Introduction

Computer systems are now used in various areas, such as medicine, transportation and nuclear power plants. An error in these systems may have consequences that range from occasional discomfort to financial or human loss. For instance, a design bug [START_REF] Vaughan | Anatomy of the pentium bug[END_REF] in PENTIUM 4 cost INTEL 500 million dollars. The explosion of ARIANE 5 due to a bug [START_REF] Lions | Ariane 5 flight 501 failure[END_REF] in its navigation system, cost 370 million dollars. Moreover, several patients died [START_REF] Leveson | An investigation of the therac-25 accidents[END_REF] after having received an abnormal dose of radiations, because of a software bug in a radiotherapy machine.

In order to improve hardware and software reliability, several formal methods have been designed. These approaches include testing [START_REF] Tillmann | Parameterized unit testing with microsoft pex[END_REF], model checking [START_REF] Ball | Slam2: Static driver verification with under 4% false alarms[END_REF][START_REF] David | A retrospective on murphi[END_REF] and deductive verification [START_REF] Bobot | The Why3 platform[END_REF][START_REF]The Frama-C platform for static analysis of C programs[END_REF][START_REF] Barnett | Boogie: A Modular Reusable Verifier for Object-Oriented Programs[END_REF]. Testing techniques are popular in industry, because they are automatic and scale well in practice. Model checkers are now used in hardware design [START_REF] Ball | Slam2: Static driver verification with under 4% false alarms[END_REF][START_REF] John | Theorem proving in intel hardware design[END_REF][START_REF] Gupta | Sat-based verification methods and applications in hardware verification[END_REF] and deductive verification is used in software development [START_REF] Souyris | Proof of properties in avionics[END_REF][START_REF] Barnes | High Integrity Software: The SPARK Approach to Safety and Security[END_REF].

The techniques mentioned above generate a large number of logical formulas.

In testing, these formulas are used to characterize feasible paths in control flow graphs. In model checking, they encode states of systems and transition relations.

In deductive verification, they are generated from programs annotated with their formal specifications.

In general, formulas issued from software verification contain dozens of ground hypothesis and hundreds of quantified axioms. But, only few instances of some axioms are needed to prove their validity. Furthermore, these formulas mix -in a non-trivial way -boolean connectives with some specific theories, such as linear arithmetic, the free theory of equality and the theory of arrays.

Interactive theorem provers [START_REF] Coq | The Coq Proof Assistant Reference Manual -Version V8.3[END_REF][START_REF]The ISABELLE system[END_REF] can naturally be used to prove these formulas, especially when the proofs require inductive reasoning. Nonetheless, these tools are very tedious, as the user has to provide a lot of details and plenty of time, which makes them not scalable in practice. Thus, automatic theorem provers (ATPs) seem to be a good alternative, since they allow a high degree of automation and scalability on large projects.

SAT solvers [START_REF] Een | An extensible sat-solver[END_REF][START_REF] Moskewicz | Chaff: Engineering an efficient sat solver[END_REF][START_REF] Joso | Grasp -a new search algorithm for satisfiability[END_REF] designate a family of automatic tools that targets reasoning in propositional logic. These tools have made a spectacular progress and reached a high level of maturity during the two last decades. However, they are not really suitable for proving formulas coming from software verification, because they do not handle quantifiers and theories reasoning.

Conversely, TPTP 1 provers [START_REF] Weidenbach | Spass version 3.5[END_REF][START_REF] Mccune | Otter 3.3 reference manual[END_REF][START_REF] Riazanov | The design and implementation of vampire[END_REF] are a generic family of automatic tools that handles reasoning in first-order logic. These ATPs are commonly based on first-order resolution, tableaux methods or superposition calculus. Moreover, they are refutationally complete and provide built-in support for some equational theories, such as the free theory of equality and the AC 2 theory. Internally, they use term rewriting, unification and completion as computation and inference techniques. However, these provers have not succeeded in the context of software verification. The main reason is the lack of efficient reasoning in a combination of interesting theories, such as linear arithmetic.

Halfway between these two families, another technology, called Satisfiability Modulo Theories (SMT), has emerged in the last decade. Logical formulas issued from software verification are within the reach of these ATPs. In this thesis, we will focus on this family of automatic provers.

Satisfiability Modulo Theories

SMT solvers handle formulas expressed in syntactic fragments of first-order logic where some symbols are assigned additional meanings in some specific theories.

For instance, the formula

(a ≤ b + 0 ∧ a ≥ b) ⇒ f (a) = f (b)
is a mixture of boolean connectives (∧, ⇒), uninterpreted symbols (a, b, f ), an equality predicate (=) and arithmetic symbols (≤, ≥, +, 0). This formula is valid in the combination of the free theory of equality and linear integer arithmetic.

Internally, SMT solvers combine specialized powerful "little engines of proofs" to enable efficient propositional reasoning modulo interesting specific theories. Furthermore, some of them support quantified formulas. The architecture of a basic SMT solver is shown in Figure 1.1. The preprocessor includes operations, such as parsing, type-checking, simplification, learning and CNF conversion. In the rest of this section, we will describe the other components in more detail. 1 Thousands of Problems for Theorem Provers [START_REF] Sutcliffe | The TPTP Problem Library: CNF Release v1.2.1[END_REF] 2 The theory of associative and commutative function symbols. SAT solvers handle reasoning in propositional logic. They are used to determine whether the propositional variables appearing in a given formula admit a boolean assignment making this formula satisfiable. The main approaches used for that purpose are BDDs [START_REF] Akers | Binary decision diagrams[END_REF], the resolution method [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF], the DPLL algorithm [START_REF] Davis | A machine program for theorem-proving[END_REF] and the CDCL procedure [START_REF] Joso | Grasp -a new search algorithm for satisfiability[END_REF]. The two last techniques are the most popular in SMT.

They work on formulas in Conjunctive Normal Form (CNF).

DPLL is a backtracking search procedure that attempts to construct a boolean model for a given formula by iteratively [START_REF]16th Annual IEEE Symposium on Logic in Computer Science[END_REF] fixing an unassigned variable to a truth value and by [START_REF] Achterberg | MIPLIB[END_REF] deducing all of its consequences. When a conflicting configuration is encountered, backtracking is performed and the last assignment is flipped.

The CDCL algorithm improves DPLL in many ways. First, it uses new data structures for clauses representation that dramatically speed up the deduction of consequences. Second, the choice of the next variable to be assigned is guided by a dynamic variables activity (VSIDS) heuristic [START_REF] Moskewicz | Chaff: Engineering an efficient sat solver[END_REF]. Most importantly, an implied clause is learned after each conflict and the backtracking process is entirely guided by this clause. A very naive implementation of CDCL is sketched in Figure 1.2. The extension of an abstract DPLL/CDCL procedure with theory reasoning is described in [START_REF] Nieuwenhuis | Abstract dpll and abstract dpll modulo theories[END_REF]. In earlier approaches, the decisions procedures were only asked to check the satisfiability of full boolean models constructed by the SAT. Modern integration schemes are much more tight. Figure 1.3 sketches such an integration scheme: each time the boolean candidate model is augmented with some assignments, the procedure checks its consistency modulo theory (line 4). Moreover, an incomplete, but fast learning mechanism is used to deduce consequences that are implied at the theory level by the current partial propositional model. 

Decision procedures and their combination

Decision procedures are designed to efficiently reason modulo specific theories.

These dedicated proofs engines are predictable compared to generic deduction mechanisms. For instance, the congruence closure algorithm [START_REF] Nieuwenhuis | Fast Congruence Closure and Extensions[END_REF][START_REF] Bachmair | Abstract congruence closure[END_REF] and the ground completion procedure [START_REF] Snyder | Efficient completion: a o(n.log(n)) algorithm for generating reduced sets of ground rewrite rules equivalent to a set of ground equations e[END_REF] are used to decide quantifier-free formulas modulo the free theory of equality. The simplex algorithm [START_REF] Dantzig | Linear Programming and Extensions[END_REF] and the Fourier-Motzkin method [START_REF] Khachiyan | Fourier-motzkin elimination method[END_REF] are used to decide quantifier-free formulas modulo linear rational arithmetic. The Omega-Test procedure [START_REF] Pugh | The Omega test: a fast and practical integer programming algorithm for dependence analysis[END_REF] and various simplex extensions [START_REF] Schrijver | Theory of linear and integer programming[END_REF] are used to solve linear integer arithmetic.

In many domains, formulas are expressed through a combination of several theories. Consequently, reasoning in the union of these theories is mandatory to decide such formulas. Given two theories T 1 and T 2 equipped with two decision procedures D 1 and D 2 respectively, the combination problem of T 1 and T 2 consists in building -if possible -a decision procedure D for the union T 1 ∪ T 2 using the individual procedures D 1 and D 2 .

Designing efficient frameworks to combine decision procedures is an active research domain. The two historical algorithms for combining theories without shared symbols are Nelson-Oppen's framework [START_REF] Nelson | Fast decision procedures based on congruence closure[END_REF] and Shostak's method [START_REF] Shostak | Deciding combinations of theories[END_REF].

Nelson-Oppen's framework is very generic. It combines decision procedures for signature-disjoint theories that are stably infinite. For convex theories, it [START_REF]16th Annual IEEE Symposium on Logic in Computer Science[END_REF] purifies the given mixed formula using variables abstraction; (2) solves each pure formula using the corresponding decision procedure; (3) exchanges entailed equalities between shared variables. The last point is crucial for completeness, as the individual procedures have to agree on equalities between shared variables to merge their models.

The non-deterministic version handles non-convex theories. It works by guessing implied equalities between shared variables instead of asking the procedures to deduce them all. However, its complexity is much higher. Let us illustrate this method on the following mixed formula:

0 ≤ a ∧ a ≤ 1 ∧ f (a) = f (0) ∧ g(a) = g(1)
The purification step yields the equivalent conjunction:

0 ≤ x ∧ x ≤ 1 ∧ y = 0 ∧ z = 1 (ϕ 1 ) ∧ x = a ∧ f (x) = f (y) ∧ g(x) = g(z) (ϕ 2 )
where x, y and z are abstraction variables, ϕ 1 is pure in linear integer arithmetic and ϕ 2 is pure in the free theory of equality. In the second step, we realize that

(0 ≤ x ∧ x ≤ 1
) is equivalent to (x = 0 ∨ x = 1) modulo linear integer arithmetic. But, if x = 0 (resp. x = 1), the equality x = y (resp. x = z) has to be propagated to the decision procedure of the free theory of equality. This implies that f (x) = f (y) (resp. g(x) = g(z)), which causes an inconsistency.

A substantial amount of work aims at improving this framework. For instance, Delayed Theories Combination [START_REF] Bruttomesso | Delayed theory combination vs. nelson-oppen for satisfiability modulo theories: a comparative analysis[END_REF] delegates the combination task to the SAT solver.

Model Based Theories Combination [START_REF] Mendonça De Moura | Model-based theory combination[END_REF] attempts to reduce the number of propagated equalities while preserving completeness. These methods, are used in several SMT solvers, such as CVC3 [START_REF] Barrett | CVC3[END_REF], CVC4 [START_REF] Barrett | Cvc4[END_REF], MathSAT5 [START_REF] Griggio | MathSAT 5: An SMT Solver for Formal Verification[END_REF] and Z3 [START_REF] De | Z3, an efficient SMT solver[END_REF].

Shostak's combination approach is a specific framework for reasoning in the union of the free theory of equality with a signature-disjoint Shostak theory. That is, an equational theory that admits a canonizer algorithm for computing normal forms of terms modulo theory, and a solver routine that transforms equalities into substitutions. For example, the equational parts of linear arithmetic, the theory of records, and the theory of fixed-sized bit-vectors meet these criteria.

This approach handles formulas of the form (s

1 = t 1 ∧ • • • ∧ s n = t n ) ⇒ s = t.
It interleaves canonization, solving equalities and rewriting, in order to transform the conjunction (s 1 = t 1 ∧• • • ∧s n = t n ) into a convergent rewriting system modulo the Shostak theory. Then, it rewrites and canonizes s and t, to check whether s = t follows. Let us illustrate this mechanism on the following example:

(x = 2y ∧ f (y) - x 2 = 0) ⇒ f (x -f (y)) = y
Solving the first equality simply returns x → 2y. The second equality is then rewritten to f (y) -2y 2 = 0 and canonized to f (y)y = 0. Solving the last equality returns f (y) → y. Finally, rewriting and canonizing f (xf (y)) yields y.

The initial formulation of Shostak's framework [START_REF] Shostak | Deciding combinations of theories[END_REF] was neither complete nor terminating. After several attempts, it was completely corrected in [START_REF] Rueß | Deconstructing shostak[END_REF]. Moreover, Shostak claimed that it would be possible to combine individual canonizers and solvers. While the first assertion was proved correct, it has been shown that solvers do not combine in general [START_REF] Conchon | Strategies for combining decision procedures[END_REF]. This framework and its variants are used in several tools, such as PVS [START_REF] Owre | PVS: A prototype verification system[END_REF], SVC [START_REF] Barrett | Validity checking for combinations of theories with equality[END_REF], ICS [START_REF] Filliâtre | ICS: Integrated Canonization and Solving (Tool presentation)[END_REF] and our ALT-ERGO SMT solver [START_REF] Bobot | The Alt-Ergo automated theorem prover[END_REF].

Handling quantifiers

Stricto sensu, SMT refers to the extension of a SAT solver with built-in decision procedures to reason modulo theories. However, in many application domains, formulas contain both ground and quantified parts. For instance, in deductive software verification, quantified formulas are used to encode memory models of programming languages and some properties assessed in programs specification.

In general, SMT solvers with quantifiers support use instantiation techniques.

These techniques are based on matching modulo ground equalities and the notion of triggers. Furthermore, some SMT solvers integrate superposition calculus [START_REF] De | Engineering dpll(t) + saturation[END_REF] to overcome the limitations of matching techniques.

The SMT revolution

Satisfiability Modulo Theories is a young research topic. First developments date back to Nelson's PhD thesis [START_REF] Nelson | Techniques for Program Verification[END_REF] in late 1970s -early 1980s. During the last years, we have witnessed an important improvement of this technology up to the present time, at which SMT solvers are very popular. They are used in various domains, such as hardware design, software verification, model-checking, symbolic execution, test-case generation, etc. However, there are still a lot of challenges in SMT solving. For instance, these include the design of new procedures for the theory of floating-point numbers and 1.2. The SMT revolution set theory, the improvement of existing procedures, the enhancement of theories combination schemes and a better handling of quantifiers.

There is an active community around SMT. In 2003, the SMT-LIB [START_REF] Ranise | The Satisfiability Modulo Theories Library (SMT-LIB)[END_REF] initiative was created to provide standard descriptions of some interesting theories, to define a common language format, and to collect benchmarks. Moreover, SMTcompetition [START_REF] Barrett | 6 years of SMT-COMP[END_REF], SMT-workshop and the SAT/SMT summer school are yearly events devoted to this topic. Figure 1.4 summarizes some advances in SAT solving, SMT solving, and decision procedures design and combination.

Overview of the contributions

This thesis addresses the enhancement of our Alt-Ergo theorem prover to make it effective and usable in the context of software verification. We summarize in this section our main contributions.

Quantifier-free linear integer arithmetic

The theory of quantifier-free linear integer arithmetic (QF-LIA) is ubiquitous in many domains, such as verification, linear programming, compiler optimization, planning and scheduling. In particular, it constitutes -together with the free theory of equality -a must-have in deductive software verification. Most of the procedures implemented in state-of-the-art SMT solvers are extensions of either the simplex algorithm [START_REF] De | Z3, an efficient SMT solver[END_REF][START_REF] Barrett | Cvc4[END_REF][START_REF] Griggio | MathSAT 5: An SMT Solver for Formal Verification[END_REF][START_REF] De | Yices: An SMT Solver[END_REF] or the Fourier-Motzkin method [START_REF] Barrett | CVC3[END_REF][START_REF] Bobot | The Alt-Ergo automated theorem prover[END_REF]. Both techniques first relax the initial problem to the rational domain and then proceed by branching / cutting methods or by projection.

Simplex extensions, such as branch-and-bound and cutting-planes [START_REF] Schrijver | Theory of linear and integer programming[END_REF], are often drowned in a huge search space, when they come to perform a case-split analysis. Furthermore, they are not complete w.r.t. the deduction of all entailed equalities. Conversely, Fourier-Motzkin extensions, such as Omega-Test [START_REF] Pugh | The Omega test: a fast and practical integer programming algorithm for dependence analysis[END_REF], do not scale in practice. In fact, they potentially introduce a double exponential number of intermediate inequalities, which saturates the memory.

The first contribution of this thesis is a novel procedure for deciding QF-LIA.

Roughly speaking, given a conjunction of inequalities i j a i,j x j + b i ≤ 0 over integers, our algorithm attempts to infer precise lower bounds for the affine forms a i,j x j + b i , in order to cut down the search space. These bounds are computed using a rational simplex to solve auxiliary linear optimization problems. These problems simulate particular runs of the Fourier-Motzkin algorithm.

A key feature of our method is that we can safely deduce the satisfiability of the original problem, if none of the affine forms have a lower bound. This is clearly a positive point compared to traditional simplex-based extensions. Moreover, we can infer all implied (disjunctions of) equalities for the affine forms a i,j x j + b i that admit a lower bound. In addition, the use of a rational simplex in practice allows us to circumvent the scalability issue of Fourier-Motzkin extensions.

Since our technique is based on bounds inference and maintenance, it is easily extensible with intervals calculus. In practice, this allows us to incorporate nonlinear arithmetic reasoning. Note that equality constraints are eliminated using solving and substitution techniques à la Omega-Test.

Overview of the contributions

Preprocessing and SAT solving

To validate our procedure for linear integer arithmetic, we have conducted some experiments with ALT-ERGO, using the QF-LIA benchmark [START_REF] Barrett | The SMT-LIB Standard: Version 2[END_REF]. Unfortunately, we were quickly faced with the complexity of certain formulas in this test-suite.

In fact, these formulas have a rich propositional structure and heavily use some high level constructs, such as LET-IN and IF-THEN-ELSE. Although sufficient in the context of deductive software verification, the preprocessor and the SAT solver of ALT-ERGO are not suitable for this kind of formulas.

To circumvent this issue, we implemented a small SMT solver dedicated to quantifier-free linear integer arithmetic. This prototype, called CTRL-ERGO, is built upon an OCAML reimplementation of MINISAT [START_REF] Eén | An extensible sat-solver[END_REF]. Its preprocessor incorporates a new contextual simplification step to minimize formulas containing LET-IN and IF-THEN-ELSE constructs. In addition, the QF-LIA procedure implements some features, such as theory propagation and dynamic clustering.

Built-in AC reasoning modulo theories

Many mathematical operators occurring in automated reasoning enjoy the associativity and commutativity (AC) properties. Examples of such operators include union and intersection of sets, boolean and bit-vectors operators (and, or, xor), and arithmetic operators (addition, linear and non-linear multiplication).

The easiest way to handle these properties in an SMT solver is to add the axioms below in its instantiation engine for each function symbol u that is AC. ∀x.∀y.∀z. u(x, u(y, z)) = u(u(x, y), z) (A) ∀x.∀y. u(x, y) = u(y, x) (C)

Unfortunately, this method does not work in practice. Indeed, the mere addition of these axioms to a prover will usually glut it with plenty of intermediate terms and equalities which will strongly impact its performances.

While SMT solvers provide built-in support for some specific AC symbols, such as linear arithmetic and boolean operators, they rather rely on axiomatization to deal with generic user-defined AC symbols. Conversely, AC reasoning is well investigated in the rewriting community. For instance, the AC completion procedure, implemented at the heart of some TPTP provers, enables a powerful generic treatment of AC symbols. Furthermore, when the input problem has no variables, AC completion provides a decision algorithm [START_REF] Marché | On ground AC-completion[END_REF] for the combination of the free theory of equality and the AC theory.

In many application domains, AC is only a part of the automated deduction problem. What we really need is to decide formulas combining AC symbols and other theories. For instance, a combination of AC reasoning with linear arithmetic and the free theory equality is necessary to prove the formula

    u(a, c 2 -c 1 ) = a ∧ d = c 1 + 1 ∧ u(e 1 , e 2 ) -f (b) = u(d, d) ∧ e 2 = b ∧ u(b, e 1 ) = f (e 2 ) ∧ c 2 = 2 c 1 + 1     ⇒ a = u(a, 0 
)
where u is an AC symbol, the symbols +, -, 0, 1, 2 belong to the theory of linear arithmetic, and the rest of the symbols are uninterpreted.

In this thesis, we have investigated the incorporation of generic built-in AC reasoning in an SMT solver. For this purpose, we have designed a framework, called AC(X), to reason in the combination of the free theory of equality, the AC theory and an arbitrary signature-disjoint Shostak theory.

The AC theory cannot be directly combined using Shostak's framework, since it does not provide a solver routine. To circumvent this limitation, we have adopted a slightly different approach: we followed Shostak's combination technique and extended the ground AC completion procedure with an arbitrary signature-disjoint Shostak theory. This modular and non-intrusive extension rests on the integration of the canonizer and the solver routines, provided by the Shostak theory in the ground AC completion procedure.

Note that, at about the same period as our investigations, Tiwari has studied [START_REF] Tiwari | Combining equational reasoning[END_REF] the combination of AC reasoning with the free theory of equality and the theory of polynomial rings in the Nelson-Oppen framework. However, no implementation or experimentation were given. In addition, our philosophy in ALT-ERGO is to rather favor Shostak-like methods to combine convex equational theories.

Implementation in ALT-ERGO

ALT-ERGO [START_REF] Bobot | The Alt-Ergo automated theorem prover[END_REF] is an SMT solver used to discharge logical formulas issued from deductive programs verification. It is currently used in tools, such as Why3 [START_REF] Filliâtre | Why3 -where programs meet provers[END_REF],

Caveat [START_REF] Souyris | Proof of properties in avionics[END_REF], Frama-C [START_REF]The Frama-C platform for static analysis of C programs[END_REF], Spark [START_REF] Barnes | High Integrity Software: The SPARK Approach to Safety and Security[END_REF] and GNATprove [START_REF] Guitton | Why Hi-Lite Ada?[END_REF].

During this thesis, we enhanced the core of ALT-ERGO in many ways. First, we extended our solver with the AC(X) framework. Currently, AC(X) is used to handle the associativity and the commutativity properties of both user-defined AC symbols and non-linear multiplication. Moreover, a subtle interaction between 1.4. Outline linear arithmetic and AC allows us to partially support the distributivity property of non-linear multiplication over addition. Second, we have implemented a state-of-the-art decision procedure [START_REF] Goel | Deciding array formulas with frugal axiom instantiation[END_REF] for the theory of functional arrays with extentionality and a procedure for the theory of enumerated data types.

Outline

This dissertation is organized follows: Chapter 2 introduces some preliminaries and background material that will be used in the rest of this thesis. In Chapter 3, we describe our procedure for deciding the theory of quantifier-free linear integer arithmetic and provide some implementation details about the CTRL-ERGO SMT solver. In Chapter 4, we present our AC(X) framework that enables reasoning in the combination of the free theory of equality, the AC theory and a signaturedisjoint Shostak theory. We also describe some prospective extensions of AC(X)

and discuss the issues we encountered. Chapter 5 describes the core of ALT-ERGO and the various extensions we have made to enhance it. Finally, in Chapter 6, we review some interesting improvements and extensions of our work and conclude.

CHAPTER 2

Background

In this chapter, we first recall some notations and definitions about many-sorted first-order logic, satisfiability modulo theories and Shostak theories. Then, we present some interesting first-order theories in SMT.

Many-sorted first-order logic

Syntax

Signature

In many-sorted first-order logic, a signature Σ is a tuple (F, P, S, τ F , τ P ), where:

• F and P are two disjoint sets of function and predicate symbols, respectively

• S is a set of sort symbols

• τ F : F → S + associates to each symbol f ∈ F a tuple s 1 × • • • × s n × s, usually denoted s 1 × • • • × s n → s • τ P : P → S * associates to each symbol p ∈ P a tuple s 1 × • • • × s n The tuple s 1 × • • • × s n → s (resp. s 1 × • • • × s n ) is called the sort (arity) of the symbol f (resp. p).
A constant is a function (resp. predicate) symbol with arity s ∈ S.

In addition to the symbols in P, we dispose of a binary predicate ≈ s of sort s × s, for each s ∈ S. These predicates, that represent syntactic equality, will be denoted ≈ when the sort information is irrelevant or deductible from the context.

Terms

Let Σ be a signature, X a set of variables disjoint from F and P, and τ X : X → S a mapping from variables to sorts. The set T Σ (X ) of well-sorted terms is given by:

T Σ (X ) = s∈S T s Σ (X )
where T s Σ (X ) is the set of well-sorted terms of sort s defined as follows:

• x ∈ T s Σ (X ) if x ∈ X and τ X (x) = s • f (t 1 , • • • , t n ) ∈ T s Σ (X ) if f ∈ F and τ F (f ) = s 1 × • • • × s n → s and t i ∈ T s i Σ (X ), for each 1 ≤ i ≤ n

Atoms

We then define the set AT Σ (X ) of well-sorted atoms as follows:

• t 1 ≈ s t 2 ∈ AT Σ (X ) if s ∈ S and t 1 , t 2 ∈ T s Σ (X ) • p(t 1 , • • • , t n ) ∈ AT Σ (X ) if p ∈ P and τ P (p) = s 1 × • • • × s n and t i ∈ T s i Σ (X ), for each 1 ≤ i ≤ n

Formulas

On top of atoms, we define the set FO Σ (X ) of well-sorted formulas as follows:

• AT Σ (X ) ⊆ FO Σ (X ) • (¬ ϕ) ∈ FO Σ (X ) if ϕ ∈ FO Σ (X ) • (ϕ 1 ⊲⊳ ϕ 2 ) ∈ FO Σ (X ) if ϕ 1 ∈ FO Σ (X ) and 
ϕ 2 ∈ FO Σ (X )
and

⊲⊳ ∈ { ∧, ∨, ⇒, ⇔ } • (Q x : s. ϕ) ∈ FO Σ (X ) if x ∈ X and τ X (x) = s and ϕ ∈ FO Σ (X ) and Q ∈ { ∀, ∃ }
In the rest of this thesis, we will use (possibly with subscripts) the symbols a, b, f, g, u to denote function symbols, p, q to denote predicate symbols, s, t, l, r to denote terms, x, y, z to denote variables, and ϕ, ψ to denote formulas. Depending on the context, we will also use a to denote atoms, l to denote literals and s to denote sorts.

Sort annotations used for quantified formulas (i.e. Q x : s. ϕ) will be omitted when they are irrelevant or deductible from the context. For instance, we simply write ∀x. x ≈ s x instead of ∀x : s. x ≈ s x, where s ∈ S. We will also use the

abbreviation ∀x 1 , • • • , x n . ϕ to denote the formula ∀x 1 . • • • ∀x n . ϕ
Viewing terms as trees, subterms within a term s are identified by their positions. Pos(t) denotes the set of all positions of a term t. Given a position p, s| p denotes the subterm of s at position p, and s[r] p the term obtained by replacement of s| p by the term r. We will also use the notation s(p) to denote the symbol at position p in the tree. The root position is denoted by Λ. Given a subset F ′ of F, a subterm t| p of t is a F ′ -alien of t if t(p) ∈ F ′ and p is minimal w.r.t the prefix word ordering. Notice that, according to this definition, a variable is a F ′ -alien.

The multiset of F ′ -aliens of a term t will be denoted A F ′ (t).

A literal is a formula of the form a or ¬a, where a is an atom. A clause is a disjunction i l i of literals. The variables appearing in a clause -if any -are implicitly universally quantified. A formula in conjunctive normal form (CNF) is a conjunction j ( i l ij ) of clauses.

Variables

The set vars(t) of variables occurring in a term t is defined as follows:

• vars(x) = {x} if x ∈ X • vars(f (t 1 , • • • , t n )) = n i=1 vars(t i ) if f ∈ F and τ F (f ) = s 1 × • • • × s n → s A term t is ground if vars(t) = ∅.
The set of all ground terms is denoted T Σ . The set vars A (a) of variables occurring in an atom a is defined in a similar way. The set Fvars(ϕ) of free variables occurring in a formula ϕ is defined by:

• Fvars(ϕ ′ ) = vars A (ϕ ′ ) if ϕ ′ ∈ AT Σ (X ) • Fvars(¬ ϕ ′ ) = Fvars(ϕ ′ ) if ϕ ′ ∈ FO Σ (X ) • Fvars(ϕ 1 ⊲⊳ ϕ 2 ) = Fvars(ϕ 1 ) ∪ Fvars(ϕ 2 ) if ϕ 1 ∈ FO Σ (X ) and 
ϕ 2 ∈ FO Σ (X ) and ⊲⊳ ∈ {∧, ∨, ⇒, ⇔} • Fvars(Q x. ϕ ′ ) = Fvars(ϕ ′ ) \ {x} if x ∈ X and ϕ ′ ∈ FO Σ (X ) and 
Q ∈ { ∀, ∃ }
The set Bvars(ϕ) of bounded variables occurring in ϕ is defined by:

• Bvars(ϕ) = ∅ if ϕ ∈ AT Σ (X ) • Bvars(¬ ϕ) = Bvars(ϕ) if ϕ ∈ FO Σ (X ) • Bvars(ϕ 1 ⊲⊳ ϕ 2 ) = Bvars(ϕ 1 ) ∪ Bvars(ϕ 2 ) if ϕ 1 ∈ FO Σ (X ) and 
ϕ 2 ∈ FO Σ (X ) and ⊲⊳ ∈ {∧, ∨, ⇒, ⇔} • Bvars(Q x. ϕ) = Bvars(ϕ) ∪ {x} if x ∈ X and ϕ ∈ FO Σ (X ) and 
Q ∈ { ∀, ∃ } The formula ϕ is a sentence (or is ground) if Fvars(ϕ) = ∅. It is quantifier-free if Bvars(ϕ) = ∅.
Note that, quantifier-free sentences contain only ground terms. The definitions of Vars, Vars A , Fvars and Bvars given above are generalized to sets of terms, atoms and formulas in the usual way.

Substitutions

Let Σ be a signature and X a set of variables disjoint from F and P. A substitution σ : X → T Σ (X ) is a sort-preserving mapping such that σ(x) = x for finitely many variables x ∈ X .

Let σ be a substitution. The domain of σ is the set Dom(σ) of variables defined by:

Dom(σ) = { x ∈ X | σ(x) = x }
The range of σ is the set Ran(σ) of terms defined by:

Ran(σ) = { σ(x) | x ∈ Dom(σ) }
The variables range of σ is the set VRan(σ) of variables occurring in the terms of σ's range. It is given by:

VRan(σ) = t∈Ran(σ)

Vars(t)

Given a substitution σ such that Dom(σ) = {x 1 , • • • , x n }, we usually write σ as a partial mapping of the form

{ x 1 → σ(x 1 ), • • • , x n → σ(x n ) }. A variable
renaming over a subset X ′ of X is a substitution from variables to variables such that x = y whenever σ(x) = σ(y), for each x, y ∈ X ′ .

The application of a substitution σ on a term t is denoted tσ. It consists in simultaneously replacing each variable x ∈ Vars(t) with σ(x). More formally:

• xσ = σ(x) if x ∈ X • f (t 1 , • • • , t n )σ = f (t 1 σ, • • • , t n σ) if f ∈ F and τ F (f ) = s 1 × • • • × s n → s
Applying σ on a formula ϕ is also denoted ϕσ. It consists in simultaneously replacing the occurrences of each variable x ∈ Fvars(ϕ) with σ(x). However, one should pay attention to capture issues, as the intersection Fvars(ϕ) ∩ Bvars(ϕ) is not necessarily empty. In fact, every occurrence of the variables introduced by the application of σ should be free in ϕσ. More formally:

• (t 1 ≈ s t 2 )σ = (t 1 σ) ≈ s (t 2 σ) if s ∈ S and t 1 , t 2 ∈ T s Σ (X ) • p(t 1 , • • • , t n )σ = p(t 1 σ, • • • , t n σ) if p ∈ P and τ P (p) = s 1 × • • • × s n • (¬ ϕ)σ = ¬ (ϕσ) if ϕ ∈ FO Σ (X ) • (ϕ 1 ⊲⊳ ϕ 2 )σ = (ϕ 1 σ) ⊲⊳ (ϕ 2 σ) if ϕ 1 , ϕ 2 ∈ FO Σ (X ) and ⊲⊳ ∈ {∧, ∨, ⇒, ⇔} • (Q x. ϕ)σ = Q x. (ϕσ ′ ) if x ∈ X and ϕ ∈ FO Σ (X ) and 
Q ∈ { ∀, ∃ } and σ ′ : y → σ(y) for each y = x x → x x ∈ VRan(σ ′ ) If x ∈ VRan(σ ′ ), a variable renaming {x → z}, where z ∈ (Fvars(ϕ) ∪ Bvars(ϕ)),
is necessary before applying σ on Q x. ϕ to ensure the condition x ∈ VRan(σ ′ ).

The composition of two substitution θ and σ, denoted θ • σ, is defined by:

θ • σ : X → T Σ (X ) x → (x σ)θ for each x ∈ X
A substitution σ is idempotent if σ and σ • σ are identical. In this case, we have

Dom(σ) ∩ VRan(σ) = ∅.

Semantics

In this section, we assume given a signature Σ = (F, P, S, τ F , τ P ) , a set of variables X disjoint from F and P and a mapping τ X : X → S from variables to sorts.

Structure

A Σ-structure over X is a mapping that satisfies the following properties:

• each sort s ∈ S is associated with a nonempty domain A s • each variable x ∈ X of sort s is associated with an element x A ∈ A s • each constant symbol c ∈ F of sort s is associated with an element c A ∈ A s • each function symbol f ∈ F of sort s 1 × • • • × s n → s, where n > 0, is associated with a function f A : A s 1 × • • • × A sn → A s • each predicate symbol p ∈ P of sort s 1 × • • • × s n is associated with a subset p A ⊆ A s 1 × • • • × A sn
Let x ∈ X be a variable. We say that a Σ-structure A over X is an x-variant of a Σ-structure B over X if the restrictions of A and B over X \ {x} are identical.

Interpretation

Let A be a Σ-structure over X and t ∈ T s Σ (X ) a term of sort s. The interpretation of t under A is denoted A(t). It is the object t A ∈ A s recursively defined by:

• A(x) = x A if x ∈ X • A(c) = c A if c ∈ F and τ F (c) = s • A(f (t 1 , • • • , t n )) = f A (A(t 1 ), • • • , A(t n )) if f ∈ F and τ F (f ) = s 1 × • • • × s n → s Let ϕ ∈ FO Σ (X ) be a formula. The interpretation of ϕ under A is denoted A(ϕ).
It is a truth value in {true, f alse} recursively defined by:

• A(t 1 ≈ t 2 ) is true iff A(t 1 ) = A(t 2 ) is f alse otherwise • A(p(t 1 , • • • , t n )) is true iff (A(t 1 ), • • • , A(t n )) ∈ p A
is f alse otherwise where p ∈ P and τ

P (p) = s 1 × • • • × s n • A(¬ ϕ) is true iff A(ϕ) is f alse is f alse otherwise • A(ϕ 1 ∧ ϕ 2 ) is true iff A(ϕ 1 ) is true and A(ϕ 2 ) is true is f alse otherwise • A(ϕ 1 ∨ ϕ 2 ) is true iff A(ϕ 1 ) is true or A(ϕ 2 ) is true is f alse otherwise • A(ϕ 1 ⇒ ϕ 2 ) is true iff A(ϕ 1 ) is f alse or A(ϕ 2 ) is true is f alse otherwise • A(ϕ 1 ⇔ ϕ 2 ) is true iff A(ϕ 1 ) and A(ϕ 2 ) are identical is f alse otherwise • A(∀x. ϕ) is true iff B(ϕ) is true for every x-variant B of A is f alse otherwise • A(∃x. ϕ) is true iff B(ϕ) is true for some x-variant B of A is f alse otherwise

Model, satisfiability and validity

Let ϕ ∈ FO Σ (X ) be a formula. If there exists a Σ-structure A such that ϕ evaluates to true under A, we say that A satisfies ϕ, and we write A |= ϕ. A model for ϕ is any Σ-structure satisfying it.

A formula ϕ is satisfiable if it has a model. It is unsatisfiable if it is not satisfiable. It is valid, denoted |= ϕ, if every Σ-structure is a model for ϕ. A formula ψ is a logical consequence of ϕ if every model of ϕ is also a model for ψ.
The notions above generalize to sets of formulas as usual, by viewing a set Φ ⊆ F Σ (X ) of formulas as a conjunction ϕ∈Φ ϕ.

First-order theories and satisfiability modulo

A first-order theory T over a signature Σ is defined by a set of sentences in FO Σ (X ), called axioms. We usually use the symbol T to denote both the name of the theory and its set of axioms.

A theory T is said consistent if its set of axioms is satisfiable, otherwise it is inconsistent. In the rest of this thesis, we will use the symbol ⊥ to indicate that a theory (or a logical formula) is inconsistent.

A formula ϕ is satisfiable in a theory T, or satisfiable modulo T, or T-satisfiable, if there exists a model A that satisfies both T and ϕ. We then write A |= T ϕ. A formula ϕ is valid modulo T, or T-valid, if it is a logical consequence of the set of axioms T. In this case, we write |= T ϕ. In order to show that a formula ϕ is T-valid, SMT solvers rather attempts to prove that ¬ϕ is T-unsatisfiable.

The decision problem modulo a theory takes as input a first-order formula and outputs true if this formula is valid modulo the theory. We say that a first-order theory is decidable if there exists an algorithm that solves the decision problem modulo that theory, otherwise it is undecidable. The satisfiability problem modulo a theory is defined is a similar way, except that we are interested in satisfiability instead of validity.

Convexity.

A theory T over a signature Σ is convex if, whenever a disjunction of equalities is a logical consequence of a conjunction of literals, there exists a single equality in this disjunction that is a consequence of the conjunction. More formally, T is convex if the T-validity of any Σ-formula of the form (where l i are Σ-literals)

|= T ( n i=1 l i ⇒ m j=1 u j ≈ v j )
implies the T-validity of the formula below for some integer j such that 0

≤ j ≤ m |= T ( n i=1 l i ⇒ u j ≈ v j )
Stable infinity. A theory T over a signature Σ = (F, P, S, τ F , τ P ) is stably infinite if every T-satisfiable formula admits a model A in which the cardinality of A s is infinite, for each sort s ∈ S.

Shostak theories

Let Σ = (F, P, S, τ F , τ P ) be a signature, such that P = ∅. Let X be a set of variables and T a first-order theory over Σ.

A canonizer for T is a function (algorithm)

canon : T Σ (X ) → T Σ (X )
which returns for every term t 1 a unique representative t 2 , called its canonical form, such that t 1 ≈ t 2 is T-valid. Moreover, the canonizer enjoys the following conditions, for any terms t 1 and t 2 :

(1) canon(canon(t 1 )) = canon(t 1 )

(2)

|= T t 1 ≈ t 2 iff canon(t 1 ) = canon(t 2 ) (3) Vars(canon(t 1 )) ⊆ Vars(t 1 ) (4) if canon(t 1 ) = t 1 then canon(t 1 | p ) = t 1 | p for every position p ∈ Pos(t 1 )
These proprieties mean that canon is (1) idempotent, (2) picks the same representative for the terms that are equal modulo T, (3) does not introduce new variables, and (4) recursively canonizes subterms. T is canonizable if it admits a canonizer.

A solver for T is a function (algorithm)

solve : T Σ (X ) × T Σ (X ) → {⊥} ∪ (X × T Σ (X )) *
that returns, for every equality t 1 ≈ t 2 :

• ⊥, if the formula t 1 ≈ t 2 is T-unsatisfiable • a substitution {x 1 → v 1 , • • • , x n → v n } , where x 1 , • • • , x n are pairwise distinct variables occurring in t 1 ≈ t 2 but not in v 1 , • • • , v n , otherwise. Such
a substitution have to comply with the following property:

|= T t 1 ≈ t 2 ←→ ∃y 1 , • • • , y m . (x 1 ≈ v 1 ∧ • • • ∧ x n ≈ v n ) where y 1 , • • • , y m are the variables occurring in v 1 , • • • , v n .
The theory T is solvable if it admits a solver function. We say that T is a Shostak theory [START_REF] Shostak | Deciding combinations of theories[END_REF] if it is convex, canonizable and solvable. In the next section, we will give examples of such theories.

Some interesting theories in SMT

The SMT library [START_REF] Ranise | The Satisfiability Modulo Theories Library (SMT-LIB)[END_REF] initiative provides a description for some interesting theories, such as functional arrays, rational and integer numbers. In this section, we present the axiomatization of these theories. We also provide the axioms of the free theory of equality, the theory of enumerated data types and the AC theory.

In the following, we assume given a signature Σ = (F, P, S, τ F , τ P ), a set of variables X disjoint from F and P and a mapping τ X : X → S.

The free theory of equality

The free theory of equality with uninterpreted symbols is certainly one of the most commonly used theories in SMT. It is defined by the set of well-sorted sentences obtained from the axioms schemes given in Figure 2.1. For each sort s, we have

(1) the reflexivity axiom, (2) the symmetry axiom and (3) the transitivity axiom.

Moreover, we have (4) the congruence property for each function symbol and [START_REF] Baader | Term Rewriting and All That[END_REF] the congruence property for each predicate symbol. The identity function is a suitable canonizer for this theory. However, it does not admit a solver function. This theory is widely used in software verification to abstract the behavior of programs functions and sub-routines. The validity of quantifier-free conjunctions of literals modulo this theory can be decided using congruence closure algorithms or ground completion procedures [START_REF] Shostak | An algorithm for reasoning about equality[END_REF][START_REF] Nieuwenhuis | Fast Congruence Closure and Extensions[END_REF][START_REF] Kapur | Shostak's congruence closure as completion[END_REF][START_REF] Bachmair | Abstract congruence closure and specializations[END_REF].

E =                                                              1. ∀x. x ≈ s x for each s ∈ S 2. ∀x, y. x ≈ s y ⇒ y ≈ s x for each s ∈ S 3. ∀x, y, z. x ≈ s y ∧ y ≈ s z ⇒ x ≈ s z for each s ∈ S 4. ∀x 1 , • • • , x n , y 1 , • • • , y n . n i=1 x i ≈ s i y i ⇒ f (x 1 , • • • , x n ) ≈ s f (y 1 , • • • , y n )        for each s ∈ S for each f ∈ F τ F (f ) = s 1 × • • • × s n → s 5. ∀x 1 , • • • , x n , y 1 , • • • , y n . n i=1 x i ≈ s i y i ⇒ (p(x 1 , • • • , x n ) ⇔ p(y 1 , • • • , y n ))        for each s ∈ S for each p ∈ P τ P (p) = s 1 × • • • × s n
Example. Let Σ be a signature, such that F = {a, b, c, f, g}, P = ∅, S = {s 1 , s 2 },

where τ F (a) = τ F (b) = τ F (c) = s 1 , τ F (f ) = s 1 → s 2 and τ F (g) = s 1 × s 2 → s 1 .
The following formula is valid, because its negation ϕ is unsatisfiable modulo the free theory of equality

|= E ¬ (b ≈ s 1 a ∧ b ≈ s 1 c ∧ ¬(g(a, f (a)) ≈ s 1 g(c, f (b))) ϕ )
In fact, the two first equalities of ϕ entail f (a) ≈ s 2 f (b) modulo E. They also entail (with the intermediate fact) the equality g(a, f (a)) ≈ s 1 g(c, f (b)) modulo E. The formula ϕ is unsatisfiable, because there is no model that satisfies both

(g(a, f (a)) ≈ s 1 g(c, f (b))) and its negation ¬(g(a, f (a)) ≈ s 1 g(c, f (b))).

Linear arithmetic

The theories of linear arithmetic over rationals and integers are defined over a signature Σ of the form:

• F = {0, 1, +} • P = {≤} • S = {s LA }, where s LA ∈ {rat, int, nat}
where 0 and 1 are constants of sort s LA , + is a function symbol of sort s LA × s LA → s LA , and ≤ is a predicate symbol of sort s LA × s LA .

Linear rational arithmetic (LRA)

Linear rational arithmetic is defined over the sort s LA = rat. This theory is given by the set LRA of axioms, such that:

LRA = E ∪ LRA S ∪ LRA NS
where E contains the axioms schemes given in Figure 2.1. The set LRA S defines the equational part of linear rational arithmetic as follows:

LRA S =                                                    1. ∀x, y, z. x + (y + z) ≈ (x + (y + z)) associativity 2. ∀x, y. x + y ≈ y + x commutativity 3. ∀x. x + 0 ≈ x identity 4. ∀x.∃y. x + y ≈ 0 inverse 5. ∀x. x + • • • + x n times ≈ 0 ⇒ x ≈ 0 torsion-freeness 6. ∀x.∃y. y + • • • + y n times ≈ x divisibility 7. ¬ 1 ≈ 0 non-triviality
The axioms 1, 2, 3 and 4 are those of an abelian group. Axiom 4 allows to build negative rationals and axiom 6 allows to construct rationals numbers, such as 1 2 . Items 5 and 6 are axioms schemes that hold for every natural number n > 0. LRA is not finitely axiomatizable, because of these two axioms schemes. In practice, we use the abbreviation n x to mean "x added to itself n times" (i.e. x + • • • + x).

Axiom 7 says that the group contains at least one non-zero element. The set LRA NS contains the following axioms that define the total order ≤:

LRA NS =                          8. ∀x, y. (x ≤ y ∧ y ≤ x) ⇒ x ≈ y antisymmetry 9. ∀x, y, z. (x ≤ y ∧ y ≤ z ⇒ x ≤ z) transitivity 10. ∀x, y. (x ≤ y ∨ y ≤ x) totality 11. ∀x, y, z. (x ≤ y ⇒ x + z ≤ y + z) ordered 12. ¬ 1 ≤ 0 non-triviality
LRA is convex, stably infinite and canonizable. For instance, a canonizer is obtained by viewing LRA-terms as sums n i=1 a i x i +c of ordered monomials, where the x i are pairwise distinct and each rational coefficient a i is different from zero. This canonizer function simulates the axioms 1, 2, 3 and 4 of the abelian group. Moreover, the equational part defined by LRA S is solvable. A solver function is provided by the Gaussian elimination algorithm.

Linear integer arithmetic (LIA)

Linear integer arithmetic is defined over the sort s LA = int. This theory is usually presented as a construction above Presburger arithmetic [START_REF] Kroening | Decision Procedures: An Algorithmic Point of View[END_REF]. The latter theory axiomatizes natural number and is given below.

The canonizer we defined for LRA is suitable for linear integer arithmetic.

Moreover, this theory is stably infinite and the equational part is solvable [START_REF] Pugh | The Omega test: a fast and practical integer programming algorithm for dependence analysis[END_REF][START_REF] Griggio | MathSAT 5: An SMT Solver for Formal Verification[END_REF]. However, it is not convex. In fact, the formula below is valid modulo LIA

|= LIA ∀x. 0 ≤ x ≤ 1 ⇒ x ≈ 0 ∨ x ≈ 1
but none of the formulas below are.

|= LIA ∀x. 0 ≤ x ≤ 1 ⇒ x ≈ 0 and |= LIA ∀x. 0 ≤ x ≤ 1 ⇒ x ≈ 1

Presburger arithmetic (NAT)

Presburger arithmetic is defined over the sort s LA = nat. This theory is given by the set of axioms below, plus the axioms schemes of Figure 2.1 and the axioms defining the total order ≤.

NAT =                                1. ∀x. ¬(x + 1 ≈ x) zero 2. ∀x. x + 0 ≈ x plus zero 3. ∀x, y. x + 1 ≈ y + 1 ⇒ x ≈ y successor 4. ∀x, y. x + (y + 1) ≈ (x + y) + 1 plus successor 5. ϕ {x → 0} ∧ ∀x. ϕ ⇒ ϕ {x → x + 1} ⇒ ∀x. ϕ induction
where "induction" is an axiom scheme that holds for every Σ-formula ϕ such that Fvars(ϕ) = {x}.

Deciding linear arithmetic

The main procedures used in state-of-the-art SMT solvers to decide quantifierfree conjunctions of literals modulo LRA are the simplex algorithm, the Fourier-Motzkin variables elimination method, or variants thereof [START_REF] Kroening | Decision Procedures: An Algorithmic Point of View[END_REF][START_REF] Schrijver | Theory of linear and integer programming[END_REF]. Moreover, LRA admits quantifiers elimination. In fact, Fourier-Motzkin's algorithm also decides LRA-satisfiability of quantified conjunctions of literals.

In order to decide quantifier-free conjunctions of literals modulo LIA, most of state-of-the-art SMT solvers implement extensions of the simplex algorithm, such as branch-and-bound, cutting-planes and branch-and-cut [START_REF] Schrijver | Theory of linear and integer programming[END_REF]. Extensions of the Fourier-Motzkin method, such as Omega-Test [START_REF] Pugh | The Omega test: a fast and practical integer programming algorithm for dependence analysis[END_REF] and interval calculus are also used for this purpose. However, the Fourier-Motzkin algorithm does not scale in practice and saturates the memory even over rationals.

Example 1. The following formula is valid modulo LRA.

|= LRA ∀x, y. ( x + y t 1 ≤ 0 ∧ -x + y t 2 ≤ 0 ∧ 0 ≤ 2y t 3 ) ⇒ x ≈ 0
In fact, the validity can be shown as follows:

1. we first deduce that 2y

t 3 = t 1 +t 2 ≤ 0, because t 1 + t 2 ≤ t 2 and t 2 ≤ 0
2. we then deduce t 3 ≈ 0, because t 3 ≤ 0 and 0 ≤ t 3 . This implies y ≈ 0

3. from 1 and 2, we deduce t 2 ≈ 0, because t 3 = 0 ≤ t 2 and t 2 ≤ 0, and we conclude.

Example 2. The formula below is valid modulo LIA (resp. NAT), because its negation ϕ is unsatisfiable. However, this formula is not LRA-valid, because ϕ is LRA-satisfiable.

|= LIA ¬ ( ∃x. x + x ≈ 1 ϕ )

Extensional functional arrays

The theory of extensional functional arrays (ARR) is defined over a signature Σ of the form:

• F = { get, set } • P = ∅ • S = {sa, si, sv}
where get is a binary function symbol of sort sa × si → sv, set is a ternary function symbol of sort sa × sv × si → sa. Intuitively, sa is the sort of arrays, si is the sort of indexes and sv is the sort of values stored in arrays cells. The symbol get is used to read the values of an array at given indexes and set allows to update the content of cells. More formally, this theory is defined by the set ARR of axioms given by ARR = E ∪ ARR NS where E are the axioms schemes given in Figure 2.1 and ARR NS is the set defined as follows:

ARR NS =              1. ∀x a , x v , x i . get(set(x a , x v , x i ), x i ) ≈ sv x v 2. ∀x a , x v , x i , x j . x i ≈ si x j ∨ get(set(x a , x v , x i ), x j ) ≈ sv get(x a , x j ) 3. ∀x a , x b . (x a ≈ sa x b ) ∨ ∃ x i . ¬ (get(x a , x i ) ≈ sv get(x b , x i ))
the first and the second axioms specify the meaning of get and set, as explained above. The third one is called the (weak) extensionality axiom. It specifies the meaning of the equality predicate ≈ sa .

The theory of functional arrays is very useful in software verification. It is used to specify memory models of programming languages and to abstract finite arrays data structures. Note that, this theory is not convex. In fact, the formula below is valid modulo ARR

|= ARR ∀x a , x i , x j , x v , x w . x v ≈ sv get(set(x a , x w , x i ), x j ) ⇒ (x v ≈ sv x w ∨ x v ≈ sv get(x a , x j ))
but none of the following formulas are.

|= ARR ∀x a , x i , x j , x v , x w . x v ≈ sv get(set(x a , x w , x i ), x j ) ⇒ x v ≈ sv x w and |= ARR ∀x a , x i , x j , x v , x w . x v ≈ sv get(set(x a , x w , x i ), x j ) ⇒ x v ≈ sv get(x a , x j )
The quantifier-free fragment of ARR is decidable. During his thesis [START_REF] Nelson | Techniques for Program Verification[END_REF], Nelson has already considered the design of a decision procedure for the theory of arrays without extensionality. Recent algorithms [START_REF] Kapur | A reduction approach to decision procedures[END_REF][START_REF] Goel | Deciding array formulas with frugal axiom instantiation[END_REF][START_REF] Mendonça De Moura | Generalized, efficient array decision procedures[END_REF][START_REF] Bofill | A write-based solver for sat modulo the theory of arrays[END_REF][START_REF] Stump | A decision procedure for an extensional theory of arrays[END_REF] use various techniques, such as the reduction of the problem to the free theory of equality, the use of axioms instantiation mechanisms to saturate the search space, the elimination of read or write operations, etc.

Example 3. The following formula is valid modulo ARR.

|= ARR ∀x a , x i , x j , x v , x w . get(x a , x j ) ≈ sv x v ⇒ get(set(x a , x i , x v ), x j ) ≈ sv x v
In fact, we conclude by axiom 1 if x i ≈ si x j . Otherwise, we conclude using the hypothesis get(x a , x j ) ≈ sv x v by axiom 2.

Enumerated data types

In order to define a particular theory (i.e. an instance) of enumerated data types, one requires a signature Σ of the form:

• F = {C 1 , • • • , C n },
where n is a fixed natural number

• P = ∅ • S = {s}
where the function symbols C i are constants of sort s called constructors. This theory is then defined by the set Enum of axioms, such that:

Enum = E ∪ Enum S ∪ Enum NS
where E is the set of axioms schemes given in Figure 2.1, the set Enum S contains an axiom scheme saying that the constructors are pairwise distinct and Enum NS has an axiom saying that a variable of sort s is necessarily equals to a constructor

Enum S = 1. ¬ (C i ≈ s C j ) for each constants C i , C j such that i = j Enum NS = 2. ∀x. x ≈ s C 1 ∨ • • • ∨ x ≈ s C n
The identity function is a suitable canonizer for Enum. Moreover, we can easily define a solver for the part Enum S . Given an equality t 1 ≈ s t 2 , such a solver returns:

• the substitution {s → t} if s is a variable, or 

The AC theory

Given a signature Σ, such that:

• F = {f 1 , • • • , f n } • P = ∅ • S = {s 1 , • • • , s m }
where each f i is a function symbol of sort s j × s j → s j , with s j ∈ S. The AC theory over this signature is defined by:

AC = E ∪ AC NS
Again, E is the set of axioms schemes given in Figure 2.1, whereas AC NS is the set of axioms schemes defined below

AC NS =              1. ∀x, y, z. f i (x, f i (y, z)) ≈ s j f i (f i (x, y), z) for each f i ∈ F of sort s j × s j → s j 2. ∀x, y. f i (x, y) ≈ s j f i (y, x) for each f i ∈ F of sort s j × s j → s j
AC is not a Shostak theory, because one cannot provide a solver function for arbitrary user-defined associative and commutative function symbols. For instance, one can easily build the substitution {a 1 → -2a 2 } from the equality a 1 + 2a 2 = 0.

But, one cannot provide a substitution of the form {b 1 → • • • } or of the form However, the AC theory is canonizable. The canonizer defined in [START_REF] Hullot | Associative commutative pattern matching[END_REF] is based on flattening and sorting techniques which simulate associativity and commutativity, respectively. We can then build sorted degenerate trees and use them as canonical form of terms, to avoid the use of function symbols with variable arities.

{b 2 → • • • } for the equality b 1 ∩ b 2 = ∅,
Given a signature Σ, where F = F U ⊎ F AC is a disjoint union of uninterpreted and AC function symbols, and a total ordering on terms, the canonizer canon AC we described above can be defined as follows:

canon AC (x) = x when x ∈ X canon AC (f ( v)) = f (canon AC ( v)) when f ∈ Σ U canon AC (u(t 1 , t 2 )) = u(s 1 , u(s 2 , . . . , u(s n-1 , s n ) . . .)) when u ∈ Σ AC where t ′ i = canon AC (t i ) for i ∈ [1, 2] and { {s 1 , . . . , s n } } = A {u} (t ′ 1 ) ∪ A {u} (t ′ 2 )
and

s i s i+1 for i ∈ {1, • • • , n -1}
where A {u} (t) is the multiset of the {u}-aliens of t. Note that, the function canon AC is a canonizer for the union of the theories AC and E, since it traverse uninterpreted functions (line 2). The lemma below states that canon AC solves the word problem for the union of AC and E. Its proof follows directly from the one given in [START_REF] Contejean | A certified AC matching algorithm[END_REF].

Lemma 4. Given two terms s and t over Σ, we have

|= E,AC s ≈ t ⇒ canon AC (s) = canon AC (t)
The use of a canonizer to handle the AC properties of function symbols is much more efficient than an axiomatic approach. In fact, to prove that

|= AC u(c 1 , u(c 2 , . . . , u(c n , c n+1 ) . . .) ≈ u(u(. . . u(c n+1 , c n ) . . . , c 2 ), c 1 )
is AC-valid when u is an AC symbol, the instantiation approach used in SMT solvers may explicitly introduce the (2n)! n! AC-equivalent terms in the context of the prover, while the function canon AC simply flattens AC-terms, sorts them and builds degenerate trees.

Example 5. Consider the following example, where ∪ is an AC function symbol.

|= AC ∀x 1 , x 2 , x 3 , x 4 . (x 1 ∪ x 4 ) ∪ (x 3 ∪ x 2 ) ≈ (x 1 ∪ (x 2 ∪ (x 3 ∪ x 4 )))
The term

(x 1 ∪ (x 2 ∪ (x 3 ∪ x 4 )))
is the canonical form of (x 1 ∪ x 4 ) ∪ (x 3 ∪ x 2 ) modulo AC (using lexicographic order for sorting). Consequently, this formula is AC-valid.

CHAPTER 3

On Deciding Quantifier-Free

Linear Integer Arithmetic

Quantifier-free linear arithmetic over integers is a must-have in many domains.

State-of-the-art SMT solvers use extensions of either the simplex algorithm [START_REF] De | Z3, an efficient SMT solver[END_REF][START_REF] Barrett | Cvc4[END_REF][START_REF] Griggio | MathSAT 5: An SMT Solver for Formal Verification[END_REF][START_REF] De | Yices: An SMT Solver[END_REF] or the Fourier-Motzkin method [START_REF] Barrett | CVC3[END_REF][START_REF] Bobot | The Alt-Ergo automated theorem prover[END_REF] to decide this theory. However, simplex extensions are often drowned in a huge search space when they come to perform a case-split analysis. In addition, they are not complete w.r.t. the deduction of all implied equalities. Conversely, Fourier-Motzkin extensions do not scale in practice, because they potentially introduce a double exponential number of intermediate inequalities, which saturates the memory.

In this chapter, we describe a new procedure, called FM-simplex, for deciding conjunctions of quantifier-free linear integer arithmetic constraints. Our procedure interleaves an exhaustive search for a model with bounds inference. New bounds are computed by solving auxiliary rational linear optimization problems using the simplex algorithm. Intuitively, each auxiliary problem simulates a run of Fourier-Motzkin's procedure that would eliminate all the variables simultaneously.

In Section 3.1, we first recall some preliminaries and results about linear systems of constraints. In particular, we introduce the notion of constant positive linear combinations of affine forms. We then recall the Fourier-Motzkin procedure, linear optimization, and the simplex algorithm.

In Section 3.2, we first show that Fourier-Motzkin's algorithm can be extended to compute constant positive linear combinations of affine forms. Then, we explain how to cast this problem into a linear optimization problem, which can hence be solved by the simplex algorithm. After that, we characterize when the solution set described by a conjunction of integer constraints can effectively be bounded along some direction. If there is no such bound, we prove that the solution set contains infinitely many integer solutions.

In Section 3.3, we present our new decision procedure for QF-LIA. FM-simplex uses the techniques given in Section 3.2 to find bounds on the solution set. If there are none, then the procedure stops since there are infinitely many integer solutions.

Otherwise, it performs a case-split analysis along the bounded direction and calls itself recursively to solve simpler sub-problems.

In Section 3.4, we show that we can either use Omega-Test's equalities solver to handle equalities constraints, or Gaussian elimination with some additional checks.

In Section 3. In Section 3.7, we measure the performances of our implementation on the QF-LIA benchmark and compare it with some state-of-the-art SMT solvers. Finally, we overview related and future works in Section 3.8.

Note that, the ideas developed in this chapter have been published in [START_REF] Bobot | A Simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic[END_REF].

Preliminaries

Linear systems of constraints

In this section, we recall the usual notations and definitions for linear systems of constraints. We also give some known mathematical results that will be used in the proofs of some new theorems.

If m and n are integers then [|m, n|] denotes the interval of integers bounded by m and n. Matrices are denoted by upper case letters like A and column vectors by lower case letters like x. We use letters like a, b and c to denote vectors of constants.

We denote by A t the transpose of the matrix A and by Ax the matrix product of A by the vector x. Depending on the context, we use the symbol + to denote the addition over vectors and matrices, respectively. If A is a m × n matrix then a i,j denotes the element of A at position (i, j), a i denotes the i-th row vector of A of size n, and A j the j-th column vector of A of size m. If x is a vector, x i denotes its i-th coordinate. If x and y are n-vectors of the same ordered vector space then

x ≥ y denotes the conjunction of constraints:

∀i ∈ [|1, n|], x i ≥ y i Affine form. An affine form on Q n is a function ψ : Q n → Q of shape ψ = φ + t c ,
where the φ :

Q n → Q is a linear form and t c is a translation of direction c ∈ Q m .
For instance, the term -2x + 3y -5 is an affine form. Its linear form is -2x + 3y and its translation of direction is -5.

Closed convex. A closed convex K ⊂ Q n is defined using a linear system of constraints over Q as follows:

K = x ∈ Q n such that Ax + b ≤ 0 where A ∈ Q m×n , b ∈ Q m .
By definition, K is the convex polytope of the rational solutions of the linear system Ax + b ≤ 0.

Given a convex K, we are interested in this chapter in determining whether K ∩ Z n is empty or not. In other words, we want to know whether the system Ax + b ≤ 0 of constraints has integer solutions.

Let us denote by L i the affine forms 

L i : Q n -→ Q x -→ (Ax +
ψ = k i=1 λ i ψ i and k i=1 λ i > 0
Moreover, if ψ is a constant affine form then it is called a constant positive linear combina-

tion of the (ψ i ) i∈[|1,k|] .
We recall below the original formulation of Farkas' lemma [START_REF] Schrijver | Theory of linear and integer programming[END_REF][START_REF] Farkas | Über die theorie der einfachen ungleichungen[END_REF] on rationals:

Theorem 7 (Farkas' lemma). Given a matrix A ∈ Q m×n and a vector c ∈ Q n , then

∃x ∈ Q m , x ≥ 0 ∧ Ax = c ⇔ ∀y ∈ Q n , y t A ≥ 0 ⇒ y t c ≥ 0
In the proofs, we will rather use the following equivalent formulation:

Theorem 8 (Theorem of alternatives). Let A be a matrix in Q m×n and b a vector in Q m . The system Ax + b ≤ 0 has no solution if and only if there exists λ ∈ Q m such that λ ≥ 0 and A t λ = 0 and b t λ > 0.

We also use the following reduction result on integer matrices [START_REF] Smith | On systems of linear indeterminate equations and congruences[END_REF]. For instance , the matrix A given below is in Smith normal form. In fact, for all i, j ∈ [|1, 3|] such that i = j, we have a i,j = 0. Moreover, a 1,1 divides a 2,2 and a 2,2 divides a 3,3 . 

A =     2 
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The Fourier-Motzkin algorithm

Let K := { x ∈ Q n | Ax + b ≤ 0 } be a closed convex where A ∈ Q m×n and b ∈ Q m ,
and C the set of the affine forms L i : x → (Ax + b) i . In order to decide whether K is empty in the rationals or not, the Fourier-Motzkin algorithm proceeds by iteratively eliminating all the variables from the set of affine forms. More precisely, the iteration k of the procedure consists in:

1. choosing a variable x k to eliminate, 2. partitioning the current set C k of affine forms into a set C 0 x k without x k and a set C +

x k (resp. C - x k ) where x k has positive (resp. negative) coefficients, 3. computing the set C k+1 of new affine forms:

C k+1 := C 0 x k ∪ Π(C + x k × C - x k )
where Π calculates a positive linear combination L i,j = α i,j L i + β i,j L j , where

x k has been eliminated for each L i ∈ C +

x k and L j ∈ C - x k . Notice that if either C +

x k or C - x k is empty, then Π returns an empty set.

This iterative process terminates when all the variables are eliminated. It then returns a possibly empty set C f of constant affine forms. We say that K is unsatis-

fiable in Q if there exists c ∈ C f such that c > 0.
The example below illustrates a run of the Fourier-Motzkin algorithm.

Example 11. Consider the following set of affine forms:

C 1 : L 1 = 2x + y, L 2 = -2x + 3y -5, L 3 = x + z + 1, L 4 = x + 5y + z, L 5 = -x -4y + 3, L 6 = 3x -2y + 2
Eliminating z from C 1 is immediate since it only appears positively:

C 2 : L 1 = 2x + y, L 2 = -2x + 3y -5, L 5 = -x -4y + 3, L 6 = 3x -2y + 2
We eliminate the variable x and compute the set C 3 below using the combinations: The iterative process terminates and returns the set

L 7 = L 1 + L 2 , L 8 = L 1 + 2L
C 4 : { L 11 = -11, L 12 = -13, L 13 = -47, L 14 = -99 }
We notice that c ≤ 0, for all c ∈ C 4 . Consequently, we conclude that the convex defined by

the set { L 1 ≤ 0, L 2 ≤ 0, L 3 ≤ 0, L 4 ≤ 0, L 5 ≤ 0, L 6 ≤ 0 } of constraints is satisfiable in the rationals.
The Fourier-Motzkin algorithm only provides a semi-decision procedure over integers. For instance, the application of the process above on the example

-2x ≤ 0 ∧ 2x -1 ≤ 0
yields the set C f = {-1} of constants affine forms. However, this conjunction is unsatisfiable over integers, because 2x ∈ [|0, 1|] has no integer solution.

Linear optimization and the simplex algorithm

Let A ∈ Q m×n be a matrix and b ∈ Q m , c ∈ Q n two vectors. A linear optimization problem in standard form has the following shape:

maximize c t x subject to A x ≤ b ∧ x ≥ 0 (P )
where x ∈ Q n . The affine form c t x is called the objective function of the problem. Note that, problems with equalities constraints, unconstrained variables and inequalities with greater-or-equal are straightforwardly convertible as linear optimization problems in standard forms [START_REF] Thomas | Introduction to Algorithms[END_REF].

We say that P is

unbounded if A x ≤ b ∧ x ≥ 0 is satisfiable in Q, but the affine form c t x has no upper bound. It is infeasible, if A x ≤ b ∧ x ≥ 0 is unsatisfiable in Q. A vector x s ∈ Q n is a solution of P if it satisfies x s ≥ 0 ∧ A x s ≤ b ∧ (∀x ′ s ∈ Q n . (x ′ s ≥ 0 ∧ A x ′ s ≤ b) ⇒ c t x ′ s ≤ c t x s ) This means that • x s satisfies A x s ≤ b ∧ x s ≥ 0 • x s maximizes the value of the objective function c t x s
The simplex algorithm takes as input a linear optimization problem in standard form. It returns an optimal solution when it exists, infeasible if the constraints have no solution in Q or unbounded otherwise. It consists of three main steps:

Step 1. First, the simplex constructs an equivalent problem in slake form. For that, a new vector s ∈ Q m is introduced and P is rewritten as follows:

maximize c t x subject to s = -A x + b ∧ x ≥ 0 ∧ s ≥ 0
This is equivalent to the following formulation, if we expand the vectors c, b, x, s and the matrix A

maximize c 1 x 1 + • • • + c n x n subject to s 1 = -a 1,1 x 1 -• • • -a 1,n x n + b 1 ∧ . . . s m = -a m,1 x 1 -• • • -a m,n x n + b m ∧ n i=1 x i ≥ 0 ∧ m i=1 s i ≥ 0
The variables on the left-hand side of the equality symbol are called basic variables.

Those on the right-hand side are non-basic variables.

The basic solution of the constraints in slake form is obtained by replacing nonbasic variables with 0, which forces each basic variable s i to be equal to b i . This solution is feasible if b i are non-negative. Note that, a basic feasible solution for the conjunction of constraints does not necessarily maximize the value of the objective function.

Pivoting. The next steps of the simplex are based on pivoting. Given a system of linear equalities in slake form where the basic variable s i is

s i = a i,1 x 1 + • • • + a i,j x j + • • • + a i,n x n + b i (1)
If the coefficient a i,j = 0, then the pivoting operation of s i with x j is done as follows:

1. first, the equality (1) is transformed as follows using Gaussian elimination

x j = - a i,1 a i,j x 1 -• • • --1 a i,j x i -• • • - a i,n a i,j x n - b i a i,j (2) 
2. second, the substitution of the form

{x j → • • • } obtained from (2) is applied
both on the other equalities and on the objective function. This yields a triangular system where x j (resp. x i ) becomes a basic (resp. a non-basic) variable.

Step 2. The second step of the algorithm consists in finding a basic feasible solution for the conjunction constraints:

1. the simplex checks if the basic solution of the current slake form is feasible 2. if so, the algorithm goes to Step 3 and tries to maximize the objective function 3. otherwise, it computes an initial feasible solution as follows:

(a) the algorithm constructs an auxiliary problem of the form:

P aux          maximize -x 0 subject to s = vec(x 0 , m) -A x + b ∧ x ≥ 0 ∧ s ≥ 0 ∧ x 0 ≥ 0 where x 0 ∈ Q and vec(x 0 , m) is the vector (x 0 , • • • , x 0 ) t of size m. Note
that, P aux is not unbounded, since the maximum of objective function is bounded by 0, as x 0 ≥ 0.

(b) then, it performs a pivot between x 0 and the basic variable x i for which

b i = min-comp(b)
, where min-comp returns the minimal component of a given vector. Note that, the slake form we obtain after this pivot has a feasible solution. In fact, b i is minimal and negative, and the coefficients of x 0 in P aux 's equalities are positive (+1).

(c) after that, it solves the slake form obtained in (b) using Step 3.

(d) let P end aux be the final slake form of Step 3 and ν : {x 0 , x 1 , . . . , x n } → Q be the substitution that maximizes -x 0 .

(e) if ν(x 0 ) = 0 then, the original optimization problem is infeasible (f) if ν(x 0 ) = 0 then, i. the simplex removes the variable x 0 from the equalities of P end aux ii. then, it restores the original objective function and normalizes it w.r.t. the system of linear equalities obtained from i.

iii. at this point, we obtain an equivalent slake form of the original problem, where some pivot operation have been made. Moreover, the basic solution of the current slake form is feasible. The simplex thus moves to Step 3

Step 3. The third step is dedicated to the maximization of the objective function.

It works on problems in slake form having a feasible basic solution. For that, the simplex repeatedly does the following:

1. it chooses a non-basic variable x j in the objective function which is associated with a positive coefficient c j > 0 2. if such a variable does not exists then, the objective function is maximized by the current feasible basic solution 3. otherwise, it chooses a basic variable x i in the system of linear equalities such that the coefficient a i,j associated with x j is negative (a i,j < 0) andb i a i,j is minimal 4. if the coefficient a i,j does not exists then, the problem is unbounded 5. otherwise, perform a pivot operation between x i and x j Note that, the choice of x i and x j in the description above have to comply with a pre-determined order on variables, in order to avoid cycling. Otherwise, the termination of the simplex is not ensured.

Example 12.

Let us apply the simplex algorithm on the following optimization problem, where x 1 ≥ 0 and x 2 ≥ 0. We use the lexicographic order ≺ lex on variables

maximize 2x 1 -3x 2 subject to -2x 1 -x 2 ≤ -2 ∧ -x 1 -2x 2 ≤ 1 ∧ 3x 1 -x 2 ≤ 3
• We first construct the slake form as follows, where

3 i=1 s i ≥ 0 maximize 2x 1 -3x 2 subject to s 1 = 2x 1 + x 2 -2 ∧ s 2 = x 1 + 2x 2 + 1 ∧ s 3 = x 2 -3x 1 + 3
• The basic solution is not feasible. In fact, if

x 1 = x 2 = 0, then s 1 = -2 < 0.
Thus, we have to find a feasible basic solution by the solving the following auxiliary problem, where

x 0 ≥ 0 maximize -x 0 subject to s 1 = x 0 + 2x 1 + x 2 -2 ∧ s 2 = x 0 + x 1 + 2x 2 + 1 ∧ s 3 = x 0 + x 2 -3x 1 + 3
• Pivoting on x 0 in the first equality yields {x 0 → s 1 -2x 1x 2 + 2}. Applying this substitution on the problem above produces

maximize -s 1 + 2x 1 + x 2 -2 subject to x 0 = s 1 -2x 1 -x 2 + 2 ∧ s 2 = s 1 -x 1 + x 2 + 3 ∧ s 3 = s 1 -5x 1 + 5
Note that, the basic solution for this problem is now feasible

• We use Step 3 to maximize the objective function of this auxiliary problem. The simplex chooses the first equality and the variable x 1 as a first pivot. Indeed,

x 1 ≺ lex x 2 , the coefficient of x 1 in the objective function is 2 > 0 and -b i a i,j = 2 2 is minimal. This pivot produces {x 1 → -1 2 x 0 + 1 2 s 1 -1 2 x 2 +1}
. Normalizing the problem above with this substitution returns

maximize -x 0 subject to x 1 = -1 2 x 0 + 1 2 s 1 -1 2 x 2 + 1 ∧ s 2 = 1 2 x 0 + 1 2 s 1 + 3 2 x 2 + 2 ∧ s 3 = 5 2 x 0 -3 2 s 1 + 5 2 x 2
• At this point, Step 3 returns, because the objective function is maximized (all its coefficients are non-positive). Furthermore, z is a non-basic variable. Thus, it is evaluated to 0 by the feasible basic solution that maximizes -x 0

• We go back to Step 2. The simplex algorithm removes the variable x 0 from the conjunction of equalities

x 1 = 1 2 s 1 -1 2 x 2 + 1 ∧ s 2 = 1 2 s 1 + 3 2 x 2 + 2 ∧ s 3 = -3 2 s 1 + 5 2 x 2
Then, it restores the original objective function 2x 1 -3x 2 and normalizes it w.r.t.

the equalities above. This yields s 1 -4x 2 + 2

• After that, it moves to Step 3 and tries to solve the initial problem. Note that, the basic solution of its current slake form (shown below) is feasible

maximize s 1 -4x 2 + 2 subject to x 1 = 1 2 s 1 -1 2 x 2 + 1 ∧ s 2 = 1 2 s 1 + 3 2 x 2 + 2 ∧ s 3 = -3 2 s 1 + 5 2 x 2
• The coefficient of s 1 in the objective function is positive. Moreover, -b i a i,j is maximal for the third equality and a i,j = -3 2 < 0. Pivoting on s 1 in this equality yields

{s 1 → -2 3 s 3 + 5 3 x 2 }
and normalizing the problem with this substitution produces

maximize -3 2 s 3 -7 3 x 2 + 2 subject to x 1 = -1 3 s 3 + 1 3 x 2 + 1 ∧ s 2 = -1 3 s 3 + 7 3 x 2 + 2 ∧ s 1 = -2 3 s 3 + 5 3 x 2
• The objective function is now maximized, because all its coefficients are non-positive.

Its maximal value is 2. It is reached when x 1 = 1 and x 2 = 0

Duality in linear optimization

Given a linear optimization problem. It is sometimes more efficient to solve its dual problem. The notion of duality in linear optimization is introduced by the definition below:

Definition 13. Let A ∈ Q m×n be a matrix and b ∈ Q m , c ∈ Q n two vectors. The dual of the following optimization problem maximize c t x subject to A x ≤ b ∧ x ≥ 0 is defined by maximize b t y subject to A t y ≥ c ∧ y ≥ 0 where x ∈ Q n , y ∈ Q m
The theorem below enunciates the relationship between a linear optimization problem and its dual.

Theorem 14. Let P be an optimization problem and Q its dual problem.

• If P is infeasible (resp. unbounded) then Q is unbounded (resp. infeasible).

• If P has a solution, let P max be an equivalent slake form of P in which that basic solution is feasible and maximizes the objective function. Then, we can extract a solution for Q from P max .

Deciding QF-LRA with the simplex algorithm

Let K := { x ∈ Q n | Ax + b ≤ 0 } be a closed convex where A ∈ Q m×n and b ∈ Q m .
In order to decide whether K is empty, it suffices solve the following optimization problem maximize 0

subject to A (y -z) ≤ b ∧ y ≥ 0 ∧ z ≥ 0
where y, z ∈ Q n and x = yz. This problem is not unbounded. If the simplex returns infeasible then K is empty. Otherwise, it returns a valuation for y and z. In this case, we can exhibit a model x = yz for K.

In general, when the simplex algorithm exhibits a rational model for a given problem, we cannot conclude that this problem in satisfiable in the integers, because the valuation of all the variables are not necessarily in Z. Consequently, the simplex algorithm only provides a semi-decision procedure for QF-LIA.

Constant positive linear combinations of affine forms

In this section, we design an efficient technique for computing constant positive linear combinations of affine forms. We build an oracle which takes as input a set of affine forms (L i ) (or equivalently, a matrix A and a vector b) and meets the following specifications:

1. if there is no constant positive linear combination of the (L i ), it says so;

2. otherwise, it returns such a combination i λ i L i .

We first present a method based on the Fourier-Motzkin procedure. Then, we describe an efficient implementation based on the simplex algorithm and prove its soundness, completeness and termination.

Computing the combinations using Fourier-Motzkin

Let K := { x ∈ Q n | Ax + b ≤ 0 } be a closed convex where A ∈ Q m×n and b ∈ Q m ,
and C the set of the affine forms L i : x → (Ax + b) i . Let C f be the set of constants affine forms obtained by running the Fourier-Motzkin algorithm with the input C.

For every constant c ∈ C f , we can easily retrieve a constant positive linear combination of the initial affine forms of the shape i λ i L i that is equal to c, where λ i are rational scalars. For that, we recursively unfold the definitional equalities

L i,j = α i,j L i + β i,j L j previously computed by Π in Fourier-Motzkin's execution.
Using the constant positive linear combinations of the form c = λ i L i , we can refine the bounds of some initial affine forms as follows: since for any vector x ∈ K and for any index j we have L j (x) ≤ 0, we deduce that c = λ i L i (x) ≤ λ j L j (x), and we obtain a lower bound c λ j on L j as soon as λ j = 0. Let us reuse the results of example 11 to illustrate this mechanism: Example 15. Unfolding the equalities introduced by Π in example 11 yields the following constant positive linear combinations

                 -11 = L 11 = 7L 7 + 4L 8 = • • • = 11L 1 + 7L 2 + 8L 5 -13 = L 12 = 7L 7 + 2L 10 = • • • = 7L 1 + 7L 2 + 6L 5 + 2L 6 -47 = L 13 = 7L 9 + 5L 8 = • • • = 5L 1 + 21L 2 + 10L 5 + 14L 6 -99 = L 14 = 14L 9 + 5L 10 = • • • = 42L 2 + 15L 5 + 33L 6
Using the linear combination 11L 1 + 7L 2 + 8L 5 = -11, we can make the following deductions in the rationals:

-1 ≤ L 1 , - 11 7 ≤ L 2 , - 11 8 ≤ L 3
Furthermore, these deductions are refined as follows in the integers:

-1 ≤ L 1 , - 11 7 = -1 ≤ L 2 , - 11 8 = -1 ≤ L 3
We deduce that every integer solution of the constraints defining K satisfies the bounds:

-1 ≤ L 1 ≤ 0 , -1 ≤ L 2 ≤ 0 , -1 ≤ L 3 ≤ 0

Computing the combinations using a simplex

While the Fourier-Motzkin algorithm can be used to compute all the relevant constant positive linear combinations of affine forms (modulo a multiplication by a positive rational constant), it does not scale in practice. In the following, we describe an efficient simplex-based alternative and show its soundness, completeness and termination. As opposed to Fourier-Motzkin, this new approach only attempts to compute one particular constant positive linear combination. An heuristic allows us to hopefully calculate the most interesting one.

Let K := { x ∈ Q n | Ax + b ≤ 0 } be a closed convex where A ∈ Q m×n and b ∈ Q m . Let C be the set of m affine forms L i : x → (Ax + b) i = n j=1 a i,j x j + b i .
Consider the linear combination m i=1 λ i L i of these forms where λ 1 , . . . , λ m are rational scalars. This combination can be unfolded as follows:

λ 1 ( n j=1 a 1,j x j + b 1 ) + • • • + λ m ( n j=1 a m,j x j + b m )
Factorizing the x i yields the following equivalent sum:

x 1 ( m i=1 a i,1 λ i ) + • • • + x n ( m i=1 a i,n λ i ) + m i=1 b i λ i
Since we are only interested in computing constant positive linear combinations, we eliminate each variable x k for k ∈ [|1, m|] by requiring that m i=1 a i,k λ i = 0. Moreover, we heuristically look for a constant positive linear combination that maximizes the value of the final constant m i=1 b i λ i in order to hopefully improve efficiency as this will be described in Section 3.3.

More formally, we try to compute such a constant positive linear combination by solving the following linear optimization problem in the rationals:

maximize m i=1 b i λ i subject to A t λ = 0 ∧ m i=1 λ i > 0 ∧ m i=1 λ i ≥ 0
This problem reminds of the dual simplex input, but here we have equalities A t λ = 0 instead of the usual inequalities and an extra constraint m i=1 λ i > 0 that discards the trivial solution assigning zero to each parameter λ i .

In order to solve the optimization problem above, we first introduce a slack variable s ∈ Q and a positive parameter ε to transform the strict inequality

m i=1 λ i > 0 into m i=1 λ i -ε = s ∧ s ≥ 0
following Lemma 1 of [START_REF] Dutertre | A fast linear-arithmetic solver for DPLL(T)[END_REF]. Then, for sake of efficiency, we do not transform the equalities into conjunctions of inequalities as done in the literature. We rather solve them, modulo the constraints m i=1 λ i ≥ 0 ∧ s ≥ 0. This returns unsat if this system is inconsistent in Q modulo these non-negativeness constraints, or a conjunction of equalities in slake form as shown below, where the variables λ b i (resp. λ n k ) are basic (resp. non-basic).

               λ b 1 = c 1.1 λ n 1 + c 1.2 λ n 2 + • • • + (d 1 + e 1 ε) λ b 2 = c 2.1 λ n 1 + c 2.2 λ n 2 + • • • + (d 2 + e 2 ε) . . . . . . . . .
After that, we initialize the simplex with this conjunction and try to maximize the objective function. The algorithm returns unsat if the given system has no solution, or unbound if the objective function has no upper bound, or a maximum m and a valuation (substitution) ν for the vector λ.

If the simplex algorithm returns unsat, then the oracle answers that there is no constant positive linear combination. If it returns unbound, the oracle just returns a positive constant. The value of this constant is irrelevant for the deductions made by the decision procedure in Section 3.3, as explained in Lemma 18 of Section 3.2.3 below. Otherwise, the simplex necessarily returns a solution with a non-positive maximum for the objective function. Indeed, if the maximum were to be positive, one could multiply coordinate-wise any solution λ by a constant larger than 1 and obtain another solution with a larger objective value. The oracle then returns the corresponding linear combination. Note that, as soon as the simplex exploration discovers a positive value for the objective function, the answer will eventually be unbound so it can exit immediately.

Soundness, completeness and termination

On top of the simplex algorithm we only added some substitutions, so the termination of this oracle follows directly from the one of the simplex algorithm.

We now justify that the introduction of the parameter ε does affect neither the soundness nor the completeness of the oracle. Let us denote by P >0 the original problem and by P ≥ε the problem we send to the simplex algorithm. Remember that for both problems, the answer is either unsat or unbound or a solution with a non-positive evaluation of the objective function: indeed, if ν is a solution, so is αν for any scalar α with the constraint α > 0 for P >0 , and α > 1 for P ≥ε , and the value of the objective function is multiplied accordingly. Moreover, any solution of P ≥ε is obviously a solution of P >0 . Let us now proceed with the proof by case analysis.

1. If P >0 is unsat, so is P ≥ε by inclusion of solutions.

2. If P ≥ε is unsat, let us assume by contradiction that P >0 is not unsat, hence has a solution ν. Then ε λ i ν is a solution of P ≥ε , a contradiction.

3. If P ≥ε is unbound, so is P >0 by inclusion of solutions.

4. If P >0 is unbound, we show that P ≥ε is also unbound. Let M be an arbitrary large value. By hypothesis on P >0 , there is a solution ν of P >0 with an evaluation of the objective function greater than M . Then, if λ i ≥ ε, ν is a solution of P ≥ε with an evaluation of the objective function greater than M .

Otherwise, ε λ i ν is a solution of P ≥ε , with an evaluation of the objective function greater than ε λ i M , hence greater that M since ε > λ i .

5. If P >0 (resp. P ≥ε ) has a solution with a non-positive objective function, so has P ≥ε (resp. P >0 ), since the other cases are impossible as shown above.

Convex polytopes with an infinite number of integer points

In this section, we prove that if there is no constant positive linear combination of a given set of affine forms (L i ), then the convex K defined by these forms has infinitely many integer solutions. This intermediate result is crucial for the soundness of the decision procedure presented in Section 3.3.

We equip Q n with the usual scalar product associated with its canonical basis.

We measure distances using the supremum norm • ∞ . We use B ∞ (x, r) to denote the closed ball centered in x and of radius r for that norm.

Theorem 16. If there is no constant positive linear combination of the affine forms

(L i ),
then for all R ∈ Q + , there exists w ∈ Q n such that:

The convex K contains the ball B ∞ (w, R)

Proof. Assume that there is no constant positive linear combination of the affine forms (L i ). Let R ∈ Q + . We define a vector γ ∈ Q m as follows:

∀i ∈ [|1, m|]. γ i = R a i 1 = R n j=1 |a i,j |
Consider the new convex K ′ defined by:

K ′ := { x ∈ Q n | Ax + γ + b ≤ 0 }
Suppose for contradiction that K ′ is empty. Hence by Theorem 8, there exists a vector λ ∈ Q m such that:

A t λ = 0
But, this implies that the linear combination

λ t (Ax + b) = i λ i L i is a constant,
which contradicts the theorem's hypothesis. Therefore K ′ is not empty and contains a vector w ∈ Q n such that:

Aw + b + γ ≤ 0 Now, we prove that B ∞ (w, R) ⊆ K. Let u ∈ Q n be a point in the ball. We have u ∞ ≤ R,
and by triangular inequality we obtain:

∀i ∈ [|1, . . . , m|] (Au) i ≤ |(Au) i | ≤ a i 1 u ∞ ≤ R a i 1 = γ i hence A(w + u) + b = Aw + b + Au ≤ Aw + b + γ ≤ 0
This proves that w + u belongs to the convex K. Thus, B ∞ (w, R) ⊆ K.

Corollary 17.

If there is no constant positive linear combination of the (L i ) then K ∩ Z n contains infinitely many points, for n > 0.

Proof. For any N ∈ N, for any x ∈ Q n , the ball B ∞ (x, N ) contains at least (2N ) n points with integer coordinates.

We now provide an algorithm that computes an integer solution for the system of constraints defining the convex K, when there is no constant positive linear combination. This algorithm relies on the proof of Theorem 16.

Computing an integer solution

• Let R = 1 2 . We define γ ∈ Q m as follows: ∀i ∈ [|1, m|]. γ i = 1 2 n j=1 |a i,j |,
• Let w ∈ Q n be a rational solution of the system Aw + b + γ ≤ 0. This solution can for instance be computed using a rational simplex,

• We define w ∈ Z n as follows: ∀i ∈ [|1, n|]. w i = round(w i ), where round is the usual rounding operator over rationals.

• By construction, we have

w ∈ B ∞ (w, 1 2 ) because | w i -w i | ≤ 1 2
, for all i in [|1, n|]. Thus, the integer point w belongs to the convex K.

When there exists a constant positive linear combination of the affine forms (L i ), the following lemma will be used in our procedure:

Lemma 18. If c = i λ i L i is a constant positive linear combination of the (L i ), then • if c is positive, then K is empty
• otherwise for every k such that λ k = 0, and for any x ∈ K, L k (x) is bounded by:

c λ k ≤ L k (x) ≤ 0
Proof. For any vector x ∈ K, we have by definition of K and non-negativeness of λ i that λ i L i (x) ≤ 0 . Hence i λ i L i (x) ≤ 0, which concludes the first case.

Since i λ i L i = c, then for all k such that λ k = 0 and for any x ∈ K, we have

c -λ k L k (x) = i =k λ i L i (x) ≤ 0,
which concludes the second case. Notice that, if the constant c is zero, then all the inequalities L k (x) ≤ 0 associated with a nonzero λ k are in fact equalities.

A new decision procedure for QF-LIA

In this section, we build a decision procedure for quantifier-free linear integer arithmetic based upon an oracle that fulfills the interface given at the beginning of Section 3.2. The results are merged along the various branches at lines 6 and 10. One can also consider that there are implicit statements sols ← sols ∪ ∅ at lines 4, 13, and 17.

The main algorithm

Note that the algorithm performs computations only when going from the root to the leaves of the call tree. For the sake of clarity, we have described a simple version of the algorithm. An actual implementation would likely be more complicated. For instance, it would exit as soon as a branch finds an infinity of solutions or even a single solution if one is only interested in satisfiability. It could also use splitting on demand [START_REF] Barrett | Splitting on demand in SAT modulo theories[END_REF] at line 15.

From lines 3 to 7, the algorithm deals with degenerate systems that contain no inequalities or only trivial inequalities. At line 8, it calls the oracle described in Section 3.2 on C. It then does the following depending on the oracle's answer:

1. If the oracle answers that no suitable combination of the affine forms exists, Corollary 17 applies: there are infinitely many solutions with integer coordinates, assuming Eq imposes no restriction (hence the call to check ∞ ). The decision procedure is done in this branch.

2. Otherwise, if the oracle returns a constant positive linear combination i λ i L i that is equal to a positive constant, the first case of Lemma 18 applies: the system has no solution.

3. Otherwise, the oracle returns a constant positive linear combination i λ i L i that is equal to a non-positive constant c. The second case of Lemma 18 can then be applied to infer lower bounds for some affine forms in C. Indeed,

we have c λ k ≤ L k ≤ 0 for all k such that λ k = 0.
The decision procedure chooses a value for k. Since the coefficients of µL k are in Z, for any point

x ∈ K ∩ Z n , µL k (x) is an integer between µ c
λ k and 0. For each integer v ∈ [|µ c λ k , 0|], the procedure considers the equality µL k = v from which it infers a substitution if possible, applies the result to all the other affine forms in C and removes L k from the system while updating Eq with the substitution. A recursive call to the procedure is then performed. If no solution is found after a complete exploration of all the possible integer values in [|µ c λ k , 0|], then the procedure returns at line 21 without updating sols. This is what happens if C has rational solutions but no integer solutions. Notice that, if the constant c is zero, then several implied equalities might appear at once. An optimized procedure should therefore compute a substitution taking all of them into account, rather than one after the other, as is done in Figure 3.1.

Producing explanations. When developing a decision procedure for an SMT solver, it is important to provide the most precise explanations in order to improve the backtrack level when branching. In our setting, the explanation of each lower bound c λ k inferred by the procedure is the explanations of the inequalities L i ≤ 0 such that λ i = 0. If a constraint has not participated in the inference process, its explanation is discarded.

Soundness, completeness and termination

In this section, we assume that the oracle and the equalities handling mechanism are sound, complete and terminating.

Termination of FM-simplex is obvious. Indeed, at each recursive call, one affine form at least is removed from the system. Soundness depends on the completeness of the oracle: if it does not find any constant positive linear combination, there should be none. Theorems given in Section 3.2.3 then cover all the possible cases. Completeness comes from termination and soundness.

While the oracle can return any constant positive linear combination, it should strive to find the greatest one, for efficiency reasons: a positive constant if possible, and zero if not. This would -heuristically -prevent the algorithm from branching too early.

Handling equality constraints

In this section, we describe two different techniques for handling equalities in our decision procedure. The first technique is based on integer substitutions with slack variables. The second one uses the Gaussian elimination algorithm. We also give more details on the computations performed at the leaves of the call tree by the check functions.

Integer substitutions with slack variables

We first consider the case where the substitution scheme introduces new slack variables: some variables x 1 , . . . , x i of the affine form L k are expressed as affine combinations of the other variables x i+1 , . . . , x n and of additional fresh variables x n+1 , . . . , x n+ℓ such that the integer solutions of L k (x 1 , . . . , x n ) = v are completely parameterized by x i+1 , . . . , x n , x n+1 , . . . , x n+ℓ . Removing L k from C, applying the substitution on (L i ) i =k and updating Eq with σ produces a system equisatisfiable

to C when L k (x 1 , . . . , x n ) is evaluated to v.
A possible technique to compute integer substitutions at line 16 is the well known Generalized GCD test [START_REF] Banerjee | Dependence Analysis for Supercomputing[END_REF] with the approach given by Pugh in the Omega-Test procedure [START_REF] Pugh | The Omega test: a fast and practical integer programming algorithm for dependence analysis[END_REF]. Note that the substitution may have only one solution, e.g. 2x = 6. The substitution may also not exist, e.g. 5x = 2, in which case, the exit case described line 17 applies. In this scenario, the functions check are implemented as follows:

• For check 1 , the solutions are purely constrained by Eq. More precisely, the set of integer solutions is parameterized by the set of variables that are never the target of substitution in Eq. Moreover, the Eq system has been built only from adding successively (cf. line 20) new substitutions not featuring the variables previously substituted (cf. line 19), so it is never inconsistent.

Therefore, only two situations are possible when Eq is passed to check 1 : either Eq involves all the variables of the system, in which case there is exactly one solution, or it does not (some variables have not been substituted) and there are infinitely many integer solutions.

• For check ∞ , the solutions are constrained by both Eq and the remaining affine forms in C for which there is no constant positive linear combination (cf. line 9). However, since Eq is never inconsistent and the substitutions it contains are progressively applied on C at line 19, explicit solutions can easily be computed thanks to the algorithm described in 3.2.3.

Intersection with an affine subspace

Before we present the second scenario, we introduce and prove, in this section, an intermediate result related to the use of Gaussian elimination to handle equalities in our decision procedure. In addition to the convex K defined by the system Ax + b ≤ 0, we consider another convex K ′ ⊂ Q n defined by ℓ equations

K ′ = x ∈ Q n such that A ′ x + b ′ = 0 where A ′ ∈ Z ℓ×n , b ′ ∈ Z ℓ .
We prove here a sufficient condition for the intersection

K ∩ K ′ ∩ Z n to be infinite when K ∩ Z n is known to be infinite.
Let (e 1 , . . . , e n ) be the canonical basis of Q n . We suppose that there exists i 1 , . . . , i j such that K is invariant by any translation of direction

e i k for k ∈ [|1, j|].
Hence, if we define E := e i 1 , . . . , e i j to be the vector space generated by these vectors, the convex K is invariant by any translation of direction e ∈ E. Let us denote by π : Q n → Q n-j the orthogonal projection along E (on the orthogonal complement E ⊥ of E). Note that since we consider vectors as column matrices of their coordinates on the canonical basis, computing the projection π(x) of a vector

x boils down to annihilating the coordinates i 1 , . . . , i j of x.

Theorem 19. Assume that there are no constant positive linear combinations of the (L i )

and that K ′ ∩Z n contains at least one point. Then if π(K) ⊆ π(K ′ ), K ∩K ′ ∩Z n contains infinitely many points.

Proof. Let us first calculate the Smith normal form of the matrix A ′ . This gives U , D, and V , matrices over Z such that U A ′ V = D, where U and V are square matrices invertible over Z, and D is diagonal (but not necessarily square).

Since U and V are invertible, we have:

{x ∈ Q n | A ′ x = 0} = {x ∈ Q n | U A ′ V (V -1 x) = 0} = {V x ∈ Q n | Dx = 0}
Similarly, and since V is invertible over Z, we have:

{x ∈ Z n | A ′ x = 0} = {V x | x ∈ Z n ∧ Dx = 0} = {V x | x ∈ ker D ∩ Z n }
By hypothesis, there exists x 0 a point of K ′ ∩ Z n . For any point x of K ′ , we have

A ′ (x -x 0 ) = (A ′ x + b ′ ) -(A ′ x 0 + b ′ ) = 0. Therefore, K ′ = {x 0 + V x | x ∈ ker D} K ′ ∩ Z n = {x 0 + V x | x ∈ ker D ∩ Z n } Let R = max(1, max i ( j |v i,j |)) = max(1, max i v i 1 )
and N an arbitrary large integer. By Theorem 16, there exists a ball B = B ∞ (w, R(N + 1)), of diameter 2R(N + 1), contained in K. The projection π(B) contains at least N n-j points that are at least at distance 2R from each other and at least at distance R from its border.

Each of these points has at least one antecedent by π in K ′ since π(B) ⊆ π(K) ⊆ π(K ′ ). We call T ⊂ K ′ this set of points. The distance between any two points of T is at least 2R since the coordinates of the vectors in T on E ⊥ coincide with the ones of their respective projections.

For any point y

= x 0 + V x ∈ K ′ , there is a point of K ′ ∩ Z n at most at distance R.
Indeed, since D is diagonal and x ∈ ker D, any vector having the same non-zero coordinates as x remains in ker D. Hence truncating the coordinates of x gives a vector ⌊x⌉ ∈ ker D ∩ Z n . By definition of R, the distance between y and x 0 + V ⌊x⌉ is at most R.

Hence for each t ∈ T , there exists u ∈ K ′ ∩ Z n such that the distance between t and u is at most R. But the distance between π(t) and π(u) is also at most R since the projection only annihilates some coordinates. Therefore we obtain a family U of N n-j distinct points of K ′ ∩ Z n that have a projection inside π(B). K since K is invariant by the translation of direction e ′e ∈ E. Finally the N n-j points of U are in K ∩ K ′ ∩ Z n , which concludes the proof when j < n.

In the degenerate case where j = n, K is either empty or the whole space. K cannot be empty since by Theorem 8 this would imply the existence of constant positive linear combination of the (L i ), hence a contradiction. Now K cannot be the whole space if there is no zero combination of the (L i ) which again contradicts the present hypothesis.

Rational substitutions with Gaussian elimination

Let us now investigate the use of rational substitutions obtained with a simple Gaussian elimination algorithm on rational numbers at line 16. In this case, we do not introduce any slack variables but the coefficients involved in the substitutions are rationals, possibly non integers. The functions check are implemented as follows:

• The function check 1 has now to test whether the set of equalities in Eq admits some solutions in Z (contrarily to the first scenario) and to return them.

Indeed, we can have rational solutions for the relaxation problem we obtain when using Gaussian elimination but no integer solutions. In this case, there can be either zero integer solution, or one, or an infinite number of them.

• The function check ∞ can take benefit of Theorem 19. The hypotheses of the theorem are actually verified thanks to the Gaussian elimination; and the vector space E of Theorem 19 is generated by the vectors of the canonical basis associated with the variables already substituted. Since these variables have been eliminated from C, the set of solutions of C is obviously invariant by translation along these coordinates. By construction of Eq the hypothesis of inclusion of the respective projections also holds. Therefore if the system of equalities Eq admits at least one integer solution, then there are an infinite number of integer solutions for the problem considered in the current branch. Otherwise there is no solution for this branch.

Examples

To get a flavor of our procedure, we illustrate its use through simple examples. We classify them into four categories regarding their satisfiability status and the way they are proved by the procedure. In the following, we consider: • The procedure calls the oracle with L 1 , L 2 and L 3 at line 8. Following the method described in Section 3.2.2, the oracle attempts to find values for the rationals λ 1 , λ 2 and λ 3 that are solution of the optimization problem given below in order to compute a particular constant positive linear combination of the affine forms L 1 , L 2 and L 3 :

maximize -445 λ 1 + 427 λ 2 -291 λ 3 subject to (1) -761 λ 1 + 887 λ 2 -317 λ 3 = 0 ∧ (2) 366 λ 1 + 563 λ 2 + 111 λ 3 = 0 ∧ (3) λ 1 + λ 2 + λ 3 > 0 ∧ (4) 3 i=1 λ i ≥ 0
• The equality (2) necessarily implies that λ 1 = λ 2 = λ 3 = 0 modulo the nonnegativeness constraints in (4). But, this solution is forbidden by (3). The oracle consequently answers that there is no constant positive linear combination of L 1 , L 2 and L 3 and the initial problem is satisfiable.

Let us use the method described in 3.2.3 to exhibit a model for this example:

• We first define the vector γ ∈ Q 3 as follows:

γ 1 = 1127 2 , γ 2 = 725, γ 3 = 214,
• We look for a vector w ∈ Q 2 that is solution of Aw + b + γ ≤ 0, i.e. such that:

green * : -761w 1 + 366w 2 -445 + 1127 2 ≤ 0 ∧ red * : 887w 1 + 563w 2 + 427 + 725 ≤ 0 ∧ blue * : -317w 1 + 111w 2 -291 + 214 ≤ 0
• We use a rational simplex to get a valuation for w. In our case, we obtain the solution

w 1 = 0, w 2 = -1152 563 ,
• Finally, the integer point w is defined by w 1 = 0, w 2 = -2. The figure below shows the constraints defining K and K ′ , and the ball B ∞ ( 1 2 , w) that is indeed a square in a 2D Euclidian orthonormal space. green : -361x + 366y + 445

L 1 ≤ 0 ∧ red : -887x -563y -427 L 2 ≤ 0 ∧ blue : 317x -111y + 291 L 3 ≤ 0 
There is no gray part in the figure below because the rational solutions set of these constraints is empty. The main steps to prove their unsatisfiability are:

• The procedure calls the oracle with L 1 , L 2 and L 3 at line 8. Then, the oracle attempts to compute a particular constant positive linear combination of L 1 , L 2 and L 3 . For that, it tries to find values for the rationals λ 1 , λ 2 and λ 3 that are solution of the 

maximize 445 λ 1 -427 λ 2 + 291 λ 3 subject to (1) -361 λ 1 -887 λ 2 + 317 λ 3 = 0 ∧ (2) 366 λ 1 -563 λ 2 -111 λ 3 = 0 ∧ (3) λ 1 + λ 2 + λ 3 > 0 ∧ (4) 3 i=1 λ i ≥ 0
• A slack variable s is introduced and the constraint (3) is replaced by:

(4) s = λ 1 + λ 2 + λ 3 -ε ∧ (5) s ≥ 0
where ε is a positive rational parameter.

• The equalities are then solved in the rationals modulo the non-negativeness constraints (4) and [START_REF] Baader | Term Rewriting and All That[END_REF]. We obtain for instance the following solved form:

                 λ 1 → 276928 527885 λ 3 λ 2 → 75951 527885 λ 3 s → 880764 527885 λ 3 -ε
• Now, we initialize the simplex algorithm with this matrix and try to maximize the objective function which is normalized to 244416418 527885 λ 3 ,

• The simplex detects that the problem is unbounded and returns an arbitrary positive constant. The procedure consequently deduces that the initial conjunction is unsatisfiable.

Example 22. Now, let us consider the following conjunction defining the gray triangle shown in the figure below: The main steps to prove the satisfiability of this conjunction are:

green : 361x -366y -445 L 1 ≤ 0 ∧ red : 887x + 563y + 427 L 2 ≤ 0 ∧ blue : -317x + 111y -291 L 3 ≤ 0
• At line 8, the oracle tries to compute a particular constant positive linear combina-tion of L 1 , L 2 and L 3 by solving the following optimization problem:

maximize -445 λ 1 + 427 λ 2 -291 λ 3 subject to (1) 361 λ 1 + 887 λ 2 -317 λ 3 = 0 ∧ (2) -366 λ 1 + 563 λ 2 + 111 λ 3 = 0 ∧ (3) λ 1 + λ 2 + λ 3 > 0 ∧ (4) 3 i=1 λ i ≥ 0
• The maximum of this problem is equal to -6432011 23178 ε. The corresponding valuation of λ is:

λ 1 = 69232 220191 ε, λ 2 = 25317 293588 ε, λ 3 = 527885 880764 ε
• These information allow us to deduce lower bounds for the initial affine forms:

-882 = ⌈-6432011 23178 • 220191 69232 ⌉ ≤ L 1 ≤ 0 -3218 = ⌈-6432011 23178 • 293588 25317 ⌉ ≤ L 2 ≤ 0 -463 = ⌈-6432011 23178 • 880764 527885 ⌉ ≤ L 3 ≤ 0
• Assume that the procedure performs a case-split analysis on L 3 . The values of L 3 in [| -463, -403|] lead to unsatisfiability. But, the value L 3 = -402 satisfies the conjunction. Indeed, solving this equality yields the substitution σ = {x → -111k, y → -317k -1} which, when applied on L 1 and L 2 , yields:

-882 ≤ +75951k -79

L 1 σ ≤ 0 ∧ -3218 ≤ -276928k -136 L 2 σ ≤ 0 
Now, the only value for k that satisfies these constraints is k = 0. We thus obtain the model x = 0, y = -1 for this example.

Example 23. Finally, consider the following formula:

green : 761x -366y + 445

L 1 ≤ 0 ∧ red : 887x + 563y + 427 L 2 ≤ 0 ∧ blue : -317x + 111y -291 L 3 ≤ 0 
Geometrically, these inequalities define the figure below. They are satisfiable in the rationals but not in the integers. The gray triangle represents their solutions set.

Figure 3.6: Unsatisfiable example with case-split analysis

This formula is proved by the same reasoning used for example 22 except that no satisfying integer assignment will be found.

Implementation in CTRL-ERGO

In general, formulas that are sent to SMT-sovlers are not just conjunctions of literals. They mix boolean connectives and high-level constructs in a non-trivial way. For instance, more than 50% of formulas in the QF-LIA benchmark of SMT-LIB [START_REF] Barrett | The SMT-LIB Standard: Version 2[END_REF]. (e.g. NEC families) intensively use high level constructs such as LET-IN and IF-THEN-ELSE. The preprocessor and the SAT solver of ALT-ERGO are not tuned for this kind of formulas.

To measure the effectiveness of our simplex-based procedure, we implemented it in a small prototype, called CTRL-ERGO. This SMT solver is based on an OCAML imperative implementation of MINISAT. Furthermore, it integrates a home-made simplification step for IF-THEN-ELSE and LET-IN constructs. In this section, we provide some details about this implementation.

Preprocessing

In this section, we describe the technique used in CTRL-ERGO to simplify formulas containing LET-IN and IF-THEN-ELSE constructs. Note that, some SMT solvers incorporate preprocessing techniques for such constructions [START_REF] Kim | Efficient term-ite conversion for satisfiability modulo theories[END_REF].

Consider the example given in Figure 3.7, written in the syntax of the SMT-LIB-2 language [START_REF] Barrett | The SMT-LIB Standard: Version 2[END_REF]. This formula cannot be expressed in the language of many-sorted first-order logic described in Chapter 2, because the imbrication of formulas in terms is not allowed. However, it can be expressed using the grammar of Figure 3.8, where τ produces terms, π produces non negated atoms, α produces literals, ϕ (resp. ψ) produces formulas without (resp. with) LET-IN and ν (resp. ζ) produces integer variables (resp. integer numerals). As illustrated by this example, a naive elimination approach blows up the size of resulting formulas. We describe below a preprocessing step that simplifies input formulas in order to limit the magnitude of this explosion.

τ ::= ν | ζ + (ζ • ν) | ITE(α, τ, τ ) π ::= TRUE | ν | τ ⊲⊳ 0 α ::= π | NOT (π) ϕ ::= α | AND (ϕ * ) | OR (ϕ * ) ψ ::= ϕ | LET-IN(ν, τ, ψ) | LET-IN(ν, ϕ , 

Canonization

We put terms, predicates, literals and formulas in a canonical form. This allows us to easily detect duplicates and complementary literals (resp. formulas). For instance, the formula in Figure 3.7 is not in canonical form:

• at line 1, the predicate a + a ≥ 3 can be simplified to a ≥ 2 modulo LIA

• at line 2, the predicate v 1 + 1 ≈ 2 can be simplified to v 1 ≈ 1 modulo LIA

• at line 2, 1 ≥ 0 is true modulo LIA. Thus, the ELSE branch can be pruned

• at line 3, the term of the form (ite (not p) a b) simplifies to (ite p b a)

All these simplifications yield the following "canonized" formula: 1. Using a very basic arithmetic reasoning, we realize that v 1 cannot be equal to 1 because a ≈ 1 ∧ a ≥ 2 is inconsistent. Consequently, line 1 becomes let ((v1 (ite (= a 1) 2 3))). Moreover, we can deduce that v 1 ∈ { 2, 3 }.

2. Since v 1 ≈ 1, the LET-IN construct at line 2 simply rewrites to v 2 ≈ v 1 .

3. Now, we first use the equality v 1 ≈ v 2 to rewrite the third LET-IN as follows:

(let ((v3 (ite (= a 1) v1 2))). Then, when a ≈ 1 is true, v 1 is equal to 2. Consequently v 3 is equal to 2 whatever the value of a.

The formula at line 4 first reduces to

(= v1 (ite (= v1 2) v1 v1)) because v 3 ≈ 1.
Then, it simplifies to true whatever the value of v 1 .

5. Finally, we throw away the declarations of the intermediate variables v 1 , v 2 and v 3 because they are not used in the formula true.

The SAT solver

We now describe our OCAML implementation of MINISAT using inference rules.

These rules are inspired by those present in the literature [START_REF] Mendonça De Moura | A model-constructing satisfiability calculus[END_REF][START_REF] Krstic | Architecting solvers for sat modulo theories: Nelsonoppen with dpll. frontiers of combining systems[END_REF][START_REF] Nieuwenhuis | Abstract dpll and abstract dpll modulo theories[END_REF]. But, they are sufficiently low level to reflect the actual implementation.

Let ∆ 0 be a set of clauses, where each clause is represented by a set of literals.

The SAT solver attempts at constructing a model Γ for the CNF formula represented by ∆ 0 . Recall that a set with an empty clause in unsatisfiable and an empty set of clauses in satisfiable.

The model Γ is represented by a list of literals of the form l The behavior of the function next-lit is described in Figure 3.12. The inference rules only apply on a literal l such that l ∈ ∆ and undef(l, Γ). We notice that implied literals (rule 8) are annotated with Γ's current level, whereas the level of decided literals (rule 9) is incremented by 1. In practice, the choice of the next literal to decide is guided by the dynamic variables activity (VSID) heuristic. Note that, the list Γ is always sorted in decreasing order w.r.t. the level of literals.

The strategy used in search mode is sketched in Figure 3.13. The function search-mode repeatedly propagates assigned facts, unless a restart is scheduled (line 2) or a conflict is encountered (line 3). In the latter case, the function raises the exception Unsat if the conflict is derived without any assumption or calls 2 Hence, the negation of this literal is assigned to f alse. name premise conclusion side conditions The module Lia_eqs handles equalities using a rewriting system, encoded by a persistent dictionary from variables to arithmetic terms. It relies on a solver that builds substitutions with integer slack variables [START_REF] Kroening | Decision Procedures: An Algorithmic Point of View[END_REF]. We have also a version that uses a rational solver as described in Section 3.4. However, it is less efficient.

1. sat Γ ⊢ ∆ Γ Γ |= ∆ 2. unsat Γ ⊢ ∆ : ⊥ ⊥ 3. assume Γ ⊢ ∆ Γ ′ ⊢ ∆ next-lit(Γ ⊢ ∆) = Γ ′ = Γ 4. simplify Γ ⊢ ∆, C Γ ⊢ ∆ Γ| 0 |= C 5. forget Γ ⊢ ∆, C Γ ⊢ ∆ C ∈ ∆ 0 and rdb-heuristic(C) 6. restart Γ ⊢ ∆ Empty ⊢ ∆ restart-heuristic() 7. conflict Γ ⊢ ∆, C Γ ⊢ ∆, C : C Γ |= ¬C
Inequalities and disequalities are handled by Lia_ineqs. They are added to a dictionary associating affine forms to intervals of integers. The affine forms are maintained in normal form w.r.t. the rewriting system provided by Lia_eqs. The intervals of integers are handled by the module Intervals. The Simplex module is used to infer new bounds as described in Section 3.2.2. Note that, our actual implementation of the oracle is not incremental. To alleviate, we use memoization techniques (module Simplex_cache) to reuse previously computed results at the expense of a larger memory footprint.

Theory_propagation implements an incomplete, but fast, theory propagation mechanism. The module Types provides data structures for representing terms, literals, CNF formulas, etc. Note that, in earlier implementations, we used linear optimization problems similar to that presented in Section 3.2.2 to deduce refined bounds for the uninterpreted constants appearing in the affine forms. However, we have deactivated this extension because it does not scale on large problems.

Experimental results

In this section, we benchmark CTRL-ERGO and compare its performances with state-of-the-art SMT solvers including MATHSAT5 [START_REF] Griggio | MathSAT 5: An SMT Solver for Formal Verification[END_REF] (v5.1.3), Z3 [START_REF] De | Z3, an efficient SMT solver[END_REF] (v3.2) and YICES2 [START_REF] De Moura | Yices: An SMT Solver[END_REF] (v2.0-prototype). We could not include the MISTRAL solver that implements the procedure of [START_REF] Dillig | Cuts from proofs: A complete and practical technique for solving linear inequalities over integers[END_REF], because it was not possible to obtain it.

We have used the QF-LIA benchmark for our experiments. In particular, we focused on a test suite containing 1070 composed of the families listed below. We have selected these families because they are known to be well-suited for stressing the integer-reasoning part of SMT solvers.

• CAV-2009: randomly-generated instances used in [START_REF] Dillig | Cuts from proofs: A complete and practical technique for solving linear inequalities over integers[END_REF]. Most of them are satisfiable. They are reported very hard for modern SMT solvers,

• SLACKS: reformulation of CAV-2009 instances used in [START_REF] Jovanovic | Cutting to the chase solving linear integer arithmetic[END_REF] that introduces slack variables to bound all variables,

• CUT-LEMMAS: crafted instances encoding the validity of cutting planes in Z,

• PRIME-CONE: crafted instances used in [START_REF] Jovanovic | Cutting to the chase solving linear integer arithmetic[END_REF] that encode a tight n-dimensional cone around the point whose coordinates are the first n prime numbers.

• PIDGEONS (sic): crafted instances encoding the pigeonhole principle. They are reported hard for any solver not using cutting planes [START_REF] Jovanovic | Cutting to the chase solving linear integer arithmetic[END_REF],

• PB2010: industrial instances coming from the PB competition (2010),

• MIPLIB2003: instances generated from some optimization problems in [START_REF] Achterberg | MIPLIB[END_REF].

All measures were obtained on a 64-bit machine with a quad-core Intel Xeon processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit of 600 seconds and a memory limit of 2 GB for each test. The results of our experiments are reported in Figure 3.18. The first two columns show the families we considered and the number of their instances. For each prover, we report both the number of solved instances within the required time for every family and the time needed for solving them (not counting timeouts). The last rows summarize the total number of solved instances and the accumulated time for each prover.

Although the first two families were reported very hard for modern SMT solvers, our approach only requires 320 seconds to solve almost all the instances. Thus, 3 The time limit is 180 seconds for the tests of the complete benchmark. it significantly outperforms the other solvers' approaches. This observation also applies for the third and the fourth families. From the results of the sixth and the seventh families, we notice that our technique does not perform well on large difference-logic-like problems compared to MATHSAT5 and Z3's. We think this is partly due to our naive implementation of the simplex algorithm which computes on dense matrices while sparse matrices would be better suited for these problems.

The last row of Table 3.18 shows the results for the whole QF-LIA benchmark.

There are two reasons for the poor results. First, CTRL-ERGO has to be tuned for parts other than the LIA solver. Second, some families, e.g. BOFILL, contain large intervals that need splitting, and the decision procedure does not deal efficiently with them. This would possibly require a combination of our approach with other established techniques for integers to cut down the search space.

Related and future works

Related works

Designing efficient decision procedures for QF-LIA has been an active research topic in the SMT community over the last decade. An efficient integration of the simplex algorithm in the DPLL(T) framework has been proposed in [START_REF] Dutertre | A fast linear-arithmetic solver for DPLL(T)[END_REF]. This integration rests on a preprocessing step that enables fast backtracking and efficient theory propagation. The contribution of [START_REF] Dillig | Cuts from proofs: A complete and practical technique for solving linear inequalities over integers[END_REF] is seen as a generalization of branchand-bound. Using the notion of the defining constraints of a vertex, it derives additional inequalities that prune higher dimensional subspaces not containing integer solutions. In our setting, the simplex algorithm is used on auxiliary problems to refine the search space by bounds inference.

The approach described in [START_REF] Griggio | A practical approach to satisability modulo linear integer arithmetic[END_REF] focuses on combining several existing techniques using heuristics and layering to take advantage of each of them. We believe that the ideas we described in this chapter can naturally be used to enhance this combination approach. Another different contribution described in [START_REF] Jovanovic | Cutting to the chase solving linear integer arithmetic[END_REF] consists in extending the inference rules of the CDCL procedure with linear arithmetic reasoning. This tight integration naturally takes advantage of good CDCL properties, such as model search, dynamic variable reordering, propagation, conflicts explanation, and backjumping. Note that there has also been some works on this topic in the constraint solvers community.

Future works

As reflected by our contribution, the simplex we use works on an auxiliary problem that simulates a run of the Fourier-Motzkin method, but not on the original problem nor on its dual. Therefore, fast incrementality and efficient backtracking techniques developed for simplex-based approaches are not suitable for our setting. We plan to investigate this issue in the future for a better integration of our approach with DPLL(T). In fact, memoization techniques used in our actual implementation are not satisfactory.

We also envisage to extend our method with a better conflict resolution/learning technique, and a cleverer case-split analysis mechanism. In particular, we think that the extension of our framework with the ideas developed in [START_REF] Jovanovic | Cutting to the chase solving linear integer arithmetic[END_REF] and in [START_REF] Korovin | Solving systems of linear inequalities by bound propagation[END_REF] for the rationals would greatly improve it.

We believe that a combination of our approach with "well tuned" state-of-theart techniques, à la MATHSAT, would be very beneficial. Furthermore, the use of advanced data-structures and algorithms such as sparse matrices and the revised simplex method [START_REF] Schrijver | Theory of linear and integer programming[END_REF] would greatly enhance our implementation.

CHAPTER 4

Ground AC Completion Modulo a

Shostak Theory

In this chapter, we investigate the integration of Shostak theories in ground AC completion. We present a new combination framework, called AC(X), that decides ground conjunctions of equalities in the union of the free theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signaturedisjoint Shostak theory X. Our combination technique relies on canonized rewriting, a new rewriting relation reminiscent to normalized rewriting [START_REF] Marché | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF] that integrates canonization in standard rewriting.

In Section 4.1, we first recall some notions about term rewriting systems and rewriting modulo AC. Then, we recall the inference rules of ground AC completion and illustrate its use throughout an example.

In Section 4.2, we first consider the combination of individual canonizers to handle mixed terms. Then, we define the notion of canonized rewriting. After that, we tackle the problem of solving equalities on heterogeneous terms. Finally, we pose some reasonable ordering restrictions on the canonizers and the solvers to prove the termination of our combination framework.

In Section 4.3, we show how to extend, in a modular and non intrusive way, the ground AC completion procedure with Shostak theories. The main ideas of our integration are the substitution of standard rewriting with canonized rewriting and the replacement of the equalities orientation mechanism found in ground AC completion with the solver for X. We then illustrate the AC(X) combination framework on a simple example.

In Section 4.4, we establish the correctness and termination of AC(X). Note that, our modular integration allows us to partly reuse the proofs of the ground AC completion procedure.

In Section 4.5, we show that a simple preprocessing step à la Bachmair et al. [START_REF] Bachmair | Abstract congruence closure[END_REF] enables the use a partial multiset ordering instead of an AC-compatible reduction ordering.

In Section 4.6, we measure the performances of our framework and compare it with axiomatization/instantiation based approaches. We also show that the instantiation mechanism of our ALT-ERGO SMT solver have to be extended modulo AC in order to fully integrate AC(X) at its core.

In Section 4.7, we discuss the most important extensions we have investigated and the issues we have encountered.

In Section 4.8, we overview related works and summarize some further directions to investigate.

A substantial part of this chapter has been published in [START_REF] Sylvain Conchon | Ground Associative and Commutative Completion Modulo Shostak Theories[END_REF][START_REF] Sylvain Conchon | Canonized Rewriting and Ground AC Completion Modulo Shostak Theories[END_REF][START_REF] Sylvain Conchon | Canonized rewriting and ground AC completion modulo Shostak theories : Design and implementation[END_REF].

Preliminaries

In this section, we recall the standard notations and definitions of [START_REF] Baader | Term Rewriting and All That[END_REF][START_REF] Dershowitz | Rewrite systems[END_REF] for term rewriting systems. Let Σ = (F, P, S, ar, τ ) be a signature, where P contains only equality predicate symbols. Let X be a set of variables disjoint from F and P.

Term rewriting

In rewriting community, a Σ-identity refers to an equality over Σ where all the free variables are implicitly universally quantified. Let E be a set of Σ-identities. The equational theory of E, denoted ≈ E , is the set of all identities that can be obtained by reflexivity, symmetry, transitivity, congruence and instances of identities in E.

More formally, ≈ E is defined as follows:

≈ E = (s, t) ∈ T Σ (X ) × T Σ (X )
where

|= E E ⇒ s ≈ t
Note that, the equational theory of the free theory of equality E, defined by the empty set of equations, is simply denoted ≈ instead of ≈ E .

Given two ground terms s and t over Σ, the word problem for E consists in determining whether the equality s ≈ t belongs to the set ≈ E . If so, we simply write s ≈ E t. We say that the word problem for E is ground when E contains only ground identities. An equational theory ≈ E is inconsistent when s ≈ E t, for any terms s and t in T Σ .

A rewriting rule is a pair of terms usually denoted by l → r. In addition, we usually require that l is not a variable and that Vars(r) ⊆ Vars(l). A term rewriting system (TRS) is a set of rewriting rules. The definition below introduces the notion of term rewriting:

Definition 24. We say that a term s rewrites to a term t at position p by the rule l → r, denoted by s → p l→r t, if and only if there exists a substitution σ such that s| p = lσ and t = s[rσ] p

Let R be a term rewriting system. We write s → R t whenever there exists a rule l → r in R such that s rewrites to t by l → r at some position. A normal form of a term s w.r.t to R is a term t such that s → * R t and t cannot be rewritten by R. The term rewriting system R is terminating if it does not admit any infinite reduction.

It is confluent if every term admits at most one normal form. It is convergent if it is both terminating and confluent. In this case, every term admits exactly a unique normal form.

A well-founded quasi-ordering [START_REF] Dershowitz | Orderings for term rewriting systems[END_REF] on terms is a reduction quasi-ordering if, for any substitution σ, for any term l and position p s t implies

   1. l[s] p l[t] p and 

sσ tσ

These conditions mean that is (1) closed under context and (2) closed under substitutions. A quasi-ordering defines an equivalence relation ≃ as ∩ and a partial ordering ≺ as ∩ . It has been shown [START_REF] Baader | Term Rewriting and All That[END_REF] that a term rewriting system R terminates if and only if there exists a reduction order ≺ such that, for every rule l → r in R, we have r ≺ l. The completion procedure [START_REF] Knuth | Simple word problems in universal algebras[END_REF] is an algorithm that aims at converting a given set E of identities into a convergent rewriting system R such that the equational theory ≈ E and the set {s ≈ t | s ↓ R = t ↓ R } coincide. Given a suitable reduction ordering on terms, it has been proved that the completion procedure terminates, under a fair strategy, when E contains only ground identities [START_REF] Lankford | Canonical inference[END_REF].

In the rest of this section, we assume that F is a disjoint union F AC ⊎ F U of AC function symbols and uninterpreted function symbols, respectively.

Rewriting modulo AC

In rewriting community, the set of axioms defining the AC theory is usually given by the equivalent set of identities:

AC = u∈F AC u(x, y) ≈ u(y, x) , u(x, u(y, z)) ≈ u(u(x, y), z)
Let ≈ AC be the equational theory obtained from the set AC defined above.

Given a set E of identities over Σ, it has been shown that no suitable reduction ordering allows the completion procedure to produce a convergent TRS for the union E ∪ AC in general. An alternative consists in in-lining AC reasoning both in the notion of rewriting step and in the completion procedure. For instance, given a rule u(a, u(b, c))) → t, we would like the following reductions to be possible: In order to produce a convergent TRS, the ground AC completion procedure requires a well-founded reduction quasi-ordering total on ground terms with an underlying equivalence relation which coincides with ≈ AC . Such an ordering will be called a total ground AC-reduction ordering.

(1) f (u(c, u(b, a)), d) → f (t, d) (2 

Ground AC completion

The inference rules for ground AC completion are recalled in Figure 4.1. The rules describe the evolution of the state of a procedure, represented as a configuration

E | R
, where E is a set of ground equations and R a ground set of rewriting rules. The initial state is E 0 | ∅ where E 0 is a given set of ground equations.

The rule Trivial removes an equation u ≈ v from E when u and v are equal modulo AC. Orient turns an equation into a rewriting rule according to a given total ground AC-reduction ordering . R is used to rewrite either side of an equation (Simplify), and to reduce right hand side of rewriting rules (Compose). Given a rule l → r, Collapse either reduces l at an inner position, or replaces l by a term smaller than r. In both cases, the reduction of l to l ′ may influence the orientation of the rule l ′ → r which is added to E as an equation in order to be re-oriented. Finally, Deduce adds equational consequences of rewriting rules to E. For instance, 

Trivial E ∪ { s ≈ t } | R E | R s ≈ AC t Orient E ∪ { s ≈ t } | R E | R ∪ { s → t } t ≺ s Simplify E ∪ { s ≈ t } | R E ∪ { s ′ ≈ t } | R s → AC\R s ′ Compose E | R ∪ { l → r } E | R ∪ { l → r ′ } r → AC\R r ′ Collapse E | R ∪ { g → d, l → r } E ∪ { l ′ ≈ r } | R ∪ { g → d } l → AC\g→d l ′ g ≺ l ∨ (g ≃ l ∧ d ≺ r) Deduce E | R E ∪ { s ≈ t } | R s ≈ t ∈ headCP(R)
headCP(R) = u(b, r ′ ) ≈ u(b ′ , r) l → r ∈ R, l ′ → r ′ ∈ R ∃ a µ : l = AC u(a µ , b) ∧ l ′ = AC u(a µ , b ′ )
Note that, unlike non-ground AC completion, we do not need to compute internal critical pairs in the ground case, because they are handled by the Collapse rule.

Example. To get a flavor of ground AC completion, consider a modified version of the assertion given in the introduction, where the arithmetic part has been removed (and uninterpreted constant symbols renamed for the sake of simplicity) The precedence a 1 ≺ p • • • ≺ p a 6 ≺ p u defines an AC-RPO ordering on terms [START_REF] Nieuwenhuis | A precedence-based total ACcompatible ordering[END_REF] which is suitable for ground AC completion. The table in Figure 4.2 shows the application steps of the rules given in Figure 4.1 from an initial configuration {u(a 1 , a 4 ) ≈ a 1 , u(a 3 , a 6 ) ≈ u(a 5 , a 5 ), a 5 ≈ a 4 , a 6 ≈ a 2 } | ∅ to a final configuration

u(a 1 , a 4 ) ≈ a 1 ∧ a 5 ≈ a 4 ∧ u(a 3 , a 6 ) ≈ u(a 5 , a 5 ) ∧ a 6 ≈ a 2 ⇒ a 1 ≈ u(a 1 , u(a 6 , a 3 )) 1 u(a 1 , a 4 ) → a 1 Ori u(a 1 , a 4 ) ≈ a 1 2 u(a 3 , a 6 ) → u(
∅ | R f
, where R f is the set of rewriting rules {1, 3, 5, 7, 10}. It can be checked that a 1 ↓ R f and u(a 1 , u(a 6 , a 3 )) ↓ R f are identical. Notice that, terms are not in canonical form modulo AC, and the rule Trivial uses the symbol ≈ AC instead of =.

From now on, we assume given a Shostak theory X over a signature Σ X . The terms we will consider are now built from a signature Σ defined as the union of the disjoint signatures Σ AC , Σ E and Σ X . Given a function symbol f , the notation f ∈ Σ i is an abbreviation for f ∈ F i . We also assume given a total ground ACreduction ordering defined on T Σ (X ) used later on for completion.

The ingredients of the combination

According to the definition of Section 2.2, the canonizer and the solver routines of a Shostak theory X only work on Σ X -pure terms. The two first steps toward the combination of ground AC completion with a signature-disjoint Shostak theory X are the definition of a global canonizer for the union of the free theory of equality, the AC theory and X and a wrapper for the solver function capable of resolving heterogeneous equations.

In this section, we first show how to construct such a canonizer. Then, we extend standard rewriting -in the spirit of normalized rewriting -to incorporate global canonization. After that, we consider the problem of solving heterogeneous equations. Finally, we pose in the last part some reasonable ordering constraints on the global canonizer and the extended solver, essential for the termination proof of our combination framework.

The definitions of the global canonizer and the solver's wrapper use a variable abstraction mechanism. Let α : T Σ → X be a global one-to-one mapping and ρ its inverse mapping. We define the variable abstraction which computes the pure

Σ X -part [[t]
] of a heterogeneous term t as follows: are not abstracted.

[[t]] = f ([[ s]]) when t = f ( s) and f ∈ Σ X [[t]] = α(t) otherwise

Global canonization

Combining canonizers for arbitrary signature-disjoint convex theories is not very difficult. For instance, following the technique described in [START_REF] Krstić | Canonization for disjoint unions of theories[END_REF], we define a global canonizer for the union of E, AC and X as follows:

Definition 26. Given a signature Σ = Σ AC ⊎ Σ E ⊎ Σ X , we define a canonizer canon which combines canon AC and canon X by:

canon(x) = x when x ∈ X canon(f ( v)) = f (canon( v)) when f ∈ Σ E canon(u(s, t)) = canon AC (u(canon(s), canon(t))) when u ∈ Σ AC canon(f X ( v)) = canon X (f X ([[canon( v)]]))ρ when f X ∈ Σ X
The proofs that canon fulfills standard properties required for a canonizer are similar to those given in [START_REF] Krstić | Canonization for disjoint unions of theories[END_REF]. The only difference is that canon AC is capable of working directly on the signature Σ, which avoids the use of a variable abstraction step when canonizing a mixed AC headed term. The lemma below states that canon solves the word problem for the union of E, AC and X.

Lemma 27. ∀s, t ∈ T Σ , s = E,AC,X t ⇒ canon(s) ≡ canon(t)

Example. Assuming X is the theory of linear integer arithmetic and using an AC-RPO ordering based on a precedence such that a ≺ p b, the application of canon on

2 u(b + 0, a + 1 -1) + b -2 + 3 yields 2 u(a, b) + b + 1.

Canonized rewriting

We now extend AC rewriting with the global canonizer. From rewriting point of view, a canonizer behaves like a convergent rewriting system: it provides an effective way of computing normal forms of terms. Thus, a natural way for integrating canon in ground AC completion is to adapt normalized rewriting [START_REF] Marché | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF] by replacing normalization with canonization. Hence, the following definition:

Definition 28. Let canon be a canonizer. We say that a term s canon-rewrites to a term t at position p by the rule l → r, denoted by s p l→r t, iff s → p AC\l→r t ′ and canon(t ′ ) = t

The following lemma states the soundness of canonized rewriting. It can be easily proved using the definition above and the soundness of the function canon. 

Solving heterogeneous equations

We reuse the same mappings α, ρ and the same abstraction function 

solve(s ≈ t) =    ⊥ if solve X ([[s]] ≈ [[t]]) = ⊥ { x i ρ → t i ρ } if solve X ([[s]] ≈ [[t]]) = {x i ≈ t i }

Ordering constraints

As it is already the case for ground AC completion, we have to impose some ordering constraints on the functions canon and solve in order to prove the termination of our framework. More precisely, the global canonizer and the wrapper must be compatible with the ordering used by ground AC completion, that is:

Lemma 31. ∀t ∈ T Σ , canon(t) t ∀s, t ∈ T Σ , if solve(s ≈ t) = {p i → v i } then v i ≺ p i
We can prove that the above properties hold when the theory X enjoys the local compatibility properties given below:

Axiom 32. ∀t ∈ T Σ , canon X ([[t]]) [[t]] ∀s, t ∈ T Σ , if solve X ([[s]] ≈ [[t]]) = {x i ≈ t i } then t i ρ ≺ x i ρ
In order to fulfill this axiom, the AC reduction ordering ≺ can be chosen as an AC-RPO ordering [START_REF] Nieuwenhuis | A precedence-based total ACcompatible ordering[END_REF] based on a precedence relation ≺ p such that Σ X ≺ p Σ E ∪ Σ AC .

From now on, we assume that the theory X is locally compatible with . 

The combination framework

The definitions given in the previous section pave the way for a modular extension of the ground AC completion procedure with a Shostak theory X. In this section, we present the details of this extension and illustrate its use through an example.

The inference rules of AC(X)

The main idea of our combination framework is very simple. Indeed, the AC(X)

algorithm is obtained by:

1. replacing the rewriting relation in AC completion with canonized rewriting;

2. replacing the equation orientation mechanism with the wrapper solve.

These two modifications lead to the inference rules given in Adding this rule is motivated by the fact that X is not necessarily an equational theory. For instance, the theory of linear arithmetic knows disequalities such as

1 ≈ 2.
Similarly to normalized completion, localized changes are made in the 

Trivial E ∪ { s ≈ t } | R E | R s = t Bottom E ∪ { s ≈ t } | R ⊥ solve(s, t) = ⊥ Orient E ∪ { s ≈ t } | R E | R ∪ solve(s, t) solve(s, t) = ⊥ Simplify E ∪ { s ≈ t } | R E ∪ { s ′ ≈ t } | R s R s ′ Compose E | R ∪ { l → r } E | R ∪ { l → r ′ } r R r ′ Collapse E | R ∪ { g → d, l → r } E ∪ { l ′ ≈ r } | R ∪ { g → d } l g→d l ′ g ≺ l ∨ (g ≃ l ∧ d ≺ r) Deduce E | R E ∪ { s ≈ t } | R s ≈ t ∈ headCP(R)

Example

Let us now illustrate AC(X) on the example given at the beginning of this chapter.

i 1 . u(a, c 2 -c 1 ) ≈ a ∧ i 2 . u(e 1 , e 2 ) -f (b) ≈ u(d, d) ∧ i 3 . d ≈ c 1 + 1 ∧ i 4 . e 2 ≈ b ∧ i 5 . u(b, e 1 ) ≈ f (e 2 ) ∧ i 6 . c 2 ≈ 2 c 1 + 1 ⊢ a ≈ u(a, 0)
We apply the following strategy for processing an equality u ≈ v ∈ E:

Sim * (Tri | Bot | (Ori (Com Col Ded) * ))
This means that u ≈ v is first simplified as much as possible by Simplify. Then, if it is not proven to be trivially solved by Trivial or unsolvable by Bottom, it is solved by Orient. Each resulting rule is added to R and then used to Compose and Collapse the other rules of R. Critical pairs are then computed by Deduce.

1 u(a, c 2 -c 1 ) → a Ori u(a, c 2 -c 1 ) ≈ a 2 u(e 1 , e 2 ) → u(d, d) + f (b) Ori u(e 1 , e 2 ) -f (b) ≈ u(d, d ) 
3 d → c 1 + 1 Ori d ≈ c 1 + 1 4 u(e 1 , e 2 ) → u(c 1 + 1, c 1 + 1) + f (b) Com 2 and 3 5 e 2 → b Ori e 2 ≈ b 6 u(b, e 1 ) ≈ u(c 1 + 1, c 1 + 1) + f (b) Col 4 and 5 7 u(b, e 1 ) → u(c 1 + 1, c 1 + 1) + f (b) Ori u(b, e 1 ) ≈ u(c 1 + 1, c 1 + 1) + f (b) 8 u(c 1 + 1, c 1 + 1) + f (b) ≈ f (b) Sim u(b, e 1 ) ≈ f (e 2
) by 5 and 7 The table given in Figure 4.4 shows the application of the rules of AC(X) on the example when X is instantiated by linear arithmetic. We use an AC-RPO ordering based on the precedence:

9 u(c 1 + 1, c 1 + 1) → 0 Ori u(c 1 + 1, c 1 + 1) + f (b) ≈ f (b) 10 
1 ≺ p 2 ≺ p a ≺ p b ≺ p c 1 ≺ p c 2 ≺ p d ≺ p e 1 ≺ p e 2 ≺ p f ≺ p u
Running AC(X) on the equalities i 1 , . . . , i 6 terminates and produces a convergent rewriting system R f = {3, 5, 9, 10, 11, 13, 16}. Using R f , we can check that a and u(a, 0) canon-rewrite to the same normal form.

Correctness and termination proofs

We give in this section the detailed proofs for the correctness of AC(X). This property is stated by the theorem below and its proof is based on three intermediate theorems stating respectively soundness, completeness and termination.

Theorem 33. Given a set E of ground equations, the application of the rules of AC(X)

under a strongly fair strategy terminates and either produces ⊥ when E ∪ AC ∪ X is inconsistent, or yields a final configuration ∅ | R such that:

∀s, t ∈ T Σ . s = E,AC,X t ⇔ canon(s) R = canon(t) R
As usual, in order to enforce correctness, we cannot use any (unfair) strategy. This is why we require a strongly fair one in the theorem above. It is defined as follows:

Definition 34. A strategy is strongly fair when no possible application of an inference rule is infinitely delayed and Orient is only applied over fully reduced terms.

In the following, we shall consider a fixed run of the completion procedure

E 0 | ∅ → E 1 | R 1 → . . . → E n | R n → E n+1 | R n+1 → . . .
starting from the initial configuration E 0 | ∅ . We denote R ∞ (resp. E ∞ ) the set of all encountered rules (resp. equations) and R ω (resp. E ω ) the set of persistent rules (resp. equations). More formally, these sets are defined as follows:

R ∞ = n R n E ∞ = n E n R ω = n i≥n R i E ω = n i≥n E i
Notice that, requiring a strongly fair strategy implies in particular that:

• headCP(R ω ) ⊆ E ∞ , • E ω = ∅,
• R ω is inter-reduced, that is none of its rules can be collapsed or composed by another one.

In addition, due to the assumptions made over canon X and ≺, the following valid properties will be continuously used in the proofs: 

(P 1 ) ∀t, canon ( 

Soundness

The soundness property of AC(X) is ensured by the following invariant:

Theorem 35. For any configuration E n | R n reachable from E 0 | ∅ , ∀ s, t, (s, t) ∈ E n ∪ R n ⇒ s = AC,X,E 0 t
Proof. The invariant obviously holds for the initial configuration and is preserved by all the inference rules.

• The rules Simplify, Compose, Collapse and Deduce preserve the invariant since for any rule l → r, if l = AC,X,E 0 r then, for any term s rewritten into t by l→r , we have s = AC,X,E 0 t.

• If Orient is used to turn an equation s ≈ t into a set of rules {p i → v i }, by definition of solve,

p i = x i ρ and v i = t i ρ, where solve X ([[s]] ≈ [[t]]) = {x i ≈ t i } . By soundness of solve X x i = X,[[s]]≈[[t]] t i . An equational proof of x i = X,[[s]]≈[[t]
] t i can be instantiated by ρ, yielding an equational proof p i = X,s≈t v i . Since by induction s = AC,X,E 0 t holds, we get p i = AC,X,E 0 v i .

Completeness

Completeness is established in several steps using a variant of the technique introduced by Bachmair et al. in [START_REF] Bachmair | Orderings for equational proofs[END_REF] for proving completeness of completion. This technique transforms a proof between two terms which is not under a suitable form into a smaller one, and the smallest proofs are the desired ones.

The proofs we are considering are made of elementary steps, either equational steps, with AC, X and E ∞ , or rewriting steps, with R ∞ and the additional (possibly

infinite) rules R canon = {t → canon(t) | canon(t) = t}. Rewriting steps with R ∞ can be either R∞ or → R∞ 1 .
The measure of a proof is the multiset of the elementary measures of its elementary steps. The measure of an elementary step is a 5-tuple of type

multiset(T Σ (X )) × N × N × T Σ (X ) × T Σ (X )
It takes into account the number of terms which are in a canonical form in an elementary proof: the canonical weight of a term t, w canon (t) is equal to 0 if canon(t) = AC t and to 1 otherwise. Notice that if w canon (t) = 1, then canon(t) ≺ t, and if w canon (t) = 0, then canon(t) ≃ t. The measure of an elementary step between t 1 and t 2 is performed thanks to

• an equation is equal to ({ {t 1 , t 2 } }, _, _, _, _) • a rule l → r ∈ R ∞ is equal to ({ {t 1 } }, 1, w canon (t 1 ) + w canon (t 2 ), l, r)
if t 1 l→r t 2 (or t 1 → l→r t 2 ), and to

({ {t 2 } }, 1, w canon (t 1 ) + w canon (t 2 ), l, r)
if t 1 r←l t 2 (or t 1 ← r←l t 2 ). In the case of a step, the measure is actually

({ {t i } }, 1, w canon (t i ), l, r
) since the reduct is always in a canonical form.

• a rule of R canon is equal to

({ {t 1 } }, 0, w canon (t 1 ) + w canon (t 2 ), t 1 , t 2 )
if t 1 → Rcanon t 2 , and to

({ {t 2 } }, 0, w canon (t 1 ) + w canon (t 2 ), t 2 , t 1 ) if t 1 ← Rcanon t 2 .
Elementary steps are compared lexicographically using the multiset extension of for the first component, the usual ordering over natural numbers for the components 2 and 3, and for last ones. Since is an AC-reduction ordering, the ordering defined over proofs is well-founded.

The general methodology is to show that a proof which contains some unwanted elementary steps can be replaced by a proof with a strictly smaller measure. Since the ordering over measures is well-founded, there exists a minimal proof, and such a minimal proof is of the desired form.

Lemma 36. A proof containing an elementary step ←→ s≈t , where s ≈ t ∈ AC ∪ X is not minimal.

Proof. An elementary equational step using an equation s ≈ t of AC ∪ X under the context C[_] p can be reduced: the subproof

C[s] p ←→ s≈t C[t] p is replaced by C[s] p {0,1} -→ Rcanon canon(C[s] p ) = canon(C[t] p ) {0,1} ←- Rcanon C[t] p
The measure strictly decreases, since for the first subproof it is equal to

{ {({ {C[s] p , C[t] p } }, _, _, _, _)} },
and for the second one, it is equal to

{ {({ {C[s] p } }, _, _, _, _) {0,1} , ({ {C[t] p } }, _, _, _, _) {0,1} } }. The rewrite steps → {0,1}
Rcanon only occur on a term which is not AC-equal to a canonical form (which is denoted by the {0, 1} exponent). The corresponding elementary measure occurs in the global measure of the second subproof accordingly. Lemma 37. A proof containing an elementary step ←→ s≈t , where s ≈ t ∈ E ∞ is not minimal.

Proof. An elementary equational step using an equation s ≈ t of E ∞ under the context C[_] p can be reduced. Since E ω is empty, there is a completion state where s ≈ t disappears, either by Simplify or Orient.

• If Simplify is used to reduce s into s ′ by the rule l → r of R ∞ , the subproof

C[s] p ←→ s≈t C[t] p is replaced by C[s] p → l→r C[s ′ ] p ←→ s ′ ≈t C[t] p
The measure strictly decreases, since for the first subproof it is equal to _,_,_,_)} }, and for the second one, it is equal to

{ {({ {C[s] p , C[t] p } },
{ {({ {C[s] p } }, _, _, _, _), ({ {C[s ′ ] p , C[t] p } }, _, _, _, _)} }, and s ≻ s ′ . • If the rule Orient turns s ≈ t into a set of rules π = {p i → v i }, by definition of solve we have solve X ([[s]] ≈ [[t]]) = {x i ≈ t i } (denoted as σ) with p i = x i ρ and v i = t i ρ. Since solve X is complete, [[s]]σ = X [[t]]σ. Consider a variable x of [[s]] or [[t]], -if x ∈ {x i } then xρπ = p i π = v i and xσρ = t i ρ = v i . -if x ∈ {x i } then xρπ = xρ (since xρ ∈ {p i }) and xσρ = xρ (since xσ = x).
In all cases, xρπ = xσρ. The equational step using s ≈ t can be recovered as a compound step using π and R canon as follows:

C[s] p = C[[[s]]ρ] p + -→ π C[[[s]]ρπ] p = C[[[s]]σρ] p 0,1 -→ Rcanon 0,1 ←- Rcanon C[[[t]]σρ] p = C[[[t]]ρπ] p + ←- π C[[[t]]ρ] p = C[t] p
The set of rules π belongs to R ∞ , and the measure of the new subproof is a multiset containing only elements of the form 

({ {C[s i ] p } }, _, _, _, _),
→ r ∈ R ∞ \ R ω is not minimal.
Proof. An elementary step using a rule l → r of R ∞ \ R ω can be reduced. The rule l → r disappears either by Compose or by Collapse.

• If Compose reduces r to r ′ = canon(r[d]) by the rule g → d of R ∞ , the subproof C[l] p l→r canon(C[r] p )
can be replaced by 

C[l] p l→r ′ canon(C[r ′ ] p ) = canon(C[r[d]] p ) d←g C[r] p The identity canon(C[r ′ ] p ) = canon(C[r[d]] p ) holds C[r ′ ] p and C[r[d]] p are equal modulo R canon , that is AC ∪ X,
{ {({ {C[l] p } }, 1, w canon (C[l] p ), l, r ′ )), ({ {C[r] p } }, 0, _, _, _)} }, and r ′ ≺ r ≺ l. • If Collapse reduces l to l ′ = canon(l[d]) by the rule g → d in R ∞ , the subproof C[l] p l→r canon(C[r] p )
is replaced by

C[l] p g→d canon(C[l[d]] p ) = canon(C[l ′ ] p ) ←- Rcanon C[l ′ ] p ←→ l ′ ≈r C[r] p -→ Rcanon canon(C[r] p )
The measure strictly decreases, since for the first subproof it is equal to

{ {({ {C[l] p } }, 1, w canon (C[l] p ), l, r)} },
and for the second one, it is equal to

{ {({ {C[l] p } }, 1, w canon (C[l] p ), g, d), ({ {C[l ′ ] p } }, _, _, _, _), ({ {C[l ′ ] p C[r] p } }, _, _, _, _), ({ {C[r] p } }, _, _, _, _), } }
The last three elements of the second multiset are strictly smaller than the element of the first multiset, since l ′ ≺ l and r ≺ l. The first element of the second multiset is strictly smaller than the element of the first multiset, since either g ≺ l, and the fourth component decreases, or g ≃ l and d ≺ g. In this case, l ′ = d ≺ r. The first four components are identical, and the last one decreases.

The case is symmetrical.

Lemma 40.

A proof containing a peak s ← Rcanon t → Rcanon s ′ is not minimal.

Proof. All the terms s, t and s ′ involved in the peak are equal modulo AC and X, hence canon(s) = canon(s ′ ). The subproof

s ← Rcanon t → Rcanon s ′ is replaced by s → {0,1} Rcanon canon(s) = canon(s ′ ) ← {0,1}
Rcanon s ′

The measure strictly decreases, since for the first subproof it is equal to

{ {({ {t} }, 0, w canon (t) + w canon (s), _, _), ({ {t} }, 0, w canon (t) + w canon (s ′ ), _, _)} }
and for the second one, it is equal to

{ {({ {s} }, 0, w canon (s), _, _) {0,1} , ({ {s ′ } }, 0, w canon (s), _, _) {0,1} } }.
s and s ′ are smaller than or equivalent to t (s, s ′ t), and the second component strictly decreases, since canon(s) and canon(s ′ ) are in a canonical form and t is not.

Lemma 41.

A proof containing a peak s Rω t Rω s ′ is not minimal.

Proof. We make a case analysis over the positions of the reductions.

• In the parallel case, the subproof

s p r←l t q g→d s ′ can be seen as s = canon(t[r] p [g] q ) ←- Rcanon t[r] p [g] q ←- r←l t[l] p [g] q -→ g→d t[l] p [d] q -→ Rcanon canon(t[l] p [d] q ) = s ′
The above subproof can be replaced by

s = canon(t[r] p [g] q ) {0,1} ←- Rcanon t[r] p [g] q g→d canon(t[r] p [d] q ) r←l t[l] p [d] q {0,1} -→ Rcanon canon(t[l] p [d] q ) = s ′
The measure strictly decreases, since for the first subproof it is equal to { {({ {t} }, _, _, _, _), ({ {t} }, _, _, _, _)} }, and for the second one, it is equal to

{ {({ {t[r] p [g] q } }, _, _, _, _) {0,1} , ({ {t[r] p [g] q } }, _, _, _, _), ({ {t[l] p [d] q } }, _, _, _, _), ({ {t[l] p [d] q } }, _, _, _, _) {0,1} } }
and both terms t[r] p [g] q and t[l] p [d] q are strictly smaller than t = t[l] p [g] q .

• If q is a strict prefix of p, this means that l → r can be used to collapse the rule g → d, which is impossible since the strategy is strongly fair, and the application of Collapse cannot be infinitely delayed.

• The case where p is a strict prefix of q is similar.

• If p and q are equal, this means that in both reductions, the extended rewriting has been used (second case of definition 25). Otherwise, again, one rule could collapse the other. This means that l and g have the same AC top function symbol u. When l and g do not share a common subterm, the reasoning is similar to the parallel case. Otherwise, if they share a common subterm, since the strategy is fair, the head critical pair between l → r and The subproof can be replaced by

s = ←- Rcanon t[u(u(b ′ , r), c)] p ←→ u(b ′ ,r)≈u(b,d) t[u(u(b, d), c] p -→ Rcanon s ′
The measure strictly decreases, since for the first subproof it is equal to { {({ {t} }, _, _, _, _), ({ {t} }, _, _, _, _)} }, and for the second one, it is equal to 

{ {({ {t[u(u(b ′ , r), c)] p } }, _, _, _, _), { {t[u(u(b ′ , r), c)] p , t[u(u(b, d), c] p } }, _, _, _, _), { {t[u(u(b, d), c] p } }, _, _, _, _)} } and both t[u(u(b ′ ,
• if P is an equational step s ↔ l≈r t, C[P] p is C[s] p ↔ l≈r C[t] p . • if P is a rewriting step s -→ l→r t, C[P] p is C[s] p -→ l→r C[t] p .
• if P is a rewriting step s l→r t, C[P] p is either 

C[s] p l→r canon(C[t] p ) ← Λ Rcanon C[t] p if C[t] p is
canon(t 2 ) ≺ t 2 . Since s 1 = AC s 2 , canon(t 1 ) = canon(t 2 ) holds, hence t 1 ≺ t 2 .
If we look at the plugged proofs, we have

C[s 1 ] p ≃ C[s 2 ] p , w canon (C[s 1 ] p ) = w canon (C[s 2 ] p ), w canon (C[t 1 ] p ) ≤ w canon (C[t 2 ] p ) = 1 and C[t 1 ] p ≺ C[t 2 ] p .
The measure is even on the first component, and either strictly decreases on the second component, or weakly decreases over the four first components, and strictly decreases over the last one. In all cases, C[P 1 ] p is strictly smaller than C[P 2 ] p .

if s 1 ≃ s 2 and w canon (s 1 )+w canon (t 1 ) = w canon (s 2 )+w canon (t 2 ), this means that t 1 ≺ t 2 . The case w canon (t 1 ) = w canon (t 2 ) = 0 is impossible, since this would imply

t 1 ≃ canon(t 1 ) = canon(t 2 ) ≃ t 2 . Hence w canon (t 1 ) = w canon (t 2 ) = 1.
If we look at the plugged proofs, we have

C[s 1 ] p ≃ C[s 2 ] p , w canon (C[s 1 ] p ) = w canon (C[s 2 ] p ), w canon (C[t 1 ] p ) = w canon (C[t 2 ] p ) = 1 and C[t 1 ] p ≺ C[t 2 ] p .
The measure is even on the first four components, and strictly decreases over the last one. C[P 1 ] p is strictly smaller than C[P 2 ] p .

• if P 1 is a -step, and P 2 is a → Rcanon step, necessarily, the first component strictly decreases. The measure of

C[P 1 ] p is { {({ {C[s 1 ] p } }, 1, w canon (C[s 1 ] p ), l 1 , r 1 ), ({ {C[t 1 ]} }, 0, _, _, _) {0,1} } }
and the measure of

C[P 2 ] p is ({ {C[s 2 ] p } }, 0, _, _, _), where t 1 ≺ s 1 ≺ s 2 . C[P 1 ] p is strictly smaller than C[P 2 ] p .
• if P 1 is a → Rcanon -step, and P 2 is a step, necessarily, the first component weakly decreases and the second component strictly decreases.

The measure of

C[P 1 ] p is ({ {C[s 1 ] p } }, 0, _, _, _) which is strictly smaller than the measure of C[s 2 ] p l 2 →r 2 C[t 2 ] p , that is { {({ {C[s 2 ] p } }, 1, w canon (C[s 2 ] p ), l 2 , r 2 )} } since s 1 s 2 .
• if P 1 and P 2 are -steps, they are of the form

s i l i r i t i
and the corresponding measures are ({

{s i } }, 1, w canon (s i ), l i , r i ). The measure of C[P 1 ] p is { {({ {C[s 1 ] p } }, 1, w canon (C[s 1 ] p ), l 1 , r 1 ), ({ {C[t 1 ] p } }, 0, w canon (C[t 1 ]), C[t 1 ] p , canon(C[t 1 ] p )) {0,1} } } and the measure of C[s 2 ] p l 2 →r 2 C[t 2 ] p is ({ {C[s 2 ] p } }, 1, w canon (C[s 2 ] p ), l 2 , r 2 ). If s 1 ≺ s 2 , since t 1 ≺ s 1 , C[P 1 ] p is strictly smaller than C[s 2 ] p l 2 →r 2 C[t 2 ] p .
Otherwise, s 1 ≃ s 2 and s 1 = AC s 2 . Hence w canon (s 1 ) = w canon (s 2 ) and the decrease occurs on the last two components. Therefore

({ {C[s 1 ] p } }, 1, w canon (C[s 1 ] p ), l 1 , r 1 )
and

({ {C[t 1 ] p } }, 0, w canon (C[t 1 ] p ), C[t 1 ] p , canon(C[t 1 ] p )) are strictly smaller than ({ {C[s 2 ] p } }, 1, w canon (C[s 2 ] p ), l 2 , r 2 ).
• When a step is an equational step, necessarily the decrease occurs on the first component. Since ≺ is compatible with plugging terms under a context, hence the wanted result.

We can now come to the proof of Lemma 42.

Proof. Let us denote by l → r the rule of R ω , and g → d the rule of R canon ; since l is in a canonical form (invariant of the completion run), the reduction using g → d can only take place at a position q which is above or parallel to the position p of the reduction using l → r. We prove by induction that there exists a proof between s and s ′ which is strictly smaller than the original peak.

• In the parallel case, the subproof

s p r←l t q -→ g→d s ′
can be seen as

canon(t[r] p [g] q ) ←- Rcanon t[r] p [g] q ←- r←l t[l] p [g] q -→ Rcanon t[l] p [d] q
Notice that t[r] p [g] q and t[r] p [d] q are equal modulo AC,X, hence have the same canonical form. The above subproof can be replaced by

canon(t[r] p [g] q ) = canon(t[r] p [d] q ) ←- Rcanon t[r] p [d] q ←- r←l t[l] p [d] q
which is actually

s r←l s ′
The measure strictly decreases, since for the first subproof it is equal to

{ {({ {t} }, 1, 1, l, r), ({ {t} 
}, _, _, _, _)} }, and for the second one, it is equal to { {({ {s ′ } }, 1, w canon (s ′ ), l, r)} }, and s ′ t.

• In the prefix case, we first prove the wanted result when the position q is equal to Λ. Now we make an induction over p, in order the establish that there is a proof between s and s ′ , with a measure (weakly) smaller than s r←l t, hence strictly smaller than the global measure of the peak. If p = Λ, rewriting at top with a rule of R ω is impossible if it is not an extended rewriting, since l is in a canonical form. In the extended case, the subproof to be replaced has the form

canon(u(r, l ′ )) r←l t Λ -→ Rcanon s ′
where t = AC u(l, l ′ ), and s ′ = canon(u(l, l ′ )). By definition of canon and since l is in a canonical form and u is an AC symbol, s ′ is AC-equal to u(l, canon(l ′ )). The subproof can be replaced by

canon(u(r, l ′ )) = canon(u(r, canon(l ′ ))) r←l u(l, canon(l ′ )) = AC s ′
where the identity canon(u(r, canon(l ′ ))) = canon(u(r, l ′ )) holds since u(r, canon(l ′ ))

and u(r, l ′ ) are equal modulo AC, X. The measure strictly decreases, since for the first subproof it is equal to { {({ {t} }, 1, w canon (t), l, r), ({ {t} }, _, _, _, _)} }, and for the second one, it is equal to { {({ {s ′ } }, 1, w canon (s ′ ), l, r)} }, and s ′ ≺ t, or

s ′ ≃ t with w canon (s ′ ) = w canon (t).
If p is of the form i • p ′ , t is of the form f (t 1 , . . . , t i-1 , t i , t i+1 , . . . , t n ), and the proof to be replaced

canon(f (t 1 , . . . , t i [r] p ′ , . . . , t n )) r←l f (t 1 , . . . , t i [l] p ′ , . . . , t n ) Λ -→ Rcanon s ′
We may assume without loss of generality that t 1 , . . . , t i-1 , t i+1 , . . . , t n are in a canonical form, since

s ′ = canon(t) = canon(f (canon(t 1 ), . . . , canon(t i-1 ), t i [l] p ′ , canon(t i+1 ) . . . , canon(t n ))) canon(f (t 1 , ..., t i [r] p ′ , ..., t n )) = canon(f (canon(t 1 ), ..., canon(t i-1 ), t i [r] p ′ , canon(t i+1 )..., canon(t n )))
We also denote as

s 0 = f (t 1 , . . . , canon(t i [r] p ′ ), . . . , t n )
and

s ′ 0 = f (t 1 , . . . , canon(t i [l] p ′ ), . . . , t n ) We know that canon(t i [l] p ′ ) t i [l] p ′ ,
and we distinguish between two cases.

-If canon(t i [l] p ′ ) ≺ t i [l] p ′ ,
then by induction hypothesis, there exists a proof P between canon(t i [r] p ′ ) and canon(t i [l] p ′ ) which is weakly smaller than

canon(t i [r] p ′ ) r←l t i [l] p ′
The decreasing is actually strict since an equivalent proof should be in one step, and the only possibility is a step of the form

canon(t i [r] p ′ ) r←l canon(t i [l] p ′ ) However since canon(t i [l] p ′ ) ≺ t i [l] p ′ and w canon (t i [l] p ′ ) = w canon (t i [l] p ′ )
cannot be not simultaneously true, such an equivalent step is not possible. Among all possible proofs P, we pick up a minimal one. By the previous lemmas, P does not contains → R∞ steps, hence f (t 1 , . . . , P, . . . , t n ) is strictly smaller than

canon(s 0 ) r←l t If we consider the proof P ′ s {0,1} ←- Rcanon s 0 f (t 1 ,...,P,...,tn) ← --------→ s ′ 0 {0,1} -→ Rcanon s ′
all its elementary steps are strictly smaller than ({ {t} }, 1, 1, l, r). We have seen that this is true for the middle part, and also for the left part ({ {s 0 } }, 0, 1, s 0 , s) {0,1} , and the right part ({ {s ′ 0 } }, 0, 1, s ′ 0 , s ′ ) {0,1} . P ′ is a proof between s and s ′ which is strictly smaller than s r←l t.

-If canon(t i [l] p ′ ) ≃ t i [l] p ′ , then by the AC-totality of , canon(t i [l] p ′ ) = AC t i [l] p ′ . Since s ′ = canon(t), we know that s ′
t and we make a case analysis: * If s ′ ≃ t then s ′ is actually canon AC (t) which is AC-equal to t. s ′ contains t i [l] p ′ as a subterm and can be reduced with l → r to

canon(s ′ [t i [r] p ′ ]) which is AC-equal to t[t i [r] p ′ ] i . Hence canon(s ′ [t i [r] p ′ ]) = canon(t[t i [r] p ′ ] i ) = s and the proof s r←l s ′
is equivalent to, hence weakly smaller than s r←l t. * If s ′ ≺ t, then we can first see the peak as follows:

s ← {0,1} Rcanon s 0 ← r←l t → Rcanon s ′ = canon(t)
We eagerly replace every occurrence of l by r in s 0 and s ′ , getting respectively s 1 and s ′′ . Then s 1 and s ′′ are equal modulo AC and X, because any proof modulo AC and X between t and s ′ can be replayed by replacing the σ-instances of AC and X used originally by σ ′ -instances where xσ ′ is xσ where every occurrence of l is replaced by r. We get the new proof

s {0,1} ←- Rcanon s 0 * -→ l→r s 1 {0,1} -→ Rcanon canon(s 1 ) = canon(s ′′ ) {0,1} ←- Rcanon s ′ = canon(t)
Since s ′ ≺ t, all terms in the above proof are strictly smaller than t, hence the measure of this proof is strictly smaller than ({ {t} }, 1, 1, l, r).

If the proof occurs under a context t[•] q , we know that there is a proof P between s = canon(t[r] q•p ′ ) and canon(t) which is weakly smaller than

({ {t[l] q•p ′ } }, 1, 1, l, r) (case → Rcanon at Λ). Hence s P ← → canon(t) {0,1} ←- Rcanon s ′
is a proof between s and s ′ which is weakly smaller than

{ {({ {t[l] q•p ′ } }, 1, 1, l, r), ({ {s ′ } }, 0, 1, s ′ , canon(t)) {0,1} } }
whereas the measure of the original peak is

{ {({ {t} }, 1, 1, l, r), ({ {t} }, 0, 2, t, s ′ )} } Since s ′
t, the measure of the new proof is strictly smaller than the measure of the original peak.

Theorem 45. If s and t are two terms such that s ←→ * AC,X,E∞,R∞ s ′ then canon(s) Rω = canon(t) Rω .

Proof. If s and s ′ are equal modulo ←→ * AC,X,E∞,R∞ , so are canon(s) and canon(s ′ ). By the above lemmas, a minimal proof between canon(s) and canon(s ′ ) is necessary of the form canon(s)( Rω ∪ → Rcanon ) * ( Rω ∪ ← Rcanon ) * canon(s ′ ). This sequence of steps can also be seen as canon(s)

→ * Rcanon ( Rω → * Rcanon ) * (← * Rcanon Rω ) * ← * Rcanon canon(s ′ )
. By definition → Rcanon cannot follow a Rω -step, and canon(s) and canon(s ′ ) cannot be reduced by → Rcanon , hence the wanted result.

Termination

The proof of termination partly reuses some facts used for the termination proof of AC-ground completion (based on Higman's lemma), but also needs some intermediate lemmas which are specific to our framework2 . We shall prove that, under a strongly fair strategy, R ω is finite and obtained in a finite time (by cases on the head function symbol of the rule's left-hand side), and then we show that R ω will clean up the next configurations and the completion process eventually halts on ∅ | R ω . In order to make our case analysis on rules, and to prove the needed invariants, we define several sets of terms (assuming without loss of generality that

E 0 = canon(E 0 )): T 0 = {t | ∃t 0 , e 1 , e 2 ∈ T Σ (X ), e 1 ≈ e 2 ∈ E 0 and t 0 = e i | p and t 0 * R∞ t} T 0X = T 0 ∪ {f X (t 1 , . . . , t n ) | f X ∈ Σ X and ∀i, t i ∈ T 0X } T 1 = {t | t ∈ T 0 and ∀p, t| p ∈ T 0X } T 2 = {u(t 1 , . . . , t n ) | 2 ≤ n and u ∈ Σ AC and ∀i, t i ∈ T 1 }
T 0 is the set of all terms and subterms in the original problem as well as their reducts by R ∞ . The set T 0X moreover contains terms with X-aliens in T 0 . T 1 is the set of terms that can be introduced by X from terms of T 0 (by solving or canonizing). T 2 is a superset of the terms built by critical pairs.

Lemma 46. ∀γ, t, s, γ ∈ R ∞ ∩ T 2 j ∧ t ∈ T i ∧ t γ s ⇒ s ∈ T i , for i, j = 1, 2.
The proof is by structural induction over terms (for dealing with rewriting under a context) and by case analysis over T i when rewriting at the top level. It uses the (quasi-immediate) fact that T 0 ∩ T 2 ⊆ T 1 .

Lemma 47. For all accessible configuration

E n | R n , E n ∪ R n ⊆ T 2 1 ∪ T 2 2 .
The proof is by induction over n, and uses Lemma 46.

The first step of the termination proof is to show that R ω ∩T 2 1 is finite (Lemma 50). It is specific to our framework, due to the presence of X3 . Lemma 48. Under a strongly fair strategy, if l → r n is created at step n in R n and l → r m at step m in R m , with n < m, then r m is a reduct of r n by R∞ .

Proof. The proof is by induction over the length of the derivation, and by case analysis over the rule which has been applied.

• Orient applied on s = t cannot create a new rule p → v with an already present left hand side, because the strongly fair strategy implies that s and t are fully reduced, and the new left hand side p is a subterm of s or t.

• Simplify, Collapse and Deduce do not create a new rule.

• Compose obviously preserves the invariant.

Corollary 49. Under a strongly fair strategy, R ∞ is finitely branching.

Proof. If R ∞ is not finitely branching, there exist an infinite sequence of rules

(l → r n ) n where l → r n first appears in E n | R n . Thanks to Lemma 48, since R ∞ is included in ≺, the sequence (r n ) n is strictly decreasing w.r.t ≺.
The wellfoundedness of ≺ contradicts the infinity of (r n ) n .

Lemma 50. Under a strongly fair strategy, the set of rules in R ω ∩ T 2 1 is finite.

Proof. If l → r belongs to the set R ω ∩T 2 1 , l is reduct of a term l 0 in E 0 by R∞ . Since R∞ is terminating (because it is included in ≺), and finitely branching (above corollary), any term has finitely many reducts by R∞ . In particular since E 0 is finite, there are finitely many possible left-hand side. Moreover since in R ω two distinct rules have distinct left-hand sides, R ω ∩ T 2 1 is finite.

Here is the second step of the termination proof, finiteness of R ω ∩ T 2 2 , which is mostly the same as in the usual AC-ground completion: Lemma 51. The set of persistent rules in R ω which are in T 2 2 is finite.

Proof. The set R ω ∩ T 2 2 can be divided into a finite union of sets, according to the top AC function symbol of the left hand-side of the rules. We shall prove that for each u ∈ Σ AC , the corresponding subset is finite.

Let u be a fixed AC function symbol, and let u(l 1 , . . . , l n ) → r be a rule of

R ω ∩ T 2 2
. By definition of T 2 , and by the soundness of R ∞ , each l i is equal modulo ACX, E 0 to a term l 0

i in E 0 . Since l i is irreducible by R ω (otherwise the rule u(l 1 , . . . , l n ) → r would have collapsed), there is a rewriting proof l i * Rω l 0 i . Notice that two distinct rules in R ω have some distinct left-hand sides (otherwise one would have collapsed the other) (this implies in particular that R ω is finitely branching). Since Rω is included in a well-founded ordering, and is finitely branching any term has a finite number of reducts. Since E 0 is finite, each l i belongs to the finite set of reducts Red(E 0 ) of E 0 by Rω . By Higman's lemma, if there is an infinite number of rules where the left-hand side is of the form u(t 1 , . . . , t n ), there exist two rules l → r and l ′ → r ′ , such that the multiset of arguments { {l 1 , . . . , l n } } of l is included in the multiset of arguments { {l ′ 1 , . . . , l ′ m } } of l ′ . This would imply that the second rule collapses by the first one, which contradicts its persistence. Hence the wanted result.

When R ω has been proven to be finite, we show that once it is obtained, R ω will "clean up" the configuration within a finite number of steps, hence the termination: Theorem 52. Under a strongly fair strategy, AC(X) terminates.

Proof. When the strategy is strongly fair, R ω is finite. Moreover each rule in R ω is obtained within a finite number of steps. Once all persistent rules are present in the rules of the configuration E | R , the rule Orient always returns an empty set of rules. If the measure of a configuration is the triple made of the number of remaining critical pairs to generate, the multiset of terms in R (compared with ≺), and the number of equations on E, it strictly decreases.

Variable abstraction and multiset ordering

Although AC-RPO orderings are suitable when proving termination of completion procedures or of term rewriting systems modulo AC in general, they are not easily implementable in practice and can be a source of inefficiency. We show in this chapter that a simple variable abstraction preprocessing step à la Bachmair et al.

allows AC(X) to use a partial multiset reduction ordering instead of a full AC-RPO ordering. The principle of this step is similar to the Extension inference rule found in Abstract Congruence Closure [START_REF] Bachmair | Abstract congruence closure[END_REF]. In order to enable the use of such ordering as an input for AC(X), we have to transform the original set of ground equations E to a simpler one containing only abstracted equations. Let K be a set of constant symbols disjoint from Σ and X and ≺ X be a total rewrite ordering on T Σ X ∪K . We define two sets of terms T ∅ and T AC as follows:

T ∅ =            f (v 1 , • • • , v n ) f ∈ Σ ∅ ∧ arity(f ) = n ∧ n i=1 v i ∈ T Σ X ∪K            T AC =          u(v 1 , u(v 2 , . . . , u(v n-1 , v n ) . . .)) u ∈ Σ AC ∧ n ≥ 2 ∧ n i=1 v i ∈ T Σ X ∪K         
Definition 53 (Abstracted equations). An equation s ≈ t is said to be abstracted if one of the following statements holds:

1. s, t ∈ T (Σ X ∪ K) 2. s ∈ (T ∅ ∪ T AC ) and t ∈ T (Σ X ∪ K) 3. s, t ∈ T AC and s(Λ) = t(Λ)
The set of all abstracted equations is denoted by A.

Let π be an abstraction function from T AC ∪T ∅ to K such that if π(s) = π(t) then s = AC,X t. Given a set E 0 of ground equations, the term abstraction of E 0 consists in applying, as long as possible, the following inference rules, starting from the

initial configuration E 0 | ∅ . Abstract1 E ⊎ {s ≈ t} | E A E | E A ∪ {s ≈ t} s ≈ t ∈ A Abstract2 E ∪ C[f ( v)] ≈ t | E A E ∪ C[k] ≈ t | E A ∪ {f ( v) ≈ k} C[f ( v)] ≈ t ∈ A
where,

1. f ( v) ∈ (T ∅ ∪ T AC ) 2. k = π(f ( v))
The propositions 54 and 55 state respectively the termination and the correctness of the abstraction process.

Proposition 54. The application of the rules Abstract1 and Abstract2 terminates and

produces a configuration of the form ∅ | E ∞ A , where E ∞ A ⊆ A.
Proof. The proof of termination is immediate using a decreasing measure. The size of a configuration is equal to the total sum of the sizes of the terms in its first component. Here, the size of a term is recursively defined in a standard way with 1 for the size of constants in K, and 2 for the size of other constants.

It remains to show that if a configuration is of the form E | E A and E = ∅, at least one rule applies. Let s ≈ t be an equation in E. If s ≈ t ∈ A the Abstract1 applies. Otherwise, since s ≈ t ∈ A, by condition 1. of Definition 53, there is a minimal subterm of s or t which does not belong to T Σ X ∪K . This term thus has a suitable form to fulfill condition 1. in the rule Abstract2 which applies.

Proposition 55. Let E 0 | ∅ → * ∅ | E ∞ A
be a fixed run of the abstraction process.

For any terms s, t ∈ T Σ , we have:

s = E 0 ,X,AC t ⇐⇒ s = E ∞ A ,X,AC t
Proof. The direction ⇒ is immediate for Abstract1. For Abstract2, it rests on the fact that a step using C[f ( v)] ≈ t can be replaced by two steps, the first one using

f ( v) ≈ k and the second one using C[k] ≈ t.
In order to prove ⇐, we use the following invariant: if

E | E A → E ′ | E ′ A , s = E ′ ,E ′
A ,X,AC t and s and t do not contain any constant in K, then s = E,E A ,X,AC t. This is immediate when the rule Abstract1 is applied. When Abstract2 replaces

C[f ( v)] ≈ t by {f ( v) ≈ k, C[k] ≈ t}, we first replace every step using C[k] ≈ t by a compound step using C[k] ≈ C[f ( v)] followed by C[f ( v)] ≈ t.
Then all occurrences of k are replaced by f ( v) in intermediate terms, and the now useless steps using

f ( v) ≈ f ( v) (former f ( v) ≈ k) are removed.
The transformed proof is now in = E,E A ,X,AC , and since neither s nor t contain constants in K, they are not affected by these transformations.

Once we have shown how to abstract the initial set of equations E, we will define the reduction ordering ≺ that we will use in AC(X). We do not need this ordering to be total on the terms in T Σ X ∪K ∪ T ∅ ∪ T AC . We only need a partial reduction ordering which allows us to get well oriented rewriting rules from the abstracted equations. Definition 56. Let ≺ mset X be the multiset extension of ≺ X . Our reduction ordering is defined by:

1. ∀v 1 , v 2 ∈ T Σ X ∪K , v 1 ≺ X v 2 ⇒ v 1 ≺ v 2 2. T Σ X ∪K ≺ T ∅ 3. T Σ X ∪K ≺ T AC 4. ∀u( v 1 ), u( v 2 ) ∈ T AC , {{ v 1 }} ≺ mset X {{ v 2 }} ⇒ u( v 1 ) ≺ u( v 2 )
After that, we have to show that AC(X) does not introduce non-abstracted equations when collapsing rules, computing critical pairs, using canonized rewriting, and solving equations. Hence, the following lemma:

Lemma 57. For any configuration E ∞ n | R n reachable from E ∞ A | ∅ , we have: ∀(s, t) ∈ (E ∞ n ∪ R n ), s ≈ t ∈ A
Proof. The lemma obviously holds for the initial state. For the induction step, we can easily show that the abstracted form of equations is preserved by canonized rewriting wrt an abstracted rule, hence so as when applying the inference rules Simplify, Compose and Collapse. Concerning Deduce, we notice by inspecting the definition of headCP, that when l → r and l ′ → r ′ are abstracted oriented equations, so is the resulting critical pair. The only subtle case is Orient, in particular when solving an equation s ≈ t, with s ∈ T (Σ X ∪ K) and t ∈ T ∅ ∪ T AC . Due to the definition of ≺ and to the fact that the solver has to fulfill the ordering constraints stated in Axiom 32, the solution of s ≈ t has to be t → s.

Now, the last thing to do is to prove that the ≺ ordering defined above is a suitable ordering for the AC(X) completion procedure. This is actually the case since, on the equations in A, it coincides with the AC-RPO ordering based on a precedence ≺ p such that Σ X ≺ p K ≺ p Σ E ∪ Σ AC , and we know by Lemma 57 that AC(X)

will only manipulates equations in A if initialized with abstracted equations.

Implementation and evaluation

Implementation

We implemented the AC(X) algorithm as well as a preprocessing step that enables the use of a partial multiset reduction ordering at the heart of the ALT-ERGO theorem prover. The technical details of the implementation are given in Chapter 5.

Currently, X can be instantiated by the theories of linear integer arithmetic, linear rational arithmetic, records, bit-vectors and enumerated datatypes. As described in Section 4.3, the state of the procedure is a pair E | R of equations and rules.

Again, we apply the following strategy for processing an equality u ≈ v ∈ E:

Sim * (Tri | Bot | (Ori (Com Col Ded) * ))
As in the example illustrating a run of AC(X), u ≈ v is first simplified as much as possible by Simplify. Then, if it is not proven to be trivially solved by Trivial or unsolvable by Bottom, it is solved by Orient. Each resulting rule is added to R and then used to Compose and Collapse the other rules of R. Critical pairs are then computed by Deduce.

The implementation of AC(X) is incremental i.e. is able to process new equalities on the fly. It is backtrackable for free thanks to persistent data structures. It also produces explanations: each encountered inconsistency is explained by a subset of the assumed facts leading to this inconsistency.

Experimental results

We benchmark AC(X) and compare its performances with our own SMT solver ALT-ERGO [START_REF] Conchon | The Alt-Ergo automatic theorem prover[END_REF] and some state-of-the-art solvers (Z3 v2.8, CVC3 v2.2, SIMPLIFY v1.5.4). All measures are obtained on a laptop running Linux equipped with a 2.58GHz dual-core Intel processor and with 4Gb main memory. Provers are given a time limit of five minutes for each test and memory limitation is managed by the system. The results are given in seconds; we write TO for timeout and OM for out of memory.

Our test suite is made of crafted ground formulas which are valid in the combination of the theory of linear arithmetic LA, the free theory of equality E and a small part of the theory of sets defined by the symbols ∪, ⊆, the singleton constructor {•}, and the following axioms: The theories E and LA are built-in for all SMT solvers we use for our experiments.

S ∪    Assoc : ∀x, y, z. x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z Commut : ∀x, y. x ∪ y ≈ y ∪ x S ⊆                SubTrans : ∀x, y, z. x ⊆ y ∧ y ⊆ z ⇒ x ⊆ z SubSuper : ∀x, y, z. x ⊆ y ⇒ x ⊆ y ∪ z SubUnion : ∀x, y, z. x ⊆ y ⇒ x ∪ z ⊆ y ∪ z SubRefl : ∀x. x ⊆ x
However, contrarily to AC(X) which also natively handles associativity and commutativity, SMT solvers use a generic mechanism for instantiating the axioms S ∪ to reason modulo the AC properties of ∪.

In order to get the most accurate information about AC(X), we first benchmark a stand-alone version of our algorithm on ground formulas that can be proved without S ⊆ . In a second step, we consider ground formulas that are only provable with some axioms in S ⊆ . Since these axioms are not directly handled by AC(X),

we benchmark a modified version of ALT-ERGO (to benefit from its instantiation mechanism) with AC(X) as its core decision procedure.

In the following, we use the standard mathematical notation d i=1 a i for the terms of the form

a 1 ∪ (a 2 ∪ (• • • ∪ a d )) • • • ) and we write d i=1 a i ; b for terms of the form a 1 ∪ (a 2 ∪ (• • • ∪ (a d ∪ b))) • • • ).

Benchmark of a stand-alone AC(X)

We consider two categories of formulas. The first category C 1 is of the form

n p=1 ({e} ∪ d i=1 a p i ) ≈ b p ⇒ n-1 p=1 n q=p+1 1 i=d a p i ; b q ≈ 1 i=d a q i ; b p G and the second category C 2 is of the form n p=1 ({t p -p} ∪ d i=1 a p i ) ≈ b p ∧ n-1 p=1 t p + 1 ≈ t p+1 ⇒ G
Notice that n is the number of hypothesis equations and d is the maximal depth of AC terms.

Proving the validity of C 1 -formulas only requires the theory E and the AC properties of the union symbol. These formulas are directly provable by AC(∅)

and the results for this instance are given in the first column of the 

Benchmark of ALT-ERGO with AC(X)

We now analyze the performances of AC(X) when it is used as the core decision procedure of ALT-ERGO. For that, we consider a third category C 3 of formulas of 

Benchmarks analysis

The results in Figures 4.6 and 4.7 show that, contrary to the axiomatic approach, built-in AC reasoning is little sensitive to the depth d of terms: given a fixed number n of equations, the running time is proportional to d. However, we notice a slowdown when n increases. This is due to the fact that AC(X) has to process a quadratic number of critical pairs generated from the equations in the hypothesis.

From Figure 4.8, we remark that ALT-ERGO with AC(X) performs better than the other provers. 

Instantiation issues

Although AC(X) is effective on ground formulas, its integration as the core decision procedure of ALT-ERGO suffers from a bad interaction between the built-in treatment of AC and the axiom instantiation mechanism of ALT-ERGO which is roughly done as follows:

• each axiom of the form ∀x. F(x) provided in the context comes with a pattern P (also called trigger) which consists of a set of subterms of F that covers x;

• the solver maintains a set G of known terms extracted syntactically from the ground literals that occur during its proof search;

• G is partitioned into a set of equivalence classes according to the ground equalities currently known by the solver;

• new ground formulas Fσ are generated by matching P against G modulo the equivalence classes.

Let us show how this mechanism is used to prove the following ground formula:

(F 1 ) (e ≈ d ∪ a ∧ b ⊆ d ∧ c ≈ a ∪ d) ⇒ b ∪ a ⊆ c
For that, we only need to use the SubUnion axiom defined in Section 4.5:

SubUnion : ∀x, y, z. x ⊆ y ⇒ x ∪ z ⊆ y ∪ z
Let us assume that the pattern for this axiom is the term x ∪ z ⊆ y ∪ z. This pattern is matched against the term b ∪ a ⊆ c by looking for a substitution σ such that Let us now explain the limitation of the interaction between AC(X) and the instantiation mechanism. The hypothesis e ≈ d ∪ a is useless (from a logical point of view) to prove b ∪ a ⊆ c. Hence, the following formula F 2 is equivalent to F 1 :

(x ∪ z ⊆ y ∪ z)σ = b ∪ a ⊆ c
(F 2 ) (b ⊆ d ∧ c ≈ a ∪ d) ⇒ b ∪ a ⊆ c
However, the cooperation of ALT-ERGO and AC(X) fails to prove 

Prospective extensions

We have shown in the previous section that AC(X) is an efficient algorithm for reasoning in the union of the free theory of equality, the AC theory and an arbitrary signature disjoint Shostak theory X that fulfills some reasonable ordering requirements. In this section, we report on three relevant extensions that we have explored. We discuss for each of them the issues we have encountered and some possible solutions that we plan to investigate in the future in order to get rid of them.

Matching modulo AC and a set of ground equations

As shown in Section 4.6.3, extending ALT-ERGO's axioms instantiation mechanism modulo AC is mandatory to fully integrate AC(X) as its core decision procedure.

Consequently, we considered the combination of E-matching 4 and AC-matching to enable this integration. However, we realized -after a quick investigation -that one could not design an E-AC-matching algorithm which combines E-matching and AC-matching and that would terminate for any input. In this section, we give a simple example which validates this affirmation and discuss a possible solution to get rid of it.

Let T be a theory. Let t be a ground term and p a term. Matching t against p modulo T, denoted p ≤ ? T t, consists in finding the set sbt of substitutions such that:

∀σ i ∈ sbt.          1. t = T pσ i ∧ 2. ∀x ∈ Dom(σ i ). x ∈ Vars(p) ⇒ xσ i = x ∧ 3. ∀σ j ∈ sbt. i = j ⇒ ∀x ∈ Dom(σ i ) ∩ Dom(σ j ). ¬(xσ i = T xσ j )
The first condition makes t and pσ i equal modulo T. The second one forces the inclusion Dom(σ i ) ⊆ Vars(p). The third one eliminates redundancies modulo T.

The problem of matching modulo a given set of ground equalities E is defined by instantiating T with the equational theory of E. AC-Matching is obtained by instantiating T with the AC theory. The E-AC-matching problem is defined by instantiating T with a combination of the equational theory of a set of ground equalities and the AC theory.

We say that E-matching (resp. AC-matching) is finitary, because every matching problem modulo a set E of ground equalities (resp. modulo AC) admits a finite set sbt of solutions. However, E-AC-matching is infinitary. For instance, the following problem where E = { u(a, b) = a }, u ∈ Σ AC and x, y are variables u(x, u(y, y)) ≤ ? AC,E a has an infinite number of solutions. In fact, the set below is a subset of sbt. 

Future works

We intend to explore alternative approaches in the future in order to overcome this issue. For instance, this could consist in using AC-narrowing [START_REF] Viola | E-unifiability via narrowing[END_REF] and contextfree grammars to generate finite sets of substitutions schemes. We could then enumerate the substitutions incrementally while interacting with the SAT solver and the decision procedures. This would ensure a form of fairness between the different parts of the SMT-solver and the search process would progress.

Reasoning in presence of non-linear multiplication

The theory of linear arithmetic handles multiplication by constants -which stands for repeated additions -but not non-linear multiplication. However, we can at least reason modulo the AC properties of non-linear multiplication using the AC(X) framework. This allows us, for instance, to prove the following formula, where * denotes the non-linear multiplication symbol 

(a * b) -2 ≈ γ ∧ a * c ≈ β ⊢ (γ + 2) * c ≈ β * b (4.
(a * b) -2 ≈ γ ∧ a * c ≈ β ⊢ γ * c + 2 * c ≈ β * b (4.2) (a * b) -2 ≈ γ ∧ a * c ≈ β ⊢ γ * c + 2 • c ≈ β * b (4.3)
It is quite frustrating to realize that AC * (LA S ) is not able to discharge simple formulas involving distributivity. In order to get rid of this limitation, we investigated the design of a new procedure, called ACD*(LA S ), that strengthen the AC * (LA S ) instance in order to handle this property and to allow non-linear terms to become linear when possible. We were able to achieve this strengthening via a minor extension of global canonization.

The new canonizer canon D * that we plugged in the AC * (LA S ) instance to obtain ACD*(LA S ) is defined as follows:

canon D * (x) = x when x ∈ X canon D * (f ( v)) = f (canon D * ( v)) when f ∈ Σ E canon D * (f X ( v)) = canon X (f X ([[canon D * ( v)]]))ρ when f X ∈ Σ X canon D * (u(t 1 , t 2 )) = canon AC (u(t ′ 1 , t ′ 2 )) when u ∈ Σ AC \ { * } where t ′ i = canon D * (t i ) canon D * (t 1 * t 2 ) = canon(t ′ )
where { {s 1 , . . . , 

s n } } = A { * } (canon D * (t 1 )) ∪ A { * } (canon D * (t 2 

Since [•]

stand for repeated additions, The aliens parts of s 1 and s 2 with respect to + are given by: A + (s 1 ) = { {a, a, b, -3} } and A + (s 2 ) = { {a, -b, 2} }.

3. We then compute the cartesian product as follows: 

κ =           
           4.
After that, we compute the sum from the tuples in κ:

t ′ = a * a + a * a + a * b + (-3) • a + (-1) • b * a + (-1) • b * a + (-1) • b * b + (-1) • (-3) • b + 2 • a + 2 • a + 2 • b + 2 • (-3)
5. Finally, we compute the canonical form of t ′ w.r.t canon and obtain that:

canon D * (t) = 2 • a * a -a * b -b * b + a + 5 • b -6

Termination issues

We noticed that ACD*(LA S ) is not guaranteed to terminate for any input when LA S reason modulo linear arithmetic over integers. For instance, solving the equation 2 • (a * a) ≈ a in this framework would loop indefinitely. Indeed, 1. solving an equality of the form 2 j •(a i * a i ) ≈ a i (where j is an integer constant)

will yield a set of two rules { a i * a i → a i+1 , a i → 2 j • a i+1 }, where a i+1 is a fresh existential variable;

2. applying the second rule on the left-hand-side of the first one will collapse it.

Consequently, the equality (2 j • a i+1 ) * (2 j • a i+1 ) ≈ a i+1 has to be replayed;

3. simplifying this equality as much as possible will yield 2 2j • (a i+1 * a i+1 ) ≈ a i+1 which is solved similarly to the equality in 1. and the process loops indefinitely.

Future works

In the near future, we plan to study whether ACD*(LA S ) is correct and terminating when LA S reasons modulo linear arithmetic over rationals. For the integer case, we intend to explore the possibility of constraining the application of the distributivity axiom in order to ensure the termination of our framework.

Extending AC(X) with a first order rewriting system

The combination of the ground AC completion procedure with Shostak theories was a first step towards the integration of rewriting techniques in SMT. In a second step, we considered the extension of AC(X) with a user-defined rewriting system.

For instance, we were interested in reasoning modulo the rewriting system made of the following rule m(p(x, y), z) → p(m(x, z), m(y, z))

where m, p are two AC function symbols, and x, y, z are universally-quantified variables. This rule encodes the distributivity property of m over p.

Normalized completion [START_REF] Marché | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF] is a framework that extends the AC completion procedure with a user-defined first-order convergent rewriting system. Our AC(X)

framework can be seen as an adaptation of ground normalized completion, when the rewriting system is equivalent to a Shostak theory X. Consequently, in order to extend AC(X) with a rewriting system, we explored the integration of Shostak theories in normalized completion. In this section, we discuss the issues we have encountered during our investigations. 3. the adaptation of the functions Θ and Ψ that compute normalizing pairs and the function CP that computes critical pairs to take the theory X into account.

Experimental extension of normalized completion

A. Extending the rewriting relations. Once, the inference rules "extended", we tried to formally define canonized rewriting for the non-ground case (denoted ) and canonized-normalized rewriting (denoted • ). The first relation should take into account the variables that may occur in terms when rewriting modulo AC. We came up with the following definition: p by the rule l → r if there exists a substitution σ such that:

Orient E ∪ { s ≈ t } | R E ∪ Θ(s, t, X) | R ∪ Ψ(s, t, X) solve(s, t) = ⊥ ∧ s = s S ∧ t = t S Deduce E | R E ∪ { s ≈ t } | R s ≈ t ∈ CP(R, X, T ) Normalize E ∪ { s ≈ t } | R E ∪ { s ′ ≈ t ′ } | R s ′ = s S ∧ t ′ = t S Trivial E ∪ { s ≈ t } | R E | R s = t Simplify E ∪ { s ≈ t } | R E ∪ { s ≈ t ′ } | R t • R/S t ′ Compose E | R ∪ { l → r } E | R ∪ { l → r ′ } r • R/S r ′ Collapse E | R ∪ {l → r } E ∪ { l ′ ≈ r } | R l • R/S l ′ ∧ l = l ′ Bottom E ∪ { s ≈ t } | R ⊥ solve(s, t) = ⊥
s → σ,p AC\l→r t ′ and canon(t ′ ) = t
We denote this reduction by s σ,p l→r t (or simply by s t when it is not ambiguous).

The second relation interleaves S-normalization and canonized rewriting. We defined it follows:

Definition 60. Let canon be a canonizer and its corresponding canonized rewriting relation. Let S be an AC-convergent rewriting system. A term s S-canon-rewrites to a term t at position p by the rule l → r if there exists a substitution σ such that:

s ′ = s S and s ′ σ,p l→r t
We denote this reduction by s • σ,p l→r/S t or simply by s • t.

B. Normalizing and critical pairs. Contrary to normalized completion, we have in our setting additional function symbols that are interpreted in the theory X.

Reasoning modulo X is required when computing normalizing pairs and critical pairs. This requirement clearly appears when computing complete sets of unifiers.

Thus, we extended the definitions of Θ and Ψ as follows:

   Ψ(s, t, X) = solve(s, t) Θ(s, t, X) = ρ 1 ∈Ψ(s,t,X) ρ 2 ∈S (Θ 1 (ρ 1 , ρ 2 ) ∪ Θ 2 (ρ 1 , ρ 2 )) with Θ 1 (g → d, l → r) =    gσ[rσ] q ≈ dσ q ∈ FPos AC (g) ∧ σ ∈ CSU AC,X (g| q , l)    Θ 2 (g → d, l → r) =        lσ[dσ] q ≈ rσ q ∈ FPos AC (l) ∧ q = Λ ∧ σ ∈ CSU AC,X (l| q , g)       
where CSU T denotes complete sets of unifiers modulo T and FPos AC denotes all the positions, modulo AC, of a given term. Note that, the equalities we solve in this new framework may contain variables. Thus, the wrapper of solve X should be able to deal with terms with universally quantified variables.

Similarly, we adapted critical pairs computation as follows, to integrate X:

CP(R, X, T ) =        CP =Λ (l 1 → r 1 , l 2 → r 2 , X, T ) ∪ CP =Λ (l 1 → r 1 , l 2 → r 2 , X, T ) ∪ CP =Λ (l 2 → r 2 , l 1 → r 1 , X, T ) l 1 → r 1 ∈ R l 2 → r 2 ∈ R Λ(l 1 ) = u ∈ Σ AC Λ(l 2 ) = u ∈ Σ AC       

Future works

As illustrated in Section 4.6.3, the main concern for using AC(X) as a core decision procedure in ALT-ERGO is that it does not saturate equivalent classes of known ground terms modulo AC. A naive (and incomplete) solution would consist in adding, for each known ground AC-term t, a few number of AC equivalent terms (for instance by bounding the length of the AC equational proof between them).

We rather plan to investigate a more elaborate solution which would consist in extending the pattern-matching algorithm of ALT-ERGO to exploit both ground equalities and properties of AC symbols. Additional prospective extensions are discussed in more details in Section 4.7. We also plan to extend AC(X) to handle the AC theory with unit or idempotence. This will be a first step towards a decision procedure for a substantial part of the finite sets theory.

CHAPTER 5

Combination of Decision

Procedures in ALT-ERGO

In this chapter, we describe the techniques used at the core of ALT-ERGO to enable reasoning in a union of several background theories, such as linear arithmetic over rationals and integers, the free theory of equality, the theory of arrays, the theory of enumerated data types and the AC theory.

The general architecture of the prover, given in Figure 5.1, is similar to that of 1. Shostak-like combination approach: This method handles the combination of theories that are equational and convex. These include the free theory of equality, the AC theory, and the equational parts of the theories of linear arithmetic and enumerated data types. In particular, AC(X) fits in this component.

Nelson-Oppen like combination approach:

This technique is used to combine the theories that do not fit in the first approach, such as the theory of arrays, the inequalities of linear arithmetic and the non-convex part of enumerated data types. In particular, the FM-simplex procedure (except for equalities resolution) is implemented in this component.

On top of that, the communication between these frameworks is delegated to the Combinator module.

We show in the next sections the interfaces of these components and explain how they are working in practice. Note that, the presentation is done "bottom-up" in order to describe the interfaces of modules in the bottom of the hierarchy before those on its top. A key feature of this combination approach is that, we only maintain a single union-find data structure for all the theories with green boxes. These theories have no internal state and they don't need to infer implied interface equalities, as in Nelson-Oppen's framework. Note that, the UF module also handles disequalities and partitions the terms of the input problem into equivalence classes. The Shostak-like approach is built upon two algorithms:

The Shostak-like combination framework

CC(X) + AC(X)
where,

• CC(X) is an extension of a congruence closure algorithm with a Shostak theory X [START_REF] Sylvain Conchon | CC(X): Semantical combination of congruence closure with solvable theories[END_REF]. This algorithm was formally proved in COQ [START_REF] Coq | The Coq Proof Assistant Reference Manual -Version V8.3[END_REF] • AC(X) is the combination framework presented in Chapter 4 The rest of this section is devoted to the description of these components. Note, however, that our presentation omits a lot technical details, for sake of the clarity.

Sorts representation. We assume given an OCAML type, called sort, used to represent sorts information. Its shape is given in Figure 5.4: a sort is either an integer Sint, a rational Srat, an abstract Sabstract s, an enumeration Senum(s, l), 

The interface of Shostak theories

The minimal interface we require for Shostak theories is given in Figure 5.6. The function is_mine tells whether the head symbol of the given term is owned by the theory. The functions canon and solve implement the canonizer and the solver routines. Finally, replace implements the replacement mechanism. The module ArithS implements the canonizer routine described in Section 2.3.2.

For the solver, it implements Gaussian elimination for rationals and Omega-Test's equalities solver for integers. The canonizer function for the module EnumS is the identity function. The solver follows the lines of the description given in Section 2.3.4. Finally, the module CombineS implements a global canonizer using the individual theories' canonizers. The global solver is an experimental algorithm1 that aims at combining solver routines for well-sorted Shostak theories. 

The interface of the module AC

The interface and the implementation of ACX

.8 shows the simplified interface of ACX. The environment is a dictionary from terms to terms representing a rewriting system. The actual implementation is inspired by AC(X). However, two major differences have to be pointed out:

• The environment contains only rules with AC-headed left-hand sides. In fact, the equivalence properties2 of the free theory of equality are handled by the module UFX.

• The congruence axioms of the free theory of equality is delegated to CCX. Given two terms s and t in canonical normal form, the equality s ≈ t is "solved" using the wrapper function provided by AC. If this equality is neither trivial nor inconsistent, a list of rewriting rules is returned. Following the strategy above,

Compose is applied to reduce right-hand sides of rules in the environment, and

Collapse is used to compute collapsing rules. The list l 1 contains the collapsed equalities that should be replayed. At line 5, the list of rules is partitioned as fol- Deduced and collapsed equalities are recursively assumed at line 8. This yields a new term rewriting system and a list emp 2 of rules whose left-hand sides are uninterpreted-headed terms. The function assume finally returns the concatenation emp @ emp 2 and a new AC environment. Note that @ stands for the list concatenation operator.

The interface and the implementation of UFX

Union-find efficiently handles the reflexivity, the symmetry and the transitivity of the free theory of equality. UFX is an extension of a union-find with AC and a Shostak theory. This is achieved via the integration of the AC(X) procedure in a union-find data structure: instead of just merging the equivalence classes of equal terms as done in union-find, the UFX module uses the rewriting system provided by ACX to construct equivalence classes modulo both the equivalence properties of the free theory of equality, the AC theory and the Shostak theory X. Note that UFX is extended to additionally handle disequalities. Figure 5.10 shows the interface of the module UFX. The type env represents the environment of the data-structure. The value empty is the empty environment.

UFX is incremental: the function add_term is used to "register" the terms of the problem in the environment on the fly. The functions union and distinct assume new equalities and disequalities, respectively. The function find returns the canonical normal forms of terms w.r.t a given environment. The function class_of returns the equivalence classes associated to terms. Finally, the functions are_equal and are_distinct test whether two terms are known to be equal or distinct in UFX, respectively. Note that, the terms manipulated by these functions are supposed to be previously registered using add_term.

The environment of UFX -shown in Figure 5.11 -is composed of four fields:

• repr is a map of terms that associates to each added term its current normal form, called its representative

• ac is the rewriting system maintained by ACX. As stated in the previous section, this field contains rules with AC-headed left-hand sides only.

• dis is a map of terms that associates to each representative the set of initial terms from which it is known to be distinct

• cls is a map that associates each representative to a list of initial terms that are equivalent modulo AC, X and the equivalence properties of the equality. 

The interface and the implementation of CCX

Congruence closure algorithms are very efficient for reasoning modulo the free theory of equality. The CCX module follows the lines of CC(X). This framework extends a congruence closure algorithm with a Shostak theory X. The extension rests on the integration of the Shostak theory X in the union-find data structure, used at the core of congruence closure algorithms. The detailed formalization of CC(X) is given in [START_REF] Lescuyer | Formalisation et développement d'une tactique réflexive pour la démonstration automatique en Coq[END_REF], page 62. We recall here the main ideas. Example 63. Let us show that the following formula is unsatisfiable:

a ≈ b ∧ f (a, c) ≈ 1 ∧ f (b, c) ≈ 2
where a, b, c are constants of sort int, and f is a function symbol of sort int×int → int. 

The Nelson-Oppen-like combination framework

When a theory cannot be integrated in the Shostak-like method, we use another approach reminiscent of Nelson-Oppen's framework. This approach allows us, for instance, to combine the theory of arrays (ArrNS), the inequalities of linear arithmetic (ArithNS) and the non convex part of enumerated data types (EnumNS). We present in the rest of this section the interface we require for these theories and sketch the implementation of some interesting functions for each module.

Figure 5.17: The architecture of the Nelson-Oppen-like combination Literals representation. In the rest of this chapter, literals will be represented using the OCAML types given in Figure 5.18. A literal is composed of two terms and a kind. The kind indicates whether a literal is an equality Eq, a disequality

Dis, a large inequality Le or a strict inequality Lt. We assume given a comparison function literal_compare over literals and a function literal_neg that returns negations of literals. We also assume given a map, called MapL, over literals. 

The non convex part of enumerated data types

The implementation of the main functions in EnumNS are given in Figures 5.20 The function assume, sketched in Figure 5.21, uses two auxiliary functions that are not hard to implement. For instance, assume_eq acts as follows when applied on two terms t 1 and t 2 that are not owned by the theory of enumerated data types:

1. it retrieves the sets st 1 and st 2 of values associated to t 1 and t 2 respectively 2. it computes the intersection st = st 1 ∩ st 2

3. if st is empty, it raises the exception Bottom 4. otherwise, it updates the entries of t 1 and t 2 with st 5. if st = {c} is a singleton, it infers an entailed equality t 1 ≈ c. 

The theory of functional arrays

The decision procedure for the theory of functional arrays works by instantiation of its set of axioms. It generates additional ARR-valid ground instances using:

• the axioms of the theory of extensional functional arrays (ARR) introduced in Section 2.3.3

• the ground terms appearing in the problem

The quantified variables of these axioms are not instantiated for every possible well sorted terms, because a too permissive instantiation would saturates the memory. One should be as restrictive as possible, when instantiating these axioms, while preserving completeness. In practice, ground instances are computed using matching algorithms modulo equality. The restriction of the instantiation is achieved using the mechanism of patterns (a.k.a. triggers). In other words, each axiom of the set ARR NS given in Section 2.3.3 is instantiated as follows [START_REF] Goel | Deciding array formulas with frugal axiom instantiation[END_REF][START_REF] Dross | Reasoning with triggers[END_REF]:

• Axiom 1 is instantiated with a substitution σ = {x a → a, x v → v, x i → i} if there exists a ground term set(a, v, i) in the problem's context

• Axiom 2 is instantiated with σ = {x a → a, x v → v, x i → i, x j → j} if there exists a ground term get(set(a, c, i), j) in the problem's context

• Axiom 2 is instantiated with σ = {x a → a, x v → v, x i → i, x j → j} modulo equality if there exists two ground terms get(a ′ , j) and set(a, v, i) such that a ′ and set(a, v, i) (resp. and a) are in the same equivalence class.

• Axiom 3 is instantiated with a substitution {x a → a, x b → b} for every couple of arrays a and b that are known to be distinct.

The environment of the module ArrNS and the implementation of the functions 

Inequalities of linear integer arithmetic

The environment of the module ArithNS is shown in Figure 5.25. It consists of two maps from terms to intervals. The first one is used to integers and the second one for rationals. Then, it attempts to infer better bounds for the terms used as keys of the map ints.

At this point, we can either used the Fourier-Motzkin algorithm or the simplexbased approach described in Chapter 3. The equalities that may be implied at lines 2 and 3 are extracted at line 4. The function add_term is not used by ArithNS.

It returns the given environment without modifying it. The environment is a pair containing the state of CCX and the state of CombineNS.

Given a literal a, the function assume starts by recursively adding the terms and the sub-terms of a in the environment. Then, a is passed to CCX.assume if this literal is an equality or a disequality. After that, CombineNS propagates a to its individual modules with the current state of UFX. The literals that CombineNS may infer are recursively assumed. ). If the speculative state becomes inconsistent while assuming a, it is reset to real (line 13). After that, the case-split analysis is started in order to find a satisfying assignment for the values that are in finite domains. The implementation given below is very naive because we may redo the same casesplits at line 15 each time we reset spec to real at line 13. A cleverer implementation can easily avoid this issue. Another source of inefficiency of the presentation below lies in the function cs_analysis that explores all the branches when searching for a model. The actual implementation of this function in ALT-ERGO is more elaborated. In fact, it uses conflict analysis and non-chronological backtracking to prune the search space. Note that we can safely reuse the state spec at line 8 when searching for a model in negative branches, because the data structures we used in the internal modules are persistent. Consequently, we are sure they are not modified by side-effects at line 7. Note that, we first perform case-split analysis on values that are in smaller domains, in practice.

Our case-split analysis mechanism is completely hidden for the SAT solver.

When there in no possible case-split assignment for the real field, an uncaught exception Bottom is raised by cs_analysis at line 8. Seeing that the background decision procedure disagrees with its current boolean model, the SAT solver module repairs it and prunes the search space, before continuing its exploration. 

Conclusion

An alternative simplex-based procedure for deciding QF-LIA

In Chapter 3, we have presented a novel algorithm for deciding the theory of quantifier-free linear integer arithmetic. Our procedure is composed of two parts.

The master part handles equalities solving, the maintenance and the inference of integers bounds for inequalities' affine forms.

The inference of precise bounds for the affine forms is achieved by computing particular constant positive linear combination of them. These combinations are encoded as rational optimization problems that simulate particular runs of Fourier-Motzkin's algorithm. The resolution of these problems is delegated to a simplex-based oracle.

When some inequalities's affine forms are bounded, a case-split analysis is used to check whether there exists an integer solution in these bounds for the initial conjunction of literals. If none of the affine forms can be bounded, we deduce that the given constraints admits a solution in the integers. To summarize, the main scientific contributions of this work are:

1. A theorem stating that: if there is no constant positive linear combination of a conjunction of constraints' affine forms, then the convex polytope defined by these constraints contains infinitly many integer points. As far as we know, this theorem is not in the literature. Moreover, we can exhibit an integer model in this case, as its proof is constructive.

2. An efficient simplex-based algorithm for computing constant positive linear combinations of affine forms. This algorithm was initially inspired by the Fourier-Motzkin method. However, it is more efficient and scales better in practice. In addition, although it uses a rational simplex, our procedure is not really a simplex extension, like branch-and-bound or cutting-planes.

Our framework is easily extensible with intervals calculus, since it is based on bounds maintenance. This particularity allows us to additionally incorporate nonlinear arithmetic reasoning in practice.
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  where a 1 , a 2 , b 1 and b 2 are uninterpreted well-sorted constants.

Theorem 10 .

 10 Any matrix A in Z m×n is elementary equivalent to a matrix in Smith normal form. Otherwise said, there exists U ∈ Z m×m and V ∈ Z n×n two matrices invertible over Z and D a matrix in Smith normal form such that:

  Let A ∈ Q m×n and b ∈ Q m . FM-simplex shall decide whether the system Ax+b ≤ 0 of linear inequalities has a solution x ∈ Z n . Let C = (L i ) i∈[|1,m|] be the associated family of affine forms. Figure3.1 sketches the algorithm. It takes as input both the system C of linear inequalities and an additional argument Eq representing affine relations between variables, e.g. a set of equalities, or a substitution, etc. This last argument is initially empty. The result of the decision procedure is stored in the sols variable. It is a finite set of integer solutions, possibly empty, or an indeterminate infinite set of integer solutions. The check functions at lines 6 and 10 compute the integer solutions of the given system and are intentionally kept abstract in the procedure. The special shape of the systems they deal with are detailed in Section 3.4.The algorithm is recursive. Recursive calls are performed on smaller and smaller systems C until complete resolution. Branching is caused by the loop on line 15.
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 31 Figure 3.1: The main steps of the decision procedure

  For each u ∈ U, u = b + e where b = π(u) ∈ π(B) and e ∈ E. Now since π(B) ⊂ π(K) there exists e ′ ∈ E such that b + e ′ ∈ B ⊂ K. Hence u = b + e ′ + (ee ′ ) belongs to
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 203032 Figure 3.2: Satisfiable example without case-split analysis

Figure 3 . 3 :

 33 Figure 3.3: Satisfiable example without case-split analysis: model calculation

Figure 3 . 4 :

 34 Figure 3.4: Unsatisfiable example without case-split analysis

Figure 3 . 5 :

 35 Figure 3.5: Satisfiable example with case-split analysis

1 (; in 2 (; in 3 ( 4 (Figure 3 . 7 :

 123437 Figure 3.7: A simple overview of the formulas in NEC families

Figure 3 . 8 : 3 ( 4 ( 5 ) 6 (or 7 ( 8 ( 9 ( 10 ) 11 (or 12 ( 18 ( 19 ) 20 )Figure 3 . 9 :
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 1343107 Figure 3.10: The canonization of the formula in Figure 3.7

  • • • :: Empty.It is thought of as a conjunction of literals. Every literal in Γ is implicitly assigned to true 2 . It is annotated with a natural number called its decision/implication level and a possibly empty clause explaining why the literal is assigned to true.We use the following notations in the presentation below: given a literal l and a clause C, undef(l, Γ) means that neither l nor ¬l are in Γ. We denote by lvl(l, Γ)the current level of l or ¬l in Γ. It is equal to -1 if undef(l, Γ). The level of C, denoted lvl(C, Γ),is the maximal level of its literals. We denote by lvl(Γ), the level of the left-most literal in Γ. The level of Empty is equal to 0. The notation Γ| n designates the sub-list of Γ containing literals of level at most n. The notation l ∈ ∆ is an abbreviation for: there is a clause C ∈ ∆ such that l ∈ C or ¬l ∈ C. We use functions of the form xxx-heuristic to indicate that a side-condition depends on an heuristic. The SAT solver works on configurations of the form Γ ⊢ ∆ in search mode and of the form Γ ⊢ n ∆ : C in conflict mode, where n is the conflict level. Search mode. The inference rules in search mode are given in Figure 3.11. The first (resp. second) rule detects when a model (resp. an inconsistency) is found. The third rule adds new literals to Γ thanks to function next-lit (see below). The rule 4 removes clauses from ∆ when they are satisfied by Γ| 0 . The rule 5 removes learned clauses from ∆ when some conditions are satisfied. The rule 6 restarts the search from an empty model while keeping learned clauses. Finally, the algorithm enters in conflict mode when a clause in ∆ is falsified by Γ (rule 7).
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 3113121313314315363316317 Figure 3.11: Computation rules in search mode

  ) u(a, u(c, u(d, b))) → u(t, d) Associativity and commutativity of u are needed in (1) for the subterm u(c, u(b, a)) to match the term u(a, u(b, c)), and in (2) for the term u(a, u(c, u(d, b))) to be seen as u(u(a, u(b, c)), d), so that the rule can be applied. More formally, this leads to the following definition of rewriting modulo AC in the ground case: Definition 25 (Ground rewriting modulo AC). A term s rewrites to a term t modulo AC at position p by the rule l → r, denoted by s → p AC\l→r t, iff • (1) s| p = AC l and t = s[r] p or • (2) l(Λ) = u and there exists s ′ such that s| p = AC u(l, s ′ ) and t = s[u(r, s ′ )] p
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 41 Figure 4.1: Inference rules for ground AC completion

Example.

  Given a term t of the form 2 u(b + 0, a + 1 -1) + b -2 + 3 where u is an AC symbol and a, b are uninterpreted symbols. The abstracted value [[t]] of t is of the form 2 x+y -2+3 assuming α(u(b+0, a+1-1)) = x and α(b) = y. Notice that the function [[•]] stops at maximal Σ X -aliens. The terms a and b in u(b + 0, a + 1 -1)

Lemma 29 .

 29 ∀ s, t. s l→r t ⇒ s = AC,X,l≈r t Example. Using the rewriting rule γ : u(a, b) → b, the term f (b + 2 u(b, a)) canonrewrites to f (3 a) by γ as follows:f (b + 2 u(b, a)) → AC\γ f (b + 2 b) and canon(f (b + 2 b)) = f (3 b)Intuitively, canonized rewriting simply applies global canonization after each AC reduction step. Notice that, according to the definition, the term f (b + 2 u(b, a))does not canon-rewrites to f (3 a) by δ using the rule δ : u(a + 0, b) → b, because u(a + 0, b) does not match u(b, a) modulo AC. Fortunately, we can easily get rid of this issue by requiring the terms manipulated in the combination framework to be in canonized form.

Definition 30 .

 30 [[•]] to define a wrapper solve for the function solve X to resolve mixed equations. The definition is very simple and is given below: Given an equation s ≈ t ∈ T Σ × T Σ , we pose:

Example.

  To solve the equation 2 u(a, b) + b + 1 ≈ 0, we use the abstraction α = {u(a, b) → x, b → y} and call solve X on 2 x + y + 1 ≈ 0. Since b ≺ u(a, b), the solution y ≈ -2 x -1 is discarded because it does not comply with the second requirement of axiom 32. The only solution which fulfills this axiom is: ∃k. {x ≈ k , y ≈ -2 k -1} We then apply ρ and obtain the following set of rewriting rules: ∃k. {u(a, b) → k , b → -2 k -1} Intuitively, the first solution is rejected because it would yield a rewriting rule of the form b → -2 u(a, b) -1 which will not terminate if applied on a term containing the left-hand-side b. The existentially quantified variable k introduced by the solver can be skolemized and replaced by a fresh uninterpreted constant k f c such that k f c ≺ b.
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 43 The state of the procedure is a pair E | R of ground equations and ground rewriting rules. The initial configuration is of the form E 0 | ∅ where E 0 is supposed to be a set of equations between canonized terms (i.e. canon(E 0 ) = E 0 ). Notice that, since AC(X)'s rules only involve canonized rewriting, the algorithm maintains the invariant that terms occurring in E and R are always in canonized forms.The rule Trivial thus removes an equation s ≈ t from E when s and t are syntactically equal. The rule Deduce that computes AC critical pairs remains unchanged. Indeed, since the theory X provides a solver, no additional critical pairs modulo X are needed. A new rule Bottom is used to detect inconsistent equations.

Figure 4 . 3 :

 43 Figure 4.3: The inference rules of the AC(X) algorithm
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 921211544 Figure 4.4: AC(X) on the running example.

  and such terms have the same canonical forms. The measure strictly decreases, since for the first subproof it is equal to { {({ {C[l] p } }, 1, w canon (C[l] p ), l, r)} }, and for the second one, it is equal to

g

  → d has been computed. Let a µ the maximal common part between l and g, l = AC u(a µ , b), and g = AC u(a µ , b ′ ). The critical pair is u(b ′ , r) ≈ u(b, d). The subterm t| p where both reductions occur is of the form u(a µ , u(b, u(b ′ , c))) (or u(a µ , u(b, b ′ )) if it corresponds exactly to the critical pair).
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 45 Figure 4.5: Axiomatization of a small part of the theory of sets
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  modulo the set of equivalence classes {{e, d ∪ a, a ∪ d, c}, {a}, {b}, {d}, {b ∪ a}, {b ⊆ d}, {b ∪ a ⊆ c}}. Such a substitution exists and maps x to b, z to a and y to d since the term c is in the same class as d ∪ a. The proof of F 1 follows from the ground instance b ⊆ d ⇒ b ∪ a ⊆ d ∪ a of SubUnion.

F 2 .

 2 The reason is that, since the term d ∪ a does not syntactically occur in F 2 , the equivalence classes are just {{a ∪ d, c}, {a}, {b}, {d}, {b ∪ a}, {b ⊆ d}, {b ∪ a ⊆ c}} and the matching algorithm fails to match x ∪ z ⊆ y ∪ z against b ∪ a ⊆ c.

  a, y → u(b, u(b, u(. . .)))

1 )

 1 In fact, consider the AC * (LA S ) instance of AC(X), where Σ AC = { * } and X is instantiated with the Shostak part of linear arithmetic. The AC terms a * b and a * c are considered as aliens by LA S . Consequently, the two first equations simply yield the rewriting rules a * b → γ + 2 and a * c → β. The conclusion is then deduced by a straightforward critical pair computation. Nevertheless, AC * (LA S ) fails to prove the formulas 4.2 and 4.3 given below. The distributivity axiom of multiplication over addition is required to prove theses examples. But, it is not handled neither by LA S nor by AC completion. Note that, we also need to know that 2 * c is a linear term and equal to 2 • c to discharge the formula 4.3, where " • " stands for multiplication by constants.

Example 58 .

 58 )) and κ = A {+} (s 1 ) × . . . × A {+} (s n ) and t ′ = τ∈ κ monomial(τ ) where the function monomial simply builds the corresponding monomial from a given tuple. For instance, applying this function on (-3,b, a, b, 2) is expected to return the term (-3)•2•(-1)•b * a * b. The constant (-1) that appears in the result comes form the element (-b) of the tuple. Notice that the new canonizer coincides with canon except when treating a non-linear term. In this case, we additionally simulate the distributivity axiom. Let us clarify the mechanism underlying this simulation through a simple example. The term t = (2 • a + b -3) * (ab + 2) is canonized as follows: 1. The subterms of t are already in canonical form with respect to canon D * . Therefore, we have s 1 = 2 • a + b -3 and s 2 = ab + 2.

(

  a, a) , (a, a) , (a, b) , (a, -3) , (-b, a) , (-b, a) , (-b, b) , (-b, -3) , (2, a) , (2, a) , (2, b) , (2, -3)
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 4 Figure 4.9 shows the "experimental extension" of normalized completion with a Shostak theory. The main changes made in the original inference rules are:

Figure 4 . 9 :Definition 59 .

 4959 Figure 4.9: Extending normalized completion with a Shostak theory X

Figure 1 . 1 .

 11 Figure 1.1. It is composed of a preprocessor part, a SAT solver engine, a "decision procedures" component and a "matching modulo ground equalities" module.

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: The general architecture ALT-ERGO

Figure 5 .

 5 Figure 5.3 shows the architecture of the modules that constitute our Shostak-like combination approach. It consists in extending the union-find data structure (UFX) of a congruence closure algorithm (CCX) to reason in the union of convex equational theories, such as the theory of associative and commutative function symbols (AC), the equational parts of linear arithmetic (ArithS) over rationals and integers, and the equational part of enumerated data types (EnumS). A key feature of

Figure 5 . 3 :

 53 Figure 5.3: The architecture of the Shostak-like combination

4 | Sabstract of string 5 | Senum of string * string list 6 |

 456 Sarray of sort * sort

Figure 5 . 4 : 2 3 and term_desc = 4 | Plus of term * term 5 | Minus of term 6 | Number of number 7 | 8 | 9 | 10 | Enum of string 11 |Figure 5 . 5 :

 542456789101155 Figure 5.4: The minimal interface of sorts or an array Sarray(s 1 , s 2 ). The list l of an enumeration contains the list of its constructors. The variables s 1 and s 2 of an array provide the sort information of indices and values, respectively.

6 endFigure 5 . 6 :

 656 Figure 5.6: The minimal interface required for Shostak theories

Figure 5 . 6 endFigure 5 . 7 :

 5657 Figure 5.7 shows the simplified interface of AC. It is very similar to that of Shostak theories, except that it does not provide a solver routine, but only a wrapper as de-

1 module type ACX_INTERFACE = sig 2 type env 3 val empty : env 4 val 6 endFigure 5 . 8 :

 134658 Figure 5.8: The simplified interface of ACX

env rules in 4 let env, l1 = collapse env rules in 5 let ac, emp = partition_rules rules in 6 let l2 = head_cp env ac in 7 let env = append_rules env ac in 8 let 9 empFigure 5 . 9 :

 45678959 Figure 5.9: The simplified implementation of assume_eq

1 module type UFX_INTERFACE = sig 2 type env 3 val empty : env 4 5 8 9 13 endFigure 5 . 10 :

 1234813510 Figure 5.10: The interface of the UF module

Figure 5 . 12 :Figure 5 . 14 . 1 let union s t env = 2 let rs = find s env in 3 let rt = find t env in 4 if term_compare rs rt = 0 then env 5 else 6 let 9 if SetT.is_empty inters then 10 let 11 update_env {env with ac = ac} rules 12 else 13 raiseFigure 5 . 13 : 1 let 1 let distinct s t env = 2 let rs = find s env in 3 let rt = find t env in 4 if term_compare rs rt = 0 then raise Bottom 5 else 6 let 7 let dis2 = add_to_distinct_of rt s dis1 in 8 {env with dis = dis2} Figure 5 . 14 :

 5125141234569101113513112345678dis2}514 Figure 5.12: Implementation of the function add_term

3 used_by:Figure 5 . 15 : 8 endFigure 5 . 16 :

 35158516 Figure 5.15: The environment of CCX

Scenario a .

 a Suppose that equalities are treated from left to right. When the term f (b, c) is added, UFX's environment contains the following information:uf.repr : a → b, b → b, f (a, c) → 1, f (b, c) → f (b, c) used_by : a → ∅, b → {f (a, c), f (b, c)}, c → {f (a, c), f (b, c)}Since the terms b and c are "used by" both f (a, c) and f (b, c), the function add_term tests whether f (a, c) ≈ f (b, c) follows by congruence. This is actually the case, since a ≈ b.The inconsistency (1 ≈ 2) is then derived. Scenario b. Suppose that equalities are treated from right to left. Before the equality a ≈ b is assumed, UFX's environment contains the following information:uf.repr : a → a, b → b, c → c, f (a, c) → 1, f (b, c) → 2 used_by : a → {f (a, c)}, b → {f (b, c)}, c → {f (a, c), f (b, c)}At this point, it is not necessary to check whether f (a, c) ≈ f (b, c), because a and b are not "used by" f (b, c) and f (a, c), respectively. However, when a ≈ b is treated, the new environment contains the following information:uf.repr : a → b, b → b, c → c, f (a, c) → 1, f (b, c) → 2 used_by : a → ∅, b → {f (b, c), f (a, c)}, c → {f (a, c), f (b, c)}Consequently, the function assume_eq deduces that f (a, c) ≈ f (b, c) by congruence, which allows us to conclude.

Figure 5 .

 5 Figure 5.17 shows the architecture of this combination framework. Contrarily to the first technique, each single procedure maintains an internal environment.

1Figure 5 . 18 : 5 . 2 . 1 Figure 5 . 7 endFigure 5 . 19 :

 51852157519 Figure 5.18: The minimal interface of literals

, 5. 21 and 5 . 22 . 3 let add_term t env = 4 match t.srt with 5 | 7 |Figure 5 . 20 :

 215223457520 Figure 5.20: The implementation of the function EnumNS.add_term

1 let 2 if has_enum_sort s then 3 match lit with 4 | 5 | 6 |

 123456 assume (lit, s, t) uf env = Eq -> assume_eq (UFX.find s uf) (UFX.find t uf) env Dis -> assume_dis (UFX.find s uf) (UFX.find t uf) env

Figure 5 . 21 :

 521 Figure 5.21: The implementation of the function EnumNS.assume The function case_split, given in Figure 5.22, looks for a binding of the form s → {c 1 , c 2 , • • • } in env. If such a binding exists, it suggests a case-split s ≈ c i . Note that, the cases s → ∅ and s → {c} are handled by the function assume.

false 9 |Figure 5 . 22 :

 9522 Figure 5.22: The implementation of the function EnumNS.case_split

case_split and add_term are shown in Figure 5 . 23 . 1 type env = 2 { 4 let case_split env = 5 if 8 let add_term t env = 9 match t.dsc with 10 | 11 |

 5231245891011 The environment is a record. The fields gets and sets are sets of terms. The field instances is a map from literals to lists of literals. A binding a → [a 1 ; a 2 ; . . . ; a n ] in this map represents theimplication a ⇒ (a 1 ∧ a 2 ∧ . . . ∧ a n ).The literal a is called the premise of the binding and the a i are its conclusions. The function case_split simply returns a gets : SetT.t; sets : SetT.t; instances : literal list MapL.t } 3 MapL.is_empty env.instances then None 6 else let prem, concl = MapL.choose env.instances in Some prem 7 Get _ -> {env with gets = SetT.add t env.gets} Set _ -> {env with sets = SetT.add t env.sets} 12 | _ -> env

Figure 5 . 23 : 1 let conclusions_of_premise env a = 2 try 3 let 5 with 7 let assume a uf env = 8 let env = instanciate_axiom_1 env uf a in 9 let env = instanciate_axiom_2 env uf a in 10 let env = instanciate_axiom_3 env uf a in 11 conclusions_of_premise env aFigure 5 . 24 :

 52312357891011524 Figure 5.23: The state and the functions case_split and add_term of ArrNS premise from the map instances., while the function add_term fills the components gets and sets with adequate terms.The function assume handles the instantiation of the axioms in ARR NS (lines 8, 9, 10) as explained above. It also returns the list of literals that are consequences of the assumed fact, thanks to the auxiliary function conclusions_of_premise.

1Figure 5 . 25 : 1 module type INTERVAL_INTERFACE = sig 2 type t 3 val 4 val min : t -> number 5 endFigure 5 . 26 : 1 exception 3 let case_split env = 4 try 5 MapT.iter 6 (fun s interv -> 7 if 9 ) env.ints; 10 None 11 withFigure 5 . 27 :

 5251234552613456791011527 Figure 5.25: The environment of the module ArithNS

letFigure 5 . 28 : 5 . 2 . 5 Figure 5 .Figure 5 . 29 :

 5285255529 Figure 5.28: The implementation of the function ArithNS.assume

Figure 5 . 30 : 5 . 3 . 1 1 module type COMBINE_INTERFACE = sig 2 type env 3 val empty : env 4 val 6 endFigure 5 . 31 :Figure 5 .

 530531123465315 Figure 5.30: The architecture of the Combinator module

1 3 let 5 let rec assume env a = 6 let cc, ns = add_terms_rec a env in 7 let cc = match a with 8 | 9 | 12 let

 35678912 type env = { cc : CCX.env; ns : CombineNS.env } 2 case_split env = CombineNS.case_split env.ns 4 (Eq, s,t) -> CCX.assume_eq s t cc (Dis, s,t) -> CCX.assume_dis s t cc uf = CCX.ufx_of cc in 13 let implied, ns = CombineNS.assume a uf ns in 14 let env = {cc=cc; ns=ns} in 15 List.fold_left assume env implied

Figure 5 . 32 : 5 . 3 . 2 1 module type CSA_INTERFACE = sig 2 type env 3 val empty : env 4 val 5 endFigure 5 . 33 :

 53253212345533 Figure 5.32: The implementation of some functions in Combine

1 3 let rec cs_analysis spec = 4 match 8 with 18 letFigure 5 . 34 :

 34818534 Figure 5.34: The implementation of some functions in CSA

  

  • the substitution {t → s} if t is a variable but not s, or ≈ rbg red ∨ x ≈ rbg green ∨ x ≈ rbg blue but none of the following formulas are.

	• ∅ if s and t are syntactically equal constructors, or
	• ⊥ if s and t are distinct constructors.
	However, Enum is neither stably infinite nor convex as shown by the following
	example.		
	Example. Consider the theory RGB of enumerated data types defined over the
	signature Σ such that F = {red, green, blue}, P = {≈ rgb } and S = {rgb}. Every
	Σ-structure that is a model for RGB has a finite cardinality because of axiom 2.
	Moreover, the following formula is valid modulo RGB
	|= RGB	∀x. x |= RGB	∀x. x ≈ rbg red
	and		
		|= RGB	∀x. x ≈ rbg green
	and		
		|= RGB	∀x. x ≈ rbg blue

  [START_REF] Baader | Term Rewriting and All That[END_REF] , L 9 = 2L 6 + 3L 2 , L 10 = L 6 + 3L 5 , L 12 = 7L 7 + 2L 10 , L 13 = 7L 9 + 5L 8 , L 14 = 14L 9 + 5L 10

	C 3 :	L 7 = 4y -5, L 10 = -14y + 11	L 8 = -7y + 6,	L 9 = 5y -11,
	Finally, the variable y is in turn eliminated thanks to the following combinations: L 11 =
	7L 7 + 4L 8			

  Experimental results. Underlined values are for tools that have proved the most instances. Bolded results are for tools that have proved both the most instances and the fastest.

	SMT SOLVERS	CTRL-ERGO	MATHSAT5	MATHSAT5+CFP	YICES 2	Z3	
	families	#inst.	solved time	solved time	solved	time	solved time	solved time
	CAV-2009	591	590	253	588	4857	589	4544	386	11664	590	5195
	SLACKS	233	233	67	166	3551	155	6545	142	6102	187	9897
	CUT-LEMMAS	93	93	216	62	3424	59	2775	92	1892	67	3247
	PRIME-CONE	37	37	0.4	37	1	37	2.2	37	2.3	37	14
	PIDGEONS	19	19	2	19	0.16	19	0.16	19	0.01	19	0.28
	PB2010	81	23	390	38	743	34	1540	25	8.3	64	1831
	MIPLIB2003	16	2	34.7	12	432	12	501	11	145.4	12	241
	total	1070	997	963.1	922	13008	905	15907	712	19814	976	20425
	total QF-LIA 3	5882	4410	68003	5597	47635	5524	50481	3220	71324	5597	54503
	Figure 3.18:											

  a 5 , a 5 ) Ori u(a 3 , a 6 ) ≈ u(a 5 , a 5 )

	3	a 5 → a 4	Ori a 5 ≈ a 4
	4	u(a 3 , a 6 ) → u(a 4 , a 4 )	Com 2 and 3
	5	a 6 → a 2	Ori a 6 ≈ a 2
	6	u(a 3 , a 2 ) ≈ u(a 4 , a 4 )	Col 4 and 5
	7	u(a 4 , a 4 ) → u(a 3 , a 2 )	Ori 6
	8	u(a	

1 , a 4 ) ≈ u(a 1 , u(a 3 , a 2 )) Ded from 1 and 7 9 a 1 ≈ u(a 1 , u(a 3 , a 2 )) Sim 8 by 1 10 u(a 1 , u(a 3 , a 2 )) → a 1 Ori 9 Figure 4.2: Ground AC completion example

  not in a canonical form, or C[s] p l→r canon(C[t] p ) otherwise. Let P 1 and P 2 be two proofs which do not contain → R∞ nor ← R∞ . If P 1 is strictly smaller than (resp. equivalent to) P 2 , then C[P 1 ] p is strictly smaller than (resp. equivalent to) C[P 2 ] p . Moreover if P 2 is a step s l→r t, C[P 1 ] p is strictly smaller than C[s] p l→r C[t] pProof. It is enough to show the wanted result for elementary steps. Let P 1 and P 2 be two elementary steps such that P 1 is strictly smaller than P 2 .• If P 1 and P 2 are → Rcanon steps, they are of the form s i -→

	This definition is extended to a proof made of several steps, by plugging ele-

mentary each step under the context. Notice that if a proof P relates two terms s and t, then C[P] p relates C[s] p and C[t] p . Lemma 44. Rcanon t i and the corresponding measures are ({ {s

i } }, 0, w canon (s i ) + w canon (t i ), s i , t i ). if s 1 ≺ s 2 , then C[s 1 ] p ≺ C[s 2 ] p .

if s 1 ≃ s 2 , and w canon (s 1 ) + w canon (t 1 ) < w canon (s 2 ) + w canon (t 2 ). Since s 1 ≃ s 2 , by the AC-totality of , we know that s 1 = AC s 2 , hence w canon (s 1 ) = w canon (s 2 ). This means that w canon (t 1 ) = 0 and w canon (t 2 ) = 1. Hence t 1 = AC canon(t 1 ), t 1 ≃ canon(t 1 ) and t 2 = AC canon(t 2 ) and

  table in Figure 4.[START_REF] Bachmair | Abstract congruence closure[END_REF]. In order to prove C 1 -formulas with SMT solvers, the axioms in S ∪ have to be put in their context. The last four columns of the table contain the results for ALT-ERGO, Z3, CVC3 and SIMPLIFY.In order to prove the validity of C 2 -formulas, the theory E, the AC properties of ∪ and the theory of linear arithmetic LA are required. These ground formulas are directly provable by AC(LA) and the results are given in the first column of the table in Figure4.7. Similarly to category C 1 , the last four columns of the table contain the results for the SMT solvers we considered. Again, the axioms S ∪ have to be provided in the context, whereas linear arithmetic is directly handled by the built-in decision procedures of these provers.

	n, d	AC(∅)	ALT-ERGO Z3	CVC3	SIMPLIFY
	3, 3	0.01	0.19	0.22	0.40	0.18
	3, 6	0.01	32.2	OM	132	OM
	3, 12	0.01	TO	OM	OM	OM
	6, 3	0.01	11.2	1.10	13.2	2.20
	6, 6	0.02	TO	OM	OM	OM
	6, 12	0.02	TO	OM	OM	OM
	12, 3	0.16	TO	5.64	242	11.5
	12, 6	0.24	TO	OM	OM	OM
	12, 12	0.44	TO	OM	OM	OM
		Figure 4.6: The results for category C 1	

  The main reason is that its instantiation mechanism is not spoiled by the huge number of intermediate terms the other provers generate when they instantiate the AC axioms.

	n, d	ALT-ERGO	ALT-ERGO Z3	CVC3	SIMPLIFY
		with AC(LA)				
	3, 3	0.02	3.16	0.09	10.2	OM
	3, 6	0.04	TO	60.6	OM	OM
	3, 12	0.12	TO	OM	OM	OM
	6, 3	0.07	188	0.18	179	OM
	6, 6	0.12	TO	TO	OM	OM
	6, 12	0.66	TO	OM	OM	OM
	12, 3	0.20	TO	0.58	OM	OM
	12, 6	0.43	TO	TO	OM	OM
	12, 12	1.90	TO	OM	OM	OM
		Figure 4.8: The results for category C 3	

  Figure 5.11: The environment of UFXThe implementation of add_term is shown in Figure5.12. Given a term t not in UFX, the function first computes its representative w.r.t. the fields repr and ac, using the auxiliary function normal_form. The fields of the environment are then updated. Note that, the sub-terms of t are supposed to be previously added.

	1	type env =	
	2	{ repr : term MapT.t;	( * map: term -> term * )
	3	ac	: ACX.env;	( * AC's environment * )
	4	dis : SetT.t MapT.t;	( * map: term -> Set(term) * )
	5	cls : term list MapT.t ( * map: term -> term list * ) }
	10	{env with	
	11		repr = MapT.add t r env.repr;

1 let add_term t env = 2 if MapT.mem t env.repr then env 3 else 4 let r = normalize t env.repr env.ac in 5 let dis = 6 if MapT.mem r env.dis then env.dis 7 else MapT.add r SetT.empty env.dis 8 in 9 let cls_r = try MapT.find r env.cls with Not_found -> [] in 12 cls = MapT.add r (t::cls_r) env.cls; 13 dis = dis}

  The internal representation of CCX's environment is shown in Figure5.15. The first field is the environment of UFX. The second one is a map from terms to set of terms. An entry t → {. . . , f i (t 1 , . . . , t n ), . . .} of used_by means that: the term t is a maximal alien of every representative of t j w.r.t. the field uf, where j ∈ [|1, n|].

	1	type env =	
	2	{ uf	: UFX.env;

Replacement of LET-IN with equalities and IF-THEN-ELSE with combinations of AND and OR

Here,s -→R ∞ t actually means s -→ AC\R∞ t ′ and t = canonAC (t ′ ).

We assume that ⊥ is not encountered, otherwise, termination is obvious.

X may change the head function symbol of terms in an equational proof, which is not the case of AC in standard ground AC completion.

a.k.a. matching modulo ground equalities

This is still an ongoing work !

i.e. reflexivity, symmetry and transitivity

Note that some enhancements have been made by other people

http://toccata.lri.fr/gallery/why3.en.html

with

and

Some encountered issues

A. Unification and matching issues. The experimental framework above requires the combination of unification algorithms for the Shostak theory X and the AC theory (resp. a theory T between AC and AC∪S). This combination is mandatory when computing complete sets of unifiers in the definitions of normalizing pairs and critical pairs. Unfortunately, combining unification algorithms is known to be a hard task. For instance, unification in the combination of the AC theory and the theory of linear arithmetic remains an open problem.

Beside that, the combination of matching algorithms is also required. Indeed, the terms we manipulate in our setting are mixture of interpreted, uninterpreted and AC symbols and may contain variables. Therefore, the substitutions used for rewriting in definitions 59 and 60 have to be computed using pattern matching techniques in the combination of the AC theory and the theory X, and eventually in presence of uninterpreted function symbols.

Example 61. Let u, v be two AC symbols and a, b two uninterpreted functions symbols.

Consider the instantiation of X with the theory of linear rational arithmetic. The term s = u(u(a, b), a + x -1) S-canon-rewrites to t = v(b, 0) as follows:

• the substitution σ 1 = {y → x -1} is a solution of the matching problem u(a, a + y) ≤ ? AC,X u(a, a -1 + x). Therefore s S = v(a -1, a + x),

• the substitution 

Related and future works

Related works

AC completion has been studied for a long time in the rewriting community [START_REF] Lankford | Decision procedures for simple equational theories with permutative axioms: Complete sets of permutative reductions[END_REF][START_REF] Peterson | Complete sets of reductions for some equational theories[END_REF]. A generic framework for combining completion with a generic built-in equational theory E has been proposed in [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF]. Normalized completion [START_REF] Marché | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF] is designed to use a modified rewriting relation when the theory E is equivalent to the union of the AC theory and a convergent rewriting system S. In this setting, rewriting steps are only performed on S-normalized terms. AC(X) can be seen as an adaptation of ground normalized completion to efficiently handle the theory E when it is equivalent to the union of the AC theory and a Shostak theory X. In particular, S-normalization is replaced by the application of the canonizer of X. This modular integration of X allows us to reuse proof techniques of ground AC completion [START_REF] Marché | On ground AC-completion[END_REF] to show the correctness of AC(X).

Tiwari [START_REF] Tiwari | Combining equational reasoning[END_REF] efficiently combined equality and AC reasoning in the Nelson-Oppen framework. Kapur [START_REF] Kapur | Shostak's congruence closure as completion[END_REF] used ground completion to demystify Shostak's congruence closure algorithm and Bachmair et al. [START_REF] Bachmair | Abstract congruence closure[END_REF] compared its strategy with other ones into an abstract congruence closure framework. While the latter approach can also handle AC symbols, none of these works formalized the integration of Shostak theories into ground (AC) completion.

Evaluation

In order to measure the improvements made in ALT-ERGO during this thesis 3 , we benchmark the current release of ALT-ERGO and compare its performances with:

• older releases of the prover, starting from version 0.9 published in July 2009

• some state-of-the-art SMT solvers with quantifiers support, such as CVC3 (v 2.4.1), YICES (v 1.0.38) and Z3 (v 3.2 and v 4.2)

For our experiments, we used logical formulas generated from WHY3's gallery of programs 4 . This gallery contains 82 programs, from which WHY3 generated 1920 verification conditions. Almost all of them are valid. They are generated in

• the native polymorphic input language of ALT-ERGO

• the native input language of CVC3

• the native input language of YICES

• the SMT-LIB2 input language for Z3

The measures were obtained on a 64-bit machine with a quad-core Intel Xeon processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit of 30 seconds and a memory limit of 2 GB for each test.

Experiments' results. The results of our experiments are reported in Figure 5.35 and Figure 5.36. The first column shows the provers we used with their versions.

In columns 2 and 3, we report the number of verification conditions that are proved valid by each prover and the corresponding accumulated time. Columns 4 and 5 report the numbers of VCs for which the provers returned "unknown" and the accumulated time, respectively. In column 6 (resp 7), we report the number of VCs on which the provers timeout-ed (resp. encountered an error during their execution, such as "out of memory").

Results analysis. Figure 5.35 shows that ALT-ERGO has made a significant progress since version 0.9. In particular, this observation holds for both the total number of proved VCs, and the number of proved VCs per second. We also notice on Figure 5.36 that ALT-ERGO is performing better than other provers on our benchmark.

Chapter 6. Conclusion

We believe that additional improvements can be made in our procedure. In fact, the actual oracle in neither incremental nor backtrackable, which can be annoying in an SMT solver. In addition, our case-split analysis technique does not behave well on very large bounded intervals. In the near future, we plan to to address all these issues.

We think that our procedure is complementary with those extending a rational simplex to decide linear integer arithmetic, such as branch-and-bound, cuttingplanes. We believe that the combination of these mature techniques with ours would be an interesting idea to investigate.

Integrating rewriting techniques in SMT

In Chapter 4, we have presented a combination framework, called AC(X), that enables reasoning in the union of the free theory of equality with uninterpreted symbols, the AC theory and a Shostak theory X that fulfills reasonable ordering constraints. Our framework consists of a modular extension of ground AC completion with the theory X. The key ideas of this extension are:

1. the use of the solver routine provided by the theory X to handle equalities instead of just orienting them 2. the extension of rewriting modulo AC, used by ground AC completion, with the canonizer function of X.

AC(X) can be seen as an adaptation of normalized completion: an extension of AC completion with a first-order convergent rewriting system. However, our framework is much more simpler and has the nice termination property, while normalized completion may not terminate.

In order to fully integrate AC(X) in the ALT-ERGO SMT solver, we have shown that the prover's axioms instantiation mechanism -based on E-matching -has to be extended modulo AC. Using a simple example, we have shown that this extension is not immediate, because E-AC-matching is not finitary. We plan to investigate incremental instantiation alternatives to get rid of this issue.

In order to integrate additional rewriting techniques in SMT solvers, we have investigated the reuse of our combination technique to extend normalized completion with Shostak theories. This would allow us to handle user-defined first-order convergent rewriting systems. Unfortunately, we were quickly faced to several hard issues, such as the combination of unification algorithms for AC and Shostak theories. In the future, we plan to explore whether some reasonable restrictions on the rewriting system or on some interesting Shostak theories would allow us to circumvent these issues.

Implementation

Satisfiability Modulo theories is a promising research topic. SMT solvers are now used in various domains, such as software and hardware verification, SMT-based model checking, test-case generation and compiler optimization.

In this thesis, we have considered the enhancement of our ALT-ERGO SMT solver to make it usable in the context of software verification. In Chapter 5, we have described the core decision procedures of our solver. In addition to FMsimplex and AC(X), we have implemented two decision procedures for the theories of enumerated data types and functional arrays, respectively.

The design of an efficient union-find data structure modulo theories -used at the heart of our Shostak-like combination framework -would significantly improve ALT-ERGO. We plan to explore this direction in the near future, as well as the combination of solvers routines for certain classes of Shostak theories.

In the future, we also plan to integrate additional interesting theories in the core of ALT-ERGO. For instance, these include the theory of recursive data types, the theory of floating-point numbers [START_REF] Brain | Interpolation-based verification of floating-point programs with abstract CDCL[END_REF][START_REF] Sylvain Conchon | Built-in treatment of an axiomatic floating-point theory for SMT solvers[END_REF][START_REF] Haller | Deciding floating-point logic with systematic abstraction[END_REF] and set theory.