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Introduction

It was three years and a half ago that I arrived in France. At the time, my work

was focused on algorithms for Wi-Fi LAN. Yes, it was interesting but I needed to

work on something more warm than computers. This is why I started working in

the field of bioinformatics. Here I am, now, writing this manuscript after having

spent several years in this marvelous world where mathematicians and computer

scientists mix together with biologists and paleontologists to try to answer to one

of the most fascinating questions ever asked: how all organisms on Earth descended

from a common ancestor?

This thesis is about combining phylogenies. A phylogeny or phylogenetic tree

consists in nodes connected by branches. Leaves, or terminal nodes, represent today

organisms for which we can collect data. Internal nodes represent hypothetical

ancestors since they cannot be directly observed. The aim of this thesis is to provide

algorithms for the reconstruction of phylogenies and, ultimately, to estimate parts

of the Tree of Life i.e., the phylogeny describing the relationships of all life on

Earth in an evolutionary context.

In Chapter 1 we introduce the basic objects considered in this thesis, i.e.,

phylogenetic trees. Moreover, we briefly describe how phylogenies are inferred from

biological data, to avoid the reader from thinking that they came “out of the blue”

as a deus ex machina.

In Chapter 2 we review the biological phenomena that lead to produce different

phylogenies from different data sets e.g., lateral gene transfers, gene duplications and

losses. We also present two main approaches to combine different data sets to infer

reliable phylogenies, with their pros and cons. The most straightforward approach

to combine primary data issued from multiple sources is simply to concatenate them

into a single data set called the supermatrix [Sanderson et al., 1998]. On the other

hand, the supertree approach first involves inferring partially overlapping, source

phylogenetic trees, that were inferred from primary data, and then assembling them

into a larger, more comprehensive supertree [Bininda-Emonds, 2004b]. In this thesis

we focus on the latter approach. The supertree problem is a generalization of a

simpler one, called the consensus problem, which consists in summarizing a set of

trees that classify the same objects into one tree.

In Chapter 3 we thus present several consensus methods and we provide

a review of most supertree methods currently available. We will see that some

supertree methods are directly inspired by consensus methods, while others are

based on new principles.

When using supertree construction in a divide-and-conquer approach in the at-

tempt to reconstruct large portions of the Tree of Life, conservative supertree meth-

ods have to be preferred in order to obtain reliable supertrees. In our opinion a
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reliable supertree should display only information that is present in one or several

input trees, or induced by their interaction. At the same time, it is desirable that

the inferred tree contains as few contradictions as possible with the source trees.

In Chapter 4 we introduce two combinatorial properties we proposed that

implement these ideas. Since no existing supertree method satisfies both these

properties, we designed two supertree methods, PhySIC and PhySIC_IST [Ranwez

et al., 2007a; Scornavacca et al., 2008], which infer supertrees satisfying them.

A major difference between these two methods is that PhySIC_IST can propose

non-plenary supertrees while PhySIC necessarily proposes a supertree that contains

all taxa present in a least one source tree. Further we also designed a statistical

preprocessing of the source trees to detect and correct artifactual positions of

species. In this chapter we also present an example of application of PhySIC_IST

to the complex problem of disentangling the phylogeny of Triticeae [Escobar et al.,

2009].

Gene trees are usually multi-labeled, i.e., a single species can label more than

one leaf, since duplication events almost always resulted in the presence of several

copies of the genes in the species genomes. Since no supertree method exists to

combine multi-labeled trees, until now these trees are simply discarded in a supertree

approach. In a phylogenomic framework, where the more data the better, this is

not desirable.

In Chapter 5 we present a way to solve this problem, proposing several

algorithms to extract the largest amount of speciation signal for orthologous

sequences from multi-labeled trees, and put it under the form of single-labeled

trees which can be handled by supertree methods [Scornavacca et al., 2009b]. An

application to the hogenom database, a database of homologous genes from fully

sequenced genomes, is presented.

In this work, the emphasis is on theoretical results, but real biological appli-

cations are always kept in mind. The final product of my research tends to be

algorithms for which user friendly implementations are freely available. Moreover,

for each problem we encounter, biological case studies are presented to demonstrate

the relevance of our approaches.

List of publications:

• Escobar, J., A. Cenci, C. Scornavacca, C. Guilhaumon, S. Santoni, E. Douzery,

V. Ranwez, S. Glémin, and J. David. 2009. Combining supermatrix and
supertree in Triticeea. Submitted to Systematic Biology.

• Ranwez, V., V. Berry, A. Criscuolo, P. Fabre, S. Guillemot, C. Scornavacca, and

E. Douzery. 2007. PhySIC: a veto supertree method with desirable
properties. Systematic Biology 56:798–817.

• Scornavacca, C., V. Berry, V. Lefort, E. J. P. Douzery, and V. Ranwez. 2008.
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PhySIC_IST: cleaning source trees to infer more informative su-
pertrees. BMC Bioinformatics

• Scornavacca, C., V. Berry, and V. Ranwez. 2009b. From gene trees to species
trees through a supertree approach. Pages 702–714 in LATA ’09: Pro-

ceedings of the 3rd International Conference on Language and Automata The-

ory and Applications, volume 5457 of Lecture Notes in Computer Science,

Springer- Verlag, Berlin, Heidelberg. 9:413.
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larger parts of phylogenomic databases. Submitted to Information and
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Chapter 1

Inferring phylogenies
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Men are curious. Scientists even more. A question that fascinates an increasing

number of scientists, especially since the last decades, is to understand how all

organisms on Earth descended from a common ancestor. Phylogenetics is the sub-

field of evolutionary biology that studies evolutionary relationships among species

through molecular and morphological data.

In this chapter we present how phylogenetics arose as a science and a review of

the field.

1.1 From Aristotle to Darwin: an introduction

Since Aristotle, naturalists have always tried to classify the abundance of creatures

that populate the Earth. Aristotle believed that creatures were arranged in a graded

scale of perfection rising from plants up to man that he called the scala naturae.

Aristotle’s classification of living, even if now completely outdated, contains some

truth. For example, he was the first to divide beings in vertebrates and invertebrates

(called animals with and without blood in his work). During the Middle-Age and

Renaissance almost no progress was done.
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The quest of this natural order was the major goal of naturalists of the eigh-

teenth century. Linneaus, maybe the most famous of the systematists, believed in

an underlying order in nature that needs to be discovered and expressed as a hierar-

chy. At his time, classifications of living things were built using as discriminant the

phenotype, i.e., any observable characteristics of organisms. Linneaus thought that

a reliable discriminant was a character good for ordering as many beings as possi-

ble. This method sometimes led Linneaus to classifications that now we consider

erroneous. A significant improvement to Linneaus’ method was the proposal of the

natural classification by Antoine Laurent de Jussieu, based on the use of multiple

characters to define groups. No matter the way the groups were formed, in those

days all classifications were proposed in the framework of fixism, a theory stating

that life on Earth has always been composed of the species we have today and that

species never change.

The first naturalist to evoke the possibility that species can evolve was Leclerc

de Buffon. He pointed out an evident continuity among individuals of the same

species and a less evident, but present, continuity among species. For Buffon the

classification was nothing more than an artifact that had to be replaced by the

concept of descent.

Jean-Baptiste Lamarck was the first to propose an evolutionary theory. In his

oeuvre Philosophie zoologique (1809) he introduced the concept of the general dis-

tribution, i.e., an order produced by the walk of nature in living creatures that are

seen as being in perpetual evolution. Lamarck was also a fervent opposer of the

concept of classification that, for him, «has nothing natural». For Lamarck, the

aim of understanding the general distribution was not to be able to classify living

creatures but to understand the order that nature followed to produce them. The

concept of spontaneous generation of life from inanimate matter prevents Lamarck

from proposing a genealogy of living. This is, together with the notion of inheritance

of acquired characters, one of the weakest points of his theory.

In The Origins of Species (1859), Charles Darwin introduced his theory accord-

ing to which populations evolve over the course of generations through a process

of natural selection and the variability of life arose through a branching pattern of

evolution and common descent. He illustrated his theory using a tree where ac-

tual species are linked two by two up to a common ancestor species. For Darwin,

species could undergo several mutations but the history of life was unique. Others

before Darwin used trees to illustrate species classifications in light of fixism (e.g.,

Augustin Augier) or descent of some species from others (e.g., Charles-Hélion de

Barbançois). The originality of Darwin’s tree is the coexistence, in the same figure,

of the concepts of time and descent: the bifurcations in the tree follow one another

over time. It is interesting to note that, unlike Lamarck, Darwin was not a detractor

of the concept of classification. For him, once that genealogy of species was found,

it would lead to the “natural” classification of living creatures.

It was Ernst Haeckel in 1866 that used for the first time the term phylogeny to

designate the history of organismal lineages as they change through time. At his
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time, phylogenies were built using morphological traits, ontogeny1 and fossils. With

the discovery of DNA by Watson and Crick in 1953 and the design of sequencing

techniques, a new kind of information became available: molecular data. Thanks to

the huge amount of information available since 10-20 years, phylogenetics entered

in its golden age. At that time, some of the problems that are treated in this thesis

arose.

Phylogenetics aims at clarifying the evolutionary relationships that exist

among different species, represented through phylogenetic trees or phylogenies. A

phylogeny2 consists in nodes connected by branches (see Figure 1.1 for an example).

Terminal nodes are called leaves or taxa and represent today organisms for which

we can collect data. Internal nodes represent hypothetical ancestors since they

cannot be directly observed. In rooted phylogenetic trees (see Figure 1.1(i)), each

internal node represents the most recent common ancestor of its descendants and

the only node with no ancestor is called the root of the tree. Nodes and branches

can have several kinds of information associated with them, such as time or amount

of evolution estimates.

1.2 Different types of biological data

Phylogeny reconstruction methods are used to analyze either morphological (struc-

tural aspects of organisms such as bone structure, organs, etc.) or molecular (genetic

information such as nucleotides, amino acids, codons, SINE or LINE etc.) data. We

can consider these data as sequences of characters that can take several states ({0,1}

for the presence/absence of a morphological trait, {A,C,G,T} for nucleotidic sites

etc.).

To properly reconstruct phylogenies, it is important to be able to determine

which characteristics are similar because they were inherited from a common ances-

tor (homology) and which are similar as a result of separate convergent evolution

(homoplasy). For morphological data, we might consider similar looking features

to be homologous when they are not and the similarity is a result of convergent

evolution (e.g., the wings of bats and birds). Because the homology among proteins

and DNA is often concluded on the basis of sequence similarity, such problems can

also arise with molecular data (for example because of gene duplication events3).

Moreover, if we want to use molecular data to reconstruct phylogenies, we

have to face another problem. For morphological traits, we can only have that the

state for a character of a species changes or not in its descendants. In molecular

sequences, we can have substitutions (modifications of the site state) as well, but

insertions and deletions of some sites are also possible. The result is that the same

1Ontogeny is the branch of biology that deals with the development of an individual organism

from the fertilized egg to its mature form.
2For a formal definition of phylogeny see Chapter 3.
3We will introduce the notions of orthology and paralogy in the next chapter.
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(i  ) (ii  )

Figure 1.1: Phylogenetic trees for the Glioma tumor suppressor candidate
region gene 1 protein marker (ENSG00000063169), obtained with a max-
imum likelihood (ML) analysis [Ranwez et al., 2007b] - where branch lengths

represent amounts of evolution between species. Note that in the phylogenetic tree

in (i) nodes are connected to other nodes by a horizontal and then a vertical line

but only vertical branch lengths represent amounts of evolution. The only difference

between these two trees is that the one in (i) is rooted, whereas the one in (ii) is

not. In a rooted tree, the root corresponds to the most recent common ancestor of

the leaves. This information and therefore the direction of evolution (from the root

to the leaves) are lost in an unrooted tree.

molecular marker in different species has different lengths. When this happens,

we need to align the sequences correctly to be sure that we are really comparing

the same characters in all species. A variety of algorithms have been designed to

solve the sequence alignment problem, including dynamic programming methods,

heuristic algorithms and probabilistic methods. That is why in the following

sections we will consider only aligned sets of sequences of same length.

To reconstruct phylogenies two kinds of methods are available:

• character-based methods, which retrieve similarities comparing the states

taken by species at different characters; character-based methods can be fur-

ther divided into:

– parsimony methods

– likelihood methods

– bayesian methods

• distance-based methods, which use pairwise distances to quantify the amount

of evolution separating species.
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1.3 Parsimony methods

The main hypothesis of these methods is that evolution is parsimonious and the most

plausible phylogenies are that requiring the fewest evolutionary changes to explain

data. Parsimony methods are based on discrete characters. Input data consist in a

set S of n character sequences (one per studied species) s1, ..., sn of length m.

The two most widespread variants of parsimony are the Fitch parsimony, where

the cost of substituting a state with another is equal to 1 for all states [Fitch, 1971],

and Sankoff parsimony, where a substitution cost Cx→y is associated to each pair of

states x, y, with x �= y [Sankoff and Rousseau, 1975]. Fitch parsimony is a special

case of the Sankoff parsimony but the algorithm that Fitch proposed for it is not a

special case of Sankoff algorithm [Felsenstein, 2004].

Other types of parsimony have been proposed e.g., Dollo parsimony [Farris, 1977;

Le Quesne, 1974] and Camin-Sokal parsimony [Camin and Sokal, 1974].

In a parsimony approach each character can be analyzed independently from the

others. It follows that, given a phylogeny T , once the parsimony score P(cj |T ) is

calculated for each character cj , the parsimony score of the set S of all sequences is

given by the (weighted) sum of the parsimony score of each character:

P (S|T ) =
m
�

j=1

wjP (cj |T ) (1.1)

where wj is the weight of character cj . Assuming that internal sequences are known

(see figure 1.2) one can easily determine the number of substitutions necessary to

explain different states for cj at the two extremities of a branch e. Denoting this

value by P (cj |e), P (cj |T ) is simply the sum of P (cj |e) over all branches e of T ,

weighted by the substitution costs.

TAGTA

TAGTA CAGTG

TATTA TCGTA

S! S"

CAGTG CCGTG

S# S$

Figure 1.2: One of the most parsimonious phylogenies for the set of se-
quences S ={S1, S2, S3, S4}. - The five required substitutions are indicated by

small horizontal lines.

Since only terminal sequences are known, we need to find the combination of

internal sequences that minimizes P (cj |T ) (see Figure 1.3). This problem is not as

hard as one may imagine since:
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• the number of possible states for a character is limited;

• each character can be analyze independently;

• the choice of the root does not change the parsimony value of a tree, in the

usual case where Cx→y = Cy→x holds for each pair of states x, y.

An O(nm) algorithm to calculate P (S|T ) was proposed by Fitch [1971]. On the

contrary, finding the tree T that gives the minimum value of P (S|T ) is an NP-

hard problem [Day et al., 1986] for which several heuristic methods were proposed

[Felsenstein, 2005; Goloboff et al., 2008; Swofford, 2003].
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 T
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 C
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 G
G
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 T
T
T

A 
 A
G
G

S

Figure 1.3: Most parsimonious reconstructions per sites for the set of se-
quences S given the phylogeny T - Two equally parsimonious reconstructions are

possible for site 2. Deduced internal characters are shown between square brackets.

The main drawback of parsimony methods is that they are not consistent [Caven-

der, 1978; Felsenstein, 1978]. A method is said to be consistent if the probability

to obtain the correct tree converges to one as more and more data are analyzed.

For example, parsimony methods are not robust to long branch attractions i.e.,

when rapidly evolving species that had a separated evolution are inferred to be

closely related, regardless of their true evolutionary relationships [e.g., Felsenstein,

1978, see Section 2.1.3]. Indeed, when molecular sequences from two species evolve

rapidly, the probability that the same nucleotide appears in both two sequences at

the same site increases. When this happens, the most parsimonious scenario is a

wrong one, where the two species evolved from a common ancestor. As a matter of

fact, rapid evolving species accumulate numerous mutations on a single character

and contradict the very foundations of the parsimony approach. For a review of

other objections to parsimony methods see Sober [1998].
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1.4 Models of sequence evolution

The main limitation of parsimony methods is to try to reconstruct phylogenies

without making assumptions on the underlying evolutionary process that species

undergo.

At the end of the sixties, the first model of DNA evolution was proposed [Jukes

and Cantor, 1969]. The aim of models describing the evolution of sequences is to

provide a formal framework to estimate the real number of mutations that a sequence

has undergone rather than simply assuming that this number is minimal. This

framework has allowed to develop statistically consistent reconstruction methods

such that, if the underlying evolutionary model is correct, the method asymptotically

converges to the real phylogeny. This section presents a short review of the best

known models of nucleotide sequence evolution and evokes protein sequences and

codon models. This will be useful in Sections from 1.5 to 1.7.

1.4.1 Nucleotide models

Most nucleotide substitution models share some common hypotheses:

• sequences evolve exclusively through nucleotide substitutions. Nucleotide in-

sertions and deletions are not taken into account;

• substitution processes are independent and identical among sites: substitu-

tions affecting one site do not depend either on substitutions affecting other

sites or on the position of the site in the sequence. This implies that knowing

the substitution process of sites means knowing that of the sequences;

• substitution process is a first-order Markov model. Having a memory of size

1, the evolution of sequences depends only on the actual state of sequences

and not on its previous states;

• substitution process is homogeneous, i.e., it is the same for all branches of the

phylogeny and independent among branches;

• substitution process is stationary, i.e., the probability to observe a state x

(denoted by πx) does not depend on the position of the observation date;

• the substitution probability during an infinitesimal time interval dt is propor-

tional to dt.

• there is at most one substitution per infinitesimal time interval dt.

Nucleotides are modeled as discrete characters that can vary in the set of bases

{A,C,G, T}. Nucleotide models are characterized by a 4 × 4 rate matrix Q where

Qxy is the rate at which base x goes to base y. The general expression of Q is the

following:
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Q =









λA QAC QAG QAT

QCA λC QCG QCT

QGA QGC λG QGT

QTA QTC QTG λT









(1.2)

where λx = −�

x �=y Qxy. The probability matrix is obtained from the rate matrix

by computing the system P (t) = eQt. The general expression of P (t) is the following:

P (t) =









λ̄A(t) PAC(t) PAG(t) PAT (t)

PCA(t) λ̄C(t) PCG(t) PCT (t)

PGA(t) PGC(t) λ̄G(t) PGT (t)

PTA(t) PTC(t) PTG(t) λ̄T (t)









(1.3)

where Pxy(t) is the probability that a base x changes into a base y in a time interval

t and λ̄x(t) = 1−�

x �=y Pxy(t).

Time Reversibility

A stationary Markov process is time reversible if (in the steady state) the amount of

change from state x to state y is equal to the amount of change from y to x. Almost

all DNA evolution models assume time reversibility i.e., that ∀x, y ∈ {A,C,G, T}
we have Mxyπx = Myxπy.

General Time Reversibility (GTR) model

Under this assumption, the general expression of Q in 1.2 becomes:

QGTR =









λA πCRAC πGRAG πTRAT

πARAC λC πGRCG πTRCT

πARAG πCRCG λG πTRGT

πARAT πCRCT πGRGT λT









(1.4)

where the term Rxy is equal to Mxy/πy.

The GTR substitution model [Tavaré, 1986; Yang, 1994] requires 6 substitution

rate parameters, as well as 4 base frequency parameters. Since
�

πx = 1 there are

only 3 free frequency parameters. Moreover, if rate parameters are considered as

relative rate parameters, one rate can be fixed to 1 (e.g., RGT ). It follows that the

number of free parameters of the GTR model is equal to 8. All models in table

1.4.1 are particular cases of the GTR model. Some models assume Equal Base

Frequencies (EBF=y) i.e., πx = 0.25 ∀x ∈ {A,C,G, T}. All other models assume

that πC �= πG �= πA �= πT , except the T92 model that hypothesizes πC = πG = π/2

and πA = πT = (1−π)/2. Models with a Number of Different Types of Substitutions

(NDTS) equal to 1 suppose that Rxy = α, ∀x, y ∈ {A,C,G, T}, x �= y. Models with

NDTS = 2 distinguish between transitions (A <-> G, i.e., changes from purine to

purine, or C <-> T, i.e., changes from pyrimidine to pyrimidine) and transversions

(from purine to pyrimidine or vice versa). Models with NDTS = 3 distinguish
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between the two different types of transition, i.e., RAG �= RCT while transversions

are all assumed to occur at the same rate. Several other special cases of the GTR

Model NDTS EBF TNP

JC69 [Jukes and Cantor, 1969] 1 y 0

F81 [Felsenstein, 1981] 1 n 3

K80 or K2P [Kimura, 1980] 2 y 1

HKY85 [Hasegawa et al., 1985b] 2 n 4

F84 [Kishino and Hasegawa, 1989]

[Felsenstein and Churchill, 1996] 2 n 4

T92 [Tamura, 1992] 2 n 2

K3ST [Kimura, 1981] 3 y 2

TN93 [Tamura and Nei, 1993] 3 n 5

SYM [Zharkikh and Li, 1995] 6 y 5

Table 1.1: Nucleotide models that are special cases of the GTR model-
NDTS is the Number of Different Types of Substitutions distinguished by the model,

EBF specifies whether the model assumes Equal Base Frequencies and TNP is its

Total Number of free Parameters.

model have been described and named.

More complex models

The models described above all assume that each position is evolving independently

and identically. Site to site rate variation has also been modeled, mostly by a gamma

distribution among sites [Yang, 1993, 1996a] and the presence of a proportion of

invariable sites in the data set [Hasegawa et al., 1987]. The gamma distribution,

introduced in molecular evolution by Uzzell and Corbin [1971] and developed by Jin

and Nei [1990] and Yang [1993], has several advantages: it is analytically tractable,

varies from 0 to ∞ and has a single parameter to control both the distribution shape

and its mean and variance.

Galtier and Gouy [1998] proposed models for which the substitution process is

non-homogeneous, i.e., model parameters are not the same for all branches of the

phylogeny and can vary at the nodes of the tree. Galtier [2001] proposed heterotac-

hous models of sequence evolution for which rates of evolution can vary among sites.

Both the proportion of sites undergoing rate changes and the rate of rate change are

free variables. Note that Galtier’s 2001 model provides an alternative to the gamma

distribution of rates across sites.

The CAT mixture model [Lartillot and Philippe, 2004] accounts for across-site

heterogeneities of the substitutional processes. The total number of classes of the

underlying mixture is not specified a priori, but is a free variable of the model.

The BP model [Blanquart and Lartillot, 2006] permits model parameters to vary

along the phylogeny, changing not only at every node as in Galtier and Gouy [1998],
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but also along branches.

The CAT+BP model [Blanquart and Lartillot, 2008] combines the CAT and BP

models.

The latter three models are very complex and computationally demanding and

have only been implemented into Bayesian frameworks (see section 1.7).

Several other methods have been recently proposed (for a review see Galtier

et al. [2005]).

Adding parameters will almost always improve fit to data, but also leads to a

larger estimation error. To discourage overfitting, statistical tests that attempt to

find the model that best explains the data with a minimum of free parameters have

been proposed (e.g., the AIC [Akaike, 1974] and the BIC [Schwarz, 1978]).

1.4.2 Protein models

The first amino acid models have been proposed at the end of the 1970s. The main

advantage in favor of using amino acid information is the fact that DNA undergoes

much more back substitutions, making it harder to accurately recover tree evolu-

tionary histories, especially those with long evolutionary distances. Since in nature

there exist 20 amino acids, a GTR-like model for proteins would require 208 param-

eters and would be overparameterized for most data sets. That is why models of

protein evolution are often based on empirical matrices that are obtained averaging

the observed changes and amino acid frequencies between numerous proteins. The

resulting matrices state the relative rates of replacement from one amino acid to

another. The most commonly used protein models are PAM [Dayhoff et al., 1978],

JTT [Jones et al., 1992], Blosum62 [Henikoff and Henikoff, 1992], WAG [Whelan

and Goldman, 2001] and LG [Le and Gascuel, 2008] matrices.

Note that the CAT and the BP models afore-described can also be used to model

protein evolution.

1.4.3 Codon models

Lately, models of codon evolution have been proposed [Goldman and Yang, 1994].

They are used mainly to infer the selection forces acting on a protein that can be

hidden by the fact that most amino acids are encoded by more than one codon4. This

degeneracy of the genetic code allows substitutions to occur in the DNA sequence

that do not result in a change in the corresponding amino acid sequence. For a

review of existing codon models see Delport et al. [2009].

1.5 Distance-based methods

Distance-based methods use pairwise evolutionary distances to reconstruct phylo-

genies. But how do we calculate those distances?

4In nature, there exist 61 coding codons and only 20 amino acids.
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1.5.1 Estimation of evolutionary distances

The evolutionary distance Dsz between two sequences s and z is defined as the

average number of substitution events per site that have occurred since s and z have

diverged. A rough estimate for Dsz is given by fsz, defined as the proportion of sites

that have different states in s and z. The observed value fsz is an underestimate of

Dsz since it cannot take into account such events as multiple, parallel, convergent,

coincidental and back substitutions. Better estimations of Dsz can be found if we

use a substitution model such as those described in the previous section since this

would allow to take into account multiple substitutions for a single site. Let suppose

we choose JC69 as model and denote by α the unique substitution rate. In this case,

computing the system P (t) = eQt we obtain:

Pxy(t) =







1
4(1− e−4αt) if x �= y

1
4(1 + 3e−4αt) otherwise

(1.5)

Suppose that a time t elapsed since the divergence of the two sequences. Then the

two sequences are separated by a time 2t and we can easily calculate the probability

for a site to have different states in s and z, denoted by psz(t):

psz(t) =
3

4
(1− e−8αt) (1.6)

It follows that:

αt = −1

8
ln(1− 4

3
psz(t)) (1.7)

From the definition of α, the average number of substitution events per site that

occurred since s and z diverged, i.e., Dsz, can be estimated by 2t×3α, because each

site changes its state with a probability 3α per time unit. This implies that:

Dsz = −3

4
ln(1− 4

3
psz(t)) (1.8)

Since psz(t) = E(fsz), we can use fsz to estimate psz(t). Then we obtain:

D̂sz = −3

4
ln(1− 4

3
fsz) (1.9)

which is a better estimation of Dsz than fsz.

For other simple models, analytical formulae for the estimation of Dsz are

available. If the model is too complex a likelihood optimization (see Section 1.6) is

used to estimate D̂. Other kinds of distances have been proposed e.g., the LogDet

distance [Barry and Hartigan, 1987; Steel, 1994]. For a review of evolutionary

distances see Zharkikh [1994].

Phylogeny-reconstruction distance methods are applied to dissimilarity matrices

D̂ obtained from sequence matrices (see above). Ideally, the aim of these methods

is to find the phylogeny T such that the length of the path between species s and z
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in T , also called patristic distance of s and z, is equal to D̂sz. If there exists a tree

whose patristic distances are D̂, D̂ is said to be a tree distance. Since we do not

have the real distances but only an estimation of them, usually no such tree exists.

A result obtained independently by several authors [among others Buneman, 1971]

states the properties that a distance matrix D̂ has to satisfy to be a tree distance:

Proposition 1.5.1 D̂sz is a tree distance (also called additive) if and only if it

verifies the following three conditions:

• D̂sz � 0 between two different species, and is zero if and only if s = z,

• it is symmetric, i.e., D̂sz = D̂zs,

• for all quadruplets of species (s,z,t,u), D̂sz+D̂tu � max{D̂st+D̂zu, D̂su+D̂zt}.

The third condition is often called the four point condition. Since dissimilarity

matrices obtained as explained above hardly ever verify the four point condition,

the goal of distance methods is to find the phylogeny T whose patristic distances are

as close as possible to D̂. The way of defining what a “as close as possible” means

varies to one distance method to another. In the next sections we present the most

used distance methods.

1.5.2 Least-squares methods

Least-squares methods (LS) aim at adjusting the given distance matrix D̂ to obtain

a tree distance Ď that minimizes a measure of discrepancy, defined as follows:

Q =
�

s<z

wsz(D̂sz − Ďsz)
2 (1.10)

where wsz are weights that differ among least-squares methods and are used to

account for the uncertainty on the value of D̂sz. If wsz = 1, formula 1.10 corresponds

to the ordinary least-squares criterion [Cavalli-Sforza and Edwards, 1967]. Otherwise

we have a weighted least-squares criterion. Commonly used weights are 1/D̂sz [Beyer

et al., 1974] and 1/(D̂sz)
2 [Fitch and Margoliash, 1967].

For a given phylogeny T , the tree distance minimizing any least-squares criterion

can be found in polynomial time. This approach was first presented by Cavalli-Sforza

and Edwards [1967] and improved by Gascuel [1997b] and Bryant and Waddell

[1998]. On the contrary, finding the best phylogeny minimizing Q is an NP-hard

problem [Day, 1987, 1996] for which several heuristic methods have been proposed.

Some variations of the least-squares criterion, called the generalized least-squares

criterion, have been proposed to take into account the natural correlations between

distances [Bulmer, 1991; Susko, 2003].
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1.5.3 Minimum-evolution methods

The minimum evolution method (ME) aims at minimizing the total length of the

reconstructed tree T , i.e.,

Q =
�

e∈T

l(e) (1.11)

where l(e) is the length of the branch e and branch lengths, which represent quanti-

ties of evolution, are computed using a least-squares method. In a minimum evolu-

tion approach, the most plausible phylogeny is that demanding the minimum quan-

tity of evolution. This approach has been first proposed by Kidd and Sgaramella-

Zonta [1971] and developed by Rzhetsky and Nei [1992]. It has been proved [Denis

and Gascuel, 2003; Rzhetsky and Nei, 1993] that if the estimation of D̂sz tends to

Dsz and branch lengths are estimated with an ordinary least-squares criterion, then

the method converges to the correct phylogeny i.e., it is consistent. On the contrary,

Gascuel et al. [2001] have proved that some weighted and generalized least-squares

methods, if used to estimate branch lengths, lead to inconsistent versions of the min-

imum evolution method. Since in the minimum evolution approach branch lengths

are computed using a least-squares method, methods that improve the complex-

ity and running time of the latter methods [e.g., Bryant and Waddell, 1998], also

speed up the former. Improved search methods have also been proposed [Desper

and Gascuel, 2002; Kumar, 1996].

Clustering methods for the minimum evolution approach have been proposed.

They first construct a star tree connecting one central node to leaf nodes representing

all species for which we have distances (Figure 1.4(i)). At each step a pair of nodes

x, y to cluster is chosen using the information contained in the distance matrix D̂.

The two nodes are then connected to a new node v that is in turn connected to the

central node (Figure 1.4(ii)). The two rows and columns corresponding to x and y

are removed from the matrix D̂ while an extra row and an extra column are added

to D̂ for the new node v. On the whole, the dimension of D̂ is decreased by 1. Then

the distances D̂iv between all nodes i in the matrix and v are computed. After

n − 2 steps a completely resolved phylogeny is obtained (Figure 1.4(iii)), where n

is the number of species. Clustering methods vary in the way they choose nodes to

cluster and compute the new distances D̂iv. The most widely used are NJ [Saitou

and Nei, 1987], UNJ [Gascuel, 1997b], BIONJ [Gascuel, 1997a] and WEIGHBOR

[Bruno et al., 2000].

A heuristic method for the ME that is not clustering-based is FASTME [Desper

and Gascuel, 2002] that aims at minimizing the balanced minimum evolution cri-

terion introduced by Pauplin [2000]. Also NJ is a heuristic for the same criterion

as proved by Gascuel and Steel [2006], while UNJ is a heuristic to minimize the

ordinary least-squares version of ME.

.
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Figure 1.4: The clustering process to build a phylogenetic tree - (i) the initial

situation. (ii) the first clustering groups x and y. (c) the final situation.

1.6 Likelihood methods

Likelihood methods were first introduced in phylogeny by Edwards and Cavalli-

Sforza [1964] to deal with gene frequency data. The first applications to molecular

sequences was proposed by Neyman [1971] and improved by Kashyap and Subas

[1974] and Felsenstein [1981].

In this section and in the following one, we denote as θ the vector of all the

parameters of an evolutionary model, where here an evolutionary model is the com-

bination of a substitution model M (see Section 1.4), a topology and its branch

lengths.

Given a sequence alignment S of n character sequences (one per studied species)

of length m and a vector of parameters of an evolutionary model θ, the likelihood of

θ, denoted by P(S|θ), is defined as the probability to observe the data set S, given

θ. The likelihood can be viewed as a function of θ.

The hypothesis of the independence of the evolution of each site, already evoked

in Section 1.4.1, implies that

P(S|θ) =
m
�

j=1

P(cj |θ) (1.12)

This simplifies a lot the calculation of the likelihood. When the vector θ is given, the

topology of T is known. In such a case, to compute the likelihood of a site cj , we asso-

ciate at each node u ∈ T a likelihood vector Lcj ,u = (Lcj ,u,A, Lcj ,u,T , Lcj ,u,G, Lcj ,u,C),

where Lcj ,u,x is the probability of observing the state x at the node u, with

x ∈ {A, T,G,C}. The reversibility hypothesis, assumed by most models of se-

quence evolution, implies that the likelihood of T does not depend on the position

of the root [Felsenstein, 1981, the “pulley principle”]. We can then compute the

likelihood of an unrooted phylogeny rooting it on whatever branch or node. Once

the tree is rooted, the algorithm starts initializing the likelihood vectors associated

to each leaf of T in the following way: Lcj ,u,x = 1 if the leaf u has state x at the

site cj , otherwise Lcj ,u,x = 0. If the state of site cj is unknown, then Lcj ,u,x = 1

∀x ∈ {A, T,G,C} [Felsenstein, 2004, page 255]. Internal nodes are considered in
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a bottom-up tree traversal i.e., a node cannot be treated before all its sons have

been. For each internal node u, its likelihood vector is computed from the likelihood

vectors of its sons l(u) and r(u) as follows:

Lcj ,u,x =

�

�

y∈{A,T,G,C}

Pxy(bu,luu)) · Lcj ,l(u),y

�

·

�

�

y∈{A,T,G,C}

Pxy(bu,r(u)) · Lcj ,r(u),y

�

(1.13)

where bu,l(u), resp bu,r(u), is the length of the branch (u,l(u)), resp (u, r(u)). The

likelihood P(cj |θ) for the site cj is defined as the product:

�

x∈{A,T,G,C}

πxLcj ,r,x (1.14)

where r is the root node of T and πx is the equilibrium probability of the base x

under the model M . Using this dynamic programming technique [Felsenstein, 1981],

the likelihood of T can be computed in O(nm), where n is the number of sequences

and m the number of characters of the alignment. Unfortunately, when trying to

reconstruct a phylogeny from sequences, θ is unknown. This means that, to find the

phylogeny with maximum likelihood, we also need to consider all combinations of

its parameters. This is the main limit of this approach, but for simple evolutionary

models, when the likelihood of a tree can rapidly be computed, efficient heuristics

have been developed. These methods are considered as being among those inferring

the most reliable phylogenies.

Heuristic methods for the maximum likelihood approach have been implemented

in several programs, e.g., PAUP* [Swofford, 2003], PHYML [Guindon and Gascuel,

2003], IQPNNI [Vinh and Von Haeseler, 2004], RAxML [Stamatakis, 2006] and

GARLI [Zwickl, 2006]. The latter uses a stochastic, genetic algorithm-like approach

instead of deterministic hill climbing.

For complex methods for which analytical solutions cannot be found even when

θ is known, an ML approach is not tractable. That is why a bayesian approach to

phylogeny reconstruction has been proposed.

1.7 Bayesian methods

Bayesian methods to infer phylogenies are closely related to likelihood methods.

Bayesian inference of phylogeny is based on a quantity called the posterior probabil-

ity of a parameter vector θ of an evolutionary model, given a sequence alignment S,

denoted by P(θ|S). Bayes’ theorem allows to turn a prior distribution of θ, denoted

by P(θ) into its posterior distribution:

P(θ|S) = P(θ)P(S|θ)
P(S)

(1.15)

where P(S|θ) is the likelihood of the sequence alignment S given the parameter

vector θ. The posterior probability of θ can be interpreted as the probability that
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the parameter vector θ is the correct one. In order not to influence the result with

personal opinions, a flat prior can be assigned. It is also possible to assign vague

priors [Huelsenbeck et al., 2002b]. Note that the ML approach is a particular case

of the bayesian approach, for which flat prior are chosen [Kuhner et al., 1995]. The

denominator in 1.15 involves a summation over all trees and, for each tree an inte-

gration over all possible branch lengths and parameters of the substitution model.

This computation is often analytically impossible, but numerical methods can be

used to efficiently approximate the distribution of posterior probability. The most

used are Markov Chain Monte Carlo (MCMC) methods [e.g., Gilks et al., 1995]

that permit to wander randomly through the posterior distribution over parameter

and tree space. Once this random walk reaches equilibrium, samples of parameter

vectors are collected and will be used to approximate their posterior probability dis-

tribution. For phylogeny inference, the MCMC algorithm is based on the Metropolis

algorithm [Metropolis et al., 1953] and consists of the following steps:

1. start with a random vector of parameters θi;

2. select a new vector θj by modifying θi in some way;

3. compute the acceptance ratio

R =
P(θj |S)
P(θi|S)

=
P(θj)P(S|θj)
P(θi)P(S|θi)

;

4. accept θj with a probability ρ=max(R, 1);

5. every k generations, save the current tree and all parameters;

6. return to step 2.

Note that denominator in 1.15 disappears in the computation of R. This algorithm

has no termination. It is up to the user to stop it after a number of generations

considered sufficient. This is one of the limits of this approach. Note also that

this algorithm is a Markov chain of order one since θj depends only on θi. We call

the vector of parameters θi the “state θi”. To reach the equilibrium distribution,

the Markov chain must be aperiodic (no cycles should be present in the Markov

chain), irreducible (every state must be accessible from any other state), and the

probability of proposing θj if the current state is θi has to be the same as that of

proposing θi if we are in θj , denoted respectively by P(θj |θi) and P(θi|θj). If this

is not true, a variant of Metropolis algorithm, the Metropolis-Hasting algorithm

[Hastings, 1970] has to be used. Hasting’s algorithm differs from the Metropolis’

one in the computation of the acceptance ratio, which equals R · P(θj |θi)
P(θi|θj)

. When

the Markov chain has the required properties to reach the equilibrium and is run

long enough, the time the chain spends in a state θi is proportional to its posterior

probability [Metropolis et al., 1953].

If the target distribution has multiple local peaks, separated by low valleys, the

Markov chain may have difficulty in moving from one peak to another. As a result,
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the chain may get stuck on one peak and the resulting samples will not approximate

the posterior probability correctly. Metropolis Coupled MCMC (called also MC3), a

variant of MCMC, allows multiple peaks in the landscape of trees to be more readily

explored. This technique consists roughly in running k MCMC chains with different

stationary distributions. One chain is called the cold chain and only its information

is recorded. Periodically, states between chains may be swapped.

Bayesian methods vary in the way they set prior distributions for parameters,

obtain the state θj from θi and summarize the information of the obtained samples

(step 5). Several bayesian approaches for phylogeny reconstruction have been re-

cently proposed [e.g., Huelsenbeck et al., 2002b; Huelsenbeck and Ronquist, 2001;

Larget and Simon, 1999; Li et al., 2000; Ronquist and Huelsenbeck, 2003; Yang and

Rannala, 1997].

For a review of a bayesian approach to phylogeny estimation see the review of

Holder and Lewis [2003] or consult the books of Felsenstein [2004] and Yang [2006].

1.8 Testing the reliability of inferred phylogenies

Methods to reconstruct phylogenies usually produce binary trees. This is mainly

due to the fact that their tree space exploration relies on topological modifications

defined on binary trees (e.g., NNI). This implies that, when data sets contain little

phylogenetic signal, some branches of inferred trees can be poorly supported by

data. To estimate branch reliability, character resampling techniques such as the

bootstrap have been proposed.

First described by Efron [1979], the bootstrap technique has been used for the

first time in phylogenetics by Felsenstein [1985]. Given a tree T obtained with an

inference method (see Sections 1.3 - 1.7) from a sequence matrix M with n rows (one

per species) and m columns (one per site), this technique consists of three steps.

First, a set of pseudo matrices M = {M1, · · · ,Mk} called bootstrap replicates is

derived from M . Each Mi ∈ M is obtained by sampling, with replacement, columns

of M until obtaining a matrix with m columns. Note that drawing columns with

replacement implies that some columns can be present more than once in a bootstrap

matrix and others can be absent. Second, from each bootstrap replicate Mi a tree

Ti is inferred, employing the same inference method used to infer T . Finally, the

so-obtained forest F = {T1, · · ·Tk} is used to estimate the reliability of each branch

e of T , with the percentage of trees in F containing e. This value is called the

bootstrap value of e and denoted by bp(e).

The bootstrap technique allows to simulate the variability of the sampling pro-

cess that led to obtain M . Though most people agree of its practical usefulness, its

statistical meaning is still debated. Some authors [Efron, 1979; Felsenstein, 1985] see

the value of bp(e) as an estimation of the probability to find the same branch e in a

tree T � obtained by analyzing another data set M � with the same inference method.

Other authors [among others Hillis and Bull, 1993; Sanderson, 1989] consider bp(e)

as an estimation of the probability that the branch e is in the correct phylogeny
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while others [e.g., Efron et al., 1996; Felsenstein and Kishino, 1993] interpret bp(e)

as a confidence threshold of a statistical hypothesis test.

Whatever its statistical interpretation, all authors agree on discarding branches

with low bootstrap values since in any case they are considered as not reliable (see

Figure 1.5). The majority-rule consensus (see Section 3.2) of the forest F is usually

used to discard all branches not supported by more than 50% of the trees in F .
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Pongo Pygmaeus

Pan Troglodytes

Homo Sapiens

100

45

90

100

Bos Taurus

root

Pan Troglodytes

Homo Sapiens

100
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Pongo Pygmaeus

90

Mus Musculus

100

Bos Taurus

root

(i) (ii)

Figure 1.5: Example of discarding branches with low bootstrap values - (i)

Phylogenenic tree for the Glioma tumor suppressor candidate region gene 1 protein

marker (ENSG00000063169), obtained with a maximum likelihood (ML) analysis

[Ranwez et al., 2007b]. Support values have been obtained by a bootstrap analysis

with 100 replicates. (ii) the tree obtained from that in figure (i), having collapsed

branches with bp � 50 (in this case only one branch).

Another well-known character resampling technique is the delete-half jackknife

[Felsenstein, 1985; Wu, 1986] that consists in obtaining a set of pseudo matrices

randomly by sampling without replacement half of the columns of the matrix M .

To estimate branch reliability for bayesian methods, posterior probabilities are

often used, even if tests on simulated data sets have revealed some discrepancies

between these values and ML bootstrap estimates [Douady et al., 2003; Erixon

et al., 2003]. For a comprehensive review of the ways with which branch reliability

can be estimated see Chapter 20 of Felsenstein [2004].
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The dawn of molecular techniques for sequencing DNA led to a revolution in

phylogenetics. Access to molecular sequences increased the number of homologous

characters that could be compared in phylogenetic analyses1.

A gene tree is an evolutionary tree built by analyzing a gene family, i.e., homol-

ogous molecular sequences appearing in the genome of different organisms. Gene

trees can be used to estimate species trees, i.e., trees displaying the evolutionary re-

lationships among studied species. However, as more genes are analysed, topological

conflicts between individual gene phylogenies often arise because of methodological

or biological reasons. Below we will introduce the most important methodological

and biological sources of conflict between gene trees, respectively in Sections 2.1 and

2.2 .

1Recall that homologous characters are those that were inherited from a common ancestor.
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2.1 Model inadequacy

The first cause of conflicts between individual gene phylogenies is that some gene

trees are erroneous because they have been reconstructed using an inadequate model.

This happens when the gene sequences evolved according to an evolutionary process

that violates the assumptions of the evolutionary model used to infer the gene tree.

There are several causes of model inadequacy. The most important are compo-

sitional bias, heterotachy and rapidly evolving lineages [Delsuc et al., 2005].

2.1.1 Compositional bias

One potential pitfall for phylogenetic estimation from biological sequence data is

compositional bias. Indeed, convergence in nucleotide composition in unrelated

lineages can lead phylogenetic methods to artefactually group together unrelated

species with similar nucleotide composition (e.g., G+C or A+T rich) sequences.

It is now well-established that compositional bias in DNA sequences can ad-

versely affect phylogenetic analysis based on those sequences [e.g., Hasegawa et al.,

1985a]. The impact of nucleotide bias on protein-based phylogenetic reconstruction

is still debated [e.g., Foster and Hickey, 1999; Lockhart et al., 1992; Loomis and

Smith, 1990].

2.1.2 Heterotachy

The principle of heterotachy states that the substitution rate of sites in a gene or

protein can vary through time [Philippe and Lopez, 2001]. Though often ignored in

most used substitution models, heterotachy plays an important role in the process

of sequence evolution [Lopez et al., 2002].

There is a growing body of literature on the consistency of likelihood-based

methods that ignore heterotachy when the phenomenon is actually present, leading

to phylogenetic reconstruction artefacts in cases where the proportions of invari-

able sites of unrelated taxa have converged [Inagaki et al., 2004; Kolaczkowski and

Thornton, 2004; Lockhart et al., 1996; Philippe and Germot, 2000].

Because unlike other types of bias heterotachy does not leave evident trace in

sequences [Kolaczkowski and Thornton, 2004], it can lead to artefacts particularly

difficult to detect [Inagaki et al., 2004; Philippe and Germot, 2000].

Recently, Kolaczkowski and Thornton [2004] suggested, on the basis of simu-

lations, that MP is substantially less sensitive to heterotachy [Kolaczkowski and

Thornton, 2004]. However, Philippe et al. [2005] on the basis of more realistic

simulations, showed that MP can also be strongly misled by heterotachy. There

is a growing number of models proposed to handle heterotachy, e.g., the covarion

model [Tuffley and Steel, 1998], the heterotachous models of Galtier [2001] (see Sec-

tion 1.4.1 on page 13) and the mixture branch length (MBL) model [Kolaczkowski

and Thornton, 2004]. For an evaluation of models handling heterotachy in phyloge-

netic inference see Zhou et al. [2007].
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2.1.3 Rapidly evolving lineages

In phylogenetic analyses, rapidly evolving lineages can be closely related in the

inferred tree although they are not. This phenomenon is commonly called Long

Branch Attraction (LBA).

Felsenstein [1978] first described the problem on four-taxon trees. He observed

that inequalities in the rates of evolutionary change among branches of a four-taxon

tree may lead parsimony and compatibility methods to be statistically inconsistent

estimators of the phylogeny, grouping together the two rapidly evolving lineages2.

LBA not only affects parsimony and compatibility methods, but also ML, although

less strongly [e.g., Sanderson and Kim, 2000; Sullivan and Swofford, 2001; Swofford

et al., 1996].

LBA is a phenomenon of molecular data in particular. Since the number of

different states for nucleotides is limited to four (and to 20 for amino acids), when

DNA substitution rates are high, the probability that two lineages will evolve the

same nucleotide at the same site increases. When this happens, parsimony erro-

neously interprets this as a synapomorphy (i.e., a homologous trait shared by two

or more taxa which were derived from a common ancestor) while it is in fact a

homoplasy (see Section 1.2 on page 7). This problem can be minimized by using a

method less sensitive to LBA, commonly, maximum likelihood [e.g., Huelsenbeck,

1997; Swofford et al., 1996], excluding third codon positions3 [e.g., Sullivan and

Swofford, 1997; Swofford et al., 1996], adding taxa to break up long branches [e.g.,

Hendy and Penny, 1989; Hillis, 1996; Swofford et al., 1996] etc. For a more extensive

review of LBA artifacts and possible solutions to counter it see Bergsten [2005].

2.2 Macro events

Macro events in genome evolution can also lead to topological conflicts between in-

dividual gene trees. Here we present these macro events without explaining in detail

how they occur, focusing only on how they can lead to conflicts among individual

gene phylogenies.

2.2.1 Gene duplications and losses

Gene duplication is considered to play a fundamental role in the evolution of species

since the emergence of the last universal common ancestor [e.g., Ohno, 1970; Zhang,

2003], particularly in eukaryotes [e.g., Cotton and Page, 2005; Dujon et al., 2004;

Eichler and Sankoff, 2003; Hahn et al., 2007; Lynch and Conery, 2000], and is

believed to play a major role in the apparition of novel gene functions [Lynch and

Force, 2000].

2In reality the slowly evolving lineages are grouped together, leading to group together the two

rapidly evolving lineages.
3Indeed, the third codon positions in protein-coding sequences, having less selective constraints

(because of the degenerescence of the genetic code), evolve faster and are thus often saturated or

randomized.
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Several processes have been described to account for the origin of gene duplicates,

ranging from single gene duplications to whole genome duplications [Durand et al.,

2006]. Indeed, major genome duplication events are not uncommon. For instance,

it seems that the entire yeast genome underwent a duplication about 100 million

years ago [Kellis et al., 2004].

The gene sequences that originate from a gene duplication event are called par-

alogs (for example, in Figure 2.1(i), the copies α and β for species a). By contrast,

orthologous genes are those created from a speciation event (for example, in Figure

2.1(i), the copies α for species b and c).

x

xx

a b c

! "

a b c

! "

(i ) (ii )

Figure 2.1: An example of how duplication events can lead to conflict
between gene and species trees - Species trees are depicted as thick pipes or

tubes and thin lines represent gene trees. Gene losses are represented by an X. (i)

the two copies of the gene are available for all species. (ii) the copy α is available

for species a and b while the copy β is only available for species c.

Gene duplication can produce conflicts between gene and species trees when

some duplicated copies are absent from the analysis, either because they have not

been sequenced or because they have been lost at some point during the evolutionary

process. For instance, in Figure 2.1(ii), the species tree, depicted as thick pipes, says

that b and c are closest relatives with respect to a. Suppose that due to losses during

the evolutionary process, the only sequences available are the copy α for species a

and b and the copy β for species c. In this case, the gene tree (thin lines inside the

pipes) groups species a and b, which are not each other’s closest relatives in term

of speciation events. This erroneous result comes from the fact that the sequences

used to represent species a and b are paralogous with respect to the one used to

represent species c. The conflict between gene and species trees due to duplications

would disappear if sequences for both copies were available for all species [Doyle,

1992], see Figure 2.1(i) for an example.
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2.2.2 Horizontal gene transfers (HGT)

Horizontal gene transfer occurs when an organism transfers its genetic material or

part of it to a being other than one of its own offspring. Instead, the two or-

ganisms are usually unrelated, and are often of different species. Studies of genes

and genomes indicate that considerable horizontal transfer has occurred between

prokaryotes [e.g., Jain et al., 1999; Lawrence and Ochman, 1998; Rivera and Lake,

2004]. Indeed, horizontal gene transfer in bacteria is a common phenomenon and is

a major factor in accelerating the rate of their evolution [Jain et al., 2003].

There is some evidence that viruses can also transmit genetic information via

horizontal gene transfer [Gibbs and Keese, 1995; Pearson, 2008]. The phenomenon

appears to have had some significance for unicellular eukaryotes as well. Bapteste

et al. [2005] evoked that «additional evidence suggests that gene transfer might also

be an important evolutionary mechanism in protist evolution». There is some ev-

idence that even higher plants and animals have been affected [e.g., Keeling and

Palmer, 2008; Richardson and Palmer, 2007]. However, the prevalence and impor-

tance of HGT in the evolution of multicellular eukaryotes remain unclear [Huerta-

Cepas et al., 2007; Richardson and Palmer, 2007].

a b c

x

Figure 2.2: An example of horizontal gene transfer - Species tree is depicted as

thick pipes and thin lines represent the gene tree. The gene lineage with its ancestry

in species b is transferred in species a.

Horizontal gene transfer is a potential confounding factor when inferring phy-

logenetic trees based on the sequence of one gene and can lead to conflicts among

individual gene trees. For example, in Figure 2.2, the gene lineage with its ancestry

in species b is transferred in species a. Since the sequences of species a and b are

more similar with respect to that of species c, the gene tree groups species a and b,

which are not each other’s closest relatives according to the species tree.
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2.2.3 Incomplete lineage sorting

Ancestral polymorphism is the existence of more than one allele, (i.e., alterna-

tive DNA sequences at the same physical gene locus), at a locus in an ancestral

population. The incomplete lineage sorting is the process by which the ancestral

polymorphism is retained through speciation events. This can result in misleading

similarities of DNA sequences that do not necessarily reflect species relationships.

For instance, in Figure 2.3 two alleles α and β are present in an ancestral population

and both are present after the speciation events. Since the allele α is retained in

species a and b while the allele β is retained in species c, the gene tree reconstructed

with this gene family sees a and b as each other’s closest relatives while they are

not.

! "

a b c

Figure 2.3: An example of incomplete lineage sorting - Species tree is depicted

as thick pipes and thin lines represent the gene tree. Two alleles α and β are present

in an ancestral population and both are retained through speciation events. The

allele α is retained in species a and b while the allele β is retained in species c.

2.2.4 Interspecific recombination

Recombination is a molecular process enabling the creation of new combinations of

genetic materials through pairing and shuffling of related DNA sequences. Recombi-

nation occurs at different levels: individual, population, and species. In prokaryotes

and virus, interspecific recombination occurs spontaneously between two organisms.

When interspecific recombination occurs, genetic material is exchanged between

different species lineages and this can lead to different histories for neighboring

segments within a gene [Posada and Crandall, 2002; Ruths and Nakhleh, 2005]. For

instance, in Figure 2.4, species a and c recombined. For the DNA left segment,

the gene tree (depicted in thin black lines) is ((b, c), a), but for the segment on the

right, the gene tree (depicted in thin grey lines) is ((a, b), c). We can see interspecies

recombination as a reciprocal HGT [Ruths and Nakhleh, 2005].
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ca b

Figure 2.4: An example of interspecific recombination - Species tree is de-

picted as thick pipes and thin lines represent the gene tree. Species a and c re-

combined. This leads to different histories for neighboring segments within a gene.

Indeed, for the left DNA segment, the gene tree is ((b, c), a), but for the right DNA

segment the gene tree is ((a, b), c).

2.2.5 Interspecific hybridization

Interspecific hybriditation is the process by which two individuals of different species

come into contact and mate, creating an hybrid. The offspring of an interspecific

cross are very often sterile, preventing the movement of genes from one species to the

other, keeping both species distinct, e.g., mules and hinnies, crosses of horses and

donkeys. However, hybridization is a widespread phenomenon in plants [Rieseberg,

1997; Rieseberg et al., 2000] and resulting hybrids are more often fertile than animal

hybrids. Interspecific hybridization can lead to conflicts among individual gene trees

since the underlying species evolution can no longer be represented by a tree. For

example, in Figure 2.5(i), species b is a cross of species a and c. Then, the gene tree

reconstructed from a gene that b inherited from a (in grey thin lines) is ((a, b), c),

but for a gene that b inherited from c, the gene tree (in black thin lines) is ((b, c), a).

2.3 Combining data

Since topological conflicts frequently arise among source trees both because of model

inadequacy and macro evolutionary events, it is a common practice to include as

wide a range of genes for phylogenetic analysis as possible.
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a b c

Figure 2.5: An example of interspecific hybridization - Species evolution is

depicted as thick pipes and thin lines represent the gene tree. Species b is a cross

of species a and c. The gene tree for a gene that b inherited from a (in grey thin

lines) is ((a, b), c), but, for a gene that b inherited from c, the gene tree (in black

thin lines) is ((b, c), a).

2.3.1 Combining data through a supermatrix approach

The most straightforward approach for combining data issued for multiple sources

is simply to concatenate the original sequence alignments into a single larger matrix

called the supermatrix where unknown character states are coded by question

marks. This approach has the advantage that all information of each individual

source is retained. This is in accordance with the so-called total evidence approach

to combining phylogenetic information [Kluge, 1989; Sanderson et al., 1998] i.e.,

the philosophical principle for which the best hypothesis is the one derived from all

the available data.

However, this approach has several limitations.

First, this strategy for assembling ever larger phylogenies is untenable [Sanderson

et al., 1998], since, if only a few taxa are common between data sets, most of

the newly combined data matrix will be scored as question marks. For instance,

one of the biggest supermatrix ever analyzed [Driskell et al., 2004], issued of the

concatenation of 1131 protein alignments, containing 469,497 sites for 70 taxa, was

composed of 92% of missing data. Analyses of a supermatrix with too many missing

data can be in some cases unreliable [Sanderson et al., 1998], notably when the

concatenated signal of the supermatrix is not strong enough. Moreover, even without

missing taxa, methods such as maximum likelihood tend to become computationally

intractable when the data set grows too much.

Additionally, only data of the same type can be concatenated. For instance,

no evolutionary model is available for a supermatrix obtained by concatenating nu-
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cleotide and amino acids sequences or SINE characters. Moreover, the combined

primary data, even encoded in the same way, are analyzed using a single evolu-

tionary model and this can be problematic. For instance, genes can have different

stationary frequencies or undergo heterogeneous selective pressures resulting in dif-

ferent evolution rates. These evolutionary rates may also vary from one part of the

phylogeny to another but these variations may be specific to each gene and may

once again vary from one gene to another. As a result, considering the supermatrix

as a single super-gene (the “concatenate model”) may be a very rough inadequate

approximation. On the other hand the “separate model” [Yang, 1996b], which con-

siders that each gene has its own evolutionary parameters (i.e., its own probability

of base mutation, stationary frequencies and branch lengths) requires to design new

dedicated optimization heuristics.

Partitioned Bayesian analyses have been recently proposed to cope with this

problem. This approach consists in partitioning the supermatrix4 and then applying

appropriate models and their specified parameter estimates to each data partition

and subsequently incorporate this into a single tree search. Bayesian methods to

conduct such partitioned analyses have recently become available [Ronquist and

Huelsenbeck, 2003] and are more and more used [e.g., Brandley et al., 2005; Nylander

et al., 2004]. Recent studies [Bevan et al., 2007] have demonstrated that this is the

best approach to account for gene rate heterogeneity among those so far designed.

These models have the drawback to introduce a huge number of parameters and

this may result in over-parametrized models as unadapted as the under-parametrized

“concatenate” one. Furthermore, as evoked at the beginning of the chapter, gene

phylogenies can differ among them while in the “separate” model the underlying

phylogeny is the same for all partitions.

Another limitation of the supermatrix approach is that some kind of data (e.g.

DNA-DNA hybridization, distance data, morphometric data) cannot be analyzed

under any of the frameworks developed for more usual kind of data (molecular

sequences or morphological traits), i.e., maximum parsimony, maximum likelihood

and Bayesian methods [Bininda-Emonds et al., 2003]. For instance, concatenating

side by side several distance data sets makes no sense. Recently, Criscuolo et al.

[2006] proposed a phylogenomic approach to combine distance data (see Section

3.3.2.6).

Note also that the supermatrix approach is sensible to the relative sizes of data

sets. For instance, if two data sets conflict and one is substantially smaller than the

other, the supermatrix is dominated by the signal of the biggest one. One way to

avoid this behavior is to weight data sets with a weight inversely proportional to

their number of sites, but the use of weighting in phylogenomics is not established

yet.

4Note that each partition can contain more than one gene.
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2.3.2 Combining data through a supertree approach

Supertree construction is a meta-analysis of phylogenetics: results from the analyses

of several smaller data sets are combined together into a larger phylogeny [Sanderson

et al., 1998]. This approach, unlike the supermatrix one, combines phylogenies re-

sulted from smaller analyses rather than combining the underlying data. Supertree

approach can be used to build very large phylogenies from partially overlapping

analyses. It can also be used in some situations where the supermatrix approach

cannot. For instance, input trees can be based on different kinds of data, that is, for

instance, DNA of different genes, morphology, DNA-DNA hybridization. They can

be obtained by different methodologies, for instance, maximum parsimony, maxi-

mum likelihood, neighbor-joining, allowing to use the most adapted for each data

set.

Supertree methods have been strongly criticized [e.g., Rodrigo, 1993, 1996; Slowin-

ski and Page, 1999; Springer and De Jong, 2001] mainly since the source data are

the topologies resulted from the analyses of several smaller data sets form rather

than primary character data. The next sections discuss some of the most relevant

criticisms against this approach.

Inability to account for signal enhancement and the creation of spurious
novel clades

It has been demonstrated [Barrett et al., 1991; Chippindale and Wiens, 1994] that

a supermatrix analysis of two data sets yielding conflicting phylogenetic trees can

produce a phylogeny in which the congruent subsignals in each data set overcome the

individual conflicting primary signals. This phenomenon, called signal enhancement,

cannot occur in supertree construction, which cannot account easily for subsignals

in the original data sets since it combines trees and not the underlying data [Pisani

and Wilkinson, 2002].

The incapability of supertree methods to account for signal enhancement and the

potential for supertree methods to create novel clades not supported by any (com-

bination of) intput tree(s) [Bininda-Emonds and Bryant, 1998] have been strongly

criticized [among others Gatesy et al., 2002; Gatesy and Springer, 2004; Goloboff

and Pol, 2002; Pisani and Wilkinson, 2002; Springer and De Jong, 2001].

Bininda-Emonds [2003] showed that supertree analyses on simulated data sets

are often as accurate as supermatrix analyses of the combined primary character

data and produce few, if any, novel clades. Bininda-Emonds [2004b] suggested that

the inherent loss of information due to the inability to account for signal enhance-

ment is not so harmful in practice. Moreover, the frequency with which clades result

from signal enhancement is not yet adequately documented and this phenomenon

may be very rare. Furthermore, as evoked at page 31, signal enhancement can be

dominated by the signal of the biggest data sets. Additionally, the potential to cre-

ate spurious novel clades is only a feature of some supertree methods (see Section

3.3.2.1) but is not inherent to the supertree approach in general.
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Data Duplication

Gatesy et al. [2002] argued that several supertrees analyses [e.g., Bininda-Emonds

et al., 1999; Liu et al., 2001] contained duplicated data that artificially increase

their impact on the supertree construction, potentially biasing the results. The

continual recycling of phylogenetic data makes difficult to avoid data duplication

in a supertree approach where trees are combined instead of the primary character

data. Bininda-Emonds et al. [2003] pointed out that duplicated data are also present

in supermatrix analysis. For instance, several characters are often described for a

single morphological structure. To avoid data duplication in supertree analyses,

Bininda-Emonds et al. [2004] proposed a formal data collection protocol for selecting

the source phylogenies choosing only those containing what would be considered to

be independent data sets for analyses.

Source Data Quality

Gatesy et al. [2002] criticized several supertree analyses for using data of poor qual-

ity. Bininda-Emonds et al. [2003] argued that «the use of poor data may compromise

the results in any phylogenetic analysis (i.e., including a supermatrix analysis), and

researchers should ensure that all data used are of the highest achievable quality».

A formal data collection protocol for selecting the source phylogenies, as that

proposed by Bininda-Emonds et al. [2004], and the usage of node support estimations

(see Section 1.8) can amend this problem.

Data Accountability

Gatesy et al. [2002] also argued that primary data are explicit in supermatrix anal-

yses contrary to the supertree construction that suffers from a lack of both data

accountability and transparency.

Though this is true, it is not a discriminating element for the choice of the su-

permatrix approach. Indeed, supermatrices may also suffer from both limited data

transparency [Jenner, 2001] and lack of data accountability, since database infor-

mation is known to contain some errors due to vector contaminations, transcription

errors etc. [Bininda-Emonds et al., 2003].

The validity of supertrees as phylogenetic hypotheses

It has been argued that supertrees, as summaries of summaries, are not valid phy-

logenetic hypotheses and, therefore, should not be used to propose new phylogenies

[e.g., Gatesy et al., 2002; Gatesy and Springer, 2004; Springer and De Jong, 2001].

Bininda-Emonds [2004a] claimed that supertrees propose hypotheses of statements

of taxa relationships that have to be evaluated as any other phylogenetic hypothesis.

Discrepancies between supertree and supermatrix analyses issued from the same

data should be treated in the same manner as conflicts between conventional
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phylogenetic analyses.

In 1995, Purvis used the MRP supertree method (see Section 3.3.2.1) to produce

a complete phylogeny for all 203 extant species of primates. From then on, supertree

methods have been used increasingly to construct phylogenetic trees of clades with

several hundred species [e.g., Davies et al., 2004; Pisani et al., 2002; Salamin et al.,

2002]. Bininda-Emonds [2005] hypothesized that probably none of the complete

supertrees that exist containing hundreds of species could have been constructed

using a supermatrix approach.

Bininda-Emonds’ consideration comes mainly from the observation that data

collection is largely uncoordinated and opportunistic [Sanderson et al., 2003] i.e.,

some species are overrepresented, whereas others are drastically underrepresented.

For instance, in March 2004 the GenBank database (http://www.ncbi.nlm.nih.

gov/Genbank/index.html) contained nearly two million carnivore sequences, but

99.6% of them were from the domestic dog [Bininda-Emonds, 2005]. It follows that

the other species were represented by very few genes and sequences. This engenders

a high percentage of missing data in the supermatrix with all associated problems

(see page 30).

2.3.3 The eternal dilemma: supermatrix or supertree?

The supermatrix and the supertree approaches are classically seen as competitive

ways to analyze large data sets. We are convinced that none of the two approaches

is significantly better than the other and that an ad hoc choice has to be done for

each data set, depending on its size, the kind of data and so on. Additionally, these

two approaches can be used simultaneously in order to exploit the strengths and

to counterbalance the weaknesses of each method [among others Bininda-Emonds,

2004a; Fulton and Strobeck, 2006; Higdon et al., 2007]. In Section 4.4 we present a

simultaneous application of the supermatrix and supertree approaches that led us

to disentangle the complex phylogeny of Triticeae (Poaceae).

Moreover, both approaches can be combined in a divide-and-conquer strategy

[e.g., Bininda-Emonds, 2004b; Huson et al., 1999]. As suggested by Gordon [1986],

«the analysis of large data sets could proceed by division into overlapping subsets

which are classified separately and then recombined to provide a single classification».

Many authors [e.g., Bininda-Emonds et al., 2004, 2003, 2002; Gatesy and

Springer, 2004; Huson et al., 1999; Pennisi, 2003; Soltis and Soltis, 2001] share

Gordon’s feeling and are convinced that any attempt to reconstruct large portions

of the Tree of Life requires the use of supertree construction as part of a divide-and-

conquer strategy to phylogenetic reconstruction.

In a divide-and-conquer approach a very large phylogenetic problem is decom-

posed into smaller subproblems, the solutions to which are combined using a su-

pertree approach to derive the global answer (see Daubin et al. [2002] for a practical

example).

Subproblems are both faster to analyze and possibly more accurate than the
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larger problem [Roshan et al., 2004] because «they are both smaller (fewer species)

and of reduced breadth, allowing more data to be used »[Bininda-Emonds, 2005].

We also share Gordon’s feeling. In the next chapters we present an exhaustive

review of supertree methods. We then investigate properties of supertree methods

that are appealing in a divide-and-conquer approach to reconstruct the Tree of Life

and we present two new supertree methods that reconstruct supertrees satisfying

these appealing properties.
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Systematists have been constructing informal supertrees for many years. Since

the last two decades formal definitions of supertrees have been proposed as well as

algorithms to solve the associated computational problems.

The supertree approach uses trees as primary source of information. It

first involves inferring partially overlapping phylogenetic trees (commonly called

source trees) from primary data e.g., amino acids, SINEs or morphological traits.

Source trees are successively assembled into a larger, more comprehensive supertree

[Bininda-Emonds, 2004b]. Such a supertree includes all, or most of, the taxa from

the collection of source trees while preserving the phylogenetic information con-

tained in them [Sanderson et al., 1998]. Ideally, supertrees also state relationships

among taxa that cannot be observed from any single source tree alone but that can

be deduced by combining the information of several source trees.

Supertree methods are also useful, teamed with supermatrix methods, in a

divide-and-conquer approach to reconstruct very large phylogenies: first, the set

of data is divided into large but tractable subsets that are analyzed individually,

then the resulting phylogenies are combined to reconstruct the global phylogeny

[Bininda-Edmonds and Stamatakis, 2006; Bininda-Emonds, 2005].

Supertree methods can be classified into three categories, depending on the way
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they deal with topological conflicts, i.e., different arrangements of the same taxa

among source trees.

The first suite of methods cannot handle incompatible source trees. The pio-

neering methods that belong to this category are Build (Aho et al. [1981], Section

3.3.1.1) and the strict consensus supertree (Gordon [1986], Section 3.3.1.4). Since,

as most systematics know, phylogenies usually conflict with one another [Bininda-

Emonds, 2004c, p4], those methods are of limited use.

Liberal methods resolve conflicts [Thorley and Wilkinson, 2003], asking source

trees to vote and opting for the topological alternative that maximizes an opti-

mization criterion [Baum and Ragan, 2004; Chen et al., 2006; Page, 2002; Semple

and Steel, 2000; Snir and Rao, 2006]. The hope is that each taxon is erroneously

placed in only few source trees and this erroneous information will be overcome by

the large number of source trees where the taxon is correctly placed. Some exam-

ples of vote kind methods are Matrix Representation with Parsimony (MRP, Baum

[1992]; Ragan [1992], Section 3.3.2.1), Modified-MinCut (mmc, Page [2002], Section

3.3.1.3) and the Average Consensus Supertree (Lapointe and Cucumel [1997], Sec-

tion 3.3.2.6). Supertrees proposed by liberal methods are often highly resolved and

accurate, though several authors have shown that this approach can lead to propose

supertrees containing clades that contradict all source trees [Cotton et al., 2006;

Goloboff, 2005; Goloboff and Pol, 2002].

In contrast, veto methods do not allow the resulting tree to contain clades that

contradict source trees. They adopt a veto philosophy: the phylogenetic information

of every source topology is to be respected, and the supertree is not allowed to

contain clades that a source tree would vote against. These methods remove conflicts

[Thorley and Wilkinson, 2003] either proposing multifurcations in the supertree

[e.g., Goloboff and Pol, 2002] or pruning rogue taxa [e.g., Berry and Nicolas, 2004,

2007]. Some examples of veto kind methods are extensions of the strict consensus

[e.g., Gordon, 1986; Huson et al., 1999], the semi-strict supertree [Goloboff and

Pol, 2002, Section 3.3.2.4], SMAST and SMCT [Berry and Nicolas, 2004, 2007]

and PhySIC (Ranwez et al. [2007a], Section 4.2). PhySIC_IST (Scornavacca et al.

[2008], Section 4.3) is the unique veto method that allows to reconstruct supertrees

with multifurcations that can also lack some taxa of the forest.

Liberal and veto supertree methods can be further divided in direct and indirect

supertree methods. The former supertree methods (e.g Modified-MinCut and

PhySIC) directly combine the input trees while indirect supertree methods (e.g

MRP and the Average Consensus Supertree) convert input trees into another

kind of data (binary sequences, distances) that is then analyzed using a classical

phylogenetic tree reconstruction method.

The supertree problem is a generalization of a simpler one, called the consensus

problem, that consists in summarizing a set of trees that classify the same objects

into one tree. Thus, although supertree methods will work in the consensus setting,

the reverse does not hold. The consensus problem is a general computational prob-

lem in classification [Barthélemy and Guenoche, 1991]. In phylogenomics, consensus
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methods are mainly used to:

1. combine several optimal trees for a single data set;

2. combine several trees issued from a bootstrap analysis of a unique data set;

3. combine several trees issued from the analysis of different data sets;

4. compare several trees to assess how much agreement there is among them.

There are numerous methods to combine trees over the same taxa (consensus) or

different taxa (supertree) sets. Section 3.1 gives a formal definition of phylogenetic

trees and introduces some notations that will be useful later on in this chapter.

Section 3.2 presents several consensus methods, some of which have been extended

into supertree methods. Finally, Section 3.3 describes various supertree methods.

3.1 Basic concepts

An unrooted phylogenetic tree T (see Figure 3.1) consists of nodes connected by

branches (or vertices connected by edges in a mathematical vocabulary), in which

any two nodes are connected by exactly one path and with no node is of degree

two. A rooted phylogenetic tree (see Figure 3.2) is defined in the same way, except

that it has exactly one node, called the root of the tree, that can have degree two.

Rooted phylogenetic trees can also be defined as directed trees1 with a unique node

with indegree zero called root. Terminal nodes, called also leaf nodes, are defined in

unrooted trees as nodes with degree one and as nodes with outdegree zero in rooted

trees. Leaf labels are also called taxa. Leaf nodes are labeled, while other nodes,

called internal nodes, are usually left unlabelled.

In rooted phylogenetic trees each internal node represents the most recent an-

cestor common of its descendants2. An unrooted phylogenetic tree is binary if every

internal node has degree three. In a binary rooted phylogenetic tree, all internal

nodes have degree three, except the root which has degree two.

The set of leaf nodes, resp. internal nodes, of T is denoted by L(T ), resp. I(T ),

while L(T ) denotes the label set of T. If v is a leaf node, we denote by lv its label.

These labels represent often taxon names but they can also correspond to gene names

or other entities of interest. A leaf-labelling of T is a function α : L(T ) −→ L(T ). In

this chapter we suppose that α is a bijection but in Chapter 5 we will treat the case

of surjective leaf-labellings. A phylogenetic tree is formally a pair (T, α). Informally,

we refer to this pair as the phylogenetic tree T . Phylogenetic trees are also called

semi-labelled trees, since only leaf nodes are labeled [Semple and Steel, 2003]. A

collection of trees is also called a forest. Given a forest F , L(F) denotes the set of

labels appearing in at least one tree of F , that is L(F) = ∪T∈FL(T ). We define by

1When drawing rooted trees the direction of the branches is not indicated explicitly but can be

deduced from the placement of the root since all branches are direct away from it.
2This means that the root node represents the most recent common ancestor of all the entities

at the leaves of the tree.
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Tv the subtree of T with v as root. Given a rooted tree T and a leaf set L ⊆ L(T ),

we say that u ∈ T is the least common ancestor (lca) for the set L if and only if u

is the node that is located farthest from the root of T such that L ⊆ L(Tu).

The Newick format

Note that this manuscript we represent trees in Newick format (see http://

evolution.genetics.washington.edu/phylip/newicktree.html). For a rooted

tree T , its Newick format is computed recursively. Let N (u) denote the Newick

format of a node u. If u is a leaf, then N (u) = lu. If u is an internal node,

then N (u) = (N (u1), · · · ,N (uk)), where u1,...,uk
are the child nodes of u. For an

unrooted tree, we first root it on whatever node.

For instance, the Newick format of the rooted tree in Figure 3.2

is (((a, b), c), ((e, f), d)) while for the unrooted tree in Figure 3.1 it is

((a, b), c, ((e, f), d).

Bootstrap values, branch lengths and comments can be also integrated in the

Newick format.

3.1.1 Splits and clusters

Splits

Given a phylogenetic tree T and S ⊆ L(T ), we denote by T |S the homeomorphic

subtree of T induced by the taxa in S. We say that a tree T refines a tree T � if and

only if T � can be obtained by collapsing branches in T , i.e., deleting some branches

of T and identifying their endpoints. A tree T is said to display a tree T � if and

only if the tree T |L(T �) refines T �. Given a label set L, a split A|B on the label set

L is a partition of L into two non-empty sets. A phylogenetic tree T induces a set

of splits S(T ) since each branch x ∈ T leads to a split on L (see figure 3.1). More

precisely, the split associated to a branch (u, v) of T is L(Tu)|L(Tv), where Tu and

Tv are the two rooted trees obtained from T when removing (u, v). A split A|B is

trivial if |A| = 1 or |B| = 1.

a

b

c

e

f

d

abc¦def

Figure 3.1: Example of unrooted phylogenetic tree T - The set of splits S(T )
contains six trivial splits: a|bcdef , b|acdef , c|abdef , d|abcef , e|abcdf , f |abcde and

three non-trivial splits: ab|cdef , abc|def , ef |abcd.

Given a collection of splits S, we say that S is compatible if there exists an
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unrooted tree T such that every split in S is a split of T, i.e., S ⊆ S(T ). Two

splits A1|B1 and A2|B2 are compatible if at least one of the sets A1 ∩A2, A1 ∩B2,

B1 ∩ A2 or B1 ∩ B2 is the empty set [Buneman, 1971]. The compatibility of splits

is an easy problem to solve since Buneman [1971] proved that a collection of splits

S is compatible if and only if all splits are pairwise compatible.

Clusters

Given a label set L, a group is a subset of L. Given a rooted phylogenetic tree T ,

a group G is said monophyletic on T if and only if T contains a node v such that

L(Tv) = G.

a b c fed

{a,b,c}

Figure 3.2: Example of rooted phylogenetic tree T - The set of clusters C(T )
contains seven trivial clusters: {a}, {b}, {c}, {d}, {e}, {f}, {a, b, c, d, e, f} and four

non-trivial clusters: {a, b}, {a, b, c}, {e, f}, {d, e, f}.

The monophyletic groups of a tree T are called clusters of T (see Figure 3.2).

A rooted phylogenetic tree T induces a set of clusters C(T ) since each node v ∈ T

corresponds to a cluster on L. A cluster C is trivial if |C| = 1 or |C| = |L(T )|. The

number of non-trivial clusters of a rooted phylogenetic tree then equals its number

of internal nodes. Note that, if T and T � are two rooted phylogenetic trees on the

same leaf set such that T refines T �, then T contains all clusters of T �. Given a

collection of groups C, we say that C is compatible if there exists a rooted tree T

such that every group in C is a cluster of T , i.e., C ⊆ C(T ). Two groups C1 and C2

such that either C1 is contained in C2, or C2 is contained in C1, or C1 and C2 are

disjoint are called compatible. A collection of groups C is compatible if and only if

its groups are pairwise compatible.

Several algorithms have been proposed to reconstruct the tree displaying a set

of compatible splits or clusters [e.g., Gusfield, 1991; Meacham, 1983].

3.1.2 Quartets and triplets

Quartets

For a set of four leaves {a, b, c, d} in L(T ) there exist only three unrooted binary

trees, called quartets and denoted by ab|cd, resp. ac|bd, resp. bc|ad, depending on

how the central edge splits the four species. We say that T induces or displays the

quartet ab|cd if T |{a,b,c,d}=((a,b),(c,d)). For instance, the tree T1 depicted in Figure

3.3 induces, among others, the quartet ab|cd. If a tree does not induce any quartet
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for {a, b, c, d}, we say that {a, b, c, d} is unresolved in T. Any unrooted tree T can

be equivalently described by the set of quartets that it induces [Bandelt and Dress,

1986]. In other words, this set, denoted by Q(T ) (see Figure 3.3 for an example),

suffices to reconstruct T .

b dc

(T! )

a

b

c

d

(T" )

e

a

Figure 3.3: Examples of a set of triplets and a set of quartets induced by
two trees - The set of quartets Q(T1) contains five quartets i.e., ab|cd, ab|ce, ab|de,
ce|ad and ce|bd. The set of triplet R(T2) contains four triplets i.e., ab|c, ab|d, cd|a
and cd|b.

Given a collection F of unrooted phylogenetic trees, Q(F) denotes the set of

quartets present in these phylogenetic trees, i.e., Q(F) =
�

Ti∈F
Q(Ti). A set Q of

quartets is compatible if there is a tree T that displays all quartets in Q.

If a quartet set Q on a label set L is complete i.e., if Q contains at least one

resolution for every set of four labels of L, then the compatibility of Q can be

easily decided [Bandelt and Dress, 1986, Proposition 2]. If Q is not complete,

quartet compatibility is an NP-complete problem [Steel, 1992, Theorem 1]. Given

a compatible forest of unrooted trees F , we say that T is a parent tree for F if and

only if Q(F) ⊆ Q(T ). To each split A|B of an unrooted tree T we can associate a

set of quartets q(A|B) defined as follows:

q(A|B) = {aa�|bb� : a, a� ∈ A, b, b� ∈ B}.

Then, we can define the quartet set of a tree T from its set of splits since Q(T ) =
�

A|B∈S(T ) q(A|B).

Triplets

In the same way, we can define the set of triplets induced by a rooted phylogenetic

tree. Given a rooted tree T , for a set of three labels or equivalently leaves {a, b, c}
in L(T ) we denote by T |{a,b,c} the homeomorphic subtree of T induced by the leaves

labeled by a, b, and c. If T is binary, T |{a,b,c} can be any of the three possible rooted

binary trees on {a, b, c}. These binary trees on {a, b, c} are called triplets and are

denoted by ab|c, resp. ac|b, resp. bc|a, depending on the unique non-trivial cluster

in T |{a,b,c} ({a, b}, resp. {a, c}, resp. {b, c}). We say that T induces or displays

the triplet ab|c if T |{a,b,c}=((a,b),c). For instance, the tree T2 depicted in Figure

3.3 induces, among others, the triplet ab|d. If T is not binary it may happen that

T |{a,b,c} contains only the trivial cluster {a, b, c}. In this case we say that {a, b, c}
is unresolved in T and denote T |{a,b,c} by the trichotomy (a, b, c). Given a triplet t,

t̄ denotes any of the two other triplets on the same set of leaves.
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Any rooted tree T can be equivalently described by the set of triplets homeo-

morphic to its subtrees connecting three leaves (see among others Grunewald et al.

[2007]). This triplet set is denoted by R(T ) (see Figure 3.3 for an example). Given a

collection F of rooted phylogenetic trees, R(F) denotes the set of triplets present in

at least one tree of F , i.e., R(F) =
�

Ti∈F
R(Ti). A set R of triplets is compatible

if and only if there is a tree T that displays all triplets in R. The compatibility

of a set of triplets can be decided in polynomial time [Aho et al., 1981]. Given a

compatible forest of rooted trees F , we say that T is a parent tree for F if and only

if R(F) ⊆ R(T ).

3.1.3 Interpretations of polytomies

In a phylogenetic tree, nodes with more than two children are called polytomies.

Polytomies can be interpreted in different ways.

First, a polytomy can represent a common ancestral population splitting through

speciation into multiple lineages. In this case, the polytomy is usually said to be

hard.

Second, polytomies can represent an uncertainty for which resolution of the

node’s child subtrees or lineages is the best hypothesis. In this case polytomies are

said to be soft. A soft polytomy can have two distinct interpretations, differing in

the set of admissible binary phylogenies it encompasses. Consider a soft polytomy

with three child nodes forming three clusters S1, S2 and S3.

The most widespread meaning of a soft polytomy accepts any fully-resolved

tree on S1, S2, S3 that keeps them separated: ((S1, S2), S3), ((S1, S3), S2) or

((S2, S3), S1). Most of the methods that we present in this chapter interpret poly-

tomies in this way.

A second interpretation of soft polytomies was introduced by the Adams con-

sensus [Adams, 1972, Section 3.2.2.1] and is also intended by mc [Semple and Steel,

2000, Section 3.3.1.2] and mmc [Page, 2002, Section 3.3.1.3]. This interpretation

accepts as possible phylogeny any fully-resolved tree that maintains the structure of

each subtree respectively, no matter whether or not S1, S2 and S3 are kept separate

or are interleaved. In this case, we say that the polytomy is an Adams polytomy.

Under this interpretation, a soft polytomy represents a much wider range of fully-

resolved phylogenies than with the first interpretation, and its meaning is thus harder

to grasp.

For instance, for the tree (((a, b), c), d, e), if soft polytomies are interpreted in the

common way, we have three admissible binary phylogenies, i.e., {((((a, b), c), d), e),
((((a, b), c), e), d), (((a, b), c), (d, e))}. If the polytomy is interpreted as an Adams

one the set of admissible binary phylogenies is comprised of 35 binary trees, e.g,

{((((a, b), d), c), e), {((((a, e), b), c), d), etc., on the 105 possible binary trees on five

taxa. This explains why the first interpretation of soft polytomies prevails in phy-

logenetics.

In this manuscript polytomies are interpreted as soft. Since a tree cannot be in-

terpreted without knowledge of how the method that is used to produce it interprets
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polytomies, in this chapter we will mention when methods interpret soft polytomies

as Adams polytomies and not in the common way. In the next section we present a

review of the most used consensus methods.

3.2 Consensus methods for phylogenetic trees

As stated at the beginning of this chapter, a fundamental problem in classification of

biological data is the question of how to combine the information contained in a set

of trees that classify the same objects into one tree. Recall that the consensus tree

problem requires that input trees have identical sets of taxa. The use of consensus

methods to summarize several trees issued from a unique data set or to compare

trees is widely accepted. More controversial [Barrett et al., 1991] is the use of such

methods for the combination of trees issued from different data sets, i.e., as a tool for

new phylogenetic inferences, since the construction of most consensus trees is guided

by the comparison and the combination of tree topologies, rather than phylogenetic

inference criteria. In this section we present the most used consensus methods, with

the pros and cons of each of them.

The first methods presented below (sections 3.2.1.1-3.2.1.6), except the asym-

metric median tree in Section 3.2.1.4, are all defined for both unrooted and rooted

forests. For the sake of simplicity they are only described here in the unrooted setting

but all of them can be applied to rooted forests (e.g., replacing, in the definitions,

splits with clusters).

a d

c f

b e

a d

c f

b e

a e

c d

b f

a e

c d

b f

Figure 3.4: Example of a forest of unrooted phylogenetic trees F - The trees

in this forest are used to illustrate the five consensus methods presented in sections

3.2.1.1-3.2.1.6.

3.2.1 Consensus methods defined for both rooted and unrooted
forests

3.2.1.1 Strict consensus tree

The strict consensus tree [McMorris et al., 1983; Sokal and Rohlf, 1981] of a collection

F of unrooted trees is the tree that contains exactly the splits shared by all input
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trees (see Figure 3.5 for an example) i.e., the tree T such that:

S(T ) =
�

Ti∈F

S(Ti).

The main advantage of the strict consensus is the simplicity of interpretation: the

splits that appear in all the input trees can be considered as reliable. Though strict

consensus trees were called Nelson trees in Schuh and Farris [1981], Page [1989]

demonstrated that these two methods are not equivalent (see Section 3.2.1.6 for a

description of Nelson trees).

a d

c f

b e

Figure 3.5: Example of strict consensus tree for the forest depicted in
Figure 3.4 - For this forest the strict and the majority-rule consensus trees are

identical.

The strict consensus tree tends to display numerous polytomies [Funk and

Brooks, 1990; Wilkinson, 1996]. This behavior is sometimes due to incongruence

among the source trees and sometimes to undesirable properties of this consensus

method [Wilkinson, 1995]. Wilkinson and Thorley [2001] proposed a measure of

Consensus Efficiency (CE) that can help to understand whether the lack of resolu-

tion of the strict consensus tree is due to a strong disagreement between input trees

or not. The CE measure can be used to evaluate the efficiency of all strict consen-

sus methods sensu Wilkinson [1994] i.e., methods that retain unanimous agreement

among the source trees.

The use of the strict consensus method to combine trees issued from different

data sets has been criticized by the promoters of the parsimony approach because

the returned tree can be less parsimonious than that obtained by an MP analysis on

the concatenation of all data sets (see the MRP method in Section 3.3.2.1). Other

criticisms come from the advocates of the total evidence approach (Chapter 2) since

the strict-consensus tree can be incompatible with the total evidence tree [Barrett

et al., 1991]. The latter remark is valid for all consensus methods, since all consensus

trees refine the strict consensus tree [see Bryant, 2003].

3.2.1.2 Majority-rule consensus tree

The majority-rule consensus tree of a collection F of unrooted trees is the tree

that contains exactly the splits shared by strictly more than 50% of input trees

[Barthélemy and McMorris, 1986; Margush and Mcmorris, 1981]. See Figure 3.5 for

an example. The 50% rule ensures that all retained splits are compatible since each
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pair of splits appears simultaneously in at least one tree. Given two trees T1 and

T2, the symmetric distance between T1 and T2, denoted by dS(T1, T2), is defined as

the number of splits appearing in one tree but not the other [Robinson and Foulds,

1981]. Barthélemy and McMorris [1986] proved that the majority-rule tree T for a

forest F minimizes:

dS(T,F) =
�

Ti∈F

dS(T, Ti) (3.1)

Hence, the majority-rule tree is also a median tree with respect to the symmetric

distance metric. Several supertree methods are also based on a median tree approach

(see Section 3.3.3). Note that the majority-rule consensus tree is not necessarily the

unique median tree. More precisely, Dong and Fernandez-Baca [2009] have recently

shown that majority-rule consensus is the strict consensus of all median trees.

The majority-rule tree is often used to summarize bootstrap trees. Sharkey

and Leathers [2001] criticize the use of this consensus method to combine several

optimal trees for a single data set, claiming that majority-rule consensus tends to

equate reliability with ambiguity. Indeed, ambiguity in the data set can cause an

ambiguous topology, i.e., a topology displaying several polytomies, to be repeated

among the input trees and therefore preferred by this method.

3.2.1.3 Semi-strict consensus tree

When some input trees are not binary, splits that are never contradicted

may occur in some of the trees but not be retained by the two previ-

ously described consensus methods. For example, consider a collection F =

{((a, b), (c, d)), (a, b, c, d), (a, b, c, d), (a, b, c, d)}. In this case, the split ab|cd would

not be retained neither in the strict consensus tree nor in the majority-rule con-

sensus tree, even though this information is present and not contradicted by any

tree (for another example see Figures 3.5 and 3.6). However, this split is retained

in the semi-strict consensus tree, defined as follows: the semi-strict consensus tree,

or combinable component tree [Bremer, 1990], of an unrooted tree collection F is

the tree that contains exactly those splits of S(F) compatible with every tree in F .

This consensus method has been criticized (among others by De Queiroz [1993]) for

a d

c f

b e

Figure 3.6: Example of semi-strict consensus tree for the forest depicted
in Figure 3.4 - The semi-strict consensus trees contains the split ab|cdef which,

although not contradicted by any tree, is not included neither in the strict consensus

tree nor in the majority-rule consensus tree. For this forest the semi-strict and the

Nelson-Page consensus trees (Section 3.2.1.6) are identical.
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the fact that the resulting tree can contain splits that appear in only one of the

input trees. Some authors consider the information contained only in one tree as

unreliable but, as Bryant [2003] has pointed out, it is not likely for a split to be

compatible with a random tree, so we can reasonably rely on this information.

Note that the semi-strict consensus tree refines the strict consensus tree and that

they are equal when all source trees are binary.

3.2.1.4 Asymmetric median tree (defined only for unrooted trees)

Given two unrooted trees T1 and T2, we define the asymmetric distance between T1

and T2, denoted by dA(T1, T2), as the number of splits appearing in T2 but not in

T1. The asymmetric median tree, or AMT [Phillips and Warnow, 1996] for a forest

of unrooted trees F is the tree minimizing:

dA(T,F) =
�

Ti∈F

dA(T, Ti).

Since the AMT problem for k trees is equivalent to the maximum independent set

problem on k-colored graphs [Phillips and Warnow, 1996], the former problem is

NP-hard for more than two trees. Note that this definition can be easily extended

to the supertree context.

The next two consensus methods are related to the notion of AMT.

3.2.1.5 Greedy consensus tree

The strategy for constructing a greedy consensus tree, also called majority-rule ex-

tended tree [Felsenstein, 2005], consists in building up from the empty set a collec-

tion of compatible splits S by considering splits one at time in decreasing order of

frequency and adding them to S if they are pairwise compatible with all splits pre-

viously added to this set. The greedy consensus tree of F is the tree that contains

exactly the splits in S. Note that this can be seen as a greedy heuristics to find

the AMT [Bryant, 2003]. Greedy consensus trees, as semi-strict consensus trees,

can contain splits appearing in only one of the input trees. Since all bipartitions

with frequency greater than |F|/2 are compatible, a greedy consensus tree always

refines the majority-rule consensus tree. The main problem with this greedy ap-

a d

c f

b e

a e

c d

b f

(i) (ii)

Figure 3.7: Example of greedy consensus trees for the forest depicted in
Figure 3.4 - The tree (i) is obtained if the split de|abcf is preferred to the split

ef|abcd, otherwise we obtain the tree (ii).



48 Chapter 3. Methods for combining trees

proach is that when two or more splits appear with the same frequency < 50%,

they can be incompatible and one is arbitrarily chosen, eventually preventing the

insertion of other splits that are incompatible with it. This arbitrary decision may

potentially give rise to different greedy trees (see Figure 3.7 for an example). Berger-

Wolf [2004] presented an algorithm returning all possible greedy refinements of the

majority-rule consensus tree in O(m|L(F)|) time, where m is the number of possible

greedy consensus trees.

3.2.1.6 Nelson and Nelson-Page consensus trees

The Nelson consensus tree [Nelson, 1979] of a collection F of unrooted trees is

the tree, if it exists, that contains exactly the splits found in at least two trees

(called replicated components or replicated splits) plus all other unreplicated splits

compatible with all replicated splits. This definition is founded on the assumption

that information appearing in two or more trees is highly likely to be reliable.

When exactly two trees are compared, the Nelson consensus tree is equivalent to

the semi-strict consensus tree [Bremer, 1990]. In the literature the strict consensus

tree has often been confused with the Nelson consensus tree and most Nelson con-

sensus trees published in the past are in fact strict consensus trees. According to

Page [1989], the Nelson consensus tree is equivalent to the strict consensus tree if F
contains only two trees. Swofford [1991] proved that this is true only if the two trees

are both binary. Indeed, in such a case any unreplicated split will be incompatible

with at least one split appearing in the other tree.

The main problem with Nelson’s definition is that if the set of replicated splits

is not compatible the method cannot return a tree [among others McMorris et al.,

1983; Page, 1990]. Moreover, even for compatible forests, Nelson’s definition is

ambiguous. Indeed, if there are several distinct groups of unreplicated splits that

are compatible with the replicated splits but mutually incompatible, we need to

choose arbitrarily one of these groups, since Nelson gives no indication on how to

break ties. As in the greedy consensus method, this can potentially lead to propose

different consensus trees.

Page [1990] addressed these problems several years later by proposing what is

now known as the Nelson-Page consensus tree. Page calls cliques of compatible splits

the sets of splits such that every splits in the set is compatible with every other splits

in the set. Each split appearing in the original trees is assigned a weight equal to

its frequency in F minus one and each clique of compatible splits is assigned a score

equal to the sum of the weights of its splits. Note that unreplicated splits, having a

weight of zero, do not contribute to the clique score3. If there is a single clique with

the highest score, its splits are used to construct the Nelson-Page consensus tree. In

case of several maximum weight compatible cliques then the splits included in the

Nelson-Page consensus tree are those common to all maximum weight compatible

cliques. Splits found in some but not all of the highest score cliques are classified

as ambiguous. Nelson consensus and Nelson-Page consensus return the same tree

3That is why the weight of a split is set to its frequency in the forest minus one.
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if the set of replicated splits is compatible and no unreplicated split is compatible

with this set. For the forest depicted in Figure 3.4 on page 44, the Nelson consensus

tree is not defined since the set of replicate splits is not compatible (as it contains

both de|abcf and ef |abcd), while the Nelson-Page consensus tree coincides with the

semi-strict consensus tree (see Figure 3.6). No unreplicated split is included in the

Nelson-Page consensus tree but the algorithm can be easily adapted to consider also

these splits [Swofford, 1991].

One drawback of this approach is that finding a maximum compatible subset

of characters (in this case the maximum weight compatible cliques) is an NP-hard

problem [Day and Sankoff, 1986].

For unrooted forest, if unreplicated splits are allowed to contribute to the score4,

the Nelson-Page tree is also a median tree with respect to the asymmetric distance

metric [Bryant, 2003].

3.2.1.7 The MAST trees

The MAST (Maximum Agreement SubTree) problem has been introduced in phylo-

genetics by Finden and Gordon [1985]. It consists in finding the maximum agreement

subset tree for a forest F .

Definition 3.2.1 Given a forest of trees F , an agreement subtree T is a tree such

that L(T ) ⊆ L(F) and T = Ti|L(T ) ∀Ti ∈ F.

The maximum agreement subtree for a forest F is an agreement subtree with the

maximum number of leaves i.e., TM is a MAST for F if and only if |L(TM )| =
max(|L(Tj)|) ∀Tj ∈ FAG, where FAG is the set of agreement subtrees for F . Note

that the number of MAST for a given forest can be exponential although |L(TM )|
is unique. Finden and Gordon [1985] proposed a heuristic approach to the problem.

The first exact polynomial algorithm for forests of only two trees was proposed

by Steel and Warnow. Then, numerous algorithms have been proposed. Currently,

we dispose of:

• an O(
√
dn log(n) algorithm [Przytycka, 1997] and an O(

√
dn log2(n

d
) algorithm

[Kao et al., 2001] for two rooted trees, where n = |L(F)| and d is the maximum

degree of the input tree nodes;

• an O(n1.5) algorithm for two unrooted trees [Kao et al., 1999], where n =

|L(F)|.

This problem has been proved NP-hard for more than two trees but can be solved in

polynomial time for forests with bounded degree [among others, Amir and Kesel-

man, 1997; Bryant, 1997; Farach et al., 1995; Guillemot and Nicolas, 2006]. More-

over, an FPT algorithm has been proposed for unbounded degree forests [Berry and

Nicolas, 2006]. The MAST is particularly useful when only a few taxa are responsi-

ble for the incongruence among the input trees, providing a way of identifying rogue

4We just need to assign to each split in an unrooted forest a weight equal to its frequency in F .
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taxa. For instance, the trees (((a, b), c), d, e) and ((a, c), (b, d), e) are homeomorphic

if taxon b is pruned from both trees so their MAST is ((a, c), d, e). Other methods

that are useful to detect rogue taxa are the Adams consensus (see Section 3.2.2.1),

in the consensus setting and the SMAST (Section 3.3.4.1) and PhySIC_IST method

(Section 4.3), in the supertree setting.

A variant of the MAST consists in finding the maximum compatible subtree

(MCT) for a forest F i.e., a tree T such that T refines all trees Ti|L(T ) ∀Ti ∈ F
and has the maximum number of leaves. This problem has been shown NP-hard

on two rooted trees if one of them is of unbounded degree [Hein et al., 1996]. A

O(n2d+1
+kn3) time algorithm has been recently proposed by Guillemot and Nicolas

[2006]. Moreover, an FPT algorithm has been proposed for unbounded degree forests

[Berry and Nicolas, 2006]. As the MAST, the MCT tree may not be unique.

Both MAST and MCT problems have been adapted to the supertree setting (see

Section 3.3.4.1).

3.2.2 Consensus methods defined only for rooted forests

We now focus on consensus methods defined only for rooted forests.

3.2.2.1 Adams consensus tree

Adams [1972] presented «a new problem in the science of classification... along with

its solution ». The Adams consensus is the first consensus method ever proposed.

There are two versions of this method, one for fully-labeled trees and one for semi-

labeled ones. As previously mentioned, here we focus on the latter kind of trees.

Describing his method, Adams claimed that the consensus tree of two or more

trees has to contain only the information shared by all trees and that information

not represented in all trees should not be represented in the final consensus tree.

Though this sounds as restrictive as the strict consensus definition, we will see

that the Adams consensus often preserves more structures than the strict one. The

Adams consensus is based on the idea that a tree should be thought of as a «set of

leaf subset nestings» rather than as a «set of clusters». A group of a taxa A nests

within a larger group B if A is included in B, i.e., if the least common ancestor

(lca) of all elements of A is a descendant of the lca of all element of B. Since based

on ancestor-descendant relationships, this method can only be used for rooted tree

forests.

Before describing the algorithm we need to introduce two more definitions: the

product of partitions and the maximal cluster partition for a tree. Given a set of

taxa L and k partitions C1, C2, ..., Ck of L, the product of these partitions is the

partition where two taxa a and b are in the same block if and only if they are in

the same block for each Ci. This product is denoted by
�

Ti∈F
C(Ti). For example,

the product of abc|de and ad|bce is a|bc|d|e. Now, the maximal cluster partition

for a rooted tree T is the partition CM (T ) of L(T ) whose blocks correspond to the

maximal clusters of T , i.e., the largest non trivial clusters in T . For instance, for
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the tree T1 is Figure 3.8, the maximal clusters of T are (a, b, c, d, e) and (f, g), so its

maximal cluster partition is abcde|fg.

Algorithm 1: AdamsTree(F) (adapted from [Bryant, 2003])

Data: A rooted tree forest F = {T1, T2, · · · ,Tk}.
Result: The Adams consensus for F .

if ( T1 contains only one leaf ) then1

return T1; //note that |L(T1)| = |L(T2)| = · · · = |L(Tk)|2

else3

TA is a tree composed by a new node r;4

CM (F) ←
�

Ti∈F

CM (Ti);
5

foreach block B of CM (F) do6

TA
B ← AdamsTree(T1|B, T2|B, · · · , Tk|B);7

add the root node of TA
B as son of r in TA;8

return TA ;9

The Adams consensus tree for a forest F is calculated recursively computing

at each step the maximal cluster partitions CM (Ti) for all trees Ti in F and then

calculating the product CM (F) of these partitions, i.e., CM (F) =
�

Ti∈F
CM (Ti).

The Adams consensus tree TA for F is composed at the beginning of only one node.

For each block B in CM (F), the Adams consensus tree of the restriction of F to B is

calculated (recursively) and the root node of the resulting tree is added as son of TA.

The recursion stops when the forest given as input consists of trees with only one

node (see Algorithm 1). An example of Adams consensus tree computation is given

in Figure 3.8. An advantage of this method is that it often preserves more structure

than the strict consensus method. A drawback is that the Adams consensus tree

may contain clusters that do not occur in any of the input trees [Rohlf, 1982; Sokal

and Rohlf, 1981], which makes its interpretation difficult. For example, the Adams

consensus tree for (a, (((b, e), c), d)) and (a, (((b, d), c), e)) is (a, ((b, c), d, e)). The

cluster (b, c) in the Adams consensus tree, not present in any input tree, means

only that b and c are more closely related to each other than either is to a, d, or

e. In this case the strict consensus tree would be completely unresolved. McMorris

et al. [1983] argued that Adams’ method lacks a compelling justification and its

popularity is primarily a consequence of its historical precedence. In response to

criticism, Adams [Adams, 1986] showed that the Adams consensus tree is the unique

tree TA that satisfies the following two conditions:

(i) if a group of taxa X nests a group Y in all input trees, then X nests Y in TA;

(ii) given a couple of clusters X,Y of TA such that X ⊆ Y , then X nests in Y in

every input tree.

A consequence of these nesting properties is that the Adams consensus tree TA also
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Figure 3.8: Example of Adams consensus tree (Section 3.2.2.1) for a forest
comprised of two trees T1 and T2 - The computation of the Adams consensus

tree for this forest requires 3 recursive steps.

preserves the triplet information shared by all input trees, without introducing new

triplets with respect to the input trees [Bryant, 2003] i.e.,

�

Ti∈F

R(Ti) ⊆ R(TA) ⊆
�

Ti∈F

R(Ti).

This type of consensus tree is useful for identifying rogue taxa, i.e., taxa whose

position greatly differs from one input tree to another. For example, the rooted

trees T1 = ((((((a, b), c), d), e), f), g) and T2 = ((((((a, g), c), d), e), f), b) have the

same shape (i.e., they are equivalent if leaf labels are not taken into account) but

differ in the positions of taxa b and g. The Adams consensus tree puts these taxa at

the most inclusive position that each occupies in any of the input trees. Since each

of the taxa was positioned at the basis of T1 or T2, both are moved to the basis of

the Adams consensus tree i.e., TA = (((((a, c), d), e), f), b, g). Note that the Adams

consensus method interprets polytomies as Adams polytomies (see Section 3.1.3).

Several properties of the MinCut supertree are defined with respect to the Adams

consensus (see Section 3.3.1.2 for more details).

Some recent methods are also useful for identifying rogue taxa both in the con-

sensus setting i.e., the afore-descrived MAST method (see Section 3.2.1.7) and in

the supertree setting i.e., the SMAST and PhySIC_IST methods, respectively pre-

sented in sections 3.3.4.1 and 4.3. For the afore-described forest, those methods
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propose the tree (f, (e, (d, (a, c)))), containing neither b nor g.

3.2.2.2 Local consensus trees

Kannan et al. [1998] proposed a set of methods that aim to construct consensus trees

containing a maximum number of triplets considered as reliable and a minimum

number of triplets considered as unreliable.

The construction of local consensus trees [Kannan et al., 1998] is based on the set

of rooted triplets R(F) (see Section 3.1). Recall that, given a triplet t, t̄ denotes any

of the two other triplets on the same set of leaves. Kannan et al. [1998] distinguish

three categories of triplets in R(F):

1. constant triplets : the triplets common to all Ti ∈ T i.e., {t|t ∈ �

Ti∈F
R(Ti)};

2. compatible triplets : the triplets for which F contains just one resolution or a

trichotomy i.e., {t|t̄ /∈ R(F)};

3. incompatible triplets : triplets for which F contains several resolutions i.e.,

{t|t̄ ∈ R(F)}.

Kannan et al. [1998] focused on the first two sets5 and they defined the three con-

sensus methods6 described in this section. Note that these methods are defined in

the Kannan et al.’s paper only for collections of two trees but we can easily extend

their definitions to forests of more than two trees.

Definition 3.2.2 (adapted from Kannan et al. [1998]). A rooted tree T is an RV-I

of a forest of rooted trees F if T leaves unresolved all triples {a, b, c} ∈ L(F) on

which the trees in F disagree or which are unresolved in all trees of F and preserves

a maximum number of constant triplets.

The authors prove that the RV-I tree always exists, is unique and, for a forest of

two trees, coincides with the strict consensus tree.

Definition 3.2.3 (adapted from Kannan et al. [1998] ). A rooted tree T is an RV-

II of a forest of rooted trees F if T preserves the topology of all constant triplets and

leaves unresolved a maximal set of the other triplets, i.e., those on which the trees

in F disagree or which are unresolved in all trees of F .

Let RCT (F) denote the set of Constant Triplets for a forest F . Kannan et al.

[1998] affirm that the RV-II for a tree forest can be computed by the Build algorithm

[Aho et al., 1981, see Section 3.3.1.1] inputed with the triplet set RCT (F). For a set

of triplets R, the Build algorithm indicates whether R is compatible and, in case

of a positive answer returns a tree T s.t. (i) R ⊆ R(T ) and (ii) no internal edge

5Note that, if F contains only binary trees these sets coincide.
6In the same paper Kannan et al. [1998] described two other consensus methods i.e., the opti-

mistic local consensus (OLC) and the pessimistic local consensus (PLC), that are not defined for

all sets of trees.
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of T can be contracted so that the resulting tree also displays R. However, several

trees having those two properties may exist [Semple, 2003] and display a different

number of triplets. As far as we know, it has not been demonstrated whether or

not Build returns a tree with a minimum value of |R(T )| so it is doubtful that the

tree RV-II tree for a forest can be computed by this algorithm. Since all proofs and

algorithms presented in Kannan et al. [1998] are based on the Build algorithm, we

redefine the RV-II as the tree T computed from RCT (F) by the Build algorithm

i.e., the local consensus tree under the terminology of Bryant [2003]. Note that this

definition, unlike its original formulation, does not require |R(T )| to be minimum.

Bryant [2003] argues that «the Adams tree is neither equal to the local consensus

tree nor is it an RV-II tree. For example, the local consensus tree of ((a, b, c), d) and

(a, (b, c, d)) is (a, b, c, d) while the Adams consensus tree is (a, (b, c), d)». He proves

that the local consensus tree for a forest F equals the Adams consensus tree for the

collection made of all trees T such that RCT (F) ⊆ R(T ).

We disagree with Bryant on the fact that «[Kannan et al.] describe an algorithm

for constructing an RV-II tree in O(n2) for two trees. The algorithm is identical to

that for constructing the Adams consensus tree». Indeed, for the forest comprised

of two trees T1 = (((((a, b), c), d), e), f) and T2 = (((((d, e), f), a), b), c), the RV-

II tree proposed by the RV-II Construction Algorithm coincides with the tree

built by the Build algorithm and not with the Adams consensus tree. The RV-II

Construction Algorithm correctly reconstructs the Build tree in O(n2) by using

the fact that the tree necessarily exists, while Build runs in O(n4) time (for faster

implementations of this method in the case of binary trees see Section 3.3.1.1).

Definition 3.2.4 (adapted from Kannan et al. [1998]). A rooted tree T is an RV-III

of a forest of rooted trees F if T leaves unresolved all triples {a, b, c} ∈ L(F) on

which the trees in F disagree or which are unresolved in all trees of F and preserves

a maximum number of compatible triplets. Moreover T cannot display a triplet t

such that t̄ ∈ R(F).

The authors prove that RV-III tree of two trees always exists, is unique and can be

computed in O(n3).

3.2.2.3 The R* consensus trees

The R* consensus method complements the RV-II tree for a forest of rooted trees.

This method consists first in computing the set R of rooted triples t of R(F)

that appear in more trees than their conflicting triples t̄. In other words, a triplet

ab|c ∈ R(F) is kept in R if and only if f(ab|c) > f(ac|b) and f(ab|c) > f(bc|a),
where f(t) is the frequency of the triplet t in F . Note that this set is not always

compatible. The R* consensus tree is the tree T such that R(T ) ⊆ R maximizing

|R(T )|. Note that this tree is unique and can be obtained using the strong cluster

algorithm of Berry and Bryant [1999]. An equivalent method based on quadruplets

has also been proposed [the Q* consensus, Berry and Gascuel, 2000; Bryant, 2003].
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An example of R* consensus trees is shown in Figure 3.9(iii). When F contains

two rooted trees, the R* consensus tree coincides with the RV-III tree for F (see

Definition 3.2.4). Bryant [2003] proved that, given a forest of rooted trees F , every

cluster present in the majority-rule consensus tree or in the semi-strict consensus

tree for F is in the R* consensus tree for F .

a b edc a c ebd a c edb

(i) (ii) (iii)

Figure 3.9: Example of R* consensus trees - The forest comprises three rooted

trees (i)-(iii). The R* consensus tree for this forest coincides with the input tree

depicted in (iii).

3.2.2.4 The common pruned-and-regrafted trees

For rooted forests, terminal taxa not included in a MAST tree (see Section 3.2.1.7)

can be regrafted to the tree. A way to perform the regrafting is to reconnect removed

taxa such that any cluster appearing in all input trees is present in the regrafted tree

to obtain the CPRT (Common Pruned-and-Regrafted Tree). This method has been

introduced by Gordon [Finden and Gordon, 1985; Gordon, 1980] but we describe it

as presented by Bryant [2003]. Note that, although the MAST problem is defined

for rooted and unrooted forests, a CPRT can be computed only for collections of

rooted trees since its computation requires the use of clusters7.

The CPRT might not be unique. Indeed, since the CPRT consists in regrafting

terminal taxa not included in a MAST tree and several MAST trees may exist, it

follows that the CPRT may not be unique.

A CPRT for a forest F is the tree that contains exactly the clusters returned

by Algorithm 2 since Finden and Gordon [1985] proved that these clusters are com-

patible. For example, for the two trees in Figure 3.10(i)-(ii) the set C(TM ) contains

clusters {a}, {c}, {d}, {e}, {ac}, {acd}, {acde}. The set of clusters C computed by

Algorithm 2 contains the clusters of C(TM ) except the clusters {acd} and {acde}
that are substituted by the clusters {abcd} and {abcde} respectively. The unique

CPRT for this forest is shown in Figure 3.10(iv).

Like other consensus methods, the CPRT has some undesirable properties. One

drawback is the difficulty of identifying the MAST that, with the unavailability of

an implementation of this method in some widely distributed computer packages

as PHYLIP [Felsenstein, 2005], explains the little attention that the CPRT have

received from systematists. Moreover, the trees returned by this method do not

7Remind that clusters are defined only for rooted trees.
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Algorithm 2: CPRT(F) (adapted from [Bryant, 2003])

Data: A forest of rooted trees F = {T1, T2, · · · ,Tk}.
Result: The set of clusters C induced by the CPRT of F , as defined in

Gordon [1980].

C ← ∅;1

TM ← MAST (F);2

L� ← L(F)− L(TM );3

foreach (cluster Ci ∈ C(TM ) do4

Ai ← Ci;5

foreach (taxon lj ∈ L�) do6

TS ← strict consensus tree for F|(L(TM )∪lj);7

if ({Ci ∪ lj} ∈ C(TS)) then8

Ai ← Ai ∪ lj ;9

C ← C ∪Ai;10

TSC ← strict consensus tree for F ;11

return C ∪ C(TSC);12

have the property to contain all triplets that are common to all trees. For example,

for the afore-described forest Te we have two common triplets i.e., ab|c and de|f
but none of the two CPRT contains both triplets. However the CPRTs contain all

common clusters of the forest. Indeed, the CPRT refines the strict consensus tree,

since it contains all its clusters (see Algorithm 2, line 11). Bryant [2003] proved that

for any common pruned-and-regrafted tree T for a forest F , it holds that ∀t ∈ R(T ),

∃Ti ∈ F such that t ∈ R(Ti). Note that the Adams consensus tree has the same

property.

In the next section we describe the widespread supertree methods.

3.3 Supertree methods

We have seen above consensus methods. These methods take as input a forest of

trees in which all input trees have the same leaf set. However, there are several

situations where input trees leaf sets can overlap yet not exactly coincide e.g., when

combining analyses of several data sets, each of which contains information for differ-

ent groups of taxa or when applying a divide and conquer strategy for constructing

large phylogenies. Supertree methods have been introduced to deal with such kind

of input. In that sense, supertree methods extend consensus methods. In the next

sections we provide a review of most supertree methods currently available. We will

see that some supertree methods are directly inspired by consensus methods, while

others are based on new principles.

In the next sections we often rely on graph theory. A graph is a pair (V,E)

composed of a set of vertices V and a collection of edges E that connect pairs of
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Figure 3.10: Example of the common pruned-and-regrafted consensus tree
- the input forest is comprised of two rooted trees (i) and (ii). The MAST and the

CPRT are depicted respectively in (iii) and (iv).

vertices. A graph may be undirected, meaning that there is no distinction between

the two nodes associated with each edge, or directed, if some edges may be directed

from one node to another. Note that, as mentioned in Section 3.1, a tree is a graph

in which any two nodes are connected by exactly one path.

3.3.1 The OneTree supertree method and its variants

This set of supertree methods encodes topological relationships contained in the

source trees in a graph introduced by Aho et al. [1981], hence is known as the Aho

graph. These supertree methods are defined only for rooted trees.

3.3.1.1 The OneTree supertree

The OneTree supertree method, proposed by Ng and Wormald [1996] and then

modified by Bryant [1997], is based on the Build algorithm [Aho et al., 1981]. The

Build algorithm is a yes-or-no algorithm that tells whether a collection of triplets

R on a leaf set L is compatible or not. To achieve its goal, Build tries to build

a tree displaying all triplets in R, i.e., to find a tree such that L(T ) = L and

R ⊆ R(T ); if the process is blocked at some step, this means that the input triplets

are not compatible. The OneTree supertree method for a rooted forest F consists

in applying the Build algorithm to the triplet set R(F), to obtain a tree TB such

that L(TB) = L(F) and R(F) ⊆ R(TB). If such a tree does not exist i.e., if F
is not compatible, this method does not return a tree, so the OneTree supertree

method does not handle incompatible source trees. In practice since phylogenies

usually conflict with one another (see Chapter 2), this method is of limited use.
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However, here we describe it in details since several methods detailed in this section

are modifications of the OneTree supertree method.

This method builds a tree recursively, from the root to the leaves. In other words,

the largest clusters are first identified, then clusters included in the first ones, and

so on. The composition of the clusters is guided by the structure of the Aho graph,

or clustering graph.

The Aho graph for a triplet set R on a leaf set L, denoted by G(R, L) is the

undirected graph with vertices L such that there is an edge in G(R, L) connecting

two vertices a and b if and only if there exists ab|c ∈ R. Thus, an edge between

two taxa means that at least one triplet “sees” these two taxa in the same cluster.

The vertices of G(R, L) are denoted by V (G(R, L)). A connected component Ci

of a graph is a maximal set of taxa linked to one another, i.e., such that for any

pair a, b of taxa in Ci , there is a path from a to b. The connected components

of graph G(R, L) are denoted by CC(G(R, L)). The vertices of a component Ci of

G(R, L) are denoted by V (Ci). When the Aho graph contains several connected

components, they correspond to the maximal clusters of the tree that is built to

represent the input collection of triplets (if such a tree exists). Then, the sub-clusters

contained in each of these primary clusters are found by recursively processing Aho

graphs for subsets of triplets that respectively concern the taxa of these clusters:

the restriction of R to taxa of a component Ci is denoted by R|V (Ci) and defined as

{ab|c ∈ R | {a, b, c} ⊆ V (Ci)}. The algorithm is applied recursively to each couple

(R|V (Ci), V (Ci)). The recursive calls stop when dealing with components containing

less than 3 taxa, since there is no triplet (hence incompatibility) on so few taxa.

However, if at some point in the recursive process, the Aho graph for several taxa

has only one connected component, this means that the input trees are conflicting

on the resolution of these taxa. When this happens, the algorithm states that the

collection of source trees is incompatible. Otherwise, when all recursive calls succeed,

the algorithm concludes that the source trees are compatible and returns a tree TB

containing exactly the deduced clusters and such that L(TB) = L and R ⊆ R(TB).

The outline of the Build algorithm is given in Algorithm 3. For instance, let F1 be

the collection comprised of two rooted trees (((a, c), b), (e, f)) and (((a, d), b), c). In

this case R(F1) ={ac|b, ac|e, ac|f , ab|e, ab|f , bc|e, bc|f , ef |a, ef |b, ef |c, ad|b, ad|c,
ab|c, bd|c} and L = {a, b, c, d, e}. The Aho graph G(R(F1), L) is shown in Figure

3.11(i). This graph contains two connected components: C1 = {e, f} and C2 =

{a, b, c, d}. Since C2 contains more than three taxa, we call the Build algorithm for

G2 = G(R(F1)|V (C2),V (C2)). More precisely, R(F1)|V (C2) = {ac|b, ad|b, ad|c, ab|c,
bd|c}, so the graph G2 is connected (see Figure 3.11(ii)), which leads the algorithm to

detect the incompatibility of the source trees. Let F2 be a slightly different collection

that comprises the trees (((a, c), b), (e, f)) and ((a, d), b, c). In this case we obtain

the same two connected component C1 and C2 of Figure 3.11(i). This time, since

R(F2)|V (C2) = {ac|b, ad|b, ad|c}, the graph G(R(F2)|V (C2)) contains two connected

components C3 = {a, b, d} and C4 = {b} (see Figure 3.11(iii)). The component

C3 can be ulteriorly decomposed into two connected components C5 = {a, d} and

C6 = {c}, shown in Figure 3.11(iv). It follows that the OneTree supertree for this
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forest is ((((a, d), c), b), (e, f)).

Algorithm 3: Build(R, L)

Data: A triplet set R on a leaf set L.

Result: A tree T : L(T ) = L and R ⊆ R(T ) or a statement that no such a

tree exists.

if (|L| = 1) then return a single node labeled by the label of L;1

else2

if (|L| = 2) then3

return a tree with two leaves respectively labeled by the labels of L;4

else5

create a new tree T composed by a single unlabeled node r;6

construct G(R, L);7

if (|CC(G(R, L))| = 1) then return “no such a tree exists” ;8

else9

foreach (connected component Ci ∈ CC(G(R, L))) do10

if (Build(R|V (Ci), V (Ci)) returns a tree TCi
) then11

add the root node of TCi
as son of r in T ;12

else13

return “no such a tree exists”;14

return T ;15

The OneTree supertree algorithm for a forest F runs in O(|R(F)| · |L(F)|) time

[Bryant, 1997]. There exists a faster implementation of this method in the case of

binary trees that runs in O(m · |L(F)|0.5) time, where m =
�

Ti∈F

I(Ti) [Henzinger

et al., 1999], where, recall, I(T ) is the set of interior nodes in T . This algorithm can

be improved to O(m·log2(|L(F)|) by changing the dynamic connectivity algorithm it

resorts to [Berry and Semple, 2006]. Obtaining a tree T such that R(F) ⊆ R(T ) for

a compatible forest F can also be done using the AncestralBuild algorithm [Berry

and Semple, 2006; Daniel and Semple, 2004]. This method accepts as input trees

where some internal nodes can be labeled and is not based on the Aho graph but

on a graph called descendancy graph. Its running time for input trees of unbounded

degree is O
�

log2(|L(F)|) ·
�

Ti∈F

�

u∈I(Ti)

d(u)2
�

where d(u) denotes the degree of the

node u.

Note that for a compatible triplet set R on a leaf set L, there are often more than

one tree displaying all triplets in R. Moreover, the number of rooted phylogenetic

trees with this property may be exponential in |R| [Semple, 2003]. Constantinescu

and Sankoff [2003] provided an algorithm called SUPERB that takes a compatible

set of triplets and returns all binary trees that display R, each of them in polynomial

time. Semple [2003] presents the method AllMinTrees that returns all trees Fmin
R
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Figure 3.11: Examples of Aho graphs - Let F1 and F2 be two forests

comprised respectively of trees (((a, c), b), (e, f)) and (((a, d), b), c) and of trees

(((a, c), b), (e, f)) and ((a, d), b, c). (i) the initial Aho graph for both collec-

tions. This graph contains two connected components i.e., C1 = {e, f} and

C2 = {a, b, c, d}. (ii) G(R(F1)|V (C2), V (C2)). This graph is connected, showing

that the input trees conflict on the resolution of {a, b, c, d}, hence are incompatible.

(iii) G(R(F2)|V (C2), V (C2)) contains two connected components i.e., C3 = {a, c, d}
and C2 = {b}. (iv) G(R(F1)|V (C3), V (C3)) contains two connected components i.e.,

C4 = {a, d} and C2 = {c}.

that display R and are minimal i.e., such that, ∀T ∈ Fmin
R no internal edge of T can

be contracted so that the resulting tree also displays R. Both methods are based

on the Build algorithm.

Ng and Wormald [1996] extend the Build algorithm to check the consistency

of a set of rooted triples and fan trees in polynomial time. A fan tree (also called

star tree) on a leaf set L is a completely unresolved rooted tree on L, e.g., the fan

tree on {a, b, c, d} is the tree (a, b, c, d). We say that a tree T is compatible with

a fan tree tF if T |L(tF ) = tF . Ng and Wormald also provided an algorithm called

AllTrees that takes a compatible set of triplets and fan trees and returns all trees

T displaying this set. In this manuscript we are not interested in this latter problem,

since we interpret polytomies as “soft” (see Section 3.1.3) i.e., when observing an

unresolved triplet we do not want to impede its resolution in the consensus tree or

supertree.

Also the BUILD-WITH-DISTANCES supertree method of Willson [2004] is an

algorithm based on a variation of the Build algorithm. This method takes as input

rooted weighted trees and makes essential use of input branch length information to

construct a supertree when an additive supertree exists. In such a case a supertree

that displays the OneTree supertree is returned for which some polytomies may have

been resolved using branch length information. When an additive supertree does

not exist, the method outputs a tree (the minimal threshold tree) with interesting

properties [Willson, 2004].
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3.3.1.2 The MinCut (MC) supertree

Semple and Steel’s MinCut supertree algorithm [Semple and Steel, 2000] modifies

OneTree so that it always returns a tree. Before introducing the MinCut supertree

algorithm we recall some notations needed to describe this method.

Let G be a graph with vertices V and edges E and let V � be a set of vertices

such that V � ⊆ V , we denote by G|V � the graph with vertices V � and edges E�,

where E� is the subset of E having both endpoints in V �8. Given a set of edges E�

such that E� ⊆ E, we denote by G\E� the graph obtained from G by deleting all

edges in E�.

Given an edge e = (u, v) ∈ E, contracting e consists in deleting (u, v) and

identifying its endpoints, i.e., u and v. We denote by G ⊙ E� the graph obtained

from G by contracting all edges in E�, deleting loops, and replacing each parallel

class of edges, i.e., edges with identical endpoints, with a single edge. See Figure

3.12 for an example of these graphs.

(i) (ii) (iii)
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b

d c

a

d c

a

b

d c
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{b,d} c
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Figure 3.12: Examples of graphs used by the mc supertree algorithm - (i)

a graph G. (ii) G|V � for V � = {a, c, d}. (iii) G\E� for E� = (b, d). (iv) G ⊙ E� for

E� = (b, d).

If G is a connected weighed graph, we call a minimum-weight cut set of G a set

of edges Ē ⊆ E such that G\Ē is disconnected and the sum of the weights of the

edges in Ē is minimum over all possible sets E� such that G\E� is disconnected. Let

w be a weight function that associates a rational positive weight w(i) to the ith tree

of the forest F i.e., a function w : {1, · · · , |F|} → (Q+)|F|. 9

The weighted Aho graph for the forest F and the weighted function w, denoted by

G(F , w), has the same vertex and edge sets as G(R(F), L(F)) with edges weighted

in the following way: the weight of an edge (a, b) , denoted by w(a, b), is the sum of

the weights w(i) for all trees Ti such that there exists at least one triplet ab|c ∈ R(Ti)

(see Figure 3.13 for an example).

From this graph we can obtain a second graph, called the weighted collapsed Aho

graph, denoted by Ĝ(F , w). First, we define Emax to be the set of edges (a, b) such

that w(a, b) =
�|F|

i=1w(i). Since the weights are strictly positive, Emax contains all

edges (a, b) supported unanimously by all input trees i.e., a and b are in a non-trivial

8We have already implicitly used this notation in Section 3.3.1.1, to define the graph

G(R(F)|V (Ci), V (Ci)).
9Q+ is chosen instead of R+ since this limits the computational complexity of the method.
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cluster for all Ti ∈ F . Then, Ĝ(F , w) = G(F , w) ⊙ Emax. The weigh of the new

edges (V1, V2), for instance the edge ({a, b}, c) in Figure 3.13, is set to the sum of

the weights w(i) of those trees Ti ∈ F having at least one triplet xy|z ∈ R(Ti) such

that x ∈ V1 and y ∈ V2.

For instance, let F be a forest comprised of two rooted trees (((a, b), c), (d, e))

and ((a, b), (c, d)) and let w be the constant function w : {1, 2} → {1, 1}. The

graph G(F , w) is shown in Figure 3.13(i). The only edge with weight 2 is (a, b), so

Emax = {(a, b)}. The graph Ĝ(F , w) is shown in Figure 3.13(ii); there is only a new

edge ({a, b}, c), which has weight 1, since T2 contains no triplet grouping together

ac or bc.

(i)

c

(ii)
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{a ,�}
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e
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Figure 3.13: Example of the mc supertree algorithm - for the forest F com-

prised of two trees T1 = (((a, b), c), (d, e)) and T2 = ((a, b), (c, d)); w is the constant

function w : {1, 2} → {1, 1}. (i) the graph G(F , w). (ii) the graph Ĝ(F , w). The mc

supertree for this forest is the tree ((a, b), c, d, e).

Given a forest F of rooted trees and a weighted function w : {1, · · · , |F|} →
(Q+)|F|, the mc supertree T is built recursively, from the root to the leaves. First,

the maximal clusters of T are identified, then clusters included in the first ones, and

so on. As for the OneTree algorithm, the composition of the clusters is guided by

the structure of the Aho graph. When the Aho graph contains several connected

components, the mc algorithm works exactly as the OneTree algorithm (Section

3.3.1.1). If at some point in the recursive process, the Aho graph for a set of at least

three taxa has only one connected component, this means that the input trees are

conflicting on the resolution of these taxa. In this case the algorithm constructs the

Ĝ(F , w) graph as described above. This graph, like the Aho graph, has only one

connected component since it is its weighted version. A new disconnected graph

Ĝ(F , w)\Ē is obtained from Ĝ(F , w) by deleting all edges Ē comprised in at least

one minimum-weight cut set of this graph. The algorithm is then recursively run

on each connected component of Ĝ(F , w)\Ē. The recursive calls stop when dealing

with components containing less than 3 taxa, since there is no triplet on so few taxa.

For instance, for the forest F afore-described, all edges of the graph Ĝ(F , w) (Figure

3.13(ii)) lie in at least one minimum-weight cut set of this graph so the mc supertree

for this forest is the tree ((a, b), c, d, e). The outline of the MinCut algorithm is

given in Algorithm 4.

Note that the tree returned by mc(F , w) depends on the weighted function
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Algorithm 4: mc(F , w)

Data: A set of rooted trees F and a weighed function

w : {1, · · · , |F|} → (Q+)|F|.

Result: A tree Tmc that is the mc supertree for the pair (F , w).

if (|L(F)| = 1) then return a single node labeled by the label of L(F);1

else2

if (|L(F)| = 2) then3

return a tree with two leaves respectively labeled by the labels of4

L(F);

else5

create a new tree Tmc composed by an unlabeled node r;6

construct G(R(F), L(F));7

if (|CC(G(R(F), L(F)))| = 1) then8

construct Ĝ(F , w);9

G ← Ĝ(F , w);10

construct the set E� of edges of G that lie in at least one11

minimum-weight cut set of G;

C ← CC(G\E�);12

else13

C ← CC(G(R(F), L(F)));14

foreach (connected component Ci ∈ C) do15

TCi
← mc(F|V (Ci), w));16

add the root node of TCi
as son of r in Tmc;17

return Tmc;18

w. However, whatever weighted function is used to construct it, the mc supertree

method satisfies several desirable properties. First of all, if the forest F is compati-

ble, Tmc(F , w) is the OneTree and thus satisfies R(F) ⊆ R(Tmc(F , w)). Moreover,

like the Adams consensus (property (i) of section 3.2.2.1 on page 50), this method

returns a tree displaying all nestings and triplets shared by all input trees in F .

Semple and Steel [2000] also proved that the mc supertree method satisfies several

interesting properties.

Lemma 3.3.1 (Semple and Steel, 2000) Let F be a (weighted) forest of rooted

trees and let T be a rooted tree. Suppose that L is a subset of L(F) such that

∀Ti ∈ F , T = Ti|L. Then Tmc(F , w) displays T . Furthermore, if T is binary, then

T = Tmc(F , w)|L.

This lemma ensures that the mc supertree for a forest F refines all trees T that

have the property to display the contraction of all input trees to a leaf set L ⊆ L(F)

i.e., T = Ti|L, ∀Ti ∈ F .
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Recall that, given a rooted tree T , a group of a taxa A nests within a larger

group B, denoted by A <T B, if A is included in B.

The following two theorems state the relationships that exist between the Adams

consensus tree and the mc tree in the consensus setting.

Theorem 3.3.2 (Semple and Steel, 2000) Let F be a set of rooted trees having

the same leaf set X. Let A and B be subsets of X and let A(F) be the Adams

consensus tree for F . If A <A(F) B, then A <Tmc(F ,w) B� for every cluster B� of

A(F) that contains B.

However, the Adams consensus tree and the mc supertree do not always coincide,

as stated in the following theorem.

Theorem 3.3.3 (Semple and Steel, 2000) Let F be a set of rooted trees having

the same leaf set X and let A(F) be the Adams consensus tree for F . Then exactly

one of the following holds:

1. R(A(F)) ⊆ R(Tmc)

2. R(A(F)) �⊆ R(Tmc) and R(A(F)) �⊇ R(Tmc)

All listed properties are satisfied whatever weighting function w is used. So, the

mc supertrees have several attractive properties. However, when applied to some

examples this method can give less attractive results than other methods [Page,

2002]. For example, let F be a forest that comprises two rooted binary trees

T1 = (((((x2, x3), x1), c), b), a) and T2 = ((((((y3, y4), y2), y1), a), b), c) and w the

constant function w : {1, 2} → {1, 1}. These two trees share only the three

leaves a, b, and c and disagree on the relationships among those leaves since T1

contains the triplet bc|a and T2 contains the triplet ab|c. The tree produced by

mc for these two trees is the tree ((((((y3, y4), y2), y1), a), b), c, x1, x2, x3). This

tree does not contain any resolution for the leaves x1, x2 and x3, although there

is no information in T2 that impedes to group these leaves as they are grouped

in the first tree. In contrast, relationships among {y1, y2, y3, y4} are fully re-

solved. Furthermore, the supertree contains the triplet ab|c, i.e., is in contra-

diction with T1. For the forest comprised of the two rooted binary trees T3 =

((((((x3, x4), x2), x1), c), b), a) and T4 = (((((y3, y2), y1), a), b), c) the mc supertree

is the tree ((((((x3, x4), x2), x1), c), b), a, y1, y2, y3). This tree does not contain any

resolution for the leaves y1, y2 and y3 and the relationships among {x1, x2, x3, x4}
are fully resolved. This time the supertree contains the triplet bc|a. This example

shows that this method can be sensitive to the size of the input trees, favoring the

resolutions contained in the biggest trees.

3.3.1.3 The Modified-MinCut (mmc) supertree

Page [2002] criticized the mc method on several points. It has been proved that

there exists no consensus method for rooted trees that ensures to return a tree

displaying all the uncontradicted information contained in a set of trees [Steel et al.,
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2000, property P7]. Although it is impossible to construct such a supertre method,

Page’s first criticism to Semple and Steel’s method is that the mc supertree method

does not even aim to maximize the uncontradicted information contained in the

supertree. For example, for the forest comprised of the two afore-described trees T1

and T2, the mc supertree does not contain any resolution for the leaves x1, x2 and

x3, although T1 contains the clusters x1, x2 and x1, x2, x3 and none is contradicted

by T2. Then we can insert the two clusters in the mc supertree, obtaining a tree

that contains more uncontradicted information, without adding any contradicted

information. Another criticism that Page formulated against the mc method is

that it does not try to minimize the information contained in the supertree that

contradicts the source trees (e.g the triplets ab|c, ab|x1, ab|x2 in mc(T1, T2, w) with

w : {1, 2} → {1, 1}).
To try to avoid those drawbacks, Page [2002] proposed a modification of the mc

supertree method, called the Modified-MinCut (mmc) supertree method. The mmc

supertree method is a heuristic that aims to avoid as much as possible contradicted

information, having as consequence to permit to insert more uncontradicted infor-

mation in the supertree than the mc method, while still returning a tree that has

all the properties of the mc supertree.

The only difference between the two methods resides in the graph that is con-

structed when the graph G(R(F), L(F))) is connected. While the mc supertree

method constructs the graph Ĝ(F , w), the mmc supertree method relies on a dif-

ferent graph, called the mmc graph and denoted by Gmmc(F , Ĝ(F , w)). The mmc

algorithm coincides with the mc one but for line 10 of Algorithm 4 that is replaced

by G ← Gmmc(F , Ĝ(F , w)) in the mmc algorithm. That is why we do not detail the

mmc algorithm but only the construction of the mmc graph.

The graph Gmmc(F , Ĝ(F , w)) is constructed as follows (see Algorithm 5). First

of all, for each edge (a, b) in Ĝ(F , w) we distinguish between unanimous, uncon-

tradicted and contradicted edges. An edge (a, b) is unanimous for the forest F if

and only if there exists at least one triplet ab|c ∈ R(Ti) ∀Ti ∈ F . An edge (a, b) is

uncontradicted if and only if (a, b) is not unanimous and for all trees Ti ∈ F one of

the following holds:

• lcaTi
(a, b) �= root(Ti) ,

• lcaTi
(a, b) = root(Ti) and the root has degree greater than 2,

where lcaTi
(a, b) is the lca of a and b in the tree Ti. In other words, an edge (a, b) is

uncontradicted if and only if for those trees Ti such that �ab|c ∈ R(Ti), the root of

Ti is a polytomy. Note that this definition of uncontradicted edges follows from the

interpretation of polytomies as soft (see Section 3.1.3). Page interprets polytomies

as soft and thus considers a tree containing a triplet ab|c and a tree containing

(a, b, c) not in contrast. Edges that are neither unanimous nor uncontradicted are

contradicted edges. Page’s aim was to modify Ĝ(F , w) such as to minimize the

number of uncontradicted edges that are cut in the mc method, so he extended
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Semple and Steel’s approach of merging nodes linked by unanimous edges to include

nodes linked by uncontradicted edges.

If we can disconnect Ĝ(F , w) by cutting only contradicted edges (Algorithm

5, line 4), this means that we can preserve all uncontradicted edges at this step.

Otherwise, at least one uncontradicted edge must be cut to disconnect the graph.

Since the algorithm tries to minimize the contradicted information present in the

supertree, we would like the minimum-weight cut sets to include contradicted edges

whenever possible. If removing all contradicted edges and all edges adjacent to a

contradicted edge disconnects Ĝ(F , w) (Algorithm 5, line 9), then we have identified

at least one cut that contains a contradicted edge. In the example in Figure 3.14(ii)

we have two minimum-weight cut sets, each containing one contradicted edge.

If the graph remains connected, the two graphs Gmmc(F , Ĝ(F , w)) and Ĝ(F , w)

coincide.

y!

y"

y#

y$

a

b

x!

c

x"

x#

b

aa

x! x"
x#

y! y"
y# y$

(i) (ii)

Figure 3.14: Example of the mmc supertree algorithm [Page, 2002] -

(i) The graph Ĝ(F , w) for the forest that comprises two rooted binary trees

(((((x2, x3), x1), c), b), a) and ((((((y3, y4), y2), y1), a), b), c). The two bold edges are

contradicted, the edges drawn as dashed lines are uncontradicted but adjacent to a

contradicted edge. Deleting the contradicted and the adjacent to contradicted edges

disconnects the graph. (ii) the graph Gmmc\(AC ∩ C). The six minimum weight

cuts of Gmmc are indicated by dashed lines so the mmc supertree for this forest is

the tree ((((y3, y4), y2), y1), ((x2, x3), x1), a, b, c).

The mmc supertree for the pair of trees (((((x2, x3), x1), c), b), a) and

((((((y3, y4), y2), y1), a), b), c) is the tree ((((y3, y4), y2), y1), ((x2, x3), x1), a, b, c) (see

Figure 3.14 for more details). Unlike the mc supertree for this forest, this tree con-

tains no contradicted triplets. Moreover, this mmc supertree contains much more

uncontradicted triplets than the mc one. Note that both mc and mmc supertree

methods can contain clusters not present in any source tree. For instance both mc

and mmc supertrees for the trees (((a, b, c), d, e), f, g) and (((a, b, e), d, c), f) contain

the cluster {a, b}. This is related to the fact that both mc and mmc supertree

methods share Adams consensus interpretation of soft polytomy (see Sections 3.1.3

and 3.2.2.1).
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Algorithm 5: Gmmc(F , Ĝ(F , w))

Data: A set of rooted trees F and a weighted graph Ĝ(F , w).

Result: A weighted graph Gmmc.

Gmmc ← Ĝ(F , w);1

E� ← ∅;2

compute the set C of contradicted edges in Gmmc;3

if (Gmmc\C is disconnected) then4

find the connected components of Gmmc\C;5

E� ← edges connecting two nodes of the same connected component;6

else7

build the set AC of all edges in Gmmc adjacent to a contradicted edge.;8

if (Gmmc\(AC ∩ C) is disconnected) then9

find the components of Gmmc\(AC ∩ C);10

E� ← edges connecting two nodes of the same connected component;11

return Ĝ(F , w)
�

E�;12

3.3.1.4 The strict consensus supertree

The strict consensus supertree method is often referred to as the first supertree

method proposed [Gordon, 1986] although the Build algorithm predates it by sev-

eral years. Like the OneTree supertree method, it deals only with compatible forests.

The strict consensus supertree of a compatible forest F is defined as the strict con-

sensus supertree of all trees T such that T displays each tree in F. Steel [1992]

proposed a polynomial time algorithm based on the Aho graph accepting as input

any number of rooted trees. This algorithm is based on the following remark: a

cluster C is in the strict consensus supertree of F if and only if, given x ∈ C and

for each pair a, b with a ∈ C − {x} and b �∈ C, both G(R(F) ∪ {ab|x}, L(F)) and

G(R(F) ∪ {bx|a}, L(F)) are incompatible. Then, if we construct the OneTree su-

pertree for F and we eliminate from this tree the clusters that do not pass this

test (see Algorithm 6), we obtain the strict consensus supertree for F. This algo-

rithm requires O(|L(F)|3 · λ), where λ is the complexity of computing the graph

G(R(F), L(F)) i.e., O(n6 · log(n)), where n = |L(F)|, in the worst case.

Moreover, the mergetrees algorithm of Berry and Nicolas [2007] can be used

to compute in linear time the strict consensus supertree for two rooted trees. A

question is whether this algorithm can be extended to obtain a tight complexity for

the case of more than two trees.

Bryant [2001] presented a variation of the strict consensus supertree for a

bounded number of compatible unrooted binary trees. Given a forest of unrooted

trees F, Bryant’s method returns a supertree T , if it exists, such that L(T ) = L(F)

and each tree Ti ∈ F is an induced subtree of T i.e., Ti = T |L(Ti). When multiple

such supertrees exist, Bryant’s method returns, in polynomial time, the supertree

that is optimal with respect to one of four standard phylogenetic optimization crite-
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Algorithm 6: SCS(F , w)

Data: A set of rooted trees F .

Result: A tree TSCS that is the strict consensus supertree for F .

BC ← ∅ // Bad Clusters set;1

T ← Build(R(F), L(F));2

foreach (cluster Ci ∈ C(T )) do3

x ← a leaf of Ci;4

foreach (a, b ∈ L(F) such that a ∈ Ci − {x}, b ∈ L(F)− L(Ci)) do5

if !(G(R(F) ∪ {ab|x}, L(F)) and G(R(F) ∪ {bx|a}, L(F))6

incompatible) then
BC ← BC ∪ Ci;7

build the tree TSCS such that C(TSCS) = C(T )−BC;8

return TSCS ;9

ria: maximum binary compatibility score, maximum quartet score, minimum OLS

score and minimum ME score. The time complexity of this approach depends on

the chosen optimization criterion [Bryant, 2001, Theorem 3].

3.3.2 Matrix Representation-based methods

In this set of supertree methods the input trees are converted into matrices of another

kind of data (binary sequences, distances), and these data are subsequently re-

analysed using a standard phylogenetic tree reconstruction method.

3.3.2.1 The Matrix Representation with Parsimony (MRP) supertree

The Matrix Representation with Parsimony (MRP) method is the most commonly

used supertree method but also one of the most criticized. It has been independently

developed by Baum [1992] and Ragan [1992]. Given a forest F , the MRP method

first encodes it into a binary matrix with a row per species of L(F) and a column

per cluster of the input trees. Then, a parsimony analysis of the resulting matrix is

performed. In more details, this method consists in the following steps:

Rooting: each tree of the input forest is rooted by using a taxon common to all

input trees [Baum, 1992]; if a tree is already rooted, re-root it.

Coding: a matrix having an entry for each internal node of each tree is created.

Each internal node u of a tree T is encoded as a column in the matrix having

state ’1’ for each taxon in the cluster induced by u and state ’0’ for all other

taxa of T . All taxa that do not belong to the tree are encoded by a ’?’ (see

Figure 3.15 for an example).

Analyzing: the so obtained matrix is analyzed by the parsimony criterion.
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Summarizing: return the strict consensus of the most parsimonious trees.
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Figure 3.15: Example of the MRP method - (i) a forest consisting of two rooted

trees. (ii) its MR coding. Internal nodes have their associated clusters encoded in a

column of the MR matrix. (iii) the MRP supertree for this forest.

Another way to root the input trees is to root them by an all-zero output [Purvis,

1995a; Ragan, 1992]. The afore-described way to encode the forest is called matrix

representation or MR. Given a forest F of trees, we denote by MR(F) its matrix

representation.

Note that there can be an exponential number of most parsimonious trees. Since

finding the most parsimonious tree(s) given a character matrix is an NP-complete

problem [Graham and Foulds, 1982], heuristics have been proposed, notably the

ratchet technique [Goloboff et al., 2008] and MCMC based methods [among others,

Ronquist and Huelsenbeck, 2003; Ronquist et al., 2004] that ensure the feasibility

of MRP for data sets with large numbers of taxa and/or input trees. Baum and

Ragan [2004], in response to Rodrigo’s criticism [Rodrigo, 1993, 1996] that the MRP

method lacks of an underlying model, argued that their method is based on the idea

that input trees can be viewed as state-character trees and, since they often conflict

with each other, the characters are combined to infer the species tree. They stated

to have chosen parsimony to resolve conflicts for the same reasons that parsimony

is used to combine discrete-state characters i.e., efficiency and information content

(see Section 1.3).

Several other criticisms have been addressed to this method. First, Purvis

[1995a] noticed that the MRP method is biased and some tree topologies can unduly

affect the MRP supertree. He attributed this bias to the fact that the information

given by the nodes of a tree is not independent. For instance, the matrix column

that encodes the node 2 in Figure 3.15 contains some information already present

in the matrix column encoding the node 1. To try to avoid this bias, he proposed

an alternative coding of the MRP matrix such that each internal node u of a tree

T is encoded as an entry in the matrix having:

• ’1’ for each taxon in the cluster induced by u;

• ’0’ for each taxon in the clusters induced by the sibling nodes of u ;
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• ’?’ for the remaining taxa.

Ronquist [1996] demonstrated that Purvis’s coding leads to less informative matrices

and does not eliminate completely the bias. Rodrigo suggested that the MRP bias

is due to the different relative sizes of input trees and one would remove the bias

by weighting trees. He proposed several weighting schemes, among them one that

assigns to each tree a weight in inverse proportion to its number of internal nodes and

one based on the bootstrap support for nodes. Wilkinson et al. [2001] suggested that

the MRP may also favor source trees that are more unbalanced. Bininda-Emonds

and Bryant [1998] argued that the bias does not exactly depend on the different

relative sizes of input trees and they presented two examples to prove it. Let F1 be

the forest comprised of trees T1 = (((((((a, b), c), d), e), f), g), h) and T2 = ((b, c), a)

and let F2 be the the forest comprised of trees T3 = (((a, b), c), d) T4 = ((a, d), b).

The MPR supertree for F1 is the tree that coincides with T1 but for a polytomy for

taxa a, b, c i.e., ((((((a, b, c), d), e), f), g), h). This is the expected result, since the

two trees only disagree on the resolution of these leaves. In this case the biggest

tree does not affect unduly the MRP supertree. On the contrary, if we weight

the trees inversely to their number of internal nodes [Ronquist, 1996], we would

have as MRP supertree the tree (((((((b, c), a), d), e), f), g), h) that contains the T2

resolution for taxa a, b, c i.e., Ronquist’s weighting has favored the smallest tree.

The MRP tree for the F2 forest coincides with T3, so in this case the biggest tree

is favored. Bininda-Emonds and Bryant [1998] suggested that the bias is due to

different relative sizes of the input trees in the region of conflict. Indeed, for the

forest F1, the two trees have the same size in the region of conflict (a, b, c) while

the forest F2 the tree T3 is bigger in the conflict region (a, b, c, d). For this reason,

the authors proposed to apply node-based weighting schemes. However, the impact

of the size and balance biases is commonly considered to be minimal in practice

[Bininda-Emonds et al., 2002] and decreasing with the number of input trees used

in the MRP analysis [Bininda-Emonds et al., 1999]. Yet, this is not always true, as

demonstrated by other simulation studies [Emonds and Sanderson, 2001].

The MRP method is strongly criticized also for the fact that, when source trees

conflict, it can propose clusters not supported by any (combination of) intput tree(s),

«novel clades» in Bininda-Emonds and Bryant [1998]. Moreover clusters that are

contradicted by each and every input tree can be present in the MRP supertree

[Cotton et al., 2006; Goloboff, 2005; Goloboff and Pol, 2002]. This even happens

in a consensus setting, where combining a set of trees with identical leaf sets. For

instance, the MRP supertree of the set of trees comprised of (((((e, f), d), c), b), a)

and (((((b, f), a), e), d), c) is the tree ((a, b), c, d, e, f) that is in contradiction with

both input trees. Note that in this example the size and the shape of both trees are

identical.

Moreover, Bininda-Emonds argued that the MRP supertree can also fail to dis-

play some triplets common to every input tree «on sufficiently contrived data, even

in the consensus setting» [Bininda-Emonds et al., 2002].
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Personally, we are convinced that, as pointed out by Pisani and Wilkinson [2002]

«MRP may suffer from potentially serious but poorly understood biases and from its

potential to produce unjustified new groups. We consider that the properties of MRP

[...] should be better understood before MRP can be reasonably adopted as a method

of choice for supertree construction». Some of these numerous criticisms against

MRP have motivated our work on supertree methods, presented in Chapter 4.

3.3.2.2 The Matrix Representation with Flipping (MRF) supertree

The Matrix Representation with Flipping (MRF) method ([Chen et al., 2003, 2002],

re-formulated in [Eulenstein et al., 2004]) is based on the idea that input trees

conflict because of errors i.e., the presence of an incorrect label in a cluster or the

absence of one that should be present. In the matrix representation of the input

forest, such errors correspond to flips from 0 to 1 or 1 to 0.

Given two matrix representations MR1 and MR2 over the same taxa set, we

denote by MR[i] the ith column of a MR. The flip-distance between MR1 and MR2

is denoted by df (MR1, MR2) where:

• The flip-distance df (MR1[i], MR2[j]) is the minimum number of flips ’0’ ↔
’1’ needed to convert MR1[i] into MR2[j]. Positions where MR1[i] or MR2[j]

are encoded with ’?’ are not considered.

• The flip-distance df (MR1[i], MR2) is the minimum flip-distance from MR1[i]

to any column of MR2 i.e., minj(df (MR1[i], MR2[j])).

• The flip-distance df (MR1, MR2) is
�

i(df (MR1[i], MR2)).

For instance, for the matrices in Table 3.1, df (MR1, MR2)=df (MR2, MR1)=1.

Note that the flip-distance between two matrices is not symmetric. Given a forest

of rooted trees, the MRF method consists in finding all binary trees T such that

the flip-distance d(MR(F), MR(T )) is minimal. If more than one such supertree

a 1 1 1 1

b 1 0 0 0

c 1 1 0 0

d 0 0 1 0

e 1 1 0 0

(i)

a 1 1 1 1

b 1 0 0 0

c 1 1 0 0

d 0 0 0 0

e 1 1 0 0

(ii)

Table 3.1: Example of the MRF supertree method.

exists, their semi-strict consensus is the MRF supertree [Chen et al., 2003; Eulenstein

et al., 2004]. Chen et al. [2003] proved that the MRF supertree displays the strict

consensus supertree. Moreover, they proved that, in a consensus setting, the MRF

supertree displays the semi-strict consensus tree but does not display either the

majority-rule consensus or the Adams consensus trees. Finding the MRF supertree

has been shown to be an NP-hard problem [Chen et al., 2002] and several heuristics
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have been proposed [Chen et al., 2003, 2006; Eulenstein et al., 2004]. In the latter

paper, the authors showed simulation studies for which the MRF supertrees are at

least as accurate as supertrees built with MRP. Unfortunately, as MRP, this method

can propose new clusters contradicted by each of the input trees [Goloboff, 2005].

3.3.2.3 The Matrix Representation using Compability (MRC) supertree

The Matrix Representation using Compability (MRC) method [Rodrigo, 1996; Ross

and Rodrigo, 2004] consists in finding the maximum clique of columns of the MR

matrix, where a clique of columns is defined as a set of matrix columns that are

pairwise compatible. When computing the pairwise compatibility of two matrix

columns, rows involving one or two missing entries are ignored. Note that, Ross and

Rodrigo [2004] did not detail how to reconstruct a supertree from the so-obtained

maximum clique(s). Note also that, as for the MRP method, an exponential number

of solutions is sometimes possible.

This approach has several drawbacks: first of all, finding the maximum clique of

a matrix is an NP-hard problem. Second, in a supertree approach, for the presence

of missing entries (i.e., states encoded by a ’?’), pairs of matrix columns may be

all pairwise compatible, but collectivelly non-compatible (see next section for an

example). Consequently, this method can also propose new clusters contradicted by

each of the input trees [Goloboff, 2005]. Moreover, it has been shown by simulation

studies that this method performs worse than MRP [Ross and Rodrigo, 2004].

In the next section we present a better way to use compatibility in a supertree

approach.

3.3.2.4 The semi-strict supertree

The first author that proposed a method analogous to the semi-strict consensus

(Section 3.2.1.3) for a set of rooted trees with overlapping sets of taxa was Lanyon

[1993]. His intent was to propose a method able to return supertrees including

clusters supported by a subset of the input trees as long as they are not contradicted

by other trees. Lanyon’s method represents each tree Ti of the forest F by two sets

of clusters: the set of observed clusters, denoted by Co(Ti) and the set of possible

clusters denoted by Cp(Ti). The set Co(Ti) contains all clusters of Ti and coincides

with C(Ti). The set of possible clusters Cp(Ti) contains clusters obtained by resolving

polytomies of Ti in the usual way (see Section 3.1.3) and inserting taxa of L(F) not

in L(Ti) in all possible ways. For example, let F be a forest that comprises two trees

T1 = (((a, b), c), (d, e)) and T2 = (((e, f), d), (a, c)), we have that Co(T1) = {(a, b),
(a, b, c), (d, e)} and Co(T2) = {(a, c), (d, e, f), (e, f)} while Cp(T1) = {(a, f), (b, f),
(c, f), (d, f), (e, f), (a, b, f), (a, b, c, f), (d, e, f)}, and Cp(T2) = {(a, b), (b, c), (b, d),
(b, e), (b, f), (a, b, c), (b, e, f), (b, d, e, f)}.

Lanyon’ s supertree is composed by all clusters in
�

Ti∈F
(Co(Ti)∪Cp(Ti)) as long

as (1) it is not contradicted by any other cluster or (2) it is an observed cluster and

is contradicted only by possible clusters. Goloboff and Pol [2002] points out that
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Lanyon’ approach does not take into account the information induced by combining

input trees. For example, the Lanyon supertree for the set of trees T1 = ((b, d), c),

T2 = ((a, b), d) and T3 = ((a, c), b) is the tree ((a, c), b, d). This tree does not

contradict any of the input trees but, since it contains the triplet ac|b, it is in

contradiction with the combination of T1 and T2. Indeed, the first tree contains the

triplet bd|c and the second tree contains the triplet ab|d. It follows that combining

these trees we obtain the information that taxa a, b are more related to each other

than either is to c. For the same reason, it can happen that the Lanyon supertree

does not contain clusters that are not contained in any of the input tree but are

jointly implied by the input trees. For instance, for the set of trees T4 = (((c, d), b), a)

and T5 = ((d, e), b), the Lanyon supertree is the completely unresolved tree. But

from the combination of T4 and T5 we can deduce the cluster (c, d, e), since T4

contains the triplet cd|b and T5 the triplet de|b.

Ultra-cliques These remarks motivated the work of Goloboff and Pol [2002].

They proposed a method called the semi-strict supertree «displaying ab|c if it is

found in some input tree or implied by some combination of input trees and no input

tree or combination of input trees displays or implies ac|b or bc|a». We will return

to these properties, called PI’ and PC’ [Ranwez et al., 2007a], in Section 4.1. The

semis-strict supertree method first encodes trees in a matrix representation and then

searches for the ultra-clique in the MR. An ultra-clique for the MR matrix is defined

as a set of columns of MR not contradicted by any other column or sets of columns

of MR. Note that no matrix can have more than one maximal ultra-clique [Goloboff

and Pol, 2002].

Finding cliques of compatible matrix columns is a well known problem and many

solutions have been proposed in the case of matrix columns with no missing entries.

On the contrary, the evaluation of compatibility if the matrix columns have missing

entries is more complicated. Indeed, when a matrix column has some missing entries,

some taxa have undefined positions. This implies that different pairs of matrix

columns may be compatible in pairwise comparisons, but collectively non-compatible

as shown in the example of the Lanyon supertree of T1, T2 and T3. This remark may

strongly invalidate the Lanyon supertree method but also put the MRC method

(Section 3.3.2.3) into question.

A heuristic method to find the ultra-cliques Goloboff and Pol [2002] pro-

posed a heuristics to solve the problem of evaluating the compatibility of matrix

columns with missing entries. Their method is based on the fact that the interac-

tion with other matrix column(s) may define the state of taxa with missing entries.

For instance, by combining matrix columns MR[1] and MR[2] in the matrix of Ta-

ble 3.2(i), we can deduce that the only way to have the compatibility between these

columns is that the taxa e in MR[1] is not in the same cluster as c and d. In

this way we obtain a second matrix shown in Table 3.2(ii) that contains the same

information as the first one, but with no missing entry. The algorithm combines
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a 0 1

b 0 0

c 1 1

d 1 1

e ? 0

(i)

a 0 1

b 0 0

c 1 1

d 1 1

e 0 0

(ii)

Table 3.2: Example of the semi-strict supertree method.

pairwise matrix columns that belong to different trees (see [Goloboff and Pol, 2002]

for further details on the induction rules). When no new cluster can be deduced,

the algorithm stops and a tree is assembled, using only those matrix columns which

have no incompatibilities and no missing entries. Note that the replacement of ’?’

states can differ depending on the pairs of columns jointly considered, hence can

vary depending on the order according to which columns are considered.

Properties of the semi-strict supertree Goloboff and Pol affirmed that the

semi-strict supertree contains only triplets found in some input tree or implied by

some combination of input trees and are not contradicted by any input tree or

combination of input trees. Moreover, they claim that the semi-strict supertree

is always compatible with, but possibly less resolved than, the MRP tree. But,

in pratice, these properties are not always verified, since the semi-strict supertree

method is a heuristics to find the ultra-clique of the MRP matrix. The same authors

show an example of a set of three rooted trees T1 = ((b, c), a), T2 = ((c, d), b) and

T3 = ((a, d), b) for which the semi-strict supertree method may recover a cluster

contradicted by the combination of two input trees. The MR coding for this forest

is shown in Table 3.3(i). If we first combine MR[1] and MR[2] and then the modified

MR[2] and MR[3] we obtain the matrix in Table 3.3(ii). Since all matrix columns are

pairwise incompatible, it follows that the supertree is completely unresolved. On the

contrary, if the first matrix columns to be combined are MR[1] and MR[3] followed

by the modified MR[3] and MR[2], we obtain the matrix in Table 3.3(iii), containing

a column without missing entries and that is not contradicted by any other columns

i.e., MR[3] so the returned supertree is ((a, d), b, c). Then the supertree contains

the cluster (a, d) that is contradicted by the combination of the first and the second

column in the forest. Thus, in this case the method may propose a supertree con-

tradicted by a combination of input trees that is more resolved than the MRP tree,

that here is completely unresolved.

An implementation of this method was available in a previous version of the

phylogeny program TNT [Goloboff et al., 2008]. Currently, no implementation of

this method is available.

3.3.2.5 The t-MRP method

Nelson and Ladiges [1994] have been the first to propose a triplet-based encoding of
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a 0 ? 1

b 1 0 0

c 1 1 ?

d ? 1 1

(i)

a 0 1 1

b 1 0 0

c 1 1 1

d 1 1 1

(ii)

a 0 1 1

b 1 0 0

c 1 1 0

d 0 1 1

(iii)

Table 3.3: Example for which the semi-strict supertree method recovers a
contradicted cluster - (i) the initial MR matrix. (ii) and (iii) are two matrices

that can be deduced from (i) depending on column combination order.

trees in a parsimony context. This approach [Nelson and Ladiges, 1994; Wilkinson

et al., 2004a, 2001; Williams and Humphries, 2003] uses a matrix representation of

the source trees no longer based on bipartitions as in the previous methods but on

triplets. This approach has also been called three-item consensus by Nelson and

Ladiges [1994] and triplet fit by Wilkinson et al. [2005a]. Here we refer to it as the

triplet-based Matrix Representation with Parsimony (t-MRP) from Ranwez et al.

[2009].

In practice, determining the t-MRP supertree for a forest F consists first in

computing the set R(F), then in encoding each triplet ab|c ∈ R(F)10 as a matrix

column having state ’1’ for a and b, state ’0’ for c and the root node and state ’?’

for all other taxa of L(F). The so-obtained matrix t-MR is then analyzed with

the parsimony criterion. The t-MRP supertree is the strict consensus of all most

parsimonious trees for M11. This approach has several drawbacks, as pointed out

by Ranwez et al. [2009].

First of all, the number of matrix columns of t-MR is in the order of

O(|F| · (L(F)3) while it is in the order of O(|F| · (L(F)) for the standard MRP12.

Second, since for each matrix column of t-MR, there are only four informative

character states, the proportion of missing characters is very high and grows pro-

portionally with the number of taxa in the forest. It is also known that a high

proportion of missing character states slows down parsimony methods.

Third, the supertree returned by t-MRP is the strict consensus of all most parsi-

monious (fully) resolved trees and usually is not the best according to the parsimony

criterion. This depends on the fact that partially resolved candidate supertrees can-

not easily be compared with fully resolved supertrees using parsimony. This is why

[Ranwez et al., 2009, see Section 3.3.3.3] used the triplet dissimilarity [Wilkinson

et al., 2005a, 2001] to compare the trees with different degrees of resolution.

10In common pratice, R(F) is pre-processed in order to keep only one (weighted) representative

for the many identical matrix columns.
11Note that Thorley and Page [2000] implements q-MRP, which uses quartet trees in a variant

of the t-MRP supertree method.
12The number of matrix columns of t-MR is of the order of 0(L(F)3) if only one (weighted)

representative for the many identical matrix columns is kept.
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3.3.2.6 The average consensus supertree or MRD

Lapointe and Cucumel [1997] proposed a consensus method called the average con-

sensus that can be also used in the supertree setting. The average consensus is

defined for sets of unrooted weighted trees i.e., unrooted trees with branch lengths

representing evolutionary distances through rates of evolution, divergence times,

etc. For an unrooted weighted tree T , we denote by dT (a, b) the patristic distance

between a and b in T i.e., the sum of the lengths of the branches of T composing

the unique path connecting taxa a and b. The average patristic distance of a and b

in the forest F is

D̂ab =
1

|F|
�

Ti∈F

dTi
(a, b). (3.2)

The average consensus tree for a forest F is the tree T minimizing the least squares

difference:
�

a,b∈L(F)

(dT (a, b)− D̂ab)
2.
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Figure 3.16: Example of average consensus tree - The forest F consists of two

unrooted weighted trees (i) and (ii). The average consensus tree is depicted in (iii).

An example of average consensus tree for a forest of two unrooted trees, com-

puted using PAUP* [Swofford, 2003], is shown in Figure 3.16(iii). Note that this

forest is the same as the one used in the example 2.17 in [Bryant, 2003] but our

average consensus tree differs from that of Bryant. This seems to be due to an error

in the computation of D̂ce, wrongly set at 0.65 in [Bryant, 2003] (the correct value

is 0.55)13.

The average consensus method can be adapted to trees with overlapping sets

of taxa. The average consensus supertree or Matrix Representation with Distances

13Moreover, also computing the average consensus tree with the wrong value does not lead to

the same tree. The branch length set at 0.6 in Figure 1(iii) in [Bryant, 2003] looks suspicious.
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(MRD) is computed as the consensus one but the computation of D̂ab is sightly

different:

D̂ab =
1

|Fa,b|
�

Ti∈Fa,b

dTi
(a, b). (3.3)

where Fa,b = {T ∈ F|{a, b} ⊆ L(T )}. Lapointe et al. [2003] proved that, when all

input trees are defined on the same leaf set and all branch lengths are set to 1, MRD

and MRP are very tied.

The main problem of the average consensus tree is that there exists no efficient

algorithm for constructing it. Another drawback is that no one has demonstrated,

even in the consensus setting, that this method returns trees that contain all splits

common to all input trees. Variants to this method have been proposed to avoid

that rapid genes dominate the computation of the average supertree [Lapointe and

Levasseur, 2004; Lapointe and Cucumel, 1997] but they seem to be inaccurate with

more than two trees [Lapointe and Levasseur, 2004]. Recently, Criscuolo et al. [2006]

proposed SDM, a distance-based method that answers the limitations of the average

supertree method. First, SDM deforms the distance matrices obtained from input

weighted trees, without modifying their topological message, to bring them as close

as possible to each other; the so-obtained matrices are then averaged to obtain a

unique distance matrix used to build the supertree.

3.3.3 Median supertrees

This set of supertree methods aims to summarize a collection of phylogenetic trees

in a median tree, i.e., the tree minimizing the sum of distances to the source trees.

3.3.3.1 The Most Similar Supertree (MSSA), the Maximum Quartet Fit
(QFIT) and Maximum Splits Fit (SFIT) supertrees

Given a forest of trees (rooted or not) the Most Similar Supertree (MSSA), the

Maximum Quartet Fit (QFIT) and Maximum Splits Fit (SFIT) supertree methods

[Creevey et al., 2004; Creevey and McInerney, 2005] all search for the supertree T

minimizing

∆(T,F) =
�

Ti∈F

d(T |L(Ti), Ti), (3.4)

i.e., minimizing the sum of the distances between the gene tree Ti and the homeo-

morphic subtrees of T induced by the leaves of Ti. The three methods only differ

on the choice of the distance metric d in equation (3.4).

Let pT (a, b) denote the number of nodes separating the taxa a and b on the tree

T . In the MSSA method, the distance d(T |L(Ti), Ti) is defined as:

d(T |L(Ti), Ti) =
�

a,b∈L(Ti)

|pT |L(Ti)
(a, b)− pTi

(a, b)|, (3.5)

i.e., as the path length distance under the L1-norm [Steel and Penny, 1993; Williams

and Clifford, 1971] between the trees T |L(Ti) and Ti. In the Clann software [Creevey
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and McInerney, 2005] the user can also impose several weighting schemes on this

score to avoid an undue influence of large trees. Creevey and McInerney [2005] af-

firmed that this method is related to the average consensus method (Section 3.3.2.6)

when branch lengths are set to unity.

For the SFIT supertree method, d(T |L(Ti), Ti) is defined as the Robinson and

Foulds distance (see Section 3.2.1.2) between T |L(Ti) and Ti.

For the QFIT supertree method, d(T |L(Ti), Ti) is defined as the quartet distance

[Estabrook et al., 1985] between T |L(Ti) and Ti i.e., the number of sets of four species

for which the quartet topologies differ in the two trees.

Creevey et al. did not mention whether these problems are NP-hard or not but

we suppose that it is the case. In practice, heuristic searches of the tree-space have

been proposed for all these methods [Creevey and McInerney, 2005].

3.3.3.2 Majority-rule supertree

Cotton and Wilkinson [2007] tried to extend the majority-rule consensus method

to the supertree setting retaining as many of its appealing qualities as possible.

They defined two supertree methods: the majority-rule(-) and the majority-rule(+)

supertree methods that we note here as MajR− and MajR+ respectively.

They defined a median− supertree for a forest F of trees (rooted or not) as the

supertree that minimizes
�

Ti∈F

dS(T |L(Ti), Ti) (3.6)

over all supertrees for F , where the distance dS is the Robinson-Foulds or symmetric-

difference distance (see Section 3.2.1.2). The MajR− supertree is the strict consensus

of all median− supertrees. The main drawback of this approach is that finding a

median− supertree is an NP-hard problem [Bryant, 1997].

Define the binary supertree span of an input tree T , denoted by < T >, to be the

set of binary trees on L(F) that display T . A representative selection for a forest

F = {T1, · · · , Tk} is a k-tuple H = {T �
1, · · · , T �

k}, where T �
i ∈ < Ti >. The median

score of H, denoted by s(H), is defined as:

s(H) = minT

�

�

T �
i∈H

dS(T, T
�
i )
�

, (3.7)

where T ranges over all trees with leaf set L(F). The candidate supertree associated

with H, denoted by TH , is the majority-rule consensus tree for H. The MajR+

supertree is the strict consensus of all the supertrees TH� associated with H � with

s(H �) minimum over all possible tuples H. The main drawback of this approach

is that it may require the enumeration of an exponential number of representative

selections H.

Properties To investigate properties of those two methods, more notations are

needed. A split is full with respect to a tree T if its leaf set is L(T ), otherwise it is

partial. A split is said to be plenary with respect to a forest of trees F if its leaf set
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is L(F). A split is a majority split if it is displayed by a majority of the input trees.

A split A|B extends another split C|D if A ⊇ C and B ⊇ D or A ⊇ D and B ⊇ C.

Cotton and Wilkinson [2007] conjectured that, for each forest F , both the

MajR−and the MajR+ supertrees, denoted here by T , had the following desirable

properties:

CW1: All majority plenary splits in F are in T.

CW2: T is compatible with each majority partial split in F .

CW3: All splits in T are compatible with a majority of the trees in F .

CW4: Every plenary split in T extends at least one input tree full split.

Dong and Fernandez-Baca [2009] demonstrated that the MajR− supertrees sat-

isfy CW1 and CW4 while MajR+ supertrees satisfy CW1, CW2 and CW3. More-

over, they proved that the MajR− supertree method in the consensus setting is

equivalent to the majority-rule consensus while the MajR+ supertree method is not.

Additionally, Dong and Fernandez-Baca [2009] proposed two variants of the MajR+

supertree method i.e., the majority-rule (+)s and the majority-rule (+)g supertree

methods, both satisfying all properties CW1-CW4. Note that only the majority-

rule (+)g supertree method is equivalent to majority-rule consensus method in the

consensus setting.

3.3.3.3 The SUPERTRIPLETS method

Ranwez et al. [2009] recently proposed a new method, called SUPERTRIPLETS

that aims at finding the asymmetric median supertree according to triplet dissim-

ilarity [Wilkinson et al., 2005a, 2001]. This criterion better allows comparison of

trees with different degrees of resolution than the parsimony one. The SUPER-

TRIPLETS method consists in four steps: i) input trees are encoded as a set

of weighted triplets, ii) a starting binary supertree is proposed by an agglomera-

tive procedure, iii) the candidate binary supertree is iterativly improved using small

topological changes, and iv) unsupported edges of the binary supertree are collapsed.

Simulations studies showed that SUPERTRIPLETS tends to propose less re-

solved but more reliable supertrees than those inferred by MRP.

3.3.4 Other approaches to the supertree problem

In the previous sections we reviewed several supertree methods, trying to cover at

least the most widespread and the most theoretically appealing.

Since this field has known a substantial development over the past decades,

several other approaches to the supertree problem have been proposed. Here we do

not detail them since their use in phylogenomics is not established yet.

The supertree methods described in the next two sections may propose non-

plenary supertrees. Recall that a non-plenary supertree T for a forest F is a tree T

such that L(T ) ⊂ L(F) i.e., T can lack some taxa of the forest F .
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3.3.4.1 The SMAST and the SMCT supertrees

The SMAST and SMCT [Berry and Nicolas, 2004; Jansson et al., 2004] methods are

extensions of the MAST and MCT methods respectively (see Section 3.2.1.7) that

allow the input trees to have different label sets.

The computational problem behind SMAST coincides with that of MAST except

that a maximum agreement supertree is sought instead of a maximum agreement

subtree:

Definition 3.3.4 Given a forest of trees F , an agreement supertree T is a tree such

that L(T ) ⊆ L(F) and T |L(Ti) = Ti|L(T ) ∀Ti ∈ F.

A maximum agreement supertree for a forest F is an agreement supertree for F of

maximum size.

The SMCT problem consists in finding the maximum compatible supertree for

a forest F i.e., a tree T such that T |L(Ti) refines all trees Ti|L(T ) ∀Ti ∈ F and has

the maximum number of leaves.

These two methods can be used to measure the congruence of a collection of

source trees to be combined into a supertree. They can also be used as seed trees

to improve the accuracy of MRP when the input trees overlap moderately [Emonds

and Sanderson, 2001]. Moreover, the SMAST can be used to detect HGTs in the

supertree setting.

Extending the MAST and the MCT to the supertree problem increases the

complexity of both problems [Berry and Nicolas, 2004, 2007; Guillemot and Berry,

2009; Guillemot and Nicolas, 2006; Hoang and Sung, 2008, 2009]. Complexities for

these problems are mainly expressed in terms of the total number n of distinct labels

appearing in the source trees, and the number k of input trees. These problems

involve several other natural parameters e.g. d, the maximum outer degree (number

of children) of a node in an input tree (when considering rooted input trees) and p,

an upper bound on the number of input labels that are missing in a SMAST (resp.

SMCT) solution. The SMAST problem is NP-hard as it generalizes the MAST

problem [Amir and Keselman, 1997]. It remains NP-hard when the outer degree

d is unrestricted for k ≥ 3 input trees [Jansson et al., 2005], and for trees with

d ≥ 2 when k is unrestricted [Berry and Nicolas, 2007; Jansson et al., 2005]. The

SMCT problem in NP-hard for 2 trees from the result of Hein et al. [1996]. When

k = 2, SMAST and SMCT can be solved in polynomial time by reduction to MAST

and MCT respectively [Berry and Nicolas, 2007; Jansson et al., 2005]. A sufficient

condition for SMAST to be solved by resorting to MAST algorithms is also given

in Berry and Nicolas [2007]. For such cases, Berry and Nicolas [2007] provided an

algorithm for solving SMAST in linear time.

Both SMAST and SMCT problems parameterized in p have been shown to be

W [2]-hard [Berry and Nicolas, 2007], which rules out the possibility of an FPT

algorithm for this parameterization of the problem.

More recently, Guillemot and Berry [2009] considered the SMAST problem for

binary trees, for which SMAST and SMCT problems coincide. They gave an al-
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gorithm that solves SMAST on k rooted binary trees on a label set of size n in

O((2k)pkn2) time. This algorithm is thus exponential only in p, that roughly rep-

resents the extent to which the input trees disagree, i.e., it will be reasonably fast

when dealing with trees displaying a low level of conflict. Alternatively, Guillemot

and Berry [2009] provided an O((8n)k) time algorithm, independent of p. This is a

significant improvement on the O(n3k2) time algorithm of Jansson et al. [2005] and

shows that SMAST is tractable for a small number of trees. Moreover, Guillemot

and Berry [2009] showed that SMAST is FPT for complete collections of triplets,

i.e., when there is at least one triplet for each set of three taxa.

3.3.4.2 Reduced supertree methods

Wilkinson proposed reduced versions of the strict, majority-rule, semi-strict and

Adams consensus trees (see Wilkinson and Thorley [2003] for a review of these

methods). These reduced versions may return multiple consensus trees that need

not to include all the leaves in the input trees. Wilkinson [1998] suggested to apply

the same approach to the supertree problem but, as far as we know, no method to

extend reduced consensus in a supertree setting exist.

3.3.4.3 Maximum Likelihood supertree

Steel and Rodrigo [2008] proposed an approach to obtain maximum likelihood (ML)

estimates of supertrees. Their method is based on an exponential model of phylo-

genetic error in which the probability of reconstructing any tree T � on any taxon

set Y given a generating tree T (where Y ⊆ L(T )), denoted by PT �,Y (T ), falls off

exponentially with its distance from T i.e.,

PT �,Y (T ) = α exp(−β · d(T �, T |Y )). (3.8)

where d is a metric on resolved trees and β is a constant that can vary with the

size of Y and other factors e.g., the quality of the data. The constant α ensures

that
�

T � PT �,Y (T ) = 1. For this model, the ML supertree for a forest of trees

F = {T1, · · ·Tk} given a metric d and a vector of weights {β1, · · ·βk}, is the tree T

minimizing the weighted sum:
�

Ti∈F

βi · d(Ti, T |L(Ti
). (3.9)

Note that the ML supertree may not be unique.

Steel and Rodrigo [2008] suggested that the choice of the d metric should be

guided by the biological context and computational considerations. The authors

proved that the ML procedure is statistically consistent as the number of input

trees grows. Moreover they proved that, when d is the nearest-neighbor-interchange

(NNI) metric, and the βi values are all the same, the ML supertree coincides with

the MajR− supertree (Section 3.3.3.2) while, in the consensus tree setting, when d

is the Robinson-Foulds metric, the consensus of the ML supertrees is the same as

the majority-rule consensus tree (Section 3.2.1.2).
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3.3.4.4 Bayesian supertree

Ronquist et al. [2004] have developed a Bayesian approach to supertree construction.

Because of the huge number of possible trees, it is usually not feasible to estimate

the probability of each of them. Therefore, Bayesian supertree methods summarize

the distribution typically in terms of split frequencies that are then used to compute

tree probabilities.

3.3.4.5 Gene tree parsimony

Maddison [1997]; Page and Charleston [1997a,b]; Slowinski et al. [1997] described a

procedure, called gene tree parsimony in Slowinski et al. [1997], that aims at finding

the supertree that minimizes a weighted sum of deep coalescences, duplications, loss

and transfer events necessary to explain the differences between the input trees and

the supertree (see Chapter 2 for a recall of these macro events).

Optimization procedures for deep coalescence have been discussed [e.g., Maddi-

son, 1997; Slowinski et al., 1997]. Moreover, several methods that aim at minimizing

the number of transfers and/or duplication and loss events have also been proposed

[e.g., Chauve et al., 2008; Chauve and El-Mabrouk, 2009; Chen et al., 2000; Hallett

and Lagergren, 2000; Ma et al., 2000; Slowinski and Page, 1999; Vernot et al., 2008].

Several of these methods accept as input multi-labeled phylogenetic trees on

which we focus in Chapter 5. In that chapter we will propose a new approach to

combine such kinds of trees.

3.3.4.6 Quartet supertrees

Piaggio-Talice et al. [2004] have proposed two quartet-based supertree methods:

the Quartet Local Inconsistency (QLI) supertree method and the Quartet Inference

and Local Inconsistency (QILI) supertree method. The QLI supertree method con-

sists first in applying the local-inconsistency quartet method of Willson [1999] to

weighted quartet trees obtained from the input trees F . Willson’s method consists

in picking a random order of the species in L(F) and adding the species in this

order. Each species is inserted in the phylogeny at the placement with the lowest

local inconsistency, where the local inconsistency that results from placing a species

into a particular position in a phylogenetic tree is computed as shown in Willson

[1999], using quartet weights.

The QILI supertree method consists in inferring missing quartet trees using the

rectifying process for quartet trees proposed by Willson [2001] and then in applying

the local-inconsistency quartet method of Willson [1999] to weighted quartet trees.

3.4 Which method to choose?

The choice of which consensus or supertree method to use is partly dependent on

the question being asked. For instance, in the consensus setting, the strict and
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semi-strict consensus methods present the relationships that are common to or un-

contradicted among, respectively, the set of source trees. As such, they provide a

conservative summary of the information common to a set of source trees. On the

other hand, the Adams consensus can be used to detect finer common statements of

relationship among a set of source trees (e.g., a and b are more closely related than

either is to c, where a, b, and c need not be each other’s closest relatives). Moreover

this method, like the MAST can be used to detect rogue taxa.

The same reasoning applies to the supertree context. When using supertree

construction in a divide-and-conquer approach in the attempt to reconstruct large

portions of the Tree of Life, conservative supertree methods have to be preferred in

order to obtain very reliable supertrees. In our opinion a reliable supertree should

display only information that is present in one or several input trees, or induced by

their interaction and, at the same time, that is not in conflict either directly with

a source tree or indirectly with a combination of them. Since no existing supertree

method has these characteristics, we designed two new supertree methods that are

very useful in a conservative framework like the reconstruction of the Tree of Life.

These methods are presented in the next chapter.
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This chapter focuses on the work done during my PhD on the design of supertree

methods with good theoretical properties.

As evoked in Chapter 2, supertree methods can be used in a divide-and-conquer

approach in the attempt to reconstruct large portions of the Tree of Life. This

approach consists in decomposing a very large phylogenetic problem into many

subproblems that are analyzed separately. Later on, the solutions of the smaller are

combined through a supertree method to derive the global answer of the starting

problem. When combining reliable published trees in view of reconstructing large

portions of the Tree of Life, conservative supertree methods have to be preferred in

order to obtain reliable supertrees.

In the first part of this chapter we present two strict and desirable properties that

a conservative supertree method should satisfy. In sections 4.2 and 4.3 we present

two supertree methods conceived during my PhD i.e., PhySIC and PhySIC_IST
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[Ranwez et al., 2007a; Scornavacca et al., 2008] that infer supertrees satisfying

these desirable properties. Finally, in Section 4.4 we present an application of

PhySIC_IST to the complex problem of disentangling the phylogeny of Triticeae.

4.1 The PI and PC properties

A conservative supertree method should avoid arbitrary resolutions, i.e., resolutions

that are not entailed by the source topologies. Indeed, novel relationships displayed

by a supertree «are worrying if they are not implied by combinations of the input

trees» [Wilkinson et al., 2005b]. This is why we believe that a conservative supertree

method should return a supertree such that every piece of phylogenetic information

displayed in the supertree is present in one or several source topologies, or induced

by their interaction; we call this the induction property.

Moreover, we think that a conservative supertree method has to construct su-

pertrees not containing clusters that conflict either directly with a source tree or

indirectly with a combination of them. We call this the non-contradiction property.

To formally define the induction and the non-contradiction properties, we need

to introduce some further notations. In this chapter we will make an extensive use

of the notations presented in sections 3.1 and 3.3.1.1.

Given a compatible set R of triplets, we say that R induces a triplet t, denoted

by R � t, if and only if R∪{ t̄ } is not compatible, or equivalently if any tree T that

displays R contains t. For instance, any tree displaying {ab|c, bc|d} also displays

the triplet ac|d so we have that {ab|c, bc|d} � ac|d. Bandelt and Dress [1986] and

Dekker [1986] were among the first to investigate such induction rules. The set of

all triplets induced by a compatible set R is called the closure of R and is denoted

by cl(R). Since a forest of input trees F is often incompatible, it follows that this

is also the case for the set R(F). In case of an incompatible set of triplets R, we

say that a set R of triplets induces a triplet t when there is a compatible subset R�

of R that induces t.

Given a collection F of input trees and a candidate supertree T , R(T,F) de-

notes the set of triplets of F for which T proposes a resolution. More formally,

R(T,F) =
�

ab|c ∈ R(F) such that {ab|c, ac|b, bc|a}∩R(T ) �= ∅
�

. The set R(T,F)

corresponds to all topological information present in the collection F that is related

to the information present in supertree T . Using this notation, we can express the

induction property PI and the non-contradiction property PC as follows:

• T satisfies PI for F if and only if for all t ∈ R(T ), it holds that R(T,F) � t.

In other words, PI requires that each and every triplet of T is induced by

R(T,F).

• T satisfies PC for F if and only if for all t ∈ R(T ) and all t̄, it holds that

R(T,F) �� t̄. This means that, for each and every triplet of T , R(T,F) induces

no alternative resolution.
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Links with other advocated properties

Properties similar to PI and PC were described in Goloboff and Pol [2002]. Using

our formalism, they can be translated as follows for a supertree T representing a

collection F :

• PI �: for any t ∈ R(T ), it holds that R(F) � t

• PC �: for any t ∈ R(T ) and for all t̄, it holds that R(F)�/ t̄.

These properties were also pointed out as being desirable by Grunewald et al. [2007].

The essential difference between PI’-PC’ and PI-PC is whether we evaluate su-

pertrees based on triplets in the original set of trees, R(F), or on the triplets com-

monly resolved by the supertree and at least one of the source trees, R(T,F). From

the statement of the properties, it is clear that PC’ implies PC and PI implies PI’.

It is thus natural to wonder which version of the properties is preferable. Below,

we show an example where PC’ is too restrictive, and an example where PI’ is too

permissive. In contrast, PI and PC behave correctly in these examples.
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Figure 4.1: An example of informative non plenary supertree for a forest
of two rooted trees - Excluding rogue taxa from the analysis can lead to more

informative supertrees.

Let F = {T1, T2} with T1 and T2 as shown in Figure 4.1. R(F) contains ae|b
and ac|e, therefore R(F) � ac|b. We also have R(F) � ab|c since ab|c ∈ R(T1).

Thus any tree providing a triplet on {a, b, c} does not satisfy PC’. For analogous

reasons PC’ does not allow us to propose any triplet in the supertree. Thus PC’

rejects the tree T of Figure 4.1. Yet T is a reasonable and informative supertree for

F and satisfies both PI and PC.

We note that T is not a plenary supertree, i.e., it does not contain all input

taxa, but this example shows that removing rogue taxa is a way in which more

informative supertrees can be obtained. This is in line with the remark of Wilkinson

et al. [2004b], who stated that «non-plenary supertree methods might be most useful

for identifying unstable leaves». For instance, such leaves might be involved in

horizontal gene transfers.

The same remark holds for the forest F = {T1, T2} and the supertree T shown

in Figure 4.2. In this example, though taxa are excluded from the supertree, this

latter contains more taxa than any of the individual input trees.
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Figure 4.2: Another example of informative non plenary supertree for a
forest of two rooted trees - Excluding rogue taxa from the analysis can lead to

more informative supertrees.

The next example shows a supertree satisfying both PI’ and PC’, while also

displaying irrelevant triplets.

Let F = {T1, T2} with T1 and T2 as illustrated in Figure 4.3. R(F) =

{ab|c, ab|x, bc|a}. The tree T in Figure. 4.3 displays {ab|x, bc|x, ac|x}. The triplet

ab|x is present in (thus induced by) R(F) but surprisingly the two other triplets can

also be induced from R(F): {ab|x, bc|a} � {bc|x, ac|x}. It follows that T satisfies

PI’. Note that this induction is done using the triplet bc|a that is a unreliable since

R(F) contains both bc|a and ab|c. Indeed PI’ could even have relied on bc|a to

justify a triplet of the supertree and on ab|c to justify another triplet of the same

supertree. Moreover, it is easily seen that no combination of triplets in R(F), other

than {ab|x, bc|a}, induces triplets. Thus T also satisfies PC’. However, T is clearly

not an ideal supertree for F as no information in F induces group a, b, c to nest

inside group a, b, c, x. The property PI, not satisfied by T , detects this problem:

here R(T,F) only contains the triplet ab|x and thus it does not induce the triplet

ac|x present in T .
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Figure 4.3: An example showing why properties PC and PI have to be
preferred to properties PC’+ PI’ - Contradictions in the source trees can lead

to arbitrary resolution. An example where the presence of contradictions in the

source trees (namely, ab|c in T1 versus bc|a in T2) can lead to the inferrence of

arbitrary clades (namely, excluding x from the clade a, b, c in the supertree T ).This

problem is detected by PI but not by PI’ nor PC’.
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The PI’ property quoted by Goloboff and Pol [2002] is stronger than the Pareto

property [Neumann, 1983; Wilkinson et al., 2004b] on triplets, which requires that

the output tree contains all triplets that occur in all source trees.

The Pareto property is appealing in general and has also been advocated in the

supertree context (property P6 of Steel et al., 2000). However imposing the Pareto

property on triplets may be problematic, even in the case of compatible source trees

[Thorley and Wilkinson, 2003]. This is due to the possibility of having several can-

didate supertrees that are both compatible with source trees and respect the Pareto

property. In this case, no single supertree exists that satisfies the Pareto property

while having no arbitrary resolution. The strict consensus of these supertrees does

not necessarily satisfy the Pareto property. A solution is then to return several

trees, either all candidate supertrees or their reduced consensus [Wilkinson, 1994].

However, this solution may not well be suited when the aim is to summarize a collec-

tion of source trees into a single supertree that is more easily dealt with for further

analysis by biologists.

When source trees are incompatible, it may even be impossible to have a

supertree satisfying both the Pareto and non-contradiction properties (PC and

PC’). The following details such a surprising example. Consider the collection

F = {T1, T2} where T1 = (((a, d), b), ((c, f), e)) and T2 = (((a, e), (b, f)), (c, d)).

Triplets ab|c and ef |d are displayed by both trees of F . Thus any supertree T for

F must include all leaves in F in order to satisfy the Pareto property. Since R(F)

contains ab|d and ad|b, any tree T displaying a triplet for the three leaves does not

satisfy PC (hence PC’). For similar reasons, no supertree T can display a triplet on

the taxa a, c and d. Thus, any supertree satisfying PC (or PC’) and including all

taxa of F contains a multifurcating node on taxa a, b, c, d, hence does not display

the triplet ab|c, i.e., does not satisfy the Pareto property.

In other words, imposing the Pareto property can lead the supertree to explicitly

contradict relationships present in some input trees. This shows that the Pareto

property on triplets is not compatible with the veto approach, where the proposed

supertree must not contradict the source trees. However, the Pareto property can be

considered for other topological relationships [Wilkinson et al., 2004b]. For example,

there is always a supertree satisfying PI and PC as well as the Pareto property on

partial or full splits contained in the source trees.

The Pareto property specifies relations that the supertree must contain. The

complementary co-Pareto property specifies relations that the supertree must not

contain. The co-Pareto property in the consensus context requires that the consen-

sus tree contain no relationships that are not present in at least one input. However,

Wilkinson et al. [2004b] pointed out that this statement is not reasonable for su-

pertrees, since «they might contain relashionships that are entailed by the input trees

in combination, but are not present in any of them singly». Then they propose a

weaker version that requires that the supertree does not contain relationships that

are contradicted by all the input trees whose leaf set makes a contradiction possible.

Note that, any supertree satisfying PC also satisfies the latter version of co-Pareto.
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Steel et al. [2000] list five other properties that might be requested from supertree

methods: changing the order of the trees in the input collection does not change the

supertree (P1); renaming the taxa of the source trees gives the same supertree, but

with the taxa renamed accordingly (P2); the output tree displays the source trees

when they are compatible (P3); each leaf (taxon) that occurs in at least one source

tree is in the supertree (P4); the running time of the method grows polynomially

with respect to the total number of taxa (P5). First note that any non-plenary

supertree method does not satisfy the P4 property. The following example shows

that ensuring P3 can force the supertree to contain arbitrary clades. Thus P3 can

conflict with PI.

Let F = {T1, T2} with T1 = ((a, b), w) and T2 = ((a, b), (x, (y, z))). A supertree

with taxon set {a, b, w, x, y, z} that satisfies P3 must display T2, hence must have a

clade including y, z but not x. However, it will contain arbitrary clades, no matter

where taxon w is attached. This is because any supertree satisfying PI must include

a polytomy on w, x, y, z since source trees include no information on the relative

position of w and the group x, y, z. Note that if polytomies of a supertree are

interpreted in terms of an Adams consensus (see Section 3.1.3), then this example

does not put P3 into question. However, this interpretation of polytomies does not

prevail in phylogenetics, as evoked in Section 3.1.3.

Both supertree methods presented in this chapter compute supertrees satisfying

PI and PC properties, but with different underlying optimization problems.

4.2 Phylogenetic Signal with Induction and non-

Contradiction (PhySIC)

The aim of PhySIC is to infer supertrees that satisfy PI and PC and that resolve

as many triplets as possible. More formally, given a forest F , the aim of PhySIC is

to infer a supertree T that satisfies PI and PC and that such that |R(T,F)| is

maximum. This gives rise to the following optimization problem:

Problem Maximum Induced and non-Contradicting

Tree from a Forest (MICTF)

Input a collection F of rooted trees.

Output a tree T such that:

(i) T satisfies PI and PC for F
(ii) |R(T,F)| is maximum among the trees satisfying (i).

We conjecture this problem to be hard. A proof of NP-completeness has been

proposed in Guillemot and Berry [2007] but, during the redaction of this manuscript

we realized that the problem studied by the authors - MIST (Maximum Identifying

Subset of rooted Triplets) - is a variant of the problem underlying PhySIC not

involving the NP-completeness of the latter. The method PhySIC is a heuristic for

the afore-described problem, but only on the size of R(T,F) as it always returns a

super-trees satisfying PI and PC.
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This method consists in two steps. Given a forest of rooted trees F , first a su-

pertree TPC satisfying PC for F is computed by the PhySICPC algorithm (detailed

in Algorithm 11 of Appendix A.1). Second, some branches of TPC are eventually

collapsed by the PhySICPI algorithm (detailed in Algorithm 14 of Appendix A.1)

until the so-modified TPC satisfies also property PI.

4.2.1 The PhySICPC algorithm

A simple algorithm that infers a supertree from a collection of source trees F sat-

isfying PC can be obtained modifying the Build algorithm (Section 3.3.1.1). This

algorithm, called BuildPC (see Algorithm 12 in Appendix A.1), takes as input the

triplet set R = R(F) of a collection F of source trees and the list S of taxa con-

tained in these trees i.e., L(F). BuildPC mainly differs from Build when the Aho

graph contains one connected component on the set S of taxa currently considered.

In this case, BuildPC returns the star tree on S (i.e., a single polytomy on S, thus

contradicting no input triplet), whereas Build simply concludes that the sources

trees are incompatible. This star tree is then grafted as a subtree of the tree built

by the previous recursive call. Thus, we can now output a supertree even when

the source trees are incompatible. The correctness of BuildPC is proved in Ranwez

et al. [2007a].

BuildPC sometimes produces poorly resolved trees due to multifurcations re-

turned in cases where G(R|S , S) contains a single connected component (i.e., when

R contains conflicts covering the considered subset of taxa S). In the most extreme

(though unlikely) case, this situation occurs at the first step of the algorithm, which

then outputs a star tree.

The PhySICPC algorithm is a more complex variant of Build that returns

supertrees generally much more resolved than those returned by BuildPC . The

PhySICPC algorithm takes as input a set S of taxa and a set R of triplets on S

as input and returns a tree TPC satisfying PC for R. This algorithm is based on

the remark that the most basic conflicts between triplets of R occurs when two

different triplets t and t̄ appear in R for a same set of three taxa. Such a direct

contradiction cannot be present in a tree that satisfies PC. Given Rdc, the set of

triplets s.t. t, t̄ ∈ R it seems relevant to consider the subset R� = R −Rdc

For instance, Figure 4.4(ii) shows the graph obtained for R|V (C2), where R
are triplets of the collection of rooted trees F comprised of two rooted trees

(((a, c), b), (e, f)) and (((a, d), b), c) and C2 is the connected component shown in

Figure 4.4(i). This graph is connected due to the direct conflicts between ab|c (dis-

played by the first tree) and bc|a (displayed by the second tree). This situation leads

BuildPC to return a polytomy on a, b, c, d.

In contrast, building the graph on the basis of R� results in two connected

components, Ci and Cj , allowing PhySICPC to propose a tree with two subtrees for

taxa a, b, c, d. This contrasts with the situation for BuildPC , which can only output

a star tree on a, b, c, d since its corresponding graph is connected (see Figure 4.4(i)).

The correctness of BuildPC ensures that T � satisfies PC with respect to R� but
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Figure 4.4: An example of the PhySICPC algorithm. - (i) The initial Aho graph

created from the triplets R(F) of the collection of rooted trees F that comprises

(((a, c), b), (e, f)) and (((a, d), b), c). The two connected components of this are

C1 = {e, f} and C2 = {a, b, c, d}. (ii) the Aho graph obtained from R|V (C2).

This graph is connected, showing that the input trees conflict on the resolution

of {a, b, c, d}, hence are incompatible. (iii) the Aho graph obtained from R|V (C2)

when removing the triplets Rdc = {ab|c, ac|b}

without any guarantee that this also holds w.r.t. R. To ensure the latter, and thus

the correction of PhySICPC , T � must not resolve any triplet of Rdc. A way to

ensure this is to collapse any branch of T � that resolves a triplet of Rdc (lines 14-24

of Algorithm 11 of Appendix A.1). The tree thus obtained is still always at least as

resolved as the one proposed by BuildPC and potentially contains supplementary

branches. Indeed, direct contradictions at the root of a clade no longer prevent the

proposition of clades on subsets of its taxa. For instance, on the collection of rooted

trees F consisting of trees (((a, c), b), (e, f)) and (((a, d), b), c), the tree satisfying PC

for R� obtained by PhySICPC is ((((a, d), b), c), (e, f)). But as the branch leading

to the clade (a, d, b) contradicts ac|b ∈ Rdc, the branch above this clade is collapsed,

and the tree output by PhySICPC is then the tree (((a, d), b, c), (e, f)). This tree

contains one clade more than the tree output by BuildPC i.e., ((a, d, b, c), (e, f)).

The PhySICPC is detailed in Algorithm 11 of Appendix A.1 and its correctness is

proved in Ranwez et al. [2007a].

The time complexity of PhySICPC (L(F),R(F)) –- Alg. 11

The most time consuming operations in PhySICPC are the computation of R�|v(Ci)

and G�
i (line 20), and that of the connected components of this graph (line 23).

Obtaining R�|v(Ci) and constructing G�
i requires considering each triplet of R(F) at

most once and thus has a time complexity of O(n3), where n = |L(F)|. Determining

the CC(G�
i)s costs O(n2) (which is the maximum number of edges for a graph with n

vertices). During the whole set of recursive calls to PhySICPC , CheckPC is modified

at most O(n) times (proportional to the number of clades of a tree with n leaves).

Lines 20 and 23 are executed as many times as CheckPC is modified, i.e., O(n)

times. Thus, for the whole set of recursive calls to PhySICPC , the computation
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time required by these critical lines is O(n4), which is also the complexity of the

entire procedure.

4.2.2 The PhySICPI algorithm

The supertree TPC output by PhySICPC does not usually satisfy the PI property.

The PhySICPI algorithm transforms TPC so that it also satisfies PI. To that aim

PhySICPI recursively searches the tree and checks that for each branch each triplet

is induced by R(TPC ,F). The theorem 3.1.1 of Daniel [2004] provides a useful

characterisation to decide when a branch is justified, directly or indirectly, thanks

to triplets present in R(TPC ,F). When considering the branch linking u to a subtree

Si, the theorem considers a graph Gij for any sibling subtree Sj of Si. Any such

graph Gij is the Aho graph with vertices L(Si), and with edges due to triplets of

R(TPC ,F) whose three leaves are in L(Si) ∪ L(Sj). The theorem states that the

branch from u to the root of Si is justified if and only if Gij is connected, for any

sibling subtree Sj .

Consider for instance the simple example where F contains the trees ((a,b),x)

and ((e,f),x). The Aho graph for R(F) = {ab|x, ef |x} is made of three connected

components: C1 = {a, b}, C2 = {e, f} and C3 = {x}, therefore applying the

PhySICPC algorithm gives the tree TPC = ((a, b), (e, f), x). TPC displays ab|e
even though this information is not induced by F . Indeed, the branch defining the

clade (a, b) is detected as not justified since the corresponding connected component,

C1, is not connected in the Aho graph when we consider only edges due to triplets

with taxa in C1 ∪ C2.

Daniel’s theorem is the basis of a decision algorithm called Identifies, that states

whether a given set of triplets identifies a given tree [Daniel, 2004]. It is possible to

design a simple variant of this algorithm that always returns a tree (not just a yes

or no answer): when a branch between a node p and the root of a subtree Si is not

justified, the idea is to replace Si by a star tree on the taxa of the corresponding

clade. This crude variant removes the unjustified branches, but also potentially

many other branches, i.e., those inside Si, those leading to sibling subtrees Sj of

Si, and those inside Sj subtrees. PhySICPI is a more refined variant that only

collapses the unjustified branches. The PhySICPC is detailed in Algorithm 14

of Appendix A.1 and its correctness is proved in Ranwez et al. [2007a]. In this

algorithm, PhySICPI is given a tree T in which unjustified branches are to be

collapsed, and a collection F of source trees or, equivalently, the corresponding set

of triplets. PhySICPI repeatedly calls the CheckPI subroutine to detect unjustified

branches that are then removed until none remain.

For instance, from the collection of rooted trees F comprised of trees

(((a, c), b), (e, f)) and (((a, d), b), c), PhySICPC infers the supertree TPC =

(((a, d), b, c), (e, f)) and none of the three internal branches of TPC are collapsed

by CheckPI . For instance, consider the step where CheckPI checks the subtree

((a,d),b,c) of TPC , whose child subtrees are (a, d) plus the two trivial subtrees on

b and c. The sole branch that has to be checked in ((a, d), b, c) is the one defining
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the clade (a, d). Here, CheckPI builds two Aho graphs with vertices {a, d}: one

with edges due to triplets on {a, d} ∪ {b} and one with edges due to triplets on

{a, d} ∪ {c}. Both graphs are connected thanks to triplets of the source tree T2,

therefore, CheckPI does not collapse this branch.

The time complexity of PhySICPI (T,F) –- Alg. 14

As for PhySICPC , the most time consuming operations done by PhySICPI are

the construction of the Aho graph Gij and the computation of its connected com-

ponents in the CheckPI subroutine. The Gi graphs that may be used in CheckPI

can be precomputed in the PhySICPI part of the pseudo-code (i.e., before calling

CheckPI), knowing R(F) and the current tree TPI to be examined in CheckPI .

This preprocess clearly requires O(n4) time, since there are O(n) such graphs (one

for each clade of T ), each of which is obtained by examining the O(n3) triplets

of R(TPI ,F). Recall that n = |L(F)|. Each Gij graph can be obtained from a

copy of the corresponding Gi graph, completed by the edges due to triplets ab|c
having a, b ∈ Ci and c ∈ Cj . All the Gij graphs required during the recursive

calls to CheckPI resulting from an execution of line 6 in PhySICPI can also be

precomputed in the PhySICPI pseudo-code part. This can be done just before

line 6, provided that CheckPI is modified to end as soon as an edge is collapsed

(line 14) – it is clear that this slight modification does not modify the correctness of

the algorithm. Indeed, the only Gijs that are then required by CheckPI are those

corresponding to two sibling clades Ci and Cj of the current TPI tree. Computing

all of these Gijs before line 6 of PhySICPI is done in O(n3) since each triplet ab|c
of R(TPI) adds an edge between A and B in the one and only graph Gij , such that

Ci and Cj are sibling clades in TPI and A,B ∈ Ci and C ∈ Cj .

Note also that the only information used by CheckPI on graph Gi and Gij is the

number of their connected components. The total number of edges present in the

Gij graphs is in O(n3): precomputation of the number of connected components for

this set of graphs is thus globally O(n3) time. As this has to be done at each pass

of the Repeat loop, and as this loop is done at most O(n) times (each pass results

in the collapsing of one of the O(n) clades of T ), this part of the computation is

globally (on the whole for PhySICPI) in O(n4) time. Determination of the number

of connected components of each Gi is done only once just before the Repeat loop.

For each of these O(n) graphs, this requires examining O(n3) triplets. Thus, this

preprocess also costs O(n4) time. The preprocesses done for Gi and Gij graphs thus

requires O(n4) time and reduces the running time of CheckPI . The modification of

CheckPI , consisting of returning to PhySICPI as soon as an edge is collapsed, also

simplifies the algorithm (e.g. the Repeat loop is no longer required).

4.2.3 The PhySIC algorithm

The PhySIC algorithm consists in building a supertree for a collection of k source

trees F by first computing the set R(F) and then successively calling PhySICPC
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and PhySICPI . Since both PhySICPC and PhySICPI run in O(n4) time and

R(F) is computed in O(kn3), PhySIC runs in O(kn3 + n4) time.

To illustrate the impact of the PC and PI properties on supertree inference we

present a case study centered on primate. The PhySIC supertree (see Figure 4.5)

was inferred combining 24 input trees issued from 24 data sets (i.e., two mitochon-

drial DNA (mtDNA), 19 nuclear DNA (nuDNA), and three transposable elements

data sets), covering 95% of all primate extant genera. The PhySIC supertree con-

forms to current ideas on Primate phylogeny, and is close to the informal supertree

of Primates at the genus level proposed by Goodman et al. [2005]. Moreover, the

supertree polytomies were automatically labeled from the PhySIC implementation

with a label ’c’ if the polytomy resulted from contradictions among the source trees

on phylogenetic relationships of corresponding taxa and/or a label ’i’ if any dichoto-

mous resolution of the clade would be at least partially arbitrary and thus would not

respect the PI property. In the same paper, we propose polynomial time procedures

to modify supertrees proposed by any existing supertree method in order that they

satisfy PC and PI with respect to the tree forest they were built from.

Simulation studies (see Figure 4.11) showed that, in some cases i.e., when the

source trees do not sufficiently overlap and/or present a high degree of contradictions

(as is the case for gene trees affected by horizontal gene transfers or tree-bulding

artifacts, such as long branch attraction), supertrees built by PhySIC can be highly

unresolved. Since we think that the PI and PC properties are mandatory in view

of reconstructing the Tree of Life, we designed another supertree method satisfying

these properties but proposing more informative supertrees.

4.3 Phylogenetic Signal with Induction and non-

Contradiction Inserting a Subset of Taxa

(PhySIC_IST)

When more informative supertrees are expected, a solution is to propose non-plenary

supertrees, i.e., supertrees containing a subset of the taxa of the source trees.

Figures 4.6 and 4.7 show two cases where proposing supertrees (ST2) lacking only

one taxon provides more information on the phylogenetic relationships among other

species.

Both the Maximum Agreement Supertree (SMAST ) and the Maximum Com-

patible Supertree (SMCT ) methods [Berry and Nicolas, 2004, 2007], presented in

Section 3.3.4.1, can produce non-plenary supertrees. The former consists in finding

one of the largest taxa subsets S such that each input tree T proposes exactly the

same resolution as the supertree for the taxa contained in L(T )∩S. In this approach

the presence of a multifurcation in an input tree will inhibit resolution according to

the information present in other input trees. On the contrary, the SMCT method

allows these multifurcations to be resolved in the resulting supertree. Unfortunately,

both underlying decision problems are NP-hard and no heuristic algorithm currently

exists for general instances of these problems.
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Figure 4.5: A PhySIC supertree covering 95% of all primate extant genera
- the PhySIC supertree was inferred from input trees combining 24 input trees

issued from 24 data sets, i.e., two mitochondrial DNA (mtDNA), 19 nuclear DNA

(nuDNA), and three transposable elements data sets.
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Figure 4.6: An example of non-plenary supertree for a forest displaying
contradictions - In the case of trees displaying contradictions, such as T1 and

T2 on the relative position of e, it can be preferable to propose a non-plenary su-

pertree, such as ST2. In this way, more information on the evolutionary relation-

ships among the remaining species can be obtained. ST1 is inferred by MRP, ST2

by PhySIC_IST. PhySIC produces a star tree on this example.

The algorithm presented in this section, called PhySIC_IST (PHYlogenetic Signal

with Induction and non-Contradiction Inserting a Subset of Taxa), looks for an in-

formative supertree that satisfies PC and PI properties.

PhySIC_IST allows multifurcations in input trees to be resolved thanks to the

information present in the other source trees. To deal with topological conflicts

PhySIC_IST allows, like SMAST and SMCT, the insertion of only a subset of the

species present in the source trees. Moreover, PhySIC_IST can also propose new

multifurcations to avoid contradicting source trees, while SMAST and SMCT can

only remove taxa.

The aim of PhySIC_IST is not only to find a supertree T (plenary or not)

that satisfies PC and PI but to find the most informative supertree satisfying both

properties. Choosing the most informative alternative among several candidate

supertrees requires one to be able to compare trees including potentially different

subsets of the source taxa (such as ST1 and ST2 in Figure 4.7). This is done by

using a measure based on a variation of the Cladistic Information Content (CIC )

criterion [Thorley et al., 1998]. This measure has roots in information theory and is

basically proportional to the number of complete binary trees that are compatible

with the evaluated supertree.

4.3.1 The CIC criterion

Let F be a collection of source trees on a leaf set of n taxa. The information

contained in an incomplete supertree T is a function of both the number nR(T, n)

of its possible biological interpretations (i.e., the number of fully resolved trees on

L(F) that encompasses T ) and nR(n), the number of fully resolved trees on n leaves.

More precisely, the CIC value of T relative to n source taxa is defined as:

CIC(T, n) = − lg
nR(T, n)

nR(n)
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Figure 4.7: An example of non-plenary supertree for a forest displaying a
significant lack of overlap - In the case of trees displaying a significant lack of

overlap, such as T1 and T2, it can be preferable to propose a non-plenary supertree,

such as ST2. In this way, more information on the evolutionary relationships among

the species included in the supertree can be obtained. ST1 is inferred by MRP (the

same tree is obtained by PhySIC), ST2 by PhySIC_IST.

In case of non-plenary supertrees, nR(T, n) depends on the multifurcations of T

(since they reflect an ambiguity) and on the number of source taxa missing in T

(since T contains no information for them). More formally, given a collection F
of input trees and a candidate supertree T , the number of permitted binary trees

for T referring to F is the number of binary trees T
�
such that L(T

�
) = L(F) and

T
� |L(T ) refines T . We observe that, for each internal node ui with a number ci of

children, we have (2ci−3)!! possible resolutions [Semple and Steel, 2003]. Moreover,

if L(T ) ⊂ L(F), we have to insert all missing taxa, i.e., those in L(F) − L(T ). A

rooted binary tree of i taxa has 2(i−1) branches; so, there are 2i−1 possible positions

for the (i+ 1)th taxon, taking into consideration the possibility of insertions above

the root. We detail in Algorithm 17 in Appendix A.2 how the value of CIC(T, n)

can be computed. In Figures 4.8 and 4.11 we refer to CICN (T, n) as the normalized

value of CIC (T, n), i.e.,

CICN (T, n) = CIC(T, n)/(− lg 1/nR(n)).

Another way to compare the information of different trees is to compare their number

of triplets. However, the CIC criterion better takes into account missing taxa. For

instance, consider the trees T1 and T2 in Figure 4.8. The former is completely

resolved but lacks taxon h, while the latter contains all taxa but is highly unresolved.

Searching for the tree that maximizes the number of triplets, would lead to prefer

T2 (since |R(T1)| = 35 while |R(T2)| = 48). However, it seems more reasonable to

favor the tree that maximizes the value of the CIC criterion (in this case T1, since

CICN (T1, 8) = 0.78, while CICN (T2, 8) = 0.54).
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Figure 4.8: Comparison of two informativeness measures: number of
triplets and the CIC criterion - The second tree displays more triplets than

the first one (|R(T1)| = 35 while |R(T2)| = 48) while the latter has a better CIC

than the former (CICN (T1, 8) = 0.78 while CICN (T2, 8) = 0.54).

4.3.2 The PhySIC_IST algorithm

The aim of PhySIC_IST is to find a supertree T (plenary or not) that satisfies PC

and PI and that have the maximum CIC. This gives rise to the following optimiza-

tion problem:

Problem Most informative induced and

non-contradicting supertree (MIICS)

Input a collection F of rooted trees.

Output a tree T such that:

(i) T satisfies PI and PC for F
(ii) CIC(T, |L(F)|) is maximum among the trees satisfying (i).

We conjecture this problem to be hard since it is a variant of the MIST (Max-

imum Identifying Subset of rooted Triplets) problem and of the ST (Triplet Su-

pertree) problem, both shown to be NP-hard [Bryant, 1997; Guillemot and Berry,

2007; Jansson, 2001; Wu, 2004]. PhySIC_IST is a polynomial-time heuristics to

solve the MIICS problem. Note that it is heuristics only on point (ii), since it

always outputs a supertree satisfying (i).

4.3.2.1 Inferring informative and reliable supertrees: PhySIC_IST

In this section we give an outline of the new method PhySIC_IST. This algorithm

operates successive insertions of taxa on a backbone topology. Given a rooted forest

F , the rough outline the PhySIC_IST method is the following:
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(1) order taxa of L(F) in a priority order;

(2) construct a starting backbone tree T formed of a root connecting two

leaf nodes labeled by the first two taxa in the priority list;

(3) for each taxon l in priority order:

(3a) choose a node or a branch of the backbone tree T where insert l;

call T � the tree obtained by inserting l in the chosen placement in T ;

(3b) collapse some branches of T � until it satisfies PI and PC for F ;

(3c) if(CIC(T �, L(F)) > CIC(T, L(F))) T ← T �;
We will see that point (3) is oversimplified in this outline and that PhySIC_IST

acts smarter than that. In the rest of the section we describe PhySIC_IST in more

details.

Priority order Since PhySIC_IST is a greedy algorithm, the order of the in-

sertions has to be chosen carefully. Once a taxon is inserted, its presence in the

supertree will never be questioned. It is therefore preferable to first insert the taxa

with a strong and unambiguous signal. The first taxa inserted are thus for which we

have as much triplet information as possible and involved in as few contradictions as

possible. In fact, inserting a taxon that is present in numerous triplets of F provides

information, not only on its position, but also on the position of remaining taxa.

On the other hand, delaying the insertion of incongruent taxa lessens the chances

to misplace them due to incomplete information and to be unable to proceed with

the insertion of remaining taxa. More formally, the priority order is determined as a

function of R and Rdc, respectively the set of triplets of F and the subset of R that

contains direct contradictions. Given a taxon l, we denote by |R(l)| (resp. |Rdc(l)|)
the number of triplets containing l present in R (resp. Rdc). For each l ∈ L(F) we

compute the value

priority(l) = |R(l)| − |Rdc(l)|

and we order taxa in decreasing priority order.

Then, we build the starting backbone tree, formed of a root node to which

are connected two leaves corresponding to the first two taxa in the priority list.

How to choose where to insert a taxon in the backbone tree Given a

source tree Ti, the backbone tree T , and a taxon l ∈ L(Ti) not yet inserted in T ,

we want to determine within which region of T the taxon l can be inserted without

contradicting the information contained in Ti. When the insertion of l on an edge

(resp. a node) does not induce contradictions between T and Ti, this edge (resp.

node) is said to be supported. To delimit the supported region, we map the nodes

of Ti with the nodes of T . We define T
�

i as Ti|(L(T ) ∪ {l}). We denote by f
�

i the

father of l in T
�

i and by C
�

i the set of children of f
�

i other than l. The position of l in

Ti can be seen as delimited by f
�

i as an upper bound and by each ci ∈ C
�

i as lower

bounds. The corresponding bounds in T are denoted f and C (see Algorithm 16 in

Appendix A.2 for more details and Figure 4.9 for an example).
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Figure 4.9: An example showing the supported region of T for the insertion
of the taxon z, according to tree Ti - The taxon z can be inserted in T on all

black edges and on all nodes highlighted by a white circle, without contradicting Ti.

Doing this for each Ti containing l give us some information on the best region(s)

of T within which the taxon l can be inserted.

The different kinds of insertions Note that, if all source trees support the

insertion of a taxon in a region (a node or a branch), inserting it in this region

will not create contradictions between the source trees and the supertree. Thus

this insertion will not violate PC. Additionally, if the region supported by source

trees is not limited to a node or an edge, it means that the information we have is

not enough to choose where the taxon has to be inserted. Such an insertion will

surely violate PI. These considerations make insertions supported by all trees more

appealing than insertions supported by only a part of them, and the insertions on

a region well delimited more attractive than insertions on a larger region. This is

the reason why in PhySIC_IST the insertions of taxa are done in four successive

steps, each step being less restrictive than the previous ones in its requirements

for inserting taxa. The strictest steps are done first, in order to maximize the

chances for future taxa to be inserted and to maximize the CIC of the computed

supertree. These four steps are differentiated according to two binary parameters,

all and cons. The all parameter indicates whether taxa should be inserted only

when a maximum support is observed for them somewhere in the backbone tree

(all = true), or whether, in the absence of places with maximum support, places

of maximal support should be considered (all = false). By maximum support at

a position we mean that all source trees containing the taxa agree that it could

be inserted at the given position. Note though that there might be several places

of maximum support for inserting a taxon, due to a lack of overlap between the
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source trees and the taxa already in the backbone tree.

The case where all = false leads the backbone tree to temporarily contradict at

least one source tree. This means that some of its edges have to be collapsed to

ensure that the backbone tree still satisfies PC after the insertions. The collapsing

of a minimal number of edges is performed by calling the CheckPC procedure (see

Algorithm 15 in Appendix A.2); an analogous test to check PI is performed calling

the CheckPI procedure [Ranwez et al., 2007a]. If this collapsing decreases the value

of CIC of the tree compared to its value prior to the insertion, then the insertion is

cancelled. Overall, the insertions with all = true promise a more resolved supertree

and are hence performed during the first two insertion stages, while the latter two

are performed with all = false.

The parameter cons indicates whether the insertion procedure should insert taxa

only when there is a single best supported position for them (cons = false) or

when consensus insertions are allowed (cons = true). A consensus insertion means

inserting taxa on a node when all best supported places for the taxa are edges

incident to the node. In this case, the insertion of the taxon does not contradict the

source trees. Insertions with cons = true are always on a node, therefore insertions

with cons = false are preferable because the possibility to insert taxa on a edge

provides a tree with a higher CIC than an insertion on a node. Thus, for each

value of all, a step with cons = false is first performed followed by a step with

cons = true.

During each insertion stage (see Algorithm 20 in Appendix A.2), all taxa not yet

inserted in the backbone tree are considered. If the current taxon is inserted (by

the roundIns procedure detailed in Algorithm 19 in Appendix A.2), then the

algorithm retries to insert, always in priority order, all taxa previously considered

that could not have been inserted before. These taxa have higher priority than

taxa following the current one, and it is possible that the insertion of the current

taxon enables the supported position for some of these taxa to be circumvented

to a small enough part of the tree for their insertion to be possible. After each

insertion the problematic branches are collapsed, to ensure that the backbone tree

still satisfies PC. After inserting several taxa, the backbone tree may fail to satisfy

PI. However, using the CheckPI procedure to collapse problematic edges suffices

to ensure that the backbone tree satisfies the property again. Collapsing branches

with CheckPI is done after each insertion stage and not after every insertion,

contrarily to CheckPC . The reason is that some edges of the backbone tree can

fail to satisfy PI only temporarily and satisfy it again after the insertion of other

taxa. On the contrary, if the backbone contradicts any source tree, it will keep

contradicting it, no matter which taxon we insert afterward; it is thus preferable to

detect this immediately to avoid problems that may arise while inserting remaining

taxa.



4.3. PhySIC_IST 103

4.3.2.2 Complexity of PhySIC_IST

The outlines of PhySIC_IST methods are given in Appendix A.2. In this section

we compute the running time of PhySIC_IST. Denoting by k the number of source

trees and by n the number of taxa within the tree collection, the time complexity

of PhySIC_IST is shown to be O(n3(k + n3)), i.e., the method runs in polynomial

time. To prove this statement, the complexity of each PhySIC_IST subroutine is

detailed.

The time complexity of support(Ti, T, l) is O(n) — Alg. 16

T and Ti have size O(n), hence L(T ) and L(Ti) can be obtained in O(n). The lca

of all pairs of nodes in T can be computed in O(n) [see Bender and Farach-Colton,

2000; Harel and Tarjan, 1984], then each lca query costs O(1). Other steps involved

in this subroutine correspond to a constant number of traversals of parts of the trees

T and Ti, each time involving O(1) operations per node and branch. As a result,

the complexity of the procedure is O(n).

The time complexity of CheckPC (T,R,Rdc) is O(n4) — Alg. 15

This procedure collapses some branches of the tree T , until T satisfies PC for F
[Ranwez et al., 2007a, Lemma 1]. The set RT contains O(n3) triplets. Checking

whether rT (resp. r̄T ) is in Rdc (resp. in R), or not and obtaining the nodes u, v in T

corresponding to rT can be done in constant time, through lca queries (once the tree

has been preprocessed in O(n) [Bender and Farach-Colton, 2000; Harel and Tarjan,

1984]). Marking branches of the path [u, v] is done in O(n) time, proportionally to

the number of branches in that path. This happens at worst for each triplet, hence

costs O(n4) globally. This is then the complexity of the procedure (removing all

marked branches of T only requires a single search of T , i.e., O(n)).

The time complexity of CIC (T, n) is O(n) — Alg. 17

In the first loop, a number of multiplications equal to the number of branches

in the tree is performed (thus requiring O(n) time). The second loop performs

a multiplication per missing taxa (requiring O(n) time again). Then computing

nR(n) by the traditional formula in phylogenetics to count the number of rooted

trees having n leaves is done in O(n) multiplications.

The time complexity of betterCIC(T, n,R,Rdc, u, l, above) is O(n4) — Alg.
18

Building T � requires copying T and inserting a taxon l above/on the node u, thus

costing O(n) time. The complexity of this subroutine is therefore that of the

CheckPI and CheckPC procedures, i.e., O(n4), see [Ranwez et al., 2007a, Thm 2]

and above, respectively.



104 Chapter 4. Supertree methods from new principles

The time complexity of roundIns(T,F ,R,Rdc, l, all, summary) is O(nk+n4)

— Alg. 19

The function support is called for each tree containing the taxon l. In the worst

case, i.e., l is present in all source trees, this step requires O(nk) time. Among the

other step of roundIns, the most time consuming operations are betterCIC and

CheckPC , which both cost O(n4) time. So, the total cost of roundIns is O(nk+n4).

The time complexity of insertion(T,F ,R,Rdc, priorityList, all, summary) is
O(n3(k + n3)) — Alg. 20

Each of the n taxa is considered at most O(n) times: a first time and if not inserted,

each time another taxa is inserted (as long it is not itself inserted). Overall O(n2)

calls to roundIns can be issued, each costing O(nk+n4) time. Thus, the insertion

procedure runs in O(n3(k + n3)) time.

The time complexity of PhySIC_IST(F) is O(n3(k + n3))— Alg. 21

In the procedure PhySIC_IST the first step consists in computing R and Rdc. This

step requires O(kn3) because each of the k trees in the collection can host O(n3)

triplets. Then, for each taxon l of the collection, |R(l)| and |Rdc(l)| are computed

(see Section 4.3.2.1) and the taxa are order in decreasing priority order. The total

complexity of this task is O(n3) time. The total cost of PhySIC_IST is dominated

by the complexity of the insertion procedure (that is called a constant number of

times) and is therefore O(n3(k + n3)).

4.3.2.3 The STC preprocessing

The resolution of supertrees computed by veto methods can be poor when con-

sidering large numbers of source trees. Indeed, adding more trees provides more

information on the relative position of some taxa, but in the same time increases

the number of local conflicts. To handle large collections of source trees, one has

to resort to the liberal approach that allows to arbitrate between conflicts arising

among source trees. The most common way to deal with incongruent source trees

is to use a supertree method that takes ad-hoc decisions (according to a chosen ob-

jective criterion) in the face of individual conflicts met when building the supertree.

The second and much less explored way is to preprocess the data according to a

statistical procedure and then to apply a veto method, not contradicting the re-

tained information that was estimated to be reliable. In this section, we follow the

latter approach that has the advantage of making the removing of conflicts between

source trees explicit. More precisely, we introduce a preprocessing step to detect

and correct anomalies in the source trees. This step, called STC (Source Trees Cor-

rection), analyzes the contradictions among the source trees; for all contradictions,
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it evaluates the possible topological alternatives and it drops the alternative(s) that

is (are) statistically less supported (with a threshold chosen by the user). Then

STC modifies each source tree (using a schema similar to that of PhySIC_IST) so

that it does not contain the dropped alternatives and yet remains as informative as

possible. In other words the STC aims at correcting the source trees that propose

anomalous phylogenetic positions for some taxa (due to horizontal gene transfers,

long branch attractions, paralogy ...). For example, if source trees contain two con-

tradicting resolutions, one present in 99% of the trees and the other one present in

1% of the trees, we can reasonably think that the latter resolution is an anomaly

and ignore it. If the user approves the proposed modifications, the PhySIC_IST

veto method is then applied to the modified source trees. The resulting supertree

satisfies both PI and PC properties for the collection of modified source trees. If the

user is not satisfied with the modified source trees, he can change the threshold and

restart the procedure, or choose to skip it. In this way, the liberal component of the

supertree inference is not only made explicit but also interactive and parametrized.

The aim of the STC (Source Tree Correction) preprocessing is to analyze the

direct contradictions in the source trees, to drop the statistically less supported

alternatives and to correct the source trees accordingly.

For a triplet t, we denote by ṫ and ẗ the two other possible triplets for the same

set of three taxa and by |t|, |ṫ| and |ẗ| the number of occurrences of t, ṫ and ẗ in

the source trees. Only resolved triplets (like ab|c) are taken into account in the

computation of |t|, |ṫ| and |ẗ|, while tricotomies are ignored. Given a set of source

trees F , for each t ∈ R(F), the vector composed by the three number of occurrences

|t|, |ṫ| and |ẗ| is denoted by occ(t). We indicate with max(t) the maximum value

in occ(t). Each time that occ(t) has at least two non-null coordinates, we have a

direct contradiction. In this case, we want to drop the statistically less supported

alternative(s), if any exists. To do that, the STC preprocessing compares each non-

zero value i in occ(t) with max(t) and it uses a Chi-Square test [Fienberg, 1977]

with one degree of freedom to check whether the difference between the two values

is significant. The null hypothesis H0 is that pi = pmax(t) = 1
2 , i.e., there is no

difference between the observed frequencies of the two triplets (one presents i times

and the other max(t) times). For each i, the STC preprocessing uses the basic

Chi-square test to assess the plausibility of this hypothesis, computing

χ2 =
(i− q · pi)2

q · pi
+

(max(t)− q · pmax(t))
2

q · pmax(t)

=
(i− q

2)
2 + (max(t)− q

2)
2

q
2

where q = i + max(t). This value is compared to the quantile x0 corresponding

to the threshold τ given by the user, i.e., x0 : Prob{X < x0} = (1 − τ), where

X is the Chi-Square distributed with one degree of freedom. If χ2 > x0, the STC

preprocessing rejects the H0 and inserts the triplet associated to i in W(F), i.e.,

the set of dropped triplets. Note that the two tests performed on each non-null
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coordinate are not independent. The user may use the threshold more as a setting

parameter rather than interpret it as the probability that the STC drops a triplet

that underlies a real anomaly. After that, the STC preprocessing modifies the source

trees applying PhySIC_IST to each Tj ∈ F , with R = R(Tj) and Rdc = W(F). In

this way, we force the source trees not to contain the dropped triplets. Essentially,

each modified tree may contain either new multifurcations, or lack some of its former

taxa (if the phylogenetic position of these taxa changes extremely within the forest).

Then PhySIC_IST is applied to the modified source trees. If the user does not agree

with the source tree modifications, he can change τ and restart the STC procedure

or choose to skip it.

4.3.3 Rooting the source trees

When PhySIC_IST is provided with unrooted source trees, it first has to root them.

There are several approaches to root phylogenetic trees, among which are the out-

group, the molecular clock, and the non-reversible model of character-state changes.

It has been shown that the outgroup criterion is consistently able to identify the

root [Huelsenbeck et al., 2002a]. In our implementation of PhySIC_IST, we provide

a rooting tool that automates the procedure. This tool accepts as input different

levels θi of outgroup, each one being a list of taxa. The rooting procedure considers

each unrooted source tree separately. For a given source tree T , it determines the

first θi such that θi ∩ L(T ) �= ∅. Then the tree is rooted on the branch leading to

the smallest subtree hosting all outgroup taxa of θi. If the proposed outgroup is not

monophyletic, the tree T is discarded from the analysis. This procedure does not

alter the resolution inside the ingroup nor in the different outgroup levels that can

be present in the tree.

Rooting trees is not trivial, hence outgroup levels have to be chosen carefully.

4.3.4 The PhySIC_IST validation

4.3.4.1 Simulation studies

PhySIC_IST and the STC preprocessing were implemented using the

BIO++ libraries [Dutheil et al., 2006], and are available from: http:

//www.atgc-montpellier.fr/physic_ist/.

In this section we present results of large-scale simulations conducted to evaluate

both the resolution and the accuracy of PhySIC_IST supertrees. These results help

to measure both the improvement offered by PhySIC_IST on the previous version

of the method, and the effectiveness of the STC preprocess. We also validate the

new methodology by applying STC+PhySIC_IST to two biological case studies.
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4.3.4.2 Simulations

The simulation protocol, depicted in Figure 4.10, follows the standard guidelines in

the field for assessing the effectiveness of supertree methods. Its details are inspired

from Criscuolo et al. [2006]. We created 100 different clocklike trees; for each tree,

every branch length was multiplied by a random value, chosen in an exponential

distribution. Then each branch length was divided by the total branch length (TBL)

of the resulting tree, providing 100 normalized (TBL=1) non-clocklike model trees.

From each model tree, we derived 50 gene trees with different evolutionary rates,

by multiplying every branch by a given value (the same within each gene tree, but

different from gene to gene). Then the evolution of DNA sequences along these

gene trees was simulated according to the K2P substitution model [Kimura, 1980],

obtaining a sequence alignment data set per gene tree. The different taxa overlaps

observed in real data sets were simulated by randomly removing some sequences of

those 50 data sets.

Figure 4.10: Simulation protocol -

As in Criscuolo et al. [2006]; Eulenstein et al. [2004], the deletion of sequences

was performed according to four different proportions: d = 25%, to model a strong

overlap between source trees, d = 50% and d = 75%, to represent sets with low

taxon overlap. Moreover, we added a mixed deletion ratio (d = mix), to model a

more realistic heterogeneity among source trees sizes. The mixed deletion condition

is composed of one tenth of data sets with d = 25%, three tenths with d = 50% and

six tenths with d = 75%. From the resulting data sets, we inferred 50 gene trees

for each value of d, using PhyML [Guindon and Gascuel, 2003]. The node supports

were estimated using PhyML with a bootstrap process based on 100 replicates. For

each inferred tree, we only retained the best supported nodes i.e., those showing a

bootstrap proportion at least equal to 50. We built supertrees from all gene trees

(k = 50) or only a subset of them (k = 10, 20, 30, 40). One hundred data sets were

obtained for each of the 20 combinations of k and d.
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We detail results for three supertree methods applied to the collections of source

trees, namely PhySIC [Ranwez et al., 2007a], PhySIC_IST, and MRP [Baum and

Ragan, 2004]. Veto and liberal methods are not really comparable because they

are used for different purposes. Veto methods are expected to produce less resolved

but more accurate supertrees: showing results for both kinds of methods gives an

indication of how much is lost in resolution and of how much is gained in accuracy

when using a veto method. For each supertree we evaluate its informativeness by

computing its CICN (see Section 4.3.1 for more details). Additionally, we compute

its type I error, i.e., the number of triplets of the supertree not present in the model

tree divided by the number of triplets in the model tree. For each condition, we

average these values on the 100 replicates. Figures 4.11 and 4.12 summarize the

results of the simulations. The informativeness of supertrees is frequently compared

using type II error, i.e., the number of triplets of the model tree that are not present

in the supertree divided by the number of triplets in the model tree. It seems

to us that the CICN is more appropriate when comparing the informativeness of

supertrees. Indeed, if a triplet t ∈ R is included in the computation of the type II

error, this may be a result of it not having been expressed in the supertree or of

an alternative resolution having been proposed. To the contrary, the CICN strictly

measures the information contained in the supertree, whether it is accurate or not.

For consistency with the optimization criterion of PhySIC_IST, the average values

of CICN are provided and commented. Type II error graphics are provided in

Figure 4.13 but not commented since they show the same trends of the CICN . The

accuracy of the supertree is separately measured using the type I error, i.e., the

number of triplets of the supertree that are not present in the model tree divided

by the number of triplets in the model tree. Graphics showing the sum of Type I

and Type II errors are also provided in Figure 4.14.

4.3.4.3 Improvement of PhySIC_IST on PhySIC

The increase in resolution of PhySIC_IST over PhySIC is noteworthy no matter

the deletion ratio (Figure 4.11). More precisely, the average CICN of PhySIC_IST

supertrees is 1.5 that of PhySIC (over all simulation conditions). Since CICN is

measured on a logarithmic scale, this means a considerable improvement on PhySIC.

This different behaviour of the two methods is due, most of the time, to the fact

that PhySIC_IST is allowed to infer non-plenary supertrees.

Indeed, removing just one taxon is sometimes enough to make all source trees

agree on a large subset of taxa. As veto methods are not allowed to contradict source

trees, keeping the rogue taxa in the supertree means proposing a multifurcation

for the surrounding subset of taxa, as done by PhySIC. The PhySIC_IST version

escapes this situation by not including the rogue taxa in the supertree, and is hence

able to obtain a relatively important resolution for the remaining taxa.

In the meantime, the type I error of PhySIC_IST (Figure 4.12) is always inferior to

1% (except for d = 75% and k = 10) and decreases significantly as the number of

source trees increases. From the experimental results, it could appear that there is
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Figure 4.11: Simulation results: average CICN values - Average CICN values

(y-axis) of supertrees built with different supertree methods (MRP �, PhySIC �,

PhySIC_IST �, STC+PhySIC � and STC+PhySIC_IST �), depending on the

number of source trees (x-axis). The results are shown for source trees inferred from

data sets in which sequences have been deleted with d = 25%, 50%, 75% and mixed

proportions

a choice to be made between the two methods since PhySIC displays a significantly

lower type I error rate (see Figure 4.12), but this is mainly due to the fact that

the trees reconstructed by PhySIC can be much less resolved, as expected from a

plenary veto method applied to a large number of source trees. Thus, on practical

data sets, PhySIC_IST is always to be preferred to PhySIC.

The table in Figure 4.15(a) shows the average percentage of source taxa not

included in the supertrees inferred by PhySIC_IST, for each simulation condition.

This percentage depends on the number and size of the source trees but remains

globally low (i.e., less than 10%, except for d = 75% where it reaches ≈ 25%).

When source trees contain insufficient information (e.g. d = 75% and k = 10),

PhySIC_IST can infer supertrees lacking several taxa. Indeed, in such a case, the

insertion of some taxa is impeded by the PI property: very little overlapping infor-

mation is available and consequently many taxa cannot be placed unambiguously.
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Figure 4.12: Simulation results: average percentage of type I error -

Average percentage of type I error (y-axis) of supertrees built with different su-

pertree methods (MRP �, PhySIC �, PhySIC_IST �, STC+PhySIC � and

STC+PhySIC_IST �), depending on the number of source trees (x-axis). The

results are shown for source trees inferred from data sets in which sequences have

been deleted with d = 25%, 50%, 75% and mixed proportions.

Providing PhySIC_IST with more information (by increasing k or decreasing d)

allows to precise the position of some taxa, hence to propose larger supertrees. Yet,

as the amount of available information continues to increase, the number of conflicts

between source trees augments, leading some taxa no longer to be inserted due to

the PC property. This means that increasing the amount of available information

after some point can decrease the informativeness and the size of the inferred su-

pertree (this phenomenon can be observed in Figures 4.11 and 4.15 for d = 50%

when increasing k).

The foreseeable but undesirable behavior of veto supertree methods when facing

large numbers of source trees can be overcome by an explicit liberal preprocessing

of the input trees, such as the STC proposed in Section 4.3.2.3.

It is also interesting to analyze the CICN values plotted as a function of the number

of removed taxa. For each of the 20 conditions here analyzed, the 100 inferred
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Figure 4.13: Simulation results: average percentage of type II error -

Average percentage of type II error (y-axis) of supertrees built with different su-

pertree methods (MRP �, PhySIC �, PhySIC_IST �, STC+PhySIC � and

STC+PhySIC_IST �), depending on the number of source trees (x-axis). The

results are shown for source trees inferred from data sets in which sequences have

been deleted with d = 25%, 50%, 75% and mixed proportions

supertrees are split into classes, depending on the number of taxa not inserted in

the supertrees but present in the source trees. Then, the average CICN value is

computed for each class (a class usually contains more than one tree) and these

values are plotted as a function of the number of input taxa not inserted in the

supertrees (see Figure 4.16).

For comparison, we also plotted the CICN values of binary trees having the same

number of leaves as the supertrees in each class. These values, denoted max CICN ,

provide upper bounds for CICN values of each class, hence enable to measure by

eye the gap between PhySIC_IST supertrees and fully resolved supertrees of the

same size. The plots obtained for the 20 tested conditions show the same trend with

slight variations.

The CICN values of the PhySIC_IST supertrees decrease as the number of “not-

inserted” taxa increases, i.e., as the size of the supertrees decreases. This is expected
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Figure 4.14: Simulation results: average percentage of type I + type II er-
rors - Average percentage of type I + type II errors (y-axis) of supertrees built with

different supertree methods (MRP �, PhySIC �, PhySIC_IST �, STC+PhySIC

� and STC+PhySIC_IST �), depending on the number of source trees (x-axis).

The results are shown for source trees inferred from data sets in which sequences

have been deleted with d = 25%, 50%, 75% and mixed proportions

given the role played by this number in the CICN formula (see section the CIC

criterion). More interestingly, PhySIC_IST supertrees overall have CIC values

rather close to max CIC values, i.e., PhySIC_IST supertree are close to being

fully resolved. Moreover, as the size of the supertrees decreases, CICN values of

PhySIC_IST supertrees and max CIC values decrease at a similar pace, the gap

between both values narrowing slightly for the smallest supertrees. Thus, overall,

the resolution degree of output supertrees appears to be only slightly dependent

on the number of taxa inserted in the supertree. The only exception to this rule

happens for the conditions d = 75 with k = 10 and k = 20. In these cases, which

are the most extreme conditions in terms of overlap between the taxa set of source

trees, the two curves decrease with different slopes.

We now detail results obtained when resorting to STC statistical preprocess.
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k=10 k=20 k=30 k=40 k=50

d=25 2.12 3.45 4.87 6.4 7.07

d=50 5.87 3.18 3.51 4.57 5.58

d=75 26.02 21.71 17.89 15.75 14.52

d=mix 10.28 3.8 3.82 4.1 5.25

k=10 k=20 k=30 k=40 k=50

d=25 1.21 0.26 0.18 0.06 0.01

d=50 5.73 1.99 1.31 1.08 0.56

d=75 26.02 21.71 17.83 15.73 14.12

d=mix 10.28 3.73 2.7 1.89 1.58

(a) (b)

Figure 4.15: Average percentage of discarded taxa for supertrees built with
PhySIC_IST (a) and STC+PhySIC_IST (b) - depending on the deletion

ratio and on the number of source trees.

4.3.4.4 Efficiency of the STC preprocessing

Figures 4.11 and 4.12 report simulations results for STC+PhySIC and

STC+PhySIC_IST , when fixing the STC threshold to 95% (see Section 4.3.2.3

for more details). The resolution of both PhySIC and PhySIC_IST greatly in-

creases thanks to the preprocessing step in most simulation conditions (25%, 50%

and mixed deletion ratios d). The STC preprocessing has no effect for d = 75%,

where the low overlap between source trees impedes detecting anomalies.

STC+PhySIC_IST is on average 1.5 more informative than STC+PhySIC ac-

cording to the CICN measure (remember that CICN is measured on a logarithmic

scale). This replicates the gap observed between the methods without the prepro-

cess, confirming the improvement of PhySIC_IST on PhySIC. The fact that the

STC preprocessing allows the PhySIC and PhySIC_IST supertrees to be more re-

solved without significantly changing the type I error, shows that this preprocessing

step corrects the source trees in an appropriate way.

When only considering results of STC+PhySIC_IST (Figure 4.11), if more in-

formation is provided, supertrees are more and more informative, as usually happens

with the liberal approach (e.g., see results for MRP and STC+PhySIC_IST in Fig-

ure 4.11). Indeed, giving more information to STC brings out anomalies more and

more clearly, thus tends to modify the source trees more and more accurately.

4.3.4.5 Comparison of liberal and veto methods

As expected, the resolution of supertrees obtained with MRP tends to increase with

the number of source trees. In fact, MRP is a liberal method and adding trees

supplies more information. Unexpectedly, its type I error does not decrease consid-

erably when adding more trees to the analysis.

As already mentioned, the resolution of supertrees inferred by the two veto methods

tends to decrease when including more trees (Figure 4.11, 25%, 75% and mixed

deletion rates d). In contrast, their type I error decreases importantly as the num-
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insufficient number of triplets to satisfy the PI property, PhySIC can not benefit

from the improvement with respect to PC achieved by the STC preprocess.

Note that in all conditions, MRP provides trees that are, on average, more resolved

than other methods. Thus, MRP appears to be the most liberal supertree method

among those investigated. This is not a surprise as, when two alternative resolutions

conflict with one another, the MRP parsimony criterion favors that supported by

the highest number of source trees, while the STC preprocessing favors a resolution

only when it is statistically more supported than the other. However, favoring more

resolved supertrees also leads to more errors in trees. Indeed, the type I error of

PhySIC and PhySIC_IST, with and without STC preprocessing, is smaller than

that of MRP (except for the marginal condition d = 75% and k = 10).

The important question of whether less resolved but more correct supertrees

should be preferred to the opposite alternative, can only be answered by knowing

the subsequent use of the inferred supertree [see Ranwez et al., 2007a, for a list of

cases where the former alternative is to be preferred].

4.3.4.6 Case study focused on placental mammals

To illustrate the effectiveness of PhySIC_IST and STC on biological data, we first

considered data sets on 12 placental mammals. Primary data was obtained from

the OrthoMaM database [Ranwez et al., 2007b] that uses the EnsEMBL (release

41) orthology annotations to identify a set of exonic candidate markers for mam-

malian phylogenetics. The reliability of the phylogeny inferred from a single marker

depends, among other things, on the length of the corresponding sequence align-

ment. Therefore, we only retained the DNA markers of OrthoMaM associated to

the longest sequences, namely those having more than 2000 bp, which provided us

with 159 sequence alignments. From the alignments, unrooted phylogenies were

then separately inferred with PAUP* [Swofford, 2003] using a maximum likelihood

criterion. Using the facilities of our software, we rooted these trees according to

one of the two following outgroups: Monodelphis or, if it was not present, Dasypus,

Echinops and Loxodonta (see Section 4.3.3 for more details). At this step, two of the

159 trees had to be discarded since they did not include monophyletic outgroups.

A first supertree data set, called ortho2000, was composed of all these source trees.

Additionally, we considered a second data set, called ortho3000, only composed of

the trees obtained from alignment of more than 3000 bp. These two data sets re-

spectively contain 157 and 50 trees, each tree including from 6 to 12 taxa. Figure

4.17 displays the supertrees inferred by PhySIC_IST on these data sets, with and

without applying the STC preprocessing. The STC threshold has been fixed to 90%.

With exons longer than 3000 bp, the PhySIC_IST supertree is extensively mul-

tifurcated, with only three obvious clades recovered (Figure 4.17(i)): the two muroid

rodents (Mus + Rattus), the two hominoids (Homo + Pan), and the catarrhine pri-

mates (hominoids + Macaca). This reflects the fact that the source trees contain

topological conflicts. A closer look at the source trees shows, for instance, that

there is likely a long branch attraction phenomenon of the long muroid branch by
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(a) (b) (c) (d)

(i) (ii) (iii) (iv)

Figure 4.17: A case study focused on placental mammals - Supertrees in-

ferred by PhySIC_IST from two different collections of source trees. Supertrees in

(i-ii) are produced by the PhySIC_IST analysis of 50 gene trees obtained from the

OrthoMaM database queried for sequences longer than 3000 bp. Tree (i) is inferred

without the STC preprocessing while tree (ii) is inferred with this preprocess, set-

ting the threshold to 90%. Supertrees in (iii-iv) are produced from 157 gene trees

inferred from sequences longer than 2000 bp. Tree (iii) is inferred without the STC

preprocessing while tree (iv) is inferred with STC, setting the statistical threshold

to 90%

the marsupial outgroup for the alignment composed of Pan, Macaca, Mus, Rattus,

Bos, Canis, and Monodelphis exons orthologous to human exon 3 of the CELSR3-

SLC26A6 gene (EnsEMBL transcript and exon references ENST00000383733, and

ENSE00001498361). In the absence of the rabbit (Oryctolagus) ortholog that

would break the muroid branch, Mus + Rattus are artificially attracted towards

the basalmost position among placentals. This example illustrates the existence of

conflicting resolutions among triplets of different source trees. Thus, without the

STC preprocessing, satisfying the PC condition results in a highly multifurcated

supertree. In contrast, applying the STC preprocessing leads to a more resolved

supertree (Figure 4.17(ii)). The two remaining multifurcations involve (i) the rab-

bit relative to muroids and primates, and (ii) the armadillo (Dasypus), elephant

(Loxodonta), and tenrec (Echinops) relative to the other placentals. This probably

reflects the lack of phylogenetic signal for these taxa among the 50 source trees.

With exons longer than 2000 bp, the PhySIC_IST supertree is extensively mul-

tifurcated, with only two obvious clades recovered (Figure 4.17(iii)): Mus + Rattus

and Homo + Pan. The greater number of source trees introduces additional con-

flicts within primates as compared to ortho3000. Additionally, the supertree lacks
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the taxon Macaca. The reason is that, in the source tree reconstructed from the

ENSE00001300737 exon (EnsEMBL release 41), Pan is unexpectedly more closely

related to Macaca than to Homo. This anomaly appears in only one of the 157

source trees, but this impedes pure veto methods from recovering the correct reso-

lution for the clade. Indeed, inserting Macaca while preserving PC, implies losing

the clade Homo + Pan, hence leads to a completely multifurcated tree on the 12

taxa except for the trivial clade Mus + Rattus. This supertree T � has a CICN

value inferior to that of the supertree T lacking Macaca (CICN (T �, 12) = 0.35

while CICN (T, 12) = 0.435). For this reason, the taxon Macaca is not inserted.

In contrast, STC+PhySIC_IST infers a plenary supertree (Figure 4.17(iv)), the

above-mentioned anomaly being overcome by a significant number of correct res-

olutions in other source trees. This supertree is also fully-resolved – unlike the

supertree obtained from ortho3000 – as STC benefits from the signal of 107 source

trees additionally present in ortho2000. The supertree topology is in agreement with

the current view on placental phylogenetics which depicts the monophyly of euar-

chontoglires (rodents + lagomorphs + primates), laurasiatherians (Bos + Canis),

boreoeutherians (the grouping of the latter two clades), afrotherians (Loxodonta

+ Echinops), and xenarthrans (Dasypus) + afrotherians [Hallstrom et al., 2007;

Murphy et al., 2007; Ranwez et al., 2007b; Wildman et al., 2007].

4.3.4.7 Case study focused on animals

The case study based on OrthoMaM only involved 12 species. To illustrate how

PhySIC_IST performs on larger studies, we analyzed an animal phylogenomic data

set containing 94 proteins (approximately 20,000 unambiguous amino acid posi-

tions) for 79 species, i.e., three poriferans (sponges), 5 cnidarians (sea anemones),

and 71 bilaterians (chordates, urchins, mollusks, annelids, flatworms, roundworms,

crustaceans, and insects) [Lartillot and Philippe, 2008].

Individual maximum likelihood (ML) protein trees were inferred using Treefinder

[Jobb et al., 2004] under the WAG + Γ model of evolution. Among the 94 source

trees, 4 (rpl21, rpl37a, rpl38, rps17 ) were discarded because the poriferan out-

group was not monophyletic. The remaining 90 ML topologies were subjected to

a PhySIC_IST analysis. To choose the STC threshold, we varied the value of the

threshold from 1 to 0.5 and we analyzed the CICN values of the resulting supertrees.

Fixing the threshold to a value comprised in the range [0.69, 0.84] leads to the

most informative supertree. The topology of the obtained supertree (see Figure

4.18) is in agreement with recent animal phylogenomic studies based on the ML

and Bayesian concatenated analyses of conserved proteins under the WAG model of

amino acid replacements [Dunn et al., 2008]. For instance, bilaterians are split into

protostomians and deuterostomians. Among protostomians, annelids group with

molluscs, and crustaceans are paraphyletic due to the grouping of Artemia and

Daphnia with hexapods. Among deuterostomians, Tunicata branches with Verte-

brata, and Xenoturbella with Ambulacraria. Two taxa are not incorporated, the

priapulid Priapulus and the nematode Pratylenchus. These two taxa are by far
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Figure 4.18: A case study focused on animals - Supertree reconstructed from

the PhySIC_IST approach from 90 source trees of a phylogenomic animal data

set. The name of the major clades recovered are provided. The two species not

incorporated in this non-plenary supertree are indicated by "X". Multifurcations
are emphasized by a thicker vertical line.

the less frequent and they are probably not inserted due to a lack of information.
Seven multifurcations are displayed by the supertree. This reflects the fact that
several source trees were inferred from very short alignments (e.g., rps28a possesses
54 sites). The resulting stochastic error yielded a lack of signal and/or contradic-
tions on the position of some taxa, thus diminishing the supertree resolution de-
gree. For instance, the multifurcation involving the 6 major protostomian lineages
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reflects the lack of strong signal under the WAG model, whereas the use of a mix-
ture model like CAT provides increased topological resolution with monophylies of
Lophotrochozoa (Platyhelminthes, Annelida, Mollusca) and Ecdysozoa (Tardigrada,
Nematoda, Arthropoda) [Lartillot and Philippe, 2008].

Note that the PhySIC_IST supertree disagrees with the supertree proposed
by Lartillot and Philippe [2008] on the relative order of Mollusca, Annelida and
Platyhelminthes i.e., Platyhelminthes and Annelida are sister groups in the Lartillot
and Philippe supertree while we proposed the more traditional grouping of Annelida
and Mollusca. This is due to the fact that we used the WAG model to infer input
trees, while recently it has been demonstrated [Lartillot and Philippe, 2008] that for
this data set the CAT model has a much better statistical fit than WAG.

4.4 Combining supermatrix and supertree in Triticeea

In this section we present an application of PhySIC_IST to the complex problem
of disentangling the phylogeny of Triticeae.

This work is issued from a collaboration with Juan S. Escobar, Alberto Cenci,
Claire Guilhaumon, Sylvain Santoni, Emmanuel J. P. Douzery, Vincent Ranwez,
Sylvain Glémin and Jacques David and it has been submitted at the journal Sys-
tematic Biology.

4.4.1 Triticeea: a problematic group

Recent studies have shown that introgressive events (hybridization, gene flows) and
incomplete lineage sorting, leading to non-reciprocal monophyly between genes, are
more common than previously thought, challenging species concepts, hence histor-
ical reconstructions [e.g., Degnan and Rosenberg, 2009; Hudson and Coyne, 2002;
Mallet, 2007, Chapter 2].

If gene flows took place in the history of a group and if the genes employed to
reconstruct the phylogenetic relationships among genera and species are sampled
from introgressed portions of the genome, the trees obtained would likely reflect the
history of the introgression rather than the history of the splitting of species lineages.
Rapid radiations, especially ancient ones, also challenge phylogenetic reconstructions
because of widespread incomplete lineage sorting [Whitfield and Lockhart, 2007].

An appropriate way to handle this problem is through the analysis of the level
of congruence among different phylogenies. Some incongruences may only be due to
methodological difficulties, such as a reduced number of sampled genes and/or low
resolution power of those genes. But others may reflect a true complex, reticulate
phylogenetic history involving hybridization and gene flow, and/or rapid diversifi-
cation and incomplete lineage sorting of ancestral polymorphisms.

A particularly striking example of incongruence among phylogenies when using
different genes is provided by Triticeae. Triticeae is a tribe within the Pooideae
subfamily of grasses comprising species of major economic importance, including
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wheat, barley and rye. Among the world’s cultivated species, Triticeae has one of
the most complex genetic histories.

In the past years, attempts to reconstruct a reliable phylogeny of the group,
based on analyses of single-copy nuclear genes [Helfgott and Mason-Gamer, 2004;
Mason-Gamer, 2001, 2005; Petersen and Seberg, 2002], highly repetitive nuclear
DNA [Kellogg and Appels, 1995], internal transcribed spacers [Hsiao et al., 1995],
and chloroplastic genes [Mason-Gamer et al., 2002; Petersen and Seberg, 1997; Ya-
mane and Kawahara, 2005], have not led to any single definition of groups. Current
evidences suggest that different portions of the nuclear genome have different his-
tories, and that the chloroplast genome has yet another one. Because published
trees conflict for several taxon positions, it is difficult to obtain a definite picture of
the historical relationships among genera and species of this tribe. If the numerous
conflicts among published trees are produced by incomplete lineage sorting and/or
repeated introgression, it is crucial to know: 1) whether a species phylogeny can be
inferred or if reticulate evolution is so complex that this effort would be vain, and
2) to decipher the biological causes of such complex history.

In this chapter, we investigate the methodological and historical problems in the
phylogenetic reconstruction of Triticeae by using the most comprehensive molecu-
lar data set to date in this group and combining the multigenic supermatrix and
supertree approaches. These two approaches, classically seen as competitive ways
to analyze large data sets (see Chapter 2), can be used simultaneously in order to
exploit the strengths and to counterbalance the weaknesses of each method [Bininda-
Emonds, 2004a; Bittner et al., 2008; Comas et al., 2007; Fulton and Strobeck, 2006;
Higdon et al., 2007].

The supermatrix approach provides a powerful means of using the evidence from
all characters in the final estimation of the phylogeny but it implicitly assumes that
all characters have experienced the same branching history, which could not be
the case when hybridization, horizontal gene transfer, gene duplication and lineage
sorting have played an important role in the history of a group, as could be the
case in Triticeae. The supertree approach, on the other hand, does not assume
that all genes have experienced the same branching history. We will see in Section
4.4.3.1 that combining a supermatrix analysis of our data set with two supertree
analysis we have managed to find a well supported multigenic tree, which clarify the
phylogenetic relationships between major clades of Triticeae, compared to the bush
of previous single-locus analyses.

In this work, I conducted the PhySIC_IST and MRP supertree analyses on
different data sets. I also established the procedure to investigate the incongruence
between the gene trees and the supermatrix tree to discriminate between gene flow
and incomplete lineage sorting as explanation of the complex history of the Triticeae.
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4.4.2 Materials and Methods

4.4.2.1 Studied Species and Sampled Loci

Nineteen diploid species, spanning 13 genera of Triticeae were analyzed. One or two
accessions per species were analized, making a total of 32 accessions (Table A.1 in
appendix A.2). Coding sequences (cDNA) of orthologs of one gene fragment from
the chloroplast (MATK ) and twenty-six nuclear gene fragments, located on three
different chromosomes out of the seven chromosomes representative of Triticeae,
were sequenced for each accession (Table A.2 in appendix A.2). For more details on
how sequences have been obtained and treated see Escobar et al. [2009].

4.4.2.2 Phylogenetic Reconstructions

Raw sequence data were aligned with the Staden Package [Staden et al., 2000],
and the resulting alignments were manually corrected. Sequence alignments, for all
accessions, were analyzed in two ways: 1) analyses of individual loci; and 2) analyses
of concatenated loci (hereafter, supermatrix). The size of the resulting supermatrix
was made of 35 sequences and 24,646 aligned sites.

Individual-locus and supermatrix analyses were performed using maximum like-
lihood (ML) and Bayesian approaches. ML analyses were conducted using the best-
fitting model of sequence evolution. Model selection was done based on Akaike’s
Information Criterion (AIC). PhyML 2.4.4 [Guindon and Gascuel, 2003] was used
to obtain the log-likelihood and the phylogenetic trees of the following models:
JC69 [Jukes and Cantor, 1969], HKY85 [Hasegawa et al., 1985b], TN93 [Tamura
and Nei, 1993] and GTR [Tavaré, 1986; Yang, 1994] (see Section 1.4.1 for a recall).
Each model was tested assuming a proportion of invariable sites [Hasegawa et al.,
1985b] and a variation among the remaining sites that follows a gamma distribu-
tion with shape parameter α [Yang, 1993]. For individual-locus, tree search was
performed using the NNI (Nearest-Neighbor Interchange) method, whereas the su-
permatrix analysis was done using the slower but more extensive tree search based
on the SPR (Subtree Pruning and Regrafting) method. Bootstrap analyses (100
replicates for individual loci and 1,000 replicates for the supermatrix) were then
performed. Bayesian analyses were performed with MrBayes 3.1.2 [Huelsenbeck
and Ronquist, 2001; Ronquist and Huelsenbeck, 2003]. Markov Chain Monte Carlo
analyses (MCMC) were run with random starting trees and five simultaneous, se-
quentially heated independent chains. We used Dirichlet priors (all values were
set to 1.0) for base frequencies and for the six substitution rates of the GTR rate
matrix; uniform prior distributions for the shape parameter α of the gamma distri-
bution (0.0, 50.0) and for the proportion of invariable sites (0.0, 1.0); an exponential
distribution (10.0) for the branch lengths; and a beta prior (1.0, 1.0) for the tran-
sition/transversion ratio. All topologies were, a priori, equally probable (uniform
distribution). In all cases, analyses were run until chains converged (generally several
tens of thousands of generations in analyses of individual loci, and up to five million
generations for the supermatrix) and a burn-in was established after identifying the
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stationary phase, according to the log-likelihood profile.
Majority-rule consensus ML trees on individual loci were used as source trees

to construct a supertree according to the MRP method [see Section 3.3.2.1 Baum,
1992; Baum and Ragan, 2004; Ragan, 1992]. Bootstrap trees on individual loci
served to construct supertrees according to the MRP and PhySIC_IST method-
ologies [Scornavacca et al., 2008, see Section 4.3]. In practice, the MRP method
permits constructing a supertree close to the supermatrix tree when source trees
are relatively congruent and share most species [Criscuolo et al., 2006]. However,
unresolved MRP supertrees are often observed when the source trees present several
incongruences and/or few overlapping taxa. On the other hand, PhySIC_IST allows
the preprocessing of the source trees and the inference of non-plenary supertrees.

MRP supertrees were obtained using the following procedure. The Clann pro-
gram [Creevey and McInerney, 2005] was used to encode input trees into their
binary matrix representations. Maximum parsimony analyses of each matrix were
performed using PAUP* [Swofford, 2003] with the following options: 10 random
addition sequence replicates, TBR (Tree Bisection-Reconnection) branch swapping
and a maximum of 2,000 trees saved per replicate. For all MRP supertrees, 100
nonparametric bootstrap replicates of the initial matrix were generated. For each
of these 100 matrices, all most parsimonious trees were saved and weighted by one,
divided by the number of equally most parsimonious trees found with this matrix.
The final MRP supertree was obtained by performing the weighted majority con-
sensus on the union of those 100 sets of weighted most parsimonious trees. The aim
of this weighting scheme is to ensure that each gene tree set has a total weight of 1.
On the other hand, PhySIC_IST supertrees were obtained using the PhySIC_IST
method with pre-process, with a correction threshold of 99%.

We ran the two supertree methods on three data sets. The first data set com-
prised the 27 ML trees inferred by PhyML. The second data set included the 2,700
ML bootstrap trees (100 trees per gene). The third data set comprised the 27 ma-
jority consensus trees (one per locus) of the 100 ML bootstrap trees of each gene.

4.4.2.3 Quantifying Incongruences

The congruence level of tree topologies obtained from individual and combined loci
was assessed by means of SH tests [Shimodaira and Hasegawa, 1999]. Individ-
ual alignments were used to compare the topology inferred from individual locus
with those obtained from the supermatrix tree and the two supertrees (MRP and
PhySIC_IST). Additionally, SH tests using the concatenated sequence of all loci
were performed to compare the supermatrix and supertree topologies. Supertrees
were tested with and without polytomies. Polytomies were resolved by bipartitions
because they are strongly penalized in the log-likelihood score. SH tests were run
in the BASEML program implemented in the PAML 4.1 package [Yang, 2007].

In addition, we used the χ2 test of the PhySIC_IST pre-process (see Section
4.3.2.3) to identify triplets of accessions observed in the supermatrix tree that are
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strongly rejected by the 27 bootstrap gene tree collections. A strong rejection is
defined as follows. Denoting Rs the set of triplets of the supermatrix, and Rb

the set of triplets of the 2,700 bootstrap gene trees, a triplet of Rs is said to be
strongly rejected if it contradicts at least one triplet of Rb and fails the χ2 test,
with a threshold of 0.99. This measure of gene incongruence was estimated only
with respect to the supermatrix tree since, according to the SH tests, this is the
multigenic tree that best describes the evolution of concatenated sequences (see our
results below). Using this procedure, we counted the number of strongly rejected
triplets that contain a given taxon and obtained the list of strongly rejected triplets
per clade. After having replaced each taxon by the clade it belongs to, we also
counted the number of strongly rejected triplets that contain a given clade. This
provides an overview of conflicts at the taxon and clade levels, respectively.

To quantify the degree of incongruence between the phylogenetic signal of an
individual locus and the whole supermatrix, we defined a triplet-based distance
between the supermatrix tree (Ts) and the forest (Fj) of the 100 bootstrap trees
obtained for the gene j. To put it simply, the triplet distance represents the per-
centage of triplets that are resolved differently by the supermatrix tree and a gene
tree. In order to separate the signal of this gene from stochastic errors, we focused
on triplets that appear more than 50 times in Fj . We denoted by Neq(Ts,Fj) the
number of retained triplets that have the same resolution as Ts and by Ndiff(Ts,Fj)

the number of those having a different one. We define the distance between the tree
Ts and the forest Fj , denoted by d(Ts,Fj), as the triplet fit similarity [Page, 2002]
between the triplet set of Ts and the most supported triplets of Fj :

d(TS , Fj) =
Ndiff(Ts,Fj)

Neq(Ts,Fj) +Ndiff(Ts,Fj)
(4.1)

Using similar procedures, we computed the triplet distance between all pairs of
individual genes. We defined a triplet-based distance between each couple of forests
Fi and Fj , where Fi and Fj are, respectively, the forests of the 100 bootstrap trees
obtained for the gene i and j. As above, we focused on triplets that appear more
than 50 times in each forest in order to eliminate stochastic errors. If Neq(Fi,Fj)

is the number of retained triplets that have the same resolution in Fi and Fj , and
Ndiff(Fi,Fj) is the number of those having a different one, then the distance d(Fi,Fj)
between Fi and Fj is:

d(Fi, Fj) =
Ndiff(Fi,Fj)

Neq(Fi,Fj) +Ndiff(Fi,Fj)
(4.2)

In this way, we obtained a symmetric distance matrix M with 27 rows and 27
columns, where each entry Mij contains the triplet distance between genes i and j.

4.4.2.4 Analyses of Patterns of Incongruence

In order to understand the origin of incongruences, we correlated triplet distances
between individual genes and the supermatrix tree (d(Ts,Fj) in equation 2) to rel-
evant phylogenetic parameters, including the alignment length, the proportion of
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variable sites, the average evolutionary rate [Criscuolo et al., 2006, estimated ac-
cording to the super-distance matrix methodology,], and the shape parameter α of
the gamma distribution, obtained in the analysis of individual loci with PhyML.
We additionally tested if incongruences are positively correlated with recombina-
tion, using the 21 genes located on chromosome 3. This correlation is expected for
two reasons. First, following interspecific hybridization, recombination is necessary
for genes of one species to introgress into the other species. Second, because the
effective population size is expected to be smaller in low recombining regions than
in highly ones [Charlesworth, 2009; Presgraves, 2005], coalescence is expected to be
quicker and lineage sorting more complete when recombination is low.

For each locus located on chromosome 3, the genetic distance between the locus
and the centromere1 was computed. We do not discuss here how these genetic
distances were computed but this is detailed in section Location of Loci on the

Triticeae Genome of Escobar et al. [2009]. The values of these distances can be
found in Table A.2 of Appendix A.3.

We thus tested if d(Ts,Fj) is lower in centromeric than telomeric regions, by fit-
ting the quadratic regression of d(Ts,Fj) on the genetic distance. We also performed
the same analyses on the phylogenetic parameters because recombination could af-
fect incongruences indirectly through these parameters (e.g., higher evolutionary
rates in highly recombining regions).

Finally, whatever the underlying mechanism, closely linked genes are more likely
to share a common genealogical history than distant ones. To test this, we con-
structed a matrix of genetic distance between pairs of loci for the 21 genes located
on chromosome 3. We correlated this matrix to the matrix of incongruences by pairs
(Mij only for genes on chromosome 3) and tested the significance of the correlation
by performing 10,000 permutations of gene locations on each chromosome arm, that
is, without permuting one gene from one arm to another. All statistical analyses
were done with R version 2.6.0 [R-Development-Core-Team, 2006].

4.4.3 Results

4.4.3.1 Phylogenetic Reconstruction of Triticeae: Individual Loci vs.
Multigenic Approaches

The best models describing the evolution of the individual loci and the correspond-
ing trees obtained under such models are not presented here but can be found
respectively in Supplementary Tables 2 and 3 of Escobar et al. [2009].

Phylogenetic reconstructions using individual loci produce contrasted topologies.
Often, relationships among genera and species are not congruent among genes. In
some cases, dramatic changes in the position of species are found. For instance, the
tree obtained with the locus LOC_Os01g01790 groups the three Hordeum species,

1The centromere is the chromosomal locus where two identical sister chromatids come in contact,

typically found near the middle of a chromosome, and is the most condensed and constricted

region of a chromosome. The telomere is a non-coding region of repetitive DNA at the end of a

chromosome, involved in the replication and stability of the chromosome.
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a genus thought to be one of the deepest among Triticeae [see our results below;
Mason-Gamer et al., 2002; Petersen and Seberg, 1997; Petersen et al., 2006], with
Secale and Triticum, two genera that should cluster within one of the most derived
clades [see our results below; Kellogg et al., 1996; Petersen et al., 2006]. Likewise, the
tree obtained with the locus LOC_Os01g24680 places Psathyrostachys, the genus
that seems to be the sister group to the rest of the tribe [see our results below Kellogg
and Appels, 1995; Mason-Gamer et al., 2002; Petersen et al., 2006], together with
Henrardia and Eremopyrum bonaepartis, two more recently diverging taxa. Several
other odd relationships are displayed by individual gene trees. In general, individual
gene trees display short internal branches compared with external branches (i.e., low
treeness). In addition, support values (bootstrap values and posterior probabilities)
of deep nodes are weaker than those of more recent nodes. Similar observations have
been previously made when comparing phylogenies obtained with different genes in
Triticeae [Kellogg et al., 1996].

Multigenic approaches provide a much more robust picture than individual gene
trees. ML analyses reveal that the best model describing the evolution of the su-
permatrix is GTR with gamma distribution (log likelihood = -92,992.38). Mean
base frequencies are 27.89% A, 21.13% C, 24.22% G and 26.76% T, and the shape
parameter α of the gamma distribution is 0.294. The Bayesian analysis of the su-
permatrix produces exactly the same topology as ML and very similar parameters
(harmonic mean of marginal log-likelihoods: -93,050.24; base frequencies: 27.82%
A, 20.82% C, 24.19% G and 27.17% T; shape parameter α of the gamma distribu-
tion: 0.295). As previously noted [Douady et al., 2003; Erixon et al., 2003], some
nodes with relatively low bootstrap values are fully supported according to pos-
terior probabilities. The supermatrix tree is presented in Figure 4.19. Within
Triticeae, five to seven well supported clades can be distinguished, depending on
posterior probability or bootstrap supporting values of the nodes. The first diver-
gent group within Triticeae is Psathyrostachys (clade I), followed by Hordeum (clade
IIA) and Pseudoroegneria (clade IIB). Then, internal branches are quite short com-
pared with external branches, suggesting that species split in rapid succession. Two
well-distinguishable clades diverge at this point. The first is formed by Australopy-

rum (clade IIIA) and a sub-clade denoted clade IIIB. This latter gathers Henrardia

and Eremopyrum bonaepartis, on the one hand, and Agropyrum and Eremopyrum

triticeum, on the other hand. The second of those two well-distinguishable clades
consists of Dasypyrum and Heteranthelium (clade IV), on the one hand, and Secale,
Taeniatherum, Triticum and Aegilops (clade V), on the other hand.

The supertrees proposed by MRP and PhySIC_IST on the 27 ML trees (one
per locus) are poorly resolved (not shown). This comes from the fact that many
branches retrieved in ML analyses are poorly supported by individual locus data and
these branches have the same influence on the inferred supertrees as the well sup-
ported branches. We overcame this difficulty by running analyses on the bootstrap
trees of the ML analyses. Even if these trees are not independent, they consis-
tently improved MRP and PhySIC_IST outputs. Running PhySIC_IST on the
2,700 bootstrap trees (100 trees per each of the 27 loci) leads to a more resolved
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Figure 4.19: Supermatrix phylogeny of Triticeae - Bootstrap values are given
in percentage. Full posterior supports (100%) are found for all nodes, excepting one
that is indicated between brackets. Note that the branch lengths of the outgroups
are divided by 10 in order to zoom on Triticeae.

supertree that does not contradict the supermatrix tree (Figure 4.20). Indeed, hav-
ing more input trees increases the statistical power of the PhySIC_IST pre-process
test, allowing discriminating stochastic errors from phylogenetic signal. The MRP
supertree obtained on the 2,700 bootstrap trees (figure not shown, see Supplemen-
tary Figure 1 of Escobar et al. [2009]) is in contradiction with both supermatrix
and PhySIC_IST trees. The PhySIC_IST supertree obtained with the 27 majority
consensus trees (one per locus) of the 100 ML bootstrap trees of each gene fragment
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(figure not shown, see Supplementary Figure 2 of Escobar et al. [2009]), though less
resolved, is in agreement with that obtained by PhySIC_IST on the 2,700 boot-
strap trees. The MRP supertree on this data set (27 majority consensus trees of
the 100 ML bootstrap trees; Figure 4.21) is in agreement with the supermatrix tree.
MRP clade reliability estimations are better on this data set, while the PhySIC_IST
pre-process performs better on the previous one (2,700 bootstrap trees).
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Figure 4.20: PhySIC_IST supertree obtained with the analysis of the 2,700
ML bootstrap trees (100 trees per gene) - Clades are named as in Figure 4.19.

According to the PhySIC_IST supertree presented in Figure 4.20, Psathy-

rostachys (clade I) and then Hordeum (clade IIA) are the first divergent groups
within Triticeae. Like the supermatrix analysis, it retrieves clades IIB (Pseudoroeg-

neria), IIIB (Henrardia, Eremopyrum bonaepartis, Agropyrum and E. triticeum)
and V (Secale, Taeniatherum, Triticum and Aegilops), though resolution among
Aegilops species in clade V is weak. Unlike the supermatrix tree, PhySIC_IST in-
fers a clade formed by Australopyrum, Heteranthelium and Dasypyrum. This clade
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forms a polytomy in the middle of the tree together with clades IIB, IIIB, and V.
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Figure 4.21: MRP supertree obtained by assembling the 27 majority con-
sensus trees (one per locus) of the 100 ML bootstrap trees of each gene.
- Clades are named as in Figure 4.19.

The MRP supertree presented in Figure 4.21 shows that Psathyrostachys (clade
I) is the first divergent genus within Triticeae, followed by Hordeum (clade IIA);
clade V (Secale, Taeniatherum, Triticum and Aegilops) is also retrieved, though
with poor resolution. This tree exhibits a multifurcation involving clades IIB
(Pseudoroegneria), IIIA–IIIB (Australopyrum, Henrardia, Eremopyrum bonaepar-

tis, Agropyrum and E. triticeum) and IV (Dasypyrum and Heteranthelium). Unlike
PhySIC_IST, the MRP supertree does not retrieve Australopyrum as the sister
group of clade IV.

Despite some differences between supermatrix and supertree phylogenies, the
resolution and support gained with multigenic approaches compared with single-
locus analyses are striking. Notably, tree topologies are congruent in most cases
and differences among trees are mainly due to the lower resolution of supertrees
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compared to the supermatrix tree. However, an important difference regarding the
position of Australopyrum (clade IIIA) is observed among the multigenic phylo-
genies: it is found either basal to clades IIIB (Figure 4.19) or IV (Figure 4.20),
or as the sister clade of Agropyrum–Eremepyron triticeum (Figure 4.21). SH tests
applied to the concatenated sequence show that the supermatrix tree explains signif-
icantly better the phylogenetic relationships among Triticeae than do PhySIC_IST
(on 2,700 bootstrap trees) and MRP (on 27 ML consensus trees) supertrees. This
was true when analyzing raw supertrees (i.e., supertrees containing polytomies).
However, statistical significance disappeared after enforcing binary resolution of su-
pertree polytomies (data not shown, see Supplementary Table 4 of Escobar et al.
[2009]). It follows that the position of Australopyrum is not significantly better in
the supermatrix tree than those proposed by the supertree methods. The exact
position of this taxon remains thus an open question.

When more than one accession per species was available, both supermatrix and
supertree analyses group them together. External branches are long and there is
no ambiguity in the taxonomic status of species. More interestingly, though the
sampling of this study was not specifically designed to test monophyly of genera,
when several species were available for a given genus, they generally branch as mono-
phyletic groups (e.g., Aegilops, Hordeum and Pseudoroegneria). There are only two
exceptions: Aegilops for the MRP analysis, and Eremopyrum, which splits in two
different clades in all multigenic analyses, one including E. bonaepartis and Hen-

rardia, and the other including E. triticeum and Agropyrum. In addition, Aegilops

speltoides, which was thought to be the sister group of the Aegilops/Triticum clade
[Petersen et al., 2006; Yamane and Kawahara, 2005], is grouped, in all our analyses,
with other Aegilops species, whereas T. monococcum branches at the base of this
group.

4.4.3.2 Patterns of Incongruence among Trees

One of the most striking results obtained in this study are the numerous incongru-
ences between individual locus and multigenic trees. In most cases, the conservative
SH test confirms that, regarding the locus alignment, the corresponding gene tree
has a log-likelihood significantly better than that of trees obtained using the su-
permatrix and supertree approaches (data not shown, see Supplementary Table 4
of Escobar et al. [2009]). The high level of incongruence between the gene trees
and the supermatrix tree clearly confirms that single-gene evolutionary signal sig-
nificantly contradicts the signal of concatenated sequences. In order to quantify
these incongruences, we estimated triplet distances between individual gene trees
and the supermatrix tree. The average triplet distance (in absolute value) across
all genes is 0.23 ± 0.08 (mean ± SD; range: 0.11–0.48; Table A.2 in appendix
A.2). For each accession, we counted the number of triplets strongly rejected by
the supermatrix tree (excluding the outgroups). Except the two Psathyrostachys

accessions, all other taxa are involved in several strongly rejected triplets (38.0 ±
23.6; median = 29; range: 15–113; Table A.3 in appendix A.2). Pseudoroegne-
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ria, Hordeum and Australopyrum exhibit the highest number of incongruences. We
then pooled accessions according to the clade of origin in the supermatrix tree (Fig-
ure 4.19) and counted the number of incongruent triplets. This allows detecting
two major incongruent triplets among clades: (1) clade IIA, clade IIB | clade IIIB
(i.e., Hordeum, Pseudoroegneria and Agropyrum–Eremopyrum–Henrardia ; 68 oc-
currences); and (2) clade IIA, clade IIB | clade V (i.e., Hordeum, Pseudoroegneria

and Secale–Taeniatherum–Triticum/Aegilops ; 119 occurrences) (Table A.4 in ap-
pendix A.2). Interestingly, both these incongruent triplets involve clades distantly
related. Indeed, distantly related clades account for 276 incongruent triplets out of
367 (or 75% of incongruences), while closely related and adjacent clades account for
91 incongruent triplets (or 25% of incongruences).

4.4.3.3 The Effect of Recombination on Incongruences

In order to understand the origin of incongruences, we investigated why some genes
are more incongruent than others. First, we tested if variation in incongruence can
be simply explained by the nature of the phylogenetic signal. Among the correlations
between the triplet distance between individual genes and the supermatrix tree,
and the relevant phylogenetic parameters per locus, we only detect a significant
positive correlation between triplet distance and the average evolutionary rate (r
= 0.28, P= 0.04; data not shown, see Supplementary Table 5 of Escobar et al.
[2009]). As expected, rapid evolving genes are more incongruent than slower ones.
Then, we investigated the effect of the recombination. Recombination does not
significantly affect any phylogenetic parameter (not shown). On the contrary, it
affects incongruences in two ways. First, incongruences between single gene trees
and the supermatrix tree tend to increase with genetic distance, hence the likelihood
of recombination (P = 0.042 on the full data set, P = 0.027 after removing one
potential outlier; Figure 4.22(a). Second, genes closely located on the chromosome
tend to have more similar genealogical histories than distant ones (Figures 4.22(b)
and 4.22(c); Pearson’s r= 0.23, P= 0.028; Spearman’s ρ = 0.22, P= 0.027).

4.4.4 Discussion

Up to now, morphological and molecular analyses have failed to reconstruct a reliable
phylogeny describing the history of the splitting of species lineages in Triticeae. Most
previous phylogenetic reconstructions are based on a limited number of genes, in
most cases only one (see references above). The numerous conflicts among published
trees, combined with a poor resolution of branching among genera and species,
impede drawing a clear picture of the basic relationships among members of this
tribe. In this chapter, we show that the gene tree-species tree problem is a major
obstacle that must be considered in the phylogenetic analysis of Triticeae. More
generally, this problem is a major difficulty when reconstructing the phylogeny of
any group in which ancestral polymorphism was not unambiguously sorted for every
gene or in which important introgressive events have taken place.
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Figure 4.22: Effect of
the likelihood of re-
combination on incon-
gruences - a) Relation-
ship between the triplet dis-
tance of individual gene
trees and the supermatrix
tree as function of the
genetic distance between
genes on the chromosome
3. Solid line: best fit us-
ing all points; dashed line:
best fit without a purport-
edly outlier (filled point).
The genetic distance is
connected to the chro-
mosomal position accord-
ing to the schematic dia-
gram presented in the lower
part (white point: cen-
tromere; black: centromeric
region; grey: telomeric re-
gion). (b) Degree of in-
congruence among pairs of
loci relative to the genetic
distance on the chromo-
some 3. Colors represent
the degree of incongruence
(white: no incongruence;
deep grey: the strongest in-
congruence). (c) Correla-
tion between the triplet dis-
tance and the genetic dis-
tance between pairs of loci.
Only loci located on chro-
mosome 3 are depicted.

Though it is well known that hybridization is a widespread phenomenon in plants
[Rieseberg, 1997; Rieseberg et al., 2000] and is an important source of incongruence
in phylogenetic reconstruction, large multigenic phylogenies of plants remain sur-
prisingly rare compared, for instance, with metazoans [but see Zou et al., 2008]. We
have shown that multigenic approaches, combining information of several genes lo-
cated in different chromosomes and cellular compartments (nucleus and chloroplast),
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provide much more resolution than the analysis of individual loci and permit resolv-
ing the evolution of major clades in Triticeae. Though position of some groups is
still uncertain (e.g., Australopyrum), the combination of supermatrix and supertree
methodologies allowed reconstructing a robust phylogeny of Triticeae, pointing out
the evolution of five (if considering posterior probabilities) to seven (for bootstrap
values) supported major clades. Most clades we suggest have already been proposed
in one study or another, most of the time with weak support. However, it was not
possible to choose among the numerous conflicting results previously obtained.

4.4.4.1 Multigenic Phylogeny of Triticeae

According to this phylogeny, Psathyrostachys is the sister-group of the remaining
Triticeae, followed by the sequential branching of Hordeum, with or without Pseu-

doroegneria (compare Figure 4.19 with Figures 4.20 and 4.21). Psathyrostachys is
involved in no incongruence (Table A.3 in appendix A.2) and the branch leading to
the rest of the tribe is among the longest internal branches (Figure 4.19).

This clearly demonstrates that this group diverged before the diversification of
other Triticeae. Most previously published phylogenies agree with the early diverg-
ing of Psathyrostachys and Hordeum [e.g., Kellogg and Appels, 1995; Mason-Gamer,
2001; Mason-Gamer et al., 2002; Petersen and Seberg, 1997; Petersen et al., 2006],
though other studies contradict this branching [Hsiao et al., 1995; Mason-Gamer,
2005; Petersen and Seberg, 2002; Petersen et al., 2006; Seberg and Frederiksen,
2001]. The position of Pseudoroegneria is, in contrast, more debated. No study has
raised the possibility that Pseudoroegneria branches out with Hordeum. Indeed, in
all previous phylogenetic studies of Triticeae, Pseudoroegneria branched out at vari-
able positions. In some cases, it was proposed as the sister group of Taeniatherum

and/or Australopyrum [Mason-Gamer, 2001; Petersen and Seberg, 2002; Petersen
et al., 2006], Heteranthelium [Mason-Gamer, 2005] or Aegilops [Seberg and Fred-
eriksen, 2001]; in other cases it branched within complex clades [Kellogg et al., 1996;
Petersen and Seberg, 1997] and it was even considered paraphyletic in one study
[Mason-Gamer et al., 2002]. Consistent with the difficult positioning of this genus,
the supermatrix tree groups it with Hordeum with a rather weak bootstrap support
(0.69), conflicting with supertrees, though full posterior probability (1.00). More
strikingly, the three Pseudoroegneria accessions are involved in much more incon-
gruent triplets than other species (Table A.3 in appendix A.2). This could be due
to a very large ancestral population size or a strong capacity of introgression during
the divergence of this group. Whether Pseudoroegneria forms a monophyletic group
together with Hordeum or constitutes a separate clade by itself, we provide evidence
supporting a rather basal position of this genus within Triticeae.

The phylogenetic positions of all other species were very variable in previous
studies, and almost no consensus emerged. Here, we found strong support for four
clades (IIIA, IIIB, IV, and V on Figures 4.19 and 4.20), both using the supermatrix
and the PhySIC_IST approaches, while only clade V is fully retrieved in the MRP
tree (Figure 4.21). The relationships among these clades are more difficult to de-
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termine. In the supermatrix approach, the support is a bit weaker for the internal
nodes linking these four clades than for the basal node of each clade. Moreover,
the PhySIC_IST tree shows a polytomy between these four clades, including Pseu-

doroegneria (clade IIB). This is congruent with the very short internal branches
in this part of the tree and the numerous incongruences involving distantly related
clades (Table A.4 in appendix A.2). Overall, this suggests a rapid radiation following
or concomitant to the divergence of Pseudoroegneria.

Interestingly, the relationships within each clade are more resolved than those
among them with both the supermatrix and PhySIC_IST approaches (Figures 4.19
and 4.20). This suggests that subsequent diversifications were more gradual. The
Aegilops/Triticum group could be an exception. Even though our sampling does
not reflect the diversity of this clade, the most resolved multigenic phylogenies (i.e.,
supermatrix and PhySIC_IST trees) do not support the paraphyly of the genus
Aegilops observed in previous studies based on nuclear and chloroplastic genes
[Mason-Gamer, 2001, 2005; Petersen et al., 2006; Yamane and Kawahara, 2005].
However, the relationships among Aegilops species are not well resolved, and more
work should be done on this genus.

Unlike previous studies in Triticeae, our multigenic phylogenies provide strong
support for most nodes and the above described relationships among genera and
species. Importantly, we give support to a clade not detected before consisting
of Hordeum and Pseudoroegneria, suggested by the supermatrix tree. Excepting
the relationship between these two genera, several other relationships were already
present in previous studies. However, the numerous conflicts among previous trees
make very difficult distinguishing robust relationships from phylogenetic noise. Our
study is the most robust phylogenetic study to date in Triticeae and we hope it
will constitute a backbone for future phylogenetic studies in this tribe. Though
our sampling was sufficiently informative about diversity among genera, it was not
exhaustive of the specific diversity of the tribe. We recommend future studies to
position additional species within this phylogenetic framework. Supertree methods
(e.g., PhySIC_IST) could be an appropriate way to incorporate new data to the
current phylogeny.

4.4.4.2 Incongruences among Trees and the Complex History of Trit-
iceae

Up to this point, we have shown that methodological problems, due to the use
of a reduced number of genes and/or the use of genes with low resolution power,
have lead to the numerous conflicts among previous phylogenetic studies in Trit-
iceae. However, it seems that conflicts among source trees are not only due to
methodological problems but also to a complex evolutionary history. We provide
evidence that the relationships among members of the tribe for a given locus are
generally better explained by the tree inferred with that locus than by any of the
multigenic trees. This reflects a complex biological reality, where different portions
of the genome exhibit different histories (their own phylogenetic histories) and the
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supermatrix tree should be a reasonable compromise among all these scenarios to
depict the splitting history of species lineages [but see Degnan and Rosenberg, 2006,
2009]. Incongruences can be due to gene properties. For instance, we showed that
rapidly evolving genes are more incongruent than slowly evolving ones. Noteworthy,
we also pinpointed the role of recombination and gene locations along the chromo-
some. As expected, closely linked genes are more likely to share a common history
than distant ones (Figure 4.22). Genes located in centromeric regions tend to be
more congruent with the supermatrix tree than those located in telomeric regions.
Such correlation has already been found in Drosophila species at the kilobase scale,
the scale of linkage disequilibrium in these species [Pollard et al., 2006]. It could be
surprising that such a correlation still holds at the scale of a whole large chromo-
some [~1 Gb Paux et al., 2008]. On the contrary, in the Oryza genus (rice species),
the mosaics of conflicting genealogies are distributed randomly over the genome
[Zou et al., 2008]. Several non exclusive reasons can explain this pattern. First,
the recombination gradient along the chromosomes is very steep in all Triticeae
species studied so far, including wheat [Akhunov et al., 2003a,b; Luo et al., 2000],
rye [Lukaszewski and Curtis, 1993] and Aegilops speltoides [Luo et al., 2005]. For
instance, along the 3B chromosome in bread wheat, the cM/Mb ratio spans about
two orders of magnitude, from 0.01 to 0.85 [Saintenac et al., 2009]. Despite the
impressive chromosome size, linkage disequilibrium (LD) can be high in centromeric
regions. Accordingly, in bread and durum wheat (Triticum aestivum and T. durum,
respectively), LD decays slowly over several cM [Somers et al., 2007]. However, the
level of LD is low in barley [Morrell et al., 2005]. Second, centromeric genes may
have lower local effective size than telomeric ones, because of hitchhiking effects due
to the lack of recombination [Charlesworth, 2009; Presgraves, 2005]. In agreement
with this prediction, Dvorak et al. [1998] showed that in Aegilops species, recombi-
nation gradients affect levels of diversity. RFLP polymorphism is 1.5 to 25 times
higher in telomeric regions than in centromeric ones. Consequently, ancient poly-
morphisms would be less completely sorted in genes located in highly recombining
regions than in lowly ones. Finally, recombination could play an important role
in introgressive events between species (e.g., genes located in highly recombining
regions introgress easier than genes located in low recombining regions). Though
it is difficult to distinguish gene flow from incomplete lineage sorting, we do not
consider gene flows as the most likely scenario explaining the bulk of incongruence
among gene trees in Triticeae. On the contrary, we favor incomplete lineage sort-
ing. Two lines of reasoning support this. First, under the incomplete-lineage-sorting
hypothesis, we expect internal branches of individual gene trees to be shorter and
less supported than external branches. This was basically what we observed in the
analysis of individual gene trees and the supermatrix tree. Note that the high sup-
port values in the supermatrix tree are due to the combined phylogenetic signal of
all loci. This suggests that speciation occurred in rapid succession in a short-time
period (divergence of the ancestor of Triticeae is estimated to have occurred ~12–15
Mya, given that wheat-barley divergence could have occurred ~10 Mya, Dvorak and
Akhunov [2005]). Second, most observed incongruences between individual gene
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trees and the supermatrix tree occurred among distantly related clades (75% of in-
congruences in our data set), separated several million years ago (e.g., Hordeum,
Pseudoroegneria and Secale–Taeniatherum–Triticum/Aegilops). Such a pattern is
difficult to explain by gene flows alone, all the more that these genera are currently
largely intersterile. Indeed, cytogenetic studies have shown that diploid genera of
Triticeae are genomically distinct, that is, their chromosomes do not pair well if at
all at meiosis [Fernandez-Calvin and Orellana, 1992; Waines and Barnhart, 1992;
Wang, 1989, 1992]. Though we presume that gene flow is a mechanism still occurring
among closely related taxa (e.g., Aegilops/Triticum) and explaining incongruences
at this level (in our case, 25% of the observed inter-clade incongruences), it does not
seem to be the general mechanism explaining the bulk of incongruences observed in
Triticeae. In summary, as in Drosophila [Pollard et al., 2006] and Oryza [Zou et al.,
2008], we consider that the majority of incongruences among trees in Triticeae are
due to incomplete lineage sorting of ancient polymorphisms.

4.5 Conclusions

In this chapter we introduced PI and PC, two strict and desirable properties that a
conservative supertree method should satisfy. Moreover, we presented two supertree
methods PhySIC and PhySIC_IST [Ranwez et al., 2007a; Scornavacca et al., 2008]
that infer supertrees satisfying these desirable properties.

PhySIC is a supertree method that enables the user to quickly summarize con-
sensual information of a set of reliable trees. Moreover, since polytomies of the
produced supertree are tagged by labels indicating areas of conflict as well as areas
with insufficient overlap, PhySIC enables the user to localize groups of taxa for
which the data requires consolidation.

PhySIC has been proposed mostly to show that it was possible to design a
quick supertree method satisfying PI and PC. Indeed, in Ranwez et al. [2007a] the
emphasis is given to these properties rather than to the PhySIC method. We then
relied on this theoretical framework to develop PhySIC_IST, an improved supertree
method searching for the most informative supertree satisfying PI and PC.

The improvement of PhySIC_IST on PhySIC shown in Figure 4.11 on
page 109 is a consequence of three fundamental differences between PhySIC and
PhySIC_IST. First, the new version operates successive insertions of taxa on a back-
bone and is not based on a revised version of the Build algorithm [Aho et al., 1981];
ergo, PhySIC_IST can frequently find relations between taxa that PhySIC cannot
detect, being stopped in this analysis by a connected component of the Aho graph.
In addition, the two methods do not have the same optimization criterion: indeed,
PhySIC aims at finding the supertree satisfying PI and PC that proposes a reso-
lution for as many triplets as possible, while PhySIC_IST looks for the supertree
satisfying PC and PI that maximizes the value of CIC. Last, PhySIC_IST can pro-
pose non-plenary supertrees, i.e it will not insert the taxa that would decrease the
CIC of the supertree, while PhySIC necessarily proposes a supertree that contains
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all taxa present in a least one source tree.
However, the complexity of PhySIC is O(kn3 + n4) while PhySIC_IST runs

in O(n3(k + n3)) time, where k is the number of input trees of the forest F and
n = L(F). Moreover, PhySIC can run on a pre-computed triplet matrix R on a leaf
set of size n in O(n4) time, while PhySIC_IST takes as input a forest so all triplets
of R need to be transformed into trees on three leaves before running PhySIC_IST.
This means that, in such a case, PhySIC_IST runs in O(n3(|R|+ n3)) time.

In this chapter, we have also introduced a statistical preprocessing of the source
trees to detect and correct artifactual positions of taxa. This preprocessing of the
source trees can be performed for any collection of source trees and hence benefits
any veto supertree method. This approach has the advantage of separating the lib-
eral resolution of conflicts among source trees from the assemblage of the supertree.
This makes explicit the choices done to arbitrate between conflicting source trees,
and allows the user to choose the extent with which the sources trees can be modified
and to identify problematic source tree resolutions. In practice, STC+PhySIC_IST

closes the gap between veto and liberal methods, as demonstrated in Section 4.4,
where we presented an application of STC+PhySIC_IST to the biggest multi-
genic data set ever assembled for the Triticeae group. For this case study the
STC+PhySIC_IST supertree, depicted in Figure 4.20 on page 127 is more resolved
and in accord with the supermatrix tree (see Figure 4.19 on page 126) than the
MRP supertree (see Figure 4.21 on page 128). This demonstrates that, in practice
and not only in simulation studies, STC+PhySIC_IST can infer supertrees that are
both resolved and reliable, combining the advantages of veto and vote supertree ap-
proaches. The combination of the supermatrix and supertree methodologies allowed
us to reconstruct a robust phylogeny of Triticeae and to point out the evolution of
several well supported clades. Furthermore, our detailed investigation of the incon-
gruence between the gene trees and the supermatrix tree strongly suggests that the
majority of incongruences among trees in Triticeae are due to incomplete lineage
sorting of ancient polymorphisms rather than to gene flow.



Chapter 5

Methods to include multi-labeled

phylogenies in a supertree

framework

Contents

5.1 Basic concepts and preliminary results . . . . . . . . . . . . 139

5.1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.2 Identifying observed duplication nodes in linear time . . . . . 140

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.1 Isomorphic subtrees . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 Auto-coherency of a MUL tree . . . . . . . . . . . . . . . . . 144

5.2.3 Computing a largest duplication-free subtree of a MUL tree . 150

5.2.4 Compatibility of single-labeled subtrees obtained from MUL

trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.1 Enlarging the amount of gene families to be used for species

tree building . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.2 Running times . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.3 Improvement in supertree inference . . . . . . . . . . . . . . . 157

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Recall that a gene tree is an evolutionary tree built by analyzing a gene family,
i.e., homologous molecular sequences appearing in the genome of different organisms.
Species trees, i.e., trees displaying the evolutionary relationships among studied
species, are mainly estimated using gene trees. Unfortunately, as evoked in Chapter
2, most gene trees can significantly differ from the species tree for methodological or
biological reasons, such as long branch attraction, lateral gene transfers, incomplete
lineage sorting, gene duplications and losses [Cotton and Page, 2005]. For this
reason, species trees are usually estimated from a large number of gene trees.

Inferring a species tree from gene trees is mostly done in a two-step approach.
First, a micro-evolutionary model that takes into account events affecting individual
sites is used to infer the gene trees. The species tree is then inferred on the basis
of a macro-evolutionary model, i.e., minimizing the number of transfers and/or
duplication and loss events [e.g., Chauve et al., 2008; Chauve and El-Mabrouk,
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2009; Chen et al., 2000; Hallett et al., 2004; Hallett and Lagergren, 2000; Ma et al.,
2000; Slowinski and Page, 1999; Vernot et al., 2008]. To produce more biologically
meaningful trees, unified models have been proposed in which the micro and macro-
evolutionary dimensions are entangled [Arvestad et al., 2003; Durand et al., 2006;
Goodman et al., 1979]. However, it is difficult to determine how to incorporate in a
single model events occurring on different spatial and temporal scales, as well as be-
longing to neutral and non-neutral processes [Durand et al., 2006]. Lately, a hybrid
approach has been proposed, where a first draft of a species tree is inferred with
a micro-evolutionary model, the most uncertain parts of which are then corrected
according to a macro-evolutionary model [Durand et al., 2006].

In this chapter, we propose instead to take advantage of the very large number of
gene trees present in recent phylogenomic projects to avoid entering into the detail
of all possible macro-evolutionary scenarios (e.g., is a parsimony approach always
justified? Should only the most parsimonious scenario be retained?).

We propose to extract orthologous genes, the relevant part of the topological
information contained in the gene trees to build a species tree, i.e., the one resulting
from speciation events as opposed to duplication events, and then apply a traditional
supertree method letting the weight of evidence decide in favor of one candidate
species tree [Baum and Ragan, 2004; Ranwez et al., 2007a; Scornavacca et al., 2008].
In fact, it is true that the large majority of gene trees include also xenologues and
paralogues, but this doesn’t mean that we have to discard the whole tree and the
orthologues included within.

This approach is only possible when the number of gene trees is very large, and
indeed this is now the case in projects such as the HOMOLENS database (http:
//pbil.univ-lyon1.fr/databases/homolens.php) and the HOGENOM database
(http://pbil.univ-lyon1.fr/databases/hogenom.php) storing several thousands
of gene trees. In the release 04 of these databases, respectively 51% and 71% of gene
families have paralogous sequences, i.e., sequences where duplications and losses
have actually taken place. Currently, these gene families are discarded when in-
ferring a supertree of the concerned species. This echoes, though less severely, the
critic of Bapteste et al. [2008] who called "Trees of 1%" the species trees built by the
first phylogenomic works that could rely only on single-labeled trees [e.g., Brochier
et al., 2005; Ciccarelli et al., 2006]. Moreover, note that as more complete genomes
will be available, the percentage of gene families with paralogous sequences will only
increase.

Gene trees are usually multi-labeled, i.e., a single species can label more than
one leaf, since duplication events almost always result in the presence of several
copies of the genes in the species genomes (see Section 2.2.1). Since no supertree
method exists to combine such trees, the task we therefore have to solve is to extract
the largest amount of topological information on speciations from the multi-labeled
gene trees. This speciation signal can then be turned into single-labeled trees to
feed supertree methods.

This chapter presents a number of results in this direction. A part of this chapter
appeared in the paper “From Gene Trees to Species Trees through a Supertree
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Approach” [Scornavacca et al., 2009b]. An extended version has been submitted at
Information and Computation (Elsevier ed.).

5.1 Basic concepts and preliminary results

In this chapter we focus on rooted binary MUlti-Labeled trees, or MUL trees for
short, such as the one depicted in Figure 5.1(i). Dealing only with binary trees is
not so restrictive as one can imagine, since, as evoked in Section 1.8, methods to
reconstruct phylogenies usually produce binary trees. For instance in the hogenom

database [Penel et al., 2009], among 46,535 gene trees containing taxa spanning more
than two species, only 116 are not binary. More notations are needed to introduce
formally multi-labeled trees.

5.1.1 Basic concepts

Like for single-labeled trees, L(M) denotes the set of leaf nodes of M and Mv denotes
the subtree with node v as root. We denote by L(v) the multiset of labels of Mv

and by L(M) the multiset L(Mroot(M)). For a MUL tree M , the leaf-labelling of M
α : L(M) −→ L(M) is not a bijection, as for single-labeled trees (Section 3.1), but
is a surjection i.e., several leaves of M can share the same label.

Let M be a MUL tree and v a node of M . If v is a leaf node, we denote by lv

its label. If v is an internal node, throughout this chapter we denote by v1 and v2

the two sons of v and by sons(v) the set {v1, v2}.

Definition 5.1.1 A node v of M is called an observed duplication node (odn)

if the intersection of L(v1) and L(v2) is not empty.

We use the expression “observed duplication nodes” since Definiton 5.1.1 does not
characterize all duplication nodes. For instance, in Figure 5.1(ii) is depicted a tree
with the unique duplication node indicated by a grey square. If asymmetric losses
of gene copies for species b and c in Mv1 and a in Mv2 occurred (or these sequences
are not available), v is not considered as a duplication node. We denote by D(M)

the set of odns of a MUL tree M . Note that, for an odn v, L(v) will always contain

a b c abc o

v

v!
v"

a b c abcd o

v

v!
v"

(i) (ii)

Figure 5.1: An example of phylogenetic trees involving duplications - (i)
a MUL tree with L(v) = {a, c, b, d, c, b, a, o}. The unique odn indicated by a black
square. (ii) a tree where the duplication is not detected (see text for more details).
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some label more than once. A label l ∈ L(M) is a repeated label for M if and only
if the label l occurs more than once in L(M). We say that f is a repeated leaf for
M if and only if lf is a repeated label.

5.1.2 Identifying observed duplication nodes in linear time

The easiest way to compute D(M) is by checking for each node v in M if the sets
L(v1) and L(v2) intersect and adding v to D(M) in the case of a positive answer. The
time complexity of this simple algorithm is O(n2), since it requires computing O(n)

intersections of two sets of O(n) elements. But we can provide a faster algorithm
that uses the least common ancestor (lca) to find D(M) in linear time (see Algorithm
7). This algorithm takes profit from efficient data structures to locate lcas and from
the fact that a small number of lcas needs to be examined. To demonstrate the
correctness of Algorithm 7, we need to establish some relationships between lcas
and odns.

Lemma 5.1.2 A node is an odn if and only if it is the lca of at least two leaves m

and p with the same labels (i.e. lm = lp).

Proof From definition 5.1.1, v is an odn if and only if L(v1) ∩ L(v2) �= ∅. In this
case, there exist two leaf nodes m and p with m ∈ Mv1 and p ∈ Mv2 such that
lm = lp. Thus v is a common ancestor of the two leaves m and p with the same
label. Since m and p belong to two different subtrees having v as father (m ∈ Mv1

and p ∈ Mv2), v is indeed their lca in M .

Reciprocally, if v is the lca of two leaves m and p with the same label, this means
that L(v1) ∩ L(v2) �= ∅, and v is an odn by definition 5.1.1. �

According to Lemma 5.1.2, we can compute D(M) by searching for the lcas of all
pairs of leaves m and p with the same label. To determine the lca between multiple
pairs of nodes, one can use an algorithm in Harel and Tarjan [1984] which prepro-
cesses a data structure in O(n) time, where n is the number of nodes and returns
the lca of any two specific nodes from the data structure in O(1). We still have
O(n2) lcas to find, and even achieving constant time for each gives an O(n2) total
complexity. However, since there are only O(n) internal nodes, many pairs of leaves
share the same lca. A smarter approach is used in Algorithm 7: first of all, the
subtrees of M are ordered from left to right in an arbitrary way. Then, each leaf,
starting from the left of the tree and moving to the right, is tagged with its label
followed by its occurrence number (see Figure 5.2). Then, for each repeated label
e, the lca of any two successive occurrences ei and ei+1 of e is inserted in D(M).
This leads to a linear time complexity. Indeed, we have O(n) of these couples
since each leaf ei of M is involved in at most the two pairs (ei−1, ei) and (ei, ei+1).
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a! c! b! a"b"c"d! o!

Figure 5.2: An example of how leaf nodes are tagged in algorithm 7 - each
leaf is tagged with its label followed by its occurrence number.

Algorithm 7: CompDuplicationNodes(M)
Data: A MUL tree M .

Result: A set of odns D(M).

Order M in an arbitrary way. In this order, tag each leaf with its label followed by1

its occurrence number.;

Compute the Harel & Tarjan data structure //see text;2

D(M) ← ∅;3

foreach (repeated label e) do4

foreach ({ej , ej+1}) do D(M) ← D(M) ∪ lca(ej , ej+1);5

return D(M);6

The correctness of Algorithm 7 is justified by Lemma 5.1.3 showing that this algo-
rithm retrieves all odns of M .

Lemma 5.1.3 Let M be a MUL tree. For each odn v, ∃ two successive occurrences

of a label e denoted by ei and ei+1 s.t. v = lca(ei, ei+1).

Proof Given an odn v, there exists at least one label e present in both subtrees Mv1

and Mv2 . We denote by A the set of leaves ai s.t. ai ∈ Mv1 and lai = e and denote
by B the set of leaves bj s.t. bj ∈ Mv2 and lbj = e. We denote by b1 the rightmost
element of B and by a|A| the leftmost element of A. We know that v is the lca of
the two nodes a|A| and b1. Additionally, due to the way we tagged M, we know that
there is no other occurrence of the label e between a|A| and b1. Indeed, if there was
another leaf x labeled with e, it would be either in Mv1 (and then x = a|A|) or in
Mv2 (and then x = b1). Then a|A| and b1 are two successive occurrences of the same
label and their lca is the node v.

�

5.2 Methods

5.2.1 Isomorphic subtrees

Definition 5.2.1 Two rooted trees T1 and T2 are isomorphic (denoted by T1=T2) if

and only if there exists an one-to-one mapping from the nodes of T1 onto the nodes

of T2 preserving leaf labels and descendancy.
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For each odn v, we are interested in testing if the two subtrees Mv1 and Mv2 are
isomorphic or not. In the positive, we can prune one of the two isomorphic subtrees
and eliminate the odn v, as in the example of Figure 5.3. Indeed, when successively
combining trees by a veto supertree method, all the topological information related
to speciation events contained in M is present in M � (see Proposition 5.2.6 in Section
5.2.2). Indeed, the triplet ab|c is still present in the tree M �. This is not the case
when combining trees by a vote supertree method, since for the vote strategy, not
only the presence of a triplet in the forest is important but also its frequency. In
this case, M contains the triplet ab|c twice while M � only once.

v  v ! D(M )  v " D(M ')

a b c a b c x x y a b c x x y

M M'

Figure 5.3: Example of a MUL tree where the two child subtrees of the
duplication node are isomorphic - in this case we can keep only one of them.

For detecting isomorphism of MUL trees, we propose Algorithm 8, an extension
to MUL trees of the Check-isomorphism-or-find-conflict algorithm [Berry
and Nicolas, 2006]. Alternatively, we could have proposed an appropriate variant
of the tree isomorphism algorithm detailed in Aho et al. [1974]. However, such an
algorithm would likely have been less space efficient than the one we present here
due to numerous string sorting steps using several queues and lists to ensure linear
running time.

Algorithm 8 is based on nodes called cherries i.e., internal nodes that have
only two leaves as children. In the case of single-labeled trees we have the following
lemma:

Lemma 5.2.2 [Gusfield, 1991] Let T1, T2 be two isomorphic trees and let c1 be a

cherry in T1. Then, there is a cherry c2 ∈ T2 s.t. L(c1) = L(c2).

In the case of MUL trees, we can have several copies of the same cherry. We call
a multiple cherry the list of cherries on the same two labels. We note |mc| the
number of occurrences of the multiple cherry mc in a tree it belongs to.

Lemma 5.2.3 Let M1, M2 be two isomorphic MUL trees and let mc1 be a multiple

cherry in M1. Then, there is a multiple cherry mc2 ∈ M2 s.t. L(mc1) = L(mc2)

and |mc1| = |mc2|.

The proof is straightforward from that of Lemma 5.2.2 in Gusfield [1991].
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Outline of the algorithm

Algorithm 8 first finds all the multiple cherries for the MUL trees M1 and M2 that are
stored in the list Lmc using a simple linked list. Additionally, a hashtable H is used
where each mc ∈ Lmc is a key. To each multiple cherry mc, H associates two linked
lists, O1(mc) and O2(mc), storing pointers to nodes of M1 and M2 respectively that
correspond to the occurrences of mc. The multiple cherries of a MUL tree are then
examined in a bottom-up process. Given a multiple cherry mc in Lmc we check if
the size of O1(mc) is the same as that of O2(mc). If this is not the case, we have
found a multiple cherry for which we do not have the same number of occurrences
in M1 and M2. In this instance, M1 and M2 are not isomorphic (Lemma 5.2.3) and
the algorithm returns FALSE. Otherwise we turn all the cherries in O1(mc) and
O2(mc) into leaves to which a same new label, different from all other labels in M1

and M2, is assigned. This modification of M1 and M2 can turn the fathers of some
cherries in O1(mc) and O2(mc) into new cherries. Then Lmc is updated and the
processing of cherries in M1 is iterated until both MUL trees are reduced to a single
leaf with the same label if M1 and M2 are isomorphic (i.e., Lmc = ∅), or a FALSE
statement is returned.

Algorithm 8: CheckIsomorphismMULTree(M1,M2)
Data: Two MUL tree M1 and M2.
Result: TRUE if M1 and M2 are isomorphic, FALSE otherwise.
Initialize the list Lmc of multiple cherries in M1 and M2;1

Build the hashtable H where each mc ∈ Lmc is a key. To each mc, H2

associates two lists O1(mc) and O2(mc), respectively of the occurrences of
mc in M1 and M2;
while (Lmc �= ∅) do3

mc ← removeFirst(Lmc);4

if (|O1(mc) | =|O2(mc) |) then5

Turn all cherries in O1(mc) and O2(mc) into leaves to which a same6

new label is assigned;
add the new multiple cherries at the end of Lmc and update H;7

else return FALSE;8

return TRUE;9

Theorem 5.2.4 Let M1 and M2 be two rooted MUL trees with L(M1) = L(M2) of

cardinality n. In time O(n), Algorithm 8 returns TRUE if M1 and M2 are isomor-

phic, FALSE otherwise.

Proof We show here that we can keep the linear time execution of the Check-

isomorphism-or-find-conflict algorithm of Berry and Nicolas [2006], using
supplementary data structures. A simple depth-first search of trees M1 and M2

initializes Lmc and H in O(n) time. At each iteration of the algorithm, obtaining a
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multiple cherry mc to process is done in O(1) by removing the first element mc of
Lmc. H then provides in O(1) the lists O1(mc) and O2(mc) of its occurrences in the
trees. Checking that these lists have the same number of elements is proportional to
the number of nodes they contain, hence costs O(n) amortized time, as each node is
only once in such a list, and the list is processed once during the whole algorithm.
Replacing all occurrences of mc by a new label is done in O(n) amortized time, since
each replacement is a local operation replacing three nodes by one in a tree and at
most O(n) such replacements can take place in a tree to reduce it down to a single
node (which is the stop condition of the algorithm). Reducing a cherry can create
a new occurrence omc� of a cherry mc�. Checking in O(1) time if mc� is a key in H

allows to know whether occurrences of mc� have already been encountered or not in
M1 or M2. In the positive, we simply add omc� to the beginning of the list O1(mc)

(if omc� ∈ M1) or O2(mc) (if omc� ∈ M2), requiring O(1) time. In the negative, we
add mc� to the beginning of Lmc, create a new entry in H for mc�, and initialize the
associated lists O1(mc) and O2(mc) so that one contains omc� and the other is the
empty list. Again, this requires only O(1) time. Thus, performing all operations
required by the algorithm globally costs O(n) time. �

Applying Algorithm 8 to Mv1 and Mv2 for each odn v of a MUL tree M in a
bottom-up approach requires O(dn) time, where d is the number of odns in M .

5.2.2 Auto-coherency of a MUL tree

Algorithm 8 can be used to lower the number of duplication nodes in gene trees. Let
M be a gene tree that still has duplication nodes after having removed isomorphic
sibling subtrees in a bottom-up approach as described in Section 5.2.1. Thus, M
contains several sequences for some taxa, i.e., multiple copies of some labels. We can
then wonder whether these copies display similar relationships with their respective
neighboring labels.

a b c x ya b cd

v

a b c x yb c ad

v

M! M"

v!
v"

v!
v"

Figure 5.4: Example of auto-coherent and non auto-coherent MUL trees -
the evolutionary signal of M1 is coherent with respect to Definition 5.2.7 while the
evolutionary signal of M2 is not.

For instance, the subtrees M2(v1) and M2(v2) in Figure 5.4 contain respectively
the triplet ab|c and the triplet bc|a so M2 hosts contradictory triplets.
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In the case of a MUL tree M with a coherent evolutionary signal (for instance
the MUL tree M1 depicted in Figure 5.4), we can summarize the evolutionary in-
formation of M into a single-labeled tree T . We introduce below some notations to
formalize this idea.

Definition 5.2.5 Let M be a MUL tree. We define by Rwd(M) (R(M) w ithout

duplications) the set of triplets ab|c s.t. there exist three leaf nodes x, y, z ∈ M with

lx = a, ly = b, lz = c such that both

(i) lca(x, y) �= (lca(x, z) =lca(y, z)),

(ii) lca({x, y, z}) /∈ D(M) and lca(x, y) /∈ D(M)

Part (i) of the condition ensures that ab|c is displayed by M i.e., M |{x,y,z} =

ab|c, while Part (ii) ensures that none of the two internal nodes of M |{x,y,z}
is an odn of M . For example, for the MUL tree in Figure 5.1(i),
Rwd(M)={ab|c,ac|d,ab|d,bc|d,ac|o,ab|o,ad|o,bc|o,cd|o,bd|o}. Hence, not all the
triplets of R(M) are kept. We introduce this definition because, once a duplication
event occurred in a gene’s history, the two copies of the gene evolved independently.
The history of each copy is influenced by the species’ history but, considering one of
them simultaneously with the close relatives of another copy, i.e., with paralogous
sequences, may produce information unrelated to the speciation events (see Section
2.2.1). Therefore, to avoid mixing the history of different copies of a gene, it is bet-
ter to discard the triplets that address paralogous sequences. This is exactly what
Rwd(M) achieves.

Rwd(M) has size O(n3) and can be computed in O(n3) time, where n is the
number of leaf nodes of M . Indeed, once the Harel & Tarjan data structure is
computed in O(n) time [see Bender and Farach-Colton, 2000; Harel and Tarjan,
1984], checking if three leaf nodes x, y, z of M satisfy Definition 5.2.5 can be done
in O(1) time, thus in O(n3) for all triplets of leaves in M .

Proposition 5.2.6 Let M be a MUL tree and M � the MUL tree obtained by applying

algorithm 8 to eliminate isomorphic sibling subtrees. Then Rwd(M) = Rwd(M
�).

Definition 5.2.7 A MUL tree M is said to be auto-coherent if the triplet set

Rwd(M) is compatible, i.e., if there exists a single-labeled tree T such that Rwd(M)

⊆ R(T ).

In the case of an auto-coherent MUL tree, we know that there exists at least one
tree T containing all the speciation information contained in Rwd(M), i.e., the
information of M that is considered to express speciation information. To check
if a MUL tree is auto-coherent, we can resort to the AncestralBuild algorithm
of Berry and Semple [2006] (see page 59). For a set of triplets R, this algorithm
indicates in O(|R| · log2(|L(R)|)) time whether R is compatible, where L(R) is the
set of leaf labels of the elements of R. Moreover, in case of a positive answer it
returns a tree T s.t. R ⊆ R(T ).



146
Chapter 5. Methods to include multi-labeled phylogenies in a

supertree framework

Steel [1992] proved that any binary single-labeled rooted tree T can be encoded
using a triplet set Rl(T ) whose size is the number of inner nodes of T . In this
section we show that it is possible to check the auto-coherency of a binary MUL
tree M by using as representation of Rwd(M) a triplet set Rl

wd(M) whose size is at
most equal to the number of speciation nodes of M . To univocally define the set
Rl

wd(M), let < be a total order on the leaf set L(M). For each node v of M , we
denote by sm(v) the smallest element of L(Mv) according to < and by anc(v) the
set of nodes belonging to the path from v to the root of M . Note that the root of
M belongs to anc(v) while v does not. Let lsa(v) be the least speciation ancestor
of v, i.e., the speciation node in anc(v) closest to v, and let v� be the son of lsa(v)
such that v /∈ Mv� . Note that, if the father of v is not in D(M), it coincides with
lsa(v) while v� is the sibling node of v.

Definition 5.2.8 Let M be a binary MUL tree and < a total order on L(M). We

define by Rl

wd
(M) the set of triplets ab|c such that ab|c ∈ Rwd(M) and there exists

a speciation node v in M such that sm(v1) = a, sm(v2) = b and sm(v�) = c.

lsa(v)

v! v'

sm(v1)

= a    

sm(v2)

= b 

sm(v')

= c

{anc(�)
M

�"

�

Figure 5.5: Example of how to compute Rl

wd
(M) - the only triplet of Rl

wd(M)

associated to the speciation node v is ab|c (see definition 5.2.8), while the triplet set
associated to v in Rwd(M) is composed by the triplets lxly|lz of R(M), where x ∈
L(Mv1), y ∈ L(Mv2) and z ∈ L(M) such that lca(x, y, z) /∈ D(M) and lca(x, y) �=
(lca(x, z) = lca(y, z))

Note that, for each speciation node v, the set Rl
wd(M) contains at most one

triplet lxly|z, with v = lca(x, y) while Rwd(M) tipically contains many more such
triplets (see Figure 5.5).

Once the set of duplication nodes D(M) is calculated, Algorithm 9 computes
Rl

wd(M) in linear time (see Theorem 5.2.14). We now need to show that checking
the auto-coherency of Rwd(M) and Rl

wd(M) is equivalent. To do that, we need to
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Algorithm 9: linearRepresentation(M,D(M), v)

Data: A binary MUL tree M , the set of duplication nodes D(M) of M , a
node v in M .

Result: A set of triplets Rl that is the linear representation of the speciation
triplet information of M .

Rl ← ∅;1

if (v is not a leaf and v is not the root node) then2

f ← the father of v;3

if (f /∈ D(M)) then4

if (f1 = v) then v� ← f2;5

else v� ← f1;6

else7

v� ← f �;8

Rl ← Rl ∪ linearRepresentation(M,D(M), v1);9

Rl ← Rl ∪ linearRepresentation(M,D(M), v2);10

if (v /∈ D(M)) and (v� �= ∅) then11

Rl ← sm(v1)sm(v2)
�

�

�
sm(v�);

12

return Rl;13

introduce more notations. Given a node v of a MUL tree M , we define the height of
v, denoted by h(v), as the length of the longest path between v and its descendants.
More formally, the height of a leaf is fixed to zero and that of an internal node v

is max(h(v1),h(v2))+1. Recall that G(R, L) is the Aho graph built from a triplet
set R on a leaf set L (see Section 3.3.1.1). The set of vertices of this graph is L

and there is an edge in G(R, L) connecting two vertices a and b if and only if there
exists at least one triplet ab|c in R. The proof that the auto-coherency of Rwd(M)

can be tested by checking that of Rl
wd(M) relies on the following Lemma.

Lemma 5.2.9 Let M be a binary MUL tree and v a node of M. If anc(v) contains

at least one speciation node, then G(Rl
wd(M), L(Mv)) is connected.

Proof We prove the lemma by induction on the height of the node v. Note that,
from the statement of the lemma, we need to consider only those nodes having at
least one speciation node as ancestor.

Let us start showing that Lemma 5.2.9 is valid for all nodes with height 0. In
this case L(Mv) contains a single label, hence G(Rl

wd(M), L(Mv)) contains only one
vertex i.e., is trivially connected.

Now suppose that Lemma 5.2.9 is valid for all nodes v such that h(v) < h̄.
We want to prove that this implies that the lemma is true for all nodes v: h(v) �

h̄. Let v be a node for which anc(v) contains at least one speciation node and
h(v) = h̄. Since h(v1) = h(v) − 1 and lsa(v) ∈ anc(v1) we know that G1 =

G(Rl
wd(M), L(Mv1)) is made of a single connected component C1 and the same
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holds for G2 = G(Rl
wd(M), L(Mv2)), denoting by C2 this connected component. It

remains to prove that there exists an edge connecting the two connected components
C1 and C2. Either v is a speciation node or a duplication node. If v is a speciation
node, then from the definition of Rl

wd(M) there exists a triplet t ∈ Rl
wd(M) such

that t = sm(v1)sm(v2)|sm(v�) and thus t induces an edge between C1 and C2. If
v is an observed duplication node, there exists at least a label d such that d ∈
L(Mv1) ∩ L(Mv2) and this label is represented by a single vertex present in both
C1 and C2 in G(Rl

wd(M), L(Mv)) that contains all vertices and edges of G1 and G2.
Thus, G(Rl

wd(M), L(Mv)) is connected in both cases. �

Lemma 5.2.9 will be useful while proving Lemma 5.2.11. Let us introduce the
notion of closure of a compatible triplet set. Given a compatible triplet set R,
we say that a triplet ab|c is in the closure of R, denoted by cl(R), if and only
if ab|c ∈ R(T ), ∀T : R ⊆ R(T ). This is equivalent to requiring that both sets
{R ∪ {ac|b}} and {R ∪ {bc|a}} are incompatible [Grunewald et al., 2007]. We
introduce a result on the closure of a triplet set that will be useful later on.

Proposition 5.2.10 If R is a compatible triplet set, then cl(R) is compatible.

Proof From the definition of compatibility, a triplet set R is compatible if there
exists a tree T such that R ⊆ R(T ). From proposition 4(6)1 of Bryant and Steel
[1995] we know that if such a tree exists, this tree has also the property cl(R) ⊆
R(T ). It follows that cl(R) is compatible. �

Using this result, we can now prove the following Lemma.

Lemma 5.2.11 Let M be a binary MUL tree. If the triplet set Rl
wd(M) is compat-

ible, then Rwd(M) ⊆ cl(Rl
wd(M)).

Proof We prove this statement for all subtrees Mv of M by induction on the height
of the node v in M . As M = Mroot(M) this shows the statement.

If h(v) = 0 then Rwd(Mv) = cl(Rl
wd(Mv)) = ∅. Now suppose that Rwd(Mv)

⊆ cl(Rl
wd(Mv)) for all nodes v such that h(v) < h̄ and let v be a node such that

h(v) = h̄ > 0.
i) If v is a duplication node, then, if |L(Mv1) > 1|, for x, y ∈ L(Mv1) with

x �= y and z ∈ L(Mv2) we have that lca(x, y, z) ∈ D(M). The same holds for
the symmetric case i.e., |L(Mv2) > 1|. This implies that Rwd(Mv) = Rwd(Mv1) ∪
Rwd(Mv2) and Rl

wd(Mv) = Rl
wd(Mv1) ∪ Rl

wd(Mv2). It follows that Rwd(Mv) ⊆
cl(Rl

wd(Mv1)) ∪ cl(Rl
wd(Mv2)) ⊆ cl(Rl

wd(Mv1) ∪ Rl
wd(Mv2)) = cl(Rl

wd(Mv)). Note
that, if |L(Mv1)| = 1 and |L(Mv2)| = 1, then Rwd(Mv) = Rl

wd(Mv) = ∅ and the
lemma still holds.

1Proposition 4 of Bryant and Steel [1995] is defined for quartets but it remains valid for rooted

triplets (see page 441 of this reference).
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ii) If v is a speciation node, then by induction all triplets lxly
�

�lz ∈ Rwd(Mv) with
x, y, z ∈ L(Mv1) or x, y, z ∈ L(Mv2) are in cl(Rl

wd(Mv)). Let t be a triplet lxly
�

�lz of
Rwd(Mv) with x, y ∈ L(Mv1) and z ∈ L(Mv2). We prove that t is in cl(Rl

wd(Mv)) by
proving that (Rl

wd(Mv) ∪ lxlz
�

�ly) and (Rl
wd(Mv) ∪ lylz

�

�lx) are both incompatible.
From Lemma 5.2.9 we know that G(Rl

wd(Mv), L(Mv1)) and G(Rl
wd(Mv), L(Mv2)) are

two connected components C1 and C2, since v is a speciation node above v1 (resp
v2). As L(Mv) = L(Mv1) ∪ L(Mv2), the graph G(Rl

wd(Mv), L(Mv)) has at most
two connected components. Since Rl

wd(M) is compatible, Rl
wd(Mv) ⊆ Rl

wd(M) is
also compatible then G(Rl

wd(Mv), L(Mv)) is composed by exactly two connected
components [Bryant and Steel, 1995, Theorem 2] i.e., C1 and C2. Since lxly|lz ∈
Rwd(M) then lx �= ly �= lz: this means that lx, ly ∈ C1 and lx, ly /∈ C2 while lz ∈ C2

and lz /∈ C1. Then both triplets lxlz
�

�ly and lylz
�

�lx would connect the two connected
components. This implies that (Rl

wd(Mv) ∪ lxlz
�

�ly) and (Rl
wd(Mv) ∪ lylz

�

�lx) are
both incompatible and then t is in cl(Rl

wd(Mv)). The same result holds for the
symmetric case x, y ∈ L(Mv2) and z ∈ L(Mv1). Note that this lemma works also if
|L(Mv1)| = 1 and/or |L(Mv2)| = 1.
This concludes the proof that Rwd(M) ⊆ cl(Rl

wd(M)). �

Lemma 5.2.12 Let M be a binary MUL tree. If the triplet set Rl
wd(M) is compat-

ible, then cl(Rl
wd(M)) = cl(Rwd(M)).

Proof If Rl
wd(M) is compatible then it follows from Proposition 5.2.10 that

cl(Rl
wd(M)) is compatible. Lemma 5.2.11 thus implies that Rwd(M), as subset

of the compatible set cl(Rl
wd(M)), is also compatible. In such a case the closure

of Rwd(M) is well defined. The definition of the closure operation implies that, if
R1 ⊆ R2 are two compatible triplet sets then cl(R1) ⊆ cl(R2) [Grunewald et al.,
2007, page 4]. From this observation and Lemma 5.2.11, it follows that cl(Rwd(M))

⊆ cl(cl(Rl
wd(M))). Since cl(cl(Rl

wd(M))) = cl(Rl
wd(M)) [Grunewald et al., 2007,

page 4], we obtain that cl(Rwd(M)) ⊆ cl(Rl
wd(M)).

By construction Rwd(M) ⊇ Rl
wd(M). This implies that cl(Rwd(M)) ⊇

cl(Rl
wd(M)).

This concludes the proof. �

Corollary 5.2.13 The triplet set Rl
wd(M) is compatible if and only if the triplet

set Rwd(M) is compatible.

Proof The fact that Rwd(M) ⊇Rl
wd(M) implies that if Rwd(M) is compatible then

Rl
wd(M) is also compatible while if Rl

wd(M) is not then Rwd(M) is not compatible.
While proving Lemma 5.2.12 we proved that if Rl

wd(M) is compatible then
Rwd(M) is compatible. This implies that if Rwd(M) is not compatible then Rl

wd(M)

is also not compatible, otherwise we would have Rl
wd(M) compatible and Rwd(M)

incompatible and this would contradict Lemma 5.2.12. This proves the corollary. �

Theorem 5.2.14 Checking the auto-coherency of a binary MUL tree M can be done

in O(n · log2 n) time.
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Proof From Lemma 5.2.12 and Corollary 5.2.13 it follows that checking the auto-
coherency of a binary MUL tree M can be done using the triplet set Rl

wd(M). This
set can be computed in linear time by Algorithm 9. Given the set D(M) and having
previously calculated sm(v) for each node v, Algorithm 9 computes v� for each node
v in M in a top-down approach. If v /∈ D(M) and v� �= ∅, Algorithm 9 inserts in
Rwd(M) the triplet sm(v1)sm(v2)|sm(v�): this is exactly the definition of Rl

wd(M).
This proves that Algorithm 9 computes Rl

wd(M). Note that Rl
wd(M) has an O(n)

size, since we can have at most one triplet for each internal node of M .
Let us demonstrate that Algorithm 9 computes Rl

wd(M) in linear time. The
value of sm(v) for each node can be computed in a single bottom-up search requiring
linear time. The set of duplication nodes D(M) can be also computed in linear time
(see Section 5.1.2). Algorithm linearRepresentation(M,D(M), root(M),Rl)
consists in a postorder search walk on the MUL tree M and takes a linear time.
Since AncentralBuild checks the compatibility of a triplet set R on a label set of
size n in O(|R| · log2 n) time, this concludes the proof. �

5.2.3 Computing a largest duplication-free subtree of a MUL tree

If a MUL tree is not auto-coherent, identifying duplication nodes still allows for the
discrimination of leaves representing orthologous and paralogous sequences. Since
only orthologous sequence history reflects the species history, a natural question is to
determine the most informative orthologous sequence set for a given gene. As long
as the gene tree contains odns, it will also contain leaves representing paralogous
sequences. Yet, if for each node v ∈ D(M) of M we choose to keep either Mv1 or
Mv2 , we obtain a pruned single-labeled tree containing only apparent2 orthologous
sequences (observed paralogous have been removed by pruning subtrees of odns).
Note that the so obtained single-labeled tree is auto-coherent by definition.

Definition 5.2.15 Let M be a MUL tree. We say that T is obtained by (duplication)

pruning M if and only if T is obtained from M by choosing for each odn v either

Mv1 or Mv2 and restricting M to the conserved subtrees. We denote this operation

by the symbol �.

One can wonder, for a non auto-coherent MUL tree M , what is the most informative
single-labeled tree T s.t. T � M . We define this problem as the MIPT (Most

Informative Pruned Tree) problem.
To evaluate the informativeness of a tree we can use either its number of triplets of
T [see Page, 2002; Ranwez et al., 2007a; Semple and Steel, 2000] that, for binary
trees, only depends on the number of leaves, or the CIC criterion [see Scornavacca
et al., 2008; Thorley et al., 1998, introduced in Section 4.3.1]. Recall that the CIC of
a not fully resolved and incomplete3 tree T with |L(T )| leaves among the n possible

2Recall that, as evoked in Section 5.1.1 on page 139, we may fail to detect some duplication

nodes.
3A tree is called incomplete when it misses some taxa.
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Algorithm 10: pruning(v,M ,D(M))

Data: A node v, a MUL tree M , and a set of odns D(M).
Result: The most informative MUL tree M � s.t. M �

v � Mv and M �
v is

single-labeled.
foreach (m ∈ sons(v)) do pruning(m,M ,D(M));1

if (v ∈ D(M)) then2

if (|L(v1)| > |L(v2)|) then3

prune Mv2 from M and merge nodes v1 and v2;4

else5

prune Mv1 from M and merge nodes v1 and v2;6

return M ;7

is a function of both the number nR(T, n) of fully resolved trees T � on L(T ) such
that R(T ) ⊆ R(T �) and the number nR(n) of fully resolved trees on n leaves:

CIC(T, n) = − log
�

nR(T, n)/nR(n)
�

In the case of binary trees, nR(T, n) depends only on the number of source taxa
missing in T since T does not contain multifurcations. Thus, dealing with binary
MUL trees T , finding the MIPT (i.e., maximizing the number of triplets or mini-
mizing the CIC value) consists in finding the subtree of T with the largest number
of leaves.

A natural approach for the MIPT problem on binary MUL trees is an algorithm
that, after having computed D(M), uses a bottom-up starting from root(M), to keep
the most informative subtree between Mv1 and Mv2 , for each odn v (see Algorithm
10).

Theorem 5.2.16 Let M be a MUL tree on a set of n leaves. In time O(n), Algo-

rithm pruning(M,root(M),D(M)) returns the most informative single-labeled tree

T s.t. T � M .

Proof First of all, it’s obvious that pruning(M,root(M),D(M)) returns a tree.
Indeed, if for each odn v only one node between v1 and v2 is kept, at the end of the
bottom-up procedure one copy of each duplicated leaf is present in the modified M .
Now, we have to show that the resulting tree is the most informative tree s.t. T � M ,
i.e., the tree with as many leaves as possible. For an odn v that is the ancestor of
other duplication nodes, the choices made for v1 do not influence the choices for v2
since for each duplication node we can keep only one of the two subtrees, the most
crowded one. Thus we can search for the best set of choices left/right for v1 and v2
independently and then choose the most crowded pruned subtree between v1 and
v2. Iterating recursively this reasoning, we demonstrate that the tree obtained by
Algorithm 10 is the most informative tree T s.t. T � M . The computation of the
set D(M) of odns takes linear time. The subroutine pruning(M, root(M),D(M))

requires a tree search, thus the time complexity of Algorithm 10 is O(n). �
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5.2.4 Compatibility of single-labeled subtrees obtained from MUL
trees

We can also ask if it is possible, given a collection M of MUL trees, to discriminate
leaves representing orthologous and paralogous sequences in a gene tree using the
information contained in the other gene trees to obtain a compatible forest F , i.e.,
a forest for which there exists a tree T s.t. (∪Ti∈FR(Ti)) ⊆ R(T ). We denote this
problem by Existence of a Pruned and Compatible Forest (EPCF).
Unfortunately, the EPCF problem is NP-complete.

EPCF

�

�

�

�

�

�

�

�

�

�

Instance : A set of leaves X and a collection M={M1, · · ·Mk}
of MUL trees on X.

Question : ∃ a set S of choices left/right, S : M → F ,

with F={T1, · · ·Tk} s.t. Ti � Mi and F is compatible?

Theorem 5.2.17 The EPCF problem is NP-complete.

Proof We start by proving that EPCF is in NP, i.e., checking if a set S of choices
left/right is a solution for the instance I = (M, X) can be done in polynomial time.
First of all, for each MUL tree Mj ∈ M, we choose for each node v ∈ D(M) to
keep either Mv1 or Mv2 (following the left/right choices of S) obtaining a forest F
of single-labeled trees. Second, we check the compatibility of F with the Aho graph
(see Section 3.3.1.1) and this can be done in polynomial time.

Given that EPCF is in NP, we use a reduction of 3-SAT to EPCF to demonstrate
that the latter is NP-complete.

3-SAT

�

�

�

�

�

�

�

�

�

�

Instance : A boolean expression C=(C1 ∧ C2 ∧ · · · ∧ Cn) on a

finite set L={l1, l2, · · · , lm} of variables with Cj=

(a ∨ b ∨ c) where {a, b, c} ∈ {l1, l2, · · · , lm, l1, l2 · · · , lm}
Question : ∃ a truth assignment for L such that C=TRUE ?

We need to show that every instance of 3-SAT can be transformed into an instance
of EPCF; then we will show that given an instance I = (C, L) of 3-SAT, I is a
positive instance, i.e., an instance for which a solution exists, if and only if the
corresponding instance for EPCF is positive.

Given an instance I = (C, L) of 3-SAT, we build an instance I � = (M, X) of
EPCF associating to each li in L the binary tree T (li) = (((xi, yi), zi), d) and to li
the binary tree T (li) = (((zi, yi), xi), d) (see Figure 5.6 for an example).

The set of subtrees
�

T (a) | a ∈ {l1, l2, · · · , lm, l1, l2, · · · , lm}
�

is denoted by FL.

Then, for each clause Cj = (a ∨ b ∨ c) in C, a binary MUL tree Mj is built, formed
by three subtrees ((T (a), T (b)), T (c)). Note that Mj has exactly two duplication
nodes due to the presence of d in T (a), T (b) and T (c), so that any left/right choice
of Mj will reduce it to either T (a), T (b) or T (c). Figure 5.7 displays an example of
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a MUL tree built from a clause. In this way we obtain a forest of MUL trees M on

the leaf set X =
�

�
�m

i=1{xi, yi, zi}
�

∪{d}
�

, i.e., an instance of the EPCF problem.

Clearly M can be built in polynomial time.

xi yi zi d zi yi xi d

T               (li      ) T               (li      )

Figure 5.6: Binary trees on four leaves associated to li and to li - where li is
a literal of a 3-SAT instance.

xi yi zi d xi yi zi d xi yi zi d

T               (li      ) T               (lj       ) T               (lk      )

Figure 5.7: MUL tree built from the clause {li ∨ lj ∨ lk} - odns are indicated
by black squares.

We now need to show that a positive instance of 3-SAT gives a positive instance
of EPCF through the previous transformation. Having a positive instance for 3-SAT
implies that for each Cj ∈ C with Cj = (a ∨ b ∨ c), at least one of the three literals
is TRUE. Without loss of generality, let us suppose that a is TRUE. Then in the
MUL tree Mj corresponding to Cj we set the left/right choices so that only the
subtree T (a) is kept. Doing this for each Cj ∈ C, we then obtain a forest F that
is a subset of FL. We need to prove that F is compatible. Let T̃ (a) denote the
tree T (a)|(L(T (a))− {d}) and F̃ the forest composed by all trees {T̃ (a)|T (a) ∈ F}
where each tree occurs only once, even if the same literal was chosen in different
clauses. Then, we can build a tree Ts = (T̃1, T̃2, · · · , T̃|F̃ |, d) multifurcating at the

root4. Note that each label is present only once in this tree. Indeed li cannot have
the value TRUE and FALSE at the same time and either T (li) or T (li) are in F̃ . The
tree Ts is therefore a single-labeled tree. Moreover, by construction, Ts|(L(T (a)) is
identical to T (a), for all T (a) in F ensuring that

�

Ti∈F
R(Ti) ⊆ R(Ts). Thus F is

compatible.
Now, the only thing left to prove is that if the built instance of EPCF leads to

a compatible forest F , then the boolean expression of 3-SAT can be satisfied.
4This tree is express in Newick format, see Section 3.1 on page 40.
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The repetition of the taxon d in each subtree makes the two nodes connecting the
subtrees in each Mj be odn. Thus a left/right choice set S reduces each Mj in M into
a tree T (a) ∈ FL, providing the forest F . Setting the value of a to TRUE ensures
that the clause Cj corresponding to Mj is TRUE. This can be done simultaneously
for all clauses ∈ C since the forest compatibility implies that there is no contradiction
among the trees in F . Then, either T (li) or T (li) is in F . This ensures us that either
li or li is assigned to TRUE, but not both. �

Note that the problem to find the most informative forest F = {T1, · · ·Tk} s.t.

Ti � Mi and F is compatible, denoted by MIPCF (Most Informative Pruned and
Compatible Forest) is FPT. Indeed, analyzing all possible scenarios left/right choices
gives simple FPT algorithm, the exponential running times of which only depends
on the total number of duplication nodes in M.

5.3 Experiments

We now present an application of the algorithms described in this chapter to analyse
the hogenom database release 4 [Penel et al., 2009]. hogenom is a database of
homologous genes from 514 fully sequenced genomes5 for 381 species, containing
147,586 gene families for which alignments and trees are available. We focused
on building trees at the species level, thus we only retained the 46,419 families
containing taxa spanning more than two species and for which gene trees are binary6.
Other gene families concern different strains of the same few species, which can be
of use when studying macro-evolutionary events, e.g., gene duplications and losses
(see Section 2.2), but are of no use when building the species tree.

The 46,419 families span 376 species and 33,041 of these families have several
sequences from the same species, their gene tree being hence a MUL-tree. This
first observation shows that only 28.9% of the gene families can be used directly by
supertree methods. This echoes, though less severely, the critic of Bapteste et al.
[2008] who called "Trees of 1%" the species trees built by the first phylogenomic
works that could rely only on single-labeled trees [Brochier et al., 2005; Ciccarelli
et al., 2006]. We note that as more complete genomes will be available, the percent-
age of multi-labeled gene trees will only increase.

In this chapter, we proposed fast algorithms that allow to process MUL-trees
in order to distinguish and extract the speciation signal from the signal due to
macro-evolutionary events such as gene duplications and transfers. The significant
increase in the number of gene families whose phylogenetic signal can then be used
is expected to allow phylogenomic methods to obtain a more accurate picture of the
estimated species trees. Targeted phylogenomic methods are both supermatrix and
supertree approaches, though here we will focus on the latter as this manuscript
puts the emphasis on the latter approach.

5In details, hogenom contains the complete genome for 34 eukarya, 437 bacteria and 39 archaea.
6Recall that on the 46,535 gene trees containing taxa spanning more than two species, only 116

are not binary.
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5.3.1 Enlarging the amount of gene families to be used for species
tree building

The afore-described forest F contains both single-labeled and MUL trees. The latter
can be turned into single-labeled trees by pruning isomorphic parts (Algorithm 8),
pruning less informative subtrees of odns (Algorithm 10) and/or summarizing the
triplets they contain that carry the speciation signal (Section 5.2.2). To explore the
interest in these different approaches, we distinguished several sets of single-labeled
gene trees obtained from F :

• F1, the forest of single-labeled gene trees of F ;

• F2, the forest of trees of F that are multi-labeled and can be turned into
single-labeled trees when removing a copy of each pair of isomorphic sibling
subtrees (Section 5.2.1);

• F3, the forest of trees of F that are still multi-labeled after applying the
isomorphic simplification, but are auto-coherent (Section 5.2.2). This third
set of trees can be turned into single-labeled trees by two alternative ways:

◦ F p
3 is the set of trees obtained from F3 by applying the algorithm of Sec-

tion 5.2.3 (i.e., by keeping for each duplication node, the largest subtree);

◦ F s
3 is the set of trees obtained when summarizing each MUL-tree M of

F3 by another tree containing only its speciation signal. This is done
by first computing the linear triplet decomposition Rl

wd(M) of the tree,
then obtaining a tree T that represents as much as possible this set of
triplets while not containing at all additional, hence arbitrary, triplets.
For building T we rely on the PhySIC heuristic algorithm [Ranwez et al.,
2007a, see Section 4.2] since, if running on pre-computed triplet sets, this
method is significantly faster than PhySIC_IST (see Section 4.5 for a
discussion on the running times of these methods).

Note that F1, F2 and F3 correspond to mutually exclusive sets of hogenom

families, while F p
3 and F s

3 are composed of alternative single-labeled trees that cor-
respond to the same families. Note also that some families of F do not fall in either
of these categories i.e., those corresponding to MUL trees that are not auto-coherent.
Then we considered the largest data sets that can be composed by combining these
forests, i.e., F s

all = F1 ∪ F2 ∪ F s
3 and F p

all = F1 ∪ F2 ∪ F p
3 . These forests, composed

of single-labeled trees, can be assembled by supertree methods to produce species
trees. For this purpose, the most informative forest is obviously the union of F1, F2

with either F p
3 or F s

3 . Note that F s
3 and F p

3 cannot be used at the same time, since
this would bias the supertree inference toward the phylogenetic signal contained in
families of F3. Note also that applying Algorithm 10 to F3, uninformative trees can
be obtained ,i.e., trees that contain less than two taxa. These uninformative trees
are not included in F p

3 and this explains why |F s
3 | �= |F p

3 |.
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F1 F2 F s
3 F p

3 F s
all F p

all

nb trees 13,378 11,891 17,674 16,148 42,943 41,417

total nb triplets 151,287 2×106 421×106 424×106 423×106 426×106

avg nb triplets/tree 11 169 23,819 26,261 18,472 10,291

nb distinct triplets 68,538 601,429 22.9×106 22.2×106 22.9×105 22.3×106

nb of taxa 369 374 374 374 376 376

% of input triplets 0.3% 2.3% 86.8% 84.4% 86.9 % 84.4%

Table 5.1: Information contained in the six considered forests to build the

species tree for the 376 species present in hogenom . The first row reports the

number of trees in each forest, while other rows give indications on the amount of triplet

information contained in the forests. Considered triplets are speciation triplets Rwd(Mi) as

defined earlier in this chapter. The second row reports the total number of triplets (with

repetitions) for each forest (i.e., the sum of |Rwd(Mi)| for all MUL-trees Mi in the forest).

The third row is the average number of speciation triplets per tree. The fourth row displays

the number of distinct triplets, i.e., when not considering the fact that some triplets are

found several times. The fifth row reports the total number of taxa in each forest. The

sixth row details the percentage of speciation triplets available as input to the methods

in proportion of the number of possible triplets for building a supertree of that size i.e.,
�nb taxa

3

�

.

We first report on characteristics of the forests detailed above (see Table 5.1).
This allows to measure the phylogenetic signal contained in each part of the initial
tree collection and the gain obtained by the possible enlargements of the F1 forest.
This is measured here using both the number of trees in the forests and the number
of triplets they contain. To that aim, we report sizes of Rwd sets, rather than that
of Rl

wd sets, because this gives a more precise idea of the information contained in
the collections.

From the number of trees in the different collections displayed in Table 5.1, it
can be observed that the algorithms proposed in this chapter allow to use up to
43k gene families instead of the 13k trees corresponding to orthologous genes with
no detected paralogs. These 43k trees represent more than 90% of hogenom gene
families, i.e., more than three times the number of gene families that can be used
in classical supertree-based phylogenomic studies.

What is even more impressive is the gain in the amount of topological infor-
mation for building the species tree. Indeed, from the second and third row of the
table, it can be seen that trees in F1 include on average few species. This is due
to the fact that most of the large trees contain duplication nodes. Indeed, widen-
ing the scope of considered species for a same family increases the probability of
observing duplicated sequences. This is particularly true for some species that are
known to have undergone ancient duplications of their whole genome. Taking the
presence of duplications into account, even in a very simple way as done to obtain
F2, allows a significant increase in the expressed phylogenetic signal. Indeed, though
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F2 contains roughly the same number of trees than F1, it contains 10 times more
speciation triplets. However, as F2 only allows for identical resolution of duplicated
sequences, most trees containing several duplication and/or transfer events can only
be represented in the F3 forests. The table shows that the more refined analyses
conducted to compose F p

3 and F s
3 lead to a considerable increase in the number of

speciation information extracted (about 2,000 times more speciation triplets than
F1 and 300 times more distinct speciation triplets).

Moreover, the increase of the additionally available information better covers the
set of all possible triplets, as the number of distinct triplets for which the input forest
contains a resolution goes from 68.5k to almost 23 millions. In terms of percentage
of information available to build a species tree, the last row of Table 5.1 shows that
the critic of Bapteste et al. [2008] was well founded since less than 1% triplets of
all possible triplets are contained in the F1 forest. In contrast, this increases up to
86.9% in the best case that we can now consider (forest F s

all).

5.3.2 Running times

All algorithms have been implemented in C++ using Bio++ [Dutheil et al., 2006]. In
table 5.3.2 we report the running times of the algorithms presented in Sections 5.2.1-
5.2.3 on the hogenom data base using a Linux-based machine running with 3 GHz
processor and 4 GB RAM.

applied algorithms input output runn. time

checking if D(M) �= ∅ (Alg. 7) 46,335 trees of F F1 2m20s

Algorithm 8 33,041 trees not in F1 F2 5m1s

AncestralBuild algorithm to Rl
wd(M) 21,150 trees not in F2 F3 14m40s

Algorithm 10 17,674 trees of F3 F p
3 0m14s

PhySIC algorithm 17,674 trees of F3 F s
3 21m14s

Table 5.2: Running times of the algorithms presented in Sections 5.2.1- 5.2.3 on the
hogenom gene tree collection.

5.3.3 Improvement in supertree inference

It now remains to be seen whether the increase in the amount of available informa-
tion benefits the species tree construction step, i.e., whether the extracted informa-
tion is of good quality. This is the question we now address. To build supertrees,
we composed several data sets from the above forests: the four forests F1, F2, F

s
3 , F

p
3

were each considered separately, then we considered the two largest forests that
could be composed from these basic ones, namely F s

all and F p
all. Two supertree

methods were considered: the well-known MRP method [Baum and Ragan, 2004,
see Section 3.3.2.1] and the PhySIC_IST method [Scornavacca et al., 2008, see Sec-
tion 4.3]. Recall that the two methods differ in the way they deal with contradictory
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topological signals found in the source trees. MRP is a voting method, i.e., arbitrat-
ing between conflicting signals in favor of the most frequent one being guided by the
maximum parsimony criterion. In contrast, PhySIC_IST is a non-plenary method
merely built from a veto principle. As a result, PhySIC_IST infers more reliable
but less resolved supertrees. This veto behavior can be tempered by removing the
less significantly frequent triplets from the input trees. This preprocess is regulated
by the STC parameter (see Section 4.3.2.3), for which we used different values in
our experiments: 0.9, 0.8 and 0.5, ordered by increasing tolerance to contradictory
signal.

F1 F2 F s
3 F p

3 F s
all F p

all

nb of taxa 369 374 374 374 376 376

CIC of PhySIC_IST (0.9) 2% 12% 48% 46% 47% 44%

# species PhySIC_IST (0.9) 22 67 204 198 200 189

CIC of PhySIC_IST (0.8) 3% 16% 59% 54% 57% 51%

# species PhySIC_IST (0.8) 22 81 241 225 234 213

CIC of PhySIC_IST (0.5) 3% 19% 81% 79% 60% 61%

# species PhySIC_IST (0.5) 23 96 323 318 246 248

CIC of MRP supertree N/A N/A 98.01% 99.90% 99.73% 99.95%

# of most pars. trees for MRP N/A N/A 510 2 4 1

Table 5.3: Characteristics of the supertrees built by MRP and PhySIC_IST

from investigated forests. The first row reports the total number of taxa of each forest.

CIC values [i.e., resolution degree, Scornavacca et al., 2008, see Section 4.3.1] of the inferred

supertrees are detailed, as well as the number of species in the supertrees for the non-plenary

PhySIC_IST method. For the computation of the CIC values for PhySIC_IST, the number

of taxa missing in the supertree have been calculated with respect to the total number of

input taxa (first row). The latter method was run for three different values of its STC

threshold (i.e., contradiction intolerance, see main text and Section 4.3.2.3): 0.5, 0.8 and

0.9. Last row details the number of most parsimonious trees found by MRP in each case.

On data sets F1 and F2, MRP was interrupted after a week computation (N/A entries).

A first general observation is that, the resolution degree (CIC value) of the su-
pertrees proposed by all methods increases when going from F1 to F2 and from F2

to F3 forests (see Table 5.3). When going from F x
3 forests to the corresponding F x

all

ones, the MRP method follows again the same tendency, while the PhySIC_IST
method does not. This is however explained by an increase in the level of contradic-
tory signal present in the information that PhySIC_IST extracts from the forests
when going from F s

3 to F s
all and similarly from F p

3 to F p
all by adding the trees of F1

and F2 (data not shown). This can be explained by the fact that the latter forests
contain trees with few taxa (see table 5.1) that likely do not represent the overall di-
versity of the studied groups. As such, they might be less accurate. Indeed, several
studies [among others Bininda-Edmonds and Stamatakis, 2006; Hillis, 1998] have
demonstrated the general benefit of adding taxa to the analysis e.g., to break long
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branches (see Section 4.3.4.6 for an example).
We first analyze the results of the MRP method. On data sets F1 and F2, the

method was interrupted after a week computation. Most probably, the method
couldn’t give any supertree in these cases7 due to the too poor phylogenetic signal
contained in the forests (as can be checked in Table 5.1). As a result, the parsimony
criterion could not distinguish between candidate supertrees due to a huge number
of most parsimonious trees. Other data sets did not suffer from this problem as
they contained several thousand times more signal. However, even for the relatively
large data sets F p

3 and F s
3 , the parsimony analysis found several most parsimonious

trees. The number of most parsimonious trees was always reduced when completing
these forests with the relatively small F1 and F2 forests (i.e., data sets F s

all and
F p
all). This shows how important it is to use every possible bit of information that

can be extracted from the data when dealing with such large phylogenies spanning
the origins of life.

When observing the structure of the inferred supertrees, for all data sets it
can be observed that domains are respected up to 5 taxa over the 376 considered:
Archaea and Eukaryotes are monophyletic, while Bacteria are splitted into several
paraphyletic groups. Moreover, the number of badly placed species always decreases
when going from F p

3 , F
s
3 to F p

all, F
s
all forests, again showing the interest in using all

possibly available information.
The five problematic species are:

• the Candidatus Carsonella ruddii is a gamma Proteobacterium that lives
within the cells of an insect. Its genome is so reduced that Carsonella may
be in the process of becoming an organelle such as the mitochondrion. This
bacteria groups with Archaea for the F s

3 data set and within Eukaryotes with
F s
all. It is however placed just outside Eukaryotes in other data sets;

• the Encephalitozoon cuniculi (a.k.a. microsporidians) is a highly derived Fun-
gus that parasites the cells of animals. Its sequences are so fast evolving that
it is basically always at the base of the eukaryotes tree due to long branch
attraction, but it was shown to go with Fungi in the late 90s by the groups of
Manolo Gouy and Martin Embley who used specific non-stationary models.
It groups with bacteria when building supertrees from F s

3 and F p
3 , however it

goes to the root of eukaryotes when analyzing to F s
all and F p

all.

• the Guillardia theta is an extremely reduced red algae that lives within another
alga. It has retained a minuscule genome and its sequences are very fast
evolving. This eukaryote behaves like Encephalitozoon cuniculi except that
it is correctly placed only when using F s

all. This species is well known to be
problematic from a phylogenetic point of view, as it results from a long branch.

• the two bacteria Aquiflex aeolicus and Thermotoga are hyperthermophilic bac-
teria that usually place at the base of the bacterial tree. However, many people

7Even when asked to restrict to a small number of most parsimonious trees.



160
Chapter 5. Methods to include multi-labeled phylogenies in a

supertree framework

[e.g., Brochier and Philippe, 2002] think that they are misplaced due to amino
acid composition biases. In RNA trees, they may be attracted towards the
base of the tree due to high G+C content, similar to that of hyperthermophilic
archaea. It is believed that these taxa are indeed the closest bacteria from ar-
chaea [e.g., Henz et al., 2005] since they have picked up many genes via HGT
from hyperthermophilic archaea. In this sense, they are typically close to ar-
chaea in many large scale automated analysis that do not correctly identify
these transfers. These bacteria branch from a polytomous node at the root of
archaea when analyzing F s

all but are within bacteria for other data sets.

The fact that bacteria are paraphyletic could be due to several effects. Firstly, per-
turbations introduced by an incorrect rooting of gene trees in general: the midpoint
rooting procedure was used in hogenom without manual curation. Second, it has
been established that some genes in eukaryotes have an endosymbiotic origin: mi-
tochondria from alpha proteobacteria and plastids from cyanobacteria [Gray, 1992;
Margulis, 1993]. Thus, it is likely that such eukaryotic genes vote for an incorrect
placement of eukaryotes inside bacteria, making the latter paraphyletic.

Nonetheless, species from the three domains are overall well separated in inferred
supertrees. This shows the general good quality of the speciation information that
we extracted from hogenom multigene families thanks to algorithms presented
here. That is, not only one can now extract more phylogenetic signal from phy-
logenomic databases, but this signal seems to be useful to build species trees. The
next step is looking into details of the changes induced in the species tree inferred
when going from F p

3 , resp. F s
3 to F p

all, resp. F s
all, but this deeper analysis is be-

yond the scope of this manuscript. A collaboration with the group that maintains
the hogenom database [Penel et al., 2009] is needed to conduct further studies.
The results obtained on the hogenom data by the PhySIC_IST supertree method
are complementary to those obtained by MRP. Overall, the supertrees output by
PhySIC_IST are less resolved (as can be observed by CIC values of Table 5.1), but
more correct phylogenies seem to be inferred in return as far as our analysis goes,
i.e., mostly looking at the separation between eukaryotes, bacteria and archaea. In
all inferences from F1, F s

3 , F
p
3 , F

s
all, F

p
all, eukaryotes were always monophyletic, as

well as archaea. Bacteria were monophyletic in 13 of these trees, while one group of
bacteria went to the root of the tree for the data set F s

all analysed with threshold 0.8
and one group of bacteria went to the root of the archaea in the supertree inferred
from F s

3 with threshold 0.8. Supertrees proposed from forest F2 form a less idyllic
picture, since we observe the same problems as for MRP supertrees, i.e., several
bacteria branching into the eukaryotic group.

We note that the smaller CIC values obtained by PhySIC_IST in comparison to
MRP are almost exclusively explained by the fact that some species are not inserted,
i.e., the PhySIC_IST supertree contains very few polytomies (unresolved nodes),
most trees being binary. This goes to an extreme for the smallest forest, where
PhySIC_IST supertrees contain less than 10% species, and only eukaryotes. This
indicates that the method finds the positioning of bacteria and archaea too difficult
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given the small amount of information available in F1. Recall also that MRP could
not terminate for this forest. The supertrees proposed by PhySIC_IST in this case
conform mostly to what is known on eukaryotes, e.g., as encoded in the NCBI
taxonomy. The two differences are Encephalitozoon cuniculi going to the root of the
eukaryotes, and the group composed of Leishmania major and Trypanosoma brucei

that goes into the Coelomata group instead of being at the root of eukaryotes. Recall
that the eukaryote Encephalitozoon cuniculi is a problematic species for MRP. As
an improvement, PhySIC_IST places it most often at the basis of the eukaryotic
group, and not among bacteria. Though, the acknowledged position for this taxa is
deeper in the eukaryotes. All in all, this confirms the hypothesis of a problematic
positioning of this taxa in the hogenom gene trees.

In contrast to what happens for F1, supertrees inferred by PhySIC_IST from
other forests contain species from the three super kindgoms, most usually well-
separated as indicated above. Lastly, we note that the resolution proposed by
PhySIC_IST supertrees for these groups oscillates between the two possible topolo-
gies, i.e., the two grouped ones being different depending on the forests, and some-
times also depending on the STC thresholds used. This confirms that contradictory
signal exist in hogenom data for deciding how to root the Tree of Life, likely due
to a too crude rooting procedure of the gene trees, as recognized by the authors.

5.4 Conclusions

In this chapter we have presented several algorithms to transform multi-labeled
evolutionary trees into single-labeled ones so that they can be used by all existent
supertree methods. We studied the impact of these algorithms on a phylogenomic
database. Results showed that not only these algorithms allow to extract more
information with respect to traditional approaches, but that supertrees inferred
from this extra information are much more resolved and, at a first rough level of
analysis, globally in accordance with phylogenetic knowledge. Moreover, the effort
to obtain efficient algorithms results in very reasonable running times.

Future work includes a more thorough analysis of the inferred supertrees, i.e.,
to look at the proposed phylogeny for major bacterial groups. However, this could
only be done after refining the rooting procedure applied to hogenom gene trees.

We also intend to extend the usage of the algorithms presented in this chapter to
sequence phylogenomic databases to extract sets of orthologous sequences in data
sets containing both paralogous and orthologous sequences. Indeed, once that a
gene tree M is reconstruct for a gene family S and the set D(M) is computed, we
can prune isomorphic parts of M (Algorithm 8) and use Algorithm 10 to prune
the less informative subtrees of the remaining odns of M . If we prune from S the
sequences corresponding to the leaf nodes pruned in M , we obtain the largest set
of sequences S� containing only apparent orthologous sequences that can be then
assembled into a supermatrix.
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Conclusions and further research

This thesis presents a number of novel results on supertree methods and their ap-
plications to the field of phylogenomics.

First, we have presented a review of most supertree methods currently available,
with the pros and cons of each of them. This can be useful for those who aim to
use a supertree approach but cannot decide among the several available supertree
methods. We are currently preparing a theoretical study on supertree methods that
explores their links [as done for consensus methods by Bryant, 2003] and determines
for each method which properties it possesses among the ones that a good supertree
method should satisfy [e.g., Goloboff and Pol, 2002; Ranwez et al., 2007b; Steel
et al., 2000; Wilkinson et al., 2004b].

Second, we have introduced PI and PC, two strict and desirable properties that a
conservative supertree method should satisfy and we designed two supertree methods
i.e., PhySIC [Ranwez et al., 2007a] and PhySIC_IST [Scornavacca et al., 2008]
that infer reliable supertrees satisfying these properties, the latter proposing more
resolved supertrees that can be non-plenary. PhySIC can help the users to evaluate
the quality of the input forest. Indeed, the polytomies of the PhySIC supertree are
labeled to indicate whether a further resolution of the clade has been impeded since
not respecting PI and/or PC. Thanks to this tagging, PhySIC points out whether
the unresolved parts of the supertree are due to a lack of information (PI), which
can be overcome by adding more trees to the input forest, and/or to contradictions
between source trees (PC). In the latter case, a deeper look to the input trees
is needed to determine the origins of contradictions. This can be done using our
statistical preprocessing of source trees, i.e. the STC, that allows the correction of
source trees using the triplet information contained in other source trees. Indeed,
trees that contain information massively contradicted by other source trees will be
modified by the STC. This preprocessing thus allows to identify rogue source tree
resolutions. The STC is also very useful in supertree inference since it allows the
correction of source trees before applying a veto supertree method. This approach
has the advantage of separating the liberal resolution of conflicts among source trees
from the assemblage of the supertree, allowing the user to control the extent to which
the source trees can be modified. In practice, the STC is the “missing link” between
veto and liberal methods.

Third, we have proposed several algorithms to extract the largest amount of
speciation signal from multi-labeled trees [Scornavacca et al., 2009a,b], and put it
in the form of single-labeled trees. Those trees can then be exploited by supertree
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methods or be used to identify the largest set of orthologous sequences for each gene
family and assemble them into a supermatrix. We put the emphasis on the fact that
this is the first approach that allows to include multi-labeled trees in a supertree
analysis. The application of our approach to the hogenom database shows, as
already pointed out by Bapteste et al. [2008], that multi-labed trees can no more
be ignored in supertree inference if we want to have a reliable picture of species
evolution.

PhySIC and PhySIC_IST supertree methods and the STC preprocess-
ing are freely available on the ATGC bioinformatics platform (http://www.
atgc-montpellier.fr/). A program implementing the algorithms turning multi-
labeled trees into single-labeled ones (presented in Chapter 5) will be soon avail-
able on the same platform. All these softwares have been implemented in C++

using the Bio++ libraries [Dutheil et al., 2006]. Moreover, the routine for auto-
matically rooting trees (presented in Section 4.3.3) is now part of the Bio++ Suite
(https://gna.org/projects/bppsuite).

The work presented here can be extended in several directions.
The results we presented on multi-labeled trees focused on the speciation signal,

but other Gene Evolution Events (GEE), or macro-events such as gene duplica-
tions, gene losses, and/or lateral gene transfers can occur in gene history. Taking
explicitely into account such events enables to explain the observed incongruency
between a gene tree and a corresponding species tree. The approach taking these
events into account is called reconciliation [e.g., Chauve et al., 2008; Chauve and
El-Mabrouk, 2009; Chen et al., 2000; Hallett et al., 2004; Hallett and Lagergren,
2000; Ma et al., 2000; Slowinski and Page, 1999; Vernot et al., 2008]. We are work-
ing on an algorithm to simultaneously identify duplications, losses and lateral gene
transfers. Our approach extends the mathematically rigorous model of Hallett et al.
[2004] by associating to duplications, transfers and losses different costs that can
vary across genes and branches of the species tree. Indeed, different genes often
evolve at different rates, and even a single gene may evolve at different rates in
different organisms (i.e., areas of the species tree). Not accounting for this hetero-
geneity may lead to inaccurate reconciliations. In a second time, we aim at taking
into account the possible inaccuracies in gene trees since a major problem with the
today reconciliation methods is that they assume that both the gene and the species
trees are error free. To demonstrate the relevance of our approach to the reconcil-
iation problem, we plan to conduct large-scale simulations, adapting the model of
horizontal gene transfer of Galtier [2007] to model also gene duplications and losses.

Future work includes also more thorough analyses of the hogenom database,
in collaboration with the group that maintains this database [Penel et al., 2009].
Our first aim is to refine the rooting procedure applied to hogenom gene trees
and we conjecture that this can be done using the speciation signal contained in a
MUL tree, i.e., Rwd(M). Indeed, some MUL trees contained in hogenom are not
auto-coherent with the current rooting but they turn out to be auto-coherent when
choosing a different root. Moreover, some auto-coherent MUL trees contain more
coherent speciation signal when rooted differently. We thus think that Rwd(M) can
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be used to develop a better rooting procedure for multi-labeled gene trees. The
reconciliation algorithm on which we are currently working can be also used for this
purpose, since multi-labeled trees are often rooted using ancient duplication events
[e.g. Brown and Doolittle, 1995; Gogarten et al., 1989; Gribaldo and Cammarano,
1998; Iwabe et al., 1989; Lawson et al., 1996]. Another purpose of this collaboration
is to bring new insights on the phylogeny of the major bacterial groups, which is
still debated. The preliminary results we obtained on hogenom data (presented in
Section 5.3) convinced us that the new information, resulting from our extraction of
the speciation signal of multi-labeled trees will give us a clearer picture of bacterial
evolution.





Chapter 7

Résumé en français

Une question qui passionne un nombre croissant de scientifiques, en particulier
depuis les dernières décennies, est de comprendre comment tous les organismes sur
terre descendent d’un ancêtre commun.

Depuis Aristote, les naturalistes ont toujours essayé de trouver un ordre dans
l’abondance de créatures qui peuplent la Terre. Leclerc de Buffon fut le premier na-
turaliste à évoquer la possibilité que les espèces puissent évoluer. Avant ce dernier,
toutes les classifications étaient proposées dans le cadre du fixisme, une théorie af-
firmant que la vie sur Terre a toujours été composée des espèces que nous observons
aujourd’hui et que ces espèces ne changent pas. Charles Darwin, le très célèbre natu-
raliste anglais, introduisit la première théorie évolutive, selon laquelle les populations
évoluent au fil des générations par le biais d’un processus de sélection naturelle. La
découverte de l’ADN par Watson et Crick en 1953 et la mise au point des tech-
niques de séquençage, ont permis l’utilisation d’un nouveau type d’information, les
données moléculaires (e.g. séquences d’ADN ou de protéines, codons, etc.) qui se
sont ajoutées aux données morphologiques (e.g. aspects structurels des organismes
tels que la présence de certains os du crâne, organes, etc.) utilisées jusque là pour
étudier les relations évolutives entre les espèces.

Le champ de recherche de la biologie qui étudie les relations évolutives entre les
espèces grâce à des données moléculaires et morphologiques est appelé phylogéné-

tique. Ces relations peuvent être résumées dans un arbre communément appelé arbre

(ou phylogénie) des espèces. Les données moléculaires et morphologiques sont ex-
primées sous forme de séquences de caractères qui peuvent prendre plusieurs états,
tels que, {0, 1} pour la présence/absence d’un trait morphologique, {A, C, G, T}
pour les sites nucléotidiques, etc. Pour reconstruire des phylogénies, deux types de
méthodes sont disponibles :

• les méthodes basées sur les caractères, qui évaluent les similitudes entre espè-
ces en comparant les états observés pour chacun des sites (positions) des
séquences; les méthodes basées sur les caractères peuvent être subdivisées en :

– méthodes de parcimonie

– méthodes de vraisemblance

– méthodes bayésiennes

• les méthodes basées sur les distances, s’appuient sur une quantification de
l’évolution séparant chaque couple d’espèces (ou distance évolutive) pour re-
construire une phylogénie.
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Dans un premier temps les biologistes espéraient que les phylogénies reconstruites
à partir des différents jeux de données seraient toutes équivalentes et qu’elles coïn-
cideraient avec la phylogénies des espèces. Malheureusement ce n’est pas le cas :
pour des raisons à la fois méthodologiques et biologiques, les phylogénies inférées à
partir dès différents jeux de donnés peuvent différer entre elles et différer de l’arbre
des espèces.

En e?et, le fait que le processus évolutif suivi par des séquences soit mal estimé
peut aboutir à la construction d’un arbre de gène erroné.

De plus, les macro-événements dans l’évolution des génomes, comme par exemple
la duplication des gènes dans un génome, peuvent aussi conduire à des conflits
topologiques entre les phylogénies. Ces conflits apparaissent notamment lorsque
certaines copies dupliquées d’un gène sont absentes de l’analyse, soit parce qu’elles
n’ont pas été séquencées, soit parce qu’elles ont été perdues à un moment donné au
cours du processus d’évolution. Par exemple, dans la figure 7.1, selon l’arbre des

x

xx

a b c
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Figure 7.1: La duplication des gènes peut produire des conflits entre l’arbre de gène
et l’arbre des espèce

espèces, représenté comme des tuyaux épais, b et c sont évolutivement plus proches
l’un de l’autre qu’ils ne le sont de a. Supposons que, en raison de pertes pendant le
processus d’évolution, les séquences disponibles sont la copie α pour les espèces a et
b et la copie β pour l’espèce c. Dans ce cas, l’arbre de gènes (représenté sous forme
de lignes fines à l’intérieur des tuyaux) groupe a et b, mais ces espèces ne sont pas
les plus proches en termes d’événements de spéciation.

Pour estimer l’arbre des espèces, les biologistes analysent donc simultanément
plusieurs jeux de données (ou “matrices”) correspondant à différentes familles de
gènes, pour faire émerger le signal de spéciation.

L’approche la plus immédiate pour combiner des données provenant de plusieurs
sources est simplement de concaténer les séquences d’origine dans une seule grande
matrice appelée supermatrice. Une deuxième façon de combiner plusieurs jeux de
données consiste à reconstruire dans un premier temps des arbres (appelés com-
munément arbres sources) à partir de chaque jeu de données, puis à les assembler
en un arbre plus grand, appelé super-arbre [Bininda-Emonds, 2004b].

Ces deux approches, traditionnellement considérées comme des concurrentes,
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présentent toutes deux des avantages et des inconvénients lors de l’analyse de grandes
quantités de données. Nous sommes convaincus qu’aucune de ces deux approches
n’est nettement meilleure que l’autre et qu’un choix ad hoc doit être fait pour
chaque ensemble de données, en fonction de sa taille, du type de données etc. En
outre, ces deux approches peuvent être utilisées parallèlement sur un même jeu de
données afin d’exploiter les points forts et de contrebalancer les faiblesses de chaque
méthode. Elles peuvent également être combinées en une stratégie diviser-pour-
régner [Bininda-Edmonds and Stamatakis, 2006; Bininda-Emonds, 2005].

Ce travail de thèse s’est focalisé sur l’approche super-arbre pour combiner les jeux
de données. Dans les dernières décennies une grande quantité de méthodes de super-
arbre ont été proposées. Les méthodes de super-arbre peuvent être classées en trois
catégories, selon leur façon de traiter les conflits topologiques i.e., des dispositions
différentes des mêmes espèces parmi les arbres sources.

La première série de méthodes ne peut pas gérer les arbres sources incompat-
ibles, c’est-à-dire en désaccord sur la position phylogénétique de certaines espèces
ou groupes d’espèces, appelés respectivement taxons et clades. Les méthodes pion-
nières qui appartiennent à cette catégorie sont Build [Aho et al., 1981] et le strict
consensus supertree [Gordon, 1986]. Puisque les phylogénies sont souvent en conflit
les unes avec les autres [Bininda-Emonds, 2004c, p4], ces méthodes sont d’un usage
limité.

Les méthodes libérales ou de vote résolvent les conflits [Thorley and Wilkinson,
2003], en “faisant voter” les arbres sources et en optant pour l’alternative topologique
qui maximise un critère d’optimisation (celui-ci variant d’une méthode à l’autre).
L’espoir est que chaque taxon soit placé de façon erronée dans seulement quelques
arbres et que cette information erronée soit surmontée par le grand nombre d’arbres
sources où le taxon est correctement placé. Quelques exemples de méthodes de vote
type sont la Représentation Matricielle avec Parcimonie (MRP, Baum [1992]; Ra-
gan [1992]), Modified-MinCut (mmc, Page [2002]) et l’Average Consensus Supertree
Lapointe and Cucumel [1997]. Même si les super-arbres proposés par ces méthodes
sont souvent de très bonne qualités, plusieurs auteurs ont montré que dans certains
cas, cette approche peut conduire à proposer des super-arbres contenant des clades
qui contredisent tous les arbres sources [Cotton et al., 2006; Goloboff, 2005; Goloboff

and Pol, 2002].
La troisième série de méthodes adoptent une philosophie de veto : le message

phylogénétique de chaque arbre source est respecté. Ainsi, un clade est retenu dans
le super-arbre si, et seulement si, les topologies sources sont unanimement en accord
avec sa présence. Ces méthodes éliminent les conflits [Thorley and Wilkinson, 2003],
soit en proposant des multifurcations dans le super-arbre [e.g., Goloboff and Pol,
2002] siot en élaguant les taxons problématiques [e.g., Berry and Nicolas, 2004,
2007]. Quelques exemples de méthodes de type veto sont des extensions du consensus
strict [e.g., Gordon, 1986; Huson et al., 1999], le semi-strict supertree [Goloboff and
Pol, 2002], le SMAST et le SMCT [Berry and Nicolas, 2004, 2007].

Les méthodes de super-arbre de type vote et veto peuvent être divisées en mé-
thodes directes et indirectes. Alors que les premières (e.g., Modified-MinCut et
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PhySIC) combinent directement les arbres sources , les secondes (e.g. MRP et
l’Average Consensus Supertree) procèdent en deux étapes. Dans un premier temps,
elles convertissent les arbres d’entrée en un autre type de données (e.g. séquences
binaires, distances), elles utilisent ensuite une méthode de reconstruction phylogéné-
tique classique pour analyser ces données intermédiaires.

Dans cette thèse nous présentons une revue des principales méthodes de super-
arbre actuellement disponibles, et nous détaillons les avantages et les inconvénients
de chacune d’elles. Cette synthèse devrait permettre de choisir la méthode de super-
arbre la plus adaptée, en fonction du problème traité.

Pour reconstituer des grandes parties de l’arbre de la vie, il est préférable
d’utiliser une méthode de super-arbres conservatrice afin d’obtenir des arbres très
fiables. Dans ce contexte, une méthode de super-arbre doit afficher seulement des
informations qui sont présentes dans les arbres sources ou induites par ces arbres
(propriété d’induction – PI). De plus, le super-arbre proposé ne doit pas favoriser
une résolution plutôt qu’une autre lorsque plusieurs possibilités contradictoires ex-
istent, autrement dit, il ne doit pas contenir des informations qui entrent en conflit
avec les arbres sources individuellement ou collectivement (propriété de non con-
tradiction – PC). Avant de pouvoir définir formellement ces deux propriétés, nous
devons au préalable introduire plusieurs concepts et notations.

Il n’existe que trois arbres binaires enracinés ayant pour uniques feuilles a, b,
c. Ces arbres binaires sont appelés triplets et sont notés ab|c, resp. ac|b, resp.
bc|a, selon l’unique clade non triviale qu’ils contiennent ({a, b}, resp. {a, c}, resp.
{b, c}). On dit qu’un arbre T induit ou contient un triplet t si l’arbre obtenu en
restreignant T aux feuilles a, b, c (noté T |(a,b,c)) coïncide avec t. Par exemple, l’arbre
représenté en figure 7.2 induit, entre autres, le triplet ab|d. Si T n’est pas binaire, il

b dca

Figure 7.2: L’arbre représenté en figure induit, entre autres, le triplet ab|d.
L’ensemble R(T ) pour l’arbre en figure contient quatre triplets i.e., ab|c, abd|, cd|a
et cd|b.

peut arriver que T |(a,b,c) ne contienne que le clade trivial {a, b, c}, i.e., T |(a,b,c) est
constitué d’un seul nœud interne directement relié aux trois feuilles. Dans ce cas, on
dit que {a, b, c} est non résolu dans T et on note T |(a,b,c) par la trichotomie (a, b, c).
Etant donné un triplet t, t̄ représente n’importe lequel des deux autres triplets ayant
les mêmes feuilles que t. Tout arbre enraciné T peut être décrit de façon équivalente
par l’ensemble des triplets homéomorphes à ses sous-arbres reliant trois feuilles [voir
entre autres Grunewald et al., 2007]. Cet ensemble de triplets est notée R(T ) (voir
la figure 7.2 pour un exemple). Pour toute collection F d’arbres phylogénétiques
enracinés, R(F) désigne l’ensemble des triplets présents dans au moins un arbre de
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F , i.e., R(F) =
�

Ti∈F
R(Ti).

Un ensemble R de triplets est dit compatible si, et seulement si, il existe un arbre
T qui contient tous les triplets de R. La compatibilité d’un ensemble de triplets
peut être décidée en temps polynomial [Aho et al., 1981].

Étant donné un ensemble de triplets compatible R, on dit que R induit un triplet
t (noté R � t) si, et seulement si, R ∪ {t̄} n’est pas compatible, ou encore si tout
arbre T qui contient R contient t [Grunewald et al., 2007]. Par exemple, nous avons
que {ab|c, bc|d} � ac|d car tous les arbres contenant {ab|c, bc|d} contiennent aussi le
triplet ac|d. En pratique, la forêt d’arbre sources F et donc l’ensemble R(F), sont
souvent incompatibles. Pour un ensemble incompatible de triplets R, on dit que R
induit un triplet t s’il existe un sous-ensemble compatible R� de R qui induit t.

Étant donnée une collection d’arbres sources F et un super-arbre candidat T

pour F , R(T,F) désigne l’ensemble des triplets de F pour lesquels T propose
une résolution. Autrement dit, l’ensemble R(T,F) correspond à toute informa-
tion topologique présente dans la collection F qui est liée à l’information présente
dans le super-arbre T . Plus formellement, R(T,F) =

�

ab|c ∈ R(F) tel que
{ab|c, ac|b, bc|a} ∩ R(T ) �= ∅

�

. Notons qu’il est possible que R(T,F) soit incom-
patible. C’est notamment le cas dès que T contient un triplet t pour le quel R(F)

propose deux ou trois résolutions différentes.
Avec ces notations, les propriétés d’induction et non-contradiction PI et PC pour

une collection d’arbres F et un super-arbre T peuvent être exprimés comme suit :

• T satisfait PI pour F si, et seulement si, pour tout t ∈ R(T ), on a R(T,F) � t.
En d’autres termes, PI exige que chaque triplet de T soit induit par R(T,F).

• T satisfait PC pour F si, et seulement si, pour tout t ∈ R(T ), et tout t̄,
R(T,F) �� t̄. Cela signifie que, pour chaque triplet de T , R(T,F) n’induit
aucune solution alternative.

Toute méthode de veto devrait proposer un super-arbre qui vérifie ces propriétés,
mais ce n’est pas le cas des méthodes existantes avant ce travail de thèse.

En premier lieu, nous avons donc développé un algorithme polynomial qui permet
de modifier un super-arbre T produit par une méthode de super-arbre quelconque
afin qu’il satisfasse PI et PC pour une forêt F donnée. Cet algorithme consiste à
identifier les triplets de R(T ) qui ne satisfont pas PI ou PC et à écraser certaines
des arêtes de T afin que ces triplets non-justifiés se soient plus dans R(T ).

Nous avons également conçu deux méthodes, PhySIC et PhySIC_IST, qui, pour
une collection d’arbres donnée F , renvoient d’emblée des super-arbres satisfaisant
PI et PC pour F .

La première méthode est appelée PhySIC – Phylogenetic Signal with Induction
and non-Contradiction [Ranwez et al., 2007b]. L’objectif de cette méthode est de
reconstruire des super-arbres qui satisfont PI et PC et qui résolvent le plus grand
nombre possible de triplets de R(F). Plus formellement, étant donné une collection
d’arbres F , PhySIC vise à proposer un super-arbre T tel que T satisfait PI et PC
pour F et que R(T,F) a une taille maximale sur tous les sous-ensembles de R(F).
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Nous conjecturons que ce problème est NP-complète. Une preuve de NP-
complétude a été proposé dans Guillemot and Berry [2007] mais le problème étudié
par les auteurs – MIST (Maximum Identifying Subset of Triplets) – n’est qu’une
variante du problème sous-jacent PhySIC n’impliquant pas la NP-complétude de ce
dernier. La méthode PhySIC est donc une heuristique, mais seulement sur la taille
de R(T,F) car elle renvoie toujours des super-arbres qui satisfont PI et PC.

La méthode PhySIC consiste en deux étapes. D’abord un super-arbre TPC sat-
isfaisant PC pour une collection d’arbres enracinés F est calculé par l’algorithme
PhySICPC (voir l’Algorithme 11 de l’Annexe A.1). Deuxièmement, certaines arêtes
de TPC sont éventuellement écrasées par l’algorithme PhySICPI (voir l’Algorithme
14 de l’Annexe A.1) jusqu’à obtenir un arbre TPC satisfaisant aussi la propriété PI.
Les deux algorithmes sont basés sur la construction d’un graphe appelé le graphe de

Aho [Aho et al., 1981].
Le graphe de Aho G(R, L) pour un ensemble de triplets R et un ensemble de

taxon L est le graphe ayant L comme sommets et tel que il existe une arrête entre
deux sommets a et b si et seulement si il existe un triplet ab|c ∈ R. On note v(Ci)

l’ensemble des sommets d’une composante connexe Ci de G(R, L). La restriction de
R aux sommets de Ci est R|v(Ci) = {ab|c ∈ R tel que {a, b, c} ⊆ v(Ci)}.

L’algorithme PhySICPC consiste en trois étapes. Pour première chose
PhySICPC calcule Rdc(F), i.e, l’ensemble des triplets tel que t, t̄ ∈ R(F) et
l’ensemble R�(F) = R(F) − Rdc(F). En effet, les conflits les plus fondamentaux
entre les triplets de R(F) se produisent lorsque deux différents triplets t et t̄ appa-
raissent dans R(F) pour un même ensemble de trois taxons. Evidemment, ni t ni t̄
peuvent être présents dans un arbre qui satisfait PC.

Une fois R�(F) calculé, PhySICPC construit le graphe de Aho G(R(F), L(F)).
Lorsque le graphe Aho contient plusieurs composantes connexes, elle correspondent
à des clades de l’arbre qui est construit pour représenter R(F). Puis, le sous-
clades contenus dans chacun de ces groupes principaux sont trouvés en appliquant
l’algorithme de manière récursive pour chaque couple (R(F)|v(Ci), v(Ci)). Les ap-
pels récursifs sont arrêtés lorsque les composantes contiennent moins de 3 taxons,
puisqu’il n’y a pas de triplets (donc incompatibilité) sur un tel nombre de taxons.
Toutefois, si à un certain moment dans le processus récursif le graphe de Aho pour
plus de 2 taxons n’a qu’une seule composante connexe C, cela signifie que les ar-
bres sources sont en conflit sur la résolution des taxons dans v(C). Dans ce cas,
PhySICPC renvoie un arbre étoile composé par un noeud connecté à des feuilles
ayant comme labels les taxons de v(C) (voir l’Algorithme 12 de l’Annexe A.1).

Dans cette façon PhySICPC reconstruit un arbre TPC qui satisfait PC par rap-
port à R�(F) mais sans garantie que cela vaut aussi à l’égard de R(F). Pour assurer
cela, TPC ne doit résoudre aucun triplet de Rdc(F). Si cela arrive, PhySICPC écrase
certaines des arêtes de TPC afin qu’il ne contienne aucun triplet de Rdc(F). Utiliser
PhySICPC avec R�(T ), en écrasant éventuellement certaines arêtes a posteriori

et pas directement avec R(T ) permet d’obtenir des super-arbres en moyenne plus
résolus.

Le super-arbre TPC renvoyé par PhySICPC ne satisfait pas généralement la
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propriété PI. L’algorithme PhySICPI transforme TPC pour qu’elle satisfasse aussi
PI, en identifiant les triplets de R(TPC) qui ne satisfont pas PI et en écrasant
les arêtes de TPC qui induisent ces triplets non-justifiés (voir l’Algorithme 14 de
l’Annexe A.1 pour les détails).

Des études de simulation (voir Figure 4.11) ont montré que, dans certains cas, par
exemple lorsque les arbres source ne se chevauchent pas suffisamment ou présentent
un degré élevé de contradictions, les super-arbres reconstruits par PhySIC peuvent
être très irrésolus. Puisque nous pensons que PI et PC sont des propriétés très
importantes en vue de la reconstruction de l’Arbre de Vie, nous avons conçu une
autre méthode de super-abres qui renvoie des super-abres avec ces propriétés, mais
en moyenne plus informatifs : PhySIC_IST – Phylogenetic Signal with Induction
and non-Contradiction Inserting a Subset of Taxa.

Choisir le super-arbre plus informatif parmi plusieurs candidats nécessite de
savoir comparer des arbres qui peuvent avoir un nombre de taxons différent (comme
ST1 et ST2 dans la figure 4.7 ). Dans ce but nous avons utilisé une mesure basée sur
une variation du critère CIC (Cladistic Information Criterion) [Thorley et al., 1998].
Cette mesure a des racines dans la théorie de l’information et est fondamentalement
proportionnelle au nombre d’arbres binaires complets qui sont compatibles avec le
super-arbre évalué. Plus précisément, le CIC d’un super-arbre T relativement à n

taxons est défini comme suit :

CIC(T, n) = − lg
nR(T, n)

nR(n)

où nR(T, n) est le nombre d’arbres binaires à n feuilles compatibles avec T et nR(n)

est le nombre d’arbres binaires ayant n feuilles.
La méthode PhySIC_IST fonctionne par insertions successives des taxons sur

un arbre squelette. Étant donnée une forêt d’arbres enracinés F , PhySIC_IST est
principalement constitué des étapes suivantes :

1. ordonner les taxons dans L(F) suivant un ordre de priorité bien déterminé;

2. construire un arbre squelette T formé par un noeud racine relié à deux noeuds
qui ont comme labels les deux premiers taxons dans l’ordre de priorité;

3. pour chaque taxon l dans l’ordre de priorité :

(a) choisir un noeud ou une branche de l’arbre squelette T où insérer l de
façon à vérifier PC;

(b) insérer l dans T à l’emplacement choisi, puis écraser des arêtes afin que
l’arbre obtenu, dénoté T �, vérifie aussi PI.

(c) si CIC(T �, L(F )) > CIC (T, L(F )) alors T � est le nouvel arbre squelette.

Les taxons qui ont une priorité élevée sont ceux pour lesquels nous avons le plus
d’information en terme de triplets et qui sont impliqués dans moins de contradictions
possible. Plus formellement, pour chaque taxon l, on a :
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priorité(l) = |R(l)| - |Rdc(l)|,

où on note |R(l)| (resp. |Rdc(l)|) le nombre de triplets qui contiennent l presents
dans R(F) (resp. Rdc(F)). En effet, l’insertion d’un taxon qui est présent dans de
nombreux triplets de R(F) fournit de l’information, non seulement sur sa position,
mais aussi sur la position des taxons restants. D’autre part, retarder l’insertion des
taxons au placement contesté diminue les chances de les placer incorrectement en
raison d’informations incomplètes et d’être incapable de procéder à l’insertion des
taxons restants.

Afin de choisir l’endroit de l’arbre squelette T où essayer d’insérer le taxon l, on
utilise l’information des arbres sources, en déterminant, pour chaque arbre source Ti

qui contient l, dans quelle région de T le taxon l peut être inséré sans contredire Ti.
Il faut noter que, si tous les arbres sources soutiennent l’insertion d’un taxon dans
une région (un noeud ou une branche) de T , l’insérer dans cette région ne créera pas
de contradictions entre les arbres sources et le super-arbre. Ainsi, cette insertion ne
violera pas PC. En outre, si la région soutenue par les arbres sources est limitée à
un noeud ou une arête, cela signifie qu’une telle insertion satisfera aussi PI. Dans les
autres cas PI ou PC ne sont pas satisfaites et nous sommes forcés à écraser certaines
arêtes de T � avant de comparer le CIC de T et T �.

Cette description de l’algorithme PhySIC_IST est fortement simplifiée. Pour
plus de détails voir la Section 4.3.2.1.

En moyenne, les super-arbres reconstruits par PhySIC_IST sont bien plus ré-
solus que les super-arbres reconstruits par PhySIC (voir Figure 4.11) avec un taux
d’erreur qui reste très faible (voir Figure 4.12). Ceci est une conséquence de trois dif-
férences fondamentales entre PhySIC et PhySIC_IST. Premièrement, PhySIC_IST

fonctionne par insertions successives de taxons sur un un arbre squelette et n’est
pas basé sur une version révisée de l’algorithme de Aho. En outre, les deux mé-
thodes n’ont pas le même critère d’optimisation : en effet, PhySIC vise à trouver
le super-arbre satisfaisant PI et PC tel que R(T,F) a une taille maximal sur tous
les sous-ensembles de R(F) tandis que PhySIC_IST cherche un super-arbre satis-
faisant PC et PI qui maximise la valeur du CIC. Enfin, PhySIC_IST peut proposer
des super-arbres non complets, c’est à dire qu’il n’insère pas les taxons qui entraîn-
eraient une baisse du CIC du super-arbre, tandis que PhySIC propose nécessairement
un super-arbre qui contient tous les taxons présents dans au moins un arbre source.

Cependant, la complexité de PhySIC est O(kn3 + n4), tandis que PhySIC_IST

s’exécute en O(n3(k + n3)), où k est le nombre d’arbres d’entrée de la forêt F et
n = L(F). En plus, PhySIC peut donner un retour sur les arbres sources. En effet,
le polytomies des super-arbres reconstruits par PhySIC sont marqués pour indiquer
si une autre résolution du clade n’est pas possible car elle n’aurait pas respecté PC
et/ou PI. Grâce à ce marquage, PhySIC souligne que les parties du super-arbre non
résolues sont dues à des contradictions entre les arbres source (PC) et/ou à une
manque d’information (PI), qui peut être surmonté en ajoutant plus d’arbres dans
la forêt d’entrée .

Dans ce travail de thèse, nous avons également présenté un pré-traitement statis-
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tique des arbres sources, appelée STC (Source Trees Correction), pour détecter et
corriger les positions artefactuelles de certains taxons. Ce pré-traitement, pour toute
contradiction directe contenue dans R(F), évalue les alternatives possibles et dé-
tecte les triplets qui sont statistiquement moins soutenus en utilisant un test χ2

[Fienberg, 1977], avec un seuil choisi par l’utilisateur. Dans un deuxième temps
le STC modifie chaque arbre source (en utilisant un schéma similaire à celui de
PhySIC_IST) afin qu’il ne contienne pas les triplets jugés comme non-significatifs
et qu’il reste aussi informatif que possible. En d’autres termes le STC vise à cor-
riger les arbres sources qui proposent une position anomale pour certains taxons
(en raison de transferts horizontaux de gènes, des attractions longue branche, de la
paralogie...). Par exemple, si les arbres sources contiennent deux résolutions contra-
dictoires, l’une présente dans 99 % des arbres et l’autre présente dans 1 % des arbres,
on peut raisonnablement penser que cette dernière résolution est une anomalie et
décider de l’ignorer.

Si l’utilisateur approuve les modifications proposées, la méthode de veto
PhySIC_IST est ensuite appliquée aux arbres source modifiés. Le super-arbre ré-
sultant satisfait à la fois PI and PC pour la collection d’arbres source modifiés. Si
l’utilisateur n’est pas satisfait avec les arbres sources modifiés, il peut modifier le
seuil et redémarrer la procédure, ou choisir de l’ignorer. De cette manière, la com-
posante libérale de l’inférence des super-arbres n’est pas seulement rendu explicite,
mais également interactive et paramétrée.

Le STC peut être utilisé pour toute collection d’arbres sources et les arbres
sources modifiés peuvent être utilisés par une méthode de super-arbres quelconque.
Le STC peut donc avantager toute méthode de super-arbres de type veto. En effet,
cette approche a l’avantage de séparer la résolution libérale des conflits entre les ar-
bres sources de l’assemblage des super-arbres. Cela rend explicite le choix fait pour
arbitrer entre les arbres sources contradictoires et permet à l’utilisateur de choisir
le degré avec lequel les arbres sources peuvent être modifiés. Dans la pratique, le
STC + PhySIC_IST comble l’écart entre les méthodes de veto et les méthodes de
vote. Ces recherches ont été appliquées à des problèmes biologiques pour lesquels
l’équipe Phylogénie Moléculaire (de l’Institut des Sciences de l’évolution de Montpel-

lier) dispose de données et d’expertise. Notamment, l’application de PhySIC_IST
et du prétraitement des arbres sources au problème complexe de la phylogénie des
Triticeae (voir Section 4.4) a permis de mieux comprendre l’histoire évolutive de ce
groupe.

Une limite actuelle des méthodes de super-arbres est l’impossibilité de gérer la
grande majorité des arbres de gènes qui ont subi des événements de duplication. En
effet, ces événements aboutissent presque toujours à la présence de plusieurs copies
du même gène dans les génomes, donc les arbres de gènes sont généralement multi-
étiquetés, i.e., une seule espèce peut étiqueter plusieurs feuilles. Comme aucune
méthode de super-arbres n’existe actuellement pour combiner ce type d’arbres, ils
sont complètement ignorés dans les approches phylogénomiques classiques. Pour-
tant, ils représentent 60% à 80% des arbres de gènes disponibles dans les banques de
données phylogénomiques. Dans cette thèse, nous proposons plusieurs algorithmes
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pour extraire une quantité maximale de signal de spéciation à partir d’arbres multi-
étiquetés. Ce signal est rendu sous la forme d’arbres où chaque espèce n’apparaît
qu’une fois, i.e., d’arbres que les méthodes de superarbres savent gérer.

Dans ce travail de thèse, nous nous sommes concentrés sur les arbres multi-
étiquetés enracinés binaires, ou arbres MUL pour faire court, comme celui qui est
représenté dans la Figure 5.1(i). Ne traiter que les arbres binaires n’est pas si re-
strictif, puisque, comme évoqué dans la Section 1.8, les méthodes pour reconstruire
des phylogénies produisent généralement des arbres binaires. Par exemple, dans la
base de données hogenom [Penel et al., 2009], parmi les 46.535 arbres de gènes
contenant plus de deux espèces, seulement 116 ne sont pas binaires. Pour un ar-
bre multi-étiqueté M , nous avons conçu un algorithme linéaire en O(L(M)) pour
identifier les noeuds de duplication.

Nous avons aussi adapté l’algorithme d’isomorphisme de Gusfield [1991] aux
arbres multi-étiquetés, en préservant le temps d’exécution linéaire. Cet algorithme
peut être utilisé pour faire baisser le nombre de noeuds de duplication dans les arbres
de gènes, en ne gardant qu’une copie des sous-arbres isomorphes “frères” dans une
approche bottom-up.

Pour un arbre de gènes M qui reste multi-étiqueté après avoir gardé une seule
copie des sous-arbres isomorphes frères, nous avons défini un sous-ensemble des
triplets contenus dans M . Ce sous-ensemble, noté Rwd(M), contient les triplets de
M qui donnent de l’information sur le signal de spéciation, utile pour reconstruire
l’arbre des espèces. Si le signal de spéciation de M peut être contenu dans un
arbre non multi-étiqueté, on dit que M est auto-cohèrent. L’auto-cohérence d’un
arbres multi-étiqueté peut être calculée en temps linéaire. Si M est auto-cohèrent,
son signal de spéciation peut être résumé dans un arbre non multi-étiqueté par une
méthode de super-arbres basée sur les triplets comme PhySIC et PhySIC_IST.

Pour un arbre de gènes M qui n’est pas auto-cohèrent, nous avons proposé un
algorithme linéaire pour extraire une sous-arborescence maximale qui est à la fois
auto-cohérent et libre d’événements de duplication.

Une application de ces algorithmes à la base de données hogenom est présen-
tée. Les résultats ont montré que ces algorithmes permettent d’extraire plus
d’information que les approches traditionnelles; notamment la forêt obtenue en
utilisant ces algorithmes contient environ 23 millions de triplets (sans compter les
doublons), au lieu des environ 68K de la forêt constituée que d’arbres non multi-
étiquetés. En plus, les super-arbres déduits à partir de ces informations supplé-
mentaires sont beaucoup plus résolus et, à première analyse, conformes aux con-
naissances phylogénétiques d’aujourd’hui. En outre, les temps d’exécution sont très
raisonnables (quelques minutes pour tester et convertir les arbres sources).

L’accent de cette thèse est mis sur des résultats théoriques mais les applica-
tions à la vraie vie ont toujours été gardé à l’esprit. Chaque partie de ces travaux
de recherche présente des algorithmes pour lesquels un programme convivial est
disponible en téléchargement ou pour exécution en ligne sur la plate-forme de bioin-
formatique. En outre, les contributions théoriques de cette thèse sont appliquées à
des études de cas biologiques afin de cerner leurs intérêts et leurs limites.
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A.1 Outline of main PhySIC subroutines

Algorithm 11: Details of the PhySICPC subroutine taking a set S of taxa and a set

R of triplets on S as input.

Algorithm PhySICPC (S,R)1

if S contains less than 3 taxa then return the trivial tree on S;2

Let G denote the Aho graph for R;3

if G has several connected components then CPC ← CC(G) ;4

else5

Let Rdc be the set of triplets t s.t. t, t̄ ∈ R ;6

R� ← R −Rdc;7

Let G� be the Aho graph for R�;8

if G� is connected then CPC ← v(G) ;1010

else11

CPC ← CC(G�);12

repeat1414

foreach ab|c ∈ Rdc do1616

if a, b ∈ ci and c ∈ Cj (with Ci, Cj ∈ CPC and i �= j) then1818

Build G�
i the Aho graph for R�|v(Ci) ;2020

if G�
i is connected then CPC ← (CPC − {Ci}) ∪ v(Ci) ;21

else CPC ← (CPC − {Ci}) ∪ CC(G�
i)2323

until CPC no longer changes;24

foreach Ci ∈ CPC do25

if (R|v(Ci)) = ∅ then Ti ← star tree on v(Ci) ;26

else Ti ← PhySICPC(v(Ci),R|v(Ci));27

return the tree made of a root node connected to T1, T2, ..., T|CPC | ;2929
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Algorithm 12: Details of the BuildPC subroutine taking a set S of taxa and a set R of

triplets on S as input.

Algorithm BuildPC (S,R)1

if S contains less than 3 taxa then return the trivial tree on S;2

Let G denote the Aho graph for R;3

if G has only one connected component then4

return the star tree on L(R)66

else7

CPC ← CC(G) ;8

foreach Ci ∈ CPC do9

if (R|v(Ci)) = ∅ then Ti ← star tree on v(Ci) ;1111

else Ti ← BuildPC (v(Ci),R|v(Ci))12

return the tree made of a root node connected to T1, T2, ..., T|CPC | ;1414

Algorithm 13: Details of the CheckPI subroutine taking a tree T and a set R of

triplets on S as input. S(T ) denotes (complete) subtrees connected to the root of T , i.e.,

the subtrees corresponding to the largest clades under the root of T .

Algorithm CheckPI (T,R)1

if T is made of a single leaf then return T ;2

Let G be the Aho graph for R;3

if |CC(G)| = 1 then return “error, R is incompatible";55

repeat77

foreach Ti ∈ S(T ) do8

Let Gi be the Aho graph for R|L(Ti) ;9

foreach Tj ∈ S(T ) s.t. Ti �= Tj do10

Build Gij from Gi and R|(L(Ti) ∪ L(Tj)) ;11

if Gij is not connected then12

Collapse the branch between the root of T and Ti1414

until no branch of T is collapsed ;15

foreach Ti ∈ S(T ) do16

T �
i ← CheckPI (Ti,R|L(Ti))17

return the tree made of a root node connected to T �
1, T

�
2, ..., T

�
|S(T )|18

Algorithm 14: Details of the PhySICPI subroutine taking a tree T and a forest F as

input.

Algorithm PhySICPI (T,F)1

TPI ← T ;2

repeat3

RPI ← R(TPI ,F);4

TPI ← CheckPI (TPI ,RPI)66

until TPI no longer changes;7

return TPI8
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A.2 Outline of main PhySIC_IST subroutines

Algorithm 15: Procedure ensuring that the tree T does not contain any branch contra-

dicting triplets in the set R.

Algorithm CheckPC (T,R,Rdc)1

RT ← R(T );2

foreach rT ∈ RT do3

if !(rT �∈ Rdc and r̄T �∈ R) then4

Let [u, v] be the path of T corresponding to the internal branch of rT ;5

Mark all branches of the path [u, v];6

Remove from T branches that have been marked above;7

return T ;8

Algorithm 16: Procedure that increments the supports of edges and nodes of T , within

the region where the taxon l can be inserted without contradicting the tree Ti.

Algorithm support(Ti, T, l)1

T
�

i ← Ti|(L(T ) ∪ {l});2

f
�

i ← the father of l in T
�

i ;3

C
�

i ← the sons of f
�

i (other than l) in T
�

i ;4

I ← L(T
�

i ) - L(subTree(f
�

i ));5

foreach s ∈ C
�

i do6

C ← C ∪ lcaT (subTree(s)) // i.e. the lca in T of the taxa present in subTree(s);7

f← the lowest node in T s.t. ∀s ∈ C, L(subTree(s)) ⊆ L(subTree(f)) and8

L(subTree(f)) ∩ I �= ∅;

M ← {m ∈ children(f) s.t. L(subTree(m)) ∩ I = ∅ };9

suppOn(f) ++;10

foreach m ∈ M do11

foreach u ∈ subTree(m) do12

if �s ∈ C s.t. L(subTree(u)) ⊂ L(subTree(s)) then13

suppAbv(u) ++;14

if u is not a leaf then15

suppOn(u) ++;16
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Algorithm 17: Procedure computing the CIC value of a tree T , when source tree taxa

contain n leaves.

Algorithm CIC (T, n)1

nrT,n ← 1;2

Let I the set of internal nodes of T ;3

foreach u ∈ I do4

c ← |children(u)|;5

for j in [2, c] do6

nrT,n ← (nrT,n ∗ (2 ∗ j − 3));7

max ← n− |L(T )|; j ← |L(T )|;8

for k in [1,max] do9

nrT,n ← (nrT,n ∗ (2 ∗ j − 1));10

j ← j + 1;11

nrn ← (2n− 1)!!12

return − log (nrT,n/nrn)13

Algorithm 18: Procedure returning true if inserting a taxon l in a tree T leads to a

tree T � with a greater CIC value, while satisfying PC and PI (the CheckPC and CheckPI

subroutines ensure it).

Algorithm betterCIC(T, n,R,Rdc, u, l, above)1

if above then2

T � ← T with l inserted above u;3

else4

T � ← T with l inserted on u;5

T � ← CheckPC (T �,R,Rdc);6

T � ← CheckPI (T �,R);7

if CIC(T �, n) > CIC(T, n) then8

return true;9

else10

return false;11
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Algorithm 19: Details of the roundIns procedure. This function tries to insert a given

taxa l in the backbone tree T . The insertion is performed only if the source trees containing

l all indicate the same zone to graft l and the insertion does not decrease the CIC of the

built supertree.

Algorithm roundIns(T,F ,R,Rdc, l, all, summary)1

change ← false ; n ← |L(F)| ;2

foreach u ∈ nodes(T ) do3

suppAbv(u) ← 0; suppOn(u) ← 0;4

F � ← {Tj ∈ F such that l ∈ L(Tj) and L(Tj) ∩ L(T ) > 2};5

foreach Tj ∈ F � do6

support(Tj , T, l);7

nbMaxAbv ← 0; nbMaxOn ← 0 ;8

suppMax ← maxu∈nodes(T )

�

max(suppAbv(u), suppOn(u))
�

;9

if (suppMax = |F �| or all = false) then10

foreach u ∈ nodes(T ) do11

if (suppAbv(u) = suppMax) then nbMaxAbv ++; uabv ← u ;12

if (suppOn(u) = suppMax) then nbMaxOn ++; uon ← u ;13

if (nbMaxAbv = 1 and nbMaxOn = 0) then14

if (all = true) or (betterCIC(T, n,R,Rdc, uabv, l, true)) then15

T ← T with l inserted above node uabv;16

change ← true;17

else if (nbMaxAbv = 0 and nbMaxOn = 1) then18

if (all = true) or (betterCIC(T, n,R,Rdc, uon, l, false)) then19

T ← T with l inserted on node uon;20

change ← true;21

else if (nbMaxOn = 1 and nbMaxAbv > 0 and summary = true) then22

AbvMax ← {u ∈ nodes(T ) such that suppAbv(u) = suppMax};23

if AbvMax ⊆ Children(uon) ∪ {uon} then24

if (all = true) or (betterCIC(T, n,R,Rdc, uon, l, false)) then25

T ← T with l inserted on uon;26

change ← true;27

if (change and suppMax < |F �|) then28

T ← CheckPC (T ,R,Rdc)29

return change;30

Algorithm 20: Details of the insertion procedure. Taxa not yet inserted in the back-

bone tree are considered in decreasing priority order. Each time a taxon can be inserted

(which is decided by the roundIns procedure), the taxa with higher priority (that are not yet

inserted) are reconsidered. CheckPC and CheckPI ensure that the output tree still satisfies

PI and PC properties.

Algorithm insertion(T,F ,R,Rdc, priorityList, all, summary)1

i ← 1 ;2

while i ≤ size(priorityList) do3

Let l be the ith element in priorityList;4

if roundIns(T,F ,R, l, all, summary ) then5

remove l from priorityList ; i ← 16

i ← i+ 1 ;7

T ← CheckPC (T ,R,Rdc) ; T ← CheckPI (T ,R);8
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Algorithm 21: Details of the PhySIC_IST(F) algorithm. After computing R, Rdc,

the priority list and the starting backbone tree T , the insertions of taxa are done in four

successive steps. These four steps differ on whether a maximum or maximal support is

required to insert a taxon (first boolean parameter of the insertion algorithm) and whether

insertions can temporarily contradict some source trees (second boolean parameter of the

insertion algorithm).

Algorithm PhySIC_IST(F)1

R ← R(F);2

Let Rdc be the set of triplets r : r, r̄ ∈ R ;3

priorityList ← orderList(L(F),R);4

Remove the first two leaves, called a and b, from priorityList;5

Let T be the rooted tree composed of a root node connected to two leaves a and b;6

insertion(T,F ,R,Rdc, priorityList, true, false);7

insertion(T,F ,R,Rdc, priorityList, true, true);8

insertion(T,F ,R,Rdc, priorityList, false, false);9

insertion(T,F ,R,Rdc, priorityList, false, true);10
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A.3 Supplementary materials of Section 4.4

Species Accession No. Origin

Aegilops longissima PI 330486 Unknown

Aegilops longissima PI 604110 Israel

Aegilops speltoides var. speltoides PI 449338 Israel

Aegilops speltoides var. ligustica PI 560528 Turkey

Aegilops tauschii PI 603233 Azerbaijan

Aegilops tauschii PI 603254 Iran

Agropyron mongolicum PI 499391 China

Agropyron mongolicum PI 598482 Unknown

Australopyrum retrofractum PI 531553 Australia

Australopyrum retrofractum PI 533013 Australia

Brachypodium sp.* PI 317418 Afghanistan

Dasypyrum villosum PI 251477 Turkey

Dasypyrum villosum PI 598396 Greece

Eremopyrum bonaepartis PI 203442 Turkey

Eremopyrum triticeum PI 502364 Russia

Henrardia persica PI 401347 Iran

Henrardia persica PI 577112 Turkey

Heteranthelium piliferum PI 401354 Iran

Hordeum bogdanii PI 499498 China

Hordeum marinum subsp. marinum PI 401364 Iran

Hordeum vulgare subsp. spontaneum PI 282582 Israel

Hordeum vulgare subsp. spontaneum PI 282585 Israel

Psathyrostachys juncea PI 314668 Former URSS

Psathyrostachys juncea PI 75737 Former URSS

Pseudoroegneria libanotica PI 228389 Iran

Pseudoroegneria libanotica PI 401274 Iran

Pseudoroegneria spicata PI 563870 United States

Secale cereale PI 561793 Turkey

Taeniatherum caput-medusae PI 577708 Turkey

Taeniatherum caput-medusae PI 598389 Turkey

Triticum monococcum subsp. aegilopoides PI 272519 Hungary

Triticum monococcum subsp. aegilopoides PI 427990 Lebanon

Table A.1: Species, accession numbers in the USDA database, and geo-
graphic origin of Triticeae. *This species is incorrectly identified in the USDA
database as Eremopyrum triticeum.
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Locus Alignment Genomic Relative distance Average Shape Proportion of Triplet

length (bp) location to the centromere evolutionary rate parameter α variable sites distance*

LOC_Os01g01790 860 Chr. 3S, Tel. 0.976 1.687 0.379 0.313 0.168

LOC_Os01g09300 861 Chr. 3S, Tel. 0.722 0.883 0.730 0.285 0.230

LOC_Os01g11070 1050 Chr. 3S, Cen. 0.652 1.033 0.386 0.305 0.270

LOC_Os01g13200 897 Chr. 3S, Cen. 0.568 0.659 0.282 0.220 0.209

LOC_Os01g19470 942 Chr. 3S, Cen. 0.352 0.906 0.686 0.321 0.143

LOC_Os01g21160 1017 Chr. 3S, Cen. 0.307 1.596 0.489 0.393 0.207

LOC_Os01g24680 1014 Chr. 3S, Cen. 0.184 0.875 0.266 0.260 0.374

LOC_Os01g37560 1005 Chr. 3L, Cen. 0.160 1.060 0.403 0.310 0.235

LOC_Os01g39310 945 Chr. 3L, Cen. 0.202 0.989 0.335 0.290 0.150

LOC_Os01g48720 939 Chr. 3L, Cen. 0.417 1.252 0.845 0.399 0.196

LOC_Os01g53720 1101 Chr. 3L, Cen. 0.526 0.921 0.534 0.320 0.144

LOC_Os01g55530 1068 Chr. 3L, Cen. 0.567 0.890 0.819 0.309 0.151

LOC_Os01g56630 915 Chr. 3L, Cen. 0.592 0.731 0.504 0.312 0.179

LOC_Os01g60230 999 Chr. 3L, Cen. 0.673 0.929 0.363 0.283 0.216

LOC_Os01g61720 935 Chr. 3L, Tel. 0.705 1.131 0.400 0.328 0.257

LOC_Os01g62900 951 Chr. 3L, Tel. 0.732 0.897 0.240 0.257 0.113

LOC_Os01g67220 1101 Chr. 3L, Tel. 0.827 1.303 0.798 0.322 0.231

LOC_Os01g68770 998 Chr. 3L, Tel. 0.862 1.307 0.633 0.278 0.258

LOC_Os01g70670 883 Chr. 3L, Tel. 0.898 0.899 0.381 0.310 0.156

LOC_Os01g72220 1131 Chr. 3L, Tel. 0.933 0.974 0.261 0.255 0.278

LOC_Os01g73790 966 Chr. 3L, Tel. 0.965 0.850 0.684 0.180 0.242

eIFiso4E 630 Chr. 1L, Cen. NA 0.952 0.013 0.128 0.224

CRTISO 529 Chr. 4L NA 1.165 0.136 0.163 0.477

PinA 456 Chr. 5S NA 1.375 0.267 0.189 0.394

PinB 453 Chr. 5S NA 2.411 0.258 0.218 0.289

PSY2 461 NA NA 0.978 0.332 0.150 0.318

MATK 1545 Chloroplast NA 0.462 0.374 0.177 0.127

Table A.2: Relevant phylogenetic and genomic parameters for all sequenced loci.
Chr.: chromosome; S: short arm; L: long arm; Tel.: telomere; Cen.: centromere; NA: not available. Loci on chromosome 3 were
considered telomeric when located at a relative distance from the centromere greater than 70% and centromeric otherwise. * The
triplet distance of each gene is calculated relative to the supermatrix tree (see Equation 4.1 in the main text)
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Species Accession No. Incongruent triplets
Pseudoroegneria libanotica PI 228389 113
Pseudoroegneria libanotica PI 401274 82
Pseudoroegneria spicata PI 563870 80
Hordeum bogdanii PI 499498 63
Hordeum vulgare subsp. spontaneum PI 282585 63
Hordeum vulgare subsp. spontaneum PI 282582 62
Hordeum marinum subsp. marinum PI 401364 51
Australopyrum retrofractum PI 531553 46
Australopyrum retrofractum PI 533013 40
Eremopyrum bonaepartis PI 203442 39
Taeniatherum caput-medusae PI 577708 33
Agropyron mongolicum PI 598482 32
Dasypyrum villosum PI 598396 30
Taeniatherum caput-medusae PI 598389 30
Aegilops speltoides var. ligustica PI 560528 29
Henrardia persica PI 401347 29
Secale cereale PI 561793 29
Henrardia persica PI 577112 27
Triticum monococcum subsp. aegilopoides PI 272519 27
Aegilops tauschii PI 603233 24
Eremopyrum triticeum PI 502364 24
Agropyron mongolicum PI 499391 21
Dasypyrum villosum PI 251477 21
Aegilops tauschii PI 603254 20
Aegilops speltoides var. speltoides PI 449338 19
Triticum monococcum subsp. aegilopoides PI 427990 19
Aegilops longissima PI 330486 17
Heteranthelium piliferum PI 401354 16
Aegilops longissima PI 604110 15
Psathyrostachys juncea PI 314668 0
Psathyrostachys juncea PI 75737 0

Table A.3: Number of incongruent, strongly rejected triplets per acces-
sion. Incongruent triplets were calculated between individual loci and
the supermatrix tree. Rows are sorted in decreasing number of incongruent
triplets.
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Clade triplet Incongruent triplets Relative proximity among clades
IIA, IIB | V 119 Distantly related
IIA, IIB | IIIB 68 Distantly related
IIIA, IIIB | V 30 Closely related
IIA, IIB | IV 29 Distantly related
IIA, IIB | IIIA 22 Distantly related
V, V | V 18 Adjacent
IV, V | IIIB 18 Closely related
V, IIIA | IIB 14 Distantly related
IIIA, IV | IIB 12 Distantly related
IIIB, IV | IIB 11 Distantly related
IIIA, IIIB | IV 8 Closely related
IIIB, IIIB | V 5 Closely related
IIIB, IIIB | IIIA 5 Adjacent
V, IV | IIIA 2 Closely related
IIIB, IIIB | IV 2 Closely related
IIIB, IIIA | V 2 Closely related
V, IV | IIIB 1 Closely related
IIIB, IIIB | IIA 1 Distantly related

Table A.4: Number of incongruent, strongly rejected triplets, pooled by
clades. Clades are named as depicted in Figure 4.19. Incongruent triplets
are calculated between individual loci and the supermatrix tree. Rows are sorted in
decreasing number of incongruent triplets.
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Résumé:

La phylogénétique est un champ de recherche de la biologie qui étudie les relations évolutives entre les

espèces grâce à des données moléculaires et morphologiques. Ces relations peuvent être résumées dans un arbre

communément appelé “arbre des espèces”. Ces arbres sont principalement estimés en analysant des “arbres de

gènes”, i.e., des arbres évolutifs construits par l’analyse d’une famille de gènes. Toutefois, pour des raisons

à la fois méthodologiques et biologiques, un arbre de gènes peut différer par endroits de l’arbre des espèces.

Pour estimer ce dernier, les biologistes analysent donc simultanément plusieurs jeux de données correspondant

à différentes familles de gènes, laissant le poids de l’évidence décider.

Ce travail de thèse s’est focalisé sur l’approche “super-arbre” pour combiner les jeux de données. Cette

approche consiste premièrement à construire des arbres (appelés communément arbres sources) à partir de

données primaires, puis à les assembler en un arbre plus grand et plus complet, appelé super-arbre. Si elles

sont utilisées au sein d’une approche “diviser pour régner” dans le but de reconstituer des grandes parties de

l’arbre de vie, il est préférable d’utiliser une méthode de super-arbres conservative afin d’obtenir des arbres très

fiables. Dans ce contexte, une méthode de super-arbre doit afficher seulement des informations fiables qui sont

présentes ou induites par les arbres sources (propriété d’induction – PI), et qui n’entrent pas en conflit avec ces

derniers ou avec une de leurs combinaisons (propriété de non contradiction – PC). Nous avons défini de manière

formelle ces deux propriétés. De plus, comme aucune des méthodes de super-arbres existantes ne garantissait

l’obtention d’un super-arbre satisfaisant PI et PC, nous avons développé un algorithme permettant de modifier

un super-arbre afin qu’il les satisfasse. Nous avons également conçu deux méthodes, PhySIC et PhySIC_IST,

qui construisent directement des super-arbres satisfaisant ces deux propriétés. L’application de PhySIC_IST

au problème complexe de la phylogénie des Triticeae a permis de mieux comprendre l’histoire évolutive de ce

groupe.

Les événements de duplication aboutissent presque toujours à la présence de plusieurs copies du même

gène dans les génomes. Les arbres de gènes sont donc généralement multi-étiquetés, i.e., une seule

espèce étiquette plusieurs feuilles. Comme aucune méthode n’existe actuellement pour combiner ce type

d’arbres, ils sont le plus souvent complètement ignorés dans les approches phylogénomiques classiques. Pour-

tant, ils représentent 60% à 80% des arbres de gènes disponibles dans les banques de données molécu-

laires. Dans cette thèse, nous proposons plusieurs algorithmes permettant d’obtenir, à partir d’un arbre

multi-étiqueté, un arbre classique (i.e., où chaque espèce n’apparaît qu’une seule fois) contenant un max-

imum d’informations de spéciation présentes dans l’arbre initial. Cet arbre peut ensuite être utilisé par

n’importe quelle méthode de super-arbres. Une application à la base de données hogenom est présentée.

Abstract:

Phylogenetics is the field of evolutionary biology that studies the evolutionary relationships between species

through morphological and molecular data. These relationships can be summarized in the so- called “species

tree”. A gene tree is an evolutionary tree constructed by analyzing a gene family. Species trees are mainly

estimated using gene trees. However, for both methodological and biological reasons, a gene tree may differ

from the species tree. To estimate species tree, biologists then analyze several data sets at a time, letting the

weight of the evidence decide.

This thesis focuses on the “supertree” approach to combine data sets. This approach consists first in

constructing trees (commonly called source trees) from primary data, then assembling them into a larger

and more comprehensive tree, called supertree. When using supertree construction in a divide-and-conquer

approach in the attempt to reconstruct large portions of the Tree of Life, conservative supertree methods have

to be preferred in order to obtain reliable supertrees. In this context, a supertree method should display only

information that is displayed or induced by source trees (induction property – PI) and that does not conflict

with source trees or a combination thereof (non contradiction property – PC). In this thesis we introduce two

combinatorial properties that formalize these ideas. We proposed algorithms that modify the output of any

supertree methods such that it verifies these properties. Since no existing supertree method satisfies both PI

and PC, we have developed two methods, PhySIC and PhySIC_IST, which directly build supertrees satisfying

these properties. An application of PhySIC_IST to the complex problem of the history of Triticeae is presented.

Since duplication events often result in the presence of several copies of the same genes in the

species genomes, gene trees are usually multi-labeled, i.e., , a single species can label more than one

leaf. Since no supertree method exists to combine multi-labeled trees, until now these gene trees were

simply discarded in supertree analyses. Yet, they account for 60% to 80 % of the gene trees avail-

able in phylogenomic databases. In this thesis, we propose several algorithms to extract a maximum

amount of speciation signal from multi-labeled trees and put it under the form of single-labeled trees

which can be handled by supertree methods. An application to the hogenom database is presented.

Mots-clés: Phylogénie, Phylogénomique, Superarbe, Méthodes de type veto, Arbres multi-étiquetés

Keywords: Phylogenetics, Phylogenomics, Supertree, Veto methods, Multi-labeled trees


