probability pD(xi) = 1

N , we
can then try to fit a model p◊ to this data distribution by minimizing the KL-
divergence, i.e. solving

◊ú = arg min
◊

dKL(pD, p◊)

Note that the KL-divergence can be rewritten as

dKL(pD, p◊) =
ÿ

x

log pD(x)pD(x) ≠
ÿ

x

log p◊(x)pD(x)

¸ ˚˙ ˝

log-likelihood

where the first term does not depend on ◊ and the second term is referred to as
the log-likelihood, a concept which will be reviewed thoroughly in the following
sections. From the above equation, it follows that minimizing the KL-divergence
is equivalent to maximizing the log-likelihood, i.e. :

◊ú = arg max
◊

ÿ

x

log p◊(x)pD(x)

or equivalently, using the definition of pD:

◊ú = arg max
◊

ÿ

xœD

log p◊(x)

The problem of density estimation can therefore be solved by minimization of
the KL-divergence of equivalently, with the maximization of the log-likelihood.

3.2.2 Bayes’ rule

In the previous section, we tried to find the best parameter ◊ to minimize the
KL-divergence. The parametrization of the distribution by ◊ is noted p◊(x) in
the optimization perspective, however with a Bayesian perspective, ◊ is seen as
a random variable and the model then corresponds to the probability of x given

48 learning with probabilities

◊, i.e. p(x|◊). Bayes’ rule can then be used to find the probability of parameter
values ◊ given a dataset D:

p(◊|D)
¸ ˚˙ ˝

posterior

=

likelihood
˙ ˝¸ ˚

p(D|◊)
prior
˙˝¸˚

p(◊)
ÿ

◊

p(D|◊)p(◊)
¸ ˚˙ ˝

evidence

.

Likelihood p(D|◊) is the likelihood of the dataset D under the model. It
consists in the probability of the dataset D under a specific model parametrized
by ◊, i.e. the belief that the model parametrized by ◊ could have generated D.
If we assume that points in the dataset are iid, p(D|◊) is equal to the product
of the point-wise probabilities, i.e. p(D|◊) =

r

xœD p(x|◊). With the notation
of ◊ as a random variable, the likelihood of a single sample p(x|◊) is in fact the
model’s probability distribution p◊(x), e.g. for a D-dimensional Gaussian family,
we would have

p(x|◊) = N (µ, Σ) =
1

(2fi)D/2 |Σ|1/2
exp

;

≠1
2
(x ≠ µ)T

Σ
≠1(x ≠ µ)

<

where µ is the means parameter, and Σ is the D ◊ D covariance matrix, and |Σ|
is the determinant of Σ.

Posterior p(◊|D) corresponds to the belief that ◊ is a likely parameter value
of the distribution p(x), given the dataset D. When we are only interested in
the best possible parameter value, maximizing the posterior leads to the most
probable value of the parameter ◊ given the dataset D. However, the posterior is
a probability distribution and therefore gives a probability to all possible values
of ◊. This is especially useful to assess the variance of an estimation.

Evidence
q

◊ p(D|◊)p(◊) is of little practical importance and can simply be
seen as a normalization constant to ensure that the probabilities sum up to 1.

Prior p(◊) corresponds to the a-priori probability of ◊, that is, the belief we
have that ◊ is a reasonable parameter, before having seen the dataset. This can
seem a bit paradoxical which is why we will return to this question shortly.

3.3 maximum a-posteriori and maximum likelihood 49

3.3 Maximum a-posteriori and maximum likelihood

When trying to learn a distribution, the goal is often to find the best possible
parameter value. The problem is then to maximize the posterior distribution
with respect to the parameter ◊, i.e. , we are looking for ◊ú such that

◊ú = arg max
◊

p(◊|D).

◊ú is then called the maximum a-posteriori estimate because it maximizes the
posterior distribution.

Note that the evidence
q

◊ p(D|◊)p(◊) can in fact be written p(D) (marginal-
ization rule) and does not depend on the parameter ◊. Applying Bayes’ rule, the
maximization problem is therefore equivalent to

◊ú = arg max
◊

p(D|◊)p(◊)

where we take the likelihood and the prior into account as expected.
In cases where there is no useful prior, the prior can be chosen to be uniform

and therefore does not depend on ◊, i.e. p(◊) = cst. We can
further simplify the optimization problem into:

◊ú = arg max
◊

p(D|◊).

◊ú is then called the maximum likelihood estimate and is the value of ◊ which
maximizes the likelihood of the data under the model.

In practice it is often useful to consider maximizing the log-likelihood log p(D|◊)
instead of the the likelihood itself2. The two optimization problems are equiva-
lent because the logarithm is a monotonously increasing function3. Additionally,
when the dataset D is composed of iid samples, the likelihood decomposes as a
product of point-wise probabilities, as in p(D|◊) = r

xœD p(x|◊). The logarithm
then serves to obtain a sum over the dataset, i.e the log-likelihood of the dataset is
equal to the average log-likelihood on the dataset: log p(D|◊) = q

xœD log p(x|◊).

3.4 Choosing a prior

In the limit of infinitely many observations and for a prior which is non-zero
everywhere, the posterior distribution tends to the likelihood itself. Conversely,
when the dataset is empty, the posterior distribution is equal to the prior. In
other words, maximum a-posteriori depends strongly on the prior when there
are few observations and is close to maximum likelihood if there are many.

2 Maximizing the log-likelihood was already proposed in the previous section as a way to minimize
the KL-divergence with the empirical data distribution pD.

3 This equivalence relies on the assumption that samples from the dataset are iid.

50 learning with probabilities

Figure 3.3: Three possible choices of prior for a Bernoulli distribution. Beta(10, 10)
(left), Beta(2, 2) (middle), Beta(1, 1) or equivalently uniform distribution (right).

Let us consider the problem of estimating the probability of a coin toss re-
sulting in “heads”. The problem can be seen as a problem of estimating the
parameter ◊ of a Bernoulli distribution:

P (x = 1) = ◊

P (x = 0) = 1 ≠ ◊,

where x is a random Bernoulli variable such that 1 correspond to heads and 0 to
tails. In this example, a reasonable prior could be a distribution peaked around
◊ = 0.5 decreasing towards 1 and towards 0, making explicit our belief that most
coins have almost equal probability of coming heads or tails, and that it would
probably be very difficult to find a coin which always falls on the same side4.
Figure 3.3 gives three examples of priors which may be suited to this problem.

The Beta distribution in Figure 3.3 has a special relation to the Bernoulli
distribution, namely it is a conjugate prior of the Bernoulli distribution. Con-
jugate priors have the interesting property of ensuring that the posterior is in
the same family of distributions as the prior. If the prior is given by a Beta
distribution and the likelihood is a Bernoulli distribution (as in our example)
then the posterior is also a Beta distribution.

It is important to realize that the choice of a prior is a subjective one by
definition. If the practitioner does not want to make this choice, or if all values
of ◊ are in-differentiable, it is common practice to choose the uniform distribution
which does not depend on the parameter ◊ and assigns equal probability to all
possible values.

However, the uniform distribution is not a non-informative prior because it
carries information about the structure of the parameter space. Namely, if we
have ◊ œ R, a uniform prior represents the belief that there is as much probability
density in the interval]0, 1[than in any other interval]z, z+ 1[, when any interval
contains in fact as many real numbers as R itself.

4 We assume of course that the coin in question does not have a face on both sides, as is often
the case when the problem occurs in practice.

3.5 example: maximum likelihood for the gaussian 51

3.5 Example: Maximum likelihood for the Gaus-

sian

Let us now, as an example, derive the maximum likelihood estimates for a D-
dimensional Gaussian probability distribution. The goal is then to maximize the
log-likelihood, i.e. to find

µ
ú = arg max

µ
log p(D|µ, Σ)

and replacing the model by its definition:

µ
ú = arg max

µ
log

Ÿ

xœD

1

(2fi)D/2 |Σ|1/2
exp

;

≠1
2
(x ≠ µ)T

Σ
≠1(x ≠ µ)

<

The problem simplifies into

µ
ú = arg min

µ

ÿ

xœD

(x ≠ µ)2

As seen in chapter 1, if the problem has a solution, it must satisfy the first order
necessary condition, i.e. the first derivative of

q

xœD(x ≠ µ)2 with respect to µ

must be 0 at the optimum µ
ú:

ˆ log p(D|µ, Σ)

ˆµ
=

ÿ

xœD

Σ
≠1(x ≠ µ)

and therefore

ÿ

xœD

Σ
≠1(x ≠ µ

ú) = 0

which is equivalent to

µ
ú =

1
|D|

ÿ

xœD

x

Therefore the maximum likelihood estimate for the mean parameter of a D-
dimensional Gaussian is the arithmetic mean of the training samples.

A similar computation yields the maximum likelihood estimate for the covari-
ance matrix:

Σ
ú =

1
|D|

ÿ

x

(x ≠ µ)(x ≠ µ
T)

3.6 Example: Probabilistic polynomial regression

In the case of polynomial regression, an interesting possibility is to consider
y = f(x) as a conditional probability p(y|x). This density is then given by

52 learning with probabilities

the polynomial
qk

i=0 aix
i to which we add a normally distributed error term

N (0, ‡2):

p(y|x) =
kÿ

i=0

aix
i + N (0, ‡2)

= N (
kÿ

i=0

aix
i, ‡2).

The model can be seen as the probability of measuring some value y given x.
For each x, the measurement y is distributed according to a normal law of mean
qk

i=0 aix
i and of variance ‡2.

In this example, the quantity to maximize can be computed analytically by
replacing p(y|x) by the definition of a normal law.

log p(D) =
Nÿ

i=1

log p(yi|xi)

=
Nÿ

i=1

log

C

1

‡
Ô

2fi
exp(≠ (yi ≠ qk

i=0 aix
i)2

2‡2
)

D

= N log
3

1

‡
Ô

2fi

4

≠
Nÿ

i=1

(yi ≠ qk
i=0 aix

i)2

2‡2
.

Adding and multiplying by the appropriate constant terms (here we consider
‡2 to be a constant, the problem being on µ) which do not change the maxi-
mization problem, and taking into account the minus sign which transforms the
maximization problem into a minimization problem, the quantity to minimize is

Nÿ

i=1

C

yi ≠
kÿ

i=0

aix
i

D2

=
Nÿ

i=1

Ë

yi ≠ f̂(xi)
È

2

which is exactly the MSE seen in Chapter 2. Therefore, minimizing the mean
squared error when fitting polynomials consists in learning the above probabilis-
tic model.

3.7 Latent variables and Expectation Maximization

The probabilistic models seen so far can give an interesting interpretation of a
dataset, but we have not yet discussed how to leverage these algorithms to find
new representations. This can be done in the context of estimating distribu-
tions with the help of latent variables (Ghahramani, 2004). Latent variables are
sometimes called hidden variables or unobserved variables by opposition to the
observed variables x = x1, . . . , xD.

3.8 example: gaussian mixtures and em 53

A simple way to introduce latent variables in a probability distribution is to
use a joint distribution over both observed and hidden variables which can then
be marginalized over the hidden variables, as in

p(x) =
ÿ

h

p(x, h),

where the sum over h is to be understood as a sum over all possible values of h.
As expected, the resulting distribution is on the observed variable x alone.

When the model is trained, the latent variables can be seen as representing
explanatory variables which best help to model the distribution on the observed
variables.

A problem arises when trying to learn the joint distribution p(x, h) because
by definition, the dataset D only contains samples from the observed variable x,
and not samples x, h as would be required to learn a joint distribution p(x|h).
As a result, it is often impossible to find a closed-form solution to the maximum
likelihood of models with latent variables.

Nonetheless, latent variable models can usually be trained with a variant of
the Expectation Maximization (EM) algorithm (Dempster et al., 1977; Borman,
2004) which alternates between two steps5:

• (expectation) Compute the inference distribution p(h|x); construct samples
x, h with h the most probable value of h according to p(h|x).

• (maximization) maximize the likelihood of p(x, h) given the samples x, h

obtained previously.

Although it is not easy to derive this algorithm, it can be shown to converge to
a local minimum (Dempster et al., 1977; Wu, 1983).

Note than EM is not the only way to train models with latent variables and it
is sometimes preferable to use an other optimization algorithm such as gradient
descent.

3.8 Example: Gaussian mixtures and EM

Sometimes the Gaussian distribution is not complex enough to accurately repre-
sent the input distribution. Figure 3.4(a) gives an example where the maximum
likelihood estimate for a single Gaussian in 2 dimensions does not accurately
capture the structure of the dataset.

However, if we combine K Gaussians such that each point from the dataset
is sampled from one such Gaussian, the model becomes much more expressive
as in Figure 3.4(b). In fact, given enough Gaussians, it becomes possible to
approximate any distribution with arbitrary accuracy. This can be done with

5 In fact, we present here a point-estimate variant of EM called classification EM. See (Gupta
and Chen, 2011) for a complete description of EM.

54 learning with probabilities

(a) Best fit with a bivariate Gaussian. (b) Best fit with a Gaussian mixture.

Figure 3.4: The Gaussian distribution being unimodal, a single Gaussian is unable to
capture the structure of this dataset. Using a mixture of Gaussians allows for a better
fit. The red lines give the points at 1 and 2 standard deviations from the mean of each
Gaussian.

the introduction of a hidden variable h to represent the choice of a Gaussian.
The model is then a latent variable model, i.e.

p(x|◊) =
ÿ

h

p(x|h, ◊)p(h|◊)

where h is the random variable associated with the random choice of a Gaussian
among the K possible choices. In this example, we choose the one-hot represen-

tation for the variable h, i.e. all possible values of the vector h are such that
exactly one component is 1 and all the others are 0. We note hi the value of h

corresponding to the choice of the ith Gaussian. For instance, for K = 3, the
possible values are h1 = [1, 0, 0], h2 = [0, 1, 0], h3 = [0, 0, 1].

The probability of choosing the ith Gaussian is given by p(h = hi|◊) = fii,
where the vector fi is called the mixing parameter. The parameters fii are such
that their sum is 1 to ensure that the probability distribution stays normalized.

Once the Gaussian i is chosen, the probability of sampling a vector x is simply
given by

p(x|h = hi, ◊) = N (µi, Σi)

where µi, Σi are the mean and covariance matrix of the ith Gaussian distribution.
Recomposing the full probability distribution, we have

p(x|◊) =
Kÿ

i=1

N (µi, Σi)fii

where the sum over the index i covers all possible Gaussian affectations. The
latent variable h is no longer visible in the above equation but is implicitly

3.9 optimization revisited in the context of maximum likelihood 55

marginalized over with the index i. The parameter ◊ regroups all the parameters
of the model, i.e. ◊ = {µ1, . . . , µK , Σ1, . . . , ΣK , fi1, . . . , fiK}.

In the case of Gaussian mixtures, we cannot find a closed-form solution to the
maximum likelihood problem. However, we can use the EM algorithm introduced
above to find a local maximum of the likelihood. For the first step of EM, we
must find p(h|x) to infer the hidden variables from a data instance x. This
conditional probability is given by Bayes’ rule, namely

p(h = hi|x, ◊) =
p(x|h = hi, ◊)p(h = hi|◊)

p(x|◊)

=
N (µi, Σi)fii

qK
j=1 N (µj , Σj)fij

This implies a sum over all Gaussians in the denominator and as such can be
costly when a large number of Gaussians are involved. Although the EM algo-
rithm can be run with arbitrary mixing parameters fii and covariance matrices
Σi, the case where all fii are equal and where the covariance matrices are a
multiple of the identity matrix, i.e. are of the form Σi = ‡I with ‡ a constant
common to all Gaussians, has an interesting interpretation. In this case, the
most probable value of h for an observation x is hi if µi is the mean closest to
x.

For the second step of EM, i.e. the maximization of the likelihood of p(x, h =

hi) w.r.t. the mean parameters µi, it simply consists in maximizing the likeli-
hood of x under the ith Gaussian. The maximum likelihood for the Gaussian is
derived in Section 3.5 above and is given by

µ
ú
i =

1
|D|

ÿ

x,h

x.

In the special case of equal mixing parameters and with isotropic Gaussians, the
two steps above correspond exactly to the K-means algorithm where a centroid
ci corresponds to the mean of the ith Gaussian µi. The K-means algorithm has
therefore a probabilistic interpretation as the application of the EM algorithm to
a mixture of equiprobable Gaussians of equal isotropic variance.

Although EM can recover the K-means algorithm under specific conditions,
EM is much more general and can be used with arbitrary mixing parameters and
covariance matrices.

3.9 Optimization revisited in the context of maxi-

mum likelihood

We have now reviewed how a learning problem results from solving an optimiza-
tion one, sometimes with a probabilistic interpretation. We now come back to
optimization with a special focus on the importance of choosing a metric.

56 learning with probabilities

An efficient optimization method must concentrate the search in regions of
the search space which have a higher chance of containing an optimum. This is
often done with an iterative approach in which the goal is to make at each step
a small movement from the current position toward better values.

This kind of method depends on a metric to define neighborhoods in the
search space in which the objective function assumed to have small variations.
Unfortunately, practitioners often choose the canonical metric i.e. the Euclidean
distance in R

d or the Hamming distance in {0, 1}d regardless of its suitability to
the problem under consideration.

We start by presenting how the use of a canonical metric in the context of
log-likelihood maximization with gradient descent leads to an undesirable de-
pendence on parametrization and then, we present the natural gradient which
is simply the ordinary gradient in the Fisher metric and is specially adapted for
moving in the space of probability distributions.

3.9.1 Gradient dependence on metrics and parametrization

In the previous chapters, we have often proposed the gradient descent algorithm
to maximize the log-likelihood w.r.t the parameters of a model. However, gradi-
ent descent can yield different trajectories depending on the parametrization of
a model. More precisely, the gradient descent procedure is often considered in
parameter space, usually with the Euclidean metric.

Consider the Gaussian family in one dimension with the usual parametrization,
i.e.

pµ,‡(x) =
1

‡
Ô

2fi
exp

I

≠ (x ≠ µ)2

2‡2

J

where the parameters are the mean µ and the variance ‡2. The matter is espe-
cially confusing with the Gaussian family because the variance is noted as the
standard deviation squared. Should we therefore take the derivative w.r.t. ‡2 or
w.r.t. ‡, and more importantly are the two alternatives equivalent ? They are
not:

ˆ log pµ,‡(x)

ˆ(‡2)
=

µ2 ≠ 2µx ≠ ‡2 + x2

2‡4

ˆ log pµ,‡(x)

‡
=

µ2 ≠ 2µx ≠ ‡2 + x2

‡3

with the partial derivative w.r.t. the parameter µ remaining unchanged.
This can be attributed to the Euclidean metric which is implicitly used in

these computations. The gradient gives the direction of greatest increase for
an infinitesimal movement ”◊ in parameter space such that Î”◊Î < ‘. When

we consider the parameters µ, ‡2, the distance Î”◊Î =
Ò

(”µ)2 + (”‡2)2, is dif-
ferent than the one obtained by considering the parameters µ, ‡, i.e. Î”◊Î =

3.9 optimization revisited in the context of maximum likelihood 57

Ò

(”µ)2 + (”‡)2. Consequently, the two gradients give the direction of great-
est increase in log-likelihood but allow for movements of different amplitude in
parameter space.

Although this problem of choosing a parametrization is especially clear with
the choice of ‡ or ‡2 as variance parameter, it is important to realize that the
Euclidean metric introduces a spurious connection between the amplitude of gra-
dient steps along different parameters. When we generalize to multi-dimensional
Gaussians, these spurious connections typically favor Gaussians which are close
to isotropic because the Euclidean metric gives an equal importance to every
parameter of the covariance matrix.

In fact, every metric defined by a constant matrix in parameter space will
favor one kind of Gaussian over another.

3.9.2 The natural gradient

A consequence of the previous section is that there are infinitely many possible
gradients of the log-likelihood, each one corresponding to a different choice of
metric. The natural gradient (Amari, 1998; Amari et al., 2000) is defined as
the gradient in the Fisher information metric which is an approximation of the
KL-divergence. As it relies on the KL-divergence, which is a common measure of
difference between distributions, the natural gradient can be seen as moving on
a manifold of probability distributions which is independent of any parametriza-
tion. Although the KL-divergence is not a metric, for infinitesimal movements
”◊ around ◊, the KL-divergence dKL(P◊, P◊+”◊) can be approximated by its Hes-
sian: the Fisher information metric. Because ”◊ = 0 corresponds to the global
minimum of the KL-divergence, the Hessian corresponds to a second order ap-
proximation. The Fisher metric is defined by the so-called Fisher matrix:

Fij = E

C

ˆ log p◊(x)

ˆ◊i

ˆ log p◊(x)

ˆ◊j
|◊

D

Formally, the expression of a gradient ÒA in some arbitrary metric A, for A a
symmetric positive definite matrix, is given by

ÒA = A≠1Ò

The natural gradient Ò̃ is then simply the gradient in the Fisher metric F , i.e.:

Ò̃ log p◊(x) = F ≠1Ò log p◊(x)

From this definition, the natural gradient corresponds to an infinitesimal move-
ment in the space of distributions as opposed to a movement in parameter space.
This makes the natural gradient invariant to parametrization because the met-
ric measures a distance between the distributions themselves, independently of

58 learning with probabilities

parameters. As a side effect, the invariance to parametrization often results
in further invariances, depending on the probability distribution family, such
as invariances w.r.t. rescaling, translation and rotation of x in the case of the
multi-dimensional Gaussian.

Interestingly, the step size or learning rate of a natural gradient update is a
quantity in bits or nats and therefore measures a quantity of information. The
learning rate can then be seen as measuring how much information each step
should provide.

Although the natural gradient has many theoretical advantages, it has a com-
putational disadvantage, at least with a naive implementation, because it re-
quires computing and inverting a matrix of size (dim ◊)2 at each step.

The natural gradient gives a good example of the influence of choosing a
suitable metric in the context of maximizing the likelihood of a model. It is
also a reminder of the intricate link between learning and optimization, here in
the case of an optimization procedure which is specially designed for learning
distributions.

3.9 optimization revisited in the context of maximum likelihood 59

Summary

• From a Bayesian probabilistic perspective, it is natural to update our be-
liefs with data.

• It is sometimes necessary to use methods such as rejection sampling, im-
portance sampling, the Metropolis-Hastings algorithm or Gibbs sampling
to sample from complex distributions.

• Probabilistic models can be trained by minimizing the KL-divergence be-
tween the empirical data distribution and the model distribution.

• Equivalently, a probabilistic model can be trained by maximizing the log-
likelihood of a dataset under the model.

• Bayes’ formula gives a method for choosing the best parameters given data:
maximum-a-posteriori.

• The prior distribution gives probabilities to model parameters before hav-
ing seen a dataset.

• When the prior is considered uniform, maximum-a-posteriori is equivalent
to maximum-likelihood.

• Probabilistic models can have latent variables which can be understood as
unobserved explanatory factors.

• Models with latent variables can be trained with the EM algorithm which
alternates between computing the expected latent variables given the cur-
rent maximum likelihood estimate, and maximizing the log-likelihood given
affectations of the latent variables.

• Training Gaussian mixtures with EM can be seen as a probabilistic gener-
alization of the K-means clustering algorithm.

• The log-likelihood gradient in the Euclidean metric is affected by parametriza-
tion

• The natural gradient based on the Fisher metric is invariant by re-parametrization
and can introduce further invariances during optimization.

This chapter concludes our presentation of ML. We now turn to deep learning,
the main topic of this thesis.

Part II

D E E P L E A R N I N G

4
A RT I F I C I A L N E U R A L N E T WO R K S

Although deep learning could in theory apply to any kind of model, almost all
approaches to deep learning so far are based on artificial neural networks.

Artificial neural networks (Bishop, 1995) regroup a large variety of models
which use neurons as their elementary computation unit. Although this class
of models was historically inspired from biological processes, it is now a inte-
gral part of the mathematical ML framework. Neural networks can be used in
supervised settings for classification of regression, in unsupervised settings for
dimensionality reduction and learning representations, and can be interpreted in
a probabilistic perspective.

We start by presenting the artificial neuron which is the basis of all artificial
neural architectures. From there, we discuss how neurons can be structured in
networks to perform complex computations especially in the contexts of classifi-
cation, regression and dimensionality reduction. Finally, we present probabilistic
interpretations of neural networks and describe how they can be used to estimate
distributions.

4.1 The artificial neuron

4.1.1 Biological inspiration

Biological systems are capable of performing very complex computations to sur-
vive in their environment, find food or escape predators. These complex behav-
iors are controlled by a nervous system composed of nerve cells or neurons. One
of the most remarkable properties of such systems is their scalability from just
a few hundred neurons (302 neurons for the roundworm Caenorhabditis elegans)
to billions of neurons (around 85 billion in the human brain). To be more pre-
cise, it seems that neurons can be combined so that an increase in the number
of neurons leads to an increase in cognitive abilities (Herculano-Houzel, 2009).

Although the ways in which complex behavior can emerge from large numbers
of neurons is still poorly understood, the equations governing the excitability of a
single neuron are very well understood, as for instance with the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952).

63

64 artificial neural networks

!"#$%&$"'

()*+,-."//0/+%,1)!23

#0./"0'

+4)#

'2#+5'"

!"#$%&$"',)6

)0$50$,#"0%)#'

+4)#',)6

2$,#"0%)#'

6/)7,)6,)%*+$&)#

Figure 4.1: The structure of a biological neuron. Information comes from input neurons
in the form of action potentials. If the neuron receives enough action potentials from
its pre-synaptic neurons, it fires a spike, sending an action potential through its axon
to the post-synaptic neurons.

Figure 4.1 describes the general architecture of a biological neuron. A neuron
reacts to inputs as follows: when the dendrites of a neuron receive some excita-
tory (resp. inhibitory) input, the membrane potential of the neuron increases
(resp. decreases) gradually. If the membrane voltage reaches a specific threshold,
an action potential is initiated and propagated along its axon to post-synaptic
neurons. In the rest of this paper, we will forget this biological inspiration and
the term neuron will be used to refer to artificial neurons which we describe now.

4.1.2 The artificial neuron model

In order to transmit information, artificial neurons have an activation value1.
For the purpose of computation, an artificial neuron (see Figure 4.2) has

weighted connections to a set of input neurons. The input neurons can be seen
as a vector x = x1, x2, . . . , xD, where x is a vector of dimension D, and xi cor-
responds to the activation of the ith input neuron. The activation value y of
a neuron can be computed given the input activations xi and the connection
weights wi according to

y = „(b +
ÿ

i

wixi)

where „ is called the activation function and b is called the bias of the neuron y.
The term b+

q

i wixi taken as input of „ is called the pre-activation. The bias can
be considered as a regular weight w0 connected to an input neuron x0 such that
x0 = 1. Consequently, a neuron performs a scalar product between the extended

1 This activation value can be seen as playing a role similar to the firing frequency of a biological
neuron.

4.1 the artificial neuron 65

Figure 4.2: Computational properties of an artificial neuron. The activation of a neuron
is computed as a weighted sum of the activations of the input neurons, transformed by
an activation function „. The weights of the connections determine how much influence
an input neuron has on the output neuron.

Figure 4.3: The result of filtering an input image with a weight vector. The image (c)
is the element-wise product of (a) and (b). If the pixel intensities of (a) and (b) are
elements of the input vector x and the weight vector w respectively, then the average
intensity of (c) is the pre-activation w€x. When a weight wi is near 0 as in the black
region of (b), the corresponding input xi is filtered out and does not influence the final
result.

input vector x containing x0 = 1 and the weight vector w = w0, w1, w2, . . . , wD,
and transforms the result according to the activation function „, i.e.

y = „(w€x)

4.1.3 A visual representation for images

The scalar product of the weights and the input can be interpreted as a projection
of the input vector on the weight vector. In particular, if x represents the pixels of
an image, it is common to represent the weight vector as a visual filter. Figure 4.3
gives an example of filtering operation which can be realized by a single neuron.

66 artificial neural networks

Figure 4.4: Different topologies of neural networks: a recurrent neural network (a) and
a feed-forward neural network (b).

4.2 Feed-forward neural networks

Artificial neurons can only make a simple computation by themselves. How-
ever, they can be arranged in neural networks to perform more complex oper-
ations. These networks can then be used to compute the activations of a set
of output neurons y = (y1, y2, . . . , yDÕ) given the activations of input neurons
x = (x1, x2, . . . , xD). The computation usually involves a set of hidden neurons

h which perform intermediary computations.
Although neurons can in theory be arranged quite arbitrarily, in practice they

are often arranged in an acyclic graph which means that the input of a neuron
does not depend on its output, even indirectly. Neural networks organized with
such a topology are referred to as feed-forward neural networks because the
activations can be propagated forward in the network. By contrast, recurrent

neural networks can contain cyclic connections. Recurrent neural networks are
potentially better at modeling dynamical systems, but the presence of cycles
makes training much more difficult. Figure 4.4 gives examples for a general
recurrent neural network and a feed-forward network.

Let us now consider feed-forward networks where the neurons are organized in
layers. In this terminology, the input vector x is the input layer ¸0. Subsequent
layers ¸k then regroup neurons which only receive input from neurons in the
previous layer ¸k≠1. This makes possible the computation of neural activations
in a feed-forward, layer-wise manner. The weights used to compute the activation
of a layer ¸k from the activations of a layer ¸k≠1 then form a matrix W where wij

gives the connection weight from the ith neuron of layer ¸k≠1 to the jth neuron
of layer ¸k. For two subsequent layers x and y the computation rule becomes

’j, yj = „(bj +
ÿ

i

wijxi),

or using matrix notation
y = „(Wx + b)

4.2 feed-forward neural networks 67

Figure 4.5: A multi-layer neural network. Activations can be propagated layer by layer
from the input layer x to the output layer y.

where the function „ is simply the element wise application of the activation
function.

When a neural network involves more layers than the input and output layers,
the network is called a multi-layer neural network. The hidden neurons are then
arranged in several hidden layers as shown in Figure 4.5.

The usual notations employed for neural networks can sometimes be confusing.
For instance, the activations of the output neurons are usually noted y, whereas
in the context of supervised learning these activations would be noted f(x),
y referring to the label. For instance a neural network with two layers would
compute y = f(x) = „(W2„(W1x+b1)+b2). Additionally, the pre-activation
of neurons is usually denoted by a variable a, and is not to be confused with
the activation itself „(a). Finally, the activation functions are usually given as
functions of a variable x which is not to be understood as the input but as a
general variable in R.

68 artificial neural networks

4.3 Activation functions

Until now we have considered an undefined activation „. However, there are
several common choices of activation function „, each suited to different appli-
cations.

linear activation A first possibility is to use the identity function „(x) = x

as activation function. A layer then performs a linear operation Wx + b on the
input vector x. When several such layers are combined, the combination of linear
operations being linear, the model still reduces to a single linear operation. In
the case of two layers with parameters W1, b1 and W2, b2, the output of the
networks can be computed as

y = W2(W1x + b1
¸ ˚˙ ˝

1stlayer output

) + b2

which is equivalent to a single layer of parameters Wr, br:

y = W2W1
¸ ˚˙ ˝

Wr

x + W2b1 + b2
¸ ˚˙ ˝

br

Adding layers then has the disadvantage of adding parameters, thus making
optimization more difficult, while not increasing the expressivity of the model.
However, a linear activation function can be useful for the last layer of a multi-
layer neural network when the output is a real variable, as e.g. in regression
problems. To ensure that the multi-layer network does not reduce to a single
layer, a non-linear activation function (a.k.a. a non-linearity) is then used in the
other layers of the network.

Heaviside Step function The Heaviside step function is defined as follows

h(x) =

Y

_]

_[

0 if x < 0

1 if x Ø 0

In a neural network, the result is then 1 or 0 depending on the sign of the
pre-activation Wx + b. This corresponds to a partition of the input space R

D

according to a separating hyperplane: a neuron y has value 0 if x is on one side of
the hyperplane, 1 if it is on the other side. This makes the step function adapted
to linearly separable classification problems (Minsky and Papert, 1969). However
it is now rarely used because it is not differentiable which makes optimization
difficult. A differentiable sigmoid function is often preferred to circumvent this
issue.

4.4 training with back-propagation 69

Sigmoid activation The class of sigmoid functions is the most common
choice of activation function. Formally a sigmoid function is an “s”-shaped func-
tion, such as the hyperbolic tangent or the logistic function2 sigm(x) = 1

1+exp(≠x) .
Logistic functions can be seen as continuously differentiable approximations of
the Heaviside step function. As such they also create a linear separation surface
in the input space. The expressivity of the model increases when several layers
are considered because sigmoid functions are non-linear. Neural networks with
only one sigmoidal hidden layer are in fact universal approximators (Cybenko,
1989; Hornik et al., 1989), i.e. they can represent any function given a sufficient
number of neurons. The logistic function takes values in the interval [0, 1] and
is therefore often interpreted as the activation probability of a binary neuron.
Formally the model for a single layer is then given by

P (y|x) =
Ÿ

j

P (yj |x) =
Ÿ

j

sigm(bj +
ÿ

i

wijxi)

Softmax activation In the context of classification, the softmax activation
function is often preferred to sigmoid functions for the output layer. It can
be interpreted as a smooth maximum of several activations. Contrary to the
other activation functions presented above, the softmax activation function is
not applied to each neuron of a layer individually, but rather is applied to the
whole layer at once:

softmax(x) =

A

exp(x1)
qDz

i=1 exp(xi)
, . . . ,

exp(xD)
qDz

i=1 exp(xi)

B

The softmax function can also be interpreted as giving the probabilities of
activation of each neuron according to a categorical distribution, i.e. P (y|x) =
softmax(Wx + b). Each component then gives the probability of a class being
selected. The denominator of the above equation then ensures that the proba-
bilities sum up to 1.

The step function, hyperbolic tangent and logistic functions are represented
in Figure 4.6.

4.4 Training with back-propagation

In a supervised setting, the training of feed-forward neural networks is usually
done with a form of gradient descent. This requires the computation of partial
derivatives of the error function w.r.t. the weights. In a feed-forward network,
these partial derivatives can be computed with the so-called back-propagation
algorithm (Rumelhart et al., 1986; LeCun et al., 1998b). In this section, we

2 A common abuse of language consists in referring to the logistic function as “the sigmoid
function”. This explains the mathematical notation sigm(z) commonly used for the logistic
function.

70 artificial neural networks

Figure 4.6: Three common activation functions: linear activation (a), Heaviside step
function (b), logistic function (c) and hyperbolic tangent (d).

consider a dataset D = {(x1, t1), . . . , (xN , tN)} so that outputs of the neural
network y are not confused with the target variable.

Back-propagation can be applied when both the error functions and the acti-
vation functions are differentiable. It is then possible to use the chain rule to
obtain:

ˆE(x)

ˆwij
=

ˆE(x)

ˆaj

ˆaj

ˆwij

where aj = bj +
q

i wijzi is the pre-activation of an output neuron as a function
of activations zi of neurons in the previous layer. The error function E is a
per-sample error which takes the model into account. For instance if we use the
MSE, E(x) = (t ≠ y)2 with t the target and y = f(x) is the output of the neural
network.

It is common to note ”j =
ˆE(x)

ˆaj
. Additionally, ˆaj

ˆwij
= zi and therefore

ˆE(x)

ˆwij
= ”jzi

Thus the derivative w.r.t. wij is the product of the activation of the neuron zi

with ”j . For the output layer the terms ”
output
j can be computed by another

application of the chain rule, i.e.

”
output
j =

ˆE(x)

ˆyj

ˆyj

ˆaj
=

ˆE(x)

ˆyj
„Õ(aj)

In the case of the MSE, we have ˆE(x)
ˆyj

= yj ≠ tj and thus ”
output
j = (yj ≠ tj)„Õ(aj).

For the hidden layers, the errors ”j can be propagated backwards recursively
through the network, i.e. for two layers ¸m and ¸m+1:

”m
j =

ˆE(x)

ˆaj
=

ÿ

k

ˆE(x)

ˆak

ˆak

ˆaj

where we sum over all units k which have unit j as input. This leads to the
back-propagation rule

”m
j = „Õ(aj)

ÿ

k

wkj”m+1
k

4.5 auto-encoders 71

Figure 4.7: The structure of an auto-encoder. The target output y is the input itself

This rule can then be applied iteratively to lower hidden layers. The resulting
partial derivatives can then be used as part of a gradient procedure to minimize
the error over a dataset.

The back-propagation algorithm has a complexity in O(dim ◊) where ◊ re-
groups all parameters in the model and is therefore very efficient.

4.5 Auto-encoders

The neural networks seen so far apply mostly to supervised learning. However,
if we are to study deep learning, we need a way to learn representations in an
unsupervised way. A particularly interesting application of neural networks for
the unsupervised setting is the possibility to perform dimensionality reduction,
compression or learn new representations with an auto-encoder (Bourlard and
Kamp, 1988; Hinton, 1989).

Formally, an auto-encoder is simply a feed-forward neural network trained
to reproduce its input with back-propagation. The unsupervised dataset D =

{x1, . . . xN } is then seen as a supervised dataset D = {(x1, x1), . . . (xN , xN)}
where the target is the input itself. The structure of an auto-encoder is repre-
sented in Figure 4.7.

Although training a feed-forward network to reproduce its input may seem
pointless, the hidden layer h can be seen as a new representation of the data.
The first layer of the auto-encoder then consists in an encoder which transforms
x in the corresponding representation h, and the second layer is effectively a
decoder which is trained to recover an approximation of the original value x

from the hidden representation h.
In the general case, if the hidden layer is at least as large as the input and

if there is no additional restriction, an auto-encoder will tend to learn the iden-
tity for both layers which does not lead to an interesting hidden representation.
However, if the hidden layer is smaller than the input, an auto-encoder will try
to learn a compressed representation in the hidden layer h. The first layer is

72 artificial neural networks

Figure 4.8: The Boltzmann machine architecture with visible units (v), hidden units (h)
and the joint configuration x = v, h.

then responsible for compression of the data, and the second layer is respon-
sible for reconstructing the input given the compressed data. To make sure
that the auto-encoder does not learn the identity, it is also possible to constrain
the hidden representation to be sparse (Ng, 2011), to use a denoising criterion

(Vincent et al., 2008) or to use a contractive criterion (Rifai et al., 2011). Train-
ing auto-encoders with these restrictions been shown to be very effective as a
preprocessing step to learn features in the context of representation learning.

4.6 Boltzmann Machines

Another way to learn representations with neural networks is to use probabilistic
neural networks such as Boltzmann machines (Ackley et al., 1985). Boltzmann
machines are undirected neural networks where each neuron is referred to as a
unit xi which can be active, i.e. equal to 1 or inactive, i.e. equal to 0. Note that
the network is not feed-forward but is completely connected in the general case
as in Figure 4.8.

The Boltzmann machine defines a probability density over all configurations
x = x1, . . . , xD as:

P◊(x) =
e≠Eθ(x)

q

x̃œ{0,1}D e≠Eθ(x̃)

where the function E◊(x) is known as the energy function, given by

E◊(x) = ≠
Dÿ

i=1

aixi ≠
Dÿ

i=1

Dÿ

j=1

wijxixj

4.7 restricted boltzmann machines 73

Figure 4.9: The RBM architecture with the visible (v) and hidden (h) layers.

and the parameter ◊ = {a, W} corresponds to the biases ai of each unit xi

and the symmetric weights wij connecting units xi and xj . The normalizing
constant of the distribution

q

x̃ e≠Eθ(x̃) is known as the partition function and
is intractable in general as it requires to sum an exponential number of terms.

Boltzmann machines can be used as latent variable models in which case the
global configuration x is divided into a set of latent variables h, which are known
as hidden units and a set of observed variables v, which are known as visible units

(see Figure 4.8). Accordingly, the probability over the visible units v is obtained
by marginalization:

P◊(v) =
ÿ

h̃

P◊(v, h̃)

=
ÿ

h̃

e≠Eθ(v,h̃)

q

ṽ,h̃ e≠Eθ(ṽ,h̃)

where the energy function is the same as above with x = v, h. Training Boltz-
mann machines with gradient descent is intractable in general as it requires
taking samples from the distribution P◊. The original paper introducting Boltz-
mann machines relies on simulated annealing (Kirkpatrick et al., 1983; Ackley
et al., 1985).

4.7 Restricted Boltzmann machines

RBMs (Smolensky, 1986) are Boltzmann machines where visible units (resp. hid-
den units) have no connections between themselves. The structure of an RBM

forms an undirected bipartite graph and is given in Figure 4.9. The probability
distribution associated with an RBM is:

P◊(v) =
ÿ

h̃

e≠Eθ(v,h̃)

q

ṽ,h̃ e≠Eθ(ṽ,h̃)
.

where the energy function E◊(v, h) is given by:

74 artificial neural networks

E◊(v, h) = ≠
ÿ

i

aivi ≠
ÿ

j

bjhj ≠
ÿ

i,j

wijvihj ,

The parameter ◊ = {a, b, W} regroups the biases ai on visible units vi, the
biases on hidden units hj and the connection weights wij between units vi and
hj . Although RBMs seem less general than Boltzmann machines, they are in fact
universal approximators (Le Roux and Bengio, 2008), i.e. they can approximate
any distribution to arbitrary accuracy, provided there are enough hidden units.

The bipartite structure of the RBM has the advantage of making the conditional
probabilities P (h|v) and P (v|h) tractable. The computation is done using a
probabilistic variant of the usual neural network propagation rule:

P (v|h) =
Ÿ

i

P (vi|h) and P (vi = 1|h) = sigm

Q

aaj +
ÿ

j

hjwij

R

b ,

P (h|v) =
Ÿ

j

P (hj |v) and P (hj = 1|v) = sigm

A

bj +
ÿ

i

viwij

B

,

where sigm(x) = 1/(1 + exp(≠x)) is the logistic activation function.
The above energy function leads to a distribution over binary units and there-

fore is not suitable for continuous valued inputs. Nevertheless, the energy func-
tion can be changed by including a quadratic term on the visible units to define
the Gaussian-Bernoulli RBM (Krizhevsky and Hinton, 2009):

E(v, h) =
ÿ

i

(vi ≠ ai)2

2‡2
i

≠
ÿ

j

bjhj ≠
ÿ

i,j

wij
vi

‡i
hj ,

where ‡i represents the variance of the input variable vi. Using this energy
function, the conditional probability P (h|v) is mostly unchanged, but P (v|h) is
given by a multivariate Gaussian of mean ai + ‡i

q

j wijhj and diagonal covari-
ance matrix:

P (vi = z|h) = 1

‡i

Ô
2fi

· e
≠

1

z ≠ ai ≠ ‡i
q

j wijhj

22

2‡2
i ,

P (hj = 1|v) = ‡

A

bj +
ÿ

i

vi

‡i
wij

B

.

By construction, RBMs learn distributed representation and although sparsity
is not explicitly enforced, in practice, RBMs also tend to learn sparse represen-
tation (Krizhevsky and Hinton, 2009). To better understand the nature of the
distributed representation, Figure 4.10 shows the relations between the modes
of a Gaussian Bernoulli RBM in the case where there are only two input dimen-
sions.

4.8 training rbms with contrastive divergence 75

Figure 4.10: Relation between the modes of a Gaussian-Bernoulli RBM with two visible
units and two hidden units. The bias a on the visible units gives the position of the
mode for which all hidden units are set to 0. Each row Wi of the weight matrix W can
then contribute an additive term to the mean of the Gaussian distribution if hi is set
to 1. The points ◊ correspond to samples from each mode of the distribution.

4.8 Training RBMs with Contrastive Divergence

In the spirit of gradient descent, let us derive the partial derivatives of the log-
likelihood for a general RBMs:

ˆ log P (v)

ˆwij
= Eh≥Pθ(h|v)

C

ˆE(v, h)

ˆwij

D

≠ Ev,h≥Pθ(v,h)

C

ˆE(v, h)

ˆwij

D

= EPdata

C

ˆE(v, h)

ˆwij

D

≠ EPmodel

C

ˆE(v, h)

ˆwij

D

The first term corresponds to the expectation of ˆE(v,h)
ˆwij

when the visible units
are set to the input vector v and the hidden variables are sampled according
to the conditional distribution P◊(h|v). The second term is the expectation of
ˆE(v,h)

ˆwij
when v and h are sampled according to the joint distribution of the RBM

P◊(v, h) and is intractable in general.
It can however be approximated with Gibbs sampling: starting from any con-

figuration (v(0), h(0)), sample h(i+1) according to p◊(h|v(i)) and v(i+1) according
to p◊(v|h(i+1)). In the limit of infinitely many iterations, the sample (v(n), h(n))

is guaranteed to converge to the target distribution P◊(v, h). In practice, it is pos-

76 artificial neural networks

sible to run Gibbs sampling for only one step by starting the Markov chain with a
sample from the training dataset and assuming that the model is not too far from
the target distribution. This is the idea behind the Contrastive-Divergence (CD)
learning algorithm (Hinton, 2002; Carreira-Perpiñán and Hinton, 2005; Hinton,
2010). Although CD does not maximize the exact log-likelihood, experimental
results show that gradient updates almost always improve the likelihood of the
model (Hinton, 2002). Moreover, the improvements to the likelihood tend to
zero as the length of the chain increases (Bengio and Delalleau, 2009), an argu-
ment which supports running the chain for a few steps only3. Note that training
RBMs with CD is close to the training of auto-encoders in the sense that training
auto-encoders with back-propagation corresponds to RBM training where only
the biggest term of an expansion of the likelihood is kept (Bengio and Delalleau,
2009).

3 CD-k refers to the algorithm where k steps of Gibbs sampling are used instead of one. As k

gets bigger, the CD-k algorithm gets closer to the true maximum likelihood.

4.8 training rbms with contrastive divergence 77

Summary

• An artificial neuron computes a dot product of the input with a weight
vector which it maps through an activation function.

• Feed forward neural networks are neural networks which do not have cycles
in their connections.

• Multi-layer neural networks are organized in layers of neurons and cor-
respond to a matrix-vector multiplication mapped through an activation
function.

• The back-propagation algorithm is an efficient way to implement gradient
descent when training feed-forward neural networks.

• Auto-encoders are multi-layer neural networks which learn new represen-
tations by minimizing the reconstruction error.

• Boltzmann machines are a form of probabilistic neural network which de-
fines a distribution in the input space with the help of latent variables.

• RBMs are universal approximators despite having less connections than
general Boltzmann machines.

• RBMs can be trained efficiently with the CD algorithm.

This presentation of neural networks is by no means exhaustive but is centered
on models used in the context of deep neural networks which are studied in the
next chapter.

5
D E E P N E U R A L N E T WO R K S

The models presented in the previous chapter have been applied successfully in
many settings, however their application to large scale problems often leads to
generalization and computational issues. To deal with these issues, deep learning
considers architectures with many layers which scale more gracefully as problems
become more complex1.

In this section, we start by a definition of deep architectures and compare
them with shallow architectures. We present supervised methods for deep learn-
ing, namely simple deep feed-forward networks and convolutional networks and
then explain how deep learning can benefit from a layer-wise approach where
layers are learned one at a time from the bottom up in an unsupervised fash-
ion. Accordingly, we present stacked RBMs and stacked auto-encoders which
are the most successful approaches to layer-wise deep learning. We then review
recent works which may improve the performance of these models: variations
of stacked RBMs and auto-encoders, better ways to estimate the log-likelihood
and richer models. Finally, we show applications where deep learning has led to
breakthroughs and discuss the possible limitations of the deep learning approach.

5.1 Shallow v.s. deep architectures

Deep architectures are designed by opposition with shallow architectures which
have only one layer of hidden variables. In the supervised setting, this hidden
layer is typically followed by a linear layer to produce the output (Bengio and
LeCun, 2007). Many shallow architectures such as Gaussian mixtures, RBMs and
neural networks with one non-linear hidden layer are universal approximators,
thus they can represent any function in theory. However, there is an important
restriction, namely they can only approximate any function given a sufficient

number of hidden variables. In practice this assumption becomes unrealistic with
highly varying functions as the number of parameters needed can scale exponen-
tially in terms of the input dimension (Bengio et al., 2006; Bengio and LeCun,
2007; Bengio et al., 2007), a typical example of the curse of dimensionality. By
contrast, deep architectures which allow for more layers, can lead to much more

1 See (Bengio et al., 2012; Bengio, 2013) for recent reviews on deep learning.

79

80 deep neural networks

efficient representations while still being universal approximators (Sutskever and
Hinton, 2008). For example, the parity function in D dimensions requires O(2D)

parameters to be represented by a Gaussian Support Vector Machine (SVM) (Ben-
gio et al., 2006), O(D2) parameters for a neural network with one hidden layer
and O(D) parameters for a network with O(log2 D) layers (Bengio et al., 2007).
Because they may require less parameters, deep architectures have the potential
to both improve generalization and reduce computational costs.

In practice, deep architectures seem to learn very interesting representations
which can be invariant to several transformations of the input such as transla-
tions, and rotations (Goodfellow et al., 2009). These representations are almost
always distributed2 (which allows for non-local generalization, see Bengio and
LeCun, 2007; Bengio, 2007), and sparse (either explicitly with a penalization
term or implicitly when the hidden variables are binary). Furthermore, deep ar-
chitecture are able to learn hierarchical representations (Lee et al., 2009a) which
have remarkable similarities with the areas V1 and V2 (Lee et al., 2007) of the
primate’s visual cortex.

5.2 Deep feed-forward networks

Until recently, training huge traditional feed-forward networks with back-propa-
gation was thought to be very difficult (Bengio and Glorot, 2010). Nonetheless,
Ciresan et al. (2010) showed that such networks can be trained to achieve state
of the art performance on the Mnist handwritten digit classification dataset.
Their models use between 1.34 and 12.11 million parameters which in principle
would lead to poor generalization and intractably high computational cost. In
order to tackle the issue of generalization, Ciresan et al. generate new examples
by deforming the original dataset. The transformations combine rotation, scal-
ing, horizontal shearing and an elastic model of deformation particularly suited
to handwritten data. This method allows the generation of new samples in real-
time during training thus solving the over-fitting issue with large amounts of
data. As for the computational issue, it is addressed by running the code on
a Graphics Processing Unit (GPU) which speeds up the elastic model of defor-
mation by a factor of 10 and the back-propagation algorithm by a factor of 40.
Although this method achieves remarkable performance using a very specific
model of deformations, generalization to other settings is problematic. Addition-
ally, the Mnist dataset is concerned with the classification of digits from 0 to
9 which is arguably not very difficult, thus the computational cost may prevent
the approach from scaling to more complicated problems.

Training deep feed-forward neural networks with the traditional back-propagation
may yet be possible by using a different non-linearity which saturates less often

2 A model which does not have a distributed representation cannot combine low level features to
construct higher level features. Therefore, there does not seem to be any point in having deep
architectures without distributed representations.

5.3 convolutional networks 81

Figure 5.1: Convolutional and pooling layers of a convolutional network. New layers can
be added by considering each pooling plane as the input of a new convolutional network.

and by using a different initialization of the weights (Bengio and Glorot, 2010).
Additionally, the issue of generalization may be addressed by dropping out half
of the hidden units randomly at each step of the training procedure (Hinton
et al., 2012). Using dropout seems to prevent the co-adaptation of neurons since
each neuron must carry enough information by itself to be relevant even when
half of the other neurons are absent. At test time, all the weights of the networks
are halved to account for the fact that neurons are twice as likely to be active. In
the classification setting where the objective is to learn p(y|x), the model then
gives the geometric mean of 2N distributions corresponding to the 2N possible
models where different hidden units have been dropped. In practice, dropout
greatly improves performance in settings such as speech and object recognition
(Hinton et al., 2012).

5.3 Convolutional networks

Convolutional networks (Le Cun et al., 1990; LeCun et al., 1998a) are deep neural
networks, particularly adapted to vision tasks, which improve generalization and
decrease computational costs by reducing the number of parameters. In practice,
the number of parameters is reduced by constraining many weights to share the
same values (Rumelhart et al., 1986).

The model has a succession C(1), P(1), C(2)P(2), . . . , C(M)P(M) of convolu-
tional (C) layers and pooling (P) layers, inspired by the simple/complex cell
organization of the visual cortex (Fukushima, 1980). The connections are feed-

82 deep neural networks

forward such that all the inputs of a convolutional layer are in the preceding
pooling layer, and all the inputs of a pooling layer are in the preceding convolu-
tional layer. Each convolutional layer C(m) is composed of several feature planes
c
(m)
1 , c

(m)
2 , . . . , c

(m)
K which compute convolutions with the input x and a set of

small features f
(m)
1 , f

(m)
2 , . . . , f

(m)
K i.e. computing c

(m)
k = x ú f

(m)
k . See figure 5.1

for a visual representation of convolutional layers.
Each pooling layer P(m) corresponds to an averaging/sub-sampling operation

of the convolutional layer C(m) where all weights are shared, event within a
single neuron. A typical pooling operation reduces an image size by a factor of 2
along all directions by taking the averages of regions of 4 ◊ 4 pixels which do not
overlap. Each pooling plane can then be used as input for a new convolutional
layer. See figure 5.1 for a visual representation of pooling layers.

Convolutional networks can be applied in any setting where the input is ex-
pected to be invariant by translation. For instance, convolutional networks have
been very successful on the classification of handwritten digits (LeCun, 1989;
Le Cun et al., 1990), object recognition (Jarrett et al., 2009), pedestrian detec-
tion (Kavukcuoglu et al., 2010b), speech and time series (LeCun and Bengio,
1995) and Natural Language Processing (Collobert and Weston, 2008). In addi-
tion, due to the reduced number of parameters, the optimization takes place in
a search space of smaller dimension which is expected to speed up the learning
procedure.

5.4 Layer-wise learning of deep representations

Although the previous two sections show how to directly apply deep learning
to supervised problems, there may be an even more efficient way to train deep
architectures by using unsupervised representation learning to learn deep rep-

resentations. Once a deep representation has been learned, it may be used to
solve the final task easily. An important insight for training deep architectures
consists in the potentially recursive power of representation learning. Namely,
suppose that an algorithm is capable of learning a better representation h(1) for
some data x. In principle, the same algorithm may be used to learn an even
better representation h(2) from h(1), and so on for many layers. This is the basis
of layer-wise deep learning: iteratively train a better representation h(k+1) given
the previous representation h(k) using an unsupervised algorithm.

Because representation learning and deep learning both have benefits w.r.t
generalization3, learning deep representations is an appealing approach. How-
ever layer-wise learning can lead to further improvements. For K layers and D

neurons per layer, layer-wise learning transforms an optimization problem over
K ◊ D parameters to K subproblems over D parameters. This has two impli-

3 These benefits come from the basis of representation learning on unsupervised learning (see
Section 2.7) and the efficiency of deep learning in terms of the number of parameters (see the
beginning of Chapter 5)

5.5 stacked rbms and deep belief networks 83

Figure 5.2: Illustration of the stacked RBMs training scheme.

cations: first, from an optimization perspective, optimization in dimension D is
much more efficient and may lead to better results than in dimension K ◊ D;
second, w.r.t. generalization, the smaller number of parameters makes each layer
less prone to over-fitting which leads to better generalization overall. Finally, the
representations obtained with a layer-wise learning procedure can be used as a
form of unsupervised pre-training to initialize a supervised model and improve
generalization (Erhan et al., 2009; Larochelle et al., 2009).

5.5 Stacked RBMs and deep belief networks

A first way to learn deep representations with a layer-wise approach is to use
stacked RBMs (Hinton et al., 2006; Bengio et al., 2007). The layer-wise training
procedure of stacked RBMs is given in Figure 5.2: Let a first RBM be trained
on the input distribution PD(x). This RBM then provides a way to compute
the hidden representations h(1) using the conditional distribution P (h(1)|x). A
second RBM can then be trained on the input distribution as represented by the
latent variables Q(h(1)) =

q

x P (h(1)|x)PD(x).
Once several layers have been trained, it is possible to consider stacked RBMs

as a deep belief network. In this scheme, all RBMs except for the top one are seen
as directed belief networks transmitting information downwards with the oper-
ation P (h(k)|h(k+1)). Samples can be generated from this model by sampling
from the top RBM, with e.g. Gibbs sampling, and sampling sequentially with
P (h(k)|h(k+1)) the state of layer h(k) given the state of the layer above h(k+1).

In the supervised setting, a deep belief network can be used to initialize a
deep feed-forward network. In practice a new randomly initialized layer is added
on top of the existing RBMs, linking the topmost layer to the target variable.
All the layers can then be fine-tuned with back-propagation to maximize the
supervised objective. In theory, tuning all the parameters at once may result
in over-fitting but in practice the layer-wise unsupervised pre-training has a
regularizing effect which prevents from falling into bad minima. Unsupervised

84 deep neural networks

pre-training with stacked RBMs can be seen as providing a good initialization
for the supervised fine-tuning, placing the optimization procedure in a basin of
attraction which has good generalization properties (Erhan et al., 2009). Deep
belief networks have been shown to be state-of-the-art in several settings such as
handwritten digit recognition (Hinton et al., 2006), object recognition (Nair and
Hinton, 2009), phone recognition (rahman Mohamed et al., 2011), and modeling
human motion (Taylor et al., 2007; Taylor and Hinton, 2009). If the input is
known to be invariant with respect to translation, deep belief networks can be
adapted to work with tied weights to form a convolutional deep belief network
which is then even more efficient (Lee et al., 2009a; Krizhevsky, 2010; Lee et al.,
2009b).

Formally, the layer-wise training procedure of stacked RBMs consists in the
maximization of a variational lower bound on the probability of a deep belief
network. Namely, let us rewrite the log-likelihood of a deep belief network asso-
ciated with a probability P . For any distribution Q(h|x), we have:

log P (x) = dKL(Q(h|x)||P (h|x)) + HQ(h|x) +
ÿ

h

Q(h|x)(log P (x|h) + log P (h))

Æ HQ(h|x) +
ÿ

h

Q(h|x)(log P (x|h) + log P (h))

Let us denote by R1(x, h) the probability of a single RBM and suppose for now
that we have a deep belief network composed of this single layer, i.e. P (x) =
q

h R1(x, h). The above lower bound being defined for any Q(h|x), it holds for
Q(h|x) = R1(h|x). Using the fact that P (x|h) = R1(x|h), the variational lower
bound can be rewritten as:

HR1(h|x) +
ÿ

h

R1(h|x)(log R1(x|h) + log R1(h))

Let us now show that adding a layer hÕ can only improve performance. First we
construct a new RBM R2 consisting of the RBM R1 upside down, i.e. R2(hÕ, h) =

R1(x, h). By construction R2(h) is equal to R1(h) which allows us to rewrite
the bound as

HR1(h|x) +
ÿ

h

R1(h|x)(log R1(x|h) + log R2(h))

If a deep belief network is composed of a single RBM R1 the bound is tight since
P (h|x) = R1(h|x) and therefore dKL(R1(h|x)||P (h|x)) = 0. When we replace
R1(h) by R2(h), using the fact that R2(hÕ, h) = R1(x, h) to create a deep belief
network, we are then sure that the bound is tight as well:

P (x) =
ÿ

h

R1(x|h)
ÿ

hÕ

R2(h, hÕ)

5.6 stacked auto-encoders and deep auto-encoders 85

!"#$%&' ()*+(&'

!"#$%&'(!&)#*+"&,-

Figure 5.3: Illustration of the stacked auto-encoder training scheme.

The bound can then be increased by maximizing
q

h R2(h)R1(h|x) with respect
to the parameters of R2 while never falling below the point at which the bound
is tight.

Despite their empirical performance, the maximization of the above varia-
tional lower bound in deep belief networks poses several questions. First, the
maximization of the lower bound could well be stuck at a point much lower than
the true log-likelihood and therefore lead to an unsatisfactory solution. In ad-
dition, the proof of log-likelihood improvement is based on the initialization of
a layer to an upside down version of the previous layer, a trick which is never
used in practice and is likely to have unfortunate consequences when considering
asymmetric models such as Gaussian-Bernoulli RBMs. Furthermore, the proof
does not hold for more than two layers since the inference distribution for the
deep model is unknown. Although a third layer can be guaranteed to improve
the log-likelihood of P (h) w.r.t. the target distribution

q

x P (h|x)PD(x), this
only guarantees an increase of the variational lower bound of P (x), not an in-
crease of the likelihood of P (x). Finally, the method does not explicitly define
what criterion for learning the first layer of a deep belief network. In practice,
the first layer is trained to maximize the likelihood of a single RBM, hoping to
set bound at the highest possible value before the next layer is trained, but this
does not maximize the log-likelihood of the final deep belief network, nor even
the variational lower bound w.r.t the parameters of the first RBM when the pa-
rameters of the second RBM have been trained. Because of all these factors, we
expect that as more layers are added, the optimization of the variational lower
bound may become less effective to optimize the log-likelihood of a deep belief
network.

5.6 stacked auto-encoders and deep auto-encoders

Another way to learn deep representations is to use stacked auto-encoders Bengio
(2007) to learn deep representations. First, an auto-encoder is trained to recon-

86 deep neural networks

struct its input x with one hidden layer h(1), thus learning an encoder and a
decoder performing the operation x

encæ h(1) decæ x. A new auto-encoder can then
be used to learn a representation h(k+1) from a representation h(k). Figure 5.3
gives a visual illustration of this training procedure.

Stacking auto-encoders can be seen as an alternative to stacking RBMs for
pre-training a deep feed-forward neural network, an approach which has proved
very successful in applications such as handwritten digit recognition and audio
classification (Vincent et al., 2008, 2010; Larochelle et al., 2007, 2009). However,
stacking auto-encoders has a troubling lack of theoretical justification4. Not only
is there no formal guarantee that stacking auto-encoders improves performance
compared to a single auto-encoder, but worse the theoretical encoder/decoder
perspective leads to the (erroneous) conclusion that adding layers might decrease
performance. As we consider adding a new layer h(1) æ h(2) æ h(1) to an
auto-encoder x

encæ h(1) decæ x, the resulting deep auto-encoder corresponds the
operation x æ h(1) æ h(2) æ h(1) æ x, which is expected to introduce addi-
tional errors on the representation h(1). A better understanding of stacked auto-
encoders may be found under the perspective of learning deep generative models.
Since training auto-encoders is a close approximation to the RBM training pro-
cedure (Bengio and Delalleau, 2009), it may be interpreted as approximating a
variational lower bound maximization for the log-likelihood of a deep generative
model.

In practice, stacking auto-encoders can act as a good pre-training phase for
a deep feed-forward neural network, improving supervised performance almost
as effectively as stacked RBMs (Larochelle et al., 2007, 2009). Furthermore, the
encoder/decoder approach is perfectly justified to increase performance in a deep
auto-encoder which has already been pre-trained to perform the operation:

x æ h(1) æ · · · æ h(K) æ · · · æ h(1) æ x

When the pre-training step has not fully maximized performance, a global fine-
tuning of the reconstruction error with back-propagation may improve the qual-
ity of hidden representations.

The combination of stacked RBMs having a more solid theoretical justifica-
tion than stacked auto-encoders for pre-training, and deep auto-encoders having
a good justification for fine-tuning deep representations, has led many practi-
tioners to mix both approaches in their applications: using stacked RBMs for
pre-training and the deep auto-encoder approach for fine-tuning. Note that auto-
encoders are compatible with deep belief networks since they can be seen under
a probabilistic perspective: learning a conditional probability P (x|h) in the
decoder and an inference distribution Q(h|x) in the encoder5. This approach
was shown to be very successful in applications such as dimensionality reduc-

4 The situation on the justification of auto-encoders is evolving rapidly, see (Alain and Bengio,
2012; Bengio et al., 2013) for recent works on this subject.

5 For this to work, both networks should of course use the same activation function.

5.7 variations on rbms and stacked rbms 87

tion (Hinton and Salakhutdinov., 2006), semantic hashing (Salakhutdinov and
Hinton, 2009b), binary coding of speech spectrograms (Deng et al., 2010), and
multimodal learning (Ngiam et al., 2011).

5.7 Variations on RBMs and stacked RBMs

After the success of deep architectures based on stacked RBMs, many studies
have tried to improve RBMs by allowing continuous inputs and continuous hid-
den units, but also by designing new training procedures.

As the traditional RBM is only capable of dealing with binary values, several
approaches propose ways to modify the energy function to obtain continuous
valued units. To deal with continuous inputs, the most widely adopted approach
is to use Gaussian Bernoulli RBMs (Bengio et al., 2007; Krizhevsky, 2010) where
the Gaussian units have an activation centered on the pre-activation. Other
possible choices include exponential and truncated exponential units (Bengio
et al., 2007). RBMs can also be extended to allow for continuous hidden units
for instance with rectified linear units (Nair and Hinton, 2010), rectifier networks
(Glorot et al., 2010) and continuous sigmoidal belief networks (Frey, 1996; Frey
and Hinton, 1999; Adams et al., 2010). Spike and slab RBMs (Courville et al.,
2011a,b; Goodfellow et al., 2012) are an interesting approach which consists in
decomposing the activations of hidden units into a binary spike component which
determines whether a hidden unit should activate at all, and a slab component
which corresponds to the amplitude of the activation. Spike and slab RBMs have
proved very effective to discover interesting representations for images.

Other studies have examined ways to improve the training procedure for RBMs.
Maximum likelihood is intractable in general because it requires samples from the
model which are not easily obtained. However, approximations such as CD have
shown to be quite effective in practice. The first approach to improve the RBM
training procedure compared to CD is to generate samples which are distributed
more closely to the model distribution. This can be done with persistent con-

trastive divergence (updating several Markov chains for the model distribution
at each step as in Tieleman, 2008; Tieleman and Hinton, 2009; Breuleux et al.,
2011), tempered transitions (running a single chain at increasing and decreasing
temperatures, as in Salakhutdinov, 2009) or parallel tempering (running several
chains at different temperatures, as in Desjardins et al., 2010). Another approach
is to use inductive methods (Marlin et al., 2010) such as pseudo-likelihood, ratio-
matching and score-matching (Hyvärinen, 2005; Swersky et al., 2011), which
try to avoid the issues of maximum likelihood when dealing with intractable
partition functions.

Although RBMs are typically used to estimate a density in the unsupervised
setting, RBMs can also reconstruct incomplete inputs. This possibility can be
used in the supervised setting with discriminative RBMs (Larochelle and Bengio,
2008; Schmah et al., 2008; Larochelle et al., 2012). By using the concatenation of

88 deep neural networks

an input x and a label y as the visible layer of a RBM, the conditional probability
p(y|x) becomes tractable and can therefore be used to take samples or find the
most probable value of the label y given x.

5.8 Tractable estimation of the log-likelihood

Due to their intractable partition function, the evaluation of RBMs and deep
belief networks according to the likelihood is a difficult problem.

Recent studies have shown that the partition function of RBMs can be esti-
mated efficiently using Annealed Importance Sampling (AIS) (Neal, 1998; Salakhut-
dinov, 2008; Salakhutdinov and Murray, 2008), a variant of importance sampling
where a Markov chain maintains samples of an RBM at different temperatures.
Another possibility is to track the partition function during learning when the
training procedure allows it, for instance in the case of parallel tempering (Des-
jardins et al., 2011).

However, estimating the log-likelihood for Deep Belief Networks poses a much
more serious problem as every layer adds a new sum over an exponential number
of states. A possibility is to consider the variational lower bound used to train
deep belief networks as a proxy for the likelihood of the deep model (Salakhutdi-
nov and Murray, 2008; Salakhutdinov, 2008). This approach has the advantage
of being consistent with the training procedure, but it is exposed to the same
issues. Namely, the assumption that the lower bound is close to the true likeli-
hood does not seem justified in theory, especially for more than two layers. If
it is true that using a lower bound has the advantage that it does not lead to
over-estimating results, it cannot be used in most practical applications which
involve comparing several models: since the lower bound under-estimates the
true likelihood by an unknown amount, a model with the highest variational
lower bound is not necessarily the one with the highest log-likelihood.

A more promising approach could be to employ an MCMC method to take
reasonably well distributed samples from the model as in (Murray and Salakhut-
dinov, 2009). However, it is difficult to know whether the approach truly scales to
larger models as it would require comparing the estimator to the true likelihood
which, unfortunately, is intractable for larger models.

5.9 Variations on auto-encoders

Many studies are dedicated to improving auto-encoders. The first improvement
which allowed auto-encoders to achieve performance similar to that of stacked
RBMs was the introduction of a denoising criterion. Namely, instead of trying
to reconstruct its input, the denoising auto-encoder (Vincent et al., 2008) is
trained to recover the original input x given a corrupted version x̃ where some
percentage of bits have been set to 0. A first advantage is that the auto-encoder
cannot learn the identity and does not need to be combined with other forms

5.10 richer models for layers 89

of regularization such as using a hidden layer smaller than the input, sparsity
or tied weights. Additionally the approach can be justified under the manifold
hypothesis in which the training points x are supposed to lie on a small dimen-
sional sub-manifold of the input space. As it learns to map close variations x̃

to the original point x, a denoising auto-encoder tries to find a representation h

which ignores directions of variation orthogonal to the manifold. Variations in
directions which lie inside the manifold must still be taken into account to min-
imize the reconstruction error. Note that this capacity to accurately represent
points inside the manifold while being invariant to variations orthogonal to the
manifold is exactly what we would expect from a good coordinate system within
the manifold. Interestingly, the denoising auto-encoder training procedure is
closely linked with score-matching (Vincent, 2011; Swersky et al., 2011).

The same principle can be applied with contractive auto-encoders (Rifai et al.,

2011): using the Frobenius norm
q

i,j

1
ˆhj(x)

ˆxi

22
of the Jacobian Jh, as a penalty

term during optimization. While this penalty term tries to make the representa-
tion h less sensitive to variations in all directions around the training examples,
by combining it with a criterion such as the reconstruction error, h still has to
be sensitive to directions which lie within the data manifold because it needs
to give a different representation to different training examples. Contractive
auto-encoders have been shown to improve performance on several tasks such as
handwritten digit classification and object recognition (Rifai et al., 2011). Addi-
tionally, the invariance of the hidden representation w.r.t. directions which are
orthogonal to the data manifold allow the construction of a Markov chain which
moves along the data manifold with a first order approximation, essentially tak-
ing samples from the manifold (Rifai et al., 2012) by moving a representation h

to a representation h + ‘JJT where ‘ is a small isotropic random variation.

5.10 Richer models for layers

Deep learning approaches might also benefit from using richer models for each
layer.

A first possibility is to use higher order Boltzmann machines (Sejnowski, 1986)
where the energy function includes interactions terms between more than two
units. For instance, the energy function of a third order Boltzmann machines
includes terms

q

i,j,k tijkxixjxk which account for interactions between three
units xi, xj and xk. The weight matrix is then replaced by a tensor which
makes computational costs very prohibitive in the general case. However, it
is possible to allow for some higher order interaction while keeping the model
tractable, for example, using Gated RBMs (where hidden units mediate the
interactions between visible units as in Memisevic and Hinton, 2007; Memisevic,
2008) or factored RBMs (where three-way interactions are approximated by a
sum of factors

q

f (
q

i xiBif)(
q

j xjCif)(
q

k xkDif) as in Ranzato et al., 2010;
Memisevic and Hinton, 2010).

90 deep neural networks

Another interesting approach is to consider deep Boltzmann machines (Salakhut-
dinov and Hinton, 2009a). Just like deep belief networks, deep Boltzmann ma-
chines can be pre-trained with stacked RBMs (Salakhutdinov and Hinton, 2009a,
2012), but unlike deep belief networks, these RBMs are then combined to form
an undirected graphical model. After pre-training, the network is fine-tuned to
maximize the likelihood of the full model using a variational mean field approach
to perform inference, and running persistent Markov chains to sample from the
model. Even if it relies on several approximations, this global fine-tuning step
tries to maximize the true likelihood of the deep model, contrary to deep belief
networks which only maximize a variational lower bound. Deep Boltzmann ma-
chines have shown to be very efficient for object recognition (Salakhutdinov and
Hinton, 2009a) and for multimodal deep learning (Srivastava and Salakhutdinov,
2012).

Several approaches propose to improve the training procedure of deep Boltz-
mann machines for instance with a different pre-training procedure (Cho et al.,
2012; Salakhutdinov and Hinton, 2012) or avoiding pre-training altogether and
using a novel way to train all layers jointly (Goodfellow et al., 2013).

5.11 Concrete breakthroughs

Since their introduction in 2006, deep learning approaches have been shown to
outperform state-of-the-art methods in several settings. We now present several
breakthroughs in ML which can be attributed to the deep learning approach.

The origin of deep learning can be traced back to the University of Toronto
Deep Learning Group which, in 2006, was able to reduce the error rate by 11%
compared to SVMs on the Mnist handwritten digit classification dataset using
Deep Belief Networks. The RBMs on which the approach was based were found
to be very efficient during the Netflix Prize6. Although the Korbell team which
won the 2007 Netflix progress prize used an ensemble method based on 107
models (Bell et al., 2007), only the two best ones: RBMs and Singular Value
Decomposition were put into production (they were still in use in 2012). The re-
maining 105 models only accounted for a 3% reduction in the error rate. In 2009,
The Swiss AI Lab IDSIA won the ICDAR Arabic Connected Handwriting Com-
petition and the ICDAR Handwritten Farsi/Arabic Character Recognition Com-
petition and the ICDAR French Connected Handwriting Competition (Graves
and Schmidhuber, 2008; Graves, 2012) with a deep neural network variant. In
2011, The Université de Montreal LISA laboratory and the INSA de Rouen
LITIS laboratory showed the potential of unsupervised representation learning
in the context of transfer learning by winning the final phase of the Unsuper-
vised and Transfer Learning Challenge with contractive auto-encoder and spike
& slab RBMs, outperforming the second place by 7% on average (Mesnil et al.,

6 The corresponding Netflix blog-post can be found at http://techblog.netflix.com/2012/04/

netflix-recommendations-beyond-5-stars.html

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

5.12 principles of deep learning under question ? 91

2012). Also, the Swiss AI Lab IDSIA was able to win both the ICDAR 2011 Chi-
nese handwriting recognition competition (Meier et al., 2011) and the IJCNN
2011 on-site Traffic Sign Recognition Competition with deep neural networks,
outperforming human beings in the process (Ciresan et al., 2012b). In 2012, a
deep learning approach to speech recognition proposed by Microsoft Research
was able to reduce the error rate by 16% compared to traditional Gaussian mix-
ture models (Dahl et al., 2012). Additionally, as part of a collaboration between
Google and the University of Stanford, a single deep neural network trained on
16, 000 cores with 9 layers and 109 connections was able to outperform the state
of the art by 15% (resp. 70%) on the 10, 000 (resp. 20, 000) object categories
from the ImageNet dataset. Furthermore, this experiment showed that it is
possible to obtain robust detectors for a supervised task (face detection) with
only unsupervised training examples (Le et al., 2012), a result which might be
interpreted as a demonstration that an ML algorithm can solve tasks for which
it has not been trained specifically, an important step towards general purpose
AI. The Swiss AI Lab IDSIA also won first place at the ICPR competition on
mitosis detection in breast cancer histological images and the ISBI challenge on
segmentation of neuronal structures (Ciresan et al., 2012a). Finally, the Univer-
sity of Toronto Deep Learning Group was able to win the Merck Drug Discovery
Competition with deep neural networks which randomly drop out hidden units
during learning to improve generalization (Hinton et al., 2012). The approach
required no feature engineering and only minimal preprocessing and showed that
deep neural networks may be applicable in settings which traditionally require
a lot of feature engineering.

5.12 Principles of deep learning under question ?

Despite the impressive achievements given in the preceding section, a lot could be
learned by looking at the limits of deep learning. Accordingly, a few publications
spell out arguments against deep learning and layer-wise learning.

A first question concerns the usefulness of deep architectures compared to shal-
low architectures. In the work of Coates et al. (2011), an analysis of single layer
networks on image classification reveals that the use of deep learning may be a
less important factor than the choice of several orthogonal aspects of the learning
algorithm: whitening, large numbers of features, and dense feature extraction.
In their experiments, Coates et al. show that it is possible to outperform deep
neural networks with Gaussian mixture models. If the use of whitening, large
numbers of features, and dense feature extraction are effectively proven to be
important aspects of a learning algorithm, the conclusion that deep learning is a
less important factor can be misleading. Indeed, the number of features required
by a deep architecture is expected to scale in O(D log D) compared to O(2D)

for a mixture of Gaussian (Bengio and LeCun, 2007). By comparison, the effect
of tuning important parameters of the learning algorithm is not expected to help

92 deep neural networks

scaling to bigger architectures. As a result, using deep architectures can prob-
ably be considered the most important factor in the long run, even if there are
more efficient approaches when the number of hidden features is limited7.

Another question concerns the efficiency of a layer-wise training procedure.
The work of Ciresan et al. (2010) is often taken as a demonstration that layer-
wise learning may be unnecessary and that training with back-propagation can
be efficient enough to train deep neural networks. However as we discussed at
the beginning of this chapter, the approach of Ciresan et al. is based on an
elastic model of deformations for handwritten characters and cannot easily be
generalized to other applications. Thus, this publication cannot be seen as a
demonstration that layer-wise learning is unnecessary. The dropout approach
(Hinton et al., 2012) on the other hand seems to confirm that it is possible to
train deep feed-forward neural networks without pre-training in the general case.
Nonetheless, layer-wise pre-training may still be necessary for larger models as
it is expected to scale more gracefully.

Finally, Theis et al. (2011) discuss in their work the limitations of current deep
learning approaches w.r.t. the maximization of the likelihood. Using a novel
approach to evaluate the likelihood for deep belief networks, they show that
deep belief networks can be outperformed by mixtures of Gaussian, and that
adding layers only marginally improves the likelihood when each layer is trained
thoroughly. Although these negative results may be caused by the limitations of
training deep belief networks with a maximization of a variational lower bound
(a valid concern) they may also be explained by the fact that the experiments
only test models with less than 100 hidden features, a setting in which deep
networks are expected to be at a disadvantage8.

Even if attempts to find limits to the deep learning principles have not been
quite successful, the deep learning methods used in practice still leave a lot of
room for improvement. Accordingly, we now turn to what can be done to improve
the current state of the art.

7 In their study, Coates et al. consider up to 4,000 hidden features and only outperform deep
neural networks by a small margin.

8 As we will show in the following chapters, if the lower layers of a deep architecture do not have
enough hidden variables, there may not be a point in adding more layers.

5.12 principles of deep learning under question ? 93

Summary

• Deep architectures are often capable of representing functions more effi-
ciently and usually benefit from non-local generalization.

• Having less parameters, deep architectures lead to better generalization.

• Using dropout may be a promising way to train deep feed-forward neural
networks in a supervised fashion.

• Convolutional networks and tied weights can be very efficient to deal with
datasets which are invariant by translation.

• Learning deep representations combines the benefits of learning represen-
tations and of deep architectures w.r.t. generalization.

• Layer-wise deep learning has the potential to improve generalization fur-
ther and to reduce training time by training one layer at a time.

• Stacking RBMs and stacking auto-encoders are the most popular algo-
rithms for layer-wise deep learning.

• Stacking RBMs maximizes a variational lower bound of the log-likelihood
of a deep generative model.

• Under the right conditions, maximizing this variational lower bound leads
to a guarantee that adding layers improves the likelihood.

• There is not guarantee however that maximizing the variational lower
bound leads to an optimal solution.

• Stacking auto-encoders seems to perform very well in practice but lacks
theoretical justification.

• A final fine-tuning phase can be used to fine-tune representations either
with unsupervised data (deep auto-encoder) or with supervised data (su-
pervised fine-tuning).

• Stacked RBMs and deep auto-encoders already have many variants which
can improve performance.

• Deep learning methods have resulted in concrete breakthroughs in recent
years, winning several competitions without expert knowledge or feature
engineering.

• Deep learning methods have a remarkable potential to solve supervised
tasks with small amounts of labeled data or with no labeled data at all.

Having presented the general framework of deep learning and recent advances in
the field, we now discuss possible directions of improvement.

6
W H AT C A N W E D O ?

As we have seen, deep learning and more precisely layer-wise deep learning, has
led to many impressive results in several settings. Nevertheless, in this thesis,
we have to consider what could be improved.

Stacked RBMs seem to have the best justification for layer-wise learning so
far. However the maximization of a variational lower bound does not seem to
result in the maximization of the likelihood of a full deep generative model since
i/ the first layer is not trained to maximize the likelihood of the deep model, and
ii/ the guarantee of improvement for the upper layers does not hold for more
than two layers. Nevertheless, the layer-wise training principle has tremendous
advantages in theory which leads us to ask:

Question 1: Is it possible to learn an optimal lower layer before learning
the upper layers ?

If the answer is yes, then there exists a sound criterion for layer-wise training.
In which case we would like to know:

Question 2: If it is possible to learn an optimal lower layer before
learning the upper layers, what is the criterion to maximize at each
step ?

If the answer to question 1 is no, then, any layer-wise method is bound to
encounter issues such as those encountered in the maximization of the variational
lower bound and will probably have some difficulty when scaling to many layers.

An other point concerns the generalization of layer-wise training to mod-
els other than RBMs and deep Boltzmann machines. In the case of stacking
deep auto-encoders, the current theoretical justification seems to be that auto-
encoders learn an approximation of RBMs and that training deep auto-encoders
may therefore maximize an approximation of the variational lower bound1. This

1 There are many theoretical justifications for auto-encoders (manifold hypothesis, relation to
score-matching), however, here we are interested in a theoretical justification for the layer-wise
procedure with many layers. The field is evolving very rapidly on this subject, see (Bengio and
Thibodeau-Laufer, 2013).

95

96 what can we do ?

has led to RBMs and deep Boltzmann machines being the first choices consid-
ered when faced with a deep learning problem. Nonetheless, a final step of
unsupervised fine-tuning with back-propagation is often considered in practical
applications whether the layer-wise method used auto-encoders or stacked RBMs.
This leads us to consider the possibility that auto-encoders are in fact quite good
at learning deep neural networks and to ask what could justify this performance.

Question 3: Is there a justification for layer-wise deep learning which
directly applies to models other than RBMs and deep Boltzmann ma-
chines ?

or more precisely in the case of stacked auto-encoders and fine-tuning:

Question 4: Why does the layer-wise training of stacked auto-encoders
result in deep learning ?

Question 5: How can we justify the unsupervised fine-tuning of prob-
abilistic models with back-propagation ?

Although probabilistic formulations have led to a better understanding of deep
learning, the evaluation of deep generative models should ideally be done w.r.t.
the log-likelihood of the deep model which is intractable.

Question 6: Can we find a tractable performance measure for deep
generative models ?

Measuring performance can be useful at the end of training to assess whether
training is successful, but also during training as part of a model selection proce-
dure. Provided we have a good criterion for training a deep model in a layer-wise
manner, model selection could also be done with a layer-wise criterion in the-
ory. This has the potential to greatly reduce the computational cost currently
incurred when models are only compared after all their layers have been trained
(Bergstra et al., 2011; Bergstra and Bengio, 2012). Additionally, being able to
measure the performance at each level would give an empirical measure of what
is gained each time a layer is added and could be used to decide when to stop
adding layers.

Question 7: Can we evaluate deep architectures in a layer-wise fashion
to perform model selection ?

Question 8: Does this lead to a sound criterion to stop adding layers ?

what can we do ? 97

Finally, training each layer is a difficult optimization problem which usually
involves millions of parameters or more. The impact of metrics and parametriza-
tion on optimization strategies such as gradient descent is well known, thus we
ask:

Question 9: What is the impact of metrics on the optimization of each
layer ?

Incidentally, if there is an impact, we would be very interested in improving the
current optimization methods to reduce computational time. This leads us to
our final question, namely:

Question 10: How can we improve layer optimization by considering
the impact of metrics and parametrization ?

Having asked these questions, we now turn to the contributions which try to
give some answers.

Part III

C O N T R I B U T I O N S

7
P R E S E N TAT I O N O F T H E F I R S T A RT I C L E

Ludovic Arnold, Hélène Paugam-Moisy, and Michèle Sebag. Unsupervised layer-
wise model selection in deep neural networks. In 19th European Conference on

Artificial Intelligence (ECAI 2010), Lisbon Portugal, August 2010. 915–920

7.1 Context

In deep learning, model selection poses a difficult problem because the large
number of parameters per layer is then multiplied by the number of layers, thus
increasing the size of the search space exponentially: an example of the curse of
dimensionality.

When considering generative deep neural networks such as stacked RBMs or
deep belief networks, the probabilistic perspective has the advantage of providing
a comprehensive theoretical background. However the intractability of the like-
lihood which should be used to measure performance compounds the problem.
This problem of model selection and evaluation of performance is in fact much
more crucial than it appears. If we are capable of identifying a good criterion
for evaluation, one such that better models according to this criterion are better
models for a target task, we have found not only a performance measure, but
also arguably a valid training criterion which we should maximize during train-
ing. Hyper-parameter selection can be seen as an integral part of the training
process, aimed at maximizing the training criterion further over a larger search
space which takes the hyper-parameters into account.

Following on this line of reasoning, we naturally come to ask the following
question: If stacked RBMs are trained using a layer-wise criterion, why not eval-
uate them using the same kind of layer-wise criterion ? This is the subject of
this first paper.

7.2 Contributions

Because deep neural networks are trained in a layer-wise fashion, we propose to
evaluate them in a similar way, i.e. layer by layer: train several possible layers
at each step i.e. with various hyper-parameters and choose the best one before

101

102 presentation of the first article

considering training subsequent layers. This strategy, if successful allows the
reduction of the search space from exponential to linear in the number of layers.

To evaluate this approach, we must compare it to the alternative approach
considered intractable: evaluation of each deep model after it has been fully
trained. This involves a very high computational cost which leads us to consider a
more limited scope of study. In this regard, determining the optimal topology, i.e.
choosing the number of layers and number of neurons per layer is an interesting
sub-problem which allows us to test our hypothesis. The layer-wise criterion
we propose for evaluating layers in deep belief networks is the reconstruction
error, a natural criterion for auto-associators. Since deep auto-encoders can
be interpreted under a probabilistic perspective, the reconstruction error must
somehow be meaningful for the evaluation of deep generative models.

Although the results support our hypothesis, the mean field criterion we used
to train RBMs is a close approximation to that of auto-associators which may
limit the generality of the approach. Nevertheless, the study leads to several
interesting results. First, the layer-wise selection of the number of neurons with
the reconstruction error is successful, giving some substance to the claimed po-
tential benefits of the approach. Second, the results show that upper-layers
cannot recover losses resulting from an insufficient number of neurons in the
lower layers. This is consistent with the interpretation of each layer as encoding
information in terms of the explanatory concepts in the layer below, with higher
layers encoding higher order concepts than lower layers. In this analogy, the
understanding of a concept is conditional to the understanding of concepts of
lower order.

Unsupervised Layer-Wise Model Selection in Deep

Neural Networks

Arnold Ludovicú Paugam-Moisy Hélène† Sebag Michèle‡

June 11, 2013

Abstract

Deep Neural Networks (DNN) propose a new and efficient ML archi-
tecture based on the layer-wise building of several representation layers. A
critical issue for DNNs remains model selection, e.g. selecting the number
of neurons in each DNN layer. The hyper-parameter search space exponen-
tially increases with the number of layers, making the popular grid search-
based approach used for finding good hyper-parameter values intractable.
The question investigated in this paper is whether the unsupervised, layer-
wise methodology used to train a DNN can be extended to model selection
as well. The proposed approach, considering an unsupervised criterion,
empirically examines whether model selection is a modular optimization
problem, and can be tackled in a layer-wise manner. Preliminary results
on the MNIST data set suggest the answer is positive. Further, some unex-
pected results regarding the optimal size of layers depending on the training
process, are reported and discussed.

1 INTRODUCTION

The general question of model selection ≠ including the selection of hyper-
parameter values for a Machine Learning (ML) algorithm ≠ remains at the core
of the Statistics and Machine Learning studies (Efron and Tibshirani, 1993).
From a practitioner viewpoint, the best practice relies on variants of the cross-
validation procedure (Dietterich, 1998): one should select the model and hyper-
parameter setting yielding the best performance on average. From a theoreti-
cal viewpoint, although some intrinsic limitations of cross-validation have been
pointed out in the ML literature, these appear to be negligible (Bengio and
Grandvalet, 2004) comparatively to methodological errors (Hastie et al., 2001).
From a computational viewpoint, one generally proceeds by exploring the hyper-
parameter space using a grid search, possibly using racing-based approaches in
order to decrease the overall computational cost (Mnih et al., 2008). Overall,
theoreticians and practitioners would likely join and agree that the fewer hyper-
parameters, the better.

∗Université Paris Sud 11 – CNRS, LIMSI, Ludovic.Arnold@lri.fr
†Université de Lyon, TAO – INRIA Saclay, Helene.Paugam-Moisy@univ-lyon2.fr
‡TAO – INRIA Saclay, CNRS, LRI, Michele.Sebag@lri.fr

1

103

A new ML field, Deep Networks (Bengio et al., 2007; Hinton et al., 2006)
however seems to go against such a parameter-light trend. The main claim be-
hind Deep Networks can be schematized as: several levels of representations,
stacked on top of each other, are required to represent complex concepts in a
tractable way; a single-level representation, though in principle able to do the
job, will not make it in practice. While the greater expressiveness and compact-
ness obtained through the composition of representations had been known for
decades, deep architectures were discarded as they could not be trained in an ef-
ficient way. The training bottleneck of deep architectures was overcome through
an original, sequential approach (Bengio et al., 2007; Hinton et al., 2006) aimed
at the greedy optimization of a seemingly irrelevant criterion : while the goal of
a Deep Network is to achieve supervised learning, each layer is pre-trained using
unsupervised learning criteria (more in section 2).

The issue of DNN hyper-parameter selection however remains critical, as the
number of hyper-parameters (e.g. for each layer: number of neurons and learning
rate) linearly increases with the number of layers, exponentially increasing the
cost of a grid search.

This paper investigates whether the “Unsupervised learning first!” principle
at the root of DNNs can be applied to hyper-parameter selection too. Accord-
ingly, an unsupervised criterion based on the Reconstruction Error is proposed.
The underlying question is whether hyper-parameter selection is a modular op-
timization problem, meaning that the optimal overall parameter setting can be
obtained by i/ finding the optimal setting for layer 1; ii/ iteratively finding the
optimal setting for layer i + 1, conditionally to the hyper-parameter values for
layers 1 . . . i.

The experimental validation of the approach for Restricted Boltzmann Ma-
chines (trained with Mean Field Contrastive Divergence (Welling and Hinton,
2002) on the MNIST dataset) suggests a positive answer to the modularity ques-
tion (section 4). Furthermore, some unexpected findings, concerning the optimal
size of the representation w.r.t the number of gradient updates of the training
procedure, are reported and discussed, raising new questions for further study.

2 DEEP NEURAL NETWORKS

For the sake of completeness, this section introduces Deep Neural Networks,
focusing on the Restricted Boltzmann Machine and Auto-Associator approaches.
The interested reader is referred to (Hinton et al., 2006; Ackley et al., 1985;
Larochelle et al., 2009) for a comprehensive presentation.

2.1 Restricted Boltzmann Machine (RBM)

While a Boltzmann Machine is a completely connected network made of a bag of
visible and hidden units, Restricted Boltzmann Machines (RBMs) only involve
connections between visible units on the one hand and hidden units on the other
hand (Fig. 1).

2

104

Figure 1: Left: Architecture of a Boltzmann Machine. Right: A Restricted
Boltzmann Machine.

Let us denote v = v1, . . . , vq (respectively h = h1, . . . , hr) the set of visi-
ble (resp. hidden) units. For notational simplicity, it is assumed that both the
visible and the hidden layers involve a bias unit always set to 1. An RBM is
described from its set of weights W œ IRq◊r, where wij stands for the weight on
the connection between vi and hj . All units are boolean. Each visible unit vi en-
codes the i-th domain attribute, while each hidden unit hj encodes a hypothesis.
Formally, the so-called energy of an RBM state (v, h) is defined as:

Energy(v, h) = ≠h€Wv (1)

An RBM can be interpreted as a constraint satisfaction network, where the
weight wij reflects the correlation between vi and hj (if wij > 0 a lower energy
is obtained for vi = hj everything else being equal). As such, an RBM induces
a joint probability measure on the space of RBM states:

PW(v, h) =
e≠Energy(v,h)

Z
(2)

where Z denotes as usual the normalization factor. Simple calculations show that
visible (resp. hidden) units are independent conditionally to the hidden (resp.
visible) units, and the conditional probabilities can be expressed as follows, where
sgm(t) = 1

1+e−t :

PW(hi|v) = sgm(
ÿ

j

wijvj) 1 Æ i Æ q (3)

PW(vj |h) = sgm(
ÿ

i

wijhi) 1 Æ j Æ r (4)

An RBM thus defines a probabilistic generative model: Considering a uniform
distribution on the visible units, a probability distribution on the hidden units
is derived (Eq. (3)), which enables in turn to derive a probability distribution
on the visible units (Eq. (4)) and this process can be iterated after the so-called
Gibbs sampling (Monte-Carlo Markov Chain), converging toward PW. Let us
consider the probability distribution PD, defined from the empirical data D by

3

105

taking a uniform sample v in D, and sampling h after PW(h|v). Intuitively, the
RBM model best fitting the data is such that PW = PD (a sample v is equally
likely generated after PW or by uniformly sampling D).

Accordingly, an RBM is trained by minimizing the Kullback Leibler diver-
gence KL(PD||PW), or a tractable approximation thereof, the Contrastive Diver-
gence (Hinton., 2002). Contrastive divergence can itself be approximated using
a Mean Field approach (Welling and Hinton, 2002), yielding a deterministic and
faster learning procedure, albeit with higher risk of overfitting.

2.2 Stacked RBMs

After the Deep Network principles (Hinton et al., 2006), stacked RBMs (SRBMs)
are built in a layer-wise manner (Fig. 2). The first layer h is built from the
training set and the visible units v as explained above, and the i-th layer RBM
is built using the same approach, with the hidden units hi≠1 in the i≠1-th layer
being used as the new RBM’s visible layer.

Figure 2: A Deep Architecture: Stacked RBMs

The rationale for iterating the RBM construction is that trained hidden units
hi are not independent; rather, they are independent conditionally to v. A
more refined generative model can thus in principle be defined by capturing
the correlations between the hidden units h, via a second RBM layer. More
generally, the i-th layer in a stacked RBM aims at modelling the correlations
between the hidden units in the previous layer. Letting W1, . . . W¸ denote the
RBM parameters for layers 1 . . . ¸, with h0 = v, comes the equation:

P (v) =
ÿ

h1...h¸

PW1(v|h1)PW2(h1|h2) . . . PW¸
(h¸) (5)

Let fW (respectively gW) denote the forward propagation of an input to the
hidden layer according to PW(h|v) (resp. the backward propagation from the
hidden layer from the input according to PW(v|h)). Considering a ¸-layer RBM

4

106

with weights W1, . . . W¸ (Fig. 2), F¸ and G¸ are respectively defined as the
forward propagation of the input to the ¸-th layer, and the backward propagation
from the ¸-th layer to the input:

F¸ = fW¸
¶ · · · ¶ fW1 G¸ = gW1 ¶ · · · ¶ gW¸

(6)

2.3 Stacked Auto-Associators

Deep Neural Networks can also be built by stacking auto-associators (Larochelle
et al., 2009). An auto-associator is a 1-hidden layer neural network aimed at
reproducing its input; formally, it uses back propagation to minimize the Recon-
struction error defined as

ÿ

xœD

||x ≠ Φ(x)||2

where Φ is the function corresponding to forward propagation through the net-
work.

Stacking Auto-Associators proceeds by setting the i-th DNN layer to the
hidden layer of the Auto-Associator built from the (i ≠ 1)-th DNN layer.

3 UNSUPERVISED MODEL SELECTION

The model selection approach is inspired from the DNN unsupervised layer-wise
methodology. After discussing the position of the problem, this section describes
an unsupervised criterion supporting the model selection task. The presented
approach focuses on finding the optimal number of neurons in each layer of a
stacked RBM. The choice of a SRBM architecture is motivated by their good
empirical results and their strong theoretical background (Hinton et al., 2006;
Larochelle et al., 2009, 2007).

3.1 Position of the problem

The goal is to optimize the size ni of the i-th layer Li conditionally to the size
of the layers 1 . . . i ≠ 1; in this manner, model selection is brought to a sequence
of ¸ scalar optimization problems, as opposed to a single optimization problem
in IN¸.

A first question regards the type of optimization criterion to be used. After
(Bengio et al., 2007), it is better that supervised learning criteria only be con-
sidered at a late stage when learning a deep architecture. Extensive empirical
evidence suggests that unsupervised learning actually regularizes the supervised
optimization problem (Erhan et al., 2009). The proposed model selection ap-
proach will accordingly be based on an unsupervised criterion.

Another question raised by a layer-wise approach regards its consistency,
aka the modularity of the model selection problem. Formally, the question is
whether the global optimum of the considered criterion is found with a layer-wise
sequential optimization approach. Lastly and most importantly, the question is
whether the layer-wise unsupervised optimization approach eventually enforces
good performances w.r.t. supervised learning.

5

107

3.2 Reconstruction Error

A most natural unsupervised criterion relevant to RBMs is the log-likelihood of
test data under the model. This criterion would however require computing the
normalization factor in Eq. (2), which is intractable in the general case. An alter-
native is to consider the Reconstruction Error inspired from the auto-associator
approach (section 2.3). Formally, the Reconstruction Error of an RBM is com-
puted by clamping v to some data sample x, computing the (real-valued) hidden
unit configuration after P (h|v), backpropagating this hidden configuration onto
the visible units, and computing the square Euclidean distance between x and
the visible unit configuration obtained. For the sake of computational tractabil-
ity, the Mean Field approximation is used.

With same notations as in section 2.2, let Wú
◊

denote the weights of the RBM
trained from the dataset D using the hyper-parameters ◊; then the associated
Reconstruction Error is defined as:

L(D, ◊) =def L(D, Wú
◊) =

ÿ

xœD

||x ≠ gW∗
θ

¶ fW∗
θ
(x)||2 (7)

The Reconstruction Error corresponding to the whole ¸-layer RBM can be di-
rectly defined as:

L(D, W1, . . . W¸) =
ÿ

xœD

||x ≠ G¸ ¶ F¸(x)||2 (8)

For reference, examples of reconstructed digits from the MNIST dataset are
given in Fig.3.

Figure 3: Examples of reconstructed digits from the MNIST dataset with an
RBM trained on 60,000 examples for 1 epoch. Left: Original image. Middle:
Reconstruction with a 300 hidden units RBM. Right: Reconstruction with a 10
hidden units RBM.

3.3 Optimum selection

How to use the reconstruction error to select the optimal number of neurons
in each DNN layer raises the parsimony vs accuracy tradeoff. After (Le Roux
and Bengio, 2008), the reconstruction error should decrease with the number of
neurons, which suggests the use of a regularization term. Another possibility is
to wait until the reconstruction error does not decrease any more (plateau).

6

108

4 EXPERIMENTAL VALIDATION

This section reports on the experimental validation of the proposed unsupervised
layer-wise approach for hyper-parameter selection in stacked RBMs and discusses
possible extensions.

4.1 Goals of experiments

The goal of the experiments is to answer the following questions:
Feasibility: Does the considered unsupervised criterion clearly and steadily
support some selection of the optimal number of neurons ?
Stability: Does the proposed procedure offer some stability w.r.t. the experi-
mental setting (number of samples, number of epochs) ?
Efficiency: How does the model selected in an unsupervised layer-wise manner
affect the supervised classification accuracy ?
Consistency: Does the model globally optimized over ¸ layers coincide with
the layer-wise optimization of the size of each layer ?
Generality: A last question concerns the extension of the proposed approach
to RBMs trained with plain Contrastive Divergence, and Auto-Associators.

4.2 Experimental setting

The experiments consider the MNIST dataset including 60, 000 28 ◊ 28 images
representing digits from 0 to 9 in grey level, intensively used in the DNN liter-
ature1 (Hinton et al., 2006; Larochelle et al., 2009). The unsupervised learning
stage considers 1, 000, 10, 000 or 60, 000 examples. A disjoint test set including
1,000 examples is used to assess the (supervised or unsupervised) generalization
performance.

For the sake of computational tractability, the experimental validation was
limited to a 2-layer RBM setting. The above experiment goals were investigated
in this restricted experimental setting, based on a grid-search systematic explo-
ration of the first and second layer size. The overall computational effort is 300
days CPU time on a 1.8GHz Opteron processor. Using multiple cores, several
models were trained in parallel making the total training time about 15 days.

4.3 Feasibility and stability

The Reconstruction Error on the MNIST test set for the first RBM is reported
vs the number of neurons (in log scale) in Fig.4. As expected, the Reconstruc-
tion Error is a monotonically decreasing function of the number of neurons.
The feasibility of the approach however is empirically established as the Re-
construction Error displays a plateau when the number of neurons increases2.

1Mean Field Contrastive Divergence is used in the unsupervised phase, and backpropagation
with momentum is used in the supervised phase. The algorithm is available upon request.

2Experiments conducted on the cifar-10 dataset likewise show a decreasing reconstruction
error as the number of neurons increases. Due to the higher complexity of the cifar-10 dataset
comparatively to MNIST, the plateau however was not reached for the largest considered net-
works (up to 12,000 neurons).

7

109

After these results, the Reconstruction Error criterion suggests a clear and stable
hyper-parameter selection of n1 Ø nú

1 = 300 neurons.

Figure 4: Reconstruction Error for different numbers of epochs and sizes of the
training set (with the same overall number of gradient updates) in the first layer
of a SRBM.

Following the proposed layer-wise approach (section 3.1), we now optimize
the size of the second layer, conditionally to the selected size of the first layer.
Setting the size of the first layer to n1 = 300, the selection of the optimal number
of neurons in the second layer after the Reconstruction Error criterion (Fig. 5),
was conducted in the same way as above. Once again, the experimental results
show a plateau for the Reconstruction Error criterion after a certain threshold
value. The optimal number of neurons on the second layer conditionally to
n1 = 300 is obtained for n2 Ø nú

2 = 200.

Figure 5: Reconstruction Error vs number of neurons in the second-layer of a
SRBM, with n1 = 300 neurons on the first layer.

The stability of the criterion with respect to experimental settings is illus-

8

110

trated on Fig. 4, which shows the Reconstruction Error for three different sizes
of the training set and same number of gradient updates. This confirms that
the optimal layer size does not depend on the size of the training set, condition-
ally to the number of gradient updates; this point will be discussed further in
section 4.6.

4.4 Efficiency and consistency

The efficiency of the presented approach must eventually be assessed with the
classification accuracy. In the previous experiments, RBMs with different hidden
layer sizes were trained and evaluated against the Reconstruction Error criterion
only. In order to assess their classification performance, a last layer with 10 out-
put neurons is built on the top of the first RBM-layer (with weights uniformly
initialized in [≠1, 1]), and a backpropagation algorithm with early stopping is
applied on the whole network (Bengio et al., 2007). Fig. 6 depicts the classi-
fication accuracy versus the number of neurons in the hidden layer. As shown
in Fig. 7, the classification accuracy increases as the Reconstruction Error de-
creases. Overall, the unsupervised criterion used for model selection yields same
performance as that of the best 1-hidden layer neural networks in the literature
(1.9%) (Bengio et al., 2007).

A last question regards the consistency of the modular approach, that is,
whether simultaneously optimizing several layers yields the same result as se-
quentially optimizing each layer conditionally to the optimal setting for the pre-
vious layers. The global Reconstruction Error on a 2-layer RBM is depicted in
Fig. 8, where the first (resp. second) axis stands for the number of neurons in
the first (resp. second) layer.

As could have been expected, the Reconstruction Error decreases as the num-
ber of units increases; and it is shown to plateau after a sufficient number of units
in each layer. Furthermore, one cannot compensate for the insufficient number
of units in layer 1 by increasing the number of neurons in layer 2. This behavior
is unexpected in the perspective of the mainstream statistical learning theory
(Vapnik, 1998), where the VC-dimension of the model space increases with the
number of weights in the network, whatever the distribution of the neurons
on the different layers, as confirmed empirically in the multi-layer perceptron
framework (Paugam-Moisy, 1993).

The Reconstruction Error isolines are approximately rectangular-shaped: for
a given number of units n1 on the first layer, there exists a best Reconstruction
Error reached for n2 greater to a minimal value, referred to as nú

2(n1). Likewise,
the best Reconstruction Error for a given number of units n2 on the second layer,
is reached whenever the number of hidden units on the first layer is sufficient.
Overall, the optimal Reconstruction Error w.r.t. the simultaneous optimization
of n1 and n2, given in Fig. 8, leads to the same optimal setting as the layer-
wise procedure in Fig.4 and Fig.5 ((n1, n2)ú = (nú

1, nú
2(nú

1)), which empirically
confirms the modularity of the optimization problem.

9

111

Figure 6: Classification accuracy vs number of neurons for different dataset
sizes and numbers of epochs.

Figure 7: Classification accuracy vs Reconstruction Error (the higher and the
rightmost the better).

4.5 Generality

Complementary experiments show that the presented approach hardly applies
when considering Contrastive Divergence (instead of Mean Field); on the one
hand, the Reconstruction Error very slowly decreases as the number of neurons
increases, making the plateau detection computationally expensive. Further-
more, the Reconstruction Error displays a high variance between runs due to
the stochastic nature of the learning procedure.

In the meanwhile, the same approach was investigated in the Auto-Associator
(AA) framework, which naturally considers the Reconstruction Error as training
criterion. Fig. 9 shows the AA Reconstruction Error on the MNIST dataset vs
the number of neurons. Interestingly, the optimal layer size is larger than in the
RBM case; interpreting this fact is left for further work.

10

112

Figure 8: Overall Reconstruction Error in a 2-layer RBM vs the number of units
in first layer (horizontal axis) and second layer (vertical axis). The white cross
shows the optimal configuration found with the layer-wise procedure (300,200).

Figure 9: Reconstruction Error vs number of neurons for an Auto-Associator.

4.6 Model selection and training process

Intermediate experiments, aimed at reducing the computational cost and mem-
ory resources involved in the experiment campaign, led to consider datasets with
sizes 60,000, 10,000 and 1,000 (Fig. 10) trained for 1 epoch. Quite interestingly,
for the Reconstruction Error criterion, the optimal number of hidden units de-
creases with smaller datasets.

A second experiment was launched to see if the above results could be at-
tributed to the increased diversity of the bigger datasets, or to the increased
number of gradient updates (granted that 1 epoch was used for every dataset in
Fig. 10).

For two datasets of 1,000 and 60,000 samples, the Reconstruction Error is
evaluated at multiple points in the training process, each separated by 1,000

11

113

Figure 10: Reconstruction Error vs the number of hidden units in a 1-layer RBM,
depending on the size of the training set.

Figure 11: Reconstruction Error for RBM trained on 60x1,000 (Left) and
1x60,000 examples (Right) as a function of the number of neurons and gradient
updates.

gradient updates. The results (Fig.11) show the Reconstruction Error w.r.t. the
number of neurons for the two datasets as the training progresses from right to
left. The Reconstruction Error isolines clearly show the decreasing number of
neurons needed with the increasing number of gradient updates.

A tentative interpretation for this fact goes as follows. Firstly, the above
results state that the optimal model size can decrease as training goes on. Sec-
ondly, a main claim at the core of DNNs (Bengio and LeCun, 2007; Hinton and
Salakhutdinov., 2006) is that they capture a more abstract and powerful descrip-
tion of the data domain than shallow networks. Therefore it is conjectured that
the network gradually becomes more able to construct key features as training
goes on. Further work will aim at investigating experimentally this conjecture,
by examining the features generated in the deep layers depending on the input
distribution, as done by (Lee et al., 2009).

12

114

5 Conclusion and Perspectives

The contribution of the paper is twofold. Firstly, an unsupervised layer-wise
approach has been proposed to achieve model selection in Deep Networks. The
selection of hidden layer sizes is a critical issue potentially hindering the large
scale deployment of DNN. A frugal unsupervised criterion, the Reconstruction
Error, has been proposed. A proof of principle for the feasibility and stability of
Reconstruction Error-based Model Selection has been experimentally given on
the MNIST dataset, based on an extensive experiment campaign. The merits
of the approach have also been demonstrated from a supervised viewpoint, con-
sidering the predictive accuracy in classification for the supervised DNN learned
after the unsupervised layer-wise parameter setting.

After these results, the model selection tasks related to the different layers
can be tackled in a modular way, iteratively optimizing each layer conditionally
to the previous ones. This result is unexpected in the perspective of standard
Neural Nets, where the complexity of the model is dominated by the mere size
of the weight vector. Quite the contrary, it seems that deep networks actually
depend on the sequential acquisition of different “skills”, or representational
primitives. If some skills have not been acquired at some stage, these can hardly
be compensated at a later stage.

Lastly, the dependency between the model selection task and the training
effort has been investigated. Experimental results suggest that more intensive
training efforts lead to a more parsimonious model. Further work will investigate
in more depth these findings, specifically examining the properties of abstrac-
tion of the hidden layers in an Information Theoretical perspective and taking
inspiration from (Lee et al., 2009). Along the same lines, the choice of the exam-
ples (curriculum learning (Bengio et al., 2009)) used to train the RBM, will be
investigated w.r.t. the unsupervised quality of the hidden units: The challenge
would be to define an intrinsic, unsupervised, measure to order the examples
and construct a curriculum.

Acknowlegements

This work was supported by the French ANR as part of the ASAP project under
grant ANR 09 EMER 001 04. The authors gratefully acknowledge the support
of the PASCAL2 Network of Excellence (IST-2007-216886).

References

D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algorithm for boltz-
mann machines. Cognitive Science, 9(1):147–169, 1985.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold
cross-validation. Journal of Machine Learning Research, 5:1089–1105, 2004.

Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. In Large-Scale
Kernel Machines. MIT Press, 2007.

13

115

Y. Bengio, P. Lamblin, V. Popovici, and H. Larochelle. Greedy layer-wise train-
ing of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 153–160. MIT
Press, Cambridge, MA, 2007.

Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the Twenty-sixth International Conference
on Machine Learning (ICML’09), 2009.

T.G. Dietterich. Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural Computation, 1998.

B. Efron and R. Tibshirani. An introduction to the bootstrap, volume 57 of
Monographs on Statistic and Applied Probability. Chapman & Hall, 1993.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and
Pascal Vincent. The difficulty of training deep architectures and the effect of
unsupervised pre-training. In Proceedings of the Twelfth International Con-
ference on Artificial Intelligence and Statistics (AISTATS 2009), 2009.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer Series in Statistics,
2001.

G.E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, July 2006.

G.E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Conputation, 18:1527–1554, 2006.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation.
In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 473–480, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-793-3.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for
training deep neural networks. The Journal of Machine Learning Research,
10:1–40, 2009.

Nicolas Le Roux and Yoshua Bengio. Representational power of restricted boltz-
mann machines and deep belief networks. Neural Computation, 20(6):1631–
1649, 2008.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolu-
tional deep belief networks for scalable unsupervised learning of hierarchical
representations. In ICML, page 77, 2009.

14

116

V. Mnih, Cs. Szepesvari, and J.-Y. Audibert. Empirical bernstein stopping. In
25th International Conference on Machine Learning (ICML), 2008.

H. Paugam-Moisy. Parallel neural computing based on network duplicating. In
I. Pitas, editor, Parallel Algorithms for Digital Image Processing, Computer
Vision and Neural Networks, pages 305–340. John Wiley, 1993.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

M. Welling and G.E. Hinton. A new learning algorithm for mean field boltzmann
machines. In Proceedings of the International Conference on Artificial Neural
Networks (ICANN), 2002.

15

117

7.3 discussion 119

7.3 Discussion

This paper, the first of the author ever published, is understandably of a lesser
quality than his subsequent work. It is nonetheless a necessary “first step” in
the understanding of layer-wise training and evaluation for deep architectures.

A first result concerns the possibility to perform layer-wise model selection
(Question 7). Although the generality of the approach may be questioned because
of the mean-field training procedure, the approach supports the hypothesis that
layer-wise evaluation with the reconstruction error is possible and considerably
less expensive than evaluating networks after training all layers.

An even more interesting conclusion concerns the possibility to train lower
layers first (Questions 1 and 2). Namely, it seems that in practice, there is such
as thing as a “better lower layer” independently of what layers are added next.
To be more precise, even though the reconstruction error of a lower layer cannot
be used as a guarantee of performance for the whole network because subsequent
layers may be poorly trained, it seems to maximize the possible performance of
the future network.

This will prove to be a useful insight in the next paper: Layer-wise learning of

deep generative models, which gives a comprehensive theoretical and empirical
justification for a new criterion close to the reconstruction error which can be
used for the layer-wise training of deep architectures.

8
P R E S E N TAT I O N O F T H E S E C O N D A RT I C L E

L. Arnold and Y. Ollivier. Layer-wise learning of deep generative models. Tech-
nical report, ArXiv e-prints, December 2012. URL http://arxiv.org/abs/

1212.1524 (submitted for publication, February 2013).

8.1 Context

Just as in the preceding paper, we pose the question of layer-wise evaluation
and model selection. However, the main concern is the justification of layer-wise
training for deep architectures.

Training methods for deep architectures usually fall into one of the following
categories:

Method 1: Maximizing performance in a supervised setting with e.g. multi-
layer neural networks. Usually considered intractable when the num-
ber of layers is too large but recently shown to be possible (Hinton
et al., 2012; Bengio and Glorot, 2010; Ciresan et al., 2010). Very
successful in domains where it is possible to encode invariances in
the model as in e.g. convolutional neural networks (LeCun and Ben-
gio, 1995). This method could arguably be used for arbitrary model
sizes but in practice, it is expected to pose an increasingly difficult
optimization problem.

Method 2: Maximizing the likelihood of a deep generative model. This ap-
proach should lead to optimal latent variables, but it is intractable
and must therefore be approximated.

Method 3: Maximizing a variational lower-bound of the likelihood of a deep
generative model. This method is applied to (pre-)train almost all
deep generative models so far: stacked RBMs (Hinton et al., 2006;
Bengio et al., 2007), stacked auto-associators (Vincent et al., 2008)
since they approximate RBM training (Bengio and Delalleau, 2009),
deep Boltzmann machines (Salakhutdinov and Hinton, 2009a) and
other variations. Very successful in practice. Applicable in theory

121

http://arxiv.org/abs/1212.1524
http://arxiv.org/abs/1212.1524

122 presentation of the second article

to any probabilistic model with latent variable which are not inde-
pendent. This is in fact an approximation of method 2 (maximizing
the likelihood of a deep generative model) with a variational lower
bound. This comes with a theoretical guarantee that adding a layer
on top of a shallow model can only increase the likelihood of the
deep model. However, the guarantee breaks down for three layers or
more and adding layers breaks down the inference mechanism.

Note that Method 2 being intractable, an essential question of deep learning
is to ascertain if layer-wise learning which is the principle behind methods 3 is
sound, i.e. : Can the maximum likelihood estimate of a deep generative model
be found by maximizing a layer-wise criterion ?

However, for this to be possible, we need a layer-wise criterion which has to
represent some notion of what it means for a layer to be optimal before subsequent

layers are trained. If no such criterion exists, then the optimal lower layers always
depend on the choice of upper layers and layer-wise learning is fundamentally
flawed.

8.2 Contributions

In the following paper, we propose a criterion similar to the one suggested in
(Le Roux and Bengio, 2008), which satisfies the above requirements and can in
theory be applied to find an optimal solution to a deep learning problem in a
layer-wise fashion.

This criterion: the Best Latent Marginal (BLM) upper-bound, comes with a
guarantee of optimality for lower layers (Theorem 1) provided the rest of the
training goes well. Namely, the BLM upper bound represents the maximum
attainable log-likelihood for a given lower layer, while the upper part of the deep
generative model is left unspecified. Assuming the BLM upper bound has been
successfully maximized, the problem is then transfered to the upper layers in a
similar way to Method 3 presented above.

When training of the upper layers is imperfect, as can be the case in practice,
the overall error admits an upper bound which is exactly the criterion to be
optimized for upper layers. An unintended result is the importance of having
different parameters for the generative and inference parts of the model, and to
allow the latter to be as rich as possible. This approach has a tight relationship
with stacked RBMs and auto-encoders which is explored in detail. Importantly,
the BLM upper bound provides a probabilistic justification for stacking auto-
associators.

Experiments on two distinct deep datasets confirm the practicality of the ap-
proach for the layer-wise learning of deep generative models and for layer-wise
model selection.

Layer-wise training of deep generative models

Layer-wise training of deep generative models

Ludovic Arnold ludovic.arnold@lri.fr
CNRS, LRI/LIMSI, INRIA Saclay – TAO
Bât. 490, Université Paris-Sud
91405 Orsay, France

Yann Ollivier yann.ollivier@lri.fr

CNRS & Université Paris-Sud, LRI, INRIA Saclay – TAO

Bât. 490, Université Paris-Sud

91405 Orsay, France

Editor: unknown

Abstract

When using deep, multi-layered architectures to build generative models of data,
it is difficult to train all layers at once. We propose a layer-wise training procedure
admitting a performance guarantee compared to the global optimum. It is based on
an optimistic proxy of future performance, the best latent marginal. We interpret
auto-encoders in this setting as generative models, by showing that they train a
lower bound of this criterion. We test the new learning procedure against a state of
the art method (stacked RBMs), and find it to improve performance. Both theory
and experiments highlight the importance, when training deep architectures, of
using an inference model (from data to hidden variables) richer than the generative
model (from hidden variables to data).

Keywords: Deep Learning, Deep Belief Networks, Deep Neural Networks, Stacked
Restricted Boltzmann Machines, Autoencoders

Introduction

Deep architectures, such as multiple-layer neural networks, have recently been the
object of a lot of interest and have been shown to provide state-of-the-art perfor-
mance on many problems (Bengio et al., 2012). A key aspect of deep learning is
to help in learning better representations of the data, thus reducing the need for
hand-crafted features, a very time-consuming process requiring expert knowledge.

Due to the difficulty of training a whole deep network at once, a so-called layer-
wise procedure is used as an approximation (Hinton et al., 2006; Bengio et al., 2007).
However, a long-standing issue is the justification of this layer-wise training: al-
though the method has shown its merits in practice, theoretical justifications fall
somewhat short of expectations. A frequently cited result (Hinton et al., 2006) is
a proof that adding layers increases a so-called variational lower bound on the log-
likelihood of the model, and therefore that adding layers can improve performance.

1

123

Arnold and Ollivier

We reflect on the validity of layer-wise training procedures, and discuss in what
way and with what assumptions they can be construed as being equivalent to the
non-layer-wise, that is, whole-network, training. This leads us to a new approach
for training deep generative models, using a new criterion for optimizing each layer
starting from the bottom and for transferring the problem upwards to the next layer.
Under the right conditions, this new layer-wise approach is equivalent to optimizing
the log-likelihood of the full deep generative model (Theorem 1).

As a first step, in Section 1 we re-introduce the general form of deep generative
models, and derive the gradient of the log-likelihood for deep models. This gradient
is seldom ever considered because it is considered intractable and requires sampling
from complex distributions. Hence the need for a simpler, layer-wise training proce-
dure.

We then show (Section 2.1) how an optimistic criterion, the BLM upper bound,
can be used to train optimal lower layers provided subsequent training of upper layers
is successful, and discuss what criterion to use to transfer the learning problem to
the upper layers.

This leads to a discussion of the relation of this procedure with stacked restricted
Boltzmann machines (SRBMs) and auto-encoders (Sections 2.3 and 2.4), in which
a new justification is found for auto-encoders as optimizing the lower part of a deep
generative model.

In Section 2.7 we spell out the theoretical advantages of using a model for the
hidden variable h having the form Q(h) = q(h|x)Pdata(x) when looking for hidden-
variable generative models of the data x, a scheme close to that of auto-encoders.

Finally, we discuss new applications and perform experiments (Section 3) to val-
idate the approach and compare it to state-of-the-art methods, on two new deep
datasets, one synthetic and one real. In particular we introduce auto-encoders with
rich inference (AERIes) which are auto-encoders modified according to this frame-
work.

Indeed both theory and experiments strongly suggest that, when using stacked
auto-associators or similar deep architectures, the inference part (from data to latent
variables) should use a much richer model than the generative part (from latent
variables to data), in fact, as rich as possible. Using richer inference helps to find
much better parameters for the same given generative model.

1. Deep generative models

Let us go back to the basic formulation of training a deep architecture as a traditional
learning problem: optimizing the parameters of the whole architecture seen as a
probabilistic generative model of the data.

2

124

Layer-wise training of deep generative models

1.1 Deep models: probability decomposition

The goal of generative learning is to estimate the parameters θ = (θ1, . . . , θn) of
a distribution P◊(x) in order to approximate a data distribution PD(x) on some
observed variable x.

The recent development of deep architectures (Hinton et al., 2006; Bengio et al.,
2007) has given importance to a particular case of latent variable models in which
the distribution of x can be decomposed as a sum over states of latent variables h,

P◊(x) =
ÿ

h

P◊1,...,◊k
(x|h)P◊k+1,...,◊n(h)

with separate parameters for the marginal probability of h and the conditional prob-
ability of x given h. Setting I = {1, 2, . . . , k} such that θI is the set of parameters
of P (x|h) and J = {k + 1, . . . , n} such that θJ is the set of parameters of P (h), this
rewrites as

P◊(x) =
ÿ

h

P◊I
(x|h)P◊J

(h) (1)

In deep architectures, the same kind of decomposition is applied to h itself
recursively, thus defining a layered model with several hidden layers h(1), h(2), . . . ,
h(kmax), namely

P◊(x) =
ÿ

h(1)

P◊I0
(x|h(1))P◊J0

(h(1)) (2)

P (h(k)) =
ÿ

h(k+1)

P◊Ik
(h(k)|h(k+1))P◊Jk

(h(k+1)), 1 6 k 6 kmax ≠ 1 (3)

At any one time, we will only be interested in one step of this decomposition.
Thus for simplicity, we consider that the distribution of interest is on the observed
variable x, with latent variable h. The results extend to the other layers of the
decomposition by renaming variables.

In Sections 2.3 and 2.4 we quickly present two frequently used deep architectures,
stacked RBMs and auto-encoders, within this framework.

1.2 Data log-likelihood

The goal of the learning procedure, for a probabilistic generative model, is generally
to maximize the log-likelihood of the data under the model, namely, to find the
value of the parameter θú = (θú

I , θú
J) achieving

θ
ú := arg max

◊

Ex≥PD
[log P◊(x)] (4)

= arg min
◊

DKL(PD ÎP◊), (5)

3

125

Arnold and Ollivier

where PD is the empirical data distribution, and DKL(· Î ·) is the Kullback–Leibler
divergence. (For simplicity we assume this optimum is unique.)

An obvious way to tackle this problem would be a gradient ascent over the full
parameter θ. However, this is impractical for deep architectures (Section 1.3 below).

It would be easier to be able to train deep architectures in a layer-wise fashion,
by first training the parameters θI of the bottom layer, deriving a new target dis-
tribution for the latent variables h, and then training θJ to reproduce this target
distribution on h, recursively over the layers, till one reaches the top layer on which,
hopefully, a simple probabilistic generative model can be used.

Indeed this is often done in practice, except that the objective (4) is replaced
with a surrogate objective. For instance, for architectures made of stacked RBMs,
at each level the likelihood of a single RBM is maximized, ignoring the fact that it
is to be used as part of a deep architecture, and moreover often using a further ap-
proximation to the likelihood such as contrastive divergence (Hinton., 2002). Under
specific conditions (i.e., initializing the upper layer with an upside-down version of
the current RBM), it can be shown that adding a layer improves a lower bound on
performance (Hinton et al., 2006).

We address in Section 2 the following questions: Is it possible to compute or
estimate the optimal value of the parameters θú

I of the bottom layer, without training
the whole model? Is it possible to compare two values of θI without training the
whole model? The latter would be particularly convenient for hyper-parameter
selection, as it would allow to compare lower-layer models before the upper layers
are trained, thus significantly reducing the size of the hyper-parameter search space
from exponential to linear in the number of layers.

We propose a procedure aimed at reaching the global optimum θú in a layer-wise
fashion, based on an optimistic estimate of log-likelihood, the best latent marginal
(BLM) upper bound. We study its theoretical guarantees in Section 2. In Section 3
we make an experimental comparison between stacked RBMs, auto-encoders mod-
ified according to this scheme, and vanilla auto-encoders, on two simple but deep
datasets.

1.3 Learning by gradient ascent for deep architectures

Maximizing the likelihood of the data distribution PD(x) under a model, or equiv-
alently minimizing the KL-divergence DKL(PD Î P◊), is usually done with gradient
ascent in the parameter space.

The derivative of the log-likelihood for a deep generative model can be written
as:

∂ log P◊(x)
∂θ

=
q

h

ˆPθI
(x|h)

ˆ◊
P◊J

(h) +
q

h P◊I
(x|h)

ˆPθJ
(h)

ˆ◊

P◊(x)
(6)

=
ÿ

h

∂ log P◊I
(x|h)

∂θ
P◊(h|x) +

ÿ

h

∂ log P◊J
(h)

∂θ
P◊(h|x) (7)

4

126

Layer-wise training of deep generative models

by rewriting P◊(h)/P◊(x) = P◊(h|x)/P◊(x|h). The derivative w.r.t. a given compo-
nent θi of θ simplifies because θi is either a parameter of P◊I

(x|h) when i œ I, or a
parameter of P◊J

(h) when i œ J :

’i œ I,
∂ log P◊(x)

∂θi
=

ÿ

h

∂ log P◊I
(x|h)

∂θi
P◊I ,◊J

(h|x), (8)

’i œ J,
∂ log P◊(x)

∂θi
=

ÿ

h

∂ log P◊J
(h)

∂θi
P◊I ,◊J

(h|x). (9)

Unfortunately, this gradient ascent procedure is generally intractable, because it
requires sampling from P◊I ,◊J

(h|x) (where both the upper layer and lower layer
influence h) to perform inference in the deep model.

2. Layer-wise deep learning

2.1 A theoretical guarantee

We now present a training procedure that works successively on each layer. First
we train θI together with a conditional model q(h|x) for the latent variable knowing
the data. This step involves only the bottom part of the model and is thus often
tractable. This allows to infer a new target distribution for h, on which the upper
layers can then be trained.

This procedure singles out a particular setting θ̂I for the bottom layer of a deep
architecture, based on an optimistic assumption of what the upper layers may be
able to do (cf. Proposition 3).

Under this procedure, Theorem 1 states that it is possible to obtain a validation
that the parameter θ̂I for the bottom layer was optimal, provided the rest of the
training goes well. Namely, if the target distribution for h can be realized or well
approximated by some value of the parameters θJ of the top layers, and if θI was
obtained using a rich enough conditional model q(h|x), then (θI , θJ) is guaranteed
to be globally optimal.

Theorem 1 Suppose the parameters θI of the bottom layer are trained by

(θ̂I , q̂) := arg max
◊I ,q

Ex≥PD

C

log
ÿ

h

P◊I
(x|h) qD(h)

D

(10)

where the arg max runs over all conditional probability distributions q(h|x) and
where

qD(h) :=
ÿ

x̃

q(h|x̃)PD(x̃) (11)

with PD the observed data distribution.
We call the optimal θ̂I the best optimistic lower layer (BOLL). Let q̂D(h) be the

distribution on h associated with the optimal q̂. Then:

5

127

Arnold and Ollivier

• If the top layers can be trained to reproduce q̂D(h) perfectly, i.e., if there exists
a parameter θ̂J for the top layers such that the distribution P

◊̂J
(h) is equal to

q̂D(h), then the parameters obtained are globally optimal:

(θ̂I , θ̂J) = (θú
I , θ

ú
J)

• Whatever parameter value θJ is used on the top layers in conjunction with the
BOLL θ̂I , the difference in performance (4) between (θ̂I , θJ) and the global op-
timum (θú

I , θú
J) is at most the Kullback–Leibler divergence DKL(q̂D(h)ÎP◊J

(h))
between q̂D(h) and P◊J

(h).

This theorem strongly suggests using q̂D(h) as the target distribution for the top
layers, i.e., looking for the value θ̂J best approximating q̂D(h):

θ̂J := arg min
◊J

DKL(q̂D(h)ÎP◊J
(h)) = arg max

◊J

Eh≥q̂D
log P◊J

(h) (12)

which thus takes the same form as the original problem. Then the same scheme may
be used recursively to train the top layers. A final fine-tuning phase may be helpful,
see Section 2.6.

Note that when the top layers fail to approximate q̂D perfectly, the loss of per-
formance depends only on the observed difference between q̂D and P

◊̂J
, and not on

the unknown global optimum (θú
I , θú

J). Beware that, unfortunately, this bound relies
on perfect layer-wise training of the bottom layer, i.e., on q̂ being the optimum of
the criterion (10) optimized over all possible conditional distributions q; otherwise
it is a priori not valid.

In practice the supremum on q will always be taken over a restricted set of
conditional distributions q(h|x), rather than the set of all possible distributions
on h for each x. Thus, this theorem is an idealized version of practice (though
Remark 4 below mitigates this). This still suggests a clear strategy to separate the
deep optimization problem into two subproblems to be solved sequentially:

1. Train the parameters θI of the bottom layer after (10), using a model q(h|x)
as wide as possible, to approximate the BOLL θ̂I .

2. Infer the corresponding distribution of h by (11) and train the upper part of
the model as best as possible to approximate this distribution.

Then, provided learning is successful in both instances, the result is close to
optimal.

Auto-encoders can be shown to implement an approximation of this procedure,
in which only the terms x = x̃ are kept in (10)–(11) (Section 2.4).

This scheme is designed with in mind a situation in which the upper layers get
progessively simpler. Indeed, if the layer for h is as wide as the layer for x and if

6

128

Layer-wise training of deep generative models

P (x|h) can learn the identity, then the procedure in Theorem 1 just transfers the
problem unchanged one layer up.

This theorem strongly suggests decoupling the inference and generative models
q(h|x) and P (x|h), and using a rich conditional model q(h|x), contrary, e.g., to
common practice in auto-encoders1. Indeed the experiments of Section 3 confirm
that using a more expressive q(h|x) yields improved values of θ.

Importantly, q(h|x) is only used as an auxiliary prop for solving the optimization
problem (4) over θ and is not part of the final generative model, so that using a richer
q(h|x) to reach a better value of θ is not simply changing to a larger model. Thus,
using a richer inference model q(h|x) should not pose too much risk of overfitting
because the regularization properties of the model come mainly from the choice of
the generative model family (θ).

The criterion proposed in (10) is of particular relevance to representation learning
where the goal is not to learn a generative model, but to learn a useful representation
of the data. In this setting, training an upper layer model P (h) becomes irrelevant
because we are not interested in the generative model itself. What matters in
representation learning is that the lower layer (i.e., P (x|h) and q(h|x)) is optimal
for some model of P (h), left unspecified.

We now proceed, by steps, to the proof of Theorem 1. This will be the occasion
to introduce some concepts used later in the experimental setting.

2.2 The Best Latent Marginal Upper Bound

One way to evaluate a parameter θI for the bottom layer without training the whole
architecture is to be optimistic: assume that the top layers will be able to produce
the probability distribution for h that gives the best results if used together with
P◊I

(x|h). This leads to the following.

Definition 2 Let θI be a value of the bottom layer parameters. The best latent
marginal (BLM) for θI is the probability distribution Q on h maximizing the log-
likelihood:

Q̂◊I ,D := arg max
Q

Ex≥PD

C

log
ÿ

h

P◊I
(x|h)Q(h)

D

(13)

where the arg max runs over the set of all probability distributions over h. The BLM
upper bound is the corresponding log-likelihood value:

UD(θI) := max
Q

Ex≥PD

C

log
ÿ

h

P◊I
(x|h)Q(h)

D

(14)

1. Attempts to prevent auto-encoders from learning the identity (which is completely justifiable)
often result in an even more constrained inference model, e.g., tied weights, or sparsity con-
straints on the hidden representation.

7

129

Arnold and Ollivier

The BLM upper bound UD(θI) is the least upper bound on the log-likelihood
of the deep generative model on the dataset D if θI is used for the bottom layer.
UD(θI) is only an upper bound of the actual performance of θI , because subsequent
training of P◊J

(h) may be suboptimal: the best latent marginal Q̂◊I ,D(h) may not
be representable as P◊J

(h) for θJ in the model, or the training of P◊J
(h) itself may

not converge to the best solution.
Note that the arg max in (13) is concave in Q, so that in typical situations the

BLM is unique—except in degenerate cases such as when two values of h define the
same P◊I

(x|h)).

Proposition 3 The criterion (10) used in Theorem 1 for training the bottom layer
coincides with the BLM upper bound:

UD(θI) = max
q

Ex≥PD

C

log
ÿ

h

P◊I
(x|h)qD(h)

D

(15)

where the maximum runs over all conditional probability distributions q(h|x). In
particular the BOLL θ̂I selected in Theorem 1 is

θ̂I = arg max
◊I

UD(θI) (16)

and the target distribution q̂D(h) in Theorem 1 is the best latent marginal Q̂
◊̂I ,D.

Thus the BOLL θ̂I is the best bottom layer setting if one uses an optimistic
criterion for assessing the bottom layer, hence the name “best optimistic lower layer”.
Proof Any distribution Q over h can be written as qD for some conditional
distribution q(h|x), for instance by defining q(h|x) = Q(h) for every x in the dataset.
In particular this is the case for the best latent marginal Q̂◊I ,D.

Consequently the maxima in (15) and in (14) are taken on the same set and
coincide.

The argument that any distribution is of the form qD may look disappointing:
why choose this particular form? In Section 2.7 we show how writing distributions
over h as qD for some conditional distribution q(h|x) may help to maximize data log-
likelihood, by quantifiably incorporating information from the data (Proposition 7).
Moreover, the bound on loss of performance (second part of Theorem 1) when the
upper layers do not match the BLM crucially relies on the properties of q̂D. A more
practical argument for using qD is that optimizing both θI and the full distribution
of the hidden variable h at the same time is just as difficult as optimizing the whole
network, whereas the deep architectures currently in use already train a model of x
knowing h and of h knowing x at the same time.

8

130

Layer-wise training of deep generative models

Remark 4 For Theorem 1 to hold, it is not necessary to optimize over all possible
conditional probability distributions q(h|x) (which is a set of very large dimension).
As can be seen from the proof above it is enough to optimize over a family q(h|x) œ
Q such that every (non-conditional) distribution on h can be represented (or well
approximated) as qD(h) for some q œ Q.

Let us now go on with the proof of Theorem 1.

Proposition 5 Set the bottom layer parameters to the BOLL

θ̂I = arg max
◊I

UD(θI) (17)

and let Q̂ be the corresponding best latent marginal.
Assume that subsequent training of the top layers using Q̂ as the target distribu-

tion for h, is successful, i.e., there exists a θJ such that Q̂(h) = P◊J
(h).

Then θ̂I = θú
I .

Proof Define the in-model BLM upper bound as

Umodel
D (θI) := max

◊J

Ex≥PD

C

log
ÿ

h

P◊I
(x|h)P◊J

(h)

D

(18)

By definition, the global optimum θú
I for the parameters of the whole architecture

is given by θú
I = arg max◊I

Umodel
D (θI).

Obviously, for any value θI we have Umodel
D (θI) 6 UD(θI) since the argmax is

taken over a more restricted set. Then, in turn, UD(θI) 6 UD(θ̂I) by definition of
θ̂I .

By our assumption, the BLM Q̂ for θ̂I happens to lie in the model: Q̂(h) =
P◊J

(h). This implies that UD(θ̂I) = Umodel
D (θ̂I).

Combining, we get that Umodel
D (θI) 6 Umodel

D (θ̂I) for any θI . Thus θ̂I maximizes
Umodel

D (θI), and is thus equal to θú
I .

The first part of Theorem 1 then results from the combination of Propositions 5
and 3.

We now give a bound on the loss of performance in case further training of the
upper layers fails to reproduce the BLM. This will complete the proof of Theorem 1.
We will make use of a special optimality property of distributions of the form qD(h),
namely, Proposition 7, whose proof is postponed to Section 2.7.

Proposition 6 Keep the notation of Theorem 1. In the case when P◊J
(h) fails to

reproduce q̂D(h) exactly, the loss of performance of (θ̂I , θJ) with respect to the global
optimum (θú

I , θú
J) is at most

DKL(PD(x)ÎP
◊̂I ,◊J

(x)) ≠ DKL(PD(x)Î q̂D,◊̂I
(x)) (19)

9

131

Arnold and Ollivier

where q̂D,◊̂I
(x) :=

q

h P
◊̂I

(x|h)q̂D(h) is the distribution on x obtained by using the
BLM.

This quantity is in turn at most

DKL(q̂D(h)ÎP◊J
(h)) (20)

which is thus also a bound on the loss of performance of (θ̂I , θJ) with respect to
(θú

I , θú
J).

Note that these estimates do not depend on the unkown global optimum θú.
Importantly, this bound is not valid if q̂ has not been perfectly optimized over

all possible conditional distributions q(h|x). Thus it should not be used blindly to
get a performance bound, since heuristics will always be used to find q̂. Therefore,
it may have only limited practical relevance. In practice the real loss may both
be larger than this bound because q has been optimized over a smaller set, and
smaller because we are comparing to the BLM upper bound which is an optimistic
assessment.
Proof From (4) and (5), the difference in log-likelihood performance between any
two distributions p1(x) and p2(x) is equal to DKL(PD Îp1) ≠ DKL(PD Îp2).

For simplicity, denote

p1(x) = P
◊̂I ,◊J

(x) =
ÿ

h

P
◊̂I

(x|h)P◊J
(h)

p2(x) = P◊∗
I ,◊∗

J
(x) =

ÿ

h

P◊∗
I
(x|h)P◊∗

J
(h)

p3(x) =
ÿ

h

P
◊̂I

(x|h)q̂D(h)

We want to compare p1 and p2.
Define the in-model upper bound Umodel

D (θI) as in (18) above. Then we have
θú

I = arg max◊I
Umodel

D (θI) and θ̂I = arg max◊I
UD(θI). Since Umodel

D 6 UD, we have
Umodel

D (θú
I) 6 UD(θ̂I). The BLM upper bound UD(θ̂I) is attained when we use q̂D as

the distribution for h, so Umodel
D (θú

I) 6 UD(θ̂I) means that the performance of p3 is
better than the performance of p2:

DKL(PD Îp3) 6 DKL(PD Îp2)

(inequalities hold in the reverse order for data log-likelihood).
Now by definition of the optimum θú, the distribution p2 is better than p1:

DKL(PD Îp2) 6 DKL(PD Îp1). Consequently, the difference in performance between
p2 and p1 (whether expressed in data log-likelihood or in Kullback–Leibler diver-
gence) is smaller than the difference in performance between p3 and p1, which is the
difference of Kullback–Leibler divergences appearing in the proposition.

Let us now evaluate more precisely the loss of p1 with respect to p3. By abuse
of notation we will indifferently denote p1(h) and p1(x), it being understood that

10

132

Layer-wise training of deep generative models

one is obtained from the other through P
◊̂I

(x|h), and likewise for p3 (with the same

θ̂I).
For any distributions p1 and p3 the loss of performance of p1 w.r.t. p3 satisfies

Ex≥PD
log p3(x) ≠ Ex≥PD

log p1(x) = Ex≥PD

C

log

q

h P
◊̂I

(x|h)p3(h)
q

h P
◊̂I

(x|h)p1(h)

D

and by the log sum inequality log(
q

ai/
q

bi) 6 1
q

ai

q

ai log(ai/bi) (Cover and Thomas,

2006, Theorem 2.7.1) we get

Ex≥PD
log p3(x) ≠ Ex≥PD

log p1(x)

6 Ex≥PD

C

1
q

h P
◊̂I

(x|h)p3(h)

ÿ

h

P
◊̂I

(x|h)p3(h) log
P

◊̂I
(x|h)p3(h)

P
◊̂I

(x|h)p1(h)

D

= Ex≥PD

C

1
p3(x)

ÿ

h

p3(x, h) log
p3(h)
p1(h)

D

= Ex≥PD

C

ÿ

h

p3(h|x) log
p3(h)
p1(h)

D

= Ex≥PD
Eh≥p3(h|x)

5

log
p3(h)
p1(h)

6

Given a probability p3 on (x, h), the law on h obtained by taking an x accord-
ing to PD, then taking an h according to p3(h|x), is generally not equal to p3(h).
However, here p3 is equal to the BLM q̂D, and by Proposition 7 below the BLM has
exactly this property (which characterizes the log-likelihood extrema). Thus thanks
to Proposition 7 we have

Ex≥PD
Eh≥q̂D(h|x)

5

log
q̂D(h)
p1(h)

6

= Eh≥q̂D

5

log
q̂D(h)
p1(h)

6

= DKL(q̂D(h)Îp1(h))

which concludes the argument.

2.3 Relation with Stacked RBMs

Stacked RBMs (SRBMs) (Hinton et al., 2006; Bengio et al., 2007; Larochelle et al.,
2009) are deep generative models trained by stacking restricted Boltzmann machines
(RBMs) (Smolensky, 1986).

A RBM uses a single set of parameters to represent a distribution on pairs (x, h).
Similarly to our approach, stacked RBMs are trained in a greedy layer-wise fashion:
one starts by training the distribution of the bottom RBM to approximate the
distribution of x. To do so, distributions P◊I

(x|h) and Q◊I
(h|x) are learned jointly

using a single set of parameters θI . Then a target distribution for h is defined as

11

133

Arnold and Ollivier

q

x Q◊I
(h|x)PD(x) (similarly to (11)) and the top layers are trained recursively on

this distribution.

In the final generative model, the full top RBM is used on the top layer to provide
a distribution for h, then the bottom RBMs are used only for the generation of x
knowing h. (Therefore the h-biases of the bottom RBMs are never used in the final
generative model.)

Thus, in contrast with our approach, P◊I
(x|h) and Q◊I

(h|x) are not trained to
maximize the least upper bound of the likelihood of the full deep generative model
but are trained to maximize the likelihood of a single RBM.

This procedure has been shown to be equivalent to maximizing the likelihood of
a deep generative model with infinitely many layers where the weights are all tied
(Hinton et al., 2006). The latter can be interpreted as an assumption on the future
value of P (h), which is unknown when learning the first layer. As such, SRBMs
make a different assumption about the future P (h) than the one made in (10).

With respect to this, the comparison of gradient ascents is instructive: the gradi-
ent ascent for training the bottom RBM takes a form reminiscent of gradient ascent
of the global generative model (7) but in which the dependency of P (h) on the
upper layers θJ is ignored, and instead the distribution P (h) is tied to θI because
the RBM uses a single parameter set for both.

When adding a new layer on top of a trained RBM, if the initialization is set
to an upside down version of the current RBM (which can be seen as “unrolling”
one step of Gibbs sampling), the new deep model still matches the special infinite
deep generative model with tied weights mentioned above. Starting training of the
upper layer from this initialization guarantees that the new layer can only increase
the likelihood (Hinton et al., 2006). However, this result is only known to hold for
two layers; with more layers, it is only known that adding layers increases a bound
on the likelihood (Hinton et al., 2006).

In our approach, the perspective is different. During the training of lower layers,
we consider the best possible model for the hidden variable. Because of errors which
are bound to occur in approximation and optimization during the training of the
model for P (h), the likelihood associated with an optimal upper model (the BLM
upper bound) is expected to decrease each time we actually take another lower layer
into account: At each new layer, errors in approximation or optimization occur so
that the final likelihood of the training set will be smaller than the upper bound.
(On the other way these limitations might actually improve performance on a test
set, see the discussion about regularization in Section 3.)

In (Le Roux and Bengio, 2008) a training criterion is suggested for SRBMs which
is reminiscent of a BLM with tied weights for the inference and generative parts (and
therefore without the BLM optimality guarantee), see also Section 2.5.

12

134

Layer-wise training of deep generative models

2.4 Relation with Auto-Encoders

Since the introduction of deep neural networks, auto-encoders (Vincent et al., 2008)
have been considered a credible alternative to stacked RBMs and have been shown
to have almost identical performance on several tasks (Larochelle et al., 2007).

Auto-encoders are trained by stacking auto-associators (Bourlard and Kamp,
1988) trained with backpropagation. Namely: we start with a three-layer network
x ‘æ h(1) ‘æ x trained by backpropagation to reproduce the data; this provides
two conditional distributions P (h(1)|x) and P (x|h(1)). Then in turn, another auto-
associator is trained as a three-layer network h(1) ‘æ h(2) ‘æ h(1), to reproduce the
distribution P (h(1)|x) on h(1), etc.

So as in the learning of SRBMs, auto-encoder training is performed in a greedy
layer-wise manner, but with a different criterion: the reconstruction error.

Note that after the auto-encoder has been trained, the deep generative model is
incomplete because it lacks a generative model for the distribution P (hkmax) of the
deepest hidden variable, which the auto-encoder does not provide2. One possibility
is to learn the top layer with an RBM, which then completes the generative model.

Concerning the theoretical soundness of stacking auto-associators for training
deep generative models, it is known that the training of auto-associators is an ap-
proximation of the training of RBMs in which only the largest term of an expansion
of the log-likelihood is kept (Bengio and Delalleau, 2009). In this sense, SRBM and
stacked auto-associator training approximate each other (see also Section 2.5).

Our approach gives a new understanding of auto-encoders as the lower part of a
deep generative model, because they are trained to maximize a lower bound of (10),
as follows.

To fix ideas, let us consider for (10) a particular class of conditional distributions
q(h|x) commonly used in auto-associators. Namely, let us parametrize q as q› with

q›(h|x) =
Ÿ

j

q›(hj |x) (21)

q›(hj |x) = sigm(
q

ixiwij + bj) (22)

where the parameter vector is › = {W, b} and sigm(·) is the sigmoid function.
Given a conditional distribution q(h|x) as in Theorem 1, let us expand the

distribution on x obtained from P◊I
(x|h) and qD(h):

P (x) =
ÿ

h

P◊I
(x|h)qD(h) (23)

=
ÿ

h

P◊I
(x|h)

ÿ

x̃

q(h|x̃)PD(x̃) (24)

2. Auto-associators can in fact be used as valid generative models from which sampling is possible
(Rifai et al., 2012) in the setting of manifold learning but this is beyond the scope of this article.

13

135

Arnold and Ollivier

where as usual PD is the data distribution. Keeping only the terms x = x̃ in this
expression we see that

P (x) >
ÿ

h

P◊I
(x|h)q(h|x)PD(x) (25)

Taking the sum of likelihoods over x in the dataset, this corresponds to the crite-
rion maximized by auto-associators when they are considered from a probabilistic
perspective3. Since moreover optimizing over q as in (10) is more general than op-
timizing over the particular class q›, we conclude that the criterion optimized in
auto-associators is a lower bound on the criterion (10) proposed in Theorem 1.

Keeping only x = x̃ is justified if we assume that inference is an approximation
of the inverse of the generative process4, that is, P◊I

(x|h)q(h|x̃) ¥ 0 as soon as
x ”= x̃. Thus under this assumption, both criteria will be close, so that Theorem 1
provides a justification for auto-encoder training in this case. On the other hand,
this assumption can be strong: it implies that no h can be shared between different
x, so that for instance two observations cannot come from the same underlying
latent variable through a random choice. Depending on the situation this might be
unrealistic. Still, using this as a training criterion might perform well even if the
assumption is not fully satisfied.

Note that we chose the form of q›(h|x) to match that of the usual auto-associator,
but of course we could have made a different choice such as using a multilayer
network for q›(h|x) or P◊I

(x|h). These possibilities will be explored later in this
article.

2.5 From stacked RBMs to auto-encoders: layer-wise consistency

We now show how imposing a “layer-wise consistency” constraint on stacked RBM
training leads to the training criterion used in auto-encoders with tied weights. Some
of the material here already appears in (Le Roux and Bengio, 2008).

Let us call layer-wise consistent a layer-wise training procedure in which each
layer determines a value θI for its parameters and a target distribution P (h) for
the upper layers which are mutually optimal in the following sense: if P (h) is used
a the distribution of the hidden variable, then θI is the bottom parameter value
maximizing data log-likelihood.

3. In all fairness, the training of auto-associators by backpropagation, in probabilistic terms, con-
sists in the maximization of P (y|x)PD(x) = o(x)PD(x) with y = x (Buntine and Weigend,
1991), where o is the output function of the neural network. In this perspective, the hidden
variable h is not considered as a random variable but as an intermediate value in the form
of P (y|x). Here, we introduce h as an intermediate random variable as in (Neal, 1990). The
criterion we wish to maximize is then P (y|x)PD(x) =

q

h
f(y|h)g(h|x)PD(x), with y = x.

Training with backpropagation can be done by sampling h from g(h|x) instead of using the raw
activation value of g(h|x), but in practice we do not sample h as it does not significantly affect
performance.

4. which is a reasonable assumption if we are to perform inference in any meaningful sense of the
word.

14

136

Layer-wise training of deep generative models

The BLM training procedure is, by construction, layer-wise consistent.
Let us try to train stacked RBMs in a layer-wise consistent way. Given a param-

eter θI , SRBMs use the hidden variable distribution

QD,◊I
(h) = Ex≥PD

P◊I
(h|x) (26)

as the target for the next layer, where P◊I
(h|x) is the RBM distribution of h knowing

x. The value θI and this distribution over h are mutually optimal for each other if
the distribution on x stemming from this distribution on h, given by

P
(1)
◊I

(x) = Eh≥QD,θI
(h) P◊I

(x|h) (27)

=
ÿ

h

P◊I
(x|h)

ÿ

x̃

P◊I
(h|x̃)PD(x̃) (28)

maximizes log-likelihood, i.e.,

θI = arg min DKL(PD(x)ÎP
(1)
◊I

(x)) (29)

The distribution P
(1)
◊I

(x) is the one obtained from the data after one “forward-
backward” step of Gibbs sampling x æ h æ x (cf. Le Roux and Bengio, 2008).

But P
(1)
◊I

(x) is also equal to the distribution (24) for an auto-encoder with tied
weights. So the layer-wise consistency criterion for RBMs coincides with tied-weights
auto-encoder training, up to the approximation that in practice auto-encoders retain
only the terms x = x̃ in the above (Section 2.4).

On the other hand, stacked RBM training trains the parameter θI to approximate
the data distribution by the RBM distribution:

θ
RBM
I = arg min

◊I

DKL(PD(x)ÎP RBM
◊I

(x)) (30)

where P RBM
◊I

is the probability distribution of the RBM with parameter θI , i.e. the
probability distribution after an infinite number of Gibbs samplings from the data.

Thus, stacked RBM training and tied-weight auto-encoder training can be seen
as two approximations to the layer-wise consistent optimization problem (29), one
using the full RBM distribution P RBM

◊I
instead of P

(1)
◊I

and the other using x = x̃ in

P
(1)
◊I

.

It is not clear to us to which extent the criteria (29) using P
(1)
◊I

and (30) using
P RBM

◊I
actually yield different values for the optimal θI : although these two opti-

mization criteria are different (unless RBM Gibbs sampling converges in one step),
it might be that the optimal θI is the same (in which case SRBM training would be
layer-wise consistent), though this seems unlikely.

The θI obtained from the layer-wise consistent criterion (29) using P
(1)
◊I

(x) will
always perform at least as well as standard SRBM training if the upper layers match
the target distribution on h perfectly—this follows from its very definition.

15

137

Arnold and Ollivier

Nonetheless, it is not clear whether layer-wise consistency is always a desirable
property. In SRBM training, replacing the RBM distribution over h with the one
obtained from the data seemingly breaks layer-wise consistency, but at the same time
it always improves data log-likelihood (as a consequence of Proposition 7 below).

For non-layer-wise consistent training procedures, fine-tuning of θI after more
layers have been trained would improve performance. Layer-wise consistent pro-
cedures may require this as well in case the upper layers do not match the target
distribution on h (while non-layer-wise consistent procedures would require this even
with perfect upper layer training).

2.6 Relation to fine-tuning

When the approach presented in Section 2 is used recursively to train deep genera-
tive models with several layers using the criterion (10), irrecoverable losses may be
incurred at each step: first, because the optimization problem (10) may be imper-
fectly solved, and, second, because each layer was trained using a BLM assumption
about what upper layers are able to do, and subsequent upper layer training may
not match the BLM. Consequently the parameters used for each layer may not be
optimal with respect to each other. This suggests using a fine-tuning procedure.

In the case of auto-encoders, fine-tuning can be done by backpropagation on all
(inference and generative) layers at once (Figure 1). This has been shown to improve
performance5 in several contexts (Larochelle et al., 2009; Hinton and Salakhutdinov.,
2006), which confirms the expected gain in performance from recovering earlier ap-
proximation losses. In principle, there is no limit to the number of layers of an
auto-encoder that could be trained at once by backpropagation, but in practice
training many layers at once results in a difficult optimization problem with many
local minima. Layer-wise training can be seen as a way of dealing with the issue of
local minima, providing a solution close to a good optimum. This optimum is then
reached by global fine-tuning.

Fine-tuning can be described in the BLM framework as follows: fine-tuning is the
maximization of the BLM upper bound (10) where all the layers are considered as
one single complex layer (Figure 1). In the case of auto-encoders, the approximation
x = x̃ in (10)–(11) is used to help optimization, as explained above.

Note that there is no reason to limit fine-tuning to the end of the layer-wise
procedure: fine-tuning may be used at intermediate stages where any number of
layers have been trained.

This fine-tuning procedure was not applied in the experiments below because
our experiments only have one layer for the bottom part of the model.

As mentioned before, a generative model for the topmost hidden layer (e.g., an
RBM) still needs to be trained to get a complete generative model after fine-tuning.

5. The exact likelihood not being tractable for larger models, it is necessary to rely on a proxy
such as classification performance to evaluate the performance of the deep network.

16

138

Layer-wise training of deep generative models

!"#$%&'()$*+$$,*-$"%.(./

01%*)2%"-*-"#$%)
3(.$&45.(./*10*"--*/$.$%"4(2$

".+*(.0$%$.6$*-"#$%)

Figure 1: Deep training with fine-tuning.

2.7 Data Incorporation: Properties of qD

It is not clear why it should be more interesting to work with the conditional distri-
bution q(h|x) and then define a distribution on h through qD, rather than working
directly with a distribution Q on h.

The first answer is practical: optimizing on P◊I
(x|h) and on the distribution of

h simultaneously is just the same as optimizing over the global network, while on
the other hand the currently used deep architectures provide both x|h and h|x at
the same time.

A second answer is mathematical: qD is defined through the dataset D. Thus by
working on q(h|x) we can concentrate on the correspondence between h and x and
not on the full distribution of either, and hopefully this correspondence is easier to
describe. Then we use the dataset D to provide qD: so rather than directly crafting
a distribution Q(h), we use a distribution which automatically incorporates aspects
of the data distribution D even for very simple q. Hopefully this is better; we now
formalize this argument.

Let us fix the bottom layer parameters θI , and consider the problem of finding
the best latent marginal over h, i.e., the Q maximizing the data log-likelihood

arg max
Q

Ex≥PD

C

log
ÿ

h

P◊I
(x|h)Q(h)

D

(31)

Let Q(h) be a candidate distribution. We might build a better one by “reflect-
ing the data” in it. Namely, Q(h) defines a distribution P◊I

(x|h)Q(h) on (x, h).
This distribution, in turn, defines a conditional distribution of h knowing x in the

17

139

Arnold and Ollivier

standard way:

Qcond(h|x) :=
P◊I

(x|h)Q(h)
q

hÕ P◊I
(x|hÕ)Q(hÕ)

(32)

We can turn Qcond(h|x) into a new distribution on h by using the data distribu-
tion:

Qcond
D (h) :=

ÿ

x

Qcond(h|x)PD(x) (33)

and in general Qcond
D (h) will not coincide with the original distribution Q(h), if only

because the definition of the former involves the data whereas Q is arbitrary. We
will show that this operation is always an improvement: Qcond

D (h) always yields a
better data log-likelihood than Q.

Proposition 7 Let data incorporation be the map sending a distribution Q(h) to
Qcond

D (h) defined by (32) and (33), where θI is fixed. It has the following properties:

• Data incorporation always increases the data log-likelihood (31).

• The best latent marginal Q̂◊I ,D is a fixed point of this transformation. More
precisely, the distributions Q that are fixed points of data incorporation are
exactly the critical points of the data log-likelihood (31) (by concavity of (31)
these critical points are all maxima with the same value). In particular if the
BLM is uniquely defined (the arg max in (13) is unique), then it is the only
fixed point of data incorporation.

• Data incorporation Q ‘æ Qcond
D coincides with one step of the expectation-

maximization (EM) algorithm to maximize data log-likelihood by optimizing
over Q for a fixed θI , with h as the hidden variable.

This can be seen as a justification for constructing the hidden variable model Q
through an inference model q(h|x) from the data, which is the basic approach of
auto-encoders and the BLM.
Proof Let us first prove the statement about expectation-maximization. Since the
EM algorithm is known to increase data log-likelihood at each step (Dempster et al.,
1977; Wu, 1983), this will prove the first statement as well.

For simplicity let us assume that the data distribution is uniform over the dataset
D = (x1, . . . , xn). (Arbitrary data weights can be approximated by putting the
same observation several times into the data.) The hidden variable of the EM
algorithm will be h, and the parameter over which the EM optimizes will be the
distribution Q(h) itself. In particular we keep θI fixed. The distributions Q and P◊I

define a distribution P (x, h) := P◊I
(x|h)Q(h) over pairs (x, h). This extends to a

distribution over n-tuples of observations:

P ((x1, h1), . . . , (xn, hn)) =
Ÿ

i

P◊I
(xi|hi)Q(hi)

18

140

Layer-wise training of deep generative models

and by summing over the states of the hidden variables

P (x1, . . . , xn) =
ÿ

(h1,...,hn)

P ((x1, h1), . . . , (xn, hn))

Denote x̨ = (x1, . . . , xn) and h̨ = (h1, . . . , hn). One step of the EM algorithm op-
erating with the distribution Q as parameter, is defined as transforming the current
distribution Qt into the new distribution

Qt+1 = arg max
Q

ÿ

h̨

Pt(h̨|x̨) log P (x̨, h̨)

where Pt(x̨, h̨) = P◊I
(x̨|h̨)Qt(h̨) is the distribution obtained by using Qt for h, and

P the one obtained from the distribution Q over which we optimize. Let us follow
a standard argument for EM algorithms on n-tuples of independent observations:

ÿ

h̨

Pt(h̨|x̨) log P (x̨, h̨) =
ÿ

h̨

Pt(h̨|x̨) log
Ÿ

i

P (xi, hi)

=
ÿ

i

ÿ

h̨

Pt(h̨|x̨) log P (xi, hi)

Since observations are independent, Pt(h̨|x̨) decomposes as a product and so

ÿ

i

ÿ

h̨

(log P (xi, hi))Pt(h̨|x̨) =
ÿ

i

ÿ

h1,...,hn

(log P (xi, hi))
Ÿ

j

Pt(hj |xj)

=
ÿ

i

ÿ

hi

(log P (xi, hi))Pt(hi|xi)
Ÿ

j ”=i

ÿ

hj

Pt(hj |xj)

but of course
q

hj
Pt(hj |xj) = 1 so that finally

ÿ

h̨

Pt(h̨|x̨) log P (x̨, h̨) =
ÿ

i

ÿ

hi

(log P (xi, hi))Pt(hi|xi)

=
ÿ

h

ÿ

i

(log P (xi, h))Pt(h|xi)

=
ÿ

h

ÿ

i

(log P◊I
(xi|h) + log Q(h))Pt(h|xi)

because P (x, h) = P◊I
(x|h)Q(h). We have to maximize this quantity over Q. The

first term does not depend on Q so we only have to maximize
q

h

q

i(log Q(h))Pt(h|xi).
This latter quantity is concave in Q, so to find the maximum it is sufficient to

exhibit a point where the derivative w.r.t. Q (subject to the constraint that Q is a
probability distribution) vanishes.

19

141

Arnold and Ollivier

Let us compute this derivative. If we replace Q with Q + ”Q where ”Q is
infinitesimal, the variation of the quantity to be maximized is

ÿ

h

ÿ

i

(” log Q(h))Pt(h|xi) =
ÿ

h

”Q(h)
Q(h)

ÿ

i

Pt(h|xi)

Let us take Q = (Qt)cond
D . Since we assumed for simplicity that the data distribution

D is uniform over the sample this (Qt)cond
D is

Q(h) = (Qt)cond
D (h) =

1
n

ÿ

i

Pt(h|xi)

so that the variation of the quantity to be maximized is

ÿ

h

”Q(h)
Q(h)

ÿ

i

Pt(h|xi) = n
ÿ

h

”Q(h)

But since Q and Q + ”Q are both probability distributions, both sum to 1 over h
so that

q

h ”Q(h) = 0. This proves that this choice of Q is an extremum of the
quantity to be maximized.

This proves the last statement of the proposition. As mentioned above, it implies
the first by the general properties of EM. Once the first statement is proven, the
best latent marginal Q̂◊I ,D has to be a fixed point of data incorporation, because
otherwise we would get an even better distribution thus contradicting the definition
of the BLM.

The only point left to prove is the equivalence between critical points of the log-
likelihood and fixed points of Q ‘æ Qcond

D . This is a simple instance of maximization
under constraints, as follows. Critical points of the data log-likelihood are those
for which the log-likelihood does not change at first order when Q is replaced with
Q + ”Q for small ”Q. The only constraint on ”Q is that Q + ”Q must still be a
probability distribution, so that

q

h ”Q(h) = 0 because both Q and Q + ”Q sum to
1.

20

142

Layer-wise training of deep generative models

The first-order variation of log-likelihood is

”
ÿ

i

log P (xi) = ”
ÿ

i

log

A

ÿ

h

P◊I
(xi|h)Q(h)

B

=
ÿ

i

”
q

h P◊I
(xi|h)Q(h)

q

h P◊I
(xi, h)Q(h)

=
ÿ

i

q

h P◊I
(xi|h)”Q(h)
P (xi)

=
ÿ

h

”Q(h)
ÿ

i

P◊I
(xi|h)

P (xi)

=
ÿ

h

”Q(h)
ÿ

i

P (xi, h)/Q(h)
P (xi)

=
ÿ

h

”Q(h)
ÿ

i

P (h|xi)
Q(h)

This must vanish for any ”Q such that
q

h ”Q(h) = 0. By elementary linear alge-
bra (or Lagrange multipliers) this occurs if and only if

q

i
P (h|xi)

Q(h) does not depend
on h, i.e., if and only if Q satisfies Q(h) = C

q

i P (h|xi). Since Q sums to 1 one
finds C = 1

n . Since all along P is the probability distribution on x and h de-
fined by Q and P◊I

(x|h), namely, P (x, h) = P◊I
(x|h)Q(h), by definition we have

P (h|x) = Qcond(h|x) so that the condition Q(h) = 1
n

q

i P (h|xi) exactly means that
Q = Qcond

D , hence the equivalence between critical points of log-likelihood and fixed
points of data incorporation.

3. Applications and Experiments

Given the approach described above, we now consider several applications for which
we evaluate the method empirically.

The intractability of the log-likelihood for deep networks makes direct compar-
ison of several methods difficult in general. Often the evaluation is done by using
latent variables as features for a classification task and by direct visual comparison of
samples generated by the model (Larochelle et al., 2009; Salakhutdinov and Hinton,
2009). Instead, we introduce two new datasets which are simple enough for the true
log-likelihood to be computed explicitly, yet complex enough to be relevant to deep
learning.

We first check that these two datasets are indeed deep.
Then we try to assess the impact of the various approximations from theory to

practice, on the validity of the approach.

21

143

Arnold and Ollivier

We then apply our method to the training of deep belief networks using properly
modified auto-encoders, and show that the method outperforms current state of the
art.

We also explore the use of the BLM upper bound to perform layer-wise hyper-
parameter selection and show that it gives an accurate prediction of the future
log-likelihood of models.

3.1 Low-Dimensional Deep Datasets

We now introduce two new deep datasets of low dimension. In order for those
datasets to give a reasonable picture of what happens in the general case, we first
have to make sure that they are relevant to deep learning, using the following ap-
proach:

1. In the spirit of (Bergstra and Bengio, 2012), we train 1000 RBMs using CD-1
(Hinton., 2002) on the dataset D, and evaluate the log-likelihood of a disjoint
validation dataset V under each model.

2. We train 1000 2-layer deep networks using stacked RBMs trained with CD-1
on D, and evaluate the log-likelihood of V under each model6.

3. We compare the performance of each model at equal number of parameters.

4. If deep networks consistently outperform single RBMs for the same number
of parameters, the dataset is considered to be deep.

The comparison at equal number of parameters is justified by one of the main hy-
potheses of deep learning, namely that deep architectures are capable of represent-
ing some functions more compactly than shallow architectures (Bengio and LeCun,
2007).

Hyper-parameters taken into account for hyper-parameter random search are
the hidden layers sizes, CD learning rate and number of CD epochs. The corre-
sponding priors are given in Table 1. In order not to give an obvious head start to
deep networks, the possible layer sizes are chosen so that the maximum number of
parameters for the single RBM and the deep network are as close as possible.

Cmnist dataset

The Cmnist dataset is a low-dimensional variation on the Mnist dataset (LeCun et al.,
1998), containing 12,000 samples of dimension 100. The full dataset is split into
training, validation and test sets of 4,000 samples each. The dataset is obtained by
taking a 10 ◊ 10 image at the center of each Mnist sample and using the values

6. for stacked RBMs, the exact log-likelihood is computed by summing over the hidden
states; the log-likelihood of RBMs is evaluated using Annealed Importance Sampling (AIS)
(Salakhutdinov and Murray, 2008)

22

144

Layer-wise training of deep generative models

Parameter Prior

RBM hidden layer size 1 to 19
Deep Net hidden layer 1 size 1 to 16
Deep Net hidden layer 2 size 1 to 16
inference hidden layer size 1 to 500
CD learn rate log U(10≠5, 5 ◊ 10≠2)
BP learn rate log U(10≠5, 5 ◊ 10≠2)
CD epochs 20 ◊ (10000/N)
BP epochs 20 ◊ (10000/N)
ANN init ‡ U(0, 1)

Table 1: Search space for hyper-parameters when using random search for a dataset
of size N .

in [0,1] as probabilities. The first 10 samples of the Cmnist dataset are shown in
Figure 2.

Figure 2: First 10 samples of the Cmnist dataset.

We propose two baselines to which to compare the log-likelihood values of models
trained on the Cmnist dataset:

1. The uniform coding scheme: a model which gives equal probability to all
possible binary 10 ◊ 10 images. The log-likelihood of each sample is then
≠100 bits, or ≠69.31 nats.

2. The independent Bernoulli model in which each pixel is given an independent
Bernoulli probability. The model is trained on the training set. The log-
likelihood of the validation set is ≠67.38 nats per sample.

The comparison of the log-likelihood of stacked RBMs with that of single RBMs is
presented in Figure 3 and confirms that the Cmnist dataset is deep.

Tea dataset

The Tea dataset is based on the idea of learning an invariance for the amount of
liquid in several containers: a teapot and 5 teacups. It contains 243 distinct samples

23

145

Arnold and Ollivier

Figure 3: Checking that Cmnist is deep: log-likelihood of the validation dataset
V under RBMs and SRBM deep detworks selected by hyper-parameter
random search, as a function of the number of parameters dim(θ).

which are then distributed into a training, validation and test set of 81 samples each.
The dataset consists of 10 ◊ 10 images in which the left part of the image represents
a (stylized) teapot of size 10 ◊ 5. The right part of the image represents 5 teacups
of size 2◊5. The liquid is represented by ones and always lies at the bottom of each
container. The total amount of liquid is always equal to the capacity of the teapot,
i.e., there are always 50 ones and 50 zeros in any given sample. The first 10 samples
of the Tea dataset are shown in Figure 4.

Figure 4: First 10 samples of the Tea dataset.

24

146

Layer-wise training of deep generative models

In order to better interpret the log-likelihood of models trained on the Tea

dataset, we propose 3 baselines:

1. The uniform coding scheme: the baseline is the same as for the Cmnist dataset:
≠69.31 nats.

2. The independent Bernoulli model, adjusted on the training set. The log-
likelihood of the validation set is ≠49.27 nats per sample.

3. The perfect model in which all 243 samples of the full dataset (consituted by
concatenation of the training, validation and test sets) are given the probability

1
243 . The expected log-likelihood of a sample from the validation dataset is then
log(1

243) = ≠5.49 nats.

The comparison of the log-likelihood of stacked RBMs and single RBMs is presented
in Figure 5 and confirms that the Tea dataset is deep.

Figure 5: Checking that Tea is deep: log-likelihood of the validation dataset V un-
der RBMs and SRBM deep networks selected by hyper-parameter random
search, as a function of the number of parameters dim(θ).

25

147

Arnold and Ollivier

3.2 Deep Generative Auto-Encoder Training

A first application of our approach is the training of a deep generative model using
auto-associators. To this end, we propose to train lower layers using auto-associators
and to use an RBM for the generative top layer model.

We will compare three kinds of deep architectures: standard auto-encoders with
an RBM on top (vanilla AEs), the new auto-encoders with rich inference (AERIes)
suggested by our framework, also with an RBM on top, and, for comparison, stacked
restricted Boltzmann machines (SRBMs). All the models used in this study use the
same final generative model class for P (x|h) so that the comparison focuses on the
training procedure, on equal ground. SRBMs are considered the state of the art
(Hinton et al., 2006; Bengio et al., 2007)—although performance can be increased
using richer models (Bengio et al., 2012), our focus here is not on the model but on
the layer-wise training procedure for a given model class.

In ideal circumstances, we would have compared the log-likelihood obtained for
each training algorithm with the optimum of a deep learning procedure such as the
full gradient ascent procedure (Section 2). Instead, since this ideal deep learning
procedure is intractable, SRBMs serve as a reference.

The new AERIes are auto-encoders modified after the following remark: the
complexity of the inference model used for q(h|x) can be increased safely without
risking overfit and loss of generalization power, because q is not part of the final
generative model, and is used only as a tool for optimization of the generative model
parameters. This would suggest that the complexity of q could be greatly increased
with only positive consequences on the performance of the model.

AERIes exploit this possibility by having, in each layer, a modified auto-associator
with two hidden layers instead of one: x æ hÕ æ h æ x. The generative part
P◊I

(x|h) will be equivalent to that of a regular auto-associator, but the inference
part q(h|x) will have greater representational power because it includes the hidden
layer hÕ (see Figure 7).

We will also use the more usual auto-encoders composed of auto-associators with
one hidden layer and tied weights, commonly encountered in the literature (vanilla
AE).

For all models, the deep architecture will be of depth 2. The stacked RBMs will
be made of two ordinary RBMs. For AERIes and vanilla AEs, the lower part is
made of a single auto-associator (modified for AERies), and the generative top part
is an RBM. (Thus they have one layer less than depicted for the sake of generality
in Figures 6 and 7.) For AERIes and vanilla AEs the lower part of the model is
trained using the usual backpropagation algorithm with cross-entropy loss, which
performs gradient ascent for the probability of (25). The top RBM is then trained
to maximize (12).

The competitiveness of each model will be evaluated through a comparison in
log-likelihood over a validation set distinct from the training set. Comparisons are

26

148

Layer-wise training of deep generative models

made for a given identical number of parameters of the generative model7. Each
model will be given equal chance to find a good optimum in terms of the number of
evaluations in a hyper-parameter selection procedure by random search.

When implementing the training procedure proposed in Section 2, several ap-
proximations are needed. An important one, compared to Theorem 1, is that the
distribution q(h|x) will not really be trained over all possible conditional distribu-
tions for h knowing x. Next, training of the upper layers will of course fail to
reproduce the BLM perfectly. Moreover, auto-associators use an x = x̃ approxima-
tion, cf. (25). We will study the effect of these approximations.

Let us now provide more details for each model.

Stacked RBMs. For our comparisons, 1000 stacked RBMs were trained using
the procedure from (Hinton et al., 2006). We used random search on the hyper-
parameters, which are: the sizes of the hidden layers, the CD learning rate, and the
number of CD epochs.

Vanilla auto-encoders. The general training algorithm for vanilla auto-encoders
is depicted in Figure 6. First an auto-associator is trained to maximize the adapta-
tion of the BLM upper bound for auto-associators presented in (25). The maximiza-
tion procedure itself is done with the backpropagation algorithm and cross-entropy
loss. The inference weights are tied to the generative weights so that Wgen = W€

inf

as is often the case in practice. An ordinary RBM is used as a generative model on
the top layer.

1000 deep generative auto-encoders were trained using random search on the
hyper-parameters. Because deep generative auto-encoders use an RBM as the top
layer, they use the same hyper-parameters as stacked RBMs, but also backpropaga-
tion (BP) learning rate, BP epochs, and ANN init ‡ (i.e. the standard deviation of
the gaussian used during initialization).

Auto-Encoders with Rich Inference (AERIes). The model and training scheme
for AERIes are represented in Figure 7. Just as for vanilla auto-encoders, we use
the backpropagation algorithm and cross-entropy loss to maximize the auto-encoder
version (25) of the BLM upper bound on the training set. No weights are tied, of
course, as this does not make sense for an auto-associator with different models for
P (x|h) and q(h|x). The top RBM is trained afterwards. Hyper-parameters are the
same as above, with in addition the size of the new hidden layer hÕ.

7. Because we only consider the generative models obtained, q is never taken into account in the
number of parameters of an auto-encoder or SRBM. However, the parameters of the top RBM
are taken into account as they are a necessary part of the generative model.

27

149

Arnold and Ollivier

!"#"$%&'% ("'&#"$%%

)*+,-.' /012/.'

!"#$%&'(!&)#*+"&,,

Figure 6: Deep generative auto-encoder training scheme.

28

150

Layer-wise training of deep generative models

Figure 7: Deep generative modified auto-encoder (AERI) training scheme.

29

151

Arnold and Ollivier

Figure 8: Comparison of the average validation log-likelihood for SRBMs, vanilla
AE, and AERIes on the Tea dataset.

Results

The results of the above comparisons on the Tea and Cmnist validation datasets
are given in Figures 8 and 9. For better readability, the Pareto front8 for each model
is given in Figures 10 and 11.

As expected, all models perform better than the baseline independent Bernoulli
model but have a lower likelihood than the perfect model9. Also, SRBMs, vanilla
AEs and AERIes perform better than a single RBM, which can be seen as further
evidence that the Tea and Cmnist are deep datasets.

Among deep models, vanilla auto-encoders achieve the lowest performance, but
outperform single RBMs significantly, which validates them not only as generative
models but also as deep generative models. Compared to SRBMs, vanilla auto-
encoders achieve almost identical performance but the algorithm clearly suffers from

8. The Pareto front is composed of all models which are not subsumed by other models according
to the number of parameters and the expected log-likelihood. A model is said to be subsumed
by another if it has strictly more parameters and a worse likelihood.

9. Note that some instances are outperformed by the uniform coding scheme, which may seem
surprising. Because we are considering the average log-likelihood on a validation set, if even
one sample of the validation set happens to be given a low probability by the model, the average
log-likelihood will be arbitrarily low. In fact, because of roundoff errors in the computation of
the log-likelihood, a few models have a measured performance of −∞. This does not affect the
comparison of the models as it only affects instances for which performance is already very low.

30

152

Layer-wise training of deep generative models

Figure 9: Comparison of the average validation log-likelihood for SRBMs, vanilla
AE, and AERIes on the Cmnist dataset.

Figure 10: Pareto fronts for the average validation log-likelihood and number of pa-
rameters for SRBMs, deep generative auto-encoders, and modified deep
generative auto-encoders on the Tea dataset.

31

153

Arnold and Ollivier

Figure 11: Pareto fronts for the average validation log-likelihood and number of pa-
rameters for SRBMs, deep generative auto-encoders, and modified deep
generative auto-encoders on the Cmnist dataset.

local optima: most instances perform poorly and only a handful achieve performance
comparable to that of SRBMs or AERIes.

As for the auto-encoders with rich inference (AERIes), they are able to outper-
form not only single RBMs and vanilla auto-encoders, but also stacked RBMs, and
do so consistently. This validates not only the general deep learning procedure of
Section 2, but arguably also the understanding of auto-encoders in this framework.

The results confirm that a more universal model for q can significantly improve
the performance of a model, as is clear from comparing the vanilla and rich-inference
auto-encoders. Let us insist that the rich-inference auto-encoders and vanilla auto-
encoders optimize over exactly the same set of generative models with the same
structure, and thus are facing exactly the same optimization problem (4). Clearly
the modified training procedure yields improved values of the generative parameter
θ.

3.3 Layer-Wise Evaluation of Deep Belief Networks

As seen in section 2, the BLM upper bound UD(θI) is the least upper bound of the
log-likelihood of deep generative models using some given θI in the lower part of
the model. This raises the question of whether it is a good indicator of the final
performance of θI .

32

154

Layer-wise training of deep generative models

In this setting, there are a few approximations w.r.t. (10) and (12) that need
to be discussed. Another point is the intractability of the BLM upper bound for
models with many hidden variables, which leads us to propose and test an estimator
in Section 3.3.4, though the experiments considered here were small enough not to
need this unless otherwise specified.

We now look, in turn, at how the BLM upper bound can be applied to log-
likelihood estimation, and to hyper-parameter selection—which can be considered
part of the training procedure. We first discuss various possible effects, before
measuring them empirically.

3.3.1 Approximations in the BLM upper bound

Consider the maximization of (14). In practice, we do not perform a specific maxi-
mization over q to obtain the BLM as in (14), but rely on the training procedure of
θI to maximize it. Thus the q resulting from a training procedure is generally not
the globally optimal q̂ from Theorem 1. In the experiments we of course use the
BLM upper bound with the value of q resulting from the actual training.

Definition 8 For θI and q resulting from the training of a deep generative model,
let

ÛD,q(θI) := Ex≥PD

C

log
ÿ

h

P◊I
(x|h)qD(h)

D

(34)

be the empirical BLM upper bound.

This definition makes no assumption about how θI and q in the first layer have
been trained, and can be applied to any layer-wise training procedure, such as
SRBMs.

Ideally, this quantity should give us an idea of the final performance of the deep
architecture when we use θI on the bottom layer. But there are several discrepancies
between these BLM estimates and final performance.

A first question is the validity of the approximation (34). The BLM upper bound
UD(θI) is obtained by maximization over all possible q which is of course untractable.
The learned inference distribution q used in practice is only an approximation for
two reasons: first, because the model for q may not cover all possible conditional
distributions q(h|x), and, second, because the training of q can be imperfect. In
effect ÛD,q(θI) is only a lower bound of the BLM upper bound : ÛD,q(θI) 6 UD(θI).

Second, we can question the relationship between the (un-approximated) BLM
upper bound (14) and the final log-likelihood of the model. The BLM bound is
optimistic, and tight only when the upper part of the model manages to reproduce
the BLM perfectly. We should check how tight it is in practical applications when
the upper layer model for P (h) is imperfect.

33

155

Arnold and Ollivier

In addition, as for any estimate from a training set, final performance on valida-
tion and test sets might be different. Performance of a model on the validation set
is generally lower than on the training set. But on the other hand, in our situation
there is a specific regularizing effect of imperfect training of the top layers. Indeed
the BLM refers to a universal optimization over all possible distributions on h and
might therefore overfit more, hugging the training set too closely. Thus if we did
manage to reproduce the BLM perfectly on the training set, it could well decrease
performance on the validation set. On the other hand, training the top layers to
approximate the BLM within a model class P◊J

introduces further regularization
and could well yield higher final performance on the validation set than if the exact
BLM distribution had been used.

This latter regularization effect is relevant if we are to use the BLM upper bound
for hyper-parameter selection, a scenario in which regularization is expected to play
an important role.

We can therefore expect:

1. That the ideal BLM upper bound, being by definition optimistic, can be higher
that the final likelihood when the model obtained for P (h) is not perfect.

2. That the empirical bound obtained by using a given conditional distribution
q will be lower than the ideal BLM upper bound either when q belongs to a
restricted class, or when q is poorly trained.

3. That the ideal BLM upper bound on the training set may be either higher or
lower than actual performance on a validation set, because of the regularization
effect of imperfect top layer training.

All in all, the relationship between the empirical BLM upper bound used in
training, and the final log-likelihood on real data, results from several effects going
in both directions. This might affect whether the empirical BLM upper bound can
really be used to predict the future performance of a given bottom layer setting.

3.3.2 A method for single-layer evaluation and layer-wise

hyper-parameter selection

In the context of deep architectures, hyper-parameter selection is a difficult prob-
lem. It can involve as much as 50 hyper-parameters, some of them only rele-
vant conditionally to others (Bergstra et al., 2011; Bergstra and Bengio, 2012). To
make matters worse, evaluating the generative performance of such models is of-
ten intractable. The evaluation is usually done w.r.t. classification performance as
in (Larochelle et al., 2009; Bergstra et al., 2011; Bergstra and Bengio, 2012), some-
times complemented by a visual comparison of samples from the model (Hinton et al.,
2006; Salakhutdinov and Hinton, 2009). In some rare instances, a variational lower-
bound of the log-likelihood of the deep model is considered (Salakhutdinov and Murray,
2008; Salakhutdinov and Hinton, 2009).

34

156

Layer-wise training of deep generative models

These methods only consider evaluating the models after all layers have been
fully trained. However, since the training of deep architectures is done in a layer-
wise fashion, with some criterion greedily maximized at each step, it would seem
reasonable to perform a layer-wise evaluation. This would have the advantage of
reducing the size of the hyper-parameter search space from exponential to linear in
the number of layers.

We propose to first evaluate the performance of the lower layer, after it has been
trained, according to the BLM upper bound (34) (or an approximation thereof) on
the validation dataset Dvalid. The measure of performance obtained can then be used
as part of a larger hyper-parameter selection algorithm such as (Bergstra and Bengio,
2012; Bergstra et al., 2011). This results in further optimization of (10) over the
hyper-parameter space and is therefore justified by Theorem 1.

Evaluating the top layer is less problematic: by definition, the top layer is always
a “shallow” model for which the true likelihood becomes more easily tractable. For
instance, although RBMs are well known to have an intractable partition function
which prevents their evaluation, several methods are able to compute close approxi-
mations to the true likelihood (such as Annealed Importance Sampling (Neal, 1998;
Salakhutdinov and Murray, 2008)). The dataset to be evaluated with this procedure
will have to be a sample of

q

x q(h|x)PD(x).
In summary, the evaluation of a two-layer generative model can be done in a

layer-wise manner:

1. Perform hyper-parameter selection on the lower layer using Û◊I
(D) as a perfor-

mance measure (preferably on a validation rather than training dataset, see
below), and keep only the best possible lower layers according to this crite-
rion10.

2. Perform hyper-parameter selection on the upper layer by evaluating the true
likelihood of validation data samples transformed by the inference distribution,
under the model of the top layer11.

Hyper-parameter selection was not used in our experiments, where we simply
used hyper-parameter random search. (This has allowed, in particular, to check the
robustness of the models, as AERIes have been found to perform better than vanilla
AEs on many more instances over hyper-parameter space.)

As mentioned earlier, in the context of representation learning the top layer is
irrelevant because the objective is not to train a generative model but to get a better
representation of the data. With the assumption that good latent variables make

10. In practice an approximation must be used as discussed later
11. This could lead to a stopping criterion when training a model with arbitrarily many layers:

for the upper layer, compare the likelihood of the best upper-model with the BLM of the best
possible next layer. If the BLM of the next layer is not significatively higher than the likelihood
of the upper-model, then we do not add another layer as it would not help to achieve better
performance.

35

157

Arnold and Ollivier

good representations, this suggests that the BLM upper bound can be used directly
to select the best possible lower layers.

3.3.3 Testing the BLM and its approximations

We now present a series of tests to check whether the selection of lower layers with
higher values of the BLM actually results in higher log-likelihood for the final deep
generative models, and to assess the quantitative importance of each of the BLM
approximations discussed earlier.

For each training algorithm (SRBMs, RBMs, AEs, AERIes), the comparison is
done using 1000 models trained with hyper-parameters selected through random
search as before. The empirical BLM upper bound is computed using (34) above.

Training BLM upper bound vs training log-likelihood. We first compare
the value of the empirical BLM upper bound Û◊I

(Dtrain) over the training set, with
the actual log-likelihood of the trained model on the training set. This is an eval-
uation of how optimistic the BLM is for a given dataset, by checking how closely
the training of the upper layers manages to match the target BLM distribution on
h. This is also the occasion to check the effect of using the q(h|x) resulting from
actual learning, instead of the best q in all possible conditional distributions.

In addition, as discussed below, this comparison can be used as a criterion to
determine whether more layers should be added to the model.

The results are given in Figures 12 and 13 for SRBMs, and 14 and 15 for AERIes.
We see that the empirical BLM upper bound (34) is a good predictor of the future log-
likelihood of the full model on the training set. This shows that the approximations
w.r.t. the optimality of the top layer and the universality of q can be dealt with in
practice.

For AERIes, a few models with low performance have a poor estimation of the
BLM upper bound (estimated to be lower than the actual likelihood), presumably
because of a bad approximation in the learning of q. This will not affect model
selection procedures as it only concerns models with very low performance, which
are to be discarded.

If the top part of the model were not powerful enough (e.g., if the network is not
deep enough), the BLM upper bound would be too optimistic and thus significantly
higher than the final log-likelihood of the model. To further test this intuition we
now compare the BLM upper bound of the bottom layer with the log-likelihood
obtained by a shallow architecture with only one layer ; the difference would give
an indication of how much could be gained by adding top layers. Figures 16 and 17
compare the expected log-likelihood12 of the training set under the 1000 RBMs
previously trained with the BLM upper bound13 for a generative model using this

12. The log-likelihood reported in this specific experiment is in fact obtained with Annealed Impor-
tance Sampling (AIS).

13. The BLM upper bound value given in this particular experiment is in fact a close approximation
(see Section 3.3.4).

36

158

Layer-wise training of deep generative models

Figure 12: Comparison of the BLM upper bound on the first layer and the final
log-likelihood on the Tea training dataset, for 1000 2-layer SRBMs

Figure 13: Comparison of the BLM upper bound on the first layer and the final
log-likelihood on the Cmnist training dataset, for 1000 2-layer SRBMs

37

159

Arnold and Ollivier

Figure 14: Comparison of the BLM upper bound on the first layer and the final
log-likelihood on the Tea training dataset, for 1000 2-layer AERIes

Figure 15: Comparison of the BLM upper bound on the first layer and the final
log-likelihood on the Cmnist training dataset, for 1000 2-layer AERIes

38

160

Layer-wise training of deep generative models

Figure 16: BLM on a too shallow model: comparison of the BLM upper bound and
the AIS log-likelihood of an RBM on the Tea training dataset

RBM as first layer. The results contrast with the previous ones and confirm that
final performance is below the BLM upper bound when the model does not have
enough layers.

The alignment in Figures 12 and 13 can therefore be seen as a confirmation that
the Tea and Cmnist datasets would not benefit from a third layer.

Thus, the BLM upper bound could be used as a test for the opportunity of
adding layers to a model.

Training BLM upper bound vs validation log-likelihood. We now compare
the training BLM upper bound with the log-likelihood on a validation set distinct
from the training set: this tests whether the BLM obtained during training is a
good indication of the final performance of a bottom layer parameter.

As discussed earlier, because the BLM makes an assumption where there is
no regularization, using the training BLM upper bound to predict performance on
a validation set could be too optimistic: therefore we expect the validation log-
likelihood to be somewhat lower than the training BLM upper bound. (Although,
paradoxically, this can be somewhat counterbalanced by imperfect training of the
upper layers, as mentioned above.)

The results are reported in Figures 18 and 19 and confirm that the training BLM
is an upper bound of the validation log-likelihood. As for regularization, we can see
that on the Cmnist dataset where there are 4000 samples, generalization is not very

39

161

Arnold and Ollivier

Figure 17: BLM on a too shallow model: Comparison of the BLM upper bound and
the AIS log-likelihood of an RBM on the Cmnist training dataset

Figure 18: Training BLM upper bound vs validation log-likelihood on the Tea train-
ing dataset

40

162

Layer-wise training of deep generative models

Figure 19: Training BLM upper bound vs validation log-likelihood on the Cmnist

training dataset

difficult: the optimal P (h) for the training set used by the BLM is in fact almost
optimal for the validation set too. On the Tea dataset, the picture is somewhat
different: there is a gap between the training upper-bound and the validation log-
likelihood. This can be attributed to the increased importance of regularization on
this dataset in which the training set contains only 81 samples.

Although the training BLM upper bound can therefore not be considered a
good predictor of the validation log-likelihood, it is still a monotonous function of
the validation log-likelihood: as such it can still be used for comparing parameter
settings and for hyper-parameter selection.

Feeding the validation dataset to the BLM. Predictivity of the BLM (e.g.,
for hyper-parameter selection) can be improved by feeding the validation rather
than training set to the inference distribution and the BLM.

In the cases above we examined the predictivity of the BLM obtained during
training, on final performance on a validation dataset. We have seen that the train-
ing BLM is an imperfect predictor of this performance, notably because of lack of
regularization in the BLM optimistic assumption, and because we use an inference
distribution q maximized over the training set.

Some of these effects can easily be predicted by feeding the validation set to
the BLM and the inference part of the model during hyper-parameter selection, as
follows.

41

163

Arnold and Ollivier

Figure 20: Validation upper bound vs log-likelihood on the Tea validation dataset

We call validation BLM upper bound the BLM upper bound obtained by us-
ing the validation dataset instead of D in (34). Note that the values q and θI are
still those obtained from training on the training dataset. This parallels the vali-
dation step for auto-encoders, in which, of course, reconstruction performance on a
validation dataset is done by feeding this same dataset to the network.

We now compare the validation BLM upper bound to the log-likelihood of the
validation dataset, to see if it qualifies as a reasonable proxy.

The results are reported in Figures 20 and 21. As predicted, the validation
BLM upper bound is a better estimator of the validation log-likelihood (compare
Figures 18 and 19).

We can see that several models have a validation log-likelihood higher than the
validation BLM upper bound, which might seem paradoxical. This is simply because
the validation BLM upper bound still uses the parameters trained on the training
set and thus is not formally an upper bound.

The better overall approximation of the validation log-likelihood seems to in-
dicate that performing hyper-parameter selection with the validation BLM upper
bound can better account for generalization and regularization.

3.3.4 Approximating the BLM for larger models

The experimental setting considered here was small enough to allow for an exact
computation of the various BLM bounds by summing over all possible states of the
hidden variable h. However the exact computation of the BLM upper bound using

42

164

Layer-wise training of deep generative models

Figure 21: Validation upper bound vs log-likelihood on the Cmnist validation
dataset

ÛD,q(θI) as in (34) is not always possible because the number of terms in this sum
is exponential in the dimension of the hidden layer h.

In this situation we can use a sampling approach. For each data sample x̃, we
can take K samples from each mode of the BLM distribution qD (one mode for each
data sample x̃) to obtain an approximation of the upper bound in O(K ◊N2) where
N is the size of the validation set. (Since the practitioner can choose the size of the
validation set which need not necessarily be as large as the training or test sets, we
do not consider the N2 factor a major hurdle.)

Definition 9 For θI and q resulting from the training of a deep generative model,
let

ˆ̂UD,q(θI) := Ex≥PD

C

log
ÿ

x̃

K
ÿ

k=1

P◊I
(x|h)PD(x̃)

D

(35)

where for each x̃ and k, h is sampled from q(h|x̃).

To assess the accuracy of this approximation, we take K = 1 and compare the

values of ˆ̂UD,q(θI) and of ÛD,q(θI), on the Cmnist and Tea training datasets. The
results are reported in Figures 22 and 23 for all three models (vanilla AEs, AERIes,
and SRBMs) superimposed, showing good agreement.

43

165

Arnold and Ollivier

Figure 22: Approximation of the training BLM upper bound on the Tea training
dataset

Figure 23: Approximation of the training BLM upper bound on the the Cmnist

training dataset

44

166

Layer-wise training of deep generative models

Conclusions

The new layer-wise approach we propose to train deep generative models is based on
an optimistic criterion, the BLM upper bound, in which we suppose that learning
will be successful for upper layers of the model. Provided this optimism is justified
a posteriori and a good enough model is found for the upper layers, the resulting
deep generative model is provably close to optimal. When optimism is not justified,
we provide an explicit bound on the loss of performance.

This provides a new justification for auto-encoder training and fine-tuning, as
the training of the lower part of a deep generative model, optimized using a lower
bound on the BLM.

This new framework for training deep generative models highlights the impor-
tance of using richer models when performing inference, contrary to current practice.
This is consistent with the intuition that it is much harder to guess the underlying
structure by looking at the data, than to derive the data from the hidden structure
once it is known.

This possibility is tested empirically with auto-encoders with rich inference
(AERIes) which are completed with a top-RBM to create deep generative mod-
els: these are then able to outperform current state of the art (stacked RBMs) on
two different deep datasets.

The BLM upper bound is also found to be a good layer-wise proxy to evaluate
the log-likelihood of future models for a given lower layer setting, and as such is a
relevant means of hyper-parameter selection.

This opens new avenues of research, for instance in the design of algorithms to
learn features in the lower part of the model, or in the possibility to consider feature
extraction as a partial deep generative model in which the upper part of the model
is temporarily left unspecified.

Acknowledgments

This work was partially supported by the French ANR as part of the ASAP project
under grant ANR_09_EMER_001_04. The authors gratefully acknowledge the
support of the PASCAL2 Network of Excellence (IST-2007-216886).

References

Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. In Large-Scale
Kernel Machines. MIT Press, 2007.

Y. Bengio, P. Lamblin, V. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19, pages 153–160. MIT Press, Cambridge,
MA, 2007.

45

167

Arnold and Ollivier

Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive diver-
gence. Neural Computation, 21(6):1601–1621, 2009.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised feature
learning and deep learning: A review and new perspectives. CoRR, abs/1206.5538,
2012.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13:281–305, 2012.

James Bergstra, Rémy Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. In Advances in Neural Information Processing
Systems 23, 2011.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular
value decomposition. Biological Cybernetics, 59:291–294, 1988.

Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex
Systems, 5:603–643, 1991.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2006.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39:1–38, 1977.

G.E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, July 2006.

G.E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Conputation, 18:1527–1554, 2006.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In
ICML ’07: Proceedings of the 24th international conference on Machine learning,
pages 473–480, New York, NY, USA, 2007. ACM.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for
training deep neural networks. The Journal of Machine Learning Research, 10:
1–40, 2009.

Nicolas Le Roux and Yoshua Bengio. Representational power of restricted Boltz-
mann machines and deep belief networks. Neural Computation, 20:1631–1649,
June 2008.

46

168

Layer-wise training of deep generative models

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998.

R. M. Neal. Learning stochastic feedforward networks. Technical report, Dept. of
Computer Science, University of Toronto, 1990.

Radford M. Neal. Annealed importance sampling. Technical report, University of
Toronto, Department of Statistics, 1998.

Salah Rifai, Yoshua Bengio, Yann Dauphin, and Pascal Vincent. A generative
process for sampling contractive auto-encoders. In International Conference on
Machine Learning, ICML’12, 06 2012.

Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann machines. In Pro-
ceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 5, pages 448–455, 2009.

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief
networks. In Proceedings of the 25th international conference on Machine learning,
ICML ’08, pages 872–879, New York, NY, USA, 2008. ACM.

P. Smolensky. Information processing in dynamical systems: foundations of har-
mony theory. In D. Rumelhart and J. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, MA, USA,
1986.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceed-
ings of the 25th international conference on Machine learning, ICML ’08, pages
1096–1103, New York, NY, USA, 2008.

C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals of
Statistics, 11:95–103, 1983.

47

169

8.3 discussion 171

8.3 Discussion

This paper answers most of the questions presented in Chapter 6: How to train
optimal lower layers? With what criterion? How to perform layer wise model
selection? How to stop adding layers?

First, we show that it is theorerically possible to learn an optimal lower layer
before learning the upper layers (Question 1), in the sense that we can maximize
for a single layer the capacity of the model to achieve higher performance later.
The criterion to maximize at each step (Question 2) is then the BLM upper
bound1. As for the question of generality (Question 3), the BLM upper bound
applies to any generative model which represents probabilities over the input x

with distinct models for p(x|h) and for p(h). In this setting, the BLM upper
bound is the criterion to maximize w.r.t. the parameters of p(x|h), and the
log-likelihood of the dataset transformed by an inference distribution qcond(h|x)
is the criterion to maximize w.r.t. the parameters of p(h). In the case of auto-
associators and unsupervised fine-tuning (Questions 4 and 5), the maximization
of the reconstruction error can be seen as maximizing a reasonable lower bound
of the BLM upper bound where each example corresponds to only one hidden
representation.

This provides adittional justification for auto-associators, the unsupervised
fine-tuning of deep auto-encoders and for sparse coding models (Kavukcuoglu
et al., 2010a), as learning a partial deep generative model where the upper-part
is left unspecified.

This paper also gives a possible approach to estimating the log-likelihood of
deep generative models (Question 6). Although the BLM upper bound can only
be used to estimate the lower part of a deep generative model reliably, in the
case where the upper layer is effectively capable of learning its target distribution
efficiently, the BLM upper bound gives a very good approximation of the log-
likelihood of the complete model. As a good criterion for evaluating lower layers,
the BLM upper bound can also be used to perform model selection in a layer-wise
fashion (Question 7). The evaluation of the last layer can then be approached
by evaluating the likelihood w.r.t. its target distribution which can be reliably
approximated because it only concerns one hidden layer. The BLM upper bound
also gives a criterion to stop adding layers (Question 8). Namely, if the BLM

upper bound is not higher than the performance achieved with a shallow model,
this shallow model can be chosen as the last layer with a guarantee that adding
layers could not have improved performance.

This study also leads to many questions. First, the empirical evaluation of
the approach poses a serious problem because the aim is to maximize (even
approximately) an intractable quantity: the log likelihood of a deep generative
model. This makes difficult the comparison of two competing approaches when

1 Although the BLM upper bound is optimal in a theoretical sense, in practice it is intractable
and must be approximated.

172 presentation of the second article

the performance measure cannot itself be easily approximated. In this paper,
the solution proposed is to evaluate the log-likelihood under small models, and
accordingly to train them on problems of limited dimension, while trying to make
sure that the evaluation is still meaningful. This work would therefore benefit
from a more comprehensive empirical study involving more complex datasets
and based either on 1/ new ways to approximate the log-likelihood of deep
generative models (as in e.g. Murray and Salakhutdinov, 2009); or 2/ evaluation
w.r.t. a proxy measure of performance such as classification accuracy in several
settings. An other unresolved issue concerns the absence of guarantee that the
problem is simplified at each layer. In other words, when a problem is transfered
to the upper layers, the problem could in theory be as difficult as the original
problem or even harder. Fortunately this does not seem to be the case in practice.
Nonetheless, this question is closely related to the matter of what constitutes
a good hidden representation ? A representation which simplifies the problem
would be desirable, but further study would be needed to better understand this
issue. Finally, although we discuss which criterion to use in the optimization
of each layer, the maximization is performed using the usual back-propagation
algorithm which corresponds to stochastic gradient descent. In the next paper,
we consider the possibility of using the natural gradient to learn the parameters
of RBMs, hopefully improving the quality of the estimation.

9
P R E S E N TAT I O N O F T H E T H I R D A RT I C L E

Ludovic Arnold, Anne Auger, Nikolaus Hansen, and Yann Ollivier. Information-
geometric optimization algorithms: A unifying picture via invariance principles.
Technical report (partial), ArXiv e-prints, June 2011. URL http://arxiv.org/

abs/1106.3708.

9.1 Context

The previous papers discussed the deep learning procedure itself, and more pre-
cisely dealt with the issue of solving a deep learning problem by sequentially
solving simpler sub-problems.

However, the learning of one layer itself might be improved by a better opti-
mization procedure. In several contexts such as deep feed-forward neural net-
works, or recurrent neural networks, the usual gradient descent procedure does
not seem to lead to a satisfactory estimate of the optimum. This makes im-
portant the research for better optimization techniques such as second order
methods (Martens, 2010; Martens and Sutskever, 2011; Sutskever et al., 2011),
the natural gradient (Amari, 1998) and their possible combination (Le Roux and
Fitzgibbon, 2010).

The natural gradient approach is arguably the best metric in which to perform
gradient descent for maximizing the log-likelihood of a distribution because it is
invariant w.r.t. re-parametrization and can also lead to more invariance with re-
spect to transformations of the input. Nevertheless, it is seldom used in practice
because it involves computing the Fisher matrix (see section 3.9), at each step.
Even if computing the exact natural gradient will often be impractical, approxi-
mations might be fast enough to be applicable in practice while still leading to a
better optimum than what is usually obtained with the vanilla gradient descent.

This leads us to ask what exactly happens when the vanilla gradient is used
instead of the natural gradient and how this relates to parametrization and
metrics.

As an exact implementation of the natural gradient is not expected to be com-
petitive in an ML setting, we consider the setting of black-box optimization with
EDAs (see section 1.8), where maximum likelihood gradient updates are used to

173

http://arxiv.org/abs/1106.3708
http://arxiv.org/abs/1106.3708

174 presentation of the third article

move a proposal distribution towards better values of the objective function. In
this setting, the computational cost is evaluated w.r.t. the number of evaluations
of the target function which does not take into account the computation of the
Fisher matrix used in the natural gradient.

9.2 Contributions

In this paper, the natural gradient is examined in the context of black-box op-
timization and EDAs. Experiments are performed to compare the vanilla and
natural gradients when trying to optimize a simple bi-modal function using an
RBM as proposal distribution.

The results clearly show the benefits of using the natural gradient in the con-
text of EDAs. Even using the equivalent of a batch gradient update with 10,000
training samples at each step, the vanilla gradient suffers from a breach of sym-
metry, favoring some configurations at the expense of others. This breach of
symmetry results in a premature loss of diversity as the gradient is incapable of
moving the proposal RBM towards two modes at the same time. By comparison,
the natural gradient restores symmetry and is consistently able to preserve diver-
sity to account for the multimodal nature of the input. In the case of stochastic
gradient updates where only 10 training samples are used at each step, the nat-
ural gradient is still able to move towards both modes of the objective function
provided the learning rate is small enough.

These results suggest that the natural gradient may be more capable of deal-
ing with multimodal distributions. In practical applications where the natural
gradient may be considered too expensive, a possible way to mitigate the is-
sues associated with the vanilla gradient may be to use a parametrization as
symmetric as possible. This leads us to propose a centered energy function for
RBMs.

The author is the main contributor of section 5 which concerns the experiments
on the natural gradient with RBMs. Accordingly, sections 3 and 4, which do not
directly concern the author’s contribution, have been removed. The full paper
can be found at http://arxiv.org/abs/1106.3708.

http://arxiv.org/abs/1106.3708

Information-Geometric Optimization Algorithms:
A Unifying Picture via Invariance Principles

Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen

Abstract

We present a canonical way to turn any smooth parametric family of
probability distributions on an arbitrary search space X into a continuous-
time black-box optimization method on X, the information-geometric op-
timization (IGO) method. Invariance as a major design principle keeps the
number of arbitrary choices to a minimum. The resulting IGO flow is the
flow of an ordinary differential equation conducting the natural gradient
ascent of an adaptive, time-dependent transformation of the objective func-
tion. It makes no particular assumptions on the objective function to be
optimized.

The IGO method produces explicit IGO algorithms through time dis-
cretization. It naturally recovers versions of known algorithms and offers
a systematic way to derive new ones. In continuous search spaces, IGO
algorithms take a form related to natural evolution strategies (NES). The
cross-entropy method is recovered in a particular case with a large time
step, and can be extended into a smoothed, parametrization-independent
maximum likelihood update. When applied to the family of Gaussian dis-
tributions on R

d, the IGO framework recovers a version of the well-known
CMA-ES algorithm and of xNES. For the family of Bernoulli distributions
on {0, 1}d, we recover the seminal PBIL algorithm. For the distributions of
restricted Boltzmann machines, we naturally obtain a novel algorithm for
discrete optimization on {0, 1}d. All these algorithms are natural instances
of, and unified under, the single information-geometric optimization frame-
work.

The IGO method achieves, thanks to its intrinsic formulation, maxi-
mal invariance properties: invariance under reparametrization of the search
space X, under a change of parameters of the probability distribution, and
under increasing transformation of the function to be optimized. The latter
is achieved through an adaptive formulation of the objective.

Theoretical considerations strongly suggest that IGO algorithms are es-
sentially characterized by a minimal change of the distribution over time.
Therefore they have minimal loss in diversity through the course of opti-
mization, provided the initial diversity is high. First experiments using
restricted Boltzmann machines confirm this insight. As a simple conse-
quence, IGO seems to provide, from information theory, an elegant way to
spontaneously explore several valleys of a fitness landscape in a single run.

Introduction

Optimization problems are at the core of many disciplines. Given an objective
function f : X æ R, to be optimized on some space X, the goal of black-box opti-

1

175

mization is to find solutions x œ X with small (in the case of minimization) value
f(x), using the least number of calls to the function f . In a black-box scenario,
knowledge about the function f is restricted to the handling of a device (e.g., a
simulation code) that delivers the value f(x) for any input x œ X. The search
space X may be finite, discrete infinite, or continuous. However, optimization
algorithms are often designed for a specific type of search space, exploiting its
specific structure.

One major design principle in general and in optimization in particular is
related to invariance, which allows to extend performance observed on a given
function to its whole associated invariance class. Thus invariance hopefully pro-
vides better robustness w.r.t. changes in the presentation of a problem. For
continuous search spaces, invariance under translation of the coordinate system
is standard in optimization. Invariance under general affine-linear changes of the
coordinates has been—we believe—one of the keys to the success of the covari-
ance matrix adaptation evolution strategy (CMA-ES, (Hansen and Ostermeier,
2001)). While these relate to transformations in the search space, another im-
portant invariance concerns the application of monotonically increasing transfor-
mations to f , so that it is indifferent whether the function f , f3 or f ◊ |f |≠2/3

is minimized. This way some non-convex or non-smooth functions can be as
“easily” optimised as convex ones. Invariance under f -transformation is not un-
common, e.g., for evolution strategies (Schwefel, 1995) or pattern search methods
(Hooke and Jeeves, 1961; Torczon, 1997; Nelder and Mead, 1965); however it has
not always been recognized as an attractive feature.

Many stochastic optimization methods have been proposed to tackle black-
box optimization. The underlying (often hidden) principle of those stochastic
methods is to iteratively update a probability distribution P◊ defined on X,
parametrized by a set of parameters θ. At a given iteration, the distribution
P◊ represents, loosely speaking, the current belief about where solutions with
the smallest values of the function f may lie. Over time, P◊ is expected to
concentrate around the minima of f . The update of the distribution involves
querying the function with points sampled from the current probability distribu-
tion P◊. Although implicit in the presentation of many stochastic optimization
algorithms, this is the natural setting for the wide family of estimation of dis-
tribution algorithms (EDA) (Larranaga and Lozano, 2002; Baluja and Caruana,
1995; Pelikan et al., 2002). Updates of the probability distribution often rely on
heuristics (nevertheless in (Toussaint, 2004) the possible interest of information
geometry to exploit the structure of probability distributions for designing bet-
ter grounded heuristics is pointed out). In addition, in the EDA setting we can
distinguish two theoretically founded approaches to update P◊. First, the cross-
entropy method consists in taking θ minimizing the Kullback–Leibler divergence
between P◊ and the indicator of the best points according to f (de Boer et al.,
2005). Second, one can transfer the objective function f to the space of pa-
rameters θ by taking the average of f under P◊, seen as a function of θ. This
average is a new function from a Euclidian space to R and is minimal when P◊

is concentrated on minima of f . Consequently, θ can be updated by following a
gradient descent of this function with respect to θ. This has been done in vari-

2

176

ous situations such as X = {0, 1}d and the family of Bernoulli measures (Berny,
2000a) or of Boltzmann machines (Berny, 2002), or on X = R

d for the family of
Gaussian distributions (Berny, 2000b; Gallagher and Frean, 2005).

However, taking the ordinary gradient with respect to θ depends on the pre-
cise way a parameter θ is chosen to represent the distribution P◊, and does not
take advantage of the Riemannian metric structure of families of probability dis-
tributions. In the context of machine learning, Amari noted the shortcomings
of the ordinary gradient for families of probability distributions (Amari, 1998)
and proposed instead to use the natural gradient with respect to the Fisher
metric (Rao, 1945; Jeffreys, 1946; Amari and Nagaoka, 2000). In the context of
optimization, the natural gradient with respect to the Fisher metric has been
used for exponential families on X = {0, 1}d (Malagò et al., 2008, 2011) and
for the family of Gaussian distributions on X = R

d with so-called natural evolu-
tion strategies (NES) (Wierstra et al., 2008; Sun et al., 2009; Glasmachers et al.,
2010).

However, none of the previous attempts using gradient updates captures the
invariance under increasing transformations of the objective function, which is
instead, in some cases, enforced a posteriori with heuristics arguments.

Building on these ideas, this paper overcomes the invariance problem of pre-
vious attempts and provides a consistent, unified picture of optimization on ar-
bitrary search spaces via invariance principles. More specifically, we consider an
arbitrary search space X, either discrete or continuous, and a black-box optimiza-
tion problem on X. We assume that a family of probability distributions P◊ on
X depending on a continuous multicomponent parameter θ œ Θ has been chosen.
A classical example is to take X = R

d and to consider the family of all Gaus-
sian distributions P◊ on R

d, with θ = (m, C) the mean and covariance matrix.
Another simple example is X = {0, 1}d equipped with the family of Bernoulli
measures, i.e. θ = (θi)16i6d and P◊(x) =

r
θ

xi
i (1 ≠ θi)1≠xi for x = (xi) œ X.

From this setting, information-geometric optimization (IGO) can be defined
in a natural way. At each (continuous) time t, we maintain a value θt of the pa-
rameter of the distribution. The function f to be optimized is transferred to the
parameter space Θ by means of a suitable time-dependent transformation based
on the P◊t-quantiles of f (Definition 2). The IGO flow, introduced in Defini-
tion 3, follows the natural gradient of the expected value of this function of θt in
the parameter space Θ, where the natural gradient derives from the Fisher infor-
mation metric. The IGO flow is thus the flow of an ordinary differential equation
in space Θ. This continuous-time gradient flow is turned into a family of explicit
IGO algorithms by taking an Euler time discretization of the differential equa-
tion and approximating the distribution P◊t by using samples. From the start,
the IGO flow is invariant under strictly increasing transformations of f ; we also
prove that the sampling procedure is consistent. IGO algorithms share their
final algebraic form with the natural evolution strategies (NES) introduced in
the Gaussian setting (Wierstra et al., 2008; Sun et al., 2009; Glasmachers et al.,
2010); the latter are thus recovered in the IGO framework as an Euler approxi-
mation to a well-defined flow, without heuristic arguments.

The IGO method also has an equivalent description as an infinitesimal max-

3

177

imum likelihood update; this reveals a new property of the natural gradient and
does not require a smooth parametrization by θ anymore. This also establishes
a link between IGO and the cross-entropy method (de Boer et al., 2005).

When we instantiate IGO using the family of Gaussian distributions on R
d,

we naturally obtain versions of the well-known covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen and Ostermeier, 2001; Hansen and Kern,
2004; Jastrebski and Arnold, 2006) and of natural evolution strategies. With
Bernoulli measures on the discrete cube {0, 1}d, we recover the well-known
population-based incremental learning (PBIL) (Baluja and Caruana, 1995; Baluja,
1994); this derivation of PBIL as a natural gradient ascent appears to be new,
and sheds some light on the common ground between continuous and discrete
optimization.

From the IGO framework, it is immediate (theoretically) to build new opti-
mization algorithms using more complex families of distributions than Gaussian
or Bernoulli. As an illustration, distributions associated with restricted Boltz-
mann machines (RBMs) provide a new but natural algorithm for discrete opti-
mization on {0, 1}d which is able to handle dependencies between the bits (see
also (Berny, 2002)). The probability distributions associated with RBMs are
multimodal; combined with the specific information-theoretic properties of IGO
that guarantee minimal change in diversity over time, this allows IGO to reach
multiple optima at once very naturally, at least in a simple experimental setup
(Section 5).

The IGO framework is built to achieve maximal invariance properties. In-
variance in the search space is related to invariance under θ-reparametrization
which is the main idea behind information geometry (Amari and Nagaoka, 2000).
First, the IGO flow is invariant under reparametrization of the family of distri-
butions P◊, that is, it only depends on P◊ and not on the way we write the
parameter θ. For instance, for Gaussian measures it should not matter whether
we use the covariance matrix or its inverse or a Cholesky factor as the parameter.
This limits the influence of encoding choices on the behavior of the algorithm.
Second, the IGO flow is invariant under a change of coordinates in the search
space X, provided that this change of coordinates globally preserves the family
of distributions P◊. For instance, for Gaussian distributions on R

d, this includes
all affine changes of coordinates. This means that the algorithm, apart from
initialization, does not depend on the precise way the data is presented. Last,
IGO algorithms are invariant under applying a strictly increasing function to f .
Contrary to previous formulations using natural gradients (Wierstra et al., 2008;
Glasmachers et al., 2010; Akimoto et al., 2010), this invariance is achieved from
the start. Such invariance properties mean that we deal with intrinsic properties
of the objects themselves, and not with the way we encode them as collections
of numbers in R

d. It also means, most importantly, that we make a minimal
number of arbitrary choices.

In Section 1, we define the IGO flow and the IGO algorithm. We begin with
standard facts about the definition and basic properties of the natural gradient,
and its connection with Kullback–Leibler divergence and diversity. We then

4

178

proceed to the detailed description of the algorithm.
In Section 2, we state some first mathematical properties of IGO. These

include monotone improvement of the objective function, invariance properties,
the form of IGO for exponential families of probability distributions, and the
case of noisy objective functions.

In Section 3 we explain the theoretical relationships between IGO, maxi-
mum likelihood estimates and the cross-entropy method. In particular, IGO is
uniquely characterized by a weighted log-likelihood maximization property.

In Section 4, we derive several well-known optimization algorithms from the
IGO framework. These include PBIL, versions of CMA-ES and other Gaussian
evolutionary algorithms such as EMNA and xNES. This also illustrates how a
large step size results in more and more differing algorithms w.r.t. the continuous-
time IGO flow. We also study the IGO flow solution on linear functions for
discrete and continuous search spaces.

In Section 5, we illustrate how IGO can be used to design new optimiza-
tion algorithms. As a proof of concept, we derive the IGO algorithm associated
with restricted Boltzmann machines for discrete optimization, allowing for multi-
modal optimization. We perform a preliminary experimental study of the specific
influence of the Fisher information matrix on the performance of the algorithm
and on diversity of the optima obtained.

In Section 6, we discuss related work, and in particular, IGO’s relationship
with and differences from various other optimization algorithms such as natural
evolution strategies or the cross-entropy method. We also sum up the main
contributions of the paper and the design philosophy of IGO.

1 Algorithm description

We now present the outline of the algorithm. Each step is described in more
detail in the sections below.

The IGO flow can be seen as an estimation of distribution algorithm: at each
time t, we maintain a probability distribution P◊t on the search space X, where
θt œ Θ. The value of θt will evolve so that, over time, P◊t gives more weight to
points x with better values of the function f(x) to optimize.

A straightforward way to proceed is to transfer f from x-space to θ-space:
define a function F (θ) as the P◊-average of f and then do a gradient descent for
F (θ) in space Θ (Berny, 2000a, 2002, 2000b; Gallagher and Frean, 2005). This
way, θ will converge to a point such that P◊ yields a good average value of f .
We depart from this approach in two ways:

• At each time, we replace f with an adaptive transformation of f represent-
ing how good or bad observed values of f are relative to other observations.
This provides invariance under all monotone transformations of f .

• Instead of the vanilla gradient for θ, we use the so-called natural gradient
given by the Fisher information matrix. This reflects the intrinsic geom-
etry of the space of probability distributions, as introduced by Rao and

5

179

Jeffreys (Rao, 1945; Jeffreys, 1946) and later elaborated upon by Amari
and others (Amari and Nagaoka, 2000). This provides invariance under
reparametrization of θ and, importantly, minimizes the change of diversity
of P◊.

The algorithm is constructed in two steps: we first give an “ideal” version,
namely, a version in which time t is continuous so that the evolution of θt is
given by an ordinary differential equation in Θ. Second, the actual algorithm is
a time discretization using a finite time step and Monte Carlo sampling instead
of exact P◊-averages.

1.1 The natural gradient on parameter space

About gradients and the shortest path uphill. Let g be a smooth function
from R

d to R, to be maximized. We first recall the interpretation of gradient
ascent as “the shortest path uphill”.

Let y œ R
d. Define the vector z by

z = lim
εæ0

arg max
z, ÎzÎ61

g(y + εz). (1)

Then one can check that z is the normalized gradient of g at y: zi = ∂g/∂yi

Î∂g/∂ykÎ .
(This holds only at points y where the gradient of g does not vanish.)

This shows that, for small δt, the well-known gradient ascent of g given by

yt+δt
i = yt

i + δt ∂g
∂yi

realizes the largest increase of the value of g, for a given step size Îyt+δt ≠ ytÎ.
The relation (1) depends on the choice of a norm Î·Î (the gradient of g is given

by ∂g/∂yi only in an orthonormal basis). If we use, instead of the standard metric

Îy ≠ yÕÎ =
Òq

(yi ≠ yÕ
i)2 on R

d, a metric Îy ≠ yÕÎA =
Òq

Aij(yi ≠ yÕ
i)(yj ≠ yÕ

j)
defined by a positive definite matrix Aij , then the gradient of g with respect to
this metric is given by

q
j A≠1

ij
∂g
∂yi

. This follows from the textbook definition of
gradients by g(y + εz) = g(y) + εÈÒg, zÍA + O(ε2) with È·, ·ÍA the scalar product
associated with the matrix Aij (Schwartz, 1992).

It is possible to write the analogue of (1) using the A-norm. We then find
that the gradient ascent associated with metric A is given by

yt+δt = yt + δt A≠1 ∂g
∂yi

,

for small δt and maximizes the increment of g for a given A-distance Îyt+δt ≠
ytÎA—it realizes the steepest A-ascent. Maybe this viewpoint clarifies the rela-
tionship between gradient and metric: this steepest ascent property can actually
be used as a definition of gradients.

In our setting we want to use a gradient ascent in the parameter space Θ of
our distributions Pθ. The “vanilla” gradient ∂

∂θi
is associated with the metric

Îθ ≠ θÕÎ =
Òq

(θi ≠ θÕ
i)2 and clearly depends on the choice of parametrization

θ. Thus this metric, and the direction pointed by this gradient, are not intrinsic,
in the sense that they do not depend only on the distribution Pθ. A metric
depending on θ only through the distributions Pθ can be defined as follows.

6

180

Fisher information and the natural gradient on parameter space. Let
θ, θÕ œ Θ be two values of the distribution parameter. The most widely used
way to define a “distance” between two generic distributions P◊ and P◊Õ is the
Kullback–Leibler divergence from information theory, defined (Kullback, 1997)
as

KL(P◊Õ || P◊) =
⁄

x
ln

P◊Õ(x)
P◊(x)

P◊Õ(dx).

When θÕ = θ + δθ is close to θ, under mild smoothness assumptions we can
expand the Kullback–Leibler divergence at second order in δθ. This expansion
defines the Fisher information matrix I at θ (Kullback, 1997):

KL(P◊+δθ || Pθ) =
1
2

ÿ
Iij(θ) δθiδθj + O(δθ3).

An equivalent definition of the Fisher information matrix is by the usual formulas
(Cover and Thomas, 2006)

Iij(θ) =
⁄

x

∂ ln Pθ(x)
∂θi

∂ ln Pθ(x)
∂θj

Pθ(dx) = ≠
⁄

x

∂2 ln Pθ(x)
∂θi ∂θj

Pθ(dx).

The Fisher information matrix defines a (Riemannian) metric on Θ: the
distance, in this metric, between two very close values of θ is given by the
square root of twice the Kullback–Leibler divergence. Since the Kullback–Leibler
divergence depends only on Pθ and not on the parametrization of θ, this metric
is intrinsic.

If g : Θ æ R is a smooth function on the parameter space, its natural gradient
(Amari, 1998) at θ is defined in accordance with the Fisher metric as

(ÂÒθ g)i =
ÿ

j

I≠1
ij (θ)

∂g(θ)
∂θj

or more synthetically
ÂÒθ g = I≠1 ∂g

∂θ
.

From now on, we will use ÂÒθ to denote the natural gradient and ∂

∂θ
to denote

the vanilla gradient.
By construction, the natural gradient descent is intrinsic: it does not depend

on the chosen parametrization θ of Pθ, so that it makes sense to speak of the
natural gradient ascent of a function g(Pθ). The Fisher metric is essentially the
only way to obtain this property (Amari and Nagaoka, 2000, Section 2.4).

Given that the Fisher metric comes from the Kullback–Leibler divergence,
the “shortest path uphill” property of gradients mentioned above translates as
follows (see also (Amari, 1998, Theorem 1)):

Proposition 1. The natural gradient ascent points in the direction δθ achieving
the largest change of the objective function, for a given distance between Pθ and
Pθ+δθ in Kullback–Leibler divergence. More precisely, let g be a smooth function

7

181

on the parameter space Θ. Let θ œ Θ be a point where ÂÒg(θ) does not vanish.
Then, if

δθ =
ÂÒg(θ)

Î ÂÒg(θ)Î
is the direction of the natural gradient of g, we have

δθ = lim
εæ0

1
ε

arg max
δθ such that

KL(Pθ+δθ || Pθ)6ε2/2

g(θ + δθ).

Here we have implicitly assumed that the parameter space Θ is non-degenerate
and proper (that is, no two points θ œ Θ define the same probability distribution,
and the mapping Pθ ‘æ θ is continuous).

Why use the Fisher metric gradient for optimization? Relationship to
diversity. The first reason for using the natural gradient is its reparametriza-
tion invariance, which makes it the only gradient available in a general abstract
setting (Amari and Nagaoka, 2000). Practically, this invariance also limits the
influence of encoding choices on the behavior of the algorithm. More prosaically,
the Fisher matrix can be also seen as an adaptive learning rate for different com-
ponents of the parameter vector θi: components i with a high impact on Pθ will
be updated more cautiously.

Another advantage comes from the relationship with Kullback–Leibler dis-
tance in view of the “shortest path uphill” (see also (Amari, 1998)). To mini-
mize the value of some function g(θ) defined on the parameter space Θ, the naive
approach follows a gradient descent for g using the “vanilla” gradient

θt+δt
i = θt

i + δt ∂g
∂θi

and, as explained above, this maximizes the increment of g for a given increment
Îθt+δt ≠ θtÎ. On the other hand, the Fisher gradient

θt+δt
i = θt

i + δtI≠1 ∂g
∂θi

maximizes the increment of g for a given Kullback–Leibler distance KL(Pθt+δt || Pθt).
In particular, if we choose an initial value θ0 such that Pθ0 covers the whole

space X uniformly (or a wide portion, in case X is unbounded), the Kullback–
Leibler divergence between Pθt and Pθ0 is the Shannon entropy of the uniform
distribution minus the Shannon entropy of Pθt , and so this divergence measures
the loss of diversity of Pθt with respect to the uniform distribution. So following
the natural gradient of a function g, starting at or close to the uniform distri-
bution, amounts to optimizing the function g while staying as close as possible
to uniform in Kullback–Leibler divergence, i.e., optimizing the function g with
minimal loss of diversity, provided the initial diversity is large. (This is valid,
of course, only at the beginning; once one gets too far from uniform, a better
interpretation is minimal change of diversity.) On the other hand, the vanilla
gradient descent optimizes g with minimal change in the numerical values of the
parameter θ, which is of little interest.

8

182

So arguably this method realizes the best trade-off between optimization and
loss of diversity. (Though, as can be seen from the detailed algorithm description
below, maximization of diversity occurs only greedily at each step, and so there
is no guarantee that after a given time, IGO will provide the highest possible
diversity for a given objective function value.)

An experimental confirmation of the positive influence of the Fisher matrix
on diversity is given in Section 5 below. This may also provide a theoretical
explanation to the good performance of CMA-ES.

1.2 IGO: Information-geometric optimization

Quantile rewriting of f . Our original problem is to minimize a function f :
X æ R. A simple way to turn f into a function on Θ is to use the expected value
≠EPθ

f (Berny, 2000a; Wierstra et al., 2008), but expected values can be unduly
influenced by extreme values and using them can be rather unstable (Whitley,
1989); moreover ≠EPθ

f is not invariant under increasing transformation of f
(this invariance implies we can only compare f -values, not sum them up).

Instead, we take an adaptive, quantile-based approach by first replacing the
function f with a monotone rewriting W f

◊t , depending on the current parameter
value θt, and then following the gradient of EPθ

W f
◊t , seen as a function of θ. A

due choice of W f
◊t allows to control the range of the resulting values and achieves

the desired invariance. Because the rewriting W f
◊t depends on θt, it might be

viewed as an adaptive f -transformation.
The goal is that if f(x) is “small” then W f

◊ (x) œ R is “large” and vice versa,
and that W f

◊ remains invariant under increasing transformations of f . The
meaning of “small” or “large” depends on θ œ Θ and is taken with respect to
typical values of f under the current distribution P◊. This is measured by the
P◊-quantile in which the value of f(x) lies.

Definition 2. The lower and upper P◊-f-quantiles of x œ X are defined as

q<
◊ (x) = PrxÕ≥Pθ

(f(xÕ) < f(x))

q6◊ (x) = PrxÕ≥Pθ
(f(xÕ) 6 f(x)) .

(2)

Let w : [0; 1] æ R be a non-increasing function, the selection scheme.

The transform W f
◊ (x) of an objective function f : X æ R is defined as a

function of the P◊-f-quantile of x as

W f
◊ (x) =

Y
_]
_[

w(q6◊ (x)) if q6◊ (x) = q<
◊ (x),

1

q6
θ

(x)≠q<
θ

(x)

s q=q6
θ

(x)

q=q<
θ

(x)
w(q) dq otherwise.

(3)

The quantile functions q reflect the probability to sample a better value than
f(x). They are monotone in f (if f(x1) 6 f(x2) then q<

◊ (x1) 6 q<
◊ (x2), and

likewise for q6) and invariant under strictly increasing transformations of f .
A typical choice for w is w(q) = q6q0 for some fixed value q0, the selection

quantile. In what follows, we suppose that a selection scheme has been chosen
once and for all.

9

183

As desired, the definition of W f
◊ is invariant under a strictly increasing trans-

formation of f . For instance, the P◊-median of f gets remapped to w(1
2).

Note that Ex≥Pθ
W f

◊ (x) is always equal to
s 1

0 w, independently of f and θ:
indeed, by definition, the P◊-quantile of a random point under P◊ is uniformly
distributed in [0; 1]. In the following, our objective will be to maximize the
expected value of W f

◊t over θ, that is, to maximize

EPθ
W f

◊t =
⁄

W f
◊t(x) P◊(dx) (4)

over θ, where θt is fixed at a given step but will adapt over time.
Importantly, W f

◊ (x) can be estimated in practice: indeed, the quantiles
PrxÕ≥Pθ

(f(xÕ) < f(x)) can be estimated by taking samples of P◊ and order-
ing the samples according to the value of f (see below). The estimate remains
invariant under strictly increasing f -transformations.

The IGO gradient flow. At the most abstract level, IGO is a continuous-
time gradient flow in the parameter space Θ, which we define now. In practice,
discrete time steps (a.k.a. iterations) are used, and P◊-integrals are approximated
through sampling, as described in the next section.

Let θt be the current value of the parameter at time t, and let δt π 1. We
define θt+δt in such a way as to increase the Pθ-weight of points where f is
small, while not going too far from Pθt in Kullback–Leibler divergence. We use
the adaptive weights W f

θt as a way to measure which points have large or small
values. In accordance with (4), this suggests taking the gradient ascent

θt+δt = θt + δt ÂÒθ

⁄
W f

θt(x) Pθ(dx) (5)

where the natural gradient is suggested by Proposition 1.
Note again that we use W f

θt and not W f
θ

in the integral. So the gradient ÂÒθ

does not act on the adaptive objective W f
θt . If we used W f

θ
instead, we would

face a paradox: right after a move, previously good points do not seem so good
any more since the distribution has improved. More precisely,

s
W f

θ
(x) Pθ(dx)

is constant and always equal to the average weight
s 1

0 w, and so the gradient
would always vanish.

Using the log-likelihood trick ÂÒPθ = Pθ
ÂÒln Pθ (assuming Pθ is smooth), we

get an equivalent expression of the update above as an integral under the current
distribution Pθt ; this is important for practical implementation. This leads to
the following definition.

Definition 3 (IGO flow). The IGO flow is the set of continuous-time trajectories
in space Θ, defined by the ordinary differential equation

dθt

dt
= ÂÒθ

⁄
W f

θt(x) Pθ(dx) (6)

=
⁄

W f
θt(x) ÂÒθ ln Pθ(x) Pθt(dx) (7)

= I≠1(θt)
⁄

W f
θt(x)

∂ ln Pθ(x)
∂θ

Pθt(dx). (8)

10

184

where the gradients are taken at point θ = θt, and I is the Fisher information
matrix.

Natural evolution strategies (NES, (Wierstra et al., 2008; Glasmachers et al.,
2010; Sun et al., 2009)) feature a related gradient descent with f(x) instead of
W f

◊t(x). The associated flow would read

dθt

dt
= ≠ ÂÒ◊

⁄
f(x) P◊(dx) , (9)

where the gradient is taken at θt (in the sequel when not explicitly stated, gra-
dients in θ are taken at θ = θt). However, in the end NESs always implement
algorithms using sample quantiles, as if derived from the gradient ascent of
W f

◊t(x).
The update (7) is a weighted average of “intrinsic moves” increasing the

log-likelihood of some points. We can slightly rearrange the update as

dθt

dt
=

⁄preference weight˙ ˝¸ ˚
W f

◊t(x) ÂÒ◊ ln P◊(x)¸ ˚˙ ˝
intrinsic move to reinforce x

current sample distribution˙ ˝¸ ˚
P◊t(dx) (10)

= ÂÒ◊

⁄
W f

◊t(x) ln P◊(x)
¸ ˚˙ ˝

weighted log-likelihood

P◊t(dx). (11)

which provides an interpretation for the IGO gradient flow as a gradient ascent
optimization of the weighted log-likelihood of the “good points” of the current
distribution. In a precise sense, IGO is in fact the “best” way to increase this
log-likelihood.

For exponential families of probability distributions, we will see later that
the IGO flow rewrites as a nice derivative-free expression.

IGO algorithms: time discretization and sampling. The above is a math-
ematically well-defined continuous-time flow in the parameter space. Its practical
implementation involves three approximations depending on two parameters N
and δt:

• the integral under P◊t is approximated using N samples taken from P◊t ;

• the value W f
◊t is approximated for each sample taken from P◊t ;

• the time derivative d◊t

dt is approximated by a δt time increment.

We also assume that the Fisher information matrix I(θ) and ∂ ln Pθ(x)
∂θ

can be
computed (see discussion below if I(θ) is unknown).

At each step, we draw N samples x1, . . . , xN under Pθt . To approximate
the quantiles, we rank the samples according to the value of f . Define rk(xi) =
#{j, f(xj) < f(xi)} and let the estimated weight of sample xi be

‚wi =
1
N

w

3
rk(xi) + 1/2

N

4
, (12)

11

185

using the selection scheme function w introduced above. (This is assuming there
are no ties in our sample; in case several sample points have the same value of
f , we define ‚wi by averaging the above over all possible rankings of the ties1.)

Then we can approximate the IGO flow as follows.

Definition 4 (IGO algorithms). The IGO algorithm associated with parame-
trization θ, sample size N and step size δt is the following update rule for the
parameter θt. At each step, N sample points x1, . . . , xN are drawn according to
the distribution P◊t. The parameter is updated according to

θt+δt = θt + δt
Nÿ

i=1

‚wi
ÂÒθ ln Pθ(xi)

θ=θt

(14)

= θt + δt I≠1(θt)
Nÿ

i=1

‚wi
∂ ln Pθ(xi)

∂θ

θ=θt

(15)

where ‚wi is the weight (12) obtained from the ranked values of the objective
function f .

Equivalently one can fix the weights wi = 1
N w

1
i≠1/2

N

2
once and for all and

rewrite the update as

θt+δt = θt + δt I≠1(θt)
Nÿ

i=1

wi
∂ ln Pθ(xi:N)

∂θ

θ=θt

(16)

where xi:N denotes the ith sampled point ranked according to f , i.e. f(x1:N) <
. . . < f(xN :N) (assuming again there are no ties). Note that {xi:N } = {xi} and
{wi} = { ‚wi}.

As will be discussed in Section 4, this update applied to multivariate nor-
mal distributions or Bernoulli measures allows to neatly recover versions of
some well-established algorithms, in particular CMA-ES and PBIL. Actually,
in the Gaussian context updates of the form (15) have already been introduced
(Glasmachers et al., 2010; Akimoto et al., 2010), though not formally derived
from a continuous-time flow with quantiles.

When N æ Œ, the IGO algorithm using samples approximates the continuous-
time IGO gradient flow. Indeed, the IGO algorithm, with N = Œ, is simply the
Euler approximation scheme for the ordinary differential equation defining the
IGO flow (6). The latter result thus provides a sound mathematical basis for
currently used rank-based updates.

1A mathematically neater but less intuitive version would be

‚wi =
1

rk6(xi) − rk<(xi)

⁄ u=rk6(xi)/N

u=rk<(xi)/N

w(u)du (13)

with rk<(xi) = #{j, f(xj) < f(xi)} and rk6(xi) = #{j, f(xj) 6 f(xi)}.

12

186

IGO flow versus IGO algorithms. The IGO flow (6) is a well-defined
continuous-time set of trajectories in the space of probability distributions P◊,
depending only on the objective function f and the chosen family of distributions.
It does not depend on the chosen parametrization for θ.

On the other hand, there are several IGO algorithms associated with this
flow. Each IGO algorithm approximates the IGO flow in a slightly different way.
An IGO algorithm depends on three further choices: a sample size N , a time
discretization step size δt, and a choice of parametrization for θ in which to
implement (15).

If δt is small enough, and N large enough, the influence of the parametriza-
tion θ disappears and all IGO algorithms are approximations of the “ideal” IGO
flow trajectory. However, the larger δt, the poorer the approximation gets.

So for large δt, different IGO algorithms for the same IGO flow may exhibit
different behaviors. We will see an instance of this phenomenon for Gaussian
distributions: both CMA-ES and the maximum likelihood update (EMNA) can
be seen as IGO algorithms, but the latter with δt = 1 is known to exhibit
premature loss of diversity (Section 4).

Still, two IGO algorithms for the same IGO flow will differ less from each
other than from a non-IGO algorithm: at each step the difference is only O(δt2)
(Section 2). On the other hand, for instance, the difference between an IGO
algorithm and the vanilla gradient ascent is, generally, not smaller than O(δt)
at each step, i.e. roughly as big as the steps themselves.

Unknown Fisher matrix. The algorithm presented so far assumes that the
Fisher matrix I(θ) is known as a function of θ. This is the case for Gaussian
distributions in CMA-ES and for Bernoulli distributions. However, for restricted
Boltzmann machines as considered below, no analytical form is known. Yet,
provided the quantity ∂

∂θ
ln Pθ(x) can be computed or approximated, it is possible

to approximate the integral

Iij(θ) =
⁄

x

∂ ln Pθ(x)
∂θi

∂ ln Pθ(x)
∂θj

Pθ(dx)

using Pθ-Monte Carlo samples for x. These samples may or may not be the same
as those used in the IGO update (15): in particular, it is possible to use as many
Monte Carlo samples as necessary to approximate Iij , at no additional cost in
terms of the number of calls to the black-box function f to optimize.

Note that each Monte Carlo sample x will contribute ∂ ln Pθ(x)
∂θi

∂ ln Pθ(x)
∂θj

to the

Fisher matrix approximation. This is a rank-1 non-negative matrix2. So, for the
approximated Fisher matrix to be invertible, the number of (distinct) samples
x needs to be at least equal to, and ideally much larger than, the number of
components of the parameter θ: NFisher > dim Θ.

For exponential families of distributions, the IGO update has a particular
form which simplifies this matter somewhat. More details are given below (see
Section 5) for the concrete situation of restricted Boltzmann machines.

2The alternative, equivalent formula Iij(θ) = −
s

x

∂2 ln Pθ(x)
∂θi ∂θj

Pθ(dx) for the Fisher matrix

would not necessarily yield non-negative matrices through Monte Carlo sampling.

13

187

2 First properties of IGO (removed)

2.1 Consistency of sampling. 2.2 Monotonicity: quantile improvement. 2.3 The
IGO flow for exponential families. 2.4 Invariance properties. 2.5 Speed of the
IGO flow. 2.6 Noisy objective function. 2.7 Implementation remarks

3 IGO, maximum likelihood, and the cross-entropy
method (removed)

4 CMA-ES, NES, EDAs and PBIL from the IGO
framework (removed)

4.1 PBIL as IGO algorithm for Bernoulli measures. 4.2 Multivariate normal
distributions (Gaussians). 4.3 Computing the IGO flow for some simple examples

5 Multimodal optimization using restricted Boltzmann
machines

We now illustrate the behavior of IGO versus the vanilla gradient on an example:
the probability distributions obtained from restricted Boltzmann machines for
optimization on {0, 1}d. A purported advantage of such distributions for opti-
mization (Berny, 2002) is to represent dependencies between the bits: contrary
to, e.g., the Bernoulli measures, restricted Boltzmann machines can in principle
handle a situation where good values of the objective function are obtained, for
instance, if the first and second bit are both set to 0 or both set to 1 simultane-
ously. The goal of this section is threefold:

• To illustrate step by step how the IGO framework can be implemented
in practice on new families of probability distributions, yielding new op-
timization algorithms. We discuss in particular the delicate problem of
estimating the Fisher matrix.

• To illustrate the (sometimes striking) difference between the optimization
trajectories obtained from the natural gradient or the vanilla gradient even
in a simple situation.

• To illustrate the idea that the natural gradient tries to keep the diversity
of the population unchanged, thanks to its relation with Kullback–Leibler
divergence (Section 1.1). Since restricted Boltzmann machines are able
to represent multimodal distributions on the search space, keeping a high
diversity suggests that on a multimodal objective function, natural gradient
algorithms will spontaneously tend to find several optima in a single run.

Let us stress that this is not a systematic study of the optimization perfor-
mance of IGO and restricted Boltzmann machines: the function to be optimized

14

188

in this experiment is extremely simple. We choose a simple setting to get a bet-
ter understanding of the consequences of using the natural gradient rather than
the vanilla gradient, and to illustrate the resulting difference in behavior.

5.1 IGO for restricted Boltzmann machines

The IGO method allows to build a natural search algorithm from an arbitrary
family of probability distributions on an arbitrary search space. In particular,
by choosing probability distributions that are richer than Gaussian or Bernoulli,
one may hope to be able to optimize functions with complex shapes. Here we
study how this might help optimize multimodal functions.

Both Gaussian distributions on R
d and Bernoulli distributions on {0, 1}d

are unimodal. So at any given time, a search algorithm using such distributions
concentrates around a single point in the search space, looking around that point
(with some variance). It is an often-sought-after feature for an optimization
algorithm to handle multiple hypotheses simultaneously.

Here we apply the IGO framework to an example of multimodal distribu-
tions on {0, 1}d: restricted Boltzmann machines (RBMs) (Smolensky, 1986;
Ackley et al., 1985). The precise definition is given below. In RBMs, values
for various blocks of bits can be switched on or off depending on the activation
state of latent variables, hence the possibility to represent multimodal distribu-
tions. Hopefully, the optimization algorithm derived from these distributions will
explore several distant zones of the search space at any given time. Boltzmann
machines, a superset of restricted Boltzmann machines, were used for optimiza-
tion, e.g., in (Berny, 2002) (using the vanilla gradient) and found to perform
better than PBIL on some functions.

We consider here the very simple situation of a fitness function with two dis-
tant optima and test whether IGO-based or vanilla-gradient-based algorithms
are able to reach both optima simultaneously or only find one of them. This
provides an empirical test of Proposition 1 stating that the natural gradient
minimizes loss of diversity. Our study of a bimodal RBM distribution for the
optimization of a bimodal function confirms that the natural gradient does in-
deed behave in a more natural way than the vanilla gradient: when initialized
properly, the natural gradient is able to maintain diversity by fully using the
RBM distribution to learn a distribution concentrating around the two modes,
while the vanilla gradient always finds only one of the two modes.

Although these experiments support using a natural gradient approach, they
also establish that complications can arise for estimating the inverse Fisher ma-
trix in the case of complex distributions such as RBMs: estimation errors may
lead to a singular or unreliable estimation of the Fisher matrix, especially when
the distribution becomes singular or when the learning rate is large. Further
research may be needed to work around this issue.

The experiments reported here, and the fitness function used, are extremely
simple from an optimization viewpoint: both algorithms using the natural and
vanilla gradient find an optimum in only a few steps. The emphasis here is on
the specific influence of replacing the vanilla gradient with the natural gradient,

15

189

!

"

Figure 1: The RBM architecture with the observed (x) and latent (h) variables.
In our experiments, a single hidden unit was used.

and the resulting influence on diversity and multimodality, in a simple situation.

Restricted Boltzmann machines. A restricted Boltzmann machine (RBM)
(Smolensky, 1986; Ackley et al., 1985) is a probability distribution belonging to
the family of undirected graphical models (also known as Markov random fields).
A set of observed variables x œ {0, 1}nx are given a probability using their joint
distribution with unobserved latent variables h œ {0, 1}nh (Ghahramani, 2004).
The latent variables are then marginalized over. See Figure 1 for the graph
structure of a RBM.

The probability associated with an observation x = (xi) œ {0, 1}nx and latent
variable h = (hj) œ {0, 1}nh is given by

P◊(x, h) =
e≠E(x,h)

q
xÕ,hÕ e≠E(xÕ,hÕ)

, P◊(x) =
ÿ

h

P◊(x, h), (17)

where
E(x, h) = ≠

ÿ

i

aixi ≠
ÿ

j

bjhj ≠
ÿ

i,j

wijxihj (18)

is the energy function. The distribution is fully parametrized by the parameter
θ = (a, b, W) comprising the bias on the observed variables a = (ai) œ R

nx , the
bias on the latent variables b = (bj) œ R

nh and the weights W = (wij) œ R
nxnh

which account for pairwise interactions between observed and latent variables.
Note that the biases can be viewed as weights, by introducing variables x0 and
h0 always equal to one; thus in the sequel we will only write formulas involving
wij , with the understanding that analogous formulas for a and b are readily
obtained through this analogy.

RBM distributions are a special case of exponential family distributions with
latent variables, thus the IGO equations for the RBM stem from those for general
exponential families. In particular, for these distributions the gradient of the log-
likelihood is well-known (Hinton., 2002). This gradient has then to be multiplied
with the inverse Fisher matrix.

16

190

Both the gradient and Fisher matrix in the IGO update involve expectations
over (x, h). For instance the gradient of the log-likelihood is given by

∂ ln P◊(x, h)
∂wij

= xihj ≠ EPθ
[xihj] (19)

with analogous formulas for the derivatives w.r.t. ai and to bj . Although this
quantity is often considered intractable in the context of machine learning where
many variables are involved, it can be estimated accurately in the case of smaller
RBMs: the expectations under P◊ can be estimated by the standard technique
of Gibbs sampling (see for instance (Hinton., 2002)). We now discuss estimation
of the Fisher matrix by this technique.

Estimating the Fisher matrix, and optimizing over (x, h) or over x.
A restricted Boltzmann machine defines a distribution P◊ on both visible and
hidden units (x, h), whereas the function to optimize depends only on the visible
units x. Thus we are faced with a choice. A first possibility is to see the objective
function f(x) as a function of (x, h) where h is a dummy variable; then we can
use the IGO algorithm to optimize over (x, h) using the distributions P◊(x, h).
A second possibility is to marginalize P◊(x, h) over the hidden units h as in (17),
to define the distribution P◊(x); then we can use the IGO algorithm to optimize
f over x using P◊(x).

These two approaches yield slightly different algorithms. For instance, with
IwijwiÕjÕ

denoting the entry of the Fisher matrix corresponding to the components
wij and wiÕjÕ of the parameter θ, from the dummy variable perspective we get

IwijwiÕjÕ
(θ) = EPθ

[xihjxiÕhjÕ] ≠ EPθ
[xihj]EPθ

[xiÕhjÕ] (20)

whereas from the perspective of a marginalized distribution we get the same
expression in which each hj is replaced with its expectation h̄j knowing x namely

h̄j = EPθ
[hj |x] =

1
1 + e≠bj≠

q
i

xiwij

2≠1
and likewise for hjÕ . (Actually, since hj

and hjÕ are independent knowing x when j ”= jÕ, the only difference in the Fisher
matrix is when j = jÕ.)

Both versions were tested on a small instance of the problem and found to be
viable. However the version using (x, h) is numerically more stable and requires
fewer Gibbs samples to estimate the Fisher matrix, whereas the second one
procudes non-invertible Fisher matrice estimates more frequently. Indeed, if I1(θ)
is the Fisher matrix at θ in the first approach and I2(θ) in the second approach,
we always have I1(θ) > I2(θ) (in the sense of positive-definite matrices). This is
because probability distributions on the pair (x, h) carry more information than
their projections on x only, and so the Kullback–Leibler distances will always be
larger. In particular, there exist values of θ for which the Fisher matrix I2 is not
invertible whereas I1 is.

For this reason we selected the first approach: we optimize f as a function
of (x, h) using IGO for the probability distributions P◊(x, h).

17

191

Description of a step of the algorithm. The final implementation of the
IGO algorithm for RBMs with step size δt and sample size N is as follows.

At each step, N samples (x1, h1), . . . , (xN , hN) are drawn from the current
distribution P◊(x, h) using Gibbs sampling. Each Gibbs sampling starts with an
element x uniformly distributed in {0, 1}nx and performs 50 Gibbs iterations for
each sample.

Then the IGO update for a dataset with N sample points (x1, h1), . . . ,
(xN , hN) is taken from (15):

θt+δt = θt + δt I≠1(θt)
Nÿ

k=1

‚wk
∂ ln Pθ(xk, hk)

∂θ

θ=θt

(21)

where the ‚wk are the selection weights of IGO (not to be confused with the
weights of the RBM).

The gradient ∂ ln Pθ(xk, hk)/∂θ is estimated using (19) where the expectation
is estimated by taking the average of the T (x, h) statistics over the N samples
(x1, h1), . . . , (xN , hN).

The Fisher matrix I(θt) is estimated using (20). The Pθ-expectation involved
in this equation is estimated using a number Ns of Gibbs samples (x, h). These
samples need not coincide with the IGO samples (x1, h1), . . . , (xN , hN) and in
practice we take Ns ∫ N as described below. Note that no f -call is needed on
these samples, so in a typical optimization situation where computational cost
comes from the objective function f , a large Ns may not cost too much.

Fisher matrix imprecision and invertibility. The Fisher matrix (see Eq. 20)
was inverted using the QR-Algorithm, when invertible. However, the impreci-
sion incurred by the limited sampling size sometimes leads to an unreliable or
even singular estimation of the Fisher matrix (see p. 13 for a lower bound on the
number of samples needed).

Having a singular Fisher estimation happens rarely at startup; however, it
occurs very frequently when the probability distribution Pθ becomes too concen-
trated over a few points x. Unfortunately this situation arises naturally when
the algorithm is allowed to continue the optimization after the optimum has
been reached; the experiments below confirm this. For this reason, in our experi-
ments, each run using the natural gradient was “frozen” as soon as estimation of
the Fisher matrix was deemed to be unreliable according to the criterion below.
By “freezing” a run we mean that the value of the parameter θ is not updated
anymore, but the run still contributes to the statistics reported for later times,
using the frozen value of θ.

The unreliability criterion is as follows: either the estimated Fisher matrix
is not invertible; or it is numerically invertible but fails the following statistical
cross-validation test to check reliability of the estimate. Namely: we make two
estimates F̂1 and F̂2 of the Fisher matrix on two distinct sets of Ns/2 Gibbs
samples generated from Pθ. (The final estimate of the Fisher matrix using all
Ns samples can then be obtained at little computational cost by combining F̂1

and F̂2; this has the advantage that the cross-validation procedure does not

18

192

affect computational performance significantly, as the main cost is Fisher matrix
estimation.) In the ideal case F̂1 and F̂2 are close.

At all steps we tested whether the rescaled squared Frobenius norms

1
dim(θ)

ÎF̂
≠1/2
2 F̂1F̂

≠1/2
2 ≠ IdÎ2

Frobenius

and
1

dim(θ)
ÎF̂

≠1/2
1 F̂2F̂

≠1/2
1 ≠ IdÎ2

Frobenius

which ideally are equal to 0, are both smaller than 1: this is a crude test to
check eigenvalue explosion. Note that F̂1 and F̂2 represent quadratic forms on
parameter space, and F̂

≠1/2
2 F̂1F̂

≠1/2
2 represents one of them in an orthonormal

basis for the other. This test is independent of θ-parametrization. The squared
Frobenius norm of F̂

≠1/2
2 F̂1F̂

≠1/2
2 ≠ Id is computed as the trace of (F̂1F̂ ≠1

2 ≠ Id)2.
If at some point during the optimization the Fisher estimation becomes sin-

gular or unreliable according to this criterion, the corresponding run is frozen.
The number of runs that were frozen before reaching an optimum in our

experiments below is reported in Table 1. Choosing a small enough learning
rate appears to limit the problem.

#runs N δt #iters O S CV other
300 10,000 0.5 100 98.3 0.0 1.7 0.0

1. 100 98.0 0.0 2.0 0.0
2. 100 95.7 0.0 4.3 0.0

0.002 25,000 100.0 0.0 0.0 0.0
0.004 25,000 95.0 0.0 5.0 0.0

20 10 0.008 25,000 90.0 0.0 10.0 0.0
0.1 500 5.0 25.0 70.0 0.0
0.2 500 0.0 30.0 70.0 0.0
0.4 500 0.0 20.0 80.0 0.0
0.8 500 0.0 40.0 60.0 0.0

Table 1: Percentage of runs according to their state after #iter iterations: found
at least one optimum (O), frozen before hitting an optimum because of a singular
matrix (S) or cross-validation test failure (CV). The confidence margin (1σ) over
the reported percentages is less than ±2.9 percent points for 300 runs and ±11.2
percent points for 20 runs.

Computational time. Contrary to usual optimization situations, in the ex-
periments below the function f has a negligible cost. The complexity of the
algorithm is then largely determined two factors: Gibbs sampling in the RBM
and Fisher matrix computation given the samples. To ensure stability of the
Fisher matrix estimate (see above), the number of samples Ns used in the esti-
mation has to scale at least like dim(θ). With this assumption, Gibbs sampling
which essentially scales like Ns dim(θ) then scales like dim(θ)2, with a leading
constant proportional to the number of Gibbs steps used. The computation of

19

193

the Fisher matrix itself scales like Ns dim(θ)2 because for each sample, we have to
compute an additive term of the Fisher matrix which has dim(θ)2 entries. This
means that the Fisher matrix computation scales like dim(θ)3 and can therefore
be expected to be the dominating factor in the running-time of experiments in-
volving larger models. The cost of the Fisher matrix inversion is expected to
scale like dim(θ)3 as the size of the RBM increases. In practice this cost was
significantly smaller than that of matrix estimation (Figure 2).

Figure 2 gives empirical running times3 (in log-log scale) for one natural
gradient step update in the experimental setting described below, together with
the corresponding Gibbs sampling, Fisher matrix computation, QR-inversion
and cross-validation times. It shows that indeed Fisher matrix estimation and
the associated Gibbs sampling are responsible for most of the computational
cost.

Figure 2: Log-log plot of the empirical running time in seconds of 1 step of the
natural gradient algorithm, and corresponding times for Gibbs sampling, Fisher
matrix computation, QR inversion and cross-validation, for a RBM using dim(θ)
parameters. The number of samples for estimating the Fisher matrix is assumed
to scale like 100 ◊ dim(θ) to ensure stability of the estimate. We use 5 times
fewer samples to compute the gradient estimate and those samples are distinct
from those used to compute the Fisher matrix estimate.

Gibbs sampling is not the fastest known method for sampling in a large
RBM: a method such as parallel tempering (Desjardins et al., 2010) has the

3 on an Intel Xeon CPU E5420 @ 2.50GHz with 16Gbytes of memory

20

194

same asymptotic complexity Ns dim(θ) for Ns samples, but usually converges
faster and would therefore be more suitable for large RBMs.

A possible way to reduce the computational burden of Fisher matrix evalu-
ation would be to use a larger learning rate together with a larger number of
gradient samples at each step (e.g., using the same RBM samples for the gradient
and the Fisher matrix estimation). Although this would increase the number of
f -calls at each iteration, the experiments below suggest that it may be possible
to achieve convergence in a smaller number of steps.

With this in mind, a naïve application of the natural gradient can be expected
to be considerably costly for larger RBMs. Strategies already exist to deal with
these issues (e.g., (Le Roux et al., 2007)): for instance, the Fisher matrix is not
usually recomputed from scratch at each step, but a discount factor is applied
to its previous value and a few new samples are incorporated; Fisher matrix
inversion can then be done iteratively using the Woodbury formula; lower-rank
approximations of the Fisher matrix can be used.

5.2 Experimental setup

Problem setting. In our experiments, we look at the optimization of the two-
min function defined below with a bimodal RBM: an RBM with only one latent
variable (nh = 1). Such an RBM is bimodal because it has two possible configu-
rations of the latent variable: h = 0 or h = 1, and given h, the observed variables
are independent and distributed according to two Bernoulli distributions. We
used nx = 40, and therefore dim(θ) = 81.

Set a parameter y œ {0, 1}d. The two-min function based at y is defined as:

fy(x) = min

A
ÿ

i

|xi ≠ yi| ,
ÿ

i

|(1 ≠ xi) ≠ yi)|
B

(22)

This function of x has two optima: one at y, the other at its binary complement
ȳ.

We ran both the IGO algorithm as described above, and the version using
the vanilla gradient instead of the natural gradient (that is, omitting the Fisher
matrix in (21)).

Parameter setting. We used two different values N = 10, 000 and N = 10
for the population size of the IGO algorithm. The rather comfortable setting
N = 10, 000 allows for a good illustration of the behavior of the theoretical IGO
flow which corresponds to N æ Œ and δt æ 0, whereas N = 10 is a much more
realistic value for an optimization problem. The values of δt were chosen in a
range as reported below.

The number of sample points used for estimating the Fisher matrix is set to
Ns = 10, 000: large enough to ensure the stability of the Fisher matrix estimates.

For the quantile rewriting of f (Section 1.2), we followed a selection scheme
often applied in evolution strategies (Rechenberg, 1994) and set w to be w(q) =

q61/5 so that the best 20% of points in a sample are given weight 1 for the

21

195

update, while other points are given weight 0. Ties were dealt with according to
(13).

Initialization. For initialization of the RBMs, we choose random values of
the parameters that guarantee that each variable (observed or latent) has a
probability of activation close to 1/2 at startup, i.e. the initial distribution is
almost uniform. This is in line with the discussion in Section 1.1 about starting
with large initial diversity. Namely, the weights w are sampled from a normal
distribution centered around zero and of standard deviation 1/

Ô
nx ◊ nh, where

nx is the number of observed variables (dimension d of the problem) and nh is
the number of latent variables (nh = 1 in our case), so that initially the energies
E are not too large. Then the bias parameters are initialized as bj Ω ≠ q

i
wij

2
and ai Ω ≠ q

j
wij

2 + N (0.01
n2

x
): this setting guarantees initial probabilities of

activation close to 1/2 for all variables.
For each run, the parameter y of the two-max function was sampled randomly

in {0, 1}nx in order to ensure that the presented results are not dependent on a
particular location of the optima.

Step size. The value of δt is indicated for each plot. Note that the values of
the parameter δt for the two gradients used are not directly comparable from a
theoretical viewpoint (they correspond to parametrizations of different trajecto-
ries in Θ-space, and identifying vanilla δt with natural δt is meaningless). For a
given δt the natural gradient tends to move faster than the vanilla gradient. For
this reason, we selected larger values of δt for the vanilla gradient: a factor 4
seems to yield roughly comparable moving speeds in practice. (This is consistent
with the remark that at time 0, the largest terms of the Fisher matrix are equal
to 1/4 and most non-diagonal terms vanish, as can be seen from (20) given that
the parameters are initialized close to the uniform distribution.)

Reading the plots. The plots reported below are of two types: trajectories
of single runs (such as Fig. 3), and aggregate over K runs (such as Fig. 4). For
the aggregate plots, we present the median together with error bars indicating
the 16th percentile and the 84th percentile over the K runs, namely, 16% of
runs are below the lower error bar and likewise for the upper error bar (for a
Gaussian variable this is the same as the mean and mean±stddev, but applies
to non-Gaussian variables and is better behaved under f -reparametrization).

Source code. The code used for these experiments can be found on the inter-
net at http://www.ludovicarnold.com/projects:igocode .

5.3 Experimental results

Approaching the optima. We now report how the vanilla and natural gradi-
ent approach the two optima of the objective function (remember the objective
function is bimodal). We start with the large population case N = 10, 000.

22

196

Figure 3 shows ten trajectories of the natural gradient (left column) and
vanilla gradient (right column), using a large population size (N = 10, 000).
At each step, we report the smallest distance of the N sample points in the
population to the closest optimum of the objective function (top row), as well
as the smallest distance of the N sample points in the population to the other
optimum of the objective function (bottom row). Figure 4 reports the same
quantities aggregated over 300 independent runs (median over all runs, error
bars as described above) for various settings of δt.

Figure 3: Distance to the two optima using a large population of 10,000 samples,
during 10 IGO optimization runs and 10 vanilla gradient runs

The small population case N = 10 is illustrated in Figure 5 (single runs)
and Figure 6 (aggregate over 20 runs). For small population sizes, the dynamics
is noisier, and smaller step sizes δt have been used to average out the noise
(resulting in roughly the same total number of f -calls, see the discussion of
finite sample size in Section 6). The results are broadly similar to those with
N = 10, 000, as revealed by the aggregate plots (Figure 6), but individual runs
can exhibit less regular behavior (see the “spike” on the bottom-left graph of
Figure 5, presumably due to an unreliable estimate of the Fisher matrix, though
the next iteration apparently cancels the effect). Smaller learning rates seem to
behave better.

Larger step sizes δt have also been tested for the small population case (Fig-
ures 7 and 8). It appears that the natural gradient is more sensitive to large step
sizes than the vanilla gradient: with the natural gradient for small population
at large learning rates, many runs get frozen before they reach an optimum due

23

197

Figure 4: Median distance to an optimum with a large population of 10,000
samples over 300 optimization runs, respectively using IGO or the vanilla gra-
dient. Top two figures: distance to the closest optimum; bottom two figures:
distance to other optimum. Error bars indicate the 16th and 84th quantile over
the runs.

24

198

Figure 5: Distance to closest optimum using a small population of 10 samples,
during 10 IGO optimization runs and 10 vanilla gradient runs. The “spike” on
the bottom-left plot is presumably due to an unreliable estimate of the Fisher
matrix at one step.

to the problem of estimating the Fisher matrix (Table 1).

Diversity and h-statistics. Predictably, both algorithms are able to find at
least one optimum of the very simple two-min function in a few steps. However,
the methods fare very differently when we look at the distance from the sample
points to both optima (Figures 3, 4, 5 and 6).

Most runs using the natural gradient get close to both optima simultaneously,
reflecting the fact that the distribution P◊ becomes bimodal, as allowed by the
RBM. The two optima are generally reached within a few steps of each other.

This is consistent with the intuition of Section 1.1 about maintaining diversity
in natural gradient optimization. This property of IGO depends, of course, on
having initialized the RBM with enough diversity. When initialized properly so
that each variable (observed and latent) has a probability 1/2 of being equal to
1, the initial RBM distribution has maximal diversity over the search space and
is at equal distance from the two optima of the function. From this starting
position, IGO is then able to increase the likelihood of the two optima at the
same time.

By stark contrast, the vanilla gradient is never able to go towards both
optima at the same time. In fact, the vanilla gradient only finds one optimum at
the expense of the other: for all values of δt, the distance to the second optimum

25

199

Figure 6: Median distance to an optimum using a small population of 10 samples
in either 20 IGO optimization runs or 20 vanilla gradient runs, respectively. Top
two figures: distance to the closest optimum; bottom two figures: distance to
the other optimum. Error bars indicate the 16th and 84th quantile.

26

200

Figure 7: Distance to closest (above) and the other (below) optimum using a
small population of 10 samples and learning rates too large to ensure convergence
of IGO. 20 IGO optimization runs and 20 vanilla gradient runs.

increases gradually and approaches the maximum possible distance. So in these
experiments the vanilla gradient never exploits the possibility offered by the
RBM to create a bimodal probability distribution P◊.

As mentioned earlier, each value 0 or 1 of the latent variable h corresponds to
a mode of the distribution. To illustrate the evolution of uni- or bi-modality of P◊,
we plot in Figure 9 the average value of h in the population over time (aggregated
over 300 runs). An average value close to 1/2 means that the distribution samples
from both modes h = 0 or h = 1 with a comparable probability. Conversely,
average values close to 0 or 1 indicate that the distribution gives most probability
to one mode at the expense of the other and is thus essentially unimodal. We
can see that with IGO, the average value of h stays remarkably centered during
the whole optimization procedure: the distribution stays bimodal. As for the
vanilla gradient, we see that the statistics for h quickly tend to converge to 1:
one of the two modes of the distribution has been lost during optimization.

Hidden breach of symmetry by the vanilla gradient. The experiments
reveal a curious phenomenon (Figure 9): the vanilla gradient loses multimodality
by always setting the hidden variable h to 1, not to 0. (We detected no obvious
asymmetry on the visible units x.) So the vanilla gradient for RBMs seems to
favor h = 1.

Of course, exchanging the values 0 and 1 for the hidden variables in a

27

201

Figure 8: Median distance (over 20 runs) to closest optimum using a small
population of 10 samples and learning rates too large to ensure convergence of
IGO. Above: natural gradient, below: vanilla gradient. Error bars indicate the
16th and 84th quantile over the 20 runs.

restricted Boltzmann machine still gives a distribution of another Boltzmann
machine. More precisely, changing hj into 1 ≠ hj is equivalent to resetting
ai Ω ai + wij , bj Ω ≠bj , and wij Ω ≠wij . IGO and the natural gradient are
impervious to such a change4.

The vanilla gradient implicitly relies on the Euclidean norm on parameter
space, as explained in Section 1.1. For this norm, the distance between the RBM

distributions (ai, bj , wij) and (aÕ
i, bÕ

j , wÕ
ij) is simply

q
i |ai ≠ aÕ

i|2 +
q

j

---bj ≠ bÕ
j

2

+
q

ij

---wij ≠ wÕ
ij

2
. However, the change of variables ai Ω ai+wij , bj Ω ≠bj , wij Ω

≠wij does not preserve this Euclidean metric. Thus, exchanging 0 and 1 for the
hidden variables will result in two different vanilla gradient ascents. The ob-
served asymmetry on h is a consequence of this implicit asymmetry.

The same asymmetry actually exists for the visible variables xi; but this
does not prevent convergence to an optimum in our situation, since any gradient
descent eventually reaches some local optimum.

Of course it is possible to use parametrizations for which the vanilla gradient
will be more symmetric: for instance, using ≠1/1 instead of 0/1 for the variables,

4see section 2.

28

202

Figure 9: Median of average h-statistics in 300 IGO optimization runs and 300
vanilla gradient runs using a large population of 10,000 samples. 2,000 samples
are used for selection at each step. Error bars indicate the 16th and 84th quantile
over the runs.

or defining the energy by

E(x, h) = ≠q
iAi(xi ≠ 1

2) ≠ q
jBj(hj ≠ 1

2) ≠ q
i,jWij(xi ≠ 1

2)(hj ≠ 1
2) (23)

with “bias-free” parameters Ai, Bj , Wij related to the usual parametrization by
wij = Wij , ai = Ai ≠ 1

2

q
j wij bj = Bj ≠ 1

2

q
i wij . The vanilla gradient might

perform better in this parametrization.
However, we adopted the approach of using a family of probability distri-

butions found in the literature, with the parametrization commonly found in
the literature. We then used the vanilla gradient and the natural gradient on
these distributions—and indeed the vanilla gradient or an approximation thereof
is routinely applied to RBMs in the literature to optimize the log-likelihood of
data (Hinton., 2002; Hinton et al., 2006; Bengio et al., 2007). It was not obvious
a priori (at least for us) that the vanilla gradient ascent favors h = 1.

This directly illustrates the specific influence of the chosen gradient (the two
implementations only differ by the inclusion of the Fisher matrix): the natural
gradient offers a systematic way to recover symmetry from a non-symmetric
gradient update.

Note that symmetry alone does not explain the fact that IGO reaches the
two optima simultaneously: indeed, a symmetry-preserving stochastic algorithm
could very well end up on either single optimum with 50% probability in each

29

203

run. The diversity-preserving property of IGO offers a reasonable interpretation
of why this does not happen.

5.4 Convergence to the continuous-time limit

In the previous figures, it looks like changing the parameter δt only results, to
some extent, in a time speedup of the plots.

Figure 10: Median distance to closest optimum during 300 IGO optimization
runs and 300 vanilla gradient runs using a large population of 10,000 samples
plotted in intrinsic time. 2,000 samples are used for selection at each step.

This can be checked on Figure 10, where we plot the distance to the closest
optimum as a function of t = (δt ◊ number of steps) instead of the number of
steps. An asymptotic trajectory seems to emerge when δt decreases.

This is because update rules of the type θ Ω θ + δt Ò◊g (for either gradient)
are Euler approximations of the continuous-time ordinary differential equation
d◊
dt = Ò◊g, with each iteration corresponding to an increment δt of the time t.
Consequently, for small enough δt, the algorithm after k steps approximates the
IGO flow or vanilla gradient flow at time t = k.δt. Thus for the natural gradient,
the asymptotic trajectory can be interpreted as the fitness of samples of the
continuous-time IGO flow.

So on one hand, for this kind of optimization algorithms it would make
theoretical sense to plot the results according to the “intrinsic time” t = k.δt
of the underlying continuous-time object, to illustrate properties that do not
depend on the setting of the parameter δt. Still, the raw number of steps is

30

204

more directly related to algorithmic cost.

6 Further discussion and perspectives

A single framework for optimization on arbitrary spaces. A strength of
the IGO viewpoint is to automatically provide a unique, distinct, and arguably
optimal optimization algorithm from any family of probability distributions on
any given space, discrete or continuous. This has been illustrated with restricted
Boltzmann machines. IGO algorithms feature good invariance properties and
make a least number of arbitrary choices.

In particular, IGO describes several well-known optimization algorithms within
a single framework. For instance, to the best of our knowledge, PBIL has never
been described as a natural gradient ascent in the literature5.

For Gaussian measures, algorithms of the same form (15) had been developed
previously (Hansen and Ostermeier, 2001; Wierstra et al., 2008) and their close
relationship with a natural gradient ascent had been recognized (Akimoto et al.,
2010; Glasmachers et al., 2010).

The wide applicability of natural gradient approaches seems not to be widely
known in the optimization community (though see (Malagò et al., 2008)).

About quantiles. The IGO flow in (6) has, to the best of our knowledge,
never been defined before. The introduction of the quantile-rewriting (3) of the
objective function provides the first rigorous derivation of quantile- or rank- or
comparison-based natural optimization from a gradient ascent in θ-space.

NES and CMA-ES have been claimed to maximize ≠EPθ
f via natural gra-

dient ascent (Wierstra et al., 2008; Akimoto et al., 2010). However, we have
proved that when the number of samples is large and the step size is small, the
NES and CMA-ES updates converge to the IGO flow, not to the similar flow
with the gradient of EPθ

f . So we find that in reality these algorithms maximize
EPθ

W f
◊t , where W f

◊t is a decreasing transformation of the f -quantiles under the
current sample distribution.

Also, in practice, maximizing ≠EPθ
f is a rather unstable procedure and has

been discouraged, see for example (Whitley, 1989).

About choice of P◊: learning a model of good points. The choice of the
family of probability distributions P◊ plays a double role.

First, it is analogous to choosing the variation operators (namely mutation or
recombination) as seen in evolutionary algorithms: indeed, P◊ encodes possible
moves according to which new sample points are explored.

Second, optimization algorithms using distributions can be interpreted as
learning a probabilistic model of where the points with good values lie in the
search space. With this point of view, P◊ describes richness of this model: for

5Thanks to Jonathan Shapiro for an early argument confirming this property (personal
communication).

31

205

instance, restricted Boltzmann machines with h hidden units can describe distri-
butions with up to 2h modes, whereas the Bernoulli distribution used in PBIL
is unimodal. This influences, for instance, the ability to explore several valleys
and optimize multimodal functions in a single run.

More generally, the IGO framework makes it tempting to use more complex
models of where good points lie, inspired, e.g., from machine learning, and adapt
them for optimization. The restricted Boltzmann machines of Section 5 are a first
step in this direction. The initial idea behind these machines is that each hidden
unit controls a block of coordinates of the search space (a block of features), so
that the optimization algorithm hopefully builds a good model of which features
must be activated or de-activated together to obtain good values of f . This
is somewhat reminiscent of a crossover operator: if observation of good points
shows that a block of features go together, this information is stored in the
RBM structure and this block may be later activated as a whole, thus effectively
transferring blocks of features from one good solution to another. Inspired by
models of deep learning (Bengio et al., 2012), one might be tempted to stack
such models on top of each other, so that optimization would operate on a more
and more abstract representation of the problem. IGO and the natural gradient
might help in exploiting the added expressivity that comes with richer models (as
in our simple experiment the vanilla gradient ignores the additional expressivity
of RBMs with respect to Bernoulli distributions).

Natural gradient and parametrization invariance. Central to IGO is the
use of natural gradient, which follows from θ-invariance and makes sense on any
search space, discrete or continuous.

While the IGO flow is exactly θ-invariant, for any practical implementation
of an IGO algorithm, a parametrization choice has to be made. Still, since all
IGO algorithms approximate the IGO flow, two parametrizations in combination
with IGO will differ less than the same two parametrizations in combination with
another algorithm (such as the vanilla gradient or the smoothed CEM method)—
at least if the learning rate δt is not too large. The chosen parametrization
becomes more relevant as the step size δt increases.

On the other hand, natural evolution strategies have never strived for θ-
invariance, but instead, the chosen parametrization (Cholesky, exponential) has
been deemed a relevant feature. We believe the term natural evolution strategy
should rather be used independently of the chosen parameterization, thereby
referring to the usage of the natural gradient as the main principle for the update
of distribution parameters.

IGO, maximum likelihood and cross-entropy. The cross-entropy method
(CEM) (de Boer et al., 2005) can be used to produce optimization algorithms
given a family of probability distributions on an arbitrary space, by performing
a jump to a maximum likelihood estimate of the parameters.

We have seen that the standard CEM is an IGO algorithm in a particu-
lar parametrization, with a learning rate δt equal to 1. However, it is well-
known, both theoretically and experimentally (Branke et al., 2007; Hansen, 2006;

32

206

Wagner et al., 2004), that standard CEM loses diversity too fast in many sit-
uations. The usual solution (de Boer et al., 2005) is to reduce the learning
rate (smoothed CEM), but this breaks the reparametrization invariance of non-
smoothed CEM.

On the other hand, the IGO flow can be seen as a maximum likelihood update
with infinitesimal learning rate. This interpretation allows to define a particular
IGO algorithm, the IGO-ML: it performs a maximum likelihood update with an
arbitrary learning rate, and keeps the reparametrization invariance. It coincides
with CEM when the learning rate is set to 1, but it differs from smoothed CEM
by the exchange of the order of argmax and averaging. We argue that this new
algorithm may be a better way to reduce the learning rate and achieve smoothing
in CEM.

Standard CEM can lose diversity, yet is a particular case of an IGO algorithm:
this illustrates the fact that reasonable values of the learning rate δt depend on
the parametrization. We have studied this phenomenon in detail for various
Gaussian IGO algorithms.

Why would a smaller learning rate perform better than a large one in an
optimization setting? It might seem more efficient to jump directly to the maxi-
mum likelihood estimate of currently known good points, instead of performing
a slow gradient ascent towards this maximum.

However, optimization faces a “moving target”, contrary to a learning setting
in which the example distribution is often stationary. Currently known good
points heavily depend on the current distribution and are likely not to indicate
the position at which the optimum lies, but, rather, the direction in which the
optimum is to be found. After an update, the next elite sample points are going
to be located somewhere new. So the goal is certainly not to settle down around
these currently known points, as a maximum likelihood update does: by design,
CEM only tries to reflect status-quo (even for N = Œ), whereas IGO tries
to move somewhere. When the target moves over time, a progressive gradient
ascent is more reasonable than an immediate jump to a temporary optimum,
and realizes a kind of time smoothing.

This phenomenon is most clear when the number of sample points is small.
Then, a full maximum likelihood update risks losing a lot of diversity; it may even
produce a degenerate distribution if the number of sample points is smaller than
the number of parameters of the distribution. On the other hand, for smaller δt,
the IGO algorithms do, by design, try to maintain diversity by moving as little
as possible from the current distribution P◊ in Kullback–Leibler divergence. A
full ML update disregards the current distribution and tries to move as close
as possible to the elite sample in Kullback–Leibler divergence (de Boer et al.,
2005), thus realizing maximal diversity loss. This makes sense in a non-iterated
scenario such as batch learning but is unsuited for optimization.

Diversity and multiple optima. The IGO framework emphasizes the rela-
tion of natural gradient and diversity: we argued that IGO provides minimal
diversity change for a given objective function increment. In particular, pro-
vided the initial diversity is large, diversity is kept at a maximum at startup.

33

207

This theoretical relationship has been confirmed experimentally for restricted
Boltzmann machines.

On the other hand, using the vanilla gradient does not lead to a balanced dis-
tribution between the two optima in our experiments. Using the vanilla gradient
introduces hidden arbitrary choices between those points (more exactly between
moves in Θ-space). This results in unnecessary and unwelcome loss of diversity,
and might also be detrimental at later stages in the optimization. This may
reflect the fact that the Euclidean metric on the space of parameters, implic-
itly used in the vanilla gradient, becomes less and less meaningful for gradient
descent on complex distributions.

IGO and the natural gradient are certainly relevant to the well-known prob-
lem of exploration-exploitation balance: as we have seen, arguably the natural
gradient realizes the largest improvement in the objective with the least possible
change of diversity in the distribution.

More generally, like other distribution-based optimization algorithms, IGO
tries to learn a model of where the good points are. This is typical of machine
learning, one of the contexts for which the natural gradient was studied. The con-
ceptual relationship of IGO and IGO-like optimization algorithms with machine
learning is still to be explored and exploited.

We now present some ideas which we believe would be worth exploring.

Adaptive learning rate. Comparing consecutive updates to evaluate a learn-
ing rate or step size is an effective measure. For example, in back-propagation,
the update sign has been used to adapt the learning rate of each single weight in
an artificial neural network (Silva and Almeida, 1990). In CMA-ES, a step size
is adapted depending on whether recent steps tended to move in a consistent
direction or to backtrack. This is measured by considering the changes of the
mean m of the Gaussian distribution.

For a probability distribution P◊ on an arbitrary search space, in general no
notion of mean may be defined. However, it is still possible to define “backtrack-
ing” in the evolution of θ as follows.

Consider two successive updates δθt = θt ≠ θt≠δt and δθt+δt = θt+δt ≠ θt.
Their scalar product in the Fisher metric I(θt) is

Èδθt, δθt+δtÍ =
ÿ

ij

Iij(θt) δθt
i δθt+δt

j .

Dividing by the associated norms will yield the cosine cos α of the angle between
δθt and δθt+δt .

If this cosine is positive, the learning rate δt may be increased. If the cosine
is negative, the learning rate probably needs to be decreased. Various schemes
for the change of δt can be devised; for instance, inspired by step-size control
commonly used in evolution strategies, one can multiply δt by exp(β(cos α)) or
exp(β sign(cos α)), where β ¥ min(N/ dim Θ, 1/2).

As before, this scheme is constructed to be robust w.r.t. reparametrization
of θ, thanks to the use of the Fisher metric. However, for large learning rates δt,
in practice the parametrization might well become relevant.

34

208

A consistent direction of the updates does not necessarily mean that the al-
gorithm is performing well: for instance, when CEM/EMNA exhibits premature
convergence (see above), the parameters consistently move towards a zero covari-
ance matrix and the cosines above are positive. The desired target value for the
cosine is zero.

Geodesic parametrization. While the IGO flow is fully invariant under θ-
reparametrization, an IGO algorithm does depend on the choice of parametriz-
ation for θ, even if for small δt the difference between two IGO algorithms is
O(δt2), one order of magnitude smaller than between IGO and vanilla gradient
in general.

Still one can wonder how to discretize time in the IGO flow in a fully intrinsic
way, not depending at all on a parametrization for θ. A first possibility is given
by the IGO-ML algorithm —this means, for exponential families, that we can
decide to single out the parametrization by expectation parameters.

Another, more geometric solution is to use geodesics on the statistical mani-
fold. This means we approximate the trajectories of the IGO flow by successive
geodesic segments of length δt in the Fisher metric, where the initial direction
of each segment is given by the direction of the IGO flow.

More precisely, if Y =
qN

i=1 ‚wi
ÂÒ◊ ln P◊(xi)

◊=◊t

= I≠1(θt)
qN

i=1 ‚wi
∂ ln Pθ(xi)

∂θ

θ=θt

is the direction of the IGO update (14) at θt, one can define

θt+δt = expθt(δt.Y)

where exp is the exponential map of the Riemannian manifold Θ equipped with
the Fisher information metric.

This defines an approximation to the IGO flow that depends on the step size
δt and sample size N , but not on any choice of parametrization.

Practical implementation will depend on being able to compute the geodesics
of the Fisher metric. The equation of geodesics may be computed explicitly in
some particular cases (Burbea, 1986), (Amari et al., 1987, Chapter 5), such as
Bernoulli distributions or Gaussian distributions with a fixed mean or with a
fixed covariance matrix. Interestingly, for Gaussian distributions with a fixed
mean, the geodesic update resembles the one in xNES.

When no closed formula for geodesics is available, θt+δt can always be found
by numerically integrating the geodesic equation starting at θt with initial speed
Y . This is, of course, an added computational cost, but it does not require any
calls to the objective function f .

Finite sample size and noisy IGO flow. The IGO flow is an ideal model
of the IGO algorithms. But the IGO flow is deterministic while IGO algorithms
are stochastic, depending on a finite number N of random samples. This might
result in important differences in their behavior and one can wonder if there is
a way to reflect stochasticity directly into the definition of the IGO flow.

35

209

The IGO update (14) is a stochastic update

θt+δt = θt + δt
Nÿ

i=1

‚wi
ÂÒθ ln Pθ(xi)

θ=θt

because the term
qN

i=1 ‚wi
ÂÒθ ln Pθ(xi)

θ=θt

involves a random sample. As such,
this term has an expectation and a variance. So for a fixed N and δt, this
random update is a weak approximation with step size δt (Kloeden and Platen,
1992, Chapter 9.7) of a stochastic differential equation on θ, whose drift is the
expectation of the IGO update (which tends to the IGO flow when N æ Œ),
and whose noise term is

Ô
δt times the square root of the covariance matrix of

the update applied to a normal random vector.
Such a stochastic differential equation, defining a noisy IGO flow, might be

a better theoretical object with which to compare the actual behavior of IGO
algorithms, than the ideal noiseless IGO flow.

For instance, this strongly suggests that if we have δt æ 0 while N is
kept fixed in an IGO algorithm, noise will disappear (compare Remark 2 in
(Akimoto et al., 2012)).

Second, for large N , one expects the variance of the IGO update to scale like
1
N , so that the noise term will scale like


δt/N . This formally suggests that,

within reasonable bounds, multiplying or dividing both N and δt by the same
factor should result in similar behavior of the algorithm, so that for instance it
should be reasonable to reset N to 10 and δt to 10δt/N . (Note that the cost in
terms of f -calls of these two algorithms is similar.)

This dependency is reflected in evolution strategies in several ways, with
typical values for N ranging between ten and a few hundred. First, theoretical
results on the function f(x) = ÎxÎ indicate that the optimal step-size δt for
the mean vector is proportional to N , provided the weighting function w re-
flects truncation selection with a fixed truncation ratio (Beyer, 2001) or optimal
weights (Arnold, 2006). Second, the learning rate δt of the covariance matrix

in CMA-ES is chosen proportional to
1qN

i=1 ‚wi

22
/

qN
i=1 ‚w2

i which is again pro-
portional to N (Hansen and Kern, 2004). For small enough N , the progress per
f -call is then in both cases rather independent of the choice of N .

Influence of the Fisher geometry of the statistical manifold. The global
Riemannian geometry of the statistical manifold Pθ might have a bearing on the
behavior of stochastic algorithms exploring this manifold. For instance, the
Fisher metric identifies the set of 1-dimensional normal distributions N (m, σ2)
with the two-dimensional hyperbolic plane. The latter has negative curvature.
The sign of curvature has a strong influence on the behavior of random walks in a
Riemannian manifold: in particular, in negative curvature, successive random er-
rors tend to not compensate as much as in the Euclidean case (because geodesics
diverge more quickly); this might be relevant to the settings of a stochastic opti-
mization algorithm, suggesting to use larger sample size (or smaller steps) when
curvature is negative. This is speculative and remains to be explored.

36

210

Summary and conclusion

We sum up:

• The information-geometric optimization (IGO) framework derives from in-
variance principles and allows to build optimization algorithms from any
family of distributions on any search space. In some instances (Gaus-
sian distributions on R

d or Bernoulli distributions on {0, 1}d) it recov-
ers versions of known algorithms (CMA-ES or PBIL); in other instances
(restricted Boltzmann machine distributions) it produces new, hopefully
efficient optimization algorithms.

• The use of a quantile-based, time-dependent transform of the objective
function (Equation (3)) provides a rigorous derivation of rank-based update
rules currently used in optimization algorithms.

• The IGO flow is singled out by its equivalent description as an infinitesimal
weighted maximal log-likelihood update. In a particular parametrization
and with a step size of 1, it recovers the cross-entropy method.

• Theoretical arguments suggest that the IGO flow minimizes the change of
diversity in the course of optimization. In particular, starting with high
diversity and using multimodal distributions may allow simultaneous ex-
ploration of multiple optima of the objective function. Preliminary exper-
iments with restricted Boltzmann machines confirm this effect in a simple
situation.

Thus, the IGO framework is an attempt to provide sound theoretical foun-
dations to optimization algorithms based on probability distributions. In par-
ticular, this viewpoint helps to bridge the gap between continuous and discrete
optimization.

The invariance properties, which reduce the number of arbitrary choices,
together with the relationship between natural gradient and diversity, may con-
tribute to a theoretical explanation of the good practical performance of those
currently used algorithms, such as CMA-ES, which can be interpreted as instan-
tiations of IGO.

We hope that invariance properties will acquire in computer science the im-
portance they have in mathematics, where intrinsic thinking is the first step for
abstract linear algebra or differential geometry, and in modern physics, where the
notions of invariance w.r.t. the coordinate system and so-called gauge invariance
play a central role.

Acknowledgements

The authors would like to thank Michèle Sebag for the acronym and for helpful
comments. We also thank Youhei Akimoto for helpful feedback. Y. O. would
like to thank Cédric Villani and Bruno Sévennec for helpful discussions on the

37

211

Fisher metric. A. A. and N. H. would like to acknowledge the Dagstuhl Seminar
No 10361 on the Theory of Evolutionary Computation6 for inspiring their work
on natural gradients and beyond. This work was partially supported by the ANR-
2010-COSI-002 grant (SIMINOLE) of the French National Research Agency.

Appendix: Proofs (removed)

References

D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algorithm for Boltz-
mann machines. Cognitive Science, 9(1):147–169, 1985.

Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Bidi-
rectional relation between CMA evolution strategies and natural evolution
strategies. In Proceedings of Parallel Problem Solving from Nature - PPSN XI,
volume 6238 of Lecture Notes in Computer Science, pages 154–163. Springer,
2010.

Youhei Akimoto, Anne Auger, and Nikolaus Hansen. Convergence of the con-
tinuous time trajectories of isotropic evolution strategies on monotonic C2-
composite functions. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy
Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, PPSN
(1), volume 7491 of Lecture Notes in Computer Science, pages 42–51. Springer,
2012.

S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R.
Rao. Differential geometry in statistical inference. Institute of Mathematical
Statistics Lecture Notes—Monograph Series, 10. Institute of Mathematical
Statistics, Hayward, CA, 1987.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Comput.,
10:251–276, February 1998.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume
191 of Translations of Mathematical Monographs. American Mathematical
Society, Providence, RI, 2000. Translated from the 1993 Japanese original by
Daishi Harada.

D.V. Arnold. Weighted multirecombination evolution strategies. Theoretical
computer science, 361(1):18–37, 2006.

Shumeet Baluja. Population based incremental learning: A method for inte-
grating genetic search based function optimization and competitve learning.
Technical Report CMU-CS-94-163, Carnegie Mellon Report, 1994.

Shumeet Baluja and Rich Caruana. Removing the genetics from the standard
genetic algorithm. In Proceedings of ICML’95, pages 38–46, 1995.

6http://www.dagstuhl.de/10361

38

212

Y. Bengio, P. Lamblin, V. Popovici, and H. Larochelle. Greedy layer-wise train-
ing of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 153–160. MIT
Press, Cambridge, MA, 2007.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised fea-
ture learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538, 2012.

A. Berny. Selection and reinforcement learning for combinatorial optimization.
In Marc Schoenauer, Kalyanmoy Deb, Günther Rudolph, Xin Yao, Evelyne
Lutton, Juan Merelo, and Hans-Paul Schwefel, editors, Parallel Problem Solv-
ing from Nature PPSN VI, volume 1917 of Lecture Notes in Computer Science,
pages 601–610. Springer Berlin Heidelberg, 2000a.

A. Berny. An adaptive scheme for real function optimization acting as a selection
operator. In Combinations of Evolutionary Computation and Neural Networks,
2000 IEEE Symposium on, pages 140 –149, 2000b.

Arnaud Berny. Boltzmann machine for population-based incremental learning.
In ECAI, pages 198–202, 2002.

H.-G. Beyer. The Theory of Evolution Strategies. Natural Computing Series.
Springer-Verlag, 2001.

J. Branke, C. Lode, and J.L. Shapiro. Addressing sampling errors and diversity
loss in umda. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 508–515. ACM, 2007.

Jacob Burbea. Informative geometry of probability spaces. Exposition. Math., 4
(4):347–378, 1986.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2006.

Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein.
A tutorial on the cross-entropy method. Annals OR, 134(1):19–67, 2005.

G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Dellaleau. Parallel
tempering for training of restricted Boltzmann machines. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

Marcus Gallagher and Marcus Frean. Population-based continuous optimization,
probabilistic modelling and mean shift. Evol. Comput., 13(1):29–42, January
2005.

Zoubin Ghahramani. Unsupervised learning. In Olivier Bousquet, Ulrike von
Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on Machine Learn-
ing, volume 3176 of Lecture Notes in Computer Science, pages 72–112. Springer
Berlin / Heidelberg, 2004.

39

213

Tobias Glasmachers, Tom Schaul, Yi Sun, Daan Wierstra, and Jürgen Schmid-
huber. Exponential natural evolution strategies. In GECCO, pages 393–400,
2010.

N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano,
P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pages 75–102.
Springer, 2006.

N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal
test functions. In X. Yao et al., editors, Parallel Problem Solving from Nature
PPSN VIII, volume 3242 of LNCS, pages 282–291. Springer, 2004.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195,
2001.

G.E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

G.E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Conputation, 18:1527–1554, 2006.

R. Hooke and T.A. Jeeves. “direct search” solution of numerical and statistical
problems. Journal of the ACM, 8:212–229, 1961.

G.A. Jastrebski and D.V. Arnold. Improving evolution strategies through active
covariance matrix adaptation. In Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on, pages 2814–2821. IEEE, 2006.

Harold Jeffreys. An invariant form for the prior probability in estimation prob-
lems. Proc. Roy. Soc. London. Ser. A., 186:453–461, 1946.

Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic dif-
ferential equations, volume 23 of Applications of Mathematics (New York).
Springer-Verlag, Berlin, 1992.

Solomon Kullback. Information theory and statistics. Dover Publications Inc.,
Mineola, NY, 1997. Reprint of the second (1968) edition.

P. Larranaga and J.A. Lozano. Estimation of distribution algorithms: A new
tool for evolutionary computation. Springer Netherlands, 2002.

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute
online natural gradient algorithm. In NIPS, 2007.

Luigi Malagò, Matteo Matteucci, and Bernardo Dal Seno. An information geom-
etry perspective on estimation of distribution algorithms: boundary analysis.
In GECCO (Companion), pages 2081–2088, 2008.

40

214

Luigi Malagò, Matteo Matteucci, and Giovanni Pistone. Towards the geometry of
estimation of distribution algorithms based on the exponential family. In Hans-
Georg Beyer and William B. Langdon, editors, FOGA, Proceedings, pages
230–242. ACM, 2011.

John Ashworth Nelder and R Mead. A simplex method for function minimization.
The Computer Journal, pages 308–313, 1965.

M. Pelikan, D.E. Goldberg, and F.G. Lobo. A survey of optimization by building
and using probabilistic models. Computational optimization and applications,
21(1):5–20, 2002.

Calyampudi Radhakrishna Rao. Information and the accuracy attainable in
the estimation of statistical parameters. Bull. Calcutta Math. Soc., 37:81–91,
1945.

I. Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog Verlag, 1994.

Laurent Schwartz. Analyse. II, volume 43 of Collection Enseignement des Sci-
ences [Collection: The Teaching of Science]. Hermann, Paris, 1992. Calcul
différentiel et équations différentielles, With the collaboration of K. Zizi.

H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-generation computer
technology series. John Wiley & Sons, Inc. New York, NY, USA, 1995.

F. Silva and L. Almeida. Acceleration techniques for the backpropagation algo-
rithm. Neural Networks, pages 110–119, 1990.

P. Smolensky. Information processing in dynamical systems: foundations of har-
mony theory. In D. Rumelhart and J. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, MA,
USA, 1986.

Yi Sun, Daan Wierstra, Tom Schaul, and Juergen Schmidhuber. Efficient natural
evolution strategies. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, GECCO ’09, pages 539–546, New York, NY,
USA, 2009. ACM.

Virginia Torczon. On the convergence of pattern search algorithms. SIAM
Journal on optimization, 7(1):1–25, 1997.

M. Toussaint. Notes on information geometry and evolutionary processes. eprint
arXiv:nlin/0408040, 2004.

Michael Wagner, Anne Auger, and Marc Schoenauer. EEDA : A New Robust
Estimation of Distribution Algorithms. Research Report RR-5190, INRIA,
2004.

D. Whitley. The genitor algorithm and selection pressure: Why rank-based allo-
cation of reproductive trials is best. In Proceedings of the third international
conference on Genetic algorithms, pages 116–121, 1989.

41

215

Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen Schmidhuber. Natural
evolution strategies. In IEEE Congress on Evolutionary Computation, pages
3381–3387, 2008.

42

216

9.3 discussion 217

9.3 Discussion

Although the results of this paper are given in the context of optimization with
EDAs, they also give useful insights for training generative models such as RBMs

with gradient descent in the ML setting.
First, the dependence of the vanilla gradient on parametrization (Question 9),

is shown to affect the potential of an RBM to learn multimodal distributions.
Indeed, if the vanilla gradient tends to loose diversity as it progresses towards
two modes with a bimodal RBM, the problem is expected to become more severe
when it needs to fit more than 10300 modes1 as is usually the case in the ML

setting.
As for the question of how to approach these issues (Question 10), a first

possibility would be to use an approximation of the natural gradient (Le Roux
et al., 2007; Desjardins et al., 2013) to recover some degree of symmetry. However,
the exact natural gradient update is only truly invariant to re-parametrization in
the limit of an infinitesimal learning rate. An interesting course of action is then
to directly restore symmetry in the parametrization of the model, for instance
using a centered energy function (Montavon and Müller, 2012) such as the one
proposed in section 5:

E(x, h) = ≠
ÿ

i

ai(xi ≠ 1
2
) ≠

ÿ

j

bj(hj ≠ 1
2
) ≠

ÿ

i,j

wijai(xi ≠ 1
2
)(hj ≠ 1

2
)

Even if a centered energy does not have all the advantages of an exact natu-
ral gradient with an infinitesimal learning rate, this should allow for a better
trajectory in parameter space with almost no computational overhead.

1 This corresponds approximatively to the number of modes for an RBM with 1000 hidden units.

C O N C L U S I O N A N D P E R S P E C T I V E S

219

conclusion and perspectives 221

The ML approach to AI allows to learn and generalize from data by posing a
learning problem as an optimization one.

The objective is then to find a model which maximizes performance. However,
as we consider tasks which require more and more intelligence, the correspond-
ing models need more parameters which makes optimization increasingly difficult:
as the number of parameter increases, so does the dimensionality of the search
space. Aside from the necessity for additional computational power, optimiza-
tion in higher dimensions usually requires large amounts of data which can be
difficult or impossible to find in the supervised setting where labels are obtained
with human intervention. A possible way to circumvent the issue may be to learn

representations with unsupervised learning to leverage the large amounts of un-
labeled data which are almost always available. The original learning problem
is then solved in two steps: i/ learning a suitable representation and ii/ solving
the final problem given this representation. That being said, there is still the
matter of how to learn an interesting representation. This can be done with
unlabeled data, which is an improvement, but more parameters may be needed
since unsupervised learning will tend to take all aspects of the input distribution
into account and not only those which may be needed for the final problem.

In this setting, deep learning may lead to a practical answer. First, deep archi-
tectures are capable of performing complex operations with much less parameters
than shallow ones, which makes them easier to train. Second, the possibility of
using a layer-wise training procedure decreases the computational cost further
by making the optimization sequentially separable: instead of learning all the
parameters of the model at once, the optimization is done one layer at a time.

Consistency of layer-wise training The current state-of-the-art justifi-
cation for layer-wise training of deep generative models is based on the maxi-
mization of a variational lower bound. This approach leads to a guarantee that
the likelihood improves when a layer is added on top of a shallow model, but
the guarantee does not hold for more than two layers. Additionally, optimizing
the variational lower bound is not consistent as it does not lead to the same
optimum as the optimization of all layers at once. In this thesis, we propose
a new criterion for training deep generative models in a layer-wise fashion: the
BLM upper-bound. We prove that maximizing this criterion at each step leads
to an optimal deep generative model, provided the upper layers can be trained
successfully. The BLM upper-bound corresponds to the maximum log-likelihood
attainable by adding layers. This results in a new paradigm for layer-wise deep
learning: maximizing the potential log-likelihood of a deep generative model
even as upper-layers are not yet specified. Although the BLM is intractable in
general, we provide several approximations. The BLM upper-bound also has
close ties with encoder-decoder models. Namely, the training procedure of auto-
encoders with the reconstruction error corresponds to an approximation of the
BLM upper-bound. This leads to a new justification for stacked auto-associators
as an approximate method for training the lower part of a deep generative model

222 conclusion and perspectives

and suggests that the encoder part of the model should be as rich as possible.
This is confirmed by our experiments in which Auto-Encoders with Rich Infer-
ence (AERIes) are shown to outperform the current state-of-the-art variational
approach on two distinct datasets.

Tractability of performance evaluation Having a tractable measure
of performance is critical for model selection where several models must be com-
pared to choose the fittest. Current approaches based on the evaluation w.r.t. a
supervised task or based on the computation of the likelihood on a validation set
typically incur a high computational cost. In this thesis, we propose to use the
BLM upper-bound to evaluate the potential performance of lower layers before
the upper part of the model has been trained. In the context of learning repre-
sentations, the BLM upper bound gives an accurate measure of the quality of a
representation even when a model is incomplete. We show in our experiments
that the BLM upper-bound is a good estimator of the final likelihood and we de-
scribe a sound procedure for model selection: select each layer in turn according
to the BLM upper-bound, and select the final generative layer according to the
log-likelihood.

Efficiently training layers Training a single layer can be a difficult opti-
mization problem. Current approaches often rely on a gradient descent with the
Euclidean metric to perform optimization in parameter space. When the goal
is to estimate a distribution, our experiments show that choosing the Euclidean
metric introduces a spurious dependence on parametrization which can lead to a
breach of symmetry and a difficulty to account for multimodal distributions. In
this thesis, we show the importance of considering metrics in optimization and
suggest that the natural gradient or a centered parametrization can be used to
improve the trajectory of a gradient descent procedure.

These contributions lead to several new avenues of research.

Empirical validation of the BLM on larger models The properties of
the BLM could only be tested on relatively small models due to the intractability
of the likelihood. Recent advances in MCMC sampling may allow the computation
of the likelihood of larger models in a reasonable time. This would allow a
comparison of the BLM upper-bound and the traditional maximization of the
variational upper bound on deeper datasets where the BLM is predicted to have
a greater advantage.

Maximizing the BLM upper bound for richer models Several models
such as spike and slab RBMs and deep Boltzmann machines have been shown to
perform better than RBMs and auto-associators with the help of a variational
layer-wise pre-training. Further improvements may result from maximizing the
BLM upper bound with these richer models.

conclusion and perspectives 223

Deep learning without neural networks Although several attempts
have been made to apply the deep learning principles to other models, most suc-
cessful attempts concern neural networks. In this thesis we introduce a general
form for deep generative models which is not restricted to neural networks and
may apply to other classes of models.

Richer inference Using richer inference in the encoder part of an encoder-
decoder has shown to be a good way to increase performance when learning deep
neural networks. This principle is widely applicable and may lead to increasing
the performance of other models.

Layer-wise simplification The success of deep learning methods suggests
that auto-associators and RBMs are able to simplify a problem for upper layers.
However, there is no theoretical justification for these simplification properties.
Understanding how a distribution can be simplified may lead to a better under-
standing of what constitutes a good representation for deep learning.

optimization metrics This thesis highlights the importance of choosing a
good metric to perform optimization. Although in several applications, the exact
natural gradient itself may have a prohibitive computational cost, better metrics
may be found by changing parametrization or by approximating the natural
gradient.

P U B L I C AT I O N S

[1] Ludovic Arnold, Hélène Paugam-Moisy, and Michèle Sebag. Optimisation
de la topologie pour les réseaux de neurones profonds. In 17e congrès

francophone AFRIF–AFIA Reconnaissance des Formes et Intelli- gence

Artificielle (RFIA 2010), Caen France, Jan 2010.

[2] Ludovic Arnold, Hélène Paugam-Moisy, and Michèle Sebag. Unsupervised
layer-wise model selection in deep neural networks. In 19th European Con-

ference on Artificial Intelligence (ECAI 2010), Lisbon Portugal, Aug 2010,
915–920.

[3] Ludovic Arnold, Sebastien Rebecchi, Sylvain Chevallier, and Hélène Paugam-
Moisy. An introduction to deep learning. In European Symposium on
Artificial Neural Networks (ESANN 2011), 2011.

[4] Ludovic Arnold, Anne Auger, Nikolaus Hansen, and Yann Ollivier. Information-
geometric optimization algorithms: A unifying picture via invariance prin-
ciples. Technical report, ArXiv e-prints, June 2011. URL http://arxiv.

org/abs/1106.3708.

[5] Ludovic Arnold and Yann Ollivier. Layer-wise learning of deep generative
models. Technical report, ArXiv e-prints, December 2012. URL http:

//arxiv.org/abs/1212.1524.

225

http://arxiv.org/abs/1106.3708
http://arxiv.org/abs/1106.3708
http://arxiv.org/abs/1212.1524
http://arxiv.org/abs/1212.1524

B I B L I O G R A P H Y

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning
algorithm for boltzmann machines. Cognitive Science, 9(1):147–169, 1985.
(Cited on pages 72 and 73.)

Ryan Prescott Adams, Hanna M. Wallach, and Zoubin Ghahramani. Learning
the structure of deep sparse graphical models. Journal of Machine Learning

Research - Proceedings Track, 9:1–8, 2010. (Cited on page 87.)

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from
the data generating distribution. ArXiv e-prints, November 2012. (Cited on
page 86.)

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Compu-

tation, 10(2):251–276, 1998. (Cited on pages 57 and 173.)

Shun-ichi Amari, Hyeyoung Park, and Kenji Fukumizu. Adaptive method of
realizing natural gradient learning for multilayer perceptrons. Neural Compu-

tation, 12:1399–1409, June 2000. (Cited on page 57.)

Shummet Baluja. Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive learning.
Technical report, Pittsburgh, PA, USA, 1994. (Cited on page 19.)

Robert M. Bell, Yehuda Koren, and Chris Volinsky. The bellkor solution to
the netflix prize. Technical report, AT&T Labs – Research, 2007. (Cited on
page 90.)

Yoshua Bengio. Learning deep architectures for ai. Technical report, Université
de Montréal, Dept. IRO, 2007. (Cited on pages 80 and 85.)

Yoshua Bengio. Deep learning of representations: Looking forward. ArXiv e-

prints, May 2013. (Cited on page 79.)

Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive
divergence. Neural Computation, 21(6):1601–1621, 2009. (Cited on pages 76,
86, and 121.)

Yoshua Bengio and Xavier Glorot. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of AISTATS 2010, volume 9,
pages 249–256, 2010. (Cited on pages 80, 81, and 121.)

227

228 bibliography

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. In
Large-Scale Kernel Machines. MIT Press, 2007. (Cited on pages 79, 80,
and 91.)

Yoshua Bengio and Éric. Thibodeau-Laufer. Deep generative stochastic networks
trainable by backprop. ArXiv e-prints, June 2013. (Cited on page 95.)

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of highly
variable functions for local kernel machines. In Advances in Neural Information

Processing Systems 18, volume 18, 2006. (Cited on pages 79 and 80.)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 153–160.
MIT Press, Cambridge, MA, 2007. (Cited on pages 79, 80, 83, 87, and 121.)

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Unsupervised feature learn-
ing and deep learning: A review and new perspectives. CoRR, abs/1206.5538,
2012. (Cited on page 79.)

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized de-
noising auto-encoders as generative models. ArXiv e-prints, May 2013. (Cited
on page 86.)

James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012. (Cited
on pages 16 and 96.)

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In Advances in Neural Information Processing

Systems 23, 2011. (Cited on page 96.)

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Inc., New York, NY, USA, 1995. (Cited on page 63.)

Sean Borman. The expectation maximization algorithm: A short tutorial. 2004.
(Cited on page 53.)

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59:291–294, 1988.
(Cited on page 71.)

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Quickly generating rep-
resentative samples from an rbm-derived process. Neural Computation, 23(8):
2053–2073, August 2011. (Cited on page 87.)

Miguel A. Carreira-Perpiñán and Geoffrey E. Hinton. On contrastive divergence
learning. In Artificial Intelligence and Statistics, 2005. (Cited on page 76.)

bibliography 229

Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen. A two-stage
pretraining algorithm for deep boltzmann machines. In Proceedings of the

NIPS 2012 Workshop on Deep Learning and Unsupervised Feature Learning,
2012. (Cited on page 90.)

Dan C. Ciresan, Alessandro Giusti, Luca Maria Gambardella, and Jürgen
Schmidhuber. Deep neural networks segment neuronal membranes in electron
microscopy images. In NIPS, pages 2852–2860, 2012a. (Cited on page 91.)

Dan C. Ciresan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-
column deep neural network for traffic sign classification. Neural Networks, 32:
333–338, 2012b. (Cited on page 91.)

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmid-
huber. Deep big simple neural nets excel on handwritten digit recognition,
2010. (Cited on pages 80, 92, and 121.)

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the Fourteenth Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS), 2011.
(Cited on pages 91 and 92.)

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In ICML ’08: Pro-

ceedings of the 25th international conference on Machine learning, 2008. (Cited
on page 82.)

Aarron Courville, James Bergstra, and Yoshua Bengio. Unsupervised models of
images by spike-and-slab rbms. In Lise Getoor and Tobias Scheffer, editors,
Proceedings of the 28th International Conference on Machine Learning (ICML-

11), pages 1145–1152, New York, NY, USA, June 2011a. ACM. (Cited on
page 87.)

Aarron Courville, James Bergstra, and Yoshua Bengio. The spike and slab
restricted boltzmann machine. In Proceedings of the 14th International Con-

ference on Artificial Intelligence and Statistics (AISTATS), pages 233–241,
2011b. (Cited on page 87.)

Richard Threlkeld Cox. Probability, frequency and reasonable expectation.
American Journal of Physics, 14:1–13, 1946. (Cited on page 39.)

George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314–314, De-
cember 1989. (Cited on page 69.)

George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. IEEE

Transactions on Audio, Speech & Language Processing, 20(1):30–42, 2012.
(Cited on page 91.)

230 bibliography

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39:1–38, 1977. (Cited on page 53.)

Li Deng, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel rahman Mohamed,
and Geoffrey E. Hinton. Binary coding of speech spectrograms using a deep
auto-encoder. In INTERSPEECH, pages 1692–1695, 2010. (Cited on page 87.)

Guillaume Desjardins, Aaron Courville, Yoshua Bengio, Pascal Vincent, and
Olivier Dellaleau. Parallel tempering for training of restricted boltzmann ma-
chines. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics (AISTATS), 2010. (Cited on page 87.)

Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. On tracking the
partition function. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira,
and K.Q. Weinberger, editors, Advances in Neural Information Processing

Systems 24, pages 2501–2509, 2011. (Cited on page 88.)

Guillaume Desjardins, Razvan Pascanu, Aaron Courville, and Yoshua Bengio.
Metric-free natural gradient for joint-training of boltzmann machines. CoRR,
abs/1301.3545, 2013. (Cited on page 217.)

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and
Pascal Vincent. The difficulty of training deep architectures and the effect of
unsupervised pre-training. In Proceedings of the Twelfth International Con-

ference on Artificial Intelligence and Statistics (AISTATS), 2009. (Cited on
pages 83 and 84.)

Brendan J. Frey. Continuous sigmoidal belief networks trained using slice sam-
pling. In NIPS, pages 452–458, 1996. (Cited on page 87.)

Brendan J. Frey and Geoffrey E. Hinton. Variational learning in nonlinear gaus-
sian belief networks. Neural Computation, 11(1):193–213, 1999. (Cited on
page 87.)

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36(4):193–202, 1980. (Cited on page 81.)

Zoubin Ghahramani. Unsupervised learning. In Olivier Bousquet, Ulrike von
Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on Machine Learn-

ing, volume 3176 of Lecture Notes in Computer Science, pages 72–112. Springer
Berlin / Heidelberg, 2004. (Cited on page 52.)

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In David Dunson Geoffrey Gordon and eds Miroslav DudÃk,
editors, Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics (AISTATS), volume 15 (draft) of W&CP. JMLR,
2010. (Cited on page 87.)

bibliography 231

Ian J. Goodfellow, Quoc Le, Andrew Saxe, Honglak Lee, and Andrew Ng. Mea-
suring invariances in deep networks. In Y. Bengio, D. Schuurmans, J. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information

Processing Systems 22, pages 646–654. MIT Press, 2009. (Cited on page 80.)

Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio. Spike-and-slab sparse
coding for unsupervised feature discovery. CoRR, abs/1201.3382, 2012. (Cited
on page 87.)

Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio. Joint training of deep
boltzmann machines for classification. ArXiv e-prints, January 2013. (Cited
on page 90.)

Alex Graves. Offline arabic handwriting recognition with multidimensional recur-
rent neural networks. In Volker MÃ€rgner and Haikal El Abed, editors, Guide

to OCR for Arabic Scripts, pages 297–313. Springer London, 2012. (Cited on
page 90.)

Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with
multidimensional recurrent neural networks. In NIPS, pages 545–552, 2008.
(Cited on page 90.)

Maya R. Gupta and Yihua Chen. Theory and use of the em algorithm. Found.

Trends Signal Process., 4:223–296, 2011. (Cited on page 53.)

Nikolaus Hansen. The CMA evolution strategy: A tutorial. Technical report,
Université Paris Sud, 2008. (Cited on page 19.)

Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in Human Neuroscience, 3(00031):31, 2009. (Cited
on page 63.)

Geoffrey E. Hinton. Connectionist learning procedures. Artificial Intelligence,
40:185–234, 1989. (Cited on page 71.)

Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14:1771–1800, 2002. (Cited on page 76.)

Geoffrey E. Hinton. A practical guide to training restricted boltzmann machines.
Technical report, Department of Computer Science, University of Toronto,
2010. (Cited on page 76.)

Geoffrey E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, July 2006. (Cited on
page 87.)

Geoffrey E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Conputation, 18:1527–1554, 2006. (Cited on
pages 83, 84, and 121.)

232 bibliography

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580, 2012. (Cited on pages 81, 91, 92,
and 121.)

Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal

of physiology, 117(4):500–544, August 1952. (Cited on page 63.)

Kurt Hornik, Maxwell Stinchcombe, and Halber White. Multilayer feedforward
networks are universal approximators. Neural Netw., 2(5):359–366, 1989. ISSN
0893-6080. (Cited on page 69.)

Aapo Hyvärinen. Estimation of non-normalized statistical models by score
matching. J. Mach. Learn. Res., 6:695–709, 2005. (Cited on page 87.)

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.
What is the best multi-stage architecture for object recognition? In Proc.

International Conference on Computer Vision (ICCV’09). IEEE, 2009. (Cited
on page 82.)

Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference
in sparse coding algorithms with applications to object recognition. CoRR,
abs/1010.3467, 2010a. (Cited on page 171.)

Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michael
Mathieu, and Yann Le Cun. Learning convolutional feature hierarchies for
visual recognition. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing

Systems 23, pages 1090–1098, 2010b. (Cited on page 82.)

Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983. (Cited on page 73.)

Alex Krizhevsky. Convolutional deep belief networks on cifar-10. Technical
report, Department of Computer Science, University of Toronto, 2010. (Cited
on pages 84 and 87.)

Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of features
from tiny images. Master’s thesis, Department of Computer Science, Univer-
sity of Toronto, 2009. (Cited on page 74.)

Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In ICML ’08: Proceedings of the 25th interna-

tional conference on Machine learning, pages 536–543, New York, NY, USA,
2008. ACM. (Cited on page 87.)

bibliography 233

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An empirical evaluation of deep architectures on problems with many
factors of variation. In ICML ’07: Proceedings of the 24th international confer-

ence on Machine learning, pages 473–480, New York, NY, USA, 2007. ACM.
(Cited on page 86.)

Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Ex-
ploring strategies for training deep neural networks. The Journal of Machine

Learning Research, 10:1–40, 2009. (Cited on pages 83 and 86.)

Hugo Larochelle, Michael Mandel, Razvan Pascanu, and Yoshua Bengio. Learn-
ing algorithms for the classification restricted boltzmann machine. J. Mach.

Learn. Res., 13:643–669, 2012. (Cited on page 87.)

Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg
Corrado, Jeff Dean, and Andrew Ng. Building high-level features using large
scale unsupervised learning. In International Conference in Machine Learning,
2012. (Cited on page 91.)

Yann Le Le Cun, Bernhard Boser, John S. Denker, Richard E. Howard, Wayne E.
Habbard, Lawrence D. Jackel, and Donnie Henderson. Handwritten digit
recognition with a back-propagation network. In David S. Touretzky, editor,
Advances in neural information processing systems 2, pages 396–404, San Fran-
cisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc. (Cited on pages 81
and 82.)

Nicolas Le Roux and Yoshua Bengio. Representational power of restricted boltz-
mann machines and deep belief networks. Neural Computation, 20:1631–1649,
June 2008. (Cited on pages 74 and 122.)

Nicolas Le Roux and Andrew W. Fitzgibbon. A fast natural newton method. In
ICML, pages 623–630, 2010. (Cited on page 173.)

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Top-moumoute
online natural gradient algorithm. In Advances in Neural Information Pro-

cessing Systems 20. MIT Press, 2007. (Cited on page 217.)

Yann LeCun. Generalization and network design strategies. In R. Pfeifer,
Z. Schreter, F. Fogelman, and L. Steels, editors, Connectionism in Perspective,
Zurich, Switzerland, 1989. Elsevier. (Cited on page 82.)

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech,
and time-series. In M. A. Arbib, editor, The Handbook of Brain Theory and

Neural Networks. MIT Press, 1995. (Cited on pages 82 and 121.)

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, November 1998a. (Cited on page 81.)

234 bibliography

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Effi-
cient backprop. In Neural Networks: Tricks of the Trade. Springer Berlin /
Heidelberg, 1998b. (Cited on page 69.)

Honglak Lee, Chaitanya Ekanadham, and Andrew Y. Ng. Sparse deep belief
net model for visual area v2. In Advances in Neural Information Processing

Systems 20. MIT Press, 2007. (Cited on page 80.)

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolu-
tional deep belief networks for scalable unsupervised learning of hierarchical
representations. In ICML ’09: Proceedings of the 26th international conference

on Machine learning, page 77, 2009a. (Cited on pages 80 and 84.)

Honglak Lee, Yan Largman, Peter Pham, and Andrew Y. Ng. Unsupervised fea-
ture learning for audio classification using convolutional deep belief networks.
In Advances in Neural Information Processing Systems 22, pages 1096–1104.
MIT Press, 2009b. (Cited on page 84.)

Benjamin M. Marlin, Kevin Swersky, Bo Chen, and Nando de Freitas. Inductive
principles for restricted boltzmann machine learning. Journal of Machine

Learning Research - Proceedings Track, 9:509–516, 2010. (Cited on page 87.)

James Martens. Deep learning via hessian-free optimization. In Johannes
Fürnkranz and Thorsten Joachims, editors, ICML ’10: Proceedings of the

27th Annual International Conference on Machine Learning, pages 735–742,
Haifa, Israel, June 2010. Omnipress. (Cited on pages 14 and 173.)

James Martens and Ilya Sutskever. Learning recurrent neural networks with
hessian-free optimization. In Lise Getoor and Tobias Scheffer, editors, ICML

’11: Proceedings of the 28th Annual International Conference on Machine

Learning, ICML ’11, pages 1033–1040, New York, NY, USA, June 2011. ACM.
(Cited on pages 14 and 173.)

Ueli Meier, Dan Claudiu Ciresan, Luca Maria Gambardella, and Jürgen Schmid-
huber. Better digit recognition with a committee of simple neural nets. In
ICDAR, pages 1250–1254, 2011. (Cited on page 91.)

Roland Memisevic. Non-linear latent factor models for revealing structure in

high-dimensional data. PhD thesis, University of Toronto, 2008. (Cited on
page 89.)

Roland Memisevic and Geoffrey Hinton. Unsupervised learning of image transfor-
mations. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 2007. (Cited on page 89.)

Roland Memisevic and Geoffrey E. Hinton. Learning to represent spatial transfor-
mations with factored higher-order boltzmann machines. Neural Computation,
22(6):1473–1492, June 2010. (Cited on page 89.)

bibliography 235

Grégoire Mesnil, Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian
Goodfellow, Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-
Farley, Pascal Vincent, Aaron Courville, and James Bergstra. Unsupervised
and transfer learning challenge: a deep learning approach. In Isabelle Guyon,
G. Dror, V Lemaire, G. Taylor, and D. Silver, editors, JMLR W& CP: Pro-

ceedings of the Unsupervised and Transfer Learning challenge and workshop,
volume 27, pages 97–110, 2012. (Cited on page 90.)

Marvin L. Minsky and Seymour Papert. Perceptrons: An introduction to com-

putational geometry. MIT press Cambridge, Mass, 1969. (Cited on page 68.)

Grégoire Montavon and Klaus-Robert Müller. Deep Boltzmann Machines and

the Centering Trick, volume 7700 of LNCS. Springer, 2nd edn edition, 2012.
(Cited on page 217.)

Iain Murray and Ruslan Salakhutdinov. Evaluating probabilities under high-
dimensional latent variable models. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems,
volume 21, 2009. (Cited on pages 88 and 172.)

Vinod Nair and Geoffrey E. Hinton. 3d object recognition with deep belief nets.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
editors, Advances in Neural Information Processing Systems 22, pages 1339–
1347. MIT Press, 2009. (Cited on page 84.)

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In ICML ’10: Proceedings of the 27th international

conference on Machine learning, pages 807–814, 2010. (Cited on page 87.)

Radford M. Neal. Probabilistic inference using markov chain monte carlo meth-
ods. Technical Report CRG-TR-93-1, Department of Computer Science, Uni-
versity of Toronto, 1993. (Cited on page 41.)

Radford M. Neal. Annealed importance sampling. Technical report, University
of Toronto, Department of Statistics, 1998. (Cited on page 88.)

Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 2011. (Cited on
page 72.)

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y. Ng. Multimodal deep learning. In ICML, pages 689–696, 2011.
(Cited on page 87.)

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2006.
(Cited on page 14.)

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381:607–609,
1996. (Cited on page 37.)

236 bibliography

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete
basis set: a strategy employed by v1? Vision research, 37:3311–3325, 1997.
(Cited on page 37.)

Abdel rahman Mohamed, Tara N. Sainath, George E. Dahl, Bhuvana Ramabhad-
ran, Geoffrey E. Hinton, and Michael A. Picheny. Deep belief networks using
discriminative features for phone recognition. In ICASSP, pages 5060–5063,
2011. (Cited on page 84.)

Marc’Aurelio Ranzato, Alex Krizhevsky, and Geoffrey E. Hinton. Factored 3-
way restricted boltzmann machines for modeling natural images. Journal of

Machine Learning Research - Proceedings Track, 9:621–628, 2010. (Cited on
page 89.)

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In
ICML, pages 833–840, 2011. (Cited on pages 72 and 89.)

Salah Rifai, Yoshua Bengio, Yann Dauphin, and Pascal Vincent. A generative
process for sampling contractive auto-encoders. In International Conference

on Machine Learning, ICML’12, 06 2012. (Cited on page 89.)

Christian P. Robert and George Casella. Monte Carlo Statistical Methods

(Springer Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005. (Cited on page 41.)

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In David E. Rumelhart and
James L. McClelland, editors, Parallel distributed processing: explorations in

the microstructure of cognition, vol. 1, pages 318–362. MIT Press, Cambridge,
MA, USA, 1986. (Cited on pages 69 and 81.)

Ruslan Salakhutdinov. Learning and evaluating Boltzmann machines. Technical
Report UTML TR 2008-002, Department of Computer Science, University of
Toronto, June 2008. (Cited on page 88.)

Ruslan Salakhutdinov. Learning in markov random fields using tempered tran-
sitions. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22,
pages 1598–1606. MIT Press, 2009. (Cited on page 87.)

Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Pro-

ceedings of the Twelfth International Conference on Artificial Intelligence and

Statistics (AISTATS), volume 5, pages 448–455, 2009a. (Cited on pages 90
and 121.)

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Int. J. Approx.

Reasoning, 50(7):969–978, 2009b. (Cited on page 87.)

bibliography 237

Ruslan Salakhutdinov and Geoffrey E. Hinton. A better way to pretrain deep
boltzmann machines. In NIPS, pages 2456–2464, 2012. (Cited on page 90.)

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep be-
lief networks. In Proceedings of the 25th international conference on Machine

learning, ICML ’08, pages 872–879, New York, NY, USA, 2008. ACM. (Cited
on page 88.)

Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel, Steven L. Small, and
Stephen C. Strother. Generative versus discriminative training of rbms for
classification of fmri images. In NIPS, pages 1409–1416, 2008. (Cited on
page 87.)

Terrence J. Sejnowski. Higher-order boltzmann machines. In J. Denker, editor,
Neural Networks for Computing, pages 398–403. American Institute of Physics,
1986. (Cited on page 89.)

Paul Smolensky. Information processing in dynamical systems: foundations of
harmony theory. In D. Rumelhart and J. McClelland, editors, Parallel Dis-

tributed Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cam-
bridge, MA, USA, 1986. (Cited on page 73.)

Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep
boltzmann machines. In NIPS, pages 2231–2239, 2012. (Cited on page 90.)

Ilya Sutskever and Geoffrey E. Hinton. Deep, narrow sigmoid belief networks
are universal approximators. Neural Comput., 20:2629–2636, November 2008.
(Cited on page 80.)

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recur-
rent neural networks. In Lise Getoor and Tobias Scheffer, editors, Proceedings

of the 28th International Conference on Machine Learning (ICML-11), ICML
’11, pages 1017–1024, New York, NY, USA, June 2011. ACM. (Cited on
pages 14 and 173.)

Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Benjamin Marlin, and
Nando Freitas. On autoencoders and score matching for energy based mod-
els. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th In-

ternational Conference on Machine Learning (ICML-11), ICML ’11, pages
1201–1208, New York, NY, USA, 2011. ACM. (Cited on pages 87 and 89.)

Graham W. Taylor and Geoffrey E. Hinton. Factored conditional restricted
boltzmann machines for modeling motion style. In ICML ’09: Proceedings of

the 26th Annual International Conference on Machine Learning, pages 1025–
1032, New York, NY, USA, 2009. ACM. (Cited on page 84.)

Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis. Modeling human
motion using binary latent variables. In B. Schölkopf, J. Platt, and T. Hoffman,

238 bibliography

editors, Advances in Neural Information Processing Systems 19, pages 1345–
1352. MIT Press, Cambridge, MA, 2007. (Cited on page 84.)

Lucas Theis, Sebastian Gerwinn, Fabian Sinz, and Matthias Bethge. In all
likelihood, deep belief is not enough. Journal of Machine Learning Research,
12:3071–3096, Nov 2011. (Cited on page 92.)

Tijmen Tieleman. Training restricted boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th international conference

on Machine learning, ICML ’08, pages 1064–1071, New York, NY, USA, 2008.
ACM. (Cited on page 87.)

Tijmen Tieleman and Geoffrey E. Hinton. Using fast weights to improve persis-
tent contrastive divergence. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, pages 1033–1040, New York, NY,
USA, 2009. ACM. (Cited on page 87.)

Pascal Vincent. A connection between score matching and denoising autoen-
coders. Neural Computation, 23(7):1661–1674, July 2011. (Cited on page 89.)

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, ICML
’08, pages 1096–1103, New York, NY, USA, 2008. (Cited on pages 72, 86, 88,
and 121.)

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. J. Mach. Learn.

Res., 11:3371–3408, 2010. (Cited on page 86.)

David H. Wolpert and William G. Macready. No free lunch theorems for opti-
mization. Evolutionary Computation, IEEE Transactions on, 1(1):67 –82, apr
1997. (Cited on page 16.)

C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals

of Statistics, 11:95–103, 1983. (Cited on page 53.)

Colophon

This document was typeset using the typographical look-and-feel classicthesis

developed by André Miede. The style was inspired by Robert Bringhurst’s sem-
inal book on typography “The Elements of Typographic Style”. classicthesis

is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of July 6, 2013 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/

	Dedication
	Abstract
	Résumé
	Acknowledgments
	Contents
	Acronyms
	Notations
	List of Figures
	Introduction
	i Optimization and Machine Learning
	1 Optimization
	1.1 Problem statement
	1.2 The curse of dimensionality
	1.3 Convex functions
	1.4 Continuous differentiable functions
	1.5 Gradient descent
	1.6 Black-box optimization and Stochastic optimization
	1.7 Evolutionary algorithms
	1.8 EDAs

	2 From optimization to machine learning
	2.1 Supervised and unsupervised learning
	2.2 Generalization
	2.3 Supervised Example: Linear classification
	2.4 Unsupervised Example: Clustering and K-means
	2.5 Supervised Example: Polynomial regression
	2.6 Model selection
	2.7 Changing representations
	2.7.1 Preprocessing and feature space
	2.7.2 The kernel trick
	2.7.3 The manifold perspective
	2.7.4 Unsupervised representation learning

	3 Learning with probabilities
	3.1 Notions in probability theory
	3.1.1 Sampling from complex distributions

	3.2 Density estimation
	3.2.1 KL-divergence and likelihood
	3.2.2 Bayes' rule

	3.3 Maximum a-posteriori and maximum likelihood
	3.4 Choosing a prior
	3.5 Example: Maximum likelihood for the Gaussian
	3.6 Example: Probabilistic polynomial regression
	3.7 Latent variables and Expectation Maximization
	3.8 Example: Gaussian mixtures and EM
	3.9 Optimization revisited in the context of maximum likelihood
	3.9.1 Gradient dependence on metrics and parametrization
	3.9.2 The natural gradient

	ii Deep learning
	4 Artificial Neural Networks
	4.1 The artificial neuron
	4.1.1 Biological inspiration
	4.1.2 The artificial neuron model
	4.1.3 A visual representation for images

	4.2 Feed-forward neural networks
	4.3 Activation functions
	4.4 Training with back-propagation
	4.5 Auto-encoders
	4.6 Boltzmann Machines
	4.7 Restricted Boltzmann machines
	4.8 Training RBMs with Contrastive Divergence

	5 Deep Neural networks
	5.1 Shallow v.s. deep architectures
	5.2 Deep feed-forward networks
	5.3 Convolutional networks
	5.4 Layer-wise learning of deep representations
	5.5 Stacked RBMs and deep belief networks
	5.6 stacked auto-encoders and deep auto-encoders
	5.7 Variations on RBMs and stacked RBMs
	5.8 Tractable estimation of the log-likelihood
	5.9 Variations on auto-encoders
	5.10 Richer models for layers
	5.11 Concrete breakthroughs
	5.12 Principles of deep learning under question ?

	6 What can we do ?

	iii Contributions
	7 Presentation of the first article
	7.1 Context
	7.2 Contributions

	 Unsupervised Layer-Wise Model Selection in Deep Neural Networks
	 1 Introduction
	 2 Deep Neural Networks
	 2.1 Restricted Boltzmann Machine (RBM)
	 2.2 Stacked RBMs
	 2.3 Stacked Auto-Associators

	 3 Unsupervised Model Selection
	 3.1 Position of the problem
	 3.2 Reconstruction Error
	 3.3 Optimum selection

	 4 Experimental Validation
	 4.1 Goals of experiments
	 4.2 Experimental setting
	 4.3 Feasibility and stability
	 4.4 Efficiency and consistency
	 4.5 Generality
	 4.6 Model selection and training process

	 5 Conclusion and Perspectives
	 References
	7.3 Discussion

	8 Presentation of the second article
	8.1 Context
	8.2 Contributions

	 Layer-wise training of deep generative models
	 Introduction
	 1 Deep generative models
	 1.1 Deep models: probability decomposition
	 1.2 Data log-likelihood
	 1.3 Learning by gradient ascent for deep architectures

	 2 Layer-wise deep learning
	 2.1 A theoretical guarantee
	 2.2 The Best Latent Marginal Upper Bound
	 2.3 Relation with Stacked RBMs
	 2.4 Relation with Auto-Encoders
	 2.5 From stacked RBMs to auto-encoders: layer-wise consistency
	 2.6 Relation to fine-tuning
	 2.7 Data Incorporation: Properties of qD

	 3 Applications and Experiments
	 3.1 Low-Dimensional Deep Datasets
	 3.2 Deep Generative Auto-Encoder Training
	 3.3 Layer-Wise Evaluation of Deep Belief Networks

	 Conclusions
	 References
	8.3 Discussion

	9 Presentation of the third article
	9.1 Context
	9.2 Contributions

	 Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles
	 Introduction
	 1 Algorithm description
	 1.1 The natural gradient on parameter space
	 1.2 IGO: Information-geometric optimization

	 2 First properties of IGO
	 3 IGO, maximum likelihood, and the cross-entropy method
	 4 CMA-ES, NES, EDAs and PBIL from the IGO framework
	 5 Multimodal optimization using restricted Boltzmann machines
	 5.1 IGO for restricted Boltzmann machines
	 5.2 Experimental setup
	 5.3 Experimental results
	 5.4 Convergence to the continuous-time limit

	 6 Further discussion and perspectives
	 Summary and conclusion
	 Appendix: Proofs
	 References
	9.3 Discussion

	Conclusion and perspectives
	Bibliography
	Colophon

